| 1 | // Pass to fuse adjacent loads/stores into paired memory accesses. |
| 2 | // Copyright (C) 2023-2025 Free Software Foundation, Inc. |
| 3 | // |
| 4 | // This file is part of GCC. |
| 5 | // |
| 6 | // GCC is free software; you can redistribute it and/or modify it |
| 7 | // under the terms of the GNU General Public License as published by |
| 8 | // the Free Software Foundation; either version 3, or (at your option) |
| 9 | // any later version. |
| 10 | // |
| 11 | // GCC is distributed in the hope that it will be useful, but |
| 12 | // WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 14 | // General Public License for more details. |
| 15 | // |
| 16 | // You should have received a copy of the GNU General Public License |
| 17 | // along with GCC; see the file COPYING3. If not see |
| 18 | // <http://www.gnu.org/licenses/>. |
| 19 | |
| 20 | #define INCLUDE_ALGORITHM |
| 21 | #define INCLUDE_FUNCTIONAL |
| 22 | #define INCLUDE_LIST |
| 23 | #define INCLUDE_TYPE_TRAITS |
| 24 | #define INCLUDE_ARRAY |
| 25 | #include "config.h" |
| 26 | #include "system.h" |
| 27 | #include "coretypes.h" |
| 28 | #include "backend.h" |
| 29 | #include "rtl.h" |
| 30 | #include "df.h" |
| 31 | #include "rtl-iter.h" |
| 32 | #include "rtl-ssa.h" |
| 33 | #include "cfgcleanup.h" |
| 34 | #include "tree-pass.h" |
| 35 | #include "ordered-hash-map.h" |
| 36 | #include "tree-dfa.h" |
| 37 | #include "fold-const.h" |
| 38 | #include "tree-hash-traits.h" |
| 39 | #include "print-tree.h" |
| 40 | #include "pair-fusion.h" |
| 41 | |
| 42 | using namespace rtl_ssa; |
| 43 | |
| 44 | // We pack these fields (load_p, fpsimd_p, and size) into an integer |
| 45 | // (LFS) which we use as part of the key into the main hash tables. |
| 46 | // |
| 47 | // The idea is that we group candidates together only if they agree on |
| 48 | // the fields below. Candidates that disagree on any of these |
| 49 | // properties shouldn't be merged together. |
| 50 | struct lfs_fields |
| 51 | { |
| 52 | bool load_p; |
| 53 | bool fpsimd_p; |
| 54 | unsigned size; |
| 55 | }; |
| 56 | |
| 57 | using insn_list_t = std::list<insn_info *>; |
| 58 | |
| 59 | // Information about the accesses at a given offset from a particular |
| 60 | // base. Stored in an access_group, see below. |
| 61 | struct access_record |
| 62 | { |
| 63 | poly_int64 offset; |
| 64 | std::list<insn_info *> cand_insns; |
| 65 | std::list<access_record>::iterator place; |
| 66 | |
| 67 | access_record (poly_int64 off) : offset (off) {} |
| 68 | }; |
| 69 | |
| 70 | // A group of accesses where adjacent accesses could be ldp/stp |
| 71 | // candidates. The splay tree supports efficient insertion, |
| 72 | // while the list supports efficient iteration. |
| 73 | struct access_group |
| 74 | { |
| 75 | splay_tree<access_record *> tree; |
| 76 | std::list<access_record> list; |
| 77 | |
| 78 | template<typename Alloc> |
| 79 | inline void track (Alloc node_alloc, poly_int64 offset, insn_info *insn); |
| 80 | }; |
| 81 | |
| 82 | // Test if this base candidate is viable according to HAZARDS. |
| 83 | bool |
| 84 | base_cand::viable () const |
| 85 | { |
| 86 | return !hazards[0] || !hazards[1] || (*hazards[0] > *hazards[1]); |
| 87 | } |
| 88 | |
| 89 | // Information about an alternate base. For a def_info D, it may |
| 90 | // instead be expressed as D = BASE + OFFSET. |
| 91 | struct alt_base |
| 92 | { |
| 93 | def_info *base; |
| 94 | poly_int64 offset; |
| 95 | }; |
| 96 | |
| 97 | // Virtual base class for load/store walkers used in alias analysis. |
| 98 | struct alias_walker |
| 99 | { |
| 100 | virtual bool conflict_p (int &budget) const = 0; |
| 101 | virtual insn_info *insn () const = 0; |
| 102 | virtual bool valid () const = 0; |
| 103 | virtual void advance () = 0; |
| 104 | }; |
| 105 | |
| 106 | |
| 107 | pair_fusion::pair_fusion () |
| 108 | { |
| 109 | calculate_dominance_info (CDI_DOMINATORS); |
| 110 | df_analyze (); |
| 111 | crtl->ssa = new rtl_ssa::function_info (cfun); |
| 112 | } |
| 113 | |
| 114 | pair_fusion::~pair_fusion () |
| 115 | { |
| 116 | if (crtl->ssa->perform_pending_updates ()) |
| 117 | cleanup_cfg (0); |
| 118 | |
| 119 | free_dominance_info (CDI_DOMINATORS); |
| 120 | |
| 121 | delete crtl->ssa; |
| 122 | crtl->ssa = nullptr; |
| 123 | } |
| 124 | |
| 125 | // This is the main function to start the pass. |
| 126 | void |
| 127 | pair_fusion::run () |
| 128 | { |
| 129 | if (!track_loads_p () && !track_stores_p ()) |
| 130 | return; |
| 131 | |
| 132 | for (auto bb : crtl->ssa->bbs ()) |
| 133 | process_block (bb); |
| 134 | } |
| 135 | |
| 136 | // State used by the pass for a given basic block. |
| 137 | struct pair_fusion_bb_info |
| 138 | { |
| 139 | using def_hash = nofree_ptr_hash<def_info>; |
| 140 | using expr_key_t = pair_hash<tree_operand_hash, int_hash<int, -1, -2>>; |
| 141 | using def_key_t = pair_hash<def_hash, int_hash<int, -1, -2>>; |
| 142 | |
| 143 | // Map of <tree base, LFS> -> access_group. |
| 144 | ordered_hash_map<expr_key_t, access_group> expr_map; |
| 145 | |
| 146 | // Map of <RTL-SSA def_info *, LFS> -> access_group. |
| 147 | ordered_hash_map<def_key_t, access_group> def_map; |
| 148 | |
| 149 | // Given the def_info for an RTL base register, express it as an offset from |
| 150 | // some canonical base instead. |
| 151 | // |
| 152 | // Canonicalizing bases in this way allows us to identify adjacent accesses |
| 153 | // even if they see different base register defs. |
| 154 | hash_map<def_hash, alt_base> canon_base_map; |
| 155 | |
| 156 | static const size_t obstack_alignment = sizeof (void *); |
| 157 | |
| 158 | pair_fusion_bb_info (bb_info *bb, pair_fusion *d) |
| 159 | : m_bb (bb), m_pass (d), m_emitted_tombstone (false) |
| 160 | { |
| 161 | obstack_specify_allocation (&m_obstack, OBSTACK_CHUNK_SIZE, |
| 162 | obstack_alignment, obstack_chunk_alloc, |
| 163 | obstack_chunk_free); |
| 164 | } |
| 165 | ~pair_fusion_bb_info () |
| 166 | { |
| 167 | obstack_free (&m_obstack, nullptr); |
| 168 | |
| 169 | if (m_emitted_tombstone) |
| 170 | { |
| 171 | bitmap_release (head: &m_tombstone_bitmap); |
| 172 | bitmap_obstack_release (&m_bitmap_obstack); |
| 173 | } |
| 174 | } |
| 175 | |
| 176 | inline void track_access (insn_info *, bool load, rtx mem); |
| 177 | inline void transform (); |
| 178 | inline void cleanup_tombstones (); |
| 179 | |
| 180 | private: |
| 181 | obstack m_obstack; |
| 182 | bb_info *m_bb; |
| 183 | pair_fusion *m_pass; |
| 184 | |
| 185 | // State for keeping track of tombstone insns emitted for this BB. |
| 186 | bitmap_obstack m_bitmap_obstack; |
| 187 | bitmap_head m_tombstone_bitmap; |
| 188 | bool m_emitted_tombstone; |
| 189 | |
| 190 | inline splay_tree_node<access_record *> *node_alloc (access_record *); |
| 191 | |
| 192 | template<typename Map> |
| 193 | inline void traverse_base_map (Map &map); |
| 194 | inline void transform_for_base (int load_size, access_group &group); |
| 195 | |
| 196 | inline void merge_pairs (insn_list_t &, insn_list_t &, |
| 197 | bool load_p, unsigned access_size); |
| 198 | |
| 199 | inline bool try_fuse_pair (bool load_p, unsigned access_size, |
| 200 | insn_info *i1, insn_info *i2); |
| 201 | |
| 202 | inline bool fuse_pair (bool load_p, unsigned access_size, |
| 203 | int writeback, |
| 204 | insn_info *i1, insn_info *i2, |
| 205 | base_cand &base, |
| 206 | const insn_range_info &move_range); |
| 207 | |
| 208 | inline void track_tombstone (int uid); |
| 209 | |
| 210 | inline bool track_via_mem_expr (insn_info *, rtx mem, lfs_fields lfs); |
| 211 | }; |
| 212 | |
| 213 | splay_tree_node<access_record *> * |
| 214 | pair_fusion_bb_info::node_alloc (access_record *access) |
| 215 | { |
| 216 | using T = splay_tree_node<access_record *>; |
| 217 | void *addr = obstack_alloc (&m_obstack, sizeof (T)); |
| 218 | return new (addr) T (access); |
| 219 | } |
| 220 | |
| 221 | // Given a mem MEM, if the address has side effects, return a MEM that accesses |
| 222 | // the same address but without the side effects. Otherwise, return |
| 223 | // MEM unchanged. |
| 224 | static rtx |
| 225 | drop_writeback (rtx mem) |
| 226 | { |
| 227 | rtx addr = XEXP (mem, 0); |
| 228 | |
| 229 | if (!side_effects_p (addr)) |
| 230 | return mem; |
| 231 | |
| 232 | switch (GET_CODE (addr)) |
| 233 | { |
| 234 | case PRE_MODIFY: |
| 235 | addr = XEXP (addr, 1); |
| 236 | break; |
| 237 | case POST_MODIFY: |
| 238 | case POST_INC: |
| 239 | case POST_DEC: |
| 240 | addr = XEXP (addr, 0); |
| 241 | break; |
| 242 | case PRE_INC: |
| 243 | case PRE_DEC: |
| 244 | { |
| 245 | poly_int64 adjustment = GET_MODE_SIZE (GET_MODE (mem)); |
| 246 | if (GET_CODE (addr) == PRE_DEC) |
| 247 | adjustment *= -1; |
| 248 | addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), adjustment); |
| 249 | break; |
| 250 | } |
| 251 | default: |
| 252 | gcc_unreachable (); |
| 253 | } |
| 254 | |
| 255 | return change_address (mem, GET_MODE (mem), addr); |
| 256 | } |
| 257 | |
| 258 | // Convenience wrapper around strip_offset that can also look through |
| 259 | // RTX_AUTOINC addresses. The interface is like strip_offset except we take a |
| 260 | // MEM so that we know the mode of the access. |
| 261 | static rtx |
| 262 | pair_mem_strip_offset (rtx mem, poly_int64 *offset) |
| 263 | { |
| 264 | rtx addr = XEXP (mem, 0); |
| 265 | |
| 266 | switch (GET_CODE (addr)) |
| 267 | { |
| 268 | case PRE_MODIFY: |
| 269 | case POST_MODIFY: |
| 270 | addr = strip_offset (XEXP (addr, 1), offset); |
| 271 | gcc_checking_assert (REG_P (addr)); |
| 272 | gcc_checking_assert (rtx_equal_p (XEXP (XEXP (mem, 0), 0), addr)); |
| 273 | break; |
| 274 | case PRE_INC: |
| 275 | case POST_INC: |
| 276 | addr = XEXP (addr, 0); |
| 277 | *offset = GET_MODE_SIZE (GET_MODE (mem)); |
| 278 | gcc_checking_assert (REG_P (addr)); |
| 279 | break; |
| 280 | case PRE_DEC: |
| 281 | case POST_DEC: |
| 282 | addr = XEXP (addr, 0); |
| 283 | *offset = -GET_MODE_SIZE (GET_MODE (mem)); |
| 284 | gcc_checking_assert (REG_P (addr)); |
| 285 | break; |
| 286 | |
| 287 | default: |
| 288 | addr = strip_offset (addr, offset); |
| 289 | } |
| 290 | |
| 291 | return addr; |
| 292 | } |
| 293 | |
| 294 | // Return true if X is a PRE_{INC,DEC,MODIFY} rtx. |
| 295 | static bool |
| 296 | any_pre_modify_p (rtx x) |
| 297 | { |
| 298 | const auto code = GET_CODE (x); |
| 299 | return code == PRE_INC || code == PRE_DEC || code == PRE_MODIFY; |
| 300 | } |
| 301 | |
| 302 | // Return true if X is a POST_{INC,DEC,MODIFY} rtx. |
| 303 | static bool |
| 304 | any_post_modify_p (rtx x) |
| 305 | { |
| 306 | const auto code = GET_CODE (x); |
| 307 | return code == POST_INC || code == POST_DEC || code == POST_MODIFY; |
| 308 | } |
| 309 | |
| 310 | // Given LFS (load_p, fpsimd_p, size) fields in FIELDS, encode these |
| 311 | // into an integer for use as a hash table key. |
| 312 | static int |
| 313 | encode_lfs (lfs_fields fields) |
| 314 | { |
| 315 | int size_log2 = exact_log2 (x: fields.size); |
| 316 | gcc_checking_assert (size_log2 >= 2 && size_log2 <= 4); |
| 317 | return ((int)fields.load_p << 3) |
| 318 | | ((int)fields.fpsimd_p << 2) |
| 319 | | (size_log2 - 2); |
| 320 | } |
| 321 | |
| 322 | // Inverse of encode_lfs. |
| 323 | static lfs_fields |
| 324 | decode_lfs (int lfs) |
| 325 | { |
| 326 | bool load_p = (lfs & (1 << 3)); |
| 327 | bool fpsimd_p = (lfs & (1 << 2)); |
| 328 | unsigned size = 1U << ((lfs & 3) + 2); |
| 329 | return { .load_p: load_p, .fpsimd_p: fpsimd_p, .size: size }; |
| 330 | } |
| 331 | |
| 332 | // Track the access INSN at offset OFFSET in this access group. |
| 333 | // ALLOC_NODE is used to allocate splay tree nodes. |
| 334 | template<typename Alloc> |
| 335 | void |
| 336 | access_group::track (Alloc alloc_node, poly_int64 offset, insn_info *insn) |
| 337 | { |
| 338 | auto insert_before = [&](std::list<access_record>::iterator after) |
| 339 | { |
| 340 | auto it = list.emplace (position: after, args&: offset); |
| 341 | it->cand_insns.push_back (x: insn); |
| 342 | it->place = it; |
| 343 | return &*it; |
| 344 | }; |
| 345 | |
| 346 | if (!list.size ()) |
| 347 | { |
| 348 | auto access = insert_before (list.end ()); |
| 349 | tree.insert_max_node (new_node: alloc_node (access)); |
| 350 | return; |
| 351 | } |
| 352 | |
| 353 | auto compare = [&](splay_tree_node<access_record *> *node) |
| 354 | { |
| 355 | return compare_sizes_for_sort (a: offset, b: node->value ()->offset); |
| 356 | }; |
| 357 | auto result = tree.lookup (compare); |
| 358 | splay_tree_node<access_record *> *node = tree.root (); |
| 359 | if (result == 0) |
| 360 | node->value ()->cand_insns.push_back (x: insn); |
| 361 | else |
| 362 | { |
| 363 | auto it = node->value ()->place; |
| 364 | auto after = (result > 0) ? std::next (x: it) : it; |
| 365 | auto access = insert_before (after); |
| 366 | tree.insert_child (node, index: result > 0, child: alloc_node (access)); |
| 367 | } |
| 368 | } |
| 369 | |
| 370 | // Given a candidate access INSN (with mem MEM), see if it has a suitable |
| 371 | // MEM_EXPR base (i.e. a tree decl) relative to which we can track the access. |
| 372 | // LFS is used as part of the key to the hash table, see track_access. |
| 373 | bool |
| 374 | pair_fusion_bb_info::track_via_mem_expr (insn_info *insn, rtx mem, |
| 375 | lfs_fields lfs) |
| 376 | { |
| 377 | if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)) |
| 378 | return false; |
| 379 | |
| 380 | poly_int64 offset; |
| 381 | tree base_expr = get_addr_base_and_unit_offset (MEM_EXPR (mem), |
| 382 | &offset); |
| 383 | if (!base_expr || !DECL_P (base_expr)) |
| 384 | return false; |
| 385 | |
| 386 | offset += MEM_OFFSET (mem); |
| 387 | |
| 388 | const machine_mode mem_mode = GET_MODE (mem); |
| 389 | const HOST_WIDE_INT mem_size = GET_MODE_SIZE (mode: mem_mode).to_constant (); |
| 390 | |
| 391 | // Punt on misaligned offsets. Paired memory access instructions require |
| 392 | // offsets to be a multiple of the access size, and we believe that |
| 393 | // misaligned offsets on MEM_EXPR bases are likely to lead to misaligned |
| 394 | // offsets w.r.t. RTL bases. |
| 395 | if (!multiple_p (a: offset, b: mem_size)) |
| 396 | return false; |
| 397 | |
| 398 | const auto key = std::make_pair (x&: base_expr, y: encode_lfs (fields: lfs)); |
| 399 | access_group &group = expr_map.get_or_insert (k: key, NULL); |
| 400 | auto alloc = [&](access_record *access) { return node_alloc (access); }; |
| 401 | group.track (alloc_node: alloc, offset, insn); |
| 402 | |
| 403 | if (dump_file) |
| 404 | { |
| 405 | fprintf (stream: dump_file, format: "[bb %u] tracking insn %d via " , |
| 406 | m_bb->index (), insn->uid ()); |
| 407 | print_node_brief (dump_file, "mem expr" , base_expr, 0); |
| 408 | fprintf (stream: dump_file, format: " [L=%d FP=%d, %smode, off=" , |
| 409 | lfs.load_p, lfs.fpsimd_p, mode_name[mem_mode]); |
| 410 | print_dec (value: offset, file: dump_file); |
| 411 | fprintf (stream: dump_file, format: "]\n" ); |
| 412 | } |
| 413 | |
| 414 | return true; |
| 415 | } |
| 416 | |
| 417 | // Main function to begin pair discovery. Given a memory access INSN, |
| 418 | // determine whether it could be a candidate for fusing into a paired |
| 419 | // access, and if so, track it in the appropriate data structure for |
