1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright 2020 Xillybus Ltd, http://xillybus.com
4 *
5 * Driver for the XillyUSB FPGA/host framework.
6 *
7 * This driver interfaces with a special IP core in an FPGA, setting up
8 * a pipe between a hardware FIFO in the programmable logic and a device
9 * file in the host. The number of such pipes and their attributes are
10 * set up on the logic. This driver detects these automatically and
11 * creates the device files accordingly.
12 */
13
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/list.h>
17#include <linux/device.h>
18#include <linux/module.h>
19#include <asm/byteorder.h>
20#include <linux/io.h>
21#include <linux/interrupt.h>
22#include <linux/sched.h>
23#include <linux/fs.h>
24#include <linux/spinlock.h>
25#include <linux/mutex.h>
26#include <linux/workqueue.h>
27#include <linux/crc32.h>
28#include <linux/poll.h>
29#include <linux/delay.h>
30#include <linux/usb.h>
31
32#include "xillybus_class.h"
33
34MODULE_DESCRIPTION("Driver for XillyUSB FPGA IP Core");
35MODULE_AUTHOR("Eli Billauer, Xillybus Ltd.");
36MODULE_ALIAS("xillyusb");
37MODULE_LICENSE("GPL v2");
38
39#define XILLY_RX_TIMEOUT (10 * HZ / 1000)
40#define XILLY_RESPONSE_TIMEOUT (500 * HZ / 1000)
41
42#define BUF_SIZE_ORDER 4
43#define BUFNUM 8
44#define LOG2_IDT_FIFO_SIZE 16
45#define LOG2_INITIAL_FIFO_BUF_SIZE 16
46
47#define MSG_EP_NUM 1
48#define IN_EP_NUM 1
49
50static const char xillyname[] = "xillyusb";
51
52static unsigned int fifo_buf_order;
53
54#define USB_VENDOR_ID_XILINX 0x03fd
55#define USB_VENDOR_ID_ALTERA 0x09fb
56
57#define USB_PRODUCT_ID_XILLYUSB 0xebbe
58
59static const struct usb_device_id xillyusb_table[] = {
60 { USB_DEVICE(USB_VENDOR_ID_XILINX, USB_PRODUCT_ID_XILLYUSB) },
61 { USB_DEVICE(USB_VENDOR_ID_ALTERA, USB_PRODUCT_ID_XILLYUSB) },
62 { }
63};
64
65MODULE_DEVICE_TABLE(usb, xillyusb_table);
66
67struct xillyusb_dev;
68
69struct xillyfifo {
70 unsigned int bufsize; /* In bytes, always a power of 2 */
71 unsigned int bufnum;
72 unsigned int size; /* Lazy: Equals bufsize * bufnum */
73 unsigned int buf_order;
74
75 int fill; /* Number of bytes in the FIFO */
76 spinlock_t lock;
77 wait_queue_head_t waitq;
78
79 unsigned int readpos;
80 unsigned int readbuf;
81 unsigned int writepos;
82 unsigned int writebuf;
83 char **mem;
84};
85
86struct xillyusb_channel;
87
88struct xillyusb_endpoint {
89 struct xillyusb_dev *xdev;
90
91 struct mutex ep_mutex; /* serialize operations on endpoint */
92
93 struct list_head buffers;
94 struct list_head filled_buffers;
95 spinlock_t buffers_lock; /* protect these two lists */
96
97 unsigned int order;
98 unsigned int buffer_size;
99
100 unsigned int fill_mask;
101
102 int outstanding_urbs;
103
104 struct usb_anchor anchor;
105
106 struct xillyfifo fifo;
107
108 struct work_struct workitem;
109
110 bool shutting_down;
111 bool drained;
112 bool wake_on_drain;
113
114 u8 ep_num;
115};
116
117struct xillyusb_channel {
118 struct xillyusb_dev *xdev;
119
120 struct xillyfifo *in_fifo;
121 struct xillyusb_endpoint *out_ep;
122 struct mutex lock; /* protect @out_ep, @in_fifo, bit fields below */
123
124 struct mutex in_mutex; /* serialize fops on FPGA to host stream */
125 struct mutex out_mutex; /* serialize fops on host to FPGA stream */
126 wait_queue_head_t flushq;
127
128 int chan_idx;
129
130 u32 in_consumed_bytes;
131 u32 in_current_checkpoint;
132 u32 out_bytes;
133
134 unsigned int in_log2_element_size;
135 unsigned int out_log2_element_size;
136 unsigned int in_log2_fifo_size;
137 unsigned int out_log2_fifo_size;
138
139 unsigned int read_data_ok; /* EOF not arrived (yet) */
140 unsigned int poll_used;
141 unsigned int flushing;
142 unsigned int flushed;
143 unsigned int canceled;
144
145 /* Bit fields protected by @lock except for initialization */
146 unsigned readable:1;
147 unsigned writable:1;
148 unsigned open_for_read:1;
149 unsigned open_for_write:1;
150 unsigned in_synchronous:1;
151 unsigned out_synchronous:1;
152 unsigned in_seekable:1;
153 unsigned out_seekable:1;
154};
155
156struct xillybuffer {
157 struct list_head entry;
158 struct xillyusb_endpoint *ep;
159 void *buf;
160 unsigned int len;
161};
162
163struct xillyusb_dev {
164 struct xillyusb_channel *channels;
165
166 struct usb_device *udev;
167 struct device *dev; /* For dev_err() and such */
168 struct kref kref;
169 struct workqueue_struct *workq;
170
171 int error;
172 spinlock_t error_lock; /* protect @error */
173 struct work_struct wakeup_workitem;
174
175 int num_channels;
176
177 struct xillyusb_endpoint *msg_ep;
178 struct xillyusb_endpoint *in_ep;
179
180 struct mutex msg_mutex; /* serialize opcode transmission */
181 int in_bytes_left;
182 int leftover_chan_num;
183 unsigned int in_counter;
184 struct mutex process_in_mutex; /* synchronize wakeup_all() */
185};
186
187/*
188 * kref_mutex is used in xillyusb_open() to prevent the xillyusb_dev
189 * struct from being freed during the gap between being found by
190 * xillybus_find_inode() and having its reference count incremented.
191 */
192
193static DEFINE_MUTEX(kref_mutex);
194
195/* FPGA to host opcodes */
196enum {
197 OPCODE_DATA = 0,
198 OPCODE_QUIESCE_ACK = 1,
199 OPCODE_EOF = 2,
200 OPCODE_REACHED_CHECKPOINT = 3,
201 OPCODE_CANCELED_CHECKPOINT = 4,
202};
203
204/* Host to FPGA opcodes */
205enum {
206 OPCODE_QUIESCE = 0,
207 OPCODE_REQ_IDT = 1,
208 OPCODE_SET_CHECKPOINT = 2,
209 OPCODE_CLOSE = 3,
210 OPCODE_SET_PUSH = 4,
211 OPCODE_UPDATE_PUSH = 5,
212 OPCODE_CANCEL_CHECKPOINT = 6,
213 OPCODE_SET_ADDR = 7,
214};
215
216/*
217 * fifo_write() and fifo_read() are NOT reentrant (i.e. concurrent multiple
218 * calls to each on the same FIFO is not allowed) however it's OK to have
219 * threads calling each of the two functions once on the same FIFO, and
220 * at the same time.
221 */
222
223static int fifo_write(struct xillyfifo *fifo,
224 const void *data, unsigned int len,
225 int (*copier)(void *, const void *, int))
226{
227 unsigned int done = 0;
228 unsigned int todo = len;
229 unsigned int nmax;
230 unsigned int writepos = fifo->writepos;
231 unsigned int writebuf = fifo->writebuf;
232 unsigned long flags;
233 int rc;
234
235 nmax = fifo->size - READ_ONCE(fifo->fill);
236
237 while (1) {
238 unsigned int nrail = fifo->bufsize - writepos;
239 unsigned int n = min(todo, nmax);
240
241 if (n == 0) {
242 spin_lock_irqsave(&fifo->lock, flags);
243 fifo->fill += done;
244 spin_unlock_irqrestore(lock: &fifo->lock, flags);
245
246 fifo->writepos = writepos;
247 fifo->writebuf = writebuf;
248
249 return done;
250 }
251
252 if (n > nrail)
253 n = nrail;
254
255 rc = (*copier)(fifo->mem[writebuf] + writepos, data + done, n);
256
257 if (rc)
258 return rc;
259
260 done += n;
261 todo -= n;
262
263 writepos += n;
264 nmax -= n;
265
266 if (writepos == fifo->bufsize) {
267 writepos = 0;
268 writebuf++;
269
270 if (writebuf == fifo->bufnum)
271 writebuf = 0;
272 }
273 }
274}
275
276static int fifo_read(struct xillyfifo *fifo,
277 void *data, unsigned int len,
278 int (*copier)(void *, const void *, int))
279{
280 unsigned int done = 0;
281 unsigned int todo = len;
282 unsigned int fill;
283 unsigned int readpos = fifo->readpos;
284 unsigned int readbuf = fifo->readbuf;
285 unsigned long flags;
286 int rc;
287
288 /*
289 * The spinlock here is necessary, because otherwise fifo->fill
290 * could have been increased by fifo_write() after writing data
291 * to the buffer, but this data would potentially not have been
292 * visible on this thread at the time the updated fifo->fill was.
293 * That could lead to reading invalid data.
