| 1 | use core::time::Duration; |
| 2 | |
| 3 | use crate::{ |
| 4 | civil::{Date, DateTime, Time}, |
| 5 | error::{err, ErrorContext}, |
| 6 | fmt::{friendly, temporal}, |
| 7 | tz::Offset, |
| 8 | util::{escape, rangeint::TryRFrom, t}, |
| 9 | Error, RoundMode, Timestamp, Unit, Zoned, |
| 10 | }; |
| 11 | |
| 12 | #[cfg (not(feature = "std" ))] |
| 13 | use crate::util::libm::Float; |
| 14 | |
| 15 | /// A signed duration of time represented as a 96-bit integer of nanoseconds. |
| 16 | /// |
| 17 | /// Each duration is made up of a 64-bit integer of whole seconds and a |
| 18 | /// 32-bit integer of fractional nanoseconds less than 1 whole second. Unlike |
| 19 | /// [`std::time::Duration`], this duration is signed. The sign applies |
| 20 | /// to the entire duration. That is, either _both_ the seconds and the |
| 21 | /// fractional nanoseconds are negative or _neither_ are. Stated differently, |
| 22 | /// it is guaranteed that the signs of [`SignedDuration::as_secs`] and |
| 23 | /// [`SignedDuration::subsec_nanos`] are always the same, or one component is |
| 24 | /// zero. (For example, `-1 seconds` and `0 nanoseconds`, or `0 seconds` and |
| 25 | /// `-1 nanoseconds`.) |
| 26 | /// |
| 27 | /// # Parsing and printing |
| 28 | /// |
| 29 | /// Like the [`Span`](crate::Span) type, the `SignedDuration` type |
| 30 | /// provides convenient trait implementations of [`std::str::FromStr`] and |
| 31 | /// [`std::fmt::Display`]: |
| 32 | /// |
| 33 | /// ``` |
| 34 | /// use jiff::SignedDuration; |
| 35 | /// |
| 36 | /// let duration: SignedDuration = "PT2h30m" .parse()?; |
| 37 | /// assert_eq!(duration.to_string(), "PT2H30M" ); |
| 38 | /// |
| 39 | /// // Or use the "friendly" format by invoking the alternate: |
| 40 | /// assert_eq!(format!("{duration:#}" ), "2h 30m" ); |
| 41 | /// |
| 42 | /// // Parsing automatically supports both the ISO 8601 and "friendly" formats: |
| 43 | /// let duration: SignedDuration = "2h 30m" .parse()?; |
| 44 | /// assert_eq!(duration, SignedDuration::new(2 * 60 * 60 + 30 * 60, 0)); |
| 45 | /// let duration: SignedDuration = "2 hours, 30 minutes" .parse()?; |
| 46 | /// assert_eq!(duration, SignedDuration::new(2 * 60 * 60 + 30 * 60, 0)); |
| 47 | /// |
| 48 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 49 | /// ``` |
| 50 | /// |
| 51 | /// Unlike the `Span` type, though, only uniform units are supported. This |
| 52 | /// means that ISO 8601 durations with non-zero units of days or greater cannot |
| 53 | /// be parsed directly into a `SignedDuration`: |
| 54 | /// |
| 55 | /// ``` |
| 56 | /// use jiff::SignedDuration; |
| 57 | /// |
| 58 | /// assert_eq!( |
| 59 | /// "P1d" .parse::<SignedDuration>().unwrap_err().to_string(), |
| 60 | /// "failed to parse ISO 8601 duration string into `SignedDuration`: \ |
| 61 | /// parsing ISO 8601 duration into SignedDuration requires that the \ |
| 62 | /// duration contain a time component and no components of days or \ |
| 63 | /// greater" , |
| 64 | /// ); |
| 65 | /// |
| 66 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 67 | /// ``` |
| 68 | /// |
| 69 | /// To parse such durations, one should first parse them into a `Span` and |
| 70 | /// then convert them to a `SignedDuration` by providing a relative date: |
| 71 | /// |
| 72 | /// ``` |
| 73 | /// use jiff::{civil::date, SignedDuration, Span}; |
| 74 | /// |
| 75 | /// let span: Span = "P1d" .parse()?; |
| 76 | /// let relative = date(2024, 11, 3).in_tz("US/Eastern" )?; |
| 77 | /// let duration = span.to_duration(&relative)?; |
| 78 | /// // This example also motivates *why* a relative date |
| 79 | /// // is required. Not all days are the same length! |
| 80 | /// assert_eq!(duration.to_string(), "PT25H" ); |
| 81 | /// |
| 82 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 83 | /// ``` |
| 84 | /// |
| 85 | /// The format supported is a variation (nearly a subset) of the duration |
| 86 | /// format specified in [ISO 8601] _and_ a Jiff-specific "friendly" format. |
| 87 | /// Here are more examples: |
| 88 | /// |
| 89 | /// ``` |
| 90 | /// use jiff::SignedDuration; |
| 91 | /// |
| 92 | /// let durations = [ |
| 93 | /// // ISO 8601 |
| 94 | /// ("PT2H30M" , SignedDuration::from_secs(2 * 60 * 60 + 30 * 60)), |
| 95 | /// ("PT2.5h" , SignedDuration::from_secs(2 * 60 * 60 + 30 * 60)), |
| 96 | /// ("PT1m" , SignedDuration::from_mins(1)), |
| 97 | /// ("PT1.5m" , SignedDuration::from_secs(90)), |
| 98 | /// ("PT0.0021s" , SignedDuration::new(0, 2_100_000)), |
| 99 | /// ("PT0s" , SignedDuration::ZERO), |
| 100 | /// ("PT0.000000001s" , SignedDuration::from_nanos(1)), |
| 101 | /// // Jiff's "friendly" format |
| 102 | /// ("2h30m" , SignedDuration::from_secs(2 * 60 * 60 + 30 * 60)), |
| 103 | /// ("2 hrs 30 mins" , SignedDuration::from_secs(2 * 60 * 60 + 30 * 60)), |
| 104 | /// ("2 hours 30 minutes" , SignedDuration::from_secs(2 * 60 * 60 + 30 * 60)), |
| 105 | /// ("2.5h" , SignedDuration::from_secs(2 * 60 * 60 + 30 * 60)), |
| 106 | /// ("1m" , SignedDuration::from_mins(1)), |
| 107 | /// ("1.5m" , SignedDuration::from_secs(90)), |
| 108 | /// ("0.0021s" , SignedDuration::new(0, 2_100_000)), |
| 109 | /// ("0s" , SignedDuration::ZERO), |
| 110 | /// ("0.000000001s" , SignedDuration::from_nanos(1)), |
| 111 | /// ]; |
| 112 | /// for (string, duration) in durations { |
| 113 | /// let parsed: SignedDuration = string.parse()?; |
| 114 | /// assert_eq!(duration, parsed, "result of parsing {string:?}" ); |
| 115 | /// } |
| 116 | /// |
| 117 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 118 | /// ``` |
| 119 | /// |
| 120 | /// For more details, see the [`fmt::temporal`](temporal) and |
| 121 | /// [`fmt::friendly`](friendly) modules. |
| 122 | /// |
| 123 | /// [ISO 8601]: https://www.iso.org/iso-8601-date-and-time-format.html |
| 124 | /// |
| 125 | /// # API design |
| 126 | /// |
| 127 | /// A `SignedDuration` is, as much as is possible, a replica of the |
| 128 | /// `std::time::Duration` API. While there are probably some quirks in the API |
| 129 | /// of `std::time::Duration` that could have been fixed here, it is probably |
| 130 | /// more important that it behave "exactly like a `std::time::Duration` but |
| 131 | /// with a sign." That is, this type mirrors the parallels between signed and |
| 132 | /// unsigned integer types. |
| 133 | /// |
| 134 | /// While the goal was to match the `std::time::Duration` API as much as |
| 135 | /// possible, there are some differences worth highlighting: |
| 136 | /// |
| 137 | /// * As stated, a `SignedDuration` has a sign. Therefore, it uses `i64` and |
| 138 | /// `i32` instead of `u64` and `u32` to represent its 96-bit integer. |
| 139 | /// * Because it's signed, the range of possible values is different. For |
| 140 | /// example, a `SignedDuration::MAX` has a whole number of seconds equivalent |
| 141 | /// to `i64::MAX`, which is less than `u64::MAX`. |
| 142 | /// * There are some additional APIs that don't make sense on an unsigned |
| 143 | /// duration, like [`SignedDuration::abs`] and [`SignedDuration::checked_neg`]. |
| 144 | /// * A [`SignedDuration::system_until`] routine is provided as a replacement |
| 145 | /// for [`std::time::SystemTime::duration_since`], but with signed durations. |
| 146 | /// * Constructors and getters for units of hours and minutes are provided, |
| 147 | /// where as these routines are unstable in the standard library. |
| 148 | /// * Unlike the standard library, this type implements the `std::fmt::Display` |
| 149 | /// and `std::str::FromStr` traits via the ISO 8601 duration format, just |
| 150 | /// like the [`Span`](crate::Span) type does. Also like `Span`, the ISO |
| 151 | /// 8601 duration format is used to implement the serde `Serialize` and |
| 152 | /// `Deserialize` traits when the `serde` crate feature is enabled. |
| 153 | /// * The `std::fmt::Debug` trait implementation is a bit different. If you |
| 154 | /// have a problem with it, please file an issue. |
| 155 | /// * At present, there is no `SignedDuration::abs_diff` since there are some |
| 156 | /// API design questions. If you want it, please file an issue. |
| 157 | /// |
| 158 | /// # When should I use `SignedDuration` versus [`Span`](crate::Span)? |
| 159 | /// |
| 160 | /// Jiff's primary duration type is `Span`. The key differences between it and |
| 161 | /// `SignedDuration` are: |
| 162 | /// |
| 163 | /// * A `Span` keeps track of each individual unit separately. That is, even |
| 164 | /// though `1 hour 60 minutes` and `2 hours` are equivalent durations |
| 165 | /// of time, representing each as a `Span` corresponds to two distinct values |
| 166 | /// in memory. And serializing them to the ISO 8601 duration format will also |
| 167 | /// preserve the units, for example, `PT1h60m` and `PT2h`. |
| 168 | /// * A `Span` supports non-uniform units like days, weeks, months and years. |
| 169 | /// Since not all days, weeks, months and years have the same length, they |
| 170 | /// cannot be represented by a `SignedDuration`. In some cases, it may be |
| 171 | /// appropriate, for example, to assume that all days are 24 hours long. But |
| 172 | /// since Jiff sometimes assumes all days are 24 hours (for civil time) and |
| 173 | /// sometimes doesn't (like for `Zoned` when respecting time zones), it would |
| 174 | /// be inappropriate to bake one of those assumptions into a `SignedDuration`. |
| 175 | /// * A `SignedDuration` is a much smaller type than a `Span`. Specifically, |
| 176 | /// it's a 96-bit integer. In contrast, a `Span` is much larger since it needs |
| 177 | /// to track each individual unit separately. |
| 178 | /// |
| 179 | /// Those differences in turn motivate some approximate reasoning for when to |
| 180 | /// use `Span` and when to use `SignedDuration`: |
| 181 | /// |
| 182 | /// * If you don't care about keeping track of individual units separately or |
| 183 | /// don't need the sophisticated rounding options available on a `Span`, it |
| 184 | /// might be simpler and faster to use a `SignedDuration`. |
| 185 | /// * If you specifically need performance on arithmetic operations involving |
| 186 | /// datetimes and durations, even if it's not as convenient or correct, then it |
| 187 | /// might make sense to use a `SignedDuration`. |
| 188 | /// * If you need to perform arithmetic using a `std::time::Duration` and |
| 189 | /// otherwise don't need the functionality of a `Span`, it might make sense |
| 190 | /// to first convert the `std::time::Duration` to a `SignedDuration`, and then |
| 191 | /// use one of the corresponding operations defined for `SignedDuration` on |
| 192 | /// the datetime types. (They all support it.) |
| 193 | /// |
| 194 | /// In general, a `Span` provides more functionality and is overall more |
| 195 | /// flexible. A `Span` can also deserialize all forms of ISO 8601 durations |
| 196 | /// (as long as they're within Jiff's limits), including durations with units |
| 197 | /// of years, months, weeks and days. A `SignedDuration`, by contrast, only |
| 198 | /// supports units up to and including hours. |
| 199 | /// |
| 200 | /// # Integration with datetime types |
| 201 | /// |
| 202 | /// All datetime types that support arithmetic using [`Span`](crate::Span) also |
| 203 | /// support arithmetic using `SignedDuration` (and [`std::time::Duration`]). |
| 204 | /// For example, here's how to add an absolute duration to a [`Timestamp`]: |
| 205 | /// |
| 206 | /// ``` |
| 207 | /// use jiff::{SignedDuration, Timestamp}; |
| 208 | /// |
| 209 | /// let ts1 = Timestamp::from_second(1_123_456_789)?; |
| 210 | /// assert_eq!(ts1.to_string(), "2005-08-07T23:19:49Z" ); |
| 211 | /// |
| 212 | /// let duration = SignedDuration::new(59, 999_999_999); |
| 213 | /// // Timestamp::checked_add is polymorphic! It can accept a |
| 214 | /// // span or a duration. |
| 215 | /// let ts2 = ts1.checked_add(duration)?; |
| 216 | /// assert_eq!(ts2.to_string(), "2005-08-07T23:20:48.999999999Z" ); |
| 217 | /// |
| 218 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 219 | /// ``` |
| 220 | /// |
| 221 | /// The same API pattern works with [`Zoned`], [`DateTime`], [`Date`] and |
| 222 | /// [`Time`]. |
| 223 | /// |
| 224 | /// # Interaction with daylight saving time and time zone transitions |
| 225 | /// |
| 226 | /// A `SignedDuration` always corresponds to a specific number of nanoseconds. |
| 227 | /// Since a [`Zoned`] is always a precise instant in time, adding a `SignedDuration` |
| 228 | /// to a `Zoned` always behaves by adding the nanoseconds from the duration to |
| 229 | /// the timestamp inside of `Zoned`. Consider `2024-03-10` in `US/Eastern`. |
| 230 | /// At `02:00:00`, daylight saving time came into effect, switching the UTC |
| 231 | /// offset for the region from `-05` to `-04`. This has the effect of skipping |
| 232 | /// an hour on the clocks: |
| 233 | /// |
| 234 | /// ``` |
| 235 | /// use jiff::{civil::date, SignedDuration}; |
| 236 | /// |
| 237 | /// let zdt = date(2024, 3, 10).at(1, 59, 0, 0).in_tz("US/Eastern" )?; |
| 238 | /// assert_eq!( |
| 239 | /// zdt.checked_add(SignedDuration::from_hours(1))?, |
| 240 | /// // Time on the clock skipped an hour, but in this time |
| 241 | /// // zone, 03:59 is actually precisely 1 hour later than |
| 242 | /// // 01:59. |
| 243 | /// date(2024, 3, 10).at(3, 59, 0, 0).in_tz("US/Eastern" )?, |
| 244 | /// ); |
| 245 | /// // The same would apply if you used a `Span`: |
| 246 | /// assert_eq!( |
| 247 | /// zdt.checked_add(jiff::Span::new().hours(1))?, |
| 248 | /// // Time on the clock skipped an hour, but in this time |
| 249 | /// // zone, 03:59 is actually precisely 1 hour later than |
| 250 | /// // 01:59. |
| 251 | /// date(2024, 3, 10).at(3, 59, 0, 0).in_tz("US/Eastern" )?, |
| 252 | /// ); |
| 253 | /// |
| 254 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 255 | /// ``` |
| 256 | /// |
| 257 | /// Where time zones might have a more interesting effect is in the definition |
| 258 | /// of the "day" itself. If, for example, you encode the notion that a day is |
| 259 | /// always 24 hours into your arithmetic, you might get unexpected results. |
| 260 | /// For example, let's say you want to find the datetime precisely one week |
| 261 | /// after `2024-03-08T17:00` in the `US/Eastern` time zone. You might be |
| 262 | /// tempted to just ask for the time that is `7 * 24` hours later: |
| 263 | /// |
| 264 | /// ``` |
| 265 | /// use jiff::{civil::date, SignedDuration}; |
| 266 | /// |
| 267 | /// let zdt = date(2024, 3, 8).at(17, 0, 0, 0).in_tz("US/Eastern" )?; |
| 268 | /// assert_eq!( |
| 269 | /// zdt.checked_add(SignedDuration::from_hours(7 * 24))?, |
| 270 | /// date(2024, 3, 15).at(18, 0, 0, 0).in_tz("US/Eastern" )?, |
| 271 | /// ); |
| 272 | /// |
| 273 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 274 | /// ``` |
| 275 | /// |
| 276 | /// Notice that you get `18:00` and not `17:00`! That's because, as shown |
