1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Routines supporting the Power 7+ Nest Accelerators driver
4 *
5 * Copyright (C) 2011-2012 International Business Machines Inc.
6 *
7 * Author: Kent Yoder <yoder1@us.ibm.com>
8 */
9
10#include <crypto/internal/aead.h>
11#include <crypto/internal/hash.h>
12#include <crypto/aes.h>
13#include <crypto/sha2.h>
14#include <crypto/algapi.h>
15#include <crypto/scatterwalk.h>
16#include <linux/module.h>
17#include <linux/moduleparam.h>
18#include <linux/types.h>
19#include <linux/mm.h>
20#include <linux/scatterlist.h>
21#include <linux/device.h>
22#include <linux/of.h>
23#include <asm/hvcall.h>
24#include <asm/vio.h>
25
26#include "nx_csbcpb.h"
27#include "nx.h"
28
29
30/**
31 * nx_hcall_sync - make an H_COP_OP hcall for the passed in op structure
32 *
33 * @nx_ctx: the crypto context handle
34 * @op: PFO operation struct to pass in
35 * @may_sleep: flag indicating the request can sleep
36 *
37 * Make the hcall, retrying while the hardware is busy. If we cannot yield
38 * the thread, limit the number of retries to 10 here.
39 */
40int nx_hcall_sync(struct nx_crypto_ctx *nx_ctx,
41 struct vio_pfo_op *op,
42 u32 may_sleep)
43{
44 int rc, retries = 10;
45 struct vio_dev *viodev = nx_driver.viodev;
46
47 atomic_inc(v: &(nx_ctx->stats->sync_ops));
48
49 do {
50 rc = vio_h_cop_sync(viodev, op);
51 } while (rc == -EBUSY && !may_sleep && retries--);
52
53 if (rc) {
54 dev_dbg(&viodev->dev, "vio_h_cop_sync failed: rc: %d "
55 "hcall rc: %ld\n", rc, op->hcall_err);
56 atomic_inc(v: &(nx_ctx->stats->errors));
57 atomic_set(v: &(nx_ctx->stats->last_error), i: op->hcall_err);
58 atomic_set(v: &(nx_ctx->stats->last_error_pid), current->pid);
59 }
60
61 return rc;
62}
63
64/**
65 * nx_build_sg_list - build an NX scatter list describing a single buffer
66 *
67 * @sg_head: pointer to the first scatter list element to build
68 * @start_addr: pointer to the linear buffer
69 * @len: length of the data at @start_addr
70 * @sgmax: the largest number of scatter list elements we're allowed to create
71 *
72 * This function will start writing nx_sg elements at @sg_head and keep
73 * writing them until all of the data from @start_addr is described or
74 * until sgmax elements have been written. Scatter list elements will be
75 * created such that none of the elements describes a buffer that crosses a 4K
76 * boundary.
77 */
78struct nx_sg *nx_build_sg_list(struct nx_sg *sg_head,
79 u8 *start_addr,
80 unsigned int *len,
81 u32 sgmax)
82{
83 unsigned int sg_len = 0;
84 struct nx_sg *sg;
85 u64 sg_addr = (u64)start_addr;
86 u64 end_addr;
87
88 /* determine the start and end for this address range - slightly
89 * different if this is in VMALLOC_REGION */
90 if (is_vmalloc_addr(x: start_addr))
91 sg_addr = page_to_phys(vmalloc_to_page(start_addr))
92 + offset_in_page(sg_addr);
93 else
94 sg_addr = __pa(sg_addr);
95
96 end_addr = sg_addr + *len;
97
98 /* each iteration will write one struct nx_sg element and add the
99 * length of data described by that element to sg_len. Once @len bytes
100 * have been described (or @sgmax elements have been written), the
101 * loop ends. min_t is used to ensure @end_addr falls on the same page
102 * as sg_addr, if not, we need to create another nx_sg element for the
103 * data on the next page.
104 *
105 * Also when using vmalloc'ed data, every time that a system page
106 * boundary is crossed the physical address needs to be re-calculated.
