1 | // This uses stdlib features higher than the MSRV |
2 | #![allow (clippy::manual_range_contains)] // 1.35 |
3 | |
4 | use super::{biguint_from_vec, BigUint, ToBigUint}; |
5 | |
6 | use super::addition::add2; |
7 | use super::division::{div_rem_digit, FAST_DIV_WIDE}; |
8 | use super::multiplication::mac_with_carry; |
9 | |
10 | use crate::big_digit::{self, BigDigit}; |
11 | use crate::ParseBigIntError; |
12 | use crate::TryFromBigIntError; |
13 | |
14 | use alloc::vec::Vec; |
15 | use core::cmp::Ordering::{Equal, Greater, Less}; |
16 | use core::convert::TryFrom; |
17 | use core::mem; |
18 | use core::str::FromStr; |
19 | use num_integer::{Integer, Roots}; |
20 | use num_traits::float::FloatCore; |
21 | use num_traits::{FromPrimitive, Num, One, PrimInt, ToPrimitive, Zero}; |
22 | |
23 | /// Find last set bit |
24 | /// fls(0) == 0, fls(u32::MAX) == 32 |
25 | fn fls<T: PrimInt>(v: T) -> u8 { |
26 | mem::size_of::<T>() as u8 * 8 - v.leading_zeros() as u8 |
27 | } |
28 | |
29 | fn ilog2<T: PrimInt>(v: T) -> u8 { |
30 | fls(v) - 1 |
31 | } |
32 | |
33 | impl FromStr for BigUint { |
34 | type Err = ParseBigIntError; |
35 | |
36 | #[inline ] |
37 | fn from_str(s: &str) -> Result<BigUint, ParseBigIntError> { |
38 | BigUint::from_str_radix(str:s, radix:10) |
39 | } |
40 | } |
41 | |
42 | // Convert from a power of two radix (bits == ilog2(radix)) where bits evenly divides |
43 | // BigDigit::BITS |
44 | pub(super) fn from_bitwise_digits_le(v: &[u8], bits: u8) -> BigUint { |
45 | debug_assert!(!v.is_empty() && bits <= 8 && big_digit::BITS % bits == 0); |
46 | debug_assert!(v.iter().all(|&c| BigDigit::from(c) < (1 << bits))); |
47 | |
48 | let digits_per_big_digit: u8 = big_digit::BITS / bits; |
49 | |
50 | let data: Vec = vimpl Iterator |
51 | .chunks(chunk_size:digits_per_big_digit.into()) |
52 | .map(|chunk: &[u8]| { |
53 | chunk |
54 | .iter() |
55 | .rev() |
56 | .fold(init:0, |acc: u64, &c: u8| (acc << bits) | BigDigit::from(c)) |
57 | }) |
58 | .collect(); |
59 | |
60 | biguint_from_vec(digits:data) |
61 | } |
62 | |
63 | // Convert from a power of two radix (bits == ilog2(radix)) where bits doesn't evenly divide |
64 | // BigDigit::BITS |
65 | fn from_inexact_bitwise_digits_le(v: &[u8], bits: u8) -> BigUint { |
66 | debug_assert!(!v.is_empty() && bits <= 8 && big_digit::BITS % bits != 0); |
67 | debug_assert!(v.iter().all(|&c| BigDigit::from(c) < (1 << bits))); |
68 | |
69 | let total_bits = (v.len() as u64).saturating_mul(bits.into()); |
70 | let big_digits = Integer::div_ceil(&total_bits, &big_digit::BITS.into()) |
71 | .to_usize() |
72 | .unwrap_or(usize::MAX); |
73 | let mut data = Vec::with_capacity(big_digits); |
74 | |
75 | let mut d = 0; |
76 | let mut dbits = 0; // number of bits we currently have in d |
77 | |
78 | // walk v accumululating bits in d; whenever we accumulate big_digit::BITS in d, spit out a |
79 | // big_digit: |
80 | for &c in v { |
81 | d |= BigDigit::from(c) << dbits; |
82 | dbits += bits; |
83 | |
84 | if dbits >= big_digit::BITS { |
85 | data.push(d); |
86 | dbits -= big_digit::BITS; |
87 | // if dbits was > big_digit::BITS, we dropped some of the bits in c (they couldn't fit |
88 | // in d) - grab the bits we lost here: |
89 | d = BigDigit::from(c) >> (bits - dbits); |
90 | } |
91 | } |
92 | |
93 | if dbits > 0 { |
94 | debug_assert!(dbits < big_digit::BITS); |
95 | data.push(d as BigDigit); |
