| 1 | // Copyright 2009 The Android Open Source Project |
| 2 | // Copyright 2020 Yevhenii Reizner |
| 3 | // |
| 4 | // Use of this source code is governed by a BSD-style license that can be |
| 5 | // found in the LICENSE file. |
| 6 | |
| 7 | use arrayvec::ArrayVec; |
| 8 | |
| 9 | use tiny_skia_path::{NormalizedF32Exclusive, SCALAR_MAX}; |
| 10 | |
| 11 | use crate::{Path, Point, Rect}; |
| 12 | |
| 13 | use crate::edge_builder::{edge_iter, PathEdge, PathEdgeIter}; |
| 14 | use crate::line_clipper; |
| 15 | use crate::path_geometry; |
| 16 | |
| 17 | #[cfg (all(not(feature = "std" ), feature = "no-std-float" ))] |
| 18 | use tiny_skia_path::NoStdFloat; |
| 19 | |
| 20 | // This is a fail-safe `arr[n..n+3].try_into().unwrap()` alternative. |
| 21 | // Everything is checked at compile-time so there is no bound checking and panics. |
| 22 | macro_rules! copy_3_points { |
| 23 | ($arr:expr, $i:expr) => { |
| 24 | [$arr[$i], $arr[$i + 1], $arr[$i + 2]] |
| 25 | }; |
| 26 | } |
| 27 | |
| 28 | macro_rules! copy_4_points { |
| 29 | ($arr:expr, $i:expr) => { |
| 30 | [$arr[$i], $arr[$i + 1], $arr[$i + 2], $arr[$i + 3]] |
| 31 | }; |
| 32 | } |
| 33 | |
| 34 | /// Max curvature in X and Y split cubic into 9 pieces, * (line + cubic). |
| 35 | const MAX_VERBS: usize = 18; |
| 36 | |
| 37 | pub type ClippedEdges = ArrayVec<PathEdge, MAX_VERBS>; |
| 38 | |
| 39 | pub struct EdgeClipper { |
| 40 | clip: Rect, |
| 41 | can_cull_to_the_right: bool, |
| 42 | edges: ClippedEdges, |
| 43 | } |
| 44 | |
| 45 | impl EdgeClipper { |
| 46 | fn new(clip: Rect, can_cull_to_the_right: bool) -> Self { |
| 47 | EdgeClipper { |
| 48 | clip, |
| 49 | can_cull_to_the_right, |
| 50 | edges: ArrayVec::new(), |
| 51 | } |
| 52 | } |
| 53 | |
| 54 | fn clip_line(mut self, p0: Point, p1: Point) -> Option<ClippedEdges> { |
| 55 | let mut points = [Point::zero(); line_clipper::MAX_POINTS]; |
| 56 | let points = line_clipper::clip( |
| 57 | &[p0, p1], |
| 58 | &self.clip, |
| 59 | self.can_cull_to_the_right, |
| 60 | &mut points, |
| 61 | ); |
| 62 | if !points.is_empty() { |
| 63 | for i in 0..points.len() - 1 { |
| 64 | self.push_line(points[i], points[i + 1]); |
| 65 | } |
| 66 | } |
| 67 | |
| 68 | if self.edges.is_empty() { |
| 69 | None |
| 70 | } else { |
| 71 | Some(self.edges) |
| 72 | } |
| 73 | } |
| 74 | |
| 75 | fn push_line(&mut self, p0: Point, p1: Point) { |
| 76 | self.edges.push(PathEdge::LineTo(p0, p1)); |
| 77 | } |
| 78 | |
| 79 | fn push_vline(&mut self, x: f32, mut y0: f32, mut y1: f32, reverse: bool) { |
| 80 | if reverse { |
| 81 | core::mem::swap(&mut y0, &mut y1); |
| 82 | } |
| 83 | |
| 84 | self.edges.push(PathEdge::LineTo( |
| 85 | Point::from_xy(x, y0), |
| 86 | Point::from_xy(x, y1), |
| 87 | )); |
| 88 | } |
| 89 | |
| 90 | fn clip_quad(mut self, p0: Point, p1: Point, p2: Point) -> Option<ClippedEdges> { |
| 91 | let pts = [p0, p1, p2]; |
| 92 | let bounds = Rect::from_points(&pts)?; |
| 93 | |
