| 1 | use super::*;
|
| 2 |
|
| 3 | use alloc::vec::{self, Vec};
|
| 4 | use core::convert::TryFrom;
|
| 5 | use tinyvec_macros::impl_mirrored;
|
| 6 |
|
| 7 | #[cfg (feature = "rustc_1_57" )]
|
| 8 | use alloc::collections::TryReserveError;
|
| 9 |
|
| 10 | #[cfg (feature = "serde" )]
|
| 11 | use core::marker::PhantomData;
|
| 12 | #[cfg (feature = "serde" )]
|
| 13 | use serde::de::{Deserialize, Deserializer, SeqAccess, Visitor};
|
| 14 | #[cfg (feature = "serde" )]
|
| 15 | use serde::ser::{Serialize, SerializeSeq, Serializer};
|
| 16 |
|
| 17 | /// Helper to make a `TinyVec`.
|
| 18 | ///
|
| 19 | /// You specify the backing array type, and optionally give all the elements you
|
| 20 | /// want to initially place into the array.
|
| 21 | ///
|
| 22 | /// ```rust
|
| 23 | /// use tinyvec::*;
|
| 24 | ///
|
| 25 | /// // The backing array type can be specified in the macro call
|
| 26 | /// let empty_tv = tiny_vec!([u8; 16]);
|
| 27 | /// let some_ints = tiny_vec!([i32; 4] => 1, 2, 3);
|
| 28 | /// let many_ints = tiny_vec!([i32; 4] => 1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
|
| 29 | ///
|
| 30 | /// // Or left to inference
|
| 31 | /// let empty_tv: TinyVec<[u8; 16]> = tiny_vec!();
|
| 32 | /// let some_ints: TinyVec<[i32; 4]> = tiny_vec!(1, 2, 3);
|
| 33 | /// let many_ints: TinyVec<[i32; 4]> = tiny_vec!(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
|
| 34 | /// ```
|
| 35 | #[macro_export ]
|
| 36 | #[cfg_attr (docsrs, doc(cfg(feature = "alloc" )))]
|
| 37 | macro_rules! tiny_vec {
|
| 38 | ($array_type:ty => $($elem:expr),* $(,)?) => {
|
| 39 | {
|
| 40 | // https://github.com/rust-lang/lang-team/issues/28
|
| 41 | const INVOKED_ELEM_COUNT: usize = 0 $( + { let _ = stringify!($elem); 1 })*;
|
| 42 | // If we have more `$elem` than the `CAPACITY` we will simply go directly
|
| 43 | // to constructing on the heap.
|
| 44 | match $crate::TinyVec::constructor_for_capacity(INVOKED_ELEM_COUNT) {
|
| 45 | $crate::TinyVecConstructor::Inline(f) => {
|
| 46 | f($crate::array_vec!($array_type => $($elem),*))
|
| 47 | }
|
| 48 | $crate::TinyVecConstructor::Heap(f) => {
|
| 49 | f(vec!($($elem),*))
|
| 50 | }
|
| 51 | }
|
| 52 | }
|
| 53 | };
|
| 54 | ($array_type:ty) => {
|
| 55 | $crate::TinyVec::<$array_type>::default()
|
| 56 | };
|
| 57 | ($($elem:expr),*) => {
|
| 58 | $crate::tiny_vec!(_ => $($elem),*)
|
| 59 | };
|
| 60 | ($elem:expr; $n:expr) => {
|
| 61 | $crate::TinyVec::from([$elem; $n])
|
| 62 | };
|
| 63 | () => {
|
| 64 | $crate::tiny_vec!(_)
|
| 65 | };
|
| 66 | }
|
| 67 |
|
| 68 | #[doc (hidden)] // Internal implementation details of `tiny_vec!`
|
| 69 | pub enum TinyVecConstructor<A: Array> {
|
| 70 | Inline(fn(ArrayVec<A>) -> TinyVec<A>),
|
| 71 | Heap(fn(Vec<A::Item>) -> TinyVec<A>),
|
| 72 | }
|
| 73 |
|
| 74 | /// A vector that starts inline, but can automatically move to the heap.
|
| 75 | ///
|
| 76 | /// * Requires the `alloc` feature
|
| 77 | ///
|
| 78 | /// A `TinyVec` is either an Inline([`ArrayVec`](crate::ArrayVec::<A>)) or
|
| 79 | /// Heap([`Vec`](https://doc.rust-lang.org/alloc/vec/struct.Vec.html)). The
|
| 80 | /// interface for the type as a whole is a bunch of methods that just match on
|
| 81 | /// the enum variant and then call the same method on the inner vec.
|
| 82 | ///
|
| 83 | /// ## Construction
|
| 84 | ///
|
| 85 | /// Because it's an enum, you can construct a `TinyVec` simply by making an
|
| 86 | /// `ArrayVec` or `Vec` and then putting it into the enum.
|
| 87 | ///
|
| 88 | /// There is also a macro
|
| 89 | ///
|
| 90 | /// ```rust
|
| 91 | /// # use tinyvec::*;
|
| 92 | /// let empty_tv = tiny_vec!([u8; 16]);
|
| 93 | /// let some_ints = tiny_vec!([i32; 4] => 1, 2, 3);
|
| 94 | /// ```
|
| 95 | #[cfg_attr (docsrs, doc(cfg(feature = "alloc" )))]
|
| 96 | pub enum TinyVec<A: Array> {
|
| 97 | #[allow (missing_docs)]
|
| 98 | Inline(ArrayVec<A>),
|
| 99 | #[allow (missing_docs)]
|
| 100 | Heap(Vec<A::Item>),
|
| 101 | }
|
| 102 |
|
| 103 | impl<A> Clone for TinyVec<A>
|
| 104 | where
|
| 105 | A: Array + Clone,
|
| 106 | A::Item: Clone,
|
| 107 | {
|
| 108 | #[inline ]
|
| 109 | fn clone(&self) -> Self {
|
| 110 | match self {
|
| 111 | TinyVec::Heap(v: &Vec) => TinyVec::Heap(v.clone()),
|
| 112 | TinyVec::Inline(v: &ArrayVec) => TinyVec::Inline(v.clone()),
|
| 113 | }
|
| 114 | }
|
| 115 |
|
| 116 | #[inline ]
|
| 117 | fn clone_from(&mut self, o: &Self) {
|
| 118 | if o.len() > self.len() {
|
| 119 | self.reserve(o.len() - self.len());
|
| 120 | } else {
|
| 121 | self.truncate(new_len:o.len());
|
| 122 | }
|
| 123 | let (start: &[impl Clone], end: &[impl Clone]) = o.split_at(self.len());
|
| 124 | for (dst: &mut impl Clone, src: &impl Clone) in self.iter_mut().zip(start) {
|
| 125 | dst.clone_from(source:src);
|
| 126 | }
|
| 127 | self.extend_from_slice(sli:end);
|
| 128 | }
|
| 129 | }
|
| 130 |
|
| 131 | impl<A: Array> Default for TinyVec<A> {
|
| 132 | #[inline ]
|
| 133 | #[must_use ]
|
| 134 | fn default() -> Self {
|
| 135 | TinyVec::Inline(ArrayVec::default())
|
| 136 | }
|
| 137 | }
|
| 138 |
|
| 139 | impl<A: Array> Deref for TinyVec<A> {
|
| 140 | type Target = [A::Item];
|
| 141 |
|
| 142 | impl_mirrored! {
|
| 143 | type Mirror = TinyVec;
|
| 144 | #[inline (always)]
|
| 145 | #[must_use ]
|
| 146 | fn deref(self: &Self) -> &Self::Target;
|
| 147 | }
|
| 148 | }
|
| 149 |
|
| 150 | impl<A: Array> DerefMut for TinyVec<A> {
|
| 151 | impl_mirrored! {
|
| 152 | type Mirror = TinyVec;
|
| 153 | #[inline (always)]
|
| 154 | #[must_use ]
|
| 155 | fn deref_mut(self: &mut Self) -> &mut Self::Target;
|
| 156 | }
|
| 157 | }
|
| 158 |
|
| 159 | impl<A: Array, I: SliceIndex<[A::Item]>> Index<I> for TinyVec<A> {
|
| 160 | type Output = <I as SliceIndex<[A::Item]>>::Output;
|
| 161 | #[inline (always)]
|
| 162 | #[must_use ]
|
| 163 | fn index(&self, index: I) -> &Self::Output {
|
| 164 | &self.deref()[index]
|
| 165 | }
|
| 166 | }
|
| 167 |
|
| 168 | impl<A: Array, I: SliceIndex<[A::Item]>> IndexMut<I> for TinyVec<A> {
|
| 169 | #[inline (always)]
|
| 170 | #[must_use ]
|
| 171 | fn index_mut(&mut self, index: I) -> &mut Self::Output {
|
| 172 | &mut self.deref_mut()[index]
|
| 173 | }
|
| 174 | }
|
| 175 |
|
| 176 | #[cfg (feature = "std" )]
|
| 177 | #[cfg_attr (docs_rs, doc(cfg(feature = "std" )))]
|
| 178 | impl<A: Array<Item = u8>> std::io::Write for TinyVec<A> {
|
| 179 | #[inline (always)]
|
| 180 | fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
|
| 181 | self.extend_from_slice(buf);
|
| 182 | Ok(buf.len())
|
| 183 | }
|
| 184 |
|
| 185 | #[inline (always)]
|
| 186 | fn flush(&mut self) -> std::io::Result<()> {
|
| 187 | Ok(())
|
| 188 | }
|
| 189 | }
|
| 190 |
|
| 191 | #[cfg (feature = "serde" )]
|
| 192 | #[cfg_attr (docs_rs, doc(cfg(feature = "serde" )))]
|
| 193 | impl<A: Array> Serialize for TinyVec<A>
|
| 194 | where
|
| 195 | A::Item: Serialize,
|
| 196 | {
|
| 197 | #[must_use ]
|
| 198 | fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
| 199 | where
|
| 200 | S: Serializer,
|
| 201 | {
|
| 202 | let mut seq = serializer.serialize_seq(Some(self.len()))?;
|
| 203 | for element in self.iter() {
|
| 204 | seq.serialize_element(element)?;
|
| 205 | }
|
| 206 | seq.end()
|
| 207 | }
|
| 208 | }
|
| 209 |
|
| 210 | #[cfg (feature = "serde" )]
|
| 211 | #[cfg_attr (docs_rs, doc(cfg(feature = "serde" )))]
|
| 212 | impl<'de, A: Array> Deserialize<'de> for TinyVec<A>
|
| 213 | where
|
| 214 | A::Item: Deserialize<'de>,
|
| 215 | {
|
| 216 | fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
|
| 217 | where
|
| 218 | D: Deserializer<'de>,
|
| 219 | {
|
| 220 | deserializer.deserialize_seq(TinyVecVisitor(PhantomData))
|
| 221 | }
|
| 222 | }
|
| 223 |
|
| 224 | #[cfg (feature = "borsh" )]
|
| 225 | #[cfg_attr (docs_rs, doc(cfg(feature = "borsh" )))]
|
| 226 | impl<A: Array> borsh::BorshSerialize for TinyVec<A>
|
| 227 | where
|
| 228 | <A as Array>::Item: borsh::BorshSerialize,
|
| 229 | {
|
| 230 | fn serialize<W: borsh::io::Write>(
|
| 231 | &self, writer: &mut W,
|
| 232 | ) -> borsh::io::Result<()> {
|
| 233 | <usize as borsh::BorshSerialize>::serialize(&self.len(), writer)?;
|
| 234 | for elem in self.iter() {
|
| 235 | <<A as Array>::Item as borsh::BorshSerialize>::serialize(elem, writer)?;
|
| 236 | }
|
| 237 | Ok(())
|
| 238 | }
|
| 239 | }
|
| 240 |
|
| 241 | #[cfg (feature = "borsh" )]
|
| 242 | #[cfg_attr (docs_rs, doc(cfg(feature = "borsh" )))]
|
| 243 | impl<A: Array> borsh::BorshDeserialize for TinyVec<A>
|
| 244 | where
|
| 245 | <A as Array>::Item: borsh::BorshDeserialize,
|
| 246 | {
|
| 247 | fn deserialize_reader<R: borsh::io::Read>(
|
| 248 | reader: &mut R,
|
| 249 | ) -> borsh::io::Result<Self> {
|
| 250 | let len = <usize as borsh::BorshDeserialize>::deserialize_reader(reader)?;
|
| 251 | let mut new_tinyvec = Self::with_capacity(len);
|
| 252 |
|
| 253 | for _ in 0..len {
|
| 254 | new_tinyvec.push(
|
| 255 | <<A as Array>::Item as borsh::BorshDeserialize>::deserialize_reader(
|
| 256 | reader,
|
| 257 | )?,
|
| 258 | )
|
| 259 | }
|
| 260 |
|
| 261 | Ok(new_tinyvec)
|
| 262 | }
|
| 263 | }
|
| 264 |
|
| 265 | #[cfg (feature = "arbitrary" )]
|
| 266 | #[cfg_attr (docs_rs, doc(cfg(feature = "arbitrary" )))]
|
| 267 | impl<'a, A> arbitrary::Arbitrary<'a> for TinyVec<A>
|
| 268 | where
|
| 269 | A: Array,
|
| 270 | A::Item: arbitrary::Arbitrary<'a>,
|
| 271 | {
|
| 272 | fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> {
|
| 273 | let v = Vec::arbitrary(u)?;
|
| 274 | let mut tv = TinyVec::Heap(v);
|
| 275 | tv.shrink_to_fit();
|
| 276 | Ok(tv)
|
| 277 | }
|
| 278 | }
|
| 279 |
|
| 280 | impl<A: Array> TinyVec<A> {
|
| 281 | /// Returns whether elements are on heap
|
| 282 | #[inline (always)]
|
| 283 | #[must_use ]
|
| 284 | pub fn is_heap(&self) -> bool {
|
| 285 | match self {
|
| 286 | TinyVec::Heap(_) => true,
|
| 287 | TinyVec::Inline(_) => false,
|
| 288 | }
|
| 289 | }
|
| 290 | /// Returns whether elements are on stack
|
| 291 | #[inline (always)]
|
| 292 | #[must_use ]
|
| 293 | pub fn is_inline(&self) -> bool {
|
| 294 | !self.is_heap()
|
| 295 | }
|
| 296 |
|
| 297 | /// Shrinks the capacity of the vector as much as possible.\
|
| 298 | /// It is inlined if length is less than `A::CAPACITY`.
