| 1 | //! Elliptic arc related maths and tools. |
| 2 | |
| 3 | use core::mem::swap; |
| 4 | use core::ops::Range; |
| 5 | |
| 6 | use num_traits::NumCast; |
| 7 | |
| 8 | use crate::scalar::{cast, Float, Scalar}; |
| 9 | use crate::segment::{BoundingBox, Segment}; |
| 10 | use crate::{point, vector, Angle, Box2D, Point, Rotation, Transform, Vector}; |
| 11 | use crate::{CubicBezierSegment, Line, LineSegment, QuadraticBezierSegment}; |
| 12 | |
| 13 | /// An elliptic arc curve segment. |
| 14 | #[derive (Copy, Clone, Debug, PartialEq)] |
| 15 | #[cfg_attr (feature = "serialization" , derive(Serialize, Deserialize))] |
| 16 | pub struct Arc<S> { |
| 17 | pub center: Point<S>, |
| 18 | pub radii: Vector<S>, |
| 19 | pub start_angle: Angle<S>, |
| 20 | pub sweep_angle: Angle<S>, |
| 21 | pub x_rotation: Angle<S>, |
| 22 | } |
| 23 | |
| 24 | /// An elliptic arc curve segment using the SVG's end-point notation. |
| 25 | #[derive (Copy, Clone, Debug, PartialEq)] |
| 26 | #[cfg_attr (feature = "serialization" , derive(Serialize, Deserialize))] |
| 27 | pub struct SvgArc<S> { |
| 28 | pub from: Point<S>, |
| 29 | pub to: Point<S>, |
| 30 | pub radii: Vector<S>, |
| 31 | pub x_rotation: Angle<S>, |
| 32 | pub flags: ArcFlags, |
| 33 | } |
| 34 | |
| 35 | impl<S: Scalar> Arc<S> { |
| 36 | pub fn cast<NewS: NumCast>(self) -> Arc<NewS> { |
| 37 | Arc { |
| 38 | center: self.center.cast(), |
| 39 | radii: self.radii.cast(), |
| 40 | start_angle: self.start_angle.cast(), |
| 41 | sweep_angle: self.sweep_angle.cast(), |
| 42 | x_rotation: self.x_rotation.cast(), |
| 43 | } |
| 44 | } |
| 45 | |
| 46 | /// Create simple circle. |
| 47 | pub fn circle(center: Point<S>, radius: S) -> Self { |
| 48 | Arc { |
| 49 | center, |
| 50 | radii: vector(radius, radius), |
| 51 | start_angle: Angle::zero(), |
| 52 | sweep_angle: Angle::two_pi(), |
| 53 | x_rotation: Angle::zero(), |
| 54 | } |
| 55 | } |
| 56 | |
| 57 | /// Convert from the SVG arc notation. |
| 58 | pub fn from_svg_arc(arc: &SvgArc<S>) -> Arc<S> { |
| 59 | debug_assert!(!arc.from.x.is_nan()); |
| 60 | debug_assert!(!arc.from.y.is_nan()); |
| 61 | debug_assert!(!arc.to.x.is_nan()); |
| 62 | debug_assert!(!arc.to.y.is_nan()); |
| 63 | debug_assert!(!arc.radii.x.is_nan()); |
| 64 | debug_assert!(!arc.radii.y.is_nan()); |
| 65 | debug_assert!(!arc.x_rotation.get().is_nan()); |
| 66 | // The SVG spec specifies what we should do if one of the two |
| 67 | // radii is zero and not the other, but it's better to handle |
| 68 | // this out of arc code and generate a line_to instead of an arc. |
| 69 | assert!(!arc.is_straight_line()); |
| 70 | |
| 71 | let mut rx = S::abs(arc.radii.x); |
| 72 | let mut ry = S::abs(arc.radii.y); |
| 73 | |
| 74 | let xr = arc.x_rotation.get() % (S::TWO * S::PI()); |
| 75 | let cos_phi = Float::cos(xr); |
| 76 | let sin_phi = Float::sin(xr); |
| 77 | let hd_x = (arc.from.x - arc.to.x) / S::TWO; |
| 78 | let hd_y = (arc.from.y - arc.to.y) / S::TWO; |
| 79 | let hs_x = (arc.from.x + arc.to.x) / S::TWO; |
| 80 | let hs_y = (arc.from.y + arc.to.y) / S::TWO; |
| 81 | |
| 82 | // F6.5.1 |
| 83 | let p = Point::new( |
| 84 | cos_phi * hd_x + sin_phi * hd_y, |
| 85 | -sin_phi * hd_x + cos_phi * hd_y, |
| 86 | ); |
| 87 | |
| 88 | // Sanitize the radii. |
| 89 | // If rf > 1 it means the radii are too small for the arc to |
| 90 | // possibly connect the end points. In this situation we scale |
| 91 | // them up according to the formula provided by the SVG spec. |
| 92 | |
| 93 | // F6.6.2 |
| 94 | let rf = p.x * p.x / (rx * rx) + p.y * p.y / (ry * ry); |
| 95 | if rf > S::ONE { |
| 96 | let scale = S::sqrt(rf); |
| 97 | rx *= scale; |
| 98 | ry *= scale; |
| 99 | } |
| 100 | |
| 101 | let rxry = rx * ry; |
| 102 | let rxpy = rx * p.y; |
| 103 | let rypx = ry * p.x; |
| 104 | let sum_of_sq = rxpy * rxpy + rypx * rypx; |
| 105 | |
| 106 | debug_assert_ne!(sum_of_sq, S::ZERO); |
| 107 | |
| 108 | // F6.5.2 |
| 109 | let sign_coe = if arc.flags.large_arc == arc.flags.sweep { |
| 110 | -S::ONE |
| 111 | } else { |
| 112 | S::ONE |
| 113 | }; |
| 114 | let coe = sign_coe * S::sqrt(S::abs((rxry * rxry - sum_of_sq) / sum_of_sq)); |
| 115 | let transformed_cx = coe * rxpy / ry; |
| 116 | let transformed_cy = -coe * rypx / rx; |
| 117 | |
| 118 | // F6.5.3 |
| 119 | let center = point( |
| 120 | cos_phi * transformed_cx - sin_phi * transformed_cy + hs_x, |
| 121 | sin_phi * transformed_cx + cos_phi * transformed_cy + hs_y, |
| 122 | ); |
| 123 | |
| 124 | let start_v: Vector<S> = vector((p.x - transformed_cx) / rx, (p.y - transformed_cy) / ry); |
| 125 | let end_v: Vector<S> = vector((-p.x - transformed_cx) / rx, (-p.y - transformed_cy) / ry); |
| 126 | |
| 127 | let two_pi = S::TWO * S::PI(); |
| 128 | |
| 129 | let start_angle = start_v.angle_from_x_axis(); |
| 130 | |
| 131 | let mut sweep_angle = (end_v.angle_from_x_axis() - start_angle).radians % two_pi; |
