| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Copyright (C) 2008-2013 Freescale Semiconductor, Inc. All rights reserved. |
| 4 | * |
| 5 | * Author: Yu Liu, yu.liu@freescale.com |
| 6 | * Scott Wood, scottwood@freescale.com |
| 7 | * Ashish Kalra, ashish.kalra@freescale.com |
| 8 | * Varun Sethi, varun.sethi@freescale.com |
| 9 | * Alexander Graf, agraf@suse.de |
| 10 | * |
| 11 | * Description: |
| 12 | * This file is based on arch/powerpc/kvm/44x_tlb.c, |
| 13 | * by Hollis Blanchard <hollisb@us.ibm.com>. |
| 14 | */ |
| 15 | |
| 16 | #include <linux/kernel.h> |
| 17 | #include <linux/types.h> |
| 18 | #include <linux/slab.h> |
| 19 | #include <linux/string.h> |
| 20 | #include <linux/kvm.h> |
| 21 | #include <linux/kvm_host.h> |
| 22 | #include <linux/highmem.h> |
| 23 | #include <linux/log2.h> |
| 24 | #include <linux/uaccess.h> |
| 25 | #include <linux/sched/mm.h> |
| 26 | #include <linux/rwsem.h> |
| 27 | #include <linux/vmalloc.h> |
| 28 | #include <linux/hugetlb.h> |
| 29 | #include <asm/kvm_ppc.h> |
| 30 | #include <asm/pte-walk.h> |
| 31 | |
| 32 | #include "e500.h" |
| 33 | #include "timing.h" |
| 34 | #include "e500_mmu_host.h" |
| 35 | |
| 36 | #include "trace_booke.h" |
| 37 | |
| 38 | #define to_htlb1_esel(esel) (host_tlb_params[1].entries - (esel) - 1) |
| 39 | |
| 40 | static struct kvmppc_e500_tlb_params host_tlb_params[E500_TLB_NUM]; |
| 41 | |
| 42 | static inline unsigned int tlb1_max_shadow_size(void) |
| 43 | { |
| 44 | /* reserve one entry for magic page */ |
| 45 | return host_tlb_params[1].entries - tlbcam_index - 1; |
| 46 | } |
| 47 | |
| 48 | static inline u32 e500_shadow_mas3_attrib(u32 mas3, bool writable, int usermode) |
| 49 | { |
| 50 | /* Mask off reserved bits. */ |
| 51 | mas3 &= MAS3_ATTRIB_MASK; |
| 52 | |
| 53 | if (!writable) |
| 54 | mas3 &= ~(MAS3_UW|MAS3_SW); |
| 55 | |
| 56 | #ifndef CONFIG_KVM_BOOKE_HV |
| 57 | if (!usermode) { |
| 58 | /* Guest is in supervisor mode, |
| 59 | * so we need to translate guest |
| 60 | * supervisor permissions into user permissions. */ |
| 61 | mas3 &= ~E500_TLB_USER_PERM_MASK; |
| 62 | mas3 |= (mas3 & E500_TLB_SUPER_PERM_MASK) << 1; |
| 63 | } |
| 64 | mas3 |= E500_TLB_SUPER_PERM_MASK; |
| 65 | #endif |
| 66 | return mas3; |
| 67 | } |
| 68 | |
| 69 | /* |
| 70 | * writing shadow tlb entry to host TLB |
| 71 | */ |
| 72 | static inline void __write_host_tlbe(struct kvm_book3e_206_tlb_entry *stlbe, |
| 73 | uint32_t mas0, |
| 74 | uint32_t lpid) |
| 75 | { |
| 76 | unsigned long flags; |
| 77 | |
| 78 | local_irq_save(flags); |
| 79 | mtspr(SPRN_MAS0, mas0); |
| 80 | mtspr(SPRN_MAS1, stlbe->mas1); |
| 81 | mtspr(SPRN_MAS2, (unsigned long)stlbe->mas2); |
| 82 | mtspr(SPRN_MAS3, (u32)stlbe->mas7_3); |
| 83 | mtspr(SPRN_MAS7, (u32)(stlbe->mas7_3 >> 32)); |
| 84 | #ifdef CONFIG_KVM_BOOKE_HV |
| 85 | mtspr(SPRN_MAS8, MAS8_TGS | get_thread_specific_lpid(lpid)); |
| 86 | #endif |
| 87 | asm volatile("isync; tlbwe" : : : "memory" ); |
| 88 | |
| 89 | #ifdef CONFIG_KVM_BOOKE_HV |
| 90 | /* Must clear mas8 for other host tlbwe's */ |
| 91 | mtspr(SPRN_MAS8, 0); |
| 92 | isync(); |
| 93 | #endif |
| 94 | local_irq_restore(flags); |
| 95 | |
| 96 | trace_kvm_booke206_stlb_write(mas0, mas8: stlbe->mas8, mas1: stlbe->mas1, |
| 97 | mas2: stlbe->mas2, mas7_3: stlbe->mas7_3); |
| 98 | } |
| 99 | |
| 100 | /* |
| 101 | * Acquire a mas0 with victim hint, as if we just took a TLB miss. |