107 */
108 for (sg = sg_head; sg_len < *len; sg++) {
109 u64 next_page;
110
111 sg->addr = sg_addr;
112 sg_addr = min_t(u64, NX_PAGE_NUM(sg_addr + NX_PAGE_SIZE),
113 end_addr);
114
115 next_page = (sg->addr & PAGE_MASK) + PAGE_SIZE;
116 sg->len = min_t(u64, sg_addr, next_page) - sg->addr;
117 sg_len += sg->len;
118
119 if (sg_addr >= next_page &&
120 is_vmalloc_addr(x: start_addr + sg_len)) {
121 sg_addr = page_to_phys(vmalloc_to_page(
122 start_addr + sg_len));
123 end_addr = sg_addr + *len - sg_len;
124 }
125
126 if ((sg - sg_head) == sgmax) {
127 pr_err("nx: scatter/gather list overflow, pid: %d\n",
128 current->pid);
129 sg++;
130 break;
131 }
132 }
133 *len = sg_len;
134
135 /* return the moved sg_head pointer */
136 return sg;
137}
138
139/**
140 * nx_walk_and_build - walk a linux scatterlist and build an nx scatterlist
141 *
142 * @nx_dst: pointer to the first nx_sg element to write
143 * @sglen: max number of nx_sg entries we're allowed to write
144 * @sg_src: pointer to the source linux scatterlist to walk
145 * @start: number of bytes to fast-forward past at the beginning of @sg_src
146 * @src_len: number of bytes to walk in @sg_src
147 */
148struct nx_sg *nx_walk_and_build(struct nx_sg *nx_dst,
149 unsigned int sglen,
150 struct scatterlist *sg_src,
151 unsigned int start,
152 unsigned int *src_len)
153{
154 struct scatter_walk walk;
155 struct nx_sg *nx_sg = nx_dst;
156 unsigned int n, offset = 0, len = *src_len;
157 char *dst;
158
159 /* we need to fast forward through @start bytes first */
160 for (;;) {
161 scatterwalk_start(walk: &walk, sg: sg_src);
162
163 if (start < offset + sg_src->length)
164 break;
165
166 offset += sg_src->length;
167 sg_src = sg_next(sg_src);
168 }
169
170 /* start - offset is the number of bytes to advance in the scatterlist
171 * element we're currently looking at */
172 scatterwalk_advance(walk: &walk, nbytes: start - offset);
173
174 while (len && (nx_sg - nx_dst) < sglen) {
175 n = scatterwalk_clamp(walk: &walk, nbytes: len);
176 if (!n) {
177 /* In cases where we have scatterlist chain sg_next
178 * handles with it properly */
179 scatterwalk_start(walk: &walk, sg: sg_next(walk.sg));
180 n = scatterwalk_clamp(walk: &walk, nbytes: len);
181 }
182 dst = scatterwalk_map(walk: &walk);
183
184 nx_sg = nx_build_sg_list(sg_head: nx_sg, start_addr: dst, len: &n, sgmax: sglen - (nx_sg - nx_dst));
185 len -= n;
186
187 scatterwalk_unmap(vaddr: dst);
188 scatterwalk_advance(walk: &walk, nbytes: n);
189 scatterwalk_done(walk: &walk, SCATTERWALK_FROM_SG, more: len);
190 }
191 /* update to_process */
192 *src_len -= len;
193
194 /* return the moved destination pointer */
195 return nx_sg;
196}
197
198/**
199 * trim_sg_list - ensures the bound in sg list.
200 * @sg: sg list head
201 * @end: sg lisg end
202 * @delta: is the amount we need to crop in order to bound the list.
203 * @nbytes: length of data in the scatterlists or data length - whichever
204 * is greater.
205 */
206static long int trim_sg_list(struct nx_sg *sg,
207 struct nx_sg *end,
208 unsigned int delta,
209 unsigned int *nbytes)
210{
211 long int oplen;
212 long int data_back;
213 unsigned int is_delta = delta;
214
215 while (delta && end > sg) {
216 struct nx_sg *last = end - 1;
217
218 if (last->len > delta) {
219 last->len -= delta;
220 delta = 0;
221 } else {
222 end--;
223 delta -= last->len;
224 }
225 }
226
227 /* There are cases where we need to crop list in order to make it
228 * a block size multiple, but we also need to align data. In order to
229 * that we need to calculate how much we need to put back to be
230 * processed
231 */
232 oplen = (sg - end) * sizeof(struct nx_sg);
233 if (is_delta) {
234 data_back = (abs(oplen) / AES_BLOCK_SIZE) * sg->len;
235 data_back = *nbytes - (data_back & ~(AES_BLOCK_SIZE - 1));
236 *nbytes -= data_back;
237 }
238
239 return oplen;
240}
241
242/**
243 * nx_build_sg_lists - walk the input scatterlists and build arrays of NX
244 * scatterlists based on them.
