1 | use core::time::Duration as UnsignedDuration; |
2 | |
3 | use crate::{ |
4 | duration::{Duration, SDuration}, |
5 | error::{err, Error, ErrorContext}, |
6 | fmt::{ |
7 | self, |
8 | temporal::{self, DEFAULT_DATETIME_PARSER}, |
9 | }, |
10 | shared::util::itime::ITimestamp, |
11 | tz::{Offset, TimeZone}, |
12 | util::{ |
13 | rangeint::{self, Composite, RFrom, RInto}, |
14 | round::increment, |
15 | t::{ |
16 | self, FractionalNanosecond, NoUnits, NoUnits128, UnixMicroseconds, |
17 | UnixMilliseconds, UnixNanoseconds, UnixSeconds, C, |
18 | }, |
19 | }, |
20 | zoned::Zoned, |
21 | RoundMode, SignedDuration, Span, SpanRound, Unit, |
22 | }; |
23 | |
24 | /// An instant in time represented as the number of nanoseconds since the Unix |
25 | /// epoch. |
26 | /// |
27 | /// A timestamp is always in the Unix timescale with a UTC offset of zero. |
28 | /// |
29 | /// To obtain civil or "local" datetime units like year, month, day or hour, a |
30 | /// timestamp needs to be combined with a [`TimeZone`] to create a [`Zoned`]. |
31 | /// That can be done with [`Timestamp::in_tz`] or [`Timestamp::to_zoned`]. |
32 | /// |
33 | /// The integer count of nanoseconds since the Unix epoch is signed, where |
34 | /// the Unix epoch is `1970-01-01 00:00:00Z`. A positive timestamp indicates |
35 | /// a point in time after the Unix epoch. A negative timestamp indicates a |
36 | /// point in time before the Unix epoch. |
37 | /// |
38 | /// # Parsing and printing |
39 | /// |
40 | /// The `Timestamp` type provides convenient trait implementations of |
41 | /// [`std::str::FromStr`] and [`std::fmt::Display`]: |
42 | /// |
43 | /// ``` |
44 | /// use jiff::Timestamp; |
45 | /// |
46 | /// let ts: Timestamp = "2024-06-19 15:22:45-04" .parse()?; |
47 | /// assert_eq!(ts.to_string(), "2024-06-19T19:22:45Z" ); |
48 | /// |
49 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
50 | /// ``` |
51 | /// |
52 | /// A `Timestamp` can also be parsed from something that _contains_ a |
53 | /// timestamp, but with perhaps other data (such as a time zone): |
54 | /// |
55 | /// ``` |
56 | /// use jiff::Timestamp; |
57 | /// |
58 | /// let ts: Timestamp = "2024-06-19T15:22:45-04[America/New_York]" .parse()?; |
59 | /// assert_eq!(ts.to_string(), "2024-06-19T19:22:45Z" ); |
60 | /// |
61 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
62 | /// ``` |
63 | /// |
64 | /// For more information on the specific format supported, see the |
65 | /// [`fmt::temporal`](crate::fmt::temporal) module documentation. |
66 | /// |
67 | /// # Default value |
68 | /// |
69 | /// For convenience, this type implements the `Default` trait. Its default |
70 | /// value corresponds to `1970-01-01T00:00:00.000000000`. That is, it is the |
71 | /// Unix epoch. One can also access this value via the `Timestamp::UNIX_EPOCH` |
72 | /// constant. |
73 | /// |
74 | /// # Leap seconds |
75 | /// |
76 | /// Jiff does not support leap seconds. Jiff behaves as if they don't exist. |
77 | /// The only exception is that if one parses a timestamp with a second |
78 | /// component of `60`, then it is automatically constrained to `59`: |
79 | /// |
80 | /// ``` |
81 | /// use jiff::Timestamp; |
82 | /// |
83 | /// let ts: Timestamp = "2016-12-31 23:59:60Z" .parse()?; |
84 | /// assert_eq!(ts.to_string(), "2016-12-31T23:59:59Z" ); |
85 | /// |
86 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
87 | /// ``` |
88 | /// |
89 | /// # Comparisons |
90 | /// |
91 | /// The `Timestamp` type provides both `Eq` and `Ord` trait implementations |
92 | /// to facilitate easy comparisons. When a timestamp `ts1` occurs before a |
93 | /// timestamp `ts2`, then `dt1 < dt2`. For example: |
94 | /// |
95 | /// ``` |
96 | /// use jiff::Timestamp; |
97 | /// |
98 | /// let ts1 = Timestamp::from_second(123_456_789)?; |
99 | /// let ts2 = Timestamp::from_second(123_456_790)?; |
100 | /// assert!(ts1 < ts2); |
101 | /// |
102 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
103 | /// ``` |
104 | /// |
105 | /// # Arithmetic |
106 | /// |
107 | /// This type provides routines for adding and subtracting spans of time, as |
108 | /// well as computing the span of time between two `Timestamp` values. |
109 | /// |
110 | /// For adding or subtracting spans of time, one can use any of the following |
111 | /// routines: |
112 | /// |
113 | /// * [`Timestamp::checked_add`] or [`Timestamp::checked_sub`] for checked |
114 | /// arithmetic. |
115 | /// * [`Timestamp::saturating_add`] or [`Timestamp::saturating_sub`] for |
116 | /// saturating arithmetic. |
117 | /// |
118 | /// Additionally, checked arithmetic is available via the `Add` and `Sub` |
119 | /// trait implementations. When the result overflows, a panic occurs. |
120 | /// |
121 | /// ``` |
122 | /// use jiff::{Timestamp, ToSpan}; |
123 | /// |
124 | /// let ts1: Timestamp = "2024-02-25T15:45Z" .parse()?; |
125 | /// let ts2 = ts1 - 24.hours(); |
126 | /// assert_eq!(ts2.to_string(), "2024-02-24T15:45:00Z" ); |
127 | /// |
128 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
129 | /// ``` |
130 | /// |
131 | /// One can compute the span of time between two timestamps using either |
132 | /// [`Timestamp::until`] or [`Timestamp::since`]. It's also possible to |
133 | /// subtract two `Timestamp` values directly via a `Sub` trait implementation: |
134 | /// |
135 | /// ``` |
136 | /// use jiff::{Timestamp, ToSpan}; |
137 | /// |
138 | /// let ts1: Timestamp = "2024-05-03 23:30:00.123Z" .parse()?; |
139 | /// let ts2: Timestamp = "2024-02-25 07Z" .parse()?; |
140 | /// // The default is to return spans with units no bigger than seconds. |
141 | /// assert_eq!(ts1 - ts2, 5934600.seconds().milliseconds(123).fieldwise()); |
142 | /// |
143 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
144 | /// ``` |
145 | /// |
146 | /// The `until` and `since` APIs are polymorphic and allow re-balancing and |
147 | /// rounding the span returned. For example, the default largest unit is |
148 | /// seconds (as exemplified above), but we can ask for bigger units (up to |
149 | /// hours): |
150 | /// |
151 | /// ``` |
152 | /// use jiff::{Timestamp, ToSpan, Unit}; |
153 | /// |
154 | /// let ts1: Timestamp = "2024-05-03 23:30:00.123Z" .parse()?; |
155 | /// let ts2: Timestamp = "2024-02-25 07Z" .parse()?; |
156 | /// assert_eq!( |
157 | /// // If you want to deal in units bigger than hours, then you'll have to |
158 | /// // convert your timestamp to a [`Zoned`] first. |
159 | /// ts1.since((Unit::Hour, ts2))?, |
160 | /// 1648.hours().minutes(30).milliseconds(123).fieldwise(), |
161 | /// ); |
162 | /// |
163 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
164 | /// ``` |
165 | /// |
166 | /// You can also round the span returned: |
167 | /// |
168 | /// ``` |
169 | /// use jiff::{RoundMode, Timestamp, TimestampDifference, ToSpan, Unit}; |
170 | /// |
171 | /// let ts1: Timestamp = "2024-05-03 23:30:59.123Z" .parse()?; |
172 | /// let ts2: Timestamp = "2024-05-02 07Z" .parse()?; |
173 | /// assert_eq!( |
174 | /// ts1.since( |
175 | /// TimestampDifference::new(ts2) |
176 | /// .smallest(Unit::Minute) |
177 | /// .largest(Unit::Hour), |
178 | /// )?, |
179 | /// 40.hours().minutes(30).fieldwise(), |
180 | /// ); |
181 | /// // `TimestampDifference` uses truncation as a rounding mode by default, |
182 | /// // but you can set the rounding mode to break ties away from zero: |
183 | /// assert_eq!( |
184 | /// ts1.since( |
185 | /// TimestampDifference::new(ts2) |
186 | /// .smallest(Unit::Minute) |
187 | /// .largest(Unit::Hour) |
188 | /// .mode(RoundMode::HalfExpand), |
189 | /// )?, |
190 | /// // Rounds up to 31 minutes. |
191 | /// 40.hours().minutes(31).fieldwise(), |
192 | /// ); |
193 | /// |
194 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
195 | /// ``` |
196 | /// |
197 | /// # Rounding timestamps |
198 | /// |
199 | /// A `Timestamp` can be rounded based on a [`TimestampRound`] configuration of |
200 | /// smallest units, rounding increment and rounding mode. Here's an example |
201 | /// showing how to round to the nearest third hour: |
202 | /// |
203 | /// ``` |
204 | /// use jiff::{Timestamp, TimestampRound, Unit}; |
205 | /// |
206 | /// let ts: Timestamp = "2024-06-19 16:27:29.999999999Z" .parse()?; |
207 | /// assert_eq!( |
208 | /// ts.round(TimestampRound::new().smallest(Unit::Hour).increment(3))?, |
209 | /// "2024-06-19 15Z" .parse::<Timestamp>()?, |
210 | /// ); |
211 | /// // Or alternatively, make use of the `From<(Unit, i64)> for TimestampRound` |
212 | /// // trait implementation: |
213 | /// assert_eq!( |
214 | /// ts.round((Unit::Hour, 3))?.to_string(), |
215 | /// "2024-06-19T15:00:00Z" , |
216 | /// ); |
217 | /// |
218 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
219 | /// ``` |
220 | /// |
221 | /// See [`Timestamp::round`] for more details. |
222 | /// |
223 | /// # An instant in time |
224 | /// |
225 | /// Unlike a [`civil::DateTime`](crate::civil::DateTime), a `Timestamp` |
226 | /// _always_ corresponds, unambiguously, to a precise instant in time (to |
227 | /// nanosecond precision). This means that attaching a time zone to a timestamp |
228 | /// is always unambiguous because there's never any question as to which |
229 | /// instant it refers to. This is true even for gaps in civil time. |
230 | /// |
231 | /// For example, in `America/New_York`, clocks were moved ahead one hour |
232 | /// at clock time `2024-03-10 02:00:00`. That is, the 2 o'clock hour never |
233 | /// appeared on clocks in the `America/New_York` region. Since parsing a |
234 | /// timestamp always requires an offset, the time it refers to is unambiguous. |
235 | /// We can see this by writing a clock time, `02:30`, that never existed but |
236 | /// with two different offsets: |
237 | /// |
238 | /// ``` |
239 | /// use jiff::Timestamp; |
240 | /// |
241 | /// // All we're doing here is attaching an offset to a civil datetime. |
242 | /// // There is no time zone information here, and thus there is no |
243 | /// // accounting for ambiguity due to daylight saving time transitions. |
244 | /// let before_hour_jump: Timestamp = "2024-03-10 02:30-04" .parse()?; |
245 | /// let after_hour_jump: Timestamp = "2024-03-10 02:30-05" .parse()?; |
246 | /// // This shows the instant in time in UTC. |
247 | /// assert_eq!(before_hour_jump.to_string(), "2024-03-10T06:30:00Z" ); |
248 | /// assert_eq!(after_hour_jump.to_string(), "2024-03-10T07:30:00Z" ); |
249 | /// |
250 | /// // Now let's attach each instant to an `America/New_York` time zone. |
251 | /// let zdt_before = before_hour_jump.in_tz("America/New_York" )?; |
252 | /// let zdt_after = after_hour_jump.in_tz("America/New_York" )?; |
253 | /// // And now we can see that even though the original instant refers to |
254 | /// // the 2 o'clock hour, since that hour never existed on the clocks in |
255 | /// // `America/New_York`, an instant with a time zone correctly adjusts. |
256 | /// assert_eq!( |
257 | /// zdt_before.to_string(), |
258 | /// "2024-03-10T01:30:00-05:00[America/New_York]" , |
259 | /// ); |
260 | /// assert_eq!( |
261 | /// zdt_after.to_string(), |
262 | /// "2024-03-10T03:30:00-04:00[America/New_York]" , |
263 | /// ); |
264 | /// |
265 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
266 | /// ``` |
267 | /// |
268 | /// In the example above, there is never a step that is incorrect or has an |
269 | /// alternative answer. Every step is unambiguous because we never involve |
270 | /// any [`civil`](crate::civil) datetimes. |
271 | /// |
272 | /// But note that if the datetime string you're parsing from lacks an offset, |
273 | /// then it *could* be ambiguous even if a time zone is specified. In this |
274 | /// case, parsing will always fail: |
275 | /// |
276 | /// ``` |
277 | /// use jiff::Timestamp; |
278 | /// |
279 | /// let result = "2024-06-30 08:30[America/New_York]" .parse::<Timestamp>(); |
280 | /// assert_eq!( |
281 | /// result.unwrap_err().to_string(), |
282 | /// "failed to find offset component in \ |
283 | /// \"2024-06-30 08:30[America/New_York] \", \ |
284 | /// which is required for parsing a timestamp" , |
285 | /// ); |
286 | /// ``` |
287 | /// |
288 | /// # Converting a civil datetime to a timestamp |
289 | /// |
290 | /// Sometimes you want to convert the "time on the clock" to a precise instant |
291 | /// in time. One way to do this was demonstrated in the previous section, but |
292 | /// it only works if you know your current time zone offset: |
293 | /// |
294 | /// ``` |
295 | /// use jiff::Timestamp; |
296 | /// |
297 | /// let ts: Timestamp = "2024-06-30 08:36-04" .parse()?; |
298 | /// assert_eq!(ts.to_string(), "2024-06-30T12:36:00Z" ); |
299 | /// |
300 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
301 | /// ``` |
302 | /// |
303 | /// The above happened to be the precise instant in time I wrote the example. |
304 | /// Since I happened to know the offset, this worked okay. But what if I |
305 | /// didn't? We could instead construct a civil datetime and attach a time zone |
306 | /// to it. This will create a [`Zoned`] value, from which we can access the |
307 | /// timestamp: |
308 | /// |
309 | /// ``` |
310 | /// use jiff::civil::date; |
311 | /// |
312 | /// let clock = date(2024, 6, 30).at(8, 36, 0, 0).in_tz("America/New_York" )?; |
313 | /// assert_eq!(clock.timestamp().to_string(), "2024-06-30T12:36:00Z" ); |
314 | /// |
315 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
316 | /// ``` |
317 | #[derive (Clone, Copy)] |
318 | pub struct Timestamp { |
319 | second: UnixSeconds, |
320 | nanosecond: FractionalNanosecond, |
321 | } |
322 | |
323 | impl Timestamp { |
324 | /// The minimum representable timestamp. |
325 | /// |
326 | /// The minimum is chosen such that it can be combined with |
327 | /// any legal [`Offset`](crate::tz::Offset) and turned into a |
328 | /// [`civil::DateTime`](crate::civil::DateTime). |
329 | /// |
330 | /// # Example |
331 | /// |
332 | /// ``` |
333 | /// use jiff::{civil::date, tz::Offset, Timestamp}; |
334 | /// |
335 | /// let dt = Offset::MIN.to_datetime(Timestamp::MIN); |
336 | /// assert_eq!(dt, date(-9999, 1, 1).at(0, 0, 0, 0)); |
337 | /// ``` |
338 | pub const MIN: Timestamp = Timestamp { |
339 | second: UnixSeconds::MIN_SELF, |
340 | nanosecond: FractionalNanosecond::N::<0>(), |
341 | }; |
342 | |
343 | /// The maximum representable timestamp. |
344 | /// |
345 | /// The maximum is chosen such that it can be combined with |
346 | /// any legal [`Offset`](crate::tz::Offset) and turned into a |
347 | /// [`civil::DateTime`](crate::civil::DateTime). |
348 | /// |
349 | /// # Example |
350 | /// |
351 | /// ``` |
352 | /// use jiff::{civil::date, tz::Offset, Timestamp}; |
353 | /// |
354 | /// let dt = Offset::MAX.to_datetime(Timestamp::MAX); |
355 | /// assert_eq!(dt, date(9999, 12, 31).at(23, 59, 59, 999_999_999)); |
356 | /// ``` |
357 | pub const MAX: Timestamp = Timestamp { |
358 | second: UnixSeconds::MAX_SELF, |
359 | nanosecond: FractionalNanosecond::MAX_SELF, |
360 | }; |
361 | |
362 | /// The Unix epoch represented as a timestamp. |
363 | /// |
364 | /// The Unix epoch corresponds to the instant at `1970-01-01T00:00:00Z`. |
365 | /// As a timestamp, it corresponds to `0` nanoseconds. |
366 | /// |
367 | /// A timestamp is positive if and only if it is greater than the Unix |
368 | /// epoch. A timestamp is negative if and only if it is less than the Unix |
369 | /// epoch. |
370 | pub const UNIX_EPOCH: Timestamp = Timestamp { |
371 | second: UnixSeconds::N::<0>(), |
372 | nanosecond: FractionalNanosecond::N::<0>(), |
373 | }; |
374 | |
375 | /// Returns the current system time as a timestamp. |
376 | /// |
377 | /// # Panics |
378 | /// |
379 | /// This panics if the system clock is set to a time value outside of the |
380 | /// range `-009999-01-01T00:00:00Z..=9999-12-31T11:59:59.999999999Z`. The |
381 | /// justification here is that it is reasonable to expect the system clock |
382 | /// to be set to a somewhat sane, if imprecise, value. |
383 | /// |
384 | /// If you want to get the current Unix time fallibly, use |
385 | /// [`Timestamp::try_from`] with a `std::time::SystemTime` as input. |
386 | /// |
387 | /// This may also panic when `SystemTime::now()` itself panics. The most |
388 | /// common context in which this happens is on the `wasm32-unknown-unknown` |
389 | /// target. If you're using that target in the context of the web (for |
390 | /// example, via `wasm-pack`), and you're an application, then you should |
391 | /// enable Jiff's `js` feature. This will automatically instruct Jiff in |
392 | /// this very specific circumstance to execute JavaScript code to determine |
393 | /// the current time from the web browser. |
394 | /// |
395 | /// # Example |
396 | /// |
397 | /// ``` |
398 | /// use jiff::Timestamp; |
399 | /// |
400 | /// assert!(Timestamp::now() > Timestamp::UNIX_EPOCH); |
401 | /// ``` |
402 | #[cfg (feature = "std" )] |
403 | pub fn now() -> Timestamp { |
404 | Timestamp::try_from(crate::now::system_time()) |
405 | .expect("system time is valid" ) |
406 | } |
407 | |
408 | /// Creates a new instant in time represented as a timestamp. |
409 | /// |
410 | /// While a timestamp is logically a count of nanoseconds since the Unix |
411 | /// epoch, this constructor provides a convenience way of constructing |
412 | /// the timestamp from two components: seconds and fractional seconds |
413 | /// expressed as nanoseconds. |
414 | /// |
415 | /// The signs of `second` and `nanosecond` need not be the same. |
416 | /// |
417 | /// # Errors |
418 | /// |
419 | /// This returns an error if the given components would correspond to |
420 | /// an instant outside the supported range. Also, `nanosecond` is limited |
421 | /// to the range `-999,999,999..=999,999,999`. |
422 | /// |
423 | /// # Example |
424 | /// |
425 | /// This example shows the instant in time 123,456,789 seconds after the |
426 | /// Unix epoch: |
427 | /// |
428 | /// ``` |
429 | /// use jiff::Timestamp; |
430 | /// |
431 | /// assert_eq!( |
432 | /// Timestamp::new(123_456_789, 0)?.to_string(), |
433 | /// "1973-11-29T21:33:09Z" , |
434 | /// ); |
435 | /// |
436 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
437 | /// ``` |
438 | /// |
439 | /// # Example: normalized sign |
440 | /// |
441 | /// This example shows how `second` and `nanosecond` are resolved when |
442 | /// their signs differ. |
443 | /// |
444 | /// ``` |
445 | /// use jiff::Timestamp; |
446 | /// |
447 | /// let ts = Timestamp::new(2, -999_999_999)?; |
448 | /// assert_eq!(ts.as_second(), 1); |
449 | /// assert_eq!(ts.subsec_nanosecond(), 1); |
450 | /// |
451 | /// let ts = Timestamp::new(-2, 999_999_999)?; |
452 | /// assert_eq!(ts.as_second(), -1); |
453 | /// assert_eq!(ts.subsec_nanosecond(), -1); |
454 | /// |
455 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
456 | /// ``` |
457 | /// |
458 | /// # Example: limits |
459 | /// |
460 | /// The minimum timestamp has nanoseconds set to zero, while the maximum |
461 | /// timestamp has nanoseconds set to `999,999,999`: |
462 | /// |
463 | /// ``` |
464 | /// use jiff::Timestamp; |
465 | /// |
466 | /// assert_eq!(Timestamp::MIN.subsec_nanosecond(), 0); |
