1 | use alloc::string::String; |
2 | |
3 | use regex_automata::{meta, Input, PatternID, PatternSet, PatternSetIter}; |
4 | |
5 | use crate::{bytes::RegexSetBuilder, Error}; |
6 | |
7 | /// Match multiple, possibly overlapping, regexes in a single search. |
8 | /// |
9 | /// A regex set corresponds to the union of zero or more regular expressions. |
10 | /// That is, a regex set will match a haystack when at least one of its |
11 | /// constituent regexes matches. A regex set as its formulated here provides a |
12 | /// touch more power: it will also report *which* regular expressions in the |
13 | /// set match. Indeed, this is the key difference between regex sets and a |
14 | /// single `Regex` with many alternates, since only one alternate can match at |
15 | /// a time. |
16 | /// |
17 | /// For example, consider regular expressions to match email addresses and |
18 | /// domains: `[a-z]+@[a-z]+\.(com|org|net)` and `[a-z]+\.(com|org|net)`. If a |
19 | /// regex set is constructed from those regexes, then searching the haystack |
20 | /// `foo@example.com` will report both regexes as matching. Of course, one |
21 | /// could accomplish this by compiling each regex on its own and doing two |
22 | /// searches over the haystack. The key advantage of using a regex set is |
23 | /// that it will report the matching regexes using a *single pass through the |
24 | /// haystack*. If one has hundreds or thousands of regexes to match repeatedly |
25 | /// (like a URL router for a complex web application or a user agent matcher), |
26 | /// then a regex set *can* realize huge performance gains. |
27 | /// |
28 | /// Unlike the top-level [`RegexSet`](crate::RegexSet), this `RegexSet` |
29 | /// searches haystacks with type `&[u8]` instead of `&str`. Consequently, this |
30 | /// `RegexSet` is permitted to match invalid UTF-8. |
31 | /// |
32 | /// # Limitations |
33 | /// |
34 | /// Regex sets are limited to answering the following two questions: |
35 | /// |
36 | /// 1. Does any regex in the set match? |
37 | /// 2. If so, which regexes in the set match? |
38 | /// |
39 | /// As with the main [`Regex`][crate::bytes::Regex] type, it is cheaper to ask |
40 | /// (1) instead of (2) since the matching engines can stop after the first |
41 | /// match is found. |
42 | /// |
43 | /// You cannot directly extract [`Match`][crate::bytes::Match] or |
44 | /// [`Captures`][crate::bytes::Captures] objects from a regex set. If you need |
45 | /// these operations, the recommended approach is to compile each pattern in |
46 | /// the set independently and scan the exact same haystack a second time with |
47 | /// those independently compiled patterns: |
48 | /// |
49 | /// ``` |
50 | /// use regex::bytes::{Regex, RegexSet}; |
51 | /// |
52 | /// let patterns = ["foo" , "bar" ]; |
53 | /// // Both patterns will match different ranges of this string. |
54 | /// let hay = b"barfoo" ; |
55 | /// |
56 | /// // Compile a set matching any of our patterns. |
57 | /// let set = RegexSet::new(patterns).unwrap(); |
58 | /// // Compile each pattern independently. |
59 | /// let regexes: Vec<_> = set |
60 | /// .patterns() |
61 | /// .iter() |
62 | /// .map(|pat| Regex::new(pat).unwrap()) |
63 | /// .collect(); |
64 | /// |
65 | /// // Match against the whole set first and identify the individual |
66 | /// // matching patterns. |
67 | /// let matches: Vec<&[u8]> = set |
