1use core::{
2 borrow::Borrow,
3 panic::{RefUnwindSafe, UnwindSafe},
4};
5
6use alloc::{boxed::Box, sync::Arc, vec, vec::Vec};
7
8use regex_syntax::{
9 ast,
10 hir::{self, Hir},
11};
12
13use crate::{
14 meta::{
15 error::BuildError,
16 strategy::{self, Strategy},
17 wrappers,
18 },
19 nfa::thompson::WhichCaptures,
20 util::{
21 captures::{Captures, GroupInfo},
22 iter,
23 pool::{Pool, PoolGuard},
24 prefilter::Prefilter,
25 primitives::{NonMaxUsize, PatternID},
26 search::{HalfMatch, Input, Match, MatchKind, PatternSet, Span},
27 },
28};
29
30/// A type alias for our pool of meta::Cache that fixes the type parameters to
31/// what we use for the meta regex below.
32type CachePool = Pool<Cache, CachePoolFn>;
33
34/// Same as above, but for the guard returned by a pool.
35type CachePoolGuard<'a> = PoolGuard<'a, Cache, CachePoolFn>;
36
37/// The type of the closure we use to create new caches. We need to spell out
38/// all of the marker traits or else we risk leaking !MARKER impls.
39type CachePoolFn =
40 Box<dyn Fn() -> Cache + Send + Sync + UnwindSafe + RefUnwindSafe>;
41
42/// A regex matcher that works by composing several other regex matchers
43/// automatically.
44///
45/// In effect, a meta regex papers over a lot of the quirks or performance
46/// problems in each of the regex engines in this crate. Its goal is to provide
47/// an infallible and simple API that "just does the right thing" in the common
48/// case.
49///
50/// A meta regex is the implementation of a `Regex` in the `regex` crate.
51/// Indeed, the `regex` crate API is essentially just a light wrapper over
52/// this type. This includes the `regex` crate's `RegexSet` API!
53///
54/// # Composition
55///
56/// This is called a "meta" matcher precisely because it uses other regex
57/// matchers to provide a convenient high level regex API. Here are some
58/// examples of how other regex matchers are composed:
59///
60/// * When calling [`Regex::captures`], instead of immediately
61/// running a slower but more capable regex engine like the
62/// [`PikeVM`](crate::nfa::thompson::pikevm::PikeVM), the meta regex engine
63/// will usually first look for the bounds of a match with a higher throughput
64/// regex engine like a [lazy DFA](crate::hybrid). Only when a match is found
65/// is a slower engine like `PikeVM` used to find the matching span for each
66/// capture group.
67/// * While higher throughout engines like the lazy DFA cannot handle
68/// Unicode word boundaries in general, they can still be used on pure ASCII
69/// haystacks by pretending that Unicode word boundaries are just plain ASCII
70/// word boundaries. However, if a haystack is not ASCII, the meta regex engine
71/// will automatically switch to a (possibly slower) regex engine that supports
72/// Unicode word boundaries in general.
73/// * In some cases where a regex pattern is just a simple literal or a small
74/// set of literals, an actual regex engine won't be used at all. Instead,
75/// substring or multi-substring search algorithms will be employed.
76///
77/// There are many other forms of composition happening too, but the above
78/// should give a general idea. In particular, it may perhaps be surprising
79/// that *multiple* regex engines might get executed for a single search. That
80/// is, the decision of what regex engine to use is not _just_ based on the
81/// pattern, but also based on the dynamic execution of the search itself.
82///
83/// The primary reason for this composition is performance. The fundamental
84/// tension is that the faster engines tend to be less capable, and the more
85/// capable engines tend to be slower.
86///
87/// Note that the forms of composition that are allowed are determined by
88/// compile time crate features and configuration. For example, if the `hybrid`
89/// feature isn't enabled, or if [`Config::hybrid`] has been disabled, then the
90/// meta regex engine will never use a lazy DFA.
91///
92/// # Synchronization and cloning
93///
94/// Most of the regex engines in this crate require some kind of mutable
95/// "scratch" space to read and write from while performing a search. Since
96/// a meta regex composes these regex engines, a meta regex also requires
97/// mutable scratch space. This scratch space is called a [`Cache`].
98///
99/// Most regex engines _also_ usually have a read-only component, typically
100/// a [Thompson `NFA`](crate::nfa::thompson::NFA).
101///
102/// In order to make the `Regex` API convenient, most of the routines hide
103/// the fact that a `Cache` is needed at all. To achieve this, a [memory
104/// pool](crate::util::pool::Pool) is used internally to retrieve `Cache`
105/// values in a thread safe way that also permits reuse. This in turn implies
106/// that every such search call requires some form of synchronization. Usually
107/// this synchronization is fast enough to not notice, but in some cases, it
108/// can be a bottleneck. This typically occurs when all of the following are
109/// true:
110///
111/// * The same `Regex` is shared across multiple threads simultaneously,
112/// usually via a [`util::lazy::Lazy`](crate::util::lazy::Lazy) or something
113/// similar from the `once_cell` or `lazy_static` crates.
114/// * The primary unit of work in each thread is a regex search.
115/// * Searches are run on very short haystacks.
116///
117/// This particular case can lead to high contention on the pool used by a
118/// `Regex` internally, which can in turn increase latency to a noticeable
119/// effect. This cost can be mitigated in one of the following ways:
120///
121/// * Use a distinct copy of a `Regex` in each thread, usually by cloning it.
122/// Cloning a `Regex` _does not_ do a deep copy of its read-only component.
123/// But it does lead to each `Regex` having its own memory pool, which in
124/// turn eliminates the problem of contention. In general, this technique should
125/// not result in any additional memory usage when compared to sharing the same
126/// `Regex` across multiple threads simultaneously.
127/// * Use lower level APIs, like [`Regex::search_with`], which permit passing
128/// a `Cache` explicitly. In this case, it is up to you to determine how best
129/// to provide a `Cache`. For example, you might put a `Cache` in thread-local
130/// storage if your use case allows for it.
131///
132/// Overall, this is an issue that happens rarely in practice, but it can
133/// happen.
134///
135/// # Warning: spin-locks may be used in alloc-only mode
136///
137/// When this crate is built without the `std` feature and the high level APIs
138/// on a `Regex` are used, then a spin-lock will be used to synchronize access
139/// to an internal pool of `Cache` values. This may be undesirable because
140/// a spin-lock is [effectively impossible to implement correctly in user
141/// space][spinlocks-are-bad]. That is, more concretely, the spin-lock could
142/// result in a deadlock.
143///
144/// [spinlocks-are-bad]: https://matklad.github.io/2020/01/02/spinlocks-considered-harmful.html
145///
146/// If one wants to avoid the use of spin-locks when the `std` feature is
147/// disabled, then you must use APIs that accept a `Cache` value explicitly.
148/// For example, [`Regex::search_with`].
149///
150/// # Example
151///
152/// ```
153/// use regex_automata::meta::Regex;
154///
155/// let re = Regex::new(r"^[0-9]{4}-[0-9]{2}-[0-9]{2}$")?;
156/// assert!(re.is_match("2010-03-14"));
157///
158/// # Ok::<(), Box<dyn std::error::Error>>(())
159/// ```
160///
161/// # Example: anchored search
162///
163/// This example shows how to use [`Input::anchored`] to run an anchored
164/// search, even when the regex pattern itself isn't anchored. An anchored
165/// search guarantees that if a match is found, then the start offset of the
166/// match corresponds to the offset at which the search was started.
167///
168/// ```
169/// use regex_automata::{meta::Regex, Anchored, Input, Match};
170///
171/// let re = Regex::new(r"\bfoo\b")?;
172/// let input = Input::new("xx foo xx").range(3..).anchored(Anchored::Yes);
173/// // The offsets are in terms of the original haystack.
174/// assert_eq!(Some(Match::must(0, 3..6)), re.find(input));
175///
176/// // Notice that no match occurs here, because \b still takes the
177/// // surrounding context into account, even if it means looking back
178/// // before the start of your search.
179/// let hay = "xxfoo xx";
180/// let input = Input::new(hay).range(2..).anchored(Anchored::Yes);
181/// assert_eq!(None, re.find(input));
182/// // Indeed, you cannot achieve the above by simply slicing the
183/// // haystack itself, since the regex engine can't see the
184/// // surrounding context. This is why 'Input' permits setting
185/// // the bounds of a search!
186/// let input = Input::new(&hay[2..]).anchored(Anchored::Yes);
187/// // WRONG!
188/// assert_eq!(Some(Match::must(0, 0..3)), re.find(input));
189///
190/// # Ok::<(), Box<dyn std::error::Error>>(())
191/// ```
192///
193/// # Example: earliest search
194///
195/// This example shows how to use [`Input::earliest`] to run a search that
196/// might stop before finding the typical leftmost match.
197///
198/// ```
199/// use regex_automata::{meta::Regex, Anchored, Input, Match};
200///
201/// let re = Regex::new(r"[a-z]{3}|b")?;
202/// let input = Input::new("abc").earliest(true);
203/// assert_eq!(Some(Match::must(0, 1..2)), re.find(input));
204///
205/// // Note that "earliest" isn't really a match semantic unto itself.
206/// // Instead, it is merely an instruction to whatever regex engine
207/// // gets used internally to quit as soon as it can. For example,
208/// // this regex uses a different search technique, and winds up
209/// // producing a different (but valid) match!
210/// let re = Regex::new(r"abc|b")?;
211/// let input = Input::new("abc").earliest(true);
212/// assert_eq!(Some(Match::must(0, 0..3)), re.find(input));
213///
214/// # Ok::<(), Box<dyn std::error::Error>>(())
215/// ```
216///
217/// # Example: change the line terminator
218///
219/// This example shows how to enable multi-line mode by default and change
220/// the line terminator to the NUL byte:
221///
222/// ```
223/// use regex_automata::{meta::Regex, util::syntax, Match};
224///
225/// let re = Regex::builder()
226/// .syntax(syntax::Config::new().multi_line(true))
227/// .configure(Regex::config().line_terminator(b'\x00'))
228/// .build(r"^foo$")?;
229/// let hay = "\x00foo\x00";
230/// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
231///
232/// # Ok::<(), Box<dyn std::error::Error>>(())
233/// ```
234#[derive(Debug)]
235pub struct Regex {
236 /// The actual regex implementation.
237 imp: Arc<RegexI>,
238 /// A thread safe pool of caches.
239 ///
240 /// For the higher level search APIs, a `Cache` is automatically plucked
241 /// from this pool before running a search. The lower level `with` methods
242 /// permit the caller to provide their own cache, thereby bypassing
243 /// accesses to this pool.
244 ///
245 /// Note that we put this outside the `Arc` so that cloning a `Regex`
246 /// results in creating a fresh `CachePool`. This in turn permits callers
247 /// to clone regexes into separate threads where each such regex gets
248 /// the pool's "thread owner" optimization. Otherwise, if one shares the
249 /// `Regex` directly, then the pool will go through a slower mutex path for
250 /// all threads except for the "owner."
251 pool: CachePool,
252}
253
254/// The internal implementation of `Regex`, split out so that it can be wrapped
255/// in an `Arc`.
256#[derive(Debug)]
257struct RegexI {
258 /// The core matching engine.
259 ///
260 /// Why is this reference counted when RegexI is already wrapped in an Arc?
261 /// Well, we need to capture this in a closure to our `Pool` below in order
262 /// to create new `Cache` values when needed. So since it needs to be in
263 /// two places, we make it reference counted.
264 ///
265 /// We make `RegexI` itself reference counted too so that `Regex` itself
266 /// stays extremely small and very cheap to clone.
267 strat: Arc<dyn Strategy>,
268 /// Metadata about the regexes driving the strategy. The metadata is also
269 /// usually stored inside the strategy too, but we put it here as well
270 /// so that we can get quick access to it (without virtual calls) before
271 /// executing the regex engine. For example, we use this metadata to
272 /// detect a subset of cases where we know a match is impossible, and can
273 /// thus avoid calling into the strategy at all.
274 ///
275 /// Since `RegexInfo` is stored in multiple places, it is also reference
276 /// counted.
277 info: RegexInfo,
278}
279
280/// Convenience constructors for a `Regex` using the default configuration.
281impl Regex {
282 /// Builds a `Regex` from a single pattern string using the default
283 /// configuration.
284 ///
285 /// If there was a problem parsing the pattern or a problem turning it into
286 /// a regex matcher, then an error is returned.
287 ///
288 /// If you want to change the configuration of a `Regex`, use a [`Builder`]
289 /// with a [`Config`].
290 ///
291 /// # Example
292 ///
293 /// ```
294 /// use regex_automata::{meta::Regex, Match};
295 ///
296 /// let re = Regex::new(r"(?Rm)^foo$")?;
297 /// let hay = "\r\nfoo\r\n";
298 /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay));
299 ///
300 /// # Ok::<(), Box<dyn std::error::Error>>(())
301 /// ```
302 pub fn new(pattern: &str) -> Result<Regex, BuildError> {
303 Regex::builder().build(pattern)
304 }
305
306 /// Builds a `Regex` from many pattern strings using the default
307 /// configuration.
308 ///
309 /// If there was a problem parsing any of the patterns or a problem turning
310 /// them into a regex matcher, then an error is returned.
311 ///
312 /// If you want to change the configuration of a `Regex`, use a [`Builder`]
313 /// with a [`Config`].
314 ///
315 /// # Example: simple lexer
316 ///
317 /// This simplistic example leverages the multi-pattern support to build a
318 /// simple little lexer. The pattern ID in the match tells you which regex
319 /// matched, which in turn might be used to map back to the "type" of the
320 /// token returned by the lexer.
321 ///
322 /// ```
323 /// use regex_automata::{meta::Regex, Match};
324 ///
325 /// let re = Regex::new_many(&[
326 /// r"[[:space:]]",
327 /// r"[A-Za-z0-9][A-Za-z0-9_]+",
328 /// r"->",
329 /// r".",
330 /// ])?;
331 /// let haystack = "fn is_boss(bruce: i32, springsteen: String) -> bool;";
332 /// let matches: Vec<Match> = re.find_iter(haystack).collect();
333 /// assert_eq!(matches, vec![
334 /// Match::must(1, 0..2), // 'fn'
335 /// Match::must(0, 2..3), // ' '
336 /// Match::must(1, 3..10), // 'is_boss'
337 /// Match::must(3, 10..11), // '('
338 /// Match::must(1, 11..16), // 'bruce'
339 /// Match::must(3, 16..17), // ':'
340 /// Match::must(0, 17..18), // ' '
341 /// Match::must(1, 18..21), // 'i32'
342 /// Match::must(3, 21..22), // ','
343 /// Match::must(0, 22..23), // ' '
344 /// Match::must(1, 23..34), // 'springsteen'
345 /// Match::must(3, 34..35), // ':'
346 /// Match::must(0, 35..36), // ' '
347 /// Match::must(1, 36..42), // 'String'
348 /// Match::must(3, 42..43), // ')'
349 /// Match::must(0, 43..44), // ' '
350 /// Match::must(2, 44..46), // '->'
351 /// Match::must(0, 46..47), // ' '
352 /// Match::must(1, 47..51), // 'bool'
353 /// Match::must(3, 51..52), // ';'
354 /// ]);
355 ///
356 /// # Ok::<(), Box<dyn std::error::Error>>(())
357 /// ```
358 ///
359 /// One can write a lexer like the above using a regex like
360 /// `(?P<space>[[:space:]])|(?P<ident>[A-Za-z0-9][A-Za-z0-9_]+)|...`,
361 /// but then you need to ask whether capture group matched to determine
362 /// which branch in the regex matched, and thus, which token the match
363 /// corresponds to. In contrast, the above example includes the pattern ID
364 /// in the match. There's no need to use capture groups at all.
365 ///
366 /// # Example: finding the pattern that caused an error
367 ///
368 /// When a syntax error occurs, it is possible to ask which pattern
369 /// caused the syntax error.
370 ///
371 /// ```
372 /// use regex_automata::{meta::Regex, PatternID};
373 ///
374 /// let err = Regex::new_many(&["a", "b", r"\p{Foo}", "c"]).unwrap_err();
375 /// assert_eq!(Some(PatternID::must(2)), err.pattern());
376 /// ```
377 ///
378 /// # Example: zero patterns is valid
379 ///
380 /// Building a regex with zero patterns results in a regex that never
381 /// matches anything. Because this routine is generic, passing an empty
382 /// slice usually requires a turbo-fish (or something else to help type
383 /// inference).
384 ///
385 /// ```
386 /// use regex_automata::{meta::Regex, util::syntax, Match};
387 ///
388 /// let re = Regex::new_many::<&str>(&[])?;
389 /// assert_eq!(None, re.find(""));
390 ///
391 /// # Ok::<(), Box<dyn std::error::Error>>(())
392 /// ```
393 pub fn new_many<P: AsRef<str>>(
394 patterns: &[P],
395 ) -> Result<Regex, BuildError> {
396 Regex::builder().build_many(patterns)
397 }
398
399 /// Return a default configuration for a `Regex`.
400 ///
401 /// This is a convenience routine to avoid needing to import the [`Config`]
402 /// type when customizing the construction of a `Regex`.
403 ///
404 /// # Example: lower the NFA size limit
405 ///
406 /// In some cases, the default size limit might be too big. The size limit
407 /// can be lowered, which will prevent large regex patterns from compiling.
408 ///
409 /// ```
410 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
411 /// use regex_automata::meta::Regex;
412 ///
413 /// let result = Regex::builder()
414 /// .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10))))
415 /// // Not even 20KB is enough to build a single large Unicode class!
416 /// .build(r"\pL");
417 /// assert!(result.is_err());
418 ///
419 /// # Ok::<(), Box<dyn std::error::Error>>(())
420 /// ```
421 pub fn config() -> Config {
422 Config::new()
423 }
424
425 /// Return a builder for configuring the construction of a `Regex`.
426 ///
427 /// This is a convenience routine to avoid needing to import the
428 /// [`Builder`] type in common cases.
429 ///
430 /// # Example: change the line terminator
431 ///
432 /// This example shows how to enable multi-line mode by default and change
433 /// the line terminator to the NUL byte:
434 ///
435 /// ```
436 /// use regex_automata::{meta::Regex, util::syntax, Match};
437 ///
438 /// let re = Regex::builder()
439 /// .syntax(syntax::Config::new().multi_line(true))
440 /// .configure(Regex::config().line_terminator(b'\x00'))
441 /// .build(r"^foo$")?;
442 /// let hay = "\x00foo\x00";
443 /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
444 ///
445 /// # Ok::<(), Box<dyn std::error::Error>>(())
446 /// ```
447 pub fn builder() -> Builder {
448 Builder::new()
449 }
450}
451
452/// High level convenience routines for using a regex to search a haystack.
453impl Regex {
454 /// Returns true if and only if this regex matches the given haystack.
455 ///
456 /// This routine may short circuit if it knows that scanning future input
457 /// will never lead to a different result. (Consider how this might make
458 /// a difference given the regex `a+` on the haystack `aaaaaaaaaaaaaaa`.
459 /// This routine _may_ stop after it sees the first `a`, but routines like
460 /// `find` need to continue searching because `+` is greedy by default.)
