1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Driver for the Analog Devices AXI-DMAC core
4 *
5 * Copyright 2013-2019 Analog Devices Inc.
6 * Author: Lars-Peter Clausen <lars@metafoo.de>
7 */
8
9#include <linux/bitfield.h>
10#include <linux/clk.h>
11#include <linux/device.h>
12#include <linux/dma-mapping.h>
13#include <linux/dmaengine.h>
14#include <linux/err.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/kernel.h>
18#include <linux/module.h>
19#include <linux/of.h>
20#include <linux/of_dma.h>
21#include <linux/of_address.h>
22#include <linux/platform_device.h>
23#include <linux/regmap.h>
24#include <linux/slab.h>
25#include <linux/fpga/adi-axi-common.h>
26
27#include <dt-bindings/dma/axi-dmac.h>
28
29#include "dmaengine.h"
30#include "virt-dma.h"
31
32/*
33 * The AXI-DMAC is a soft IP core that is used in FPGA designs. The core has
34 * various instantiation parameters which decided the exact feature set support
35 * by the core.
36 *
37 * Each channel of the core has a source interface and a destination interface.
38 * The number of channels and the type of the channel interfaces is selected at
39 * configuration time. A interface can either be a connected to a central memory
40 * interconnect, which allows access to system memory, or it can be connected to
41 * a dedicated bus which is directly connected to a data port on a peripheral.
42 * Given that those are configuration options of the core that are selected when
43 * it is instantiated this means that they can not be changed by software at
44 * runtime. By extension this means that each channel is uni-directional. It can
45 * either be device to memory or memory to device, but not both. Also since the
46 * device side is a dedicated data bus only connected to a single peripheral
47 * there is no address than can or needs to be configured for the device side.
48 */
49
50#define AXI_DMAC_REG_INTERFACE_DESC 0x10
51#define AXI_DMAC_DMA_SRC_TYPE_MSK GENMASK(13, 12)
52#define AXI_DMAC_DMA_SRC_TYPE_GET(x) FIELD_GET(AXI_DMAC_DMA_SRC_TYPE_MSK, x)
53#define AXI_DMAC_DMA_SRC_WIDTH_MSK GENMASK(11, 8)
54#define AXI_DMAC_DMA_SRC_WIDTH_GET(x) FIELD_GET(AXI_DMAC_DMA_SRC_WIDTH_MSK, x)
55#define AXI_DMAC_DMA_DST_TYPE_MSK GENMASK(5, 4)
56#define AXI_DMAC_DMA_DST_TYPE_GET(x) FIELD_GET(AXI_DMAC_DMA_DST_TYPE_MSK, x)
57#define AXI_DMAC_DMA_DST_WIDTH_MSK GENMASK(3, 0)
58#define AXI_DMAC_DMA_DST_WIDTH_GET(x) FIELD_GET(AXI_DMAC_DMA_DST_WIDTH_MSK, x)
59#define AXI_DMAC_REG_COHERENCY_DESC 0x14
60#define AXI_DMAC_DST_COHERENT_MSK BIT(0)
61#define AXI_DMAC_DST_COHERENT_GET(x) FIELD_GET(AXI_DMAC_DST_COHERENT_MSK, x)
62
63#define AXI_DMAC_REG_IRQ_MASK 0x80
64#define AXI_DMAC_REG_IRQ_PENDING 0x84
65#define AXI_DMAC_REG_IRQ_SOURCE 0x88
66
67#define AXI_DMAC_REG_CTRL 0x400
68#define AXI_DMAC_REG_TRANSFER_ID 0x404
69#define AXI_DMAC_REG_START_TRANSFER 0x408
70#define AXI_DMAC_REG_FLAGS 0x40c
71#define AXI_DMAC_REG_DEST_ADDRESS 0x410
72#define AXI_DMAC_REG_SRC_ADDRESS 0x414
73#define AXI_DMAC_REG_X_LENGTH 0x418
74#define AXI_DMAC_REG_Y_LENGTH 0x41c
75#define AXI_DMAC_REG_DEST_STRIDE 0x420
76#define AXI_DMAC_REG_SRC_STRIDE 0x424
77#define AXI_DMAC_REG_TRANSFER_DONE 0x428
78#define AXI_DMAC_REG_ACTIVE_TRANSFER_ID 0x42c
79#define AXI_DMAC_REG_STATUS 0x430
80#define AXI_DMAC_REG_CURRENT_SRC_ADDR 0x434
81#define AXI_DMAC_REG_CURRENT_DEST_ADDR 0x438
82#define AXI_DMAC_REG_PARTIAL_XFER_LEN 0x44c
83#define AXI_DMAC_REG_PARTIAL_XFER_ID 0x450
84#define AXI_DMAC_REG_CURRENT_SG_ID 0x454
85#define AXI_DMAC_REG_SG_ADDRESS 0x47c
86#define AXI_DMAC_REG_SG_ADDRESS_HIGH 0x4bc
87
88#define AXI_DMAC_CTRL_ENABLE BIT(0)
89#define AXI_DMAC_CTRL_PAUSE BIT(1)
90#define AXI_DMAC_CTRL_ENABLE_SG BIT(2)
91
92#define AXI_DMAC_IRQ_SOT BIT(0)
93#define AXI_DMAC_IRQ_EOT BIT(1)
94
95#define AXI_DMAC_FLAG_CYCLIC BIT(0)
96#define AXI_DMAC_FLAG_LAST BIT(1)
97#define AXI_DMAC_FLAG_PARTIAL_REPORT BIT(2)
98
99#define AXI_DMAC_FLAG_PARTIAL_XFER_DONE BIT(31)
100
101/* The maximum ID allocated by the hardware is 31 */
102#define AXI_DMAC_SG_UNUSED 32U
103
104/* Flags for axi_dmac_hw_desc.flags */
105#define AXI_DMAC_HW_FLAG_LAST BIT(0)
106#define AXI_DMAC_HW_FLAG_IRQ BIT(1)
107
108struct axi_dmac_hw_desc {
109 u32 flags;
110 u32 id;
111 u64 dest_addr;
112 u64 src_addr;
113 u64 next_sg_addr;
114 u32 y_len;
115 u32 x_len;
116 u32 src_stride;
117 u32 dst_stride;
118 u64 __pad[2];
119};
120
121struct axi_dmac_sg {
122 unsigned int partial_len;