68 | /// .matches(hay) |
69 | /// .into_iter() |
70 | /// // Dereference the match index to get the corresponding |
71 | /// // compiled pattern. |
72 | /// .map(|index| ®exes[index]) |
73 | /// // To get match locations or any other info, we then have to search the |
74 | /// // exact same haystack again, using our separately-compiled pattern. |
75 | /// .map(|re| re.find(hay).unwrap().as_bytes()) |
76 | /// .collect(); |
77 | /// |
78 | /// // Matches arrive in the order the constituent patterns were declared, |
79 | /// // not the order they appear in the haystack. |
80 | /// assert_eq!(vec![&b"foo" [..], &b"bar" [..]], matches); |
81 | /// ``` |
82 | /// |
83 | /// # Performance |
84 | /// |
85 | /// A `RegexSet` has the same performance characteristics as `Regex`. Namely, |
86 | /// search takes `O(m * n)` time, where `m` is proportional to the size of the |
87 | /// regex set and `n` is proportional to the length of the haystack. |
88 | /// |
89 | /// # Trait implementations |
90 | /// |
91 | /// The `Default` trait is implemented for `RegexSet`. The default value |
92 | /// is an empty set. An empty set can also be explicitly constructed via |
93 | /// [`RegexSet::empty`]. |
94 | /// |
95 | /// # Example |
96 | /// |
97 | /// This shows how the above two regexes (for matching email addresses and |
98 | /// domains) might work: |
99 | /// |
100 | /// ``` |
101 | /// use regex::bytes::RegexSet; |
102 | /// |
103 | /// let set = RegexSet::new(&[ |
104 | /// r"[a-z]+@[a-z]+\.(com|org|net)" , |
105 | /// r"[a-z]+\.(com|org|net)" , |
106 | /// ]).unwrap(); |
107 | /// |
108 | /// // Ask whether any regexes in the set match. |
109 | /// assert!(set.is_match(b"foo@example.com" )); |
110 | /// |
111 | /// // Identify which regexes in the set match. |
112 | /// let matches: Vec<_> = set.matches(b"foo@example.com" ).into_iter().collect(); |
113 | /// assert_eq!(vec![0, 1], matches); |
114 | /// |
115 | /// // Try again, but with a haystack that only matches one of the regexes. |
116 | /// let matches: Vec<_> = set.matches(b"example.com" ).into_iter().collect(); |
117 | /// assert_eq!(vec![1], matches); |
118 | /// |
119 | /// // Try again, but with a haystack that doesn't match any regex in the set. |
120 | /// let matches: Vec<_> = set.matches(b"example" ).into_iter().collect(); |
121 | /// assert!(matches.is_empty()); |
122 | /// ``` |
123 | /// |
124 | /// Note that it would be possible to adapt the above example to using `Regex` |
125 | /// with an expression like: |
126 | /// |
127 | /// ```text |
128 | /// (?P<email>[a-z]+@(?P<email_domain>[a-z]+[.](com|org|net)))|(?P<domain>[a-z]+[.](com|org|net)) |
129 | /// ``` |
130 | /// |
131 | /// After a match, one could then inspect the capture groups to figure out |
132 | /// which alternates matched. The problem is that it is hard to make this |
133 | /// approach scale when there are many regexes since the overlap between each |
134 | /// alternate isn't always obvious to reason about. |
135 | #[derive (Clone)] |
136 | pub struct RegexSet { |
137 | pub(crate) meta: meta::Regex, |
138 | pub(crate) patterns: alloc::sync::Arc<[String]>, |
139 | } |
140 | |
141 | impl RegexSet { |
142 | /// Create a new regex set with the given regular expressions. |
143 | /// |
144 | /// This takes an iterator of `S`, where `S` is something that can produce |
145 | /// a `&str`. If any of the strings in the iterator are not valid regular |
