1/* Instruction scheduling pass.
2 Copyright (C) 1992-2023 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
5
6This file is part of GCC.
7
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 3, or (at your option) any later
11version.
12
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
17
18You should have received a copy of the GNU General Public License
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
21
22/* This pass implements list scheduling within basic blocks. It is
23 run twice: (1) after flow analysis, but before register allocation,
24 and (2) after register allocation.
25
26 The first run performs interblock scheduling, moving insns between
27 different blocks in the same "region", and the second runs only
28 basic block scheduling.
29
30 Interblock motions performed are useful motions and speculative
31 motions, including speculative loads. Motions requiring code
32 duplication are not supported. The identification of motion type
33 and the check for validity of speculative motions requires
34 construction and analysis of the function's control flow graph.
35
36 The main entry point for this pass is schedule_insns(), called for
37 each function. The work of the scheduler is organized in three
38 levels: (1) function level: insns are subject to splitting,
39 control-flow-graph is constructed, regions are computed (after
40 reload, each region is of one block), (2) region level: control
41 flow graph attributes required for interblock scheduling are
42 computed (dominators, reachability, etc.), data dependences and
43 priorities are computed, and (3) block level: insns in the block
44 are actually scheduled. */
45
46#include "config.h"
47#include "system.h"
48#include "coretypes.h"
49#include "backend.h"
50#include "target.h"
51#include "rtl.h"
52#include "df.h"
53#include "memmodel.h"
54#include "tm_p.h"
55#include "insn-config.h"
56#include "emit-rtl.h"
57#include "recog.h"
58#include "profile.h"
59#include "insn-attr.h"
60#include "except.h"
61#include "cfganal.h"
62#include "sched-int.h"
63#include "sel-sched.h"
64#include "tree-pass.h"
65#include "dbgcnt.h"
66#include "pretty-print.h"
67#include "print-rtl.h"
68
69/* Disable warnings about quoting issues in the pp_xxx calls below
70 that (intentionally) don't follow GCC diagnostic conventions. */
71#if __GNUC__ >= 10
72# pragma GCC diagnostic push
73# pragma GCC diagnostic ignored "-Wformat-diag"
74#endif
75
76#ifdef INSN_SCHEDULING
77
78/* Some accessor macros for h_i_d members only used within this file. */
79#define FED_BY_SPEC_LOAD(INSN) (HID (INSN)->fed_by_spec_load)
80#define IS_LOAD_INSN(INSN) (HID (insn)->is_load_insn)
81
82/* nr_inter/spec counts interblock/speculative motion for the function. */
83static int nr_inter, nr_spec;
84
85static bool is_cfg_nonregular (void);
86
87/* Number of regions in the procedure. */
88int nr_regions = 0;
89
90/* Same as above before adding any new regions. */
91static int nr_regions_initial = 0;
92
93/* Table of region descriptions. */
94region *rgn_table = NULL;
95
96/* Array of lists of regions' blocks. */
97int *rgn_bb_table = NULL;
98
99/* Topological order of blocks in the region (if b2 is reachable from
100 b1, block_to_bb[b2] > block_to_bb[b1]). Note: A basic block is
101 always referred to by either block or b, while its topological
102 order name (in the region) is referred to by bb. */
103int *block_to_bb = NULL;
104
105/* The number of the region containing a block. */
106int *containing_rgn = NULL;
107
108/* ebb_head [i] - is index in rgn_bb_table of the head basic block of i'th ebb.
109 Currently we can get a ebb only through splitting of currently
110 scheduling block, therefore, we don't need ebb_head array for every region,
111 hence, its sufficient to hold it for current one only. */
112int *ebb_head = NULL;
113
114/* The minimum probability of reaching a source block so that it will be
115 considered for speculative scheduling. */
116static int min_spec_prob;
117
118static void find_single_block_region (bool);
119static void find_rgns (void);
120static bool too_large (int, int *, int *);
121
122/* Blocks of the current region being scheduled. */
123int current_nr_blocks;
124int current_blocks;
125
126/* A speculative motion requires checking live information on the path
127 from 'source' to 'target'. The split blocks are those to be checked.
128 After a speculative motion, live information should be modified in
129 the 'update' blocks.
130
131 Lists of split and update blocks for each candidate of the current
132 target are in array bblst_table. */
133static basic_block *bblst_table;
134static int bblst_size, bblst_last;
135
136/* Arrays that hold the DFA state at the end of a basic block, to re-use
137 as the initial state at the start of successor blocks. The BB_STATE
138 array holds the actual DFA state, and BB_STATE_ARRAY[I] is a pointer
139 into BB_STATE for basic block I. FIXME: This should be a vec. */
140static char *bb_state_array = NULL;
141static state_t *bb_state = NULL;
142
143/* Target info declarations.
144
145 The block currently being scheduled is referred to as the "target" block,
146 while other blocks in the region from which insns can be moved to the
147 target are called "source" blocks. The candidate structure holds info
148 about such sources: are they valid? Speculative? Etc. */
149struct bblst
150{
151 basic_block *first_member;
152 int nr_members;
153};
154
155struct candidate
156{
157 char is_valid;
158 char is_speculative;
159 int src_prob;
160 bblst split_bbs;
161 bblst update_bbs;
162};
163
164static candidate *candidate_table;
165#define IS_VALID(src) (candidate_table[src].is_valid)
166#define IS_SPECULATIVE(src) (candidate_table[src].is_speculative)
167#define IS_SPECULATIVE_INSN(INSN) \
168 (IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN))))
169#define SRC_PROB(src) ( candidate_table[src].src_prob )
170
171/* The bb being currently scheduled. */
172int target_bb;
173
174/* List of edges. */
175struct edgelst
176{
177 edge *first_member;
178 int nr_members;
179};
180
181static edge *edgelst_table;
182static int edgelst_last;
183
184static void extract_edgelst (sbitmap, edgelst *);
185
186/* Target info functions. */
187static void split_edges (int, int, edgelst *);
188static void compute_trg_info (int);
189void debug_candidate (int);
190void debug_candidates (int);
191
192/* Dominators array: dom[i] contains the sbitmap of dominators of
193 bb i in the region. */
194static sbitmap *dom;
195
196/* bb 0 is the only region entry. */
197#define IS_RGN_ENTRY(bb) (!bb)
198
199/* Is bb_src dominated by bb_trg. */
200#define IS_DOMINATED(bb_src, bb_trg) \
201( bitmap_bit_p (dom[bb_src], bb_trg) )
202
203/* Probability: Prob[i] is an int in [0, REG_BR_PROB_BASE] which is
204 the probability of bb i relative to the region entry. */
205static int *prob;
206
207/* Bit-set of edges, where bit i stands for edge i. */
208typedef sbitmap edgeset;
209
210/* Number of edges in the region. */
211static int rgn_nr_edges;
212
213/* Array of size rgn_nr_edges. */
214static edge *rgn_edges;
215
216/* Mapping from each edge in the graph to its number in the rgn. */
217#define EDGE_TO_BIT(edge) ((int)(size_t)(edge)->aux)
218#define SET_EDGE_TO_BIT(edge,nr) ((edge)->aux = (void *)(size_t)(nr))
219
220/* The split edges of a source bb is different for each target
221 bb. In order to compute this efficiently, the 'potential-split edges'
222 are computed for each bb prior to scheduling a region. This is actually
223 the split edges of each bb relative to the region entry.
224
225 pot_split[bb] is the set of potential split edges of bb. */
226static edgeset *pot_split;
227
228/* For every bb, a set of its ancestor edges. */
229static edgeset *ancestor_edges;
230
231#define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN))))
232
233/* Speculative scheduling functions. */
234static bool check_live_1 (int, rtx);
235static void update_live_1 (int, rtx);
236static bool is_pfree (rtx, int, int);
237static bool find_conditional_protection (rtx_insn *, int);
238static bool is_conditionally_protected (rtx, int, int);
239static bool is_prisky (rtx, int, int);
240static bool is_exception_free (rtx_insn *, int, int);
241
242static bool sets_likely_spilled (rtx);
243static void sets_likely_spilled_1 (rtx, const_rtx, void *);
244static void add_branch_dependences (rtx_insn *, rtx_insn *);
245static void compute_block_dependences (int);
246
247static void schedule_region (int);
248static void concat_insn_mem_list (rtx_insn_list *, rtx_expr_list *,
249 rtx_insn_list **, rtx_expr_list **);
250static void propagate_deps (int, class deps_desc *);
251static void free_pending_lists (void);
252
253/* Functions for construction of the control flow graph. */
254
255/* Return true if control flow graph should not be constructed,
256 false otherwise.
257
258 We decide not to build the control flow graph if there is possibly more
259 than one entry to the function, if computed branches exist, if we
260 have nonlocal gotos, or if we have an unreachable loop. */
261
262static bool
263is_cfg_nonregular (void)
264{
265 basic_block b;
266 rtx_insn *insn;
267
268 /* If we have a label that could be the target of a nonlocal goto, then
269 the cfg is not well structured. */
270 if (nonlocal_goto_handler_labels)
271 return true;
272
273 /* If we have any forced labels, then the cfg is not well structured. */
274 if (forced_labels)
275 return true;
276
277 /* If we have exception handlers, then we consider the cfg not well
278 structured. ?!? We should be able to handle this now that we
279 compute an accurate cfg for EH. */
280 if (current_function_has_exception_handlers ())
281 return true;
282
283 /* If we have insns which refer to labels as non-jumped-to operands,
284 then we consider the cfg not well structured. */
285 FOR_EACH_BB_FN (b, cfun)
286 FOR_BB_INSNS (b, insn)
287 {
288 rtx note, set, dest;
289 rtx_insn *next;
290
291 /* If this function has a computed jump, then we consider the cfg
292 not well structured. */
293 if (JUMP_P (insn) && computed_jump_p (insn))
294 return true;
295
296 if (!INSN_P (insn))
297 continue;
298
299 note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX);
300 if (note == NULL_RTX)
301 continue;
302
303 /* For that label not to be seen as a referred-to label, this
304 must be a single-set which is feeding a jump *only*. This
305 could be a conditional jump with the label split off for
306 machine-specific reasons or a casesi/tablejump. */
307 next = next_nonnote_insn (insn);
308 if (next == NULL_RTX
309 || !JUMP_P (next)
310 || (JUMP_LABEL (next) != XEXP (note, 0)
311 && find_reg_note (next, REG_LABEL_TARGET,
312 XEXP (note, 0)) == NULL_RTX)
313 || BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (insn: next))
314 return true;
315
316 set = single_set (insn);
317 if (set == NULL_RTX)
318 return true;
319
320 dest = SET_DEST (set);
321 if (!REG_P (dest) || !dead_or_set_p (next, dest))
322 return true;
323 }
324
325 /* Unreachable loops with more than one basic block are detected
326 during the DFS traversal in find_rgns.
327
328 Unreachable loops with a single block are detected here. This
329 test is redundant with the one in find_rgns, but it's much
330 cheaper to go ahead and catch the trivial case here. */
331 FOR_EACH_BB_FN (b, cfun)
332 {
333 if (EDGE_COUNT (b->preds) == 0
334 || (single_pred_p (bb: b)
335 && single_pred (bb: b) == b))
336 return true;
337 }
338
339 /* All the tests passed. Consider the cfg well structured. */
340 return false;
341}
342
343/* Extract list of edges from a bitmap containing EDGE_TO_BIT bits. */
344
345static void
346extract_edgelst (sbitmap set, edgelst *el)
347{
348 unsigned int i = 0;
349 sbitmap_iterator sbi;
350
351 /* edgelst table space is reused in each call to extract_edgelst. */
352 edgelst_last = 0;
353
354 el->first_member = &edgelst_table[edgelst_last];
355 el->nr_members = 0;
356
357 /* Iterate over each word in the bitset. */
358 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, sbi)
359 {
360 edgelst_table[edgelst_last++] = rgn_edges[i];
361 el->nr_members++;
362 }
363}
364
365/* Functions for the construction of regions. */
366
367/* Print the regions, for debugging purposes. Callable from debugger. */
368
369DEBUG_FUNCTION void
370debug_regions (void)
371{
372 int rgn, bb;
373
374 fprintf (stream: sched_dump, format: "\n;; ------------ REGIONS ----------\n\n");
375 for (rgn = 0; rgn < nr_regions; rgn++)
376 {
377 fprintf (stream: sched_dump, format: ";;\trgn %d nr_blocks %d:\n", rgn,
378 rgn_table[rgn].rgn_nr_blocks);
379 fprintf (stream: sched_dump, format: ";;\tbb/block: ");
380
381 /* We don't have ebb_head initialized yet, so we can't use
382 BB_TO_BLOCK (). */
383 current_blocks = RGN_BLOCKS (rgn);
384
385 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
386 fprintf (stream: sched_dump, format: " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
387
388 fprintf (stream: sched_dump, format: "\n\n");
389 }
390}
391
392/* Print the region's basic blocks. */
393
394DEBUG_FUNCTION void
395debug_region (int rgn)
396{
397 int bb;
398
399 fprintf (stderr, format: "\n;; ------------ REGION %d ----------\n\n", rgn);
400 fprintf (stderr, format: ";;\trgn %d nr_blocks %d:\n", rgn,
401 rgn_table[rgn].rgn_nr_blocks);
402 fprintf (stderr, format: ";;\tbb/block: ");
403
404 /* We don't have ebb_head initialized yet, so we can't use
405 BB_TO_BLOCK (). */
406 current_blocks = RGN_BLOCKS (rgn);
407
408 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
409 fprintf (stderr, format: " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
410
411 fprintf (stderr, format: "\n\n");
412
413 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
414 {
415 dump_bb (stderr,
416 BASIC_BLOCK_FOR_FN (cfun, rgn_bb_table[current_blocks + bb]),
417 0, TDF_SLIM | TDF_BLOCKS);
418 fprintf (stderr, format: "\n");
419 }
420
421 fprintf (stderr, format: "\n");
422
423}
424
425/* True when a bb with index BB_INDEX contained in region RGN. */
426static bool
427bb_in_region_p (int bb_index, int rgn)
428{
429 int i;
430
431 for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
432 if (rgn_bb_table[current_blocks + i] == bb_index)
433 return true;
434
435 return false;
436}
437
438/* Dump region RGN to file F using dot syntax. */
439void
440dump_region_dot (FILE *f, int rgn)
441{
442 int i;
443
444 fprintf (stream: f, format: "digraph Region_%d {\n", rgn);
445
446 /* We don't have ebb_head initialized yet, so we can't use
447 BB_TO_BLOCK (). */
448 current_blocks = RGN_BLOCKS (rgn);
449
450 for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
451 {
452 edge e;
453 edge_iterator ei;
454 int src_bb_num = rgn_bb_table[current_blocks + i];
455 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, src_bb_num);
456
457 FOR_EACH_EDGE (e, ei, bb->succs)
458 if (bb_in_region_p (bb_index: e->dest->index, rgn))
459 fprintf (stream: f, format: "\t%d -> %d\n", src_bb_num, e->dest->index);
460 }
461 fprintf (stream: f, format: "}\n");
462}
463
464/* The same, but first open a file specified by FNAME. */
465void
466dump_region_dot_file (const char *fname, int rgn)
467{
468 FILE *f = fopen (filename: fname, modes: "wt");
469 dump_region_dot (f, rgn);
470 fclose (stream: f);
471}
472
473/* Build a single block region for each basic block in the function.