96 | } |
97 | |
98 | biguint_from_vec(data) |
99 | } |
100 | |
101 | // Read little-endian radix digits |
102 | fn from_radix_digits_be(v: &[u8], radix: u32) -> BigUint { |
103 | debug_assert!(!v.is_empty() && !radix.is_power_of_two()); |
104 | debug_assert!(v.iter().all(|&c| u32::from(c) < radix)); |
105 | |
106 | // Estimate how big the result will be, so we can pre-allocate it. |
107 | #[cfg (feature = "std" )] |
108 | let big_digits = { |
109 | let radix_log2 = f64::from(radix).log2(); |
110 | let bits = radix_log2 * v.len() as f64; |
111 | (bits / big_digit::BITS as f64).ceil() |
112 | }; |
113 | #[cfg (not(feature = "std" ))] |
114 | let big_digits = { |
115 | let radix_log2 = ilog2(radix.next_power_of_two()) as usize; |
116 | let bits = radix_log2 * v.len(); |
117 | (bits / big_digit::BITS as usize) + 1 |
118 | }; |
119 | |
120 | let mut data = Vec::with_capacity(big_digits.to_usize().unwrap_or(0)); |
121 | |
122 | let (base, power) = get_radix_base(radix); |
123 | let radix = radix as BigDigit; |
124 | |
125 | let r = v.len() % power; |
126 | let i = if r == 0 { power } else { r }; |
127 | let (head, tail) = v.split_at(i); |
128 | |
129 | let first = head |
130 | .iter() |
131 | .fold(0, |acc, &d| acc * radix + BigDigit::from(d)); |
132 | data.push(first); |
133 | |
134 | debug_assert!(tail.len() % power == 0); |
135 | for chunk in tail.chunks(power) { |
136 | if data.last() != Some(&0) { |
137 | data.push(0); |
138 | } |
139 | |
140 | let mut carry = 0; |
141 | for d in data.iter_mut() { |
142 | *d = mac_with_carry(0, *d, base, &mut carry); |
143 | } |
144 | debug_assert!(carry == 0); |
145 | |
146 | let n = chunk |
147 | .iter() |
148 | .fold(0, |acc, &d| acc * radix + BigDigit::from(d)); |
149 | add2(&mut data, &[n]); |
150 | } |
151 | |
152 | biguint_from_vec(data) |
153 | } |
154 | |
155 | pub(super) fn from_radix_be(buf: &[u8], radix: u32) -> Option<BigUint> { |
156 | assert!( |
157 | 2 <= radix && radix <= 256, |
158 | "The radix must be within 2...256" |
159 | ); |
160 | |
161 | if buf.is_empty() { |
162 | return Some(BigUint::ZERO); |
163 | } |
164 | |
165 | if radix != 256 && buf.iter().any(|&b| b >= radix as u8) { |
166 | return None; |
167 | } |
168 | |
169 | let res = if radix.is_power_of_two() { |
170 | // Powers of two can use bitwise masks and shifting instead of multiplication |
171 | let bits = ilog2(radix); |
172 | let mut v = Vec::from(buf); |
173 | v.reverse(); |
174 | if big_digit::BITS % bits == 0 { |
175 | from_bitwise_digits_le(&v, bits) |
176 | } else { |
177 | from_inexact_bitwise_digits_le(&v, bits) |
178 | } |
179 | } else { |
180 | from_radix_digits_be(buf, radix) |
181 | }; |
182 | |
183 | Some(res) |
184 | } |
185 | |
186 | pub(super) fn from_radix_le(buf: &[u8], radix: u32) -> Option<BigUint> { |
187 | assert!( |
188 | 2 <= radix && radix <= 256, |
189 | "The radix must be within 2...256" |
190 | ); |
191 | |
192 | if buf.is_empty() { |
193 | return Some(BigUint::ZERO); |
194 | } |
195 | |
196 | if radix != 256 && buf.iter().any(|&b| b >= radix as u8) { |
197 | return None; |
198 | } |
199 | |
200 | let res = if radix.is_power_of_two() { |
201 | // Powers of two can use bitwise masks and shifting instead of multiplication |
202 | let bits = ilog2(radix); |
203 | if big_digit::BITS % bits == 0 { |
204 | from_bitwise_digits_le(buf, bits) |
205 | } else { |
