1/* Generate code from machine description to recognize rtl as insns.
2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21/* This program is used to produce insn-recog.cc, which contains a
22 function called `recog' plus its subroutines. These functions
23 contain a decision tree that recognizes whether an rtx, the
24 argument given to recog, is a valid instruction.
25
26 recog returns -1 if the rtx is not valid. If the rtx is valid,
27 recog returns a nonnegative number which is the insn code number
28 for the pattern that matched. This is the same as the order in the
29 machine description of the entry that matched. This number can be
30 used as an index into various insn_* tables, such as insn_template,
31 insn_outfun, and insn_n_operands (found in insn-output.cc).
32
33 The third argument to recog is an optional pointer to an int. If
34 present, recog will accept a pattern if it matches except for
35 missing CLOBBER expressions at the end. In that case, the value
36 pointed to by the optional pointer will be set to the number of
37 CLOBBERs that need to be added (it should be initialized to zero by
38 the caller). If it is set nonzero, the caller should allocate a
39 PARALLEL of the appropriate size, copy the initial entries, and
40 call add_clobbers (found in insn-emit.cc) to fill in the CLOBBERs.
41
42 This program also generates the function `split_insns', which
43 returns 0 if the rtl could not be split, or it returns the split
44 rtl as an INSN list.
45
46 This program also generates the function `peephole2_insns', which
47 returns 0 if the rtl could not be matched. If there was a match,
48 the new rtl is returned in an INSN list, and LAST_INSN will point
49 to the last recognized insn in the old sequence.
50
51
52 At a high level, the algorithm used in this file is as follows:
53
54 1. Build up a decision tree for each routine, using the following
55 approach to matching an rtx:
56
57 - First determine the "shape" of the rtx, based on GET_CODE,
58 XVECLEN and XINT. This phase examines SET_SRCs before SET_DESTs
59 since SET_SRCs tend to be more distinctive. It examines other
60 operands in numerical order, since the canonicalization rules
61 prefer putting complex operands of commutative operators first.
62
63 - Next check modes and predicates. This phase examines all
64 operands in numerical order, even for SETs, since the mode of a
65 SET_DEST is exact while the mode of a SET_SRC can be VOIDmode
66 for constant integers.
67
68 - Next check match_dups.
69
70 - Finally check the C condition and (where appropriate) pnum_clobbers.
71
72 2. Try to optimize the tree by removing redundant tests, CSEing tests,
73 folding tests together, etc.
74
75 3. Look for common subtrees and split them out into "pattern" routines.
76 These common subtrees can be identical or they can differ in mode,
77 code, or integer (usually an UNSPEC or UNSPEC_VOLATILE code).
78 In the latter case the users of the pattern routine pass the
79 appropriate mode, etc., as argument. For example, if two patterns
80 contain:
81
82 (plus:SI (match_operand:SI 1 "register_operand")
83 (match_operand:SI 2 "register_operand"))
84
85 we can split the associated matching code out into a subroutine.
86 If a pattern contains:
87
88 (minus:DI (match_operand:DI 1 "register_operand")
89 (match_operand:DI 2 "register_operand"))
90
91 then we can consider using the same matching routine for both
92 the plus and minus expressions, passing PLUS and SImode in the
93 former case and MINUS and DImode in the latter case.
94
95 The main aim of this phase is to reduce the compile time of the
96 insn-recog.cc code and to reduce the amount of object code in
97 insn-recog.o.
98
99 4. Split the matching trees into functions, trying to limit the
100 size of each function to a sensible amount.
101
102 Again, the main aim of this phase is to reduce the compile time
103 of insn-recog.cc. (It doesn't help with the size of insn-recog.o.)
104
105 5. Write out C++ code for each function. */
106
107#include "bconfig.h"
108#define INCLUDE_ALGORITHM
109#include "system.h"
110#include "coretypes.h"
111#include "tm.h"
112#include "rtl.h"
113#include "errors.h"
114#include "read-md.h"
115#include "gensupport.h"
116
117#undef GENERATOR_FILE
118enum true_rtx_doe {
119#define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) TRUE_##ENUM,
120#include "rtl.def"
121#undef DEF_RTL_EXPR
122 FIRST_GENERATOR_RTX_CODE
123};
124#define NUM_TRUE_RTX_CODE ((int) FIRST_GENERATOR_RTX_CODE)
125#define GENERATOR_FILE 1
126
127/* Debugging variables to control which optimizations are performed.
128 Note that disabling merge_states_p leads to very large output. */
129static const bool merge_states_p = true;
130static const bool collapse_optional_decisions_p = true;
131static const bool cse_tests_p = true;
132static const bool simplify_tests_p = true;
133static const bool use_operand_variables_p = true;
134static const bool use_subroutines_p = true;
135static const bool use_pattern_routines_p = true;
136
137/* Whether to add comments for optional tests that we decided to keep.
138 Can be useful when debugging the generator itself but is noise when
139 debugging the generated code. */
140static const bool mark_optional_transitions_p = false;
141
142/* Whether pattern routines should calculate positions relative to their
143 rtx parameter rather than use absolute positions. This e.g. allows
144 a pattern routine to be shared between a plain SET and a PARALLEL
145 that includes a SET.
146
147 In principle it sounds like this should be useful, especially for
148 recog_for_combine, where the plain SET form is generated automatically
149 from a PARALLEL of a single SET and some CLOBBERs. In practice it doesn't
150 seem to help much and leads to slightly bigger object files. */
151static const bool relative_patterns_p = false;
152
153/* Whether pattern routines should be allowed to test whether pnum_clobbers
154 is null. This requires passing pnum_clobbers around as a parameter. */
155static const bool pattern_have_num_clobbers_p = true;
156
157/* Whether pattern routines should be allowed to test .md file C conditions.
158 This requires passing insn around as a parameter, in case the C
159 condition refers to it. In practice this tends to lead to bigger
160 object files. */
161static const bool pattern_c_test_p = false;
162
163/* Whether to require each parameter passed to a pattern routine to be
164 unique. Disabling this check for example allows unary operators with
165 matching modes (like NEG) and unary operators with mismatched modes
166 (like ZERO_EXTEND) to be matched by a single pattern. However, we then
167 often have cases where the same value is passed too many times. */
168static const bool force_unique_params_p = true;
169
170/* The maximum (approximate) depth of block nesting that an individual
171 routine or subroutine should have. This limit is about keeping the
172 output readable rather than reducing compile time. */
173static const unsigned int MAX_DEPTH = 6;
174
175/* The minimum number of pseudo-statements that a state must have before
176 we split it out into a subroutine. */
177static const unsigned int MIN_NUM_STATEMENTS = 5;
178
179/* The number of pseudo-statements a state can have before we consider
180 splitting out substates into subroutines. This limit is about avoiding
181 compile-time problems with very big functions (and also about keeping
182 functions within --param optimization limits, etc.). */
183static const unsigned int MAX_NUM_STATEMENTS = 200;
184
185/* The minimum number of pseudo-statements that can be used in a pattern
186 routine. */
187static const unsigned int MIN_COMBINE_COST = 4;
188
189/* The maximum number of arguments that a pattern routine can have.
190 The idea is to prevent one pattern getting a ridiculous number of
191 arguments when it would be more beneficial to have a separate pattern
192 routine instead. */
193static const unsigned int MAX_PATTERN_PARAMS = 5;
194
195/* The maximum operand number plus one. */
196int num_operands;
197
198/* Ways of obtaining an rtx to be tested. */
199enum position_type {
200 /* PATTERN (peep2_next_insn (ARG)). */
201 POS_PEEP2_INSN,
202
203 /* XEXP (BASE, ARG). */
204 POS_XEXP,
205
206 /* XVECEXP (BASE, 0, ARG). */
207 POS_XVECEXP0
208};
209
210/* The position of an rtx relative to X0. Each useful position is
211 represented by exactly one instance of this structure. */
212struct position
213{
214 /* The parent rtx. This is the root position for POS_PEEP2_INSNs. */
215 struct position *base;
216
217 /* A position with the same BASE and TYPE, but with the next value
218 of ARG. */
219 struct position *next;
220
221 /* A list of all POS_XEXP positions that use this one as their base,
222 chained by NEXT fields. The first entry represents XEXP (this, 0),
223 the second represents XEXP (this, 1), and so on. */
224 struct position *xexps;
225
226 /* A list of POS_XVECEXP0 positions that use this one as their base,
227 chained by NEXT fields. The first entry represents XVECEXP (this, 0, 0),
228 the second represents XVECEXP (this, 0, 1), and so on. */
229 struct position *xvecexp0s;
230
231 /* The type of position. */
232 enum position_type type;
233
234 /* The argument to TYPE (shown as ARG in the position_type comments). */
235 int arg;
236
237 /* The instruction to which the position belongs. */
238 unsigned int insn_id;
239
240 /* The depth of this position relative to the instruction pattern.
241 E.g. if the instruction pattern is a SET, the SET itself has a
242 depth of 0 while the SET_DEST and SET_SRC have depths of 1. */
243 unsigned int depth;
244
245 /* A unique identifier for this position. */
246 unsigned int id;
247};
248
249enum routine_type {
250 SUBPATTERN, RECOG, SPLIT, PEEPHOLE2
251};
252
253/* The root position (x0). */
254static struct position root_pos;
255
256/* The number of positions created. Also one higher than the maximum
257 position id. */
258static unsigned int num_positions = 1;
259
260/* A list of all POS_PEEP2_INSNs. The entry for insn 0 is the root position,
261 since we are given that instruction's pattern as x0. */
262static struct position *peep2_insn_pos_list = &root_pos;
263
264/* Return a position with the given BASE, TYPE and ARG. NEXT_PTR
265 points to where the unique object that represents the position
266 should be stored. Create the object if it doesn't already exist,
267 otherwise reuse the object that is already there. */
268
269static struct position *
270next_position (struct position **next_ptr, struct position *base,
271 enum position_type type, int arg)
272{
273 struct position *pos;
274
275 pos = *next_ptr;
276 if (!pos)
277 {
278 pos = XCNEW (struct position);
279 pos->type = type;
280 pos->arg = arg;
281 if (type == POS_PEEP2_INSN)
282 {
283 pos->base = 0;
284 pos->insn_id = arg;
285 pos->depth = base->depth;
286 }
287 else
288 {
289 pos->base = base;
290 pos->insn_id = base->insn_id;
291 pos->depth = base->depth + 1;
292 }
293 pos->id = num_positions++;
294 *next_ptr = pos;
295 }
296 return pos;
297}
298
299/* Compare positions POS1 and POS2 lexicographically. */
300
301static int
302compare_positions (struct position *pos1, struct position *pos2)
303{
304 int diff;
305
306 diff = pos1->depth - pos2->depth;
307 if (diff < 0)
308 do
309 pos2 = pos2->base;
310 while (pos1->depth != pos2->depth);
311 else if (diff > 0)
312 do
313 pos1 = pos1->base;
314 while (pos1->depth != pos2->depth);
315 while (pos1 != pos2)
316 {
317 diff = (int) pos1->type - (int) pos2->type;
318 if (diff == 0)
319 diff = pos1->arg - pos2->arg;
320 pos1 = pos1->base;
321 pos2 = pos2->base;
322 }
323 return diff;
324}
325
326/* Return the most deeply-nested position that is common to both
327 POS1 and POS2. If the positions are from different instructions,
328 return the one with the lowest insn_id. */
329
330static struct position *
331common_position (struct position *pos1, struct position *pos2)
332{
333 if (pos1->insn_id != pos2->insn_id)
334 return pos1->insn_id < pos2->insn_id ? pos1 : pos2;
335 if (pos1->depth > pos2->depth)
336 std::swap (a&: pos1, b&: pos2);
337 while (pos1->depth != pos2->depth)
338 pos2 = pos2->base;
339 while (pos1 != pos2)
340 {
341 pos1 = pos1->base;
342 pos2 = pos2->base;
343 }
344 return pos1;
345}
346
347/* Search for and return operand N, stop when reaching node STOP. */
348
349static rtx
350find_operand (rtx pattern, int n, rtx stop)
351{
352 const char *fmt;
353 RTX_CODE code;
354 int i, j, len;
355 rtx r;
356
357 if (pattern == stop)
358 return stop;
359
360 code = GET_CODE (pattern);
361 if ((code == MATCH_SCRATCH
362 || code == MATCH_OPERAND
363 || code == MATCH_OPERATOR
364 || code == MATCH_PARALLEL)
365 && XINT (pattern, 0) == n)
366 return pattern;
367
368 fmt = GET_RTX_FORMAT (code);
369 len = GET_RTX_LENGTH (code);
370 for (i = 0; i < len; i++)
371 {
372 switch (fmt[i])
373 {
374 case 'e': case 'u':
375 if ((r = find_operand (XEXP (pattern, i), n, stop)) != NULL_RTX)
376 return r;
377 break;
378
379 case 'V':
380 if (! XVEC (pattern, i))
381 break;
382 /* Fall through. */
383
384 case 'E':
385 for (j = 0; j < XVECLEN (pattern, i); j++)
386 if ((r = find_operand (XVECEXP (pattern, i, j), n, stop))
387 != NULL_RTX)
388 return r;
389 break;
390
391 case 'r': case 'p': case 'i': case 'w': case '0': case 's':
392 break;
393
394 default:
395 gcc_unreachable ();
396 }
397 }
398
399 return NULL;
400}
401
402/* Search for and return operand M, such that it has a matching
403 constraint for operand N. */
404
405static rtx
406find_matching_operand (rtx pattern, int n)
407{
408 const char *fmt;
409 RTX_CODE code;
410 int i, j, len;
411 rtx r;
412
413 code = GET_CODE (pattern);
414 if (code == MATCH_OPERAND
415 && (XSTR (pattern, 2)[0] == '0' + n
416 || (XSTR (pattern, 2)[0] == '%'
417 && XSTR (pattern, 2)[1] == '0' + n)))
418 return pattern;
419
420 fmt = GET_RTX_FORMAT (code);
421 len = GET_RTX_LENGTH (code);
422 for (i = 0; i < len; i++)
423 {
424 switch (fmt[i])
425 {
426 case 'e': case 'u':
427 if ((r = find_matching_operand (XEXP (pattern, i), n)))
428 return r;
429 break;
430
431 case 'V':
432 if (! XVEC (pattern, i))
433 break;
434 /* Fall through. */
435
436 case 'E':
437 for (j = 0; j < XVECLEN (pattern, i); j++)
438 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
439 return r;
440 break;
441
442 case 'r': case 'p': case 'i': case 'w': case '0': case 's':
443 break;
444
445 default:
446 gcc_unreachable ();
447 }
448 }
449
450 return NULL;
451}
452
453/* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
454 don't use the MATCH_OPERAND constraint, only the predicate.
455 This is confusing to folks doing new ports, so help them
456 not make the mistake. */
457
458static bool
459constraints_supported_in_insn_p (rtx insn)
460{
461 return !(GET_CODE (insn) == DEFINE_EXPAND
462 || GET_CODE (insn) == DEFINE_SPLIT
463 || GET_CODE (insn) == DEFINE_PEEPHOLE2);
464}
465
466/* Return the name of the predicate matched by MATCH_RTX. */
467
468static const char *
469predicate_name (rtx match_rtx)
470{
471 if (GET_CODE (match_rtx) == MATCH_SCRATCH)
472 return "scratch_operand";
473 else
474 return XSTR (match_rtx, 1);
475}
476
477/* Return true if OPERAND is a MATCH_OPERAND using a special predicate
478 function. */
479
480static bool
481special_predicate_operand_p (rtx operand)
482{
483 if (GET_CODE (operand) == MATCH_OPERAND)
484 {
485 const char *pred_name = predicate_name (match_rtx: operand);
486 if (pred_name[0] != 0)
487 {
488 const struct pred_data *pred;
489
490 pred = lookup_predicate (pred_name);
491 return pred != NULL && pred->special;
492 }
493 }
494
495 return false;
496}
497
498/* Check for various errors in PATTERN, which is part of INFO.
499 SET is nonnull for a destination, and is the complete set pattern.
500 SET_CODE is '=' for normal sets, and '+' within a context that
501 requires in-out constraints. */
502
503static void
504validate_pattern (rtx pattern, md_rtx_info *info, rtx set, int set_code)
505{
506 const char *fmt;
507 RTX_CODE code;
508 size_t i, len;
509 int j;
510
511 code = GET_CODE (pattern);
512 switch (code)
513 {
514 case MATCH_SCRATCH:
515 {
516 const char constraints0 = XSTR (pattern, 1)[0];
517
518 if (!constraints_supported_in_insn_p (insn: info->def))
519 {
520 if (constraints0)
521 {
522 error_at (info->loc, "constraints not supported in %s",
523 GET_RTX_NAME (GET_CODE (info->def)));
524 }
525 return;
526 }
527
528 /* If a MATCH_SCRATCH is used in a context requiring an write-only
529 or read/write register, validate that. */
530 if (set_code == '='
531 && constraints0
532 && constraints0 != '='
533 && constraints0 != '+')
534 {
535 error_at (info->loc, "operand %d missing output reload",
536 XINT (pattern, 0));
537 }
538 return;
539 }
540 case MATCH_DUP:
541 case MATCH_OP_DUP:
542 case MATCH_PAR_DUP:
543 if (find_operand (pattern: info->def, XINT (pattern, 0), stop: pattern) == pattern)
544 error_at (info->loc, "operand %i duplicated before defined",
545 XINT (pattern, 0));
546 break;
547 case MATCH_OPERAND:
548 case MATCH_OPERATOR:
549 {
550 const char *pred_name = XSTR (pattern, 1);
551 const struct pred_data *pred;
552 const char *c_test;
553
554 c_test = get_c_test (info->def);
555
556 if (pred_name[0] != 0)
557 {
558 pred = lookup_predicate (pred_name);
559 if (!pred)
560 error_at (info->loc, "unknown predicate '%s'", pred_name);
561 }
562 else
563 pred = 0;
564
565 if (code == MATCH_OPERAND)
566 {
567 const char *constraints = XSTR (pattern, 2);
568 const char constraints0 = constraints[0];
569
570 if (!constraints_supported_in_insn_p (insn: info->def))
571 {
572 if (constraints0)
573 {
574 error_at (info->loc, "constraints not supported in %s",
575 GET_RTX_NAME (GET_CODE (info->def)));
576 }
577 }
578
579 /* A MATCH_OPERAND that is a SET should have an output reload. */
580 else if (set && constraints0)
581 {
582 if (set_code == '+')
583 {
584 if (constraints0 == '+')
585 ;
586 /* If we've only got an output reload for this operand,
587 we'd better have a matching input operand. */
588 else if (constraints0 == '='
589 && find_matching_operand (pattern: info->def,
590 XINT (pattern, 0)))
591 ;
592 else
593 error_at (info->loc, "operand %d missing in-out reload",
594 XINT (pattern, 0));
595 }
596 else if (constraints0 != '=' && constraints0 != '+')
597 error_at (info->loc, "operand %d missing output reload",
598 XINT (pattern, 0));
599 }
600
601 /* For matching constraint in MATCH_OPERAND, the digit must be a
602 smaller number than the number of the operand that uses it in the
603 constraint. */
604 while (1)
605 {
606 while (constraints[0]
607 && (constraints[0] == ' ' || constraints[0] == ','))
608 constraints++;
609 if (!constraints[0])
610 break;
611
612 if (constraints[0] >= '0' && constraints[0] <= '9')
613 {
614 int val;
615
616 sscanf (s: constraints, format: "%d", &val);
617 if (val >= XINT (pattern, 0))
618 error_at (info->loc, "constraint digit %d is not"
619 " smaller than operand %d",
620 val, XINT (pattern, 0));
621 }
622
623 while (constraints[0] && constraints[0] != ',')
624 constraints++;
625 }
626 }
627
628 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
629 while not likely to occur at runtime, results in less efficient
630 code from insn-recog.cc. */
631 if (set && pred && pred->allows_non_lvalue)
632 error_at (info->loc, "destination operand %d allows non-lvalue",
633 XINT (pattern, 0));
634
635 /* A modeless MATCH_OPERAND can be handy when we can check for
636 multiple modes in the c_test. In most other cases, it is a
637 mistake. Only DEFINE_INSN is eligible, since SPLIT and
638 PEEP2 can FAIL within the output pattern. Exclude special
639 predicates, which check the mode themselves. Also exclude
640 predicates that allow only constants. Exclude the SET_DEST
641 of a call instruction, as that is a common idiom. */
642
643 if (GET_MODE (pattern) == VOIDmode
644 && code == MATCH_OPERAND
645 && GET_CODE (info->def) == DEFINE_INSN
646 && pred
647 && !pred->special
648 && pred->allows_non_const
649 && strstr (haystack: c_test, needle: "operands") == NULL
650 && ! (set
651 && GET_CODE (set) == SET
652 && GET_CODE (SET_SRC (set)) == CALL))
653 message_at (info->loc, "warning: operand %d missing mode?",
654 XINT (pattern, 0));
655 return;
656 }
657
658 case SET:
659 {
660 machine_mode dmode, smode;
661 rtx dest, src;
662
663 dest = SET_DEST (pattern);
664 src = SET_SRC (pattern);
665
666 /* STRICT_LOW_PART is a wrapper. Its argument is the real
667 destination, and it's mode should match the source. */
668 if (GET_CODE (dest) == STRICT_LOW_PART)
669 dest = XEXP (dest, 0);
670
671 /* Find the referent for a DUP. */
672
673 if (GET_CODE (dest) == MATCH_DUP
674 || GET_CODE (dest) == MATCH_OP_DUP
675 || GET_CODE (dest) == MATCH_PAR_DUP)
676 dest = find_operand (pattern: info->def, XINT (dest, 0), NULL);
677
678 if (GET_CODE (src) == MATCH_DUP
679 || GET_CODE (src) == MATCH_OP_DUP
680 || GET_CODE (src) == MATCH_PAR_DUP)
681 src = find_operand (pattern: info->def, XINT (src, 0), NULL);
682
683 dmode = GET_MODE (dest);
684 smode = GET_MODE (src);
685
686 /* Mode checking is not performed for special predicates. */
687 if (special_predicate_operand_p (operand: src)
688 || special_predicate_operand_p (operand: dest))
689 ;
690
691 /* The operands of a SET must have the same mode unless one
692 is VOIDmode. */
693 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
694 error_at (info->loc, "mode mismatch in set: %smode vs %smode",
695 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
696
697 /* If only one of the operands is VOIDmode, and PC is not involved,
698 it's probably a mistake. */
699 else if (dmode != smode
700 && GET_CODE (dest) != PC
701 && GET_CODE (src) != PC
702 && !CONST_INT_P (src)
703 && !CONST_WIDE_INT_P (src)
704 && GET_CODE (src) != CALL)
705 {
706 const char *which;
707 which = (dmode == VOIDmode ? "destination" : "source");
708 message_at (info->loc, "warning: %s missing a mode?", which);
709 }
710
711 if (dest != SET_DEST (pattern))
712 validate_pattern (pattern: dest, info, set: pattern, set_code: '=');
713 validate_pattern (SET_DEST (pattern), info, set: pattern, set_code: '=');
714 validate_pattern (SET_SRC (pattern), info, NULL_RTX, set_code: 0);
715 return;
716 }
717
718 case CLOBBER:
719 validate_pattern (SET_DEST (pattern), info, set: pattern, set_code: '=');
720 return;
721
722 case ZERO_EXTRACT:
723 validate_pattern (XEXP (pattern, 0), info, set, set_code: set ? '+' : 0);
724 validate_pattern (XEXP (pattern, 1), info, NULL_RTX, set_code: 0);
725 validate_pattern (XEXP (pattern, 2), info, NULL_RTX, set_code: 0);
726 return;
727
728 case STRICT_LOW_PART:
729 validate_pattern (XEXP (pattern, 0), info, set, set_code: set ? '+' : 0);
730 return;
731
732 case LABEL_REF:
733 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
734 error_at (info->loc, "operand to label_ref %smode not VOIDmode",
735 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
736 break;
737
738 case VEC_SELECT:
739 if (GET_MODE (pattern) != VOIDmode)
740 {
741 machine_mode mode = GET_MODE (pattern);
742 machine_mode imode = GET_MODE (XEXP (pattern, 0));
743 machine_mode emode
744 = VECTOR_MODE_P (mode) ? GET_MODE_INNER (mode) : mode;
745 if (GET_CODE (XEXP (pattern, 1)) == PARALLEL)
746 {
747 int expected = 1;
748 unsigned int nelems;
749 if (VECTOR_MODE_P (mode)
750 && !GET_MODE_NUNITS (mode).is_constant (const_value: &expected))
751 error_at (info->loc,
752 "vec_select with variable-sized mode %s",
753 GET_MODE_NAME (mode));
754 else if (XVECLEN (XEXP (pattern, 1), 0) != expected)
755 error_at (info->loc,
756 "vec_select parallel with %d elements, expected %d",
757 XVECLEN (XEXP (pattern, 1), 0), expected);
758 else if (VECTOR_MODE_P (imode)
759 && GET_MODE_NUNITS (mode: imode).is_constant (const_value: &nelems))
760 {
761 int i;
762 for (i = 0; i < expected; ++i)
763 if (CONST_INT_P (XVECEXP (XEXP (pattern, 1), 0, i))
764 && (UINTVAL (XVECEXP (XEXP (pattern, 1), 0, i))
765 >= nelems))
766 error_at (info->loc,
767 "out of bounds selector %u in vec_select, "
768 "expected at most %u",
769 (unsigned)
770 UINTVAL (XVECEXP (XEXP (pattern, 1), 0, i)),
771 nelems - 1);
772 }
773 }
774 if (imode != VOIDmode && !VECTOR_MODE_P (imode))
775 error_at (info->loc, "%smode of first vec_select operand is not a "
776 "vector mode", GET_MODE_NAME (imode));
777 else if (imode != VOIDmode && GET_MODE_INNER (imode) != emode)
778 error_at (info->loc, "element mode mismatch between vec_select "
779 "%smode and its operand %smode",
780 GET_MODE_NAME (emode),
781 GET_MODE_NAME (GET_MODE_INNER (imode)));
782 }
783 break;
784
785 default:
786 break;
787 }
788
789 fmt = GET_RTX_FORMAT (code);
790 len = GET_RTX_LENGTH (code);
791 for (i = 0; i < len; i++)
792 {
793 switch (fmt[i])
794 {
795 case 'e': case 'u':
796 validate_pattern (XEXP (pattern, i), info, NULL_RTX, set_code: 0);
797 break;
798
799 case 'E':
800 for (j = 0; j < XVECLEN (pattern, i); j++)
801 validate_pattern (XVECEXP (pattern, i, j), info, NULL_RTX, set_code: 0);
802 break;
803
804 case 'r': case 'p': case 'i': case 'w': case '0': case 's':
805 break;
806
807 default:
808 gcc_unreachable ();
809 }
810 }
811}
812
813/* Simple list structure for items of type T, for use when being part
814 of a list is an inherent property of T. T must have members equivalent
815 to "T *prev, *next;" and a function "void set_parent (list_head <T> *)"
816 to set the parent list. */
817template <typename T>
818class list_head
819{
820public:
821 /* A range of linked items. */
822 class range
823 {
824 public:
825 range (T *);
826 range (T *, T *);
827
828 T *start, *end;
829 void set_parent (list_head *);
830 };
831
832 list_head ();
833 range release ();
834 void push_back (range);
835 range remove (range);
836 void replace (range, range);
837 T *singleton () const;
838
839 T *first, *last;
840};
841
842/* Create a range [START_IN, START_IN]. */
843
844template <typename T>
845list_head <T>::range::range (T *start_in) : start (start_in), end (start_in) {}
846
847/* Create a range [START_IN, END_IN], linked by next and prev fields. */
848
849template <typename T>
850list_head <T>::range::range (T *start_in, T *end_in)
851 : start (start_in), end (end_in) {}
852
853template <typename T>
854void
855list_head <T>::range::set_parent (list_head <T> *owner)
856{
857 for (T *item = start; item != end; item = item->next)
858 item->set_parent (owner);
859 end->set_parent (owner);
860}
861
862template <typename T>
863list_head <T>::list_head () : first (0), last (0) {}
864
865/* Add R to the end of the list. */
866
867template <typename T>
868void
869list_head <T>::push_back (range r)
870{
871 if (last)
872 last->next = r.start;
873 else
874 first = r.start;
875 r.start->prev = last;
876 last = r.end;
877 r.set_parent (this);
878}
879
880/* Remove R from the list. R remains valid and can be inserted into
881 other lists. */
882
883template <typename T>
884typename list_head <T>::range
885list_head <T>::remove (range r)
886{
887 if (r.start->prev)
888 r.start->prev->next = r.end->next;
889 else
890 first = r.end->next;
891 if (r.end->next)
892 r.end->next->prev = r.start->prev;
893 else
894 last = r.start->prev;
895 r.start->prev = 0;
896 r.end->next = 0;
897 r.set_parent (0);
898 return r;
899}
900
901/* Replace OLDR with NEWR. OLDR remains valid and can be inserted into
902 other lists. */
903
904template <typename T>
905void
906list_head <T>::replace (range oldr, range newr)
907{
908 newr.start->prev = oldr.start->prev;
909 newr.end->next = oldr.end->next;
910
911 oldr.start->prev = 0;
912 oldr.end->next = 0;
913 oldr.set_parent (0);
914
915 if (newr.start->prev)
916 newr.start->prev->next = newr.start;
917 else
918 first = newr.start;
919 if (newr.end->next)
920 newr.end->next->prev = newr.end;
921 else
922 last = newr.end;
923 newr.set_parent (this);
924}
925
926/* Empty the list and return the previous contents as a range that can
927 be inserted into other lists. */
928
929template <typename T>
930typename list_head <T>::range
931list_head <T>::release ()
932{
933 range r (first, last);
934 first = 0;
935 last = 0;
936 r.set_parent (0);
937 return r;
938}
939
940/* If the list contains a single item, return that item, otherwise return
941 null. */
942
943template <typename T>
944T *
945list_head <T>::singleton () const
946{
947 return first == last ? first : 0;
948}
949
950class state;
951
952/* Describes a possible successful return from a routine. */
953struct acceptance_type
954{
955 /* The type of routine we're returning from. */
956 routine_type type : 16;
957
958 /* True if this structure only really represents a partial match,
959 and if we must call a subroutine of type TYPE to complete the match.