|
| 299 | /// ```rust
|
| 300 | /// use tinyvec::*;
|
| 301 | /// let mut tv = tiny_vec!([i32; 2] => 1, 2, 3);
|
| 302 | /// assert!(tv.is_heap());
|
| 303 | /// let _ = tv.pop();
|
| 304 | /// assert!(tv.is_heap());
|
| 305 | /// tv.shrink_to_fit();
|
| 306 | /// assert!(tv.is_inline());
|
| 307 | /// ```
|
| 308 | #[inline ]
|
| 309 | pub fn shrink_to_fit(&mut self) {
|
| 310 | let vec = match self {
|
| 311 | TinyVec::Inline(_) => return,
|
| 312 | TinyVec::Heap(h) => h,
|
| 313 | };
|
| 314 |
|
| 315 | if vec.len() > A::CAPACITY {
|
| 316 | return vec.shrink_to_fit();
|
| 317 | }
|
| 318 |
|
| 319 | let moved_vec = core::mem::take(vec);
|
| 320 |
|
| 321 | let mut av = ArrayVec::default();
|
| 322 | let mut rest = av.fill(moved_vec);
|
| 323 | debug_assert!(rest.next().is_none());
|
| 324 | *self = TinyVec::Inline(av);
|
| 325 | }
|
| 326 |
|
| 327 | /// Moves the content of the TinyVec to the heap, if it's inline.
|
| 328 | /// ```rust
|
| 329 | /// use tinyvec::*;
|
| 330 | /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
|
| 331 | /// assert!(tv.is_inline());
|
| 332 | /// tv.move_to_the_heap();
|
| 333 | /// assert!(tv.is_heap());
|
| 334 | /// ```
|
| 335 | #[allow (clippy::missing_inline_in_public_items)]
|
| 336 | pub fn move_to_the_heap(&mut self) {
|
| 337 | let arr = match self {
|
| 338 | TinyVec::Heap(_) => return,
|
| 339 | TinyVec::Inline(a) => a,
|
| 340 | };
|
| 341 |
|
| 342 | let v = arr.drain_to_vec();
|
| 343 | *self = TinyVec::Heap(v);
|
| 344 | }
|
| 345 |
|
| 346 | /// Tries to move the content of the TinyVec to the heap, if it's inline.
|
| 347 | ///
|
| 348 | /// # Errors
|
| 349 | ///
|
| 350 | /// If the allocator reports a failure, then an error is returned and the
|
| 351 | /// content is kept on the stack.
|
| 352 | ///
|
| 353 | /// ```rust
|
| 354 | /// use tinyvec::*;
|
| 355 | /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
|
| 356 | /// assert!(tv.is_inline());
|
| 357 | /// assert_eq!(Ok(()), tv.try_move_to_the_heap());
|
| 358 | /// assert!(tv.is_heap());
|
| 359 | /// ```
|
| 360 | #[inline ]
|
| 361 | #[cfg (feature = "rustc_1_57" )]
|
| 362 | pub fn try_move_to_the_heap(&mut self) -> Result<(), TryReserveError> {
|
| 363 | let arr = match self {
|
| 364 | TinyVec::Heap(_) => return Ok(()),
|
| 365 | TinyVec::Inline(a) => a,
|
| 366 | };
|
| 367 |
|
| 368 | let v = arr.try_drain_to_vec()?;
|
| 369 | *self = TinyVec::Heap(v);
|
| 370 | return Ok(());
|
| 371 | }
|
| 372 |
|
| 373 | /// If TinyVec is inline, moves the content of it to the heap.
|
| 374 | /// Also reserves additional space.
|
| 375 | /// ```rust
|
| 376 | /// use tinyvec::*;
|
| 377 | /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
|
| 378 | /// assert!(tv.is_inline());
|
| 379 | /// tv.move_to_the_heap_and_reserve(32);
|
| 380 | /// assert!(tv.is_heap());
|
| 381 | /// assert!(tv.capacity() >= 35);
|
| 382 | /// ```
|
| 383 | #[inline ]
|
| 384 | pub fn move_to_the_heap_and_reserve(&mut self, n: usize) {
|
| 385 | let arr = match self {
|
| 386 | TinyVec::Heap(h) => return h.reserve(n),
|
| 387 | TinyVec::Inline(a) => a,
|
| 388 | };
|
| 389 |
|
| 390 | let v = arr.drain_to_vec_and_reserve(n);
|
| 391 | *self = TinyVec::Heap(v);
|
| 392 | }
|
| 393 |
|
| 394 | /// If TinyVec is inline, try to move the content of it to the heap.
|
| 395 | /// Also reserves additional space.
|
| 396 | ///
|
| 397 | /// # Errors
|
| 398 | ///
|
| 399 | /// If the allocator reports a failure, then an error is returned.
|
| 400 | ///
|
| 401 | /// ```rust
|
| 402 | /// use tinyvec::*;
|
| 403 | /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
|
| 404 | /// assert!(tv.is_inline());
|
| 405 | /// assert_eq!(Ok(()), tv.try_move_to_the_heap_and_reserve(32));
|
| 406 | /// assert!(tv.is_heap());
|
| 407 | /// assert!(tv.capacity() >= 35);
|
| 408 | /// ```
|
| 409 | #[inline ]
|
| 410 | #[cfg (feature = "rustc_1_57" )]
|
| 411 | pub fn try_move_to_the_heap_and_reserve(
|
| 412 | &mut self, n: usize,
|
| 413 | ) -> Result<(), TryReserveError> {
|
| 414 | let arr = match self {
|
| 415 | TinyVec::Heap(h) => return h.try_reserve(n),
|
| 416 | TinyVec::Inline(a) => a,
|
| 417 | };
|
| 418 |
|
| 419 | let v = arr.try_drain_to_vec_and_reserve(n)?;
|
| 420 | *self = TinyVec::Heap(v);
|
| 421 | return Ok(());
|
| 422 | }
|
| 423 |
|
| 424 | /// Reserves additional space.
|
| 425 | /// Moves to the heap if array can't hold `n` more items
|
| 426 | /// ```rust
|
| 427 | /// use tinyvec::*;
|
| 428 | /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3, 4);
|
| 429 | /// assert!(tv.is_inline());
|
| 430 | /// tv.reserve(1);
|
| 431 | /// assert!(tv.is_heap());
|
| 432 | /// assert!(tv.capacity() >= 5);
|
| 433 | /// ```
|
| 434 | #[inline ]
|
| 435 | pub fn reserve(&mut self, n: usize) {
|
| 436 | let arr = match self {
|
| 437 | TinyVec::Heap(h) => return h.reserve(n),
|
| 438 | TinyVec::Inline(a) => a,
|
| 439 | };
|
| 440 |
|
| 441 | if n > arr.capacity() - arr.len() {
|
| 442 | let v = arr.drain_to_vec_and_reserve(n);
|
| 443 | *self = TinyVec::Heap(v);
|
| 444 | }
|
| 445 |
|
| 446 | /* In this place array has enough place, so no work is needed more */
|
| 447 | return;
|
| 448 | }
|
| 449 |
|
| 450 | /// Tries to reserve additional space.
|
| 451 | /// Moves to the heap if array can't hold `n` more items.
|
| 452 | ///
|
| 453 | /// # Errors
|
| 454 | ///
|
| 455 | /// If the allocator reports a failure, then an error is returned.
|
| 456 | ///
|
| 457 | /// ```rust
|
| 458 | /// use tinyvec::*;
|
| 459 | /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3, 4);
|
| 460 | /// assert!(tv.is_inline());
|
| 461 | /// assert_eq!(Ok(()), tv.try_reserve(1));
|
| 462 | /// assert!(tv.is_heap());
|
| 463 | /// assert!(tv.capacity() >= 5);
|
| 464 | /// ```
|
| 465 | #[inline ]
|
| 466 | #[cfg (feature = "rustc_1_57" )]
|
| 467 | pub fn try_reserve(&mut self, n: usize) -> Result<(), TryReserveError> {
|
| 468 | let arr = match self {
|
| 469 | TinyVec::Heap(h) => return h.try_reserve(n),
|
| 470 | TinyVec::Inline(a) => a,
|
| 471 | };
|
| 472 |
|
| 473 | if n > arr.capacity() - arr.len() {
|
| 474 | let v = arr.try_drain_to_vec_and_reserve(n)?;
|
| 475 | *self = TinyVec::Heap(v);
|
| 476 | }
|
| 477 |
|
| 478 | /* In this place array has enough place, so no work is needed more */
|
| 479 | return Ok(());
|
| 480 | }
|
| 481 |
|
| 482 | /// Reserves additional space.
