1// SPDX-License-Identifier: MIT
2/*
3 * Copyright 2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 *
23 * Authors: AMD
24 *
25 */
26#include "dcn32_fpu.h"
27#include "dcn32/dcn32_resource.h"
28#include "dcn20/dcn20_resource.h"
29#include "display_mode_vba_util_32.h"
30#include "dml/dcn32/display_mode_vba_32.h"
31// We need this includes for WATERMARKS_* defines
32#include "clk_mgr/dcn32/dcn32_smu13_driver_if.h"
33#include "dcn30/dcn30_resource.h"
34#include "link.h"
35#include "dc_state_priv.h"
36
37#define DC_LOGGER_INIT(logger)
38
39static const struct subvp_high_refresh_list subvp_high_refresh_list = {
40 .min_refresh = 120,
41 .max_refresh = 175,
42 .res = {
43 {.width = 3840, .height = 2160, },
44 {.width = 3440, .height = 1440, },
45 {.width = 2560, .height = 1440, },
46 {.width = 1920, .height = 1080, }},
47};
48
49static const struct subvp_active_margin_list subvp_active_margin_list = {
50 .min_refresh = 55,
51 .max_refresh = 65,
52 .res = {
53 {.width = 2560, .height = 1440, },
54 {.width = 1920, .height = 1080, }},
55};
56
57struct _vcs_dpi_ip_params_st dcn3_2_ip = {
58 .gpuvm_enable = 0,
59 .gpuvm_max_page_table_levels = 4,
60 .hostvm_enable = 0,
61 .rob_buffer_size_kbytes = 128,
62 .det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE,
63 .config_return_buffer_size_in_kbytes = 1280,
64 .compressed_buffer_segment_size_in_kbytes = 64,
65 .meta_fifo_size_in_kentries = 22,
66 .zero_size_buffer_entries = 512,
67 .compbuf_reserved_space_64b = 256,
68 .compbuf_reserved_space_zs = 64,
69 .dpp_output_buffer_pixels = 2560,
70 .opp_output_buffer_lines = 1,
71 .pixel_chunk_size_kbytes = 8,
72 .alpha_pixel_chunk_size_kbytes = 4,
73 .min_pixel_chunk_size_bytes = 1024,
74 .dcc_meta_buffer_size_bytes = 6272,
75 .meta_chunk_size_kbytes = 2,
76 .min_meta_chunk_size_bytes = 256,
77 .writeback_chunk_size_kbytes = 8,
78 .ptoi_supported = false,
79 .num_dsc = 4,
80 .maximum_dsc_bits_per_component = 12,
81 .maximum_pixels_per_line_per_dsc_unit = 6016,
82 .dsc422_native_support = true,
83 .is_line_buffer_bpp_fixed = true,
84 .line_buffer_fixed_bpp = 57,
85 .line_buffer_size_bits = 1171920,
86 .max_line_buffer_lines = 32,
87 .writeback_interface_buffer_size_kbytes = 90,
88 .max_num_dpp = 4,
89 .max_num_otg = 4,
90 .max_num_hdmi_frl_outputs = 1,
91 .max_num_wb = 1,
92 .max_dchub_pscl_bw_pix_per_clk = 4,
93 .max_pscl_lb_bw_pix_per_clk = 2,
94 .max_lb_vscl_bw_pix_per_clk = 4,
95 .max_vscl_hscl_bw_pix_per_clk = 4,
96 .max_hscl_ratio = 6,
97 .max_vscl_ratio = 6,
98 .max_hscl_taps = 8,
99 .max_vscl_taps = 8,
100 .dpte_buffer_size_in_pte_reqs_luma = 64,
101 .dpte_buffer_size_in_pte_reqs_chroma = 34,
102 .dispclk_ramp_margin_percent = 1,
103 .max_inter_dcn_tile_repeaters = 8,
104 .cursor_buffer_size = 16,
105 .cursor_chunk_size = 2,
106 .writeback_line_buffer_buffer_size = 0,
107 .writeback_min_hscl_ratio = 1,
108 .writeback_min_vscl_ratio = 1,
109 .writeback_max_hscl_ratio = 1,
110 .writeback_max_vscl_ratio = 1,
111 .writeback_max_hscl_taps = 1,
112 .writeback_max_vscl_taps = 1,
113 .dppclk_delay_subtotal = 47,
114 .dppclk_delay_scl = 50,
115 .dppclk_delay_scl_lb_only = 16,
116 .dppclk_delay_cnvc_formatter = 28,
117 .dppclk_delay_cnvc_cursor = 6,
118 .dispclk_delay_subtotal = 125,
119 .dynamic_metadata_vm_enabled = false,
120 .odm_combine_4to1_supported = false,
121 .dcc_supported = true,
122 .max_num_dp2p0_outputs = 2,
123 .max_num_dp2p0_streams = 4,
124};
125
126struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = {
127 .clock_limits = {
128 {
129 .state = 0,
130 .dcfclk_mhz = 1564.0,
131 .fabricclk_mhz = 2500.0,
132 .dispclk_mhz = 2150.0,
133 .dppclk_mhz = 2150.0,
134 .phyclk_mhz = 810.0,
135 .phyclk_d18_mhz = 667.0,
136 .phyclk_d32_mhz = 625.0,
137 .socclk_mhz = 1200.0,
138 .dscclk_mhz = 716.667,
139 .dram_speed_mts = 18000.0,
140 .dtbclk_mhz = 1564.0,
141 },
142 },
143 .num_states = 1,
144 .sr_exit_time_us = 42.97,
145 .sr_enter_plus_exit_time_us = 49.94,
146 .sr_exit_z8_time_us = 285.0,
147 .sr_enter_plus_exit_z8_time_us = 320,
148 .writeback_latency_us = 12.0,
149 .round_trip_ping_latency_dcfclk_cycles = 263,
150 .urgent_latency_pixel_data_only_us = 4.0,
151 .urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
152 .urgent_latency_vm_data_only_us = 4.0,
153 .fclk_change_latency_us = 25,
154 .usr_retraining_latency_us = 2,
155 .smn_latency_us = 2,
156 .mall_allocated_for_dcn_mbytes = 64,
157 .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
158 .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
159 .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
160 .pct_ideal_sdp_bw_after_urgent = 90.0,
161 .pct_ideal_fabric_bw_after_urgent = 67.0,
162 .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0,
163 .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented
164 .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented
165 .pct_ideal_dram_bw_after_urgent_strobe = 67.0,
166 .max_avg_sdp_bw_use_normal_percent = 80.0,
167 .max_avg_fabric_bw_use_normal_percent = 60.0,
168 .max_avg_dram_bw_use_normal_strobe_percent = 50.0,
169 .max_avg_dram_bw_use_normal_percent = 15.0,
170 .num_chans = 24,
171 .dram_channel_width_bytes = 2,
172 .fabric_datapath_to_dcn_data_return_bytes = 64,
173 .return_bus_width_bytes = 64,
174 .downspread_percent = 0.38,
175 .dcn_downspread_percent = 0.5,
176 .dram_clock_change_latency_us = 400,
177 .dispclk_dppclk_vco_speed_mhz = 4300.0,
178 .do_urgent_latency_adjustment = true,
179 .urgent_latency_adjustment_fabric_clock_component_us = 1.0,
180 .urgent_latency_adjustment_fabric_clock_reference_mhz = 3000,
181};
182
183void dcn32_build_wm_range_table_fpu(struct clk_mgr_internal *clk_mgr)
184{
185 /* defaults */
186 double pstate_latency_us = clk_mgr->base.ctx->dc->dml.soc.dram_clock_change_latency_us;
187 double fclk_change_latency_us = clk_mgr->base.ctx->dc->dml.soc.fclk_change_latency_us;
188 double sr_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_exit_time_us;
189 double sr_enter_plus_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_enter_plus_exit_time_us;
190 /* For min clocks use as reported by PM FW and report those as min */
191 uint16_t min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz;
192 uint16_t min_dcfclk_mhz = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
193 uint16_t setb_min_uclk_mhz = min_uclk_mhz;
194 uint16_t dcfclk_mhz_for_the_second_state = clk_mgr->base.ctx->dc->dml.soc.clock_limits[2].dcfclk_mhz;
195
196 dc_assert_fp_enabled();
197
198 /* For Set B ranges use min clocks state 2 when available, and report those to PM FW */
199 if (dcfclk_mhz_for_the_second_state)
200 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = dcfclk_mhz_for_the_second_state;
201 else
202 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
203
204 if (clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz)
205 setb_min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz;
206
207 /* Set A - Normal - default values */
208 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].valid = true;
209 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us = pstate_latency_us;
210 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us = fclk_change_latency_us;
211 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us = sr_exit_time_us;
212 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
213 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
214 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
215 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_dcfclk = 0xFFFF;
216 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_uclk = min_uclk_mhz;
217 clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_uclk = 0xFFFF;
218
219 /* Set B - Performance - higher clocks, using DPM[2] DCFCLK and UCLK */
220 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].valid = true;
221 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us = pstate_latency_us;
222 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us = fclk_change_latency_us;
223 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us = sr_exit_time_us;
224 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
225 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
226 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_dcfclk = 0xFFFF;
227 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_uclk = setb_min_uclk_mhz;
228 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_uclk = 0xFFFF;
229
230 /* Set C - Dummy P-State - P-State latency set to "dummy p-state" value */
231 /* 'DalDummyClockChangeLatencyNs' registry key option set to 0x7FFFFFFF can be used to disable Set C for dummy p-state */
232 if (clk_mgr->base.ctx->dc->bb_overrides.dummy_clock_change_latency_ns != 0x7FFFFFFF) {
233 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].valid = true;
234 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.pstate_latency_us = 50;
235 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us = fclk_change_latency_us;
236 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us = sr_exit_time_us;
237 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
238 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.wm_type = WATERMARKS_DUMMY_PSTATE;
239 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
240 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_dcfclk = 0xFFFF;
241 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_uclk = min_uclk_mhz;
242 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_uclk = 0xFFFF;
243 clk_mgr->base.bw_params->dummy_pstate_table[0].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz * 16;
244 clk_mgr->base.bw_params->dummy_pstate_table[0].dummy_pstate_latency_us = 50;
245 clk_mgr->base.bw_params->dummy_pstate_table[1].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[1].memclk_mhz * 16;
246 clk_mgr->base.bw_params->dummy_pstate_table[1].dummy_pstate_latency_us = 9;
247 clk_mgr->base.bw_params->dummy_pstate_table[2].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz * 16;
248 clk_mgr->base.bw_params->dummy_pstate_table[2].dummy_pstate_latency_us = 8;
249 clk_mgr->base.bw_params->dummy_pstate_table[3].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[3].memclk_mhz * 16;
250 clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us = 5;
251 }
252 /* Set D - MALL - SR enter and exit time specific to MALL, TBD after bringup or later phase for now use DRAM values / 2 */
253 /* For MALL DRAM clock change latency is N/A, for watermak calculations use lowest value dummy P state latency */
254 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].valid = true;
255 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us = clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us;
256 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us = fclk_change_latency_us;
257 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us = sr_exit_time_us / 2; // TBD
258 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us / 2; // TBD
259 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.wm_type = WATERMARKS_MALL;
260 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
261 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_dcfclk = 0xFFFF;
262 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_uclk = min_uclk_mhz;
263 clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_uclk = 0xFFFF;
264}
265
266/*
267 * Finds dummy_latency_index when MCLK switching using firmware based
268 * vblank stretch is enabled. This function will iterate through the
269 * table of dummy pstate latencies until the lowest value that allows
270 * dm_allow_self_refresh_and_mclk_switch to happen is found
271 */
272int dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc *dc,
273 struct dc_state *context,
274 display_e2e_pipe_params_st *pipes,
275 int pipe_cnt,
276 int vlevel)
277{
278 const int max_latency_table_entries = 4;
279 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
280 int dummy_latency_index = 0;
281 enum clock_change_support temp_clock_change_support = vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
282
283 dc_assert_fp_enabled();
284
285 while (dummy_latency_index < max_latency_table_entries) {
286 if (temp_clock_change_support != dm_dram_clock_change_unsupported)
287 vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
288 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
289 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
290 dcn32_internal_validate_bw(dc, context, pipes, pipe_cnt_out: &pipe_cnt, vlevel_out: &vlevel, fast_validate: false);
291
292 /* for subvp + DRR case, if subvp pipes are still present we support pstate */
293 if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported &&
294 dcn32_subvp_in_use(dc, context))
295 vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
296
297 if (vlevel < context->bw_ctx.dml.vba.soc.num_states &&
298 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported)
299 break;
300
301 dummy_latency_index++;
302 }
303
304 if (dummy_latency_index == max_latency_table_entries) {
305 ASSERT(dummy_latency_index != max_latency_table_entries);
306 /* If the execution gets here, it means dummy p_states are
307 * not possible. This should never happen and would mean
308 * something is severely wrong.
309 * Here we reset dummy_latency_index to 3, because it is
310 * better to have underflows than system crashes.
311 */
312 dummy_latency_index = max_latency_table_entries - 1;
313 }
314
315 return dummy_latency_index;
316}
317
318/**
319 * dcn32_helper_populate_phantom_dlg_params - Get DLG params for phantom pipes
320 * and populate pipe_ctx with those params.
321 * @dc: [in] current dc state
322 * @context: [in] new dc state
323 * @pipes: [in] DML pipe params array
324 * @pipe_cnt: [in] DML pipe count
325 *
326 * This function must be called AFTER the phantom pipes are added to context
327 * and run through DML (so that the DLG params for the phantom pipes can be
328 * populated), and BEFORE we program the timing for the phantom pipes.
329 */
330void dcn32_helper_populate_phantom_dlg_params(struct dc *dc,
331 struct dc_state *context,
332 display_e2e_pipe_params_st *pipes,
333 int pipe_cnt)
334{
335 uint32_t i, pipe_idx;
336
337 dc_assert_fp_enabled();
338
339 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
340 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
341
342 if (!pipe->stream)
343 continue;
344
345 if (pipe->plane_state && dc_state_get_pipe_subvp_type(state: context, pipe_ctx: pipe) == SUBVP_PHANTOM) {
346 pipes[pipe_idx].pipe.dest.vstartup_start =
347 get_vstartup(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt, which_pipe: pipe_idx);
348 pipes[pipe_idx].pipe.dest.vupdate_offset =
349 get_vupdate_offset(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt, which_pipe: pipe_idx);
350 pipes[pipe_idx].pipe.dest.vupdate_width =
351 get_vupdate_width(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt, which_pipe: pipe_idx);
352 pipes[pipe_idx].pipe.dest.vready_offset =
353 get_vready_offset(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt, which_pipe: pipe_idx);
354 pipe->pipe_dlg_param = pipes[pipe_idx].pipe.dest;
355 }
356 pipe_idx++;
357 }
358}
359
360static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry)
361{
362 float memory_bw_kbytes_sec;
363 float fabric_bw_kbytes_sec;
364 float sdp_bw_kbytes_sec;
365 float limiting_bw_kbytes_sec;
366
367 memory_bw_kbytes_sec = entry->dram_speed_mts *
368 dcn3_2_soc.num_chans *
369 dcn3_2_soc.dram_channel_width_bytes *
370 ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
371
372 fabric_bw_kbytes_sec = entry->fabricclk_mhz *
373 dcn3_2_soc.return_bus_width_bytes *
374 ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
375
376 sdp_bw_kbytes_sec = entry->dcfclk_mhz *
377 dcn3_2_soc.return_bus_width_bytes *
378 ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
379
380 limiting_bw_kbytes_sec = memory_bw_kbytes_sec;
381
382 if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec)
383 limiting_bw_kbytes_sec = fabric_bw_kbytes_sec;
384
385 if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec)
386 limiting_bw_kbytes_sec = sdp_bw_kbytes_sec;
387
388 return limiting_bw_kbytes_sec;
389}
390
391static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry)
392{
393 if (entry->dcfclk_mhz > 0) {
394 float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
395
396 entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
397 entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans *
398 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
399 } else if (entry->fabricclk_mhz > 0) {
400 float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
401
402 entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
403 entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans *
404 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
405 } else if (entry->dram_speed_mts > 0) {
406 float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans *
407 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
408
409 entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
410 entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
411 }
412}
413
414static void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table,
415 unsigned int *num_entries,
416 struct _vcs_dpi_voltage_scaling_st *entry)
417{
418 int i = 0;
419 int index = 0;
420
421 dc_assert_fp_enabled();
422
423 if (*num_entries == 0) {
424 table[0] = *entry;
425 (*num_entries)++;
426 } else {
427 while (entry->net_bw_in_kbytes_sec > table[index].net_bw_in_kbytes_sec) {
428 index++;
429 if (index >= *num_entries)
430 break;
431 }
432
433 for (i = *num_entries; i > index; i--)
434 table[i] = table[i - 1];
435
436 table[index] = *entry;
437 (*num_entries)++;
438 }
439}
440
441/**
442 * dcn32_set_phantom_stream_timing - Set timing params for the phantom stream
443 * @dc: current dc state
444 * @context: new dc state
445 * @ref_pipe: Main pipe for the phantom stream
446 * @phantom_stream: target phantom stream state
447 * @pipes: DML pipe params
448 * @pipe_cnt: number of DML pipes
449 * @dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe)
450 *
451 * Set timing params of the phantom stream based on calculated output from DML.