960 In this case we'll call the subroutine and, if it succeeds, return
961 whatever the subroutine returned.
962
963 False if this structure presents a full match. */
964 unsigned int partial_p : 1;
965
966 union
967 {
968 /* If PARTIAL_P, this is the number of the subroutine to call. */
969 int subroutine_id;
970
971 /* Valid if !PARTIAL_P. */
972 struct
973 {
974 /* The identifier of the matching pattern. For SUBPATTERNs this
975 value belongs to an ad-hoc routine-specific enum. For the
976 others it's the number of an .md file pattern. */
977 int code;
978 union
979 {
980 /* For RECOG, the number of clobbers that must be added to the
981 pattern in order for it to match CODE. */
982 int num_clobbers;
983
984 /* For PEEPHOLE2, the number of additional instructions that were
985 included in the optimization. */
986 int match_len;
987 } u;
988 } full;
989 } u;
990};
991
992bool
993operator == (const acceptance_type &a, const acceptance_type &b)
994{
995 if (a.partial_p != b.partial_p)
996 return false;
997 if (a.partial_p)
998 return a.u.subroutine_id == b.u.subroutine_id;
999 else
1000 return a.u.full.code == b.u.full.code;
1001}
1002
1003bool
1004operator != (const acceptance_type &a, const acceptance_type &b)
1005{
1006 return !operator == (a, b);
1007}
1008
1009/* Represents a parameter to a pattern routine. */
1010class parameter
1011{
1012public:
1013 /* The C type of parameter. */
1014 enum type_enum {
1015 /* Represents an invalid parameter. */
1016 UNSET,
1017
1018 /* A machine_mode parameter. */
1019 MODE,
1020
1021 /* An rtx_code parameter. */
1022 CODE,
1023
1024 /* An int parameter. */
1025 INT,
1026
1027 /* An unsigned int parameter. */
1028 UINT,
1029
1030 /* A HOST_WIDE_INT parameter. */
1031 WIDE_INT
1032 };
1033
1034 parameter ();
1035 parameter (type_enum, bool, uint64_t);
1036
1037 /* The type of the parameter. */
1038 type_enum type;
1039
1040 /* True if the value passed is variable, false if it is constant. */
1041 bool is_param;
1042
1043 /* If IS_PARAM, this is the number of the variable passed, for an "i%d"
1044 format string. If !IS_PARAM, this is the constant value passed. */
1045 uint64_t value;
1046};
1047
1048parameter::parameter ()
1049 : type (UNSET), is_param (false), value (0) {}
1050
1051parameter::parameter (type_enum type_in, bool is_param_in, uint64_t value_in)
1052 : type (type_in), is_param (is_param_in), value (value_in) {}
1053
1054bool
1055operator == (const parameter &param1, const parameter &param2)
1056{
1057 return (param1.type == param2.type
1058 && param1.is_param == param2.is_param
1059 && param1.value == param2.value);
1060}
1061
1062bool
1063operator != (const parameter &param1, const parameter &param2)
1064{
1065 return !operator == (param1, param2);
1066}
1067
1068/* Represents a routine that matches a partial rtx pattern, returning
1069 an ad-hoc enum value on success and -1 on failure. The routine can
1070 be used by any subroutine type. The match can be parameterized by
1071 things like mode, code and UNSPEC number. */
1072class pattern_routine
1073{
1074public:
1075 /* The state that implements the pattern. */
1076 state *s;
1077
1078 /* The deepest root position from which S can access all the rtxes it needs.
1079 This is NULL if the pattern doesn't need an rtx input, usually because
1080 all matching is done on operands[] instead. */
1081 position *pos;
1082
1083 /* A unique identifier for the routine. */
1084 unsigned int pattern_id;
1085
1086 /* True if the routine takes pnum_clobbers as argument. */
1087 bool pnum_clobbers_p;
1088
1089 /* True if the routine takes the enclosing instruction as argument. */
1090 bool insn_p;
1091
1092 /* The types of the other parameters to the routine, if any. */
1093 auto_vec <parameter::type_enum, MAX_PATTERN_PARAMS> param_types;
1094};
1095
1096/* All defined patterns. */
1097static vec <pattern_routine *> patterns;
1098
1099/* Represents one use of a pattern routine. */
1100class pattern_use
1101{
1102public:
1103 /* The pattern routine to use. */
1104 pattern_routine *routine;
1105
1106 /* The values to pass as parameters. This vector has the same length
1107 as ROUTINE->PARAM_TYPES. */
1108 auto_vec <parameter, MAX_PATTERN_PARAMS> params;
1109};
1110
1111/* Represents a test performed by a decision. */
1112class rtx_test
1113{
1114public:
1115 rtx_test ();
1116
1117 /* The types of test that can be performed. Most of them take as input
1118 an rtx X. Some also take as input a transition label LABEL; the others
1119 are booleans for which the transition label is always "true".
1120
1121 The order of the enum isn't important. */
1122 enum kind_enum {
1123 /* Check GET_CODE (X) == LABEL. */
1124 CODE,
1125
1126 /* Check GET_MODE (X) == LABEL. */
1127 MODE,
1128
1129 /* Check REGNO (X) == LABEL. */
1130 REGNO_FIELD,
1131
1132 /* Check known_eq (SUBREG_BYTE (X), LABEL). */
1133 SUBREG_FIELD,
1134
1135 /* Check XINT (X, u.opno) == LABEL. */
1136 INT_FIELD,
1137
1138 /* Check XWINT (X, u.opno) == LABEL. */
1139 WIDE_INT_FIELD,
1140
1141 /* Check XVECLEN (X, 0) == LABEL. */
1142 VECLEN,
1143
1144 /* Check peep2_current_count >= u.min_len. */
1145 PEEP2_COUNT,
1146
1147 /* Check XVECLEN (X, 0) >= u.min_len. */
1148 VECLEN_GE,
1149
1150 /* Check whether X is a cached const_int with value u.integer. */
1151 SAVED_CONST_INT,
1152
1153 /* Check u.predicate.data (X, u.predicate.mode). */
1154 PREDICATE,
1155
1156 /* Check rtx_equal_p (X, operands[u.opno]). */
1157 DUPLICATE,
1158
1159 /* Check whether X matches pattern u.pattern. */
1160 PATTERN,
1161
1162 /* Check whether pnum_clobbers is nonnull (RECOG only). */
1163 HAVE_NUM_CLOBBERS,
1164
1165 /* Check whether general C test u.string holds. In general the condition
1166 needs access to "insn" and the full operand list. */
1167 C_TEST,
1168
1169 /* Execute operands[u.opno] = X. (Always succeeds.) */
1170 SET_OP,
1171
1172 /* Accept u.acceptance. Always succeeds for SUBPATTERN, RECOG and SPLIT.
1173 May fail for PEEPHOLE2 if the define_peephole2 C code executes FAIL. */
1174 ACCEPT
1175 };
1176
1177 /* The position of rtx X in the above description, relative to the
1178 incoming instruction "insn". The position is null if the test
1179 doesn't take an X as input. */
1180 position *pos;
1181
1182 /* Which element of operands[] already contains POS, or -1 if no element
1183 is known to hold POS. */
1184 int pos_operand;
1185
1186 /* The type of test and its parameters, as described above. */
1187 kind_enum kind;
1188 union
1189 {
1190 int opno;
1191 int min_len;
1192 struct
1193 {
1194 bool is_param;
1195 int value;
1196 } integer;
1197 struct
1198 {
1199 const struct pred_data *data;
1200 /* True if the mode is taken from a machine_mode parameter
1201 to the routine rather than a constant machine_mode. If true,
1202 MODE is the number of the parameter (for an "i%d" format string),
1203 otherwise it is the mode itself. */
1204 bool mode_is_param;
1205 unsigned int mode;
1206 } predicate;
1207 pattern_use *pattern;
1208 const char *string;
1209 acceptance_type acceptance;
1210 } u;
1211
1212 static rtx_test code (position *);
1213 static rtx_test mode (position *);
1214 static rtx_test regno_field (position *);
1215 static rtx_test subreg_field (position *);
1216 static rtx_test int_field (position *, int);
1217 static rtx_test wide_int_field (position *, int);
1218 static rtx_test veclen (position *);
1219 static rtx_test peep2_count (int);
1220 static rtx_test veclen_ge (position *, int);
1221 static rtx_test predicate (position *, const pred_data *, machine_mode);
1222 static rtx_test duplicate (position *, int);
1223 static rtx_test pattern (position *, pattern_use *);
1224 static rtx_test have_num_clobbers ();
1225 static rtx_test c_test (const char *);
1226 static rtx_test set_op (position *, int);
1227 static rtx_test accept (const acceptance_type &);
1228
1229 bool terminal_p () const;
1230 bool single_outcome_p () const;
1231
1232private:
1233 rtx_test (position *, kind_enum);
1234};
1235
1236rtx_test::rtx_test () {}
1237
1238rtx_test::rtx_test (position *pos_in, kind_enum kind_in)
1239 : pos (pos_in), pos_operand (-1), kind (kind_in) {}
1240
1241rtx_test
1242rtx_test::code (position *pos)
1243{
1244 return rtx_test (pos, rtx_test::CODE);
1245}
1246
1247rtx_test
1248rtx_test::mode (position *pos)
1249{
1250 return rtx_test (pos, rtx_test::MODE);
1251}
1252
1253rtx_test
1254rtx_test::regno_field (position *pos)
1255{
1256 rtx_test res (pos, rtx_test::REGNO_FIELD);
1257 return res;
1258}
1259
1260rtx_test
1261rtx_test::subreg_field (position *pos)
1262{
1263 rtx_test res (pos, rtx_test::SUBREG_FIELD);
1264 return res;
1265}
1266
1267rtx_test
1268rtx_test::int_field (position *pos, int opno)
1269{
1270 rtx_test res (pos, rtx_test::INT_FIELD);
1271 res.u.opno = opno;
1272 return res;
1273}
1274
1275rtx_test
1276rtx_test::wide_int_field (position *pos, int opno)
1277{
1278 rtx_test res (pos, rtx_test::WIDE_INT_FIELD);
1279 res.u.opno = opno;
1280 return res;
1281}
1282
1283rtx_test
1284rtx_test::veclen (position *pos)
1285{
1286 return rtx_test (pos, rtx_test::VECLEN);
1287}
1288
1289rtx_test
1290rtx_test::peep2_count (int min_len)
1291{
1292 rtx_test res (0, rtx_test::PEEP2_COUNT);
1293 res.u.min_len = min_len;
1294 return res;
1295}
1296
1297rtx_test
1298rtx_test::veclen_ge (position *pos, int min_len)
1299{
1300 rtx_test res (pos, rtx_test::VECLEN_GE);
1301 res.u.min_len = min_len;
1302 return res;
1303}
1304
1305rtx_test
1306rtx_test::predicate (position *pos, const struct pred_data *data,
1307 machine_mode mode)
1308{
1309 rtx_test res (pos, rtx_test::PREDICATE);
1310 res.u.predicate.data = data;
1311 res.u.predicate.mode_is_param = false;
1312 res.u.predicate.mode = mode;
1313 return res;
1314}
1315
1316rtx_test
1317rtx_test::duplicate (position *pos, int opno)
1318{
1319 rtx_test res (pos, rtx_test::DUPLICATE);
1320 res.u.opno = opno;
1321 return res;
1322}
1323
1324rtx_test
1325rtx_test::pattern (position *pos, pattern_use *pattern)
1326{
1327 rtx_test res (pos, rtx_test::PATTERN);
1328 res.u.pattern = pattern;
1329 return res;
1330}
1331
1332rtx_test
1333rtx_test::have_num_clobbers ()
1334{
1335 return rtx_test (0, rtx_test::HAVE_NUM_CLOBBERS);
1336}
1337
1338rtx_test
1339rtx_test::c_test (const char *string)
1340{
1341 rtx_test res (0, rtx_test::C_TEST);
1342 res.u.string = string;
1343 return res;
1344}
1345
1346rtx_test
1347rtx_test::set_op (position *pos, int opno)
1348{
1349 rtx_test res (pos, rtx_test::SET_OP);
1350 res.u.opno = opno;
1351 return res;
1352}
1353
1354rtx_test
1355rtx_test::accept (const acceptance_type &acceptance)
1356{
1357 rtx_test res (0, rtx_test::ACCEPT);
1358 res.u.acceptance = acceptance;
1359 return res;
1360}
1361
1362/* Return true if the test represents an unconditionally successful match. */
1363
1364bool
1365rtx_test::terminal_p () const
1366{
1367 return kind == rtx_test::ACCEPT && u.acceptance.type != PEEPHOLE2;
1368}
1369
1370/* Return true if the test is a boolean that is always true. */
1371
1372bool
1373rtx_test::single_outcome_p () const
1374{
1375 return terminal_p () || kind == rtx_test::SET_OP;
1376}
1377
1378bool
1379operator == (const rtx_test &a, const rtx_test &b)
1380{
1381 if (a.pos != b.pos || a.kind != b.kind)
1382 return false;
1383 switch (a.kind)
1384 {
1385 case rtx_test::CODE:
1386 case rtx_test::MODE:
1387 case rtx_test::REGNO_FIELD:
1388 case rtx_test::SUBREG_FIELD:
1389 case rtx_test::VECLEN:
1390 case rtx_test::HAVE_NUM_CLOBBERS:
1391 return true;
1392
1393 case rtx_test::PEEP2_COUNT:
1394 case rtx_test::VECLEN_GE:
1395 return a.u.min_len == b.u.min_len;
1396
1397 case rtx_test::INT_FIELD:
1398 case rtx_test::WIDE_INT_FIELD:
1399 case rtx_test::DUPLICATE:
1400 case rtx_test::SET_OP:
1401 return a.u.opno == b.u.opno;
1402
1403 case rtx_test::SAVED_CONST_INT:
1404 return (a.u.integer.is_param == b.u.integer.is_param
1405 && a.u.integer.value == b.u.integer.value);
1406
1407 case rtx_test::PREDICATE:
1408 return (a.u.predicate.data == b.u.predicate.data
1409 && a.u.predicate.mode_is_param == b.u.predicate.mode_is_param
1410 && a.u.predicate.mode == b.u.predicate.mode);
1411
1412 case rtx_test::PATTERN:
1413 return (a.u.pattern->routine == b.u.pattern->routine
1414 && a.u.pattern->params == b.u.pattern->params);
1415
1416 case rtx_test::C_TEST:
1417 return strcmp (s1: a.u.string, s2: b.u.string) == 0;
1418
1419 case rtx_test::ACCEPT:
1420 return a.u.acceptance == b.u.acceptance;
1421 }
1422 gcc_unreachable ();
1423}
1424
1425bool
1426operator != (const rtx_test &a, const rtx_test &b)
1427{
1428 return !operator == (a, b);
1429}
1430
1431/* A simple set of transition labels. Most transitions have a singleton
1432 label, so try to make that case as efficient as possible. */
1433class int_set : public auto_vec <uint64_t, 1>
1434{
1435public:
1436 typedef uint64_t *iterator;
1437
1438 int_set ();
1439 int_set (uint64_t);
1440 int_set (const int_set &);
1441
1442 int_set &operator = (const int_set &);
1443
1444 iterator begin ();
1445 iterator end ();
1446};
1447
1448int_set::int_set () : auto_vec<uint64_t, 1> () {}
1449
1450int_set::int_set (uint64_t label) :
1451 auto_vec<uint64_t, 1> ()
1452{
1453 safe_push (obj: label);
1454}
1455
1456int_set::int_set (const int_set &other) :
1457 auto_vec<uint64_t, 1> ()
1458{
1459 safe_splice (src: other);
1460}
1461
1462int_set &
1463int_set::operator = (const int_set &other)
1464{
1465 truncate (size: 0);
1466 safe_splice (src: other);
1467 return *this;
1468}
1469
1470int_set::iterator
1471int_set::begin ()
1472{
1473 return address ();
1474}
1475
1476int_set::iterator
1477int_set::end ()
1478{
1479 return address () + length ();
1480}
1481
1482bool
1483operator == (const int_set &a, const int_set &b)
1484{
1485 if (a.length () != b.length ())
1486 return false;
1487 for (unsigned int i = 0; i < a.length (); ++i)
1488 if (a[i] != b[i])
1489 return false;
1490 return true;
1491}
1492
1493bool
1494operator != (const int_set &a, const int_set &b)
1495{
1496 return !operator == (a, b);
1497}
1498
1499class decision;
1500
1501/* Represents a transition between states, dependent on the result of
1502 a test T. */
1503class transition
1504{
1505public:
1506 transition (const int_set &, state *, bool);
1507
1508 void set_parent (list_head <transition> *);
1509
1510 /* Links to other transitions for T. Always null for boolean tests. */
1511 transition *prev, *next;
1512
1513 /* The transition should be taken when T has one of these values.
1514 E.g. for rtx_test::CODE this is a set of codes, while for booleans like
1515 rtx_test::PREDICATE it is always a singleton "true". The labels are
1516 sorted in ascending order. */
1517 int_set labels;
1518
1519 /* The source decision. */
1520 decision *from;
1521
1522 /* The target state. */
1523 state *to;
1524
1525 /* True if TO would function correctly even if TEST wasn't performed.
1526 E.g. it isn't necessary to check whether GET_MODE (x1) is SImode
1527 before calling register_operand (x1, SImode), since register_operand
1528 performs its own mode check. However, checking GET_MODE can be a cheap
1529 way of disambiguating SImode and DImode register operands. */
1530 bool optional;
1531
1532 /* True if LABELS contains parameter numbers rather than constants.
1533 E.g. if this is true for a rtx_test::CODE, the label is the number
1534 of an rtx_code parameter rather than an rtx_code itself.
1535 LABELS is always a singleton when this variable is true. */
1536 bool is_param;
1537};
1538
1539/* Represents a test and the action that should be taken on the result.