|
| 483 | /// Moves to the heap if array can't hold `n` more items
|
| 484 | ///
|
| 485 | /// From [Vec::reserve_exact](https://doc.rust-lang.org/std/vec/struct.Vec.html#method.reserve_exact)
|
| 486 | /// ```text
|
| 487 | /// Note that the allocator may give the collection more space than it requests.
|
| 488 | /// Therefore, capacity can not be relied upon to be precisely minimal.
|
| 489 | /// Prefer `reserve` if future insertions are expected.
|
| 490 | /// ```
|
| 491 | /// ```rust
|
| 492 | /// use tinyvec::*;
|
| 493 | /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3, 4);
|
| 494 | /// assert!(tv.is_inline());
|
| 495 | /// tv.reserve_exact(1);
|
| 496 | /// assert!(tv.is_heap());
|
| 497 | /// assert!(tv.capacity() >= 5);
|
| 498 | /// ```
|
| 499 | #[inline ]
|
| 500 | pub fn reserve_exact(&mut self, n: usize) {
|
| 501 | let arr = match self {
|
| 502 | TinyVec::Heap(h) => return h.reserve_exact(n),
|
| 503 | TinyVec::Inline(a) => a,
|
| 504 | };
|
| 505 |
|
| 506 | if n > arr.capacity() - arr.len() {
|
| 507 | let v = arr.drain_to_vec_and_reserve(n);
|
| 508 | *self = TinyVec::Heap(v);
|
| 509 | }
|
| 510 |
|
| 511 | /* In this place array has enough place, so no work is needed more */
|
| 512 | return;
|
| 513 | }
|
| 514 |
|
| 515 | /// Tries to reserve additional space.
|
| 516 | /// Moves to the heap if array can't hold `n` more items
|
| 517 | ///
|
| 518 | /// # Errors
|
| 519 | ///
|
| 520 | /// If the allocator reports a failure, then an error is returned.
|
| 521 | ///
|
| 522 | /// From [Vec::try_reserve_exact](https://doc.rust-lang.org/std/vec/struct.Vec.html#method.try_reserve_exact)
|
| 523 | /// ```text
|
| 524 | /// Note that the allocator may give the collection more space than it requests.
|
| 525 | /// Therefore, capacity can not be relied upon to be precisely minimal.
|
| 526 | /// Prefer `reserve` if future insertions are expected.
|
| 527 | /// ```
|
| 528 | /// ```rust
|
| 529 | /// use tinyvec::*;
|
| 530 | /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3, 4);
|
| 531 | /// assert!(tv.is_inline());
|
| 532 | /// assert_eq!(Ok(()), tv.try_reserve_exact(1));
|
| 533 | /// assert!(tv.is_heap());
|
| 534 | /// assert!(tv.capacity() >= 5);
|
| 535 | /// ```
|
| 536 | #[inline ]
|
| 537 | #[cfg (feature = "rustc_1_57" )]
|
| 538 | pub fn try_reserve_exact(&mut self, n: usize) -> Result<(), TryReserveError> {
|
| 539 | let arr = match self {
|
| 540 | TinyVec::Heap(h) => return h.try_reserve_exact(n),
|
| 541 | TinyVec::Inline(a) => a,
|
| 542 | };
|
| 543 |
|
| 544 | if n > arr.capacity() - arr.len() {
|
| 545 | let v = arr.try_drain_to_vec_and_reserve(n)?;
|
| 546 | *self = TinyVec::Heap(v);
|
| 547 | }
|
| 548 |
|
| 549 | /* In this place array has enough place, so no work is needed more */
|
| 550 | return Ok(());
|
| 551 | }
|
| 552 |
|
| 553 | /// Makes a new TinyVec with _at least_ the given capacity.
|
| 554 | ///
|
| 555 | /// If the requested capacity is less than or equal to the array capacity you
|
| 556 | /// get an inline vec. If it's greater than you get a heap vec.
|
| 557 | /// ```
|
| 558 | /// # use tinyvec::*;
|
| 559 | /// let t = TinyVec::<[u8; 10]>::with_capacity(5);
|
| 560 | /// assert!(t.is_inline());
|
| 561 | /// assert!(t.capacity() >= 5);
|
| 562 | ///
|
| 563 | /// let t = TinyVec::<[u8; 10]>::with_capacity(20);
|
| 564 | /// assert!(t.is_heap());
|
| 565 | /// assert!(t.capacity() >= 20);
|
| 566 | /// ```
|
| 567 | #[inline ]
|
| 568 | #[must_use ]
|
| 569 | pub fn with_capacity(cap: usize) -> Self {
|
| 570 | if cap <= A::CAPACITY {
|
| 571 | TinyVec::Inline(ArrayVec::default())
|
| 572 | } else {
|
| 573 | TinyVec::Heap(Vec::with_capacity(cap))
|
| 574 | }
|
| 575 | }
|
| 576 |
|
| 577 | /// Converts a `TinyVec<[T; N]>` into a `Box<[T]>`.
|
| 578 | ///
|
| 579 | /// - For `TinyVec::Heap(Vec<T>)`, it takes the `Vec<T>` and converts it into
|
| 580 | /// a `Box<[T]>` without heap reallocation.
|
| 581 | /// - For `TinyVec::Inline(inner_data)`, it first converts the `inner_data` to
|
| 582 | /// `Vec<T>`, then into a `Box<[T]>`. Requiring only a single heap
|
| 583 | /// allocation.
|
| 584 | ///
|
| 585 | /// ## Example
|
| 586 | ///
|
| 587 | /// ```
|
| 588 | /// use core::mem::size_of_val as mem_size_of;
|
| 589 | /// use tinyvec::TinyVec;
|
| 590 | ///
|
| 591 | /// // Initialize TinyVec with 256 elements (exceeding inline capacity)
|
| 592 | /// let v: TinyVec<[_; 128]> = (0u8..=255).collect();
|
| 593 | ///
|
| 594 | /// assert!(v.is_heap());
|
| 595 | /// assert_eq!(mem_size_of(&v), 136); // mem size of TinyVec<[u8; N]>: N+8
|
| 596 | /// assert_eq!(v.len(), 256);
|
| 597 | ///
|
| 598 | /// let boxed = v.into_boxed_slice();
|
| 599 | /// assert_eq!(mem_size_of(&boxed), 16); // mem size of Box<[u8]>: 16 bytes (fat pointer)
|
| 600 | /// assert_eq!(boxed.len(), 256);
|
| 601 | /// ```
|
| 602 | #[inline ]
|
| 603 | #[must_use ]
|
| 604 | pub fn into_boxed_slice(self) -> alloc::boxed::Box<[A::Item]> {
|
| 605 | self.into_vec().into_boxed_slice()
|
| 606 | }
|
| 607 |
|
| 608 | /// Converts a `TinyVec<[T; N]>` into a `Vec<T>`.
|
| 609 | ///
|
| 610 | /// `v.into_vec()` is equivalent to `Into::<Vec<_>>::into(v)`.
|
| 611 | ///
|
| 612 | /// - For `TinyVec::Inline(_)`, `.into_vec()` **does not** offer a performance
|
| 613 | /// advantage over `.to_vec()`.
|
| 614 | /// - For `TinyVec::Heap(vec_data)`, `.into_vec()` will take `vec_data`
|
| 615 | /// without heap reallocation.
|
| 616 | ///
|
| 617 | /// ## Example
|
| 618 | ///
|
| 619 | /// ```
|
| 620 | /// use tinyvec::TinyVec;
|
| 621 | ///
|
| 622 | /// let v = TinyVec::from([0u8; 8]);
|
| 623 | /// let v2 = v.clone();
|
| 624 | ///
|
| 625 | /// let vec = v.into_vec();
|
| 626 | /// let vec2: Vec<_> = v2.into();
|
| 627 | ///
|
| 628 | /// assert_eq!(vec, vec2);
|
| 629 | /// ```
|
| 630 | #[inline ]
|
| 631 | #[must_use ]
|
| 632 | pub fn into_vec(self) -> Vec<A::Item> {
|
| 633 | self.into()
|
| 634 | }
|
| 635 | }
|
| 636 |
|
| 637 | impl<A: Array> TinyVec<A> {
|
| 638 | /// Move all values from `other` into this vec.
|
| 639 | #[inline ]
|
| 640 | pub fn append(&mut self, other: &mut Self) {
|
| 641 | self.reserve(other.len());
|
| 642 |
|
| 643 | /* Doing append should be faster, because it is effectively a memcpy */
|
| 644 | match (self, other) {
|
| 645 | (TinyVec::Heap(sh), TinyVec::Heap(oh)) => sh.append(oh),
|
| 646 | (TinyVec::Inline(a), TinyVec::Heap(h)) => a.extend(h.drain(..)),
|
| 647 | (ref mut this, TinyVec::Inline(arr)) => this.extend(arr.drain(..)),
|
| 648 | }
|
| 649 | }
|
| 650 |
|
| 651 | impl_mirrored! {
|
| 652 | type Mirror = TinyVec;
|
| 653 |
|
| 654 | /// Remove an element, swapping the end of the vec into its place.
|
| 655 | ///
|
| 656 | /// ## Panics
|
| 657 | /// * If the index is out of bounds.
|
| 658 | ///
|
| 659 | /// ## Example
|
| 660 | /// ```rust
|
| 661 | /// use tinyvec::*;
|
| 662 | /// let mut tv = tiny_vec!([&str; 4] => "foo", "bar", "quack", "zap");
|
| 663 | ///
|
| 664 | /// assert_eq!(tv.swap_remove(1), "bar");
|
| 665 | /// assert_eq!(tv.as_slice(), &["foo", "zap", "quack"][..]);
|
| 666 | ///
|
| 667 | /// assert_eq!(tv.swap_remove(0), "foo");
|
| 668 | /// assert_eq!(tv.as_slice(), &["quack", "zap"][..]);
|
| 669 | /// ```
|
| 670 | #[inline ]
|
| 671 | pub fn swap_remove(self: &mut Self, index: usize) -> A::Item;
|
| 672 |
|
| 673 | /// Remove and return the last element of the vec, if there is one.
|
| 674 | ///
|
| 675 | /// ## Failure
|
| 676 | /// * If the vec is empty you get `None`.
|
| 677 | #[inline ]
|
| 678 | pub fn pop(self: &mut Self) -> Option<A::Item>;
|
| 679 |
|
| 680 | /// Removes the item at `index`, shifting all others down by one index.
|
| 681 | ///
|
| 682 | /// Returns the removed element.
|
| 683 | ///
|
| 684 | /// ## Panics
|
| 685 | ///
|
| 686 | /// If the index is out of bounds.
|
| 687 | ///
|
| 688 | /// ## Example
|
| 689 | ///
|
| 690 | /// ```rust
|
| 691 | /// use tinyvec::*;
|
| 692 | /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
|
| 693 | /// assert_eq!(tv.remove(1), 2);
|
| 694 | /// assert_eq!(tv.as_slice(), &[1, 3][..]);
|
| 695 | /// ```
|
| 696 | #[inline ]
|
| 697 | pub fn remove(self: &mut Self, index: usize) -> A::Item;
|
| 698 |
|
| 699 | /// The length of the vec (in elements).
|
| 700 | #[inline (always)]
|
| 701 | #[must_use ]
|
| 702 | pub fn len(self: &Self) -> usize;
|
| 703 |
|
| 704 | /// The capacity of the `TinyVec`.