146 | /// expressions, then an error is returned. |
147 | /// |
148 | /// # Example |
149 | /// |
150 | /// Create a new regex set from an iterator of strings: |
151 | /// |
152 | /// ``` |
153 | /// use regex::bytes::RegexSet; |
154 | /// |
155 | /// let set = RegexSet::new([r"\w+" , r"\d+" ]).unwrap(); |
156 | /// assert!(set.is_match(b"foo" )); |
157 | /// ``` |
158 | pub fn new<I, S>(exprs: I) -> Result<RegexSet, Error> |
159 | where |
160 | S: AsRef<str>, |
161 | I: IntoIterator<Item = S>, |
162 | { |
163 | RegexSetBuilder::new(exprs).build() |
164 | } |
165 | |
166 | /// Create a new empty regex set. |
167 | /// |
168 | /// An empty regex never matches anything. |
169 | /// |
170 | /// This is a convenience function for `RegexSet::new([])`, but doesn't |
171 | /// require one to specify the type of the input. |
172 | /// |
173 | /// # Example |
174 | /// |
175 | /// ``` |
176 | /// use regex::bytes::RegexSet; |
177 | /// |
178 | /// let set = RegexSet::empty(); |
179 | /// assert!(set.is_empty()); |
180 | /// // an empty set matches nothing |
181 | /// assert!(!set.is_match(b"" )); |
182 | /// ``` |
183 | pub fn empty() -> RegexSet { |
184 | let empty: [&str; 0] = []; |
185 | RegexSetBuilder::new(empty).build().unwrap() |
186 | } |
187 | |
188 | /// Returns true if and only if one of the regexes in this set matches |
189 | /// the haystack given. |
190 | /// |
191 | /// This method should be preferred if you only need to test whether any |
192 | /// of the regexes in the set should match, but don't care about *which* |
193 | /// regexes matched. This is because the underlying matching engine will |
194 | /// quit immediately after seeing the first match instead of continuing to |
195 | /// find all matches. |
196 | /// |
197 | /// Note that as with searches using [`Regex`](crate::bytes::Regex), the |
198 | /// expression is unanchored by default. That is, if the regex does not |
199 | /// start with `^` or `\A`, or end with `$` or `\z`, then it is permitted |
200 | /// to match anywhere in the haystack. |
201 | /// |
202 | /// # Example |
203 | /// |
204 | /// Tests whether a set matches somewhere in a haystack: |
205 | /// |
206 | /// ``` |
207 | /// use regex::bytes::RegexSet; |
208 | /// |
209 | /// let set = RegexSet::new([r"\w+" , r"\d+" ]).unwrap(); |
210 | /// assert!(set.is_match(b"foo" )); |
211 | /// assert!(!set.is_match("☃" .as_bytes())); |
212 | /// ``` |
213 | #[inline ] |
214 | pub fn is_match(&self, haystack: &[u8]) -> bool { |
215 | self.is_match_at(haystack, 0) |
216 | } |
217 | |
218 | /// Returns true if and only if one of the regexes in this set matches the |
219 | /// haystack given, with the search starting at the offset given. |
220 | /// |
221 | /// The significance of the starting point is that it takes the surrounding |
222 | /// context into consideration. For example, the `\A` anchor can only |
223 | /// match when `start == 0`. |
224 | /// |
225 | /// # Panics |
226 | /// |
227 | /// This panics when `start >= haystack.len() + 1`. |
228 | /// |
229 | /// # Example |
230 | /// |
231 | /// This example shows the significance of `start`. Namely, consider a |
232 | /// haystack `foobar` and a desire to execute a search starting at offset |
233 | /// `3`. You could search a substring explicitly, but then the look-around |
234 | /// assertions won't work correctly. Instead, you can use this method to |