123 bool schedule_when_free;
124
125 struct axi_dmac_hw_desc *hw;
126 dma_addr_t hw_phys;
127};
128
129struct axi_dmac_desc {
130 struct virt_dma_desc vdesc;
131 struct axi_dmac_chan *chan;
132
133 bool cyclic;
134 bool have_partial_xfer;
135
136 unsigned int num_submitted;
137 unsigned int num_completed;
138 unsigned int num_sgs;
139 struct axi_dmac_sg sg[] __counted_by(num_sgs);
140};
141
142struct axi_dmac_chan {
143 struct virt_dma_chan vchan;
144
145 struct axi_dmac_desc *next_desc;
146 struct list_head active_descs;
147 enum dma_transfer_direction direction;
148
149 unsigned int src_width;
150 unsigned int dest_width;
151 unsigned int src_type;
152 unsigned int dest_type;
153
154 unsigned int max_length;
155 unsigned int address_align_mask;
156 unsigned int length_align_mask;
157
158 bool hw_partial_xfer;
159 bool hw_cyclic;
160 bool hw_2d;
161 bool hw_sg;
162};
163
164struct axi_dmac {
165 void __iomem *base;
166 int irq;
167
168 struct clk *clk;
169
170 struct dma_device dma_dev;
171 struct axi_dmac_chan chan;
172};
173
174static struct axi_dmac *chan_to_axi_dmac(struct axi_dmac_chan *chan)
175{
176 return container_of(chan->vchan.chan.device, struct axi_dmac,
177 dma_dev);
178}
179
180static struct axi_dmac_chan *to_axi_dmac_chan(struct dma_chan *c)
181{
182 return container_of(c, struct axi_dmac_chan, vchan.chan);
183}
184
185static struct axi_dmac_desc *to_axi_dmac_desc(struct virt_dma_desc *vdesc)
186{
187 return container_of(vdesc, struct axi_dmac_desc, vdesc);
188}
189
190static void axi_dmac_write(struct axi_dmac *axi_dmac, unsigned int reg,
191 unsigned int val)
192{
193 writel(val, addr: axi_dmac->base + reg);
194}
195
196static int axi_dmac_read(struct axi_dmac *axi_dmac, unsigned int reg)
197{
198 return readl(addr: axi_dmac->base + reg);
199}
200
201static int axi_dmac_src_is_mem(struct axi_dmac_chan *chan)
202{
203 return chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM;
204}
205
206static int axi_dmac_dest_is_mem(struct axi_dmac_chan *chan)
207{
208 return chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM;
209}
210
211static bool axi_dmac_check_len(struct axi_dmac_chan *chan, unsigned int len)
212{
213 if (len == 0)
214 return false;
215 if ((len & chan->length_align_mask) != 0) /* Not aligned */
216 return false;
217 return true;
218}
219
220static bool axi_dmac_check_addr(struct axi_dmac_chan *chan, dma_addr_t addr)
221{
222 if ((addr & chan->address_align_mask) != 0) /* Not aligned */
223 return false;
224 return true;
225}
226
227static void axi_dmac_start_transfer(struct axi_dmac_chan *chan)
228{
229 struct axi_dmac *dmac = chan_to_axi_dmac(chan);
230 struct virt_dma_desc *vdesc;
231 struct axi_dmac_desc *desc;
232 struct axi_dmac_sg *sg;
233 unsigned int flags = 0;
234 unsigned int val;
235
236 if (!chan->hw_sg) {
237 val = axi_dmac_read(axi_dmac: dmac, AXI_DMAC_REG_START_TRANSFER);
238 if (val) /* Queue is full, wait for the next SOT IRQ */
239 return;
240 }
241
242 desc = chan->next_desc;
243
244 if (!desc) {
245 vdesc = vchan_next_desc(vc: &chan->vchan);
246 if (!vdesc)
247 return;
248 list_move_tail(list: &vdesc->node, head: &chan->active_descs);
249 desc = to_axi_dmac_desc(vdesc);
250 }
251 sg = &desc->sg[desc->num_submitted];
252
253 /* Already queued in cyclic mode. Wait for it to finish */
254 if (sg->hw->id != AXI_DMAC_SG_UNUSED) {
255 sg->schedule_when_free = true;
256 return;
257 }
258
259 if (chan->hw_sg) {
260 chan->next_desc = NULL;
261 } else if (++desc->num_submitted == desc->num_sgs ||
262 desc->have_partial_xfer) {
263 if (desc->cyclic)
264 desc->num_submitted = 0; /* Start again */
265 else
266 chan->next_desc = NULL;
267 flags |= AXI_DMAC_FLAG_LAST;
268 } else {
269 chan->next_desc = desc;
270 }
271
272 sg->hw->id = axi_dmac_read(axi_dmac: dmac, AXI_DMAC_REG_TRANSFER_ID);
273
274 if (!chan->hw_sg) {
275 if (axi_dmac_dest_is_mem(chan)) {
276 axi_dmac_write(axi_dmac: dmac, AXI_DMAC_REG_DEST_ADDRESS, val: sg->hw->dest_addr);
277 axi_dmac_write(axi_dmac: dmac, AXI_DMAC_REG_DEST_STRIDE, val: sg->hw->dst_stride);
278 }
279
280 if (axi_dmac_src_is_mem(chan)) {
281 axi_dmac_write(axi_dmac: dmac, AXI_DMAC_REG_SRC_ADDRESS, val: sg->hw->src_addr);
282 axi_dmac_write(axi_dmac: dmac, AXI_DMAC_REG_SRC_STRIDE, val: sg->hw->src_stride);
283 }
284 }
285
286 /*
287 * If the hardware supports cyclic transfers and there is no callback to
288 * call, enable hw cyclic mode to avoid unnecessary interrupts.
