1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
2/*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24#ifndef KFD_PRIV_H_INCLUDED
25#define KFD_PRIV_H_INCLUDED
26
27#include <linux/hashtable.h>
28#include <linux/mmu_notifier.h>
29#include <linux/memremap.h>
30#include <linux/mutex.h>
31#include <linux/types.h>
32#include <linux/atomic.h>
33#include <linux/workqueue.h>
34#include <linux/spinlock.h>
35#include <linux/kfd_ioctl.h>
36#include <linux/idr.h>
37#include <linux/kfifo.h>
38#include <linux/seq_file.h>
39#include <linux/kref.h>
40#include <linux/sysfs.h>
41#include <linux/device_cgroup.h>
42#include <drm/drm_file.h>
43#include <drm/drm_drv.h>
44#include <drm/drm_device.h>
45#include <drm/drm_ioctl.h>
46#include <kgd_kfd_interface.h>
47#include <linux/swap.h>
48
49#include "amd_shared.h"
50#include "amdgpu.h"
51
52#define KFD_MAX_RING_ENTRY_SIZE 8
53
54#define KFD_SYSFS_FILE_MODE 0444
55
56/* GPU ID hash width in bits */
57#define KFD_GPU_ID_HASH_WIDTH 16
58
59/* Use upper bits of mmap offset to store KFD driver specific information.
60 * BITS[63:62] - Encode MMAP type
61 * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
62 * BITS[45:0] - MMAP offset value
63 *
64 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
65 * defines are w.r.t to PAGE_SIZE
66 */
67#define KFD_MMAP_TYPE_SHIFT 62
68#define KFD_MMAP_TYPE_MASK (0x3ULL << KFD_MMAP_TYPE_SHIFT)
69#define KFD_MMAP_TYPE_DOORBELL (0x3ULL << KFD_MMAP_TYPE_SHIFT)
70#define KFD_MMAP_TYPE_EVENTS (0x2ULL << KFD_MMAP_TYPE_SHIFT)
71#define KFD_MMAP_TYPE_RESERVED_MEM (0x1ULL << KFD_MMAP_TYPE_SHIFT)
72#define KFD_MMAP_TYPE_MMIO (0x0ULL << KFD_MMAP_TYPE_SHIFT)
73
74#define KFD_MMAP_GPU_ID_SHIFT 46
75#define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
76 << KFD_MMAP_GPU_ID_SHIFT)
77#define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
78 & KFD_MMAP_GPU_ID_MASK)
79#define KFD_MMAP_GET_GPU_ID(offset) ((offset & KFD_MMAP_GPU_ID_MASK) \
80 >> KFD_MMAP_GPU_ID_SHIFT)
81
82/*
83 * When working with cp scheduler we should assign the HIQ manually or via
84 * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
85 * definitions for Kaveri. In Kaveri only the first ME queues participates
86 * in the cp scheduling taking that in mind we set the HIQ slot in the
87 * second ME.
88 */
89#define KFD_CIK_HIQ_PIPE 4
90#define KFD_CIK_HIQ_QUEUE 0
91
92/* Macro for allocating structures */
93#define kfd_alloc_struct(ptr_to_struct) \
94 ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
95
96#define KFD_MAX_NUM_OF_PROCESSES 512
97#define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
98
99/*
100 * Size of the per-process TBA+TMA buffer: 2 pages
101 *
102 * The first page is the TBA used for the CWSR ISA code. The second
103 * page is used as TMA for user-mode trap handler setup in daisy-chain mode.
104 */
105#define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
106#define KFD_CWSR_TMA_OFFSET PAGE_SIZE
107
108#define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE \
109 (KFD_MAX_NUM_OF_PROCESSES * \
110 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
111
112#define KFD_KERNEL_QUEUE_SIZE 2048
113
114#define KFD_UNMAP_LATENCY_MS (4000)
115
116#define KFD_MAX_SDMA_QUEUES 128
117
118/*
119 * 512 = 0x200
120 * The doorbell index distance between SDMA RLC (2*i) and (2*i+1) in the
121 * same SDMA engine on SOC15, which has 8-byte doorbells for SDMA.
122 * 512 8-byte doorbell distance (i.e. one page away) ensures that SDMA RLC
123 * (2*i+1) doorbells (in terms of the lower 12 bit address) lie exactly in
124 * the OFFSET and SIZE set in registers like BIF_SDMA0_DOORBELL_RANGE.
125 */
126#define KFD_QUEUE_DOORBELL_MIRROR_OFFSET 512
127
128/**
129 * enum kfd_ioctl_flags - KFD ioctl flags
130 * Various flags that can be set in &amdkfd_ioctl_desc.flags to control how
131 * userspace can use a given ioctl.
132 */
133enum kfd_ioctl_flags {
134 /*
135 * @KFD_IOC_FLAG_CHECKPOINT_RESTORE:
136 * Certain KFD ioctls such as AMDKFD_IOC_CRIU_OP can potentially
137 * perform privileged operations and load arbitrary data into MQDs and
138 * eventually HQD registers when the queue is mapped by HWS. In order to
139 * prevent this we should perform additional security checks.
140 *
141 * This is equivalent to callers with the CHECKPOINT_RESTORE capability.
142 *
143 * Note: Since earlier versions of docker do not support CHECKPOINT_RESTORE,
144 * we also allow ioctls with SYS_ADMIN capability.
145 */
146 KFD_IOC_FLAG_CHECKPOINT_RESTORE = BIT(0),
147};
148/*
149 * Kernel module parameter to specify maximum number of supported queues per
150 * device
151 */
152extern int max_num_of_queues_per_device;
153
154
155/* Kernel module parameter to specify the scheduling policy */
156extern int sched_policy;
157
158/*
159 * Kernel module parameter to specify the maximum process
160 * number per HW scheduler
161 */
162extern int hws_max_conc_proc;
163
164extern int cwsr_enable;
165
166/*
167 * Kernel module parameter to specify whether to send sigterm to HSA process on
168 * unhandled exception
169 */
170extern int send_sigterm;
171
172/*
173 * This kernel module is used to simulate large bar machine on non-large bar
174 * enabled machines.
