1 | // SPDX-License-Identifier: GPL-2.0-only |
---|---|
2 | /* |
3 | * linux/arch/arm/kernel/setup.c |
4 | * |
5 | * Copyright (C) 1995-2001 Russell King |
6 | */ |
7 | #include <linux/efi.h> |
8 | #include <linux/export.h> |
9 | #include <linux/kernel.h> |
10 | #include <linux/stddef.h> |
11 | #include <linux/ioport.h> |
12 | #include <linux/delay.h> |
13 | #include <linux/utsname.h> |
14 | #include <linux/initrd.h> |
15 | #include <linux/console.h> |
16 | #include <linux/seq_file.h> |
17 | #include <linux/screen_info.h> |
18 | #include <linux/init.h> |
19 | #include <linux/kexec.h> |
20 | #include <linux/libfdt.h> |
21 | #include <linux/of.h> |
22 | #include <linux/of_fdt.h> |
23 | #include <linux/cpu.h> |
24 | #include <linux/interrupt.h> |
25 | #include <linux/smp.h> |
26 | #include <linux/proc_fs.h> |
27 | #include <linux/memblock.h> |
28 | #include <linux/bug.h> |
29 | #include <linux/compiler.h> |
30 | #include <linux/sort.h> |
31 | #include <linux/psci.h> |
32 | |
33 | #include <asm/unified.h> |
34 | #include <asm/cp15.h> |
35 | #include <asm/cpu.h> |
36 | #include <asm/cputype.h> |
37 | #include <asm/efi.h> |
38 | #include <asm/elf.h> |
39 | #include <asm/early_ioremap.h> |
40 | #include <asm/fixmap.h> |
41 | #include <asm/procinfo.h> |
42 | #include <asm/psci.h> |
43 | #include <asm/sections.h> |
44 | #include <asm/setup.h> |
45 | #include <asm/smp_plat.h> |
46 | #include <asm/mach-types.h> |
47 | #include <asm/cacheflush.h> |
48 | #include <asm/cachetype.h> |
49 | #include <asm/tlbflush.h> |
50 | #include <asm/xen/hypervisor.h> |
51 | |
52 | #include <asm/prom.h> |
53 | #include <asm/mach/arch.h> |
54 | #include <asm/mach/irq.h> |
55 | #include <asm/mach/time.h> |
56 | #include <asm/system_info.h> |
57 | #include <asm/system_misc.h> |
58 | #include <asm/traps.h> |
59 | #include <asm/unwind.h> |
60 | #include <asm/memblock.h> |
61 | #include <asm/virt.h> |
62 | #include <asm/kasan.h> |
63 | |
64 | #include "atags.h" |
65 | |
66 | |
67 | #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE) |
68 | char fpe_type[8]; |
69 | |
70 | static int __init fpe_setup(char *line) |
71 | { |
72 | memcpy(fpe_type, line, 8); |
73 | return 1; |
74 | } |
75 | |
76 | __setup("fpe=", fpe_setup); |
77 | #endif |
78 | |
79 | unsigned int processor_id; |
80 | EXPORT_SYMBOL(processor_id); |
81 | unsigned int __machine_arch_type __read_mostly; |
82 | EXPORT_SYMBOL(__machine_arch_type); |
83 | unsigned int cacheid __read_mostly; |
84 | EXPORT_SYMBOL(cacheid); |
85 | |
86 | unsigned int __atags_pointer __initdata; |
87 | |
88 | unsigned int system_rev; |
89 | EXPORT_SYMBOL(system_rev); |
90 | |
91 | const char *system_serial; |
92 | EXPORT_SYMBOL(system_serial); |
93 | |
94 | unsigned int system_serial_low; |
95 | EXPORT_SYMBOL(system_serial_low); |
96 | |
97 | unsigned int system_serial_high; |
98 | EXPORT_SYMBOL(system_serial_high); |
99 | |
100 | unsigned int elf_hwcap __read_mostly; |
101 | EXPORT_SYMBOL(elf_hwcap); |
102 | |
103 | unsigned int elf_hwcap2 __read_mostly; |
104 | EXPORT_SYMBOL(elf_hwcap2); |
105 | |
106 | |
107 | #ifdef MULTI_CPU |
108 | struct processor processor __ro_after_init; |
109 | #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR) |
110 | struct processor *cpu_vtable[NR_CPUS] = { |
111 | [0] = &processor, |
112 | }; |
113 | #endif |
114 | #endif |
115 | #ifdef MULTI_TLB |
116 | struct cpu_tlb_fns cpu_tlb __ro_after_init; |
117 | #endif |
118 | #ifdef MULTI_USER |
119 | struct cpu_user_fns cpu_user __ro_after_init; |
120 | #endif |
121 | #ifdef MULTI_CACHE |
122 | struct cpu_cache_fns cpu_cache __ro_after_init; |
123 | #endif |
124 | #ifdef CONFIG_OUTER_CACHE |
125 | struct outer_cache_fns outer_cache __ro_after_init; |
126 | EXPORT_SYMBOL(outer_cache); |
127 | #endif |
128 | |
129 | /* |
130 | * Cached cpu_architecture() result for use by assembler code. |
131 | * C code should use the cpu_architecture() function instead of accessing this |
132 | * variable directly. |
133 | */ |
134 | int __cpu_architecture __read_mostly = CPU_ARCH_UNKNOWN; |
135 | |
136 | struct stack { |
137 | u32 irq[4]; |
138 | u32 abt[4]; |
139 | u32 und[4]; |
140 | u32 fiq[4]; |
141 | } ____cacheline_aligned; |
142 | |
143 | #ifndef CONFIG_CPU_V7M |
144 | static struct stack stacks[NR_CPUS]; |
145 | #endif |
146 | |
147 | char elf_platform[ELF_PLATFORM_SIZE]; |
148 | EXPORT_SYMBOL(elf_platform); |
149 | |
150 | static const char *cpu_name; |
151 | static const char *machine_name; |
152 | static char __initdata cmd_line[COMMAND_LINE_SIZE]; |
153 | const struct machine_desc *machine_desc __initdata; |
154 | |
155 | static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } }; |
156 | #define ENDIANNESS ((char)endian_test.l) |
157 | |
158 | DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data); |
159 | |
160 | /* |
161 | * Standard memory resources |
162 | */ |
163 | static struct resource mem_res[] = { |
164 | { |
165 | .name = "Video RAM", |
166 | .start = 0, |
167 | .end = 0, |
168 | .flags = IORESOURCE_MEM |
169 | }, |
170 | { |
171 | .name = "Kernel code", |
172 | .start = 0, |
173 | .end = 0, |
174 | .flags = IORESOURCE_SYSTEM_RAM |
175 | }, |
176 | { |
177 | .name = "Kernel data", |
178 | .start = 0, |
179 | .end = 0, |
180 | .flags = IORESOURCE_SYSTEM_RAM |
181 | } |
182 | }; |
183 | |
184 | #define video_ram mem_res[0] |
185 | #define kernel_code mem_res[1] |
186 | #define kernel_data mem_res[2] |
187 | |
188 | static struct resource io_res[] = { |
189 | { |
190 | .name = "reserved", |
