| 1 | /* |
| 2 | * Copyright (c) 2023. |
| 3 | * |
| 4 | * This software is free software; |
| 5 | * |
| 6 | * You can redistribute it or modify it under terms of the MIT, Apache License or Zlib license |
| 7 | */ |
| 8 | |
| 9 | //!Routines for progressive decoding |
| 10 | /* |
| 11 | This file is needlessly complicated, |
| 12 | |
| 13 | It is that way to ensure we don't burn memory anyhow |
| 14 | |
| 15 | Memory is a scarce resource in some environments, I would like this to be viable |
| 16 | in such environments |
| 17 | |
| 18 | Half of the complexity comes from the jpeg spec, because progressive decoding, |
| 19 | is one hell of a ride. |
| 20 | |
| 21 | */ |
| 22 | use alloc::string::ToString; |
| 23 | use alloc::vec::Vec; |
| 24 | use alloc::{format, vec}; |
| 25 | use core::cmp::min; |
| 26 | |
| 27 | use zune_core::bytestream::{ZByteReader, ZReaderTrait}; |
| 28 | use zune_core::colorspace::ColorSpace; |
| 29 | use zune_core::log::{debug, error, warn}; |
| 30 | |
| 31 | use crate::bitstream::BitStream; |
| 32 | use crate::components::{ComponentID, SampleRatios}; |
| 33 | use crate::decoder::{JpegDecoder, MAX_COMPONENTS}; |
| 34 | use crate::errors::DecodeErrors; |
| 35 | use crate::errors::DecodeErrors::Format; |
| 36 | use crate::headers::{parse_huffman, parse_sos}; |
| 37 | use crate::marker::Marker; |
| 38 | use crate::mcu::DCT_BLOCK; |
| 39 | use crate::misc::{calculate_padded_width, setup_component_params}; |
| 40 | |
| 41 | impl<T: ZReaderTrait> JpegDecoder<T> { |
| 42 | /// Decode a progressive image |
| 43 | /// |
| 44 | /// This routine decodes a progressive image, stopping if it finds any error. |
| 45 | #[allow ( |
| 46 | clippy::needless_range_loop, |
| 47 | clippy::cast_sign_loss, |
| 48 | clippy::redundant_else, |
| 49 | clippy::too_many_lines |
| 50 | )] |
| 51 | #[inline (never)] |
| 52 | pub(crate) fn decode_mcu_ycbcr_progressive( |
| 53 | &mut self, pixels: &mut [u8] |
| 54 | ) -> Result<(), DecodeErrors> { |
| 55 | setup_component_params(self)?; |
| 56 | |
| 57 | let mut mcu_height; |
| 58 | |
| 59 | // memory location for decoded pixels for components |
| 60 | let mut block: [Vec<i16>; MAX_COMPONENTS] = [vec![], vec![], vec![], vec![]]; |
| 61 | let mut mcu_width; |
| 62 | |
| 63 | let mut seen_scans = 1; |
| 64 | |
| 65 | if self.input_colorspace == ColorSpace::Luma && self.is_interleaved { |
| 66 | warn!("Grayscale image with down-sampled component, resetting component details" ); |
| 67 | self.reset_params(); |
| 68 | } |
| 69 | |
| 70 | if self.is_interleaved { |
| 71 | // this helps us catch component errors. |
| 72 | self.set_upsampling()?; |
| 73 | } |
| 74 | if self.is_interleaved { |
| 75 | mcu_width = self.mcu_x; |
| 76 | mcu_height = self.mcu_y; |
| 77 | } else { |
| 78 | mcu_width = (self.info.width as usize + 7) / 8; |
| 79 | mcu_height = (self.info.height as usize + 7) / 8; |
| 80 | } |
| 81 | if self.is_interleaved |
| 82 | && self.input_colorspace.num_components() > 1 |
| 83 | && self.options.jpeg_get_out_colorspace().num_components() == 1 |
| 84 | && (self.sub_sample_ratio == SampleRatios::V |
| 85 | || self.sub_sample_ratio == SampleRatios::HV) |
| 86 | { |
