1 | use core::time::Duration; |
2 | |
3 | use crate::{ |
4 | civil::{Date, DateTime, Time}, |
5 | error::{err, ErrorContext}, |
6 | fmt::{friendly, temporal}, |
7 | tz::Offset, |
8 | util::{escape, rangeint::TryRFrom, t}, |
9 | Error, RoundMode, Timestamp, Unit, Zoned, |
10 | }; |
11 | |
12 | #[cfg (not(feature = "std" ))] |
13 | use crate::util::libm::Float; |
14 | |
15 | /// A signed duration of time represented as a 96-bit integer of nanoseconds. |
16 | /// |
17 | /// Each duration is made up of a 64-bit integer of whole seconds and a |
18 | /// 32-bit integer of fractional nanoseconds less than 1 whole second. Unlike |
19 | /// [`std::time::Duration`], this duration is signed. The sign applies |
20 | /// to the entire duration. That is, either _both_ the seconds and the |
21 | /// fractional nanoseconds are negative or _neither_ are. Stated differently, |
22 | /// it is guaranteed that the signs of [`SignedDuration::as_secs`] and |
23 | /// [`SignedDuration::subsec_nanos`] are always the same, or one component is |
24 | /// zero. (For example, `-1 seconds` and `0 nanoseconds`, or `0 seconds` and |
25 | /// `-1 nanoseconds`.) |
26 | /// |
27 | /// # Parsing and printing |
28 | /// |
29 | /// Like the [`Span`](crate::Span) type, the `SignedDuration` type |
30 | /// provides convenient trait implementations of [`std::str::FromStr`] and |
31 | /// [`std::fmt::Display`]: |
32 | /// |
33 | /// ``` |
34 | /// use jiff::SignedDuration; |
35 | /// |
36 | /// let duration: SignedDuration = "PT2h30m" .parse()?; |
37 | /// assert_eq!(duration.to_string(), "PT2H30M" ); |
38 | /// |
39 | /// // Or use the "friendly" format by invoking the alternate: |
40 | /// assert_eq!(format!("{duration:#}" ), "2h 30m" ); |
41 | /// |
42 | /// // Parsing automatically supports both the ISO 8601 and "friendly" formats: |
43 | /// let duration: SignedDuration = "2h 30m" .parse()?; |
44 | /// assert_eq!(duration, SignedDuration::new(2 * 60 * 60 + 30 * 60, 0)); |
45 | /// let duration: SignedDuration = "2 hours, 30 minutes" .parse()?; |
46 | /// assert_eq!(duration, SignedDuration::new(2 * 60 * 60 + 30 * 60, 0)); |
47 | /// |
48 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
49 | /// ``` |
50 | /// |
51 | /// Unlike the `Span` type, though, only uniform units are supported. This |
52 | /// means that ISO 8601 durations with non-zero units of days or greater cannot |
53 | /// be parsed directly into a `SignedDuration`: |
54 | /// |
55 | /// ``` |
56 | /// use jiff::SignedDuration; |
57 | /// |
58 | /// assert_eq!( |
59 | /// "P1d" .parse::<SignedDuration>().unwrap_err().to_string(), |
60 | /// "failed to parse ISO 8601 duration string into `SignedDuration`: \ |
61 | /// parsing ISO 8601 duration into SignedDuration requires that the \ |
62 | /// duration contain a time component and no components of days or \ |
63 | /// greater" , |
64 | /// ); |
65 | /// |
66 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
67 | /// ``` |
68 | /// |
69 | /// To parse such durations, one should first parse them into a `Span` and |
70 | /// then convert them to a `SignedDuration` by providing a relative date: |
71 | /// |
72 | /// ``` |
73 | /// use jiff::{civil::date, SignedDuration, Span}; |
74 | /// |
75 | /// let span: Span = "P1d" .parse()?; |
76 | /// let relative = date(2024, 11, 3).in_tz("US/Eastern" )?; |
77 | /// let duration = span.to_duration(&relative)?; |
78 | /// // This example also motivates *why* a relative date |
79 | /// // is required. Not all days are the same length! |
80 | /// assert_eq!(duration.to_string(), "PT25H" ); |
81 | /// |
82 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
83 | /// ``` |
84 | /// |
85 | /// The format supported is a variation (nearly a subset) of the duration |
86 | /// format specified in [ISO 8601] _and_ a Jiff-specific "friendly" format. |
87 | /// Here are more examples: |
88 | /// |
89 | /// ``` |
90 | /// use jiff::SignedDuration; |
91 | /// |
92 | /// let durations = [ |
93 | /// // ISO 8601 |
94 | /// ("PT2H30M" , SignedDuration::from_secs(2 * 60 * 60 + 30 * 60)), |
95 | /// ("PT2.5h" , SignedDuration::from_secs(2 * 60 * 60 + 30 * 60)), |
96 | /// ("PT1m" , SignedDuration::from_mins(1)), |
97 | /// ("PT1.5m" , SignedDuration::from_secs(90)), |
98 | /// ("PT0.0021s" , SignedDuration::new(0, 2_100_000)), |
99 | /// ("PT0s" , SignedDuration::ZERO), |
100 | /// ("PT0.000000001s" , SignedDuration::from_nanos(1)), |
101 | /// // Jiff's "friendly" format |
102 | /// ("2h30m" , SignedDuration::from_secs(2 * 60 * 60 + 30 * 60)), |
103 | /// ("2 hrs 30 mins" , SignedDuration::from_secs(2 * 60 * 60 + 30 * 60)), |
104 | /// ("2 hours 30 minutes" , SignedDuration::from_secs(2 * 60 * 60 + 30 * 60)), |
105 | /// ("2.5h" , SignedDuration::from_secs(2 * 60 * 60 + 30 * 60)), |
106 | /// ("1m" , SignedDuration::from_mins(1)), |
107 | /// ("1.5m" , SignedDuration::from_secs(90)), |
108 | /// ("0.0021s" , SignedDuration::new(0, 2_100_000)), |
109 | /// ("0s" , SignedDuration::ZERO), |
110 | /// ("0.000000001s" , SignedDuration::from_nanos(1)), |
111 | /// ]; |
112 | /// for (string, duration) in durations { |
113 | /// let parsed: SignedDuration = string.parse()?; |
114 | /// assert_eq!(duration, parsed, "result of parsing {string:?}" ); |
115 | /// } |
116 | /// |
117 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
118 | /// ``` |
119 | /// |
120 | /// For more details, see the [`fmt::temporal`](temporal) and |
121 | /// [`fmt::friendly`](friendly) modules. |
122 | /// |
123 | /// [ISO 8601]: https://www.iso.org/iso-8601-date-and-time-format.html |
124 | /// |
125 | /// # API design |
126 | /// |
127 | /// A `SignedDuration` is, as much as is possible, a replica of the |
128 | /// `std::time::Duration` API. While there are probably some quirks in the API |
129 | /// of `std::time::Duration` that could have been fixed here, it is probably |
130 | /// more important that it behave "exactly like a `std::time::Duration` but |
131 | /// with a sign." That is, this type mirrors the parallels between signed and |
132 | /// unsigned integer types. |
133 | /// |
134 | /// While the goal was to match the `std::time::Duration` API as much as |
135 | /// possible, there are some differences worth highlighting: |
136 | /// |
137 | /// * As stated, a `SignedDuration` has a sign. Therefore, it uses `i64` and |
138 | /// `i32` instead of `u64` and `u32` to represent its 96-bit integer. |
139 | /// * Because it's signed, the range of possible values is different. For |
140 | /// example, a `SignedDuration::MAX` has a whole number of seconds equivalent |
141 | /// to `i64::MAX`, which is less than `u64::MAX`. |
142 | /// * There are some additional APIs that don't make sense on an unsigned |
143 | /// duration, like [`SignedDuration::abs`] and [`SignedDuration::checked_neg`]. |
144 | /// * A [`SignedDuration::system_until`] routine is provided as a replacement |
145 | /// for [`std::time::SystemTime::duration_since`], but with signed durations. |
146 | /// * Constructors and getters for units of hours and minutes are provided, |
147 | /// where as these routines are unstable in the standard library. |
148 | /// * Unlike the standard library, this type implements the `std::fmt::Display` |
149 | /// and `std::str::FromStr` traits via the ISO 8601 duration format, just |
150 | /// like the [`Span`](crate::Span) type does. Also like `Span`, the ISO |
151 | /// 8601 duration format is used to implement the serde `Serialize` and |
152 | /// `Deserialize` traits when the `serde` crate feature is enabled. |
153 | /// * The `std::fmt::Debug` trait implementation is a bit different. If you |
154 | /// have a problem with it, please file an issue. |
155 | /// * At present, there is no `SignedDuration::abs_diff` since there are some |
156 | /// API design questions. If you want it, please file an issue. |
157 | /// |
158 | /// # When should I use `SignedDuration` versus [`Span`](crate::Span)? |
159 | /// |
160 | /// Jiff's primary duration type is `Span`. The key differences between it and |
161 | /// `SignedDuration` are: |
162 | /// |
163 | /// * A `Span` keeps track of each individual unit separately. That is, even |
164 | /// though `1 hour 60 minutes` and `2 hours` are equivalent durations |
165 | /// of time, representing each as a `Span` corresponds to two distinct values |
166 | /// in memory. And serializing them to the ISO 8601 duration format will also |
167 | /// preserve the units, for example, `PT1h60m` and `PT2h`. |
168 | /// * A `Span` supports non-uniform units like days, weeks, months and years. |
169 | /// Since not all days, weeks, months and years have the same length, they |
170 | /// cannot be represented by a `SignedDuration`. In some cases, it may be |
171 | /// appropriate, for example, to assume that all days are 24 hours long. But |
172 | /// since Jiff sometimes assumes all days are 24 hours (for civil time) and |
173 | /// sometimes doesn't (like for `Zoned` when respecting time zones), it would |
174 | /// be inappropriate to bake one of those assumptions into a `SignedDuration`. |
175 | /// * A `SignedDuration` is a much smaller type than a `Span`. Specifically, |
176 | /// it's a 96-bit integer. In contrast, a `Span` is much larger since it needs |
177 | /// to track each individual unit separately. |
178 | /// |
179 | /// Those differences in turn motivate some approximate reasoning for when to |
180 | /// use `Span` and when to use `SignedDuration`: |
181 | /// |
182 | /// * If you don't care about keeping track of individual units separately or |
183 | /// don't need the sophisticated rounding options available on a `Span`, it |
184 | /// might be simpler and faster to use a `SignedDuration`. |
185 | /// * If you specifically need performance on arithmetic operations involving |
186 | /// datetimes and durations, even if it's not as convenient or correct, then it |
187 | /// might make sense to use a `SignedDuration`. |
188 | /// * If you need to perform arithmetic using a `std::time::Duration` and |
189 | /// otherwise don't need the functionality of a `Span`, it might make sense |
190 | /// to first convert the `std::time::Duration` to a `SignedDuration`, and then |
191 | /// use one of the corresponding operations defined for `SignedDuration` on |
192 | /// the datetime types. (They all support it.) |
193 | /// |
194 | /// In general, a `Span` provides more functionality and is overall more |
195 | /// flexible. A `Span` can also deserialize all forms of ISO 8601 durations |
196 | /// (as long as they're within Jiff's limits), including durations with units |
197 | /// of years, months, weeks and days. A `SignedDuration`, by contrast, only |
198 | /// supports units up to and including hours. |
199 | /// |
200 | /// # Integration with datetime types |
201 | /// |
202 | /// All datetime types that support arithmetic using [`Span`](crate::Span) also |
203 | /// support arithmetic using `SignedDuration` (and [`std::time::Duration`]). |
204 | /// For example, here's how to add an absolute duration to a [`Timestamp`]: |
205 | /// |
206 | /// ``` |
207 | /// use jiff::{SignedDuration, Timestamp}; |
208 | /// |
209 | /// let ts1 = Timestamp::from_second(1_123_456_789)?; |
210 | /// assert_eq!(ts1.to_string(), "2005-08-07T23:19:49Z" ); |
211 | /// |
212 | /// let duration = SignedDuration::new(59, 999_999_999); |
213 | /// // Timestamp::checked_add is polymorphic! It can accept a |
214 | /// // span or a duration. |
215 | /// let ts2 = ts1.checked_add(duration)?; |
216 | /// assert_eq!(ts2.to_string(), "2005-08-07T23:20:48.999999999Z" ); |
217 | /// |
218 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
219 | /// ``` |
220 | /// |
221 | /// The same API pattern works with [`Zoned`], [`DateTime`], [`Date`] and |
222 | /// [`Time`]. |
223 | /// |
224 | /// # Interaction with daylight saving time and time zone transitions |
225 | /// |
226 | /// A `SignedDuration` always corresponds to a specific number of nanoseconds. |
227 | /// Since a [`Zoned`] is always a precise instant in time, adding a `SignedDuration` |
228 | /// to a `Zoned` always behaves by adding the nanoseconds from the duration to |
229 | /// the timestamp inside of `Zoned`. Consider `2024-03-10` in `US/Eastern`. |
230 | /// At `02:00:00`, daylight saving time came into effect, switching the UTC |
231 | /// offset for the region from `-05` to `-04`. This has the effect of skipping |
232 | /// an hour on the clocks: |
233 | /// |
234 | /// ``` |
235 | /// use jiff::{civil::date, SignedDuration}; |
236 | /// |
237 | /// let zdt = date(2024, 3, 10).at(1, 59, 0, 0).in_tz("US/Eastern" )?; |
238 | /// assert_eq!( |
239 | /// zdt.checked_add(SignedDuration::from_hours(1))?, |
240 | /// // Time on the clock skipped an hour, but in this time |
241 | /// // zone, 03:59 is actually precisely 1 hour later than |
242 | /// // 01:59. |
243 | /// date(2024, 3, 10).at(3, 59, 0, 0).in_tz("US/Eastern" )?, |
244 | /// ); |
245 | /// // The same would apply if you used a `Span`: |
246 | /// assert_eq!( |
247 | /// zdt.checked_add(jiff::Span::new().hours(1))?, |
248 | /// // Time on the clock skipped an hour, but in this time |
249 | /// // zone, 03:59 is actually precisely 1 hour later than |
250 | /// // 01:59. |
251 | /// date(2024, 3, 10).at(3, 59, 0, 0).in_tz("US/Eastern" )?, |
252 | /// ); |
253 | /// |
254 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
255 | /// ``` |
256 | /// |
257 | /// Where time zones might have a more interesting effect is in the definition |
258 | /// of the "day" itself. If, for example, you encode the notion that a day is |
259 | /// always 24 hours into your arithmetic, you might get unexpected results. |
260 | /// For example, let's say you want to find the datetime precisely one week |
261 | /// after `2024-03-08T17:00` in the `US/Eastern` time zone. You might be |
262 | /// tempted to just ask for the time that is `7 * 24` hours later: |
263 | /// |
264 | /// ``` |
265 | /// use jiff::{civil::date, SignedDuration}; |
266 | /// |
267 | /// let zdt = date(2024, 3, 8).at(17, 0, 0, 0).in_tz("US/Eastern" )?; |
268 | /// assert_eq!( |
269 | /// zdt.checked_add(SignedDuration::from_hours(7 * 24))?, |
270 | /// date(2024, 3, 15).at(18, 0, 0, 0).in_tz("US/Eastern" )?, |