206 | from_inexact_bitwise_digits_le(buf, bits) |
207 | } |
208 | } else { |
209 | let mut v = Vec::from(buf); |
210 | v.reverse(); |
211 | from_radix_digits_be(&v, radix) |
212 | }; |
213 | |
214 | Some(res) |
215 | } |
216 | |
217 | impl Num for BigUint { |
218 | type FromStrRadixErr = ParseBigIntError; |
219 | |
220 | /// Creates and initializes a `BigUint`. |
221 | fn from_str_radix(s: &str, radix: u32) -> Result<BigUint, ParseBigIntError> { |
222 | assert!(2 <= radix && radix <= 36, "The radix must be within 2...36" ); |
223 | let mut s = s; |
224 | if let Some(tail) = s.strip_prefix('+' ) { |
225 | if !tail.starts_with('+' ) { |
226 | s = tail |
227 | } |
228 | } |
229 | |
230 | if s.is_empty() { |
231 | return Err(ParseBigIntError::empty()); |
232 | } |
233 | |
234 | if s.starts_with('_' ) { |
235 | // Must lead with a real digit! |
236 | return Err(ParseBigIntError::invalid()); |
237 | } |
238 | |
239 | // First normalize all characters to plain digit values |
240 | let mut v = Vec::with_capacity(s.len()); |
241 | for b in s.bytes() { |
242 | let d = match b { |
243 | b'0' ..=b'9' => b - b'0' , |
244 | b'a' ..=b'z' => b - b'a' + 10, |
245 | b'A' ..=b'Z' => b - b'A' + 10, |
246 | b'_' => continue, |
247 | _ => u8::MAX, |
248 | }; |
249 | if d < radix as u8 { |
250 | v.push(d); |
251 | } else { |
252 | return Err(ParseBigIntError::invalid()); |
253 | } |
254 | } |
255 | |
256 | let res = if radix.is_power_of_two() { |
257 | // Powers of two can use bitwise masks and shifting instead of multiplication |
258 | let bits = ilog2(radix); |
259 | v.reverse(); |
260 | if big_digit::BITS % bits == 0 { |
261 | from_bitwise_digits_le(&v, bits) |
262 | } else { |
263 | from_inexact_bitwise_digits_le(&v, bits) |
264 | } |
265 | } else { |
266 | from_radix_digits_be(&v, radix) |
267 | }; |
268 | Ok(res) |
269 | } |
270 | } |
271 | |
272 | fn high_bits_to_u64(v: &BigUint) -> u64 { |
273 | match v.data.len() { |
274 | 0 => 0, |
275 | 1 => { |
276 | // XXX Conversion is useless if already 64-bit. |
277 | #[allow (clippy::useless_conversion)] |
278 | let v0 = u64::from(v.data[0]); |
279 | v0 |
280 | } |
281 | _ => { |
282 | let mut bits = v.bits(); |
283 | let mut ret = 0u64; |
284 | let mut ret_bits = 0; |
285 | |
286 | for d in v.data.iter().rev() { |
287 | let digit_bits = (bits - 1) % u64::from(big_digit::BITS) + 1; |
288 | let bits_want = Ord::min(64 - ret_bits, digit_bits); |
289 | |
290 | if bits_want != 0 { |
291 | if bits_want != 64 { |
292 | ret <<= bits_want; |
293 | } |
294 | // XXX Conversion is useless if already 64-bit. |
295 | #[allow (clippy::useless_conversion)] |
296 | let d0 = u64::from(*d) >> (digit_bits - bits_want); |
297 | ret |= d0; |
298 | } |
299 | |
300 | // Implement round-to-odd: If any lower bits are 1, set LSB to 1 |
301 | // so that rounding again to floating point value using |
302 | // nearest-ties-to-even is correct. |
303 | // |
304 | // See: https://en.wikipedia.org/wiki/Rounding#Rounding_to_prepare_for_shorter_precision |
305 | |
306 | if digit_bits - bits_want != 0 { |
307 | // XXX Conversion is useless if already 64-bit. |
308 | #[allow (clippy::useless_conversion)] |
309 | let masked = u64::from(*d) << (64 - (digit_bits - bits_want) as u32); |
310 | ret |= (masked != 0) as u64; |
311 | } |
312 | |
313 | ret_bits += bits_want; |
314 | bits -= bits_want; |
315 | } |
316 | |
317 | ret |
318 | } |
319 | } |