| 277 | /// in the previous example, `2024-03-10` was only 23 hours long. That in turn |
| 278 | /// implies that the week starting from `2024-03-08` is only `7 * 24 - 1` hours |
| 279 | /// long. This can be tricky to get correct with absolute durations like |
| 280 | /// `SignedDuration`, but a `Span` will handle this for you automatically: |
| 281 | /// |
| 282 | /// ``` |
| 283 | /// use jiff::{civil::date, ToSpan}; |
| 284 | /// |
| 285 | /// let zdt = date(2024, 3, 8).at(17, 0, 0, 0).in_tz("US/Eastern" )?; |
| 286 | /// assert_eq!( |
| 287 | /// zdt.checked_add(1.week())?, |
| 288 | /// // The expected time! |
| 289 | /// date(2024, 3, 15).at(17, 0, 0, 0).in_tz("US/Eastern" )?, |
| 290 | /// ); |
| 291 | /// |
| 292 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 293 | /// ``` |
| 294 | /// |
| 295 | /// A `Span` achieves this by keeping track of individual units. Unlike a |
| 296 | /// `SignedDuration`, it is not just a simple count of nanoseconds. It is a |
| 297 | /// "bag" of individual units, and the arithmetic operations defined on a |
| 298 | /// `Span` for `Zoned` know how to interpret "day" in a particular time zone |
| 299 | /// at a particular instant in time. |
| 300 | /// |
| 301 | /// With that said, the above does not mean that using a `SignedDuration` is |
| 302 | /// always wrong. For example, if you're dealing with units of hours or lower, |
| 303 | /// then all such units are uniform and so you'll always get the same results |
| 304 | /// as with a `Span`. And using a `SignedDuration` can sometimes be simpler |
| 305 | /// or faster. |
| 306 | #[derive (Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Default)] |
| 307 | pub struct SignedDuration { |
| 308 | secs: i64, |
| 309 | nanos: i32, |
| 310 | } |
| 311 | |
| 312 | const NANOS_PER_SEC: i32 = 1_000_000_000; |
| 313 | const NANOS_PER_MILLI: i32 = 1_000_000; |
| 314 | const NANOS_PER_MICRO: i32 = 1_000; |
| 315 | const MILLIS_PER_SEC: i64 = 1_000; |
| 316 | const MICROS_PER_SEC: i64 = 1_000_000; |
| 317 | const SECS_PER_MINUTE: i64 = 60; |
| 318 | const MINS_PER_HOUR: i64 = 60; |
| 319 | |
| 320 | impl SignedDuration { |
| 321 | /// A duration of zero time. |
| 322 | /// |
| 323 | /// # Example |
| 324 | /// |
| 325 | /// ``` |
| 326 | /// use jiff::SignedDuration; |
| 327 | /// |
| 328 | /// let duration = SignedDuration::ZERO; |
| 329 | /// assert!(duration.is_zero()); |
| 330 | /// assert_eq!(duration.as_secs(), 0); |
| 331 | /// assert_eq!(duration.subsec_nanos(), 0); |
| 332 | /// ``` |
| 333 | pub const ZERO: SignedDuration = SignedDuration { secs: 0, nanos: 0 }; |
| 334 | |
| 335 | /// The minimum possible duration. Or the "most negative" duration. |
| 336 | /// |
| 337 | /// # Example |
| 338 | /// |
| 339 | /// ``` |
| 340 | /// use jiff::SignedDuration; |
| 341 | /// |
| 342 | /// let duration = SignedDuration::MIN; |
| 343 | /// assert_eq!(duration.as_secs(), i64::MIN); |
| 344 | /// assert_eq!(duration.subsec_nanos(), -999_999_999); |
| 345 | /// ``` |
| 346 | pub const MIN: SignedDuration = |
| 347 | SignedDuration { secs: i64::MIN, nanos: -(NANOS_PER_SEC - 1) }; |
| 348 | |
| 349 | /// The maximum possible duration. |
| 350 | /// |
| 351 | /// # Example |
| 352 | /// |
| 353 | /// ``` |
| 354 | /// use jiff::SignedDuration; |
| 355 | /// |
| 356 | /// let duration = SignedDuration::MAX; |
| 357 | /// assert_eq!(duration.as_secs(), i64::MAX); |
| 358 | /// assert_eq!(duration.subsec_nanos(), 999_999_999); |
| 359 | /// ``` |
| 360 | pub const MAX: SignedDuration = |
| 361 | SignedDuration { secs: i64::MAX, nanos: NANOS_PER_SEC - 1 }; |
| 362 | |
| 363 | /// Creates a new `SignedDuration` from the given number of whole seconds |
| 364 | /// and additional nanoseconds. |
| 365 | /// |
| 366 | /// If the absolute value of the nanoseconds is greater than or equal to |
| 367 | /// 1 second, then the excess balances into the number of whole seconds. |
| 368 | /// |
| 369 | /// # Panics |
| 370 | /// |
| 371 | /// When the absolute value of the nanoseconds is greater than or equal |
| 372 | /// to 1 second and the excess that carries over to the number of whole |
| 373 | /// seconds overflows `i64`. |
| 374 | /// |
| 375 | /// This never panics when `nanos` is less than `1_000_000_000`. |
| 376 | /// |
| 377 | /// # Example |
| 378 | /// |
| 379 | /// ``` |
| 380 | /// use jiff::SignedDuration; |
| 381 | /// |
| 382 | /// let duration = SignedDuration::new(12, 0); |
| 383 | /// assert_eq!(duration.as_secs(), 12); |
| 384 | /// assert_eq!(duration.subsec_nanos(), 0); |
| 385 | /// |
| 386 | /// let duration = SignedDuration::new(12, -1); |
| 387 | /// assert_eq!(duration.as_secs(), 11); |
| 388 | /// assert_eq!(duration.subsec_nanos(), 999_999_999); |
| 389 | /// |
| 390 | /// let duration = SignedDuration::new(12, 1_000_000_000); |
| 391 | /// assert_eq!(duration.as_secs(), 13); |
| 392 | /// assert_eq!(duration.subsec_nanos(), 0); |
| 393 | /// ``` |
| 394 | #[inline ] |
| 395 | pub const fn new(mut secs: i64, mut nanos: i32) -> SignedDuration { |
| 396 | // When |nanos| exceeds 1 second, we balance the excess up to seconds. |
| 397 | if !(-NANOS_PER_SEC < nanos && nanos < NANOS_PER_SEC) { |
| 398 | // Never wraps or panics because NANOS_PER_SEC!={0,-1}. |
| 399 | let addsecs = nanos / NANOS_PER_SEC; |
| 400 | secs = match secs.checked_add(addsecs as i64) { |
| 401 | Some(secs) => secs, |
| 402 | None => panic!( |
| 403 | "nanoseconds overflowed seconds in SignedDuration::new" |
| 404 | ), |
| 405 | }; |
| 406 | // Never wraps or panics because NANOS_PER_SEC!={0,-1}. |
| 407 | nanos = nanos % NANOS_PER_SEC; |
| 408 | } |
| 409 | // At this point, we're done if either unit is zero or if they have the |
| 410 | // same sign. |
| 411 | if nanos == 0 || secs == 0 || secs.signum() == (nanos.signum() as i64) |
| 412 | { |
| 413 | return SignedDuration::new_unchecked(secs, nanos); |
| 414 | } |
| 415 | // Otherwise, the only work we have to do is to balance negative nanos |
| 416 | // into positive seconds, or positive nanos into negative seconds. |
| 417 | if secs < 0 { |
| 418 | debug_assert!(nanos > 0); |
| 419 | // Never wraps because adding +1 to a negative i64 never overflows. |
| 420 | // |
| 421 | // MSRV(1.79): Consider using `unchecked_add` here. |
| 422 | secs += 1; |
| 423 | // Never wraps because subtracting +1_000_000_000 from a positive |
| 424 | // i32 never overflows. |
| 425 | // |
| 426 | // MSRV(1.79): Consider using `unchecked_sub` here. |
| 427 | nanos -= NANOS_PER_SEC; |
| 428 | } else { |
| 429 | debug_assert!(secs > 0); |
| 430 | debug_assert!(nanos < 0); |
| 431 | // Never wraps because subtracting +1 from a positive i64 never |
| 432 | // overflows. |
| 433 | // |
| 434 | // MSRV(1.79): Consider using `unchecked_add` here. |
| 435 | secs -= 1; |
| 436 | // Never wraps because adding +1_000_000_000 to a negative i32 |
| 437 | // never overflows. |
| 438 | // |
| 439 | // MSRV(1.79): Consider using `unchecked_add` here. |
| 440 | nanos += NANOS_PER_SEC; |
| 441 | } |
| 442 | SignedDuration::new_unchecked(secs, nanos) |
| 443 | } |
| 444 | |
| 445 | /// Creates a new signed duration without handling nanosecond overflow. |
| 446 | /// |
| 447 | /// This might produce tighter code in some cases. |
| 448 | /// |
| 449 | /// # Panics |
| 450 | /// |
| 451 | /// When `|nanos|` is greater than or equal to 1 second. |
| 452 | #[inline ] |
| 453 | pub(crate) const fn new_without_nano_overflow( |
| 454 | secs: i64, |
| 455 | nanos: i32, |
| 456 | ) -> SignedDuration { |
| 457 | assert!(nanos <= 999_999_999); |
| 458 | assert!(nanos >= -999_999_999); |
| 459 | SignedDuration::new_unchecked(secs, nanos) |
| 460 | } |
| 461 | |
| 462 | /// Creates a new signed duration without handling nanosecond overflow. |
| 463 | /// |
| 464 | /// This might produce tighter code in some cases. |
| 465 | /// |
| 466 | /// # Panics |
| 467 | /// |
| 468 | /// In debug mode only, when `|nanos|` is greater than or equal to 1 |
| 469 | /// second. |
| 470 | /// |
| 471 | /// This is not exported so that code outside this module can rely on |
| 472 | /// `|nanos|` being less than a second for purposes of memory safety. |
| 473 | #[inline ] |
| 474 | const fn new_unchecked(secs: i64, nanos: i32) -> SignedDuration { |
| 475 | debug_assert!(nanos <= 999_999_999); |
| 476 | debug_assert!(nanos >= -999_999_999); |
| 477 | SignedDuration { secs, nanos } |
| 478 | } |
| 479 | |
| 480 | /// Creates a new `SignedDuration` from the given number of whole seconds. |
| 481 | /// |
| 482 | /// # Example |
| 483 | /// |
| 484 | /// ``` |
| 485 | /// use jiff::SignedDuration; |
| 486 | /// |
| 487 | /// let duration = SignedDuration::from_secs(12); |
| 488 | /// assert_eq!(duration.as_secs(), 12); |
| 489 | /// assert_eq!(duration.subsec_nanos(), 0); |
| 490 | /// ``` |
| 491 | #[inline ] |
| 492 | pub const fn from_secs(secs: i64) -> SignedDuration { |
| 493 | SignedDuration::new_unchecked(secs, 0) |
| 494 | } |
| 495 | |
| 496 | /// Creates a new `SignedDuration` from the given number of whole |
| 497 | /// milliseconds. |
| 498 | /// |
| 499 | /// Note that since this accepts an `i64`, this method cannot be used |
| 500 | /// to construct the full range of possible signed duration values. In |
| 501 | /// particular, [`SignedDuration::as_millis`] returns an `i128`, and this |
| 502 | /// may be a value that would otherwise overflow an `i64`. |
| 503 | /// |
| 504 | /// # Example |
| 505 | /// |
| 506 | /// ``` |
| 507 | /// use jiff::SignedDuration; |
| 508 | /// |
| 509 | /// let duration = SignedDuration::from_millis(12_456); |
| 510 | /// assert_eq!(duration.as_secs(), 12); |
| 511 | /// assert_eq!(duration.subsec_nanos(), 456_000_000); |
| 512 | /// |
| 513 | /// let duration = SignedDuration::from_millis(-12_456); |
| 514 | /// assert_eq!(duration.as_secs(), -12); |
| 515 | /// assert_eq!(duration.subsec_nanos(), -456_000_000); |
| 516 | /// ``` |
| 517 | #[inline ] |
| 518 | pub const fn from_millis(millis: i64) -> SignedDuration { |
| 519 | // OK because MILLIS_PER_SEC!={-1,0}. |
| 520 | let secs = millis / MILLIS_PER_SEC; |
| 521 | // OK because MILLIS_PER_SEC!={-1,0} and because |
| 522 | // millis % MILLIS_PER_SEC can be at most 999, and 999 * 1_000_000 |
| 523 | // never overflows i32. |
| 524 | let nanos = (millis % MILLIS_PER_SEC) as i32 * NANOS_PER_MILLI; |
| 525 | SignedDuration::new_unchecked(secs, nanos) |
| 526 | } |
| 527 | |
| 528 | /// Creates a new `SignedDuration` from the given number of whole |
| 529 | /// microseconds. |
| 530 | /// |
| 531 | /// Note that since this accepts an `i64`, this method cannot be used |
| 532 | /// to construct the full range of possible signed duration values. In |
| 533 | /// particular, [`SignedDuration::as_micros`] returns an `i128`, and this |
| 534 | /// may be a value that would otherwise overflow an `i64`. |
| 535 | /// |
| 536 | /// # Example |
| 537 | /// |
| 538 | /// ``` |
| 539 | /// use jiff::SignedDuration; |
| 540 | /// |
| 541 | /// let duration = SignedDuration::from_micros(12_000_456); |
| 542 | /// assert_eq!(duration.as_secs(), 12); |
| 543 | /// assert_eq!(duration.subsec_nanos(), 456_000); |
| 544 | /// |
| 545 | /// let duration = SignedDuration::from_micros(-12_000_456); |
| 546 | /// assert_eq!(duration.as_secs(), -12); |
| 547 | /// assert_eq!(duration.subsec_nanos(), -456_000); |
| 548 | /// ``` |
| 549 | #[inline ] |
| 550 | pub const fn from_micros(micros: i64) -> SignedDuration { |
| 551 | // OK because MICROS_PER_SEC!={-1,0}. |
| 552 | let secs = micros / MICROS_PER_SEC; |
| 553 | // OK because MICROS_PER_SEC!={-1,0} and because |
| 554 | // millis % MICROS_PER_SEC can be at most 999, and 999 * 1_000_000 |
| 555 | // never overflows i32. |
| 556 | let nanos = (micros % MICROS_PER_SEC) as i32 * NANOS_PER_MICRO; |
| 557 | SignedDuration::new_unchecked(secs, nanos) |
| 558 | } |
| 559 | |
| 560 | /// Creates a new `SignedDuration` from the given number of whole |
| 561 | /// nanoseconds. |
| 562 | /// |
| 563 | /// Note that since this accepts an `i64`, this method cannot be used |
| 564 | /// to construct the full range of possible signed duration values. In |
| 565 | /// particular, [`SignedDuration::as_nanos`] returns an `i128`, which may |
| 566 | /// be a value that would otherwise overflow an `i64`. |
| 567 | /// |
| 568 | /// # Example |
| 569 | /// |
| 570 | /// ``` |
| 571 | /// use jiff::SignedDuration; |
| 572 | /// |
| 573 | /// let duration = SignedDuration::from_nanos(12_000_000_456); |
| 574 | /// assert_eq!(duration.as_secs(), 12); |
| 575 | /// assert_eq!(duration.subsec_nanos(), 456); |
| 576 | /// |
| 577 | /// let duration = SignedDuration::from_nanos(-12_000_000_456); |
| 578 | /// assert_eq!(duration.as_secs(), -12); |
| 579 | /// assert_eq!(duration.subsec_nanos(), -456); |
| 580 | /// ``` |
| 581 | #[inline ] |
| 582 | pub const fn from_nanos(nanos: i64) -> SignedDuration { |
| 583 | // OK because NANOS_PER_SEC!={-1,0}. |
| 584 | let secs = nanos / (NANOS_PER_SEC as i64); |
| 585 | // OK because NANOS_PER_SEC!={-1,0}. |
| 586 | let nanos = (nanos % (NANOS_PER_SEC as i64)) as i32; |
| 587 | SignedDuration::new_unchecked(secs, nanos) |
| 588 | } |
| 589 | |
| 590 | /// Creates a new `SignedDuration` from the given number of hours. Every |
| 591 | /// hour is exactly `3,600` seconds. |
| 592 | /// |
| 593 | /// # Panics |
| 594 | /// |
| 595 | /// Panics if the number of hours, after being converted to nanoseconds, |
| 596 | /// overflows the minimum or maximum `SignedDuration` values. |
| 597 | /// |
| 598 | /// # Example |
| 599 | /// |
| 600 | /// ``` |
| 601 | /// use jiff::SignedDuration; |
| 602 | /// |
| 603 | /// let duration = SignedDuration::from_hours(24); |
| 604 | /// assert_eq!(duration.as_secs(), 86_400); |
| 605 | /// assert_eq!(duration.subsec_nanos(), 0); |
| 606 | /// |
| 607 | /// let duration = SignedDuration::from_hours(-24); |
| 608 | /// assert_eq!(duration.as_secs(), -86_400); |
| 609 | /// assert_eq!(duration.subsec_nanos(), 0); |
| 610 | /// ``` |
| 611 | #[inline ] |
| 612 | pub const fn from_hours(hours: i64) -> SignedDuration { |
| 613 | // OK because (SECS_PER_MINUTE*MINS_PER_HOUR)!={-1,0}. |
| 614 | const MIN_HOUR: i64 = i64::MIN / (SECS_PER_MINUTE * MINS_PER_HOUR); |
| 615 | // OK because (SECS_PER_MINUTE*MINS_PER_HOUR)!={-1,0}. |
| 616 | const MAX_HOUR: i64 = i64::MAX / (SECS_PER_MINUTE * MINS_PER_HOUR); |
| 617 | // OK because (SECS_PER_MINUTE*MINS_PER_HOUR)!={-1,0}. |
| 618 | if hours < MIN_HOUR { |
| 619 | panic!("hours overflowed minimum number of SignedDuration seconds" ) |
| 620 | } |
| 621 | // OK because (SECS_PER_MINUTE*MINS_PER_HOUR)!={-1,0}. |
| 622 | if hours > MAX_HOUR { |
| 623 | panic!("hours overflowed maximum number of SignedDuration seconds" ) |
| 624 | } |
| 625 | SignedDuration::from_secs(hours * MINS_PER_HOUR * SECS_PER_MINUTE) |
| 626 | } |
| 627 | |
| 628 | /// Creates a new `SignedDuration` from the given number of minutes. Every |