271 | /// ); |
272 | /// |
273 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
274 | /// ``` |
275 | /// |
276 | /// Notice that you get `18:00` and not `17:00`! That's because, as shown |
277 | /// in the previous example, `2024-03-10` was only 23 hours long. That in turn |
278 | /// implies that the week starting from `2024-03-08` is only `7 * 24 - 1` hours |
279 | /// long. This can be tricky to get correct with absolute durations like |
280 | /// `SignedDuration`, but a `Span` will handle this for you automatically: |
281 | /// |
282 | /// ``` |
283 | /// use jiff::{civil::date, ToSpan}; |
284 | /// |
285 | /// let zdt = date(2024, 3, 8).at(17, 0, 0, 0).in_tz("US/Eastern" )?; |
286 | /// assert_eq!( |
287 | /// zdt.checked_add(1.week())?, |
288 | /// // The expected time! |
289 | /// date(2024, 3, 15).at(17, 0, 0, 0).in_tz("US/Eastern" )?, |
290 | /// ); |
291 | /// |
292 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
293 | /// ``` |
294 | /// |
295 | /// A `Span` achieves this by keeping track of individual units. Unlike a |
296 | /// `SignedDuration`, it is not just a simple count of nanoseconds. It is a |
297 | /// "bag" of individual units, and the arithmetic operations defined on a |
298 | /// `Span` for `Zoned` know how to interpret "day" in a particular time zone |
299 | /// at a particular instant in time. |
300 | /// |
301 | /// With that said, the above does not mean that using a `SignedDuration` is |
302 | /// always wrong. For example, if you're dealing with units of hours or lower, |
303 | /// then all such units are uniform and so you'll always get the same results |
304 | /// as with a `Span`. And using a `SignedDuration` can sometimes be simpler |
305 | /// or faster. |
306 | #[derive (Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Default)] |
307 | pub struct SignedDuration { |
308 | secs: i64, |
309 | nanos: i32, |
310 | } |
311 | |
312 | const NANOS_PER_SEC: i32 = 1_000_000_000; |
313 | const NANOS_PER_MILLI: i32 = 1_000_000; |
314 | const NANOS_PER_MICRO: i32 = 1_000; |
315 | const MILLIS_PER_SEC: i64 = 1_000; |
316 | const MICROS_PER_SEC: i64 = 1_000_000; |
317 | const SECS_PER_MINUTE: i64 = 60; |
318 | const MINS_PER_HOUR: i64 = 60; |
319 | |
320 | impl SignedDuration { |
321 | /// A duration of zero time. |
322 | /// |
323 | /// # Example |
324 | /// |
325 | /// ``` |
326 | /// use jiff::SignedDuration; |
327 | /// |
328 | /// let duration = SignedDuration::ZERO; |
329 | /// assert!(duration.is_zero()); |
330 | /// assert_eq!(duration.as_secs(), 0); |
331 | /// assert_eq!(duration.subsec_nanos(), 0); |
332 | /// ``` |
333 | pub const ZERO: SignedDuration = SignedDuration { secs: 0, nanos: 0 }; |
334 | |
335 | /// The minimum possible duration. Or the "most negative" duration. |
336 | /// |
337 | /// # Example |
338 | /// |
339 | /// ``` |
340 | /// use jiff::SignedDuration; |
341 | /// |
342 | /// let duration = SignedDuration::MIN; |
343 | /// assert_eq!(duration.as_secs(), i64::MIN); |
344 | /// assert_eq!(duration.subsec_nanos(), -999_999_999); |
345 | /// ``` |
346 | pub const MIN: SignedDuration = |
347 | SignedDuration { secs: i64::MIN, nanos: -(NANOS_PER_SEC - 1) }; |
348 | |
349 | /// The maximum possible duration. |
350 | /// |
351 | /// # Example |
352 | /// |
353 | /// ``` |
354 | /// use jiff::SignedDuration; |
355 | /// |
356 | /// let duration = SignedDuration::MAX; |
357 | /// assert_eq!(duration.as_secs(), i64::MAX); |
358 | /// assert_eq!(duration.subsec_nanos(), 999_999_999); |
359 | /// ``` |
360 | pub const MAX: SignedDuration = |
361 | SignedDuration { secs: i64::MAX, nanos: NANOS_PER_SEC - 1 }; |
362 | |
363 | /// Creates a new `SignedDuration` from the given number of whole seconds |
364 | /// and additional nanoseconds. |
365 | /// |
366 | /// If the absolute value of the nanoseconds is greater than or equal to |
367 | /// 1 second, then the excess balances into the number of whole seconds. |
368 | /// |
369 | /// # Panics |
370 | /// |
371 | /// When the absolute value of the nanoseconds is greater than or equal |
372 | /// to 1 second and the excess that carries over to the number of whole |
373 | /// seconds overflows `i64`. |
374 | /// |
375 | /// This never panics when `nanos` is less than `1_000_000_000`. |
376 | /// |
377 | /// # Example |
378 | /// |
379 | /// ``` |
380 | /// use jiff::SignedDuration; |
381 | /// |
382 | /// let duration = SignedDuration::new(12, 0); |
383 | /// assert_eq!(duration.as_secs(), 12); |
384 | /// assert_eq!(duration.subsec_nanos(), 0); |
385 | /// |
386 | /// let duration = SignedDuration::new(12, -1); |
387 | /// assert_eq!(duration.as_secs(), 11); |
388 | /// assert_eq!(duration.subsec_nanos(), 999_999_999); |
389 | /// |
390 | /// let duration = SignedDuration::new(12, 1_000_000_000); |
391 | /// assert_eq!(duration.as_secs(), 13); |
392 | /// assert_eq!(duration.subsec_nanos(), 0); |
393 | /// ``` |
394 | #[inline ] |
395 | pub const fn new(mut secs: i64, mut nanos: i32) -> SignedDuration { |
396 | // When |nanos| exceeds 1 second, we balance the excess up to seconds. |
397 | if !(-NANOS_PER_SEC < nanos && nanos < NANOS_PER_SEC) { |
398 | // Never wraps or panics because NANOS_PER_SEC!={0,-1}. |
399 | let addsecs = nanos / NANOS_PER_SEC; |
400 | secs = match secs.checked_add(addsecs as i64) { |
401 | Some(secs) => secs, |
402 | None => panic!( |
403 | "nanoseconds overflowed seconds in SignedDuration::new" |
404 | ), |
405 | }; |
406 | // Never wraps or panics because NANOS_PER_SEC!={0,-1}. |
407 | nanos = nanos % NANOS_PER_SEC; |
408 | } |
409 | // At this point, we're done if either unit is zero or if they have the |
410 | // same sign. |
411 | if nanos == 0 || secs == 0 || secs.signum() == (nanos.signum() as i64) |
412 | { |
413 | return SignedDuration::new_unchecked(secs, nanos); |
414 | } |
415 | // Otherwise, the only work we have to do is to balance negative nanos |
416 | // into positive seconds, or positive nanos into negative seconds. |
417 | if secs < 0 { |
418 | debug_assert!(nanos > 0); |
419 | // Never wraps because adding +1 to a negative i64 never overflows. |
420 | // |
421 | // MSRV(1.79): Consider using `unchecked_add` here. |
422 | secs += 1; |
423 | // Never wraps because subtracting +1_000_000_000 from a positive |
424 | // i32 never overflows. |
425 | // |
426 | // MSRV(1.79): Consider using `unchecked_sub` here. |
427 | nanos -= NANOS_PER_SEC; |
428 | } else { |
429 | debug_assert!(secs > 0); |
430 | debug_assert!(nanos < 0); |
431 | // Never wraps because subtracting +1 from a positive i64 never |
432 | // overflows. |
433 | // |
434 | // MSRV(1.79): Consider using `unchecked_add` here. |
435 | secs -= 1; |
436 | // Never wraps because adding +1_000_000_000 to a negative i32 |
437 | // never overflows. |
438 | // |
439 | // MSRV(1.79): Consider using `unchecked_add` here. |
440 | nanos += NANOS_PER_SEC; |
441 | } |
442 | SignedDuration::new_unchecked(secs, nanos) |
443 | } |
444 | |
445 | /// Creates a new signed duration without handling nanosecond overflow. |
446 | /// |
447 | /// This might produce tighter code in some cases. |
448 | /// |
449 | /// # Panics |
450 | /// |
451 | /// When `|nanos|` is greater than or equal to 1 second. |
452 | #[inline ] |
453 | pub(crate) const fn new_without_nano_overflow( |
454 | secs: i64, |
455 | nanos: i32, |
456 | ) -> SignedDuration { |
457 | assert!(nanos <= 999_999_999); |
458 | assert!(nanos >= -999_999_999); |
459 | SignedDuration::new_unchecked(secs, nanos) |
460 | } |
461 | |
462 | /// Creates a new signed duration without handling nanosecond overflow. |
463 | /// |
464 | /// This might produce tighter code in some cases. |
465 | /// |
466 | /// # Panics |
467 | /// |
468 | /// In debug mode only, when `|nanos|` is greater than or equal to 1 |
469 | /// second. |
470 | /// |
471 | /// This is not exported so that code outside this module can rely on |
472 | /// `|nanos|` being less than a second for purposes of memory safety. |
473 | #[inline ] |
474 | const fn new_unchecked(secs: i64, nanos: i32) -> SignedDuration { |
475 | debug_assert!(nanos <= 999_999_999); |
476 | debug_assert!(nanos >= -999_999_999); |
477 | SignedDuration { secs, nanos } |
478 | } |
479 | |
480 | /// Creates a new `SignedDuration` from the given number of whole seconds. |
481 | /// |
482 | /// # Example |
483 | /// |
484 | /// ``` |
485 | /// use jiff::SignedDuration; |
486 | /// |
487 | /// let duration = SignedDuration::from_secs(12); |
488 | /// assert_eq!(duration.as_secs(), 12); |
489 | /// assert_eq!(duration.subsec_nanos(), 0); |
490 | /// ``` |
491 | #[inline ] |
492 | pub const fn from_secs(secs: i64) -> SignedDuration { |
493 | SignedDuration::new_unchecked(secs, 0) |
494 | } |
495 | |
496 | /// Creates a new `SignedDuration` from the given number of whole |
497 | /// milliseconds. |
498 | /// |
499 | /// Note that since this accepts an `i64`, this method cannot be used |
500 | /// to construct the full range of possible signed duration values. In |
501 | /// particular, [`SignedDuration::as_millis`] returns an `i128`, and this |
502 | /// may be a value that would otherwise overflow an `i64`. |
503 | /// |
504 | /// # Example |
505 | /// |
506 | /// ``` |
507 | /// use jiff::SignedDuration; |
508 | /// |
509 | /// let duration = SignedDuration::from_millis(12_456); |
510 | /// assert_eq!(duration.as_secs(), 12); |
511 | /// assert_eq!(duration.subsec_nanos(), 456_000_000); |
512 | /// |
513 | /// let duration = SignedDuration::from_millis(-12_456); |
514 | /// assert_eq!(duration.as_secs(), -12); |
515 | /// assert_eq!(duration.subsec_nanos(), -456_000_000); |
516 | /// ``` |
517 | #[inline ] |
518 | pub const fn from_millis(millis: i64) -> SignedDuration { |
519 | // OK because MILLIS_PER_SEC!={-1,0}. |
520 | let secs = millis / MILLIS_PER_SEC; |
521 | // OK because MILLIS_PER_SEC!={-1,0} and because |
522 | // millis % MILLIS_PER_SEC can be at most 999, and 999 * 1_000_000 |
523 | // never overflows i32. |
524 | let nanos = (millis % MILLIS_PER_SEC) as i32 * NANOS_PER_MILLI; |
525 | SignedDuration::new_unchecked(secs, nanos) |
526 | } |
527 | |
528 | /// Creates a new `SignedDuration` from the given number of whole |
529 | /// microseconds. |
530 | /// |
531 | /// Note that since this accepts an `i64`, this method cannot be used |
532 | /// to construct the full range of possible signed duration values. In |
533 | /// particular, [`SignedDuration::as_micros`] returns an `i128`, and this |
534 | /// may be a value that would otherwise overflow an `i64`. |
535 | /// |
536 | /// # Example |
537 | /// |
538 | /// ``` |
539 | /// use jiff::SignedDuration; |
540 | /// |
541 | /// let duration = SignedDuration::from_micros(12_000_456); |
542 | /// assert_eq!(duration.as_secs(), 12); |
543 | /// assert_eq!(duration.subsec_nanos(), 456_000); |
544 | /// |
545 | /// let duration = SignedDuration::from_micros(-12_000_456); |
546 | /// assert_eq!(duration.as_secs(), -12); |
547 | /// assert_eq!(duration.subsec_nanos(), -456_000); |
548 | /// ``` |
549 | #[inline ] |
550 | pub const fn from_micros(micros: i64) -> SignedDuration { |
551 | // OK because MICROS_PER_SEC!={-1,0}. |
552 | let secs = micros / MICROS_PER_SEC; |
553 | // OK because MICROS_PER_SEC!={-1,0} and because |
554 | // millis % MICROS_PER_SEC can be at most 999, and 999 * 1_000_000 |
555 | // never overflows i32. |
556 | let nanos = (micros % MICROS_PER_SEC) as i32 * NANOS_PER_MICRO; |
557 | SignedDuration::new_unchecked(secs, nanos) |
558 | } |
559 | |
560 | /// Creates a new `SignedDuration` from the given number of whole |
561 | /// nanoseconds. |
562 | /// |
563 | /// Note that since this accepts an `i64`, this method cannot be used |
564 | /// to construct the full range of possible signed duration values. In |
565 | /// particular, [`SignedDuration::as_nanos`] returns an `i128`, which may |
566 | /// be a value that would otherwise overflow an `i64`. |
567 | /// |
568 | /// # Example |
569 | /// |
570 | /// ``` |
571 | /// use jiff::SignedDuration; |
572 | /// |
573 | /// let duration = SignedDuration::from_nanos(12_000_000_456); |
574 | /// assert_eq!(duration.as_secs(), 12); |
575 | /// assert_eq!(duration.subsec_nanos(), 456); |
576 | /// |
577 | /// let duration = SignedDuration::from_nanos(-12_000_000_456); |
578 | /// assert_eq!(duration.as_secs(), -12); |
579 | /// assert_eq!(duration.subsec_nanos(), -456); |
580 | /// ``` |
581 | #[inline ] |
582 | pub const fn from_nanos(nanos: i64) -> SignedDuration { |
583 | // OK because NANOS_PER_SEC!={-1,0}. |
584 | let secs = nanos / (NANOS_PER_SEC as i64); |
585 | // OK because NANOS_PER_SEC!={-1,0}. |
586 | let nanos = (nanos % (NANOS_PER_SEC as i64)) as i32; |
587 | SignedDuration::new_unchecked(secs, nanos) |
588 | } |
589 | |
590 | /// Creates a new `SignedDuration` from the given number of hours. Every |
591 | /// hour is exactly `3,600` seconds. |
592 | /// |
593 | /// # Panics |
594 | /// |
595 | /// Panics if the number of hours, after being converted to nanoseconds, |
596 | /// overflows the minimum or maximum `SignedDuration` values. |
597 | /// |
598 | /// # Example |
599 | /// |
600 | /// ``` |
601 | /// use jiff::SignedDuration; |
602 | /// |
603 | /// let duration = SignedDuration::from_hours(24); |
604 | /// assert_eq!(duration.as_secs(), 86_400); |
605 | /// assert_eq!(duration.subsec_nanos(), 0); |
606 | /// |
607 | /// let duration = SignedDuration::from_hours(-24); |
608 | /// assert_eq!(duration.as_secs(), -86_400); |
609 | /// assert_eq!(duration.subsec_nanos(), 0); |
610 | /// ``` |
611 | #[inline ] |
612 | pub const fn from_hours(hours: i64) -> SignedDuration { |
613 | // OK because (SECS_PER_MINUTE*MINS_PER_HOUR)!={-1,0}. |
614 | const MIN_HOUR: i64 = i64::MIN / (SECS_PER_MINUTE * MINS_PER_HOUR); |
615 | // OK because (SECS_PER_MINUTE*MINS_PER_HOUR)!={-1,0}. |
616 | const MAX_HOUR: i64 = i64::MAX / (SECS_PER_MINUTE * MINS_PER_HOUR); |
617 | // OK because (SECS_PER_MINUTE*MINS_PER_HOUR)!={-1,0}. |
618 | if hours < MIN_HOUR { |
619 | panic!("hours overflowed minimum number of SignedDuration seconds" ) |
620 | } |
621 | // OK because (SECS_PER_MINUTE*MINS_PER_HOUR)!={-1,0}. |
622 | if hours > MAX_HOUR { |
623 | panic!("hours overflowed maximum number of SignedDuration seconds" ) |
