| 1 | use core::time::Duration as UnsignedDuration; |
| 2 | |
| 3 | use crate::{ |
| 4 | duration::{Duration, SDuration}, |
| 5 | error::{err, Error, ErrorContext}, |
| 6 | fmt::{ |
| 7 | self, |
| 8 | temporal::{self, DEFAULT_DATETIME_PARSER}, |
| 9 | }, |
| 10 | shared::util::itime::ITimestamp, |
| 11 | tz::{Offset, TimeZone}, |
| 12 | util::{ |
| 13 | rangeint::{self, Composite, RFrom, RInto}, |
| 14 | round::increment, |
| 15 | t::{ |
| 16 | self, FractionalNanosecond, NoUnits, NoUnits128, UnixMicroseconds, |
| 17 | UnixMilliseconds, UnixNanoseconds, UnixSeconds, C, |
| 18 | }, |
| 19 | }, |
| 20 | zoned::Zoned, |
| 21 | RoundMode, SignedDuration, Span, SpanRound, Unit, |
| 22 | }; |
| 23 | |
| 24 | /// An instant in time represented as the number of nanoseconds since the Unix |
| 25 | /// epoch. |
| 26 | /// |
| 27 | /// A timestamp is always in the Unix timescale with a UTC offset of zero. |
| 28 | /// |
| 29 | /// To obtain civil or "local" datetime units like year, month, day or hour, a |
| 30 | /// timestamp needs to be combined with a [`TimeZone`] to create a [`Zoned`]. |
| 31 | /// That can be done with [`Timestamp::in_tz`] or [`Timestamp::to_zoned`]. |
| 32 | /// |
| 33 | /// The integer count of nanoseconds since the Unix epoch is signed, where |
| 34 | /// the Unix epoch is `1970-01-01 00:00:00Z`. A positive timestamp indicates |
| 35 | /// a point in time after the Unix epoch. A negative timestamp indicates a |
| 36 | /// point in time before the Unix epoch. |
| 37 | /// |
| 38 | /// # Parsing and printing |
| 39 | /// |
| 40 | /// The `Timestamp` type provides convenient trait implementations of |
| 41 | /// [`std::str::FromStr`] and [`std::fmt::Display`]: |
| 42 | /// |
| 43 | /// ``` |
| 44 | /// use jiff::Timestamp; |
| 45 | /// |
| 46 | /// let ts: Timestamp = "2024-06-19 15:22:45-04" .parse()?; |
| 47 | /// assert_eq!(ts.to_string(), "2024-06-19T19:22:45Z" ); |
| 48 | /// |
| 49 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 50 | /// ``` |
| 51 | /// |
| 52 | /// A `Timestamp` can also be parsed from something that _contains_ a |
| 53 | /// timestamp, but with perhaps other data (such as a time zone): |
| 54 | /// |
| 55 | /// ``` |
| 56 | /// use jiff::Timestamp; |
| 57 | /// |
| 58 | /// let ts: Timestamp = "2024-06-19T15:22:45-04[America/New_York]" .parse()?; |
| 59 | /// assert_eq!(ts.to_string(), "2024-06-19T19:22:45Z" ); |
| 60 | /// |
| 61 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 62 | /// ``` |
| 63 | /// |
| 64 | /// For more information on the specific format supported, see the |
| 65 | /// [`fmt::temporal`](crate::fmt::temporal) module documentation. |
| 66 | /// |
| 67 | /// # Default value |
| 68 | /// |
| 69 | /// For convenience, this type implements the `Default` trait. Its default |
| 70 | /// value corresponds to `1970-01-01T00:00:00.000000000`. That is, it is the |
| 71 | /// Unix epoch. One can also access this value via the `Timestamp::UNIX_EPOCH` |
| 72 | /// constant. |
| 73 | /// |
| 74 | /// # Leap seconds |
| 75 | /// |
| 76 | /// Jiff does not support leap seconds. Jiff behaves as if they don't exist. |
| 77 | /// The only exception is that if one parses a timestamp with a second |
| 78 | /// component of `60`, then it is automatically constrained to `59`: |
| 79 | /// |
| 80 | /// ``` |
| 81 | /// use jiff::Timestamp; |
| 82 | /// |
| 83 | /// let ts: Timestamp = "2016-12-31 23:59:60Z" .parse()?; |
| 84 | /// assert_eq!(ts.to_string(), "2016-12-31T23:59:59Z" ); |
| 85 | /// |
| 86 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 87 | /// ``` |
| 88 | /// |
| 89 | /// # Comparisons |
| 90 | /// |
| 91 | /// The `Timestamp` type provides both `Eq` and `Ord` trait implementations |
| 92 | /// to facilitate easy comparisons. When a timestamp `ts1` occurs before a |
| 93 | /// timestamp `ts2`, then `dt1 < dt2`. For example: |
| 94 | /// |
| 95 | /// ``` |
| 96 | /// use jiff::Timestamp; |
| 97 | /// |
| 98 | /// let ts1 = Timestamp::from_second(123_456_789)?; |
| 99 | /// let ts2 = Timestamp::from_second(123_456_790)?; |
| 100 | /// assert!(ts1 < ts2); |
| 101 | /// |
| 102 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 103 | /// ``` |
| 104 | /// |
| 105 | /// # Arithmetic |
| 106 | /// |
| 107 | /// This type provides routines for adding and subtracting spans of time, as |
| 108 | /// well as computing the span of time between two `Timestamp` values. |
| 109 | /// |
| 110 | /// For adding or subtracting spans of time, one can use any of the following |
| 111 | /// routines: |
| 112 | /// |
| 113 | /// * [`Timestamp::checked_add`] or [`Timestamp::checked_sub`] for checked |
| 114 | /// arithmetic. |
| 115 | /// * [`Timestamp::saturating_add`] or [`Timestamp::saturating_sub`] for |
| 116 | /// saturating arithmetic. |
| 117 | /// |
| 118 | /// Additionally, checked arithmetic is available via the `Add` and `Sub` |
| 119 | /// trait implementations. When the result overflows, a panic occurs. |
| 120 | /// |
| 121 | /// ``` |
| 122 | /// use jiff::{Timestamp, ToSpan}; |
| 123 | /// |
| 124 | /// let ts1: Timestamp = "2024-02-25T15:45Z" .parse()?; |
| 125 | /// let ts2 = ts1 - 24.hours(); |
| 126 | /// assert_eq!(ts2.to_string(), "2024-02-24T15:45:00Z" ); |
| 127 | /// |
| 128 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 129 | /// ``` |
| 130 | /// |
| 131 | /// One can compute the span of time between two timestamps using either |
| 132 | /// [`Timestamp::until`] or [`Timestamp::since`]. It's also possible to |
| 133 | /// subtract two `Timestamp` values directly via a `Sub` trait implementation: |
| 134 | /// |
| 135 | /// ``` |
| 136 | /// use jiff::{Timestamp, ToSpan}; |
| 137 | /// |
| 138 | /// let ts1: Timestamp = "2024-05-03 23:30:00.123Z" .parse()?; |
| 139 | /// let ts2: Timestamp = "2024-02-25 07Z" .parse()?; |
| 140 | /// // The default is to return spans with units no bigger than seconds. |
| 141 | /// assert_eq!(ts1 - ts2, 5934600.seconds().milliseconds(123).fieldwise()); |
| 142 | /// |
| 143 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 144 | /// ``` |
| 145 | /// |
| 146 | /// The `until` and `since` APIs are polymorphic and allow re-balancing and |
| 147 | /// rounding the span returned. For example, the default largest unit is |
| 148 | /// seconds (as exemplified above), but we can ask for bigger units (up to |
| 149 | /// hours): |
| 150 | /// |
| 151 | /// ``` |
| 152 | /// use jiff::{Timestamp, ToSpan, Unit}; |
| 153 | /// |
| 154 | /// let ts1: Timestamp = "2024-05-03 23:30:00.123Z" .parse()?; |
| 155 | /// let ts2: Timestamp = "2024-02-25 07Z" .parse()?; |
| 156 | /// assert_eq!( |
| 157 | /// // If you want to deal in units bigger than hours, then you'll have to |
| 158 | /// // convert your timestamp to a [`Zoned`] first. |
| 159 | /// ts1.since((Unit::Hour, ts2))?, |
| 160 | /// 1648.hours().minutes(30).milliseconds(123).fieldwise(), |
| 161 | /// ); |
| 162 | /// |
| 163 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 164 | /// ``` |
| 165 | /// |
| 166 | /// You can also round the span returned: |
| 167 | /// |
| 168 | /// ``` |
| 169 | /// use jiff::{RoundMode, Timestamp, TimestampDifference, ToSpan, Unit}; |
| 170 | /// |
| 171 | /// let ts1: Timestamp = "2024-05-03 23:30:59.123Z" .parse()?; |
| 172 | /// let ts2: Timestamp = "2024-05-02 07Z" .parse()?; |
| 173 | /// assert_eq!( |
| 174 | /// ts1.since( |
| 175 | /// TimestampDifference::new(ts2) |
| 176 | /// .smallest(Unit::Minute) |
| 177 | /// .largest(Unit::Hour), |
| 178 | /// )?, |
| 179 | /// 40.hours().minutes(30).fieldwise(), |
| 180 | /// ); |
| 181 | /// // `TimestampDifference` uses truncation as a rounding mode by default, |
| 182 | /// // but you can set the rounding mode to break ties away from zero: |
| 183 | /// assert_eq!( |
| 184 | /// ts1.since( |
| 185 | /// TimestampDifference::new(ts2) |
| 186 | /// .smallest(Unit::Minute) |
| 187 | /// .largest(Unit::Hour) |
| 188 | /// .mode(RoundMode::HalfExpand), |
| 189 | /// )?, |
| 190 | /// // Rounds up to 31 minutes. |
| 191 | /// 40.hours().minutes(31).fieldwise(), |
| 192 | /// ); |
| 193 | /// |
| 194 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 195 | /// ``` |
| 196 | /// |
| 197 | /// # Rounding timestamps |
| 198 | /// |
| 199 | /// A `Timestamp` can be rounded based on a [`TimestampRound`] configuration of |
| 200 | /// smallest units, rounding increment and rounding mode. Here's an example |
| 201 | /// showing how to round to the nearest third hour: |
| 202 | /// |
| 203 | /// ``` |
| 204 | /// use jiff::{Timestamp, TimestampRound, Unit}; |
| 205 | /// |
| 206 | /// let ts: Timestamp = "2024-06-19 16:27:29.999999999Z" .parse()?; |
| 207 | /// assert_eq!( |
| 208 | /// ts.round(TimestampRound::new().smallest(Unit::Hour).increment(3))?, |
| 209 | /// "2024-06-19 15Z" .parse::<Timestamp>()?, |
| 210 | /// ); |
| 211 | /// // Or alternatively, make use of the `From<(Unit, i64)> for TimestampRound` |
| 212 | /// // trait implementation: |
| 213 | /// assert_eq!( |
| 214 | /// ts.round((Unit::Hour, 3))?.to_string(), |
| 215 | /// "2024-06-19T15:00:00Z" , |
| 216 | /// ); |
| 217 | /// |
| 218 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 219 | /// ``` |
| 220 | /// |
| 221 | /// See [`Timestamp::round`] for more details. |
| 222 | /// |
| 223 | /// # An instant in time |
| 224 | /// |
| 225 | /// Unlike a [`civil::DateTime`](crate::civil::DateTime), a `Timestamp` |
| 226 | /// _always_ corresponds, unambiguously, to a precise instant in time (to |
| 227 | /// nanosecond precision). This means that attaching a time zone to a timestamp |
| 228 | /// is always unambiguous because there's never any question as to which |
| 229 | /// instant it refers to. This is true even for gaps in civil time. |
| 230 | /// |
| 231 | /// For example, in `America/New_York`, clocks were moved ahead one hour |
| 232 | /// at clock time `2024-03-10 02:00:00`. That is, the 2 o'clock hour never |
| 233 | /// appeared on clocks in the `America/New_York` region. Since parsing a |
| 234 | /// timestamp always requires an offset, the time it refers to is unambiguous. |
| 235 | /// We can see this by writing a clock time, `02:30`, that never existed but |
| 236 | /// with two different offsets: |
| 237 | /// |
| 238 | /// ``` |
| 239 | /// use jiff::Timestamp; |
| 240 | /// |
| 241 | /// // All we're doing here is attaching an offset to a civil datetime. |
| 242 | /// // There is no time zone information here, and thus there is no |
| 243 | /// // accounting for ambiguity due to daylight saving time transitions. |
| 244 | /// let before_hour_jump: Timestamp = "2024-03-10 02:30-04" .parse()?; |
| 245 | /// let after_hour_jump: Timestamp = "2024-03-10 02:30-05" .parse()?; |
| 246 | /// // This shows the instant in time in UTC. |
| 247 | /// assert_eq!(before_hour_jump.to_string(), "2024-03-10T06:30:00Z" ); |
| 248 | /// assert_eq!(after_hour_jump.to_string(), "2024-03-10T07:30:00Z" ); |
| 249 | /// |
| 250 | /// // Now let's attach each instant to an `America/New_York` time zone. |
| 251 | /// let zdt_before = before_hour_jump.in_tz("America/New_York" )?; |
| 252 | /// let zdt_after = after_hour_jump.in_tz("America/New_York" )?; |
| 253 | /// // And now we can see that even though the original instant refers to |
| 254 | /// // the 2 o'clock hour, since that hour never existed on the clocks in |
| 255 | /// // `America/New_York`, an instant with a time zone correctly adjusts. |
| 256 | /// assert_eq!( |
| 257 | /// zdt_before.to_string(), |
| 258 | /// "2024-03-10T01:30:00-05:00[America/New_York]" , |
| 259 | /// ); |
| 260 | /// assert_eq!( |
| 261 | /// zdt_after.to_string(), |
| 262 | /// "2024-03-10T03:30:00-04:00[America/New_York]" , |
| 263 | /// ); |
| 264 | /// |
| 265 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 266 | /// ``` |
| 267 | /// |
| 268 | /// In the example above, there is never a step that is incorrect or has an |
| 269 | /// alternative answer. Every step is unambiguous because we never involve |
| 270 | /// any [`civil`](crate::civil) datetimes. |
| 271 | /// |
| 272 | /// But note that if the datetime string you're parsing from lacks an offset, |
| 273 | /// then it *could* be ambiguous even if a time zone is specified. In this |
| 274 | /// case, parsing will always fail: |
| 275 | /// |
| 276 | /// ``` |
| 277 | /// use jiff::Timestamp; |
| 278 | /// |
| 279 | /// let result = "2024-06-30 08:30[America/New_York]" .parse::<Timestamp>(); |
| 280 | /// assert_eq!( |
| 281 | /// result.unwrap_err().to_string(), |
| 282 | /// "failed to find offset component in \ |
| 283 | /// \"2024-06-30 08:30[America/New_York] \", \ |
| 284 | /// which is required for parsing a timestamp" , |
| 285 | /// ); |
| 286 | /// ``` |
| 287 | /// |
| 288 | /// # Converting a civil datetime to a timestamp |
| 289 | /// |
| 290 | /// Sometimes you want to convert the "time on the clock" to a precise instant |
| 291 | /// in time. One way to do this was demonstrated in the previous section, but |
| 292 | /// it only works if you know your current time zone offset: |
| 293 | /// |
| 294 | /// ``` |
| 295 | /// use jiff::Timestamp; |
| 296 | /// |
| 297 | /// let ts: Timestamp = "2024-06-30 08:36-04" .parse()?; |
| 298 | /// assert_eq!(ts.to_string(), "2024-06-30T12:36:00Z" ); |
| 299 | /// |
| 300 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 301 | /// ``` |
| 302 | /// |
| 303 | /// The above happened to be the precise instant in time I wrote the example. |
| 304 | /// Since I happened to know the offset, this worked okay. But what if I |
| 305 | /// didn't? We could instead construct a civil datetime and attach a time zone |
| 306 | /// to it. This will create a [`Zoned`] value, from which we can access the |
| 307 | /// timestamp: |
| 308 | /// |
| 309 | /// ``` |
| 310 | /// use jiff::civil::date; |
| 311 | /// |
| 312 | /// let clock = date(2024, 6, 30).at(8, 36, 0, 0).in_tz("America/New_York" )?; |
| 313 | /// assert_eq!(clock.timestamp().to_string(), "2024-06-30T12:36:00Z" ); |
| 314 | /// |
| 315 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 316 | /// ``` |
| 317 | #[derive (Clone, Copy)] |
| 318 | pub struct Timestamp { |
| 319 | second: UnixSeconds, |
| 320 | nanosecond: FractionalNanosecond, |
| 321 | } |
| 322 | |
| 323 | impl Timestamp { |
| 324 | /// The minimum representable timestamp. |
| 325 | /// |
| 326 | /// The minimum is chosen such that it can be combined with |
| 327 | /// any legal [`Offset`](crate::tz::Offset) and turned into a |
| 328 | /// [`civil::DateTime`](crate::civil::DateTime). |
| 329 | /// |
| 330 | /// # Example |
| 331 | /// |
| 332 | /// ``` |
| 333 | /// use jiff::{civil::date, tz::Offset, Timestamp}; |
| 334 | /// |
| 335 | /// let dt = Offset::MIN.to_datetime(Timestamp::MIN); |
| 336 | /// assert_eq!(dt, date(-9999, 1, 1).at(0, 0, 0, 0)); |
| 337 | /// ``` |
| 338 | pub const MIN: Timestamp = Timestamp { |
| 339 | second: UnixSeconds::MIN_SELF, |
| 340 | nanosecond: FractionalNanosecond::N::<0>(), |
| 341 | }; |
| 342 | |
| 343 | /// The maximum representable timestamp. |
| 344 | /// |
| 345 | /// The maximum is chosen such that it can be combined with |
| 346 | /// any legal [`Offset`](crate::tz::Offset) and turned into a |
| 347 | /// [`civil::DateTime`](crate::civil::DateTime). |
| 348 | /// |
| 349 | /// # Example |
| 350 | /// |
| 351 | /// ``` |
| 352 | /// use jiff::{civil::date, tz::Offset, Timestamp}; |
| 353 | /// |
| 354 | /// let dt = Offset::MAX.to_datetime(Timestamp::MAX); |
| 355 | /// assert_eq!(dt, date(9999, 12, 31).at(23, 59, 59, 999_999_999)); |
| 356 | /// ``` |
| 357 | pub const MAX: Timestamp = Timestamp { |
| 358 | second: UnixSeconds::MAX_SELF, |
| 359 | nanosecond: FractionalNanosecond::MAX_SELF, |
| 360 | }; |
| 361 | |
| 362 | /// The Unix epoch represented as a timestamp. |
| 363 | /// |
| 364 | /// The Unix epoch corresponds to the instant at `1970-01-01T00:00:00Z`. |
| 365 | /// As a timestamp, it corresponds to `0` nanoseconds. |
| 366 | /// |
| 367 | /// A timestamp is positive if and only if it is greater than the Unix |
| 368 | /// epoch. A timestamp is negative if and only if it is less than the Unix |
| 369 | /// epoch. |
| 370 | pub const UNIX_EPOCH: Timestamp = Timestamp { |
| 371 | second: UnixSeconds::N::<0>(), |
| 372 | nanosecond: FractionalNanosecond::N::<0>(), |
| 373 | }; |
| 374 | |
| 375 | /// Returns the current system time as a timestamp. |
| 376 | /// |
| 377 | /// # Panics |
| 378 | /// |
| 379 | /// This panics if the system clock is set to a time value outside of the |
| 380 | /// range `-009999-01-01T00:00:00Z..=9999-12-31T11:59:59.999999999Z`. The |
| 381 | /// justification here is that it is reasonable to expect the system clock |
| 382 | /// to be set to a somewhat sane, if imprecise, value. |
| 383 | /// |
| 384 | /// If you want to get the current Unix time fallibly, use |
| 385 | /// [`Timestamp::try_from`] with a `std::time::SystemTime` as input. |
| 386 | /// |
| 387 | /// This may also panic when `SystemTime::now()` itself panics. The most |
| 388 | /// common context in which this happens is on the `wasm32-unknown-unknown` |
| 389 | /// target. If you're using that target in the context of the web (for |
| 390 | /// example, via `wasm-pack`), and you're an application, then you should |
| 391 | /// enable Jiff's `js` feature. This will automatically instruct Jiff in |
| 392 | /// this very specific circumstance to execute JavaScript code to determine |
| 393 | /// the current time from the web browser. |
| 394 | /// |
| 395 | /// # Example |
| 396 | /// |
| 397 | /// ``` |
| 398 | /// use jiff::Timestamp; |
| 399 | /// |
| 400 | /// assert!(Timestamp::now() > Timestamp::UNIX_EPOCH); |
| 401 | /// ``` |
| 402 | #[cfg (feature = "std" )] |
| 403 | pub fn now() -> Timestamp { |
| 404 | Timestamp::try_from(crate::now::system_time()) |
| 405 | .expect("system time is valid" ) |
| 406 | } |
| 407 | |
| 408 | /// Creates a new instant in time represented as a timestamp. |
| 409 | /// |
| 410 | /// While a timestamp is logically a count of nanoseconds since the Unix |
| 411 | /// epoch, this constructor provides a convenience way of constructing |
| 412 | /// the timestamp from two components: seconds and fractional seconds |
| 413 | /// expressed as nanoseconds. |
| 414 | /// |
| 415 | /// The signs of `second` and `nanosecond` need not be the same. |
| 416 | /// |
| 417 | /// # Errors |
| 418 | /// |
| 419 | /// This returns an error if the given components would correspond to |
| 420 | /// an instant outside the supported range. Also, `nanosecond` is limited |
| 421 | /// to the range `-999,999,999..=999,999,999`. |
| 422 | /// |
| 423 | /// # Example |
| 424 | /// |
| 425 | /// This example shows the instant in time 123,456,789 seconds after the |
| 426 | /// Unix epoch: |
| 427 | /// |
| 428 | /// ``` |
| 429 | /// use jiff::Timestamp; |
| 430 | /// |
| 431 | /// assert_eq!( |
| 432 | /// Timestamp::new(123_456_789, 0)?.to_string(), |
| 433 | /// "1973-11-29T21:33:09Z" , |
| 434 | /// ); |
| 435 | /// |
| 436 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 437 | /// ``` |
| 438 | /// |
| 439 | /// # Example: normalized sign |
| 440 | /// |
| 441 | /// This example shows how `second` and `nanosecond` are resolved when |
| 442 | /// their signs differ. |
| 443 | /// |
| 444 | /// ``` |
| 445 | /// use jiff::Timestamp; |
| 446 | /// |
| 447 | /// let ts = Timestamp::new(2, -999_999_999)?; |
| 448 | /// assert_eq!(ts.as_second(), 1); |
| 449 | /// assert_eq!(ts.subsec_nanosecond(), 1); |
| 450 | /// |
| 451 | /// let ts = Timestamp::new(-2, 999_999_999)?; |
| 452 | /// assert_eq!(ts.as_second(), -1); |
| 453 | /// assert_eq!(ts.subsec_nanosecond(), -1); |
| 454 | /// |
| 455 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 456 | /// ``` |
| 457 | /// |
| 458 | /// # Example: limits |
| 459 | /// |
| 460 | /// The minimum timestamp has nanoseconds set to zero, while the maximum |
| 461 | /// timestamp has nanoseconds set to `999,999,999`: |
| 462 | /// |
| 463 | /// ``` |
| 464 | /// use jiff::Timestamp; |
| 465 | /// |
| 466 | /// assert_eq!(Timestamp::MIN.subsec_nanosecond(), 0); |
| 467 | /// assert_eq!(Timestamp::MAX.subsec_nanosecond(), 999_999_999); |