| 420 | // this basic block. LOAD_P is true if the access is a load, and MEM |
| 421 | // is the mem rtx that occurs in INSN. |
| 422 | void |
| 423 | pair_fusion_bb_info::track_access (insn_info *insn, bool load_p, rtx mem) |
| 424 | { |
| 425 | // We can't combine volatile MEMs, so punt on these. |
| 426 | if (MEM_VOLATILE_P (mem)) |
| 427 | return; |
| 428 | |
| 429 | // Ignore writeback accesses if the hook says to do so. |
| 430 | if (!m_pass->should_handle_writeback (which: writeback_type::EXISTING) |
| 431 | && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC) |
| 432 | return; |
| 433 | |
| 434 | const machine_mode mem_mode = GET_MODE (mem); |
| 435 | if (!m_pass->pair_operand_mode_ok_p (mode: mem_mode)) |
| 436 | return; |
| 437 | |
| 438 | rtx reg_op = XEXP (PATTERN (insn->rtl ()), !load_p); |
| 439 | |
| 440 | if (!m_pass->pair_reg_operand_ok_p (load_p, reg_op, mode: mem_mode)) |
| 441 | return; |
| 442 | |
| 443 | // We want to segregate FP/SIMD accesses from GPR accesses. |
| 444 | const bool fpsimd_op_p = m_pass->fpsimd_op_p (reg_op, mem_mode, load_p); |
| 445 | |
| 446 | // Note pair_operand_mode_ok_p already rejected VL modes. |
| 447 | const unsigned mem_size = GET_MODE_SIZE (mode: mem_mode).to_constant (); |
| 448 | const lfs_fields lfs = { .load_p: load_p, .fpsimd_p: fpsimd_op_p, .size: mem_size }; |
| 449 | |
| 450 | if (track_via_mem_expr (insn, mem, lfs)) |
| 451 | return; |
| 452 | |
| 453 | poly_int64 mem_off; |
| 454 | rtx addr = XEXP (mem, 0); |
| 455 | const bool autoinc_p = GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC; |
| 456 | rtx base = pair_mem_strip_offset (mem, offset: &mem_off); |
| 457 | if (!REG_P (base)) |
| 458 | return; |
| 459 | |
| 460 | // Need to calculate two (possibly different) offsets: |
| 461 | // - Offset at which the access occurs. |
| 462 | // - Offset of the new base def. |
| 463 | poly_int64 access_off; |
| 464 | if (autoinc_p && any_post_modify_p (x: addr)) |
| 465 | access_off = 0; |
| 466 | else |
| 467 | access_off = mem_off; |
| 468 | |
| 469 | poly_int64 new_def_off = mem_off; |
| 470 | |
| 471 | // Punt on accesses relative to eliminable regs. Since we don't know the |
| 472 | // elimination offset pre-RA, we should postpone forming pairs on such |
| 473 | // accesses until after RA. |
| 474 | // |
| 475 | // As it stands, addresses in range for an individual load/store but not |
| 476 | // for a paired access are currently reloaded inefficiently, |
| 477 | // ending up with a separate base register for each pair. |
| 478 | // |
| 479 | // In theory LRA should make use of |
| 480 | // targetm.legitimize_address_displacement to promote sharing of |
| 481 | // bases among multiple (nearby) address reloads, but the current |
| 482 | // LRA code returns early from process_address_1 for operands that |
| 483 | // satisfy "m", even if they don't satisfy the real (relaxed) address |
| 484 | // constraint; this early return means we never get to the code |
| 485 | // that calls targetm.legitimize_address_displacement. |
| 486 | // |
| 487 | // So for now, it's better to punt when we can't be sure that the |
| 488 | // offset is in range for paired access. On aarch64, out-of-range cases |
| 489 | // can then be handled after RA by the out-of-range LDP/STP peepholes. |
| 490 | // Eventually, it would be nice to handle known out-of-range opportunities |
| 491 | // in the pass itself (for stack accesses, this would be in the post-RA pass). |
| 492 | if (!reload_completed |
| 493 | && (REGNO (base) == FRAME_POINTER_REGNUM |
| 494 | || REGNO (base) == ARG_POINTER_REGNUM)) |
| 495 | return; |
| 496 | |
| 497 | // Now need to find def of base register. |
| 498 | use_info *base_use = find_access (accesses: insn->uses (), REGNO (base)); |
| 499 | gcc_assert (base_use); |
| 500 | def_info *base_def = base_use->def (); |
| 501 | if (!base_def) |
| 502 | { |
| 503 | if (dump_file) |
| 504 | fprintf (stream: dump_file, |
| 505 | format: "base register (regno %d) of insn %d is undefined" , |
| 506 | REGNO (base), insn->uid ()); |
| 507 | return; |
| 508 | } |
| 509 | |
| 510 | alt_base *canon_base = canon_base_map.get (k: base_def); |
| 511 | if (canon_base) |
| 512 | { |
| 513 | // Express this as the combined offset from the canonical base. |
| 514 | base_def = canon_base->base; |
| 515 | new_def_off += canon_base->offset; |
| 516 | access_off += canon_base->offset; |
| 517 | } |
| 518 | |
| 519 | if (autoinc_p) |
| 520 | { |
| 521 | auto def = find_access (accesses: insn->defs (), REGNO (base)); |
| 522 | gcc_assert (def); |
| 523 | |
| 524 | // Record that DEF = BASE_DEF + MEM_OFF. |
| 525 | if (dump_file) |
| 526 | { |
| 527 | pretty_printer pp; |
| 528 | pp_access (&pp, def, flags: 0); |
| 529 | pp_string (&pp, " = " ); |
| 530 | pp_access (&pp, base_def, flags: 0); |
| 531 | fprintf (stream: dump_file, format: "[bb %u] recording %s + " , |
| 532 | m_bb->index (), pp_formatted_text (&pp)); |
| 533 | print_dec (value: new_def_off, file: dump_file); |
| 534 | fprintf (stream: dump_file, format: "\n" ); |
| 535 | } |
| 536 | |
| 537 | alt_base base_rec { .base: base_def, .offset: new_def_off }; |
| 538 | if (canon_base_map.put (k: def, v: base_rec)) |
| 539 | gcc_unreachable (); // Base defs should be unique. |
| 540 | } |
| 541 | |
| 542 | // Punt on misaligned offsets. Paired memory accesses require offsets |
| 543 | // to be a multiple of the access size. |
| 544 | if (!multiple_p (a: mem_off, b: mem_size)) |
| 545 | return; |
| 546 | |
| 547 | const auto key = std::make_pair (x&: base_def, y: encode_lfs (fields: lfs)); |
| 548 | access_group &group = def_map.get_or_insert (k: key, NULL); |
| 549 | auto alloc = [&](access_record *access) { return node_alloc (access); }; |
| 550 | group.track (alloc_node: alloc, offset: access_off, insn); |
| 551 | |
| 552 | if (dump_file) |
| 553 | { |
| 554 | pretty_printer pp; |
| 555 | pp_access (&pp, base_def, flags: 0); |
| 556 | |
| 557 | fprintf (stream: dump_file, format: "[bb %u] tracking insn %d via %s" , |
| 558 | m_bb->index (), insn->uid (), pp_formatted_text (&pp)); |
| 559 | fprintf (stream: dump_file, |
| 560 | format: " [L=%d, WB=%d, FP=%d, %smode, off=" , |
| 561 | lfs.load_p, autoinc_p, lfs.fpsimd_p, mode_name[mem_mode]); |
| 562 | print_dec (value: access_off, file: dump_file); |
| 563 | fprintf (stream: dump_file, format: "]\n" ); |
| 564 | } |
| 565 | } |
| 566 | |
| 567 | // Return the latest dataflow hazard before INSN. |
| 568 | // |
| 569 | // If IGNORE is non-NULL, this points to a sub-rtx which we should ignore for |
| 570 | // dataflow purposes. This is needed when considering changing the RTL base of |
| 571 | // an access discovered through a MEM_EXPR base. |
| 572 | // |
| 573 | // If IGNORE_INSN is non-NULL, we should further ignore any hazards arising |
| 574 | // from that insn. |
| 575 | // |
| 576 | // IS_LOAD_STORE is true if INSN is one of the loads or stores in the |
| 577 | // candidate pair. We ignore any defs/uses of memory in such instructions |
| 578 | // as we deal with that separately, making use of alias disambiguation. |
| 579 | static insn_info * |
| 580 | latest_hazard_before (insn_info *insn, rtx *ignore, |
| 581 | insn_info *ignore_insn = nullptr, |
| 582 | bool is_load_store = true) |
| 583 | { |
| 584 | insn_info *result = nullptr; |
| 585 | |
| 586 | // If the insn can throw then it is at the end of a BB and we can't |
| 587 | // move it, model this by recording a hazard in the previous insn |
| 588 | // which will prevent moving the insn up. |
| 589 | if (cfun->can_throw_non_call_exceptions |
| 590 | && find_reg_note (insn->rtl (), REG_EH_REGION, NULL_RTX)) |
| 591 | return insn->prev_nondebug_insn (); |
| 592 | |
| 593 | if (!is_load_store |
| 594 | && accesses_include_memory (accesses: insn->defs ())) |
| 595 | return insn->prev_nondebug_insn (); |
| 596 | |
| 597 | // Return true if we registered the hazard. |
| 598 | auto hazard = [&](insn_info *h) -> bool |
| 599 | { |
| 600 | gcc_checking_assert (*h < *insn); |
| 601 | if (h == ignore_insn) |
| 602 | return false; |
| 603 | |
| 604 | if (!result || *h > *result) |
| 605 | result = h; |
| 606 | |
| 607 | return true; |
| 608 | }; |
| 609 | |
| 610 | rtx pat = PATTERN (insn: insn->rtl ()); |
| 611 | auto ignore_use = [&](use_info *u) |
| 612 | { |
| 613 | if (u->is_mem ()) |
| 614 | return true; |
| 615 | |
| 616 | return !refers_to_regno_p (u->regno (), u->regno () + 1, pat, ignore); |
| 617 | }; |
| 618 | |
| 619 | // Find defs of uses in INSN (RaW). |
| 620 | for (auto use : insn->uses ()) |
| 621 | if (!ignore_use (use) && use->def ()) |
| 622 | hazard (use->def ()->insn ()); |
| 623 | |
| 624 | // Find previous defs (WaW) or previous uses (WaR) of defs in INSN. |
| 625 | for (auto def : insn->defs ()) |
| 626 | { |
| 627 | if (def->is_mem ()) |
| 628 | continue; |
| 629 | |
| 630 | if (def->prev_def ()) |
| 631 | { |
| 632 | hazard (def->prev_def ()->insn ()); // WaW |
| 633 | |
| 634 | auto set = dyn_cast<set_info *> (p: def->prev_def ()); |
| 635 | if (set && set->has_nondebug_insn_uses ()) |
| 636 | for (auto use : set->reverse_nondebug_insn_uses ()) |
| 637 | if (use->insn () != insn && hazard (use->insn ())) // WaR |
| 638 | break; |
| 639 | } |
| 640 | |
| 641 | if (!HARD_REGISTER_NUM_P (def->regno ())) |
| 642 | continue; |
| 643 | |
| 644 | // Also need to check backwards for call clobbers (WaW). |
| 645 | for (auto call_group : def->ebb ()->call_clobbers ()) |
| 646 | { |
| 647 | if (!call_group->clobbers (resource: def->resource ())) |
| 648 | continue; |
| 649 | |
| 650 | auto clobber_insn = prev_call_clobbers (tree&: *call_group, insn: def->insn (), |
| 651 | ignore: ignore_nothing ()); |
| 652 | if (clobber_insn) |
| 653 | hazard (clobber_insn); |
| 654 | } |
| 655 | |
| 656 | } |
| 657 | |
| 658 | return result; |
| 659 | } |
| 660 | |
| 661 | // Return the first dataflow hazard after INSN. |
| 662 | // |
| 663 | // If IGNORE is non-NULL, this points to a sub-rtx which we should ignore for |
| 664 | // dataflow purposes. This is needed when considering changing the RTL base of |
| 665 | // an access discovered through a MEM_EXPR base. |
| 666 | // |
| 667 | // N.B. we ignore any defs/uses of memory here as we deal with that separately, |
| 668 | // making use of alias disambiguation. |
| 669 | static insn_info * |
| 670 | first_hazard_after (insn_info *insn, rtx *ignore) |
| 671 | { |
| 672 | insn_info *result = nullptr; |
| 673 | auto hazard = [insn, &result](insn_info *h) |
| 674 | { |
| 675 | gcc_checking_assert (*h > *insn); |
| 676 | if (!result || *h < *result) |
| 677 | result = h; |
| 678 | }; |
| 679 | |
| 680 | rtx pat = PATTERN (insn: insn->rtl ()); |
| 681 | auto ignore_use = [&](use_info *u) |
| 682 | { |
| 683 | if (u->is_mem ()) |
| 684 | return true; |
| 685 | |
| 686 | return !refers_to_regno_p (u->regno (), u->regno () + 1, pat, ignore); |
| 687 | }; |
| 688 | |
| 689 | for (auto def : insn->defs ()) |
| 690 | { |
| 691 | if (def->is_mem ()) |
| 692 | continue; |
| 693 | |
| 694 | if (def->next_def ()) |
| 695 | hazard (def->next_def ()->insn ()); // WaW |
| 696 | |
| 697 | auto set = dyn_cast<set_info *> (p: def); |
| 698 | if (set && set->has_nondebug_insn_uses ()) |
| 699 | hazard (set->first_nondebug_insn_use ()->insn ()); // RaW |
| 700 | |
| 701 | if (!HARD_REGISTER_NUM_P (def->regno ())) |
| 702 | continue; |
| 703 | |
| 704 | // Also check for call clobbers of this def (WaW). |
| 705 | for (auto call_group : def->ebb ()->call_clobbers ()) |
| 706 | { |
| 707 | if (!call_group->clobbers (resource: def->resource ())) |
| 708 | continue; |
| 709 | |
| 710 | auto clobber_insn = next_call_clobbers (tree&: *call_group, insn: def->insn (), |
| 711 | ignore: ignore_nothing ()); |
| 712 | if (clobber_insn) |
| 713 | hazard (clobber_insn); |
| 714 | } |
| 715 | } |
| 716 | |
| 717 | // Find any subsequent defs of uses in INSN (WaR). |
| 718 | for (auto use : insn->uses ()) |
| 719 | { |
| 720 | if (ignore_use (use)) |
| 721 | continue; |
| 722 | |
| 723 | if (use->def ()) |
| 724 | { |
| 725 | auto def = use->def ()->next_def (); |
| 726 | if (def && def->insn () == insn) |
| 727 | def = def->next_def (); |
| 728 | |
| 729 | if (def) |
| 730 | hazard (def->insn ()); |
| 731 | } |
| 732 | |
| 733 | if (!HARD_REGISTER_NUM_P (use->regno ())) |
| 734 | continue; |
| 735 | |
| 736 | // Also need to handle call clobbers of our uses (again WaR). |
| 737 | // |
| 738 | // See restrict_movement_for_uses for why we don't need to check |
| 739 | // backwards for call clobbers. |
| 740 | for (auto call_group : use->ebb ()->call_clobbers ()) |
| 741 | { |
| 742 | if (!call_group->clobbers (resource: use->resource ())) |
| 743 | continue; |
| 744 | |
| 745 | auto clobber_insn = next_call_clobbers (tree&: *call_group, insn: use->insn (), |
| 746 | ignore: ignore_nothing ()); |
| 747 | if (clobber_insn) |
| 748 | hazard (clobber_insn); |
| 749 | } |
| 750 | } |
| 751 | |
| 752 | return result; |
| 753 | } |
| 754 | |
| 755 | // Return true iff R1 and R2 overlap. |
| 756 | static bool |
| 757 | ranges_overlap_p (const insn_range_info &r1, const insn_range_info &r2) |
| 758 | { |
| 759 | // If either range is empty, then their intersection is empty. |
| 760 | if (!r1 || !r2) |
| 761 | return false; |
| 762 | |
| 763 | // When do they not overlap? When one range finishes before the other |
| 764 | // starts, i.e. (*r1.last < *r2.first || *r2.last < *r1.first). |
| 765 | // Inverting this, we get the below. |
| 766 | return *r1.last >= *r2.first && *r2.last >= *r1.first; |
| 767 | } |
| 768 | |
| 769 | // Get the range of insns that def feeds. |
| 770 | static insn_range_info get_def_range (def_info *def) |
| 771 | { |
| 772 | insn_info *last = def->next_def ()->insn ()->prev_nondebug_insn (); |
| 773 | return { def->insn (), last }; |
| 774 | } |
| 775 | |
| 776 | // Given a def (of memory), return the downwards range within which we |
| 777 | // can safely move this def. |
| 778 | static insn_range_info |
| 779 | def_downwards_move_range (def_info *def) |
| 780 | { |
| 781 | auto range = get_def_range (def); |
| 782 | |
| 783 | auto set = dyn_cast<set_info *> (p: def); |
| 784 | if (!set || !set->has_any_uses ()) |
| 785 | return range; |
| 786 | |
| 787 | auto use = set->first_nondebug_insn_use (); |
| 788 | if (use) |
| 789 | range = move_earlier_than (range, insn: use->insn ()); |
| 790 | |
| 791 | return range; |
| 792 | } |
| 793 | |
| 794 | // Given a def (of memory), return the upwards range within which we can |
| 795 | // safely move this def. |
| 796 | static insn_range_info |
| 797 | def_upwards_move_range (def_info *def) |
| 798 | { |
| 799 | def_info *prev = def->prev_def (); |
| 800 | insn_range_info range { prev->insn (), def->insn () }; |
| 801 | |
| 802 | auto set = dyn_cast<set_info *> (p: prev); |
| 803 | if (!set || !set->has_any_uses ()) |
| 804 | return range; |
| 805 | |
| 806 | auto use = set->last_nondebug_insn_use (); |
| 807 | if (use) |
| 808 | range = move_later_than (range, insn: use->insn ()); |
| 809 | |
| 810 | return range; |
| 811 | } |
| 812 | |
| 813 | // Class that implements a state machine for building the changes needed to form |
| 814 | // a store pair instruction. This allows us to easily build the changes in |