467 | /// assert_eq!(Timestamp::MAX.subsec_nanosecond(), 999_999_999); |
468 | /// ``` |
469 | /// |
470 | /// As a consequence, nanoseconds cannot be negative when a timestamp has |
471 | /// minimal seconds: |
472 | /// |
473 | /// ``` |
474 | /// use jiff::Timestamp; |
475 | /// |
476 | /// assert!(Timestamp::new(Timestamp::MIN.as_second(), -1).is_err()); |
477 | /// // But they can be positive! |
478 | /// let one_ns_more = Timestamp::new(Timestamp::MIN.as_second(), 1)?; |
479 | /// assert_eq!( |
480 | /// one_ns_more.to_string(), |
481 | /// "-009999-01-02T01:59:59.000000001Z" , |
482 | /// ); |
483 | /// // Or, when combined with a minimal offset: |
484 | /// assert_eq!( |
485 | /// jiff::tz::Offset::MIN.to_datetime(one_ns_more).to_string(), |
486 | /// "-009999-01-01T00:00:00.000000001" , |
487 | /// ); |
488 | /// |
489 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
490 | /// ``` |
491 | #[inline ] |
492 | pub fn new(second: i64, nanosecond: i32) -> Result<Timestamp, Error> { |
493 | Timestamp::new_ranged( |
494 | UnixSeconds::try_new("second" , second)?, |
495 | FractionalNanosecond::try_new("nanosecond" , nanosecond)?, |
496 | ) |
497 | } |
498 | |
499 | /// Creates a new `Timestamp` value in a `const` context. |
500 | /// |
501 | /// # Panics |
502 | /// |
503 | /// This routine panics when [`Timestamp::new`] would return an error. |
504 | /// That is, when the given components would correspond to |
505 | /// an instant outside the supported range. Also, `nanosecond` is limited |
506 | /// to the range `-999,999,999..=999,999,999`. |
507 | /// |
508 | /// # Example |
509 | /// |
510 | /// This example shows the instant in time 123,456,789 seconds after the |
511 | /// Unix epoch: |
512 | /// |
513 | /// ``` |
514 | /// use jiff::Timestamp; |
515 | /// |
516 | /// assert_eq!( |
517 | /// Timestamp::constant(123_456_789, 0).to_string(), |
518 | /// "1973-11-29T21:33:09Z" , |
519 | /// ); |
520 | /// ``` |
521 | #[inline ] |
522 | pub const fn constant(mut second: i64, mut nanosecond: i32) -> Timestamp { |
523 | if second == UnixSeconds::MIN_REPR && nanosecond < 0 { |
524 | panic!("nanoseconds must be >=0 when seconds are minimal" ); |
525 | } |
526 | // We now normalize our seconds and nanoseconds such that they have |
527 | // the same sign (or where one is zero). So for example, when given |
528 | // `-1s 1ns`, then we should turn that into `-999,999,999ns`. |
529 | // |
530 | // But first, if we're already normalized, we're done! |
531 | if second.signum() as i8 == nanosecond.signum() as i8 |
532 | || second == 0 |
533 | || nanosecond == 0 |
534 | { |
535 | return Timestamp { |
536 | second: UnixSeconds::new_unchecked(second), |
537 | nanosecond: FractionalNanosecond::new_unchecked(nanosecond), |
538 | }; |
539 | } |
540 | if second < 0 && nanosecond > 0 { |
541 | second += 1; |
542 | nanosecond -= t::NANOS_PER_SECOND.value() as i32; |
543 | } else if second > 0 && nanosecond < 0 { |
544 | second -= 1; |
545 | nanosecond += t::NANOS_PER_SECOND.value() as i32; |
546 | } |
547 | Timestamp { |
548 | second: UnixSeconds::new_unchecked(second), |
549 | nanosecond: FractionalNanosecond::new_unchecked(nanosecond), |
550 | } |
551 | } |
552 | |
553 | /// Creates a new instant in time from the number of seconds elapsed since |
554 | /// the Unix epoch. |
555 | /// |
556 | /// When `second` is negative, it corresponds to an instant in time before |
557 | /// the Unix epoch. A smaller number corresponds to an instant in time |
558 | /// further into the past. |
559 | /// |
560 | /// # Errors |
561 | /// |
562 | /// This returns an error if the given second corresponds to a timestamp |
563 | /// outside of the [`Timestamp::MIN`] and [`Timestamp::MAX`] boundaries. |
564 | /// |
565 | /// It is a semver guarantee that the only way for this to return an error |
566 | /// is if the given value is out of range. That is, when it is less than |
567 | /// `Timestamp::MIN` or greater than `Timestamp::MAX`. |
568 | /// |
569 | /// # Example |
570 | /// |
571 | /// This example shows the instants in time 1 second immediately after and |
572 | /// before the Unix epoch: |
573 | /// |
574 | /// ``` |
575 | /// use jiff::Timestamp; |
576 | /// |
577 | /// assert_eq!( |
578 | /// Timestamp::from_second(1)?.to_string(), |
579 | /// "1970-01-01T00:00:01Z" , |
580 | /// ); |
581 | /// assert_eq!( |
582 | /// Timestamp::from_second(-1)?.to_string(), |
583 | /// "1969-12-31T23:59:59Z" , |
584 | /// ); |
585 | /// |
586 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
587 | /// ``` |
588 | /// |
589 | /// # Example: saturating construction |
590 | /// |
591 | /// If you need a way to build a `Timestamp` value that saturates to |
592 | /// the minimum and maximum values supported by Jiff, then this is |
593 | /// guaranteed to work: |
594 | /// |
595 | /// ``` |
596 | /// use jiff::Timestamp; |
597 | /// |
598 | /// fn from_second_saturating(seconds: i64) -> Timestamp { |
599 | /// Timestamp::from_second(seconds).unwrap_or_else(|_| { |
600 | /// if seconds < 0 { |
601 | /// Timestamp::MIN |
602 | /// } else { |
603 | /// Timestamp::MAX |
604 | /// } |
605 | /// }) |
606 | /// } |
607 | /// |
608 | /// assert_eq!(from_second_saturating(0), Timestamp::UNIX_EPOCH); |
609 | /// assert_eq!( |
610 | /// from_second_saturating(-999999999999999999), |
611 | /// Timestamp::MIN |
612 | /// ); |
613 | /// assert_eq!( |
614 | /// from_second_saturating(999999999999999999), |
615 | /// Timestamp::MAX |
616 | /// ); |
617 | /// ``` |
618 | #[inline ] |
619 | pub fn from_second(second: i64) -> Result<Timestamp, Error> { |
620 | Timestamp::new(second, 0) |
621 | } |
622 | |
623 | /// Creates a new instant in time from the number of milliseconds elapsed |
624 | /// since the Unix epoch. |
625 | /// |
626 | /// When `millisecond` is negative, it corresponds to an instant in time |
627 | /// before the Unix epoch. A smaller number corresponds to an instant in |
628 | /// time further into the past. |
629 | /// |
630 | /// # Errors |
631 | /// |
632 | /// This returns an error if the given millisecond corresponds to a |
633 | /// timestamp outside of the [`Timestamp::MIN`] and [`Timestamp::MAX`] |
634 | /// boundaries. |
635 | /// |
636 | /// It is a semver guarantee that the only way for this to return an error |
637 | /// is if the given value is out of range. That is, when it is less than |
638 | /// `Timestamp::MIN` or greater than `Timestamp::MAX`. |
639 | /// |
640 | /// # Example |
641 | /// |
642 | /// This example shows the instants in time 1 millisecond immediately after |
643 | /// and before the Unix epoch: |
644 | /// |
645 | /// ``` |
646 | /// use jiff::Timestamp; |
647 | /// |
648 | /// assert_eq!( |
649 | /// Timestamp::from_millisecond(1)?.to_string(), |
650 | /// "1970-01-01T00:00:00.001Z" , |
651 | /// ); |
652 | /// assert_eq!( |
653 | /// Timestamp::from_millisecond(-1)?.to_string(), |
654 | /// "1969-12-31T23:59:59.999Z" , |
655 | /// ); |
656 | /// |
657 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
658 | /// ``` |
659 | /// |
660 | /// # Example: saturating construction |
661 | /// |
662 | /// If you need a way to build a `Timestamp` value that saturates to |
663 | /// the minimum and maximum values supported by Jiff, then this is |
664 | /// guaranteed to work: |
665 | /// |
666 | /// ``` |
667 | /// use jiff::Timestamp; |
668 | /// |
669 | /// fn from_millisecond_saturating(millis: i64) -> Timestamp { |
670 | /// Timestamp::from_millisecond(millis).unwrap_or_else(|_| { |
671 | /// if millis < 0 { |
672 | /// Timestamp::MIN |
673 | /// } else { |
674 | /// Timestamp::MAX |
675 | /// } |
676 | /// }) |
677 | /// } |
678 | /// |
679 | /// assert_eq!(from_millisecond_saturating(0), Timestamp::UNIX_EPOCH); |
680 | /// assert_eq!( |
681 | /// from_millisecond_saturating(-999999999999999999), |
682 | /// Timestamp::MIN |
683 | /// ); |
684 | /// assert_eq!( |
685 | /// from_millisecond_saturating(999999999999999999), |
686 | /// Timestamp::MAX |
687 | /// ); |
688 | /// ``` |
689 | #[inline ] |
690 | pub fn from_millisecond(millisecond: i64) -> Result<Timestamp, Error> { |
691 | let millisecond = UnixMilliseconds::try_new128( |
692 | "millisecond timestamp" , |
693 | millisecond, |
694 | )?; |
695 | Ok(Timestamp::from_millisecond_ranged(millisecond)) |
696 | } |
697 | |
698 | /// Creates a new instant in time from the number of microseconds elapsed |
699 | /// since the Unix epoch. |
700 | /// |
701 | /// When `microsecond` is negative, it corresponds to an instant in time |
702 | /// before the Unix epoch. A smaller number corresponds to an instant in |
703 | /// time further into the past. |
704 | /// |
705 | /// # Errors |
706 | /// |
707 | /// This returns an error if the given microsecond corresponds to a |
708 | /// timestamp outside of the [`Timestamp::MIN`] and [`Timestamp::MAX`] |
709 | /// boundaries. |
710 | /// |
711 | /// It is a semver guarantee that the only way for this to return an error |
712 | /// is if the given value is out of range. That is, when it is less than |
713 | /// `Timestamp::MIN` or greater than `Timestamp::MAX`. |
714 | /// |
715 | /// # Example |
716 | /// |
717 | /// This example shows the instants in time 1 microsecond immediately after |
718 | /// and before the Unix epoch: |
719 | /// |
720 | /// ``` |
721 | /// use jiff::Timestamp; |
722 | /// |
723 | /// assert_eq!( |
724 | /// Timestamp::from_microsecond(1)?.to_string(), |
725 | /// "1970-01-01T00:00:00.000001Z" , |
726 | /// ); |
727 | /// assert_eq!( |
728 | /// Timestamp::from_microsecond(-1)?.to_string(), |
729 | /// "1969-12-31T23:59:59.999999Z" , |
730 | /// ); |
731 | /// |
732 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
733 | /// ``` |
734 | /// |
735 | /// # Example: saturating construction |
736 | /// |
737 | /// If you need a way to build a `Timestamp` value that saturates to |
738 | /// the minimum and maximum values supported by Jiff, then this is |
739 | /// guaranteed to work: |
740 | /// |
741 | /// ``` |
742 | /// use jiff::Timestamp; |
743 | /// |
744 | /// fn from_microsecond_saturating(micros: i64) -> Timestamp { |
745 | /// Timestamp::from_microsecond(micros).unwrap_or_else(|_| { |
746 | /// if micros < 0 { |
747 | /// Timestamp::MIN |
748 | /// } else { |
749 | /// Timestamp::MAX |
750 | /// } |
751 | /// }) |
752 | /// } |
753 | /// |
754 | /// assert_eq!(from_microsecond_saturating(0), Timestamp::UNIX_EPOCH); |
755 | /// assert_eq!( |
756 | /// from_microsecond_saturating(-999999999999999999), |
757 | /// Timestamp::MIN |
758 | /// ); |
759 | /// assert_eq!( |
760 | /// from_microsecond_saturating(999999999999999999), |
761 | /// Timestamp::MAX |
762 | /// ); |
763 | /// ``` |
764 | #[inline ] |
765 | pub fn from_microsecond(microsecond: i64) -> Result<Timestamp, Error> { |
766 | let microsecond = UnixMicroseconds::try_new128( |
767 | "microsecond timestamp" , |
768 | microsecond, |
769 | )?; |
770 | Ok(Timestamp::from_microsecond_ranged(microsecond)) |
771 | } |
772 | |
773 | /// Creates a new instant in time from the number of nanoseconds elapsed |
774 | /// since the Unix epoch. |
775 | /// |
776 | /// When `nanosecond` is negative, it corresponds to an instant in time |
777 | /// before the Unix epoch. A smaller number corresponds to an instant in |
778 | /// time further into the past. |
779 | /// |
780 | /// # Errors |
781 | /// |
782 | /// This returns an error if the given nanosecond corresponds to a |
783 | /// timestamp outside of the [`Timestamp::MIN`] and [`Timestamp::MAX`] |
784 | /// boundaries. |
785 | /// |
786 | /// It is a semver guarantee that the only way for this to return an error |
787 | /// is if the given value is out of range. That is, when it is less than |
788 | /// `Timestamp::MIN` or greater than `Timestamp::MAX`. |
789 | /// |
790 | /// # Example |
791 | /// |
792 | /// This example shows the instants in time 1 nanosecond immediately after |
793 | /// and before the Unix epoch: |
794 | /// |
795 | /// ``` |
796 | /// use jiff::Timestamp; |
797 | /// |
798 | /// assert_eq!( |
799 | /// Timestamp::from_nanosecond(1)?.to_string(), |
800 | /// "1970-01-01T00:00:00.000000001Z" , |
801 | /// ); |
802 | /// assert_eq!( |
803 | /// Timestamp::from_nanosecond(-1)?.to_string(), |
804 | /// "1969-12-31T23:59:59.999999999Z" , |
805 | /// ); |
806 | /// |
807 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
808 | /// ``` |
809 | /// |
810 | /// # Example: saturating construction |
811 | /// |
812 | /// If you need a way to build a `Timestamp` value that saturates to |
813 | /// the minimum and maximum values supported by Jiff, then this is |
814 | /// guaranteed to work: |
815 | /// |
816 | /// ``` |
817 | /// use jiff::Timestamp; |
818 | /// |
819 | /// fn from_nanosecond_saturating(nanos: i128) -> Timestamp { |
820 | /// Timestamp::from_nanosecond(nanos).unwrap_or_else(|_| { |
821 | /// if nanos < 0 { |
822 | /// Timestamp::MIN |
823 | /// } else { |
824 | /// Timestamp::MAX |
825 | /// } |
826 | /// }) |
827 | /// } |
828 | /// |
829 | /// assert_eq!(from_nanosecond_saturating(0), Timestamp::UNIX_EPOCH); |
830 | /// assert_eq!( |
831 | /// from_nanosecond_saturating(-9999999999999999999999999999999999), |
832 | /// Timestamp::MIN |
833 | /// ); |
834 | /// assert_eq!( |
835 | /// from_nanosecond_saturating(9999999999999999999999999999999999), |
836 | /// Timestamp::MAX |
837 | /// ); |
838 | /// ``` |
839 | #[inline ] |
840 | pub fn from_nanosecond(nanosecond: i128) -> Result<Timestamp, Error> { |
841 | let nanosecond = |
842 | UnixNanoseconds::try_new128("nanosecond timestamp" , nanosecond)?; |
843 | Ok(Timestamp::from_nanosecond_ranged(nanosecond)) |
844 | } |
845 | |
846 | /// Creates a new timestamp from a `Duration` with the given sign since the |
847 | /// Unix epoch. |
848 | /// |
849 | /// Positive durations result in a timestamp after the Unix epoch. Negative |
850 | /// durations result in a timestamp before the Unix epoch. |
851 | /// |
852 | /// # Errors |
853 | /// |
854 | /// This returns an error if the given duration corresponds to a timestamp |
855 | /// outside of the [`Timestamp::MIN`] and [`Timestamp::MAX`] boundaries. |
856 | /// |
857 | /// It is a semver guarantee that the only way for this to return an error |
858 | /// is if the given value is out of range. That is, when it is less than |
859 | /// `Timestamp::MIN` or greater than `Timestamp::MAX`. |
860 | /// |
861 | /// # Example |
862 | /// |
863 | /// How one might construct a `Timestamp` from a `SystemTime`: |
864 | /// |
865 | /// ``` |
866 | /// use std::time::SystemTime; |
867 | /// use jiff::{SignedDuration, Timestamp}; |
868 | /// |
869 | /// let unix_epoch = SystemTime::UNIX_EPOCH; |
870 | /// let now = SystemTime::now(); |
871 | /// let duration = SignedDuration::system_until(unix_epoch, now)?; |
872 | /// let ts = Timestamp::from_duration(duration)?; |
873 | /// assert!(ts > Timestamp::UNIX_EPOCH); |
874 | /// |
875 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
876 | /// ``` |
877 | /// |
878 | /// Of course, one should just use [`Timestamp::try_from`] for this |
879 | /// instead. Indeed, the above example is copied almost exactly from the |
880 | /// `TryFrom` implementation. |
881 | /// |
882 | /// # Example: out of bounds |
883 | /// |
884 | /// This example shows how some of the boundary conditions are dealt with. |
885 | /// |
886 | /// ``` |
887 | /// use jiff::{SignedDuration, Timestamp}; |
888 | /// |
889 | /// // OK, we get the minimum timestamp supported by Jiff: |
890 | /// let duration = SignedDuration::new(-377705023201, 0); |
891 | /// let ts = Timestamp::from_duration(duration)?; |
892 | /// assert_eq!(ts, Timestamp::MIN); |
893 | /// |
894 | /// // We use the minimum number of seconds, but even subtracting |
895 | /// // one more nanosecond after it will result in an error. |
896 | /// let duration = SignedDuration::new(-377705023201, -1); |
897 | /// assert_eq!( |
898 | /// Timestamp::from_duration(duration).unwrap_err().to_string(), |
899 | /// "parameter 'seconds and nanoseconds' with value -1 is not \ |
900 | /// in the required range of 0..=1000000000" , |
901 | /// ); |
902 | /// |
903 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
904 | /// ``` |
905 | /// |
906 | /// # Example: saturating construction |
907 | /// |
908 | /// If you need a way to build a `Timestamp` value that saturates to |
909 | /// the minimum and maximum values supported by Jiff, then this is |
910 | /// guaranteed to work: |
911 | /// |
912 | /// ``` |
913 | /// use jiff::{SignedDuration, Timestamp}; |
914 | /// |
915 | /// fn from_duration_saturating(dur: SignedDuration) -> Timestamp { |
916 | /// Timestamp::from_duration(dur).unwrap_or_else(|_| { |
917 | /// if dur.is_negative() { |
918 | /// Timestamp::MIN |
919 | /// } else { |
920 | /// Timestamp::MAX |
921 | /// } |
922 | /// }) |
923 | /// } |
924 | /// |
925 | /// assert_eq!( |
926 | /// from_duration_saturating(SignedDuration::ZERO), |
927 | /// Timestamp::UNIX_EPOCH, |
928 | /// ); |
929 | /// assert_eq!( |
930 | /// from_duration_saturating(SignedDuration::from_secs(-999999999999)), |
931 | /// Timestamp::MIN |
932 | /// ); |
933 | /// assert_eq!( |
934 | /// from_duration_saturating(SignedDuration::from_secs(999999999999)), |
935 | /// Timestamp::MAX |
936 | /// ); |
937 | /// ``` |
938 | #[inline ] |
939 | pub fn from_duration( |
940 | duration: SignedDuration, |
941 | ) -> Result<Timestamp, Error> { |
942 | // As an optimization, we don't need to go through `Timestamp::new` |
943 | // (or `Timestamp::new_ranged`) here. That's because a `SignedDuration` |
944 | // already guarantees that its seconds and nanoseconds are "coherent." |
945 | // That is, we know we can't have a negative second with a positive |
946 | // nanosecond (or vice versa). |
947 | let second = UnixSeconds::try_new("second" , duration.as_secs())?; |
948 | let nanosecond = FractionalNanosecond::try_new( |
949 | "nanosecond" , |
950 | duration.subsec_nanos(), |
951 | )?; |
952 | // ... but we do have to check that the *combination* of seconds and |
953 | // nanoseconds aren't out of bounds, which is possible even when both |
954 | // are, on their own, legal values. |
955 | if second == UnixSeconds::MIN_SELF && nanosecond < C(0) { |
956 | return Err(Error::range( |
957 | "seconds and nanoseconds" , |
958 | nanosecond, |
959 | 0, |
960 | 1_000_000_000, |
961 | )); |
962 | } |
963 | Ok(Timestamp { second, nanosecond }) |
964 | } |
965 | |
966 | /// Returns this timestamp as a number of seconds since the Unix epoch. |
967 | /// |
968 | /// This only returns the number of whole seconds. That is, if there are |
969 | /// any fractional seconds in this timestamp, then they are truncated. |
970 | /// |
971 | /// # Example |
972 | /// |
973 | /// ``` |
974 | /// use jiff::Timestamp; |
975 | /// |
976 | /// let ts = Timestamp::new(5, 123_456_789)?; |
977 | /// assert_eq!(ts.as_second(), 5); |
978 | /// let ts = Timestamp::new(5, 999_999_999)?; |
979 | /// assert_eq!(ts.as_second(), 5); |
980 | /// |
981 | /// let ts = Timestamp::new(-5, -123_456_789)?; |
982 | /// assert_eq!(ts.as_second(), -5); |
983 | /// let ts = Timestamp::new(-5, -999_999_999)?; |