294 */
295
296 spin_lock_irqsave(&fifo->lock, flags);
297 fill = fifo->fill;
298 spin_unlock_irqrestore(lock: &fifo->lock, flags);
299
300 while (1) {
301 unsigned int nrail = fifo->bufsize - readpos;
302 unsigned int n = min(todo, fill);
303
304 if (n == 0) {
305 spin_lock_irqsave(&fifo->lock, flags);
306 fifo->fill -= done;
307 spin_unlock_irqrestore(lock: &fifo->lock, flags);
308
309 fifo->readpos = readpos;
310 fifo->readbuf = readbuf;
311
312 return done;
313 }
314
315 if (n > nrail)
316 n = nrail;
317
318 rc = (*copier)(data + done, fifo->mem[readbuf] + readpos, n);
319
320 if (rc)
321 return rc;
322
323 done += n;
324 todo -= n;
325
326 readpos += n;
327 fill -= n;
328
329 if (readpos == fifo->bufsize) {
330 readpos = 0;
331 readbuf++;
332
333 if (readbuf == fifo->bufnum)
334 readbuf = 0;
335 }
336 }
337}
338
339/*
340 * These three wrapper functions are used as the @copier argument to
341 * fifo_write() and fifo_read(), so that they can work directly with
342 * user memory as well.
343 */
344
345static int xilly_copy_from_user(void *dst, const void *src, int n)
346{
347 if (copy_from_user(to: dst, from: (const void __user *)src, n))
348 return -EFAULT;
349
350 return 0;
351}
352
353static int xilly_copy_to_user(void *dst, const void *src, int n)
354{
355 if (copy_to_user(to: (void __user *)dst, from: src, n))
356 return -EFAULT;
357
358 return 0;
359}
360
361static int xilly_memcpy(void *dst, const void *src, int n)
362{
363 memcpy(dst, src, n);
364
365 return 0;
366}
367
368static int fifo_init(struct xillyfifo *fifo,
369 unsigned int log2_size)
370{
371 unsigned int log2_bufnum;
372 unsigned int buf_order;
373 int i;
374
375 unsigned int log2_fifo_buf_size;
376
377retry:
378 log2_fifo_buf_size = fifo_buf_order + PAGE_SHIFT;
379
380 if (log2_size > log2_fifo_buf_size) {
381 log2_bufnum = log2_size - log2_fifo_buf_size;
382 buf_order = fifo_buf_order;
383 fifo->bufsize = 1 << log2_fifo_buf_size;
384 } else {
385 log2_bufnum = 0;
386 buf_order = (log2_size > PAGE_SHIFT) ?
387 log2_size - PAGE_SHIFT : 0;
388 fifo->bufsize = 1 << log2_size;
389 }
390
391 fifo->bufnum = 1 << log2_bufnum;
392 fifo->size = fifo->bufnum * fifo->bufsize;
393 fifo->buf_order = buf_order;
394
395 fifo->mem = kmalloc_array(n: fifo->bufnum, size: sizeof(void *), GFP_KERNEL);
396
397 if (!fifo->mem)
398 return -ENOMEM;
399
400 for (i = 0; i < fifo->bufnum; i++) {
401 fifo->mem[i] = (void *)
402 __get_free_pages(GFP_KERNEL, order: buf_order);
403
404 if (!fifo->mem[i])
405 goto memfail;
406 }
407
408 fifo->fill = 0;
409 fifo->readpos = 0;
410 fifo->readbuf = 0;
411 fifo->writepos = 0;
412 fifo->writebuf = 0;
413 spin_lock_init(&fifo->lock);
414 init_waitqueue_head(&fifo->waitq);
415 return 0;
416
417memfail:
418 for (i--; i >= 0; i--)
419 free_pages(addr: (unsigned long)fifo->mem[i], order: buf_order);
420
421 kfree(objp: fifo->mem);
422 fifo->mem = NULL;
423
424 if (fifo_buf_order) {
425 fifo_buf_order--;
426 goto retry;
427 } else {
428 return -ENOMEM;
429 }
430}
431
432static void fifo_mem_release(struct xillyfifo *fifo)
433{
434 int i;
435
436 if (!fifo->mem)
437 return;
438
439 for (i = 0; i < fifo->bufnum; i++)
440 free_pages(addr: (unsigned long)fifo->mem[i], order: fifo->buf_order);
441
442 kfree(objp: fifo->mem);
443}
444
445/*
446 * When endpoint_quiesce() returns, the endpoint has no URBs submitted,
447 * won't accept any new URB submissions, and its related work item doesn't
448 * and won't run anymore.
449 */
450
451static void endpoint_quiesce(struct xillyusb_endpoint *ep)
452{
453 mutex_lock(&ep->ep_mutex);
454 ep->shutting_down = true;
455 mutex_unlock(lock: &ep->ep_mutex);
456
457 usb_kill_anchored_urbs(anchor: &ep->anchor);
458 cancel_work_sync(work: &ep->workitem);
459}
460
461/*
462 * Note that endpoint_dealloc() also frees fifo memory (if allocated), even
463 * though endpoint_alloc doesn't allocate that memory.
464 */
465
466static void endpoint_dealloc(struct xillyusb_endpoint *ep)
467{
468 struct list_head *this, *next;
469
470 fifo_mem_release(fifo: &ep->fifo);
471
472 /* Join @filled_buffers with @buffers to free these entries too */
473 list_splice(list: &ep->filled_buffers, head: &ep->buffers);
474
475 list_for_each_safe(this, next, &ep->buffers) {
476 struct xillybuffer *xb =
477 list_entry(this, struct xillybuffer, entry);
478
479 free_pages(addr: (unsigned long)xb->buf, order: ep->order);
480 kfree(objp: xb);
481 }
482
483 kfree(objp: ep);
484}
485
486static struct xillyusb_endpoint
487*endpoint_alloc(struct xillyusb_dev *xdev,
488 u8 ep_num,
489 void (*work)(struct work_struct *),
490 unsigned int order,
491 int bufnum)
492{
493 int i;
494
495 struct xillyusb_endpoint *ep;
496
497 ep = kzalloc(size: sizeof(*ep), GFP_KERNEL);
498
499 if (!ep)
500 return NULL;
501
502 INIT_LIST_HEAD(list: &ep->buffers);
503 INIT_LIST_HEAD(list: &ep->filled_buffers);
504
505 spin_lock_init(&ep->buffers_lock);
506 mutex_init(&ep->ep_mutex);
507
508 init_usb_anchor(anchor: &ep->anchor);
509 INIT_WORK(&ep->workitem, work);
510
511 ep->order = order;
512 ep->buffer_size = 1 << (PAGE_SHIFT + order);
513 ep->outstanding_urbs = 0;
514 ep->drained = true;
515 ep->wake_on_drain = false;
516 ep->xdev = xdev;
517 ep->ep_num = ep_num;
518 ep->shutting_down = false;
519
520 for (i = 0; i < bufnum; i++) {
521 struct xillybuffer *xb;
522 unsigned long addr;
523
524 xb = kzalloc(size: sizeof(*xb), GFP_KERNEL);
525
526 if (!xb) {
527 endpoint_dealloc(ep);
528 return NULL;
529 }
530
531 addr = __get_free_pages(GFP_KERNEL, order);
532
533 if (!addr) {
534 kfree(objp: xb);
535 endpoint_dealloc(ep);
536 return NULL;
537 }
538
539 xb->buf = (void *)addr;
540 xb->ep = ep;
541 list_add_tail(new: &xb->entry, head: &ep->buffers);
542 }
543 return ep;
544}
545
546static void cleanup_dev(struct kref *kref)
547{
548 struct xillyusb_dev *xdev =
549 container_of(kref, struct xillyusb_dev, kref);
550
551 if (xdev->in_ep)
552 endpoint_dealloc(ep: xdev->in_ep);
553
554 if (xdev->msg_ep)
555 endpoint_dealloc(ep: xdev->msg_ep);
556
557 if (xdev->workq)
558 destroy_workqueue(wq: xdev->workq);
559
560 usb_put_dev(dev: xdev->udev);
561 kfree(objp: xdev->channels); /* Argument may be NULL, and that's fine */
562 kfree(objp: xdev);
563}
564
565/*
566 * @process_in_mutex is taken to ensure that bulk_in_work() won't call
567 * process_bulk_in() after wakeup_all()'s execution: The latter zeroes all
568 * @read_data_ok entries, which will make process_bulk_in() report false
569 * errors if executed. The mechanism relies on that xdev->error is assigned
570 * a non-zero value by report_io_error() prior to queueing wakeup_all(),
571 * which prevents bulk_in_work() from calling process_bulk_in().
572 *
573 * The fact that wakeup_all() and bulk_in_work() are queued on the same
574 * workqueue makes their concurrent execution very unlikely, however the
575 * kernel's API doesn't seem to ensure this strictly.
576 */
577
578static void wakeup_all(struct work_struct *work)
579{
580 int i;
581 struct xillyusb_dev *xdev = container_of(work, struct xillyusb_dev,
582 wakeup_workitem);
583
584 mutex_lock(&xdev->process_in_mutex);
585
586 for (i = 0; i < xdev->num_channels; i++) {
587 struct xillyusb_channel *chan = &xdev->channels[i];
588
589 mutex_lock(&chan->lock);
590
591 if (chan->in_fifo) {
592 /*
593 * Fake an EOF: Even if such arrives, it won't be
594 * processed.
595 */
596 chan->read_data_ok = 0;
597 wake_up_interruptible(&chan->in_fifo->waitq);
598 }
599
600 if (chan->out_ep)
601 wake_up_interruptible(&chan->out_ep->fifo.waitq);
602
603 mutex_unlock(lock: &chan->lock);
604
605 wake_up_interruptible(&chan->flushq);
606 }
607
608 mutex_unlock(lock: &xdev->process_in_mutex);
609
610 wake_up_interruptible(&xdev->msg_ep->fifo.waitq);
611
612 kref_put(kref: &xdev->kref, release: cleanup_dev);
613}
614
615static void report_io_error(struct xillyusb_dev *xdev,
616 int errcode)
617{
618 unsigned long flags;
619 bool do_once = false;
620
621 spin_lock_irqsave(&xdev->error_lock, flags);
622 if (!xdev->error) {
623 xdev->error = errcode;
624 do_once = true;
625 }
626 spin_unlock_irqrestore(lock: &xdev->error_lock, flags);
627
628 if (do_once) {
629 kref_get(kref: &xdev->kref); /* xdev is used by work item */
630 queue_work(wq: xdev->workq, work: &xdev->wakeup_workitem);
631 }
632}
633
634/*
635 * safely_assign_in_fifo() changes the value of chan->in_fifo and ensures
636 * the previous pointer is never used after its return.
