1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * AMD Memory Encryption Support
4 *
5 * Copyright (C) 2016 Advanced Micro Devices, Inc.
6 *
7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
8 */
9
10#define DISABLE_BRANCH_PROFILING
11
12/*
13 * Since we're dealing with identity mappings, physical and virtual
14 * addresses are the same, so override these defines which are ultimately
15 * used by the headers in misc.h.
16 */
17#define __pa(x) ((unsigned long)(x))
18#define __va(x) ((void *)((unsigned long)(x)))
19
20/*
21 * Special hack: we have to be careful, because no indirections are
22 * allowed here, and paravirt_ops is a kind of one. As it will only run in
23 * baremetal anyway, we just keep it from happening. (This list needs to
24 * be extended when new paravirt and debugging variants are added.)
25 */
26#undef CONFIG_PARAVIRT
27#undef CONFIG_PARAVIRT_XXL
28#undef CONFIG_PARAVIRT_SPINLOCKS
29
30/*
31 * This code runs before CPU feature bits are set. By default, the
32 * pgtable_l5_enabled() function uses bit X86_FEATURE_LA57 to determine if
33 * 5-level paging is active, so that won't work here. USE_EARLY_PGTABLE_L5
34 * is provided to handle this situation and, instead, use a variable that
35 * has been set by the early boot code.
36 */
37#define USE_EARLY_PGTABLE_L5
38
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/mem_encrypt.h>
42#include <linux/cc_platform.h>
43
44#include <asm/setup.h>
45#include <asm/sections.h>
46#include <asm/cmdline.h>
47#include <asm/coco.h>
48#include <asm/sev.h>
49
50#include "mm_internal.h"
51
52#define PGD_FLAGS _KERNPG_TABLE_NOENC
53#define P4D_FLAGS _KERNPG_TABLE_NOENC
54#define PUD_FLAGS _KERNPG_TABLE_NOENC
55#define PMD_FLAGS _KERNPG_TABLE_NOENC
56
57#define PMD_FLAGS_LARGE (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
58
59#define PMD_FLAGS_DEC PMD_FLAGS_LARGE
60#define PMD_FLAGS_DEC_WP ((PMD_FLAGS_DEC & ~_PAGE_LARGE_CACHE_MASK) | \
61 (_PAGE_PAT_LARGE | _PAGE_PWT))
62
63#define PMD_FLAGS_ENC (PMD_FLAGS_LARGE | _PAGE_ENC)
64
65#define PTE_FLAGS (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
66
67#define PTE_FLAGS_DEC PTE_FLAGS
68#define PTE_FLAGS_DEC_WP ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
69 (_PAGE_PAT | _PAGE_PWT))
70
71#define PTE_FLAGS_ENC (PTE_FLAGS | _PAGE_ENC)
72
73struct sme_populate_pgd_data {
74 void *pgtable_area;
75 pgd_t *pgd;
76
77 pmdval_t pmd_flags;
78 pteval_t pte_flags;
79 unsigned long paddr;
80
81 unsigned long vaddr;
82 unsigned long vaddr_end;
83};
84
85/*
86 * This work area lives in the .init.scratch section, which lives outside of
87 * the kernel proper. It is sized to hold the intermediate copy buffer and
88 * more than enough pagetable pages.
89 *
90 * By using this section, the kernel can be encrypted in place and it
91 * avoids any possibility of boot parameters or initramfs images being
92 * placed such that the in-place encryption logic overwrites them. This
93 * section is 2MB aligned to allow for simple pagetable setup using only
94 * PMD entries (see vmlinux.lds.S).