984 | /// assert_eq!(ts.as_second(), -5); |
985 | /// |
986 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
987 | /// ``` |
988 | #[inline ] |
989 | pub fn as_second(self) -> i64 { |
990 | self.as_second_ranged().get() |
991 | } |
992 | |
993 | /// Returns this timestamp as a number of milliseconds since the Unix |
994 | /// epoch. |
995 | /// |
996 | /// This only returns the number of whole milliseconds. That is, if there |
997 | /// are any fractional milliseconds in this timestamp, then they are |
998 | /// truncated. |
999 | /// |
1000 | /// # Example |
1001 | /// |
1002 | /// ``` |
1003 | /// use jiff::Timestamp; |
1004 | /// |
1005 | /// let ts = Timestamp::new(5, 123_456_789)?; |
1006 | /// assert_eq!(ts.as_millisecond(), 5_123); |
1007 | /// let ts = Timestamp::new(5, 999_999_999)?; |
1008 | /// assert_eq!(ts.as_millisecond(), 5_999); |
1009 | /// |
1010 | /// let ts = Timestamp::new(-5, -123_456_789)?; |
1011 | /// assert_eq!(ts.as_millisecond(), -5_123); |
1012 | /// let ts = Timestamp::new(-5, -999_999_999)?; |
1013 | /// assert_eq!(ts.as_millisecond(), -5_999); |
1014 | /// |
1015 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1016 | /// ``` |
1017 | #[inline ] |
1018 | pub fn as_millisecond(self) -> i64 { |
1019 | self.as_millisecond_ranged().get() |
1020 | } |
1021 | |
1022 | /// Returns this timestamp as a number of microseconds since the Unix |
1023 | /// epoch. |
1024 | /// |
1025 | /// This only returns the number of whole microseconds. That is, if there |
1026 | /// are any fractional microseconds in this timestamp, then they are |
1027 | /// truncated. |
1028 | /// |
1029 | /// # Example |
1030 | /// |
1031 | /// ``` |
1032 | /// use jiff::Timestamp; |
1033 | /// |
1034 | /// let ts = Timestamp::new(5, 123_456_789)?; |
1035 | /// assert_eq!(ts.as_microsecond(), 5_123_456); |
1036 | /// let ts = Timestamp::new(5, 999_999_999)?; |
1037 | /// assert_eq!(ts.as_microsecond(), 5_999_999); |
1038 | /// |
1039 | /// let ts = Timestamp::new(-5, -123_456_789)?; |
1040 | /// assert_eq!(ts.as_microsecond(), -5_123_456); |
1041 | /// let ts = Timestamp::new(-5, -999_999_999)?; |
1042 | /// assert_eq!(ts.as_microsecond(), -5_999_999); |
1043 | /// |
1044 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1045 | /// ``` |
1046 | #[inline ] |
1047 | pub fn as_microsecond(self) -> i64 { |
1048 | self.as_microsecond_ranged().get() |
1049 | } |
1050 | |
1051 | /// Returns this timestamp as a number of nanoseconds since the Unix |
1052 | /// epoch. |
1053 | /// |
1054 | /// Since a `Timestamp` has a nanosecond precision, the nanoseconds |
1055 | /// returned here represent this timestamp losslessly. That is, the |
1056 | /// nanoseconds returned can be used with [`Timestamp::from_nanosecond`] to |
1057 | /// create an identical timestamp with no loss of precision. |
1058 | /// |
1059 | /// # Example |
1060 | /// |
1061 | /// ``` |
1062 | /// use jiff::Timestamp; |
1063 | /// |
1064 | /// let ts = Timestamp::new(5, 123_456_789)?; |
1065 | /// assert_eq!(ts.as_nanosecond(), 5_123_456_789); |
1066 | /// let ts = Timestamp::new(5, 999_999_999)?; |
1067 | /// assert_eq!(ts.as_nanosecond(), 5_999_999_999); |
1068 | /// |
1069 | /// let ts = Timestamp::new(-5, -123_456_789)?; |
1070 | /// assert_eq!(ts.as_nanosecond(), -5_123_456_789); |
1071 | /// let ts = Timestamp::new(-5, -999_999_999)?; |
1072 | /// assert_eq!(ts.as_nanosecond(), -5_999_999_999); |
1073 | /// |
1074 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1075 | /// ``` |
1076 | #[inline ] |
1077 | pub fn as_nanosecond(self) -> i128 { |
1078 | self.as_nanosecond_ranged().get() |
1079 | } |
1080 | |
1081 | /// Returns the fractional second component of this timestamp in units |
1082 | /// of milliseconds. |
1083 | /// |
1084 | /// It is guaranteed that this will never return a value that is greater |
1085 | /// than 1 second (or less than -1 second). |
1086 | /// |
1087 | /// This only returns the number of whole milliseconds. That is, if there |
1088 | /// are any fractional milliseconds in this timestamp, then they are |
1089 | /// truncated. |
1090 | /// |
1091 | /// # Example |
1092 | /// |
1093 | /// ``` |
1094 | /// use jiff::Timestamp; |
1095 | /// |
1096 | /// let ts = Timestamp::new(5, 123_456_789)?; |
1097 | /// assert_eq!(ts.subsec_millisecond(), 123); |
1098 | /// let ts = Timestamp::new(5, 999_999_999)?; |
1099 | /// assert_eq!(ts.subsec_millisecond(), 999); |
1100 | /// |
1101 | /// let ts = Timestamp::new(-5, -123_456_789)?; |
1102 | /// assert_eq!(ts.subsec_millisecond(), -123); |
1103 | /// let ts = Timestamp::new(-5, -999_999_999)?; |
1104 | /// assert_eq!(ts.subsec_millisecond(), -999); |
1105 | /// |
1106 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1107 | /// ``` |
1108 | #[inline ] |
1109 | pub fn subsec_millisecond(self) -> i32 { |
1110 | self.subsec_millisecond_ranged().get() |
1111 | } |
1112 | |
1113 | /// Returns the fractional second component of this timestamp in units of |
1114 | /// microseconds. |
1115 | /// |
1116 | /// It is guaranteed that this will never return a value that is greater |
1117 | /// than 1 second (or less than -1 second). |
1118 | /// |
1119 | /// This only returns the number of whole microseconds. That is, if there |
1120 | /// are any fractional microseconds in this timestamp, then they are |
1121 | /// truncated. |
1122 | /// |
1123 | /// # Example |
1124 | /// |
1125 | /// ``` |
1126 | /// use jiff::Timestamp; |
1127 | /// |
1128 | /// let ts = Timestamp::new(5, 123_456_789)?; |
1129 | /// assert_eq!(ts.subsec_microsecond(), 123_456); |
1130 | /// let ts = Timestamp::new(5, 999_999_999)?; |
1131 | /// assert_eq!(ts.subsec_microsecond(), 999_999); |
1132 | /// |
1133 | /// let ts = Timestamp::new(-5, -123_456_789)?; |
1134 | /// assert_eq!(ts.subsec_microsecond(), -123_456); |
1135 | /// let ts = Timestamp::new(-5, -999_999_999)?; |
1136 | /// assert_eq!(ts.subsec_microsecond(), -999_999); |
1137 | /// |
1138 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1139 | /// ``` |
1140 | #[inline ] |
1141 | pub fn subsec_microsecond(self) -> i32 { |
1142 | self.subsec_microsecond_ranged().get() |
1143 | } |
1144 | |
1145 | /// Returns the fractional second component of this timestamp in units of |
1146 | /// nanoseconds. |
1147 | /// |
1148 | /// It is guaranteed that this will never return a value that is greater |
1149 | /// than 1 second (or less than -1 second). |
1150 | /// |
1151 | /// # Example |
1152 | /// |
1153 | /// ``` |
1154 | /// use jiff::Timestamp; |
1155 | /// |
1156 | /// let ts = Timestamp::new(5, 123_456_789)?; |
1157 | /// assert_eq!(ts.subsec_nanosecond(), 123_456_789); |
1158 | /// let ts = Timestamp::new(5, 999_999_999)?; |
1159 | /// assert_eq!(ts.subsec_nanosecond(), 999_999_999); |
1160 | /// |
1161 | /// let ts = Timestamp::new(-5, -123_456_789)?; |
1162 | /// assert_eq!(ts.subsec_nanosecond(), -123_456_789); |
1163 | /// let ts = Timestamp::new(-5, -999_999_999)?; |
1164 | /// assert_eq!(ts.subsec_nanosecond(), -999_999_999); |
1165 | /// |
1166 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1167 | /// ``` |
1168 | #[inline ] |
1169 | pub fn subsec_nanosecond(self) -> i32 { |
1170 | self.subsec_nanosecond_ranged().get() |
1171 | } |
1172 | |
1173 | /// Returns this timestamp as a [`SignedDuration`] since the Unix epoch. |
1174 | /// |
1175 | /// # Example |
1176 | /// |
1177 | /// ``` |
1178 | /// use jiff::{SignedDuration, Timestamp}; |
1179 | /// |
1180 | /// assert_eq!( |
1181 | /// Timestamp::UNIX_EPOCH.as_duration(), |
1182 | /// SignedDuration::ZERO, |
1183 | /// ); |
1184 | /// assert_eq!( |
1185 | /// Timestamp::new(5, 123_456_789)?.as_duration(), |
1186 | /// SignedDuration::new(5, 123_456_789), |
1187 | /// ); |
1188 | /// assert_eq!( |
1189 | /// Timestamp::new(-5, -123_456_789)?.as_duration(), |
1190 | /// SignedDuration::new(-5, -123_456_789), |
1191 | /// ); |
1192 | /// |
1193 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1194 | /// ``` |
1195 | #[inline ] |
1196 | pub fn as_duration(self) -> SignedDuration { |
1197 | SignedDuration::from_timestamp(self) |
1198 | } |
1199 | |
1200 | /// Returns the sign of this timestamp. |
1201 | /// |
1202 | /// This can return one of three possible values: |
1203 | /// |
1204 | /// * `0` when this timestamp is precisely equivalent to |
1205 | /// [`Timestamp::UNIX_EPOCH`]. |
1206 | /// * `1` when this timestamp occurs after the Unix epoch. |
1207 | /// * `-1` when this timestamp occurs before the Unix epoch. |
1208 | /// |
1209 | /// The sign returned is guaranteed to match the sign of all "getter" |
1210 | /// methods on `Timestamp`. For example, [`Timestamp::as_second`] and |
1211 | /// [`Timestamp::subsec_nanosecond`]. This is true even if the signs |
1212 | /// of the `second` and `nanosecond` components were mixed when given to |
1213 | /// the [`Timestamp::new`] constructor. |
1214 | /// |
1215 | /// # Example |
1216 | /// |
1217 | /// ``` |
1218 | /// use jiff::Timestamp; |
1219 | /// |
1220 | /// let ts = Timestamp::new(5, -999_999_999)?; |
1221 | /// assert_eq!(ts.signum(), 1); |
1222 | /// // The mixed signs were normalized away! |
1223 | /// assert_eq!(ts.as_second(), 4); |
1224 | /// assert_eq!(ts.subsec_nanosecond(), 1); |
1225 | /// |
1226 | /// // The same applies for negative timestamps. |
1227 | /// let ts = Timestamp::new(-5, 999_999_999)?; |
1228 | /// assert_eq!(ts.signum(), -1); |
1229 | /// assert_eq!(ts.as_second(), -4); |
1230 | /// assert_eq!(ts.subsec_nanosecond(), -1); |
1231 | /// |
1232 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1233 | /// ``` |
1234 | #[inline ] |
1235 | pub fn signum(self) -> i8 { |
1236 | if self.is_zero() { |
1237 | 0 |
1238 | } else if self.as_second() > 0 || self.subsec_nanosecond() > 0 { |
1239 | 1 |
1240 | } else { |
1241 | -1 |
1242 | } |
1243 | } |
1244 | |
1245 | /// Returns true if and only if this timestamp corresponds to the instant |
1246 | /// in time known as the Unix epoch. |
1247 | /// |
1248 | /// # Example |
1249 | /// |
1250 | /// ``` |
1251 | /// use jiff::Timestamp; |
1252 | /// |
1253 | /// assert!(Timestamp::UNIX_EPOCH.is_zero()); |
1254 | /// ``` |
1255 | #[inline ] |
1256 | pub fn is_zero(self) -> bool { |
1257 | self.as_second() == 0 && self.subsec_nanosecond() == 0 |
1258 | } |
1259 | |
1260 | /// Creates a [`Zoned`] value by attaching a time zone for the given name |
1261 | /// to this instant in time. |
1262 | /// |
1263 | /// The name given is resolved to a [`TimeZone`] by using the default |
1264 | /// [`TimeZoneDatabase`](crate::tz::TimeZoneDatabase) created by |
1265 | /// [`tz::db`](crate::tz::db). Indeed, this is a convenience function |
1266 | /// for [`Timestamp::to_zoned`] where the time zone database lookup |
1267 | /// is done automatically. |
1268 | /// |
1269 | /// Assuming the time zone name could be resolved to a [`TimeZone`], this |
1270 | /// routine is otherwise infallible and never results in any ambiguity |
1271 | /// since both a [`Timestamp`] and a [`Zoned`] correspond to precise |
1272 | /// instant in time. This is unlike |
1273 | /// [`civil::DateTime::to_zoned`](crate::civil::DateTime::to_zoned), |
1274 | /// where a civil datetime might correspond to more than one instant in |
1275 | /// time (i.e., a fold, typically DST ending) or no instants in time (i.e., |
1276 | /// a gap, typically DST starting). |
1277 | /// |
1278 | /// # Errors |
1279 | /// |
1280 | /// This returns an error when the given time zone name could not be found |
1281 | /// in the default time zone database. |
1282 | /// |
1283 | /// # Example |
1284 | /// |
1285 | /// This is a simple example of converting the instant that is `123,456,789` |
1286 | /// seconds after the Unix epoch to an instant that is aware of its time |
1287 | /// zone: |
1288 | /// |
1289 | /// ``` |
1290 | /// use jiff::Timestamp; |
1291 | /// |
1292 | /// let ts = Timestamp::new(123_456_789, 0).unwrap(); |
1293 | /// let zdt = ts.in_tz("America/New_York" )?; |
1294 | /// assert_eq!(zdt.to_string(), "1973-11-29T16:33:09-05:00[America/New_York]" ); |
1295 | /// |
1296 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1297 | /// ``` |
1298 | /// |
1299 | /// This can be used to answer questions like, "What time was it at the |
1300 | /// Unix epoch in Tasmania?" |
1301 | /// |
1302 | /// ``` |
1303 | /// use jiff::Timestamp; |
1304 | /// |
1305 | /// // Time zone database lookups are case insensitive! |
1306 | /// let zdt = Timestamp::UNIX_EPOCH.in_tz("australia/tasmania" )?; |
1307 | /// assert_eq!(zdt.to_string(), "1970-01-01T11:00:00+11:00[Australia/Tasmania]" ); |
1308 | /// |
1309 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1310 | /// ``` |
1311 | /// |
1312 | /// # Example: errors |
1313 | /// |
1314 | /// This routine can return an error when the time zone is unrecognized: |
1315 | /// |
1316 | /// ``` |
1317 | /// use jiff::Timestamp; |
1318 | /// |
1319 | /// assert!(Timestamp::UNIX_EPOCH.in_tz("does not exist" ).is_err()); |
1320 | /// ``` |
1321 | #[inline ] |
1322 | pub fn in_tz(self, time_zone_name: &str) -> Result<Zoned, Error> { |
1323 | let tz = crate::tz::db().get(time_zone_name)?; |
1324 | Ok(self.to_zoned(tz)) |
1325 | } |
1326 | |
1327 | /// Creates a [`Zoned`] value by attaching the given time zone to this |
1328 | /// instant in time. |
1329 | /// |
1330 | /// This is infallible and never results in any ambiguity since both a |
1331 | /// [`Timestamp`] and a [`Zoned`] correspond to precise instant in time. |
1332 | /// This is unlike |
1333 | /// [`civil::DateTime::to_zoned`](crate::civil::DateTime::to_zoned), |
1334 | /// where a civil datetime might correspond to more than one instant in |
1335 | /// time (i.e., a fold, typically DST ending) or no instants in time (i.e., |
1336 | /// a gap, typically DST starting). |
1337 | /// |
1338 | /// In the common case of a time zone being represented as a name string, |
1339 | /// like `Australia/Tasmania`, consider using [`Timestamp::in_tz`] |
1340 | /// instead. |
1341 | /// |
1342 | /// # Example |
1343 | /// |
1344 | /// This example shows how to create a zoned value with a fixed time zone |
1345 | /// offset: |
1346 | /// |
1347 | /// ``` |
1348 | /// use jiff::{tz::{self, TimeZone}, Timestamp}; |
1349 | /// |
1350 | /// let ts = Timestamp::new(123_456_789, 0).unwrap(); |
1351 | /// let tz = TimeZone::fixed(tz::offset(-4)); |
1352 | /// let zdt = ts.to_zoned(tz); |
1353 | /// // A time zone annotation is still included in the printable version |
1354 | /// // of the Zoned value, but it is fixed to a particular offset. |
1355 | /// assert_eq!(zdt.to_string(), "1973-11-29T17:33:09-04:00[-04:00]" ); |
1356 | /// ``` |
1357 | /// |
1358 | /// # Example: POSIX time zone strings |
1359 | /// |
1360 | /// This example shows how to create a time zone from a POSIX time zone |
1361 | /// string that describes the transition to and from daylight saving |
1362 | /// time for `America/St_Johns`. In particular, this rule uses non-zero |
1363 | /// minutes, which is atypical. |
1364 | /// |
1365 | /// ``` |
1366 | /// use jiff::{tz::TimeZone, Timestamp}; |
1367 | /// |
1368 | /// let ts = Timestamp::new(123_456_789, 0)?; |
1369 | /// let tz = TimeZone::posix("NST3:30NDT,M3.2.0,M11.1.0" )?; |
1370 | /// let zdt = ts.to_zoned(tz); |
1371 | /// // There isn't any agreed upon mechanism for transmitting a POSIX time |
1372 | /// // zone string within an RFC 9557 TZ annotation, so Jiff just emits the |
1373 | /// // offset. In practice, POSIX TZ strings are rarely user facing anyway. |
1374 | /// // (They are still in widespread use as an implementation detail of the |
1375 | /// // IANA Time Zone Database however.) |
1376 | /// assert_eq!(zdt.to_string(), "1973-11-29T18:03:09-03:30[-03:30]" ); |
1377 | /// |
1378 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1379 | /// ``` |
1380 | #[inline ] |
1381 | pub fn to_zoned(self, tz: TimeZone) -> Zoned { |
1382 | Zoned::new(self, tz) |
1383 | } |
1384 | |
1385 | /// Add the given span of time to this timestamp. |
1386 | /// |
1387 | /// This operation accepts three different duration types: [`Span`], |
1388 | /// [`SignedDuration`] or [`std::time::Duration`]. This is achieved via |
1389 | /// `From` trait implementations for the [`TimestampArithmetic`] type. |
1390 | /// |
1391 | /// # Properties |
1392 | /// |
1393 | /// Given a timestamp `ts1` and a span `s`, and assuming `ts2 = ts1 + s` |
1394 | /// exists, it follows then that `ts1 = ts2 - s` for all values of `ts1` |
1395 | /// and `s` that sum to a valid `ts2`. |
1396 | /// |
1397 | /// In short, subtracting the given span from the sum returned by this |
1398 | /// function is guaranteed to result in precisely the original timestamp. |
1399 | /// |
1400 | /// # Errors |
1401 | /// |
1402 | /// If the sum would overflow the minimum or maximum timestamp values, then |
1403 | /// an error is returned. |
1404 | /// |
1405 | /// This also returns an error if the given duration is a `Span` with any |
1406 | /// non-zero units greater than hours. If you want to use bigger units, |
1407 | /// convert this timestamp to a `Zoned` and use [`Zoned::checked_add`]. |
1408 | /// This error occurs because a `Timestamp` has no time zone attached to |
1409 | /// it, and thus cannot unambiguously resolve the length of a single day. |
1410 | /// |
1411 | /// # Example |
1412 | /// |
1413 | /// This shows how to add `5` hours to the Unix epoch: |
1414 | /// |
1415 | /// ``` |
1416 | /// use jiff::{Timestamp, ToSpan}; |
1417 | /// |
1418 | /// let ts = Timestamp::UNIX_EPOCH.checked_add(5.hours())?; |
1419 | /// assert_eq!(ts.to_string(), "1970-01-01T05:00:00Z" ); |
1420 | /// |
1421 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1422 | /// ``` |
1423 | /// |
1424 | /// # Example: negative spans are supported |
1425 | /// |
1426 | /// This shows how to add `-5` hours to the Unix epoch. This is the same |
1427 | /// as subtracting `5` hours from the Unix epoch. |
1428 | /// |
1429 | /// ``` |
1430 | /// use jiff::{Timestamp, ToSpan}; |
1431 | /// |
1432 | /// let ts = Timestamp::UNIX_EPOCH.checked_add(-5.hours())?; |
1433 | /// assert_eq!(ts.to_string(), "1969-12-31T19:00:00Z" ); |
1434 | /// |
1435 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1436 | /// ``` |
1437 | /// |
1438 | /// # Example: available via addition operator |
1439 | /// |
1440 | /// This routine can be used via the `+` operator. Note though that if it |
1441 | /// fails, it will result in a panic. |
1442 | /// |
1443 | /// ``` |
1444 | /// use jiff::{Timestamp, ToSpan}; |
1445 | /// |
1446 | /// let ts1 = Timestamp::new(2_999_999_999, 0)?; |
1447 | /// assert_eq!(ts1.to_string(), "2065-01-24T05:19:59Z" ); |
1448 | /// |
1449 | /// let ts2 = ts1 + 1.hour().minutes(30).nanoseconds(123); |
1450 | /// assert_eq!(ts2.to_string(), "2065-01-24T06:49:59.000000123Z" ); |
1451 | /// |
1452 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1453 | /// ``` |
1454 | /// |
1455 | /// # Example: error on overflow |
1456 | /// |
1457 | /// ``` |
1458 | /// use jiff::{Timestamp, ToSpan}; |
1459 | /// |
1460 | /// let ts = Timestamp::MAX; |
1461 | /// assert_eq!(ts.to_string(), "9999-12-30T22:00:00.999999999Z" ); |
1462 | /// assert!(ts.checked_add(1.nanosecond()).is_err()); |