| 468 | /// ``` |
| 469 | /// |
| 470 | /// As a consequence, nanoseconds cannot be negative when a timestamp has |
| 471 | /// minimal seconds: |
| 472 | /// |
| 473 | /// ``` |
| 474 | /// use jiff::Timestamp; |
| 475 | /// |
| 476 | /// assert!(Timestamp::new(Timestamp::MIN.as_second(), -1).is_err()); |
| 477 | /// // But they can be positive! |
| 478 | /// let one_ns_more = Timestamp::new(Timestamp::MIN.as_second(), 1)?; |
| 479 | /// assert_eq!( |
| 480 | /// one_ns_more.to_string(), |
| 481 | /// "-009999-01-02T01:59:59.000000001Z" , |
| 482 | /// ); |
| 483 | /// // Or, when combined with a minimal offset: |
| 484 | /// assert_eq!( |
| 485 | /// jiff::tz::Offset::MIN.to_datetime(one_ns_more).to_string(), |
| 486 | /// "-009999-01-01T00:00:00.000000001" , |
| 487 | /// ); |
| 488 | /// |
| 489 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 490 | /// ``` |
| 491 | #[inline ] |
| 492 | pub fn new(second: i64, nanosecond: i32) -> Result<Timestamp, Error> { |
| 493 | Timestamp::new_ranged( |
| 494 | UnixSeconds::try_new("second" , second)?, |
| 495 | FractionalNanosecond::try_new("nanosecond" , nanosecond)?, |
| 496 | ) |
| 497 | } |
| 498 | |
| 499 | /// Creates a new `Timestamp` value in a `const` context. |
| 500 | /// |
| 501 | /// # Panics |
| 502 | /// |
| 503 | /// This routine panics when [`Timestamp::new`] would return an error. |
| 504 | /// That is, when the given components would correspond to |
| 505 | /// an instant outside the supported range. Also, `nanosecond` is limited |
| 506 | /// to the range `-999,999,999..=999,999,999`. |
| 507 | /// |
| 508 | /// # Example |
| 509 | /// |
| 510 | /// This example shows the instant in time 123,456,789 seconds after the |
| 511 | /// Unix epoch: |
| 512 | /// |
| 513 | /// ``` |
| 514 | /// use jiff::Timestamp; |
| 515 | /// |
| 516 | /// assert_eq!( |
| 517 | /// Timestamp::constant(123_456_789, 0).to_string(), |
| 518 | /// "1973-11-29T21:33:09Z" , |
| 519 | /// ); |
| 520 | /// ``` |
| 521 | #[inline ] |
| 522 | pub const fn constant(mut second: i64, mut nanosecond: i32) -> Timestamp { |
| 523 | if second == UnixSeconds::MIN_REPR && nanosecond < 0 { |
| 524 | panic!("nanoseconds must be >=0 when seconds are minimal" ); |
| 525 | } |
| 526 | // We now normalize our seconds and nanoseconds such that they have |
| 527 | // the same sign (or where one is zero). So for example, when given |
| 528 | // `-1s 1ns`, then we should turn that into `-999,999,999ns`. |
| 529 | // |
| 530 | // But first, if we're already normalized, we're done! |
| 531 | if second.signum() as i8 == nanosecond.signum() as i8 |
| 532 | || second == 0 |
| 533 | || nanosecond == 0 |
| 534 | { |
| 535 | return Timestamp { |
| 536 | second: UnixSeconds::new_unchecked(second), |
| 537 | nanosecond: FractionalNanosecond::new_unchecked(nanosecond), |
| 538 | }; |
| 539 | } |
| 540 | if second < 0 && nanosecond > 0 { |
| 541 | second += 1; |
| 542 | nanosecond -= t::NANOS_PER_SECOND.value() as i32; |
| 543 | } else if second > 0 && nanosecond < 0 { |
| 544 | second -= 1; |
| 545 | nanosecond += t::NANOS_PER_SECOND.value() as i32; |
| 546 | } |
| 547 | Timestamp { |
| 548 | second: UnixSeconds::new_unchecked(second), |
| 549 | nanosecond: FractionalNanosecond::new_unchecked(nanosecond), |
| 550 | } |
| 551 | } |
| 552 | |
| 553 | /// Creates a new instant in time from the number of seconds elapsed since |
| 554 | /// the Unix epoch. |
| 555 | /// |
| 556 | /// When `second` is negative, it corresponds to an instant in time before |
| 557 | /// the Unix epoch. A smaller number corresponds to an instant in time |
| 558 | /// further into the past. |
| 559 | /// |
| 560 | /// # Errors |
| 561 | /// |
| 562 | /// This returns an error if the given second corresponds to a timestamp |
| 563 | /// outside of the [`Timestamp::MIN`] and [`Timestamp::MAX`] boundaries. |
| 564 | /// |
| 565 | /// It is a semver guarantee that the only way for this to return an error |
| 566 | /// is if the given value is out of range. That is, when it is less than |
| 567 | /// `Timestamp::MIN` or greater than `Timestamp::MAX`. |
| 568 | /// |
| 569 | /// # Example |
| 570 | /// |
| 571 | /// This example shows the instants in time 1 second immediately after and |
| 572 | /// before the Unix epoch: |
| 573 | /// |
| 574 | /// ``` |
| 575 | /// use jiff::Timestamp; |
| 576 | /// |
| 577 | /// assert_eq!( |
| 578 | /// Timestamp::from_second(1)?.to_string(), |
| 579 | /// "1970-01-01T00:00:01Z" , |
| 580 | /// ); |
| 581 | /// assert_eq!( |
| 582 | /// Timestamp::from_second(-1)?.to_string(), |
| 583 | /// "1969-12-31T23:59:59Z" , |
| 584 | /// ); |
| 585 | /// |
| 586 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 587 | /// ``` |
| 588 | /// |
| 589 | /// # Example: saturating construction |
| 590 | /// |
| 591 | /// If you need a way to build a `Timestamp` value that saturates to |
| 592 | /// the minimum and maximum values supported by Jiff, then this is |
| 593 | /// guaranteed to work: |
| 594 | /// |
| 595 | /// ``` |
| 596 | /// use jiff::Timestamp; |
| 597 | /// |
| 598 | /// fn from_second_saturating(seconds: i64) -> Timestamp { |
| 599 | /// Timestamp::from_second(seconds).unwrap_or_else(|_| { |
| 600 | /// if seconds < 0 { |
| 601 | /// Timestamp::MIN |
| 602 | /// } else { |
| 603 | /// Timestamp::MAX |
| 604 | /// } |
| 605 | /// }) |
| 606 | /// } |
| 607 | /// |
| 608 | /// assert_eq!(from_second_saturating(0), Timestamp::UNIX_EPOCH); |
| 609 | /// assert_eq!( |
| 610 | /// from_second_saturating(-999999999999999999), |
| 611 | /// Timestamp::MIN |
| 612 | /// ); |
| 613 | /// assert_eq!( |
| 614 | /// from_second_saturating(999999999999999999), |
| 615 | /// Timestamp::MAX |
| 616 | /// ); |
| 617 | /// ``` |
| 618 | #[inline ] |
| 619 | pub fn from_second(second: i64) -> Result<Timestamp, Error> { |
| 620 | Timestamp::new(second, 0) |
| 621 | } |
| 622 | |
| 623 | /// Creates a new instant in time from the number of milliseconds elapsed |
| 624 | /// since the Unix epoch. |
| 625 | /// |
| 626 | /// When `millisecond` is negative, it corresponds to an instant in time |
| 627 | /// before the Unix epoch. A smaller number corresponds to an instant in |
| 628 | /// time further into the past. |
| 629 | /// |
| 630 | /// # Errors |
| 631 | /// |
| 632 | /// This returns an error if the given millisecond corresponds to a |
| 633 | /// timestamp outside of the [`Timestamp::MIN`] and [`Timestamp::MAX`] |
| 634 | /// boundaries. |
| 635 | /// |
| 636 | /// It is a semver guarantee that the only way for this to return an error |
| 637 | /// is if the given value is out of range. That is, when it is less than |
| 638 | /// `Timestamp::MIN` or greater than `Timestamp::MAX`. |
| 639 | /// |
| 640 | /// # Example |
| 641 | /// |
| 642 | /// This example shows the instants in time 1 millisecond immediately after |
| 643 | /// and before the Unix epoch: |
| 644 | /// |
| 645 | /// ``` |
| 646 | /// use jiff::Timestamp; |
| 647 | /// |
| 648 | /// assert_eq!( |
| 649 | /// Timestamp::from_millisecond(1)?.to_string(), |
| 650 | /// "1970-01-01T00:00:00.001Z" , |
| 651 | /// ); |
| 652 | /// assert_eq!( |
| 653 | /// Timestamp::from_millisecond(-1)?.to_string(), |
| 654 | /// "1969-12-31T23:59:59.999Z" , |
| 655 | /// ); |
| 656 | /// |
| 657 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 658 | /// ``` |
| 659 | /// |
| 660 | /// # Example: saturating construction |
| 661 | /// |
| 662 | /// If you need a way to build a `Timestamp` value that saturates to |
| 663 | /// the minimum and maximum values supported by Jiff, then this is |
| 664 | /// guaranteed to work: |
| 665 | /// |
| 666 | /// ``` |
| 667 | /// use jiff::Timestamp; |
| 668 | /// |
| 669 | /// fn from_millisecond_saturating(millis: i64) -> Timestamp { |
| 670 | /// Timestamp::from_millisecond(millis).unwrap_or_else(|_| { |
| 671 | /// if millis < 0 { |
| 672 | /// Timestamp::MIN |
| 673 | /// } else { |
| 674 | /// Timestamp::MAX |
| 675 | /// } |
| 676 | /// }) |
| 677 | /// } |
| 678 | /// |
| 679 | /// assert_eq!(from_millisecond_saturating(0), Timestamp::UNIX_EPOCH); |
| 680 | /// assert_eq!( |
| 681 | /// from_millisecond_saturating(-999999999999999999), |
| 682 | /// Timestamp::MIN |
| 683 | /// ); |
| 684 | /// assert_eq!( |
| 685 | /// from_millisecond_saturating(999999999999999999), |
| 686 | /// Timestamp::MAX |
| 687 | /// ); |
| 688 | /// ``` |
| 689 | #[inline ] |
| 690 | pub fn from_millisecond(millisecond: i64) -> Result<Timestamp, Error> { |
| 691 | let millisecond = UnixMilliseconds::try_new128( |
| 692 | "millisecond timestamp" , |
| 693 | millisecond, |
| 694 | )?; |
| 695 | Ok(Timestamp::from_millisecond_ranged(millisecond)) |
| 696 | } |
| 697 | |
| 698 | /// Creates a new instant in time from the number of microseconds elapsed |
| 699 | /// since the Unix epoch. |
| 700 | /// |
| 701 | /// When `microsecond` is negative, it corresponds to an instant in time |
| 702 | /// before the Unix epoch. A smaller number corresponds to an instant in |
| 703 | /// time further into the past. |
| 704 | /// |
| 705 | /// # Errors |
| 706 | /// |
| 707 | /// This returns an error if the given microsecond corresponds to a |
| 708 | /// timestamp outside of the [`Timestamp::MIN`] and [`Timestamp::MAX`] |
| 709 | /// boundaries. |
| 710 | /// |
| 711 | /// It is a semver guarantee that the only way for this to return an error |
| 712 | /// is if the given value is out of range. That is, when it is less than |
| 713 | /// `Timestamp::MIN` or greater than `Timestamp::MAX`. |
| 714 | /// |
| 715 | /// # Example |
| 716 | /// |
| 717 | /// This example shows the instants in time 1 microsecond immediately after |
| 718 | /// and before the Unix epoch: |
| 719 | /// |
| 720 | /// ``` |
| 721 | /// use jiff::Timestamp; |
| 722 | /// |
| 723 | /// assert_eq!( |
| 724 | /// Timestamp::from_microsecond(1)?.to_string(), |
| 725 | /// "1970-01-01T00:00:00.000001Z" , |
| 726 | /// ); |
| 727 | /// assert_eq!( |
| 728 | /// Timestamp::from_microsecond(-1)?.to_string(), |
| 729 | /// "1969-12-31T23:59:59.999999Z" , |
| 730 | /// ); |
| 731 | /// |
| 732 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 733 | /// ``` |
| 734 | /// |
| 735 | /// # Example: saturating construction |
| 736 | /// |
| 737 | /// If you need a way to build a `Timestamp` value that saturates to |
| 738 | /// the minimum and maximum values supported by Jiff, then this is |
| 739 | /// guaranteed to work: |
| 740 | /// |
| 741 | /// ``` |
| 742 | /// use jiff::Timestamp; |
| 743 | /// |
| 744 | /// fn from_microsecond_saturating(micros: i64) -> Timestamp { |
| 745 | /// Timestamp::from_microsecond(micros).unwrap_or_else(|_| { |
| 746 | /// if micros < 0 { |
| 747 | /// Timestamp::MIN |
| 748 | /// } else { |
| 749 | /// Timestamp::MAX |
| 750 | /// } |
| 751 | /// }) |
| 752 | /// } |
| 753 | /// |
| 754 | /// assert_eq!(from_microsecond_saturating(0), Timestamp::UNIX_EPOCH); |
| 755 | /// assert_eq!( |
| 756 | /// from_microsecond_saturating(-999999999999999999), |
| 757 | /// Timestamp::MIN |
| 758 | /// ); |
| 759 | /// assert_eq!( |
| 760 | /// from_microsecond_saturating(999999999999999999), |
| 761 | /// Timestamp::MAX |
| 762 | /// ); |
| 763 | /// ``` |
| 764 | #[inline ] |
| 765 | pub fn from_microsecond(microsecond: i64) -> Result<Timestamp, Error> { |
| 766 | let microsecond = UnixMicroseconds::try_new128( |
| 767 | "microsecond timestamp" , |
| 768 | microsecond, |
| 769 | )?; |
| 770 | Ok(Timestamp::from_microsecond_ranged(microsecond)) |
| 771 | } |
| 772 | |
| 773 | /// Creates a new instant in time from the number of nanoseconds elapsed |
| 774 | /// since the Unix epoch. |
| 775 | /// |
| 776 | /// When `nanosecond` is negative, it corresponds to an instant in time |
| 777 | /// before the Unix epoch. A smaller number corresponds to an instant in |
| 778 | /// time further into the past. |
| 779 | /// |
| 780 | /// # Errors |
| 781 | /// |
| 782 | /// This returns an error if the given nanosecond corresponds to a |
| 783 | /// timestamp outside of the [`Timestamp::MIN`] and [`Timestamp::MAX`] |
| 784 | /// boundaries. |
| 785 | /// |
| 786 | /// It is a semver guarantee that the only way for this to return an error |
| 787 | /// is if the given value is out of range. That is, when it is less than |
| 788 | /// `Timestamp::MIN` or greater than `Timestamp::MAX`. |
| 789 | /// |
| 790 | /// # Example |
| 791 | /// |
| 792 | /// This example shows the instants in time 1 nanosecond immediately after |
| 793 | /// and before the Unix epoch: |
| 794 | /// |
| 795 | /// ``` |
| 796 | /// use jiff::Timestamp; |
| 797 | /// |
| 798 | /// assert_eq!( |
| 799 | /// Timestamp::from_nanosecond(1)?.to_string(), |
| 800 | /// "1970-01-01T00:00:00.000000001Z" , |
| 801 | /// ); |
| 802 | /// assert_eq!( |
| 803 | /// Timestamp::from_nanosecond(-1)?.to_string(), |
| 804 | /// "1969-12-31T23:59:59.999999999Z" , |
| 805 | /// ); |
| 806 | /// |
| 807 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 808 | /// ``` |
| 809 | /// |
| 810 | /// # Example: saturating construction |
| 811 | /// |
| 812 | /// If you need a way to build a `Timestamp` value that saturates to |
| 813 | /// the minimum and maximum values supported by Jiff, then this is |
| 814 | /// guaranteed to work: |
| 815 | /// |
| 816 | /// ``` |
| 817 | /// use jiff::Timestamp; |
| 818 | /// |
| 819 | /// fn from_nanosecond_saturating(nanos: i128) -> Timestamp { |
| 820 | /// Timestamp::from_nanosecond(nanos).unwrap_or_else(|_| { |
| 821 | /// if nanos < 0 { |
| 822 | /// Timestamp::MIN |
| 823 | /// } else { |
| 824 | /// Timestamp::MAX |
| 825 | /// } |
| 826 | /// }) |
| 827 | /// } |
| 828 | /// |
| 829 | /// assert_eq!(from_nanosecond_saturating(0), Timestamp::UNIX_EPOCH); |
| 830 | /// assert_eq!( |
| 831 | /// from_nanosecond_saturating(-9999999999999999999999999999999999), |
| 832 | /// Timestamp::MIN |
| 833 | /// ); |
| 834 | /// assert_eq!( |
| 835 | /// from_nanosecond_saturating(9999999999999999999999999999999999), |
| 836 | /// Timestamp::MAX |
| 837 | /// ); |
| 838 | /// ``` |
| 839 | #[inline ] |
| 840 | pub fn from_nanosecond(nanosecond: i128) -> Result<Timestamp, Error> { |
| 841 | let nanosecond = |
| 842 | UnixNanoseconds::try_new128("nanosecond timestamp" , nanosecond)?; |
| 843 | Ok(Timestamp::from_nanosecond_ranged(nanosecond)) |
| 844 | } |
| 845 | |
| 846 | /// Creates a new timestamp from a `Duration` with the given sign since the |
| 847 | /// Unix epoch. |
| 848 | /// |
| 849 | /// Positive durations result in a timestamp after the Unix epoch. Negative |
| 850 | /// durations result in a timestamp before the Unix epoch. |
| 851 | /// |
| 852 | /// # Errors |
| 853 | /// |
| 854 | /// This returns an error if the given duration corresponds to a timestamp |
| 855 | /// outside of the [`Timestamp::MIN`] and [`Timestamp::MAX`] boundaries. |
| 856 | /// |
| 857 | /// It is a semver guarantee that the only way for this to return an error |
| 858 | /// is if the given value is out of range. That is, when it is less than |
| 859 | /// `Timestamp::MIN` or greater than `Timestamp::MAX`. |
| 860 | /// |
| 861 | /// # Example |
| 862 | /// |
| 863 | /// How one might construct a `Timestamp` from a `SystemTime`: |
| 864 | /// |
| 865 | /// ``` |
| 866 | /// use std::time::SystemTime; |
| 867 | /// use jiff::{SignedDuration, Timestamp}; |
| 868 | /// |
| 869 | /// let unix_epoch = SystemTime::UNIX_EPOCH; |
| 870 | /// let now = SystemTime::now(); |
| 871 | /// let duration = SignedDuration::system_until(unix_epoch, now)?; |
| 872 | /// let ts = Timestamp::from_duration(duration)?; |
| 873 | /// assert!(ts > Timestamp::UNIX_EPOCH); |
| 874 | /// |
| 875 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 876 | /// ``` |
| 877 | /// |
| 878 | /// Of course, one should just use [`Timestamp::try_from`] for this |
| 879 | /// instead. Indeed, the above example is copied almost exactly from the |
| 880 | /// `TryFrom` implementation. |
| 881 | /// |
| 882 | /// # Example: out of bounds |
| 883 | /// |
| 884 | /// This example shows how some of the boundary conditions are dealt with. |
| 885 | /// |
| 886 | /// ``` |
| 887 | /// use jiff::{SignedDuration, Timestamp}; |
| 888 | /// |
| 889 | /// // OK, we get the minimum timestamp supported by Jiff: |
| 890 | /// let duration = SignedDuration::new(-377705023201, 0); |
| 891 | /// let ts = Timestamp::from_duration(duration)?; |
| 892 | /// assert_eq!(ts, Timestamp::MIN); |
| 893 | /// |
| 894 | /// // We use the minimum number of seconds, but even subtracting |
| 895 | /// // one more nanosecond after it will result in an error. |
| 896 | /// let duration = SignedDuration::new(-377705023201, -1); |
| 897 | /// assert_eq!( |
| 898 | /// Timestamp::from_duration(duration).unwrap_err().to_string(), |
| 899 | /// "parameter 'seconds and nanoseconds' with value -1 is not \ |
| 900 | /// in the required range of 0..=1000000000" , |
| 901 | /// ); |
| 902 | /// |
| 903 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 904 | /// ``` |
| 905 | /// |
| 906 | /// # Example: saturating construction |
| 907 | /// |
| 908 | /// If you need a way to build a `Timestamp` value that saturates to |
| 909 | /// the minimum and maximum values supported by Jiff, then this is |
| 910 | /// guaranteed to work: |
| 911 | /// |
| 912 | /// ``` |
| 913 | /// use jiff::{SignedDuration, Timestamp}; |
| 914 | /// |
| 915 | /// fn from_duration_saturating(dur: SignedDuration) -> Timestamp { |
| 916 | /// Timestamp::from_duration(dur).unwrap_or_else(|_| { |
| 917 | /// if dur.is_negative() { |
| 918 | /// Timestamp::MIN |
| 919 | /// } else { |
| 920 | /// Timestamp::MAX |
| 921 | /// } |
| 922 | /// }) |
| 923 | /// } |
| 924 | /// |
| 925 | /// assert_eq!( |
| 926 | /// from_duration_saturating(SignedDuration::ZERO), |
| 927 | /// Timestamp::UNIX_EPOCH, |
| 928 | /// ); |
| 929 | /// assert_eq!( |
| 930 | /// from_duration_saturating(SignedDuration::from_secs(-999999999999)), |
| 931 | /// Timestamp::MIN |
| 932 | /// ); |
| 933 | /// assert_eq!( |
| 934 | /// from_duration_saturating(SignedDuration::from_secs(999999999999)), |
| 935 | /// Timestamp::MAX |
| 936 | /// ); |
| 937 | /// ``` |
| 938 | #[inline ] |
| 939 | pub fn from_duration( |
| 940 | duration: SignedDuration, |
| 941 | ) -> Result<Timestamp, Error> { |
| 942 | // As an optimization, we don't need to go through `Timestamp::new` |
| 943 | // (or `Timestamp::new_ranged`) here. That's because a `SignedDuration` |
| 944 | // already guarantees that its seconds and nanoseconds are "coherent." |
| 945 | // That is, we know we can't have a negative second with a positive |
| 946 | // nanosecond (or vice versa). |
| 947 | let second = UnixSeconds::try_new("second" , duration.as_secs())?; |
| 948 | let nanosecond = FractionalNanosecond::try_new( |
| 949 | "nanosecond" , |
| 950 | duration.subsec_nanos(), |
| 951 | )?; |
| 952 | // ... but we do have to check that the *combination* of seconds and |
| 953 | // nanoseconds aren't out of bounds, which is possible even when both |
| 954 | // are, on their own, legal values. |
| 955 | if second == UnixSeconds::MIN_SELF && nanosecond < C(0) { |
| 956 | return Err(Error::range( |
| 957 | "seconds and nanoseconds" , |
| 958 | nanosecond, |
| 959 | 0, |
| 960 | 1_000_000_000, |
| 961 | )); |
| 962 | } |
| 963 | Ok(Timestamp { second, nanosecond }) |
| 964 | } |
| 965 | |
| 966 | /// Returns this timestamp as a number of seconds since the Unix epoch. |
| 967 | /// |
| 968 | /// This only returns the number of whole seconds. That is, if there are |
| 969 | /// any fractional seconds in this timestamp, then they are truncated. |
| 970 | /// |
| 971 | /// # Example |
| 972 | /// |
| 973 | /// ``` |
| 974 | /// use jiff::Timestamp; |
| 975 | /// |
| 976 | /// let ts = Timestamp::new(5, 123_456_789)?; |
| 977 | /// assert_eq!(ts.as_second(), 5); |
| 978 | /// let ts = Timestamp::new(5, 999_999_999)?; |
| 979 | /// assert_eq!(ts.as_second(), 5); |
| 980 | /// |
| 981 | /// let ts = Timestamp::new(-5, -123_456_789)?; |
| 982 | /// assert_eq!(ts.as_second(), -5); |
| 983 | /// let ts = Timestamp::new(-5, -999_999_999)?; |
| 984 | /// assert_eq!(ts.as_second(), -5); |
