1 | // Currently, rust warns when an unsafe fn contains an unsafe {} block. However, |
2 | // in the future, this will change to the reverse. For now, suppress this |
3 | // warning and generally stick with being explicit about unsafety. |
4 | #![allow (unused_unsafe)] |
5 | #![cfg_attr (not(feature = "rt" ), allow(dead_code))] |
6 | |
7 | //! Time driver. |
8 | |
9 | mod entry; |
10 | pub(crate) use entry::TimerEntry; |
11 | use entry::{EntryList, TimerHandle, TimerShared, MAX_SAFE_MILLIS_DURATION}; |
12 | |
13 | mod handle; |
14 | pub(crate) use self::handle::Handle; |
15 | use self::wheel::Wheel; |
16 | |
17 | mod source; |
18 | pub(crate) use source::TimeSource; |
19 | |
20 | mod wheel; |
21 | |
22 | use crate::loom::sync::atomic::{AtomicBool, Ordering}; |
23 | use crate::loom::sync::{Mutex, RwLock}; |
24 | use crate::runtime::driver::{self, IoHandle, IoStack}; |
25 | use crate::time::error::Error; |
26 | use crate::time::{Clock, Duration}; |
27 | use crate::util::WakeList; |
28 | |
29 | use crate::loom::sync::atomic::AtomicU64; |
30 | use std::fmt; |
31 | use std::{num::NonZeroU64, ptr::NonNull}; |
32 | |
33 | struct AtomicOptionNonZeroU64(AtomicU64); |
34 | |
35 | // A helper type to store the `next_wake`. |
36 | impl AtomicOptionNonZeroU64 { |
37 | fn new(val: Option<NonZeroU64>) -> Self { |
38 | Self(AtomicU64::new(val.map_or(default:0, f:NonZeroU64::get))) |
39 | } |
40 | |
41 | fn store(&self, val: Option<NonZeroU64>) { |
42 | self.0 |
43 | .store(val.map_or(0, NonZeroU64::get), order:Ordering::Relaxed); |
44 | } |
45 | |
46 | fn load(&self) -> Option<NonZeroU64> { |
47 | NonZeroU64::new(self.0.load(order:Ordering::Relaxed)) |
48 | } |
49 | } |
50 | |
51 | /// Time implementation that drives [`Sleep`][sleep], [`Interval`][interval], and [`Timeout`][timeout]. |
52 | /// |
53 | /// A `Driver` instance tracks the state necessary for managing time and |
54 | /// notifying the [`Sleep`][sleep] instances once their deadlines are reached. |
55 | /// |
56 | /// It is expected that a single instance manages many individual [`Sleep`][sleep] |
57 | /// instances. The `Driver` implementation is thread-safe and, as such, is able |
58 | /// to handle callers from across threads. |
59 | /// |
60 | /// After creating the `Driver` instance, the caller must repeatedly call `park` |
61 | /// or `park_timeout`. The time driver will perform no work unless `park` or |
62 | /// `park_timeout` is called repeatedly. |
63 | /// |
64 | /// The driver has a resolution of one millisecond. Any unit of time that falls |
65 | /// between milliseconds are rounded up to the next millisecond. |
66 | /// |
67 | /// When an instance is dropped, any outstanding [`Sleep`][sleep] instance that has not |
68 | /// elapsed will be notified with an error. At this point, calling `poll` on the |
69 | /// [`Sleep`][sleep] instance will result in panic. |
70 | /// |
71 | /// # Implementation |
72 | /// |
73 | /// The time driver is based on the [paper by Varghese and Lauck][paper]. |
74 | /// |
75 | /// A hashed timing wheel is a vector of slots, where each slot handles a time |
76 | /// slice. As time progresses, the timer walks over the slot for the current |
77 | /// instant, and processes each entry for that slot. When the timer reaches the |
78 | /// end of the wheel, it starts again at the beginning. |
79 | /// |
80 | /// The implementation maintains six wheels arranged in a set of levels. As the |
81 | /// levels go up, the slots of the associated wheel represent larger intervals |
82 | /// of time. At each level, the wheel has 64 slots. Each slot covers a range of |