452 * This function first gets the DML pipe index using the DC pipe index, then
453 * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of
454 * lines required for SubVP MCLK switching and assigns to the phantom stream
455 * accordingly.
456 *
457 * - The number of SubVP lines calculated in DML does not take into account
458 * FW processing delays and required pstate allow width, so we must include
459 * that separately.
460 *
461 * - Set phantom backporch = vstartup of main pipe
462 */
463void dcn32_set_phantom_stream_timing(struct dc *dc,
464 struct dc_state *context,
465 struct pipe_ctx *ref_pipe,
466 struct dc_stream_state *phantom_stream,
467 display_e2e_pipe_params_st *pipes,
468 unsigned int pipe_cnt,
469 unsigned int dc_pipe_idx)
470{
471 unsigned int i, pipe_idx;
472 struct pipe_ctx *pipe;
473 uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines;
474 unsigned int num_dpp;
475 unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel;
476 unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
477 unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel];
478 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
479 struct dc_stream_state *main_stream = ref_pipe->stream;
480
481 dc_assert_fp_enabled();
482
483 // Find DML pipe index (pipe_idx) using dc_pipe_idx
484 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
485 pipe = &context->res_ctx.pipe_ctx[i];
486
487 if (!pipe->stream)
488 continue;
489
490 if (i == dc_pipe_idx)
491 break;
492
493 pipe_idx++;
494 }
495
496 // Calculate lines required for pstate allow width and FW processing delays
497 pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us +
498 dc->caps.subvp_pstate_allow_width_us) / 1000000) *
499 (ref_pipe->stream->timing.pix_clk_100hz * 100) /
500 (double)ref_pipe->stream->timing.h_total;
501
502 // Update clks_cfg for calling into recalculate
503 pipes[0].clks_cfg.voltage = vlevel;
504 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
505 pipes[0].clks_cfg.socclk_mhz = socclk;
506
507 // DML calculation for MALL region doesn't take into account FW delay
508 // and required pstate allow width for multi-display cases
509 /* Add 16 lines margin to the MALL REGION because SUB_VP_START_LINE must be aligned
510 * to 2 swaths (i.e. 16 lines)
511 */
512 phantom_vactive = get_subviewport_lines_needed_in_mall(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt, which_pipe: pipe_idx) +
513 pstate_width_fw_delay_lines + dc->caps.subvp_swath_height_margin_lines;
514
515 // W/A for DCC corruption with certain high resolution timings.
516 // Determing if pipesplit is used. If so, add meta_row_height to the phantom vactive.
517 num_dpp = vba->NoOfDPP[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]];
518 phantom_vactive += num_dpp > 1 ? vba->meta_row_height[vba->pipe_plane[pipe_idx]] : 0;
519
520 /* dc->debug.subvp_extra_lines 0 by default*/
521 phantom_vactive += dc->debug.subvp_extra_lines;
522
523 // For backporch of phantom pipe, use vstartup of the main pipe
524 phantom_bp = get_vstartup(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt, which_pipe: pipe_idx);
525
526 phantom_stream->dst.y = 0;
527 phantom_stream->dst.height = phantom_vactive;
528 /* When scaling, DML provides the end to end required number of lines for MALL.
529 * dst.height is always correct for this case, but src.height is not which causes a
530 * delta between main and phantom pipe scaling outputs. Need to adjust src.height on
531 * phantom for this case.
532 */
533 phantom_stream->src.y = 0;
534 phantom_stream->src.height = (double)phantom_vactive * (double)main_stream->src.height / (double)main_stream->dst.height;
535
536 phantom_stream->timing.v_addressable = phantom_vactive;
537 phantom_stream->timing.v_front_porch = 1;
538 phantom_stream->timing.v_total = phantom_stream->timing.v_addressable +
539 phantom_stream->timing.v_front_porch +
540 phantom_stream->timing.v_sync_width +
541 phantom_bp;
542 phantom_stream->timing.flags.DSC = 0; // Don't need DSC for phantom timing
543}
544
545/**
546 * dcn32_get_num_free_pipes - Calculate number of free pipes
547 * @dc: current dc state
548 * @context: new dc state
549 *
550 * This function assumes that a "used" pipe is a pipe that has
551 * both a stream and a plane assigned to it.
552 *
553 * Return: Number of free pipes available in the context
554 */
555static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context)
556{
557 unsigned int i;
558 unsigned int free_pipes = 0;
559 unsigned int num_pipes = 0;
560
561 for (i = 0; i < dc->res_pool->pipe_count; i++) {
562 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
563
564 if (pipe->stream && !pipe->top_pipe) {
565 while (pipe) {
566 num_pipes++;
567 pipe = pipe->bottom_pipe;
568 }
569 }
570 }
571
572 free_pipes = dc->res_pool->pipe_count - num_pipes;
573 return free_pipes;
574}
575
576/**
577 * dcn32_assign_subvp_pipe - Function to decide which pipe will use Sub-VP.
578 * @dc: current dc state
579 * @context: new dc state
580 * @index: [out] dc pipe index for the pipe chosen to have phantom pipes assigned
581 *
582 * We enter this function if we are Sub-VP capable (i.e. enough pipes available)
583 * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if
584 * we are forcing SubVP P-State switching on the current config.
585 *
586 * The number of pipes used for the chosen surface must be less than or equal to the
587 * number of free pipes available.
588 *
589 * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK).
590 * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own
591 * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't
592 * support MCLK switching naturally [i.e. ACTIVE or VBLANK]).
593 *
594 * Return: True if a valid pipe assignment was found for Sub-VP. Otherwise false.
595 */
596static bool dcn32_assign_subvp_pipe(struct dc *dc,
597 struct dc_state *context,
598 unsigned int *index)
599{
600 unsigned int i, pipe_idx;
601 unsigned int max_frame_time = 0;
602 bool valid_assignment_found = false;
603 unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context);
604 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
605
606 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
607 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
608 unsigned int num_pipes = 0;
609 unsigned int refresh_rate = 0;
610
611 if (!pipe->stream)
612 continue;
613
614 // Round up
615 refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
616 pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
617 / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
618 /* SubVP pipe candidate requirements:
619 * - Refresh rate < 120hz
620 * - Not able to switch in vactive naturally (switching in active means the
621 * DET provides enough buffer to hide the P-State switch latency -- trying
622 * to combine this with SubVP can cause issues with the scheduling).
623 * - Not TMZ surface
624 */
625 if (pipe->plane_state && !pipe->top_pipe && !dcn32_is_center_timing(pipe) &&
626 !(pipe->stream->timing.pix_clk_100hz / 10000 > DCN3_2_MAX_SUBVP_PIXEL_RATE_MHZ) &&
627 (!dcn32_is_psr_capable(pipe) || (context->stream_count == 1 && dc->caps.dmub_caps.subvp_psr)) &&
628 dc_state_get_pipe_subvp_type(state: context, pipe_ctx: pipe) == SUBVP_NONE &&
629 (refresh_rate < 120 || dcn32_allow_subvp_high_refresh_rate(dc, context, pipe)) &&
630 !pipe->plane_state->address.tmz_surface &&
631 (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0 ||
632 (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
633 dcn32_allow_subvp_with_active_margin(pipe)))) {
634 while (pipe) {
635 num_pipes++;
636 pipe = pipe->bottom_pipe;
637 }
638
639 pipe = &context->res_ctx.pipe_ctx[i];
640 if (num_pipes <= free_pipes) {
641 struct dc_stream_state *stream = pipe->stream;
642 unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total /
643 (double)(stream->timing.pix_clk_100hz * 100)) * 1000000;
644 if (frame_us > max_frame_time) {
645 *index = i;
646 max_frame_time = frame_us;
647 valid_assignment_found = true;
648 }
649 }
650 }
651 pipe_idx++;
652 }
653 return valid_assignment_found;
654}
655
656/**
657 * dcn32_enough_pipes_for_subvp - Function to check if there are "enough" pipes for SubVP.
658 * @dc: current dc state
659 * @context: new dc state
660 *
661 * This function returns true if there are enough free pipes
662 * to create the required phantom pipes for any given stream
663 * (that does not already have phantom pipe assigned).
664 *
665 * e.g. For a 2 stream config where the first stream uses one
666 * pipe and the second stream uses 2 pipes (i.e. pipe split),
667 * this function will return true because there is 1 remaining
668 * pipe which can be used as the phantom pipe for the non pipe
669 * split pipe.
670 *
671 * Return:
672 * True if there are enough free pipes to assign phantom pipes to at least one
673 * stream that does not already have phantom pipes assigned. Otherwise false.
674 */
675static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context)
676{
677 unsigned int i, split_cnt, free_pipes;
678 unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1
679 bool subvp_possible = false;
680
681 for (i = 0; i < dc->res_pool->pipe_count; i++) {
682 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
683
684 // Find the minimum pipe split count for non SubVP pipes
685 if (resource_is_pipe_type(pipe_ctx: pipe, type: OPP_HEAD) &&
686 dc_state_get_pipe_subvp_type(state: context, pipe_ctx: pipe) == SUBVP_NONE) {
687 split_cnt = 0;
688 while (pipe) {
689 split_cnt++;
690 pipe = pipe->bottom_pipe;
691 }
692
693 if (split_cnt < min_pipe_split)
694 min_pipe_split = split_cnt;
695 }
696 }
697
698 free_pipes = dcn32_get_num_free_pipes(dc, context);
699
700 // SubVP only possible if at least one pipe is being used (i.e. free_pipes
701 // should not equal to the pipe_count)
702 if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count)
703 subvp_possible = true;
704
705 return subvp_possible;
706}
707
708/**
709 * subvp_subvp_schedulable - Determine if SubVP + SubVP config is schedulable
710 * @dc: current dc state
711 * @context: new dc state
712 *
713 * High level algorithm:
714 * 1. Find longest microschedule length (in us) between the two SubVP pipes
715 * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both
716 * pipes still allows for the maximum microschedule to fit in the active
717 * region for both pipes.
718 *
719 * Return: True if the SubVP + SubVP config is schedulable, false otherwise
720 */
721static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context)
722{
723 struct pipe_ctx *subvp_pipes[2];
724 struct dc_stream_state *phantom = NULL;
725 uint32_t microschedule_lines = 0;
726 uint32_t index = 0;
727 uint32_t i;
728 uint32_t max_microschedule_us = 0;
729 int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us;
730
731 for (i = 0; i < dc->res_pool->pipe_count; i++) {
732 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
733 uint32_t time_us = 0;
734
735 /* Loop to calculate the maximum microschedule time between the two SubVP pipes,
736 * and also to store the two main SubVP pipe pointers in subvp_pipes[2].
737 */
738 if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
739 dc_state_get_pipe_subvp_type(state: context, pipe_ctx: pipe) == SUBVP_MAIN) {
740 phantom = dc_state_get_paired_subvp_stream(state: context, stream: pipe->stream);
741 microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) +
742 phantom->timing.v_addressable;
743
744 // Round up when calculating microschedule time (+ 1 at the end)
745 time_us = (microschedule_lines * phantom->timing.h_total) /
746 (double)(phantom->timing.pix_clk_100hz * 100) * 1000000 +
747 dc->caps.subvp_prefetch_end_to_mall_start_us +
748 dc->caps.subvp_fw_processing_delay_us + 1;
749 if (time_us > max_microschedule_us)
750 max_microschedule_us = time_us;
751
752 subvp_pipes[index] = pipe;
753 index++;
754
755 // Maximum 2 SubVP pipes
756 if (index == 2)
757 break;
758 }
759 }
760 vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) /
761 (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
762 vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) /
763 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
764 vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) *
765 subvp_pipes[0]->stream->timing.h_total) /
766 (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
767 vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) *
768 subvp_pipes[1]->stream->timing.h_total) /
769 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
770
771 if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us &&
772 (vactive2_us - vblank1_us) / 2 > max_microschedule_us)
773 return true;
774
775 return false;
776}
777
778/**
779 * subvp_drr_schedulable() - Determine if SubVP + DRR config is schedulable
780 * @dc: current dc state
781 * @context: new dc state
782 *
783 * High level algorithm:
784 * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe
785 * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching
786 * (the margin is equal to the MALL region + DRR margin (500us))
787 * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame))
788 * then report the configuration as supported
789 *
790 * Return: True if the SubVP + DRR config is schedulable, false otherwise
791 */
792static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context)
793{
794 bool schedulable = false;
795 uint32_t i;
796 struct pipe_ctx *pipe = NULL;
797 struct pipe_ctx *drr_pipe = NULL;
798 struct dc_crtc_timing *main_timing = NULL;
799 struct dc_crtc_timing *phantom_timing = NULL;
800 struct dc_crtc_timing *drr_timing = NULL;
801 int16_t prefetch_us = 0;
802 int16_t mall_region_us = 0;
803 int16_t drr_frame_us = 0; // nominal frame time
804 int16_t subvp_active_us = 0;
805 int16_t stretched_drr_us = 0;
806 int16_t drr_stretched_vblank_us = 0;
807 int16_t max_vblank_mallregion = 0;
808 struct dc_stream_state *phantom_stream;
809 bool subvp_found = false;
810 bool drr_found = false;
811
812 // Find SubVP pipe
813 for (i = 0; i < dc->res_pool->pipe_count; i++) {
814 pipe = &context->res_ctx.pipe_ctx[i];
815
816 // We check for master pipe, but it shouldn't matter since we only need
817 // the pipe for timing info (stream should be same for any pipe splits)
818 if (!resource_is_pipe_type(pipe_ctx: pipe, type: OTG_MASTER) ||
819 !resource_is_pipe_type(pipe_ctx: pipe, type: DPP_PIPE))
820 continue;
821
822 // Find the SubVP pipe
823 if (dc_state_get_pipe_subvp_type(state: context, pipe_ctx: pipe) == SUBVP_MAIN) {
824 subvp_found = true;
825 break;
826 }
827 }
828
829 // Find the DRR pipe
830 for (i = 0; i < dc->res_pool->pipe_count; i++) {
831 drr_pipe = &context->res_ctx.pipe_ctx[i];
832
833 // We check for master pipe only
834 if (!resource_is_pipe_type(pipe_ctx: drr_pipe, type: OTG_MASTER) ||
835 !resource_is_pipe_type(pipe_ctx: drr_pipe, type: DPP_PIPE))
836 continue;
837
838 if (dc_state_get_pipe_subvp_type(state: context, pipe_ctx: drr_pipe) == SUBVP_NONE && drr_pipe->stream->ignore_msa_timing_param &&
839 (drr_pipe->stream->allow_freesync || drr_pipe->stream->vrr_active_variable || drr_pipe->stream->vrr_active_fixed)) {
840 drr_found = true;
841 break;
842 }
843 }
844
845 if (subvp_found && drr_found) {
846 phantom_stream = dc_state_get_paired_subvp_stream(state: context, stream: pipe->stream);
847 main_timing = &pipe->stream->timing;
848 phantom_timing = &phantom_stream->timing;
849 drr_timing = &drr_pipe->stream->timing;
850 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
851 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
852 dc->caps.subvp_prefetch_end_to_mall_start_us;
853 subvp_active_us = main_timing->v_addressable * main_timing->h_total /
854 (double)(main_timing->pix_clk_100hz * 100) * 1000000;
855 drr_frame_us = drr_timing->v_total * drr_timing->h_total /
856 (double)(drr_timing->pix_clk_100hz * 100) * 1000000;
857 // P-State allow width and FW delays already included phantom_timing->v_addressable
858 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
859 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
860 stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US;
861 drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total /
862 (double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us);
863 max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us;
864 }
865
866 /* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the
867 * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis
868 * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
869 * and the max of (VBLANK blanking time, MALL region)).