| 815 | // program order, as required by rtl-ssa. |
| 816 | struct store_change_builder |
| 817 | { |
| 818 | enum class state |
| 819 | { |
| 820 | FIRST, |
| 821 | INSERT, |
| 822 | FIXUP_USE, |
| 823 | LAST, |
| 824 | DONE |
| 825 | }; |
| 826 | |
| 827 | enum class action |
| 828 | { |
| 829 | TOMBSTONE, |
| 830 | CHANGE, |
| 831 | INSERT, |
| 832 | FIXUP_USE |
| 833 | }; |
| 834 | |
| 835 | struct change |
| 836 | { |
| 837 | action type; |
| 838 | insn_info *insn; |
| 839 | }; |
| 840 | |
| 841 | bool done () const { return m_state == state::DONE; } |
| 842 | |
| 843 | store_change_builder (insn_info *insns[2], |
| 844 | insn_info *repurpose, |
| 845 | insn_info *dest) |
| 846 | : m_state (state::FIRST), m_insns { insns[0], insns[1] }, |
| 847 | m_repurpose (repurpose), m_dest (dest), m_use (nullptr) {} |
| 848 | |
| 849 | change get_change () const |
| 850 | { |
| 851 | switch (m_state) |
| 852 | { |
| 853 | case state::FIRST: |
| 854 | return { |
| 855 | .type: m_insns[0] == m_repurpose ? action::CHANGE : action::TOMBSTONE, |
| 856 | .insn: m_insns[0] |
| 857 | }; |
| 858 | case state::LAST: |
| 859 | return { |
| 860 | .type: m_insns[1] == m_repurpose ? action::CHANGE : action::TOMBSTONE, |
| 861 | .insn: m_insns[1] |
| 862 | }; |
| 863 | case state::INSERT: |
| 864 | return { .type: action::INSERT, .insn: m_dest }; |
| 865 | case state::FIXUP_USE: |
| 866 | return { .type: action::FIXUP_USE, .insn: m_use->insn () }; |
| 867 | case state::DONE: |
| 868 | break; |
| 869 | } |
| 870 | |
| 871 | gcc_unreachable (); |
| 872 | } |
| 873 | |
| 874 | // Transition to the next state. |
| 875 | void advance () |
| 876 | { |
| 877 | switch (m_state) |
| 878 | { |
| 879 | case state::FIRST: |
| 880 | if (m_repurpose) |
| 881 | m_state = state::LAST; |
| 882 | else |
| 883 | m_state = state::INSERT; |
| 884 | break; |
| 885 | case state::INSERT: |
| 886 | { |
| 887 | def_info *def = memory_access (accesses: m_insns[0]->defs ()); |
| 888 | while (*def->next_def ()->insn () <= *m_dest) |
| 889 | def = def->next_def (); |
| 890 | |
| 891 | // Now we know DEF feeds the insertion point for the new stp. |
| 892 | // Look for any uses of DEF that will consume the new stp. |
| 893 | gcc_assert (*def->insn () <= *m_dest |
| 894 | && *def->next_def ()->insn () > *m_dest); |
| 895 | |
| 896 | auto set = as_a<set_info *> (p: def); |
| 897 | for (auto use : set->nondebug_insn_uses ()) |
| 898 | if (*use->insn () > *m_dest) |
| 899 | { |
| 900 | m_use = use; |
| 901 | break; |
| 902 | } |
| 903 | |
| 904 | if (m_use) |
| 905 | m_state = state::FIXUP_USE; |
| 906 | else |
| 907 | m_state = state::LAST; |
| 908 | break; |
| 909 | } |
| 910 | case state::FIXUP_USE: |
| 911 | m_use = m_use->next_nondebug_insn_use (); |
| 912 | if (!m_use) |
| 913 | m_state = state::LAST; |
| 914 | break; |
| 915 | case state::LAST: |
| 916 | m_state = state::DONE; |
| 917 | break; |
| 918 | case state::DONE: |
| 919 | gcc_unreachable (); |
| 920 | } |
| 921 | } |
| 922 | |
| 923 | private: |
| 924 | state m_state; |
| 925 | |
| 926 | // Original candidate stores. |
| 927 | insn_info *m_insns[2]; |
| 928 | |
| 929 | // If non-null, this is a candidate insn to change into an stp. Otherwise we |
| 930 | // are deleting both original insns and inserting a new insn for the stp. |
| 931 | insn_info *m_repurpose; |
| 932 | |
| 933 | // Destionation of the stp, it will be placed immediately after m_dest. |
| 934 | insn_info *m_dest; |
| 935 | |
| 936 | // Current nondebug use that needs updating due to stp insertion. |
| 937 | use_info *m_use; |
| 938 | }; |
| 939 | |
| 940 | // Given candidate store insns FIRST and SECOND, see if we can re-purpose one |
| 941 | // of them (together with its def of memory) for the stp insn. If so, return |
| 942 | // that insn. Otherwise, return null. |
| 943 | static insn_info * |
| 944 | try_repurpose_store (insn_info *first, |
| 945 | insn_info *second, |
| 946 | const insn_range_info &move_range) |
| 947 | { |
| 948 | def_info * const defs[2] = { |
| 949 | memory_access (accesses: first->defs ()), |
| 950 | memory_access (accesses: second->defs ()) |
| 951 | }; |
| 952 | |
| 953 | if (move_range.includes (insn: first) |
| 954 | || ranges_overlap_p (r1: move_range, r2: def_downwards_move_range (def: defs[0]))) |
| 955 | return first; |
| 956 | |
| 957 | if (move_range.includes (insn: second) |
| 958 | || ranges_overlap_p (r1: move_range, r2: def_upwards_move_range (def: defs[1]))) |
| 959 | return second; |
| 960 | |
| 961 | return nullptr; |
| 962 | } |
| 963 | |
| 964 | // Generate the RTL pattern for a "tombstone"; used temporarily during this pass |
| 965 | // to replace stores that are marked for deletion where we can't immediately |
| 966 | // delete the store (since there are uses of mem hanging off the store). |
| 967 | // |
| 968 | // These are deleted at the end of the pass and uses re-parented appropriately |
| 969 | // at this point. |
| 970 | static rtx |
| 971 | gen_tombstone (void) |
| 972 | { |
| 973 | return gen_rtx_CLOBBER (VOIDmode, |
| 974 | gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode))); |
| 975 | } |
| 976 | |
| 977 | // Go through the reg notes rooted at NOTE, dropping those that we should drop, |
| 978 | // and preserving those that we want to keep by prepending them to (and |
| 979 | // returning) RESULT. EH_REGION is used to make sure we have at most one |
| 980 | // REG_EH_REGION note in the resulting list. FR_EXPR is used to return any |
| 981 | // REG_FRAME_RELATED_EXPR note we find, as these can need special handling in |
| 982 | // combine_reg_notes. |
| 983 | static rtx |
| 984 | filter_notes (rtx note, rtx result, bool *eh_region, rtx *fr_expr) |
| 985 | { |
| 986 | for (; note; note = XEXP (note, 1)) |
| 987 | { |
| 988 | switch (REG_NOTE_KIND (note)) |
| 989 | { |
| 990 | case REG_DEAD: |
| 991 | // REG_DEAD notes aren't required to be maintained. |
| 992 | case REG_EQUAL: |
| 993 | case REG_EQUIV: |
| 994 | case REG_UNUSED: |
| 995 | case REG_NOALIAS: |
| 996 | // These can all be dropped. For REG_EQU{AL,IV} they cannot apply to |
| 997 | // non-single_set insns, and REG_UNUSED is re-computed by RTl-SSA, see |
| 998 | // rtl-ssa/changes.cc:update_notes. |
| 999 | // |
| 1000 | // Similarly, REG_NOALIAS cannot apply to a parallel. |
| 1001 | case REG_INC: |
| 1002 | // When we form the pair insn, the reg update is implemented |
| 1003 | // as just another SET in the parallel, so isn't really an |
| 1004 | // auto-increment in the RTL sense, hence we drop the note. |
| 1005 | break; |
| 1006 | case REG_EH_REGION: |
| 1007 | gcc_assert (!*eh_region); |
| 1008 | *eh_region = true; |
| 1009 | result = alloc_reg_note (REG_EH_REGION, XEXP (note, 0), result); |
| 1010 | break; |
| 1011 | case REG_CFA_DEF_CFA: |
| 1012 | case REG_CFA_OFFSET: |
| 1013 | case REG_CFA_RESTORE: |
| 1014 | result = alloc_reg_note (REG_NOTE_KIND (note), |
| 1015 | copy_rtx (XEXP (note, 0)), |
| 1016 | result); |
| 1017 | break; |
| 1018 | case REG_FRAME_RELATED_EXPR: |
| 1019 | gcc_assert (!*fr_expr); |
| 1020 | *fr_expr = copy_rtx (XEXP (note, 0)); |
| 1021 | break; |
| 1022 | default: |
| 1023 | // Unexpected REG_NOTE kind. |
| 1024 | gcc_unreachable (); |
| 1025 | } |
| 1026 | } |
| 1027 | |
| 1028 | return result; |
| 1029 | } |
| 1030 | |
| 1031 | // Return the notes that should be attached to a combination of I1 and I2, where |
| 1032 | // *I1 < *I2. LOAD_P is true for loads. |
| 1033 | static rtx |
| 1034 | combine_reg_notes (insn_info *i1, insn_info *i2, bool load_p) |
| 1035 | { |
| 1036 | // Temporary storage for REG_FRAME_RELATED_EXPR notes. |
| 1037 | rtx fr_expr[2] = {}; |
| 1038 | |
| 1039 | bool found_eh_region = false; |
| 1040 | rtx result = NULL_RTX; |
| 1041 | result = filter_notes (REG_NOTES (i2->rtl ()), result, |
| 1042 | eh_region: &found_eh_region, fr_expr: fr_expr + 1); |
| 1043 | result = filter_notes (REG_NOTES (i1->rtl ()), result, |
| 1044 | eh_region: &found_eh_region, fr_expr); |
| 1045 | |
| 1046 | if (!load_p) |
| 1047 | { |
| 1048 | // Simple frame-related sp-relative saves don't need CFI notes, but when |
| 1049 | // we combine them into an stp we will need a CFI note as dwarf2cfi can't |
| 1050 | // interpret the unspec pair representation directly. |
| 1051 | if (RTX_FRAME_RELATED_P (i1->rtl ()) && !fr_expr[0]) |
| 1052 | fr_expr[0] = copy_rtx (PATTERN (insn: i1->rtl ())); |
| 1053 | if (RTX_FRAME_RELATED_P (i2->rtl ()) && !fr_expr[1]) |
| 1054 | fr_expr[1] = copy_rtx (PATTERN (insn: i2->rtl ())); |
| 1055 | } |
| 1056 | |
| 1057 | rtx fr_pat = NULL_RTX; |
| 1058 | if (fr_expr[0] && fr_expr[1]) |
| 1059 | { |
| 1060 | // Combining two frame-related insns, need to construct |
| 1061 | // a REG_FRAME_RELATED_EXPR note which represents the combined |
| 1062 | // operation. |
| 1063 | RTX_FRAME_RELATED_P (fr_expr[1]) = 1; |
| 1064 | fr_pat = gen_rtx_PARALLEL (VOIDmode, |
| 1065 | gen_rtvec (2, fr_expr[0], fr_expr[1])); |
| 1066 | } |
| 1067 | else |
| 1068 | fr_pat = fr_expr[0] ? fr_expr[0] : fr_expr[1]; |
| 1069 | |
| 1070 | if (fr_pat) |
| 1071 | result = alloc_reg_note (REG_FRAME_RELATED_EXPR, |
| 1072 | fr_pat, result); |
| 1073 | |
| 1074 | return result; |
| 1075 | } |
| 1076 | |
| 1077 | // Given two memory accesses in PATS, at least one of which is of a |
| 1078 | // writeback form, extract two non-writeback memory accesses addressed |
| 1079 | // relative to the initial value of the base register, and output these |
| 1080 | // in PATS. Return an rtx that represents the overall change to the |
| 1081 | // base register. |
| 1082 | static rtx |
| 1083 | (bool load_p, rtx pats[2], int changed) |
| 1084 | { |
| 1085 | rtx base_reg = NULL_RTX; |
| 1086 | poly_int64 current_offset = 0; |
| 1087 | |
| 1088 | poly_int64 offsets[2]; |
| 1089 | |
| 1090 | for (int i = 0; i < 2; i++) |
| 1091 | { |
| 1092 | rtx mem = XEXP (pats[i], load_p); |
| 1093 | rtx reg = XEXP (pats[i], !load_p); |
| 1094 | |
| 1095 | rtx addr = XEXP (mem, 0); |
| 1096 | const bool autoinc_p = GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC; |
| 1097 | |
| 1098 | poly_int64 offset; |
| 1099 | rtx this_base = pair_mem_strip_offset (mem, offset: &offset); |
| 1100 | gcc_assert (REG_P (this_base)); |
| 1101 | if (base_reg) |
| 1102 | gcc_assert (rtx_equal_p (base_reg, this_base)); |
| 1103 | else |
| 1104 | base_reg = this_base; |
| 1105 | |
| 1106 | // If we changed base for the current insn, then we already |
| 1107 | // derived the correct mem for this insn from the effective |
| 1108 | // address of the other access. |
| 1109 | if (i == changed) |
| 1110 | { |
| 1111 | gcc_checking_assert (!autoinc_p); |
| 1112 | offsets[i] = offset; |
| 1113 | continue; |
| 1114 | } |
| 1115 | |
| 1116 | if (autoinc_p && any_pre_modify_p (x: addr)) |
| 1117 | current_offset += offset; |
| 1118 | |
| 1119 | poly_int64 this_off = current_offset; |
| 1120 | if (!autoinc_p) |
| 1121 | this_off += offset; |
| 1122 | |
| 1123 | offsets[i] = this_off; |
| 1124 | rtx new_mem = change_address (mem, GET_MODE (mem), |
| 1125 | plus_constant (GET_MODE (base_reg), |
| 1126 | base_reg, this_off)); |
| 1127 | pats[i] = load_p |
| 1128 | ? gen_rtx_SET (reg, new_mem) |
| 1129 | : gen_rtx_SET (new_mem, reg); |
| 1130 | |
| 1131 | if (autoinc_p && any_post_modify_p (x: addr)) |
| 1132 | current_offset += offset; |
| 1133 | } |
| 1134 | |
| 1135 | if (known_eq (current_offset, 0)) |
| 1136 | return NULL_RTX; |
| 1137 | |
| 1138 | return gen_rtx_SET (base_reg, plus_constant (GET_MODE (base_reg), |
| 1139 | base_reg, current_offset)); |
| 1140 | } |
| 1141 | |
| 1142 | // INSNS contains either {nullptr, pair insn} (when promoting an existing |
| 1143 | // non-writeback pair) or contains the candidate insns used to form the pair |
| 1144 | // (when fusing a new pair). |
| 1145 | // |
| 1146 | // PAIR_RANGE specifies where we want to form the final pair. |
| 1147 | // INITIAL_OFFSET gives the current base offset for the pair. |
| 1148 | // Bit I of INITIAL_WRITEBACK is set if INSNS[I] initially had writeback. |
| 1149 | // ACCESS_SIZE gives the access size for a single arm of the pair. |
| 1150 | // BASE_DEF gives the initial def of the base register consumed by the pair. |
| 1151 | // |
| 1152 | // Given the above, this function looks for a trailing destructive update of the |
| 1153 | // base register. If there is one, we choose the first such update after |
| 1154 | // PAIR_DST that is still in the same BB as our pair. We return the new def in |
| 1155 | // *ADD_DEF and the resulting writeback effect in *WRITEBACK_EFFECT. |
| 1156 | insn_info * |
| 1157 | pair_fusion::find_trailing_add (insn_info *insns[2], |
| 1158 | const insn_range_info &pair_range, |
| 1159 | int initial_writeback, |
| 1160 | rtx *writeback_effect, |
| 1161 | def_info **add_def, |
| 1162 | def_info *base_def, |
| 1163 | poly_int64 initial_offset, |
| 1164 | unsigned access_size) |
| 1165 | { |
| 1166 | // Punt on frame-related insns, it is better to be conservative and |
| 1167 | // not try to form writeback pairs here, and means we don't have to |
| 1168 | // worry about the writeback case in forming REG_FRAME_RELATED_EXPR |
| 1169 | // notes (see combine_reg_notes). |
| 1170 | if ((insns[0] && RTX_FRAME_RELATED_P (insns[0]->rtl ())) |
| 1171 | || RTX_FRAME_RELATED_P (insns[1]->rtl ())) |
| 1172 | return nullptr; |
| 1173 | |
| 1174 | insn_info *pair_dst = pair_range.singleton (); |
| 1175 | gcc_assert (pair_dst); |
| 1176 | |
| 1177 | def_info *def = base_def->next_def (); |
| 1178 | |
| 1179 | // In the case that either of the initial pair insns had writeback, |
| 1180 | // then there will be intervening defs of the base register. |
| 1181 | // Skip over these. |
| 1182 | for (int i = 0; i < 2; i++) |
| 1183 | if (initial_writeback & (1 << i)) |
| 1184 | { |
| 1185 | gcc_assert (def->insn () == insns[i]); |
| 1186 | def = def->next_def (); |
| 1187 | } |
| 1188 | |
| 1189 | if (!def || def->bb () != pair_dst->bb ()) |
| 1190 | return nullptr; |
| 1191 | |
| 1192 | // DEF should now be the first def of the base register after PAIR_DST. |
| 1193 | insn_info *cand = def->insn (); |
| 1194 | gcc_assert (*cand > *pair_dst); |
| 1195 | |
| 1196 | const auto base_regno = base_def->regno (); |
| 1197 | |
| 1198 | // If CAND doesn't also use our base register, |
| 1199 | // it can't destructively update it. |
| 1200 | if (!find_access (accesses: cand->uses (), regno: base_regno)) |
| 1201 | return nullptr; |
| 1202 | |
| 1203 | auto rti = cand->rtl (); |
| 1204 | |
| 1205 | if (!INSN_P (rti)) |
| 1206 | return nullptr; |
| 1207 | |
| 1208 | auto pat = PATTERN (insn: rti); |
| 1209 | if (GET_CODE (pat) != SET) |
| 1210 | return nullptr; |
| 1211 | |
| 1212 | auto dest = XEXP (pat, 0); |
| 1213 | if (!REG_P (dest) || REGNO (dest) != base_regno) |
| 1214 | return nullptr; |
| 1215 | |
| 1216 | poly_int64 offset; |
| 1217 | rtx rhs_base = strip_offset (XEXP (pat, 1), &offset); |
| 1218 | if (!REG_P (rhs_base) |
| 1219 | || REGNO (rhs_base) != base_regno |
| 1220 | || !offset.is_constant ()) |
| 1221 | return nullptr; |
| 1222 | |
| 1223 | // If the initial base offset is zero, we can handle any add offset |
| 1224 | // (post-inc). Otherwise, we require the offsets to match (pre-inc). |