95 */
96static char sme_workarea[2 * PMD_SIZE] __section(".init.scratch");
97
98static char sme_cmdline_arg[] __initdata = "mem_encrypt";
99static char sme_cmdline_on[] __initdata = "on";
100static char sme_cmdline_off[] __initdata = "off";
101
102static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd)
103{
104 unsigned long pgd_start, pgd_end, pgd_size;
105 pgd_t *pgd_p;
106
107 pgd_start = ppd->vaddr & PGDIR_MASK;
108 pgd_end = ppd->vaddr_end & PGDIR_MASK;
109
110 pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
111
112 pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
113
114 memset(pgd_p, 0, pgd_size);
115}
116
117static pud_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
118{
119 pgd_t *pgd;
120 p4d_t *p4d;
121 pud_t *pud;
122 pmd_t *pmd;
123
124 pgd = ppd->pgd + pgd_index(ppd->vaddr);
125 if (pgd_none(pgd: *pgd)) {
126 p4d = ppd->pgtable_area;
127 memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D);
128 ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D;
129 set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d)));
130 }
131
132 p4d = p4d_offset(pgd, address: ppd->vaddr);
133 if (p4d_none(p4d: *p4d)) {
134 pud = ppd->pgtable_area;
135 memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD);
136 ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD;
137 set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud)));
138 }
139
140 pud = pud_offset(p4d, address: ppd->vaddr);
141 if (pud_none(pud: *pud)) {
142 pmd = ppd->pgtable_area;
143 memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD);
144 ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD;
145 set_pud(pud, __pud(PUD_FLAGS | __pa(pmd)));
146 }
147
148 if (pud_large(pud: *pud))
149 return NULL;
150
151 return pud;
152}
153
154static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
155{
156 pud_t *pud;
157 pmd_t *pmd;
158
159 pud = sme_prepare_pgd(ppd);
160 if (!pud)
161 return;
162
163 pmd = pmd_offset(pud, address: ppd->vaddr);
164 if (pmd_large(pte: *pmd))
165 return;
166
167 set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags));
168}
169
170static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd)
171{
172 pud_t *pud;
173 pmd_t *pmd;
174 pte_t *pte;
175
176 pud = sme_prepare_pgd(ppd);
177 if (!pud)
178 return;
179
180 pmd = pmd_offset(pud, address: ppd->vaddr);
181 if (pmd_none(pmd: *pmd)) {
182 pte = ppd->pgtable_area;
183 memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE);
184 ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE;
185 set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte)));
186 }
187
188 if (pmd_large(pte: *pmd))
189 return;
190
191 pte = pte_offset_kernel(pmd, address: ppd->vaddr);
192 if (pte_none(pte: *pte))
193 set_pte(pte, __pte(ppd->paddr | ppd->pte_flags));
194}
195
196static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
197{
198 while (ppd->vaddr < ppd->vaddr_end) {
199 sme_populate_pgd_large(ppd);
200
201 ppd->vaddr += PMD_SIZE;
202 ppd->paddr += PMD_SIZE;
203 }
204}
205
206static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
207{
208 while (ppd->vaddr < ppd->vaddr_end) {
209 sme_populate_pgd(ppd);
210
211 ppd->vaddr += PAGE_SIZE;
212 ppd->paddr += PAGE_SIZE;
213 }
214}
215
216static void __init __sme_map_range(struct sme_populate_pgd_data *ppd,
217 pmdval_t pmd_flags, pteval_t pte_flags)
218{
219 unsigned long vaddr_end;
220
221 ppd->pmd_flags = pmd_flags;
222 ppd->pte_flags = pte_flags;
223
224 /* Save original end value since we modify the struct value */
225 vaddr_end = ppd->vaddr_end;
226
227 /* If start is not 2MB aligned, create PTE entries */
228 ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_SIZE);
229 __sme_map_range_pte(ppd);
230
231 /* Create PMD entries */
232 ppd->vaddr_end = vaddr_end & PMD_MASK;
233 __sme_map_range_pmd(ppd);
234
235 /* If end is not 2MB aligned, create PTE entries */
236 ppd->vaddr_end = vaddr_end;
237 __sme_map_range_pte(ppd);
238}
239
240static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
241{
242 __sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
243}
244
245static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
246{
247 __sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
248}
249
250static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
251{
252 __sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
253}
254
255static unsigned long __init sme_pgtable_calc(unsigned long len)
256{
257 unsigned long entries = 0, tables = 0;
258
259 /*
260 * Perform a relatively simplistic calculation of the pagetable
261 * entries that are needed. Those mappings will be covered mostly
262 * by 2MB PMD entries so we can conservatively calculate the required
263 * number of P4D, PUD and PMD structures needed to perform the
264 * mappings. For mappings that are not 2MB aligned, PTE mappings
265 * would be needed for the start and end portion of the address range
266 * that fall outside of the 2MB alignment. This results in, at most,
267 * two extra pages to hold PTE entries for each range that is mapped.
268 * Incrementing the count for each covers the case where the addresses
269 * cross entries.
270 */
271
272 /* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
273 if (PTRS_PER_P4D > 1)
274 entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D;
275 entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD;
276 entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD;
277 entries += 2 * sizeof(pte_t) * PTRS_PER_PTE;
278
279 /*
280 * Now calculate the added pagetable structures needed to populate
281 * the new pagetables.
