| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * PPC64 code to handle Linux booting another kernel. |
| 4 | * |
| 5 | * Copyright (C) 2004-2005, IBM Corp. |
| 6 | * |
| 7 | * Created by: Milton D Miller II |
| 8 | */ |
| 9 | |
| 10 | |
| 11 | #include <linux/kexec.h> |
| 12 | #include <linux/smp.h> |
| 13 | #include <linux/thread_info.h> |
| 14 | #include <linux/init_task.h> |
| 15 | #include <linux/errno.h> |
| 16 | #include <linux/kernel.h> |
| 17 | #include <linux/cpu.h> |
| 18 | #include <linux/hardirq.h> |
| 19 | #include <linux/of.h> |
| 20 | #include <linux/libfdt.h> |
| 21 | |
| 22 | #include <asm/page.h> |
| 23 | #include <asm/current.h> |
| 24 | #include <asm/machdep.h> |
| 25 | #include <asm/cacheflush.h> |
| 26 | #include <asm/firmware.h> |
| 27 | #include <asm/paca.h> |
| 28 | #include <asm/mmu.h> |
| 29 | #include <asm/sections.h> /* _end */ |
| 30 | #include <asm/setup.h> |
| 31 | #include <asm/smp.h> |
| 32 | #include <asm/hw_breakpoint.h> |
| 33 | #include <asm/svm.h> |
| 34 | #include <asm/ultravisor.h> |
| 35 | #include <asm/crashdump-ppc64.h> |
| 36 | |
| 37 | int machine_kexec_prepare(struct kimage *image) |
| 38 | { |
| 39 | int i; |
| 40 | unsigned long begin, end; /* limits of segment */ |
| 41 | unsigned long low, high; /* limits of blocked memory range */ |
| 42 | struct device_node *node; |
| 43 | const unsigned long *basep; |
| 44 | const unsigned int *sizep; |
| 45 | |
| 46 | /* |
| 47 | * Since we use the kernel fault handlers and paging code to |
| 48 | * handle the virtual mode, we must make sure no destination |
| 49 | * overlaps kernel static data or bss. |
| 50 | */ |
| 51 | for (i = 0; i < image->nr_segments; i++) |
| 52 | if (image->segment[i].mem < __pa(_end)) |
| 53 | return -ETXTBSY; |
| 54 | |
| 55 | /* We also should not overwrite the tce tables */ |
| 56 | for_each_node_by_type(node, "pci" ) { |
| 57 | basep = of_get_property(node, name: "linux,tce-base" , NULL); |
| 58 | sizep = of_get_property(node, name: "linux,tce-size" , NULL); |
| 59 | if (basep == NULL || sizep == NULL) |
| 60 | continue; |
| 61 | |
| 62 | low = *basep; |
| 63 | high = low + (*sizep); |
| 64 | |
| 65 | for (i = 0; i < image->nr_segments; i++) { |
| 66 | begin = image->segment[i].mem; |
| 67 | end = begin + image->segment[i].memsz; |
| 68 | |
| 69 | if ((begin < high) && (end > low)) { |
| 70 | of_node_put(node); |
| 71 | return -ETXTBSY; |
| 72 | } |
| 73 | } |
| 74 | } |
| 75 | |
| 76 | return 0; |
| 77 | } |
| 78 | |
| 79 | /* Called during kexec sequence with MMU off */ |
| 80 | static notrace void copy_segments(unsigned long ind) |
| 81 | { |
| 82 | unsigned long entry; |
| 83 | unsigned long *ptr; |
| 84 | void *dest; |
| 85 | void *addr; |
| 86 | |
| 87 | /* |
| 88 | * We rely on kexec_load to create a lists that properly |
| 89 | * initializes these pointers before they are used. |
| 90 | * We will still crash if the list is wrong, but at least |
| 91 | * the compiler will be quiet. |
| 92 | */ |
| 93 | ptr = NULL; |
| 94 | dest = NULL; |
| 95 | |
| 96 | for (entry = ind; !(entry & IND_DONE); entry = *ptr++) { |
| 97 | addr = __va(entry & PAGE_MASK); |
| 98 | |
| 99 | switch (entry & IND_FLAGS) { |
| 100 | case IND_DESTINATION: |
| 101 | dest = addr; |
| 102 | break; |
| 103 | case IND_INDIRECTION: |
| 104 | ptr = addr; |
| 105 | break; |
| 106 | case IND_SOURCE: |
