1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1994 Linus Torvalds
4 *
5 * Cyrix stuff, June 1998 by:
6 * - Rafael R. Reilova (moved everything from head.S),
7 * <rreilova@ececs.uc.edu>
8 * - Channing Corn (tests & fixes),
9 * - Andrew D. Balsa (code cleanup).
10 */
11#include <linux/init.h>
12#include <linux/cpu.h>
13#include <linux/module.h>
14#include <linux/nospec.h>
15#include <linux/prctl.h>
16#include <linux/sched/smt.h>
17#include <linux/pgtable.h>
18#include <linux/bpf.h>
19
20#include <asm/spec-ctrl.h>
21#include <asm/cmdline.h>
22#include <asm/bugs.h>
23#include <asm/processor.h>
24#include <asm/processor-flags.h>
25#include <asm/fpu/api.h>
26#include <asm/msr.h>
27#include <asm/vmx.h>
28#include <asm/paravirt.h>
29#include <asm/intel-family.h>
30#include <asm/e820/api.h>
31#include <asm/hypervisor.h>
32#include <asm/tlbflush.h>
33#include <asm/cpu.h>
34
35#include "cpu.h"
36
37static void __init spectre_v1_select_mitigation(void);
38static void __init spectre_v2_select_mitigation(void);
39static void __init retbleed_select_mitigation(void);
40static void __init spectre_v2_user_select_mitigation(void);
41static void __init ssb_select_mitigation(void);
42static void __init l1tf_select_mitigation(void);
43static void __init mds_select_mitigation(void);
44static void __init md_clear_update_mitigation(void);
45static void __init md_clear_select_mitigation(void);
46static void __init taa_select_mitigation(void);
47static void __init mmio_select_mitigation(void);
48static void __init srbds_select_mitigation(void);
49static void __init l1d_flush_select_mitigation(void);
50static void __init srso_select_mitigation(void);
51static void __init gds_select_mitigation(void);
52
53/* The base value of the SPEC_CTRL MSR without task-specific bits set */
54u64 x86_spec_ctrl_base;
55EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
56
57/* The current value of the SPEC_CTRL MSR with task-specific bits set */
58DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
59EXPORT_SYMBOL_GPL(x86_spec_ctrl_current);
60
61u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB;
62EXPORT_SYMBOL_GPL(x86_pred_cmd);
63
64static DEFINE_MUTEX(spec_ctrl_mutex);
65
66void (*x86_return_thunk)(void) __ro_after_init = __x86_return_thunk;
67
68/* Update SPEC_CTRL MSR and its cached copy unconditionally */
69static void update_spec_ctrl(u64 val)
70{
71 this_cpu_write(x86_spec_ctrl_current, val);
72 wrmsrl(MSR_IA32_SPEC_CTRL, val);
73}
74
75/*
76 * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
77 * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
78 */
79void update_spec_ctrl_cond(u64 val)
80{
81 if (this_cpu_read(x86_spec_ctrl_current) == val)
82 return;
83
84 this_cpu_write(x86_spec_ctrl_current, val);
85
86 /*
87 * When KERNEL_IBRS this MSR is written on return-to-user, unless
88 * forced the update can be delayed until that time.
89 */
90 if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
91 wrmsrl(MSR_IA32_SPEC_CTRL, val);
92}
93
94noinstr u64 spec_ctrl_current(void)
95{
96 return this_cpu_read(x86_spec_ctrl_current);
97}
98EXPORT_SYMBOL_GPL(spec_ctrl_current);
99
100/*
101 * AMD specific MSR info for Speculative Store Bypass control.
102 * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
103 */
104u64 __ro_after_init x86_amd_ls_cfg_base;
105u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
106
107/* Control conditional STIBP in switch_to() */
108DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
109/* Control conditional IBPB in switch_mm() */
110DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
111/* Control unconditional IBPB in switch_mm() */
112DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
113
114/* Control MDS CPU buffer clear before returning to user space */
115DEFINE_STATIC_KEY_FALSE(mds_user_clear);
116EXPORT_SYMBOL_GPL(mds_user_clear);
117/* Control MDS CPU buffer clear before idling (halt, mwait) */
118DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
119EXPORT_SYMBOL_GPL(mds_idle_clear);
120
121/*
122 * Controls whether l1d flush based mitigations are enabled,
123 * based on hw features and admin setting via boot parameter
124 * defaults to false
125 */
126DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
127
128/* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
129DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
130EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
131
132void __init cpu_select_mitigations(void)
133{
134 /*
135 * Read the SPEC_CTRL MSR to account for reserved bits which may
136 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
137 * init code as it is not enumerated and depends on the family.
138 */
139 if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
140 rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
141
142 /*
143 * Previously running kernel (kexec), may have some controls
144 * turned ON. Clear them and let the mitigations setup below
145 * rediscover them based on configuration.
146 */
147 x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
148 }
149
150 /* Select the proper CPU mitigations before patching alternatives: */
151 spectre_v1_select_mitigation();
152 spectre_v2_select_mitigation();
153 /*
154 * retbleed_select_mitigation() relies on the state set by
155 * spectre_v2_select_mitigation(); specifically it wants to know about
156 * spectre_v2=ibrs.
157 */
158 retbleed_select_mitigation();
159 /*
160 * spectre_v2_user_select_mitigation() relies on the state set by
161 * retbleed_select_mitigation(); specifically the STIBP selection is
162 * forced for UNRET or IBPB.
163 */
164 spectre_v2_user_select_mitigation();
165 ssb_select_mitigation();
166 l1tf_select_mitigation();
167 md_clear_select_mitigation();
168 srbds_select_mitigation();
169 l1d_flush_select_mitigation();
170
171 /*
172 * srso_select_mitigation() depends and must run after
173 * retbleed_select_mitigation().
174 */
175 srso_select_mitigation();
176 gds_select_mitigation();
177}
178
179/*
180 * NOTE: This function is *only* called for SVM, since Intel uses
181 * MSR_IA32_SPEC_CTRL for SSBD.
182 */
183void
184x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
185{
186 u64 guestval, hostval;
187 struct thread_info *ti = current_thread_info();
188
189 /*
190 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
191 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
192 */
193 if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
194 !static_cpu_has(X86_FEATURE_VIRT_SSBD))
195 return;
196
197 /*
198 * If the host has SSBD mitigation enabled, force it in the host's
199 * virtual MSR value. If its not permanently enabled, evaluate
200 * current's TIF_SSBD thread flag.
201 */
202 if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
203 hostval = SPEC_CTRL_SSBD;
204 else
205 hostval = ssbd_tif_to_spec_ctrl(tifn: ti->flags);
206
207 /* Sanitize the guest value */
208 guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
209
210 if (hostval != guestval) {
211 unsigned long tif;
212
213 tif = setguest ? ssbd_spec_ctrl_to_tif(spec_ctrl: guestval) :
214 ssbd_spec_ctrl_to_tif(spec_ctrl: hostval);
215
216 speculation_ctrl_update(tif);
217 }
218}
219EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
220
221static void x86_amd_ssb_disable(void)
222{
223 u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
224
225 if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
226 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
227 else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
228 wrmsrl(MSR_AMD64_LS_CFG, val: msrval);
229}
230
231#undef pr_fmt
232#define pr_fmt(fmt) "MDS: " fmt
233
234/* Default mitigation for MDS-affected CPUs */
235static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
236static bool mds_nosmt __ro_after_init = false;
237
238static const char * const mds_strings[] = {
239 [MDS_MITIGATION_OFF] = "Vulnerable",
240 [MDS_MITIGATION_FULL] = "Mitigation: Clear CPU buffers",
241 [MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode",
242};
243
244static void __init mds_select_mitigation(void)
245{
246 if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
247 mds_mitigation = MDS_MITIGATION_OFF;
248 return;
249 }
250
251 if (mds_mitigation == MDS_MITIGATION_FULL) {
252 if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
253 mds_mitigation = MDS_MITIGATION_VMWERV;
254
255 static_branch_enable(&mds_user_clear);
256
257 if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
258 (mds_nosmt || cpu_mitigations_auto_nosmt()))
259 cpu_smt_disable(force: false);
260 }
261}
262
263static int __init mds_cmdline(char *str)
264{
265 if (!boot_cpu_has_bug(X86_BUG_MDS))
266 return 0;
267
268 if (!str)
269 return -EINVAL;
270
271 if (!strcmp(str, "off"))
272 mds_mitigation = MDS_MITIGATION_OFF;
273 else if (!strcmp(str, "full"))
274 mds_mitigation = MDS_MITIGATION_FULL;
275 else if (!strcmp(str, "full,nosmt")) {
276 mds_mitigation = MDS_MITIGATION_FULL;
277 mds_nosmt = true;
278 }
279
280 return 0;
281}
282early_param("mds", mds_cmdline);
283
284#undef pr_fmt
285#define pr_fmt(fmt) "TAA: " fmt
286
287enum taa_mitigations {
288 TAA_MITIGATION_OFF,
289 TAA_MITIGATION_UCODE_NEEDED,
290 TAA_MITIGATION_VERW,
291 TAA_MITIGATION_TSX_DISABLED,
292};
293
294/* Default mitigation for TAA-affected CPUs */
295static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
296static bool taa_nosmt __ro_after_init;
297
298static const char * const taa_strings[] = {
299 [TAA_MITIGATION_OFF] = "Vulnerable",
300 [TAA_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
301 [TAA_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
302 [TAA_MITIGATION_TSX_DISABLED] = "Mitigation: TSX disabled",
303};
304
305static void __init taa_select_mitigation(void)
306{
307 u64 ia32_cap;
308
309 if (!boot_cpu_has_bug(X86_BUG_TAA)) {
310 taa_mitigation = TAA_MITIGATION_OFF;
311 return;
312 }
313
314 /* TSX previously disabled by tsx=off */
315 if (!boot_cpu_has(X86_FEATURE_RTM)) {
316 taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
317 return;
318 }
319
320 if (cpu_mitigations_off()) {
321 taa_mitigation = TAA_MITIGATION_OFF;
322 return;
323 }
324
325 /*
326 * TAA mitigation via VERW is turned off if both
327 * tsx_async_abort=off and mds=off are specified.
328 */
329 if (taa_mitigation == TAA_MITIGATION_OFF &&
330 mds_mitigation == MDS_MITIGATION_OFF)
331 return;
332
333 if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
334 taa_mitigation = TAA_MITIGATION_VERW;
335 else
336 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
337
338 /*
339 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
340 * A microcode update fixes this behavior to clear CPU buffers. It also
341 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
342 * ARCH_CAP_TSX_CTRL_MSR bit.
343 *
344 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
345 * update is required.
346 */
347 ia32_cap = x86_read_arch_cap_msr();
348 if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
349 !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
350 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
351
352 /*
353 * TSX is enabled, select alternate mitigation for TAA which is
354 * the same as MDS. Enable MDS static branch to clear CPU buffers.
355 *
356 * For guests that can't determine whether the correct microcode is
357 * present on host, enable the mitigation for UCODE_NEEDED as well.