175 */
176extern int debug_largebar;
177
178/* Set sh_mem_config.retry_disable on GFX v9 */
179extern int amdgpu_noretry;
180
181/* Halt if HWS hang is detected */
182extern int halt_if_hws_hang;
183
184/* Whether MEC FW support GWS barriers */
185extern bool hws_gws_support;
186
187/* Queue preemption timeout in ms */
188extern int queue_preemption_timeout_ms;
189
190/*
191 * Don't evict process queues on vm fault
192 */
193extern int amdgpu_no_queue_eviction_on_vm_fault;
194
195/* Enable eviction debug messages */
196extern bool debug_evictions;
197
198extern struct mutex kfd_processes_mutex;
199
200enum cache_policy {
201 cache_policy_coherent,
202 cache_policy_noncoherent
203};
204
205#define KFD_GC_VERSION(dev) (amdgpu_ip_version((dev)->adev, GC_HWIP, 0))
206#define KFD_IS_SOC15(dev) ((KFD_GC_VERSION(dev)) >= (IP_VERSION(9, 0, 1)))
207#define KFD_SUPPORT_XNACK_PER_PROCESS(dev)\
208 ((KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2)) || \
209 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 3)))
210
211struct kfd_node;
212
213struct kfd_event_interrupt_class {
214 bool (*interrupt_isr)(struct kfd_node *dev,
215 const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
216 bool *patched_flag);
217 void (*interrupt_wq)(struct kfd_node *dev,
218 const uint32_t *ih_ring_entry);
219};
220
221struct kfd_device_info {
222 uint32_t gfx_target_version;
223 const struct kfd_event_interrupt_class *event_interrupt_class;
224 unsigned int max_pasid_bits;
225 unsigned int max_no_of_hqd;
226 unsigned int doorbell_size;
227 size_t ih_ring_entry_size;
228 uint8_t num_of_watch_points;
229 uint16_t mqd_size_aligned;
230 bool supports_cwsr;
231 bool needs_pci_atomics;
232 uint32_t no_atomic_fw_version;
233 unsigned int num_sdma_queues_per_engine;
234 unsigned int num_reserved_sdma_queues_per_engine;
235 DECLARE_BITMAP(reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES);
236};
237
238unsigned int kfd_get_num_sdma_engines(struct kfd_node *kdev);
239unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *kdev);
240
241struct kfd_mem_obj {
242 uint32_t range_start;
243 uint32_t range_end;
244 uint64_t gpu_addr;
245 uint32_t *cpu_ptr;
246 void *gtt_mem;
247};
248
249struct kfd_vmid_info {
250 uint32_t first_vmid_kfd;
251 uint32_t last_vmid_kfd;
252 uint32_t vmid_num_kfd;
253};
254
255#define MAX_KFD_NODES 8
256
257struct kfd_dev;
258
259struct kfd_node {
260 unsigned int node_id;
261 struct amdgpu_device *adev; /* Duplicated here along with keeping
262 * a copy in kfd_dev to save a hop
263 */
264 const struct kfd2kgd_calls *kfd2kgd; /* Duplicated here along with
265 * keeping a copy in kfd_dev to
266 * save a hop
267 */
268 struct kfd_vmid_info vm_info;
269 unsigned int id; /* topology stub index */
270 uint32_t xcc_mask; /* Instance mask of XCCs present */
271 struct amdgpu_xcp *xcp;
272
273 /* Interrupts */
274 struct kfifo ih_fifo;
275 struct workqueue_struct *ih_wq;
276 struct work_struct interrupt_work;
277 spinlock_t interrupt_lock;
278
279 /*
280 * Interrupts of interest to KFD are copied
281 * from the HW ring into a SW ring.
282 */
283 bool interrupts_active;
284 uint32_t interrupt_bitmap; /* Only used for GFX 9.4.3 */
285
286 /* QCM Device instance */
287 struct device_queue_manager *dqm;
288
289 /* Global GWS resource shared between processes */
290 void *gws;
291 bool gws_debug_workaround;
292
293 /* Clients watching SMI events */
294 struct list_head smi_clients;
295 spinlock_t smi_lock;
296 uint32_t reset_seq_num;
297
298 /* SRAM ECC flag */
299 atomic_t sram_ecc_flag;
300
301 /*spm process id */
302 unsigned int spm_pasid;
303
304 /* Maximum process number mapped to HW scheduler */
305 unsigned int max_proc_per_quantum;
306
307 unsigned int compute_vmid_bitmap;
308
309 struct kfd_local_mem_info local_mem_info;
310
311 struct kfd_dev *kfd;
312};
313
314struct kfd_dev {
315 struct amdgpu_device *adev;
316
317 struct kfd_device_info device_info;
318
319 u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
320 * page used by kernel queue
321 */
322
323 struct kgd2kfd_shared_resources shared_resources;
324
325 const struct kfd2kgd_calls *kfd2kgd;
326 struct mutex doorbell_mutex;
327
328 void *gtt_mem;
329 uint64_t gtt_start_gpu_addr;
330 void *gtt_start_cpu_ptr;
331 void *gtt_sa_bitmap;
332 struct mutex gtt_sa_lock;
333 unsigned int gtt_sa_chunk_size;
334 unsigned int gtt_sa_num_of_chunks;
335
336 bool init_complete;
337
338 /* Firmware versions */
339 uint16_t mec_fw_version;
340 uint16_t mec2_fw_version;
341 uint16_t sdma_fw_version;
342
343 /* CWSR */
344 bool cwsr_enabled;
345 const void *cwsr_isa;
346 unsigned int cwsr_isa_size;
347
348 /* xGMI */
349 uint64_t hive_id;
350
351 bool pci_atomic_requested;
352
353 /* Compute Profile ref. count */
354 atomic_t compute_profile;
355
356 struct ida doorbell_ida;
357 unsigned int max_doorbell_slices;
358
359 int noretry;
360
361 struct kfd_node *nodes[MAX_KFD_NODES];
362 unsigned int num_nodes;
363
364 /* Track per device allocated watch points */
365 uint32_t alloc_watch_ids;
366 spinlock_t watch_points_lock;
367
368 /* Kernel doorbells for KFD device */
369 struct amdgpu_bo *doorbells;
370
371 /* bitmap for dynamic doorbell allocation from doorbell object */
372 unsigned long *doorbell_bitmap;
373};
374
375enum kfd_mempool {
376 KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
377 KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
378 KFD_MEMPOOL_FRAMEBUFFER = 3,
379};
380
381/* Character device interface */
382int kfd_chardev_init(void);
383void kfd_chardev_exit(void);
384
385/**
386 * enum kfd_unmap_queues_filter - Enum for queue filters.
387 *
388 * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
389 * running queues list.
390 *
391 * @KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES: Preempts all non-static queues
392 * in the run list.
393 *
394 * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
395 * specific process.
396 *
397 */
398enum kfd_unmap_queues_filter {
399 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES = 1,
400 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES = 2,
401 KFD_UNMAP_QUEUES_FILTER_BY_PASID = 3
402};
403
404/**
405 * enum kfd_queue_type - Enum for various queue types.
406 *
407 * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
408 *
409 * @KFD_QUEUE_TYPE_SDMA: SDMA user mode queue type.
410 *
411 * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
412 *
413 * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
414 *
415 * @KFD_QUEUE_TYPE_SDMA_XGMI: Special SDMA queue for XGMI interface.