461 ///
462 /// # Example
463 ///
464 /// ```
465 /// use regex_automata::meta::Regex;
466 ///
467 /// let re = Regex::new("foo[0-9]+bar")?;
468 ///
469 /// assert!(re.is_match("foo12345bar"));
470 /// assert!(!re.is_match("foobar"));
471 ///
472 /// # Ok::<(), Box<dyn std::error::Error>>(())
473 /// ```
474 ///
475 /// # Example: consistency with search APIs
476 ///
477 /// `is_match` is guaranteed to return `true` whenever `find` returns a
478 /// match. This includes searches that are executed entirely within a
479 /// codepoint:
480 ///
481 /// ```
482 /// use regex_automata::{meta::Regex, Input};
483 ///
484 /// let re = Regex::new("a*")?;
485 ///
486 /// // This doesn't match because the default configuration bans empty
487 /// // matches from splitting a codepoint.
488 /// assert!(!re.is_match(Input::new("☃").span(1..2)));
489 /// assert_eq!(None, re.find(Input::new("☃").span(1..2)));
490 ///
491 /// # Ok::<(), Box<dyn std::error::Error>>(())
492 /// ```
493 ///
494 /// Notice that when UTF-8 mode is disabled, then the above reports a
495 /// match because the restriction against zero-width matches that split a
496 /// codepoint has been lifted:
497 ///
498 /// ```
499 /// use regex_automata::{meta::Regex, Input, Match};
500 ///
501 /// let re = Regex::builder()
502 /// .configure(Regex::config().utf8_empty(false))
503 /// .build("a*")?;
504 ///
505 /// assert!(re.is_match(Input::new("☃").span(1..2)));
506 /// assert_eq!(
507 /// Some(Match::must(0, 1..1)),
508 /// re.find(Input::new("☃").span(1..2)),
509 /// );
510 ///
511 /// # Ok::<(), Box<dyn std::error::Error>>(())
512 /// ```
513 ///
514 /// A similar idea applies when using line anchors with CRLF mode enabled,
515 /// which prevents them from matching between a `\r` and a `\n`.
516 ///
517 /// ```
518 /// use regex_automata::{meta::Regex, Input, Match};
519 ///
520 /// let re = Regex::new(r"(?Rm:$)")?;
521 /// assert!(!re.is_match(Input::new("\r\n").span(1..1)));
522 /// // A regular line anchor, which only considers \n as a
523 /// // line terminator, will match.
524 /// let re = Regex::new(r"(?m:$)")?;
525 /// assert!(re.is_match(Input::new("\r\n").span(1..1)));
526 ///
527 /// # Ok::<(), Box<dyn std::error::Error>>(())
528 /// ```
529 #[inline]
530 pub fn is_match<'h, I: Into<Input<'h>>>(&self, input: I) -> bool {
531 let input = input.into().earliest(true);
532 if self.imp.info.is_impossible(&input) {
533 return false;
534 }
535 let mut guard = self.pool.get();
536 let result = self.imp.strat.is_match(&mut guard, &input);
537 // See 'Regex::search' for why we put the guard back explicitly.
538 PoolGuard::put(guard);
539 result
540 }
541
542 /// Executes a leftmost search and returns the first match that is found,
543 /// if one exists.
544 ///
545 /// # Example
546 ///
547 /// ```
548 /// use regex_automata::{meta::Regex, Match};
549 ///
550 /// let re = Regex::new("foo[0-9]+")?;
551 /// assert_eq!(Some(Match::must(0, 0..8)), re.find("foo12345"));
552 ///
553 /// # Ok::<(), Box<dyn std::error::Error>>(())
554 /// ```
555 #[inline]
556 pub fn find<'h, I: Into<Input<'h>>>(&self, input: I) -> Option<Match> {
557 self.search(&input.into())
558 }
559
560 /// Executes a leftmost forward search and writes the spans of capturing
561 /// groups that participated in a match into the provided [`Captures`]
562 /// value. If no match was found, then [`Captures::is_match`] is guaranteed
563 /// to return `false`.
564 ///
565 /// # Example
566 ///
567 /// ```
568 /// use regex_automata::{meta::Regex, Span};
569 ///
570 /// let re = Regex::new(r"^([0-9]{4})-([0-9]{2})-([0-9]{2})$")?;
571 /// let mut caps = re.create_captures();
572 ///
573 /// re.captures("2010-03-14", &mut caps);
574 /// assert!(caps.is_match());
575 /// assert_eq!(Some(Span::from(0..4)), caps.get_group(1));
576 /// assert_eq!(Some(Span::from(5..7)), caps.get_group(2));
577 /// assert_eq!(Some(Span::from(8..10)), caps.get_group(3));
578 ///
579 /// # Ok::<(), Box<dyn std::error::Error>>(())
580 /// ```
581 #[inline]
582 pub fn captures<'h, I: Into<Input<'h>>>(
583 &self,
584 input: I,
585 caps: &mut Captures,
586 ) {
587 self.search_captures(&input.into(), caps)
588 }
589
590 /// Returns an iterator over all non-overlapping leftmost matches in
591 /// the given haystack. If no match exists, then the iterator yields no
592 /// elements.
593 ///
594 /// # Example
595 ///
596 /// ```
597 /// use regex_automata::{meta::Regex, Match};
598 ///
599 /// let re = Regex::new("foo[0-9]+")?;
600 /// let haystack = "foo1 foo12 foo123";
601 /// let matches: Vec<Match> = re.find_iter(haystack).collect();
602 /// assert_eq!(matches, vec![
603 /// Match::must(0, 0..4),
604 /// Match::must(0, 5..10),
605 /// Match::must(0, 11..17),
606 /// ]);
607 /// # Ok::<(), Box<dyn std::error::Error>>(())
608 /// ```
609 #[inline]
610 pub fn find_iter<'r, 'h, I: Into<Input<'h>>>(
611 &'r self,
612 input: I,
613 ) -> FindMatches<'r, 'h> {
614 let cache = self.pool.get();
615 let it = iter::Searcher::new(input.into());
616 FindMatches { re: self, cache, it }
617 }
618
619 /// Returns an iterator over all non-overlapping `Captures` values. If no
620 /// match exists, then the iterator yields no elements.
621 ///
622 /// This yields the same matches as [`Regex::find_iter`], but it includes
623 /// the spans of all capturing groups that participate in each match.
624 ///
625 /// **Tip:** See [`util::iter::Searcher`](crate::util::iter::Searcher) for
626 /// how to correctly iterate over all matches in a haystack while avoiding
627 /// the creation of a new `Captures` value for every match. (Which you are
628 /// forced to do with an `Iterator`.)
629 ///
630 /// # Example
631 ///
632 /// ```
633 /// use regex_automata::{meta::Regex, Span};
634 ///
635 /// let re = Regex::new("foo(?P<numbers>[0-9]+)")?;
636 ///
637 /// let haystack = "foo1 foo12 foo123";
638 /// let matches: Vec<Span> = re
639 /// .captures_iter(haystack)
640 /// // The unwrap is OK since 'numbers' matches if the pattern matches.
641 /// .map(|caps| caps.get_group_by_name("numbers").unwrap())
642 /// .collect();
643 /// assert_eq!(matches, vec![
644 /// Span::from(3..4),
645 /// Span::from(8..10),
646 /// Span::from(14..17),
647 /// ]);
648 /// # Ok::<(), Box<dyn std::error::Error>>(())
649 /// ```
650 #[inline]
651 pub fn captures_iter<'r, 'h, I: Into<Input<'h>>>(
652 &'r self,
653 input: I,
654 ) -> CapturesMatches<'r, 'h> {
655 let cache = self.pool.get();
656 let caps = self.create_captures();
657 let it = iter::Searcher::new(input.into());
658 CapturesMatches { re: self, cache, caps, it }
659 }
660
661 /// Returns an iterator of spans of the haystack given, delimited by a
662 /// match of the regex. Namely, each element of the iterator corresponds to
663 /// a part of the haystack that *isn't* matched by the regular expression.
664 ///
665 /// # Example
666 ///
667 /// To split a string delimited by arbitrary amounts of spaces or tabs:
668 ///
669 /// ```
670 /// use regex_automata::meta::Regex;
671 ///
672 /// let re = Regex::new(r"[ \t]+")?;
673 /// let hay = "a b \t c\td e";
674 /// let fields: Vec<&str> = re.split(hay).map(|span| &hay[span]).collect();
675 /// assert_eq!(fields, vec!["a", "b", "c", "d", "e"]);
676 ///
677 /// # Ok::<(), Box<dyn std::error::Error>>(())
678 /// ```
679 ///
680 /// # Example: more cases
681 ///
682 /// Basic usage:
683 ///
684 /// ```
685 /// use regex_automata::meta::Regex;
686 ///
687 /// let re = Regex::new(r" ")?;
688 /// let hay = "Mary had a little lamb";
689 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
690 /// assert_eq!(got, vec!["Mary", "had", "a", "little", "lamb"]);
691 ///
692 /// let re = Regex::new(r"X")?;
693 /// let hay = "";
694 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
695 /// assert_eq!(got, vec![""]);
696 ///
697 /// let re = Regex::new(r"X")?;
698 /// let hay = "lionXXtigerXleopard";
699 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
700 /// assert_eq!(got, vec!["lion", "", "tiger", "leopard"]);
701 ///
702 /// let re = Regex::new(r"::")?;
703 /// let hay = "lion::tiger::leopard";
704 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
705 /// assert_eq!(got, vec!["lion", "tiger", "leopard"]);
706 ///
707 /// # Ok::<(), Box<dyn std::error::Error>>(())
708 /// ```
709 ///
710 /// If a haystack contains multiple contiguous matches, you will end up
711 /// with empty spans yielded by the iterator:
712 ///
713 /// ```
714 /// use regex_automata::meta::Regex;
715 ///
716 /// let re = Regex::new(r"X")?;
717 /// let hay = "XXXXaXXbXc";
718 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
719 /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]);
720 ///
721 /// let re = Regex::new(r"/")?;
722 /// let hay = "(///)";
723 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
724 /// assert_eq!(got, vec!["(", "", "", ")"]);
725 ///
726 /// # Ok::<(), Box<dyn std::error::Error>>(())
727 /// ```
728 ///
729 /// Separators at the start or end of a haystack are neighbored by empty
730 /// spans.
731 ///
732 /// ```
733 /// use regex_automata::meta::Regex;
734 ///
735 /// let re = Regex::new(r"0")?;
736 /// let hay = "010";
737 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
738 /// assert_eq!(got, vec!["", "1", ""]);
739 ///
740 /// # Ok::<(), Box<dyn std::error::Error>>(())
741 /// ```
742 ///
743 /// When the empty string is used as a regex, it splits at every valid
744 /// UTF-8 boundary by default (which includes the beginning and end of the
745 /// haystack):
746 ///
747 /// ```
748 /// use regex_automata::meta::Regex;
749 ///
750 /// let re = Regex::new(r"")?;
751 /// let hay = "rust";
752 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
753 /// assert_eq!(got, vec!["", "r", "u", "s", "t", ""]);
754 ///
755 /// // Splitting by an empty string is UTF-8 aware by default!
756 /// let re = Regex::new(r"")?;
757 /// let hay = "☃";
758 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
759 /// assert_eq!(got, vec!["", "☃", ""]);
760 ///
761 /// # Ok::<(), Box<dyn std::error::Error>>(())
762 /// ```
763 ///
764 /// But note that UTF-8 mode for empty strings can be disabled, which will
765 /// then result in a match at every byte offset in the haystack,
766 /// including between every UTF-8 code unit.
767 ///
768 /// ```
769 /// use regex_automata::meta::Regex;
770 ///
771 /// let re = Regex::builder()
772 /// .configure(Regex::config().utf8_empty(false))
773 /// .build(r"")?;
774 /// let hay = "☃".as_bytes();
775 /// let got: Vec<&[u8]> = re.split(hay).map(|sp| &hay[sp]).collect();
776 /// assert_eq!(got, vec![
777 /// // Writing byte string slices is just brutal. The problem is that
778 /// // b"foo" has type &[u8; 3] instead of &[u8].
779 /// &[][..], &[b'\xE2'][..], &[b'\x98'][..], &[b'\x83'][..], &[][..],
780 /// ]);
781 ///
782 /// # Ok::<(), Box<dyn std::error::Error>>(())
783 /// ```
784 ///
785 /// Contiguous separators (commonly shows up with whitespace), can lead to
786 /// possibly surprising behavior. For example, this code is correct:
787 ///
788 /// ```
789 /// use regex_automata::meta::Regex;
790 ///
791 /// let re = Regex::new(r" ")?;
792 /// let hay = " a b c";
793 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
794 /// assert_eq!(got, vec!["", "", "", "", "a", "", "b", "c"]);
795 ///
796 /// # Ok::<(), Box<dyn std::error::Error>>(())
797 /// ```
798 ///
799 /// It does *not* give you `["a", "b", "c"]`. For that behavior, you'd want
800 /// to match contiguous space characters:
801 ///
802 /// ```
803 /// use regex_automata::meta::Regex;
804 ///
805 /// let re = Regex::new(r" +")?;
806 /// let hay = " a b c";
807 /// let got: Vec<&str> = re.split(hay).map(|sp| &hay[sp]).collect();
808 /// // N.B. This does still include a leading empty span because ' +'
809 /// // matches at the beginning of the haystack.
810 /// assert_eq!(got, vec!["", "a", "b", "c"]);
811 ///
812 /// # Ok::<(), Box<dyn std::error::Error>>(())
813 /// ```
814 #[inline]
815 pub fn split<'r, 'h, I: Into<Input<'h>>>(
816 &'r self,
817 input: I,
818 ) -> Split<'r, 'h> {
819 Split { finder: self.find_iter(input), last: 0 }
820 }
821
822 /// Returns an iterator of at most `limit` spans of the haystack given,
823 /// delimited by a match of the regex. (A `limit` of `0` will return no
824 /// spans.) Namely, each element of the iterator corresponds to a part
825 /// of the haystack that *isn't* matched by the regular expression. The
826 /// remainder of the haystack that is not split will be the last element in
827 /// the iterator.
828 ///
829 /// # Example
830 ///
831 /// Get the first two words in some haystack:
832 ///
833 /// ```
834 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
835 /// use regex_automata::meta::Regex;
836 ///
837 /// let re = Regex::new(r"\W+").unwrap();
838 /// let hay = "Hey! How are you?";
839 /// let fields: Vec<&str> =
840 /// re.splitn(hay, 3).map(|span| &hay[span]).collect();
841 /// assert_eq!(fields, vec!["Hey", "How", "are you?"]);
842 ///
843 /// # Ok::<(), Box<dyn std::error::Error>>(())
844 /// ```
845 ///
846 /// # Examples: more cases
847 ///
848 /// ```
849 /// use regex_automata::meta::Regex;
850 ///
851 /// let re = Regex::new(r" ")?;
852 /// let hay = "Mary had a little lamb";
853 /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect();
854 /// assert_eq!(got, vec!["Mary", "had", "a little lamb"]);
855 ///
856 /// let re = Regex::new(r"X")?;
857 /// let hay = "";
858 /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect();
859 /// assert_eq!(got, vec![""]);
860 ///
861 /// let re = Regex::new(r"X")?;
862 /// let hay = "lionXXtigerXleopard";
863 /// let got: Vec<&str> = re.splitn(hay, 3).map(|sp| &hay[sp]).collect();
864 /// assert_eq!(got, vec!["lion", "", "tigerXleopard"]);
865 ///
866 /// let re = Regex::new(r"::")?;
867 /// let hay = "lion::tiger::leopard";
868 /// let got: Vec<&str> = re.splitn(hay, 2).map(|sp| &hay[sp]).collect();
869 /// assert_eq!(got, vec!["lion", "tiger::leopard"]);
870 ///
871 /// let re = Regex::new(r"X")?;
872 /// let hay = "abcXdef";
873 /// let got: Vec<&str> = re.splitn(hay, 1).map(|sp| &hay[sp]).collect();
874 /// assert_eq!(got, vec!["abcXdef"]);
875 ///
876 /// let re = Regex::new(r"X")?;
877 /// let hay = "abcdef";
878 /// let got: Vec<&str> = re.splitn(hay, 2).map(|sp| &hay[sp]).collect();
879 /// assert_eq!(got, vec!["abcdef"]);
880 ///
881 /// let re = Regex::new(r"X")?;
882 /// let hay = "abcXdef";
883 /// let got: Vec<&str> = re.splitn(hay, 0).map(|sp| &hay[sp]).collect();
884 /// assert!(got.is_empty());
885 ///
886 /// # Ok::<(), Box<dyn std::error::Error>>(())
887 /// ```
888 pub fn splitn<'r, 'h, I: Into<Input<'h>>>(
889 &'r self,
890 input: I,
891 limit: usize,
892 ) -> SplitN<'r, 'h> {
893 SplitN { splits: self.split(input), limit }
894 }
895}
896
897/// Lower level search routines that give more control.
898impl Regex {
899 /// Returns the start and end offset of the leftmost match. If no match
900 /// exists, then `None` is returned.
901 ///
902 /// This is like [`Regex::find`] but, but it accepts a concrete `&Input`
903 /// instead of an `Into<Input>`.
904 ///
905 /// # Example
906 ///
907 /// ```
908 /// use regex_automata::{meta::Regex, Input, Match};
909 ///
910 /// let re = Regex::new(r"Samwise|Sam")?;
911 /// let input = Input::new(
912 /// "one of the chief characters, Samwise the Brave",
913 /// );
914 /// assert_eq!(Some(Match::must(0, 29..36)), re.search(&input));
915 ///
916 /// # Ok::<(), Box<dyn std::error::Error>>(())
917 /// ```
918 #[inline]
919 pub fn search(&self, input: &Input<'_>) -> Option<Match> {
920 if self.imp.info.is_impossible(input) {
921 return None;
922 }
923 let mut guard = self.pool.get();
924 let result = self.imp.strat.search(&mut guard, input);
925 // We do this dance with the guard and explicitly put it back in the
926 // pool because it seems to result in better codegen. If we let the
927 // guard's Drop impl put it back in the pool, then functions like
928 // ptr::drop_in_place get called and they *don't* get inlined. This
929 // isn't usually a big deal, but in latency sensitive benchmarks the
930 // extra function call can matter.
931 //
932 // I used `rebar measure -f '^grep/every-line$' -e meta` to measure
933 // the effects here.
934 //
935 // Note that this doesn't eliminate the latency effects of using the
936 // pool. There is still some (minor) cost for the "thread owner" of the
937 // pool. (i.e., The thread that first calls a regex search routine.)
938 // However, for other threads using the regex, the pool access can be
939 // quite expensive as it goes through a mutex. Callers can avoid this
940 // by either cloning the Regex (which creates a distinct copy of the
941 // pool), or callers can use the lower level APIs that accept a 'Cache'
942 // directly and do their own handling.
943 PoolGuard::put(guard);
944 result
945 }
946
947 /// Returns the end offset of the leftmost match. If no match exists, then
948 /// `None` is returned.