282 */
283
284 if (PTRS_PER_P4D > 1)
285 tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D;
286 tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD;
287 tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD;
288
289 return entries + tables;
290}
291
292void __init sme_encrypt_kernel(struct boot_params *bp)
293{
294 unsigned long workarea_start, workarea_end, workarea_len;
295 unsigned long execute_start, execute_end, execute_len;
296 unsigned long kernel_start, kernel_end, kernel_len;
297 unsigned long initrd_start, initrd_end, initrd_len;
298 struct sme_populate_pgd_data ppd;
299 unsigned long pgtable_area_len;
300 unsigned long decrypted_base;
301
302 /*
303 * This is early code, use an open coded check for SME instead of
304 * using cc_platform_has(). This eliminates worries about removing
305 * instrumentation or checking boot_cpu_data in the cc_platform_has()
306 * function.
307 */
308 if (!sme_get_me_mask() || sev_status & MSR_AMD64_SEV_ENABLED)
309 return;
310
311 /*
312 * Prepare for encrypting the kernel and initrd by building new
313 * pagetables with the necessary attributes needed to encrypt the
314 * kernel in place.
315 *
316 * One range of virtual addresses will map the memory occupied
317 * by the kernel and initrd as encrypted.
318 *
319 * Another range of virtual addresses will map the memory occupied
320 * by the kernel and initrd as decrypted and write-protected.
321 *
322 * The use of write-protect attribute will prevent any of the
323 * memory from being cached.
324 */
325
326 /* Physical addresses gives us the identity mapped virtual addresses */
327 kernel_start = __pa_symbol(_text);
328 kernel_end = ALIGN(__pa_symbol(_end), PMD_SIZE);
329 kernel_len = kernel_end - kernel_start;
330
331 initrd_start = 0;
332 initrd_end = 0;
333 initrd_len = 0;
334#ifdef CONFIG_BLK_DEV_INITRD
335 initrd_len = (unsigned long)bp->hdr.ramdisk_size |
336 ((unsigned long)bp->ext_ramdisk_size << 32);
337 if (initrd_len) {
338 initrd_start = (unsigned long)bp->hdr.ramdisk_image |
339 ((unsigned long)bp->ext_ramdisk_image << 32);
340 initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
341 initrd_len = initrd_end - initrd_start;
342 }
343#endif
344
345 /*
346 * We're running identity mapped, so we must obtain the address to the
347 * SME encryption workarea using rip-relative addressing.
348 */
349 asm ("lea sme_workarea(%%rip), %0"
350 : "=r" (workarea_start)
351 : "p" (sme_workarea));
352
353 /*
354 * Calculate required number of workarea bytes needed:
355 * executable encryption area size:
356 * stack page (PAGE_SIZE)
357 * encryption routine page (PAGE_SIZE)
358 * intermediate copy buffer (PMD_SIZE)
359 * pagetable structures for the encryption of the kernel
360 * pagetable structures for workarea (in case not currently mapped)
361 */
362 execute_start = workarea_start;
363 execute_end = execute_start + (PAGE_SIZE * 2) + PMD_SIZE;
364 execute_len = execute_end - execute_start;
365
366 /*
367 * One PGD for both encrypted and decrypted mappings and a set of
368 * PUDs and PMDs for each of the encrypted and decrypted mappings.
369 */
370 pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
371 pgtable_area_len += sme_pgtable_calc(len: execute_end - kernel_start) * 2;
372 if (initrd_len)
373 pgtable_area_len += sme_pgtable_calc(len: initrd_len) * 2;
374
375 /* PUDs and PMDs needed in the current pagetables for the workarea */
376 pgtable_area_len += sme_pgtable_calc(len: execute_len + pgtable_area_len);
377
378 /*
379 * The total workarea includes the executable encryption area and
380 * the pagetable area. The start of the workarea is already 2MB
381 * aligned, align the end of the workarea on a 2MB boundary so that
382 * we don't try to create/allocate PTE entries from the workarea
383 * before it is mapped.
384 */
385 workarea_len = execute_len + pgtable_area_len;
386 workarea_end = ALIGN(workarea_start + workarea_len, PMD_SIZE);
387
388 /*
389 * Set the address to the start of where newly created pagetable
390 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
391 * structures are created when the workarea is added to the current
392 * pagetables and when the new encrypted and decrypted kernel
393 * mappings are populated.
394 */
395 ppd.pgtable_area = (void *)execute_end;
396
397 /*
398 * Make sure the current pagetable structure has entries for
399 * addressing the workarea.