1463 | /// |
1464 | /// let ts = Timestamp::MIN; |
1465 | /// assert_eq!(ts.to_string(), "-009999-01-02T01:59:59Z" ); |
1466 | /// assert!(ts.checked_add(-1.nanosecond()).is_err()); |
1467 | /// ``` |
1468 | /// |
1469 | /// # Example: adding absolute durations |
1470 | /// |
1471 | /// This shows how to add signed and unsigned absolute durations to a |
1472 | /// `Timestamp`. |
1473 | /// |
1474 | /// ``` |
1475 | /// use std::time::Duration; |
1476 | /// |
1477 | /// use jiff::{SignedDuration, Timestamp}; |
1478 | /// |
1479 | /// let ts1 = Timestamp::new(2_999_999_999, 0)?; |
1480 | /// assert_eq!(ts1.to_string(), "2065-01-24T05:19:59Z" ); |
1481 | /// |
1482 | /// let dur = SignedDuration::new(60 * 60 + 30 * 60, 123); |
1483 | /// assert_eq!( |
1484 | /// ts1.checked_add(dur)?.to_string(), |
1485 | /// "2065-01-24T06:49:59.000000123Z" , |
1486 | /// ); |
1487 | /// |
1488 | /// let dur = Duration::new(60 * 60 + 30 * 60, 123); |
1489 | /// assert_eq!( |
1490 | /// ts1.checked_add(dur)?.to_string(), |
1491 | /// "2065-01-24T06:49:59.000000123Z" , |
1492 | /// ); |
1493 | /// |
1494 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1495 | /// ``` |
1496 | #[inline ] |
1497 | pub fn checked_add<A: Into<TimestampArithmetic>>( |
1498 | self, |
1499 | duration: A, |
1500 | ) -> Result<Timestamp, Error> { |
1501 | let duration: TimestampArithmetic = duration.into(); |
1502 | duration.checked_add(self) |
1503 | } |
1504 | |
1505 | #[inline ] |
1506 | fn checked_add_span(self, span: Span) -> Result<Timestamp, Error> { |
1507 | if let Some(err) = span.smallest_non_time_non_zero_unit_error() { |
1508 | return Err(err); |
1509 | } |
1510 | if span.is_zero() { |
1511 | return Ok(self); |
1512 | } |
1513 | // The common case is probably a span without fractional seconds, so |
1514 | // we specialize for that since it requires a fair bit less math. |
1515 | // |
1516 | // Note that this only works when *both* the span and timestamp lack |
1517 | // fractional seconds. |
1518 | if self.subsec_nanosecond_ranged() == C(0) { |
1519 | if let Some(span_seconds) = span.to_invariant_seconds() { |
1520 | let time_seconds = self.as_second_ranged(); |
1521 | let sum = time_seconds |
1522 | .try_checked_add("span" , span_seconds) |
1523 | .with_context(|| { |
1524 | err!("adding {span} to {self} overflowed" ) |
1525 | })?; |
1526 | return Ok(Timestamp::from_second_ranged(sum)); |
1527 | } |
1528 | } |
1529 | let time_nanos = self.as_nanosecond_ranged(); |
1530 | let span_nanos = span.to_invariant_nanoseconds(); |
1531 | let sum = time_nanos |
1532 | .try_checked_add("span" , span_nanos) |
1533 | .with_context(|| err!("adding {span} to {self} overflowed" ))?; |
1534 | Ok(Timestamp::from_nanosecond_ranged(sum)) |
1535 | } |
1536 | |
1537 | #[inline ] |
1538 | fn checked_add_duration( |
1539 | self, |
1540 | duration: SignedDuration, |
1541 | ) -> Result<Timestamp, Error> { |
1542 | let start = self.as_duration(); |
1543 | let end = start.checked_add(duration).ok_or_else(|| { |
1544 | err!("overflow when adding {duration:?} to {self}" ) |
1545 | })?; |
1546 | Timestamp::from_duration(end) |
1547 | } |
1548 | |
1549 | /// This routine is identical to [`Timestamp::checked_add`] with the |
1550 | /// duration negated. |
1551 | /// |
1552 | /// # Errors |
1553 | /// |
1554 | /// This has the same error conditions as [`Timestamp::checked_add`]. |
1555 | /// |
1556 | /// # Example |
1557 | /// |
1558 | /// This routine can be used via the `-` operator. Note though that if it |
1559 | /// fails, it will result in a panic. |
1560 | /// |
1561 | /// ``` |
1562 | /// use jiff::{SignedDuration, Timestamp, ToSpan}; |
1563 | /// |
1564 | /// let ts1 = Timestamp::new(2_999_999_999, 0)?; |
1565 | /// assert_eq!(ts1.to_string(), "2065-01-24T05:19:59Z" ); |
1566 | /// |
1567 | /// let ts2 = ts1 - 1.hour().minutes(30).nanoseconds(123); |
1568 | /// assert_eq!(ts2.to_string(), "2065-01-24T03:49:58.999999877Z" ); |
1569 | /// |
1570 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1571 | /// ``` |
1572 | /// |
1573 | /// # Example: use with [`SignedDuration`] and [`std::time::Duration`] |
1574 | /// |
1575 | /// ``` |
1576 | /// use std::time::Duration; |
1577 | /// |
1578 | /// use jiff::{SignedDuration, Timestamp}; |
1579 | /// |
1580 | /// let ts1 = Timestamp::new(2_999_999_999, 0)?; |
1581 | /// assert_eq!(ts1.to_string(), "2065-01-24T05:19:59Z" ); |
1582 | /// |
1583 | /// let dur = SignedDuration::new(60 * 60 + 30 * 60, 123); |
1584 | /// assert_eq!( |
1585 | /// ts1.checked_sub(dur)?.to_string(), |
1586 | /// "2065-01-24T03:49:58.999999877Z" , |
1587 | /// ); |
1588 | /// |
1589 | /// let dur = Duration::new(60 * 60 + 30 * 60, 123); |
1590 | /// assert_eq!( |
1591 | /// ts1.checked_sub(dur)?.to_string(), |
1592 | /// "2065-01-24T03:49:58.999999877Z" , |
1593 | /// ); |
1594 | /// |
1595 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1596 | /// ``` |
1597 | #[inline ] |
1598 | pub fn checked_sub<A: Into<TimestampArithmetic>>( |
1599 | self, |
1600 | duration: A, |
1601 | ) -> Result<Timestamp, Error> { |
1602 | let duration: TimestampArithmetic = duration.into(); |
1603 | duration.checked_neg().and_then(|ta| ta.checked_add(self)) |
1604 | } |
1605 | |
1606 | /// This routine is identical to [`Timestamp::checked_add`], except the |
1607 | /// result saturates on overflow. That is, instead of overflow, either |
1608 | /// [`Timestamp::MIN`] or [`Timestamp::MAX`] is returned. |
1609 | /// |
1610 | /// # Errors |
1611 | /// |
1612 | /// This returns an error if the given `Span` contains any non-zero units |
1613 | /// greater than hours. |
1614 | /// |
1615 | /// # Example |
1616 | /// |
1617 | /// This example shows that arithmetic saturates on overflow. |
1618 | /// |
1619 | /// ``` |
1620 | /// use jiff::{SignedDuration, Timestamp, ToSpan}; |
1621 | /// |
1622 | /// assert_eq!( |
1623 | /// Timestamp::MAX, |
1624 | /// Timestamp::MAX.saturating_add(1.nanosecond())?, |
1625 | /// ); |
1626 | /// assert_eq!( |
1627 | /// Timestamp::MIN, |
1628 | /// Timestamp::MIN.saturating_add(-1.nanosecond())?, |
1629 | /// ); |
1630 | /// assert_eq!( |
1631 | /// Timestamp::MAX, |
1632 | /// Timestamp::UNIX_EPOCH.saturating_add(SignedDuration::MAX)?, |
1633 | /// ); |
1634 | /// assert_eq!( |
1635 | /// Timestamp::MIN, |
1636 | /// Timestamp::UNIX_EPOCH.saturating_add(SignedDuration::MIN)?, |
1637 | /// ); |
1638 | /// assert_eq!( |
1639 | /// Timestamp::MAX, |
1640 | /// Timestamp::UNIX_EPOCH.saturating_add(std::time::Duration::MAX)?, |
1641 | /// ); |
1642 | /// |
1643 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1644 | /// ``` |
1645 | #[inline ] |
1646 | pub fn saturating_add<A: Into<TimestampArithmetic>>( |
1647 | self, |
1648 | duration: A, |
1649 | ) -> Result<Timestamp, Error> { |
1650 | let duration: TimestampArithmetic = duration.into(); |
1651 | duration.saturating_add(self).context( |
1652 | "saturating `Timestamp` arithmetic requires only time units" , |
1653 | ) |
1654 | } |
1655 | |
1656 | /// This routine is identical to [`Timestamp::saturating_add`] with the |
1657 | /// span parameter negated. |
1658 | /// |
1659 | /// # Errors |
1660 | /// |
1661 | /// This returns an error if the given `Span` contains any non-zero units |
1662 | /// greater than hours. |
1663 | /// |
1664 | /// # Example |
1665 | /// |
1666 | /// This example shows that arithmetic saturates on overflow. |
1667 | /// |
1668 | /// ``` |
1669 | /// use jiff::{SignedDuration, Timestamp, ToSpan}; |
1670 | /// |
1671 | /// assert_eq!( |
1672 | /// Timestamp::MIN, |
1673 | /// Timestamp::MIN.saturating_sub(1.nanosecond())?, |
1674 | /// ); |
1675 | /// assert_eq!( |
1676 | /// Timestamp::MAX, |
1677 | /// Timestamp::MAX.saturating_sub(-1.nanosecond())?, |
1678 | /// ); |
1679 | /// assert_eq!( |
1680 | /// Timestamp::MIN, |
1681 | /// Timestamp::UNIX_EPOCH.saturating_sub(SignedDuration::MAX)?, |
1682 | /// ); |
1683 | /// assert_eq!( |
1684 | /// Timestamp::MAX, |
1685 | /// Timestamp::UNIX_EPOCH.saturating_sub(SignedDuration::MIN)?, |
1686 | /// ); |
1687 | /// assert_eq!( |
1688 | /// Timestamp::MIN, |
1689 | /// Timestamp::UNIX_EPOCH.saturating_sub(std::time::Duration::MAX)?, |
1690 | /// ); |
1691 | /// |
1692 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1693 | /// ``` |
1694 | #[inline ] |
1695 | pub fn saturating_sub<A: Into<TimestampArithmetic>>( |
1696 | self, |
1697 | duration: A, |
1698 | ) -> Result<Timestamp, Error> { |
1699 | let duration: TimestampArithmetic = duration.into(); |
1700 | let Ok(duration) = duration.checked_neg() else { |
1701 | return Ok(Timestamp::MIN); |
1702 | }; |
1703 | self.saturating_add(duration) |
1704 | } |
1705 | |
1706 | /// Returns a span representing the elapsed time from this timestamp until |
1707 | /// the given `other` timestamp. |
1708 | /// |
1709 | /// When `other` occurs before this timestamp, then the span returned will |
1710 | /// be negative. |
1711 | /// |
1712 | /// Depending on the input provided, the span returned is rounded. It may |
1713 | /// also be balanced up to bigger units than the default. By default, |
1714 | /// the span returned is balanced such that the biggest possible unit is |
1715 | /// seconds. |
1716 | /// |
1717 | /// This operation is configured by providing a [`TimestampDifference`] |
1718 | /// value. Since this routine accepts anything that implements |
1719 | /// `Into<TimestampDifference>`, once can pass a `Timestamp` directly. |
1720 | /// One can also pass a `(Unit, Timestamp)`, where `Unit` is treated as |
1721 | /// [`TimestampDifference::largest`]. |
1722 | /// |
1723 | /// # Properties |
1724 | /// |
1725 | /// It is guaranteed that if the returned span is subtracted from `other`, |
1726 | /// and if no rounding is requested, then the original timestamp will be |
1727 | /// returned. |
1728 | /// |
1729 | /// This routine is equivalent to `self.since(other).map(|span| -span)` |
1730 | /// if no rounding options are set. If rounding options are set, then |
1731 | /// it's equivalent to |
1732 | /// `self.since(other_without_rounding_options).map(|span| -span)`, |
1733 | /// followed by a call to [`Span::round`] with the appropriate rounding |
1734 | /// options set. This is because the negation of a span can result in |
1735 | /// different rounding results depending on the rounding mode. |
1736 | /// |
1737 | /// # Errors |
1738 | /// |
1739 | /// An error can occur in some cases when the requested configuration |
1740 | /// would result in a span that is beyond allowable limits. For example, |
1741 | /// the nanosecond component of a span cannot represent the span of |
1742 | /// time between the minimum and maximum timestamps supported by Jiff. |
1743 | /// Therefore, if one requests a span with its largest unit set to |
1744 | /// [`Unit::Nanosecond`], then it's possible for this routine to fail. |
1745 | /// |
1746 | /// An error can also occur if `TimestampDifference` is misconfigured. For |
1747 | /// example, if the smallest unit provided is bigger than the largest unit, |
1748 | /// or if the largest unit provided is bigger than hours. (To use bigger |
1749 | /// units with an instant in time, use [`Zoned::until`] instead.) |
1750 | /// |
1751 | /// It is guaranteed that if one provides a timestamp with the default |
1752 | /// [`TimestampDifference`] configuration, then this routine will never |
1753 | /// fail. |
1754 | /// |
1755 | /// # Example |
1756 | /// |
1757 | /// ``` |
1758 | /// use jiff::{Timestamp, ToSpan}; |
1759 | /// |
1760 | /// let earlier: Timestamp = "2006-08-24T22:30:00Z" .parse()?; |
1761 | /// let later: Timestamp = "2019-01-31 21:00:00Z" .parse()?; |
1762 | /// assert_eq!(earlier.until(later)?, 392509800.seconds().fieldwise()); |
1763 | /// |
1764 | /// // Flipping the timestamps is fine, but you'll get a negative span. |
1765 | /// assert_eq!(later.until(earlier)?, -392509800.seconds().fieldwise()); |
1766 | /// |
1767 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1768 | /// ``` |
1769 | /// |
1770 | /// # Example: using bigger units |
1771 | /// |
1772 | /// This example shows how to expand the span returned to bigger units. |
1773 | /// This makes use of a `From<(Unit, Timestamp)> for TimestampDifference` |
1774 | /// trait implementation. |
1775 | /// |
1776 | /// ``` |
1777 | /// use jiff::{Timestamp, ToSpan, Unit}; |
1778 | /// |
1779 | /// let ts1: Timestamp = "1995-12-07T03:24:30.000003500Z" .parse()?; |
1780 | /// let ts2: Timestamp = "2019-01-31 15:30:00Z" .parse()?; |
1781 | /// |
1782 | /// // The default limits durations to using "seconds" as the biggest unit. |
1783 | /// let span = ts1.until(ts2)?; |
1784 | /// assert_eq!(span.to_string(), "PT730641929.9999965S" ); |
1785 | /// |
1786 | /// // But we can ask for units all the way up to hours. |
1787 | /// let span = ts1.until((Unit::Hour, ts2))?; |
1788 | /// assert_eq!(span.to_string(), "PT202956H5M29.9999965S" ); |
1789 | /// |
1790 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1791 | /// ``` |
1792 | /// |
1793 | /// # Example: rounding the result |
1794 | /// |
1795 | /// This shows how one might find the difference between two timestamps and |
1796 | /// have the result rounded such that sub-seconds are removed. |
1797 | /// |
1798 | /// In this case, we need to hand-construct a [`TimestampDifference`] |
1799 | /// in order to gain full configurability. |
1800 | /// |
1801 | /// ``` |
1802 | /// use jiff::{Timestamp, TimestampDifference, ToSpan, Unit}; |
1803 | /// |
1804 | /// let ts1: Timestamp = "1995-12-07 03:24:30.000003500Z" .parse()?; |
1805 | /// let ts2: Timestamp = "2019-01-31 15:30:00Z" .parse()?; |
1806 | /// |
1807 | /// let span = ts1.until( |
1808 | /// TimestampDifference::from(ts2).smallest(Unit::Second), |
1809 | /// )?; |
1810 | /// assert_eq!(span.to_string(), "PT730641929S" ); |
1811 | /// |
1812 | /// // We can combine smallest and largest units too! |
1813 | /// let span = ts1.until( |
1814 | /// TimestampDifference::from(ts2) |
1815 | /// .smallest(Unit::Second) |
1816 | /// .largest(Unit::Hour), |
1817 | /// )?; |
1818 | /// assert_eq!(span.to_string(), "PT202956H5M29S" ); |
1819 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1820 | /// ``` |
1821 | #[inline ] |
1822 | pub fn until<A: Into<TimestampDifference>>( |
1823 | self, |
1824 | other: A, |
1825 | ) -> Result<Span, Error> { |
1826 | let args: TimestampDifference = other.into(); |
1827 | let span = args.until_with_largest_unit(self)?; |
1828 | if args.rounding_may_change_span() { |
1829 | span.round(args.round) |
1830 | } else { |
1831 | Ok(span) |
1832 | } |
1833 | } |
1834 | |
1835 | /// This routine is identical to [`Timestamp::until`], but the order of the |
1836 | /// parameters is flipped. |
1837 | /// |
1838 | /// # Errors |
1839 | /// |
1840 | /// This has the same error conditions as [`Timestamp::until`]. |
1841 | /// |
1842 | /// # Example |
1843 | /// |
1844 | /// This routine can be used via the `-` operator. Since the default |
1845 | /// configuration is used and because a `Span` can represent the difference |
1846 | /// between any two possible timestamps, it will never panic. |
1847 | /// |
1848 | /// ``` |
1849 | /// use jiff::{Timestamp, ToSpan}; |
1850 | /// |
1851 | /// let earlier: Timestamp = "2006-08-24T22:30:00Z" .parse()?; |
1852 | /// let later: Timestamp = "2019-01-31 21:00:00Z" .parse()?; |
1853 | /// assert_eq!(later - earlier, 392509800.seconds().fieldwise()); |
1854 | /// |
1855 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1856 | /// ``` |
1857 | #[inline ] |
1858 | pub fn since<A: Into<TimestampDifference>>( |
1859 | self, |
1860 | other: A, |
1861 | ) -> Result<Span, Error> { |
1862 | let args: TimestampDifference = other.into(); |
1863 | let span = -args.until_with_largest_unit(self)?; |
1864 | if args.rounding_may_change_span() { |
1865 | span.round(args.round) |
1866 | } else { |
1867 | Ok(span) |
1868 | } |
1869 | } |
1870 | |
1871 | /// Returns an absolute duration representing the elapsed time from this |
1872 | /// timestamp until the given `other` timestamp. |
1873 | /// |
1874 | /// When `other` occurs before this timestamp, then the duration returned |
1875 | /// will be negative. |
1876 | /// |
1877 | /// Unlike [`Timestamp::until`], this always returns a duration |
1878 | /// corresponding to a 96-bit integer of nanoseconds between two |
1879 | /// timestamps. |
1880 | /// |
1881 | /// # Fallibility |
1882 | /// |
1883 | /// This routine never panics or returns an error. Since there are no |
1884 | /// configuration options that can be incorrectly provided, no error is |
1885 | /// possible when calling this routine. In contrast, [`Timestamp::until`] |
1886 | /// can return an error in some cases due to misconfiguration. But like |
1887 | /// this routine, [`Timestamp::until`] never panics or returns an error in |
1888 | /// its default configuration. |
1889 | /// |
1890 | /// # When should I use this versus [`Timestamp::until`]? |
1891 | /// |
1892 | /// See the type documentation for [`SignedDuration`] for the section on |
1893 | /// when one should use [`Span`] and when one should use `SignedDuration`. |
1894 | /// In short, use `Span` (and therefore `Timestamp::until`) unless you have |
1895 | /// a specific reason to do otherwise. |
1896 | /// |
1897 | /// # Example |
1898 | /// |
1899 | /// ``` |
1900 | /// use jiff::{Timestamp, SignedDuration}; |
1901 | /// |
1902 | /// let earlier: Timestamp = "2006-08-24T22:30:00Z" .parse()?; |
1903 | /// let later: Timestamp = "2019-01-31 21:00:00Z" .parse()?; |
1904 | /// assert_eq!( |
1905 | /// earlier.duration_until(later), |
1906 | /// SignedDuration::from_secs(392509800), |
1907 | /// ); |
1908 | /// |
1909 | /// // Flipping the timestamps is fine, but you'll get a negative span. |
1910 | /// assert_eq!( |
1911 | /// later.duration_until(earlier), |
1912 | /// SignedDuration::from_secs(-392509800), |
1913 | /// ); |
1914 | /// |
1915 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1916 | /// ``` |
1917 | /// |
1918 | /// # Example: difference with [`Timestamp::until`] |
1919 | /// |
1920 | /// The primary difference between this routine and |
1921 | /// `Timestamp::until`, other than the return type, is that this |
1922 | /// routine is likely to be faster. Namely, it does simple 96-bit |
1923 | /// integer math, where as `Timestamp::until` has to do a bit more |
1924 | /// work to deal with the different types of units on a `Span`. |
1925 | /// |
1926 | /// Additionally, since the difference between two timestamps is always |
1927 | /// expressed in units of hours or smaller, and units of hours or smaller |
1928 | /// are always uniform, there is no "expressive" difference between this |
1929 | /// routine and `Timestamp::until`. Because of this, one can always |
1930 | /// convert between `Span` and `SignedDuration` as returned by methods |
1931 | /// on `Timestamp` without a relative datetime: |
1932 | /// |
1933 | /// ``` |
1934 | /// use jiff::{SignedDuration, Span, Timestamp}; |
1935 | /// |
1936 | /// let ts1: Timestamp = "2024-02-28T00:00:00Z" .parse()?; |
1937 | /// let ts2: Timestamp = "2024-03-01T00:00:00Z" .parse()?; |
1938 | /// let dur = ts1.duration_until(ts2); |
