| 1 | /*! |
| 2 | Configurable support for printing and parsing datetimes and durations. |
| 3 | |
| 4 | Note that for most use cases, you should be using the corresponding |
| 5 | [`Display`](std::fmt::Display) or [`FromStr`](std::str::FromStr) trait |
| 6 | implementations for printing and parsing respectively. The APIs in this module |
| 7 | provide more configurable support for printing and parsing. |
| 8 | |
| 9 | # Tables of examples |
| 10 | |
| 11 | The tables below attempt to show some examples of datetime and duration |
| 12 | formatting, along with names and links to relevant routines and types. The |
| 13 | point of these tables is to give a general overview of the formatting and |
| 14 | parsing functionality in these sub-modules. |
| 15 | |
| 16 | ## Support for `FromStr` and `Display` |
| 17 | |
| 18 | This table lists the formats supported by the [`FromStr`] and [`Display`] |
| 19 | trait implementations on the datetime and duration types in Jiff. |
| 20 | |
| 21 | In all of these cases, the trait implementations are mere conveniences for |
| 22 | functionality provided by the [`temporal`] sub-module (and, in a couple cases, |
| 23 | the [`friendly`] sub-module). The sub-modules provide lower level control |
| 24 | (such as parsing from `&[u8]`) and more configuration (such as controlling the |
| 25 | disambiguation strategy used when parsing zoned datetime [RFC-9557] strings). |
| 26 | |
| 27 | | Example | Format | Links | |
| 28 | | ------- | ------ | ----- | |
| 29 | | `2025-08-20T17:35:00Z` | [RFC-3339] | [`Timestamp`] | |
| 30 | | `2025-08-20T17:35:00-05` | [RFC-3339] | [`FromStr`] impl and<br>[`Timestamp::display_with_offset`] | |
| 31 | | `2025-08-20T17:35:00+02[Poland]` | [RFC-9557] | [`Zoned`] | |
| 32 | | `2025-08-20T17:35:00+02:00[+02:00]` | [RFC-9557] | [`Zoned`] | |
| 33 | | `2025-08-20T17:35:00` | [ISO-8601] | [`civil::DateTime`] | |
| 34 | | `2025-08-20` | [ISO-8601] | [`civil::Date`] | |
| 35 | | `17:35:00` | [ISO-8601] | [`civil::Time`] | |
| 36 | | `P1Y2M3W4DT5H6M7S` | [ISO-8601], [Temporal] | [`Span`] | |
| 37 | | `PT1H2M3S` | [ISO-8601] | [`SignedDuration`], [`Span`] | |
| 38 | | `PT1H2M3.123456789S` | [ISO-8601] | [`SignedDuration`], [`Span`] | |
| 39 | | `1d 2h 3m 5s` | [`friendly`] | [`FromStr`] impl and alternative [`Display`]<br>via `{:#}` for [`SignedDuration`], [`Span`] | |
| 40 | |
| 41 | Note that for datetimes like `2025-08-20T17:35:00`, the following variants are |
| 42 | also accepted: |
| 43 | |
| 44 | ```text |
| 45 | 2025-08-20 17:35:00 |
| 46 | 2025-08-20T17:35:00.123456789 |
| 47 | 2025-08-20T17:35 |
| 48 | 2025-08-20T17 |
| 49 | ``` |
| 50 | |
| 51 | This applies to RFC 3339 and RFC 9557 timestamps as well. |
| 52 | |
| 53 | Also, for ISO 8601 durations, the unit designator labels are matched |
| 54 | case insensitively. For example, `PT1h2m3s` is recognized by Jiff. |
| 55 | |
| 56 | ## The "friendly" duration format |
| 57 | |
| 58 | This table lists a few examples of the [`friendly`] duration format. Briefly, |
| 59 | it is a bespoke format for Jiff, but is meant to match similar bespoke formats |
| 60 | used elsewhere and be easier to read than the standard ISO 8601 duration |
| 61 | format. |
| 62 | |
| 63 | All examples below can be parsed via a [`Span`]'s [`FromStr`] trait |
| 64 | implementation. All examples with units no bigger than hours can be parsed via |
| 65 | a [`SignedDuration`]'s [`FromStr`] trait implementation. This table otherwise |