235 | /// specify the start position of a search. |
236 | /// |
237 | /// ``` |
238 | /// use regex::bytes::RegexSet; |
239 | /// |
240 | /// let set = RegexSet::new([r"\bbar\b" , r"(?m)^bar$" ]).unwrap(); |
241 | /// let hay = b"foobar" ; |
242 | /// // We get a match here, but it's probably not intended. |
243 | /// assert!(set.is_match(&hay[3..])); |
244 | /// // No match because the assertions take the context into account. |
245 | /// assert!(!set.is_match_at(hay, 3)); |
246 | /// ``` |
247 | #[inline ] |
248 | pub fn is_match_at(&self, haystack: &[u8], start: usize) -> bool { |
249 | self.meta.is_match(Input::new(haystack).span(start..haystack.len())) |
250 | } |
251 | |
252 | /// Returns the set of regexes that match in the given haystack. |
253 | /// |
254 | /// The set returned contains the index of each regex that matches in |
255 | /// the given haystack. The index is in correspondence with the order of |
256 | /// regular expressions given to `RegexSet`'s constructor. |
257 | /// |
258 | /// The set can also be used to iterate over the matched indices. The order |
259 | /// of iteration is always ascending with respect to the matching indices. |
260 | /// |
261 | /// Note that as with searches using [`Regex`](crate::bytes::Regex), the |
262 | /// expression is unanchored by default. That is, if the regex does not |
263 | /// start with `^` or `\A`, or end with `$` or `\z`, then it is permitted |
264 | /// to match anywhere in the haystack. |
265 | /// |
266 | /// # Example |
267 | /// |
268 | /// Tests which regular expressions match the given haystack: |
269 | /// |
270 | /// ``` |
271 | /// use regex::bytes::RegexSet; |
272 | /// |
273 | /// let set = RegexSet::new([ |
274 | /// r"\w+" , |
275 | /// r"\d+" , |
276 | /// r"\pL+" , |
277 | /// r"foo" , |
278 | /// r"bar" , |
279 | /// r"barfoo" , |
280 | /// r"foobar" , |
281 | /// ]).unwrap(); |
282 | /// let matches: Vec<_> = set.matches(b"foobar" ).into_iter().collect(); |
283 | /// assert_eq!(matches, vec![0, 2, 3, 4, 6]); |
284 | /// |
285 | /// // You can also test whether a particular regex matched: |
286 | /// let matches = set.matches(b"foobar" ); |
287 | /// assert!(!matches.matched(5)); |
288 | /// assert!(matches.matched(6)); |
289 | /// ``` |
290 | #[inline ] |
291 | pub fn matches(&self, haystack: &[u8]) -> SetMatches { |
292 | self.matches_at(haystack, 0) |
293 | } |
294 | |
295 | /// Returns the set of regexes that match in the given haystack. |
296 | /// |
297 | /// The set returned contains the index of each regex that matches in |
298 | /// the given haystack. The index is in correspondence with the order of |
299 | /// regular expressions given to `RegexSet`'s constructor. |
300 | /// |
301 | /// The set can also be used to iterate over the matched indices. The order |
302 | /// of iteration is always ascending with respect to the matching indices. |
303 | /// |
304 | /// The significance of the starting point is that it takes the surrounding |
305 | /// context into consideration. For example, the `\A` anchor can only |
306 | /// match when `start == 0`. |
307 | /// |
308 | /// # Panics |
309 | /// |
310 | /// This panics when `start >= haystack.len() + 1`. |
311 | /// |
312 | /// # Example |
313 | /// |
314 | /// Tests which regular expressions match the given haystack: |
315 | /// |
316 | /// ``` |
317 | /// use regex::bytes::RegexSet; |
