| 1 | /* Convert tree expression to rtl instructions, for GNU compiler. |
| 2 | Copyright (C) 1988-2025 Free Software Foundation, Inc. |
| 3 | |
| 4 | This file is part of GCC. |
| 5 | |
| 6 | GCC is free software; you can redistribute it and/or modify it under |
| 7 | the terms of the GNU General Public License as published by the Free |
| 8 | Software Foundation; either version 3, or (at your option) any later |
| 9 | version. |
| 10 | |
| 11 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| 12 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 14 | for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU General Public License |
| 17 | along with GCC; see the file COPYING3. If not see |
| 18 | <http://www.gnu.org/licenses/>. */ |
| 19 | |
| 20 | #include "config.h" |
| 21 | #include "system.h" |
| 22 | #include "coretypes.h" |
| 23 | #include "backend.h" |
| 24 | #include "target.h" |
| 25 | #include "rtl.h" |
| 26 | #include "tree.h" |
| 27 | #include "predict.h" |
| 28 | #include "memmodel.h" |
| 29 | #include "tm_p.h" |
| 30 | #include "optabs.h" |
| 31 | #include "emit-rtl.h" |
| 32 | #include "fold-const.h" |
| 33 | #include "stor-layout.h" |
| 34 | /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */ |
| 35 | #include "dojump.h" |
| 36 | #include "explow.h" |
| 37 | #include "expr.h" |
| 38 | #include "langhooks.h" |
| 39 | |
| 40 | static bool prefer_and_bit_test (scalar_int_mode, int); |
| 41 | static void do_jump (tree, rtx_code_label *, rtx_code_label *, |
| 42 | profile_probability); |
| 43 | static void do_jump_by_parts_greater (scalar_int_mode, tree, tree, int, |
| 44 | rtx_code_label *, rtx_code_label *, |
| 45 | profile_probability); |
| 46 | static void do_jump_by_parts_equality (scalar_int_mode, tree, tree, |
| 47 | rtx_code_label *, rtx_code_label *, |
| 48 | profile_probability); |
| 49 | static void do_compare_and_jump (tree, tree, enum rtx_code, enum rtx_code, |
| 50 | rtx_code_label *, rtx_code_label *, |
| 51 | profile_probability); |
| 52 | |
| 53 | /* At the start of a function, record that we have no previously-pushed |
| 54 | arguments waiting to be popped. */ |
| 55 | |
| 56 | void |
| 57 | init_pending_stack_adjust (void) |
| 58 | { |
| 59 | pending_stack_adjust = 0; |
| 60 | } |
| 61 | |
| 62 | /* Discard any pending stack adjustment. This avoid relying on the |
| 63 | RTL optimizers to remove useless adjustments when we know the |
| 64 | stack pointer value is dead. */ |
| 65 | void |
| 66 | discard_pending_stack_adjust (void) |
| 67 | { |
| 68 | stack_pointer_delta -= pending_stack_adjust; |
| 69 | pending_stack_adjust = 0; |
| 70 | } |
| 71 | |
| 72 | /* When exiting from function, if safe, clear out any pending stack adjust |
| 73 | so the adjustment won't get done. |
| 74 | |
| 75 | Note, if the current function calls alloca, then it must have a |
| 76 | frame pointer regardless of the value of flag_omit_frame_pointer. */ |
| 77 | |
| 78 | void |
| 79 | clear_pending_stack_adjust (void) |
| 80 | { |
| 81 | if (optimize > 0 |
| 82 | && (! flag_omit_frame_pointer || cfun->calls_alloca) |
| 83 | && EXIT_IGNORE_STACK) |
| 84 | discard_pending_stack_adjust (); |
| 85 | } |
| 86 | |
| 87 | /* Pop any previously-pushed arguments that have not been popped yet. */ |
| 88 | |
| 89 | void |
| 90 | do_pending_stack_adjust (void) |
| 91 | { |
| 92 | if (inhibit_defer_pop == 0) |
| 93 | { |
| 94 | if (maybe_ne (pending_stack_adjust, b: 0)) |
| 95 | adjust_stack (gen_int_mode (pending_stack_adjust, Pmode)); |
| 96 | pending_stack_adjust = 0; |
| 97 | } |
| 98 | } |
| 99 | |
| 100 | /* Remember pending_stack_adjust/stack_pointer_delta. |
| 101 | To be used around code that may call do_pending_stack_adjust (), |
| 102 | but the generated code could be discarded e.g. using delete_insns_since. */ |
| 103 | |
| 104 | void |
| 105 | save_pending_stack_adjust (saved_pending_stack_adjust *save) |
| 106 | { |
| 107 | save->x_pending_stack_adjust = pending_stack_adjust; |
| 108 | save->x_stack_pointer_delta = stack_pointer_delta; |
| 109 | } |
| 110 | |
| 111 | /* Restore the saved pending_stack_adjust/stack_pointer_delta. */ |
| 112 | |
| 113 | void |
| 114 | restore_pending_stack_adjust (saved_pending_stack_adjust *save) |
| 115 | { |
| 116 | if (inhibit_defer_pop == 0) |
| 117 | { |
| 118 | pending_stack_adjust = save->x_pending_stack_adjust; |
| 119 | stack_pointer_delta = save->x_stack_pointer_delta; |
| 120 | } |
| 121 | } |
| 122 | |
| 123 | /* Used internally by prefer_and_bit_test. */ |
| 124 | |
| 125 | static GTY(()) rtx and_reg; |
| 126 | static GTY(()) rtx and_test; |
| 127 | static GTY(()) rtx shift_test; |
| 128 | |
| 129 | /* Compare the relative costs of "(X & (1 << BITNUM))" and "(X >> BITNUM) & 1", |
| 130 | where X is an arbitrary register of mode MODE. Return true if the former |
| 131 | is preferred. */ |
| 132 | |
| 133 | static bool |
| 134 | prefer_and_bit_test (scalar_int_mode mode, int bitnum) |
| 135 | { |
| 136 | bool speed_p; |
| 137 | wide_int mask = wi::set_bit_in_zero (bit: bitnum, precision: GET_MODE_PRECISION (mode)); |
| 138 | |
| 139 | if (and_test == 0) |
| 140 | { |
| 141 | /* Set up rtxes for the two variations. Use NULL as a placeholder |
| 142 | for the BITNUM-based constants. */ |
| 143 | and_reg = gen_rtx_REG (mode, LAST_VIRTUAL_REGISTER + 1); |
| 144 | and_test = gen_rtx_AND (mode, and_reg, NULL); |
| 145 | shift_test = gen_rtx_AND (mode, gen_rtx_ASHIFTRT (mode, and_reg, NULL), |
| 146 | const1_rtx); |
| 147 | } |
| 148 | else |
| 149 | { |
| 150 | /* Change the mode of the previously-created rtxes. */ |
| 151 | PUT_MODE (x: and_reg, mode); |
| 152 | PUT_MODE (x: and_test, mode); |
| 153 | PUT_MODE (x: shift_test, mode); |
| 154 | PUT_MODE (XEXP (shift_test, 0), mode); |
| 155 | } |
| 156 | |
| 157 | /* Fill in the integers. */ |
| 158 | XEXP (and_test, 1) = immed_wide_int_const (mask, mode); |
| 159 | XEXP (XEXP (shift_test, 0), 1) = GEN_INT (bitnum); |
| 160 | |
| 161 | speed_p = optimize_insn_for_speed_p (); |
| 162 | return (rtx_cost (and_test, mode, IF_THEN_ELSE, 0, speed_p) |
| 163 | <= rtx_cost (shift_test, mode, IF_THEN_ELSE, 0, speed_p)); |
| 164 | } |
| 165 | |
| 166 | /* Subroutine of do_jump, dealing with exploded comparisons of the type |
| 167 | OP0 CODE OP1 . IF_FALSE_LABEL and IF_TRUE_LABEL like in do_jump. |
| 168 | PROB is probability of jump to if_true_label. */ |