624 | } |
625 | SignedDuration::from_secs(hours * MINS_PER_HOUR * SECS_PER_MINUTE) |
626 | } |
627 | |
628 | /// Creates a new `SignedDuration` from the given number of minutes. Every |
629 | /// minute is exactly `60` seconds. |
630 | /// |
631 | /// # Panics |
632 | /// |
633 | /// Panics if the number of minutes, after being converted to nanoseconds, |
634 | /// overflows the minimum or maximum `SignedDuration` values. |
635 | /// |
636 | /// # Example |
637 | /// |
638 | /// ``` |
639 | /// use jiff::SignedDuration; |
640 | /// |
641 | /// let duration = SignedDuration::from_mins(1_440); |
642 | /// assert_eq!(duration.as_secs(), 86_400); |
643 | /// assert_eq!(duration.subsec_nanos(), 0); |
644 | /// |
645 | /// let duration = SignedDuration::from_mins(-1_440); |
646 | /// assert_eq!(duration.as_secs(), -86_400); |
647 | /// assert_eq!(duration.subsec_nanos(), 0); |
648 | /// ``` |
649 | #[inline ] |
650 | pub const fn from_mins(minutes: i64) -> SignedDuration { |
651 | // OK because SECS_PER_MINUTE!={-1,0}. |
652 | const MIN_MINUTE: i64 = i64::MIN / SECS_PER_MINUTE; |
653 | // OK because SECS_PER_MINUTE!={-1,0}. |
654 | const MAX_MINUTE: i64 = i64::MAX / SECS_PER_MINUTE; |
655 | // OK because SECS_PER_MINUTE!={-1,0}. |
656 | if minutes < MIN_MINUTE { |
657 | panic!( |
658 | "minutes overflowed minimum number of SignedDuration seconds" |
659 | ) |
660 | } |
661 | // OK because SECS_PER_MINUTE!={-1,0}. |
662 | if minutes > MAX_MINUTE { |
663 | panic!( |
664 | "minutes overflowed maximum number of SignedDuration seconds" |
665 | ) |
666 | } |
667 | SignedDuration::from_secs(minutes * SECS_PER_MINUTE) |
668 | } |
669 | |
670 | /// Converts the given timestamp into a signed duration. |
671 | /// |
672 | /// This isn't exported because it's not clear that it makes semantic |
673 | /// sense, since it somewhat encodes the assumption that the "desired" |
674 | /// duration is relative to the Unix epoch. Which is... probably fine? |
675 | /// But I'm not sure. |
676 | /// |
677 | /// But the point of this is to make the conversion a little cheaper. |
678 | /// Namely, since a `Timestamp` internally uses same representation as a |
679 | /// `SignedDuration` with the same guarantees (except with smaller limits), |
680 | /// we can avoid a fair bit of case analysis done in `SignedDuration::new`. |
681 | pub(crate) fn from_timestamp(timestamp: Timestamp) -> SignedDuration { |
682 | SignedDuration::new_unchecked( |
683 | timestamp.as_second(), |
684 | timestamp.subsec_nanosecond(), |
685 | ) |
686 | } |
687 | |
688 | /// Returns true if this duration spans no time. |
689 | /// |
690 | /// # Example |
691 | /// |
692 | /// ``` |
693 | /// use jiff::SignedDuration; |
694 | /// |
695 | /// assert!(SignedDuration::ZERO.is_zero()); |
696 | /// assert!(!SignedDuration::MIN.is_zero()); |
697 | /// assert!(!SignedDuration::MAX.is_zero()); |
698 | /// ``` |
699 | #[inline ] |
700 | pub const fn is_zero(&self) -> bool { |
701 | self.secs == 0 && self.nanos == 0 |
702 | } |
703 | |
704 | /// Returns the number of whole seconds in this duration. |
705 | /// |
706 | /// The value returned is negative when the duration is negative. |
707 | /// |
708 | /// This does not include any fractional component corresponding to units |
709 | /// less than a second. To access those, use one of the `subsec` methods |
710 | /// such as [`SignedDuration::subsec_nanos`]. |
711 | /// |
712 | /// # Example |
713 | /// |
714 | /// ``` |
715 | /// use jiff::SignedDuration; |
716 | /// |
717 | /// let duration = SignedDuration::new(12, 999_999_999); |
718 | /// assert_eq!(duration.as_secs(), 12); |
719 | /// |
720 | /// let duration = SignedDuration::new(-12, -999_999_999); |
721 | /// assert_eq!(duration.as_secs(), -12); |
722 | /// ``` |
723 | #[inline ] |
724 | pub const fn as_secs(&self) -> i64 { |
725 | self.secs |
726 | } |
727 | |
728 | /// Returns the fractional part of this duration in whole milliseconds. |
729 | /// |
730 | /// The value returned is negative when the duration is negative. It is |
731 | /// guaranteed that the range of the value returned is in the inclusive |
732 | /// range `-999..=999`. |
733 | /// |
734 | /// To get the length of the total duration represented in milliseconds, |
735 | /// use [`SignedDuration::as_millis`]. |
736 | /// |
737 | /// # Example |
738 | /// |
739 | /// ``` |
740 | /// use jiff::SignedDuration; |
741 | /// |
742 | /// let duration = SignedDuration::new(12, 123_456_789); |
743 | /// assert_eq!(duration.subsec_millis(), 123); |
744 | /// |
745 | /// let duration = SignedDuration::new(-12, -123_456_789); |
746 | /// assert_eq!(duration.subsec_millis(), -123); |
747 | /// ``` |
748 | #[inline ] |
749 | pub const fn subsec_millis(&self) -> i32 { |
750 | // OK because NANOS_PER_MILLI!={-1,0}. |
751 | self.nanos / NANOS_PER_MILLI |
752 | } |
753 | |
754 | /// Returns the fractional part of this duration in whole microseconds. |
755 | /// |
756 | /// The value returned is negative when the duration is negative. It is |
757 | /// guaranteed that the range of the value returned is in the inclusive |
758 | /// range `-999_999..=999_999`. |
759 | /// |
760 | /// To get the length of the total duration represented in microseconds, |
761 | /// use [`SignedDuration::as_micros`]. |
762 | /// |
763 | /// # Example |
764 | /// |
765 | /// ``` |
766 | /// use jiff::SignedDuration; |
767 | /// |
768 | /// let duration = SignedDuration::new(12, 123_456_789); |
769 | /// assert_eq!(duration.subsec_micros(), 123_456); |
770 | /// |
771 | /// let duration = SignedDuration::new(-12, -123_456_789); |
772 | /// assert_eq!(duration.subsec_micros(), -123_456); |
773 | /// ``` |
774 | #[inline ] |
775 | pub const fn subsec_micros(&self) -> i32 { |
776 | // OK because NANOS_PER_MICRO!={-1,0}. |
777 | self.nanos / NANOS_PER_MICRO |
778 | } |
779 | |
780 | /// Returns the fractional part of this duration in whole nanoseconds. |
781 | /// |
782 | /// The value returned is negative when the duration is negative. It is |
783 | /// guaranteed that the range of the value returned is in the inclusive |
784 | /// range `-999_999_999..=999_999_999`. |
785 | /// |
786 | /// To get the length of the total duration represented in nanoseconds, |
787 | /// use [`SignedDuration::as_nanos`]. |
788 | /// |
789 | /// # Example |
790 | /// |
791 | /// ``` |
792 | /// use jiff::SignedDuration; |
793 | /// |
794 | /// let duration = SignedDuration::new(12, 123_456_789); |
795 | /// assert_eq!(duration.subsec_nanos(), 123_456_789); |
796 | /// |
797 | /// let duration = SignedDuration::new(-12, -123_456_789); |
798 | /// assert_eq!(duration.subsec_nanos(), -123_456_789); |
799 | /// ``` |
800 | #[inline ] |
801 | pub const fn subsec_nanos(&self) -> i32 { |
802 | self.nanos |
803 | } |
804 | |
805 | /// Returns the total duration in units of whole milliseconds. |
806 | /// |
807 | /// The value returned is negative when the duration is negative. |
808 | /// |
809 | /// To get only the fractional component of this duration in units of |
810 | /// whole milliseconds, use [`SignedDuration::subsec_millis`]. |
811 | /// |
812 | /// # Example |
813 | /// |
814 | /// ``` |
815 | /// use jiff::SignedDuration; |
816 | /// |
817 | /// let duration = SignedDuration::new(12, 123_456_789); |
818 | /// assert_eq!(duration.as_millis(), 12_123); |
819 | /// |
820 | /// let duration = SignedDuration::new(-12, -123_456_789); |
821 | /// assert_eq!(duration.as_millis(), -12_123); |
822 | /// ``` |
823 | #[inline ] |
824 | pub const fn as_millis(&self) -> i128 { |
825 | // OK because 1_000 times any i64 will never overflow i128. |
826 | let millis = (self.secs as i128) * (MILLIS_PER_SEC as i128); |
827 | // OK because NANOS_PER_MILLI!={-1,0}. |
828 | let subsec_millis = (self.nanos / NANOS_PER_MILLI) as i128; |
829 | // OK because subsec_millis maxes out at 999, and adding that to |
830 | // i64::MAX*1_000 will never overflow a i128. |
831 | millis + subsec_millis |
832 | } |
833 | |
834 | /// Returns the total duration in units of whole microseconds. |
835 | /// |
836 | /// The value returned is negative when the duration is negative. |
837 | /// |
838 | /// To get only the fractional component of this duration in units of |
839 | /// whole microseconds, use [`SignedDuration::subsec_micros`]. |
840 | /// |
841 | /// # Example |
842 | /// |
843 | /// ``` |
844 | /// use jiff::SignedDuration; |
845 | /// |
846 | /// let duration = SignedDuration::new(12, 123_456_789); |
847 | /// assert_eq!(duration.as_micros(), 12_123_456); |
848 | /// |
849 | /// let duration = SignedDuration::new(-12, -123_456_789); |
850 | /// assert_eq!(duration.as_micros(), -12_123_456); |
851 | /// ``` |
852 | #[inline ] |
853 | pub const fn as_micros(&self) -> i128 { |
854 | // OK because 1_000_000 times any i64 will never overflow i128. |
855 | let micros = (self.secs as i128) * (MICROS_PER_SEC as i128); |
856 | // OK because NANOS_PER_MICRO!={-1,0}. |
857 | let subsec_micros = (self.nanos / NANOS_PER_MICRO) as i128; |
858 | // OK because subsec_micros maxes out at 999_999, and adding that to |
859 | // i64::MAX*1_000_000 will never overflow a i128. |
860 | micros + subsec_micros |
861 | } |
862 | |
863 | /// Returns the total duration in units of whole nanoseconds. |
864 | /// |
865 | /// The value returned is negative when the duration is negative. |
866 | /// |
867 | /// To get only the fractional component of this duration in units of |
868 | /// whole nanoseconds, use [`SignedDuration::subsec_nanos`]. |
869 | /// |
870 | /// # Example |
871 | /// |
872 | /// ``` |
873 | /// use jiff::SignedDuration; |
874 | /// |
875 | /// let duration = SignedDuration::new(12, 123_456_789); |
876 | /// assert_eq!(duration.as_nanos(), 12_123_456_789); |
877 | /// |
878 | /// let duration = SignedDuration::new(-12, -123_456_789); |
879 | /// assert_eq!(duration.as_nanos(), -12_123_456_789); |
880 | /// ``` |
881 | #[inline ] |
882 | pub const fn as_nanos(&self) -> i128 { |
883 | // OK because 1_000_000_000 times any i64 will never overflow i128. |
884 | let nanos = (self.secs as i128) * (NANOS_PER_SEC as i128); |
885 | // OK because subsec_nanos maxes out at 999_999_999, and adding that to |
886 | // i64::MAX*1_000_000_000 will never overflow a i128. |
887 | nanos + (self.nanos as i128) |
888 | } |
889 | |
890 | // NOTE: We don't provide `abs_diff` here because we can't represent the |
891 | // difference between all possible durations. For example, |
892 | // `abs_diff(SignedDuration::MAX, SignedDuration::MIN)`. It therefore seems |
893 | // like we should actually return a `std::time::Duration` here, but I'm |
894 | // trying to be conservative when divering from std. |
895 | |
896 | /// Add two signed durations together. If overflow occurs, then `None` is |
897 | /// returned. |
898 | /// |
899 | /// # Example |
900 | /// |
901 | /// ``` |
902 | /// use jiff::SignedDuration; |
903 | /// |
904 | /// let duration1 = SignedDuration::new(12, 500_000_000); |
905 | /// let duration2 = SignedDuration::new(0, 500_000_000); |
906 | /// assert_eq!( |
907 | /// duration1.checked_add(duration2), |
908 | /// Some(SignedDuration::new(13, 0)), |
909 | /// ); |
910 | /// |
911 | /// let duration1 = SignedDuration::MAX; |
912 | /// let duration2 = SignedDuration::new(0, 1); |
913 | /// assert_eq!(duration1.checked_add(duration2), None); |
914 | /// ``` |
915 | #[inline ] |
916 | pub const fn checked_add( |
917 | self, |
918 | rhs: SignedDuration, |
919 | ) -> Option<SignedDuration> { |
920 | let Some(mut secs) = self.secs.checked_add(rhs.secs) else { |
921 | return None; |
922 | }; |
923 | // OK because `-999_999_999 <= nanos <= 999_999_999`, and so adding |
924 | // them together will never overflow an i32. |
925 | let mut nanos = self.nanos + rhs.nanos; |
926 | // The below is effectively SignedDuration::new, but with checked |
927 | // arithmetic. My suspicion is that there is probably a better way |
928 | // to do this. The main complexity here is that 1) `|nanos|` might |
929 | // now exceed 1 second and 2) the signs of `secs` and `nanos` might |
930 | // not be the same. The other difference from SignedDuration::new is |
931 | // that we know that `-1_999_999_998 <= nanos <= 1_999_999_998` since |
932 | // `|SignedDuration::nanos|` is guaranteed to be less than 1 second. So |
933 | // we can skip the div and modulus operations. |
934 | |
935 | // When |nanos| exceeds 1 second, we balance the excess up to seconds. |
936 | if nanos != 0 { |
937 | if nanos >= NANOS_PER_SEC { |
938 | nanos -= NANOS_PER_SEC; |
939 | secs = match secs.checked_add(1) { |
940 | None => return None, |
941 | Some(secs) => secs, |
942 | }; |
943 | } else if nanos <= -NANOS_PER_SEC { |
944 | nanos += NANOS_PER_SEC; |
945 | secs = match secs.checked_sub(1) { |
946 | None => return None, |
947 | Some(secs) => secs, |
948 | }; |
949 | } |
950 | if secs != 0 |
951 | && nanos != 0 |
952 | && secs.signum() != (nanos.signum() as i64) |
953 | { |
954 | if secs < 0 { |
955 | debug_assert!(nanos > 0); |
956 | // OK because secs<0. |
957 | secs += 1; |
958 | // OK because nanos>0. |
959 | nanos -= NANOS_PER_SEC; |
960 | } else { |
961 | debug_assert!(secs > 0); |
962 | debug_assert!(nanos < 0); |
963 | // OK because secs>0. |
964 | secs -= 1; |
965 | // OK because nanos<0. |
966 | nanos += NANOS_PER_SEC; |
967 | } |
968 | } |
969 | } |
970 | Some(SignedDuration::new_unchecked(secs, nanos)) |
971 | } |
972 | |
973 | /// Add two signed durations together. If overflow occurs, then arithmetic |
974 | /// saturates. |
975 | /// |
976 | /// # Example |
977 | /// |
978 | /// ``` |
979 | /// use jiff::SignedDuration; |
980 | /// |
981 | /// let duration1 = SignedDuration::MAX; |
982 | /// let duration2 = SignedDuration::new(0, 1); |
983 | /// assert_eq!(duration1.saturating_add(duration2), SignedDuration::MAX); |
984 | /// |
985 | /// let duration1 = SignedDuration::MIN; |
986 | /// let duration2 = SignedDuration::new(0, -1); |
987 | /// assert_eq!(duration1.saturating_add(duration2), SignedDuration::MIN); |
988 | /// ``` |
989 | #[inline ] |
990 | pub const fn saturating_add(self, rhs: SignedDuration) -> SignedDuration { |
991 | let Some(sum) = self.checked_add(rhs) else { |