358 */
359 static_branch_enable(&mds_user_clear);
360
361 if (taa_nosmt || cpu_mitigations_auto_nosmt())
362 cpu_smt_disable(force: false);
363}
364
365static int __init tsx_async_abort_parse_cmdline(char *str)
366{
367 if (!boot_cpu_has_bug(X86_BUG_TAA))
368 return 0;
369
370 if (!str)
371 return -EINVAL;
372
373 if (!strcmp(str, "off")) {
374 taa_mitigation = TAA_MITIGATION_OFF;
375 } else if (!strcmp(str, "full")) {
376 taa_mitigation = TAA_MITIGATION_VERW;
377 } else if (!strcmp(str, "full,nosmt")) {
378 taa_mitigation = TAA_MITIGATION_VERW;
379 taa_nosmt = true;
380 }
381
382 return 0;
383}
384early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
385
386#undef pr_fmt
387#define pr_fmt(fmt) "MMIO Stale Data: " fmt
388
389enum mmio_mitigations {
390 MMIO_MITIGATION_OFF,
391 MMIO_MITIGATION_UCODE_NEEDED,
392 MMIO_MITIGATION_VERW,
393};
394
395/* Default mitigation for Processor MMIO Stale Data vulnerabilities */
396static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
397static bool mmio_nosmt __ro_after_init = false;
398
399static const char * const mmio_strings[] = {
400 [MMIO_MITIGATION_OFF] = "Vulnerable",
401 [MMIO_MITIGATION_UCODE_NEEDED] = "Vulnerable: Clear CPU buffers attempted, no microcode",
402 [MMIO_MITIGATION_VERW] = "Mitigation: Clear CPU buffers",
403};
404
405static void __init mmio_select_mitigation(void)
406{
407 u64 ia32_cap;
408
409 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
410 boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
411 cpu_mitigations_off()) {
412 mmio_mitigation = MMIO_MITIGATION_OFF;
413 return;
414 }
415
416 if (mmio_mitigation == MMIO_MITIGATION_OFF)
417 return;
418
419 ia32_cap = x86_read_arch_cap_msr();
420
421 /*
422 * Enable CPU buffer clear mitigation for host and VMM, if also affected
423 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
424 */
425 if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
426 boot_cpu_has(X86_FEATURE_RTM)))
427 static_branch_enable(&mds_user_clear);
428 else
429 static_branch_enable(&mmio_stale_data_clear);
430
431 /*
432 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
433 * be propagated to uncore buffers, clearing the Fill buffers on idle
434 * is required irrespective of SMT state.
435 */
436 if (!(ia32_cap & ARCH_CAP_FBSDP_NO))
437 static_branch_enable(&mds_idle_clear);
438
439 /*
440 * Check if the system has the right microcode.
441 *
442 * CPU Fill buffer clear mitigation is enumerated by either an explicit
443 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
444 * affected systems.
445 */
446 if ((ia32_cap & ARCH_CAP_FB_CLEAR) ||
447 (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
448 boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
449 !(ia32_cap & ARCH_CAP_MDS_NO)))
450 mmio_mitigation = MMIO_MITIGATION_VERW;
451 else
452 mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
453
454 if (mmio_nosmt || cpu_mitigations_auto_nosmt())
455 cpu_smt_disable(force: false);
456}
457
458static int __init mmio_stale_data_parse_cmdline(char *str)
459{
460 if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
461 return 0;
462
463 if (!str)
464 return -EINVAL;
465
466 if (!strcmp(str, "off")) {
467 mmio_mitigation = MMIO_MITIGATION_OFF;
468 } else if (!strcmp(str, "full")) {
469 mmio_mitigation = MMIO_MITIGATION_VERW;
470 } else if (!strcmp(str, "full,nosmt")) {
471 mmio_mitigation = MMIO_MITIGATION_VERW;
472 mmio_nosmt = true;
473 }
474
475 return 0;
476}
477early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
478
479#undef pr_fmt
480#define pr_fmt(fmt) "" fmt
481
482static void __init md_clear_update_mitigation(void)
483{
484 if (cpu_mitigations_off())
485 return;
486
487 if (!static_key_enabled(&mds_user_clear))
488 goto out;
489
490 /*
491 * mds_user_clear is now enabled. Update MDS, TAA and MMIO Stale Data
492 * mitigation, if necessary.
493 */
494 if (mds_mitigation == MDS_MITIGATION_OFF &&
495 boot_cpu_has_bug(X86_BUG_MDS)) {
496 mds_mitigation = MDS_MITIGATION_FULL;
497 mds_select_mitigation();
498 }
499 if (taa_mitigation == TAA_MITIGATION_OFF &&
500 boot_cpu_has_bug(X86_BUG_TAA)) {
501 taa_mitigation = TAA_MITIGATION_VERW;
502 taa_select_mitigation();
503 }
504 if (mmio_mitigation == MMIO_MITIGATION_OFF &&
505 boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
506 mmio_mitigation = MMIO_MITIGATION_VERW;
507 mmio_select_mitigation();
508 }
509out:
510 if (boot_cpu_has_bug(X86_BUG_MDS))
511 pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
512 if (boot_cpu_has_bug(X86_BUG_TAA))
513 pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
514 if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
515 pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
516 else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
517 pr_info("MMIO Stale Data: Unknown: No mitigations\n");
518}
519
520static void __init md_clear_select_mitigation(void)
521{
522 mds_select_mitigation();
523 taa_select_mitigation();
524 mmio_select_mitigation();
525
526 /*
527 * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update
528 * and print their mitigation after MDS, TAA and MMIO Stale Data
529 * mitigation selection is done.
530 */
531 md_clear_update_mitigation();
532}
533
534#undef pr_fmt
535#define pr_fmt(fmt) "SRBDS: " fmt
536
537enum srbds_mitigations {
538 SRBDS_MITIGATION_OFF,
539 SRBDS_MITIGATION_UCODE_NEEDED,
540 SRBDS_MITIGATION_FULL,
541 SRBDS_MITIGATION_TSX_OFF,
542 SRBDS_MITIGATION_HYPERVISOR,
543};
544
545static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
546
547static const char * const srbds_strings[] = {
548 [SRBDS_MITIGATION_OFF] = "Vulnerable",
549 [SRBDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
550 [SRBDS_MITIGATION_FULL] = "Mitigation: Microcode",
551 [SRBDS_MITIGATION_TSX_OFF] = "Mitigation: TSX disabled",
552 [SRBDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
553};
554
555static bool srbds_off;
556
557void update_srbds_msr(void)
558{
559 u64 mcu_ctrl;
560
561 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
562 return;
563
564 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
565 return;
566
567 if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
568 return;
569
570 /*
571 * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
572 * being disabled and it hasn't received the SRBDS MSR microcode.
573 */
574 if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
575 return;
576
577 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
578
579 switch (srbds_mitigation) {
580 case SRBDS_MITIGATION_OFF:
581 case SRBDS_MITIGATION_TSX_OFF:
582 mcu_ctrl |= RNGDS_MITG_DIS;
583 break;
584 case SRBDS_MITIGATION_FULL:
585 mcu_ctrl &= ~RNGDS_MITG_DIS;
586 break;
587 default:
588 break;
589 }
590
591 wrmsrl(MSR_IA32_MCU_OPT_CTRL, val: mcu_ctrl);
592}
593
594static void __init srbds_select_mitigation(void)
595{
596 u64 ia32_cap;
597
598 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
599 return;
600
601 /*
602 * Check to see if this is one of the MDS_NO systems supporting TSX that
603 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
604 * by Processor MMIO Stale Data vulnerability.
605 */
606 ia32_cap = x86_read_arch_cap_msr();
607 if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
608 !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
609 srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
610 else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
611 srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
612 else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
613 srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
614 else if (cpu_mitigations_off() || srbds_off)
615 srbds_mitigation = SRBDS_MITIGATION_OFF;
616
617 update_srbds_msr();
618 pr_info("%s\n", srbds_strings[srbds_mitigation]);
619}
620
621static int __init srbds_parse_cmdline(char *str)
622{
623 if (!str)
624 return -EINVAL;
625
626 if (!boot_cpu_has_bug(X86_BUG_SRBDS))
627 return 0;
628
629 srbds_off = !strcmp(str, "off");
630 return 0;
631}
632early_param("srbds", srbds_parse_cmdline);
633
634#undef pr_fmt
635#define pr_fmt(fmt) "L1D Flush : " fmt
636
637enum l1d_flush_mitigations {
638 L1D_FLUSH_OFF = 0,
639 L1D_FLUSH_ON,
640};
641
642static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
643
644static void __init l1d_flush_select_mitigation(void)
645{
646 if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
647 return;
648
649 static_branch_enable(&switch_mm_cond_l1d_flush);
650 pr_info("Conditional flush on switch_mm() enabled\n");
651}
652
653static int __init l1d_flush_parse_cmdline(char *str)
654{
655 if (!strcmp(str, "on"))
656 l1d_flush_mitigation = L1D_FLUSH_ON;
657
658 return 0;
659}
660early_param("l1d_flush", l1d_flush_parse_cmdline);
661
662#undef pr_fmt
663#define pr_fmt(fmt) "GDS: " fmt
664
665enum gds_mitigations {
666 GDS_MITIGATION_OFF,
667 GDS_MITIGATION_UCODE_NEEDED,
668 GDS_MITIGATION_FORCE,
669 GDS_MITIGATION_FULL,
670 GDS_MITIGATION_FULL_LOCKED,
671 GDS_MITIGATION_HYPERVISOR,
672};
673
674#if IS_ENABLED(CONFIG_GDS_FORCE_MITIGATION)
675static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FORCE;
676#else
677static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FULL;
678#endif
679
680static const char * const gds_strings[] = {
681 [GDS_MITIGATION_OFF] = "Vulnerable",
682 [GDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
683 [GDS_MITIGATION_FORCE] = "Mitigation: AVX disabled, no microcode",
684 [GDS_MITIGATION_FULL] = "Mitigation: Microcode",
685 [GDS_MITIGATION_FULL_LOCKED] = "Mitigation: Microcode (locked)",
686 [GDS_MITIGATION_HYPERVISOR] = "Unknown: Dependent on hypervisor status",
687};
688
689bool gds_ucode_mitigated(void)
690{
691 return (gds_mitigation == GDS_MITIGATION_FULL ||
692 gds_mitigation == GDS_MITIGATION_FULL_LOCKED);
693}
694EXPORT_SYMBOL_GPL(gds_ucode_mitigated);
695
696void update_gds_msr(void)
697{
698 u64 mcu_ctrl_after;
699 u64 mcu_ctrl;
700
701 switch (gds_mitigation) {
702 case GDS_MITIGATION_OFF:
703 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
704 mcu_ctrl |= GDS_MITG_DIS;
705 break;
706 case GDS_MITIGATION_FULL_LOCKED:
707 /*
708 * The LOCKED state comes from the boot CPU. APs might not have
709 * the same state. Make sure the mitigation is enabled on all
710 * CPUs.
711 */
712 case GDS_MITIGATION_FULL:
713 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
714 mcu_ctrl &= ~GDS_MITG_DIS;
715 break;
716 case GDS_MITIGATION_FORCE:
717 case GDS_MITIGATION_UCODE_NEEDED:
718 case GDS_MITIGATION_HYPERVISOR:
719 return;
720 }
721
722 wrmsrl(MSR_IA32_MCU_OPT_CTRL, val: mcu_ctrl);
723
724 /*
725 * Check to make sure that the WRMSR value was not ignored. Writes to
726 * GDS_MITG_DIS will be ignored if this processor is locked but the boot
727 * processor was not.