| 102 | * |
| 103 | * We don't care about the address we're searching for, other than that it's |
| 104 | * in the right set and is not present in the TLB. Using a zero PID and a |
| 105 | * userspace address means we don't have to set and then restore MAS5, or |
| 106 | * calculate a proper MAS6 value. |
| 107 | */ |
| 108 | static u32 get_host_mas0(unsigned long eaddr) |
| 109 | { |
| 110 | unsigned long flags; |
| 111 | u32 mas0; |
| 112 | u32 mas4; |
| 113 | |
| 114 | local_irq_save(flags); |
| 115 | mtspr(SPRN_MAS6, 0); |
| 116 | mas4 = mfspr(SPRN_MAS4); |
| 117 | mtspr(SPRN_MAS4, mas4 & ~MAS4_TLBSEL_MASK); |
| 118 | asm volatile("tlbsx 0, %0" : : "b" (eaddr & ~CONFIG_PAGE_OFFSET)); |
| 119 | mas0 = mfspr(SPRN_MAS0); |
| 120 | mtspr(SPRN_MAS4, mas4); |
| 121 | local_irq_restore(flags); |
| 122 | |
| 123 | return mas0; |
| 124 | } |
| 125 | |
| 126 | /* sesel is for tlb1 only */ |
| 127 | static inline void write_host_tlbe(struct kvmppc_vcpu_e500 *vcpu_e500, |
| 128 | int tlbsel, int sesel, struct kvm_book3e_206_tlb_entry *stlbe) |
| 129 | { |
| 130 | u32 mas0; |
| 131 | |
| 132 | if (tlbsel == 0) { |
| 133 | mas0 = get_host_mas0(eaddr: stlbe->mas2); |
| 134 | __write_host_tlbe(stlbe, mas0, lpid: vcpu_e500->vcpu.kvm->arch.lpid); |
| 135 | } else { |
| 136 | __write_host_tlbe(stlbe, |
| 137 | mas0: MAS0_TLBSEL(1) | |
| 138 | MAS0_ESEL(to_htlb1_esel(sesel)), |
| 139 | lpid: vcpu_e500->vcpu.kvm->arch.lpid); |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | /* sesel is for tlb1 only */ |
| 144 | static void write_stlbe(struct kvmppc_vcpu_e500 *vcpu_e500, |
| 145 | struct kvm_book3e_206_tlb_entry *gtlbe, |
| 146 | struct kvm_book3e_206_tlb_entry *stlbe, |
| 147 | int stlbsel, int sesel) |
| 148 | { |
| 149 | int stid; |
| 150 | |
| 151 | preempt_disable(); |
| 152 | stid = kvmppc_e500_get_tlb_stid(vcpu: &vcpu_e500->vcpu, gtlbe); |
| 153 | |
| 154 | stlbe->mas1 |= MAS1_TID(stid); |
| 155 | write_host_tlbe(vcpu_e500, tlbsel: stlbsel, sesel, stlbe); |
| 156 | preempt_enable(); |
| 157 | } |
| 158 | |
| 159 | #ifdef CONFIG_KVM_E500V2 |
| 160 | /* XXX should be a hook in the gva2hpa translation */ |
| 161 | void kvmppc_map_magic(struct kvm_vcpu *vcpu) |
| 162 | { |
| 163 | struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); |
| 164 | struct kvm_book3e_206_tlb_entry magic; |
| 165 | ulong shared_page = ((ulong)vcpu->arch.shared) & PAGE_MASK; |
| 166 | unsigned int stid; |
| 167 | kvm_pfn_t pfn; |
| 168 | |
| 169 | pfn = (kvm_pfn_t)virt_to_phys((void *)shared_page) >> PAGE_SHIFT; |
| 170 | get_page(pfn_to_page(pfn)); |
| 171 | |
| 172 | preempt_disable(); |
| 173 | stid = kvmppc_e500_get_sid(vcpu_e500, 0, 0, 0, 0); |
| 174 | |
| 175 | magic.mas1 = MAS1_VALID | MAS1_TS | MAS1_TID(stid) | |
| 176 | MAS1_TSIZE(BOOK3E_PAGESZ_4K); |
| 177 | magic.mas2 = vcpu->arch.magic_page_ea | MAS2_M; |
| 178 | magic.mas7_3 = ((u64)pfn << PAGE_SHIFT) | |
| 179 | MAS3_SW | MAS3_SR | MAS3_UW | MAS3_UR; |
| 180 | magic.mas8 = 0; |
| 181 | |
| 182 | __write_host_tlbe(&magic, MAS0_TLBSEL(1) | MAS0_ESEL(tlbcam_index), 0); |
| 183 | preempt_enable(); |
| 184 | } |
| 185 | #endif |
| 186 | |
| 187 | void inval_gtlbe_on_host(struct kvmppc_vcpu_e500 *vcpu_e500, int tlbsel, |
| 188 | int esel) |
| 189 | { |
| 190 | struct kvm_book3e_206_tlb_entry *gtlbe = |
| 191 | get_entry(vcpu_e500, tlbsel, entry: esel); |
| 192 | struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[tlbsel][esel].ref; |