| 94 | if !quick_reject(&bounds, &self.clip) { |
| 95 | let mut mono_y = [Point::zero(); 5]; |
| 96 | let count_y = path_geometry::chop_quad_at_y_extrema(&pts, &mut mono_y); |
| 97 | for y in 0..=count_y { |
| 98 | let mut mono_x = [Point::zero(); 5]; |
| 99 | let y_points: [Point; 3] = copy_3_points!(mono_y, y * 2); |
| 100 | let count_x = path_geometry::chop_quad_at_x_extrema(&y_points, &mut mono_x); |
| 101 | for x in 0..=count_x { |
| 102 | let x_points: [Point; 3] = copy_3_points!(mono_x, x * 2); |
| 103 | self.clip_mono_quad(&x_points); |
| 104 | } |
| 105 | } |
| 106 | } |
| 107 | |
| 108 | if self.edges.is_empty() { |
| 109 | None |
| 110 | } else { |
| 111 | Some(self.edges) |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | // src[] must be monotonic in X and Y |
| 116 | fn clip_mono_quad(&mut self, src: &[Point; 3]) { |
| 117 | let mut pts = [Point::zero(); 3]; |
| 118 | let mut reverse = sort_increasing_y(src, &mut pts); |
| 119 | |
| 120 | // are we completely above or below |
| 121 | if pts[2].y <= self.clip.top() || pts[0].y >= self.clip.bottom() { |
| 122 | return; |
| 123 | } |
| 124 | |
| 125 | // Now chop so that pts is contained within clip in Y |
| 126 | chop_quad_in_y(&self.clip, &mut pts); |
| 127 | |
| 128 | if pts[0].x > pts[2].x { |
| 129 | pts.swap(0, 2); |
| 130 | reverse = !reverse; |
| 131 | } |
| 132 | debug_assert!(pts[0].x <= pts[1].x); |
| 133 | debug_assert!(pts[1].x <= pts[2].x); |
| 134 | |
| 135 | // Now chop in X has needed, and record the segments |
| 136 | |
| 137 | if pts[2].x <= self.clip.left() { |
| 138 | // wholly to the left |
| 139 | self.push_vline(self.clip.left(), pts[0].y, pts[2].y, reverse); |
| 140 | return; |
| 141 | } |
| 142 | |
| 143 | if pts[0].x >= self.clip.right() { |
| 144 | // wholly to the right |
| 145 | if !self.can_cull_to_the_right { |
| 146 | self.push_vline(self.clip.right(), pts[0].y, pts[2].y, reverse); |
| 147 | } |
| 148 | |
| 149 | return; |
| 150 | } |
| 151 | |
| 152 | let mut t = NormalizedF32Exclusive::ANY; |
| 153 | let mut tmp = [Point::zero(); 5]; |
| 154 | |
| 155 | // are we partially to the left |
| 156 | if pts[0].x < self.clip.left() { |
| 157 | if chop_mono_quad_at_x(&pts, self.clip.left(), &mut t) { |
| 158 | path_geometry::chop_quad_at(&pts, t, &mut tmp); |
| 159 | self.push_vline(self.clip.left(), tmp[0].y, tmp[2].y, reverse); |
| 160 | // clamp to clean up imprecise numerics in the chop |
| 161 | tmp[2].x = self.clip.left(); |
| 162 | tmp[3].x = tmp[3].x.max(self.clip.left()); |
| 163 | |
| 164 | pts[0] = tmp[2]; |
| 165 | pts[1] = tmp[3]; |
| 166 | } else { |
| 167 | // if chopMonoQuadAtY failed, then we may have hit inexact numerics |
| 168 | // so we just clamp against the left |
| 169 | self.push_vline(self.clip.left(), pts[0].y, pts[2].y, reverse); |
| 170 | return; |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | // are we partially to the right |
| 175 | if pts[2].x > self.clip.right() { |