1540 If a transition exists for the test outcome, the machine switches
1541 to the transition's target state. If no suitable transition exists,
1542 the machine either falls through to the next decision or, if there are no
1543 more decisions to try, fails the match. */
1544class decision : public list_head <transition>
1545{
1546public:
1547 decision (const rtx_test &);
1548
1549 void set_parent (list_head <decision> *s);
1550 bool if_statement_p (uint64_t * = 0) const;
1551
1552 /* The state to which this decision belongs. */
1553 state *s;
1554
1555 /* Links to other decisions in the same state. */
1556 decision *prev, *next;
1557
1558 /* The test to perform. */
1559 rtx_test test;
1560};
1561
1562/* Represents one machine state. For each state the machine tries a list
1563 of decisions, in order, and acts on the first match. It fails without
1564 further backtracking if no decisions match. */
1565class state : public list_head <decision>
1566{
1567public:
1568 void set_parent (list_head <state> *) {}
1569};
1570
1571transition::transition (const int_set &labels_in, state *to_in,
1572 bool optional_in)
1573 : prev (0), next (0), labels (labels_in), from (0), to (to_in),
1574 optional (optional_in), is_param (false) {}
1575
1576/* Set the source decision of the transition. */
1577
1578void
1579transition::set_parent (list_head <transition> *from_in)
1580{
1581 from = static_cast <decision *> (from_in);
1582}
1583
1584decision::decision (const rtx_test &test_in)
1585 : prev (0), next (0), test (test_in) {}
1586
1587/* Set the state to which this decision belongs. */
1588
1589void
1590decision::set_parent (list_head <decision> *s_in)
1591{
1592 s = static_cast <state *> (s_in);
1593}
1594
1595/* Return true if the decision has a single transition with a single label.
1596 If so, return the label in *LABEL if nonnull. */
1597
1598inline bool
1599decision::if_statement_p (uint64_t *label) const
1600{
1601 if (singleton () && first->labels.length () == 1)
1602 {
1603 if (label)
1604 *label = first->labels[0];
1605 return true;
1606 }
1607 return false;
1608}
1609
1610/* Add to FROM a decision that performs TEST and has a single transition
1611 TRANS. */
1612
1613static void
1614add_decision (state *from, const rtx_test &test, transition *trans)
1615{
1616 decision *d = new decision (test);
1617 from->push_back (r: d);
1618 d->push_back (r: trans);
1619}
1620
1621/* Add a transition from FROM to a new, empty state that is taken
1622 when TEST == LABELS. OPTIONAL says whether the new transition
1623 should be optional. Return the new state. */
1624
1625static state *
1626add_decision (state *from, const rtx_test &test, int_set labels, bool optional)
1627{
1628 state *to = new state;
1629 add_decision (from, test, trans: new transition (labels, to, optional));
1630 return to;
1631}
1632
1633/* Insert a decision before decisions R to make them dependent on
1634 TEST == LABELS. OPTIONAL says whether the new transition should be
1635 optional. */
1636
1637static decision *
1638insert_decision_before (state::range r, const rtx_test &test,
1639 const int_set &labels, bool optional)
1640{
1641 decision *newd = new decision (test);
1642 state *news = new state;
1643 newd->push_back (r: new transition (labels, news, optional));
1644 r.start->s->replace (oldr: r, newr: newd);
1645 news->push_back (r);
1646 return newd;
1647}
1648
1649/* Remove any optional transitions from S that turned out not to be useful. */
1650
1651static void
1652collapse_optional_decisions (state *s)
1653{
1654 decision *d = s->first;
1655 while (d)
1656 {
1657 decision *next = d->next;
1658 for (transition *trans = d->first; trans; trans = trans->next)
1659 collapse_optional_decisions (s: trans->to);
1660 /* A decision with a single optional transition doesn't help
1661 partition the potential matches and so is unlikely to be
1662 worthwhile. In particular, if the decision that performs the
1663 test is the last in the state, the best it could do is reject
1664 an invalid pattern slightly earlier. If instead the decision
1665 is not the last in the state, the condition it tests could hold
1666 even for the later decisions in the state. The best it can do
1667 is save work in some cases where only the later decisions can
1668 succeed.
1669
1670 In both cases the optional transition would add extra work to
1671 successful matches when the tested condition holds. */
1672 if (transition *trans = d->singleton ())
1673 if (trans->optional)
1674 s->replace (oldr: d, newr: trans->to->release ());
1675 d = next;
1676 }
1677}
1678
1679/* Try to squash several separate tests into simpler ones. */
1680
1681static void
1682simplify_tests (state *s)
1683{
1684 for (decision *d = s->first; d; d = d->next)
1685 {
1686 uint64_t label;
1687 /* Convert checks for GET_CODE (x) == CONST_INT and XWINT (x, 0) == N
1688 into checks for const_int_rtx[N'], if N is suitably small. */
1689 if (d->test.kind == rtx_test::CODE
1690 && d->if_statement_p (label: &label)
1691 && label == CONST_INT)
1692 if (decision *second = d->first->to->singleton ())
1693 if (d->test.pos == second->test.pos
1694 && second->test.kind == rtx_test::WIDE_INT_FIELD
1695 && second->test.u.opno == 0
1696 && second->if_statement_p (label: &label)
1697 && IN_RANGE (int64_t (label),
1698 -MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT))
1699 {
1700 d->test.kind = rtx_test::SAVED_CONST_INT;
1701 d->test.u.integer.is_param = false;
1702 d->test.u.integer.value = label;
1703 d->replace (oldr: d->first, newr: second->release ());
1704 d->first->labels[0] = true;
1705 }
1706 /* If we have a CODE test followed by a PREDICATE test, rely on
1707 the predicate to test the code.
1708
1709 This case exists for match_operators. We initially treat the
1710 CODE test for a match_operator as non-optional so that we can
1711 safely move down to its operands. It may turn out that all
1712 paths that reach that code test require the same predicate
1713 to be true. cse_tests will then put the predicate test in
1714 series with the code test. */
1715 if (d->test.kind == rtx_test::CODE)
1716 if (transition *trans = d->singleton ())
1717 {
1718 state *s = trans->to;
1719 while (decision *d2 = s->singleton ())
1720 {
1721 if (d->test.pos != d2->test.pos)
1722 break;
1723 transition *trans2 = d2->singleton ();
1724 if (!trans2)
1725 break;
1726 if (d2->test.kind == rtx_test::PREDICATE)
1727 {
1728 d->test = d2->test;
1729 trans->labels = int_set (true);
1730 s->replace (oldr: d2, newr: trans2->to->release ());
1731 break;
1732 }
1733 s = trans2->to;
1734 }
1735 }
1736 for (transition *trans = d->first; trans; trans = trans->next)
1737 simplify_tests (s: trans->to);
1738 }
1739}
1740
1741/* Return true if all successful returns passing through D require the
1742 condition tested by COMMON to be true.
1743
1744 When returning true, add all transitions like COMMON in D to WHERE.
1745 WHERE may contain a partial result on failure. */
1746
1747static bool
1748common_test_p (decision *d, transition *common, vec <transition *> *where)
1749{
1750 if (d->test.kind == rtx_test::ACCEPT)
1751 /* We found a successful return that didn't require COMMON. */
1752 return false;
1753 if (d->test == common->from->test)
1754 {
1755 transition *trans = d->singleton ();
1756 if (!trans
1757 || trans->optional != common->optional
1758 || trans->labels != common->labels)
1759 return false;
1760 where->safe_push (obj: trans);
1761 return true;
1762 }
1763 for (transition *trans = d->first; trans; trans = trans->next)
1764 for (decision *subd = trans->to->first; subd; subd = subd->next)
1765 if (!common_test_p (d: subd, common, where))
1766 return false;
1767 return true;
1768}
1769
1770/* Indicates that we have tested GET_CODE (X) for a particular rtx X. */
1771const unsigned char TESTED_CODE = 1;
1772
1773/* Indicates that we have tested XVECLEN (X, 0) for a particular rtx X. */
1774const unsigned char TESTED_VECLEN = 2;
1775
1776/* Represents a set of conditions that are known to hold. */
1777class known_conditions
1778{
1779public:
1780 /* A mask of TESTED_ values for each position, indexed by the position's
1781 id field. */
1782 auto_vec <unsigned char> position_tests;
1783
1784 /* Index N says whether operands[N] has been set. */
1785 auto_vec <bool> set_operands;
1786
1787 /* A guranteed lower bound on the value of peep2_current_count. */
1788 int peep2_count;
1789};
1790
1791/* Return true if TEST can safely be performed at D, where
1792 the conditions in KC hold. TEST is known to occur along the
1793 first path from D (i.e. always following the first transition
1794 of the first decision). Any intervening tests can be used as
1795 negative proof that hoisting isn't safe, but only KC can be used
1796 as positive proof. */
1797
1798static bool
1799safe_to_hoist_p (decision *d, const rtx_test &test, known_conditions *kc)
1800{
1801 switch (test.kind)
1802 {
1803 case rtx_test::C_TEST:
1804 /* In general, C tests require everything else to have been
1805 verified and all operands to have been set up. */
1806 return false;
1807
1808 case rtx_test::ACCEPT:
1809 /* Don't accept something before all conditions have been tested. */
1810 return false;
1811
1812 case rtx_test::PREDICATE:
1813 /* Don't move a predicate over a test for VECLEN_GE, since the
1814 predicate used in a match_parallel can legitimately expect the
1815 length to be checked first. */
1816 for (decision *subd = d;
1817 subd->test != test;
1818 subd = subd->first->to->first)
1819 if (subd->test.pos == test.pos
1820 && subd->test.kind == rtx_test::VECLEN_GE)
1821 return false;
1822 goto any_rtx;
1823
1824 case rtx_test::DUPLICATE:
1825 /* Don't test for a match_dup until the associated operand has
1826 been set. */
1827 if (!kc->set_operands[test.u.opno])
1828 return false;
1829 goto any_rtx;
1830
1831 case rtx_test::CODE:
1832 case rtx_test::MODE:
1833 case rtx_test::SAVED_CONST_INT:
1834 case rtx_test::SET_OP:
1835 any_rtx:
1836 /* Check whether it is safe to access the rtx under test. */
1837 switch (test.pos->type)
1838 {
1839 case POS_PEEP2_INSN:
1840 return test.pos->arg < kc->peep2_count;
1841
1842 case POS_XEXP:
1843 return kc->position_tests[test.pos->base->id] & TESTED_CODE;
1844
1845 case POS_XVECEXP0:
1846 return kc->position_tests[test.pos->base->id] & TESTED_VECLEN;
1847 }
1848 gcc_unreachable ();
1849
1850 case rtx_test::REGNO_FIELD:
1851 case rtx_test::SUBREG_FIELD:
1852 case rtx_test::INT_FIELD:
1853 case rtx_test::WIDE_INT_FIELD:
1854 case rtx_test::VECLEN:
1855 case rtx_test::VECLEN_GE:
1856 /* These tests access a specific part of an rtx, so are only safe
1857 once we know what the rtx is. */
1858 return kc->position_tests[test.pos->id] & TESTED_CODE;
1859
1860 case rtx_test::PEEP2_COUNT:
1861 case rtx_test::HAVE_NUM_CLOBBERS:
1862 /* These tests can be performed anywhere. */
1863 return true;
1864
1865 case rtx_test::PATTERN:
1866 gcc_unreachable ();
1867 }
1868 gcc_unreachable ();
1869}
1870
1871/* Look for a transition that is taken by all successful returns from a range
1872 of decisions starting at OUTER and that would be better performed by
1873 OUTER's state instead. On success, store all instances of that transition
1874 in WHERE and return the last decision in the range. The range could
1875 just be OUTER, or it could include later decisions as well.
1876
1877 WITH_POSITION_P is true if only tests with position POS should be tried,
1878 false if any test should be tried. WORTHWHILE_SINGLE_P is true if the
1879 result is useful even when the range contains just a single decision
1880 with a single transition. KC are the conditions that are known to
1881 hold at OUTER. */
1882
1883static decision *
1884find_common_test (decision *outer, bool with_position_p,
1885 position *pos, bool worthwhile_single_p,
1886 known_conditions *kc, vec <transition *> *where)
1887{
1888 /* After this, WORTHWHILE_SINGLE_P indicates whether a range that contains
1889 just a single decision is useful, regardless of the number of
1890 transitions it has. */
1891 if (!outer->singleton ())
1892 worthwhile_single_p = true;
1893 /* Quick exit if we don't have enough decisions to form a worthwhile
1894 range. */
1895 if (!worthwhile_single_p && !outer->next)
1896 return 0;
1897 /* Follow the first chain down, as one example of a path that needs
1898 to contain the common test. */
1899 for (decision *d = outer; d; d = d->first->to->first)
1900 {
1901 transition *trans = d->singleton ();
1902 if (trans
1903 && (!with_position_p || d->test.pos == pos)
1904 && safe_to_hoist_p (d: outer, test: d->test, kc))
1905 {
1906 if (common_test_p (d: outer, common: trans, where))
1907 {
1908 if (!outer->next)
1909 /* We checked above whether the move is worthwhile. */
1910 return outer;
1911 /* See how many decisions in OUTER's chain could reuse
1912 the same test. */
1913 decision *outer_end = outer;
1914 do
1915 {
1916 unsigned int length = where->length ();
1917 if (!common_test_p (d: outer_end->next, common: trans, where))
1918 {
1919 where->truncate (size: length);
1920 break;
1921 }
1922 outer_end = outer_end->next;
1923 }
1924 while (outer_end->next);
1925 /* It is worth moving TRANS if it can be shared by more than
1926 one decision. */
1927 if (outer_end != outer || worthwhile_single_p)
1928 return outer_end;
1929 }
1930 where->truncate (size: 0);
1931 }
1932 }
1933 return 0;
1934}
1935
1936/* Try to promote common subtests in S to a single, shared decision.
1937 Also try to bunch tests for the same position together. POS is the
1938 position of the rtx tested before reaching S. KC are the conditions
1939 that are known to hold on entry to S. */
1940
1941static void
1942cse_tests (position *pos, state *s, known_conditions *kc)
1943{
1944 for (decision *d = s->first; d; d = d->next)
1945 {
1946 auto_vec <transition *, 16> where;
1947 if (d->test.pos)
1948 {
1949 /* Try to find conditions that don't depend on a particular rtx,
1950 such as pnum_clobbers != NULL or peep2_current_count >= X.
1951 It's usually better to check these conditions as soon as
1952 possible, so the change is worthwhile even if there is
1953 only one copy of the test. */
1954 decision *endd = find_common_test (outer: d, with_position_p: true, pos: 0, worthwhile_single_p: true, kc, where: &where);
1955 if (!endd && d->test.pos != pos)
1956 /* Try to find other conditions related to position POS
1957 before moving to the new position. Again, this is
1958 worthwhile even if there is only one copy of the test,
1959 since it means that fewer position variables are live
1960 at a given time. */
1961 endd = find_common_test (outer: d, with_position_p: true, pos, worthwhile_single_p: true, kc, where: &where);
1962 if (!endd)
1963 /* Try to find any condition that is used more than once. */
1964 endd = find_common_test (outer: d, with_position_p: false, pos: 0, worthwhile_single_p: false, kc, where: &where);
1965 if (endd)
1966 {
1967 transition *common = where[0];
1968 /* Replace [D, ENDD] with a test like COMMON. We'll recurse
1969 on the common test and see the original D again next time. */
1970 d = insert_decision_before (r: state::range (d, endd),
1971 test: common->from->test,
1972 labels: common->labels,
1973 optional: common->optional);
1974 /* Remove the old tests. */
1975 while (!where.is_empty ())
1976 {
1977 transition *trans = where.pop ();
1978 trans->from->s->replace (oldr: trans->from, newr: trans->to->release ());
1979 }
1980 }
1981 }
1982
1983 /* Make sure that safe_to_hoist_p isn't being overly conservative.
1984 It should realize that D's test is safe in the current
1985 environment. */
1986 gcc_assert (d->test.kind == rtx_test::C_TEST
1987 || d->test.kind == rtx_test::ACCEPT
1988 || safe_to_hoist_p (d, d->test, kc));
1989
1990 /* D won't be changed any further by the current optimization.
1991 Recurse with the state temporarily updated to include D. */
1992 int prev = 0;
1993 switch (d->test.kind)
1994 {
1995 case rtx_test::CODE:
1996 prev = kc->position_tests[d->test.pos->id];
1997 kc->position_tests[d->test.pos->id] |= TESTED_CODE;
1998 break;
1999
2000 case rtx_test::VECLEN:
2001 case rtx_test::VECLEN_GE:
2002 prev = kc->position_tests[d->test.pos->id];
2003 kc->position_tests[d->test.pos->id] |= TESTED_VECLEN;
2004 break;
2005
2006 case rtx_test::SET_OP:
2007 prev = kc->set_operands[d->test.u.opno];
2008 gcc_assert (!prev);
2009 kc->set_operands[d->test.u.opno] = true;
2010 break;
2011
2012 case rtx_test::PEEP2_COUNT:
2013 prev = kc->peep2_count;
2014 kc->peep2_count = MAX (prev, d->test.u.min_len);
2015 break;
2016
2017 default:
2018 break;
2019 }
2020 for (transition *trans = d->first; trans; trans = trans->next)
2021 cse_tests (pos: d->test.pos ? d->test.pos : pos, s: trans->to, kc);
2022 switch (d->test.kind)
2023 {
2024 case rtx_test::CODE:
2025 case rtx_test::VECLEN:
2026 case rtx_test::VECLEN_GE:
2027 kc->position_tests[d->test.pos->id] = prev;
2028 break;
2029
2030 case rtx_test::SET_OP:
2031 kc->set_operands[d->test.u.opno] = prev;
2032 break;
2033
2034 case rtx_test::PEEP2_COUNT:
2035 kc->peep2_count = prev;
2036 break;
2037
2038 default:
2039 break;
2040 }
2041 }
2042}
2043
2044/* Return the type of value that can be used to parameterize test KIND,
2045 or parameter::UNSET if none. */
2046
2047parameter::type_enum
2048transition_parameter_type (rtx_test::kind_enum kind)
2049{
2050 switch (kind)
2051 {
2052 case rtx_test::CODE:
2053 return parameter::CODE;
2054
2055 case rtx_test::MODE:
2056 return parameter::MODE;
2057
2058 case rtx_test::REGNO_FIELD:
2059 case rtx_test::SUBREG_FIELD:
2060 return parameter::UINT;
2061
2062 case rtx_test::INT_FIELD:
2063 case rtx_test::VECLEN:
2064 case rtx_test::PATTERN:
2065 return parameter::INT;
2066
2067 case rtx_test::WIDE_INT_FIELD:
2068 return parameter::WIDE_INT;
2069
2070 case rtx_test::PEEP2_COUNT:
2071 case rtx_test::VECLEN_GE:
2072 case rtx_test::SAVED_CONST_INT:
2073 case rtx_test::PREDICATE:
2074 case rtx_test::DUPLICATE:
2075 case rtx_test::HAVE_NUM_CLOBBERS:
2076 case rtx_test::C_TEST:
2077 case rtx_test::SET_OP:
2078 case rtx_test::ACCEPT:
2079 return parameter::UNSET;
2080 }
2081 gcc_unreachable ();
2082}
2083
2084/* Initialize the pos_operand fields of each state reachable from S.
2085 If OPERAND_POS[ID] >= 0, the position with id ID is stored in
2086 operands[OPERAND_POS[ID]] on entry to S. */
2087
2088static void
2089find_operand_positions (state *s, vec <int> &operand_pos)
2090{
2091 for (decision *d = s->first; d; d = d->next)
2092 {
2093 int this_operand = (d->test.pos ? operand_pos[d->test.pos->id] : -1);
2094 if (this_operand >= 0)
2095 d->test.pos_operand = this_operand;
2096 if (d->test.kind == rtx_test::SET_OP)
2097 operand_pos[d->test.pos->id] = d->test.u.opno;
2098 for (transition *trans = d->first; trans; trans = trans->next)
2099 find_operand_positions (s: trans->to, operand_pos);
2100 if (d->test.kind == rtx_test::SET_OP)
2101 operand_pos[d->test.pos->id] = this_operand;
2102 }
2103}
2104
2105/* Statistics about a matching routine. */
2106class stats
2107{
2108public:
2109 stats ();
2110
2111 /* The total number of decisions in the routine, excluding trivial
2112 ones that never fail. */
2113 unsigned int num_decisions;
2114
2115 /* The number of non-trivial decisions on the longest path through
2116 the routine, and the return value that contributes most to that
2117 long path. */
2118 unsigned int longest_path;
2119 int longest_path_code;
2120
2121 /* The maximum number of times that a single call to the routine
2122 can backtrack, and the value returned at the end of that path.
2123 "Backtracking" here means failing one decision in state and
2124 going onto to the next. */
2125 unsigned int longest_backtrack;
2126 int longest_backtrack_code;
2127};
2128
2129stats::stats ()
2130 : num_decisions (0), longest_path (0), longest_path_code (-1),
2131 longest_backtrack (0), longest_backtrack_code (-1) {}
2132
2133/* Return statistics about S. */
2134
2135static stats
2136get_stats (state *s)
2137{
2138 stats for_s;
2139 unsigned int longest_path = 0;
2140 for (decision *d = s->first; d; d = d->next)
2141 {
2142 /* Work out the statistics for D. */
2143 stats for_d;
2144 for (transition *trans = d->first; trans; trans = trans->next)
2145 {
2146 stats for_trans = get_stats (s: trans->to);
2147 for_d.num_decisions += for_trans.num_decisions;
2148 /* Each transition is mutually-exclusive, so just pick the
2149 longest of the individual paths. */
2150 if (for_d.longest_path <= for_trans.longest_path)
2151 {
2152 for_d.longest_path = for_trans.longest_path;
2153 for_d.longest_path_code = for_trans.longest_path_code;
2154 }
2155 /* Likewise for backtracking. */
2156 if (for_d.longest_backtrack <= for_trans.longest_backtrack)
2157 {
2158 for_d.longest_backtrack = for_trans.longest_backtrack;
2159 for_d.longest_backtrack_code = for_trans.longest_backtrack_code;
2160 }
2161 }
2162
2163 /* Account for D's test in its statistics. */
2164 if (!d->test.single_outcome_p ())
2165 {
2166 for_d.num_decisions += 1;
2167 for_d.longest_path += 1;
2168 }
2169 if (d->test.kind == rtx_test::ACCEPT)
2170 {
2171 for_d.longest_path_code = d->test.u.acceptance.u.full.code;
2172 for_d.longest_backtrack_code = d->test.u.acceptance.u.full.code;
2173 }
2174
2175 /* Keep a running count of the number of backtracks. */
2176 if (d->prev)
2177 for_s.longest_backtrack += 1;
2178
2179 /* Accumulate D's statistics into S's. */
2180 for_s.num_decisions += for_d.num_decisions;
2181 for_s.longest_path += for_d.longest_path;
2182 for_s.longest_backtrack += for_d.longest_backtrack;
2183
2184 /* Use the code from the decision with the longest individual path,
2185 since that's more likely to be useful if trying to make the
2186 path shorter. In the event of a tie, pick the later decision,
2187 since that's closer to the end of the path. */
2188 if (longest_path <= for_d.longest_path)
2189 {
2190 longest_path = for_d.longest_path;
2191 for_s.longest_path_code = for_d.longest_path_code;
2192 }
2193
2194 /* Later decisions in a state are necessarily in a longer backtrack
2195 than earlier decisions. */
2196 for_s.longest_backtrack_code = for_d.longest_backtrack_code;
2197 }
2198 return for_s;
2199}
2200
2201/* Optimize ROOT. Use TYPE to describe ROOT in status messages. */
2202
2203static void
2204optimize_subroutine_group (const char *type, state *root)
2205{
2206 /* Remove optional transitions that turned out not to be worthwhile. */
2207 if (collapse_optional_decisions_p)
2208 collapse_optional_decisions (s: root);
2209
2210 /* Try to remove duplicated tests and to rearrange tests into a more
2211 logical order. */
2212 if (cse_tests_p)
2213 {
2214 known_conditions kc;
2215 kc.position_tests.safe_grow_cleared (len: num_positions, exact: true);
2216 kc.set_operands.safe_grow_cleared (len: num_operands, exact: true);
2217 kc.peep2_count = 1;
2218 cse_tests (pos: &root_pos, s: root, kc: &kc);
2219 }
2220
2221 /* Try to simplify two or more tests into one. */
2222 if (simplify_tests_p)
2223 simplify_tests (s: root);
2224
2225 /* Try to use operands[] instead of xN variables. */
2226 if (use_operand_variables_p)
2227 {
2228 auto_vec <int> operand_pos (num_positions);
2229 for (unsigned int i = 0; i < num_positions; ++i)
2230 operand_pos.quick_push (obj: -1);
2231 find_operand_positions (s: root, operand_pos);
2232 }
2233
2234 /* Print a summary of the new state. */
2235 stats st = get_stats (s: root);
2236 fprintf (stderr, format: "Statistics for %s:\n", type);
2237 fprintf (stderr, format: " Number of decisions: %6d\n", st.num_decisions);
2238 fprintf (stderr, format: " longest path: %6d (code: %6d)\n",
2239 st.longest_path, st.longest_path_code);
2240 fprintf (stderr, format: " longest backtrack: %6d (code: %6d)\n",
2241 st.longest_backtrack, st.longest_backtrack_code);
2242}
2243
2244class merge_pattern_info;
2245
2246/* Represents a transition from one pattern to another. */
2247class merge_pattern_transition
2248{
2249public:
2250 merge_pattern_transition (merge_pattern_info *);
2251
2252 /* The target pattern. */
2253 merge_pattern_info *to;
2254
2255 /* The parameters that the source pattern passes to the target pattern.