| 629 | /// minute is exactly `60` seconds. |
| 630 | /// |
| 631 | /// # Panics |
| 632 | /// |
| 633 | /// Panics if the number of minutes, after being converted to nanoseconds, |
| 634 | /// overflows the minimum or maximum `SignedDuration` values. |
| 635 | /// |
| 636 | /// # Example |
| 637 | /// |
| 638 | /// ``` |
| 639 | /// use jiff::SignedDuration; |
| 640 | /// |
| 641 | /// let duration = SignedDuration::from_mins(1_440); |
| 642 | /// assert_eq!(duration.as_secs(), 86_400); |
| 643 | /// assert_eq!(duration.subsec_nanos(), 0); |
| 644 | /// |
| 645 | /// let duration = SignedDuration::from_mins(-1_440); |
| 646 | /// assert_eq!(duration.as_secs(), -86_400); |
| 647 | /// assert_eq!(duration.subsec_nanos(), 0); |
| 648 | /// ``` |
| 649 | #[inline ] |
| 650 | pub const fn from_mins(minutes: i64) -> SignedDuration { |
| 651 | // OK because SECS_PER_MINUTE!={-1,0}. |
| 652 | const MIN_MINUTE: i64 = i64::MIN / SECS_PER_MINUTE; |
| 653 | // OK because SECS_PER_MINUTE!={-1,0}. |
| 654 | const MAX_MINUTE: i64 = i64::MAX / SECS_PER_MINUTE; |
| 655 | // OK because SECS_PER_MINUTE!={-1,0}. |
| 656 | if minutes < MIN_MINUTE { |
| 657 | panic!( |
| 658 | "minutes overflowed minimum number of SignedDuration seconds" |
| 659 | ) |
| 660 | } |
| 661 | // OK because SECS_PER_MINUTE!={-1,0}. |
| 662 | if minutes > MAX_MINUTE { |
| 663 | panic!( |
| 664 | "minutes overflowed maximum number of SignedDuration seconds" |
| 665 | ) |
| 666 | } |
| 667 | SignedDuration::from_secs(minutes * SECS_PER_MINUTE) |
| 668 | } |
| 669 | |
| 670 | /// Converts the given timestamp into a signed duration. |
| 671 | /// |
| 672 | /// This isn't exported because it's not clear that it makes semantic |
| 673 | /// sense, since it somewhat encodes the assumption that the "desired" |
| 674 | /// duration is relative to the Unix epoch. Which is... probably fine? |
| 675 | /// But I'm not sure. |
| 676 | /// |
| 677 | /// But the point of this is to make the conversion a little cheaper. |
| 678 | /// Namely, since a `Timestamp` internally uses same representation as a |
| 679 | /// `SignedDuration` with the same guarantees (except with smaller limits), |
| 680 | /// we can avoid a fair bit of case analysis done in `SignedDuration::new`. |
| 681 | pub(crate) fn from_timestamp(timestamp: Timestamp) -> SignedDuration { |
| 682 | SignedDuration::new_unchecked( |
| 683 | timestamp.as_second(), |
| 684 | timestamp.subsec_nanosecond(), |
| 685 | ) |
| 686 | } |
| 687 | |
| 688 | /// Returns true if this duration spans no time. |
| 689 | /// |
| 690 | /// # Example |
| 691 | /// |
| 692 | /// ``` |
| 693 | /// use jiff::SignedDuration; |
| 694 | /// |
| 695 | /// assert!(SignedDuration::ZERO.is_zero()); |
| 696 | /// assert!(!SignedDuration::MIN.is_zero()); |
| 697 | /// assert!(!SignedDuration::MAX.is_zero()); |
| 698 | /// ``` |
| 699 | #[inline ] |
| 700 | pub const fn is_zero(&self) -> bool { |
| 701 | self.secs == 0 && self.nanos == 0 |
| 702 | } |
| 703 | |
| 704 | /// Returns the number of whole seconds in this duration. |
| 705 | /// |
| 706 | /// The value returned is negative when the duration is negative. |
| 707 | /// |
| 708 | /// This does not include any fractional component corresponding to units |
| 709 | /// less than a second. To access those, use one of the `subsec` methods |
| 710 | /// such as [`SignedDuration::subsec_nanos`]. |
| 711 | /// |
| 712 | /// # Example |
| 713 | /// |
| 714 | /// ``` |
| 715 | /// use jiff::SignedDuration; |
| 716 | /// |
| 717 | /// let duration = SignedDuration::new(12, 999_999_999); |
| 718 | /// assert_eq!(duration.as_secs(), 12); |
| 719 | /// |
| 720 | /// let duration = SignedDuration::new(-12, -999_999_999); |
| 721 | /// assert_eq!(duration.as_secs(), -12); |
| 722 | /// ``` |
| 723 | #[inline ] |
| 724 | pub const fn as_secs(&self) -> i64 { |
| 725 | self.secs |
| 726 | } |
| 727 | |
| 728 | /// Returns the fractional part of this duration in whole milliseconds. |
| 729 | /// |
| 730 | /// The value returned is negative when the duration is negative. It is |
| 731 | /// guaranteed that the range of the value returned is in the inclusive |
| 732 | /// range `-999..=999`. |
| 733 | /// |
| 734 | /// To get the length of the total duration represented in milliseconds, |
| 735 | /// use [`SignedDuration::as_millis`]. |
| 736 | /// |
| 737 | /// # Example |
| 738 | /// |
| 739 | /// ``` |
| 740 | /// use jiff::SignedDuration; |
| 741 | /// |
| 742 | /// let duration = SignedDuration::new(12, 123_456_789); |
| 743 | /// assert_eq!(duration.subsec_millis(), 123); |
| 744 | /// |
| 745 | /// let duration = SignedDuration::new(-12, -123_456_789); |
| 746 | /// assert_eq!(duration.subsec_millis(), -123); |
| 747 | /// ``` |
| 748 | #[inline ] |
| 749 | pub const fn subsec_millis(&self) -> i32 { |
| 750 | // OK because NANOS_PER_MILLI!={-1,0}. |
| 751 | self.nanos / NANOS_PER_MILLI |
| 752 | } |
| 753 | |
| 754 | /// Returns the fractional part of this duration in whole microseconds. |
| 755 | /// |
| 756 | /// The value returned is negative when the duration is negative. It is |
| 757 | /// guaranteed that the range of the value returned is in the inclusive |
| 758 | /// range `-999_999..=999_999`. |
| 759 | /// |
| 760 | /// To get the length of the total duration represented in microseconds, |
| 761 | /// use [`SignedDuration::as_micros`]. |
| 762 | /// |
| 763 | /// # Example |
| 764 | /// |
| 765 | /// ``` |
| 766 | /// use jiff::SignedDuration; |
| 767 | /// |
| 768 | /// let duration = SignedDuration::new(12, 123_456_789); |
| 769 | /// assert_eq!(duration.subsec_micros(), 123_456); |
| 770 | /// |
| 771 | /// let duration = SignedDuration::new(-12, -123_456_789); |
| 772 | /// assert_eq!(duration.subsec_micros(), -123_456); |
| 773 | /// ``` |
| 774 | #[inline ] |
| 775 | pub const fn subsec_micros(&self) -> i32 { |
| 776 | // OK because NANOS_PER_MICRO!={-1,0}. |
| 777 | self.nanos / NANOS_PER_MICRO |
| 778 | } |
| 779 | |
| 780 | /// Returns the fractional part of this duration in whole nanoseconds. |
| 781 | /// |
| 782 | /// The value returned is negative when the duration is negative. It is |
| 783 | /// guaranteed that the range of the value returned is in the inclusive |
| 784 | /// range `-999_999_999..=999_999_999`. |
| 785 | /// |
| 786 | /// To get the length of the total duration represented in nanoseconds, |
| 787 | /// use [`SignedDuration::as_nanos`]. |
| 788 | /// |
| 789 | /// # Example |
| 790 | /// |
| 791 | /// ``` |
| 792 | /// use jiff::SignedDuration; |
| 793 | /// |
| 794 | /// let duration = SignedDuration::new(12, 123_456_789); |
| 795 | /// assert_eq!(duration.subsec_nanos(), 123_456_789); |
| 796 | /// |
| 797 | /// let duration = SignedDuration::new(-12, -123_456_789); |
| 798 | /// assert_eq!(duration.subsec_nanos(), -123_456_789); |
| 799 | /// ``` |
| 800 | #[inline ] |
| 801 | pub const fn subsec_nanos(&self) -> i32 { |
| 802 | self.nanos |
| 803 | } |
| 804 | |
| 805 | /// Returns the total duration in units of whole milliseconds. |
| 806 | /// |
| 807 | /// The value returned is negative when the duration is negative. |
| 808 | /// |
| 809 | /// To get only the fractional component of this duration in units of |
| 810 | /// whole milliseconds, use [`SignedDuration::subsec_millis`]. |
| 811 | /// |
| 812 | /// # Example |
| 813 | /// |
| 814 | /// ``` |
| 815 | /// use jiff::SignedDuration; |
| 816 | /// |
| 817 | /// let duration = SignedDuration::new(12, 123_456_789); |
| 818 | /// assert_eq!(duration.as_millis(), 12_123); |
| 819 | /// |
| 820 | /// let duration = SignedDuration::new(-12, -123_456_789); |
| 821 | /// assert_eq!(duration.as_millis(), -12_123); |
| 822 | /// ``` |
| 823 | #[inline ] |
| 824 | pub const fn as_millis(&self) -> i128 { |
| 825 | // OK because 1_000 times any i64 will never overflow i128. |
| 826 | let millis = (self.secs as i128) * (MILLIS_PER_SEC as i128); |
| 827 | // OK because NANOS_PER_MILLI!={-1,0}. |
| 828 | let subsec_millis = (self.nanos / NANOS_PER_MILLI) as i128; |
| 829 | // OK because subsec_millis maxes out at 999, and adding that to |
| 830 | // i64::MAX*1_000 will never overflow a i128. |
| 831 | millis + subsec_millis |
| 832 | } |
| 833 | |
| 834 | /// Returns the total duration in units of whole microseconds. |
| 835 | /// |
| 836 | /// The value returned is negative when the duration is negative. |
| 837 | /// |
| 838 | /// To get only the fractional component of this duration in units of |
| 839 | /// whole microseconds, use [`SignedDuration::subsec_micros`]. |
| 840 | /// |
| 841 | /// # Example |
| 842 | /// |
| 843 | /// ``` |
| 844 | /// use jiff::SignedDuration; |
| 845 | /// |
| 846 | /// let duration = SignedDuration::new(12, 123_456_789); |
| 847 | /// assert_eq!(duration.as_micros(), 12_123_456); |
| 848 | /// |
| 849 | /// let duration = SignedDuration::new(-12, -123_456_789); |
| 850 | /// assert_eq!(duration.as_micros(), -12_123_456); |
| 851 | /// ``` |
| 852 | #[inline ] |
| 853 | pub const fn as_micros(&self) -> i128 { |
| 854 | // OK because 1_000_000 times any i64 will never overflow i128. |
| 855 | let micros = (self.secs as i128) * (MICROS_PER_SEC as i128); |
| 856 | // OK because NANOS_PER_MICRO!={-1,0}. |
| 857 | let subsec_micros = (self.nanos / NANOS_PER_MICRO) as i128; |
| 858 | // OK because subsec_micros maxes out at 999_999, and adding that to |
| 859 | // i64::MAX*1_000_000 will never overflow a i128. |
| 860 | micros + subsec_micros |
| 861 | } |
| 862 | |
| 863 | /// Returns the total duration in units of whole nanoseconds. |
| 864 | /// |
| 865 | /// The value returned is negative when the duration is negative. |
| 866 | /// |
| 867 | /// To get only the fractional component of this duration in units of |
| 868 | /// whole nanoseconds, use [`SignedDuration::subsec_nanos`]. |
| 869 | /// |
| 870 | /// # Example |
| 871 | /// |
| 872 | /// ``` |
| 873 | /// use jiff::SignedDuration; |
| 874 | /// |
| 875 | /// let duration = SignedDuration::new(12, 123_456_789); |
| 876 | /// assert_eq!(duration.as_nanos(), 12_123_456_789); |
| 877 | /// |
| 878 | /// let duration = SignedDuration::new(-12, -123_456_789); |
| 879 | /// assert_eq!(duration.as_nanos(), -12_123_456_789); |
| 880 | /// ``` |
| 881 | #[inline ] |
| 882 | pub const fn as_nanos(&self) -> i128 { |
| 883 | // OK because 1_000_000_000 times any i64 will never overflow i128. |
| 884 | let nanos = (self.secs as i128) * (NANOS_PER_SEC as i128); |
| 885 | // OK because subsec_nanos maxes out at 999_999_999, and adding that to |
| 886 | // i64::MAX*1_000_000_000 will never overflow a i128. |
| 887 | nanos + (self.nanos as i128) |
| 888 | } |
| 889 | |
| 890 | // NOTE: We don't provide `abs_diff` here because we can't represent the |
| 891 | // difference between all possible durations. For example, |
| 892 | // `abs_diff(SignedDuration::MAX, SignedDuration::MIN)`. It therefore seems |
| 893 | // like we should actually return a `std::time::Duration` here, but I'm |
| 894 | // trying to be conservative when divering from std. |
| 895 | |
| 896 | /// Add two signed durations together. If overflow occurs, then `None` is |
| 897 | /// returned. |
| 898 | /// |
| 899 | /// # Example |
| 900 | /// |
| 901 | /// ``` |
| 902 | /// use jiff::SignedDuration; |
| 903 | /// |
| 904 | /// let duration1 = SignedDuration::new(12, 500_000_000); |
| 905 | /// let duration2 = SignedDuration::new(0, 500_000_000); |
| 906 | /// assert_eq!( |
| 907 | /// duration1.checked_add(duration2), |
| 908 | /// Some(SignedDuration::new(13, 0)), |
| 909 | /// ); |
| 910 | /// |
| 911 | /// let duration1 = SignedDuration::MAX; |
| 912 | /// let duration2 = SignedDuration::new(0, 1); |
| 913 | /// assert_eq!(duration1.checked_add(duration2), None); |
| 914 | /// ``` |
| 915 | #[inline ] |
| 916 | pub const fn checked_add( |
| 917 | self, |
| 918 | rhs: SignedDuration, |
| 919 | ) -> Option<SignedDuration> { |
| 920 | let Some(mut secs) = self.secs.checked_add(rhs.secs) else { |
| 921 | return None; |
| 922 | }; |
| 923 | // OK because `-999_999_999 <= nanos <= 999_999_999`, and so adding |
| 924 | // them together will never overflow an i32. |
| 925 | let mut nanos = self.nanos + rhs.nanos; |
| 926 | // The below is effectively SignedDuration::new, but with checked |
| 927 | // arithmetic. My suspicion is that there is probably a better way |
| 928 | // to do this. The main complexity here is that 1) `|nanos|` might |
| 929 | // now exceed 1 second and 2) the signs of `secs` and `nanos` might |
| 930 | // not be the same. The other difference from SignedDuration::new is |
| 931 | // that we know that `-1_999_999_998 <= nanos <= 1_999_999_998` since |
| 932 | // `|SignedDuration::nanos|` is guaranteed to be less than 1 second. So |
| 933 | // we can skip the div and modulus operations. |
| 934 | |
| 935 | // When |nanos| exceeds 1 second, we balance the excess up to seconds. |
| 936 | if nanos != 0 { |
| 937 | if nanos >= NANOS_PER_SEC { |
| 938 | nanos -= NANOS_PER_SEC; |
| 939 | secs = match secs.checked_add(1) { |
| 940 | None => return None, |
| 941 | Some(secs) => secs, |
| 942 | }; |
| 943 | } else if nanos <= -NANOS_PER_SEC { |
| 944 | nanos += NANOS_PER_SEC; |
| 945 | secs = match secs.checked_sub(1) { |
| 946 | None => return None, |
| 947 | Some(secs) => secs, |
| 948 | }; |
| 949 | } |
| 950 | if secs != 0 |
| 951 | && nanos != 0 |
| 952 | && secs.signum() != (nanos.signum() as i64) |
| 953 | { |
| 954 | if secs < 0 { |
| 955 | debug_assert!(nanos > 0); |
| 956 | // OK because secs<0. |
| 957 | secs += 1; |
| 958 | // OK because nanos>0. |
| 959 | nanos -= NANOS_PER_SEC; |
| 960 | } else { |
| 961 | debug_assert!(secs > 0); |
| 962 | debug_assert!(nanos < 0); |
| 963 | // OK because secs>0. |
| 964 | secs -= 1; |
| 965 | // OK because nanos<0. |
| 966 | nanos += NANOS_PER_SEC; |
| 967 | } |
| 968 | } |
| 969 | } |
| 970 | Some(SignedDuration::new_unchecked(secs, nanos)) |
| 971 | } |
| 972 | |
| 973 | /// Add two signed durations together. If overflow occurs, then arithmetic |
| 974 | /// saturates. |
| 975 | /// |
| 976 | /// # Example |
| 977 | /// |
| 978 | /// ``` |
| 979 | /// use jiff::SignedDuration; |
| 980 | /// |
| 981 | /// let duration1 = SignedDuration::MAX; |
| 982 | /// let duration2 = SignedDuration::new(0, 1); |
| 983 | /// assert_eq!(duration1.saturating_add(duration2), SignedDuration::MAX); |
| 984 | /// |
| 985 | /// let duration1 = SignedDuration::MIN; |
| 986 | /// let duration2 = SignedDuration::new(0, -1); |
| 987 | /// assert_eq!(duration1.saturating_add(duration2), SignedDuration::MIN); |
| 988 | /// ``` |
| 989 | #[inline ] |
| 990 | pub const fn saturating_add(self, rhs: SignedDuration) -> SignedDuration { |
| 991 | let Some(sum) = self.checked_add(rhs) else { |
| 992 | return if rhs.is_negative() { |
| 993 | SignedDuration::MIN |
| 994 | } else { |
| 995 | SignedDuration::MAX |
| 996 | }; |
| 997 | }; |
| 998 | sum |
| 999 | } |
| 1000 | |