191 | .start = 0x3bc, |
192 | .end = 0x3be, |
193 | .flags = IORESOURCE_IO | IORESOURCE_BUSY |
194 | }, |
195 | { |
196 | .name = "reserved", |
197 | .start = 0x378, |
198 | .end = 0x37f, |
199 | .flags = IORESOURCE_IO | IORESOURCE_BUSY |
200 | }, |
201 | { |
202 | .name = "reserved", |
203 | .start = 0x278, |
204 | .end = 0x27f, |
205 | .flags = IORESOURCE_IO | IORESOURCE_BUSY |
206 | } |
207 | }; |
208 | |
209 | #define lp0 io_res[0] |
210 | #define lp1 io_res[1] |
211 | #define lp2 io_res[2] |
212 | |
213 | static const char *proc_arch[] = { |
214 | "undefined/unknown", |
215 | "3", |
216 | "4", |
217 | "4T", |
218 | "5", |
219 | "5T", |
220 | "5TE", |
221 | "5TEJ", |
222 | "6TEJ", |
223 | "7", |
224 | "7M", |
225 | "?(12)", |
226 | "?(13)", |
227 | "?(14)", |
228 | "?(15)", |
229 | "?(16)", |
230 | "?(17)", |
231 | }; |
232 | |
233 | #ifdef CONFIG_CPU_V7M |
234 | static int __get_cpu_architecture(void) |
235 | { |
236 | return CPU_ARCH_ARMv7M; |
237 | } |
238 | #else |
239 | static int __get_cpu_architecture(void) |
240 | { |
241 | int cpu_arch; |
242 | |
243 | if ((read_cpuid_id() & 0x0008f000) == 0) { |
244 | cpu_arch = CPU_ARCH_UNKNOWN; |
245 | } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) { |
246 | cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3; |
247 | } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) { |
248 | cpu_arch = (read_cpuid_id() >> 16) & 7; |
249 | if (cpu_arch) |
250 | cpu_arch += CPU_ARCH_ARMv3; |
251 | } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) { |
252 | /* Revised CPUID format. Read the Memory Model Feature |
253 | * Register 0 and check for VMSAv7 or PMSAv7 */ |
254 | unsigned int mmfr0 = read_cpuid_ext(CPUID_EXT_MMFR0); |
255 | if ((mmfr0 & 0x0000000f) >= 0x00000003 || |
256 | (mmfr0 & 0x000000f0) >= 0x00000030) |
257 | cpu_arch = CPU_ARCH_ARMv7; |
258 | else if ((mmfr0 & 0x0000000f) == 0x00000002 || |
259 | (mmfr0 & 0x000000f0) == 0x00000020) |
260 | cpu_arch = CPU_ARCH_ARMv6; |
261 | else |
262 | cpu_arch = CPU_ARCH_UNKNOWN; |
263 | } else |
264 | cpu_arch = CPU_ARCH_UNKNOWN; |
265 | |
266 | return cpu_arch; |
267 | } |
268 | #endif |
269 | |
270 | int __pure cpu_architecture(void) |
271 | { |
272 | BUG_ON(__cpu_architecture == CPU_ARCH_UNKNOWN); |
273 | |
274 | return __cpu_architecture; |
275 | } |
276 | |
277 | static int cpu_has_aliasing_icache(unsigned int arch) |
278 | { |
279 | int aliasing_icache; |
280 | unsigned int id_reg, num_sets, line_size; |
281 | |
282 | /* PIPT caches never alias. */ |
283 | if (icache_is_pipt()) |
284 | return 0; |
285 | |
286 | /* arch specifies the register format */ |
287 | switch (arch) { |
288 | case CPU_ARCH_ARMv7: |
289 | set_csselr(CSSELR_ICACHE | CSSELR_L1); |
290 | isb(); |
291 | id_reg = read_ccsidr(); |
292 | line_size = 4 << ((id_reg & 0x7) + 2); |
293 | num_sets = ((id_reg >> 13) & 0x7fff) + 1; |
294 | aliasing_icache = (line_size * num_sets) > PAGE_SIZE; |
295 | break; |
296 | case CPU_ARCH_ARMv6: |
297 | aliasing_icache = read_cpuid_cachetype() & (1 << 11); |
298 | break; |
299 | default: |
300 | /* I-cache aliases will be handled by D-cache aliasing code */ |
301 | aliasing_icache = 0; |
302 | } |
303 | |
304 | return aliasing_icache; |
305 | } |
306 | |
307 | static void __init cacheid_init(void) |
308 | { |
309 | unsigned int arch = cpu_architecture(); |
310 | |
311 | if (arch >= CPU_ARCH_ARMv6) { |
312 | unsigned int cachetype = read_cpuid_cachetype(); |
313 | |
314 | if ((arch == CPU_ARCH_ARMv7M) && !(cachetype & 0xf000f)) { |
315 | cacheid = 0; |
316 | } else if ((cachetype & (7 << 29)) == 4 << 29) { |
317 | /* ARMv7 register format */ |
318 | arch = CPU_ARCH_ARMv7; |
319 | cacheid = CACHEID_VIPT_NONALIASING; |
320 | switch (cachetype & (3 << 14)) { |
321 | case (1 << 14): |
322 | cacheid |= CACHEID_ASID_TAGGED; |
323 | break; |
324 | case (3 << 14): |
325 | cacheid |= CACHEID_PIPT; |
326 | break; |
327 | } |
328 | } else { |
329 | arch = CPU_ARCH_ARMv6; |
330 | if (cachetype & (1 << 23)) |
331 | cacheid = CACHEID_VIPT_ALIASING; |
332 | else |
333 | cacheid = CACHEID_VIPT_NONALIASING; |
334 | } |
335 | if (cpu_has_aliasing_icache(arch)) |
336 | cacheid |= CACHEID_VIPT_I_ALIASING; |
337 | } else { |
338 | cacheid = CACHEID_VIVT; |
339 | } |
340 | |
341 | pr_info("CPU: %s data cache, %s instruction cache\n", |
342 | cache_is_vivt() ? "VIVT": |
343 | cache_is_vipt_aliasing() ? "VIPT aliasing": |
344 | cache_is_vipt_nonaliasing() ? "PIPT / VIPT nonaliasing": "unknown", |
345 | cache_is_vivt() ? "VIVT": |
346 | icache_is_vivt_asid_tagged() ? "VIVT ASID tagged": |
347 | icache_is_vipt_aliasing() ? "VIPT aliasing": |
348 | icache_is_pipt() ? "PIPT": |
349 | cache_is_vipt_nonaliasing() ? "VIPT nonaliasing": "unknown"); |
350 | } |
351 | |
352 | /* |
353 | * These functions re-use the assembly code in head.S, which |
354 | * already provide the required functionality. |
355 | */ |
356 | extern struct proc_info_list *lookup_processor_type(unsigned int); |
357 | |
358 | void __init early_print(const char *str, ...) |
359 | { |
360 | extern void printascii(const char *); |
361 | char buf[256]; |
362 | va_list ap; |
363 | |
364 | va_start(ap, str); |
365 | vsnprintf(buf, size: sizeof(buf), fmt: str, args: ap); |
366 | va_end(ap); |
367 | |
368 | #ifdef CONFIG_DEBUG_LL |
369 | printascii(buf); |
370 | #endif |
371 | printk("%s", buf); |
372 | } |
373 | |
374 | #ifdef CONFIG_ARM_PATCH_IDIV |
375 | |
376 | static inline u32 __attribute_const__ sdiv_instruction(void) |