| 132 | |
| 133 | if arc.flags.sweep && sweep_angle < S::ZERO { |
| 134 | sweep_angle += two_pi; |
| 135 | } else if !arc.flags.sweep && sweep_angle > S::ZERO { |
| 136 | sweep_angle -= two_pi; |
| 137 | } |
| 138 | |
| 139 | Arc { |
| 140 | center, |
| 141 | radii: vector(rx, ry), |
| 142 | start_angle, |
| 143 | sweep_angle: Angle::radians(sweep_angle), |
| 144 | x_rotation: arc.x_rotation, |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | /// Convert to the SVG arc notation. |
| 149 | pub fn to_svg_arc(&self) -> SvgArc<S> { |
| 150 | let from = self.sample(S::ZERO); |
| 151 | let to = self.sample(S::ONE); |
| 152 | let flags = ArcFlags { |
| 153 | sweep: self.sweep_angle.get() >= S::ZERO, |
| 154 | large_arc: S::abs(self.sweep_angle.get()) >= S::PI(), |
| 155 | }; |
| 156 | SvgArc { |
| 157 | from, |
| 158 | to, |
| 159 | radii: self.radii, |
| 160 | x_rotation: self.x_rotation, |
| 161 | flags, |
| 162 | } |
| 163 | } |
| 164 | |
| 165 | /// Approximate the arc with a sequence of quadratic bézier curves. |
| 166 | #[inline ] |
| 167 | pub fn for_each_quadratic_bezier<F>(&self, cb: &mut F) |
| 168 | where |
| 169 | F: FnMut(&QuadraticBezierSegment<S>), |
| 170 | { |
| 171 | arc_to_quadratic_beziers_with_t(self, &mut |curve, _| cb(curve)); |
| 172 | } |
| 173 | |
| 174 | /// Approximate the arc with a sequence of quadratic bézier curves. |
| 175 | #[inline ] |
| 176 | pub fn for_each_quadratic_bezier_with_t<F>(&self, cb: &mut F) |
| 177 | where |
| 178 | F: FnMut(&QuadraticBezierSegment<S>, Range<S>), |
| 179 | { |
| 180 | arc_to_quadratic_beziers_with_t(self, cb); |
| 181 | } |
| 182 | |
| 183 | /// Approximate the arc with a sequence of cubic bézier curves. |
| 184 | #[inline ] |
| 185 | pub fn for_each_cubic_bezier<F>(&self, cb: &mut F) |
| 186 | where |
| 187 | F: FnMut(&CubicBezierSegment<S>), |
| 188 | { |
| 189 | arc_to_cubic_beziers(self, cb); |
| 190 | } |
| 191 | |
| 192 | /// Sample the curve at t (expecting t between 0 and 1). |
| 193 | #[inline ] |
| 194 | pub fn sample(&self, t: S) -> Point<S> { |
| 195 | let angle = self.get_angle(t); |
| 196 | self.center + sample_ellipse(self.radii, self.x_rotation, angle).to_vector() |
| 197 | } |
| 198 | |
| 199 | #[inline ] |
| 200 | pub fn x(&self, t: S) -> S { |
| 201 | self.sample(t).x |
| 202 | } |
| 203 | |
| 204 | #[inline ] |
| 205 | pub fn y(&self, t: S) -> S { |
| 206 | self.sample(t).y |
| 207 | } |
| 208 | |
| 209 | /// Sample the curve's tangent at t (expecting t between 0 and 1). |
| 210 | #[inline ] |
| 211 | pub fn sample_tangent(&self, t: S) -> Vector<S> { |
| 212 | self.tangent_at_angle(self.get_angle(t)) |
| 213 | } |
| 214 | |
| 215 | /// Sample the curve's angle at t (expecting t between 0 and 1). |
| 216 | #[inline ] |
| 217 | pub fn get_angle(&self, t: S) -> Angle<S> { |
| 218 | self.start_angle + Angle::radians(self.sweep_angle.get() * t) |
| 219 | } |
| 220 | |
| 221 | #[inline ] |
| 222 | pub fn end_angle(&self) -> Angle<S> { |
| 223 | self.start_angle + self.sweep_angle |
| 224 | } |
| 225 | |
| 226 | #[inline ] |
| 227 | pub fn from(&self) -> Point<S> { |
| 228 | self.sample(S::ZERO) |
| 229 | } |
| 230 | |
| 231 | #[inline ] |
| 232 | pub fn to(&self) -> Point<S> { |
| 233 | self.sample(S::ONE) |
| 234 | } |
| 235 | |
| 236 | /// Return the sub-curve inside a given range of t. |
| 237 | /// |
| 238 | /// This is equivalent splitting at the range's end points. |
| 239 | pub fn split_range(&self, t_range: Range<S>) -> Self { |
| 240 | let angle_1 = Angle::radians(self.sweep_angle.get() * t_range.start); |
| 241 | let angle_2 = Angle::radians(self.sweep_angle.get() * t_range.end); |
| 242 | |
| 243 | Arc { |
| 244 | center: self.center, |
| 245 | radii: self.radii, |
| 246 | start_angle: self.start_angle + angle_1, |
| 247 | sweep_angle: angle_2 - angle_1, |
| 248 | x_rotation: self.x_rotation, |
| 249 | } |
| 250 | } |
| 251 | |
| 252 | /// Split this curve into two sub-curves. |
| 253 | pub fn split(&self, t: S) -> (Arc<S>, Arc<S>) { |
| 254 | let split_angle = Angle::radians(self.sweep_angle.get() * t); |
| 255 | ( |
| 256 | Arc { |
| 257 | center: self.center, |
| 258 | radii: self.radii, |
| 259 | start_angle: self.start_angle, |
| 260 | sweep_angle: split_angle, |
| 261 | x_rotation: self.x_rotation, |
| 262 | }, |
| 263 | Arc { |
| 264 | center: self.center, |
| 265 | radii: self.radii, |
| 266 | start_angle: self.start_angle + split_angle, |
| 267 | sweep_angle: self.sweep_angle - split_angle, |
| 268 | x_rotation: self.x_rotation, |
| 269 | }, |
| 270 | ) |
| 271 | } |
| 272 | |
| 273 | /// Return the curve before the split point. |
| 274 | pub fn before_split(&self, t: S) -> Arc<S> { |
| 275 | let split_angle = Angle::radians(self.sweep_angle.get() * t); |
| 276 | Arc { |
| 277 | center: self.center, |
| 278 | radii: self.radii, |
| 279 | start_angle: self.start_angle, |
| 280 | sweep_angle: split_angle, |