|
| 705 | ///
|
| 706 | /// When not heap allocated this is fixed based on the array type.
|
| 707 | /// Otherwise its the result of the underlying Vec::capacity.
|
| 708 | #[inline (always)]
|
| 709 | #[must_use ]
|
| 710 | pub fn capacity(self: &Self) -> usize;
|
| 711 |
|
| 712 | /// Reduces the vec's length to the given value.
|
| 713 | ///
|
| 714 | /// If the vec is already shorter than the input, nothing happens.
|
| 715 | #[inline ]
|
| 716 | pub fn truncate(self: &mut Self, new_len: usize);
|
| 717 |
|
| 718 | /// A mutable pointer to the backing array.
|
| 719 | ///
|
| 720 | /// ## Safety
|
| 721 | ///
|
| 722 | /// This pointer has provenance over the _entire_ backing array/buffer.
|
| 723 | #[inline (always)]
|
| 724 | #[must_use ]
|
| 725 | pub fn as_mut_ptr(self: &mut Self) -> *mut A::Item;
|
| 726 |
|
| 727 | /// A const pointer to the backing array.
|
| 728 | ///
|
| 729 | /// ## Safety
|
| 730 | ///
|
| 731 | /// This pointer has provenance over the _entire_ backing array/buffer.
|
| 732 | #[inline (always)]
|
| 733 | #[must_use ]
|
| 734 | pub fn as_ptr(self: &Self) -> *const A::Item;
|
| 735 | }
|
| 736 |
|
| 737 | /// Walk the vec and keep only the elements that pass the predicate given.
|
| 738 | ///
|
| 739 | /// ## Example
|
| 740 | ///
|
| 741 | /// ```rust
|
| 742 | /// use tinyvec::*;
|
| 743 | ///
|
| 744 | /// let mut tv = tiny_vec!([i32; 10] => 1, 2, 3, 4);
|
| 745 | /// tv.retain(|&x| x % 2 == 0);
|
| 746 | /// assert_eq!(tv.as_slice(), &[2, 4][..]);
|
| 747 | /// ```
|
| 748 | #[inline ]
|
| 749 | pub fn retain<F: FnMut(&A::Item) -> bool>(&mut self, acceptable: F) {
|
| 750 | match self {
|
| 751 | TinyVec::Inline(i) => i.retain(acceptable),
|
| 752 | TinyVec::Heap(h) => h.retain(acceptable),
|
| 753 | }
|
| 754 | }
|
| 755 |
|
| 756 | /// Walk the vec and keep only the elements that pass the predicate given,
|
| 757 | /// having the opportunity to modify the elements at the same time.
|
| 758 | ///
|
| 759 | /// ## Example
|
| 760 | ///
|
| 761 | /// ```rust
|
| 762 | /// use tinyvec::*;
|
| 763 | ///
|
| 764 | /// let mut tv = tiny_vec!([i32; 10] => 1, 2, 3, 4);
|
| 765 | /// tv.retain_mut(|x| if *x % 2 == 0 { *x *= 2; true } else { false });
|
| 766 | /// assert_eq!(tv.as_slice(), &[4, 8][..]);
|
| 767 | /// ```
|
| 768 | #[inline ]
|
| 769 | #[cfg (feature = "rustc_1_61" )]
|
| 770 | pub fn retain_mut<F: FnMut(&mut A::Item) -> bool>(&mut self, acceptable: F) {
|
| 771 | match self {
|
| 772 | TinyVec::Inline(i) => i.retain_mut(acceptable),
|
| 773 | TinyVec::Heap(h) => h.retain_mut(acceptable),
|
| 774 | }
|
| 775 | }
|
| 776 |
|
| 777 | /// Helper for getting the mut slice.
|
| 778 | #[inline (always)]
|
| 779 | #[must_use ]
|
| 780 | pub fn as_mut_slice(&mut self) -> &mut [A::Item] {
|
| 781 | self.deref_mut()
|
| 782 | }
|
| 783 |
|
| 784 | /// Helper for getting the shared slice.
|
| 785 | #[inline (always)]
|
| 786 | #[must_use ]
|
| 787 | pub fn as_slice(&self) -> &[A::Item] {
|
| 788 | self.deref()
|
| 789 | }
|
| 790 |
|
| 791 | /// Removes all elements from the vec.
|
| 792 | #[inline (always)]
|
| 793 | pub fn clear(&mut self) {
|
| 794 | self.truncate(0)
|
| 795 | }
|
| 796 |
|
| 797 | /// De-duplicates the vec.
|
| 798 | #[cfg (feature = "nightly_slice_partition_dedup" )]
|
| 799 | #[inline (always)]
|
| 800 | pub fn dedup(&mut self)
|
| 801 | where
|
| 802 | A::Item: PartialEq,
|
| 803 | {
|
| 804 | self.dedup_by(|a, b| a == b)
|
| 805 | }
|
| 806 |
|
| 807 | /// De-duplicates the vec according to the predicate given.
|
| 808 | #[cfg (feature = "nightly_slice_partition_dedup" )]
|
| 809 | #[inline (always)]
|
| 810 | pub fn dedup_by<F>(&mut self, same_bucket: F)
|
| 811 | where
|
| 812 | F: FnMut(&mut A::Item, &mut A::Item) -> bool,
|
| 813 | {
|
| 814 | let len = {
|
| 815 | let (dedup, _) = self.as_mut_slice().partition_dedup_by(same_bucket);
|
| 816 | dedup.len()
|
| 817 | };
|
| 818 | self.truncate(len);
|
| 819 | }
|
| 820 |
|
| 821 | /// De-duplicates the vec according to the key selector given.
|
| 822 | #[cfg (feature = "nightly_slice_partition_dedup" )]
|
| 823 | #[inline (always)]
|
| 824 | pub fn dedup_by_key<F, K>(&mut self, mut key: F)
|
| 825 | where
|
| 826 | F: FnMut(&mut A::Item) -> K,
|
| 827 | K: PartialEq,
|
| 828 | {
|
| 829 | self.dedup_by(|a, b| key(a) == key(b))
|
| 830 | }
|
| 831 |
|
| 832 | /// Creates a draining iterator that removes the specified range in the vector
|
| 833 | /// and yields the removed items.
|
| 834 | ///
|
| 835 | /// **Note: This method has significant performance issues compared to
|
| 836 | /// matching on the TinyVec and then calling drain on the Inline or Heap value
|
| 837 | /// inside. The draining iterator has to branch on every single access. It is
|
| 838 | /// provided for simplicity and compatibility only.**
|
| 839 | ///
|
| 840 | /// ## Panics
|
| 841 | /// * If the start is greater than the end
|
| 842 | /// * If the end is past the edge of the vec.
|
| 843 | ///
|
| 844 | /// ## Example
|
| 845 | /// ```rust
|
| 846 | /// use tinyvec::*;
|
| 847 | /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
|
| 848 | /// let tv2: TinyVec<[i32; 4]> = tv.drain(1..).collect();
|
| 849 | /// assert_eq!(tv.as_slice(), &[1][..]);
|
| 850 | /// assert_eq!(tv2.as_slice(), &[2, 3][..]);
|
| 851 | ///
|
| 852 | /// tv.drain(..);
|
| 853 | /// assert_eq!(tv.as_slice(), &[]);
|
| 854 | /// ```
|
| 855 | #[inline ]
|
| 856 | pub fn drain<R: RangeBounds<usize>>(
|
| 857 | &mut self, range: R,
|
| 858 | ) -> TinyVecDrain<'_, A> {
|
| 859 | match self {
|
| 860 | TinyVec::Inline(i) => TinyVecDrain::Inline(i.drain(range)),
|
| 861 | TinyVec::Heap(h) => TinyVecDrain::Heap(h.drain(range)),
|
| 862 | }
|
| 863 | }
|
| 864 |
|
| 865 | /// Clone each element of the slice into this vec.
|
| 866 | /// ```rust
|
| 867 | /// use tinyvec::*;
|
| 868 | /// let mut tv = tiny_vec!([i32; 4] => 1, 2);
|
| 869 | /// tv.extend_from_slice(&[3, 4]);
|
| 870 | /// assert_eq!(tv.as_slice(), [1, 2, 3, 4]);
|
| 871 | /// ```
|
| 872 | #[inline ]
|
| 873 | pub fn extend_from_slice(&mut self, sli: &[A::Item])
|
| 874 | where
|
| 875 | A::Item: Clone,
|
| 876 | {
|
| 877 | self.reserve(sli.len());
|
| 878 | match self {
|
| 879 | TinyVec::Inline(a) => a.extend_from_slice(sli),
|
| 880 | TinyVec::Heap(h) => h.extend_from_slice(sli),
|
| 881 | }
|
| 882 | }
|
| 883 |
|
| 884 | /// Wraps up an array and uses the given length as the initial length.
|
| 885 | ///
|
| 886 | /// Note that the `From` impl for arrays assumes the full length is used.
|
| 887 | ///
|
| 888 | /// ## Panics
|
| 889 | ///
|
| 890 | /// The length must be less than or equal to the capacity of the array.
|
| 891 | #[inline ]
|
| 892 | #[must_use ]
|
| 893 | #[allow (clippy::match_wild_err_arm)]
|
| 894 | pub fn from_array_len(data: A, len: usize) -> Self {
|
| 895 | match Self::try_from_array_len(data, len) {
|
| 896 | Ok(out) => out,
|
| 897 | Err(_) => {
|
| 898 | panic!("TinyVec: length {} exceeds capacity {}!" , len, A::CAPACITY)
|
| 899 | }
|
| 900 | }
|
| 901 | }
|
| 902 |
|
| 903 | /// This is an internal implementation detail of the `tiny_vec!` macro, and
|
| 904 | /// using it other than from that macro is not supported by this crate's
|
| 905 | /// SemVer guarantee.
|
| 906 | #[inline (always)]
|
| 907 | #[doc (hidden)]
|
| 908 | pub fn constructor_for_capacity(cap: usize) -> TinyVecConstructor<A> {
|
| 909 | if cap <= A::CAPACITY {
|
| 910 | TinyVecConstructor::Inline(TinyVec::Inline)
|
| 911 | } else {
|
| 912 | TinyVecConstructor::Heap(TinyVec::Heap)
|
| 913 | }
|
| 914 | }
|
| 915 |
|
| 916 | /// Inserts an item at the position given, moving all following elements +1
|
| 917 | /// index.
|
| 918 | ///
|
| 919 | /// ## Panics
|
| 920 | /// * If `index` > `len`
|
| 921 | ///
|
| 922 | /// ## Example
|
| 923 | /// ```rust
|
| 924 | /// use tinyvec::*;
|
| 925 | /// let mut tv = tiny_vec!([i32; 10] => 1, 2, 3);
|
| 926 | /// tv.insert(1, 4);
|
| 927 | /// assert_eq!(tv.as_slice(), &[1, 4, 2, 3]);
|
| 928 | /// tv.insert(4, 5);
|
| 929 | /// assert_eq!(tv.as_slice(), &[1, 4, 2, 3, 5]);
|
| 930 | /// ```
|
| 931 | #[inline ]
|
| 932 | pub fn insert(&mut self, index: usize, item: A::Item) {
|
| 933 | assert!(
|
| 934 | index <= self.len(),
|
| 935 | "insertion index (is {}) should be <= len (is {})" ,
|
| 936 | index,
|
| 937 | self.len()
|
| 938 | );
|
| 939 |
|
| 940 | let arr = match self {
|
| 941 | TinyVec::Heap(v) => return v.insert(index, item),
|
| 942 | TinyVec::Inline(a) => a,
|
| 943 | };
|
| 944 |
|
| 945 | if let Some(x) = arr.try_insert(index, item) {
|
| 946 | let mut v = Vec::with_capacity(arr.len() * 2);
|
| 947 | let mut it = arr.iter_mut().map(core::mem::take);
|
| 948 | v.extend(it.by_ref().take(index));
|
| 949 | v.push(x);
|
| 950 | v.extend(it);
|
| 951 | *self = TinyVec::Heap(v);
|
| 952 | }
|
| 953 | }
|
| 954 |
|
| 955 | /// If the vec is empty.