377 | { |
378 | if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) { |
379 | /* "sdiv r0, r0, r1" */ |
380 | u32 insn = __opcode_thumb32_compose(0xfb90, 0xf0f1); |
381 | return __opcode_to_mem_thumb32(insn); |
382 | } |
383 | |
384 | /* "sdiv r0, r0, r1" */ |
385 | return __opcode_to_mem_arm(0xe710f110); |
386 | } |
387 | |
388 | static inline u32 __attribute_const__ udiv_instruction(void) |
389 | { |
390 | if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) { |
391 | /* "udiv r0, r0, r1" */ |
392 | u32 insn = __opcode_thumb32_compose(0xfbb0, 0xf0f1); |
393 | return __opcode_to_mem_thumb32(insn); |
394 | } |
395 | |
396 | /* "udiv r0, r0, r1" */ |
397 | return __opcode_to_mem_arm(0xe730f110); |
398 | } |
399 | |
400 | static inline u32 __attribute_const__ bx_lr_instruction(void) |
401 | { |
402 | if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) { |
403 | /* "bx lr; nop" */ |
404 | u32 insn = __opcode_thumb32_compose(0x4770, 0x46c0); |
405 | return __opcode_to_mem_thumb32(insn); |
406 | } |
407 | |
408 | /* "bx lr" */ |
409 | return __opcode_to_mem_arm(0xe12fff1e); |
410 | } |
411 | |
412 | static void __init patch_aeabi_idiv(void) |
413 | { |
414 | extern void __aeabi_uidiv(void); |
415 | extern void __aeabi_idiv(void); |
416 | uintptr_t fn_addr; |
417 | unsigned int mask; |
418 | |
419 | mask = IS_ENABLED(CONFIG_THUMB2_KERNEL) ? HWCAP_IDIVT : HWCAP_IDIVA; |
420 | if (!(elf_hwcap & mask)) |
421 | return; |
422 | |
423 | pr_info("CPU: div instructions available: patching division code\n"); |
424 | |
425 | fn_addr = ((uintptr_t)&__aeabi_uidiv) & ~1; |
426 | asm ("": "+g"(fn_addr)); |
427 | ((u32 *)fn_addr)[0] = udiv_instruction(); |
428 | ((u32 *)fn_addr)[1] = bx_lr_instruction(); |
429 | flush_icache_range(fn_addr, fn_addr + 8); |
430 | |
431 | fn_addr = ((uintptr_t)&__aeabi_idiv) & ~1; |
432 | asm ("": "+g"(fn_addr)); |
433 | ((u32 *)fn_addr)[0] = sdiv_instruction(); |
434 | ((u32 *)fn_addr)[1] = bx_lr_instruction(); |
435 | flush_icache_range(fn_addr, fn_addr + 8); |
436 | } |
437 | |
438 | #else |
439 | static inline void patch_aeabi_idiv(void) { } |
440 | #endif |
441 | |
442 | static void __init cpuid_init_hwcaps(void) |
443 | { |
444 | int block; |
445 | u32 isar5; |
446 | u32 isar6; |
447 | u32 pfr2; |
448 | |
449 | if (cpu_architecture() < CPU_ARCH_ARMv7) |
450 | return; |
451 | |
452 | block = cpuid_feature_extract(CPUID_EXT_ISAR0, 24); |
453 | if (block >= 2) |
454 | elf_hwcap |= HWCAP_IDIVA; |
455 | if (block >= 1) |
456 | elf_hwcap |= HWCAP_IDIVT; |
457 | |
458 | /* LPAE implies atomic ldrd/strd instructions */ |
459 | block = cpuid_feature_extract(CPUID_EXT_MMFR0, 0); |
460 | if (block >= 5) |
461 | elf_hwcap |= HWCAP_LPAE; |
462 | |
463 | /* check for supported v8 Crypto instructions */ |
464 | isar5 = read_cpuid_ext(CPUID_EXT_ISAR5); |
465 | |
466 | block = cpuid_feature_extract_field(isar5, 4); |
467 | if (block >= 2) |
468 | elf_hwcap2 |= HWCAP2_PMULL; |
469 | if (block >= 1) |
470 | elf_hwcap2 |= HWCAP2_AES; |
471 | |
472 | block = cpuid_feature_extract_field(isar5, 8); |
473 | if (block >= 1) |
474 | elf_hwcap2 |= HWCAP2_SHA1; |
475 | |
476 | block = cpuid_feature_extract_field(isar5, 12); |
477 | if (block >= 1) |
478 | elf_hwcap2 |= HWCAP2_SHA2; |
479 | |
480 | block = cpuid_feature_extract_field(isar5, 16); |
481 | if (block >= 1) |
482 | elf_hwcap2 |= HWCAP2_CRC32; |
483 | |
484 | /* Check for Speculation barrier instruction */ |
485 | isar6 = read_cpuid_ext(CPUID_EXT_ISAR6); |
486 | block = cpuid_feature_extract_field(isar6, 12); |
487 | if (block >= 1) |
488 | elf_hwcap2 |= HWCAP2_SB; |
489 | |
490 | /* Check for Speculative Store Bypassing control */ |
491 | pfr2 = read_cpuid_ext(CPUID_EXT_PFR2); |
492 | block = cpuid_feature_extract_field(pfr2, 4); |
493 | if (block >= 1) |
494 | elf_hwcap2 |= HWCAP2_SSBS; |
495 | } |
496 | |
497 | static void __init elf_hwcap_fixup(void) |
498 | { |
499 | unsigned id = read_cpuid_id(); |
500 | |
501 | /* |
502 | * HWCAP_TLS is available only on 1136 r1p0 and later, |
503 | * see also kuser_get_tls_init. |
504 | */ |
505 | if (read_cpuid_part() == ARM_CPU_PART_ARM1136 && |
506 | ((id >> 20) & 3) == 0) { |
507 | elf_hwcap &= ~HWCAP_TLS; |
508 | return; |
509 | } |
510 | |
511 | /* Verify if CPUID scheme is implemented */ |
512 | if ((id & 0x000f0000) != 0x000f0000) |
513 | return; |
514 | |
515 | /* |
516 | * If the CPU supports LDREX/STREX and LDREXB/STREXB, |
517 | * avoid advertising SWP; it may not be atomic with |
518 | * multiprocessing cores. |
519 | */ |
520 | if (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) > 1 || |
521 | (cpuid_feature_extract(CPUID_EXT_ISAR3, 12) == 1 && |
522 | cpuid_feature_extract(CPUID_EXT_ISAR4, 20) >= 3)) |
523 | elf_hwcap &= ~HWCAP_SWP; |
524 | } |
525 | |
526 | /* |
527 | * cpu_init - initialise one CPU. |
528 | * |
529 | * cpu_init sets up the per-CPU stacks. |
530 | */ |
531 | void notrace cpu_init(void) |
532 | { |
533 | #ifndef CONFIG_CPU_V7M |
534 | unsigned int cpu = smp_processor_id(); |
535 | struct stack *stk = &stacks[cpu]; |
536 | |
537 | if (cpu >= NR_CPUS) { |
538 | pr_crit("CPU%u: bad primary CPU number\n", cpu); |
539 | BUG(); |
540 | } |
541 | |
542 | /* |
543 | * This only works on resume and secondary cores. For booting on the |
544 | * boot cpu, smp_prepare_boot_cpu is called after percpu area setup. |
545 | */ |
546 | set_my_cpu_offset(per_cpu_offset(cpu)); |
547 | |
548 | cpu_proc_init(); |
549 | |
550 | /* |