870 */
871 if (stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 &&
872 subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0)
873 schedulable = true;
874
875 return schedulable;
876}
877
878
879/**
880 * subvp_vblank_schedulable - Determine if SubVP + VBLANK config is schedulable
881 * @dc: current dc state
882 * @context: new dc state
883 *
884 * High level algorithm:
885 * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe
886 * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time))
887 * then report the configuration as supported
888 * 3. If the VBLANK display is DRR, then take the DRR static schedulability path
889 *
890 * Return: True if the SubVP + VBLANK/DRR config is schedulable, false otherwise
891 */
892static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context)
893{
894 struct pipe_ctx *pipe = NULL;
895 struct pipe_ctx *subvp_pipe = NULL;
896 bool found = false;
897 bool schedulable = false;
898 uint32_t i = 0;
899 uint8_t vblank_index = 0;
900 uint16_t prefetch_us = 0;
901 uint16_t mall_region_us = 0;
902 uint16_t vblank_frame_us = 0;
903 uint16_t subvp_active_us = 0;
904 uint16_t vblank_blank_us = 0;
905 uint16_t max_vblank_mallregion = 0;
906 struct dc_crtc_timing *main_timing = NULL;
907 struct dc_crtc_timing *phantom_timing = NULL;
908 struct dc_crtc_timing *vblank_timing = NULL;
909 struct dc_stream_state *phantom_stream;
910 enum mall_stream_type pipe_mall_type;
911
912 /* For SubVP + VBLANK/DRR cases, we assume there can only be
913 * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK
914 * is supported, it is either a single VBLANK case or two VBLANK
915 * displays which are synchronized (in which case they have identical
916 * timings).
917 */
918 for (i = 0; i < dc->res_pool->pipe_count; i++) {
919 pipe = &context->res_ctx.pipe_ctx[i];
920 pipe_mall_type = dc_state_get_pipe_subvp_type(state: context, pipe_ctx: pipe);
921
922 // We check for master pipe, but it shouldn't matter since we only need
923 // the pipe for timing info (stream should be same for any pipe splits)
924 if (!resource_is_pipe_type(pipe_ctx: pipe, type: OTG_MASTER) ||
925 !resource_is_pipe_type(pipe_ctx: pipe, type: DPP_PIPE))
926 continue;
927
928 if (!found && pipe_mall_type == SUBVP_NONE) {
929 // Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe).
930 vblank_index = i;
931 found = true;
932 }
933
934 if (!subvp_pipe && pipe_mall_type == SUBVP_MAIN)
935 subvp_pipe = pipe;
936 }
937 if (found) {
938 phantom_stream = dc_state_get_paired_subvp_stream(state: context, stream: subvp_pipe->stream);
939 main_timing = &subvp_pipe->stream->timing;
940 phantom_timing = &phantom_stream->timing;
941 vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing;
942 // Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe
943 // Also include the prefetch end to mallstart delay time
944 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
945 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
946 dc->caps.subvp_prefetch_end_to_mall_start_us;
947 // P-State allow width and FW delays already included phantom_timing->v_addressable
948 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
949 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
950 vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total /
951 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
952 vblank_blank_us = (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total /
953 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
954 subvp_active_us = main_timing->v_addressable * main_timing->h_total /
955 (double)(main_timing->pix_clk_100hz * 100) * 1000000;
956 max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us;
957
958 // Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
959 // and the max of (VBLANK blanking time, MALL region)
960 // TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0)
961 if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0)
962 schedulable = true;
963 }
964 return schedulable;
965}
966
967/**
968 * subvp_subvp_admissable() - Determine if subvp + subvp config is admissible
969 *
970 * @dc: Current DC state
971 * @context: New DC state to be programmed
972 *
973 * SubVP + SubVP is admissible under the following conditions:
974 * - All SubVP pipes are < 120Hz OR
975 * - All SubVP pipes are >= 120hz
976 *
977 * Return: True if admissible, false otherwise
978 */
979static bool subvp_subvp_admissable(struct dc *dc,
980 struct dc_state *context)
981{
982 bool result = false;
983 uint32_t i;
984 uint8_t subvp_count = 0;
985 uint32_t min_refresh = subvp_high_refresh_list.min_refresh, max_refresh = 0;
986 uint64_t refresh_rate = 0;
987
988 for (i = 0; i < dc->res_pool->pipe_count; i++) {
989 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
990
991 if (!pipe->stream)
992 continue;
993
994 if (pipe->plane_state && !pipe->top_pipe &&
995 dc_state_get_pipe_subvp_type(state: context, pipe_ctx: pipe) == SUBVP_MAIN) {
996 refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 +
997 pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1);
998 refresh_rate = div_u64(dividend: refresh_rate, divisor: pipe->stream->timing.v_total);
999 refresh_rate = div_u64(dividend: refresh_rate, divisor: pipe->stream->timing.h_total);
1000
1001 if ((uint32_t)refresh_rate < min_refresh)
1002 min_refresh = (uint32_t)refresh_rate;
1003 if ((uint32_t)refresh_rate > max_refresh)
1004 max_refresh = (uint32_t)refresh_rate;
1005 subvp_count++;
1006 }
1007 }
1008
1009 if (subvp_count == 2 && ((min_refresh < 120 && max_refresh < 120) ||
1010 (min_refresh >= subvp_high_refresh_list.min_refresh &&
1011 max_refresh <= subvp_high_refresh_list.max_refresh)))
1012 result = true;
1013
1014 return result;
1015}
1016
1017/**
1018 * subvp_validate_static_schedulability - Check which SubVP case is calculated
1019 * and handle static analysis based on the case.
1020 * @dc: current dc state
1021 * @context: new dc state
1022 * @vlevel: Voltage level calculated by DML
1023 *
1024 * Three cases:
1025 * 1. SubVP + SubVP
1026 * 2. SubVP + VBLANK (DRR checked internally)
1027 * 3. SubVP + VACTIVE (currently unsupported)
1028 *
1029 * Return: True if statically schedulable, false otherwise
1030 */
1031static bool subvp_validate_static_schedulability(struct dc *dc,
1032 struct dc_state *context,
1033 int vlevel)
1034{
1035 bool schedulable = false;
1036 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1037 uint32_t i, pipe_idx;
1038 uint8_t subvp_count = 0;
1039 uint8_t vactive_count = 0;
1040 uint8_t non_subvp_pipes = 0;
1041
1042 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1043 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1044 enum mall_stream_type pipe_mall_type = dc_state_get_pipe_subvp_type(state: context, pipe_ctx: pipe);
1045
1046 if (!pipe->stream)
1047 continue;
1048
1049 if (pipe->plane_state && !pipe->top_pipe) {
1050 if (pipe_mall_type == SUBVP_MAIN)
1051 subvp_count++;
1052 if (pipe_mall_type == SUBVP_NONE)
1053 non_subvp_pipes++;
1054 }
1055
1056 // Count how many planes that aren't SubVP/phantom are capable of VACTIVE
1057 // switching (SubVP + VACTIVE unsupported). In situations where we force
1058 // SubVP for a VACTIVE plane, we don't want to increment the vactive_count.
1059 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vlevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
1060 pipe_mall_type == SUBVP_NONE) {
1061 vactive_count++;
1062 }
1063 pipe_idx++;
1064 }
1065
1066 if (subvp_count == 2) {
1067 // Static schedulability check for SubVP + SubVP case
1068 schedulable = subvp_subvp_admissable(dc, context) && subvp_subvp_schedulable(dc, context);
1069 } else if (subvp_count == 1 && non_subvp_pipes == 0) {
1070 // Single SubVP configs will be supported by default as long as it's suppported by DML
1071 schedulable = true;
1072 } else if (subvp_count == 1 && non_subvp_pipes == 1) {
1073 if (dcn32_subvp_drr_admissable(dc, context))
1074 schedulable = subvp_drr_schedulable(dc, context);
1075 else if (dcn32_subvp_vblank_admissable(dc, context, vlevel))
1076 schedulable = subvp_vblank_schedulable(dc, context);
1077 } else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp &&
1078 vactive_count > 0) {
1079 // For single display SubVP cases, DML will output dm_dram_clock_change_vactive_w_mall_sub_vp by default.
1080 // We tell the difference between SubVP vs. SubVP + VACTIVE by checking the vactive_count.
1081 // SubVP + VACTIVE currently unsupported
1082 schedulable = false;
1083 }
1084 return schedulable;
1085}
1086
1087static void assign_subvp_index(struct dc *dc, struct dc_state *context)
1088{
1089 int i;
1090 int index = 0;
1091
1092 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1093 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1094
1095 if (resource_is_pipe_type(pipe_ctx, type: OTG_MASTER) &&
1096 dc_state_get_pipe_subvp_type(state: context, pipe_ctx) == SUBVP_MAIN) {
1097 pipe_ctx->subvp_index = index++;
1098 } else {
1099 pipe_ctx->subvp_index = 0;
1100 }
1101 }
1102}
1103
1104struct pipe_slice_table {
1105 struct {
1106 struct dc_stream_state *stream;
1107 int slice_count;
1108 } odm_combines[MAX_STREAMS];
1109 int odm_combine_count;
1110
1111 struct {
1112 struct pipe_ctx *pri_pipe;
1113 struct dc_plane_state *plane;
1114 int slice_count;
1115 } mpc_combines[MAX_PLANES];
1116 int mpc_combine_count;
1117};
1118
1119
1120static void update_slice_table_for_stream(struct pipe_slice_table *table,
1121 struct dc_stream_state *stream, int diff)
1122{
1123 int i;
1124
1125 for (i = 0; i < table->odm_combine_count; i++) {
1126 if (table->odm_combines[i].stream == stream) {
1127 table->odm_combines[i].slice_count += diff;
1128 break;
1129 }
1130 }
1131
1132 if (i == table->odm_combine_count) {
1133 table->odm_combine_count++;
1134 table->odm_combines[i].stream = stream;
1135 table->odm_combines[i].slice_count = diff;
1136 }
1137}
1138
1139static void update_slice_table_for_plane(struct pipe_slice_table *table,
1140 struct pipe_ctx *dpp_pipe, struct dc_plane_state *plane, int diff)
1141{
1142 int i;
1143 struct pipe_ctx *pri_dpp_pipe = resource_get_primary_dpp_pipe(dpp_pipe);
1144
1145 for (i = 0; i < table->mpc_combine_count; i++) {
1146 if (table->mpc_combines[i].plane == plane &&
1147 table->mpc_combines[i].pri_pipe == pri_dpp_pipe) {
1148 table->mpc_combines[i].slice_count += diff;
1149 break;
1150 }
1151 }
1152
1153 if (i == table->mpc_combine_count) {
1154 table->mpc_combine_count++;
1155 table->mpc_combines[i].plane = plane;
1156 table->mpc_combines[i].pri_pipe = pri_dpp_pipe;
1157 table->mpc_combines[i].slice_count = diff;
1158 }
1159}
1160
1161static void init_pipe_slice_table_from_context(
1162 struct pipe_slice_table *table,
1163 struct dc_state *context)
1164{
1165 int i, j;
1166 struct pipe_ctx *otg_master;
1167 struct pipe_ctx *dpp_pipes[MAX_PIPES];
1168 struct dc_stream_state *stream;
1169 int count;
1170
1171 memset(table, 0, sizeof(*table));
1172
1173 for (i = 0; i < context->stream_count; i++) {
1174 stream = context->streams[i];
1175 otg_master = resource_get_otg_master_for_stream(
1176 res_ctx: &context->res_ctx, stream);
1177 count = resource_get_odm_slice_count(pipe: otg_master);
1178 update_slice_table_for_stream(table, stream, diff: count);
1179
1180 count = resource_get_dpp_pipes_for_opp_head(opp_head: otg_master,
1181 res_ctx: &context->res_ctx, dpp_pipes);
1182 for (j = 0; j < count; j++)
1183 if (dpp_pipes[j]->plane_state)
1184 update_slice_table_for_plane(table, dpp_pipe: dpp_pipes[j],
1185 plane: dpp_pipes[j]->plane_state, diff: 1);
1186 }
1187}
1188
1189static bool update_pipe_slice_table_with_split_flags(
1190 struct pipe_slice_table *table,
1191 struct dc *dc,
1192 struct dc_state *context,
1193 struct vba_vars_st *vba,
1194 int split[MAX_PIPES],
1195 bool merge[MAX_PIPES])
1196{
1197 /* NOTE: we are deprecating the support for the concept of pipe splitting
1198 * or pipe merging. Instead we append slices to the end and remove
1199 * slices from the end. The following code converts a pipe split or
1200 * merge to an append or remove operation.
1201 *
1202 * For example:
1203 * When split flags describe the following pipe connection transition
1204 *
1205 * from:
1206 * pipe 0 (split=2) -> pipe 1 (split=2)
1207 * to: (old behavior)
1208 * pipe 0 -> pipe 2 -> pipe 1 -> pipe 3
1209 *
1210 * the code below actually does:
1211 * pipe 0 -> pipe 1 -> pipe 2 -> pipe 3
1212 *
1213 * This is the new intended behavior and for future DCNs we will retire
1214 * the old concept completely.
1215 */
1216 struct pipe_ctx *pipe;
1217 bool odm;
1218 int dc_pipe_idx, dml_pipe_idx = 0;
1219 bool updated = false;
1220
1221 for (dc_pipe_idx = 0;
1222 dc_pipe_idx < dc->res_pool->pipe_count; dc_pipe_idx++) {
1223 pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1224 if (resource_is_pipe_type(pipe_ctx: pipe, type: FREE_PIPE))
1225 continue;
1226
1227 if (merge[dc_pipe_idx]) {
1228 if (resource_is_pipe_type(pipe_ctx: pipe, type: OPP_HEAD))
1229 /* merging OPP head means reducing ODM slice
1230 * count by 1
1231 */
1232 update_slice_table_for_stream(table, stream: pipe->stream, diff: -1);
1233 else if (resource_is_pipe_type(pipe_ctx: pipe, type: DPP_PIPE) &&
1234 resource_get_odm_slice_index(opp_head: resource_get_opp_head(pipe_ctx: pipe)) == 0)
1235 /* merging DPP pipe of the first ODM slice means
1236 * reducing MPC slice count by 1
1237 */
1238 update_slice_table_for_plane(table, dpp_pipe: pipe, plane: pipe->plane_state, diff: -1);
1239 updated = true;
1240 }
1241
1242 if (split[dc_pipe_idx]) {
1243 odm = vba->ODMCombineEnabled[vba->pipe_plane[dml_pipe_idx]] !=
1244 dm_odm_combine_mode_disabled;
1245 if (odm && resource_is_pipe_type(pipe_ctx: pipe, type: OPP_HEAD))
1246 update_slice_table_for_stream(
1247 table, stream: pipe->stream, diff: split[dc_pipe_idx] - 1);
1248 else if (!odm && resource_is_pipe_type(pipe_ctx: pipe, type: DPP_PIPE))
1249 update_slice_table_for_plane(table, dpp_pipe: pipe,
1250 plane: pipe->plane_state, diff: split[dc_pipe_idx] - 1);
1251 updated = true;
1252 }
1253 dml_pipe_idx++;
1254 }
1255 return updated;
1256}
1257
1258static void update_pipes_with_slice_table(struct dc *dc, struct dc_state *context,
1259 struct pipe_slice_table *table)
1260{
1261 int i;
1262
1263 for (i = 0; i < table->odm_combine_count; i++)
1264 resource_update_pipes_for_stream_with_slice_count(new_ctx: context,
1265 cur_ctx: dc->current_state, pool: dc->res_pool,
1266 stream: table->odm_combines[i].stream,
1267 new_slice_count: table->odm_combines[i].slice_count);
1268
1269 for (i = 0; i < table->mpc_combine_count; i++)
1270 resource_update_pipes_for_plane_with_slice_count(new_ctx: context,
1271 cur_ctx: dc->current_state, pool: dc->res_pool,
1272 plane: table->mpc_combines[i].plane,
1273 slice_count: table->mpc_combines[i].slice_count);
1274}
1275
1276static bool update_pipes_with_split_flags(struct dc *dc, struct dc_state *context,
1277 struct vba_vars_st *vba, int split[MAX_PIPES],
1278 bool merge[MAX_PIPES])
1279{
1280 struct pipe_slice_table slice_table;
1281 bool updated;
1282
1283 init_pipe_slice_table_from_context(table: &slice_table, context);
1284 updated = update_pipe_slice_table_with_split_flags(
1285 table: &slice_table, dc, context, vba,
1286 split, merge);
1287 update_pipes_with_slice_table(dc, context, table: &slice_table);
1288 return updated;
1289}
1290
1291static bool should_apply_odm_power_optimization(struct dc *dc,
1292 struct dc_state *context, struct vba_vars_st *v, int *split,
1293 bool *merge)
1294{
1295 struct dc_stream_state *stream = context->streams[0];
1296 struct pipe_slice_table slice_table;
1297 int i;
1298
1299 /*
1300 * this debug flag allows us to disable ODM power optimization feature
1301 * unconditionally. we force the feature off if this is set to false.
