1 | /*! |
2 | Configurable support for printing and parsing datetimes and durations. |
3 | |
4 | Note that for most use cases, you should be using the corresponding |
5 | [`Display`](std::fmt::Display) or [`FromStr`](std::str::FromStr) trait |
6 | implementations for printing and parsing respectively. The APIs in this module |
7 | provide more configurable support for printing and parsing. |
8 | |
9 | # Tables of examples |
10 | |
11 | The tables below attempt to show some examples of datetime and duration |
12 | formatting, along with names and links to relevant routines and types. The |
13 | point of these tables is to give a general overview of the formatting and |
14 | parsing functionality in these sub-modules. |
15 | |
16 | ## Support for `FromStr` and `Display` |
17 | |
18 | This table lists the formats supported by the [`FromStr`] and [`Display`] |
19 | trait implementations on the datetime and duration types in Jiff. |
20 | |
21 | In all of these cases, the trait implementations are mere conveniences for |
22 | functionality provided by the [`temporal`] sub-module (and, in a couple cases, |
23 | the [`friendly`] sub-module). The sub-modules provide lower level control |
24 | (such as parsing from `&[u8]`) and more configuration (such as controlling the |
25 | disambiguation strategy used when parsing zoned datetime [RFC-9557] strings). |
26 | |
27 | | Example | Format | Links | |
28 | | ------- | ------ | ----- | |
29 | | `2025-08-20T17:35:00Z` | [RFC-3339] | [`Timestamp`] | |
30 | | `2025-08-20T17:35:00-05` | [RFC-3339] | [`FromStr`] impl and<br>[`Timestamp::display_with_offset`] | |
31 | | `2025-08-20T17:35:00+02[Poland]` | [RFC-9557] | [`Zoned`] | |
32 | | `2025-08-20T17:35:00+02:00[+02:00]` | [RFC-9557] | [`Zoned`] | |
33 | | `2025-08-20T17:35:00` | [ISO-8601] | [`civil::DateTime`] | |
34 | | `2025-08-20` | [ISO-8601] | [`civil::Date`] | |
35 | | `17:35:00` | [ISO-8601] | [`civil::Time`] | |
36 | | `P1Y2M3W4DT5H6M7S` | [ISO-8601], [Temporal] | [`Span`] | |
37 | | `PT1H2M3S` | [ISO-8601] | [`SignedDuration`], [`Span`] | |
38 | | `PT1H2M3.123456789S` | [ISO-8601] | [`SignedDuration`], [`Span`] | |
39 | | `1d 2h 3m 5s` | [`friendly`] | [`FromStr`] impl and alternative [`Display`]<br>via `{:#}` for [`SignedDuration`], [`Span`] | |
40 | |
41 | Note that for datetimes like `2025-08-20T17:35:00`, the following variants are |
42 | also accepted: |
43 | |
44 | ```text |
45 | 2025-08-20 17:35:00 |
46 | 2025-08-20T17:35:00.123456789 |
47 | 2025-08-20T17:35 |
48 | 2025-08-20T17 |
49 | ``` |
50 | |
51 | This applies to RFC 3339 and RFC 9557 timestamps as well. |
52 | |
53 | Also, for ISO 8601 durations, the unit designator labels are matched |
54 | case insensitively. For example, `PT1h2m3s` is recognized by Jiff. |
55 | |
56 | ## The "friendly" duration format |
57 | |
58 | This table lists a few examples of the [`friendly`] duration format. Briefly, |
59 | it is a bespoke format for Jiff, but is meant to match similar bespoke formats |
60 | used elsewhere and be easier to read than the standard ISO 8601 duration |
61 | format. |
62 | |
63 | All examples below can be parsed via a [`Span`]'s [`FromStr`] trait |
64 | implementation. All examples with units no bigger than hours can be parsed via |