245 *
246 * @nx_ctx: NX crypto context for the lists we're building
247 * @iv: iv data, if the algorithm requires it
248 * @dst: destination scatterlist
249 * @src: source scatterlist
250 * @nbytes: length of data described in the scatterlists
251 * @offset: number of bytes to fast-forward past at the beginning of
252 * scatterlists.
253 * @oiv: destination for the iv data, if the algorithm requires it
254 *
255 * This is common code shared by all the AES algorithms. It uses the crypto
256 * scatterlist walk routines to traverse input and output scatterlists, building
257 * corresponding NX scatterlists
258 */
259int nx_build_sg_lists(struct nx_crypto_ctx *nx_ctx,
260 const u8 *iv,
261 struct scatterlist *dst,
262 struct scatterlist *src,
263 unsigned int *nbytes,
264 unsigned int offset,
265 u8 *oiv)
266{
267 unsigned int delta = 0;
268 unsigned int total = *nbytes;
269 struct nx_sg *nx_insg = nx_ctx->in_sg;
270 struct nx_sg *nx_outsg = nx_ctx->out_sg;
271 unsigned int max_sg_len;
272
273 max_sg_len = min_t(u64, nx_ctx->ap->sglen,
274 nx_driver.of.max_sg_len/sizeof(struct nx_sg));
275 max_sg_len = min_t(u64, max_sg_len,
276 nx_ctx->ap->databytelen/NX_PAGE_SIZE);
277
278 if (oiv)
279 memcpy(oiv, iv, AES_BLOCK_SIZE);
280
281 *nbytes = min_t(u64, *nbytes, nx_ctx->ap->databytelen);
282
283 nx_outsg = nx_walk_and_build(nx_dst: nx_outsg, sglen: max_sg_len, sg_src: dst,
284 start: offset, src_len: nbytes);
285 nx_insg = nx_walk_and_build(nx_dst: nx_insg, sglen: max_sg_len, sg_src: src,
286 start: offset, src_len: nbytes);
287
288 if (*nbytes < total)
289 delta = *nbytes - (*nbytes & ~(AES_BLOCK_SIZE - 1));
290
291 /* these lengths should be negative, which will indicate to phyp that
292 * the input and output parameters are scatterlists, not linear
293 * buffers */
294 nx_ctx->op.inlen = trim_sg_list(sg: nx_ctx->in_sg, end: nx_insg, delta, nbytes);
295 nx_ctx->op.outlen = trim_sg_list(sg: nx_ctx->out_sg, end: nx_outsg, delta, nbytes);
296
297 return 0;
298}
299
300/**
301 * nx_ctx_init - initialize an nx_ctx's vio_pfo_op struct
302 *
303 * @nx_ctx: the nx context to initialize
304 * @function: the function code for the op
305 */
306void nx_ctx_init(struct nx_crypto_ctx *nx_ctx, unsigned int function)
307{
308 spin_lock_init(&nx_ctx->lock);
309 memset(nx_ctx->kmem, 0, nx_ctx->kmem_len);
310 nx_ctx->csbcpb->csb.valid |= NX_CSB_VALID_BIT;
311
312 nx_ctx->op.flags = function;
313 nx_ctx->op.csbcpb = __pa(nx_ctx->csbcpb);
314 nx_ctx->op.in = __pa(nx_ctx->in_sg);
315 nx_ctx->op.out = __pa(nx_ctx->out_sg);
316
317 if (nx_ctx->csbcpb_aead) {
318 nx_ctx->csbcpb_aead->csb.valid |= NX_CSB_VALID_BIT;
319
320 nx_ctx->op_aead.flags = function;
321 nx_ctx->op_aead.csbcpb = __pa(nx_ctx->csbcpb_aead);
322 nx_ctx->op_aead.in = __pa(nx_ctx->in_sg);