1302 */
1303 if (!dc->debug.enable_single_display_2to1_odm_policy)
1304 return false;
1305
1306 /* current design and test coverage is only limited to allow ODM power
1307 * optimization for single stream. Supporting it for multiple streams
1308 * use case would require additional algorithm to decide how to
1309 * optimize power consumption when there are not enough free pipes to
1310 * allocate for all the streams. This level of optimization would
1311 * require multiple attempts of revalidation to make an optimized
1312 * decision. Unfortunately We do not support revalidation flow in
1313 * current version of DML.
1314 */
1315 if (context->stream_count != 1)
1316 return false;
1317
1318 /*
1319 * Our hardware doesn't support ODM for HDMI TMDS
1320 */
1321 if (dc_is_hdmi_signal(signal: stream->signal))
1322 return false;
1323
1324 /*
1325 * ODM Combine 2:1 requires horizontal timing divisible by 2 so each
1326 * ODM segment has the same size.
1327 */
1328 if (!is_h_timing_divisible_by_2(stream))
1329 return false;
1330
1331 /*
1332 * No power benefits if the timing's pixel clock is not high enough to
1333 * raise display clock from minimum power state.
1334 */
1335 if (stream->timing.pix_clk_100hz * 100 <= DCN3_2_VMIN_DISPCLK_HZ)
1336 return false;
1337
1338 if (dc->config.enable_windowed_mpo_odm) {
1339 /*
1340 * ODM power optimization should only be allowed if the feature
1341 * can be seamlessly toggled off within an update. This would
1342 * require that the feature is applied on top of a minimal
1343 * state. A minimal state is defined as a state validated
1344 * without the need of pipe split. Therefore, when transition to
1345 * toggle the feature off, the same stream and plane
1346 * configuration can be supported by the pipe resource in the
1347 * first ODM slice alone without the need to acquire extra
1348 * resources.
1349 */
1350 init_pipe_slice_table_from_context(table: &slice_table, context);
1351 update_pipe_slice_table_with_split_flags(
1352 table: &slice_table, dc, context, vba: v,
1353 split, merge);
1354 for (i = 0; i < slice_table.mpc_combine_count; i++)
1355 if (slice_table.mpc_combines[i].slice_count > 1)
1356 return false;
1357
1358 for (i = 0; i < slice_table.odm_combine_count; i++)
1359 if (slice_table.odm_combines[i].slice_count > 1)
1360 return false;
1361 } else {
1362 /*
1363 * the new ODM power optimization feature reduces software
1364 * design limitation and allows ODM power optimization to be
1365 * supported even with presence of overlay planes. The new
1366 * feature is enabled based on enable_windowed_mpo_odm flag. If
1367 * the flag is not set, we limit our feature scope due to
1368 * previous software design limitation
1369 */
1370 if (context->stream_status[0].plane_count != 1)
1371 return false;
1372
1373 if (memcmp(p: &context->stream_status[0].plane_states[0]->clip_rect,
1374 q: &stream->src, size: sizeof(struct rect)) != 0)
1375 return false;
1376
1377 if (stream->src.width >= 5120 &&
1378 stream->src.width > stream->dst.width)
1379 return false;
1380 }
1381 return true;
1382}
1383
1384static void try_odm_power_optimization_and_revalidate(
1385 struct dc *dc,
1386 struct dc_state *context,
1387 display_e2e_pipe_params_st *pipes,
1388 int *split,
1389 bool *merge,
1390 unsigned int *vlevel,
1391 int pipe_cnt)
1392{
1393 int i;
1394 unsigned int new_vlevel;
1395 unsigned int cur_policy[MAX_PIPES];
1396
1397 for (i = 0; i < pipe_cnt; i++) {
1398 cur_policy[i] = pipes[i].pipe.dest.odm_combine_policy;
1399 pipes[i].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1;
1400 }
1401
1402 new_vlevel = dml_get_voltage_level(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt);
1403
1404 if (new_vlevel < context->bw_ctx.dml.soc.num_states) {
1405 memset(split, 0, MAX_PIPES * sizeof(int));
1406 memset(merge, 0, MAX_PIPES * sizeof(bool));
1407 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel: new_vlevel, split, merge);
1408 context->bw_ctx.dml.vba.VoltageLevel = *vlevel;
1409 } else {
1410 for (i = 0; i < pipe_cnt; i++)
1411 pipes[i].pipe.dest.odm_combine_policy = cur_policy[i];
1412 }
1413}
1414
1415static bool is_test_pattern_enabled(
1416 struct dc_state *context)
1417{
1418 int i;
1419
1420 for (i = 0; i < context->stream_count; i++) {
1421 if (context->streams[i]->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE)
1422 return true;
1423 }
1424
1425 return false;
1426}
1427
1428static void dcn32_full_validate_bw_helper(struct dc *dc,
1429 struct dc_state *context,
1430 display_e2e_pipe_params_st *pipes,
1431 int *vlevel,
1432 int *split,
1433 bool *merge,
1434 int *pipe_cnt)
1435{
1436 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1437 unsigned int dc_pipe_idx = 0;
1438 int i = 0;
1439 bool found_supported_config = false;
1440 int vlevel_temp = 0;
1441
1442 dc_assert_fp_enabled();
1443
1444 /*
1445 * DML favors voltage over p-state, but we're more interested in
1446 * supporting p-state over voltage. We can't support p-state in
1447 * prefetch mode > 0 so try capping the prefetch mode to start.
1448 * Override present for testing.
1449 */
1450 if (dc->debug.dml_disallow_alternate_prefetch_modes)
1451 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1452 dm_prefetch_support_uclk_fclk_and_stutter;
1453 else
1454 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1455 dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
1456
1457 *vlevel = dml_get_voltage_level(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: *pipe_cnt);
1458 /* This may adjust vlevel and maxMpcComb */
1459 if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1460 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel: *vlevel, split, merge);
1461 vba->VoltageLevel = *vlevel;
1462 }
1463
1464 /* Conditions for setting up phantom pipes for SubVP:
1465 * 1. Not force disable SubVP
1466 * 2. Full update (i.e. !fast_validate)
1467 * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?)
1468 * 4. Display configuration passes validation
1469 * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch)
1470 */
1471 if (!dc->debug.force_disable_subvp && !dc->caps.dmub_caps.gecc_enable && dcn32_all_pipes_have_stream_and_plane(dc, context) &&
1472 !dcn32_mpo_in_use(context) && !dcn32_any_surfaces_rotated(dc, context) && !is_test_pattern_enabled(context) &&
1473 (*vlevel == context->bw_ctx.dml.soc.num_states || (vba->DRAMSpeedPerState[*vlevel] != vba->DRAMSpeedPerState[0] &&
1474 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported) ||
1475 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported ||
1476 dc->debug.force_subvp_mclk_switch)) {
1477
1478 dcn32_merge_pipes_for_subvp(dc, context);
1479 memset(merge, 0, MAX_PIPES * sizeof(bool));
1480
1481 vlevel_temp = *vlevel;
1482 /* to re-initialize viewport after the pipe merge */
1483 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1484 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1485
1486 if (!pipe_ctx->plane_state || !pipe_ctx->stream)
1487 continue;
1488
1489 resource_build_scaling_params(pipe_ctx);
1490 }
1491
1492 while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) &&
1493 dcn32_assign_subvp_pipe(dc, context, index: &dc_pipe_idx)) {
1494 /* For the case where *vlevel = num_states, bandwidth validation has failed for this config.
1495 * Adding phantom pipes won't change the validation result, so change the DML input param
1496 * for P-State support before adding phantom pipes and recalculating the DML result.
1497 * However, this case is only applicable for SubVP + DRR cases because the prefetch mode
1498 * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched
1499 * enough to support MCLK switching.
1500 */
1501 if (*vlevel == context->bw_ctx.dml.soc.num_states &&
1502 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final ==
1503 dm_prefetch_support_uclk_fclk_and_stutter) {
1504 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1505 dm_prefetch_support_fclk_and_stutter;
1506 /* There are params (such as FabricClock) that need to be recalculated
1507 * after validation fails (otherwise it will be 0). Calculation for
1508 * phantom vactive requires call into DML, so we must ensure all the
1509 * vba params are valid otherwise we'll get incorrect phantom vactive.
1510 */
1511 *vlevel = dml_get_voltage_level(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: *pipe_cnt);
1512 }
1513
1514 dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx);
1515
1516 *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1517 // Populate dppclk to trigger a recalculate in dml_get_voltage_level
1518 // so the phantom pipe DLG params can be assigned correctly.
1519 pipes[0].clks_cfg.dppclk_mhz = get_dppclk_calculated(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: *pipe_cnt, which_pipe: 0);
1520 *vlevel = dml_get_voltage_level(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: *pipe_cnt);
1521
1522 /* Check that vlevel requested supports pstate or not
1523 * if not, select the lowest vlevel that supports it
1524 */
1525 for (i = *vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
1526 if (vba->DRAMClockChangeSupport[i][vba->maxMpcComb] != dm_dram_clock_change_unsupported) {
1527 *vlevel = i;
1528 break;
1529 }
1530 }
1531
1532 if (*vlevel < context->bw_ctx.dml.soc.num_states
1533 && subvp_validate_static_schedulability(dc, context, vlevel: *vlevel))
1534 found_supported_config = true;
1535 if (found_supported_config) {
1536 // For SubVP + DRR cases, we can force the lowest vlevel that supports the mode
1537 if (dcn32_subvp_drr_admissable(dc, context) && subvp_drr_schedulable(dc, context)) {
1538 /* find lowest vlevel that supports the config */
1539 for (i = *vlevel; i >= 0; i--) {
1540 if (vba->ModeSupport[i][vba->maxMpcComb]) {
1541 *vlevel = i;
1542 } else {
1543 break;
1544 }
1545 }
1546 }
1547 }
1548 }
1549
1550 if (vba->DRAMSpeedPerState[*vlevel] >= vba->DRAMSpeedPerState[vlevel_temp])
1551 found_supported_config = false;
1552
1553 // If SubVP pipe config is unsupported (or cannot be used for UCLK switching)
1554 // remove phantom pipes and repopulate dml pipes
1555 if (!found_supported_config) {
1556 dc_state_remove_phantom_streams_and_planes(dc, state: context);
1557 dc_state_release_phantom_streams_and_planes(dc, state: context);
1558 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported;
1559 *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1560
1561 *vlevel = dml_get_voltage_level(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: *pipe_cnt);
1562 /* This may adjust vlevel and maxMpcComb */
1563 if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1564 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel: *vlevel, split, merge);
1565 vba->VoltageLevel = *vlevel;
1566 }
1567 } else {
1568 // Most populate phantom DLG params before programming hardware / timing for phantom pipe
1569 dcn32_helper_populate_phantom_dlg_params(dc, context, pipes, pipe_cnt: *pipe_cnt);
1570
1571 /* Call validate_apply_pipe_split flags after calling DML getters for
1572 * phantom dlg params, or some of the VBA params indicating pipe split
1573 * can be overwritten by the getters.
1574 *
1575 * When setting up SubVP config, all pipes are merged before attempting to
1576 * add phantom pipes. If pipe split (ODM / MPC) is required, both the main
1577 * and phantom pipes will be split in the regular pipe splitting sequence.
1578 */
1579 memset(split, 0, MAX_PIPES * sizeof(int));
1580 memset(merge, 0, MAX_PIPES * sizeof(bool));
1581 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel: *vlevel, split, merge);
1582 vba->VoltageLevel = *vlevel;
1583 // Note: We can't apply the phantom pipes to hardware at this time. We have to wait
1584 // until driver has acquired the DMCUB lock to do it safely.
1585 assign_subvp_index(dc, context);
1586 }
1587 }
1588
1589 if (should_apply_odm_power_optimization(dc, context, v: vba, split, merge))
1590 try_odm_power_optimization_and_revalidate(
1591 dc, context, pipes, split, merge, vlevel, pipe_cnt: *pipe_cnt);
1592
1593}
1594
1595static bool is_dtbclk_required(struct dc *dc, struct dc_state *context)
1596{
1597 int i;
1598
1599 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1600 if (!context->res_ctx.pipe_ctx[i].stream)
1601 continue;
1602 if (dc->link_srv->dp_is_128b_132b_signal(&context->res_ctx.pipe_ctx[i]))
1603 return true;
1604 }
1605 return false;
1606}
1607
1608static void dcn20_adjust_freesync_v_startup(const struct dc_crtc_timing *dc_crtc_timing, int *vstartup_start)
1609{
1610 struct dc_crtc_timing patched_crtc_timing;
1611 uint32_t asic_blank_end = 0;
1612 uint32_t asic_blank_start = 0;
1613 uint32_t newVstartup = 0;
1614
1615 patched_crtc_timing = *dc_crtc_timing;
1616
1617 if (patched_crtc_timing.flags.INTERLACE == 1) {
1618 if (patched_crtc_timing.v_front_porch < 2)
1619 patched_crtc_timing.v_front_porch = 2;
1620 } else {
1621 if (patched_crtc_timing.v_front_porch < 1)
1622 patched_crtc_timing.v_front_porch = 1;
1623 }
1624
1625 /* blank_start = frame end - front porch */
1626 asic_blank_start = patched_crtc_timing.v_total -
1627 patched_crtc_timing.v_front_porch;
1628
1629 /* blank_end = blank_start - active */
1630 asic_blank_end = asic_blank_start -
1631 patched_crtc_timing.v_border_bottom -
1632 patched_crtc_timing.v_addressable -
1633 patched_crtc_timing.v_border_top;
1634
1635 newVstartup = asic_blank_end + (patched_crtc_timing.v_total - asic_blank_start);
1636
1637 *vstartup_start = ((newVstartup > *vstartup_start) ? newVstartup : *vstartup_start);
1638}
1639
1640static void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context,
1641 display_e2e_pipe_params_st *pipes,
1642 int pipe_cnt, int vlevel)
1643{
1644 int i, pipe_idx, active_hubp_count = 0;
1645 bool usr_retraining_support = false;
1646 bool unbounded_req_enabled = false;
1647 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1648
1649 dc_assert_fp_enabled();
1650
1651 /* Writeback MCIF_WB arbitration parameters */
1652 dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt);
1653
1654 context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000;
1655 context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000;
1656 context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000;
1657 context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
1658 context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000;
1659 context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000;
1660 context->bw_ctx.bw.dcn.clk.p_state_change_support =
1661 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]
1662 != dm_dram_clock_change_unsupported;
1663
1664 /* Pstate change might not be supported by hardware, but it might be
1665 * possible with firmware driven vertical blank stretching.
1666 */
1667 context->bw_ctx.bw.dcn.clk.p_state_change_support |= context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching;
1668
1669 context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1670 context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context);
1671 context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000;
1672 if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported)
1673 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false;
1674 else
1675 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1676
1677 usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1678 ASSERT(usr_retraining_support);
1679
1680 if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz)
1681 context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz;
1682
1683 unbounded_req_enabled = get_unbounded_request_enabled(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt);
1684
1685 if (unbounded_req_enabled && pipe_cnt > 1) {
1686 // Unbounded requesting should not ever be used when more than 1 pipe is enabled.