728 */
729 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after);
730 WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after);
731}
732
733static void __init gds_select_mitigation(void)
734{
735 u64 mcu_ctrl;
736
737 if (!boot_cpu_has_bug(X86_BUG_GDS))
738 return;
739
740 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
741 gds_mitigation = GDS_MITIGATION_HYPERVISOR;
742 goto out;
743 }
744
745 if (cpu_mitigations_off())
746 gds_mitigation = GDS_MITIGATION_OFF;
747 /* Will verify below that mitigation _can_ be disabled */
748
749 /* No microcode */
750 if (!(x86_read_arch_cap_msr() & ARCH_CAP_GDS_CTRL)) {
751 if (gds_mitigation == GDS_MITIGATION_FORCE) {
752 /*
753 * This only needs to be done on the boot CPU so do it
754 * here rather than in update_gds_msr()
755 */
756 setup_clear_cpu_cap(X86_FEATURE_AVX);
757 pr_warn("Microcode update needed! Disabling AVX as mitigation.\n");
758 } else {
759 gds_mitigation = GDS_MITIGATION_UCODE_NEEDED;
760 }
761 goto out;
762 }
763
764 /* Microcode has mitigation, use it */
765 if (gds_mitigation == GDS_MITIGATION_FORCE)
766 gds_mitigation = GDS_MITIGATION_FULL;
767
768 rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
769 if (mcu_ctrl & GDS_MITG_LOCKED) {
770 if (gds_mitigation == GDS_MITIGATION_OFF)
771 pr_warn("Mitigation locked. Disable failed.\n");
772
773 /*
774 * The mitigation is selected from the boot CPU. All other CPUs
775 * _should_ have the same state. If the boot CPU isn't locked
776 * but others are then update_gds_msr() will WARN() of the state
777 * mismatch. If the boot CPU is locked update_gds_msr() will
778 * ensure the other CPUs have the mitigation enabled.
779 */
780 gds_mitigation = GDS_MITIGATION_FULL_LOCKED;
781 }
782
783 update_gds_msr();
784out:
785 pr_info("%s\n", gds_strings[gds_mitigation]);
786}
787
788static int __init gds_parse_cmdline(char *str)
789{
790 if (!str)
791 return -EINVAL;
792
793 if (!boot_cpu_has_bug(X86_BUG_GDS))
794 return 0;
795
796 if (!strcmp(str, "off"))
797 gds_mitigation = GDS_MITIGATION_OFF;
798 else if (!strcmp(str, "force"))
799 gds_mitigation = GDS_MITIGATION_FORCE;
800
801 return 0;
802}
803early_param("gather_data_sampling", gds_parse_cmdline);
804
805#undef pr_fmt
806#define pr_fmt(fmt) "Spectre V1 : " fmt
807
808enum spectre_v1_mitigation {
809 SPECTRE_V1_MITIGATION_NONE,
810 SPECTRE_V1_MITIGATION_AUTO,
811};
812
813static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
814 SPECTRE_V1_MITIGATION_AUTO;
815
816static const char * const spectre_v1_strings[] = {
817 [SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
818 [SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
819};
820
821/*
822 * Does SMAP provide full mitigation against speculative kernel access to
823 * userspace?
824 */
825static bool smap_works_speculatively(void)
826{
827 if (!boot_cpu_has(X86_FEATURE_SMAP))
828 return false;
829
830 /*
831 * On CPUs which are vulnerable to Meltdown, SMAP does not
832 * prevent speculative access to user data in the L1 cache.
833 * Consider SMAP to be non-functional as a mitigation on these
834 * CPUs.
835 */
836 if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
837 return false;
838
839 return true;
840}
841
842static void __init spectre_v1_select_mitigation(void)
843{
844 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
845 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
846 return;
847 }
848
849 if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
850 /*
851 * With Spectre v1, a user can speculatively control either
852 * path of a conditional swapgs with a user-controlled GS
853 * value. The mitigation is to add lfences to both code paths.
854 *
855 * If FSGSBASE is enabled, the user can put a kernel address in
856 * GS, in which case SMAP provides no protection.
857 *
858 * If FSGSBASE is disabled, the user can only put a user space
859 * address in GS. That makes an attack harder, but still
860 * possible if there's no SMAP protection.
861 */
862 if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
863 !smap_works_speculatively()) {
864 /*
865 * Mitigation can be provided from SWAPGS itself or
866 * PTI as the CR3 write in the Meltdown mitigation
867 * is serializing.
868 *
869 * If neither is there, mitigate with an LFENCE to
870 * stop speculation through swapgs.
871 */
872 if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
873 !boot_cpu_has(X86_FEATURE_PTI))
874 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
875
876 /*
877 * Enable lfences in the kernel entry (non-swapgs)
878 * paths, to prevent user entry from speculatively
879 * skipping swapgs.
880 */
881 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
882 }
883 }
884
885 pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
886}
887
888static int __init nospectre_v1_cmdline(char *str)
889{
890 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
891 return 0;
892}
893early_param("nospectre_v1", nospectre_v1_cmdline);
894
895enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init = SPECTRE_V2_NONE;
896
897#undef pr_fmt
898#define pr_fmt(fmt) "RETBleed: " fmt
899
900enum retbleed_mitigation {
901 RETBLEED_MITIGATION_NONE,
902 RETBLEED_MITIGATION_UNRET,
903 RETBLEED_MITIGATION_IBPB,
904 RETBLEED_MITIGATION_IBRS,
905 RETBLEED_MITIGATION_EIBRS,
906 RETBLEED_MITIGATION_STUFF,
907};
908
909enum retbleed_mitigation_cmd {
910 RETBLEED_CMD_OFF,
911 RETBLEED_CMD_AUTO,
912 RETBLEED_CMD_UNRET,
913 RETBLEED_CMD_IBPB,
914 RETBLEED_CMD_STUFF,
915};
916
917static const char * const retbleed_strings[] = {
918 [RETBLEED_MITIGATION_NONE] = "Vulnerable",
919 [RETBLEED_MITIGATION_UNRET] = "Mitigation: untrained return thunk",
920 [RETBLEED_MITIGATION_IBPB] = "Mitigation: IBPB",
921 [RETBLEED_MITIGATION_IBRS] = "Mitigation: IBRS",
922 [RETBLEED_MITIGATION_EIBRS] = "Mitigation: Enhanced IBRS",
923 [RETBLEED_MITIGATION_STUFF] = "Mitigation: Stuffing",
924};
925
926static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
927 RETBLEED_MITIGATION_NONE;
928static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
929 RETBLEED_CMD_AUTO;
930
931static int __ro_after_init retbleed_nosmt = false;
932
933static int __init retbleed_parse_cmdline(char *str)
934{
935 if (!str)
936 return -EINVAL;
937
938 while (str) {
939 char *next = strchr(str, ',');
940 if (next) {
941 *next = 0;
942 next++;
943 }
944
945 if (!strcmp(str, "off")) {
946 retbleed_cmd = RETBLEED_CMD_OFF;
947 } else if (!strcmp(str, "auto")) {
948 retbleed_cmd = RETBLEED_CMD_AUTO;
949 } else if (!strcmp(str, "unret")) {
950 retbleed_cmd = RETBLEED_CMD_UNRET;
951 } else if (!strcmp(str, "ibpb")) {
952 retbleed_cmd = RETBLEED_CMD_IBPB;
953 } else if (!strcmp(str, "stuff")) {
954 retbleed_cmd = RETBLEED_CMD_STUFF;
955 } else if (!strcmp(str, "nosmt")) {
956 retbleed_nosmt = true;
957 } else if (!strcmp(str, "force")) {
958 setup_force_cpu_bug(X86_BUG_RETBLEED);
959 } else {
960 pr_err("Ignoring unknown retbleed option (%s).", str);
961 }
962
963 str = next;
964 }
965
966 return 0;
967}
968early_param("retbleed", retbleed_parse_cmdline);
969
970#define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
971#define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
972
973static void __init retbleed_select_mitigation(void)
974{
975 bool mitigate_smt = false;
976
977 if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
978 return;
979
980 switch (retbleed_cmd) {
981 case RETBLEED_CMD_OFF:
982 return;
983
984 case RETBLEED_CMD_UNRET:
985 if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY)) {
986 retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
987 } else {
988 pr_err("WARNING: kernel not compiled with CPU_UNRET_ENTRY.\n");
989 goto do_cmd_auto;
990 }
991 break;
992
993 case RETBLEED_CMD_IBPB:
994 if (!boot_cpu_has(X86_FEATURE_IBPB)) {
995 pr_err("WARNING: CPU does not support IBPB.\n");
996 goto do_cmd_auto;
997 } else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
998 retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
999 } else {
1000 pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
1001 goto do_cmd_auto;
1002 }
1003 break;
1004
1005 case RETBLEED_CMD_STUFF:
1006 if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING) &&
1007 spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
1008 retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
1009
1010 } else {
1011 if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING))
1012 pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
1013 else
1014 pr_err("WARNING: kernel not compiled with CALL_DEPTH_TRACKING.\n");
1015
1016 goto do_cmd_auto;
1017 }
1018 break;
1019
1020do_cmd_auto:
1021 case RETBLEED_CMD_AUTO:
1022 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1023 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
1024 if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY))
1025 retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1026 else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY) && boot_cpu_has(X86_FEATURE_IBPB))
1027 retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1028 }
1029
1030 /*
1031 * The Intel mitigation (IBRS or eIBRS) was already selected in
1032 * spectre_v2_select_mitigation(). 'retbleed_mitigation' will
1033 * be set accordingly below.