323 nx_ctx->op_aead.out = __pa(nx_ctx->out_sg);
324 }
325}
326
327static void nx_of_update_status(struct device *dev,
328 struct property *p,
329 struct nx_of *props)
330{
331 if (!strncmp(p->value, "okay", p->length)) {
332 props->status = NX_WAITING;
333 props->flags |= NX_OF_FLAG_STATUS_SET;
334 } else {
335 dev_info(dev, "%s: status '%s' is not 'okay'\n", __func__,
336 (char *)p->value);
337 }
338}
339
340static void nx_of_update_sglen(struct device *dev,
341 struct property *p,
342 struct nx_of *props)
343{
344 if (p->length != sizeof(props->max_sg_len)) {
345 dev_err(dev, "%s: unexpected format for "
346 "ibm,max-sg-len property\n", __func__);
347 dev_dbg(dev, "%s: ibm,max-sg-len is %d bytes "
348 "long, expected %zd bytes\n", __func__,
349 p->length, sizeof(props->max_sg_len));
350 return;
351 }
352
353 props->max_sg_len = *(u32 *)p->value;
354 props->flags |= NX_OF_FLAG_MAXSGLEN_SET;
355}
356
357static void nx_of_update_msc(struct device *dev,
358 struct property *p,
359 struct nx_of *props)
360{
361 struct msc_triplet *trip;
362 struct max_sync_cop *msc;
363 unsigned int bytes_so_far, i, lenp;
364
365 msc = (struct max_sync_cop *)p->value;
366 lenp = p->length;
367
368 /* You can't tell if the data read in for this property is sane by its
369 * size alone. This is because there are sizes embedded in the data
370 * structure. The best we can do is check lengths as we parse and bail
371 * as soon as a length error is detected. */
372 bytes_so_far = 0;
373
374 while ((bytes_so_far + sizeof(struct max_sync_cop)) <= lenp) {
375 bytes_so_far += sizeof(struct max_sync_cop);
376
377 trip = msc->trip;
378
379 for (i = 0;
380 ((bytes_so_far + sizeof(struct msc_triplet)) <= lenp) &&
381 i < msc->triplets;
382 i++) {
383 if (msc->fc >= NX_MAX_FC || msc->mode >= NX_MAX_MODE) {
384 dev_err(dev, "unknown function code/mode "
385 "combo: %d/%d (ignored)\n", msc->fc,
386 msc->mode);
387 goto next_loop;
388 }
389
390 if (!trip->sglen || trip->databytelen < NX_PAGE_SIZE) {
391 dev_warn(dev, "bogus sglen/databytelen: "
392 "%u/%u (ignored)\n", trip->sglen,
393 trip->databytelen);
394 goto next_loop;
395 }
396
397 switch (trip->keybitlen) {
398 case 128:
399 case 160:
400 props->ap[msc->fc][msc->mode][0].databytelen =
401 trip->databytelen;
402 props->ap[msc->fc][msc->mode][0].sglen =
403 trip->sglen;
404 break;
405 case 192:
406 props->ap[msc->fc][msc->mode][1].databytelen =
407 trip->databytelen;
408 props->ap[msc->fc][msc->mode][1].sglen =
409 trip->sglen;
410 break;
411 case 256:
412 if (msc->fc == NX_FC_AES) {
413 props->ap[msc->fc][msc->mode][2].
414 databytelen = trip->databytelen;
415 props->ap[msc->fc][msc->mode][2].sglen =
416 trip->sglen;
417 } else if (msc->fc == NX_FC_AES_HMAC ||
418 msc->fc == NX_FC_SHA) {
419 props->ap[msc->fc][msc->mode][1].