| 985 | /// |
| 986 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 987 | /// ``` |
| 988 | #[inline ] |
| 989 | pub fn as_second(self) -> i64 { |
| 990 | self.as_second_ranged().get() |
| 991 | } |
| 992 | |
| 993 | /// Returns this timestamp as a number of milliseconds since the Unix |
| 994 | /// epoch. |
| 995 | /// |
| 996 | /// This only returns the number of whole milliseconds. That is, if there |
| 997 | /// are any fractional milliseconds in this timestamp, then they are |
| 998 | /// truncated. |
| 999 | /// |
| 1000 | /// # Example |
| 1001 | /// |
| 1002 | /// ``` |
| 1003 | /// use jiff::Timestamp; |
| 1004 | /// |
| 1005 | /// let ts = Timestamp::new(5, 123_456_789)?; |
| 1006 | /// assert_eq!(ts.as_millisecond(), 5_123); |
| 1007 | /// let ts = Timestamp::new(5, 999_999_999)?; |
| 1008 | /// assert_eq!(ts.as_millisecond(), 5_999); |
| 1009 | /// |
| 1010 | /// let ts = Timestamp::new(-5, -123_456_789)?; |
| 1011 | /// assert_eq!(ts.as_millisecond(), -5_123); |
| 1012 | /// let ts = Timestamp::new(-5, -999_999_999)?; |
| 1013 | /// assert_eq!(ts.as_millisecond(), -5_999); |
| 1014 | /// |
| 1015 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1016 | /// ``` |
| 1017 | #[inline ] |
| 1018 | pub fn as_millisecond(self) -> i64 { |
| 1019 | self.as_millisecond_ranged().get() |
| 1020 | } |
| 1021 | |
| 1022 | /// Returns this timestamp as a number of microseconds since the Unix |
| 1023 | /// epoch. |
| 1024 | /// |
| 1025 | /// This only returns the number of whole microseconds. That is, if there |
| 1026 | /// are any fractional microseconds in this timestamp, then they are |
| 1027 | /// truncated. |
| 1028 | /// |
| 1029 | /// # Example |
| 1030 | /// |
| 1031 | /// ``` |
| 1032 | /// use jiff::Timestamp; |
| 1033 | /// |
| 1034 | /// let ts = Timestamp::new(5, 123_456_789)?; |
| 1035 | /// assert_eq!(ts.as_microsecond(), 5_123_456); |
| 1036 | /// let ts = Timestamp::new(5, 999_999_999)?; |
| 1037 | /// assert_eq!(ts.as_microsecond(), 5_999_999); |
| 1038 | /// |
| 1039 | /// let ts = Timestamp::new(-5, -123_456_789)?; |
| 1040 | /// assert_eq!(ts.as_microsecond(), -5_123_456); |
| 1041 | /// let ts = Timestamp::new(-5, -999_999_999)?; |
| 1042 | /// assert_eq!(ts.as_microsecond(), -5_999_999); |
| 1043 | /// |
| 1044 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1045 | /// ``` |
| 1046 | #[inline ] |
| 1047 | pub fn as_microsecond(self) -> i64 { |
| 1048 | self.as_microsecond_ranged().get() |
| 1049 | } |
| 1050 | |
| 1051 | /// Returns this timestamp as a number of nanoseconds since the Unix |
| 1052 | /// epoch. |
| 1053 | /// |
| 1054 | /// Since a `Timestamp` has a nanosecond precision, the nanoseconds |
| 1055 | /// returned here represent this timestamp losslessly. That is, the |
| 1056 | /// nanoseconds returned can be used with [`Timestamp::from_nanosecond`] to |
| 1057 | /// create an identical timestamp with no loss of precision. |
| 1058 | /// |
| 1059 | /// # Example |
| 1060 | /// |
| 1061 | /// ``` |
| 1062 | /// use jiff::Timestamp; |
| 1063 | /// |
| 1064 | /// let ts = Timestamp::new(5, 123_456_789)?; |
| 1065 | /// assert_eq!(ts.as_nanosecond(), 5_123_456_789); |
| 1066 | /// let ts = Timestamp::new(5, 999_999_999)?; |
| 1067 | /// assert_eq!(ts.as_nanosecond(), 5_999_999_999); |
| 1068 | /// |
| 1069 | /// let ts = Timestamp::new(-5, -123_456_789)?; |
| 1070 | /// assert_eq!(ts.as_nanosecond(), -5_123_456_789); |
| 1071 | /// let ts = Timestamp::new(-5, -999_999_999)?; |
| 1072 | /// assert_eq!(ts.as_nanosecond(), -5_999_999_999); |
| 1073 | /// |
| 1074 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1075 | /// ``` |
| 1076 | #[inline ] |
| 1077 | pub fn as_nanosecond(self) -> i128 { |
| 1078 | self.as_nanosecond_ranged().get() |
| 1079 | } |
| 1080 | |
| 1081 | /// Returns the fractional second component of this timestamp in units |
| 1082 | /// of milliseconds. |
| 1083 | /// |
| 1084 | /// It is guaranteed that this will never return a value that is greater |
| 1085 | /// than 1 second (or less than -1 second). |
| 1086 | /// |
| 1087 | /// This only returns the number of whole milliseconds. That is, if there |
| 1088 | /// are any fractional milliseconds in this timestamp, then they are |
| 1089 | /// truncated. |
| 1090 | /// |
| 1091 | /// # Example |
| 1092 | /// |
| 1093 | /// ``` |
| 1094 | /// use jiff::Timestamp; |
| 1095 | /// |
| 1096 | /// let ts = Timestamp::new(5, 123_456_789)?; |
| 1097 | /// assert_eq!(ts.subsec_millisecond(), 123); |
| 1098 | /// let ts = Timestamp::new(5, 999_999_999)?; |
| 1099 | /// assert_eq!(ts.subsec_millisecond(), 999); |
| 1100 | /// |
| 1101 | /// let ts = Timestamp::new(-5, -123_456_789)?; |
| 1102 | /// assert_eq!(ts.subsec_millisecond(), -123); |
| 1103 | /// let ts = Timestamp::new(-5, -999_999_999)?; |
| 1104 | /// assert_eq!(ts.subsec_millisecond(), -999); |
| 1105 | /// |
| 1106 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1107 | /// ``` |
| 1108 | #[inline ] |
| 1109 | pub fn subsec_millisecond(self) -> i32 { |
| 1110 | self.subsec_millisecond_ranged().get() |
| 1111 | } |
| 1112 | |
| 1113 | /// Returns the fractional second component of this timestamp in units of |
| 1114 | /// microseconds. |
| 1115 | /// |
| 1116 | /// It is guaranteed that this will never return a value that is greater |
| 1117 | /// than 1 second (or less than -1 second). |
| 1118 | /// |
| 1119 | /// This only returns the number of whole microseconds. That is, if there |
| 1120 | /// are any fractional microseconds in this timestamp, then they are |
| 1121 | /// truncated. |
| 1122 | /// |
| 1123 | /// # Example |
| 1124 | /// |
| 1125 | /// ``` |
| 1126 | /// use jiff::Timestamp; |
| 1127 | /// |
| 1128 | /// let ts = Timestamp::new(5, 123_456_789)?; |
| 1129 | /// assert_eq!(ts.subsec_microsecond(), 123_456); |
| 1130 | /// let ts = Timestamp::new(5, 999_999_999)?; |
| 1131 | /// assert_eq!(ts.subsec_microsecond(), 999_999); |
| 1132 | /// |
| 1133 | /// let ts = Timestamp::new(-5, -123_456_789)?; |
| 1134 | /// assert_eq!(ts.subsec_microsecond(), -123_456); |
| 1135 | /// let ts = Timestamp::new(-5, -999_999_999)?; |
| 1136 | /// assert_eq!(ts.subsec_microsecond(), -999_999); |
| 1137 | /// |
| 1138 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1139 | /// ``` |
| 1140 | #[inline ] |
| 1141 | pub fn subsec_microsecond(self) -> i32 { |
| 1142 | self.subsec_microsecond_ranged().get() |
| 1143 | } |
| 1144 | |
| 1145 | /// Returns the fractional second component of this timestamp in units of |
| 1146 | /// nanoseconds. |
| 1147 | /// |
| 1148 | /// It is guaranteed that this will never return a value that is greater |
| 1149 | /// than 1 second (or less than -1 second). |
| 1150 | /// |
| 1151 | /// # Example |
| 1152 | /// |
| 1153 | /// ``` |
| 1154 | /// use jiff::Timestamp; |
| 1155 | /// |
| 1156 | /// let ts = Timestamp::new(5, 123_456_789)?; |
| 1157 | /// assert_eq!(ts.subsec_nanosecond(), 123_456_789); |
| 1158 | /// let ts = Timestamp::new(5, 999_999_999)?; |
| 1159 | /// assert_eq!(ts.subsec_nanosecond(), 999_999_999); |
| 1160 | /// |
| 1161 | /// let ts = Timestamp::new(-5, -123_456_789)?; |
| 1162 | /// assert_eq!(ts.subsec_nanosecond(), -123_456_789); |
| 1163 | /// let ts = Timestamp::new(-5, -999_999_999)?; |
| 1164 | /// assert_eq!(ts.subsec_nanosecond(), -999_999_999); |
| 1165 | /// |
| 1166 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1167 | /// ``` |
| 1168 | #[inline ] |
| 1169 | pub fn subsec_nanosecond(self) -> i32 { |
| 1170 | self.subsec_nanosecond_ranged().get() |
| 1171 | } |
| 1172 | |
| 1173 | /// Returns this timestamp as a [`SignedDuration`] since the Unix epoch. |
| 1174 | /// |
| 1175 | /// # Example |
| 1176 | /// |
| 1177 | /// ``` |
| 1178 | /// use jiff::{SignedDuration, Timestamp}; |
| 1179 | /// |
| 1180 | /// assert_eq!( |
| 1181 | /// Timestamp::UNIX_EPOCH.as_duration(), |
| 1182 | /// SignedDuration::ZERO, |
| 1183 | /// ); |
| 1184 | /// assert_eq!( |
| 1185 | /// Timestamp::new(5, 123_456_789)?.as_duration(), |
| 1186 | /// SignedDuration::new(5, 123_456_789), |
| 1187 | /// ); |
| 1188 | /// assert_eq!( |
| 1189 | /// Timestamp::new(-5, -123_456_789)?.as_duration(), |
| 1190 | /// SignedDuration::new(-5, -123_456_789), |
| 1191 | /// ); |
| 1192 | /// |
| 1193 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1194 | /// ``` |
| 1195 | #[inline ] |
| 1196 | pub fn as_duration(self) -> SignedDuration { |
| 1197 | SignedDuration::from_timestamp(self) |
| 1198 | } |
| 1199 | |
| 1200 | /// Returns the sign of this timestamp. |
| 1201 | /// |
| 1202 | /// This can return one of three possible values: |
| 1203 | /// |
| 1204 | /// * `0` when this timestamp is precisely equivalent to |
| 1205 | /// [`Timestamp::UNIX_EPOCH`]. |
| 1206 | /// * `1` when this timestamp occurs after the Unix epoch. |
| 1207 | /// * `-1` when this timestamp occurs before the Unix epoch. |
| 1208 | /// |
| 1209 | /// The sign returned is guaranteed to match the sign of all "getter" |
| 1210 | /// methods on `Timestamp`. For example, [`Timestamp::as_second`] and |
| 1211 | /// [`Timestamp::subsec_nanosecond`]. This is true even if the signs |
| 1212 | /// of the `second` and `nanosecond` components were mixed when given to |
| 1213 | /// the [`Timestamp::new`] constructor. |
| 1214 | /// |
| 1215 | /// # Example |
| 1216 | /// |
| 1217 | /// ``` |
| 1218 | /// use jiff::Timestamp; |
| 1219 | /// |
| 1220 | /// let ts = Timestamp::new(5, -999_999_999)?; |
| 1221 | /// assert_eq!(ts.signum(), 1); |
| 1222 | /// // The mixed signs were normalized away! |
| 1223 | /// assert_eq!(ts.as_second(), 4); |
| 1224 | /// assert_eq!(ts.subsec_nanosecond(), 1); |
| 1225 | /// |
| 1226 | /// // The same applies for negative timestamps. |
| 1227 | /// let ts = Timestamp::new(-5, 999_999_999)?; |
| 1228 | /// assert_eq!(ts.signum(), -1); |
| 1229 | /// assert_eq!(ts.as_second(), -4); |
| 1230 | /// assert_eq!(ts.subsec_nanosecond(), -1); |
| 1231 | /// |
| 1232 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1233 | /// ``` |
| 1234 | #[inline ] |
| 1235 | pub fn signum(self) -> i8 { |
| 1236 | if self.is_zero() { |
| 1237 | 0 |
| 1238 | } else if self.as_second() > 0 || self.subsec_nanosecond() > 0 { |
| 1239 | 1 |
| 1240 | } else { |
| 1241 | -1 |
| 1242 | } |
| 1243 | } |
| 1244 | |
| 1245 | /// Returns true if and only if this timestamp corresponds to the instant |
| 1246 | /// in time known as the Unix epoch. |
| 1247 | /// |
| 1248 | /// # Example |
| 1249 | /// |
| 1250 | /// ``` |
| 1251 | /// use jiff::Timestamp; |
| 1252 | /// |
| 1253 | /// assert!(Timestamp::UNIX_EPOCH.is_zero()); |
| 1254 | /// ``` |
| 1255 | #[inline ] |
| 1256 | pub fn is_zero(self) -> bool { |
| 1257 | self.as_second() == 0 && self.subsec_nanosecond() == 0 |
| 1258 | } |
| 1259 | |
| 1260 | /// Creates a [`Zoned`] value by attaching a time zone for the given name |
| 1261 | /// to this instant in time. |
| 1262 | /// |
| 1263 | /// The name given is resolved to a [`TimeZone`] by using the default |
| 1264 | /// [`TimeZoneDatabase`](crate::tz::TimeZoneDatabase) created by |
| 1265 | /// [`tz::db`](crate::tz::db). Indeed, this is a convenience function |
| 1266 | /// for [`Timestamp::to_zoned`] where the time zone database lookup |
| 1267 | /// is done automatically. |
| 1268 | /// |
| 1269 | /// Assuming the time zone name could be resolved to a [`TimeZone`], this |
| 1270 | /// routine is otherwise infallible and never results in any ambiguity |
| 1271 | /// since both a [`Timestamp`] and a [`Zoned`] correspond to precise |
| 1272 | /// instant in time. This is unlike |
| 1273 | /// [`civil::DateTime::to_zoned`](crate::civil::DateTime::to_zoned), |
| 1274 | /// where a civil datetime might correspond to more than one instant in |
| 1275 | /// time (i.e., a fold, typically DST ending) or no instants in time (i.e., |
| 1276 | /// a gap, typically DST starting). |
| 1277 | /// |
| 1278 | /// # Errors |
| 1279 | /// |
| 1280 | /// This returns an error when the given time zone name could not be found |
| 1281 | /// in the default time zone database. |
| 1282 | /// |
| 1283 | /// # Example |
| 1284 | /// |
| 1285 | /// This is a simple example of converting the instant that is `123,456,789` |
| 1286 | /// seconds after the Unix epoch to an instant that is aware of its time |
| 1287 | /// zone: |
| 1288 | /// |
| 1289 | /// ``` |
| 1290 | /// use jiff::Timestamp; |
| 1291 | /// |
| 1292 | /// let ts = Timestamp::new(123_456_789, 0).unwrap(); |
| 1293 | /// let zdt = ts.in_tz("America/New_York" )?; |
| 1294 | /// assert_eq!(zdt.to_string(), "1973-11-29T16:33:09-05:00[America/New_York]" ); |
| 1295 | /// |
| 1296 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1297 | /// ``` |
| 1298 | /// |
| 1299 | /// This can be used to answer questions like, "What time was it at the |
| 1300 | /// Unix epoch in Tasmania?" |
| 1301 | /// |
| 1302 | /// ``` |
| 1303 | /// use jiff::Timestamp; |
| 1304 | /// |
| 1305 | /// // Time zone database lookups are case insensitive! |
| 1306 | /// let zdt = Timestamp::UNIX_EPOCH.in_tz("australia/tasmania" )?; |
| 1307 | /// assert_eq!(zdt.to_string(), "1970-01-01T11:00:00+11:00[Australia/Tasmania]" ); |
| 1308 | /// |
| 1309 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1310 | /// ``` |
| 1311 | /// |
| 1312 | /// # Example: errors |
| 1313 | /// |
| 1314 | /// This routine can return an error when the time zone is unrecognized: |
| 1315 | /// |
| 1316 | /// ``` |
| 1317 | /// use jiff::Timestamp; |
| 1318 | /// |
| 1319 | /// assert!(Timestamp::UNIX_EPOCH.in_tz("does not exist" ).is_err()); |
| 1320 | /// ``` |
| 1321 | #[inline ] |
| 1322 | pub fn in_tz(self, time_zone_name: &str) -> Result<Zoned, Error> { |
| 1323 | let tz = crate::tz::db().get(time_zone_name)?; |
| 1324 | Ok(self.to_zoned(tz)) |
| 1325 | } |
| 1326 | |
| 1327 | /// Creates a [`Zoned`] value by attaching the given time zone to this |
| 1328 | /// instant in time. |
| 1329 | /// |
| 1330 | /// This is infallible and never results in any ambiguity since both a |
| 1331 | /// [`Timestamp`] and a [`Zoned`] correspond to precise instant in time. |
| 1332 | /// This is unlike |
| 1333 | /// [`civil::DateTime::to_zoned`](crate::civil::DateTime::to_zoned), |
| 1334 | /// where a civil datetime might correspond to more than one instant in |
| 1335 | /// time (i.e., a fold, typically DST ending) or no instants in time (i.e., |
| 1336 | /// a gap, typically DST starting). |
| 1337 | /// |
| 1338 | /// In the common case of a time zone being represented as a name string, |
| 1339 | /// like `Australia/Tasmania`, consider using [`Timestamp::in_tz`] |
| 1340 | /// instead. |
| 1341 | /// |
| 1342 | /// # Example |
| 1343 | /// |
| 1344 | /// This example shows how to create a zoned value with a fixed time zone |
| 1345 | /// offset: |
| 1346 | /// |
| 1347 | /// ``` |
| 1348 | /// use jiff::{tz::{self, TimeZone}, Timestamp}; |
| 1349 | /// |
| 1350 | /// let ts = Timestamp::new(123_456_789, 0).unwrap(); |
| 1351 | /// let tz = TimeZone::fixed(tz::offset(-4)); |
| 1352 | /// let zdt = ts.to_zoned(tz); |
| 1353 | /// // A time zone annotation is still included in the printable version |
| 1354 | /// // of the Zoned value, but it is fixed to a particular offset. |
| 1355 | /// assert_eq!(zdt.to_string(), "1973-11-29T17:33:09-04:00[-04:00]" ); |
| 1356 | /// ``` |
| 1357 | /// |
| 1358 | /// # Example: POSIX time zone strings |
| 1359 | /// |
| 1360 | /// This example shows how to create a time zone from a POSIX time zone |
| 1361 | /// string that describes the transition to and from daylight saving |
| 1362 | /// time for `America/St_Johns`. In particular, this rule uses non-zero |
| 1363 | /// minutes, which is atypical. |
| 1364 | /// |
| 1365 | /// ``` |
| 1366 | /// use jiff::{tz::TimeZone, Timestamp}; |
| 1367 | /// |
| 1368 | /// let ts = Timestamp::new(123_456_789, 0)?; |
| 1369 | /// let tz = TimeZone::posix("NST3:30NDT,M3.2.0,M11.1.0" )?; |
| 1370 | /// let zdt = ts.to_zoned(tz); |
| 1371 | /// // There isn't any agreed upon mechanism for transmitting a POSIX time |
| 1372 | /// // zone string within an RFC 9557 TZ annotation, so Jiff just emits the |
| 1373 | /// // offset. In practice, POSIX TZ strings are rarely user facing anyway. |
| 1374 | /// // (They are still in widespread use as an implementation detail of the |
| 1375 | /// // IANA Time Zone Database however.) |
| 1376 | /// assert_eq!(zdt.to_string(), "1973-11-29T18:03:09-03:30[-03:30]" ); |
| 1377 | /// |
| 1378 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1379 | /// ``` |
| 1380 | #[inline ] |
| 1381 | pub fn to_zoned(self, tz: TimeZone) -> Zoned { |
| 1382 | Zoned::new(self, tz) |
| 1383 | } |
| 1384 | |
| 1385 | /// Add the given span of time to this timestamp. |
| 1386 | /// |
| 1387 | /// This operation accepts three different duration types: [`Span`], |
| 1388 | /// [`SignedDuration`] or [`std::time::Duration`]. This is achieved via |
| 1389 | /// `From` trait implementations for the [`TimestampArithmetic`] type. |
| 1390 | /// |
| 1391 | /// # Properties |
| 1392 | /// |
| 1393 | /// Given a timestamp `ts1` and a span `s`, and assuming `ts2 = ts1 + s` |
| 1394 | /// exists, it follows then that `ts1 = ts2 - s` for all values of `ts1` |
| 1395 | /// and `s` that sum to a valid `ts2`. |
| 1396 | /// |
| 1397 | /// In short, subtracting the given span from the sum returned by this |
| 1398 | /// function is guaranteed to result in precisely the original timestamp. |
| 1399 | /// |
| 1400 | /// # Errors |
| 1401 | /// |
| 1402 | /// If the sum would overflow the minimum or maximum timestamp values, then |
| 1403 | /// an error is returned. |
| 1404 | /// |
| 1405 | /// This also returns an error if the given duration is a `Span` with any |
| 1406 | /// non-zero units greater than hours. If you want to use bigger units, |
| 1407 | /// convert this timestamp to a `Zoned` and use [`Zoned::checked_add`]. |
| 1408 | /// This error occurs because a `Timestamp` has no time zone attached to |
| 1409 | /// it, and thus cannot unambiguously resolve the length of a single day. |
| 1410 | /// |
| 1411 | /// # Example |
| 1412 | /// |
| 1413 | /// This shows how to add `5` hours to the Unix epoch: |
| 1414 | /// |
| 1415 | /// ``` |
| 1416 | /// use jiff::{Timestamp, ToSpan}; |
| 1417 | /// |
| 1418 | /// let ts = Timestamp::UNIX_EPOCH.checked_add(5.hours())?; |
| 1419 | /// assert_eq!(ts.to_string(), "1970-01-01T05:00:00Z" ); |
| 1420 | /// |
| 1421 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1422 | /// ``` |
| 1423 | /// |
| 1424 | /// # Example: negative spans are supported |
| 1425 | /// |
| 1426 | /// This shows how to add `-5` hours to the Unix epoch. This is the same |
| 1427 | /// as subtracting `5` hours from the Unix epoch. |
| 1428 | /// |
| 1429 | /// ``` |
| 1430 | /// use jiff::{Timestamp, ToSpan}; |
| 1431 | /// |
| 1432 | /// let ts = Timestamp::UNIX_EPOCH.checked_add(-5.hours())?; |
| 1433 | /// assert_eq!(ts.to_string(), "1969-12-31T19:00:00Z" ); |
| 1434 | /// |
| 1435 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1436 | /// ``` |
| 1437 | /// |
| 1438 | /// # Example: available via addition operator |
| 1439 | /// |
| 1440 | /// This routine can be used via the `+` operator. Note though that if it |
| 1441 | /// fails, it will result in a panic. |
| 1442 | /// |
| 1443 | /// ``` |
| 1444 | /// use jiff::{Timestamp, ToSpan}; |
| 1445 | /// |
| 1446 | /// let ts1 = Timestamp::new(2_999_999_999, 0)?; |
| 1447 | /// assert_eq!(ts1.to_string(), "2065-01-24T05:19:59Z" ); |
| 1448 | /// |
| 1449 | /// let ts2 = ts1 + 1.hour().minutes(30).nanoseconds(123); |
| 1450 | /// assert_eq!(ts2.to_string(), "2065-01-24T06:49:59.000000123Z" ); |
| 1451 | /// |
| 1452 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1453 | /// ``` |
| 1454 | /// |
| 1455 | /// # Example: error on overflow |
| 1456 | /// |
| 1457 | /// ``` |
| 1458 | /// use jiff::{Timestamp, ToSpan}; |
| 1459 | /// |
| 1460 | /// let ts = Timestamp::MAX; |
| 1461 | /// assert_eq!(ts.to_string(), "9999-12-30T22:00:00.999999999Z" ); |
| 1462 | /// assert!(ts.checked_add(1.nanosecond()).is_err()); |
| 1463 | /// |
| 1464 | /// let ts = Timestamp::MIN; |