416 */
417enum kfd_queue_type {
418 KFD_QUEUE_TYPE_COMPUTE,
419 KFD_QUEUE_TYPE_SDMA,
420 KFD_QUEUE_TYPE_HIQ,
421 KFD_QUEUE_TYPE_DIQ,
422 KFD_QUEUE_TYPE_SDMA_XGMI
423};
424
425enum kfd_queue_format {
426 KFD_QUEUE_FORMAT_PM4,
427 KFD_QUEUE_FORMAT_AQL
428};
429
430enum KFD_QUEUE_PRIORITY {
431 KFD_QUEUE_PRIORITY_MINIMUM = 0,
432 KFD_QUEUE_PRIORITY_MAXIMUM = 15
433};
434
435/**
436 * struct queue_properties
437 *
438 * @type: The queue type.
439 *
440 * @queue_id: Queue identifier.
441 *
442 * @queue_address: Queue ring buffer address.
443 *
444 * @queue_size: Queue ring buffer size.
445 *
446 * @priority: Defines the queue priority relative to other queues in the
447 * process.
448 * This is just an indication and HW scheduling may override the priority as
449 * necessary while keeping the relative prioritization.
450 * the priority granularity is from 0 to f which f is the highest priority.
451 * currently all queues are initialized with the highest priority.
452 *
453 * @queue_percent: This field is partially implemented and currently a zero in
454 * this field defines that the queue is non active.
455 *
456 * @read_ptr: User space address which points to the number of dwords the
457 * cp read from the ring buffer. This field updates automatically by the H/W.
458 *
459 * @write_ptr: Defines the number of dwords written to the ring buffer.
460 *
461 * @doorbell_ptr: Notifies the H/W of new packet written to the queue ring
462 * buffer. This field should be similar to write_ptr and the user should
463 * update this field after updating the write_ptr.
464 *
465 * @doorbell_off: The doorbell offset in the doorbell pci-bar.
466 *
467 * @is_interop: Defines if this is a interop queue. Interop queue means that
468 * the queue can access both graphics and compute resources.
469 *
470 * @is_evicted: Defines if the queue is evicted. Only active queues
471 * are evicted, rendering them inactive.
472 *
473 * @is_active: Defines if the queue is active or not. @is_active and
474 * @is_evicted are protected by the DQM lock.
475 *
476 * @is_gws: Defines if the queue has been updated to be GWS-capable or not.
477 * @is_gws should be protected by the DQM lock, since changing it can yield the
478 * possibility of updating DQM state on number of GWS queues.
479 *
480 * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
481 * of the queue.
482 *
483 * This structure represents the queue properties for each queue no matter if
484 * it's user mode or kernel mode queue.
485 *
486 */
487
488struct queue_properties {
489 enum kfd_queue_type type;
490 enum kfd_queue_format format;
491 unsigned int queue_id;
492 uint64_t queue_address;
493 uint64_t queue_size;
494 uint32_t priority;
495 uint32_t queue_percent;
496 uint32_t *read_ptr;
497 uint32_t *write_ptr;
498 void __iomem *doorbell_ptr;
499 uint32_t doorbell_off;
500 bool is_interop;
501 bool is_evicted;
502 bool is_suspended;
503 bool is_being_destroyed;
504 bool is_active;
505 bool is_gws;
506 uint32_t pm4_target_xcc;
507 bool is_dbg_wa;
508 bool is_user_cu_masked;
509 /* Not relevant for user mode queues in cp scheduling */
510 unsigned int vmid;
511 /* Relevant only for sdma queues*/
512 uint32_t sdma_engine_id;
513 uint32_t sdma_queue_id;
514 uint32_t sdma_vm_addr;
515 /* Relevant only for VI */
516 uint64_t eop_ring_buffer_address;
517 uint32_t eop_ring_buffer_size;
518 uint64_t ctx_save_restore_area_address;
519 uint32_t ctx_save_restore_area_size;
520 uint32_t ctl_stack_size;
521 uint64_t tba_addr;
522 uint64_t tma_addr;
523 uint64_t exception_status;
524};
525
526#define QUEUE_IS_ACTIVE(q) ((q).queue_size > 0 && \
527 (q).queue_address != 0 && \
528 (q).queue_percent > 0 && \
529 !(q).is_evicted && \
530 !(q).is_suspended)
531
532enum mqd_update_flag {
533 UPDATE_FLAG_DBG_WA_ENABLE = 1,
534 UPDATE_FLAG_DBG_WA_DISABLE = 2,
535};
536
537struct mqd_update_info {
538 union {
539 struct {
540 uint32_t count; /* Must be a multiple of 32 */
541 uint32_t *ptr;
542 } cu_mask;
543 };
544 enum mqd_update_flag update_flag;
545};
546
547/**
548 * struct queue
549 *
550 * @list: Queue linked list.
551 *
552 * @mqd: The queue MQD (memory queue descriptor).
553 *
554 * @mqd_mem_obj: The MQD local gpu memory object.
555 *
556 * @gart_mqd_addr: The MQD gart mc address.
557 *
558 * @properties: The queue properties.
559 *
560 * @mec: Used only in no cp scheduling mode and identifies to micro engine id
561 * that the queue should be executed on.
562 *
563 * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
564 * id.
565 *
566 * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
567 *
568 * @process: The kfd process that created this queue.
569 *
570 * @device: The kfd device that created this queue.
571 *
572 * @gws: Pointing to gws kgd_mem if this is a gws control queue; NULL
573 * otherwise.
574 *
575 * This structure represents user mode compute queues.
576 * It contains all the necessary data to handle such queues.