637 */
638
639static void safely_assign_in_fifo(struct xillyusb_channel *chan,
640 struct xillyfifo *fifo)
641{
642 mutex_lock(&chan->lock);
643 chan->in_fifo = fifo;
644 mutex_unlock(lock: &chan->lock);
645
646 flush_work(work: &chan->xdev->in_ep->workitem);
647}
648
649static void bulk_in_completer(struct urb *urb)
650{
651 struct xillybuffer *xb = urb->context;
652 struct xillyusb_endpoint *ep = xb->ep;
653 unsigned long flags;
654
655 if (urb->status) {
656 if (!(urb->status == -ENOENT ||
657 urb->status == -ECONNRESET ||
658 urb->status == -ESHUTDOWN))
659 report_io_error(xdev: ep->xdev, errcode: -EIO);
660
661 spin_lock_irqsave(&ep->buffers_lock, flags);
662 list_add_tail(new: &xb->entry, head: &ep->buffers);
663 ep->outstanding_urbs--;
664 spin_unlock_irqrestore(lock: &ep->buffers_lock, flags);
665
666 return;
667 }
668
669 xb->len = urb->actual_length;
670
671 spin_lock_irqsave(&ep->buffers_lock, flags);
672 list_add_tail(new: &xb->entry, head: &ep->filled_buffers);
673 spin_unlock_irqrestore(lock: &ep->buffers_lock, flags);
674
675 if (!ep->shutting_down)
676 queue_work(wq: ep->xdev->workq, work: &ep->workitem);
677}
678
679static void bulk_out_completer(struct urb *urb)
680{
681 struct xillybuffer *xb = urb->context;
682 struct xillyusb_endpoint *ep = xb->ep;
683 unsigned long flags;
684
685 if (urb->status &&
686 (!(urb->status == -ENOENT ||
687 urb->status == -ECONNRESET ||
688 urb->status == -ESHUTDOWN)))
689 report_io_error(xdev: ep->xdev, errcode: -EIO);
690
691 spin_lock_irqsave(&ep->buffers_lock, flags);
692 list_add_tail(new: &xb->entry, head: &ep->buffers);
693 ep->outstanding_urbs--;
694 spin_unlock_irqrestore(lock: &ep->buffers_lock, flags);
695
696 if (!ep->shutting_down)
697 queue_work(wq: ep->xdev->workq, work: &ep->workitem);
698}
699
700static void try_queue_bulk_in(struct xillyusb_endpoint *ep)
701{
702 struct xillyusb_dev *xdev = ep->xdev;
703 struct xillybuffer *xb;
704 struct urb *urb;
705
706 int rc;
707 unsigned long flags;
708 unsigned int bufsize = ep->buffer_size;
709
710 mutex_lock(&ep->ep_mutex);
711
712 if (ep->shutting_down || xdev->error)
713 goto done;
714
715 while (1) {
716 spin_lock_irqsave(&ep->buffers_lock, flags);
717
718 if (list_empty(head: &ep->buffers)) {
719 spin_unlock_irqrestore(lock: &ep->buffers_lock, flags);
720 goto done;
721 }
722
723 xb = list_first_entry(&ep->buffers, struct xillybuffer, entry);
724 list_del(entry: &xb->entry);
725 ep->outstanding_urbs++;
726
727 spin_unlock_irqrestore(lock: &ep->buffers_lock, flags);
728
729 urb = usb_alloc_urb(iso_packets: 0, GFP_KERNEL);
730 if (!urb) {
731 report_io_error(xdev, errcode: -ENOMEM);
732 goto relist;
733 }
734
735 usb_fill_bulk_urb(urb, dev: xdev->udev,
736 usb_rcvbulkpipe(xdev->udev, ep->ep_num),
737 transfer_buffer: xb->buf, buffer_length: bufsize, complete_fn: bulk_in_completer, context: xb);
738
739 usb_anchor_urb(urb, anchor: &ep->anchor);
740
741 rc = usb_submit_urb(urb, GFP_KERNEL);
742
743 if (rc) {
744 report_io_error(xdev, errcode: (rc == -ENOMEM) ? -ENOMEM :
745 -EIO);
746 goto unanchor;
747 }
748
749 usb_free_urb(urb); /* This just decrements reference count */
750 }
751
752unanchor:
753 usb_unanchor_urb(urb);
754 usb_free_urb(urb);
755
756relist:
757 spin_lock_irqsave(&ep->buffers_lock, flags);
758 list_add_tail(new: &xb->entry, head: &ep->buffers);
759 ep->outstanding_urbs--;
760 spin_unlock_irqrestore(lock: &ep->buffers_lock, flags);
761
762done:
763 mutex_unlock(lock: &ep->ep_mutex);
764}
765
766static void try_queue_bulk_out(struct xillyusb_endpoint *ep)
767{
768 struct xillyfifo *fifo = &ep->fifo;
769 struct xillyusb_dev *xdev = ep->xdev;
770 struct xillybuffer *xb;
771 struct urb *urb;
772
773 int rc;
774 unsigned int fill;
775 unsigned long flags;
776 bool do_wake = false;
777
778 mutex_lock(&ep->ep_mutex);
779
780 if (ep->shutting_down || xdev->error)
781 goto done;
782
783 fill = READ_ONCE(fifo->fill) & ep->fill_mask;
784
785 while (1) {
786 int count;
787 unsigned int max_read;
788
789 spin_lock_irqsave(&ep->buffers_lock, flags);
790
791 /*
792 * Race conditions might have the FIFO filled while the
793 * endpoint is marked as drained here. That doesn't matter,
794 * because the sole purpose of @drained is to ensure that
795 * certain data has been sent on the USB channel before
796 * shutting it down. Hence knowing that the FIFO appears
797 * to be empty with no outstanding URBs at some moment
798 * is good enough.
799 */
800
801 if (!fill) {
802 ep->drained = !ep->outstanding_urbs;
803 if (ep->drained && ep->wake_on_drain)
804 do_wake = true;
805
806 spin_unlock_irqrestore(lock: &ep->buffers_lock, flags);
807 goto done;
808 }
809
810 ep->drained = false;
811
812 if ((fill < ep->buffer_size && ep->outstanding_urbs) ||
813 list_empty(head: &ep->buffers)) {
814 spin_unlock_irqrestore(lock: &ep->buffers_lock, flags);
815 goto done;
816 }
817
818 xb = list_first_entry(&ep->buffers, struct xillybuffer, entry);
819 list_del(entry: &xb->entry);
820 ep->outstanding_urbs++;
821
822 spin_unlock_irqrestore(lock: &ep->buffers_lock, flags);
823
824 max_read = min(fill, ep->buffer_size);
825
826 count = fifo_read(fifo: &ep->fifo, data: xb->buf, len: max_read, copier: xilly_memcpy);
827
828 /*
829 * xilly_memcpy always returns 0 => fifo_read can't fail =>
830 * count > 0
831 */
832
833 urb = usb_alloc_urb(iso_packets: 0, GFP_KERNEL);
834 if (!urb) {
835 report_io_error(xdev, errcode: -ENOMEM);
836 goto relist;
837 }
838
839 usb_fill_bulk_urb(urb, dev: xdev->udev,
840 usb_sndbulkpipe(xdev->udev, ep->ep_num),
841 transfer_buffer: xb->buf, buffer_length: count, complete_fn: bulk_out_completer, context: xb);
842
843 usb_anchor_urb(urb, anchor: &ep->anchor);
844
845 rc = usb_submit_urb(urb, GFP_KERNEL);
846
847 if (rc) {
848 report_io_error(xdev, errcode: (rc == -ENOMEM) ? -ENOMEM :
849 -EIO);
850 goto unanchor;
851 }
852
853 usb_free_urb(urb); /* This just decrements reference count */
854
855 fill -= count;
856 do_wake = true;
857 }
858
859unanchor:
860 usb_unanchor_urb(urb);
861 usb_free_urb(urb);
862
863relist:
864 spin_lock_irqsave(&ep->buffers_lock, flags);
865 list_add_tail(new: &xb->entry, head: &ep->buffers);
866 ep->outstanding_urbs--;
867 spin_unlock_irqrestore(lock: &ep->buffers_lock, flags);
868
869done:
870 mutex_unlock(lock: &ep->ep_mutex);
871
872 if (do_wake)
873 wake_up_interruptible(&fifo->waitq);
874}
875
876static void bulk_out_work(struct work_struct *work)
877{
878 struct xillyusb_endpoint *ep = container_of(work,
879 struct xillyusb_endpoint,
880 workitem);
881 try_queue_bulk_out(ep);
882}
883
884static int process_in_opcode(struct xillyusb_dev *xdev,
885 int opcode,
886 int chan_num)
887{
888 struct xillyusb_channel *chan;
889 struct device *dev = xdev->dev;
890 int chan_idx = chan_num >> 1;
891
892 if (chan_idx >= xdev->num_channels) {
893 dev_err(dev, "Received illegal channel ID %d from FPGA\n",
894 chan_num);
895 return -EIO;
896 }
897
898 chan = &xdev->channels[chan_idx];
899
900 switch (opcode) {
901 case OPCODE_EOF:
902 if (!chan->read_data_ok) {
903 dev_err(dev, "Received unexpected EOF for channel %d\n",
904 chan_num);
905 return -EIO;
906 }
907
908 /*
909 * A write memory barrier ensures that the FIFO's fill level
910 * is visible before read_data_ok turns zero, so the data in
911 * the FIFO isn't missed by the consumer.