551 | * Define the placement constraint for the inline asm directive below. |
552 | * In Thumb-2, msr with an immediate value is not allowed. |
553 | */ |
554 | #ifdef CONFIG_THUMB2_KERNEL |
555 | #define PLC_l "l" |
556 | #define PLC_r "r" |
557 | #else |
558 | #define PLC_l "I" |
559 | #define PLC_r "I" |
560 | #endif |
561 | |
562 | /* |
563 | * setup stacks for re-entrant exception handlers |
564 | */ |
565 | __asm__ ( |
566 | "msr cpsr_c, %1\n\t" |
567 | "add r14, %0, %2\n\t" |
568 | "mov sp, r14\n\t" |
569 | "msr cpsr_c, %3\n\t" |
570 | "add r14, %0, %4\n\t" |
571 | "mov sp, r14\n\t" |
572 | "msr cpsr_c, %5\n\t" |
573 | "add r14, %0, %6\n\t" |
574 | "mov sp, r14\n\t" |
575 | "msr cpsr_c, %7\n\t" |
576 | "add r14, %0, %8\n\t" |
577 | "mov sp, r14\n\t" |
578 | "msr cpsr_c, %9" |
579 | : |
580 | : "r"(stk), |
581 | PLC_r (PSR_F_BIT | PSR_I_BIT | IRQ_MODE), |
582 | "I"(offsetof(struct stack, irq[0])), |
583 | PLC_r (PSR_F_BIT | PSR_I_BIT | ABT_MODE), |
584 | "I"(offsetof(struct stack, abt[0])), |
585 | PLC_r (PSR_F_BIT | PSR_I_BIT | UND_MODE), |
586 | "I"(offsetof(struct stack, und[0])), |
587 | PLC_r (PSR_F_BIT | PSR_I_BIT | FIQ_MODE), |
588 | "I"(offsetof(struct stack, fiq[0])), |
589 | PLC_l (PSR_F_BIT | PSR_I_BIT | SVC_MODE) |
590 | : "r14"); |
591 | #endif |
592 | } |
593 | |
594 | u32 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = MPIDR_INVALID }; |
595 | |
596 | void __init smp_setup_processor_id(void) |
597 | { |
598 | int i; |
599 | u32 mpidr = is_smp() ? read_cpuid_mpidr() & MPIDR_HWID_BITMASK : 0; |
600 | u32 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); |
601 | |
602 | cpu_logical_map(0) = cpu; |
603 | for (i = 1; i < nr_cpu_ids; ++i) |
604 | cpu_logical_map(i) = i == cpu ? 0 : i; |
605 | |
606 | /* |
607 | * clear __my_cpu_offset on boot CPU to avoid hang caused by |
608 | * using percpu variable early, for example, lockdep will |
609 | * access percpu variable inside lock_release |
610 | */ |
611 | set_my_cpu_offset(0); |
612 | |
613 | pr_info("Booting Linux on physical CPU 0x%x\n", mpidr); |
614 | } |
615 | |
616 | struct mpidr_hash mpidr_hash; |
617 | #ifdef CONFIG_SMP |
618 | /** |
619 | * smp_build_mpidr_hash - Pre-compute shifts required at each affinity |
620 | * level in order to build a linear index from an |
621 | * MPIDR value. Resulting algorithm is a collision |
622 | * free hash carried out through shifting and ORing |
623 | */ |
624 | static void __init smp_build_mpidr_hash(void) |
625 | { |
626 | u32 i, affinity; |
627 | u32 fs[3], bits[3], ls, mask = 0; |
628 | /* |
629 | * Pre-scan the list of MPIDRS and filter out bits that do |
630 | * not contribute to affinity levels, ie they never toggle. |
631 | */ |
632 | for_each_possible_cpu(i) |
633 | mask |= (cpu_logical_map(i) ^ cpu_logical_map(0)); |
634 | pr_debug("mask of set bits 0x%x\n", mask); |
635 | /* |
636 | * Find and stash the last and first bit set at all affinity levels to |
637 | * check how many bits are required to represent them. |
638 | */ |
639 | for (i = 0; i < 3; i++) { |
640 | affinity = MPIDR_AFFINITY_LEVEL(mask, i); |
641 | /* |
642 | * Find the MSB bit and LSB bits position |
643 | * to determine how many bits are required |
644 | * to express the affinity level. |
645 | */ |
646 | ls = fls(x: affinity); |
647 | fs[i] = affinity ? ffs(affinity) - 1 : 0; |
648 | bits[i] = ls - fs[i]; |
649 | } |
650 | /* |
651 | * An index can be created from the MPIDR by isolating the |
652 | * significant bits at each affinity level and by shifting |
653 | * them in order to compress the 24 bits values space to a |
654 | * compressed set of values. This is equivalent to hashing |
655 | * the MPIDR through shifting and ORing. It is a collision free |
656 | * hash though not minimal since some levels might contain a number |
657 | * of CPUs that is not an exact power of 2 and their bit |
658 | * representation might contain holes, eg MPIDR[7:0] = {0x2, 0x80}. |
659 | */ |
660 | mpidr_hash.shift_aff[0] = fs[0]; |
661 | mpidr_hash.shift_aff[1] = MPIDR_LEVEL_BITS + fs[1] - bits[0]; |
662 | mpidr_hash.shift_aff[2] = 2*MPIDR_LEVEL_BITS + fs[2] - |
663 | (bits[1] + bits[0]); |
664 | mpidr_hash.mask = mask; |
665 | mpidr_hash.bits = bits[2] + bits[1] + bits[0]; |
666 | pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] mask[0x%x] bits[%u]\n", |
667 | mpidr_hash.shift_aff[0], |
668 | mpidr_hash.shift_aff[1], |
669 | mpidr_hash.shift_aff[2], |
670 | mpidr_hash.mask, |
671 | mpidr_hash.bits); |
672 | /* |
673 | * 4x is an arbitrary value used to warn on a hash table much bigger |
674 | * than expected on most systems. |
675 | */ |
676 | if (mpidr_hash_size() > 4 * num_possible_cpus()) |
677 | pr_warn("Large number of MPIDR hash buckets detected\n"); |
678 | sync_cache_w(&mpidr_hash); |
679 | } |
680 | #endif |
681 | |
682 | /* |
683 | * locate processor in the list of supported processor types. The linker |
684 | * builds this table for us from the entries in arch/arm/mm/proc-*.S |
685 | */ |
686 | struct proc_info_list *lookup_processor(u32 midr) |
687 | { |
688 | struct proc_info_list *list = lookup_processor_type(midr); |
689 | |
690 | if (!list) { |
691 | pr_err("CPU%u: configuration botched (ID %08x), CPU halted\n", |
692 | smp_processor_id(), midr); |
693 | while (1) |
694 | /* can't use cpu_relax() here as it may require MMU setup */; |
695 | } |
696 | |
697 | return list; |
698 | } |
699 | |
700 | static void __init setup_processor(void) |
701 | { |
702 | unsigned int midr = read_cpuid_id(); |