| 1001 | /// Subtract one signed duration from another. If overflow occurs, then |
| 1002 | /// `None` is returned. |
| 1003 | /// |
| 1004 | /// # Example |
| 1005 | /// |
| 1006 | /// ``` |
| 1007 | /// use jiff::SignedDuration; |
| 1008 | /// |
| 1009 | /// let duration1 = SignedDuration::new(12, 500_000_000); |
| 1010 | /// let duration2 = SignedDuration::new(0, 500_000_000); |
| 1011 | /// assert_eq!( |
| 1012 | /// duration1.checked_sub(duration2), |
| 1013 | /// Some(SignedDuration::new(12, 0)), |
| 1014 | /// ); |
| 1015 | /// |
| 1016 | /// let duration1 = SignedDuration::MIN; |
| 1017 | /// let duration2 = SignedDuration::new(0, 1); |
| 1018 | /// assert_eq!(duration1.checked_sub(duration2), None); |
| 1019 | /// ``` |
| 1020 | #[inline ] |
| 1021 | pub const fn checked_sub( |
| 1022 | self, |
| 1023 | rhs: SignedDuration, |
| 1024 | ) -> Option<SignedDuration> { |
| 1025 | let Some(rhs) = rhs.checked_neg() else { return None }; |
| 1026 | self.checked_add(rhs) |
| 1027 | } |
| 1028 | |
| 1029 | /// Add two signed durations together. If overflow occurs, then arithmetic |
| 1030 | /// saturates. |
| 1031 | /// |
| 1032 | /// # Example |
| 1033 | /// |
| 1034 | /// ``` |
| 1035 | /// use jiff::SignedDuration; |
| 1036 | /// |
| 1037 | /// let duration1 = SignedDuration::MAX; |
| 1038 | /// let duration2 = SignedDuration::new(0, -1); |
| 1039 | /// assert_eq!(duration1.saturating_sub(duration2), SignedDuration::MAX); |
| 1040 | /// |
| 1041 | /// let duration1 = SignedDuration::MIN; |
| 1042 | /// let duration2 = SignedDuration::new(0, 1); |
| 1043 | /// assert_eq!(duration1.saturating_sub(duration2), SignedDuration::MIN); |
| 1044 | /// ``` |
| 1045 | #[inline ] |
| 1046 | pub const fn saturating_sub(self, rhs: SignedDuration) -> SignedDuration { |
| 1047 | let Some(diff) = self.checked_sub(rhs) else { |
| 1048 | return if rhs.is_positive() { |
| 1049 | SignedDuration::MIN |
| 1050 | } else { |
| 1051 | SignedDuration::MAX |
| 1052 | }; |
| 1053 | }; |
| 1054 | diff |
| 1055 | } |
| 1056 | |
| 1057 | /// Multiply this signed duration by an integer. If the multiplication |
| 1058 | /// overflows, then `None` is returned. |
| 1059 | /// |
| 1060 | /// # Example |
| 1061 | /// |
| 1062 | /// ``` |
| 1063 | /// use jiff::SignedDuration; |
| 1064 | /// |
| 1065 | /// let duration = SignedDuration::new(12, 500_000_000); |
| 1066 | /// assert_eq!( |
| 1067 | /// duration.checked_mul(2), |
| 1068 | /// Some(SignedDuration::new(25, 0)), |
| 1069 | /// ); |
| 1070 | /// ``` |
| 1071 | #[inline ] |
| 1072 | pub const fn checked_mul(self, rhs: i32) -> Option<SignedDuration> { |
| 1073 | let rhs = rhs as i64; |
| 1074 | // Multiplying any two i32 values never overflows an i64. |
| 1075 | let nanos = (self.nanos as i64) * rhs; |
| 1076 | // OK since NANOS_PER_SEC!={-1,0}. |
| 1077 | let addsecs = nanos / (NANOS_PER_SEC as i64); |
| 1078 | // OK since NANOS_PER_SEC!={-1,0}. |
| 1079 | let nanos = (nanos % (NANOS_PER_SEC as i64)) as i32; |
| 1080 | let Some(secs) = self.secs.checked_mul(rhs) else { return None }; |
| 1081 | let Some(secs) = secs.checked_add(addsecs) else { return None }; |
| 1082 | Some(SignedDuration::new_unchecked(secs, nanos)) |
| 1083 | } |
| 1084 | |
| 1085 | /// Multiply this signed duration by an integer. If the multiplication |
| 1086 | /// overflows, then the result saturates to either the minimum or maximum |
| 1087 | /// duration depending on the sign of the product. |
| 1088 | /// |
| 1089 | /// # Example |
| 1090 | /// |
| 1091 | /// ``` |
| 1092 | /// use jiff::SignedDuration; |
| 1093 | /// |
| 1094 | /// let duration = SignedDuration::new(i64::MAX, 0); |
| 1095 | /// assert_eq!(duration.saturating_mul(2), SignedDuration::MAX); |
| 1096 | /// assert_eq!(duration.saturating_mul(-2), SignedDuration::MIN); |
| 1097 | /// |
| 1098 | /// let duration = SignedDuration::new(i64::MIN, 0); |
| 1099 | /// assert_eq!(duration.saturating_mul(2), SignedDuration::MIN); |
| 1100 | /// assert_eq!(duration.saturating_mul(-2), SignedDuration::MAX); |
| 1101 | /// ``` |
| 1102 | #[inline ] |
| 1103 | pub const fn saturating_mul(self, rhs: i32) -> SignedDuration { |
| 1104 | let Some(product) = self.checked_mul(rhs) else { |
| 1105 | let sign = (self.signum() as i64) * (rhs as i64).signum(); |
| 1106 | return if sign.is_negative() { |
| 1107 | SignedDuration::MIN |
| 1108 | } else { |
| 1109 | SignedDuration::MAX |
| 1110 | }; |
| 1111 | }; |
| 1112 | product |
| 1113 | } |
| 1114 | |
| 1115 | /// Divide this duration by an integer. If the division overflows, then |
| 1116 | /// `None` is returned. |
| 1117 | /// |
| 1118 | /// # Example |
| 1119 | /// |
| 1120 | /// ``` |
| 1121 | /// use jiff::SignedDuration; |
| 1122 | /// |
| 1123 | /// let duration = SignedDuration::new(12, 500_000_000); |
| 1124 | /// assert_eq!( |
| 1125 | /// duration.checked_div(2), |
| 1126 | /// Some(SignedDuration::new(6, 250_000_000)), |
| 1127 | /// ); |
| 1128 | /// assert_eq!( |
| 1129 | /// duration.checked_div(-2), |
| 1130 | /// Some(SignedDuration::new(-6, -250_000_000)), |
| 1131 | /// ); |
| 1132 | /// |
| 1133 | /// let duration = SignedDuration::new(-12, -500_000_000); |
| 1134 | /// assert_eq!( |
| 1135 | /// duration.checked_div(2), |
| 1136 | /// Some(SignedDuration::new(-6, -250_000_000)), |
| 1137 | /// ); |
| 1138 | /// assert_eq!( |
| 1139 | /// duration.checked_div(-2), |
| 1140 | /// Some(SignedDuration::new(6, 250_000_000)), |
| 1141 | /// ); |
| 1142 | /// ``` |
| 1143 | #[inline ] |
| 1144 | pub const fn checked_div(self, rhs: i32) -> Option<SignedDuration> { |
| 1145 | if rhs == 0 || (self.secs == i64::MIN && rhs == -1) { |
| 1146 | return None; |
| 1147 | } |
| 1148 | // OK since rhs!={-1,0}. |
| 1149 | let secs = self.secs / (rhs as i64); |
| 1150 | // OK since rhs!={-1,0}. |
| 1151 | let addsecs = self.secs % (rhs as i64); |
| 1152 | // OK since rhs!=0 and self.nanos>i32::MIN. |
| 1153 | let mut nanos = self.nanos / rhs; |
| 1154 | // OK since rhs!=0 and self.nanos>i32::MIN. |
| 1155 | let addnanos = self.nanos % rhs; |
| 1156 | let leftover_nanos = |
| 1157 | (addsecs * (NANOS_PER_SEC as i64)) + (addnanos as i64); |
| 1158 | nanos += (leftover_nanos / (rhs as i64)) as i32; |
| 1159 | debug_assert!(nanos < NANOS_PER_SEC); |
| 1160 | Some(SignedDuration::new_unchecked(secs, nanos)) |
| 1161 | } |
| 1162 | |
| 1163 | /// Returns the number of seconds, with a possible fractional nanosecond |
| 1164 | /// component, represented by this signed duration as a 64-bit float. |
| 1165 | /// |
| 1166 | /// # Example |
| 1167 | /// |
| 1168 | /// ``` |
| 1169 | /// use jiff::SignedDuration; |
| 1170 | /// |
| 1171 | /// let duration = SignedDuration::new(12, 123_456_789); |
| 1172 | /// assert_eq!(duration.as_secs_f64(), 12.123456789); |
| 1173 | /// |
| 1174 | /// let duration = SignedDuration::new(-12, -123_456_789); |
| 1175 | /// assert_eq!(duration.as_secs_f64(), -12.123456789); |
| 1176 | /// ``` |
| 1177 | #[inline ] |
| 1178 | pub fn as_secs_f64(&self) -> f64 { |
| 1179 | (self.secs as f64) + ((self.nanos as f64) / (NANOS_PER_SEC as f64)) |
| 1180 | } |
| 1181 | |
| 1182 | /// Returns the number of seconds, with a possible fractional nanosecond |
| 1183 | /// component, represented by this signed duration as a 32-bit float. |
| 1184 | /// |
| 1185 | /// # Example |
| 1186 | /// |
| 1187 | /// ``` |
| 1188 | /// use jiff::SignedDuration; |
| 1189 | /// |
| 1190 | /// let duration = SignedDuration::new(12, 123_456_789); |
| 1191 | /// assert_eq!(duration.as_secs_f32(), 12.123456789); |
| 1192 | /// |
| 1193 | /// let duration = SignedDuration::new(-12, -123_456_789); |
| 1194 | /// assert_eq!(duration.as_secs_f32(), -12.123456789); |
| 1195 | /// ``` |
| 1196 | #[inline ] |
| 1197 | pub fn as_secs_f32(&self) -> f32 { |
| 1198 | (self.secs as f32) + ((self.nanos as f32) / (NANOS_PER_SEC as f32)) |
| 1199 | } |
| 1200 | |
| 1201 | /// Returns the number of milliseconds, with a possible fractional |
| 1202 | /// nanosecond component, represented by this signed duration as a 64-bit |
| 1203 | /// float. |
| 1204 | /// |
| 1205 | /// # Example |
| 1206 | /// |
| 1207 | /// ``` |
| 1208 | /// use jiff::SignedDuration; |
| 1209 | /// |
| 1210 | /// let duration = SignedDuration::new(12, 123_456_789); |
| 1211 | /// assert_eq!(duration.as_millis_f64(), 12123.456789); |
| 1212 | /// |
| 1213 | /// let duration = SignedDuration::new(-12, -123_456_789); |
| 1214 | /// assert_eq!(duration.as_millis_f64(), -12123.456789); |
| 1215 | /// ``` |
| 1216 | #[inline ] |
| 1217 | pub fn as_millis_f64(&self) -> f64 { |
| 1218 | ((self.secs as f64) * (MILLIS_PER_SEC as f64)) |
| 1219 | + ((self.nanos as f64) / (NANOS_PER_MILLI as f64)) |
| 1220 | } |
| 1221 | |
| 1222 | /// Returns the number of milliseconds, with a possible fractional |
| 1223 | /// nanosecond component, represented by this signed duration as a 32-bit |
| 1224 | /// float. |
| 1225 | /// |
| 1226 | /// # Example |
| 1227 | /// |
| 1228 | /// ``` |
| 1229 | /// use jiff::SignedDuration; |
| 1230 | /// |
| 1231 | /// let duration = SignedDuration::new(12, 123_456_789); |
| 1232 | /// assert_eq!(duration.as_millis_f32(), 12123.456789); |
| 1233 | /// |
| 1234 | /// let duration = SignedDuration::new(-12, -123_456_789); |
| 1235 | /// assert_eq!(duration.as_millis_f32(), -12123.456789); |
| 1236 | /// ``` |
| 1237 | #[inline ] |
| 1238 | pub fn as_millis_f32(&self) -> f32 { |
| 1239 | ((self.secs as f32) * (MILLIS_PER_SEC as f32)) |
| 1240 | + ((self.nanos as f32) / (NANOS_PER_MILLI as f32)) |
| 1241 | } |
| 1242 | |
| 1243 | /// Returns a signed duration corresponding to the number of seconds |
| 1244 | /// represented as a 64-bit float. The number given may have a fractional |
| 1245 | /// nanosecond component. |
| 1246 | /// |
| 1247 | /// # Panics |
| 1248 | /// |
| 1249 | /// If the given float overflows the minimum or maximum signed duration |
| 1250 | /// values, then this panics. |
| 1251 | /// |
| 1252 | /// # Example |
| 1253 | /// |
| 1254 | /// ``` |
| 1255 | /// use jiff::SignedDuration; |
| 1256 | /// |
| 1257 | /// let duration = SignedDuration::from_secs_f64(12.123456789); |
| 1258 | /// assert_eq!(duration.as_secs(), 12); |
| 1259 | /// assert_eq!(duration.subsec_nanos(), 123_456_789); |
| 1260 | /// |
| 1261 | /// let duration = SignedDuration::from_secs_f64(-12.123456789); |
| 1262 | /// assert_eq!(duration.as_secs(), -12); |
| 1263 | /// assert_eq!(duration.subsec_nanos(), -123_456_789); |
| 1264 | /// |
| 1265 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1266 | /// ``` |
| 1267 | #[inline ] |
| 1268 | pub fn from_secs_f64(secs: f64) -> SignedDuration { |
| 1269 | SignedDuration::try_from_secs_f64(secs) |
| 1270 | .expect("finite and in-bounds f64" ) |
| 1271 | } |
| 1272 | |
| 1273 | /// Returns a signed duration corresponding to the number of seconds |
| 1274 | /// represented as a 32-bit float. The number given may have a fractional |
| 1275 | /// nanosecond component. |
| 1276 | /// |
| 1277 | /// # Panics |
| 1278 | /// |
| 1279 | /// If the given float overflows the minimum or maximum signed duration |
| 1280 | /// values, then this panics. |
| 1281 | /// |
| 1282 | /// # Example |
| 1283 | /// |
| 1284 | /// ``` |
| 1285 | /// use jiff::SignedDuration; |
| 1286 | /// |
| 1287 | /// let duration = SignedDuration::from_secs_f32(12.123456789); |
| 1288 | /// assert_eq!(duration.as_secs(), 12); |
| 1289 | /// // loss of precision! |
| 1290 | /// assert_eq!(duration.subsec_nanos(), 123_456_952); |
| 1291 | /// |
| 1292 | /// let duration = SignedDuration::from_secs_f32(-12.123456789); |
| 1293 | /// assert_eq!(duration.as_secs(), -12); |
| 1294 | /// // loss of precision! |
| 1295 | /// assert_eq!(duration.subsec_nanos(), -123_456_952); |
| 1296 | /// |
| 1297 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1298 | /// ``` |
| 1299 | #[inline ] |
| 1300 | pub fn from_secs_f32(secs: f32) -> SignedDuration { |
| 1301 | SignedDuration::try_from_secs_f32(secs) |
| 1302 | .expect("finite and in-bounds f32" ) |
| 1303 | } |
| 1304 | |
| 1305 | /// Returns a signed duration corresponding to the number of seconds |
| 1306 | /// represented as a 64-bit float. The number given may have a fractional |
| 1307 | /// nanosecond component. |
| 1308 | /// |
| 1309 | /// If the given float overflows the minimum or maximum signed duration |
| 1310 | /// values, then an error is returned. |
| 1311 | /// |
| 1312 | /// # Example |
| 1313 | /// |
| 1314 | /// ``` |
| 1315 | /// use jiff::SignedDuration; |
| 1316 | /// |
| 1317 | /// let duration = SignedDuration::try_from_secs_f64(12.123456789)?; |
| 1318 | /// assert_eq!(duration.as_secs(), 12); |
| 1319 | /// assert_eq!(duration.subsec_nanos(), 123_456_789); |
| 1320 | /// |
| 1321 | /// let duration = SignedDuration::try_from_secs_f64(-12.123456789)?; |
| 1322 | /// assert_eq!(duration.as_secs(), -12); |
| 1323 | /// assert_eq!(duration.subsec_nanos(), -123_456_789); |
| 1324 | /// |
| 1325 | /// assert!(SignedDuration::try_from_secs_f64(f64::NAN).is_err()); |
| 1326 | /// assert!(SignedDuration::try_from_secs_f64(f64::INFINITY).is_err()); |
| 1327 | /// assert!(SignedDuration::try_from_secs_f64(f64::NEG_INFINITY).is_err()); |
| 1328 | /// assert!(SignedDuration::try_from_secs_f64(f64::MIN).is_err()); |
| 1329 | /// assert!(SignedDuration::try_from_secs_f64(f64::MAX).is_err()); |
| 1330 | /// |
| 1331 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1332 | /// ``` |
| 1333 | #[inline ] |
| 1334 | pub fn try_from_secs_f64(secs: f64) -> Result<SignedDuration, Error> { |
| 1335 | if !secs.is_finite() { |
| 1336 | return Err(err!( |
| 1337 | "could not convert non-finite seconds \ |
| 1338 | {secs} to signed duration" , |
| 1339 | )); |
| 1340 | } |
| 1341 | if secs < (i64::MIN as f64) { |
| 1342 | return Err(err!( |
| 1343 | "floating point seconds {secs} overflows signed duration \ |
| 1344 | minimum value of {:?}" , |
| 1345 | SignedDuration::MIN, |
| 1346 | )); |
| 1347 | } |
| 1348 | if secs > (i64::MAX as f64) { |
| 1349 | return Err(err!( |
| 1350 | "floating point seconds {secs} overflows signed duration \ |
| 1351 | maximum value of {:?}" , |
| 1352 | SignedDuration::MAX, |
| 1353 | )); |
| 1354 | } |
| 1355 | |
| 1356 | let mut int_secs = secs.trunc() as i64; |
| 1357 | let mut int_nanos = |
| 1358 | (secs.fract() * (NANOS_PER_SEC as f64)).round() as i32; |
| 1359 | if int_nanos.unsigned_abs() == 1_000_000_000 { |
| 1360 | let increment = i64::from(int_nanos.signum()); |
| 1361 | int_secs = int_secs.checked_add(increment).ok_or_else(|| { |
| 1362 | err!( |
| 1363 | "floating point seconds {secs} overflows signed duration \ |
| 1364 | maximum value of {max:?} after rounding its fractional \ |
| 1365 | component of {fract:?}" , |
| 1366 | max = SignedDuration::MAX, |
| 1367 | fract = secs.fract(), |
| 1368 | ) |
| 1369 | })?; |
| 1370 | int_nanos = 0; |
| 1371 | } |
| 1372 | Ok(SignedDuration::new_unchecked(int_secs, int_nanos)) |
| 1373 | } |
| 1374 | |