| 66 | shows the options for printing durations in the format shown. |
| 67 | |
| 68 | | Example | Print configuration | |
| 69 | | ------- | ------------------- | |
| 70 | | `1year 2months` | [`Designator::Verbose`] via [`SpanPrinter::designator`] | |
| 71 | | `1yr 2mos` | [`Designator::Short`] via [`SpanPrinter::designator`] | |
| 72 | | `1y 2mo` | [`Designator::Compact`] via [`SpanPrinter::designator`] (default) | |
| 73 | | `1h2m3s` | [`Spacing::None`] via [`SpanPrinter::spacing`] | |
| 74 | | `1h 2m 3s` | [`Spacing::BetweenUnits`] via [`SpanPrinter::spacing`] (default) | |
| 75 | | `1 h 2 m 3 s` | [`Spacing::BetweenUnitsAndDesignators`] via [`SpanPrinter::spacing`] | |
| 76 | | `2d 3h ago` | [`Direction::Auto`] via [`SpanPrinter::direction`] (default) | |
| 77 | | `-2d 3h` | [`Direction::Sign`] via [`SpanPrinter::direction`] | |
| 78 | | `+2d 3h` | [`Direction::ForceSign`] via [`SpanPrinter::direction`] | |
| 79 | | `2d 3h ago` | [`Direction::Suffix`] via [`SpanPrinter::direction`] | |
| 80 | | `9.123456789s` | [`FractionalUnit::Second`] via [`SpanPrinter::fractional`] | |
| 81 | | `1y, 2mo` | [`SpanPrinter::comma_after_designator`] | |
| 82 | | `15d 02:59:15.123` | [`SpanPrinter::hours_minutes_seconds`] | |
| 83 | |
| 84 | ## Bespoke datetime formats via `strptime` and `strftime` |
| 85 | |
| 86 | Every datetime type has bespoke formatting routines defined on it. For |
| 87 | example, [`Zoned::strptime`] and [`civil::Date::strftime`]. Additionally, the |
| 88 | [`strtime`] sub-module also provides convenience routines, [`strtime::format`] |
| 89 | and [`strtime::parse`], where the former is generic over any datetime type in |
| 90 | Jiff and the latter provides a [`BrokenDownTime`] for granular parsing. |
| 91 | |
| 92 | | Example | Format string | |
| 93 | | ------- | ------------- | |
| 94 | | `2025-05-20` | `%Y-%m-%d` | |
| 95 | | `2025-05-20` | `%F` | |
| 96 | | `2025-W21-2` | `%G-W%V-%u` | |
| 97 | | `05/20/25` | `%m/%d/%y` | |
| 98 | | `Monday, February 10, 2025 at 9:01pm -0500` | `%A, %B %d, %Y at %-I:%M%P %z` | |
| 99 | | `Monday, February 10, 2025 at 9:01pm EST` | `%A, %B %d, %Y at %-I:%M%P %Z` | |
| 100 | | `Monday, February 10, 2025 at 9:01pm America/New_York` | `%A, %B %d, %Y at %-I:%M%P %Q` | |
| 101 | |
| 102 | The specific conversion specifiers supported are documented in the [`strtime`] |
| 103 | sub-module. While precise POSIX compatibility is not guaranteed, the conversion |
| 104 | specifiers are generally meant to match prevailing implementations. (Although |
| 105 | there are many such implementations and they each tend to have their own quirks |
| 106 | and features.) |
| 107 | |
| 108 | ## RFC 2822 parsing and printing |
| 109 | |
| 110 | [RFC-2822] support is provided by the [`rfc2822`] sub-module. |
| 111 | |
| 112 | | Example | Links | |
| 113 | | ------- | ----- | |
| 114 | | `Thu, 29 Feb 2024 05:34 -0500` | [`rfc2822::parse`] and [`rfc2822::to_string`] | |
| 115 | | `Thu, 01 Jan 1970 00:00:01 GMT` | [`DateTimePrinter::timestamp_to_rfc9110_string`] | |
| 116 | |
| 117 | [Temporal]: https://tc39.es/proposal-temporal/#sec-temporal-iso8601grammar |
| 118 | [ISO-8601]: https://www.iso.org/iso-8601-date-and-time-format.html |
| 119 | [RFC-3339]: https://www.rfc-editor.org/rfc/rfc3339 |
| 120 | [RFC-9557]: https://www.rfc-editor.org/rfc/rfc9557.html |
| 121 | [ISO-8601]: https://www.iso.org/iso-8601-date-and-time-format.html |