912 */
913 smp_wmb();
914 WRITE_ONCE(chan->read_data_ok, 0);
915 wake_up_interruptible(&chan->in_fifo->waitq);
916 break;
917
918 case OPCODE_REACHED_CHECKPOINT:
919 chan->flushing = 0;
920 wake_up_interruptible(&chan->flushq);
921 break;
922
923 case OPCODE_CANCELED_CHECKPOINT:
924 chan->canceled = 1;
925 wake_up_interruptible(&chan->flushq);
926 break;
927
928 default:
929 dev_err(dev, "Received illegal opcode %d from FPGA\n",
930 opcode);
931 return -EIO;
932 }
933
934 return 0;
935}
936
937static int process_bulk_in(struct xillybuffer *xb)
938{
939 struct xillyusb_endpoint *ep = xb->ep;
940 struct xillyusb_dev *xdev = ep->xdev;
941 struct device *dev = xdev->dev;
942 int dws = xb->len >> 2;
943 __le32 *p = xb->buf;
944 u32 ctrlword;
945 struct xillyusb_channel *chan;
946 struct xillyfifo *fifo;
947 int chan_num = 0, opcode;
948 int chan_idx;
949 int bytes, count, dwconsume;
950 int in_bytes_left = 0;
951 int rc;
952
953 if ((dws << 2) != xb->len) {
954 dev_err(dev, "Received BULK IN transfer with %d bytes, not a multiple of 4\n",
955 xb->len);
956 return -EIO;
957 }
958
959 if (xdev->in_bytes_left) {
960 bytes = min(xdev->in_bytes_left, dws << 2);
961 in_bytes_left = xdev->in_bytes_left - bytes;
962 chan_num = xdev->leftover_chan_num;
963 goto resume_leftovers;
964 }
965
966 while (dws) {
967 ctrlword = le32_to_cpu(*p++);
968 dws--;
969
970 chan_num = ctrlword & 0xfff;
971 count = (ctrlword >> 12) & 0x3ff;
972 opcode = (ctrlword >> 24) & 0xf;
973
974 if (opcode != OPCODE_DATA) {
975 unsigned int in_counter = xdev->in_counter++ & 0x3ff;
976
977 if (count != in_counter) {
978 dev_err(dev, "Expected opcode counter %d, got %d\n",
979 in_counter, count);
980 return -EIO;
981 }
982
983 rc = process_in_opcode(xdev, opcode, chan_num);
984
985 if (rc)
986 return rc;
987
988 continue;
989 }
990
991 bytes = min(count + 1, dws << 2);
992 in_bytes_left = count + 1 - bytes;
993
994resume_leftovers:
995 chan_idx = chan_num >> 1;
996
997 if (!(chan_num & 1) || chan_idx >= xdev->num_channels ||
998 !xdev->channels[chan_idx].read_data_ok) {
999 dev_err(dev, "Received illegal channel ID %d from FPGA\n",
1000 chan_num);
1001 return -EIO;
1002 }
1003 chan = &xdev->channels[chan_idx];
1004
1005 fifo = chan->in_fifo;
1006
1007 if (unlikely(!fifo))
1008 return -EIO; /* We got really unexpected data */
1009
1010 if (bytes != fifo_write(fifo, data: p, len: bytes, copier: xilly_memcpy)) {
1011 dev_err(dev, "Misbehaving FPGA overflowed an upstream FIFO!\n");
1012 return -EIO;
1013 }
1014
1015 wake_up_interruptible(&fifo->waitq);
1016
1017 dwconsume = (bytes + 3) >> 2;
1018 dws -= dwconsume;
1019 p += dwconsume;
1020 }
1021
1022 xdev->in_bytes_left = in_bytes_left;
1023 xdev->leftover_chan_num = chan_num;
1024 return 0;
1025}
1026
1027static void bulk_in_work(struct work_struct *work)
1028{
1029 struct xillyusb_endpoint *ep =
1030 container_of(work, struct xillyusb_endpoint, workitem);
1031 struct xillyusb_dev *xdev = ep->xdev;
1032 unsigned long flags;
1033 struct xillybuffer *xb;
1034 bool consumed = false;
1035 int rc = 0;
1036
1037 mutex_lock(&xdev->process_in_mutex);
1038
1039 spin_lock_irqsave(&ep->buffers_lock, flags);
1040
1041 while (1) {
1042 if (rc || list_empty(head: &ep->filled_buffers)) {
1043 spin_unlock_irqrestore(lock: &ep->buffers_lock, flags);
1044 mutex_unlock(lock: &xdev->process_in_mutex);
1045
1046 if (rc)
1047 report_io_error(xdev, errcode: rc);
1048 else if (consumed)
1049 try_queue_bulk_in(ep);
1050
1051 return;
1052 }
1053
1054 xb = list_first_entry(&ep->filled_buffers, struct xillybuffer,
1055 entry);
1056 list_del(entry: &xb->entry);
1057
1058 spin_unlock_irqrestore(lock: &ep->buffers_lock, flags);
1059
1060 consumed = true;
1061
1062 if (!xdev->error)
1063 rc = process_bulk_in(xb);
1064
1065 spin_lock_irqsave(&ep->buffers_lock, flags);
1066 list_add_tail(new: &xb->entry, head: &ep->buffers);
1067 ep->outstanding_urbs--;
1068 }
1069}
1070
1071static int xillyusb_send_opcode(struct xillyusb_dev *xdev,
1072 int chan_num, char opcode, u32 data)
1073{
1074 struct xillyusb_endpoint *ep = xdev->msg_ep;
1075 struct xillyfifo *fifo = &ep->fifo;
1076 __le32 msg[2];
1077
1078 int rc = 0;
1079
1080 msg[0] = cpu_to_le32((chan_num & 0xfff) |
1081 ((opcode & 0xf) << 24));
1082 msg[1] = cpu_to_le32(data);
1083
1084 mutex_lock(&xdev->msg_mutex);
1085
1086 /*
1087 * The wait queue is woken with the interruptible variant, so the
1088 * wait function matches, however returning because of an interrupt
1089 * will mess things up considerably, in particular when the caller is
1090 * the release method. And the xdev->error part prevents being stuck
1091 * forever in the event of a bizarre hardware bug: Pull the USB plug.
1092 */
1093
1094 while (wait_event_interruptible(fifo->waitq,
1095 fifo->fill <= (fifo->size - 8) ||
1096 xdev->error))
1097 ; /* Empty loop */
1098
1099 if (xdev->error) {
1100 rc = xdev->error;
1101 goto unlock_done;
1102 }
1103
1104 fifo_write(fifo, data: (void *)msg, len: 8, copier: xilly_memcpy);
1105
1106 try_queue_bulk_out(ep);
1107
1108unlock_done:
1109 mutex_unlock(lock: &xdev->msg_mutex);
1110
1111 return rc;
1112}
1113
1114/*
1115 * Note that flush_downstream() merely waits for the data to arrive to
1116 * the application logic at the FPGA -- unlike PCIe Xillybus' counterpart,
1117 * it does nothing to make it happen (and neither is it necessary).
1118 *
1119 * This function is not reentrant for the same @chan, but this is covered
1120 * by the fact that for any given @chan, it's called either by the open,
1121 * write, llseek and flush fops methods, which can't run in parallel (and the
1122 * write + flush and llseek method handlers are protected with out_mutex).
1123 *
1124 * chan->flushed is there to avoid multiple flushes at the same position,
1125 * in particular as a result of programs that close the file descriptor
1126 * e.g. after a dup2() for redirection.
1127 */
1128
1129static int flush_downstream(struct xillyusb_channel *chan,
1130 long timeout,
1131 bool interruptible)
1132{
1133 struct xillyusb_dev *xdev = chan->xdev;
1134 int chan_num = chan->chan_idx << 1;
1135 long deadline, left_to_sleep;
1136 int rc;
1137
1138 if (chan->flushed)
1139 return 0;
1140
1141 deadline = jiffies + 1 + timeout;
1142
1143 if (chan->flushing) {
1144 long cancel_deadline = jiffies + 1 + XILLY_RESPONSE_TIMEOUT;
1145
1146 chan->canceled = 0;
1147 rc = xillyusb_send_opcode(xdev, chan_num,
1148 opcode: OPCODE_CANCEL_CHECKPOINT, data: 0);
1149
1150 if (rc)
1151 return rc; /* Only real error, never -EINTR */
1152
1153 /* Ignoring interrupts. Cancellation must be handled */
1154 while (!chan->canceled) {
1155 left_to_sleep = cancel_deadline - ((long)jiffies);
1156
1157 if (left_to_sleep <= 0) {
1158 report_io_error(xdev, errcode: -EIO);
1159 return -EIO;
1160 }
1161
1162 rc = wait_event_interruptible_timeout(chan->flushq,
1163 chan->canceled ||
1164 xdev->error,
1165 left_to_sleep);
1166
1167 if (xdev->error)
1168 return xdev->error;
1169 }
1170 }
1171
1172 chan->flushing = 1;
1173
1174 /*
1175 * The checkpoint is given in terms of data elements, not bytes. As
1176 * a result, if less than an element's worth of data is stored in the
1177 * FIFO, it's not flushed, including the flush before closing, which
1178 * means that such data is lost. This is consistent with PCIe Xillybus.