| 176 | if chop_mono_quad_at_x(&pts, self.clip.right(), &mut t) { |
| 177 | path_geometry::chop_quad_at(&pts, t, &mut tmp); |
| 178 | // clamp to clean up imprecise numerics in the chop |
| 179 | tmp[1].x = tmp[1].x.min(self.clip.right()); |
| 180 | tmp[2].x = self.clip.right(); |
| 181 | |
| 182 | self.push_quad(©_3_points!(tmp, 0), reverse); |
| 183 | self.push_vline(self.clip.right(), tmp[2].y, tmp[4].y, reverse); |
| 184 | } else { |
| 185 | // if chopMonoQuadAtY failed, then we may have hit inexact numerics |
| 186 | // so we just clamp against the right |
| 187 | pts[1].x = pts[1].x.min(self.clip.right()); |
| 188 | pts[2].x = pts[2].x.min(self.clip.right()); |
| 189 | self.push_quad(&pts, reverse); |
| 190 | } |
| 191 | } else { |
| 192 | // wholly inside the clip |
| 193 | self.push_quad(&pts, reverse); |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | fn push_quad(&mut self, pts: &[Point; 3], reverse: bool) { |
| 198 | if reverse { |
| 199 | self.edges.push(PathEdge::QuadTo(pts[2], pts[1], pts[0])); |
| 200 | } else { |
| 201 | self.edges.push(PathEdge::QuadTo(pts[0], pts[1], pts[2])); |
| 202 | } |
| 203 | } |
| 204 | |
| 205 | fn clip_cubic(mut self, p0: Point, p1: Point, p2: Point, p3: Point) -> Option<ClippedEdges> { |
| 206 | let pts = [p0, p1, p2, p3]; |
| 207 | let bounds = Rect::from_points(&pts)?; |
| 208 | |
| 209 | // check if we're clipped out vertically |
| 210 | if bounds.bottom() > self.clip.top() && bounds.top() < self.clip.bottom() { |
| 211 | if too_big_for_reliable_float_math(&bounds) { |
| 212 | // can't safely clip the cubic, so we give up and draw a line (which we can safely clip) |
| 213 | // |
| 214 | // If we rewrote chopcubicat*extrema and chopmonocubic using doubles, we could very |
| 215 | // likely always handle the cubic safely, but (it seems) at a big loss in speed, so |
| 216 | // we'd only want to take that alternate impl if needed. |
| 217 | return self.clip_line(p0, p3); |
| 218 | } else { |
| 219 | let mut mono_y = [Point::zero(); 10]; |
| 220 | let count_y = path_geometry::chop_cubic_at_y_extrema(&pts, &mut mono_y); |
| 221 | for y in 0..=count_y { |
| 222 | let mut mono_x = [Point::zero(); 10]; |
| 223 | let y_points: [Point; 4] = copy_4_points!(mono_y, y * 3); |
| 224 | let count_x = path_geometry::chop_cubic_at_x_extrema(&y_points, &mut mono_x); |
| 225 | for x in 0..=count_x { |
| 226 | let x_points: [Point; 4] = copy_4_points!(mono_x, x * 3); |
| 227 | self.clip_mono_cubic(&x_points); |
| 228 | } |
| 229 | } |
| 230 | } |
| 231 | } |
| 232 | |
| 233 | if self.edges.is_empty() { |
| 234 | None |
| 235 | } else { |
| 236 | Some(self.edges) |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | // src[] must be monotonic in X and Y |
| 241 | fn clip_mono_cubic(&mut self, src: &[Point; 4]) { |
| 242 | let mut pts = [Point::zero(); 4]; |
| 243 | let mut reverse = sort_increasing_y(src, &mut pts); |
| 244 | |
| 245 | // are we completely above or below |