65 | a [`SignedDuration`]'s [`FromStr`] trait implementation. This table otherwise |
66 | shows the options for printing durations in the format shown. |
67 | |
68 | | Example | Print configuration | |
69 | | ------- | ------------------- | |
70 | | `1year 2months` | [`Designator::Verbose`] via [`SpanPrinter::designator`] | |
71 | | `1yr 2mos` | [`Designator::Short`] via [`SpanPrinter::designator`] | |
72 | | `1y 2mo` | [`Designator::Compact`] via [`SpanPrinter::designator`] (default) | |
73 | | `1h2m3s` | [`Spacing::None`] via [`SpanPrinter::spacing`] | |
74 | | `1h 2m 3s` | [`Spacing::BetweenUnits`] via [`SpanPrinter::spacing`] (default) | |
75 | | `1 h 2 m 3 s` | [`Spacing::BetweenUnitsAndDesignators`] via [`SpanPrinter::spacing`] | |
76 | | `2d 3h ago` | [`Direction::Auto`] via [`SpanPrinter::direction`] (default) | |
77 | | `-2d 3h` | [`Direction::Sign`] via [`SpanPrinter::direction`] | |
78 | | `+2d 3h` | [`Direction::ForceSign`] via [`SpanPrinter::direction`] | |
79 | | `2d 3h ago` | [`Direction::Suffix`] via [`SpanPrinter::direction`] | |
80 | | `9.123456789s` | [`FractionalUnit::Second`] via [`SpanPrinter::fractional`] | |
81 | | `1y, 2mo` | [`SpanPrinter::comma_after_designator`] | |
82 | | `15d 02:59:15.123` | [`SpanPrinter::hours_minutes_seconds`] | |
83 | |
84 | ## Bespoke datetime formats via `strptime` and `strftime` |
85 | |
86 | Every datetime type has bespoke formatting routines defined on it. For |
87 | example, [`Zoned::strptime`] and [`civil::Date::strftime`]. Additionally, the |
88 | [`strtime`] sub-module also provides convenience routines, [`strtime::format`] |
89 | and [`strtime::parse`], where the former is generic over any datetime type in |
90 | Jiff and the latter provides a [`BrokenDownTime`] for granular parsing. |
91 | |
92 | | Example | Format string | |
93 | | ------- | ------------- | |
94 | | `2025-05-20` | `%Y-%m-%d` | |
95 | | `2025-05-20` | `%F` | |
96 | | `2025-W21-2` | `%G-W%V-%u` | |
97 | | `05/20/25` | `%m/%d/%y` | |
98 | | `Monday, February 10, 2025 at 9:01pm -0500` | `%A, %B %d, %Y at %-I:%M%P %z` | |
99 | | `Monday, February 10, 2025 at 9:01pm EST` | `%A, %B %d, %Y at %-I:%M%P %Z` | |
100 | | `Monday, February 10, 2025 at 9:01pm America/New_York` | `%A, %B %d, %Y at %-I:%M%P %Q` | |
101 | |
102 | The specific conversion specifiers supported are documented in the [`strtime`] |
103 | sub-module. While precise POSIX compatibility is not guaranteed, the conversion |
104 | specifiers are generally meant to match prevailing implementations. (Although |
105 | there are many such implementations and they each tend to have their own quirks |
106 | and features.) |
107 | |
108 | ## RFC 2822 parsing and printing |
109 | |
110 | [RFC-2822] support is provided by the [`rfc2822`] sub-module. |
111 | |
112 | | Example | Links | |
113 | | ------- | ----- | |
114 | | `Thu, 29 Feb 2024 05:34 -0500` | [`rfc2822::parse`] and [`rfc2822::to_string`] | |
115 | | `Thu, 01 Jan 1970 00:00:01 GMT` | [`DateTimePrinter::timestamp_to_rfc9110_string`] | |
116 | |
117 | [Temporal]: https://tc39.es/proposal-temporal/#sec-temporal-iso8601grammar |
118 | [ISO-8601]: https://www.iso.org/iso-8601-date-and-time-format.html |
119 | [RFC-3339]: https://www.rfc-editor.org/rfc/rfc3339 |
120 | [RFC-9557]: https://www.rfc-editor.org/rfc/rfc9557.html |