2256 "parameter (TYPE, true, I)" represents parameter I of the source
2257 pattern. */
2258 auto_vec <parameter, MAX_PATTERN_PARAMS> params;
2259};
2260
2261merge_pattern_transition::merge_pattern_transition (merge_pattern_info *to_in)
2262 : to (to_in)
2263{
2264}
2265
2266/* Represents a pattern that can might match several states. The pattern
2267 may replace parts of the test with a parameter value. It may also
2268 replace transition labels with parameters. */
2269class merge_pattern_info
2270{
2271public:
2272 merge_pattern_info (unsigned int);
2273
2274 /* If PARAM_TEST_P, the state's singleton test should be generalized
2275 to use the runtime value of PARAMS[PARAM_TEST]. */
2276 unsigned int param_test : 8;
2277
2278 /* If PARAM_TRANSITION_P, the state's single transition label should
2279 be replaced by the runtime value of PARAMS[PARAM_TRANSITION]. */
2280 unsigned int param_transition : 8;
2281
2282 /* True if we have decided to generalize the root decision's test,
2283 as per PARAM_TEST. */
2284 unsigned int param_test_p : 1;
2285
2286 /* Likewise for the root decision's transition, as per PARAM_TRANSITION. */
2287 unsigned int param_transition_p : 1;
2288
2289 /* True if the contents of the structure are completely filled in. */
2290 unsigned int complete_p : 1;
2291
2292 /* The number of pseudo-statements in the pattern. Used to decide
2293 whether it's big enough to break out into a subroutine. */
2294 unsigned int num_statements;
2295
2296 /* The number of states that use this pattern. */
2297 unsigned int num_users;
2298
2299 /* The number of distinct success values that the pattern returns. */
2300 unsigned int num_results;
2301
2302 /* This array has one element for each runtime parameter to the pattern.
2303 PARAMS[I] gives the default value of parameter I, which is always
2304 constant.
2305
2306 These default parameters are used in cases where we match the
2307 pattern against some state S1, then add more parameters while
2308 matching against some state S2. S1 is then left passing fewer
2309 parameters than S2. The array gives us enough informatino to
2310 construct a full parameter list for S1 (see update_parameters).
2311
2312 If we decide to create a subroutine for this pattern,
2313 PARAMS[I].type determines the C type of parameter I. */
2314 auto_vec <parameter, MAX_PATTERN_PARAMS> params;
2315
2316 /* All states that match this pattern must have the same number of
2317 transitions. TRANSITIONS[I] describes the subpattern for transition
2318 number I; it is null if transition I represents a successful return
2319 from the pattern. */
2320 auto_vec <merge_pattern_transition *, 1> transitions;
2321
2322 /* The routine associated with the pattern, or null if we haven't generated
2323 one yet. */
2324 pattern_routine *routine;
2325};
2326
2327merge_pattern_info::merge_pattern_info (unsigned int num_transitions)
2328 : param_test (0),
2329 param_transition (0),
2330 param_test_p (false),
2331 param_transition_p (false),
2332 complete_p (false),
2333 num_statements (0),
2334 num_users (0),
2335 num_results (0),
2336 routine (0)
2337{
2338 transitions.safe_grow_cleared (len: num_transitions, exact: true);
2339}
2340
2341/* Describes one way of matching a particular state to a particular
2342 pattern. */
2343class merge_state_result
2344{
2345public:
2346 merge_state_result (merge_pattern_info *, position *, merge_state_result *);
2347
2348 /* A pattern that matches the state. */
2349 merge_pattern_info *pattern;
2350
2351 /* If we decide to use this match and create a subroutine for PATTERN,
2352 the state should pass the rtx at position ROOT to the pattern's
2353 rtx parameter. A null root means that the pattern doesn't need
2354 an rtx parameter; all the rtxes it matches come from elsewhere. */
2355 position *root;
2356
2357 /* The parameters that should be passed to PATTERN for this state.
2358 If the array is shorter than PATTERN->params, the missing entries
2359 should be taken from the corresponding element of PATTERN->params. */
2360 auto_vec <parameter, MAX_PATTERN_PARAMS> params;
2361
2362 /* An earlier match for the same state, or null if none. Patterns
2363 matched by earlier entries are smaller than PATTERN. */
2364 merge_state_result *prev;
2365};
2366
2367merge_state_result::merge_state_result (merge_pattern_info *pattern_in,
2368 position *root_in,
2369 merge_state_result *prev_in)
2370 : pattern (pattern_in), root (root_in), prev (prev_in)
2371{}
2372
2373/* Information about a state, used while trying to match it against
2374 a pattern. */
2375class merge_state_info
2376{
2377public:
2378 merge_state_info (state *);
2379
2380 /* The state itself. */
2381 state *s;
2382
2383 /* Index I gives information about the target of transition I. */
2384 merge_state_info *to_states;
2385
2386 /* The number of transitions in S. */
2387 unsigned int num_transitions;
2388
2389 /* True if the state has been deleted in favor of a call to a
2390 pattern routine. */
2391 bool merged_p;
2392
2393 /* The previous state that might be a merge candidate for S, or null
2394 if no previous states could be merged with S. */
2395 merge_state_info *prev_same_test;
2396
2397 /* A list of pattern matches for this state. */
2398 merge_state_result *res;
2399};
2400
2401merge_state_info::merge_state_info (state *s_in)
2402 : s (s_in),
2403 to_states (0),
2404 num_transitions (0),
2405 merged_p (false),
2406 prev_same_test (0),
2407 res (0) {}
2408
2409/* True if PAT would be useful as a subroutine. */
2410
2411static bool
2412useful_pattern_p (merge_pattern_info *pat)
2413{
2414 return pat->num_statements >= MIN_COMBINE_COST;
2415}
2416
2417/* PAT2 is a subpattern of PAT1. Return true if PAT2 should be inlined
2418 into PAT1's C routine. */
2419
2420static bool
2421same_pattern_p (merge_pattern_info *pat1, merge_pattern_info *pat2)
2422{
2423 return pat1->num_users == pat2->num_users || !useful_pattern_p (pat: pat2);
2424}
2425
2426/* PAT was previously matched against SINFO based on tentative matches
2427 for the target states of SINFO's state. Return true if the match
2428 still holds; that is, if the target states of SINFO's state still
2429 match the corresponding transitions of PAT. */
2430
2431static bool
2432valid_result_p (merge_pattern_info *pat, merge_state_info *sinfo)
2433{
2434 for (unsigned int j = 0; j < sinfo->num_transitions; ++j)
2435 if (merge_pattern_transition *ptrans = pat->transitions[j])
2436 {
2437 merge_state_result *to_res = sinfo->to_states[j].res;
2438 if (!to_res || to_res->pattern != ptrans->to)
2439 return false;
2440 }
2441 return true;
2442}
2443
2444/* Remove any matches that are no longer valid from the head of SINFO's
2445 list of matches. */
2446
2447static void
2448prune_invalid_results (merge_state_info *sinfo)
2449{
2450 while (sinfo->res && !valid_result_p (pat: sinfo->res->pattern, sinfo))
2451 {
2452 sinfo->res = sinfo->res->prev;
2453 gcc_assert (sinfo->res);
2454 }
2455}
2456
2457/* Return true if PAT represents the biggest posssible match for SINFO;
2458 that is, if the next action of SINFO's state on return from PAT will
2459 be something that cannot be merged with any other state. */
2460
2461static bool
2462complete_result_p (merge_pattern_info *pat, merge_state_info *sinfo)
2463{
2464 for (unsigned int j = 0; j < sinfo->num_transitions; ++j)
2465 if (sinfo->to_states[j].res && !pat->transitions[j])
2466 return false;
2467 return true;
2468}
2469
2470/* Update TO for any parameters that have been added to FROM since TO
2471 was last set. The extra parameters in FROM will be constants or
2472 instructions to duplicate earlier parameters. */
2473
2474static void
2475update_parameters (vec <parameter> &to, const vec <parameter> &from)
2476{
2477 for (unsigned int i = to.length (); i < from.length (); ++i)
2478 to.quick_push (obj: from[i]);
2479}
2480
2481/* Return true if A and B can be tested by a single test. If the test
2482 can be parameterised, store the parameter value for A in *PARAMA and
2483 the parameter value for B in *PARAMB, otherwise leave PARAMA and
2484 PARAMB alone. */
2485
2486static bool
2487compatible_tests_p (const rtx_test &a, const rtx_test &b,
2488 parameter *parama, parameter *paramb)
2489{
2490 if (a.kind != b.kind)
2491 return false;
2492 switch (a.kind)
2493 {
2494 case rtx_test::PREDICATE:
2495 if (a.u.predicate.data != b.u.predicate.data)
2496 return false;
2497 *parama = parameter (parameter::MODE, false, a.u.predicate.mode);
2498 *paramb = parameter (parameter::MODE, false, b.u.predicate.mode);
2499 return true;
2500
2501 case rtx_test::SAVED_CONST_INT:
2502 *parama = parameter (parameter::INT, false, a.u.integer.value);
2503 *paramb = parameter (parameter::INT, false, b.u.integer.value);
2504 return true;
2505
2506 default:
2507 return a == b;
2508 }
2509}
2510
2511/* PARAMS is an array of the parameters that a state is going to pass
2512 to a pattern routine. It is still incomplete; index I has a kind of
2513 parameter::UNSET if we don't yet know what the state will pass
2514 as parameter I. Try to make parameter ID equal VALUE, returning
2515 true on success. */
2516
2517static bool
2518set_parameter (vec <parameter> &params, unsigned int id,
2519 const parameter &value)
2520{
2521 if (params[id].type == parameter::UNSET)
2522 {
2523 if (force_unique_params_p)
2524 for (unsigned int i = 0; i < params.length (); ++i)
2525 if (params[i] == value)
2526 return false;
2527 params[id] = value;
2528 return true;
2529 }
2530 return params[id] == value;
2531}
2532
2533/* PARAMS2 is the "params" array for a pattern and PARAMS1 is the
2534 set of parameters that a particular state is going to pass to
2535 that pattern.
2536
2537 Try to extend PARAMS1 and PARAMS2 so that there is a parameter
2538 that is equal to PARAM1 for the state and has a default value of
2539 PARAM2. Parameters beginning at START were added as part of the
2540 same match and so may be reused. */
2541
2542static bool
2543add_parameter (vec <parameter> &params1, vec <parameter> &params2,
2544 const parameter &param1, const parameter &param2,
2545 unsigned int start, unsigned int *res)
2546{
2547 gcc_assert (params1.length () == params2.length ());
2548 gcc_assert (!param1.is_param && !param2.is_param);
2549
2550 for (unsigned int i = start; i < params2.length (); ++i)
2551 if (params1[i] == param1 && params2[i] == param2)
2552 {
2553 *res = i;
2554 return true;
2555 }
2556
2557 if (force_unique_params_p)
2558 for (unsigned int i = 0; i < params2.length (); ++i)
2559 if (params1[i] == param1 || params2[i] == param2)
2560 return false;
2561
2562 if (params2.length () >= MAX_PATTERN_PARAMS)
2563 return false;
2564
2565 *res = params2.length ();
2566 params1.quick_push (obj: param1);
2567 params2.quick_push (obj: param2);
2568 return true;
2569}
2570
2571/* If *ROOTA is nonnull, return true if the same sequence of steps are
2572 required to reach A from *ROOTA as to reach B from ROOTB. If *ROOTA
2573 is null, update it if necessary in order to make the condition hold. */
2574
2575static bool
2576merge_relative_positions (position **roota, position *a,
2577 position *rootb, position *b)
2578{
2579 if (!relative_patterns_p)
2580 {
2581 if (a != b)
2582 return false;
2583 if (!*roota)
2584 {
2585 *roota = rootb;
2586 return true;
2587 }
2588 return *roota == rootb;
2589 }
2590 /* If B does not belong to the same instruction as ROOTB, we don't
2591 start with ROOTB but instead start with a call to peep2_next_insn.
2592 In that case the sequences for B and A are identical iff B and A
2593 are themselves identical. */
2594 if (rootb->insn_id != b->insn_id)
2595 return a == b;
2596 while (rootb != b)
2597 {
2598 if (!a || b->type != a->type || b->arg != a->arg)
2599 return false;
2600 b = b->base;
2601 a = a->base;
2602 }
2603 if (!*roota)
2604 *roota = a;
2605 return *roota == a;
2606}
2607
2608/* A hasher of states that treats two states as "equal" if they might be
2609 merged (but trying to be more discriminating than "return true"). */
2610struct test_pattern_hasher : nofree_ptr_hash <merge_state_info>
2611{
2612 static inline hashval_t hash (const value_type &);
2613 static inline bool equal (const value_type &, const compare_type &);
2614};
2615
2616hashval_t
2617test_pattern_hasher::hash (merge_state_info *const &sinfo)
2618{
2619 inchash::hash h;
2620 decision *d = sinfo->s->singleton ();
2621 h.add_int (v: d->test.pos_operand + 1);
2622 if (!relative_patterns_p)
2623 h.add_int (v: d->test.pos ? d->test.pos->id + 1 : 0);
2624 h.add_int (v: d->test.kind);
2625 h.add_int (v: sinfo->num_transitions);
2626 return h.end ();
2627}
2628
2629bool
2630test_pattern_hasher::equal (merge_state_info *const &sinfo1,
2631 merge_state_info *const &sinfo2)
2632{
2633 decision *d1 = sinfo1->s->singleton ();
2634 decision *d2 = sinfo2->s->singleton ();
2635 gcc_assert (d1 && d2);
2636
2637 parameter new_param1, new_param2;
2638 return (d1->test.pos_operand == d2->test.pos_operand
2639 && (relative_patterns_p || d1->test.pos == d2->test.pos)
2640 && compatible_tests_p (a: d1->test, b: d2->test, parama: &new_param1, paramb: &new_param2)
2641 && sinfo1->num_transitions == sinfo2->num_transitions);
2642}
2643
2644/* Try to make the state described by SINFO1 use the same pattern as the
2645 state described by SINFO2. Return true on success.
2646
2647 SINFO1 and SINFO2 are known to have the same hash value. */
2648
2649static bool
2650merge_patterns (merge_state_info *sinfo1, merge_state_info *sinfo2)
2651{
2652 merge_state_result *res2 = sinfo2->res;
2653 merge_pattern_info *pat = res2->pattern;
2654
2655 /* Write to temporary arrays while matching, in case we have to abort
2656 half way through. */
2657 auto_vec <parameter, MAX_PATTERN_PARAMS> params1;
2658 auto_vec <parameter, MAX_PATTERN_PARAMS> params2;
2659 params1.quick_grow_cleared (len: pat->params.length ());
2660 params2.splice (src: pat->params);
2661 unsigned int start_param = params2.length ();
2662
2663 /* An array for recording changes to PAT->transitions[?].params.
2664 All changes involve replacing a constant parameter with some
2665 PAT->params[N], where N is the second element of the pending_param. */
2666 typedef std::pair <parameter *, unsigned int> pending_param;
2667 auto_vec <pending_param, 32> pending_params;
2668
2669 decision *d1 = sinfo1->s->singleton ();
2670 decision *d2 = sinfo2->s->singleton ();
2671 gcc_assert (d1 && d2);
2672
2673 /* If D2 tests a position, SINFO1's root relative to D1 is the same
2674 as SINFO2's root relative to D2. */
2675 position *root1 = 0;
2676 position *root2 = res2->root;
2677 if (d2->test.pos_operand < 0
2678 && d1->test.pos
2679 && !merge_relative_positions (roota: &root1, a: d1->test.pos,
2680 rootb: root2, b: d2->test.pos))
2681 return false;
2682
2683 /* Check whether the patterns have the same shape. */
2684 unsigned int num_transitions = sinfo1->num_transitions;
2685 gcc_assert (num_transitions == sinfo2->num_transitions);
2686 for (unsigned int i = 0; i < num_transitions; ++i)
2687 if (merge_pattern_transition *ptrans = pat->transitions[i])
2688 {
2689 merge_state_result *to1_res = sinfo1->to_states[i].res;
2690 merge_state_result *to2_res = sinfo2->to_states[i].res;
2691 merge_pattern_info *to_pat = ptrans->to;
2692 gcc_assert (to2_res && to2_res->pattern == to_pat);
2693 if (!to1_res || to1_res->pattern != to_pat)
2694 return false;
2695 if (to2_res->root
2696 && !merge_relative_positions (roota: &root1, a: to1_res->root,
2697 rootb: root2, b: to2_res->root))
2698 return false;
2699 /* Match the parameters that TO1_RES passes to TO_PAT with the
2700 parameters that PAT passes to TO_PAT. */
2701 update_parameters (to&: to1_res->params, from: to_pat->params);
2702 for (unsigned int j = 0; j < to1_res->params.length (); ++j)
2703 {
2704 const parameter &param1 = to1_res->params[j];
2705 const parameter &param2 = ptrans->params[j];
2706 gcc_assert (!param1.is_param);
2707 if (param2.is_param)
2708 {
2709 if (!set_parameter (params&: params1, id: param2.value, value: param1))
2710 return false;
2711 }
2712 else if (param1 != param2)
2713 {
2714 unsigned int id;
2715 if (!add_parameter (params1, params2,
2716 param1, param2, start: start_param, res: &id))
2717 return false;
2718 /* Record that PAT should now pass parameter ID to TO_PAT,
2719 instead of the current contents of *PARAM2. We only
2720 make the change if the rest of the match succeeds. */
2721 pending_params.safe_push
2722 (obj: pending_param (&ptrans->params[j], id));
2723 }
2724 }
2725 }
2726
2727 unsigned int param_test = pat->param_test;
2728 unsigned int param_transition = pat->param_transition;
2729 bool param_test_p = pat->param_test_p;
2730 bool param_transition_p = pat->param_transition_p;
2731
2732 /* If the tests don't match exactly, try to parameterize them. */
2733 parameter new_param1, new_param2;
2734 if (!compatible_tests_p (a: d1->test, b: d2->test, parama: &new_param1, paramb: &new_param2))
2735 gcc_unreachable ();
2736 if (new_param1.type != parameter::UNSET)
2737 {
2738 /* If the test has not already been parameterized, all existing
2739 matches use constant NEW_PARAM2. */
2740 if (param_test_p)
2741 {
2742 if (!set_parameter (params&: params1, id: param_test, value: new_param1))
2743 return false;
2744 }
2745 else if (new_param1 != new_param2)
2746 {
2747 if (!add_parameter (params1, params2, param1: new_param1, param2: new_param2,
2748 start: start_param, res: &param_test))
2749 return false;
2750 param_test_p = true;
2751 }
2752 }
2753
2754 /* Match the transitions. */
2755 transition *trans1 = d1->first;
2756 transition *trans2 = d2->first;
2757 for (unsigned int i = 0; i < num_transitions; ++i)
2758 {
2759 if (param_transition_p || trans1->labels != trans2->labels)
2760 {
2761 /* We can only generalize a single transition with a single
2762 label. */
2763 if (num_transitions != 1
2764 || trans1->labels.length () != 1
2765 || trans2->labels.length () != 1)
2766 return false;
2767
2768 /* Although we can match wide-int fields, in practice it leads
2769 to some odd results for const_vectors. We end up
2770 parameterizing the first N const_ints of the vector
2771 and then (once we reach the maximum number of parameters)
2772 we go on to match the other elements exactly. */
2773 if (d1->test.kind == rtx_test::WIDE_INT_FIELD)
2774 return false;
2775
2776 /* See whether the label has a generalizable type. */
2777 parameter::type_enum param_type
2778 = transition_parameter_type (kind: d1->test.kind);
2779 if (param_type == parameter::UNSET)
2780 return false;
2781
2782 /* Match the labels using parameters. */
2783 new_param1 = parameter (param_type, false, trans1->labels[0]);
2784 if (param_transition_p)
2785 {
2786 if (!set_parameter (params&: params1, id: param_transition, value: new_param1))
2787 return false;
2788 }
2789 else
2790 {
2791 new_param2 = parameter (param_type, false, trans2->labels[0]);
2792 if (!add_parameter (params1, params2, param1: new_param1, param2: new_param2,
2793 start: start_param, res: &param_transition))
2794 return false;
2795 param_transition_p = true;
2796 }
2797 }
2798 trans1 = trans1->next;
2799 trans2 = trans2->next;
2800 }
2801
2802 /* Set any unset parameters to their default values. This occurs if some
2803 other state needed something to be parameterized in order to match SINFO2,
2804 but SINFO1 on its own does not. */
2805 for (unsigned int i = 0; i < params1.length (); ++i)
2806 if (params1[i].type == parameter::UNSET)
2807 params1[i] = params2[i];
2808
2809 /* The match was successful. Commit all pending changes to PAT. */
2810 update_parameters (to&: pat->params, from: params2);
2811 {
2812 pending_param *pp;
2813 unsigned int i;
2814 FOR_EACH_VEC_ELT (pending_params, i, pp)
2815 *pp->first = parameter (pp->first->type, true, pp->second);
2816 }
2817 pat->param_test = param_test;
2818 pat->param_transition = param_transition;
2819 pat->param_test_p = param_test_p;
2820 pat->param_transition_p = param_transition_p;
2821
2822 /* Record the match of SINFO1. */
2823 merge_state_result *new_res1 = new merge_state_result (pat, root1,
2824 sinfo1->res);
2825 new_res1->params.splice (src: params1);
2826 sinfo1->res = new_res1;
2827 return true;
2828}
2829
2830/* The number of states that were removed by calling pattern routines. */
2831static unsigned int pattern_use_states;
2832
2833/* The number of states used while defining pattern routines. */
2834static unsigned int pattern_def_states;
2835
2836/* Information used while constructing a use or definition of a pattern
2837 routine. */
2838struct create_pattern_info
2839{
2840 /* The routine itself. */
2841 pattern_routine *routine;
2842
2843 /* The first unclaimed return value for this particular use or definition.
2844 We walk the substates of uses and definitions in the same order
2845 so each return value always refers to the same position within
2846 the pattern. */
2847 unsigned int next_result;
2848};
2849
2850static void populate_pattern_routine (create_pattern_info *,
2851 merge_state_info *, state *,
2852 const vec <parameter> &);
2853
2854/* SINFO matches a pattern for which we've decided to create a C routine.
2855 Return a decision that performs a call to the pattern routine,
2856 but leave the caller to add the transitions to it. Initialize CPI
2857 for this purpose. Also create a definition for the pattern routine,
2858 if it doesn't already have one.
2859
2860 PARAMS are the parameters that SINFO passes to its pattern. */
2861
2862static decision *
2863init_pattern_use (create_pattern_info *cpi, merge_state_info *sinfo,
2864 const vec <parameter> &params)
2865{
2866 state *s = sinfo->s;
2867 merge_state_result *res = sinfo->res;
2868 merge_pattern_info *pat = res->pattern;
2869 cpi->routine = pat->routine;
2870 if (!cpi->routine)
2871 {
2872 /* We haven't defined the pattern routine yet, so create
2873 a definition now. */
2874 pattern_routine *routine = new pattern_routine;
2875 pat->routine = routine;
2876 cpi->routine = routine;
2877 routine->s = new state;
2878 routine->insn_p = false;
2879 routine->pnum_clobbers_p = false;
2880
2881 /* Create an "idempotent" mapping of parameter I to parameter I.