| 87 | // For a specific set of images, e.g interleaved, |
| 88 | // when converting from YcbCr to grayscale, we need to |
| 89 | // take into account mcu height since the MCU decoding needs to take |
| 90 | // it into account for padding purposes and the post processor |
| 91 | // parses two rows per mcu width. |
| 92 | // |
| 93 | // set coeff to be 2 to ensure that we increment two rows |
| 94 | // for every mcu processed also |
| 95 | mcu_height *= self.v_max; |
| 96 | mcu_height /= self.h_max; |
| 97 | self.coeff = 2; |
| 98 | } |
| 99 | |
| 100 | mcu_width *= 64; |
| 101 | |
| 102 | if self.input_colorspace.num_components() > self.components.len() { |
| 103 | let msg = format!( |
| 104 | " Expected {} number of components but found {}" , |
| 105 | self.input_colorspace.num_components(), |
| 106 | self.components.len() |
| 107 | ); |
| 108 | return Err(DecodeErrors::Format(msg)); |
| 109 | } |
| 110 | for i in 0..self.input_colorspace.num_components() { |
| 111 | let comp = &self.components[i]; |
| 112 | let len = mcu_width * comp.vertical_sample * comp.horizontal_sample * mcu_height; |
| 113 | |
| 114 | block[i] = vec![0; len]; |
| 115 | } |
| 116 | |
| 117 | let mut stream = BitStream::new_progressive( |
| 118 | self.succ_high, |
| 119 | self.succ_low, |
| 120 | self.spec_start, |
| 121 | self.spec_end |
| 122 | ); |
| 123 | |
| 124 | // there are multiple scans in the stream, this should resolve the first scan |
| 125 | self.parse_entropy_coded_data(&mut stream, &mut block)?; |
| 126 | |
| 127 | // extract marker |
| 128 | let mut marker = stream |
| 129 | .marker |
| 130 | .take() |
| 131 | .ok_or(DecodeErrors::FormatStatic("Marker missing where expected" ))?; |
| 132 | |
| 133 | // if marker is EOI, we are done, otherwise continue scanning. |
| 134 | // |
| 135 | // In case we have a premature image, we print a warning or return |
| 136 | // an error, depending on the strictness of the decoder, so there |
| 137 | // is that logic to handle too |
| 138 | 'eoi: while marker != Marker::EOI { |
| 139 | match marker { |
| 140 | Marker::DHT => { |
| 141 | parse_huffman(self)?; |
| 142 | } |
| 143 | Marker::SOS => { |
| 144 | parse_sos(self)?; |
| 145 | |
| 146 | stream.update_progressive_params( |
| 147 | self.succ_high, |
| 148 | self.succ_low, |
| 149 | self.spec_start, |
| 150 | self.spec_end |
| 151 | ); |
| 152 | |
| 153 | // after every SOS, marker, parse data for that scan. |
| 154 | self.parse_entropy_coded_data(&mut stream, &mut block)?; |
| 155 | // extract marker, might either indicate end of image or we continue |
| 156 | // scanning(hence the continue statement to determine). |
| 157 | match get_marker(&mut self.stream, &mut stream) { |
| 158 | Ok(marker_n) => { |
| 159 | marker = marker_n; |
| 160 | seen_scans += 1; |
| 161 | if seen_scans > self.options.jpeg_get_max_scans() { |
| 162 | return Err(DecodeErrors::Format(format!( |
| 163 | "Too many scans, exceeded limit of {}" , |
| 164 | self.options.jpeg_get_max_scans() |
| 165 | ))); |
| 166 | } |
| 167 | |
| 168 | stream.reset(); |
| 169 | continue 'eoi; |
| 170 | } |
| 171 | Err(msg) => { |
| 172 | if self.options.get_strict_mode() { |
| 173 | return Err(msg); |
