1 | /* |
2 | * Copyright (c) 2023. |
3 | * |
4 | * This software is free software; |
5 | * |
6 | * You can redistribute it or modify it under terms of the MIT, Apache License or Zlib license |
7 | */ |
8 | |
9 | //!Routines for progressive decoding |
10 | /* |
11 | This file is needlessly complicated, |
12 | |
13 | It is that way to ensure we don't burn memory anyhow |
14 | |
15 | Memory is a scarce resource in some environments, I would like this to be viable |
16 | in such environments |
17 | |
18 | Half of the complexity comes from the jpeg spec, because progressive decoding, |
19 | is one hell of a ride. |
20 | |
21 | */ |
22 | use alloc::string::ToString; |
23 | use alloc::vec::Vec; |
24 | use alloc::{format, vec}; |
25 | use core::cmp::min; |
26 | |
27 | use zune_core::bytestream::{ZByteReader, ZReaderTrait}; |
28 | use zune_core::colorspace::ColorSpace; |
29 | use zune_core::log::{debug, error, warn}; |
30 | |
31 | use crate::bitstream::BitStream; |
32 | use crate::components::{ComponentID, SampleRatios}; |
33 | use crate::decoder::{JpegDecoder, MAX_COMPONENTS}; |
34 | use crate::errors::DecodeErrors; |
35 | use crate::errors::DecodeErrors::Format; |
36 | use crate::headers::{parse_huffman, parse_sos}; |
37 | use crate::marker::Marker; |
38 | use crate::mcu::DCT_BLOCK; |
39 | use crate::misc::{calculate_padded_width, setup_component_params}; |
40 | |
41 | impl<T: ZReaderTrait> JpegDecoder<T> { |
42 | /// Decode a progressive image |
43 | /// |
44 | /// This routine decodes a progressive image, stopping if it finds any error. |
45 | #[allow ( |
46 | clippy::needless_range_loop, |
47 | clippy::cast_sign_loss, |
48 | clippy::redundant_else, |
49 | clippy::too_many_lines |
50 | )] |
51 | #[inline (never)] |
52 | pub(crate) fn decode_mcu_ycbcr_progressive( |
53 | &mut self, pixels: &mut [u8] |
54 | ) -> Result<(), DecodeErrors> { |
55 | setup_component_params(self)?; |
56 | |
57 | let mut mcu_height; |
58 | |
59 | // memory location for decoded pixels for components |
60 | let mut block: [Vec<i16>; MAX_COMPONENTS] = [vec![], vec![], vec![], vec![]]; |
61 | let mut mcu_width; |
62 | |
63 | let mut seen_scans = 1; |
64 | |
65 | if self.input_colorspace == ColorSpace::Luma && self.is_interleaved { |
66 | warn!("Grayscale image with down-sampled component, resetting component details" ); |
67 | self.reset_params(); |
68 | } |
69 | |
70 | if self.is_interleaved { |
71 | // this helps us catch component errors. |
72 | self.set_upsampling()?; |
73 | } |
74 | if self.is_interleaved { |
75 | mcu_width = self.mcu_x; |
76 | mcu_height = self.mcu_y; |
77 | } else { |
78 | mcu_width = (self.info.width as usize + 7) / 8; |
79 | mcu_height = (self.info.height as usize + 7) / 8; |
80 | } |
81 | if self.is_interleaved |
82 | && self.input_colorspace.num_components() > 1 |
83 | && self.options.jpeg_get_out_colorspace().num_components() == 1 |
84 | && (self.sub_sample_ratio == SampleRatios::V |
85 | || self.sub_sample_ratio == SampleRatios::HV) |
86 | { |
87 | // For a specific set of images, e.g interleaved, |
88 | // when converting from YcbCr to grayscale, we need to |
89 | // take into account mcu height since the MCU decoding needs to take |
90 | // it into account for padding purposes and the post processor |
91 | // parses two rows per mcu width. |
92 | // |
93 | // set coeff to be 2 to ensure that we increment two rows |
94 | // for every mcu processed also |
95 | mcu_height *= self.v_max; |
96 | mcu_height /= self.h_max; |
97 | self.coeff = 2; |