| 1375 | /// Returns a signed duration corresponding to the number of seconds |
| 1376 | /// represented as a 32-bit float. The number given may have a fractional |
| 1377 | /// nanosecond component. |
| 1378 | /// |
| 1379 | /// If the given float overflows the minimum or maximum signed duration |
| 1380 | /// values, then an error is returned. |
| 1381 | /// |
| 1382 | /// # Example |
| 1383 | /// |
| 1384 | /// ``` |
| 1385 | /// use jiff::SignedDuration; |
| 1386 | /// |
| 1387 | /// let duration = SignedDuration::try_from_secs_f32(12.123456789)?; |
| 1388 | /// assert_eq!(duration.as_secs(), 12); |
| 1389 | /// // loss of precision! |
| 1390 | /// assert_eq!(duration.subsec_nanos(), 123_456_952); |
| 1391 | /// |
| 1392 | /// let duration = SignedDuration::try_from_secs_f32(-12.123456789)?; |
| 1393 | /// assert_eq!(duration.as_secs(), -12); |
| 1394 | /// // loss of precision! |
| 1395 | /// assert_eq!(duration.subsec_nanos(), -123_456_952); |
| 1396 | /// |
| 1397 | /// assert!(SignedDuration::try_from_secs_f32(f32::NAN).is_err()); |
| 1398 | /// assert!(SignedDuration::try_from_secs_f32(f32::INFINITY).is_err()); |
| 1399 | /// assert!(SignedDuration::try_from_secs_f32(f32::NEG_INFINITY).is_err()); |
| 1400 | /// assert!(SignedDuration::try_from_secs_f32(f32::MIN).is_err()); |
| 1401 | /// assert!(SignedDuration::try_from_secs_f32(f32::MAX).is_err()); |
| 1402 | /// |
| 1403 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1404 | /// ``` |
| 1405 | #[inline ] |
| 1406 | pub fn try_from_secs_f32(secs: f32) -> Result<SignedDuration, Error> { |
| 1407 | if !secs.is_finite() { |
| 1408 | return Err(err!( |
| 1409 | "could not convert non-finite seconds \ |
| 1410 | {secs} to signed duration" , |
| 1411 | )); |
| 1412 | } |
| 1413 | if secs < (i64::MIN as f32) { |
| 1414 | return Err(err!( |
| 1415 | "floating point seconds {secs} overflows signed duration \ |
| 1416 | minimum value of {:?}" , |
| 1417 | SignedDuration::MIN, |
| 1418 | )); |
| 1419 | } |
| 1420 | if secs > (i64::MAX as f32) { |
| 1421 | return Err(err!( |
| 1422 | "floating point seconds {secs} overflows signed duration \ |
| 1423 | maximum value of {:?}" , |
| 1424 | SignedDuration::MAX, |
| 1425 | )); |
| 1426 | } |
| 1427 | let mut int_nanos = |
| 1428 | (secs.fract() * (NANOS_PER_SEC as f32)).round() as i32; |
| 1429 | let mut int_secs = secs.trunc() as i64; |
| 1430 | if int_nanos.unsigned_abs() == 1_000_000_000 { |
| 1431 | let increment = i64::from(int_nanos.signum()); |
| 1432 | // N.B. I haven't found a way to trigger this error path in tests. |
| 1433 | int_secs = int_secs.checked_add(increment).ok_or_else(|| { |
| 1434 | err!( |
| 1435 | "floating point seconds {secs} overflows signed duration \ |
| 1436 | maximum value of {max:?} after rounding its fractional \ |
| 1437 | component of {fract:?}" , |
| 1438 | max = SignedDuration::MAX, |
| 1439 | fract = secs.fract(), |
| 1440 | ) |
| 1441 | })?; |
| 1442 | int_nanos = 0; |
| 1443 | } |
| 1444 | Ok(SignedDuration::new_unchecked(int_secs, int_nanos)) |
| 1445 | } |
| 1446 | |
| 1447 | /// Returns the result of multiplying this duration by the given 64-bit |
| 1448 | /// float. |
| 1449 | /// |
| 1450 | /// # Panics |
| 1451 | /// |
| 1452 | /// This panics if the result is not finite or overflows a |
| 1453 | /// `SignedDuration`. |
| 1454 | /// |
| 1455 | /// # Example |
| 1456 | /// |
| 1457 | /// ``` |
| 1458 | /// use jiff::SignedDuration; |
| 1459 | /// |
| 1460 | /// let duration = SignedDuration::new(12, 300_000_000); |
| 1461 | /// assert_eq!( |
| 1462 | /// duration.mul_f64(2.0), |
| 1463 | /// SignedDuration::new(24, 600_000_000), |
| 1464 | /// ); |
| 1465 | /// assert_eq!( |
| 1466 | /// duration.mul_f64(-2.0), |
| 1467 | /// SignedDuration::new(-24, -600_000_000), |
| 1468 | /// ); |
| 1469 | /// ``` |
| 1470 | #[inline ] |
| 1471 | pub fn mul_f64(self, rhs: f64) -> SignedDuration { |
| 1472 | SignedDuration::from_secs_f64(rhs * self.as_secs_f64()) |
| 1473 | } |
| 1474 | |
| 1475 | /// Returns the result of multiplying this duration by the given 32-bit |
| 1476 | /// float. |
| 1477 | /// |
| 1478 | /// # Panics |
| 1479 | /// |
| 1480 | /// This panics if the result is not finite or overflows a |
| 1481 | /// `SignedDuration`. |
| 1482 | /// |
| 1483 | /// # Example |
| 1484 | /// |
| 1485 | /// ``` |
| 1486 | /// use jiff::SignedDuration; |
| 1487 | /// |
| 1488 | /// let duration = SignedDuration::new(12, 300_000_000); |
| 1489 | /// assert_eq!( |
| 1490 | /// duration.mul_f32(2.0), |
| 1491 | /// // loss of precision! |
| 1492 | /// SignedDuration::new(24, 600_000_384), |
| 1493 | /// ); |
| 1494 | /// assert_eq!( |
| 1495 | /// duration.mul_f32(-2.0), |
| 1496 | /// // loss of precision! |
| 1497 | /// SignedDuration::new(-24, -600_000_384), |
| 1498 | /// ); |
| 1499 | /// ``` |
| 1500 | #[inline ] |
| 1501 | pub fn mul_f32(self, rhs: f32) -> SignedDuration { |
| 1502 | SignedDuration::from_secs_f32(rhs * self.as_secs_f32()) |
| 1503 | } |
| 1504 | |
| 1505 | /// Returns the result of dividing this duration by the given 64-bit |
| 1506 | /// float. |
| 1507 | /// |
| 1508 | /// # Panics |
| 1509 | /// |
| 1510 | /// This panics if the result is not finite or overflows a |
| 1511 | /// `SignedDuration`. |
| 1512 | /// |
| 1513 | /// # Example |
| 1514 | /// |
| 1515 | /// ``` |
| 1516 | /// use jiff::SignedDuration; |
| 1517 | /// |
| 1518 | /// let duration = SignedDuration::new(12, 300_000_000); |
| 1519 | /// assert_eq!( |
| 1520 | /// duration.div_f64(2.0), |
| 1521 | /// SignedDuration::new(6, 150_000_000), |
| 1522 | /// ); |
| 1523 | /// assert_eq!( |
| 1524 | /// duration.div_f64(-2.0), |
| 1525 | /// SignedDuration::new(-6, -150_000_000), |
| 1526 | /// ); |
| 1527 | /// ``` |
| 1528 | #[inline ] |
| 1529 | pub fn div_f64(self, rhs: f64) -> SignedDuration { |
| 1530 | SignedDuration::from_secs_f64(self.as_secs_f64() / rhs) |
| 1531 | } |
| 1532 | |
| 1533 | /// Returns the result of dividing this duration by the given 32-bit |
| 1534 | /// float. |
| 1535 | /// |
| 1536 | /// # Panics |
| 1537 | /// |
| 1538 | /// This panics if the result is not finite or overflows a |
| 1539 | /// `SignedDuration`. |
| 1540 | /// |
| 1541 | /// # Example |
| 1542 | /// |
| 1543 | /// ``` |
| 1544 | /// use jiff::SignedDuration; |
| 1545 | /// |
| 1546 | /// let duration = SignedDuration::new(12, 300_000_000); |
| 1547 | /// assert_eq!( |
| 1548 | /// duration.div_f32(2.0), |
| 1549 | /// // loss of precision! |
| 1550 | /// SignedDuration::new(6, 150_000_096), |
| 1551 | /// ); |
| 1552 | /// assert_eq!( |
| 1553 | /// duration.div_f32(-2.0), |
| 1554 | /// // loss of precision! |
| 1555 | /// SignedDuration::new(-6, -150_000_096), |
| 1556 | /// ); |
| 1557 | /// ``` |
| 1558 | #[inline ] |
| 1559 | pub fn div_f32(self, rhs: f32) -> SignedDuration { |
| 1560 | SignedDuration::from_secs_f32(self.as_secs_f32() / rhs) |
| 1561 | } |
| 1562 | |
| 1563 | /// Divides this signed duration by another signed duration and returns the |
| 1564 | /// corresponding 64-bit float result. |
| 1565 | /// |
| 1566 | /// # Example |
| 1567 | /// |
| 1568 | /// ``` |
| 1569 | /// use jiff::SignedDuration; |
| 1570 | /// |
| 1571 | /// let duration1 = SignedDuration::new(12, 600_000_000); |
| 1572 | /// let duration2 = SignedDuration::new(6, 300_000_000); |
| 1573 | /// assert_eq!(duration1.div_duration_f64(duration2), 2.0); |
| 1574 | /// |
| 1575 | /// let duration1 = SignedDuration::new(-12, -600_000_000); |
| 1576 | /// let duration2 = SignedDuration::new(6, 300_000_000); |
| 1577 | /// assert_eq!(duration1.div_duration_f64(duration2), -2.0); |
| 1578 | /// |
| 1579 | /// let duration1 = SignedDuration::new(-12, -600_000_000); |
| 1580 | /// let duration2 = SignedDuration::new(-6, -300_000_000); |
| 1581 | /// assert_eq!(duration1.div_duration_f64(duration2), 2.0); |
| 1582 | /// ``` |
| 1583 | #[inline ] |
| 1584 | pub fn div_duration_f64(self, rhs: SignedDuration) -> f64 { |
| 1585 | let lhs_nanos = |
| 1586 | (self.secs as f64) * (NANOS_PER_SEC as f64) + (self.nanos as f64); |
| 1587 | let rhs_nanos = |
| 1588 | (rhs.secs as f64) * (NANOS_PER_SEC as f64) + (rhs.nanos as f64); |
| 1589 | lhs_nanos / rhs_nanos |
| 1590 | } |
| 1591 | |
| 1592 | /// Divides this signed duration by another signed duration and returns the |
| 1593 | /// corresponding 32-bit float result. |
| 1594 | /// |
| 1595 | /// # Example |
| 1596 | /// |
| 1597 | /// ``` |
| 1598 | /// use jiff::SignedDuration; |
| 1599 | /// |
| 1600 | /// let duration1 = SignedDuration::new(12, 600_000_000); |
| 1601 | /// let duration2 = SignedDuration::new(6, 300_000_000); |
| 1602 | /// assert_eq!(duration1.div_duration_f32(duration2), 2.0); |
| 1603 | /// |
| 1604 | /// let duration1 = SignedDuration::new(-12, -600_000_000); |
| 1605 | /// let duration2 = SignedDuration::new(6, 300_000_000); |
| 1606 | /// assert_eq!(duration1.div_duration_f32(duration2), -2.0); |
| 1607 | /// |
| 1608 | /// let duration1 = SignedDuration::new(-12, -600_000_000); |
| 1609 | /// let duration2 = SignedDuration::new(-6, -300_000_000); |
| 1610 | /// assert_eq!(duration1.div_duration_f32(duration2), 2.0); |
| 1611 | /// ``` |
| 1612 | #[inline ] |
| 1613 | pub fn div_duration_f32(self, rhs: SignedDuration) -> f32 { |
| 1614 | let lhs_nanos = |
| 1615 | (self.secs as f32) * (NANOS_PER_SEC as f32) + (self.nanos as f32); |
| 1616 | let rhs_nanos = |
| 1617 | (rhs.secs as f32) * (NANOS_PER_SEC as f32) + (rhs.nanos as f32); |
| 1618 | lhs_nanos / rhs_nanos |
| 1619 | } |
| 1620 | } |
| 1621 | |
| 1622 | /// Additional APIs not found in the standard library. |
| 1623 | /// |
| 1624 | /// In most cases, these APIs exist as a result of the fact that this duration |
| 1625 | /// is signed. |
| 1626 | impl SignedDuration { |
| 1627 | /// Returns the number of whole hours in this duration. |
| 1628 | /// |
| 1629 | /// The value returned is negative when the duration is negative. |
| 1630 | /// |
| 1631 | /// This does not include any fractional component corresponding to units |
| 1632 | /// less than an hour. |
| 1633 | /// |
| 1634 | /// # Example |
| 1635 | /// |
| 1636 | /// ``` |
| 1637 | /// use jiff::SignedDuration; |
| 1638 | /// |
| 1639 | /// let duration = SignedDuration::new(86_400, 999_999_999); |
| 1640 | /// assert_eq!(duration.as_hours(), 24); |
| 1641 | /// |
| 1642 | /// let duration = SignedDuration::new(-86_400, -999_999_999); |
| 1643 | /// assert_eq!(duration.as_hours(), -24); |
| 1644 | /// ``` |
| 1645 | #[inline ] |
| 1646 | pub const fn as_hours(&self) -> i64 { |
| 1647 | self.as_secs() / (MINS_PER_HOUR * SECS_PER_MINUTE) |
| 1648 | } |
| 1649 | |
| 1650 | /// Returns the number of whole minutes in this duration. |
| 1651 | /// |
| 1652 | /// The value returned is negative when the duration is negative. |
| 1653 | /// |
| 1654 | /// This does not include any fractional component corresponding to units |
| 1655 | /// less than a minute. |
| 1656 | /// |
| 1657 | /// # Example |
| 1658 | /// |
| 1659 | /// ``` |
| 1660 | /// use jiff::SignedDuration; |
| 1661 | /// |
| 1662 | /// let duration = SignedDuration::new(3_600, 999_999_999); |
| 1663 | /// assert_eq!(duration.as_mins(), 60); |
| 1664 | /// |
| 1665 | /// let duration = SignedDuration::new(-3_600, -999_999_999); |
| 1666 | /// assert_eq!(duration.as_mins(), -60); |
| 1667 | /// ``` |
| 1668 | #[inline ] |
| 1669 | pub const fn as_mins(&self) -> i64 { |
| 1670 | self.as_secs() / SECS_PER_MINUTE |
| 1671 | } |
| 1672 | |
| 1673 | /// Returns the absolute value of this signed duration. |
| 1674 | /// |
| 1675 | /// If this duration isn't negative, then this returns the original |
| 1676 | /// duration unchanged. |
| 1677 | /// |
| 1678 | /// # Panics |
| 1679 | /// |
| 1680 | /// This panics when the seconds component of this signed duration is |
| 1681 | /// equal to `i64::MIN`. |
| 1682 | /// |
| 1683 | /// # Example |
| 1684 | /// |
| 1685 | /// ``` |
| 1686 | /// use jiff::SignedDuration; |
| 1687 | /// |
| 1688 | /// let duration = SignedDuration::new(1, -1_999_999_999); |
| 1689 | /// assert_eq!(duration.abs(), SignedDuration::new(0, 999_999_999)); |
| 1690 | /// ``` |
| 1691 | #[inline ] |
| 1692 | pub const fn abs(self) -> SignedDuration { |
| 1693 | SignedDuration::new_unchecked(self.secs.abs(), self.nanos.abs()) |
| 1694 | } |
| 1695 | |
| 1696 | /// Returns the absolute value of this signed duration as a |
| 1697 | /// [`std::time::Duration`]. More specifically, this routine cannot |
| 1698 | /// panic because the absolute value of `SignedDuration::MIN` is |
| 1699 | /// representable in a `std::time::Duration`. |
| 1700 | /// |
| 1701 | /// # Example |
| 1702 | /// |
| 1703 | /// ``` |
| 1704 | /// use std::time::Duration; |
| 1705 | /// |
| 1706 | /// use jiff::SignedDuration; |
| 1707 | /// |
| 1708 | /// let duration = SignedDuration::MIN; |
| 1709 | /// assert_eq!( |
| 1710 | /// duration.unsigned_abs(), |
| 1711 | /// Duration::new(i64::MIN.unsigned_abs(), 999_999_999), |
| 1712 | /// ); |
| 1713 | /// ``` |
| 1714 | #[inline ] |
| 1715 | pub const fn unsigned_abs(self) -> Duration { |
| 1716 | Duration::new(self.secs.unsigned_abs(), self.nanos.unsigned_abs()) |
| 1717 | } |
| 1718 | |
| 1719 | /// Returns this duration with its sign flipped. |
| 1720 | /// |
| 1721 | /// If this duration is zero, then this returns the duration unchanged. |
| 1722 | /// |
| 1723 | /// This returns none if the negation does not exist. This occurs in |
| 1724 | /// precisely the cases when [`SignedDuration::as_secs`] is equal to |
| 1725 | /// `i64::MIN`. |
| 1726 | /// |
| 1727 | /// # Example |
| 1728 | /// |
| 1729 | /// ``` |
| 1730 | /// use jiff::SignedDuration; |
| 1731 | /// |
| 1732 | /// let duration = SignedDuration::new(12, 123_456_789); |
| 1733 | /// assert_eq!( |
| 1734 | /// duration.checked_neg(), |
| 1735 | /// Some(SignedDuration::new(-12, -123_456_789)), |
| 1736 | /// ); |
| 1737 | /// |
| 1738 | /// let duration = SignedDuration::new(-12, -123_456_789); |
| 1739 | /// assert_eq!( |
| 1740 | /// duration.checked_neg(), |
| 1741 | /// Some(SignedDuration::new(12, 123_456_789)), |
| 1742 | /// ); |
| 1743 | /// |
| 1744 | /// // Negating the minimum seconds isn't possible. |
| 1745 | /// assert_eq!(SignedDuration::MIN.checked_neg(), None); |
| 1746 | /// ``` |
| 1747 | #[inline ] |
| 1748 | pub const fn checked_neg(self) -> Option<SignedDuration> { |
| 1749 | let Some(secs) = self.secs.checked_neg() else { return None }; |
| 1750 | Some(SignedDuration::new_unchecked( |
| 1751 | secs, |
| 1752 | // Always OK because `-999_999_999 <= self.nanos <= 999_999_999`. |
| 1753 | -self.nanos, |
| 1754 | )) |
| 1755 | } |
| 1756 | |
| 1757 | /// Returns a number that represents the sign of this duration. |
| 1758 | /// |
| 1759 | /// * When [`SignedDuration::is_zero`] is true, this returns `0`. |
| 1760 | /// * When [`SignedDuration::is_positive`] is true, this returns `1`. |
| 1761 | /// * When [`SignedDuration::is_negative`] is true, this returns `-1`. |
