| 1 | // Currently, rust warns when an unsafe fn contains an unsafe {} block. However, |
| 2 | // in the future, this will change to the reverse. For now, suppress this |
| 3 | // warning and generally stick with being explicit about unsafety. |
| 4 | #![allow (unused_unsafe)] |
| 5 | #![cfg_attr (not(feature = "rt" ), allow(dead_code))] |
| 6 | |
| 7 | //! Time driver. |
| 8 | |
| 9 | mod entry; |
| 10 | pub(crate) use entry::TimerEntry; |
| 11 | use entry::{EntryList, TimerHandle, TimerShared, MAX_SAFE_MILLIS_DURATION}; |
| 12 | |
| 13 | mod handle; |
| 14 | pub(crate) use self::handle::Handle; |
| 15 | use self::wheel::Wheel; |
| 16 | |
| 17 | mod source; |
| 18 | pub(crate) use source::TimeSource; |
| 19 | |
| 20 | mod wheel; |
| 21 | |
| 22 | use crate::loom::sync::atomic::{AtomicBool, Ordering}; |
| 23 | use crate::loom::sync::{Mutex, RwLock}; |
| 24 | use crate::runtime::driver::{self, IoHandle, IoStack}; |
| 25 | use crate::time::error::Error; |
| 26 | use crate::time::{Clock, Duration}; |
| 27 | use crate::util::WakeList; |
| 28 | |
| 29 | use crate::loom::sync::atomic::AtomicU64; |
| 30 | use std::fmt; |
| 31 | use std::{num::NonZeroU64, ptr::NonNull}; |
| 32 | |
| 33 | struct AtomicOptionNonZeroU64(AtomicU64); |
| 34 | |
| 35 | // A helper type to store the `next_wake`. |
| 36 | impl AtomicOptionNonZeroU64 { |
| 37 | fn new(val: Option<NonZeroU64>) -> Self { |
| 38 | Self(AtomicU64::new(val.map_or(default:0, f:NonZeroU64::get))) |
| 39 | } |
| 40 | |
| 41 | fn store(&self, val: Option<NonZeroU64>) { |
| 42 | self.0 |
| 43 | .store(val.map_or(0, NonZeroU64::get), order:Ordering::Relaxed); |
| 44 | } |
| 45 | |
| 46 | fn load(&self) -> Option<NonZeroU64> { |
| 47 | NonZeroU64::new(self.0.load(order:Ordering::Relaxed)) |
| 48 | } |
| 49 | } |
| 50 | |
| 51 | /// Time implementation that drives [`Sleep`][sleep], [`Interval`][interval], and [`Timeout`][timeout]. |
| 52 | /// |
| 53 | /// A `Driver` instance tracks the state necessary for managing time and |
| 54 | /// notifying the [`Sleep`][sleep] instances once their deadlines are reached. |
| 55 | /// |
| 56 | /// It is expected that a single instance manages many individual [`Sleep`][sleep] |
| 57 | /// instances. The `Driver` implementation is thread-safe and, as such, is able |
| 58 | /// to handle callers from across threads. |
| 59 | /// |
| 60 | /// After creating the `Driver` instance, the caller must repeatedly call `park` |
| 61 | /// or `park_timeout`. The time driver will perform no work unless `park` or |
| 62 | /// `park_timeout` is called repeatedly. |
| 63 | /// |
| 64 | /// The driver has a resolution of one millisecond. Any unit of time that falls |
| 65 | /// between milliseconds are rounded up to the next millisecond. |
| 66 | /// |
| 67 | /// When an instance is dropped, any outstanding [`Sleep`][sleep] instance that has not |
| 68 | /// elapsed will be notified with an error. At this point, calling `poll` on the |
| 69 | /// [`Sleep`][sleep] instance will result in panic. |
| 70 | /// |
| 71 | /// # Implementation |
| 72 | /// |
| 73 | /// The time driver is based on the [paper by Varghese and Lauck][paper]. |
| 74 | /// |
| 75 | /// A hashed timing wheel is a vector of slots, where each slot handles a time |
| 76 | /// slice. As time progresses, the timer walks over the slot for the current |
| 77 | /// instant, and processes each entry for that slot. When the timer reaches the |
| 78 | /// end of the wheel, it starts again at the beginning. |
| 79 | /// |
| 80 | /// The implementation maintains six wheels arranged in a set of levels. As the |
| 81 | /// levels go up, the slots of the associated wheel represent larger intervals |
| 82 | /// of time. At each level, the wheel has 64 slots. Each slot covers a range of |