474 This allows for using the same code for interblock and basic block
475 scheduling. */
476
477static void
478find_single_block_region (bool ebbs_p)
479{
480 basic_block bb, ebb_start;
481 int i = 0;
482
483 nr_regions = 0;
484
485 if (ebbs_p) {
486 int probability_cutoff;
487 if (profile_info && profile_status_for_fn (cfun) == PROFILE_READ)
488 probability_cutoff = param_tracer_min_branch_probability_feedback;
489 else
490 probability_cutoff = param_tracer_min_branch_probability;
491 probability_cutoff = REG_BR_PROB_BASE / 100 * probability_cutoff;
492
493 FOR_EACH_BB_FN (ebb_start, cfun)
494 {
495 RGN_NR_BLOCKS (nr_regions) = 0;
496 RGN_BLOCKS (nr_regions) = i;
497 RGN_DONT_CALC_DEPS (nr_regions) = 0;
498 RGN_HAS_REAL_EBB (nr_regions) = 0;
499
500 for (bb = ebb_start; ; bb = bb->next_bb)
501 {
502 edge e;
503
504 rgn_bb_table[i] = bb->index;
505 RGN_NR_BLOCKS (nr_regions)++;
506 CONTAINING_RGN (bb->index) = nr_regions;
507 BLOCK_TO_BB (bb->index) = i - RGN_BLOCKS (nr_regions);
508 i++;
509
510 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
511 || LABEL_P (BB_HEAD (bb->next_bb)))
512 break;
513
514 e = find_fallthru_edge (edges: bb->succs);
515 if (! e)
516 break;
517 if (e->probability.initialized_p ()
518 && e->probability.to_reg_br_prob_base () <= probability_cutoff)
519 break;
520 }
521
522 ebb_start = bb;
523 nr_regions++;
524 }
525 }
526 else
527 FOR_EACH_BB_FN (bb, cfun)
528 {
529 rgn_bb_table[nr_regions] = bb->index;
530 RGN_NR_BLOCKS (nr_regions) = 1;
531 RGN_BLOCKS (nr_regions) = nr_regions;
532 RGN_DONT_CALC_DEPS (nr_regions) = 0;
533 RGN_HAS_REAL_EBB (nr_regions) = 0;
534
535 CONTAINING_RGN (bb->index) = nr_regions;
536 BLOCK_TO_BB (bb->index) = 0;
537 nr_regions++;
538 }
539}
540
541/* Estimate number of the insns in the BB. */
542static int
543rgn_estimate_number_of_insns (basic_block bb)
544{
545 int count;
546
547 count = INSN_LUID (BB_END (bb)) - INSN_LUID (BB_HEAD (bb));
548
549 if (MAY_HAVE_DEBUG_INSNS)
550 {
551 rtx_insn *insn;
552
553 FOR_BB_INSNS (bb, insn)
554 if (DEBUG_INSN_P (insn))
555 count--;
556 }
557
558 return count;
559}
560
561/* Update number of blocks and the estimate for number of insns
562 in the region. Return true if the region is "too large" for interblock
563 scheduling (compile time considerations). */
564
565static bool
566too_large (int block, int *num_bbs, int *num_insns)
567{
568 (*num_bbs)++;
569 (*num_insns) += (common_sched_info->estimate_number_of_insns
570 (BASIC_BLOCK_FOR_FN (cfun, block)));
571
572 return ((*num_bbs > param_max_sched_region_blocks)
573 || (*num_insns > param_max_sched_region_insns));
574}
575
576/* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
577 is still an inner loop. Put in max_hdr[blk] the header of the most inner
578 loop containing blk. */
579#define UPDATE_LOOP_RELATIONS(blk, hdr) \
580{ \
581 if (max_hdr[blk] == -1) \
582 max_hdr[blk] = hdr; \
583 else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
584 bitmap_clear_bit (inner, hdr); \
585 else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
586 { \
587 bitmap_clear_bit (inner,max_hdr[blk]); \
588 max_hdr[blk] = hdr; \
589 } \
590}
591
592/* Find regions for interblock scheduling.
593
594 A region for scheduling can be:
595
596 * A loop-free procedure, or
597
598 * A reducible inner loop, or
599
600 * A basic block not contained in any other region.
601
602 ?!? In theory we could build other regions based on extended basic
603 blocks or reverse extended basic blocks. Is it worth the trouble?
604
605 Loop blocks that form a region are put into the region's block list
606 in topological order.
607
608 This procedure stores its results into the following global (ick) variables
609
610 * rgn_nr
611 * rgn_table
612 * rgn_bb_table
613 * block_to_bb
614 * containing region
615
616 We use dominator relationships to avoid making regions out of non-reducible
617 loops.
618
619 This procedure needs to be converted to work on pred/succ lists instead
620 of edge tables. That would simplify it somewhat. */
621
622static void
623haifa_find_rgns (void)
624{
625 int *max_hdr, *dfs_nr, *degree;
626 char no_loops = 1;
627 int node, child, loop_head, i, head, tail;
628 int count = 0, sp, idx = 0;
629 edge_iterator current_edge;
630 edge_iterator *stack;
631 int num_bbs, num_insns;
632 bool unreachable;
633 bool too_large_failure;
634 basic_block bb;
635
636 /* Perform a DFS traversal of the cfg. Identify loop headers, inner loops
637 and a mapping from block to its loop header (if the block is contained
638 in a loop, else -1).
639
640 Store results in HEADER, INNER, and MAX_HDR respectively, these will
641 be used as inputs to the second traversal.
642
643 STACK, SP and DFS_NR are only used during the first traversal. */
644
645 /* Allocate and initialize variables for the first traversal. */
646 max_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
647 dfs_nr = XCNEWVEC (int, last_basic_block_for_fn (cfun));
648 stack = XNEWVEC (edge_iterator, n_edges_for_fn (cfun));
649
650 /* Note if a block is a natural inner loop header. */
651 auto_sbitmap inner (last_basic_block_for_fn (cfun));
652 bitmap_ones (inner);
653
654 /* Note if a block is a natural loop header. */
655 auto_sbitmap header (last_basic_block_for_fn (cfun));
656 bitmap_clear (header);
657
658 /* Note if a block is in the block queue. */
659 auto_sbitmap in_queue (last_basic_block_for_fn (cfun));
660 bitmap_clear (in_queue);
661
662 /* Note if a block is in the block queue. */
663 auto_sbitmap in_stack (last_basic_block_for_fn (cfun));
664 bitmap_clear (in_stack);
665
666 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
667 max_hdr[i] = -1;
668
669 #define EDGE_PASSED(E) (ei_end_p ((E)) || ei_edge ((E))->aux)
670 #define SET_EDGE_PASSED(E) (ei_edge ((E))->aux = ei_edge ((E)))
671
672 /* DFS traversal to find inner loops in the cfg. */
673
674 current_edge = ei_start (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))->succs);
675 sp = -1;
676
677 while (1)
678 {
679 if (EDGE_PASSED (current_edge))
680 {
681 /* We have reached a leaf node or a node that was already
682 processed. Pop edges off the stack until we find
683 an edge that has not yet been processed. */
684 while (sp >= 0 && EDGE_PASSED (current_edge))
685 {
686 /* Pop entry off the stack. */
687 current_edge = stack[sp--];
688 node = ei_edge (i: current_edge)->src->index;
689 gcc_assert (node != ENTRY_BLOCK);
690 child = ei_edge (i: current_edge)->dest->index;
691 gcc_assert (child != EXIT_BLOCK);
692 bitmap_clear_bit (map: in_stack, bitno: child);
693 if (max_hdr[child] >= 0 && bitmap_bit_p (map: in_stack, bitno: max_hdr[child]))
694 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
695 ei_next (i: &current_edge);
696 }
697
698 /* See if have finished the DFS tree traversal. */
699 if (sp < 0 && EDGE_PASSED (current_edge))
700 break;
701
702 /* Nope, continue the traversal with the popped node. */
703 continue;
704 }
705
706 /* Process a node. */
707 node = ei_edge (i: current_edge)->src->index;
708 gcc_assert (node != ENTRY_BLOCK);
709 bitmap_set_bit (map: in_stack, bitno: node);
710 dfs_nr[node] = ++count;
711
712 /* We don't traverse to the exit block. */
713 child = ei_edge (i: current_edge)->dest->index;
714 if (child == EXIT_BLOCK)
715 {
716 SET_EDGE_PASSED (current_edge);
717 ei_next (i: &current_edge);
718 continue;
719 }
720
721 /* If the successor is in the stack, then we've found a loop.
722 Mark the loop, if it is not a natural loop, then it will
723 be rejected during the second traversal. */
724 if (bitmap_bit_p (map: in_stack, bitno: child))
725 {
726 no_loops = 0;
727 bitmap_set_bit (map: header, bitno: child);
728 UPDATE_LOOP_RELATIONS (node, child);
729 SET_EDGE_PASSED (current_edge);
730 ei_next (i: &current_edge);
731 continue;
732 }
733
734 /* If the child was already visited, then there is no need to visit
735 it again. Just update the loop relationships and restart
736 with a new edge. */
737 if (dfs_nr[child])
738 {
739 if (max_hdr[child] >= 0 && bitmap_bit_p (map: in_stack, bitno: max_hdr[child]))
740 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
741 SET_EDGE_PASSED (current_edge);
742 ei_next (i: &current_edge);
743 continue;
744 }
745
746 /* Push an entry on the stack and continue DFS traversal. */
747 stack[++sp] = current_edge;
748 SET_EDGE_PASSED (current_edge);
749 current_edge = ei_start (ei_edge (current_edge)->dest->succs);
750 }
751
752 /* Reset ->aux field used by EDGE_PASSED. */
753 FOR_ALL_BB_FN (bb, cfun)
754 {
755 edge_iterator ei;
756 edge e;
757 FOR_EACH_EDGE (e, ei, bb->succs)
758 e->aux = NULL;
759 }
760
761
762 /* Another check for unreachable blocks. The earlier test in
763 is_cfg_nonregular only finds unreachable blocks that do not
764 form a loop.
765
766 The DFS traversal will mark every block that is reachable from
767 the entry node by placing a nonzero value in dfs_nr. Thus if
768 dfs_nr is zero for any block, then it must be unreachable. */
769 unreachable = false;
770 FOR_EACH_BB_FN (bb, cfun)
771 if (dfs_nr[bb->index] == 0)
772 {
773 unreachable = true;
774 break;
775 }
776
777 /* Gross. To avoid wasting memory, the second pass uses the dfs_nr array
778 to hold degree counts. */
779 degree = dfs_nr;
780
781 FOR_EACH_BB_FN (bb, cfun)
782 degree[bb->index] = EDGE_COUNT (bb->preds);
783
784 /* Do not perform region scheduling if there are any unreachable
785 blocks. */
786 if (!unreachable)
787 {
788 int *queue, *degree1 = NULL;
789 /* We use EXTENDED_RGN_HEADER as an addition to HEADER and put
790 there basic blocks, which are forced to be region heads.
791 This is done to try to assemble few smaller regions
792 from a too_large region. */
793 sbitmap extended_rgn_header = NULL;
794 bool extend_regions_p;
795
796 if (no_loops)
797 bitmap_set_bit (map: header, bitno: 0);
798
799 /* Second traversal:find reducible inner loops and topologically sort
800 block of each region. */
801
802 queue = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
803
804 extend_regions_p = param_max_sched_extend_regions_iters > 0;
805 if (extend_regions_p)
806 {
807 degree1 = XNEWVEC (int, last_basic_block_for_fn (cfun));
808 extended_rgn_header =
809 sbitmap_alloc (last_basic_block_for_fn (cfun));
810 bitmap_clear (extended_rgn_header);
811 }
812
813 /* Find blocks which are inner loop headers. We still have non-reducible
814 loops to consider at this point. */
815 FOR_EACH_BB_FN (bb, cfun)
816 {
817 if (bitmap_bit_p (map: header, bitno: bb->index) && bitmap_bit_p (map: inner, bitno: bb->index))
818 {
819 edge e;
820 edge_iterator ei;
821 basic_block jbb;
822
823 /* Now check that the loop is reducible. We do this separate
824 from finding inner loops so that we do not find a reducible
825 loop which contains an inner non-reducible loop.
826
827 A simple way to find reducible/natural loops is to verify
828 that each block in the loop is dominated by the loop
829 header.
830
831 If there exists a block that is not dominated by the loop
832 header, then the block is reachable from outside the loop
833 and thus the loop is not a natural loop. */
834 FOR_EACH_BB_FN (jbb, cfun)
835 {
836 /* First identify blocks in the loop, except for the loop
837 entry block. */
838 if (bb->index == max_hdr[jbb->index] && bb != jbb)
839 {
840 /* Now verify that the block is dominated by the loop
841 header. */
842 if (!dominated_by_p (CDI_DOMINATORS, jbb, bb))
843 break;
844 }
845 }
846
847 /* If we exited the loop early, then I is the header of
848 a non-reducible loop and we should quit processing it
849 now. */
850 if (jbb != EXIT_BLOCK_PTR_FOR_FN (cfun))
851 continue;
852
853 /* I is a header of an inner loop, or block 0 in a subroutine
854 with no loops at all. */
855 head = tail = -1;
856 too_large_failure = false;
857 loop_head = max_hdr[bb->index];
858
859 if (extend_regions_p)
860 /* We save degree in case when we meet a too_large region
861 and cancel it. We need a correct degree later when
862 calling extend_rgns. */
863 memcpy (dest: degree1, src: degree,
864 last_basic_block_for_fn (cfun) * sizeof (int));
865
866 /* Decrease degree of all I's successors for topological
867 ordering. */
868 FOR_EACH_EDGE (e, ei, bb->succs)
869 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
870 --degree[e->dest->index];
871
872 /* Estimate # insns, and count # blocks in the region. */
873 num_bbs = 1;
874 num_insns = common_sched_info->estimate_number_of_insns (bb);
875
876 /* Find all loop latches (blocks with back edges to the loop
877 header) or all the leaf blocks in the cfg has no loops.
878
879 Place those blocks into the queue. */
880 if (no_loops)
881 {
882 FOR_EACH_BB_FN (jbb, cfun)
883 /* Leaf nodes have only a single successor which must
884 be EXIT_BLOCK. */
885 if (single_succ_p (bb: jbb)
886 && single_succ (bb: jbb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
887 {
888 queue[++tail] = jbb->index;
889 bitmap_set_bit (map: in_queue, bitno: jbb->index);
890
891 if (too_large (block: jbb->index, num_bbs: &num_bbs, num_insns: &num_insns))
892 {
893 too_large_failure = true;
894 break;
895 }
896 }
897 }
898 else
899 {
900 edge e;
901
902 FOR_EACH_EDGE (e, ei, bb->preds)
903 {
904 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
905 continue;
906
907 node = e->src->index;
908
909 if (max_hdr[node] == loop_head && node != bb->index)
910 {
911 /* This is a loop latch. */
912 queue[++tail] = node;
913 bitmap_set_bit (map: in_queue, bitno: node);
914
915 if (too_large (block: node, num_bbs: &num_bbs, num_insns: &num_insns))
916 {
917 too_large_failure = true;
918 break;
919 }
920 }
921 }
922 }
923
924 /* Now add all the blocks in the loop to the queue.
925
926 We know the loop is a natural loop; however the algorithm
927 above will not always mark certain blocks as being in the
928 loop. Consider:
929 node children
930 a b,c
931 b c
932 c a,d
933 d b
934
935 The algorithm in the DFS traversal may not mark B & D as part
936 of the loop (i.e. they will not have max_hdr set to A).
937
938 We know they cannot be loop latches (else they would have
939 had max_hdr set since they'd have a backedge to a dominator
940 block). So we don't need them on the initial queue.
941
942 We know they are part of the loop because they are dominated
943 by the loop header and can be reached by a backwards walk of
944 the edges starting with nodes on the initial queue.
945
946 It is safe and desirable to include those nodes in the
947 loop/scheduling region. To do so we would need to decrease
948 the degree of a node if it is the target of a backedge
949 within the loop itself as the node is placed in the queue.
950
951 We do not do this because I'm not sure that the actual
952 scheduling code will properly handle this case. ?!? */
953
954 while (head < tail && !too_large_failure)
955 {
956 edge e;
957 child = queue[++head];
958
959 FOR_EACH_EDGE (e, ei,
960 BASIC_BLOCK_FOR_FN (cfun, child)->preds)
961 {
962 node = e->src->index;
963
964 /* See discussion above about nodes not marked as in
965 this loop during the initial DFS traversal. */
966 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
967 || max_hdr[node] != loop_head)
968 {
969 tail = -1;
970 break;
971 }
972 else if (!bitmap_bit_p (map: in_queue, bitno: node) && node != bb->index)
973 {
974 queue[++tail] = node;
975 bitmap_set_bit (map: in_queue, bitno: node);
976
977 if (too_large (block: node, num_bbs: &num_bbs, num_insns: &num_insns))
978 {
979 too_large_failure = true;
980 break;
981 }
982 }
983 }
984 }
985
986 if (tail >= 0 && !too_large_failure)
987 {
988 /* Place the loop header into list of region blocks. */
989 degree[bb->index] = -1;
990 rgn_bb_table[idx] = bb->index;
991 RGN_NR_BLOCKS (nr_regions) = num_bbs;
992 RGN_BLOCKS (nr_regions) = idx++;
993 RGN_DONT_CALC_DEPS (nr_regions) = 0;
994 RGN_HAS_REAL_EBB (nr_regions) = 0;
995 CONTAINING_RGN (bb->index) = nr_regions;
996 BLOCK_TO_BB (bb->index) = count = 0;
997
998 /* Remove blocks from queue[] when their in degree
999 becomes zero. Repeat until no blocks are left on the
1000 list. This produces a topological list of blocks in
1001 the region. */
1002 while (tail >= 0)
1003 {
1004 if (head < 0)
1005 head = tail;
1006 child = queue[head];
1007 if (degree[child] == 0)
1008 {
1009 edge e;
1010
1011 degree[child] = -1;
1012 rgn_bb_table[idx++] = child;
1013 BLOCK_TO_BB (child) = ++count;
1014 CONTAINING_RGN (child) = nr_regions;
1015 queue[head] = queue[tail--];
1016
1017 FOR_EACH_EDGE (e, ei,
1018 BASIC_BLOCK_FOR_FN (cfun,
1019 child)->succs)
1020 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1021 --degree[e->dest->index];
1022 }
1023 else
1024 --head;
1025 }
1026 ++nr_regions;
1027 }
1028 else if (extend_regions_p)
1029 {
1030 /* Restore DEGREE. */
1031 int *t = degree;
1032
1033 degree = degree1;
1034 degree1 = t;
1035
1036 /* And force successors of BB to be region heads.