577 *
578 */
579
580struct queue {
581 struct list_head list;
582 void *mqd;
583 struct kfd_mem_obj *mqd_mem_obj;
584 uint64_t gart_mqd_addr;
585 struct queue_properties properties;
586
587 uint32_t mec;
588 uint32_t pipe;
589 uint32_t queue;
590
591 unsigned int sdma_id;
592 unsigned int doorbell_id;
593
594 struct kfd_process *process;
595 struct kfd_node *device;
596 void *gws;
597
598 /* procfs */
599 struct kobject kobj;
600
601 void *gang_ctx_bo;
602 uint64_t gang_ctx_gpu_addr;
603 void *gang_ctx_cpu_ptr;
604
605 struct amdgpu_bo *wptr_bo;
606};
607
608enum KFD_MQD_TYPE {
609 KFD_MQD_TYPE_HIQ = 0, /* for hiq */
610 KFD_MQD_TYPE_CP, /* for cp queues and diq */
611 KFD_MQD_TYPE_SDMA, /* for sdma queues */
612 KFD_MQD_TYPE_DIQ, /* for diq */
613 KFD_MQD_TYPE_MAX
614};
615
616enum KFD_PIPE_PRIORITY {
617 KFD_PIPE_PRIORITY_CS_LOW = 0,
618 KFD_PIPE_PRIORITY_CS_MEDIUM,
619 KFD_PIPE_PRIORITY_CS_HIGH
620};
621
622struct scheduling_resources {
623 unsigned int vmid_mask;
624 enum kfd_queue_type type;
625 uint64_t queue_mask;
626 uint64_t gws_mask;
627 uint32_t oac_mask;
628 uint32_t gds_heap_base;
629 uint32_t gds_heap_size;
630};
631
632struct process_queue_manager {
633 /* data */
634 struct kfd_process *process;
635 struct list_head queues;
636 unsigned long *queue_slot_bitmap;
637};
638
639struct qcm_process_device {
640 /* The Device Queue Manager that owns this data */
641 struct device_queue_manager *dqm;
642 struct process_queue_manager *pqm;
643 /* Queues list */
644 struct list_head queues_list;
645 struct list_head priv_queue_list;
646
647 unsigned int queue_count;
648 unsigned int vmid;
649 bool is_debug;
650 unsigned int evicted; /* eviction counter, 0=active */
651
652 /* This flag tells if we should reset all wavefronts on
653 * process termination
654 */
655 bool reset_wavefronts;
656
657 /* This flag tells us if this process has a GWS-capable
658 * queue that will be mapped into the runlist. It's
659 * possible to request a GWS BO, but not have the queue
660 * currently mapped, and this changes how the MAP_PROCESS
661 * PM4 packet is configured.
662 */
663 bool mapped_gws_queue;
664
665 /* All the memory management data should be here too */
666 uint64_t gds_context_area;
667 /* Contains page table flags such as AMDGPU_PTE_VALID since gfx9 */
668 uint64_t page_table_base;
669 uint32_t sh_mem_config;
670 uint32_t sh_mem_bases;
671 uint32_t sh_mem_ape1_base;
672 uint32_t sh_mem_ape1_limit;
673 uint32_t gds_size;
674 uint32_t num_gws;
675 uint32_t num_oac;
676 uint32_t sh_hidden_private_base;
677
678 /* CWSR memory */
679 struct kgd_mem *cwsr_mem;
680 void *cwsr_kaddr;
681 uint64_t cwsr_base;
682 uint64_t tba_addr;
683 uint64_t tma_addr;
684
685 /* IB memory */
686 struct kgd_mem *ib_mem;
687 uint64_t ib_base;
688 void *ib_kaddr;
689
690 /* doorbells for kfd process */
691 struct amdgpu_bo *proc_doorbells;
692
693 /* bitmap for dynamic doorbell allocation from the bo */
694 unsigned long *doorbell_bitmap;
695};
696
697/* KFD Memory Eviction */
698
699/* Approx. wait time before attempting to restore evicted BOs */
700#define PROCESS_RESTORE_TIME_MS 100
701/* Approx. back off time if restore fails due to lack of memory */
702#define PROCESS_BACK_OFF_TIME_MS 100
703/* Approx. time before evicting the process again */
704#define PROCESS_ACTIVE_TIME_MS 10
705
706/* 8 byte handle containing GPU ID in the most significant 4 bytes and
707 * idr_handle in the least significant 4 bytes
708 */
709#define MAKE_HANDLE(gpu_id, idr_handle) \
710 (((uint64_t)(gpu_id) << 32) + idr_handle)
711#define GET_GPU_ID(handle) (handle >> 32)
712#define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
713
714enum kfd_pdd_bound {
715 PDD_UNBOUND = 0,
716 PDD_BOUND,
717 PDD_BOUND_SUSPENDED,
718};
719
720#define MAX_SYSFS_FILENAME_LEN 15
721
722/*
723 * SDMA counter runs at 100MHz frequency.
724 * We display SDMA activity in microsecond granularity in sysfs.
725 * As a result, the divisor is 100.
726 */
727#define SDMA_ACTIVITY_DIVISOR 100
728
729/* Data that is per-process-per device. */
730struct kfd_process_device {
731 /* The device that owns this data. */
732 struct kfd_node *dev;
733
734 /* The process that owns this kfd_process_device. */
735 struct kfd_process *process;
736
737 /* per-process-per device QCM data structure */
738 struct qcm_process_device qpd;
739
740 /*Apertures*/
741 uint64_t lds_base;
742 uint64_t lds_limit;
743 uint64_t gpuvm_base;
744 uint64_t gpuvm_limit;
745 uint64_t scratch_base;
746 uint64_t scratch_limit;
747
748 /* VM context for GPUVM allocations */
749 struct file *drm_file;
750 void *drm_priv;
751 atomic64_t tlb_seq;
752
753 /* GPUVM allocations storage */
754 struct idr alloc_idr;
755
756 /* Flag used to tell the pdd has dequeued from the dqm.
757 * This is used to prevent dev->dqm->ops.process_termination() from
758 * being called twice when it is already called in IOMMU callback
759 * function.
760 */
761 bool already_dequeued;
762 bool runtime_inuse;
763
764 /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
765 enum kfd_pdd_bound bound;
766
767 /* VRAM usage */
768 uint64_t vram_usage;
769 struct attribute attr_vram;
770 char vram_filename[MAX_SYSFS_FILENAME_LEN];
771
772 /* SDMA activity tracking */
773 uint64_t sdma_past_activity_counter;
774 struct attribute attr_sdma;
775 char sdma_filename[MAX_SYSFS_FILENAME_LEN];
776
777 /* Eviction activity tracking */
778 uint64_t last_evict_timestamp;
779 atomic64_t evict_duration_counter;
780 struct attribute attr_evict;
781
782 struct kobject *kobj_stats;
783
784 /*
785 * @cu_occupancy: Reports occupancy of Compute Units (CU) of a process
786 * that is associated with device encoded by "this" struct instance. The
787 * value reflects CU usage by all of the waves launched by this process
788 * on this device. A very important property of occupancy parameter is
789 * that its value is a snapshot of current use.
790 *
791 * Following is to be noted regarding how this parameter is reported:
792 *
793 * The number of waves that a CU can launch is limited by couple of
794 * parameters. These are encoded by struct amdgpu_cu_info instance
795 * that is part of every device definition. For GFX9 devices this
796 * translates to 40 waves (simd_per_cu * max_waves_per_simd) when waves
797 * do not use scratch memory and 32 waves (max_scratch_slots_per_cu)
798 * when they do use scratch memory. This could change for future
799 * devices and therefore this example should be considered as a guide.
800 *
801 * All CU's of a device are available for the process. This may not be true
802 * under certain conditions - e.g. CU masking.