703 | struct proc_info_list *list = lookup_processor(midr); |
704 | |
705 | cpu_name = list->cpu_name; |
706 | __cpu_architecture = __get_cpu_architecture(); |
707 | |
708 | init_proc_vtable(list->proc); |
709 | #ifdef MULTI_TLB |
710 | cpu_tlb = *list->tlb; |
711 | #endif |
712 | #ifdef MULTI_USER |
713 | cpu_user = *list->user; |
714 | #endif |
715 | #ifdef MULTI_CACHE |
716 | cpu_cache = *list->cache; |
717 | #endif |
718 | |
719 | pr_info("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n", |
720 | list->cpu_name, midr, midr & 15, |
721 | proc_arch[cpu_architecture()], get_cr()); |
722 | |
723 | snprintf(buf: init_utsname()->machine, __NEW_UTS_LEN + 1, fmt: "%s%c", |
724 | list->arch_name, ENDIANNESS); |
725 | snprintf(elf_platform, ELF_PLATFORM_SIZE, "%s%c", |
726 | list->elf_name, ENDIANNESS); |
727 | elf_hwcap = list->elf_hwcap; |
728 | |
729 | cpuid_init_hwcaps(); |
730 | patch_aeabi_idiv(); |
731 | |
732 | #ifndef CONFIG_ARM_THUMB |
733 | elf_hwcap &= ~(HWCAP_THUMB | HWCAP_IDIVT); |
734 | #endif |
735 | #ifdef CONFIG_MMU |
736 | init_default_cache_policy(list->__cpu_mm_mmu_flags); |
737 | #endif |
738 | erratum_a15_798181_init(); |
739 | |
740 | elf_hwcap_fixup(); |
741 | |
742 | cacheid_init(); |
743 | cpu_init(); |
744 | } |
745 | |
746 | void __init dump_machine_table(void) |
747 | { |
748 | const struct machine_desc *p; |
749 | |
750 | early_print(str: "Available machine support:\n\nID (hex)\tNAME\n"); |
751 | for_each_machine_desc(p) |
752 | early_print(str: "%08x\t%s\n", p->nr, p->name); |
753 | |
754 | early_print(str: "\nPlease check your kernel config and/or bootloader.\n"); |
755 | |
756 | while (true) |
757 | /* can't use cpu_relax() here as it may require MMU setup */; |
758 | } |
759 | |
760 | int __init arm_add_memory(u64 start, u64 size) |
761 | { |
762 | u64 aligned_start; |
763 | |
764 | /* |
765 | * Ensure that start/size are aligned to a page boundary. |
766 | * Size is rounded down, start is rounded up. |
767 | */ |
768 | aligned_start = PAGE_ALIGN(start); |
769 | if (aligned_start > start + size) |
770 | size = 0; |
771 | else |
772 | size -= aligned_start - start; |
773 | |
774 | #ifndef CONFIG_PHYS_ADDR_T_64BIT |
775 | if (aligned_start > ULONG_MAX) { |
776 | pr_crit("Ignoring memory at 0x%08llx outside 32-bit physical address space\n", |
777 | start); |
778 | return -EINVAL; |
779 | } |
780 | |
781 | if (aligned_start + size > ULONG_MAX) { |
782 | pr_crit("Truncating memory at 0x%08llx to fit in 32-bit physical address space\n", |
783 | (long long)start); |
784 | /* |
785 | * To ensure bank->start + bank->size is representable in |
786 | * 32 bits, we use ULONG_MAX as the upper limit rather than 4GB. |
787 | * This means we lose a page after masking. |
788 | */ |
789 | size = ULONG_MAX - aligned_start; |
790 | } |
791 | #endif |
792 | |
793 | if (aligned_start < PHYS_OFFSET) { |
794 | if (aligned_start + size <= PHYS_OFFSET) { |
795 | pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n", |
796 | aligned_start, aligned_start + size); |
797 | return -EINVAL; |
798 | } |
799 | |
800 | pr_info("Ignoring memory below PHYS_OFFSET: 0x%08llx-0x%08llx\n", |
801 | aligned_start, (u64)PHYS_OFFSET); |
802 | |
803 | size -= PHYS_OFFSET - aligned_start; |
804 | aligned_start = PHYS_OFFSET; |
805 | } |
806 | |
807 | start = aligned_start; |
808 | size = size & ~(phys_addr_t)(PAGE_SIZE - 1); |
809 | |
810 | /* |
811 | * Check whether this memory region has non-zero size or |
812 | * invalid node number. |
813 | */ |
814 | if (size == 0) |
815 | return -EINVAL; |
816 | |
817 | memblock_add(base: start, size); |
818 | return 0; |
819 | } |
820 | |
821 | /* |
822 | * Pick out the memory size. We look for mem=size@start, |
823 | * where start and size are "size[KkMm]" |
824 | */ |
825 | |
826 | static int __init early_mem(char *p) |
827 | { |
828 | static int usermem __initdata = 0; |
829 | u64 size; |
830 | u64 start; |
831 | char *endp; |
832 | |
833 | /* |
834 | * If the user specifies memory size, we |
835 | * blow away any automatically generated |
836 | * size. |
837 | */ |
838 | if (usermem == 0) { |
839 | usermem = 1; |
840 | memblock_remove(base: memblock_start_of_DRAM(), |
841 | size: memblock_end_of_DRAM() - memblock_start_of_DRAM()); |
842 | } |
843 | |
844 | start = PHYS_OFFSET; |
845 | size = memparse(ptr: p, retptr: &endp); |
846 | if (*endp == '@') |
847 | start = memparse(ptr: endp + 1, NULL); |
848 | |
849 | arm_add_memory(start, size); |
850 | |
851 | return 0; |
852 | } |
853 | early_param("mem", early_mem); |
854 | |
855 | static void __init request_standard_resources(const struct machine_desc *mdesc) |
856 | { |
857 | phys_addr_t start, end, res_end; |
858 | struct resource *res; |
859 | u64 i; |
860 | |
861 | kernel_code.start = virt_to_phys(address: _text); |
862 | kernel_code.end = virt_to_phys(address: __init_begin - 1); |
863 | kernel_data.start = virt_to_phys(address: _sdata); |
864 | kernel_data.end = virt_to_phys(address: _end - 1); |
865 | |
866 | for_each_mem_range(i, &start, &end) { |
867 | unsigned long boot_alias_start; |
868 | |
869 | /* |
870 | * In memblock, end points to the first byte after the |
871 | * range while in resourses, end points to the last byte in |
872 | * the range. |
873 | */ |
874 | res_end = end - 1; |
875 | |
876 | /* |
877 | * Some systems have a special memory alias which is only |
878 | * used for booting. We need to advertise this region to |
879 | * kexec-tools so they know where bootable RAM is located. |