| 83 | /// time equal to the wheel at the lower level. At level zero, each slot |
| 84 | /// represents one millisecond of time. |
| 85 | /// |
| 86 | /// The wheels are: |
| 87 | /// |
| 88 | /// * Level 0: 64 x 1 millisecond slots. |
| 89 | /// * Level 1: 64 x 64 millisecond slots. |
| 90 | /// * Level 2: 64 x ~4 second slots. |
| 91 | /// * Level 3: 64 x ~4 minute slots. |
| 92 | /// * Level 4: 64 x ~4 hour slots. |
| 93 | /// * Level 5: 64 x ~12 day slots. |
| 94 | /// |
| 95 | /// When the timer processes entries at level zero, it will notify all the |
| 96 | /// `Sleep` instances as their deadlines have been reached. For all higher |
| 97 | /// levels, all entries will be redistributed across the wheel at the next level |
| 98 | /// down. Eventually, as time progresses, entries with [`Sleep`][sleep] instances will |
| 99 | /// either be canceled (dropped) or their associated entries will reach level |
| 100 | /// zero and be notified. |
| 101 | /// |
| 102 | /// [paper]: http://www.cs.columbia.edu/~nahum/w6998/papers/ton97-timing-wheels.pdf |
| 103 | /// [sleep]: crate::time::Sleep |
| 104 | /// [timeout]: crate::time::Timeout |
| 105 | /// [interval]: crate::time::Interval |
| 106 | #[derive (Debug)] |
| 107 | pub(crate) struct Driver { |
| 108 | /// Parker to delegate to. |
| 109 | park: IoStack, |
| 110 | } |
| 111 | |
| 112 | /// Timer state shared between `Driver`, `Handle`, and `Registration`. |
| 113 | struct Inner { |
| 114 | /// The earliest time at which we promise to wake up without unparking. |
| 115 | next_wake: AtomicOptionNonZeroU64, |
| 116 | |
| 117 | /// Sharded Timer wheels. |
| 118 | wheels: RwLock<ShardedWheel>, |
| 119 | |
| 120 | /// Number of entries in the sharded timer wheels. |
| 121 | wheels_len: u32, |
| 122 | |
| 123 | /// True if the driver is being shutdown. |
| 124 | pub(super) is_shutdown: AtomicBool, |
| 125 | |
| 126 | // When `true`, a call to `park_timeout` should immediately return and time |
| 127 | // should not advance. One reason for this to be `true` is if the task |
| 128 | // passed to `Runtime::block_on` called `task::yield_now()`. |
| 129 | // |
| 130 | // While it may look racy, it only has any effect when the clock is paused |
| 131 | // and pausing the clock is restricted to a single-threaded runtime. |
| 132 | #[cfg (feature = "test-util" )] |
| 133 | did_wake: AtomicBool, |
| 134 | } |
| 135 | |
| 136 | /// Wrapper around the sharded timer wheels. |
| 137 | struct ShardedWheel(Box<[Mutex<wheel::Wheel>]>); |
| 138 | |
| 139 | // ===== impl Driver ===== |
| 140 | |
| 141 | impl Driver { |
| 142 | /// Creates a new `Driver` instance that uses `park` to block the current |
| 143 | /// thread and `time_source` to get the current time and convert to ticks. |
| 144 | /// |
| 145 | /// Specifying the source of time is useful when testing. |
| 146 | pub(crate) fn new(park: IoStack, clock: &Clock, shards: u32) -> (Driver, Handle) { |
| 147 | assert!(shards > 0); |
| 148 | |
| 149 | let time_source = TimeSource::new(clock); |
| 150 | let wheels: Vec<_> = (0..shards) |
| 151 | .map(|_| Mutex::new(wheel::Wheel::new())) |
| 152 | .collect(); |
| 153 | |
| 154 | let handle = Handle { |
| 155 | time_source, |
| 156 | inner: Inner { |
| 157 | next_wake: AtomicOptionNonZeroU64::new(None), |
| 158 | wheels: RwLock::new(ShardedWheel(wheels.into_boxed_slice())), |
| 159 | wheels_len: shards, |
| 160 | is_shutdown: AtomicBool::new(false), |
| 161 | #[cfg (feature = "test-util" )] |
| 162 | did_wake: AtomicBool::new(false), |
| 163 | }, |
| 164 | }; |
| 165 | |
| 166 | let driver = Driver { park }; |
| 167 | |
| 168 | (driver, handle) |
| 169 | } |
| 170 | |
| 171 | pub(crate) fn park(&mut self, handle: &driver::Handle) { |
| 172 | self.park_internal(handle, None); |
| 173 | } |
| 174 | |