803 *
804 * Finally number of CU's that are occupied by a process is affected by both
805 * number of CU's a device has along with number of other competing processes
806 */
807 struct attribute attr_cu_occupancy;
808
809 /* sysfs counters for GPU retry fault and page migration tracking */
810 struct kobject *kobj_counters;
811 struct attribute attr_faults;
812 struct attribute attr_page_in;
813 struct attribute attr_page_out;
814 uint64_t faults;
815 uint64_t page_in;
816 uint64_t page_out;
817
818 /* Exception code status*/
819 uint64_t exception_status;
820 void *vm_fault_exc_data;
821 size_t vm_fault_exc_data_size;
822
823 /* Tracks debug per-vmid request settings */
824 uint32_t spi_dbg_override;
825 uint32_t spi_dbg_launch_mode;
826 uint32_t watch_points[4];
827 uint32_t alloc_watch_ids;
828
829 /*
830 * If this process has been checkpointed before, then the user
831 * application will use the original gpu_id on the
832 * checkpointed node to refer to this device.
833 */
834 uint32_t user_gpu_id;
835
836 void *proc_ctx_bo;
837 uint64_t proc_ctx_gpu_addr;
838 void *proc_ctx_cpu_ptr;
839};
840
841#define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
842
843struct svm_range_list {
844 struct mutex lock;
845 struct rb_root_cached objects;
846 struct list_head list;
847 struct work_struct deferred_list_work;
848 struct list_head deferred_range_list;
849 struct list_head criu_svm_metadata_list;
850 spinlock_t deferred_list_lock;
851 atomic_t evicted_ranges;
852 atomic_t drain_pagefaults;
853 struct delayed_work restore_work;
854 DECLARE_BITMAP(bitmap_supported, MAX_GPU_INSTANCE);
855 struct task_struct *faulting_task;
856};
857
858/* Process data */
859struct kfd_process {
860 /*
861 * kfd_process are stored in an mm_struct*->kfd_process*
862 * hash table (kfd_processes in kfd_process.c)
863 */
864 struct hlist_node kfd_processes;
865
866 /*
867 * Opaque pointer to mm_struct. We don't hold a reference to
868 * it so it should never be dereferenced from here. This is
869 * only used for looking up processes by their mm.
870 */
871 void *mm;
872
873 struct kref ref;
874 struct work_struct release_work;
875
876 struct mutex mutex;
877
878 /*
879 * In any process, the thread that started main() is the lead
880 * thread and outlives the rest.
881 * It is here because amd_iommu_bind_pasid wants a task_struct.
882 * It can also be used for safely getting a reference to the
883 * mm_struct of the process.
884 */
885 struct task_struct *lead_thread;
886
887 /* We want to receive a notification when the mm_struct is destroyed */
888 struct mmu_notifier mmu_notifier;
889
890 u32 pasid;
891
892 /*
893 * Array of kfd_process_device pointers,
894 * one for each device the process is using.
895 */
896 struct kfd_process_device *pdds[MAX_GPU_INSTANCE];
897 uint32_t n_pdds;
898
899 struct process_queue_manager pqm;
900
901 /*Is the user space process 32 bit?*/
902 bool is_32bit_user_mode;
903
904 /* Event-related data */
905 struct mutex event_mutex;
906 /* Event ID allocator and lookup */
907 struct idr event_idr;
908 /* Event page */
909 u64 signal_handle;
910 struct kfd_signal_page *signal_page;
911 size_t signal_mapped_size;
912 size_t signal_event_count;
913 bool signal_event_limit_reached;
914
915 /* Information used for memory eviction */
916 void *kgd_process_info;
917 /* Eviction fence that is attached to all the BOs of this process. The
918 * fence will be triggered during eviction and new one will be created
919 * during restore
920 */
921 struct dma_fence *ef;
922
923 /* Work items for evicting and restoring BOs */
924 struct delayed_work eviction_work;
925 struct delayed_work restore_work;
926 /* seqno of the last scheduled eviction */
927 unsigned int last_eviction_seqno;
928 /* Approx. the last timestamp (in jiffies) when the process was
929 * restored after an eviction
930 */
931 unsigned long last_restore_timestamp;
932
933 /* Indicates device process is debug attached with reserved vmid. */
934 bool debug_trap_enabled;
935
936 /* per-process-per device debug event fd file */
937 struct file *dbg_ev_file;
938
939 /* If the process is a kfd debugger, we need to know so we can clean
940 * up at exit time. If a process enables debugging on itself, it does
941 * its own clean-up, so we don't set the flag here. We track this by
942 * counting the number of processes this process is debugging.
943 */
944 atomic_t debugged_process_count;
945
946 /* If the process is a debugged, this is the debugger process */
947 struct kfd_process *debugger_process;
948
949 /* Kobj for our procfs */
950 struct kobject *kobj;
951 struct kobject *kobj_queues;
952 struct attribute attr_pasid;
953
954 /* Keep track cwsr init */
955 bool has_cwsr;
956
957 /* Exception code enable mask and status */
958 uint64_t exception_enable_mask;
959 uint64_t exception_status;
960
961 /* Used to drain stale interrupts */
962 wait_queue_head_t wait_irq_drain;
963 bool irq_drain_is_open;
964
965 /* shared virtual memory registered by this process */
966 struct svm_range_list svms;
967
968 bool xnack_enabled;
969
970 /* Work area for debugger event writer worker. */
971 struct work_struct debug_event_workarea;
972
973 /* Tracks debug per-vmid request for debug flags */
974 bool dbg_flags;
975
976 atomic_t poison;
977 /* Queues are in paused stated because we are in the process of doing a CRIU checkpoint */
978 bool queues_paused;
979
980 /* Tracks runtime enable status */
981 struct semaphore runtime_enable_sema;
982 bool is_runtime_retry;
983 struct kfd_runtime_info runtime_info;
984};
985
986#define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
987extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
988extern struct srcu_struct kfd_processes_srcu;
989
990/**
991 * typedef amdkfd_ioctl_t - typedef for ioctl function pointer.
992 *
993 * @filep: pointer to file structure.
994 * @p: amdkfd process pointer.
995 * @data: pointer to arg that was copied from user.
996 *
997 * Return: returns ioctl completion code.