992 | return if rhs.is_negative() { |
993 | SignedDuration::MIN |
994 | } else { |
995 | SignedDuration::MAX |
996 | }; |
997 | }; |
998 | sum |
999 | } |
1000 | |
1001 | /// Subtract one signed duration from another. If overflow occurs, then |
1002 | /// `None` is returned. |
1003 | /// |
1004 | /// # Example |
1005 | /// |
1006 | /// ``` |
1007 | /// use jiff::SignedDuration; |
1008 | /// |
1009 | /// let duration1 = SignedDuration::new(12, 500_000_000); |
1010 | /// let duration2 = SignedDuration::new(0, 500_000_000); |
1011 | /// assert_eq!( |
1012 | /// duration1.checked_sub(duration2), |
1013 | /// Some(SignedDuration::new(12, 0)), |
1014 | /// ); |
1015 | /// |
1016 | /// let duration1 = SignedDuration::MIN; |
1017 | /// let duration2 = SignedDuration::new(0, 1); |
1018 | /// assert_eq!(duration1.checked_sub(duration2), None); |
1019 | /// ``` |
1020 | #[inline ] |
1021 | pub const fn checked_sub( |
1022 | self, |
1023 | rhs: SignedDuration, |
1024 | ) -> Option<SignedDuration> { |
1025 | let Some(rhs) = rhs.checked_neg() else { return None }; |
1026 | self.checked_add(rhs) |
1027 | } |
1028 | |
1029 | /// Add two signed durations together. If overflow occurs, then arithmetic |
1030 | /// saturates. |
1031 | /// |
1032 | /// # Example |
1033 | /// |
1034 | /// ``` |
1035 | /// use jiff::SignedDuration; |
1036 | /// |
1037 | /// let duration1 = SignedDuration::MAX; |
1038 | /// let duration2 = SignedDuration::new(0, -1); |
1039 | /// assert_eq!(duration1.saturating_sub(duration2), SignedDuration::MAX); |
1040 | /// |
1041 | /// let duration1 = SignedDuration::MIN; |
1042 | /// let duration2 = SignedDuration::new(0, 1); |
1043 | /// assert_eq!(duration1.saturating_sub(duration2), SignedDuration::MIN); |
1044 | /// ``` |
1045 | #[inline ] |
1046 | pub const fn saturating_sub(self, rhs: SignedDuration) -> SignedDuration { |
1047 | let Some(diff) = self.checked_sub(rhs) else { |
1048 | return if rhs.is_positive() { |
1049 | SignedDuration::MIN |
1050 | } else { |
1051 | SignedDuration::MAX |
1052 | }; |
1053 | }; |
1054 | diff |
1055 | } |
1056 | |
1057 | /// Multiply this signed duration by an integer. If the multiplication |
1058 | /// overflows, then `None` is returned. |
1059 | /// |
1060 | /// # Example |
1061 | /// |
1062 | /// ``` |
1063 | /// use jiff::SignedDuration; |
1064 | /// |
1065 | /// let duration = SignedDuration::new(12, 500_000_000); |
1066 | /// assert_eq!( |
1067 | /// duration.checked_mul(2), |
1068 | /// Some(SignedDuration::new(25, 0)), |
1069 | /// ); |
1070 | /// ``` |
1071 | #[inline ] |
1072 | pub const fn checked_mul(self, rhs: i32) -> Option<SignedDuration> { |
1073 | let rhs = rhs as i64; |
1074 | // Multiplying any two i32 values never overflows an i64. |
1075 | let nanos = (self.nanos as i64) * rhs; |
1076 | // OK since NANOS_PER_SEC!={-1,0}. |
1077 | let addsecs = nanos / (NANOS_PER_SEC as i64); |
1078 | // OK since NANOS_PER_SEC!={-1,0}. |
1079 | let nanos = (nanos % (NANOS_PER_SEC as i64)) as i32; |
1080 | let Some(secs) = self.secs.checked_mul(rhs) else { return None }; |
1081 | let Some(secs) = secs.checked_add(addsecs) else { return None }; |
1082 | Some(SignedDuration::new_unchecked(secs, nanos)) |
1083 | } |
1084 | |
1085 | /// Multiply this signed duration by an integer. If the multiplication |
1086 | /// overflows, then the result saturates to either the minimum or maximum |
1087 | /// duration depending on the sign of the product. |
1088 | /// |
1089 | /// # Example |
1090 | /// |
1091 | /// ``` |
1092 | /// use jiff::SignedDuration; |
1093 | /// |
1094 | /// let duration = SignedDuration::new(i64::MAX, 0); |
1095 | /// assert_eq!(duration.saturating_mul(2), SignedDuration::MAX); |
1096 | /// assert_eq!(duration.saturating_mul(-2), SignedDuration::MIN); |
1097 | /// |
1098 | /// let duration = SignedDuration::new(i64::MIN, 0); |
1099 | /// assert_eq!(duration.saturating_mul(2), SignedDuration::MIN); |
1100 | /// assert_eq!(duration.saturating_mul(-2), SignedDuration::MAX); |
1101 | /// ``` |
1102 | #[inline ] |
1103 | pub const fn saturating_mul(self, rhs: i32) -> SignedDuration { |
1104 | let Some(product) = self.checked_mul(rhs) else { |
1105 | let sign = (self.signum() as i64) * (rhs as i64).signum(); |
1106 | return if sign.is_negative() { |
1107 | SignedDuration::MIN |
1108 | } else { |
1109 | SignedDuration::MAX |
1110 | }; |
1111 | }; |
1112 | product |
1113 | } |
1114 | |
1115 | /// Divide this duration by an integer. If the division overflows, then |
1116 | /// `None` is returned. |
1117 | /// |
1118 | /// # Example |
1119 | /// |
1120 | /// ``` |
1121 | /// use jiff::SignedDuration; |
1122 | /// |
1123 | /// let duration = SignedDuration::new(12, 500_000_000); |
1124 | /// assert_eq!( |
1125 | /// duration.checked_div(2), |
1126 | /// Some(SignedDuration::new(6, 250_000_000)), |
1127 | /// ); |
1128 | /// assert_eq!( |
1129 | /// duration.checked_div(-2), |
1130 | /// Some(SignedDuration::new(-6, -250_000_000)), |
1131 | /// ); |
1132 | /// |
1133 | /// let duration = SignedDuration::new(-12, -500_000_000); |
1134 | /// assert_eq!( |
1135 | /// duration.checked_div(2), |
1136 | /// Some(SignedDuration::new(-6, -250_000_000)), |
1137 | /// ); |
1138 | /// assert_eq!( |
1139 | /// duration.checked_div(-2), |
1140 | /// Some(SignedDuration::new(6, 250_000_000)), |
1141 | /// ); |
1142 | /// ``` |
1143 | #[inline ] |
1144 | pub const fn checked_div(self, rhs: i32) -> Option<SignedDuration> { |
1145 | if rhs == 0 || (self.secs == i64::MIN && rhs == -1) { |
1146 | return None; |
1147 | } |
1148 | // OK since rhs!={-1,0}. |
1149 | let secs = self.secs / (rhs as i64); |
1150 | // OK since rhs!={-1,0}. |
1151 | let addsecs = self.secs % (rhs as i64); |
1152 | // OK since rhs!=0 and self.nanos>i32::MIN. |
1153 | let mut nanos = self.nanos / rhs; |
1154 | // OK since rhs!=0 and self.nanos>i32::MIN. |
1155 | let addnanos = self.nanos % rhs; |
1156 | let leftover_nanos = |
1157 | (addsecs * (NANOS_PER_SEC as i64)) + (addnanos as i64); |
1158 | nanos += (leftover_nanos / (rhs as i64)) as i32; |
1159 | debug_assert!(nanos < NANOS_PER_SEC); |
1160 | Some(SignedDuration::new_unchecked(secs, nanos)) |
1161 | } |
1162 | |
1163 | /// Returns the number of seconds, with a possible fractional nanosecond |
1164 | /// component, represented by this signed duration as a 64-bit float. |
1165 | /// |
1166 | /// # Example |
1167 | /// |
1168 | /// ``` |
1169 | /// use jiff::SignedDuration; |
1170 | /// |
1171 | /// let duration = SignedDuration::new(12, 123_456_789); |
1172 | /// assert_eq!(duration.as_secs_f64(), 12.123456789); |
1173 | /// |
1174 | /// let duration = SignedDuration::new(-12, -123_456_789); |
1175 | /// assert_eq!(duration.as_secs_f64(), -12.123456789); |
1176 | /// ``` |
1177 | #[inline ] |
1178 | pub fn as_secs_f64(&self) -> f64 { |
1179 | (self.secs as f64) + ((self.nanos as f64) / (NANOS_PER_SEC as f64)) |
1180 | } |
1181 | |
1182 | /// Returns the number of seconds, with a possible fractional nanosecond |
1183 | /// component, represented by this signed duration as a 32-bit float. |
1184 | /// |
1185 | /// # Example |
1186 | /// |
1187 | /// ``` |
1188 | /// use jiff::SignedDuration; |
1189 | /// |
1190 | /// let duration = SignedDuration::new(12, 123_456_789); |
1191 | /// assert_eq!(duration.as_secs_f32(), 12.123456789); |
1192 | /// |
1193 | /// let duration = SignedDuration::new(-12, -123_456_789); |
1194 | /// assert_eq!(duration.as_secs_f32(), -12.123456789); |
1195 | /// ``` |
1196 | #[inline ] |
1197 | pub fn as_secs_f32(&self) -> f32 { |
1198 | (self.secs as f32) + ((self.nanos as f32) / (NANOS_PER_SEC as f32)) |
1199 | } |
1200 | |
1201 | /// Returns the number of milliseconds, with a possible fractional |
1202 | /// nanosecond component, represented by this signed duration as a 64-bit |
1203 | /// float. |
1204 | /// |
1205 | /// # Example |
1206 | /// |
1207 | /// ``` |
1208 | /// use jiff::SignedDuration; |
1209 | /// |
1210 | /// let duration = SignedDuration::new(12, 123_456_789); |
1211 | /// assert_eq!(duration.as_millis_f64(), 12123.456789); |
1212 | /// |
1213 | /// let duration = SignedDuration::new(-12, -123_456_789); |
1214 | /// assert_eq!(duration.as_millis_f64(), -12123.456789); |
1215 | /// ``` |
1216 | #[inline ] |
1217 | pub fn as_millis_f64(&self) -> f64 { |
1218 | ((self.secs as f64) * (MILLIS_PER_SEC as f64)) |
1219 | + ((self.nanos as f64) / (NANOS_PER_MILLI as f64)) |
1220 | } |
1221 | |
1222 | /// Returns the number of milliseconds, with a possible fractional |
1223 | /// nanosecond component, represented by this signed duration as a 32-bit |
1224 | /// float. |
1225 | /// |
1226 | /// # Example |
1227 | /// |
1228 | /// ``` |
1229 | /// use jiff::SignedDuration; |
1230 | /// |
1231 | /// let duration = SignedDuration::new(12, 123_456_789); |
1232 | /// assert_eq!(duration.as_millis_f32(), 12123.456789); |
1233 | /// |
1234 | /// let duration = SignedDuration::new(-12, -123_456_789); |
1235 | /// assert_eq!(duration.as_millis_f32(), -12123.456789); |
1236 | /// ``` |
1237 | #[inline ] |
1238 | pub fn as_millis_f32(&self) -> f32 { |
1239 | ((self.secs as f32) * (MILLIS_PER_SEC as f32)) |
1240 | + ((self.nanos as f32) / (NANOS_PER_MILLI as f32)) |
1241 | } |
1242 | |
1243 | /// Returns a signed duration corresponding to the number of seconds |
1244 | /// represented as a 64-bit float. The number given may have a fractional |
1245 | /// nanosecond component. |
1246 | /// |
1247 | /// # Panics |
1248 | /// |
1249 | /// If the given float overflows the minimum or maximum signed duration |
1250 | /// values, then this panics. |
1251 | /// |
1252 | /// # Example |
1253 | /// |
1254 | /// ``` |
1255 | /// use jiff::SignedDuration; |
1256 | /// |
1257 | /// let duration = SignedDuration::from_secs_f64(12.123456789); |
1258 | /// assert_eq!(duration.as_secs(), 12); |
1259 | /// assert_eq!(duration.subsec_nanos(), 123_456_789); |
1260 | /// |
1261 | /// let duration = SignedDuration::from_secs_f64(-12.123456789); |
1262 | /// assert_eq!(duration.as_secs(), -12); |
1263 | /// assert_eq!(duration.subsec_nanos(), -123_456_789); |
1264 | /// |
1265 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1266 | /// ``` |
1267 | #[inline ] |
1268 | pub fn from_secs_f64(secs: f64) -> SignedDuration { |
1269 | SignedDuration::try_from_secs_f64(secs) |
1270 | .expect("finite and in-bounds f64" ) |
1271 | } |
1272 | |
1273 | /// Returns a signed duration corresponding to the number of seconds |
1274 | /// represented as a 32-bit float. The number given may have a fractional |
1275 | /// nanosecond component. |
1276 | /// |
1277 | /// # Panics |
1278 | /// |
1279 | /// If the given float overflows the minimum or maximum signed duration |
1280 | /// values, then this panics. |
1281 | /// |
1282 | /// # Example |
1283 | /// |
1284 | /// ``` |
1285 | /// use jiff::SignedDuration; |
1286 | /// |
1287 | /// let duration = SignedDuration::from_secs_f32(12.123456789); |
1288 | /// assert_eq!(duration.as_secs(), 12); |
1289 | /// // loss of precision! |
1290 | /// assert_eq!(duration.subsec_nanos(), 123_456_952); |
1291 | /// |
1292 | /// let duration = SignedDuration::from_secs_f32(-12.123456789); |
1293 | /// assert_eq!(duration.as_secs(), -12); |
1294 | /// // loss of precision! |
1295 | /// assert_eq!(duration.subsec_nanos(), -123_456_952); |
1296 | /// |
1297 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1298 | /// ``` |
1299 | #[inline ] |
1300 | pub fn from_secs_f32(secs: f32) -> SignedDuration { |
1301 | SignedDuration::try_from_secs_f32(secs) |
1302 | .expect("finite and in-bounds f32" ) |
1303 | } |
1304 | |
1305 | /// Returns a signed duration corresponding to the number of seconds |
1306 | /// represented as a 64-bit float. The number given may have a fractional |
1307 | /// nanosecond component. |
1308 | /// |
1309 | /// If the given float overflows the minimum or maximum signed duration |
1310 | /// values, then an error is returned. |
1311 | /// |
1312 | /// # Example |
1313 | /// |
1314 | /// ``` |
1315 | /// use jiff::SignedDuration; |
1316 | /// |
1317 | /// let duration = SignedDuration::try_from_secs_f64(12.123456789)?; |
1318 | /// assert_eq!(duration.as_secs(), 12); |
1319 | /// assert_eq!(duration.subsec_nanos(), 123_456_789); |
1320 | /// |
1321 | /// let duration = SignedDuration::try_from_secs_f64(-12.123456789)?; |
1322 | /// assert_eq!(duration.as_secs(), -12); |
1323 | /// assert_eq!(duration.subsec_nanos(), -123_456_789); |
1324 | /// |
1325 | /// assert!(SignedDuration::try_from_secs_f64(f64::NAN).is_err()); |
1326 | /// assert!(SignedDuration::try_from_secs_f64(f64::INFINITY).is_err()); |
1327 | /// assert!(SignedDuration::try_from_secs_f64(f64::NEG_INFINITY).is_err()); |
1328 | /// assert!(SignedDuration::try_from_secs_f64(f64::MIN).is_err()); |
1329 | /// assert!(SignedDuration::try_from_secs_f64(f64::MAX).is_err()); |
1330 | /// |
1331 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1332 | /// ``` |
1333 | #[inline ] |
1334 | pub fn try_from_secs_f64(secs: f64) -> Result<SignedDuration, Error> { |
1335 | if !secs.is_finite() { |
1336 | return Err(err!( |
1337 | "could not convert non-finite seconds \ |
1338 | {secs} to signed duration" , |
1339 | )); |
1340 | } |
1341 | if secs < (i64::MIN as f64) { |
1342 | return Err(err!( |
1343 | "floating point seconds {secs} overflows signed duration \ |
1344 | minimum value of {:?}" , |
1345 | SignedDuration::MIN, |
1346 | )); |
1347 | } |
1348 | if secs > (i64::MAX as f64) { |
1349 | return Err(err!( |
1350 | "floating point seconds {secs} overflows signed duration \ |
1351 | maximum value of {:?}" , |
1352 | SignedDuration::MAX, |
1353 | )); |
1354 | } |
1355 | |
1356 | let mut int_secs = secs.trunc() as i64; |
1357 | let mut int_nanos = |
1358 | (secs.fract() * (NANOS_PER_SEC as f64)).round() as i32; |
1359 | if int_nanos.unsigned_abs() == 1_000_000_000 { |
1360 | let increment = i64::from(int_nanos.signum()); |
1361 | int_secs = int_secs.checked_add(increment).ok_or_else(|| { |
1362 | err!( |
1363 | "floating point seconds {secs} overflows signed duration \ |
1364 | maximum value of {max:?} after rounding its fractional \ |
1365 | component of {fract:?}" , |
1366 | max = SignedDuration::MAX, |
1367 | fract = secs.fract(), |