2882 Also record the C type of each parameter to the routine. */
2883 auto_vec <parameter, MAX_PATTERN_PARAMS> def_params;
2884 for (unsigned int i = 0; i < pat->params.length (); ++i)
2885 {
2886 def_params.quick_push (obj: parameter (pat->params[i].type, true, i));
2887 routine->param_types.quick_push (obj: pat->params[i].type);
2888 }
2889
2890 /* Any of the states that match the pattern could be used to
2891 create the routine definition. We might as well use SINFO
2892 since it's already to hand. This means that all positions
2893 in the definition will be relative to RES->root. */
2894 routine->pos = res->root;
2895 cpi->next_result = 0;
2896 populate_pattern_routine (cpi, sinfo, routine->s, def_params);
2897 gcc_assert (cpi->next_result == pat->num_results);
2898
2899 /* Add the routine to the global list, after the subroutines
2900 that it calls. */
2901 routine->pattern_id = patterns.length ();
2902 patterns.safe_push (obj: routine);
2903 }
2904
2905 /* Create a decision to call the routine, passing PARAMS to it. */
2906 pattern_use *use = new pattern_use;
2907 use->routine = pat->routine;
2908 use->params.splice (src: params);
2909 decision *d = new decision (rtx_test::pattern (pos: res->root, pattern: use));
2910
2911 /* If the original decision could use an element of operands[] instead
2912 of an rtx variable, try to transfer it to the new decision. */
2913 if (s->first->test.pos && res->root == s->first->test.pos)
2914 d->test.pos_operand = s->first->test.pos_operand;
2915
2916 cpi->next_result = 0;
2917 return d;
2918}
2919
2920/* Make S return the next unclaimed pattern routine result for CPI. */
2921
2922static void
2923add_pattern_acceptance (create_pattern_info *cpi, state *s)
2924{
2925 acceptance_type acceptance;
2926 acceptance.type = SUBPATTERN;
2927 acceptance.partial_p = false;
2928 acceptance.u.full.code = cpi->next_result;
2929 add_decision (from: s, test: rtx_test::accept (acceptance), labels: true, optional: false);
2930 cpi->next_result += 1;
2931}
2932
2933/* Initialize new empty state NEWS so that it implements SINFO's pattern
2934 (here referred to as "P"). P may be the top level of a pattern routine
2935 or a subpattern that should be inlined into its parent pattern's routine
2936 (as per same_pattern_p). The choice of SINFO for a top-level pattern is
2937 arbitrary; it could be any of the states that use P. The choice for
2938 subpatterns follows the choice for the parent pattern.
2939
2940 PARAMS gives the value of each parameter to P in terms of the parameters
2941 to the top-level pattern. If P itself is the top level pattern, PARAMS[I]
2942 is always "parameter (TYPE, true, I)". */
2943
2944static void
2945populate_pattern_routine (create_pattern_info *cpi, merge_state_info *sinfo,
2946 state *news, const vec <parameter> &params)
2947{
2948 pattern_def_states += 1;
2949
2950 decision *d = sinfo->s->singleton ();
2951 merge_pattern_info *pat = sinfo->res->pattern;
2952 pattern_routine *routine = cpi->routine;
2953
2954 /* Create a copy of D's test for the pattern routine and generalize it
2955 as appropriate. */
2956 decision *newd = new decision (d->test);
2957 gcc_assert (newd->test.pos_operand >= 0
2958 || !newd->test.pos
2959 || common_position (newd->test.pos,
2960 routine->pos) == routine->pos);
2961 if (pat->param_test_p)
2962 {
2963 const parameter &param = params[pat->param_test];
2964 switch (newd->test.kind)
2965 {
2966 case rtx_test::PREDICATE:
2967 newd->test.u.predicate.mode_is_param = param.is_param;
2968 newd->test.u.predicate.mode = param.value;
2969 break;
2970
2971 case rtx_test::SAVED_CONST_INT:
2972 newd->test.u.integer.is_param = param.is_param;
2973 newd->test.u.integer.value = param.value;
2974 break;
2975
2976 default:
2977 gcc_unreachable ();
2978 break;
2979 }
2980 }
2981 if (d->test.kind == rtx_test::C_TEST)
2982 routine->insn_p = true;
2983 else if (d->test.kind == rtx_test::HAVE_NUM_CLOBBERS)
2984 routine->pnum_clobbers_p = true;
2985 news->push_back (r: newd);
2986
2987 /* Fill in the transitions of NEWD. */
2988 unsigned int i = 0;
2989 for (transition *trans = d->first; trans; trans = trans->next)
2990 {
2991 /* Create a new state to act as the target of the new transition. */
2992 state *to_news = new state;
2993 if (merge_pattern_transition *ptrans = pat->transitions[i])
2994 {
2995 /* The pattern hasn't finished matching yet. Get the target
2996 pattern and the corresponding target state of SINFO. */
2997 merge_pattern_info *to_pat = ptrans->to;
2998 merge_state_info *to = sinfo->to_states + i;
2999 gcc_assert (to->res->pattern == to_pat);
3000 gcc_assert (ptrans->params.length () == to_pat->params.length ());
3001
3002 /* Express the parameters to TO_PAT in terms of the parameters
3003 to the top-level pattern. */
3004 auto_vec <parameter, MAX_PATTERN_PARAMS> to_params;
3005 for (unsigned int j = 0; j < ptrans->params.length (); ++j)
3006 {
3007 const parameter &param = ptrans->params[j];
3008 to_params.quick_push (obj: param.is_param
3009 ? params[param.value]
3010 : param);
3011 }
3012
3013 if (same_pattern_p (pat1: pat, pat2: to_pat))
3014 /* TO_PAT is part of the current routine, so just recurse. */
3015 populate_pattern_routine (cpi, sinfo: to, news: to_news, params: to_params);
3016 else
3017 {
3018 /* TO_PAT should be matched by calling a separate routine. */
3019 create_pattern_info sub_cpi;
3020 decision *subd = init_pattern_use (cpi: &sub_cpi, sinfo: to, params: to_params);
3021 routine->insn_p |= sub_cpi.routine->insn_p;
3022 routine->pnum_clobbers_p |= sub_cpi.routine->pnum_clobbers_p;
3023
3024 /* Add the pattern routine call to the new target state. */
3025 to_news->push_back (r: subd);
3026
3027 /* Add a transition for each successful call result. */
3028 for (unsigned int j = 0; j < to_pat->num_results; ++j)
3029 {
3030 state *res = new state;
3031 add_pattern_acceptance (cpi, s: res);
3032 subd->push_back (r: new transition (j, res, false));
3033 }
3034 }
3035 }
3036 else
3037 /* This transition corresponds to a successful match. */
3038 add_pattern_acceptance (cpi, s: to_news);
3039
3040 /* Create the transition itself, generalizing as necessary. */
3041 transition *new_trans = new transition (trans->labels, to_news,
3042 trans->optional);
3043 if (pat->param_transition_p)
3044 {
3045 const parameter &param = params[pat->param_transition];
3046 new_trans->is_param = param.is_param;
3047 new_trans->labels[0] = param.value;
3048 }
3049 newd->push_back (r: new_trans);
3050 i += 1;
3051 }
3052}
3053
3054/* USE is a decision that calls a pattern routine and SINFO is part of the
3055 original state tree that the call is supposed to replace. Add the
3056 transitions for SINFO and its substates to USE. */
3057
3058static void
3059populate_pattern_use (create_pattern_info *cpi, decision *use,
3060 merge_state_info *sinfo)
3061{
3062 pattern_use_states += 1;
3063 gcc_assert (!sinfo->merged_p);
3064 sinfo->merged_p = true;
3065 merge_state_result *res = sinfo->res;
3066 merge_pattern_info *pat = res->pattern;
3067 decision *d = sinfo->s->singleton ();
3068 unsigned int i = 0;
3069 for (transition *trans = d->first; trans; trans = trans->next)
3070 {
3071 if (pat->transitions[i])
3072 /* The target state is also part of the pattern. */
3073 populate_pattern_use (cpi, use, sinfo: sinfo->to_states + i);
3074 else
3075 {
3076 /* The transition corresponds to a successful return from the
3077 pattern routine. */
3078 use->push_back (r: new transition (cpi->next_result, trans->to, false));
3079 cpi->next_result += 1;
3080 }
3081 i += 1;
3082 }
3083}
3084
3085/* We have decided to replace SINFO's state with a call to a pattern
3086 routine. Make the change, creating a definition of the pattern routine
3087 if it doesn't have one already. */
3088
3089static void
3090use_pattern (merge_state_info *sinfo)
3091{
3092 merge_state_result *res = sinfo->res;
3093 merge_pattern_info *pat = res->pattern;
3094 state *s = sinfo->s;
3095
3096 /* The pattern may have acquired new parameters after it was matched
3097 against SINFO. Update the parameters that SINFO passes accordingly. */
3098 update_parameters (to&: res->params, from: pat->params);
3099
3100 create_pattern_info cpi;
3101 decision *d = init_pattern_use (cpi: &cpi, sinfo, params: res->params);
3102 populate_pattern_use (cpi: &cpi, use: d, sinfo);
3103 s->release ();
3104 s->push_back (r: d);
3105}
3106
3107/* Look through the state trees in STATES for common patterns and
3108 split them into subroutines. */
3109
3110static void
3111split_out_patterns (vec <merge_state_info> &states)
3112{
3113 unsigned int first_transition = states.length ();
3114 hash_table <test_pattern_hasher> hashtab (128);
3115 /* Stage 1: Create an order in which parent states come before their child
3116 states and in which sibling states are at consecutive locations.
3117 Having consecutive sibling states allows merge_state_info to have
3118 a single to_states pointer. */
3119 for (unsigned int i = 0; i < states.length (); ++i)
3120 for (decision *d = states[i].s->first; d; d = d->next)
3121 for (transition *trans = d->first; trans; trans = trans->next)
3122 {
3123 states.safe_push (obj: trans->to);
3124 states[i].num_transitions += 1;
3125 }
3126 /* Stage 2: Now that the addresses are stable, set up the to_states
3127 pointers. Look for states that might be merged and enter them
3128 into the hash table. */
3129 for (unsigned int i = 0; i < states.length (); ++i)
3130 {
3131 merge_state_info *sinfo = &states[i];
3132 if (sinfo->num_transitions)
3133 {
3134 sinfo->to_states = &states[first_transition];
3135 first_transition += sinfo->num_transitions;
3136 }
3137 /* For simplicity, we only try to merge states that have a single
3138 decision. This is in any case the best we can do for peephole2,
3139 since whether a peephole2 ACCEPT succeeds or not depends on the
3140 specific peephole2 pattern (which is unique to each ACCEPT
3141 and so couldn't be shared between states). */
3142 if (decision *d = sinfo->s->singleton ())
3143 /* ACCEPT states are unique, so don't even try to merge them. */
3144 if (d->test.kind != rtx_test::ACCEPT
3145 && (pattern_have_num_clobbers_p
3146 || d->test.kind != rtx_test::HAVE_NUM_CLOBBERS)
3147 && (pattern_c_test_p
3148 || d->test.kind != rtx_test::C_TEST))
3149 {
3150 merge_state_info **slot = hashtab.find_slot (value: sinfo, insert: INSERT);
3151 sinfo->prev_same_test = *slot;
3152 *slot = sinfo;
3153 }
3154 }
3155 /* Stage 3: Walk backwards through the list of states and try to merge
3156 them. This is a greedy, bottom-up match; parent nodes can only start
3157 a new leaf pattern if they fail to match when combined with all child
3158 nodes that have matching patterns.
3159
3160 For each state we keep a list of potential matches, with each
3161 potential match being larger (and deeper) than the next match in
3162 the list. The final element in the list is a leaf pattern that
3163 matches just a single state.
3164
3165 Each candidate pattern created in this loop is unique -- it won't
3166 have been seen by an earlier iteration. We try to match each pattern
3167 with every state that appears earlier in STATES.
3168
3169 Because the patterns created in the loop are unique, any state
3170 that already has a match must have a final potential match that
3171 is different from any new leaf pattern. Therefore, when matching
3172 leaf patterns, we need only consider states whose list of matches
3173 is empty.
3174
3175 The non-leaf patterns that we try are as deep as possible
3176 and are an extension of the state's previous best candidate match (PB).
3177 We need only consider states whose current potential match is also PB;
3178 any states that don't match as much as PB cannnot match the new pattern,
3179 while any states that already match more than PB must be different from
3180 the new pattern. */
3181 for (unsigned int i2 = states.length (); i2-- > 0; )
3182 {
3183 merge_state_info *sinfo2 = &states[i2];
3184
3185 /* Enforce the bottom-upness of the match: remove matches with later
3186 states if SINFO2's child states ended up finding a better match. */
3187 prune_invalid_results (sinfo: sinfo2);
3188
3189 /* Do nothing if the state doesn't match a later one and if there are
3190 no earlier states it could match. */
3191 if (!sinfo2->res && !sinfo2->prev_same_test)
3192 continue;
3193
3194 merge_state_result *res2 = sinfo2->res;
3195 decision *d2 = sinfo2->s->singleton ();
3196 position *root2 = (d2->test.pos_operand < 0 ? d2->test.pos : 0);
3197 unsigned int num_transitions = sinfo2->num_transitions;
3198
3199 /* If RES2 is null then SINFO2's test in isolation has not been seen
3200 before. First try matching that on its own. */
3201 if (!res2)
3202 {
3203 merge_pattern_info *new_pat
3204 = new merge_pattern_info (num_transitions);
3205 merge_state_result *new_res2
3206 = new merge_state_result (new_pat, root2, res2);
3207 sinfo2->res = new_res2;
3208
3209 new_pat->num_statements = !d2->test.single_outcome_p ();
3210 new_pat->num_results = num_transitions;
3211 bool matched_p = false;
3212 /* Look for states that don't currently match anything but
3213 can be made to match SINFO2 on its own. */
3214 for (merge_state_info *sinfo1 = sinfo2->prev_same_test; sinfo1;
3215 sinfo1 = sinfo1->prev_same_test)
3216 if (!sinfo1->res && merge_patterns (sinfo1, sinfo2))
3217 matched_p = true;
3218 if (!matched_p)
3219 {
3220 /* No other states match. */
3221 sinfo2->res = res2;
3222 delete new_pat;
3223 delete new_res2;
3224 continue;
3225 }
3226 else
3227 res2 = new_res2;
3228 }
3229
3230 /* Keep the existing pattern if it's as good as anything we'd
3231 create for SINFO2. */
3232 if (complete_result_p (pat: res2->pattern, sinfo: sinfo2))
3233 {
3234 res2->pattern->num_users += 1;
3235 continue;
3236 }
3237
3238 /* Create a new pattern for SINFO2. */
3239 merge_pattern_info *new_pat = new merge_pattern_info (num_transitions);
3240 merge_state_result *new_res2
3241 = new merge_state_result (new_pat, root2, res2);
3242 sinfo2->res = new_res2;
3243
3244 /* Fill in details about the pattern. */
3245 new_pat->num_statements = !d2->test.single_outcome_p ();
3246 new_pat->num_results = 0;
3247 for (unsigned int j = 0; j < num_transitions; ++j)
3248 if (merge_state_result *to_res = sinfo2->to_states[j].res)
3249 {
3250 /* Count the target state as part of this pattern.
3251 First update the root position so that it can reach
3252 the target state's root. */
3253 if (to_res->root)
3254 {
3255 if (new_res2->root)
3256 new_res2->root = common_position (pos1: new_res2->root,
3257 pos2: to_res->root);
3258 else
3259 new_res2->root = to_res->root;
3260 }
3261 merge_pattern_info *to_pat = to_res->pattern;
3262 merge_pattern_transition *ptrans
3263 = new merge_pattern_transition (to_pat);
3264
3265 /* TO_PAT may have acquired more parameters when matching
3266 states earlier in STATES than TO_RES's, but the list is
3267 now final. Make sure that TO_RES is up to date. */
3268 update_parameters (to&: to_res->params, from: to_pat->params);
3269
3270 /* Start out by assuming that every user of NEW_PAT will
3271 want to pass the same (constant) parameters as TO_RES. */
3272 update_parameters (to&: ptrans->params, from: to_res->params);
3273
3274 new_pat->transitions[j] = ptrans;
3275 new_pat->num_statements += to_pat->num_statements;
3276 new_pat->num_results += to_pat->num_results;
3277 }
3278 else
3279 /* The target state doesn't match anything and so is not part
3280 of the pattern. */
3281 new_pat->num_results += 1;
3282
3283 /* See if any earlier states that match RES2's pattern also match
3284 NEW_PAT. */
3285 bool matched_p = false;
3286 for (merge_state_info *sinfo1 = sinfo2->prev_same_test; sinfo1;
3287 sinfo1 = sinfo1->prev_same_test)
3288 {
3289 prune_invalid_results (sinfo: sinfo1);
3290 if (sinfo1->res
3291 && sinfo1->res->pattern == res2->pattern
3292 && merge_patterns (sinfo1, sinfo2))
3293 matched_p = true;
3294 }
3295 if (!matched_p)
3296 {
3297 /* Nothing else matches NEW_PAT, so go back to the previous
3298 pattern (possibly just a single-state one). */
3299 sinfo2->res = res2;
3300 delete new_pat;
3301 delete new_res2;
3302 }
3303 /* Assume that SINFO2 will use RES. At this point we don't know
3304 whether earlier states that match the same pattern will use
3305 that match or a different one. */
3306 sinfo2->res->pattern->num_users += 1;
3307 }
3308 /* Step 4: Finalize the choice of pattern for each state, ignoring
3309 patterns that were only used once. Update each pattern's size
3310 so that it doesn't include subpatterns that are going to be split
3311 out into subroutines. */
3312 for (unsigned int i = 0; i < states.length (); ++i)
3313 {
3314 merge_state_info *sinfo = &states[i];
3315 merge_state_result *res = sinfo->res;
3316 /* Wind past patterns that are only used by SINFO. */
3317 while (res && res->pattern->num_users == 1)
3318 {
3319 res = res->prev;
3320 sinfo->res = res;
3321 if (res)
3322 res->pattern->num_users += 1;
3323 }
3324 if (!res)
3325 continue;
3326
3327 /* We have a shared pattern and are now committed to the match. */
3328 merge_pattern_info *pat = res->pattern;
3329 gcc_assert (valid_result_p (pat, sinfo));
3330
3331 if (!pat->complete_p)
3332 {
3333 /* Look for subpatterns that are going to be split out and remove
3334 them from the number of statements. */
3335 for (unsigned int j = 0; j < sinfo->num_transitions; ++j)
3336 if (merge_pattern_transition *ptrans = pat->transitions[j])
3337 {
3338 merge_pattern_info *to_pat = ptrans->to;
3339 if (!same_pattern_p (pat1: pat, pat2: to_pat))
3340 pat->num_statements -= to_pat->num_statements;
3341 }
3342 pat->complete_p = true;
3343 }
3344 }
3345 /* Step 5: Split out the patterns. */
3346 for (unsigned int i = 0; i < states.length (); ++i)
3347 {
3348 merge_state_info *sinfo = &states[i];
3349 merge_state_result *res = sinfo->res;
3350 if (!sinfo->merged_p && res && useful_pattern_p (pat: res->pattern))
3351 use_pattern (sinfo);
3352 }
3353 fprintf (stderr, format: "Shared %d out of %d states by creating %d new states,"
3354 " saving %d\n",
3355 pattern_use_states, states.length (), pattern_def_states,
3356 pattern_use_states - pattern_def_states);
3357}
3358
3359/* Information about a state tree that we're considering splitting into a
3360 subroutine. */
3361struct state_size
3362{
3363 /* The number of pseudo-statements in the state tree. */
3364 unsigned int num_statements;
3365
3366 /* The approximate number of nested "if" and "switch" statements that
3367 would be required if control could fall through to a later state. */
3368 unsigned int depth;
3369};
3370
3371/* Pairs a transition with information about its target state. */
3372typedef std::pair <transition *, state_size> subroutine_candidate;
3373
3374/* Sort two subroutine_candidates so that the one with the largest
3375 number of statements comes last. */
3376
3377static int
3378subroutine_candidate_cmp (const void *a, const void *b)
3379{
3380 return int (((const subroutine_candidate *) a)->second.num_statements
3381 - ((const subroutine_candidate *) b)->second.num_statements);
3382}
3383
3384/* Turn S into a subroutine of type TYPE and add it to PROCS. Return a new
3385 state that performs a subroutine call to S. */
3386
3387static state *
3388create_subroutine (routine_type type, state *s, vec <state *> &procs)
3389{
3390 procs.safe_push (obj: s);
3391 acceptance_type acceptance;
3392 acceptance.type = type;
3393 acceptance.partial_p = true;
3394 acceptance.u.subroutine_id = procs.length ();
3395 state *news = new state;
3396 add_decision (from: news, test: rtx_test::accept (acceptance), labels: true, optional: false);
3397 return news;
3398}
3399
3400/* Walk state tree S, of type TYPE, and look for subtrees that would be
3401 better split into subroutines. Accumulate all such subroutines in PROCS.
3402 Return the size of the new state tree (excluding subroutines). */
3403
3404static state_size
3405find_subroutines (routine_type type, state *s, vec <state *> &procs)
3406{
3407 auto_vec <subroutine_candidate, 16> candidates;
3408 state_size size;
3409 size.num_statements = 0;
3410 size.depth = 0;
3411 for (decision *d = s->first; d; d = d->next)
3412 {
3413 if (!d->test.single_outcome_p ())
3414 size.num_statements += 1;
3415 for (transition *trans = d->first; trans; trans = trans->next)
3416 {
3417 /* Keep chains of simple decisions together if we know that no
3418 change of position is required. We'll output this chain as a
3419 single "if" statement, so it counts as a single nesting level. */
3420 if (d->test.pos && d->if_statement_p ())
3421 for (;;)
3422 {
3423 decision *newd = trans->to->singleton ();
3424 if (!newd
3425 || (newd->test.pos
3426 && newd->test.pos_operand < 0
3427 && newd->test.pos != d->test.pos)
3428 || !newd->if_statement_p ())
3429 break;
3430 if (!newd->test.single_outcome_p ())
3431 size.num_statements += 1;
3432 trans = newd->singleton ();
3433 if (newd->test.kind == rtx_test::SET_OP
3434 || newd->test.kind == rtx_test::ACCEPT)
3435 break;
3436 }
3437 /* The target of TRANS is a subroutine candidate. First recurse
3438 on it to see how big it is after subroutines have been
3439 split out. */
3440 state_size to_size = find_subroutines (type, s: trans->to, procs);
3441 if (d->next && to_size.depth > MAX_DEPTH)
3442 /* Keeping the target state in the same routine would lead
3443 to an excessive nesting of "if" and "switch" statements.
3444 Split it out into a subroutine so that it can use
3445 inverted tests that return early on failure. */
3446 trans->to = create_subroutine (type, s: trans->to, procs);
3447 else
3448 {
3449 size.num_statements += to_size.num_statements;
3450 if (to_size.num_statements < MIN_NUM_STATEMENTS)
3451 /* The target state is too small to be worth splitting.