| 281 | x_rotation: self.x_rotation, |
| 282 | } |
| 283 | } |
| 284 | |
| 285 | /// Return the curve after the split point. |
| 286 | pub fn after_split(&self, t: S) -> Arc<S> { |
| 287 | let split_angle = Angle::radians(self.sweep_angle.get() * t); |
| 288 | Arc { |
| 289 | center: self.center, |
| 290 | radii: self.radii, |
| 291 | start_angle: self.start_angle + split_angle, |
| 292 | sweep_angle: self.sweep_angle - split_angle, |
| 293 | x_rotation: self.x_rotation, |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | /// Swap the direction of the segment. |
| 298 | pub fn flip(&self) -> Self { |
| 299 | let mut arc = *self; |
| 300 | arc.start_angle += self.sweep_angle; |
| 301 | arc.sweep_angle = -self.sweep_angle; |
| 302 | |
| 303 | arc |
| 304 | } |
| 305 | |
| 306 | /// Approximates the curve with sequence of line segments. |
| 307 | /// |
| 308 | /// The `tolerance` parameter defines the maximum distance between the curve and |
| 309 | /// its approximation. |
| 310 | pub fn for_each_flattened<F>(&self, tolerance: S, callback: &mut F) |
| 311 | where |
| 312 | F: FnMut(&LineSegment<S>), |
| 313 | { |
| 314 | let mut from = self.from(); |
| 315 | let mut iter = *self; |
| 316 | loop { |
| 317 | let t = iter.flattening_step(tolerance); |
| 318 | if t >= S::ONE { |
| 319 | break; |
| 320 | } |
| 321 | iter = iter.after_split(t); |
| 322 | let to = iter.from(); |
| 323 | callback(&LineSegment { from, to }); |
| 324 | from = to; |
| 325 | } |
| 326 | |
| 327 | callback(&LineSegment { |
| 328 | from, |
| 329 | to: self.to(), |
| 330 | }); |
| 331 | } |
| 332 | |
| 333 | /// Approximates the curve with sequence of line segments. |
| 334 | /// |
| 335 | /// The `tolerance` parameter defines the maximum distance between the curve and |
| 336 | /// its approximation. |
| 337 | /// |
| 338 | /// The end of the t parameter range at the final segment is guaranteed to be equal to `1.0`. |
| 339 | pub fn for_each_flattened_with_t<F>(&self, tolerance: S, callback: &mut F) |
| 340 | where |
| 341 | F: FnMut(&LineSegment<S>, Range<S>), |
| 342 | { |
| 343 | let mut iter = *self; |
| 344 | let mut t0 = S::ZERO; |
| 345 | let mut from = self.from(); |
| 346 | loop { |
| 347 | let step = iter.flattening_step(tolerance); |
| 348 | |
| 349 | if step >= S::ONE { |
| 350 | break; |
| 351 | } |
| 352 | |
| 353 | iter = iter.after_split(step); |
| 354 | let t1 = t0 + step * (S::ONE - t0); |
| 355 | let to = iter.from(); |
| 356 | callback(&LineSegment { from, to }, t0..t1); |
| 357 | from = to; |
| 358 | t0 = t1; |
| 359 | } |
| 360 | |
| 361 | callback( |
| 362 | &LineSegment { |
| 363 | from, |
| 364 | to: self.to(), |
| 365 | }, |
| 366 | t0..S::ONE, |
| 367 | ); |
| 368 | } |
| 369 | |
| 370 | /// Finds the interval of the beginning of the curve that can be approximated with a |
| 371 | /// line segment. |
| 372 | fn flattening_step(&self, tolerance: S) -> S { |
| 373 | // cos(theta) = (r - tolerance) / r |
| 374 | // angle = 2 * theta |
| 375 | // s = angle / sweep |
| 376 | |
| 377 | // Here we make the approximation that for small tolerance values we consider |
| 378 | // the radius to be constant over each approximated segment. |
| 379 | let r = (self.from() - self.center).length(); |
| 380 | let a = S::TWO * S::acos((r - tolerance) / r); |
| 381 | let result = S::min(a / self.sweep_angle.radians.abs(), S::ONE); |
| 382 | |
| 383 | if result < S::EPSILON { |
| 384 | return S::ONE; |
| 385 | } |
| 386 | |
| 387 | result |
| 388 | } |
| 389 | |
| 390 | /// Returns the flattened representation of the curve as an iterator, starting *after* the |
| 391 | /// current point. |
| 392 | pub fn flattened(&self, tolerance: S) -> Flattened<S> { |
| 393 | Flattened::new(*self, tolerance) |
| 394 | } |
| 395 | |
| 396 | /// Returns a conservative rectangle that contains the curve. |
| 397 | pub fn fast_bounding_box(&self) -> Box2D<S> { |
| 398 | Transform::rotation(self.x_rotation).outer_transformed_box(&Box2D { |
| 399 | min: self.center - self.radii, |
| 400 | max: self.center + self.radii, |
| 401 | }) |
| 402 | } |
| 403 | |
| 404 | /// Returns a conservative rectangle that contains the curve. |
| 405 | pub fn bounding_box(&self) -> Box2D<S> { |
| 406 | let from = self.from(); |
| 407 | let to = self.to(); |
| 408 | let mut min = Point::min(from, to); |
| 409 | let mut max = Point::max(from, to); |
| 410 | self.for_each_local_x_extremum_t(&mut |t| { |
| 411 | let p = self.sample(t); |
| 412 | min.x = S::min(min.x, p.x); |
| 413 | max.x = S::max(max.x, p.x); |
| 414 | }); |
| 415 | self.for_each_local_y_extremum_t(&mut |t| { |
| 416 | let p = self.sample(t); |
| 417 | min.y = S::min(min.y, p.y); |
| 418 | max.y = S::max(max.y, p.y); |
| 419 | }); |
| 420 | |
| 421 | Box2D { min, max } |
| 422 | } |
| 423 | |
| 424 | pub fn for_each_local_x_extremum_t<F>(&self, cb: &mut F) |
| 425 | where |
| 426 | F: FnMut(S), |