| 193 | |
| 194 | /* Don't bother with unmapped entries */ |
| 195 | if (!(ref->flags & E500_TLB_VALID)) { |
| 196 | WARN(ref->flags & (E500_TLB_BITMAP | E500_TLB_TLB0), |
| 197 | "%s: flags %x\n" , __func__, ref->flags); |
| 198 | WARN_ON(tlbsel == 1 && vcpu_e500->g2h_tlb1_map[esel]); |
| 199 | } |
| 200 | |
| 201 | if (tlbsel == 1 && ref->flags & E500_TLB_BITMAP) { |
| 202 | u64 tmp = vcpu_e500->g2h_tlb1_map[esel]; |
| 203 | int hw_tlb_indx; |
| 204 | unsigned long flags; |
| 205 | |
| 206 | local_irq_save(flags); |
| 207 | while (tmp) { |
| 208 | hw_tlb_indx = __ilog2_u64(n: tmp & -tmp); |
| 209 | mtspr(SPRN_MAS0, |
| 210 | MAS0_TLBSEL(1) | |
| 211 | MAS0_ESEL(to_htlb1_esel(hw_tlb_indx))); |
| 212 | mtspr(SPRN_MAS1, 0); |
| 213 | asm volatile("tlbwe" ); |
| 214 | vcpu_e500->h2g_tlb1_rmap[hw_tlb_indx] = 0; |
| 215 | tmp &= tmp - 1; |
| 216 | } |
| 217 | mb(); |
| 218 | vcpu_e500->g2h_tlb1_map[esel] = 0; |
| 219 | ref->flags &= ~(E500_TLB_BITMAP | E500_TLB_VALID); |
| 220 | local_irq_restore(flags); |
| 221 | } |
| 222 | |
| 223 | if (tlbsel == 1 && ref->flags & E500_TLB_TLB0) { |
| 224 | /* |
| 225 | * TLB1 entry is backed by 4k pages. This should happen |
| 226 | * rarely and is not worth optimizing. Invalidate everything. |
| 227 | */ |
| 228 | kvmppc_e500_tlbil_all(vcpu_e500); |
| 229 | ref->flags &= ~(E500_TLB_TLB0 | E500_TLB_VALID); |
| 230 | } |
| 231 | |
| 232 | /* |
| 233 | * If TLB entry is still valid then it's a TLB0 entry, and thus |
| 234 | * backed by at most one host tlbe per shadow pid |
| 235 | */ |
| 236 | if (ref->flags & E500_TLB_VALID) |
| 237 | kvmppc_e500_tlbil_one(vcpu_e500, gtlbe); |
| 238 | |
| 239 | /* Mark the TLB as not backed by the host anymore */ |
| 240 | ref->flags = 0; |
| 241 | } |
| 242 | |
| 243 | static inline int tlbe_is_writable(struct kvm_book3e_206_tlb_entry *tlbe) |
| 244 | { |
| 245 | return tlbe->mas7_3 & (MAS3_SW|MAS3_UW); |
| 246 | } |
| 247 | |
| 248 | static inline void kvmppc_e500_ref_setup(struct tlbe_ref *ref, |
| 249 | struct kvm_book3e_206_tlb_entry *gtlbe, |
| 250 | kvm_pfn_t pfn, unsigned int wimg, |
| 251 | bool writable) |
| 252 | { |
| 253 | ref->pfn = pfn; |
| 254 | ref->flags = E500_TLB_VALID; |
| 255 | if (writable) |
| 256 | ref->flags |= E500_TLB_WRITABLE; |
| 257 | |
| 258 | /* Use guest supplied MAS2_G and MAS2_E */ |
| 259 | ref->flags |= (gtlbe->mas2 & MAS2_ATTRIB_MASK) | wimg; |
| 260 | } |
| 261 | |
| 262 | static inline void kvmppc_e500_ref_release(struct tlbe_ref *ref) |
| 263 | { |
| 264 | if (ref->flags & E500_TLB_VALID) { |
| 265 | /* FIXME: don't log bogus pfn for TLB1 */ |
| 266 | trace_kvm_booke206_ref_release(pfn: ref->pfn, flags: ref->flags); |
| 267 | ref->flags = 0; |
| 268 | } |
| 269 | } |
| 270 | |
| 271 | static void clear_tlb1_bitmap(struct kvmppc_vcpu_e500 *vcpu_e500) |
| 272 | { |
| 273 | if (vcpu_e500->g2h_tlb1_map) |
| 274 | memset(vcpu_e500->g2h_tlb1_map, 0, |
| 275 | sizeof(u64) * vcpu_e500->gtlb_params[1].entries); |
| 276 | if (vcpu_e500->h2g_tlb1_rmap) |
| 277 | memset(vcpu_e500->h2g_tlb1_rmap, 0, |
| 278 | sizeof(unsigned int) * host_tlb_params[1].entries); |
| 279 | } |
| 280 | |
| 281 | static void clear_tlb_privs(struct kvmppc_vcpu_e500 *vcpu_e500) |
| 282 | { |
| 283 | int tlbsel; |
| 284 | int i; |
| 285 | |
| 286 | for (tlbsel = 0; tlbsel <= 1; tlbsel++) { |
| 287 | for (i = 0; i < vcpu_e500->gtlb_params[tlbsel].entries; i++) { |