| 1225 | if (!known_eq (initial_offset, 0) && !known_eq (offset, initial_offset)) |
| 1226 | return nullptr; |
| 1227 | |
| 1228 | auto off_hwi = offset.to_constant (); |
| 1229 | |
| 1230 | if (off_hwi % access_size != 0) |
| 1231 | return nullptr; |
| 1232 | |
| 1233 | off_hwi /= access_size; |
| 1234 | |
| 1235 | if (!pair_mem_in_range_p (offset: off_hwi)) |
| 1236 | return nullptr; |
| 1237 | |
| 1238 | auto dump_prefix = [&]() |
| 1239 | { |
| 1240 | if (!insns[0]) |
| 1241 | fprintf (stream: dump_file, format: "existing pair i%d: " , insns[1]->uid ()); |
| 1242 | else |
| 1243 | fprintf (stream: dump_file, format: " (%d,%d)" , |
| 1244 | insns[0]->uid (), insns[1]->uid ()); |
| 1245 | }; |
| 1246 | |
| 1247 | insn_info *hazard = latest_hazard_before (insn: cand, ignore: nullptr, ignore_insn: insns[1], is_load_store: false); |
| 1248 | if (!hazard || *hazard <= *pair_dst) |
| 1249 | { |
| 1250 | if (dump_file) |
| 1251 | { |
| 1252 | dump_prefix (); |
| 1253 | fprintf (stream: dump_file, |
| 1254 | format: "folding in trailing add (%d) to use writeback form\n" , |
| 1255 | cand->uid ()); |
| 1256 | } |
| 1257 | |
| 1258 | *add_def = def; |
| 1259 | *writeback_effect = copy_rtx (pat); |
| 1260 | return cand; |
| 1261 | } |
| 1262 | |
| 1263 | if (dump_file) |
| 1264 | { |
| 1265 | dump_prefix (); |
| 1266 | fprintf (stream: dump_file, |
| 1267 | format: "can't fold in trailing add (%d), hazard = %d\n" , |
| 1268 | cand->uid (), hazard->uid ()); |
| 1269 | } |
| 1270 | |
| 1271 | return nullptr; |
| 1272 | } |
| 1273 | |
| 1274 | // We just emitted a tombstone with uid UID, track it in a bitmap for |
| 1275 | // this BB so we can easily identify it later when cleaning up tombstones. |
| 1276 | void |
| 1277 | pair_fusion_bb_info::track_tombstone (int uid) |
| 1278 | { |
| 1279 | if (!m_emitted_tombstone) |
| 1280 | { |
| 1281 | // Lazily initialize the bitmap for tracking tombstone insns. |
| 1282 | bitmap_obstack_initialize (&m_bitmap_obstack); |
| 1283 | bitmap_initialize (head: &m_tombstone_bitmap, obstack: &m_bitmap_obstack); |
| 1284 | m_emitted_tombstone = true; |
| 1285 | } |
| 1286 | |
| 1287 | if (!bitmap_set_bit (&m_tombstone_bitmap, uid)) |
| 1288 | gcc_unreachable (); // Bit should have changed. |
| 1289 | } |
| 1290 | |
| 1291 | // Reset the debug insn containing USE (the debug insn has been |
| 1292 | // optimized away). |
| 1293 | static void |
| 1294 | reset_debug_use (use_info *use) |
| 1295 | { |
| 1296 | auto use_insn = use->insn (); |
| 1297 | auto use_rtl = use_insn->rtl (); |
| 1298 | insn_change change (use_insn); |
| 1299 | change.new_uses = {}; |
| 1300 | INSN_VAR_LOCATION_LOC (use_rtl) = gen_rtx_UNKNOWN_VAR_LOC (); |
| 1301 | crtl->ssa->change_insn (change); |
| 1302 | } |
| 1303 | |
| 1304 | // USE is a debug use that needs updating because DEF (a def of the same |
| 1305 | // register) is being re-ordered over it. If BASE is non-null, then DEF |
| 1306 | // is an update of the register BASE by a constant, given by WB_OFFSET, |
| 1307 | // and we can preserve debug info by accounting for the change in side |
| 1308 | // effects. |
| 1309 | static void |
| 1310 | fixup_debug_use (obstack_watermark &attempt, |
| 1311 | use_info *use, |
| 1312 | def_info *def, |
| 1313 | rtx base, |
| 1314 | poly_int64 wb_offset) |
| 1315 | { |
| 1316 | auto use_insn = use->insn (); |
| 1317 | if (base) |
| 1318 | { |
| 1319 | auto use_rtl = use_insn->rtl (); |
| 1320 | insn_change change (use_insn); |
| 1321 | |
| 1322 | gcc_checking_assert (REG_P (base) && use->regno () == REGNO (base)); |
| 1323 | change.new_uses = check_remove_regno_access (watermark&: attempt, |
| 1324 | accesses: change.new_uses, |
| 1325 | regno: use->regno ()); |
| 1326 | |
| 1327 | // The effect of the writeback is to add WB_OFFSET to BASE. If |
| 1328 | // we're re-ordering DEF below USE, then we update USE by adding |
| 1329 | // WB_OFFSET to it. Otherwise, if we're re-ordering DEF above |
| 1330 | // USE, we update USE by undoing the effect of the writeback |
| 1331 | // (subtracting WB_OFFSET). |
| 1332 | use_info *new_use; |
| 1333 | if (*def->insn () > *use_insn) |
| 1334 | { |
| 1335 | // We now need USE_INSN to consume DEF. Create a new use of DEF. |
| 1336 | // |
| 1337 | // N.B. this means until we call change_insns for the main change |
| 1338 | // group we will temporarily have a debug use consuming a def that |
| 1339 | // comes after it, but RTL-SSA doesn't currently support updating |
| 1340 | // debug insns as part of the main change group (together with |
| 1341 | // nondebug changes), so we will have to live with this update |
| 1342 | // leaving the IR being temporarily inconsistent. It seems to |
| 1343 | // work out OK once the main change group is applied. |
| 1344 | wb_offset *= -1; |
| 1345 | new_use = crtl->ssa->create_use (watermark&: attempt, |
| 1346 | insn: use_insn, |
| 1347 | set: as_a<set_info *> (p: def)); |
| 1348 | } |
| 1349 | else |
| 1350 | new_use = find_access (accesses: def->insn ()->uses (), regno: use->regno ()); |
| 1351 | |
| 1352 | change.new_uses = insert_access (watermark&: attempt, access1: new_use, accesses2: change.new_uses); |
| 1353 | |
| 1354 | if (dump_file) |
| 1355 | { |
| 1356 | const char *dir = (*def->insn () < *use_insn) ? "down" : "up" ; |
| 1357 | pretty_printer pp; |
| 1358 | pp_string (&pp, "[" ); |
| 1359 | pp_access (&pp, use, flags: 0); |
| 1360 | pp_string (&pp, "]" ); |
| 1361 | pp_string (&pp, " due to wb def " ); |
| 1362 | pp_string (&pp, "[" ); |
| 1363 | pp_access (&pp, def, flags: 0); |
| 1364 | pp_string (&pp, "]" ); |
| 1365 | fprintf (stream: dump_file, |
| 1366 | format: " i%d: fix up debug use %s re-ordered %s, " |
| 1367 | "sub r%u -> r%u + " , |
| 1368 | use_insn->uid (), pp_formatted_text (&pp), |
| 1369 | dir, REGNO (base), REGNO (base)); |
| 1370 | print_dec (value: wb_offset, file: dump_file); |
| 1371 | fprintf (stream: dump_file, format: "\n" ); |
| 1372 | } |
| 1373 | |
| 1374 | insn_propagation prop (use_rtl, base, |
| 1375 | plus_constant (GET_MODE (base), base, wb_offset)); |
| 1376 | if (prop.apply_to_pattern (&INSN_VAR_LOCATION_LOC (use_rtl))) |
| 1377 | crtl->ssa->change_insn (change); |
| 1378 | else |
| 1379 | { |
| 1380 | if (dump_file) |
| 1381 | fprintf (stream: dump_file, format: " i%d: RTL substitution failed (%s)" |
| 1382 | ", resetting debug insn" , use_insn->uid (), |
| 1383 | prop.failure_reason); |
| 1384 | reset_debug_use (use); |
| 1385 | } |
| 1386 | } |
| 1387 | else |
| 1388 | { |
| 1389 | if (dump_file) |
| 1390 | { |
| 1391 | pretty_printer pp; |
| 1392 | pp_string (&pp, "[" ); |
| 1393 | pp_access (&pp, use, flags: 0); |
| 1394 | pp_string (&pp, "] due to re-ordered load def [" ); |
| 1395 | pp_access (&pp, def, flags: 0); |
| 1396 | pp_string (&pp, "]" ); |
| 1397 | fprintf (stream: dump_file, format: " i%d: resetting debug use %s\n" , |
| 1398 | use_insn->uid (), pp_formatted_text (&pp)); |
| 1399 | } |
| 1400 | reset_debug_use (use); |
| 1401 | } |
| 1402 | } |
| 1403 | |
| 1404 | // Update debug uses when folding in a trailing add insn to form a |
| 1405 | // writeback pair. |
| 1406 | // |
| 1407 | // ATTEMPT is used to allocate RTL-SSA temporaries for the changes, |
| 1408 | // the final pair is placed immediately after PAIR_DST, TRAILING_ADD |
| 1409 | // is a trailing add insn which is being folded into the pair to make it |
| 1410 | // use writeback addressing, and WRITEBACK_EFFECT is the pattern for |
| 1411 | // TRAILING_ADD. |
| 1412 | static void |
| 1413 | fixup_debug_uses_trailing_add (obstack_watermark &attempt, |
| 1414 | insn_info *pair_dst, |
| 1415 | insn_info *trailing_add, |
| 1416 | rtx writeback_effect) |
| 1417 | { |
| 1418 | rtx base = SET_DEST (writeback_effect); |
| 1419 | |
| 1420 | poly_int64 wb_offset; |
| 1421 | rtx base2 = strip_offset (SET_SRC (writeback_effect), &wb_offset); |
| 1422 | gcc_checking_assert (rtx_equal_p (base, base2)); |
| 1423 | |
| 1424 | auto defs = trailing_add->defs (); |
| 1425 | gcc_checking_assert (defs.size () == 1); |
| 1426 | def_info *def = defs[0]; |
| 1427 | |
| 1428 | if (auto set = safe_dyn_cast<set_info *> (p: def->prev_def ())) |
| 1429 | for (auto use : iterate_safely (range: set->debug_insn_uses ())) |
| 1430 | if (*use->insn () > *pair_dst) |
| 1431 | // DEF is getting re-ordered above USE, fix up USE accordingly. |
| 1432 | fixup_debug_use (attempt, use, def, base, wb_offset); |
| 1433 | } |
| 1434 | |
| 1435 | // Called from fuse_pair, fixes up any debug uses that will be affected |
| 1436 | // by the changes. |
| 1437 | // |
| 1438 | // ATTEMPT is the obstack watermark used to allocate RTL-SSA temporaries for |
| 1439 | // the changes, INSNS gives the candidate insns: at this point the use/def |
| 1440 | // information should still be as on entry to fuse_pair, but the patterns may |
| 1441 | // have changed, hence we pass ORIG_RTL which contains the original patterns |
| 1442 | // for the candidate insns. |
| 1443 | // |
| 1444 | // The final pair will be placed immediately after PAIR_DST, LOAD_P is true if |
| 1445 | // it is a load pair, bit I of WRITEBACK is set if INSNS[I] originally had |
| 1446 | // writeback, and WRITEBACK_EFFECT is an rtx describing the overall update to |
| 1447 | // the base register in the final pair (if any). BASE_REGNO gives the register |
| 1448 | // number of the base register used in the final pair. |
| 1449 | static void |
| 1450 | fixup_debug_uses (obstack_watermark &attempt, |
| 1451 | insn_info *insns[2], |
| 1452 | rtx orig_rtl[2], |
| 1453 | insn_info *pair_dst, |
| 1454 | insn_info *trailing_add, |
| 1455 | bool load_p, |
| 1456 | int writeback, |
| 1457 | rtx writeback_effect, |
| 1458 | unsigned base_regno) |
| 1459 | { |
| 1460 | // USE is a debug use that needs updating because DEF (a def of the |
| 1461 | // resource) is being re-ordered over it. If WRITEBACK_PAT is non-NULL, |
| 1462 | // then it gives the original RTL pattern for DEF's insn, and DEF is a |
| 1463 | // writeback update of the base register. |
| 1464 | // |
| 1465 | // This simply unpacks WRITEBACK_PAT if needed and calls fixup_debug_use. |
| 1466 | auto update_debug_use = [&](use_info *use, def_info *def, |
| 1467 | rtx writeback_pat) |
| 1468 | { |
| 1469 | poly_int64 offset = 0; |
| 1470 | rtx base = NULL_RTX; |
| 1471 | if (writeback_pat) |
| 1472 | { |
| 1473 | rtx mem = XEXP (writeback_pat, load_p); |
| 1474 | gcc_checking_assert (GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) |
| 1475 | == RTX_AUTOINC); |
| 1476 | |
| 1477 | base = pair_mem_strip_offset (mem, offset: &offset); |
| 1478 | gcc_checking_assert (REG_P (base) && REGNO (base) == base_regno); |
| 1479 | } |
| 1480 | fixup_debug_use (attempt, use, def, base, wb_offset: offset); |
| 1481 | }; |
| 1482 | |
| 1483 | // Reset any debug uses of mem over which we re-ordered a store. |
| 1484 | // |
| 1485 | // It would be nice to try and preserve debug info here, but it seems that |
| 1486 | // would require doing alias analysis to see if the store aliases with the |
| 1487 | // debug use, which seems a little extravagant just to preserve debug info. |
| 1488 | if (!load_p) |
| 1489 | { |
| 1490 | auto def = memory_access (accesses: insns[0]->defs ()); |
| 1491 | auto last_def = memory_access (accesses: insns[1]->defs ()); |
| 1492 | for (; def != last_def; def = def->next_def ()) |
| 1493 | { |
| 1494 | auto set = as_a<set_info *> (p: def); |
| 1495 | for (auto use : iterate_safely (range: set->debug_insn_uses ())) |
| 1496 | { |
| 1497 | if (dump_file) |
| 1498 | fprintf (stream: dump_file, format: " i%d: resetting debug use of mem\n" , |
| 1499 | use->insn ()->uid ()); |
| 1500 | reset_debug_use (use); |
| 1501 | } |
| 1502 | } |
| 1503 | } |
| 1504 | |
| 1505 | // Now let's take care of register uses, starting with debug uses |
| 1506 | // attached to defs from our first insn. |
| 1507 | for (auto def : insns[0]->defs ()) |
| 1508 | { |
| 1509 | auto set = dyn_cast<set_info *> (p: def); |
| 1510 | if (!set || set->is_mem () || !set->first_debug_insn_use ()) |
| 1511 | continue; |
| 1512 | |
| 1513 | def_info *defs[2] = { |
| 1514 | def, |
| 1515 | find_access (accesses: insns[1]->defs (), regno: def->regno ()) |
| 1516 | }; |
| 1517 | |
| 1518 | rtx writeback_pats[2] = {}; |
| 1519 | if (def->regno () == base_regno) |
| 1520 | for (int i = 0; i < 2; i++) |
| 1521 | if (writeback & (1 << i)) |
| 1522 | { |
| 1523 | gcc_checking_assert (defs[i]); |
| 1524 | writeback_pats[i] = orig_rtl[i]; |
| 1525 | } |
| 1526 | |
| 1527 | // Now that we've characterized the defs involved, go through the |
| 1528 | // debug uses and determine how to update them (if needed). |
| 1529 | for (auto use : iterate_safely (range: set->debug_insn_uses ())) |
| 1530 | { |
| 1531 | if (*pair_dst < *use->insn () && defs[1]) |
| 1532 | // We're re-ordering defs[1] above a previous use of the |
| 1533 | // same resource. |
| 1534 | update_debug_use (use, defs[1], writeback_pats[1]); |
| 1535 | else if (*pair_dst >= *use->insn ()) |
| 1536 | // We're re-ordering defs[0] below its use. |
| 1537 | update_debug_use (use, defs[0], writeback_pats[0]); |
| 1538 | } |
| 1539 | } |
| 1540 | |
| 1541 | // Now let's look at registers which are def'd by the second insn |
| 1542 | // but not by the first insn, there may still be debug uses of a |
| 1543 | // previous def which can be affected by moving the second insn up. |
| 1544 | for (auto def : insns[1]->defs ()) |
| 1545 | { |
| 1546 | // This should be M log N where N is the number of defs in |
| 1547 | // insns[0] and M is the number of defs in insns[1]. |
| 1548 | if (def->is_mem () || find_access (accesses: insns[0]->defs (), regno: def->regno ())) |
| 1549 | continue; |
| 1550 | |
| 1551 | auto prev_set = safe_dyn_cast<set_info *> (p: def->prev_def ()); |
| 1552 | if (!prev_set) |
| 1553 | continue; |
| 1554 | |
| 1555 | rtx writeback_pat = NULL_RTX; |
| 1556 | if (def->regno () == base_regno && (writeback & 2)) |
| 1557 | writeback_pat = orig_rtl[1]; |
| 1558 | |
| 1559 | // We have a def in insns[1] which isn't def'd by the first insn. |
| 1560 | // Look to the previous def and see if it has any debug uses. |
| 1561 | for (auto use : iterate_safely (range: prev_set->debug_insn_uses ())) |
| 1562 | if (*pair_dst < *use->insn ()) |
| 1563 | // We're ordering DEF above a previous use of the same register. |
| 1564 | update_debug_use (use, def, writeback_pat); |
| 1565 | } |
| 1566 | |
| 1567 | if ((writeback & 2) && !writeback_effect) |
| 1568 | { |
| 1569 | // If the second insn initially had writeback but the final |
| 1570 | // pair does not, then there may be trailing debug uses of the |
| 1571 | // second writeback def which need re-parenting: do that. |
| 1572 | auto def = find_access (accesses: insns[1]->defs (), regno: base_regno); |
| 1573 | gcc_assert (def); |
| 1574 | auto set = as_a<set_info *> (p: def); |
| 1575 | for (auto use : iterate_safely (range: set->debug_insn_uses ())) |
| 1576 | { |
| 1577 | insn_change change (use->insn ()); |
| 1578 | change.new_uses = check_remove_regno_access (watermark&: attempt, |
| 1579 | accesses: change.new_uses, |
| 1580 | regno: base_regno); |
| 1581 | auto new_use = find_access (accesses: insns[0]->uses (), regno: base_regno); |
| 1582 | |