1687 ASSERT(false);
1688 unbounded_req_enabled = false;
1689 }
1690
1691 context->bw_ctx.bw.dcn.mall_ss_size_bytes = 0;
1692 context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes = 0;
1693 context->bw_ctx.bw.dcn.mall_subvp_size_bytes = 0;
1694
1695 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1696 if (!context->res_ctx.pipe_ctx[i].stream)
1697 continue;
1698 if (context->res_ctx.pipe_ctx[i].plane_state)
1699 active_hubp_count++;
1700 pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt,
1701 which_pipe: pipe_idx);
1702 pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt,
1703 which_pipe: pipe_idx);
1704 pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt,
1705 which_pipe: pipe_idx);
1706 pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt,
1707 which_pipe: pipe_idx);
1708
1709 if (dc_state_get_pipe_subvp_type(state: context, pipe_ctx: &context->res_ctx.pipe_ctx[i]) == SUBVP_PHANTOM) {
1710 // Phantom pipe requires that DET_SIZE = 0 and no unbounded requests
1711 context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0;
1712 context->res_ctx.pipe_ctx[i].unbounded_req = false;
1713 } else {
1714 context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt,
1715 which_pipe: pipe_idx);
1716 context->res_ctx.pipe_ctx[i].unbounded_req = unbounded_req_enabled;
1717 }
1718
1719 if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
1720 context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1721 if (context->res_ctx.pipe_ctx[i].plane_state)
1722 context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1723 else
1724 context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = 0;
1725 context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest;
1726
1727 context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes = get_surface_size_in_mall(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt, which_pipe: pipe_idx);
1728
1729 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0)
1730 context->res_ctx.pipe_ctx[i].has_vactive_margin = true;
1731 else
1732 context->res_ctx.pipe_ctx[i].has_vactive_margin = false;
1733
1734 /* MALL Allocation Sizes */
1735 /* count from active, top pipes per plane only */
1736 if (context->res_ctx.pipe_ctx[i].stream && context->res_ctx.pipe_ctx[i].plane_state &&
1737 (context->res_ctx.pipe_ctx[i].top_pipe == NULL ||
1738 context->res_ctx.pipe_ctx[i].plane_state != context->res_ctx.pipe_ctx[i].top_pipe->plane_state) &&
1739 context->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1740 /* SS: all active surfaces stored in MALL */
1741 if (dc_state_get_pipe_subvp_type(state: context, pipe_ctx: &context->res_ctx.pipe_ctx[i]) != SUBVP_PHANTOM) {
1742 context->bw_ctx.bw.dcn.mall_ss_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1743
1744 if (context->res_ctx.pipe_ctx[i].stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED) {
1745 /* SS PSR On: all active surfaces part of streams not supporting PSR stored in MALL */
1746 context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1747 }
1748 } else {
1749 /* SUBVP: phantom surfaces only stored in MALL */
1750 context->bw_ctx.bw.dcn.mall_subvp_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1751 }
1752 }
1753
1754 if (context->res_ctx.pipe_ctx[i].stream->adaptive_sync_infopacket.valid)
1755 dcn20_adjust_freesync_v_startup(
1756 dc_crtc_timing: &context->res_ctx.pipe_ctx[i].stream->timing,
1757 vstartup_start: &context->res_ctx.pipe_ctx[i].pipe_dlg_param.vstartup_start);
1758
1759 pipe_idx++;
1760 }
1761 /* If DCN isn't making memory requests we can allow pstate change and lower clocks */
1762 if (!active_hubp_count) {
1763 context->bw_ctx.bw.dcn.clk.socclk_khz = 0;
1764 context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1765 context->bw_ctx.bw.dcn.clk.dcfclk_khz = 0;
1766 context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = 0;
1767 context->bw_ctx.bw.dcn.clk.dramclk_khz = 0;
1768 context->bw_ctx.bw.dcn.clk.fclk_khz = 0;
1769 context->bw_ctx.bw.dcn.clk.p_state_change_support = true;
1770 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1771 }
1772 /*save a original dppclock copy*/
1773 context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz;
1774 context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz;
1775 context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz
1776 * 1000;
1777 context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz
1778 * 1000;
1779
1780 context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context);
1781
1782 context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes;
1783
1784 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1785 if (context->res_ctx.pipe_ctx[i].stream)
1786 context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb;
1787 }
1788
1789 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1790
1791 if (!context->res_ctx.pipe_ctx[i].stream)
1792 continue;
1793
1794 context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml,
1795 &context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes,
1796 pipe_cnt, pipe_idx);
1797
1798 context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs,
1799 &context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1800 pipe_idx++;
1801 }
1802}
1803
1804static struct pipe_ctx *dcn32_find_split_pipe(
1805 struct dc *dc,
1806 struct dc_state *context,
1807 int old_index)
1808{
1809 struct pipe_ctx *pipe = NULL;
1810 int i;
1811
1812 if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
1813 pipe = &context->res_ctx.pipe_ctx[old_index];
1814 pipe->pipe_idx = old_index;
1815 }
1816
1817 if (!pipe)
1818 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1819 if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
1820 && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1821 if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1822 pipe = &context->res_ctx.pipe_ctx[i];
1823 pipe->pipe_idx = i;
1824 break;
1825 }
1826 }
1827 }
1828
1829 /*
1830 * May need to fix pipes getting tossed from 1 opp to another on flip
1831 * Add for debugging transient underflow during topology updates:
1832 * ASSERT(pipe);
1833 */
1834 if (!pipe)
1835 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1836 if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1837 pipe = &context->res_ctx.pipe_ctx[i];
1838 pipe->pipe_idx = i;
1839 break;
1840 }
1841 }
1842
1843 return pipe;
1844}
1845
1846static bool dcn32_split_stream_for_mpc_or_odm(
1847 const struct dc *dc,
1848 struct resource_context *res_ctx,
1849 struct pipe_ctx *pri_pipe,
1850 struct pipe_ctx *sec_pipe,
1851 bool odm)
1852{
1853 int pipe_idx = sec_pipe->pipe_idx;
1854 const struct resource_pool *pool = dc->res_pool;
1855
1856 DC_LOGGER_INIT(dc->ctx->logger);
1857
1858 if (odm && pri_pipe->plane_state) {
1859 /* ODM + window MPO, where MPO window is on left half only */
1860 if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <=
1861 pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1862
1863 DC_LOG_SCALER("%s - ODM + window MPO(left). pri_pipe:%d\n",
1864 __func__,
1865 pri_pipe->pipe_idx);
1866 return true;
1867 }
1868
1869 /* ODM + window MPO, where MPO window is on right half only */
1870 if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1871
1872 DC_LOG_SCALER("%s - ODM + window MPO(right). pri_pipe:%d\n",
1873 __func__,
1874 pri_pipe->pipe_idx);
1875 return true;
1876 }
1877 }
1878
1879 *sec_pipe = *pri_pipe;
1880
1881 sec_pipe->pipe_idx = pipe_idx;
1882 sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1883 sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1884 sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1885 sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1886 sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1887 sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1888 sec_pipe->stream_res.dsc = NULL;
1889 if (odm) {
1890 if (pri_pipe->next_odm_pipe) {
1891 ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
1892 sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1893 sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1894 }
1895 if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1896 pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1897 sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1898 }
1899 if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1900 pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1901 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1902 }
1903 pri_pipe->next_odm_pipe = sec_pipe;
1904 sec_pipe->prev_odm_pipe = pri_pipe;
1905 ASSERT(sec_pipe->top_pipe == NULL);
1906
1907 if (!sec_pipe->top_pipe)
1908 sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1909 else
1910 sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1911 if (sec_pipe->stream->timing.flags.DSC == 1) {
1912 dcn20_acquire_dsc(dc, res_ctx, dsc: &sec_pipe->stream_res.dsc, pipe_idx);
1913 ASSERT(sec_pipe->stream_res.dsc);
1914 if (sec_pipe->stream_res.dsc == NULL)
1915 return false;
1916 }
1917 } else {
1918 if (pri_pipe->bottom_pipe) {
1919 ASSERT(pri_pipe->bottom_pipe != sec_pipe);
1920 sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1921 sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1922 }
1923 pri_pipe->bottom_pipe = sec_pipe;
1924 sec_pipe->top_pipe = pri_pipe;
1925
1926 ASSERT(pri_pipe->plane_state);
1927 }
1928
1929 return true;
1930}
1931
1932bool dcn32_internal_validate_bw(struct dc *dc,
1933 struct dc_state *context,
1934 display_e2e_pipe_params_st *pipes,
1935 int *pipe_cnt_out,
1936 int *vlevel_out,
1937 bool fast_validate)
1938{
1939 bool out = false;
1940 bool repopulate_pipes = false;
1941 int split[MAX_PIPES] = { 0 };
1942 bool merge[MAX_PIPES] = { false };
1943 bool newly_split[MAX_PIPES] = { false };
1944 int pipe_cnt, i, pipe_idx;
1945 int vlevel = context->bw_ctx.dml.soc.num_states;
1946 struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1947
1948 dc_assert_fp_enabled();
1949
1950 ASSERT(pipes);
1951 if (!pipes)
1952 return false;
1953
1954 // For each full update, remove all existing phantom pipes first
1955 dc_state_remove_phantom_streams_and_planes(dc, state: context);
1956 dc_state_release_phantom_streams_and_planes(dc, state: context);
1957
1958 dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
1959
1960 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1961
1962 if (!pipe_cnt) {
1963 out = true;
1964 goto validate_out;
1965 }
1966
1967 dml_log_pipe_params(mode_lib: &context->bw_ctx.dml, pipes, pipe_cnt);
1968 context->bw_ctx.dml.soc.max_vratio_pre = dcn32_determine_max_vratio_prefetch(dc, context);
1969
1970 if (!fast_validate)
1971 dcn32_full_validate_bw_helper(dc, context, pipes, vlevel: &vlevel, split, merge, pipe_cnt: &pipe_cnt);
1972
1973 if (fast_validate ||
1974 (dc->debug.dml_disallow_alternate_prefetch_modes &&
1975 (vlevel == context->bw_ctx.dml.soc.num_states ||
1976 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported))) {
1977 /*
1978 * If dml_disallow_alternate_prefetch_modes is false, then we have already
1979 * tried alternate prefetch modes during full validation.
1980 *
1981 * If mode is unsupported or there is no p-state support, then
1982 * fall back to favouring voltage.
1983 *
1984 * If Prefetch mode 0 failed for this config, or passed with Max UCLK, then try
1985 * to support with Prefetch mode 1 (dm_prefetch_support_fclk_and_stutter == 2)
1986 */
1987 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1988 dm_prefetch_support_none;
1989
1990 context->bw_ctx.dml.validate_max_state = fast_validate;
1991 vlevel = dml_get_voltage_level(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt);
1992
1993 context->bw_ctx.dml.validate_max_state = false;
1994
1995 if (vlevel < context->bw_ctx.dml.soc.num_states) {
1996 memset(split, 0, sizeof(split));
1997 memset(merge, 0, sizeof(merge));
1998 vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1999 // dcn20_validate_apply_pipe_split_flags can modify voltage level outside of DML
2000 vba->VoltageLevel = vlevel;
2001 }
2002 }
2003
2004 dml_log_mode_support_params(mode_lib: &context->bw_ctx.dml);
2005
2006 if (vlevel == context->bw_ctx.dml.soc.num_states)
2007 goto validate_fail;
2008
2009 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2010 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2011 struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
2012
2013 if (!pipe->stream)
2014 continue;
2015
2016 if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
2017 && !dc->config.enable_windowed_mpo_odm
2018 && pipe->plane_state && mpo_pipe
2019 && memcmp(p: &mpo_pipe->plane_state->clip_rect,
2020 q: &pipe->stream->src,
2021 size: sizeof(struct rect)) != 0) {
2022 ASSERT(mpo_pipe->plane_state != pipe->plane_state);
2023 goto validate_fail;
2024 }
2025 pipe_idx++;
2026 }
2027
2028 if (dc->config.enable_windowed_mpo_odm) {
2029 repopulate_pipes = update_pipes_with_split_flags(
2030 dc, context, vba, split, merge);
2031 } else {
2032 /* the code below will be removed once windowed mpo odm is fully
2033 * enabled.
2034 */
2035 /* merge pipes if necessary */
2036 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2037 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2038
2039 /*skip pipes that don't need merging*/
2040 if (!merge[i])
2041 continue;
2042
2043 /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
2044 if (pipe->prev_odm_pipe) {
2045 /*split off odm pipe*/
2046 pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
2047 if (pipe->next_odm_pipe)
2048 pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
2049
2050 /*2:1ODM+MPC Split MPO to Single Pipe + MPC Split MPO*/
2051 if (pipe->bottom_pipe) {
2052 if (pipe->bottom_pipe->prev_odm_pipe || pipe->bottom_pipe->next_odm_pipe) {
2053 /*MPC split rules will handle this case*/
2054 pipe->bottom_pipe->top_pipe = NULL;
2055 } else {
2056 /* when merging an ODM pipes, the bottom MPC pipe must now point to
2057 * the previous ODM pipe and its associated stream assets
2058 */
2059 if (pipe->prev_odm_pipe->bottom_pipe) {
2060 /* 3 plane MPO*/
2061 pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe->bottom_pipe;
2062 pipe->prev_odm_pipe->bottom_pipe->bottom_pipe = pipe->bottom_pipe;
2063 } else {
2064 /* 2 plane MPO*/
2065 pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe;
2066 pipe->prev_odm_pipe->bottom_pipe = pipe->bottom_pipe;
2067 }
2068
2069 memcpy(&pipe->bottom_pipe->stream_res, &pipe->bottom_pipe->top_pipe->stream_res, sizeof(struct stream_resource));
2070 }
2071 }
2072
2073 if (pipe->top_pipe) {
2074 pipe->top_pipe->bottom_pipe = NULL;
2075 }
2076
2077 pipe->bottom_pipe = NULL;
2078 pipe->next_odm_pipe = NULL;
2079 pipe->plane_state = NULL;
2080 pipe->stream = NULL;
2081 pipe->top_pipe = NULL;
2082 pipe->prev_odm_pipe = NULL;
2083 if (pipe->stream_res.dsc)
2084 dcn20_release_dsc(res_ctx: &context->res_ctx, pool: dc->res_pool, dsc: &pipe->stream_res.dsc);
2085 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
2086 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
2087 memset(&pipe->link_res, 0, sizeof(pipe->link_res));
2088 repopulate_pipes = true;
2089 } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
2090 struct pipe_ctx *top_pipe = pipe->top_pipe;
2091 struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
2092
2093 top_pipe->bottom_pipe = bottom_pipe;
2094 if (bottom_pipe)
2095 bottom_pipe->top_pipe = top_pipe;
2096
2097 pipe->top_pipe = NULL;
2098 pipe->bottom_pipe = NULL;
2099 pipe->plane_state = NULL;
2100 pipe->stream = NULL;
2101 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
2102 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
2103 memset(&pipe->link_res, 0, sizeof(pipe->link_res));
2104 repopulate_pipes = true;
2105 } else
2106 ASSERT(0); /* Should never try to merge master pipe */
2107
2108 }
2109
2110 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
2111 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2112 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2113 struct pipe_ctx *hsplit_pipe = NULL;
2114 bool odm;
2115 int old_index = -1;
2116
2117 if (!pipe->stream || newly_split[i])
2118 continue;
2119
2120 pipe_idx++;
2121 odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
2122
2123 if (!pipe->plane_state && !odm)
2124 continue;
2125
2126 if (split[i]) {
2127 if (odm) {
2128 if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
2129 old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
2130 else if (old_pipe->next_odm_pipe)
2131 old_index = old_pipe->next_odm_pipe->pipe_idx;
2132 } else {
2133 if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
2134 old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2135 old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
2136 else if (old_pipe->bottom_pipe &&
2137 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2138 old_index = old_pipe->bottom_pipe->pipe_idx;
2139 }
2140 hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index);
2141 ASSERT(hsplit_pipe);
2142 if (!hsplit_pipe)
2143 goto validate_fail;
2144
2145 if (!dcn32_split_stream_for_mpc_or_odm(
2146 dc, res_ctx: &context->res_ctx,
2147 pri_pipe: pipe, sec_pipe: hsplit_pipe, odm))
2148 goto validate_fail;
2149
2150 newly_split[hsplit_pipe->pipe_idx] = true;
2151 repopulate_pipes = true;
2152 }
2153 if (split[i] == 4) {
2154 struct pipe_ctx *pipe_4to1;
2155
2156 if (odm && old_pipe->next_odm_pipe)
2157 old_index = old_pipe->next_odm_pipe->pipe_idx;
2158 else if (!odm && old_pipe->bottom_pipe &&
2159 old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2160 old_index = old_pipe->bottom_pipe->pipe_idx;
2161 else
2162 old_index = -1;
2163 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
2164 ASSERT(pipe_4to1);
2165 if (!pipe_4to1)
2166 goto validate_fail;
2167 if (!dcn32_split_stream_for_mpc_or_odm(
2168 dc, res_ctx: &context->res_ctx,
2169 pri_pipe: pipe, sec_pipe: pipe_4to1, odm))
2170 goto validate_fail;
2171 newly_split[pipe_4to1->pipe_idx] = true;
2172
2173 if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
2174 && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
2175 old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
2176 else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
2177 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
2178 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2179 old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
2180 else
2181 old_index = -1;
2182 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
2183 ASSERT(pipe_4to1);
2184 if (!pipe_4to1)
2185 goto validate_fail;
2186 if (!dcn32_split_stream_for_mpc_or_odm(
2187 dc, res_ctx: &context->res_ctx,
2188 pri_pipe: hsplit_pipe, sec_pipe: pipe_4to1, odm))
2189 goto validate_fail;
2190 newly_split[pipe_4to1->pipe_idx] = true;
2191 }
2192 if (odm)
2193 dcn20_build_mapped_resource(dc, context, stream: pipe->stream);
2194 }
2195
2196 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2197 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2198
2199 if (pipe->plane_state) {
2200 if (!resource_build_scaling_params(pipe_ctx: pipe))
2201 goto validate_fail;
2202 }
2203 }
2204 }
2205
2206 /* Actual dsc count per stream dsc validation*/
2207 if (!dcn20_validate_dsc(dc, new_ctx: context)) {
2208 vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
2209 goto validate_fail;
2210 }
2211
2212 if (repopulate_pipes) {
2213 int flag_max_mpc_comb = vba->maxMpcComb;
2214 int flag_vlevel = vlevel;
2215 int i;
2216
2217 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
2218 if (!dc->config.enable_windowed_mpo_odm)
2219 dcn32_update_dml_pipes_odm_policy_based_on_context(dc, context, pipes);
2220
2221 /* repopulate_pipes = 1 means the pipes were either split or merged. In this case
2222 * we have to re-calculate the DET allocation and run through DML once more to
2223 * ensure all the params are calculated correctly. We do not need to run the
2224 * pipe split check again after this call (pipes are already split / merged).