| 288 | struct tlbe_ref *ref = |
| 289 | &vcpu_e500->gtlb_priv[tlbsel][i].ref; |
| 290 | kvmppc_e500_ref_release(ref); |
| 291 | } |
| 292 | } |
| 293 | } |
| 294 | |
| 295 | void kvmppc_core_flush_tlb(struct kvm_vcpu *vcpu) |
| 296 | { |
| 297 | struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); |
| 298 | kvmppc_e500_tlbil_all(vcpu_e500); |
| 299 | clear_tlb_privs(vcpu_e500); |
| 300 | clear_tlb1_bitmap(vcpu_e500); |
| 301 | } |
| 302 | |
| 303 | /* TID must be supplied by the caller */ |
| 304 | static void kvmppc_e500_setup_stlbe( |
| 305 | struct kvm_vcpu *vcpu, |
| 306 | struct kvm_book3e_206_tlb_entry *gtlbe, |
| 307 | int tsize, struct tlbe_ref *ref, u64 gvaddr, |
| 308 | struct kvm_book3e_206_tlb_entry *stlbe) |
| 309 | { |
| 310 | kvm_pfn_t pfn = ref->pfn; |
| 311 | u32 pr = vcpu->arch.shared->msr & MSR_PR; |
| 312 | bool writable = !!(ref->flags & E500_TLB_WRITABLE); |
| 313 | |
| 314 | BUG_ON(!(ref->flags & E500_TLB_VALID)); |
| 315 | |
| 316 | /* Force IPROT=0 for all guest mappings. */ |
| 317 | stlbe->mas1 = MAS1_TSIZE(tsize) | get_tlb_sts(gtlbe) | MAS1_VALID; |
| 318 | stlbe->mas2 = (gvaddr & MAS2_EPN) | (ref->flags & E500_TLB_MAS2_ATTR); |
| 319 | stlbe->mas7_3 = ((u64)pfn << PAGE_SHIFT) | |
| 320 | e500_shadow_mas3_attrib(mas3: gtlbe->mas7_3, writable, usermode: pr); |
| 321 | } |
| 322 | |
| 323 | static inline int kvmppc_e500_shadow_map(struct kvmppc_vcpu_e500 *vcpu_e500, |
| 324 | u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe, |
| 325 | int tlbsel, struct kvm_book3e_206_tlb_entry *stlbe, |
| 326 | struct tlbe_ref *ref) |
| 327 | { |
| 328 | struct kvm_memory_slot *slot; |
| 329 | unsigned int psize; |
| 330 | unsigned long pfn; |
| 331 | struct page *page = NULL; |
| 332 | unsigned long hva; |
| 333 | int tsize = BOOK3E_PAGESZ_4K; |
| 334 | int ret = 0; |
| 335 | unsigned long mmu_seq; |
| 336 | struct kvm *kvm = vcpu_e500->vcpu.kvm; |
| 337 | pte_t *ptep; |
| 338 | unsigned int wimg = 0; |
| 339 | pgd_t *pgdir; |
| 340 | unsigned long flags; |
| 341 | bool writable = false; |
| 342 | |
| 343 | /* used to check for invalidations in progress */ |
| 344 | mmu_seq = kvm->mmu_invalidate_seq; |
| 345 | smp_rmb(); |
| 346 | |
| 347 | /* |
| 348 | * Translate guest physical to true physical, acquiring |
| 349 | * a page reference if it is normal, non-reserved memory. |
| 350 | * |
| 351 | * gfn_to_memslot() must succeed because otherwise we wouldn't |
| 352 | * have gotten this far. Eventually we should just pass the slot |
| 353 | * pointer through from the first lookup. |
| 354 | */ |
| 355 | slot = gfn_to_memslot(kvm: vcpu_e500->vcpu.kvm, gfn); |
| 356 | hva = gfn_to_hva_memslot(slot, gfn); |
| 357 | |
| 358 | pfn = __kvm_faultin_pfn(slot, gfn, foll: FOLL_WRITE, writable: &writable, refcounted_page: &page); |
| 359 | if (is_error_noslot_pfn(pfn)) { |
| 360 | if (printk_ratelimit()) |
| 361 | pr_err("%s: real page not found for gfn %lx\n" , |
| 362 | __func__, (long)gfn); |
| 363 | return -EINVAL; |
| 364 | } |
| 365 | |
| 366 | spin_lock(lock: &kvm->mmu_lock); |
| 367 | if (mmu_invalidate_retry(kvm, mmu_seq)) { |
| 368 | ret = -EAGAIN; |
| 369 | goto out; |
| 370 | } |
| 371 | |
| 372 | |
| 373 | pgdir = vcpu_e500->vcpu.arch.pgdir; |
| 374 | /* |
| 375 | * We are just looking at the wimg bits, so we don't |
| 376 | * care much about the trans splitting bit. |
| 377 | * We are holding kvm->mmu_lock so a notifier invalidate |