98 | } |
99 | |
100 | mcu_width *= 64; |
101 | |
102 | if self.input_colorspace.num_components() > self.components.len() { |
103 | let msg = format!( |
104 | " Expected {} number of components but found {}" , |
105 | self.input_colorspace.num_components(), |
106 | self.components.len() |
107 | ); |
108 | return Err(DecodeErrors::Format(msg)); |
109 | } |
110 | for i in 0..self.input_colorspace.num_components() { |
111 | let comp = &self.components[i]; |
112 | let len = mcu_width * comp.vertical_sample * comp.horizontal_sample * mcu_height; |
113 | |
114 | block[i] = vec![0; len]; |
115 | } |
116 | |
117 | let mut stream = BitStream::new_progressive( |
118 | self.succ_high, |
119 | self.succ_low, |
120 | self.spec_start, |
121 | self.spec_end |
122 | ); |
123 | |
124 | // there are multiple scans in the stream, this should resolve the first scan |
125 | self.parse_entropy_coded_data(&mut stream, &mut block)?; |
126 | |
127 | // extract marker |
128 | let mut marker = stream |
129 | .marker |
130 | .take() |
131 | .ok_or(DecodeErrors::FormatStatic("Marker missing where expected" ))?; |
132 | |
133 | // if marker is EOI, we are done, otherwise continue scanning. |
134 | // |
135 | // In case we have a premature image, we print a warning or return |
136 | // an error, depending on the strictness of the decoder, so there |
137 | // is that logic to handle too |
138 | 'eoi: while marker != Marker::EOI { |
139 | match marker { |
140 | Marker::DHT => { |
141 | parse_huffman(self)?; |
142 | } |
143 | Marker::SOS => { |
144 | parse_sos(self)?; |
145 | |
146 | stream.update_progressive_params( |
147 | self.succ_high, |
148 | self.succ_low, |
149 | self.spec_start, |
150 | self.spec_end |
151 | ); |
152 | |
153 | // after every SOS, marker, parse data for that scan. |
154 | self.parse_entropy_coded_data(&mut stream, &mut block)?; |
155 | // extract marker, might either indicate end of image or we continue |
156 | // scanning(hence the continue statement to determine). |
157 | match get_marker(&mut self.stream, &mut stream) { |
158 | Ok(marker_n) => { |
159 | marker = marker_n; |
160 | seen_scans += 1; |
161 | if seen_scans > self.options.jpeg_get_max_scans() { |
162 | return Err(DecodeErrors::Format(format!( |
163 | "Too many scans, exceeded limit of {}" , |
164 | self.options.jpeg_get_max_scans() |
165 | ))); |
166 | } |
167 | |
168 | stream.reset(); |
169 | continue 'eoi; |
170 | } |
171 | Err(msg) => { |
172 | if self.options.get_strict_mode() { |
173 | return Err(msg); |
174 | } |
175 | error!("{:?}" , msg); |
176 | break 'eoi; |
177 | } |
178 | } |
179 | } |
180 | _ => { |
181 | break 'eoi; |
182 | } |
183 | } |
184 | |
185 | match get_marker(&mut self.stream, &mut stream) { |
186 | Ok(marker_n) => { |
187 | marker = marker_n; |
188 | } |
189 | Err(e) => { |
190 | if self.options.get_strict_mode() { |
191 | return Err(e); |
192 | } |
193 | error!("{}" , e); |
194 | } |
195 | } |
196 | } |
197 | |
198 | self.finish_progressive_decoding(&block, mcu_width, pixels) |
199 | } |
200 | |
201 | #[allow (clippy::too_many_lines, clippy::cast_sign_loss)] |
202 | fn parse_entropy_coded_data( |
203 | &mut self, stream: &mut BitStream, buffer: &mut [Vec<i16>; MAX_COMPONENTS] |
204 | ) -> Result<(), DecodeErrors> { |
205 | stream.reset(); |
206 | self.components.iter_mut().for_each(|x| x.dc_pred = 0); |
207 | |
208 | if usize::from(self.num_scans) > self.input_colorspace.num_components() { |
209 | return Err(Format(format!( |