| 174 | } |
| 175 | error!("{:?}" , msg); |
| 176 | break 'eoi; |
| 177 | } |
| 178 | } |
| 179 | } |
| 180 | _ => { |
| 181 | break 'eoi; |
| 182 | } |
| 183 | } |
| 184 | |
| 185 | match get_marker(&mut self.stream, &mut stream) { |
| 186 | Ok(marker_n) => { |
| 187 | marker = marker_n; |
| 188 | } |
| 189 | Err(e) => { |
| 190 | if self.options.get_strict_mode() { |
| 191 | return Err(e); |
| 192 | } |
| 193 | error!("{}" , e); |
| 194 | } |
| 195 | } |
| 196 | } |
| 197 | |
| 198 | self.finish_progressive_decoding(&block, mcu_width, pixels) |
| 199 | } |
| 200 | |
| 201 | #[allow (clippy::too_many_lines, clippy::cast_sign_loss)] |
| 202 | fn parse_entropy_coded_data( |
| 203 | &mut self, stream: &mut BitStream, buffer: &mut [Vec<i16>; MAX_COMPONENTS] |
| 204 | ) -> Result<(), DecodeErrors> { |
| 205 | stream.reset(); |
| 206 | self.components.iter_mut().for_each(|x| x.dc_pred = 0); |
| 207 | |
| 208 | if usize::from(self.num_scans) > self.input_colorspace.num_components() { |
| 209 | return Err(Format(format!( |
| 210 | "Number of scans {} cannot be greater than number of components, {}" , |
| 211 | self.num_scans, |
| 212 | self.input_colorspace.num_components() |
| 213 | ))); |
| 214 | } |
| 215 | |
| 216 | if self.num_scans == 1 { |
| 217 | // Safety checks |
| 218 | if self.spec_end != 0 && self.spec_start == 0 { |
| 219 | return Err(DecodeErrors::FormatStatic( |
| 220 | "Can't merge DC and AC corrupt jpeg" |
| 221 | )); |
| 222 | } |
| 223 | // non interleaved data, process one block at a time in trivial scanline order |
| 224 | |
| 225 | let k = self.z_order[0]; |
| 226 | |
| 227 | if k >= self.components.len() { |
| 228 | return Err(DecodeErrors::Format(format!( |
| 229 | "Cannot find component {k}, corrupt image" |
| 230 | ))); |
| 231 | } |
| 232 | |
| 233 | let (mcu_width, mcu_height); |
| 234 | |
| 235 | if self.components[k].component_id == ComponentID::Y |
| 236 | && (self.components[k].vertical_sample != 1 |
| 237 | || self.components[k].horizontal_sample != 1) |
| 238 | || !self.is_interleaved |
| 239 | { |
| 240 | // For Y channel or non interleaved scans , |
| 241 | // mcu's is the image dimensions divided by 8 |
| 242 | mcu_width = ((self.info.width + 7) / 8) as usize; |
| 243 | mcu_height = ((self.info.height + 7) / 8) as usize; |
| 244 | } else { |
| 245 | // For other channels, in an interleaved mcu, number of MCU's |
| 246 | // are determined by some weird maths done in headers.rs->parse_sos() |
| 247 | mcu_width = self.mcu_x; |
| 248 | mcu_height = self.mcu_y; |
| 249 | } |
| 250 | |
| 251 | for i in 0..mcu_height { |
| 252 | for j in 0..mcu_width { |
| 253 | if self.spec_start != 0 && self.succ_high == 0 && stream.eob_run > 0 { |
| 254 | // handle EOB runs here. |
| 255 | stream.eob_run -= 1; |
| 256 | continue; |
| 257 | } |
| 258 | let start = 64 * (j + i * (self.components[k].width_stride / 8)); |
| 259 | |
| 260 | let data: &mut [i16; 64] = buffer |
| 261 | .get_mut(k) |
| 262 | .unwrap() |
| 263 | .get_mut(start..start + 64) |
| 264 | .unwrap() |
| 265 | .try_into() |
| 266 | .unwrap(); |
| 267 | |
| 268 | if self.spec_start == 0 { |
| 269 | let pos = self.components[k].dc_huff_table & (MAX_COMPONENTS - 1); |