| 246 | if pts[3].y <= self.clip.top() || pts[0].y >= self.clip.bottom() { |
| 247 | return; |
| 248 | } |
| 249 | |
| 250 | // Now chop so that pts is contained within clip in Y |
| 251 | chop_cubic_in_y(&self.clip, &mut pts); |
| 252 | |
| 253 | if pts[0].x > pts[3].x { |
| 254 | pts.swap(0, 3); |
| 255 | pts.swap(1, 2); |
| 256 | reverse = !reverse; |
| 257 | } |
| 258 | |
| 259 | // Now chop in X has needed, and record the segments |
| 260 | |
| 261 | if pts[3].x <= self.clip.left() { |
| 262 | // wholly to the left |
| 263 | self.push_vline(self.clip.left(), pts[0].y, pts[3].y, reverse); |
| 264 | return; |
| 265 | } |
| 266 | |
| 267 | if pts[0].x >= self.clip.right() { |
| 268 | // wholly to the right |
| 269 | if !self.can_cull_to_the_right { |
| 270 | self.push_vline(self.clip.right(), pts[0].y, pts[3].y, reverse); |
| 271 | } |
| 272 | |
| 273 | return; |
| 274 | } |
| 275 | |
| 276 | // are we partially to the left |
| 277 | if pts[0].x < self.clip.left() { |
| 278 | let mut tmp = [Point::zero(); 7]; |
| 279 | chop_mono_cubic_at_x(&pts, self.clip.left(), &mut tmp); |
| 280 | self.push_vline(self.clip.left(), tmp[0].y, tmp[3].y, reverse); |
| 281 | |
| 282 | // tmp[3, 4].fX should all be to the right of clip.left(). |
| 283 | // Since we can't trust the numerics of |
| 284 | // the chopper, we force those conditions now |
| 285 | tmp[3].x = self.clip.left(); |
| 286 | tmp[4].x = tmp[4].x.max(self.clip.left()); |
| 287 | |
| 288 | pts[0] = tmp[3]; |
| 289 | pts[1] = tmp[4]; |
| 290 | pts[2] = tmp[5]; |
| 291 | } |
| 292 | |
| 293 | // are we partially to the right |
| 294 | if pts[3].x > self.clip.right() { |
| 295 | let mut tmp = [Point::zero(); 7]; |
| 296 | chop_mono_cubic_at_x(&pts, self.clip.right(), &mut tmp); |
| 297 | tmp[3].x = self.clip.right(); |
| 298 | tmp[2].x = tmp[2].x.min(self.clip.right()); |
| 299 | |
| 300 | self.push_cubic(©_4_points!(tmp, 0), reverse); |
| 301 | self.push_vline(self.clip.right(), tmp[3].y, tmp[6].y, reverse); |
| 302 | } else { |
| 303 | // wholly inside the clip |
| 304 | self.push_cubic(&pts, reverse); |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | fn push_cubic(&mut self, pts: &[Point; 4], reverse: bool) { |
| 309 | if reverse { |
| 310 | self.edges |
| 311 | .push(PathEdge::CubicTo(pts[3], pts[2], pts[1], pts[0])); |
| 312 | } else { |
| 313 | self.edges |
| 314 | .push(PathEdge::CubicTo(pts[0], pts[1], pts[2], pts[3])); |
| 315 | } |
| 316 | } |
| 317 | } |
| 318 | |
| 319 | pub struct EdgeClipperIter<'a> { |
| 320 | edge_iter: PathEdgeIter<'a>, |
| 321 | clip: Rect, |
| 322 | can_cull_to_the_right: bool, |
| 323 | } |
| 324 | |
| 325 | impl<'a> EdgeClipperIter<'a> { |
| 326 | pub fn new(path: &'a Path, clip: Rect, can_cull_to_the_right: bool) -> Self { |
| 327 | EdgeClipperIter { |
| 328 | edge_iter: edge_iter(path), |
| 329 | clip, |
| 330 | can_cull_to_the_right, |
| 331 | } |
| 332 | } |
| 333 | } |
| 334 | |