880 | */ |
881 | boot_alias_start = phys_to_idmap(start); |
882 | if (arm_has_idmap_alias() && boot_alias_start != IDMAP_INVALID_ADDR) { |
883 | res = memblock_alloc(size: sizeof(*res), SMP_CACHE_BYTES); |
884 | if (!res) |
885 | panic(fmt: "%s: Failed to allocate %zu bytes\n", |
886 | __func__, sizeof(*res)); |
887 | res->name = "System RAM (boot alias)"; |
888 | res->start = boot_alias_start; |
889 | res->end = phys_to_idmap(res_end); |
890 | res->flags = IORESOURCE_MEM | IORESOURCE_BUSY; |
891 | request_resource(root: &iomem_resource, new: res); |
892 | } |
893 | |
894 | res = memblock_alloc(size: sizeof(*res), SMP_CACHE_BYTES); |
895 | if (!res) |
896 | panic(fmt: "%s: Failed to allocate %zu bytes\n", __func__, |
897 | sizeof(*res)); |
898 | res->name = "System RAM"; |
899 | res->start = start; |
900 | res->end = res_end; |
901 | res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; |
902 | |
903 | request_resource(root: &iomem_resource, new: res); |
904 | |
905 | if (kernel_code.start >= res->start && |
906 | kernel_code.end <= res->end) |
907 | request_resource(root: res, new: &kernel_code); |
908 | if (kernel_data.start >= res->start && |
909 | kernel_data.end <= res->end) |
910 | request_resource(root: res, new: &kernel_data); |
911 | } |
912 | |
913 | if (mdesc->video_start) { |
914 | video_ram.start = mdesc->video_start; |
915 | video_ram.end = mdesc->video_end; |
916 | request_resource(root: &iomem_resource, new: &video_ram); |
917 | } |
918 | |
919 | /* |
920 | * Some machines don't have the possibility of ever |
921 | * possessing lp0, lp1 or lp2 |
922 | */ |
923 | if (mdesc->reserve_lp0) |
924 | request_resource(root: &ioport_resource, new: &lp0); |
925 | if (mdesc->reserve_lp1) |
926 | request_resource(root: &ioport_resource, new: &lp1); |
927 | if (mdesc->reserve_lp2) |
928 | request_resource(root: &ioport_resource, new: &lp2); |
929 | } |
930 | |
931 | #if defined(CONFIG_VGA_CONSOLE) |
932 | struct screen_info vgacon_screen_info = { |
933 | .orig_video_lines = 30, |
934 | .orig_video_cols = 80, |
935 | .orig_video_mode = 0, |
936 | .orig_video_ega_bx = 0, |
937 | .orig_video_isVGA = 1, |
938 | .orig_video_points = 8 |
939 | }; |
940 | #endif |
941 | |
942 | static int __init customize_machine(void) |
943 | { |
944 | /* |
945 | * customizes platform devices, or adds new ones |
946 | * On DT based machines, we fall back to populating the |
947 | * machine from the device tree, if no callback is provided, |
948 | * otherwise we would always need an init_machine callback. |
949 | */ |
950 | if (machine_desc->init_machine) |
951 | machine_desc->init_machine(); |
952 | |
953 | return 0; |
954 | } |
955 | arch_initcall(customize_machine); |
956 | |
957 | static int __init init_machine_late(void) |
958 | { |
959 | struct device_node *root; |
960 | int ret; |
961 | |
962 | if (machine_desc->init_late) |
963 | machine_desc->init_late(); |
964 | |
965 | root = of_find_node_by_path(path: "/"); |
966 | if (root) { |
967 | ret = of_property_read_string(np: root, propname: "serial-number", |
968 | out_string: &system_serial); |
969 | if (ret) |
970 | system_serial = NULL; |
971 | } |
972 | |
973 | if (!system_serial) |
974 | system_serial = kasprintf(GFP_KERNEL, fmt: "%08x%08x", |
975 | system_serial_high, |
976 | system_serial_low); |
977 | |
978 | return 0; |
979 | } |
980 | late_initcall(init_machine_late); |
981 | |
982 | #ifdef CONFIG_CRASH_RESERVE |
983 | /* |
984 | * The crash region must be aligned to 128MB to avoid |
985 | * zImage relocating below the reserved region. |
986 | */ |
987 | #define CRASH_ALIGN (128 << 20) |
988 | |
989 | static inline unsigned long long get_total_mem(void) |
990 | { |
991 | unsigned long total; |
992 | |
993 | total = max_low_pfn - min_low_pfn; |
994 | return total << PAGE_SHIFT; |
995 | } |
996 | |
997 | /** |
998 | * reserve_crashkernel() - reserves memory are for crash kernel |
999 | * |
1000 | * This function reserves memory area given in "crashkernel=" kernel command |
1001 | * line parameter. The memory reserved is used by a dump capture kernel when |
1002 | * primary kernel is crashing. |
1003 | */ |
1004 | static void __init reserve_crashkernel(void) |
1005 | { |
1006 | unsigned long long crash_size, crash_base; |
1007 | unsigned long long total_mem; |
1008 | int ret; |
1009 | |
1010 | total_mem = get_total_mem(); |
1011 | ret = parse_crashkernel(cmdline: boot_command_line, system_ram: total_mem, |
1012 | crash_size: &crash_size, crash_base: &crash_base, |
1013 | NULL, NULL); |
1014 | /* invalid value specified or crashkernel=0 */ |
1015 | if (ret || !crash_size) |
1016 | return; |
1017 | |
1018 | if (crash_base <= 0) { |
1019 | unsigned long long crash_max = idmap_to_phys((u32)~0); |
1020 | unsigned long long lowmem_max = __pa(high_memory - 1) + 1; |
1021 | if (crash_max > lowmem_max) |
1022 | crash_max = lowmem_max; |
1023 | |
1024 | crash_base = memblock_phys_alloc_range(size: crash_size, CRASH_ALIGN, |
1025 | CRASH_ALIGN, end: crash_max); |
1026 | if (!crash_base) { |
1027 | pr_err("crashkernel reservation failed - No suitable area found.\n"); |
1028 | return; |
1029 | } |
1030 | } else { |
1031 | unsigned long long crash_max = crash_base + crash_size; |
1032 | unsigned long long start; |
1033 | |
1034 | start = memblock_phys_alloc_range(crash_size, SECTION_SIZE, |
1035 | crash_base, crash_max); |
1036 | if (!start) { |
1037 | pr_err("crashkernel reservation failed - memory is in use.\n"); |
1038 | return; |