2225 * */
2226 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
2227 dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
2228
2229 vlevel = dml_get_voltage_level(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt);
2230
2231 if (vlevel == context->bw_ctx.dml.soc.num_states) {
2232 /* failed after DET size changes */
2233 goto validate_fail;
2234 } else if (flag_max_mpc_comb == 0 &&
2235 flag_max_mpc_comb != context->bw_ctx.dml.vba.maxMpcComb) {
2236 /* check the context constructed with pipe split flags is still valid*/
2237 bool flags_valid = false;
2238 for (i = flag_vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
2239 if (vba->ModeSupport[i][flag_max_mpc_comb]) {
2240 vba->maxMpcComb = flag_max_mpc_comb;
2241 vba->VoltageLevel = i;
2242 vlevel = i;
2243 flags_valid = true;
2244 break;
2245 }
2246 }
2247
2248 /* this should never happen */
2249 if (!flags_valid)
2250 goto validate_fail;
2251 }
2252 }
2253 *vlevel_out = vlevel;
2254 *pipe_cnt_out = pipe_cnt;
2255
2256 out = true;
2257 goto validate_out;
2258
2259validate_fail:
2260 out = false;
2261
2262validate_out:
2263 return out;
2264}
2265
2266
2267void dcn32_calculate_wm_and_dlg_fpu(struct dc *dc, struct dc_state *context,
2268 display_e2e_pipe_params_st *pipes,
2269 int pipe_cnt,
2270 int vlevel)
2271{
2272 int i, pipe_idx, vlevel_temp = 0;
2273 double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2274 double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2275 double dram_speed_from_validation = context->bw_ctx.dml.vba.DRAMSpeed;
2276 double dcfclk_from_fw_based_mclk_switching = dcfclk_from_validation;
2277 bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
2278 dm_dram_clock_change_unsupported;
2279 unsigned int dummy_latency_index = 0;
2280 int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2281 unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
2282 bool subvp_in_use = dcn32_subvp_in_use(dc, context);
2283 unsigned int min_dram_speed_mts_margin;
2284 bool need_fclk_lat_as_dummy = false;
2285 bool is_subvp_p_drr = false;
2286 struct dc_stream_state *fpo_candidate_stream = NULL;
2287
2288 dc_assert_fp_enabled();
2289
2290 /* need to find dummy latency index for subvp */
2291 if (subvp_in_use) {
2292 /* Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK */
2293 if (!pstate_en) {
2294 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
2295 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_fclk_and_stutter;
2296 pstate_en = true;
2297 is_subvp_p_drr = true;
2298 }
2299 dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
2300 context, pipes, pipe_cnt, vlevel);
2301
2302 /* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so prefetch is
2303 * scheduled correctly to account for dummy pstate.
2304 */
2305 if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
2306 need_fclk_lat_as_dummy = true;
2307 context->bw_ctx.dml.soc.fclk_change_latency_us =
2308 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2309 }
2310 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2311 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2312 dcn32_internal_validate_bw(dc, context, pipes, pipe_cnt_out: &pipe_cnt, vlevel_out: &vlevel, fast_validate: false);
2313 maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2314 if (is_subvp_p_drr) {
2315 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
2316 }
2317 }
2318
2319 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2320 for (i = 0; i < context->stream_count; i++) {
2321 if (context->streams[i])
2322 context->streams[i]->fpo_in_use = false;
2323 }
2324
2325 if (!pstate_en || (!dc->debug.disable_fpo_optimizations &&
2326 pstate_en && vlevel != 0)) {
2327 /* only when the mclk switch can not be natural, is the fw based vblank stretch attempted */
2328 fpo_candidate_stream = dcn32_can_support_mclk_switch_using_fw_based_vblank_stretch(dc, context);
2329 if (fpo_candidate_stream) {
2330 fpo_candidate_stream->fpo_in_use = true;
2331 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = true;
2332 }
2333
2334 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2335 dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
2336 context, pipes, pipe_cnt, vlevel);
2337
2338 /* After calling dcn30_find_dummy_latency_index_for_fw_based_mclk_switch
2339 * we reinstate the original dram_clock_change_latency_us on the context
2340 * and all variables that may have changed up to this point, except the
2341 * newly found dummy_latency_index
2342 */
2343 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2344 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2345 /* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so
2346 * prefetch is scheduled correctly to account for dummy pstate.
2347 */
2348 if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
2349 need_fclk_lat_as_dummy = true;
2350 context->bw_ctx.dml.soc.fclk_change_latency_us =
2351 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2352 }
2353 dcn32_internal_validate_bw(dc, context, pipes, pipe_cnt_out: &pipe_cnt, vlevel_out: &vlevel_temp, fast_validate: false);
2354 if (vlevel_temp < vlevel) {
2355 vlevel = vlevel_temp;
2356 maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2357 dcfclk_from_fw_based_mclk_switching = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2358 pstate_en = true;
2359 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank;
2360 } else {
2361 /* Restore FCLK latency and re-run validation to go back to original validation
2362 * output if we find that enabling FPO does not give us any benefit (i.e. lower
2363 * voltage level)
2364 */
2365 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2366 for (i = 0; i < context->stream_count; i++) {
2367 if (context->streams[i])
2368 context->streams[i]->fpo_in_use = false;
2369 }
2370 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2371 dcn32_internal_validate_bw(dc, context, pipes, pipe_cnt_out: &pipe_cnt, vlevel_out: &vlevel, fast_validate: false);
2372 }
2373 }
2374 }
2375
2376 /* Set B:
2377 * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present,
2378 * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark
2379 * calculations to cover bootup clocks.
2380 * DCFCLK: soc.clock_limits[2] when available
2381 * UCLK: soc.clock_limits[2] when available
2382 */
2383 if (dcn3_2_soc.num_states > 2) {
2384 vlevel_temp = 2;
2385 dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz;
2386 } else
2387 dcfclk = 615; //DCFCLK Vmin_lv
2388
2389 pipes[0].clks_cfg.voltage = vlevel_temp;
2390 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2391 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2392
2393 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) {
2394 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us;
2395 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us;
2396 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us;
2397 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us;
2398 }
2399 context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2400 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2401 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2402 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2403 context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2404 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2405 context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2406 context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2407 context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2408 context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2409
2410 /* Set D:
2411 * All clocks min.
2412 * DCFCLK: Min, as reported by PM FW when available
2413 * UCLK : Min, as reported by PM FW when available
2414 * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr)
2415 */
2416
2417 /*
2418 if (dcn3_2_soc.num_states > 2) {
2419 vlevel_temp = 0;
2420 dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz;
2421 } else
2422 dcfclk = 615; //DCFCLK Vmin_lv
2423
2424 pipes[0].clks_cfg.voltage = vlevel_temp;
2425 pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2426 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2427
2428 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) {
2429 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us;
2430 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us;
2431 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us;
2432 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us;
2433 }
2434 context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2435 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2436 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2437 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2438 context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2439 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2440 context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2441 context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2442 context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2443 context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2444 */
2445
2446 /* Set C, for Dummy P-State:
2447 * All clocks min.
2448 * DCFCLK: Min, as reported by PM FW, when available
2449 * UCLK : Min, as reported by PM FW, when available
2450 * pstate latency as per UCLK state dummy pstate latency
2451 */
2452
2453 // For Set A and Set C use values from validation
2454 pipes[0].clks_cfg.voltage = vlevel;
2455 pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation;
2456 pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
2457
2458 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2459 pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_fw_based_mclk_switching;
2460 }
2461
2462 if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) {
2463 min_dram_speed_mts = dram_speed_from_validation;
2464 min_dram_speed_mts_margin = 160;
2465
2466 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2467 dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us;
2468
2469 if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] ==
2470 dm_dram_clock_change_unsupported) {
2471 int min_dram_speed_mts_offset = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels - 1;
2472
2473 min_dram_speed_mts =
2474 dc->clk_mgr->bw_params->clk_table.entries[min_dram_speed_mts_offset].memclk_mhz * 16;
2475 }
2476
2477 if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching && !subvp_in_use) {
2478 /* find largest table entry that is lower than dram speed,
2479 * but lower than DPM0 still uses DPM0
2480 */
2481 for (dummy_latency_index = 3; dummy_latency_index > 0; dummy_latency_index--)
2482 if (min_dram_speed_mts + min_dram_speed_mts_margin >
2483 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dram_speed_mts)
2484 break;
2485 }
2486
2487 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2488 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2489
2490 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us;
2491 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us;
2492 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us;
2493 }
2494
2495 context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2496 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2497 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2498 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2499 context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2500 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2501 context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2502 context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2503 /* On DCN32/321, PMFW will set PSTATE_CHANGE_TYPE = 1 (FCLK) for UCLK dummy p-state.
2504 * In this case we must program FCLK WM Set C to use the UCLK dummy p-state WM
2505 * value.
2506 */
2507 context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_wm_dram_clock_change(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2508 context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2509
2510 if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) {
2511 /* The only difference between A and C is p-state latency, if p-state is not supported
2512 * with full p-state latency we want to calculate DLG based on dummy p-state latency,
2513 * Set A p-state watermark set to 0 on DCN30, when p-state unsupported, for now keep as DCN30.
2514 */
2515 context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
2516 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
2517 /* Calculate FCLK p-state change watermark based on FCLK pstate change latency in case
2518 * UCLK p-state is not supported, to avoid underflow in case FCLK pstate is supported
2519 */
2520 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2521 } else {
2522 /* Set A:
2523 * All clocks min.
2524 * DCFCLK: Min, as reported by PM FW, when available
2525 * UCLK: Min, as reported by PM FW, when available
2526 */
2527
2528 /* For set A set the correct latency values (i.e. non-dummy values) unconditionally
2529 */
2530 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2531 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us;
2532 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us;
2533
2534 context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2535 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2536 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2537 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2538 context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2539 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2540 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2541 context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2542 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2543 context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt) * 1000;
2544 }
2545
2546 /* Make set D = set A since we do not optimized watermarks for MALL */
2547 context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a;
2548
2549 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2550 if (!context->res_ctx.pipe_ctx[i].stream)
2551 continue;
2552
2553 pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt);
2554 pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(mode_lib: &context->bw_ctx.dml, pipes, num_pipes: pipe_cnt, which_pipe: pipe_idx);
2555
2556 if (dc->config.forced_clocks) {
2557 pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
2558 pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
2559 }
2560 if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
2561 pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
2562 if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
2563 pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;
2564
2565 pipe_idx++;
2566 }
2567
2568 context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;
2569
2570 /* for proper prefetch calculations, if dummy lat > fclk lat, use fclk lat = dummy lat */
2571 if (need_fclk_lat_as_dummy)
2572 context->bw_ctx.dml.soc.fclk_change_latency_us =
2573 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2574
2575 dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);
2576
2577 if (!pstate_en)
2578 /* Restore full p-state latency */
2579 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2580 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2581
2582 /* revert fclk lat changes if required */
2583 if (need_fclk_lat_as_dummy)
2584 context->bw_ctx.dml.soc.fclk_change_latency_us =
2585 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2586}
2587
2588static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
2589 unsigned int *optimal_dcfclk,
2590 unsigned int *optimal_fclk)
2591{
2592 double bw_from_dram, bw_from_dram1, bw_from_dram2;
2593
2594 bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans *
2595 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100);
2596 bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans *
2597 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100);
2598
2599 bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
2600
2601 if (optimal_fclk)
2602 *optimal_fclk = bw_from_dram /
2603 (dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2604
2605 if (optimal_dcfclk)
2606 *optimal_dcfclk = bw_from_dram /
2607 (dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2608}
2609
2610static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries,
2611 unsigned int index)
2612{
2613 int i;
2614
2615 if (*num_entries == 0)
2616 return;
2617
2618 for (i = index; i < *num_entries - 1; i++) {
2619 table[i] = table[i + 1];
2620 }
2621 memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st));
2622}
2623
2624void dcn32_patch_dpm_table(struct clk_bw_params *bw_params)
2625{
2626 int i;
2627 unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
2628 max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0;
2629
2630 for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2631 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2632 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2633 if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz)
2634 max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2635 if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz)
2636 max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2637 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2638 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2639 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2640 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2641 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2642 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2643 if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz)
2644 max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2645 }
2646
2647 /* Scan through clock values we currently have and if they are 0,
2648 * then populate it with dcn3_2_soc.clock_limits[] value.
2649 *
2650 * Do it for DCFCLK, DISPCLK, DTBCLK and UCLK as any of those being
2651 * 0, will cause it to skip building the clock table.