289 */
290 if (chan->hw_cyclic && desc->cyclic && !desc->vdesc.tx.callback) {
291 if (chan->hw_sg)
292 desc->sg[desc->num_sgs - 1].hw->flags &= ~AXI_DMAC_HW_FLAG_IRQ;
293 else if (desc->num_sgs == 1)
294 flags |= AXI_DMAC_FLAG_CYCLIC;
295 }
296
297 if (chan->hw_partial_xfer)
298 flags |= AXI_DMAC_FLAG_PARTIAL_REPORT;
299
300 if (chan->hw_sg) {
301 axi_dmac_write(axi_dmac: dmac, AXI_DMAC_REG_SG_ADDRESS, val: (u32)sg->hw_phys);
302 axi_dmac_write(axi_dmac: dmac, AXI_DMAC_REG_SG_ADDRESS_HIGH,
303 val: (u64)sg->hw_phys >> 32);
304 } else {
305 axi_dmac_write(axi_dmac: dmac, AXI_DMAC_REG_X_LENGTH, val: sg->hw->x_len);
306 axi_dmac_write(axi_dmac: dmac, AXI_DMAC_REG_Y_LENGTH, val: sg->hw->y_len);
307 }
308 axi_dmac_write(axi_dmac: dmac, AXI_DMAC_REG_FLAGS, val: flags);
309 axi_dmac_write(axi_dmac: dmac, AXI_DMAC_REG_START_TRANSFER, val: 1);
310}
311
312static struct axi_dmac_desc *axi_dmac_active_desc(struct axi_dmac_chan *chan)
313{
314 return list_first_entry_or_null(&chan->active_descs,
315 struct axi_dmac_desc, vdesc.node);
316}
317
318static inline unsigned int axi_dmac_total_sg_bytes(struct axi_dmac_chan *chan,
319 struct axi_dmac_sg *sg)
320{
321 if (chan->hw_2d)
322 return (sg->hw->x_len + 1) * (sg->hw->y_len + 1);
323 else
324 return (sg->hw->x_len + 1);
325}
326
327static void axi_dmac_dequeue_partial_xfers(struct axi_dmac_chan *chan)
328{
329 struct axi_dmac *dmac = chan_to_axi_dmac(chan);
330 struct axi_dmac_desc *desc;
331 struct axi_dmac_sg *sg;
332 u32 xfer_done, len, id, i;
333 bool found_sg;
334
335 do {
336 len = axi_dmac_read(axi_dmac: dmac, AXI_DMAC_REG_PARTIAL_XFER_LEN);
337 id = axi_dmac_read(axi_dmac: dmac, AXI_DMAC_REG_PARTIAL_XFER_ID);
338
339 found_sg = false;
340 list_for_each_entry(desc, &chan->active_descs, vdesc.node) {
341 for (i = 0; i < desc->num_sgs; i++) {
342 sg = &desc->sg[i];
343 if (sg->hw->id == AXI_DMAC_SG_UNUSED)
344 continue;
345 if (sg->hw->id == id) {
346 desc->have_partial_xfer = true;
347 sg->partial_len = len;
348 found_sg = true;
349 break;
350 }
351 }
352 if (found_sg)
353 break;
354 }
355
356 if (found_sg) {
357 dev_dbg(dmac->dma_dev.dev,
358 "Found partial segment id=%u, len=%u\n",
359 id, len);
360 } else {
361 dev_warn(dmac->dma_dev.dev,
362 "Not found partial segment id=%u, len=%u\n",
363 id, len);
364 }
365
366 /* Check if we have any more partial transfers */
367 xfer_done = axi_dmac_read(axi_dmac: dmac, AXI_DMAC_REG_TRANSFER_DONE);
368 xfer_done = !(xfer_done & AXI_DMAC_FLAG_PARTIAL_XFER_DONE);
369
370 } while (!xfer_done);
371}
372
373static void axi_dmac_compute_residue(struct axi_dmac_chan *chan,
374 struct axi_dmac_desc *active)
375{
376 struct dmaengine_result *rslt = &active->vdesc.tx_result;
377 unsigned int start = active->num_completed - 1;
378 struct axi_dmac_sg *sg;
379 unsigned int i, total;
380
381 rslt->result = DMA_TRANS_NOERROR;
382 rslt->residue = 0;
383
384 if (chan->hw_sg)
385 return;
386
387 /*
388 * We get here if the last completed segment is partial, which
389 * means we can compute the residue from that segment onwards
390 */
391 for (i = start; i < active->num_sgs; i++) {
392 sg = &active->sg[i];
393 total = axi_dmac_total_sg_bytes(chan, sg);
394 rslt->residue += (total - sg->partial_len);
395 }
396}
397
398static bool axi_dmac_transfer_done(struct axi_dmac_chan *chan,
399 unsigned int completed_transfers)
400{
401 struct axi_dmac_desc *active;
402 struct axi_dmac_sg *sg;
403 bool start_next = false;
404
405 active = axi_dmac_active_desc(chan);
406 if (!active)
407 return false;
408
409 if (chan->hw_partial_xfer &&
410 (completed_transfers & AXI_DMAC_FLAG_PARTIAL_XFER_DONE))
411 axi_dmac_dequeue_partial_xfers(chan);
412
413 if (chan->hw_sg) {
414 if (active->cyclic) {
415 vchan_cyclic_callback(vd: &active->vdesc);
416 } else {
417 list_del(entry: &active->vdesc.node);
418 vchan_cookie_complete(vd: &active->vdesc);
419 active = axi_dmac_active_desc(chan);
420 start_next = !!active;
421 }
422 } else {
423 do {
424 sg = &active->sg[active->num_completed];
425 if (sg->hw->id == AXI_DMAC_SG_UNUSED) /* Not yet submitted */
426 break;
427 if (!(BIT(sg->hw->id) & completed_transfers))
428 break;
429 active->num_completed++;
430 sg->hw->id = AXI_DMAC_SG_UNUSED;
431 if (sg->schedule_when_free) {
432 sg->schedule_when_free = false;
433 start_next = true;
434 }
435
436 if (sg->partial_len)
437 axi_dmac_compute_residue(chan, active);
438
439 if (active->cyclic)
440 vchan_cyclic_callback(vd: &active->vdesc);
441