949 ///
950 /// This is distinct from [`Regex::search`] in that it only returns the end
951 /// of a match and not the start of the match. Depending on a variety of
952 /// implementation details, this _may_ permit the regex engine to do less
953 /// overall work. For example, if a DFA is being used to execute a search,
954 /// then the start of a match usually requires running a separate DFA in
955 /// reverse to the find the start of a match. If one only needs the end of
956 /// a match, then the separate reverse scan to find the start of a match
957 /// can be skipped. (Note that the reverse scan is avoided even when using
958 /// `Regex::search` when possible, for example, in the case of an anchored
959 /// search.)
960 ///
961 /// # Example
962 ///
963 /// ```
964 /// use regex_automata::{meta::Regex, Input, HalfMatch};
965 ///
966 /// let re = Regex::new(r"Samwise|Sam")?;
967 /// let input = Input::new(
968 /// "one of the chief characters, Samwise the Brave",
969 /// );
970 /// assert_eq!(Some(HalfMatch::must(0, 36)), re.search_half(&input));
971 ///
972 /// # Ok::<(), Box<dyn std::error::Error>>(())
973 /// ```
974 #[inline]
975 pub fn search_half(&self, input: &Input<'_>) -> Option<HalfMatch> {
976 if self.imp.info.is_impossible(input) {
977 return None;
978 }
979 let mut guard = self.pool.get();
980 let result = self.imp.strat.search_half(&mut guard, input);
981 // See 'Regex::search' for why we put the guard back explicitly.
982 PoolGuard::put(guard);
983 result
984 }
985
986 /// Executes a leftmost forward search and writes the spans of capturing
987 /// groups that participated in a match into the provided [`Captures`]
988 /// value. If no match was found, then [`Captures::is_match`] is guaranteed
989 /// to return `false`.
990 ///
991 /// This is like [`Regex::captures`], but it accepts a concrete `&Input`
992 /// instead of an `Into<Input>`.
993 ///
994 /// # Example: specific pattern search
995 ///
996 /// This example shows how to build a multi-pattern `Regex` that permits
997 /// searching for specific patterns.
998 ///
999 /// ```
1000 /// use regex_automata::{
1001 /// meta::Regex,
1002 /// Anchored, Match, PatternID, Input,
1003 /// };
1004 ///
1005 /// let re = Regex::new_many(&["[a-z0-9]{6}", "[a-z][a-z0-9]{5}"])?;
1006 /// let mut caps = re.create_captures();
1007 /// let haystack = "foo123";
1008 ///
1009 /// // Since we are using the default leftmost-first match and both
1010 /// // patterns match at the same starting position, only the first pattern
1011 /// // will be returned in this case when doing a search for any of the
1012 /// // patterns.
1013 /// let expected = Some(Match::must(0, 0..6));
1014 /// re.search_captures(&Input::new(haystack), &mut caps);
1015 /// assert_eq!(expected, caps.get_match());
1016 ///
1017 /// // But if we want to check whether some other pattern matches, then we
1018 /// // can provide its pattern ID.
1019 /// let expected = Some(Match::must(1, 0..6));
1020 /// let input = Input::new(haystack)
1021 /// .anchored(Anchored::Pattern(PatternID::must(1)));
1022 /// re.search_captures(&input, &mut caps);
1023 /// assert_eq!(expected, caps.get_match());
1024 ///
1025 /// # Ok::<(), Box<dyn std::error::Error>>(())
1026 /// ```
1027 ///
1028 /// # Example: specifying the bounds of a search
1029 ///
1030 /// This example shows how providing the bounds of a search can produce
1031 /// different results than simply sub-slicing the haystack.
1032 ///
1033 /// ```
1034 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1035 /// use regex_automata::{meta::Regex, Match, Input};
1036 ///
1037 /// let re = Regex::new(r"\b[0-9]{3}\b")?;
1038 /// let mut caps = re.create_captures();
1039 /// let haystack = "foo123bar";
1040 ///
1041 /// // Since we sub-slice the haystack, the search doesn't know about
1042 /// // the larger context and assumes that `123` is surrounded by word
1043 /// // boundaries. And of course, the match position is reported relative
1044 /// // to the sub-slice as well, which means we get `0..3` instead of
1045 /// // `3..6`.
1046 /// let expected = Some(Match::must(0, 0..3));
1047 /// let input = Input::new(&haystack[3..6]);
1048 /// re.search_captures(&input, &mut caps);
1049 /// assert_eq!(expected, caps.get_match());
1050 ///
1051 /// // But if we provide the bounds of the search within the context of the
1052 /// // entire haystack, then the search can take the surrounding context
1053 /// // into account. (And if we did find a match, it would be reported
1054 /// // as a valid offset into `haystack` instead of its sub-slice.)
1055 /// let expected = None;
1056 /// let input = Input::new(haystack).range(3..6);
1057 /// re.search_captures(&input, &mut caps);
1058 /// assert_eq!(expected, caps.get_match());
1059 ///
1060 /// # Ok::<(), Box<dyn std::error::Error>>(())
1061 /// ```
1062 #[inline]
1063 pub fn search_captures(&self, input: &Input<'_>, caps: &mut Captures) {
1064 caps.set_pattern(None);
1065 let pid = self.search_slots(input, caps.slots_mut());
1066 caps.set_pattern(pid);
1067 }
1068
1069 /// Executes a leftmost forward search and writes the spans of capturing
1070 /// groups that participated in a match into the provided `slots`, and
1071 /// returns the matching pattern ID. The contents of the slots for patterns
1072 /// other than the matching pattern are unspecified. If no match was found,
1073 /// then `None` is returned and the contents of `slots` is unspecified.
1074 ///
1075 /// This is like [`Regex::search`], but it accepts a raw slots slice
1076 /// instead of a `Captures` value. This is useful in contexts where you
1077 /// don't want or need to allocate a `Captures`.
1078 ///
1079 /// It is legal to pass _any_ number of slots to this routine. If the regex
1080 /// engine would otherwise write a slot offset that doesn't fit in the
1081 /// provided slice, then it is simply skipped. In general though, there are
1082 /// usually three slice lengths you might want to use:
1083 ///
1084 /// * An empty slice, if you only care about which pattern matched.
1085 /// * A slice with [`pattern_len() * 2`](Regex::pattern_len) slots, if you
1086 /// only care about the overall match spans for each matching pattern.
1087 /// * A slice with
1088 /// [`slot_len()`](crate::util::captures::GroupInfo::slot_len) slots, which
1089 /// permits recording match offsets for every capturing group in every
1090 /// pattern.
1091 ///
1092 /// # Example
1093 ///
1094 /// This example shows how to find the overall match offsets in a
1095 /// multi-pattern search without allocating a `Captures` value. Indeed, we
1096 /// can put our slots right on the stack.
1097 ///
1098 /// ```
1099 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1100 /// use regex_automata::{meta::Regex, PatternID, Input};
1101 ///
1102 /// let re = Regex::new_many(&[
1103 /// r"\pL+",
1104 /// r"\d+",
1105 /// ])?;
1106 /// let input = Input::new("!@#123");
1107 ///
1108 /// // We only care about the overall match offsets here, so we just
1109 /// // allocate two slots for each pattern. Each slot records the start
1110 /// // and end of the match.
1111 /// let mut slots = [None; 4];
1112 /// let pid = re.search_slots(&input, &mut slots);
1113 /// assert_eq!(Some(PatternID::must(1)), pid);
1114 ///
1115 /// // The overall match offsets are always at 'pid * 2' and 'pid * 2 + 1'.
1116 /// // See 'GroupInfo' for more details on the mapping between groups and
1117 /// // slot indices.
1118 /// let slot_start = pid.unwrap().as_usize() * 2;
1119 /// let slot_end = slot_start + 1;
1120 /// assert_eq!(Some(3), slots[slot_start].map(|s| s.get()));
1121 /// assert_eq!(Some(6), slots[slot_end].map(|s| s.get()));
1122 ///
1123 /// # Ok::<(), Box<dyn std::error::Error>>(())
1124 /// ```
1125 #[inline]
1126 pub fn search_slots(
1127 &self,
1128 input: &Input<'_>,
1129 slots: &mut [Option<NonMaxUsize>],
1130 ) -> Option<PatternID> {
1131 if self.imp.info.is_impossible(input) {
1132 return None;
1133 }
1134 let mut guard = self.pool.get();
1135 let result = self.imp.strat.search_slots(&mut guard, input, slots);
1136 // See 'Regex::search' for why we put the guard back explicitly.
1137 PoolGuard::put(guard);
1138 result
1139 }
1140
1141 /// Writes the set of patterns that match anywhere in the given search
1142 /// configuration to `patset`. If multiple patterns match at the same
1143 /// position and this `Regex` was configured with [`MatchKind::All`]
1144 /// semantics, then all matching patterns are written to the given set.
1145 ///
1146 /// Unless all of the patterns in this `Regex` are anchored, then generally
1147 /// speaking, this will scan the entire haystack.
1148 ///
1149 /// This search routine *does not* clear the pattern set. This gives some
1150 /// flexibility to the caller (e.g., running multiple searches with the
1151 /// same pattern set), but does make the API bug-prone if you're reusing
1152 /// the same pattern set for multiple searches but intended them to be
1153 /// independent.
1154 ///
1155 /// If a pattern ID matched but the given `PatternSet` does not have
1156 /// sufficient capacity to store it, then it is not inserted and silently
1157 /// dropped.
1158 ///
1159 /// # Example
1160 ///
1161 /// This example shows how to find all matching patterns in a haystack,
1162 /// even when some patterns match at the same position as other patterns.
1163 /// It is important that we configure the `Regex` with [`MatchKind::All`]
1164 /// semantics here, or else overlapping matches will not be reported.
1165 ///
1166 /// ```
1167 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1168 /// use regex_automata::{meta::Regex, Input, MatchKind, PatternSet};
1169 ///
1170 /// let patterns = &[
1171 /// r"\w+", r"\d+", r"\pL+", r"foo", r"bar", r"barfoo", r"foobar",
1172 /// ];
1173 /// let re = Regex::builder()
1174 /// .configure(Regex::config().match_kind(MatchKind::All))
1175 /// .build_many(patterns)?;
1176 ///
1177 /// let input = Input::new("foobar");
1178 /// let mut patset = PatternSet::new(re.pattern_len());
1179 /// re.which_overlapping_matches(&input, &mut patset);
1180 /// let expected = vec![0, 2, 3, 4, 6];
1181 /// let got: Vec<usize> = patset.iter().map(|p| p.as_usize()).collect();
1182 /// assert_eq!(expected, got);
1183 ///
1184 /// # Ok::<(), Box<dyn std::error::Error>>(())
1185 /// ```
1186 #[inline]
1187 pub fn which_overlapping_matches(
1188 &self,
1189 input: &Input<'_>,
1190 patset: &mut PatternSet,
1191 ) {
1192 if self.imp.info.is_impossible(input) {
1193 return;
1194 }
1195 let mut guard = self.pool.get();
1196 let result = self
1197 .imp
1198 .strat
1199 .which_overlapping_matches(&mut guard, input, patset);
1200 // See 'Regex::search' for why we put the guard back explicitly.
1201 PoolGuard::put(guard);
1202 result
1203 }
1204}
1205
1206/// Lower level search routines that give more control, and require the caller
1207/// to provide an explicit [`Cache`] parameter.
1208impl Regex {
1209 /// This is like [`Regex::search`], but requires the caller to
1210 /// explicitly pass a [`Cache`].
1211 ///
1212 /// # Why pass a `Cache` explicitly?
1213 ///
1214 /// Passing a `Cache` explicitly will bypass the use of an internal memory
1215 /// pool used by `Regex` to get a `Cache` for a search. The use of this
1216 /// pool can be slower in some cases when a `Regex` is used from multiple
1217 /// threads simultaneously. Typically, performance only becomes an issue
1218 /// when there is heavy contention, which in turn usually only occurs
1219 /// when each thread's primary unit of work is a regex search on a small
1220 /// haystack.
1221 ///
1222 /// # Example
1223 ///
1224 /// ```
1225 /// use regex_automata::{meta::Regex, Input, Match};
1226 ///
1227 /// let re = Regex::new(r"Samwise|Sam")?;
1228 /// let mut cache = re.create_cache();
1229 /// let input = Input::new(
1230 /// "one of the chief characters, Samwise the Brave",
1231 /// );
1232 /// assert_eq!(
1233 /// Some(Match::must(0, 29..36)),
1234 /// re.search_with(&mut cache, &input),
1235 /// );
1236 ///
1237 /// # Ok::<(), Box<dyn std::error::Error>>(())
1238 /// ```
1239 #[inline]
1240 pub fn search_with(
1241 &self,
1242 cache: &mut Cache,
1243 input: &Input<'_>,
1244 ) -> Option<Match> {
1245 if self.imp.info.is_impossible(input) {
1246 return None;
1247 }
1248 self.imp.strat.search(cache, input)
1249 }
1250
1251 /// This is like [`Regex::search_half`], but requires the caller to
1252 /// explicitly pass a [`Cache`].
1253 ///
1254 /// # Why pass a `Cache` explicitly?
1255 ///
1256 /// Passing a `Cache` explicitly will bypass the use of an internal memory
1257 /// pool used by `Regex` to get a `Cache` for a search. The use of this
1258 /// pool can be slower in some cases when a `Regex` is used from multiple
1259 /// threads simultaneously. Typically, performance only becomes an issue
1260 /// when there is heavy contention, which in turn usually only occurs
1261 /// when each thread's primary unit of work is a regex search on a small
1262 /// haystack.
1263 ///
1264 /// # Example
1265 ///
1266 /// ```
1267 /// use regex_automata::{meta::Regex, Input, HalfMatch};
1268 ///
1269 /// let re = Regex::new(r"Samwise|Sam")?;
1270 /// let mut cache = re.create_cache();
1271 /// let input = Input::new(
1272 /// "one of the chief characters, Samwise the Brave",
1273 /// );
1274 /// assert_eq!(
1275 /// Some(HalfMatch::must(0, 36)),
1276 /// re.search_half_with(&mut cache, &input),
1277 /// );
1278 ///
1279 /// # Ok::<(), Box<dyn std::error::Error>>(())
1280 /// ```
1281 #[inline]
1282 pub fn search_half_with(
1283 &self,
1284 cache: &mut Cache,
1285 input: &Input<'_>,
1286 ) -> Option<HalfMatch> {
1287 if self.imp.info.is_impossible(input) {
1288 return None;
1289 }
1290 self.imp.strat.search_half(cache, input)
1291 }
1292
1293 /// This is like [`Regex::search_captures`], but requires the caller to
1294 /// explicitly pass a [`Cache`].
1295 ///
1296 /// # Why pass a `Cache` explicitly?
1297 ///
1298 /// Passing a `Cache` explicitly will bypass the use of an internal memory
1299 /// pool used by `Regex` to get a `Cache` for a search. The use of this
1300 /// pool can be slower in some cases when a `Regex` is used from multiple
1301 /// threads simultaneously. Typically, performance only becomes an issue
1302 /// when there is heavy contention, which in turn usually only occurs
1303 /// when each thread's primary unit of work is a regex search on a small
1304 /// haystack.
1305 ///
1306 /// # Example: specific pattern search
1307 ///
1308 /// This example shows how to build a multi-pattern `Regex` that permits
1309 /// searching for specific patterns.
1310 ///
1311 /// ```
1312 /// use regex_automata::{
1313 /// meta::Regex,
1314 /// Anchored, Match, PatternID, Input,
1315 /// };
1316 ///
1317 /// let re = Regex::new_many(&["[a-z0-9]{6}", "[a-z][a-z0-9]{5}"])?;
1318 /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
1319 /// let haystack = "foo123";
1320 ///
1321 /// // Since we are using the default leftmost-first match and both
1322 /// // patterns match at the same starting position, only the first pattern
1323 /// // will be returned in this case when doing a search for any of the
1324 /// // patterns.
1325 /// let expected = Some(Match::must(0, 0..6));
1326 /// re.search_captures_with(&mut cache, &Input::new(haystack), &mut caps);
1327 /// assert_eq!(expected, caps.get_match());
1328 ///
1329 /// // But if we want to check whether some other pattern matches, then we
1330 /// // can provide its pattern ID.
1331 /// let expected = Some(Match::must(1, 0..6));
1332 /// let input = Input::new(haystack)
1333 /// .anchored(Anchored::Pattern(PatternID::must(1)));
1334 /// re.search_captures_with(&mut cache, &input, &mut caps);
1335 /// assert_eq!(expected, caps.get_match());
1336 ///
1337 /// # Ok::<(), Box<dyn std::error::Error>>(())
1338 /// ```
1339 ///
1340 /// # Example: specifying the bounds of a search
1341 ///
1342 /// This example shows how providing the bounds of a search can produce
1343 /// different results than simply sub-slicing the haystack.
1344 ///
1345 /// ```
1346 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1347 /// use regex_automata::{meta::Regex, Match, Input};
1348 ///
1349 /// let re = Regex::new(r"\b[0-9]{3}\b")?;
1350 /// let (mut cache, mut caps) = (re.create_cache(), re.create_captures());
1351 /// let haystack = "foo123bar";
1352 ///
1353 /// // Since we sub-slice the haystack, the search doesn't know about
1354 /// // the larger context and assumes that `123` is surrounded by word
1355 /// // boundaries. And of course, the match position is reported relative
1356 /// // to the sub-slice as well, which means we get `0..3` instead of
1357 /// // `3..6`.
1358 /// let expected = Some(Match::must(0, 0..3));
1359 /// let input = Input::new(&haystack[3..6]);
1360 /// re.search_captures_with(&mut cache, &input, &mut caps);
1361 /// assert_eq!(expected, caps.get_match());
1362 ///
1363 /// // But if we provide the bounds of the search within the context of the
1364 /// // entire haystack, then the search can take the surrounding context
1365 /// // into account. (And if we did find a match, it would be reported
1366 /// // as a valid offset into `haystack` instead of its sub-slice.)
1367 /// let expected = None;
1368 /// let input = Input::new(haystack).range(3..6);
1369 /// re.search_captures_with(&mut cache, &input, &mut caps);
1370 /// assert_eq!(expected, caps.get_match());
1371 ///
1372 /// # Ok::<(), Box<dyn std::error::Error>>(())
1373 /// ```
1374 #[inline]
1375 pub fn search_captures_with(
1376 &self,
1377 cache: &mut Cache,
1378 input: &Input<'_>,
1379 caps: &mut Captures,
1380 ) {
1381 caps.set_pattern(None);
1382 let pid = self.search_slots_with(cache, input, caps.slots_mut());
1383 caps.set_pattern(pid);
1384 }
1385
1386 /// This is like [`Regex::search_slots`], but requires the caller to
1387 /// explicitly pass a [`Cache`].
1388 ///
1389 /// # Why pass a `Cache` explicitly?
1390 ///
1391 /// Passing a `Cache` explicitly will bypass the use of an internal memory
1392 /// pool used by `Regex` to get a `Cache` for a search. The use of this
1393 /// pool can be slower in some cases when a `Regex` is used from multiple
1394 /// threads simultaneously. Typically, performance only becomes an issue
1395 /// when there is heavy contention, which in turn usually only occurs
1396 /// when each thread's primary unit of work is a regex search on a small
1397 /// haystack.
