1/*
2 * Copyright © 2006-2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24#include <linux/debugfs.h>
25#include <linux/time.h>
26
27#include <drm/drm_fixed.h>
28
29#include "soc/intel_dram.h"
30
31#include "hsw_ips.h"
32#include "i915_drv.h"
33#include "i915_reg.h"
34#include "intel_atomic.h"
35#include "intel_atomic_plane.h"
36#include "intel_audio.h"
37#include "intel_bw.h"
38#include "intel_cdclk.h"
39#include "intel_crtc.h"
40#include "intel_de.h"
41#include "intel_display_types.h"
42#include "intel_mchbar_regs.h"
43#include "intel_pci_config.h"
44#include "intel_pcode.h"
45#include "intel_psr.h"
46#include "intel_vdsc.h"
47#include "skl_watermark.h"
48#include "skl_watermark_regs.h"
49#include "vlv_dsi.h"
50#include "vlv_sideband.h"
51
52/**
53 * DOC: CDCLK / RAWCLK
54 *
55 * The display engine uses several different clocks to do its work. There
56 * are two main clocks involved that aren't directly related to the actual
57 * pixel clock or any symbol/bit clock of the actual output port. These
58 * are the core display clock (CDCLK) and RAWCLK.
59 *
60 * CDCLK clocks most of the display pipe logic, and thus its frequency
61 * must be high enough to support the rate at which pixels are flowing
62 * through the pipes. Downscaling must also be accounted as that increases
63 * the effective pixel rate.
64 *
65 * On several platforms the CDCLK frequency can be changed dynamically
66 * to minimize power consumption for a given display configuration.
67 * Typically changes to the CDCLK frequency require all the display pipes
68 * to be shut down while the frequency is being changed.
69 *
70 * On SKL+ the DMC will toggle the CDCLK off/on during DC5/6 entry/exit.
71 * DMC will not change the active CDCLK frequency however, so that part
72 * will still be performed by the driver directly.
73 *
74 * There are multiple components involved in the generation of the CDCLK
75 * frequency:
76 *
77 * - We have the CDCLK PLL, which generates an output clock based on a
78 * reference clock and a ratio parameter.
79 * - The CD2X Divider, which divides the output of the PLL based on a
80 * divisor selected from a set of pre-defined choices.
81 * - The CD2X Squasher, which further divides the output based on a
82 * waveform represented as a sequence of bits where each zero
83 * "squashes out" a clock cycle.
84 * - And, finally, a fixed divider that divides the output frequency by 2.
85 *
86 * As such, the resulting CDCLK frequency can be calculated with the
87 * following formula:
88 *
89 * cdclk = vco / cd2x_div / (sq_len / sq_div) / 2
90 *
91 * , where vco is the frequency generated by the PLL; cd2x_div
92 * represents the CD2X Divider; sq_len and sq_div are the bit length
93 * and the number of high bits for the CD2X Squasher waveform, respectively;
94 * and 2 represents the fixed divider.
95 *
96 * Note that some older platforms do not contain the CD2X Divider
97 * and/or CD2X Squasher, in which case we can ignore their respective
98 * factors in the formula above.
99 *
100 * Several methods exist to change the CDCLK frequency, which ones are
101 * supported depends on the platform:
102 *
103 * - Full PLL disable + re-enable with new VCO frequency. Pipes must be inactive.
104 * - CD2X divider update. Single pipe can be active as the divider update
105 * can be synchronized with the pipe's start of vblank.
106 * - Crawl the PLL smoothly to the new VCO frequency. Pipes can be active.
107 * - Squash waveform update. Pipes can be active.
108 * - Crawl and squash can also be done back to back. Pipes can be active.
109 *
110 * RAWCLK is a fixed frequency clock, often used by various auxiliary
111 * blocks such as AUX CH or backlight PWM. Hence the only thing we
112 * really need to know about RAWCLK is its frequency so that various
113 * dividers can be programmed correctly.
114 */
115
116struct intel_cdclk_funcs {
117 void (*get_cdclk)(struct intel_display *display,
118 struct intel_cdclk_config *cdclk_config);
119 void (*set_cdclk)(struct intel_display *display,
120 const struct intel_cdclk_config *cdclk_config,
121 enum pipe pipe);
122 int (*modeset_calc_cdclk)(struct intel_atomic_state *state);
123 u8 (*calc_voltage_level)(int cdclk);
124};
125
126void intel_cdclk_get_cdclk(struct intel_display *display,
127 struct intel_cdclk_config *cdclk_config)
128{
129 display->funcs.cdclk->get_cdclk(display, cdclk_config);
130}
131
132static void intel_cdclk_set_cdclk(struct intel_display *display,
133 const struct intel_cdclk_config *cdclk_config,
134 enum pipe pipe)
135{
136 display->funcs.cdclk->set_cdclk(display, cdclk_config, pipe);
137}
138
139static int intel_cdclk_modeset_calc_cdclk(struct intel_atomic_state *state)
140{
141 struct intel_display *display = to_intel_display(state);
142
143 return display->funcs.cdclk->modeset_calc_cdclk(state);
144}
145
146static u8 intel_cdclk_calc_voltage_level(struct intel_display *display,
147 int cdclk)
148{
149 return display->funcs.cdclk->calc_voltage_level(cdclk);
150}
151
152static void fixed_133mhz_get_cdclk(struct intel_display *display,
153 struct intel_cdclk_config *cdclk_config)
154{
155 cdclk_config->cdclk = 133333;
156}
157
158static void fixed_200mhz_get_cdclk(struct intel_display *display,
159 struct intel_cdclk_config *cdclk_config)
160{
161 cdclk_config->cdclk = 200000;
162}
163
164static void fixed_266mhz_get_cdclk(struct intel_display *display,
165 struct intel_cdclk_config *cdclk_config)
166{
167 cdclk_config->cdclk = 266667;
168}
169
170static void fixed_333mhz_get_cdclk(struct intel_display *display,
171 struct intel_cdclk_config *cdclk_config)
172{
173 cdclk_config->cdclk = 333333;
174}
175
176static void fixed_400mhz_get_cdclk(struct intel_display *display,
177 struct intel_cdclk_config *cdclk_config)
178{
179 cdclk_config->cdclk = 400000;
180}
181
182static void fixed_450mhz_get_cdclk(struct intel_display *display,
183 struct intel_cdclk_config *cdclk_config)
184{
185 cdclk_config->cdclk = 450000;
186}
187
188static void i85x_get_cdclk(struct intel_display *display,
189 struct intel_cdclk_config *cdclk_config)
190{
191 struct pci_dev *pdev = to_pci_dev(display->drm->dev);
192 u16 hpllcc = 0;
193
194 /*
195 * 852GM/852GMV only supports 133 MHz and the HPLLCC
196 * encoding is different :(
197 * FIXME is this the right way to detect 852GM/852GMV?
198 */
199 if (pdev->revision == 0x1) {
200 cdclk_config->cdclk = 133333;
201 return;
202 }
203
204 pci_bus_read_config_word(bus: pdev->bus,
205 PCI_DEVFN(0, 3), HPLLCC, val: &hpllcc);
206
207 /* Assume that the hardware is in the high speed state. This
208 * should be the default.
209 */
210 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
211 case GC_CLOCK_133_200:
212 case GC_CLOCK_133_200_2:
213 case GC_CLOCK_100_200:
214 cdclk_config->cdclk = 200000;
215 break;
216 case GC_CLOCK_166_250:
217 cdclk_config->cdclk = 250000;
218 break;
219 case GC_CLOCK_100_133:
220 cdclk_config->cdclk = 133333;
221 break;
222 case GC_CLOCK_133_266:
223 case GC_CLOCK_133_266_2:
224 case GC_CLOCK_166_266:
225 cdclk_config->cdclk = 266667;
226 break;
227 }
228}
229
230static void i915gm_get_cdclk(struct intel_display *display,
231 struct intel_cdclk_config *cdclk_config)
232{
233 struct pci_dev *pdev = to_pci_dev(display->drm->dev);
234 u16 gcfgc = 0;
235
236 pci_read_config_word(dev: pdev, GCFGC, val: &gcfgc);
237
238 if (gcfgc & GC_LOW_FREQUENCY_ENABLE) {
239 cdclk_config->cdclk = 133333;
240 return;
241 }
242
243 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
244 case GC_DISPLAY_CLOCK_333_320_MHZ:
245 cdclk_config->cdclk = 333333;
246 break;
247 default:
248 case GC_DISPLAY_CLOCK_190_200_MHZ:
249 cdclk_config->cdclk = 190000;
250 break;
251 }
252}
253
254static void i945gm_get_cdclk(struct intel_display *display,
255 struct intel_cdclk_config *cdclk_config)
256{
257 struct pci_dev *pdev = to_pci_dev(display->drm->dev);
258 u16 gcfgc = 0;
259
260 pci_read_config_word(dev: pdev, GCFGC, val: &gcfgc);
261
262 if (gcfgc & GC_LOW_FREQUENCY_ENABLE) {
263 cdclk_config->cdclk = 133333;
264 return;
265 }
266
267 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
268 case GC_DISPLAY_CLOCK_333_320_MHZ:
269 cdclk_config->cdclk = 320000;
270 break;
271 default:
272 case GC_DISPLAY_CLOCK_190_200_MHZ:
273 cdclk_config->cdclk = 200000;
274 break;
275 }
276}
277
278static unsigned int intel_hpll_vco(struct intel_display *display)
279{
280 static const unsigned int blb_vco[8] = {
281 [0] = 3200000,
282 [1] = 4000000,
283 [2] = 5333333,
284 [3] = 4800000,
285 [4] = 6400000,
286 };
287 static const unsigned int pnv_vco[8] = {
288 [0] = 3200000,
289 [1] = 4000000,
290 [2] = 5333333,
291 [3] = 4800000,
292 [4] = 2666667,
293 };
294 static const unsigned int cl_vco[8] = {
295 [0] = 3200000,
296 [1] = 4000000,
297 [2] = 5333333,
298 [3] = 6400000,
299 [4] = 3333333,
300 [5] = 3566667,
301 [6] = 4266667,
302 };
303 static const unsigned int elk_vco[8] = {
304 [0] = 3200000,
305 [1] = 4000000,
306 [2] = 5333333,
307 [3] = 4800000,
308 };
309 static const unsigned int ctg_vco[8] = {
310 [0] = 3200000,
311 [1] = 4000000,
312 [2] = 5333333,
313 [3] = 6400000,
314 [4] = 2666667,
315 [5] = 4266667,
316 };
317 const unsigned int *vco_table;
318 unsigned int vco;
319 u8 tmp = 0;
320
321 /* FIXME other chipsets? */
322 if (display->platform.gm45)
323 vco_table = ctg_vco;
324 else if (display->platform.g45)
325 vco_table = elk_vco;
326 else if (display->platform.i965gm)