|
| 956 | #[inline (always)]
|
| 957 | #[must_use ]
|
| 958 | pub fn is_empty(&self) -> bool {
|
| 959 | self.len() == 0
|
| 960 | }
|
| 961 |
|
| 962 | /// Makes a new, empty vec.
|
| 963 | #[inline (always)]
|
| 964 | #[must_use ]
|
| 965 | pub fn new() -> Self {
|
| 966 | Self::default()
|
| 967 | }
|
| 968 |
|
| 969 | /// Place an element onto the end of the vec.
|
| 970 | #[inline ]
|
| 971 | pub fn push(&mut self, val: A::Item) {
|
| 972 | // The code path for moving the inline contents to the heap produces a lot
|
| 973 | // of instructions, but we have a strong guarantee that this is a cold
|
| 974 | // path. LLVM doesn't know this, inlines it, and this tends to cause a
|
| 975 | // cascade of other bad inlining decisions because the body of push looks
|
| 976 | // huge even though nearly every call executes the same few instructions.
|
| 977 | //
|
| 978 | // Moving the logic out of line with #[cold] causes the hot code to be
|
| 979 | // inlined together, and we take the extra cost of a function call only
|
| 980 | // in rare cases.
|
| 981 | #[cold ]
|
| 982 | fn drain_to_heap_and_push<A: Array>(
|
| 983 | arr: &mut ArrayVec<A>, val: A::Item,
|
| 984 | ) -> TinyVec<A> {
|
| 985 | /* Make the Vec twice the size to amortize the cost of draining */
|
| 986 | let mut v = arr.drain_to_vec_and_reserve(arr.len());
|
| 987 | v.push(val);
|
| 988 | TinyVec::Heap(v)
|
| 989 | }
|
| 990 |
|
| 991 | match self {
|
| 992 | TinyVec::Heap(v) => v.push(val),
|
| 993 | TinyVec::Inline(arr) => {
|
| 994 | if let Some(x) = arr.try_push(val) {
|
| 995 | *self = drain_to_heap_and_push(arr, x);
|
| 996 | }
|
| 997 | }
|
| 998 | }
|
| 999 | }
|
| 1000 |
|
| 1001 | /// Resize the vec to the new length.
|
| 1002 | ///
|
| 1003 | /// If it needs to be longer, it's filled with clones of the provided value.
|
| 1004 | /// If it needs to be shorter, it's truncated.
|
| 1005 | ///
|
| 1006 | /// ## Example
|
| 1007 | ///
|
| 1008 | /// ```rust
|
| 1009 | /// use tinyvec::*;
|
| 1010 | ///
|
| 1011 | /// let mut tv = tiny_vec!([&str; 10] => "hello" );
|
| 1012 | /// tv.resize(3, "world" );
|
| 1013 | /// assert_eq!(tv.as_slice(), &["hello" , "world" , "world" ][..]);
|
| 1014 | ///
|
| 1015 | /// let mut tv = tiny_vec!([i32; 10] => 1, 2, 3, 4);
|
| 1016 | /// tv.resize(2, 0);
|
| 1017 | /// assert_eq!(tv.as_slice(), &[1, 2][..]);
|
| 1018 | /// ```
|
| 1019 | #[inline ]
|
| 1020 | pub fn resize(&mut self, new_len: usize, new_val: A::Item)
|
| 1021 | where
|
| 1022 | A::Item: Clone,
|
| 1023 | {
|
| 1024 | self.resize_with(new_len, || new_val.clone());
|
| 1025 | }
|
| 1026 |
|
| 1027 | /// Resize the vec to the new length.
|
| 1028 | ///
|
| 1029 | /// If it needs to be longer, it's filled with repeated calls to the provided
|
| 1030 | /// function. If it needs to be shorter, it's truncated.
|
| 1031 | ///
|
| 1032 | /// ## Example
|
| 1033 | ///
|
| 1034 | /// ```rust
|
| 1035 | /// use tinyvec::*;
|
| 1036 | ///
|
| 1037 | /// let mut tv = tiny_vec!([i32; 3] => 1, 2, 3);
|
| 1038 | /// tv.resize_with(5, Default::default);
|
| 1039 | /// assert_eq!(tv.as_slice(), &[1, 2, 3, 0, 0][..]);
|
| 1040 | ///
|
| 1041 | /// let mut tv = tiny_vec!([i32; 2]);
|
| 1042 | /// let mut p = 1;
|
| 1043 | /// tv.resize_with(4, || {
|
| 1044 | /// p *= 2;
|
| 1045 | /// p
|
| 1046 | /// });
|
| 1047 | /// assert_eq!(tv.as_slice(), &[2, 4, 8, 16][..]);
|
| 1048 | /// ```
|
| 1049 | #[inline ]
|
| 1050 | pub fn resize_with<F: FnMut() -> A::Item>(&mut self, new_len: usize, f: F) {
|
| 1051 | match new_len.checked_sub(self.len()) {
|
| 1052 | None => return self.truncate(new_len),
|
| 1053 | Some(n) => self.reserve(n),
|
| 1054 | }
|
| 1055 |
|
| 1056 | match self {
|
| 1057 | TinyVec::Inline(a) => a.resize_with(new_len, f),
|
| 1058 | TinyVec::Heap(v) => v.resize_with(new_len, f),
|
| 1059 | }
|
| 1060 | }
|
| 1061 |
|
| 1062 | /// Splits the collection at the point given.
|
| 1063 | ///
|
| 1064 | /// * `[0, at)` stays in this vec
|
| 1065 | /// * `[at, len)` ends up in the new vec.
|
| 1066 | ///
|
| 1067 | /// ## Panics
|
| 1068 | /// * if at > len
|
| 1069 | ///
|
| 1070 | /// ## Example
|
| 1071 | ///
|
| 1072 | /// ```rust
|
| 1073 | /// use tinyvec::*;
|
| 1074 | /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
|
| 1075 | /// let tv2 = tv.split_off(1);
|
| 1076 | /// assert_eq!(tv.as_slice(), &[1][..]);
|
| 1077 | /// assert_eq!(tv2.as_slice(), &[2, 3][..]);
|
| 1078 | /// ```
|
| 1079 | #[inline ]
|
| 1080 | pub fn split_off(&mut self, at: usize) -> Self {
|
| 1081 | match self {
|
| 1082 | TinyVec::Inline(a) => TinyVec::Inline(a.split_off(at)),
|
| 1083 | TinyVec::Heap(v) => TinyVec::Heap(v.split_off(at)),
|
| 1084 | }
|
| 1085 | }
|
| 1086 |
|
| 1087 | /// Creates a splicing iterator that removes the specified range in the
|
| 1088 | /// vector, yields the removed items, and replaces them with elements from
|
| 1089 | /// the provided iterator.
|
| 1090 | ///
|
| 1091 | /// `splice` fuses the provided iterator, so elements after the first `None`
|
| 1092 | /// are ignored.
|
| 1093 | ///
|
| 1094 | /// ## Panics
|
| 1095 | /// * If the start is greater than the end.
|
| 1096 | /// * If the end is past the edge of the vec.
|
| 1097 | /// * If the provided iterator panics.
|
| 1098 | ///
|
| 1099 | /// ## Example
|
| 1100 | /// ```rust
|
| 1101 | /// use tinyvec::*;
|
| 1102 | /// let mut tv = tiny_vec!([i32; 4] => 1, 2, 3);
|
| 1103 | /// let tv2: TinyVec<[i32; 4]> = tv.splice(1.., 4..=6).collect();
|
| 1104 | /// assert_eq!(tv.as_slice(), &[1, 4, 5, 6][..]);
|
| 1105 | /// assert_eq!(tv2.as_slice(), &[2, 3][..]);
|
| 1106 | ///
|
| 1107 | /// tv.splice(.., None);
|
| 1108 | /// assert_eq!(tv.as_slice(), &[]);
|
| 1109 | /// ```
|
| 1110 | #[inline ]
|
| 1111 | pub fn splice<R, I>(
|
| 1112 | &mut self, range: R, replacement: I,
|
| 1113 | ) -> TinyVecSplice<'_, A, core::iter::Fuse<I::IntoIter>>
|
| 1114 | where
|
| 1115 | R: RangeBounds<usize>,
|
| 1116 | I: IntoIterator<Item = A::Item>,
|
| 1117 | {
|
| 1118 | use core::ops::Bound;
|
| 1119 | let start = match range.start_bound() {
|
| 1120 | Bound::Included(x) => *x,
|
| 1121 | Bound::Excluded(x) => x.saturating_add(1),
|
| 1122 | Bound::Unbounded => 0,
|
| 1123 | };
|
| 1124 | let end = match range.end_bound() {
|
| 1125 | Bound::Included(x) => x.saturating_add(1),
|
| 1126 | Bound::Excluded(x) => *x,
|
| 1127 | Bound::Unbounded => self.len(),
|
| 1128 | };
|
| 1129 | assert!(
|
| 1130 | start <= end,
|
| 1131 | "TinyVec::splice> Illegal range, {} to {}" ,
|
| 1132 | start,
|
| 1133 | end
|
| 1134 | );
|
| 1135 | assert!(
|
| 1136 | end <= self.len(),
|
| 1137 | "TinyVec::splice> Range ends at {} but length is only {}!" ,
|
| 1138 | end,
|
| 1139 | self.len()
|
| 1140 | );
|
| 1141 |
|
| 1142 | TinyVecSplice {
|
| 1143 | removal_start: start,
|
| 1144 | removal_end: end,
|
| 1145 | parent: self,
|
| 1146 | replacement: replacement.into_iter().fuse(),
|
| 1147 | }
|
| 1148 | }
|
| 1149 |
|
| 1150 | /// Wraps an array, using the given length as the starting length.
|
| 1151 | ///
|
| 1152 | /// If you want to use the whole length of the array, you can just use the
|
| 1153 | /// `From` impl.
|
| 1154 | ///
|
| 1155 | /// ## Failure
|
| 1156 | ///
|
| 1157 | /// If the given length is greater than the capacity of the array this will
|
| 1158 | /// error, and you'll get the array back in the `Err`.