| 378 | * can't run hence pfn won't change. |
| 379 | */ |
| 380 | local_irq_save(flags); |
| 381 | ptep = find_linux_pte(pgdir, hva, NULL, &psize); |
| 382 | if (ptep) { |
| 383 | pte_t pte = READ_ONCE(*ptep); |
| 384 | |
| 385 | if (pte_present(a: pte)) { |
| 386 | wimg = (pte_val(pte) >> PTE_WIMGE_SHIFT) & |
| 387 | MAS2_WIMGE_MASK; |
| 388 | } else { |
| 389 | local_irq_restore(flags); |
| 390 | pr_err_ratelimited("%s: pte not present: gfn %lx,pfn %lx\n" , |
| 391 | __func__, (long)gfn, pfn); |
| 392 | ret = -EINVAL; |
| 393 | goto out; |
| 394 | } |
| 395 | } |
| 396 | local_irq_restore(flags); |
| 397 | |
| 398 | if (psize && tlbsel == 1) { |
| 399 | unsigned long psize_pages, tsize_pages; |
| 400 | unsigned long start, end; |
| 401 | unsigned long slot_start, slot_end; |
| 402 | |
| 403 | psize_pages = 1UL << (psize - PAGE_SHIFT); |
| 404 | start = pfn & ~(psize_pages - 1); |
| 405 | end = start + psize_pages; |
| 406 | |
| 407 | slot_start = pfn - (gfn - slot->base_gfn); |
| 408 | slot_end = slot_start + slot->npages; |
| 409 | |
| 410 | if (start < slot_start) |
| 411 | start = slot_start; |
| 412 | if (end > slot_end) |
| 413 | end = slot_end; |
| 414 | |
| 415 | tsize = (gtlbe->mas1 & MAS1_TSIZE_MASK) >> |
| 416 | MAS1_TSIZE_SHIFT; |
| 417 | |
| 418 | /* |
| 419 | * Any page size that doesn't satisfy the host mapping |
| 420 | * will fail the start and end tests. |
| 421 | */ |
| 422 | tsize = min(psize - PAGE_SHIFT + BOOK3E_PAGESZ_4K, tsize); |
| 423 | |
| 424 | /* |
| 425 | * e500 doesn't implement the lowest tsize bit, |
| 426 | * or 1K pages. |
| 427 | */ |
| 428 | tsize = max(BOOK3E_PAGESZ_4K, tsize & ~1); |
| 429 | |
| 430 | /* |
| 431 | * Now find the largest tsize (up to what the guest |
| 432 | * requested) that will cover gfn, stay within the |
| 433 | * range, and for which gfn and pfn are mutually |
| 434 | * aligned. |
| 435 | */ |
| 436 | |
| 437 | for (; tsize > BOOK3E_PAGESZ_4K; tsize -= 2) { |
| 438 | unsigned long gfn_start, gfn_end; |
| 439 | tsize_pages = 1UL << (tsize - 2); |
| 440 | |
| 441 | gfn_start = gfn & ~(tsize_pages - 1); |
| 442 | gfn_end = gfn_start + tsize_pages; |
| 443 | |
| 444 | if (gfn_start + pfn - gfn < start) |
| 445 | continue; |
| 446 | if (gfn_end + pfn - gfn > end) |
| 447 | continue; |
| 448 | if ((gfn & (tsize_pages - 1)) != |
| 449 | (pfn & (tsize_pages - 1))) |
| 450 | continue; |
| 451 | |
| 452 | gvaddr &= ~((tsize_pages << PAGE_SHIFT) - 1); |
| 453 | pfn &= ~(tsize_pages - 1); |
| 454 | break; |
| 455 | } |
| 456 | } |
| 457 | |
| 458 | kvmppc_e500_ref_setup(ref, gtlbe, pfn, wimg, writable); |
| 459 | kvmppc_e500_setup_stlbe(vcpu: &vcpu_e500->vcpu, gtlbe, tsize, |
| 460 | ref, gvaddr, stlbe); |
| 461 | writable = tlbe_is_writable(tlbe: stlbe); |
| 462 | |
| 463 | /* Clear i-cache for new pages */ |
| 464 | kvmppc_mmu_flush_icache(pfn); |
| 465 | |
| 466 | out: |
| 467 | kvm_release_faultin_page(kvm, page, unused: !!ret, dirty: writable); |
| 468 | spin_unlock(lock: &kvm->mmu_lock); |
| 469 | return ret; |
| 470 | } |
| 471 | |
| 472 | /* XXX only map the one-one case, for now use TLB0 */ |
| 473 | static int kvmppc_e500_tlb0_map(struct kvmppc_vcpu_e500 *vcpu_e500, int esel, |
| 474 | struct kvm_book3e_206_tlb_entry *stlbe) |
| 475 | { |
| 476 | struct kvm_book3e_206_tlb_entry *gtlbe; |
| 477 | struct tlbe_ref *ref; |
| 478 | int stlbsel = 0; |