| 175 | pub(crate) fn park_timeout(&mut self, handle: &driver::Handle, duration: Duration) { |
| 176 | self.park_internal(handle, Some(duration)); |
| 177 | } |
| 178 | |
| 179 | pub(crate) fn shutdown(&mut self, rt_handle: &driver::Handle) { |
| 180 | let handle = rt_handle.time(); |
| 181 | |
| 182 | if handle.is_shutdown() { |
| 183 | return; |
| 184 | } |
| 185 | |
| 186 | handle.inner.is_shutdown.store(true, Ordering::SeqCst); |
| 187 | |
| 188 | // Advance time forward to the end of time. |
| 189 | |
| 190 | handle.process_at_time(0, u64::MAX); |
| 191 | |
| 192 | self.park.shutdown(rt_handle); |
| 193 | } |
| 194 | |
| 195 | fn park_internal(&mut self, rt_handle: &driver::Handle, limit: Option<Duration>) { |
| 196 | let handle = rt_handle.time(); |
| 197 | assert!(!handle.is_shutdown()); |
| 198 | |
| 199 | // Finds out the min expiration time to park. |
| 200 | let expiration_time = { |
| 201 | let mut wheels_lock = rt_handle.time().inner.wheels.write(); |
| 202 | let expiration_time = wheels_lock |
| 203 | .0 |
| 204 | .iter_mut() |
| 205 | .filter_map(|wheel| wheel.get_mut().next_expiration_time()) |
| 206 | .min(); |
| 207 | |
| 208 | rt_handle |
| 209 | .time() |
| 210 | .inner |
| 211 | .next_wake |
| 212 | .store(next_wake_time(expiration_time)); |
| 213 | |
| 214 | expiration_time |
| 215 | }; |
| 216 | |
| 217 | match expiration_time { |
| 218 | Some(when) => { |
| 219 | let now = handle.time_source.now(rt_handle.clock()); |
| 220 | // Note that we effectively round up to 1ms here - this avoids |
| 221 | // very short-duration microsecond-resolution sleeps that the OS |
| 222 | // might treat as zero-length. |
| 223 | let mut duration = handle |
| 224 | .time_source |
| 225 | .tick_to_duration(when.saturating_sub(now)); |
| 226 | |
| 227 | if duration > Duration::from_millis(0) { |
| 228 | if let Some(limit) = limit { |
| 229 | duration = std::cmp::min(limit, duration); |
| 230 | } |
| 231 | |
| 232 | self.park_thread_timeout(rt_handle, duration); |
| 233 | } else { |
| 234 | self.park.park_timeout(rt_handle, Duration::from_secs(0)); |
| 235 | } |
| 236 | } |
| 237 | None => { |
| 238 | if let Some(duration) = limit { |
| 239 | self.park_thread_timeout(rt_handle, duration); |
| 240 | } else { |
| 241 | self.park.park(rt_handle); |
| 242 | } |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | // Process pending timers after waking up |
| 247 | handle.process(rt_handle.clock()); |
| 248 | } |
| 249 | |
| 250 | cfg_test_util! { |
| 251 | fn park_thread_timeout(&mut self, rt_handle: &driver::Handle, duration: Duration) { |
| 252 | let handle = rt_handle.time(); |
| 253 | let clock = rt_handle.clock(); |
| 254 | |
| 255 | if clock.can_auto_advance() { |
| 256 | self.park.park_timeout(rt_handle, Duration::from_secs(0)); |
| 257 | |
| 258 | // If the time driver was woken, then the park completed |
| 259 | // before the "duration" elapsed (usually caused by a |
| 260 | // yield in `Runtime::block_on`). In this case, we don't |
| 261 | // advance the clock. |
| 262 | if !handle.did_wake() { |
| 263 | // Simulate advancing time |
| 264 | if let Err(msg) = clock.advance(duration) { |
| 265 | panic!("{}" , msg); |
| 266 | } |
| 267 | } |
| 268 | } else { |
| 269 | self.park.park_timeout(rt_handle, duration); |
| 270 | } |
| 271 | } |
| 272 | } |
| 273 | |
| 274 | cfg_not_test_util! { |
| 275 | fn park_thread_timeout(&mut self, rt_handle: &driver::Handle, duration: Duration) { |
| 276 | self.park.park_timeout(rt_handle, duration); |
| 277 | } |
| 278 | } |
| 279 | } |
| 280 | |
| 281 | // Helper function to turn expiration_time into next_wake_time. |
| 282 | // Since the `park_timeout` will round up to 1ms for avoiding very |
| 283 | // short-duration microsecond-resolution sleeps, we do the same here. |
| 284 | // The conversion is as follows |