1034 */
1035
1036 break;
1037 }
1038
1039 switch (retbleed_mitigation) {
1040 case RETBLEED_MITIGATION_UNRET:
1041 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1042 setup_force_cpu_cap(X86_FEATURE_UNRET);
1043
1044 x86_return_thunk = retbleed_return_thunk;
1045
1046 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
1047 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
1048 pr_err(RETBLEED_UNTRAIN_MSG);
1049
1050 mitigate_smt = true;
1051 break;
1052
1053 case RETBLEED_MITIGATION_IBPB:
1054 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
1055 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
1056 mitigate_smt = true;
1057 break;
1058
1059 case RETBLEED_MITIGATION_STUFF:
1060 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1061 setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
1062
1063 x86_return_thunk = call_depth_return_thunk;
1064 break;
1065
1066 default:
1067 break;
1068 }
1069
1070 if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
1071 (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
1072 cpu_smt_disable(force: false);
1073
1074 /*
1075 * Let IBRS trump all on Intel without affecting the effects of the
1076 * retbleed= cmdline option except for call depth based stuffing
1077 */
1078 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1079 switch (spectre_v2_enabled) {
1080 case SPECTRE_V2_IBRS:
1081 retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1082 break;
1083 case SPECTRE_V2_EIBRS:
1084 case SPECTRE_V2_EIBRS_RETPOLINE:
1085 case SPECTRE_V2_EIBRS_LFENCE:
1086 retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1087 break;
1088 default:
1089 if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
1090 pr_err(RETBLEED_INTEL_MSG);
1091 }
1092 }
1093
1094 pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
1095}
1096
1097#undef pr_fmt
1098#define pr_fmt(fmt) "Spectre V2 : " fmt
1099
1100static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
1101 SPECTRE_V2_USER_NONE;
1102static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
1103 SPECTRE_V2_USER_NONE;
1104
1105#ifdef CONFIG_RETPOLINE
1106static bool spectre_v2_bad_module;
1107
1108bool retpoline_module_ok(bool has_retpoline)
1109{
1110 if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
1111 return true;
1112
1113 pr_err("System may be vulnerable to spectre v2\n");
1114 spectre_v2_bad_module = true;
1115 return false;
1116}
1117
1118static inline const char *spectre_v2_module_string(void)
1119{
1120 return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1121}
1122#else
1123static inline const char *spectre_v2_module_string(void) { return ""; }
1124#endif
1125
1126#define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1127#define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1128#define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1129#define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1130
1131#ifdef CONFIG_BPF_SYSCALL
1132void unpriv_ebpf_notify(int new_state)
1133{
1134 if (new_state)
1135 return;
1136
1137 /* Unprivileged eBPF is enabled */
1138
1139 switch (spectre_v2_enabled) {
1140 case SPECTRE_V2_EIBRS:
1141 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1142 break;
1143 case SPECTRE_V2_EIBRS_LFENCE:
1144 if (sched_smt_active())
1145 pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1146 break;
1147 default:
1148 break;
1149 }
1150}
1151#endif
1152
1153static inline bool match_option(const char *arg, int arglen, const char *opt)
1154{
1155 int len = strlen(opt);
1156
1157 return len == arglen && !strncmp(arg, opt, len);
1158}
1159
1160/* The kernel command line selection for spectre v2 */
1161enum spectre_v2_mitigation_cmd {
1162 SPECTRE_V2_CMD_NONE,
1163 SPECTRE_V2_CMD_AUTO,
1164 SPECTRE_V2_CMD_FORCE,
1165 SPECTRE_V2_CMD_RETPOLINE,
1166 SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1167 SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1168 SPECTRE_V2_CMD_EIBRS,
1169 SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1170 SPECTRE_V2_CMD_EIBRS_LFENCE,
1171 SPECTRE_V2_CMD_IBRS,
1172};
1173
1174enum spectre_v2_user_cmd {
1175 SPECTRE_V2_USER_CMD_NONE,
1176 SPECTRE_V2_USER_CMD_AUTO,
1177 SPECTRE_V2_USER_CMD_FORCE,
1178 SPECTRE_V2_USER_CMD_PRCTL,
1179 SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1180 SPECTRE_V2_USER_CMD_SECCOMP,
1181 SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1182};
1183
1184static const char * const spectre_v2_user_strings[] = {
1185 [SPECTRE_V2_USER_NONE] = "User space: Vulnerable",
1186 [SPECTRE_V2_USER_STRICT] = "User space: Mitigation: STIBP protection",
1187 [SPECTRE_V2_USER_STRICT_PREFERRED] = "User space: Mitigation: STIBP always-on protection",
1188 [SPECTRE_V2_USER_PRCTL] = "User space: Mitigation: STIBP via prctl",
1189 [SPECTRE_V2_USER_SECCOMP] = "User space: Mitigation: STIBP via seccomp and prctl",
1190};
1191
1192static const struct {
1193 const char *option;
1194 enum spectre_v2_user_cmd cmd;
1195 bool secure;
1196} v2_user_options[] __initconst = {
1197 { "auto", SPECTRE_V2_USER_CMD_AUTO, false },
1198 { "off", SPECTRE_V2_USER_CMD_NONE, false },
1199 { "on", SPECTRE_V2_USER_CMD_FORCE, true },
1200 { "prctl", SPECTRE_V2_USER_CMD_PRCTL, false },
1201 { "prctl,ibpb", SPECTRE_V2_USER_CMD_PRCTL_IBPB, false },
1202 { "seccomp", SPECTRE_V2_USER_CMD_SECCOMP, false },
1203 { "seccomp,ibpb", SPECTRE_V2_USER_CMD_SECCOMP_IBPB, false },
1204};
1205
1206static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1207{
1208 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1209 pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1210}
1211
1212static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1213
1214static enum spectre_v2_user_cmd __init
1215spectre_v2_parse_user_cmdline(void)
1216{
1217 char arg[20];
1218 int ret, i;
1219
1220 switch (spectre_v2_cmd) {
1221 case SPECTRE_V2_CMD_NONE:
1222 return SPECTRE_V2_USER_CMD_NONE;
1223 case SPECTRE_V2_CMD_FORCE:
1224 return SPECTRE_V2_USER_CMD_FORCE;
1225 default:
1226 break;
1227 }
1228
1229 ret = cmdline_find_option(cmdline_ptr: boot_command_line, option: "spectre_v2_user",
1230 buffer: arg, bufsize: sizeof(arg));
1231 if (ret < 0)
1232 return SPECTRE_V2_USER_CMD_AUTO;
1233
1234 for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1235 if (match_option(arg, arglen: ret, opt: v2_user_options[i].option)) {
1236 spec_v2_user_print_cond(reason: v2_user_options[i].option,
1237 secure: v2_user_options[i].secure);
1238 return v2_user_options[i].cmd;
1239 }
1240 }
1241
1242 pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1243 return SPECTRE_V2_USER_CMD_AUTO;
1244}
1245
1246static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1247{
1248 return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
1249}
1250
1251static void __init
1252spectre_v2_user_select_mitigation(void)
1253{
1254 enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1255 bool smt_possible = IS_ENABLED(CONFIG_SMP);
1256 enum spectre_v2_user_cmd cmd;
1257
1258 if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1259 return;
1260
1261 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1262 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1263 smt_possible = false;
1264
1265 cmd = spectre_v2_parse_user_cmdline();
1266 switch (cmd) {
1267 case SPECTRE_V2_USER_CMD_NONE:
1268 goto set_mode;
1269 case SPECTRE_V2_USER_CMD_FORCE:
1270 mode = SPECTRE_V2_USER_STRICT;
1271 break;
1272 case SPECTRE_V2_USER_CMD_AUTO:
1273 case SPECTRE_V2_USER_CMD_PRCTL:
1274 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1275 mode = SPECTRE_V2_USER_PRCTL;
1276 break;
1277 case SPECTRE_V2_USER_CMD_SECCOMP:
1278 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1279 if (IS_ENABLED(CONFIG_SECCOMP))
1280 mode = SPECTRE_V2_USER_SECCOMP;
1281 else
1282 mode = SPECTRE_V2_USER_PRCTL;
1283 break;
1284 }
1285
1286 /* Initialize Indirect Branch Prediction Barrier */
1287 if (boot_cpu_has(X86_FEATURE_IBPB)) {
1288 setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1289
1290 spectre_v2_user_ibpb = mode;
1291 switch (cmd) {
1292 case SPECTRE_V2_USER_CMD_NONE:
1293 break;
1294 case SPECTRE_V2_USER_CMD_FORCE:
1295 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1296 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1297 static_branch_enable(&switch_mm_always_ibpb);
1298 spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1299 break;
1300 case SPECTRE_V2_USER_CMD_PRCTL:
1301 case SPECTRE_V2_USER_CMD_AUTO:
1302 case SPECTRE_V2_USER_CMD_SECCOMP:
1303 static_branch_enable(&switch_mm_cond_ibpb);
1304 break;
1305 }
1306
1307 pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1308 static_key_enabled(&switch_mm_always_ibpb) ?
1309 "always-on" : "conditional");
1310 }
1311
1312 /*
1313 * If no STIBP, Intel enhanced IBRS is enabled, or SMT impossible, STIBP
1314 * is not required.
1315 *
1316 * Intel's Enhanced IBRS also protects against cross-thread branch target
1317 * injection in user-mode as the IBRS bit remains always set which
1318 * implicitly enables cross-thread protections. However, in legacy IBRS
1319 * mode, the IBRS bit is set only on kernel entry and cleared on return
1320 * to userspace. AMD Automatic IBRS also does not protect userspace.
1321 * These modes therefore disable the implicit cross-thread protection,
1322 * so allow for STIBP to be selected in those cases.
1323 */
1324 if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1325 !smt_possible ||
1326 (spectre_v2_in_eibrs_mode(mode: spectre_v2_enabled) &&
1327 !boot_cpu_has(X86_FEATURE_AUTOIBRS)))
1328 return;
1329
1330 /*
1331 * At this point, an STIBP mode other than "off" has been set.
1332 * If STIBP support is not being forced, check if STIBP always-on
1333 * is preferred.
1334 */
1335 if (mode != SPECTRE_V2_USER_STRICT &&
1336 boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1337 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1338
1339 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1340 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1341 if (mode != SPECTRE_V2_USER_STRICT &&
1342 mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1343 pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1344 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1345 }
1346
1347 spectre_v2_user_stibp = mode;
1348
1349set_mode:
1350 pr_info("%s\n", spectre_v2_user_strings[mode]);
1351}
1352
1353static const char * const spectre_v2_strings[] = {
1354 [SPECTRE_V2_NONE] = "Vulnerable",
1355 [SPECTRE_V2_RETPOLINE] = "Mitigation: Retpolines",
1356 [SPECTRE_V2_LFENCE] = "Mitigation: LFENCE",
1357 [SPECTRE_V2_EIBRS] = "Mitigation: Enhanced / Automatic IBRS",
1358 [SPECTRE_V2_EIBRS_LFENCE] = "Mitigation: Enhanced / Automatic IBRS + LFENCE",
1359 [SPECTRE_V2_EIBRS_RETPOLINE] = "Mitigation: Enhanced / Automatic IBRS + Retpolines",
1360 [SPECTRE_V2_IBRS] = "Mitigation: IBRS",
1361};
1362
1363static const struct {
1364 const char *option;
1365 enum spectre_v2_mitigation_cmd cmd;
1366 bool secure;
1367} mitigation_options[] __initconst = {
1368 { "off", SPECTRE_V2_CMD_NONE, false },
1369 { "on", SPECTRE_V2_CMD_FORCE, true },
1370 { "retpoline", SPECTRE_V2_CMD_RETPOLINE, false },
1371 { "retpoline,amd", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1372 { "retpoline,lfence", SPECTRE_V2_CMD_RETPOLINE_LFENCE, false },
1373 { "retpoline,generic", SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1374 { "eibrs", SPECTRE_V2_CMD_EIBRS, false },
1375 { "eibrs,lfence", SPECTRE_V2_CMD_EIBRS_LFENCE, false },
1376 { "eibrs,retpoline", SPECTRE_V2_CMD_EIBRS_RETPOLINE, false },
1377 { "auto", SPECTRE_V2_CMD_AUTO, false },
1378 { "ibrs", SPECTRE_V2_CMD_IBRS, false },
1379};
1380
1381static void __init spec_v2_print_cond(const char *reason, bool secure)
1382{
1383 if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1384 pr_info("%s selected on command line.\n", reason);
1385}
1386
1387static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1388{
1389 enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1390 char arg[20];
1391 int ret, i;
1392
1393 if (cmdline_find_option_bool(cmdline_ptr: boot_command_line, option: "nospectre_v2") ||
1394 cpu_mitigations_off())
1395 return SPECTRE_V2_CMD_NONE;
1396
1397 ret = cmdline_find_option(cmdline_ptr: boot_command_line, option: "spectre_v2", buffer: arg, bufsize: sizeof(arg));
1398 if (ret < 0)
1399 return SPECTRE_V2_CMD_AUTO;
1400
1401 for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1402 if (!match_option(arg, arglen: ret, opt: mitigation_options[i].option))
1403 continue;
1404 cmd = mitigation_options[i].cmd;
1405 break;
1406 }
1407
1408 if (i >= ARRAY_SIZE(mitigation_options)) {
1409 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1410 return SPECTRE_V2_CMD_AUTO;
1411 }
1412
1413 if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1414 cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1415 cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1416 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1417 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1418 !IS_ENABLED(CONFIG_RETPOLINE)) {
1419 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1420 mitigation_options[i].option);
1421 return SPECTRE_V2_CMD_AUTO;
1422 }
1423
1424 if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1425 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1426 cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1427 !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1428 pr_err("%s selected but CPU doesn't have Enhanced or Automatic IBRS. Switching to AUTO select\n",
1429 mitigation_options[i].option);
1430 return SPECTRE_V2_CMD_AUTO;
1431 }
1432
1433 if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1434 cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1435 !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1436 pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1437 mitigation_options[i].option);
1438 return SPECTRE_V2_CMD_AUTO;
1439 }
1440
1441 if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_CPU_IBRS_ENTRY)) {
1442 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1443 mitigation_options[i].option);
1444 return SPECTRE_V2_CMD_AUTO;
1445 }
1446
1447 if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1448 pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1449 mitigation_options[i].option);
1450 return SPECTRE_V2_CMD_AUTO;
1451 }
1452
1453 if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1454 pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1455 mitigation_options[i].option);
1456 return SPECTRE_V2_CMD_AUTO;
1457 }
1458
1459 if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1460 pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1461 mitigation_options[i].option);
1462 return SPECTRE_V2_CMD_AUTO;
1463 }
1464
1465 spec_v2_print_cond(reason: mitigation_options[i].option,
1466 secure: mitigation_options[i].secure);
1467 return cmd;
1468}
1469
1470static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1471{
1472 if (!IS_ENABLED(CONFIG_RETPOLINE)) {
1473 pr_err("Kernel not compiled with retpoline; no mitigation available!");
1474 return SPECTRE_V2_NONE;
1475 }
1476
1477 return SPECTRE_V2_RETPOLINE;
1478}
1479
1480/* Disable in-kernel use of non-RSB RET predictors */
1481static void __init spec_ctrl_disable_kernel_rrsba(void)
1482{
1483 u64 ia32_cap;
1484
1485 if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1486 return;
1487
1488 ia32_cap = x86_read_arch_cap_msr();
1489
1490 if (ia32_cap & ARCH_CAP_RRSBA) {
1491 x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1492 update_spec_ctrl(val: x86_spec_ctrl_base);
1493 }
1494}
1495
1496static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1497{
1498 /*
1499 * Similar to context switches, there are two types of RSB attacks
1500 * after VM exit:
1501 *
1502 * 1) RSB underflow
1503 *
1504 * 2) Poisoned RSB entry
1505 *
1506 * When retpoline is enabled, both are mitigated by filling/clearing
1507 * the RSB.