327 vco_table = cl_vco;
328 else if (display->platform.pineview)
329 vco_table = pnv_vco;
330 else if (display->platform.g33)
331 vco_table = blb_vco;
332 else
333 return 0;
334
335 tmp = intel_de_read(display, reg: display->platform.pineview ||
336 display->platform.mobile ? HPLLVCO_MOBILE : HPLLVCO);
337
338 vco = vco_table[tmp & 0x7];
339 if (vco == 0)
340 drm_err(display->drm, "Bad HPLL VCO (HPLLVCO=0x%02x)\n",
341 tmp);
342 else
343 drm_dbg_kms(display->drm, "HPLL VCO %u kHz\n", vco);
344
345 return vco;
346}
347
348static void g33_get_cdclk(struct intel_display *display,
349 struct intel_cdclk_config *cdclk_config)
350{
351 struct pci_dev *pdev = to_pci_dev(display->drm->dev);
352 static const u8 div_3200[] = { 12, 10, 8, 7, 5, 16 };
353 static const u8 div_4000[] = { 14, 12, 10, 8, 6, 20 };
354 static const u8 div_4800[] = { 20, 14, 12, 10, 8, 24 };
355 static const u8 div_5333[] = { 20, 16, 12, 12, 8, 28 };
356 const u8 *div_table;
357 unsigned int cdclk_sel;
358 u16 tmp = 0;
359
360 cdclk_config->vco = intel_hpll_vco(display);
361
362 pci_read_config_word(dev: pdev, GCFGC, val: &tmp);
363
364 cdclk_sel = (tmp >> 4) & 0x7;
365
366 if (cdclk_sel >= ARRAY_SIZE(div_3200))
367 goto fail;
368
369 switch (cdclk_config->vco) {
370 case 3200000:
371 div_table = div_3200;
372 break;
373 case 4000000:
374 div_table = div_4000;
375 break;
376 case 4800000:
377 div_table = div_4800;
378 break;
379 case 5333333:
380 div_table = div_5333;
381 break;
382 default:
383 goto fail;
384 }
385
386 cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco,
387 div_table[cdclk_sel]);
388 return;
389
390fail:
391 drm_err(display->drm,
392 "Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n",
393 cdclk_config->vco, tmp);
394 cdclk_config->cdclk = 190476;
395}
396
397static void pnv_get_cdclk(struct intel_display *display,
398 struct intel_cdclk_config *cdclk_config)
399{
400 struct pci_dev *pdev = to_pci_dev(display->drm->dev);
401 u16 gcfgc = 0;
402
403 pci_read_config_word(dev: pdev, GCFGC, val: &gcfgc);
404
405 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
406 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
407 cdclk_config->cdclk = 266667;
408 break;
409 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
410 cdclk_config->cdclk = 333333;
411 break;
412 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
413 cdclk_config->cdclk = 444444;
414 break;
415 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
416 cdclk_config->cdclk = 200000;
417 break;
418 default:
419 drm_err(display->drm,
420 "Unknown pnv display core clock 0x%04x\n", gcfgc);
421 fallthrough;
422 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
423 cdclk_config->cdclk = 133333;
424 break;
425 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
426 cdclk_config->cdclk = 166667;
427 break;
428 }
429}
430
431static void i965gm_get_cdclk(struct intel_display *display,
432 struct intel_cdclk_config *cdclk_config)
433{
434 struct pci_dev *pdev = to_pci_dev(display->drm->dev);
435 static const u8 div_3200[] = { 16, 10, 8 };
436 static const u8 div_4000[] = { 20, 12, 10 };
437 static const u8 div_5333[] = { 24, 16, 14 };
438 const u8 *div_table;
439 unsigned int cdclk_sel;
440 u16 tmp = 0;
441
442 cdclk_config->vco = intel_hpll_vco(display);
443
444 pci_read_config_word(dev: pdev, GCFGC, val: &tmp);
445
446 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
447
448 if (cdclk_sel >= ARRAY_SIZE(div_3200))
449 goto fail;
450
451 switch (cdclk_config->vco) {
452 case 3200000:
453 div_table = div_3200;
454 break;
455 case 4000000:
456 div_table = div_4000;
457 break;
458 case 5333333:
459 div_table = div_5333;
460 break;
461 default:
462 goto fail;
463 }
464
465 cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco,
466 div_table[cdclk_sel]);
467 return;
468
469fail:
470 drm_err(display->drm,
471 "Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n",
472 cdclk_config->vco, tmp);
473 cdclk_config->cdclk = 200000;
474}
475
476static void gm45_get_cdclk(struct intel_display *display,
477 struct intel_cdclk_config *cdclk_config)
478{
479 struct pci_dev *pdev = to_pci_dev(display->drm->dev);
480 unsigned int cdclk_sel;
481 u16 tmp = 0;
482
483 cdclk_config->vco = intel_hpll_vco(display);
484
485 pci_read_config_word(dev: pdev, GCFGC, val: &tmp);
486
487 cdclk_sel = (tmp >> 12) & 0x1;
488
489 switch (cdclk_config->vco) {
490 case 2666667:
491 case 4000000:
492 case 5333333:
493 cdclk_config->cdclk = cdclk_sel ? 333333 : 222222;
494 break;
495 case 3200000:
496 cdclk_config->cdclk = cdclk_sel ? 320000 : 228571;
497 break;
498 default:
499 drm_err(display->drm,
500 "Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n",
501 cdclk_config->vco, tmp);
502 cdclk_config->cdclk = 222222;
503 break;
504 }
505}
506
507static void hsw_get_cdclk(struct intel_display *display,
508 struct intel_cdclk_config *cdclk_config)
509{
510 u32 lcpll = intel_de_read(display, LCPLL_CTL);
511 u32 freq = lcpll & LCPLL_CLK_FREQ_MASK;
512
513 if (lcpll & LCPLL_CD_SOURCE_FCLK)
514 cdclk_config->cdclk = 800000;
515 else if (intel_de_read(display, FUSE_STRAP) & HSW_CDCLK_LIMIT)
516 cdclk_config->cdclk = 450000;
517 else if (freq == LCPLL_CLK_FREQ_450)
518 cdclk_config->cdclk = 450000;
519 else if (display->platform.haswell_ult)
520 cdclk_config->cdclk = 337500;
521 else
522 cdclk_config->cdclk = 540000;
523}
524
525static int vlv_calc_cdclk(struct intel_display *display, int min_cdclk)
526{
527 struct drm_i915_private *dev_priv = to_i915(dev: display->drm);
528 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ?
529 333333 : 320000;
530
531 /*
532 * We seem to get an unstable or solid color picture at 200MHz.
533 * Not sure what's wrong. For now use 200MHz only when all pipes
534 * are off.
535 */
536 if (display->platform.valleyview && min_cdclk > freq_320)
537 return 400000;
538 else if (min_cdclk > 266667)
539 return freq_320;
540 else if (min_cdclk > 0)
541 return 266667;
542 else
543 return 200000;
544}
545
546static u8 vlv_calc_voltage_level(struct intel_display *display, int cdclk)
547{
548 struct drm_i915_private *dev_priv = to_i915(dev: display->drm);
549
550 if (display->platform.valleyview) {
551 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
552 return 2;
553 else if (cdclk >= 266667)
554 return 1;
555 else
556 return 0;
557 } else {
558 /*
559 * Specs are full of misinformation, but testing on actual
560 * hardware has shown that we just need to write the desired
561 * CCK divider into the Punit register.
562 */
563 return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
564 }
565}
566
567static void vlv_get_cdclk(struct intel_display *display,
568 struct intel_cdclk_config *cdclk_config)
569{
570 struct drm_i915_private *dev_priv = to_i915(dev: display->drm);
571 u32 val;
572
573 vlv_iosf_sb_get(i915: dev_priv,
574 BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT));
575
576 cdclk_config->vco = vlv_get_hpll_vco(dev_priv);
577 cdclk_config->cdclk = vlv_get_cck_clock(dev_priv, name: "cdclk",
578 CCK_DISPLAY_CLOCK_CONTROL,
579 ref_freq: cdclk_config->vco);
580
581 val = vlv_punit_read(i915: dev_priv, PUNIT_REG_DSPSSPM);
582
583 vlv_iosf_sb_put(i915: dev_priv,
584 BIT(VLV_IOSF_SB_CCK) | BIT(VLV_IOSF_SB_PUNIT));
585
586 if (display->platform.valleyview)
587 cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK) >>
588 DSPFREQGUAR_SHIFT;
589 else
590 cdclk_config->voltage_level = (val & DSPFREQGUAR_MASK_CHV) >>
591 DSPFREQGUAR_SHIFT_CHV;
592}
593
594static void vlv_program_pfi_credits(struct intel_display *display)
595{
596 struct drm_i915_private *dev_priv = to_i915(dev: display->drm);
597 unsigned int credits, default_credits;
598
599 if (display->platform.cherryview)
600 default_credits = PFI_CREDIT(12);
601 else
602 default_credits = PFI_CREDIT(8);
603
604 if (display->cdclk.hw.cdclk >= dev_priv->czclk_freq) {
605 /* CHV suggested value is 31 or 63 */
606 if (display->platform.cherryview)
607 credits = PFI_CREDIT_63;
608 else
609 credits = PFI_CREDIT(15);
610 } else {
611 credits = default_credits;
612 }
613
614 /*
615 * WA - write default credits before re-programming
616 * FIXME: should we also set the resend bit here?
617 */
618 intel_de_write(display, GCI_CONTROL,
619 VGA_FAST_MODE_DISABLE | default_credits);
620
621 intel_de_write(display, GCI_CONTROL,
622 VGA_FAST_MODE_DISABLE | credits | PFI_CREDIT_RESEND);
623
624 /*
625 * FIXME is this guaranteed to clear
626 * immediately or should we poll for it?
627 */
628 drm_WARN_ON(display->drm,
629 intel_de_read(display, GCI_CONTROL) & PFI_CREDIT_RESEND);
630}
631
632static void vlv_set_cdclk(struct intel_display *display,
633 const struct intel_cdclk_config *cdclk_config,
634 enum pipe pipe)
635{
636 struct drm_i915_private *dev_priv = to_i915(dev: display->drm);
637 int cdclk = cdclk_config->cdclk;
638 u32 val, cmd = cdclk_config->voltage_level;
639 intel_wakeref_t wakeref;
640
641 switch (cdclk) {
642 case 400000:
643 case 333333:
644 case 320000:
645 case 266667:
646 case 200000:
647 break;
648 default:
649 MISSING_CASE(cdclk);
650 return;
651 }
652
653 /* There are cases where we can end up here with power domains
654 * off and a CDCLK frequency other than the minimum, like when
655 * issuing a modeset without actually changing any display after
656 * a system suspend. So grab the display core domain, which covers
657 * the HW blocks needed for the following programming.