420 databytelen = trip->databytelen;
421 props->ap[msc->fc][msc->mode][1].sglen =
422 trip->sglen;
423 } else {
424 dev_warn(dev, "unknown function "
425 "code/key bit len combo"
426 ": (%u/256)\n", msc->fc);
427 }
428 break;
429 case 512:
430 props->ap[msc->fc][msc->mode][2].databytelen =
431 trip->databytelen;
432 props->ap[msc->fc][msc->mode][2].sglen =
433 trip->sglen;
434 break;
435 default:
436 dev_warn(dev, "unknown function code/key bit "
437 "len combo: (%u/%u)\n", msc->fc,
438 trip->keybitlen);
439 break;
440 }
441next_loop:
442 bytes_so_far += sizeof(struct msc_triplet);
443 trip++;
444 }
445
446 msc = (struct max_sync_cop *)trip;
447 }
448
449 props->flags |= NX_OF_FLAG_MAXSYNCCOP_SET;
450}
451
452/**
453 * nx_of_init - read openFirmware values from the device tree
454 *
455 * @dev: device handle
456 * @props: pointer to struct to hold the properties values
457 *
458 * Called once at driver probe time, this function will read out the
459 * openFirmware properties we use at runtime. If all the OF properties are
460 * acceptable, when we exit this function props->flags will indicate that
461 * we're ready to register our crypto algorithms.
462 */
463static void nx_of_init(struct device *dev, struct nx_of *props)
464{
465 struct device_node *base_node = dev->of_node;
466 struct property *p;
467
468 p = of_find_property(np: base_node, name: "status", NULL);
469 if (!p)
470 dev_info(dev, "%s: property 'status' not found\n", __func__);
471 else
472 nx_of_update_status(dev, p, props);
473
474 p = of_find_property(np: base_node, name: "ibm,max-sg-len", NULL);
475 if (!p)
476 dev_info(dev, "%s: property 'ibm,max-sg-len' not found\n",
477 __func__);
478 else
479 nx_of_update_sglen(dev, p, props);
480
481 p = of_find_property(np: base_node, name: "ibm,max-sync-cop", NULL);
482 if (!p)
483 dev_info(dev, "%s: property 'ibm,max-sync-cop' not found\n",
484 __func__);
485 else
486 nx_of_update_msc(dev, p, props);
487}
488
489static bool nx_check_prop(struct device *dev, u32 fc, u32 mode, int slot)
490{
491 struct alg_props *props = &nx_driver.of.ap[fc][mode][slot];
492
493 if (!props->sglen || props->databytelen < NX_PAGE_SIZE) {
494 if (dev)
495 dev_warn(dev, "bogus sglen/databytelen for %u/%u/%u: "
496 "%u/%u (ignored)\n", fc, mode, slot,
497 props->sglen, props->databytelen);
498 return false;
499 }
500
501 return true;
502}
503
504static bool nx_check_props(struct device *dev, u32 fc, u32 mode)
505{
506 int i;
507
508 for (i = 0; i < 3; i++)
509 if (!nx_check_prop(dev, fc, mode, slot: i))
510 return false;
511
512 return true;
513}
514
515static int nx_register_skcipher(struct skcipher_alg *alg, u32 fc, u32 mode)
516{
517 return nx_check_props(dev: &nx_driver.viodev->dev, fc, mode) ?
518 crypto_register_skcipher(alg) : 0;
519}
520
521static int nx_register_aead(struct aead_alg *alg, u32 fc, u32 mode)
522{
523 return nx_check_props(dev: &nx_driver.viodev->dev, fc, mode) ?
524 crypto_register_aead(alg) : 0;
525}
526
527static int nx_register_shash(struct shash_alg *alg, u32 fc, u32 mode, int slot)
528{
529 return (slot >= 0 ? nx_check_prop(dev: &nx_driver.viodev->dev,
530 fc, mode, slot) :
531 nx_check_props(dev: &nx_driver.viodev->dev, fc, mode)) ?
532 crypto_register_shash(alg) : 0;
533}
534
535static void nx_unregister_skcipher(struct skcipher_alg *alg, u32 fc, u32 mode)
536{
537 if (nx_check_props(NULL, fc, mode))
538 crypto_unregister_skcipher(alg);
539}
540
541static void nx_unregister_aead(struct aead_alg *alg, u32 fc, u32 mode)
542{
543 if (nx_check_props(NULL, fc, mode))
544 crypto_unregister_aead(alg);
545}
546
547static void nx_unregister_shash(struct shash_alg *alg, u32 fc, u32 mode,
548 int slot)
549{
550 if (slot >= 0 ? nx_check_prop(NULL, fc, mode, slot) :
551 nx_check_props(NULL, fc, mode))
552 crypto_unregister_shash(alg);
553}
554
555/**
556 * nx_register_algs - register algorithms with the crypto API
557 *
558 * Called from nx_probe()
559 *
560 * If all OF properties are in an acceptable state, the driver flags will
561 * indicate that we're ready and we'll create our debugfs files and register
562 * out crypto algorithms.