1037 This may provide several smaller regions instead
1038 of one too_large region. */
1039 FOR_EACH_EDGE (e, ei, bb->succs)
1040 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1041 bitmap_set_bit (map: extended_rgn_header, bitno: e->dest->index);
1042 }
1043 }
1044 }
1045 free (ptr: queue);
1046
1047 if (extend_regions_p)
1048 {
1049 free (ptr: degree1);
1050
1051 bitmap_ior (header, header, extended_rgn_header);
1052 sbitmap_free (map: extended_rgn_header);
1053
1054 extend_rgns (degree, &idx, header, max_hdr);
1055 }
1056 }
1057
1058 /* Any block that did not end up in a region is placed into a region
1059 by itself. */
1060 FOR_EACH_BB_FN (bb, cfun)
1061 if (degree[bb->index] >= 0)
1062 {
1063 rgn_bb_table[idx] = bb->index;
1064 RGN_NR_BLOCKS (nr_regions) = 1;
1065 RGN_BLOCKS (nr_regions) = idx++;
1066 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1067 RGN_HAS_REAL_EBB (nr_regions) = 0;
1068 CONTAINING_RGN (bb->index) = nr_regions++;
1069 BLOCK_TO_BB (bb->index) = 0;
1070 }
1071
1072 free (ptr: max_hdr);
1073 free (ptr: degree);
1074 free (ptr: stack);
1075}
1076
1077
1078/* Wrapper function.
1079 If FLAG_SEL_SCHED_PIPELINING is set, then use custom function to form
1080 regions. Otherwise just call find_rgns_haifa. */
1081static void
1082find_rgns (void)
1083{
1084 if (sel_sched_p () && flag_sel_sched_pipelining)
1085 sel_find_rgns ();
1086 else
1087 haifa_find_rgns ();
1088}
1089
1090static int gather_region_statistics (int **);
1091static void print_region_statistics (int *, int, int *, int);
1092
1093/* Calculate the histogram that shows the number of regions having the
1094 given number of basic blocks, and store it in the RSP array. Return
1095 the size of this array. */
1096static int
1097gather_region_statistics (int **rsp)
1098{
1099 int i, *a = 0, a_sz = 0;
1100
1101 /* a[i] is the number of regions that have (i + 1) basic blocks. */
1102 for (i = 0; i < nr_regions; i++)
1103 {
1104 int nr_blocks = RGN_NR_BLOCKS (i);
1105
1106 gcc_assert (nr_blocks >= 1);
1107
1108 if (nr_blocks > a_sz)
1109 {
1110 a = XRESIZEVEC (int, a, nr_blocks);
1111 do
1112 a[a_sz++] = 0;
1113 while (a_sz != nr_blocks);
1114 }
1115
1116 a[nr_blocks - 1]++;
1117 }
1118
1119 *rsp = a;
1120 return a_sz;
1121}
1122
1123/* Print regions statistics. S1 and S2 denote the data before and after
1124 calling extend_rgns, respectively. */
1125static void
1126print_region_statistics (int *s1, int s1_sz, int *s2, int s2_sz)
1127{
1128 int i;
1129
1130 /* We iterate until s2_sz because extend_rgns does not decrease
1131 the maximal region size. */
1132 for (i = 1; i < s2_sz; i++)
1133 {
1134 int n1, n2;
1135
1136 n2 = s2[i];
1137
1138 if (n2 == 0)
1139 continue;
1140
1141 if (i >= s1_sz)
1142 n1 = 0;
1143 else
1144 n1 = s1[i];
1145
1146 fprintf (stream: sched_dump, format: ";; Region extension statistics: size %d: " \
1147 "was %d + %d more\n", i + 1, n1, n2 - n1);
1148 }
1149}
1150
1151/* Extend regions.
1152 DEGREE - Array of incoming edge count, considering only
1153 the edges, that don't have their sources in formed regions yet.
1154 IDXP - pointer to the next available index in rgn_bb_table.
1155 HEADER - set of all region heads.
1156 LOOP_HDR - mapping from block to the containing loop
1157 (two blocks can reside within one region if they have
1158 the same loop header). */
1159void
1160extend_rgns (int *degree, int *idxp, sbitmap header, int *loop_hdr)
1161{
1162 int *order, i, idx = *idxp, iter = 0, max_iter, *max_hdr;
1163 int nblocks = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
1164 bool rescan = false;
1165
1166 max_iter = param_max_sched_extend_regions_iters;
1167
1168 max_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
1169
1170 order = XNEWVEC (int, last_basic_block_for_fn (cfun));
1171 post_order_compute (order, false, false);
1172
1173 for (i = nblocks - 1; i >= 0; i--)
1174 {
1175 int bbn = order[i];
1176 if (degree[bbn] >= 0)
1177 {
1178 max_hdr[bbn] = bbn;
1179 rescan = true;
1180 }
1181 else
1182 /* This block already was processed in find_rgns. */
1183 max_hdr[bbn] = -1;
1184 }
1185
1186 /* The idea is to topologically walk through CFG in top-down order.
1187 During the traversal, if all the predecessors of a node are
1188 marked to be in the same region (they all have the same max_hdr),
1189 then current node is also marked to be a part of that region.
1190 Otherwise the node starts its own region.
1191 CFG should be traversed until no further changes are made. On each
1192 iteration the set of the region heads is extended (the set of those
1193 blocks that have max_hdr[bbi] == bbi). This set is upper bounded by the
1194 set of all basic blocks, thus the algorithm is guaranteed to
1195 terminate. */
1196
1197 while (rescan && iter < max_iter)
1198 {
1199 rescan = false;
1200
1201 for (i = nblocks - 1; i >= 0; i--)
1202 {
1203 edge e;
1204 edge_iterator ei;
1205 int bbn = order[i];
1206
1207 if (max_hdr[bbn] != -1 && !bitmap_bit_p (map: header, bitno: bbn))
1208 {
1209 int hdr = -1;
1210
1211 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, bbn)->preds)
1212 {
1213 int predn = e->src->index;
1214
1215 if (predn != ENTRY_BLOCK
1216 /* If pred wasn't processed in find_rgns. */
1217 && max_hdr[predn] != -1
1218 /* And pred and bb reside in the same loop.
1219 (Or out of any loop). */
1220 && loop_hdr[bbn] == loop_hdr[predn])
1221 {
1222 if (hdr == -1)
1223 /* Then bb extends the containing region of pred. */
1224 hdr = max_hdr[predn];
1225 else if (hdr != max_hdr[predn])
1226 /* Too bad, there are at least two predecessors
1227 that reside in different regions. Thus, BB should
1228 begin its own region. */
1229 {
1230 hdr = bbn;
1231 break;
1232 }
1233 }
1234 else
1235 /* BB starts its own region. */
1236 {
1237 hdr = bbn;
1238 break;
1239 }
1240 }
1241
1242 if (hdr == bbn)
1243 {
1244 /* If BB start its own region,
1245 update set of headers with BB. */
1246 bitmap_set_bit (map: header, bitno: bbn);
1247 rescan = true;
1248 }
1249 else
1250 gcc_assert (hdr != -1);
1251
1252 max_hdr[bbn] = hdr;
1253 }
1254 }
1255
1256 iter++;
1257 }
1258
1259 /* Statistics were gathered on the SPEC2000 package of tests with
1260 mainline weekly snapshot gcc-4.1-20051015 on ia64.
1261
1262 Statistics for SPECint:
1263 1 iteration : 1751 cases (38.7%)
1264 2 iterations: 2770 cases (61.3%)
1265 Blocks wrapped in regions by find_rgns without extension: 18295 blocks
1266 Blocks wrapped in regions by 2 iterations in extend_rgns: 23821 blocks
1267 (We don't count single block regions here).
1268
1269 Statistics for SPECfp:
1270 1 iteration : 621 cases (35.9%)
1271 2 iterations: 1110 cases (64.1%)
1272 Blocks wrapped in regions by find_rgns without extension: 6476 blocks
1273 Blocks wrapped in regions by 2 iterations in extend_rgns: 11155 blocks
1274 (We don't count single block regions here).
1275
1276 By default we do at most 2 iterations.
1277 This can be overridden with max-sched-extend-regions-iters parameter:
1278 0 - disable region extension,
1279 N > 0 - do at most N iterations. */
1280
1281 if (sched_verbose && iter != 0)
1282 fprintf (stream: sched_dump, format: ";; Region extension iterations: %d%s\n", iter,
1283 rescan ? "... failed" : "");
1284
1285 if (!rescan && iter != 0)
1286 {
1287 int *s1 = NULL, s1_sz = 0;
1288
1289 /* Save the old statistics for later printout. */
1290 if (sched_verbose >= 6)
1291 s1_sz = gather_region_statistics (rsp: &s1);
1292
1293 /* We have succeeded. Now assemble the regions. */
1294 for (i = nblocks - 1; i >= 0; i--)
1295 {
1296 int bbn = order[i];
1297
1298 if (max_hdr[bbn] == bbn)
1299 /* BBN is a region head. */
1300 {
1301 edge e;
1302 edge_iterator ei;
1303 int num_bbs = 0, j, num_insns = 0, large;
1304
1305 large = too_large (block: bbn, num_bbs: &num_bbs, num_insns: &num_insns);
1306
1307 degree[bbn] = -1;
1308 rgn_bb_table[idx] = bbn;
1309 RGN_BLOCKS (nr_regions) = idx++;
1310 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1311 RGN_HAS_REAL_EBB (nr_regions) = 0;
1312 CONTAINING_RGN (bbn) = nr_regions;
1313 BLOCK_TO_BB (bbn) = 0;
1314
1315 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, bbn)->succs)
1316 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1317 degree[e->dest->index]--;
1318
1319 if (!large)
1320 /* Here we check whether the region is too_large. */
1321 for (j = i - 1; j >= 0; j--)
1322 {
1323 int succn = order[j];
1324 if (max_hdr[succn] == bbn)
1325 {
1326 if ((large = too_large (block: succn, num_bbs: &num_bbs, num_insns: &num_insns)))
1327 break;
1328 }
1329 }
1330
1331 if (large)
1332 /* If the region is too_large, then wrap every block of
1333 the region into single block region.
1334 Here we wrap region head only. Other blocks are
1335 processed in the below cycle. */
1336 {
1337 RGN_NR_BLOCKS (nr_regions) = 1;
1338 nr_regions++;
1339 }
1340
1341 num_bbs = 1;
1342
1343 for (j = i - 1; j >= 0; j--)
1344 {
1345 int succn = order[j];
1346
1347 if (max_hdr[succn] == bbn)
1348 /* This cycle iterates over all basic blocks, that
1349 are supposed to be in the region with head BBN,
1350 and wraps them into that region (or in single
1351 block region). */
1352 {
1353 gcc_assert (degree[succn] == 0);
1354
1355 degree[succn] = -1;
1356 rgn_bb_table[idx] = succn;
1357 BLOCK_TO_BB (succn) = large ? 0 : num_bbs++;
1358 CONTAINING_RGN (succn) = nr_regions;
1359
1360 if (large)
1361 /* Wrap SUCCN into single block region. */
1362 {
1363 RGN_BLOCKS (nr_regions) = idx;
1364 RGN_NR_BLOCKS (nr_regions) = 1;
1365 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1366 RGN_HAS_REAL_EBB (nr_regions) = 0;
1367 nr_regions++;
1368 }
1369
1370 idx++;
1371
1372 FOR_EACH_EDGE (e, ei,
1373 BASIC_BLOCK_FOR_FN (cfun, succn)->succs)
1374 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1375 degree[e->dest->index]--;
1376 }
1377 }
1378
1379 if (!large)
1380 {
1381 RGN_NR_BLOCKS (nr_regions) = num_bbs;
1382 nr_regions++;
1383 }
1384 }
1385 }
1386
1387 if (sched_verbose >= 6)
1388 {
1389 int *s2, s2_sz;
1390
1391 /* Get the new statistics and print the comparison with the
1392 one before calling this function. */
1393 s2_sz = gather_region_statistics (rsp: &s2);
1394 print_region_statistics (s1, s1_sz, s2, s2_sz);
1395 free (ptr: s1);
1396 free (ptr: s2);
1397 }
1398 }
1399
1400 free (ptr: order);
1401 free (ptr: max_hdr);
1402
1403 *idxp = idx;
1404}
1405
1406/* Functions for regions scheduling information. */
1407
1408/* Compute dominators, probability, and potential-split-edges of bb.
1409 Assume that these values were already computed for bb's predecessors. */
1410
1411static void
1412compute_dom_prob_ps (int bb)
1413{
1414 edge_iterator in_ei;
1415 edge in_edge;
1416
1417 /* We shouldn't have any real ebbs yet. */
1418 gcc_assert (ebb_head [bb] == bb + current_blocks);
1419
1420 if (IS_RGN_ENTRY (bb))
1421 {
1422 bitmap_set_bit (map: dom[bb], bitno: 0);
1423 prob[bb] = REG_BR_PROB_BASE;
1424 return;
1425 }
1426
1427 prob[bb] = 0;
1428
1429 /* Initialize dom[bb] to '111..1'. */
1430 bitmap_ones (dom[bb]);
1431
1432 FOR_EACH_EDGE (in_edge, in_ei,
1433 BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (bb))->preds)
1434 {
1435 int pred_bb;
1436 edge out_edge;
1437 edge_iterator out_ei;
1438
1439 if (in_edge->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1440 continue;
1441
1442 pred_bb = BLOCK_TO_BB (in_edge->src->index);
1443 bitmap_and (dom[bb], dom[bb], dom[pred_bb]);
1444 bitmap_ior (ancestor_edges[bb],
1445 ancestor_edges[bb], ancestor_edges[pred_bb]);
1446
1447 bitmap_set_bit (map: ancestor_edges[bb], EDGE_TO_BIT (in_edge));
1448
1449 bitmap_ior (pot_split[bb], pot_split[bb], pot_split[pred_bb]);
1450
1451 FOR_EACH_EDGE (out_edge, out_ei, in_edge->src->succs)
1452 bitmap_set_bit (map: pot_split[bb], EDGE_TO_BIT (out_edge));
1453
1454 prob[bb] += combine_probabilities
1455 (prob1: prob[pred_bb],
1456 prob2: in_edge->probability.initialized_p ()
1457 ? in_edge->probability.to_reg_br_prob_base ()
1458 : 0);
1459 // The rounding divide in combine_probabilities can result in an extra
1460 // probability increment propagating along 50-50 edges. Eventually when
1461 // the edges re-merge, the accumulated probability can go slightly above
1462 // REG_BR_PROB_BASE.
1463 if (prob[bb] > REG_BR_PROB_BASE)
1464 prob[bb] = REG_BR_PROB_BASE;
1465 }
1466
1467 bitmap_set_bit (map: dom[bb], bitno: bb);
1468 bitmap_and_compl (pot_split[bb], pot_split[bb], ancestor_edges[bb]);
1469
1470 if (sched_verbose >= 2)
1471 fprintf (stream: sched_dump, format: ";; bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb),
1472 (100 * prob[bb]) / REG_BR_PROB_BASE);
1473}
1474
1475/* Functions for target info. */
1476
1477/* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
1478 Note that bb_trg dominates bb_src. */
1479
1480static void
1481split_edges (int bb_src, int bb_trg, edgelst *bl)
1482{
1483 auto_sbitmap src (SBITMAP_SIZE (pot_split[bb_src]));
1484 bitmap_copy (src, pot_split[bb_src]);
1485
1486 bitmap_and_compl (src, src, pot_split[bb_trg]);
1487 extract_edgelst (set: src, el: bl);
1488}
1489
1490/* Find the valid candidate-source-blocks for the target block TRG, compute
1491 their probability, and check if they are speculative or not.
1492 For speculative sources, compute their update-blocks and split-blocks. */
1493
1494static void
1495compute_trg_info (int trg)
1496{
1497 candidate *sp;
1498 edgelst el = { NULL, .nr_members: 0 };
1499 int i, j, k, update_idx;
1500 basic_block block;
1501 edge_iterator ei;
1502 edge e;
1503
1504 candidate_table = XNEWVEC (candidate, current_nr_blocks);
1505
1506 bblst_last = 0;
1507 /* bblst_table holds split blocks and update blocks for each block after
1508 the current one in the region. split blocks and update blocks are
1509 the TO blocks of region edges, so there can be at most rgn_nr_edges
1510 of them. */
1511 bblst_size = (current_nr_blocks - target_bb) * rgn_nr_edges;
1512 bblst_table = XNEWVEC (basic_block, bblst_size);
1513
1514 edgelst_last = 0;
1515 edgelst_table = XNEWVEC (edge, rgn_nr_edges);
1516
1517 /* Define some of the fields for the target bb as well. */
1518 sp = candidate_table + trg;
1519 sp->is_valid = 1;
1520 sp->is_speculative = 0;
1521 sp->src_prob = REG_BR_PROB_BASE;
1522
1523 auto_sbitmap visited (last_basic_block_for_fn (cfun));
1524
1525 for (i = trg + 1; i < current_nr_blocks; i++)
1526 {
1527 sp = candidate_table + i;
1528
1529 sp->is_valid = IS_DOMINATED (i, trg);
1530 if (sp->is_valid)
1531 {
1532 int tf = prob[trg], cf = prob[i];
1533
1534 /* In CFGs with low probability edges TF can possibly be zero. */
1535 sp->src_prob = (tf ? GCOV_COMPUTE_SCALE (cf, tf) : 0);
1536 sp->is_valid = (sp->src_prob >= min_spec_prob);
1537 }
1538
1539 if (sp->is_valid)
1540 {
1541 split_edges (bb_src: i, bb_trg: trg, bl: &el);
1542 sp->is_speculative = (el.nr_members) ? 1 : 0;
1543 if (sp->is_speculative && !flag_schedule_speculative)
1544 sp->is_valid = 0;
1545 }
1546
1547 if (sp->is_valid)
1548 {
1549 /* Compute split blocks and store them in bblst_table.