320 | } |
321 | |
322 | impl ToPrimitive for BigUint { |
323 | #[inline ] |
324 | fn to_i64(&self) -> Option<i64> { |
325 | self.to_u64().as_ref().and_then(u64::to_i64) |
326 | } |
327 | |
328 | #[inline ] |
329 | fn to_i128(&self) -> Option<i128> { |
330 | self.to_u128().as_ref().and_then(u128::to_i128) |
331 | } |
332 | |
333 | #[allow (clippy::useless_conversion)] |
334 | #[inline ] |
335 | fn to_u64(&self) -> Option<u64> { |
336 | let mut ret: u64 = 0; |
337 | let mut bits = 0; |
338 | |
339 | for i in self.data.iter() { |
340 | if bits >= 64 { |
341 | return None; |
342 | } |
343 | |
344 | // XXX Conversion is useless if already 64-bit. |
345 | ret += u64::from(*i) << bits; |
346 | bits += big_digit::BITS; |
347 | } |
348 | |
349 | Some(ret) |
350 | } |
351 | |
352 | #[inline ] |
353 | fn to_u128(&self) -> Option<u128> { |
354 | let mut ret: u128 = 0; |
355 | let mut bits = 0; |
356 | |
357 | for i in self.data.iter() { |
358 | if bits >= 128 { |
359 | return None; |
360 | } |
361 | |
362 | ret |= u128::from(*i) << bits; |
363 | bits += big_digit::BITS; |
364 | } |
365 | |
366 | Some(ret) |
367 | } |
368 | |
369 | #[inline ] |
370 | fn to_f32(&self) -> Option<f32> { |
371 | let mantissa = high_bits_to_u64(self); |
372 | let exponent = self.bits() - u64::from(fls(mantissa)); |
373 | |
374 | if exponent > f32::MAX_EXP as u64 { |
375 | Some(f32::INFINITY) |
376 | } else { |
377 | Some((mantissa as f32) * 2.0f32.powi(exponent as i32)) |
378 | } |
379 | } |
380 | |
381 | #[inline ] |
382 | fn to_f64(&self) -> Option<f64> { |
383 | let mantissa = high_bits_to_u64(self); |
384 | let exponent = self.bits() - u64::from(fls(mantissa)); |
385 | |
386 | if exponent > f64::MAX_EXP as u64 { |
387 | Some(f64::INFINITY) |
388 | } else { |
389 | Some((mantissa as f64) * 2.0f64.powi(exponent as i32)) |
390 | } |
391 | } |
392 | } |
393 | |
394 | macro_rules! impl_try_from_biguint { |
395 | ($T:ty, $to_ty:path) => { |
396 | impl TryFrom<&BigUint> for $T { |
397 | type Error = TryFromBigIntError<()>; |
398 | |
399 | #[inline] |
400 | fn try_from(value: &BigUint) -> Result<$T, TryFromBigIntError<()>> { |
401 | $to_ty(value).ok_or(TryFromBigIntError::new(())) |
402 | } |
403 | } |
404 | |
405 | impl TryFrom<BigUint> for $T { |
406 | type Error = TryFromBigIntError<BigUint>; |
407 | |
408 | #[inline] |
409 | fn try_from(value: BigUint) -> Result<$T, TryFromBigIntError<BigUint>> { |
410 | <$T>::try_from(&value).map_err(|_| TryFromBigIntError::new(value)) |
411 | } |
412 | } |
413 | }; |
414 | } |
415 | |
416 | impl_try_from_biguint!(u8, ToPrimitive::to_u8); |
417 | impl_try_from_biguint!(u16, ToPrimitive::to_u16); |
418 | impl_try_from_biguint!(u32, ToPrimitive::to_u32); |
419 | impl_try_from_biguint!(u64, ToPrimitive::to_u64); |
420 | impl_try_from_biguint!(usize, ToPrimitive::to_usize); |
421 | impl_try_from_biguint!(u128, ToPrimitive::to_u128); |
422 | |
423 | impl_try_from_biguint!(i8, ToPrimitive::to_i8); |
424 | impl_try_from_biguint!(i16, ToPrimitive::to_i16); |
425 | impl_try_from_biguint!(i32, ToPrimitive::to_i32); |
426 | impl_try_from_biguint!(i64, ToPrimitive::to_i64); |
427 | impl_try_from_biguint!(isize, ToPrimitive::to_isize); |
428 | impl_try_from_biguint!(i128, ToPrimitive::to_i128); |
429 | |
430 | impl FromPrimitive for BigUint { |
431 | #[inline ] |
432 | fn from_i64(n: i64) -> Option<BigUint> { |
433 | if n >= 0 { |