400 */
401 ppd.pgd = (pgd_t *)native_read_cr3_pa();
402 ppd.paddr = workarea_start;
403 ppd.vaddr = workarea_start;
404 ppd.vaddr_end = workarea_end;
405 sme_map_range_decrypted(ppd: &ppd);
406
407 /* Flush the TLB - no globals so cr3 is enough */
408 native_write_cr3(val: __native_read_cr3());
409
410 /*
411 * A new pagetable structure is being built to allow for the kernel
412 * and initrd to be encrypted. It starts with an empty PGD that will
413 * then be populated with new PUDs and PMDs as the encrypted and
414 * decrypted kernel mappings are created.
415 */
416 ppd.pgd = ppd.pgtable_area;
417 memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
418 ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
419
420 /*
421 * A different PGD index/entry must be used to get different
422 * pagetable entries for the decrypted mapping. Choose the next
423 * PGD index and convert it to a virtual address to be used as
424 * the base of the mapping.
425 */
426 decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
427 if (initrd_len) {
428 unsigned long check_base;
429
430 check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
431 decrypted_base = max(decrypted_base, check_base);
432 }
433 decrypted_base <<= PGDIR_SHIFT;
434
435 /* Add encrypted kernel (identity) mappings */
436 ppd.paddr = kernel_start;
437 ppd.vaddr = kernel_start;
438 ppd.vaddr_end = kernel_end;
439 sme_map_range_encrypted(ppd: &ppd);
440
441 /* Add decrypted, write-protected kernel (non-identity) mappings */
442 ppd.paddr = kernel_start;
443 ppd.vaddr = kernel_start + decrypted_base;
444 ppd.vaddr_end = kernel_end + decrypted_base;
445 sme_map_range_decrypted_wp(ppd: &ppd);
446
447 if (initrd_len) {
448 /* Add encrypted initrd (identity) mappings */
449 ppd.paddr = initrd_start;
450 ppd.vaddr = initrd_start;
451 ppd.vaddr_end = initrd_end;
452 sme_map_range_encrypted(ppd: &ppd);
453 /*
454 * Add decrypted, write-protected initrd (non-identity) mappings
455 */
456 ppd.paddr = initrd_start;
457 ppd.vaddr = initrd_start + decrypted_base;
458 ppd.vaddr_end = initrd_end + decrypted_base;
459 sme_map_range_decrypted_wp(ppd: &ppd);
460 }
461
462 /* Add decrypted workarea mappings to both kernel mappings */
463 ppd.paddr = workarea_start;
464 ppd.vaddr = workarea_start;
465 ppd.vaddr_end = workarea_end;
466 sme_map_range_decrypted(ppd: &ppd);
467
468 ppd.paddr = workarea_start;
469 ppd.vaddr = workarea_start + decrypted_base;
470 ppd.vaddr_end = workarea_end + decrypted_base;
471 sme_map_range_decrypted(ppd: &ppd);
472
473 /* Perform the encryption */
474 sme_encrypt_execute(encrypted_kernel_vaddr: kernel_start, decrypted_kernel_vaddr: kernel_start + decrypted_base,
475 kernel_len, encryption_wa: workarea_start, encryption_pgd: (unsigned long)ppd.pgd);
476
477 if (initrd_len)
478 sme_encrypt_execute(encrypted_kernel_vaddr: initrd_start, decrypted_kernel_vaddr: initrd_start + decrypted_base,
479 kernel_len: initrd_len, encryption_wa: workarea_start,
480 encryption_pgd: (unsigned long)ppd.pgd);
481
482 /*
483 * At this point we are running encrypted. Remove the mappings for
484 * the decrypted areas - all that is needed for this is to remove
485 * the PGD entry/entries.