| 169 | |
| 170 | static void |
| 171 | do_jump_1 (enum tree_code code, tree op0, tree op1, |
| 172 | rtx_code_label *if_false_label, rtx_code_label *if_true_label, |
| 173 | profile_probability prob) |
| 174 | { |
| 175 | machine_mode mode; |
| 176 | rtx_code_label *drop_through_label = 0; |
| 177 | scalar_int_mode int_mode; |
| 178 | |
| 179 | switch (code) |
| 180 | { |
| 181 | case EQ_EXPR: |
| 182 | { |
| 183 | tree inner_type = TREE_TYPE (op0); |
| 184 | |
| 185 | gcc_assert (GET_MODE_CLASS (TYPE_MODE (inner_type)) |
| 186 | != MODE_COMPLEX_FLOAT); |
| 187 | gcc_assert (GET_MODE_CLASS (TYPE_MODE (inner_type)) |
| 188 | != MODE_COMPLEX_INT); |
| 189 | |
| 190 | if (integer_zerop (op1)) |
| 191 | do_jump (op0, if_true_label, if_false_label, |
| 192 | prob.invert ()); |
| 193 | else if (is_int_mode (TYPE_MODE (inner_type), int_mode: &int_mode) |
| 194 | && !can_compare_p (EQ, int_mode, ccp_jump)) |
| 195 | do_jump_by_parts_equality (int_mode, op0, op1, if_false_label, |
| 196 | if_true_label, prob); |
| 197 | else |
| 198 | do_compare_and_jump (op0, op1, EQ, EQ, if_false_label, if_true_label, |
| 199 | prob); |
| 200 | break; |
| 201 | } |
| 202 | |
| 203 | case NE_EXPR: |
| 204 | { |
| 205 | tree inner_type = TREE_TYPE (op0); |
| 206 | |
| 207 | gcc_assert (GET_MODE_CLASS (TYPE_MODE (inner_type)) |
| 208 | != MODE_COMPLEX_FLOAT); |
| 209 | gcc_assert (GET_MODE_CLASS (TYPE_MODE (inner_type)) |
| 210 | != MODE_COMPLEX_INT); |
| 211 | |
| 212 | if (integer_zerop (op1)) |
| 213 | do_jump (op0, if_false_label, if_true_label, prob); |
| 214 | else if (is_int_mode (TYPE_MODE (inner_type), int_mode: &int_mode) |
| 215 | && !can_compare_p (NE, int_mode, ccp_jump)) |
| 216 | do_jump_by_parts_equality (int_mode, op0, op1, if_true_label, |
| 217 | if_false_label, prob.invert ()); |
| 218 | else |
| 219 | do_compare_and_jump (op0, op1, NE, NE, if_false_label, if_true_label, |
| 220 | prob); |
| 221 | break; |
| 222 | } |
| 223 | |
| 224 | case LT_EXPR: |
| 225 | mode = TYPE_MODE (TREE_TYPE (op0)); |
| 226 | if (is_int_mode (mode, int_mode: &int_mode) |
| 227 | && ! can_compare_p (LT, int_mode, ccp_jump)) |
| 228 | do_jump_by_parts_greater (int_mode, op0, op1, 1, if_false_label, |
| 229 | if_true_label, prob); |
| 230 | else |
| 231 | do_compare_and_jump (op0, op1, LT, LTU, if_false_label, if_true_label, |
| 232 | prob); |
| 233 | break; |
| 234 | |
| 235 | case LE_EXPR: |
| 236 | mode = TYPE_MODE (TREE_TYPE (op0)); |
| 237 | if (is_int_mode (mode, int_mode: &int_mode) |
| 238 | && ! can_compare_p (LE, int_mode, ccp_jump)) |
| 239 | do_jump_by_parts_greater (int_mode, op0, op1, 0, if_true_label, |
| 240 | if_false_label, prob.invert ()); |
| 241 | else |
| 242 | do_compare_and_jump (op0, op1, LE, LEU, if_false_label, if_true_label, |
| 243 | prob); |
| 244 | break; |
| 245 | |
| 246 | case GT_EXPR: |
| 247 | mode = TYPE_MODE (TREE_TYPE (op0)); |
| 248 | if (is_int_mode (mode, int_mode: &int_mode) |
| 249 | && ! can_compare_p (GT, int_mode, ccp_jump)) |
| 250 | do_jump_by_parts_greater (int_mode, op0, op1, 0, if_false_label, |
| 251 | if_true_label, prob); |
| 252 | else |
| 253 | do_compare_and_jump (op0, op1, GT, GTU, if_false_label, if_true_label, |
| 254 | prob); |
| 255 | break; |
| 256 | |
| 257 | case GE_EXPR: |
| 258 | mode = TYPE_MODE (TREE_TYPE (op0)); |
| 259 | if (is_int_mode (mode, int_mode: &int_mode) |
| 260 | && ! can_compare_p (GE, int_mode, ccp_jump)) |
| 261 | do_jump_by_parts_greater (int_mode, op0, op1, 1, if_true_label, |
| 262 | if_false_label, prob.invert ()); |
| 263 | else |
| 264 | do_compare_and_jump (op0, op1, GE, GEU, if_false_label, if_true_label, |
| 265 | prob); |
| 266 | break; |
| 267 | |
| 268 | case ORDERED_EXPR: |
| 269 | do_compare_and_jump (op0, op1, ORDERED, ORDERED, |
| 270 | if_false_label, if_true_label, prob); |
| 271 | break; |
| 272 | |
| 273 | case UNORDERED_EXPR: |
| 274 | do_compare_and_jump (op0, op1, UNORDERED, UNORDERED, |
| 275 | if_false_label, if_true_label, prob); |
| 276 | break; |
| 277 | |
| 278 | case UNLT_EXPR: |
| 279 | do_compare_and_jump (op0, op1, UNLT, UNLT, if_false_label, if_true_label, |
| 280 | prob); |
| 281 | break; |
| 282 | |
| 283 | case UNLE_EXPR: |
| 284 | do_compare_and_jump (op0, op1, UNLE, UNLE, if_false_label, if_true_label, |
| 285 | prob); |
| 286 | break; |
| 287 | |
| 288 | case UNGT_EXPR: |
| 289 | do_compare_and_jump (op0, op1, UNGT, UNGT, if_false_label, if_true_label, |
| 290 | prob); |
| 291 | break; |
| 292 | |
| 293 | case UNGE_EXPR: |
| 294 | do_compare_and_jump (op0, op1, UNGE, UNGE, if_false_label, if_true_label, |
| 295 | prob); |
| 296 | break; |
| 297 | |
| 298 | case UNEQ_EXPR: |
| 299 | do_compare_and_jump (op0, op1, UNEQ, UNEQ, if_false_label, if_true_label, |
| 300 | prob); |
| 301 | break; |
| 302 | |
| 303 | case LTGT_EXPR: |
| 304 | do_compare_and_jump (op0, op1, LTGT, LTGT, if_false_label, if_true_label, |
| 305 | prob); |
| 306 | break; |
| 307 | |
| 308 | case TRUTH_ANDIF_EXPR: |
| 309 | { |
| 310 | /* Spread the probability that the expression is false evenly between |
| 311 | the two conditions. So the first condition is false half the total |
| 312 | probability of being false. The second condition is false the other |
| 313 | half of the total probability of being false, so its jump has a false |
| 314 | probability of half the total, relative to the probability we |
| 315 | reached it (i.e. the first condition was true). */ |
| 316 | profile_probability op0_prob = profile_probability::uninitialized (); |
| 317 | profile_probability op1_prob = profile_probability::uninitialized (); |
| 318 | if (prob.initialized_p ()) |
| 319 | { |
| 320 | op1_prob = prob.invert (); |
| 321 | op0_prob = op1_prob.split (cprob: profile_probability::even ()); |
| 322 | /* Get the probability that each jump below is true. */ |
| 323 | op0_prob = op0_prob.invert (); |
| 324 | op1_prob = op1_prob.invert (); |
| 325 | } |
| 326 | if (if_false_label == NULL) |
| 327 | { |
| 328 | drop_through_label = gen_label_rtx (); |
| 329 | do_jump (op0, drop_through_label, NULL, op0_prob); |
| 330 | do_jump (op1, NULL, if_true_label, op1_prob); |
| 331 | } |
| 332 | else |
| 333 | { |
| 334 | do_jump (op0, if_false_label, NULL, op0_prob); |
| 335 | do_jump (op1, if_false_label, if_true_label, op1_prob); |
| 336 | } |
| 337 | break; |
| 338 | } |