1939 | /// // Guaranteed to never fail because the duration |
1940 | /// // between two civil times never exceeds the limits |
1941 | /// // of a `Span`. |
1942 | /// let span = Span::try_from(dur).unwrap(); |
1943 | /// assert_eq!(format!("{span:#}" ), "172800s" ); |
1944 | /// // Guaranteed to succeed and always return the original |
1945 | /// // duration because the units are always hours or smaller, |
1946 | /// // and thus uniform. This means a relative datetime is |
1947 | /// // never required to do this conversion. |
1948 | /// let dur = SignedDuration::try_from(span).unwrap(); |
1949 | /// assert_eq!(dur, SignedDuration::from_secs(172_800)); |
1950 | /// |
1951 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1952 | /// ``` |
1953 | /// |
1954 | /// This conversion guarantee also applies to [`Timestamp::until`] since it |
1955 | /// always returns a balanced span. That is, it never returns spans like |
1956 | /// `1 second 1000 milliseconds`. (Those cannot be losslessly converted to |
1957 | /// a `SignedDuration` since a `SignedDuration` is only represented as a |
1958 | /// single 96-bit integer of nanoseconds.) |
1959 | #[inline ] |
1960 | pub fn duration_until(self, other: Timestamp) -> SignedDuration { |
1961 | SignedDuration::timestamp_until(self, other) |
1962 | } |
1963 | |
1964 | /// This routine is identical to [`Timestamp::duration_until`], but the |
1965 | /// order of the parameters is flipped. |
1966 | /// |
1967 | /// # Example |
1968 | /// |
1969 | /// ``` |
1970 | /// use jiff::{SignedDuration, Timestamp}; |
1971 | /// |
1972 | /// let earlier: Timestamp = "2006-08-24T22:30:00Z" .parse()?; |
1973 | /// let later: Timestamp = "2019-01-31 21:00:00Z" .parse()?; |
1974 | /// assert_eq!( |
1975 | /// later.duration_since(earlier), |
1976 | /// SignedDuration::from_secs(392509800), |
1977 | /// ); |
1978 | /// |
1979 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1980 | /// ``` |
1981 | #[inline ] |
1982 | pub fn duration_since(self, other: Timestamp) -> SignedDuration { |
1983 | SignedDuration::timestamp_until(other, self) |
1984 | } |
1985 | |
1986 | /// Rounds this timestamp according to the [`TimestampRound`] configuration |
1987 | /// given. |
1988 | /// |
1989 | /// The principal option is [`TimestampRound::smallest`], which allows |
1990 | /// one to configure the smallest units in the returned timestamp. |
1991 | /// Rounding is what determines whether the specified smallest unit |
1992 | /// should keep its current value or whether it should be incremented. |
1993 | /// Moreover, the amount it should be incremented can be configured via |
1994 | /// [`TimestampRound::increment`]. Finally, the rounding strategy itself |
1995 | /// can be configured via [`TimestampRound::mode`]. |
1996 | /// |
1997 | /// Note that this routine is generic and accepts anything that |
1998 | /// implements `Into<TimestampRound>`. Some notable implementations are: |
1999 | /// |
2000 | /// * `From<Unit> for TimestampRound`, which will automatically create a |
2001 | /// `TimestampRound::new().smallest(unit)` from the unit provided. |
2002 | /// * `From<(Unit, i64)> for TimestampRound`, which will automatically |
2003 | /// create a `TimestampRound::new().smallest(unit).increment(number)` from |
2004 | /// the unit and increment provided. |
2005 | /// |
2006 | /// # Errors |
2007 | /// |
2008 | /// This returns an error if the smallest unit configured on the given |
2009 | /// [`TimestampRound`] is bigger than hours. |
2010 | /// |
2011 | /// The rounding increment, when combined with the smallest unit (which |
2012 | /// defaults to [`Unit::Nanosecond`]), must divide evenly into `86,400` |
2013 | /// seconds (one 24-hour civil day). For example, increments of both |
2014 | /// 45 seconds and 15 minutes are allowed, but 7 seconds and 25 minutes are |
2015 | /// both not allowed. |
2016 | /// |
2017 | /// # Example |
2018 | /// |
2019 | /// This is a basic example that demonstrates rounding a timestamp to the |
2020 | /// nearest hour. This also demonstrates calling this method with the |
2021 | /// smallest unit directly, instead of constructing a `TimestampRound` |
2022 | /// manually. |
2023 | /// |
2024 | /// ``` |
2025 | /// use jiff::{Timestamp, Unit}; |
2026 | /// |
2027 | /// let ts: Timestamp = "2024-06-19 15:30:00Z" .parse()?; |
2028 | /// assert_eq!( |
2029 | /// ts.round(Unit::Hour)?.to_string(), |
2030 | /// "2024-06-19T16:00:00Z" , |
2031 | /// ); |
2032 | /// let ts: Timestamp = "2024-06-19 15:29:59Z" .parse()?; |
2033 | /// assert_eq!( |
2034 | /// ts.round(Unit::Hour)?.to_string(), |
2035 | /// "2024-06-19T15:00:00Z" , |
2036 | /// ); |
2037 | /// |
2038 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2039 | /// ``` |
2040 | /// |
2041 | /// # Example: changing the rounding mode |
2042 | /// |
2043 | /// The default rounding mode is [`RoundMode::HalfExpand`], which |
2044 | /// breaks ties by rounding away from zero. But other modes like |
2045 | /// [`RoundMode::Trunc`] can be used too: |
2046 | /// |
2047 | /// ``` |
2048 | /// use jiff::{RoundMode, Timestamp, TimestampRound, Unit}; |
2049 | /// |
2050 | /// // The default will round up to the next hour for any time past the |
2051 | /// // 30 minute mark, but using truncation rounding will always round |
2052 | /// // down. |
2053 | /// let ts: Timestamp = "2024-06-19 15:30:00Z" .parse()?; |
2054 | /// assert_eq!( |
2055 | /// ts.round( |
2056 | /// TimestampRound::new() |
2057 | /// .smallest(Unit::Hour) |
2058 | /// .mode(RoundMode::Trunc), |
2059 | /// )?.to_string(), |
2060 | /// "2024-06-19T15:00:00Z" , |
2061 | /// ); |
2062 | /// |
2063 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2064 | /// ``` |
2065 | /// |
2066 | /// # Example: rounding to the nearest 5 minute increment |
2067 | /// |
2068 | /// ``` |
2069 | /// use jiff::{Timestamp, Unit}; |
2070 | /// |
2071 | /// // rounds down |
2072 | /// let ts: Timestamp = "2024-06-19T15:27:29.999999999Z" .parse()?; |
2073 | /// assert_eq!( |
2074 | /// ts.round((Unit::Minute, 5))?.to_string(), |
2075 | /// "2024-06-19T15:25:00Z" , |
2076 | /// ); |
2077 | /// // rounds up |
2078 | /// let ts: Timestamp = "2024-06-19T15:27:30Z" .parse()?; |
2079 | /// assert_eq!( |
2080 | /// ts.round((Unit::Minute, 5))?.to_string(), |
2081 | /// "2024-06-19T15:30:00Z" , |
2082 | /// ); |
2083 | /// |
2084 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2085 | /// ``` |
2086 | #[inline ] |
2087 | pub fn round<R: Into<TimestampRound>>( |
2088 | self, |
2089 | options: R, |
2090 | ) -> Result<Timestamp, Error> { |
2091 | let options: TimestampRound = options.into(); |
2092 | options.round(self) |
2093 | } |
2094 | |
2095 | /// Return an iterator of periodic timestamps determined by the given span. |
2096 | /// |
2097 | /// The given span may be negative, in which case, the iterator will move |
2098 | /// backwards through time. The iterator won't stop until either the span |
2099 | /// itself overflows, or it would otherwise exceed the minimum or maximum |
2100 | /// `Timestamp` value. |
2101 | /// |
2102 | /// # Example: when to check a glucose monitor |
2103 | /// |
2104 | /// When my cat had diabetes, my veterinarian installed a glucose monitor |
2105 | /// and instructed me to scan it about every 5 hours. This example lists |
2106 | /// all of the times I need to scan it for the 2 days following its |
2107 | /// installation: |
2108 | /// |
2109 | /// ``` |
2110 | /// use jiff::{Timestamp, ToSpan}; |
2111 | /// |
2112 | /// let start: Timestamp = "2023-07-15 16:30:00-04" .parse()?; |
2113 | /// let end = start.checked_add(48.hours())?; |
2114 | /// let mut scan_times = vec![]; |
2115 | /// for ts in start.series(5.hours()).take_while(|&ts| ts <= end) { |
2116 | /// scan_times.push(ts); |
2117 | /// } |
2118 | /// assert_eq!(scan_times, vec![ |
2119 | /// "2023-07-15 16:30:00-04:00" .parse::<Timestamp>()?, |
2120 | /// "2023-07-15 21:30:00-04:00" .parse::<Timestamp>()?, |
2121 | /// "2023-07-16 02:30:00-04:00" .parse::<Timestamp>()?, |
2122 | /// "2023-07-16 07:30:00-04:00" .parse::<Timestamp>()?, |
2123 | /// "2023-07-16 12:30:00-04:00" .parse::<Timestamp>()?, |
2124 | /// "2023-07-16 17:30:00-04:00" .parse::<Timestamp>()?, |
2125 | /// "2023-07-16 22:30:00-04:00" .parse::<Timestamp>()?, |
2126 | /// "2023-07-17 03:30:00-04:00" .parse::<Timestamp>()?, |
2127 | /// "2023-07-17 08:30:00-04:00" .parse::<Timestamp>()?, |
2128 | /// "2023-07-17 13:30:00-04:00" .parse::<Timestamp>()?, |
2129 | /// ]); |
2130 | /// |
2131 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2132 | /// ``` |
2133 | #[inline ] |
2134 | pub fn series(self, period: Span) -> TimestampSeries { |
2135 | TimestampSeries::new(self, period) |
2136 | } |
2137 | } |
2138 | |
2139 | /// Parsing and formatting APIs. |
2140 | impl Timestamp { |
2141 | /// Parses a timestamp (expressed as broken down time) in `input` matching |
2142 | /// the given `format`. |
2143 | /// |
2144 | /// The format string uses a "printf"-style API where conversion |
2145 | /// specifiers can be used as place holders to match components of |
2146 | /// a datetime. For details on the specifiers supported, see the |
2147 | /// [`fmt::strtime`] module documentation. |
2148 | /// |
2149 | /// # Errors |
2150 | /// |
2151 | /// This returns an error when parsing failed. This might happen because |
2152 | /// the format string itself was invalid, or because the input didn't match |
2153 | /// the format string. |
2154 | /// |
2155 | /// This also returns an error if there wasn't sufficient information to |
2156 | /// construct a timestamp. For example, if an offset wasn't parsed. (The |
2157 | /// offset is needed to turn the civil time parsed into a precise instant |
2158 | /// in time.) |
2159 | /// |
2160 | /// # Example |
2161 | /// |
2162 | /// This example shows how to parse a datetime string into a timestamp: |
2163 | /// |
2164 | /// ``` |
2165 | /// use jiff::Timestamp; |
2166 | /// |
2167 | /// let ts = Timestamp::strptime("%F %H:%M %:z" , "2024-07-14 21:14 -04:00" )?; |
2168 | /// assert_eq!(ts.to_string(), "2024-07-15T01:14:00Z" ); |
2169 | /// |
2170 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2171 | /// ``` |
2172 | #[inline ] |
2173 | pub fn strptime( |
2174 | format: impl AsRef<[u8]>, |
2175 | input: impl AsRef<[u8]>, |
2176 | ) -> Result<Timestamp, Error> { |
2177 | fmt::strtime::parse(format, input).and_then(|tm| tm.to_timestamp()) |
2178 | } |
2179 | |
2180 | /// Formats this timestamp according to the given `format`. |
2181 | /// |
2182 | /// The format string uses a "printf"-style API where conversion |
2183 | /// specifiers can be used as place holders to format components of |
2184 | /// a datetime. For details on the specifiers supported, see the |
2185 | /// [`fmt::strtime`] module documentation. |
2186 | /// |
2187 | /// # Errors and panics |
2188 | /// |
2189 | /// While this routine itself does not error or panic, using the value |
2190 | /// returned may result in a panic if formatting fails. See the |
2191 | /// documentation on [`fmt::strtime::Display`] for more information. |
2192 | /// |
2193 | /// To format in a way that surfaces errors without panicking, use either |
2194 | /// [`fmt::strtime::format`] or [`fmt::strtime::BrokenDownTime::format`]. |
2195 | /// |
2196 | /// # Example |
2197 | /// |
2198 | /// This shows how to format a timestamp into a human readable datetime |
2199 | /// in UTC: |
2200 | /// |
2201 | /// ``` |
2202 | /// use jiff::{civil::date, Timestamp}; |
2203 | /// |
2204 | /// let ts = Timestamp::from_second(86_400)?; |
2205 | /// let string = ts.strftime("%a %b %e %I:%M:%S %p UTC %Y" ).to_string(); |
2206 | /// assert_eq!(string, "Fri Jan 2 12:00:00 AM UTC 1970" ); |
2207 | /// |
2208 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2209 | /// ``` |
2210 | #[inline ] |
2211 | pub fn strftime<'f, F: 'f + ?Sized + AsRef<[u8]>>( |
2212 | &self, |
2213 | format: &'f F, |
2214 | ) -> fmt::strtime::Display<'f> { |
2215 | fmt::strtime::Display { fmt: format.as_ref(), tm: (*self).into() } |
2216 | } |
2217 | |
2218 | /// Format a `Timestamp` datetime into a string with the given offset. |
2219 | /// |
2220 | /// This will format to an RFC 3339 compatible string with an offset. |
2221 | /// |
2222 | /// This will never use either `Z` (for Zulu time) or `-00:00` as an |
2223 | /// offset. This is because Zulu time (and `-00:00`) mean "the time in UTC |
2224 | /// is known, but the offset to local time is unknown." Since this routine |
2225 | /// accepts an explicit offset, the offset is known. For example, |
2226 | /// `Offset::UTC` will be formatted as `+00:00`. |
2227 | /// |
2228 | /// To format an RFC 3339 string in Zulu time, use the default |
2229 | /// [`std::fmt::Display`] trait implementation on `Timestamp`. |
2230 | /// |
2231 | /// # Example |
2232 | /// |
2233 | /// ``` |
2234 | /// use jiff::{tz, Timestamp}; |
2235 | /// |
2236 | /// let ts = Timestamp::from_second(1)?; |
2237 | /// assert_eq!( |
2238 | /// ts.display_with_offset(tz::offset(-5)).to_string(), |
2239 | /// "1969-12-31T19:00:01-05:00" , |
2240 | /// ); |
2241 | /// |
2242 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2243 | /// ``` |
2244 | #[inline ] |
2245 | pub fn display_with_offset( |
2246 | &self, |
2247 | offset: Offset, |
2248 | ) -> TimestampDisplayWithOffset { |
2249 | TimestampDisplayWithOffset { timestamp: *self, offset } |
2250 | } |
2251 | } |
2252 | |
2253 | /// Internal APIs using Jiff ranged integers. |
2254 | impl Timestamp { |
2255 | #[inline ] |
2256 | pub(crate) fn new_ranged( |
2257 | second: UnixSeconds, |
2258 | nanosecond: FractionalNanosecond, |
2259 | ) -> Result<Timestamp, Error> { |
2260 | if second == UnixSeconds::MIN_SELF && nanosecond < C(0) { |
2261 | return Err(Error::range( |
2262 | "seconds and nanoseconds" , |
2263 | nanosecond, |
2264 | 0, |
2265 | 1_000_000_000, |
2266 | )); |
2267 | } |
2268 | // We now normalize our seconds and nanoseconds such that they have |
2269 | // the same sign (or where one is zero). So for example, when given |
2270 | // `-1s 1ns`, then we should turn that into `-999,999,999ns`. |
2271 | // |
2272 | // But first, if we're already normalized, we're done! |
2273 | if second.signum() == nanosecond.signum() |
2274 | || second == C(0) |
2275 | || nanosecond == C(0) |
2276 | { |
2277 | return Ok(Timestamp { second, nanosecond }); |
2278 | } |
2279 | let second = second.without_bounds(); |
2280 | let nanosecond = nanosecond.without_bounds(); |
2281 | let [delta_second, delta_nanosecond] = t::NoUnits::vary_many( |
2282 | [second, nanosecond], |
2283 | |[second, nanosecond]| { |
2284 | if second < C(0) && nanosecond > C(0) { |
2285 | [C(1), (-t::NANOS_PER_SECOND).rinto()] |
2286 | } else if second > C(0) && nanosecond < C(0) { |
2287 | [C(-1), t::NANOS_PER_SECOND.rinto()] |
2288 | } else { |
2289 | [C(0), C(0)] |
2290 | } |
2291 | }, |
2292 | ); |
2293 | Ok(Timestamp { |
2294 | second: (second + delta_second).rinto(), |
2295 | nanosecond: (nanosecond + delta_nanosecond).rinto(), |
2296 | }) |
2297 | } |
2298 | |
2299 | #[inline ] |
2300 | fn from_second_ranged(second: UnixSeconds) -> Timestamp { |
2301 | Timestamp { second, nanosecond: FractionalNanosecond::N::<0>() } |
2302 | } |
2303 | |
2304 | #[inline ] |
2305 | fn from_millisecond_ranged(millisecond: UnixMilliseconds) -> Timestamp { |
2306 | let second = |
2307 | UnixSeconds::rfrom(millisecond.div_ceil(t::MILLIS_PER_SECOND)); |
2308 | let nanosecond = FractionalNanosecond::rfrom( |
2309 | millisecond.rem_ceil(t::MILLIS_PER_SECOND) * t::NANOS_PER_MILLI, |
2310 | ); |
2311 | Timestamp { second, nanosecond } |
2312 | } |
2313 | |
2314 | #[inline ] |
2315 | fn from_microsecond_ranged(microsecond: UnixMicroseconds) -> Timestamp { |
2316 | let second = |
2317 | UnixSeconds::rfrom(microsecond.div_ceil(t::MICROS_PER_SECOND)); |
2318 | let nanosecond = FractionalNanosecond::rfrom( |
2319 | microsecond.rem_ceil(t::MICROS_PER_SECOND) * t::NANOS_PER_MICRO, |
2320 | ); |
2321 | Timestamp { second, nanosecond } |
2322 | } |
2323 | |
2324 | #[inline ] |
2325 | pub(crate) fn from_nanosecond_ranged( |
2326 | nanosecond: UnixNanoseconds, |
2327 | ) -> Timestamp { |
2328 | let second = |
2329 | UnixSeconds::rfrom(nanosecond.div_ceil(t::NANOS_PER_SECOND)); |
2330 | let nanosecond = nanosecond.rem_ceil(t::NANOS_PER_SECOND).rinto(); |
2331 | Timestamp { second, nanosecond } |
2332 | } |
2333 | |
2334 | #[inline ] |
2335 | pub(crate) fn from_itimestamp( |
2336 | its: Composite<ITimestamp>, |
2337 | ) -> Result<Timestamp, Error> { |
2338 | let (second, nanosecond) = |
2339 | rangeint::uncomposite!(its, c => (c.second, c.nanosecond)); |
2340 | Ok(Timestamp { |
2341 | second: second.try_to_rint("unix-seconds" )?, |
2342 | nanosecond: nanosecond.to_rint(), |
2343 | }) |
2344 | } |
2345 | |
2346 | #[inline ] |
2347 | pub(crate) fn to_itimestamp(&self) -> Composite<ITimestamp> { |
2348 | rangeint::composite! { |
2349 | (second = self.second, nanosecond = self.nanosecond) => { |
2350 | ITimestamp { second, nanosecond } |
2351 | } |
2352 | } |
2353 | } |
2354 | |
2355 | #[inline ] |
2356 | pub(crate) const fn from_itimestamp_const(its: ITimestamp) -> Timestamp { |
2357 | Timestamp { |
2358 | second: UnixSeconds::new_unchecked(its.second), |
2359 | nanosecond: FractionalNanosecond::new_unchecked(its.nanosecond), |
2360 | } |
2361 | } |
2362 | |
2363 | #[inline ] |
2364 | pub(crate) const fn to_itimestamp_const(&self) -> ITimestamp { |
2365 | ITimestamp { |
2366 | second: self.second.get_unchecked(), |
2367 | nanosecond: self.nanosecond.get_unchecked(), |
2368 | } |
2369 | } |
2370 | |
2371 | #[inline ] |
2372 | pub(crate) fn as_second_ranged(self) -> UnixSeconds { |
2373 | self.second |
2374 | } |
2375 | |
2376 | #[inline ] |
2377 | fn as_millisecond_ranged(self) -> UnixMilliseconds { |
2378 | let second = NoUnits::rfrom(self.as_second_ranged()); |
2379 | let nanosecond = NoUnits::rfrom(self.subsec_nanosecond_ranged()); |
2380 | // The minimum value of a timestamp has the fractional nanosecond set |
2381 | // to 0, but otherwise its minimum value is -999_999_999. So to avoid |
2382 | // a case where we return a ranged integer with a minimum value less |
2383 | // than the actual minimum, we clamp the fractional part to 0 when the |
2384 | // second value is the minimum. |
2385 | let [second, nanosecond] = |
2386 | NoUnits::vary_many([second, nanosecond], |[second, nanosecond]| { |
2387 | if second == UnixSeconds::MIN_SELF && nanosecond < C(0) { |
2388 | [second, C(0).rinto()] |
2389 | } else { |
2390 | [second, nanosecond] |
2391 | } |
2392 | }); |
2393 | UnixMilliseconds::rfrom( |
2394 | (second * t::MILLIS_PER_SECOND) |
2395 | + (nanosecond.div_ceil(t::NANOS_PER_MILLI)), |
2396 | ) |
2397 | } |
2398 | |
2399 | #[inline ] |
2400 | fn as_microsecond_ranged(self) -> UnixMicroseconds { |
2401 | let second = NoUnits::rfrom(self.as_second_ranged()); |
2402 | let nanosecond = NoUnits::rfrom(self.subsec_nanosecond_ranged()); |
2403 | // The minimum value of a timestamp has the fractional nanosecond set |
2404 | // to 0, but otherwise its minimum value is -999_999_999. So to avoid |
2405 | // a case where we return a ranged integer with a minimum value less |