2652 */
2653 if (max_dcfclk_mhz == 0)
2654 bw_params->clk_table.entries[0].dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2655 if (max_dispclk_mhz == 0)
2656 bw_params->clk_table.entries[0].dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2657 if (max_dtbclk_mhz == 0)
2658 bw_params->clk_table.entries[0].dtbclk_mhz = dcn3_2_soc.clock_limits[0].dtbclk_mhz;
2659 if (max_uclk_mhz == 0)
2660 bw_params->clk_table.entries[0].memclk_mhz = dcn3_2_soc.clock_limits[0].dram_speed_mts / 16;
2661}
2662
2663static void swap_table_entries(struct _vcs_dpi_voltage_scaling_st *first_entry,
2664 struct _vcs_dpi_voltage_scaling_st *second_entry)
2665{
2666 struct _vcs_dpi_voltage_scaling_st temp_entry = *first_entry;
2667 *first_entry = *second_entry;
2668 *second_entry = temp_entry;
2669}
2670
2671/*
2672 * sort_entries_with_same_bw - Sort entries sharing the same bandwidth by DCFCLK
2673 */
2674static void sort_entries_with_same_bw(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2675{
2676 unsigned int start_index = 0;
2677 unsigned int end_index = 0;
2678 unsigned int current_bw = 0;
2679
2680 for (int i = 0; i < (*num_entries - 1); i++) {
2681 if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
2682 current_bw = table[i].net_bw_in_kbytes_sec;
2683 start_index = i;
2684 end_index = ++i;
2685
2686 while ((i < (*num_entries - 1)) && (table[i+1].net_bw_in_kbytes_sec == current_bw))
2687 end_index = ++i;
2688 }
2689
2690 if (start_index != end_index) {
2691 for (int j = start_index; j < end_index; j++) {
2692 for (int k = start_index; k < end_index; k++) {
2693 if (table[k].dcfclk_mhz > table[k+1].dcfclk_mhz)
2694 swap_table_entries(first_entry: &table[k], second_entry: &table[k+1]);
2695 }
2696 }
2697 }
2698
2699 start_index = 0;
2700 end_index = 0;
2701
2702 }
2703}
2704
2705/*
2706 * remove_inconsistent_entries - Ensure entries with the same bandwidth have MEMCLK and FCLK monotonically increasing
2707 * and remove entries that do not
2708 */
2709static void remove_inconsistent_entries(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2710{
2711 for (int i = 0; i < (*num_entries - 1); i++) {
2712 if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
2713 if ((table[i].dram_speed_mts > table[i+1].dram_speed_mts) ||
2714 (table[i].fabricclk_mhz > table[i+1].fabricclk_mhz))
2715 remove_entry_from_table_at_index(table, num_entries, index: i);
2716 }
2717 }
2718}
2719
2720/*
2721 * override_max_clk_values - Overwrite the max clock frequencies with the max DC mode timings
2722 * Input:
2723 * max_clk_limit - struct containing the desired clock timings
2724 * Output:
2725 * curr_clk_limit - struct containing the timings that need to be overwritten
2726 * Return: 0 upon success, non-zero for failure
2727 */
2728static int override_max_clk_values(struct clk_limit_table_entry *max_clk_limit,
2729 struct clk_limit_table_entry *curr_clk_limit)
2730{
2731 if (NULL == max_clk_limit || NULL == curr_clk_limit)
2732 return -1; //invalid parameters
2733
2734 //only overwrite if desired max clock frequency is initialized
2735 if (max_clk_limit->dcfclk_mhz != 0)
2736 curr_clk_limit->dcfclk_mhz = max_clk_limit->dcfclk_mhz;
2737
2738 if (max_clk_limit->fclk_mhz != 0)
2739 curr_clk_limit->fclk_mhz = max_clk_limit->fclk_mhz;
2740
2741 if (max_clk_limit->memclk_mhz != 0)
2742 curr_clk_limit->memclk_mhz = max_clk_limit->memclk_mhz;
2743
2744 if (max_clk_limit->socclk_mhz != 0)
2745 curr_clk_limit->socclk_mhz = max_clk_limit->socclk_mhz;
2746
2747 if (max_clk_limit->dtbclk_mhz != 0)
2748 curr_clk_limit->dtbclk_mhz = max_clk_limit->dtbclk_mhz;
2749
2750 if (max_clk_limit->dispclk_mhz != 0)
2751 curr_clk_limit->dispclk_mhz = max_clk_limit->dispclk_mhz;
2752
2753 return 0;
2754}
2755
2756static int build_synthetic_soc_states(bool disable_dc_mode_overwrite, struct clk_bw_params *bw_params,
2757 struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2758{
2759 int i, j;
2760 struct _vcs_dpi_voltage_scaling_st entry = {0};
2761 struct clk_limit_table_entry max_clk_data = {0};
2762
2763 unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299;
2764
2765 static const unsigned int num_dcfclk_stas = 5;
2766 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
2767
2768 unsigned int num_uclk_dpms = 0;
2769 unsigned int num_fclk_dpms = 0;
2770 unsigned int num_dcfclk_dpms = 0;
2771
2772 unsigned int num_dc_uclk_dpms = 0;
2773 unsigned int num_dc_fclk_dpms = 0;
2774 unsigned int num_dc_dcfclk_dpms = 0;
2775
2776 for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2777 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_clk_data.dcfclk_mhz)
2778 max_clk_data.dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2779 if (bw_params->clk_table.entries[i].fclk_mhz > max_clk_data.fclk_mhz)
2780 max_clk_data.fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2781 if (bw_params->clk_table.entries[i].memclk_mhz > max_clk_data.memclk_mhz)
2782 max_clk_data.memclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2783 if (bw_params->clk_table.entries[i].dispclk_mhz > max_clk_data.dispclk_mhz)
2784 max_clk_data.dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2785 if (bw_params->clk_table.entries[i].dppclk_mhz > max_clk_data.dppclk_mhz)
2786 max_clk_data.dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2787 if (bw_params->clk_table.entries[i].phyclk_mhz > max_clk_data.phyclk_mhz)
2788 max_clk_data.phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2789 if (bw_params->clk_table.entries[i].dtbclk_mhz > max_clk_data.dtbclk_mhz)
2790 max_clk_data.dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2791
2792 if (bw_params->clk_table.entries[i].memclk_mhz > 0) {
2793 num_uclk_dpms++;
2794 if (bw_params->clk_table.entries[i].memclk_mhz <= bw_params->dc_mode_limit.memclk_mhz)
2795 num_dc_uclk_dpms++;
2796 }
2797 if (bw_params->clk_table.entries[i].fclk_mhz > 0) {
2798 num_fclk_dpms++;
2799 if (bw_params->clk_table.entries[i].fclk_mhz <= bw_params->dc_mode_limit.fclk_mhz)
2800 num_dc_fclk_dpms++;
2801 }
2802 if (bw_params->clk_table.entries[i].dcfclk_mhz > 0) {
2803 num_dcfclk_dpms++;
2804 if (bw_params->clk_table.entries[i].dcfclk_mhz <= bw_params->dc_mode_limit.dcfclk_mhz)
2805 num_dc_dcfclk_dpms++;
2806 }
2807 }
2808
2809 if (!disable_dc_mode_overwrite) {
2810 //Overwrite max frequencies with max DC mode frequencies for DC mode systems
2811 override_max_clk_values(max_clk_limit: &bw_params->dc_mode_limit, curr_clk_limit: &max_clk_data);
2812 num_uclk_dpms = num_dc_uclk_dpms;
2813 num_fclk_dpms = num_dc_fclk_dpms;
2814 num_dcfclk_dpms = num_dc_dcfclk_dpms;
2815 bw_params->clk_table.num_entries_per_clk.num_memclk_levels = num_uclk_dpms;
2816 bw_params->clk_table.num_entries_per_clk.num_fclk_levels = num_fclk_dpms;
2817 }
2818
2819 if (num_dcfclk_dpms > 0 && bw_params->clk_table.entries[0].fclk_mhz > min_fclk_mhz)
2820 min_fclk_mhz = bw_params->clk_table.entries[0].fclk_mhz;
2821
2822 if (!max_clk_data.dcfclk_mhz || !max_clk_data.dispclk_mhz || !max_clk_data.dtbclk_mhz)
2823 return -1;
2824
2825 if (max_clk_data.dppclk_mhz == 0)
2826 max_clk_data.dppclk_mhz = max_clk_data.dispclk_mhz;
2827
2828 if (max_clk_data.fclk_mhz == 0)
2829 max_clk_data.fclk_mhz = max_clk_data.dcfclk_mhz *
2830 dcn3_2_soc.pct_ideal_sdp_bw_after_urgent /
2831 dcn3_2_soc.pct_ideal_fabric_bw_after_urgent;
2832
2833 if (max_clk_data.phyclk_mhz == 0)
2834 max_clk_data.phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2835
2836 *num_entries = 0;
2837 entry.dispclk_mhz = max_clk_data.dispclk_mhz;
2838 entry.dscclk_mhz = max_clk_data.dispclk_mhz / 3;
2839 entry.dppclk_mhz = max_clk_data.dppclk_mhz;
2840 entry.dtbclk_mhz = max_clk_data.dtbclk_mhz;
2841 entry.phyclk_mhz = max_clk_data.phyclk_mhz;
2842 entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2843 entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2844
2845 // Insert all the DCFCLK STAs
2846 for (i = 0; i < num_dcfclk_stas; i++) {
2847 entry.dcfclk_mhz = dcfclk_sta_targets[i];
2848 entry.fabricclk_mhz = 0;
2849 entry.dram_speed_mts = 0;
2850
2851 get_optimal_ntuple(entry: &entry);
2852 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(entry: &entry);
2853 insert_entry_into_table_sorted(table, num_entries, entry: &entry);
2854 }
2855
2856 // Insert the max DCFCLK
2857 entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
2858 entry.fabricclk_mhz = 0;
2859 entry.dram_speed_mts = 0;
2860
2861 get_optimal_ntuple(entry: &entry);
2862 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(entry: &entry);
2863 insert_entry_into_table_sorted(table, num_entries, entry: &entry);
2864
2865 // Insert the UCLK DPMS
2866 for (i = 0; i < num_uclk_dpms; i++) {
2867 entry.dcfclk_mhz = 0;
2868 entry.fabricclk_mhz = 0;
2869 entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16;
2870
2871 get_optimal_ntuple(entry: &entry);
2872 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(entry: &entry);
2873 insert_entry_into_table_sorted(table, num_entries, entry: &entry);
2874 }
2875
2876 // If FCLK is coarse grained, insert individual DPMs.
2877 if (num_fclk_dpms > 2) {
2878 for (i = 0; i < num_fclk_dpms; i++) {
2879 entry.dcfclk_mhz = 0;
2880 entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2881 entry.dram_speed_mts = 0;
2882
2883 get_optimal_ntuple(entry: &entry);
2884 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(entry: &entry);
2885 insert_entry_into_table_sorted(table, num_entries, entry: &entry);
2886 }
2887 }
2888 // If FCLK fine grained, only insert max
2889 else {
2890 entry.dcfclk_mhz = 0;
2891 entry.fabricclk_mhz = max_clk_data.fclk_mhz;
2892 entry.dram_speed_mts = 0;
2893
2894 get_optimal_ntuple(entry: &entry);
2895 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(entry: &entry);
2896 insert_entry_into_table_sorted(table, num_entries, entry: &entry);
2897 }
2898
2899 // At this point, the table contains all "points of interest" based on
2900 // DPMs from PMFW, and STAs. Table is sorted by BW, and all clock
2901 // ratios (by derate, are exact).
2902
2903 // Remove states that require higher clocks than are supported
2904 for (i = *num_entries - 1; i >= 0 ; i--) {
2905 if (table[i].dcfclk_mhz > max_clk_data.dcfclk_mhz ||
2906 table[i].fabricclk_mhz > max_clk_data.fclk_mhz ||
2907 table[i].dram_speed_mts > max_clk_data.memclk_mhz * 16)
2908 remove_entry_from_table_at_index(table, num_entries, index: i);
2909 }
2910
2911 // Insert entry with all max dc limits without bandwidth matching
2912 if (!disable_dc_mode_overwrite) {
2913 struct _vcs_dpi_voltage_scaling_st max_dc_limits_entry = entry;
2914
2915 max_dc_limits_entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
2916 max_dc_limits_entry.fabricclk_mhz = max_clk_data.fclk_mhz;
2917 max_dc_limits_entry.dram_speed_mts = max_clk_data.memclk_mhz * 16;
2918
2919 max_dc_limits_entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(entry: &max_dc_limits_entry);
2920 insert_entry_into_table_sorted(table, num_entries, entry: &max_dc_limits_entry);
2921
2922 sort_entries_with_same_bw(table, num_entries);
2923 remove_inconsistent_entries(table, num_entries);
2924 }
2925
2926 // At this point, the table only contains supported points of interest
2927 // it could be used as is, but some states may be redundant due to
2928 // coarse grained nature of some clocks, so we want to round up to
2929 // coarse grained DPMs and remove duplicates.
2930
2931 // Round up UCLKs
2932 for (i = *num_entries - 1; i >= 0 ; i--) {
2933 for (j = 0; j < num_uclk_dpms; j++) {
2934 if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) {
2935 table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16;
2936 break;
2937 }
2938 }
2939 }
2940
2941 // If FCLK is coarse grained, round up to next DPMs
2942 if (num_fclk_dpms > 2) {
2943 for (i = *num_entries - 1; i >= 0 ; i--) {
2944 for (j = 0; j < num_fclk_dpms; j++) {
2945 if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) {
2946 table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz;
2947 break;
2948 }
2949 }
2950 }
2951 }
2952 // Otherwise, round up to minimum.
2953 else {
2954 for (i = *num_entries - 1; i >= 0 ; i--) {
2955 if (table[i].fabricclk_mhz < min_fclk_mhz) {
2956 table[i].fabricclk_mhz = min_fclk_mhz;
2957 }
2958 }
2959 }
2960
2961 // Round DCFCLKs up to minimum
2962 for (i = *num_entries - 1; i >= 0 ; i--) {
2963 if (table[i].dcfclk_mhz < min_dcfclk_mhz) {
2964 table[i].dcfclk_mhz = min_dcfclk_mhz;
2965 }
2966 }
2967
2968 // Remove duplicate states, note duplicate states are always neighbouring since table is sorted.
2969 i = 0;
2970 while (i < *num_entries - 1) {
2971 if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz &&
2972 table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz &&
2973 table[i].dram_speed_mts == table[i + 1].dram_speed_mts)
2974 remove_entry_from_table_at_index(table, num_entries, index: i + 1);
2975 else
2976 i++;
2977 }
2978
2979 // Fix up the state indicies
2980 for (i = *num_entries - 1; i >= 0 ; i--) {
2981 table[i].state = i;
2982 }
2983
2984 return 0;
2985}
2986
2987/*
2988 * dcn32_update_bw_bounding_box
2989 *
2990 * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from
2991 * spreadsheet with actual values as per dGPU SKU:
2992 * - with passed few options from dc->config
2993 * - with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might
2994 * need to get it from PM FW)
2995 * - with passed latency values (passed in ns units) in dc-> bb override for
2996 * debugging purposes
2997 * - with passed latencies from VBIOS (in 100_ns units) if available for
2998 * certain dGPU SKU
2999 * - with number of DRAM channels from VBIOS (which differ for certain dGPU SKU
3000 * of the same ASIC)
3001 * - clocks levels with passed clk_table entries from Clk Mgr as reported by PM
3002 * FW for different clocks (which might differ for certain dGPU SKU of the
3003 * same ASIC)
3004 */
3005void dcn32_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params)
3006{
3007 dc_assert_fp_enabled();
3008
3009 /* Overrides from dc->config options */
3010 dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
3011
3012 /* Override from passed dc->bb_overrides if available*/
3013 if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns
3014 && dc->bb_overrides.sr_exit_time_ns) {
3015 dc->dml2_options.bbox_overrides.sr_exit_latency_us =
3016 dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0;
3017 }
3018
3019 if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000)
3020 != dc->bb_overrides.sr_enter_plus_exit_time_ns
3021 && dc->bb_overrides.sr_enter_plus_exit_time_ns) {
3022 dc->dml2_options.bbox_overrides.sr_enter_plus_exit_latency_us =
3023 dcn3_2_soc.sr_enter_plus_exit_time_us =
3024 dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0;
3025 }
3026
3027 if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns
3028 && dc->bb_overrides.urgent_latency_ns) {
3029 dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
3030 dc->dml2_options.bbox_overrides.urgent_latency_us =
3031 dcn3_2_soc.urgent_latency_pixel_data_only_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
3032 }
3033
3034 if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000)
3035 != dc->bb_overrides.dram_clock_change_latency_ns
3036 && dc->bb_overrides.dram_clock_change_latency_ns) {
3037 dc->dml2_options.bbox_overrides.dram_clock_change_latency_us =
3038 dcn3_2_soc.dram_clock_change_latency_us =
3039 dc->bb_overrides.dram_clock_change_latency_ns / 1000.0;
3040 }
3041
3042 if ((int)(dcn3_2_soc.fclk_change_latency_us * 1000)
3043 != dc->bb_overrides.fclk_clock_change_latency_ns
3044 && dc->bb_overrides.fclk_clock_change_latency_ns) {
3045 dc->dml2_options.bbox_overrides.fclk_change_latency_us =
3046 dcn3_2_soc.fclk_change_latency_us =
3047 dc->bb_overrides.fclk_clock_change_latency_ns / 1000;
3048 }
3049
3050 if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000)
3051 != dc->bb_overrides.dummy_clock_change_latency_ns
3052 && dc->bb_overrides.dummy_clock_change_latency_ns) {
3053 dcn3_2_soc.dummy_pstate_latency_us =
3054 dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0;
3055 }
3056
3057 /* Override from VBIOS if VBIOS bb_info available */
3058 if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
3059 struct bp_soc_bb_info bb_info = {0};
3060
3061 if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
3062 if (bb_info.dram_clock_change_latency_100ns > 0)
3063 dc->dml2_options.bbox_overrides.dram_clock_change_latency_us =
3064 dcn3_2_soc.dram_clock_change_latency_us =
3065 bb_info.dram_clock_change_latency_100ns * 10;
3066
3067 if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
3068 dc->dml2_options.bbox_overrides.sr_enter_plus_exit_latency_us =
3069 dcn3_2_soc.sr_enter_plus_exit_time_us =
3070 bb_info.dram_sr_enter_exit_latency_100ns * 10;
3071
3072 if (bb_info.dram_sr_exit_latency_100ns > 0)
3073 dc->dml2_options.bbox_overrides.sr_exit_latency_us =
3074 dcn3_2_soc.sr_exit_time_us =
3075 bb_info.dram_sr_exit_latency_100ns * 10;
3076 }
3077 }
3078
3079 /* Override from VBIOS for num_chan */
3080 if (dc->ctx->dc_bios->vram_info.num_chans) {
3081 dc->dml2_options.bbox_overrides.dram_num_chan =
3082 dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
3083 dcn3_2_soc.mall_allocated_for_dcn_mbytes = (double)(dcn32_calc_num_avail_chans_for_mall(dc,
3084 num_chans: dc->ctx->dc_bios->vram_info.num_chans) * dc->caps.mall_size_per_mem_channel);
3085 }
3086
3087 if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
3088 dc->dml2_options.bbox_overrides.dram_chanel_width_bytes =
3089 dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
3090
3091 /* DML DSC delay factor workaround */
3092 dcn3_2_ip.dsc_delay_factor_wa = dc->debug.dsc_delay_factor_wa_x1000 / 1000.0;
3093
3094 dcn3_2_ip.min_prefetch_in_strobe_us = dc->debug.min_prefetch_in_strobe_ns / 1000.0;
3095
3096 /* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */
3097 dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3098 dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3099 dc->dml2_options.bbox_overrides.disp_pll_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3100 dc->dml2_options.bbox_overrides.xtalclk_mhz = dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency / 1000.0;
3101 dc->dml2_options.bbox_overrides.dchub_refclk_mhz = dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000.0;
3102 dc->dml2_options.bbox_overrides.dprefclk_mhz = dc->clk_mgr->dprefclk_khz / 1000.0;
3103
3104 /* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */
3105 if (bw_params->clk_table.entries[0].memclk_mhz) {
3106 if (dc->debug.use_legacy_soc_bb_mechanism) {
3107 unsigned int i = 0, j = 0, num_states = 0;
3108
3109 unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
3110 unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
3111 unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
3112 unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
3113 unsigned int min_dcfclk = UINT_MAX;
3114 /* Set 199 as first value in STA target array to have a minimum DCFCLK value.