| 479 | int sesel = 0; |
| 480 | int r; |
| 481 | |
| 482 | gtlbe = get_entry(vcpu_e500, tlbsel: 0, entry: esel); |
| 483 | ref = &vcpu_e500->gtlb_priv[0][esel].ref; |
| 484 | |
| 485 | r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr: get_tlb_eaddr(tlbe: gtlbe), |
| 486 | gfn: get_tlb_raddr(tlbe: gtlbe) >> PAGE_SHIFT, |
| 487 | gtlbe, tlbsel: 0, stlbe, ref); |
| 488 | if (r) |
| 489 | return r; |
| 490 | |
| 491 | write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel, sesel); |
| 492 | |
| 493 | return 0; |
| 494 | } |
| 495 | |
| 496 | static int kvmppc_e500_tlb1_map_tlb1(struct kvmppc_vcpu_e500 *vcpu_e500, |
| 497 | struct tlbe_ref *ref, |
| 498 | int esel) |
| 499 | { |
| 500 | unsigned int sesel = vcpu_e500->host_tlb1_nv++; |
| 501 | |
| 502 | if (unlikely(vcpu_e500->host_tlb1_nv >= tlb1_max_shadow_size())) |
| 503 | vcpu_e500->host_tlb1_nv = 0; |
| 504 | |
| 505 | if (vcpu_e500->h2g_tlb1_rmap[sesel]) { |
| 506 | unsigned int idx = vcpu_e500->h2g_tlb1_rmap[sesel] - 1; |
| 507 | vcpu_e500->g2h_tlb1_map[idx] &= ~(1ULL << sesel); |
| 508 | } |
| 509 | |
| 510 | vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_BITMAP; |
| 511 | vcpu_e500->g2h_tlb1_map[esel] |= (u64)1 << sesel; |
| 512 | vcpu_e500->h2g_tlb1_rmap[sesel] = esel + 1; |
| 513 | WARN_ON(!(ref->flags & E500_TLB_VALID)); |
| 514 | |
| 515 | return sesel; |
| 516 | } |
| 517 | |
| 518 | /* Caller must ensure that the specified guest TLB entry is safe to insert into |
| 519 | * the shadow TLB. */ |
| 520 | /* For both one-one and one-to-many */ |
| 521 | static int kvmppc_e500_tlb1_map(struct kvmppc_vcpu_e500 *vcpu_e500, |
| 522 | u64 gvaddr, gfn_t gfn, struct kvm_book3e_206_tlb_entry *gtlbe, |
| 523 | struct kvm_book3e_206_tlb_entry *stlbe, int esel) |
| 524 | { |
| 525 | struct tlbe_ref *ref = &vcpu_e500->gtlb_priv[1][esel].ref; |
| 526 | int sesel; |
| 527 | int r; |
| 528 | |
| 529 | r = kvmppc_e500_shadow_map(vcpu_e500, gvaddr, gfn, gtlbe, tlbsel: 1, stlbe, |
| 530 | ref); |
| 531 | if (r) |
| 532 | return r; |
| 533 | |
| 534 | /* Use TLB0 when we can only map a page with 4k */ |
| 535 | if (get_tlb_tsize(stlbe) == BOOK3E_PAGESZ_4K) { |
| 536 | vcpu_e500->gtlb_priv[1][esel].ref.flags |= E500_TLB_TLB0; |
| 537 | write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel: 0, sesel: 0); |
| 538 | return 0; |
| 539 | } |
| 540 | |
| 541 | /* Otherwise map into TLB1 */ |
| 542 | sesel = kvmppc_e500_tlb1_map_tlb1(vcpu_e500, ref, esel); |
| 543 | write_stlbe(vcpu_e500, gtlbe, stlbe, stlbsel: 1, sesel); |
| 544 | |
| 545 | return 0; |
| 546 | } |
| 547 | |
| 548 | void kvmppc_mmu_map(struct kvm_vcpu *vcpu, u64 eaddr, gpa_t gpaddr, |
| 549 | unsigned int index) |
| 550 | { |
| 551 | struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu); |
| 552 | struct tlbe_priv *priv; |
| 553 | struct kvm_book3e_206_tlb_entry *gtlbe, stlbe; |
| 554 | int tlbsel = tlbsel_of(index); |
| 555 | int esel = esel_of(index); |
| 556 | |
| 557 | gtlbe = get_entry(vcpu_e500, tlbsel, entry: esel); |
| 558 | |
| 559 | switch (tlbsel) { |
| 560 | case 0: |
| 561 | priv = &vcpu_e500->gtlb_priv[tlbsel][esel]; |
| 562 | |
| 563 | /* Triggers after clear_tlb_privs or on initial mapping */ |
| 564 | if (!(priv->ref.flags & E500_TLB_VALID)) { |
| 565 | kvmppc_e500_tlb0_map(vcpu_e500, esel, stlbe: &stlbe); |
| 566 | } else { |
| 567 | kvmppc_e500_setup_stlbe(vcpu, gtlbe, BOOK3E_PAGESZ_4K, |