3452 Keep it in the same routine as S. */
3453 size.depth = MAX (size.depth, to_size.depth);
3454 else
3455 /* Assume for now that we'll keep the target state in the
3456 same routine as S, but record it as a subroutine candidate
3457 if S grows too big. */
3458 candidates.safe_push (obj: subroutine_candidate (trans, to_size));
3459 }
3460 }
3461 }
3462 if (size.num_statements > MAX_NUM_STATEMENTS)
3463 {
3464 /* S is too big. Sort the subroutine candidates so that bigger ones
3465 are nearer the end. */
3466 candidates.qsort (subroutine_candidate_cmp);
3467 while (!candidates.is_empty ()
3468 && size.num_statements > MAX_NUM_STATEMENTS)
3469 {
3470 /* Peel off a candidate and force it into a subroutine. */
3471 subroutine_candidate cand = candidates.pop ();
3472 size.num_statements -= cand.second.num_statements;
3473 cand.first->to = create_subroutine (type, s: cand.first->to, procs);
3474 }
3475 }
3476 /* Update the depth for subroutine candidates that we decided not to
3477 split out. */
3478 for (unsigned int i = 0; i < candidates.length (); ++i)
3479 size.depth = MAX (size.depth, candidates[i].second.depth);
3480 size.depth += 1;
3481 return size;
3482}
3483
3484/* Return true if, for all X, PRED (X, MODE) implies that X has mode MODE. */
3485
3486static bool
3487safe_predicate_mode (const struct pred_data *pred, machine_mode mode)
3488{
3489 /* Scalar integer constants have VOIDmode. */
3490 if (GET_MODE_CLASS (mode) == MODE_INT
3491 && (pred->codes[CONST_INT]
3492 || pred->codes[CONST_DOUBLE]
3493 || pred->codes[CONST_WIDE_INT]
3494 || pred->codes[LABEL_REF]))
3495 return false;
3496
3497 return !pred->special && mode != VOIDmode;
3498}
3499
3500/* Fill CODES with the set of codes that could be matched by PRED. */
3501
3502static void
3503get_predicate_codes (const struct pred_data *pred, int_set *codes)
3504{
3505 for (int i = 0; i < NUM_TRUE_RTX_CODE; ++i)
3506 if (!pred || pred->codes[i])
3507 codes->safe_push (obj: i);
3508}
3509
3510/* Return true if the first path through D1 tests the same thing as D2. */
3511
3512static bool
3513has_same_test_p (decision *d1, decision *d2)
3514{
3515 do
3516 {
3517 if (d1->test == d2->test)
3518 return true;
3519 d1 = d1->first->to->first;
3520 }
3521 while (d1);
3522 return false;
3523}
3524
3525/* Return true if D1 and D2 cannot match the same rtx. All states reachable
3526 from D2 have single decisions and all those decisions have single
3527 transitions. */
3528
3529static bool
3530mutually_exclusive_p (decision *d1, decision *d2)
3531{
3532 /* If one path through D1 fails to test the same thing as D2, assume
3533 that D2's test could be true for D1 and look for a later, more useful,
3534 test. This isn't as expensive as it looks in practice. */
3535 while (!has_same_test_p (d1, d2))
3536 {
3537 d2 = d2->singleton ()->to->singleton ();
3538 if (!d2)
3539 return false;
3540 }
3541 if (d1->test == d2->test)
3542 {
3543 /* Look for any transitions from D1 that have the same labels as
3544 the transition from D2. */
3545 transition *trans2 = d2->singleton ();
3546 for (transition *trans1 = d1->first; trans1; trans1 = trans1->next)
3547 {
3548 int_set::iterator i1 = trans1->labels.begin ();
3549 int_set::iterator end1 = trans1->labels.end ();
3550 int_set::iterator i2 = trans2->labels.begin ();
3551 int_set::iterator end2 = trans2->labels.end ();
3552 while (i1 != end1 && i2 != end2)
3553 if (*i1 < *i2)
3554 ++i1;
3555 else if (*i2 < *i1)
3556 ++i2;
3557 else
3558 {
3559 /* TRANS1 has some labels in common with TRANS2. Assume
3560 that D1 and D2 could match the same rtx if the target
3561 of TRANS1 could match the same rtx as D2. */
3562 for (decision *subd1 = trans1->to->first;
3563 subd1; subd1 = subd1->next)
3564 if (!mutually_exclusive_p (d1: subd1, d2))
3565 return false;
3566 break;
3567 }
3568 }
3569 return true;
3570 }
3571 for (transition *trans1 = d1->first; trans1; trans1 = trans1->next)
3572 for (decision *subd1 = trans1->to->first; subd1; subd1 = subd1->next)
3573 if (!mutually_exclusive_p (d1: subd1, d2))
3574 return false;
3575 return true;
3576}
3577
3578/* Try to merge S2's decision into D1, given that they have the same test.
3579 Fail only if EXCLUDE is nonnull and the new transition would have the
3580 same labels as *EXCLUDE. When returning true, set *NEXT_S1, *NEXT_S2
3581 and *NEXT_EXCLUDE as for merge_into_state_1, or set *NEXT_S2 to null
3582 if the merge is complete. */
3583
3584static bool
3585merge_into_decision (decision *d1, state *s2, const int_set *exclude,
3586 state **next_s1, state **next_s2,
3587 const int_set **next_exclude)
3588{
3589 decision *d2 = s2->singleton ();
3590 transition *trans2 = d2->singleton ();
3591
3592 /* Get a list of the transitions that intersect TRANS2. */
3593 auto_vec <transition *, 32> intersecting;
3594 for (transition *trans1 = d1->first; trans1; trans1 = trans1->next)
3595 {
3596 int_set::iterator i1 = trans1->labels.begin ();
3597 int_set::iterator end1 = trans1->labels.end ();
3598 int_set::iterator i2 = trans2->labels.begin ();
3599 int_set::iterator end2 = trans2->labels.end ();
3600 bool trans1_is_subset = true;
3601 bool trans2_is_subset = true;
3602 bool intersect_p = false;
3603 while (i1 != end1 && i2 != end2)
3604 if (*i1 < *i2)
3605 {
3606 trans1_is_subset = false;
3607 ++i1;
3608 }
3609 else if (*i2 < *i1)
3610 {
3611 trans2_is_subset = false;
3612 ++i2;
3613 }
3614 else
3615 {
3616 intersect_p = true;
3617 ++i1;
3618 ++i2;
3619 }
3620 if (i1 != end1)
3621 trans1_is_subset = false;
3622 if (i2 != end2)
3623 trans2_is_subset = false;
3624 if (trans1_is_subset && trans2_is_subset)
3625 {
3626 /* There's already a transition that matches exactly.
3627 Merge the target states. */
3628 trans1->optional &= trans2->optional;
3629 *next_s1 = trans1->to;
3630 *next_s2 = trans2->to;
3631 *next_exclude = 0;
3632 return true;
3633 }
3634 if (trans2_is_subset)
3635 {
3636 /* TRANS1 has all the labels that TRANS2 needs. Merge S2 into
3637 the target of TRANS1, but (to avoid infinite recursion)
3638 make sure that we don't end up creating another transition
3639 like TRANS1. */
3640 *next_s1 = trans1->to;
3641 *next_s2 = s2;
3642 *next_exclude = &trans1->labels;
3643 return true;
3644 }
3645 if (intersect_p)
3646 intersecting.safe_push (obj: trans1);
3647 }
3648
3649 if (intersecting.is_empty ())
3650 {
3651 /* No existing labels intersect the new ones. We can just add
3652 TRANS2 itself. */
3653 d1->push_back (r: d2->release ());
3654 *next_s1 = 0;
3655 *next_s2 = 0;
3656 *next_exclude = 0;
3657 return true;
3658 }
3659
3660 /* Take the union of the labels in INTERSECTING and TRANS2. Store the
3661 result in COMBINED and use NEXT as a temporary. */
3662 int_set tmp1 = trans2->labels, tmp2;
3663 int_set *combined = &tmp1, *next = &tmp2;
3664 for (unsigned int i = 0; i < intersecting.length (); ++i)
3665 {
3666 transition *trans1 = intersecting[i];
3667 next->truncate (size: 0);
3668 next->safe_grow (len: trans1->labels.length () + combined->length (), exact: true);
3669 int_set::iterator end
3670 = std::set_union (first1: trans1->labels.begin (), last1: trans1->labels.end (),
3671 first2: combined->begin (), last2: combined->end (),
3672 result: next->begin ());
3673 next->truncate (size: end - next->begin ());
3674 std::swap (a&: next, b&: combined);
3675 }
3676
3677 /* Stop now if we've been told not to create a transition with these
3678 labels. */
3679 if (exclude && *combined == *exclude)
3680 return false;
3681
3682 /* Get the transition that should carry the new labels. */
3683 transition *new_trans = intersecting[0];
3684 if (intersecting.length () == 1)
3685 {
3686 /* We're merging with one existing transition whose labels are a
3687 subset of those required. If both transitions are optional,
3688 we can just expand the set of labels so that it's suitable
3689 for both transitions. It isn't worth preserving the original
3690 transitions since we know that they can't be merged; we would
3691 need to backtrack to S2 if TRANS1->to fails. In contrast,
3692 we might be able to merge the targets of the transitions
3693 without any backtracking.
3694
3695 If instead the existing transition is not optional, ensure that
3696 all target decisions are suitably protected. Some decisions
3697 might already have a more specific requirement than NEW_TRANS,
3698 in which case there's no point testing NEW_TRANS as well. E.g. this
3699 would have happened if a test for an (eq ...) rtx had been
3700 added to a decision that tested whether the code is suitable
3701 for comparison_operator. The original comparison_operator
3702 transition would have been non-optional and the (eq ...) test
3703 would be performed by a second decision in the target of that
3704 transition.
3705
3706 The remaining case -- keeping the original optional transition
3707 when adding a non-optional TRANS2 -- is a wash. Preserving
3708 the optional transition only helps if we later merge another
3709 state S3 that is mutually exclusive with S2 and whose labels
3710 belong to *COMBINED - TRANS1->labels. We can then test the
3711 original NEW_TRANS and S3 in the same decision. We keep the
3712 optional transition around for that case, but it occurs very
3713 rarely. */
3714 gcc_assert (new_trans->labels != *combined);
3715 if (!new_trans->optional || !trans2->optional)
3716 {
3717 decision *start = 0;
3718 for (decision *end = new_trans->to->first; end; end = end->next)
3719 {
3720 if (!start && end->test != d1->test)
3721 /* END belongs to a range of decisions that need to be
3722 protected by NEW_TRANS. */
3723 start = end;
3724 if (start && (!end->next || end->next->test == d1->test))
3725 {
3726 /* Protect [START, END] with NEW_TRANS. The decisions
3727 move to NEW_S and NEW_D becomes part of NEW_TRANS->to. */
3728 state *new_s = new state;
3729 decision *new_d = new decision (d1->test);
3730 new_d->push_back (r: new transition (new_trans->labels, new_s,
3731 new_trans->optional));
3732 state::range r (start, end);
3733 new_trans->to->replace (oldr: r, newr: new_d);
3734 new_s->push_back (r);
3735
3736 /* Continue with an empty range. */
3737 start = 0;
3738
3739 /* Continue from the decision after NEW_D. */
3740 end = new_d;
3741 }
3742 }
3743 }
3744 new_trans->optional = true;
3745 new_trans->labels = *combined;
3746 }
3747 else
3748 {
3749 /* We're merging more than one existing transition together.
3750 Those transitions are successfully dividing the matching space
3751 and so we want to preserve them, even if they're optional.
3752
3753 Create a new transition with the union set of labels and make
3754 it go to a state that has the original transitions. */
3755 decision *new_d = new decision (d1->test);
3756 for (unsigned int i = 0; i < intersecting.length (); ++i)
3757 new_d->push_back (r: d1->remove (r: intersecting[i]));
3758
3759 state *new_s = new state;
3760 new_s->push_back (r: new_d);
3761
3762 new_trans = new transition (*combined, new_s, true);
3763 d1->push_back (r: new_trans);
3764 }
3765
3766 /* We now have an optional transition with labels *COMBINED. Decide
3767 whether we can use it as TRANS2 or whether we need to merge S2
3768 into the target of NEW_TRANS. */
3769 gcc_assert (new_trans->optional);
3770 if (new_trans->labels == trans2->labels)
3771 {
3772 /* NEW_TRANS matches TRANS2. Just merge the target states. */
3773 new_trans->optional = trans2->optional;
3774 *next_s1 = new_trans->to;
3775 *next_s2 = trans2->to;
3776 *next_exclude = 0;
3777 }
3778 else
3779 {
3780 /* Try to merge TRANS2 into the target of the overlapping transition,
3781 but (to prevent infinite recursion or excessive redundancy) without
3782 creating another transition of the same type. */
3783 *next_s1 = new_trans->to;
3784 *next_s2 = s2;
3785 *next_exclude = &new_trans->labels;
3786 }
3787 return true;
3788}
3789
3790/* Make progress in merging S2 into S1, given that each state in S2
3791 has a single decision. If EXCLUDE is nonnull, avoid creating a new
3792 transition with the same test as S2's decision and with the labels
3793 in *EXCLUDE.
3794
3795 Return true if there is still work to do. When returning true,
3796 set *NEXT_S1, *NEXT_S2 and *NEXT_EXCLUDE to the values that
3797 S1, S2 and EXCLUDE should have next time round.
3798
3799 If S1 and S2 both match a particular rtx, give priority to S1. */
3800
3801static bool
3802merge_into_state_1 (state *s1, state *s2, const int_set *exclude,
3803 state **next_s1, state **next_s2,
3804 const int_set **next_exclude)
3805{
3806 decision *d2 = s2->singleton ();
3807 if (decision *d1 = s1->last)
3808 {
3809 if (d1->test.terminal_p ())
3810 /* D1 is an unconditional return, so S2 can never match. This can
3811 sometimes be a bug in the .md description, but might also happen
3812 if genconditions forces some conditions to true for certain
3813 configurations. */
3814 return false;
3815
3816 /* Go backwards through the decisions in S1, stopping once we find one
3817 that could match the same thing as S2. */
3818 while (d1->prev && mutually_exclusive_p (d1, d2))
3819 d1 = d1->prev;
3820
3821 /* Search forwards from that point, merging D2 into the first
3822 decision we can. */
3823 for (; d1; d1 = d1->next)
3824 {
3825 /* If S2 performs some optional tests before testing the same thing
3826 as D1, those tests do not help to distinguish D1 and S2, so it's
3827 better to drop them. Search through such optional decisions
3828 until we find something that tests the same thing as D1. */
3829 state *sub_s2 = s2;
3830 for (;;)
3831 {
3832 decision *sub_d2 = sub_s2->singleton ();
3833 if (d1->test == sub_d2->test)
3834 {
3835 /* Only apply EXCLUDE if we're testing the same thing
3836 as D2. */
3837 const int_set *sub_exclude = (d2 == sub_d2 ? exclude : 0);
3838
3839 /* Try to merge SUB_S2 into D1. This can only fail if
3840 it would involve creating a new transition with
3841 labels SUB_EXCLUDE. */
3842 if (merge_into_decision (d1, s2: sub_s2, exclude: sub_exclude,
3843 next_s1, next_s2, next_exclude))
3844 return *next_s2 != 0;
3845
3846 /* Can't merge with D1; try a later decision. */
3847 break;
3848 }
3849 transition *sub_trans2 = sub_d2->singleton ();
3850 if (!sub_trans2->optional)
3851 /* Can't merge with D1; try a later decision. */
3852 break;
3853 sub_s2 = sub_trans2->to;
3854 }
3855 }
3856 }
3857
3858 /* We can't merge D2 with any existing decision. Just add it to the end. */
3859 s1->push_back (r: s2->release ());
3860 return false;
3861}
3862
3863/* Merge S2 into S1. If they both match a particular rtx, give
3864 priority to S1. Each state in S2 has a single decision. */
3865
3866static void
3867merge_into_state (state *s1, state *s2)
3868{
3869 const int_set *exclude = 0;
3870 while (s2 && merge_into_state_1 (s1, s2, exclude, next_s1: &s1, next_s2: &s2, next_exclude: &exclude))
3871 continue;
3872}
3873
3874/* Pairs a pattern that needs to be matched with the rtx position at
3875 which the pattern should occur. */
3876class pattern_pos {
3877public:
3878 pattern_pos () {}
3879 pattern_pos (rtx, position *);
3880
3881 rtx pattern;
3882 position *pos;
3883};
3884
3885pattern_pos::pattern_pos (rtx pattern_in, position *pos_in)
3886 : pattern (pattern_in), pos (pos_in)
3887{}
3888
3889/* Compare entries according to their depth-first order. There shouldn't
3890 be two entries at the same position. */
3891
3892bool
3893operator < (const pattern_pos &e1, const pattern_pos &e2)
3894{
3895 int diff = compare_positions (pos1: e1.pos, pos2: e2.pos);
3896 gcc_assert (diff != 0 || e1.pattern == e2.pattern);
3897 return diff < 0;
3898}
3899
3900/* Add new decisions to S that check whether the rtx at position POS
3901 matches PATTERN. Return the state that is reached in that case.
3902 TOP_PATTERN is the overall pattern, as passed to match_pattern_1. */
3903
3904static state *
3905match_pattern_2 (state *s, md_rtx_info *info, position *pos, rtx pattern)
3906{
3907 auto_vec <pattern_pos, 32> worklist;
3908 auto_vec <pattern_pos, 32> pred_and_mode_tests;
3909 auto_vec <pattern_pos, 32> dup_tests;
3910
3911 worklist.safe_push (obj: pattern_pos (pattern, pos));
3912 while (!worklist.is_empty ())
3913 {
3914 pattern_pos next = worklist.pop ();
3915 pattern = next.pattern;
3916 pos = next.pos;
3917 unsigned int reverse_s = worklist.length ();
3918
3919 enum rtx_code code = GET_CODE (pattern);
3920 switch (code)
3921 {
3922 case MATCH_OP_DUP:
3923 case MATCH_DUP:
3924 case MATCH_PAR_DUP:
3925 /* Add a test that the rtx matches the earlier one, but only
3926 after the structure and predicates have been checked. */
3927 dup_tests.safe_push (obj: pattern_pos (pattern, pos));
3928
3929 /* Use the same code check as the original operand. */
3930 pattern = find_operand (pattern: info->def, XINT (pattern, 0), NULL_RTX);
3931 /* Fall through. */
3932
3933 case MATCH_PARALLEL:
3934 case MATCH_OPERAND:
3935 case MATCH_SCRATCH:
3936 case MATCH_OPERATOR:
3937 {
3938 const char *pred_name = predicate_name (match_rtx: pattern);
3939 const struct pred_data *pred = 0;
3940 if (pred_name[0] != 0)
3941 {
3942 pred = lookup_predicate (pred_name);
3943 /* Only report errors once per rtx. */
3944 if (code == GET_CODE (pattern))
3945 {
3946 if (!pred)
3947 error_at (info->loc, "unknown predicate '%s' used in %s",
3948 pred_name, GET_RTX_NAME (code));
3949 else if (code == MATCH_PARALLEL
3950 && pred->singleton != PARALLEL)
3951 error_at (info->loc, "predicate '%s' used in"
3952 " match_parallel does not allow only PARALLEL",
3953 pred->name);
3954 }
3955 }
3956
3957 if (code == MATCH_PARALLEL || code == MATCH_PAR_DUP)
3958 {
3959 /* Check that we have a parallel with enough elements. */
3960 s = add_decision (from: s, test: rtx_test::code (pos), labels: PARALLEL, optional: false);
3961 int min_len = XVECLEN (pattern, 2);
3962 s = add_decision (from: s, test: rtx_test::veclen_ge (pos, min_len),
3963 labels: true, optional: false);
3964 }
3965 else
3966 {
3967 /* Check that the rtx has one of codes accepted by the
3968 predicate. This is necessary when matching suboperands
3969 of a MATCH_OPERATOR or MATCH_OP_DUP, since we can't
3970 call XEXP (X, N) without checking that X has at least
3971 N+1 operands. */
3972 int_set codes;
3973 get_predicate_codes (pred, codes: &codes);
3974 bool need_codes = (pred
3975 && (code == MATCH_OPERATOR
3976 || code == MATCH_OP_DUP));
3977 s = add_decision (from: s, test: rtx_test::code (pos), labels: codes, optional: !need_codes);
3978 }
3979
3980 /* Postpone the predicate check until we've checked the rest
3981 of the rtx structure. */
3982 if (code == GET_CODE (pattern))
3983 pred_and_mode_tests.safe_push (obj: pattern_pos (pattern, pos));
3984
3985 /* If we need to match suboperands, add them to the worklist. */
3986 if (code == MATCH_OPERATOR || code == MATCH_PARALLEL)
3987 {
3988 position **subpos_ptr;
3989 enum position_type pos_type;
3990 int i;
3991 if (code == MATCH_OPERATOR || code == MATCH_OP_DUP)
3992 {
3993 pos_type = POS_XEXP;
3994 subpos_ptr = &pos->xexps;
3995 i = (code == MATCH_OPERATOR ? 2 : 1);
3996 }
3997 else
3998 {
3999 pos_type = POS_XVECEXP0;
4000 subpos_ptr = &pos->xvecexp0s;
4001 i = 2;
4002 }
4003 for (int j = 0; j < XVECLEN (pattern, i); ++j)
4004 {
4005 position *subpos = next_position (next_ptr: subpos_ptr, base: pos,
4006 type: pos_type, arg: j);
4007 worklist.safe_push (obj: pattern_pos (XVECEXP (pattern, i, j),
4008 subpos));
4009 subpos_ptr = &subpos->next;
4010 }
4011 }
4012 break;
4013 }
4014
4015 default:
4016 {
4017 /* Check that the rtx has the right code. */
4018 s = add_decision (from: s, test: rtx_test::code (pos), labels: code, optional: false);
4019
4020 /* Queue a test for the mode if one is specified. */
4021 if (GET_MODE (pattern) != VOIDmode)
4022 pred_and_mode_tests.safe_push (obj: pattern_pos (pattern, pos));
4023
4024 /* Push subrtxes onto the worklist. Match nonrtx operands now. */
4025 const char *fmt = GET_RTX_FORMAT (code);
4026 position **subpos_ptr = &pos->xexps;
4027 for (size_t i = 0; fmt[i]; ++i)
4028 {
4029 position *subpos = next_position (next_ptr: subpos_ptr, base: pos,
4030 type: POS_XEXP, arg: i);
4031 switch (fmt[i])
4032 {
4033 case 'e': case 'u':
4034 worklist.safe_push (obj: pattern_pos (XEXP (pattern, i),
4035 subpos));
4036 break;
4037
4038 case 'E':
4039 {
4040 /* Make sure the vector has the right number of
4041 elements. */
4042 int length = XVECLEN (pattern, i);
4043 s = add_decision (from: s, test: rtx_test::veclen (pos),
4044 labels: length, optional: false);
4045
4046 position **subpos2_ptr = &pos->xvecexp0s;
4047 for (int j = 0; j < length; j++)
4048 {
4049 position *subpos2 = next_position (next_ptr: subpos2_ptr, base: pos,
4050 type: POS_XVECEXP0, arg: j);
4051 rtx x = XVECEXP (pattern, i, j);
4052 worklist.safe_push (obj: pattern_pos (x, subpos2));
4053 subpos2_ptr = &subpos2->next;
4054 }
4055 break;
4056 }
4057
4058 case 'i':
4059 /* Make sure that XINT (X, I) has the right value. */
4060 s = add_decision (from: s, test: rtx_test::int_field (pos, opno: i),
4061 XINT (pattern, i), optional: false);
4062 break;
4063
4064 case 'r':
4065 /* Make sure that REGNO (X) has the right value. */
4066 gcc_assert (i == 0);
4067 s = add_decision (from: s, test: rtx_test::regno_field (pos),
4068 REGNO (pattern), optional: false);
4069 break;
4070
4071 case 'w':
4072 /* Make sure that XWINT (X, I) has the right value. */
4073 s = add_decision (from: s, test: rtx_test::wide_int_field (pos, opno: i),
4074 XWINT (pattern, 0), optional: false);
4075 break;
4076
4077 case 'p':
4078 /* We don't have a way of parsing polynomial offsets yet,
4079 and hopefully never will. */
4080 s = add_decision (from: s, test: rtx_test::subreg_field (pos),
4081 SUBREG_BYTE (pattern).to_constant (),
4082 optional: false);
4083 break;
4084
4085 case '0':
4086 break;
4087
4088 default:
4089 gcc_unreachable ();
4090 }
4091 subpos_ptr = &subpos->next;
4092 }
4093 }
4094 break;
4095 }
4096 /* Operands are pushed onto the worklist so that later indices are
4097 nearer the top. That's what we want for SETs, since a SET_SRC
4098 is a better discriminator than a SET_DEST. In other cases it's
4099 usually better to match earlier indices first. This is especially
4100 true of PARALLELs, where the first element tends to be the most
4101 individual. It's also true for commutative operators, where the
4102 canonicalization rules say that the more complex operand should
4103 come first. */
4104 if (code != SET && worklist.length () > reverse_s)
4105 std::reverse (first: &worklist[0] + reverse_s,
4106 last: &worklist[0] + worklist.length ());
4107 }
4108
4109 /* Sort the predicate and mode tests so that they're in depth-first order.
4110 The main goal of this is to put SET_SRC match_operands after SET_DEST
4111 match_operands and after mode checks for the enclosing SET_SRC operators
4112 (such as the mode of a PLUS in an addition instruction). The latter
4113 two types of test can determine the mode exactly, whereas a SET_SRC
4114 match_operand often has to cope with the possibility of the operand
4115 being a modeless constant integer. E.g. something that matches
4116 register_operand (x, SImode) never matches register_operand (x, DImode),
4117 but a const_int that matches immediate_operand (x, SImode) also matches
4118 immediate_operand (x, DImode). The register_operand cases can therefore
4119 be distinguished by a switch on the mode, but the immediate_operand
4120 cases can't. */
4121 if (pred_and_mode_tests.length () > 1)
4122 std::sort (first: &pred_and_mode_tests[0],
4123 last: &pred_and_mode_tests[0] + pred_and_mode_tests.length ());
4124
4125 /* Add the mode and predicate tests. */
4126 pattern_pos *e;
4127 unsigned int i;
4128 FOR_EACH_VEC_ELT (pred_and_mode_tests, i, e)
4129 {
4130 switch (GET_CODE (e->pattern))
4131 {
4132 case MATCH_PARALLEL:
4133 case MATCH_OPERAND:
4134 case MATCH_SCRATCH:
4135 case MATCH_OPERATOR:
4136 {
4137 int opno = XINT (e->pattern, 0);
4138 num_operands = MAX (num_operands, opno + 1);
4139 const char *pred_name = predicate_name (match_rtx: e->pattern);
4140 if (pred_name[0])
4141 {
4142 const struct pred_data *pred = lookup_predicate (pred_name);
4143 /* Check the mode first, to distinguish things like SImode
4144 and DImode register_operands, as described above. */
4145 machine_mode mode = GET_MODE (e->pattern);
4146 if (pred && safe_predicate_mode (pred, mode))
4147 s = add_decision (from: s, test: rtx_test::mode (pos: e->pos), labels: mode, optional: true);
4148
4149 /* Assign to operands[] first, so that the rtx usually doesn't
4150 need to be live across the call to the predicate.