434 | Some(BigUint::from(n as u64)) |
435 | } else { |
436 | None |
437 | } |
438 | } |
439 | |
440 | #[inline ] |
441 | fn from_i128(n: i128) -> Option<BigUint> { |
442 | if n >= 0 { |
443 | Some(BigUint::from(n as u128)) |
444 | } else { |
445 | None |
446 | } |
447 | } |
448 | |
449 | #[inline ] |
450 | fn from_u64(n: u64) -> Option<BigUint> { |
451 | Some(BigUint::from(n)) |
452 | } |
453 | |
454 | #[inline ] |
455 | fn from_u128(n: u128) -> Option<BigUint> { |
456 | Some(BigUint::from(n)) |
457 | } |
458 | |
459 | #[inline ] |
460 | fn from_f64(mut n: f64) -> Option<BigUint> { |
461 | // handle NAN, INFINITY, NEG_INFINITY |
462 | if !n.is_finite() { |
463 | return None; |
464 | } |
465 | |
466 | // match the rounding of casting from float to int |
467 | n = n.trunc(); |
468 | |
469 | // handle 0.x, -0.x |
470 | if n.is_zero() { |
471 | return Some(Self::ZERO); |
472 | } |
473 | |
474 | let (mantissa, exponent, sign) = FloatCore::integer_decode(n); |
475 | |
476 | if sign == -1 { |
477 | return None; |
478 | } |
479 | |
480 | let mut ret = BigUint::from(mantissa); |
481 | match exponent.cmp(&0) { |
482 | Greater => ret <<= exponent as usize, |
483 | Equal => {} |
484 | Less => ret >>= (-exponent) as usize, |
485 | } |
486 | Some(ret) |
487 | } |
488 | } |
489 | |
490 | impl From<u64> for BigUint { |
491 | #[inline ] |
492 | fn from(mut n: u64) -> Self { |
493 | let mut ret: BigUint = Self::ZERO; |
494 | |
495 | while n != 0 { |
496 | ret.data.push(n as BigDigit); |
497 | // don't overflow if BITS is 64: |
498 | n = (n >> 1) >> (big_digit::BITS - 1); |
499 | } |
500 | |
501 | ret |
502 | } |
503 | } |
504 | |
505 | impl From<u128> for BigUint { |
506 | #[inline ] |
507 | fn from(mut n: u128) -> Self { |
508 | let mut ret: BigUint = Self::ZERO; |
509 | |
510 | while n != 0 { |
511 | ret.data.push(n as BigDigit); |
512 | n >>= big_digit::BITS; |
513 | } |
514 | |
515 | ret |
516 | } |
517 | } |
518 | |
519 | macro_rules! impl_biguint_from_uint { |
520 | ($T:ty) => { |
521 | impl From<$T> for BigUint { |
522 | #[inline] |
523 | fn from(n: $T) -> Self { |
524 | BigUint::from(n as u64) |
525 | } |
526 | } |
527 | }; |
528 | } |
529 | |
530 | impl_biguint_from_uint!(u8); |
531 | impl_biguint_from_uint!(u16); |
532 | impl_biguint_from_uint!(u32); |
533 | impl_biguint_from_uint!(usize); |
534 | |
535 | macro_rules! impl_biguint_try_from_int { |
536 | ($T:ty, $from_ty:path) => { |
537 | impl TryFrom<$T> for BigUint { |
538 | type Error = TryFromBigIntError<()>; |
539 | |
540 | #[inline] |
541 | fn try_from(value: $T) -> Result<BigUint, TryFromBigIntError<()>> { |
542 | $from_ty(value).ok_or(TryFromBigIntError::new(())) |
543 | } |
544 | } |
545 | }; |
546 | } |
547 | |
548 | impl_biguint_try_from_int!(i8, FromPrimitive::from_i8); |
549 | impl_biguint_try_from_int!(i16, FromPrimitive::from_i16); |
550 | impl_biguint_try_from_int!(i32, FromPrimitive::from_i32); |
551 | impl_biguint_try_from_int!(i64, FromPrimitive::from_i64); |
552 | impl_biguint_try_from_int!(isize, FromPrimitive::from_isize); |
553 | impl_biguint_try_from_int!(i128, FromPrimitive::from_i128); |
554 | |
555 | impl ToBigUint for BigUint { |
556 | #[inline ] |
557 | fn to_biguint(&self) -> Option<BigUint> { |
558 | Some(self.clone()) |
559 | } |
560 | } |
561 | |
562 | macro_rules! impl_to_biguint { |
563 | ($T:ty, $from_ty:path) => { |
564 | impl ToBigUint for $T { |