| 427 | { |
| 428 | let rx = self.radii.x; |
| 429 | let ry = self.radii.y; |
| 430 | let a1 = Angle::radians(-S::atan(ry * Float::tan(self.x_rotation.radians) / rx)); |
| 431 | let a2 = Angle::pi() + a1; |
| 432 | |
| 433 | self.for_each_extremum_inner(a1, a2, cb); |
| 434 | } |
| 435 | |
| 436 | pub fn for_each_local_y_extremum_t<F>(&self, cb: &mut F) |
| 437 | where |
| 438 | F: FnMut(S), |
| 439 | { |
| 440 | let rx = self.radii.x; |
| 441 | let ry = self.radii.y; |
| 442 | let a1 = Angle::radians(S::atan(ry / (Float::tan(self.x_rotation.radians) * rx))); |
| 443 | let a2 = Angle::pi() + a1; |
| 444 | |
| 445 | self.for_each_extremum_inner(a1, a2, cb); |
| 446 | } |
| 447 | |
| 448 | fn for_each_extremum_inner<F>(&self, a1: Angle<S>, a2: Angle<S>, cb: &mut F) |
| 449 | where |
| 450 | F: FnMut(S), |
| 451 | { |
| 452 | let sweep = self.sweep_angle.radians; |
| 453 | let abs_sweep = S::abs(sweep); |
| 454 | let sign = S::signum(sweep); |
| 455 | |
| 456 | let mut a1 = (a1 - self.start_angle).positive().radians; |
| 457 | let mut a2 = (a2 - self.start_angle).positive().radians; |
| 458 | if a1 * sign > a2 * sign { |
| 459 | swap(&mut a1, &mut a2); |
| 460 | } |
| 461 | |
| 462 | let two_pi = S::TWO * S::PI(); |
| 463 | if sweep >= S::ZERO { |
| 464 | if a1 < abs_sweep { |
| 465 | cb(a1 / abs_sweep); |
| 466 | } |
| 467 | if a2 < abs_sweep { |
| 468 | cb(a2 / abs_sweep); |
| 469 | } |
| 470 | } else { |
| 471 | if a1 > two_pi - abs_sweep { |
| 472 | cb(a1 / abs_sweep); |
| 473 | } |
| 474 | if a2 > two_pi - abs_sweep { |
| 475 | cb(a2 / abs_sweep); |
| 476 | } |
| 477 | } |
| 478 | } |
| 479 | |
| 480 | pub fn bounding_range_x(&self) -> (S, S) { |
| 481 | let r = self.bounding_box(); |
| 482 | (r.min.x, r.max.x) |
| 483 | } |
| 484 | |
| 485 | pub fn bounding_range_y(&self) -> (S, S) { |
| 486 | let r = self.bounding_box(); |
| 487 | (r.min.y, r.max.y) |
| 488 | } |
| 489 | |
| 490 | pub fn fast_bounding_range_x(&self) -> (S, S) { |
| 491 | let r = self.fast_bounding_box(); |
| 492 | (r.min.x, r.max.x) |
| 493 | } |
| 494 | |
| 495 | pub fn fast_bounding_range_y(&self) -> (S, S) { |
| 496 | let r = self.fast_bounding_box(); |
| 497 | (r.min.y, r.max.y) |
| 498 | } |
| 499 | |
| 500 | pub fn approximate_length(&self, tolerance: S) -> S { |
| 501 | let mut len = S::ZERO; |
| 502 | self.for_each_flattened(tolerance, &mut |segment| { |
| 503 | len += segment.length(); |
| 504 | }); |
| 505 | |
| 506 | len |
| 507 | } |
| 508 | |
| 509 | #[inline ] |
| 510 | fn tangent_at_angle(&self, angle: Angle<S>) -> Vector<S> { |
| 511 | let a = angle.get(); |
| 512 | Rotation::new(self.x_rotation).transform_vector(vector( |
| 513 | -self.radii.x * Float::sin(a), |
| 514 | self.radii.y * Float::cos(a), |
| 515 | )) |
| 516 | } |
| 517 | } |
| 518 | |
| 519 | impl<S: Scalar> From<SvgArc<S>> for Arc<S> { |
| 520 | fn from(svg: SvgArc<S>) -> Self { |
| 521 | svg.to_arc() |
| 522 | } |
| 523 | } |
| 524 | |
| 525 | impl<S: Scalar> SvgArc<S> { |
| 526 | /// Converts this arc from endpoints to center notation. |
| 527 | pub fn to_arc(&self) -> Arc<S> { |
| 528 | Arc::from_svg_arc(self) |
| 529 | } |
| 530 | |
| 531 | /// Per SVG spec, this arc should be rendered as a line_to segment. |
| 532 | /// |
| 533 | /// Do not convert an `SvgArc` into an `arc` if this returns true. |
| 534 | pub fn is_straight_line(&self) -> bool { |
| 535 | S::abs(self.radii.x) <= S::EPSILON |
| 536 | || S::abs(self.radii.y) <= S::EPSILON |
| 537 | || self.from == self.to |
| 538 | } |
| 539 | |
| 540 | /// Approximates the arc with a sequence of quadratic bézier segments. |
| 541 | pub fn for_each_quadratic_bezier<F>(&self, cb: &mut F) |
| 542 | where |
| 543 | F: FnMut(&QuadraticBezierSegment<S>), |
| 544 | { |
| 545 | if self.is_straight_line() { |
| 546 | cb(&QuadraticBezierSegment { |
| 547 | from: self.from, |
| 548 | ctrl: self.from, |
| 549 | to: self.to, |
| 550 | }); |
| 551 | return; |
| 552 | } |
| 553 | |
| 554 | Arc::from_svg_arc(self).for_each_quadratic_bezier(cb); |
| 555 | } |
| 556 | |
| 557 | /// Approximates the arc with a sequence of quadratic bézier segments. |
| 558 | pub fn for_each_quadratic_bezier_with_t<F>(&self, cb: &mut F) |
| 559 | where |
| 560 | F: FnMut(&QuadraticBezierSegment<S>, Range<S>), |
| 561 | { |
| 562 | if self.is_straight_line() { |
| 563 | cb( |
| 564 | &QuadraticBezierSegment { |
| 565 | from: self.from, |
| 566 | ctrl: self.from, |
| 567 | to: self.to, |
| 568 | }, |
| 569 | S::ZERO..S::ONE, |
| 570 | ); |
| 571 | return; |
| 572 | } |
| 573 | |
| 574 | Arc::from_svg_arc(self).for_each_quadratic_bezier_with_t(cb); |
| 575 | } |
| 576 | |
| 577 | /// Approximates the arc with a sequence of cubic bézier segments. |
| 578 | pub fn for_each_cubic_bezier<F>(&self, cb: &mut F) |
| 579 | where |
| 580 | F: FnMut(&CubicBezierSegment<S>), |
| 581 | { |
| 582 | if self.is_straight_line() { |
| 583 | cb(&CubicBezierSegment { |