1368 | ) |
1369 | })?; |
1370 | int_nanos = 0; |
1371 | } |
1372 | Ok(SignedDuration::new_unchecked(int_secs, int_nanos)) |
1373 | } |
1374 | |
1375 | /// Returns a signed duration corresponding to the number of seconds |
1376 | /// represented as a 32-bit float. The number given may have a fractional |
1377 | /// nanosecond component. |
1378 | /// |
1379 | /// If the given float overflows the minimum or maximum signed duration |
1380 | /// values, then an error is returned. |
1381 | /// |
1382 | /// # Example |
1383 | /// |
1384 | /// ``` |
1385 | /// use jiff::SignedDuration; |
1386 | /// |
1387 | /// let duration = SignedDuration::try_from_secs_f32(12.123456789)?; |
1388 | /// assert_eq!(duration.as_secs(), 12); |
1389 | /// // loss of precision! |
1390 | /// assert_eq!(duration.subsec_nanos(), 123_456_952); |
1391 | /// |
1392 | /// let duration = SignedDuration::try_from_secs_f32(-12.123456789)?; |
1393 | /// assert_eq!(duration.as_secs(), -12); |
1394 | /// // loss of precision! |
1395 | /// assert_eq!(duration.subsec_nanos(), -123_456_952); |
1396 | /// |
1397 | /// assert!(SignedDuration::try_from_secs_f32(f32::NAN).is_err()); |
1398 | /// assert!(SignedDuration::try_from_secs_f32(f32::INFINITY).is_err()); |
1399 | /// assert!(SignedDuration::try_from_secs_f32(f32::NEG_INFINITY).is_err()); |
1400 | /// assert!(SignedDuration::try_from_secs_f32(f32::MIN).is_err()); |
1401 | /// assert!(SignedDuration::try_from_secs_f32(f32::MAX).is_err()); |
1402 | /// |
1403 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1404 | /// ``` |
1405 | #[inline ] |
1406 | pub fn try_from_secs_f32(secs: f32) -> Result<SignedDuration, Error> { |
1407 | if !secs.is_finite() { |
1408 | return Err(err!( |
1409 | "could not convert non-finite seconds \ |
1410 | {secs} to signed duration" , |
1411 | )); |
1412 | } |
1413 | if secs < (i64::MIN as f32) { |
1414 | return Err(err!( |
1415 | "floating point seconds {secs} overflows signed duration \ |
1416 | minimum value of {:?}" , |
1417 | SignedDuration::MIN, |
1418 | )); |
1419 | } |
1420 | if secs > (i64::MAX as f32) { |
1421 | return Err(err!( |
1422 | "floating point seconds {secs} overflows signed duration \ |
1423 | maximum value of {:?}" , |
1424 | SignedDuration::MAX, |
1425 | )); |
1426 | } |
1427 | let mut int_nanos = |
1428 | (secs.fract() * (NANOS_PER_SEC as f32)).round() as i32; |
1429 | let mut int_secs = secs.trunc() as i64; |
1430 | if int_nanos.unsigned_abs() == 1_000_000_000 { |
1431 | let increment = i64::from(int_nanos.signum()); |
1432 | // N.B. I haven't found a way to trigger this error path in tests. |
1433 | int_secs = int_secs.checked_add(increment).ok_or_else(|| { |
1434 | err!( |
1435 | "floating point seconds {secs} overflows signed duration \ |
1436 | maximum value of {max:?} after rounding its fractional \ |
1437 | component of {fract:?}" , |
1438 | max = SignedDuration::MAX, |
1439 | fract = secs.fract(), |
1440 | ) |
1441 | })?; |
1442 | int_nanos = 0; |
1443 | } |
1444 | Ok(SignedDuration::new_unchecked(int_secs, int_nanos)) |
1445 | } |
1446 | |
1447 | /// Returns the result of multiplying this duration by the given 64-bit |
1448 | /// float. |
1449 | /// |
1450 | /// # Panics |
1451 | /// |
1452 | /// This panics if the result is not finite or overflows a |
1453 | /// `SignedDuration`. |
1454 | /// |
1455 | /// # Example |
1456 | /// |
1457 | /// ``` |
1458 | /// use jiff::SignedDuration; |
1459 | /// |
1460 | /// let duration = SignedDuration::new(12, 300_000_000); |
1461 | /// assert_eq!( |
1462 | /// duration.mul_f64(2.0), |
1463 | /// SignedDuration::new(24, 600_000_000), |
1464 | /// ); |
1465 | /// assert_eq!( |
1466 | /// duration.mul_f64(-2.0), |
1467 | /// SignedDuration::new(-24, -600_000_000), |
1468 | /// ); |
1469 | /// ``` |
1470 | #[inline ] |
1471 | pub fn mul_f64(self, rhs: f64) -> SignedDuration { |
1472 | SignedDuration::from_secs_f64(rhs * self.as_secs_f64()) |
1473 | } |
1474 | |
1475 | /// Returns the result of multiplying this duration by the given 32-bit |
1476 | /// float. |
1477 | /// |
1478 | /// # Panics |
1479 | /// |
1480 | /// This panics if the result is not finite or overflows a |
1481 | /// `SignedDuration`. |
1482 | /// |
1483 | /// # Example |
1484 | /// |
1485 | /// ``` |
1486 | /// use jiff::SignedDuration; |
1487 | /// |
1488 | /// let duration = SignedDuration::new(12, 300_000_000); |
1489 | /// assert_eq!( |
1490 | /// duration.mul_f32(2.0), |
1491 | /// // loss of precision! |
1492 | /// SignedDuration::new(24, 600_000_384), |
1493 | /// ); |
1494 | /// assert_eq!( |
1495 | /// duration.mul_f32(-2.0), |
1496 | /// // loss of precision! |
1497 | /// SignedDuration::new(-24, -600_000_384), |
1498 | /// ); |
1499 | /// ``` |
1500 | #[inline ] |
1501 | pub fn mul_f32(self, rhs: f32) -> SignedDuration { |
1502 | SignedDuration::from_secs_f32(rhs * self.as_secs_f32()) |
1503 | } |
1504 | |
1505 | /// Returns the result of dividing this duration by the given 64-bit |
1506 | /// float. |
1507 | /// |
1508 | /// # Panics |
1509 | /// |
1510 | /// This panics if the result is not finite or overflows a |
1511 | /// `SignedDuration`. |
1512 | /// |
1513 | /// # Example |
1514 | /// |
1515 | /// ``` |
1516 | /// use jiff::SignedDuration; |
1517 | /// |
1518 | /// let duration = SignedDuration::new(12, 300_000_000); |
1519 | /// assert_eq!( |
1520 | /// duration.div_f64(2.0), |
1521 | /// SignedDuration::new(6, 150_000_000), |
1522 | /// ); |
1523 | /// assert_eq!( |
1524 | /// duration.div_f64(-2.0), |
1525 | /// SignedDuration::new(-6, -150_000_000), |
1526 | /// ); |
1527 | /// ``` |
1528 | #[inline ] |
1529 | pub fn div_f64(self, rhs: f64) -> SignedDuration { |
1530 | SignedDuration::from_secs_f64(self.as_secs_f64() / rhs) |
1531 | } |
1532 | |
1533 | /// Returns the result of dividing this duration by the given 32-bit |
1534 | /// float. |
1535 | /// |
1536 | /// # Panics |
1537 | /// |
1538 | /// This panics if the result is not finite or overflows a |
1539 | /// `SignedDuration`. |
1540 | /// |
1541 | /// # Example |
1542 | /// |
1543 | /// ``` |
1544 | /// use jiff::SignedDuration; |
1545 | /// |
1546 | /// let duration = SignedDuration::new(12, 300_000_000); |
1547 | /// assert_eq!( |
1548 | /// duration.div_f32(2.0), |
1549 | /// // loss of precision! |
1550 | /// SignedDuration::new(6, 150_000_096), |
1551 | /// ); |
1552 | /// assert_eq!( |
1553 | /// duration.div_f32(-2.0), |
1554 | /// // loss of precision! |
1555 | /// SignedDuration::new(-6, -150_000_096), |
1556 | /// ); |
1557 | /// ``` |
1558 | #[inline ] |
1559 | pub fn div_f32(self, rhs: f32) -> SignedDuration { |
1560 | SignedDuration::from_secs_f32(self.as_secs_f32() / rhs) |
1561 | } |
1562 | |
1563 | /// Divides this signed duration by another signed duration and returns the |
1564 | /// corresponding 64-bit float result. |
1565 | /// |
1566 | /// # Example |
1567 | /// |
1568 | /// ``` |
1569 | /// use jiff::SignedDuration; |
1570 | /// |
1571 | /// let duration1 = SignedDuration::new(12, 600_000_000); |
1572 | /// let duration2 = SignedDuration::new(6, 300_000_000); |
1573 | /// assert_eq!(duration1.div_duration_f64(duration2), 2.0); |
1574 | /// |
1575 | /// let duration1 = SignedDuration::new(-12, -600_000_000); |
1576 | /// let duration2 = SignedDuration::new(6, 300_000_000); |
1577 | /// assert_eq!(duration1.div_duration_f64(duration2), -2.0); |
1578 | /// |
1579 | /// let duration1 = SignedDuration::new(-12, -600_000_000); |
1580 | /// let duration2 = SignedDuration::new(-6, -300_000_000); |
1581 | /// assert_eq!(duration1.div_duration_f64(duration2), 2.0); |
1582 | /// ``` |
1583 | #[inline ] |
1584 | pub fn div_duration_f64(self, rhs: SignedDuration) -> f64 { |
1585 | let lhs_nanos = |
1586 | (self.secs as f64) * (NANOS_PER_SEC as f64) + (self.nanos as f64); |
1587 | let rhs_nanos = |
1588 | (rhs.secs as f64) * (NANOS_PER_SEC as f64) + (rhs.nanos as f64); |
1589 | lhs_nanos / rhs_nanos |
1590 | } |
1591 | |
1592 | /// Divides this signed duration by another signed duration and returns the |
1593 | /// corresponding 32-bit float result. |
1594 | /// |
1595 | /// # Example |
1596 | /// |
1597 | /// ``` |
1598 | /// use jiff::SignedDuration; |
1599 | /// |
1600 | /// let duration1 = SignedDuration::new(12, 600_000_000); |
1601 | /// let duration2 = SignedDuration::new(6, 300_000_000); |
1602 | /// assert_eq!(duration1.div_duration_f32(duration2), 2.0); |
1603 | /// |
1604 | /// let duration1 = SignedDuration::new(-12, -600_000_000); |
1605 | /// let duration2 = SignedDuration::new(6, 300_000_000); |
1606 | /// assert_eq!(duration1.div_duration_f32(duration2), -2.0); |
1607 | /// |
1608 | /// let duration1 = SignedDuration::new(-12, -600_000_000); |
1609 | /// let duration2 = SignedDuration::new(-6, -300_000_000); |
1610 | /// assert_eq!(duration1.div_duration_f32(duration2), 2.0); |
1611 | /// ``` |
1612 | #[inline ] |
1613 | pub fn div_duration_f32(self, rhs: SignedDuration) -> f32 { |
1614 | let lhs_nanos = |
1615 | (self.secs as f32) * (NANOS_PER_SEC as f32) + (self.nanos as f32); |
1616 | let rhs_nanos = |
1617 | (rhs.secs as f32) * (NANOS_PER_SEC as f32) + (rhs.nanos as f32); |
1618 | lhs_nanos / rhs_nanos |
1619 | } |
1620 | } |
1621 | |
1622 | /// Additional APIs not found in the standard library. |
1623 | /// |
1624 | /// In most cases, these APIs exist as a result of the fact that this duration |
1625 | /// is signed. |
1626 | impl SignedDuration { |
1627 | /// Returns the number of whole hours in this duration. |
1628 | /// |
1629 | /// The value returned is negative when the duration is negative. |
1630 | /// |
1631 | /// This does not include any fractional component corresponding to units |
1632 | /// less than an hour. |
1633 | /// |
1634 | /// # Example |
1635 | /// |
1636 | /// ``` |
1637 | /// use jiff::SignedDuration; |
1638 | /// |
1639 | /// let duration = SignedDuration::new(86_400, 999_999_999); |
1640 | /// assert_eq!(duration.as_hours(), 24); |
1641 | /// |
1642 | /// let duration = SignedDuration::new(-86_400, -999_999_999); |
1643 | /// assert_eq!(duration.as_hours(), -24); |
1644 | /// ``` |
1645 | #[inline ] |
1646 | pub const fn as_hours(&self) -> i64 { |
1647 | self.as_secs() / (MINS_PER_HOUR * SECS_PER_MINUTE) |
1648 | } |
1649 | |
1650 | /// Returns the number of whole minutes in this duration. |
1651 | /// |
1652 | /// The value returned is negative when the duration is negative. |
1653 | /// |
1654 | /// This does not include any fractional component corresponding to units |
1655 | /// less than a minute. |
1656 | /// |
1657 | /// # Example |
1658 | /// |
1659 | /// ``` |
1660 | /// use jiff::SignedDuration; |
1661 | /// |
1662 | /// let duration = SignedDuration::new(3_600, 999_999_999); |
1663 | /// assert_eq!(duration.as_mins(), 60); |
1664 | /// |
1665 | /// let duration = SignedDuration::new(-3_600, -999_999_999); |
1666 | /// assert_eq!(duration.as_mins(), -60); |
1667 | /// ``` |
1668 | #[inline ] |
1669 | pub const fn as_mins(&self) -> i64 { |
1670 | self.as_secs() / SECS_PER_MINUTE |
1671 | } |
1672 | |
1673 | /// Returns the absolute value of this signed duration. |
1674 | /// |
1675 | /// If this duration isn't negative, then this returns the original |
1676 | /// duration unchanged. |
1677 | /// |
1678 | /// # Panics |
1679 | /// |
1680 | /// This panics when the seconds component of this signed duration is |
1681 | /// equal to `i64::MIN`. |
1682 | /// |
1683 | /// # Example |
1684 | /// |
1685 | /// ``` |
1686 | /// use jiff::SignedDuration; |
1687 | /// |
1688 | /// let duration = SignedDuration::new(1, -1_999_999_999); |
1689 | /// assert_eq!(duration.abs(), SignedDuration::new(0, 999_999_999)); |
1690 | /// ``` |
1691 | #[inline ] |
1692 | pub const fn abs(self) -> SignedDuration { |
1693 | SignedDuration::new_unchecked(self.secs.abs(), self.nanos.abs()) |
1694 | } |
1695 | |
1696 | /// Returns the absolute value of this signed duration as a |
1697 | /// [`std::time::Duration`]. More specifically, this routine cannot |
1698 | /// panic because the absolute value of `SignedDuration::MIN` is |
1699 | /// representable in a `std::time::Duration`. |
1700 | /// |
1701 | /// # Example |
1702 | /// |
1703 | /// ``` |
1704 | /// use std::time::Duration; |
1705 | /// |
1706 | /// use jiff::SignedDuration; |
1707 | /// |
1708 | /// let duration = SignedDuration::MIN; |
1709 | /// assert_eq!( |
1710 | /// duration.unsigned_abs(), |
1711 | /// Duration::new(i64::MIN.unsigned_abs(), 999_999_999), |
1712 | /// ); |
1713 | /// ``` |
1714 | #[inline ] |
1715 | pub const fn unsigned_abs(self) -> Duration { |
1716 | Duration::new(self.secs.unsigned_abs(), self.nanos.unsigned_abs()) |
1717 | } |
1718 | |
1719 | /// Returns this duration with its sign flipped. |
1720 | /// |
1721 | /// If this duration is zero, then this returns the duration unchanged. |
1722 | /// |
1723 | /// This returns none if the negation does not exist. This occurs in |
1724 | /// precisely the cases when [`SignedDuration::as_secs`] is equal to |
1725 | /// `i64::MIN`. |
1726 | /// |
1727 | /// # Example |
1728 | /// |
1729 | /// ``` |
1730 | /// use jiff::SignedDuration; |
1731 | /// |
1732 | /// let duration = SignedDuration::new(12, 123_456_789); |
1733 | /// assert_eq!( |
1734 | /// duration.checked_neg(), |
1735 | /// Some(SignedDuration::new(-12, -123_456_789)), |
1736 | /// ); |
1737 | /// |
1738 | /// let duration = SignedDuration::new(-12, -123_456_789); |
1739 | /// assert_eq!( |
1740 | /// duration.checked_neg(), |
1741 | /// Some(SignedDuration::new(12, 123_456_789)), |
1742 | /// ); |
1743 | /// |
1744 | /// // Negating the minimum seconds isn't possible. |
1745 | /// assert_eq!(SignedDuration::MIN.checked_neg(), None); |
1746 | /// ``` |
1747 | #[inline ] |
1748 | pub const fn checked_neg(self) -> Option<SignedDuration> { |
1749 | let Some(secs) = self.secs.checked_neg() else { return None }; |
1750 | Some(SignedDuration::new_unchecked( |
1751 | secs, |
1752 | // Always OK because `-999_999_999 <= self.nanos <= 999_999_999`. |
1753 | -self.nanos, |
1754 | )) |
1755 | } |
1756 | |
1757 | /// Returns a number that represents the sign of this duration. |
1758 | /// |
1759 | /// * When [`SignedDuration::is_zero`] is true, this returns `0`. |