318 | /// |
319 | /// let set = RegexSet::new([r"\bbar\b" , r"(?m)^bar$" ]).unwrap(); |
320 | /// let hay = b"foobar" ; |
321 | /// // We get matches here, but it's probably not intended. |
322 | /// let matches: Vec<_> = set.matches(&hay[3..]).into_iter().collect(); |
323 | /// assert_eq!(matches, vec![0, 1]); |
324 | /// // No matches because the assertions take the context into account. |
325 | /// let matches: Vec<_> = set.matches_at(hay, 3).into_iter().collect(); |
326 | /// assert_eq!(matches, vec![]); |
327 | /// ``` |
328 | #[inline ] |
329 | pub fn matches_at(&self, haystack: &[u8], start: usize) -> SetMatches { |
330 | let input = Input::new(haystack).span(start..haystack.len()); |
331 | let mut patset = PatternSet::new(self.meta.pattern_len()); |
332 | self.meta.which_overlapping_matches(&input, &mut patset); |
333 | SetMatches(patset) |
334 | } |
335 | |
336 | /// Returns the same as matches, but starts the search at the given |
337 | /// offset and stores the matches into the slice given. |
338 | /// |
339 | /// The significance of the starting point is that it takes the surrounding |
340 | /// context into consideration. For example, the `\A` anchor can only |
341 | /// match when `start == 0`. |
342 | /// |
343 | /// `matches` must have a length that is at least the number of regexes |
344 | /// in this set. |
345 | /// |
346 | /// This method returns true if and only if at least one member of |
347 | /// `matches` is true after executing the set against `haystack`. |
348 | #[doc (hidden)] |
349 | #[inline ] |
350 | pub fn matches_read_at( |
351 | &self, |
352 | matches: &mut [bool], |
353 | haystack: &[u8], |
354 | start: usize, |
355 | ) -> bool { |
356 | // This is pretty dumb. We should try to fix this, but the |
357 | // regex-automata API doesn't provide a way to store matches in an |
358 | // arbitrary &mut [bool]. Thankfully, this API is is doc(hidden) and |
359 | // thus not public... But regex-capi currently uses it. We should |
360 | // fix regex-capi to use a PatternSet, maybe? Not sure... PatternSet |
361 | // is in regex-automata, not regex. So maybe we should just accept a |
362 | // 'SetMatches', which is basically just a newtype around PatternSet. |
363 | let mut patset = PatternSet::new(self.meta.pattern_len()); |
364 | let mut input = Input::new(haystack); |
365 | input.set_start(start); |
366 | self.meta.which_overlapping_matches(&input, &mut patset); |
367 | for pid in patset.iter() { |
368 | matches[pid] = true; |
369 | } |
370 | !patset.is_empty() |
371 | } |
372 | |
373 | /// An alias for `matches_read_at` to preserve backward compatibility. |
374 | /// |
375 | /// The `regex-capi` crate used this method, so to avoid breaking that |
376 | /// crate, we continue to export it as an undocumented API. |
377 | #[doc (hidden)] |
378 | #[inline ] |
379 | pub fn read_matches_at( |
380 | &self, |
381 | matches: &mut [bool], |
382 | haystack: &[u8], |
383 | start: usize, |
384 | ) -> bool { |
385 | self.matches_read_at(matches, haystack, start) |
386 | } |
387 | |
388 | /// Returns the total number of regexes in this set. |
389 | /// |
390 | /// # Example |
391 | /// |
392 | /// ``` |
393 | /// use regex::bytes::RegexSet; |
394 | /// |
395 | /// assert_eq!(0, RegexSet::empty().len()); |
396 | /// assert_eq!(1, RegexSet::new([r"[0-9]" ]).unwrap().len()); |
397 | /// assert_eq!(2, RegexSet::new([r"[0-9]" , r"[a-z]" ]).unwrap().len()); |