83 | /// time equal to the wheel at the lower level. At level zero, each slot |
84 | /// represents one millisecond of time. |
85 | /// |
86 | /// The wheels are: |
87 | /// |
88 | /// * Level 0: 64 x 1 millisecond slots. |
89 | /// * Level 1: 64 x 64 millisecond slots. |
90 | /// * Level 2: 64 x ~4 second slots. |
91 | /// * Level 3: 64 x ~4 minute slots. |
92 | /// * Level 4: 64 x ~4 hour slots. |
93 | /// * Level 5: 64 x ~12 day slots. |
94 | /// |
95 | /// When the timer processes entries at level zero, it will notify all the |
96 | /// `Sleep` instances as their deadlines have been reached. For all higher |
97 | /// levels, all entries will be redistributed across the wheel at the next level |
98 | /// down. Eventually, as time progresses, entries with [`Sleep`][sleep] instances will |
99 | /// either be canceled (dropped) or their associated entries will reach level |
100 | /// zero and be notified. |
101 | /// |
102 | /// [paper]: http://www.cs.columbia.edu/~nahum/w6998/papers/ton97-timing-wheels.pdf |
103 | /// [sleep]: crate::time::Sleep |
104 | /// [timeout]: crate::time::Timeout |
105 | /// [interval]: crate::time::Interval |
106 | #[derive (Debug)] |
107 | pub(crate) struct Driver { |
108 | /// Parker to delegate to. |
109 | park: IoStack, |
110 | } |
111 | |
112 | /// Timer state shared between `Driver`, `Handle`, and `Registration`. |
113 | struct Inner { |
114 | /// The earliest time at which we promise to wake up without unparking. |
115 | next_wake: AtomicOptionNonZeroU64, |
116 | |
117 | /// Sharded Timer wheels. |
118 | wheels: RwLock<ShardedWheel>, |
119 | |
120 | /// Number of entries in the sharded timer wheels. |
121 | wheels_len: u32, |
122 | |
123 | /// True if the driver is being shutdown. |
124 | pub(super) is_shutdown: AtomicBool, |
125 | |
126 | // When `true`, a call to `park_timeout` should immediately return and time |
127 | // should not advance. One reason for this to be `true` is if the task |
128 | // passed to `Runtime::block_on` called `task::yield_now()`. |
129 | // |
130 | // While it may look racy, it only has any effect when the clock is paused |
131 | // and pausing the clock is restricted to a single-threaded runtime. |
132 | #[cfg (feature = "test-util" )] |
133 | did_wake: AtomicBool, |
134 | } |
135 | |
136 | /// Wrapper around the sharded timer wheels. |
137 | struct ShardedWheel(Box<[Mutex<wheel::Wheel>]>); |
138 | |
139 | // ===== impl Driver ===== |
140 | |
141 | impl Driver { |
142 | /// Creates a new `Driver` instance that uses `park` to block the current |
143 | /// thread and `time_source` to get the current time and convert to ticks. |
144 | /// |
145 | /// Specifying the source of time is useful when testing. |
146 | pub(crate) fn new(park: IoStack, clock: &Clock, shards: u32) -> (Driver, Handle) { |
147 | assert!(shards > 0); |
148 | |
149 | let time_source = TimeSource::new(clock); |
150 | let wheels: Vec<_> = (0..shards) |
151 | .map(|_| Mutex::new(wheel::Wheel::new())) |
152 | .collect(); |
153 | |
154 | let handle = Handle { |
155 | time_source, |
156 | inner: Inner { |
157 | next_wake: AtomicOptionNonZeroU64::new(None), |
158 | wheels: RwLock::new(ShardedWheel(wheels.into_boxed_slice())), |
159 | wheels_len: shards, |
160 | is_shutdown: AtomicBool::new(false), |
161 | #[cfg (feature = "test-util" )] |
162 | did_wake: AtomicBool::new(false), |
163 | }, |
164 | }; |
165 | |
166 | let driver = Driver { park }; |
167 | |
168 | (driver, handle) |
169 | } |
170 | |
171 | pub(crate) fn park(&mut self, handle: &driver::Handle) { |
172 | self.park_internal(handle, None); |