| 1465 | /// assert_eq!(ts.to_string(), "-009999-01-02T01:59:59Z" ); |
| 1466 | /// assert!(ts.checked_add(-1.nanosecond()).is_err()); |
| 1467 | /// ``` |
| 1468 | /// |
| 1469 | /// # Example: adding absolute durations |
| 1470 | /// |
| 1471 | /// This shows how to add signed and unsigned absolute durations to a |
| 1472 | /// `Timestamp`. |
| 1473 | /// |
| 1474 | /// ``` |
| 1475 | /// use std::time::Duration; |
| 1476 | /// |
| 1477 | /// use jiff::{SignedDuration, Timestamp}; |
| 1478 | /// |
| 1479 | /// let ts1 = Timestamp::new(2_999_999_999, 0)?; |
| 1480 | /// assert_eq!(ts1.to_string(), "2065-01-24T05:19:59Z" ); |
| 1481 | /// |
| 1482 | /// let dur = SignedDuration::new(60 * 60 + 30 * 60, 123); |
| 1483 | /// assert_eq!( |
| 1484 | /// ts1.checked_add(dur)?.to_string(), |
| 1485 | /// "2065-01-24T06:49:59.000000123Z" , |
| 1486 | /// ); |
| 1487 | /// |
| 1488 | /// let dur = Duration::new(60 * 60 + 30 * 60, 123); |
| 1489 | /// assert_eq!( |
| 1490 | /// ts1.checked_add(dur)?.to_string(), |
| 1491 | /// "2065-01-24T06:49:59.000000123Z" , |
| 1492 | /// ); |
| 1493 | /// |
| 1494 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1495 | /// ``` |
| 1496 | #[inline ] |
| 1497 | pub fn checked_add<A: Into<TimestampArithmetic>>( |
| 1498 | self, |
| 1499 | duration: A, |
| 1500 | ) -> Result<Timestamp, Error> { |
| 1501 | let duration: TimestampArithmetic = duration.into(); |
| 1502 | duration.checked_add(self) |
| 1503 | } |
| 1504 | |
| 1505 | #[inline ] |
| 1506 | fn checked_add_span(self, span: Span) -> Result<Timestamp, Error> { |
| 1507 | if let Some(err) = span.smallest_non_time_non_zero_unit_error() { |
| 1508 | return Err(err); |
| 1509 | } |
| 1510 | if span.is_zero() { |
| 1511 | return Ok(self); |
| 1512 | } |
| 1513 | // The common case is probably a span without fractional seconds, so |
| 1514 | // we specialize for that since it requires a fair bit less math. |
| 1515 | // |
| 1516 | // Note that this only works when *both* the span and timestamp lack |
| 1517 | // fractional seconds. |
| 1518 | if self.subsec_nanosecond_ranged() == C(0) { |
| 1519 | if let Some(span_seconds) = span.to_invariant_seconds() { |
| 1520 | let time_seconds = self.as_second_ranged(); |
| 1521 | let sum = time_seconds |
| 1522 | .try_checked_add("span" , span_seconds) |
| 1523 | .with_context(|| { |
| 1524 | err!("adding {span} to {self} overflowed" ) |
| 1525 | })?; |
| 1526 | return Ok(Timestamp::from_second_ranged(sum)); |
| 1527 | } |
| 1528 | } |
| 1529 | let time_nanos = self.as_nanosecond_ranged(); |
| 1530 | let span_nanos = span.to_invariant_nanoseconds(); |
| 1531 | let sum = time_nanos |
| 1532 | .try_checked_add("span" , span_nanos) |
| 1533 | .with_context(|| err!("adding {span} to {self} overflowed" ))?; |
| 1534 | Ok(Timestamp::from_nanosecond_ranged(sum)) |
| 1535 | } |
| 1536 | |
| 1537 | #[inline ] |
| 1538 | fn checked_add_duration( |
| 1539 | self, |
| 1540 | duration: SignedDuration, |
| 1541 | ) -> Result<Timestamp, Error> { |
| 1542 | let start = self.as_duration(); |
| 1543 | let end = start.checked_add(duration).ok_or_else(|| { |
| 1544 | err!("overflow when adding {duration:?} to {self}" ) |
| 1545 | })?; |
| 1546 | Timestamp::from_duration(end) |
| 1547 | } |
| 1548 | |
| 1549 | /// This routine is identical to [`Timestamp::checked_add`] with the |
| 1550 | /// duration negated. |
| 1551 | /// |
| 1552 | /// # Errors |
| 1553 | /// |
| 1554 | /// This has the same error conditions as [`Timestamp::checked_add`]. |
| 1555 | /// |
| 1556 | /// # Example |
| 1557 | /// |
| 1558 | /// This routine can be used via the `-` operator. Note though that if it |
| 1559 | /// fails, it will result in a panic. |
| 1560 | /// |
| 1561 | /// ``` |
| 1562 | /// use jiff::{SignedDuration, Timestamp, ToSpan}; |
| 1563 | /// |
| 1564 | /// let ts1 = Timestamp::new(2_999_999_999, 0)?; |
| 1565 | /// assert_eq!(ts1.to_string(), "2065-01-24T05:19:59Z" ); |
| 1566 | /// |
| 1567 | /// let ts2 = ts1 - 1.hour().minutes(30).nanoseconds(123); |
| 1568 | /// assert_eq!(ts2.to_string(), "2065-01-24T03:49:58.999999877Z" ); |
| 1569 | /// |
| 1570 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1571 | /// ``` |
| 1572 | /// |
| 1573 | /// # Example: use with [`SignedDuration`] and [`std::time::Duration`] |
| 1574 | /// |
| 1575 | /// ``` |
| 1576 | /// use std::time::Duration; |
| 1577 | /// |
| 1578 | /// use jiff::{SignedDuration, Timestamp}; |
| 1579 | /// |
| 1580 | /// let ts1 = Timestamp::new(2_999_999_999, 0)?; |
| 1581 | /// assert_eq!(ts1.to_string(), "2065-01-24T05:19:59Z" ); |
| 1582 | /// |
| 1583 | /// let dur = SignedDuration::new(60 * 60 + 30 * 60, 123); |
| 1584 | /// assert_eq!( |
| 1585 | /// ts1.checked_sub(dur)?.to_string(), |
| 1586 | /// "2065-01-24T03:49:58.999999877Z" , |
| 1587 | /// ); |
| 1588 | /// |
| 1589 | /// let dur = Duration::new(60 * 60 + 30 * 60, 123); |
| 1590 | /// assert_eq!( |
| 1591 | /// ts1.checked_sub(dur)?.to_string(), |
| 1592 | /// "2065-01-24T03:49:58.999999877Z" , |
| 1593 | /// ); |
| 1594 | /// |
| 1595 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1596 | /// ``` |
| 1597 | #[inline ] |
| 1598 | pub fn checked_sub<A: Into<TimestampArithmetic>>( |
| 1599 | self, |
| 1600 | duration: A, |
| 1601 | ) -> Result<Timestamp, Error> { |
| 1602 | let duration: TimestampArithmetic = duration.into(); |
| 1603 | duration.checked_neg().and_then(|ta| ta.checked_add(self)) |
| 1604 | } |
| 1605 | |
| 1606 | /// This routine is identical to [`Timestamp::checked_add`], except the |
| 1607 | /// result saturates on overflow. That is, instead of overflow, either |
| 1608 | /// [`Timestamp::MIN`] or [`Timestamp::MAX`] is returned. |
| 1609 | /// |
| 1610 | /// # Errors |
| 1611 | /// |
| 1612 | /// This returns an error if the given `Span` contains any non-zero units |
| 1613 | /// greater than hours. |
| 1614 | /// |
| 1615 | /// # Example |
| 1616 | /// |
| 1617 | /// This example shows that arithmetic saturates on overflow. |
| 1618 | /// |
| 1619 | /// ``` |
| 1620 | /// use jiff::{SignedDuration, Timestamp, ToSpan}; |
| 1621 | /// |
| 1622 | /// assert_eq!( |
| 1623 | /// Timestamp::MAX, |
| 1624 | /// Timestamp::MAX.saturating_add(1.nanosecond())?, |
| 1625 | /// ); |
| 1626 | /// assert_eq!( |
| 1627 | /// Timestamp::MIN, |
| 1628 | /// Timestamp::MIN.saturating_add(-1.nanosecond())?, |
| 1629 | /// ); |
| 1630 | /// assert_eq!( |
| 1631 | /// Timestamp::MAX, |
| 1632 | /// Timestamp::UNIX_EPOCH.saturating_add(SignedDuration::MAX)?, |
| 1633 | /// ); |
| 1634 | /// assert_eq!( |
| 1635 | /// Timestamp::MIN, |
| 1636 | /// Timestamp::UNIX_EPOCH.saturating_add(SignedDuration::MIN)?, |
| 1637 | /// ); |
| 1638 | /// assert_eq!( |
| 1639 | /// Timestamp::MAX, |
| 1640 | /// Timestamp::UNIX_EPOCH.saturating_add(std::time::Duration::MAX)?, |
| 1641 | /// ); |
| 1642 | /// |
| 1643 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1644 | /// ``` |
| 1645 | #[inline ] |
| 1646 | pub fn saturating_add<A: Into<TimestampArithmetic>>( |
| 1647 | self, |
| 1648 | duration: A, |
| 1649 | ) -> Result<Timestamp, Error> { |
| 1650 | let duration: TimestampArithmetic = duration.into(); |
| 1651 | duration.saturating_add(self).context( |
| 1652 | "saturating `Timestamp` arithmetic requires only time units" , |
| 1653 | ) |
| 1654 | } |
| 1655 | |
| 1656 | /// This routine is identical to [`Timestamp::saturating_add`] with the |
| 1657 | /// span parameter negated. |
| 1658 | /// |
| 1659 | /// # Errors |
| 1660 | /// |
| 1661 | /// This returns an error if the given `Span` contains any non-zero units |
| 1662 | /// greater than hours. |
| 1663 | /// |
| 1664 | /// # Example |
| 1665 | /// |
| 1666 | /// This example shows that arithmetic saturates on overflow. |
| 1667 | /// |
| 1668 | /// ``` |
| 1669 | /// use jiff::{SignedDuration, Timestamp, ToSpan}; |
| 1670 | /// |
| 1671 | /// assert_eq!( |
| 1672 | /// Timestamp::MIN, |
| 1673 | /// Timestamp::MIN.saturating_sub(1.nanosecond())?, |
| 1674 | /// ); |
| 1675 | /// assert_eq!( |
| 1676 | /// Timestamp::MAX, |
| 1677 | /// Timestamp::MAX.saturating_sub(-1.nanosecond())?, |
| 1678 | /// ); |
| 1679 | /// assert_eq!( |
| 1680 | /// Timestamp::MIN, |
| 1681 | /// Timestamp::UNIX_EPOCH.saturating_sub(SignedDuration::MAX)?, |
| 1682 | /// ); |
| 1683 | /// assert_eq!( |
| 1684 | /// Timestamp::MAX, |
| 1685 | /// Timestamp::UNIX_EPOCH.saturating_sub(SignedDuration::MIN)?, |
| 1686 | /// ); |
| 1687 | /// assert_eq!( |
| 1688 | /// Timestamp::MIN, |
| 1689 | /// Timestamp::UNIX_EPOCH.saturating_sub(std::time::Duration::MAX)?, |
| 1690 | /// ); |
| 1691 | /// |
| 1692 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1693 | /// ``` |
| 1694 | #[inline ] |
| 1695 | pub fn saturating_sub<A: Into<TimestampArithmetic>>( |
| 1696 | self, |
| 1697 | duration: A, |
| 1698 | ) -> Result<Timestamp, Error> { |
| 1699 | let duration: TimestampArithmetic = duration.into(); |
| 1700 | let Ok(duration) = duration.checked_neg() else { |
| 1701 | return Ok(Timestamp::MIN); |
| 1702 | }; |
| 1703 | self.saturating_add(duration) |
| 1704 | } |
| 1705 | |
| 1706 | /// Returns a span representing the elapsed time from this timestamp until |
| 1707 | /// the given `other` timestamp. |
| 1708 | /// |
| 1709 | /// When `other` occurs before this timestamp, then the span returned will |
| 1710 | /// be negative. |
| 1711 | /// |
| 1712 | /// Depending on the input provided, the span returned is rounded. It may |
| 1713 | /// also be balanced up to bigger units than the default. By default, |
| 1714 | /// the span returned is balanced such that the biggest possible unit is |
| 1715 | /// seconds. |
| 1716 | /// |
| 1717 | /// This operation is configured by providing a [`TimestampDifference`] |
| 1718 | /// value. Since this routine accepts anything that implements |
| 1719 | /// `Into<TimestampDifference>`, once can pass a `Timestamp` directly. |
| 1720 | /// One can also pass a `(Unit, Timestamp)`, where `Unit` is treated as |
| 1721 | /// [`TimestampDifference::largest`]. |
| 1722 | /// |
| 1723 | /// # Properties |
| 1724 | /// |
| 1725 | /// It is guaranteed that if the returned span is subtracted from `other`, |
| 1726 | /// and if no rounding is requested, then the original timestamp will be |
| 1727 | /// returned. |
| 1728 | /// |
| 1729 | /// This routine is equivalent to `self.since(other).map(|span| -span)` |
| 1730 | /// if no rounding options are set. If rounding options are set, then |
| 1731 | /// it's equivalent to |
| 1732 | /// `self.since(other_without_rounding_options).map(|span| -span)`, |
| 1733 | /// followed by a call to [`Span::round`] with the appropriate rounding |
| 1734 | /// options set. This is because the negation of a span can result in |
| 1735 | /// different rounding results depending on the rounding mode. |
| 1736 | /// |
| 1737 | /// # Errors |
| 1738 | /// |
| 1739 | /// An error can occur in some cases when the requested configuration |
| 1740 | /// would result in a span that is beyond allowable limits. For example, |
| 1741 | /// the nanosecond component of a span cannot represent the span of |
| 1742 | /// time between the minimum and maximum timestamps supported by Jiff. |
| 1743 | /// Therefore, if one requests a span with its largest unit set to |
| 1744 | /// [`Unit::Nanosecond`], then it's possible for this routine to fail. |
| 1745 | /// |
| 1746 | /// An error can also occur if `TimestampDifference` is misconfigured. For |
| 1747 | /// example, if the smallest unit provided is bigger than the largest unit, |
| 1748 | /// or if the largest unit provided is bigger than hours. (To use bigger |
| 1749 | /// units with an instant in time, use [`Zoned::until`] instead.) |
| 1750 | /// |
| 1751 | /// It is guaranteed that if one provides a timestamp with the default |
| 1752 | /// [`TimestampDifference`] configuration, then this routine will never |
| 1753 | /// fail. |
| 1754 | /// |
| 1755 | /// # Example |
| 1756 | /// |
| 1757 | /// ``` |
| 1758 | /// use jiff::{Timestamp, ToSpan}; |
| 1759 | /// |
| 1760 | /// let earlier: Timestamp = "2006-08-24T22:30:00Z" .parse()?; |
| 1761 | /// let later: Timestamp = "2019-01-31 21:00:00Z" .parse()?; |
| 1762 | /// assert_eq!(earlier.until(later)?, 392509800.seconds().fieldwise()); |
| 1763 | /// |
| 1764 | /// // Flipping the timestamps is fine, but you'll get a negative span. |
| 1765 | /// assert_eq!(later.until(earlier)?, -392509800.seconds().fieldwise()); |
| 1766 | /// |
| 1767 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1768 | /// ``` |
| 1769 | /// |
| 1770 | /// # Example: using bigger units |
| 1771 | /// |
| 1772 | /// This example shows how to expand the span returned to bigger units. |
| 1773 | /// This makes use of a `From<(Unit, Timestamp)> for TimestampDifference` |
| 1774 | /// trait implementation. |
| 1775 | /// |
| 1776 | /// ``` |
| 1777 | /// use jiff::{Timestamp, ToSpan, Unit}; |
| 1778 | /// |
| 1779 | /// let ts1: Timestamp = "1995-12-07T03:24:30.000003500Z" .parse()?; |
| 1780 | /// let ts2: Timestamp = "2019-01-31 15:30:00Z" .parse()?; |
| 1781 | /// |
| 1782 | /// // The default limits durations to using "seconds" as the biggest unit. |
| 1783 | /// let span = ts1.until(ts2)?; |
| 1784 | /// assert_eq!(span.to_string(), "PT730641929.9999965S" ); |
| 1785 | /// |
| 1786 | /// // But we can ask for units all the way up to hours. |
| 1787 | /// let span = ts1.until((Unit::Hour, ts2))?; |
| 1788 | /// assert_eq!(span.to_string(), "PT202956H5M29.9999965S" ); |
| 1789 | /// |
| 1790 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1791 | /// ``` |
| 1792 | /// |
| 1793 | /// # Example: rounding the result |
| 1794 | /// |
| 1795 | /// This shows how one might find the difference between two timestamps and |
| 1796 | /// have the result rounded such that sub-seconds are removed. |
| 1797 | /// |
| 1798 | /// In this case, we need to hand-construct a [`TimestampDifference`] |
| 1799 | /// in order to gain full configurability. |
| 1800 | /// |
| 1801 | /// ``` |
| 1802 | /// use jiff::{Timestamp, TimestampDifference, ToSpan, Unit}; |
| 1803 | /// |
| 1804 | /// let ts1: Timestamp = "1995-12-07 03:24:30.000003500Z" .parse()?; |
| 1805 | /// let ts2: Timestamp = "2019-01-31 15:30:00Z" .parse()?; |
| 1806 | /// |
| 1807 | /// let span = ts1.until( |
| 1808 | /// TimestampDifference::from(ts2).smallest(Unit::Second), |
| 1809 | /// )?; |
| 1810 | /// assert_eq!(span.to_string(), "PT730641929S" ); |
| 1811 | /// |
| 1812 | /// // We can combine smallest and largest units too! |
| 1813 | /// let span = ts1.until( |
| 1814 | /// TimestampDifference::from(ts2) |
| 1815 | /// .smallest(Unit::Second) |
| 1816 | /// .largest(Unit::Hour), |
| 1817 | /// )?; |
| 1818 | /// assert_eq!(span.to_string(), "PT202956H5M29S" ); |
| 1819 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1820 | /// ``` |
| 1821 | #[inline ] |
| 1822 | pub fn until<A: Into<TimestampDifference>>( |
| 1823 | self, |
| 1824 | other: A, |
| 1825 | ) -> Result<Span, Error> { |
| 1826 | let args: TimestampDifference = other.into(); |
| 1827 | let span = args.until_with_largest_unit(self)?; |
| 1828 | if args.rounding_may_change_span() { |
| 1829 | span.round(args.round) |
| 1830 | } else { |
| 1831 | Ok(span) |
| 1832 | } |
| 1833 | } |
| 1834 | |
| 1835 | /// This routine is identical to [`Timestamp::until`], but the order of the |
| 1836 | /// parameters is flipped. |
| 1837 | /// |
| 1838 | /// # Errors |
| 1839 | /// |
| 1840 | /// This has the same error conditions as [`Timestamp::until`]. |
| 1841 | /// |
| 1842 | /// # Example |
| 1843 | /// |
| 1844 | /// This routine can be used via the `-` operator. Since the default |
| 1845 | /// configuration is used and because a `Span` can represent the difference |
| 1846 | /// between any two possible timestamps, it will never panic. |
| 1847 | /// |
| 1848 | /// ``` |
| 1849 | /// use jiff::{Timestamp, ToSpan}; |
| 1850 | /// |
| 1851 | /// let earlier: Timestamp = "2006-08-24T22:30:00Z" .parse()?; |
| 1852 | /// let later: Timestamp = "2019-01-31 21:00:00Z" .parse()?; |
| 1853 | /// assert_eq!(later - earlier, 392509800.seconds().fieldwise()); |
| 1854 | /// |
| 1855 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1856 | /// ``` |
| 1857 | #[inline ] |
| 1858 | pub fn since<A: Into<TimestampDifference>>( |
| 1859 | self, |
| 1860 | other: A, |
| 1861 | ) -> Result<Span, Error> { |
| 1862 | let args: TimestampDifference = other.into(); |
| 1863 | let span = -args.until_with_largest_unit(self)?; |
| 1864 | if args.rounding_may_change_span() { |
| 1865 | span.round(args.round) |
| 1866 | } else { |
| 1867 | Ok(span) |
| 1868 | } |
| 1869 | } |
| 1870 | |
| 1871 | /// Returns an absolute duration representing the elapsed time from this |
| 1872 | /// timestamp until the given `other` timestamp. |
| 1873 | /// |
| 1874 | /// When `other` occurs before this timestamp, then the duration returned |
| 1875 | /// will be negative. |
| 1876 | /// |
| 1877 | /// Unlike [`Timestamp::until`], this always returns a duration |
| 1878 | /// corresponding to a 96-bit integer of nanoseconds between two |
| 1879 | /// timestamps. |
| 1880 | /// |
| 1881 | /// # Fallibility |
| 1882 | /// |
| 1883 | /// This routine never panics or returns an error. Since there are no |
| 1884 | /// configuration options that can be incorrectly provided, no error is |
| 1885 | /// possible when calling this routine. In contrast, [`Timestamp::until`] |
| 1886 | /// can return an error in some cases due to misconfiguration. But like |
| 1887 | /// this routine, [`Timestamp::until`] never panics or returns an error in |
| 1888 | /// its default configuration. |
| 1889 | /// |
| 1890 | /// # When should I use this versus [`Timestamp::until`]? |
| 1891 | /// |
| 1892 | /// See the type documentation for [`SignedDuration`] for the section on |
| 1893 | /// when one should use [`Span`] and when one should use `SignedDuration`. |
| 1894 | /// In short, use `Span` (and therefore `Timestamp::until`) unless you have |
| 1895 | /// a specific reason to do otherwise. |
| 1896 | /// |
| 1897 | /// # Example |
| 1898 | /// |
| 1899 | /// ``` |
| 1900 | /// use jiff::{Timestamp, SignedDuration}; |
| 1901 | /// |
| 1902 | /// let earlier: Timestamp = "2006-08-24T22:30:00Z" .parse()?; |
| 1903 | /// let later: Timestamp = "2019-01-31 21:00:00Z" .parse()?; |
| 1904 | /// assert_eq!( |
| 1905 | /// earlier.duration_until(later), |
| 1906 | /// SignedDuration::from_secs(392509800), |
| 1907 | /// ); |
| 1908 | /// |
| 1909 | /// // Flipping the timestamps is fine, but you'll get a negative span. |
| 1910 | /// assert_eq!( |
| 1911 | /// later.duration_until(earlier), |
| 1912 | /// SignedDuration::from_secs(-392509800), |
| 1913 | /// ); |
| 1914 | /// |
| 1915 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1916 | /// ``` |
| 1917 | /// |
| 1918 | /// # Example: difference with [`Timestamp::until`] |
| 1919 | /// |
| 1920 | /// The primary difference between this routine and |
| 1921 | /// `Timestamp::until`, other than the return type, is that this |
| 1922 | /// routine is likely to be faster. Namely, it does simple 96-bit |
| 1923 | /// integer math, where as `Timestamp::until` has to do a bit more |
| 1924 | /// work to deal with the different types of units on a `Span`. |
| 1925 | /// |
| 1926 | /// Additionally, since the difference between two timestamps is always |
| 1927 | /// expressed in units of hours or smaller, and units of hours or smaller |
| 1928 | /// are always uniform, there is no "expressive" difference between this |
| 1929 | /// routine and `Timestamp::until`. Because of this, one can always |
| 1930 | /// convert between `Span` and `SignedDuration` as returned by methods |
| 1931 | /// on `Timestamp` without a relative datetime: |
| 1932 | /// |
| 1933 | /// ``` |
| 1934 | /// use jiff::{SignedDuration, Span, Timestamp}; |
| 1935 | /// |
| 1936 | /// let ts1: Timestamp = "2024-02-28T00:00:00Z" .parse()?; |
| 1937 | /// let ts2: Timestamp = "2024-03-01T00:00:00Z" .parse()?; |
| 1938 | /// let dur = ts1.duration_until(ts2); |
| 1939 | /// // Guaranteed to never fail because the duration |
| 1940 | /// // between two civil times never exceeds the limits |