1508 *
1509 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1510 * prediction isolation protections, RSB still needs to be cleared
1511 * because of #2. Note that SMEP provides no protection here, unlike
1512 * user-space-poisoned RSB entries.
1513 *
1514 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1515 * bug is present then a LITE version of RSB protection is required,
1516 * just a single call needs to retire before a RET is executed.
1517 */
1518 switch (mode) {
1519 case SPECTRE_V2_NONE:
1520 return;
1521
1522 case SPECTRE_V2_EIBRS_LFENCE:
1523 case SPECTRE_V2_EIBRS:
1524 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1525 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1526 pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1527 }
1528 return;
1529
1530 case SPECTRE_V2_EIBRS_RETPOLINE:
1531 case SPECTRE_V2_RETPOLINE:
1532 case SPECTRE_V2_LFENCE:
1533 case SPECTRE_V2_IBRS:
1534 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1535 pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1536 return;
1537 }
1538
1539 pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1540 dump_stack();
1541}
1542
1543static void __init spectre_v2_select_mitigation(void)
1544{
1545 enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1546 enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1547
1548 /*
1549 * If the CPU is not affected and the command line mode is NONE or AUTO
1550 * then nothing to do.
1551 */
1552 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1553 (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1554 return;
1555
1556 switch (cmd) {
1557 case SPECTRE_V2_CMD_NONE:
1558 return;
1559
1560 case SPECTRE_V2_CMD_FORCE:
1561 case SPECTRE_V2_CMD_AUTO:
1562 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1563 mode = SPECTRE_V2_EIBRS;
1564 break;
1565 }
1566
1567 if (IS_ENABLED(CONFIG_CPU_IBRS_ENTRY) &&
1568 boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1569 retbleed_cmd != RETBLEED_CMD_OFF &&
1570 retbleed_cmd != RETBLEED_CMD_STUFF &&
1571 boot_cpu_has(X86_FEATURE_IBRS) &&
1572 boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1573 mode = SPECTRE_V2_IBRS;
1574 break;
1575 }
1576
1577 mode = spectre_v2_select_retpoline();
1578 break;
1579
1580 case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1581 pr_err(SPECTRE_V2_LFENCE_MSG);
1582 mode = SPECTRE_V2_LFENCE;
1583 break;
1584
1585 case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1586 mode = SPECTRE_V2_RETPOLINE;
1587 break;
1588
1589 case SPECTRE_V2_CMD_RETPOLINE:
1590 mode = spectre_v2_select_retpoline();
1591 break;
1592
1593 case SPECTRE_V2_CMD_IBRS:
1594 mode = SPECTRE_V2_IBRS;
1595 break;
1596
1597 case SPECTRE_V2_CMD_EIBRS:
1598 mode = SPECTRE_V2_EIBRS;
1599 break;
1600
1601 case SPECTRE_V2_CMD_EIBRS_LFENCE:
1602 mode = SPECTRE_V2_EIBRS_LFENCE;
1603 break;
1604
1605 case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1606 mode = SPECTRE_V2_EIBRS_RETPOLINE;
1607 break;
1608 }
1609
1610 if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1611 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1612
1613 if (spectre_v2_in_ibrs_mode(mode)) {
1614 if (boot_cpu_has(X86_FEATURE_AUTOIBRS)) {
1615 msr_set_bit(MSR_EFER, _EFER_AUTOIBRS);
1616 } else {
1617 x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1618 update_spec_ctrl(val: x86_spec_ctrl_base);
1619 }
1620 }
1621
1622 switch (mode) {
1623 case SPECTRE_V2_NONE:
1624 case SPECTRE_V2_EIBRS:
1625 break;
1626
1627 case SPECTRE_V2_IBRS:
1628 setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1629 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1630 pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1631 break;
1632
1633 case SPECTRE_V2_LFENCE:
1634 case SPECTRE_V2_EIBRS_LFENCE:
1635 setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1636 fallthrough;
1637
1638 case SPECTRE_V2_RETPOLINE:
1639 case SPECTRE_V2_EIBRS_RETPOLINE:
1640 setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1641 break;
1642 }
1643
1644 /*
1645 * Disable alternate RSB predictions in kernel when indirect CALLs and
1646 * JMPs gets protection against BHI and Intramode-BTI, but RET
1647 * prediction from a non-RSB predictor is still a risk.
1648 */
1649 if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1650 mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1651 mode == SPECTRE_V2_RETPOLINE)
1652 spec_ctrl_disable_kernel_rrsba();
1653
1654 spectre_v2_enabled = mode;
1655 pr_info("%s\n", spectre_v2_strings[mode]);
1656
1657 /*
1658 * If Spectre v2 protection has been enabled, fill the RSB during a
1659 * context switch. In general there are two types of RSB attacks
1660 * across context switches, for which the CALLs/RETs may be unbalanced.
1661 *
1662 * 1) RSB underflow
1663 *
1664 * Some Intel parts have "bottomless RSB". When the RSB is empty,
1665 * speculated return targets may come from the branch predictor,
1666 * which could have a user-poisoned BTB or BHB entry.
1667 *
1668 * AMD has it even worse: *all* returns are speculated from the BTB,
1669 * regardless of the state of the RSB.
1670 *
1671 * When IBRS or eIBRS is enabled, the "user -> kernel" attack
1672 * scenario is mitigated by the IBRS branch prediction isolation
1673 * properties, so the RSB buffer filling wouldn't be necessary to
1674 * protect against this type of attack.
1675 *
1676 * The "user -> user" attack scenario is mitigated by RSB filling.
1677 *
1678 * 2) Poisoned RSB entry
1679 *
1680 * If the 'next' in-kernel return stack is shorter than 'prev',
1681 * 'next' could be tricked into speculating with a user-poisoned RSB
1682 * entry.
1683 *
1684 * The "user -> kernel" attack scenario is mitigated by SMEP and
1685 * eIBRS.
1686 *
1687 * The "user -> user" scenario, also known as SpectreBHB, requires
1688 * RSB clearing.
1689 *
1690 * So to mitigate all cases, unconditionally fill RSB on context
1691 * switches.
1692 *
1693 * FIXME: Is this pointless for retbleed-affected AMD?
1694 */
1695 setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1696 pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1697
1698 spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1699
1700 /*
1701 * Retpoline protects the kernel, but doesn't protect firmware. IBRS
1702 * and Enhanced IBRS protect firmware too, so enable IBRS around
1703 * firmware calls only when IBRS / Enhanced / Automatic IBRS aren't
1704 * otherwise enabled.
1705 *
1706 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1707 * the user might select retpoline on the kernel command line and if
1708 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1709 * enable IBRS around firmware calls.
1710 */
1711 if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1712 boot_cpu_has(X86_FEATURE_IBPB) &&
1713 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1714 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
1715
1716 if (retbleed_cmd != RETBLEED_CMD_IBPB) {
1717 setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
1718 pr_info("Enabling Speculation Barrier for firmware calls\n");
1719 }
1720
1721 } else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1722 setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1723 pr_info("Enabling Restricted Speculation for firmware calls\n");
1724 }
1725
1726 /* Set up IBPB and STIBP depending on the general spectre V2 command */
1727 spectre_v2_cmd = cmd;
1728}
1729
1730static void update_stibp_msr(void * __unused)
1731{
1732 u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1733 update_spec_ctrl(val);
1734}
1735
1736/* Update x86_spec_ctrl_base in case SMT state changed. */
1737static void update_stibp_strict(void)
1738{
1739 u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1740
1741 if (sched_smt_active())
1742 mask |= SPEC_CTRL_STIBP;
1743
1744 if (mask == x86_spec_ctrl_base)
1745 return;
1746
1747 pr_info("Update user space SMT mitigation: STIBP %s\n",
1748 mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1749 x86_spec_ctrl_base = mask;
1750 on_each_cpu(func: update_stibp_msr, NULL, wait: 1);
1751}
1752
1753/* Update the static key controlling the evaluation of TIF_SPEC_IB */
1754static void update_indir_branch_cond(void)
1755{
1756 if (sched_smt_active())
1757 static_branch_enable(&switch_to_cond_stibp);
1758 else
1759 static_branch_disable(&switch_to_cond_stibp);
1760}
1761
1762#undef pr_fmt
1763#define pr_fmt(fmt) fmt
1764
1765/* Update the static key controlling the MDS CPU buffer clear in idle */
1766static void update_mds_branch_idle(void)
1767{
1768 u64 ia32_cap = x86_read_arch_cap_msr();
1769
1770 /*
1771 * Enable the idle clearing if SMT is active on CPUs which are
1772 * affected only by MSBDS and not any other MDS variant.
1773 *
1774 * The other variants cannot be mitigated when SMT is enabled, so
1775 * clearing the buffers on idle just to prevent the Store Buffer
1776 * repartitioning leak would be a window dressing exercise.