1760 | /// * When [`SignedDuration::is_positive`] is true, this returns `1`. |
1761 | /// * When [`SignedDuration::is_negative`] is true, this returns `-1`. |
1762 | /// |
1763 | /// The above cases are mutually exclusive. |
1764 | /// |
1765 | /// # Example |
1766 | /// |
1767 | /// ``` |
1768 | /// use jiff::SignedDuration; |
1769 | /// |
1770 | /// assert_eq!(0, SignedDuration::ZERO.signum()); |
1771 | /// ``` |
1772 | #[inline ] |
1773 | pub const fn signum(self) -> i8 { |
1774 | if self.is_zero() { |
1775 | 0 |
1776 | } else if self.is_positive() { |
1777 | 1 |
1778 | } else { |
1779 | debug_assert!(self.is_negative()); |
1780 | -1 |
1781 | } |
1782 | } |
1783 | |
1784 | /// Returns true when this duration is positive. That is, greater than |
1785 | /// [`SignedDuration::ZERO`]. |
1786 | /// |
1787 | /// # Example |
1788 | /// |
1789 | /// ``` |
1790 | /// use jiff::SignedDuration; |
1791 | /// |
1792 | /// let duration = SignedDuration::new(0, 1); |
1793 | /// assert!(duration.is_positive()); |
1794 | /// ``` |
1795 | #[inline ] |
1796 | pub const fn is_positive(&self) -> bool { |
1797 | self.secs.is_positive() || self.nanos.is_positive() |
1798 | } |
1799 | |
1800 | /// Returns true when this duration is negative. That is, less than |
1801 | /// [`SignedDuration::ZERO`]. |
1802 | /// |
1803 | /// # Example |
1804 | /// |
1805 | /// ``` |
1806 | /// use jiff::SignedDuration; |
1807 | /// |
1808 | /// let duration = SignedDuration::new(0, -1); |
1809 | /// assert!(duration.is_negative()); |
1810 | /// ``` |
1811 | #[inline ] |
1812 | pub const fn is_negative(&self) -> bool { |
1813 | self.secs.is_negative() || self.nanos.is_negative() |
1814 | } |
1815 | } |
1816 | |
1817 | /// Additional APIs for computing the duration between date and time values. |
1818 | impl SignedDuration { |
1819 | pub(crate) fn zoned_until( |
1820 | zoned1: &Zoned, |
1821 | zoned2: &Zoned, |
1822 | ) -> SignedDuration { |
1823 | SignedDuration::timestamp_until(zoned1.timestamp(), zoned2.timestamp()) |
1824 | } |
1825 | |
1826 | pub(crate) fn timestamp_until( |
1827 | timestamp1: Timestamp, |
1828 | timestamp2: Timestamp, |
1829 | ) -> SignedDuration { |
1830 | // OK because all the difference between any two timestamp values can |
1831 | // fit into a signed duration. |
1832 | timestamp2.as_duration() - timestamp1.as_duration() |
1833 | } |
1834 | |
1835 | pub(crate) fn datetime_until( |
1836 | datetime1: DateTime, |
1837 | datetime2: DateTime, |
1838 | ) -> SignedDuration { |
1839 | let date_until = |
1840 | SignedDuration::date_until(datetime1.date(), datetime2.date()); |
1841 | let time_until = |
1842 | SignedDuration::time_until(datetime1.time(), datetime2.time()); |
1843 | // OK because the difference between any two datetimes can bit into a |
1844 | // 96-bit integer of nanoseconds. |
1845 | date_until + time_until |
1846 | } |
1847 | |
1848 | pub(crate) fn date_until(date1: Date, date2: Date) -> SignedDuration { |
1849 | let days = date1.until_days_ranged(date2); |
1850 | // OK because difference in days fits in an i32, and multiplying an |
1851 | // i32 by 24 will never overflow an i64. |
1852 | let hours = 24 * i64::from(days.get()); |
1853 | SignedDuration::from_hours(hours) |
1854 | } |
1855 | |
1856 | pub(crate) fn time_until(time1: Time, time2: Time) -> SignedDuration { |
1857 | let nanos = time1.until_nanoseconds(time2); |
1858 | SignedDuration::from_nanos(nanos.get()) |
1859 | } |
1860 | |
1861 | pub(crate) fn offset_until( |
1862 | offset1: Offset, |
1863 | offset2: Offset, |
1864 | ) -> SignedDuration { |
1865 | let secs1 = i64::from(offset1.seconds()); |
1866 | let secs2 = i64::from(offset2.seconds()); |
1867 | // OK because subtracting any two i32 values will |
1868 | // never overflow an i64. |
1869 | let diff = secs2 - secs1; |
1870 | SignedDuration::from_secs(diff) |
1871 | } |
1872 | |
1873 | /// Returns the duration from `time1` until `time2` where the times are |
1874 | /// [`std::time::SystemTime`] values from the standard library. |
1875 | /// |
1876 | /// # Errors |
1877 | /// |
1878 | /// This returns an error if the difference between the two time values |
1879 | /// overflows the signed duration limits. |
1880 | /// |
1881 | /// # Example |
1882 | /// |
1883 | /// ``` |
1884 | /// use std::time::{Duration, SystemTime}; |
1885 | /// use jiff::SignedDuration; |
1886 | /// |
1887 | /// let time1 = SystemTime::UNIX_EPOCH; |
1888 | /// let time2 = time1.checked_add(Duration::from_secs(86_400)).unwrap(); |
1889 | /// assert_eq!( |
1890 | /// SignedDuration::system_until(time1, time2)?, |
1891 | /// SignedDuration::from_hours(24), |
1892 | /// ); |
1893 | /// |
1894 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1895 | /// ``` |
1896 | #[cfg (feature = "std" )] |
1897 | #[inline ] |
1898 | pub fn system_until( |
1899 | time1: std::time::SystemTime, |
1900 | time2: std::time::SystemTime, |
1901 | ) -> Result<SignedDuration, Error> { |
1902 | match time2.duration_since(time1) { |
1903 | Ok(dur) => SignedDuration::try_from(dur).with_context(|| { |
1904 | err!( |
1905 | "unsigned duration {dur:?} for system time since \ |
1906 | Unix epoch overflowed signed duration" |
1907 | ) |
1908 | }), |
1909 | Err(err) => { |
1910 | let dur = err.duration(); |
1911 | let dur = |
1912 | SignedDuration::try_from(dur).with_context(|| { |
1913 | err!( |
1914 | "unsigned duration {dur:?} for system time before \ |
1915 | Unix epoch overflowed signed duration" |
1916 | ) |
1917 | })?; |
1918 | dur.checked_neg().ok_or_else(|| { |
1919 | err!("negating duration {dur:?} from before the Unix epoch \ |
1920 | overflowed signed duration" ) |
1921 | }) |
1922 | } |
1923 | } |
1924 | } |
1925 | } |
1926 | |
1927 | /// Jiff specific APIs. |
1928 | impl SignedDuration { |
1929 | /// Returns a new signed duration that is rounded according to the given |
1930 | /// configuration. |
1931 | /// |
1932 | /// Rounding a duration has a number of parameters, all of which are |
1933 | /// optional. When no parameters are given, then no rounding is done, and |
1934 | /// the duration as given is returned. That is, it's a no-op. |
1935 | /// |
1936 | /// As is consistent with `SignedDuration` itself, rounding only supports |
1937 | /// time units, i.e., units of hours or smaller. If a calendar `Unit` is |
1938 | /// provided, then an error is returned. In order to round a duration with |
1939 | /// calendar units, you must use [`Span::round`](crate::Span::round) and |
1940 | /// provide a relative datetime. |
1941 | /// |
1942 | /// The parameters are, in brief: |
1943 | /// |
1944 | /// * [`SignedDurationRound::smallest`] sets the smallest [`Unit`] that |
1945 | /// is allowed to be non-zero in the duration returned. By default, it |
1946 | /// is set to [`Unit::Nanosecond`], i.e., no rounding occurs. When the |
1947 | /// smallest unit is set to something bigger than nanoseconds, then the |
1948 | /// non-zero units in the duration smaller than the smallest unit are used |
1949 | /// to determine how the duration should be rounded. For example, rounding |
1950 | /// `1 hour 59 minutes` to the nearest hour using the default rounding mode |
1951 | /// would produce `2 hours`. |
1952 | /// * [`SignedDurationRound::mode`] determines how to handle the remainder |
1953 | /// when rounding. The default is [`RoundMode::HalfExpand`], which |
1954 | /// corresponds to how you were likely taught to round in school. |
1955 | /// Alternative modes, like [`RoundMode::Trunc`], exist too. For example, |
1956 | /// a truncating rounding of `1 hour 59 minutes` to the nearest hour would |
1957 | /// produce `1 hour`. |
1958 | /// * [`SignedDurationRound::increment`] sets the rounding granularity to |
1959 | /// use for the configured smallest unit. For example, if the smallest unit |
1960 | /// is minutes and the increment is 5, then the duration returned will |
1961 | /// always have its minute units set to a multiple of `5`. |
1962 | /// |
1963 | /// # Errors |
1964 | /// |
1965 | /// In general, there are two main ways for rounding to fail: an improper |
1966 | /// configuration like trying to round a duration to the nearest calendar |
1967 | /// unit, or when overflow occurs. Overflow can occur when the duration |
1968 | /// would exceed the minimum or maximum `SignedDuration` values. Typically, |
1969 | /// this can only realistically happen if the duration before rounding is |
1970 | /// already close to its minimum or maximum value. |
1971 | /// |
1972 | /// # Example: round to the nearest second |
1973 | /// |
1974 | /// This shows how to round a duration to the nearest second. This might |
1975 | /// be useful when you want to chop off any sub-second component in a way |
1976 | /// that depends on how close it is (or not) to the next second. |
1977 | /// |
1978 | /// ``` |
1979 | /// use jiff::{SignedDuration, Unit}; |
1980 | /// |
1981 | /// // rounds up |
1982 | /// let dur = SignedDuration::new(4 * 60 * 60 + 50 * 60 + 32, 500_000_000); |
1983 | /// assert_eq!( |
1984 | /// dur.round(Unit::Second)?, |
1985 | /// SignedDuration::new(4 * 60 * 60 + 50 * 60 + 33, 0), |
1986 | /// ); |
1987 | /// // rounds down |
1988 | /// let dur = SignedDuration::new(4 * 60 * 60 + 50 * 60 + 32, 499_999_999); |
1989 | /// assert_eq!( |
1990 | /// dur.round(Unit::Second)?, |
1991 | /// SignedDuration::new(4 * 60 * 60 + 50 * 60 + 32, 0), |
1992 | /// ); |
1993 | /// |
1994 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
1995 | /// ``` |
1996 | /// |
1997 | /// # Example: round to the nearest half minute |
1998 | /// |
1999 | /// One can use [`SignedDurationRound::increment`] to set the rounding |
2000 | /// increment: |
2001 | /// |
2002 | /// ``` |
2003 | /// use jiff::{SignedDuration, SignedDurationRound, Unit}; |
2004 | /// |
2005 | /// let options = SignedDurationRound::new() |
2006 | /// .smallest(Unit::Second) |
2007 | /// .increment(30); |
2008 | /// |
2009 | /// // rounds up |
2010 | /// let dur = SignedDuration::from_secs(4 * 60 * 60 + 50 * 60 + 15); |
2011 | /// assert_eq!( |
2012 | /// dur.round(options)?, |
2013 | /// SignedDuration::from_secs(4 * 60 * 60 + 50 * 60 + 30), |
2014 | /// ); |
2015 | /// // rounds down |
2016 | /// let dur = SignedDuration::from_secs(4 * 60 * 60 + 50 * 60 + 14); |
2017 | /// assert_eq!( |
2018 | /// dur.round(options)?, |
2019 | /// SignedDuration::from_secs(4 * 60 * 60 + 50 * 60), |
2020 | /// ); |
2021 | /// |
2022 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2023 | /// ``` |
2024 | /// |
2025 | /// # Example: overflow results in an error |
2026 | /// |
2027 | /// If rounding would result in a value that exceeds a `SignedDuration`'s |
2028 | /// minimum or maximum values, then an error occurs: |
2029 | /// |
2030 | /// ``` |
2031 | /// use jiff::{SignedDuration, Unit}; |
2032 | /// |
2033 | /// assert_eq!( |
2034 | /// SignedDuration::MAX.round(Unit::Hour).unwrap_err().to_string(), |
2035 | /// "rounding `2562047788015215h 30m 7s 999ms 999µs 999ns` to \ |
2036 | /// nearest hour in increments of 1 resulted in \ |
2037 | /// 9223372036854777600 seconds, which does not fit into an i64 \ |
2038 | /// and thus overflows `SignedDuration`" , |
2039 | /// ); |
2040 | /// assert_eq!( |
2041 | /// SignedDuration::MIN.round(Unit::Hour).unwrap_err().to_string(), |
2042 | /// "rounding `2562047788015215h 30m 8s 999ms 999µs 999ns ago` to \ |
2043 | /// nearest hour in increments of 1 resulted in \ |
2044 | /// -9223372036854777600 seconds, which does not fit into an i64 \ |
2045 | /// and thus overflows `SignedDuration`" , |
2046 | /// ); |
2047 | /// ``` |
2048 | /// |
2049 | /// # Example: rounding with a calendar unit results in an error |
2050 | /// |
2051 | /// ``` |
2052 | /// use jiff::{SignedDuration, Unit}; |
2053 | /// |
2054 | /// assert_eq!( |
2055 | /// SignedDuration::ZERO.round(Unit::Day).unwrap_err().to_string(), |
2056 | /// "rounding `SignedDuration` failed \ |
2057 | /// because a calendar unit of days was provided \ |
2058 | /// (to round by calendar units, you must use a `Span`)" , |
2059 | /// ); |
2060 | /// ``` |
2061 | #[inline ] |
2062 | pub fn round<R: Into<SignedDurationRound>>( |
2063 | self, |
2064 | options: R, |
2065 | ) -> Result<SignedDuration, Error> { |
2066 | let options: SignedDurationRound = options.into(); |
2067 | options.round(self) |
2068 | } |
2069 | } |
2070 | |
2071 | impl core::fmt::Display for SignedDuration { |
2072 | #[inline ] |
2073 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
2074 | use crate::fmt::StdFmtWrite; |
2075 | |
2076 | if f.alternate() { |
2077 | friendly::DEFAULT_SPAN_PRINTER |
2078 | .print_duration(self, StdFmtWrite(f)) |
2079 | .map_err(|_| core::fmt::Error) |
2080 | } else { |
2081 | temporal::DEFAULT_SPAN_PRINTER |
2082 | .print_duration(self, StdFmtWrite(f)) |
2083 | .map_err(|_| core::fmt::Error) |
2084 | } |
2085 | } |
2086 | } |
2087 | |
2088 | impl core::fmt::Debug for SignedDuration { |
2089 | #[inline ] |
2090 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
2091 | use crate::fmt::StdFmtWrite; |
2092 | |
2093 | if f.alternate() { |
2094 | if self.subsec_nanos() == 0 { |
2095 | write!(f, " {}s" , self.as_secs()) |
2096 | } else if self.as_secs() == 0 { |
2097 | write!(f, " {}ns" , self.subsec_nanos()) |
2098 | } else { |
2099 | write!( |
2100 | f, |
2101 | " {}s {}ns" , |
2102 | self.as_secs(), |
2103 | self.subsec_nanos().unsigned_abs() |
2104 | ) |
2105 | } |
2106 | } else { |
2107 | friendly::DEFAULT_SPAN_PRINTER |
2108 | .print_duration(self, StdFmtWrite(f)) |
2109 | .map_err(|_| core::fmt::Error) |
2110 | } |
2111 | } |
2112 | } |
2113 | |
2114 | impl TryFrom<Duration> for SignedDuration { |
2115 | type Error = Error; |
2116 | |
2117 | fn try_from(d: Duration) -> Result<SignedDuration, Error> { |
2118 | let secs: i64 = i64::try_from(d.as_secs()).map_err(|_| { |
2119 | err!("seconds in unsigned duration {d:?} overflowed i64" ) |
2120 | })?; |
2121 | // Guaranteed to succeed since 0<=nanos<=999,999,999. |
2122 | let nanos: i32 = i32::try_from(d.subsec_nanos()).unwrap(); |
2123 | Ok(SignedDuration::new_unchecked(secs, nanos)) |
2124 | } |
2125 | } |
2126 | |
2127 | impl TryFrom<SignedDuration> for Duration { |
2128 | type Error = Error; |
2129 | |
2130 | fn try_from(sd: SignedDuration) -> Result<Duration, Error> { |