| 339 | |
| 340 | case TRUTH_ORIF_EXPR: |
| 341 | { |
| 342 | /* Spread the probability evenly between the two conditions. So |
| 343 | the first condition has half the total probability of being true. |
| 344 | The second condition has the other half of the total probability, |
| 345 | so its jump has a probability of half the total, relative to |
| 346 | the probability we reached it (i.e. the first condition was false). */ |
| 347 | profile_probability op0_prob = profile_probability::uninitialized (); |
| 348 | profile_probability op1_prob = profile_probability::uninitialized (); |
| 349 | if (prob.initialized_p ()) |
| 350 | { |
| 351 | op1_prob = prob; |
| 352 | op0_prob = op1_prob.split (cprob: profile_probability::even ()); |
| 353 | } |
| 354 | if (if_true_label == NULL) |
| 355 | { |
| 356 | drop_through_label = gen_label_rtx (); |
| 357 | do_jump (op0, NULL, drop_through_label, op0_prob); |
| 358 | do_jump (op1, if_false_label, NULL, op1_prob); |
| 359 | } |
| 360 | else |
| 361 | { |
| 362 | do_jump (op0, NULL, if_true_label, op0_prob); |
| 363 | do_jump (op1, if_false_label, if_true_label, op1_prob); |
| 364 | } |
| 365 | break; |
| 366 | } |
| 367 | |
| 368 | default: |
| 369 | gcc_unreachable (); |
| 370 | } |
| 371 | |
| 372 | if (drop_through_label) |
| 373 | { |
| 374 | do_pending_stack_adjust (); |
| 375 | emit_label (drop_through_label); |
| 376 | } |
| 377 | } |
| 378 | |
| 379 | /* Generate code to evaluate EXP and jump to IF_FALSE_LABEL if |
| 380 | the result is zero, or IF_TRUE_LABEL if the result is one. |
| 381 | Either of IF_FALSE_LABEL and IF_TRUE_LABEL may be zero, |
| 382 | meaning fall through in that case. |
| 383 | |
| 384 | do_jump always does any pending stack adjust except when it does not |
| 385 | actually perform a jump. An example where there is no jump |
| 386 | is when EXP is `(foo (), 0)' and IF_FALSE_LABEL is null. |
| 387 | |
| 388 | PROB is probability of jump to if_true_label. */ |
| 389 | |
| 390 | static void |
| 391 | do_jump (tree exp, rtx_code_label *if_false_label, |
| 392 | rtx_code_label *if_true_label, profile_probability prob) |
| 393 | { |
| 394 | enum tree_code code = TREE_CODE (exp); |
| 395 | rtx temp; |
| 396 | int i; |
| 397 | tree type; |
| 398 | scalar_int_mode mode; |
| 399 | rtx_code_label *drop_through_label = NULL; |
| 400 | |
| 401 | switch (code) |
| 402 | { |
| 403 | case ERROR_MARK: |
| 404 | break; |
| 405 | |
| 406 | case INTEGER_CST: |
| 407 | { |
| 408 | rtx_code_label *lab = integer_zerop (exp) ? if_false_label |
| 409 | : if_true_label; |
| 410 | if (lab) |
| 411 | emit_jump (lab); |
| 412 | break; |
| 413 | } |
| 414 | |
| 415 | #if 0 |
| 416 | /* This is not true with #pragma weak */ |
| 417 | case ADDR_EXPR: |
| 418 | /* The address of something can never be zero. */ |
| 419 | if (if_true_label) |
| 420 | emit_jump (if_true_label); |
| 421 | break; |
| 422 | #endif |
| 423 | |
| 424 | CASE_CONVERT: |
| 425 | if (TREE_CODE (TREE_OPERAND (exp, 0)) == COMPONENT_REF |
| 426 | || TREE_CODE (TREE_OPERAND (exp, 0)) == BIT_FIELD_REF |
| 427 | || TREE_CODE (TREE_OPERAND (exp, 0)) == ARRAY_REF |
| 428 | || TREE_CODE (TREE_OPERAND (exp, 0)) == ARRAY_RANGE_REF) |
| 429 | goto normal; |
| 430 | /* If we are narrowing the operand, we have to do the compare in the |
| 431 | narrower mode. */ |
| 432 | if ((TYPE_PRECISION (TREE_TYPE (exp)) |
| 433 | < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))) |
| 434 | goto normal; |
| 435 | /* FALLTHRU */ |
| 436 | case NON_LVALUE_EXPR: |
| 437 | case ABS_EXPR: |
| 438 | case ABSU_EXPR: |
| 439 | case NEGATE_EXPR: |
| 440 | case LROTATE_EXPR: |
| 441 | case RROTATE_EXPR: |
| 442 | /* These cannot change zero->nonzero or vice versa. */ |
| 443 | do_jump (TREE_OPERAND (exp, 0), if_false_label, if_true_label, prob); |
| 444 | break; |
| 445 | |
| 446 | case TRUTH_NOT_EXPR: |
| 447 | do_jump (TREE_OPERAND (exp, 0), if_false_label: if_true_label, if_true_label: if_false_label, |
| 448 | prob: prob.invert ()); |
| 449 | break; |
| 450 | |
| 451 | case COND_EXPR: |
| 452 | { |
| 453 | rtx_code_label *label1 = gen_label_rtx (); |
| 454 | if (!if_true_label || !if_false_label) |
| 455 | { |
| 456 | drop_through_label = gen_label_rtx (); |
| 457 | if (!if_true_label) |
| 458 | if_true_label = drop_through_label; |
| 459 | if (!if_false_label) |
| 460 | if_false_label = drop_through_label; |
| 461 | } |
| 462 | |
| 463 | do_pending_stack_adjust (); |
| 464 | do_jump (TREE_OPERAND (exp, 0), if_false_label: label1, NULL, |
| 465 | prob: profile_probability::uninitialized ()); |
| 466 | do_jump (TREE_OPERAND (exp, 1), if_false_label, if_true_label, prob); |
| 467 | emit_label (label1); |
| 468 | do_jump (TREE_OPERAND (exp, 2), if_false_label, if_true_label, prob); |
| 469 | break; |
| 470 | } |
| 471 | |
| 472 | case COMPOUND_EXPR: |
| 473 | /* Lowered by gimplify.cc. */ |
| 474 | gcc_unreachable (); |
| 475 | |
| 476 | case MINUS_EXPR: |
| 477 | /* Nonzero iff operands of minus differ. */ |
| 478 | code = NE_EXPR; |
| 479 | |
| 480 | /* FALLTHRU */ |
| 481 | case EQ_EXPR: |
| 482 | case NE_EXPR: |
| 483 | case LT_EXPR: |
| 484 | case LE_EXPR: |
| 485 | case GT_EXPR: |
| 486 | case GE_EXPR: |
| 487 | case ORDERED_EXPR: |
| 488 | case UNORDERED_EXPR: |
| 489 | case UNLT_EXPR: |
| 490 | case UNLE_EXPR: |
| 491 | case UNGT_EXPR: |
| 492 | case UNGE_EXPR: |
| 493 | case UNEQ_EXPR: |
| 494 | case LTGT_EXPR: |
| 495 | case TRUTH_ANDIF_EXPR: |
| 496 | case TRUTH_ORIF_EXPR: |
| 497 | other_code: |
| 498 | do_jump_1 (code, TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1), |
| 499 | if_false_label, if_true_label, prob); |
| 500 | break; |
| 501 | |
| 502 | case BIT_AND_EXPR: |
| 503 | /* fold_single_bit_test() converts (X & (1 << C)) into (X >> C) & 1. |
| 504 | See if the former is preferred for jump tests and restore it |
| 505 | if so. */ |
| 506 | if (integer_onep (TREE_OPERAND (exp, 1))) |
| 507 | { |
| 508 | tree exp0 = TREE_OPERAND (exp, 0); |
| 509 | rtx_code_label *set_label, *clr_label; |
| 510 | profile_probability setclr_prob = prob; |
| 511 | |
| 512 | /* Strip narrowing integral type conversions. */ |
| 513 | while (CONVERT_EXPR_P (exp0) |
| 514 | && TREE_OPERAND (exp0, 0) != error_mark_node |
| 515 | && TYPE_PRECISION (TREE_TYPE (exp0)) |
| 516 | <= TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp0, 0)))) |