| 285 | // None => None |
| 286 | // Some(0) => Some(1) |
| 287 | // Some(i) => Some(i) |
| 288 | fn next_wake_time(expiration_time: Option<u64>) -> Option<NonZeroU64> { |
| 289 | expiration_time.and_then(|v: u64| { |
| 290 | if v == 0 { |
| 291 | NonZeroU64::new(1) |
| 292 | } else { |
| 293 | NonZeroU64::new(v) |
| 294 | } |
| 295 | }) |
| 296 | } |
| 297 | |
| 298 | impl Handle { |
| 299 | /// Runs timer related logic, and returns the next wakeup time |
| 300 | pub(self) fn process(&self, clock: &Clock) { |
| 301 | let now = self.time_source().now(clock); |
| 302 | // For fairness, randomly select one to start. |
| 303 | let shards = self.inner.get_shard_size(); |
| 304 | let start = crate::runtime::context::thread_rng_n(shards); |
| 305 | self.process_at_time(start, now); |
| 306 | } |
| 307 | |
| 308 | pub(self) fn process_at_time(&self, start: u32, now: u64) { |
| 309 | let shards = self.inner.get_shard_size(); |
| 310 | |
| 311 | let expiration_time = (start..shards + start) |
| 312 | .filter_map(|i| self.process_at_sharded_time(i, now)) |
| 313 | .min(); |
| 314 | |
| 315 | self.inner.next_wake.store(next_wake_time(expiration_time)); |
| 316 | } |
| 317 | |
| 318 | // Returns the next wakeup time of this shard. |
| 319 | pub(self) fn process_at_sharded_time(&self, id: u32, mut now: u64) -> Option<u64> { |
| 320 | let mut waker_list = WakeList::new(); |
| 321 | let mut wheels_lock = self.inner.wheels.read(); |
| 322 | let mut lock = wheels_lock.lock_sharded_wheel(id); |
| 323 | |
| 324 | if now < lock.elapsed() { |
| 325 | // Time went backwards! This normally shouldn't happen as the Rust language |
| 326 | // guarantees that an Instant is monotonic, but can happen when running |
| 327 | // Linux in a VM on a Windows host due to std incorrectly trusting the |
| 328 | // hardware clock to be monotonic. |
| 329 | // |
| 330 | // See <https://github.com/tokio-rs/tokio/issues/3619> for more information. |
| 331 | now = lock.elapsed(); |
| 332 | } |
| 333 | |
| 334 | while let Some(entry) = lock.poll(now) { |
| 335 | debug_assert!(unsafe { entry.is_pending() }); |
| 336 | |
| 337 | // SAFETY: We hold the driver lock, and just removed the entry from any linked lists. |
| 338 | if let Some(waker) = unsafe { entry.fire(Ok(())) } { |
| 339 | waker_list.push(waker); |
| 340 | |
| 341 | if !waker_list.can_push() { |
| 342 | // Wake a batch of wakers. To avoid deadlock, we must do this with the lock temporarily dropped. |
| 343 | drop(lock); |
| 344 | drop(wheels_lock); |
| 345 | |
| 346 | waker_list.wake_all(); |
| 347 | |
| 348 | wheels_lock = self.inner.wheels.read(); |
| 349 | lock = wheels_lock.lock_sharded_wheel(id); |
| 350 | } |
| 351 | } |
| 352 | } |
| 353 | let next_wake_up = lock.poll_at(); |
| 354 | drop(lock); |
| 355 | drop(wheels_lock); |
| 356 | |
| 357 | waker_list.wake_all(); |
| 358 | next_wake_up |
| 359 | } |
| 360 | |
| 361 | /// Removes a registered timer from the driver. |
| 362 | /// |
| 363 | /// The timer will be moved to the cancelled state. Wakers will _not_ be |
| 364 | /// invoked. If the timer is already completed, this function is a no-op. |
| 365 | /// |
| 366 | /// This function always acquires the driver lock, even if the entry does |
| 367 | /// not appear to be registered. |
| 368 | /// |
| 369 | /// SAFETY: The timer must not be registered with some other driver, and |
| 370 | /// `add_entry` must not be called concurrently. |
| 371 | pub(self) unsafe fn clear_entry(&self, entry: NonNull<TimerShared>) { |
| 372 | unsafe { |
| 373 | let wheels_lock = self.inner.wheels.read(); |
| 374 | let mut lock = wheels_lock.lock_sharded_wheel(entry.as_ref().shard_id()); |
| 375 | |
| 376 | if entry.as_ref().might_be_registered() { |
| 377 | lock.remove(entry); |
| 378 | } |
| 379 | |