1777 */
1778 if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1779 return;
1780
1781 if (sched_smt_active()) {
1782 static_branch_enable(&mds_idle_clear);
1783 } else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1784 (ia32_cap & ARCH_CAP_FBSDP_NO)) {
1785 static_branch_disable(&mds_idle_clear);
1786 }
1787}
1788
1789#define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1790#define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1791#define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1792
1793void cpu_bugs_smt_update(void)
1794{
1795 mutex_lock(&spec_ctrl_mutex);
1796
1797 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1798 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1799 pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1800
1801 switch (spectre_v2_user_stibp) {
1802 case SPECTRE_V2_USER_NONE:
1803 break;
1804 case SPECTRE_V2_USER_STRICT:
1805 case SPECTRE_V2_USER_STRICT_PREFERRED:
1806 update_stibp_strict();
1807 break;
1808 case SPECTRE_V2_USER_PRCTL:
1809 case SPECTRE_V2_USER_SECCOMP:
1810 update_indir_branch_cond();
1811 break;
1812 }
1813
1814 switch (mds_mitigation) {
1815 case MDS_MITIGATION_FULL:
1816 case MDS_MITIGATION_VMWERV:
1817 if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1818 pr_warn_once(MDS_MSG_SMT);
1819 update_mds_branch_idle();
1820 break;
1821 case MDS_MITIGATION_OFF:
1822 break;
1823 }
1824
1825 switch (taa_mitigation) {
1826 case TAA_MITIGATION_VERW:
1827 case TAA_MITIGATION_UCODE_NEEDED:
1828 if (sched_smt_active())
1829 pr_warn_once(TAA_MSG_SMT);
1830 break;
1831 case TAA_MITIGATION_TSX_DISABLED:
1832 case TAA_MITIGATION_OFF:
1833 break;
1834 }
1835
1836 switch (mmio_mitigation) {
1837 case MMIO_MITIGATION_VERW:
1838 case MMIO_MITIGATION_UCODE_NEEDED:
1839 if (sched_smt_active())
1840 pr_warn_once(MMIO_MSG_SMT);
1841 break;
1842 case MMIO_MITIGATION_OFF:
1843 break;
1844 }
1845
1846 mutex_unlock(lock: &spec_ctrl_mutex);
1847}
1848
1849#undef pr_fmt
1850#define pr_fmt(fmt) "Speculative Store Bypass: " fmt
1851
1852static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1853
1854/* The kernel command line selection */
1855enum ssb_mitigation_cmd {
1856 SPEC_STORE_BYPASS_CMD_NONE,
1857 SPEC_STORE_BYPASS_CMD_AUTO,
1858 SPEC_STORE_BYPASS_CMD_ON,
1859 SPEC_STORE_BYPASS_CMD_PRCTL,
1860 SPEC_STORE_BYPASS_CMD_SECCOMP,
1861};
1862
1863static const char * const ssb_strings[] = {
1864 [SPEC_STORE_BYPASS_NONE] = "Vulnerable",
1865 [SPEC_STORE_BYPASS_DISABLE] = "Mitigation: Speculative Store Bypass disabled",
1866 [SPEC_STORE_BYPASS_PRCTL] = "Mitigation: Speculative Store Bypass disabled via prctl",
1867 [SPEC_STORE_BYPASS_SECCOMP] = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
1868};
1869
1870static const struct {
1871 const char *option;
1872 enum ssb_mitigation_cmd cmd;
1873} ssb_mitigation_options[] __initconst = {
1874 { "auto", SPEC_STORE_BYPASS_CMD_AUTO }, /* Platform decides */
1875 { "on", SPEC_STORE_BYPASS_CMD_ON }, /* Disable Speculative Store Bypass */
1876 { "off", SPEC_STORE_BYPASS_CMD_NONE }, /* Don't touch Speculative Store Bypass */
1877 { "prctl", SPEC_STORE_BYPASS_CMD_PRCTL }, /* Disable Speculative Store Bypass via prctl */
1878 { "seccomp", SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
1879};
1880
1881static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
1882{
1883 enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
1884 char arg[20];
1885 int ret, i;
1886
1887 if (cmdline_find_option_bool(cmdline_ptr: boot_command_line, option: "nospec_store_bypass_disable") ||
1888 cpu_mitigations_off()) {
1889 return SPEC_STORE_BYPASS_CMD_NONE;
1890 } else {
1891 ret = cmdline_find_option(cmdline_ptr: boot_command_line, option: "spec_store_bypass_disable",
1892 buffer: arg, bufsize: sizeof(arg));
1893 if (ret < 0)
1894 return SPEC_STORE_BYPASS_CMD_AUTO;
1895
1896 for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
1897 if (!match_option(arg, arglen: ret, opt: ssb_mitigation_options[i].option))
1898 continue;
1899
1900 cmd = ssb_mitigation_options[i].cmd;
1901 break;
1902 }
1903
1904 if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
1905 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1906 return SPEC_STORE_BYPASS_CMD_AUTO;
1907 }
1908 }
1909
1910 return cmd;
1911}
1912
1913static enum ssb_mitigation __init __ssb_select_mitigation(void)
1914{
1915 enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
1916 enum ssb_mitigation_cmd cmd;
1917
1918 if (!boot_cpu_has(X86_FEATURE_SSBD))
1919 return mode;
1920
1921 cmd = ssb_parse_cmdline();
1922 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
1923 (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
1924 cmd == SPEC_STORE_BYPASS_CMD_AUTO))
1925 return mode;
1926
1927 switch (cmd) {
1928 case SPEC_STORE_BYPASS_CMD_SECCOMP:
1929 /*
1930 * Choose prctl+seccomp as the default mode if seccomp is
1931 * enabled.
1932 */
1933 if (IS_ENABLED(CONFIG_SECCOMP))
1934 mode = SPEC_STORE_BYPASS_SECCOMP;
1935 else
1936 mode = SPEC_STORE_BYPASS_PRCTL;
1937 break;
1938 case SPEC_STORE_BYPASS_CMD_ON:
1939 mode = SPEC_STORE_BYPASS_DISABLE;
1940 break;
1941 case SPEC_STORE_BYPASS_CMD_AUTO:
1942 case SPEC_STORE_BYPASS_CMD_PRCTL:
1943 mode = SPEC_STORE_BYPASS_PRCTL;
1944 break;
1945 case SPEC_STORE_BYPASS_CMD_NONE:
1946 break;
1947 }
1948
1949 /*
1950 * We have three CPU feature flags that are in play here:
1951 * - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
1952 * - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
1953 * - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
1954 */
1955 if (mode == SPEC_STORE_BYPASS_DISABLE) {
1956 setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
1957 /*
1958 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
1959 * use a completely different MSR and bit dependent on family.
1960 */
1961 if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
1962 !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1963 x86_amd_ssb_disable();
1964 } else {
1965 x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
1966 update_spec_ctrl(val: x86_spec_ctrl_base);
1967 }
1968 }
1969
1970 return mode;
1971}
1972
1973static void ssb_select_mitigation(void)
1974{
1975 ssb_mode = __ssb_select_mitigation();
1976
1977 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1978 pr_info("%s\n", ssb_strings[ssb_mode]);
1979}
1980
1981#undef pr_fmt
1982#define pr_fmt(fmt) "Speculation prctl: " fmt
1983
1984static void task_update_spec_tif(struct task_struct *tsk)
1985{
1986 /* Force the update of the real TIF bits */
1987 set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
1988
1989 /*
1990 * Immediately update the speculation control MSRs for the current
1991 * task, but for a non-current task delay setting the CPU
1992 * mitigation until it is scheduled next.
1993 *
1994 * This can only happen for SECCOMP mitigation. For PRCTL it's
1995 * always the current task.
1996 */
1997 if (tsk == current)
1998 speculation_ctrl_update_current();
1999}
2000
2001static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
2002{
2003
2004 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2005 return -EPERM;
2006
2007 switch (ctrl) {
2008 case PR_SPEC_ENABLE:
2009 set_ti_thread_flag(ti: &task->thread_info, TIF_SPEC_L1D_FLUSH);
2010 return 0;
2011 case PR_SPEC_DISABLE:
2012 clear_ti_thread_flag(ti: &task->thread_info, TIF_SPEC_L1D_FLUSH);
2013 return 0;
2014 default:
2015 return -ERANGE;
2016 }
2017}
2018
2019static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
2020{
2021 if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
2022 ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
2023 return -ENXIO;
2024
2025 switch (ctrl) {
2026 case PR_SPEC_ENABLE:
2027 /* If speculation is force disabled, enable is not allowed */
2028 if (task_spec_ssb_force_disable(p: task))
2029 return -EPERM;
2030 task_clear_spec_ssb_disable(p: task);
2031 task_clear_spec_ssb_noexec(p: task);
2032 task_update_spec_tif(tsk: task);
2033 break;
2034 case PR_SPEC_DISABLE:
2035 task_set_spec_ssb_disable(p: task);
2036 task_clear_spec_ssb_noexec(p: task);
2037 task_update_spec_tif(tsk: task);
2038 break;
2039 case PR_SPEC_FORCE_DISABLE:
2040 task_set_spec_ssb_disable(p: task);
2041 task_set_spec_ssb_force_disable(p: task);
2042 task_clear_spec_ssb_noexec(p: task);
2043 task_update_spec_tif(tsk: task);
2044 break;
2045 case PR_SPEC_DISABLE_NOEXEC:
2046 if (task_spec_ssb_force_disable(p: task))
2047 return -EPERM;
2048 task_set_spec_ssb_disable(p: task);
2049 task_set_spec_ssb_noexec(p: task);
2050 task_update_spec_tif(tsk: task);
2051 break;
2052 default:
2053 return -ERANGE;
2054 }
2055 return 0;
2056}
2057
2058static bool is_spec_ib_user_controlled(void)
2059{
2060 return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
2061 spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2062 spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
2063 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
2064}
2065
2066static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
2067{
2068 switch (ctrl) {
2069 case PR_SPEC_ENABLE:
2070 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2071 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2072 return 0;
2073
2074 /*
2075 * With strict mode for both IBPB and STIBP, the instruction
2076 * code paths avoid checking this task flag and instead,
2077 * unconditionally run the instruction. However, STIBP and IBPB
2078 * are independent and either can be set to conditionally
2079 * enabled regardless of the mode of the other.
2080 *
2081 * If either is set to conditional, allow the task flag to be
2082 * updated, unless it was force-disabled by a previous prctl
2083 * call. Currently, this is possible on an AMD CPU which has the
2084 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
2085 * kernel is booted with 'spectre_v2_user=seccomp', then
2086 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
2087 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
2088 */
2089 if (!is_spec_ib_user_controlled() ||
2090 task_spec_ib_force_disable(p: task))
2091 return -EPERM;
2092
2093 task_clear_spec_ib_disable(p: task);
2094 task_update_spec_tif(tsk: task);
2095 break;
2096 case PR_SPEC_DISABLE:
2097 case PR_SPEC_FORCE_DISABLE:
2098 /*
2099 * Indirect branch speculation is always allowed when
2100 * mitigation is force disabled.