121 | [ISO-8601]: https://www.iso.org/iso-8601-date-and-time-format.html |
122 | [RFC-2822]: https://datatracker.ietf.org/doc/html/rfc2822 |
123 | [RFC-9110]: https://datatracker.ietf.org/doc/html/rfc9110#section-5.6.7-15 |
124 | [`Display`]: std::fmt::Display |
125 | [`FromStr`]: std::str::FromStr |
126 | [`friendly`]: crate::fmt::friendly |
127 | [`temporal`]: crate::fmt::temporal |
128 | [`rfc2822`]: crate::fmt::rfc2822 |
129 | [`strtime`]: crate::fmt::strtime |
130 | [`civil::DateTime`]: crate::civil::DateTime |
131 | [`civil::Date`]: crate::civil::Date |
132 | [`civil::Date::strftime`]: crate::civil::Date::strftime |
133 | [`civil::Time`]: crate::civil::Time |
134 | [`SignedDuration`]: crate::SignedDuration |
135 | [`Span`]: crate::Span |
136 | [`Timestamp`]: crate::Timestamp |
137 | [`Timestamp::display_with_offset`]: crate::Timestamp::display_with_offset |
138 | [`Zoned`]: crate::Zoned |
139 | [`Zoned::strptime`]: crate::Zoned::strptime |
140 | |
141 | [`Designator::Verbose`]: crate::fmt::friendly::Designator::Verbose |
142 | [`Designator::Short`]: crate::fmt::friendly::Designator::Short |
143 | [`Designator::Compact`]: crate::fmt::friendly::Designator::Compact |
144 | [`Spacing::None`]: crate::fmt::friendly::Spacing::None |
145 | [`Spacing::BetweenUnits`]: crate::fmt::friendly::Spacing::BetweenUnits |
146 | [`Spacing::BetweenUnitsAndDesignators`]: crate::fmt::friendly::Spacing::BetweenUnitsAndDesignators |
147 | [`Direction::Auto`]: crate::fmt::friendly::Direction::Auto |
148 | [`Direction::Sign`]: crate::fmt::friendly::Direction::Sign |
149 | [`Direction::ForceSign`]: crate::fmt::friendly::Direction::ForceSign |
150 | [`Direction::Suffix`]: crate::fmt::friendly::Direction::Suffix |
151 | [`FractionalUnit::Second`]: crate::fmt::friendly::FractionalUnit::Second |
152 | [`SpanPrinter::designator`]: crate::fmt::friendly::SpanPrinter::designator |
153 | [`SpanPrinter::spacing`]: crate::fmt::friendly::SpanPrinter::spacing |
154 | [`SpanPrinter::direction`]: crate::fmt::friendly::SpanPrinter::direction |
155 | [`SpanPrinter::fractional`]: crate::fmt::friendly::SpanPrinter::fractional |
156 | [`SpanPrinter::comma_after_designator`]: crate::fmt::friendly::SpanPrinter::comma_after_designator |
157 | [`SpanPrinter::hours_minutes_seconds`]: crate::fmt::friendly::SpanPrinter::hours_minutes_seconds |
158 | |
159 | [`BrokenDownTime`]: crate::fmt::strtime::BrokenDownTime |
160 | [`strtime::parse`]: crate::fmt::strtime::parse |
161 | [`strtime::format`]: crate::fmt::strtime::format |
162 | |
163 | [`rfc2822::parse`]: crate::fmt::rfc2822::parse |
164 | [`rfc2822::to_string`]: crate::fmt::rfc2822::to_string |
165 | [`DateTimePrinter::timestamp_to_rfc9110_string`]: crate::fmt::rfc2822::DateTimePrinter::timestamp_to_rfc9110_string |
166 | */ |
167 | |
168 | use crate::{ |
169 | error::{err, Error}, |
170 | util::escape, |
171 | }; |
172 | |
173 | use self::util::{Decimal, DecimalFormatter, Fractional, FractionalFormatter}; |
174 | |
175 | pub mod friendly; |
176 | mod offset; |
177 | pub mod rfc2822; |
178 | mod rfc9557; |
179 | #[cfg (feature = "serde" )] |
180 | pub mod serde; |
181 | pub mod strtime; |
182 | pub mod temporal; |
183 | mod util; |
184 | |
185 | /// The result of parsing a value out of a slice of bytes. |
186 | /// |