998 */
999typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
1000 void *data);
1001
1002struct amdkfd_ioctl_desc {
1003 unsigned int cmd;
1004 int flags;
1005 amdkfd_ioctl_t *func;
1006 unsigned int cmd_drv;
1007 const char *name;
1008};
1009bool kfd_dev_is_large_bar(struct kfd_node *dev);
1010
1011int kfd_process_create_wq(void);
1012void kfd_process_destroy_wq(void);
1013void kfd_cleanup_processes(void);
1014struct kfd_process *kfd_create_process(struct task_struct *thread);
1015struct kfd_process *kfd_get_process(const struct task_struct *task);
1016struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid);
1017struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
1018
1019int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id);
1020int kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1021 uint32_t *gpuid, uint32_t *gpuidx);
1022static inline int kfd_process_gpuid_from_gpuidx(struct kfd_process *p,
1023 uint32_t gpuidx, uint32_t *gpuid) {
1024 return gpuidx < p->n_pdds ? p->pdds[gpuidx]->dev->id : -EINVAL;
1025}
1026static inline struct kfd_process_device *kfd_process_device_from_gpuidx(
1027 struct kfd_process *p, uint32_t gpuidx) {
1028 return gpuidx < p->n_pdds ? p->pdds[gpuidx] : NULL;
1029}
1030
1031void kfd_unref_process(struct kfd_process *p);
1032int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger);
1033int kfd_process_restore_queues(struct kfd_process *p);
1034void kfd_suspend_all_processes(void);
1035int kfd_resume_all_processes(void);
1036
1037struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *process,
1038 uint32_t gpu_id);
1039
1040int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id);
1041
1042int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1043 struct file *drm_file);
1044struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1045 struct kfd_process *p);
1046struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1047 struct kfd_process *p);
1048struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1049 struct kfd_process *p);
1050
1051bool kfd_process_xnack_mode(struct kfd_process *p, bool supported);
1052
1053int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
1054 struct vm_area_struct *vma);
1055
1056/* KFD process API for creating and translating handles */
1057int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1058 void *mem);
1059void *kfd_process_device_translate_handle(struct kfd_process_device *p,
1060 int handle);
1061void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1062 int handle);
1063struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid);
1064
1065/* PASIDs */
1066int kfd_pasid_init(void);
1067void kfd_pasid_exit(void);
1068bool kfd_set_pasid_limit(unsigned int new_limit);
1069unsigned int kfd_get_pasid_limit(void);
1070u32 kfd_pasid_alloc(void);
1071void kfd_pasid_free(u32 pasid);
1072
1073/* Doorbells */
1074size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
1075int kfd_doorbell_init(struct kfd_dev *kfd);
1076void kfd_doorbell_fini(struct kfd_dev *kfd);
1077int kfd_doorbell_mmap(struct kfd_node *dev, struct kfd_process *process,
1078 struct vm_area_struct *vma);
1079void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
1080 unsigned int *doorbell_off);
1081void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
1082u32 read_kernel_doorbell(u32 __iomem *db);
1083void write_kernel_doorbell(void __iomem *db, u32 value);
1084void write_kernel_doorbell64(void __iomem *db, u64 value);
1085unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
1086 struct kfd_process_device *pdd,
1087 unsigned int doorbell_id);
1088phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd);
1089int kfd_alloc_process_doorbells(struct kfd_dev *kfd,
1090 struct kfd_process_device *pdd);
1091void kfd_free_process_doorbells(struct kfd_dev *kfd,
1092 struct kfd_process_device *pdd);
1093/* GTT Sub-Allocator */
1094
1095int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size,
1096 struct kfd_mem_obj **mem_obj);
1097
1098int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj);
1099
1100extern struct device *kfd_device;
1101
1102/* KFD's procfs */
1103void kfd_procfs_init(void);
1104void kfd_procfs_shutdown(void);
1105int kfd_procfs_add_queue(struct queue *q);
1106void kfd_procfs_del_queue(struct queue *q);
1107
1108/* Topology */
1109int kfd_topology_init(void);
1110void kfd_topology_shutdown(void);
1111int kfd_topology_add_device(struct kfd_node *gpu);
1112int kfd_topology_remove_device(struct kfd_node *gpu);
1113struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
1114 uint32_t proximity_domain);
1115struct kfd_topology_device *kfd_topology_device_by_proximity_domain_no_lock(
1116 uint32_t proximity_domain);
1117struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
1118struct kfd_node *kfd_device_by_id(uint32_t gpu_id);
1119struct kfd_node *kfd_device_by_pci_dev(const struct pci_dev *pdev);
1120static inline bool kfd_irq_is_from_node(struct kfd_node *node, uint32_t node_id,
1121 uint32_t vmid)
1122{
1123 return (node->interrupt_bitmap & (1 << node_id)) != 0 &&
1124 (node->compute_vmid_bitmap & (1 << vmid)) != 0;
1125}
1126static inline struct kfd_node *kfd_node_by_irq_ids(struct amdgpu_device *adev,
1127 uint32_t node_id, uint32_t vmid) {
1128 struct kfd_dev *dev = adev->kfd.dev;
1129 uint32_t i;
1130
1131 if (adev->ip_versions[GC_HWIP][0] != IP_VERSION(9, 4, 3))
1132 return dev->nodes[0];
1133
1134 for (i = 0; i < dev->num_nodes; i++)
1135 if (kfd_irq_is_from_node(node: dev->nodes[i], node_id, vmid))
1136 return dev->nodes[i];
1137
1138 return NULL;
1139}
1140int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_node **kdev);
1141int kfd_numa_node_to_apic_id(int numa_node_id);
1142
1143/* Interrupts */
1144#define KFD_IRQ_FENCE_CLIENTID 0xff
1145#define KFD_IRQ_FENCE_SOURCEID 0xff
1146#define KFD_IRQ_IS_FENCE(client, source) \
1147 ((client) == KFD_IRQ_FENCE_CLIENTID && \
1148 (source) == KFD_IRQ_FENCE_SOURCEID)
1149int kfd_interrupt_init(struct kfd_node *dev);
1150void kfd_interrupt_exit(struct kfd_node *dev);
1151bool enqueue_ih_ring_entry(struct kfd_node *kfd, const void *ih_ring_entry);
1152bool interrupt_is_wanted(struct kfd_node *dev,
1153 const uint32_t *ih_ring_entry,
1154 uint32_t *patched_ihre, bool *flag);
1155int kfd_process_drain_interrupts(struct kfd_process_device *pdd);
1156void kfd_process_close_interrupt_drain(unsigned int pasid);
1157
1158/* amdkfd Apertures */
1159int kfd_init_apertures(struct kfd_process *process);
1160