2406 | // than the actual minimum, we clamp the fractional part to 0 when the |
2407 | // second value is the minimum. |
2408 | let [second, nanosecond] = |
2409 | NoUnits::vary_many([second, nanosecond], |[second, nanosecond]| { |
2410 | if second == UnixSeconds::MIN_SELF && nanosecond < C(0) { |
2411 | [second, C(0).rinto()] |
2412 | } else { |
2413 | [second, nanosecond] |
2414 | } |
2415 | }); |
2416 | UnixMicroseconds::rfrom( |
2417 | (second * t::MICROS_PER_SECOND) |
2418 | + (nanosecond.div_ceil(t::NANOS_PER_MICRO)), |
2419 | ) |
2420 | } |
2421 | |
2422 | #[inline ] |
2423 | pub(crate) fn as_nanosecond_ranged(self) -> UnixNanoseconds { |
2424 | let second = NoUnits128::rfrom(self.as_second_ranged()); |
2425 | let nanosecond = NoUnits128::rfrom(self.subsec_nanosecond_ranged()); |
2426 | // The minimum value of a timestamp has the fractional nanosecond set |
2427 | // to 0, but otherwise its minimum value is -999_999_999. So to avoid |
2428 | // a case where we return a ranged integer with a minimum value less |
2429 | // than the actual minimum, we clamp the fractional part to 0 when the |
2430 | // second value is the minimum. |
2431 | let [second, nanosecond] = NoUnits128::vary_many( |
2432 | [second, nanosecond], |
2433 | |[second, nanosecond]| { |
2434 | if second == UnixSeconds::MIN_SELF && nanosecond < C(0) { |
2435 | [second, C(0).rinto()] |
2436 | } else { |
2437 | [second, nanosecond] |
2438 | } |
2439 | }, |
2440 | ); |
2441 | UnixNanoseconds::rfrom(second * t::NANOS_PER_SECOND + nanosecond) |
2442 | } |
2443 | |
2444 | #[inline ] |
2445 | fn subsec_millisecond_ranged(self) -> t::FractionalMillisecond { |
2446 | let millis = |
2447 | self.subsec_nanosecond_ranged().div_ceil(t::NANOS_PER_MILLI); |
2448 | t::FractionalMillisecond::rfrom(millis) |
2449 | } |
2450 | |
2451 | #[inline ] |
2452 | fn subsec_microsecond_ranged(self) -> t::FractionalMicrosecond { |
2453 | let micros = |
2454 | self.subsec_nanosecond_ranged().div_ceil(t::NANOS_PER_MICRO); |
2455 | t::FractionalMicrosecond::rfrom(micros) |
2456 | } |
2457 | |
2458 | #[inline ] |
2459 | pub(crate) fn subsec_nanosecond_ranged(self) -> FractionalNanosecond { |
2460 | self.nanosecond |
2461 | } |
2462 | } |
2463 | |
2464 | impl Default for Timestamp { |
2465 | #[inline ] |
2466 | fn default() -> Timestamp { |
2467 | Timestamp::UNIX_EPOCH |
2468 | } |
2469 | } |
2470 | |
2471 | /// Converts a `Timestamp` datetime into a human readable datetime string. |
2472 | /// |
2473 | /// (This `Debug` representation currently emits the same string as the |
2474 | /// `Display` representation, but this is not a guarantee.) |
2475 | /// |
2476 | /// Options currently supported: |
2477 | /// |
2478 | /// * [`std::fmt::Formatter::precision`] can be set to control the precision |
2479 | /// of the fractional second component. |
2480 | /// |
2481 | /// # Example |
2482 | /// |
2483 | /// ``` |
2484 | /// use jiff::Timestamp; |
2485 | /// |
2486 | /// let ts = Timestamp::new(1_123_456_789, 123_000_000)?; |
2487 | /// assert_eq!( |
2488 | /// format!("{ts:.6?}" ), |
2489 | /// "2005-08-07T23:19:49.123000Z" , |
2490 | /// ); |
2491 | /// // Precision values greater than 9 are clamped to 9. |
2492 | /// assert_eq!( |
2493 | /// format!("{ts:.300?}" ), |
2494 | /// "2005-08-07T23:19:49.123000000Z" , |
2495 | /// ); |
2496 | /// // A precision of 0 implies the entire fractional |
2497 | /// // component is always truncated. |
2498 | /// assert_eq!( |
2499 | /// format!("{ts:.0?}" ), |
2500 | /// "2005-08-07T23:19:49Z" , |
2501 | /// ); |
2502 | /// |
2503 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2504 | /// ``` |
2505 | impl core::fmt::Debug for Timestamp { |
2506 | #[inline ] |
2507 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
2508 | core::fmt::Display::fmt(self, f) |
2509 | } |
2510 | } |
2511 | |
2512 | /// Converts a `Timestamp` datetime into a RFC 3339 compliant string. |
2513 | /// |
2514 | /// Since a `Timestamp` never has an offset associated with it and is always |
2515 | /// in UTC, the string emitted by this trait implementation uses `Z` for "Zulu" |
2516 | /// time. The significance of Zulu time is prescribed by RFC 9557 and means |
2517 | /// that "the time in UTC is known, but the offset to local time is unknown." |
2518 | /// If you need to emit an RFC 3339 compliant string with a specific offset, |
2519 | /// then use [`Timestamp::display_with_offset`]. |
2520 | /// |
2521 | /// # Forrmatting options supported |
2522 | /// |
2523 | /// * [`std::fmt::Formatter::precision`] can be set to control the precision |
2524 | /// of the fractional second component. |
2525 | /// |
2526 | /// # Example |
2527 | /// |
2528 | /// ``` |
2529 | /// use jiff::Timestamp; |
2530 | /// |
2531 | /// let ts = Timestamp::new(1_123_456_789, 123_000_000)?; |
2532 | /// assert_eq!( |
2533 | /// format!("{ts:.6}" ), |
2534 | /// "2005-08-07T23:19:49.123000Z" , |
2535 | /// ); |
2536 | /// // Precision values greater than 9 are clamped to 9. |
2537 | /// assert_eq!( |
2538 | /// format!("{ts:.300}" ), |
2539 | /// "2005-08-07T23:19:49.123000000Z" , |
2540 | /// ); |
2541 | /// // A precision of 0 implies the entire fractional |
2542 | /// // component is always truncated. |
2543 | /// assert_eq!( |
2544 | /// format!("{ts:.0}" ), |
2545 | /// "2005-08-07T23:19:49Z" , |
2546 | /// ); |
2547 | /// |
2548 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2549 | /// ``` |
2550 | impl core::fmt::Display for Timestamp { |
2551 | #[inline ] |
2552 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
2553 | use crate::fmt::StdFmtWrite; |
2554 | |
2555 | let precision: Option = |
2556 | f.precision().map(|p: usize| u8::try_from(p).unwrap_or(default:u8::MAX)); |
2557 | temporal::DateTimePrinter::new() |
2558 | .precision(precision) |
2559 | .print_timestamp(self, StdFmtWrite(f)) |
2560 | .map_err(|_| core::fmt::Error) |
2561 | } |
2562 | } |
2563 | |
2564 | impl core::str::FromStr for Timestamp { |
2565 | type Err = Error; |
2566 | |
2567 | #[inline ] |
2568 | fn from_str(string: &str) -> Result<Timestamp, Error> { |
2569 | DEFAULT_DATETIME_PARSER.parse_timestamp(input:string) |
2570 | } |
2571 | } |
2572 | |
2573 | impl Eq for Timestamp {} |
2574 | |
2575 | impl PartialEq for Timestamp { |
2576 | #[inline ] |
2577 | fn eq(&self, rhs: &Timestamp) -> bool { |
2578 | self.as_second_ranged().get() == rhs.as_second_ranged().get() |
2579 | && self.subsec_nanosecond_ranged().get() |
2580 | == rhs.subsec_nanosecond_ranged().get() |
2581 | } |
2582 | } |
2583 | |
2584 | impl Ord for Timestamp { |
2585 | #[inline ] |
2586 | fn cmp(&self, rhs: &Timestamp) -> core::cmp::Ordering { |
2587 | (self.as_second_ranged().get(), self.subsec_nanosecond_ranged().get()) |
2588 | .cmp(&( |
2589 | rhs.as_second_ranged().get(), |
2590 | rhs.subsec_nanosecond_ranged().get(), |
2591 | )) |
2592 | } |
2593 | } |
2594 | |
2595 | impl PartialOrd for Timestamp { |
2596 | #[inline ] |
2597 | fn partial_cmp(&self, rhs: &Timestamp) -> Option<core::cmp::Ordering> { |
2598 | Some(self.cmp(rhs)) |
2599 | } |
2600 | } |
2601 | |
2602 | impl core::hash::Hash for Timestamp { |
2603 | #[inline ] |
2604 | fn hash<H: core::hash::Hasher>(&self, state: &mut H) { |
2605 | self.as_second_ranged().get().hash(state); |
2606 | self.subsec_nanosecond_ranged().get().hash(state); |
2607 | } |
2608 | } |
2609 | |
2610 | /// Adds a span of time to a timestamp. |
2611 | /// |
2612 | /// This uses checked arithmetic and panics when it fails. To handle arithmetic |
2613 | /// without panics, use [`Timestamp::checked_add`]. Note that the failure |
2614 | /// condition includes overflow and using a `Span` with non-zero units greater |
2615 | /// than hours. |
2616 | impl core::ops::Add<Span> for Timestamp { |
2617 | type Output = Timestamp; |
2618 | |
2619 | #[inline ] |
2620 | fn add(self, rhs: Span) -> Timestamp { |
2621 | self.checked_add_span(rhs).expect(msg:"adding span to timestamp failed" ) |
2622 | } |
2623 | } |
2624 | |
2625 | /// Adds a span of time to a timestamp in place. |
2626 | /// |
2627 | /// This uses checked arithmetic and panics when it fails. To handle arithmetic |
2628 | /// without panics, use [`Timestamp::checked_add`]. Note that the failure |
2629 | /// condition includes overflow and using a `Span` with non-zero units greater |
2630 | /// than hours. |
2631 | impl core::ops::AddAssign<Span> for Timestamp { |
2632 | #[inline ] |
2633 | fn add_assign(&mut self, rhs: Span) { |
2634 | *self = *self + rhs |
2635 | } |
2636 | } |
2637 | |
2638 | /// Subtracts a span of time from a timestamp. |
2639 | /// |
2640 | /// This uses checked arithmetic and panics when it fails. To handle arithmetic |
2641 | /// without panics, use [`Timestamp::checked_sub`]. Note that the failure |
2642 | /// condition includes overflow and using a `Span` with non-zero units greater |
2643 | /// than hours. |
2644 | impl core::ops::Sub<Span> for Timestamp { |
2645 | type Output = Timestamp; |
2646 | |
2647 | #[inline ] |
2648 | fn sub(self, rhs: Span) -> Timestamp { |
2649 | self.checked_add_span(rhs.negate()) |
2650 | .expect(msg:"subtracting span from timestamp failed" ) |
2651 | } |
2652 | } |
2653 | |
2654 | /// Subtracts a span of time from a timestamp in place. |
2655 | /// |
2656 | /// This uses checked arithmetic and panics when it fails. To handle arithmetic |
2657 | /// without panics, use [`Timestamp::checked_sub`]. Note that the failure |
2658 | /// condition includes overflow and using a `Span` with non-zero units greater |
2659 | /// than hours. |
2660 | impl core::ops::SubAssign<Span> for Timestamp { |
2661 | #[inline ] |
2662 | fn sub_assign(&mut self, rhs: Span) { |
2663 | *self = *self - rhs |
2664 | } |
2665 | } |
2666 | |
2667 | /// Computes the span of time between two timestamps. |
2668 | /// |
2669 | /// This will return a negative span when the timestamp being subtracted is |
2670 | /// greater. |
2671 | /// |
2672 | /// Since this uses the default configuration for calculating a span between |
2673 | /// two timestamps (no rounding and largest units is seconds), this will never |
2674 | /// panic or fail in any way. |
2675 | /// |
2676 | /// To configure the largest unit or enable rounding, use [`Timestamp::since`]. |
2677 | impl core::ops::Sub for Timestamp { |
2678 | type Output = Span; |
2679 | |
2680 | #[inline ] |
2681 | fn sub(self, rhs: Timestamp) -> Span { |
2682 | self.since(rhs).expect(msg:"since never fails when given Timestamp" ) |
2683 | } |
2684 | } |
2685 | |
2686 | /// Adds a signed duration of time to a timestamp. |
2687 | /// |
2688 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
2689 | /// without panics, use [`Timestamp::checked_add`]. |
2690 | impl core::ops::Add<SignedDuration> for Timestamp { |
2691 | type Output = Timestamp; |
2692 | |
2693 | #[inline ] |
2694 | fn add(self, rhs: SignedDuration) -> Timestamp { |
2695 | self.checked_add_duration(rhs) |
2696 | .expect(msg:"adding signed duration to timestamp overflowed" ) |
2697 | } |
2698 | } |
2699 | |
2700 | /// Adds a signed duration of time to a timestamp in place. |
2701 | /// |
2702 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
2703 | /// without panics, use [`Timestamp::checked_add`]. |
2704 | impl core::ops::AddAssign<SignedDuration> for Timestamp { |
2705 | #[inline ] |
2706 | fn add_assign(&mut self, rhs: SignedDuration) { |
2707 | *self = *self + rhs |
2708 | } |
2709 | } |
2710 | |
2711 | /// Subtracts a signed duration of time from a timestamp. |
2712 | /// |
2713 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
2714 | /// without panics, use [`Timestamp::checked_sub`]. |
2715 | impl core::ops::Sub<SignedDuration> for Timestamp { |
2716 | type Output = Timestamp; |
2717 | |
2718 | #[inline ] |
2719 | fn sub(self, rhs: SignedDuration) -> Timestamp { |
2720 | let rhs: SignedDuration = rhs |
2721 | .checked_neg() |
2722 | .expect(msg:"signed duration negation resulted in overflow" ); |
2723 | self.checked_add_duration(rhs) |
2724 | .expect(msg:"subtracting signed duration from timestamp overflowed" ) |
2725 | } |
2726 | } |
2727 | |
2728 | /// Subtracts a signed duration of time from a timestamp in place. |
2729 | /// |
2730 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
2731 | /// without panics, use [`Timestamp::checked_sub`]. |
2732 | impl core::ops::SubAssign<SignedDuration> for Timestamp { |
2733 | #[inline ] |
2734 | fn sub_assign(&mut self, rhs: SignedDuration) { |
2735 | *self = *self - rhs |
2736 | } |
2737 | } |
2738 | |
2739 | /// Adds an unsigned duration of time to a timestamp. |
2740 | /// |
2741 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
2742 | /// without panics, use [`Timestamp::checked_add`]. |
2743 | impl core::ops::Add<UnsignedDuration> for Timestamp { |
2744 | type Output = Timestamp; |
2745 | |
2746 | #[inline ] |
2747 | fn add(self, rhs: UnsignedDuration) -> Timestamp { |
2748 | self.checked_add(rhs) |
2749 | .expect(msg:"adding unsigned duration to timestamp overflowed" ) |
2750 | } |
2751 | } |
2752 | |
2753 | /// Adds an unsigned duration of time to a timestamp in place. |
2754 | /// |
2755 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
2756 | /// without panics, use [`Timestamp::checked_add`]. |
2757 | impl core::ops::AddAssign<UnsignedDuration> for Timestamp { |
2758 | #[inline ] |
2759 | fn add_assign(&mut self, rhs: UnsignedDuration) { |
2760 | *self = *self + rhs |
2761 | } |
2762 | } |
2763 | |
2764 | /// Subtracts an unsigned duration of time from a timestamp. |
2765 | /// |
2766 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
2767 | /// without panics, use [`Timestamp::checked_sub`]. |
2768 | impl core::ops::Sub<UnsignedDuration> for Timestamp { |
2769 | type Output = Timestamp; |
2770 | |
2771 | #[inline ] |
2772 | fn sub(self, rhs: UnsignedDuration) -> Timestamp { |
2773 | self.checked_sub(rhs) |
2774 | .expect(msg:"subtracting unsigned duration from timestamp overflowed" ) |
2775 | } |
2776 | } |
2777 | |
2778 | /// Subtracts an unsigned duration of time from a timestamp in place. |
2779 | /// |
2780 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
2781 | /// without panics, use [`Timestamp::checked_sub`]. |
2782 | impl core::ops::SubAssign<UnsignedDuration> for Timestamp { |
2783 | #[inline ] |
2784 | fn sub_assign(&mut self, rhs: UnsignedDuration) { |
2785 | *self = *self - rhs |
2786 | } |
2787 | } |
2788 | |
2789 | impl From<Zoned> for Timestamp { |
2790 | #[inline ] |
2791 | fn from(zdt: Zoned) -> Timestamp { |
2792 | zdt.timestamp() |
2793 | } |
2794 | } |
2795 | |
2796 | impl<'a> From<&'a Zoned> for Timestamp { |
2797 | #[inline ] |
2798 | fn from(zdt: &'a Zoned) -> Timestamp { |
2799 | zdt.timestamp() |
2800 | } |
2801 | } |
2802 | |
2803 | #[cfg (feature = "std" )] |
2804 | impl From<Timestamp> for std::time::SystemTime { |
2805 | #[inline ] |
2806 | fn from(time: Timestamp) -> std::time::SystemTime { |
2807 | let unix_epoch: SystemTime = std::time::SystemTime::UNIX_EPOCH; |
2808 | let sdur: SignedDuration = time.as_duration(); |
2809 | let dur: Duration = sdur.unsigned_abs(); |
2810 | // These are guaranteed to succeed because we assume that SystemTime |
2811 | // uses at least 64 bits for the time, and our durations are capped via |
2812 | // the range on UnixSeconds. |
2813 | if sdur.is_negative() { |
2814 | unix_epoch.checked_sub(dur).expect(msg:"duration too big (negative)" ) |
2815 | } else { |
2816 | unix_epoch.checked_add(dur).expect(msg:"duration too big (positive)" ) |
2817 | } |
2818 | } |
2819 | } |
2820 | |
2821 | #[cfg (feature = "std" )] |
2822 | impl TryFrom<std::time::SystemTime> for Timestamp { |
2823 | type Error = Error; |
2824 | |
2825 | #[inline ] |
2826 | fn try_from( |
2827 | system_time: std::time::SystemTime, |
2828 | ) -> Result<Timestamp, Error> { |
2829 | let unix_epoch: SystemTime = std::time::SystemTime::UNIX_EPOCH; |
2830 | let dur: SignedDuration = SignedDuration::system_until(time1:unix_epoch, time2:system_time)?; |
2831 | Timestamp::from_duration(dur) |
2832 | } |
2833 | } |
2834 | |
2835 | #[cfg (feature = "serde" )] |
2836 | impl serde::Serialize for Timestamp { |
2837 | #[inline ] |
2838 | fn serialize<S: serde::Serializer>( |
2839 | &self, |
2840 | serializer: S, |
2841 | ) -> Result<S::Ok, S::Error> { |
2842 | serializer.collect_str(self) |
2843 | } |
2844 | } |
2845 | |
2846 | #[cfg (feature = "serde" )] |
2847 | impl<'de> serde::Deserialize<'de> for Timestamp { |
2848 | #[inline ] |
2849 | fn deserialize<D: serde::Deserializer<'de>>( |
2850 | deserializer: D, |
2851 | ) -> Result<Timestamp, D::Error> { |
2852 | use serde::de; |
2853 | |
2854 | struct TimestampVisitor; |
2855 | |
2856 | impl<'de> de::Visitor<'de> for TimestampVisitor { |
2857 | type Value = Timestamp; |
2858 | |
2859 | fn expecting( |
2860 | &self, |
2861 | f: &mut core::fmt::Formatter, |
2862 | ) -> core::fmt::Result { |
2863 | f.write_str("a timestamp string" ) |
2864 | } |
2865 | |
2866 | #[inline ] |
2867 | fn visit_bytes<E: de::Error>( |
2868 | self, |
2869 | value: &[u8], |
2870 | ) -> Result<Timestamp, E> { |
2871 | DEFAULT_DATETIME_PARSER |
2872 | .parse_timestamp(value) |
2873 | .map_err(de::Error::custom) |
2874 | } |
2875 | |
2876 | #[inline ] |
2877 | fn visit_str<E: de::Error>( |
2878 | self, |
2879 | value: &str, |
2880 | ) -> Result<Timestamp, E> { |
2881 | self.visit_bytes(value.as_bytes()) |
2882 | } |
2883 | } |
2884 | |
2885 | deserializer.deserialize_str(TimestampVisitor) |
2886 | } |
2887 | } |
2888 | |
2889 | #[cfg (test)] |
2890 | impl quickcheck::Arbitrary for Timestamp { |
2891 | fn arbitrary(g: &mut quickcheck::Gen) -> Timestamp { |
2892 | use quickcheck::Arbitrary; |
2893 | |
2894 | let seconds: UnixSeconds = Arbitrary::arbitrary(g); |
2895 | let mut nanoseconds: FractionalNanosecond = Arbitrary::arbitrary(g); |
2896 | // nanoseconds must be zero for the minimum second value, |
2897 | // so just clamp it to 0. |
2898 | if seconds == UnixSeconds::MIN_SELF && nanoseconds < C(0) { |
2899 | nanoseconds = C(0).rinto(); |
2900 | } |
2901 | Timestamp::new_ranged(seconds, nanoseconds).unwrap_or_default() |
2902 | } |
2903 | |
2904 | fn shrink(&self) -> alloc::boxed::Box<dyn Iterator<Item = Self>> { |
2905 | let second = self.as_second_ranged(); |
2906 | let nanosecond = self.subsec_nanosecond_ranged(); |
2907 | alloc::boxed::Box::new((second, nanosecond).shrink().filter_map( |
2908 | |(second, nanosecond)| { |
2909 | if second == UnixSeconds::MIN_SELF && nanosecond > C(0) { |
2910 | None |
2911 | } else { |
2912 | Timestamp::new_ranged(second, nanosecond).ok() |
2913 | } |
2914 | }, |
2915 | )) |
2916 | } |
2917 | } |
2918 | |
2919 | /// A type for formatting a [`Timestamp`] with a specific offset. |
2920 | /// |
2921 | /// This type is created by the [`Timestamp::display_with_offset`] method. |
2922 | /// |
2923 | /// Like the [`std::fmt::Display`] trait implementation for `Timestamp`, this |
2924 | /// always emits an RFC 3339 compliant string. Unlike `Timestamp`'s `Display` |
2925 | /// trait implementation, which always uses `Z` or "Zulu" time, this always |
2926 | /// uses an offfset. |
2927 | /// |
2928 | /// # Forrmatting options supported |
2929 | /// |
2930 | /// * [`std::fmt::Formatter::precision`] can be set to control the precision |