| 1941 | /// // of a `Span`. |
| 1942 | /// let span = Span::try_from(dur).unwrap(); |
| 1943 | /// assert_eq!(format!("{span:#}" ), "172800s" ); |
| 1944 | /// // Guaranteed to succeed and always return the original |
| 1945 | /// // duration because the units are always hours or smaller, |
| 1946 | /// // and thus uniform. This means a relative datetime is |
| 1947 | /// // never required to do this conversion. |
| 1948 | /// let dur = SignedDuration::try_from(span).unwrap(); |
| 1949 | /// assert_eq!(dur, SignedDuration::from_secs(172_800)); |
| 1950 | /// |
| 1951 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1952 | /// ``` |
| 1953 | /// |
| 1954 | /// This conversion guarantee also applies to [`Timestamp::until`] since it |
| 1955 | /// always returns a balanced span. That is, it never returns spans like |
| 1956 | /// `1 second 1000 milliseconds`. (Those cannot be losslessly converted to |
| 1957 | /// a `SignedDuration` since a `SignedDuration` is only represented as a |
| 1958 | /// single 96-bit integer of nanoseconds.) |
| 1959 | #[inline ] |
| 1960 | pub fn duration_until(self, other: Timestamp) -> SignedDuration { |
| 1961 | SignedDuration::timestamp_until(self, other) |
| 1962 | } |
| 1963 | |
| 1964 | /// This routine is identical to [`Timestamp::duration_until`], but the |
| 1965 | /// order of the parameters is flipped. |
| 1966 | /// |
| 1967 | /// # Example |
| 1968 | /// |
| 1969 | /// ``` |
| 1970 | /// use jiff::{SignedDuration, Timestamp}; |
| 1971 | /// |
| 1972 | /// let earlier: Timestamp = "2006-08-24T22:30:00Z" .parse()?; |
| 1973 | /// let later: Timestamp = "2019-01-31 21:00:00Z" .parse()?; |
| 1974 | /// assert_eq!( |
| 1975 | /// later.duration_since(earlier), |
| 1976 | /// SignedDuration::from_secs(392509800), |
| 1977 | /// ); |
| 1978 | /// |
| 1979 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1980 | /// ``` |
| 1981 | #[inline ] |
| 1982 | pub fn duration_since(self, other: Timestamp) -> SignedDuration { |
| 1983 | SignedDuration::timestamp_until(other, self) |
| 1984 | } |
| 1985 | |
| 1986 | /// Rounds this timestamp according to the [`TimestampRound`] configuration |
| 1987 | /// given. |
| 1988 | /// |
| 1989 | /// The principal option is [`TimestampRound::smallest`], which allows |
| 1990 | /// one to configure the smallest units in the returned timestamp. |
| 1991 | /// Rounding is what determines whether the specified smallest unit |
| 1992 | /// should keep its current value or whether it should be incremented. |
| 1993 | /// Moreover, the amount it should be incremented can be configured via |
| 1994 | /// [`TimestampRound::increment`]. Finally, the rounding strategy itself |
| 1995 | /// can be configured via [`TimestampRound::mode`]. |
| 1996 | /// |
| 1997 | /// Note that this routine is generic and accepts anything that |
| 1998 | /// implements `Into<TimestampRound>`. Some notable implementations are: |
| 1999 | /// |
| 2000 | /// * `From<Unit> for TimestampRound`, which will automatically create a |
| 2001 | /// `TimestampRound::new().smallest(unit)` from the unit provided. |
| 2002 | /// * `From<(Unit, i64)> for TimestampRound`, which will automatically |
| 2003 | /// create a `TimestampRound::new().smallest(unit).increment(number)` from |
| 2004 | /// the unit and increment provided. |
| 2005 | /// |
| 2006 | /// # Errors |
| 2007 | /// |
| 2008 | /// This returns an error if the smallest unit configured on the given |
| 2009 | /// [`TimestampRound`] is bigger than hours. |
| 2010 | /// |
| 2011 | /// The rounding increment, when combined with the smallest unit (which |
| 2012 | /// defaults to [`Unit::Nanosecond`]), must divide evenly into `86,400` |
| 2013 | /// seconds (one 24-hour civil day). For example, increments of both |
| 2014 | /// 45 seconds and 15 minutes are allowed, but 7 seconds and 25 minutes are |
| 2015 | /// both not allowed. |
| 2016 | /// |
| 2017 | /// # Example |
| 2018 | /// |
| 2019 | /// This is a basic example that demonstrates rounding a timestamp to the |
| 2020 | /// nearest hour. This also demonstrates calling this method with the |
| 2021 | /// smallest unit directly, instead of constructing a `TimestampRound` |
| 2022 | /// manually. |
| 2023 | /// |
| 2024 | /// ``` |
| 2025 | /// use jiff::{Timestamp, Unit}; |
| 2026 | /// |
| 2027 | /// let ts: Timestamp = "2024-06-19 15:30:00Z" .parse()?; |
| 2028 | /// assert_eq!( |
| 2029 | /// ts.round(Unit::Hour)?.to_string(), |
| 2030 | /// "2024-06-19T16:00:00Z" , |
| 2031 | /// ); |
| 2032 | /// let ts: Timestamp = "2024-06-19 15:29:59Z" .parse()?; |
| 2033 | /// assert_eq!( |
| 2034 | /// ts.round(Unit::Hour)?.to_string(), |
| 2035 | /// "2024-06-19T15:00:00Z" , |
| 2036 | /// ); |
| 2037 | /// |
| 2038 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2039 | /// ``` |
| 2040 | /// |
| 2041 | /// # Example: changing the rounding mode |
| 2042 | /// |
| 2043 | /// The default rounding mode is [`RoundMode::HalfExpand`], which |
| 2044 | /// breaks ties by rounding away from zero. But other modes like |
| 2045 | /// [`RoundMode::Trunc`] can be used too: |
| 2046 | /// |
| 2047 | /// ``` |
| 2048 | /// use jiff::{RoundMode, Timestamp, TimestampRound, Unit}; |
| 2049 | /// |
| 2050 | /// // The default will round up to the next hour for any time past the |
| 2051 | /// // 30 minute mark, but using truncation rounding will always round |
| 2052 | /// // down. |
| 2053 | /// let ts: Timestamp = "2024-06-19 15:30:00Z" .parse()?; |
| 2054 | /// assert_eq!( |
| 2055 | /// ts.round( |
| 2056 | /// TimestampRound::new() |
| 2057 | /// .smallest(Unit::Hour) |
| 2058 | /// .mode(RoundMode::Trunc), |
| 2059 | /// )?.to_string(), |
| 2060 | /// "2024-06-19T15:00:00Z" , |
| 2061 | /// ); |
| 2062 | /// |
| 2063 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2064 | /// ``` |
| 2065 | /// |
| 2066 | /// # Example: rounding to the nearest 5 minute increment |
| 2067 | /// |
| 2068 | /// ``` |
| 2069 | /// use jiff::{Timestamp, Unit}; |
| 2070 | /// |
| 2071 | /// // rounds down |
| 2072 | /// let ts: Timestamp = "2024-06-19T15:27:29.999999999Z" .parse()?; |
| 2073 | /// assert_eq!( |
| 2074 | /// ts.round((Unit::Minute, 5))?.to_string(), |
| 2075 | /// "2024-06-19T15:25:00Z" , |
| 2076 | /// ); |
| 2077 | /// // rounds up |
| 2078 | /// let ts: Timestamp = "2024-06-19T15:27:30Z" .parse()?; |
| 2079 | /// assert_eq!( |
| 2080 | /// ts.round((Unit::Minute, 5))?.to_string(), |
| 2081 | /// "2024-06-19T15:30:00Z" , |
| 2082 | /// ); |
| 2083 | /// |
| 2084 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2085 | /// ``` |
| 2086 | #[inline ] |
| 2087 | pub fn round<R: Into<TimestampRound>>( |
| 2088 | self, |
| 2089 | options: R, |
| 2090 | ) -> Result<Timestamp, Error> { |
| 2091 | let options: TimestampRound = options.into(); |
| 2092 | options.round(self) |
| 2093 | } |
| 2094 | |
| 2095 | /// Return an iterator of periodic timestamps determined by the given span. |
| 2096 | /// |
| 2097 | /// The given span may be negative, in which case, the iterator will move |
| 2098 | /// backwards through time. The iterator won't stop until either the span |
| 2099 | /// itself overflows, or it would otherwise exceed the minimum or maximum |
| 2100 | /// `Timestamp` value. |
| 2101 | /// |
| 2102 | /// # Example: when to check a glucose monitor |
| 2103 | /// |
| 2104 | /// When my cat had diabetes, my veterinarian installed a glucose monitor |
| 2105 | /// and instructed me to scan it about every 5 hours. This example lists |
| 2106 | /// all of the times I need to scan it for the 2 days following its |
| 2107 | /// installation: |
| 2108 | /// |
| 2109 | /// ``` |
| 2110 | /// use jiff::{Timestamp, ToSpan}; |
| 2111 | /// |
| 2112 | /// let start: Timestamp = "2023-07-15 16:30:00-04" .parse()?; |
| 2113 | /// let end = start.checked_add(48.hours())?; |
| 2114 | /// let mut scan_times = vec![]; |
| 2115 | /// for ts in start.series(5.hours()).take_while(|&ts| ts <= end) { |
| 2116 | /// scan_times.push(ts); |
| 2117 | /// } |
| 2118 | /// assert_eq!(scan_times, vec![ |
| 2119 | /// "2023-07-15 16:30:00-04:00" .parse::<Timestamp>()?, |
| 2120 | /// "2023-07-15 21:30:00-04:00" .parse::<Timestamp>()?, |
| 2121 | /// "2023-07-16 02:30:00-04:00" .parse::<Timestamp>()?, |
| 2122 | /// "2023-07-16 07:30:00-04:00" .parse::<Timestamp>()?, |
| 2123 | /// "2023-07-16 12:30:00-04:00" .parse::<Timestamp>()?, |
| 2124 | /// "2023-07-16 17:30:00-04:00" .parse::<Timestamp>()?, |
| 2125 | /// "2023-07-16 22:30:00-04:00" .parse::<Timestamp>()?, |
| 2126 | /// "2023-07-17 03:30:00-04:00" .parse::<Timestamp>()?, |
| 2127 | /// "2023-07-17 08:30:00-04:00" .parse::<Timestamp>()?, |
| 2128 | /// "2023-07-17 13:30:00-04:00" .parse::<Timestamp>()?, |
| 2129 | /// ]); |
| 2130 | /// |
| 2131 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2132 | /// ``` |
| 2133 | #[inline ] |
| 2134 | pub fn series(self, period: Span) -> TimestampSeries { |
| 2135 | TimestampSeries::new(self, period) |
| 2136 | } |
| 2137 | } |
| 2138 | |
| 2139 | /// Parsing and formatting APIs. |
| 2140 | impl Timestamp { |
| 2141 | /// Parses a timestamp (expressed as broken down time) in `input` matching |
| 2142 | /// the given `format`. |
| 2143 | /// |
| 2144 | /// The format string uses a "printf"-style API where conversion |
| 2145 | /// specifiers can be used as place holders to match components of |
| 2146 | /// a datetime. For details on the specifiers supported, see the |
| 2147 | /// [`fmt::strtime`] module documentation. |
| 2148 | /// |
| 2149 | /// # Errors |
| 2150 | /// |
| 2151 | /// This returns an error when parsing failed. This might happen because |
| 2152 | /// the format string itself was invalid, or because the input didn't match |
| 2153 | /// the format string. |
| 2154 | /// |
| 2155 | /// This also returns an error if there wasn't sufficient information to |
| 2156 | /// construct a timestamp. For example, if an offset wasn't parsed. (The |
| 2157 | /// offset is needed to turn the civil time parsed into a precise instant |
| 2158 | /// in time.) |
| 2159 | /// |
| 2160 | /// # Example |
| 2161 | /// |
| 2162 | /// This example shows how to parse a datetime string into a timestamp: |
| 2163 | /// |
| 2164 | /// ``` |
| 2165 | /// use jiff::Timestamp; |
| 2166 | /// |
| 2167 | /// let ts = Timestamp::strptime("%F %H:%M %:z" , "2024-07-14 21:14 -04:00" )?; |
| 2168 | /// assert_eq!(ts.to_string(), "2024-07-15T01:14:00Z" ); |
| 2169 | /// |
| 2170 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2171 | /// ``` |
| 2172 | #[inline ] |
| 2173 | pub fn strptime( |
| 2174 | format: impl AsRef<[u8]>, |
| 2175 | input: impl AsRef<[u8]>, |
| 2176 | ) -> Result<Timestamp, Error> { |
| 2177 | fmt::strtime::parse(format, input).and_then(|tm| tm.to_timestamp()) |
| 2178 | } |
| 2179 | |
| 2180 | /// Formats this timestamp according to the given `format`. |
| 2181 | /// |
| 2182 | /// The format string uses a "printf"-style API where conversion |
| 2183 | /// specifiers can be used as place holders to format components of |
| 2184 | /// a datetime. For details on the specifiers supported, see the |
| 2185 | /// [`fmt::strtime`] module documentation. |
| 2186 | /// |
| 2187 | /// # Errors and panics |
| 2188 | /// |
| 2189 | /// While this routine itself does not error or panic, using the value |
| 2190 | /// returned may result in a panic if formatting fails. See the |
| 2191 | /// documentation on [`fmt::strtime::Display`] for more information. |
| 2192 | /// |
| 2193 | /// To format in a way that surfaces errors without panicking, use either |
| 2194 | /// [`fmt::strtime::format`] or [`fmt::strtime::BrokenDownTime::format`]. |
| 2195 | /// |
| 2196 | /// # Example |
| 2197 | /// |
| 2198 | /// This shows how to format a timestamp into a human readable datetime |
| 2199 | /// in UTC: |
| 2200 | /// |
| 2201 | /// ``` |
| 2202 | /// use jiff::{civil::date, Timestamp}; |
| 2203 | /// |
| 2204 | /// let ts = Timestamp::from_second(86_400)?; |
| 2205 | /// let string = ts.strftime("%a %b %e %I:%M:%S %p UTC %Y" ).to_string(); |
| 2206 | /// assert_eq!(string, "Fri Jan 2 12:00:00 AM UTC 1970" ); |
| 2207 | /// |
| 2208 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2209 | /// ``` |
| 2210 | #[inline ] |
| 2211 | pub fn strftime<'f, F: 'f + ?Sized + AsRef<[u8]>>( |
| 2212 | &self, |
| 2213 | format: &'f F, |
| 2214 | ) -> fmt::strtime::Display<'f> { |
| 2215 | fmt::strtime::Display { fmt: format.as_ref(), tm: (*self).into() } |
| 2216 | } |
| 2217 | |
| 2218 | /// Format a `Timestamp` datetime into a string with the given offset. |
| 2219 | /// |
| 2220 | /// This will format to an RFC 3339 compatible string with an offset. |
| 2221 | /// |
| 2222 | /// This will never use either `Z` (for Zulu time) or `-00:00` as an |
| 2223 | /// offset. This is because Zulu time (and `-00:00`) mean "the time in UTC |
| 2224 | /// is known, but the offset to local time is unknown." Since this routine |
| 2225 | /// accepts an explicit offset, the offset is known. For example, |
| 2226 | /// `Offset::UTC` will be formatted as `+00:00`. |
| 2227 | /// |
| 2228 | /// To format an RFC 3339 string in Zulu time, use the default |
| 2229 | /// [`std::fmt::Display`] trait implementation on `Timestamp`. |
| 2230 | /// |
| 2231 | /// # Example |
| 2232 | /// |
| 2233 | /// ``` |
| 2234 | /// use jiff::{tz, Timestamp}; |
| 2235 | /// |
| 2236 | /// let ts = Timestamp::from_second(1)?; |
| 2237 | /// assert_eq!( |
| 2238 | /// ts.display_with_offset(tz::offset(-5)).to_string(), |
| 2239 | /// "1969-12-31T19:00:01-05:00" , |
| 2240 | /// ); |
| 2241 | /// |
| 2242 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2243 | /// ``` |
| 2244 | #[inline ] |
| 2245 | pub fn display_with_offset( |
| 2246 | &self, |
| 2247 | offset: Offset, |
| 2248 | ) -> TimestampDisplayWithOffset { |
| 2249 | TimestampDisplayWithOffset { timestamp: *self, offset } |
| 2250 | } |
| 2251 | } |
| 2252 | |
| 2253 | /// Internal APIs using Jiff ranged integers. |
| 2254 | impl Timestamp { |
| 2255 | #[inline ] |
| 2256 | pub(crate) fn new_ranged( |
| 2257 | second: UnixSeconds, |
| 2258 | nanosecond: FractionalNanosecond, |
| 2259 | ) -> Result<Timestamp, Error> { |
| 2260 | if second == UnixSeconds::MIN_SELF && nanosecond < C(0) { |
| 2261 | return Err(Error::range( |
| 2262 | "seconds and nanoseconds" , |
| 2263 | nanosecond, |
| 2264 | 0, |
| 2265 | 1_000_000_000, |
| 2266 | )); |
| 2267 | } |
| 2268 | // We now normalize our seconds and nanoseconds such that they have |
| 2269 | // the same sign (or where one is zero). So for example, when given |
| 2270 | // `-1s 1ns`, then we should turn that into `-999,999,999ns`. |
| 2271 | // |
| 2272 | // But first, if we're already normalized, we're done! |
| 2273 | if second.signum() == nanosecond.signum() |
| 2274 | || second == C(0) |
| 2275 | || nanosecond == C(0) |
| 2276 | { |
| 2277 | return Ok(Timestamp { second, nanosecond }); |
| 2278 | } |
| 2279 | let second = second.without_bounds(); |
| 2280 | let nanosecond = nanosecond.without_bounds(); |
| 2281 | let [delta_second, delta_nanosecond] = t::NoUnits::vary_many( |
| 2282 | [second, nanosecond], |
| 2283 | |[second, nanosecond]| { |
| 2284 | if second < C(0) && nanosecond > C(0) { |
| 2285 | [C(1), (-t::NANOS_PER_SECOND).rinto()] |
| 2286 | } else if second > C(0) && nanosecond < C(0) { |
| 2287 | [C(-1), t::NANOS_PER_SECOND.rinto()] |
| 2288 | } else { |
| 2289 | [C(0), C(0)] |
| 2290 | } |
| 2291 | }, |
| 2292 | ); |
| 2293 | Ok(Timestamp { |
| 2294 | second: (second + delta_second).rinto(), |
| 2295 | nanosecond: (nanosecond + delta_nanosecond).rinto(), |
| 2296 | }) |
| 2297 | } |
| 2298 | |
| 2299 | #[inline ] |
| 2300 | fn from_second_ranged(second: UnixSeconds) -> Timestamp { |
| 2301 | Timestamp { second, nanosecond: FractionalNanosecond::N::<0>() } |
| 2302 | } |
| 2303 | |
| 2304 | #[inline ] |
| 2305 | fn from_millisecond_ranged(millisecond: UnixMilliseconds) -> Timestamp { |
| 2306 | let second = |
| 2307 | UnixSeconds::rfrom(millisecond.div_ceil(t::MILLIS_PER_SECOND)); |
| 2308 | let nanosecond = FractionalNanosecond::rfrom( |
| 2309 | millisecond.rem_ceil(t::MILLIS_PER_SECOND) * t::NANOS_PER_MILLI, |
| 2310 | ); |
| 2311 | Timestamp { second, nanosecond } |
| 2312 | } |
| 2313 | |
| 2314 | #[inline ] |
| 2315 | fn from_microsecond_ranged(microsecond: UnixMicroseconds) -> Timestamp { |
| 2316 | let second = |
| 2317 | UnixSeconds::rfrom(microsecond.div_ceil(t::MICROS_PER_SECOND)); |
| 2318 | let nanosecond = FractionalNanosecond::rfrom( |
| 2319 | microsecond.rem_ceil(t::MICROS_PER_SECOND) * t::NANOS_PER_MICRO, |
| 2320 | ); |
| 2321 | Timestamp { second, nanosecond } |
| 2322 | } |
| 2323 | |
| 2324 | #[inline ] |
| 2325 | pub(crate) fn from_nanosecond_ranged( |
| 2326 | nanosecond: UnixNanoseconds, |
| 2327 | ) -> Timestamp { |
| 2328 | let second = |
| 2329 | UnixSeconds::rfrom(nanosecond.div_ceil(t::NANOS_PER_SECOND)); |
| 2330 | let nanosecond = nanosecond.rem_ceil(t::NANOS_PER_SECOND).rinto(); |
| 2331 | Timestamp { second, nanosecond } |
| 2332 | } |
| 2333 | |
| 2334 | #[inline ] |
| 2335 | pub(crate) fn from_itimestamp( |
| 2336 | its: Composite<ITimestamp>, |
| 2337 | ) -> Result<Timestamp, Error> { |
| 2338 | let (second, nanosecond) = |
| 2339 | rangeint::uncomposite!(its, c => (c.second, c.nanosecond)); |
| 2340 | Ok(Timestamp { |
| 2341 | second: second.try_to_rint("unix-seconds" )?, |
| 2342 | nanosecond: nanosecond.to_rint(), |
| 2343 | }) |
| 2344 | } |
| 2345 | |
| 2346 | #[inline ] |
| 2347 | pub(crate) fn to_itimestamp(&self) -> Composite<ITimestamp> { |
| 2348 | rangeint::composite! { |
| 2349 | (second = self.second, nanosecond = self.nanosecond) => { |
| 2350 | ITimestamp { second, nanosecond } |
| 2351 | } |
| 2352 | } |
| 2353 | } |
| 2354 | |
| 2355 | #[inline ] |
| 2356 | pub(crate) const fn from_itimestamp_const(its: ITimestamp) -> Timestamp { |
| 2357 | Timestamp { |
| 2358 | second: UnixSeconds::new_unchecked(its.second), |
| 2359 | nanosecond: FractionalNanosecond::new_unchecked(its.nanosecond), |
| 2360 | } |
| 2361 | } |
| 2362 | |
| 2363 | #[inline ] |
| 2364 | pub(crate) const fn to_itimestamp_const(&self) -> ITimestamp { |
| 2365 | ITimestamp { |
| 2366 | second: self.second.get_unchecked(), |
| 2367 | nanosecond: self.nanosecond.get_unchecked(), |
| 2368 | } |
| 2369 | } |
| 2370 | |
| 2371 | #[inline ] |
| 2372 | pub(crate) fn as_second_ranged(self) -> UnixSeconds { |
| 2373 | self.second |
| 2374 | } |
| 2375 | |
| 2376 | #[inline ] |
| 2377 | fn as_millisecond_ranged(self) -> UnixMilliseconds { |
| 2378 | let second = NoUnits::rfrom(self.as_second_ranged()); |
| 2379 | let nanosecond = NoUnits::rfrom(self.subsec_nanosecond_ranged()); |
| 2380 | // The minimum value of a timestamp has the fractional nanosecond set |
| 2381 | // to 0, but otherwise its minimum value is -999_999_999. So to avoid |
| 2382 | // a case where we return a ranged integer with a minimum value less |
| 2383 | // than the actual minimum, we clamp the fractional part to 0 when the |
| 2384 | // second value is the minimum. |
| 2385 | let [second, nanosecond] = |
| 2386 | NoUnits::vary_many([second, nanosecond], |[second, nanosecond]| { |
| 2387 | if second == UnixSeconds::MIN_SELF && nanosecond < C(0) { |
| 2388 | [second, C(0).rinto()] |
| 2389 | } else { |
| 2390 | [second, nanosecond] |
| 2391 | } |
| 2392 | }); |
| 2393 | UnixMilliseconds::rfrom( |
| 2394 | (second * t::MILLIS_PER_SECOND) |
| 2395 | + (nanosecond.div_ceil(t::NANOS_PER_MILLI)), |
| 2396 | ) |
| 2397 | } |
| 2398 | |
| 2399 | #[inline ] |
| 2400 | fn as_microsecond_ranged(self) -> UnixMicroseconds { |
| 2401 | let second = NoUnits::rfrom(self.as_second_ranged()); |
| 2402 | let nanosecond = NoUnits::rfrom(self.subsec_nanosecond_ranged()); |
| 2403 | // The minimum value of a timestamp has the fractional nanosecond set |
| 2404 | // to 0, but otherwise its minimum value is -999_999_999. So to avoid |
| 2405 | // a case where we return a ranged integer with a minimum value less |
| 2406 | // than the actual minimum, we clamp the fractional part to 0 when the |
| 2407 | // second value is the minimum. |
| 2408 | let [second, nanosecond] = |