1398 ///
1399 /// # Example
1400 ///
1401 /// This example shows how to find the overall match offsets in a
1402 /// multi-pattern search without allocating a `Captures` value. Indeed, we
1403 /// can put our slots right on the stack.
1404 ///
1405 /// ```
1406 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1407 /// use regex_automata::{meta::Regex, PatternID, Input};
1408 ///
1409 /// let re = Regex::new_many(&[
1410 /// r"\pL+",
1411 /// r"\d+",
1412 /// ])?;
1413 /// let mut cache = re.create_cache();
1414 /// let input = Input::new("!@#123");
1415 ///
1416 /// // We only care about the overall match offsets here, so we just
1417 /// // allocate two slots for each pattern. Each slot records the start
1418 /// // and end of the match.
1419 /// let mut slots = [None; 4];
1420 /// let pid = re.search_slots_with(&mut cache, &input, &mut slots);
1421 /// assert_eq!(Some(PatternID::must(1)), pid);
1422 ///
1423 /// // The overall match offsets are always at 'pid * 2' and 'pid * 2 + 1'.
1424 /// // See 'GroupInfo' for more details on the mapping between groups and
1425 /// // slot indices.
1426 /// let slot_start = pid.unwrap().as_usize() * 2;
1427 /// let slot_end = slot_start + 1;
1428 /// assert_eq!(Some(3), slots[slot_start].map(|s| s.get()));
1429 /// assert_eq!(Some(6), slots[slot_end].map(|s| s.get()));
1430 ///
1431 /// # Ok::<(), Box<dyn std::error::Error>>(())
1432 /// ```
1433 #[inline]
1434 pub fn search_slots_with(
1435 &self,
1436 cache: &mut Cache,
1437 input: &Input<'_>,
1438 slots: &mut [Option<NonMaxUsize>],
1439 ) -> Option<PatternID> {
1440 if self.imp.info.is_impossible(input) {
1441 return None;
1442 }
1443 self.imp.strat.search_slots(cache, input, slots)
1444 }
1445
1446 /// This is like [`Regex::which_overlapping_matches`], but requires the
1447 /// caller to explicitly pass a [`Cache`].
1448 ///
1449 /// Passing a `Cache` explicitly will bypass the use of an internal memory
1450 /// pool used by `Regex` to get a `Cache` for a search. The use of this
1451 /// pool can be slower in some cases when a `Regex` is used from multiple
1452 /// threads simultaneously. Typically, performance only becomes an issue
1453 /// when there is heavy contention, which in turn usually only occurs
1454 /// when each thread's primary unit of work is a regex search on a small
1455 /// haystack.
1456 ///
1457 /// # Why pass a `Cache` explicitly?
1458 ///
1459 /// # Example
1460 ///
1461 /// ```
1462 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
1463 /// use regex_automata::{meta::Regex, Input, MatchKind, PatternSet};
1464 ///
1465 /// let patterns = &[
1466 /// r"\w+", r"\d+", r"\pL+", r"foo", r"bar", r"barfoo", r"foobar",
1467 /// ];
1468 /// let re = Regex::builder()
1469 /// .configure(Regex::config().match_kind(MatchKind::All))
1470 /// .build_many(patterns)?;
1471 /// let mut cache = re.create_cache();
1472 ///
1473 /// let input = Input::new("foobar");
1474 /// let mut patset = PatternSet::new(re.pattern_len());
1475 /// re.which_overlapping_matches_with(&mut cache, &input, &mut patset);
1476 /// let expected = vec![0, 2, 3, 4, 6];
1477 /// let got: Vec<usize> = patset.iter().map(|p| p.as_usize()).collect();
1478 /// assert_eq!(expected, got);
1479 ///
1480 /// # Ok::<(), Box<dyn std::error::Error>>(())
1481 /// ```
1482 #[inline]
1483 pub fn which_overlapping_matches_with(
1484 &self,
1485 cache: &mut Cache,
1486 input: &Input<'_>,
1487 patset: &mut PatternSet,
1488 ) {
1489 if self.imp.info.is_impossible(input) {
1490 return;
1491 }
1492 self.imp.strat.which_overlapping_matches(cache, input, patset)
1493 }
1494}
1495
1496/// Various non-search routines for querying properties of a `Regex` and
1497/// convenience routines for creating [`Captures`] and [`Cache`] values.
1498impl Regex {
1499 /// Creates a new object for recording capture group offsets. This is used
1500 /// in search APIs like [`Regex::captures`] and [`Regex::search_captures`].
1501 ///
1502 /// This is a convenience routine for
1503 /// `Captures::all(re.group_info().clone())`. Callers may build other types
1504 /// of `Captures` values that record less information (and thus require
1505 /// less work from the regex engine) using [`Captures::matches`] and
1506 /// [`Captures::empty`].
1507 ///
1508 /// # Example
1509 ///
1510 /// This shows some alternatives to [`Regex::create_captures`]:
1511 ///
1512 /// ```
1513 /// use regex_automata::{
1514 /// meta::Regex,
1515 /// util::captures::Captures,
1516 /// Match, PatternID, Span,
1517 /// };
1518 ///
1519 /// let re = Regex::new(r"(?<first>[A-Z][a-z]+) (?<last>[A-Z][a-z]+)")?;
1520 ///
1521 /// // This is equivalent to Regex::create_captures. It stores matching
1522 /// // offsets for all groups in the regex.
1523 /// let mut all = Captures::all(re.group_info().clone());
1524 /// re.captures("Bruce Springsteen", &mut all);
1525 /// assert_eq!(Some(Match::must(0, 0..17)), all.get_match());
1526 /// assert_eq!(Some(Span::from(0..5)), all.get_group_by_name("first"));
1527 /// assert_eq!(Some(Span::from(6..17)), all.get_group_by_name("last"));
1528 ///
1529 /// // In this version, we only care about the implicit groups, which
1530 /// // means offsets for the explicit groups will be unavailable. It can
1531 /// // sometimes be faster to ask for fewer groups, since the underlying
1532 /// // regex engine needs to do less work to keep track of them.
1533 /// let mut matches = Captures::matches(re.group_info().clone());
1534 /// re.captures("Bruce Springsteen", &mut matches);
1535 /// // We still get the overall match info.
1536 /// assert_eq!(Some(Match::must(0, 0..17)), matches.get_match());
1537 /// // But now the explicit groups are unavailable.
1538 /// assert_eq!(None, matches.get_group_by_name("first"));
1539 /// assert_eq!(None, matches.get_group_by_name("last"));
1540 ///
1541 /// // Finally, in this version, we don't ask to keep track of offsets for
1542 /// // *any* groups. All we get back is whether a match occurred, and if
1543 /// // so, the ID of the pattern that matched.
1544 /// let mut empty = Captures::empty(re.group_info().clone());
1545 /// re.captures("Bruce Springsteen", &mut empty);
1546 /// // it's a match!
1547 /// assert!(empty.is_match());
1548 /// // for pattern ID 0
1549 /// assert_eq!(Some(PatternID::ZERO), empty.pattern());
1550 /// // Match offsets are unavailable.
1551 /// assert_eq!(None, empty.get_match());
1552 /// // And of course, explicit groups are unavailable too.
1553 /// assert_eq!(None, empty.get_group_by_name("first"));
1554 /// assert_eq!(None, empty.get_group_by_name("last"));
1555 ///
1556 /// # Ok::<(), Box<dyn std::error::Error>>(())
1557 /// ```
1558 pub fn create_captures(&self) -> Captures {
1559 Captures::all(self.group_info().clone())
1560 }
1561
1562 /// Creates a new cache for use with lower level search APIs like
1563 /// [`Regex::search_with`].
1564 ///
1565 /// The cache returned should only be used for searches for this `Regex`.
1566 /// If you want to reuse the cache for another `Regex`, then you must call
1567 /// [`Cache::reset`] with that `Regex`.
1568 ///
1569 /// This is a convenience routine for [`Cache::new`].
1570 ///
1571 /// # Example
1572 ///
1573 /// ```
1574 /// use regex_automata::{meta::Regex, Input, Match};
1575 ///
1576 /// let re = Regex::new(r"(?-u)m\w+\s+m\w+")?;
1577 /// let mut cache = re.create_cache();
1578 /// let input = Input::new("crazy janey and her mission man");
1579 /// assert_eq!(
1580 /// Some(Match::must(0, 20..31)),
1581 /// re.search_with(&mut cache, &input),
1582 /// );
1583 ///
1584 /// # Ok::<(), Box<dyn std::error::Error>>(())
1585 /// ```
1586 pub fn create_cache(&self) -> Cache {
1587 self.imp.strat.create_cache()
1588 }
1589
1590 /// Returns the total number of patterns in this regex.
1591 ///
1592 /// The standard [`Regex::new`] constructor always results in a `Regex`
1593 /// with a single pattern, but [`Regex::new_many`] permits building a
1594 /// multi-pattern regex.
1595 ///
1596 /// A `Regex` guarantees that the maximum possible `PatternID` returned in
1597 /// any match is `Regex::pattern_len() - 1`. In the case where the number
1598 /// of patterns is `0`, a match is impossible.
1599 ///
1600 /// # Example
1601 ///
1602 /// ```
1603 /// use regex_automata::meta::Regex;
1604 ///
1605 /// let re = Regex::new(r"(?m)^[a-z]$")?;
1606 /// assert_eq!(1, re.pattern_len());
1607 ///
1608 /// let re = Regex::new_many::<&str>(&[])?;
1609 /// assert_eq!(0, re.pattern_len());
1610 ///
1611 /// let re = Regex::new_many(&["a", "b", "c"])?;
1612 /// assert_eq!(3, re.pattern_len());
1613 ///
1614 /// # Ok::<(), Box<dyn std::error::Error>>(())
1615 /// ```
1616 pub fn pattern_len(&self) -> usize {
1617 self.imp.info.pattern_len()
1618 }
1619
1620 /// Returns the total number of capturing groups.
1621 ///
1622 /// This includes the implicit capturing group corresponding to the
1623 /// entire match. Therefore, the minimum value returned is `1`.
1624 ///
1625 /// # Example
1626 ///
1627 /// This shows a few patterns and how many capture groups they have.
1628 ///
1629 /// ```
1630 /// use regex_automata::meta::Regex;
1631 ///
1632 /// let len = |pattern| {
1633 /// Regex::new(pattern).map(|re| re.captures_len())
1634 /// };
1635 ///
1636 /// assert_eq!(1, len("a")?);
1637 /// assert_eq!(2, len("(a)")?);
1638 /// assert_eq!(3, len("(a)|(b)")?);
1639 /// assert_eq!(5, len("(a)(b)|(c)(d)")?);
1640 /// assert_eq!(2, len("(a)|b")?);
1641 /// assert_eq!(2, len("a|(b)")?);
1642 /// assert_eq!(2, len("(b)*")?);
1643 /// assert_eq!(2, len("(b)+")?);
1644 ///
1645 /// # Ok::<(), Box<dyn std::error::Error>>(())
1646 /// ```
1647 ///
1648 /// # Example: multiple patterns
1649 ///
1650 /// This routine also works for multiple patterns. The total number is
1651 /// the sum of the capture groups of each pattern.
1652 ///
1653 /// ```
1654 /// use regex_automata::meta::Regex;
1655 ///
1656 /// let len = |patterns| {
1657 /// Regex::new_many(patterns).map(|re| re.captures_len())
1658 /// };
1659 ///
1660 /// assert_eq!(2, len(&["a", "b"])?);
1661 /// assert_eq!(4, len(&["(a)", "(b)"])?);
1662 /// assert_eq!(6, len(&["(a)|(b)", "(c)|(d)"])?);
1663 /// assert_eq!(8, len(&["(a)(b)|(c)(d)", "(x)(y)"])?);
1664 /// assert_eq!(3, len(&["(a)", "b"])?);
1665 /// assert_eq!(3, len(&["a", "(b)"])?);
1666 /// assert_eq!(4, len(&["(a)", "(b)*"])?);
1667 /// assert_eq!(4, len(&["(a)+", "(b)+"])?);
1668 ///
1669 /// # Ok::<(), Box<dyn std::error::Error>>(())
1670 /// ```
1671 pub fn captures_len(&self) -> usize {
1672 self.imp
1673 .info
1674 .props_union()
1675 .explicit_captures_len()
1676 .saturating_add(self.pattern_len())
1677 }
1678
1679 /// Returns the total number of capturing groups that appear in every
1680 /// possible match.
1681 ///
1682 /// If the number of capture groups can vary depending on the match, then
1683 /// this returns `None`. That is, a value is only returned when the number
1684 /// of matching groups is invariant or "static."
1685 ///
1686 /// Note that like [`Regex::captures_len`], this **does** include the
1687 /// implicit capturing group corresponding to the entire match. Therefore,
1688 /// when a non-None value is returned, it is guaranteed to be at least `1`.
1689 /// Stated differently, a return value of `Some(0)` is impossible.
1690 ///
1691 /// # Example
1692 ///
1693 /// This shows a few cases where a static number of capture groups is
1694 /// available and a few cases where it is not.
1695 ///
1696 /// ```
1697 /// use regex_automata::meta::Regex;
1698 ///
1699 /// let len = |pattern| {
1700 /// Regex::new(pattern).map(|re| re.static_captures_len())
1701 /// };
1702 ///
1703 /// assert_eq!(Some(1), len("a")?);
1704 /// assert_eq!(Some(2), len("(a)")?);
1705 /// assert_eq!(Some(2), len("(a)|(b)")?);
1706 /// assert_eq!(Some(3), len("(a)(b)|(c)(d)")?);
1707 /// assert_eq!(None, len("(a)|b")?);
1708 /// assert_eq!(None, len("a|(b)")?);
1709 /// assert_eq!(None, len("(b)*")?);
1710 /// assert_eq!(Some(2), len("(b)+")?);
1711 ///
1712 /// # Ok::<(), Box<dyn std::error::Error>>(())
1713 /// ```
1714 ///
1715 /// # Example: multiple patterns
1716 ///
1717 /// This property extends to regexes with multiple patterns as well. In
1718 /// order for their to be a static number of capture groups in this case,
1719 /// every pattern must have the same static number.
1720 ///
1721 /// ```
1722 /// use regex_automata::meta::Regex;
1723 ///
1724 /// let len = |patterns| {
1725 /// Regex::new_many(patterns).map(|re| re.static_captures_len())
1726 /// };
1727 ///
1728 /// assert_eq!(Some(1), len(&["a", "b"])?);
1729 /// assert_eq!(Some(2), len(&["(a)", "(b)"])?);
1730 /// assert_eq!(Some(2), len(&["(a)|(b)", "(c)|(d)"])?);
1731 /// assert_eq!(Some(3), len(&["(a)(b)|(c)(d)", "(x)(y)"])?);
1732 /// assert_eq!(None, len(&["(a)", "b"])?);
1733 /// assert_eq!(None, len(&["a", "(b)"])?);
1734 /// assert_eq!(None, len(&["(a)", "(b)*"])?);
1735 /// assert_eq!(Some(2), len(&["(a)+", "(b)+"])?);
1736 ///
1737 /// # Ok::<(), Box<dyn std::error::Error>>(())
1738 /// ```
1739 #[inline]
1740 pub fn static_captures_len(&self) -> Option<usize> {
1741 self.imp
1742 .info
1743 .props_union()
1744 .static_explicit_captures_len()
1745 .map(|len| len.saturating_add(1))
1746 }
1747
1748 /// Return information about the capture groups in this `Regex`.
1749 ///
1750 /// A `GroupInfo` is an immutable object that can be cheaply cloned. It
1751 /// is responsible for maintaining a mapping between the capture groups
1752 /// in the concrete syntax of zero or more regex patterns and their
1753 /// internal representation used by some of the regex matchers. It is also
1754 /// responsible for maintaining a mapping between the name of each group
1755 /// (if one exists) and its corresponding group index.
1756 ///
1757 /// A `GroupInfo` is ultimately what is used to build a [`Captures`] value,
1758 /// which is some mutable space where group offsets are stored as a result
1759 /// of a search.
1760 ///
1761 /// # Example
1762 ///
1763 /// This shows some alternatives to [`Regex::create_captures`]:
1764 ///
1765 /// ```
1766 /// use regex_automata::{
1767 /// meta::Regex,
1768 /// util::captures::Captures,
1769 /// Match, PatternID, Span,
1770 /// };
1771 ///
1772 /// let re = Regex::new(r"(?<first>[A-Z][a-z]+) (?<last>[A-Z][a-z]+)")?;
1773 ///
1774 /// // This is equivalent to Regex::create_captures. It stores matching
1775 /// // offsets for all groups in the regex.
1776 /// let mut all = Captures::all(re.group_info().clone());
1777 /// re.captures("Bruce Springsteen", &mut all);
1778 /// assert_eq!(Some(Match::must(0, 0..17)), all.get_match());
1779 /// assert_eq!(Some(Span::from(0..5)), all.get_group_by_name("first"));
1780 /// assert_eq!(Some(Span::from(6..17)), all.get_group_by_name("last"));
1781 ///
1782 /// // In this version, we only care about the implicit groups, which
1783 /// // means offsets for the explicit groups will be unavailable. It can
1784 /// // sometimes be faster to ask for fewer groups, since the underlying
1785 /// // regex engine needs to do less work to keep track of them.
1786 /// let mut matches = Captures::matches(re.group_info().clone());
1787 /// re.captures("Bruce Springsteen", &mut matches);
1788 /// // We still get the overall match info.
1789 /// assert_eq!(Some(Match::must(0, 0..17)), matches.get_match());
1790 /// // But now the explicit groups are unavailable.
1791 /// assert_eq!(None, matches.get_group_by_name("first"));
1792 /// assert_eq!(None, matches.get_group_by_name("last"));
1793 ///
1794 /// // Finally, in this version, we don't ask to keep track of offsets for
1795 /// // *any* groups. All we get back is whether a match occurred, and if
1796 /// // so, the ID of the pattern that matched.
1797 /// let mut empty = Captures::empty(re.group_info().clone());
1798 /// re.captures("Bruce Springsteen", &mut empty);
1799 /// // it's a match!
1800 /// assert!(empty.is_match());
1801 /// // for pattern ID 0
1802 /// assert_eq!(Some(PatternID::ZERO), empty.pattern());
1803 /// // Match offsets are unavailable.
1804 /// assert_eq!(None, empty.get_match());
1805 /// // And of course, explicit groups are unavailable too.
1806 /// assert_eq!(None, empty.get_group_by_name("first"));
1807 /// assert_eq!(None, empty.get_group_by_name("last"));
1808 ///
1809 /// # Ok::<(), Box<dyn std::error::Error>>(())
1810 /// ```
1811 #[inline]
1812 pub fn group_info(&self) -> &GroupInfo {
1813 self.imp.strat.group_info()
1814 }
1815
1816 /// Returns the configuration object used to build this `Regex`.
1817 ///
1818 /// If no configuration object was explicitly passed, then the
1819 /// configuration returned represents the default.