|
| 1159 | #[inline ]
|
| 1160 | pub fn try_from_array_len(data: A, len: usize) -> Result<Self, A> {
|
| 1161 | let arr = ArrayVec::try_from_array_len(data, len)?;
|
| 1162 | Ok(TinyVec::Inline(arr))
|
| 1163 | }
|
| 1164 | }
|
| 1165 |
|
| 1166 | /// Draining iterator for `TinyVecDrain`
|
| 1167 | ///
|
| 1168 | /// See [`TinyVecDrain::drain`](TinyVecDrain::<A>::drain)
|
| 1169 | #[cfg_attr (docsrs, doc(cfg(feature = "alloc" )))]
|
| 1170 | pub enum TinyVecDrain<'p, A: Array> {
|
| 1171 | #[allow (missing_docs)]
|
| 1172 | Inline(ArrayVecDrain<'p, A::Item>),
|
| 1173 | #[allow (missing_docs)]
|
| 1174 | Heap(vec::Drain<'p, A::Item>),
|
| 1175 | }
|
| 1176 |
|
| 1177 | impl<'p, A: Array> Iterator for TinyVecDrain<'p, A> {
|
| 1178 | type Item = A::Item;
|
| 1179 |
|
| 1180 | impl_mirrored! {
|
| 1181 | type Mirror = TinyVecDrain;
|
| 1182 |
|
| 1183 | #[inline ]
|
| 1184 | fn next(self: &mut Self) -> Option<Self::Item>;
|
| 1185 | #[inline ]
|
| 1186 | fn nth(self: &mut Self, n: usize) -> Option<Self::Item>;
|
| 1187 | #[inline ]
|
| 1188 | fn size_hint(self: &Self) -> (usize, Option<usize>);
|
| 1189 | #[inline ]
|
| 1190 | fn last(self: Self) -> Option<Self::Item>;
|
| 1191 | #[inline ]
|
| 1192 | fn count(self: Self) -> usize;
|
| 1193 | }
|
| 1194 |
|
| 1195 | #[inline ]
|
| 1196 | fn for_each<F: FnMut(Self::Item)>(self, f: F) {
|
| 1197 | match self {
|
| 1198 | TinyVecDrain::Inline(i) => i.for_each(f),
|
| 1199 | TinyVecDrain::Heap(h) => h.for_each(f),
|
| 1200 | }
|
| 1201 | }
|
| 1202 | }
|
| 1203 |
|
| 1204 | impl<'p, A: Array> DoubleEndedIterator for TinyVecDrain<'p, A> {
|
| 1205 | impl_mirrored! {
|
| 1206 | type Mirror = TinyVecDrain;
|
| 1207 |
|
| 1208 | #[inline ]
|
| 1209 | fn next_back(self: &mut Self) -> Option<Self::Item>;
|
| 1210 |
|
| 1211 | #[inline ]
|
| 1212 | fn nth_back(self: &mut Self, n: usize) -> Option<Self::Item>;
|
| 1213 | }
|
| 1214 | }
|
| 1215 |
|
| 1216 | /// Splicing iterator for `TinyVec`
|
| 1217 | /// See [`TinyVec::splice`](TinyVec::<A>::splice)
|
| 1218 | #[cfg_attr (docsrs, doc(cfg(feature = "alloc" )))]
|
| 1219 | pub struct TinyVecSplice<'p, A: Array, I: Iterator<Item = A::Item>> {
|
| 1220 | parent: &'p mut TinyVec<A>,
|
| 1221 | removal_start: usize,
|
| 1222 | removal_end: usize,
|
| 1223 | replacement: I,
|
| 1224 | }
|
| 1225 |
|
| 1226 | impl<'p, A, I> Iterator for TinyVecSplice<'p, A, I>
|
| 1227 | where
|
| 1228 | A: Array,
|
| 1229 | I: Iterator<Item = A::Item>,
|
| 1230 | {
|
| 1231 | type Item = A::Item;
|
| 1232 |
|
| 1233 | #[inline ]
|
| 1234 | fn next(&mut self) -> Option<A::Item> {
|
| 1235 | if self.removal_start < self.removal_end {
|
| 1236 | match self.replacement.next() {
|
| 1237 | Some(replacement) => {
|
| 1238 | let removed = core::mem::replace(
|
| 1239 | &mut self.parent[self.removal_start],
|
| 1240 | replacement,
|
| 1241 | );
|
| 1242 | self.removal_start += 1;
|
| 1243 | Some(removed)
|
| 1244 | }
|
| 1245 | None => {
|
| 1246 | let removed = self.parent.remove(self.removal_start);
|
| 1247 | self.removal_end -= 1;
|
| 1248 | Some(removed)
|
| 1249 | }
|
| 1250 | }
|
| 1251 | } else {
|
| 1252 | None
|
| 1253 | }
|
| 1254 | }
|
| 1255 |
|
| 1256 | #[inline ]
|
| 1257 | fn size_hint(&self) -> (usize, Option<usize>) {
|
| 1258 | let len = self.len();
|
| 1259 | (len, Some(len))
|
| 1260 | }
|
| 1261 | }
|
| 1262 |
|
| 1263 | impl<'p, A, I> ExactSizeIterator for TinyVecSplice<'p, A, I>
|
| 1264 | where
|
| 1265 | A: Array,
|
| 1266 | I: Iterator<Item = A::Item>,
|
| 1267 | {
|
| 1268 | #[inline ]
|
| 1269 | fn len(&self) -> usize {
|
| 1270 | self.removal_end - self.removal_start
|
| 1271 | }
|
| 1272 | }
|
| 1273 |
|
| 1274 | impl<'p, A, I> FusedIterator for TinyVecSplice<'p, A, I>
|
| 1275 | where
|
| 1276 | A: Array,
|
| 1277 | I: Iterator<Item = A::Item>,
|
| 1278 | {
|
| 1279 | }
|
| 1280 |
|
| 1281 | impl<'p, A, I> DoubleEndedIterator for TinyVecSplice<'p, A, I>
|
| 1282 | where
|
| 1283 | A: Array,
|
| 1284 | I: Iterator<Item = A::Item> + DoubleEndedIterator,
|
| 1285 | {
|
| 1286 | #[inline ]
|
| 1287 | fn next_back(&mut self) -> Option<A::Item> {
|
| 1288 | if self.removal_start < self.removal_end {
|
| 1289 | match self.replacement.next_back() {
|
| 1290 | Some(replacement: ::Item) => {
|
| 1291 | let removed: ::Item = core::mem::replace(
|
| 1292 | &mut self.parent[self.removal_end - 1],
|
| 1293 | src:replacement,
|
| 1294 | );
|
| 1295 | self.removal_end -= 1;
|
| 1296 | Some(removed)
|
| 1297 | }
|
| 1298 | None => {
|
| 1299 | let removed: ::Item = self.parent.remove(self.removal_end - 1);
|
| 1300 | self.removal_end -= 1;
|
| 1301 | Some(removed)
|
| 1302 | }
|
| 1303 | }
|
| 1304 | } else {
|
| 1305 | None
|
| 1306 | }
|
| 1307 | }
|
| 1308 | }
|
| 1309 |
|
| 1310 | impl<'p, A: Array, I: Iterator<Item = A::Item>> Drop
|
| 1311 | for TinyVecSplice<'p, A, I>
|
| 1312 | {
|
| 1313 | #[inline ]
|
| 1314 | fn drop(&mut self) {
|
| 1315 | for _ in self.by_ref() {}
|
| 1316 |
|
| 1317 | let (lower_bound: usize, _) = self.replacement.size_hint();
|
| 1318 | self.parent.reserve(lower_bound);
|
| 1319 |
|
| 1320 | for replacement: ::Item in self.replacement.by_ref() {
|
| 1321 | self.parent.insert(self.removal_end, item:replacement);
|
| 1322 | self.removal_end += 1;
|
| 1323 | }
|
| 1324 | }
|
| 1325 | }
|
| 1326 |
|
| 1327 | impl<A: Array> AsMut<[A::Item]> for TinyVec<A> {
|
| 1328 | #[inline (always)]
|
| 1329 | #[must_use ]
|
| 1330 | fn as_mut(&mut self) -> &mut [A::Item] {
|
| 1331 | &mut *self
|
| 1332 | }
|
| 1333 | }
|
| 1334 |
|
| 1335 | impl<A: Array> AsRef<[A::Item]> for TinyVec<A> {
|
| 1336 | #[inline (always)]
|
| 1337 | #[must_use ]
|
| 1338 | fn as_ref(&self) -> &[A::Item] {
|
| 1339 | &*self
|
| 1340 | }
|
| 1341 | }
|
| 1342 |
|
| 1343 | impl<A: Array> Borrow<[A::Item]> for TinyVec<A> {
|
| 1344 | #[inline (always)]
|
| 1345 | #[must_use ]
|
| 1346 | fn borrow(&self) -> &[A::Item] {
|
| 1347 | &*self
|
| 1348 | }
|
| 1349 | }
|
| 1350 |
|
| 1351 | impl<A: Array> BorrowMut<[A::Item]> for TinyVec<A> {
|
| 1352 | #[inline (always)]
|
| 1353 | #[must_use ]
|
| 1354 | fn borrow_mut(&mut self) -> &mut [A::Item] {
|
| 1355 | &mut *self
|
| 1356 | }
|
| 1357 | }
|
| 1358 |
|
| 1359 | impl<A: Array> Extend<A::Item> for TinyVec<A> {
|
| 1360 | #[inline ]
|
| 1361 | fn extend<T: IntoIterator<Item = A::Item>>(&mut self, iter: T) {
|
| 1362 | let iter = iter.into_iter();
|
| 1363 | let (lower_bound, _) = iter.size_hint();
|
| 1364 | self.reserve(lower_bound);
|
| 1365 |
|
| 1366 | let a = match self {
|
| 1367 | TinyVec::Heap(h) => return h.extend(iter),
|
| 1368 | TinyVec::Inline(a) => a,
|
| 1369 | };
|
| 1370 |
|
| 1371 | let mut iter = a.fill(iter);
|
| 1372 | let maybe = iter.next();
|
| 1373 |
|
| 1374 | let surely = match maybe {
|
| 1375 | Some(x) => x,
|
| 1376 | None => return,
|
| 1377 | };
|
| 1378 |
|
| 1379 | let mut v = a.drain_to_vec_and_reserve(a.len());
|
| 1380 | v.push(surely);
|
| 1381 | v.extend(iter);
|
| 1382 | *self = TinyVec::Heap(v);
|
| 1383 | }
|
| 1384 | }
|
| 1385 |
|
| 1386 | impl<A: Array> From<ArrayVec<A>> for TinyVec<A> {
|
| 1387 | #[inline (always)]
|
| 1388 | #[must_use ]
|
| 1389 | fn from(arr: ArrayVec<A>) -> Self {
|
| 1390 | TinyVec::Inline(arr)
|
| 1391 | }
|
| 1392 | }
|
| 1393 |
|
| 1394 | impl<A: Array> From<A> for TinyVec<A> {
|
| 1395 | #[inline ]
|
| 1396 | fn from(array: A) -> Self {
|
| 1397 | TinyVec::Inline(ArrayVec::from(array))
|
| 1398 | }
|
| 1399 | }
|
| 1400 |
|
| 1401 | impl<T, A> From<&'_ [T]> for TinyVec<A>
|
| 1402 | where
|
| 1403 | T: Clone + Default,
|
| 1404 | A: Array<Item = T>,
|
| 1405 | {
|
| 1406 | #[inline ]
|
| 1407 | #[must_use ]
|
| 1408 | fn from(slice: &[T]) -> Self {
|
| 1409 | if let Ok(arr: ArrayVec) = ArrayVec::try_from(slice) {
|
| 1410 | TinyVec::Inline(arr)
|
| 1411 | } else {
|
| 1412 | TinyVec::Heap(slice.into())
|
| 1413 | }
|
| 1414 | }
|
| 1415 | }
|
| 1416 |
|
| 1417 | impl<T, A> From<&'_ mut [T]> for TinyVec<A>
|
| 1418 | where
|
| 1419 | T: Clone + Default,
|
| 1420 | A: Array<Item = T>,
|
| 1421 | {
|
| 1422 | #[inline ]
|
| 1423 | #[must_use ]
|
| 1424 | fn from(slice: &mut [T]) -> Self {
|
| 1425 | Self::from(&*slice)
|
| 1426 | }
|
| 1427 | }
|
| 1428 |
|
| 1429 | impl<A: Array> FromIterator<A::Item> for TinyVec<A> {
|
| 1430 | #[inline ]
|
| 1431 | #[must_use ]
|
| 1432 | fn from_iter<T: IntoIterator<Item = A::Item>>(iter: T) -> Self {
|
| 1433 | let mut av: TinyVec = Self::default();
|
| 1434 | av.extend(iter);
|
| 1435 | av
|
| 1436 | }
|
| 1437 | }
|
| 1438 |
|
| 1439 | impl<A: Array> Into<Vec<A::Item>> for TinyVec<A> {
|
| 1440 | /// Converts a `TinyVec` into a `Vec`.