210 | "Number of scans {} cannot be greater than number of components, {}" , |
211 | self.num_scans, |
212 | self.input_colorspace.num_components() |
213 | ))); |
214 | } |
215 | |
216 | if self.num_scans == 1 { |
217 | // Safety checks |
218 | if self.spec_end != 0 && self.spec_start == 0 { |
219 | return Err(DecodeErrors::FormatStatic( |
220 | "Can't merge DC and AC corrupt jpeg" |
221 | )); |
222 | } |
223 | // non interleaved data, process one block at a time in trivial scanline order |
224 | |
225 | let k = self.z_order[0]; |
226 | |
227 | if k >= self.components.len() { |
228 | return Err(DecodeErrors::Format(format!( |
229 | "Cannot find component {k}, corrupt image" |
230 | ))); |
231 | } |
232 | |
233 | let (mcu_width, mcu_height); |
234 | |
235 | if self.components[k].component_id == ComponentID::Y |
236 | && (self.components[k].vertical_sample != 1 |
237 | || self.components[k].horizontal_sample != 1) |
238 | || !self.is_interleaved |
239 | { |
240 | // For Y channel or non interleaved scans , |
241 | // mcu's is the image dimensions divided by 8 |
242 | mcu_width = ((self.info.width + 7) / 8) as usize; |
243 | mcu_height = ((self.info.height + 7) / 8) as usize; |
244 | } else { |
245 | // For other channels, in an interleaved mcu, number of MCU's |
246 | // are determined by some weird maths done in headers.rs->parse_sos() |
247 | mcu_width = self.mcu_x; |
248 | mcu_height = self.mcu_y; |
249 | } |
250 | |
251 | for i in 0..mcu_height { |
252 | for j in 0..mcu_width { |
253 | if self.spec_start != 0 && self.succ_high == 0 && stream.eob_run > 0 { |
254 | // handle EOB runs here. |
255 | stream.eob_run -= 1; |
256 | continue; |
257 | } |
258 | let start = 64 * (j + i * (self.components[k].width_stride / 8)); |
259 | |
260 | let data: &mut [i16; 64] = buffer |
261 | .get_mut(k) |
262 | .unwrap() |
263 | .get_mut(start..start + 64) |
264 | .unwrap() |
265 | .try_into() |
266 | .unwrap(); |
267 | |
268 | if self.spec_start == 0 { |
269 | let pos = self.components[k].dc_huff_table & (MAX_COMPONENTS - 1); |
270 | let dc_table = self |
271 | .dc_huffman_tables |
272 | .get(pos) |
273 | .ok_or(DecodeErrors::FormatStatic( |
274 | "No huffman table for DC component" |
275 | ))? |
276 | .as_ref() |
277 | .ok_or(DecodeErrors::FormatStatic( |
278 | "Huffman table at index {} not initialized" |
279 | ))?; |
280 | |
281 | let dc_pred = &mut self.components[k].dc_pred; |
282 | |
283 | if self.succ_high == 0 { |
284 | // first scan for this mcu |
285 | stream.decode_prog_dc_first( |
286 | &mut self.stream, |
287 | dc_table, |
288 | &mut data[0], |
289 | dc_pred |
290 | )?; |
291 | } else { |
292 | // refining scans for this MCU |
293 | stream.decode_prog_dc_refine(&mut self.stream, &mut data[0])?; |
294 | } |
295 | } else { |
296 | let pos = self.components[k].ac_huff_table; |
297 | let ac_table = self |
298 | .ac_huffman_tables |
299 | .get(pos) |
300 | .ok_or_else(|| { |
301 | DecodeErrors::Format(format!( |
302 | "No huffman table for component: {pos}" |
303 | )) |
304 | })? |
305 | .as_ref() |
306 | .ok_or_else(|| { |
307 | DecodeErrors::Format(format!( |
308 | "Huffman table at index {pos} not initialized" |
309 | )) |
310 | })?; |
311 | |
312 | if self.succ_high == 0 { |
313 | debug_assert!(stream.eob_run == 0, "EOB run is not zero" ); |
314 | |
315 | stream.decode_mcu_ac_first(&mut self.stream, ac_table, data)?; |
316 | } else { |
317 | // refinement scan |
318 | stream.decode_mcu_ac_refine(&mut self.stream, ac_table, data)?; |
319 | } |
320 | } |