| 107 | copy_page(to: dest, from: addr); |
| 108 | dest += PAGE_SIZE; |
| 109 | } |
| 110 | } |
| 111 | } |
| 112 | |
| 113 | /* Called during kexec sequence with MMU off */ |
| 114 | notrace void kexec_copy_flush(struct kimage *image) |
| 115 | { |
| 116 | long i, nr_segments = image->nr_segments; |
| 117 | struct kexec_segment ranges[KEXEC_SEGMENT_MAX]; |
| 118 | |
| 119 | /* save the ranges on the stack to efficiently flush the icache */ |
| 120 | memcpy(ranges, image->segment, sizeof(ranges)); |
| 121 | |
| 122 | /* |
| 123 | * After this call we may not use anything allocated in dynamic |
| 124 | * memory, including *image. |
| 125 | * |
| 126 | * Only globals and the stack are allowed. |
| 127 | */ |
| 128 | copy_segments(ind: image->head); |
| 129 | |
| 130 | /* |
| 131 | * we need to clear the icache for all dest pages sometime, |
| 132 | * including ones that were in place on the original copy |
| 133 | */ |
| 134 | for (i = 0; i < nr_segments; i++) |
| 135 | flush_icache_range(start: (unsigned long)__va(ranges[i].mem), |
| 136 | end: (unsigned long)__va(ranges[i].mem + ranges[i].memsz)); |
| 137 | } |
| 138 | |
| 139 | #ifdef CONFIG_SMP |
| 140 | |
| 141 | static int kexec_all_irq_disabled = 0; |
| 142 | |
| 143 | static void kexec_smp_down(void *arg) |
| 144 | { |
| 145 | local_irq_disable(); |
| 146 | hard_irq_disable(); |
| 147 | |
| 148 | mb(); /* make sure our irqs are disabled before we say they are */ |
| 149 | get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF; |
| 150 | while(kexec_all_irq_disabled == 0) |
| 151 | cpu_relax(); |
| 152 | mb(); /* make sure all irqs are disabled before this */ |
| 153 | hw_breakpoint_disable(); |
| 154 | /* |
| 155 | * Now every CPU has IRQs off, we can clear out any pending |
| 156 | * IPIs and be sure that no more will come in after this. |
| 157 | */ |
| 158 | if (ppc_md.kexec_cpu_down) |
| 159 | ppc_md.kexec_cpu_down(0, 1); |
| 160 | |
| 161 | reset_sprs(); |
| 162 | |
| 163 | kexec_smp_wait(); |
| 164 | /* NOTREACHED */ |
| 165 | } |
| 166 | |
| 167 | static void kexec_prepare_cpus_wait(int wait_state) |
| 168 | { |
| 169 | int my_cpu, i, notified=-1; |
| 170 | |
| 171 | hw_breakpoint_disable(); |
| 172 | my_cpu = get_cpu(); |
| 173 | /* Make sure each CPU has at least made it to the state we need. |
| 174 | * |
| 175 | * FIXME: There is a (slim) chance of a problem if not all of the CPUs |
| 176 | * are correctly onlined. If somehow we start a CPU on boot with RTAS |
| 177 | * start-cpu, but somehow that CPU doesn't write callin_cpu_map[] in |
| 178 | * time, the boot CPU will timeout. If it does eventually execute |
| 179 | * stuff, the secondary will start up (paca_ptrs[]->cpu_start was |
| 180 | * written) and get into a peculiar state. |
| 181 | * If the platform supports smp_ops->take_timebase(), the secondary CPU |
| 182 | * will probably be spinning in there. If not (i.e. pseries), the |
| 183 | * secondary will continue on and try to online itself/idle/etc. If it |
| 184 | * survives that, we need to find these |
| 185 | * possible-but-not-online-but-should-be CPUs and chaperone them into |
| 186 | * kexec_smp_wait(). |
| 187 | */ |
| 188 | for_each_online_cpu(i) { |
| 189 | if (i == my_cpu) |
| 190 | continue; |
| 191 | |
| 192 | while (paca_ptrs[i]->kexec_state < wait_state) { |
| 193 | barrier(); |
| 194 | if (i != notified) { |