442 if (active->num_completed == active->num_sgs ||
443 sg->partial_len) {
444 if (active->cyclic) {
445 active->num_completed = 0; /* wrap around */
446 } else {
447 list_del(entry: &active->vdesc.node);
448 vchan_cookie_complete(vd: &active->vdesc);
449 active = axi_dmac_active_desc(chan);
450 }
451 }
452 } while (active);
453 }
454
455 return start_next;
456}
457
458static irqreturn_t axi_dmac_interrupt_handler(int irq, void *devid)
459{
460 struct axi_dmac *dmac = devid;
461 unsigned int pending;
462 bool start_next = false;
463
464 pending = axi_dmac_read(axi_dmac: dmac, AXI_DMAC_REG_IRQ_PENDING);
465 if (!pending)
466 return IRQ_NONE;
467
468 axi_dmac_write(axi_dmac: dmac, AXI_DMAC_REG_IRQ_PENDING, val: pending);
469
470 spin_lock(lock: &dmac->chan.vchan.lock);
471 /* One or more transfers have finished */
472 if (pending & AXI_DMAC_IRQ_EOT) {
473 unsigned int completed;
474
475 completed = axi_dmac_read(axi_dmac: dmac, AXI_DMAC_REG_TRANSFER_DONE);
476 start_next = axi_dmac_transfer_done(chan: &dmac->chan, completed_transfers: completed);
477 }
478 /* Space has become available in the descriptor queue */
479 if ((pending & AXI_DMAC_IRQ_SOT) || start_next)
480 axi_dmac_start_transfer(chan: &dmac->chan);
481 spin_unlock(lock: &dmac->chan.vchan.lock);
482
483 return IRQ_HANDLED;
484}
485
486static int axi_dmac_terminate_all(struct dma_chan *c)
487{
488 struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
489 struct axi_dmac *dmac = chan_to_axi_dmac(chan);
490 unsigned long flags;
491 LIST_HEAD(head);
492
493 spin_lock_irqsave(&chan->vchan.lock, flags);
494 axi_dmac_write(axi_dmac: dmac, AXI_DMAC_REG_CTRL, val: 0);
495 chan->next_desc = NULL;
496 vchan_get_all_descriptors(vc: &chan->vchan, head: &head);
497 list_splice_tail_init(list: &chan->active_descs, head: &head);
498 spin_unlock_irqrestore(lock: &chan->vchan.lock, flags);
499
500 vchan_dma_desc_free_list(vc: &chan->vchan, head: &head);
501
502 return 0;
503}
504
505static void axi_dmac_synchronize(struct dma_chan *c)
506{
507 struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
508
509 vchan_synchronize(vc: &chan->vchan);
510}
511
512static void axi_dmac_issue_pending(struct dma_chan *c)
513{
514 struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
515 struct axi_dmac *dmac = chan_to_axi_dmac(chan);
516 unsigned long flags;
517 u32 ctrl = AXI_DMAC_CTRL_ENABLE;
518
519 if (chan->hw_sg)
520 ctrl |= AXI_DMAC_CTRL_ENABLE_SG;
521
522 axi_dmac_write(axi_dmac: dmac, AXI_DMAC_REG_CTRL, val: ctrl);
523
524 spin_lock_irqsave(&chan->vchan.lock, flags);
525 if (vchan_issue_pending(vc: &chan->vchan))
526 axi_dmac_start_transfer(chan);
527 spin_unlock_irqrestore(lock: &chan->vchan.lock, flags);
528}
529
530static struct axi_dmac_desc *
531axi_dmac_alloc_desc(struct axi_dmac_chan *chan, unsigned int num_sgs)
532{
533 struct axi_dmac *dmac = chan_to_axi_dmac(chan);
534 struct device *dev = dmac->dma_dev.dev;
535 struct axi_dmac_hw_desc *hws;
536 struct axi_dmac_desc *desc;
537 dma_addr_t hw_phys;
538 unsigned int i;
539
540 desc = kzalloc(struct_size(desc, sg, num_sgs), GFP_NOWAIT);
541 if (!desc)
542 return NULL;
543 desc->num_sgs = num_sgs;
544 desc->chan = chan;
545
546 hws = dma_alloc_coherent(dev, PAGE_ALIGN(num_sgs * sizeof(*hws)),
547 dma_handle: &hw_phys, GFP_ATOMIC);
548 if (!hws) {
549 kfree(objp: desc);
550 return NULL;
551 }
552
553 for (i = 0; i < num_sgs; i++) {
554 desc->sg[i].hw = &hws[i];
555 desc->sg[i].hw_phys = hw_phys + i * sizeof(*hws);
556
557 hws[i].id = AXI_DMAC_SG_UNUSED;
558 hws[i].flags = 0;
559
560 /* Link hardware descriptors */
561 hws[i].next_sg_addr = hw_phys + (i + 1) * sizeof(*hws);
562 }
563
564 /* The last hardware descriptor will trigger an interrupt */
565 desc->sg[num_sgs - 1].hw->flags = AXI_DMAC_HW_FLAG_LAST | AXI_DMAC_HW_FLAG_IRQ;
566
567 return desc;
568}
569
570static void axi_dmac_free_desc(struct axi_dmac_desc *desc)
571{
572 struct axi_dmac *dmac = chan_to_axi_dmac(chan: desc->chan);
573 struct device *dev = dmac->dma_dev.dev;
574 struct axi_dmac_hw_desc *hw = desc->sg[0].hw;
575 dma_addr_t hw_phys = desc->sg[0].hw_phys;
576
577 dma_free_coherent(dev, PAGE_ALIGN(desc->num_sgs * sizeof(*hw)),
578 cpu_addr: hw, dma_handle: hw_phys);
579 kfree(objp: desc);
580}
581
582static struct axi_dmac_sg *axi_dmac_fill_linear_sg(struct axi_dmac_chan *chan,
583 enum dma_transfer_direction direction, dma_addr_t addr,
584 unsigned int num_periods, unsigned int period_len,
585 struct axi_dmac_sg *sg)