1161void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1162 uint64_t tba_addr,
1163 uint64_t tma_addr);
1164void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1165 bool enabled);
1166
1167/* CWSR initialization */
1168int kfd_process_init_cwsr_apu(struct kfd_process *process, struct file *filep);
1169
1170/* CRIU */
1171/*
1172 * Need to increment KFD_CRIU_PRIV_VERSION each time a change is made to any of the CRIU private
1173 * structures:
1174 * kfd_criu_process_priv_data
1175 * kfd_criu_device_priv_data
1176 * kfd_criu_bo_priv_data
1177 * kfd_criu_queue_priv_data
1178 * kfd_criu_event_priv_data
1179 * kfd_criu_svm_range_priv_data
1180 */
1181
1182#define KFD_CRIU_PRIV_VERSION 1
1183
1184struct kfd_criu_process_priv_data {
1185 uint32_t version;
1186 uint32_t xnack_mode;
1187};
1188
1189struct kfd_criu_device_priv_data {
1190 /* For future use */
1191 uint64_t reserved;
1192};
1193
1194struct kfd_criu_bo_priv_data {
1195 uint64_t user_addr;
1196 uint32_t idr_handle;
1197 uint32_t mapped_gpuids[MAX_GPU_INSTANCE];
1198};
1199
1200/*
1201 * The first 4 bytes of kfd_criu_queue_priv_data, kfd_criu_event_priv_data,
1202 * kfd_criu_svm_range_priv_data is the object type
1203 */
1204enum kfd_criu_object_type {
1205 KFD_CRIU_OBJECT_TYPE_QUEUE,
1206 KFD_CRIU_OBJECT_TYPE_EVENT,
1207 KFD_CRIU_OBJECT_TYPE_SVM_RANGE,
1208};
1209
1210struct kfd_criu_svm_range_priv_data {
1211 uint32_t object_type;
1212 uint64_t start_addr;
1213 uint64_t size;
1214 /* Variable length array of attributes */
1215 struct kfd_ioctl_svm_attribute attrs[];
1216};
1217
1218struct kfd_criu_queue_priv_data {
1219 uint32_t object_type;
1220 uint64_t q_address;
1221 uint64_t q_size;
1222 uint64_t read_ptr_addr;
1223 uint64_t write_ptr_addr;
1224 uint64_t doorbell_off;
1225 uint64_t eop_ring_buffer_address;
1226 uint64_t ctx_save_restore_area_address;
1227 uint32_t gpu_id;
1228 uint32_t type;
1229 uint32_t format;
1230 uint32_t q_id;
1231 uint32_t priority;
1232 uint32_t q_percent;
1233 uint32_t doorbell_id;
1234 uint32_t gws;
1235 uint32_t sdma_id;
1236 uint32_t eop_ring_buffer_size;
1237 uint32_t ctx_save_restore_area_size;
1238 uint32_t ctl_stack_size;
1239 uint32_t mqd_size;
1240};
1241
1242struct kfd_criu_event_priv_data {
1243 uint32_t object_type;
1244 uint64_t user_handle;
1245 uint32_t event_id;
1246 uint32_t auto_reset;
1247 uint32_t type;
1248 uint32_t signaled;
1249
1250 union {
1251 struct kfd_hsa_memory_exception_data memory_exception_data;
1252 struct kfd_hsa_hw_exception_data hw_exception_data;
1253 };
1254};
1255
1256int kfd_process_get_queue_info(struct kfd_process *p,
1257 uint32_t *num_queues,
1258 uint64_t *priv_data_sizes);
1259
1260int kfd_criu_checkpoint_queues(struct kfd_process *p,
1261 uint8_t __user *user_priv_data,
1262 uint64_t *priv_data_offset);
1263
1264int kfd_criu_restore_queue(struct kfd_process *p,
1265 uint8_t __user *user_priv_data,
1266 uint64_t *priv_data_offset,
1267 uint64_t max_priv_data_size);
1268
1269int kfd_criu_checkpoint_events(struct kfd_process *p,
1270 uint8_t __user *user_priv_data,
1271 uint64_t *priv_data_offset);
1272
1273int kfd_criu_restore_event(struct file *devkfd,
1274 struct kfd_process *p,
1275 uint8_t __user *user_priv_data,
1276 uint64_t *priv_data_offset,
1277 uint64_t max_priv_data_size);
1278/* CRIU - End */
1279
1280/* Queue Context Management */
1281int init_queue(struct queue **q, const struct queue_properties *properties);
1282void uninit_queue(struct queue *q);
1283void print_queue_properties(struct queue_properties *q);
1284void print_queue(struct queue *q);
1285
1286struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
1287 struct kfd_node *dev);
1288struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
1289 struct kfd_node *dev);
1290struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
1291 struct kfd_node *dev);
1292struct mqd_manager *mqd_manager_init_v10(enum KFD_MQD_TYPE type,
1293 struct kfd_node *dev);
1294struct mqd_manager *mqd_manager_init_v11(enum KFD_MQD_TYPE type,
1295 struct kfd_node *dev);
1296struct device_queue_manager *device_queue_manager_init(struct kfd_node *dev);
1297void device_queue_manager_uninit(struct device_queue_manager *dqm);
1298struct kernel_queue *kernel_queue_init(struct kfd_node *dev,
1299 enum kfd_queue_type type);
1300void kernel_queue_uninit(struct kernel_queue *kq, bool hanging);
1301int kfd_dqm_evict_pasid(struct device_queue_manager *dqm, u32 pasid);
1302
1303/* Process Queue Manager */
1304struct process_queue_node {
1305 struct queue *q;
1306 struct kernel_queue *kq;
1307 struct list_head process_queue_list;
1308};
1309
1310void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
1311void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
1312int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
1313void pqm_uninit(struct process_queue_manager *pqm);
1314int pqm_create_queue(struct process_queue_manager *pqm,
1315 struct kfd_node *dev,
1316 struct file *f,
1317 struct queue_properties *properties,
1318 unsigned int *qid,
1319 struct amdgpu_bo *wptr_bo,
1320 const struct kfd_criu_queue_priv_data *q_data,
1321 const void *restore_mqd,
1322 const void *restore_ctl_stack,
1323 uint32_t *p_doorbell_offset_in_process);
1324int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
1325int pqm_update_queue_properties(struct process_queue_manager *pqm, unsigned int qid,
1326 struct queue_properties *p);
1327int pqm_update_mqd(struct process_queue_manager *pqm, unsigned int qid,
1328 struct mqd_update_info *minfo);
1329int pqm_set_gws(struct process_queue_manager *pqm, unsigned int qid,
1330 void *gws);
1331struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
1332 unsigned int qid);
1333struct queue *pqm_get_user_queue(struct process_queue_manager *pqm,
1334 unsigned int qid);
1335int pqm_get_wave_state(struct process_queue_manager *pqm,
1336 unsigned int qid,
1337 void __user *ctl_stack,
1338 u32 *ctl_stack_used_size,
1339 u32 *save_area_used_size);
1340int pqm_get_queue_snapshot(struct process_queue_manager *pqm,
1341 uint64_t exception_clear_mask,
1342 void __user *buf,
1343 int *num_qss_entries,
1344 uint32_t *entry_size);
1345
1346int amdkfd_fence_wait_timeout(struct device_queue_manager *dqm,
1347 uint64_t fence_value,
1348 unsigned int timeout_ms);
1349
1350int pqm_get_queue_checkpoint_info(struct process_queue_manager *pqm,
1351 unsigned int qid,
1352 u32 *mqd_size,
1353 u32 *ctl_stack_size);
1354/* Packet Manager */
1355
1356#define KFD_FENCE_COMPLETED (100)
1357#define KFD_FENCE_INIT (10)
1358
1359struct packet_manager {