| 335 | impl Iterator for EdgeClipperIter<'_> { |
| 336 | type Item = ClippedEdges; |
| 337 | |
| 338 | fn next(&mut self) -> Option<Self::Item> { |
| 339 | for edge in &mut self.edge_iter { |
| 340 | let clipper = EdgeClipper::new(self.clip, self.can_cull_to_the_right); |
| 341 | |
| 342 | match edge { |
| 343 | PathEdge::LineTo(p0, p1) => { |
| 344 | if let Some(edges) = clipper.clip_line(p0, p1) { |
| 345 | return Some(edges); |
| 346 | } |
| 347 | } |
| 348 | PathEdge::QuadTo(p0, p1, p2) => { |
| 349 | if let Some(edges) = clipper.clip_quad(p0, p1, p2) { |
| 350 | return Some(edges); |
| 351 | } |
| 352 | } |
| 353 | PathEdge::CubicTo(p0, p1, p2, p3) => { |
| 354 | if let Some(edges) = clipper.clip_cubic(p0, p1, p2, p3) { |
| 355 | return Some(edges); |
| 356 | } |
| 357 | } |
| 358 | } |
| 359 | } |
| 360 | |
| 361 | None |
| 362 | } |
| 363 | } |
| 364 | |
| 365 | fn quick_reject(bounds: &Rect, clip: &Rect) -> bool { |
| 366 | bounds.top() >= clip.bottom() || bounds.bottom() <= clip.top() |
| 367 | } |
| 368 | |
| 369 | // src[] must be monotonic in Y. This routine copies src into dst, and sorts |
| 370 | // it to be increasing in Y. If it had to reverse the order of the points, |
| 371 | // it returns true, otherwise it returns false |
| 372 | fn sort_increasing_y(src: &[Point], dst: &mut [Point]) -> bool { |
| 373 | // We need the data to be monotonically increasing in Y. |
| 374 | // Never fails, because src is always non-empty. |
| 375 | if src[0].y > src.last().unwrap().y { |
| 376 | for (i: usize, p: &Point) in src.iter().rev().enumerate() { |
| 377 | dst[i] = *p; |
| 378 | } |
| 379 | |
| 380 | true |
| 381 | } else { |
| 382 | dst[0..src.len()].copy_from_slice(src); |
| 383 | false |
| 384 | } |
| 385 | } |
| 386 | |
| 387 | /// Modifies pts[] in place so that it is clipped in Y to the clip rect. |
| 388 | fn chop_quad_in_y(clip: &Rect, pts: &mut [Point; 3]) { |
| 389 | let mut t = NormalizedF32Exclusive::ANY; |
| 390 | let mut tmp = [Point::zero(); 5]; |
| 391 | |
| 392 | // are we partially above |
| 393 | if pts[0].y < clip.top() { |
| 394 | if chop_mono_quad_at_y(pts, clip.top(), &mut t) { |
| 395 | // take the 2nd chopped quad |
| 396 | path_geometry::chop_quad_at(pts, t, &mut tmp); |
| 397 | // clamp to clean up imprecise numerics in the chop |
| 398 | tmp[2].y = clip.top(); |
| 399 | tmp[3].y = tmp[3].y.max(clip.top()); |
| 400 | |
| 401 | pts[0] = tmp[2]; |
| 402 | pts[1] = tmp[3]; |
| 403 | } else { |
| 404 | // if chop_mono_quad_at_y failed, then we may have hit inexact numerics |
| 405 | // so we just clamp against the top |
| 406 | for p in pts.iter_mut() { |
| 407 | if p.y < clip.top() { |
| 408 | p.y = clip.top(); |
| 409 | } |
| 410 | } |
| 411 | } |
| 412 | } |
| 413 | |
| 414 | // are we partially below |
| 415 | if pts[2].y > clip.bottom() { |
| 416 | if chop_mono_quad_at_y(pts, clip.bottom(), &mut t) { |
| 417 | path_geometry::chop_quad_at(pts, t, &mut tmp); |