173 | } |
174 | |
175 | pub(crate) fn park_timeout(&mut self, handle: &driver::Handle, duration: Duration) { |
176 | self.park_internal(handle, Some(duration)); |
177 | } |
178 | |
179 | pub(crate) fn shutdown(&mut self, rt_handle: &driver::Handle) { |
180 | let handle = rt_handle.time(); |
181 | |
182 | if handle.is_shutdown() { |
183 | return; |
184 | } |
185 | |
186 | handle.inner.is_shutdown.store(true, Ordering::SeqCst); |
187 | |
188 | // Advance time forward to the end of time. |
189 | |
190 | handle.process_at_time(0, u64::MAX); |
191 | |
192 | self.park.shutdown(rt_handle); |
193 | } |
194 | |
195 | fn park_internal(&mut self, rt_handle: &driver::Handle, limit: Option<Duration>) { |
196 | let handle = rt_handle.time(); |
197 | assert!(!handle.is_shutdown()); |
198 | |
199 | // Finds out the min expiration time to park. |
200 | let expiration_time = { |
201 | let mut wheels_lock = rt_handle.time().inner.wheels.write(); |
202 | let expiration_time = wheels_lock |
203 | .0 |
204 | .iter_mut() |
205 | .filter_map(|wheel| wheel.get_mut().next_expiration_time()) |
206 | .min(); |
207 | |
208 | rt_handle |
209 | .time() |
210 | .inner |
211 | .next_wake |
212 | .store(next_wake_time(expiration_time)); |
213 | |
214 | expiration_time |
215 | }; |
216 | |
217 | match expiration_time { |
218 | Some(when) => { |
219 | let now = handle.time_source.now(rt_handle.clock()); |
220 | // Note that we effectively round up to 1ms here - this avoids |
221 | // very short-duration microsecond-resolution sleeps that the OS |
222 | // might treat as zero-length. |
223 | let mut duration = handle |
224 | .time_source |
225 | .tick_to_duration(when.saturating_sub(now)); |
226 | |
227 | if duration > Duration::from_millis(0) { |
228 | if let Some(limit) = limit { |
229 | duration = std::cmp::min(limit, duration); |
230 | } |
231 | |
232 | self.park_thread_timeout(rt_handle, duration); |
233 | } else { |
234 | self.park.park_timeout(rt_handle, Duration::from_secs(0)); |
235 | } |
236 | } |
237 | None => { |
238 | if let Some(duration) = limit { |
239 | self.park_thread_timeout(rt_handle, duration); |
240 | } else { |
241 | self.park.park(rt_handle); |
242 | } |
243 | } |
244 | } |
245 | |
246 | // Process pending timers after waking up |
247 | handle.process(rt_handle.clock()); |
248 | } |
249 | |
250 | cfg_test_util! { |
251 | fn park_thread_timeout(&mut self, rt_handle: &driver::Handle, duration: Duration) { |
252 | let handle = rt_handle.time(); |
253 | let clock = rt_handle.clock(); |
254 | |
255 | if clock.can_auto_advance() { |
256 | self.park.park_timeout(rt_handle, Duration::from_secs(0)); |
257 | |
258 | // If the time driver was woken, then the park completed |
259 | // before the "duration" elapsed (usually caused by a |
260 | // yield in `Runtime::block_on`). In this case, we don't |
261 | // advance the clock. |
262 | if !handle.did_wake() { |
263 | // Simulate advancing time |
264 | if let Err(msg) = clock.advance(duration) { |
265 | panic!("{}" , msg); |
266 | } |
267 | } |
268 | } else { |
269 | self.park.park_timeout(rt_handle, duration); |
270 | } |
271 | } |
272 | } |
273 | |
274 | cfg_not_test_util! { |
275 | fn park_thread_timeout(&mut self, rt_handle: &driver::Handle, duration: Duration) { |
276 | self.park.park_timeout(rt_handle, duration); |
277 | } |
278 | } |
279 | } |
280 | |
281 | // Helper function to turn expiration_time into next_wake_time. |
282 | // Since the `park_timeout` will round up to 1ms for avoiding very |
283 | // short-duration microsecond-resolution sleeps, we do the same here. |