565 | #[inline] |
566 | fn to_biguint(&self) -> Option<BigUint> { |
567 | $from_ty(*self) |
568 | } |
569 | } |
570 | }; |
571 | } |
572 | |
573 | impl_to_biguint!(isize, FromPrimitive::from_isize); |
574 | impl_to_biguint!(i8, FromPrimitive::from_i8); |
575 | impl_to_biguint!(i16, FromPrimitive::from_i16); |
576 | impl_to_biguint!(i32, FromPrimitive::from_i32); |
577 | impl_to_biguint!(i64, FromPrimitive::from_i64); |
578 | impl_to_biguint!(i128, FromPrimitive::from_i128); |
579 | |
580 | impl_to_biguint!(usize, FromPrimitive::from_usize); |
581 | impl_to_biguint!(u8, FromPrimitive::from_u8); |
582 | impl_to_biguint!(u16, FromPrimitive::from_u16); |
583 | impl_to_biguint!(u32, FromPrimitive::from_u32); |
584 | impl_to_biguint!(u64, FromPrimitive::from_u64); |
585 | impl_to_biguint!(u128, FromPrimitive::from_u128); |
586 | |
587 | impl_to_biguint!(f32, FromPrimitive::from_f32); |
588 | impl_to_biguint!(f64, FromPrimitive::from_f64); |
589 | |
590 | impl From<bool> for BigUint { |
591 | fn from(x: bool) -> Self { |
592 | if x { |
593 | One::one() |
594 | } else { |
595 | Self::ZERO |
596 | } |
597 | } |
598 | } |
599 | |
600 | // Extract bitwise digits that evenly divide BigDigit |
601 | pub(super) fn to_bitwise_digits_le(u: &BigUint, bits: u8) -> Vec<u8> { |
602 | debug_assert!(!u.is_zero() && bits <= 8 && big_digit::BITS % bits == 0); |
603 | |
604 | let last_i = u.data.len() - 1; |
605 | let mask: BigDigit = (1 << bits) - 1; |
606 | let digits_per_big_digit = big_digit::BITS / bits; |
607 | let digits = Integer::div_ceil(&u.bits(), &u64::from(bits)) |
608 | .to_usize() |
609 | .unwrap_or(usize::MAX); |
610 | let mut res = Vec::with_capacity(digits); |
611 | |
612 | for mut r in u.data[..last_i].iter().cloned() { |
613 | for _ in 0..digits_per_big_digit { |
614 | res.push((r & mask) as u8); |
615 | r >>= bits; |
616 | } |
617 | } |
618 | |
619 | let mut r = u.data[last_i]; |
620 | while r != 0 { |
621 | res.push((r & mask) as u8); |
622 | r >>= bits; |
623 | } |
624 | |
625 | res |
626 | } |
627 | |
628 | // Extract bitwise digits that don't evenly divide BigDigit |
629 | fn to_inexact_bitwise_digits_le(u: &BigUint, bits: u8) -> Vec<u8> { |
630 | debug_assert!(!u.is_zero() && bits <= 8 && big_digit::BITS % bits != 0); |
631 | |
632 | let mask: BigDigit = (1 << bits) - 1; |
633 | let digits = Integer::div_ceil(&u.bits(), &u64::from(bits)) |
634 | .to_usize() |
635 | .unwrap_or(usize::MAX); |
636 | let mut res = Vec::with_capacity(digits); |
637 | |
638 | let mut r = 0; |
639 | let mut rbits = 0; |
640 | |
641 | for c in &u.data { |
642 | r |= *c << rbits; |
643 | rbits += big_digit::BITS; |
644 | |
645 | while rbits >= bits { |
646 | res.push((r & mask) as u8); |
647 | r >>= bits; |
648 | |
649 | // r had more bits than it could fit - grab the bits we lost |
650 | if rbits > big_digit::BITS { |
651 | r = *c >> (big_digit::BITS - (rbits - bits)); |
652 | } |
653 | |
654 | rbits -= bits; |
655 | } |
656 | } |
657 | |
658 | if rbits != 0 { |
659 | res.push(r as u8); |
660 | } |
661 | |
662 | while let Some(&0) = res.last() { |
663 | res.pop(); |
664 | } |
665 | |
666 | res |
667 | } |
668 | |
669 | // Extract little-endian radix digits |
670 | #[inline (always)] // forced inline to get const-prop for radix=10 |
671 | pub(super) fn to_radix_digits_le(u: &BigUint, radix: u32) -> Vec<u8> { |