321 | // + EOB and investigate effect. |
322 | self.todo -= 1; |
323 | |
324 | if self.todo == 0 { |
325 | self.handle_rst(stream)?; |
326 | } |
327 | } |
328 | } |
329 | } else { |
330 | if self.spec_end != 0 { |
331 | return Err(DecodeErrors::HuffmanDecode( |
332 | "Can't merge dc and AC corrupt jpeg" .to_string() |
333 | )); |
334 | } |
335 | // process scan n elements in order |
336 | |
337 | // Do the error checking with allocs here. |
338 | // Make the one in the inner loop free of allocations. |
339 | for k in 0..self.num_scans { |
340 | let n = self.z_order[k as usize]; |
341 | |
342 | if n >= self.components.len() { |
343 | return Err(DecodeErrors::Format(format!( |
344 | "Cannot find component {n}, corrupt image" |
345 | ))); |
346 | } |
347 | |
348 | let component = &mut self.components[n]; |
349 | let _ = self |
350 | .dc_huffman_tables |
351 | .get(component.dc_huff_table) |
352 | .ok_or_else(|| { |
353 | DecodeErrors::Format(format!( |
354 | "No huffman table for component: {}" , |
355 | component.dc_huff_table |
356 | )) |
357 | })? |
358 | .as_ref() |
359 | .ok_or_else(|| { |
360 | DecodeErrors::Format(format!( |
361 | "Huffman table at index {} not initialized" , |
362 | component.dc_huff_table |
363 | )) |
364 | })?; |
365 | } |
366 | // Interleaved scan |
367 | |
368 | // Components shall not be interleaved in progressive mode, except for |
369 | // the DC coefficients in the first scan for each component of a progressive frame. |
370 | for i in 0..self.mcu_y { |
371 | for j in 0..self.mcu_x { |
372 | // process scan n elements in order |
373 | for k in 0..self.num_scans { |
374 | let n = self.z_order[k as usize]; |
375 | let component = &mut self.components[n]; |
376 | let huff_table = self |
377 | .dc_huffman_tables |
378 | .get(component.dc_huff_table) |
379 | .ok_or(DecodeErrors::FormatStatic("No huffman table for component" ))? |
380 | .as_ref() |
381 | .ok_or(DecodeErrors::FormatStatic( |
382 | "Huffman table at index not initialized" |
383 | ))?; |
384 | |
385 | for v_samp in 0..component.vertical_sample { |
386 | for h_samp in 0..component.horizontal_sample { |
387 | let x2 = j * component.horizontal_sample + h_samp; |
388 | let y2 = i * component.vertical_sample + v_samp; |
389 | let position = 64 * (x2 + y2 * component.width_stride / 8); |
390 | |
391 | let data = &mut buffer[n][position]; |
392 | |
393 | if self.succ_high == 0 { |
394 | stream.decode_prog_dc_first( |
395 | &mut self.stream, |
396 | huff_table, |
397 | data, |
398 | &mut component.dc_pred |
399 | )?; |
400 | } else { |
401 | stream.decode_prog_dc_refine(&mut self.stream, data)?; |
402 | } |
403 | } |
404 | } |
405 | } |
406 | // We want wrapping subtraction here because it means |
407 | // we get a higher number in the case this underflows |
408 | self.todo = self.todo.wrapping_sub(1); |
409 | // after every scan that's a mcu, count down restart markers. |
410 | if self.todo == 0 { |
411 | self.handle_rst(stream)?; |
412 | } |
413 | } |
414 | } |
415 | } |
416 | return Ok(()); |
417 | } |
418 | |
419 | #[allow (clippy::too_many_lines)] |
420 | #[allow (clippy::needless_range_loop, clippy::cast_sign_loss)] |
421 | fn finish_progressive_decoding( |
422 | &mut self, block: &[Vec<i16>; MAX_COMPONENTS], _mcu_width: usize, pixels: &mut [u8] |
423 | ) -> Result<(), DecodeErrors> { |
424 | // This function is complicated because we need to replicate |
425 | // the function in mcu.rs |
426 | // |
427 | // The advantage is that we do very little allocation and very lot |