| 568 | &priv->ref, eaddr, &stlbe); |
| 569 | write_stlbe(vcpu_e500, gtlbe, stlbe: &stlbe, stlbsel: 0, sesel: 0); |
| 570 | } |
| 571 | break; |
| 572 | |
| 573 | case 1: { |
| 574 | gfn_t gfn = gpaddr >> PAGE_SHIFT; |
| 575 | kvmppc_e500_tlb1_map(vcpu_e500, gvaddr: eaddr, gfn, gtlbe, stlbe: &stlbe, |
| 576 | esel); |
| 577 | break; |
| 578 | } |
| 579 | |
| 580 | default: |
| 581 | BUG(); |
| 582 | break; |
| 583 | } |
| 584 | } |
| 585 | |
| 586 | #ifdef CONFIG_KVM_BOOKE_HV |
| 587 | int kvmppc_load_last_inst(struct kvm_vcpu *vcpu, |
| 588 | enum instruction_fetch_type type, unsigned long *instr) |
| 589 | { |
| 590 | gva_t geaddr; |
| 591 | hpa_t addr; |
| 592 | hfn_t pfn; |
| 593 | hva_t eaddr; |
| 594 | u32 mas1, mas2, mas3; |
| 595 | u64 mas7_mas3; |
| 596 | struct page *page; |
| 597 | unsigned int addr_space, psize_shift; |
| 598 | bool pr; |
| 599 | unsigned long flags; |
| 600 | |
| 601 | /* Search TLB for guest pc to get the real address */ |
| 602 | geaddr = kvmppc_get_pc(vcpu); |
| 603 | |
| 604 | addr_space = (vcpu->arch.shared->msr & MSR_IS) >> MSR_IR_LG; |
| 605 | |
| 606 | local_irq_save(flags); |
| 607 | mtspr(SPRN_MAS6, (vcpu->arch.pid << MAS6_SPID_SHIFT) | addr_space); |
| 608 | mtspr(SPRN_MAS5, MAS5_SGS | get_lpid(vcpu)); |
| 609 | asm volatile("tlbsx 0, %[geaddr]\n" : : |
| 610 | [geaddr] "r" (geaddr)); |
| 611 | mtspr(SPRN_MAS5, 0); |
| 612 | mtspr(SPRN_MAS8, 0); |
| 613 | mas1 = mfspr(SPRN_MAS1); |
| 614 | mas2 = mfspr(SPRN_MAS2); |
| 615 | mas3 = mfspr(SPRN_MAS3); |
| 616 | #ifdef CONFIG_64BIT |
| 617 | mas7_mas3 = mfspr(SPRN_MAS7_MAS3); |
| 618 | #else |
| 619 | mas7_mas3 = ((u64)mfspr(SPRN_MAS7) << 32) | mas3; |
| 620 | #endif |
| 621 | local_irq_restore(flags); |
| 622 | |
| 623 | /* |
| 624 | * If the TLB entry for guest pc was evicted, return to the guest. |
| 625 | * There are high chances to find a valid TLB entry next time. |
| 626 | */ |
| 627 | if (!(mas1 & MAS1_VALID)) |
| 628 | return EMULATE_AGAIN; |
| 629 | |
| 630 | /* |
| 631 | * Another thread may rewrite the TLB entry in parallel, don't |
| 632 | * execute from the address if the execute permission is not set |
| 633 | */ |
| 634 | pr = vcpu->arch.shared->msr & MSR_PR; |
| 635 | if (unlikely((pr && !(mas3 & MAS3_UX)) || |
| 636 | (!pr && !(mas3 & MAS3_SX)))) { |
| 637 | pr_err_ratelimited( |
| 638 | "%s: Instruction emulation from guest address %08lx without execute permission\n" , |
| 639 | __func__, geaddr); |
| 640 | return EMULATE_AGAIN; |
| 641 | } |
| 642 | |
| 643 | /* |
| 644 | * The real address will be mapped by a cacheable, memory coherent, |
| 645 | * write-back page. Check for mismatches when LRAT is used. |
| 646 | */ |
| 647 | if (has_feature(vcpu, VCPU_FTR_MMU_V2) && |
| 648 | unlikely((mas2 & MAS2_I) || (mas2 & MAS2_W) || !(mas2 & MAS2_M))) { |
| 649 | pr_err_ratelimited( |
| 650 | "%s: Instruction emulation from guest address %08lx mismatches storage attributes\n" , |
| 651 | __func__, geaddr); |
| 652 | return EMULATE_AGAIN; |
| 653 | } |
| 654 | |
| 655 | /* Get pfn */ |
| 656 | psize_shift = MAS1_GET_TSIZE(mas1) + 10; |
| 657 | addr = (mas7_mas3 & (~0ULL << psize_shift)) | |
| 658 | (geaddr & ((1ULL << psize_shift) - 1ULL)); |
| 659 | pfn = addr >> PAGE_SHIFT; |
| 660 | |
| 661 | /* Guard against emulation from devices area */ |
| 662 | if (unlikely(!page_is_ram(pfn))) { |
| 663 | pr_err_ratelimited("%s: Instruction emulation from non-RAM host address %08llx is not supported\n" , |