| 584 | from: self.from, |
| 585 | ctrl1: self.from, |
| 586 | ctrl2: self.to, |
| 587 | to: self.to, |
| 588 | }); |
| 589 | return; |
| 590 | } |
| 591 | |
| 592 | Arc::from_svg_arc(self).for_each_cubic_bezier(cb); |
| 593 | } |
| 594 | |
| 595 | /// Approximates the curve with sequence of line segments. |
| 596 | /// |
| 597 | /// The `tolerance` parameter defines the maximum distance between the curve and |
| 598 | /// its approximation. |
| 599 | pub fn for_each_flattened<F: FnMut(&LineSegment<S>)>(&self, tolerance: S, cb: &mut F) { |
| 600 | if self.is_straight_line() { |
| 601 | cb(&LineSegment { |
| 602 | from: self.from, |
| 603 | to: self.to, |
| 604 | }); |
| 605 | return; |
| 606 | } |
| 607 | |
| 608 | Arc::from_svg_arc(self).for_each_flattened(tolerance, cb); |
| 609 | } |
| 610 | |
| 611 | /// Approximates the curve with sequence of line segments. |
| 612 | /// |
| 613 | /// The `tolerance` parameter defines the maximum distance between the curve and |
| 614 | /// its approximation. |
| 615 | /// |
| 616 | /// The end of the t parameter range at the final segment is guaranteed to be equal to `1.0`. |
| 617 | pub fn for_each_flattened_with_t<F: FnMut(&LineSegment<S>, Range<S>)>( |
| 618 | &self, |
| 619 | tolerance: S, |
| 620 | cb: &mut F, |
| 621 | ) { |
| 622 | if self.is_straight_line() { |
| 623 | cb( |
| 624 | &LineSegment { |
| 625 | from: self.from, |
| 626 | to: self.to, |
| 627 | }, |
| 628 | S::ZERO..S::ONE, |
| 629 | ); |
| 630 | return; |
| 631 | } |
| 632 | |
| 633 | Arc::from_svg_arc(self).for_each_flattened_with_t(tolerance, cb); |
| 634 | } |
| 635 | } |
| 636 | |
| 637 | /// Flag parameters for arcs as described by the SVG specification. |
| 638 | /// |
| 639 | /// For most situations using the SVG arc notation, there are four different arcs |
| 640 | /// (two different ellipses, each with two different arc sweeps) that satisfy the |
| 641 | /// arc parameters. The `large_arc` and `sweep` flags indicate which one of the |
| 642 | /// four arcs are drawn, as follows: |
| 643 | /// |
| 644 | /// See more examples in the [SVG specification](https://svgwg.org/specs/paths/) |
| 645 | #[derive (Copy, Clone, Debug, PartialEq, Default)] |
| 646 | #[cfg_attr (feature = "serialization" , derive(Serialize, Deserialize))] |
| 647 | pub struct ArcFlags { |
| 648 | /// Of the four candidate arc sweeps, two will represent an arc sweep of greater |
| 649 | /// than or equal to 180 degrees (the "large-arc"), and two will represent an arc |
| 650 | /// sweep of less than or equal to 180 degrees (the "small arc"). If `large_arc` |
| 651 | /// is `true`, then one of the two larger arc sweeps will be chosen; otherwise, if |
| 652 | /// `large_arc` is `false`, one of the smaller arc sweeps will be chosen. |
| 653 | pub large_arc: bool, |
| 654 | /// If `sweep` is `true`, then the arc will be drawn in a "positive-angle" direction |
| 655 | /// (the ellipse formula `x=cx+rx*cos(theta)` and `y=cy+ry*sin(theta)` is evaluated |
| 656 | /// such that theta starts at an angle corresponding to the current point and increases |
| 657 | /// positively until the arc reaches the destination position). A value of `false` |
| 658 | /// causes the arc to be drawn in a "negative-angle" direction (theta starts at an |
| 659 | /// angle value corresponding to the current point and decreases until the arc reaches |
| 660 | /// the destination position). |
| 661 | pub sweep: bool, |
| 662 | } |
| 663 | |
| 664 | fn arc_to_quadratic_beziers_with_t<S, F>(arc: &Arc<S>, callback: &mut F) |
| 665 | where |
| 666 | S: Scalar, |
| 667 | F: FnMut(&QuadraticBezierSegment<S>, Range<S>), |
| 668 | { |
| 669 | let sign = arc.sweep_angle.get().signum(); |
| 670 | let sweep_angle = S::abs(arc.sweep_angle.get()).min(S::PI() * S::TWO); |
| 671 | |
| 672 | let n_steps = S::ceil(sweep_angle / S::FRAC_PI_4()); |
| 673 | let step = Angle::radians(sweep_angle / n_steps * sign); |
| 674 | |
| 675 | let mut t0 = S::ZERO; |
| 676 | let dt = S::ONE / n_steps; |
| 677 | |
| 678 | let n = cast::<S, i32>(n_steps).unwrap(); |
| 679 | for i in 0..n { |
| 680 | let a1 = arc.start_angle + step * cast(i).unwrap(); |
| 681 | let a2 = arc.start_angle + step * cast(i + 1).unwrap(); |
| 682 | |
| 683 | let v1 = sample_ellipse(arc.radii, arc.x_rotation, a1).to_vector(); |
| 684 | let v2 = sample_ellipse(arc.radii, arc.x_rotation, a2).to_vector(); |
| 685 | let from = arc.center + v1; |
| 686 | let to = arc.center + v2; |
| 687 | let l1 = Line { |
| 688 | point: from, |
| 689 | vector: arc.tangent_at_angle(a1), |
| 690 | }; |
| 691 | let l2 = Line { |
| 692 | point: to, |
| 693 | vector: arc.tangent_at_angle(a2), |
| 694 | }; |
| 695 | let ctrl = l2.intersection(&l1).unwrap_or(from); |
| 696 | |
| 697 | let t1 = if i + 1 == n { S::ONE } else { t0 + dt }; |
| 698 | |
| 699 | callback(&QuadraticBezierSegment { from, ctrl, to }, t0..t1); |