563 */
564static int nx_register_algs(void)
565{
566 int rc = -1;
567
568 if (nx_driver.of.flags != NX_OF_FLAG_MASK_READY)
569 goto out;
570
571 memset(&nx_driver.stats, 0, sizeof(struct nx_stats));
572
573 NX_DEBUGFS_INIT(&nx_driver);
574
575 nx_driver.of.status = NX_OKAY;
576
577 rc = nx_register_skcipher(alg: &nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
578 if (rc)
579 goto out;
580
581 rc = nx_register_skcipher(alg: &nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
582 if (rc)
583 goto out_unreg_ecb;
584
585 rc = nx_register_skcipher(alg: &nx_ctr3686_aes_alg, NX_FC_AES,
586 NX_MODE_AES_CTR);
587 if (rc)
588 goto out_unreg_cbc;
589
590 rc = nx_register_aead(alg: &nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
591 if (rc)
592 goto out_unreg_ctr3686;
593
594 rc = nx_register_aead(alg: &nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
595 if (rc)
596 goto out_unreg_gcm;
597
598 rc = nx_register_aead(alg: &nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
599 if (rc)
600 goto out_unreg_gcm4106;
601
602 rc = nx_register_aead(alg: &nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
603 if (rc)
604 goto out_unreg_ccm;
605
606 rc = nx_register_shash(alg: &nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA,
607 NX_PROPS_SHA256);
608 if (rc)
609 goto out_unreg_ccm4309;
610
611 rc = nx_register_shash(alg: &nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA,
612 NX_PROPS_SHA512);
613 if (rc)
614 goto out_unreg_s256;
615
616 rc = nx_register_shash(alg: &nx_shash_aes_xcbc_alg,
617 NX_FC_AES, NX_MODE_AES_XCBC_MAC, slot: -1);
618 if (rc)
619 goto out_unreg_s512;
620
621 goto out;
622
623out_unreg_s512:
624 nx_unregister_shash(alg: &nx_shash_sha512_alg, NX_FC_SHA, NX_MODE_SHA,
625 NX_PROPS_SHA512);
626out_unreg_s256:
627 nx_unregister_shash(alg: &nx_shash_sha256_alg, NX_FC_SHA, NX_MODE_SHA,
628 NX_PROPS_SHA256);
629out_unreg_ccm4309:
630 nx_unregister_aead(alg: &nx_ccm4309_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
631out_unreg_ccm:
632 nx_unregister_aead(alg: &nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
633out_unreg_gcm4106:
634 nx_unregister_aead(alg: &nx_gcm4106_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
635out_unreg_gcm:
636 nx_unregister_aead(alg: &nx_gcm_aes_alg, NX_FC_AES, NX_MODE_AES_GCM);
637out_unreg_ctr3686:
638 nx_unregister_skcipher(alg: &nx_ctr3686_aes_alg, NX_FC_AES, NX_MODE_AES_CTR);
639out_unreg_cbc:
640 nx_unregister_skcipher(alg: &nx_cbc_aes_alg, NX_FC_AES, NX_MODE_AES_CBC);
641out_unreg_ecb:
642 nx_unregister_skcipher(alg: &nx_ecb_aes_alg, NX_FC_AES, NX_MODE_AES_ECB);
643out:
644 return rc;
645}
646
647/**
648 * nx_crypto_ctx_init - create and initialize a crypto api context
649 *
650 * @nx_ctx: the crypto api context
651 * @fc: function code for the context
652 * @mode: the function code specific mode for this context
653 */
654static int nx_crypto_ctx_init(struct nx_crypto_ctx *nx_ctx, u32 fc, u32 mode)