2131 | // This isn't needed, but improves error messages. |
2132 | if sd.is_negative() { |
2133 | return Err(err!( |
2134 | "cannot convert negative duration ` {sd:?}` to \ |
2135 | unsigned `std::time::Duration`" , |
2136 | )); |
2137 | } |
2138 | let secs: u64 = u64::try_from(sd.as_secs()).map_err(|_| { |
2139 | err!("seconds in signed duration {sd:?} overflowed u64" ) |
2140 | })?; |
2141 | // Guaranteed to succeed because the above only succeeds |
2142 | // when `sd` is non-negative. And when `sd` is non-negative, |
2143 | // we are guaranteed that 0<=nanos<=999,999,999. |
2144 | let nanos: u32 = u32::try_from(sd.subsec_nanos()).unwrap(); |
2145 | Ok(Duration::new(secs, nanos)) |
2146 | } |
2147 | } |
2148 | |
2149 | impl From<Offset> for SignedDuration { |
2150 | fn from(offset: Offset) -> SignedDuration { |
2151 | SignedDuration::from_secs(i64::from(offset.seconds())) |
2152 | } |
2153 | } |
2154 | |
2155 | impl core::str::FromStr for SignedDuration { |
2156 | type Err = Error; |
2157 | |
2158 | #[inline ] |
2159 | fn from_str(string: &str) -> Result<SignedDuration, Error> { |
2160 | parse_iso_or_friendly(string.as_bytes()) |
2161 | } |
2162 | } |
2163 | |
2164 | impl core::ops::Neg for SignedDuration { |
2165 | type Output = SignedDuration; |
2166 | |
2167 | #[inline ] |
2168 | fn neg(self) -> SignedDuration { |
2169 | self.checked_neg().expect(msg:"overflow when negating signed duration" ) |
2170 | } |
2171 | } |
2172 | |
2173 | impl core::ops::Add for SignedDuration { |
2174 | type Output = SignedDuration; |
2175 | |
2176 | #[inline ] |
2177 | fn add(self, rhs: SignedDuration) -> SignedDuration { |
2178 | self.checked_add(rhs).expect(msg:"overflow when adding signed durations" ) |
2179 | } |
2180 | } |
2181 | |
2182 | impl core::ops::AddAssign for SignedDuration { |
2183 | #[inline ] |
2184 | fn add_assign(&mut self, rhs: SignedDuration) { |
2185 | *self = *self + rhs; |
2186 | } |
2187 | } |
2188 | |
2189 | impl core::ops::Sub for SignedDuration { |
2190 | type Output = SignedDuration; |
2191 | |
2192 | #[inline ] |
2193 | fn sub(self, rhs: SignedDuration) -> SignedDuration { |
2194 | self.checked_sub(rhs) |
2195 | .expect(msg:"overflow when subtracting signed durations" ) |
2196 | } |
2197 | } |
2198 | |
2199 | impl core::ops::SubAssign for SignedDuration { |
2200 | #[inline ] |
2201 | fn sub_assign(&mut self, rhs: SignedDuration) { |
2202 | *self = *self - rhs; |
2203 | } |
2204 | } |
2205 | |
2206 | impl core::ops::Mul<i32> for SignedDuration { |
2207 | type Output = SignedDuration; |
2208 | |
2209 | #[inline ] |
2210 | fn mul(self, rhs: i32) -> SignedDuration { |
2211 | self.checked_mul(rhs) |
2212 | .expect(msg:"overflow when multiplying signed duration by scalar" ) |
2213 | } |
2214 | } |
2215 | |
2216 | impl core::iter::Sum for SignedDuration { |
2217 | fn sum<I: Iterator<Item = Self>>(iter: I) -> Self { |
2218 | iter.fold(Self::new(0, 0), |acc: SignedDuration, d: SignedDuration| acc + d) |
2219 | } |
2220 | } |
2221 | |
2222 | impl<'a> core::iter::Sum<&'a Self> for SignedDuration { |
2223 | fn sum<I: Iterator<Item = &'a Self>>(iter: I) -> Self { |
2224 | iter.fold(Self::new(0, 0), |acc: SignedDuration, d: &'a SignedDuration| acc + *d) |
2225 | } |
2226 | } |
2227 | |
2228 | impl core::ops::Mul<SignedDuration> for i32 { |
2229 | type Output = SignedDuration; |
2230 | |
2231 | #[inline ] |
2232 | fn mul(self, rhs: SignedDuration) -> SignedDuration { |
2233 | rhs * self |
2234 | } |
2235 | } |
2236 | |
2237 | impl core::ops::MulAssign<i32> for SignedDuration { |
2238 | #[inline ] |
2239 | fn mul_assign(&mut self, rhs: i32) { |
2240 | *self = *self * rhs; |
2241 | } |
2242 | } |
2243 | |
2244 | impl core::ops::Div<i32> for SignedDuration { |
2245 | type Output = SignedDuration; |
2246 | |
2247 | #[inline ] |
2248 | fn div(self, rhs: i32) -> SignedDuration { |
2249 | self.checked_div(rhs) |
2250 | .expect(msg:"overflow when dividing signed duration by scalar" ) |
2251 | } |
2252 | } |
2253 | |
2254 | impl core::ops::DivAssign<i32> for SignedDuration { |
2255 | #[inline ] |
2256 | fn div_assign(&mut self, rhs: i32) { |
2257 | *self = *self / rhs; |
2258 | } |
2259 | } |
2260 | |
2261 | #[cfg (feature = "serde" )] |
2262 | impl serde::Serialize for SignedDuration { |
2263 | #[inline ] |
2264 | fn serialize<S: serde::Serializer>( |
2265 | &self, |
2266 | serializer: S, |
2267 | ) -> Result<S::Ok, S::Error> { |
2268 | serializer.collect_str(self) |
2269 | } |
2270 | } |
2271 | |
2272 | #[cfg (feature = "serde" )] |
2273 | impl<'de> serde::Deserialize<'de> for SignedDuration { |
2274 | #[inline ] |
2275 | fn deserialize<D: serde::Deserializer<'de>>( |
2276 | deserializer: D, |
2277 | ) -> Result<SignedDuration, D::Error> { |
2278 | use serde::de; |
2279 | |
2280 | struct SignedDurationVisitor; |
2281 | |
2282 | impl<'de> de::Visitor<'de> for SignedDurationVisitor { |
2283 | type Value = SignedDuration; |
2284 | |
2285 | fn expecting( |
2286 | &self, |
2287 | f: &mut core::fmt::Formatter, |
2288 | ) -> core::fmt::Result { |
2289 | f.write_str("a signed duration string" ) |
2290 | } |
2291 | |
2292 | #[inline ] |
2293 | fn visit_bytes<E: de::Error>( |
2294 | self, |
2295 | value: &[u8], |
2296 | ) -> Result<SignedDuration, E> { |
2297 | parse_iso_or_friendly(value).map_err(de::Error::custom) |
2298 | } |
2299 | |
2300 | #[inline ] |
2301 | fn visit_str<E: de::Error>( |
2302 | self, |
2303 | value: &str, |
2304 | ) -> Result<SignedDuration, E> { |
2305 | self.visit_bytes(value.as_bytes()) |
2306 | } |
2307 | } |
2308 | |
2309 | deserializer.deserialize_str(SignedDurationVisitor) |
2310 | } |
2311 | } |
2312 | |
2313 | /// Options for [`SignedDuration::round`]. |
2314 | /// |
2315 | /// This type provides a way to configure the rounding of a duration. This |
2316 | /// includes setting the smallest unit (i.e., the unit to round), the rounding |
2317 | /// increment and the rounding mode (e.g., "ceil" or "truncate"). |
2318 | /// |
2319 | /// `SignedDuration::round` accepts anything that implements |
2320 | /// `Into<SignedDurationRound>`. There are a few key trait implementations that |
2321 | /// make this convenient: |
2322 | /// |
2323 | /// * `From<Unit> for SignedDurationRound` will construct a rounding |
2324 | /// configuration where the smallest unit is set to the one given. |
2325 | /// * `From<(Unit, i64)> for SignedDurationRound` will construct a rounding |
2326 | /// configuration where the smallest unit and the rounding increment are set to |
2327 | /// the ones given. |
2328 | /// |
2329 | /// In order to set other options (like the rounding mode), one must explicitly |
2330 | /// create a `SignedDurationRound` and pass it to `SignedDuration::round`. |
2331 | /// |
2332 | /// # Example |
2333 | /// |
2334 | /// This example shows how to always round up to the nearest half-minute: |
2335 | /// |
2336 | /// ``` |
2337 | /// use jiff::{RoundMode, SignedDuration, SignedDurationRound, Unit}; |
2338 | /// |
2339 | /// let dur = SignedDuration::new(4 * 60 * 60 + 17 * 60 + 1, 123_456_789); |
2340 | /// let rounded = dur.round( |
2341 | /// SignedDurationRound::new() |
2342 | /// .smallest(Unit::Second) |
2343 | /// .increment(30) |
2344 | /// .mode(RoundMode::Expand), |
2345 | /// )?; |
2346 | /// assert_eq!(rounded, SignedDuration::from_secs(4 * 60 * 60 + 17 * 60 + 30)); |
2347 | /// |
2348 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2349 | /// ``` |
2350 | #[derive (Clone, Copy, Debug)] |
2351 | pub struct SignedDurationRound { |
2352 | smallest: Unit, |
2353 | mode: RoundMode, |
2354 | increment: i64, |
2355 | } |
2356 | |
2357 | impl SignedDurationRound { |
2358 | /// Create a new default configuration for rounding a signed duration via |
2359 | /// [`SignedDuration::round`]. |
2360 | /// |
2361 | /// The default configuration does no rounding. |
2362 | #[inline ] |
2363 | pub fn new() -> SignedDurationRound { |
2364 | SignedDurationRound { |
2365 | smallest: Unit::Nanosecond, |
2366 | mode: RoundMode::HalfExpand, |
2367 | increment: 1, |
2368 | } |
2369 | } |
2370 | |
2371 | /// Set the smallest units allowed in the duration returned. These are the |
2372 | /// units that the duration is rounded to. |
2373 | /// |
2374 | /// # Errors |
2375 | /// |
2376 | /// The unit must be [`Unit::Hour`] or smaller. |
2377 | /// |
2378 | /// # Example |
2379 | /// |
2380 | /// A basic example that rounds to the nearest minute: |
2381 | /// |
2382 | /// ``` |
2383 | /// use jiff::{SignedDuration, Unit}; |
2384 | /// |
2385 | /// let duration = SignedDuration::new(15 * 60 + 46, 0); |
2386 | /// assert_eq!(duration.round(Unit::Minute)?, SignedDuration::from_mins(16)); |
2387 | /// |
2388 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2389 | /// ``` |
2390 | #[inline ] |
2391 | pub fn smallest(self, unit: Unit) -> SignedDurationRound { |
2392 | SignedDurationRound { smallest: unit, ..self } |
2393 | } |
2394 | |
2395 | /// Set the rounding mode. |
2396 | /// |
2397 | /// This defaults to [`RoundMode::HalfExpand`], which makes rounding work |
2398 | /// like how you were taught in school. |
2399 | /// |
2400 | /// # Example |
2401 | /// |
2402 | /// A basic example that rounds to the nearest minute, but changing its |
2403 | /// rounding mode to truncation: |
2404 | /// |
2405 | /// ``` |
2406 | /// use jiff::{RoundMode, SignedDuration, SignedDurationRound, Unit}; |
2407 | /// |
2408 | /// let duration = SignedDuration::new(15 * 60 + 46, 0); |
2409 | /// assert_eq!( |
2410 | /// duration.round(SignedDurationRound::new() |
2411 | /// .smallest(Unit::Minute) |
2412 | /// .mode(RoundMode::Trunc), |
2413 | /// )?, |
2414 | /// // The default round mode does rounding like |
2415 | /// // how you probably learned in school, and would |
2416 | /// // result in rounding up to 16 minutes. But we |
2417 | /// // change it to truncation here, which makes it |
2418 | /// // round down. |
2419 | /// SignedDuration::from_mins(15), |
2420 | /// ); |
2421 | /// |
2422 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2423 | /// ``` |
2424 | #[inline ] |
2425 | pub fn mode(self, mode: RoundMode) -> SignedDurationRound { |
2426 | SignedDurationRound { mode, ..self } |
2427 | } |
2428 | |
2429 | /// Set the rounding increment for the smallest unit. |
2430 | /// |
2431 | /// The default value is `1`. Other values permit rounding the smallest |
2432 | /// unit to the nearest integer increment specified. For example, if the |
2433 | /// smallest unit is set to [`Unit::Minute`], then a rounding increment of |
2434 | /// `30` would result in rounding in increments of a half hour. That is, |
2435 | /// the only minute value that could result would be `0` or `30`. |
2436 | /// |
2437 | /// # Errors |
2438 | /// |
2439 | /// The rounding increment must divide evenly into the next highest unit |
2440 | /// after the smallest unit configured (and must not be equivalent to it). |
2441 | /// For example, if the smallest unit is [`Unit::Nanosecond`], then *some* |
2442 | /// of the valid values for the rounding increment are `1`, `2`, `4`, `5`, |
2443 | /// `100` and `500`. Namely, any integer that divides evenly into `1,000` |
2444 | /// nanoseconds since there are `1,000` nanoseconds in the next highest |
2445 | /// unit (microseconds). |
2446 | /// |
2447 | /// # Example |
2448 | /// |
2449 | /// This shows how to round a duration to the nearest 5 minute increment: |
2450 | /// |
2451 | /// ``` |
2452 | /// use jiff::{SignedDuration, Unit}; |
2453 | /// |
2454 | /// let duration = SignedDuration::new(4 * 60 * 60 + 2 * 60 + 30, 0); |
2455 | /// assert_eq!( |
2456 | /// duration.round((Unit::Minute, 5))?, |
2457 | /// SignedDuration::new(4 * 60 * 60 + 5 * 60, 0), |
2458 | /// ); |
2459 | /// |
2460 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
2461 | /// ``` |
2462 | #[inline ] |
2463 | pub fn increment(self, increment: i64) -> SignedDurationRound { |
2464 | SignedDurationRound { increment, ..self } |
2465 | } |
2466 | |
2467 | /// Returns the `smallest` unit configuration. |
2468 | pub(crate) fn get_smallest(&self) -> Unit { |
2469 | self.smallest |
2470 | } |
2471 | |
2472 | /// Does the actual duration rounding. |
2473 | fn round(&self, dur: SignedDuration) -> Result<SignedDuration, Error> { |
2474 | if self.smallest > Unit::Hour { |
2475 | return Err(err!( |
2476 | "rounding `SignedDuration` failed because \ |
2477 | a calendar unit of {plural} was provided \ |
2478 | (to round by calendar units, you must use a `Span`)" , |
2479 | plural = self.smallest.plural(), |
2480 | )); |
2481 | } |
2482 | let nanos = t::NoUnits128::new_unchecked(dur.as_nanos()); |
2483 | let increment = t::NoUnits::new_unchecked(self.increment); |
2484 | let rounded = self.mode.round_by_unit_in_nanoseconds( |
2485 | nanos, |
2486 | self.smallest, |
2487 | increment, |
2488 | ); |
2489 | |
2490 | let seconds = rounded / t::NANOS_PER_SECOND; |
2491 | let seconds = |
2492 | t::NoUnits::try_rfrom("seconds" , seconds).map_err(|_| { |
2493 | err!( |
2494 | "rounding ` {dur:#}` to nearest {singular} in increments \ |
2495 | of {increment} resulted in {seconds} seconds, which does \ |
2496 | not fit into an i64 and thus overflows `SignedDuration`" , |
2497 | singular = self.smallest.singular(), |
2498 | ) |
2499 | })?; |
2500 | let subsec_nanos = rounded % t::NANOS_PER_SECOND; |
2501 | // OK because % 1_000_000_000 above guarantees that the result fits |
2502 | // in a i32. |
2503 | let subsec_nanos = i32::try_from(subsec_nanos).unwrap(); |
2504 | Ok(SignedDuration::new(seconds.get(), subsec_nanos)) |
2505 | } |
2506 | } |
2507 | |
2508 | impl Default for SignedDurationRound { |
2509 | fn default() -> SignedDurationRound { |
2510 | SignedDurationRound::new() |
2511 | } |
2512 | } |
2513 | |
2514 | impl From<Unit> for SignedDurationRound { |
2515 | fn from(unit: Unit) -> SignedDurationRound { |
2516 | SignedDurationRound::default().smallest(unit) |
2517 | } |
2518 | } |
2519 | |
2520 | impl From<(Unit, i64)> for SignedDurationRound { |
2521 | fn from((unit: Unit, increment: i64): (Unit, i64)) -> SignedDurationRound { |
2522 | SignedDurationRound::default().smallest(unit).increment(increment) |
2523 | } |
2524 | } |
2525 | |
2526 | /// A common parsing function that works in bytes. |
2527 | /// |