| 122 | [RFC-2822]: https://datatracker.ietf.org/doc/html/rfc2822 |
| 123 | [RFC-9110]: https://datatracker.ietf.org/doc/html/rfc9110#section-5.6.7-15 |
| 124 | [`Display`]: std::fmt::Display |
| 125 | [`FromStr`]: std::str::FromStr |
| 126 | [`friendly`]: crate::fmt::friendly |
| 127 | [`temporal`]: crate::fmt::temporal |
| 128 | [`rfc2822`]: crate::fmt::rfc2822 |
| 129 | [`strtime`]: crate::fmt::strtime |
| 130 | [`civil::DateTime`]: crate::civil::DateTime |
| 131 | [`civil::Date`]: crate::civil::Date |
| 132 | [`civil::Date::strftime`]: crate::civil::Date::strftime |
| 133 | [`civil::Time`]: crate::civil::Time |
| 134 | [`SignedDuration`]: crate::SignedDuration |
| 135 | [`Span`]: crate::Span |
| 136 | [`Timestamp`]: crate::Timestamp |
| 137 | [`Timestamp::display_with_offset`]: crate::Timestamp::display_with_offset |
| 138 | [`Zoned`]: crate::Zoned |
| 139 | [`Zoned::strptime`]: crate::Zoned::strptime |
| 140 | |
| 141 | [`Designator::Verbose`]: crate::fmt::friendly::Designator::Verbose |
| 142 | [`Designator::Short`]: crate::fmt::friendly::Designator::Short |
| 143 | [`Designator::Compact`]: crate::fmt::friendly::Designator::Compact |
| 144 | [`Spacing::None`]: crate::fmt::friendly::Spacing::None |
| 145 | [`Spacing::BetweenUnits`]: crate::fmt::friendly::Spacing::BetweenUnits |
| 146 | [`Spacing::BetweenUnitsAndDesignators`]: crate::fmt::friendly::Spacing::BetweenUnitsAndDesignators |
| 147 | [`Direction::Auto`]: crate::fmt::friendly::Direction::Auto |
| 148 | [`Direction::Sign`]: crate::fmt::friendly::Direction::Sign |
| 149 | [`Direction::ForceSign`]: crate::fmt::friendly::Direction::ForceSign |
| 150 | [`Direction::Suffix`]: crate::fmt::friendly::Direction::Suffix |
| 151 | [`FractionalUnit::Second`]: crate::fmt::friendly::FractionalUnit::Second |
| 152 | [`SpanPrinter::designator`]: crate::fmt::friendly::SpanPrinter::designator |
| 153 | [`SpanPrinter::spacing`]: crate::fmt::friendly::SpanPrinter::spacing |
| 154 | [`SpanPrinter::direction`]: crate::fmt::friendly::SpanPrinter::direction |
| 155 | [`SpanPrinter::fractional`]: crate::fmt::friendly::SpanPrinter::fractional |
| 156 | [`SpanPrinter::comma_after_designator`]: crate::fmt::friendly::SpanPrinter::comma_after_designator |
| 157 | [`SpanPrinter::hours_minutes_seconds`]: crate::fmt::friendly::SpanPrinter::hours_minutes_seconds |
| 158 | |
| 159 | [`BrokenDownTime`]: crate::fmt::strtime::BrokenDownTime |
| 160 | [`strtime::parse`]: crate::fmt::strtime::parse |
| 161 | [`strtime::format`]: crate::fmt::strtime::format |
| 162 | |
| 163 | [`rfc2822::parse`]: crate::fmt::rfc2822::parse |
| 164 | [`rfc2822::to_string`]: crate::fmt::rfc2822::to_string |
| 165 | [`DateTimePrinter::timestamp_to_rfc9110_string`]: crate::fmt::rfc2822::DateTimePrinter::timestamp_to_rfc9110_string |
| 166 | */ |
| 167 | |
| 168 | use crate::{ |
| 169 | error::{err, Error}, |
| 170 | util::escape, |
| 171 | }; |
| 172 | |
| 173 | use self::util::{Decimal, DecimalFormatter, Fractional, FractionalFormatter}; |
| 174 | |
| 175 | pub mod friendly; |
| 176 | mod offset; |
| 177 | pub mod rfc2822; |
| 178 | mod rfc9557; |
| 179 | #[cfg (feature = "serde" )] |
| 180 | pub mod serde; |
| 181 | pub mod strtime; |
| 182 | pub mod temporal; |
| 183 | mod util; |
| 184 | |
| 185 | /// The result of parsing a value out of a slice of bytes. |
| 186 | /// |
| 187 | /// This contains both the parsed value and the offset at which the value |