| 418 | // clamp to clean up imprecise numerics in the chop |
| 419 | tmp[1].y = tmp[1].y.min(clip.bottom()); |
| 420 | tmp[2].y = clip.bottom(); |
| 421 | |
| 422 | pts[1] = tmp[1]; |
| 423 | pts[2] = tmp[2]; |
| 424 | } else { |
| 425 | // if chop_mono_quad_at_y failed, then we may have hit inexact numerics |
| 426 | // so we just clamp against the bottom |
| 427 | for p in pts.iter_mut() { |
| 428 | if p.y > clip.bottom() { |
| 429 | p.y = clip.bottom(); |
| 430 | } |
| 431 | } |
| 432 | } |
| 433 | } |
| 434 | } |
| 435 | |
| 436 | fn chop_mono_quad_at_x(pts: &[Point; 3], x: f32, t: &mut NormalizedF32Exclusive) -> bool { |
| 437 | chop_mono_quad_at(c0:pts[0].x, c1:pts[1].x, c2:pts[2].x, target:x, t) |
| 438 | } |
| 439 | |
| 440 | fn chop_mono_quad_at_y(pts: &[Point; 3], y: f32, t: &mut NormalizedF32Exclusive) -> bool { |
| 441 | chop_mono_quad_at(c0:pts[0].y, c1:pts[1].y, c2:pts[2].y, target:y, t) |
| 442 | } |
| 443 | |
| 444 | fn chop_mono_quad_at( |
| 445 | c0: f32, |
| 446 | c1: f32, |
| 447 | c2: f32, |
| 448 | target: f32, |
| 449 | t: &mut NormalizedF32Exclusive, |
| 450 | ) -> bool { |
| 451 | // Solve F(t) = y where F(t) := [0](1-t)^2 + 2[1]t(1-t) + [2]t^2 |
| 452 | // We solve for t, using quadratic equation, hence we have to rearrange |
| 453 | // our coefficients to look like At^2 + Bt + C |
| 454 | let a: f32 = c0 - c1 - c1 + c2; |
| 455 | let b: f32 = 2.0 * (c1 - c0); |
| 456 | let c: f32 = c0 - target; |
| 457 | |
| 458 | let mut roots: [NormalizedF32Exclusive; 3] = path_geometry::new_t_values(); |
| 459 | let count: usize = path_geometry::find_unit_quad_roots(a, b, c, &mut roots); |
| 460 | if count != 0 { |
| 461 | *t = roots[0]; |
| 462 | true |
| 463 | } else { |
| 464 | false |
| 465 | } |
| 466 | } |
| 467 | |
| 468 | fn too_big_for_reliable_float_math(r: &Rect) -> bool { |
| 469 | // limit set as the largest float value for which we can still reliably compute things like |
| 470 | // - chopping at XY extrema |
| 471 | // - chopping at Y or X values for clipping |
| 472 | // |
| 473 | // Current value chosen just by experiment. Larger (and still succeeds) is always better. |
| 474 | |
| 475 | let limit: f32 = (1 << 22) as f32; |
| 476 | r.left() < -limit || r.top() < -limit || r.right() > limit || r.bottom() > limit |
| 477 | } |
| 478 | |
| 479 | /// Modifies pts[] in place so that it is clipped in Y to the clip rect. |
| 480 | fn chop_cubic_in_y(clip: &Rect, pts: &mut [Point; 4]) { |
| 481 | // are we partially above |
| 482 | if pts[0].y < clip.top() { |
| 483 | let mut tmp = [Point::zero(); 7]; |
| 484 | chop_mono_cubic_at_y(pts, clip.top(), &mut tmp); |
| 485 | |
| 486 | // For a large range in the points, we can do a poor job of chopping, such that the t |
| 487 | // we computed resulted in the lower cubic still being partly above the clip. |
| 488 | // |
| 489 | // If just the first or first 2 Y values are above the fTop, we can just smash them |