586{
587 unsigned int num_segments, i;
588 unsigned int segment_size;
589 unsigned int len;
590
591 /* Split into multiple equally sized segments if necessary */
592 num_segments = DIV_ROUND_UP(period_len, chan->max_length);
593 segment_size = DIV_ROUND_UP(period_len, num_segments);
594 /* Take care of alignment */
595 segment_size = ((segment_size - 1) | chan->length_align_mask) + 1;
596
597 for (i = 0; i < num_periods; i++) {
598 for (len = period_len; len > segment_size; sg++) {
599 if (direction == DMA_DEV_TO_MEM)
600 sg->hw->dest_addr = addr;
601 else
602 sg->hw->src_addr = addr;
603 sg->hw->x_len = segment_size - 1;
604 sg->hw->y_len = 0;
605 sg->hw->flags = 0;
606 addr += segment_size;
607 len -= segment_size;
608 }
609
610 if (direction == DMA_DEV_TO_MEM)
611 sg->hw->dest_addr = addr;
612 else
613 sg->hw->src_addr = addr;
614 sg->hw->x_len = len - 1;
615 sg->hw->y_len = 0;
616 sg++;
617 addr += len;
618 }
619
620 return sg;
621}
622
623static struct dma_async_tx_descriptor *axi_dmac_prep_slave_sg(
624 struct dma_chan *c, struct scatterlist *sgl,
625 unsigned int sg_len, enum dma_transfer_direction direction,
626 unsigned long flags, void *context)
627{
628 struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
629 struct axi_dmac_desc *desc;
630 struct axi_dmac_sg *dsg;
631 struct scatterlist *sg;
632 unsigned int num_sgs;
633 unsigned int i;
634
635 if (direction != chan->direction)
636 return NULL;
637
638 num_sgs = 0;
639 for_each_sg(sgl, sg, sg_len, i)
640 num_sgs += DIV_ROUND_UP(sg_dma_len(sg), chan->max_length);
641
642 desc = axi_dmac_alloc_desc(chan, num_sgs);
643 if (!desc)
644 return NULL;
645
646 dsg = desc->sg;
647
648 for_each_sg(sgl, sg, sg_len, i) {
649 if (!axi_dmac_check_addr(chan, sg_dma_address(sg)) ||
650 !axi_dmac_check_len(chan, sg_dma_len(sg))) {
651 axi_dmac_free_desc(desc);
652 return NULL;
653 }
654
655 dsg = axi_dmac_fill_linear_sg(chan, direction, sg_dma_address(sg), num_periods: 1,
656 sg_dma_len(sg), sg: dsg);
657 }
658
659 desc->cyclic = false;
660
661 return vchan_tx_prep(vc: &chan->vchan, vd: &desc->vdesc, tx_flags: flags);
662}
663
664static struct dma_async_tx_descriptor *axi_dmac_prep_dma_cyclic(
665 struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
666 size_t period_len, enum dma_transfer_direction direction,
667 unsigned long flags)
668{
669 struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
670 struct axi_dmac_desc *desc;
671 unsigned int num_periods, num_segments, num_sgs;
672
673 if (direction != chan->direction)
674 return NULL;
675
676 if (!axi_dmac_check_len(chan, len: buf_len) ||
677 !axi_dmac_check_addr(chan, addr: buf_addr))
678 return NULL;
679
680 if (period_len == 0 || buf_len % period_len)
681 return NULL;
682
683 num_periods = buf_len / period_len;
684 num_segments = DIV_ROUND_UP(period_len, chan->max_length);
685 num_sgs = num_periods * num_segments;
686
687 desc = axi_dmac_alloc_desc(chan, num_sgs);
688 if (!desc)
689 return NULL;
690
691 /* Chain the last descriptor to the first, and remove its "last" flag */
692 desc->sg[num_sgs - 1].hw->next_sg_addr = desc->sg[0].hw_phys;
693 desc->sg[num_sgs - 1].hw->flags &= ~AXI_DMAC_HW_FLAG_LAST;
694
695 axi_dmac_fill_linear_sg(chan, direction, addr: buf_addr, num_periods,
696 period_len, sg: desc->sg);
697
698 desc->cyclic = true;
699
700 return vchan_tx_prep(vc: &chan->vchan, vd: &desc->vdesc, tx_flags: flags);
701}
702
703static struct dma_async_tx_descriptor *axi_dmac_prep_interleaved(
704 struct dma_chan *c, struct dma_interleaved_template *xt,
705 unsigned long flags)
706{
707 struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
708 struct axi_dmac_desc *desc;
709 size_t dst_icg, src_icg;
710
711 if (xt->frame_size != 1)
712 return NULL;
713
714 if (xt->dir != chan->direction)
715 return NULL;
716
717 if (axi_dmac_src_is_mem(chan)) {
718 if (!xt->src_inc || !axi_dmac_check_addr(chan, addr: xt->src_start))
719 return NULL;
720 }
721
722 if (axi_dmac_dest_is_mem(chan)) {
723 if (!xt->dst_inc || !axi_dmac_check_addr(chan, addr: xt->dst_start))
724 return NULL;
725 }
726
727 dst_icg = dmaengine_get_dst_icg(xt, chunk: &xt->sgl[0]);
728 src_icg = dmaengine_get_src_icg(xt, chunk: &xt->sgl[0]);
729
730 if (chan->hw_2d) {
731 if (!axi_dmac_check_len(chan, len: xt->sgl[0].size) ||
732 xt->numf == 0)
733 return NULL;
734 if (xt->sgl[0].size + dst_icg > chan->max_length ||
735 xt->sgl[0].size + src_icg > chan->max_length)
736 return NULL;
737 } else {