1550 The TO block of every split edge is a split block. */
1551 sp->split_bbs.first_member = &bblst_table[bblst_last];
1552 sp->split_bbs.nr_members = el.nr_members;
1553 for (j = 0; j < el.nr_members; bblst_last++, j++)
1554 bblst_table[bblst_last] = el.first_member[j]->dest;
1555 sp->update_bbs.first_member = &bblst_table[bblst_last];
1556
1557 /* Compute update blocks and store them in bblst_table.
1558 For every split edge, look at the FROM block, and check
1559 all out edges. For each out edge that is not a split edge,
1560 add the TO block to the update block list. This list can end
1561 up with a lot of duplicates. We need to weed them out to avoid
1562 overrunning the end of the bblst_table. */
1563
1564 update_idx = 0;
1565 bitmap_clear (visited);
1566 for (j = 0; j < el.nr_members; j++)
1567 {
1568 block = el.first_member[j]->src;
1569 FOR_EACH_EDGE (e, ei, block->succs)
1570 {
1571 if (!bitmap_bit_p (map: visited, bitno: e->dest->index))
1572 {
1573 for (k = 0; k < el.nr_members; k++)
1574 if (e == el.first_member[k])
1575 break;
1576
1577 if (k >= el.nr_members)
1578 {
1579 bblst_table[bblst_last++] = e->dest;
1580 bitmap_set_bit (map: visited, bitno: e->dest->index);
1581 update_idx++;
1582 }
1583 }
1584 }
1585 }
1586 sp->update_bbs.nr_members = update_idx;
1587
1588 /* Make sure we didn't overrun the end of bblst_table. */
1589 gcc_assert (bblst_last <= bblst_size);
1590 }
1591 else
1592 {
1593 sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
1594
1595 sp->is_speculative = 0;
1596 sp->src_prob = 0;
1597 }
1598 }
1599}
1600
1601/* Free the computed target info. */
1602static void
1603free_trg_info (void)
1604{
1605 free (ptr: candidate_table);
1606 free (ptr: bblst_table);
1607 free (ptr: edgelst_table);
1608}
1609
1610/* Print candidates info, for debugging purposes. Callable from debugger. */
1611
1612DEBUG_FUNCTION void
1613debug_candidate (int i)
1614{
1615 if (!candidate_table[i].is_valid)
1616 return;
1617
1618 if (candidate_table[i].is_speculative)
1619 {
1620 int j;
1621 fprintf (stream: sched_dump, format: "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
1622
1623 fprintf (stream: sched_dump, format: "split path: ");
1624 for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
1625 {
1626 int b = candidate_table[i].split_bbs.first_member[j]->index;
1627
1628 fprintf (stream: sched_dump, format: " %d ", b);
1629 }
1630 fprintf (stream: sched_dump, format: "\n");
1631
1632 fprintf (stream: sched_dump, format: "update path: ");
1633 for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
1634 {
1635 int b = candidate_table[i].update_bbs.first_member[j]->index;
1636
1637 fprintf (stream: sched_dump, format: " %d ", b);
1638 }
1639 fprintf (stream: sched_dump, format: "\n");
1640 }
1641 else
1642 {
1643 fprintf (stream: sched_dump, format: " src %d equivalent\n", BB_TO_BLOCK (i));
1644 }
1645}
1646
1647/* Print candidates info, for debugging purposes. Callable from debugger. */
1648
1649DEBUG_FUNCTION void
1650debug_candidates (int trg)
1651{
1652 int i;
1653
1654 fprintf (stream: sched_dump, format: "----------- candidate table: target: b=%d bb=%d ---\n",
1655 BB_TO_BLOCK (trg), trg);
1656 for (i = trg + 1; i < current_nr_blocks; i++)
1657 debug_candidate (i);
1658}
1659
1660/* Functions for speculative scheduling. */
1661
1662static bitmap_head not_in_df;
1663
1664/* Return false if x is a set of a register alive in the beginning of one
1665 of the split-blocks of src, otherwise return true. */
1666
1667static bool
1668check_live_1 (int src, rtx x)
1669{
1670 int i;
1671 int regno;
1672 rtx reg = SET_DEST (x);
1673
1674 if (reg == 0)
1675 return true;
1676
1677 while (GET_CODE (reg) == SUBREG
1678 || GET_CODE (reg) == ZERO_EXTRACT
1679 || GET_CODE (reg) == STRICT_LOW_PART)
1680 reg = XEXP (reg, 0);
1681
1682 if (GET_CODE (reg) == PARALLEL)
1683 {
1684 int i;
1685
1686 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1687 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1688 if (check_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0)))
1689 return true;
1690
1691 return false;
1692 }
1693
1694 if (!REG_P (reg))
1695 return true;
1696
1697 regno = REGNO (reg);
1698
1699 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1700 {
1701 /* Global registers are assumed live. */
1702 return false;
1703 }
1704 else
1705 {
1706 if (regno < FIRST_PSEUDO_REGISTER)
1707 {
1708 /* Check for hard registers. */
1709 int j = REG_NREGS (reg);
1710 while (--j >= 0)
1711 {
1712 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1713 {
1714 basic_block b = candidate_table[src].split_bbs.first_member[i];
1715 int t = bitmap_bit_p (&not_in_df, b->index);
1716
1717 /* We can have split blocks, that were recently generated.
1718 Such blocks are always outside current region. */
1719 gcc_assert (!t || (CONTAINING_RGN (b->index)
1720 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1721
1722 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno + j))
1723 return false;
1724 }
1725 }
1726 }
1727 else
1728 {
1729 /* Check for pseudo registers. */
1730 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1731 {
1732 basic_block b = candidate_table[src].split_bbs.first_member[i];
1733 int t = bitmap_bit_p (&not_in_df, b->index);
1734
1735 gcc_assert (!t || (CONTAINING_RGN (b->index)
1736 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1737
1738 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno))
1739 return false;
1740 }
1741 }
1742 }
1743
1744 return true;
1745}
1746
1747/* If x is a set of a register R, mark that R is alive in the beginning
1748 of every update-block of src. */
1749
1750static void
1751update_live_1 (int src, rtx x)
1752{
1753 int i;
1754 int regno;
1755 rtx reg = SET_DEST (x);
1756
1757 if (reg == 0)
1758 return;
1759
1760 while (GET_CODE (reg) == SUBREG
1761 || GET_CODE (reg) == ZERO_EXTRACT
1762 || GET_CODE (reg) == STRICT_LOW_PART)
1763 reg = XEXP (reg, 0);
1764
1765 if (GET_CODE (reg) == PARALLEL)
1766 {
1767 int i;
1768
1769 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1770 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1771 update_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0));
1772
1773 return;
1774 }
1775
1776 if (!REG_P (reg))
1777 return;
1778
1779 /* Global registers are always live, so the code below does not apply
1780 to them. */
1781
1782 regno = REGNO (reg);
1783
1784 if (! HARD_REGISTER_NUM_P (regno)
1785 || !global_regs[regno])
1786 {
1787 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
1788 {
1789 basic_block b = candidate_table[src].update_bbs.first_member[i];
1790 bitmap_set_range (df_get_live_in (bb: b), regno, REG_NREGS (reg));
1791 }
1792 }
1793}
1794
1795/* Return true if insn can be speculatively moved from block src to trg,
1796 otherwise return false. Called before first insertion of insn to
1797 ready-list or before the scheduling. */
1798
1799static bool
1800check_live (rtx_insn *insn, int src)
1801{
1802 /* Find the registers set by instruction. */
1803 if (GET_CODE (PATTERN (insn)) == SET
1804 || GET_CODE (PATTERN (insn)) == CLOBBER)
1805 return check_live_1 (src, x: PATTERN (insn));
1806 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1807 {
1808 int j;
1809 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1810 if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1811 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1812 && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
1813 return false;
1814
1815 return true;
1816 }
1817
1818 return true;
1819}
1820
1821/* Update the live registers info after insn was moved speculatively from
1822 block src to trg. */
1823
1824static void
1825update_live (rtx_insn *insn, int src)
1826{
1827 /* Find the registers set by instruction. */
1828 if (GET_CODE (PATTERN (insn)) == SET
1829 || GET_CODE (PATTERN (insn)) == CLOBBER)
1830 update_live_1 (src, x: PATTERN (insn));
1831 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1832 {
1833 int j;
1834 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1835 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1836 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1837 update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
1838 }
1839}
1840
1841/* True if block bb_to is equal to, or reachable from block bb_from. */
1842#define IS_REACHABLE(bb_from, bb_to) \
1843 (bb_from == bb_to \
1844 || IS_RGN_ENTRY (bb_from) \
1845 || (bitmap_bit_p \
1846 (ancestor_edges[bb_to], \
1847 EDGE_TO_BIT (single_pred_edge \
1848 (BASIC_BLOCK_FOR_FN (cfun, \
1849 BB_TO_BLOCK (bb_from)))))))
1850
1851/* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
1852
1853static void
1854set_spec_fed (rtx load_insn)
1855{
1856 sd_iterator_def sd_it;
1857 dep_t dep;
1858
1859 FOR_EACH_DEP (load_insn, SD_LIST_FORW, sd_it, dep)
1860 if (DEP_TYPE (dep) == REG_DEP_TRUE)
1861 FED_BY_SPEC_LOAD (DEP_CON (dep)) = 1;
1862}
1863
1864/* On the path from the insn to load_insn_bb, find a conditional
1865 branch depending on insn, that guards the speculative load. */
1866
1867static bool
1868find_conditional_protection (rtx_insn *insn, int load_insn_bb)
1869{
1870 sd_iterator_def sd_it;
1871 dep_t dep;
1872
1873 /* Iterate through DEF-USE forward dependences. */
1874 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
1875 {
1876 rtx_insn *next = DEP_CON (dep);
1877
1878 if ((CONTAINING_RGN (BLOCK_NUM (next)) ==
1879 CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
1880 && IS_REACHABLE (INSN_BB (next), load_insn_bb)
1881 && load_insn_bb != INSN_BB (next)
1882 && DEP_TYPE (dep) == REG_DEP_TRUE
1883 && (JUMP_P (next)
1884 || find_conditional_protection (insn: next, load_insn_bb)))
1885 return true;
1886 }
1887 return false;
1888} /* find_conditional_protection */
1889
1890/* Returns true if the same insn1 that participates in the computation
1891 of load_insn's address is feeding a conditional branch that is
1892 guarding on load_insn. This is true if we find two DEF-USE
1893 chains:
1894 insn1 -> ... -> conditional-branch
1895 insn1 -> ... -> load_insn,
1896 and if a flow path exists:
1897 insn1 -> ... -> conditional-branch -> ... -> load_insn,
1898 and if insn1 is on the path
1899 region-entry -> ... -> bb_trg -> ... load_insn.
1900
1901 Locate insn1 by climbing on INSN_BACK_DEPS from load_insn.
1902 Locate the branch by following INSN_FORW_DEPS from insn1. */
1903
1904static bool
1905is_conditionally_protected (rtx load_insn, int bb_src, int bb_trg)
1906{
1907 sd_iterator_def sd_it;
1908 dep_t dep;
1909
1910 FOR_EACH_DEP (load_insn, SD_LIST_BACK, sd_it, dep)
1911 {
1912 rtx_insn *insn1 = DEP_PRO (dep);
1913
1914 /* Must be a DEF-USE dependence upon non-branch. */
1915 if (DEP_TYPE (dep) != REG_DEP_TRUE
1916 || JUMP_P (insn1))
1917 continue;
1918
1919 /* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn. */
1920 if (INSN_BB (insn1) == bb_src
1921 || (CONTAINING_RGN (BLOCK_NUM (insn1))
1922 != CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
1923 || (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
1924 && !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
1925 continue;
1926
1927 /* Now search for the conditional-branch. */
1928 if (find_conditional_protection (insn: insn1, load_insn_bb: bb_src))
1929 return true;
1930
1931 /* Recursive step: search another insn1, "above" current insn1. */
1932 return is_conditionally_protected (load_insn: insn1, bb_src, bb_trg);
1933 }
1934
1935 /* The chain does not exist. */
1936 return false;
1937} /* is_conditionally_protected */
1938
1939/* Returns true if a clue for "similar load" 'insn2' is found, and hence
1940 load_insn can move speculatively from bb_src to bb_trg. All the
1941 following must hold:
1942
1943 (1) both loads have 1 base register (PFREE_CANDIDATEs).
1944 (2) load_insn and load1 have a def-use dependence upon
1945 the same insn 'insn1'.
1946 (3) either load2 is in bb_trg, or:
1947 - there's only one split-block, and
1948 - load1 is on the escape path, and
1949
1950 From all these we can conclude that the two loads access memory
1951 addresses that differ at most by a constant, and hence if moving
1952 load_insn would cause an exception, it would have been caused by
1953 load2 anyhow. */
1954
1955static bool
1956is_pfree (rtx load_insn, int bb_src, int bb_trg)
1957{
1958 sd_iterator_def back_sd_it;
1959 dep_t back_dep;
1960 candidate *candp = candidate_table + bb_src;
1961
1962 if (candp->split_bbs.nr_members != 1)
1963 /* Must have exactly one escape block. */
1964 return false;
1965
1966 FOR_EACH_DEP (load_insn, SD_LIST_BACK, back_sd_it, back_dep)
1967 {
1968 rtx_insn *insn1 = DEP_PRO (back_dep);
1969
1970 if (DEP_TYPE (back_dep) == REG_DEP_TRUE)
1971 /* Found a DEF-USE dependence (insn1, load_insn). */
1972 {
1973 sd_iterator_def fore_sd_it;
1974 dep_t fore_dep;
1975
1976 FOR_EACH_DEP (insn1, SD_LIST_FORW, fore_sd_it, fore_dep)
1977 {
1978 rtx_insn *insn2 = DEP_CON (fore_dep);
1979
1980 if (DEP_TYPE (fore_dep) == REG_DEP_TRUE)
1981 {
1982 /* Found a DEF-USE dependence (insn1, insn2). */
1983 if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
1984 /* insn2 not guaranteed to be a 1 base reg load. */
1985 continue;
1986
1987 if (INSN_BB (insn2) == bb_trg)
1988 /* insn2 is the similar load, in the target block. */
1989 return true;
1990
1991 if (*(candp->split_bbs.first_member) == BLOCK_FOR_INSN (insn: insn2))
1992 /* insn2 is a similar load, in a split-block. */
1993 return true;
1994 }
1995 }
1996 }
1997 }
1998
1999 /* Couldn't find a similar load. */
2000 return false;
2001} /* is_pfree */
2002
2003/* Return true if load_insn is prisky (i.e. if load_insn is fed by
2004 a load moved speculatively, or if load_insn is protected by
2005 a compare on load_insn's address). */
2006
2007static bool
2008is_prisky (rtx load_insn, int bb_src, int bb_trg)
2009{
2010 if (FED_BY_SPEC_LOAD (load_insn))
2011 return true;
2012
2013 if (sd_lists_empty_p (load_insn, SD_LIST_BACK))
2014 /* Dependence may 'hide' out of the region. */
2015 return true;
2016
2017 if (is_conditionally_protected (load_insn, bb_src, bb_trg))
2018 return true;
2019
2020 return false;
2021}
2022
2023/* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
2024 Return true if insn is exception-free (and the motion is valid)
2025 and false otherwise. */
2026
2027static bool
2028is_exception_free (rtx_insn *insn, int bb_src, int bb_trg)
2029{
2030 int insn_class = haifa_classify_insn (insn);
2031
2032 /* Handle non-load insns. */
2033 switch (insn_class)
2034 {
2035 case TRAP_FREE:
2036 return true;
2037 case TRAP_RISKY:
2038 return false;
2039 default:;
2040 }
2041
2042 /* Handle loads. */
2043 if (!flag_schedule_speculative_load)
2044 return false;
2045 IS_LOAD_INSN (insn) = 1;
2046 switch (insn_class)
2047 {
2048 case IFREE:
2049 return true;
2050 case IRISKY:
2051 return false;
2052 case PFREE_CANDIDATE:
2053 if (is_pfree (load_insn: insn, bb_src, bb_trg))
2054 return true;
2055 /* Don't 'break' here: PFREE-candidate is also PRISKY-candidate. */
2056 /* FALLTHRU */
2057 case PRISKY_CANDIDATE:
2058 if (!flag_schedule_speculative_load_dangerous
2059 || is_prisky (load_insn: insn, bb_src, bb_trg))
2060 return false;
2061 break;
2062 default:;
2063 }
2064
2065 return flag_schedule_speculative_load_dangerous;
2066}
2067
2068/* The number of insns from the current block scheduled so far. */
2069static int sched_target_n_insns;
2070/* The number of insns from the current block to be scheduled in total. */
2071static int target_n_insns;
2072/* The number of insns from the entire region scheduled so far. */
2073static int sched_n_insns;
2074
2075/* Implementations of the sched_info functions for region scheduling. */
2076static void init_ready_list (void);
2077static bool can_schedule_ready_p (rtx_insn *);
2078static void begin_schedule_ready (rtx_insn *);
2079static ds_t new_ready (rtx_insn *, ds_t);
2080static bool schedule_more_p (void);
2081static const char *rgn_print_insn (const rtx_insn *, int);
2082static int rgn_rank (rtx_insn *, rtx_insn *);
2083static void compute_jump_reg_dependencies (rtx, regset);
2084
2085/* Functions for speculative scheduling. */
2086static void rgn_add_remove_insn (rtx_insn *, int);
2087static void rgn_add_block (basic_block, basic_block);
2088static void rgn_fix_recovery_cfg (int, int, int);
2089static basic_block advance_target_bb (basic_block, rtx_insn *);
2090
2091/* Return true if there are more insns that should be scheduled. */
2092
2093static bool
2094schedule_more_p (void)
2095{
2096 return sched_target_n_insns < target_n_insns;
2097}
2098
2099/* Add all insns that are initially ready to the ready list READY. Called
2100 once before scheduling a set of insns. */
2101
2102static void
2103init_ready_list (void)
2104{
2105 rtx_insn *prev_head = current_sched_info->prev_head;
2106 rtx_insn *next_tail = current_sched_info->next_tail;
2107 int bb_src;
2108 rtx_insn *insn;
2109
2110 target_n_insns = 0;
2111 sched_target_n_insns = 0;
2112 sched_n_insns = 0;
2113
2114 /* Print debugging information. */
2115 if (sched_verbose >= 5)
2116 debug_rgn_dependencies (target_bb);
2117
2118 /* Prepare current target block info. */
2119 if (current_nr_blocks > 1)
2120 compute_trg_info (trg: target_bb);
2121
2122 /* Initialize ready list with all 'ready' insns in target block.