| 517 | exp0 = TREE_OPERAND (exp0, 0); |
| 518 | |
| 519 | /* "exp0 ^ 1" inverts the sense of the single bit test. */ |
| 520 | if (TREE_CODE (exp0) == BIT_XOR_EXPR |
| 521 | && integer_onep (TREE_OPERAND (exp0, 1))) |
| 522 | { |
| 523 | exp0 = TREE_OPERAND (exp0, 0); |
| 524 | clr_label = if_true_label; |
| 525 | set_label = if_false_label; |
| 526 | setclr_prob = prob.invert (); |
| 527 | } |
| 528 | else |
| 529 | { |
| 530 | clr_label = if_false_label; |
| 531 | set_label = if_true_label; |
| 532 | } |
| 533 | |
| 534 | if (TREE_CODE (exp0) == RSHIFT_EXPR) |
| 535 | { |
| 536 | tree arg = TREE_OPERAND (exp0, 0); |
| 537 | tree shift = TREE_OPERAND (exp0, 1); |
| 538 | tree argtype = TREE_TYPE (arg); |
| 539 | if (TREE_CODE (shift) == INTEGER_CST |
| 540 | && compare_tree_int (shift, 0) >= 0 |
| 541 | && compare_tree_int (shift, HOST_BITS_PER_WIDE_INT) < 0 |
| 542 | && prefer_and_bit_test (SCALAR_INT_TYPE_MODE (argtype), |
| 543 | TREE_INT_CST_LOW (shift))) |
| 544 | { |
| 545 | unsigned HOST_WIDE_INT mask |
| 546 | = HOST_WIDE_INT_1U << TREE_INT_CST_LOW (shift); |
| 547 | do_jump (exp: build2 (BIT_AND_EXPR, argtype, arg, |
| 548 | build_int_cstu (type: argtype, mask)), |
| 549 | if_false_label: clr_label, if_true_label: set_label, prob: setclr_prob); |
| 550 | break; |
| 551 | } |
| 552 | } |
| 553 | } |
| 554 | |
| 555 | /* If we are AND'ing with a small constant, do this comparison in the |
| 556 | smallest type that fits. If the machine doesn't have comparisons |
| 557 | that small, it will be converted back to the wider comparison. |
| 558 | This helps if we are testing the sign bit of a narrower object. |
| 559 | combine can't do this for us because it can't know whether a |
| 560 | ZERO_EXTRACT or a compare in a smaller mode exists, but we do. */ |
| 561 | |
| 562 | if (! SLOW_BYTE_ACCESS |
| 563 | && TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST |
| 564 | && TYPE_PRECISION (TREE_TYPE (exp)) <= HOST_BITS_PER_WIDE_INT |
| 565 | && (i = tree_floor_log2 (TREE_OPERAND (exp, 1))) >= 0 |
| 566 | && int_mode_for_size (size: i + 1, limit: 0).exists (mode: &mode) |
| 567 | && (type = lang_hooks.types.type_for_mode (mode, 1)) != 0 |
| 568 | && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (exp)) |
| 569 | && have_insn_for (COMPARE, TYPE_MODE (type))) |
| 570 | { |
| 571 | do_jump (fold_convert (type, exp), if_false_label, if_true_label, |
| 572 | prob); |
| 573 | break; |
| 574 | } |
| 575 | |
| 576 | if (TYPE_PRECISION (TREE_TYPE (exp)) > 1 |
| 577 | || TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST) |
| 578 | goto normal; |
| 579 | |
| 580 | /* Boolean comparisons can be compiled as TRUTH_AND_EXPR. */ |
| 581 | /* FALLTHRU */ |
| 582 | |
| 583 | case TRUTH_AND_EXPR: |
| 584 | /* High branch cost, expand as the bitwise AND of the conditions. |
| 585 | Do the same if the RHS has side effects, because we're effectively |
| 586 | turning a TRUTH_AND_EXPR into a TRUTH_ANDIF_EXPR. */ |
| 587 | if (BRANCH_COST (optimize_insn_for_speed_p (), |
| 588 | false) >= 4 |
| 589 | || TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 1))) |
| 590 | goto normal; |
| 591 | code = TRUTH_ANDIF_EXPR; |
| 592 | goto other_code; |
| 593 | |
| 594 | case BIT_IOR_EXPR: |
| 595 | case TRUTH_OR_EXPR: |
| 596 | /* High branch cost, expand as the bitwise OR of the conditions. |
| 597 | Do the same if the RHS has side effects, because we're effectively |
| 598 | turning a TRUTH_OR_EXPR into a TRUTH_ORIF_EXPR. */ |
| 599 | if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 4 |
| 600 | || TREE_SIDE_EFFECTS (TREE_OPERAND (exp, 1))) |
| 601 | goto normal; |
| 602 | code = TRUTH_ORIF_EXPR; |
| 603 | goto other_code; |
| 604 | |
| 605 | /* Fall through and generate the normal code. */ |
| 606 | default: |
| 607 | normal: |
| 608 | temp = expand_normal (exp); |
| 609 | do_pending_stack_adjust (); |
| 610 | /* The RTL optimizers prefer comparisons against pseudos. */ |
| 611 | if (GET_CODE (temp) == SUBREG) |
| 612 | { |
| 613 | /* Compare promoted variables in their promoted mode. */ |
| 614 | if (SUBREG_PROMOTED_VAR_P (temp) |
| 615 | && REG_P (XEXP (temp, 0))) |
| 616 | temp = XEXP (temp, 0); |
| 617 | else |
| 618 | temp = copy_to_reg (temp); |
| 619 | } |
| 620 | do_compare_rtx_and_jump (temp, CONST0_RTX (GET_MODE (temp)), |
| 621 | NE, TYPE_UNSIGNED (TREE_TYPE (exp)), |
| 622 | exp, GET_MODE (temp), NULL_RTX, |
| 623 | if_false_label, if_true_label, prob); |
| 624 | } |
| 625 | |
| 626 | if (drop_through_label) |
| 627 | { |
| 628 | do_pending_stack_adjust (); |
| 629 | emit_label (drop_through_label); |
| 630 | } |
| 631 | } |
| 632 | |
| 633 | /* Compare OP0 with OP1, word at a time, in mode MODE. |
| 634 | UNSIGNEDP says to do unsigned comparison. |
| 635 | Jump to IF_TRUE_LABEL if OP0 is greater, IF_FALSE_LABEL otherwise. */ |
| 636 | |
| 637 | static void |
| 638 | do_jump_by_parts_greater_rtx (scalar_int_mode mode, int unsignedp, rtx op0, |
| 639 | rtx op1, rtx_code_label *if_false_label, |
| 640 | rtx_code_label *if_true_label, |
| 641 | profile_probability prob) |
| 642 | { |
| 643 | int nwords = (GET_MODE_SIZE (mode) / UNITS_PER_WORD); |
| 644 | rtx_code_label *drop_through_label = 0; |
| 645 | bool drop_through_if_true = false, drop_through_if_false = false; |
| 646 | enum rtx_code code = GT; |
| 647 | int i; |
| 648 | |
| 649 | if (! if_true_label || ! if_false_label) |
| 650 | drop_through_label = gen_label_rtx (); |
| 651 | if (! if_true_label) |
| 652 | { |
| 653 | if_true_label = drop_through_label; |
| 654 | drop_through_if_true = true; |
| 655 | } |
| 656 | if (! if_false_label) |
| 657 | { |
| 658 | if_false_label = drop_through_label; |
| 659 | drop_through_if_false = true; |
| 660 | } |
| 661 | |
| 662 | /* Deal with the special case 0 > x: only one comparison is necessary and |
| 663 | we reverse it to avoid jumping to the drop-through label. */ |
| 664 | if (op0 == const0_rtx && drop_through_if_true && !drop_through_if_false) |
| 665 | { |
| 666 | code = LE; |
| 667 | if_true_label = if_false_label; |
| 668 | if_false_label = drop_through_label; |
| 669 | prob = prob.invert (); |
| 670 | } |
| 671 | |
| 672 | /* Compare a word at a time, high order first. */ |
| 673 | for (i = 0; i < nwords; i++) |
| 674 | { |
| 675 | rtx op0_word, op1_word; |
| 676 | |
| 677 | if (WORDS_BIG_ENDIAN) |
| 678 | { |