| 1762 | /// |
| 1763 | /// The above cases are mutually exclusive. |
| 1764 | /// |
| 1765 | /// # Example |
| 1766 | /// |
| 1767 | /// ``` |
| 1768 | /// use jiff::SignedDuration; |
| 1769 | /// |
| 1770 | /// assert_eq!(0, SignedDuration::ZERO.signum()); |
| 1771 | /// ``` |
| 1772 | #[inline ] |
| 1773 | pub const fn signum(self) -> i8 { |
| 1774 | if self.is_zero() { |
| 1775 | 0 |
| 1776 | } else if self.is_positive() { |
| 1777 | 1 |
| 1778 | } else { |
| 1779 | debug_assert!(self.is_negative()); |
| 1780 | -1 |
| 1781 | } |
| 1782 | } |
| 1783 | |
| 1784 | /// Returns true when this duration is positive. That is, greater than |
| 1785 | /// [`SignedDuration::ZERO`]. |
| 1786 | /// |
| 1787 | /// # Example |
| 1788 | /// |
| 1789 | /// ``` |
| 1790 | /// use jiff::SignedDuration; |
| 1791 | /// |
| 1792 | /// let duration = SignedDuration::new(0, 1); |
| 1793 | /// assert!(duration.is_positive()); |
| 1794 | /// ``` |
| 1795 | #[inline ] |
| 1796 | pub const fn is_positive(&self) -> bool { |
| 1797 | self.secs.is_positive() || self.nanos.is_positive() |
| 1798 | } |
| 1799 | |
| 1800 | /// Returns true when this duration is negative. That is, less than |
| 1801 | /// [`SignedDuration::ZERO`]. |
| 1802 | /// |
| 1803 | /// # Example |
| 1804 | /// |
| 1805 | /// ``` |
| 1806 | /// use jiff::SignedDuration; |
| 1807 | /// |
| 1808 | /// let duration = SignedDuration::new(0, -1); |
| 1809 | /// assert!(duration.is_negative()); |
| 1810 | /// ``` |
| 1811 | #[inline ] |
| 1812 | pub const fn is_negative(&self) -> bool { |
| 1813 | self.secs.is_negative() || self.nanos.is_negative() |
| 1814 | } |
| 1815 | } |
| 1816 | |
| 1817 | /// Additional APIs for computing the duration between date and time values. |
| 1818 | impl SignedDuration { |
| 1819 | pub(crate) fn zoned_until( |
| 1820 | zoned1: &Zoned, |
| 1821 | zoned2: &Zoned, |
| 1822 | ) -> SignedDuration { |
| 1823 | SignedDuration::timestamp_until(zoned1.timestamp(), zoned2.timestamp()) |
| 1824 | } |
| 1825 | |
| 1826 | pub(crate) fn timestamp_until( |
| 1827 | timestamp1: Timestamp, |
| 1828 | timestamp2: Timestamp, |
| 1829 | ) -> SignedDuration { |
| 1830 | // OK because all the difference between any two timestamp values can |
| 1831 | // fit into a signed duration. |
| 1832 | timestamp2.as_duration() - timestamp1.as_duration() |
| 1833 | } |
| 1834 | |
| 1835 | pub(crate) fn datetime_until( |
| 1836 | datetime1: DateTime, |
| 1837 | datetime2: DateTime, |
| 1838 | ) -> SignedDuration { |
| 1839 | let date_until = |
| 1840 | SignedDuration::date_until(datetime1.date(), datetime2.date()); |
| 1841 | let time_until = |
| 1842 | SignedDuration::time_until(datetime1.time(), datetime2.time()); |
| 1843 | // OK because the difference between any two datetimes can bit into a |
| 1844 | // 96-bit integer of nanoseconds. |
| 1845 | date_until + time_until |
| 1846 | } |
| 1847 | |
| 1848 | pub(crate) fn date_until(date1: Date, date2: Date) -> SignedDuration { |
| 1849 | let days = date1.until_days_ranged(date2); |
| 1850 | // OK because difference in days fits in an i32, and multiplying an |
| 1851 | // i32 by 24 will never overflow an i64. |
| 1852 | let hours = 24 * i64::from(days.get()); |
| 1853 | SignedDuration::from_hours(hours) |
| 1854 | } |
| 1855 | |
| 1856 | pub(crate) fn time_until(time1: Time, time2: Time) -> SignedDuration { |
| 1857 | let nanos = time1.until_nanoseconds(time2); |
| 1858 | SignedDuration::from_nanos(nanos.get()) |
| 1859 | } |
| 1860 | |
| 1861 | pub(crate) fn offset_until( |
| 1862 | offset1: Offset, |
| 1863 | offset2: Offset, |
| 1864 | ) -> SignedDuration { |
| 1865 | let secs1 = i64::from(offset1.seconds()); |
| 1866 | let secs2 = i64::from(offset2.seconds()); |
| 1867 | // OK because subtracting any two i32 values will |
| 1868 | // never overflow an i64. |
| 1869 | let diff = secs2 - secs1; |
| 1870 | SignedDuration::from_secs(diff) |
| 1871 | } |
| 1872 | |
| 1873 | /// Returns the duration from `time1` until `time2` where the times are |
| 1874 | /// [`std::time::SystemTime`] values from the standard library. |
| 1875 | /// |
| 1876 | /// # Errors |
| 1877 | /// |
| 1878 | /// This returns an error if the difference between the two time values |
| 1879 | /// overflows the signed duration limits. |
| 1880 | /// |
| 1881 | /// # Example |
| 1882 | /// |
| 1883 | /// ``` |
| 1884 | /// use std::time::{Duration, SystemTime}; |
| 1885 | /// use jiff::SignedDuration; |
| 1886 | /// |
| 1887 | /// let time1 = SystemTime::UNIX_EPOCH; |
| 1888 | /// let time2 = time1.checked_add(Duration::from_secs(86_400)).unwrap(); |
| 1889 | /// assert_eq!( |
| 1890 | /// SignedDuration::system_until(time1, time2)?, |
| 1891 | /// SignedDuration::from_hours(24), |
| 1892 | /// ); |
| 1893 | /// |
| 1894 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1895 | /// ``` |
| 1896 | #[cfg (feature = "std" )] |
| 1897 | #[inline ] |
| 1898 | pub fn system_until( |
| 1899 | time1: std::time::SystemTime, |
| 1900 | time2: std::time::SystemTime, |
| 1901 | ) -> Result<SignedDuration, Error> { |
| 1902 | match time2.duration_since(time1) { |
| 1903 | Ok(dur) => SignedDuration::try_from(dur).with_context(|| { |
| 1904 | err!( |
| 1905 | "unsigned duration {dur:?} for system time since \ |
| 1906 | Unix epoch overflowed signed duration" |
| 1907 | ) |
| 1908 | }), |
| 1909 | Err(err) => { |
| 1910 | let dur = err.duration(); |
| 1911 | let dur = |
| 1912 | SignedDuration::try_from(dur).with_context(|| { |
| 1913 | err!( |
| 1914 | "unsigned duration {dur:?} for system time before \ |
| 1915 | Unix epoch overflowed signed duration" |
| 1916 | ) |
| 1917 | })?; |
| 1918 | dur.checked_neg().ok_or_else(|| { |
| 1919 | err!("negating duration {dur:?} from before the Unix epoch \ |
| 1920 | overflowed signed duration" ) |
| 1921 | }) |
| 1922 | } |
| 1923 | } |
| 1924 | } |
| 1925 | } |
| 1926 | |
| 1927 | /// Jiff specific APIs. |
| 1928 | impl SignedDuration { |
| 1929 | /// Returns a new signed duration that is rounded according to the given |
| 1930 | /// configuration. |
| 1931 | /// |
| 1932 | /// Rounding a duration has a number of parameters, all of which are |
| 1933 | /// optional. When no parameters are given, then no rounding is done, and |
| 1934 | /// the duration as given is returned. That is, it's a no-op. |
| 1935 | /// |
| 1936 | /// As is consistent with `SignedDuration` itself, rounding only supports |
| 1937 | /// time units, i.e., units of hours or smaller. If a calendar `Unit` is |
| 1938 | /// provided, then an error is returned. In order to round a duration with |
| 1939 | /// calendar units, you must use [`Span::round`](crate::Span::round) and |
| 1940 | /// provide a relative datetime. |
| 1941 | /// |
| 1942 | /// The parameters are, in brief: |
| 1943 | /// |
| 1944 | /// * [`SignedDurationRound::smallest`] sets the smallest [`Unit`] that |
| 1945 | /// is allowed to be non-zero in the duration returned. By default, it |
| 1946 | /// is set to [`Unit::Nanosecond`], i.e., no rounding occurs. When the |
| 1947 | /// smallest unit is set to something bigger than nanoseconds, then the |
| 1948 | /// non-zero units in the duration smaller than the smallest unit are used |
| 1949 | /// to determine how the duration should be rounded. For example, rounding |
| 1950 | /// `1 hour 59 minutes` to the nearest hour using the default rounding mode |
| 1951 | /// would produce `2 hours`. |
| 1952 | /// * [`SignedDurationRound::mode`] determines how to handle the remainder |
| 1953 | /// when rounding. The default is [`RoundMode::HalfExpand`], which |
| 1954 | /// corresponds to how you were likely taught to round in school. |
| 1955 | /// Alternative modes, like [`RoundMode::Trunc`], exist too. For example, |
| 1956 | /// a truncating rounding of `1 hour 59 minutes` to the nearest hour would |
| 1957 | /// produce `1 hour`. |
| 1958 | /// * [`SignedDurationRound::increment`] sets the rounding granularity to |
| 1959 | /// use for the configured smallest unit. For example, if the smallest unit |
| 1960 | /// is minutes and the increment is 5, then the duration returned will |
| 1961 | /// always have its minute units set to a multiple of `5`. |
| 1962 | /// |
| 1963 | /// # Errors |
| 1964 | /// |
| 1965 | /// In general, there are two main ways for rounding to fail: an improper |
| 1966 | /// configuration like trying to round a duration to the nearest calendar |
| 1967 | /// unit, or when overflow occurs. Overflow can occur when the duration |
| 1968 | /// would exceed the minimum or maximum `SignedDuration` values. Typically, |
| 1969 | /// this can only realistically happen if the duration before rounding is |
| 1970 | /// already close to its minimum or maximum value. |
| 1971 | /// |
| 1972 | /// # Example: round to the nearest second |
| 1973 | /// |
| 1974 | /// This shows how to round a duration to the nearest second. This might |
| 1975 | /// be useful when you want to chop off any sub-second component in a way |
| 1976 | /// that depends on how close it is (or not) to the next second. |
| 1977 | /// |
| 1978 | /// ``` |
| 1979 | /// use jiff::{SignedDuration, Unit}; |
| 1980 | /// |
| 1981 | /// // rounds up |
| 1982 | /// let dur = SignedDuration::new(4 * 60 * 60 + 50 * 60 + 32, 500_000_000); |
| 1983 | /// assert_eq!( |
| 1984 | /// dur.round(Unit::Second)?, |
| 1985 | /// SignedDuration::new(4 * 60 * 60 + 50 * 60 + 33, 0), |
| 1986 | /// ); |
| 1987 | /// // rounds down |
| 1988 | /// let dur = SignedDuration::new(4 * 60 * 60 + 50 * 60 + 32, 499_999_999); |
| 1989 | /// assert_eq!( |
| 1990 | /// dur.round(Unit::Second)?, |
| 1991 | /// SignedDuration::new(4 * 60 * 60 + 50 * 60 + 32, 0), |
| 1992 | /// ); |
| 1993 | /// |
| 1994 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 1995 | /// ``` |
| 1996 | /// |
| 1997 | /// # Example: round to the nearest half minute |
| 1998 | /// |
| 1999 | /// One can use [`SignedDurationRound::increment`] to set the rounding |
| 2000 | /// increment: |
| 2001 | /// |
| 2002 | /// ``` |
| 2003 | /// use jiff::{SignedDuration, SignedDurationRound, Unit}; |
| 2004 | /// |
| 2005 | /// let options = SignedDurationRound::new() |
| 2006 | /// .smallest(Unit::Second) |
| 2007 | /// .increment(30); |
| 2008 | /// |
| 2009 | /// // rounds up |
| 2010 | /// let dur = SignedDuration::from_secs(4 * 60 * 60 + 50 * 60 + 15); |
| 2011 | /// assert_eq!( |
| 2012 | /// dur.round(options)?, |
| 2013 | /// SignedDuration::from_secs(4 * 60 * 60 + 50 * 60 + 30), |
| 2014 | /// ); |
| 2015 | /// // rounds down |
| 2016 | /// let dur = SignedDuration::from_secs(4 * 60 * 60 + 50 * 60 + 14); |
| 2017 | /// assert_eq!( |
| 2018 | /// dur.round(options)?, |
| 2019 | /// SignedDuration::from_secs(4 * 60 * 60 + 50 * 60), |
| 2020 | /// ); |
| 2021 | /// |
| 2022 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2023 | /// ``` |
| 2024 | /// |
| 2025 | /// # Example: overflow results in an error |
| 2026 | /// |
| 2027 | /// If rounding would result in a value that exceeds a `SignedDuration`'s |
| 2028 | /// minimum or maximum values, then an error occurs: |
| 2029 | /// |
| 2030 | /// ``` |
| 2031 | /// use jiff::{SignedDuration, Unit}; |
| 2032 | /// |
| 2033 | /// assert_eq!( |
| 2034 | /// SignedDuration::MAX.round(Unit::Hour).unwrap_err().to_string(), |
| 2035 | /// "rounding `2562047788015215h 30m 7s 999ms 999µs 999ns` to \ |
| 2036 | /// nearest hour in increments of 1 resulted in \ |
| 2037 | /// 9223372036854777600 seconds, which does not fit into an i64 \ |
| 2038 | /// and thus overflows `SignedDuration`" , |
| 2039 | /// ); |
| 2040 | /// assert_eq!( |
| 2041 | /// SignedDuration::MIN.round(Unit::Hour).unwrap_err().to_string(), |
| 2042 | /// "rounding `2562047788015215h 30m 8s 999ms 999µs 999ns ago` to \ |
| 2043 | /// nearest hour in increments of 1 resulted in \ |
| 2044 | /// -9223372036854777600 seconds, which does not fit into an i64 \ |
| 2045 | /// and thus overflows `SignedDuration`" , |
| 2046 | /// ); |
| 2047 | /// ``` |
| 2048 | /// |
| 2049 | /// # Example: rounding with a calendar unit results in an error |
| 2050 | /// |
| 2051 | /// ``` |
| 2052 | /// use jiff::{SignedDuration, Unit}; |
| 2053 | /// |
| 2054 | /// assert_eq!( |
| 2055 | /// SignedDuration::ZERO.round(Unit::Day).unwrap_err().to_string(), |
| 2056 | /// "rounding `SignedDuration` failed \ |
| 2057 | /// because a calendar unit of days was provided \ |
| 2058 | /// (to round by calendar units, you must use a `Span`)" , |
| 2059 | /// ); |
| 2060 | /// ``` |
| 2061 | #[inline ] |
| 2062 | pub fn round<R: Into<SignedDurationRound>>( |
| 2063 | self, |
| 2064 | options: R, |
| 2065 | ) -> Result<SignedDuration, Error> { |
| 2066 | let options: SignedDurationRound = options.into(); |
| 2067 | options.round(self) |
| 2068 | } |
| 2069 | } |
| 2070 | |
| 2071 | impl core::fmt::Display for SignedDuration { |
| 2072 | #[inline ] |
| 2073 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 2074 | use crate::fmt::StdFmtWrite; |
| 2075 | |
| 2076 | if f.alternate() { |
| 2077 | friendly::DEFAULT_SPAN_PRINTER |
| 2078 | .print_duration(self, StdFmtWrite(f)) |
| 2079 | .map_err(|_| core::fmt::Error) |
| 2080 | } else { |
| 2081 | temporal::DEFAULT_SPAN_PRINTER |
| 2082 | .print_duration(self, StdFmtWrite(f)) |
| 2083 | .map_err(|_| core::fmt::Error) |
| 2084 | } |
| 2085 | } |
| 2086 | } |
| 2087 | |
| 2088 | impl core::fmt::Debug for SignedDuration { |
| 2089 | #[inline ] |
| 2090 | fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { |
| 2091 | use crate::fmt::StdFmtWrite; |
| 2092 | |
| 2093 | if f.alternate() { |
| 2094 | if self.subsec_nanos() == 0 { |
| 2095 | write!(f, " {}s" , self.as_secs()) |
| 2096 | } else if self.as_secs() == 0 { |
| 2097 | write!(f, " {}ns" , self.subsec_nanos()) |
| 2098 | } else { |
| 2099 | write!( |
| 2100 | f, |
| 2101 | " {}s {}ns" , |
| 2102 | self.as_secs(), |
| 2103 | self.subsec_nanos().unsigned_abs() |
| 2104 | ) |
| 2105 | } |
| 2106 | } else { |
| 2107 | friendly::DEFAULT_SPAN_PRINTER |
| 2108 | .print_duration(self, StdFmtWrite(f)) |
| 2109 | .map_err(|_| core::fmt::Error) |
| 2110 | } |
| 2111 | } |
| 2112 | } |
| 2113 | |
| 2114 | impl TryFrom<Duration> for SignedDuration { |
| 2115 | type Error = Error; |
| 2116 | |
| 2117 | fn try_from(d: Duration) -> Result<SignedDuration, Error> { |
| 2118 | let secs: i64 = i64::try_from(d.as_secs()).map_err(|_| { |
| 2119 | err!("seconds in unsigned duration {d:?} overflowed i64" ) |
| 2120 | })?; |
| 2121 | // Guaranteed to succeed since 0<=nanos<=999,999,999. |
| 2122 | let nanos: i32 = i32::try_from(d.subsec_nanos()).unwrap(); |
| 2123 | Ok(SignedDuration::new_unchecked(secs, nanos)) |
| 2124 | } |
| 2125 | } |
| 2126 | |
| 2127 | impl TryFrom<SignedDuration> for Duration { |
| 2128 | type Error = Error; |
| 2129 | |
| 2130 | fn try_from(sd: SignedDuration) -> Result<Duration, Error> { |
| 2131 | // This isn't needed, but improves error messages. |
| 2132 | if sd.is_negative() { |
| 2133 | return Err(err!( |