187 | /// This contains both the parsed value and the offset at which the value |
188 | /// ended in the input given. This makes it possible to parse, for example, a |
189 | /// datetime value as a prefix of some larger string without knowing ahead of |
190 | /// time where it ends. |
191 | #[derive (Clone)] |
192 | pub(crate) struct Parsed<'i, V> { |
193 | /// The value parsed. |
194 | value: V, |
195 | /// The remaining unparsed input. |
196 | input: &'i [u8], |
197 | } |
198 | |
199 | impl<'i, V: core::fmt::Display> Parsed<'i, V> { |
200 | /// Ensures that the parsed value represents the entire input. This occurs |
201 | /// precisely when the `input` on this parsed value is empty. |
202 | /// |
203 | /// This is useful when one expects a parsed value to consume the entire |
204 | /// input, and to consider it an error if it doesn't. |
205 | #[inline ] |
206 | fn into_full(self) -> Result<V, Error> { |
207 | if self.input.is_empty() { |
208 | return Ok(self.value); |
209 | } |
210 | Err(err!( |
211 | "parsed value ' {value}', but unparsed input {unparsed:?} \ |
212 | remains (expected no unparsed input)" , |
213 | value = self.value, |
214 | unparsed = escape::Bytes(self.input), |
215 | )) |
216 | } |
217 | } |
218 | |
219 | impl<'i, V: core::fmt::Debug> core::fmt::Debug for Parsed<'i, V> { |
220 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
221 | f&mut DebugStruct<'_, '_>.debug_struct("Parsed" ) |
222 | .field("value" , &self.value) |
223 | .field(name:"input" , &escape::Bytes(self.input)) |
224 | .finish() |
225 | } |
226 | } |
227 | |
228 | /// A trait for printing datetimes or spans into Unicode-accepting buffers or |
229 | /// streams. |
230 | /// |
231 | /// The most useful implementations of this trait are for the `String` and |
232 | /// `Vec<u8>` types. But any implementation of [`std::fmt::Write`] and |
233 | /// [`std::io::Write`] can be used via the [`StdFmtWrite`] and [`StdIoWrite`] |
234 | /// adapters, respectively. |
235 | /// |
236 | /// Most users of Jiff should not need to interact with this trait directly. |
237 | /// Instead, printing is handled via the [`Display`](std::fmt::Display) |
238 | /// implementation of the relevant type. |
239 | /// |
240 | /// # Design |
241 | /// |
242 | /// This trait is a near-clone of the `std::fmt::Write` trait. It's also very |
243 | /// similar to the `std::io::Write` trait, but like `std::fmt::Write`, this |
244 | /// trait is limited to writing valid UTF-8. The UTF-8 restriction was adopted |
245 | /// because we really want to support printing datetimes and spans to `String` |
246 | /// buffers. If we permitted writing `&[u8]` data, then writing to a `String` |
247 | /// buffer would always require a costly UTF-8 validation check. |
248 | /// |
249 | /// The `std::fmt::Write` trait wasn't used itself because: |
250 | /// |
251 | /// 1. Using a custom trait allows us to require using Jiff's error type. |
252 | /// (Although this extra flexibility isn't currently used, since printing only |
253 | /// fails when writing to the underlying buffer or stream fails.) |
254 | /// 2. Using a custom trait allows us more control over the implementations of |
255 | /// the trait. For example, a custom trait means we can format directly into |