| 679 | op0_word = operand_subword_force (op0, i, mode); |
| 680 | op1_word = operand_subword_force (op1, i, mode); |
| 681 | } |
| 682 | else |
| 683 | { |
| 684 | op0_word = operand_subword_force (op0, nwords - 1 - i, mode); |
| 685 | op1_word = operand_subword_force (op1, nwords - 1 - i, mode); |
| 686 | } |
| 687 | |
| 688 | /* All but high-order word must be compared as unsigned. */ |
| 689 | do_compare_rtx_and_jump (op0_word, op1_word, code, (unsignedp || i > 0), |
| 690 | NULL, word_mode, NULL_RTX, NULL, if_true_label, |
| 691 | prob); |
| 692 | |
| 693 | /* Emit only one comparison for 0. Do not emit the last cond jump. */ |
| 694 | if (op0 == const0_rtx || i == nwords - 1) |
| 695 | break; |
| 696 | |
| 697 | /* Consider lower words only if these are equal. */ |
| 698 | do_compare_rtx_and_jump (op0_word, op1_word, NE, unsignedp, NULL, |
| 699 | word_mode, NULL_RTX, NULL, if_false_label, |
| 700 | prob.invert ()); |
| 701 | } |
| 702 | |
| 703 | if (!drop_through_if_false) |
| 704 | emit_jump (if_false_label); |
| 705 | if (drop_through_label) |
| 706 | emit_label (drop_through_label); |
| 707 | } |
| 708 | |
| 709 | /* Given a comparison expression EXP for values too wide to be compared |
| 710 | with one insn, test the comparison and jump to the appropriate label. |
| 711 | The code of EXP is ignored; we always test GT if SWAP is 0, |
| 712 | and LT if SWAP is 1. MODE is the mode of the two operands. */ |
| 713 | |
| 714 | static void |
| 715 | do_jump_by_parts_greater (scalar_int_mode mode, tree treeop0, tree treeop1, |
| 716 | int swap, rtx_code_label *if_false_label, |
| 717 | rtx_code_label *if_true_label, |
| 718 | profile_probability prob) |
| 719 | { |
| 720 | rtx op0 = expand_normal (exp: swap ? treeop1 : treeop0); |
| 721 | rtx op1 = expand_normal (exp: swap ? treeop0 : treeop1); |
| 722 | int unsignedp = TYPE_UNSIGNED (TREE_TYPE (treeop0)); |
| 723 | |
| 724 | do_jump_by_parts_greater_rtx (mode, unsignedp, op0, op1, if_false_label, |
| 725 | if_true_label, prob); |
| 726 | } |
| 727 | |
| 728 | /* Jump according to whether OP0 is 0. We assume that OP0 has an integer |
| 729 | mode, MODE, that is too wide for the available compare insns. Either |
| 730 | Either (but not both) of IF_TRUE_LABEL and IF_FALSE_LABEL may be NULL |
| 731 | to indicate drop through. */ |
| 732 | |
| 733 | static void |
| 734 | do_jump_by_parts_zero_rtx (scalar_int_mode mode, rtx op0, |
| 735 | rtx_code_label *if_false_label, |
| 736 | rtx_code_label *if_true_label, |
| 737 | profile_probability prob) |
| 738 | { |
| 739 | int nwords = GET_MODE_SIZE (mode) / UNITS_PER_WORD; |
| 740 | rtx part; |
| 741 | int i; |
| 742 | rtx_code_label *drop_through_label = NULL; |
| 743 | |
| 744 | /* The fastest way of doing this comparison on almost any machine is to |
| 745 | "or" all the words and compare the result. If all have to be loaded |
| 746 | from memory and this is a very wide item, it's possible this may |
| 747 | be slower, but that's highly unlikely. */ |
| 748 | |
| 749 | part = gen_reg_rtx (word_mode); |
| 750 | emit_move_insn (part, operand_subword_force (op0, 0, mode)); |
| 751 | for (i = 1; i < nwords && part != 0; i++) |
| 752 | part = expand_binop (word_mode, ior_optab, part, |
| 753 | operand_subword_force (op0, i, mode), |
| 754 | part, 1, OPTAB_WIDEN); |
| 755 | |
| 756 | if (part != 0) |
| 757 | { |
| 758 | do_compare_rtx_and_jump (part, const0_rtx, EQ, 1, NULL, word_mode, |
| 759 | NULL_RTX, if_false_label, if_true_label, prob); |
| 760 | return; |
| 761 | } |
| 762 | |
| 763 | /* If we couldn't do the "or" simply, do this with a series of compares. */ |
| 764 | if (! if_false_label) |
| 765 | if_false_label = drop_through_label = gen_label_rtx (); |
| 766 | |
| 767 | for (i = 0; i < nwords; i++) |
| 768 | do_compare_rtx_and_jump (operand_subword_force (op0, i, mode), |
| 769 | const0_rtx, EQ, 1, NULL, word_mode, NULL_RTX, |
| 770 | if_false_label, NULL, prob); |
| 771 | |
| 772 | if (if_true_label) |
| 773 | emit_jump (if_true_label); |
| 774 | |
| 775 | if (drop_through_label) |
| 776 | emit_label (drop_through_label); |
| 777 | } |
| 778 | |
| 779 | /* Test for the equality of two RTX expressions OP0 and OP1 in mode MODE, |
| 780 | where MODE is an integer mode too wide to be compared with one insn. |
| 781 | Either (but not both) of IF_TRUE_LABEL and IF_FALSE_LABEL may be NULL_RTX |
| 782 | to indicate drop through. */ |
| 783 | |
| 784 | static void |
| 785 | do_jump_by_parts_equality_rtx (scalar_int_mode mode, rtx op0, rtx op1, |
| 786 | rtx_code_label *if_false_label, |
| 787 | rtx_code_label *if_true_label, |
| 788 | profile_probability prob) |
| 789 | { |
| 790 | int nwords = (GET_MODE_SIZE (mode) / UNITS_PER_WORD); |
| 791 | rtx_code_label *drop_through_label = NULL; |
| 792 | int i; |
| 793 | |
| 794 | if (op1 == const0_rtx) |
| 795 | { |
| 796 | do_jump_by_parts_zero_rtx (mode, op0, if_false_label, if_true_label, |
| 797 | prob); |
| 798 | return; |
| 799 | } |
| 800 | else if (op0 == const0_rtx) |
| 801 | { |
| 802 | do_jump_by_parts_zero_rtx (mode, op0: op1, if_false_label, if_true_label, |
| 803 | prob); |
| 804 | return; |
| 805 | } |
| 806 | |
| 807 | if (! if_false_label) |
| 808 | drop_through_label = if_false_label = gen_label_rtx (); |
| 809 | |
| 810 | for (i = 0; i < nwords; i++) |
| 811 | do_compare_rtx_and_jump (operand_subword_force (op0, i, mode), |
| 812 | operand_subword_force (op1, i, mode), |
| 813 | EQ, 0, NULL, word_mode, NULL_RTX, |
| 814 | if_false_label, NULL, prob); |
| 815 | |
| 816 | if (if_true_label) |
| 817 | emit_jump (if_true_label); |
| 818 | if (drop_through_label) |
| 819 | emit_label (drop_through_label); |
| 820 | } |
| 821 | |
| 822 | /* Given an EQ_EXPR expression EXP for values too wide to be compared |
| 823 | with one insn, test the comparison and jump to the appropriate label. |
| 824 | MODE is the mode of the two operands. */ |
| 825 | |
| 826 | static void |
| 827 | do_jump_by_parts_equality (scalar_int_mode mode, tree treeop0, tree treeop1, |
| 828 | rtx_code_label *if_false_label, |
| 829 | rtx_code_label *if_true_label, |
| 830 | profile_probability prob) |
| 831 | { |
| 832 | rtx op0 = expand_normal (exp: treeop0); |
| 833 | rtx op1 = expand_normal (exp: treeop1); |
| 834 | do_jump_by_parts_equality_rtx (mode, op0, op1, if_false_label, |
| 835 | if_true_label, prob); |