658 */
659 wakeref = intel_display_power_get(display, domain: POWER_DOMAIN_DISPLAY_CORE);
660
661 vlv_iosf_sb_get(i915: dev_priv,
662 BIT(VLV_IOSF_SB_CCK) |
663 BIT(VLV_IOSF_SB_BUNIT) |
664 BIT(VLV_IOSF_SB_PUNIT));
665
666 val = vlv_punit_read(i915: dev_priv, PUNIT_REG_DSPSSPM);
667 val &= ~DSPFREQGUAR_MASK;
668 val |= (cmd << DSPFREQGUAR_SHIFT);
669 vlv_punit_write(i915: dev_priv, PUNIT_REG_DSPSSPM, val);
670 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) &
671 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
672 50)) {
673 drm_err(display->drm,
674 "timed out waiting for CDclk change\n");
675 }
676
677 if (cdclk == 400000) {
678 u32 divider;
679
680 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1,
681 cdclk) - 1;
682
683 /* adjust cdclk divider */
684 val = vlv_cck_read(i915: dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
685 val &= ~CCK_FREQUENCY_VALUES;
686 val |= divider;
687 vlv_cck_write(i915: dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
688
689 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
690 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
691 50))
692 drm_err(display->drm,
693 "timed out waiting for CDclk change\n");
694 }
695
696 /* adjust self-refresh exit latency value */
697 val = vlv_bunit_read(i915: dev_priv, BUNIT_REG_BISOC);
698 val &= ~0x7f;
699
700 /*
701 * For high bandwidth configs, we set a higher latency in the bunit
702 * so that the core display fetch happens in time to avoid underruns.
703 */
704 if (cdclk == 400000)
705 val |= 4500 / 250; /* 4.5 usec */
706 else
707 val |= 3000 / 250; /* 3.0 usec */
708 vlv_bunit_write(i915: dev_priv, BUNIT_REG_BISOC, val);
709
710 vlv_iosf_sb_put(i915: dev_priv,
711 BIT(VLV_IOSF_SB_CCK) |
712 BIT(VLV_IOSF_SB_BUNIT) |
713 BIT(VLV_IOSF_SB_PUNIT));
714
715 intel_update_cdclk(display);
716
717 vlv_program_pfi_credits(display);
718
719 intel_display_power_put(display, domain: POWER_DOMAIN_DISPLAY_CORE, wakeref);
720}
721
722static void chv_set_cdclk(struct intel_display *display,
723 const struct intel_cdclk_config *cdclk_config,
724 enum pipe pipe)
725{
726 struct drm_i915_private *dev_priv = to_i915(dev: display->drm);
727 int cdclk = cdclk_config->cdclk;
728 u32 val, cmd = cdclk_config->voltage_level;
729 intel_wakeref_t wakeref;
730
731 switch (cdclk) {
732 case 333333:
733 case 320000:
734 case 266667:
735 case 200000:
736 break;
737 default:
738 MISSING_CASE(cdclk);
739 return;
740 }
741
742 /* There are cases where we can end up here with power domains
743 * off and a CDCLK frequency other than the minimum, like when
744 * issuing a modeset without actually changing any display after
745 * a system suspend. So grab the display core domain, which covers
746 * the HW blocks needed for the following programming.
747 */
748 wakeref = intel_display_power_get(display, domain: POWER_DOMAIN_DISPLAY_CORE);
749
750 vlv_punit_get(i915: dev_priv);
751 val = vlv_punit_read(i915: dev_priv, PUNIT_REG_DSPSSPM);
752 val &= ~DSPFREQGUAR_MASK_CHV;
753 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
754 vlv_punit_write(i915: dev_priv, PUNIT_REG_DSPSSPM, val);
755 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM) &
756 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
757 50)) {
758 drm_err(display->drm,
759 "timed out waiting for CDclk change\n");
760 }
761
762 vlv_punit_put(i915: dev_priv);
763
764 intel_update_cdclk(display);
765
766 vlv_program_pfi_credits(display);
767
768 intel_display_power_put(display, domain: POWER_DOMAIN_DISPLAY_CORE, wakeref);
769}
770
771static int bdw_calc_cdclk(int min_cdclk)
772{
773 if (min_cdclk > 540000)
774 return 675000;
775 else if (min_cdclk > 450000)
776 return 540000;
777 else if (min_cdclk > 337500)
778 return 450000;
779 else
780 return 337500;
781}
782
783static u8 bdw_calc_voltage_level(int cdclk)
784{
785 switch (cdclk) {
786 default:
787 case 337500:
788 return 2;
789 case 450000:
790 return 0;
791 case 540000:
792 return 1;
793 case 675000:
794 return 3;
795 }
796}
797
798static void bdw_get_cdclk(struct intel_display *display,
799 struct intel_cdclk_config *cdclk_config)
800{
801 u32 lcpll = intel_de_read(display, LCPLL_CTL);
802 u32 freq = lcpll & LCPLL_CLK_FREQ_MASK;
803
804 if (lcpll & LCPLL_CD_SOURCE_FCLK)
805 cdclk_config->cdclk = 800000;
806 else if (intel_de_read(display, FUSE_STRAP) & HSW_CDCLK_LIMIT)
807 cdclk_config->cdclk = 450000;
808 else if (freq == LCPLL_CLK_FREQ_450)
809 cdclk_config->cdclk = 450000;
810 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
811 cdclk_config->cdclk = 540000;
812 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
813 cdclk_config->cdclk = 337500;
814 else
815 cdclk_config->cdclk = 675000;
816
817 /*
818 * Can't read this out :( Let's assume it's
819 * at least what the CDCLK frequency requires.
820 */
821 cdclk_config->voltage_level =
822 bdw_calc_voltage_level(cdclk: cdclk_config->cdclk);
823}
824
825static u32 bdw_cdclk_freq_sel(int cdclk)
826{
827 switch (cdclk) {
828 default:
829 MISSING_CASE(cdclk);
830 fallthrough;
831 case 337500:
832 return LCPLL_CLK_FREQ_337_5_BDW;
833 case 450000:
834 return LCPLL_CLK_FREQ_450;
835 case 540000:
836 return LCPLL_CLK_FREQ_54O_BDW;
837 case 675000:
838 return LCPLL_CLK_FREQ_675_BDW;
839 }
840}
841
842static void bdw_set_cdclk(struct intel_display *display,
843 const struct intel_cdclk_config *cdclk_config,
844 enum pipe pipe)
845{
846 struct drm_i915_private *dev_priv = to_i915(dev: display->drm);
847 int cdclk = cdclk_config->cdclk;
848 int ret;
849
850 if (drm_WARN(display->drm,
851 (intel_de_read(display, LCPLL_CTL) &
852 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
853 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
854 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
855 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
856 "trying to change cdclk frequency with cdclk not enabled\n"))
857 return;
858
859 ret = snb_pcode_write(&dev_priv->uncore, BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
860 if (ret) {
861 drm_err(display->drm,
862 "failed to inform pcode about cdclk change\n");
863 return;
864 }
865
866 intel_de_rmw(display, LCPLL_CTL,
867 clear: 0, LCPLL_CD_SOURCE_FCLK);
868
869 /*
870 * According to the spec, it should be enough to poll for this 1 us.
871 * However, extensive testing shows that this can take longer.
872 */
873 if (wait_for_us(intel_de_read(display, LCPLL_CTL) &
874 LCPLL_CD_SOURCE_FCLK_DONE, 100))
875 drm_err(display->drm, "Switching to FCLK failed\n");
876
877 intel_de_rmw(display, LCPLL_CTL,
878 LCPLL_CLK_FREQ_MASK, set: bdw_cdclk_freq_sel(cdclk));
879
880 intel_de_rmw(display, LCPLL_CTL,
881 LCPLL_CD_SOURCE_FCLK, set: 0);
882
883 if (wait_for_us((intel_de_read(display, LCPLL_CTL) &
884 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
885 drm_err(display->drm, "Switching back to LCPLL failed\n");
886
887 snb_pcode_write(&dev_priv->uncore, HSW_PCODE_DE_WRITE_FREQ_REQ,
888 cdclk_config->voltage_level);
889
890 intel_de_write(display, CDCLK_FREQ,
891 DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
892
893 intel_update_cdclk(display);
894}
895
896static int skl_calc_cdclk(int min_cdclk, int vco)
897{
898 if (vco == 8640000) {
899 if (min_cdclk > 540000)
900 return 617143;
901 else if (min_cdclk > 432000)
902 return 540000;
903 else if (min_cdclk > 308571)
904 return 432000;
905 else
906 return 308571;
907 } else {
908 if (min_cdclk > 540000)
909 return 675000;
910 else if (min_cdclk > 450000)
911 return 540000;
912 else if (min_cdclk > 337500)
913 return 450000;
914 else
915 return 337500;
916 }
917}
918
919static u8 skl_calc_voltage_level(int cdclk)
920{
921 if (cdclk > 540000)
922 return 3;
923 else if (cdclk > 450000)
924 return 2;
925 else if (cdclk > 337500)
926 return 1;
927 else
928 return 0;
929}
930
931static void skl_dpll0_update(struct intel_display *display,
932 struct intel_cdclk_config *cdclk_config)
933{
934 u32 val;
935
936 cdclk_config->ref = 24000;
937 cdclk_config->vco = 0;
938
939 val = intel_de_read(display, LCPLL1_CTL);
940 if ((val & LCPLL_PLL_ENABLE) == 0)
941 return;
942
943 if (drm_WARN_ON(display->drm, (val & LCPLL_PLL_LOCK) == 0))
944 return;
945
946 val = intel_de_read(display, DPLL_CTRL1);
947
948 if (drm_WARN_ON(display->drm,
949 (val & (DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
950 DPLL_CTRL1_SSC(SKL_DPLL0) |
951 DPLL_CTRL1_OVERRIDE(SKL_DPLL0))) !=
952 DPLL_CTRL1_OVERRIDE(SKL_DPLL0)))
953 return;
954
955 switch (val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) {
956 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0):
957 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1350, SKL_DPLL0):
958 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1620, SKL_DPLL0):
959 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2700, SKL_DPLL0):
960 cdclk_config->vco = 8100000;
961 break;
962 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0):
963 case DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_2160, SKL_DPLL0):
964 cdclk_config->vco = 8640000;
965 break;
966 default:
967 MISSING_CASE(val & DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
968 break;
969 }
970}
971
972static void skl_get_cdclk(struct intel_display *display,
973 struct intel_cdclk_config *cdclk_config)
974{
975 u32 cdctl;
976
977 skl_dpll0_update(display, cdclk_config);
978
979 cdclk_config->cdclk = cdclk_config->bypass = cdclk_config->ref;
980
981 if (cdclk_config->vco == 0)
982 goto out;
983
984 cdctl = intel_de_read(display, CDCLK_CTL);
985
986 if (cdclk_config->vco == 8640000) {
987 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
988 case CDCLK_FREQ_450_432:
989 cdclk_config->cdclk = 432000;
990 break;
991 case CDCLK_FREQ_337_308:
992 cdclk_config->cdclk = 308571;
993 break;
994 case CDCLK_FREQ_540:
995 cdclk_config->cdclk = 540000;
996 break;
997 case CDCLK_FREQ_675_617:
998 cdclk_config->cdclk = 617143;
999 break;
1000 default:
1001 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
1002 break;
1003 }
1004 } else {
1005 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
1006 case CDCLK_FREQ_450_432:
1007 cdclk_config->cdclk = 450000;
1008 break;
1009 case CDCLK_FREQ_337_308:
1010 cdclk_config->cdclk = 337500;
1011 break;
1012 case CDCLK_FREQ_540:
1013 cdclk_config->cdclk = 540000;
1014 break;
1015 case CDCLK_FREQ_675_617:
1016 cdclk_config->cdclk = 675000;
1017 break;
1018 default:
1019 MISSING_CASE(cdctl & CDCLK_FREQ_SEL_MASK);
1020 break;
1021 }
1022 }
1023
1024 out:
1025 /*
1026 * Can't read this out :( Let's assume it's
1027 * at least what the CDCLK frequency requires.