256 | /// a `Vec<u8>` buffer, which isn't possible with `std::fmt::Write` because |
257 | /// there is no `std::fmt::Write` trait implementation for `Vec<u8>`. |
258 | pub trait Write { |
259 | /// Write the given string to this writer, returning whether the write |
260 | /// succeeded or not. |
261 | fn write_str(&mut self, string: &str) -> Result<(), Error>; |
262 | |
263 | /// Write the given character to this writer, returning whether the write |
264 | /// succeeded or not. |
265 | #[inline ] |
266 | fn write_char(&mut self, char: char) -> Result<(), Error> { |
267 | self.write_str(string:char.encode_utf8(&mut [0; 4])) |
268 | } |
269 | } |
270 | |
271 | #[cfg (any(test, feature = "alloc" ))] |
272 | impl Write for alloc::string::String { |
273 | #[inline ] |
274 | fn write_str(&mut self, string: &str) -> Result<(), Error> { |
275 | self.push_str(string); |
276 | Ok(()) |
277 | } |
278 | } |
279 | |
280 | #[cfg (any(test, feature = "alloc" ))] |
281 | impl Write for alloc::vec::Vec<u8> { |
282 | #[inline ] |
283 | fn write_str(&mut self, string: &str) -> Result<(), Error> { |
284 | self.extend_from_slice(string.as_bytes()); |
285 | Ok(()) |
286 | } |
287 | } |
288 | |
289 | impl<W: Write> Write for &mut W { |
290 | fn write_str(&mut self, string: &str) -> Result<(), Error> { |
291 | (**self).write_str(string) |
292 | } |
293 | |
294 | #[inline ] |
295 | fn write_char(&mut self, char: char) -> Result<(), Error> { |
296 | (**self).write_char(char) |
297 | } |
298 | } |
299 | |
300 | /// An adapter for using `std::io::Write` implementations with `fmt::Write`. |
301 | /// |
302 | /// This is useful when one wants to format a datetime or span directly |
303 | /// to something with a `std::io::Write` trait implementation but not a |
304 | /// `fmt::Write` implementation. |
305 | /// |
306 | /// # Example |
307 | /// |
308 | /// ```no_run |
309 | /// use std::{fs::File, io::{BufWriter, Write}, path::Path}; |
310 | /// |
311 | /// use jiff::{civil::date, fmt::{StdIoWrite, temporal::DateTimePrinter}}; |
312 | /// |
313 | /// let zdt = date(2024, 6, 15).at(7, 0, 0, 0).in_tz("America/New_York" )?; |
314 | /// |
315 | /// let path = Path::new("/tmp/output" ); |
316 | /// let mut file = BufWriter::new(File::create(path)?); |
317 | /// DateTimePrinter::new().print_zoned(&zdt, StdIoWrite(&mut file)).unwrap(); |
318 | /// file.flush()?; |
319 | /// assert_eq!( |
320 | /// std::fs::read_to_string(path)?, |
321 | /// "2024-06-15T07:00:00-04:00[America/New_York]" , |
322 | /// ); |
323 | /// |
324 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
325 | /// ``` |
326 | #[cfg (feature = "std" )] |
327 | #[derive (Clone, Debug)] |
328 | pub struct StdIoWrite<W>(pub W); |
329 | |
330 | #[cfg (feature = "std" )] |
331 | impl<W: std::io::Write> Write for StdIoWrite<W> { |
332 | #[inline ] |
333 | fn write_str(&mut self, string: &str) -> Result<(), Error> { |
334 | self.0.write_all(string.as_bytes()).map_err(op:Error::adhoc) |
335 | } |
336 | } |
337 | |
338 | /// An adapter for using `std::fmt::Write` implementations with `fmt::Write`. |
339 | /// |
340 | /// This is useful when one wants to format a datetime or span directly |
341 | /// to something with a `std::fmt::Write` trait implementation but not a |
342 | /// `fmt::Write` implementation. |
343 | /// |