| 270 | let dc_table = self |
| 271 | .dc_huffman_tables |
| 272 | .get(pos) |
| 273 | .ok_or(DecodeErrors::FormatStatic( |
| 274 | "No huffman table for DC component" |
| 275 | ))? |
| 276 | .as_ref() |
| 277 | .ok_or(DecodeErrors::FormatStatic( |
| 278 | "Huffman table at index {} not initialized" |
| 279 | ))?; |
| 280 | |
| 281 | let dc_pred = &mut self.components[k].dc_pred; |
| 282 | |
| 283 | if self.succ_high == 0 { |
| 284 | // first scan for this mcu |
| 285 | stream.decode_prog_dc_first( |
| 286 | &mut self.stream, |
| 287 | dc_table, |
| 288 | &mut data[0], |
| 289 | dc_pred |
| 290 | )?; |
| 291 | } else { |
| 292 | // refining scans for this MCU |
| 293 | stream.decode_prog_dc_refine(&mut self.stream, &mut data[0])?; |
| 294 | } |
| 295 | } else { |
| 296 | let pos = self.components[k].ac_huff_table; |
| 297 | let ac_table = self |
| 298 | .ac_huffman_tables |
| 299 | .get(pos) |
| 300 | .ok_or_else(|| { |
| 301 | DecodeErrors::Format(format!( |
| 302 | "No huffman table for component: {pos}" |
| 303 | )) |
| 304 | })? |
| 305 | .as_ref() |
| 306 | .ok_or_else(|| { |
| 307 | DecodeErrors::Format(format!( |
| 308 | "Huffman table at index {pos} not initialized" |
| 309 | )) |
| 310 | })?; |
| 311 | |
| 312 | if self.succ_high == 0 { |
| 313 | debug_assert!(stream.eob_run == 0, "EOB run is not zero" ); |
| 314 | |
| 315 | stream.decode_mcu_ac_first(&mut self.stream, ac_table, data)?; |
| 316 | } else { |
| 317 | // refinement scan |
| 318 | stream.decode_mcu_ac_refine(&mut self.stream, ac_table, data)?; |
| 319 | } |
| 320 | } |
| 321 | // + EOB and investigate effect. |
| 322 | self.todo -= 1; |
| 323 | |
| 324 | if self.todo == 0 { |
| 325 | self.handle_rst(stream)?; |
| 326 | } |
| 327 | } |
| 328 | } |
| 329 | } else { |
| 330 | if self.spec_end != 0 { |
| 331 | return Err(DecodeErrors::HuffmanDecode( |
| 332 | "Can't merge dc and AC corrupt jpeg" .to_string() |
| 333 | )); |
| 334 | } |
| 335 | // process scan n elements in order |
| 336 | |
| 337 | // Do the error checking with allocs here. |
| 338 | // Make the one in the inner loop free of allocations. |
| 339 | for k in 0..self.num_scans { |
| 340 | let n = self.z_order[k as usize]; |
| 341 | |
| 342 | if n >= self.components.len() { |
| 343 | return Err(DecodeErrors::Format(format!( |
| 344 | "Cannot find component {n}, corrupt image" |
| 345 | ))); |
| 346 | } |
| 347 | |
| 348 | let component = &mut self.components[n]; |
| 349 | let _ = self |
| 350 | .dc_huffman_tables |
| 351 | .get(component.dc_huff_table) |
| 352 | .ok_or_else(|| { |
| 353 | DecodeErrors::Format(format!( |
| 354 | "No huffman table for component: {}" , |
| 355 | component.dc_huff_table |
| 356 | )) |
| 357 | })? |
| 358 | .as_ref() |
| 359 | .ok_or_else(|| { |
| 360 | DecodeErrors::Format(format!( |
| 361 | "Huffman table at index {} not initialized" , |
| 362 | component.dc_huff_table |
| 363 | )) |
| 364 | })?; |
| 365 | } |
| 366 | // Interleaved scan |
| 367 | |
| 368 | // Components shall not be interleaved in progressive mode, except for |
| 369 | // the DC coefficients in the first scan for each component of a progressive frame. |