| 700 | t0 = t1; |
| 701 | } |
| 702 | } |
| 703 | |
| 704 | fn arc_to_cubic_beziers<S, F>(arc: &Arc<S>, callback: &mut F) |
| 705 | where |
| 706 | S: Scalar, |
| 707 | F: FnMut(&CubicBezierSegment<S>), |
| 708 | { |
| 709 | let sign = arc.sweep_angle.get().signum(); |
| 710 | let sweep_angle = S::abs(arc.sweep_angle.get()).min(S::PI() * S::TWO); |
| 711 | |
| 712 | let n_steps = S::ceil(sweep_angle / S::FRAC_PI_2()); |
| 713 | let step = Angle::radians(sweep_angle / n_steps * sign); |
| 714 | |
| 715 | for i in 0..cast::<S, i32>(n_steps).unwrap() { |
| 716 | let a1 = arc.start_angle + step * cast(i).unwrap(); |
| 717 | let a2 = arc.start_angle + step * cast(i + 1).unwrap(); |
| 718 | |
| 719 | let v1 = sample_ellipse(arc.radii, arc.x_rotation, a1).to_vector(); |
| 720 | let v2 = sample_ellipse(arc.radii, arc.x_rotation, a2).to_vector(); |
| 721 | let from = arc.center + v1; |
| 722 | let to = arc.center + v2; |
| 723 | |
| 724 | // From http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf |
| 725 | // Note that the parameterization used by Arc (see sample_ellipse for |
| 726 | // example) is the same as the eta-parameterization used at the link. |
| 727 | let delta_a = a2 - a1; |
| 728 | let tan_da = Float::tan(delta_a.get() * S::HALF); |
| 729 | let alpha_sqrt = S::sqrt(S::FOUR + S::THREE * tan_da * tan_da); |
| 730 | let alpha = Float::sin(delta_a.get()) * (alpha_sqrt - S::ONE) / S::THREE; |
| 731 | let ctrl1 = from + arc.tangent_at_angle(a1) * alpha; |
| 732 | let ctrl2 = to - arc.tangent_at_angle(a2) * alpha; |
| 733 | |
| 734 | callback(&CubicBezierSegment { |
| 735 | from, |
| 736 | ctrl1, |
| 737 | ctrl2, |
| 738 | to, |
| 739 | }); |
| 740 | } |
| 741 | } |
| 742 | |
| 743 | fn sample_ellipse<S: Scalar>(radii: Vector<S>, x_rotation: Angle<S>, angle: Angle<S>) -> Point<S> { |
| 744 | Rotation::new(angle:x_rotation).transform_point(point( |
| 745 | x:radii.x * Float::cos(angle.get()), |
| 746 | y:radii.y * Float::sin(self:angle.get()), |
| 747 | )) |
| 748 | } |
| 749 | |
| 750 | impl<S: Scalar> Segment for Arc<S> { |
| 751 | type Scalar = S; |
| 752 | fn from(&self) -> Point<S> { |
| 753 | self.from() |
| 754 | } |
| 755 | fn to(&self) -> Point<S> { |
| 756 | self.to() |
| 757 | } |
| 758 | fn sample(&self, t: S) -> Point<S> { |
| 759 | self.sample(t) |
| 760 | } |
| 761 | fn x(&self, t: S) -> S { |
| 762 | self.x(t) |
| 763 | } |
| 764 | fn y(&self, t: S) -> S { |
| 765 | self.y(t) |
| 766 | } |
| 767 | fn derivative(&self, t: S) -> Vector<S> { |
| 768 | self.sample_tangent(t) |
| 769 | } |
| 770 | fn split(&self, t: S) -> (Self, Self) { |
| 771 | self.split(t) |
| 772 | } |
| 773 | fn before_split(&self, t: S) -> Self { |
| 774 | self.before_split(t) |
| 775 | } |
| 776 | fn after_split(&self, t: S) -> Self { |
| 777 | self.after_split(t) |
| 778 | } |
| 779 | fn split_range(&self, t_range: Range<S>) -> Self { |
| 780 | self.split_range(t_range) |
| 781 | } |
| 782 | fn flip(&self) -> Self { |
| 783 | self.flip() |
| 784 | } |
| 785 | fn approximate_length(&self, tolerance: S) -> S { |
| 786 | self.approximate_length(tolerance) |
| 787 | } |
| 788 | |
| 789 | fn for_each_flattened_with_t( |
| 790 | &self, |
| 791 | tolerance: Self::Scalar, |
| 792 | callback: &mut dyn FnMut(&LineSegment<S>, Range<S>), |
| 793 | ) { |
| 794 | self.for_each_flattened_with_t(tolerance, &mut |s, t| callback(s, t)); |
| 795 | } |
| 796 | } |
| 797 | |
| 798 | impl<S: Scalar> BoundingBox for Arc<S> { |
| 799 | type Scalar = S; |
| 800 | fn bounding_range_x(&self) -> (S, S) { |
| 801 | self.bounding_range_x() |
| 802 | } |
| 803 | fn bounding_range_y(&self) -> (S, S) { |
| 804 | self.bounding_range_y() |
| 805 | } |
| 806 | fn fast_bounding_range_x(&self) -> (S, S) { |
| 807 | self.fast_bounding_range_x() |
| 808 | } |
| 809 | fn fast_bounding_range_y(&self) -> (S, S) { |
| 810 | self.fast_bounding_range_y() |
| 811 | } |
| 812 | } |
| 813 | |
| 814 | /// Flattening iterator for arcs. |
| 815 | /// |
| 816 | /// The iterator starts at the first point *after* the origin of the curve and ends at the |
| 817 | /// destination. |
| 818 | pub struct Flattened<S> { |
| 819 | arc: Arc<S>, |
| 820 | tolerance: S, |
| 821 | done: bool, |
| 822 | } |
| 823 | |
| 824 | impl<S: Scalar> Flattened<S> { |
| 825 | pub(crate) fn new(arc: Arc<S>, tolerance: S) -> Self { |
| 826 | assert!(tolerance > S::ZERO); |
| 827 | Flattened { |
| 828 | arc, |
| 829 | tolerance, |
| 830 | done: false, |
| 831 | } |
| 832 | } |
| 833 | } |
| 834 | impl<S: Scalar> Iterator for Flattened<S> { |
| 835 | type Item = Point<S>; |
| 836 | fn next(&mut self) -> Option<Point<S>> { |
| 837 | if self.done { |
| 838 | return None; |
| 839 | } |
| 840 | |
| 841 | let t: S = self.arc.flattening_step(self.tolerance); |
| 842 | if t >= S::ONE { |
| 843 | self.done = true; |
| 844 | return Some(self.arc.to()); |
| 845 | } |
| 846 | self.arc = self.arc.after_split(t); |