284 | // The conversion is as follows |
285 | // None => None |
286 | // Some(0) => Some(1) |
287 | // Some(i) => Some(i) |
288 | fn next_wake_time(expiration_time: Option<u64>) -> Option<NonZeroU64> { |
289 | expiration_time.and_then(|v: u64| { |
290 | if v == 0 { |
291 | NonZeroU64::new(1) |
292 | } else { |
293 | NonZeroU64::new(v) |
294 | } |
295 | }) |
296 | } |
297 | |
298 | impl Handle { |
299 | /// Runs timer related logic, and returns the next wakeup time |
300 | pub(self) fn process(&self, clock: &Clock) { |
301 | let now = self.time_source().now(clock); |
302 | // For fairness, randomly select one to start. |
303 | let shards = self.inner.get_shard_size(); |
304 | let start = crate::runtime::context::thread_rng_n(shards); |
305 | self.process_at_time(start, now); |
306 | } |
307 | |
308 | pub(self) fn process_at_time(&self, start: u32, now: u64) { |
309 | let shards = self.inner.get_shard_size(); |
310 | |
311 | let expiration_time = (start..shards + start) |
312 | .filter_map(|i| self.process_at_sharded_time(i, now)) |
313 | .min(); |
314 | |
315 | self.inner.next_wake.store(next_wake_time(expiration_time)); |
316 | } |
317 | |
318 | // Returns the next wakeup time of this shard. |
319 | pub(self) fn process_at_sharded_time(&self, id: u32, mut now: u64) -> Option<u64> { |
320 | let mut waker_list = WakeList::new(); |
321 | let mut wheels_lock = self.inner.wheels.read(); |
322 | let mut lock = wheels_lock.lock_sharded_wheel(id); |
323 | |
324 | if now < lock.elapsed() { |
325 | // Time went backwards! This normally shouldn't happen as the Rust language |
326 | // guarantees that an Instant is monotonic, but can happen when running |
327 | // Linux in a VM on a Windows host due to std incorrectly trusting the |
328 | // hardware clock to be monotonic. |
329 | // |
330 | // See <https://github.com/tokio-rs/tokio/issues/3619> for more information. |
331 | now = lock.elapsed(); |
332 | } |
333 | |
334 | while let Some(entry) = lock.poll(now) { |
335 | debug_assert!(unsafe { entry.is_pending() }); |
336 | |
337 | // SAFETY: We hold the driver lock, and just removed the entry from any linked lists. |
338 | if let Some(waker) = unsafe { entry.fire(Ok(())) } { |
339 | waker_list.push(waker); |
340 | |
341 | if !waker_list.can_push() { |
342 | // Wake a batch of wakers. To avoid deadlock, we must do this with the lock temporarily dropped. |
343 | drop(lock); |
344 | drop(wheels_lock); |
345 | |
346 | waker_list.wake_all(); |
347 | |
348 | wheels_lock = self.inner.wheels.read(); |
349 | lock = wheels_lock.lock_sharded_wheel(id); |
350 | } |
351 | } |
352 | } |
353 | let next_wake_up = lock.poll_at(); |
354 | drop(lock); |
355 | drop(wheels_lock); |
356 | |
357 | waker_list.wake_all(); |
358 | next_wake_up |
359 | } |
360 | |
361 | /// Removes a registered timer from the driver. |
362 | /// |
363 | /// The timer will be moved to the cancelled state. Wakers will _not_ be |
364 | /// invoked. If the timer is already completed, this function is a no-op. |
365 | /// |
366 | /// This function always acquires the driver lock, even if the entry does |
367 | /// not appear to be registered. |
368 | /// |
369 | /// SAFETY: The timer must not be registered with some other driver, and |
370 | /// `add_entry` must not be called concurrently. |
371 | pub(self) unsafe fn clear_entry(&self, entry: NonNull<TimerShared>) { |
372 | unsafe { |
373 | let wheels_lock = self.inner.wheels.read(); |
374 | let mut lock = wheels_lock.lock_sharded_wheel(entry.as_ref().shard_id()); |
375 | |
376 | if entry.as_ref().might_be_registered() { |
377 | lock.remove(entry); |