| 2409 | NoUnits::vary_many([second, nanosecond], |[second, nanosecond]| { |
| 2410 | if second == UnixSeconds::MIN_SELF && nanosecond < C(0) { |
| 2411 | [second, C(0).rinto()] |
| 2412 | } else { |
| 2413 | [second, nanosecond] |
| 2414 | } |
| 2415 | }); |
| 2416 | UnixMicroseconds::rfrom( |
| 2417 | (second * t::MICROS_PER_SECOND) |
| 2418 | + (nanosecond.div_ceil(t::NANOS_PER_MICRO)), |
| 2419 | ) |
| 2420 | } |
| 2421 | |
| 2422 | #[inline ] |
| 2423 | pub(crate) fn as_nanosecond_ranged(self) -> UnixNanoseconds { |
| 2424 | let second = NoUnits128::rfrom(self.as_second_ranged()); |
| 2425 | let nanosecond = NoUnits128::rfrom(self.subsec_nanosecond_ranged()); |
| 2426 | // The minimum value of a timestamp has the fractional nanosecond set |
| 2427 | // to 0, but otherwise its minimum value is -999_999_999. So to avoid |
| 2428 | // a case where we return a ranged integer with a minimum value less |
| 2429 | // than the actual minimum, we clamp the fractional part to 0 when the |
| 2430 | // second value is the minimum. |
| 2431 | let [second, nanosecond] = NoUnits128::vary_many( |
| 2432 | [second, nanosecond], |
| 2433 | |[second, nanosecond]| { |
| 2434 | if second == UnixSeconds::MIN_SELF && nanosecond < C(0) { |
| 2435 | [second, C(0).rinto()] |
| 2436 | } else { |
| 2437 | [second, nanosecond] |
| 2438 | } |
| 2439 | }, |
| 2440 | ); |
| 2441 | UnixNanoseconds::rfrom(second * t::NANOS_PER_SECOND + nanosecond) |
| 2442 | } |
| 2443 | |
| 2444 | #[inline ] |
| 2445 | fn subsec_millisecond_ranged(self) -> t::FractionalMillisecond { |
| 2446 | let millis = |
| 2447 | self.subsec_nanosecond_ranged().div_ceil(t::NANOS_PER_MILLI); |
| 2448 | t::FractionalMillisecond::rfrom(millis) |
| 2449 | } |
| 2450 | |
| 2451 | #[inline ] |
| 2452 | fn subsec_microsecond_ranged(self) -> t::FractionalMicrosecond { |
| 2453 | let micros = |
| 2454 | self.subsec_nanosecond_ranged().div_ceil(t::NANOS_PER_MICRO); |
| 2455 | t::FractionalMicrosecond::rfrom(micros) |
| 2456 | } |
| 2457 | |
| 2458 | #[inline ] |
| 2459 | pub(crate) fn subsec_nanosecond_ranged(self) -> FractionalNanosecond { |
| 2460 | self.nanosecond |
| 2461 | } |
| 2462 | } |
| 2463 | |
| 2464 | impl Default for Timestamp { |
| 2465 | #[inline ] |
| 2466 | fn default() -> Timestamp { |
| 2467 | Timestamp::UNIX_EPOCH |
| 2468 | } |
| 2469 | } |
| 2470 | |
| 2471 | /// Converts a `Timestamp` datetime into a human readable datetime string. |
| 2472 | /// |
| 2473 | /// (This `Debug` representation currently emits the same string as the |
| 2474 | /// `Display` representation, but this is not a guarantee.) |
| 2475 | /// |
| 2476 | /// Options currently supported: |
| 2477 | /// |
| 2478 | /// * [`std::fmt::Formatter::precision`] can be set to control the precision |
| 2479 | /// of the fractional second component. |
| 2480 | /// |
| 2481 | /// # Example |
| 2482 | /// |
| 2483 | /// ``` |
| 2484 | /// use jiff::Timestamp; |
| 2485 | /// |
| 2486 | /// let ts = Timestamp::new(1_123_456_789, 123_000_000)?; |
| 2487 | /// assert_eq!( |
| 2488 | /// format!("{ts:.6?}" ), |
| 2489 | /// "2005-08-07T23:19:49.123000Z" , |
| 2490 | /// ); |
| 2491 | /// // Precision values greater than 9 are clamped to 9. |
| 2492 | /// assert_eq!( |
| 2493 | /// format!("{ts:.300?}" ), |
| 2494 | /// "2005-08-07T23:19:49.123000000Z" , |
| 2495 | /// ); |
| 2496 | /// // A precision of 0 implies the entire fractional |
| 2497 | /// // component is always truncated. |
| 2498 | /// assert_eq!( |
| 2499 | /// format!("{ts:.0?}" ), |
| 2500 | /// "2005-08-07T23:19:49Z" , |
| 2501 | /// ); |
| 2502 | /// |
| 2503 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2504 | /// ``` |
| 2505 | impl core::fmt::Debug for Timestamp { |
| 2506 | #[inline ] |
| 2507 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 2508 | core::fmt::Display::fmt(self, f) |
| 2509 | } |
| 2510 | } |
| 2511 | |
| 2512 | /// Converts a `Timestamp` datetime into a RFC 3339 compliant string. |
| 2513 | /// |
| 2514 | /// Since a `Timestamp` never has an offset associated with it and is always |
| 2515 | /// in UTC, the string emitted by this trait implementation uses `Z` for "Zulu" |
| 2516 | /// time. The significance of Zulu time is prescribed by RFC 9557 and means |
| 2517 | /// that "the time in UTC is known, but the offset to local time is unknown." |
| 2518 | /// If you need to emit an RFC 3339 compliant string with a specific offset, |
| 2519 | /// then use [`Timestamp::display_with_offset`]. |
| 2520 | /// |
| 2521 | /// # Forrmatting options supported |
| 2522 | /// |
| 2523 | /// * [`std::fmt::Formatter::precision`] can be set to control the precision |
| 2524 | /// of the fractional second component. |
| 2525 | /// |
| 2526 | /// # Example |
| 2527 | /// |
| 2528 | /// ``` |
| 2529 | /// use jiff::Timestamp; |
| 2530 | /// |
| 2531 | /// let ts = Timestamp::new(1_123_456_789, 123_000_000)?; |
| 2532 | /// assert_eq!( |
| 2533 | /// format!("{ts:.6}" ), |
| 2534 | /// "2005-08-07T23:19:49.123000Z" , |
| 2535 | /// ); |
| 2536 | /// // Precision values greater than 9 are clamped to 9. |
| 2537 | /// assert_eq!( |
| 2538 | /// format!("{ts:.300}" ), |
| 2539 | /// "2005-08-07T23:19:49.123000000Z" , |
| 2540 | /// ); |
| 2541 | /// // A precision of 0 implies the entire fractional |
| 2542 | /// // component is always truncated. |
| 2543 | /// assert_eq!( |
| 2544 | /// format!("{ts:.0}" ), |
| 2545 | /// "2005-08-07T23:19:49Z" , |
| 2546 | /// ); |
| 2547 | /// |
| 2548 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2549 | /// ``` |
| 2550 | impl core::fmt::Display for Timestamp { |
| 2551 | #[inline ] |
| 2552 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 2553 | use crate::fmt::StdFmtWrite; |
| 2554 | |
| 2555 | let precision: Option = |
| 2556 | f.precision().map(|p: usize| u8::try_from(p).unwrap_or(default:u8::MAX)); |
| 2557 | temporal::DateTimePrinter::new() |
| 2558 | .precision(precision) |
| 2559 | .print_timestamp(self, StdFmtWrite(f)) |
| 2560 | .map_err(|_| core::fmt::Error) |
| 2561 | } |
| 2562 | } |
| 2563 | |
| 2564 | impl core::str::FromStr for Timestamp { |
| 2565 | type Err = Error; |
| 2566 | |
| 2567 | #[inline ] |
| 2568 | fn from_str(string: &str) -> Result<Timestamp, Error> { |
| 2569 | DEFAULT_DATETIME_PARSER.parse_timestamp(input:string) |
| 2570 | } |
| 2571 | } |
| 2572 | |
| 2573 | impl Eq for Timestamp {} |
| 2574 | |
| 2575 | impl PartialEq for Timestamp { |
| 2576 | #[inline ] |
| 2577 | fn eq(&self, rhs: &Timestamp) -> bool { |
| 2578 | self.as_second_ranged().get() == rhs.as_second_ranged().get() |
| 2579 | && self.subsec_nanosecond_ranged().get() |
| 2580 | == rhs.subsec_nanosecond_ranged().get() |
| 2581 | } |
| 2582 | } |
| 2583 | |
| 2584 | impl Ord for Timestamp { |
| 2585 | #[inline ] |
| 2586 | fn cmp(&self, rhs: &Timestamp) -> core::cmp::Ordering { |
| 2587 | (self.as_second_ranged().get(), self.subsec_nanosecond_ranged().get()) |
| 2588 | .cmp(&( |
| 2589 | rhs.as_second_ranged().get(), |
| 2590 | rhs.subsec_nanosecond_ranged().get(), |
| 2591 | )) |
| 2592 | } |
| 2593 | } |
| 2594 | |
| 2595 | impl PartialOrd for Timestamp { |
| 2596 | #[inline ] |
| 2597 | fn partial_cmp(&self, rhs: &Timestamp) -> Option<core::cmp::Ordering> { |
| 2598 | Some(self.cmp(rhs)) |
| 2599 | } |
| 2600 | } |
| 2601 | |
| 2602 | impl core::hash::Hash for Timestamp { |
| 2603 | #[inline ] |
| 2604 | fn hash<H: core::hash::Hasher>(&self, state: &mut H) { |
| 2605 | self.as_second_ranged().get().hash(state); |
| 2606 | self.subsec_nanosecond_ranged().get().hash(state); |
| 2607 | } |
| 2608 | } |
| 2609 | |
| 2610 | /// Adds a span of time to a timestamp. |
| 2611 | /// |
| 2612 | /// This uses checked arithmetic and panics when it fails. To handle arithmetic |
| 2613 | /// without panics, use [`Timestamp::checked_add`]. Note that the failure |
| 2614 | /// condition includes overflow and using a `Span` with non-zero units greater |
| 2615 | /// than hours. |
| 2616 | impl core::ops::Add<Span> for Timestamp { |
| 2617 | type Output = Timestamp; |
| 2618 | |
| 2619 | #[inline ] |
| 2620 | fn add(self, rhs: Span) -> Timestamp { |
| 2621 | self.checked_add_span(rhs).expect(msg:"adding span to timestamp failed" ) |
| 2622 | } |
| 2623 | } |
| 2624 | |
| 2625 | /// Adds a span of time to a timestamp in place. |
| 2626 | /// |
| 2627 | /// This uses checked arithmetic and panics when it fails. To handle arithmetic |
| 2628 | /// without panics, use [`Timestamp::checked_add`]. Note that the failure |
| 2629 | /// condition includes overflow and using a `Span` with non-zero units greater |
| 2630 | /// than hours. |
| 2631 | impl core::ops::AddAssign<Span> for Timestamp { |
| 2632 | #[inline ] |
| 2633 | fn add_assign(&mut self, rhs: Span) { |
| 2634 | *self = *self + rhs |
| 2635 | } |
| 2636 | } |
| 2637 | |
| 2638 | /// Subtracts a span of time from a timestamp. |
| 2639 | /// |
| 2640 | /// This uses checked arithmetic and panics when it fails. To handle arithmetic |
| 2641 | /// without panics, use [`Timestamp::checked_sub`]. Note that the failure |
| 2642 | /// condition includes overflow and using a `Span` with non-zero units greater |
| 2643 | /// than hours. |
| 2644 | impl core::ops::Sub<Span> for Timestamp { |
| 2645 | type Output = Timestamp; |
| 2646 | |
| 2647 | #[inline ] |
| 2648 | fn sub(self, rhs: Span) -> Timestamp { |
| 2649 | self.checked_add_span(rhs.negate()) |
| 2650 | .expect(msg:"subtracting span from timestamp failed" ) |
| 2651 | } |
| 2652 | } |
| 2653 | |
| 2654 | /// Subtracts a span of time from a timestamp in place. |
| 2655 | /// |
| 2656 | /// This uses checked arithmetic and panics when it fails. To handle arithmetic |
| 2657 | /// without panics, use [`Timestamp::checked_sub`]. Note that the failure |
| 2658 | /// condition includes overflow and using a `Span` with non-zero units greater |
| 2659 | /// than hours. |
| 2660 | impl core::ops::SubAssign<Span> for Timestamp { |
| 2661 | #[inline ] |
| 2662 | fn sub_assign(&mut self, rhs: Span) { |
| 2663 | *self = *self - rhs |
| 2664 | } |
| 2665 | } |
| 2666 | |
| 2667 | /// Computes the span of time between two timestamps. |
| 2668 | /// |
| 2669 | /// This will return a negative span when the timestamp being subtracted is |
| 2670 | /// greater. |
| 2671 | /// |
| 2672 | /// Since this uses the default configuration for calculating a span between |
| 2673 | /// two timestamps (no rounding and largest units is seconds), this will never |
| 2674 | /// panic or fail in any way. |
| 2675 | /// |
| 2676 | /// To configure the largest unit or enable rounding, use [`Timestamp::since`]. |
| 2677 | impl core::ops::Sub for Timestamp { |
| 2678 | type Output = Span; |
| 2679 | |
| 2680 | #[inline ] |
| 2681 | fn sub(self, rhs: Timestamp) -> Span { |
| 2682 | self.since(rhs).expect(msg:"since never fails when given Timestamp" ) |
| 2683 | } |
| 2684 | } |
| 2685 | |
| 2686 | /// Adds a signed duration of time to a timestamp. |
| 2687 | /// |
| 2688 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 2689 | /// without panics, use [`Timestamp::checked_add`]. |
| 2690 | impl core::ops::Add<SignedDuration> for Timestamp { |
| 2691 | type Output = Timestamp; |
| 2692 | |
| 2693 | #[inline ] |
| 2694 | fn add(self, rhs: SignedDuration) -> Timestamp { |
| 2695 | self.checked_add_duration(rhs) |
| 2696 | .expect(msg:"adding signed duration to timestamp overflowed" ) |
| 2697 | } |
| 2698 | } |
| 2699 | |
| 2700 | /// Adds a signed duration of time to a timestamp in place. |
| 2701 | /// |
| 2702 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 2703 | /// without panics, use [`Timestamp::checked_add`]. |
| 2704 | impl core::ops::AddAssign<SignedDuration> for Timestamp { |
| 2705 | #[inline ] |
| 2706 | fn add_assign(&mut self, rhs: SignedDuration) { |
| 2707 | *self = *self + rhs |
| 2708 | } |
| 2709 | } |
| 2710 | |
| 2711 | /// Subtracts a signed duration of time from a timestamp. |
| 2712 | /// |
| 2713 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 2714 | /// without panics, use [`Timestamp::checked_sub`]. |
| 2715 | impl core::ops::Sub<SignedDuration> for Timestamp { |
| 2716 | type Output = Timestamp; |
| 2717 | |
| 2718 | #[inline ] |
| 2719 | fn sub(self, rhs: SignedDuration) -> Timestamp { |
| 2720 | let rhs: SignedDuration = rhs |
| 2721 | .checked_neg() |
| 2722 | .expect(msg:"signed duration negation resulted in overflow" ); |
| 2723 | self.checked_add_duration(rhs) |
| 2724 | .expect(msg:"subtracting signed duration from timestamp overflowed" ) |
| 2725 | } |
| 2726 | } |
| 2727 | |
| 2728 | /// Subtracts a signed duration of time from a timestamp in place. |
| 2729 | /// |
| 2730 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 2731 | /// without panics, use [`Timestamp::checked_sub`]. |
| 2732 | impl core::ops::SubAssign<SignedDuration> for Timestamp { |
| 2733 | #[inline ] |
| 2734 | fn sub_assign(&mut self, rhs: SignedDuration) { |
| 2735 | *self = *self - rhs |
| 2736 | } |
| 2737 | } |
| 2738 | |
| 2739 | /// Adds an unsigned duration of time to a timestamp. |
| 2740 | /// |
| 2741 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 2742 | /// without panics, use [`Timestamp::checked_add`]. |
| 2743 | impl core::ops::Add<UnsignedDuration> for Timestamp { |
| 2744 | type Output = Timestamp; |
| 2745 | |
| 2746 | #[inline ] |
| 2747 | fn add(self, rhs: UnsignedDuration) -> Timestamp { |
| 2748 | self.checked_add(rhs) |
| 2749 | .expect(msg:"adding unsigned duration to timestamp overflowed" ) |
| 2750 | } |
| 2751 | } |
| 2752 | |
| 2753 | /// Adds an unsigned duration of time to a timestamp in place. |
| 2754 | /// |
| 2755 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 2756 | /// without panics, use [`Timestamp::checked_add`]. |
| 2757 | impl core::ops::AddAssign<UnsignedDuration> for Timestamp { |
| 2758 | #[inline ] |
| 2759 | fn add_assign(&mut self, rhs: UnsignedDuration) { |
| 2760 | *self = *self + rhs |
| 2761 | } |
| 2762 | } |
| 2763 | |
| 2764 | /// Subtracts an unsigned duration of time from a timestamp. |
| 2765 | /// |
| 2766 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 2767 | /// without panics, use [`Timestamp::checked_sub`]. |
| 2768 | impl core::ops::Sub<UnsignedDuration> for Timestamp { |
| 2769 | type Output = Timestamp; |
| 2770 | |
| 2771 | #[inline ] |
| 2772 | fn sub(self, rhs: UnsignedDuration) -> Timestamp { |
| 2773 | self.checked_sub(rhs) |
| 2774 | .expect(msg:"subtracting unsigned duration from timestamp overflowed" ) |
| 2775 | } |
| 2776 | } |
| 2777 | |
| 2778 | /// Subtracts an unsigned duration of time from a timestamp in place. |
| 2779 | /// |
| 2780 | /// This uses checked arithmetic and panics on overflow. To handle overflow |
| 2781 | /// without panics, use [`Timestamp::checked_sub`]. |
| 2782 | impl core::ops::SubAssign<UnsignedDuration> for Timestamp { |
| 2783 | #[inline ] |
| 2784 | fn sub_assign(&mut self, rhs: UnsignedDuration) { |
| 2785 | *self = *self - rhs |
| 2786 | } |
| 2787 | } |
| 2788 | |
| 2789 | impl From<Zoned> for Timestamp { |
| 2790 | #[inline ] |
| 2791 | fn from(zdt: Zoned) -> Timestamp { |
| 2792 | zdt.timestamp() |
| 2793 | } |
| 2794 | } |
| 2795 | |
| 2796 | impl<'a> From<&'a Zoned> for Timestamp { |
| 2797 | #[inline ] |
| 2798 | fn from(zdt: &'a Zoned) -> Timestamp { |
| 2799 | zdt.timestamp() |
| 2800 | } |
| 2801 | } |
| 2802 | |
| 2803 | #[cfg (feature = "std" )] |
| 2804 | impl From<Timestamp> for std::time::SystemTime { |
| 2805 | #[inline ] |
| 2806 | fn from(time: Timestamp) -> std::time::SystemTime { |
| 2807 | let unix_epoch: SystemTime = std::time::SystemTime::UNIX_EPOCH; |
| 2808 | let sdur: SignedDuration = time.as_duration(); |
| 2809 | let dur: Duration = sdur.unsigned_abs(); |
| 2810 | // These are guaranteed to succeed because we assume that SystemTime |
| 2811 | // uses at least 64 bits for the time, and our durations are capped via |
| 2812 | // the range on UnixSeconds. |
| 2813 | if sdur.is_negative() { |
| 2814 | unix_epoch.checked_sub(dur).expect(msg:"duration too big (negative)" ) |
| 2815 | } else { |
| 2816 | unix_epoch.checked_add(dur).expect(msg:"duration too big (positive)" ) |
| 2817 | } |
| 2818 | } |
| 2819 | } |
| 2820 | |
| 2821 | #[cfg (feature = "std" )] |
| 2822 | impl TryFrom<std::time::SystemTime> for Timestamp { |
| 2823 | type Error = Error; |
| 2824 | |
| 2825 | #[inline ] |
| 2826 | fn try_from( |
| 2827 | system_time: std::time::SystemTime, |
| 2828 | ) -> Result<Timestamp, Error> { |
| 2829 | let unix_epoch: SystemTime = std::time::SystemTime::UNIX_EPOCH; |
| 2830 | let dur: SignedDuration = SignedDuration::system_until(time1:unix_epoch, time2:system_time)?; |
| 2831 | Timestamp::from_duration(dur) |
| 2832 | } |
| 2833 | } |
| 2834 | |
| 2835 | #[cfg (feature = "serde" )] |
| 2836 | impl serde::Serialize for Timestamp { |
| 2837 | #[inline ] |
| 2838 | fn serialize<S: serde::Serializer>( |
| 2839 | &self, |
| 2840 | serializer: S, |
| 2841 | ) -> Result<S::Ok, S::Error> { |
| 2842 | serializer.collect_str(self) |
| 2843 | } |
| 2844 | } |
| 2845 | |
| 2846 | #[cfg (feature = "serde" )] |
| 2847 | impl<'de> serde::Deserialize<'de> for Timestamp { |
| 2848 | #[inline ] |
| 2849 | fn deserialize<D: serde::Deserializer<'de>>( |
| 2850 | deserializer: D, |
| 2851 | ) -> Result<Timestamp, D::Error> { |
| 2852 | use serde::de; |
| 2853 | |
| 2854 | struct TimestampVisitor; |
| 2855 | |
| 2856 | impl<'de> de::Visitor<'de> for TimestampVisitor { |
| 2857 | type Value = Timestamp; |
| 2858 | |
| 2859 | fn expecting( |
| 2860 | &self, |
| 2861 | f: &mut core::fmt::Formatter, |
| 2862 | ) -> core::fmt::Result { |
| 2863 | f.write_str("a timestamp string" ) |
| 2864 | } |
| 2865 | |
| 2866 | #[inline ] |
| 2867 | fn visit_bytes<E: de::Error>( |
| 2868 | self, |
| 2869 | value: &[u8], |
| 2870 | ) -> Result<Timestamp, E> { |
| 2871 | DEFAULT_DATETIME_PARSER |
| 2872 | .parse_timestamp(value) |
| 2873 | .map_err(de::Error::custom) |
| 2874 | } |
| 2875 | |
| 2876 | #[inline ] |
| 2877 | fn visit_str<E: de::Error>( |
| 2878 | self, |
| 2879 | value: &str, |
| 2880 | ) -> Result<Timestamp, E> { |
| 2881 | self.visit_bytes(value.as_bytes()) |
| 2882 | } |
| 2883 | } |
| 2884 | |
| 2885 | deserializer.deserialize_str(TimestampVisitor) |
| 2886 | } |
| 2887 | } |
| 2888 | |
| 2889 | #[cfg (test)] |
| 2890 | impl quickcheck::Arbitrary for Timestamp { |
| 2891 | fn arbitrary(g: &mut quickcheck::Gen) -> Timestamp { |
| 2892 | use quickcheck::Arbitrary; |
| 2893 | |
| 2894 | let seconds: UnixSeconds = Arbitrary::arbitrary(g); |
| 2895 | let mut nanoseconds: FractionalNanosecond = Arbitrary::arbitrary(g); |
| 2896 | // nanoseconds must be zero for the minimum second value, |
| 2897 | // so just clamp it to 0. |
| 2898 | if seconds == UnixSeconds::MIN_SELF && nanoseconds < C(0) { |
| 2899 | nanoseconds = C(0).rinto(); |
| 2900 | } |
| 2901 | Timestamp::new_ranged(seconds, nanoseconds).unwrap_or_default() |
| 2902 | } |
| 2903 | |
| 2904 | fn shrink(&self) -> alloc::boxed::Box<dyn Iterator<Item = Self>> { |
| 2905 | let second = self.as_second_ranged(); |
| 2906 | let nanosecond = self.subsec_nanosecond_ranged(); |
| 2907 | alloc::boxed::Box::new((second, nanosecond).shrink().filter_map( |
| 2908 | |(second, nanosecond)| { |
| 2909 | if second == UnixSeconds::MIN_SELF && nanosecond > C(0) { |
| 2910 | None |
| 2911 | } else { |
| 2912 | Timestamp::new_ranged(second, nanosecond).ok() |
| 2913 | } |
| 2914 | }, |
| 2915 | )) |
| 2916 | } |
| 2917 | } |
| 2918 | |
| 2919 | /// A type for formatting a [`Timestamp`] with a specific offset. |
| 2920 | /// |
| 2921 | /// This type is created by the [`Timestamp::display_with_offset`] method. |
| 2922 | /// |
| 2923 | /// Like the [`std::fmt::Display`] trait implementation for `Timestamp`, this |
| 2924 | /// always emits an RFC 3339 compliant string. Unlike `Timestamp`'s `Display` |
| 2925 | /// trait implementation, which always uses `Z` or "Zulu" time, this always |
| 2926 | /// uses an offfset. |
| 2927 | /// |
| 2928 | /// # Forrmatting options supported |
| 2929 | /// |
| 2930 | /// * [`std::fmt::Formatter::precision`] can be set to control the precision |
| 2931 | /// of the fractional second component. |
