1 | use lyon_path::{ |
2 | geom::{euclid, Angle, Vector}, |
3 | traits::PathBuilder, |
4 | ArcFlags, Attributes, Polygon, Winding, |
5 | }; |
6 | |
7 | pub type Point = euclid::default::Point2D<f32>; |
8 | |
9 | /// Adds a sub-path from a polygon but rounds the corners. |
10 | /// |
11 | /// There must be no sub-path in progress when this method is called. |
12 | /// No sub-path is in progress after the method is called. |
13 | pub fn add_rounded_polygon<B: PathBuilder>( |
14 | builder: &mut B, |
15 | polygon: Polygon<Point>, |
16 | radius: f32, |
17 | attributes: Attributes, |
18 | ) { |
19 | if polygon.points.len() < 2 { |
20 | return; |
21 | } |
22 | |
23 | //p points are original polygon points |
24 | //q points are the actual points we will draw lines and arcs between |
25 | let clamped_radius = clamp_radius( |
26 | radius, |
27 | polygon.points[polygon.points.len() - 1], |
28 | polygon.points[0], |
29 | polygon.points[1], |
30 | ); |
31 | let q_first = get_point_between(polygon.points[0], polygon.points[1], clamped_radius); |
32 | |
33 | //We begin on the line just after the first point |
34 | builder.begin(q_first, attributes); |
35 | |
36 | for index in 0..polygon.points.len() { |
37 | let p_current = polygon.points[index]; |
38 | let p_next = polygon.points[(index + 1) % polygon.points.len()]; |
39 | let p_after_next = polygon.points[(index + 2) % polygon.points.len()]; |
40 | |
41 | let clamped_radius = clamp_radius(radius, p_current, p_next, p_after_next); |
42 | |
43 | //q1 is the second point on the line between p_current and p_next |
44 | let q1 = get_point_between(p_next, p_current, clamped_radius); |
45 | //q2 is the first point on the line between p_next and p_after_next |
46 | let q2 = get_point_between(p_next, p_after_next, clamped_radius); |
47 | |
48 | builder.line_to(q1, attributes); |
49 | let turn_winding = get_winding(p_current, p_next, p_after_next); |
50 | |
51 | //Draw the arc near p_next |
52 | arc( |
53 | builder, |
54 | Vector::new(clamped_radius, clamped_radius), |
55 | Angle { radians: 0.0 }, |
56 | ArcFlags { |
57 | large_arc: false, |
58 | sweep: turn_winding == Winding::Negative, |
59 | }, |
60 | q1, |
61 | q2, |
62 | attributes, |
63 | ); |
64 | } |
65 | |
66 | builder.end(polygon.closed); |
67 | } |
68 | |
69 | fn clamp_radius(radius: f32, p_previous: Point, p_current: Point, p_next: Point) -> f32 { |
70 | let shorter_edge: f32 = ((p_current - p_next).length()).min((p_previous - p_current).length()); |
71 | |
72 | radius.min(shorter_edge * 0.5) |
73 | } |
74 | |
75 | fn get_point_between(p1: Point, p2: Point, radius: f32) -> Point { |
76 | let dist: f32 = p1.distance_to(p2); |
77 | let ratio: f32 = radius / dist; |
78 | |
79 | p1.lerp(other:p2, t:ratio) |
80 | } |
81 | |
82 | fn get_winding(p0: Point, p1: Point, p2: Point) -> Winding { |
83 | let cross: f32 = (p2 - p0).cross(p1 - p0); |
84 | if cross.is_sign_positive() { |
85 | Winding::Positive |
86 | } else { |
87 | Winding::Negative |
88 | } |
89 | } |
90 | |
91 | fn arc<B: PathBuilder>( |
92 | builder: &mut B, |
93 | radii: Vector<f32>, |
94 | x_rotation: Angle<f32>, |
95 | flags: ArcFlags, |
96 | from: Point, |
97 | to: Point, |
98 | attributes: Attributes, |
99 | ) { |
100 | let svg_arc: SvgArc = lyon_path::geom::SvgArc { |
101 | from, |
102 | to, |