378 | } |
379 | |
380 | entry.as_ref().handle().fire(Ok(())); |
381 | } |
382 | } |
383 | |
384 | /// Removes and re-adds an entry to the driver. |
385 | /// |
386 | /// SAFETY: The timer must be either unregistered, or registered with this |
387 | /// driver. No other threads are allowed to concurrently manipulate the |
388 | /// timer at all (the current thread should hold an exclusive reference to |
389 | /// the `TimerEntry`) |
390 | pub(self) unsafe fn reregister( |
391 | &self, |
392 | unpark: &IoHandle, |
393 | new_tick: u64, |
394 | entry: NonNull<TimerShared>, |
395 | ) { |
396 | let waker = unsafe { |
397 | let wheels_lock = self.inner.wheels.read(); |
398 | |
399 | let mut lock = wheels_lock.lock_sharded_wheel(entry.as_ref().shard_id()); |
400 | |
401 | // We may have raced with a firing/deregistration, so check before |
402 | // deregistering. |
403 | if unsafe { entry.as_ref().might_be_registered() } { |
404 | lock.remove(entry); |
405 | } |
406 | |
407 | // Now that we have exclusive control of this entry, mint a handle to reinsert it. |
408 | let entry = entry.as_ref().handle(); |
409 | |
410 | if self.is_shutdown() { |
411 | unsafe { entry.fire(Err(crate::time::error::Error::shutdown())) } |
412 | } else { |
413 | entry.set_expiration(new_tick); |
414 | |
415 | // Note: We don't have to worry about racing with some other resetting |
416 | // thread, because add_entry and reregister require exclusive control of |
417 | // the timer entry. |
418 | match unsafe { lock.insert(entry) } { |
419 | Ok(when) => { |
420 | if self |
421 | .inner |
422 | .next_wake |
423 | .load() |
424 | .map(|next_wake| when < next_wake.get()) |
425 | .unwrap_or(true) |
426 | { |
427 | unpark.unpark(); |
428 | } |
429 | |
430 | None |
431 | } |
432 | Err((entry, crate::time::error::InsertError::Elapsed)) => unsafe { |
433 | entry.fire(Ok(())) |
434 | }, |
435 | } |
436 | } |
437 | |
438 | // Must release lock before invoking waker to avoid the risk of deadlock. |
439 | }; |
440 | |
441 | // The timer was fired synchronously as a result of the reregistration. |
442 | // Wake the waker; this is needed because we might reset _after_ a poll, |
443 | // and otherwise the task won't be awoken to poll again. |
444 | if let Some(waker) = waker { |
445 | waker.wake(); |
446 | } |
447 | } |
448 | |
449 | cfg_test_util! { |
450 | fn did_wake(&self) -> bool { |
451 | self.inner.did_wake.swap(false, Ordering::SeqCst) |
452 | } |
453 | } |
454 | } |
455 | |
456 | // ===== impl Inner ===== |
457 | |
458 | impl Inner { |
459 | // Check whether the driver has been shutdown |
460 | pub(super) fn is_shutdown(&self) -> bool { |
461 | self.is_shutdown.load(order:Ordering::SeqCst) |
462 | } |
463 | |
464 | // Gets the number of shards. |
465 | fn get_shard_size(&self) -> u32 { |
466 | self.wheels_len |
467 | } |
468 | } |
469 | |
470 | impl fmt::Debug for Inner { |
471 | fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { |
472 | fmt.debug_struct(name:"Inner" ).finish() |
473 | } |
474 | } |
475 | |
476 | // ===== impl ShardedWheel ===== |
477 | |
478 | impl ShardedWheel { |
479 | /// Locks the driver's sharded wheel structure. |
480 | pub(super) fn lock_sharded_wheel( |
481 | &self, |
482 | shard_id: u32, |
483 | ) -> crate::loom::sync::MutexGuard<'_, Wheel> { |
484 | let index: u32 = shard_id % (self.0.len() as u32); |
485 | // Safety: This modulo operation ensures that the index is not out of bounds. |
486 | unsafe { self.0.get_unchecked(index as usize) }.lock() |
487 | } |
488 | } |
489 | |
490 | #[cfg (test)] |
491 | mod tests; |
492 | |