|
| 1441 | ///
|
| 1442 | /// ## Examples
|
| 1443 | ///
|
| 1444 | /// ### Inline to Vec
|
| 1445 | ///
|
| 1446 | /// For `TinyVec::Inline(_)`,
|
| 1447 | /// `.into()` **does not** offer a performance advantage over `.to_vec()`.
|
| 1448 | ///
|
| 1449 | /// ```
|
| 1450 | /// use core::mem::size_of_val as mem_size_of;
|
| 1451 | /// use tinyvec::TinyVec;
|
| 1452 | ///
|
| 1453 | /// let v = TinyVec::from([0u8; 128]);
|
| 1454 | /// assert_eq!(mem_size_of(&v), 136);
|
| 1455 | ///
|
| 1456 | /// let vec: Vec<_> = v.into();
|
| 1457 | /// assert_eq!(mem_size_of(&vec), 24);
|
| 1458 | /// ```
|
| 1459 | ///
|
| 1460 | /// ### Heap into Vec
|
| 1461 | ///
|
| 1462 | /// For `TinyVec::Heap(vec_data)`,
|
| 1463 | /// `.into()` will take `vec_data` without heap reallocation.
|
| 1464 | ///
|
| 1465 | /// ```
|
| 1466 | /// use core::{
|
| 1467 | /// any::type_name_of_val as type_of, mem::size_of_val as mem_size_of,
|
| 1468 | /// };
|
| 1469 | /// use tinyvec::TinyVec;
|
| 1470 | ///
|
| 1471 | /// const fn from_heap<T: Default>(owned: Vec<T>) -> TinyVec<[T; 1]> {
|
| 1472 | /// TinyVec::Heap(owned)
|
| 1473 | /// }
|
| 1474 | ///
|
| 1475 | /// let v = from_heap(vec![0u8; 128]);
|
| 1476 | /// assert_eq!(v.len(), 128);
|
| 1477 | /// assert_eq!(mem_size_of(&v), 24);
|
| 1478 | /// assert!(type_of(&v).ends_with("TinyVec<[u8; 1]>" ));
|
| 1479 | ///
|
| 1480 | /// let vec: Vec<_> = v.into();
|
| 1481 | /// assert_eq!(mem_size_of(&vec), 24);
|
| 1482 | /// assert!(type_of(&vec).ends_with("Vec<u8>" ));
|
| 1483 | /// ```
|
| 1484 | #[inline ]
|
| 1485 | #[must_use ]
|
| 1486 | fn into(self) -> Vec<A::Item> {
|
| 1487 | match self {
|
| 1488 | Self::Heap(inner) => inner,
|
| 1489 | Self::Inline(mut inner) => inner.drain_to_vec(),
|
| 1490 | }
|
| 1491 | }
|
| 1492 | }
|
| 1493 |
|
| 1494 | /// Iterator for consuming an `TinyVec` and returning owned elements.
|
| 1495 | #[cfg_attr (docsrs, doc(cfg(feature = "alloc" )))]
|
| 1496 | pub enum TinyVecIterator<A: Array> {
|
| 1497 | #[allow (missing_docs)]
|
| 1498 | Inline(ArrayVecIterator<A>),
|
| 1499 | #[allow (missing_docs)]
|
| 1500 | Heap(alloc::vec::IntoIter<A::Item>),
|
| 1501 | }
|
| 1502 |
|
| 1503 | impl<A: Array> TinyVecIterator<A> {
|
| 1504 | impl_mirrored! {
|
| 1505 | type Mirror = TinyVecIterator;
|
| 1506 | /// Returns the remaining items of this iterator as a slice.
|
| 1507 | #[inline ]
|
| 1508 | #[must_use ]
|
| 1509 | pub fn as_slice(self: &Self) -> &[A::Item];
|
| 1510 | }
|
| 1511 | }
|
| 1512 |
|
| 1513 | impl<A: Array> FusedIterator for TinyVecIterator<A> {}
|
| 1514 |
|
| 1515 | impl<A: Array> Iterator for TinyVecIterator<A> {
|
| 1516 | type Item = A::Item;
|
| 1517 |
|
| 1518 | impl_mirrored! {
|
| 1519 | type Mirror = TinyVecIterator;
|
| 1520 |
|
| 1521 | #[inline ]
|
| 1522 | fn next(self: &mut Self) -> Option<Self::Item>;
|
| 1523 |
|
| 1524 | #[inline (always)]
|
| 1525 | #[must_use ]
|
| 1526 | fn size_hint(self: &Self) -> (usize, Option<usize>);
|
| 1527 |
|
| 1528 | #[inline (always)]
|
| 1529 | fn count(self: Self) -> usize;
|
| 1530 |
|
| 1531 | #[inline ]
|
| 1532 | fn last(self: Self) -> Option<Self::Item>;
|
| 1533 |
|
| 1534 | #[inline ]
|
| 1535 | fn nth(self: &mut Self, n: usize) -> Option<A::Item>;
|
| 1536 | }
|
| 1537 | }
|
| 1538 |
|
| 1539 | impl<A: Array> DoubleEndedIterator for TinyVecIterator<A> {
|
| 1540 | impl_mirrored! {
|
| 1541 | type Mirror = TinyVecIterator;
|
| 1542 |
|
| 1543 | #[inline ]
|
| 1544 | fn next_back(self: &mut Self) -> Option<Self::Item>;
|
| 1545 |
|
| 1546 | #[inline ]
|
| 1547 | fn nth_back(self: &mut Self, n: usize) -> Option<Self::Item>;
|
| 1548 | }
|
| 1549 | }
|
| 1550 |
|
| 1551 | impl<A: Array> ExactSizeIterator for TinyVecIterator<A> {
|
| 1552 | impl_mirrored! {
|
| 1553 | type Mirror = TinyVecIterator;
|
| 1554 | #[inline ]
|
| 1555 | fn len(self: &Self) -> usize;
|
| 1556 | }
|
| 1557 | }
|
| 1558 |
|
| 1559 | impl<A: Array> Debug for TinyVecIterator<A>
|
| 1560 | where
|
| 1561 | A::Item: Debug,
|
| 1562 | {
|
| 1563 | #[allow (clippy::missing_inline_in_public_items)]
|
| 1564 | fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result {
|
| 1565 | f.debug_tuple(name:"TinyVecIterator" ).field(&self.as_slice()).finish()
|
| 1566 | }
|
| 1567 | }
|
| 1568 |
|
| 1569 | impl<A: Array> IntoIterator for TinyVec<A> {
|
| 1570 | type Item = A::Item;
|
| 1571 | type IntoIter = TinyVecIterator<A>;
|
| 1572 | #[inline (always)]
|
| 1573 | #[must_use ]
|
| 1574 | fn into_iter(self) -> Self::IntoIter {
|
| 1575 | match self {
|
| 1576 | TinyVec::Inline(a: ArrayVec) => TinyVecIterator::Inline(a.into_iter()),
|
| 1577 | TinyVec::Heap(v: Vec<::Item>) => TinyVecIterator::Heap(v.into_iter()),
|
| 1578 | }
|
| 1579 | }
|
| 1580 | }
|
| 1581 |
|
| 1582 | impl<'a, A: Array> IntoIterator for &'a mut TinyVec<A> {
|
| 1583 | type Item = &'a mut A::Item;
|
| 1584 | type IntoIter = core::slice::IterMut<'a, A::Item>;
|
| 1585 | #[inline (always)]
|
| 1586 | #[must_use ]
|
| 1587 | fn into_iter(self) -> Self::IntoIter {
|
| 1588 | self.iter_mut()
|
| 1589 | }
|
| 1590 | }
|
| 1591 |
|
| 1592 | impl<'a, A: Array> IntoIterator for &'a TinyVec<A> {
|
| 1593 | type Item = &'a A::Item;
|
| 1594 | type IntoIter = core::slice::Iter<'a, A::Item>;
|
| 1595 | #[inline (always)]
|
| 1596 | #[must_use ]
|
| 1597 | fn into_iter(self) -> Self::IntoIter {
|
| 1598 | self.iter()
|
| 1599 | }
|
| 1600 | }
|
| 1601 |
|
| 1602 | impl<A: Array> PartialEq for TinyVec<A>
|
| 1603 | where
|
| 1604 | A::Item: PartialEq,
|
| 1605 | {
|
| 1606 | #[inline ]
|
| 1607 | #[must_use ]
|
| 1608 | fn eq(&self, other: &Self) -> bool {
|
| 1609 | self.as_slice().eq(other.as_slice())
|
| 1610 | }
|
| 1611 | }
|
| 1612 | impl<A: Array> Eq for TinyVec<A> where A::Item: Eq {}
|
| 1613 |
|
| 1614 | impl<A: Array> PartialOrd for TinyVec<A>
|
| 1615 | where
|
| 1616 | A::Item: PartialOrd,
|
| 1617 | {
|
| 1618 | #[inline ]
|
| 1619 | #[must_use ]
|
| 1620 | fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
|
| 1621 | self.as_slice().partial_cmp(other.as_slice())
|
| 1622 | }
|
| 1623 | }
|
| 1624 | impl<A: Array> Ord for TinyVec<A>
|
| 1625 | where
|
| 1626 | A::Item: Ord,
|
| 1627 | {
|
| 1628 | #[inline ]
|
| 1629 | #[must_use ]
|
| 1630 | fn cmp(&self, other: &Self) -> core::cmp::Ordering {
|
| 1631 | self.as_slice().cmp(other.as_slice())
|
| 1632 | }
|
| 1633 | }
|
| 1634 |
|
| 1635 | impl<A: Array> PartialEq<&A> for TinyVec<A>
|
| 1636 | where
|
| 1637 | A::Item: PartialEq,
|
| 1638 | {
|
| 1639 | #[inline ]
|
| 1640 | #[must_use ]
|
| 1641 | fn eq(&self, other: &&A) -> bool {
|
| 1642 | self.as_slice().eq(other.as_slice())
|
| 1643 | }
|
| 1644 | }
|
| 1645 |
|
| 1646 | impl<A: Array> PartialEq<&[A::Item]> for TinyVec<A>
|
| 1647 | where
|
| 1648 | A::Item: PartialEq,
|
| 1649 | {
|
| 1650 | #[inline ]
|
| 1651 | #[must_use ]
|
| 1652 | fn eq(&self, other: &&[A::Item]) -> bool {
|
| 1653 | self.as_slice().eq(*other)
|
| 1654 | }
|
| 1655 | }
|
| 1656 |
|
| 1657 | impl<A: Array> Hash for TinyVec<A>
|
| 1658 | where
|
| 1659 | A::Item: Hash,
|
| 1660 | {
|
| 1661 | #[inline ]
|
| 1662 | fn hash<H: Hasher>(&self, state: &mut H) {
|
| 1663 | self.as_slice().hash(state)
|
| 1664 | }
|
| 1665 | }
|
| 1666 |
|
| 1667 | // // // // // // // //
|
| 1668 | // Formatting impls
|
| 1669 | // // // // // // // //
|
| 1670 |
|
| 1671 | impl<A: Array> Binary for TinyVec<A>
|
| 1672 | where
|
| 1673 | A::Item: Binary,
|
| 1674 | {
|