398 | /// ``` |
399 | #[inline ] |
400 | pub fn len(&self) -> usize { |
401 | self.meta.pattern_len() |
402 | } |
403 | |
404 | /// Returns `true` if this set contains no regexes. |
405 | /// |
406 | /// # Example |
407 | /// |
408 | /// ``` |
409 | /// use regex::bytes::RegexSet; |
410 | /// |
411 | /// assert!(RegexSet::empty().is_empty()); |
412 | /// assert!(!RegexSet::new([r"[0-9]" ]).unwrap().is_empty()); |
413 | /// ``` |
414 | #[inline ] |
415 | pub fn is_empty(&self) -> bool { |
416 | self.meta.pattern_len() == 0 |
417 | } |
418 | |
419 | /// Returns the regex patterns that this regex set was constructed from. |
420 | /// |
421 | /// This function can be used to determine the pattern for a match. The |
422 | /// slice returned has exactly as many patterns givens to this regex set, |
423 | /// and the order of the slice is the same as the order of the patterns |
424 | /// provided to the set. |
425 | /// |
426 | /// # Example |
427 | /// |
428 | /// ``` |
429 | /// use regex::bytes::RegexSet; |
430 | /// |
431 | /// let set = RegexSet::new(&[ |
432 | /// r"\w+" , |
433 | /// r"\d+" , |
434 | /// r"\pL+" , |
435 | /// r"foo" , |
436 | /// r"bar" , |
437 | /// r"barfoo" , |
438 | /// r"foobar" , |
439 | /// ]).unwrap(); |
440 | /// let matches: Vec<_> = set |
441 | /// .matches(b"foobar" ) |
442 | /// .into_iter() |
443 | /// .map(|index| &set.patterns()[index]) |
444 | /// .collect(); |
445 | /// assert_eq!(matches, vec![r"\w+" , r"\pL+" , r"foo" , r"bar" , r"foobar" ]); |
446 | /// ``` |
447 | #[inline ] |
448 | pub fn patterns(&self) -> &[String] { |
449 | &self.patterns |
450 | } |
451 | } |
452 | |
453 | impl Default for RegexSet { |
454 | fn default() -> Self { |
455 | RegexSet::empty() |
456 | } |
457 | } |
458 | |
459 | /// A set of matches returned by a regex set. |
460 | /// |
461 | /// Values of this type are constructed by [`RegexSet::matches`]. |
462 | #[derive (Clone, Debug)] |
463 | pub struct SetMatches(PatternSet); |
464 | |
465 | impl SetMatches { |
466 | /// Whether this set contains any matches. |
467 | /// |
468 | /// # Example |
469 | /// |
470 | /// ``` |
471 | /// use regex::bytes::RegexSet; |
472 | /// |
473 | /// let set = RegexSet::new(&[ |
474 | /// r"[a-z]+@[a-z]+\.(com|org|net)" , |
475 | /// r"[a-z]+\.(com|org|net)" , |
476 | /// ]).unwrap(); |
477 | /// let matches = set.matches(b"foo@example.com" ); |
478 | /// assert!(matches.matched_any()); |
479 | /// ``` |
480 | #[inline ] |
481 | pub fn matched_any(&self) -> bool { |
482 | !self.0.is_empty() |
483 | } |
484 | |
485 | /// Whether the regex at the given index matched. |
486 | /// |
487 | /// The index for a regex is determined by its insertion order upon the |
488 | /// initial construction of a `RegexSet`, starting at `0`. |
489 | /// |
490 | /// # Panics |
491 | /// |
492 | /// If `index` is greater than or equal to the number of regexes in the |
493 | /// original set that produced these matches. Equivalently, when `index` |
494 | /// is greater than or equal to [`SetMatches::len`]. |
495 | /// |
496 | /// # Example |
497 | /// |
498 | /// ``` |
499 | /// use regex::bytes::RegexSet; |
500 | /// |
501 | /// let set = RegexSet::new([ |
502 | /// r"[a-z]+@[a-z]+\.(com|org|net)" , |
503 | /// r"[a-z]+\.(com|org|net)" , |
504 | /// ]).unwrap(); |
505 | /// let matches = set.matches(b"example.com" ); |
506 | /// assert!(!matches.matched(0)); |