4151
4152 This shouldn't cause a problem with dirtying the page,
4153 since we fully expect to assign to operands[] at some point,
4154 and since the caller usually writes to other parts of
4155 recog_data anyway. */
4156 s = add_decision (from: s, test: rtx_test::set_op (pos: e->pos, opno),
4157 labels: true, optional: false);
4158 s = add_decision (from: s, test: rtx_test::predicate (pos: e->pos, data: pred, mode),
4159 labels: true, optional: false);
4160 }
4161 else
4162 /* Historically we've ignored the mode when there's no
4163 predicate. Just set up operands[] unconditionally. */
4164 s = add_decision (from: s, test: rtx_test::set_op (pos: e->pos, opno),
4165 labels: true, optional: false);
4166 break;
4167 }
4168
4169 default:
4170 s = add_decision (from: s, test: rtx_test::mode (pos: e->pos),
4171 GET_MODE (e->pattern), optional: false);
4172 break;
4173 }
4174 }
4175
4176 /* Finally add rtx_equal_p checks for duplicated operands. */
4177 FOR_EACH_VEC_ELT (dup_tests, i, e)
4178 s = add_decision (from: s, test: rtx_test::duplicate (pos: e->pos, XINT (e->pattern, 0)),
4179 labels: true, optional: false);
4180 return s;
4181}
4182
4183/* Add new decisions to S that make it return ACCEPTANCE if:
4184
4185 (1) the rtx doesn't match anything already matched by S
4186 (2) the rtx matches TOP_PATTERN and
4187 (3) the C test required by INFO->def is true
4188
4189 For peephole2, TOP_PATTERN is a SEQUENCE of the instruction patterns
4190 to match, otherwise it is a single instruction pattern. */
4191
4192static void
4193match_pattern_1 (state *s, md_rtx_info *info, rtx pattern,
4194 acceptance_type acceptance)
4195{
4196 if (acceptance.type == PEEPHOLE2)
4197 {
4198 /* Match each individual instruction. */
4199 position **subpos_ptr = &peep2_insn_pos_list;
4200 int count = 0;
4201 for (int i = 0; i < XVECLEN (pattern, 0); ++i)
4202 {
4203 rtx x = XVECEXP (pattern, 0, i);
4204 position *subpos = next_position (next_ptr: subpos_ptr, base: &root_pos,
4205 type: POS_PEEP2_INSN, arg: count);
4206 if (count > 0)
4207 s = add_decision (from: s, test: rtx_test::peep2_count (min_len: count + 1),
4208 labels: true, optional: false);
4209 s = match_pattern_2 (s, info, pos: subpos, pattern: x);
4210 subpos_ptr = &subpos->next;
4211 count += 1;
4212 }
4213 acceptance.u.full.u.match_len = count - 1;
4214 }
4215 else
4216 {
4217 /* Make the rtx itself. */
4218 s = match_pattern_2 (s, info, pos: &root_pos, pattern);
4219
4220 /* If the match is only valid when extra clobbers are added,
4221 make sure we're able to pass that information to the caller. */
4222 if (acceptance.type == RECOG && acceptance.u.full.u.num_clobbers)
4223 s = add_decision (from: s, test: rtx_test::have_num_clobbers (), labels: true, optional: false);
4224 }
4225
4226 /* Make sure that the C test is true. */
4227 const char *c_test = get_c_test (info->def);
4228 if (maybe_eval_c_test (c_test) != 1)
4229 s = add_decision (from: s, test: rtx_test::c_test (string: c_test), labels: true, optional: false);
4230
4231 /* Accept the pattern. */
4232 add_decision (from: s, test: rtx_test::accept (acceptance), labels: true, optional: false);
4233}
4234
4235/* Like match_pattern_1, but (if merge_states_p) try to merge the
4236 decisions with what's already in S, to reduce the amount of
4237 backtracking. */
4238
4239static void
4240match_pattern (state *s, md_rtx_info *info, rtx pattern,
4241 acceptance_type acceptance)
4242{
4243 if (merge_states_p)
4244 {
4245 state root;
4246 /* Add the decisions to a fresh state and then merge the full tree
4247 into the existing one. */
4248 match_pattern_1 (s: &root, info, pattern, acceptance);
4249 merge_into_state (s1: s, s2: &root);
4250 }
4251 else
4252 match_pattern_1 (s, info, pattern, acceptance);
4253}
4254
4255/* Begin the output file. */
4256
4257static void
4258write_header (void)
4259{
4260 puts (s: "\
4261/* Generated automatically by the program `genrecog' from the target\n\
4262 machine description file. */\n\
4263\n\
4264#define IN_TARGET_CODE 1\n\
4265\n\
4266#include \"config.h\"\n\
4267#include \"system.h\"\n\
4268#include \"coretypes.h\"\n\
4269#include \"backend.h\"\n\
4270#include \"predict.h\"\n\
4271#include \"rtl.h\"\n\
4272#include \"memmodel.h\"\n\
4273#include \"tm_p.h\"\n\
4274#include \"emit-rtl.h\"\n\
4275#include \"insn-config.h\"\n\
4276#include \"recog.h\"\n\
4277#include \"output.h\"\n\
4278#include \"flags.h\"\n\
4279#include \"df.h\"\n\
4280#include \"resource.h\"\n\
4281#include \"diagnostic-core.h\"\n\
4282#include \"reload.h\"\n\
4283#include \"regs.h\"\n\
4284#include \"tm-constrs.h\"\n\
4285\n");
4286
4287 puts (s: "\n\
4288/* `recog' contains a decision tree that recognizes whether the rtx\n\
4289 X0 is a valid instruction.\n\
4290\n\
4291 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
4292 returns a nonnegative number which is the insn code number for the\n\
4293 pattern that matched. This is the same as the order in the machine\n\
4294 description of the entry that matched. This number can be used as an\n\
4295 index into `insn_data' and other tables.\n");
4296 puts (s: "\
4297 The third parameter to recog is an optional pointer to an int. If\n\
4298 present, recog will accept a pattern if it matches except for missing\n\
4299 CLOBBER expressions at the end. In that case, the value pointed to by\n\
4300 the optional pointer will be set to the number of CLOBBERs that need\n\
4301 to be added (it should be initialized to zero by the caller). If it");
4302 puts (s: "\
4303 is set nonzero, the caller should allocate a PARALLEL of the\n\
4304 appropriate size, copy the initial entries, and call add_clobbers\n\
4305 (found in insn-emit.cc) to fill in the CLOBBERs.\n\
4306");
4307
4308 puts (s: "\n\
4309 The function split_insns returns 0 if the rtl could not\n\
4310 be split or the split rtl as an INSN list if it can be.\n\
4311\n\
4312 The function peephole2_insns returns 0 if the rtl could not\n\
4313 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
4314 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
4315*/\n\n");
4316}
4317
4318/* Return the C type of a parameter with type TYPE. */
4319
4320static const char *
4321parameter_type_string (parameter::type_enum type)
4322{
4323 switch (type)
4324 {
4325 case parameter::UNSET:
4326 break;
4327
4328 case parameter::CODE:
4329 return "rtx_code";
4330
4331 case parameter::MODE:
4332 return "machine_mode";
4333
4334 case parameter::INT:
4335 return "int";
4336
4337 case parameter::UINT:
4338 return "unsigned int";
4339
4340 case parameter::WIDE_INT:
4341 return "HOST_WIDE_INT";
4342 }
4343 gcc_unreachable ();
4344}
4345
4346/* Return true if ACCEPTANCE requires only a single C statement even in
4347 a backtracking context. */
4348
4349static bool
4350single_statement_p (const acceptance_type &acceptance)
4351{
4352 if (acceptance.partial_p)
4353 /* We need to handle failures of the subroutine. */
4354 return false;
4355 switch (acceptance.type)
4356 {
4357 case SUBPATTERN:
4358 case SPLIT:
4359 return true;
4360
4361 case RECOG:
4362 /* False if we need to assign to pnum_clobbers. */
4363 return acceptance.u.full.u.num_clobbers == 0;
4364
4365 case PEEPHOLE2:
4366 /* We need to assign to pmatch_len_ and handle null returns from the
4367 peephole2 routine. */
4368 return false;
4369 }
4370 gcc_unreachable ();
4371}
4372
4373/* Return the C failure value for a routine of type TYPE. */
4374
4375static const char *
4376get_failure_return (routine_type type)
4377{
4378 switch (type)
4379 {
4380 case SUBPATTERN:
4381 case RECOG:
4382 return "-1";
4383
4384 case SPLIT:
4385 case PEEPHOLE2:
4386 return "NULL";
4387 }
4388 gcc_unreachable ();
4389}
4390
4391/* Indicates whether a block of code always returns or whether it can fall
4392 through. */
4393
4394enum exit_state {
4395 ES_RETURNED,
4396 ES_FALLTHROUGH
4397};
4398
4399/* Information used while writing out code. */
4400
4401class output_state
4402{
4403public:
4404 /* The type of routine that we're generating. */
4405 routine_type type;
4406
4407 /* Maps position ids to xN variable numbers. The entry is only valid if
4408 it is less than the length of VAR_TO_ID, but this holds for every position
4409 tested by a state when writing out that state. */
4410 auto_vec <unsigned int> id_to_var;
4411
4412 /* Maps xN variable numbers to position ids. */
4413 auto_vec <unsigned int> var_to_id;
4414
4415 /* Index N is true if variable xN has already been set. */
4416 auto_vec <bool> seen_vars;
4417};
4418
4419/* Return true if D is a call to a pattern routine and if there is some X
4420 such that the transition for pattern result N goes to a successful return
4421 with code X+N. When returning true, set *BASE_OUT to this X and *COUNT_OUT
4422 to the number of return values. (We know that every PATTERN decision has
4423 a transition for every successful return.) */
4424
4425static bool
4426terminal_pattern_p (decision *d, unsigned int *base_out,
4427 unsigned int *count_out)
4428{
4429 if (d->test.kind != rtx_test::PATTERN)
4430 return false;
4431 unsigned int base = 0;
4432 unsigned int count = 0;
4433 for (transition *trans = d->first; trans; trans = trans->next)
4434 {
4435 if (trans->is_param || trans->labels.length () != 1)
4436 return false;
4437 decision *subd = trans->to->singleton ();
4438 if (!subd || subd->test.kind != rtx_test::ACCEPT)
4439 return false;
4440 unsigned int this_base = (subd->test.u.acceptance.u.full.code
4441 - trans->labels[0]);
4442 if (trans == d->first)
4443 base = this_base;
4444 else if (base != this_base)
4445 return false;
4446 count += 1;
4447 }
4448 *base_out = base;
4449 *count_out = count;
4450 return true;
4451}
4452
4453/* Return true if TEST doesn't test an rtx or if the rtx it tests is
4454 already available in state OS. */
4455
4456static bool
4457test_position_available_p (output_state *os, const rtx_test &test)
4458{
4459 return (!test.pos
4460 || test.pos_operand >= 0
4461 || os->seen_vars[os->id_to_var[test.pos->id]]);
4462}
4463
4464/* Like printf, but print INDENT spaces at the beginning. */
4465
4466static void ATTRIBUTE_PRINTF_2
4467printf_indent (unsigned int indent, const char *format, ...)
4468{
4469 va_list ap;
4470 va_start (ap, format);
4471 printf (format: "%*s", indent, "");
4472 vprintf (fmt: format, arg: ap);
4473 va_end (ap);
4474}
4475
4476/* Emit code to initialize the variable associated with POS, if it isn't
4477 already valid in state OS. Indent each line by INDENT spaces. Update
4478 OS with the new state. */
4479
4480static void
4481change_state (output_state *os, position *pos, unsigned int indent)
4482{
4483 unsigned int var = os->id_to_var[pos->id];
4484 gcc_assert (var < os->var_to_id.length () && os->var_to_id[var] == pos->id);
4485 if (os->seen_vars[var])
4486 return;
4487 switch (pos->type)
4488 {
4489 case POS_PEEP2_INSN:
4490 printf_indent (indent, format: "x%d = PATTERN (peep2_next_insn (%d));\n",
4491 var, pos->arg);
4492 break;
4493
4494 case POS_XEXP:
4495 change_state (os, pos: pos->base, indent);
4496 printf_indent (indent, format: "x%d = XEXP (x%d, %d);\n",
4497 var, os->id_to_var[pos->base->id], pos->arg);
4498 break;
4499
4500 case POS_XVECEXP0:
4501 change_state (os, pos: pos->base, indent);
4502 printf_indent (indent, format: "x%d = XVECEXP (x%d, 0, %d);\n",
4503 var, os->id_to_var[pos->base->id], pos->arg);
4504 break;
4505 }
4506 os->seen_vars[var] = true;
4507}
4508
4509/* Print the enumerator constant for CODE -- the upcase version of
4510 the name. */
4511
4512static void
4513print_code (enum rtx_code code)
4514{
4515 const char *p;
4516 for (p = GET_RTX_NAME (code); *p; p++)
4517 putchar (TOUPPER (*p));
4518}
4519
4520/* Emit a uint64_t as an integer constant expression. We need to take
4521 special care to avoid "decimal constant is so large that it is unsigned"
4522 warnings in the resulting code. */
4523
4524static void
4525print_host_wide_int (uint64_t val)
4526{
4527 uint64_t min = uint64_t (1) << (HOST_BITS_PER_WIDE_INT - 1);
4528 if (val == min)
4529 printf (format: "(" HOST_WIDE_INT_PRINT_DEC_C " - 1)", val + 1);
4530 else
4531 printf (HOST_WIDE_INT_PRINT_DEC_C, val);
4532}
4533
4534/* Print the C expression for actual parameter PARAM. */
4535
4536static void
4537print_parameter_value (const parameter &param)
4538{
4539 if (param.is_param)
4540 printf (format: "i%d", (int) param.value + 1);
4541 else
4542 switch (param.type)
4543 {
4544 case parameter::UNSET:
4545 gcc_unreachable ();
4546 break;
4547
4548 case parameter::CODE:
4549 print_code (code: (enum rtx_code) param.value);
4550 break;
4551
4552 case parameter::MODE:
4553 printf (format: "E_%smode", GET_MODE_NAME ((machine_mode) param.value));
4554 break;
4555
4556 case parameter::INT:
4557 printf (format: "%d", (int) param.value);
4558 break;
4559
4560 case parameter::UINT:
4561 printf (format: "%u", (unsigned int) param.value);
4562 break;
4563
4564 case parameter::WIDE_INT:
4565 print_host_wide_int (val: param.value);
4566 break;
4567 }
4568}
4569
4570/* Print the C expression for the rtx tested by TEST. */
4571
4572static void
4573print_test_rtx (output_state *os, const rtx_test &test)
4574{
4575 if (test.pos_operand >= 0)
4576 printf (format: "operands[%d]", test.pos_operand);
4577 else
4578 printf (format: "x%d", os->id_to_var[test.pos->id]);
4579}
4580
4581/* Print the C expression for non-boolean test TEST. */
4582
4583static void
4584print_nonbool_test (output_state *os, const rtx_test &test)
4585{
4586 switch (test.kind)
4587 {
4588 case rtx_test::CODE:
4589 printf (format: "GET_CODE (");
4590 print_test_rtx (os, test);
4591 printf (format: ")");
4592 break;
4593
4594 case rtx_test::MODE:
4595 printf (format: "GET_MODE (");
4596 print_test_rtx (os, test);
4597 printf (format: ")");
4598 break;
4599
4600 case rtx_test::VECLEN:
4601 printf (format: "XVECLEN (");
4602 print_test_rtx (os, test);
4603 printf (format: ", 0)");
4604 break;
4605
4606 case rtx_test::INT_FIELD:
4607 printf (format: "XINT (");
4608 print_test_rtx (os, test);
4609 printf (format: ", %d)", test.u.opno);
4610 break;
4611
4612 case rtx_test::REGNO_FIELD:
4613 printf (format: "REGNO (");
4614 print_test_rtx (os, test);
4615 printf (format: ")");
4616 break;
4617
4618 case rtx_test::SUBREG_FIELD:
4619 printf (format: "SUBREG_BYTE (");
4620 print_test_rtx (os, test);
4621 printf (format: ")");
4622 break;
4623
4624 case rtx_test::WIDE_INT_FIELD:
4625 printf (format: "XWINT (");
4626 print_test_rtx (os, test);
4627 printf (format: ", %d)", test.u.opno);
4628 break;
4629
4630 case rtx_test::PATTERN:
4631 {
4632 pattern_routine *routine = test.u.pattern->routine;
4633 printf (format: "pattern%d (", routine->pattern_id);
4634 const char *sep = "";
4635 if (test.pos)
4636 {
4637 print_test_rtx (os, test);
4638 sep = ", ";
4639 }
4640 if (routine->insn_p)
4641 {
4642 printf (format: "%sinsn", sep);
4643 sep = ", ";
4644 }
4645 if (routine->pnum_clobbers_p)
4646 {
4647 printf (format: "%spnum_clobbers", sep);
4648 sep = ", ";
4649 }
4650 for (unsigned int i = 0; i < test.u.pattern->params.length (); ++i)
4651 {
4652 fputs (sep, stdout);
4653 print_parameter_value (param: test.u.pattern->params[i]);
4654 sep = ", ";
4655 }
4656 printf (format: ")");
4657 break;
4658 }
4659
4660 case rtx_test::PEEP2_COUNT:
4661 case rtx_test::VECLEN_GE:
4662 case rtx_test::SAVED_CONST_INT:
4663 case rtx_test::DUPLICATE:
4664 case rtx_test::PREDICATE:
4665 case rtx_test::SET_OP:
4666 case rtx_test::HAVE_NUM_CLOBBERS:
4667 case rtx_test::C_TEST:
4668 case rtx_test::ACCEPT:
4669 gcc_unreachable ();
4670 }
4671}
4672
4673/* IS_PARAM and LABEL are taken from a transition whose source
4674 decision performs TEST. Print the C code for the label. */
4675
4676static void
4677print_label_value (const rtx_test &test, bool is_param, uint64_t value)
4678{
4679 print_parameter_value (param: parameter (transition_parameter_type (kind: test.kind),
4680 is_param, value));
4681}
4682
4683/* If IS_PARAM, print code to compare TEST with the C variable i<VALUE+1>.
4684 If !IS_PARAM, print code to compare TEST with the C constant VALUE.
4685 Test for inequality if INVERT_P, otherwise test for equality. */
4686
4687static void
4688print_test (output_state *os, const rtx_test &test, bool is_param,
4689 uint64_t value, bool invert_p)
4690{
4691 switch (test.kind)
4692 {
4693 /* Handle the non-boolean TESTs. */
4694 case rtx_test::CODE:
4695 case rtx_test::MODE:
4696 case rtx_test::VECLEN:
4697 case rtx_test::REGNO_FIELD:
4698 case rtx_test::INT_FIELD:
4699 case rtx_test::WIDE_INT_FIELD:
4700 case rtx_test::PATTERN:
4701 print_nonbool_test (os, test);
4702 printf (format: " %s ", invert_p ? "!=" : "==");
4703 print_label_value (test, is_param, value);
4704 break;
4705
4706 case rtx_test::SUBREG_FIELD:
4707 printf (format: "%s (", invert_p ? "maybe_ne" : "known_eq");
4708 print_nonbool_test (os, test);
4709 printf (format: ", ");
4710 print_label_value (test, is_param, value);
4711 printf (format: ")");
4712 break;
4713
4714 case rtx_test::SAVED_CONST_INT:
4715 gcc_assert (!is_param && value == 1);
4716 print_test_rtx (os, test);
4717 printf (format: " %s const_int_rtx[MAX_SAVED_CONST_INT + ",
4718 invert_p ? "!=" : "==");
4719 print_parameter_value (param: parameter (parameter::INT,
4720 test.u.integer.is_param,
4721 test.u.integer.value));
4722 printf (format: "]");
4723 break;
4724
4725 case rtx_test::PEEP2_COUNT:
4726 gcc_assert (!is_param && value == 1);
4727 printf (format: "peep2_current_count %s %d", invert_p ? "<" : ">=",
4728 test.u.min_len);
4729 break;
4730
4731 case rtx_test::VECLEN_GE:
4732 gcc_assert (!is_param && value == 1);
4733 printf (format: "XVECLEN (");
4734 print_test_rtx (os, test);
4735 printf (format: ", 0) %s %d", invert_p ? "<" : ">=", test.u.min_len);
4736 break;
4737
4738 case rtx_test::PREDICATE:
4739 gcc_assert (!is_param && value == 1);
4740 printf (format: "%s%s (", invert_p ? "!" : "", test.u.predicate.data->name);
4741 print_test_rtx (os, test);
4742 printf (format: ", ");
4743 print_parameter_value (param: parameter (parameter::MODE,
4744 test.u.predicate.mode_is_param,
4745 test.u.predicate.mode));
4746 printf (format: ")");
4747 break;
4748
4749 case rtx_test::DUPLICATE:
4750 gcc_assert (!is_param && value == 1);
4751 printf (format: "%srtx_equal_p (", invert_p ? "!" : "");
4752 print_test_rtx (os, test);
4753 printf (format: ", operands[%d])", test.u.opno);
4754 break;
4755
4756 case rtx_test::HAVE_NUM_CLOBBERS:
4757 gcc_assert (!is_param && value == 1);
4758 printf (format: "pnum_clobbers %s NULL", invert_p ? "==" : "!=");
4759 break;
4760
4761 case rtx_test::C_TEST:
4762 gcc_assert (!is_param && value == 1);
4763 if (invert_p)
4764 printf (format: "!");
4765 rtx_reader_ptr->print_c_condition (cond: test.u.string);
4766 break;
4767
4768 case rtx_test::ACCEPT:
4769 case rtx_test::SET_OP:
4770 gcc_unreachable ();
4771 }
4772}
4773
4774static exit_state print_decision (output_state *, decision *,
4775 unsigned int, bool);
4776
4777/* Print code to perform S, indent each line by INDENT spaces.
4778 IS_FINAL is true if there are no fallback decisions to test on failure;
4779 if the state fails then the entire routine fails. */
4780
4781static exit_state
4782print_state (output_state *os, state *s, unsigned int indent, bool is_final)
4783{
4784 exit_state es = ES_FALLTHROUGH;
4785 for (decision *d = s->first; d; d = d->next)
4786 es = print_decision (os, d, indent, is_final && !d->next);
4787 if (es != ES_RETURNED && is_final)
4788 {
4789 printf_indent (indent, format: "return %s;\n", get_failure_return (type: os->type));
4790 es = ES_RETURNED;
4791 }
4792 return es;
4793}
4794
4795/* Print the code for subroutine call ACCEPTANCE (for which partial_p
4796 is known to be true). Return the C condition that indicates a successful
4797 match. */
4798
4799static const char *
4800print_subroutine_call (const acceptance_type &acceptance)
4801{
4802 switch (acceptance.type)
4803 {
4804 case SUBPATTERN:
4805 gcc_unreachable ();
4806
4807 case RECOG:
4808 printf (format: "recog_%d (x1, insn, pnum_clobbers)",
4809 acceptance.u.subroutine_id);
4810 return ">= 0";
4811
4812 case SPLIT:
4813 printf (format: "split_%d (x1, insn)", acceptance.u.subroutine_id);
4814 return "!= NULL_RTX";
4815
4816 case PEEPHOLE2:
4817 printf (format: "peephole2_%d (x1, insn, pmatch_len_)",
4818 acceptance.u.subroutine_id);
4819 return "!= NULL_RTX";
4820 }
4821 gcc_unreachable ();
4822}
4823
4824/* Print code for the successful match described by ACCEPTANCE.