2101 */
2102 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2103 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2104 return -EPERM;
2105
2106 if (!is_spec_ib_user_controlled())
2107 return 0;
2108
2109 task_set_spec_ib_disable(p: task);
2110 if (ctrl == PR_SPEC_FORCE_DISABLE)
2111 task_set_spec_ib_force_disable(p: task);
2112 task_update_spec_tif(tsk: task);
2113 if (task == current)
2114 indirect_branch_prediction_barrier();
2115 break;
2116 default:
2117 return -ERANGE;
2118 }
2119 return 0;
2120}
2121
2122int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
2123 unsigned long ctrl)
2124{
2125 switch (which) {
2126 case PR_SPEC_STORE_BYPASS:
2127 return ssb_prctl_set(task, ctrl);
2128 case PR_SPEC_INDIRECT_BRANCH:
2129 return ib_prctl_set(task, ctrl);
2130 case PR_SPEC_L1D_FLUSH:
2131 return l1d_flush_prctl_set(task, ctrl);
2132 default:
2133 return -ENODEV;
2134 }
2135}
2136
2137#ifdef CONFIG_SECCOMP
2138void arch_seccomp_spec_mitigate(struct task_struct *task)
2139{
2140 if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2141 ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2142 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2143 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2144 ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2145}
2146#endif
2147
2148static int l1d_flush_prctl_get(struct task_struct *task)
2149{
2150 if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2151 return PR_SPEC_FORCE_DISABLE;
2152
2153 if (test_ti_thread_flag(ti: &task->thread_info, TIF_SPEC_L1D_FLUSH))
2154 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2155 else
2156 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2157}
2158
2159static int ssb_prctl_get(struct task_struct *task)
2160{
2161 switch (ssb_mode) {
2162 case SPEC_STORE_BYPASS_NONE:
2163 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2164 return PR_SPEC_ENABLE;
2165 return PR_SPEC_NOT_AFFECTED;
2166 case SPEC_STORE_BYPASS_DISABLE:
2167 return PR_SPEC_DISABLE;
2168 case SPEC_STORE_BYPASS_SECCOMP:
2169 case SPEC_STORE_BYPASS_PRCTL:
2170 if (task_spec_ssb_force_disable(p: task))
2171 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2172 if (task_spec_ssb_noexec(p: task))
2173 return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2174 if (task_spec_ssb_disable(p: task))
2175 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2176 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2177 }
2178 BUG();
2179}
2180
2181static int ib_prctl_get(struct task_struct *task)
2182{
2183 if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2184 return PR_SPEC_NOT_AFFECTED;
2185
2186 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2187 spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2188 return PR_SPEC_ENABLE;
2189 else if (is_spec_ib_user_controlled()) {
2190 if (task_spec_ib_force_disable(p: task))
2191 return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2192 if (task_spec_ib_disable(p: task))
2193 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2194 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2195 } else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2196 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2197 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2198 return PR_SPEC_DISABLE;
2199 else
2200 return PR_SPEC_NOT_AFFECTED;
2201}
2202
2203int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2204{
2205 switch (which) {
2206 case PR_SPEC_STORE_BYPASS:
2207 return ssb_prctl_get(task);
2208 case PR_SPEC_INDIRECT_BRANCH:
2209 return ib_prctl_get(task);
2210 case PR_SPEC_L1D_FLUSH:
2211 return l1d_flush_prctl_get(task);
2212 default:
2213 return -ENODEV;
2214 }
2215}
2216
2217void x86_spec_ctrl_setup_ap(void)
2218{
2219 if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2220 update_spec_ctrl(val: x86_spec_ctrl_base);
2221
2222 if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2223 x86_amd_ssb_disable();
2224}
2225
2226bool itlb_multihit_kvm_mitigation;
2227EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2228
2229#undef pr_fmt
2230#define pr_fmt(fmt) "L1TF: " fmt
2231
2232/* Default mitigation for L1TF-affected CPUs */
2233enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
2234#if IS_ENABLED(CONFIG_KVM_INTEL)
2235EXPORT_SYMBOL_GPL(l1tf_mitigation);
2236#endif
2237enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2238EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2239
2240/*
2241 * These CPUs all support 44bits physical address space internally in the
2242 * cache but CPUID can report a smaller number of physical address bits.
2243 *
2244 * The L1TF mitigation uses the top most address bit for the inversion of
2245 * non present PTEs. When the installed memory reaches into the top most
2246 * address bit due to memory holes, which has been observed on machines
2247 * which report 36bits physical address bits and have 32G RAM installed,
2248 * then the mitigation range check in l1tf_select_mitigation() triggers.
2249 * This is a false positive because the mitigation is still possible due to
2250 * the fact that the cache uses 44bit internally. Use the cache bits
2251 * instead of the reported physical bits and adjust them on the affected
2252 * machines to 44bit if the reported bits are less than 44.
2253 */
2254static void override_cache_bits(struct cpuinfo_x86 *c)
2255{
2256 if (c->x86 != 6)
2257 return;
2258
2259 switch (c->x86_model) {
2260 case INTEL_FAM6_NEHALEM:
2261 case INTEL_FAM6_WESTMERE:
2262 case INTEL_FAM6_SANDYBRIDGE:
2263 case INTEL_FAM6_IVYBRIDGE:
2264 case INTEL_FAM6_HASWELL:
2265 case INTEL_FAM6_HASWELL_L:
2266 case INTEL_FAM6_HASWELL_G:
2267 case INTEL_FAM6_BROADWELL:
2268 case INTEL_FAM6_BROADWELL_G:
2269 case INTEL_FAM6_SKYLAKE_L:
2270 case INTEL_FAM6_SKYLAKE:
2271 case INTEL_FAM6_KABYLAKE_L:
2272 case INTEL_FAM6_KABYLAKE:
2273 if (c->x86_cache_bits < 44)
2274 c->x86_cache_bits = 44;
2275 break;
2276 }
2277}
2278
2279static void __init l1tf_select_mitigation(void)
2280{
2281 u64 half_pa;
2282
2283 if (!boot_cpu_has_bug(X86_BUG_L1TF))
2284 return;
2285
2286 if (cpu_mitigations_off())
2287 l1tf_mitigation = L1TF_MITIGATION_OFF;
2288 else if (cpu_mitigations_auto_nosmt())
2289 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2290
2291 override_cache_bits(c: &boot_cpu_data);
2292
2293 switch (l1tf_mitigation) {
2294 case L1TF_MITIGATION_OFF:
2295 case L1TF_MITIGATION_FLUSH_NOWARN:
2296 case L1TF_MITIGATION_FLUSH:
2297 break;
2298 case L1TF_MITIGATION_FLUSH_NOSMT:
2299 case L1TF_MITIGATION_FULL:
2300 cpu_smt_disable(force: false);
2301 break;
2302 case L1TF_MITIGATION_FULL_FORCE:
2303 cpu_smt_disable(force: true);
2304 break;
2305 }
2306
2307#if CONFIG_PGTABLE_LEVELS == 2
2308 pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2309 return;
2310#endif
2311
2312 half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2313 if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2314 e820__mapped_any(start: half_pa, ULLONG_MAX - half_pa, type: E820_TYPE_RAM)) {
2315 pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2316 pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2317 half_pa);
2318 pr_info("However, doing so will make a part of your RAM unusable.\n");
2319 pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2320 return;
2321 }
2322
2323 setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2324}
2325
2326static int __init l1tf_cmdline(char *str)
2327{
2328 if (!boot_cpu_has_bug(X86_BUG_L1TF))
2329 return 0;
2330
2331 if (!str)
2332 return -EINVAL;
2333
2334 if (!strcmp(str, "off"))
2335 l1tf_mitigation = L1TF_MITIGATION_OFF;
2336 else if (!strcmp(str, "flush,nowarn"))
2337 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2338 else if (!strcmp(str, "flush"))
2339 l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2340 else if (!strcmp(str, "flush,nosmt"))
2341 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2342 else if (!strcmp(str, "full"))
2343 l1tf_mitigation = L1TF_MITIGATION_FULL;
2344 else if (!strcmp(str, "full,force"))
2345 l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2346
2347 return 0;
2348}
2349early_param("l1tf", l1tf_cmdline);
2350
2351#undef pr_fmt
2352#define pr_fmt(fmt) "Speculative Return Stack Overflow: " fmt
2353
2354enum srso_mitigation {
2355 SRSO_MITIGATION_NONE,
2356 SRSO_MITIGATION_UCODE_NEEDED,
2357 SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED,
2358 SRSO_MITIGATION_MICROCODE,
2359 SRSO_MITIGATION_SAFE_RET,
2360 SRSO_MITIGATION_IBPB,
2361 SRSO_MITIGATION_IBPB_ON_VMEXIT,
2362};
2363
2364enum srso_mitigation_cmd {
2365 SRSO_CMD_OFF,
2366 SRSO_CMD_MICROCODE,
2367 SRSO_CMD_SAFE_RET,
2368 SRSO_CMD_IBPB,
2369 SRSO_CMD_IBPB_ON_VMEXIT,
2370};
2371
2372static const char * const srso_strings[] = {
2373 [SRSO_MITIGATION_NONE] = "Vulnerable",
2374 [SRSO_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
2375 [SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED] = "Vulnerable: Safe RET, no microcode",
2376 [SRSO_MITIGATION_MICROCODE] = "Vulnerable: Microcode, no safe RET",
2377 [SRSO_MITIGATION_SAFE_RET] = "Mitigation: Safe RET",
2378 [SRSO_MITIGATION_IBPB] = "Mitigation: IBPB",
2379 [SRSO_MITIGATION_IBPB_ON_VMEXIT] = "Mitigation: IBPB on VMEXIT only"
2380};
2381
2382static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_NONE;
2383static enum srso_mitigation_cmd srso_cmd __ro_after_init = SRSO_CMD_SAFE_RET;
2384
2385static int __init srso_parse_cmdline(char *str)
2386{
2387 if (!str)
2388 return -EINVAL;
2389
2390 if (!strcmp(str, "off"))
2391 srso_cmd = SRSO_CMD_OFF;
2392 else if (!strcmp(str, "microcode"))
2393 srso_cmd = SRSO_CMD_MICROCODE;
2394 else if (!strcmp(str, "safe-ret"))
2395 srso_cmd = SRSO_CMD_SAFE_RET;
2396 else if (!strcmp(str, "ibpb"))
2397 srso_cmd = SRSO_CMD_IBPB;
2398 else if (!strcmp(str, "ibpb-vmexit"))
2399 srso_cmd = SRSO_CMD_IBPB_ON_VMEXIT;
2400 else
2401 pr_err("Ignoring unknown SRSO option (%s).", str);
2402
2403 return 0;
2404}
2405early_param("spec_rstack_overflow", srso_parse_cmdline);
2406
2407#define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options."
2408
2409static void __init srso_select_mitigation(void)
2410{
2411 bool has_microcode = boot_cpu_has(X86_FEATURE_IBPB_BRTYPE);
2412
2413 if (cpu_mitigations_off())
2414 return;
2415
2416 if (!boot_cpu_has_bug(X86_BUG_SRSO)) {
2417 if (boot_cpu_has(X86_FEATURE_SBPB))
2418 x86_pred_cmd = PRED_CMD_SBPB;
2419 return;
2420 }
2421
2422 if (has_microcode) {
2423 /*
2424 * Zen1/2 with SMT off aren't vulnerable after the right
2425 * IBPB microcode has been applied.
2426 *
2427 * Zen1/2 don't have SBPB, no need to try to enable it here.
2428 */
2429 if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) {
2430 setup_force_cpu_cap(X86_FEATURE_SRSO_NO);
2431 return;
2432 }
2433
2434 if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2435 srso_mitigation = SRSO_MITIGATION_IBPB;
2436 goto out;
2437 }
2438 } else {
2439 pr_warn("IBPB-extending microcode not applied!\n");
2440 pr_warn(SRSO_NOTICE);
2441
2442 /* may be overwritten by SRSO_CMD_SAFE_RET below */
2443 srso_mitigation = SRSO_MITIGATION_UCODE_NEEDED;
2444 }
2445
2446 switch (srso_cmd) {
2447 case SRSO_CMD_OFF:
2448 if (boot_cpu_has(X86_FEATURE_SBPB))
2449 x86_pred_cmd = PRED_CMD_SBPB;
2450 return;
2451
2452 case SRSO_CMD_MICROCODE:
2453 if (has_microcode) {
2454 srso_mitigation = SRSO_MITIGATION_MICROCODE;
2455 pr_warn(SRSO_NOTICE);
2456 }
2457 break;
2458
2459 case SRSO_CMD_SAFE_RET:
2460 if (IS_ENABLED(CONFIG_CPU_SRSO)) {
2461 /*
2462 * Enable the return thunk for generated code
2463 * like ftrace, static_call, etc.