| 490 | // down. If the first 3 Ys are above fTop, we can't smash all 3, as that can really |
| 491 | // distort the cubic. In this case, we take the first output (tmp[3..6] and treat it as |
| 492 | // a guess, and re-chop against fTop. Then we fall through to checking if we need to |
| 493 | // smash the first 1 or 2 Y values. |
| 494 | if tmp[3].y < clip.top() && tmp[4].y < clip.top() && tmp[5].y < clip.top() { |
| 495 | let tmp2: [Point; 4] = copy_4_points!(tmp, 3); |
| 496 | chop_mono_cubic_at_y(&tmp2, clip.top(), &mut tmp); |
| 497 | } |
| 498 | |
| 499 | // tmp[3, 4].y should all be to the below clip.fTop. |
| 500 | // Since we can't trust the numerics of the chopper, we force those conditions now |
| 501 | tmp[3].y = clip.top(); |
| 502 | tmp[4].y = tmp[4].y.max(clip.top()); |
| 503 | |
| 504 | pts[0] = tmp[3]; |
| 505 | pts[1] = tmp[4]; |
| 506 | pts[2] = tmp[5]; |
| 507 | } |
| 508 | |
| 509 | // are we partially below |
| 510 | if pts[3].y > clip.bottom() { |
| 511 | let mut tmp = [Point::zero(); 7]; |
| 512 | chop_mono_cubic_at_y(pts, clip.bottom(), &mut tmp); |
| 513 | tmp[3].y = clip.bottom(); |
| 514 | tmp[2].y = tmp[2].y.min(clip.bottom()); |
| 515 | |
| 516 | pts[1] = tmp[1]; |
| 517 | pts[2] = tmp[2]; |
| 518 | pts[3] = tmp[3]; |
| 519 | } |
| 520 | } |
| 521 | |
| 522 | fn chop_mono_cubic_at_x(src: &[Point; 4], x: f32, dst: &mut [Point; 7]) { |
| 523 | if path_geometry::chop_mono_cubic_at_x(src, x, dst) { |
| 524 | return; |
| 525 | } |
| 526 | |
| 527 | let src_values: [f32; 4] = [src[0].x, src[1].x, src[2].x, src[3].x]; |
| 528 | path_geometry::chop_cubic_at2(src, mono_cubic_closest_t(&src_values, x), dst); |
| 529 | } |
| 530 | |
| 531 | fn chop_mono_cubic_at_y(src: &[Point; 4], y: f32, dst: &mut [Point; 7]) { |
| 532 | if path_geometry::chop_mono_cubic_at_y(src, y, dst) { |
| 533 | return; |
| 534 | } |
| 535 | |
| 536 | let src_values: [f32; 4] = [src[0].y, src[1].y, src[2].y, src[3].y]; |
| 537 | path_geometry::chop_cubic_at2(src, mono_cubic_closest_t(&src_values, x:y), dst); |
| 538 | } |
| 539 | |
| 540 | fn mono_cubic_closest_t(src: &[f32; 4], mut x: f32) -> NormalizedF32Exclusive { |
| 541 | let mut t = 0.5; |
| 542 | let mut last_t; |
| 543 | let mut best_t = t; |
| 544 | let mut step = 0.25; |
| 545 | let d = src[0]; |
| 546 | let a = src[3] + 3.0 * (src[1] - src[2]) - d; |
| 547 | let b = 3.0 * (src[2] - src[1] - src[1] + d); |
| 548 | let c = 3.0 * (src[1] - d); |
| 549 | x -= d; |
| 550 | let mut closest = SCALAR_MAX; |
| 551 | loop { |
| 552 | let loc = ((a * t + b) * t + c) * t; |
| 553 | let dist = (loc - x).abs(); |
| 554 | if closest > dist { |
| 555 | closest = dist; |
| 556 | best_t = t; |
| 557 | } |
| 558 | |
| 559 | last_t = t; |
| 560 | t += if loc < x { step } else { -step }; |
| 561 | step *= 0.5; |
| 562 | |
| 563 | if !(closest > 0.25 && last_t != t) { |
| 564 | break; |
| 565 | } |
| 566 | } |
| 567 | |
| 568 | NormalizedF32Exclusive::new(best_t).unwrap() |
| 569 | } |
| 570 | |