2123 Count number of insns in the target block being scheduled. */
2124 for (insn = NEXT_INSN (insn: prev_head); insn != next_tail; insn = NEXT_INSN (insn))
2125 {
2126 gcc_assert (TODO_SPEC (insn) == HARD_DEP || TODO_SPEC (insn) == DEP_POSTPONED);
2127 TODO_SPEC (insn) = HARD_DEP;
2128 try_ready (insn);
2129 target_n_insns++;
2130
2131 gcc_assert (!(TODO_SPEC (insn) & BEGIN_CONTROL));
2132 }
2133
2134 /* Add to ready list all 'ready' insns in valid source blocks.
2135 For speculative insns, check-live, exception-free, and
2136 issue-delay. */
2137 for (bb_src = target_bb + 1; bb_src < current_nr_blocks; bb_src++)
2138 if (IS_VALID (bb_src))
2139 {
2140 rtx_insn *src_head;
2141 rtx_insn *src_next_tail;
2142 rtx_insn *tail, *head;
2143
2144 get_ebb_head_tail (EBB_FIRST_BB (bb_src), EBB_LAST_BB (bb_src),
2145 &head, &tail);
2146 src_next_tail = NEXT_INSN (insn: tail);
2147 src_head = head;
2148
2149 for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
2150 if (INSN_P (insn))
2151 {
2152 gcc_assert (TODO_SPEC (insn) == HARD_DEP || TODO_SPEC (insn) == DEP_POSTPONED);
2153 TODO_SPEC (insn) = HARD_DEP;
2154 try_ready (insn);
2155 }
2156 }
2157}
2158
2159/* Called after taking INSN from the ready list. Returns true if this
2160 insn can be scheduled, nonzero if we should silently discard it. */
2161
2162static bool
2163can_schedule_ready_p (rtx_insn *insn)
2164{
2165 /* An interblock motion? */
2166 if (INSN_BB (insn) != target_bb && IS_SPECULATIVE_INSN (insn))
2167 {
2168 /* Cannot schedule this insn unless all operands are live. */
2169 if (!check_live (insn, INSN_BB (insn)))
2170 return false;
2171
2172 /* Should not move expensive instructions speculatively. */
2173 if (GET_CODE (PATTERN (insn)) != CLOBBER
2174 && !targetm.sched.can_speculate_insn (insn))
2175 return false;
2176 }
2177
2178 return true;
2179}
2180
2181/* Updates counter and other information. Split from can_schedule_ready_p ()
2182 because when we schedule insn speculatively then insn passed to
2183 can_schedule_ready_p () differs from the one passed to
2184 begin_schedule_ready (). */
2185static void
2186begin_schedule_ready (rtx_insn *insn)
2187{
2188 /* An interblock motion? */
2189 if (INSN_BB (insn) != target_bb)
2190 {
2191 if (IS_SPECULATIVE_INSN (insn))
2192 {
2193 gcc_assert (check_live (insn, INSN_BB (insn)));
2194
2195 update_live (insn, INSN_BB (insn));
2196
2197 /* For speculative load, mark insns fed by it. */
2198 if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
2199 set_spec_fed (insn);
2200
2201 nr_spec++;
2202 }
2203 nr_inter++;
2204 }
2205 else
2206 {
2207 /* In block motion. */
2208 sched_target_n_insns++;
2209 }
2210 sched_n_insns++;
2211}
2212
2213/* Called after INSN has all its hard dependencies resolved and the speculation
2214 of type TS is enough to overcome them all.
2215 Return nonzero if it should be moved to the ready list or the queue, or zero
2216 if we should silently discard it. */
2217static ds_t
2218new_ready (rtx_insn *next, ds_t ts)
2219{
2220 if (INSN_BB (next) != target_bb)
2221 {
2222 int not_ex_free = 0;
2223
2224 /* For speculative insns, before inserting to ready/queue,
2225 check live, exception-free, and issue-delay. */
2226 if (!IS_VALID (INSN_BB (next))
2227 || CANT_MOVE (next)
2228 || (IS_SPECULATIVE_INSN (next)
2229 && ((recog_memoized (insn: next) >= 0
2230 && min_insn_conflict_delay (curr_state, next, next)
2231 > param_max_sched_insn_conflict_delay)
2232 || IS_SPECULATION_CHECK_P (next)
2233 || !check_live (insn: next, INSN_BB (next))
2234 || (not_ex_free = !is_exception_free (insn: next, INSN_BB (next),
2235 bb_trg: target_bb)))))
2236 {
2237 if (not_ex_free
2238 /* We are here because is_exception_free () == false.
2239 But we possibly can handle that with control speculation. */
2240 && sched_deps_info->generate_spec_deps
2241 && spec_info->mask & BEGIN_CONTROL)
2242 {
2243 ds_t new_ds;
2244
2245 /* Add control speculation to NEXT's dependency type. */
2246 new_ds = set_dep_weak (ts, BEGIN_CONTROL, MAX_DEP_WEAK);
2247
2248 /* Check if NEXT can be speculated with new dependency type. */
2249 if (sched_insn_is_legitimate_for_speculation_p (next, new_ds))
2250 /* Here we got new control-speculative instruction. */
2251 ts = new_ds;
2252 else
2253 /* NEXT isn't ready yet. */
2254 ts = DEP_POSTPONED;
2255 }
2256 else
2257 /* NEXT isn't ready yet. */
2258 ts = DEP_POSTPONED;
2259 }
2260 }
2261
2262 return ts;
2263}
2264
2265/* Return a string that contains the insn uid and optionally anything else
2266 necessary to identify this insn in an output. It's valid to use a
2267 static buffer for this. The ALIGNED parameter should cause the string
2268 to be formatted so that multiple output lines will line up nicely. */
2269
2270static const char *
2271rgn_print_insn (const rtx_insn *insn, int aligned)
2272{
2273 static char tmp[80];
2274
2275 if (aligned)
2276 sprintf (s: tmp, format: "b%3d: i%4d", INSN_BB (insn), INSN_UID (insn));
2277 else
2278 {
2279 if (current_nr_blocks > 1 && INSN_BB (insn) != target_bb)
2280 sprintf (s: tmp, format: "%d/b%d", INSN_UID (insn), INSN_BB (insn));
2281 else
2282 sprintf (s: tmp, format: "%d", INSN_UID (insn));
2283 }
2284 return tmp;
2285}
2286
2287/* Compare priority of two insns. Return a positive number if the second
2288 insn is to be preferred for scheduling, and a negative one if the first
2289 is to be preferred. Zero if they are equally good. */
2290
2291static int
2292rgn_rank (rtx_insn *insn1, rtx_insn *insn2)
2293{
2294 /* Some comparison make sense in interblock scheduling only. */
2295 if (INSN_BB (insn1) != INSN_BB (insn2))
2296 {
2297 int spec_val, prob_val;
2298
2299 /* Prefer an inblock motion on an interblock motion. */
2300 if ((INSN_BB (insn2) == target_bb) && (INSN_BB (insn1) != target_bb))
2301 return 1;
2302 if ((INSN_BB (insn1) == target_bb) && (INSN_BB (insn2) != target_bb))
2303 return -1;
2304
2305 /* Prefer a useful motion on a speculative one. */
2306 spec_val = IS_SPECULATIVE_INSN (insn1) - IS_SPECULATIVE_INSN (insn2);
2307 if (spec_val)
2308 return spec_val;
2309
2310 /* Prefer a more probable (speculative) insn. */
2311 prob_val = INSN_PROBABILITY (insn2) - INSN_PROBABILITY (insn1);
2312 if (prob_val)
2313 return prob_val;
2314 }
2315 return 0;
2316}
2317
2318/* NEXT is an instruction that depends on INSN (a backward dependence);
2319 return true if we should include this dependence in priority
2320 calculations. */
2321
2322bool
2323contributes_to_priority (rtx_insn *next, rtx_insn *insn)
2324{
2325 /* NEXT and INSN reside in one ebb. */
2326 return BLOCK_TO_BB (BLOCK_NUM (next)) == BLOCK_TO_BB (BLOCK_NUM (insn));
2327}
2328
2329/* INSN is a JUMP_INSN. Store the set of registers that must be
2330 considered as used by this jump in USED. */
2331
2332static void
2333compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
2334 regset used ATTRIBUTE_UNUSED)
2335{
2336 /* Nothing to do here, since we postprocess jumps in
2337 add_branch_dependences. */
2338}
2339
2340/* This variable holds common_sched_info hooks and data relevant to
2341 the interblock scheduler. */
2342static struct common_sched_info_def rgn_common_sched_info;
2343
2344
2345/* This holds data for the dependence analysis relevant to
2346 the interblock scheduler. */
2347static struct sched_deps_info_def rgn_sched_deps_info;
2348
2349/* This holds constant data used for initializing the above structure
2350 for the Haifa scheduler. */
2351static const struct sched_deps_info_def rgn_const_sched_deps_info =
2352 {
2353 .compute_jump_reg_dependencies: compute_jump_reg_dependencies,
2354 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2355 .use_cselib: 0, .use_deps_list: 0, .generate_spec_deps: 0
2356 };
2357
2358/* Same as above, but for the selective scheduler. */
2359static const struct sched_deps_info_def rgn_const_sel_sched_deps_info =
2360 {
2361 .compute_jump_reg_dependencies: compute_jump_reg_dependencies,
2362 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2363 .use_cselib: 0, .use_deps_list: 0, .generate_spec_deps: 0
2364 };
2365
2366/* Return true if scheduling INSN will trigger finish of scheduling
2367 current block. */
2368static bool
2369rgn_insn_finishes_block_p (rtx_insn *insn)
2370{
2371 if (INSN_BB (insn) == target_bb
2372 && sched_target_n_insns + 1 == target_n_insns)
2373 /* INSN is the last not-scheduled instruction in the current block. */
2374 return true;
2375
2376 return false;
2377}
2378
2379/* Used in schedule_insns to initialize current_sched_info for scheduling
2380 regions (or single basic blocks). */
2381
2382static const struct haifa_sched_info rgn_const_sched_info =
2383{
2384 .init_ready_list: init_ready_list,
2385 .can_schedule_ready_p: can_schedule_ready_p,
2386 .schedule_more_p: schedule_more_p,
2387 .new_ready: new_ready,
2388 .rank: rgn_rank,
2389 .print_insn: rgn_print_insn,
2390 .contributes_to_priority: contributes_to_priority,
2391 .insn_finishes_block_p: rgn_insn_finishes_block_p,
2392
2393 NULL, NULL,
2394 NULL, NULL,
2395 .queue_must_finish_empty: 0, .sched_max_insns_priority: 0,
2396
2397 .add_remove_insn: rgn_add_remove_insn,
2398 .begin_schedule_ready: begin_schedule_ready,
2399 NULL,
2400 .advance_target_bb: advance_target_bb,
2401 NULL, NULL,
2402 .flags: SCHED_RGN
2403};
2404
2405/* This variable holds the data and hooks needed to the Haifa scheduler backend
2406 for the interblock scheduler frontend. */
2407static struct haifa_sched_info rgn_sched_info;
2408
2409/* Returns maximum priority that an insn was assigned to. */
2410
2411int
2412get_rgn_sched_max_insns_priority (void)
2413{
2414 return rgn_sched_info.sched_max_insns_priority;
2415}
2416
2417/* Determine if PAT sets a TARGET_CLASS_LIKELY_SPILLED_P register. */
2418
2419static bool
2420sets_likely_spilled (rtx pat)
2421{
2422 bool ret = false;
2423 note_pattern_stores (pat, sets_likely_spilled_1, &ret);
2424 return ret;
2425}
2426
2427static void
2428sets_likely_spilled_1 (rtx x, const_rtx pat, void *data)
2429{
2430 bool *ret = (bool *) data;
2431
2432 if (GET_CODE (pat) == SET
2433 && REG_P (x)
2434 && HARD_REGISTER_P (x)
2435 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
2436 *ret = true;
2437}
2438
2439/* A bitmap to note insns that participate in any dependency. Used in
2440 add_branch_dependences. */
2441static sbitmap insn_referenced;
2442
2443/* Add dependences so that branches are scheduled to run last in their
2444 block. */
2445static void
2446add_branch_dependences (rtx_insn *head, rtx_insn *tail)
2447{
2448 rtx_insn *insn, *last;
2449
2450 /* For all branches, calls, uses, clobbers, and instructions
2451 that can throw exceptions, force them to remain in order at the end of
2452 the block by adding dependencies and giving the last a high priority.
2453 There may be notes present, and prev_head may also be a note.
2454
2455 Branches must obviously remain at the end. Calls should remain at the
2456 end since moving them results in worse register allocation. Uses remain
2457 at the end to ensure proper register allocation.
2458
2459 Predecessors of SCHED_GROUP_P instructions at the end remain at the end.
2460
2461 COND_EXEC insns cannot be moved past a branch (see e.g. PR17808).
2462
2463 Insns setting TARGET_CLASS_LIKELY_SPILLED_P registers (usually return
2464 values) are not moved before reload because we can wind up with register
2465 allocation failures. */
2466
2467 while (tail != head && DEBUG_INSN_P (tail))
2468 tail = PREV_INSN (insn: tail);
2469
2470 insn = tail;
2471 last = 0;
2472 while (CALL_P (insn)
2473 || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
2474 || (NONJUMP_INSN_P (insn)
2475 && (GET_CODE (PATTERN (insn)) == USE
2476 || GET_CODE (PATTERN (insn)) == CLOBBER
2477 || can_throw_internal (insn)
2478 || (!reload_completed
2479 && sets_likely_spilled (PATTERN (insn)))))
2480 || NOTE_P (insn)
2481 || (last != 0 && SCHED_GROUP_P (last)))
2482 {
2483 if (!NOTE_P (insn))
2484 {
2485 if (last != 0
2486 && sd_find_dep_between (insn, last, false) == NULL)
2487 {
2488 if (! sched_insns_conditions_mutex_p (last, insn))
2489 add_dependence (last, insn, REG_DEP_ANTI);
2490 bitmap_set_bit (map: insn_referenced, INSN_LUID (insn));
2491 }
2492
2493 CANT_MOVE (insn) = 1;
2494
2495 last = insn;
2496 }
2497
2498 /* Don't overrun the bounds of the basic block. */
2499 if (insn == head)
2500 break;
2501
2502 do
2503 insn = PREV_INSN (insn);
2504 while (insn != head && DEBUG_INSN_P (insn));
2505 }
2506
2507 /* Selective scheduling handles control dependencies by itself, and
2508 CANT_MOVE flags ensure that other insns will be kept in place. */
2509 if (sel_sched_p ())
2510 return;
2511
2512 /* Make sure these insns are scheduled last in their block. */
2513 insn = last;
2514 if (insn != 0)
2515 while (insn != head)
2516 {
2517 insn = prev_nonnote_insn (insn);
2518
2519 if (bitmap_bit_p (map: insn_referenced, INSN_LUID (insn))
2520 || DEBUG_INSN_P (insn))
2521 continue;
2522
2523 if (! sched_insns_conditions_mutex_p (last, insn))
2524 add_dependence (last, insn, REG_DEP_ANTI);
2525 }
2526
2527 if (!targetm.have_conditional_execution ())
2528 return;
2529
2530 /* Finally, if the block ends in a jump, and we are doing intra-block
2531 scheduling, make sure that the branch depends on any COND_EXEC insns
2532 inside the block to avoid moving the COND_EXECs past the branch insn.
2533
2534 We only have to do this after reload, because (1) before reload there
2535 are no COND_EXEC insns, and (2) the region scheduler is an intra-block
2536 scheduler after reload.