1179 */
1180
1181 rc = xillyusb_send_opcode(xdev, chan_num,
1182 opcode: OPCODE_SET_CHECKPOINT,
1183 data: chan->out_bytes >>
1184 chan->out_log2_element_size);
1185
1186 if (rc)
1187 return rc; /* Only real error, never -EINTR */
1188
1189 if (!timeout) {
1190 while (chan->flushing) {
1191 rc = wait_event_interruptible(chan->flushq,
1192 !chan->flushing ||
1193 xdev->error);
1194 if (xdev->error)
1195 return xdev->error;
1196
1197 if (interruptible && rc)
1198 return -EINTR;
1199 }
1200
1201 goto done;
1202 }
1203
1204 while (chan->flushing) {
1205 left_to_sleep = deadline - ((long)jiffies);
1206
1207 if (left_to_sleep <= 0)
1208 return -ETIMEDOUT;
1209
1210 rc = wait_event_interruptible_timeout(chan->flushq,
1211 !chan->flushing ||
1212 xdev->error,
1213 left_to_sleep);
1214
1215 if (xdev->error)
1216 return xdev->error;
1217
1218 if (interruptible && rc < 0)
1219 return -EINTR;
1220 }
1221
1222done:
1223 chan->flushed = 1;
1224 return 0;
1225}
1226
1227/* request_read_anything(): Ask the FPGA for any little amount of data */
1228static int request_read_anything(struct xillyusb_channel *chan,
1229 char opcode)
1230{
1231 struct xillyusb_dev *xdev = chan->xdev;
1232 unsigned int sh = chan->in_log2_element_size;
1233 int chan_num = (chan->chan_idx << 1) | 1;
1234 u32 mercy = chan->in_consumed_bytes + (2 << sh) - 1;
1235
1236 return xillyusb_send_opcode(xdev, chan_num, opcode, data: mercy >> sh);
1237}
1238
1239static int xillyusb_open(struct inode *inode, struct file *filp)
1240{
1241 struct xillyusb_dev *xdev;
1242 struct xillyusb_channel *chan;
1243 struct xillyfifo *in_fifo = NULL;
1244 struct xillyusb_endpoint *out_ep = NULL;
1245 int rc;
1246 int index;
1247
1248 mutex_lock(&kref_mutex);
1249
1250 rc = xillybus_find_inode(inode, private_data: (void **)&xdev, index: &index);
1251 if (rc) {
1252 mutex_unlock(lock: &kref_mutex);
1253 return rc;
1254 }
1255
1256 kref_get(kref: &xdev->kref);
1257 mutex_unlock(lock: &kref_mutex);
1258
1259 chan = &xdev->channels[index];
1260 filp->private_data = chan;
1261
1262 mutex_lock(&chan->lock);
1263
1264 rc = -ENODEV;
1265
1266 if (xdev->error)
1267 goto unmutex_fail;
1268
1269 if (((filp->f_mode & FMODE_READ) && !chan->readable) ||
1270 ((filp->f_mode & FMODE_WRITE) && !chan->writable))
1271 goto unmutex_fail;
1272
1273 if ((filp->f_flags & O_NONBLOCK) && (filp->f_mode & FMODE_READ) &&
1274 chan->in_synchronous) {
1275 dev_err(xdev->dev,
1276 "open() failed: O_NONBLOCK not allowed for read on this device\n");
1277 goto unmutex_fail;
1278 }
1279
1280 if ((filp->f_flags & O_NONBLOCK) && (filp->f_mode & FMODE_WRITE) &&
1281 chan->out_synchronous) {
1282 dev_err(xdev->dev,
1283 "open() failed: O_NONBLOCK not allowed for write on this device\n");
1284 goto unmutex_fail;
1285 }
1286
1287 rc = -EBUSY;
1288
1289 if (((filp->f_mode & FMODE_READ) && chan->open_for_read) ||
1290 ((filp->f_mode & FMODE_WRITE) && chan->open_for_write))
1291 goto unmutex_fail;
1292
1293 if (filp->f_mode & FMODE_READ)
1294 chan->open_for_read = 1;
1295
1296 if (filp->f_mode & FMODE_WRITE)
1297 chan->open_for_write = 1;
1298
1299 mutex_unlock(lock: &chan->lock);
1300
1301 if (filp->f_mode & FMODE_WRITE) {
1302 out_ep = endpoint_alloc(xdev,
1303 ep_num: (chan->chan_idx + 2) | USB_DIR_OUT,
1304 work: bulk_out_work, BUF_SIZE_ORDER, BUFNUM);
1305
1306 if (!out_ep) {
1307 rc = -ENOMEM;
1308 goto unopen;
1309 }
1310
1311 rc = fifo_init(fifo: &out_ep->fifo, log2_size: chan->out_log2_fifo_size);
1312
1313 if (rc)
1314 goto late_unopen;
1315
1316 out_ep->fill_mask = -(1 << chan->out_log2_element_size);
1317 chan->out_bytes = 0;
1318 chan->flushed = 0;
1319
1320 /*
1321 * Sending a flush request to a previously closed stream
1322 * effectively opens it, and also waits until the command is
1323 * confirmed by the FPGA. The latter is necessary because the
1324 * data is sent through a separate BULK OUT endpoint, and the
1325 * xHCI controller is free to reorder transmissions.
1326 *
1327 * This can't go wrong unless there's a serious hardware error
1328 * (or the computer is stuck for 500 ms?)
1329 */
1330 rc = flush_downstream(chan, XILLY_RESPONSE_TIMEOUT, interruptible: false);
1331
1332 if (rc == -ETIMEDOUT) {
1333 rc = -EIO;
1334 report_io_error(xdev, errcode: rc);
1335 }
1336
1337 if (rc)
1338 goto late_unopen;
1339 }
1340
1341 if (filp->f_mode & FMODE_READ) {
1342 in_fifo = kzalloc(size: sizeof(*in_fifo), GFP_KERNEL);
1343
1344 if (!in_fifo) {
1345 rc = -ENOMEM;
1346 goto late_unopen;
1347 }
1348
1349 rc = fifo_init(fifo: in_fifo, log2_size: chan->in_log2_fifo_size);
1350
1351 if (rc) {
1352 kfree(objp: in_fifo);
1353 goto late_unopen;
1354 }
1355 }
1356
1357 mutex_lock(&chan->lock);
1358 if (in_fifo) {
1359 chan->in_fifo = in_fifo;
1360 chan->read_data_ok = 1;
1361 }
1362 if (out_ep)
1363 chan->out_ep = out_ep;
1364 mutex_unlock(lock: &chan->lock);
1365
1366 if (in_fifo) {
1367 u32 in_checkpoint = 0;
1368
1369 if (!chan->in_synchronous)
1370 in_checkpoint = in_fifo->size >>
1371 chan->in_log2_element_size;
1372
1373 chan->in_consumed_bytes = 0;
1374 chan->poll_used = 0;
1375 chan->in_current_checkpoint = in_checkpoint;
1376 rc = xillyusb_send_opcode(xdev, chan_num: (chan->chan_idx << 1) | 1,
1377 opcode: OPCODE_SET_CHECKPOINT,
1378 data: in_checkpoint);
1379
1380 if (rc) /* Failure guarantees that opcode wasn't sent */
1381 goto unfifo;
1382
1383 /*
1384 * In non-blocking mode, request the FPGA to send any data it
1385 * has right away. Otherwise, the first read() will always
1386 * return -EAGAIN, which is OK strictly speaking, but ugly.
1387 * Checking and unrolling if this fails isn't worth the
1388 * effort -- the error is propagated to the first read()
1389 * anyhow.
1390 */
1391 if (filp->f_flags & O_NONBLOCK)
1392 request_read_anything(chan, opcode: OPCODE_SET_PUSH);
1393 }
1394
1395 return 0;
1396
1397unfifo:
1398 chan->read_data_ok = 0;
1399 safely_assign_in_fifo(chan, NULL);
1400 fifo_mem_release(fifo: in_fifo);
1401 kfree(objp: in_fifo);
1402
1403 if (out_ep) {
1404 mutex_lock(&chan->lock);
1405 chan->out_ep = NULL;
1406 mutex_unlock(lock: &chan->lock);
1407 }
1408
1409late_unopen:
1410 if (out_ep)
1411 endpoint_dealloc(ep: out_ep);
1412
1413unopen:
1414 mutex_lock(&chan->lock);
1415
1416 if (filp->f_mode & FMODE_READ)
1417 chan->open_for_read = 0;
1418
1419 if (filp->f_mode & FMODE_WRITE)
1420 chan->open_for_write = 0;
1421
1422 mutex_unlock(lock: &chan->lock);
1423
1424 kref_put(kref: &xdev->kref, release: cleanup_dev);
1425
1426 return rc;
1427
1428unmutex_fail:
1429 kref_put(kref: &xdev->kref, release: cleanup_dev);
1430 mutex_unlock(lock: &chan->lock);
1431 return rc;
1432}
1433
1434static ssize_t xillyusb_read(struct file *filp, char __user *userbuf,
1435 size_t count, loff_t *f_pos)
1436{
1437 struct xillyusb_channel *chan = filp->private_data;
1438 struct xillyusb_dev *xdev = chan->xdev;
1439 struct xillyfifo *fifo = chan->in_fifo;
1440 int chan_num = (chan->chan_idx << 1) | 1;
1441
1442 long deadline, left_to_sleep;
1443 int bytes_done = 0;
1444 bool sent_set_push = false;
1445 int rc;
1446
1447 deadline = jiffies + 1 + XILLY_RX_TIMEOUT;
1448
1449 rc = mutex_lock_interruptible(&chan->in_mutex);
1450
1451 if (rc)
1452 return rc;
1453
1454 while (1) {
1455 u32 fifo_checkpoint_bytes, complete_checkpoint_bytes;
1456 u32 complete_checkpoint, fifo_checkpoint;
1457 u32 checkpoint;
1458 s32 diff, leap;
1459 unsigned int sh = chan->in_log2_element_size;
1460 bool checkpoint_for_complete;
1461
1462 rc = fifo_read(fifo, data: (__force void *)userbuf + bytes_done,
1463 len: count - bytes_done, copier: xilly_copy_to_user);
1464
1465 if (rc < 0)
1466 break;
1467
1468 bytes_done += rc;
1469 chan->in_consumed_bytes += rc;
1470
1471 left_to_sleep = deadline - ((long)jiffies);
1472
1473 /*
1474 * Some 32-bit arithmetic that may wrap. Note that
1475 * complete_checkpoint is rounded up to the closest element
1476 * boundary, because the read() can't be completed otherwise.