1039 | } |
1040 | } |
1041 | |
1042 | pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n", |
1043 | (unsigned long)(crash_size >> 20), |
1044 | (unsigned long)(crash_base >> 20), |
1045 | (unsigned long)(total_mem >> 20)); |
1046 | |
1047 | /* The crashk resource must always be located in normal mem */ |
1048 | crashk_res.start = crash_base; |
1049 | crashk_res.end = crash_base + crash_size - 1; |
1050 | insert_resource(parent: &iomem_resource, new: &crashk_res); |
1051 | |
1052 | if (arm_has_idmap_alias()) { |
1053 | /* |
1054 | * If we have a special RAM alias for use at boot, we |
1055 | * need to advertise to kexec tools where the alias is. |
1056 | */ |
1057 | static struct resource crashk_boot_res = { |
1058 | .name = "Crash kernel (boot alias)", |
1059 | .flags = IORESOURCE_BUSY | IORESOURCE_MEM, |
1060 | }; |
1061 | |
1062 | crashk_boot_res.start = phys_to_idmap(crash_base); |
1063 | crashk_boot_res.end = crashk_boot_res.start + crash_size - 1; |
1064 | insert_resource(parent: &iomem_resource, new: &crashk_boot_res); |
1065 | } |
1066 | } |
1067 | #else |
1068 | static inline void reserve_crashkernel(void) {} |
1069 | #endif /* CONFIG_CRASH_RESERVE*/ |
1070 | |
1071 | void __init hyp_mode_check(void) |
1072 | { |
1073 | #ifdef CONFIG_ARM_VIRT_EXT |
1074 | sync_boot_mode(); |
1075 | |
1076 | if (is_hyp_mode_available()) { |
1077 | pr_info("CPU: All CPU(s) started in HYP mode.\n"); |
1078 | pr_info("CPU: Virtualization extensions available.\n"); |
1079 | } else if (is_hyp_mode_mismatched()) { |
1080 | pr_warn("CPU: WARNING: CPU(s) started in wrong/inconsistent modes (primary CPU mode 0x%x)\n", |
1081 | __boot_cpu_mode & MODE_MASK); |
1082 | pr_warn("CPU: This may indicate a broken bootloader or firmware.\n"); |
1083 | } else |
1084 | pr_info("CPU: All CPU(s) started in SVC mode.\n"); |
1085 | #endif |
1086 | } |
1087 | |
1088 | static void (*__arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd); |
1089 | |
1090 | static int arm_restart(struct notifier_block *nb, unsigned long action, |
1091 | void *data) |
1092 | { |
1093 | __arm_pm_restart(action, data); |
1094 | return NOTIFY_DONE; |
1095 | } |
1096 | |
1097 | static struct notifier_block arm_restart_nb = { |
1098 | .notifier_call = arm_restart, |
1099 | .priority = 128, |
1100 | }; |
1101 | |
1102 | void __init setup_arch(char **cmdline_p) |
1103 | { |
1104 | const struct machine_desc *mdesc = NULL; |
1105 | void *atags_vaddr = NULL; |
1106 | |
1107 | if (__atags_pointer) |
1108 | atags_vaddr = FDT_VIRT_BASE(__atags_pointer); |
1109 | |
1110 | setup_processor(); |
1111 | if (atags_vaddr) { |
1112 | mdesc = setup_machine_fdt(atags_vaddr); |
1113 | if (mdesc) |
1114 | memblock_reserve(base: __atags_pointer, |
1115 | fdt_totalsize(atags_vaddr)); |
1116 | } |
1117 | if (!mdesc) |
1118 | mdesc = setup_machine_tags(atags_vaddr: atags_vaddr, machine_nr: __machine_arch_type); |
1119 | if (!mdesc) { |
1120 | early_print(str: "\nError: invalid dtb and unrecognized/unsupported machine ID\n"); |
1121 | early_print(str: " r1=0x%08x, r2=0x%08x\n", __machine_arch_type, |
1122 | __atags_pointer); |
1123 | if (__atags_pointer) |
1124 | early_print(str: " r2[]=%*ph\n", 16, atags_vaddr); |
1125 | dump_machine_table(); |
1126 | } |
1127 | |
1128 | machine_desc = mdesc; |
1129 | machine_name = mdesc->name; |
1130 | dump_stack_set_arch_desc(fmt: "%s", mdesc->name); |
1131 | |
1132 | if (mdesc->reboot_mode != REBOOT_HARD) |
1133 | reboot_mode = mdesc->reboot_mode; |
1134 | |
1135 | setup_initial_init_mm(start_code: _text, end_code: _etext, end_data: _edata, brk: _end); |
1136 | |
1137 | /* populate cmd_line too for later use, preserving boot_command_line */ |
1138 | strscpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE); |
1139 | *cmdline_p = cmd_line; |
1140 | |
1141 | early_fixmap_init(); |
1142 | early_ioremap_init(); |
1143 | |
1144 | parse_early_param(); |
1145 | |
1146 | #ifdef CONFIG_MMU |
1147 | early_mm_init(mdesc); |
1148 | #endif |
1149 | setup_dma_zone(mdesc); |
1150 | xen_early_init(); |
1151 | arm_efi_init(); |
1152 | /* |
1153 | * Make sure the calculation for lowmem/highmem is set appropriately |
1154 | * before reserving/allocating any memory |
1155 | */ |
1156 | adjust_lowmem_bounds(); |
1157 | arm_memblock_init(mdesc); |
1158 | /* Memory may have been removed so recalculate the bounds. */ |
1159 | adjust_lowmem_bounds(); |
1160 | |
1161 | early_ioremap_reset(); |
1162 | |
1163 | paging_init(mdesc); |
1164 | kasan_init(); |
1165 | request_standard_resources(mdesc); |
1166 | |
1167 | if (mdesc->restart) { |
1168 | __arm_pm_restart = mdesc->restart; |
1169 | register_restart_handler(&arm_restart_nb); |
1170 | } |
1171 | |
1172 | unflatten_device_tree(); |
1173 | |
1174 | arm_dt_init_cpu_maps(); |
1175 | psci_dt_init(); |
1176 | #ifdef CONFIG_SMP |
1177 | if (is_smp()) { |
1178 | if (!mdesc->smp_init || !mdesc->smp_init()) { |
1179 | if (psci_smp_available()) |
1180 | smp_set_ops(&psci_smp_ops); |
1181 | else if (mdesc->smp) |
1182 | smp_set_ops(mdesc->smp); |
1183 | } |
1184 | smp_init_cpus(); |
1185 | smp_build_mpidr_hash(); |
1186 | } |
1187 | #endif |
1188 | |
1189 | if (!is_smp()) |
1190 | hyp_mode_check(); |
1191 | |
1192 | reserve_crashkernel(); |
1193 | |
1194 | #ifdef CONFIG_VT |
1195 | #if defined(CONFIG_VGA_CONSOLE) |
1196 | vgacon_register_screen(si: &vgacon_screen_info); |
1197 | #endif |
1198 | #endif |
1199 | |
1200 | if (mdesc->init_early) |
1201 | mdesc->init_early(); |
1202 | } |
1203 | |
1204 | |