| 2134 | "cannot convert negative duration ` {sd:?}` to \ |
| 2135 | unsigned `std::time::Duration`" , |
| 2136 | )); |
| 2137 | } |
| 2138 | let secs: u64 = u64::try_from(sd.as_secs()).map_err(|_| { |
| 2139 | err!("seconds in signed duration {sd:?} overflowed u64" ) |
| 2140 | })?; |
| 2141 | // Guaranteed to succeed because the above only succeeds |
| 2142 | // when `sd` is non-negative. And when `sd` is non-negative, |
| 2143 | // we are guaranteed that 0<=nanos<=999,999,999. |
| 2144 | let nanos: u32 = u32::try_from(sd.subsec_nanos()).unwrap(); |
| 2145 | Ok(Duration::new(secs, nanos)) |
| 2146 | } |
| 2147 | } |
| 2148 | |
| 2149 | impl From<Offset> for SignedDuration { |
| 2150 | fn from(offset: Offset) -> SignedDuration { |
| 2151 | SignedDuration::from_secs(i64::from(offset.seconds())) |
| 2152 | } |
| 2153 | } |
| 2154 | |
| 2155 | impl core::str::FromStr for SignedDuration { |
| 2156 | type Err = Error; |
| 2157 | |
| 2158 | #[inline ] |
| 2159 | fn from_str(string: &str) -> Result<SignedDuration, Error> { |
| 2160 | parse_iso_or_friendly(string.as_bytes()) |
| 2161 | } |
| 2162 | } |
| 2163 | |
| 2164 | impl core::ops::Neg for SignedDuration { |
| 2165 | type Output = SignedDuration; |
| 2166 | |
| 2167 | #[inline ] |
| 2168 | fn neg(self) -> SignedDuration { |
| 2169 | self.checked_neg().expect(msg:"overflow when negating signed duration" ) |
| 2170 | } |
| 2171 | } |
| 2172 | |
| 2173 | impl core::ops::Add for SignedDuration { |
| 2174 | type Output = SignedDuration; |
| 2175 | |
| 2176 | #[inline ] |
| 2177 | fn add(self, rhs: SignedDuration) -> SignedDuration { |
| 2178 | self.checked_add(rhs).expect(msg:"overflow when adding signed durations" ) |
| 2179 | } |
| 2180 | } |
| 2181 | |
| 2182 | impl core::ops::AddAssign for SignedDuration { |
| 2183 | #[inline ] |
| 2184 | fn add_assign(&mut self, rhs: SignedDuration) { |
| 2185 | *self = *self + rhs; |
| 2186 | } |
| 2187 | } |
| 2188 | |
| 2189 | impl core::ops::Sub for SignedDuration { |
| 2190 | type Output = SignedDuration; |
| 2191 | |
| 2192 | #[inline ] |
| 2193 | fn sub(self, rhs: SignedDuration) -> SignedDuration { |
| 2194 | self.checked_sub(rhs) |
| 2195 | .expect(msg:"overflow when subtracting signed durations" ) |
| 2196 | } |
| 2197 | } |
| 2198 | |
| 2199 | impl core::ops::SubAssign for SignedDuration { |
| 2200 | #[inline ] |
| 2201 | fn sub_assign(&mut self, rhs: SignedDuration) { |
| 2202 | *self = *self - rhs; |
| 2203 | } |
| 2204 | } |
| 2205 | |
| 2206 | impl core::ops::Mul<i32> for SignedDuration { |
| 2207 | type Output = SignedDuration; |
| 2208 | |
| 2209 | #[inline ] |
| 2210 | fn mul(self, rhs: i32) -> SignedDuration { |
| 2211 | self.checked_mul(rhs) |
| 2212 | .expect(msg:"overflow when multiplying signed duration by scalar" ) |
| 2213 | } |
| 2214 | } |
| 2215 | |
| 2216 | impl core::iter::Sum for SignedDuration { |
| 2217 | fn sum<I: Iterator<Item = Self>>(iter: I) -> Self { |
| 2218 | iter.fold(Self::new(0, 0), |acc: SignedDuration, d: SignedDuration| acc + d) |
| 2219 | } |
| 2220 | } |
| 2221 | |
| 2222 | impl<'a> core::iter::Sum<&'a Self> for SignedDuration { |
| 2223 | fn sum<I: Iterator<Item = &'a Self>>(iter: I) -> Self { |
| 2224 | iter.fold(Self::new(0, 0), |acc: SignedDuration, d: &'a SignedDuration| acc + *d) |
| 2225 | } |
| 2226 | } |
| 2227 | |
| 2228 | impl core::ops::Mul<SignedDuration> for i32 { |
| 2229 | type Output = SignedDuration; |
| 2230 | |
| 2231 | #[inline ] |
| 2232 | fn mul(self, rhs: SignedDuration) -> SignedDuration { |
| 2233 | rhs * self |
| 2234 | } |
| 2235 | } |
| 2236 | |
| 2237 | impl core::ops::MulAssign<i32> for SignedDuration { |
| 2238 | #[inline ] |
| 2239 | fn mul_assign(&mut self, rhs: i32) { |
| 2240 | *self = *self * rhs; |
| 2241 | } |
| 2242 | } |
| 2243 | |
| 2244 | impl core::ops::Div<i32> for SignedDuration { |
| 2245 | type Output = SignedDuration; |
| 2246 | |
| 2247 | #[inline ] |
| 2248 | fn div(self, rhs: i32) -> SignedDuration { |
| 2249 | self.checked_div(rhs) |
| 2250 | .expect(msg:"overflow when dividing signed duration by scalar" ) |
| 2251 | } |
| 2252 | } |
| 2253 | |
| 2254 | impl core::ops::DivAssign<i32> for SignedDuration { |
| 2255 | #[inline ] |
| 2256 | fn div_assign(&mut self, rhs: i32) { |
| 2257 | *self = *self / rhs; |
| 2258 | } |
| 2259 | } |
| 2260 | |
| 2261 | #[cfg (feature = "serde" )] |
| 2262 | impl serde::Serialize for SignedDuration { |
| 2263 | #[inline ] |
| 2264 | fn serialize<S: serde::Serializer>( |
| 2265 | &self, |
| 2266 | serializer: S, |
| 2267 | ) -> Result<S::Ok, S::Error> { |
| 2268 | serializer.collect_str(self) |
| 2269 | } |
| 2270 | } |
| 2271 | |
| 2272 | #[cfg (feature = "serde" )] |
| 2273 | impl<'de> serde::Deserialize<'de> for SignedDuration { |
| 2274 | #[inline ] |
| 2275 | fn deserialize<D: serde::Deserializer<'de>>( |
| 2276 | deserializer: D, |
| 2277 | ) -> Result<SignedDuration, D::Error> { |
| 2278 | use serde::de; |
| 2279 | |
| 2280 | struct SignedDurationVisitor; |
| 2281 | |
| 2282 | impl<'de> de::Visitor<'de> for SignedDurationVisitor { |
| 2283 | type Value = SignedDuration; |
| 2284 | |
| 2285 | fn expecting( |
| 2286 | &self, |
| 2287 | f: &mut core::fmt::Formatter, |
| 2288 | ) -> core::fmt::Result { |
| 2289 | f.write_str("a signed duration string" ) |
| 2290 | } |
| 2291 | |
| 2292 | #[inline ] |
| 2293 | fn visit_bytes<E: de::Error>( |
| 2294 | self, |
| 2295 | value: &[u8], |
| 2296 | ) -> Result<SignedDuration, E> { |
| 2297 | parse_iso_or_friendly(value).map_err(de::Error::custom) |
| 2298 | } |
| 2299 | |
| 2300 | #[inline ] |
| 2301 | fn visit_str<E: de::Error>( |
| 2302 | self, |
| 2303 | value: &str, |
| 2304 | ) -> Result<SignedDuration, E> { |
| 2305 | self.visit_bytes(value.as_bytes()) |
| 2306 | } |
| 2307 | } |
| 2308 | |
| 2309 | deserializer.deserialize_str(SignedDurationVisitor) |
| 2310 | } |
| 2311 | } |
| 2312 | |
| 2313 | /// Options for [`SignedDuration::round`]. |
| 2314 | /// |
| 2315 | /// This type provides a way to configure the rounding of a duration. This |
| 2316 | /// includes setting the smallest unit (i.e., the unit to round), the rounding |
| 2317 | /// increment and the rounding mode (e.g., "ceil" or "truncate"). |
| 2318 | /// |
| 2319 | /// `SignedDuration::round` accepts anything that implements |
| 2320 | /// `Into<SignedDurationRound>`. There are a few key trait implementations that |
| 2321 | /// make this convenient: |
| 2322 | /// |
| 2323 | /// * `From<Unit> for SignedDurationRound` will construct a rounding |
| 2324 | /// configuration where the smallest unit is set to the one given. |
| 2325 | /// * `From<(Unit, i64)> for SignedDurationRound` will construct a rounding |
| 2326 | /// configuration where the smallest unit and the rounding increment are set to |
| 2327 | /// the ones given. |
| 2328 | /// |
| 2329 | /// In order to set other options (like the rounding mode), one must explicitly |
| 2330 | /// create a `SignedDurationRound` and pass it to `SignedDuration::round`. |
| 2331 | /// |
| 2332 | /// # Example |
| 2333 | /// |
| 2334 | /// This example shows how to always round up to the nearest half-minute: |
| 2335 | /// |
| 2336 | /// ``` |
| 2337 | /// use jiff::{RoundMode, SignedDuration, SignedDurationRound, Unit}; |
| 2338 | /// |
| 2339 | /// let dur = SignedDuration::new(4 * 60 * 60 + 17 * 60 + 1, 123_456_789); |
| 2340 | /// let rounded = dur.round( |
| 2341 | /// SignedDurationRound::new() |
| 2342 | /// .smallest(Unit::Second) |
| 2343 | /// .increment(30) |
| 2344 | /// .mode(RoundMode::Expand), |
| 2345 | /// )?; |
| 2346 | /// assert_eq!(rounded, SignedDuration::from_secs(4 * 60 * 60 + 17 * 60 + 30)); |
| 2347 | /// |
| 2348 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2349 | /// ``` |
| 2350 | #[derive (Clone, Copy, Debug)] |
| 2351 | pub struct SignedDurationRound { |
| 2352 | smallest: Unit, |
| 2353 | mode: RoundMode, |
| 2354 | increment: i64, |
| 2355 | } |
| 2356 | |
| 2357 | impl SignedDurationRound { |
| 2358 | /// Create a new default configuration for rounding a signed duration via |
| 2359 | /// [`SignedDuration::round`]. |
| 2360 | /// |
| 2361 | /// The default configuration does no rounding. |
| 2362 | #[inline ] |
| 2363 | pub fn new() -> SignedDurationRound { |
| 2364 | SignedDurationRound { |
| 2365 | smallest: Unit::Nanosecond, |
| 2366 | mode: RoundMode::HalfExpand, |
| 2367 | increment: 1, |
| 2368 | } |
| 2369 | } |
| 2370 | |
| 2371 | /// Set the smallest units allowed in the duration returned. These are the |
| 2372 | /// units that the duration is rounded to. |
| 2373 | /// |
| 2374 | /// # Errors |
| 2375 | /// |
| 2376 | /// The unit must be [`Unit::Hour`] or smaller. |
| 2377 | /// |
| 2378 | /// # Example |
| 2379 | /// |
| 2380 | /// A basic example that rounds to the nearest minute: |
| 2381 | /// |
| 2382 | /// ``` |
| 2383 | /// use jiff::{SignedDuration, Unit}; |
| 2384 | /// |
| 2385 | /// let duration = SignedDuration::new(15 * 60 + 46, 0); |
| 2386 | /// assert_eq!(duration.round(Unit::Minute)?, SignedDuration::from_mins(16)); |
| 2387 | /// |
| 2388 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2389 | /// ``` |
| 2390 | #[inline ] |
| 2391 | pub fn smallest(self, unit: Unit) -> SignedDurationRound { |
| 2392 | SignedDurationRound { smallest: unit, ..self } |
| 2393 | } |
| 2394 | |
| 2395 | /// Set the rounding mode. |
| 2396 | /// |
| 2397 | /// This defaults to [`RoundMode::HalfExpand`], which makes rounding work |
| 2398 | /// like how you were taught in school. |
| 2399 | /// |
| 2400 | /// # Example |
| 2401 | /// |
| 2402 | /// A basic example that rounds to the nearest minute, but changing its |
| 2403 | /// rounding mode to truncation: |
| 2404 | /// |
| 2405 | /// ``` |
| 2406 | /// use jiff::{RoundMode, SignedDuration, SignedDurationRound, Unit}; |
| 2407 | /// |
| 2408 | /// let duration = SignedDuration::new(15 * 60 + 46, 0); |
| 2409 | /// assert_eq!( |
| 2410 | /// duration.round(SignedDurationRound::new() |
| 2411 | /// .smallest(Unit::Minute) |
| 2412 | /// .mode(RoundMode::Trunc), |
| 2413 | /// )?, |
| 2414 | /// // The default round mode does rounding like |
| 2415 | /// // how you probably learned in school, and would |
| 2416 | /// // result in rounding up to 16 minutes. But we |
| 2417 | /// // change it to truncation here, which makes it |
| 2418 | /// // round down. |
| 2419 | /// SignedDuration::from_mins(15), |
| 2420 | /// ); |
| 2421 | /// |
| 2422 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2423 | /// ``` |
| 2424 | #[inline ] |
| 2425 | pub fn mode(self, mode: RoundMode) -> SignedDurationRound { |
| 2426 | SignedDurationRound { mode, ..self } |
| 2427 | } |
| 2428 | |
| 2429 | /// Set the rounding increment for the smallest unit. |
| 2430 | /// |
| 2431 | /// The default value is `1`. Other values permit rounding the smallest |
| 2432 | /// unit to the nearest integer increment specified. For example, if the |
| 2433 | /// smallest unit is set to [`Unit::Minute`], then a rounding increment of |
| 2434 | /// `30` would result in rounding in increments of a half hour. That is, |
| 2435 | /// the only minute value that could result would be `0` or `30`. |
| 2436 | /// |
| 2437 | /// # Errors |
| 2438 | /// |
| 2439 | /// The rounding increment must divide evenly into the next highest unit |
| 2440 | /// after the smallest unit configured (and must not be equivalent to it). |
| 2441 | /// For example, if the smallest unit is [`Unit::Nanosecond`], then *some* |
| 2442 | /// of the valid values for the rounding increment are `1`, `2`, `4`, `5`, |
| 2443 | /// `100` and `500`. Namely, any integer that divides evenly into `1,000` |
| 2444 | /// nanoseconds since there are `1,000` nanoseconds in the next highest |
| 2445 | /// unit (microseconds). |
| 2446 | /// |
| 2447 | /// # Example |
| 2448 | /// |
| 2449 | /// This shows how to round a duration to the nearest 5 minute increment: |
| 2450 | /// |
| 2451 | /// ``` |
| 2452 | /// use jiff::{SignedDuration, Unit}; |
| 2453 | /// |
| 2454 | /// let duration = SignedDuration::new(4 * 60 * 60 + 2 * 60 + 30, 0); |
| 2455 | /// assert_eq!( |
| 2456 | /// duration.round((Unit::Minute, 5))?, |
| 2457 | /// SignedDuration::new(4 * 60 * 60 + 5 * 60, 0), |
| 2458 | /// ); |
| 2459 | /// |
| 2460 | /// # Ok::<(), Box<dyn std::error::Error>>(()) |
| 2461 | /// ``` |
| 2462 | #[inline ] |
| 2463 | pub fn increment(self, increment: i64) -> SignedDurationRound { |
| 2464 | SignedDurationRound { increment, ..self } |
| 2465 | } |
| 2466 | |
| 2467 | /// Returns the `smallest` unit configuration. |
| 2468 | pub(crate) fn get_smallest(&self) -> Unit { |
| 2469 | self.smallest |
| 2470 | } |
| 2471 | |
| 2472 | /// Does the actual duration rounding. |
| 2473 | fn round(&self, dur: SignedDuration) -> Result<SignedDuration, Error> { |
| 2474 | if self.smallest > Unit::Hour { |
| 2475 | return Err(err!( |
| 2476 | "rounding `SignedDuration` failed because \ |
| 2477 | a calendar unit of {plural} was provided \ |
| 2478 | (to round by calendar units, you must use a `Span`)" , |
| 2479 | plural = self.smallest.plural(), |
| 2480 | )); |
| 2481 | } |
| 2482 | let nanos = t::NoUnits128::new_unchecked(dur.as_nanos()); |
| 2483 | let increment = t::NoUnits::new_unchecked(self.increment); |
| 2484 | let rounded = self.mode.round_by_unit_in_nanoseconds( |
| 2485 | nanos, |
| 2486 | self.smallest, |
| 2487 | increment, |
| 2488 | ); |
| 2489 | |
| 2490 | let seconds = rounded / t::NANOS_PER_SECOND; |
| 2491 | let seconds = |
| 2492 | t::NoUnits::try_rfrom("seconds" , seconds).map_err(|_| { |
| 2493 | err!( |
| 2494 | "rounding ` {dur:#}` to nearest {singular} in increments \ |
| 2495 | of {increment} resulted in {seconds} seconds, which does \ |
| 2496 | not fit into an i64 and thus overflows `SignedDuration`" , |
| 2497 | singular = self.smallest.singular(), |
| 2498 | ) |
| 2499 | })?; |
| 2500 | let subsec_nanos = rounded % t::NANOS_PER_SECOND; |
| 2501 | // OK because % 1_000_000_000 above guarantees that the result fits |
| 2502 | // in a i32. |
| 2503 | let subsec_nanos = i32::try_from(subsec_nanos).unwrap(); |
| 2504 | Ok(SignedDuration::new(seconds.get(), subsec_nanos)) |
| 2505 | } |
| 2506 | } |
| 2507 | |
| 2508 | impl Default for SignedDurationRound { |
| 2509 | fn default() -> SignedDurationRound { |
| 2510 | SignedDurationRound::new() |
| 2511 | } |
| 2512 | } |
| 2513 | |
| 2514 | impl From<Unit> for SignedDurationRound { |
| 2515 | fn from(unit: Unit) -> SignedDurationRound { |
| 2516 | SignedDurationRound::default().smallest(unit) |
| 2517 | } |
| 2518 | } |
| 2519 | |
| 2520 | impl From<(Unit, i64)> for SignedDurationRound { |
| 2521 | fn from((unit: Unit, increment: i64): (Unit, i64)) -> SignedDurationRound { |
| 2522 | SignedDurationRound::default().smallest(unit).increment(increment) |
| 2523 | } |
| 2524 | } |
| 2525 | |
| 2526 | /// A common parsing function that works in bytes. |
| 2527 | /// |
| 2528 | /// Specifically, this parses either an ISO 8601 duration into a |