| 188 | /// ended in the input given. This makes it possible to parse, for example, a |
| 189 | /// datetime value as a prefix of some larger string without knowing ahead of |
| 190 | /// time where it ends. |
| 191 | #[derive (Clone)] |
| 192 | pub(crate) struct Parsed<'i, V> { |
| 193 | /// The value parsed. |
| 194 | value: V, |
| 195 | /// The remaining unparsed input. |
| 196 | input: &'i [u8], |
| 197 | } |
| 198 | |
| 199 | impl<'i, V: core::fmt::Display> Parsed<'i, V> { |
| 200 | /// Ensures that the parsed value represents the entire input. This occurs |
| 201 | /// precisely when the `input` on this parsed value is empty. |
| 202 | /// |
| 203 | /// This is useful when one expects a parsed value to consume the entire |
| 204 | /// input, and to consider it an error if it doesn't. |
| 205 | #[inline ] |
| 206 | fn into_full(self) -> Result<V, Error> { |
| 207 | if self.input.is_empty() { |
| 208 | return Ok(self.value); |
| 209 | } |
| 210 | Err(err!( |
| 211 | "parsed value ' {value}', but unparsed input {unparsed:?} \ |
| 212 | remains (expected no unparsed input)" , |
| 213 | value = self.value, |
| 214 | unparsed = escape::Bytes(self.input), |
| 215 | )) |
| 216 | } |
| 217 | } |
| 218 | |
| 219 | impl<'i, V: core::fmt::Debug> core::fmt::Debug for Parsed<'i, V> { |
| 220 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 221 | f&mut DebugStruct<'_, '_>.debug_struct("Parsed" ) |
| 222 | .field("value" , &self.value) |
| 223 | .field(name:"input" , &escape::Bytes(self.input)) |
| 224 | .finish() |
| 225 | } |
| 226 | } |
| 227 | |
| 228 | /// A trait for printing datetimes or spans into Unicode-accepting buffers or |
| 229 | /// streams. |
| 230 | /// |
| 231 | /// The most useful implementations of this trait are for the `String` and |
| 232 | /// `Vec<u8>` types. But any implementation of [`std::fmt::Write`] and |
| 233 | /// [`std::io::Write`] can be used via the [`StdFmtWrite`] and [`StdIoWrite`] |
| 234 | /// adapters, respectively. |
| 235 | /// |
| 236 | /// Most users of Jiff should not need to interact with this trait directly. |
| 237 | /// Instead, printing is handled via the [`Display`](std::fmt::Display) |
| 238 | /// implementation of the relevant type. |
| 239 | /// |
| 240 | /// # Design |
| 241 | /// |
| 242 | /// This trait is a near-clone of the `std::fmt::Write` trait. It's also very |
| 243 | /// similar to the `std::io::Write` trait, but like `std::fmt::Write`, this |
| 244 | /// trait is limited to writing valid UTF-8. The UTF-8 restriction was adopted |
| 245 | /// because we really want to support printing datetimes and spans to `String` |
| 246 | /// buffers. If we permitted writing `&[u8]` data, then writing to a `String` |
| 247 | /// buffer would always require a costly UTF-8 validation check. |
| 248 | /// |
| 249 | /// The `std::fmt::Write` trait wasn't used itself because: |
| 250 | /// |
| 251 | /// 1. Using a custom trait allows us to require using Jiff's error type. |
| 252 | /// (Although this extra flexibility isn't currently used, since printing only |
| 253 | /// fails when writing to the underlying buffer or stream fails.) |
| 254 | /// 2. Using a custom trait allows us more control over the implementations of |
| 255 | /// the trait. For example, a custom trait means we can format directly into |
| 256 | /// a `Vec<u8>` buffer, which isn't possible with `std::fmt::Write` because |