655{
656 if (nx_driver.of.status != NX_OKAY) {
657 pr_err("Attempt to initialize NX crypto context while device "
658 "is not available!\n");
659 return -ENODEV;
660 }
661
662 /* we need an extra page for csbcpb_aead for these modes */
663 if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
664 nx_ctx->kmem_len = (5 * NX_PAGE_SIZE) +
665 sizeof(struct nx_csbcpb);
666 else
667 nx_ctx->kmem_len = (4 * NX_PAGE_SIZE) +
668 sizeof(struct nx_csbcpb);
669
670 nx_ctx->kmem = kmalloc(size: nx_ctx->kmem_len, GFP_KERNEL);
671 if (!nx_ctx->kmem)
672 return -ENOMEM;
673
674 /* the csbcpb and scatterlists must be 4K aligned pages */
675 nx_ctx->csbcpb = (struct nx_csbcpb *)(round_up((u64)nx_ctx->kmem,
676 (u64)NX_PAGE_SIZE));
677 nx_ctx->in_sg = (struct nx_sg *)((u8 *)nx_ctx->csbcpb + NX_PAGE_SIZE);
678 nx_ctx->out_sg = (struct nx_sg *)((u8 *)nx_ctx->in_sg + NX_PAGE_SIZE);
679
680 if (mode == NX_MODE_AES_GCM || mode == NX_MODE_AES_CCM)
681 nx_ctx->csbcpb_aead =
682 (struct nx_csbcpb *)((u8 *)nx_ctx->out_sg +
683 NX_PAGE_SIZE);
684
685 /* give each context a pointer to global stats and their OF
686 * properties */
687 nx_ctx->stats = &nx_driver.stats;
688 memcpy(nx_ctx->props, nx_driver.of.ap[fc][mode],
689 sizeof(struct alg_props) * 3);
690
691 return 0;
692}
693
694/* entry points from the crypto tfm initializers */
695int nx_crypto_ctx_aes_ccm_init(struct crypto_aead *tfm)
696{
697 crypto_aead_set_reqsize(aead: tfm, reqsize: sizeof(struct nx_ccm_rctx));
698 return nx_crypto_ctx_init(nx_ctx: crypto_aead_ctx(tfm), NX_FC_AES,
699 NX_MODE_AES_CCM);
700}
701
702int nx_crypto_ctx_aes_gcm_init(struct crypto_aead *tfm)
703{
704 crypto_aead_set_reqsize(aead: tfm, reqsize: sizeof(struct nx_gcm_rctx));
705 return nx_crypto_ctx_init(nx_ctx: crypto_aead_ctx(tfm), NX_FC_AES,
706 NX_MODE_AES_GCM);
707}
708
709int nx_crypto_ctx_aes_ctr_init(struct crypto_skcipher *tfm)
710{
711 return nx_crypto_ctx_init(nx_ctx: crypto_skcipher_ctx(tfm), NX_FC_AES,
712 NX_MODE_AES_CTR);
713}
714
715int nx_crypto_ctx_aes_cbc_init(struct crypto_skcipher *tfm)
716{
717 return nx_crypto_ctx_init(nx_ctx: crypto_skcipher_ctx(tfm), NX_FC_AES,
718 NX_MODE_AES_CBC);
719}
720
721int nx_crypto_ctx_aes_ecb_init(struct crypto_skcipher *tfm)
722{
723 return nx_crypto_ctx_init(nx_ctx: crypto_skcipher_ctx(tfm), NX_FC_AES,
724 NX_MODE_AES_ECB);
725}
726
727int nx_crypto_ctx_sha_init(struct crypto_tfm *tfm)
728{
729 return nx_crypto_ctx_init(nx_ctx: crypto_tfm_ctx(tfm), NX_FC_SHA, NX_MODE_SHA);
730}
731
732int nx_crypto_ctx_aes_xcbc_init(struct crypto_tfm *tfm)
733{
734 return nx_crypto_ctx_init(nx_ctx: crypto_tfm_ctx(tfm), NX_FC_AES,
735 NX_MODE_AES_XCBC_MAC);
736}
737
738/**
739 * nx_crypto_ctx_exit - destroy a crypto api context
740 *
741 * @tfm: the crypto transform pointer for the context
742 *
743 * As crypto API contexts are destroyed, this exit hook is called to free the
744 * memory associated with it.