672 | debug_assert!(!u.is_zero() && !radix.is_power_of_two()); |
673 | |
674 | #[cfg (feature = "std" )] |
675 | let radix_digits = { |
676 | let radix_log2 = f64::from(radix).log2(); |
677 | ((u.bits() as f64) / radix_log2).ceil() |
678 | }; |
679 | #[cfg (not(feature = "std" ))] |
680 | let radix_digits = { |
681 | let radix_log2 = ilog2(radix) as usize; |
682 | ((u.bits() as usize) / radix_log2) + 1 |
683 | }; |
684 | |
685 | // Estimate how big the result will be, so we can pre-allocate it. |
686 | let mut res = Vec::with_capacity(radix_digits.to_usize().unwrap_or(0)); |
687 | |
688 | let mut digits = u.clone(); |
689 | |
690 | // X86 DIV can quickly divide by a full digit, otherwise we choose a divisor |
691 | // that's suitable for `div_half` to avoid slow `DoubleBigDigit` division. |
692 | let (base, power) = if FAST_DIV_WIDE { |
693 | get_radix_base(radix) |
694 | } else { |
695 | get_half_radix_base(radix) |
696 | }; |
697 | let radix = radix as BigDigit; |
698 | |
699 | // For very large numbers, the O(n²) loop of repeated `div_rem_digit` dominates the |
700 | // performance. We can mitigate this by dividing into chunks of a larger base first. |
701 | // The threshold for this was chosen by anecdotal performance measurements to |
702 | // approximate where this starts to make a noticeable difference. |
703 | if digits.data.len() >= 64 { |
704 | let mut big_base = BigUint::from(base); |
705 | let mut big_power = 1usize; |
706 | |
707 | // Choose a target base length near √n. |
708 | let target_len = digits.data.len().sqrt(); |
709 | while big_base.data.len() < target_len { |
710 | big_base = &big_base * &big_base; |
711 | big_power *= 2; |
712 | } |
713 | |
714 | // This outer loop will run approximately √n times. |
715 | while digits > big_base { |
716 | // This is still the dominating factor, with n digits divided by √n digits. |
717 | let (q, mut big_r) = digits.div_rem(&big_base); |
718 | digits = q; |
719 | |
720 | // This inner loop now has O(√n²)=O(n) behavior altogether. |
721 | for _ in 0..big_power { |
722 | let (q, mut r) = div_rem_digit(big_r, base); |
723 | big_r = q; |
724 | for _ in 0..power { |
725 | res.push((r % radix) as u8); |
726 | r /= radix; |
727 | } |
728 | } |
729 | } |
730 | } |
731 | |
732 | while digits.data.len() > 1 { |
733 | let (q, mut r) = div_rem_digit(digits, base); |
734 | for _ in 0..power { |
735 | res.push((r % radix) as u8); |
736 | r /= radix; |
737 | } |
738 | digits = q; |
739 | } |
740 | |
741 | let mut r = digits.data[0]; |
742 | while r != 0 { |
743 | res.push((r % radix) as u8); |
744 | r /= radix; |
745 | } |
746 | |
747 | res |
748 | } |
749 | |
750 | pub(super) fn to_radix_le(u: &BigUint, radix: u32) -> Vec<u8> { |
751 | if u.is_zero() { |
752 | vec![0] |
753 | } else if radix.is_power_of_two() { |
754 | // Powers of two can use bitwise masks and shifting instead of division |
755 | let bits: u8 = ilog2(radix); |
756 | if big_digit::BITS % bits == 0 { |
757 | to_bitwise_digits_le(u, bits) |
758 | } else { |
759 | to_inexact_bitwise_digits_le(u, bits) |
760 | } |
761 | } else if radix == 10 { |
762 | // 10 is so common that it's worth separating out for const-propagation. |
763 | // Optimizers can often turn constant division into a faster multiplication. |
764 | to_radix_digits_le(u, radix:10) |
765 | } else { |
766 | to_radix_digits_le(u, radix) |
767 | } |
768 | } |
769 | |