428 | // channel reusing. |
429 | // The trick is to notice that we repeat the same procedure per MCU |
430 | // width. |
431 | // |
432 | // So we can set it up that we only allocate temporary storage large enough |
433 | // to store a single mcu width, then reuse it per invocation. |
434 | // |
435 | // This is advantageous to us. |
436 | // |
437 | // Remember we need to have the whole MCU buffer so we store 3 unprocessed |
438 | // channels in memory, and then we allocate the whole output buffer in memory, both of |
439 | // which are huge. |
440 | // |
441 | // |
442 | |
443 | let mcu_height = if self.is_interleaved { |
444 | self.mcu_y |
445 | } else { |
446 | // For non-interleaved images( (1*1) subsampling) |
447 | // number of MCU's are the widths (+7 to account for paddings) divided by 8. |
448 | ((self.info.height + 7) / 8) as usize |
449 | }; |
450 | |
451 | // Size of our output image(width*height) |
452 | let is_hv = usize::from(self.is_interleaved); |
453 | let upsampler_scratch_size = is_hv * self.components[0].width_stride; |
454 | let width = usize::from(self.info.width); |
455 | let padded_width = calculate_padded_width(width, self.sub_sample_ratio); |
456 | |
457 | //let mut pixels = vec![0; capacity * out_colorspace_components]; |
458 | let mut upsampler_scratch_space = vec![0; upsampler_scratch_size]; |
459 | let mut tmp = [0_i32; DCT_BLOCK]; |
460 | |
461 | for (pos, comp) in self.components.iter_mut().enumerate() { |
462 | // Allocate only needed components. |
463 | // |
464 | // For special colorspaces i.e YCCK and CMYK, just allocate all of the needed |
465 | // components. |
466 | if min( |
467 | self.options.jpeg_get_out_colorspace().num_components() - 1, |
468 | pos |
469 | ) == pos |
470 | || self.input_colorspace == ColorSpace::YCCK |
471 | || self.input_colorspace == ColorSpace::CMYK |
472 | { |
473 | // allocate enough space to hold a whole MCU width |
474 | // this means we should take into account sampling ratios |
475 | // `*8` is because each MCU spans 8 widths. |
476 | let len = comp.width_stride * comp.vertical_sample * 8; |
477 | |
478 | comp.needed = true; |
479 | comp.raw_coeff = vec![0; len]; |
480 | } else { |
481 | comp.needed = false; |
482 | } |
483 | } |
484 | |
485 | let mut pixels_written = 0; |
486 | |
487 | // dequantize, idct and color convert. |
488 | for i in 0..mcu_height { |
489 | 'component: for (position, component) in &mut self.components.iter_mut().enumerate() { |
490 | if !component.needed { |
491 | continue 'component; |
492 | } |
493 | let qt_table = &component.quantization_table; |
494 | |
495 | // step is the number of pixels this iteration wil be handling |
496 | // Given by the number of mcu's height and the length of the component block |
497 | // Since the component block contains the whole channel as raw pixels |
498 | // we this evenly divides the pixels into MCU blocks |
499 | // |
500 | // For interleaved images, this gives us the exact pixels comprising a whole MCU |
501 | // block |
502 | let step = block[position].len() / mcu_height; |
503 | // where we will be reading our pixels from. |
504 | let start = i * step; |
505 | |
506 | let slice = &block[position][start..start + step]; |
507 | |
508 | let temp_channel = &mut component.raw_coeff; |
509 | |
510 | // The next logical step is to iterate width wise. |
511 | // To figure out how many pixels we iterate by we use effective pixels |
512 | // Given to us by component.x |
513 | // iterate per effective pixels. |