1028 */
1029 cdclk_config->voltage_level =
1030 skl_calc_voltage_level(cdclk: cdclk_config->cdclk);
1031}
1032
1033/* convert from kHz to .1 fixpoint MHz with -1MHz offset */
1034static int skl_cdclk_decimal(int cdclk)
1035{
1036 return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
1037}
1038
1039static void skl_set_preferred_cdclk_vco(struct intel_display *display, int vco)
1040{
1041 bool changed = display->cdclk.skl_preferred_vco_freq != vco;
1042
1043 display->cdclk.skl_preferred_vco_freq = vco;
1044
1045 if (changed)
1046 intel_update_max_cdclk(display);
1047}
1048
1049static u32 skl_dpll0_link_rate(struct intel_display *display, int vco)
1050{
1051 drm_WARN_ON(display->drm, vco != 8100000 && vco != 8640000);
1052
1053 /*
1054 * We always enable DPLL0 with the lowest link rate possible, but still
1055 * taking into account the VCO required to operate the eDP panel at the
1056 * desired frequency. The usual DP link rates operate with a VCO of
1057 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
1058 * The modeset code is responsible for the selection of the exact link
1059 * rate later on, with the constraint of choosing a frequency that
1060 * works with vco.
1061 */
1062 if (vco == 8640000)
1063 return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080, SKL_DPLL0);
1064 else
1065 return DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810, SKL_DPLL0);
1066}
1067
1068static void skl_dpll0_enable(struct intel_display *display, int vco)
1069{
1070 intel_de_rmw(display, DPLL_CTRL1,
1071 DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) |
1072 DPLL_CTRL1_SSC(SKL_DPLL0) |
1073 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0),
1074 DPLL_CTRL1_OVERRIDE(SKL_DPLL0) |
1075 skl_dpll0_link_rate(display, vco));
1076 intel_de_posting_read(display, DPLL_CTRL1);
1077
1078 intel_de_rmw(display, LCPLL1_CTL,
1079 clear: 0, LCPLL_PLL_ENABLE);
1080
1081 if (intel_de_wait_for_set(display, LCPLL1_CTL, LCPLL_PLL_LOCK, timeout: 5))
1082 drm_err(display->drm, "DPLL0 not locked\n");
1083
1084 display->cdclk.hw.vco = vco;
1085
1086 /* We'll want to keep using the current vco from now on. */
1087 skl_set_preferred_cdclk_vco(display, vco);
1088}
1089
1090static void skl_dpll0_disable(struct intel_display *display)
1091{
1092 intel_de_rmw(display, LCPLL1_CTL,
1093 LCPLL_PLL_ENABLE, set: 0);
1094
1095 if (intel_de_wait_for_clear(display, LCPLL1_CTL, LCPLL_PLL_LOCK, timeout: 1))
1096 drm_err(display->drm, "Couldn't disable DPLL0\n");
1097
1098 display->cdclk.hw.vco = 0;
1099}
1100
1101static u32 skl_cdclk_freq_sel(struct intel_display *display,
1102 int cdclk, int vco)
1103{
1104 switch (cdclk) {
1105 default:
1106 drm_WARN_ON(display->drm,
1107 cdclk != display->cdclk.hw.bypass);
1108 drm_WARN_ON(display->drm, vco != 0);
1109 fallthrough;
1110 case 308571:
1111 case 337500:
1112 return CDCLK_FREQ_337_308;
1113 case 450000:
1114 case 432000:
1115 return CDCLK_FREQ_450_432;
1116 case 540000:
1117 return CDCLK_FREQ_540;
1118 case 617143:
1119 case 675000:
1120 return CDCLK_FREQ_675_617;
1121 }
1122}
1123
1124static void skl_set_cdclk(struct intel_display *display,
1125 const struct intel_cdclk_config *cdclk_config,
1126 enum pipe pipe)
1127{
1128 struct drm_i915_private *dev_priv = to_i915(dev: display->drm);
1129 int cdclk = cdclk_config->cdclk;
1130 int vco = cdclk_config->vco;
1131 u32 freq_select, cdclk_ctl;
1132 int ret;
1133
1134 /*
1135 * Based on WA#1183 CDCLK rates 308 and 617MHz CDCLK rates are
1136 * unsupported on SKL. In theory this should never happen since only
1137 * the eDP1.4 2.16 and 4.32Gbps rates require it, but eDP1.4 is not
1138 * supported on SKL either, see the above WA. WARN whenever trying to
1139 * use the corresponding VCO freq as that always leads to using the
1140 * minimum 308MHz CDCLK.
1141 */
1142 drm_WARN_ON_ONCE(display->drm,
1143 display->platform.skylake && vco == 8640000);
1144
1145 ret = skl_pcode_request(uncore: &dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
1146 SKL_CDCLK_PREPARE_FOR_CHANGE,
1147 SKL_CDCLK_READY_FOR_CHANGE,
1148 SKL_CDCLK_READY_FOR_CHANGE, timeout_base_ms: 3);
1149 if (ret) {
1150 drm_err(display->drm,
1151 "Failed to inform PCU about cdclk change (%d)\n", ret);
1152 return;
1153 }
1154
1155 freq_select = skl_cdclk_freq_sel(display, cdclk, vco);
1156
1157 if (display->cdclk.hw.vco != 0 &&
1158 display->cdclk.hw.vco != vco)
1159 skl_dpll0_disable(display);
1160
1161 cdclk_ctl = intel_de_read(display, CDCLK_CTL);
1162
1163 if (display->cdclk.hw.vco != vco) {
1164 /* Wa Display #1183: skl,kbl,cfl */
1165 cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK);
1166 cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk);
1167 intel_de_write(display, CDCLK_CTL, val: cdclk_ctl);
1168 }
1169
1170 /* Wa Display #1183: skl,kbl,cfl */
1171 cdclk_ctl |= CDCLK_DIVMUX_CD_OVERRIDE;
1172 intel_de_write(display, CDCLK_CTL, val: cdclk_ctl);
1173 intel_de_posting_read(display, CDCLK_CTL);
1174
1175 if (display->cdclk.hw.vco != vco)
1176 skl_dpll0_enable(display, vco);
1177
1178 /* Wa Display #1183: skl,kbl,cfl */
1179 cdclk_ctl &= ~(CDCLK_FREQ_SEL_MASK | CDCLK_FREQ_DECIMAL_MASK);
1180 intel_de_write(display, CDCLK_CTL, val: cdclk_ctl);
1181
1182 cdclk_ctl |= freq_select | skl_cdclk_decimal(cdclk);
1183 intel_de_write(display, CDCLK_CTL, val: cdclk_ctl);
1184
1185 /* Wa Display #1183: skl,kbl,cfl */
1186 cdclk_ctl &= ~CDCLK_DIVMUX_CD_OVERRIDE;
1187 intel_de_write(display, CDCLK_CTL, val: cdclk_ctl);
1188 intel_de_posting_read(display, CDCLK_CTL);
1189
1190 /* inform PCU of the change */
1191 snb_pcode_write(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
1192 cdclk_config->voltage_level);
1193
1194 intel_update_cdclk(display);
1195}
1196
1197static void skl_sanitize_cdclk(struct intel_display *display)
1198{
1199 u32 cdctl, expected;
1200
1201 /*
1202 * check if the pre-os initialized the display
1203 * There is SWF18 scratchpad register defined which is set by the
1204 * pre-os which can be used by the OS drivers to check the status
1205 */
1206 if ((intel_de_read(display, SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
1207 goto sanitize;
1208
1209 intel_update_cdclk(display);
1210 intel_cdclk_dump_config(display, cdclk_config: &display->cdclk.hw, context: "Current CDCLK");
1211
1212 /* Is PLL enabled and locked ? */
1213 if (display->cdclk.hw.vco == 0 ||
1214 display->cdclk.hw.cdclk == display->cdclk.hw.bypass)
1215 goto sanitize;
1216
1217 /* DPLL okay; verify the cdclock
1218 *
1219 * Noticed in some instances that the freq selection is correct but
1220 * decimal part is programmed wrong from BIOS where pre-os does not
1221 * enable display. Verify the same as well.
1222 */
1223 cdctl = intel_de_read(display, CDCLK_CTL);
1224 expected = (cdctl & CDCLK_FREQ_SEL_MASK) |
1225 skl_cdclk_decimal(cdclk: display->cdclk.hw.cdclk);
1226 if (cdctl == expected)
1227 /* All well; nothing to sanitize */
1228 return;
1229
1230sanitize:
1231 drm_dbg_kms(display->drm, "Sanitizing cdclk programmed by pre-os\n");
1232
1233 /* force cdclk programming */
1234 display->cdclk.hw.cdclk = 0;
1235 /* force full PLL disable + enable */
1236 display->cdclk.hw.vco = ~0;
1237}
1238
1239static void skl_cdclk_init_hw(struct intel_display *display)
1240{
1241 struct intel_cdclk_config cdclk_config;
1242
1243 skl_sanitize_cdclk(display);
1244
1245 if (display->cdclk.hw.cdclk != 0 &&
1246 display->cdclk.hw.vco != 0) {
1247 /*
1248 * Use the current vco as our initial
1249 * guess as to what the preferred vco is.