2528 | /// Specifically, this parses either an ISO 8601 duration into a |
2529 | /// `SignedDuration` or a "friendly" duration into a `SignedDuration`. It also |
2530 | /// tries to give decent error messages. |
2531 | /// |
2532 | /// This works because the friendly and ISO 8601 formats have non-overlapping |
2533 | /// prefixes. Both can start with a `+` or `-`, but aside from that, an ISO |
2534 | /// 8601 duration _always_ has to start with a `P` or `p`. We can utilize this |
2535 | /// property to very quickly determine how to parse the input. We just need to |
2536 | /// handle the possibly ambiguous case with a leading sign a little carefully |
2537 | /// in order to ensure good error messages. |
2538 | /// |
2539 | /// (We do the same thing for `Span`.) |
2540 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
2541 | fn parse_iso_or_friendly(bytes: &[u8]) -> Result<SignedDuration, Error> { |
2542 | if bytes.is_empty() { |
2543 | return Err(err!( |
2544 | "an empty string is not a valid `SignedDuration`, \ |
2545 | expected either a ISO 8601 or Jiff's 'friendly' \ |
2546 | format" , |
2547 | )); |
2548 | } |
2549 | let mut first = bytes[0]; |
2550 | if first == b'+' || first == b'-' { |
2551 | if bytes.len() == 1 { |
2552 | return Err(err!( |
2553 | "found nothing after sign ` {sign}`, \ |
2554 | which is not a valid `SignedDuration`, \ |
2555 | expected either a ISO 8601 or Jiff's 'friendly' \ |
2556 | format" , |
2557 | sign = escape::Byte(first), |
2558 | )); |
2559 | } |
2560 | first = bytes[1]; |
2561 | } |
2562 | if first == b'P' || first == b'p' { |
2563 | temporal::DEFAULT_SPAN_PARSER.parse_duration(bytes) |
2564 | } else { |
2565 | friendly::DEFAULT_SPAN_PARSER.parse_duration(bytes) |
2566 | } |
2567 | } |
2568 | |
2569 | #[cfg (test)] |
2570 | mod tests { |
2571 | use std::io::Cursor; |
2572 | |
2573 | use alloc::string::ToString; |
2574 | |
2575 | use super::*; |
2576 | |
2577 | #[test ] |
2578 | fn new() { |
2579 | let d = SignedDuration::new(12, i32::MAX); |
2580 | assert_eq!(d.as_secs(), 14); |
2581 | assert_eq!(d.subsec_nanos(), 147_483_647); |
2582 | |
2583 | let d = SignedDuration::new(-12, i32::MIN); |
2584 | assert_eq!(d.as_secs(), -14); |
2585 | assert_eq!(d.subsec_nanos(), -147_483_648); |
2586 | |
2587 | let d = SignedDuration::new(i64::MAX, i32::MIN); |
2588 | assert_eq!(d.as_secs(), i64::MAX - 3); |
2589 | assert_eq!(d.subsec_nanos(), 852_516_352); |
2590 | |
2591 | let d = SignedDuration::new(i64::MIN, i32::MAX); |
2592 | assert_eq!(d.as_secs(), i64::MIN + 3); |
2593 | assert_eq!(d.subsec_nanos(), -852_516_353); |
2594 | } |
2595 | |
2596 | #[test ] |
2597 | #[should_panic ] |
2598 | fn new_fail_positive() { |
2599 | SignedDuration::new(i64::MAX, 1_000_000_000); |
2600 | } |
2601 | |
2602 | #[test ] |
2603 | #[should_panic ] |
2604 | fn new_fail_negative() { |
2605 | SignedDuration::new(i64::MIN, -1_000_000_000); |
2606 | } |
2607 | |
2608 | #[test ] |
2609 | fn from_hours_limits() { |
2610 | let d = SignedDuration::from_hours(2_562_047_788_015_215); |
2611 | assert_eq!(d.as_secs(), 9223372036854774000); |
2612 | |
2613 | let d = SignedDuration::from_hours(-2_562_047_788_015_215); |
2614 | assert_eq!(d.as_secs(), -9223372036854774000); |
2615 | } |
2616 | |
2617 | #[test ] |
2618 | #[should_panic ] |
2619 | fn from_hours_fail_positive() { |
2620 | SignedDuration::from_hours(2_562_047_788_015_216); |
2621 | } |
2622 | |
2623 | #[test ] |
2624 | #[should_panic ] |
2625 | fn from_hours_fail_negative() { |
2626 | SignedDuration::from_hours(-2_562_047_788_015_216); |
2627 | } |
2628 | |
2629 | #[test ] |
2630 | fn from_minutes_limits() { |
2631 | let d = SignedDuration::from_mins(153_722_867_280_912_930); |
2632 | assert_eq!(d.as_secs(), 9223372036854775800); |
2633 | |
2634 | let d = SignedDuration::from_mins(-153_722_867_280_912_930); |
2635 | assert_eq!(d.as_secs(), -9223372036854775800); |
2636 | } |
2637 | |
2638 | #[test ] |
2639 | #[should_panic ] |
2640 | fn from_minutes_fail_positive() { |
2641 | SignedDuration::from_mins(153_722_867_280_912_931); |
2642 | } |
2643 | |
2644 | #[test ] |
2645 | #[should_panic ] |
2646 | fn from_minutes_fail_negative() { |
2647 | SignedDuration::from_mins(-153_722_867_280_912_931); |
2648 | } |
2649 | |
2650 | #[test ] |
2651 | fn add() { |
2652 | let add = |(secs1, nanos1): (i64, i32), |
2653 | (secs2, nanos2): (i64, i32)| |
2654 | -> (i64, i32) { |
2655 | let d1 = SignedDuration::new(secs1, nanos1); |
2656 | let d2 = SignedDuration::new(secs2, nanos2); |
2657 | let sum = d1.checked_add(d2).unwrap(); |
2658 | (sum.as_secs(), sum.subsec_nanos()) |
2659 | }; |
2660 | |
2661 | assert_eq!(add((1, 1), (1, 1)), (2, 2)); |
2662 | assert_eq!(add((1, 1), (-1, -1)), (0, 0)); |
2663 | assert_eq!(add((-1, -1), (1, 1)), (0, 0)); |
2664 | assert_eq!(add((-1, -1), (-1, -1)), (-2, -2)); |
2665 | |
2666 | assert_eq!(add((1, 500_000_000), (1, 500_000_000)), (3, 0)); |
2667 | assert_eq!(add((-1, -500_000_000), (-1, -500_000_000)), (-3, 0)); |
2668 | assert_eq!( |
2669 | add((5, 200_000_000), (-1, -500_000_000)), |
2670 | (3, 700_000_000) |
2671 | ); |
2672 | assert_eq!( |
2673 | add((-5, -200_000_000), (1, 500_000_000)), |
2674 | (-3, -700_000_000) |
2675 | ); |
2676 | } |
2677 | |
2678 | #[test ] |
2679 | fn add_overflow() { |
2680 | let add = |(secs1, nanos1): (i64, i32), |
2681 | (secs2, nanos2): (i64, i32)| |
2682 | -> Option<(i64, i32)> { |
2683 | let d1 = SignedDuration::new(secs1, nanos1); |
2684 | let d2 = SignedDuration::new(secs2, nanos2); |
2685 | d1.checked_add(d2).map(|d| (d.as_secs(), d.subsec_nanos())) |
2686 | }; |
2687 | assert_eq!(None, add((i64::MAX, 0), (1, 0))); |
2688 | assert_eq!(None, add((i64::MIN, 0), (-1, 0))); |
2689 | assert_eq!(None, add((i64::MAX, 1), (0, 999_999_999))); |
2690 | assert_eq!(None, add((i64::MIN, -1), (0, -999_999_999))); |
2691 | } |
2692 | |
2693 | /// # `serde` deserializer compatibility test |
2694 | /// |
2695 | /// Serde YAML used to be unable to deserialize `jiff` types, |
2696 | /// as deserializing from bytes is not supported by the deserializer. |
2697 | /// |
2698 | /// - <https://github.com/BurntSushi/jiff/issues/138> |
2699 | /// - <https://github.com/BurntSushi/jiff/discussions/148> |
2700 | #[test ] |
2701 | fn signed_duration_deserialize_yaml() { |
2702 | let expected = SignedDuration::from_secs(123456789); |
2703 | |
2704 | let deserialized: SignedDuration = |
2705 | serde_yaml::from_str("PT34293h33m9s" ).unwrap(); |
2706 | |
2707 | assert_eq!(deserialized, expected); |
2708 | |
2709 | let deserialized: SignedDuration = |
2710 | serde_yaml::from_slice("PT34293h33m9s" .as_bytes()).unwrap(); |
2711 | |
2712 | assert_eq!(deserialized, expected); |
2713 | |
2714 | let cursor = Cursor::new(b"PT34293h33m9s" ); |
2715 | let deserialized: SignedDuration = |
2716 | serde_yaml::from_reader(cursor).unwrap(); |
2717 | |
2718 | assert_eq!(deserialized, expected); |
2719 | } |
2720 | |
2721 | #[test ] |
2722 | fn from_str() { |
2723 | let p = |s: &str| -> Result<SignedDuration, Error> { s.parse() }; |
2724 | |
2725 | insta::assert_snapshot!( |
2726 | p("1 hour" ).unwrap(), |
2727 | @"PT1H" , |
2728 | ); |
2729 | insta::assert_snapshot!( |
2730 | p("+1 hour" ).unwrap(), |
2731 | @"PT1H" , |
2732 | ); |
2733 | insta::assert_snapshot!( |
2734 | p("-1 hour" ).unwrap(), |
2735 | @"-PT1H" , |
2736 | ); |
2737 | insta::assert_snapshot!( |
2738 | p("PT1h" ).unwrap(), |
2739 | @"PT1H" , |
2740 | ); |
2741 | insta::assert_snapshot!( |
2742 | p("+PT1h" ).unwrap(), |
2743 | @"PT1H" , |
2744 | ); |
2745 | insta::assert_snapshot!( |
2746 | p("-PT1h" ).unwrap(), |
2747 | @"-PT1H" , |
2748 | ); |
2749 | |
2750 | insta::assert_snapshot!( |
2751 | p("" ).unwrap_err(), |
2752 | @"an empty string is not a valid `SignedDuration`, expected either a ISO 8601 or Jiff's 'friendly' format" , |
2753 | ); |
2754 | insta::assert_snapshot!( |
2755 | p("+" ).unwrap_err(), |
2756 | @"found nothing after sign `+`, which is not a valid `SignedDuration`, expected either a ISO 8601 or Jiff's 'friendly' format" , |
2757 | ); |
2758 | insta::assert_snapshot!( |
2759 | p("-" ).unwrap_err(), |
2760 | @"found nothing after sign `-`, which is not a valid `SignedDuration`, expected either a ISO 8601 or Jiff's 'friendly' format" , |
2761 | ); |
2762 | } |
2763 | |
2764 | #[test ] |
2765 | fn serde_deserialize() { |
2766 | let p = |s: &str| -> Result<SignedDuration, serde_json::Error> { |
2767 | serde_json::from_str(&alloc::format!(" \"{s} \"" )) |
2768 | }; |
2769 | |
2770 | insta::assert_snapshot!( |
2771 | p("1 hour" ).unwrap(), |
2772 | @"PT1H" , |
2773 | ); |
2774 | insta::assert_snapshot!( |
2775 | p("+1 hour" ).unwrap(), |
2776 | @"PT1H" , |
2777 | ); |
2778 | insta::assert_snapshot!( |
2779 | p("-1 hour" ).unwrap(), |
2780 | @"-PT1H" , |
2781 | ); |
2782 | insta::assert_snapshot!( |
2783 | p("PT1h" ).unwrap(), |
2784 | @"PT1H" , |
2785 | ); |
2786 | insta::assert_snapshot!( |
2787 | p("+PT1h" ).unwrap(), |
2788 | @"PT1H" , |
2789 | ); |
2790 | insta::assert_snapshot!( |
2791 | p("-PT1h" ).unwrap(), |
2792 | @"-PT1H" , |
2793 | ); |
2794 | |
2795 | insta::assert_snapshot!( |
2796 | p("" ).unwrap_err(), |
2797 | @"an empty string is not a valid `SignedDuration`, expected either a ISO 8601 or Jiff's 'friendly' format at line 1 column 2" , |
2798 | ); |
2799 | insta::assert_snapshot!( |
2800 | p("+" ).unwrap_err(), |
2801 | @"found nothing after sign `+`, which is not a valid `SignedDuration`, expected either a ISO 8601 or Jiff's 'friendly' format at line 1 column 3" , |
2802 | ); |
2803 | insta::assert_snapshot!( |
2804 | p("-" ).unwrap_err(), |
2805 | @"found nothing after sign `-`, which is not a valid `SignedDuration`, expected either a ISO 8601 or Jiff's 'friendly' format at line 1 column 3" , |
2806 | ); |
2807 | } |
2808 | |
2809 | /// This test ensures that we can parse `humantime` formatted durations. |
2810 | #[test ] |
2811 | fn humantime_compatibility_parse() { |
2812 | let dur = std::time::Duration::new(26_784, 123_456_789); |
2813 | let formatted = humantime::format_duration(dur).to_string(); |
2814 | assert_eq!(formatted, "7h 26m 24s 123ms 456us 789ns" ); |
2815 | |
2816 | let expected = SignedDuration::try_from(dur).unwrap(); |
2817 | assert_eq!(formatted.parse::<SignedDuration>().unwrap(), expected); |
2818 | } |
2819 | |
2820 | /// This test ensures that we can print a `SignedDuration` that `humantime` |
2821 | /// can parse. |
2822 | /// |
2823 | /// Note that this isn't the default since `humantime`'s parser is |
2824 | /// pretty limited. e.g., It doesn't support things like `nsecs` |
2825 | /// despite supporting `secs`. And other reasons. See the docs on |
2826 | /// `Designator::HumanTime` for why we sadly provide a custom variant for |
2827 | /// it. |
2828 | #[test ] |
2829 | fn humantime_compatibility_print() { |
2830 | static PRINTER: friendly::SpanPrinter = friendly::SpanPrinter::new() |
2831 | .designator(friendly::Designator::HumanTime); |
2832 | |
2833 | let sdur = SignedDuration::new(26_784, 123_456_789); |
2834 | let formatted = PRINTER.duration_to_string(&sdur); |
2835 | assert_eq!(formatted, "7h 26m 24s 123ms 456us 789ns" ); |
2836 | |
2837 | let dur = humantime::parse_duration(&formatted).unwrap(); |
2838 | let expected = std::time::Duration::try_from(sdur).unwrap(); |
2839 | assert_eq!(dur, expected); |
2840 | } |
2841 | |
2842 | #[test ] |
2843 | fn using_sum() { |
2844 | let signed_durations = [ |
2845 | SignedDuration::new(12, 600_000_000), |
2846 | SignedDuration::new(13, 400_000_000), |
2847 | ]; |
2848 | let sum1: SignedDuration = signed_durations.iter().sum(); |
2849 | let sum2: SignedDuration = signed_durations.into_iter().sum(); |
2850 | |
2851 | assert_eq!(sum1, SignedDuration::new(26, 0)); |
2852 | assert_eq!(sum2, SignedDuration::new(26, 0)); |
2853 | } |
2854 | |
2855 | #[test ] |
2856 | #[should_panic ] |
2857 | fn using_sum_when_max_exceeds() { |
2858 | [ |
2859 | SignedDuration::new(i64::MAX, 0), |
2860 | SignedDuration::new(0, 1_000_000_000), |
2861 | ] |
2862 | .iter() |
2863 | .sum::<SignedDuration>(); |
2864 | } |
2865 | |
2866 | /// Regression test for a case where this routine could panic, even though |
2867 | /// it is fallible and should never panic. |
2868 | /// |
2869 | /// This occurred when rounding the fractional part of f64 could result in |
2870 | /// a number of nanoseconds equivalent to 1 second. This was then fed to |
2871 | /// a `SignedDuration` constructor that expected no nanosecond overflow. |
2872 | /// And this triggered a panic in debug mode (and an incorrect result in |
2873 | /// release mode). |
2874 | /// |
2875 | /// See: https://github.com/BurntSushi/jiff/issues/324 |
2876 | #[test ] |
2877 | fn panic_try_from_secs_f64() { |
2878 | let sdur = SignedDuration::try_from_secs_f64(0.999999999999).unwrap(); |
2879 | assert_eq!(sdur, SignedDuration::from_secs(1)); |
2880 | |
2881 | let sdur = SignedDuration::try_from_secs_f64(-0.999999999999).unwrap(); |
2882 | assert_eq!(sdur, SignedDuration::from_secs(-1)); |
2883 | |
2884 | let max = 9223372036854775807.999999999f64; |
2885 | let sdur = SignedDuration::try_from_secs_f64(max).unwrap(); |
2886 | assert_eq!(sdur, SignedDuration::new(9223372036854775807, 0)); |
2887 | |
2888 | let min = -9223372036854775808.999999999f64; |
2889 | let sdur = SignedDuration::try_from_secs_f64(min).unwrap(); |
2890 | assert_eq!(sdur, SignedDuration::new(-9223372036854775808, 0)); |
2891 | } |
2892 | |
2893 | /// See `panic_try_from_secs_f64`. |
2894 | /// |
2895 | /// Although note that I could never get this to panic. Perhaps the |
2896 | /// particulars of f32 prevent the fractional part from rounding up to |
2897 | /// 1_000_000_000? |
2898 | #[test ] |
2899 | fn panic_try_from_secs_f32() { |
2900 | let sdur = SignedDuration::try_from_secs_f32(0.999999999).unwrap(); |
2901 | assert_eq!(sdur, SignedDuration::from_secs(1)); |
2902 | |
2903 | let sdur = SignedDuration::try_from_secs_f32(-0.999999999).unwrap(); |
2904 | assert_eq!(sdur, SignedDuration::from_secs(-1)); |
2905 | |
2906 | // Indeed, this is why the above never panicked. |
2907 | let x: f32 = 1.0; |
2908 | let y: f32 = 0.999999999; |
2909 | assert_eq!(x, y); |
2910 | assert_eq!(y.fract(), 0.0f32); |
2911 | } |
2912 | } |
2913 | |