| 370 | for i in 0..self.mcu_y { |
| 371 | for j in 0..self.mcu_x { |
| 372 | // process scan n elements in order |
| 373 | for k in 0..self.num_scans { |
| 374 | let n = self.z_order[k as usize]; |
| 375 | let component = &mut self.components[n]; |
| 376 | let huff_table = self |
| 377 | .dc_huffman_tables |
| 378 | .get(component.dc_huff_table) |
| 379 | .ok_or(DecodeErrors::FormatStatic("No huffman table for component" ))? |
| 380 | .as_ref() |
| 381 | .ok_or(DecodeErrors::FormatStatic( |
| 382 | "Huffman table at index not initialized" |
| 383 | ))?; |
| 384 | |
| 385 | for v_samp in 0..component.vertical_sample { |
| 386 | for h_samp in 0..component.horizontal_sample { |
| 387 | let x2 = j * component.horizontal_sample + h_samp; |
| 388 | let y2 = i * component.vertical_sample + v_samp; |
| 389 | let position = 64 * (x2 + y2 * component.width_stride / 8); |
| 390 | |
| 391 | let data = &mut buffer[n][position]; |
| 392 | |
| 393 | if self.succ_high == 0 { |
| 394 | stream.decode_prog_dc_first( |
| 395 | &mut self.stream, |
| 396 | huff_table, |
| 397 | data, |
| 398 | &mut component.dc_pred |
| 399 | )?; |
| 400 | } else { |
| 401 | stream.decode_prog_dc_refine(&mut self.stream, data)?; |
| 402 | } |
| 403 | } |
| 404 | } |
| 405 | } |
| 406 | // We want wrapping subtraction here because it means |
| 407 | // we get a higher number in the case this underflows |
| 408 | self.todo = self.todo.wrapping_sub(1); |
| 409 | // after every scan that's a mcu, count down restart markers. |
| 410 | if self.todo == 0 { |
| 411 | self.handle_rst(stream)?; |
| 412 | } |
| 413 | } |
| 414 | } |
| 415 | } |
| 416 | return Ok(()); |
| 417 | } |
| 418 | |
| 419 | #[allow (clippy::too_many_lines)] |
| 420 | #[allow (clippy::needless_range_loop, clippy::cast_sign_loss)] |
| 421 | fn finish_progressive_decoding( |
| 422 | &mut self, block: &[Vec<i16>; MAX_COMPONENTS], _mcu_width: usize, pixels: &mut [u8] |
| 423 | ) -> Result<(), DecodeErrors> { |
| 424 | // This function is complicated because we need to replicate |
| 425 | // the function in mcu.rs |
| 426 | // |
| 427 | // The advantage is that we do very little allocation and very lot |
| 428 | // channel reusing. |
| 429 | // The trick is to notice that we repeat the same procedure per MCU |
| 430 | // width. |
| 431 | // |
| 432 | // So we can set it up that we only allocate temporary storage large enough |
| 433 | // to store a single mcu width, then reuse it per invocation. |
| 434 | // |
| 435 | // This is advantageous to us. |
| 436 | // |
| 437 | // Remember we need to have the whole MCU buffer so we store 3 unprocessed |
| 438 | // channels in memory, and then we allocate the whole output buffer in memory, both of |
| 439 | // which are huge. |
| 440 | // |
| 441 | // |
| 442 | |
| 443 | let mcu_height = if self.is_interleaved { |
| 444 | self.mcu_y |
| 445 | } else { |
| 446 | // For non-interleaved images( (1*1) subsampling) |
| 447 | // number of MCU's are the widths (+7 to account for paddings) divided by 8. |
| 448 | ((self.info.height + 7) / 8) as usize |
| 449 | }; |
| 450 | |
| 451 | // Size of our output image(width*height) |
| 452 | let is_hv = usize::from(self.is_interleaved); |