738 if (dst_icg != 0 || src_icg != 0)
739 return NULL;
740 if (chan->max_length / xt->sgl[0].size < xt->numf)
741 return NULL;
742 if (!axi_dmac_check_len(chan, len: xt->sgl[0].size * xt->numf))
743 return NULL;
744 }
745
746 desc = axi_dmac_alloc_desc(chan, num_sgs: 1);
747 if (!desc)
748 return NULL;
749
750 if (axi_dmac_src_is_mem(chan)) {
751 desc->sg[0].hw->src_addr = xt->src_start;
752 desc->sg[0].hw->src_stride = xt->sgl[0].size + src_icg;
753 }
754
755 if (axi_dmac_dest_is_mem(chan)) {
756 desc->sg[0].hw->dest_addr = xt->dst_start;
757 desc->sg[0].hw->dst_stride = xt->sgl[0].size + dst_icg;
758 }
759
760 if (chan->hw_2d) {
761 desc->sg[0].hw->x_len = xt->sgl[0].size - 1;
762 desc->sg[0].hw->y_len = xt->numf - 1;
763 } else {
764 desc->sg[0].hw->x_len = xt->sgl[0].size * xt->numf - 1;
765 desc->sg[0].hw->y_len = 0;
766 }
767
768 if (flags & DMA_CYCLIC)
769 desc->cyclic = true;
770
771 return vchan_tx_prep(vc: &chan->vchan, vd: &desc->vdesc, tx_flags: flags);
772}
773
774static void axi_dmac_free_chan_resources(struct dma_chan *c)
775{
776 vchan_free_chan_resources(vc: to_virt_chan(chan: c));
777}
778
779static void axi_dmac_desc_free(struct virt_dma_desc *vdesc)
780{
781 axi_dmac_free_desc(desc: to_axi_dmac_desc(vdesc));
782}
783
784static bool axi_dmac_regmap_rdwr(struct device *dev, unsigned int reg)
785{
786 switch (reg) {
787 case AXI_DMAC_REG_IRQ_MASK:
788 case AXI_DMAC_REG_IRQ_SOURCE:
789 case AXI_DMAC_REG_IRQ_PENDING:
790 case AXI_DMAC_REG_CTRL:
791 case AXI_DMAC_REG_TRANSFER_ID:
792 case AXI_DMAC_REG_START_TRANSFER:
793 case AXI_DMAC_REG_FLAGS:
794 case AXI_DMAC_REG_DEST_ADDRESS:
795 case AXI_DMAC_REG_SRC_ADDRESS:
796 case AXI_DMAC_REG_X_LENGTH:
797 case AXI_DMAC_REG_Y_LENGTH:
798 case AXI_DMAC_REG_DEST_STRIDE:
799 case AXI_DMAC_REG_SRC_STRIDE:
800 case AXI_DMAC_REG_TRANSFER_DONE:
801 case AXI_DMAC_REG_ACTIVE_TRANSFER_ID:
802 case AXI_DMAC_REG_STATUS:
803 case AXI_DMAC_REG_CURRENT_SRC_ADDR:
804 case AXI_DMAC_REG_CURRENT_DEST_ADDR:
805 case AXI_DMAC_REG_PARTIAL_XFER_LEN:
806 case AXI_DMAC_REG_PARTIAL_XFER_ID:
807 case AXI_DMAC_REG_CURRENT_SG_ID:
808 case AXI_DMAC_REG_SG_ADDRESS:
809 case AXI_DMAC_REG_SG_ADDRESS_HIGH:
810 return true;
811 default:
812 return false;
813 }
814}
815
816static const struct regmap_config axi_dmac_regmap_config = {
817 .reg_bits = 32,
818 .val_bits = 32,
819 .reg_stride = 4,
820 .max_register = AXI_DMAC_REG_PARTIAL_XFER_ID,
821 .readable_reg = axi_dmac_regmap_rdwr,
822 .writeable_reg = axi_dmac_regmap_rdwr,
823};
824
825static void axi_dmac_adjust_chan_params(struct axi_dmac_chan *chan)
826{
827 chan->address_align_mask = max(chan->dest_width, chan->src_width) - 1;
828
829 if (axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
830 chan->direction = DMA_MEM_TO_MEM;
831 else if (!axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
832 chan->direction = DMA_MEM_TO_DEV;
833 else if (axi_dmac_dest_is_mem(chan) && !axi_dmac_src_is_mem(chan))
834 chan->direction = DMA_DEV_TO_MEM;
835 else
836 chan->direction = DMA_DEV_TO_DEV;
837}
838
839/*
840 * The configuration stored in the devicetree matches the configuration
841 * parameters of the peripheral instance and allows the driver to know which
842 * features are implemented and how it should behave.
843 */
844static int axi_dmac_parse_chan_dt(struct device_node *of_chan,
845 struct axi_dmac_chan *chan)
846{
847 u32 val;
848 int ret;
849
850 ret = of_property_read_u32(np: of_chan, propname: "reg", out_value: &val);
851 if (ret)
852 return ret;
853
854 /* We only support 1 channel for now */
855 if (val != 0)
856 return -EINVAL;
857
858 ret = of_property_read_u32(np: of_chan, propname: "adi,source-bus-type", out_value: &val);
859 if (ret)
860 return ret;
861 if (val > AXI_DMAC_BUS_TYPE_FIFO)
862 return -EINVAL;
863 chan->src_type = val;
864
865 ret = of_property_read_u32(np: of_chan, propname: "adi,destination-bus-type", out_value: &val);
866 if (ret)
867 return ret;
868 if (val > AXI_DMAC_BUS_TYPE_FIFO)
869 return -EINVAL;
870 chan->dest_type = val;
871
872 ret = of_property_read_u32(np: of_chan, propname: "adi,source-bus-width", out_value: &val);
873 if (ret)
874 return ret;
875 chan->src_width = val / 8;
876
877 ret = of_property_read_u32(np: of_chan, propname: "adi,destination-bus-width", out_value: &val);
878 if (ret)
879 return ret;
880 chan->dest_width = val / 8;
881
882 axi_dmac_adjust_chan_params(chan);
883
884 return 0;
885}
886
887static int axi_dmac_parse_dt(struct device *dev, struct axi_dmac *dmac)