2537
2538 FIXME: We could in some cases move COND_EXEC insns past the branch if
2539 this scheduler would be a little smarter. Consider this code:
2540
2541 T = [addr]
2542 C ? addr += 4
2543 !C ? X += 12
2544 C ? T += 1
2545 C ? jump foo
2546
2547 On a target with a one cycle stall on a memory access the optimal
2548 sequence would be:
2549
2550 T = [addr]
2551 C ? addr += 4
2552 C ? T += 1
2553 C ? jump foo
2554 !C ? X += 12
2555
2556 We don't want to put the 'X += 12' before the branch because it just
2557 wastes a cycle of execution time when the branch is taken.
2558
2559 Note that in the example "!C" will always be true. That is another
2560 possible improvement for handling COND_EXECs in this scheduler: it
2561 could remove always-true predicates. */
2562
2563 if (!reload_completed || ! (JUMP_P (tail) || JUMP_TABLE_DATA_P (tail)))
2564 return;
2565
2566 insn = tail;
2567 while (insn != head)
2568 {
2569 insn = PREV_INSN (insn);
2570
2571 /* Note that we want to add this dependency even when
2572 sched_insns_conditions_mutex_p returns true. The whole point
2573 is that we _want_ this dependency, even if these insns really
2574 are independent. */
2575 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == COND_EXEC)
2576 add_dependence (tail, insn, REG_DEP_ANTI);
2577 }
2578}
2579
2580/* Data structures for the computation of data dependences in a regions. We
2581 keep one `deps' structure for every basic block. Before analyzing the
2582 data dependences for a bb, its variables are initialized as a function of
2583 the variables of its predecessors. When the analysis for a bb completes,
2584 we save the contents to the corresponding bb_deps[bb] variable. */
2585
2586static class deps_desc *bb_deps;
2587
2588static void
2589concat_insn_mem_list (rtx_insn_list *copy_insns,
2590 rtx_expr_list *copy_mems,
2591 rtx_insn_list **old_insns_p,
2592 rtx_expr_list **old_mems_p)
2593{
2594 rtx_insn_list *new_insns = *old_insns_p;
2595 rtx_expr_list *new_mems = *old_mems_p;
2596
2597 while (copy_insns)
2598 {
2599 new_insns = alloc_INSN_LIST (copy_insns->insn (), new_insns);
2600 new_mems = alloc_EXPR_LIST (VOIDmode, copy_mems->element (), new_mems);
2601 copy_insns = copy_insns->next ();
2602 copy_mems = copy_mems->next ();
2603 }
2604
2605 *old_insns_p = new_insns;
2606 *old_mems_p = new_mems;
2607}
2608
2609/* Join PRED_DEPS to the SUCC_DEPS. */
2610void
2611deps_join (class deps_desc *succ_deps, class deps_desc *pred_deps)
2612{
2613 unsigned reg;
2614 reg_set_iterator rsi;
2615
2616 /* The reg_last lists are inherited by successor. */
2617 EXECUTE_IF_SET_IN_REG_SET (&pred_deps->reg_last_in_use, 0, reg, rsi)
2618 {
2619 struct deps_reg *pred_rl = &pred_deps->reg_last[reg];
2620 struct deps_reg *succ_rl = &succ_deps->reg_last[reg];
2621
2622 succ_rl->uses = concat_INSN_LIST (pred_rl->uses, succ_rl->uses);
2623 succ_rl->sets = concat_INSN_LIST (pred_rl->sets, succ_rl->sets);
2624 succ_rl->implicit_sets
2625 = concat_INSN_LIST (pred_rl->implicit_sets, succ_rl->implicit_sets);
2626 succ_rl->clobbers = concat_INSN_LIST (pred_rl->clobbers,
2627 succ_rl->clobbers);
2628 succ_rl->uses_length += pred_rl->uses_length;
2629 succ_rl->clobbers_length += pred_rl->clobbers_length;
2630 }
2631 IOR_REG_SET (&succ_deps->reg_last_in_use, &pred_deps->reg_last_in_use);
2632
2633 /* Mem read/write lists are inherited by successor. */
2634 concat_insn_mem_list (copy_insns: pred_deps->pending_read_insns,
2635 copy_mems: pred_deps->pending_read_mems,
2636 old_insns_p: &succ_deps->pending_read_insns,
2637 old_mems_p: &succ_deps->pending_read_mems);
2638 concat_insn_mem_list (copy_insns: pred_deps->pending_write_insns,
2639 copy_mems: pred_deps->pending_write_mems,
2640 old_insns_p: &succ_deps->pending_write_insns,
2641 old_mems_p: &succ_deps->pending_write_mems);
2642
2643 succ_deps->pending_jump_insns
2644 = concat_INSN_LIST (pred_deps->pending_jump_insns,
2645 succ_deps->pending_jump_insns);
2646 succ_deps->last_pending_memory_flush
2647 = concat_INSN_LIST (pred_deps->last_pending_memory_flush,
2648 succ_deps->last_pending_memory_flush);
2649
2650 succ_deps->pending_read_list_length += pred_deps->pending_read_list_length;
2651 succ_deps->pending_write_list_length += pred_deps->pending_write_list_length;
2652 succ_deps->pending_flush_length += pred_deps->pending_flush_length;
2653
2654 /* last_function_call is inherited by successor. */
2655 succ_deps->last_function_call
2656 = concat_INSN_LIST (pred_deps->last_function_call,
2657 succ_deps->last_function_call);
2658
2659 /* last_function_call_may_noreturn is inherited by successor. */
2660 succ_deps->last_function_call_may_noreturn
2661 = concat_INSN_LIST (pred_deps->last_function_call_may_noreturn,
2662 succ_deps->last_function_call_may_noreturn);
2663
2664 /* sched_before_next_call is inherited by successor. */
2665 succ_deps->sched_before_next_call
2666 = concat_INSN_LIST (pred_deps->sched_before_next_call,
2667 succ_deps->sched_before_next_call);
2668}
2669
2670/* After computing the dependencies for block BB, propagate the dependencies
2671 found in TMP_DEPS to the successors of the block. */
2672static void
2673propagate_deps (int bb, class deps_desc *pred_deps)
2674{
2675 basic_block block = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (bb));
2676 edge_iterator ei;
2677 edge e;
2678
2679 /* bb's structures are inherited by its successors. */
2680 FOR_EACH_EDGE (e, ei, block->succs)
2681 {
2682 /* Only bbs "below" bb, in the same region, are interesting. */
2683 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2684 || CONTAINING_RGN (block->index) != CONTAINING_RGN (e->dest->index)
2685 || BLOCK_TO_BB (e->dest->index) <= bb)
2686 continue;
2687
2688 deps_join (succ_deps: bb_deps + BLOCK_TO_BB (e->dest->index), pred_deps);
2689 }
2690
2691 /* These lists should point to the right place, for correct
2692 freeing later. */
2693 bb_deps[bb].pending_read_insns = pred_deps->pending_read_insns;
2694 bb_deps[bb].pending_read_mems = pred_deps->pending_read_mems;
2695 bb_deps[bb].pending_write_insns = pred_deps->pending_write_insns;
2696 bb_deps[bb].pending_write_mems = pred_deps->pending_write_mems;
2697 bb_deps[bb].pending_jump_insns = pred_deps->pending_jump_insns;
2698
2699 /* Can't allow these to be freed twice. */
2700 pred_deps->pending_read_insns = 0;
2701 pred_deps->pending_read_mems = 0;
2702 pred_deps->pending_write_insns = 0;
2703 pred_deps->pending_write_mems = 0;
2704 pred_deps->pending_jump_insns = 0;
2705}
2706
2707/* Compute dependences inside bb. In a multiple blocks region:
2708 (1) a bb is analyzed after its predecessors, and (2) the lists in
2709 effect at the end of bb (after analyzing for bb) are inherited by
2710 bb's successors.
2711
2712 Specifically for reg-reg data dependences, the block insns are
2713 scanned by sched_analyze () top-to-bottom. Three lists are
2714 maintained by sched_analyze (): reg_last[].sets for register DEFs,
2715 reg_last[].implicit_sets for implicit hard register DEFs, and
2716 reg_last[].uses for register USEs.
2717
2718 When analysis is completed for bb, we update for its successors:
2719 ; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
2720 ; - IMPLICIT_DEFS[succ] = Union (IMPLICIT_DEFS [succ], IMPLICIT_DEFS [bb])
2721 ; - USES[succ] = Union (USES [succ], DEFS [bb])
2722
2723 The mechanism for computing mem-mem data dependence is very
2724 similar, and the result is interblock dependences in the region. */
2725
2726static void
2727compute_block_dependences (int bb)
2728{
2729 rtx_insn *head, *tail;
2730 class deps_desc tmp_deps;
2731
2732 tmp_deps = bb_deps[bb];
2733
2734 /* Do the analysis for this block. */
2735 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2736 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2737
2738 sched_analyze (&tmp_deps, head, tail);
2739
2740 add_branch_dependences (head, tail);
2741
2742 if (current_nr_blocks > 1)
2743 propagate_deps (bb, pred_deps: &tmp_deps);
2744
2745 /* Free up the INSN_LISTs. */
2746 free_deps (&tmp_deps);
2747
2748 if (targetm.sched.dependencies_evaluation_hook)
2749 targetm.sched.dependencies_evaluation_hook (head, tail);
2750}
2751
2752/* Free dependencies of instructions inside BB. */
2753static void
2754free_block_dependencies (int bb)
2755{
2756 rtx_insn *head;
2757 rtx_insn *tail;
2758
2759 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2760
2761 if (no_real_insns_p (head, tail))
2762 return;
2763
2764 sched_free_deps (head, tail, true);
2765}
2766
2767/* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
2768 them to the unused_*_list variables, so that they can be reused. */
2769
2770static void
2771free_pending_lists (void)
2772{
2773 int bb;
2774
2775 for (bb = 0; bb < current_nr_blocks; bb++)
2776 {
2777 free_INSN_LIST_list (&bb_deps[bb].pending_read_insns);
2778 free_INSN_LIST_list (&bb_deps[bb].pending_write_insns);
2779 free_EXPR_LIST_list (&bb_deps[bb].pending_read_mems);
2780 free_EXPR_LIST_list (&bb_deps[bb].pending_write_mems);
2781 free_INSN_LIST_list (&bb_deps[bb].pending_jump_insns);
2782 }
2783}
2784
2785/* Print dependences for debugging starting from FROM_BB.
2786 Callable from debugger. */
2787/* Print dependences for debugging starting from FROM_BB.
2788 Callable from debugger. */
2789DEBUG_FUNCTION void
2790debug_rgn_dependencies (int from_bb)
2791{
2792 int bb;
2793
2794 fprintf (stream: sched_dump,
2795 format: ";; --------------- forward dependences: ------------ \n");
2796
2797 for (bb = from_bb; bb < current_nr_blocks; bb++)
2798 {
2799 rtx_insn *head, *tail;
2800
2801 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2802 fprintf (stream: sched_dump, format: "\n;; --- Region Dependences --- b %d bb %d \n",
2803 BB_TO_BLOCK (bb), bb);
2804
2805 debug_dependencies (head, tail);
2806 }
2807}
2808
2809/* Print dependencies information for instructions between HEAD and TAIL.
2810 ??? This function would probably fit best in haifa-sched.cc. */
2811void debug_dependencies (rtx_insn *head, rtx_insn *tail)
2812{
2813 rtx_insn *insn;
2814 rtx_insn *next_tail = NEXT_INSN (insn: tail);
2815
2816 fprintf (stream: sched_dump, format: ";; %7s%6s%6s%6s%6s%6s%14s\n",
2817 "insn", "code", "bb", "dep", "prio", "cost",
2818 "reservation");
2819 fprintf (stream: sched_dump, format: ";; %7s%6s%6s%6s%6s%6s%14s\n",
2820 "----", "----", "--", "---", "----", "----",
2821 "-----------");
2822
2823 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
2824 {
2825 if (! INSN_P (insn))
2826 {
2827 int n;
2828 fprintf (stream: sched_dump, format: ";; %6d ", INSN_UID (insn));
2829 if (NOTE_P (insn))
2830 {
2831 n = NOTE_KIND (insn);
2832 fprintf (stream: sched_dump, format: "%s\n", GET_NOTE_INSN_NAME (n));
2833 }
2834 else
2835 fprintf (stream: sched_dump, format: " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
2836 continue;
2837 }
2838
2839 fprintf (stream: sched_dump,
2840 format: ";; %s%5d%6d%6d%6d%6d%6d ",
2841 (SCHED_GROUP_P (insn) ? "+" : " "),
2842 INSN_UID (insn),
2843 INSN_CODE (insn),
2844 BLOCK_NUM (insn),
2845 sched_emulate_haifa_p ? -1 : sd_lists_size (insn, SD_LIST_BACK),
2846 (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2847 : INSN_PRIORITY (insn))
2848 : INSN_PRIORITY (insn)),
2849 (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2850 : insn_sched_cost (insn))
2851 : insn_sched_cost (insn)));
2852
2853 if (recog_memoized (insn) < 0)
2854 fprintf (stream: sched_dump, format: "nothing");
2855 else
2856 print_reservation (sched_dump, insn);
2857
2858 fprintf (stream: sched_dump, format: "\t: ");
2859 {
2860 sd_iterator_def sd_it;
2861 dep_t dep;
2862
2863 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
2864 fprintf (stream: sched_dump, format: "%d%s%s ", INSN_UID (DEP_CON (dep)),
2865 DEP_NONREG (dep) ? "n" : "",
2866 DEP_MULTIPLE (dep) ? "m" : "");
2867 }
2868 fprintf (stream: sched_dump, format: "\n");
2869 }
2870
2871 fprintf (stream: sched_dump, format: "\n");
2872}
2873
2874/* Dump dependency graph for the current region to a file using dot syntax. */
2875
2876void
2877dump_rgn_dependencies_dot (FILE *file)
2878{
2879 rtx_insn *head, *tail, *con, *pro;
2880 sd_iterator_def sd_it;
2881 dep_t dep;
2882 int bb;
2883 pretty_printer pp;
2884
2885 pp.buffer->stream = file;
2886 pp_printf (&pp, "digraph SchedDG {\n");
2887
2888 for (bb = 0; bb < current_nr_blocks; ++bb)
2889 {
2890 /* Begin subgraph (basic block). */
2891 pp_printf (&pp, "subgraph cluster_block_%d {\n", bb);
2892 pp_printf (&pp, "\t" "color=blue;" "\n");
2893 pp_printf (&pp, "\t" "style=bold;" "\n");
2894 pp_printf (&pp, "\t" "label=\"BB #%d\";\n", BB_TO_BLOCK (bb));
2895
2896 /* Setup head and tail (no support for EBBs). */
2897 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2898 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2899 tail = NEXT_INSN (insn: tail);
2900
2901 /* Dump all insns. */
2902 for (con = head; con != tail; con = NEXT_INSN (insn: con))
2903 {
2904 if (!INSN_P (con))
2905 continue;
2906
2907 /* Pretty print the insn. */
2908 pp_printf (&pp, "\t%d [label=\"{", INSN_UID (insn: con));
2909 pp_write_text_to_stream (&pp);
2910 print_insn (pp: &pp, x: con, /*verbose=*/false);
2911 pp_write_text_as_dot_label_to_stream (&pp, /*for_record=*/true);
2912 pp_write_text_to_stream (&pp);
2913
2914 /* Dump instruction attributes. */
2915 pp_printf (&pp, "|{ uid:%d | luid:%d | prio:%d }}\",shape=record]\n",
2916 INSN_UID (insn: con), INSN_LUID (con), INSN_PRIORITY (con));
2917
2918 /* Dump all deps. */
2919 FOR_EACH_DEP (con, SD_LIST_BACK, sd_it, dep)
2920 {
2921 int weight = 0;
2922 const char *color;
2923 pro = DEP_PRO (dep);
2924
2925 switch (DEP_TYPE (dep))
2926 {
2927 case REG_DEP_TRUE:
2928 color = "black";
2929 weight = 1;
2930 break;
2931 case REG_DEP_OUTPUT:
2932 case REG_DEP_ANTI:
2933 color = "orange";
2934 break;
2935 case REG_DEP_CONTROL:
2936 color = "blue";
2937 break;
2938 default:
2939 gcc_unreachable ();
2940 }
2941
2942 pp_printf (&pp, "\t%d -> %d [color=%s",
2943 INSN_UID (insn: pro), INSN_UID (insn: con), color);
2944 if (int cost = dep_cost (dep))
2945 pp_printf (&pp, ",label=%d", cost);
2946 pp_printf (&pp, ",weight=%d", weight);
2947 pp_printf (&pp, "];\n");
2948 }
2949 }
2950 pp_printf (&pp, "}\n");
2951 }
2952
2953 pp_printf (&pp, "}\n");
2954 pp_flush (&pp);
2955}
2956
2957/* Dump dependency graph for the current region to a file using dot syntax. */
2958
2959DEBUG_FUNCTION void
2960dump_rgn_dependencies_dot (const char *fname)
2961{
2962 FILE *fp;
2963
2964 fp = fopen (filename: fname, modes: "w");
2965 if (!fp)
2966 {
2967 perror (s: "fopen");
2968 return;
2969 }
2970
2971 dump_rgn_dependencies_dot (file: fp);
2972 fclose (stream: fp);
2973}
2974
2975
2976/* Returns true if all the basic blocks of the current region have
2977 NOTE_DISABLE_SCHED_OF_BLOCK which means not to schedule that region. */
2978bool
2979sched_is_disabled_for_current_region_p (void)
2980{
2981 int bb;
2982
2983 for (bb = 0; bb < current_nr_blocks; bb++)
2984 if (!(BASIC_BLOCK_FOR_FN (cfun,
2985 BB_TO_BLOCK (bb))->flags & BB_DISABLE_SCHEDULE))
2986 return false;
2987
2988 return true;
2989}
2990
2991/* Free all region dependencies saved in INSN_BACK_DEPS and
2992 INSN_RESOLVED_BACK_DEPS. The Haifa scheduler does this on the fly
2993 when scheduling, so this function is supposed to be called from
2994 the selective scheduling only. */
2995void
2996free_rgn_deps (void)
2997{
2998 int bb;
2999
3000 for (bb = 0; bb < current_nr_blocks; bb++)
3001 {
3002 rtx_insn *head, *tail;
3003
3004 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
3005 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
3006
3007 sched_free_deps (head, tail, false);
3008 }
3009}
3010
3011static int rgn_n_insns;
3012
3013/* Compute insn priority for a current region. */
3014void
3015compute_priorities (void)
3016{
3017 int bb;
3018
3019 current_sched_info->sched_max_insns_priority = 0;
3020 for (bb = 0; bb < current_nr_blocks; bb++)
3021 {
3022 rtx_insn *head, *tail;
3023
3024 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
3025 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
3026
3027 if (no_real_insns_p (head, tail))
3028 continue;
3029
3030 rgn_n_insns += set_priorities (head, tail);
3031 }
3032 current_sched_info->sched_max_insns_priority++;
3033}
3034
3035/* (Re-)initialize the arrays of DFA states at the end of each basic block.