| 836 | } |
| 837 | |
| 838 | /* Split a comparison into two others, the second of which has the other |
| 839 | "orderedness". The first is always ORDERED or UNORDERED if MODE |
| 840 | does not honor NaNs (which means that it can be skipped in that case; |
| 841 | see do_compare_rtx_and_jump). |
| 842 | |
| 843 | The two conditions are written in *CODE1 and *CODE2. Return true if |
| 844 | the conditions must be ANDed, false if they must be ORed. */ |
| 845 | |
| 846 | bool |
| 847 | split_comparison (enum rtx_code code, machine_mode mode, |
| 848 | enum rtx_code *code1, enum rtx_code *code2) |
| 849 | { |
| 850 | switch (code) |
| 851 | { |
| 852 | case LT: |
| 853 | *code1 = ORDERED; |
| 854 | *code2 = UNLT; |
| 855 | return true; |
| 856 | case LE: |
| 857 | *code1 = ORDERED; |
| 858 | *code2 = UNLE; |
| 859 | return true; |
| 860 | case GT: |
| 861 | *code1 = ORDERED; |
| 862 | *code2 = UNGT; |
| 863 | return true; |
| 864 | case GE: |
| 865 | *code1 = ORDERED; |
| 866 | *code2 = UNGE; |
| 867 | return true; |
| 868 | case EQ: |
| 869 | *code1 = ORDERED; |
| 870 | *code2 = UNEQ; |
| 871 | return true; |
| 872 | case NE: |
| 873 | *code1 = UNORDERED; |
| 874 | *code2 = LTGT; |
| 875 | return false; |
| 876 | case UNLT: |
| 877 | *code1 = UNORDERED; |
| 878 | *code2 = LT; |
| 879 | return false; |
| 880 | case UNLE: |
| 881 | *code1 = UNORDERED; |
| 882 | *code2 = LE; |
| 883 | return false; |
| 884 | case UNGT: |
| 885 | *code1 = UNORDERED; |
| 886 | *code2 = GT; |
| 887 | return false; |
| 888 | case UNGE: |
| 889 | *code1 = UNORDERED; |
| 890 | *code2 = GE; |
| 891 | return false; |
| 892 | case UNEQ: |
| 893 | *code1 = UNORDERED; |
| 894 | *code2 = EQ; |
| 895 | return false; |
| 896 | case LTGT: |
| 897 | /* Do not turn a trapping comparison into a non-trapping one. */ |
| 898 | if (HONOR_NANS (mode)) |
| 899 | { |
| 900 | *code1 = LT; |
| 901 | *code2 = GT; |
| 902 | return false; |
| 903 | } |
| 904 | else |
| 905 | { |
| 906 | *code1 = ORDERED; |
| 907 | *code2 = NE; |
| 908 | return true; |
| 909 | } |
| 910 | default: |
| 911 | gcc_unreachable (); |
| 912 | } |
| 913 | } |
| 914 | |
| 915 | /* Generate code to evaluate EXP and jump to LABEL if the value is nonzero. |
| 916 | PROB is probability of jump to LABEL. */ |
| 917 | |
| 918 | void |
| 919 | jumpif (tree exp, rtx_code_label *label, profile_probability prob) |
| 920 | { |
| 921 | do_jump (exp, NULL, if_true_label: label, prob); |
| 922 | } |
| 923 | |
| 924 | /* Similar to jumpif but dealing with exploded comparisons of the type |
| 925 | OP0 CODE OP1 . LABEL and PROB are like in jumpif. */ |
| 926 | |
| 927 | void |
| 928 | jumpif_1 (enum tree_code code, tree op0, tree op1, rtx_code_label *label, |
| 929 | profile_probability prob) |
| 930 | { |
| 931 | do_jump_1 (code, op0, op1, NULL, if_true_label: label, prob); |
| 932 | } |
| 933 | |
| 934 | /* Generate code to evaluate EXP and jump to LABEL if the value is zero. |
| 935 | PROB is probability of jump to LABEL. */ |
| 936 | |
| 937 | void |
| 938 | jumpifnot (tree exp, rtx_code_label *label, profile_probability prob) |
| 939 | { |
| 940 | do_jump (exp, if_false_label: label, NULL, prob: prob.invert ()); |
| 941 | } |
| 942 | |
| 943 | /* Similar to jumpifnot but dealing with exploded comparisons of the type |
| 944 | OP0 CODE OP1 . LABEL and PROB are like in jumpifnot. */ |
| 945 | |
| 946 | void |
| 947 | jumpifnot_1 (enum tree_code code, tree op0, tree op1, rtx_code_label *label, |
| 948 | profile_probability prob) |
| 949 | { |
| 950 | do_jump_1 (code, op0, op1, if_false_label: label, NULL, prob: prob.invert ()); |
| 951 | } |
| 952 | |
| 953 | /* Like do_compare_and_jump but expects the values to compare as two rtx's. |
| 954 | The decision as to signed or unsigned comparison must be made by the caller. |
| 955 | |
| 956 | If MODE is BLKmode, SIZE is an RTX giving the size of the objects being |
| 957 | compared. */ |
| 958 | |
| 959 | void |
| 960 | do_compare_rtx_and_jump (rtx op0, rtx op1, enum rtx_code code, int unsignedp, |
| 961 | machine_mode mode, rtx size, |
| 962 | rtx_code_label *if_false_label, |
| 963 | rtx_code_label *if_true_label, |
| 964 | profile_probability prob) |
| 965 | { |
| 966 | do_compare_rtx_and_jump (op0, op1, code, unsignedp, NULL, mode, size, |
| 967 | if_false_label, if_true_label, prob); |
| 968 | } |
| 969 | |
| 970 | /* Like do_compare_and_jump but expects the values to compare as two rtx's. |
| 971 | The decision as to signed or unsigned comparison must be made by the caller. |
| 972 | |
| 973 | If MODE is BLKmode, SIZE is an RTX giving the size of the objects being |
| 974 | compared. */ |
| 975 | |
| 976 | void |
| 977 | do_compare_rtx_and_jump (rtx op0, rtx op1, enum rtx_code code, int unsignedp, |
| 978 | tree val, machine_mode mode, rtx size, |
| 979 | rtx_code_label *if_false_label, |
| 980 | rtx_code_label *if_true_label, |
| 981 | profile_probability prob) |
| 982 | { |
| 983 | rtx tem; |
| 984 | rtx_code_label *dummy_label = NULL; |
| 985 | |
| 986 | /* Reverse the comparison if that is safe and we want to jump if it is |
| 987 | false. Also convert to the reverse comparison if the target can |
| 988 | implement it. */ |
| 989 | if ((! if_true_label |
| 990 | || ! can_compare_p (code, mode, ccp_jump)) |
| 991 | && (! FLOAT_MODE_P (mode) |
| 992 | || code == ORDERED || code == UNORDERED |
| 993 | || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ)) |
| 994 | || (! HONOR_SNANS (mode) && (code == EQ || code == NE)))) |
| 995 | { |
| 996 | enum rtx_code rcode; |
| 997 | if (FLOAT_MODE_P (mode)) |
| 998 | rcode = reverse_condition_maybe_unordered (code); |
| 999 | else |
| 1000 | rcode = reverse_condition (code); |
| 1001 | |
| 1002 | /* Canonicalize to UNORDERED for the libcall. */ |
| 1003 | if (can_compare_p (rcode, mode, ccp_jump) |
| 1004 | || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump))) |
| 1005 | { |
| 1006 | std::swap (a&: if_true_label, b&: if_false_label); |
| 1007 | code = rcode; |
| 1008 | prob = prob.invert (); |
| 1009 | } |
| 1010 | } |
| 1011 | |
| 1012 | /* If one operand is constant, make it the second one. Only do this |
| 1013 | if the other operand is not constant as well. */ |
| 1014 | |
| 1015 | if (swap_commutative_operands_p (op0, op1)) |
| 1016 | { |
| 1017 | std::swap (a&: op0, b&: op1); |
| 1018 | code = swap_condition (code); |