1477 * fifo_checkpoint_bytes is rounded down, because it protects
1478 * in_fifo from overflowing.
1479 */
1480
1481 fifo_checkpoint_bytes = chan->in_consumed_bytes + fifo->size;
1482 complete_checkpoint_bytes =
1483 chan->in_consumed_bytes + count - bytes_done;
1484
1485 fifo_checkpoint = fifo_checkpoint_bytes >> sh;
1486 complete_checkpoint =
1487 (complete_checkpoint_bytes + (1 << sh) - 1) >> sh;
1488
1489 diff = (fifo_checkpoint - complete_checkpoint) << sh;
1490
1491 if (chan->in_synchronous && diff >= 0) {
1492 checkpoint = complete_checkpoint;
1493 checkpoint_for_complete = true;
1494 } else {
1495 checkpoint = fifo_checkpoint;
1496 checkpoint_for_complete = false;
1497 }
1498
1499 leap = (checkpoint - chan->in_current_checkpoint) << sh;
1500
1501 /*
1502 * To prevent flooding of OPCODE_SET_CHECKPOINT commands as
1503 * data is consumed, it's issued only if it moves the
1504 * checkpoint by at least an 8th of the FIFO's size, or if
1505 * it's necessary to complete the number of bytes requested by
1506 * the read() call.
1507 *
1508 * chan->read_data_ok is checked to spare an unnecessary
1509 * submission after receiving EOF, however it's harmless if
1510 * such slips away.
1511 */
1512
1513 if (chan->read_data_ok &&
1514 (leap > (fifo->size >> 3) ||
1515 (checkpoint_for_complete && leap > 0))) {
1516 chan->in_current_checkpoint = checkpoint;
1517 rc = xillyusb_send_opcode(xdev, chan_num,
1518 opcode: OPCODE_SET_CHECKPOINT,
1519 data: checkpoint);
1520
1521 if (rc)
1522 break;
1523 }
1524
1525 if (bytes_done == count ||
1526 (left_to_sleep <= 0 && bytes_done))
1527 break;
1528
1529 /*
1530 * Reaching here means that the FIFO was empty when
1531 * fifo_read() returned, but not necessarily right now. Error
1532 * and EOF are checked and reported only now, so that no data
1533 * that managed its way to the FIFO is lost.
1534 */
1535
1536 if (!READ_ONCE(chan->read_data_ok)) { /* FPGA has sent EOF */
1537 /* Has data slipped into the FIFO since fifo_read()? */
1538 smp_rmb();
1539 if (READ_ONCE(fifo->fill))
1540 continue;
1541
1542 rc = 0;
1543 break;
1544 }
1545
1546 if (xdev->error) {
1547 rc = xdev->error;
1548 break;
1549 }
1550
1551 if (filp->f_flags & O_NONBLOCK) {
1552 rc = -EAGAIN;
1553 break;
1554 }
1555
1556 if (!sent_set_push) {
1557 rc = xillyusb_send_opcode(xdev, chan_num,
1558 opcode: OPCODE_SET_PUSH,
1559 data: complete_checkpoint);
1560
1561 if (rc)
1562 break;
1563
1564 sent_set_push = true;
1565 }
1566
1567 if (left_to_sleep > 0) {
1568 /*
1569 * Note that when xdev->error is set (e.g. when the
1570 * device is unplugged), read_data_ok turns zero and
1571 * fifo->waitq is awaken.
1572 * Therefore no special attention to xdev->error.
1573 */
1574
1575 rc = wait_event_interruptible_timeout
1576 (fifo->waitq,
1577 fifo->fill || !chan->read_data_ok,
1578 left_to_sleep);
1579 } else { /* bytes_done == 0 */
1580 /* Tell FPGA to send anything it has */
1581 rc = request_read_anything(chan, opcode: OPCODE_UPDATE_PUSH);
1582
1583 if (rc)
1584 break;
1585
1586 rc = wait_event_interruptible
1587 (fifo->waitq,
1588 fifo->fill || !chan->read_data_ok);
1589 }
1590
1591 if (rc < 0) {
1592 rc = -EINTR;
1593 break;
1594 }
1595 }
1596
1597 if (((filp->f_flags & O_NONBLOCK) || chan->poll_used) &&
1598 !READ_ONCE(fifo->fill))
1599 request_read_anything(chan, opcode: OPCODE_SET_PUSH);
1600
1601 mutex_unlock(lock: &chan->in_mutex);
1602
1603 if (bytes_done)
1604 return bytes_done;
1605
1606 return rc;
1607}
1608
1609static int xillyusb_flush(struct file *filp, fl_owner_t id)
1610{
1611 struct xillyusb_channel *chan = filp->private_data;
1612 int rc;
1613
1614 if (!(filp->f_mode & FMODE_WRITE))
1615 return 0;
1616
1617 rc = mutex_lock_interruptible(&chan->out_mutex);
1618
1619 if (rc)
1620 return rc;
1621
1622 /*
1623 * One second's timeout on flushing. Interrupts are ignored, because if
1624 * the user pressed CTRL-C, that interrupt will still be in flight by
1625 * the time we reach here, and the opportunity to flush is lost.
1626 */
1627 rc = flush_downstream(chan, HZ, interruptible: false);
1628
1629 mutex_unlock(lock: &chan->out_mutex);
1630
1631 if (rc == -ETIMEDOUT) {
1632 /* The things you do to use dev_warn() and not pr_warn() */
1633 struct xillyusb_dev *xdev = chan->xdev;
1634
1635 mutex_lock(&chan->lock);
1636 if (!xdev->error)
1637 dev_warn(xdev->dev,
1638 "Timed out while flushing. Output data may be lost.\n");
1639 mutex_unlock(lock: &chan->lock);
1640 }
1641
1642 return rc;
1643}
1644
1645static ssize_t xillyusb_write(struct file *filp, const char __user *userbuf,
1646 size_t count, loff_t *f_pos)
1647{
1648 struct xillyusb_channel *chan = filp->private_data;
1649 struct xillyusb_dev *xdev = chan->xdev;
1650 struct xillyfifo *fifo = &chan->out_ep->fifo;
1651 int rc;
1652
1653 rc = mutex_lock_interruptible(&chan->out_mutex);
1654
1655 if (rc)
1656 return rc;
1657
1658 while (1) {
1659 if (xdev->error) {
1660 rc = xdev->error;
1661 break;
1662 }
1663
1664 if (count == 0)
1665 break;
1666
1667 rc = fifo_write(fifo, data: (__force void *)userbuf, len: count,
1668 copier: xilly_copy_from_user);
1669
1670 if (rc != 0)
1671 break;
1672
1673 if (filp->f_flags & O_NONBLOCK) {
1674 rc = -EAGAIN;
1675 break;
1676 }
1677
1678 if (wait_event_interruptible
1679 (fifo->waitq,
1680 fifo->fill != fifo->size || xdev->error)) {
1681 rc = -EINTR;
1682 break;
1683 }
1684 }
1685
1686 if (rc < 0)
1687 goto done;
1688
1689 chan->out_bytes += rc;
1690
1691 if (rc) {
1692 try_queue_bulk_out(ep: chan->out_ep);
1693 chan->flushed = 0;
1694 }
1695
1696 if (chan->out_synchronous) {
1697 int flush_rc = flush_downstream(chan, timeout: 0, interruptible: true);
1698
1699 if (flush_rc && !rc)
1700 rc = flush_rc;
1701 }
1702
1703done:
1704 mutex_unlock(lock: &chan->out_mutex);
1705
1706 return rc;
1707}
1708
1709static int xillyusb_release(struct inode *inode, struct file *filp)
1710{
1711 struct xillyusb_channel *chan = filp->private_data;
1712 struct xillyusb_dev *xdev = chan->xdev;
1713 int rc_read = 0, rc_write = 0;
1714
1715 if (filp->f_mode & FMODE_READ) {
1716 struct xillyfifo *in_fifo = chan->in_fifo;
1717
1718 rc_read = xillyusb_send_opcode(xdev, chan_num: (chan->chan_idx << 1) | 1,
1719 opcode: OPCODE_CLOSE, data: 0);
1720 /*
1721 * If rc_read is nonzero, xdev->error indicates a global
1722 * device error. The error is reported later, so that
1723 * resources are freed.
1724 *
1725 * Looping on wait_event_interruptible() kinda breaks the idea
1726 * of being interruptible, and this should have been
1727 * wait_event(). Only it's being waken with
1728 * wake_up_interruptible() for the sake of other uses. If
1729 * there's a global device error, chan->read_data_ok is
1730 * deasserted and the wait queue is awaken, so this is covered.
1731 */
1732
1733 while (wait_event_interruptible(in_fifo->waitq,
1734 !chan->read_data_ok))
1735 ; /* Empty loop */
1736
1737 safely_assign_in_fifo(chan, NULL);
1738 fifo_mem_release(fifo: in_fifo);
1739 kfree(objp: in_fifo);
1740
1741 mutex_lock(&chan->lock);
1742 chan->open_for_read = 0;
1743 mutex_unlock(lock: &chan->lock);
1744 }
1745
1746 if (filp->f_mode & FMODE_WRITE) {
1747 struct xillyusb_endpoint *ep = chan->out_ep;
1748 /*
1749 * chan->flushing isn't zeroed. If the pre-release flush timed
1750 * out, a cancel request will be sent before the next
1751 * OPCODE_SET_CHECKPOINT (i.e. when the file is opened again).