2931 | /// of the fractional second component. |
2932 | /// |
2933 | /// # Example |
2934 | /// |
2935 | /// ``` |
2936 | /// use jiff::{tz, Timestamp}; |
2937 | /// |
2938 | /// let offset = tz::offset(-5); |
2939 | /// let ts = Timestamp::new(1_123_456_789, 123_000_000)?; |
2940 | /// assert_eq!( |
2941 | /// format!("{ts:.6}" , ts = ts.display_with_offset(offset)), |
2942 | /// "2005-08-07T18:19:49.123000-05:00" , |
2943 | /// ); |
2944 | /// // Precision values greater than 9 are clamped to 9. |
2945 | /// assert_eq!( |
2946 | /// format!("{ts:.300}" , ts = ts.display_with_offset(offset)), |
2947 | /// "2005-08-07T18:19:49.123000000-05:00" , |
2948 | /// ); |
2949 | /// // A precision of 0 implies the entire fractional |
2950 | /// // component is always truncated. |
2951 | /// assert_eq!( |
2952 | /// format!("{ts:.0}" , ts = ts.display_with_offset(tz::Offset::UTC)), |
2953 | /// "2005-08-07T23:19:49+00:00" , |
2954 | /// ); |
2955 | /// |
2956 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2957 | /// ``` |
2958 | #[derive (Clone, Copy, Debug)] |
2959 | pub struct TimestampDisplayWithOffset { |
2960 | timestamp: Timestamp, |
2961 | offset: Offset, |
2962 | } |
2963 | |
2964 | impl core::fmt::Display for TimestampDisplayWithOffset { |
2965 | #[inline ] |
2966 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
2967 | use crate::fmt::StdFmtWrite; |
2968 | |
2969 | let precision: Option = |
2970 | f.precision().map(|p: usize| u8::try_from(p).unwrap_or(default:u8::MAX)); |
2971 | temporal::DateTimePrinter::new() |
2972 | .precision(precision) |
2973 | .print_timestamp_with_offset( |
2974 | &self.timestamp, |
2975 | self.offset, |
2976 | StdFmtWrite(f), |
2977 | ) |
2978 | .map_err(|_| core::fmt::Error) |
2979 | } |
2980 | } |
2981 | |
2982 | /// An iterator over periodic timestamps, created by [`Timestamp::series`]. |
2983 | /// |
2984 | /// It is exhausted when the next value would exceed a [`Span`] or |
2985 | /// [`Timestamp`] value. |
2986 | #[derive (Clone, Debug)] |
2987 | pub struct TimestampSeries { |
2988 | ts: Timestamp, |
2989 | duration: Option<SignedDuration>, |
2990 | } |
2991 | |
2992 | impl TimestampSeries { |
2993 | #[inline ] |
2994 | fn new(ts: Timestamp, period: Span) -> TimestampSeries { |
2995 | let duration: Option = SignedDuration::try_from(period).ok(); |
2996 | TimestampSeries { ts, duration } |
2997 | } |
2998 | } |
2999 | |
3000 | impl Iterator for TimestampSeries { |
3001 | type Item = Timestamp; |
3002 | |
3003 | #[inline ] |
3004 | fn next(&mut self) -> Option<Timestamp> { |
3005 | let duration: SignedDuration = self.duration?; |
3006 | let this: Timestamp = self.ts; |
3007 | self.ts = self.ts.checked_add_duration(duration).ok()?; |
3008 | Some(this) |
3009 | } |
3010 | } |
3011 | |
3012 | /// Options for [`Timestamp::checked_add`] and [`Timestamp::checked_sub`]. |
3013 | /// |
3014 | /// This type provides a way to ergonomically add one of a few different |
3015 | /// duration types to a [`Timestamp`]. |
3016 | /// |
3017 | /// The main way to construct values of this type is with its `From` trait |
3018 | /// implementations: |
3019 | /// |
3020 | /// * `From<Span> for TimestampArithmetic` adds (or subtracts) the given span |
3021 | /// to the receiver timestamp. |
3022 | /// * `From<SignedDuration> for TimestampArithmetic` adds (or subtracts) |
3023 | /// the given signed duration to the receiver timestamp. |
3024 | /// * `From<std::time::Duration> for TimestampArithmetic` adds (or subtracts) |
3025 | /// the given unsigned duration to the receiver timestamp. |
3026 | /// |
3027 | /// # Example |
3028 | /// |
3029 | /// ``` |
3030 | /// use std::time::Duration; |
3031 | /// |
3032 | /// use jiff::{SignedDuration, Timestamp, ToSpan}; |
3033 | /// |
3034 | /// let ts: Timestamp = "2024-02-28T00:00:00Z" .parse()?; |
3035 | /// assert_eq!( |
3036 | /// ts.checked_add(48.hours())?, |
3037 | /// "2024-03-01T00:00:00Z" .parse()?, |
3038 | /// ); |
3039 | /// assert_eq!( |
3040 | /// ts.checked_add(SignedDuration::from_hours(48))?, |
3041 | /// "2024-03-01T00:00:00Z" .parse()?, |
3042 | /// ); |
3043 | /// assert_eq!( |
3044 | /// ts.checked_add(Duration::from_secs(48 * 60 * 60))?, |
3045 | /// "2024-03-01T00:00:00Z" .parse()?, |
3046 | /// ); |
3047 | /// |
3048 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3049 | /// ``` |
3050 | #[derive (Clone, Copy, Debug)] |
3051 | pub struct TimestampArithmetic { |
3052 | duration: Duration, |
3053 | } |
3054 | |
3055 | impl TimestampArithmetic { |
3056 | #[inline ] |
3057 | fn checked_add(self, ts: Timestamp) -> Result<Timestamp, Error> { |
3058 | match self.duration.to_signed()? { |
3059 | SDuration::Span(span) => ts.checked_add_span(span), |
3060 | SDuration::Absolute(sdur) => ts.checked_add_duration(sdur), |
3061 | } |
3062 | } |
3063 | |
3064 | #[inline ] |
3065 | fn saturating_add(self, ts: Timestamp) -> Result<Timestamp, Error> { |
3066 | let Ok(signed) = self.duration.to_signed() else { |
3067 | return Ok(Timestamp::MAX); |
3068 | }; |
3069 | let result = match signed { |
3070 | SDuration::Span(span) => { |
3071 | if let Some(err) = span.smallest_non_time_non_zero_unit_error() |
3072 | { |
3073 | return Err(err); |
3074 | } |
3075 | ts.checked_add_span(span) |
3076 | } |
3077 | SDuration::Absolute(sdur) => ts.checked_add_duration(sdur), |
3078 | }; |
3079 | Ok(result.unwrap_or_else(|_| { |
3080 | if self.is_negative() { |
3081 | Timestamp::MIN |
3082 | } else { |
3083 | Timestamp::MAX |
3084 | } |
3085 | })) |
3086 | } |
3087 | |
3088 | #[inline ] |
3089 | fn checked_neg(self) -> Result<TimestampArithmetic, Error> { |
3090 | let duration = self.duration.checked_neg()?; |
3091 | Ok(TimestampArithmetic { duration }) |
3092 | } |
3093 | |
3094 | #[inline ] |
3095 | fn is_negative(&self) -> bool { |
3096 | self.duration.is_negative() |
3097 | } |
3098 | } |
3099 | |
3100 | impl From<Span> for TimestampArithmetic { |
3101 | fn from(span: Span) -> TimestampArithmetic { |
3102 | let duration: Duration = Duration::from(span); |
3103 | TimestampArithmetic { duration } |
3104 | } |
3105 | } |
3106 | |
3107 | impl From<SignedDuration> for TimestampArithmetic { |
3108 | fn from(sdur: SignedDuration) -> TimestampArithmetic { |
3109 | let duration: Duration = Duration::from(sdur); |
3110 | TimestampArithmetic { duration } |
3111 | } |
3112 | } |
3113 | |
3114 | impl From<UnsignedDuration> for TimestampArithmetic { |
3115 | fn from(udur: UnsignedDuration) -> TimestampArithmetic { |
3116 | let duration: Duration = Duration::from(udur); |
3117 | TimestampArithmetic { duration } |
3118 | } |
3119 | } |
3120 | |
3121 | impl<'a> From<&'a Span> for TimestampArithmetic { |
3122 | fn from(span: &'a Span) -> TimestampArithmetic { |
3123 | TimestampArithmetic::from(*span) |
3124 | } |
3125 | } |
3126 | |
3127 | impl<'a> From<&'a SignedDuration> for TimestampArithmetic { |
3128 | fn from(sdur: &'a SignedDuration) -> TimestampArithmetic { |
3129 | TimestampArithmetic::from(*sdur) |
3130 | } |
3131 | } |
3132 | |
3133 | impl<'a> From<&'a UnsignedDuration> for TimestampArithmetic { |
3134 | fn from(udur: &'a UnsignedDuration) -> TimestampArithmetic { |
3135 | TimestampArithmetic::from(*udur) |
3136 | } |
3137 | } |
3138 | |
3139 | /// Options for [`Timestamp::since`] and [`Timestamp::until`]. |
3140 | /// |
3141 | /// This type provides a way to configure the calculation of |
3142 | /// spans between two [`Timestamp`] values. In particular, both |
3143 | /// `Timestamp::since` and `Timestamp::until` accept anything that implements |
3144 | /// `Into<TimestampDifference>`. There are a few key trait implementations that |
3145 | /// make this convenient: |
3146 | /// |
3147 | /// * `From<Timestamp> for TimestampDifference` will construct a |
3148 | /// configuration consisting of just the timestamp. So for example, |
3149 | /// `timestamp1.until(timestamp2)` will return the span from `timestamp1` to |
3150 | /// `timestamp2`. |
3151 | /// * `From<Zoned> for TimestampDifference` will construct a configuration |
3152 | /// consisting of the timestamp from the given zoned datetime. So for example, |
3153 | /// `timestamp.since(zoned)` returns the span from `zoned.to_timestamp()` to |
3154 | /// `timestamp`. |
3155 | /// * `From<(Unit, Timestamp)>` is a convenient way to specify the largest |
3156 | /// units that should be present on the span returned. By default, the largest |
3157 | /// units are seconds. Using this trait implementation is equivalent to |
3158 | /// `TimestampDifference::new(timestamp).largest(unit)`. |
3159 | /// * `From<(Unit, Zoned)>` is like the one above, but with the time from |
3160 | /// the given zoned datetime. |
3161 | /// |
3162 | /// One can also provide a `TimestampDifference` value directly. Doing so |
3163 | /// is necessary to use the rounding features of calculating a span. For |
3164 | /// example, setting the smallest unit (defaults to [`Unit::Nanosecond`]), the |
3165 | /// rounding mode (defaults to [`RoundMode::Trunc`]) and the rounding increment |
3166 | /// (defaults to `1`). The defaults are selected such that no rounding occurs. |
3167 | /// |
3168 | /// Rounding a span as part of calculating it is provided as a convenience. |
3169 | /// Callers may choose to round the span as a distinct step via |
3170 | /// [`Span::round`]. |
3171 | /// |
3172 | /// # Example |
3173 | /// |
3174 | /// This example shows how to round a span between two timestamps to the |
3175 | /// nearest half-hour, with ties breaking away from zero. |
3176 | /// |
3177 | /// ``` |
3178 | /// use jiff::{RoundMode, Timestamp, TimestampDifference, ToSpan, Unit}; |
3179 | /// |
3180 | /// let ts1 = "2024-03-15 08:14:00.123456789Z" .parse::<Timestamp>()?; |
3181 | /// let ts2 = "2024-03-22 15:00Z" .parse::<Timestamp>()?; |
3182 | /// let span = ts1.until( |
3183 | /// TimestampDifference::new(ts2) |
3184 | /// .smallest(Unit::Minute) |
3185 | /// .largest(Unit::Hour) |
3186 | /// .mode(RoundMode::HalfExpand) |
3187 | /// .increment(30), |
3188 | /// )?; |
3189 | /// assert_eq!(format!("{span:#}" ), "175h" ); |
3190 | /// |
3191 | /// // One less minute, and because of the HalfExpand mode, the span would |
3192 | /// // get rounded down. |
3193 | /// let ts2 = "2024-03-22 14:59Z" .parse::<Timestamp>()?; |
3194 | /// let span = ts1.until( |
3195 | /// TimestampDifference::new(ts2) |
3196 | /// .smallest(Unit::Minute) |
3197 | /// .largest(Unit::Hour) |
3198 | /// .mode(RoundMode::HalfExpand) |
3199 | /// .increment(30), |
3200 | /// )?; |
3201 | /// assert_eq!(span, 174.hours().minutes(30).fieldwise()); |
3202 | /// |
3203 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3204 | /// ``` |
3205 | #[derive (Clone, Copy, Debug)] |
3206 | pub struct TimestampDifference { |
3207 | timestamp: Timestamp, |
3208 | round: SpanRound<'static>, |
3209 | } |
3210 | |
3211 | impl TimestampDifference { |
3212 | /// Create a new default configuration for computing the span between |
3213 | /// the given timestamp and some other time (specified as the receiver in |
3214 | /// [`Timestamp::since`] or [`Timestamp::until`]). |
3215 | #[inline ] |
3216 | pub fn new(timestamp: Timestamp) -> TimestampDifference { |
3217 | // We use truncation rounding by default since it seems that's |
3218 | // what is generally expected when computing the difference between |
3219 | // datetimes. |
3220 | // |
3221 | // See: https://github.com/tc39/proposal-temporal/issues/1122 |
3222 | let round = SpanRound::new().mode(RoundMode::Trunc); |
3223 | TimestampDifference { timestamp, round } |
3224 | } |
3225 | |
3226 | /// Set the smallest units allowed in the span returned. |
3227 | /// |
3228 | /// # Errors |
3229 | /// |
3230 | /// The smallest units must be no greater than the largest units. If this |
3231 | /// is violated, then computing a span with this configuration will result |
3232 | /// in an error. |
3233 | /// |
3234 | /// # Example |
3235 | /// |
3236 | /// This shows how to round a span between two timestamps to units no less |
3237 | /// than seconds. |
3238 | /// |
3239 | /// ``` |
3240 | /// use jiff::{RoundMode, Timestamp, TimestampDifference, ToSpan, Unit}; |
3241 | /// |
3242 | /// let ts1 = "2024-03-15 08:14:02.5001Z" .parse::<Timestamp>()?; |
3243 | /// let ts2 = "2024-03-15T08:16:03.0001Z" .parse::<Timestamp>()?; |
3244 | /// let span = ts1.until( |
3245 | /// TimestampDifference::new(ts2) |
3246 | /// .smallest(Unit::Second) |
3247 | /// .mode(RoundMode::HalfExpand), |
3248 | /// )?; |
3249 | /// assert_eq!(span, 121.seconds().fieldwise()); |
3250 | /// |
3251 | /// // Because of the rounding mode, a small less-than-1-second increase in |
3252 | /// // the first timestamp can change the result of rounding. |
3253 | /// let ts1 = "2024-03-15 08:14:02.5002Z" .parse::<Timestamp>()?; |
3254 | /// let span = ts1.until( |
3255 | /// TimestampDifference::new(ts2) |
3256 | /// .smallest(Unit::Second) |
3257 | /// .mode(RoundMode::HalfExpand), |
3258 | /// )?; |
3259 | /// assert_eq!(span, 120.seconds().fieldwise()); |
3260 | /// |
3261 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3262 | /// ``` |
3263 | #[inline ] |
3264 | pub fn smallest(self, unit: Unit) -> TimestampDifference { |
3265 | TimestampDifference { round: self.round.smallest(unit), ..self } |
3266 | } |
3267 | |
3268 | /// Set the largest units allowed in the span returned. |
3269 | /// |
3270 | /// When a largest unit is not specified, computing a span between |
3271 | /// timestamps behaves as if it were set to [`Unit::Second`]. Unless |
3272 | /// [`TimestampDifference::smallest`] is bigger than `Unit::Second`, then |
3273 | /// the largest unit is set to the smallest unit. |
3274 | /// |
3275 | /// # Errors |
3276 | /// |
3277 | /// The largest units, when set, must be at least as big as the smallest |
3278 | /// units (which defaults to [`Unit::Nanosecond`]). If this is violated, |
3279 | /// then computing a span with this configuration will result in an error. |
3280 | /// |
3281 | /// # Example |
3282 | /// |
3283 | /// This shows how to round a span between two timestamps to units no |
3284 | /// bigger than seconds. |
3285 | /// |
3286 | /// ``` |
3287 | /// use jiff::{Timestamp, TimestampDifference, ToSpan, Unit}; |
3288 | /// |
3289 | /// let ts1 = "2024-03-15 08:14Z" .parse::<Timestamp>()?; |
3290 | /// let ts2 = "2030-11-22 08:30Z" .parse::<Timestamp>()?; |
3291 | /// let span = ts1.until( |
3292 | /// TimestampDifference::new(ts2).largest(Unit::Second), |
3293 | /// )?; |
3294 | /// assert_eq!(format!("{span:#}" ), "211076160s" ); |
3295 | /// |
3296 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3297 | /// ``` |
3298 | #[inline ] |
3299 | pub fn largest(self, unit: Unit) -> TimestampDifference { |
3300 | TimestampDifference { round: self.round.largest(unit), ..self } |
3301 | } |
3302 | |
3303 | /// Set the rounding mode. |
3304 | /// |
3305 | /// This defaults to [`RoundMode::Trunc`] since it's plausible that |
3306 | /// rounding "up" in the context of computing the span between |
3307 | /// two timestamps could be surprising in a number of cases. The |
3308 | /// [`RoundMode::HalfExpand`] mode corresponds to typical rounding you |
3309 | /// might have learned about in school. But a variety of other rounding |
3310 | /// modes exist. |
3311 | /// |
3312 | /// # Example |
3313 | /// |
3314 | /// This shows how to always round "up" towards positive infinity. |
3315 | /// |
3316 | /// ``` |
3317 | /// use jiff::{RoundMode, Timestamp, TimestampDifference, ToSpan, Unit}; |
3318 | /// |
3319 | /// let ts1 = "2024-03-15 08:10Z" .parse::<Timestamp>()?; |
3320 | /// let ts2 = "2024-03-15 08:11Z" .parse::<Timestamp>()?; |
3321 | /// let span = ts1.until( |
3322 | /// TimestampDifference::new(ts2) |
3323 | /// .smallest(Unit::Hour) |
3324 | /// .mode(RoundMode::Ceil), |
3325 | /// )?; |
3326 | /// // Only one minute elapsed, but we asked to always round up! |
3327 | /// assert_eq!(span, 1.hour().fieldwise()); |
3328 | /// |
3329 | /// // Since `Ceil` always rounds toward positive infinity, the behavior |
3330 | /// // flips for a negative span. |
3331 | /// let span = ts1.since( |
3332 | /// TimestampDifference::new(ts2) |
3333 | /// .smallest(Unit::Hour) |
3334 | /// .mode(RoundMode::Ceil), |
3335 | /// )?; |
3336 | /// assert_eq!(span, 0.hour().fieldwise()); |
3337 | /// |
3338 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3339 | /// ``` |
3340 | #[inline ] |
3341 | pub fn mode(self, mode: RoundMode) -> TimestampDifference { |
3342 | TimestampDifference { round: self.round.mode(mode), ..self } |
3343 | } |
3344 | |
3345 | /// Set the rounding increment for the smallest unit. |
3346 | /// |
3347 | /// The default value is `1`. Other values permit rounding the smallest |
3348 | /// unit to the nearest integer increment specified. For example, if the |
3349 | /// smallest unit is set to [`Unit::Minute`], then a rounding increment of |
3350 | /// `30` would result in rounding in increments of a half hour. That is, |
3351 | /// the only minute value that could result would be `0` or `30`. |
3352 | /// |
3353 | /// # Errors |
3354 | /// |
3355 | /// The rounding increment must divide evenly into the next highest unit |
3356 | /// after the smallest unit configured (and must not be equivalent to it). |
3357 | /// For example, if the smallest unit is [`Unit::Nanosecond`], then *some* |
3358 | /// of the valid values for the rounding increment are `1`, `2`, `4`, `5`, |
3359 | /// `100` and `500`. Namely, any integer that divides evenly into `1,000` |
3360 | /// nanoseconds since there are `1,000` nanoseconds in the next highest |
3361 | /// unit (microseconds). |
3362 | /// |
3363 | /// The error will occur when computing the span, and not when setting |
3364 | /// the increment here. |
3365 | /// |
3366 | /// # Example |
3367 | /// |
3368 | /// This shows how to round the span between two timestamps to the nearest |
3369 | /// 5 minute increment. |
3370 | /// |
3371 | /// ``` |
3372 | /// use jiff::{RoundMode, Timestamp, TimestampDifference, ToSpan, Unit}; |
3373 | /// |
3374 | /// let ts1 = "2024-03-15 08:19Z" .parse::<Timestamp>()?; |
3375 | /// let ts2 = "2024-03-15 12:52Z" .parse::<Timestamp>()?; |
3376 | /// let span = ts1.until( |
3377 | /// TimestampDifference::new(ts2) |
3378 | /// .smallest(Unit::Minute) |
3379 | /// .increment(5) |
3380 | /// .mode(RoundMode::HalfExpand), |
3381 | /// )?; |
3382 | /// assert_eq!(span.to_string(), "PT275M" ); |
3383 | /// |
3384 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3385 | /// ``` |
3386 | #[inline ] |
3387 | pub fn increment(self, increment: i64) -> TimestampDifference { |
3388 | TimestampDifference { round: self.round.increment(increment), ..self } |
3389 | } |
3390 | |
3391 | /// Returns true if and only if this configuration could change the span |
3392 | /// via rounding. |
3393 | #[inline ] |
3394 | fn rounding_may_change_span(&self) -> bool { |
3395 | self.round.rounding_may_change_span_ignore_largest() |
3396 | } |
3397 | |
3398 | /// Returns the span of time from `ts1` to the timestamp in this |
3399 | /// configuration. The biggest units allowed are determined by the |
3400 | /// `smallest` and `largest` settings, but defaults to `Unit::Second`. |