| 257 | /// there is no `std::fmt::Write` trait implementation for `Vec<u8>`. |
| 258 | pub trait Write { |
| 259 | /// Write the given string to this writer, returning whether the write |
| 260 | /// succeeded or not. |
| 261 | fn write_str(&mut self, string: &str) -> Result<(), Error>; |
| 262 | |
| 263 | /// Write the given character to this writer, returning whether the write |
| 264 | /// succeeded or not. |
| 265 | #[inline ] |
| 266 | fn write_char(&mut self, char: char) -> Result<(), Error> { |
| 267 | self.write_str(string:char.encode_utf8(&mut [0; 4])) |
| 268 | } |
| 269 | } |
| 270 | |
| 271 | #[cfg (any(test, feature = "alloc" ))] |
| 272 | impl Write for alloc::string::String { |
| 273 | #[inline ] |
| 274 | fn write_str(&mut self, string: &str) -> Result<(), Error> { |
| 275 | self.push_str(string); |
| 276 | Ok(()) |
| 277 | } |
| 278 | } |
| 279 | |
| 280 | #[cfg (any(test, feature = "alloc" ))] |
| 281 | impl Write for alloc::vec::Vec<u8> { |
| 282 | #[inline ] |
| 283 | fn write_str(&mut self, string: &str) -> Result<(), Error> { |
| 284 | self.extend_from_slice(string.as_bytes()); |
| 285 | Ok(()) |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | impl<W: Write> Write for &mut W { |
| 290 | fn write_str(&mut self, string: &str) -> Result<(), Error> { |
| 291 | (**self).write_str(string) |
| 292 | } |
| 293 | |
| 294 | #[inline ] |
| 295 | fn write_char(&mut self, char: char) -> Result<(), Error> { |
| 296 | (**self).write_char(char) |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | /// An adapter for using `std::io::Write` implementations with `fmt::Write`. |
| 301 | /// |
| 302 | /// This is useful when one wants to format a datetime or span directly |
| 303 | /// to something with a `std::io::Write` trait implementation but not a |
| 304 | /// `fmt::Write` implementation. |
| 305 | /// |
| 306 | /// # Example |
| 307 | /// |
| 308 | /// ```no_run |
| 309 | /// use std::{fs::File, io::{BufWriter, Write}, path::Path}; |
| 310 | /// |
| 311 | /// use jiff::{civil::date, fmt::{StdIoWrite, temporal::DateTimePrinter}}; |
| 312 | /// |
| 313 | /// let zdt = date(2024, 6, 15).at(7, 0, 0, 0).in_tz("America/New_York" )?; |
| 314 | /// |
| 315 | /// let path = Path::new("/tmp/output" ); |
| 316 | /// let mut file = BufWriter::new(File::create(path)?); |
| 317 | /// DateTimePrinter::new().print_zoned(&zdt, StdIoWrite(&mut file)).unwrap(); |
| 318 | /// file.flush()?; |
| 319 | /// assert_eq!( |
| 320 | /// std::fs::read_to_string(path)?, |
| 321 | /// "2024-06-15T07:00:00-04:00[America/New_York]" , |
| 322 | /// ); |
| 323 | /// |
| 324 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 325 | /// ``` |
| 326 | #[cfg (feature = "std" )] |
| 327 | #[derive (Clone, Debug)] |
| 328 | pub struct StdIoWrite<W>(pub W); |
| 329 | |
| 330 | #[cfg (feature = "std" )] |
| 331 | impl<W: std::io::Write> Write for StdIoWrite<W> { |
| 332 | #[inline ] |
| 333 | fn write_str(&mut self, string: &str) -> Result<(), Error> { |
| 334 | self.0.write_all(string.as_bytes()).map_err(op:Error::adhoc) |
| 335 | } |
| 336 | } |
| 337 | |
| 338 | /// An adapter for using `std::fmt::Write` implementations with `fmt::Write`. |
| 339 | /// |
| 340 | /// This is useful when one wants to format a datetime or span directly |
| 341 | /// to something with a `std::fmt::Write` trait implementation but not a |
| 342 | /// `fmt::Write` implementation. |
| 343 | /// |