507 | /// assert!(matches.matched(1)); |
508 | /// ``` |
509 | #[inline ] |
510 | pub fn matched(&self, index: usize) -> bool { |
511 | self.0.contains(PatternID::new_unchecked(index)) |
512 | } |
513 | |
514 | /// The total number of regexes in the set that created these matches. |
515 | /// |
516 | /// **WARNING:** This always returns the same value as [`RegexSet::len`]. |
517 | /// In particular, it does *not* return the number of elements yielded by |
518 | /// [`SetMatches::iter`]. The only way to determine the total number of |
519 | /// matched regexes is to iterate over them. |
520 | /// |
521 | /// # Example |
522 | /// |
523 | /// Notice that this method returns the total number of regexes in the |
524 | /// original set, and *not* the total number of regexes that matched. |
525 | /// |
526 | /// ``` |
527 | /// use regex::bytes::RegexSet; |
528 | /// |
529 | /// let set = RegexSet::new([ |
530 | /// r"[a-z]+@[a-z]+\.(com|org|net)" , |
531 | /// r"[a-z]+\.(com|org|net)" , |
532 | /// ]).unwrap(); |
533 | /// let matches = set.matches(b"example.com" ); |
534 | /// // Total number of patterns that matched. |
535 | /// assert_eq!(1, matches.iter().count()); |
536 | /// // Total number of patterns in the set. |
537 | /// assert_eq!(2, matches.len()); |
538 | /// ``` |
539 | #[inline ] |
540 | pub fn len(&self) -> usize { |
541 | self.0.capacity() |
542 | } |
543 | |
544 | /// Returns an iterator over the indices of the regexes that matched. |
545 | /// |
546 | /// This will always produces matches in ascending order, where the index |
547 | /// yielded corresponds to the index of the regex that matched with respect |
548 | /// to its position when initially building the set. |
549 | /// |
550 | /// # Example |
551 | /// |
552 | /// ``` |
553 | /// use regex::bytes::RegexSet; |
554 | /// |
555 | /// let set = RegexSet::new([ |
556 | /// r"[0-9]" , |
557 | /// r"[a-z]" , |
558 | /// r"[A-Z]" , |
559 | /// r"\p{Greek}" , |
560 | /// ]).unwrap(); |
561 | /// let hay = "βa1" .as_bytes(); |
562 | /// let matches: Vec<_> = set.matches(hay).iter().collect(); |
563 | /// assert_eq!(matches, vec![0, 1, 3]); |
564 | /// ``` |
565 | /// |
566 | /// Note that `SetMatches` also implemnets the `IntoIterator` trait, so |
567 | /// this method is not always needed. For example: |
568 | /// |
569 | /// ``` |
570 | /// use regex::bytes::RegexSet; |
571 | /// |
572 | /// let set = RegexSet::new([ |
573 | /// r"[0-9]" , |
574 | /// r"[a-z]" , |
575 | /// r"[A-Z]" , |
576 | /// r"\p{Greek}" , |
577 | /// ]).unwrap(); |
578 | /// let hay = "βa1" .as_bytes(); |
579 | /// let mut matches = vec![]; |
580 | /// for index in set.matches(hay) { |
581 | /// matches.push(index); |
582 | /// } |
583 | /// assert_eq!(matches, vec![0, 1, 3]); |
584 | /// ``` |
585 | #[inline ] |
586 | pub fn iter(&self) -> SetMatchesIter<'_> { |
587 | SetMatchesIter(self.0.iter()) |
588 | } |
589 | } |
590 | |
591 | impl IntoIterator for SetMatches { |
592 | type IntoIter = SetMatchesIntoIter; |
593 | type Item = usize; |
594 | |
595 | fn into_iter(self) -> Self::IntoIter { |
596 | let it: Range = 0..self.0.capacity(); |
597 | SetMatchesIntoIter { patset: self.0, it } |
598 | } |
599 | } |
600 | |
601 | impl<'a> IntoIterator for &'a SetMatches { |
602 | type IntoIter = SetMatchesIter<'a>; |
603 | type Item = usize; |
604 | |
605 | fn into_iter(self) -> Self::IntoIter { |