486 */
487 ppd.vaddr = kernel_start + decrypted_base;
488 ppd.vaddr_end = kernel_end + decrypted_base;
489 sme_clear_pgd(ppd: &ppd);
490
491 if (initrd_len) {
492 ppd.vaddr = initrd_start + decrypted_base;
493 ppd.vaddr_end = initrd_end + decrypted_base;
494 sme_clear_pgd(ppd: &ppd);
495 }
496
497 ppd.vaddr = workarea_start + decrypted_base;
498 ppd.vaddr_end = workarea_end + decrypted_base;
499 sme_clear_pgd(ppd: &ppd);
500
501 /* Flush the TLB - no globals so cr3 is enough */
502 native_write_cr3(val: __native_read_cr3());
503}
504
505void __init sme_enable(struct boot_params *bp)
506{
507 const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
508 unsigned int eax, ebx, ecx, edx;
509 unsigned long feature_mask;
510 bool active_by_default;
511 unsigned long me_mask;
512 char buffer[16];
513 bool snp;
514 u64 msr;
515
516 snp = snp_init(bp);
517
518 /* Check for the SME/SEV support leaf */
519 eax = 0x80000000;
520 ecx = 0;
521 native_cpuid(eax: &eax, ebx: &ebx, ecx: &ecx, edx: &edx);
522 if (eax < 0x8000001f)
523 return;
524
525#define AMD_SME_BIT BIT(0)
526#define AMD_SEV_BIT BIT(1)
527
528 /*
529 * Check for the SME/SEV feature:
530 * CPUID Fn8000_001F[EAX]
531 * - Bit 0 - Secure Memory Encryption support
532 * - Bit 1 - Secure Encrypted Virtualization support
533 * CPUID Fn8000_001F[EBX]
534 * - Bits 5:0 - Pagetable bit position used to indicate encryption
535 */
536 eax = 0x8000001f;
537 ecx = 0;
538 native_cpuid(eax: &eax, ebx: &ebx, ecx: &ecx, edx: &edx);
539 /* Check whether SEV or SME is supported */
540 if (!(eax & (AMD_SEV_BIT | AMD_SME_BIT)))
541 return;
542
543 me_mask = 1UL << (ebx & 0x3f);
544
545 /* Check the SEV MSR whether SEV or SME is enabled */
546 sev_status = __rdmsr(MSR_AMD64_SEV);
547 feature_mask = (sev_status & MSR_AMD64_SEV_ENABLED) ? AMD_SEV_BIT : AMD_SME_BIT;
548
549 /* The SEV-SNP CC blob should never be present unless SEV-SNP is enabled. */
550 if (snp && !(sev_status & MSR_AMD64_SEV_SNP_ENABLED))
551 snp_abort();
552
553 /* Check if memory encryption is enabled */
554 if (feature_mask == AMD_SME_BIT) {
555 /*
556 * No SME if Hypervisor bit is set. This check is here to
557 * prevent a guest from trying to enable SME. For running as a
558 * KVM guest the MSR_AMD64_SYSCFG will be sufficient, but there
559 * might be other hypervisors which emulate that MSR as non-zero
560 * or even pass it through to the guest.
561 * A malicious hypervisor can still trick a guest into this
562 * path, but there is no way to protect against that.
563 */
564 eax = 1;
565 ecx = 0;
566 native_cpuid(eax: &eax, ebx: &ebx, ecx: &ecx, edx: &edx);
567 if (ecx & BIT(31))
568 return;
569
570 /* For SME, check the SYSCFG MSR */
571 msr = __rdmsr(MSR_AMD64_SYSCFG);
572 if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
573 return;
574 } else {
575 /* SEV state cannot be controlled by a command line option */
576 sme_me_mask = me_mask;
577 goto out;
578 }
579
580 /*
581 * Fixups have not been applied to phys_base yet and we're running
582 * identity mapped, so we must obtain the address to the SME command
583 * line argument data using rip-relative addressing.
584 */
585 asm ("lea sme_cmdline_arg(%%rip), %0"
586 : "=r" (cmdline_arg)
587 : "p" (sme_cmdline_arg));
588 asm ("lea sme_cmdline_on(%%rip), %0"
589 : "=r" (cmdline_on)
590 : "p" (sme_cmdline_on));
591 asm ("lea sme_cmdline_off(%%rip), %0"
592 : "=r" (cmdline_off)
593 : "p" (sme_cmdline_off));
594
595 if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
596 active_by_default = true;
597 else
598 active_by_default = false;
599
600 cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
601 ((u64)bp->ext_cmd_line_ptr << 32));
602
603 if (cmdline_find_option(cmdline_ptr, option: cmdline_arg, buffer, bufsize: sizeof(buffer)) < 0)
604 return;
605
606 if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
607 sme_me_mask = me_mask;
608 else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
609 sme_me_mask = 0;
610 else
611 sme_me_mask = active_by_default ? me_mask : 0;
612out:
613 if (sme_me_mask) {
614 physical_mask &= ~sme_me_mask;
615 cc_vendor = CC_VENDOR_AMD;
616 cc_set_mask(mask: sme_me_mask);
617 }
618}
619

source code of linux/arch/x86/mm/mem_encrypt_identity.c