1360 struct device_queue_manager *dqm;
1361 struct kernel_queue *priv_queue;
1362 struct mutex lock;
1363 bool allocated;
1364 struct kfd_mem_obj *ib_buffer_obj;
1365 unsigned int ib_size_bytes;
1366 bool is_over_subscription;
1367
1368 const struct packet_manager_funcs *pmf;
1369};
1370
1371struct packet_manager_funcs {
1372 /* Support ASIC-specific packet formats for PM4 packets */
1373 int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
1374 struct qcm_process_device *qpd);
1375 int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
1376 uint64_t ib, size_t ib_size_in_dwords, bool chain);
1377 int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
1378 struct scheduling_resources *res);
1379 int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
1380 struct queue *q, bool is_static);
1381 int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
1382 enum kfd_unmap_queues_filter mode,
1383 uint32_t filter_param, bool reset);
1384 int (*set_grace_period)(struct packet_manager *pm, uint32_t *buffer,
1385 uint32_t grace_period);
1386 int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
1387 uint64_t fence_address, uint64_t fence_value);
1388 int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
1389
1390 /* Packet sizes */
1391 int map_process_size;
1392 int runlist_size;
1393 int set_resources_size;
1394 int map_queues_size;
1395 int unmap_queues_size;
1396 int set_grace_period_size;
1397 int query_status_size;
1398 int release_mem_size;
1399};
1400
1401extern const struct packet_manager_funcs kfd_vi_pm_funcs;
1402extern const struct packet_manager_funcs kfd_v9_pm_funcs;
1403extern const struct packet_manager_funcs kfd_aldebaran_pm_funcs;
1404
1405int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
1406void pm_uninit(struct packet_manager *pm, bool hanging);
1407int pm_send_set_resources(struct packet_manager *pm,
1408 struct scheduling_resources *res);
1409int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
1410int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
1411 uint64_t fence_value);
1412
1413int pm_send_unmap_queue(struct packet_manager *pm,
1414 enum kfd_unmap_queues_filter mode,
1415 uint32_t filter_param, bool reset);
1416
1417void pm_release_ib(struct packet_manager *pm);
1418
1419int pm_update_grace_period(struct packet_manager *pm, uint32_t grace_period);
1420
1421/* Following PM funcs can be shared among VI and AI */
1422unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
1423
1424uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
1425
1426/* Events */
1427extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
1428extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
1429extern const struct kfd_event_interrupt_class event_interrupt_class_v9_4_3;
1430extern const struct kfd_event_interrupt_class event_interrupt_class_v10;
1431extern const struct kfd_event_interrupt_class event_interrupt_class_v11;
1432
1433extern const struct kfd_device_global_init_class device_global_init_class_cik;
1434
1435int kfd_event_init_process(struct kfd_process *p);
1436void kfd_event_free_process(struct kfd_process *p);
1437int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
1438int kfd_wait_on_events(struct kfd_process *p,
1439 uint32_t num_events, void __user *data,
1440 bool all, uint32_t *user_timeout_ms,
1441 uint32_t *wait_result);
1442void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
1443 uint32_t valid_id_bits);
1444void kfd_signal_hw_exception_event(u32 pasid);
1445int kfd_set_event(struct kfd_process *p, uint32_t event_id);
1446int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
1447int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset);
1448
1449int kfd_event_create(struct file *devkfd, struct kfd_process *p,
1450 uint32_t event_type, bool auto_reset, uint32_t node_id,
1451 uint32_t *event_id, uint32_t *event_trigger_data,
1452 uint64_t *event_page_offset, uint32_t *event_slot_index);
1453
1454int kfd_get_num_events(struct kfd_process *p);
1455int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
1456
1457void kfd_signal_vm_fault_event(struct kfd_node *dev, u32 pasid,
1458 struct kfd_vm_fault_info *info,
1459 struct kfd_hsa_memory_exception_data *data);
1460
1461void kfd_signal_reset_event(struct kfd_node *dev);
1462
1463void kfd_signal_poison_consumed_event(struct kfd_node *dev, u32 pasid);
1464
1465void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type);
1466
1467static inline bool kfd_flush_tlb_after_unmap(struct kfd_dev *dev)
1468{
1469 return KFD_GC_VERSION(dev) > IP_VERSION(9, 4, 2) ||
1470 (KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 1) && dev->sdma_fw_version >= 18) ||
1471 KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 0);
1472}
1473
1474int kfd_send_exception_to_runtime(struct kfd_process *p,
1475 unsigned int queue_id,
1476 uint64_t error_reason);
1477bool kfd_is_locked(void);
1478
1479/* Compute profile */
1480void kfd_inc_compute_active(struct kfd_node *dev);
1481void kfd_dec_compute_active(struct kfd_node *dev);
1482
1483/* Cgroup Support */
1484/* Check with device cgroup if @kfd device is accessible */
1485static inline int kfd_devcgroup_check_permission(struct kfd_node *kfd)
1486{
1487#if defined(CONFIG_CGROUP_DEVICE) || defined(CONFIG_CGROUP_BPF)
1488 struct drm_device *ddev = adev_to_drm(adev: kfd->adev);
1489
1490 return devcgroup_check_permission(DEVCG_DEV_CHAR, DRM_MAJOR,
1491 minor: ddev->render->index,
1492 DEVCG_ACC_WRITE | DEVCG_ACC_READ);
1493#else
1494 return 0;
1495#endif
1496}
1497
1498static inline bool kfd_is_first_node(struct kfd_node *node)
1499{
1500 return (node == node->kfd->nodes[0]);
1501}
1502
1503/* Debugfs */
1504#if defined(CONFIG_DEBUG_FS)
1505
1506void kfd_debugfs_init(void);
1507void kfd_debugfs_fini(void);
1508int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1509int pqm_debugfs_mqds(struct seq_file *m, void *data);
1510int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1511int dqm_debugfs_hqds(struct seq_file *m, void *data);
1512int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1513int pm_debugfs_runlist(struct seq_file *m, void *data);
1514
1515int kfd_debugfs_hang_hws(struct kfd_node *dev);
1516int pm_debugfs_hang_hws(struct packet_manager *pm);
1517int dqm_debugfs_hang_hws(struct device_queue_manager *dqm);
1518
1519#else
1520
1521static inline void kfd_debugfs_init(void) {}
1522static inline void kfd_debugfs_fini(void) {}
1523
1524#endif
1525
1526#endif
1527

source code of linux/drivers/gpu/drm/amd/amdkfd/kfd_priv.h