3036
3037 SAVED_LAST_BASIC_BLOCK is the previous length of the arrays. It must be
3038 zero for the first call to this function, to allocate the arrays for the
3039 first time.
3040
3041 This function is called once during initialization of the scheduler, and
3042 called again to resize the arrays if new basic blocks have been created,
3043 for example for speculation recovery code. */
3044
3045static void
3046realloc_bb_state_array (int saved_last_basic_block)
3047{
3048 char *old_bb_state_array = bb_state_array;
3049 size_t lbb = (size_t) last_basic_block_for_fn (cfun);
3050 size_t slbb = (size_t) saved_last_basic_block;
3051
3052 /* Nothing to do if nothing changed since the last time this was called. */
3053 if (saved_last_basic_block == last_basic_block_for_fn (cfun))
3054 return;
3055
3056 /* The selective scheduler doesn't use the state arrays. */
3057 if (sel_sched_p ())
3058 {
3059 gcc_assert (bb_state_array == NULL && bb_state == NULL);
3060 return;
3061 }
3062
3063 gcc_checking_assert (saved_last_basic_block == 0
3064 || (bb_state_array != NULL && bb_state != NULL));
3065
3066 bb_state_array = XRESIZEVEC (char, bb_state_array, lbb * dfa_state_size);
3067 bb_state = XRESIZEVEC (state_t, bb_state, lbb);
3068
3069 /* If BB_STATE_ARRAY has moved, fixup all the state pointers array.
3070 Otherwise only fixup the newly allocated ones. For the state
3071 array itself, only initialize the new entries. */
3072 bool bb_state_array_moved = (bb_state_array != old_bb_state_array);
3073 for (size_t i = bb_state_array_moved ? 0 : slbb; i < lbb; i++)
3074 bb_state[i] = (state_t) (bb_state_array + i * dfa_state_size);
3075 for (size_t i = slbb; i < lbb; i++)
3076 state_reset (bb_state[i]);
3077}
3078
3079/* Free the arrays of DFA states at the end of each basic block. */
3080
3081static void
3082free_bb_state_array (void)
3083{
3084 free (ptr: bb_state_array);
3085 free (ptr: bb_state);
3086 bb_state_array = NULL;
3087 bb_state = NULL;
3088}
3089
3090/* If LAST_BB falls through to another block B, record that B should
3091 start with DFA start STATE. */
3092
3093static void
3094save_state_for_fallthru_edge (basic_block last_bb, state_t state)
3095{
3096 edge f = find_fallthru_edge (edges: last_bb->succs);
3097 if (f
3098 && (!f->probability.initialized_p ()
3099 || (f->probability.to_reg_br_prob_base () * 100
3100 / REG_BR_PROB_BASE
3101 >= param_sched_state_edge_prob_cutoff)))
3102 {
3103 memcpy (dest: bb_state[f->dest->index], src: state,
3104 n: dfa_state_size);
3105 if (sched_verbose >= 5)
3106 fprintf (stream: sched_dump, format: "saving state for edge %d->%d\n",
3107 f->src->index, f->dest->index);
3108 }
3109}
3110
3111/* Schedule a region. A region is either an inner loop, a loop-free
3112 subroutine, or a single basic block. Each bb in the region is
3113 scheduled after its flow predecessors. */
3114
3115static void
3116schedule_region (int rgn)
3117{
3118 int bb;
3119 int sched_rgn_n_insns = 0;
3120
3121 rgn_n_insns = 0;
3122
3123 /* Do not support register pressure sensitive scheduling for the new regions
3124 as we don't update the liveness info for them. */
3125 if (sched_pressure != SCHED_PRESSURE_NONE
3126 && rgn >= nr_regions_initial)
3127 {
3128 free_global_sched_pressure_data ();
3129 sched_pressure = SCHED_PRESSURE_NONE;
3130 }
3131
3132 rgn_setup_region (rgn);
3133
3134 /* Don't schedule region that is marked by
3135 NOTE_DISABLE_SCHED_OF_BLOCK. */
3136 if (sched_is_disabled_for_current_region_p ())
3137 return;
3138
3139 sched_rgn_compute_dependencies (rgn);
3140
3141 sched_rgn_local_init (rgn);
3142
3143 /* Set priorities. */
3144 compute_priorities ();
3145
3146 sched_extend_ready_list (rgn_n_insns);
3147
3148 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3149 {
3150 sched_init_region_reg_pressure_info ();
3151 for (bb = 0; bb < current_nr_blocks; bb++)
3152 {
3153 basic_block first_bb, last_bb;
3154 rtx_insn *head, *tail;
3155
3156 first_bb = EBB_FIRST_BB (bb);
3157 last_bb = EBB_LAST_BB (bb);
3158
3159 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
3160
3161 if (no_real_insns_p (head, tail))
3162 {
3163 gcc_assert (first_bb == last_bb);
3164 continue;
3165 }
3166 sched_setup_bb_reg_pressure_info (first_bb, PREV_INSN (insn: head));
3167 }
3168 }
3169
3170 /* Now we can schedule all blocks. */
3171 for (bb = 0; bb < current_nr_blocks; bb++)
3172 {
3173 basic_block first_bb, last_bb, curr_bb;
3174 rtx_insn *head, *tail;
3175
3176 first_bb = EBB_FIRST_BB (bb);
3177 last_bb = EBB_LAST_BB (bb);
3178
3179 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
3180
3181 if (no_real_insns_p (head, tail))
3182 {
3183 gcc_assert (first_bb == last_bb);
3184 save_state_for_fallthru_edge (last_bb, state: bb_state[first_bb->index]);
3185 continue;
3186 }
3187
3188 current_sched_info->prev_head = PREV_INSN (insn: head);
3189 current_sched_info->next_tail = NEXT_INSN (insn: tail);
3190
3191 remove_notes (head, tail);
3192
3193 unlink_bb_notes (first_bb, last_bb);
3194
3195 target_bb = bb;
3196
3197 gcc_assert (flag_schedule_interblock || current_nr_blocks == 1);
3198 current_sched_info->queue_must_finish_empty = current_nr_blocks == 1;
3199
3200 curr_bb = first_bb;
3201 if (dbg_cnt (index: sched_block))
3202 {
3203 int saved_last_basic_block = last_basic_block_for_fn (cfun);
3204
3205 schedule_block (&curr_bb, bb_state[first_bb->index]);
3206 gcc_assert (EBB_FIRST_BB (bb) == first_bb);
3207 sched_rgn_n_insns += sched_n_insns;
3208 realloc_bb_state_array (saved_last_basic_block);
3209 save_state_for_fallthru_edge (last_bb, state: curr_state);
3210 }
3211 else
3212 {
3213 sched_rgn_n_insns += rgn_n_insns;
3214 }
3215
3216 /* Clean up. */
3217 if (current_nr_blocks > 1)
3218 free_trg_info ();
3219 }
3220
3221 /* Sanity check: verify that all region insns were scheduled. */
3222 gcc_assert (sched_rgn_n_insns == rgn_n_insns);
3223
3224 sched_finish_ready_list ();
3225
3226 /* Done with this region. */
3227 sched_rgn_local_finish ();
3228
3229 /* Free dependencies. */
3230 for (bb = 0; bb < current_nr_blocks; ++bb)
3231 free_block_dependencies (bb);
3232
3233 gcc_assert (haifa_recovery_bb_ever_added_p
3234 || deps_pools_are_empty_p ());
3235}
3236
3237/* Initialize data structures for region scheduling. */
3238
3239void
3240sched_rgn_init (bool single_blocks_p)
3241{
3242 min_spec_prob = ((param_min_spec_prob * REG_BR_PROB_BASE)
3243 / 100);
3244
3245 nr_inter = 0;
3246 nr_spec = 0;
3247
3248 extend_regions ();
3249
3250 CONTAINING_RGN (ENTRY_BLOCK) = -1;
3251 CONTAINING_RGN (EXIT_BLOCK) = -1;
3252
3253 realloc_bb_state_array (saved_last_basic_block: 0);
3254
3255 /* Compute regions for scheduling. */
3256 if (single_blocks_p
3257 || n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS + 1
3258 || !flag_schedule_interblock
3259 || is_cfg_nonregular ())
3260 {
3261 find_single_block_region (ebbs_p: sel_sched_p ());
3262 }
3263 else
3264 {
3265 /* Compute the dominators and post dominators. */
3266 if (!sel_sched_p ())
3267 calculate_dominance_info (CDI_DOMINATORS);
3268
3269 /* Find regions. */
3270 find_rgns ();
3271
3272 if (sched_verbose >= 3)
3273 debug_regions ();
3274
3275 /* For now. This will move as more and more of haifa is converted
3276 to using the cfg code. */
3277 if (!sel_sched_p ())
3278 free_dominance_info (CDI_DOMINATORS);
3279 }
3280
3281 gcc_assert (nr_regions > 0 && nr_regions <= n_basic_blocks_for_fn (cfun));
3282
3283 RGN_BLOCKS (nr_regions) = (RGN_BLOCKS (nr_regions - 1)
3284 + RGN_NR_BLOCKS (nr_regions - 1));
3285 nr_regions_initial = nr_regions;
3286}
3287
3288/* Free data structures for region scheduling. */
3289void
3290sched_rgn_finish (void)
3291{
3292 free_bb_state_array ();
3293
3294 /* Reposition the prologue and epilogue notes in case we moved the
3295 prologue/epilogue insns. */
3296 if (reload_completed)
3297 reposition_prologue_and_epilogue_notes ();
3298
3299 if (sched_verbose)
3300 {
3301 if (reload_completed == 0
3302 && flag_schedule_interblock)
3303 {
3304 fprintf (stream: sched_dump,
3305 format: "\n;; Procedure interblock/speculative motions == %d/%d \n",
3306 nr_inter, nr_spec);
3307 }
3308 else
3309 gcc_assert (nr_inter <= 0);
3310 fprintf (stream: sched_dump, format: "\n\n");
3311 }
3312
3313 nr_regions = 0;
3314
3315 free (ptr: rgn_table);
3316 rgn_table = NULL;
3317
3318 free (ptr: rgn_bb_table);
3319 rgn_bb_table = NULL;
3320
3321 free (ptr: block_to_bb);
3322 block_to_bb = NULL;
3323
3324 free (ptr: containing_rgn);
3325 containing_rgn = NULL;
3326
3327 free (ptr: ebb_head);
3328 ebb_head = NULL;
3329}
3330
3331/* Setup global variables like CURRENT_BLOCKS and CURRENT_NR_BLOCK to
3332 point to the region RGN. */
3333void
3334rgn_setup_region (int rgn)
3335{
3336 int bb;
3337
3338 /* Set variables for the current region. */
3339 current_nr_blocks = RGN_NR_BLOCKS (rgn);
3340 current_blocks = RGN_BLOCKS (rgn);
3341
3342 /* EBB_HEAD is a region-scope structure. But we realloc it for
3343 each region to save time/memory/something else.
3344 See comments in add_block1, for what reasons we allocate +1 element. */
3345 ebb_head = XRESIZEVEC (int, ebb_head, current_nr_blocks + 1);
3346 for (bb = 0; bb <= current_nr_blocks; bb++)
3347 ebb_head[bb] = current_blocks + bb;
3348}
3349
3350/* Compute instruction dependencies in region RGN. */
3351void
3352sched_rgn_compute_dependencies (int rgn)
3353{
3354 if (!RGN_DONT_CALC_DEPS (rgn))
3355 {
3356 int bb;
3357
3358 if (sel_sched_p ())
3359 sched_emulate_haifa_p = 1;
3360
3361 init_deps_global ();
3362
3363 /* Initializations for region data dependence analysis. */
3364 bb_deps = XNEWVEC (class deps_desc, current_nr_blocks);
3365 for (bb = 0; bb < current_nr_blocks; bb++)
3366 init_deps (bb_deps + bb, false);
3367
3368 /* Initialize bitmap used in add_branch_dependences. */
3369 insn_referenced = sbitmap_alloc (sched_max_luid);
3370 bitmap_clear (insn_referenced);
3371
3372 /* Compute backward dependencies. */
3373 for (bb = 0; bb < current_nr_blocks; bb++)
3374 compute_block_dependences (bb);
3375
3376 sbitmap_free (map: insn_referenced);
3377 free_pending_lists ();
3378 finish_deps_global ();
3379 free (ptr: bb_deps);
3380
3381 /* We don't want to recalculate this twice. */
3382 RGN_DONT_CALC_DEPS (rgn) = 1;
3383
3384 if (sel_sched_p ())
3385 sched_emulate_haifa_p = 0;
3386 }
3387 else
3388 /* (This is a recovery block. It is always a single block region.)