| 453 | let upsampler_scratch_size = is_hv * self.components[0].width_stride; |
| 454 | let width = usize::from(self.info.width); |
| 455 | let padded_width = calculate_padded_width(width, self.sub_sample_ratio); |
| 456 | |
| 457 | //let mut pixels = vec![0; capacity * out_colorspace_components]; |
| 458 | let mut upsampler_scratch_space = vec![0; upsampler_scratch_size]; |
| 459 | let mut tmp = [0_i32; DCT_BLOCK]; |
| 460 | |
| 461 | for (pos, comp) in self.components.iter_mut().enumerate() { |
| 462 | // Allocate only needed components. |
| 463 | // |
| 464 | // For special colorspaces i.e YCCK and CMYK, just allocate all of the needed |
| 465 | // components. |
| 466 | if min( |
| 467 | self.options.jpeg_get_out_colorspace().num_components() - 1, |
| 468 | pos |
| 469 | ) == pos |
| 470 | || self.input_colorspace == ColorSpace::YCCK |
| 471 | || self.input_colorspace == ColorSpace::CMYK |
| 472 | { |
| 473 | // allocate enough space to hold a whole MCU width |
| 474 | // this means we should take into account sampling ratios |
| 475 | // `*8` is because each MCU spans 8 widths. |
| 476 | let len = comp.width_stride * comp.vertical_sample * 8; |
| 477 | |
| 478 | comp.needed = true; |
| 479 | comp.raw_coeff = vec![0; len]; |
| 480 | } else { |
| 481 | comp.needed = false; |
| 482 | } |
| 483 | } |
| 484 | |
| 485 | let mut pixels_written = 0; |
| 486 | |
| 487 | // dequantize, idct and color convert. |
| 488 | for i in 0..mcu_height { |
| 489 | 'component: for (position, component) in &mut self.components.iter_mut().enumerate() { |
| 490 | if !component.needed { |
| 491 | continue 'component; |
| 492 | } |
| 493 | let qt_table = &component.quantization_table; |
| 494 | |
| 495 | // step is the number of pixels this iteration wil be handling |
| 496 | // Given by the number of mcu's height and the length of the component block |
| 497 | // Since the component block contains the whole channel as raw pixels |
| 498 | // we this evenly divides the pixels into MCU blocks |
| 499 | // |
| 500 | // For interleaved images, this gives us the exact pixels comprising a whole MCU |
| 501 | // block |
| 502 | let step = block[position].len() / mcu_height; |
| 503 | // where we will be reading our pixels from. |
| 504 | let start = i * step; |
| 505 | |
| 506 | let slice = &block[position][start..start + step]; |
| 507 | |
| 508 | let temp_channel = &mut component.raw_coeff; |
| 509 | |
| 510 | // The next logical step is to iterate width wise. |
| 511 | // To figure out how many pixels we iterate by we use effective pixels |
| 512 | // Given to us by component.x |
| 513 | // iterate per effective pixels. |
| 514 | let mcu_x = component.width_stride / 8; |
| 515 | |
| 516 | // iterate per every vertical sample. |
| 517 | for k in 0..component.vertical_sample { |
| 518 | for j in 0..mcu_x { |
| 519 | // after writing a single stride, we need to skip 8 rows. |
| 520 | // This does the row calculation |
| 521 | let width_stride = k * 8 * component.width_stride; |
| 522 | let start = j * 64 + width_stride; |
| 523 | |
| 524 | // dequantize |
| 525 | for ((x, out), qt_val) in slice[start..start + 64] |
| 526 | .iter() |