1820 #[inline]
1821 pub fn get_config(&self) -> &Config {
1822 self.imp.info.config()
1823 }
1824
1825 /// Returns true if this regex has a high chance of being "accelerated."
1826 ///
1827 /// The precise meaning of "accelerated" is specifically left unspecified,
1828 /// but the general meaning is that the search is a high likelihood of
1829 /// running faster than than a character-at-a-time loop inside a standard
1830 /// regex engine.
1831 ///
1832 /// When a regex is accelerated, it is only a *probabilistic* claim. That
1833 /// is, just because the regex is believed to be accelerated, that doesn't
1834 /// mean it will definitely execute searches very fast. Similarly, if a
1835 /// regex is *not* accelerated, that is also a probabilistic claim. That
1836 /// is, a regex for which `is_accelerated` returns `false` could still run
1837 /// searches more quickly than a regex for which `is_accelerated` returns
1838 /// `true`.
1839 ///
1840 /// Whether a regex is marked as accelerated or not is dependent on
1841 /// implementations details that may change in a semver compatible release.
1842 /// That is, a regex that is accelerated in a `x.y.1` release might not be
1843 /// accelerated in a `x.y.2` release.
1844 ///
1845 /// Basically, the value of acceleration boils down to a hedge: a hodge
1846 /// podge of internal heuristics combine to make a probabilistic guess
1847 /// that this regex search may run "fast." The value in knowing this from
1848 /// a caller's perspective is that it may act as a signal that no further
1849 /// work should be done to accelerate a search. For example, a grep-like
1850 /// tool might try to do some extra work extracting literals from a regex
1851 /// to create its own heuristic acceleration strategies. But it might
1852 /// choose to defer to this crate's acceleration strategy if one exists.
1853 /// This routine permits querying whether such a strategy is active for a
1854 /// particular regex.
1855 ///
1856 /// # Example
1857 ///
1858 /// ```
1859 /// use regex_automata::meta::Regex;
1860 ///
1861 /// // A simple literal is very likely to be accelerated.
1862 /// let re = Regex::new(r"foo")?;
1863 /// assert!(re.is_accelerated());
1864 ///
1865 /// // A regex with no literals is likely to not be accelerated.
1866 /// let re = Regex::new(r"\w")?;
1867 /// assert!(!re.is_accelerated());
1868 ///
1869 /// # Ok::<(), Box<dyn std::error::Error>>(())
1870 /// ```
1871 #[inline]
1872 pub fn is_accelerated(&self) -> bool {
1873 self.imp.strat.is_accelerated()
1874 }
1875
1876 /// Return the total approximate heap memory, in bytes, used by this `Regex`.
1877 ///
1878 /// Note that currently, there is no high level configuration for setting
1879 /// a limit on the specific value returned by this routine. Instead, the
1880 /// following routines can be used to control heap memory at a bit of a
1881 /// lower level:
1882 ///
1883 /// * [`Config::nfa_size_limit`] controls how big _any_ of the NFAs are
1884 /// allowed to be.
1885 /// * [`Config::onepass_size_limit`] controls how big the one-pass DFA is
1886 /// allowed to be.
1887 /// * [`Config::hybrid_cache_capacity`] controls how much memory the lazy
1888 /// DFA is permitted to allocate to store its transition table.
1889 /// * [`Config::dfa_size_limit`] controls how big a fully compiled DFA is
1890 /// allowed to be.
1891 /// * [`Config::dfa_state_limit`] controls the conditions under which the
1892 /// meta regex engine will even attempt to build a fully compiled DFA.
1893 #[inline]
1894 pub fn memory_usage(&self) -> usize {
1895 self.imp.strat.memory_usage()
1896 }
1897}
1898
1899impl Clone for Regex {
1900 fn clone(&self) -> Regex {
1901 let imp: Arc = Arc::clone(&self.imp);
1902 let pool: Pool … + Sync + Send + RefUnwindSafe + UnwindSafe>> = {
1903 let strat: Arc = Arc::clone(&imp.strat);
1904 let create: CachePoolFn = Box::new(move || strat.create_cache());
1905 Pool::new(create)
1906 };
1907 Regex { imp, pool }
1908 }
1909}
1910
1911#[derive(Clone, Debug)]
1912pub(crate) struct RegexInfo(Arc<RegexInfoI>);
1913
1914#[derive(Clone, Debug)]
1915struct RegexInfoI {
1916 config: Config,
1917 props: Vec<hir::Properties>,
1918 props_union: hir::Properties,
1919}
1920
1921impl RegexInfo {
1922 fn new(config: Config, hirs: &[&Hir]) -> RegexInfo {
1923 // Collect all of the properties from each of the HIRs, and also
1924 // union them into one big set of properties representing all HIRs
1925 // as if they were in one big alternation.
1926 let mut props = vec![];
1927 for hir in hirs.iter() {
1928 props.push(hir.properties().clone());
1929 }
1930 let props_union = hir::Properties::union(&props);
1931
1932 RegexInfo(Arc::new(RegexInfoI { config, props, props_union }))
1933 }
1934
1935 pub(crate) fn config(&self) -> &Config {
1936 &self.0.config
1937 }
1938
1939 pub(crate) fn props(&self) -> &[hir::Properties] {
1940 &self.0.props
1941 }
1942
1943 pub(crate) fn props_union(&self) -> &hir::Properties {
1944 &self.0.props_union
1945 }
1946
1947 pub(crate) fn pattern_len(&self) -> usize {
1948 self.props().len()
1949 }
1950
1951 pub(crate) fn memory_usage(&self) -> usize {
1952 self.props().iter().map(|p| p.memory_usage()).sum::<usize>()
1953 + self.props_union().memory_usage()
1954 }
1955
1956 /// Returns true when the search is guaranteed to be anchored. That is,
1957 /// when a match is reported, its offset is guaranteed to correspond to
1958 /// the start of the search.
1959 ///
1960 /// This includes returning true when `input` _isn't_ anchored but the
1961 /// underlying regex is.
1962 #[cfg_attr(feature = "perf-inline", inline(always))]
1963 pub(crate) fn is_anchored_start(&self, input: &Input<'_>) -> bool {
1964 input.get_anchored().is_anchored() || self.is_always_anchored_start()
1965 }
1966
1967 /// Returns true when this regex is always anchored to the start of a
1968 /// search. And in particular, that regardless of an `Input` configuration,
1969 /// if any match is reported it must start at `0`.
1970 #[cfg_attr(feature = "perf-inline", inline(always))]
1971 pub(crate) fn is_always_anchored_start(&self) -> bool {
1972 use regex_syntax::hir::Look;
1973 self.props_union().look_set_prefix().contains(Look::Start)
1974 }
1975
1976 /// Returns true when this regex is always anchored to the end of a
1977 /// search. And in particular, that regardless of an `Input` configuration,
1978 /// if any match is reported it must end at the end of the haystack.
1979 #[cfg_attr(feature = "perf-inline", inline(always))]
1980 pub(crate) fn is_always_anchored_end(&self) -> bool {
1981 use regex_syntax::hir::Look;
1982 self.props_union().look_set_suffix().contains(Look::End)
1983 }
1984
1985 /// Returns true if and only if it is known that a match is impossible
1986 /// for the given input. This is useful for short-circuiting and avoiding
1987 /// running the regex engine if it's known no match can be reported.
1988 ///
1989 /// Note that this doesn't necessarily detect every possible case. For
1990 /// example, when `pattern_len() == 0`, a match is impossible, but that
1991 /// case is so rare that it's fine to be handled by the regex engine
1992 /// itself. That is, it's not worth the cost of adding it here in order to
1993 /// make it a little faster. The reason is that this is called for every
1994 /// search. so there is some cost to adding checks here. Arguably, some of
1995 /// the checks that are here already probably shouldn't be here...
1996 #[cfg_attr(feature = "perf-inline", inline(always))]
1997 fn is_impossible(&self, input: &Input<'_>) -> bool {
1998 // The underlying regex is anchored, so if we don't start the search
1999 // at position 0, a match is impossible, because the anchor can only
2000 // match at position 0.
2001 if input.start() > 0 && self.is_always_anchored_start() {
2002 return true;
2003 }
2004 // Same idea, but for the end anchor.
2005 if input.end() < input.haystack().len()
2006 && self.is_always_anchored_end()
2007 {
2008 return true;
2009 }
2010 // If the haystack is smaller than the minimum length required, then
2011 // we know there can be no match.
2012 let minlen = match self.props_union().minimum_len() {
2013 None => return false,
2014 Some(minlen) => minlen,
2015 };
2016 if input.get_span().len() < minlen {
2017 return true;
2018 }
2019 // Same idea as minimum, but for maximum. This is trickier. We can
2020 // only apply the maximum when we know the entire span that we're
2021 // searching *has* to match according to the regex (and possibly the
2022 // input configuration). If we know there is too much for the regex
2023 // to match, we can bail early.
2024 //
2025 // I don't think we can apply the maximum otherwise unfortunately.
2026 if self.is_anchored_start(input) && self.is_always_anchored_end() {
2027 let maxlen = match self.props_union().maximum_len() {
2028 None => return false,
2029 Some(maxlen) => maxlen,
2030 };
2031 if input.get_span().len() > maxlen {
2032 return true;
2033 }
2034 }
2035 false
2036 }
2037}
2038
2039/// An iterator over all non-overlapping matches.
2040///
2041/// The iterator yields a [`Match`] value until no more matches could be found.
2042///
2043/// The lifetime parameters are as follows:
2044///
2045/// * `'r` represents the lifetime of the `Regex` that produced this iterator.
2046/// * `'h` represents the lifetime of the haystack being searched.
2047///
2048/// This iterator can be created with the [`Regex::find_iter`] method.
2049#[derive(Debug)]
2050pub struct FindMatches<'r, 'h> {
2051 re: &'r Regex,
2052 cache: CachePoolGuard<'r>,
2053 it: iter::Searcher<'h>,
2054}
2055
2056impl<'r, 'h> FindMatches<'r, 'h> {
2057 /// Returns the `Regex` value that created this iterator.
2058 #[inline]
2059 pub fn regex(&self) -> &'r Regex {
2060 self.re
2061 }
2062
2063 /// Returns the current `Input` associated with this iterator.
2064 ///
2065 /// The `start` position on the given `Input` may change during iteration,
2066 /// but all other values are guaranteed to remain invariant.
2067 #[inline]
2068 pub fn input<'s>(&'s self) -> &'s Input<'h> {
2069 self.it.input()
2070 }
2071}
2072
2073impl<'r, 'h> Iterator for FindMatches<'r, 'h> {
2074 type Item = Match;
2075
2076 #[inline]
2077 fn next(&mut self) -> Option<Match> {
2078 let FindMatches { re: &Regex, ref mut cache: &mut PoolGuard<'_, Cache, …>, ref mut it: &mut Searcher<'_> } = *self;
2079 it.advance(|input: &Input<'_>| Ok(re.search_with(cache, input)))
2080 }
2081
2082 #[inline]
2083 fn count(self) -> usize {
2084 // If all we care about is a count of matches, then we only need to
2085 // find the end position of each match. This can give us a 2x perf
2086 // boost in some cases, because it avoids needing to do a reverse scan
2087 // to find the start of a match.
2088 let FindMatches { re: &Regex, mut cache: PoolGuard<'_, Cache, Box<…>>, it: Searcher<'_> } = self;
2089 // This does the deref for PoolGuard once instead of every iter.
2090 let cache: &mut Cache = &mut *cache;
2091 itTryHalfMatchesIter<'_, impl FnMut(…) -> …>.into_half_matches_iter(
2092 |input: &Input<'_>| Ok(re.search_half_with(cache, input)),
2093 )
2094 .count()
2095 }
2096}
2097
2098impl<'r, 'h> core::iter::FusedIterator for FindMatches<'r, 'h> {}
2099
2100/// An iterator over all non-overlapping leftmost matches with their capturing
2101/// groups.
2102///
2103/// The iterator yields a [`Captures`] value until no more matches could be
2104/// found.
2105///
2106/// The lifetime parameters are as follows:
2107///
2108/// * `'r` represents the lifetime of the `Regex` that produced this iterator.
2109/// * `'h` represents the lifetime of the haystack being searched.
2110///
2111/// This iterator can be created with the [`Regex::captures_iter`] method.
2112#[derive(Debug)]
2113pub struct CapturesMatches<'r, 'h> {
2114 re: &'r Regex,
2115 cache: CachePoolGuard<'r>,
2116 caps: Captures,
2117 it: iter::Searcher<'h>,
2118}
2119
2120impl<'r, 'h> CapturesMatches<'r, 'h> {
2121 /// Returns the `Regex` value that created this iterator.
2122 #[inline]
2123 pub fn regex(&self) -> &'r Regex {
2124 self.re
2125 }
2126
2127 /// Returns the current `Input` associated with this iterator.
2128 ///
2129 /// The `start` position on the given `Input` may change during iteration,
2130 /// but all other values are guaranteed to remain invariant.
2131 #[inline]
2132 pub fn input<'s>(&'s self) -> &'s Input<'h> {
2133 self.it.input()
2134 }
2135}
2136
2137impl<'r, 'h> Iterator for CapturesMatches<'r, 'h> {
2138 type Item = Captures;
2139
2140 #[inline]
2141 fn next(&mut self) -> Option<Captures> {
2142 // Splitting 'self' apart seems necessary to appease borrowck.
2143 let CapturesMatches { re, ref mut cache, ref mut caps, ref mut it } =
2144 *self;
2145 let _ = it.advance(|input| {
2146 re.search_captures_with(cache, input, caps);
2147 Ok(caps.get_match())
2148 });
2149 if caps.is_match() {
2150 Some(caps.clone())
2151 } else {
2152 None
2153 }
2154 }
2155
2156 #[inline]
2157 fn count(self) -> usize {
2158 let CapturesMatches { re, mut cache, it, .. } = self;
2159 // This does the deref for PoolGuard once instead of every iter.
2160 let cache = &mut *cache;
2161 it.into_half_matches_iter(
2162 |input| Ok(re.search_half_with(cache, input)),
2163 )
2164 .count()
2165 }
2166}
2167
2168impl<'r, 'h> core::iter::FusedIterator for CapturesMatches<'r, 'h> {}
2169
2170/// Yields all substrings delimited by a regular expression match.
2171///
2172/// The spans correspond to the offsets between matches.
2173///
2174/// The lifetime parameters are as follows:
2175///
2176/// * `'r` represents the lifetime of the `Regex` that produced this iterator.
2177/// * `'h` represents the lifetime of the haystack being searched.
2178///
2179/// This iterator can be created with the [`Regex::split`] method.
2180#[derive(Debug)]
2181pub struct Split<'r, 'h> {
2182 finder: FindMatches<'r, 'h>,
2183 last: usize,
2184}
2185
2186impl<'r, 'h> Split<'r, 'h> {
2187 /// Returns the current `Input` associated with this iterator.
2188 ///
2189 /// The `start` position on the given `Input` may change during iteration,
2190 /// but all other values are guaranteed to remain invariant.
2191 #[inline]
2192 pub fn input<'s>(&'s self) -> &'s Input<'h> {
2193 self.finder.input()
2194 }
2195}
2196
2197impl<'r, 'h> Iterator for Split<'r, 'h> {
2198 type Item = Span;
2199
2200 fn next(&mut self) -> Option<Span> {
2201 match self.finder.next() {
2202 None => {
2203 let len: usize = self.finder.it.input().haystack().len();
2204 if self.last > len {
2205 None
2206 } else {
2207 let span: Span = Span::from(self.last..len);
2208 self.last = len + 1; // Next call will return None
2209 Some(span)
2210 }
2211 }
2212 Some(m: Match) => {
2213 let span: Span = Span::from(self.last..m.start());
2214 self.last = m.end();
2215 Some(span)
2216 }
2217 }
2218 }
2219}
2220
2221impl<'r, 'h> core::iter::FusedIterator for Split<'r, 'h> {}
2222
2223/// Yields at most `N` spans delimited by a regular expression match.
2224///
2225/// The spans correspond to the offsets between matches. The last span will be
2226/// whatever remains after splitting.
2227///
2228/// The lifetime parameters are as follows:
2229///
2230/// * `'r` represents the lifetime of the `Regex` that produced this iterator.
2231/// * `'h` represents the lifetime of the haystack being searched.
2232///
2233/// This iterator can be created with the [`Regex::splitn`] method.
2234#[derive(Debug)]
2235pub struct SplitN<'r, 'h> {
2236 splits: Split<'r, 'h>,
2237 limit: usize,
2238}
2239
2240impl<'r, 'h> SplitN<'r, 'h> {
2241 /// Returns the current `Input` associated with this iterator.
2242 ///
2243 /// The `start` position on the given `Input` may change during iteration,
2244 /// but all other values are guaranteed to remain invariant.
2245 #[inline]
2246 pub fn input<'s>(&'s self) -> &'s Input<'h> {
2247 self.splits.input()
2248 }
2249}
2250
2251impl<'r, 'h> Iterator for SplitN<'r, 'h> {
2252 type Item = Span;
2253
2254 fn next(&mut self) -> Option<Span> {
2255 if self.limit == 0 {
2256 return None;
2257 }
2258
2259 self.limit -= 1;
2260 if self.limit > 0 {
2261 return self.splits.next();
2262 }
2263
2264 let len = self.splits.finder.it.input().haystack().len();
2265 if self.splits.last > len {
2266 // We've already returned all substrings.
2267 None
2268 } else {
2269 // self.n == 0, so future calls will return None immediately
2270 Some(Span::from(self.splits.last..len))
2271 }
2272 }
2273
2274 fn size_hint(&self) -> (usize, Option<usize>) {
2275 (0, Some(self.limit))
2276 }
2277}
2278
2279impl<'r, 'h> core::iter::FusedIterator for SplitN<'r, 'h> {}
2280
2281/// Represents mutable scratch space used by regex engines during a search.
2282///
2283/// Most of the regex engines in this crate require some kind of
2284/// mutable state in order to execute a search. This mutable state is
2285/// explicitly separated from the the core regex object (such as a
2286/// [`thompson::NFA`](crate::nfa::thompson::NFA)) so that the read-only regex
2287/// object can be shared across multiple threads simultaneously without any
2288/// synchronization. Conversely, a `Cache` must either be duplicated if using
2289/// the same `Regex` from multiple threads, or else there must be some kind of
2290/// synchronization that guarantees exclusive access while it's in use by one
2291/// thread.
2292///
2293/// A `Regex` attempts to do this synchronization for you by using a thread
2294/// pool internally. Its size scales roughly with the number of simultaneous
2295/// regex searches.
2296///
2297/// For cases where one does not want to rely on a `Regex`'s internal thread
2298/// pool, lower level routines such as [`Regex::search_with`] are provided
2299/// that permit callers to pass a `Cache` into the search routine explicitly.
2300///
2301/// General advice is that the thread pool is often more than good enough.
2302/// However, it may be possible to observe the effects of its latency,
2303/// especially when searching many small haystacks from many threads
2304/// simultaneously.