| 344 | /// (Despite using `Std` in this name, this type is available in `core`-only |
| 345 | /// configurations.) |
| 346 | /// |
| 347 | /// # Example |
| 348 | /// |
| 349 | /// This example shows the `std::fmt::Display` trait implementation for |
| 350 | /// [`civil::DateTime`](crate::civil::DateTime) (but using a wrapper type). |
| 351 | /// |
| 352 | /// ``` |
| 353 | /// use jiff::{civil::DateTime, fmt::{temporal::DateTimePrinter, StdFmtWrite}}; |
| 354 | /// |
| 355 | /// struct MyDateTime(DateTime); |
| 356 | /// |
| 357 | /// impl std::fmt::Display for MyDateTime { |
| 358 | /// fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 359 | /// |
| 360 | /// static P: DateTimePrinter = DateTimePrinter::new(); |
| 361 | /// P.print_datetime(&self.0, StdFmtWrite(f)) |
| 362 | /// .map_err(|_| std::fmt::Error) |
| 363 | /// } |
| 364 | /// } |
| 365 | /// |
| 366 | /// let dt = MyDateTime(DateTime::constant(2024, 6, 15, 17, 30, 0, 0)); |
| 367 | /// assert_eq!(dt.to_string(), "2024-06-15T17:30:00" ); |
| 368 | /// ``` |
| 369 | #[derive (Clone, Debug)] |
| 370 | pub struct StdFmtWrite<W>(pub W); |
| 371 | |
| 372 | impl<W: core::fmt::Write> Write for StdFmtWrite<W> { |
| 373 | #[inline ] |
| 374 | fn write_str(&mut self, string: &str) -> Result<(), Error> { |
| 375 | self.0 |
| 376 | .write_str(string) |
| 377 | .map_err(|_| err!("an error occurred when formatting an argument" )) |
| 378 | } |
| 379 | } |
| 380 | |
| 381 | impl<W: Write> core::fmt::Write for StdFmtWrite<W> { |
| 382 | #[inline ] |
| 383 | fn write_str(&mut self, string: &str) -> Result<(), core::fmt::Error> { |
| 384 | self.0.write_str(string).map_err(|_| core::fmt::Error) |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | /// An extension trait to `Write` that provides crate internal routines. |
| 389 | /// |
| 390 | /// These routines aren't exposed because they make use of crate internal |
| 391 | /// types. Those types could perhaps be exposed if there was strong demand, |
| 392 | /// but I'm skeptical. |
| 393 | trait WriteExt: Write { |
| 394 | /// Write the given number as a decimal using ASCII digits to this buffer. |
| 395 | /// The given formatter controls how the decimal is formatted. |
| 396 | #[inline ] |
| 397 | fn write_int( |
| 398 | &mut self, |
| 399 | formatter: &DecimalFormatter, |
| 400 | n: impl Into<i64>, |
| 401 | ) -> Result<(), Error> { |
| 402 | self.write_decimal(&Decimal::new(formatter, n.into())) |
| 403 | } |
| 404 | |
| 405 | /// Write the given fractional number using ASCII digits to this buffer. |
| 406 | /// The given formatter controls how the fractional number is formatted. |
| 407 | #[inline ] |
| 408 | fn write_fraction( |
| 409 | &mut self, |
| 410 | formatter: &FractionalFormatter, |
| 411 | n: impl Into<i64>, |
| 412 | ) -> Result<(), Error> { |
| 413 | self.write_fractional(&Fractional::new(formatter, n.into())) |
| 414 | } |
| 415 | |
| 416 | /// Write the given decimal number to this buffer. |
| 417 | #[inline ] |
| 418 | fn write_decimal(&mut self, decimal: &Decimal) -> Result<(), Error> { |
| 419 | self.write_str(decimal.as_str()) |
| 420 | } |
| 421 | |
| 422 | /// Write the given fractional number to this buffer. |
| 423 | #[inline ] |
| 424 | fn write_fractional( |
| 425 | &mut self, |
| 426 | fractional: &Fractional, |
| 427 | ) -> Result<(), Error> { |
| 428 | self.write_str(fractional.as_str()) |
| 429 | } |
| 430 | } |
| 431 | |
| 432 | impl<W: Write> WriteExt for W {} |
| 433 | |