| 1583 | // N.B. insns must have already shared a common base due to writeback. |
| 1584 | gcc_assert (new_use); |
| 1585 | |
| 1586 | if (dump_file) |
| 1587 | fprintf (stream: dump_file, |
| 1588 | format: " i%d: cancelling wb, re-parenting trailing debug use\n" , |
| 1589 | use->insn ()->uid ()); |
| 1590 | |
| 1591 | change.new_uses = insert_access (watermark&: attempt, access1: new_use, accesses2: change.new_uses); |
| 1592 | crtl->ssa->change_insn (change); |
| 1593 | } |
| 1594 | } |
| 1595 | else if (trailing_add) |
| 1596 | fixup_debug_uses_trailing_add (attempt, pair_dst, trailing_add, |
| 1597 | writeback_effect); |
| 1598 | } |
| 1599 | |
| 1600 | // Try and actually fuse the pair given by insns I1 and I2. |
| 1601 | // |
| 1602 | // Here we've done enough analysis to know this is safe, we only |
| 1603 | // reject the pair at this stage if either the tuning policy says to, |
| 1604 | // or recog fails on the final pair insn. |
| 1605 | // |
| 1606 | // LOAD_P is true for loads, ACCESS_SIZE gives the access size of each |
| 1607 | // candidate insn. Bit i of WRITEBACK is set if the ith insn (in program |
| 1608 | // order) uses writeback. |
| 1609 | // |
| 1610 | // BASE gives the chosen base candidate for the pair and MOVE_RANGE is |
| 1611 | // a singleton range which says where to place the pair. |
| 1612 | bool |
| 1613 | pair_fusion_bb_info::fuse_pair (bool load_p, |
| 1614 | unsigned access_size, |
| 1615 | int writeback, |
| 1616 | insn_info *i1, insn_info *i2, |
| 1617 | base_cand &base, |
| 1618 | const insn_range_info &move_range) |
| 1619 | { |
| 1620 | auto attempt = crtl->ssa->new_change_attempt (); |
| 1621 | |
| 1622 | auto make_change = [&attempt](insn_info *insn) |
| 1623 | { |
| 1624 | return crtl->ssa->change_alloc<insn_change> (wm&: attempt, args: insn); |
| 1625 | }; |
| 1626 | auto make_delete = [&attempt](insn_info *insn) |
| 1627 | { |
| 1628 | return crtl->ssa->change_alloc<insn_change> (wm&: attempt, |
| 1629 | args: insn, |
| 1630 | args: insn_change::DELETE); |
| 1631 | }; |
| 1632 | |
| 1633 | insn_info *first = (*i1 < *i2) ? i1 : i2; |
| 1634 | insn_info *second = (first == i1) ? i2 : i1; |
| 1635 | |
| 1636 | insn_info *pair_dst = move_range.singleton (); |
| 1637 | gcc_assert (pair_dst); |
| 1638 | |
| 1639 | insn_info *insns[2] = { first, second }; |
| 1640 | |
| 1641 | auto_vec<insn_change *> changes; |
| 1642 | auto_vec<int, 3> tombstone_uids; |
| 1643 | |
| 1644 | rtx pats[2] = { |
| 1645 | PATTERN (insn: first->rtl ()), |
| 1646 | PATTERN (insn: second->rtl ()) |
| 1647 | }; |
| 1648 | |
| 1649 | // Make copies of the patterns as we might need to refer to the original RTL |
| 1650 | // later, for example when updating debug uses (which is after we've updated |
| 1651 | // one or both of the patterns in the candidate insns). |
| 1652 | rtx orig_rtl[2]; |
| 1653 | for (int i = 0; i < 2; i++) |
| 1654 | orig_rtl[i] = copy_rtx (pats[i]); |
| 1655 | |
| 1656 | use_array input_uses[2] = { first->uses (), second->uses () }; |
| 1657 | def_array input_defs[2] = { first->defs (), second->defs () }; |
| 1658 | |
| 1659 | int changed_insn = -1; |
| 1660 | if (base.from_insn != -1) |
| 1661 | { |
| 1662 | // If we're not already using a shared base, we need |
| 1663 | // to re-write one of the accesses to use the base from |
| 1664 | // the other insn. |
| 1665 | gcc_checking_assert (base.from_insn == 0 || base.from_insn == 1); |
| 1666 | changed_insn = !base.from_insn; |
| 1667 | |
| 1668 | rtx base_pat = pats[base.from_insn]; |
| 1669 | rtx change_pat = pats[changed_insn]; |
| 1670 | rtx base_mem = XEXP (base_pat, load_p); |
| 1671 | rtx change_mem = XEXP (change_pat, load_p); |
| 1672 | |
| 1673 | const bool lower_base_p = (insns[base.from_insn] == i1); |
| 1674 | HOST_WIDE_INT adjust_amt = access_size; |
| 1675 | if (!lower_base_p) |
| 1676 | adjust_amt *= -1; |
| 1677 | |
| 1678 | rtx change_reg = XEXP (change_pat, !load_p); |
| 1679 | rtx effective_base = drop_writeback (mem: base_mem); |
| 1680 | rtx adjusted_addr = plus_constant (Pmode, |
| 1681 | XEXP (effective_base, 0), |
| 1682 | adjust_amt); |
| 1683 | rtx new_mem = replace_equiv_address_nv (change_mem, adjusted_addr); |
| 1684 | rtx new_set = load_p |
| 1685 | ? gen_rtx_SET (change_reg, new_mem) |
| 1686 | : gen_rtx_SET (new_mem, change_reg); |
| 1687 | |
| 1688 | pats[changed_insn] = new_set; |
| 1689 | |
| 1690 | auto keep_use = [&](use_info *u) |
| 1691 | { |
| 1692 | return refers_to_regno_p (u->regno (), u->regno () + 1, |
| 1693 | change_pat, &XEXP (change_pat, load_p)); |
| 1694 | }; |
| 1695 | |
| 1696 | // Drop any uses that only occur in the old address. |
| 1697 | input_uses[changed_insn] = filter_accesses (watermark&: attempt, |
| 1698 | accesses: input_uses[changed_insn], |
| 1699 | predicate: keep_use); |
| 1700 | } |
| 1701 | |
| 1702 | rtx writeback_effect = NULL_RTX; |
| 1703 | if (writeback) |
| 1704 | writeback_effect = extract_writebacks (load_p, pats, changed: changed_insn); |
| 1705 | |
| 1706 | const auto base_regno = base.def->regno (); |
| 1707 | |
| 1708 | if (base.from_insn == -1 && (writeback & 1)) |
| 1709 | { |
| 1710 | // If the first of the candidate insns had a writeback form, we'll need to |
| 1711 | // drop the use of the updated base register from the second insn's uses. |
| 1712 | // |
| 1713 | // N.B. we needn't worry about the base register occurring as a store |
| 1714 | // operand, as we checked that there was no non-address true dependence |
| 1715 | // between the insns in try_fuse_pair. |
| 1716 | gcc_checking_assert (find_access (input_uses[1], base_regno)); |
| 1717 | input_uses[1] = check_remove_regno_access (watermark&: attempt, |
| 1718 | accesses: input_uses[1], |
| 1719 | regno: base_regno); |
| 1720 | } |
| 1721 | |
| 1722 | // Go through and drop uses that only occur in register notes, |
| 1723 | // as we won't be preserving those. |
| 1724 | for (int i = 0; i < 2; i++) |
| 1725 | { |
| 1726 | auto rti = insns[i]->rtl (); |
| 1727 | if (!REG_NOTES (rti)) |
| 1728 | continue; |
| 1729 | |
| 1730 | input_uses[i] = remove_note_accesses (watermark&: attempt, accesses: input_uses[i]); |
| 1731 | } |
| 1732 | |
| 1733 | // Get the uses that the pair instruction would have, and punt if |
| 1734 | // the unpaired instructions use different definitions of the same |
| 1735 | // register. That would normally be caught as a side-effect of |
| 1736 | // hazard detection below, but this check also deals with cases |
| 1737 | // in which one use is undefined and the other isn't. |
| 1738 | auto new_uses = merge_access_arrays (watermark&: attempt, |
| 1739 | accesses1: drop_memory_access (accesses: input_uses[0]), |
| 1740 | accesses2: drop_memory_access (accesses: input_uses[1])); |
| 1741 | if (!new_uses.is_valid ()) |
| 1742 | { |
| 1743 | if (dump_file) |
| 1744 | fprintf (stream: dump_file, |
| 1745 | format: " rejecting pair: i%d and i%d use different definiitions of" |
| 1746 | " the same register\n" , |
| 1747 | insns[0]->uid (), insns[1]->uid ()); |
| 1748 | return false; |
| 1749 | } |
| 1750 | |
| 1751 | // Edge case: if the first insn is a writeback load and the |
| 1752 | // second insn is a non-writeback load which transfers into the base |
| 1753 | // register, then we should drop the writeback altogether as the |
| 1754 | // update of the base register from the second load should prevail. |
| 1755 | // |
| 1756 | // For example: |
| 1757 | // ldr x2, [x1], #8 |
| 1758 | // ldr x1, [x1] |
| 1759 | // --> |
| 1760 | // ldp x2, x1, [x1] |
| 1761 | if (writeback == 1 |
| 1762 | && load_p |
| 1763 | && find_access (accesses: input_defs[1], regno: base_regno)) |
| 1764 | { |
| 1765 | if (dump_file) |
| 1766 | fprintf (stream: dump_file, |
| 1767 | format: " load pair: i%d has wb but subsequent i%d has non-wb " |
| 1768 | "update of base (r%d), dropping wb\n" , |
| 1769 | insns[0]->uid (), insns[1]->uid (), base_regno); |
| 1770 | gcc_assert (writeback_effect); |
| 1771 | writeback_effect = NULL_RTX; |
| 1772 | } |
| 1773 | |
| 1774 | // So far the patterns have been in instruction order, |
| 1775 | // now we want them in offset order. |
| 1776 | if (i1 != first) |
| 1777 | std::swap (a&: pats[0], b&: pats[1]); |
| 1778 | |
| 1779 | poly_int64 offsets[2]; |
| 1780 | for (int i = 0; i < 2; i++) |
| 1781 | { |
| 1782 | rtx mem = XEXP (pats[i], load_p); |
| 1783 | gcc_checking_assert (MEM_P (mem)); |
| 1784 | rtx base = strip_offset (XEXP (mem, 0), offsets + i); |
| 1785 | gcc_checking_assert (REG_P (base)); |
| 1786 | gcc_checking_assert (base_regno == REGNO (base)); |
| 1787 | } |
| 1788 | |
| 1789 | // If either of the original insns had writeback, but the resulting pair insn |
| 1790 | // does not (can happen e.g. in the load pair edge case above, or if the |
| 1791 | // writeback effects cancel out), then drop the def (s) of the base register |
| 1792 | // as appropriate. |
| 1793 | // |
| 1794 | // Also drop the first def in the case that both of the original insns had |
| 1795 | // writeback. The second def could well have uses, but the first def should |
| 1796 | // only be used by the second insn (and we dropped that use above). |
| 1797 | for (int i = 0; i < 2; i++) |
| 1798 | if ((!writeback_effect && (writeback & (1 << i))) |
| 1799 | || (i == 0 && writeback == 3)) |
| 1800 | input_defs[i] = check_remove_regno_access (watermark&: attempt, |
| 1801 | accesses: input_defs[i], |
| 1802 | regno: base_regno); |
| 1803 | |
| 1804 | // If we don't currently have a writeback pair, and we don't have |
| 1805 | // a load that clobbers the base register, look for a trailing destructive |
| 1806 | // update of the base register and try and fold it in to make this into a |
| 1807 | // writeback pair. |
| 1808 | insn_info *trailing_add = nullptr; |
| 1809 | if (m_pass->should_handle_writeback (which: writeback_type::ALL) |
| 1810 | && !writeback_effect |
| 1811 | && (!load_p || (!refers_to_regno_p (base_regno, base_regno + 1, |
| 1812 | XEXP (pats[0], 0), nullptr) |
| 1813 | && !refers_to_regno_p (base_regno, base_regno + 1, |
| 1814 | XEXP (pats[1], 0), nullptr)))) |
| 1815 | { |
| 1816 | def_info *add_def; |
| 1817 | trailing_add = m_pass->find_trailing_add (insns, pair_range: move_range, initial_writeback: writeback, |
| 1818 | writeback_effect: &writeback_effect, |
| 1819 | add_def: &add_def, base_def: base.def, initial_offset: offsets[0], |
| 1820 | access_size); |
| 1821 | if (trailing_add) |
| 1822 | { |
| 1823 | // The def of the base register from the trailing add should prevail. |
| 1824 | input_defs[0] = insert_access (watermark&: attempt, access1: add_def, accesses2: input_defs[0]); |
| 1825 | gcc_assert (input_defs[0].is_valid ()); |
| 1826 | } |
| 1827 | } |
| 1828 | |
| 1829 | // Now that we know what base mem we're going to use, check if it's OK |
| 1830 | // with the pair mem policy. |
| 1831 | rtx first_mem = XEXP (pats[0], load_p); |
| 1832 | if (!m_pass->pair_mem_ok_with_policy (base_mem: first_mem, load_p)) |
| 1833 | { |
| 1834 | if (dump_file) |
| 1835 | fprintf (stream: dump_file, |
| 1836 | format: "punting on pair (%d,%d), pair mem policy says no\n" , |
| 1837 | i1->uid (), i2->uid ()); |
| 1838 | return false; |
| 1839 | } |
| 1840 | |
| 1841 | rtx reg_notes = combine_reg_notes (i1: first, i2: second, load_p); |
| 1842 | |
| 1843 | rtx pair_pat = m_pass->gen_pair (pats, writeback: writeback_effect, load_p); |
| 1844 | insn_change *pair_change = nullptr; |
| 1845 | auto set_pair_pat = [pair_pat,reg_notes](insn_change *change) { |
| 1846 | rtx_insn *rti = change->insn ()->rtl (); |
| 1847 | validate_unshare_change (rti, &PATTERN (insn: rti), pair_pat, true); |
| 1848 | validate_change (rti, ®_NOTES (rti), reg_notes, true); |
| 1849 | }; |
| 1850 | |
| 1851 | // Turn CHANGE into a memory definition tombstone. |
| 1852 | auto make_tombstone = [&](insn_change *change) |
| 1853 | { |
| 1854 | tombstone_uids.quick_push (obj: change->insn ()->uid ()); |
| 1855 | rtx_insn *rti = change->insn ()->rtl (); |
| 1856 | validate_change (rti, &PATTERN (insn: rti), gen_tombstone (), true); |
| 1857 | validate_change (rti, ®_NOTES (rti), NULL_RTX, true); |
| 1858 | change->new_uses = use_array (); |
| 1859 | }; |
| 1860 | |
| 1861 | if (load_p) |
| 1862 | { |
| 1863 | changes.safe_push (obj: make_delete (first)); |
| 1864 | pair_change = make_change (second); |
| 1865 | changes.safe_push (obj: pair_change); |
| 1866 | |
| 1867 | pair_change->move_range = move_range; |
| 1868 | pair_change->new_defs = merge_access_arrays (watermark&: attempt, |
| 1869 | accesses1: input_defs[0], |
| 1870 | accesses2: input_defs[1]); |
| 1871 | gcc_assert (pair_change->new_defs.is_valid ()); |
| 1872 | |
| 1873 | pair_change->new_uses = new_uses; |
| 1874 | set_pair_pat (pair_change); |
| 1875 | } |
| 1876 | else |
| 1877 | { |
| 1878 | using Action = store_change_builder::action; |
| 1879 | insn_info *store_to_change = try_repurpose_store (first, second, |
| 1880 | move_range); |
| 1881 | store_change_builder builder (insns, store_to_change, pair_dst); |
| 1882 | insn_change *change; |
| 1883 | set_info *new_set = nullptr; |
| 1884 | for (; !builder.done (); builder.advance ()) |
| 1885 | { |
| 1886 | auto action = builder.get_change (); |
| 1887 | change = (action.type == Action::INSERT) |
| 1888 | ? nullptr : make_change (action.insn); |
| 1889 | switch (action.type) |
| 1890 | { |
| 1891 | case Action::CHANGE: |
| 1892 | { |
| 1893 | set_pair_pat (change); |
| 1894 | change->new_uses = new_uses; |
| 1895 | auto d1 = drop_memory_access (accesses: input_defs[0]); |
| 1896 | auto d2 = drop_memory_access (accesses: input_defs[1]); |
| 1897 | change->new_defs = merge_access_arrays (watermark&: attempt, accesses1: d1, accesses2: d2); |
| 1898 | gcc_assert (change->new_defs.is_valid ()); |
| 1899 | def_info *store_def = memory_access (accesses: change->insn ()->defs ()); |
| 1900 | change->new_defs = insert_access (watermark&: attempt, |
| 1901 | access1: store_def, |
| 1902 | accesses2: change->new_defs); |
| 1903 | gcc_assert (change->new_defs.is_valid ()); |
| 1904 | change->move_range = move_range; |
| 1905 | pair_change = change; |
| 1906 | break; |
| 1907 | } |
| 1908 | case Action::TOMBSTONE: |
| 1909 | { |
| 1910 | make_tombstone (change); |
| 1911 | break; |
| 1912 | } |
| 1913 | case Action::INSERT: |
| 1914 | { |
| 1915 | if (dump_file) |
| 1916 | fprintf (stream: dump_file, |
| 1917 | format: " stp: cannot re-purpose candidate stores\n" ); |
| 1918 | |
| 1919 | auto new_insn = crtl->ssa->create_insn (watermark&: attempt, insn_code: INSN, pat: pair_pat); |
| 1920 | change = make_change (new_insn); |
| 1921 | change->move_range = move_range; |
| 1922 | change->new_uses = new_uses; |
| 1923 | gcc_assert (change->new_uses.is_valid ()); |
| 1924 | |
| 1925 | auto d1 = drop_memory_access (accesses: input_defs[0]); |
| 1926 | auto d2 = drop_memory_access (accesses: input_defs[1]); |
| 1927 | change->new_defs = merge_access_arrays (watermark&: attempt, accesses1: d1, accesses2: d2); |
| 1928 | gcc_assert (change->new_defs.is_valid ()); |
| 1929 | |
| 1930 | new_set = crtl->ssa->create_set (watermark&: attempt, insn: new_insn, resource: memory); |
| 1931 | change->new_defs = insert_access (watermark&: attempt, access1: new_set, |