| 195 | printk(KERN_INFO "kexec: waiting for cpu %d " |
| 196 | "(physical %d) to enter %i state\n" , |
| 197 | i, paca_ptrs[i]->hw_cpu_id, wait_state); |
| 198 | notified = i; |
| 199 | } |
| 200 | } |
| 201 | } |
| 202 | mb(); |
| 203 | } |
| 204 | |
| 205 | /* |
| 206 | * We need to make sure each present CPU is online. The next kernel will scan |
| 207 | * the device tree and assume primary threads are online and query secondary |
| 208 | * threads via RTAS to online them if required. If we don't online primary |
| 209 | * threads, they will be stuck. However, we also online secondary threads as we |
| 210 | * may be using 'cede offline'. In this case RTAS doesn't see the secondary |
| 211 | * threads as offline -- and again, these CPUs will be stuck. |
| 212 | * |
| 213 | * So, we online all CPUs that should be running, including secondary threads. |
| 214 | */ |
| 215 | static void wake_offline_cpus(void) |
| 216 | { |
| 217 | int cpu = 0; |
| 218 | |
| 219 | for_each_present_cpu(cpu) { |
| 220 | if (!cpu_online(cpu)) { |
| 221 | printk(KERN_INFO "kexec: Waking offline cpu %d.\n" , |
| 222 | cpu); |
| 223 | WARN_ON(add_cpu(cpu)); |
| 224 | } |
| 225 | } |
| 226 | } |
| 227 | |
| 228 | static void kexec_prepare_cpus(void) |
| 229 | { |
| 230 | wake_offline_cpus(); |
| 231 | smp_call_function(func: kexec_smp_down, NULL, /* wait */0); |
| 232 | local_irq_disable(); |
| 233 | hard_irq_disable(); |
| 234 | |
| 235 | mb(); /* make sure IRQs are disabled before we say they are */ |
| 236 | get_paca()->kexec_state = KEXEC_STATE_IRQS_OFF; |
| 237 | |
| 238 | kexec_prepare_cpus_wait(wait_state: KEXEC_STATE_IRQS_OFF); |
| 239 | /* we are sure every CPU has IRQs off at this point */ |
| 240 | kexec_all_irq_disabled = 1; |
| 241 | |
| 242 | /* |
| 243 | * Before removing MMU mappings make sure all CPUs have entered real |
| 244 | * mode: |
| 245 | */ |
| 246 | kexec_prepare_cpus_wait(wait_state: KEXEC_STATE_REAL_MODE); |
| 247 | |
| 248 | /* after we tell the others to go down */ |
| 249 | if (ppc_md.kexec_cpu_down) |
| 250 | ppc_md.kexec_cpu_down(0, 0); |
| 251 | |
| 252 | put_cpu(); |
| 253 | } |
| 254 | |
| 255 | #else /* ! SMP */ |
| 256 | |
| 257 | static void kexec_prepare_cpus(void) |
| 258 | { |
| 259 | /* |
| 260 | * move the secondarys to us so that we can copy |
| 261 | * the new kernel 0-0x100 safely |
| 262 | * |
| 263 | * do this if kexec in setup.c ? |
| 264 | * |
| 265 | * We need to release the cpus if we are ever going from an |
| 266 | * UP to an SMP kernel. |
| 267 | */ |
| 268 | smp_release_cpus(); |
| 269 | if (ppc_md.kexec_cpu_down) |
| 270 | ppc_md.kexec_cpu_down(0, 0); |
| 271 | local_irq_disable(); |
| 272 | hard_irq_disable(); |
| 273 | } |
| 274 | |
| 275 | #endif /* SMP */ |
| 276 | |
| 277 | /* |
| 278 | * kexec thread structure and stack. |
| 279 | * |
| 280 | * We need to make sure that this is 16384-byte aligned due to the |
| 281 | * way process stacks are handled. It also must be statically allocated |
| 282 | * or allocated as part of the kimage, because everything else may be |
| 283 | * overwritten when we copy the kexec image. We piggyback on the |
| 284 | * "init_task" linker section here to statically allocate a stack. |
| 285 | * |
| 286 | * We could use a smaller stack if we don't care about anything using |
| 287 | * current, but that audit has not been performed. |