514 | let mcu_x = component.width_stride / 8; |
515 | |
516 | // iterate per every vertical sample. |
517 | for k in 0..component.vertical_sample { |
518 | for j in 0..mcu_x { |
519 | // after writing a single stride, we need to skip 8 rows. |
520 | // This does the row calculation |
521 | let width_stride = k * 8 * component.width_stride; |
522 | let start = j * 64 + width_stride; |
523 | |
524 | // dequantize |
525 | for ((x, out), qt_val) in slice[start..start + 64] |
526 | .iter() |
527 | .zip(tmp.iter_mut()) |
528 | .zip(qt_table.iter()) |
529 | { |
530 | *out = i32::from(*x) * qt_val; |
531 | } |
532 | // determine where to write. |
533 | let sl = &mut temp_channel[component.idct_pos..]; |
534 | |
535 | component.idct_pos += 8; |
536 | // tmp now contains a dequantized block so idct it |
537 | (self.idct_func)(&mut tmp, sl, component.width_stride); |
538 | } |
539 | // after every write of 8, skip 7 since idct write stride wise 8 times. |
540 | // |
541 | // Remember each MCU is 8x8 block, so each idct will write 8 strides into |
542 | // sl |
543 | // |
544 | // and component.idct_pos is one stride long |
545 | component.idct_pos += 7 * component.width_stride; |
546 | } |
547 | component.idct_pos = 0; |
548 | } |
549 | |
550 | // process that width up until it's impossible |
551 | self.post_process( |
552 | pixels, |
553 | i, |
554 | mcu_height, |
555 | width, |
556 | padded_width, |
557 | &mut pixels_written, |
558 | &mut upsampler_scratch_space |
559 | )?; |
560 | } |
561 | |
562 | debug!("Finished decoding image" ); |
563 | |
564 | return Ok(()); |
565 | } |
566 | pub(crate) fn reset_params(&mut self) { |
567 | /* |
568 | Apparently, grayscale images which can be down sampled exists, which is weird in the sense |
569 | that it has one component Y, which is not usually down sampled. |
570 | |
571 | This means some calculations will be wrong, so for that we explicitly reset params |
572 | for such occurrences, warn and reset the image info to appear as if it were |
573 | a non-sampled image to ensure decoding works |
574 | */ |
575 | self.h_max = 1; |
576 | self.options = self.options.jpeg_set_out_colorspace(ColorSpace::Luma); |
577 | self.v_max = 1; |
578 | self.sub_sample_ratio = SampleRatios::None; |
579 | self.is_interleaved = false; |
580 | self.components[0].vertical_sample = 1; |
581 | self.components[0].width_stride = (((self.info.width as usize) + 7) / 8) * 8; |
582 | self.components[0].horizontal_sample = 1; |
583 | } |
584 | } |
585 | |
586 | ///Get a marker from the bit-stream. |
587 | /// |
588 | /// This reads until it gets a marker or end of file is encountered |
589 | fn get_marker<T>( |
590 | reader: &mut ZByteReader<T>, stream: &mut BitStream |
591 | ) -> Result<Marker, DecodeErrors> |
592 | where |
593 | T: ZReaderTrait |
594 | { |
595 | if let Some(marker) = stream.marker { |
596 | stream.marker = None; |
597 | return Ok(marker); |
598 | } |
599 | |
600 | // read until we get a marker |
601 | |
602 | while !reader.eof() { |
603 | let marker = reader.get_u8_err()?; |
604 | |
605 | if marker == 255 { |
606 | let mut r = reader.get_u8_err()?; |
607 | // 0xFF 0XFF(some images may be like that) |
608 | while r == 0xFF { |
609 | r = reader.get_u8_err()?; |
610 | } |
611 | |
612 | if r != 0 { |
613 | return Marker::from_u8(r) |
614 | .ok_or_else(|| DecodeErrors::Format(format!("Unknown marker 0xFF {r:X}" ))); |
615 | } |
616 | } |
617 | } |
618 | return Err(DecodeErrors::ExhaustedData); |
619 | } |
620 | |