| 1932 | accesses2: change->new_defs); |
| 1933 | gcc_assert (change->new_defs.is_valid ()); |
| 1934 | pair_change = change; |
| 1935 | break; |
| 1936 | } |
| 1937 | case Action::FIXUP_USE: |
| 1938 | { |
| 1939 | // This use now needs to consume memory from our stp. |
| 1940 | if (dump_file) |
| 1941 | fprintf (stream: dump_file, |
| 1942 | format: " stp: changing i%d to use mem from new stp " |
| 1943 | "(after i%d)\n" , |
| 1944 | action.insn->uid (), pair_dst->uid ()); |
| 1945 | change->new_uses = drop_memory_access (accesses: change->new_uses); |
| 1946 | gcc_assert (new_set); |
| 1947 | auto new_use = crtl->ssa->create_use (watermark&: attempt, insn: action.insn, |
| 1948 | set: new_set); |
| 1949 | change->new_uses = insert_access (watermark&: attempt, access1: new_use, |
| 1950 | accesses2: change->new_uses); |
| 1951 | break; |
| 1952 | } |
| 1953 | } |
| 1954 | changes.safe_push (obj: change); |
| 1955 | } |
| 1956 | } |
| 1957 | |
| 1958 | if (trailing_add) |
| 1959 | { |
| 1960 | if (auto *mem_def = memory_access (accesses: trailing_add->defs())) |
| 1961 | { |
| 1962 | auto *change = make_change (trailing_add); |
| 1963 | change->new_defs = insert_access (watermark&: attempt, access1: mem_def, accesses2: def_array ()); |
| 1964 | make_tombstone (change); |
| 1965 | changes.safe_push (obj: change); |
| 1966 | } |
| 1967 | else |
| 1968 | changes.safe_push (obj: make_delete (trailing_add)); |
| 1969 | } |
| 1970 | else if ((writeback & 2) && !writeback_effect) |
| 1971 | { |
| 1972 | // The second insn initially had writeback but now the pair does not, |
| 1973 | // need to update any nondebug uses of the base register def in the |
| 1974 | // second insn. We'll take care of debug uses later. |
| 1975 | auto def = find_access (accesses: insns[1]->defs (), regno: base_regno); |
| 1976 | gcc_assert (def); |
| 1977 | auto set = dyn_cast<set_info *> (p: def); |
| 1978 | if (set && set->has_nondebug_uses ()) |
| 1979 | { |
| 1980 | auto orig_use = find_access (accesses: insns[0]->uses (), regno: base_regno); |
| 1981 | for (auto use : set->nondebug_insn_uses ()) |
| 1982 | { |
| 1983 | auto change = make_change (use->insn ()); |
| 1984 | change->new_uses = check_remove_regno_access (watermark&: attempt, |
| 1985 | accesses: change->new_uses, |
| 1986 | regno: base_regno); |
| 1987 | change->new_uses = insert_access (watermark&: attempt, |
| 1988 | access1: orig_use, |
| 1989 | accesses2: change->new_uses); |
| 1990 | changes.safe_push (obj: change); |
| 1991 | } |
| 1992 | } |
| 1993 | } |
| 1994 | |
| 1995 | auto ignore = ignore_changing_insns (changes); |
| 1996 | for (unsigned i = 0; i < changes.length (); i++) |
| 1997 | gcc_assert (changes[i]->move_range.singleton () |
| 1998 | && rtl_ssa::restrict_movement (*changes[i], ignore)); |
| 1999 | |
| 2000 | // Check the pair pattern is recog'd. |
| 2001 | if (!rtl_ssa::recog (watermark&: attempt, change&: *pair_change, ignore)) |
| 2002 | { |
| 2003 | if (dump_file) |
| 2004 | fprintf (stream: dump_file, format: " failed to form pair, recog failed\n" ); |
| 2005 | |
| 2006 | // Free any reg notes we allocated. |
| 2007 | while (reg_notes) |
| 2008 | { |
| 2009 | rtx next = XEXP (reg_notes, 1); |
| 2010 | free_EXPR_LIST_node (reg_notes); |
| 2011 | reg_notes = next; |
| 2012 | } |
| 2013 | cancel_changes (0); |
| 2014 | return false; |
| 2015 | } |
| 2016 | |
| 2017 | gcc_assert (crtl->ssa->verify_insn_changes (changes)); |
| 2018 | |
| 2019 | // Fix up any debug uses that will be affected by the changes. |
| 2020 | if (MAY_HAVE_DEBUG_INSNS) |
| 2021 | fixup_debug_uses (attempt, insns, orig_rtl, pair_dst, trailing_add, |
| 2022 | load_p, writeback, writeback_effect, base_regno); |
| 2023 | |
| 2024 | confirm_change_group (); |
| 2025 | crtl->ssa->change_insns (changes); |
| 2026 | |
| 2027 | for (auto uid : tombstone_uids) |
| 2028 | track_tombstone (uid); |
| 2029 | |
| 2030 | return true; |
| 2031 | } |
| 2032 | |
| 2033 | // Return true if STORE_INSN may modify mem rtx MEM. Make sure we keep |
| 2034 | // within our BUDGET for alias analysis. |
| 2035 | static bool |
| 2036 | store_modifies_mem_p (rtx mem, insn_info *store_insn, int &budget) |
| 2037 | { |
| 2038 | if (!budget) |
| 2039 | { |
| 2040 | if (dump_file) |
| 2041 | { |
| 2042 | fprintf (stream: dump_file, |
| 2043 | format: "exceeded budget, assuming store %d aliases with mem " , |
| 2044 | store_insn->uid ()); |
| 2045 | print_simple_rtl (dump_file, mem); |
| 2046 | fprintf (stream: dump_file, format: "\n" ); |
| 2047 | } |
| 2048 | |
| 2049 | return true; |
| 2050 | } |
| 2051 | |
| 2052 | budget--; |
| 2053 | return memory_modified_in_insn_p (mem, store_insn->rtl ()); |
| 2054 | } |
| 2055 | |
| 2056 | // Return true if LOAD may be modified by STORE. Make sure we keep |
| 2057 | // within our BUDGET for alias analysis. |
| 2058 | static bool |
| 2059 | load_modified_by_store_p (insn_info *load, |
| 2060 | insn_info *store, |
| 2061 | int &budget) |
| 2062 | { |
| 2063 | gcc_checking_assert (budget >= 0); |
| 2064 | |
| 2065 | if (!budget) |
| 2066 | { |
| 2067 | if (dump_file) |
| 2068 | { |
| 2069 | fprintf (stream: dump_file, |
| 2070 | format: "exceeded budget, assuming load %d aliases with store %d\n" , |
| 2071 | load->uid (), store->uid ()); |
| 2072 | } |
| 2073 | return true; |
| 2074 | } |
| 2075 | |
| 2076 | // It isn't safe to re-order stores over calls. |
| 2077 | if (CALL_P (load->rtl ())) |
| 2078 | return true; |
| 2079 | |
| 2080 | budget--; |
| 2081 | |
| 2082 | // Iterate over all MEMs in the load, seeing if any alias with |
| 2083 | // our store. |
| 2084 | subrtx_var_iterator::array_type array; |
| 2085 | rtx pat = PATTERN (insn: load->rtl ()); |
| 2086 | FOR_EACH_SUBRTX_VAR (iter, array, pat, NONCONST) |
| 2087 | if (MEM_P (*iter) && memory_modified_in_insn_p (*iter, store->rtl ())) |
| 2088 | return true; |
| 2089 | |
| 2090 | return false; |
| 2091 | } |
| 2092 | |
| 2093 | // Implement some common functionality used by both store_walker |
| 2094 | // and load_walker. |
| 2095 | template<bool reverse> |
| 2096 | class def_walker : public alias_walker |
| 2097 | { |
| 2098 | protected: |
| 2099 | using def_iter_t = typename std::conditional<reverse, |
| 2100 | reverse_def_iterator, def_iterator>::type; |
| 2101 | |
| 2102 | static use_info *start_use_chain (def_iter_t &def_iter) |
| 2103 | { |
| 2104 | set_info *set = nullptr; |
| 2105 | for (; *def_iter; def_iter++) |
| 2106 | { |
| 2107 | set = dyn_cast<set_info *> (*def_iter); |
| 2108 | if (!set) |
| 2109 | continue; |
| 2110 | |
| 2111 | use_info *use = reverse |
| 2112 | ? set->last_nondebug_insn_use () |
| 2113 | : set->first_nondebug_insn_use (); |
| 2114 | |
| 2115 | if (use) |
| 2116 | return use; |
| 2117 | } |
| 2118 | |
| 2119 | return nullptr; |
| 2120 | } |
| 2121 | |
| 2122 | def_iter_t def_iter; |
| 2123 | insn_info *limit; |
| 2124 | |
| 2125 | // Array of register uses from the candidate insn which occur in MEMs. |
| 2126 | use_array cand_addr_uses; |
| 2127 | |
| 2128 | def_walker (def_info *def, insn_info *limit, use_array addr_uses) : |
| 2129 | def_iter (def), limit (limit), cand_addr_uses (addr_uses) {} |
| 2130 | |
| 2131 | virtual bool iter_valid () const { return *def_iter; } |
| 2132 | |
| 2133 | // Implemented in {load,store}_walker. |
| 2134 | virtual bool alias_conflict_p (int &budget) const = 0; |
| 2135 | |
| 2136 | // Return true if the current (walking) INSN () uses a register R inside a |
| 2137 | // MEM, where R is also used inside a MEM by the (static) candidate insn, and |
| 2138 | // those uses see different definitions of that register. In this case we |
| 2139 | // can't rely on RTL alias analysis, and for now we conservatively assume that |
| 2140 | // there is an alias conflict. See PR116783. |
| 2141 | bool addr_reg_conflict_p () const |
| 2142 | { |
| 2143 | use_array curr_insn_uses = insn ()->uses (); |
| 2144 | auto cand_use_iter = cand_addr_uses.begin (); |
| 2145 | auto insn_use_iter = curr_insn_uses.begin (); |
| 2146 | while (cand_use_iter != cand_addr_uses.end () |
| 2147 | && insn_use_iter != curr_insn_uses.end ()) |
| 2148 | { |
| 2149 | auto insn_use = *insn_use_iter; |
| 2150 | auto cand_use = *cand_use_iter; |
| 2151 | if (insn_use->regno () > cand_use->regno ()) |
| 2152 | cand_use_iter++; |
| 2153 | else if (insn_use->regno () < cand_use->regno ()) |
| 2154 | insn_use_iter++; |
| 2155 | else |
| 2156 | { |
| 2157 | // As it stands I believe the alias code (memory_modified_in_insn_p) |
| 2158 | // doesn't look at insn notes such as REG_EQU{IV,AL}, so it should |
| 2159 | // be safe to skip over uses that only occur in notes. |
| 2160 | if (insn_use->includes_address_uses () |
| 2161 | && !insn_use->only_occurs_in_notes () |
| 2162 | && insn_use->def () != cand_use->def ()) |
| 2163 | { |
| 2164 | if (dump_file) |
| 2165 | { |
| 2166 | fprintf (stream: dump_file, |
| 2167 | format: "assuming aliasing of cand i%d and i%d:\n" |
| 2168 | "-> insns see different defs of common addr reg r%u\n" |
| 2169 | "-> " , |
| 2170 | cand_use->insn ()->uid (), insn_use->insn ()->uid (), |
| 2171 | insn_use->regno ()); |
| 2172 | |
| 2173 | // Note that while the following sequence could be made more |
| 2174 | // concise by eliding pp_string calls into the pp_printf |
| 2175 | // calls, doing so triggers -Wformat-diag. |
| 2176 | pretty_printer pp; |
| 2177 | pp_string (&pp, "[" ); |
| 2178 | pp_access (&pp, cand_use, flags: 0); |
| 2179 | pp_string (&pp, "] in " ); |
| 2180 | pp_printf (&pp, "i%d" , cand_use->insn ()->uid ()); |
| 2181 | pp_string (&pp, " vs [" ); |
| 2182 | pp_access (&pp, insn_use, flags: 0); |
| 2183 | pp_string (&pp, "] in " ); |
| 2184 | pp_printf (&pp, "i%d" , insn_use->insn ()->uid ()); |
| 2185 | fprintf (stream: dump_file, format: "%s\n" , pp_formatted_text (&pp)); |
| 2186 | } |
| 2187 | return true; |
| 2188 | } |
| 2189 | |
| 2190 | cand_use_iter++; |
| 2191 | insn_use_iter++; |
| 2192 | } |
| 2193 | } |
| 2194 | |
| 2195 | return false; |
| 2196 | } |
| 2197 | |
| 2198 | public: |
| 2199 | insn_info *insn () const override { return (*def_iter)->insn (); } |
| 2200 | void advance () override { def_iter++; } |
| 2201 | bool valid () const override final |
| 2202 | { |
| 2203 | if (!iter_valid ()) |
| 2204 | return false; |
| 2205 | |
| 2206 | if (reverse) |
| 2207 | return *(insn ()) > *limit; |
| 2208 | else |
| 2209 | return *(insn ()) < *limit; |
| 2210 | } |
| 2211 | |
| 2212 | bool conflict_p (int &budget) const override final |
| 2213 | { |
| 2214 | if (addr_reg_conflict_p ()) |
| 2215 | return true; |
| 2216 | |
| 2217 | return alias_conflict_p (budget); |
| 2218 | } |
| 2219 | }; |
| 2220 | |
| 2221 | // alias_walker that iterates over stores. |
| 2222 | template<bool reverse, typename InsnPredicate> |
| 2223 | class store_walker : public def_walker<reverse> |
| 2224 | { |
| 2225 | rtx cand_mem; |
| 2226 | InsnPredicate tombstone_p; |
| 2227 | |
| 2228 | public: |
| 2229 | store_walker (def_info *mem_def, rtx mem, |
| 2230 | use_array addr_uses, |
| 2231 | insn_info *limit_insn, |
| 2232 | InsnPredicate tombstone_fn) : |
| 2233 | def_walker<reverse> (mem_def, limit_insn, addr_uses), |
| 2234 | cand_mem (mem), tombstone_p (tombstone_fn) {} |
| 2235 | |
| 2236 | bool alias_conflict_p (int &budget) const override final |
| 2237 | { |
| 2238 | if (tombstone_p (this->insn ())) |
| 2239 | return false; |
| 2240 | |
| 2241 | return store_modifies_mem_p (cand_mem, this->insn (), budget); |
| 2242 | } |
| 2243 | }; |
| 2244 | |
| 2245 | // alias_walker that iterates over loads. |
| 2246 | template<bool reverse> |
| 2247 | class load_walker : public def_walker<reverse> |
| 2248 | { |
| 2249 | using Base = def_walker<reverse>; |
| 2250 | using use_iter_t = typename std::conditional<reverse, |
| 2251 | reverse_use_iterator, nondebug_insn_use_iterator>::type; |
| 2252 | |
| 2253 | use_iter_t use_iter; |
| 2254 | insn_info *cand_store; |
| 2255 | |
| 2256 | bool iter_valid () const override final { return *use_iter; } |
| 2257 | |
| 2258 | public: |
| 2259 | void advance () override final |
| 2260 | { |
| 2261 | use_iter++; |
| 2262 | if (*use_iter) |
| 2263 | return; |
| 2264 | this->def_iter++; |
| 2265 | use_iter = Base::start_use_chain (this->def_iter); |
| 2266 | } |
| 2267 | |
| 2268 | insn_info *insn () const override final |
| 2269 | { |
| 2270 | return (*use_iter)->insn (); |
| 2271 | } |
| 2272 | |
| 2273 | bool alias_conflict_p (int &budget) const override final |
| 2274 | { |
| 2275 | return load_modified_by_store_p (insn (), cand_store, budget); |
| 2276 | } |
| 2277 | |
| 2278 | load_walker (def_info *def, insn_info *store, use_array addr_uses, |
| 2279 | insn_info *limit_insn) |
| 2280 | : Base (def, limit_insn, addr_uses), |
| 2281 | use_iter (Base::start_use_chain (this->def_iter)), |
| 2282 | cand_store (store) {} |
| 2283 | }; |
| 2284 | |
| 2285 | // Process our alias_walkers in a round-robin fashion, proceeding until |
| 2286 | // nothing more can be learned from alias analysis. |
| 2287 | // |
| 2288 | // We try to maintain the invariant that if a walker becomes invalid, we |
| 2289 | // set its pointer to null. |
| 2290 | void |
| 2291 | pair_fusion::do_alias_analysis (insn_info *alias_hazards[4], |
| 2292 | alias_walker *walkers[4], |
| 2293 | bool load_p) |
| 2294 | { |
| 2295 | const int n_walkers = 2 + (2 * !load_p); |
| 2296 | int budget = pair_mem_alias_check_limit (); |
| 2297 | |
| 2298 | auto next_walker = [walkers,n_walkers](int current) -> int { |
| 2299 | for (int j = 1; j <= n_walkers; j++) |
| 2300 | { |
| 2301 | int idx = (current + j) % n_walkers; |
| 2302 | if (walkers[idx]) |
| 2303 | return idx; |
| 2304 | } |
| 2305 | return -1; |
| 2306 | }; |
| 2307 | |
| 2308 | int i = -1; |
| 2309 | for (int j = 0; j < n_walkers; j++) |
| 2310 | { |
| 2311 | alias_hazards[j] = nullptr; |
| 2312 | if (!walkers[j]) |
| 2313 | continue; |
| 2314 | |
| 2315 | if (!walkers[j]->valid ()) |
| 2316 | walkers[j] = nullptr; |
| 2317 | else if (i == -1) |
| 2318 | i = j; |
| 2319 | } |
| 2320 | |
| 2321 | while (i >= 0) |
| 2322 | { |
| 2323 | int insn_i = i % 2; |
| 2324 | int paired_i = (i & 2) + !insn_i; |
| 2325 | int pair_fst = (i & 2); |
| 2326 | int pair_snd = (i & 2) + 1; |
| 2327 | |
| 2328 | if (walkers[i]->conflict_p (budget)) |
| 2329 | { |
| 2330 | alias_hazards[i] = walkers[i]->insn (); |
| 2331 | |
| 2332 | // We got an aliasing conflict for this {load,store} walker, |
| 2333 | // so we don't need to walk any further. |
| 2334 | walkers[i] = nullptr; |
| 2335 | |
| 2336 | // If we have a pair of alias conflicts that prevent |
| 2337 | // forming the pair, stop. There's no need to do further |
| 2338 | // analysis. |
| 2339 | if (alias_hazards[paired_i] |
| 2340 | && (*alias_hazards[pair_fst] <= *alias_hazards[pair_snd])) |
| 2341 | return; |
| 2342 | |
| 2343 | if (!load_p) |
| 2344 | { |
| 2345 | int other_pair_fst = (pair_fst ? 0 : 2); |
| 2346 | int other_paired_i = other_pair_fst + !insn_i; |
| 2347 | |
| 2348 | int x_pair_fst = (i == pair_fst) ? i : other_paired_i; |
| 2349 | int x_pair_snd = (i == pair_fst) ? other_paired_i : i; |
| 2350 | |
| 2351 | // Similarly, handle the case where we have a {load,store} |
| 2352 | // or {store,load} alias hazard pair that prevents forming |