2305///
2306/// Caches can be created from their corresponding `Regex` via
2307/// [`Regex::create_cache`]. A cache can only be used with either the `Regex`
2308/// that created it, or the `Regex` that was most recently used to reset it
2309/// with [`Cache::reset`]. Using a cache with any other `Regex` may result in
2310/// panics or incorrect results.
2311///
2312/// # Example
2313///
2314/// ```
2315/// use regex_automata::{meta::Regex, Input, Match};
2316///
2317/// let re = Regex::new(r"(?-u)m\w+\s+m\w+")?;
2318/// let mut cache = re.create_cache();
2319/// let input = Input::new("crazy janey and her mission man");
2320/// assert_eq!(
2321/// Some(Match::must(0, 20..31)),
2322/// re.search_with(&mut cache, &input),
2323/// );
2324///
2325/// # Ok::<(), Box<dyn std::error::Error>>(())
2326/// ```
2327#[derive(Debug, Clone)]
2328pub struct Cache {
2329 pub(crate) capmatches: Captures,
2330 pub(crate) pikevm: wrappers::PikeVMCache,
2331 pub(crate) backtrack: wrappers::BoundedBacktrackerCache,
2332 pub(crate) onepass: wrappers::OnePassCache,
2333 pub(crate) hybrid: wrappers::HybridCache,
2334 pub(crate) revhybrid: wrappers::ReverseHybridCache,
2335}
2336
2337impl Cache {
2338 /// Creates a new `Cache` for use with this regex.
2339 ///
2340 /// The cache returned should only be used for searches for the given
2341 /// `Regex`. If you want to reuse the cache for another `Regex`, then you
2342 /// must call [`Cache::reset`] with that `Regex`.
2343 pub fn new(re: &Regex) -> Cache {
2344 re.create_cache()
2345 }
2346
2347 /// Reset this cache such that it can be used for searching with the given
2348 /// `Regex` (and only that `Regex`).
2349 ///
2350 /// A cache reset permits potentially reusing memory already allocated in
2351 /// this cache with a different `Regex`.
2352 ///
2353 /// # Example
2354 ///
2355 /// This shows how to re-purpose a cache for use with a different `Regex`.
2356 ///
2357 /// ```
2358 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2359 /// use regex_automata::{meta::Regex, Match, Input};
2360 ///
2361 /// let re1 = Regex::new(r"\w")?;
2362 /// let re2 = Regex::new(r"\W")?;
2363 ///
2364 /// let mut cache = re1.create_cache();
2365 /// assert_eq!(
2366 /// Some(Match::must(0, 0..2)),
2367 /// re1.search_with(&mut cache, &Input::new("Δ")),
2368 /// );
2369 ///
2370 /// // Using 'cache' with re2 is not allowed. It may result in panics or
2371 /// // incorrect results. In order to re-purpose the cache, we must reset
2372 /// // it with the Regex we'd like to use it with.
2373 /// //
2374 /// // Similarly, after this reset, using the cache with 're1' is also not
2375 /// // allowed.
2376 /// cache.reset(&re2);
2377 /// assert_eq!(
2378 /// Some(Match::must(0, 0..3)),
2379 /// re2.search_with(&mut cache, &Input::new("☃")),
2380 /// );
2381 ///
2382 /// # Ok::<(), Box<dyn std::error::Error>>(())
2383 /// ```
2384 pub fn reset(&mut self, re: &Regex) {
2385 re.imp.strat.reset_cache(self)
2386 }
2387
2388 /// Returns the heap memory usage, in bytes, of this cache.
2389 ///
2390 /// This does **not** include the stack size used up by this cache. To
2391 /// compute that, use `std::mem::size_of::<Cache>()`.
2392 pub fn memory_usage(&self) -> usize {
2393 let mut bytes = 0;
2394 bytes += self.pikevm.memory_usage();
2395 bytes += self.backtrack.memory_usage();
2396 bytes += self.onepass.memory_usage();
2397 bytes += self.hybrid.memory_usage();
2398 bytes += self.revhybrid.memory_usage();
2399 bytes
2400 }
2401}
2402
2403/// An object describing the configuration of a `Regex`.
2404///
2405/// This configuration only includes options for the
2406/// non-syntax behavior of a `Regex`, and can be applied via the
2407/// [`Builder::configure`] method. For configuring the syntax options, see
2408/// [`util::syntax::Config`](crate::util::syntax::Config).
2409///
2410/// # Example: lower the NFA size limit
2411///
2412/// In some cases, the default size limit might be too big. The size limit can
2413/// be lowered, which will prevent large regex patterns from compiling.
2414///
2415/// ```
2416/// # if cfg!(miri) { return Ok(()); } // miri takes too long
2417/// use regex_automata::meta::Regex;
2418///
2419/// let result = Regex::builder()
2420/// .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10))))
2421/// // Not even 20KB is enough to build a single large Unicode class!
2422/// .build(r"\pL");
2423/// assert!(result.is_err());
2424///
2425/// # Ok::<(), Box<dyn std::error::Error>>(())
2426/// ```
2427#[derive(Clone, Debug, Default)]
2428pub struct Config {
2429 // As with other configuration types in this crate, we put all our knobs
2430 // in options so that we can distinguish between "default" and "not set."
2431 // This makes it possible to easily combine multiple configurations
2432 // without default values overwriting explicitly specified values. See the
2433 // 'overwrite' method.
2434 //
2435 // For docs on the fields below, see the corresponding method setters.
2436 match_kind: Option<MatchKind>,
2437 utf8_empty: Option<bool>,
2438 autopre: Option<bool>,
2439 pre: Option<Option<Prefilter>>,
2440 which_captures: Option<WhichCaptures>,
2441 nfa_size_limit: Option<Option<usize>>,
2442 onepass_size_limit: Option<Option<usize>>,
2443 hybrid_cache_capacity: Option<usize>,
2444 hybrid: Option<bool>,
2445 dfa: Option<bool>,
2446 dfa_size_limit: Option<Option<usize>>,
2447 dfa_state_limit: Option<Option<usize>>,
2448 onepass: Option<bool>,
2449 backtrack: Option<bool>,
2450 byte_classes: Option<bool>,
2451 line_terminator: Option<u8>,
2452}
2453
2454impl Config {
2455 /// Create a new configuration object for a `Regex`.
2456 pub fn new() -> Config {
2457 Config::default()
2458 }
2459
2460 /// Set the match semantics for a `Regex`.
2461 ///
2462 /// The default value is [`MatchKind::LeftmostFirst`].
2463 ///
2464 /// # Example
2465 ///
2466 /// ```
2467 /// use regex_automata::{meta::Regex, Match, MatchKind};
2468 ///
2469 /// // By default, leftmost-first semantics are used, which
2470 /// // disambiguates matches at the same position by selecting
2471 /// // the one that corresponds earlier in the pattern.
2472 /// let re = Regex::new("sam|samwise")?;
2473 /// assert_eq!(Some(Match::must(0, 0..3)), re.find("samwise"));
2474 ///
2475 /// // But with 'all' semantics, match priority is ignored
2476 /// // and all match states are included. When coupled with
2477 /// // a leftmost search, the search will report the last
2478 /// // possible match.
2479 /// let re = Regex::builder()
2480 /// .configure(Regex::config().match_kind(MatchKind::All))
2481 /// .build("sam|samwise")?;
2482 /// assert_eq!(Some(Match::must(0, 0..7)), re.find("samwise"));
2483 /// // Beware that this can lead to skipping matches!
2484 /// // Usually 'all' is used for anchored reverse searches
2485 /// // only, or for overlapping searches.
2486 /// assert_eq!(Some(Match::must(0, 4..11)), re.find("sam samwise"));
2487 ///
2488 /// # Ok::<(), Box<dyn std::error::Error>>(())
2489 /// ```
2490 pub fn match_kind(self, kind: MatchKind) -> Config {
2491 Config { match_kind: Some(kind), ..self }
2492 }
2493
2494 /// Toggles whether empty matches are permitted to occur between the code
2495 /// units of a UTF-8 encoded codepoint.
2496 ///
2497 /// This should generally be enabled when search a `&str` or anything that
2498 /// you otherwise know is valid UTF-8. It should be disabled in all other
2499 /// cases. Namely, if the haystack is not valid UTF-8 and this is enabled,
2500 /// then behavior is unspecified.
2501 ///
2502 /// By default, this is enabled.
2503 ///
2504 /// # Example
2505 ///
2506 /// ```
2507 /// use regex_automata::{meta::Regex, Match};
2508 ///
2509 /// let re = Regex::new("")?;
2510 /// let got: Vec<Match> = re.find_iter("☃").collect();
2511 /// // Matches only occur at the beginning and end of the snowman.
2512 /// assert_eq!(got, vec![
2513 /// Match::must(0, 0..0),
2514 /// Match::must(0, 3..3),
2515 /// ]);
2516 ///
2517 /// let re = Regex::builder()
2518 /// .configure(Regex::config().utf8_empty(false))
2519 /// .build("")?;
2520 /// let got: Vec<Match> = re.find_iter("☃").collect();
2521 /// // Matches now occur at every position!
2522 /// assert_eq!(got, vec![
2523 /// Match::must(0, 0..0),
2524 /// Match::must(0, 1..1),
2525 /// Match::must(0, 2..2),
2526 /// Match::must(0, 3..3),
2527 /// ]);
2528 ///
2529 /// Ok::<(), Box<dyn std::error::Error>>(())
2530 /// ```
2531 pub fn utf8_empty(self, yes: bool) -> Config {
2532 Config { utf8_empty: Some(yes), ..self }
2533 }
2534
2535 /// Toggles whether automatic prefilter support is enabled.
2536 ///
2537 /// If this is disabled and [`Config::prefilter`] is not set, then the
2538 /// meta regex engine will not use any prefilters. This can sometimes
2539 /// be beneficial in cases where you know (or have measured) that the
2540 /// prefilter leads to overall worse search performance.
2541 ///
2542 /// By default, this is enabled.
2543 ///
2544 /// # Example
2545 ///
2546 /// ```
2547 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2548 /// use regex_automata::{meta::Regex, Match};
2549 ///
2550 /// let re = Regex::builder()
2551 /// .configure(Regex::config().auto_prefilter(false))
2552 /// .build(r"Bruce \w+")?;
2553 /// let hay = "Hello Bruce Springsteen!";
2554 /// assert_eq!(Some(Match::must(0, 6..23)), re.find(hay));
2555 ///
2556 /// Ok::<(), Box<dyn std::error::Error>>(())
2557 /// ```
2558 pub fn auto_prefilter(self, yes: bool) -> Config {
2559 Config { autopre: Some(yes), ..self }
2560 }
2561
2562 /// Overrides and sets the prefilter to use inside a `Regex`.
2563 ///
2564 /// This permits one to forcefully set a prefilter in cases where the
2565 /// caller knows better than whatever the automatic prefilter logic is
2566 /// capable of.
2567 ///
2568 /// By default, this is set to `None` and an automatic prefilter will be
2569 /// used if one could be built. (Assuming [`Config::auto_prefilter`] is
2570 /// enabled, which it is by default.)
2571 ///
2572 /// # Example
2573 ///
2574 /// This example shows how to set your own prefilter. In the case of a
2575 /// pattern like `Bruce \w+`, the automatic prefilter is likely to be
2576 /// constructed in a way that it will look for occurrences of `Bruce `.
2577 /// In most cases, this is the best choice. But in some cases, it may be
2578 /// the case that running `memchr` on `B` is the best choice. One can
2579 /// achieve that behavior by overriding the automatic prefilter logic
2580 /// and providing a prefilter that just matches `B`.
2581 ///
2582 /// ```
2583 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2584 /// use regex_automata::{
2585 /// meta::Regex,
2586 /// util::prefilter::Prefilter,
2587 /// Match, MatchKind,
2588 /// };
2589 ///
2590 /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["B"])
2591 /// .expect("a prefilter");
2592 /// let re = Regex::builder()
2593 /// .configure(Regex::config().prefilter(Some(pre)))
2594 /// .build(r"Bruce \w+")?;
2595 /// let hay = "Hello Bruce Springsteen!";
2596 /// assert_eq!(Some(Match::must(0, 6..23)), re.find(hay));
2597 ///
2598 /// # Ok::<(), Box<dyn std::error::Error>>(())
2599 /// ```
2600 ///
2601 /// # Example: incorrect prefilters can lead to incorrect results!
2602 ///
2603 /// Be warned that setting an incorrect prefilter can lead to missed
2604 /// matches. So if you use this option, ensure your prefilter can _never_
2605 /// report false negatives. (A false positive is, on the other hand, quite
2606 /// okay and generally unavoidable.)
2607 ///
2608 /// ```
2609 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2610 /// use regex_automata::{
2611 /// meta::Regex,
2612 /// util::prefilter::Prefilter,
2613 /// Match, MatchKind,
2614 /// };
2615 ///
2616 /// let pre = Prefilter::new(MatchKind::LeftmostFirst, &["Z"])
2617 /// .expect("a prefilter");
2618 /// let re = Regex::builder()
2619 /// .configure(Regex::config().prefilter(Some(pre)))
2620 /// .build(r"Bruce \w+")?;
2621 /// let hay = "Hello Bruce Springsteen!";
2622 /// // Oops! No match found, but there should be one!
2623 /// assert_eq!(None, re.find(hay));
2624 ///
2625 /// # Ok::<(), Box<dyn std::error::Error>>(())
2626 /// ```
2627 pub fn prefilter(self, pre: Option<Prefilter>) -> Config {
2628 Config { pre: Some(pre), ..self }
2629 }
2630
2631 /// Configures what kinds of groups are compiled as "capturing" in the
2632 /// underlying regex engine.
2633 ///
2634 /// This is set to [`WhichCaptures::All`] by default. Callers may wish to
2635 /// use [`WhichCaptures::Implicit`] in cases where one wants avoid the
2636 /// overhead of capture states for explicit groups.
2637 ///
2638 /// Note that another approach to avoiding the overhead of capture groups
2639 /// is by using non-capturing groups in the regex pattern. That is,
2640 /// `(?:a)` instead of `(a)`. This option is useful when you can't control
2641 /// the concrete syntax but know that you don't need the underlying capture
2642 /// states. For example, using `WhichCaptures::Implicit` will behave as if
2643 /// all explicit capturing groups in the pattern were non-capturing.
2644 ///
2645 /// Setting this to `WhichCaptures::None` is usually not the right thing to
2646 /// do. When no capture states are compiled, some regex engines (such as
2647 /// the `PikeVM`) won't be able to report match offsets. This will manifest
2648 /// as no match being found.
2649 ///
2650 /// # Example
2651 ///
2652 /// This example demonstrates how the results of capture groups can change
2653 /// based on this option. First we show the default (all capture groups in
2654 /// the pattern are capturing):
2655 ///
2656 /// ```
2657 /// use regex_automata::{meta::Regex, Match, Span};
2658 ///
2659 /// let re = Regex::new(r"foo([0-9]+)bar")?;
2660 /// let hay = "foo123bar";
2661 ///
2662 /// let mut caps = re.create_captures();
2663 /// re.captures(hay, &mut caps);
2664 /// assert_eq!(Some(Span::from(0..9)), caps.get_group(0));
2665 /// assert_eq!(Some(Span::from(3..6)), caps.get_group(1));
2666 ///
2667 /// Ok::<(), Box<dyn std::error::Error>>(())
2668 /// ```
2669 ///
2670 /// And now we show the behavior when we only include implicit capture
2671 /// groups. In this case, we can only find the overall match span, but the
2672 /// spans of any other explicit group don't exist because they are treated
2673 /// as non-capturing. (In effect, when `WhichCaptures::Implicit` is used,
2674 /// there is no real point in using [`Regex::captures`] since it will never
2675 /// be able to report more information than [`Regex::find`].)
2676 ///
2677 /// ```
2678 /// use regex_automata::{
2679 /// meta::Regex,
2680 /// nfa::thompson::WhichCaptures,
2681 /// Match,
2682 /// Span,
2683 /// };
2684 ///
2685 /// let re = Regex::builder()
2686 /// .configure(Regex::config().which_captures(WhichCaptures::Implicit))
2687 /// .build(r"foo([0-9]+)bar")?;
2688 /// let hay = "foo123bar";
2689 ///
2690 /// let mut caps = re.create_captures();
2691 /// re.captures(hay, &mut caps);
2692 /// assert_eq!(Some(Span::from(0..9)), caps.get_group(0));
2693 /// assert_eq!(None, caps.get_group(1));
2694 ///
2695 /// Ok::<(), Box<dyn std::error::Error>>(())
2696 /// ```
2697 pub fn which_captures(mut self, which_captures: WhichCaptures) -> Config {
2698 self.which_captures = Some(which_captures);
2699 self
2700 }
2701
2702 /// Sets the size limit, in bytes, to enforce on the construction of every
2703 /// NFA build by the meta regex engine.
2704 ///
2705 /// Setting it to `None` disables the limit. This is not recommended if
2706 /// you're compiling untrusted patterns.
2707 ///
2708 /// Note that this limit is applied to _each_ NFA built, and if any of
2709 /// them exceed the limit, then construction will fail. This limit does
2710 /// _not_ correspond to the total memory used by all NFAs in the meta regex
2711 /// engine.
2712 ///
2713 /// This defaults to some reasonable number that permits most reasonable
2714 /// patterns.
2715 ///
2716 /// # Example
2717 ///
2718 /// ```
2719 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2720 /// use regex_automata::meta::Regex;
2721 ///
2722 /// let result = Regex::builder()
2723 /// .configure(Regex::config().nfa_size_limit(Some(20 * (1<<10))))
2724 /// // Not even 20KB is enough to build a single large Unicode class!
2725 /// .build(r"\pL");
2726 /// assert!(result.is_err());
2727 ///
2728 /// // But notice that building such a regex with the exact same limit
2729 /// // can succeed depending on other aspects of the configuration. For
2730 /// // example, a single *forward* NFA will (at time of writing) fit into
2731 /// // the 20KB limit, but a *reverse* NFA of the same pattern will not.
2732 /// // So if one configures a meta regex such that a reverse NFA is never
2733 /// // needed and thus never built, then the 20KB limit will be enough for
2734 /// // a pattern like \pL!
2735 /// let result = Regex::builder()
2736 /// .configure(Regex::config()
2737 /// .nfa_size_limit(Some(20 * (1<<10)))
2738 /// // The DFAs are the only thing that (currently) need a reverse
2739 /// // NFA. So if both are disabled, the meta regex engine will
2740 /// // skip building the reverse NFA. Note that this isn't an API
2741 /// // guarantee. A future semver compatible version may introduce
2742 /// // new use cases for a reverse NFA.
2743 /// .hybrid(false)
2744 /// .dfa(false)
2745 /// )
2746 /// // Not even 20KB is enough to build a single large Unicode class!
2747 /// .build(r"\pL");
2748 /// assert!(result.is_ok());
2749 ///
2750 /// # Ok::<(), Box<dyn std::error::Error>>(())
2751 /// ```
2752 pub fn nfa_size_limit(self, limit: Option<usize>) -> Config {
2753 Config { nfa_size_limit: Some(limit), ..self }
2754 }
2755
2756 /// Sets the size limit, in bytes, for the one-pass DFA.