3389 OR (We use selective scheduling.) */
3390 gcc_assert (current_nr_blocks == 1 || sel_sched_p ());
3391}
3392
3393/* Init region data structures. Returns true if this region should
3394 not be scheduled. */
3395void
3396sched_rgn_local_init (int rgn)
3397{
3398 int bb;
3399
3400 /* Compute interblock info: probabilities, split-edges, dominators, etc. */
3401 if (current_nr_blocks > 1)
3402 {
3403 basic_block block;
3404 edge e;
3405 edge_iterator ei;
3406
3407 prob = XNEWVEC (int, current_nr_blocks);
3408
3409 dom = sbitmap_vector_alloc (current_nr_blocks, current_nr_blocks);
3410 bitmap_vector_clear (dom, current_nr_blocks);
3411
3412 /* Use ->aux to implement EDGE_TO_BIT mapping. */
3413 rgn_nr_edges = 0;
3414 FOR_EACH_BB_FN (block, cfun)
3415 {
3416 if (CONTAINING_RGN (block->index) != rgn)
3417 continue;
3418 FOR_EACH_EDGE (e, ei, block->succs)
3419 SET_EDGE_TO_BIT (e, rgn_nr_edges++);
3420 }
3421
3422 rgn_edges = XNEWVEC (edge, rgn_nr_edges);
3423 rgn_nr_edges = 0;
3424 FOR_EACH_BB_FN (block, cfun)
3425 {
3426 if (CONTAINING_RGN (block->index) != rgn)
3427 continue;
3428 FOR_EACH_EDGE (e, ei, block->succs)
3429 rgn_edges[rgn_nr_edges++] = e;
3430 }
3431
3432 /* Split edges. */
3433 pot_split = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3434 bitmap_vector_clear (pot_split, current_nr_blocks);
3435 ancestor_edges = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3436 bitmap_vector_clear (ancestor_edges, current_nr_blocks);
3437
3438 /* Compute probabilities, dominators, split_edges. */
3439 for (bb = 0; bb < current_nr_blocks; bb++)
3440 compute_dom_prob_ps (bb);
3441
3442 /* Cleanup ->aux used for EDGE_TO_BIT mapping. */
3443 /* We don't need them anymore. But we want to avoid duplication of
3444 aux fields in the newly created edges. */
3445 FOR_EACH_BB_FN (block, cfun)
3446 {
3447 if (CONTAINING_RGN (block->index) != rgn)
3448 continue;
3449 FOR_EACH_EDGE (e, ei, block->succs)
3450 e->aux = NULL;
3451 }
3452 }
3453}
3454
3455/* Free data computed for the finished region. */
3456void
3457sched_rgn_local_free (void)
3458{
3459 free (ptr: prob);
3460 sbitmap_vector_free (vec: dom);
3461 sbitmap_vector_free (vec: pot_split);
3462 sbitmap_vector_free (vec: ancestor_edges);
3463 free (ptr: rgn_edges);
3464}
3465
3466/* Free data computed for the finished region. */
3467void
3468sched_rgn_local_finish (void)
3469{
3470 if (current_nr_blocks > 1 && !sel_sched_p ())
3471 {
3472 sched_rgn_local_free ();
3473 }
3474}
3475
3476/* Setup scheduler infos. */
3477void
3478rgn_setup_common_sched_info (void)
3479{
3480 memcpy (dest: &rgn_common_sched_info, src: &haifa_common_sched_info,
3481 n: sizeof (rgn_common_sched_info));
3482
3483 rgn_common_sched_info.fix_recovery_cfg = rgn_fix_recovery_cfg;
3484 rgn_common_sched_info.add_block = rgn_add_block;
3485 rgn_common_sched_info.estimate_number_of_insns
3486 = rgn_estimate_number_of_insns;
3487 rgn_common_sched_info.sched_pass_id = SCHED_RGN_PASS;
3488
3489 common_sched_info = &rgn_common_sched_info;
3490}
3491
3492/* Setup all *_sched_info structures (for the Haifa frontend
3493 and for the dependence analysis) in the interblock scheduler. */
3494void
3495rgn_setup_sched_infos (void)
3496{
3497 if (!sel_sched_p ())
3498 memcpy (dest: &rgn_sched_deps_info, src: &rgn_const_sched_deps_info,
3499 n: sizeof (rgn_sched_deps_info));
3500 else
3501 memcpy (dest: &rgn_sched_deps_info, src: &rgn_const_sel_sched_deps_info,
3502 n: sizeof (rgn_sched_deps_info));
3503
3504 sched_deps_info = &rgn_sched_deps_info;
3505
3506 memcpy (dest: &rgn_sched_info, src: &rgn_const_sched_info, n: sizeof (rgn_sched_info));
3507 current_sched_info = &rgn_sched_info;
3508}
3509
3510/* The one entry point in this file. */
3511void
3512schedule_insns (void)
3513{
3514 int rgn;
3515
3516 /* Taking care of this degenerate case makes the rest of
3517 this code simpler. */
3518 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
3519 return;
3520
3521 rgn_setup_common_sched_info ();
3522 rgn_setup_sched_infos ();
3523
3524 haifa_sched_init ();
3525 sched_rgn_init (single_blocks_p: reload_completed);
3526
3527 bitmap_initialize (head: &not_in_df, obstack: &bitmap_default_obstack);
3528
3529 /* Schedule every region in the subroutine. */
3530 for (rgn = 0; rgn < nr_regions; rgn++)
3531 if (dbg_cnt (index: sched_region))
3532 schedule_region (rgn);
3533
3534 /* Clean up. */
3535 sched_rgn_finish ();
3536 bitmap_release (head: &not_in_df);
3537
3538 haifa_sched_finish ();
3539}
3540
3541/* INSN has been added to/removed from current region. */
3542static void
3543rgn_add_remove_insn (rtx_insn *insn, int remove_p)
3544{
3545 if (!remove_p)
3546 rgn_n_insns++;
3547 else
3548 rgn_n_insns--;
3549
3550 if (INSN_BB (insn) == target_bb)
3551 {
3552 if (!remove_p)
3553 target_n_insns++;
3554 else
3555 target_n_insns--;
3556 }
3557}
3558
3559/* Extend internal data structures. */
3560void
3561extend_regions (void)
3562{
3563 rgn_table = XRESIZEVEC (region, rgn_table, n_basic_blocks_for_fn (cfun));
3564 rgn_bb_table = XRESIZEVEC (int, rgn_bb_table,
3565 n_basic_blocks_for_fn (cfun));
3566 block_to_bb = XRESIZEVEC (int, block_to_bb,
3567 last_basic_block_for_fn (cfun));
3568 containing_rgn = XRESIZEVEC (int, containing_rgn,
3569 last_basic_block_for_fn (cfun));
3570}
3571
3572void
3573rgn_make_new_region_out_of_new_block (basic_block bb)
3574{
3575 int i;
3576
3577 i = RGN_BLOCKS (nr_regions);
3578 /* I - first free position in rgn_bb_table. */
3579
3580 rgn_bb_table[i] = bb->index;
3581 RGN_NR_BLOCKS (nr_regions) = 1;
3582 RGN_HAS_REAL_EBB (nr_regions) = 0;
3583 RGN_DONT_CALC_DEPS (nr_regions) = 0;
3584 CONTAINING_RGN (bb->index) = nr_regions;
3585 BLOCK_TO_BB (bb->index) = 0;
3586
3587 nr_regions++;
3588
3589 RGN_BLOCKS (nr_regions) = i + 1;
3590}
3591
3592/* BB was added to ebb after AFTER. */
3593static void
3594rgn_add_block (basic_block bb, basic_block after)
3595{
3596 extend_regions ();
3597 bitmap_set_bit (&not_in_df, bb->index);
3598
3599 if (after == 0 || after == EXIT_BLOCK_PTR_FOR_FN (cfun))
3600 {
3601 rgn_make_new_region_out_of_new_block (bb);
3602 RGN_DONT_CALC_DEPS (nr_regions - 1) = (after
3603 == EXIT_BLOCK_PTR_FOR_FN (cfun));
3604 }
3605 else
3606 {
3607 int i, pos;
3608
3609 /* We need to fix rgn_table, block_to_bb, containing_rgn
3610 and ebb_head. */
3611
3612 BLOCK_TO_BB (bb->index) = BLOCK_TO_BB (after->index);
3613
3614 /* We extend ebb_head to one more position to
3615 easily find the last position of the last ebb in
3616 the current region. Thus, ebb_head[BLOCK_TO_BB (after) + 1]
3617 is _always_ valid for access. */
3618
3619 i = BLOCK_TO_BB (after->index) + 1;
3620 pos = ebb_head[i] - 1;
3621 /* Now POS is the index of the last block in the region. */
3622
3623 /* Find index of basic block AFTER. */
3624 for (; rgn_bb_table[pos] != after->index; pos--)
3625 ;
3626
3627 pos++;
3628 gcc_assert (pos > ebb_head[i - 1]);
3629
3630 /* i - ebb right after "AFTER". */
3631 /* ebb_head[i] - VALID. */
3632
3633 /* Source position: ebb_head[i]
3634 Destination position: ebb_head[i] + 1
3635 Last position:
3636 RGN_BLOCKS (nr_regions) - 1
3637 Number of elements to copy: (last_position) - (source_position) + 1
3638 */
3639
3640 memmove (dest: rgn_bb_table + pos + 1,
3641 src: rgn_bb_table + pos,
3642 n: ((RGN_BLOCKS (nr_regions) - 1) - (pos) + 1)
3643 * sizeof (*rgn_bb_table));
3644
3645 rgn_bb_table[pos] = bb->index;
3646
3647 for (; i <= current_nr_blocks; i++)
3648 ebb_head [i]++;
3649
3650 i = CONTAINING_RGN (after->index);
3651 CONTAINING_RGN (bb->index) = i;
3652
3653 RGN_HAS_REAL_EBB (i) = 1;
3654
3655 for (++i; i <= nr_regions; i++)
3656 RGN_BLOCKS (i)++;
3657 }
3658}
3659
3660/* Fix internal data after interblock movement of jump instruction.
3661 For parameter meaning please refer to
3662 sched-int.h: struct sched_info: fix_recovery_cfg. */
3663static void
3664rgn_fix_recovery_cfg (int bbi, int check_bbi, int check_bb_nexti)
3665{
3666 int old_pos, new_pos, i;
3667
3668 BLOCK_TO_BB (check_bb_nexti) = BLOCK_TO_BB (bbi);
3669
3670 for (old_pos = ebb_head[BLOCK_TO_BB (check_bbi) + 1] - 1;
3671 rgn_bb_table[old_pos] != check_bb_nexti;
3672 old_pos--)
3673 ;
3674 gcc_assert (old_pos > ebb_head[BLOCK_TO_BB (check_bbi)]);
3675
3676 for (new_pos = ebb_head[BLOCK_TO_BB (bbi) + 1] - 1;
3677 rgn_bb_table[new_pos] != bbi;
3678 new_pos--)
3679 ;
3680 new_pos++;
3681 gcc_assert (new_pos > ebb_head[BLOCK_TO_BB (bbi)]);
3682
3683 gcc_assert (new_pos < old_pos);
3684
3685 memmove (dest: rgn_bb_table + new_pos + 1,
3686 src: rgn_bb_table + new_pos,
3687 n: (old_pos - new_pos) * sizeof (*rgn_bb_table));
3688
3689 rgn_bb_table[new_pos] = check_bb_nexti;
3690
3691 for (i = BLOCK_TO_BB (bbi) + 1; i <= BLOCK_TO_BB (check_bbi); i++)
3692 ebb_head[i]++;
3693}
3694
3695/* Return next block in ebb chain. For parameter meaning please refer to
3696 sched-int.h: struct sched_info: advance_target_bb. */
3697static basic_block
3698advance_target_bb (basic_block bb, rtx_insn *insn)
3699{
3700 if (insn)
3701 return 0;
3702
3703 gcc_assert (BLOCK_TO_BB (bb->index) == target_bb
3704 && BLOCK_TO_BB (bb->next_bb->index) == target_bb);
3705 return bb->next_bb;
3706}
3707
3708#endif
3709
3710/* Run instruction scheduler. */
3711static unsigned int
3712rest_of_handle_live_range_shrinkage (void)
3713{
3714#ifdef INSN_SCHEDULING
3715 int saved;
3716
3717 initialize_live_range_shrinkage ();
3718 saved = flag_schedule_interblock;
3719 flag_schedule_interblock = false;
3720 schedule_insns ();
3721 flag_schedule_interblock = saved;
3722 finish_live_range_shrinkage ();
3723#endif
3724 return 0;
3725}
3726
3727/* Run instruction scheduler. */
3728static unsigned int
3729rest_of_handle_sched (void)
3730{
3731#ifdef INSN_SCHEDULING
3732 if (flag_selective_scheduling
3733 && ! maybe_skip_selective_scheduling ())
3734 run_selective_scheduling ();
3735 else
3736 schedule_insns ();
3737#endif
3738 return 0;
3739}
3740
3741/* Run second scheduling pass after reload. */
3742static unsigned int
3743rest_of_handle_sched2 (void)
3744{
3745#ifdef INSN_SCHEDULING
3746 if (flag_selective_scheduling2
3747 && ! maybe_skip_selective_scheduling ())
3748 run_selective_scheduling ();
3749 else
3750 {
3751 /* Do control and data sched analysis again,
3752 and write some more of the results to dump file. */
3753 if (flag_sched2_use_superblocks)
3754 schedule_ebbs ();
3755 else
3756 schedule_insns ();
3757 }
3758#endif
3759 return 0;
3760}
3761
3762static unsigned int
3763rest_of_handle_sched_fusion (void)
3764{
3765#ifdef INSN_SCHEDULING
3766 sched_fusion = true;
3767 schedule_insns ();
3768 sched_fusion = false;
3769#endif
3770 return 0;
3771}
3772
3773namespace {
3774
3775const pass_data pass_data_live_range_shrinkage =
3776{
3777 .type: RTL_PASS, /* type */
3778 .name: "lr_shrinkage", /* name */
3779 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
3780 .tv_id: TV_LIVE_RANGE_SHRINKAGE, /* tv_id */
3781 .properties_required: 0, /* properties_required */
3782 .properties_provided: 0, /* properties_provided */
3783 .properties_destroyed: 0, /* properties_destroyed */
3784 .todo_flags_start: 0, /* todo_flags_start */
3785 TODO_df_finish, /* todo_flags_finish */
3786};
3787
3788class pass_live_range_shrinkage : public rtl_opt_pass
3789{
3790public:
3791 pass_live_range_shrinkage(gcc::context *ctxt)
3792 : rtl_opt_pass(pass_data_live_range_shrinkage, ctxt)
3793 {}
3794
3795 /* opt_pass methods: */
3796 bool gate (function *) final override
3797 {
3798#ifdef INSN_SCHEDULING
3799 return flag_live_range_shrinkage;
3800#else
3801 return 0;
3802#endif
3803 }
3804
3805 unsigned int execute (function *) final override
3806 {
3807 return rest_of_handle_live_range_shrinkage ();
3808 }
3809
3810}; // class pass_live_range_shrinkage
3811
3812} // anon namespace
3813
3814rtl_opt_pass *
3815make_pass_live_range_shrinkage (gcc::context *ctxt)
3816{
3817 return new pass_live_range_shrinkage (ctxt);
3818}
3819
3820namespace {
3821
3822const pass_data pass_data_sched =
3823{
3824 .type: RTL_PASS, /* type */
3825 .name: "sched1", /* name */
3826 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
3827 .tv_id: TV_SCHED, /* tv_id */
3828 .properties_required: 0, /* properties_required */
3829 .properties_provided: 0, /* properties_provided */
3830 .properties_destroyed: 0, /* properties_destroyed */
3831 .todo_flags_start: 0, /* todo_flags_start */
3832 TODO_df_finish, /* todo_flags_finish */
3833};
3834
3835class pass_sched : public rtl_opt_pass
3836{
3837public:
3838 pass_sched (gcc::context *ctxt)
3839 : rtl_opt_pass (pass_data_sched, ctxt)
3840 {}
3841
3842 /* opt_pass methods: */
3843 bool gate (function *) final override;
3844 unsigned int execute (function *) final override
3845 {
3846 return rest_of_handle_sched ();
3847 }
3848
3849}; // class pass_sched
3850
3851bool
3852pass_sched::gate (function *)
3853{
3854#ifdef INSN_SCHEDULING
3855 return optimize > 0 && flag_schedule_insns && dbg_cnt (index: sched_func);
3856#else
3857 return 0;
3858#endif
3859}
3860
3861} // anon namespace
3862
3863rtl_opt_pass *
3864make_pass_sched (gcc::context *ctxt)
3865{
3866 return new pass_sched (ctxt);
3867}
3868
3869namespace {
3870
3871const pass_data pass_data_sched2 =
3872{
3873 .type: RTL_PASS, /* type */
3874 .name: "sched2", /* name */
3875 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
3876 .tv_id: TV_SCHED2, /* tv_id */
3877 .properties_required: 0, /* properties_required */
3878 .properties_provided: 0, /* properties_provided */
3879 .properties_destroyed: 0, /* properties_destroyed */
3880 .todo_flags_start: 0, /* todo_flags_start */
3881 TODO_df_finish, /* todo_flags_finish */
3882};
3883
3884class pass_sched2 : public rtl_opt_pass
3885{
3886public:
3887 pass_sched2 (gcc::context *ctxt)
3888 : rtl_opt_pass (pass_data_sched2, ctxt)
3889 {}
3890
3891 /* opt_pass methods: */
3892 bool gate (function *) final override;
3893 unsigned int execute (function *) final override
3894 {
3895 return rest_of_handle_sched2 ();
3896 }
3897
3898}; // class pass_sched2
3899
3900bool
3901pass_sched2::gate (function *)
3902{
3903#ifdef INSN_SCHEDULING
3904 return optimize > 0 && flag_schedule_insns_after_reload
3905 && !targetm.delay_sched2 && dbg_cnt (index: sched2_func);
3906#else
3907 return 0;
3908#endif
3909}
3910
3911} // anon namespace
3912
3913rtl_opt_pass *
3914make_pass_sched2 (gcc::context *ctxt)
3915{
3916 return new pass_sched2 (ctxt);
3917}
3918
3919namespace {
3920
3921const pass_data pass_data_sched_fusion =
3922{
3923 .type: RTL_PASS, /* type */
3924 .name: "sched_fusion", /* name */
3925 .optinfo_flags: OPTGROUP_NONE, /* optinfo_flags */
3926 .tv_id: TV_SCHED_FUSION, /* tv_id */
3927 .properties_required: 0, /* properties_required */
3928 .properties_provided: 0, /* properties_provided */
3929 .properties_destroyed: 0, /* properties_destroyed */
3930 .todo_flags_start: 0, /* todo_flags_start */
3931 TODO_df_finish, /* todo_flags_finish */
3932};
3933
3934class pass_sched_fusion : public rtl_opt_pass
3935{
3936public:
3937 pass_sched_fusion (gcc::context *ctxt)
3938 : rtl_opt_pass (pass_data_sched_fusion, ctxt)
3939 {}
3940
3941 /* opt_pass methods: */
3942 bool gate (function *) final override;
3943 unsigned int execute (function *) final override
3944 {
3945 return rest_of_handle_sched_fusion ();
3946 }
3947
3948}; // class pass_sched2
3949
3950bool
3951pass_sched_fusion::gate (function *)
3952{
3953#ifdef INSN_SCHEDULING
3954 /* Scheduling fusion relies on peephole2 to do real fusion work,
3955 so only enable it if peephole2 is in effect. */
3956 return (optimize > 0 && flag_peephole2
3957 && flag_schedule_fusion && targetm.sched.fusion_priority != NULL);
3958#else
3959 return 0;
3960#endif
3961}
3962
3963} // anon namespace
3964
3965rtl_opt_pass *
3966make_pass_sched_fusion (gcc::context *ctxt)
3967{
3968 return new pass_sched_fusion (ctxt);
3969}
3970
3971#if __GNUC__ >= 10
3972# pragma GCC diagnostic pop
3973#endif
3974

source code of gcc/sched-rgn.cc