| 2353 | // the pair. |
| 2354 | if (alias_hazards[other_paired_i] |
| 2355 | && *alias_hazards[x_pair_fst] <= *alias_hazards[x_pair_snd]) |
| 2356 | return; |
| 2357 | } |
| 2358 | } |
| 2359 | |
| 2360 | if (walkers[i]) |
| 2361 | { |
| 2362 | walkers[i]->advance (); |
| 2363 | |
| 2364 | if (!walkers[i]->valid ()) |
| 2365 | walkers[i] = nullptr; |
| 2366 | } |
| 2367 | |
| 2368 | i = next_walker (i); |
| 2369 | } |
| 2370 | } |
| 2371 | |
| 2372 | // Given INSNS (in program order) which are known to be adjacent, look |
| 2373 | // to see if either insn has a suitable RTL (register) base that we can |
| 2374 | // use to form a pair. Push these to BASE_CANDS if we find any. CAND_MEMs |
| 2375 | // gives the relevant mems from the candidate insns, ACCESS_SIZE gives the |
| 2376 | // size of a single candidate access, and REVERSED says whether the accesses |
| 2377 | // are inverted in offset order. |
| 2378 | // |
| 2379 | // Returns an integer where bit (1 << i) is set if INSNS[i] uses writeback |
| 2380 | // addressing. |
| 2381 | int |
| 2382 | pair_fusion::get_viable_bases (insn_info *insns[2], |
| 2383 | vec<base_cand> &base_cands, |
| 2384 | rtx cand_mems[2], |
| 2385 | unsigned access_size, |
| 2386 | bool reversed) |
| 2387 | { |
| 2388 | // We discovered this pair through a common base. Need to ensure that |
| 2389 | // we have a common base register that is live at both locations. |
| 2390 | def_info *base_defs[2] = {}; |
| 2391 | int writeback = 0; |
| 2392 | for (int i = 0; i < 2; i++) |
| 2393 | { |
| 2394 | const bool is_lower = (i == reversed); |
| 2395 | poly_int64 poly_off; |
| 2396 | rtx base = pair_mem_strip_offset (mem: cand_mems[i], offset: &poly_off); |
| 2397 | if (GET_RTX_CLASS (GET_CODE (XEXP (cand_mems[i], 0))) == RTX_AUTOINC) |
| 2398 | writeback |= (1 << i); |
| 2399 | |
| 2400 | if (!REG_P (base) || !poly_off.is_constant ()) |
| 2401 | continue; |
| 2402 | |
| 2403 | // Punt on accesses relative to eliminable regs. See the comment in |
| 2404 | // pair_fusion_bb_info::track_access for a detailed explanation of this. |
| 2405 | if (!reload_completed |
| 2406 | && (REGNO (base) == FRAME_POINTER_REGNUM |
| 2407 | || REGNO (base) == ARG_POINTER_REGNUM)) |
| 2408 | continue; |
| 2409 | |
| 2410 | HOST_WIDE_INT base_off = poly_off.to_constant (); |
| 2411 | |
| 2412 | // It should be unlikely that we ever punt here, since MEM_EXPR offset |
| 2413 | // alignment should be a good proxy for register offset alignment. |
| 2414 | if (base_off % access_size != 0) |
| 2415 | { |
| 2416 | if (dump_file) |
| 2417 | fprintf (stream: dump_file, |
| 2418 | format: "base not viable, offset misaligned (insn %d)\n" , |
| 2419 | insns[i]->uid ()); |
| 2420 | continue; |
| 2421 | } |
| 2422 | |
| 2423 | base_off /= access_size; |
| 2424 | |
| 2425 | if (!is_lower) |
| 2426 | base_off--; |
| 2427 | |
| 2428 | if (!pair_mem_in_range_p (offset: base_off)) |
| 2429 | continue; |
| 2430 | |
| 2431 | use_info *use = find_access (accesses: insns[i]->uses (), REGNO (base)); |
| 2432 | gcc_assert (use); |
| 2433 | base_defs[i] = use->def (); |
| 2434 | } |
| 2435 | |
| 2436 | if (!base_defs[0] && !base_defs[1]) |
| 2437 | { |
| 2438 | if (dump_file) |
| 2439 | fprintf (stream: dump_file, format: "no viable base register for pair (%d,%d)\n" , |
| 2440 | insns[0]->uid (), insns[1]->uid ()); |
| 2441 | return writeback; |
| 2442 | } |
| 2443 | |
| 2444 | for (int i = 0; i < 2; i++) |
| 2445 | if ((writeback & (1 << i)) && !base_defs[i]) |
| 2446 | { |
| 2447 | if (dump_file) |
| 2448 | fprintf (stream: dump_file, format: "insn %d has writeback but base isn't viable\n" , |
| 2449 | insns[i]->uid ()); |
| 2450 | return writeback; |
| 2451 | } |
| 2452 | |
| 2453 | if (writeback == 3 |
| 2454 | && base_defs[0]->regno () != base_defs[1]->regno ()) |
| 2455 | { |
| 2456 | if (dump_file) |
| 2457 | fprintf (stream: dump_file, |
| 2458 | format: "pair (%d,%d): double writeback with distinct regs (%d,%d): " |
| 2459 | "punting\n" , |
| 2460 | insns[0]->uid (), insns[1]->uid (), |
| 2461 | base_defs[0]->regno (), base_defs[1]->regno ()); |
| 2462 | return writeback; |
| 2463 | } |
| 2464 | |
| 2465 | if (base_defs[0] && base_defs[1] |
| 2466 | && base_defs[0]->regno () == base_defs[1]->regno ()) |
| 2467 | { |
| 2468 | // Easy case: insns already share the same base reg. |
| 2469 | base_cands.quick_push (obj: base_defs[0]); |
| 2470 | return writeback; |
| 2471 | } |
| 2472 | |
| 2473 | // Otherwise, we know that one of the bases must change. |
| 2474 | // |
| 2475 | // Note that if there is writeback we must use the writeback base |
| 2476 | // (we know now there is exactly one). |
| 2477 | for (int i = 0; i < 2; i++) |
| 2478 | if (base_defs[i] && (!writeback || (writeback & (1 << i)))) |
| 2479 | base_cands.quick_push (obj: base_cand { base_defs[i], i }); |
| 2480 | |
| 2481 | return writeback; |
| 2482 | } |
| 2483 | |
| 2484 | // Given two adjacent memory accesses of the same size, I1 and I2, try |
| 2485 | // and see if we can merge them into a paired access. |
| 2486 | // |
| 2487 | // ACCESS_SIZE gives the (common) size of a single access, LOAD_P is true |
| 2488 | // if the accesses are both loads, otherwise they are both stores. |
| 2489 | bool |
| 2490 | pair_fusion_bb_info::try_fuse_pair (bool load_p, unsigned access_size, |
| 2491 | insn_info *i1, insn_info *i2) |
| 2492 | { |
| 2493 | if (dump_file) |
| 2494 | fprintf (stream: dump_file, format: "analyzing pair (load=%d): (%d,%d)\n" , |
| 2495 | load_p, i1->uid (), i2->uid ()); |
| 2496 | |
| 2497 | insn_info *insns[2]; |
| 2498 | bool reversed = false; |
| 2499 | if (*i1 < *i2) |
| 2500 | { |
| 2501 | insns[0] = i1; |
| 2502 | insns[1] = i2; |
| 2503 | } |
| 2504 | else |
| 2505 | { |
| 2506 | insns[0] = i2; |
| 2507 | insns[1] = i1; |
| 2508 | reversed = true; |
| 2509 | } |
| 2510 | |
| 2511 | rtx cand_mems[2]; |
| 2512 | rtx reg_ops[2]; |
| 2513 | rtx pats[2]; |
| 2514 | for (int i = 0; i < 2; i++) |
| 2515 | { |
| 2516 | pats[i] = PATTERN (insn: insns[i]->rtl ()); |
| 2517 | cand_mems[i] = XEXP (pats[i], load_p); |
| 2518 | reg_ops[i] = XEXP (pats[i], !load_p); |
| 2519 | } |
| 2520 | |
| 2521 | if (load_p && reg_overlap_mentioned_p (reg_ops[0], reg_ops[1])) |
| 2522 | { |
| 2523 | if (dump_file) |
| 2524 | fprintf (stream: dump_file, |
| 2525 | format: "punting on load pair due to reg conflcits (%d,%d)\n" , |
| 2526 | insns[0]->uid (), insns[1]->uid ()); |
| 2527 | return false; |
| 2528 | } |
| 2529 | |
| 2530 | if (cfun->can_throw_non_call_exceptions |
| 2531 | && find_reg_note (insns[0]->rtl (), REG_EH_REGION, NULL_RTX) |
| 2532 | && find_reg_note (insns[1]->rtl (), REG_EH_REGION, NULL_RTX)) |
| 2533 | { |
| 2534 | if (dump_file) |
| 2535 | fprintf (stream: dump_file, |
| 2536 | format: "can't combine insns with EH side effects (%d,%d)\n" , |
| 2537 | insns[0]->uid (), insns[1]->uid ()); |
| 2538 | return false; |
| 2539 | } |
| 2540 | |
| 2541 | auto_vec<base_cand, 2> base_cands (2); |
| 2542 | |
| 2543 | int writeback = m_pass->get_viable_bases (insns, base_cands, cand_mems, |
| 2544 | access_size, reversed); |
| 2545 | if (base_cands.is_empty ()) |
| 2546 | { |
| 2547 | if (dump_file) |
| 2548 | fprintf (stream: dump_file, format: "no viable base for pair (%d,%d)\n" , |
| 2549 | insns[0]->uid (), insns[1]->uid ()); |
| 2550 | return false; |
| 2551 | } |
| 2552 | |
| 2553 | // Punt on frame-related insns with writeback. We probably won't see |
| 2554 | // these in practice, but this is conservative and ensures we don't |
| 2555 | // have to worry about these later on. |
| 2556 | if (writeback && (RTX_FRAME_RELATED_P (i1->rtl ()) |
| 2557 | || RTX_FRAME_RELATED_P (i2->rtl ()))) |
| 2558 | { |
| 2559 | if (dump_file) |
| 2560 | fprintf (stream: dump_file, |
| 2561 | format: "rejecting pair (%d,%d): frame-related insn with writeback\n" , |
| 2562 | i1->uid (), i2->uid ()); |
| 2563 | return false; |
| 2564 | } |
| 2565 | |
| 2566 | rtx *ignore = &XEXP (pats[1], load_p); |
| 2567 | for (auto use : insns[1]->uses ()) |
| 2568 | if (!use->is_mem () |
| 2569 | && refers_to_regno_p (use->regno (), use->regno () + 1, pats[1], ignore) |
| 2570 | && use->def () && use->def ()->insn () == insns[0]) |
| 2571 | { |
| 2572 | // N.B. we allow a true dependence on the base address, as this |
| 2573 | // happens in the case of auto-inc accesses. Consider a post-increment |
| 2574 | // load followed by a regular indexed load, for example. |
| 2575 | if (dump_file) |
| 2576 | fprintf (stream: dump_file, |
| 2577 | format: "%d has non-address true dependence on %d, rejecting pair\n" , |
| 2578 | insns[1]->uid (), insns[0]->uid ()); |
| 2579 | return false; |
| 2580 | } |
| 2581 | |
| 2582 | unsigned i = 0; |
| 2583 | while (i < base_cands.length ()) |
| 2584 | { |
| 2585 | base_cand &cand = base_cands[i]; |
| 2586 | |
| 2587 | rtx *ignore[2] = {}; |
| 2588 | for (int j = 0; j < 2; j++) |
| 2589 | if (cand.from_insn == !j) |
| 2590 | ignore[j] = &XEXP (cand_mems[j], 0); |
| 2591 | |
| 2592 | insn_info *h = first_hazard_after (insn: insns[0], ignore: ignore[0]); |
| 2593 | if (h && *h < *insns[1]) |
| 2594 | cand.hazards[0] = h; |
| 2595 | |
| 2596 | h = latest_hazard_before (insn: insns[1], ignore: ignore[1]); |
| 2597 | if (h && *h > *insns[0]) |
| 2598 | cand.hazards[1] = h; |
| 2599 | |
| 2600 | if (!cand.viable ()) |
| 2601 | { |
| 2602 | if (dump_file) |
| 2603 | fprintf (stream: dump_file, |
| 2604 | format: "pair (%d,%d): rejecting base %d due to dataflow " |
| 2605 | "hazards (%d,%d)\n" , |
| 2606 | insns[0]->uid (), |
| 2607 | insns[1]->uid (), |
| 2608 | cand.def->regno (), |
| 2609 | cand.hazards[0]->uid (), |
| 2610 | cand.hazards[1]->uid ()); |
| 2611 | |
| 2612 | base_cands.ordered_remove (ix: i); |
| 2613 | } |
| 2614 | else |
| 2615 | i++; |
| 2616 | } |
| 2617 | |
| 2618 | if (base_cands.is_empty ()) |
| 2619 | { |
| 2620 | if (dump_file) |
| 2621 | fprintf (stream: dump_file, |
| 2622 | format: "can't form pair (%d,%d) due to dataflow hazards\n" , |
| 2623 | insns[0]->uid (), insns[1]->uid ()); |
| 2624 | return false; |
| 2625 | } |
| 2626 | |
| 2627 | insn_info *alias_hazards[4] = {}; |
| 2628 | |
| 2629 | // First def of memory after the first insn, and last def of memory |
| 2630 | // before the second insn, respectively. |
| 2631 | def_info *mem_defs[2] = {}; |
| 2632 | if (load_p) |
| 2633 | { |
| 2634 | if (!MEM_READONLY_P (cand_mems[0])) |
| 2635 | { |
| 2636 | mem_defs[0] = memory_access (accesses: insns[0]->uses ())->def (); |
| 2637 | gcc_checking_assert (mem_defs[0]); |
| 2638 | mem_defs[0] = mem_defs[0]->next_def (); |
| 2639 | } |
| 2640 | if (!MEM_READONLY_P (cand_mems[1])) |
| 2641 | { |
| 2642 | mem_defs[1] = memory_access (accesses: insns[1]->uses ())->def (); |
| 2643 | gcc_checking_assert (mem_defs[1]); |
| 2644 | } |
| 2645 | } |
| 2646 | else |
| 2647 | { |
| 2648 | mem_defs[0] = memory_access (accesses: insns[0]->defs ())->next_def (); |
| 2649 | mem_defs[1] = memory_access (accesses: insns[1]->defs ())->prev_def (); |
| 2650 | gcc_checking_assert (mem_defs[0]); |
| 2651 | gcc_checking_assert (mem_defs[1]); |
| 2652 | } |
| 2653 | |
| 2654 | auto tombstone_p = [&](insn_info *insn) -> bool { |
| 2655 | return m_emitted_tombstone |
| 2656 | && bitmap_bit_p (&m_tombstone_bitmap, insn->uid ()); |
| 2657 | }; |
| 2658 | |
| 2659 | auto_vec<access_info *, 2> addr_use_vec[2]; |
| 2660 | use_array addr_uses[2]; |
| 2661 | |
| 2662 | // Collect the lists of register uses that occur in the candidate MEMs. |
| 2663 | for (int i = 0; i < 2; i++) |
| 2664 | { |
| 2665 | // N.B. it's safe for us to ignore uses that only occur in notes |
| 2666 | // here (e.g. in a REG_EQUIV expression) since we only pass the |
| 2667 | // MEM down to the alias machinery, so it can't see any insn-level |
| 2668 | // notes. |
| 2669 | for (auto use : insns[i]->uses ()) |
| 2670 | if (use->is_reg () |
| 2671 | && use->includes_address_uses () |
| 2672 | && !use->only_occurs_in_notes ()) |
| 2673 | addr_use_vec[i].safe_push (obj: use); |
| 2674 | |
| 2675 | addr_uses[i] = use_array (addr_use_vec[i]); |
| 2676 | } |
| 2677 | |
| 2678 | store_walker<false, decltype(tombstone_p)> |
| 2679 | forward_store_walker (mem_defs[0], cand_mems[0], addr_uses[0], insns[1], |
| 2680 | tombstone_p); |
| 2681 | |
| 2682 | store_walker<true, decltype(tombstone_p)> |
| 2683 | backward_store_walker (mem_defs[1], cand_mems[1], addr_uses[1], insns[0], |
| 2684 | tombstone_p); |
| 2685 | |
| 2686 | alias_walker *walkers[4] = {}; |
| 2687 | if (mem_defs[0]) |
| 2688 | walkers[0] = &forward_store_walker; |
| 2689 | if (mem_defs[1]) |
| 2690 | walkers[1] = &backward_store_walker; |
| 2691 | |
| 2692 | if (load_p && (mem_defs[0] || mem_defs[1])) |
| 2693 | m_pass->do_alias_analysis (alias_hazards, walkers, load_p); |
| 2694 | else |
| 2695 | { |
| 2696 | // We want to find any loads hanging off the first store. |
| 2697 | mem_defs[0] = memory_access (accesses: insns[0]->defs ()); |
| 2698 | load_walker<false> forward_load_walker (mem_defs[0], insns[0], |
| 2699 | addr_uses[0], insns[1]); |
| 2700 | load_walker<true> backward_load_walker (mem_defs[1], insns[1], |
| 2701 | addr_uses[1], insns[0]); |
| 2702 | walkers[2] = &forward_load_walker; |
| 2703 | walkers[3] = &backward_load_walker; |
| 2704 | m_pass->do_alias_analysis (alias_hazards, walkers, load_p); |
| 2705 | // Now consolidate hazards back down. |
| 2706 | if (alias_hazards[2] |
| 2707 | && (!alias_hazards[0] || (*alias_hazards[2] < *alias_hazards[0]))) |
| 2708 | alias_hazards[0] = alias_hazards[2]; |
| 2709 | |
| 2710 | if (alias_hazards[3] |
| 2711 | && (!alias_hazards[1] || (*alias_hazards[3] > *alias_hazards[1]))) |
| 2712 | alias_hazards[1] = alias_hazards[3]; |
| 2713 | } |
| 2714 | |
| 2715 | if (alias_hazards[0] && alias_hazards[1] |
| 2716 | && *alias_hazards[0] <= *alias_hazards[1]) |
| 2717 | { |
| 2718 | if (dump_file) |
| 2719 | fprintf (stream: dump_file, |
| 2720 | format: "cannot form pair (%d,%d) due to alias conflicts (%d,%d)\n" , |
| 2721 | i1->uid (), i2->uid (), |
| 2722 | alias_hazards[0]->uid (), alias_hazards[1]->uid ()); |
| 2723 | return false; |
| 2724 | } |
| 2725 | |
| 2726 | // Now narrow the hazards on each base candidate using |
| 2727 | // the alias hazards. |
| 2728 | i = 0; |
| 2729 | while (i < base_cands.length ()) |
| 2730 | { |
| 2731 | base_cand &cand = base_cands[i]; |
| 2732 | if (alias_hazards[0] && (!cand.hazards[0] |
| 2733 | || *alias_hazards[0] < *cand.hazards[0])) |
| 2734 | cand.hazards[0] = alias_hazards[0]; |
| 2735 | if (alias_hazards[1] && (!cand.hazards[1] |
| 2736 | || *alias_hazards[1] > *cand.hazards[1])) |
| 2737 | cand.hazards[1] = alias_hazards[1]; |
| 2738 | |
| 2739 | if (cand.viable ()) |
| 2740 | i++; |
| 2741 | else |
| 2742 | { |
| 2743 | if (dump_file) |
| 2744 | fprintf (stream: dump_file, format: "pair (%d,%d): rejecting base %d due to " |
| 2745 | "alias/dataflow hazards (%d,%d)" , |
| 2746 | insns[0]->uid (), insns[1]->uid (), |
| 2747 | cand.def->regno (), |
| 2748 | cand.hazards[0]->uid (), |
| 2749 | cand.hazards[1]->uid ()); |
| 2750 | |
| 2751 | base_cands.ordered_remove (ix: i); |
| 2752 | } |
| 2753 | } |
| 2754 | |
| 2755 | if (base_cands.is_empty ()) |
| 2756 | { |
| 2757 | if (dump_file) |