2757 ///
2758 /// Setting it to `None` disables the limit. Disabling the limit is
2759 /// strongly discouraged when compiling untrusted patterns. Even if the
2760 /// patterns are trusted, it still may not be a good idea, since a one-pass
2761 /// DFA can use a lot of memory. With that said, as the size of a regex
2762 /// increases, the likelihood of it being one-pass likely decreases.
2763 ///
2764 /// This defaults to some reasonable number that permits most reasonable
2765 /// one-pass patterns.
2766 ///
2767 /// # Example
2768 ///
2769 /// This shows how to set the one-pass DFA size limit. Note that since
2770 /// a one-pass DFA is an optional component of the meta regex engine,
2771 /// this size limit only impacts what is built internally and will never
2772 /// determine whether a `Regex` itself fails to build.
2773 ///
2774 /// ```
2775 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2776 /// use regex_automata::meta::Regex;
2777 ///
2778 /// let result = Regex::builder()
2779 /// .configure(Regex::config().onepass_size_limit(Some(2 * (1<<20))))
2780 /// .build(r"\pL{5}");
2781 /// assert!(result.is_ok());
2782 /// # Ok::<(), Box<dyn std::error::Error>>(())
2783 /// ```
2784 pub fn onepass_size_limit(self, limit: Option<usize>) -> Config {
2785 Config { onepass_size_limit: Some(limit), ..self }
2786 }
2787
2788 /// Set the cache capacity, in bytes, for the lazy DFA.
2789 ///
2790 /// The cache capacity of the lazy DFA determines approximately how much
2791 /// heap memory it is allowed to use to store its state transitions. The
2792 /// state transitions are computed at search time, and if the cache fills
2793 /// up it, it is cleared. At this point, any previously generated state
2794 /// transitions are lost and are re-generated if they're needed again.
2795 ///
2796 /// This sort of cache filling and clearing works quite well _so long as
2797 /// cache clearing happens infrequently_. If it happens too often, then the
2798 /// meta regex engine will stop using the lazy DFA and switch over to a
2799 /// different regex engine.
2800 ///
2801 /// In cases where the cache is cleared too often, it may be possible to
2802 /// give the cache more space and reduce (or eliminate) how often it is
2803 /// cleared. Similarly, sometimes a regex is so big that the lazy DFA isn't
2804 /// used at all if its cache capacity isn't big enough.
2805 ///
2806 /// The capacity set here is a _limit_ on how much memory is used. The
2807 /// actual memory used is only allocated as it's needed.
2808 ///
2809 /// Determining the right value for this is a little tricky and will likely
2810 /// required some profiling. Enabling the `logging` feature and setting the
2811 /// log level to `trace` will also tell you how often the cache is being
2812 /// cleared.
2813 ///
2814 /// # Example
2815 ///
2816 /// ```
2817 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2818 /// use regex_automata::meta::Regex;
2819 ///
2820 /// let result = Regex::builder()
2821 /// .configure(Regex::config().hybrid_cache_capacity(20 * (1<<20)))
2822 /// .build(r"\pL{5}");
2823 /// assert!(result.is_ok());
2824 /// # Ok::<(), Box<dyn std::error::Error>>(())
2825 /// ```
2826 pub fn hybrid_cache_capacity(self, limit: usize) -> Config {
2827 Config { hybrid_cache_capacity: Some(limit), ..self }
2828 }
2829
2830 /// Sets the size limit, in bytes, for heap memory used for a fully
2831 /// compiled DFA.
2832 ///
2833 /// **NOTE:** If you increase this, you'll likely also need to increase
2834 /// [`Config::dfa_state_limit`].
2835 ///
2836 /// In contrast to the lazy DFA, building a full DFA requires computing
2837 /// all of its state transitions up front. This can be a very expensive
2838 /// process, and runs in worst case `2^n` time and space (where `n` is
2839 /// proportional to the size of the regex). However, a full DFA unlocks
2840 /// some additional optimization opportunities.
2841 ///
2842 /// Because full DFAs can be so expensive, the default limits for them are
2843 /// incredibly small. Generally speaking, if your regex is moderately big
2844 /// or if you're using Unicode features (`\w` is Unicode-aware by default
2845 /// for example), then you can expect that the meta regex engine won't even
2846 /// attempt to build a DFA for it.
2847 ///
2848 /// If this and [`Config::dfa_state_limit`] are set to `None`, then the
2849 /// meta regex will not use any sort of limits when deciding whether to
2850 /// build a DFA. This in turn makes construction of a `Regex` take
2851 /// worst case exponential time and space. Even short patterns can result
2852 /// in huge space blow ups. So it is strongly recommended to keep some kind
2853 /// of limit set!
2854 ///
2855 /// The default is set to a small number that permits some simple regexes
2856 /// to get compiled into DFAs in reasonable time.
2857 ///
2858 /// # Example
2859 ///
2860 /// ```
2861 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2862 /// use regex_automata::meta::Regex;
2863 ///
2864 /// let result = Regex::builder()
2865 /// // 100MB is much bigger than the default.
2866 /// .configure(Regex::config()
2867 /// .dfa_size_limit(Some(100 * (1<<20)))
2868 /// // We don't care about size too much here, so just
2869 /// // remove the NFA state limit altogether.
2870 /// .dfa_state_limit(None))
2871 /// .build(r"\pL{5}");
2872 /// assert!(result.is_ok());
2873 /// # Ok::<(), Box<dyn std::error::Error>>(())
2874 /// ```
2875 pub fn dfa_size_limit(self, limit: Option<usize>) -> Config {
2876 Config { dfa_size_limit: Some(limit), ..self }
2877 }
2878
2879 /// Sets a limit on the total number of NFA states, beyond which, a full
2880 /// DFA is not attempted to be compiled.
2881 ///
2882 /// This limit works in concert with [`Config::dfa_size_limit`]. Namely,
2883 /// where as `Config::dfa_size_limit` is applied by attempting to construct
2884 /// a DFA, this limit is used to avoid the attempt in the first place. This
2885 /// is useful to avoid hefty initialization costs associated with building
2886 /// a DFA for cases where it is obvious the DFA will ultimately be too big.
2887 ///
2888 /// By default, this is set to a very small number.
2889 ///
2890 /// # Example
2891 ///
2892 /// ```
2893 /// # if cfg!(miri) { return Ok(()); } // miri takes too long
2894 /// use regex_automata::meta::Regex;
2895 ///
2896 /// let result = Regex::builder()
2897 /// .configure(Regex::config()
2898 /// // Sometimes the default state limit rejects DFAs even
2899 /// // if they would fit in the size limit. Here, we disable
2900 /// // the check on the number of NFA states and just rely on
2901 /// // the size limit.
2902 /// .dfa_state_limit(None))
2903 /// .build(r"(?-u)\w{30}");
2904 /// assert!(result.is_ok());
2905 /// # Ok::<(), Box<dyn std::error::Error>>(())
2906 /// ```
2907 pub fn dfa_state_limit(self, limit: Option<usize>) -> Config {
2908 Config { dfa_state_limit: Some(limit), ..self }
2909 }
2910
2911 /// Whether to attempt to shrink the size of the alphabet for the regex
2912 /// pattern or not. When enabled, the alphabet is shrunk into a set of
2913 /// equivalence classes, where every byte in the same equivalence class
2914 /// cannot discriminate between a match or non-match.
2915 ///
2916 /// **WARNING:** This is only useful for debugging DFAs. Disabling this
2917 /// does not yield any speed advantages. Indeed, disabling it can result
2918 /// in much higher memory usage. Disabling byte classes is useful for
2919 /// debugging the actual generated transitions because it lets one see the
2920 /// transitions defined on actual bytes instead of the equivalence classes.
2921 ///
2922 /// This option is enabled by default and should never be disabled unless
2923 /// one is debugging the meta regex engine's internals.
2924 ///
2925 /// # Example
2926 ///
2927 /// ```
2928 /// use regex_automata::{meta::Regex, Match};
2929 ///
2930 /// let re = Regex::builder()
2931 /// .configure(Regex::config().byte_classes(false))
2932 /// .build(r"[a-z]+")?;
2933 /// let hay = "!!quux!!";
2934 /// assert_eq!(Some(Match::must(0, 2..6)), re.find(hay));
2935 ///
2936 /// # Ok::<(), Box<dyn std::error::Error>>(())
2937 /// ```
2938 pub fn byte_classes(self, yes: bool) -> Config {
2939 Config { byte_classes: Some(yes), ..self }
2940 }
2941
2942 /// Set the line terminator to be used by the `^` and `$` anchors in
2943 /// multi-line mode.
2944 ///
2945 /// This option has no effect when CRLF mode is enabled. That is,
2946 /// regardless of this setting, `(?Rm:^)` and `(?Rm:$)` will always treat
2947 /// `\r` and `\n` as line terminators (and will never match between a `\r`
2948 /// and a `\n`).
2949 ///
2950 /// By default, `\n` is the line terminator.
2951 ///
2952 /// **Warning**: This does not change the behavior of `.`. To do that,
2953 /// you'll need to configure the syntax option
2954 /// [`syntax::Config::line_terminator`](crate::util::syntax::Config::line_terminator)
2955 /// in addition to this. Otherwise, `.` will continue to match any
2956 /// character other than `\n`.
2957 ///
2958 /// # Example
2959 ///
2960 /// ```
2961 /// use regex_automata::{meta::Regex, util::syntax, Match};
2962 ///
2963 /// let re = Regex::builder()
2964 /// .syntax(syntax::Config::new().multi_line(true))
2965 /// .configure(Regex::config().line_terminator(b'\x00'))
2966 /// .build(r"^foo$")?;
2967 /// let hay = "\x00foo\x00";
2968 /// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
2969 ///
2970 /// # Ok::<(), Box<dyn std::error::Error>>(())
2971 /// ```
2972 pub fn line_terminator(self, byte: u8) -> Config {
2973 Config { line_terminator: Some(byte), ..self }
2974 }
2975
2976 /// Toggle whether the hybrid NFA/DFA (also known as the "lazy DFA") should
2977 /// be available for use by the meta regex engine.
2978 ///
2979 /// Enabling this does not necessarily mean that the lazy DFA will
2980 /// definitely be used. It just means that it will be _available_ for use
2981 /// if the meta regex engine thinks it will be useful.
2982 ///
2983 /// When the `hybrid` crate feature is enabled, then this is enabled by
2984 /// default. Otherwise, if the crate feature is disabled, then this is
2985 /// always disabled, regardless of its setting by the caller.
2986 pub fn hybrid(self, yes: bool) -> Config {
2987 Config { hybrid: Some(yes), ..self }
2988 }
2989
2990 /// Toggle whether a fully compiled DFA should be available for use by the
2991 /// meta regex engine.
2992 ///
2993 /// Enabling this does not necessarily mean that a DFA will definitely be
2994 /// used. It just means that it will be _available_ for use if the meta
2995 /// regex engine thinks it will be useful.
2996 ///
2997 /// When the `dfa-build` crate feature is enabled, then this is enabled by
2998 /// default. Otherwise, if the crate feature is disabled, then this is
2999 /// always disabled, regardless of its setting by the caller.
3000 pub fn dfa(self, yes: bool) -> Config {
3001 Config { dfa: Some(yes), ..self }
3002 }
3003
3004 /// Toggle whether a one-pass DFA should be available for use by the meta
3005 /// regex engine.
3006 ///
3007 /// Enabling this does not necessarily mean that a one-pass DFA will
3008 /// definitely be used. It just means that it will be _available_ for
3009 /// use if the meta regex engine thinks it will be useful. (Indeed, a
3010 /// one-pass DFA can only be used when the regex is one-pass. See the
3011 /// [`dfa::onepass`](crate::dfa::onepass) module for more details.)
3012 ///
3013 /// When the `dfa-onepass` crate feature is enabled, then this is enabled
3014 /// by default. Otherwise, if the crate feature is disabled, then this is
3015 /// always disabled, regardless of its setting by the caller.
3016 pub fn onepass(self, yes: bool) -> Config {
3017 Config { onepass: Some(yes), ..self }
3018 }
3019
3020 /// Toggle whether a bounded backtracking regex engine should be available
3021 /// for use by the meta regex engine.
3022 ///
3023 /// Enabling this does not necessarily mean that a bounded backtracker will
3024 /// definitely be used. It just means that it will be _available_ for use
3025 /// if the meta regex engine thinks it will be useful.
3026 ///
3027 /// When the `nfa-backtrack` crate feature is enabled, then this is enabled
3028 /// by default. Otherwise, if the crate feature is disabled, then this is
3029 /// always disabled, regardless of its setting by the caller.
3030 pub fn backtrack(self, yes: bool) -> Config {
3031 Config { backtrack: Some(yes), ..self }
3032 }
3033
3034 /// Returns the match kind on this configuration, as set by
3035 /// [`Config::match_kind`].
3036 ///
3037 /// If it was not explicitly set, then a default value is returned.
3038 pub fn get_match_kind(&self) -> MatchKind {
3039 self.match_kind.unwrap_or(MatchKind::LeftmostFirst)
3040 }
3041
3042 /// Returns whether empty matches must fall on valid UTF-8 boundaries, as
3043 /// set by [`Config::utf8_empty`].
3044 ///
3045 /// If it was not explicitly set, then a default value is returned.
3046 pub fn get_utf8_empty(&self) -> bool {
3047 self.utf8_empty.unwrap_or(true)
3048 }
3049
3050 /// Returns whether automatic prefilters are enabled, as set by
3051 /// [`Config::auto_prefilter`].
3052 ///
3053 /// If it was not explicitly set, then a default value is returned.
3054 pub fn get_auto_prefilter(&self) -> bool {
3055 self.autopre.unwrap_or(true)
3056 }
3057
3058 /// Returns a manually set prefilter, if one was set by
3059 /// [`Config::prefilter`].
3060 ///
3061 /// If it was not explicitly set, then a default value is returned.
3062 pub fn get_prefilter(&self) -> Option<&Prefilter> {
3063 self.pre.as_ref().unwrap_or(&None).as_ref()
3064 }
3065
3066 /// Returns the capture configuration, as set by
3067 /// [`Config::which_captures`].
3068 ///
3069 /// If it was not explicitly set, then a default value is returned.
3070 pub fn get_which_captures(&self) -> WhichCaptures {
3071 self.which_captures.unwrap_or(WhichCaptures::All)
3072 }
3073
3074 /// Returns NFA size limit, as set by [`Config::nfa_size_limit`].
3075 ///
3076 /// If it was not explicitly set, then a default value is returned.
3077 pub fn get_nfa_size_limit(&self) -> Option<usize> {
3078 self.nfa_size_limit.unwrap_or(Some(10 * (1 << 20)))
3079 }
3080
3081 /// Returns one-pass DFA size limit, as set by
3082 /// [`Config::onepass_size_limit`].
3083 ///
3084 /// If it was not explicitly set, then a default value is returned.
3085 pub fn get_onepass_size_limit(&self) -> Option<usize> {
3086 self.onepass_size_limit.unwrap_or(Some(1 * (1 << 20)))
3087 }
3088
3089 /// Returns hybrid NFA/DFA cache capacity, as set by
3090 /// [`Config::hybrid_cache_capacity`].
3091 ///
3092 /// If it was not explicitly set, then a default value is returned.
3093 pub fn get_hybrid_cache_capacity(&self) -> usize {
3094 self.hybrid_cache_capacity.unwrap_or(2 * (1 << 20))
3095 }
3096
3097 /// Returns DFA size limit, as set by [`Config::dfa_size_limit`].
3098 ///
3099 /// If it was not explicitly set, then a default value is returned.
3100 pub fn get_dfa_size_limit(&self) -> Option<usize> {
3101 // The default for this is VERY small because building a full DFA is
3102 // ridiculously costly. But for regexes that are very small, it can be
3103 // beneficial to use a full DFA. In particular, a full DFA can enable
3104 // additional optimizations via something called "accelerated" states.
3105 // Namely, when there's a state with only a few outgoing transitions,
3106 // we can temporary suspend walking the transition table and use memchr
3107 // for just those outgoing transitions to skip ahead very quickly.
3108 //
3109 // Generally speaking, if Unicode is enabled in your regex and you're
3110 // using some kind of Unicode feature, then it's going to blow this
3111 // size limit. Moreover, Unicode tends to defeat the "accelerated"
3112 // state optimization too, so it's a double whammy.
3113 //
3114 // We also use a limit on the number of NFA states to avoid even
3115 // starting the DFA construction process. Namely, DFA construction
3116 // itself could make lots of initial allocs proportional to the size
3117 // of the NFA, and if the NFA is large, it doesn't make sense to pay
3118 // that cost if we know it's likely to be blown by a large margin.
3119 self.dfa_size_limit.unwrap_or(Some(40 * (1 << 10)))
3120 }
3121
3122 /// Returns DFA size limit in terms of the number of states in the NFA, as
3123 /// set by [`Config::dfa_state_limit`].
3124 ///
3125 /// If it was not explicitly set, then a default value is returned.
3126 pub fn get_dfa_state_limit(&self) -> Option<usize> {
3127 // Again, as with the size limit, we keep this very small.
3128 self.dfa_state_limit.unwrap_or(Some(30))
3129 }
3130
3131 /// Returns whether byte classes are enabled, as set by
3132 /// [`Config::byte_classes`].
3133 ///
3134 /// If it was not explicitly set, then a default value is returned.
3135 pub fn get_byte_classes(&self) -> bool {
3136 self.byte_classes.unwrap_or(true)
3137 }
3138
3139 /// Returns the line terminator for this configuration, as set by
3140 /// [`Config::line_terminator`].
3141 ///
3142 /// If it was not explicitly set, then a default value is returned.
3143 pub fn get_line_terminator(&self) -> u8 {
3144 self.line_terminator.unwrap_or(b'\n')
3145 }
3146
3147 /// Returns whether the hybrid NFA/DFA regex engine may be used, as set by
3148 /// [`Config::hybrid`].
3149 ///
3150 /// If it was not explicitly set, then a default value is returned.
3151 pub fn get_hybrid(&self) -> bool {
3152 #[cfg(feature = "hybrid")]
3153 {
3154 self.hybrid.unwrap_or(true)
3155 }
3156 #[cfg(not(feature = "hybrid"))]
3157 {
3158 false
3159 }
3160 }
3161
3162 /// Returns whether the DFA regex engine may be used, as set by
3163 /// [`Config::dfa`].
3164 ///
3165 /// If it was not explicitly set, then a default value is returned.
3166 pub fn get_dfa(&self) -> bool {
3167 #[cfg(feature = "dfa-build")]
3168 {
3169 self.dfa.unwrap_or(true)
3170 }
3171 #[cfg(not(feature = "dfa-build"))]
3172 {
3173 false
3174 }
3175 }
3176
3177 /// Returns whether the one-pass DFA regex engine may be used, as set by
3178 /// [`Config::onepass`].
3179 ///
3180 /// If it was not explicitly set, then a default value is returned.