| 1019 | } |
| 1020 | |
| 1021 | do_pending_stack_adjust (); |
| 1022 | |
| 1023 | code = unsignedp ? unsigned_condition (code) : code; |
| 1024 | if ((tem = simplify_relational_operation (code, mode, VOIDmode, |
| 1025 | op0, op1)) != 0) |
| 1026 | { |
| 1027 | if (CONSTANT_P (tem)) |
| 1028 | { |
| 1029 | rtx_code_label *label = (tem == const0_rtx |
| 1030 | || tem == CONST0_RTX (mode)) |
| 1031 | ? if_false_label : if_true_label; |
| 1032 | if (label) |
| 1033 | emit_jump (label); |
| 1034 | return; |
| 1035 | } |
| 1036 | |
| 1037 | code = GET_CODE (tem); |
| 1038 | mode = GET_MODE (tem); |
| 1039 | op0 = XEXP (tem, 0); |
| 1040 | op1 = XEXP (tem, 1); |
| 1041 | unsignedp = (code == GTU || code == LTU || code == GEU || code == LEU); |
| 1042 | } |
| 1043 | |
| 1044 | if (! if_true_label) |
| 1045 | dummy_label = if_true_label = gen_label_rtx (); |
| 1046 | |
| 1047 | scalar_int_mode int_mode; |
| 1048 | if (is_int_mode (mode, int_mode: &int_mode) |
| 1049 | && ! can_compare_p (code, int_mode, ccp_jump)) |
| 1050 | { |
| 1051 | switch (code) |
| 1052 | { |
| 1053 | case LTU: |
| 1054 | do_jump_by_parts_greater_rtx (mode: int_mode, unsignedp: 1, op0: op1, op1: op0, |
| 1055 | if_false_label, if_true_label, prob); |
| 1056 | break; |
| 1057 | |
| 1058 | case LEU: |
| 1059 | do_jump_by_parts_greater_rtx (mode: int_mode, unsignedp: 1, op0, op1, |
| 1060 | if_false_label: if_true_label, if_true_label: if_false_label, |
| 1061 | prob: prob.invert ()); |
| 1062 | break; |
| 1063 | |
| 1064 | case GTU: |
| 1065 | do_jump_by_parts_greater_rtx (mode: int_mode, unsignedp: 1, op0, op1, |
| 1066 | if_false_label, if_true_label, prob); |
| 1067 | break; |
| 1068 | |
| 1069 | case GEU: |
| 1070 | do_jump_by_parts_greater_rtx (mode: int_mode, unsignedp: 1, op0: op1, op1: op0, |
| 1071 | if_false_label: if_true_label, if_true_label: if_false_label, |
| 1072 | prob: prob.invert ()); |
| 1073 | break; |
| 1074 | |
| 1075 | case LT: |
| 1076 | do_jump_by_parts_greater_rtx (mode: int_mode, unsignedp: 0, op0: op1, op1: op0, |
| 1077 | if_false_label, if_true_label, prob); |
| 1078 | break; |
| 1079 | |
| 1080 | case LE: |
| 1081 | do_jump_by_parts_greater_rtx (mode: int_mode, unsignedp: 0, op0, op1, |
| 1082 | if_false_label: if_true_label, if_true_label: if_false_label, |
| 1083 | prob: prob.invert ()); |
| 1084 | break; |
| 1085 | |
| 1086 | case GT: |
| 1087 | do_jump_by_parts_greater_rtx (mode: int_mode, unsignedp: 0, op0, op1, |
| 1088 | if_false_label, if_true_label, prob); |
| 1089 | break; |
| 1090 | |
| 1091 | case GE: |
| 1092 | do_jump_by_parts_greater_rtx (mode: int_mode, unsignedp: 0, op0: op1, op1: op0, |
| 1093 | if_false_label: if_true_label, if_true_label: if_false_label, |
| 1094 | prob: prob.invert ()); |
| 1095 | break; |
| 1096 | |
| 1097 | case EQ: |
| 1098 | do_jump_by_parts_equality_rtx (mode: int_mode, op0, op1, if_false_label, |
| 1099 | if_true_label, prob); |
| 1100 | break; |
| 1101 | |
| 1102 | case NE: |
| 1103 | do_jump_by_parts_equality_rtx (mode: int_mode, op0, op1, if_false_label: if_true_label, |
| 1104 | if_true_label: if_false_label, |
| 1105 | prob: prob.invert ()); |
| 1106 | break; |
| 1107 | |
| 1108 | default: |
| 1109 | gcc_unreachable (); |
| 1110 | } |
| 1111 | } |
| 1112 | else |
| 1113 | { |
| 1114 | if (SCALAR_FLOAT_MODE_P (mode) |
| 1115 | && ! can_compare_p (code, mode, ccp_jump) |
| 1116 | && can_compare_p (swap_condition (code), mode, ccp_jump)) |
| 1117 | { |
| 1118 | code = swap_condition (code); |
| 1119 | std::swap (a&: op0, b&: op1); |
| 1120 | } |
| 1121 | else if (SCALAR_FLOAT_MODE_P (mode) |
| 1122 | && ! can_compare_p (code, mode, ccp_jump) |
| 1123 | /* Never split ORDERED and UNORDERED. |
| 1124 | These must be implemented. */ |
| 1125 | && (code != ORDERED && code != UNORDERED) |
| 1126 | /* Split a floating-point comparison if |
| 1127 | we can jump on other conditions... */ |
| 1128 | && (have_insn_for (COMPARE, mode) |
| 1129 | /* ... or if there is no libcall for it. */ |
| 1130 | || code_to_optab (code) == unknown_optab)) |
| 1131 | { |
| 1132 | enum rtx_code first_code, orig_code = code; |
| 1133 | bool and_them = split_comparison (code, mode, code1: &first_code, code2: &code); |
| 1134 | |
| 1135 | /* If there are no NaNs, the first comparison should always fall |
| 1136 | through. */ |
| 1137 | if (!HONOR_NANS (mode)) |
| 1138 | gcc_assert (first_code == (and_them ? ORDERED : UNORDERED)); |
| 1139 | |
| 1140 | else if ((orig_code == EQ || orig_code == NE) |
| 1141 | && rtx_equal_p (op0, op1)) |
| 1142 | /* Self-comparisons x == x or x != x can be optimized into |
| 1143 | just x ord x or x nord x. */ |
| 1144 | code = orig_code == EQ ? ORDERED : UNORDERED; |
| 1145 | |
| 1146 | else |
| 1147 | { |
| 1148 | profile_probability cprob |
| 1149 | = profile_probability::guessed_always (); |
| 1150 | if (first_code == UNORDERED) |
| 1151 | cprob /= 100; |
| 1152 | else if (first_code == ORDERED) |
| 1153 | cprob = cprob.apply_scale (num: 99, den: 100); |
| 1154 | else |
| 1155 | cprob = profile_probability::even (); |
| 1156 | /* For and_them we want to split: |
| 1157 | if (x) goto t; // prob; |
| 1158 | goto f; |
| 1159 | into |
| 1160 | if (a) ; else goto f; // first_prob for ; |
| 1161 | // 1 - first_prob for goto f; |
| 1162 | if (b) goto t; // adjusted prob; |
| 1163 | goto f; |
| 1164 | such that the overall probability of jumping to t |
| 1165 | remains the same. The and_them case should be |
| 1166 | probability-wise equivalent to the !and_them case with |
| 1167 | f and t swapped and also the conditions inverted, i.e. |
| 1168 | if (!a) goto f; |
| 1169 | if (!b) goto f; |
| 1170 | goto t; |
| 1171 | where the overall probability of jumping to f is |
| 1172 | 1 - prob (thus the first prob.invert () below). |
| 1173 | cprob.invert () is because the a condition is inverted, |
| 1174 | so if it was originally ORDERED, !a is UNORDERED and |
| 1175 | thus should be relative 1% rather than 99%. |
| 1176 | The invert () on assignment to first_prob is because |
| 1177 | first_prob represents the probability of fallthru, |
| 1178 | rather than goto f. And the last prob.invert () is |
| 1179 | because the adjusted prob represents the probability of |
| 1180 | jumping to t rather than to f. */ |
| 1181 | if (and_them) |
| 1182 | { |
| 1183 | rtx_code_label *dest_label; |