| 664 | __func__, addr); |
| 665 | return EMULATE_AGAIN; |
| 666 | } |
| 667 | |
| 668 | /* Map a page and get guest's instruction */ |
| 669 | page = pfn_to_page(pfn); |
| 670 | eaddr = (unsigned long)kmap_atomic(page); |
| 671 | *instr = *(u32 *)(eaddr | (unsigned long)(addr & ~PAGE_MASK)); |
| 672 | kunmap_atomic((u32 *)eaddr); |
| 673 | |
| 674 | return EMULATE_DONE; |
| 675 | } |
| 676 | #else |
| 677 | int kvmppc_load_last_inst(struct kvm_vcpu *vcpu, |
| 678 | enum instruction_fetch_type type, unsigned long *instr) |
| 679 | { |
| 680 | return EMULATE_AGAIN; |
| 681 | } |
| 682 | #endif |
| 683 | |
| 684 | /************* MMU Notifiers *************/ |
| 685 | |
| 686 | static bool kvm_e500_mmu_unmap_gfn(struct kvm *kvm, struct kvm_gfn_range *range) |
| 687 | { |
| 688 | /* |
| 689 | * Flush all shadow tlb entries everywhere. This is slow, but |
| 690 | * we are 100% sure that we catch the to be unmapped page |
| 691 | */ |
| 692 | return true; |
| 693 | } |
| 694 | |
| 695 | bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range) |
| 696 | { |
| 697 | return kvm_e500_mmu_unmap_gfn(kvm, range); |
| 698 | } |
| 699 | |
| 700 | bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) |
| 701 | { |
| 702 | /* XXX could be more clever ;) */ |
| 703 | return false; |
| 704 | } |
| 705 | |
| 706 | bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range) |
| 707 | { |
| 708 | /* XXX could be more clever ;) */ |
| 709 | return false; |
| 710 | } |
| 711 | |
| 712 | /*****************************************/ |
| 713 | |
| 714 | int e500_mmu_host_init(struct kvmppc_vcpu_e500 *vcpu_e500) |
| 715 | { |
| 716 | host_tlb_params[0].entries = mfspr(SPRN_TLB0CFG) & TLBnCFG_N_ENTRY; |
| 717 | host_tlb_params[1].entries = mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY; |
| 718 | |
| 719 | /* |
| 720 | * This should never happen on real e500 hardware, but is |
| 721 | * architecturally possible -- e.g. in some weird nested |
| 722 | * virtualization case. |
| 723 | */ |
| 724 | if (host_tlb_params[0].entries == 0 || |
| 725 | host_tlb_params[1].entries == 0) { |
| 726 | pr_err("%s: need to know host tlb size\n" , __func__); |
| 727 | return -ENODEV; |
| 728 | } |
| 729 | |
| 730 | host_tlb_params[0].ways = (mfspr(SPRN_TLB0CFG) & TLBnCFG_ASSOC) >> |
| 731 | TLBnCFG_ASSOC_SHIFT; |
| 732 | host_tlb_params[1].ways = host_tlb_params[1].entries; |
| 733 | |
| 734 | if (!is_power_of_2(n: host_tlb_params[0].entries) || |
| 735 | !is_power_of_2(n: host_tlb_params[0].ways) || |
| 736 | host_tlb_params[0].entries < host_tlb_params[0].ways || |
| 737 | host_tlb_params[0].ways == 0) { |
| 738 | pr_err("%s: bad tlb0 host config: %u entries %u ways\n" , |
| 739 | __func__, host_tlb_params[0].entries, |
| 740 | host_tlb_params[0].ways); |
| 741 | return -ENODEV; |
| 742 | } |
| 743 | |
| 744 | host_tlb_params[0].sets = |
| 745 | host_tlb_params[0].entries / host_tlb_params[0].ways; |
| 746 | host_tlb_params[1].sets = 1; |
| 747 | vcpu_e500->h2g_tlb1_rmap = kcalloc(host_tlb_params[1].entries, |
| 748 | sizeof(*vcpu_e500->h2g_tlb1_rmap), |
| 749 | GFP_KERNEL); |
| 750 | if (!vcpu_e500->h2g_tlb1_rmap) |
| 751 | return -EINVAL; |
| 752 | |
| 753 | return 0; |
| 754 | } |
| 755 | |
| 756 | void e500_mmu_host_uninit(struct kvmppc_vcpu_e500 *vcpu_e500) |
| 757 | { |
| 758 | kfree(objp: vcpu_e500->h2g_tlb1_rmap); |
| 759 | } |
| 760 | |