| 2529 | /// `SignedDuration` or a "friendly" duration into a `SignedDuration`. It also |
| 2530 | /// tries to give decent error messages. |
| 2531 | /// |
| 2532 | /// This works because the friendly and ISO 8601 formats have non-overlapping |
| 2533 | /// prefixes. Both can start with a `+` or `-`, but aside from that, an ISO |
| 2534 | /// 8601 duration _always_ has to start with a `P` or `p`. We can utilize this |
| 2535 | /// property to very quickly determine how to parse the input. We just need to |
| 2536 | /// handle the possibly ambiguous case with a leading sign a little carefully |
| 2537 | /// in order to ensure good error messages. |
| 2538 | /// |
| 2539 | /// (We do the same thing for `Span`.) |
| 2540 | #[cfg_attr (feature = "perf-inline" , inline(always))] |
| 2541 | fn parse_iso_or_friendly(bytes: &[u8]) -> Result<SignedDuration, Error> { |
| 2542 | if bytes.is_empty() { |
| 2543 | return Err(err!( |
| 2544 | "an empty string is not a valid `SignedDuration`, \ |
| 2545 | expected either a ISO 8601 or Jiff's 'friendly' \ |
| 2546 | format" , |
| 2547 | )); |
| 2548 | } |
| 2549 | let mut first = bytes[0]; |
| 2550 | if first == b'+' || first == b'-' { |
| 2551 | if bytes.len() == 1 { |
| 2552 | return Err(err!( |
| 2553 | "found nothing after sign ` {sign}`, \ |
| 2554 | which is not a valid `SignedDuration`, \ |
| 2555 | expected either a ISO 8601 or Jiff's 'friendly' \ |
| 2556 | format" , |
| 2557 | sign = escape::Byte(first), |
| 2558 | )); |
| 2559 | } |
| 2560 | first = bytes[1]; |
| 2561 | } |
| 2562 | if first == b'P' || first == b'p' { |
| 2563 | temporal::DEFAULT_SPAN_PARSER.parse_duration(bytes) |
| 2564 | } else { |
| 2565 | friendly::DEFAULT_SPAN_PARSER.parse_duration(bytes) |
| 2566 | } |
| 2567 | } |
| 2568 | |
| 2569 | #[cfg (test)] |
| 2570 | mod tests { |
| 2571 | use std::io::Cursor; |
| 2572 | |
| 2573 | use alloc::string::ToString; |
| 2574 | |
| 2575 | use super::*; |
| 2576 | |
| 2577 | #[test ] |
| 2578 | fn new() { |
| 2579 | let d = SignedDuration::new(12, i32::MAX); |
| 2580 | assert_eq!(d.as_secs(), 14); |
| 2581 | assert_eq!(d.subsec_nanos(), 147_483_647); |
| 2582 | |
| 2583 | let d = SignedDuration::new(-12, i32::MIN); |
| 2584 | assert_eq!(d.as_secs(), -14); |
| 2585 | assert_eq!(d.subsec_nanos(), -147_483_648); |
| 2586 | |
| 2587 | let d = SignedDuration::new(i64::MAX, i32::MIN); |
| 2588 | assert_eq!(d.as_secs(), i64::MAX - 3); |
| 2589 | assert_eq!(d.subsec_nanos(), 852_516_352); |
| 2590 | |
| 2591 | let d = SignedDuration::new(i64::MIN, i32::MAX); |
| 2592 | assert_eq!(d.as_secs(), i64::MIN + 3); |
| 2593 | assert_eq!(d.subsec_nanos(), -852_516_353); |
| 2594 | } |
| 2595 | |
| 2596 | #[test ] |
| 2597 | #[should_panic ] |
| 2598 | fn new_fail_positive() { |
| 2599 | SignedDuration::new(i64::MAX, 1_000_000_000); |
| 2600 | } |
| 2601 | |
| 2602 | #[test ] |
| 2603 | #[should_panic ] |
| 2604 | fn new_fail_negative() { |
| 2605 | SignedDuration::new(i64::MIN, -1_000_000_000); |
| 2606 | } |
| 2607 | |
| 2608 | #[test ] |
| 2609 | fn from_hours_limits() { |
| 2610 | let d = SignedDuration::from_hours(2_562_047_788_015_215); |
| 2611 | assert_eq!(d.as_secs(), 9223372036854774000); |
| 2612 | |
| 2613 | let d = SignedDuration::from_hours(-2_562_047_788_015_215); |
| 2614 | assert_eq!(d.as_secs(), -9223372036854774000); |
| 2615 | } |
| 2616 | |
| 2617 | #[test ] |
| 2618 | #[should_panic ] |
| 2619 | fn from_hours_fail_positive() { |
| 2620 | SignedDuration::from_hours(2_562_047_788_015_216); |
| 2621 | } |
| 2622 | |
| 2623 | #[test ] |
| 2624 | #[should_panic ] |
| 2625 | fn from_hours_fail_negative() { |
| 2626 | SignedDuration::from_hours(-2_562_047_788_015_216); |
| 2627 | } |
| 2628 | |
| 2629 | #[test ] |
| 2630 | fn from_minutes_limits() { |
| 2631 | let d = SignedDuration::from_mins(153_722_867_280_912_930); |
| 2632 | assert_eq!(d.as_secs(), 9223372036854775800); |
| 2633 | |
| 2634 | let d = SignedDuration::from_mins(-153_722_867_280_912_930); |
| 2635 | assert_eq!(d.as_secs(), -9223372036854775800); |
| 2636 | } |
| 2637 | |
| 2638 | #[test ] |
| 2639 | #[should_panic ] |
| 2640 | fn from_minutes_fail_positive() { |
| 2641 | SignedDuration::from_mins(153_722_867_280_912_931); |
| 2642 | } |
| 2643 | |
| 2644 | #[test ] |
| 2645 | #[should_panic ] |
| 2646 | fn from_minutes_fail_negative() { |
| 2647 | SignedDuration::from_mins(-153_722_867_280_912_931); |
| 2648 | } |
| 2649 | |
| 2650 | #[test ] |
| 2651 | fn add() { |
| 2652 | let add = |(secs1, nanos1): (i64, i32), |
| 2653 | (secs2, nanos2): (i64, i32)| |
| 2654 | -> (i64, i32) { |
| 2655 | let d1 = SignedDuration::new(secs1, nanos1); |
| 2656 | let d2 = SignedDuration::new(secs2, nanos2); |
| 2657 | let sum = d1.checked_add(d2).unwrap(); |
| 2658 | (sum.as_secs(), sum.subsec_nanos()) |
| 2659 | }; |
| 2660 | |
| 2661 | assert_eq!(add((1, 1), (1, 1)), (2, 2)); |
| 2662 | assert_eq!(add((1, 1), (-1, -1)), (0, 0)); |
| 2663 | assert_eq!(add((-1, -1), (1, 1)), (0, 0)); |
| 2664 | assert_eq!(add((-1, -1), (-1, -1)), (-2, -2)); |
| 2665 | |
| 2666 | assert_eq!(add((1, 500_000_000), (1, 500_000_000)), (3, 0)); |
| 2667 | assert_eq!(add((-1, -500_000_000), (-1, -500_000_000)), (-3, 0)); |
| 2668 | assert_eq!( |
| 2669 | add((5, 200_000_000), (-1, -500_000_000)), |
| 2670 | (3, 700_000_000) |
| 2671 | ); |
| 2672 | assert_eq!( |
| 2673 | add((-5, -200_000_000), (1, 500_000_000)), |
| 2674 | (-3, -700_000_000) |
| 2675 | ); |
| 2676 | } |
| 2677 | |
| 2678 | #[test ] |
| 2679 | fn add_overflow() { |
| 2680 | let add = |(secs1, nanos1): (i64, i32), |
| 2681 | (secs2, nanos2): (i64, i32)| |
| 2682 | -> Option<(i64, i32)> { |
| 2683 | let d1 = SignedDuration::new(secs1, nanos1); |
| 2684 | let d2 = SignedDuration::new(secs2, nanos2); |
| 2685 | d1.checked_add(d2).map(|d| (d.as_secs(), d.subsec_nanos())) |
| 2686 | }; |
| 2687 | assert_eq!(None, add((i64::MAX, 0), (1, 0))); |
| 2688 | assert_eq!(None, add((i64::MIN, 0), (-1, 0))); |
| 2689 | assert_eq!(None, add((i64::MAX, 1), (0, 999_999_999))); |
| 2690 | assert_eq!(None, add((i64::MIN, -1), (0, -999_999_999))); |
| 2691 | } |
| 2692 | |
| 2693 | /// # `serde` deserializer compatibility test |
| 2694 | /// |
| 2695 | /// Serde YAML used to be unable to deserialize `jiff` types, |
| 2696 | /// as deserializing from bytes is not supported by the deserializer. |
| 2697 | /// |
| 2698 | /// - <https://github.com/BurntSushi/jiff/issues/138> |
| 2699 | /// - <https://github.com/BurntSushi/jiff/discussions/148> |
| 2700 | #[test ] |
| 2701 | fn signed_duration_deserialize_yaml() { |
| 2702 | let expected = SignedDuration::from_secs(123456789); |
| 2703 | |
| 2704 | let deserialized: SignedDuration = |
| 2705 | serde_yaml::from_str("PT34293h33m9s" ).unwrap(); |
| 2706 | |
| 2707 | assert_eq!(deserialized, expected); |
| 2708 | |
| 2709 | let deserialized: SignedDuration = |
| 2710 | serde_yaml::from_slice("PT34293h33m9s" .as_bytes()).unwrap(); |
| 2711 | |
| 2712 | assert_eq!(deserialized, expected); |
| 2713 | |
| 2714 | let cursor = Cursor::new(b"PT34293h33m9s" ); |
| 2715 | let deserialized: SignedDuration = |
| 2716 | serde_yaml::from_reader(cursor).unwrap(); |
| 2717 | |
| 2718 | assert_eq!(deserialized, expected); |
| 2719 | } |
| 2720 | |
| 2721 | #[test ] |
| 2722 | fn from_str() { |
| 2723 | let p = |s: &str| -> Result<SignedDuration, Error> { s.parse() }; |
| 2724 | |
| 2725 | insta::assert_snapshot!( |
| 2726 | p("1 hour" ).unwrap(), |
| 2727 | @"PT1H" , |
| 2728 | ); |
| 2729 | insta::assert_snapshot!( |
| 2730 | p("+1 hour" ).unwrap(), |
| 2731 | @"PT1H" , |
| 2732 | ); |
| 2733 | insta::assert_snapshot!( |
| 2734 | p("-1 hour" ).unwrap(), |
| 2735 | @"-PT1H" , |
| 2736 | ); |
| 2737 | insta::assert_snapshot!( |
| 2738 | p("PT1h" ).unwrap(), |
| 2739 | @"PT1H" , |
| 2740 | ); |
| 2741 | insta::assert_snapshot!( |
| 2742 | p("+PT1h" ).unwrap(), |
| 2743 | @"PT1H" , |
| 2744 | ); |
| 2745 | insta::assert_snapshot!( |
| 2746 | p("-PT1h" ).unwrap(), |
| 2747 | @"-PT1H" , |
| 2748 | ); |
| 2749 | |
| 2750 | insta::assert_snapshot!( |
| 2751 | p("" ).unwrap_err(), |
| 2752 | @"an empty string is not a valid `SignedDuration`, expected either a ISO 8601 or Jiff's 'friendly' format" , |
| 2753 | ); |
| 2754 | insta::assert_snapshot!( |
| 2755 | p("+" ).unwrap_err(), |
| 2756 | @"found nothing after sign `+`, which is not a valid `SignedDuration`, expected either a ISO 8601 or Jiff's 'friendly' format" , |
| 2757 | ); |
| 2758 | insta::assert_snapshot!( |
| 2759 | p("-" ).unwrap_err(), |
| 2760 | @"found nothing after sign `-`, which is not a valid `SignedDuration`, expected either a ISO 8601 or Jiff's 'friendly' format" , |
| 2761 | ); |
| 2762 | } |
| 2763 | |
| 2764 | #[test ] |
| 2765 | fn serde_deserialize() { |
| 2766 | let p = |s: &str| -> Result<SignedDuration, serde_json::Error> { |
| 2767 | serde_json::from_str(&alloc::format!(" \"{s} \"" )) |
| 2768 | }; |
| 2769 | |
| 2770 | insta::assert_snapshot!( |
| 2771 | p("1 hour" ).unwrap(), |
| 2772 | @"PT1H" , |
| 2773 | ); |
| 2774 | insta::assert_snapshot!( |
| 2775 | p("+1 hour" ).unwrap(), |
| 2776 | @"PT1H" , |
| 2777 | ); |
| 2778 | insta::assert_snapshot!( |
| 2779 | p("-1 hour" ).unwrap(), |
| 2780 | @"-PT1H" , |
| 2781 | ); |
| 2782 | insta::assert_snapshot!( |
| 2783 | p("PT1h" ).unwrap(), |
| 2784 | @"PT1H" , |
| 2785 | ); |
| 2786 | insta::assert_snapshot!( |
| 2787 | p("+PT1h" ).unwrap(), |
| 2788 | @"PT1H" , |
| 2789 | ); |
| 2790 | insta::assert_snapshot!( |
| 2791 | p("-PT1h" ).unwrap(), |
| 2792 | @"-PT1H" , |
| 2793 | ); |
| 2794 | |
| 2795 | insta::assert_snapshot!( |
| 2796 | p("" ).unwrap_err(), |
| 2797 | @"an empty string is not a valid `SignedDuration`, expected either a ISO 8601 or Jiff's 'friendly' format at line 1 column 2" , |
| 2798 | ); |
| 2799 | insta::assert_snapshot!( |
| 2800 | p("+" ).unwrap_err(), |
| 2801 | @"found nothing after sign `+`, which is not a valid `SignedDuration`, expected either a ISO 8601 or Jiff's 'friendly' format at line 1 column 3" , |
| 2802 | ); |
| 2803 | insta::assert_snapshot!( |
| 2804 | p("-" ).unwrap_err(), |
| 2805 | @"found nothing after sign `-`, which is not a valid `SignedDuration`, expected either a ISO 8601 or Jiff's 'friendly' format at line 1 column 3" , |
| 2806 | ); |
| 2807 | } |
| 2808 | |
| 2809 | /// This test ensures that we can parse `humantime` formatted durations. |
| 2810 | #[test ] |
| 2811 | fn humantime_compatibility_parse() { |
| 2812 | let dur = std::time::Duration::new(26_784, 123_456_789); |
| 2813 | let formatted = humantime::format_duration(dur).to_string(); |
| 2814 | assert_eq!(formatted, "7h 26m 24s 123ms 456us 789ns" ); |
| 2815 | |
| 2816 | let expected = SignedDuration::try_from(dur).unwrap(); |
| 2817 | assert_eq!(formatted.parse::<SignedDuration>().unwrap(), expected); |
| 2818 | } |
| 2819 | |
| 2820 | /// This test ensures that we can print a `SignedDuration` that `humantime` |
| 2821 | /// can parse. |
| 2822 | /// |
| 2823 | /// Note that this isn't the default since `humantime`'s parser is |
| 2824 | /// pretty limited. e.g., It doesn't support things like `nsecs` |
| 2825 | /// despite supporting `secs`. And other reasons. See the docs on |
| 2826 | /// `Designator::HumanTime` for why we sadly provide a custom variant for |
| 2827 | /// it. |
| 2828 | #[test ] |
| 2829 | fn humantime_compatibility_print() { |
| 2830 | static PRINTER: friendly::SpanPrinter = friendly::SpanPrinter::new() |
| 2831 | .designator(friendly::Designator::HumanTime); |
| 2832 | |
| 2833 | let sdur = SignedDuration::new(26_784, 123_456_789); |
| 2834 | let formatted = PRINTER.duration_to_string(&sdur); |
| 2835 | assert_eq!(formatted, "7h 26m 24s 123ms 456us 789ns" ); |
| 2836 | |
| 2837 | let dur = humantime::parse_duration(&formatted).unwrap(); |
| 2838 | let expected = std::time::Duration::try_from(sdur).unwrap(); |
| 2839 | assert_eq!(dur, expected); |
| 2840 | } |
| 2841 | |
| 2842 | #[test ] |
| 2843 | fn using_sum() { |
| 2844 | let signed_durations = [ |
| 2845 | SignedDuration::new(12, 600_000_000), |
| 2846 | SignedDuration::new(13, 400_000_000), |
| 2847 | ]; |
| 2848 | let sum1: SignedDuration = signed_durations.iter().sum(); |
| 2849 | let sum2: SignedDuration = signed_durations.into_iter().sum(); |
| 2850 | |
| 2851 | assert_eq!(sum1, SignedDuration::new(26, 0)); |
| 2852 | assert_eq!(sum2, SignedDuration::new(26, 0)); |
| 2853 | } |
| 2854 | |
| 2855 | #[test ] |
| 2856 | #[should_panic ] |
| 2857 | fn using_sum_when_max_exceeds() { |
| 2858 | [ |
| 2859 | SignedDuration::new(i64::MAX, 0), |
| 2860 | SignedDuration::new(0, 1_000_000_000), |
| 2861 | ] |
| 2862 | .iter() |
| 2863 | .sum::<SignedDuration>(); |
| 2864 | } |
| 2865 | |
| 2866 | /// Regression test for a case where this routine could panic, even though |
| 2867 | /// it is fallible and should never panic. |
| 2868 | /// |
| 2869 | /// This occurred when rounding the fractional part of f64 could result in |
| 2870 | /// a number of nanoseconds equivalent to 1 second. This was then fed to |
| 2871 | /// a `SignedDuration` constructor that expected no nanosecond overflow. |
| 2872 | /// And this triggered a panic in debug mode (and an incorrect result in |
| 2873 | /// release mode). |
| 2874 | /// |
| 2875 | /// See: https://github.com/BurntSushi/jiff/issues/324 |
| 2876 | #[test ] |
| 2877 | fn panic_try_from_secs_f64() { |
| 2878 | let sdur = SignedDuration::try_from_secs_f64(0.999999999999).unwrap(); |
| 2879 | assert_eq!(sdur, SignedDuration::from_secs(1)); |
| 2880 | |
| 2881 | let sdur = SignedDuration::try_from_secs_f64(-0.999999999999).unwrap(); |
| 2882 | assert_eq!(sdur, SignedDuration::from_secs(-1)); |
| 2883 | |
| 2884 | let max = 9223372036854775807.999999999f64; |
| 2885 | let sdur = SignedDuration::try_from_secs_f64(max).unwrap(); |
| 2886 | assert_eq!(sdur, SignedDuration::new(9223372036854775807, 0)); |
| 2887 | |
| 2888 | let min = -9223372036854775808.999999999f64; |
| 2889 | let sdur = SignedDuration::try_from_secs_f64(min).unwrap(); |
| 2890 | assert_eq!(sdur, SignedDuration::new(-9223372036854775808, 0)); |
| 2891 | } |
| 2892 | |
| 2893 | /// See `panic_try_from_secs_f64`. |
| 2894 | /// |
| 2895 | /// Although note that I could never get this to panic. Perhaps the |
| 2896 | /// particulars of f32 prevent the fractional part from rounding up to |
| 2897 | /// 1_000_000_000? |
| 2898 | #[test ] |
| 2899 | fn panic_try_from_secs_f32() { |
| 2900 | let sdur = SignedDuration::try_from_secs_f32(0.999999999).unwrap(); |
| 2901 | assert_eq!(sdur, SignedDuration::from_secs(1)); |
| 2902 | |
| 2903 | let sdur = SignedDuration::try_from_secs_f32(-0.999999999).unwrap(); |
| 2904 | assert_eq!(sdur, SignedDuration::from_secs(-1)); |
| 2905 | |
| 2906 | // Indeed, this is why the above never panicked. |
| 2907 | let x: f32 = 1.0; |
| 2908 | let y: f32 = 0.999999999; |
| 2909 | assert_eq!(x, y); |
| 2910 | assert_eq!(y.fract(), 0.0f32); |
| 2911 | } |
| 2912 | } |
| 2913 | |