888{
889 struct device_node *of_channels, *of_chan;
890 int ret;
891
892 of_channels = of_get_child_by_name(node: dev->of_node, name: "adi,channels");
893 if (of_channels == NULL)
894 return -ENODEV;
895
896 for_each_child_of_node(of_channels, of_chan) {
897 ret = axi_dmac_parse_chan_dt(of_chan, chan: &dmac->chan);
898 if (ret) {
899 of_node_put(node: of_chan);
900 of_node_put(node: of_channels);
901 return -EINVAL;
902 }
903 }
904 of_node_put(node: of_channels);
905
906 return 0;
907}
908
909static int axi_dmac_read_chan_config(struct device *dev, struct axi_dmac *dmac)
910{
911 struct axi_dmac_chan *chan = &dmac->chan;
912 unsigned int val, desc;
913
914 desc = axi_dmac_read(axi_dmac: dmac, AXI_DMAC_REG_INTERFACE_DESC);
915 if (desc == 0) {
916 dev_err(dev, "DMA interface register reads zero\n");
917 return -EFAULT;
918 }
919
920 val = AXI_DMAC_DMA_SRC_TYPE_GET(desc);
921 if (val > AXI_DMAC_BUS_TYPE_FIFO) {
922 dev_err(dev, "Invalid source bus type read: %d\n", val);
923 return -EINVAL;
924 }
925 chan->src_type = val;
926
927 val = AXI_DMAC_DMA_DST_TYPE_GET(desc);
928 if (val > AXI_DMAC_BUS_TYPE_FIFO) {
929 dev_err(dev, "Invalid destination bus type read: %d\n", val);
930 return -EINVAL;
931 }
932 chan->dest_type = val;
933
934 val = AXI_DMAC_DMA_SRC_WIDTH_GET(desc);
935 if (val == 0) {
936 dev_err(dev, "Source bus width is zero\n");
937 return -EINVAL;
938 }
939 /* widths are stored in log2 */
940 chan->src_width = 1 << val;
941
942 val = AXI_DMAC_DMA_DST_WIDTH_GET(desc);
943 if (val == 0) {
944 dev_err(dev, "Destination bus width is zero\n");
945 return -EINVAL;
946 }
947 chan->dest_width = 1 << val;
948
949 axi_dmac_adjust_chan_params(chan);
950
951 return 0;
952}
953
954static int axi_dmac_detect_caps(struct axi_dmac *dmac, unsigned int version)
955{
956 struct axi_dmac_chan *chan = &dmac->chan;
957
958 axi_dmac_write(axi_dmac: dmac, AXI_DMAC_REG_FLAGS, AXI_DMAC_FLAG_CYCLIC);
959 if (axi_dmac_read(axi_dmac: dmac, AXI_DMAC_REG_FLAGS) == AXI_DMAC_FLAG_CYCLIC)
960 chan->hw_cyclic = true;
961
962 axi_dmac_write(axi_dmac: dmac, AXI_DMAC_REG_SG_ADDRESS, val: 0xffffffff);
963 if (axi_dmac_read(axi_dmac: dmac, AXI_DMAC_REG_SG_ADDRESS))
964 chan->hw_sg = true;
965
966 axi_dmac_write(axi_dmac: dmac, AXI_DMAC_REG_Y_LENGTH, val: 1);
967 if (axi_dmac_read(axi_dmac: dmac, AXI_DMAC_REG_Y_LENGTH) == 1)
968 chan->hw_2d = true;
969
970 axi_dmac_write(axi_dmac: dmac, AXI_DMAC_REG_X_LENGTH, val: 0xffffffff);
971 chan->max_length = axi_dmac_read(axi_dmac: dmac, AXI_DMAC_REG_X_LENGTH);
972 if (chan->max_length != UINT_MAX)
973 chan->max_length++;
974
975 axi_dmac_write(axi_dmac: dmac, AXI_DMAC_REG_DEST_ADDRESS, val: 0xffffffff);
976 if (axi_dmac_read(axi_dmac: dmac, AXI_DMAC_REG_DEST_ADDRESS) == 0 &&
977 chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM) {
978 dev_err(dmac->dma_dev.dev,
979 "Destination memory-mapped interface not supported.");
980 return -ENODEV;
981 }
982
983 axi_dmac_write(axi_dmac: dmac, AXI_DMAC_REG_SRC_ADDRESS, val: 0xffffffff);
984 if (axi_dmac_read(axi_dmac: dmac, AXI_DMAC_REG_SRC_ADDRESS) == 0 &&
985 chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM) {
986 dev_err(dmac->dma_dev.dev,
987 "Source memory-mapped interface not supported.");
988 return -ENODEV;
989 }
990
991 if (version >= ADI_AXI_PCORE_VER(4, 2, 'a'))
992 chan->hw_partial_xfer = true;
993
994 if (version >= ADI_AXI_PCORE_VER(4, 1, 'a')) {
995 axi_dmac_write(axi_dmac: dmac, AXI_DMAC_REG_X_LENGTH, val: 0x00);
996 chan->length_align_mask =
997 axi_dmac_read(axi_dmac: dmac, AXI_DMAC_REG_X_LENGTH);
998 } else {
999 chan->length_align_mask = chan->address_align_mask;
1000 }
1001
1002 return 0;
1003}
1004
1005static int axi_dmac_probe(struct platform_device *pdev)
1006{
1007 struct dma_device *dma_dev;
1008 struct axi_dmac *dmac;
1009 struct regmap *regmap;
1010 unsigned int version;
1011 u32 irq_mask = 0;
1012 int ret;
1013
1014 dmac = devm_kzalloc(dev: &pdev->dev, size: sizeof(*dmac), GFP_KERNEL);
1015 if (!dmac)
1016 return -ENOMEM;
1017
1018 dmac->irq = platform_get_irq(pdev, 0);
1019 if (dmac->irq < 0)
1020 return dmac->irq;
1021 if (dmac->irq == 0)
1022 return -EINVAL;
1023
1024 dmac->base = devm_platform_ioremap_resource(pdev, index: 0);
1025 if (IS_ERR(ptr: dmac->base))
1026 return PTR_ERR(ptr: dmac->base);
1027
1028 dmac->clk = devm_clk_get(dev: &pdev->dev, NULL);
1029 if (IS_ERR(ptr: dmac->clk))
1030 return PTR_ERR(ptr: dmac->clk);
1031