1752 * This is despite that the FPGA forgets about the checkpoint
1753 * request as the file closes. Still, in an exceptional race
1754 * condition, the FPGA could send an OPCODE_REACHED_CHECKPOINT
1755 * just before closing that would reach the host after the
1756 * file has re-opened.
1757 */
1758
1759 mutex_lock(&chan->lock);
1760 chan->out_ep = NULL;
1761 mutex_unlock(lock: &chan->lock);
1762
1763 endpoint_quiesce(ep);
1764 endpoint_dealloc(ep);
1765
1766 /* See comments on rc_read above */
1767 rc_write = xillyusb_send_opcode(xdev, chan_num: chan->chan_idx << 1,
1768 opcode: OPCODE_CLOSE, data: 0);
1769
1770 mutex_lock(&chan->lock);
1771 chan->open_for_write = 0;
1772 mutex_unlock(lock: &chan->lock);
1773 }
1774
1775 kref_put(kref: &xdev->kref, release: cleanup_dev);
1776
1777 return rc_read ? rc_read : rc_write;
1778}
1779
1780/*
1781 * Xillybus' API allows device nodes to be seekable, giving the user
1782 * application access to a RAM array on the FPGA (or logic emulating it).
1783 */
1784
1785static loff_t xillyusb_llseek(struct file *filp, loff_t offset, int whence)
1786{
1787 struct xillyusb_channel *chan = filp->private_data;
1788 struct xillyusb_dev *xdev = chan->xdev;
1789 loff_t pos = filp->f_pos;
1790 int rc = 0;
1791 unsigned int log2_element_size = chan->readable ?
1792 chan->in_log2_element_size : chan->out_log2_element_size;
1793
1794 /*
1795 * Take both mutexes not allowing interrupts, since it seems like
1796 * common applications don't expect an -EINTR here. Besides, multiple
1797 * access to a single file descriptor on seekable devices is a mess
1798 * anyhow.
1799 */
1800
1801 mutex_lock(&chan->out_mutex);
1802 mutex_lock(&chan->in_mutex);
1803
1804 switch (whence) {
1805 case SEEK_SET:
1806 pos = offset;
1807 break;
1808 case SEEK_CUR:
1809 pos += offset;
1810 break;
1811 case SEEK_END:
1812 pos = offset; /* Going to the end => to the beginning */
1813 break;
1814 default:
1815 rc = -EINVAL;
1816 goto end;
1817 }
1818
1819 /* In any case, we must finish on an element boundary */
1820 if (pos & ((1 << log2_element_size) - 1)) {
1821 rc = -EINVAL;
1822 goto end;
1823 }
1824
1825 rc = xillyusb_send_opcode(xdev, chan_num: chan->chan_idx << 1,
1826 opcode: OPCODE_SET_ADDR,
1827 data: pos >> log2_element_size);
1828
1829 if (rc)
1830 goto end;
1831
1832 if (chan->writable) {
1833 chan->flushed = 0;
1834 rc = flush_downstream(chan, HZ, interruptible: false);
1835 }
1836
1837end:
1838 mutex_unlock(lock: &chan->out_mutex);
1839 mutex_unlock(lock: &chan->in_mutex);
1840
1841 if (rc) /* Return error after releasing mutexes */
1842 return rc;
1843
1844 filp->f_pos = pos;
1845
1846 return pos;
1847}
1848
1849static __poll_t xillyusb_poll(struct file *filp, poll_table *wait)
1850{
1851 struct xillyusb_channel *chan = filp->private_data;
1852 __poll_t mask = 0;
1853
1854 if (chan->in_fifo)
1855 poll_wait(filp, wait_address: &chan->in_fifo->waitq, p: wait);
1856
1857 if (chan->out_ep)
1858 poll_wait(filp, wait_address: &chan->out_ep->fifo.waitq, p: wait);
1859
1860 /*
1861 * If this is the first time poll() is called, and the file is
1862 * readable, set the relevant flag. Also tell the FPGA to send all it
1863 * has, to kickstart the mechanism that ensures there's always some
1864 * data in in_fifo unless the stream is dry end-to-end. Note that the
1865 * first poll() may not return a EPOLLIN, even if there's data on the
1866 * FPGA. Rather, the data will arrive soon, and trigger the relevant
1867 * wait queue.
1868 */
1869
1870 if (!chan->poll_used && chan->in_fifo) {
1871 chan->poll_used = 1;
1872 request_read_anything(chan, opcode: OPCODE_SET_PUSH);
1873 }
1874
1875 /*
1876 * poll() won't play ball regarding read() channels which
1877 * are synchronous. Allowing that will create situations where data has
1878 * been delivered at the FPGA, and users expecting select() to wake up,
1879 * which it may not. So make it never work.
1880 */
1881
1882 if (chan->in_fifo && !chan->in_synchronous &&
1883 (READ_ONCE(chan->in_fifo->fill) || !chan->read_data_ok))
1884 mask |= EPOLLIN | EPOLLRDNORM;
1885
1886 if (chan->out_ep &&
1887 (READ_ONCE(chan->out_ep->fifo.fill) != chan->out_ep->fifo.size))
1888 mask |= EPOLLOUT | EPOLLWRNORM;
1889
1890 if (chan->xdev->error)
1891 mask |= EPOLLERR;
1892
1893 return mask;
1894}
1895
1896static const struct file_operations xillyusb_fops = {
1897 .owner = THIS_MODULE,
1898 .read = xillyusb_read,
1899 .write = xillyusb_write,
1900 .open = xillyusb_open,
1901 .flush = xillyusb_flush,
1902 .release = xillyusb_release,
1903 .llseek = xillyusb_llseek,
1904 .poll = xillyusb_poll,
1905};
1906
1907static int xillyusb_setup_base_eps(struct xillyusb_dev *xdev)
1908{
1909 xdev->msg_ep = endpoint_alloc(xdev, MSG_EP_NUM | USB_DIR_OUT,
1910 work: bulk_out_work, order: 1, bufnum: 2);
1911 if (!xdev->msg_ep)
1912 return -ENOMEM;
1913
1914 if (fifo_init(fifo: &xdev->msg_ep->fifo, log2_size: 13)) /* 8 kiB */
1915 goto dealloc;
1916
1917 xdev->msg_ep->fill_mask = -8; /* 8 bytes granularity */
1918
1919 xdev->in_ep = endpoint_alloc(xdev, IN_EP_NUM | USB_DIR_IN,
1920 work: bulk_in_work, BUF_SIZE_ORDER, BUFNUM);
1921 if (!xdev->in_ep)
1922 goto dealloc;
1923
1924 try_queue_bulk_in(ep: xdev->in_ep);
1925
1926 return 0;
1927
1928dealloc:
1929 endpoint_dealloc(ep: xdev->msg_ep); /* Also frees FIFO mem if allocated */
1930 xdev->msg_ep = NULL;
1931 return -ENOMEM;
1932}
1933
1934static int setup_channels(struct xillyusb_dev *xdev,
1935 __le16 *chandesc,
1936 int num_channels)
1937{
1938 struct xillyusb_channel *chan;
1939 int i;
1940
1941 chan = kcalloc(n: num_channels, size: sizeof(*chan), GFP_KERNEL);
1942 if (!chan)
1943 return -ENOMEM;
1944
1945 xdev->channels = chan;
1946
1947 for (i = 0; i < num_channels; i++, chan++) {
1948 unsigned int in_desc = le16_to_cpu(*chandesc++);
1949 unsigned int out_desc = le16_to_cpu(*chandesc++);
1950
1951 chan->xdev = xdev;
1952 mutex_init(&chan->in_mutex);
1953 mutex_init(&chan->out_mutex);
1954 mutex_init(&chan->lock);
1955 init_waitqueue_head(&chan->flushq);
1956
1957 chan->chan_idx = i;
1958
1959 if (in_desc & 0x80) { /* Entry is valid */
1960 chan->readable = 1;
1961 chan->in_synchronous = !!(in_desc & 0x40);
1962 chan->in_seekable = !!(in_desc & 0x20);
1963 chan->in_log2_element_size = in_desc & 0x0f;
1964 chan->in_log2_fifo_size = ((in_desc >> 8) & 0x1f) + 16;
1965 }
1966
1967 /*
1968 * A downstream channel should never exist above index 13,
1969 * as it would request a nonexistent BULK endpoint > 15.
1970 * In the peculiar case that it does, it's ignored silently.