| 847 | |
| 848 | Some(self.arc.from()) |
| 849 | } |
| 850 | } |
| 851 | |
| 852 | #[test ] |
| 853 | fn test_from_svg_arc() { |
| 854 | use crate::vector; |
| 855 | use euclid::approxeq::ApproxEq; |
| 856 | |
| 857 | let flags = ArcFlags { |
| 858 | large_arc: false, |
| 859 | sweep: false, |
| 860 | }; |
| 861 | |
| 862 | test_endpoints(&SvgArc { |
| 863 | from: point(0.0, -10.0), |
| 864 | to: point(10.0, 0.0), |
| 865 | radii: vector(10.0, 10.0), |
| 866 | x_rotation: Angle::radians(0.0), |
| 867 | flags, |
| 868 | }); |
| 869 | |
| 870 | test_endpoints(&SvgArc { |
| 871 | from: point(0.0, -10.0), |
| 872 | to: point(10.0, 0.0), |
| 873 | radii: vector(100.0, 10.0), |
| 874 | x_rotation: Angle::radians(0.0), |
| 875 | flags, |
| 876 | }); |
| 877 | |
| 878 | test_endpoints(&SvgArc { |
| 879 | from: point(0.0, -10.0), |
| 880 | to: point(10.0, 0.0), |
| 881 | radii: vector(10.0, 30.0), |
| 882 | x_rotation: Angle::radians(1.0), |
| 883 | flags, |
| 884 | }); |
| 885 | |
| 886 | test_endpoints(&SvgArc { |
| 887 | from: point(5.0, -10.0), |
| 888 | to: point(5.0, 5.0), |
| 889 | radii: vector(10.0, 30.0), |
| 890 | x_rotation: Angle::radians(-2.0), |
| 891 | flags, |
| 892 | }); |
| 893 | |
| 894 | // This arc has invalid radii (too small to connect the two endpoints), |
| 895 | // but the conversion needs to be able to cope with that. |
| 896 | test_endpoints(&SvgArc { |
| 897 | from: point(0.0, 0.0), |
| 898 | to: point(80.0, 60.0), |
| 899 | radii: vector(40.0, 40.0), |
| 900 | x_rotation: Angle::radians(0.0), |
| 901 | flags, |
| 902 | }); |
| 903 | |
| 904 | fn test_endpoints(svg_arc: &SvgArc<f64>) { |
| 905 | do_test_endpoints(&SvgArc { |
| 906 | flags: ArcFlags { |
| 907 | large_arc: false, |
| 908 | sweep: false, |
| 909 | }, |
| 910 | ..svg_arc.clone() |
| 911 | }); |
| 912 | |
| 913 | do_test_endpoints(&SvgArc { |
| 914 | flags: ArcFlags { |
| 915 | large_arc: true, |
| 916 | sweep: false, |
| 917 | }, |
| 918 | ..svg_arc.clone() |
| 919 | }); |
| 920 | |
| 921 | do_test_endpoints(&SvgArc { |
| 922 | flags: ArcFlags { |
| 923 | large_arc: false, |
| 924 | sweep: true, |
| 925 | }, |
| 926 | ..svg_arc.clone() |
| 927 | }); |
| 928 | |
| 929 | do_test_endpoints(&SvgArc { |
| 930 | flags: ArcFlags { |
| 931 | large_arc: true, |
| 932 | sweep: true, |
| 933 | }, |
| 934 | ..svg_arc.clone() |
| 935 | }); |
| 936 | } |
| 937 | |
| 938 | fn do_test_endpoints(svg_arc: &SvgArc<f64>) { |
| 939 | let eps = point(0.01, 0.01); |
| 940 | let arc = svg_arc.to_arc(); |
| 941 | assert!( |
| 942 | arc.from().approx_eq_eps(&svg_arc.from, &eps), |
| 943 | "unexpected arc.from: {:?} == {:?}, flags: {:?}" , |
| 944 | arc.from(), |
| 945 | svg_arc.from, |
| 946 | svg_arc.flags, |
| 947 | ); |
| 948 | assert!( |
| 949 | arc.to().approx_eq_eps(&svg_arc.to, &eps), |
| 950 | "unexpected arc.from: {:?} == {:?}, flags: {:?}" , |
| 951 | arc.to(), |
| 952 | svg_arc.to, |
| 953 | svg_arc.flags, |
| 954 | ); |
| 955 | } |
| 956 | } |
| 957 | |
| 958 | #[test ] |
| 959 | fn test_to_quadratics_and_cubics() { |
| 960 | use euclid::approxeq::ApproxEq; |
| 961 | |
| 962 | fn do_test(arc: &Arc<f32>, expected_quadratic_count: u32, expected_cubic_count: u32) { |
| 963 | let last = arc.to(); |
| 964 | { |
| 965 | let mut prev = arc.from(); |
| 966 | let mut count = 0; |
| 967 | arc.for_each_quadratic_bezier(&mut |c| { |
| 968 | assert!(c.from.approx_eq(&prev)); |
| 969 | prev = c.to; |
| 970 | count += 1; |
| 971 | }); |
| 972 | assert!(prev.approx_eq(&last)); |
| 973 | assert_eq!(count, expected_quadratic_count); |
| 974 | } |
| 975 | { |
| 976 | let mut prev = arc.from(); |
| 977 | let mut count = 0; |
| 978 | arc.for_each_cubic_bezier(&mut |c| { |
| 979 | assert!(c.from.approx_eq(&prev)); |
| 980 | prev = c.to; |
| 981 | count += 1; |
| 982 | }); |
| 983 | assert!(prev.approx_eq(&last)); |
| 984 | assert_eq!(count, expected_cubic_count); |
| 985 | } |
| 986 | } |
| 987 | |
| 988 | do_test( |
| 989 | &Arc { |
| 990 | center: point(2.0, 3.0), |
| 991 | radii: vector(10.0, 3.0), |
| 992 | start_angle: Angle::radians(0.1), |
| 993 | sweep_angle: Angle::radians(3.0), |
| 994 | x_rotation: Angle::radians(0.5), |
| 995 | }, |
| 996 | 4, |
| 997 | 2, |
| 998 | ); |
| 999 | |
| 1000 | do_test( |
| 1001 | &Arc { |
| 1002 | center: point(4.0, 5.0), |
| 1003 | radii: vector(3.0, 5.0), |
| 1004 | start_angle: Angle::radians(2.0), |
| 1005 | sweep_angle: Angle::radians(-3.0), |
| 1006 | x_rotation: Angle::radians(1.3), |
| 1007 | }, |
| 1008 | 4, |
| 1009 | 2, |
| 1010 | ); |
| 1011 | |
| 1012 | do_test( |
| 1013 | &Arc { |
| 1014 | center: point(0.0, 0.0), |
| 1015 | radii: vector(100.0, 0.01), |
| 1016 | start_angle: Angle::radians(-1.0), |
| 1017 | sweep_angle: Angle::radians(0.1), |
| 1018 | x_rotation: Angle::radians(0.3), |
| 1019 | }, |
| 1020 | 1, |
| 1021 | 1, |
| 1022 | ); |
| 1023 | |
| 1024 | do_test( |
| 1025 | &Arc { |