103 | radii, |
104 | x_rotation, |
105 | flags, |
106 | }; |
107 | |
108 | if svg_arc.is_straight_line() { |
109 | builder.line_to(to, custom_attributes:attributes); |
110 | } else { |
111 | let geom_arc: Arc = svg_arc.to_arc(); |
112 | geom_arc.for_each_quadratic_bezier(&mut |curve: &QuadraticBezierSegment| { |
113 | builder.quadratic_bezier_to(curve.ctrl, curve.to, custom_attributes:attributes); |
114 | }); |
115 | } |
116 | } |
117 | |
118 | #[test ] |
119 | fn rounded_polygon() { |
120 | use crate::geom::point; |
121 | use crate::rounded_polygon::*; |
122 | use alloc::vec::Vec; |
123 | use euclid::approxeq::ApproxEq; |
124 | |
125 | type Point = euclid::Point2D<f32, euclid::UnknownUnit>; |
126 | type Event = path::Event<Point, Point>; |
127 | let arrow_points = [ |
128 | point(-1.0, -0.3), |
129 | point(0.0, -0.3), |
130 | point(0.0, -1.0), |
131 | point(1.5, 0.0), |
132 | point(0.0, 1.0), |
133 | point(0.0, 0.3), |
134 | point(-1.0, 0.3), |
135 | ]; |
136 | |
137 | let arrow_polygon = Polygon { |
138 | points: &arrow_points, |
139 | closed: true, |
140 | }; |
141 | |
142 | let mut builder = lyon_path::Path::builder(); |
143 | add_rounded_polygon(&mut builder, arrow_polygon, 0.2, lyon_path::NO_ATTRIBUTES); |
144 | let arrow_path = builder.build(); |
145 | |
146 | //check that we have the right ordering of event types |
147 | let actual_events: alloc::vec::Vec<_> = arrow_path.into_iter().collect(); |
148 | |
149 | let actual_event_types = actual_events |
150 | .iter() |
151 | .map(|x| match x { |
152 | Event::Begin { at: _ } => "b" , |
153 | Event::Line { from: _, to: _ } => "l" , |
154 | Event::Quadratic { |
155 | from: _, |
156 | ctrl: _, |
157 | to: _, |
158 | } => "q" , |
159 | Event::Cubic { |
160 | from: _, |
161 | ctrl1: _, |
162 | ctrl2: _, |
163 | to: _, |
164 | } => "c" , |
165 | Event::End { |
166 | last: _, |
167 | first: _, |
168 | close: _, |
169 | } => "e" , |
170 | }) |
171 | .collect::<alloc::vec::Vec<_>>() |
172 | .concat(); |
173 | |
174 | assert_eq!(actual_event_types, "blqqlqqlqqlqqlqqlqqlqqe" ); |
175 | |
176 | let expected_lines = std::vec![ |
177 | (point(-0.8, -0.3), point(-0.2, -0.3)), |
178 | (point(0.0, -0.5), point(0.0, -0.8)), |
179 | (point(0.166, -0.889), point(1.333, -0.111)), |
180 | (point(1.334, 0.111), point(0.166, 0.889)), |
181 | (point(0.0, 0.8), point(0.0, 0.5)), |
182 | (point(-0.2, 0.3), point(-0.8, 0.3)), |
183 | (point(-1.0, 0.1), point(-1.0, -0.1)) |
184 | ]; |
185 | |
186 | //Check that the lines are approximately correct |
187 | let actual_lines: Vec<_> = arrow_path |
188 | .into_iter() |
189 | .filter_map(|event| match event { |
190 | Event::Line { from, to } => Some((from, to)), |
191 | _ => None, |
192 | }) |
193 | .collect(); |
194 | |
195 | for (actual, expected) in actual_lines.into_iter().zip(expected_lines.into_iter()) { |
196 | for (actual_point, expected_point) in [(actual.0, expected.0), (actual.1, expected.1)] { |
197 | assert!(actual_point.approx_eq_eps(&expected_point, &Point::new(0.01, 0.01))) |
198 | } |
199 | } |
200 | |
201 | //Check that each event goes from the end of the previous event |
202 | |
203 | let mut previous = actual_events[0].to(); |
204 | |
205 | for e in actual_events { |
206 | e.from().approx_eq(&previous); |
207 | previous = e.to(); |
208 | } |
209 | } |
210 | |