1971 */
1972
1973 if ((out_desc & 0x80) && i < 14) { /* Entry is valid */
1974 chan->writable = 1;
1975 chan->out_synchronous = !!(out_desc & 0x40);
1976 chan->out_seekable = !!(out_desc & 0x20);
1977 chan->out_log2_element_size = out_desc & 0x0f;
1978 chan->out_log2_fifo_size =
1979 ((out_desc >> 8) & 0x1f) + 16;
1980 }
1981 }
1982
1983 return 0;
1984}
1985
1986static int xillyusb_discovery(struct usb_interface *interface)
1987{
1988 int rc;
1989 struct xillyusb_dev *xdev = usb_get_intfdata(intf: interface);
1990 __le16 bogus_chandesc[2];
1991 struct xillyfifo idt_fifo;
1992 struct xillyusb_channel *chan;
1993 unsigned int idt_len, names_offset;
1994 unsigned char *idt;
1995 int num_channels;
1996
1997 rc = xillyusb_send_opcode(xdev, chan_num: ~0, opcode: OPCODE_QUIESCE, data: 0);
1998
1999 if (rc) {
2000 dev_err(&interface->dev, "Failed to send quiesce request. Aborting.\n");
2001 return rc;
2002 }
2003
2004 /* Phase I: Set up one fake upstream channel and obtain IDT */
2005
2006 /* Set up a fake IDT with one async IN stream */
2007 bogus_chandesc[0] = cpu_to_le16(0x80);
2008 bogus_chandesc[1] = cpu_to_le16(0);
2009
2010 rc = setup_channels(xdev, chandesc: bogus_chandesc, num_channels: 1);
2011
2012 if (rc)
2013 return rc;
2014
2015 rc = fifo_init(fifo: &idt_fifo, LOG2_IDT_FIFO_SIZE);
2016
2017 if (rc)
2018 return rc;
2019
2020 chan = xdev->channels;
2021
2022 chan->in_fifo = &idt_fifo;
2023 chan->read_data_ok = 1;
2024
2025 xdev->num_channels = 1;
2026
2027 rc = xillyusb_send_opcode(xdev, chan_num: ~0, opcode: OPCODE_REQ_IDT, data: 0);
2028
2029 if (rc) {
2030 dev_err(&interface->dev, "Failed to send IDT request. Aborting.\n");
2031 goto unfifo;
2032 }
2033
2034 rc = wait_event_interruptible_timeout(idt_fifo.waitq,
2035 !chan->read_data_ok,
2036 XILLY_RESPONSE_TIMEOUT);
2037
2038 if (xdev->error) {
2039 rc = xdev->error;
2040 goto unfifo;
2041 }
2042
2043 if (rc < 0) {
2044 rc = -EINTR; /* Interrupt on probe method? Interesting. */
2045 goto unfifo;
2046 }
2047
2048 if (chan->read_data_ok) {
2049 rc = -ETIMEDOUT;
2050 dev_err(&interface->dev, "No response from FPGA. Aborting.\n");
2051 goto unfifo;
2052 }
2053
2054 idt_len = READ_ONCE(idt_fifo.fill);
2055 idt = kmalloc(size: idt_len, GFP_KERNEL);
2056
2057 if (!idt) {
2058 rc = -ENOMEM;
2059 goto unfifo;
2060 }
2061
2062 fifo_read(fifo: &idt_fifo, data: idt, len: idt_len, copier: xilly_memcpy);
2063
2064 if (crc32_le(crc: ~0, p: idt, len: idt_len) != 0) {
2065 dev_err(&interface->dev, "IDT failed CRC check. Aborting.\n");
2066 rc = -ENODEV;
2067 goto unidt;
2068 }
2069
2070 if (*idt > 0x90) {
2071 dev_err(&interface->dev, "No support for IDT version 0x%02x. Maybe the xillyusb driver needs an upgrade. Aborting.\n",
2072 (int)*idt);
2073 rc = -ENODEV;
2074 goto unidt;
2075 }
2076
2077 /* Phase II: Set up the streams as defined in IDT */
2078
2079 num_channels = le16_to_cpu(*((__le16 *)(idt + 1)));
2080 names_offset = 3 + num_channels * 4;
2081 idt_len -= 4; /* Exclude CRC */
2082
2083 if (idt_len < names_offset) {
2084 dev_err(&interface->dev, "IDT too short. This is exceptionally weird, because its CRC is OK\n");
2085 rc = -ENODEV;
2086 goto unidt;
2087 }
2088
2089 rc = setup_channels(xdev, chandesc: (void *)idt + 3, num_channels);
2090
2091 if (rc)
2092 goto unidt;
2093
2094 /*
2095 * Except for wildly misbehaving hardware, or if it was disconnected
2096 * just after responding with the IDT, there is no reason for any
2097 * work item to be running now. To be sure that xdev->channels
2098 * is updated on anything that might run in parallel, flush the
2099 * workqueue, which rarely does anything.
2100 */
2101 flush_workqueue(xdev->workq);
2102
2103 xdev->num_channels = num_channels;
2104
2105 fifo_mem_release(fifo: &idt_fifo);
2106 kfree(objp: chan);
2107
2108 rc = xillybus_init_chrdev(dev: &interface->dev, fops: &xillyusb_fops,
2109 THIS_MODULE, private_data: xdev,
2110 idt: idt + names_offset,
2111 len: idt_len - names_offset,
2112 num_nodes: num_channels,
2113 prefix: xillyname, enumerate: true);
2114
2115 kfree(objp: idt);
2116
2117 return rc;
2118
2119unidt:
2120 kfree(objp: idt);
2121
2122unfifo:
2123 safely_assign_in_fifo(chan, NULL);
2124 fifo_mem_release(fifo: &idt_fifo);
2125
2126 return rc;
2127}
2128
2129static int xillyusb_probe(struct usb_interface *interface,
2130 const struct usb_device_id *id)
2131{
2132 struct xillyusb_dev *xdev;
2133 int rc;
2134
2135 xdev = kzalloc(size: sizeof(*xdev), GFP_KERNEL);
2136 if (!xdev)
2137 return -ENOMEM;
2138
2139 kref_init(kref: &xdev->kref);
2140 mutex_init(&xdev->process_in_mutex);
2141 mutex_init(&xdev->msg_mutex);
2142
2143 xdev->udev = usb_get_dev(interface_to_usbdev(interface));
2144 xdev->dev = &interface->dev;
2145 xdev->error = 0;
2146 spin_lock_init(&xdev->error_lock);
2147 xdev->in_counter = 0;
2148 xdev->in_bytes_left = 0;
2149 xdev->workq = alloc_workqueue(fmt: xillyname, flags: WQ_HIGHPRI, max_active: 0);
2150
2151 if (!xdev->workq) {
2152 dev_err(&interface->dev, "Failed to allocate work queue\n");
2153 rc = -ENOMEM;
2154 goto fail;
2155 }
2156
2157 INIT_WORK(&xdev->wakeup_workitem, wakeup_all);
2158
2159 usb_set_intfdata(intf: interface, data: xdev);
2160
2161 rc = xillyusb_setup_base_eps(xdev);
2162 if (rc)
2163 goto fail;
2164
2165 rc = xillyusb_discovery(interface);
2166 if (rc)
2167 goto latefail;
2168
2169 return 0;
2170
2171latefail:
2172 endpoint_quiesce(ep: xdev->in_ep);
2173 endpoint_quiesce(ep: xdev->msg_ep);
2174
2175fail:
2176 usb_set_intfdata(intf: interface, NULL);
2177 kref_put(kref: &xdev->kref, release: cleanup_dev);
2178 return rc;
2179}
2180
2181static void xillyusb_disconnect(struct usb_interface *interface)
2182{
2183 struct xillyusb_dev *xdev = usb_get_intfdata(intf: interface);
2184 struct xillyusb_endpoint *msg_ep = xdev->msg_ep;
2185 struct xillyfifo *fifo = &msg_ep->fifo;
2186 int rc;
2187 int i;
2188
2189 xillybus_cleanup_chrdev(private_data: xdev, dev: &interface->dev);
2190
2191 /*
2192 * Try to send OPCODE_QUIESCE, which will fail silently if the device
2193 * was disconnected, but makes sense on module unload.
2194 */
2195
2196 msg_ep->wake_on_drain = true;
2197 xillyusb_send_opcode(xdev, chan_num: ~0, opcode: OPCODE_QUIESCE, data: 0);
2198
2199 /*
2200 * If the device has been disconnected, sending the opcode causes
2201 * a global device error with xdev->error, if such error didn't
2202 * occur earlier. Hence timing out means that the USB link is fine,
2203 * but somehow the message wasn't sent. Should never happen.
2204 */
2205
2206 rc = wait_event_interruptible_timeout(fifo->waitq,
2207 msg_ep->drained || xdev->error,
2208 XILLY_RESPONSE_TIMEOUT);
2209
2210 if (!rc)
2211 dev_err(&interface->dev,
2212 "Weird timeout condition on sending quiesce request.\n");
2213
2214 report_io_error(xdev, errcode: -ENODEV); /* Discourage further activity */
2215
2216 /*
2217 * This device driver is declared with soft_unbind set, or else
2218 * sending OPCODE_QUIESCE above would always fail. The price is
2219 * that the USB framework didn't kill outstanding URBs, so it has
2220 * to be done explicitly before returning from this call.
2221 */
2222
2223 for (i = 0; i < xdev->num_channels; i++) {
2224 struct xillyusb_channel *chan = &xdev->channels[i];
2225
2226 /*
2227 * Lock taken to prevent chan->out_ep from changing. It also
2228 * ensures xillyusb_open() and xillyusb_flush() don't access
2229 * xdev->dev after being nullified below.
2230 */
2231 mutex_lock(&chan->lock);
2232 if (chan->out_ep)
2233 endpoint_quiesce(ep: chan->out_ep);
2234 mutex_unlock(lock: &chan->lock);
2235 }
2236
2237 endpoint_quiesce(ep: xdev->in_ep);
2238 endpoint_quiesce(ep: xdev->msg_ep);
2239
2240 usb_set_intfdata(intf: interface, NULL);
2241
2242 xdev->dev = NULL;
2243
2244 mutex_lock(&kref_mutex);
2245 kref_put(kref: &xdev->kref, release: cleanup_dev);
2246 mutex_unlock(lock: &kref_mutex);
2247}
2248
2249static struct usb_driver xillyusb_driver = {
2250 .name = xillyname,
2251 .id_table = xillyusb_table,
2252 .probe = xillyusb_probe,
2253 .disconnect = xillyusb_disconnect,
2254 .soft_unbind = 1,
2255};
2256
2257static int __init xillyusb_init(void)
2258{
2259 int rc = 0;
2260
2261 if (LOG2_INITIAL_FIFO_BUF_SIZE > PAGE_SHIFT)
2262 fifo_buf_order = LOG2_INITIAL_FIFO_BUF_SIZE - PAGE_SHIFT;
2263 else
2264 fifo_buf_order = 0;
2265
2266 rc = usb_register(&xillyusb_driver);
2267
2268 return rc;
2269}
2270
2271static void __exit xillyusb_exit(void)
2272{
2273 usb_deregister(&xillyusb_driver);
2274}
2275
2276module_init(xillyusb_init);
2277module_exit(xillyusb_exit);
2278

source code of linux/drivers/char/xillybus/xillyusb.c