| 1026 | center: point(0.0, 0.0), |
| 1027 | radii: vector(1.0, 1.0), |
| 1028 | start_angle: Angle::radians(3.0), |
| 1029 | sweep_angle: Angle::radians(-0.1), |
| 1030 | x_rotation: Angle::radians(-0.3), |
| 1031 | }, |
| 1032 | 1, |
| 1033 | 1, |
| 1034 | ); |
| 1035 | } |
| 1036 | |
| 1037 | #[test ] |
| 1038 | fn test_bounding_box() { |
| 1039 | use euclid::approxeq::ApproxEq; |
| 1040 | |
| 1041 | fn approx_eq(r1: Box2D<f32>, r2: Box2D<f32>) -> bool { |
| 1042 | if !r1.min.x.approx_eq(&r2.min.x) |
| 1043 | || !r1.max.x.approx_eq(&r2.max.x) |
| 1044 | || !r1.min.y.approx_eq(&r2.min.y) |
| 1045 | || !r1.max.y.approx_eq(&r2.max.y) |
| 1046 | { |
| 1047 | std::println!(" \n left: {r1:?} \n right: {r2:?}" ); |
| 1048 | return false; |
| 1049 | } |
| 1050 | |
| 1051 | true |
| 1052 | } |
| 1053 | |
| 1054 | let r = Arc { |
| 1055 | center: point(0.0, 0.0), |
| 1056 | radii: vector(1.0, 1.0), |
| 1057 | start_angle: Angle::radians(0.0), |
| 1058 | sweep_angle: Angle::pi(), |
| 1059 | x_rotation: Angle::zero(), |
| 1060 | } |
| 1061 | .bounding_box(); |
| 1062 | assert!(approx_eq( |
| 1063 | r, |
| 1064 | Box2D { |
| 1065 | min: point(-1.0, 0.0), |
| 1066 | max: point(1.0, 1.0) |
| 1067 | } |
| 1068 | )); |
| 1069 | |
| 1070 | let r = Arc { |
| 1071 | center: point(0.0, 0.0), |
| 1072 | radii: vector(1.0, 1.0), |
| 1073 | start_angle: Angle::radians(0.0), |
| 1074 | sweep_angle: Angle::pi(), |
| 1075 | x_rotation: Angle::pi(), |
| 1076 | } |
| 1077 | .bounding_box(); |
| 1078 | assert!(approx_eq( |
| 1079 | r, |
| 1080 | Box2D { |
| 1081 | min: point(-1.0, -1.0), |
| 1082 | max: point(1.0, 0.0) |
| 1083 | } |
| 1084 | )); |
| 1085 | |
| 1086 | let r = Arc { |
| 1087 | center: point(0.0, 0.0), |
| 1088 | radii: vector(2.0, 1.0), |
| 1089 | start_angle: Angle::radians(0.0), |
| 1090 | sweep_angle: Angle::pi(), |
| 1091 | x_rotation: Angle::pi() * 0.5, |
| 1092 | } |
| 1093 | .bounding_box(); |
| 1094 | assert!(approx_eq( |
| 1095 | r, |
| 1096 | Box2D { |
| 1097 | min: point(-1.0, -2.0), |
| 1098 | max: point(0.0, 2.0) |
| 1099 | } |
| 1100 | )); |
| 1101 | |
| 1102 | let r = Arc { |
| 1103 | center: point(1.0, 1.0), |
| 1104 | radii: vector(1.0, 1.0), |
| 1105 | start_angle: Angle::pi(), |
| 1106 | sweep_angle: Angle::pi(), |
| 1107 | x_rotation: -Angle::pi() * 0.25, |
| 1108 | } |
| 1109 | .bounding_box(); |
| 1110 | assert!(approx_eq( |
| 1111 | r, |
| 1112 | Box2D { |
| 1113 | min: point(0.0, 0.0), |
| 1114 | max: point(1.707107, 1.707107) |
| 1115 | } |
| 1116 | )); |
| 1117 | |
| 1118 | let mut angle = Angle::zero(); |
| 1119 | for _ in 0..10 { |
| 1120 | std::println!("angle: {angle:?}" ); |
| 1121 | let r = Arc { |
| 1122 | center: point(0.0, 0.0), |
| 1123 | radii: vector(4.0, 4.0), |
| 1124 | start_angle: angle, |
| 1125 | sweep_angle: Angle::pi() * 2.0, |
| 1126 | x_rotation: Angle::pi() * 0.25, |
| 1127 | } |
| 1128 | .bounding_box(); |
| 1129 | assert!(approx_eq( |
| 1130 | r, |
| 1131 | Box2D { |
| 1132 | min: point(-4.0, -4.0), |
| 1133 | max: point(4.0, 4.0) |
| 1134 | } |
| 1135 | )); |
| 1136 | angle += Angle::pi() * 2.0 / 10.0; |
| 1137 | } |
| 1138 | |
| 1139 | let mut angle = Angle::zero(); |
| 1140 | for _ in 0..10 { |
| 1141 | std::println!("angle: {angle:?}" ); |
| 1142 | let r = Arc { |
| 1143 | center: point(0.0, 0.0), |
| 1144 | radii: vector(4.0, 4.0), |
| 1145 | start_angle: Angle::zero(), |
| 1146 | sweep_angle: Angle::pi() * 2.0, |
| 1147 | x_rotation: angle, |
| 1148 | } |
| 1149 | .bounding_box(); |
| 1150 | assert!(approx_eq( |
| 1151 | r, |
| 1152 | Box2D { |
| 1153 | min: point(-4.0, -4.0), |
| 1154 | max: point(4.0, 4.0) |
| 1155 | } |
| 1156 | )); |
| 1157 | angle += Angle::pi() * 2.0 / 10.0; |
| 1158 | } |
| 1159 | } |
| 1160 | |
| 1161 | #[test ] |
| 1162 | fn negative_flattening_step() { |
| 1163 | // These parameters were running into a precision issue which led the |
| 1164 | // flattening step to never converge towards 1 and cause an infinite loop. |
| 1165 | |
| 1166 | let arc = Arc { |
| 1167 | center: point(-100.0, -150.0), |
| 1168 | radii: vector(50.0, 50.0), |
| 1169 | start_angle: Angle::radians(0.982944787), |
| 1170 | sweep_angle: Angle::radians(-898.0), |
| 1171 | x_rotation: Angle::zero(), |
| 1172 | }; |
| 1173 | |
| 1174 | arc.for_each_flattened(0.100000001, &mut |_| {}); |
| 1175 | |
| 1176 | // There was also an issue with negative sweep_angle leading to a negative step |
| 1177 | // causing the arc to be approximated with a single line segment. |
| 1178 | |
| 1179 | let arc = Arc { |
| 1180 | center: point(0.0, 0.0), |
| 1181 | radii: vector(100.0, 10.0), |
| 1182 | start_angle: Angle::radians(0.2), |
| 1183 | sweep_angle: Angle::radians(-2.0), |
| 1184 | x_rotation: Angle::zero(), |
| 1185 | }; |
| 1186 | |
| 1187 | let flattened: std::vec::Vec<_> = arc.flattened(0.1).collect(); |
| 1188 | |
| 1189 | assert!(flattened.len() > 1); |
| 1190 | } |
| 1191 | |