| 2758 | fprintf (stream: dump_file, |
| 2759 | format: "cannot form pair (%d,%d) due to alias/dataflow hazards" , |
| 2760 | insns[0]->uid (), insns[1]->uid ()); |
| 2761 | |
| 2762 | return false; |
| 2763 | } |
| 2764 | |
| 2765 | base_cand *base = &base_cands[0]; |
| 2766 | if (base_cands.length () > 1) |
| 2767 | { |
| 2768 | // If there are still multiple viable bases, it makes sense |
| 2769 | // to choose one that allows us to reduce register pressure, |
| 2770 | // for loads this means moving further down, for stores this |
| 2771 | // means moving further up. |
| 2772 | gcc_checking_assert (base_cands.length () == 2); |
| 2773 | const int hazard_i = !load_p; |
| 2774 | if (base->hazards[hazard_i]) |
| 2775 | { |
| 2776 | if (!base_cands[1].hazards[hazard_i]) |
| 2777 | base = &base_cands[1]; |
| 2778 | else if (load_p |
| 2779 | && *base_cands[1].hazards[hazard_i] |
| 2780 | > *(base->hazards[hazard_i])) |
| 2781 | base = &base_cands[1]; |
| 2782 | else if (!load_p |
| 2783 | && *base_cands[1].hazards[hazard_i] |
| 2784 | < *(base->hazards[hazard_i])) |
| 2785 | base = &base_cands[1]; |
| 2786 | } |
| 2787 | } |
| 2788 | |
| 2789 | // Otherwise, hazards[0] > hazards[1]. |
| 2790 | // Pair can be formed anywhere in (hazards[1], hazards[0]). |
| 2791 | insn_range_info range (insns[0], insns[1]); |
| 2792 | if (base->hazards[1]) |
| 2793 | range.first = base->hazards[1]; |
| 2794 | if (base->hazards[0]) |
| 2795 | range.last = base->hazards[0]->prev_nondebug_insn (); |
| 2796 | |
| 2797 | // If the second insn can throw, narrow the move range to exactly that insn. |
| 2798 | // This prevents us trying to move the second insn from the end of the BB. |
| 2799 | if (cfun->can_throw_non_call_exceptions |
| 2800 | && find_reg_note (insns[1]->rtl (), REG_EH_REGION, NULL_RTX)) |
| 2801 | { |
| 2802 | gcc_assert (range.includes (insns[1])); |
| 2803 | range = insn_range_info (insns[1]); |
| 2804 | } |
| 2805 | |
| 2806 | // Placement strategy: push loads down and pull stores up, this should |
| 2807 | // help register pressure by reducing live ranges. |
| 2808 | if (load_p) |
| 2809 | range.first = range.last; |
| 2810 | else |
| 2811 | range.last = range.first; |
| 2812 | |
| 2813 | if (dump_file) |
| 2814 | { |
| 2815 | auto print_hazard = [](insn_info *i) |
| 2816 | { |
| 2817 | if (i) |
| 2818 | fprintf (stream: dump_file, format: "%d" , i->uid ()); |
| 2819 | else |
| 2820 | fprintf (stream: dump_file, format: "-" ); |
| 2821 | }; |
| 2822 | auto print_pair = [print_hazard](insn_info **i) |
| 2823 | { |
| 2824 | print_hazard (i[0]); |
| 2825 | fprintf (stream: dump_file, format: "," ); |
| 2826 | print_hazard (i[1]); |
| 2827 | }; |
| 2828 | |
| 2829 | fprintf (stream: dump_file, format: "fusing pair [L=%d] (%d,%d), base=%d, hazards: (" , |
| 2830 | load_p, insns[0]->uid (), insns[1]->uid (), |
| 2831 | base->def->regno ()); |
| 2832 | print_pair (base->hazards); |
| 2833 | fprintf (stream: dump_file, format: "), move_range: (%d,%d)\n" , |
| 2834 | range.first->uid (), range.last->uid ()); |
| 2835 | } |
| 2836 | |
| 2837 | return fuse_pair (load_p, access_size, writeback, |
| 2838 | i1, i2, base&: *base, move_range: range); |
| 2839 | } |
| 2840 | |
| 2841 | static void |
| 2842 | dump_insn_list (FILE *f, const insn_list_t &l) |
| 2843 | { |
| 2844 | fprintf (stream: f, format: "(" ); |
| 2845 | |
| 2846 | auto i = l.begin (); |
| 2847 | auto end = l.end (); |
| 2848 | |
| 2849 | if (i != end) |
| 2850 | fprintf (stream: f, format: "%d" , (*i)->uid ()); |
| 2851 | i++; |
| 2852 | |
| 2853 | for (; i != end; i++) |
| 2854 | fprintf (stream: f, format: ", %d" , (*i)->uid ()); |
| 2855 | |
| 2856 | fprintf (stream: f, format: ")" ); |
| 2857 | } |
| 2858 | |
| 2859 | DEBUG_FUNCTION void |
| 2860 | debug (const insn_list_t &l) |
| 2861 | { |
| 2862 | dump_insn_list (stderr, l); |
| 2863 | fprintf (stderr, format: "\n" ); |
| 2864 | } |
| 2865 | |
| 2866 | // LEFT_LIST and RIGHT_LIST are lists of candidate instructions where all insns |
| 2867 | // in LEFT_LIST are known to be adjacent to those in RIGHT_LIST. |
| 2868 | // |
| 2869 | // This function traverses the resulting 2D matrix of possible pair candidates |
| 2870 | // and attempts to merge them into pairs. |
| 2871 | // |
| 2872 | // The algorithm is straightforward: if we consider a combined list of |
| 2873 | // candidates X obtained by merging LEFT_LIST and RIGHT_LIST in program order, |
| 2874 | // then we advance through X until we reach a crossing point (where X[i] and |
| 2875 | // X[i+1] come from different source lists). |
| 2876 | // |
| 2877 | // At this point we know X[i] and X[i+1] are adjacent accesses, and we try to |
| 2878 | // fuse them into a pair. If this succeeds, we remove X[i] and X[i+1] from |
| 2879 | // their original lists and continue as above. |
| 2880 | // |
| 2881 | // In the failure case, we advance through the source list containing X[i] and |
| 2882 | // continue as above (proceeding to the next crossing point). |
| 2883 | // |
| 2884 | // The rationale for skipping over groups of consecutive candidates from the |
| 2885 | // same source list is as follows: |
| 2886 | // |
| 2887 | // In the store case, the insns in the group can't be re-ordered over each |
| 2888 | // other as they are guaranteed to store to the same location, so we're |
| 2889 | // guaranteed not to lose opportunities by doing this. |
| 2890 | // |
| 2891 | // In the load case, subsequent loads from the same location are either |
| 2892 | // redundant (in which case they should have been cleaned up by an earlier |
| 2893 | // optimization pass) or there is an intervening aliasing hazard, in which case |
| 2894 | // we can't re-order them anyway, so provided earlier passes have cleaned up |
| 2895 | // redundant loads, we shouldn't miss opportunities by doing this. |
| 2896 | void |
| 2897 | pair_fusion_bb_info::merge_pairs (insn_list_t &left_list, |
| 2898 | insn_list_t &right_list, |
| 2899 | bool load_p, |
| 2900 | unsigned access_size) |
| 2901 | { |
| 2902 | if (dump_file) |
| 2903 | { |
| 2904 | fprintf (stream: dump_file, format: "merge_pairs [L=%d], cand vecs " , load_p); |
| 2905 | dump_insn_list (f: dump_file, l: left_list); |
| 2906 | fprintf (stream: dump_file, format: " x " ); |
| 2907 | dump_insn_list (f: dump_file, l: right_list); |
| 2908 | fprintf (stream: dump_file, format: "\n" ); |
| 2909 | } |
| 2910 | |
| 2911 | auto iter_l = left_list.begin (); |
| 2912 | auto iter_r = right_list.begin (); |
| 2913 | |
| 2914 | while (iter_l != left_list.end () && iter_r != right_list.end ()) |
| 2915 | { |
| 2916 | auto next_l = std::next (x: iter_l); |
| 2917 | auto next_r = std::next (x: iter_r); |
| 2918 | if (**iter_l < **iter_r |
| 2919 | && next_l != left_list.end () |
| 2920 | && **next_l < **iter_r) |
| 2921 | iter_l = next_l; |
| 2922 | else if (**iter_r < **iter_l |
| 2923 | && next_r != right_list.end () |
| 2924 | && **next_r < **iter_l) |
| 2925 | iter_r = next_r; |
| 2926 | else if (try_fuse_pair (load_p, access_size, i1: *iter_l, i2: *iter_r)) |
| 2927 | { |
| 2928 | left_list.erase (position: iter_l); |
| 2929 | iter_l = next_l; |
| 2930 | right_list.erase (position: iter_r); |
| 2931 | iter_r = next_r; |
| 2932 | } |
| 2933 | else if (**iter_l < **iter_r) |
| 2934 | iter_l = next_l; |
| 2935 | else |
| 2936 | iter_r = next_r; |
| 2937 | } |
| 2938 | } |
| 2939 | |
| 2940 | // Iterate over the accesses in GROUP, looking for adjacent sets |
| 2941 | // of accesses. If we find two sets of adjacent accesses, call |
| 2942 | // merge_pairs. |
| 2943 | void |
| 2944 | pair_fusion_bb_info::transform_for_base (int encoded_lfs, |
| 2945 | access_group &group) |
| 2946 | { |
| 2947 | const auto lfs = decode_lfs (lfs: encoded_lfs); |
| 2948 | const unsigned access_size = lfs.size; |
| 2949 | |
| 2950 | bool skip_next = true; |
| 2951 | access_record *prev_access = nullptr; |
| 2952 | |
| 2953 | for (auto &access : group.list) |
| 2954 | { |
| 2955 | if (skip_next) |
| 2956 | skip_next = false; |
| 2957 | else if (known_eq (access.offset, prev_access->offset + access_size)) |
| 2958 | { |
| 2959 | merge_pairs (left_list&: prev_access->cand_insns, |
| 2960 | right_list&: access.cand_insns, |
| 2961 | load_p: lfs.load_p, |
| 2962 | access_size); |
| 2963 | skip_next = access.cand_insns.empty (); |
| 2964 | } |
| 2965 | prev_access = &access; |
| 2966 | } |
| 2967 | } |
| 2968 | |
| 2969 | // If we emitted tombstone insns for this BB, iterate through the BB |
| 2970 | // and remove all the tombstone insns, being sure to reparent any uses |
| 2971 | // of mem to previous defs when we do this. |
| 2972 | void |
| 2973 | pair_fusion_bb_info::cleanup_tombstones () |
| 2974 | { |
| 2975 | // No need to do anything if we didn't emit a tombstone insn for this BB. |
| 2976 | if (!m_emitted_tombstone) |
| 2977 | return; |
| 2978 | |
| 2979 | for (auto insn : iterate_safely (range: m_bb->nondebug_insns ())) |
| 2980 | { |
| 2981 | if (!insn->is_real () |
| 2982 | || !bitmap_bit_p (&m_tombstone_bitmap, insn->uid ())) |
| 2983 | continue; |
| 2984 | |
| 2985 | auto set = as_a<set_info *> (p: memory_access (accesses: insn->defs ())); |
| 2986 | if (set->has_any_uses ()) |
| 2987 | { |
| 2988 | auto prev_set = as_a<set_info *> (p: set->prev_def ()); |
| 2989 | while (set->first_use ()) |
| 2990 | crtl->ssa->reparent_use (use: set->first_use (), new_def: prev_set); |
| 2991 | } |
| 2992 | |
| 2993 | // Now set has no uses, we can delete it. |
| 2994 | insn_change change (insn, insn_change::DELETE); |
| 2995 | crtl->ssa->change_insn (change); |
| 2996 | } |
| 2997 | } |
| 2998 | |
| 2999 | template<typename Map> |
| 3000 | void |
| 3001 | pair_fusion_bb_info::traverse_base_map (Map &map) |
| 3002 | { |
| 3003 | for (auto kv : map) |
| 3004 | { |
| 3005 | const auto &key = kv.first; |
| 3006 | auto &value = kv.second; |
| 3007 | transform_for_base (encoded_lfs: key.second, group&: value); |
| 3008 | } |
| 3009 | } |
| 3010 | |
| 3011 | void |
| 3012 | pair_fusion_bb_info::transform () |
| 3013 | { |
| 3014 | traverse_base_map (map&: expr_map); |
| 3015 | traverse_base_map (map&: def_map); |
| 3016 | } |
| 3017 | |
| 3018 | // Given an existing pair insn INSN, look for a trailing update of |
| 3019 | // the base register which we can fold in to make this pair use |
| 3020 | // a writeback addressing mode. |
| 3021 | void |
| 3022 | pair_fusion::try_promote_writeback (insn_info *insn, bool load_p) |
| 3023 | { |
| 3024 | rtx regs[2]; |
| 3025 | |
| 3026 | rtx mem = destructure_pair (regs, pattern: PATTERN (insn: insn->rtl ()), load_p); |
| 3027 | gcc_checking_assert (MEM_P (mem)); |
| 3028 | |
| 3029 | poly_int64 offset; |
| 3030 | rtx base = strip_offset (XEXP (mem, 0), &offset); |
| 3031 | gcc_assert (REG_P (base)); |
| 3032 | |
| 3033 | const auto access_size = GET_MODE_SIZE (GET_MODE (mem)).to_constant () / 2; |
| 3034 | |
| 3035 | if (find_access (accesses: insn->defs (), REGNO (base))) |
| 3036 | { |
| 3037 | gcc_assert (load_p); |
| 3038 | if (dump_file) |
| 3039 | fprintf (stream: dump_file, |
| 3040 | format: "ldp %d clobbers base r%d, can't promote to writeback\n" , |
| 3041 | insn->uid (), REGNO (base)); |
| 3042 | return; |
| 3043 | } |
| 3044 | |
| 3045 | auto base_use = find_access (accesses: insn->uses (), REGNO (base)); |
| 3046 | gcc_assert (base_use); |
| 3047 | |
| 3048 | if (!base_use->def ()) |
| 3049 | { |
| 3050 | if (dump_file) |
| 3051 | fprintf (stream: dump_file, |
| 3052 | format: "found pair (i%d, L=%d): but base r%d is upwards exposed\n" , |
| 3053 | insn->uid (), load_p, REGNO (base)); |
| 3054 | return; |
| 3055 | } |
| 3056 | |
| 3057 | auto base_def = base_use->def (); |
| 3058 | |
| 3059 | rtx wb_effect = NULL_RTX; |
| 3060 | def_info *add_def; |
| 3061 | const insn_range_info pair_range (insn); |
| 3062 | insn_info *insns[2] = { nullptr, insn }; |
| 3063 | insn_info *trailing_add |
| 3064 | = find_trailing_add (insns, pair_range, initial_writeback: 0, writeback_effect: &wb_effect, |
| 3065 | add_def: &add_def, base_def, initial_offset: offset, |
| 3066 | access_size); |
| 3067 | if (!trailing_add) |
| 3068 | return; |
| 3069 | |
| 3070 | auto attempt = crtl->ssa->new_change_attempt (); |
| 3071 | |
| 3072 | insn_change pair_change (insn); |
| 3073 | insn_change del_change (trailing_add, insn_change::DELETE); |
| 3074 | insn_change *changes[] = { &pair_change, &del_change }; |
| 3075 | |
| 3076 | rtx pair_pat = gen_promote_writeback_pair (wb_effect, mem, regs, load_p); |
| 3077 | validate_unshare_change (insn->rtl (), &PATTERN (insn: insn->rtl ()), pair_pat, |
| 3078 | true); |
| 3079 | |
| 3080 | // The pair must gain the def of the base register from the add. |
| 3081 | pair_change.new_defs = insert_access (watermark&: attempt, |
| 3082 | access1: add_def, |
| 3083 | accesses2: pair_change.new_defs); |
| 3084 | gcc_assert (pair_change.new_defs.is_valid ()); |
| 3085 | |
| 3086 | auto ignore = ignore_changing_insns (changes); |
| 3087 | for (unsigned i = 0; i < ARRAY_SIZE (changes); i++) |
| 3088 | gcc_assert (changes[i]->move_range.singleton () |
| 3089 | && rtl_ssa::restrict_movement (*changes[i], ignore)); |
| 3090 | |
| 3091 | if (!rtl_ssa::recog (watermark&: attempt, change&: pair_change, ignore)) |
| 3092 | { |
| 3093 | if (dump_file) |
| 3094 | fprintf (stream: dump_file, format: "i%d: recog failed on wb pair, bailing out\n" , |
| 3095 | insn->uid ()); |
| 3096 | cancel_changes (0); |
| 3097 | return; |
| 3098 | } |
| 3099 | |
| 3100 | gcc_assert (crtl->ssa->verify_insn_changes (changes)); |
| 3101 | |
| 3102 | if (MAY_HAVE_DEBUG_INSNS) |
| 3103 | fixup_debug_uses_trailing_add (attempt, pair_dst: insn, trailing_add, writeback_effect: wb_effect); |
| 3104 | |
| 3105 | confirm_change_group (); |
| 3106 | crtl->ssa->change_insns (changes); |
| 3107 | } |
| 3108 | |
| 3109 | // Main function for the pass. Iterate over the insns in BB looking |
| 3110 | // for load/store candidates. If running after RA, also try and promote |
| 3111 | // non-writeback pairs to use writeback addressing. Then try to fuse |
| 3112 | // candidates into pairs. |
| 3113 | void pair_fusion::process_block (bb_info *bb) |
| 3114 | { |
| 3115 | const bool track_loads = track_loads_p (); |
| 3116 | const bool track_stores = track_stores_p (); |
| 3117 | |
| 3118 | pair_fusion_bb_info bb_state (bb, this); |
| 3119 | |
| 3120 | for (auto insn : bb->nondebug_insns ()) |
| 3121 | { |
| 3122 | rtx_insn *rti = insn->rtl (); |
| 3123 | |
| 3124 | if (!rti || !INSN_P (rti)) |
| 3125 | continue; |
| 3126 | |
| 3127 | rtx pat = PATTERN (insn: rti); |
| 3128 | bool load_p; |
| 3129 | if (reload_completed |
| 3130 | && should_handle_writeback (which: writeback_type::ALL) |
| 3131 | && pair_mem_insn_p (insn: rti, load_p)) |
| 3132 | try_promote_writeback (insn, load_p); |
| 3133 | |
| 3134 | if (GET_CODE (pat) != SET) |
| 3135 | continue; |
| 3136 | |
| 3137 | if (track_stores && MEM_P (XEXP (pat, 0))) |
| 3138 | bb_state.track_access (insn, load_p: false, XEXP (pat, 0)); |
| 3139 | else if (track_loads && MEM_P (XEXP (pat, 1))) |
| 3140 | bb_state.track_access (insn, load_p: true, XEXP (pat, 1)); |
| 3141 | } |
| 3142 | |
| 3143 | bb_state.transform (); |
| 3144 | bb_state.cleanup_tombstones (); |
| 3145 | } |
| 3146 | |