| 1184 | prob = prob.invert (); |
| 1185 | profile_probability first_prob |
| 1186 | = prob.split (cprob: cprob.invert ()).invert (); |
| 1187 | prob = prob.invert (); |
| 1188 | /* If we only jump if true, just bypass the second jump. */ |
| 1189 | if (! if_false_label) |
| 1190 | { |
| 1191 | if (! dummy_label) |
| 1192 | dummy_label = gen_label_rtx (); |
| 1193 | dest_label = dummy_label; |
| 1194 | } |
| 1195 | else |
| 1196 | dest_label = if_false_label; |
| 1197 | |
| 1198 | do_compare_rtx_and_jump (op0, op1, code: first_code, unsignedp, |
| 1199 | val, mode, size, if_false_label: dest_label, NULL, |
| 1200 | prob: first_prob); |
| 1201 | } |
| 1202 | /* For !and_them we want to split: |
| 1203 | if (x) goto t; // prob; |
| 1204 | goto f; |
| 1205 | into |
| 1206 | if (a) goto t; // first_prob; |
| 1207 | if (b) goto t; // adjusted prob; |
| 1208 | goto f; |
| 1209 | such that the overall probability of jumping to t |
| 1210 | remains the same and first_prob is prob * cprob. */ |
| 1211 | else |
| 1212 | { |
| 1213 | profile_probability first_prob = prob.split (cprob); |
| 1214 | do_compare_rtx_and_jump (op0, op1, code: first_code, unsignedp, |
| 1215 | val, mode, size, NULL, |
| 1216 | if_true_label, prob: first_prob); |
| 1217 | if (orig_code == NE && can_compare_p (UNEQ, mode, ccp_jump)) |
| 1218 | { |
| 1219 | /* x != y can be split into x unord y || x ltgt y |
| 1220 | or x unord y || !(x uneq y). The latter has the |
| 1221 | advantage that both comparisons are non-signalling and |
| 1222 | so there is a higher chance that the RTL optimizations |
| 1223 | merge the two comparisons into just one. */ |
| 1224 | code = UNEQ; |
| 1225 | prob = prob.invert (); |
| 1226 | if (! if_false_label) |
| 1227 | { |
| 1228 | if (! dummy_label) |
| 1229 | dummy_label = gen_label_rtx (); |
| 1230 | if_false_label = dummy_label; |
| 1231 | } |
| 1232 | std::swap (a&: if_false_label, b&: if_true_label); |
| 1233 | } |
| 1234 | } |
| 1235 | } |
| 1236 | } |
| 1237 | |
| 1238 | /* For boolean vectors with less than mode precision |
| 1239 | make sure to fill padding with consistent values. */ |
| 1240 | if (val |
| 1241 | && VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (val)) |
| 1242 | && SCALAR_INT_MODE_P (mode)) |
| 1243 | { |
| 1244 | auto nunits = TYPE_VECTOR_SUBPARTS (TREE_TYPE (val)).to_constant (); |
| 1245 | if (maybe_ne (a: GET_MODE_PRECISION (mode), b: nunits)) |
| 1246 | { |
| 1247 | op0 = expand_binop (mode, and_optab, op0, |
| 1248 | GEN_INT ((HOST_WIDE_INT_1U << nunits) - 1), |
| 1249 | NULL_RTX, true, OPTAB_WIDEN); |
| 1250 | op1 = expand_binop (mode, and_optab, op1, |
| 1251 | GEN_INT ((HOST_WIDE_INT_1U << nunits) - 1), |
| 1252 | NULL_RTX, true, OPTAB_WIDEN); |
| 1253 | } |
| 1254 | } |
| 1255 | |
| 1256 | emit_cmp_and_jump_insns (op0, op1, code, size, mode, unsignedp, val, |
| 1257 | if_true_label, prob); |
| 1258 | } |
| 1259 | |
| 1260 | if (if_false_label) |
| 1261 | emit_jump (if_false_label); |
| 1262 | if (dummy_label) |
| 1263 | emit_label (dummy_label); |
| 1264 | } |
| 1265 | |
| 1266 | /* Generate code for a comparison expression EXP (including code to compute |
| 1267 | the values to be compared) and a conditional jump to IF_FALSE_LABEL and/or |
| 1268 | IF_TRUE_LABEL. One of the labels can be NULL_RTX, in which case the |
| 1269 | generated code will drop through. |
| 1270 | SIGNED_CODE should be the rtx operation for this comparison for |
| 1271 | signed data; UNSIGNED_CODE, likewise for use if data is unsigned. |
| 1272 | |
| 1273 | We force a stack adjustment unless there are currently |
| 1274 | things pushed on the stack that aren't yet used. */ |
| 1275 | |
| 1276 | static void |
| 1277 | do_compare_and_jump (tree treeop0, tree treeop1, enum rtx_code signed_code, |
| 1278 | enum rtx_code unsigned_code, |
| 1279 | rtx_code_label *if_false_label, |
| 1280 | rtx_code_label *if_true_label, profile_probability prob) |
| 1281 | { |
| 1282 | rtx op0, op1; |
| 1283 | tree type; |
| 1284 | machine_mode mode; |
| 1285 | int unsignedp; |
| 1286 | enum rtx_code code; |
| 1287 | |
| 1288 | /* Don't crash if the comparison was erroneous. */ |
| 1289 | op0 = expand_normal (exp: treeop0); |
| 1290 | if (TREE_CODE (treeop0) == ERROR_MARK) |
| 1291 | return; |
| 1292 | |
| 1293 | op1 = expand_normal (exp: treeop1); |
| 1294 | if (TREE_CODE (treeop1) == ERROR_MARK) |
| 1295 | return; |
| 1296 | |
| 1297 | type = TREE_TYPE (treeop0); |
| 1298 | if (TREE_CODE (treeop0) == INTEGER_CST |
| 1299 | && (TREE_CODE (treeop1) != INTEGER_CST |
| 1300 | || (GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type)) |
| 1301 | > GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (TREE_TYPE (treeop1)))))) |
| 1302 | /* op0 might have been replaced by promoted constant, in which |
| 1303 | case the type of second argument should be used. */ |
| 1304 | type = TREE_TYPE (treeop1); |
| 1305 | mode = TYPE_MODE (type); |
| 1306 | unsignedp = TYPE_UNSIGNED (type); |
| 1307 | code = unsignedp ? unsigned_code : signed_code; |
| 1308 | |
| 1309 | /* If function pointers need to be "canonicalized" before they can |
| 1310 | be reliably compared, then canonicalize them. Canonicalize the |
| 1311 | expression when one of the operands is a function pointer. This |
| 1312 | handles the case where the other operand is a void pointer. See |
| 1313 | PR middle-end/17564. */ |
| 1314 | if (targetm.have_canonicalize_funcptr_for_compare () |
| 1315 | && ((POINTER_TYPE_P (TREE_TYPE (treeop0)) |
| 1316 | && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))) |
| 1317 | || (POINTER_TYPE_P (TREE_TYPE (treeop1)) |
| 1318 | && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (treeop1)))))) |
| 1319 | { |
| 1320 | rtx new_op0 = gen_reg_rtx (mode); |
| 1321 | rtx new_op1 = gen_reg_rtx (mode); |
| 1322 | |
| 1323 | emit_insn (targetm.gen_canonicalize_funcptr_for_compare (new_op0, op0)); |
| 1324 | op0 = new_op0; |
| 1325 | |
| 1326 | emit_insn (targetm.gen_canonicalize_funcptr_for_compare (new_op1, op1)); |
| 1327 | op1 = new_op1; |
| 1328 | } |
| 1329 | |
| 1330 | do_compare_rtx_and_jump (op0, op1, code, unsignedp, val: treeop0, mode, |
| 1331 | size: ((mode == BLKmode) |
| 1332 | ? expr_size (treeop0) : NULL_RTX), |
| 1333 | if_false_label, if_true_label, prob); |
| 1334 | } |
| 1335 | |
| 1336 | #include "gt-dojump.h" |
| 1337 | |