745 */
746void nx_crypto_ctx_exit(struct crypto_tfm *tfm)
747{
748 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
749
750 kfree_sensitive(objp: nx_ctx->kmem);
751 nx_ctx->csbcpb = NULL;
752 nx_ctx->csbcpb_aead = NULL;
753 nx_ctx->in_sg = NULL;
754 nx_ctx->out_sg = NULL;
755}
756
757void nx_crypto_ctx_skcipher_exit(struct crypto_skcipher *tfm)
758{
759 nx_crypto_ctx_exit(tfm: crypto_skcipher_ctx(tfm));
760}
761
762void nx_crypto_ctx_aead_exit(struct crypto_aead *tfm)
763{
764 struct nx_crypto_ctx *nx_ctx = crypto_aead_ctx(tfm);
765
766 kfree_sensitive(objp: nx_ctx->kmem);
767}
768
769static int nx_probe(struct vio_dev *viodev, const struct vio_device_id *id)
770{
771 dev_dbg(&viodev->dev, "driver probed: %s resource id: 0x%x\n",
772 viodev->name, viodev->resource_id);
773
774 if (nx_driver.viodev) {
775 dev_err(&viodev->dev, "%s: Attempt to register more than one "
776 "instance of the hardware\n", __func__);
777 return -EINVAL;
778 }
779
780 nx_driver.viodev = viodev;
781
782 nx_of_init(dev: &viodev->dev, props: &nx_driver.of);
783
784 return nx_register_algs();
785}
786
787static void nx_remove(struct vio_dev *viodev)
788{
789 dev_dbg(&viodev->dev, "entering nx_remove for UA 0x%x\n",
790 viodev->unit_address);
791
792 if (nx_driver.of.status == NX_OKAY) {
793 NX_DEBUGFS_FINI(&nx_driver);
794
795 nx_unregister_shash(alg: &nx_shash_aes_xcbc_alg,
796 NX_FC_AES, NX_MODE_AES_XCBC_MAC, slot: -1);
797 nx_unregister_shash(alg: &nx_shash_sha512_alg,
798 NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA256);
799 nx_unregister_shash(alg: &nx_shash_sha256_alg,
800 NX_FC_SHA, NX_MODE_SHA, NX_PROPS_SHA512);
801 nx_unregister_aead(alg: &nx_ccm4309_aes_alg,
802 NX_FC_AES, NX_MODE_AES_CCM);
803 nx_unregister_aead(alg: &nx_ccm_aes_alg, NX_FC_AES, NX_MODE_AES_CCM);
804 nx_unregister_aead(alg: &nx_gcm4106_aes_alg,
805 NX_FC_AES, NX_MODE_AES_GCM);
806 nx_unregister_aead(alg: &nx_gcm_aes_alg,
807 NX_FC_AES, NX_MODE_AES_GCM);
808 nx_unregister_skcipher(alg: &nx_ctr3686_aes_alg,
809 NX_FC_AES, NX_MODE_AES_CTR);
810 nx_unregister_skcipher(alg: &nx_cbc_aes_alg, NX_FC_AES,
811 NX_MODE_AES_CBC);
812 nx_unregister_skcipher(alg: &nx_ecb_aes_alg, NX_FC_AES,
813 NX_MODE_AES_ECB);
814 }
815}
816
817
818/* module wide initialization/cleanup */
819static int __init nx_init(void)
820{
821 return vio_register_driver(&nx_driver.viodriver);
822}
823
824static void __exit nx_fini(void)
825{
826 vio_unregister_driver(&nx_driver.viodriver);
827}
828
829static const struct vio_device_id nx_crypto_driver_ids[] = {
830 { "ibm,sym-encryption-v1", "ibm,sym-encryption" },
831 { "", "" }
832};
833MODULE_DEVICE_TABLE(vio, nx_crypto_driver_ids);
834
835/* driver state structure */
836struct nx_crypto_driver nx_driver = {
837 .viodriver = {
838 .id_table = nx_crypto_driver_ids,
839 .probe = nx_probe,
840 .remove = nx_remove,
841 .name = NX_NAME,
842 },
843};
844
845module_init(nx_init);
846module_exit(nx_fini);
847
848MODULE_AUTHOR("Kent Yoder <yoder1@us.ibm.com>");
849MODULE_DESCRIPTION(NX_STRING);
850MODULE_LICENSE("GPL");
851MODULE_VERSION(NX_VERSION);
852

source code of linux/drivers/crypto/nx/nx.c