1250 */
1251 if (display->cdclk.skl_preferred_vco_freq == 0)
1252 skl_set_preferred_cdclk_vco(display,
1253 vco: display->cdclk.hw.vco);
1254 return;
1255 }
1256
1257 cdclk_config = display->cdclk.hw;
1258
1259 cdclk_config.vco = display->cdclk.skl_preferred_vco_freq;
1260 if (cdclk_config.vco == 0)
1261 cdclk_config.vco = 8100000;
1262 cdclk_config.cdclk = skl_calc_cdclk(min_cdclk: 0, vco: cdclk_config.vco);
1263 cdclk_config.voltage_level = skl_calc_voltage_level(cdclk: cdclk_config.cdclk);
1264
1265 skl_set_cdclk(display, cdclk_config: &cdclk_config, pipe: INVALID_PIPE);
1266}
1267
1268static void skl_cdclk_uninit_hw(struct intel_display *display)
1269{
1270 struct intel_cdclk_config cdclk_config = display->cdclk.hw;
1271
1272 cdclk_config.cdclk = cdclk_config.bypass;
1273 cdclk_config.vco = 0;
1274 cdclk_config.voltage_level = skl_calc_voltage_level(cdclk: cdclk_config.cdclk);
1275
1276 skl_set_cdclk(display, cdclk_config: &cdclk_config, pipe: INVALID_PIPE);
1277}
1278
1279struct intel_cdclk_vals {
1280 u32 cdclk;
1281 u16 refclk;
1282 u16 waveform;
1283 u8 ratio;
1284};
1285
1286static const struct intel_cdclk_vals bxt_cdclk_table[] = {
1287 { .refclk = 19200, .cdclk = 144000, .ratio = 60 },
1288 { .refclk = 19200, .cdclk = 288000, .ratio = 60 },
1289 { .refclk = 19200, .cdclk = 384000, .ratio = 60 },
1290 { .refclk = 19200, .cdclk = 576000, .ratio = 60 },
1291 { .refclk = 19200, .cdclk = 624000, .ratio = 65 },
1292 {}
1293};
1294
1295static const struct intel_cdclk_vals glk_cdclk_table[] = {
1296 { .refclk = 19200, .cdclk = 79200, .ratio = 33 },
1297 { .refclk = 19200, .cdclk = 158400, .ratio = 33 },
1298 { .refclk = 19200, .cdclk = 316800, .ratio = 33 },
1299 {}
1300};
1301
1302static const struct intel_cdclk_vals icl_cdclk_table[] = {
1303 { .refclk = 19200, .cdclk = 172800, .ratio = 18 },
1304 { .refclk = 19200, .cdclk = 192000, .ratio = 20 },
1305 { .refclk = 19200, .cdclk = 307200, .ratio = 32 },
1306 { .refclk = 19200, .cdclk = 326400, .ratio = 68 },
1307 { .refclk = 19200, .cdclk = 556800, .ratio = 58 },
1308 { .refclk = 19200, .cdclk = 652800, .ratio = 68 },
1309
1310 { .refclk = 24000, .cdclk = 180000, .ratio = 15 },
1311 { .refclk = 24000, .cdclk = 192000, .ratio = 16 },
1312 { .refclk = 24000, .cdclk = 312000, .ratio = 26 },
1313 { .refclk = 24000, .cdclk = 324000, .ratio = 54 },
1314 { .refclk = 24000, .cdclk = 552000, .ratio = 46 },
1315 { .refclk = 24000, .cdclk = 648000, .ratio = 54 },
1316
1317 { .refclk = 38400, .cdclk = 172800, .ratio = 9 },
1318 { .refclk = 38400, .cdclk = 192000, .ratio = 10 },
1319 { .refclk = 38400, .cdclk = 307200, .ratio = 16 },
1320 { .refclk = 38400, .cdclk = 326400, .ratio = 34 },
1321 { .refclk = 38400, .cdclk = 556800, .ratio = 29 },
1322 { .refclk = 38400, .cdclk = 652800, .ratio = 34 },
1323 {}
1324};
1325
1326static const struct intel_cdclk_vals rkl_cdclk_table[] = {
1327 { .refclk = 19200, .cdclk = 172800, .ratio = 36 },
1328 { .refclk = 19200, .cdclk = 192000, .ratio = 40 },
1329 { .refclk = 19200, .cdclk = 307200, .ratio = 64 },
1330 { .refclk = 19200, .cdclk = 326400, .ratio = 136 },
1331 { .refclk = 19200, .cdclk = 556800, .ratio = 116 },
1332 { .refclk = 19200, .cdclk = 652800, .ratio = 136 },
1333
1334 { .refclk = 24000, .cdclk = 180000, .ratio = 30 },
1335 { .refclk = 24000, .cdclk = 192000, .ratio = 32 },
1336 { .refclk = 24000, .cdclk = 312000, .ratio = 52 },
1337 { .refclk = 24000, .cdclk = 324000, .ratio = 108 },
1338 { .refclk = 24000, .cdclk = 552000, .ratio = 92 },
1339 { .refclk = 24000, .cdclk = 648000, .ratio = 108 },
1340
1341 { .refclk = 38400, .cdclk = 172800, .ratio = 18 },
1342 { .refclk = 38400, .cdclk = 192000, .ratio = 20 },
1343 { .refclk = 38400, .cdclk = 307200, .ratio = 32 },
1344 { .refclk = 38400, .cdclk = 326400, .ratio = 68 },
1345 { .refclk = 38400, .cdclk = 556800, .ratio = 58 },
1346 { .refclk = 38400, .cdclk = 652800, .ratio = 68 },
1347 {}
1348};
1349
1350static const struct intel_cdclk_vals adlp_a_step_cdclk_table[] = {
1351 { .refclk = 19200, .cdclk = 307200, .ratio = 32 },
1352 { .refclk = 19200, .cdclk = 556800, .ratio = 58 },
1353 { .refclk = 19200, .cdclk = 652800, .ratio = 68 },
1354
1355 { .refclk = 24000, .cdclk = 312000, .ratio = 26 },
1356 { .refclk = 24000, .cdclk = 552000, .ratio = 46 },
1357 { .refclk = 24400, .cdclk = 648000, .ratio = 54 },
1358
1359 { .refclk = 38400, .cdclk = 307200, .ratio = 16 },
1360 { .refclk = 38400, .cdclk = 556800, .ratio = 29 },
1361 { .refclk = 38400, .cdclk = 652800, .ratio = 34 },
1362 {}
1363};
1364
1365static const struct intel_cdclk_vals adlp_cdclk_table[] = {
1366 { .refclk = 19200, .cdclk = 172800, .ratio = 27 },
1367 { .refclk = 19200, .cdclk = 192000, .ratio = 20 },
1368 { .refclk = 19200, .cdclk = 307200, .ratio = 32 },
1369 { .refclk = 19200, .cdclk = 556800, .ratio = 58 },
1370 { .refclk = 19200, .cdclk = 652800, .ratio = 68 },
1371
1372 { .refclk = 24000, .cdclk = 176000, .ratio = 22 },
1373 { .refclk = 24000, .cdclk = 192000, .ratio = 16 },
1374 { .refclk = 24000, .cdclk = 312000, .ratio = 26 },
1375 { .refclk = 24000, .cdclk = 552000, .ratio = 46 },
1376 { .refclk = 24000, .cdclk = 648000, .ratio = 54 },
1377
1378 { .refclk = 38400, .cdclk = 179200, .ratio = 14 },
1379 { .refclk = 38400, .cdclk = 192000, .ratio = 10 },
1380 { .refclk = 38400, .cdclk = 307200, .ratio = 16 },
1381 { .refclk = 38400, .cdclk = 556800, .ratio = 29 },
1382 { .refclk = 38400, .cdclk = 652800, .ratio = 34 },
1383 {}
1384};
1385
1386static const struct intel_cdclk_vals rplu_cdclk_table[] = {
1387 { .refclk = 19200, .cdclk = 172800, .ratio = 27 },
1388 { .refclk = 19200, .cdclk = 192000, .ratio = 20 },
1389 { .refclk = 19200, .cdclk = 307200, .ratio = 32 },
1390 { .refclk = 19200, .cdclk = 480000, .ratio = 50 },
1391 { .refclk = 19200, .cdclk = 556800, .ratio = 58 },
1392 { .refclk = 19200, .cdclk = 652800, .ratio = 68 },
1393
1394 { .refclk = 24000, .cdclk = 176000, .ratio = 22 },
1395 { .refclk = 24000, .cdclk = 192000, .ratio = 16 },
1396 { .refclk = 24000, .cdclk = 312000, .ratio = 26 },
1397 { .refclk = 24000, .cdclk = 480000, .ratio = 40 },
1398 { .refclk = 24000, .cdclk = 552000, .ratio = 46 },
1399 { .refclk = 24000, .cdclk = 648000, .ratio = 54 },
1400
1401 { .refclk = 38400, .cdclk = 179200, .ratio = 14 },
1402 { .refclk = 38400, .cdclk = 192000, .ratio = 10 },
1403 { .refclk = 38400, .cdclk = 307200, .ratio = 16 },
1404 { .refclk = 38400, .cdclk = 480000, .ratio = 25 },
1405 { .refclk = 38400, .cdclk = 556800, .ratio = 29 },
1406 { .refclk = 38400, .cdclk = 652800, .ratio = 34 },
1407 {}
1408};
1409
1410static const struct intel_cdclk_vals dg2_cdclk_table[] = {
1411 { .refclk = 38400, .cdclk = 163200, .ratio = 34, .waveform = 0x8888 },
1412 { .refclk = 38400, .cdclk = 204000, .ratio = 34, .waveform = 0x9248 },
1413 { .refclk = 38400, .cdclk = 244800, .ratio = 34, .waveform = 0xa4a4 },
1414 { .refclk = 38400, .cdclk = 285600, .ratio = 34, .waveform = 0xa54a },
1415 { .refclk = 38400, .cdclk = 326400, .ratio = 34, .waveform = 0xaaaa },
1416 { .refclk = 38400, .cdclk = 367200, .ratio = 34, .waveform = 0xad5a },
1417 { .refclk = 38400, .cdclk = 408000, .ratio = 34, .waveform = 0xb6b6 },
1418 { .refclk = 38400, .cdclk = 448800, .ratio = 34, .waveform = 0xdbb6 },
1419 { .refclk = 38400, .cdclk = 489600, .ratio = 34, .waveform = 0xeeee },
1420 { .refclk = 38400, .cdclk = 530400, .ratio = 34, .waveform = 0xf7de },
1421 { .refclk = 38400, .cdclk = 571200, .ratio = 34, .waveform = 0xfefe },
1422 { .refclk = 38400, .cdclk = 612000, .ratio = 34, .waveform = 0xfffe },
1423 { .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff },
1424 {}
1425};
1426
1427static const struct intel_cdclk_vals mtl_cdclk_table[] = {
1428 { .refclk = 38400, .cdclk = 172800, .ratio = 16, .waveform = 0xad5a },
1429 { .refclk = 38400, .cdclk = 192000, .ratio = 16, .waveform = 0xb6b6 },
1430 { .refclk = 38400, .cdclk = 307200, .ratio = 16, .waveform = 0x0000 },
1431 { .refclk = 38400, .cdclk = 480000, .ratio = 25, .waveform = 0x0000 },