1205 | static int __init topology_init(void) |
1206 | { |
1207 | int cpu; |
1208 | |
1209 | for_each_possible_cpu(cpu) { |
1210 | struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu); |
1211 | cpuinfo->cpu.hotpluggable = platform_can_hotplug_cpu(cpu); |
1212 | register_cpu(cpu: &cpuinfo->cpu, num: cpu); |
1213 | } |
1214 | |
1215 | return 0; |
1216 | } |
1217 | subsys_initcall(topology_init); |
1218 | |
1219 | #ifdef CONFIG_HAVE_PROC_CPU |
1220 | static int __init proc_cpu_init(void) |
1221 | { |
1222 | struct proc_dir_entry *res; |
1223 | |
1224 | res = proc_mkdir("cpu", NULL); |
1225 | if (!res) |
1226 | return -ENOMEM; |
1227 | return 0; |
1228 | } |
1229 | fs_initcall(proc_cpu_init); |
1230 | #endif |
1231 | |
1232 | static const char *hwcap_str[] = { |
1233 | "swp", |
1234 | "half", |
1235 | "thumb", |
1236 | "26bit", |
1237 | "fastmult", |
1238 | "fpa", |
1239 | "vfp", |
1240 | "edsp", |
1241 | "java", |
1242 | "iwmmxt", |
1243 | "crunch", |
1244 | "thumbee", |
1245 | "neon", |
1246 | "vfpv3", |
1247 | "vfpv3d16", |
1248 | "tls", |
1249 | "vfpv4", |
1250 | "idiva", |
1251 | "idivt", |
1252 | "vfpd32", |
1253 | "lpae", |
1254 | "evtstrm", |
1255 | "fphp", |
1256 | "asimdhp", |
1257 | "asimddp", |
1258 | "asimdfhm", |
1259 | "asimdbf16", |
1260 | "i8mm", |
1261 | NULL |
1262 | }; |
1263 | |
1264 | static const char *hwcap2_str[] = { |
1265 | "aes", |
1266 | "pmull", |
1267 | "sha1", |
1268 | "sha2", |
1269 | "crc32", |
1270 | "sb", |
1271 | "ssbs", |
1272 | NULL |
1273 | }; |
1274 | |
1275 | static int c_show(struct seq_file *m, void *v) |
1276 | { |
1277 | int i, j; |
1278 | u32 cpuid; |
1279 | |
1280 | for_each_online_cpu(i) { |
1281 | /* |
1282 | * glibc reads /proc/cpuinfo to determine the number of |
1283 | * online processors, looking for lines beginning with |
1284 | * "processor". Give glibc what it expects. |
1285 | */ |
1286 | seq_printf(m, fmt: "processor\t: %d\n", i); |
1287 | cpuid = is_smp() ? per_cpu(cpu_data, i).cpuid : read_cpuid_id(); |
1288 | seq_printf(m, fmt: "model name\t: %s rev %d (%s)\n", |
1289 | cpu_name, cpuid & 15, elf_platform); |
1290 | |
1291 | #if defined(CONFIG_SMP) |
1292 | seq_printf(m, fmt: "BogoMIPS\t: %lu.%02lu\n", |
1293 | per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ), |
1294 | (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100); |
1295 | #else |
1296 | seq_printf(m, "BogoMIPS\t: %lu.%02lu\n", |
1297 | loops_per_jiffy / (500000/HZ), |
1298 | (loops_per_jiffy / (5000/HZ)) % 100); |
1299 | #endif |
1300 | /* dump out the processor features */ |
1301 | seq_puts(m, s: "Features\t: "); |
1302 | |
1303 | for (j = 0; hwcap_str[j]; j++) |
1304 | if (elf_hwcap & (1 << j)) |
1305 | seq_printf(m, fmt: "%s ", hwcap_str[j]); |
1306 | |
1307 | for (j = 0; hwcap2_str[j]; j++) |
1308 | if (elf_hwcap2 & (1 << j)) |
1309 | seq_printf(m, fmt: "%s ", hwcap2_str[j]); |
1310 | |
1311 | seq_printf(m, fmt: "\nCPU implementer\t: 0x%02x\n", cpuid >> 24); |
1312 | seq_printf(m, fmt: "CPU architecture: %s\n", |
1313 | proc_arch[cpu_architecture()]); |
1314 | |
1315 | if ((cpuid & 0x0008f000) == 0x00000000) { |
1316 | /* pre-ARM7 */ |
1317 | seq_printf(m, fmt: "CPU part\t: %07x\n", cpuid >> 4); |
1318 | } else { |
1319 | if ((cpuid & 0x0008f000) == 0x00007000) { |
1320 | /* ARM7 */ |
1321 | seq_printf(m, fmt: "CPU variant\t: 0x%02x\n", |
1322 | (cpuid >> 16) & 127); |
1323 | } else { |
1324 | /* post-ARM7 */ |
1325 | seq_printf(m, fmt: "CPU variant\t: 0x%x\n", |
1326 | (cpuid >> 20) & 15); |
1327 | } |
1328 | seq_printf(m, fmt: "CPU part\t: 0x%03x\n", |
1329 | (cpuid >> 4) & 0xfff); |
1330 | } |
1331 | seq_printf(m, fmt: "CPU revision\t: %d\n\n", cpuid & 15); |
1332 | } |
1333 | |
1334 | seq_printf(m, fmt: "Hardware\t: %s\n", machine_name); |
1335 | seq_printf(m, fmt: "Revision\t: %04x\n", system_rev); |
1336 | seq_printf(m, fmt: "Serial\t\t: %s\n", system_serial); |
1337 | |
1338 | return 0; |
1339 | } |
1340 | |
1341 | static void *c_start(struct seq_file *m, loff_t *pos) |
1342 | { |
1343 | return *pos < 1 ? (void *)1 : NULL; |
1344 | } |
1345 | |
1346 | static void *c_next(struct seq_file *m, void *v, loff_t *pos) |
1347 | { |
1348 | ++*pos; |
1349 | return NULL; |
1350 | } |
1351 | |
1352 | static void c_stop(struct seq_file *m, void *v) |
1353 | { |
1354 | } |
1355 | |
1356 | const struct seq_operations cpuinfo_op = { |
1357 | .start = c_start, |
1358 | .next = c_next, |
1359 | .stop = c_stop, |
1360 | .show = c_show |
1361 | }; |
1362 |
Definitions
- processor_id
- __machine_arch_type
- cacheid
- __atags_pointer
- system_rev
- system_serial
- system_serial_low
- system_serial_high
- elf_hwcap
- elf_hwcap2
- __cpu_architecture
- stack
- stacks
- elf_platform
- cpu_name
- machine_name
- cmd_line
- machine_desc
- endian_test
- cpu_data
- mem_res
- io_res
- proc_arch
- __get_cpu_architecture
- cpu_architecture
- cpu_has_aliasing_icache
- cacheid_init
- early_print
- patch_aeabi_idiv
- cpuid_init_hwcaps
- elf_hwcap_fixup
- cpu_init
- __cpu_logical_map
- smp_setup_processor_id
- mpidr_hash
- smp_build_mpidr_hash
- lookup_processor
- setup_processor
- dump_machine_table
- arm_add_memory
- early_mem
- request_standard_resources
- vgacon_screen_info
- customize_machine
- init_machine_late
- get_total_mem
- reserve_crashkernel
- hyp_mode_check
- __arm_pm_restart
- arm_restart
- arm_restart_nb
- setup_arch
- topology_init
- hwcap_str
- hwcap2_str
- c_show
- c_start
- c_next
- c_stop
Improve your Profiling and Debugging skills
Find out more