| 2932 | /// |
| 2933 | /// # Example |
| 2934 | /// |
| 2935 | /// ``` |
| 2936 | /// use jiff::{tz, Timestamp}; |
| 2937 | /// |
| 2938 | /// let offset = tz::offset(-5); |
| 2939 | /// let ts = Timestamp::new(1_123_456_789, 123_000_000)?; |
| 2940 | /// assert_eq!( |
| 2941 | /// format!("{ts:.6}" , ts = ts.display_with_offset(offset)), |
| 2942 | /// "2005-08-07T18:19:49.123000-05:00" , |
| 2943 | /// ); |
| 2944 | /// // Precision values greater than 9 are clamped to 9. |
| 2945 | /// assert_eq!( |
| 2946 | /// format!("{ts:.300}" , ts = ts.display_with_offset(offset)), |
| 2947 | /// "2005-08-07T18:19:49.123000000-05:00" , |
| 2948 | /// ); |
| 2949 | /// // A precision of 0 implies the entire fractional |
| 2950 | /// // component is always truncated. |
| 2951 | /// assert_eq!( |
| 2952 | /// format!("{ts:.0}" , ts = ts.display_with_offset(tz::Offset::UTC)), |
| 2953 | /// "2005-08-07T23:19:49+00:00" , |
| 2954 | /// ); |
| 2955 | /// |
| 2956 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2957 | /// ``` |
| 2958 | #[derive (Clone, Copy, Debug)] |
| 2959 | pub struct TimestampDisplayWithOffset { |
| 2960 | timestamp: Timestamp, |
| 2961 | offset: Offset, |
| 2962 | } |
| 2963 | |
| 2964 | impl core::fmt::Display for TimestampDisplayWithOffset { |
| 2965 | #[inline ] |
| 2966 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 2967 | use crate::fmt::StdFmtWrite; |
| 2968 | |
| 2969 | let precision: Option = |
| 2970 | f.precision().map(|p: usize| u8::try_from(p).unwrap_or(default:u8::MAX)); |
| 2971 | temporal::DateTimePrinter::new() |
| 2972 | .precision(precision) |
| 2973 | .print_timestamp_with_offset( |
| 2974 | &self.timestamp, |
| 2975 | self.offset, |
| 2976 | StdFmtWrite(f), |
| 2977 | ) |
| 2978 | .map_err(|_| core::fmt::Error) |
| 2979 | } |
| 2980 | } |
| 2981 | |
| 2982 | /// An iterator over periodic timestamps, created by [`Timestamp::series`]. |
| 2983 | /// |
| 2984 | /// It is exhausted when the next value would exceed a [`Span`] or |
| 2985 | /// [`Timestamp`] value. |
| 2986 | #[derive (Clone, Debug)] |
| 2987 | pub struct TimestampSeries { |
| 2988 | ts: Timestamp, |
| 2989 | duration: Option<SignedDuration>, |
| 2990 | } |
| 2991 | |
| 2992 | impl TimestampSeries { |
| 2993 | #[inline ] |
| 2994 | fn new(ts: Timestamp, period: Span) -> TimestampSeries { |
| 2995 | let duration: Option = SignedDuration::try_from(period).ok(); |
| 2996 | TimestampSeries { ts, duration } |
| 2997 | } |
| 2998 | } |
| 2999 | |
| 3000 | impl Iterator for TimestampSeries { |
| 3001 | type Item = Timestamp; |
| 3002 | |
| 3003 | #[inline ] |
| 3004 | fn next(&mut self) -> Option<Timestamp> { |
| 3005 | let duration: SignedDuration = self.duration?; |
| 3006 | let this: Timestamp = self.ts; |
| 3007 | self.ts = self.ts.checked_add_duration(duration).ok()?; |
| 3008 | Some(this) |
| 3009 | } |
| 3010 | } |
| 3011 | |
| 3012 | /// Options for [`Timestamp::checked_add`] and [`Timestamp::checked_sub`]. |
| 3013 | /// |
| 3014 | /// This type provides a way to ergonomically add one of a few different |
| 3015 | /// duration types to a [`Timestamp`]. |
| 3016 | /// |
| 3017 | /// The main way to construct values of this type is with its `From` trait |
| 3018 | /// implementations: |
| 3019 | /// |
| 3020 | /// * `From<Span> for TimestampArithmetic` adds (or subtracts) the given span |
| 3021 | /// to the receiver timestamp. |
| 3022 | /// * `From<SignedDuration> for TimestampArithmetic` adds (or subtracts) |
| 3023 | /// the given signed duration to the receiver timestamp. |
| 3024 | /// * `From<std::time::Duration> for TimestampArithmetic` adds (or subtracts) |
| 3025 | /// the given unsigned duration to the receiver timestamp. |
| 3026 | /// |
| 3027 | /// # Example |
| 3028 | /// |
| 3029 | /// ``` |
| 3030 | /// use std::time::Duration; |
| 3031 | /// |
| 3032 | /// use jiff::{SignedDuration, Timestamp, ToSpan}; |
| 3033 | /// |
| 3034 | /// let ts: Timestamp = "2024-02-28T00:00:00Z" .parse()?; |
| 3035 | /// assert_eq!( |
| 3036 | /// ts.checked_add(48.hours())?, |
| 3037 | /// "2024-03-01T00:00:00Z" .parse()?, |
| 3038 | /// ); |
| 3039 | /// assert_eq!( |
| 3040 | /// ts.checked_add(SignedDuration::from_hours(48))?, |
| 3041 | /// "2024-03-01T00:00:00Z" .parse()?, |
| 3042 | /// ); |
| 3043 | /// assert_eq!( |
| 3044 | /// ts.checked_add(Duration::from_secs(48 * 60 * 60))?, |
| 3045 | /// "2024-03-01T00:00:00Z" .parse()?, |
| 3046 | /// ); |
| 3047 | /// |
| 3048 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3049 | /// ``` |
| 3050 | #[derive (Clone, Copy, Debug)] |
| 3051 | pub struct TimestampArithmetic { |
| 3052 | duration: Duration, |
| 3053 | } |
| 3054 | |
| 3055 | impl TimestampArithmetic { |
| 3056 | #[inline ] |
| 3057 | fn checked_add(self, ts: Timestamp) -> Result<Timestamp, Error> { |
| 3058 | match self.duration.to_signed()? { |
| 3059 | SDuration::Span(span) => ts.checked_add_span(span), |
| 3060 | SDuration::Absolute(sdur) => ts.checked_add_duration(sdur), |
| 3061 | } |
| 3062 | } |
| 3063 | |
| 3064 | #[inline ] |
| 3065 | fn saturating_add(self, ts: Timestamp) -> Result<Timestamp, Error> { |
| 3066 | let Ok(signed) = self.duration.to_signed() else { |
| 3067 | return Ok(Timestamp::MAX); |
| 3068 | }; |
| 3069 | let result = match signed { |
| 3070 | SDuration::Span(span) => { |
| 3071 | if let Some(err) = span.smallest_non_time_non_zero_unit_error() |
| 3072 | { |
| 3073 | return Err(err); |
| 3074 | } |
| 3075 | ts.checked_add_span(span) |
| 3076 | } |
| 3077 | SDuration::Absolute(sdur) => ts.checked_add_duration(sdur), |
| 3078 | }; |
| 3079 | Ok(result.unwrap_or_else(|_| { |
| 3080 | if self.is_negative() { |
| 3081 | Timestamp::MIN |
| 3082 | } else { |
| 3083 | Timestamp::MAX |
| 3084 | } |
| 3085 | })) |
| 3086 | } |
| 3087 | |
| 3088 | #[inline ] |
| 3089 | fn checked_neg(self) -> Result<TimestampArithmetic, Error> { |
| 3090 | let duration = self.duration.checked_neg()?; |
| 3091 | Ok(TimestampArithmetic { duration }) |
| 3092 | } |
| 3093 | |
| 3094 | #[inline ] |
| 3095 | fn is_negative(&self) -> bool { |
| 3096 | self.duration.is_negative() |
| 3097 | } |
| 3098 | } |
| 3099 | |
| 3100 | impl From<Span> for TimestampArithmetic { |
| 3101 | fn from(span: Span) -> TimestampArithmetic { |
| 3102 | let duration: Duration = Duration::from(span); |
| 3103 | TimestampArithmetic { duration } |
| 3104 | } |
| 3105 | } |
| 3106 | |
| 3107 | impl From<SignedDuration> for TimestampArithmetic { |
| 3108 | fn from(sdur: SignedDuration) -> TimestampArithmetic { |
| 3109 | let duration: Duration = Duration::from(sdur); |
| 3110 | TimestampArithmetic { duration } |
| 3111 | } |
| 3112 | } |
| 3113 | |
| 3114 | impl From<UnsignedDuration> for TimestampArithmetic { |
| 3115 | fn from(udur: UnsignedDuration) -> TimestampArithmetic { |
| 3116 | let duration: Duration = Duration::from(udur); |
| 3117 | TimestampArithmetic { duration } |
| 3118 | } |
| 3119 | } |
| 3120 | |
| 3121 | impl<'a> From<&'a Span> for TimestampArithmetic { |
| 3122 | fn from(span: &'a Span) -> TimestampArithmetic { |
| 3123 | TimestampArithmetic::from(*span) |
| 3124 | } |
| 3125 | } |
| 3126 | |
| 3127 | impl<'a> From<&'a SignedDuration> for TimestampArithmetic { |
| 3128 | fn from(sdur: &'a SignedDuration) -> TimestampArithmetic { |
| 3129 | TimestampArithmetic::from(*sdur) |
| 3130 | } |
| 3131 | } |
| 3132 | |
| 3133 | impl<'a> From<&'a UnsignedDuration> for TimestampArithmetic { |
| 3134 | fn from(udur: &'a UnsignedDuration) -> TimestampArithmetic { |
| 3135 | TimestampArithmetic::from(*udur) |
| 3136 | } |
| 3137 | } |
| 3138 | |
| 3139 | /// Options for [`Timestamp::since`] and [`Timestamp::until`]. |
| 3140 | /// |
| 3141 | /// This type provides a way to configure the calculation of |
| 3142 | /// spans between two [`Timestamp`] values. In particular, both |
| 3143 | /// `Timestamp::since` and `Timestamp::until` accept anything that implements |
| 3144 | /// `Into<TimestampDifference>`. There are a few key trait implementations that |
| 3145 | /// make this convenient: |
| 3146 | /// |
| 3147 | /// * `From<Timestamp> for TimestampDifference` will construct a |
| 3148 | /// configuration consisting of just the timestamp. So for example, |
| 3149 | /// `timestamp1.until(timestamp2)` will return the span from `timestamp1` to |
| 3150 | /// `timestamp2`. |
| 3151 | /// * `From<Zoned> for TimestampDifference` will construct a configuration |
| 3152 | /// consisting of the timestamp from the given zoned datetime. So for example, |
| 3153 | /// `timestamp.since(zoned)` returns the span from `zoned.to_timestamp()` to |
| 3154 | /// `timestamp`. |
| 3155 | /// * `From<(Unit, Timestamp)>` is a convenient way to specify the largest |
| 3156 | /// units that should be present on the span returned. By default, the largest |
| 3157 | /// units are seconds. Using this trait implementation is equivalent to |
| 3158 | /// `TimestampDifference::new(timestamp).largest(unit)`. |
| 3159 | /// * `From<(Unit, Zoned)>` is like the one above, but with the time from |
| 3160 | /// the given zoned datetime. |
| 3161 | /// |
| 3162 | /// One can also provide a `TimestampDifference` value directly. Doing so |
| 3163 | /// is necessary to use the rounding features of calculating a span. For |
| 3164 | /// example, setting the smallest unit (defaults to [`Unit::Nanosecond`]), the |
| 3165 | /// rounding mode (defaults to [`RoundMode::Trunc`]) and the rounding increment |
| 3166 | /// (defaults to `1`). The defaults are selected such that no rounding occurs. |
| 3167 | /// |
| 3168 | /// Rounding a span as part of calculating it is provided as a convenience. |
| 3169 | /// Callers may choose to round the span as a distinct step via |
| 3170 | /// [`Span::round`]. |
| 3171 | /// |
| 3172 | /// # Example |
| 3173 | /// |
| 3174 | /// This example shows how to round a span between two timestamps to the |
| 3175 | /// nearest half-hour, with ties breaking away from zero. |
| 3176 | /// |
| 3177 | /// ``` |
| 3178 | /// use jiff::{RoundMode, Timestamp, TimestampDifference, ToSpan, Unit}; |
| 3179 | /// |
| 3180 | /// let ts1 = "2024-03-15 08:14:00.123456789Z" .parse::<Timestamp>()?; |
| 3181 | /// let ts2 = "2024-03-22 15:00Z" .parse::<Timestamp>()?; |
| 3182 | /// let span = ts1.until( |
| 3183 | /// TimestampDifference::new(ts2) |
| 3184 | /// .smallest(Unit::Minute) |
| 3185 | /// .largest(Unit::Hour) |
| 3186 | /// .mode(RoundMode::HalfExpand) |
| 3187 | /// .increment(30), |
| 3188 | /// )?; |
| 3189 | /// assert_eq!(format!("{span:#}" ), "175h" ); |
| 3190 | /// |
| 3191 | /// // One less minute, and because of the HalfExpand mode, the span would |
| 3192 | /// // get rounded down. |
| 3193 | /// let ts2 = "2024-03-22 14:59Z" .parse::<Timestamp>()?; |
| 3194 | /// let span = ts1.until( |
| 3195 | /// TimestampDifference::new(ts2) |
| 3196 | /// .smallest(Unit::Minute) |
| 3197 | /// .largest(Unit::Hour) |
| 3198 | /// .mode(RoundMode::HalfExpand) |
| 3199 | /// .increment(30), |
| 3200 | /// )?; |
| 3201 | /// assert_eq!(span, 174.hours().minutes(30).fieldwise()); |
| 3202 | /// |
| 3203 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3204 | /// ``` |
| 3205 | #[derive (Clone, Copy, Debug)] |
| 3206 | pub struct TimestampDifference { |
| 3207 | timestamp: Timestamp, |
| 3208 | round: SpanRound<'static>, |
| 3209 | } |
| 3210 | |
| 3211 | impl TimestampDifference { |
| 3212 | /// Create a new default configuration for computing the span between |
| 3213 | /// the given timestamp and some other time (specified as the receiver in |
| 3214 | /// [`Timestamp::since`] or [`Timestamp::until`]). |
| 3215 | #[inline ] |
| 3216 | pub fn new(timestamp: Timestamp) -> TimestampDifference { |
| 3217 | // We use truncation rounding by default since it seems that's |
| 3218 | // what is generally expected when computing the difference between |
| 3219 | // datetimes. |
| 3220 | // |
| 3221 | // See: https://github.com/tc39/proposal-temporal/issues/1122 |
| 3222 | let round = SpanRound::new().mode(RoundMode::Trunc); |
| 3223 | TimestampDifference { timestamp, round } |
| 3224 | } |
| 3225 | |
| 3226 | /// Set the smallest units allowed in the span returned. |
| 3227 | /// |
| 3228 | /// # Errors |
| 3229 | /// |
| 3230 | /// The smallest units must be no greater than the largest units. If this |
| 3231 | /// is violated, then computing a span with this configuration will result |
| 3232 | /// in an error. |
| 3233 | /// |
| 3234 | /// # Example |
| 3235 | /// |
| 3236 | /// This shows how to round a span between two timestamps to units no less |
| 3237 | /// than seconds. |
| 3238 | /// |
| 3239 | /// ``` |
| 3240 | /// use jiff::{RoundMode, Timestamp, TimestampDifference, ToSpan, Unit}; |
| 3241 | /// |
| 3242 | /// let ts1 = "2024-03-15 08:14:02.5001Z" .parse::<Timestamp>()?; |
| 3243 | /// let ts2 = "2024-03-15T08:16:03.0001Z" .parse::<Timestamp>()?; |
| 3244 | /// let span = ts1.until( |
| 3245 | /// TimestampDifference::new(ts2) |
| 3246 | /// .smallest(Unit::Second) |
| 3247 | /// .mode(RoundMode::HalfExpand), |
| 3248 | /// )?; |
| 3249 | /// assert_eq!(span, 121.seconds().fieldwise()); |
| 3250 | /// |
| 3251 | /// // Because of the rounding mode, a small less-than-1-second increase in |
| 3252 | /// // the first timestamp can change the result of rounding. |
| 3253 | /// let ts1 = "2024-03-15 08:14:02.5002Z" .parse::<Timestamp>()?; |
| 3254 | /// let span = ts1.until( |
| 3255 | /// TimestampDifference::new(ts2) |
| 3256 | /// .smallest(Unit::Second) |
| 3257 | /// .mode(RoundMode::HalfExpand), |
| 3258 | /// )?; |
| 3259 | /// assert_eq!(span, 120.seconds().fieldwise()); |
| 3260 | /// |
| 3261 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3262 | /// ``` |
| 3263 | #[inline ] |
| 3264 | pub fn smallest(self, unit: Unit) -> TimestampDifference { |
| 3265 | TimestampDifference { round: self.round.smallest(unit), ..self } |
| 3266 | } |
| 3267 | |
| 3268 | /// Set the largest units allowed in the span returned. |
| 3269 | /// |
| 3270 | /// When a largest unit is not specified, computing a span between |
| 3271 | /// timestamps behaves as if it were set to [`Unit::Second`]. Unless |
| 3272 | /// [`TimestampDifference::smallest`] is bigger than `Unit::Second`, then |
| 3273 | /// the largest unit is set to the smallest unit. |
| 3274 | /// |
| 3275 | /// # Errors |
| 3276 | /// |
| 3277 | /// The largest units, when set, must be at least as big as the smallest |
| 3278 | /// units (which defaults to [`Unit::Nanosecond`]). If this is violated, |
| 3279 | /// then computing a span with this configuration will result in an error. |
| 3280 | /// |
| 3281 | /// # Example |
| 3282 | /// |
| 3283 | /// This shows how to round a span between two timestamps to units no |
| 3284 | /// bigger than seconds. |
| 3285 | /// |
| 3286 | /// ``` |
| 3287 | /// use jiff::{Timestamp, TimestampDifference, ToSpan, Unit}; |
| 3288 | /// |
| 3289 | /// let ts1 = "2024-03-15 08:14Z" .parse::<Timestamp>()?; |
| 3290 | /// let ts2 = "2030-11-22 08:30Z" .parse::<Timestamp>()?; |
| 3291 | /// let span = ts1.until( |
| 3292 | /// TimestampDifference::new(ts2).largest(Unit::Second), |
| 3293 | /// )?; |
| 3294 | /// assert_eq!(format!("{span:#}" ), "211076160s" ); |
| 3295 | /// |
| 3296 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3297 | /// ``` |
| 3298 | #[inline ] |
| 3299 | pub fn largest(self, unit: Unit) -> TimestampDifference { |
| 3300 | TimestampDifference { round: self.round.largest(unit), ..self } |
| 3301 | } |
| 3302 | |
| 3303 | /// Set the rounding mode. |
| 3304 | /// |
| 3305 | /// This defaults to [`RoundMode::Trunc`] since it's plausible that |
| 3306 | /// rounding "up" in the context of computing the span between |
| 3307 | /// two timestamps could be surprising in a number of cases. The |
| 3308 | /// [`RoundMode::HalfExpand`] mode corresponds to typical rounding you |
| 3309 | /// might have learned about in school. But a variety of other rounding |
| 3310 | /// modes exist. |
| 3311 | /// |
| 3312 | /// # Example |
| 3313 | /// |
| 3314 | /// This shows how to always round "up" towards positive infinity. |
| 3315 | /// |
| 3316 | /// ``` |
| 3317 | /// use jiff::{RoundMode, Timestamp, TimestampDifference, ToSpan, Unit}; |
| 3318 | /// |
| 3319 | /// let ts1 = "2024-03-15 08:10Z" .parse::<Timestamp>()?; |
| 3320 | /// let ts2 = "2024-03-15 08:11Z" .parse::<Timestamp>()?; |
| 3321 | /// let span = ts1.until( |
| 3322 | /// TimestampDifference::new(ts2) |
| 3323 | /// .smallest(Unit::Hour) |
| 3324 | /// .mode(RoundMode::Ceil), |
| 3325 | /// )?; |
| 3326 | /// // Only one minute elapsed, but we asked to always round up! |
| 3327 | /// assert_eq!(span, 1.hour().fieldwise()); |
| 3328 | /// |
| 3329 | /// // Since `Ceil` always rounds toward positive infinity, the behavior |
| 3330 | /// // flips for a negative span. |
| 3331 | /// let span = ts1.since( |
| 3332 | /// TimestampDifference::new(ts2) |
| 3333 | /// .smallest(Unit::Hour) |
| 3334 | /// .mode(RoundMode::Ceil), |
| 3335 | /// )?; |
| 3336 | /// assert_eq!(span, 0.hour().fieldwise()); |
| 3337 | /// |
| 3338 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3339 | /// ``` |
| 3340 | #[inline ] |
| 3341 | pub fn mode(self, mode: RoundMode) -> TimestampDifference { |
| 3342 | TimestampDifference { round: self.round.mode(mode), ..self } |
| 3343 | } |
| 3344 | |
| 3345 | /// Set the rounding increment for the smallest unit. |
| 3346 | /// |
| 3347 | /// The default value is `1`. Other values permit rounding the smallest |
| 3348 | /// unit to the nearest integer increment specified. For example, if the |
| 3349 | /// smallest unit is set to [`Unit::Minute`], then a rounding increment of |
| 3350 | /// `30` would result in rounding in increments of a half hour. That is, |
| 3351 | /// the only minute value that could result would be `0` or `30`. |
| 3352 | /// |
| 3353 | /// # Errors |
| 3354 | /// |
| 3355 | /// The rounding increment must divide evenly into the next highest unit |
| 3356 | /// after the smallest unit configured (and must not be equivalent to it). |
| 3357 | /// For example, if the smallest unit is [`Unit::Nanosecond`], then *some* |
| 3358 | /// of the valid values for the rounding increment are `1`, `2`, `4`, `5`, |
| 3359 | /// `100` and `500`. Namely, any integer that divides evenly into `1,000` |
| 3360 | /// nanoseconds since there are `1,000` nanoseconds in the next highest |
| 3361 | /// unit (microseconds). |
| 3362 | /// |
| 3363 | /// The error will occur when computing the span, and not when setting |
| 3364 | /// the increment here. |
| 3365 | /// |
| 3366 | /// # Example |
| 3367 | /// |
| 3368 | /// This shows how to round the span between two timestamps to the nearest |
| 3369 | /// 5 minute increment. |
| 3370 | /// |
| 3371 | /// ``` |
| 3372 | /// use jiff::{RoundMode, Timestamp, TimestampDifference, ToSpan, Unit}; |
| 3373 | /// |
| 3374 | /// let ts1 = "2024-03-15 08:19Z" .parse::<Timestamp>()?; |
| 3375 | /// let ts2 = "2024-03-15 12:52Z" .parse::<Timestamp>()?; |
| 3376 | /// let span = ts1.until( |
| 3377 | /// TimestampDifference::new(ts2) |
| 3378 | /// .smallest(Unit::Minute) |
| 3379 | /// .increment(5) |
| 3380 | /// .mode(RoundMode::HalfExpand), |
| 3381 | /// )?; |
| 3382 | /// assert_eq!(span.to_string(), "PT275M" ); |
| 3383 | /// |
| 3384 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3385 | /// ``` |
| 3386 | #[inline ] |
| 3387 | pub fn increment(self, increment: i64) -> TimestampDifference { |
| 3388 | TimestampDifference { round: self.round.increment(increment), ..self } |
| 3389 | } |
| 3390 | |
| 3391 | /// Returns true if and only if this configuration could change the span |
| 3392 | /// via rounding. |
| 3393 | #[inline ] |
| 3394 | fn rounding_may_change_span(&self) -> bool { |
| 3395 | self.round.rounding_may_change_span_ignore_largest() |
| 3396 | } |
| 3397 | |
| 3398 | /// Returns the span of time from `ts1` to the timestamp in this |
| 3399 | /// configuration. The biggest units allowed are determined by the |
| 3400 | /// `smallest` and `largest` settings, but defaults to `Unit::Second`. |
| 3401 | #[inline ] |
| 3402 | fn until_with_largest_unit(&self, t1: Timestamp) -> Result<Span, Error> { |