| 288 | */ |
| 289 | static union thread_union kexec_stack = { }; |
| 290 | |
| 291 | /* |
| 292 | * For similar reasons to the stack above, the kexecing CPU needs to be on a |
| 293 | * static PACA; we switch to kexec_paca. |
| 294 | */ |
| 295 | static struct paca_struct kexec_paca; |
| 296 | |
| 297 | /* Our assembly helper, in misc_64.S */ |
| 298 | extern void kexec_sequence(void *newstack, unsigned long start, |
| 299 | void *image, void *control, |
| 300 | void (*clear_all)(void), |
| 301 | bool copy_with_mmu_off) __noreturn; |
| 302 | |
| 303 | /* too late to fail here */ |
| 304 | void default_machine_kexec(struct kimage *image) |
| 305 | { |
| 306 | bool copy_with_mmu_off; |
| 307 | |
| 308 | /* prepare control code if any */ |
| 309 | |
| 310 | /* |
| 311 | * If the kexec boot is the normal one, need to shutdown other cpus |
| 312 | * into our wait loop and quiesce interrupts. |
| 313 | * Otherwise, in the case of crashed mode (crashing_cpu >= 0), |
| 314 | * stopping other CPUs and collecting their pt_regs is done before |
| 315 | * using debugger IPI. |
| 316 | */ |
| 317 | |
| 318 | if (!kdump_in_progress()) |
| 319 | kexec_prepare_cpus(); |
| 320 | |
| 321 | #ifdef CONFIG_PPC_PSERIES |
| 322 | /* |
| 323 | * This must be done after other CPUs have shut down, otherwise they |
| 324 | * could execute the 'scv' instruction, which is not supported with |
| 325 | * reloc disabled (see configure_exceptions()). |
| 326 | */ |
| 327 | if (firmware_has_feature(FW_FEATURE_SET_MODE)) |
| 328 | pseries_disable_reloc_on_exc(); |
| 329 | #endif |
| 330 | |
| 331 | printk("kexec: Starting switchover sequence.\n" ); |
| 332 | |
| 333 | /* switch to a staticly allocated stack. Based on irq stack code. |
| 334 | * We setup preempt_count to avoid using VMX in memcpy. |
| 335 | * XXX: the task struct will likely be invalid once we do the copy! |
| 336 | */ |
| 337 | current_thread_info()->flags = 0; |
| 338 | current_thread_info()->preempt_count = HARDIRQ_OFFSET; |
| 339 | |
| 340 | /* We need a static PACA, too; copy this CPU's PACA over and switch to |
| 341 | * it. Also poison per_cpu_offset and NULL lppaca to catch anyone using |
| 342 | * non-static data. |
| 343 | */ |
| 344 | memcpy(&kexec_paca, get_paca(), sizeof(struct paca_struct)); |
| 345 | kexec_paca.data_offset = 0xedeaddeadeeeeeeeUL; |
| 346 | #ifdef CONFIG_PPC_PSERIES |
| 347 | kexec_paca.lppaca_ptr = NULL; |
| 348 | #endif |
| 349 | |
| 350 | if (is_secure_guest() && !(image->preserve_context || |
| 351 | image->type == KEXEC_TYPE_CRASH)) { |
| 352 | uv_unshare_all_pages(); |
| 353 | printk("kexec: Unshared all shared pages.\n" ); |
| 354 | } |
| 355 | |
| 356 | paca_ptrs[kexec_paca.paca_index] = &kexec_paca; |
| 357 | |
| 358 | setup_paca(&kexec_paca); |
| 359 | |
| 360 | /* |
| 361 | * The lppaca should be unregistered at this point so the HV won't |
| 362 | * touch it. In the case of a crash, none of the lppacas are |
| 363 | * unregistered so there is not much we can do about it here. |
| 364 | */ |
| 365 | |
| 366 | /* |
| 367 | * On Book3S, the copy must happen with the MMU off if we are either |
| 368 | * using Radix page tables or we are not in an LPAR since we can |
| 369 | * overwrite the page tables while copying. |
| 370 | * |
| 371 | * In an LPAR, we keep the MMU on otherwise we can't access beyond |