1032 ret = clk_prepare_enable(clk: dmac->clk);
1033 if (ret < 0)
1034 return ret;
1035
1036 version = axi_dmac_read(axi_dmac: dmac, ADI_AXI_REG_VERSION);
1037
1038 if (version >= ADI_AXI_PCORE_VER(4, 3, 'a'))
1039 ret = axi_dmac_read_chan_config(dev: &pdev->dev, dmac);
1040 else
1041 ret = axi_dmac_parse_dt(dev: &pdev->dev, dmac);
1042
1043 if (ret < 0)
1044 goto err_clk_disable;
1045
1046 INIT_LIST_HEAD(list: &dmac->chan.active_descs);
1047
1048 dma_set_max_seg_size(dev: &pdev->dev, UINT_MAX);
1049
1050 dma_dev = &dmac->dma_dev;
1051 dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
1052 dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
1053 dma_cap_set(DMA_INTERLEAVE, dma_dev->cap_mask);
1054 dma_dev->device_free_chan_resources = axi_dmac_free_chan_resources;
1055 dma_dev->device_tx_status = dma_cookie_status;
1056 dma_dev->device_issue_pending = axi_dmac_issue_pending;
1057 dma_dev->device_prep_slave_sg = axi_dmac_prep_slave_sg;
1058 dma_dev->device_prep_dma_cyclic = axi_dmac_prep_dma_cyclic;
1059 dma_dev->device_prep_interleaved_dma = axi_dmac_prep_interleaved;
1060 dma_dev->device_terminate_all = axi_dmac_terminate_all;
1061 dma_dev->device_synchronize = axi_dmac_synchronize;
1062 dma_dev->dev = &pdev->dev;
1063 dma_dev->src_addr_widths = BIT(dmac->chan.src_width);
1064 dma_dev->dst_addr_widths = BIT(dmac->chan.dest_width);
1065 dma_dev->directions = BIT(dmac->chan.direction);
1066 dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
1067 dma_dev->max_sg_burst = 31; /* 31 SGs maximum in one burst */
1068 INIT_LIST_HEAD(list: &dma_dev->channels);
1069
1070 dmac->chan.vchan.desc_free = axi_dmac_desc_free;
1071 vchan_init(vc: &dmac->chan.vchan, dmadev: dma_dev);
1072
1073 ret = axi_dmac_detect_caps(dmac, version);
1074 if (ret)
1075 goto err_clk_disable;
1076
1077 dma_dev->copy_align = (dmac->chan.address_align_mask + 1);
1078
1079 if (dmac->chan.hw_sg)
1080 irq_mask |= AXI_DMAC_IRQ_SOT;
1081
1082 axi_dmac_write(axi_dmac: dmac, AXI_DMAC_REG_IRQ_MASK, val: irq_mask);
1083
1084 if (of_dma_is_coherent(np: pdev->dev.of_node)) {
1085 ret = axi_dmac_read(axi_dmac: dmac, AXI_DMAC_REG_COHERENCY_DESC);
1086
1087 if (version < ADI_AXI_PCORE_VER(4, 4, 'a') ||
1088 !AXI_DMAC_DST_COHERENT_GET(ret)) {
1089 dev_err(dmac->dma_dev.dev,
1090 "Coherent DMA not supported in hardware");
1091 ret = -EINVAL;
1092 goto err_clk_disable;
1093 }
1094 }
1095
1096 ret = dma_async_device_register(device: dma_dev);
1097 if (ret)
1098 goto err_clk_disable;
1099
1100 ret = of_dma_controller_register(np: pdev->dev.of_node,
1101 of_dma_xlate: of_dma_xlate_by_chan_id, data: dma_dev);
1102 if (ret)
1103 goto err_unregister_device;
1104
1105 ret = request_irq(irq: dmac->irq, handler: axi_dmac_interrupt_handler, IRQF_SHARED,
1106 name: dev_name(dev: &pdev->dev), dev: dmac);
1107 if (ret)
1108 goto err_unregister_of;
1109
1110 platform_set_drvdata(pdev, data: dmac);
1111
1112 regmap = devm_regmap_init_mmio(&pdev->dev, dmac->base,
1113 &axi_dmac_regmap_config);
1114 if (IS_ERR(ptr: regmap)) {
1115 ret = PTR_ERR(ptr: regmap);
1116 goto err_free_irq;
1117 }
1118
1119 return 0;
1120
1121err_free_irq:
1122 free_irq(dmac->irq, dmac);
1123err_unregister_of:
1124 of_dma_controller_free(np: pdev->dev.of_node);
1125err_unregister_device:
1126 dma_async_device_unregister(device: &dmac->dma_dev);
1127err_clk_disable:
1128 clk_disable_unprepare(clk: dmac->clk);
1129
1130 return ret;
1131}
1132
1133static void axi_dmac_remove(struct platform_device *pdev)
1134{
1135 struct axi_dmac *dmac = platform_get_drvdata(pdev);
1136
1137 of_dma_controller_free(np: pdev->dev.of_node);
1138 free_irq(dmac->irq, dmac);
1139 tasklet_kill(t: &dmac->chan.vchan.task);
1140 dma_async_device_unregister(device: &dmac->dma_dev);
1141 clk_disable_unprepare(clk: dmac->clk);
1142}
1143
1144static const struct of_device_id axi_dmac_of_match_table[] = {
1145 { .compatible = "adi,axi-dmac-1.00.a" },
1146 { },
1147};
1148MODULE_DEVICE_TABLE(of, axi_dmac_of_match_table);
1149
1150static struct platform_driver axi_dmac_driver = {
1151 .driver = {
1152 .name = "dma-axi-dmac",
1153 .of_match_table = axi_dmac_of_match_table,
1154 },
1155 .probe = axi_dmac_probe,
1156 .remove_new = axi_dmac_remove,
1157};
1158module_platform_driver(axi_dmac_driver);
1159
1160MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1161MODULE_DESCRIPTION("DMA controller driver for the AXI-DMAC controller");
1162MODULE_LICENSE("GPL v2");
1163

source code of linux/drivers/dma/dma-axi-dmac.c