| 527 | .zip(tmp.iter_mut()) |
| 528 | .zip(qt_table.iter()) |
| 529 | { |
| 530 | *out = i32::from(*x) * qt_val; |
| 531 | } |
| 532 | // determine where to write. |
| 533 | let sl = &mut temp_channel[component.idct_pos..]; |
| 534 | |
| 535 | component.idct_pos += 8; |
| 536 | // tmp now contains a dequantized block so idct it |
| 537 | (self.idct_func)(&mut tmp, sl, component.width_stride); |
| 538 | } |
| 539 | // after every write of 8, skip 7 since idct write stride wise 8 times. |
| 540 | // |
| 541 | // Remember each MCU is 8x8 block, so each idct will write 8 strides into |
| 542 | // sl |
| 543 | // |
| 544 | // and component.idct_pos is one stride long |
| 545 | component.idct_pos += 7 * component.width_stride; |
| 546 | } |
| 547 | component.idct_pos = 0; |
| 548 | } |
| 549 | |
| 550 | // process that width up until it's impossible |
| 551 | self.post_process( |
| 552 | pixels, |
| 553 | i, |
| 554 | mcu_height, |
| 555 | width, |
| 556 | padded_width, |
| 557 | &mut pixels_written, |
| 558 | &mut upsampler_scratch_space |
| 559 | )?; |
| 560 | } |
| 561 | |
| 562 | debug!("Finished decoding image" ); |
| 563 | |
| 564 | return Ok(()); |
| 565 | } |
| 566 | pub(crate) fn reset_params(&mut self) { |
| 567 | /* |
| 568 | Apparently, grayscale images which can be down sampled exists, which is weird in the sense |
| 569 | that it has one component Y, which is not usually down sampled. |
| 570 | |
| 571 | This means some calculations will be wrong, so for that we explicitly reset params |
| 572 | for such occurrences, warn and reset the image info to appear as if it were |
| 573 | a non-sampled image to ensure decoding works |
| 574 | */ |
| 575 | self.h_max = 1; |
| 576 | self.options = self.options.jpeg_set_out_colorspace(ColorSpace::Luma); |
| 577 | self.v_max = 1; |
| 578 | self.sub_sample_ratio = SampleRatios::None; |
| 579 | self.is_interleaved = false; |
| 580 | self.components[0].vertical_sample = 1; |
| 581 | self.components[0].width_stride = (((self.info.width as usize) + 7) / 8) * 8; |
| 582 | self.components[0].horizontal_sample = 1; |
| 583 | } |
| 584 | } |
| 585 | |
| 586 | ///Get a marker from the bit-stream. |
| 587 | /// |
| 588 | /// This reads until it gets a marker or end of file is encountered |
| 589 | fn get_marker<T>( |
| 590 | reader: &mut ZByteReader<T>, stream: &mut BitStream |
| 591 | ) -> Result<Marker, DecodeErrors> |
| 592 | where |
| 593 | T: ZReaderTrait |
| 594 | { |
| 595 | if let Some(marker) = stream.marker { |
| 596 | stream.marker = None; |
| 597 | return Ok(marker); |
| 598 | } |
| 599 | |
| 600 | // read until we get a marker |
| 601 | |
| 602 | while !reader.eof() { |
| 603 | let marker = reader.get_u8_err()?; |
| 604 | |
| 605 | if marker == 255 { |
| 606 | let mut r = reader.get_u8_err()?; |
| 607 | // 0xFF 0XFF(some images may be like that) |
| 608 | while r == 0xFF { |
| 609 | r = reader.get_u8_err()?; |
| 610 | } |
| 611 | |
| 612 | if r != 0 { |
| 613 | return Marker::from_u8(r) |
| 614 | .ok_or_else(|| DecodeErrors::Format(format!("Unknown marker 0xFF {r:X}" ))); |
| 615 | } |
| 616 | } |
| 617 | } |
| 618 | return Err(DecodeErrors::ExhaustedData); |
| 619 | } |
| 620 | |