1432 { .refclk = 38400, .cdclk = 556800, .ratio = 29, .waveform = 0x0000 },
1433 { .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0x0000 },
1434 {}
1435};
1436
1437static const struct intel_cdclk_vals xe2lpd_cdclk_table[] = {
1438 { .refclk = 38400, .cdclk = 153600, .ratio = 16, .waveform = 0xaaaa },
1439 { .refclk = 38400, .cdclk = 172800, .ratio = 16, .waveform = 0xad5a },
1440 { .refclk = 38400, .cdclk = 192000, .ratio = 16, .waveform = 0xb6b6 },
1441 { .refclk = 38400, .cdclk = 211200, .ratio = 16, .waveform = 0xdbb6 },
1442 { .refclk = 38400, .cdclk = 230400, .ratio = 16, .waveform = 0xeeee },
1443 { .refclk = 38400, .cdclk = 249600, .ratio = 16, .waveform = 0xf7de },
1444 { .refclk = 38400, .cdclk = 268800, .ratio = 16, .waveform = 0xfefe },
1445 { .refclk = 38400, .cdclk = 288000, .ratio = 16, .waveform = 0xfffe },
1446 { .refclk = 38400, .cdclk = 307200, .ratio = 16, .waveform = 0xffff },
1447 { .refclk = 38400, .cdclk = 330000, .ratio = 25, .waveform = 0xdbb6 },
1448 { .refclk = 38400, .cdclk = 360000, .ratio = 25, .waveform = 0xeeee },
1449 { .refclk = 38400, .cdclk = 390000, .ratio = 25, .waveform = 0xf7de },
1450 { .refclk = 38400, .cdclk = 420000, .ratio = 25, .waveform = 0xfefe },
1451 { .refclk = 38400, .cdclk = 450000, .ratio = 25, .waveform = 0xfffe },
1452 { .refclk = 38400, .cdclk = 480000, .ratio = 25, .waveform = 0xffff },
1453 { .refclk = 38400, .cdclk = 487200, .ratio = 29, .waveform = 0xfefe },
1454 { .refclk = 38400, .cdclk = 522000, .ratio = 29, .waveform = 0xfffe },
1455 { .refclk = 38400, .cdclk = 556800, .ratio = 29, .waveform = 0xffff },
1456 { .refclk = 38400, .cdclk = 571200, .ratio = 34, .waveform = 0xfefe },
1457 { .refclk = 38400, .cdclk = 612000, .ratio = 34, .waveform = 0xfffe },
1458 { .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff },
1459 {}
1460};
1461
1462/*
1463 * Xe2_HPD always uses the minimal cdclk table from Wa_15015413771
1464 */
1465static const struct intel_cdclk_vals xe2hpd_cdclk_table[] = {
1466 { .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff },
1467 {}
1468};
1469
1470static const struct intel_cdclk_vals xe3lpd_cdclk_table[] = {
1471 { .refclk = 38400, .cdclk = 153600, .ratio = 16, .waveform = 0xaaaa },
1472 { .refclk = 38400, .cdclk = 172800, .ratio = 16, .waveform = 0xad5a },
1473 { .refclk = 38400, .cdclk = 192000, .ratio = 16, .waveform = 0xb6b6 },
1474 { .refclk = 38400, .cdclk = 211200, .ratio = 16, .waveform = 0xdbb6 },
1475 { .refclk = 38400, .cdclk = 230400, .ratio = 16, .waveform = 0xeeee },
1476 { .refclk = 38400, .cdclk = 249600, .ratio = 16, .waveform = 0xf7de },
1477 { .refclk = 38400, .cdclk = 268800, .ratio = 16, .waveform = 0xfefe },
1478 { .refclk = 38400, .cdclk = 288000, .ratio = 16, .waveform = 0xfffe },
1479 { .refclk = 38400, .cdclk = 307200, .ratio = 16, .waveform = 0xffff },
1480 { .refclk = 38400, .cdclk = 326400, .ratio = 17, .waveform = 0xffff },
1481 { .refclk = 38400, .cdclk = 345600, .ratio = 18, .waveform = 0xffff },
1482 { .refclk = 38400, .cdclk = 364800, .ratio = 19, .waveform = 0xffff },
1483 { .refclk = 38400, .cdclk = 384000, .ratio = 20, .waveform = 0xffff },
1484 { .refclk = 38400, .cdclk = 403200, .ratio = 21, .waveform = 0xffff },
1485 { .refclk = 38400, .cdclk = 422400, .ratio = 22, .waveform = 0xffff },
1486 { .refclk = 38400, .cdclk = 441600, .ratio = 23, .waveform = 0xffff },
1487 { .refclk = 38400, .cdclk = 460800, .ratio = 24, .waveform = 0xffff },
1488 { .refclk = 38400, .cdclk = 480000, .ratio = 25, .waveform = 0xffff },
1489 { .refclk = 38400, .cdclk = 499200, .ratio = 26, .waveform = 0xffff },
1490 { .refclk = 38400, .cdclk = 518400, .ratio = 27, .waveform = 0xffff },
1491 { .refclk = 38400, .cdclk = 537600, .ratio = 28, .waveform = 0xffff },
1492 { .refclk = 38400, .cdclk = 556800, .ratio = 29, .waveform = 0xffff },
1493 { .refclk = 38400, .cdclk = 576000, .ratio = 30, .waveform = 0xffff },
1494 { .refclk = 38400, .cdclk = 595200, .ratio = 31, .waveform = 0xffff },
1495 { .refclk = 38400, .cdclk = 614400, .ratio = 32, .waveform = 0xffff },
1496 { .refclk = 38400, .cdclk = 633600, .ratio = 33, .waveform = 0xffff },
1497 { .refclk = 38400, .cdclk = 652800, .ratio = 34, .waveform = 0xffff },
1498 { .refclk = 38400, .cdclk = 672000, .ratio = 35, .waveform = 0xffff },
1499 { .refclk = 38400, .cdclk = 691200, .ratio = 36, .waveform = 0xffff },
1500 {}
1501};
1502
1503static const int cdclk_squash_len = 16;
1504
1505static int cdclk_squash_divider(u16 waveform)
1506{
1507 return hweight16(waveform ?: 0xffff);
1508}
1509
1510static int cdclk_divider(int cdclk, int vco, u16 waveform)
1511{
1512 /* 2 * cd2x divider */
1513 return DIV_ROUND_CLOSEST(vco * cdclk_squash_divider(waveform),
1514 cdclk * cdclk_squash_len);
1515}
1516
1517static int bxt_calc_cdclk(struct intel_display *display, int min_cdclk)
1518{
1519 const struct intel_cdclk_vals *table = display->cdclk.table;
1520 int i;
1521
1522 for (i = 0; table[i].refclk; i++)
1523 if (table[i].refclk == display->cdclk.hw.ref &&
1524 table[i].cdclk >= min_cdclk)
1525 return table[i].cdclk;
1526
1527 drm_WARN(display->drm, 1,
1528 "Cannot satisfy minimum cdclk %d with refclk %u\n",
1529 min_cdclk, display->cdclk.hw.ref);
1530 return 0;
1531}
1532
1533static int bxt_calc_cdclk_pll_vco(struct intel_display *display, int cdclk)
1534{
1535 const struct intel_cdclk_vals *table = display->cdclk.table;
1536 int i;
1537
1538 if (cdclk == display->cdclk.hw.bypass)
1539 return 0;
1540
1541 for (i = 0; table[i].refclk; i++)
1542 if (table[i].refclk == display->cdclk.hw.ref &&
1543 table[i].cdclk == cdclk)
1544 return display->cdclk.hw.ref * table[i].ratio;
1545
1546 drm_WARN(display->drm, 1, "cdclk %d not valid for refclk %u\n",
1547 cdclk, display->cdclk.hw.ref);
1548 return 0;
1549}
1550
1551static u8 bxt_calc_voltage_level(int cdclk)
1552{
1553 return DIV_ROUND_UP(cdclk, 25000);
1554}
1555
1556static u8 calc_voltage_level(int cdclk, int num_voltage_levels,
1557 const int voltage_level_max_cdclk[])
1558{
1559 int voltage_level;
1560
1561 for (voltage_level = 0; voltage_level < num_voltage_levels; voltage_level++) {
1562 if (cdclk <= voltage_level_max_cdclk[voltage_level])
1563 return voltage_level;
1564 }
1565
1566 MISSING_CASE(cdclk);
1567 return num_voltage_levels - 1;
1568}
1569
1570static u8 icl_calc_voltage_level(int cdclk)
1571{
1572 static const int icl_voltage_level_max_cdclk[] = {
1573 [0] = 312000,
1574 [1] = 556800,
1575 [2] = 652800,
1576 };
1577
1578 return calc_voltage_level(cdclk,
1579 ARRAY_SIZE(icl_voltage_level_max_cdclk),
1580 voltage_level_max_cdclk: icl_voltage_level_max_cdclk);
1581}
1582
1583static u8 ehl_calc_voltage_level(int cdclk)
1584{
1585 static const int ehl_voltage_level_max_cdclk[] = {
1586 [0] = 180000,
1587 [1] = 312000,
1588 [2] = 326400,
1589 /*
1590 * Bspec lists the limit as 556.8 MHz, but some JSL
1591 * development boards (at least) boot with 652.8 MHz
1592 */
1593 [3] = 652800,
1594 };
1595
1596 return calc_voltage_level(cdclk,
1597 ARRAY_SIZE(ehl_voltage_level_max_cdclk),
1598 voltage_level_max_cdclk: ehl_voltage_level_max_cdclk);
1599}
1600
1601static u8 tgl_calc_voltage_level(int cdclk)
1602{
1603 static const int tgl_voltage_level_max_cdclk[] = {
1604 [0] = 312000,
1605 [1] = 326400,
1606 [2] = 556800,
1607 [3] = 652800,
1608 };
1609
1610 return calc_voltage_level(cdclk,
1611 ARRAY_SIZE(tgl_voltage_level_max_cdclk),
1612 voltage_level_max_cdclk: tgl_voltage_level_max_cdclk);
1613}
1614
1615static u8 rplu_calc_voltage_level(int cdclk)
1616{
1617 static const int rplu_voltage_level_max_cdclk[] = {
1618 [0] = 312000,
1619 [1] = 480000,
1620 [2] = 556800,
1621 [3] = 652800,
1622 };
1623
1624 return calc_voltage_level(cdclk,
1625 ARRAY_SIZE(rplu_voltage_level_max_cdclk),
1626 voltage_level_max_cdclk: rplu_voltage_level_max_cdclk);
1627}
1628
1629static u8 xe3lpd_calc_voltage_level(int cdclk)
1630{
1631 /*
1632 * Starting with xe3lpd power controller does not need the voltage
1633 * index when doing the modeset update. This function is best left
1634 * defined but returning 0 to the mask.