2464 */
2465 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
2466 setup_force_cpu_cap(X86_FEATURE_UNRET);
2467
2468 if (boot_cpu_data.x86 == 0x19) {
2469 setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS);
2470 x86_return_thunk = srso_alias_return_thunk;
2471 } else {
2472 setup_force_cpu_cap(X86_FEATURE_SRSO);
2473 x86_return_thunk = srso_return_thunk;
2474 }
2475 if (has_microcode)
2476 srso_mitigation = SRSO_MITIGATION_SAFE_RET;
2477 else
2478 srso_mitigation = SRSO_MITIGATION_SAFE_RET_UCODE_NEEDED;
2479 } else {
2480 pr_err("WARNING: kernel not compiled with CPU_SRSO.\n");
2481 }
2482 break;
2483
2484 case SRSO_CMD_IBPB:
2485 if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
2486 if (has_microcode) {
2487 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
2488 srso_mitigation = SRSO_MITIGATION_IBPB;
2489 }
2490 } else {
2491 pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
2492 }
2493 break;
2494
2495 case SRSO_CMD_IBPB_ON_VMEXIT:
2496 if (IS_ENABLED(CONFIG_CPU_SRSO)) {
2497 if (!boot_cpu_has(X86_FEATURE_ENTRY_IBPB) && has_microcode) {
2498 setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2499 srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
2500 }
2501 } else {
2502 pr_err("WARNING: kernel not compiled with CPU_SRSO.\n");
2503 }
2504 break;
2505 }
2506
2507out:
2508 pr_info("%s\n", srso_strings[srso_mitigation]);
2509}
2510
2511#undef pr_fmt
2512#define pr_fmt(fmt) fmt
2513
2514#ifdef CONFIG_SYSFS
2515
2516#define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2517
2518#if IS_ENABLED(CONFIG_KVM_INTEL)
2519static const char * const l1tf_vmx_states[] = {
2520 [VMENTER_L1D_FLUSH_AUTO] = "auto",
2521 [VMENTER_L1D_FLUSH_NEVER] = "vulnerable",
2522 [VMENTER_L1D_FLUSH_COND] = "conditional cache flushes",
2523 [VMENTER_L1D_FLUSH_ALWAYS] = "cache flushes",
2524 [VMENTER_L1D_FLUSH_EPT_DISABLED] = "EPT disabled",
2525 [VMENTER_L1D_FLUSH_NOT_REQUIRED] = "flush not necessary"
2526};
2527
2528static ssize_t l1tf_show_state(char *buf)
2529{
2530 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2531 return sysfs_emit(buf, fmt: "%s\n", L1TF_DEFAULT_MSG);
2532
2533 if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2534 (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2535 sched_smt_active())) {
2536 return sysfs_emit(buf, fmt: "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2537 l1tf_vmx_states[l1tf_vmx_mitigation]);
2538 }
2539
2540 return sysfs_emit(buf, fmt: "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2541 l1tf_vmx_states[l1tf_vmx_mitigation],
2542 sched_smt_active() ? "vulnerable" : "disabled");
2543}
2544
2545static ssize_t itlb_multihit_show_state(char *buf)
2546{
2547 if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2548 !boot_cpu_has(X86_FEATURE_VMX))
2549 return sysfs_emit(buf, fmt: "KVM: Mitigation: VMX unsupported\n");
2550 else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2551 return sysfs_emit(buf, fmt: "KVM: Mitigation: VMX disabled\n");
2552 else if (itlb_multihit_kvm_mitigation)
2553 return sysfs_emit(buf, fmt: "KVM: Mitigation: Split huge pages\n");
2554 else
2555 return sysfs_emit(buf, fmt: "KVM: Vulnerable\n");
2556}
2557#else
2558static ssize_t l1tf_show_state(char *buf)
2559{
2560 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2561}
2562
2563static ssize_t itlb_multihit_show_state(char *buf)
2564{
2565 return sysfs_emit(buf, "Processor vulnerable\n");
2566}
2567#endif
2568
2569static ssize_t mds_show_state(char *buf)
2570{
2571 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2572 return sysfs_emit(buf, fmt: "%s; SMT Host state unknown\n",
2573 mds_strings[mds_mitigation]);
2574 }
2575
2576 if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2577 return sysfs_emit(buf, fmt: "%s; SMT %s\n", mds_strings[mds_mitigation],
2578 (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2579 sched_smt_active() ? "mitigated" : "disabled"));
2580 }
2581
2582 return sysfs_emit(buf, fmt: "%s; SMT %s\n", mds_strings[mds_mitigation],
2583 sched_smt_active() ? "vulnerable" : "disabled");
2584}
2585
2586static ssize_t tsx_async_abort_show_state(char *buf)
2587{
2588 if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2589 (taa_mitigation == TAA_MITIGATION_OFF))
2590 return sysfs_emit(buf, fmt: "%s\n", taa_strings[taa_mitigation]);
2591
2592 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2593 return sysfs_emit(buf, fmt: "%s; SMT Host state unknown\n",
2594 taa_strings[taa_mitigation]);
2595 }
2596
2597 return sysfs_emit(buf, fmt: "%s; SMT %s\n", taa_strings[taa_mitigation],
2598 sched_smt_active() ? "vulnerable" : "disabled");
2599}
2600
2601static ssize_t mmio_stale_data_show_state(char *buf)
2602{
2603 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2604 return sysfs_emit(buf, fmt: "Unknown: No mitigations\n");
2605
2606 if (mmio_mitigation == MMIO_MITIGATION_OFF)
2607 return sysfs_emit(buf, fmt: "%s\n", mmio_strings[mmio_mitigation]);
2608
2609 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2610 return sysfs_emit(buf, fmt: "%s; SMT Host state unknown\n",
2611 mmio_strings[mmio_mitigation]);
2612 }
2613
2614 return sysfs_emit(buf, fmt: "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2615 sched_smt_active() ? "vulnerable" : "disabled");
2616}
2617
2618static char *stibp_state(void)
2619{
2620 if (spectre_v2_in_eibrs_mode(mode: spectre_v2_enabled) &&
2621 !boot_cpu_has(X86_FEATURE_AUTOIBRS))
2622 return "";
2623
2624 switch (spectre_v2_user_stibp) {
2625 case SPECTRE_V2_USER_NONE:
2626 return ", STIBP: disabled";
2627 case SPECTRE_V2_USER_STRICT:
2628 return ", STIBP: forced";
2629 case SPECTRE_V2_USER_STRICT_PREFERRED:
2630 return ", STIBP: always-on";
2631 case SPECTRE_V2_USER_PRCTL:
2632 case SPECTRE_V2_USER_SECCOMP:
2633 if (static_key_enabled(&switch_to_cond_stibp))
2634 return ", STIBP: conditional";
2635 }
2636 return "";
2637}
2638
2639static char *ibpb_state(void)
2640{
2641 if (boot_cpu_has(X86_FEATURE_IBPB)) {
2642 if (static_key_enabled(&switch_mm_always_ibpb))
2643 return ", IBPB: always-on";
2644 if (static_key_enabled(&switch_mm_cond_ibpb))
2645 return ", IBPB: conditional";
2646 return ", IBPB: disabled";
2647 }
2648 return "";
2649}
2650
2651static char *pbrsb_eibrs_state(void)
2652{
2653 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2654 if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2655 boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2656 return ", PBRSB-eIBRS: SW sequence";
2657 else
2658 return ", PBRSB-eIBRS: Vulnerable";
2659 } else {
2660 return ", PBRSB-eIBRS: Not affected";
2661 }
2662}
2663
2664static ssize_t spectre_v2_show_state(char *buf)
2665{
2666 if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2667 return sysfs_emit(buf, fmt: "Vulnerable: LFENCE\n");
2668
2669 if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2670 return sysfs_emit(buf, fmt: "Vulnerable: eIBRS with unprivileged eBPF\n");
2671
2672 if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2673 spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2674 return sysfs_emit(buf, fmt: "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2675
2676 return sysfs_emit(buf, fmt: "%s%s%s%s%s%s%s\n",
2677 spectre_v2_strings[spectre_v2_enabled],
2678 ibpb_state(),
2679 boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
2680 stibp_state(),
2681 boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
2682 pbrsb_eibrs_state(),
2683 spectre_v2_module_string());
2684}
2685
2686static ssize_t srbds_show_state(char *buf)
2687{
2688 return sysfs_emit(buf, fmt: "%s\n", srbds_strings[srbds_mitigation]);
2689}
2690
2691static ssize_t retbleed_show_state(char *buf)
2692{
2693 if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2694 retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2695 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2696 boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2697 return sysfs_emit(buf, fmt: "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
2698
2699 return sysfs_emit(buf, fmt: "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
2700 !sched_smt_active() ? "disabled" :
2701 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2702 spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2703 "enabled with STIBP protection" : "vulnerable");
2704 }
2705
2706 return sysfs_emit(buf, fmt: "%s\n", retbleed_strings[retbleed_mitigation]);
2707}
2708
2709static ssize_t srso_show_state(char *buf)
2710{
2711 if (boot_cpu_has(X86_FEATURE_SRSO_NO))
2712 return sysfs_emit(buf, fmt: "Mitigation: SMT disabled\n");
2713
2714 return sysfs_emit(buf, fmt: "%s\n", srso_strings[srso_mitigation]);
2715}
2716
2717static ssize_t gds_show_state(char *buf)
2718{
2719 return sysfs_emit(buf, fmt: "%s\n", gds_strings[gds_mitigation]);
2720}
2721
2722static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2723 char *buf, unsigned int bug)
2724{
2725 if (!boot_cpu_has_bug(bug))
2726 return sysfs_emit(buf, fmt: "Not affected\n");
2727
2728 switch (bug) {
2729 case X86_BUG_CPU_MELTDOWN:
2730 if (boot_cpu_has(X86_FEATURE_PTI))
2731 return sysfs_emit(buf, fmt: "Mitigation: PTI\n");
2732
2733 if (hypervisor_is_type(type: X86_HYPER_XEN_PV))
2734 return sysfs_emit(buf, fmt: "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2735
2736 break;
2737
2738 case X86_BUG_SPECTRE_V1:
2739 return sysfs_emit(buf, fmt: "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2740
2741 case X86_BUG_SPECTRE_V2:
2742 return spectre_v2_show_state(buf);
2743
2744 case X86_BUG_SPEC_STORE_BYPASS:
2745 return sysfs_emit(buf, fmt: "%s\n", ssb_strings[ssb_mode]);
2746
2747 case X86_BUG_L1TF:
2748 if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2749 return l1tf_show_state(buf);
2750 break;
2751
2752 case X86_BUG_MDS:
2753 return mds_show_state(buf);
2754
2755 case X86_BUG_TAA:
2756 return tsx_async_abort_show_state(buf);
2757
2758 case X86_BUG_ITLB_MULTIHIT:
2759 return itlb_multihit_show_state(buf);
2760
2761 case X86_BUG_SRBDS:
2762 return srbds_show_state(buf);
2763
2764 case X86_BUG_MMIO_STALE_DATA:
2765 case X86_BUG_MMIO_UNKNOWN:
2766 return mmio_stale_data_show_state(buf);
2767
2768 case X86_BUG_RETBLEED:
2769 return retbleed_show_state(buf);
2770
2771 case X86_BUG_SRSO:
2772 return srso_show_state(buf);
2773
2774 case X86_BUG_GDS:
2775 return gds_show_state(buf);
2776
2777 default:
2778 break;
2779 }
2780
2781 return sysfs_emit(buf, fmt: "Vulnerable\n");
2782}
2783
2784ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2785{
2786 return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2787}
2788
2789ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2790{
2791 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2792}
2793
2794ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2795{
2796 return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2797}
2798
2799ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2800{
2801 return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2802}
2803
2804ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2805{
2806 return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
2807}
2808
2809ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
2810{
2811 return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
2812}
2813
2814ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
2815{
2816 return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
2817}
2818
2819ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
2820{
2821 return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
2822}
2823
2824ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
2825{
2826 return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
2827}
2828
2829ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
2830{
2831 if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2832 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
2833 else
2834 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
2835}
2836
2837ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
2838{
2839 return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
2840}
2841
2842ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf)
2843{
2844 return cpu_show_common(dev, attr, buf, X86_BUG_SRSO);
2845}
2846
2847ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf)
2848{
2849 return cpu_show_common(dev, attr, buf, X86_BUG_GDS);
2850}
2851#endif
2852

source code of linux/arch/x86/kernel/cpu/bugs.c