3181 pub fn get_onepass(&self) -> bool {
3182 #[cfg(feature = "dfa-onepass")]
3183 {
3184 self.onepass.unwrap_or(true)
3185 }
3186 #[cfg(not(feature = "dfa-onepass"))]
3187 {
3188 false
3189 }
3190 }
3191
3192 /// Returns whether the bounded backtracking regex engine may be used, as
3193 /// set by [`Config::backtrack`].
3194 ///
3195 /// If it was not explicitly set, then a default value is returned.
3196 pub fn get_backtrack(&self) -> bool {
3197 #[cfg(feature = "nfa-backtrack")]
3198 {
3199 self.backtrack.unwrap_or(true)
3200 }
3201 #[cfg(not(feature = "nfa-backtrack"))]
3202 {
3203 false
3204 }
3205 }
3206
3207 /// Overwrite the default configuration such that the options in `o` are
3208 /// always used. If an option in `o` is not set, then the corresponding
3209 /// option in `self` is used. If it's not set in `self` either, then it
3210 /// remains not set.
3211 pub(crate) fn overwrite(&self, o: Config) -> Config {
3212 Config {
3213 match_kind: o.match_kind.or(self.match_kind),
3214 utf8_empty: o.utf8_empty.or(self.utf8_empty),
3215 autopre: o.autopre.or(self.autopre),
3216 pre: o.pre.or_else(|| self.pre.clone()),
3217 which_captures: o.which_captures.or(self.which_captures),
3218 nfa_size_limit: o.nfa_size_limit.or(self.nfa_size_limit),
3219 onepass_size_limit: o
3220 .onepass_size_limit
3221 .or(self.onepass_size_limit),
3222 hybrid_cache_capacity: o
3223 .hybrid_cache_capacity
3224 .or(self.hybrid_cache_capacity),
3225 hybrid: o.hybrid.or(self.hybrid),
3226 dfa: o.dfa.or(self.dfa),
3227 dfa_size_limit: o.dfa_size_limit.or(self.dfa_size_limit),
3228 dfa_state_limit: o.dfa_state_limit.or(self.dfa_state_limit),
3229 onepass: o.onepass.or(self.onepass),
3230 backtrack: o.backtrack.or(self.backtrack),
3231 byte_classes: o.byte_classes.or(self.byte_classes),
3232 line_terminator: o.line_terminator.or(self.line_terminator),
3233 }
3234 }
3235}
3236
3237/// A builder for configuring and constructing a `Regex`.
3238///
3239/// The builder permits configuring two different aspects of a `Regex`:
3240///
3241/// * [`Builder::configure`] will set high-level configuration options as
3242/// described by a [`Config`].
3243/// * [`Builder::syntax`] will set the syntax level configuration options
3244/// as described by a [`util::syntax::Config`](crate::util::syntax::Config).
3245/// This only applies when building a `Regex` from pattern strings.
3246///
3247/// Once configured, the builder can then be used to construct a `Regex` from
3248/// one of 4 different inputs:
3249///
3250/// * [`Builder::build`] creates a regex from a single pattern string.
3251/// * [`Builder::build_many`] creates a regex from many pattern strings.
3252/// * [`Builder::build_from_hir`] creates a regex from a
3253/// [`regex-syntax::Hir`](Hir) expression.
3254/// * [`Builder::build_many_from_hir`] creates a regex from many
3255/// [`regex-syntax::Hir`](Hir) expressions.
3256///
3257/// The latter two methods in particular provide a way to construct a fully
3258/// feature regular expression matcher directly from an `Hir` expression
3259/// without having to first convert it to a string. (This is in contrast to the
3260/// top-level `regex` crate which intentionally provides no such API in order
3261/// to avoid making `regex-syntax` a public dependency.)
3262///
3263/// As a convenience, this builder may be created via [`Regex::builder`], which
3264/// may help avoid an extra import.
3265///
3266/// # Example: change the line terminator
3267///
3268/// This example shows how to enable multi-line mode by default and change the
3269/// line terminator to the NUL byte:
3270///
3271/// ```
3272/// use regex_automata::{meta::Regex, util::syntax, Match};
3273///
3274/// let re = Regex::builder()
3275/// .syntax(syntax::Config::new().multi_line(true))
3276/// .configure(Regex::config().line_terminator(b'\x00'))
3277/// .build(r"^foo$")?;
3278/// let hay = "\x00foo\x00";
3279/// assert_eq!(Some(Match::must(0, 1..4)), re.find(hay));
3280///
3281/// # Ok::<(), Box<dyn std::error::Error>>(())
3282/// ```
3283///
3284/// # Example: disable UTF-8 requirement
3285///
3286/// By default, regex patterns are required to match UTF-8. This includes
3287/// regex patterns that can produce matches of length zero. In the case of an
3288/// empty match, by default, matches will not appear between the code units of
3289/// a UTF-8 encoded codepoint.
3290///
3291/// However, it can be useful to disable this requirement, particularly if
3292/// you're searching things like `&[u8]` that are not known to be valid UTF-8.
3293///
3294/// ```
3295/// use regex_automata::{meta::Regex, util::syntax, Match};
3296///
3297/// let mut builder = Regex::builder();
3298/// // Disables the requirement that non-empty matches match UTF-8.
3299/// builder.syntax(syntax::Config::new().utf8(false));
3300/// // Disables the requirement that empty matches match UTF-8 boundaries.
3301/// builder.configure(Regex::config().utf8_empty(false));
3302///
3303/// // We can match raw bytes via \xZZ syntax, but we need to disable
3304/// // Unicode mode to do that. We could disable it everywhere, or just
3305/// // selectively, as shown here.
3306/// let re = builder.build(r"(?-u:\xFF)foo(?-u:\xFF)")?;
3307/// let hay = b"\xFFfoo\xFF";
3308/// assert_eq!(Some(Match::must(0, 0..5)), re.find(hay));
3309///
3310/// // We can also match between code units.
3311/// let re = builder.build(r"")?;
3312/// let hay = "☃";
3313/// assert_eq!(re.find_iter(hay).collect::<Vec<Match>>(), vec![
3314/// Match::must(0, 0..0),
3315/// Match::must(0, 1..1),
3316/// Match::must(0, 2..2),
3317/// Match::must(0, 3..3),
3318/// ]);
3319///
3320/// # Ok::<(), Box<dyn std::error::Error>>(())
3321/// ```
3322#[derive(Clone, Debug)]
3323pub struct Builder {
3324 config: Config,
3325 ast: ast::parse::ParserBuilder,
3326 hir: hir::translate::TranslatorBuilder,
3327}
3328
3329impl Builder {
3330 /// Creates a new builder for configuring and constructing a [`Regex`].
3331 pub fn new() -> Builder {
3332 Builder {
3333 config: Config::default(),
3334 ast: ast::parse::ParserBuilder::new(),
3335 hir: hir::translate::TranslatorBuilder::new(),
3336 }
3337 }
3338
3339 /// Builds a `Regex` from a single pattern string.
3340 ///
3341 /// If there was a problem parsing the pattern or a problem turning it into
3342 /// a regex matcher, then an error is returned.
3343 ///
3344 /// # Example
3345 ///
3346 /// This example shows how to configure syntax options.
3347 ///
3348 /// ```
3349 /// use regex_automata::{meta::Regex, util::syntax, Match};
3350 ///
3351 /// let re = Regex::builder()
3352 /// .syntax(syntax::Config::new().crlf(true).multi_line(true))
3353 /// .build(r"^foo$")?;
3354 /// let hay = "\r\nfoo\r\n";
3355 /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay));
3356 ///
3357 /// # Ok::<(), Box<dyn std::error::Error>>(())
3358 /// ```
3359 pub fn build(&self, pattern: &str) -> Result<Regex, BuildError> {
3360 self.build_many(&[pattern])
3361 }
3362
3363 /// Builds a `Regex` from many pattern strings.
3364 ///
3365 /// If there was a problem parsing any of the patterns or a problem turning
3366 /// them into a regex matcher, then an error is returned.
3367 ///
3368 /// # Example: finding the pattern that caused an error
3369 ///
3370 /// When a syntax error occurs, it is possible to ask which pattern
3371 /// caused the syntax error.
3372 ///
3373 /// ```
3374 /// use regex_automata::{meta::Regex, PatternID};
3375 ///
3376 /// let err = Regex::builder()
3377 /// .build_many(&["a", "b", r"\p{Foo}", "c"])
3378 /// .unwrap_err();
3379 /// assert_eq!(Some(PatternID::must(2)), err.pattern());
3380 /// ```
3381 ///
3382 /// # Example: zero patterns is valid
3383 ///
3384 /// Building a regex with zero patterns results in a regex that never
3385 /// matches anything. Because this routine is generic, passing an empty
3386 /// slice usually requires a turbo-fish (or something else to help type
3387 /// inference).
3388 ///
3389 /// ```
3390 /// use regex_automata::{meta::Regex, util::syntax, Match};
3391 ///
3392 /// let re = Regex::builder()
3393 /// .build_many::<&str>(&[])?;
3394 /// assert_eq!(None, re.find(""));
3395 ///
3396 /// # Ok::<(), Box<dyn std::error::Error>>(())
3397 /// ```
3398 pub fn build_many<P: AsRef<str>>(
3399 &self,
3400 patterns: &[P],
3401 ) -> Result<Regex, BuildError> {
3402 use crate::util::primitives::IteratorIndexExt;
3403 log! {
3404 debug!("building meta regex with {} patterns:", patterns.len());
3405 for (pid, p) in patterns.iter().with_pattern_ids() {
3406 let p = p.as_ref();
3407 // We might split a grapheme with this truncation logic, but
3408 // that's fine. We at least avoid splitting a codepoint.
3409 let maxoff = p
3410 .char_indices()
3411 .map(|(i, ch)| i + ch.len_utf8())
3412 .take(1000)
3413 .last()
3414 .unwrap_or(0);
3415 if maxoff < p.len() {
3416 debug!("{:?}: {}[... snip ...]", pid, &p[..maxoff]);
3417 } else {
3418 debug!("{:?}: {}", pid, p);
3419 }
3420 }
3421 }
3422 let (mut asts, mut hirs) = (vec![], vec![]);
3423 for (pid, p) in patterns.iter().with_pattern_ids() {
3424 let ast = self
3425 .ast
3426 .build()
3427 .parse(p.as_ref())
3428 .map_err(|err| BuildError::ast(pid, err))?;
3429 asts.push(ast);
3430 }
3431 for ((pid, p), ast) in
3432 patterns.iter().with_pattern_ids().zip(asts.iter())
3433 {
3434 let hir = self
3435 .hir
3436 .build()
3437 .translate(p.as_ref(), ast)
3438 .map_err(|err| BuildError::hir(pid, err))?;
3439 hirs.push(hir);
3440 }
3441 self.build_many_from_hir(&hirs)
3442 }
3443
3444 /// Builds a `Regex` directly from an `Hir` expression.
3445 ///
3446 /// This is useful if you needed to parse a pattern string into an `Hir`
3447 /// for other reasons (such as analysis or transformations). This routine
3448 /// permits building a `Regex` directly from the `Hir` expression instead
3449 /// of first converting the `Hir` back to a pattern string.
3450 ///
3451 /// When using this method, any options set via [`Builder::syntax`] are
3452 /// ignored. Namely, the syntax options only apply when parsing a pattern
3453 /// string, which isn't relevant here.
3454 ///
3455 /// If there was a problem building the underlying regex matcher for the
3456 /// given `Hir`, then an error is returned.
3457 ///
3458 /// # Example
3459 ///
3460 /// This example shows how one can hand-construct an `Hir` expression and
3461 /// build a regex from it without doing any parsing at all.
3462 ///
3463 /// ```
3464 /// use {
3465 /// regex_automata::{meta::Regex, Match},
3466 /// regex_syntax::hir::{Hir, Look},
3467 /// };
3468 ///
3469 /// // (?Rm)^foo$
3470 /// let hir = Hir::concat(vec![
3471 /// Hir::look(Look::StartCRLF),
3472 /// Hir::literal("foo".as_bytes()),
3473 /// Hir::look(Look::EndCRLF),
3474 /// ]);
3475 /// let re = Regex::builder()
3476 /// .build_from_hir(&hir)?;
3477 /// let hay = "\r\nfoo\r\n";
3478 /// assert_eq!(Some(Match::must(0, 2..5)), re.find(hay));
3479 ///
3480 /// Ok::<(), Box<dyn std::error::Error>>(())
3481 /// ```
3482 pub fn build_from_hir(&self, hir: &Hir) -> Result<Regex, BuildError> {
3483 self.build_many_from_hir(&[hir])
3484 }
3485
3486 /// Builds a `Regex` directly from many `Hir` expressions.
3487 ///
3488 /// This is useful if you needed to parse pattern strings into `Hir`
3489 /// expressions for other reasons (such as analysis or transformations).
3490 /// This routine permits building a `Regex` directly from the `Hir`
3491 /// expressions instead of first converting the `Hir` expressions back to
3492 /// pattern strings.
3493 ///
3494 /// When using this method, any options set via [`Builder::syntax`] are
3495 /// ignored. Namely, the syntax options only apply when parsing a pattern
3496 /// string, which isn't relevant here.
3497 ///
3498 /// If there was a problem building the underlying regex matcher for the
3499 /// given `Hir` expressions, then an error is returned.
3500 ///
3501 /// Note that unlike [`Builder::build_many`], this can only fail as a
3502 /// result of building the underlying matcher. In that case, there is
3503 /// no single `Hir` expression that can be isolated as a reason for the
3504 /// failure. So if this routine fails, it's not possible to determine which
3505 /// `Hir` expression caused the failure.
3506 ///
3507 /// # Example
3508 ///
3509 /// This example shows how one can hand-construct multiple `Hir`
3510 /// expressions and build a single regex from them without doing any
3511 /// parsing at all.
3512 ///
3513 /// ```
3514 /// use {
3515 /// regex_automata::{meta::Regex, Match},
3516 /// regex_syntax::hir::{Hir, Look},
3517 /// };
3518 ///
3519 /// // (?Rm)^foo$
3520 /// let hir1 = Hir::concat(vec![
3521 /// Hir::look(Look::StartCRLF),
3522 /// Hir::literal("foo".as_bytes()),
3523 /// Hir::look(Look::EndCRLF),
3524 /// ]);
3525 /// // (?Rm)^bar$
3526 /// let hir2 = Hir::concat(vec![
3527 /// Hir::look(Look::StartCRLF),
3528 /// Hir::literal("bar".as_bytes()),
3529 /// Hir::look(Look::EndCRLF),
3530 /// ]);
3531 /// let re = Regex::builder()
3532 /// .build_many_from_hir(&[&hir1, &hir2])?;
3533 /// let hay = "\r\nfoo\r\nbar";
3534 /// let got: Vec<Match> = re.find_iter(hay).collect();
3535 /// let expected = vec![
3536 /// Match::must(0, 2..5),
3537 /// Match::must(1, 7..10),
3538 /// ];
3539 /// assert_eq!(expected, got);
3540 ///
3541 /// Ok::<(), Box<dyn std::error::Error>>(())
3542 /// ```
3543 pub fn build_many_from_hir<H: Borrow<Hir>>(
3544 &self,
3545 hirs: &[H],
3546 ) -> Result<Regex, BuildError> {
3547 let config = self.config.clone();
3548 // We collect the HIRs into a vec so we can write internal routines
3549 // with '&[&Hir]'. i.e., Don't use generics everywhere to keep code
3550 // bloat down..
3551 let hirs: Vec<&Hir> = hirs.iter().map(|hir| hir.borrow()).collect();
3552 let info = RegexInfo::new(config, &hirs);
3553 let strat = strategy::new(&info, &hirs)?;
3554 let pool = {
3555 let strat = Arc::clone(&strat);
3556 let create: CachePoolFn = Box::new(move || strat.create_cache());
3557 Pool::new(create)
3558 };
3559 Ok(Regex { imp: Arc::new(RegexI { strat, info }), pool })
3560 }
3561
3562 /// Configure the behavior of a `Regex`.
3563 ///
3564 /// This configuration controls non-syntax options related to the behavior
3565 /// of a `Regex`. This includes things like whether empty matches can split
3566 /// a codepoint, prefilters, line terminators and a long list of options
3567 /// for configuring which regex engines the meta regex engine will be able
3568 /// to use internally.
3569 ///
3570 /// # Example
3571 ///
3572 /// This example shows how to disable UTF-8 empty mode. This will permit
3573 /// empty matches to occur between the UTF-8 encoding of a codepoint.
3574 ///
3575 /// ```
3576 /// use regex_automata::{meta::Regex, Match};
3577 ///
3578 /// let re = Regex::new("")?;
3579 /// let got: Vec<Match> = re.find_iter("☃").collect();
3580 /// // Matches only occur at the beginning and end of the snowman.
3581 /// assert_eq!(got, vec![
3582 /// Match::must(0, 0..0),
3583 /// Match::must(0, 3..3),
3584 /// ]);
3585 ///
3586 /// let re = Regex::builder()
3587 /// .configure(Regex::config().utf8_empty(false))
3588 /// .build("")?;
3589 /// let got: Vec<Match> = re.find_iter("☃").collect();
3590 /// // Matches now occur at every position!
3591 /// assert_eq!(got, vec![
3592 /// Match::must(0, 0..0),
3593 /// Match::must(0, 1..1),
3594 /// Match::must(0, 2..2),
3595 /// Match::must(0, 3..3),
3596 /// ]);
3597 ///
3598 /// Ok::<(), Box<dyn std::error::Error>>(())
3599 /// ```
3600 pub fn configure(&mut self, config: Config) -> &mut Builder {
3601 self.config = self.config.overwrite(config);
3602 self
3603 }
3604
3605 /// Configure the syntax options when parsing a pattern string while
3606 /// building a `Regex`.
3607 ///
3608 /// These options _only_ apply when [`Builder::build`] or [`Builder::build_many`]
3609 /// are used. The other build methods accept `Hir` values, which have
3610 /// already been parsed.
3611 ///
3612 /// # Example
3613 ///
3614 /// This example shows how to enable case insensitive mode.
3615 ///
3616 /// ```
3617 /// use regex_automata::{meta::Regex, util::syntax, Match};
3618 ///
3619 /// let re = Regex::builder()
3620 /// .syntax(syntax::Config::new().case_insensitive(true))
3621 /// .build(r"δ")?;
3622 /// assert_eq!(Some(Match::must(0, 0..2)), re.find(r"Δ"));
3623 ///
3624 /// Ok::<(), Box<dyn std::error::Error>>(())
3625 /// ```
3626 pub fn syntax(
3627 &mut self,
3628 config: crate::util::syntax::Config,
3629 ) -> &mut Builder {
3630 config.apply_ast(&mut self.ast);
3631 config.apply_hir(&mut self.hir);
3632 self
3633 }
3634}
3635
3636#[cfg(test)]
3637mod tests {
3638 use super::*;
3639
3640 // I found this in the course of building out the benchmark suite for
3641 // rebar.
3642 #[test]
3643 fn regression_suffix_literal_count() {
3644 let _ = env_logger::try_init();
3645
3646 let re = Regex::new(r"[a-zA-Z]+ing").unwrap();
3647 assert_eq!(1, re.find_iter("tingling").count());
3648 }
3649}
3650