| 372 | * the RMA. On BookE there is no real MMU off mode, so we have to |
| 373 | * keep it enabled as well (but then we have bolted TLB entries). |
| 374 | */ |
| 375 | #ifdef CONFIG_PPC_BOOK3E_64 |
| 376 | copy_with_mmu_off = false; |
| 377 | #else |
| 378 | copy_with_mmu_off = radix_enabled() || |
| 379 | !(firmware_has_feature(FW_FEATURE_LPAR) || |
| 380 | firmware_has_feature(FW_FEATURE_PS3_LV1)); |
| 381 | #endif |
| 382 | |
| 383 | /* Some things are best done in assembly. Finding globals with |
| 384 | * a toc is easier in C, so pass in what we can. |
| 385 | */ |
| 386 | kexec_sequence(newstack: &kexec_stack, start: image->start, image, |
| 387 | page_address(image->control_code_page), |
| 388 | clear_all: mmu_cleanup_all, copy_with_mmu_off); |
| 389 | /* NOTREACHED */ |
| 390 | } |
| 391 | |
| 392 | #ifdef CONFIG_PPC_64S_HASH_MMU |
| 393 | /* Values we need to export to the second kernel via the device tree. */ |
| 394 | static __be64 htab_base; |
| 395 | static __be64 htab_size; |
| 396 | |
| 397 | static struct property htab_base_prop = { |
| 398 | .name = "linux,htab-base" , |
| 399 | .length = sizeof(unsigned long), |
| 400 | .value = &htab_base, |
| 401 | }; |
| 402 | |
| 403 | static struct property htab_size_prop = { |
| 404 | .name = "linux,htab-size" , |
| 405 | .length = sizeof(unsigned long), |
| 406 | .value = &htab_size, |
| 407 | }; |
| 408 | |
| 409 | static int __init export_htab_values(void) |
| 410 | { |
| 411 | struct device_node *node; |
| 412 | |
| 413 | /* On machines with no htab htab_address is NULL */ |
| 414 | if (!htab_address) |
| 415 | return -ENODEV; |
| 416 | |
| 417 | node = of_find_node_by_path("/chosen" ); |
| 418 | if (!node) |
| 419 | return -ENODEV; |
| 420 | |
| 421 | /* remove any stale properties so ours can be found */ |
| 422 | of_remove_property(node, of_find_property(node, htab_base_prop.name, NULL)); |
| 423 | of_remove_property(node, of_find_property(node, htab_size_prop.name, NULL)); |
| 424 | |
| 425 | htab_base = cpu_to_be64(__pa(htab_address)); |
| 426 | of_add_property(node, &htab_base_prop); |
| 427 | htab_size = cpu_to_be64(htab_size_bytes); |
| 428 | of_add_property(node, &htab_size_prop); |
| 429 | |
| 430 | of_node_put(node); |
| 431 | return 0; |
| 432 | } |
| 433 | late_initcall(export_htab_values); |
| 434 | #endif /* CONFIG_PPC_64S_HASH_MMU */ |
| 435 | |
| 436 | #if defined(CONFIG_KEXEC_FILE) || defined(CONFIG_CRASH_DUMP) |
| 437 | /** |
| 438 | * add_node_props - Reads node properties from device node structure and add |
| 439 | * them to fdt. |
| 440 | * @fdt: Flattened device tree of the kernel |
| 441 | * @node_offset: offset of the node to add a property at |
| 442 | * @dn: device node pointer |
| 443 | * |
| 444 | * Returns 0 on success, negative errno on error. |
| 445 | */ |
| 446 | static int add_node_props(void *fdt, int node_offset, const struct device_node *dn) |
| 447 | { |
| 448 | int ret = 0; |
| 449 | struct property *pp; |
| 450 | |
| 451 | if (!dn) |
| 452 | return -EINVAL; |
| 453 | |
| 454 | for_each_property_of_node(dn, pp) { |
| 455 | ret = fdt_setprop(fdt, nodeoffset: node_offset, name: pp->name, val: pp->value, len: pp->length); |
| 456 | if (ret < 0) { |
| 457 | pr_err("Unable to add %s property: %s\n" , pp->name, fdt_strerror(ret)); |
| 458 | return ret; |
| 459 | } |
| 460 | } |
| 461 | return ret; |
| 462 | } |
| 463 | |