3401 | #[inline ] |
3402 | fn until_with_largest_unit(&self, t1: Timestamp) -> Result<Span, Error> { |
3403 | let t2 = self.timestamp; |
3404 | let largest = self |
3405 | .round |
3406 | .get_largest() |
3407 | .unwrap_or_else(|| self.round.get_smallest().max(Unit::Second)); |
3408 | if largest >= Unit::Day { |
3409 | return Err(err!( |
3410 | "unit {largest} is not supported when computing the \ |
3411 | difference between timestamps (must use units smaller \ |
3412 | than 'day')" , |
3413 | largest = largest.singular(), |
3414 | )); |
3415 | } |
3416 | let nano1 = t1.as_nanosecond_ranged().without_bounds(); |
3417 | let nano2 = t2.as_nanosecond_ranged().without_bounds(); |
3418 | let diff = nano2 - nano1; |
3419 | // This can fail when `largest` is nanoseconds since not all intervals |
3420 | // can be represented by a single i64 in units of nanoseconds. |
3421 | Span::from_invariant_nanoseconds(largest, diff) |
3422 | } |
3423 | } |
3424 | |
3425 | impl From<Timestamp> for TimestampDifference { |
3426 | #[inline ] |
3427 | fn from(ts: Timestamp) -> TimestampDifference { |
3428 | TimestampDifference::new(timestamp:ts) |
3429 | } |
3430 | } |
3431 | |
3432 | impl From<Zoned> for TimestampDifference { |
3433 | #[inline ] |
3434 | fn from(zdt: Zoned) -> TimestampDifference { |
3435 | TimestampDifference::new(Timestamp::from(zdt)) |
3436 | } |
3437 | } |
3438 | |
3439 | impl<'a> From<&'a Zoned> for TimestampDifference { |
3440 | #[inline ] |
3441 | fn from(zdt: &'a Zoned) -> TimestampDifference { |
3442 | TimestampDifference::from(Timestamp::from(zdt)) |
3443 | } |
3444 | } |
3445 | |
3446 | impl From<(Unit, Timestamp)> for TimestampDifference { |
3447 | #[inline ] |
3448 | fn from((largest: Unit, ts: Timestamp): (Unit, Timestamp)) -> TimestampDifference { |
3449 | TimestampDifference::from(ts).largest(unit:largest) |
3450 | } |
3451 | } |
3452 | |
3453 | impl From<(Unit, Zoned)> for TimestampDifference { |
3454 | #[inline ] |
3455 | fn from((largest: Unit, zdt: Zoned): (Unit, Zoned)) -> TimestampDifference { |
3456 | TimestampDifference::from((largest, Timestamp::from(zdt))) |
3457 | } |
3458 | } |
3459 | |
3460 | impl<'a> From<(Unit, &'a Zoned)> for TimestampDifference { |
3461 | #[inline ] |
3462 | fn from((largest: Unit, zdt: &'a Zoned): (Unit, &'a Zoned)) -> TimestampDifference { |
3463 | TimestampDifference::from((largest, Timestamp::from(zdt))) |
3464 | } |
3465 | } |
3466 | |
3467 | /// Options for [`Timestamp::round`]. |
3468 | /// |
3469 | /// This type provides a way to configure the rounding of a timestamp. In |
3470 | /// particular, `Timestamp::round` accepts anything that implements the |
3471 | /// `Into<TimestampRound>` trait. There are some trait implementations that |
3472 | /// therefore make calling `Timestamp::round` in some common cases more |
3473 | /// ergonomic: |
3474 | /// |
3475 | /// * `From<Unit> for TimestampRound` will construct a rounding |
3476 | /// configuration that rounds to the unit given. Specifically, |
3477 | /// `TimestampRound::new().smallest(unit)`. |
3478 | /// * `From<(Unit, i64)> for TimestampRound` is like the one above, but also |
3479 | /// specifies the rounding increment for [`TimestampRound::increment`]. |
3480 | /// |
3481 | /// Note that in the default configuration, no rounding occurs. |
3482 | /// |
3483 | /// # Example |
3484 | /// |
3485 | /// This example shows how to round a timestamp to the nearest second: |
3486 | /// |
3487 | /// ``` |
3488 | /// use jiff::{Timestamp, Unit}; |
3489 | /// |
3490 | /// let ts: Timestamp = "2024-06-20 16:24:59.5Z" .parse()?; |
3491 | /// assert_eq!( |
3492 | /// ts.round(Unit::Second)?.to_string(), |
3493 | /// // The second rounds up and causes minutes to increase. |
3494 | /// "2024-06-20T16:25:00Z" , |
3495 | /// ); |
3496 | /// |
3497 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3498 | /// ``` |
3499 | /// |
3500 | /// The above makes use of the fact that `Unit` implements |
3501 | /// `Into<TimestampRound>`. If you want to change the rounding mode to, say, |
3502 | /// truncation, then you'll need to construct a `TimestampRound` explicitly |
3503 | /// since there are no convenience `Into` trait implementations for |
3504 | /// [`RoundMode`]. |
3505 | /// |
3506 | /// ``` |
3507 | /// use jiff::{RoundMode, Timestamp, TimestampRound, Unit}; |
3508 | /// |
3509 | /// let ts: Timestamp = "2024-06-20 16:24:59.5Z" .parse()?; |
3510 | /// assert_eq!( |
3511 | /// ts.round( |
3512 | /// TimestampRound::new().smallest(Unit::Second).mode(RoundMode::Trunc), |
3513 | /// )?.to_string(), |
3514 | /// // The second just gets truncated as if it wasn't there. |
3515 | /// "2024-06-20T16:24:59Z" , |
3516 | /// ); |
3517 | /// |
3518 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3519 | /// ``` |
3520 | #[derive (Clone, Copy, Debug)] |
3521 | pub struct TimestampRound { |
3522 | smallest: Unit, |
3523 | mode: RoundMode, |
3524 | increment: i64, |
3525 | } |
3526 | |
3527 | impl TimestampRound { |
3528 | /// Create a new default configuration for rounding a [`Timestamp`]. |
3529 | #[inline ] |
3530 | pub fn new() -> TimestampRound { |
3531 | TimestampRound { |
3532 | smallest: Unit::Nanosecond, |
3533 | mode: RoundMode::HalfExpand, |
3534 | increment: 1, |
3535 | } |
3536 | } |
3537 | |
3538 | /// Set the smallest units allowed in the timestamp returned after |
3539 | /// rounding. |
3540 | /// |
3541 | /// Any units below the smallest configured unit will be used, along with |
3542 | /// the rounding increment and rounding mode, to determine the value of the |
3543 | /// smallest unit. For example, when rounding `2024-06-20T03:25:30Z` to the |
3544 | /// nearest minute, the `30` second unit will result in rounding the minute |
3545 | /// unit of `25` up to `26` and zeroing out everything below minutes. |
3546 | /// |
3547 | /// This defaults to [`Unit::Nanosecond`]. |
3548 | /// |
3549 | /// # Errors |
3550 | /// |
3551 | /// The smallest units must be no greater than [`Unit::Hour`]. |
3552 | /// |
3553 | /// # Example |
3554 | /// |
3555 | /// ``` |
3556 | /// use jiff::{Timestamp, TimestampRound, Unit}; |
3557 | /// |
3558 | /// let ts: Timestamp = "2024-06-20T03:25:30Z" .parse()?; |
3559 | /// assert_eq!( |
3560 | /// ts.round(TimestampRound::new().smallest(Unit::Minute))?.to_string(), |
3561 | /// "2024-06-20T03:26:00Z" , |
3562 | /// ); |
3563 | /// // Or, utilize the `From<Unit> for TimestampRound` impl: |
3564 | /// assert_eq!( |
3565 | /// ts.round(Unit::Minute)?.to_string(), |
3566 | /// "2024-06-20T03:26:00Z" , |
3567 | /// ); |
3568 | /// |
3569 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3570 | /// ``` |
3571 | #[inline ] |
3572 | pub fn smallest(self, unit: Unit) -> TimestampRound { |
3573 | TimestampRound { smallest: unit, ..self } |
3574 | } |
3575 | |
3576 | /// Set the rounding mode. |
3577 | /// |
3578 | /// This defaults to [`RoundMode::HalfExpand`], which rounds away from |
3579 | /// zero. It matches the kind of rounding you might have been taught in |
3580 | /// school. |
3581 | /// |
3582 | /// # Example |
3583 | /// |
3584 | /// This shows how to always round timestamps up towards positive infinity. |
3585 | /// |
3586 | /// ``` |
3587 | /// use jiff::{RoundMode, Timestamp, TimestampRound, Unit}; |
3588 | /// |
3589 | /// let ts: Timestamp = "2024-06-20 03:25:01Z" .parse()?; |
3590 | /// assert_eq!( |
3591 | /// ts.round( |
3592 | /// TimestampRound::new() |
3593 | /// .smallest(Unit::Minute) |
3594 | /// .mode(RoundMode::Ceil), |
3595 | /// )?.to_string(), |
3596 | /// "2024-06-20T03:26:00Z" , |
3597 | /// ); |
3598 | /// |
3599 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3600 | /// ``` |
3601 | #[inline ] |
3602 | pub fn mode(self, mode: RoundMode) -> TimestampRound { |
3603 | TimestampRound { mode, ..self } |
3604 | } |
3605 | |
3606 | /// Set the rounding increment for the smallest unit. |
3607 | /// |
3608 | /// The default value is `1`. Other values permit rounding the smallest |
3609 | /// unit to the nearest integer increment specified. For example, if the |
3610 | /// smallest unit is set to [`Unit::Minute`], then a rounding increment of |
3611 | /// `30` would result in rounding in increments of a half hour. That is, |
3612 | /// the only minute value that could result would be `0` or `30`. |
3613 | /// |
3614 | /// # Errors |
3615 | /// |
3616 | /// The rounding increment, when combined with the smallest unit (which |
3617 | /// defaults to [`Unit::Nanosecond`]), must divide evenly into `86,400` |
3618 | /// seconds (one 24-hour civil day). For example, increments of both |
3619 | /// 45 seconds and 15 minutes are allowed, but 7 seconds and 25 minutes are |
3620 | /// both not allowed. |
3621 | /// |
3622 | /// # Example |
3623 | /// |
3624 | /// This example shows how to round a timestamp to the nearest 10 minute |
3625 | /// increment. |
3626 | /// |
3627 | /// ``` |
3628 | /// use jiff::{RoundMode, Timestamp, TimestampRound, Unit}; |
3629 | /// |
3630 | /// let ts: Timestamp = "2024-06-20 03:24:59Z" .parse()?; |
3631 | /// assert_eq!( |
3632 | /// ts.round((Unit::Minute, 10))?.to_string(), |
3633 | /// "2024-06-20T03:20:00Z" , |
3634 | /// ); |
3635 | /// |
3636 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
3637 | /// ``` |
3638 | #[inline ] |
3639 | pub fn increment(self, increment: i64) -> TimestampRound { |
3640 | TimestampRound { increment, ..self } |
3641 | } |
3642 | |
3643 | /// Does the actual rounding. |
3644 | pub(crate) fn round( |
3645 | &self, |
3646 | timestamp: Timestamp, |
3647 | ) -> Result<Timestamp, Error> { |
3648 | let increment = |
3649 | increment::for_timestamp(self.smallest, self.increment)?; |
3650 | let nanosecond = timestamp.as_nanosecond_ranged().without_bounds(); |
3651 | let rounded = self.mode.round_by_unit_in_nanoseconds( |
3652 | nanosecond, |
3653 | self.smallest, |
3654 | increment, |
3655 | ); |
3656 | let nanosecond = UnixNanoseconds::rfrom(rounded); |
3657 | Ok(Timestamp::from_nanosecond_ranged(nanosecond)) |
3658 | } |
3659 | } |
3660 | |
3661 | impl Default for TimestampRound { |
3662 | #[inline ] |
3663 | fn default() -> TimestampRound { |
3664 | TimestampRound::new() |
3665 | } |
3666 | } |
3667 | |
3668 | impl From<Unit> for TimestampRound { |
3669 | #[inline ] |
3670 | fn from(unit: Unit) -> TimestampRound { |
3671 | TimestampRound::default().smallest(unit) |
3672 | } |
3673 | } |
3674 | |
3675 | impl From<(Unit, i64)> for TimestampRound { |
3676 | #[inline ] |
3677 | fn from((unit: Unit, increment: i64): (Unit, i64)) -> TimestampRound { |
3678 | TimestampRound::from(unit).increment(increment) |
3679 | } |
3680 | } |
3681 | |
3682 | #[cfg (test)] |
3683 | mod tests { |
3684 | use alloc::string::ToString; |
3685 | |
3686 | use std::io::Cursor; |
3687 | |
3688 | use crate::{ |
3689 | civil::{self, datetime}, |
3690 | tz::Offset, |
3691 | ToSpan, |
3692 | }; |
3693 | |
3694 | use super::*; |
3695 | |
3696 | fn mktime(seconds: i64, nanos: i32) -> Timestamp { |
3697 | Timestamp::new(seconds, nanos).unwrap() |
3698 | } |
3699 | |
3700 | fn mkdt( |
3701 | year: i16, |
3702 | month: i8, |
3703 | day: i8, |
3704 | hour: i8, |
3705 | minute: i8, |
3706 | second: i8, |
3707 | nano: i32, |
3708 | ) -> civil::DateTime { |
3709 | let date = civil::Date::new(year, month, day).unwrap(); |
3710 | let time = civil::Time::new(hour, minute, second, nano).unwrap(); |
3711 | civil::DateTime::from_parts(date, time) |
3712 | } |
3713 | |
3714 | #[test ] |
3715 | fn to_datetime_specific_examples() { |
3716 | let tests = [ |
3717 | ((UnixSeconds::MIN_REPR, 0), (-9999, 1, 2, 1, 59, 59, 0)), |
3718 | ( |
3719 | (UnixSeconds::MIN_REPR + 1, -999_999_999), |
3720 | (-9999, 1, 2, 1, 59, 59, 1), |
3721 | ), |
3722 | ((-1, 1), (1969, 12, 31, 23, 59, 59, 1)), |
3723 | ((UnixSeconds::MAX_REPR, 0), (9999, 12, 30, 22, 0, 0, 0)), |
3724 | ((UnixSeconds::MAX_REPR - 1, 0), (9999, 12, 30, 21, 59, 59, 0)), |
3725 | ( |
3726 | (UnixSeconds::MAX_REPR - 1, 999_999_999), |
3727 | (9999, 12, 30, 21, 59, 59, 999_999_999), |
3728 | ), |
3729 | ( |
3730 | (UnixSeconds::MAX_REPR, 999_999_999), |
3731 | (9999, 12, 30, 22, 0, 0, 999_999_999), |
3732 | ), |
3733 | ((-2, -1), (1969, 12, 31, 23, 59, 57, 999_999_999)), |
3734 | ((-86398, -1), (1969, 12, 31, 0, 0, 1, 999_999_999)), |
3735 | ((-86399, -1), (1969, 12, 31, 0, 0, 0, 999_999_999)), |
3736 | ((-86400, -1), (1969, 12, 30, 23, 59, 59, 999_999_999)), |
3737 | ]; |
3738 | for (t, dt) in tests { |
3739 | let timestamp = mktime(t.0, t.1); |
3740 | let datetime = mkdt(dt.0, dt.1, dt.2, dt.3, dt.4, dt.5, dt.6); |
3741 | assert_eq!( |
3742 | Offset::UTC.to_datetime(timestamp), |
3743 | datetime, |
3744 | "timestamp: {t:?}" |
3745 | ); |
3746 | assert_eq!( |
3747 | timestamp, |
3748 | datetime.to_zoned(TimeZone::UTC).unwrap().timestamp(), |
3749 | "datetime: {datetime:?}" |
3750 | ); |
3751 | } |
3752 | } |
3753 | |
3754 | #[test ] |
3755 | fn to_datetime_many_seconds_in_some_days() { |
3756 | let days = [ |
3757 | i64::from(t::UnixEpochDay::MIN_REPR), |
3758 | -1000, |
3759 | -5, |
3760 | 23, |
3761 | 2000, |
3762 | i64::from(t::UnixEpochDay::MAX_REPR), |
3763 | ]; |
3764 | let seconds = [ |
3765 | -86_400, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, |
3766 | 5, 6, 7, 8, 9, 10, 86_400, |
3767 | ]; |
3768 | let nanos = [0, 1, 5, 999_999_999]; |
3769 | for day in days { |
3770 | let midpoint = day * 86_400; |
3771 | for second in seconds { |
3772 | let second = midpoint + second; |
3773 | if !UnixSeconds::contains(second) { |
3774 | continue; |
3775 | } |
3776 | for nano in nanos { |
3777 | if second == UnixSeconds::MIN_REPR && nano != 0 { |
3778 | continue; |
3779 | } |
3780 | let t = Timestamp::new(second, nano).unwrap(); |
3781 | let Ok(got) = |
3782 | Offset::UTC.to_datetime(t).to_zoned(TimeZone::UTC) |
3783 | else { |
3784 | continue; |
3785 | }; |
3786 | assert_eq!(t, got.timestamp()); |
3787 | } |
3788 | } |
3789 | } |
3790 | } |
3791 | |
3792 | #[test ] |
3793 | fn invalid_time() { |
3794 | assert!(Timestamp::new(UnixSeconds::MIN_REPR, -1).is_err()); |
3795 | assert!(Timestamp::new(UnixSeconds::MIN_REPR, -999_999_999).is_err()); |
3796 | // These are greater than the minimum and thus okay! |
3797 | assert!(Timestamp::new(UnixSeconds::MIN_REPR, 1).is_ok()); |
3798 | assert!(Timestamp::new(UnixSeconds::MIN_REPR, 999_999_999).is_ok()); |
3799 | } |
3800 | |
3801 | #[cfg (target_pointer_width = "64" )] |
3802 | #[test ] |
3803 | fn timestamp_size() { |
3804 | #[cfg (debug_assertions)] |
3805 | { |
3806 | assert_eq!(40, core::mem::size_of::<Timestamp>()); |
3807 | } |
3808 | #[cfg (not(debug_assertions))] |
3809 | { |
3810 | assert_eq!(16, core::mem::size_of::<Timestamp>()); |
3811 | } |
3812 | } |
3813 | |
3814 | #[test ] |
3815 | fn nanosecond_roundtrip_boundaries() { |
3816 | let inst = Timestamp::MIN; |
3817 | let nanos = inst.as_nanosecond_ranged(); |
3818 | assert_eq!(C(0), nanos % t::NANOS_PER_SECOND); |
3819 | let got = Timestamp::from_nanosecond_ranged(nanos); |
3820 | assert_eq!(inst, got); |
3821 | |
3822 | let inst = Timestamp::MAX; |
3823 | let nanos = inst.as_nanosecond_ranged(); |
3824 | assert_eq!( |
3825 | FractionalNanosecond::MAX_SELF, |
3826 | nanos % t::NANOS_PER_SECOND |
3827 | ); |
3828 | let got = Timestamp::from_nanosecond_ranged(nanos); |
3829 | assert_eq!(inst, got); |
3830 | } |
3831 | |
3832 | #[test ] |
3833 | fn timestamp_saturating_add() { |
3834 | insta::assert_snapshot!( |
3835 | Timestamp::MIN.saturating_add(Span::new().days(1)).unwrap_err(), |
3836 | @"saturating `Timestamp` arithmetic requires only time units: operation can only be performed with units of hours or smaller, but found non-zero day units (operations on `Timestamp`, `tz::Offset` and `civil::Time` don't support calendar units in a `Span`)" , |
3837 | ) |
3838 | } |
3839 | |
3840 | #[test ] |
3841 | fn timestamp_saturating_sub() { |
3842 | insta::assert_snapshot!( |
3843 | Timestamp::MAX.saturating_sub(Span::new().days(1)).unwrap_err(), |
3844 | @"saturating `Timestamp` arithmetic requires only time units: operation can only be performed with units of hours or smaller, but found non-zero day units (operations on `Timestamp`, `tz::Offset` and `civil::Time` don't support calendar units in a `Span`)" , |
3845 | ) |
3846 | } |
3847 | |
3848 | quickcheck::quickcheck! { |
3849 | fn prop_unix_seconds_roundtrip(t: Timestamp) -> quickcheck::TestResult { |
3850 | let dt = t.to_zoned(TimeZone::UTC).datetime(); |
3851 | let Ok(got) = dt.to_zoned(TimeZone::UTC) else { |
3852 | return quickcheck::TestResult::discard(); |
3853 | }; |
3854 | quickcheck::TestResult::from_bool(t == got.timestamp()) |
3855 | } |
3856 | |
3857 | fn prop_nanos_roundtrip_unix_ranged(t: Timestamp) -> bool { |
3858 | let nanos = t.as_nanosecond_ranged(); |
3859 | let got = Timestamp::from_nanosecond_ranged(nanos); |
3860 | t == got |
3861 | } |
3862 | |
3863 | fn prop_nanos_roundtrip_unix(t: Timestamp) -> bool { |
3864 | let nanos = t.as_nanosecond(); |
3865 | let got = Timestamp::from_nanosecond(nanos).unwrap(); |
3866 | t == got |
3867 | } |
3868 | |
3869 | fn timestamp_constant_and_new_are_same1(t: Timestamp) -> bool { |
3870 | let got = Timestamp::constant(t.as_second(), t.subsec_nanosecond()); |
3871 | t == got |
3872 | } |
3873 | |
3874 | fn timestamp_constant_and_new_are_same2( |
3875 | secs: i64, |
3876 | nanos: i32 |
3877 | ) -> quickcheck::TestResult { |
3878 | let Ok(ts) = Timestamp::new(secs, nanos) else { |
3879 | return quickcheck::TestResult::discard(); |
3880 | }; |
3881 | let got = Timestamp::constant(secs, nanos); |
3882 | quickcheck::TestResult::from_bool(ts == got) |
3883 | } |
3884 | } |
3885 | |
3886 | /// A `serde` deserializer compatibility test. |
3887 | /// |
3888 | /// Serde YAML used to be unable to deserialize `jiff` types, |
3889 | /// as deserializing from bytes is not supported by the deserializer. |
3890 | /// |
3891 | /// - <https://github.com/BurntSushi/jiff/issues/138> |
3892 | /// - <https://github.com/BurntSushi/jiff/discussions/148> |
3893 | #[test ] |
3894 | fn timestamp_deserialize_yaml() { |
3895 | let expected = datetime(2024, 10, 31, 16, 33, 53, 123456789) |
3896 | .to_zoned(TimeZone::UTC) |
3897 | .unwrap() |
3898 | .timestamp(); |
3899 | |
3900 | let deserialized: Timestamp = |
3901 | serde_yaml::from_str("2024-10-31T16:33:53.123456789+00:00" ) |
3902 | .unwrap(); |
3903 | |
3904 | assert_eq!(deserialized, expected); |
3905 | |
3906 | let deserialized: Timestamp = serde_yaml::from_slice( |
3907 | "2024-10-31T16:33:53.123456789+00:00" .as_bytes(), |
3908 | ) |
3909 | .unwrap(); |
3910 | |
3911 | assert_eq!(deserialized, expected); |
3912 | |
3913 | let cursor = Cursor::new(b"2024-10-31T16:33:53.123456789+00:00" ); |
3914 | let deserialized: Timestamp = serde_yaml::from_reader(cursor).unwrap(); |
3915 | |
3916 | assert_eq!(deserialized, expected); |
3917 | } |
3918 | |
3919 | #[test ] |
3920 | fn timestamp_precision_loss() { |
3921 | let ts1: Timestamp = |
3922 | "2025-01-25T19:32:21.783444592+01:00" .parse().unwrap(); |
3923 | let span = 1.second(); |
3924 | let ts2 = ts1 + span; |
3925 | assert_eq!(ts2.to_string(), "2025-01-25T18:32:22.783444592Z" ); |
3926 | assert_eq!(ts1, ts2 - span, "should be reversible" ); |
3927 | } |
3928 | } |
3929 | |