1635 */
1636 return 0;
1637}
1638
1639static void icl_readout_refclk(struct intel_display *display,
1640 struct intel_cdclk_config *cdclk_config)
1641{
1642 u32 dssm = intel_de_read(display, SKL_DSSM) & ICL_DSSM_CDCLK_PLL_REFCLK_MASK;
1643
1644 switch (dssm) {
1645 default:
1646 MISSING_CASE(dssm);
1647 fallthrough;
1648 case ICL_DSSM_CDCLK_PLL_REFCLK_24MHz:
1649 cdclk_config->ref = 24000;
1650 break;
1651 case ICL_DSSM_CDCLK_PLL_REFCLK_19_2MHz:
1652 cdclk_config->ref = 19200;
1653 break;
1654 case ICL_DSSM_CDCLK_PLL_REFCLK_38_4MHz:
1655 cdclk_config->ref = 38400;
1656 break;
1657 }
1658}
1659
1660static void bxt_de_pll_readout(struct intel_display *display,
1661 struct intel_cdclk_config *cdclk_config)
1662{
1663 u32 val, ratio;
1664
1665 if (display->platform.dg2)
1666 cdclk_config->ref = 38400;
1667 else if (DISPLAY_VER(display) >= 11)
1668 icl_readout_refclk(display, cdclk_config);
1669 else
1670 cdclk_config->ref = 19200;
1671
1672 val = intel_de_read(display, BXT_DE_PLL_ENABLE);
1673 if ((val & BXT_DE_PLL_PLL_ENABLE) == 0 ||
1674 (val & BXT_DE_PLL_LOCK) == 0) {
1675 /*
1676 * CDCLK PLL is disabled, the VCO/ratio doesn't matter, but
1677 * setting it to zero is a way to signal that.
1678 */
1679 cdclk_config->vco = 0;
1680 return;
1681 }
1682
1683 /*
1684 * DISPLAY_VER >= 11 have the ratio directly in the PLL enable register,
1685 * gen9lp had it in a separate PLL control register.
1686 */
1687 if (DISPLAY_VER(display) >= 11)
1688 ratio = val & ICL_CDCLK_PLL_RATIO_MASK;
1689 else
1690 ratio = intel_de_read(display, BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
1691
1692 cdclk_config->vco = ratio * cdclk_config->ref;
1693}
1694
1695static void bxt_get_cdclk(struct intel_display *display,
1696 struct intel_cdclk_config *cdclk_config)
1697{
1698 u32 squash_ctl = 0;
1699 u32 divider;
1700 int div;
1701
1702 bxt_de_pll_readout(display, cdclk_config);
1703
1704 if (DISPLAY_VER(display) >= 12)
1705 cdclk_config->bypass = cdclk_config->ref / 2;
1706 else if (DISPLAY_VER(display) >= 11)
1707 cdclk_config->bypass = 50000;
1708 else
1709 cdclk_config->bypass = cdclk_config->ref;
1710
1711 if (cdclk_config->vco == 0) {
1712 cdclk_config->cdclk = cdclk_config->bypass;
1713 goto out;
1714 }
1715
1716 divider = intel_de_read(display, CDCLK_CTL) & BXT_CDCLK_CD2X_DIV_SEL_MASK;
1717
1718 switch (divider) {
1719 case BXT_CDCLK_CD2X_DIV_SEL_1:
1720 div = 2;
1721 break;
1722 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
1723 div = 3;
1724 break;
1725 case BXT_CDCLK_CD2X_DIV_SEL_2:
1726 div = 4;
1727 break;
1728 case BXT_CDCLK_CD2X_DIV_SEL_4:
1729 div = 8;
1730 break;
1731 default:
1732 MISSING_CASE(divider);
1733 return;
1734 }
1735
1736 if (HAS_CDCLK_SQUASH(display))
1737 squash_ctl = intel_de_read(display, CDCLK_SQUASH_CTL);
1738
1739 if (squash_ctl & CDCLK_SQUASH_ENABLE) {
1740 u16 waveform;
1741 int size;
1742
1743 size = REG_FIELD_GET(CDCLK_SQUASH_WINDOW_SIZE_MASK, squash_ctl) + 1;
1744 waveform = REG_FIELD_GET(CDCLK_SQUASH_WAVEFORM_MASK, squash_ctl) >> (16 - size);
1745
1746 cdclk_config->cdclk = DIV_ROUND_CLOSEST(hweight16(waveform) *
1747 cdclk_config->vco, size * div);
1748 } else {
1749 cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_config->vco, div);
1750 }
1751
1752 out:
1753 if (DISPLAY_VER(display) >= 20)
1754 cdclk_config->joined_mbus = intel_de_read(display, MBUS_CTL) & MBUS_JOIN;
1755 /*
1756 * Can't read this out :( Let's assume it's
1757 * at least what the CDCLK frequency requires.
1758 */
1759 cdclk_config->voltage_level =
1760 intel_cdclk_calc_voltage_level(display, cdclk: cdclk_config->cdclk);
1761}
1762
1763static void bxt_de_pll_disable(struct intel_display *display)
1764{
1765 intel_de_write(display, BXT_DE_PLL_ENABLE, val: 0);
1766
1767 /* Timeout 200us */
1768 if (intel_de_wait_for_clear(display,
1769 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, timeout: 1))
1770 drm_err(display->drm, "timeout waiting for DE PLL unlock\n");
1771
1772 display->cdclk.hw.vco = 0;
1773}
1774
1775static void bxt_de_pll_enable(struct intel_display *display, int vco)
1776{
1777 int ratio = DIV_ROUND_CLOSEST(vco, display->cdclk.hw.ref);
1778
1779 intel_de_rmw(display, BXT_DE_PLL_CTL,
1780 BXT_DE_PLL_RATIO_MASK, BXT_DE_PLL_RATIO(ratio));
1781
1782 intel_de_write(display, BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
1783
1784 /* Timeout 200us */
1785 if (intel_de_wait_for_set(display,
1786 BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, timeout: 1))
1787 drm_err(display->drm, "timeout waiting for DE PLL lock\n");
1788
1789 display->cdclk.hw.vco = vco;
1790}
1791
1792static void icl_cdclk_pll_disable(struct intel_display *display)
1793{
1794 intel_de_rmw(display, BXT_DE_PLL_ENABLE,
1795 BXT_DE_PLL_PLL_ENABLE, set: 0);
1796
1797 /* Timeout 200us */
1798 if (intel_de_wait_for_clear(display, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, timeout: 1))
1799 drm_err(display->drm, "timeout waiting for CDCLK PLL unlock\n");
1800
1801 display->cdclk.hw.vco = 0;
1802}
1803
1804static void icl_cdclk_pll_enable(struct intel_display *display, int vco)
1805{
1806 int ratio = DIV_ROUND_CLOSEST(vco, display->cdclk.hw.ref);
1807 u32 val;
1808
1809 val = ICL_CDCLK_PLL_RATIO(ratio);
1810 intel_de_write(display, BXT_DE_PLL_ENABLE, val);
1811
1812 val |= BXT_DE_PLL_PLL_ENABLE;
1813 intel_de_write(display, BXT_DE_PLL_ENABLE, val);
1814
1815 /* Timeout 200us */
1816 if (intel_de_wait_for_set(display, BXT_DE_PLL_ENABLE, BXT_DE_PLL_LOCK, timeout: 1))
1817 drm_err(display->drm, "timeout waiting for CDCLK PLL lock\n");
1818
1819 display->cdclk.hw.vco = vco;
1820}
1821
1822static void adlp_cdclk_pll_crawl(struct intel_display *display, int vco)
1823{
1824 int ratio = DIV_ROUND_CLOSEST(vco, display->cdclk.hw.ref);
1825 u32 val;
1826
1827 /* Write PLL ratio without disabling */
1828 val = ICL_CDCLK_PLL_RATIO(ratio) | BXT_DE_PLL_PLL_ENABLE;
1829 intel_de_write(display, BXT_DE_PLL_ENABLE, val);
1830
1831 /* Submit freq change request */
1832 val |= BXT_DE_PLL_FREQ_REQ;
1833 intel_de_write(display, BXT_DE_PLL_ENABLE, val);
1834
1835 /* Timeout 200us */
1836 if (intel_de_wait_for_set(display, BXT_DE_PLL_ENABLE,
1837 BXT_DE_PLL_LOCK | BXT_DE_PLL_FREQ_REQ_ACK, timeout: 1))
1838 drm_err(display->drm, "timeout waiting for FREQ change request ack\n");
1839
1840 val &= ~BXT_DE_PLL_FREQ_REQ;
1841 intel_de_write(display, BXT_DE_PLL_ENABLE, val);
1842
1843 display->cdclk.hw.vco = vco;
1844}
1845
1846static u32 bxt_cdclk_cd2x_pipe(struct intel_display *display, enum pipe pipe)
1847{
1848 if (DISPLAY_VER(display) >= 12) {
1849 if (pipe == INVALID_PIPE)
1850 return TGL_CDCLK_CD2X_PIPE_NONE;
1851 else
1852 return TGL_CDCLK_CD2X_PIPE(pipe);
1853 } else if (DISPLAY_VER(display) >= 11) {
1854 if (pipe == INVALID_PIPE)
1855 return ICL_CDCLK_CD2X_PIPE_NONE;
1856 else
1857 return ICL_CDCLK_CD2X_PIPE(pipe);
1858 } else {
1859 if (pipe == INVALID_PIPE)
1860 return BXT_CDCLK_CD2X_PIPE_NONE;
1861 else
1862 return BXT_CDCLK_CD2X_PIPE(pipe);
1863 }
1864}
1865
1866static u32 bxt_cdclk_cd2x_div_sel(struct intel_display *display,
1867 int cdclk, int vco, u16 waveform)
1868{
1869 /* cdclk = vco / 2 / div{1,1.5,2,4} */
1870 switch (cdclk_divider(cdclk, vco, waveform)) {
1871 default:
1872 drm_WARN_ON(display->drm,
1873 cdclk != display->cdclk.hw.bypass);
1874 drm_WARN_ON(display->drm, vco != 0);
1875 fallthrough;
1876 case 2:
1877 return BXT_CDCLK_CD2X_DIV_SEL_1;
1878 case 3:
1879 return BXT_CDCLK_CD2X_DIV_SEL_1_5;
1880 case 4:
1881 return BXT_CDCLK_CD2X_DIV_SEL_2;
1882 case 8:
1883 return BXT_CDCLK_CD2X_DIV_SEL_4;
1884 }
1885}
1886
1887static u16 cdclk_squash_waveform(struct intel_display *display,
1888 int cdclk)
1889{
1890 const struct intel_cdclk_vals *table = display->cdclk.table;
1891 int i;
1892
1893 if (cdclk == display->cdclk.hw.bypass)
1894 return 0;
1895
1896 for (i = 0; table[i].refclk; i++)
1897 if (table[i].refclk == display->cdclk.hw.ref &&
1898 table[i].cdclk == cdclk)
1899 return table[i].waveform;
1900
1901 drm_WARN(display->drm, 1, "cdclk %d not valid for refclk %u\n",
1902 cdclk, display->cdclk.hw.ref);
1903
1904 return 0xffff;
1905}
1906
1907static void icl_cdclk_pll_update(struct intel_display *display, int vco)
1908{
1909 if (display->cdclk.hw.vco != 0 &&
1910 display->cdclk.hw.vco != vco)
1911 icl_cdclk_pll_disable(display);
1912
1913 if (display->cdclk.hw.vco != vco)
1914 icl_cdclk_pll_enable(display, vco);
1915}
1916
1917static void bxt_cdclk_pll_update(struct intel_display *display, int vco)
1918{
1919 if (display->cdclk.hw.vco != 0 &&
1920 display->cdclk.hw.vco != vco)
1921 bxt_de_pll_disable(display);
1922
1923 if (display->cdclk.hw.vco != vco)
1924 bxt_de_pll_enable(display, vco);
1925}
1926
1927static void dg2_cdclk_squash_program(struct intel_display *display,
1928 u16 waveform)
1929{
1930 u32 squash_ctl = 0;
1931
1932 if (waveform)
1933 squash_ctl = CDCLK_SQUASH_ENABLE |
1934 CDCLK_SQUASH_WINDOW_SIZE(0xf) | waveform;
1935
1936 intel_de_write(display, CDCLK_SQUASH_CTL, val: squash_ctl);
1937}
1938
1939static bool cdclk_pll_is_unknown(unsigned int vco)
1940{
1941 /*
1942 * Ensure driver does not take the crawl path for the
1943 * case when the vco is set to ~0 in the
1944 * sanitize path.