606 | self.iter() |
607 | } |
608 | } |
609 | |
610 | /// An owned iterator over the set of matches from a regex set. |
611 | /// |
612 | /// This will always produces matches in ascending order of index, where the |
613 | /// index corresponds to the index of the regex that matched with respect to |
614 | /// its position when initially building the set. |
615 | /// |
616 | /// This iterator is created by calling `SetMatches::into_iter` via the |
617 | /// `IntoIterator` trait. This is automatically done in `for` loops. |
618 | /// |
619 | /// # Example |
620 | /// |
621 | /// ``` |
622 | /// use regex::bytes::RegexSet; |
623 | /// |
624 | /// let set = RegexSet::new([ |
625 | /// r"[0-9]" , |
626 | /// r"[a-z]" , |
627 | /// r"[A-Z]" , |
628 | /// r"\p{Greek}" , |
629 | /// ]).unwrap(); |
630 | /// let hay = "βa1" .as_bytes(); |
631 | /// let mut matches = vec![]; |
632 | /// for index in set.matches(hay) { |
633 | /// matches.push(index); |
634 | /// } |
635 | /// assert_eq!(matches, vec![0, 1, 3]); |
636 | /// ``` |
637 | #[derive (Debug)] |
638 | pub struct SetMatchesIntoIter { |
639 | patset: PatternSet, |
640 | it: core::ops::Range<usize>, |
641 | } |
642 | |
643 | impl Iterator for SetMatchesIntoIter { |
644 | type Item = usize; |
645 | |
646 | fn next(&mut self) -> Option<usize> { |
647 | loop { |
648 | let id: usize = self.it.next()?; |
649 | if self.patset.contains(pid:PatternID::new_unchecked(id)) { |
650 | return Some(id); |
651 | } |
652 | } |
653 | } |
654 | |
655 | fn size_hint(&self) -> (usize, Option<usize>) { |
656 | self.it.size_hint() |
657 | } |
658 | } |
659 | |
660 | impl DoubleEndedIterator for SetMatchesIntoIter { |
661 | fn next_back(&mut self) -> Option<usize> { |
662 | loop { |
663 | let id: usize = self.it.next_back()?; |
664 | if self.patset.contains(pid:PatternID::new_unchecked(id)) { |
665 | return Some(id); |
666 | } |
667 | } |
668 | } |
669 | } |
670 | |
671 | impl core::iter::FusedIterator for SetMatchesIntoIter {} |
672 | |
673 | /// A borrowed iterator over the set of matches from a regex set. |
674 | /// |
675 | /// The lifetime `'a` refers to the lifetime of the [`SetMatches`] value that |
676 | /// created this iterator. |
677 | /// |
678 | /// This will always produces matches in ascending order, where the index |
679 | /// corresponds to the index of the regex that matched with respect to its |
680 | /// position when initially building the set. |
681 | /// |
682 | /// This iterator is created by the [`SetMatches::iter`] method. |
683 | #[derive (Clone, Debug)] |
684 | pub struct SetMatchesIter<'a>(PatternSetIter<'a>); |
685 | |
686 | impl<'a> Iterator for SetMatchesIter<'a> { |
687 | type Item = usize; |
688 | |
689 | fn next(&mut self) -> Option<usize> { |
690 | self.0.next().map(|pid: PatternID| pid.as_usize()) |
691 | } |
692 | |
693 | fn size_hint(&self) -> (usize, Option<usize>) { |
694 | self.0.size_hint() |
695 | } |
696 | } |
697 | |
698 | impl<'a> DoubleEndedIterator for SetMatchesIter<'a> { |
699 | fn next_back(&mut self) -> Option<usize> { |
700 | self.0.next_back().map(|pid: PatternID| pid.as_usize()) |
701 | } |
702 | } |
703 | |
704 | impl<'a> core::iter::FusedIterator for SetMatchesIter<'a> {} |
705 | |
706 | impl core::fmt::Debug for RegexSet { |
707 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
708 | write!(f, "RegexSet( {:?})" , self.patterns()) |
709 | } |
710 | } |
711 | |