770 | pub(crate) fn to_str_radix_reversed(u: &BigUint, radix: u32) -> Vec<u8> { |
771 | assert!(2 <= radix && radix <= 36, "The radix must be within 2...36" ); |
772 | |
773 | if u.is_zero() { |
774 | return vec![b'0' ]; |
775 | } |
776 | |
777 | let mut res: Vec = to_radix_le(u, radix); |
778 | |
779 | // Now convert everything to ASCII digits. |
780 | for r: &mut u8 in &mut res { |
781 | debug_assert!(u32::from(*r) < radix); |
782 | if *r < 10 { |
783 | *r += b'0' ; |
784 | } else { |
785 | *r += b'a' - 10; |
786 | } |
787 | } |
788 | res |
789 | } |
790 | |
791 | /// Returns the greatest power of the radix for the `BigDigit` bit size |
792 | #[inline ] |
793 | fn get_radix_base(radix: u32) -> (BigDigit, usize) { |
794 | static BASES: [(BigDigit, usize); 257] = generate_radix_bases(big_digit::MAX); |
795 | debug_assert!(!radix.is_power_of_two()); |
796 | debug_assert!((3..256).contains(&radix)); |
797 | BASES[radix as usize] |
798 | } |
799 | |
800 | /// Returns the greatest power of the radix for half the `BigDigit` bit size |
801 | #[inline ] |
802 | fn get_half_radix_base(radix: u32) -> (BigDigit, usize) { |
803 | static BASES: [(BigDigit, usize); 257] = generate_radix_bases(max:big_digit::HALF); |
804 | debug_assert!(!radix.is_power_of_two()); |
805 | debug_assert!((3..256).contains(&radix)); |
806 | BASES[radix as usize] |
807 | } |
808 | |
809 | /// Generate tables of the greatest power of each radix that is less that the given maximum. These |
810 | /// are returned from `get_radix_base` to batch the multiplication/division of radix conversions on |
811 | /// full `BigUint` values, operating on primitive integers as much as possible. |
812 | /// |
813 | /// e.g. BASES_16[3] = (59049, 10) // 3¹⁰ fits in u16, but 3¹¹ is too big |
814 | /// BASES_32[3] = (3486784401, 20) |
815 | /// BASES_64[3] = (12157665459056928801, 40) |
816 | /// |
817 | /// Powers of two are not included, just zeroed, as they're implemented with shifts. |
818 | const fn generate_radix_bases(max: BigDigit) -> [(BigDigit, usize); 257] { |
819 | let mut bases: [(u64, usize); 257] = [(0, 0); 257]; |
820 | |
821 | let mut radix: BigDigit = 3; |
822 | while radix < 256 { |
823 | if !radix.is_power_of_two() { |
824 | let mut power: usize = 1; |
825 | let mut base: u64 = radix; |
826 | |
827 | while let Some(b: u64) = base.checked_mul(radix) { |
828 | if b > max { |
829 | break; |
830 | } |
831 | base = b; |
832 | power += 1; |
833 | } |
834 | bases[radix as usize] = (base, power) |
835 | } |
836 | radix += 1; |
837 | } |
838 | |
839 | bases |
840 | } |
841 | |
842 | #[test ] |
843 | fn test_radix_bases() { |
844 | for radix in 3u32..256 { |
845 | if !radix.is_power_of_two() { |
846 | let (base, power) = get_radix_base(radix); |
847 | let radix = BigDigit::from(radix); |
848 | let power = u32::try_from(power).unwrap(); |
849 | assert_eq!(base, radix.pow(power)); |
850 | assert!(radix.checked_pow(power + 1).is_none()); |
851 | } |
852 | } |
853 | } |
854 | |
855 | #[test ] |
856 | fn test_half_radix_bases() { |
857 | for radix in 3u32..256 { |
858 | if !radix.is_power_of_two() { |
859 | let (base, power) = get_half_radix_base(radix); |
860 | let radix = BigDigit::from(radix); |
861 | let power = u32::try_from(power).unwrap(); |
862 | assert_eq!(base, radix.pow(power)); |
863 | assert!(radix.pow(power + 1) > big_digit::HALF); |
864 | } |
865 | } |
866 | } |
867 | |