| 1675 | #[allow (clippy::missing_inline_in_public_items)]
|
| 1676 | fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
|
| 1677 | write!(f, "[" )?;
|
| 1678 | if f.alternate() {
|
| 1679 | write!(f, " \n " )?;
|
| 1680 | }
|
| 1681 | for (i: usize, elem: &impl Binary) in self.iter().enumerate() {
|
| 1682 | if i > 0 {
|
| 1683 | write!(f, ", {}" , if f.alternate() { " \n " } else { " " })?;
|
| 1684 | }
|
| 1685 | Binary::fmt(self:elem, f)?;
|
| 1686 | }
|
| 1687 | if f.alternate() {
|
| 1688 | write!(f, ", \n" )?;
|
| 1689 | }
|
| 1690 | write!(f, "]" )
|
| 1691 | }
|
| 1692 | }
|
| 1693 |
|
| 1694 | impl<A: Array> Debug for TinyVec<A>
|
| 1695 | where
|
| 1696 | A::Item: Debug,
|
| 1697 | {
|
| 1698 | #[allow (clippy::missing_inline_in_public_items)]
|
| 1699 | fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
|
| 1700 | write!(f, "[" )?;
|
| 1701 | if f.alternate() && !self.is_empty() {
|
| 1702 | write!(f, " \n " )?;
|
| 1703 | }
|
| 1704 | for (i: usize, elem: &impl Debug) in self.iter().enumerate() {
|
| 1705 | if i > 0 {
|
| 1706 | write!(f, ", {}" , if f.alternate() { " \n " } else { " " })?;
|
| 1707 | }
|
| 1708 | Debug::fmt(self:elem, f)?;
|
| 1709 | }
|
| 1710 | if f.alternate() && !self.is_empty() {
|
| 1711 | write!(f, ", \n" )?;
|
| 1712 | }
|
| 1713 | write!(f, "]" )
|
| 1714 | }
|
| 1715 | }
|
| 1716 |
|
| 1717 | impl<A: Array> Display for TinyVec<A>
|
| 1718 | where
|
| 1719 | A::Item: Display,
|
| 1720 | {
|
| 1721 | #[allow (clippy::missing_inline_in_public_items)]
|
| 1722 | fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
|
| 1723 | write!(f, "[" )?;
|
| 1724 | if f.alternate() {
|
| 1725 | write!(f, " \n " )?;
|
| 1726 | }
|
| 1727 | for (i: usize, elem: &impl Display) in self.iter().enumerate() {
|
| 1728 | if i > 0 {
|
| 1729 | write!(f, ", {}" , if f.alternate() { " \n " } else { " " })?;
|
| 1730 | }
|
| 1731 | Display::fmt(self:elem, f)?;
|
| 1732 | }
|
| 1733 | if f.alternate() {
|
| 1734 | write!(f, ", \n" )?;
|
| 1735 | }
|
| 1736 | write!(f, "]" )
|
| 1737 | }
|
| 1738 | }
|
| 1739 |
|
| 1740 | impl<A: Array> LowerExp for TinyVec<A>
|
| 1741 | where
|
| 1742 | A::Item: LowerExp,
|
| 1743 | {
|
| 1744 | #[allow (clippy::missing_inline_in_public_items)]
|
| 1745 | fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
|
| 1746 | write!(f, "[" )?;
|
| 1747 | if f.alternate() {
|
| 1748 | write!(f, " \n " )?;
|
| 1749 | }
|
| 1750 | for (i: usize, elem: &impl LowerExp) in self.iter().enumerate() {
|
| 1751 | if i > 0 {
|
| 1752 | write!(f, ", {}" , if f.alternate() { " \n " } else { " " })?;
|
| 1753 | }
|
| 1754 | LowerExp::fmt(self:elem, f)?;
|
| 1755 | }
|
| 1756 | if f.alternate() {
|
| 1757 | write!(f, ", \n" )?;
|
| 1758 | }
|
| 1759 | write!(f, "]" )
|
| 1760 | }
|
| 1761 | }
|
| 1762 |
|
| 1763 | impl<A: Array> LowerHex for TinyVec<A>
|
| 1764 | where
|
| 1765 | A::Item: LowerHex,
|
| 1766 | {
|
| 1767 | #[allow (clippy::missing_inline_in_public_items)]
|
| 1768 | fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
|
| 1769 | write!(f, "[" )?;
|
| 1770 | if f.alternate() {
|
| 1771 | write!(f, " \n " )?;
|
| 1772 | }
|
| 1773 | for (i: usize, elem: &impl LowerHex) in self.iter().enumerate() {
|
| 1774 | if i > 0 {
|
| 1775 | write!(f, ", {}" , if f.alternate() { " \n " } else { " " })?;
|
| 1776 | }
|
| 1777 | LowerHex::fmt(self:elem, f)?;
|
| 1778 | }
|
| 1779 | if f.alternate() {
|
| 1780 | write!(f, ", \n" )?;
|
| 1781 | }
|
| 1782 | write!(f, "]" )
|
| 1783 | }
|
| 1784 | }
|
| 1785 |
|
| 1786 | impl<A: Array> Octal for TinyVec<A>
|
| 1787 | where
|
| 1788 | A::Item: Octal,
|
| 1789 | {
|
| 1790 | #[allow (clippy::missing_inline_in_public_items)]
|
| 1791 | fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
|
| 1792 | write!(f, "[" )?;
|
| 1793 | if f.alternate() {
|
| 1794 | write!(f, " \n " )?;
|
| 1795 | }
|
| 1796 | for (i: usize, elem: &impl Octal) in self.iter().enumerate() {
|
| 1797 | if i > 0 {
|
| 1798 | write!(f, ", {}" , if f.alternate() { " \n " } else { " " })?;
|
| 1799 | }
|
| 1800 | Octal::fmt(self:elem, f)?;
|
| 1801 | }
|
| 1802 | if f.alternate() {
|
| 1803 | write!(f, ", \n" )?;
|
| 1804 | }
|
| 1805 | write!(f, "]" )
|
| 1806 | }
|
| 1807 | }
|
| 1808 |
|
| 1809 | impl<A: Array> Pointer for TinyVec<A>
|
| 1810 | where
|
| 1811 | A::Item: Pointer,
|
| 1812 | {
|
| 1813 | #[allow (clippy::missing_inline_in_public_items)]
|
| 1814 | fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
|
| 1815 | write!(f, "[" )?;
|
| 1816 | if f.alternate() {
|
| 1817 | write!(f, " \n " )?;
|
| 1818 | }
|
| 1819 | for (i: usize, elem: &impl Pointer) in self.iter().enumerate() {
|
| 1820 | if i > 0 {
|
| 1821 | write!(f, ", {}" , if f.alternate() { " \n " } else { " " })?;
|
| 1822 | }
|
| 1823 | Pointer::fmt(self:elem, f)?;
|
| 1824 | }
|
| 1825 | if f.alternate() {
|
| 1826 | write!(f, ", \n" )?;
|
| 1827 | }
|
| 1828 | write!(f, "]" )
|
| 1829 | }
|
| 1830 | }
|
| 1831 |
|
| 1832 | impl<A: Array> UpperExp for TinyVec<A>
|
| 1833 | where
|
| 1834 | A::Item: UpperExp,
|
| 1835 | {
|
| 1836 | #[allow (clippy::missing_inline_in_public_items)]
|
| 1837 | fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
|
| 1838 | write!(f, "[" )?;
|
| 1839 | if f.alternate() {
|
| 1840 | write!(f, " \n " )?;
|
| 1841 | }
|
| 1842 | for (i: usize, elem: &impl UpperExp) in self.iter().enumerate() {
|
| 1843 | if i > 0 {
|
| 1844 | write!(f, ", {}" , if f.alternate() { " \n " } else { " " })?;
|
| 1845 | }
|
| 1846 | UpperExp::fmt(self:elem, f)?;
|
| 1847 | }
|
| 1848 | if f.alternate() {
|
| 1849 | write!(f, ", \n" )?;
|
| 1850 | }
|
| 1851 | write!(f, "]" )
|
| 1852 | }
|
| 1853 | }
|
| 1854 |
|
| 1855 | impl<A: Array> UpperHex for TinyVec<A>
|
| 1856 | where
|
| 1857 | A::Item: UpperHex,
|
| 1858 | {
|
| 1859 | #[allow (clippy::missing_inline_in_public_items)]
|
| 1860 | fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
|
| 1861 | write!(f, "[" )?;
|
| 1862 | if f.alternate() {
|
| 1863 | write!(f, " \n " )?;
|
| 1864 | }
|
| 1865 | for (i: usize, elem: &impl UpperHex) in self.iter().enumerate() {
|
| 1866 | if i > 0 {
|
| 1867 | write!(f, ", {}" , if f.alternate() { " \n " } else { " " })?;
|
| 1868 | }
|
| 1869 | UpperHex::fmt(self:elem, f)?;
|
| 1870 | }
|
| 1871 | if f.alternate() {
|
| 1872 | write!(f, ", \n" )?;
|
| 1873 | }
|
| 1874 | write!(f, "]" )
|
| 1875 | }
|
| 1876 | }
|
| 1877 |
|
| 1878 | #[cfg (feature = "serde" )]
|
| 1879 | #[cfg_attr (docs_rs, doc(cfg(feature = "alloc" )))]
|
| 1880 | struct TinyVecVisitor<A: Array>(PhantomData<A>);
|
| 1881 |
|
| 1882 | #[cfg (feature = "serde" )]
|
| 1883 | impl<'de, A: Array> Visitor<'de> for TinyVecVisitor<A>
|
| 1884 | where
|
| 1885 | A::Item: Deserialize<'de>,
|
| 1886 | {
|
| 1887 | type Value = TinyVec<A>;
|
| 1888 |
|
| 1889 | fn expecting(
|
| 1890 | &self, formatter: &mut core::fmt::Formatter,
|
| 1891 | ) -> core::fmt::Result {
|
| 1892 | formatter.write_str("a sequence" )
|
| 1893 | }
|
| 1894 |
|
| 1895 | fn visit_seq<S>(self, mut seq: S) -> Result<Self::Value, S::Error>
|
| 1896 | where
|
| 1897 | S: SeqAccess<'de>,
|
| 1898 | {
|
| 1899 | let mut new_tinyvec = match seq.size_hint() {
|
| 1900 | Some(expected_size) => TinyVec::with_capacity(expected_size),
|
| 1901 | None => Default::default(),
|
| 1902 | };
|
| 1903 |
|
| 1904 | while let Some(value) = seq.next_element()? {
|
| 1905 | new_tinyvec.push(value);
|
| 1906 | }
|
| 1907 |
|
| 1908 | Ok(new_tinyvec)
|
| 1909 | }
|
| 1910 | }
|
| 1911 | |