3115 * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */
3116 unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
3117 unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0;
3118 unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0;
3119
3120 for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
3121 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
3122 max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
3123 if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 &&
3124 bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk)
3125 min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz;
3126 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
3127 max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
3128 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
3129 max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
3130 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
3131 max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
3132 }
3133 if (min_dcfclk > dcfclk_sta_targets[0])
3134 dcfclk_sta_targets[0] = min_dcfclk;
3135 if (!max_dcfclk_mhz)
3136 max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
3137 if (!max_dispclk_mhz)
3138 max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
3139 if (!max_dppclk_mhz)
3140 max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz;
3141 if (!max_phyclk_mhz)
3142 max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
3143
3144 if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
3145 // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
3146 dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz;
3147 num_dcfclk_sta_targets++;
3148 } else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
3149 // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
3150 for (i = 0; i < num_dcfclk_sta_targets; i++) {
3151 if (dcfclk_sta_targets[i] > max_dcfclk_mhz) {
3152 dcfclk_sta_targets[i] = max_dcfclk_mhz;
3153 break;
3154 }
3155 }
3156 // Update size of array since we "removed" duplicates
3157 num_dcfclk_sta_targets = i + 1;
3158 }
3159
3160 num_uclk_states = bw_params->clk_table.num_entries;
3161
3162 // Calculate optimal dcfclk for each uclk
3163 for (i = 0; i < num_uclk_states; i++) {
3164 dcn32_get_optimal_dcfclk_fclk_for_uclk(uclk_mts: bw_params->clk_table.entries[i].memclk_mhz * 16,
3165 optimal_dcfclk: &optimal_dcfclk_for_uclk[i], NULL);
3166 if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
3167 optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
3168 }
3169 }
3170
3171 // Calculate optimal uclk for each dcfclk sta target
3172 for (i = 0; i < num_dcfclk_sta_targets; i++) {
3173 for (j = 0; j < num_uclk_states; j++) {
3174 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
3175 optimal_uclk_for_dcfclk_sta_targets[i] =
3176 bw_params->clk_table.entries[j].memclk_mhz * 16;
3177 break;
3178 }
3179 }
3180 }
3181
3182 i = 0;
3183 j = 0;
3184 // create the final dcfclk and uclk table
3185 while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
3186 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
3187 dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
3188 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
3189 } else {
3190 if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
3191 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
3192 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
3193 } else {
3194 j = num_uclk_states;
3195 }
3196 }
3197 }
3198
3199 while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
3200 dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
3201 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
3202 }
3203
3204 while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
3205 optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
3206 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
3207 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
3208 }
3209
3210 dcn3_2_soc.num_states = num_states;
3211 for (i = 0; i < dcn3_2_soc.num_states; i++) {
3212 dcn3_2_soc.clock_limits[i].state = i;
3213 dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
3214 dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
3215
3216 /* Fill all states with max values of all these clocks */
3217 dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz;
3218 dcn3_2_soc.clock_limits[i].dppclk_mhz = max_dppclk_mhz;
3219 dcn3_2_soc.clock_limits[i].phyclk_mhz = max_phyclk_mhz;
3220 dcn3_2_soc.clock_limits[i].dscclk_mhz = max_dispclk_mhz / 3;
3221
3222 /* Populate from bw_params for DTBCLK, SOCCLK */
3223 if (i > 0) {
3224 if (!bw_params->clk_table.entries[i].dtbclk_mhz) {
3225 dcn3_2_soc.clock_limits[i].dtbclk_mhz = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz;
3226 } else {
3227 dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
3228 }
3229 } else if (bw_params->clk_table.entries[i].dtbclk_mhz) {
3230 dcn3_2_soc.clock_limits[i].dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
3231 }
3232
3233 if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0)
3234 dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz;
3235 else
3236 dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz;
3237
3238 if (!dram_speed_mts[i] && i > 0)
3239 dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts;
3240 else
3241 dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
3242
3243 /* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */
3244 /* PHYCLK_D18, PHYCLK_D32 */
3245 dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
3246 dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
3247 }
3248 } else {
3249 build_synthetic_soc_states(disable_dc_mode_overwrite: dc->debug.disable_dc_mode_overwrite, bw_params,
3250 table: dcn3_2_soc.clock_limits, num_entries: &dcn3_2_soc.num_states);
3251 }
3252
3253 /* Re-init DML with updated bb */
3254 dml_init_instance(lib: &dc->dml, soc_bb: &dcn3_2_soc, ip_params: &dcn3_2_ip, project: DML_PROJECT_DCN32);
3255 if (dc->current_state)
3256 dml_init_instance(lib: &dc->current_state->bw_ctx.dml, soc_bb: &dcn3_2_soc, ip_params: &dcn3_2_ip, project: DML_PROJECT_DCN32);
3257 }
3258
3259 if (dc->clk_mgr->bw_params->clk_table.num_entries > 1) {
3260 unsigned int i = 0;
3261
3262 dc->dml2_options.bbox_overrides.clks_table.num_states = dc->clk_mgr->bw_params->clk_table.num_entries;
3263
3264 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dcfclk_levels =
3265 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels;
3266
3267 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_fclk_levels =
3268 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels;
3269
3270 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_memclk_levels =
3271 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels;
3272
3273 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_socclk_levels =
3274 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels;
3275
3276 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dtbclk_levels =
3277 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels;
3278
3279 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dispclk_levels =
3280 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels;
3281
3282 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dppclk_levels =
3283 dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dppclk_levels;
3284
3285 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels; i++) {
3286 if (dc->clk_mgr->bw_params->clk_table.entries[i].dcfclk_mhz)
3287 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dcfclk_mhz =
3288 dc->clk_mgr->bw_params->clk_table.entries[i].dcfclk_mhz;
3289 }
3290
3291 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels; i++) {
3292 if (dc->clk_mgr->bw_params->clk_table.entries[i].fclk_mhz)
3293 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].fclk_mhz =
3294 dc->clk_mgr->bw_params->clk_table.entries[i].fclk_mhz;
3295 }
3296
3297 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels; i++) {
3298 if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz)
3299 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].memclk_mhz =
3300 dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
3301 }
3302
3303 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels; i++) {
3304 if (dc->clk_mgr->bw_params->clk_table.entries[i].socclk_mhz)
3305 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].socclk_mhz =
3306 dc->clk_mgr->bw_params->clk_table.entries[i].socclk_mhz;
3307 }
3308
3309 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels; i++) {
3310 if (dc->clk_mgr->bw_params->clk_table.entries[i].dtbclk_mhz)
3311 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dtbclk_mhz =
3312 dc->clk_mgr->bw_params->clk_table.entries[i].dtbclk_mhz;
3313 }
3314
3315 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels; i++) {
3316 if (dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz) {
3317 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dispclk_mhz =
3318 dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz;
3319 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dppclk_mhz =
3320 dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz;
3321 }
3322 }
3323 }
3324}
3325
3326void dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st *pipes,
3327 int pipe_cnt)
3328{
3329 dc_assert_fp_enabled();
3330
3331 pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0;
3332 pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0;
3333}
3334
3335bool dcn32_allow_subvp_with_active_margin(struct pipe_ctx *pipe)
3336{
3337 bool allow = false;
3338 uint32_t refresh_rate = 0;
3339 uint32_t min_refresh = subvp_active_margin_list.min_refresh;
3340 uint32_t max_refresh = subvp_active_margin_list.max_refresh;
3341 uint32_t i;
3342
3343 for (i = 0; i < SUBVP_ACTIVE_MARGIN_LIST_LEN; i++) {
3344 uint32_t width = subvp_active_margin_list.res[i].width;
3345 uint32_t height = subvp_active_margin_list.res[i].height;
3346
3347 refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 +
3348 pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1);
3349 refresh_rate = div_u64(dividend: refresh_rate, divisor: pipe->stream->timing.v_total);
3350 refresh_rate = div_u64(dividend: refresh_rate, divisor: pipe->stream->timing.h_total);
3351
3352 if (refresh_rate >= min_refresh && refresh_rate <= max_refresh &&
3353 dcn32_check_native_scaling_for_res(pipe, width, height)) {
3354 allow = true;
3355 break;
3356 }
3357 }
3358 return allow;
3359}
3360
3361/**
3362 * dcn32_allow_subvp_high_refresh_rate: Determine if the high refresh rate config will allow subvp
3363 *
3364 * @dc: Current DC state
3365 * @context: New DC state to be programmed
3366 * @pipe: Pipe to be considered for use in subvp
3367 *
3368 * On high refresh rate display configs, we will allow subvp under the following conditions:
3369 * 1. Resolution is 3840x2160, 3440x1440, or 2560x1440
3370 * 2. Refresh rate is between 120hz - 165hz
3371 * 3. No scaling
3372 * 4. Freesync is inactive
3373 * 5. For single display cases, freesync must be disabled
3374 *
3375 * Return: True if pipe can be used for subvp, false otherwise
3376 */
3377bool dcn32_allow_subvp_high_refresh_rate(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe)
3378{
3379 bool allow = false;
3380 uint32_t refresh_rate = 0;
3381 uint32_t subvp_min_refresh = subvp_high_refresh_list.min_refresh;
3382 uint32_t subvp_max_refresh = subvp_high_refresh_list.max_refresh;
3383 uint32_t min_refresh = subvp_max_refresh;
3384 uint32_t i;
3385
3386 /* Only allow SubVP on high refresh displays if all connected displays
3387 * are considered "high refresh" (i.e. >= 120hz). We do not want to
3388 * allow combinations such as 120hz (SubVP) + 60hz (SubVP).
3389 */
3390 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3391 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
3392
3393 if (!pipe_ctx->stream)
3394 continue;
3395 refresh_rate = (pipe_ctx->stream->timing.pix_clk_100hz * 100 +
3396 pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total - 1)
3397 / (double)(pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total);
3398
3399 if (refresh_rate < min_refresh)
3400 min_refresh = refresh_rate;
3401 }
3402
3403 if (!dc->debug.disable_subvp_high_refresh && min_refresh >= subvp_min_refresh && pipe->stream &&
3404 pipe->plane_state && !(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed)) {
3405 refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
3406 pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
3407 / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
3408 if (refresh_rate >= subvp_min_refresh && refresh_rate <= subvp_max_refresh) {
3409 for (i = 0; i < SUBVP_HIGH_REFRESH_LIST_LEN; i++) {
3410 uint32_t width = subvp_high_refresh_list.res[i].width;
3411 uint32_t height = subvp_high_refresh_list.res[i].height;
3412
3413 if (dcn32_check_native_scaling_for_res(pipe, width, height)) {
3414 if ((context->stream_count == 1 && !pipe->stream->allow_freesync) || context->stream_count > 1) {
3415 allow = true;
3416 break;
3417 }
3418 }
3419 }
3420 }
3421 }
3422 return allow;
3423}
3424
3425/**
3426 * dcn32_determine_max_vratio_prefetch: Determine max Vratio for prefetch by driver policy
3427 *
3428 * @dc: Current DC state
3429 * @context: New DC state to be programmed
3430 *
3431 * Return: Max vratio for prefetch
3432 */
3433double dcn32_determine_max_vratio_prefetch(struct dc *dc, struct dc_state *context)
3434{
3435 double max_vratio_pre = __DML_MAX_BW_RATIO_PRE__; // Default value is 4
3436 int i;
3437
3438 /* For single display MPO configs, allow the max vratio to be 8
3439 * if any plane is YUV420 format
3440 */
3441 if (context->stream_count == 1 && context->stream_status[0].plane_count > 1) {
3442 for (i = 0; i < context->stream_status[0].plane_count; i++) {
3443 if (context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr ||
3444 context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb) {
3445 max_vratio_pre = __DML_MAX_VRATIO_PRE__;
3446 }
3447 }
3448 }
3449 return max_vratio_pre;
3450}
3451
3452/**
3453 * dcn32_assign_fpo_vactive_candidate - Assign the FPO stream candidate for FPO + VActive case
3454 *
3455 * This function chooses the FPO candidate stream for FPO + VActive cases (2 stream config).
3456 * For FPO + VAtive cases, the assumption is that one display has ActiveMargin > 0, and the
3457 * other display has ActiveMargin <= 0. This function will choose the pipe/stream that has
3458 * ActiveMargin <= 0 to be the FPO stream candidate if found.
3459 *
3460 *
3461 * @dc: current dc state
3462 * @context: new dc state
3463 * @fpo_candidate_stream: pointer to FPO stream candidate if one is found
3464 *
3465 * Return: void
3466 */
3467void dcn32_assign_fpo_vactive_candidate(struct dc *dc, const struct dc_state *context, struct dc_stream_state **fpo_candidate_stream)
3468{
3469 unsigned int i, pipe_idx;
3470 const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
3471
3472 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3473 const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3474
3475 /* In DCN32/321, FPO uses per-pipe P-State force.
3476 * If there's no planes, HUBP is power gated and
3477 * therefore programming UCLK_PSTATE_FORCE does
3478 * nothing (P-State will always be asserted naturally
3479 * on a pipe that has HUBP power gated. Therefore we
3480 * only want to enable FPO if the FPO pipe has both
3481 * a stream and a plane.
3482 */
3483 if (!pipe->stream || !pipe->plane_state)
3484 continue;
3485
3486 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0) {
3487 *fpo_candidate_stream = pipe->stream;
3488 break;
3489 }
3490 pipe_idx++;
3491 }
3492}
3493
3494/**
3495 * dcn32_find_vactive_pipe - Determines if the config has a pipe that can switch in VACTIVE
3496 *
3497 * @dc: current dc state
3498 * @context: new dc state
3499 * @vactive_margin_req_us: The vactive marign required for a vactive pipe to be considered "found"
3500 *
3501 * Return: True if VACTIVE display is found, false otherwise
3502 */
3503bool dcn32_find_vactive_pipe(struct dc *dc, const struct dc_state *context, uint32_t vactive_margin_req_us)
3504{
3505 unsigned int i, pipe_idx;
3506 const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
3507 bool vactive_found = false;
3508 unsigned int blank_us = 0;
3509
3510 for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3511 const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3512
3513 if (!pipe->stream)
3514 continue;
3515
3516 blank_us = ((pipe->stream->timing.v_total - pipe->stream->timing.v_addressable) * pipe->stream->timing.h_total /
3517 (double)(pipe->stream->timing.pix_clk_100hz * 100)) * 1000000;
3518 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] >= vactive_margin_req_us &&
3519 !(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed) && blank_us < dc->debug.fpo_vactive_max_blank_us) {
3520 vactive_found = true;
3521 break;
3522 }
3523 pipe_idx++;
3524 }
3525 return vactive_found;
3526}
3527
3528void dcn32_set_clock_limits(const struct _vcs_dpi_soc_bounding_box_st *soc_bb)
3529{
3530 dc_assert_fp_enabled();
3531 dcn3_2_soc.clock_limits[0].dcfclk_mhz = 1200.0;
3532}
3533
3534void dcn32_override_min_req_memclk(struct dc *dc, struct dc_state *context)
3535{
3536 // WA: restrict FPO and SubVP to use first non-strobe mode (DCN32 BW issue)
3537 if ((context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || dcn32_subvp_in_use(dc, context)) &&
3538 dc->dml.soc.num_chans <= 8) {
3539 int num_mclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels;
3540
3541 if (context->bw_ctx.dml.vba.DRAMSpeed <= dc->clk_mgr->bw_params->clk_table.entries[0].memclk_mhz * 16 &&
3542 num_mclk_levels > 1) {
3543 context->bw_ctx.dml.vba.DRAMSpeed = dc->clk_mgr->bw_params->clk_table.entries[1].memclk_mhz * 16;
3544 context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
3545 }
3546 }
3547}
3548

source code of linux/drivers/gpu/drm/amd/display/dc/dml/dcn32/dcn32_fpu.c