4825 INDENT and IS_FINAL are as for print_state. */
4826
4827static exit_state
4828print_acceptance (const acceptance_type &acceptance, unsigned int indent,
4829 bool is_final)
4830{
4831 if (acceptance.partial_p)
4832 {
4833 /* Defer the rest of the match to a subroutine. */
4834 if (is_final)
4835 {
4836 printf_indent (indent, format: "return ");
4837 print_subroutine_call (acceptance);
4838 printf (format: ";\n");
4839 return ES_RETURNED;
4840 }
4841 else
4842 {
4843 printf_indent (indent, format: "res = ");
4844 const char *res_test = print_subroutine_call (acceptance);
4845 printf (format: ";\n");
4846 printf_indent (indent, format: "if (res %s)\n", res_test);
4847 printf_indent (indent: indent + 2, format: "return res;\n");
4848 return ES_FALLTHROUGH;
4849 }
4850 }
4851 switch (acceptance.type)
4852 {
4853 case SUBPATTERN:
4854 printf_indent (indent, format: "return %d;\n", acceptance.u.full.code);
4855 return ES_RETURNED;
4856
4857 case RECOG:
4858 if (acceptance.u.full.u.num_clobbers != 0)
4859 printf_indent (indent, format: "*pnum_clobbers = %d;\n",
4860 acceptance.u.full.u.num_clobbers);
4861 printf_indent (indent, format: "return %d; /* %s */\n", acceptance.u.full.code,
4862 get_insn_name (acceptance.u.full.code));
4863 return ES_RETURNED;
4864
4865 case SPLIT:
4866 printf_indent (indent, format: "return gen_split_%d (insn, operands);\n",
4867 acceptance.u.full.code);
4868 return ES_RETURNED;
4869
4870 case PEEPHOLE2:
4871 printf_indent (indent, format: "*pmatch_len_ = %d;\n",
4872 acceptance.u.full.u.match_len);
4873 if (is_final)
4874 {
4875 printf_indent (indent, format: "return gen_peephole2_%d (insn, operands);\n",
4876 acceptance.u.full.code);
4877 return ES_RETURNED;
4878 }
4879 else
4880 {
4881 printf_indent (indent, format: "res = gen_peephole2_%d (insn, operands);\n",
4882 acceptance.u.full.code);
4883 printf_indent (indent, format: "if (res != NULL_RTX)\n");
4884 printf_indent (indent: indent + 2, format: "return res;\n");
4885 return ES_FALLTHROUGH;
4886 }
4887 }
4888 gcc_unreachable ();
4889}
4890
4891/* Print code to perform D. INDENT and IS_FINAL are as for print_state. */
4892
4893static exit_state
4894print_decision (output_state *os, decision *d, unsigned int indent,
4895 bool is_final)
4896{
4897 uint64_t label;
4898 unsigned int base, count;
4899
4900 /* Make sure the rtx under test is available either in operands[] or
4901 in an xN variable. */
4902 if (d->test.pos && d->test.pos_operand < 0)
4903 change_state (os, pos: d->test.pos, indent);
4904
4905 /* Look for cases where a pattern routine P1 calls another pattern routine
4906 P2 and where P1 returns X + BASE whenever P2 returns X. If IS_FINAL
4907 is true and BASE is zero we can simply use:
4908
4909 return patternN (...);
4910
4911 Otherwise we can use:
4912
4913 res = patternN (...);
4914 if (res >= 0)
4915 return res + BASE;
4916
4917 However, if BASE is nonzero and patternN only returns 0 or -1,
4918 the usual "return BASE;" is better than "return res + BASE;".
4919 If BASE is zero, "return res;" should be better than "return 0;",
4920 since no assignment to the return register is required. */
4921 if (os->type == SUBPATTERN
4922 && terminal_pattern_p (d, base_out: &base, count_out: &count)
4923 && (base == 0 || count > 1))
4924 {
4925 if (is_final && base == 0)
4926 {
4927 printf_indent (indent, format: "return ");
4928 print_nonbool_test (os, test: d->test);
4929 printf (format: "; /* [-1, %d] */\n", count - 1);
4930 return ES_RETURNED;
4931 }
4932 else
4933 {
4934 printf_indent (indent, format: "res = ");
4935 print_nonbool_test (os, test: d->test);
4936 printf (format: ";\n");
4937 printf_indent (indent, format: "if (res >= 0)\n");
4938 printf_indent (indent: indent + 2, format: "return res");
4939 if (base != 0)
4940 printf (format: " + %d", base);
4941 printf (format: "; /* [%d, %d] */\n", base, base + count - 1);
4942 return ES_FALLTHROUGH;
4943 }
4944 }
4945 else if (d->test.kind == rtx_test::ACCEPT)
4946 return print_acceptance (acceptance: d->test.u.acceptance, indent, is_final);
4947 else if (d->test.kind == rtx_test::SET_OP)
4948 {
4949 printf_indent (indent, format: "operands[%d] = ", d->test.u.opno);
4950 print_test_rtx (os, test: d->test);
4951 printf (format: ";\n");
4952 return print_state (os, s: d->singleton ()->to, indent, is_final);
4953 }
4954 /* Handle decisions with a single transition and a single transition
4955 label. */
4956 else if (d->if_statement_p (label: &label))
4957 {
4958 transition *trans = d->singleton ();
4959 if (mark_optional_transitions_p && trans->optional)
4960 printf_indent (indent, format: "/* OPTIONAL IF */\n");
4961
4962 /* Print the condition associated with TRANS. Invert it if IS_FINAL,
4963 so that we return immediately on failure and fall through on
4964 success. */
4965 printf_indent (indent, format: "if (");
4966 print_test (os, test: d->test, is_param: trans->is_param, value: label, invert_p: is_final);
4967
4968 /* Look for following states that would be handled by this code
4969 on recursion. If they don't need any preparatory statements,
4970 include them in the current "if" statement rather than creating
4971 a new one. */
4972 for (;;)
4973 {
4974 d = trans->to->singleton ();
4975 if (!d
4976 || d->test.kind == rtx_test::ACCEPT
4977 || d->test.kind == rtx_test::SET_OP
4978 || !d->if_statement_p (label: &label)
4979 || !test_position_available_p (os, test: d->test))
4980 break;
4981 trans = d->first;
4982 printf (format: "\n");
4983 if (mark_optional_transitions_p && trans->optional)
4984 printf_indent (indent: indent + 4, format: "/* OPTIONAL IF */\n");
4985 printf_indent (indent: indent + 4, format: "%s ", is_final ? "||" : "&&");
4986 print_test (os, test: d->test, is_param: trans->is_param, value: label, invert_p: is_final);
4987 }
4988 printf (format: ")\n");
4989
4990 /* Print the conditional code with INDENT + 2 and the fallthrough
4991 code with indent INDENT. */
4992 state *to = trans->to;
4993 if (is_final)
4994 {
4995 /* We inverted the condition above, so return failure in the
4996 "if" body and fall through to the target of the transition. */
4997 printf_indent (indent: indent + 2, format: "return %s;\n",
4998 get_failure_return (type: os->type));
4999 return print_state (os, s: to, indent, is_final);
5000 }
5001 else if (to->singleton ()
5002 && to->first->test.kind == rtx_test::ACCEPT
5003 && single_statement_p (acceptance: to->first->test.u.acceptance))
5004 {
5005 /* The target of the transition is a simple "return" statement.
5006 It doesn't need any braces and doesn't fall through. */
5007 if (print_acceptance (acceptance: to->first->test.u.acceptance,
5008 indent: indent + 2, is_final: true) != ES_RETURNED)
5009 gcc_unreachable ();
5010 return ES_FALLTHROUGH;
5011 }
5012 else
5013 {
5014 /* The general case. Output code for the target of the transition
5015 in braces. This will not invalidate any of the xN variables
5016 that are already valid, but we mustn't rely on any that are
5017 set by the "if" body. */
5018 auto_vec <bool, 32> old_seen;
5019 old_seen.safe_splice (src: os->seen_vars);
5020
5021 printf_indent (indent: indent + 2, format: "{\n");
5022 print_state (os, s: trans->to, indent: indent + 4, is_final);
5023 printf_indent (indent: indent + 2, format: "}\n");
5024
5025 os->seen_vars.truncate (size: 0);
5026 os->seen_vars.splice (src: old_seen);
5027 return ES_FALLTHROUGH;
5028 }
5029 }
5030 else
5031 {
5032 /* Output the decision as a switch statement. */
5033 printf_indent (indent, format: "switch (");
5034 print_nonbool_test (os, test: d->test);
5035 printf (format: ")\n");
5036
5037 /* Each case statement starts with the same set of valid variables.
5038 These are also the only variables will be valid on fallthrough. */
5039 auto_vec <bool, 32> old_seen;
5040 old_seen.safe_splice (src: os->seen_vars);
5041
5042 printf_indent (indent: indent + 2, format: "{\n");
5043 for (transition *trans = d->first; trans; trans = trans->next)
5044 {
5045 gcc_assert (!trans->is_param);
5046 if (mark_optional_transitions_p && trans->optional)
5047 printf_indent (indent: indent + 2, format: "/* OPTIONAL CASE */\n");
5048 for (int_set::iterator j = trans->labels.begin ();
5049 j != trans->labels.end (); ++j)
5050 {
5051 printf_indent (indent: indent + 2, format: "case ");
5052 print_label_value (test: d->test, is_param: trans->is_param, value: *j);
5053 printf (format: ":\n");
5054 }
5055 if (print_state (os, s: trans->to, indent: indent + 4, is_final))
5056 {
5057 /* The state can fall through. Add an explicit break. */
5058 gcc_assert (!is_final);
5059 printf_indent (indent: indent + 4, format: "break;\n");
5060 }
5061 printf (format: "\n");
5062
5063 /* Restore the original set of valid variables. */
5064 os->seen_vars.truncate (size: 0);
5065 os->seen_vars.splice (src: old_seen);
5066 }
5067 /* Add a default case. */
5068 printf_indent (indent: indent + 2, format: "default:\n");
5069 if (is_final)
5070 printf_indent (indent: indent + 4, format: "return %s;\n",
5071 get_failure_return (type: os->type));
5072 else
5073 printf_indent (indent: indent + 4, format: "break;\n");
5074 printf_indent (indent: indent + 2, format: "}\n");
5075 return is_final ? ES_RETURNED : ES_FALLTHROUGH;
5076 }
5077}
5078
5079/* Make sure that OS has a position variable for POS. ROOT_P is true if
5080 POS is the root position for the routine. */
5081
5082static void
5083assign_position_var (output_state *os, position *pos, bool root_p)
5084{
5085 unsigned int idx = os->id_to_var[pos->id];
5086 if (idx < os->var_to_id.length () && os->var_to_id[idx] == pos->id)
5087 return;
5088 if (!root_p && pos->type != POS_PEEP2_INSN)
5089 assign_position_var (os, pos: pos->base, root_p: false);
5090 os->id_to_var[pos->id] = os->var_to_id.length ();
5091 os->var_to_id.safe_push (obj: pos->id);
5092}
5093
5094/* Make sure that OS has the position variables required by S. */
5095
5096static void
5097assign_position_vars (output_state *os, state *s)
5098{
5099 for (decision *d = s->first; d; d = d->next)
5100 {
5101 /* Positions associated with operands can be read from the
5102 operands[] array. */
5103 if (d->test.pos && d->test.pos_operand < 0)
5104 assign_position_var (os, pos: d->test.pos, root_p: false);
5105 for (transition *trans = d->first; trans; trans = trans->next)
5106 assign_position_vars (os, s: trans->to);
5107 }
5108}
5109
5110/* Print the open brace and variable definitions for a routine that
5111 implements S. ROOT is the deepest rtx from which S can access all
5112 relevant parts of the first instruction it matches. Initialize OS
5113 so that every relevant position has an rtx variable xN and so that
5114 only ROOT's variable has a valid value. */
5115
5116static void
5117print_subroutine_start (output_state *os, state *s, position *root)
5118{
5119 printf (format: "{\n rtx * const operands ATTRIBUTE_UNUSED"
5120 " = &recog_data.operand[0];\n");
5121 os->var_to_id.truncate (size: 0);
5122 os->seen_vars.truncate (size: 0);
5123 if (root)
5124 {
5125 /* Create a fake entry for position 0 so that an id_to_var of 0
5126 is always invalid. This also makes the xN variables naturally
5127 1-based rather than 0-based. */
5128 os->var_to_id.safe_push (obj: num_positions);
5129
5130 /* Associate ROOT with x1. */
5131 assign_position_var (os, pos: root, root_p: true);
5132
5133 /* Assign xN variables to all other relevant positions. */
5134 assign_position_vars (os, s);
5135
5136 /* Output the variable declarations (except for ROOT's, which is
5137 passed in as a parameter). */
5138 unsigned int num_vars = os->var_to_id.length ();
5139 if (num_vars > 2)
5140 {
5141 for (unsigned int i = 2; i < num_vars; ++i)
5142 /* Print 8 rtx variables to a line. */
5143 printf (format: "%s x%d",
5144 i == 2 ? " rtx" : (i - 2) % 8 == 0 ? ";\n rtx" : ",", i);
5145 printf (format: ";\n");
5146 }
5147
5148 /* Say that x1 is valid and the rest aren't. */
5149 os->seen_vars.safe_grow_cleared (len: num_vars, exact: true);
5150 os->seen_vars[1] = true;
5151 }
5152 if (os->type == SUBPATTERN || os->type == RECOG)
5153 printf (format: " int res ATTRIBUTE_UNUSED;\n");
5154 else
5155 printf (format: " rtx_insn *res ATTRIBUTE_UNUSED;\n");
5156}
5157
5158/* Output the definition of pattern routine ROUTINE. */
5159
5160static void
5161print_pattern (output_state *os, pattern_routine *routine)
5162{
5163 printf (format: "\nstatic int\npattern%d (", routine->pattern_id);
5164 const char *sep = "";
5165 /* Add the top-level rtx parameter, if any. */
5166 if (routine->pos)
5167 {
5168 printf (format: "%srtx x1", sep);
5169 sep = ", ";
5170 }
5171 /* Add the optional parameters. */
5172 if (routine->insn_p)
5173 {
5174 /* We can't easily tell whether a C condition actually reads INSN,
5175 so add an ATTRIBUTE_UNUSED just in case. */
5176 printf (format: "%srtx_insn *insn ATTRIBUTE_UNUSED", sep);
5177 sep = ", ";
5178 }
5179 if (routine->pnum_clobbers_p)
5180 {
5181 printf (format: "%sint *pnum_clobbers", sep);
5182 sep = ", ";
5183 }
5184 /* Add the "i" parameters. */
5185 for (unsigned int i = 0; i < routine->param_types.length (); ++i)
5186 {
5187 printf (format: "%s%s i%d", sep,
5188 parameter_type_string (type: routine->param_types[i]), i + 1);
5189 sep = ", ";
5190 }
5191 printf (format: ")\n");
5192 os->type = SUBPATTERN;
5193 print_subroutine_start (os, s: routine->s, root: routine->pos);
5194 print_state (os, s: routine->s, indent: 2, is_final: true);
5195 printf (format: "}\n");
5196}
5197
5198/* Output a routine of type TYPE that implements S. PROC_ID is the
5199 number of the subroutine associated with S, or 0 if S is the main
5200 routine. */
5201
5202static void
5203print_subroutine (output_state *os, state *s, int proc_id)
5204{
5205 printf (format: "\n");
5206 switch (os->type)
5207 {
5208 case SUBPATTERN:
5209 gcc_unreachable ();
5210
5211 case RECOG:
5212 if (proc_id)
5213 printf (format: "static int\nrecog_%d", proc_id);
5214 else
5215 printf (format: "int\nrecog");
5216 printf (format: " (rtx x1 ATTRIBUTE_UNUSED,\n"
5217 "\trtx_insn *insn ATTRIBUTE_UNUSED,\n"
5218 "\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n");
5219 break;
5220
5221 case SPLIT:
5222 if (proc_id)
5223 printf (format: "static rtx_insn *\nsplit_%d", proc_id);
5224 else
5225 printf (format: "rtx_insn *\nsplit_insns");
5226 printf (format: " (rtx x1 ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED)\n");
5227 break;
5228
5229 case PEEPHOLE2:
5230 if (proc_id)
5231 printf (format: "static rtx_insn *\npeephole2_%d", proc_id);
5232 else
5233 printf (format: "rtx_insn *\npeephole2_insns");
5234 printf (format: " (rtx x1 ATTRIBUTE_UNUSED,\n"
5235 "\trtx_insn *insn ATTRIBUTE_UNUSED,\n"
5236 "\tint *pmatch_len_ ATTRIBUTE_UNUSED)\n");
5237 break;
5238 }
5239 print_subroutine_start (os, s, root: &root_pos);
5240 if (proc_id == 0)
5241 {
5242 printf (format: " recog_data.insn = NULL;\n");
5243 }
5244 print_state (os, s, indent: 2, is_final: true);
5245 printf (format: "}\n");
5246}
5247
5248/* Print out a routine of type TYPE that performs ROOT. */
5249
5250static void
5251print_subroutine_group (output_state *os, routine_type type, state *root)
5252{
5253 os->type = type;
5254 if (use_subroutines_p)
5255 {
5256 /* Split ROOT up into smaller pieces, both for readability and to
5257 help the compiler. */
5258 auto_vec <state *> subroutines;
5259 find_subroutines (type, s: root, procs&: subroutines);
5260
5261 /* Output the subroutines (but not ROOT itself). */
5262 unsigned int i;
5263 state *s;
5264 FOR_EACH_VEC_ELT (subroutines, i, s)
5265 print_subroutine (os, s, proc_id: i + 1);
5266 }
5267 /* Output the main routine. */
5268 print_subroutine (os, s: root, proc_id: 0);
5269}
5270
5271/* Return the rtx pattern for the list of rtxes in a define_peephole2. */
5272
5273static rtx
5274get_peephole2_pattern (md_rtx_info *info)
5275{
5276 int i, j;
5277 rtvec vec = XVEC (info->def, 0);
5278 rtx pattern = rtx_alloc (SEQUENCE);
5279 XVEC (pattern, 0) = rtvec_alloc (GET_NUM_ELEM (vec));
5280 for (i = j = 0; i < GET_NUM_ELEM (vec); i++)
5281 {
5282 rtx x = RTVEC_ELT (vec, i);
5283 /* Ignore scratch register requirements. */
5284 if (GET_CODE (x) != MATCH_SCRATCH && GET_CODE (x) != MATCH_DUP)
5285 {
5286 XVECEXP (pattern, 0, j) = x;
5287 j++;
5288 }
5289 }
5290 XVECLEN (pattern, 0) = j;
5291 if (j == 0)
5292 error_at (info->loc, "empty define_peephole2");
5293 return pattern;
5294}
5295
5296/* Return true if *PATTERN_PTR is a PARALLEL in which at least one trailing
5297 rtx can be added automatically by add_clobbers. If so, update
5298 *ACCEPTANCE_PTR so that its num_clobbers field contains the number
5299 of such trailing rtxes and update *PATTERN_PTR so that it contains
5300 the pattern without those rtxes. */
5301
5302static bool
5303remove_clobbers (acceptance_type *acceptance_ptr, rtx *pattern_ptr)
5304{
5305 int i;
5306 rtx new_pattern;
5307
5308 /* Find the last non-clobber in the parallel. */
5309 rtx pattern = *pattern_ptr;
5310 for (i = XVECLEN (pattern, 0); i > 0; i--)
5311 {
5312 rtx x = XVECEXP (pattern, 0, i - 1);
5313 if (GET_CODE (x) != CLOBBER
5314 || (!REG_P (XEXP (x, 0))
5315 && GET_CODE (XEXP (x, 0)) != MATCH_SCRATCH))
5316 break;
5317 }
5318
5319 if (i == XVECLEN (pattern, 0))
5320 return false;
5321
5322 /* Build a similar insn without the clobbers. */
5323 if (i == 1)
5324 new_pattern = XVECEXP (pattern, 0, 0);
5325 else
5326 {
5327 new_pattern = rtx_alloc (PARALLEL);
5328 XVEC (new_pattern, 0) = rtvec_alloc (i);
5329 for (int j = 0; j < i; ++j)
5330 XVECEXP (new_pattern, 0, j) = XVECEXP (pattern, 0, j);
5331 }
5332
5333 /* Recognize it. */
5334 acceptance_ptr->u.full.u.num_clobbers = XVECLEN (pattern, 0) - i;
5335 *pattern_ptr = new_pattern;
5336 return true;
5337}
5338
5339int
5340main (int argc, const char **argv)
5341{
5342 state insn_root, split_root, peephole2_root;
5343
5344 progname = "genrecog";
5345
5346 if (!init_rtx_reader_args (argc, argv))
5347 return (FATAL_EXIT_CODE);
5348
5349 write_header ();
5350
5351 /* Read the machine description. */
5352
5353 md_rtx_info info;
5354 while (read_md_rtx (&info))
5355 {
5356 rtx def = info.def;
5357
5358 acceptance_type acceptance;
5359 acceptance.partial_p = false;
5360 acceptance.u.full.code = info.index;
5361
5362 rtx pattern;
5363 switch (GET_CODE (def))
5364 {
5365 case DEFINE_INSN:
5366 {
5367 /* Match the instruction in the original .md form. */
5368 acceptance.type = RECOG;
5369 acceptance.u.full.u.num_clobbers = 0;
5370 pattern = add_implicit_parallel (XVEC (def, 1));
5371 validate_pattern (pattern, info: &info, NULL_RTX, set_code: 0);
5372 match_pattern (s: &insn_root, info: &info, pattern, acceptance);
5373
5374 /* If the pattern is a PARALLEL with trailing CLOBBERs,
5375 allow recog_for_combine to match without the clobbers. */
5376 if (GET_CODE (pattern) == PARALLEL
5377 && remove_clobbers (acceptance_ptr: &acceptance, pattern_ptr: &pattern))
5378 match_pattern (s: &insn_root, info: &info, pattern, acceptance);
5379 break;
5380 }
5381
5382 case DEFINE_SPLIT:
5383 acceptance.type = SPLIT;
5384 pattern = add_implicit_parallel (XVEC (def, 0));
5385 validate_pattern (pattern, info: &info, NULL_RTX, set_code: 0);
5386 match_pattern (s: &split_root, info: &info, pattern, acceptance);
5387
5388 /* Declare the gen_split routine that we'll call if the
5389 pattern matches. The definition comes from insn-emit.cc. */
5390 printf (format: "extern rtx_insn *gen_split_%d (rtx_insn *, rtx *);\n",
5391 info.index);
5392 break;
5393
5394 case DEFINE_PEEPHOLE2:
5395 acceptance.type = PEEPHOLE2;
5396 pattern = get_peephole2_pattern (info: &info);
5397 validate_pattern (pattern, info: &info, NULL_RTX, set_code: 0);
5398 match_pattern (s: &peephole2_root, info: &info, pattern, acceptance);
5399
5400 /* Declare the gen_peephole2 routine that we'll call if the
5401 pattern matches. The definition comes from insn-emit.cc. */
5402 printf (format: "extern rtx_insn *gen_peephole2_%d (rtx_insn *, rtx *);\n",
5403 info.index);
5404 break;
5405
5406 default:
5407 /* do nothing */;
5408 }
5409 }
5410
5411 if (have_error)
5412 return FATAL_EXIT_CODE;
5413
5414 puts (s: "\n\n");
5415
5416 /* Optimize each routine in turn. */
5417 optimize_subroutine_group (type: "recog", root: &insn_root);
5418 optimize_subroutine_group (type: "split_insns", root: &split_root);
5419 optimize_subroutine_group (type: "peephole2_insns", root: &peephole2_root);
5420
5421 output_state os;
5422 os.id_to_var.safe_grow_cleared (len: num_positions, exact: true);
5423
5424 if (use_pattern_routines_p)
5425 {
5426 /* Look for common patterns and split them out into subroutines. */
5427 auto_vec <merge_state_info> states;
5428 states.safe_push (obj: &insn_root);
5429 states.safe_push (obj: &split_root);
5430 states.safe_push (obj: &peephole2_root);
5431 split_out_patterns (states);
5432
5433 /* Print out the routines that we just created. */
5434 unsigned int i;
5435 pattern_routine *routine;
5436 FOR_EACH_VEC_ELT (patterns, i, routine)
5437 print_pattern (os: &os, routine);
5438 }
5439
5440 /* Print out the matching routines. */
5441 print_subroutine_group (os: &os, type: RECOG, root: &insn_root);
5442 print_subroutine_group (os: &os, type: SPLIT, root: &split_root);
5443 print_subroutine_group (os: &os, type: PEEPHOLE2, root: &peephole2_root);
5444
5445 fflush (stdout);
5446 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
5447}
5448

source code of gcc/genrecog.cc