| 380 | entry.as_ref().handle().fire(Ok(())); |
| 381 | } |
| 382 | } |
| 383 | |
| 384 | /// Removes and re-adds an entry to the driver. |
| 385 | /// |
| 386 | /// SAFETY: The timer must be either unregistered, or registered with this |
| 387 | /// driver. No other threads are allowed to concurrently manipulate the |
| 388 | /// timer at all (the current thread should hold an exclusive reference to |
| 389 | /// the `TimerEntry`) |
| 390 | pub(self) unsafe fn reregister( |
| 391 | &self, |
| 392 | unpark: &IoHandle, |
| 393 | new_tick: u64, |
| 394 | entry: NonNull<TimerShared>, |
| 395 | ) { |
| 396 | let waker = unsafe { |
| 397 | let wheels_lock = self.inner.wheels.read(); |
| 398 | |
| 399 | let mut lock = wheels_lock.lock_sharded_wheel(entry.as_ref().shard_id()); |
| 400 | |
| 401 | // We may have raced with a firing/deregistration, so check before |
| 402 | // deregistering. |
| 403 | if unsafe { entry.as_ref().might_be_registered() } { |
| 404 | lock.remove(entry); |
| 405 | } |
| 406 | |
| 407 | // Now that we have exclusive control of this entry, mint a handle to reinsert it. |
| 408 | let entry = entry.as_ref().handle(); |
| 409 | |
| 410 | if self.is_shutdown() { |
| 411 | unsafe { entry.fire(Err(crate::time::error::Error::shutdown())) } |
| 412 | } else { |
| 413 | entry.set_expiration(new_tick); |
| 414 | |
| 415 | // Note: We don't have to worry about racing with some other resetting |
| 416 | // thread, because add_entry and reregister require exclusive control of |
| 417 | // the timer entry. |
| 418 | match unsafe { lock.insert(entry) } { |
| 419 | Ok(when) => { |
| 420 | if self |
| 421 | .inner |
| 422 | .next_wake |
| 423 | .load() |
| 424 | .map(|next_wake| when < next_wake.get()) |
| 425 | .unwrap_or(true) |
| 426 | { |
| 427 | unpark.unpark(); |
| 428 | } |
| 429 | |
| 430 | None |
| 431 | } |
| 432 | Err((entry, crate::time::error::InsertError::Elapsed)) => unsafe { |
| 433 | entry.fire(Ok(())) |
| 434 | }, |
| 435 | } |
| 436 | } |
| 437 | |
| 438 | // Must release lock before invoking waker to avoid the risk of deadlock. |
| 439 | }; |
| 440 | |
| 441 | // The timer was fired synchronously as a result of the reregistration. |
| 442 | // Wake the waker; this is needed because we might reset _after_ a poll, |
| 443 | // and otherwise the task won't be awoken to poll again. |
| 444 | if let Some(waker) = waker { |
| 445 | waker.wake(); |
| 446 | } |
| 447 | } |
| 448 | |
| 449 | cfg_test_util! { |
| 450 | fn did_wake(&self) -> bool { |
| 451 | self.inner.did_wake.swap(false, Ordering::SeqCst) |
| 452 | } |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | // ===== impl Inner ===== |
| 457 | |
| 458 | impl Inner { |
| 459 | // Check whether the driver has been shutdown |
| 460 | pub(super) fn is_shutdown(&self) -> bool { |
| 461 | self.is_shutdown.load(order:Ordering::SeqCst) |
| 462 | } |
| 463 | |
| 464 | // Gets the number of shards. |
| 465 | fn get_shard_size(&self) -> u32 { |
| 466 | self.wheels_len |
| 467 | } |
| 468 | } |
| 469 | |
| 470 | impl fmt::Debug for Inner { |
| 471 | fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 472 | fmt.debug_struct(name:"Inner" ).finish() |
| 473 | } |
| 474 | } |
| 475 | |
| 476 | // ===== impl ShardedWheel ===== |
| 477 | |
| 478 | impl ShardedWheel { |
| 479 | /// Locks the driver's sharded wheel structure. |
| 480 | pub(super) fn lock_sharded_wheel( |
| 481 | &self, |
| 482 | shard_id: u32, |
| 483 | ) -> crate::loom::sync::MutexGuard<'_, Wheel> { |
| 484 | let index: u32 = shard_id % (self.0.len() as u32); |
| 485 | // Safety: This modulo operation ensures that the index is not out of bounds. |
| 486 | unsafe { self.0.get_unchecked(index as usize) }.lock() |
| 487 | } |
| 488 | } |
| 489 | |
| 490 | #[cfg (test)] |
| 491 | mod tests; |
| 492 | |