344 | /// (Despite using `Std` in this name, this type is available in `core`-only |
345 | /// configurations.) |
346 | /// |
347 | /// # Example |
348 | /// |
349 | /// This example shows the `std::fmt::Display` trait implementation for |
350 | /// [`civil::DateTime`](crate::civil::DateTime) (but using a wrapper type). |
351 | /// |
352 | /// ``` |
353 | /// use jiff::{civil::DateTime, fmt::{temporal::DateTimePrinter, StdFmtWrite}}; |
354 | /// |
355 | /// struct MyDateTime(DateTime); |
356 | /// |
357 | /// impl std::fmt::Display for MyDateTime { |
358 | /// fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
359 | /// |
360 | /// static P: DateTimePrinter = DateTimePrinter::new(); |
361 | /// P.print_datetime(&self.0, StdFmtWrite(f)) |
362 | /// .map_err(|_| std::fmt::Error) |
363 | /// } |
364 | /// } |
365 | /// |
366 | /// let dt = MyDateTime(DateTime::constant(2024, 6, 15, 17, 30, 0, 0)); |
367 | /// assert_eq!(dt.to_string(), "2024-06-15T17:30:00" ); |
368 | /// ``` |
369 | #[derive (Clone, Debug)] |
370 | pub struct StdFmtWrite<W>(pub W); |
371 | |
372 | impl<W: core::fmt::Write> Write for StdFmtWrite<W> { |
373 | #[inline ] |
374 | fn write_str(&mut self, string: &str) -> Result<(), Error> { |
375 | self.0 |
376 | .write_str(string) |
377 | .map_err(|_| err!("an error occurred when formatting an argument" )) |
378 | } |
379 | } |
380 | |
381 | impl<W: Write> core::fmt::Write for StdFmtWrite<W> { |
382 | #[inline ] |
383 | fn write_str(&mut self, string: &str) -> Result<(), core::fmt::Error> { |
384 | self.0.write_str(string).map_err(|_| core::fmt::Error) |
385 | } |
386 | } |
387 | |
388 | /// An extension trait to `Write` that provides crate internal routines. |
389 | /// |
390 | /// These routines aren't exposed because they make use of crate internal |
391 | /// types. Those types could perhaps be exposed if there was strong demand, |
392 | /// but I'm skeptical. |
393 | trait WriteExt: Write { |
394 | /// Write the given number as a decimal using ASCII digits to this buffer. |
395 | /// The given formatter controls how the decimal is formatted. |
396 | #[inline ] |
397 | fn write_int( |
398 | &mut self, |
399 | formatter: &DecimalFormatter, |
400 | n: impl Into<i64>, |
401 | ) -> Result<(), Error> { |
402 | self.write_decimal(&Decimal::new(formatter, n.into())) |
403 | } |
404 | |
405 | /// Write the given fractional number using ASCII digits to this buffer. |
406 | /// The given formatter controls how the fractional number is formatted. |
407 | #[inline ] |
408 | fn write_fraction( |
409 | &mut self, |
410 | formatter: &FractionalFormatter, |
411 | n: impl Into<i64>, |
412 | ) -> Result<(), Error> { |
413 | self.write_fractional(&Fractional::new(formatter, n.into())) |
414 | } |
415 | |
416 | /// Write the given decimal number to this buffer. |
417 | #[inline ] |
418 | fn write_decimal(&mut self, decimal: &Decimal) -> Result<(), Error> { |
419 | self.write_str(decimal.as_str()) |
420 | } |
421 | |
422 | /// Write the given fractional number to this buffer. |
423 | #[inline ] |
424 | fn write_fractional( |
425 | &mut self, |
426 | fractional: &Fractional, |
427 | ) -> Result<(), Error> { |
428 | self.write_str(fractional.as_str()) |
429 | } |
430 | } |
431 | |
432 | impl<W: Write> WriteExt for W {} |
433 | |