| 3403 | let t2 = self.timestamp; |
| 3404 | let largest = self |
| 3405 | .round |
| 3406 | .get_largest() |
| 3407 | .unwrap_or_else(|| self.round.get_smallest().max(Unit::Second)); |
| 3408 | if largest >= Unit::Day { |
| 3409 | return Err(err!( |
| 3410 | "unit {largest} is not supported when computing the \ |
| 3411 | difference between timestamps (must use units smaller \ |
| 3412 | than 'day')" , |
| 3413 | largest = largest.singular(), |
| 3414 | )); |
| 3415 | } |
| 3416 | let nano1 = t1.as_nanosecond_ranged().without_bounds(); |
| 3417 | let nano2 = t2.as_nanosecond_ranged().without_bounds(); |
| 3418 | let diff = nano2 - nano1; |
| 3419 | // This can fail when `largest` is nanoseconds since not all intervals |
| 3420 | // can be represented by a single i64 in units of nanoseconds. |
| 3421 | Span::from_invariant_nanoseconds(largest, diff) |
| 3422 | } |
| 3423 | } |
| 3424 | |
| 3425 | impl From<Timestamp> for TimestampDifference { |
| 3426 | #[inline ] |
| 3427 | fn from(ts: Timestamp) -> TimestampDifference { |
| 3428 | TimestampDifference::new(timestamp:ts) |
| 3429 | } |
| 3430 | } |
| 3431 | |
| 3432 | impl From<Zoned> for TimestampDifference { |
| 3433 | #[inline ] |
| 3434 | fn from(zdt: Zoned) -> TimestampDifference { |
| 3435 | TimestampDifference::new(Timestamp::from(zdt)) |
| 3436 | } |
| 3437 | } |
| 3438 | |
| 3439 | impl<'a> From<&'a Zoned> for TimestampDifference { |
| 3440 | #[inline ] |
| 3441 | fn from(zdt: &'a Zoned) -> TimestampDifference { |
| 3442 | TimestampDifference::from(Timestamp::from(zdt)) |
| 3443 | } |
| 3444 | } |
| 3445 | |
| 3446 | impl From<(Unit, Timestamp)> for TimestampDifference { |
| 3447 | #[inline ] |
| 3448 | fn from((largest: Unit, ts: Timestamp): (Unit, Timestamp)) -> TimestampDifference { |
| 3449 | TimestampDifference::from(ts).largest(unit:largest) |
| 3450 | } |
| 3451 | } |
| 3452 | |
| 3453 | impl From<(Unit, Zoned)> for TimestampDifference { |
| 3454 | #[inline ] |
| 3455 | fn from((largest: Unit, zdt: Zoned): (Unit, Zoned)) -> TimestampDifference { |
| 3456 | TimestampDifference::from((largest, Timestamp::from(zdt))) |
| 3457 | } |
| 3458 | } |
| 3459 | |
| 3460 | impl<'a> From<(Unit, &'a Zoned)> for TimestampDifference { |
| 3461 | #[inline ] |
| 3462 | fn from((largest: Unit, zdt: &'a Zoned): (Unit, &'a Zoned)) -> TimestampDifference { |
| 3463 | TimestampDifference::from((largest, Timestamp::from(zdt))) |
| 3464 | } |
| 3465 | } |
| 3466 | |
| 3467 | /// Options for [`Timestamp::round`]. |
| 3468 | /// |
| 3469 | /// This type provides a way to configure the rounding of a timestamp. In |
| 3470 | /// particular, `Timestamp::round` accepts anything that implements the |
| 3471 | /// `Into<TimestampRound>` trait. There are some trait implementations that |
| 3472 | /// therefore make calling `Timestamp::round` in some common cases more |
| 3473 | /// ergonomic: |
| 3474 | /// |
| 3475 | /// * `From<Unit> for TimestampRound` will construct a rounding |
| 3476 | /// configuration that rounds to the unit given. Specifically, |
| 3477 | /// `TimestampRound::new().smallest(unit)`. |
| 3478 | /// * `From<(Unit, i64)> for TimestampRound` is like the one above, but also |
| 3479 | /// specifies the rounding increment for [`TimestampRound::increment`]. |
| 3480 | /// |
| 3481 | /// Note that in the default configuration, no rounding occurs. |
| 3482 | /// |
| 3483 | /// # Example |
| 3484 | /// |
| 3485 | /// This example shows how to round a timestamp to the nearest second: |
| 3486 | /// |
| 3487 | /// ``` |
| 3488 | /// use jiff::{Timestamp, Unit}; |
| 3489 | /// |
| 3490 | /// let ts: Timestamp = "2024-06-20 16:24:59.5Z" .parse()?; |
| 3491 | /// assert_eq!( |
| 3492 | /// ts.round(Unit::Second)?.to_string(), |
| 3493 | /// // The second rounds up and causes minutes to increase. |
| 3494 | /// "2024-06-20T16:25:00Z" , |
| 3495 | /// ); |
| 3496 | /// |
| 3497 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3498 | /// ``` |
| 3499 | /// |
| 3500 | /// The above makes use of the fact that `Unit` implements |
| 3501 | /// `Into<TimestampRound>`. If you want to change the rounding mode to, say, |
| 3502 | /// truncation, then you'll need to construct a `TimestampRound` explicitly |
| 3503 | /// since there are no convenience `Into` trait implementations for |
| 3504 | /// [`RoundMode`]. |
| 3505 | /// |
| 3506 | /// ``` |
| 3507 | /// use jiff::{RoundMode, Timestamp, TimestampRound, Unit}; |
| 3508 | /// |
| 3509 | /// let ts: Timestamp = "2024-06-20 16:24:59.5Z" .parse()?; |
| 3510 | /// assert_eq!( |
| 3511 | /// ts.round( |
| 3512 | /// TimestampRound::new().smallest(Unit::Second).mode(RoundMode::Trunc), |
| 3513 | /// )?.to_string(), |
| 3514 | /// // The second just gets truncated as if it wasn't there. |
| 3515 | /// "2024-06-20T16:24:59Z" , |
| 3516 | /// ); |
| 3517 | /// |
| 3518 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3519 | /// ``` |
| 3520 | #[derive (Clone, Copy, Debug)] |
| 3521 | pub struct TimestampRound { |
| 3522 | smallest: Unit, |
| 3523 | mode: RoundMode, |
| 3524 | increment: i64, |
| 3525 | } |
| 3526 | |
| 3527 | impl TimestampRound { |
| 3528 | /// Create a new default configuration for rounding a [`Timestamp`]. |
| 3529 | #[inline ] |
| 3530 | pub fn new() -> TimestampRound { |
| 3531 | TimestampRound { |
| 3532 | smallest: Unit::Nanosecond, |
| 3533 | mode: RoundMode::HalfExpand, |
| 3534 | increment: 1, |
| 3535 | } |
| 3536 | } |
| 3537 | |
| 3538 | /// Set the smallest units allowed in the timestamp returned after |
| 3539 | /// rounding. |
| 3540 | /// |
| 3541 | /// Any units below the smallest configured unit will be used, along with |
| 3542 | /// the rounding increment and rounding mode, to determine the value of the |
| 3543 | /// smallest unit. For example, when rounding `2024-06-20T03:25:30Z` to the |
| 3544 | /// nearest minute, the `30` second unit will result in rounding the minute |
| 3545 | /// unit of `25` up to `26` and zeroing out everything below minutes. |
| 3546 | /// |
| 3547 | /// This defaults to [`Unit::Nanosecond`]. |
| 3548 | /// |
| 3549 | /// # Errors |
| 3550 | /// |
| 3551 | /// The smallest units must be no greater than [`Unit::Hour`]. |
| 3552 | /// |
| 3553 | /// # Example |
| 3554 | /// |
| 3555 | /// ``` |
| 3556 | /// use jiff::{Timestamp, TimestampRound, Unit}; |
| 3557 | /// |
| 3558 | /// let ts: Timestamp = "2024-06-20T03:25:30Z" .parse()?; |
| 3559 | /// assert_eq!( |
| 3560 | /// ts.round(TimestampRound::new().smallest(Unit::Minute))?.to_string(), |
| 3561 | /// "2024-06-20T03:26:00Z" , |
| 3562 | /// ); |
| 3563 | /// // Or, utilize the `From<Unit> for TimestampRound` impl: |
| 3564 | /// assert_eq!( |
| 3565 | /// ts.round(Unit::Minute)?.to_string(), |
| 3566 | /// "2024-06-20T03:26:00Z" , |
| 3567 | /// ); |
| 3568 | /// |
| 3569 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3570 | /// ``` |
| 3571 | #[inline ] |
| 3572 | pub fn smallest(self, unit: Unit) -> TimestampRound { |
| 3573 | TimestampRound { smallest: unit, ..self } |
| 3574 | } |
| 3575 | |
| 3576 | /// Set the rounding mode. |
| 3577 | /// |
| 3578 | /// This defaults to [`RoundMode::HalfExpand`], which rounds away from |
| 3579 | /// zero. It matches the kind of rounding you might have been taught in |
| 3580 | /// school. |
| 3581 | /// |
| 3582 | /// # Example |
| 3583 | /// |
| 3584 | /// This shows how to always round timestamps up towards positive infinity. |
| 3585 | /// |
| 3586 | /// ``` |
| 3587 | /// use jiff::{RoundMode, Timestamp, TimestampRound, Unit}; |
| 3588 | /// |
| 3589 | /// let ts: Timestamp = "2024-06-20 03:25:01Z" .parse()?; |
| 3590 | /// assert_eq!( |
| 3591 | /// ts.round( |
| 3592 | /// TimestampRound::new() |
| 3593 | /// .smallest(Unit::Minute) |
| 3594 | /// .mode(RoundMode::Ceil), |
| 3595 | /// )?.to_string(), |
| 3596 | /// "2024-06-20T03:26:00Z" , |
| 3597 | /// ); |
| 3598 | /// |
| 3599 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3600 | /// ``` |
| 3601 | #[inline ] |
| 3602 | pub fn mode(self, mode: RoundMode) -> TimestampRound { |
| 3603 | TimestampRound { mode, ..self } |
| 3604 | } |
| 3605 | |
| 3606 | /// Set the rounding increment for the smallest unit. |
| 3607 | /// |
| 3608 | /// The default value is `1`. Other values permit rounding the smallest |
| 3609 | /// unit to the nearest integer increment specified. For example, if the |
| 3610 | /// smallest unit is set to [`Unit::Minute`], then a rounding increment of |
| 3611 | /// `30` would result in rounding in increments of a half hour. That is, |
| 3612 | /// the only minute value that could result would be `0` or `30`. |
| 3613 | /// |
| 3614 | /// # Errors |
| 3615 | /// |
| 3616 | /// The rounding increment, when combined with the smallest unit (which |
| 3617 | /// defaults to [`Unit::Nanosecond`]), must divide evenly into `86,400` |
| 3618 | /// seconds (one 24-hour civil day). For example, increments of both |
| 3619 | /// 45 seconds and 15 minutes are allowed, but 7 seconds and 25 minutes are |
| 3620 | /// both not allowed. |
| 3621 | /// |
| 3622 | /// # Example |
| 3623 | /// |
| 3624 | /// This example shows how to round a timestamp to the nearest 10 minute |
| 3625 | /// increment. |
| 3626 | /// |
| 3627 | /// ``` |
| 3628 | /// use jiff::{RoundMode, Timestamp, TimestampRound, Unit}; |
| 3629 | /// |
| 3630 | /// let ts: Timestamp = "2024-06-20 03:24:59Z" .parse()?; |
| 3631 | /// assert_eq!( |
| 3632 | /// ts.round((Unit::Minute, 10))?.to_string(), |
| 3633 | /// "2024-06-20T03:20:00Z" , |
| 3634 | /// ); |
| 3635 | /// |
| 3636 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 3637 | /// ``` |
| 3638 | #[inline ] |
| 3639 | pub fn increment(self, increment: i64) -> TimestampRound { |
| 3640 | TimestampRound { increment, ..self } |
| 3641 | } |
| 3642 | |
| 3643 | /// Does the actual rounding. |
| 3644 | pub(crate) fn round( |
| 3645 | &self, |
| 3646 | timestamp: Timestamp, |
| 3647 | ) -> Result<Timestamp, Error> { |
| 3648 | let increment = |
| 3649 | increment::for_timestamp(self.smallest, self.increment)?; |
| 3650 | let nanosecond = timestamp.as_nanosecond_ranged().without_bounds(); |
| 3651 | let rounded = self.mode.round_by_unit_in_nanoseconds( |
| 3652 | nanosecond, |
| 3653 | self.smallest, |
| 3654 | increment, |
| 3655 | ); |
| 3656 | let nanosecond = UnixNanoseconds::rfrom(rounded); |
| 3657 | Ok(Timestamp::from_nanosecond_ranged(nanosecond)) |
| 3658 | } |
| 3659 | } |
| 3660 | |
| 3661 | impl Default for TimestampRound { |
| 3662 | #[inline ] |
| 3663 | fn default() -> TimestampRound { |
| 3664 | TimestampRound::new() |
| 3665 | } |
| 3666 | } |
| 3667 | |
| 3668 | impl From<Unit> for TimestampRound { |
| 3669 | #[inline ] |
| 3670 | fn from(unit: Unit) -> TimestampRound { |
| 3671 | TimestampRound::default().smallest(unit) |
| 3672 | } |
| 3673 | } |
| 3674 | |
| 3675 | impl From<(Unit, i64)> for TimestampRound { |
| 3676 | #[inline ] |
| 3677 | fn from((unit: Unit, increment: i64): (Unit, i64)) -> TimestampRound { |
| 3678 | TimestampRound::from(unit).increment(increment) |
| 3679 | } |
| 3680 | } |
| 3681 | |
| 3682 | #[cfg (test)] |
| 3683 | mod tests { |
| 3684 | use alloc::string::ToString; |
| 3685 | |
| 3686 | use std::io::Cursor; |
| 3687 | |
| 3688 | use crate::{ |
| 3689 | civil::{self, datetime}, |
| 3690 | tz::Offset, |
| 3691 | ToSpan, |
| 3692 | }; |
| 3693 | |
| 3694 | use super::*; |
| 3695 | |
| 3696 | fn mktime(seconds: i64, nanos: i32) -> Timestamp { |
| 3697 | Timestamp::new(seconds, nanos).unwrap() |
| 3698 | } |
| 3699 | |
| 3700 | fn mkdt( |
| 3701 | year: i16, |
| 3702 | month: i8, |
| 3703 | day: i8, |
| 3704 | hour: i8, |
| 3705 | minute: i8, |
| 3706 | second: i8, |
| 3707 | nano: i32, |
| 3708 | ) -> civil::DateTime { |
| 3709 | let date = civil::Date::new(year, month, day).unwrap(); |
| 3710 | let time = civil::Time::new(hour, minute, second, nano).unwrap(); |
| 3711 | civil::DateTime::from_parts(date, time) |
| 3712 | } |
| 3713 | |
| 3714 | #[test ] |
| 3715 | fn to_datetime_specific_examples() { |
| 3716 | let tests = [ |
| 3717 | ((UnixSeconds::MIN_REPR, 0), (-9999, 1, 2, 1, 59, 59, 0)), |
| 3718 | ( |
| 3719 | (UnixSeconds::MIN_REPR + 1, -999_999_999), |
| 3720 | (-9999, 1, 2, 1, 59, 59, 1), |
| 3721 | ), |
| 3722 | ((-1, 1), (1969, 12, 31, 23, 59, 59, 1)), |
| 3723 | ((UnixSeconds::MAX_REPR, 0), (9999, 12, 30, 22, 0, 0, 0)), |
| 3724 | ((UnixSeconds::MAX_REPR - 1, 0), (9999, 12, 30, 21, 59, 59, 0)), |
| 3725 | ( |
| 3726 | (UnixSeconds::MAX_REPR - 1, 999_999_999), |
| 3727 | (9999, 12, 30, 21, 59, 59, 999_999_999), |
| 3728 | ), |
| 3729 | ( |
| 3730 | (UnixSeconds::MAX_REPR, 999_999_999), |
| 3731 | (9999, 12, 30, 22, 0, 0, 999_999_999), |
| 3732 | ), |
| 3733 | ((-2, -1), (1969, 12, 31, 23, 59, 57, 999_999_999)), |
| 3734 | ((-86398, -1), (1969, 12, 31, 0, 0, 1, 999_999_999)), |
| 3735 | ((-86399, -1), (1969, 12, 31, 0, 0, 0, 999_999_999)), |
| 3736 | ((-86400, -1), (1969, 12, 30, 23, 59, 59, 999_999_999)), |
| 3737 | ]; |
| 3738 | for (t, dt) in tests { |
| 3739 | let timestamp = mktime(t.0, t.1); |
| 3740 | let datetime = mkdt(dt.0, dt.1, dt.2, dt.3, dt.4, dt.5, dt.6); |
| 3741 | assert_eq!( |
| 3742 | Offset::UTC.to_datetime(timestamp), |
| 3743 | datetime, |
| 3744 | "timestamp: {t:?}" |
| 3745 | ); |
| 3746 | assert_eq!( |
| 3747 | timestamp, |
| 3748 | datetime.to_zoned(TimeZone::UTC).unwrap().timestamp(), |
| 3749 | "datetime: {datetime:?}" |
| 3750 | ); |
| 3751 | } |
| 3752 | } |
| 3753 | |
| 3754 | #[test ] |
| 3755 | fn to_datetime_many_seconds_in_some_days() { |
| 3756 | let days = [ |
| 3757 | i64::from(t::UnixEpochDay::MIN_REPR), |
| 3758 | -1000, |
| 3759 | -5, |
| 3760 | 23, |
| 3761 | 2000, |
| 3762 | i64::from(t::UnixEpochDay::MAX_REPR), |
| 3763 | ]; |
| 3764 | let seconds = [ |
| 3765 | -86_400, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, |
| 3766 | 5, 6, 7, 8, 9, 10, 86_400, |
| 3767 | ]; |
| 3768 | let nanos = [0, 1, 5, 999_999_999]; |
| 3769 | for day in days { |
| 3770 | let midpoint = day * 86_400; |
| 3771 | for second in seconds { |
| 3772 | let second = midpoint + second; |
| 3773 | if !UnixSeconds::contains(second) { |
| 3774 | continue; |
| 3775 | } |
| 3776 | for nano in nanos { |
| 3777 | if second == UnixSeconds::MIN_REPR && nano != 0 { |
| 3778 | continue; |
| 3779 | } |
| 3780 | let t = Timestamp::new(second, nano).unwrap(); |
| 3781 | let Ok(got) = |
| 3782 | Offset::UTC.to_datetime(t).to_zoned(TimeZone::UTC) |
| 3783 | else { |
| 3784 | continue; |
| 3785 | }; |
| 3786 | assert_eq!(t, got.timestamp()); |
| 3787 | } |
| 3788 | } |
| 3789 | } |
| 3790 | } |
| 3791 | |
| 3792 | #[test ] |
| 3793 | fn invalid_time() { |
| 3794 | assert!(Timestamp::new(UnixSeconds::MIN_REPR, -1).is_err()); |
| 3795 | assert!(Timestamp::new(UnixSeconds::MIN_REPR, -999_999_999).is_err()); |
| 3796 | // These are greater than the minimum and thus okay! |
| 3797 | assert!(Timestamp::new(UnixSeconds::MIN_REPR, 1).is_ok()); |
| 3798 | assert!(Timestamp::new(UnixSeconds::MIN_REPR, 999_999_999).is_ok()); |
| 3799 | } |
| 3800 | |
| 3801 | #[cfg (target_pointer_width = "64" )] |
| 3802 | #[test ] |
| 3803 | fn timestamp_size() { |
| 3804 | #[cfg (debug_assertions)] |
| 3805 | { |
| 3806 | assert_eq!(40, core::mem::size_of::<Timestamp>()); |
| 3807 | } |
| 3808 | #[cfg (not(debug_assertions))] |
| 3809 | { |
| 3810 | assert_eq!(16, core::mem::size_of::<Timestamp>()); |
| 3811 | } |
| 3812 | } |
| 3813 | |
| 3814 | #[test ] |
| 3815 | fn nanosecond_roundtrip_boundaries() { |
| 3816 | let inst = Timestamp::MIN; |
| 3817 | let nanos = inst.as_nanosecond_ranged(); |
| 3818 | assert_eq!(C(0), nanos % t::NANOS_PER_SECOND); |
| 3819 | let got = Timestamp::from_nanosecond_ranged(nanos); |
| 3820 | assert_eq!(inst, got); |
| 3821 | |
| 3822 | let inst = Timestamp::MAX; |
| 3823 | let nanos = inst.as_nanosecond_ranged(); |
| 3824 | assert_eq!( |
| 3825 | FractionalNanosecond::MAX_SELF, |
| 3826 | nanos % t::NANOS_PER_SECOND |
| 3827 | ); |
| 3828 | let got = Timestamp::from_nanosecond_ranged(nanos); |
| 3829 | assert_eq!(inst, got); |
| 3830 | } |
| 3831 | |
| 3832 | #[test ] |
| 3833 | fn timestamp_saturating_add() { |
| 3834 | insta::assert_snapshot!( |
| 3835 | Timestamp::MIN.saturating_add(Span::new().days(1)).unwrap_err(), |
| 3836 | @"saturating `Timestamp` arithmetic requires only time units: operation can only be performed with units of hours or smaller, but found non-zero day units (operations on `Timestamp`, `tz::Offset` and `civil::Time` don't support calendar units in a `Span`)" , |
| 3837 | ) |
| 3838 | } |
| 3839 | |
| 3840 | #[test ] |
| 3841 | fn timestamp_saturating_sub() { |
| 3842 | insta::assert_snapshot!( |
| 3843 | Timestamp::MAX.saturating_sub(Span::new().days(1)).unwrap_err(), |
| 3844 | @"saturating `Timestamp` arithmetic requires only time units: operation can only be performed with units of hours or smaller, but found non-zero day units (operations on `Timestamp`, `tz::Offset` and `civil::Time` don't support calendar units in a `Span`)" , |
| 3845 | ) |
| 3846 | } |
| 3847 | |
| 3848 | quickcheck::quickcheck! { |
| 3849 | fn prop_unix_seconds_roundtrip(t: Timestamp) -> quickcheck::TestResult { |
| 3850 | let dt = t.to_zoned(TimeZone::UTC).datetime(); |
| 3851 | let Ok(got) = dt.to_zoned(TimeZone::UTC) else { |
| 3852 | return quickcheck::TestResult::discard(); |
| 3853 | }; |
| 3854 | quickcheck::TestResult::from_bool(t == got.timestamp()) |
| 3855 | } |
| 3856 | |
| 3857 | fn prop_nanos_roundtrip_unix_ranged(t: Timestamp) -> bool { |
| 3858 | let nanos = t.as_nanosecond_ranged(); |
| 3859 | let got = Timestamp::from_nanosecond_ranged(nanos); |
| 3860 | t == got |
| 3861 | } |
| 3862 | |
| 3863 | fn prop_nanos_roundtrip_unix(t: Timestamp) -> bool { |
| 3864 | let nanos = t.as_nanosecond(); |
| 3865 | let got = Timestamp::from_nanosecond(nanos).unwrap(); |
| 3866 | t == got |
| 3867 | } |
| 3868 | |
| 3869 | fn timestamp_constant_and_new_are_same1(t: Timestamp) -> bool { |
| 3870 | let got = Timestamp::constant(t.as_second(), t.subsec_nanosecond()); |
| 3871 | t == got |
| 3872 | } |
| 3873 | |
| 3874 | fn timestamp_constant_and_new_are_same2( |
| 3875 | secs: i64, |
| 3876 | nanos: i32 |
| 3877 | ) -> quickcheck::TestResult { |
| 3878 | let Ok(ts) = Timestamp::new(secs, nanos) else { |
| 3879 | return quickcheck::TestResult::discard(); |
| 3880 | }; |
| 3881 | let got = Timestamp::constant(secs, nanos); |
| 3882 | quickcheck::TestResult::from_bool(ts == got) |
| 3883 | } |
| 3884 | } |
| 3885 | |
| 3886 | /// A `serde` deserializer compatibility test. |
| 3887 | /// |
| 3888 | /// Serde YAML used to be unable to deserialize `jiff` types, |
| 3889 | /// as deserializing from bytes is not supported by the deserializer. |
| 3890 | /// |
| 3891 | /// - <https://github.com/BurntSushi/jiff/issues/138> |
| 3892 | /// - <https://github.com/BurntSushi/jiff/discussions/148> |
| 3893 | #[test ] |
| 3894 | fn timestamp_deserialize_yaml() { |
| 3895 | let expected = datetime(2024, 10, 31, 16, 33, 53, 123456789) |
| 3896 | .to_zoned(TimeZone::UTC) |
| 3897 | .unwrap() |
| 3898 | .timestamp(); |
| 3899 | |
| 3900 | let deserialized: Timestamp = |
| 3901 | serde_yaml::from_str("2024-10-31T16:33:53.123456789+00:00" ) |
| 3902 | .unwrap(); |
| 3903 | |
| 3904 | assert_eq!(deserialized, expected); |
| 3905 | |
| 3906 | let deserialized: Timestamp = serde_yaml::from_slice( |
| 3907 | "2024-10-31T16:33:53.123456789+00:00" .as_bytes(), |
| 3908 | ) |
| 3909 | .unwrap(); |
| 3910 | |
| 3911 | assert_eq!(deserialized, expected); |
| 3912 | |
| 3913 | let cursor = Cursor::new(b"2024-10-31T16:33:53.123456789+00:00" ); |
| 3914 | let deserialized: Timestamp = serde_yaml::from_reader(cursor).unwrap(); |
| 3915 | |
| 3916 | assert_eq!(deserialized, expected); |
| 3917 | } |
| 3918 | |
| 3919 | #[test ] |
| 3920 | fn timestamp_precision_loss() { |
| 3921 | let ts1: Timestamp = |
| 3922 | "2025-01-25T19:32:21.783444592+01:00" .parse().unwrap(); |
| 3923 | let span = 1.second(); |
| 3924 | let ts2 = ts1 + span; |
| 3925 | assert_eq!(ts2.to_string(), "2025-01-25T18:32:22.783444592Z" ); |
| 3926 | assert_eq!(ts1, ts2 - span, "should be reversible" ); |
| 3927 | } |
| 3928 | } |
| 3929 | |