| 464 | /** |
| 465 | * update_cpus_node - Update cpus node of flattened device tree using of_root |
| 466 | * device node. |
| 467 | * @fdt: Flattened device tree of the kernel. |
| 468 | * |
| 469 | * Returns 0 on success, negative errno on error. |
| 470 | * |
| 471 | * Note: expecting no subnodes under /cpus/<node> with device_type == "cpu". |
| 472 | * If this changes, update this function to include them. |
| 473 | */ |
| 474 | int update_cpus_node(void *fdt) |
| 475 | { |
| 476 | int prev_node_offset; |
| 477 | const char *device_type; |
| 478 | const struct fdt_property *prop; |
| 479 | struct device_node *cpus_node, *dn; |
| 480 | int cpus_offset, cpus_subnode_offset, ret = 0; |
| 481 | |
| 482 | cpus_offset = fdt_path_offset(fdt, path: "/cpus" ); |
| 483 | if (cpus_offset < 0 && cpus_offset != -FDT_ERR_NOTFOUND) { |
| 484 | pr_err("Malformed device tree: error reading /cpus node: %s\n" , |
| 485 | fdt_strerror(cpus_offset)); |
| 486 | return cpus_offset; |
| 487 | } |
| 488 | |
| 489 | prev_node_offset = cpus_offset; |
| 490 | /* Delete sub-nodes of /cpus node with device_type == "cpu" */ |
| 491 | for (cpus_subnode_offset = fdt_first_subnode(fdt, offset: cpus_offset); cpus_subnode_offset >= 0;) { |
| 492 | /* Ignore nodes that do not have a device_type property or device_type != "cpu" */ |
| 493 | prop = fdt_get_property(fdt, nodeoffset: cpus_subnode_offset, name: "device_type" , NULL); |
| 494 | if (!prop || strcmp(prop->data, "cpu" )) { |
| 495 | prev_node_offset = cpus_subnode_offset; |
| 496 | goto next_node; |
| 497 | } |
| 498 | |
| 499 | ret = fdt_del_node(fdt, nodeoffset: cpus_subnode_offset); |
| 500 | if (ret < 0) { |
| 501 | pr_err("Failed to delete a cpus sub-node: %s\n" , fdt_strerror(ret)); |
| 502 | return ret; |
| 503 | } |
| 504 | next_node: |
| 505 | if (prev_node_offset == cpus_offset) |
| 506 | cpus_subnode_offset = fdt_first_subnode(fdt, offset: cpus_offset); |
| 507 | else |
| 508 | cpus_subnode_offset = fdt_next_subnode(fdt, offset: prev_node_offset); |
| 509 | } |
| 510 | |
| 511 | cpus_node = of_find_node_by_path(path: "/cpus" ); |
| 512 | /* Fail here to avoid kexec/kdump kernel boot hung */ |
| 513 | if (!cpus_node) { |
| 514 | pr_err("No /cpus node found\n" ); |
| 515 | return -EINVAL; |
| 516 | } |
| 517 | |
| 518 | /* Add all /cpus sub-nodes of device_type == "cpu" to FDT */ |
| 519 | for_each_child_of_node(cpus_node, dn) { |
| 520 | /* Ignore device nodes that do not have a device_type property |
| 521 | * or device_type != "cpu". |
| 522 | */ |
| 523 | device_type = of_get_property(node: dn, name: "device_type" , NULL); |
| 524 | if (!device_type || strcmp(device_type, "cpu" )) |
| 525 | continue; |
| 526 | |
| 527 | cpus_subnode_offset = fdt_add_subnode(fdt, parentoffset: cpus_offset, name: dn->full_name); |
| 528 | if (cpus_subnode_offset < 0) { |
| 529 | pr_err("Unable to add %s subnode: %s\n" , dn->full_name, |
| 530 | fdt_strerror(cpus_subnode_offset)); |
| 531 | ret = cpus_subnode_offset; |
| 532 | goto out; |
| 533 | } |
| 534 | |
| 535 | ret = add_node_props(fdt, node_offset: cpus_subnode_offset, dn); |
| 536 | if (ret < 0) |
| 537 | goto out; |
| 538 | } |
| 539 | out: |
| 540 | of_node_put(node: cpus_node); |
| 541 | of_node_put(node: dn); |
| 542 | return ret; |
| 543 | } |
| 544 | #endif /* CONFIG_KEXEC_FILE || CONFIG_CRASH_DUMP */ |
| 545 | |