1945 */
1946 return vco == ~0;
1947}
1948
1949static bool mdclk_source_is_cdclk_pll(struct intel_display *display)
1950{
1951 return DISPLAY_VER(display) >= 20;
1952}
1953
1954static u32 xe2lpd_mdclk_source_sel(struct intel_display *display)
1955{
1956 if (mdclk_source_is_cdclk_pll(display))
1957 return MDCLK_SOURCE_SEL_CDCLK_PLL;
1958
1959 return MDCLK_SOURCE_SEL_CD2XCLK;
1960}
1961
1962int intel_mdclk_cdclk_ratio(struct intel_display *display,
1963 const struct intel_cdclk_config *cdclk_config)
1964{
1965 if (mdclk_source_is_cdclk_pll(display))
1966 return DIV_ROUND_UP(cdclk_config->vco, cdclk_config->cdclk);
1967
1968 /* Otherwise, source for MDCLK is CD2XCLK. */
1969 return 2;
1970}
1971
1972static void xe2lpd_mdclk_cdclk_ratio_program(struct intel_display *display,
1973 const struct intel_cdclk_config *cdclk_config)
1974{
1975 intel_dbuf_mdclk_cdclk_ratio_update(display,
1976 ratio: intel_mdclk_cdclk_ratio(display, cdclk_config),
1977 joined_mbus: cdclk_config->joined_mbus);
1978}
1979
1980static bool cdclk_compute_crawl_and_squash_midpoint(struct intel_display *display,
1981 const struct intel_cdclk_config *old_cdclk_config,
1982 const struct intel_cdclk_config *new_cdclk_config,
1983 struct intel_cdclk_config *mid_cdclk_config)
1984{
1985 u16 old_waveform, new_waveform, mid_waveform;
1986 int old_div, new_div, mid_div;
1987
1988 /* Return if PLL is in an unknown state, force a complete disable and re-enable. */
1989 if (cdclk_pll_is_unknown(vco: old_cdclk_config->vco))
1990 return false;
1991
1992 /* Return if both Squash and Crawl are not present */
1993 if (!HAS_CDCLK_CRAWL(display) || !HAS_CDCLK_SQUASH(display))
1994 return false;
1995
1996 old_waveform = cdclk_squash_waveform(display, cdclk: old_cdclk_config->cdclk);
1997 new_waveform = cdclk_squash_waveform(display, cdclk: new_cdclk_config->cdclk);
1998
1999 /* Return if Squash only or Crawl only is the desired action */
2000 if (old_cdclk_config->vco == 0 || new_cdclk_config->vco == 0 ||
2001 old_cdclk_config->vco == new_cdclk_config->vco ||
2002 old_waveform == new_waveform)
2003 return false;
2004
2005 old_div = cdclk_divider(cdclk: old_cdclk_config->cdclk,
2006 vco: old_cdclk_config->vco, waveform: old_waveform);
2007 new_div = cdclk_divider(cdclk: new_cdclk_config->cdclk,
2008 vco: new_cdclk_config->vco, waveform: new_waveform);
2009
2010 /*
2011 * Should not happen currently. We might need more midpoint
2012 * transitions if we need to also change the cd2x divider.
2013 */
2014 if (drm_WARN_ON(display->drm, old_div != new_div))
2015 return false;
2016
2017 *mid_cdclk_config = *new_cdclk_config;
2018
2019 /*
2020 * Populate the mid_cdclk_config accordingly.
2021 * - If moving to a higher cdclk, the desired action is squashing.
2022 * The mid cdclk config should have the new (squash) waveform.
2023 * - If moving to a lower cdclk, the desired action is crawling.
2024 * The mid cdclk config should have the new vco.
2025 */
2026
2027 if (cdclk_squash_divider(waveform: new_waveform) > cdclk_squash_divider(waveform: old_waveform)) {
2028 mid_cdclk_config->vco = old_cdclk_config->vco;
2029 mid_div = old_div;
2030 mid_waveform = new_waveform;
2031 } else {
2032 mid_cdclk_config->vco = new_cdclk_config->vco;
2033 mid_div = new_div;
2034 mid_waveform = old_waveform;
2035 }
2036
2037 mid_cdclk_config->cdclk = DIV_ROUND_CLOSEST(cdclk_squash_divider(mid_waveform) *
2038 mid_cdclk_config->vco,
2039 cdclk_squash_len * mid_div);
2040
2041 /* make sure the mid clock came out sane */
2042
2043 drm_WARN_ON(display->drm, mid_cdclk_config->cdclk <
2044 min(old_cdclk_config->cdclk, new_cdclk_config->cdclk));
2045 drm_WARN_ON(display->drm, mid_cdclk_config->cdclk >
2046 display->cdclk.max_cdclk_freq);
2047 drm_WARN_ON(display->drm, cdclk_squash_waveform(display, mid_cdclk_config->cdclk) !=
2048 mid_waveform);
2049
2050 return true;
2051}
2052
2053static bool pll_enable_wa_needed(struct intel_display *display)
2054{
2055 return (DISPLAY_VERx100(display) == 2000 ||
2056 DISPLAY_VERx100(display) == 1400 ||
2057 display->platform.dg2) &&
2058 display->cdclk.hw.vco > 0;
2059}
2060
2061static u32 bxt_cdclk_ctl(struct intel_display *display,
2062 const struct intel_cdclk_config *cdclk_config,
2063 enum pipe pipe)
2064{
2065 int cdclk = cdclk_config->cdclk;
2066 int vco = cdclk_config->vco;
2067 u16 waveform;
2068 u32 val;
2069
2070 waveform = cdclk_squash_waveform(display, cdclk);
2071
2072 val = bxt_cdclk_cd2x_div_sel(display, cdclk, vco, waveform) |
2073 bxt_cdclk_cd2x_pipe(display, pipe);
2074
2075 /*
2076 * Disable SSA Precharge when CD clock frequency < 500 MHz,
2077 * enable otherwise.
2078 */
2079 if ((display->platform.geminilake || display->platform.broxton) &&
2080 cdclk >= 500000)
2081 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
2082
2083 if (DISPLAY_VER(display) >= 20)
2084 val |= xe2lpd_mdclk_source_sel(display);
2085 else
2086 val |= skl_cdclk_decimal(cdclk);
2087
2088 return val;
2089}
2090
2091static void _bxt_set_cdclk(struct intel_display *display,
2092 const struct intel_cdclk_config *cdclk_config,
2093 enum pipe pipe)
2094{
2095 int cdclk = cdclk_config->cdclk;
2096 int vco = cdclk_config->vco;
2097
2098 if (HAS_CDCLK_CRAWL(display) && display->cdclk.hw.vco > 0 && vco > 0 &&
2099 !cdclk_pll_is_unknown(vco: display->cdclk.hw.vco)) {
2100 if (display->cdclk.hw.vco != vco)
2101 adlp_cdclk_pll_crawl(display, vco);
2102 } else if (DISPLAY_VER(display) >= 11) {
2103 /* wa_15010685871: dg2, mtl */
2104 if (pll_enable_wa_needed(display))
2105 dg2_cdclk_squash_program(display, waveform: 0);
2106
2107 icl_cdclk_pll_update(display, vco);
2108 } else {
2109 bxt_cdclk_pll_update(display, vco);
2110 }
2111
2112 if (HAS_CDCLK_SQUASH(display)) {
2113 u16 waveform = cdclk_squash_waveform(display, cdclk);
2114
2115 dg2_cdclk_squash_program(display, waveform);
2116 }
2117
2118 intel_de_write(display, CDCLK_CTL, val: bxt_cdclk_ctl(display, cdclk_config, pipe));
2119
2120 if (pipe != INVALID_PIPE)
2121 intel_crtc_wait_for_next_vblank(crtc: intel_crtc_for_pipe(display, pipe));
2122}
2123
2124static void bxt_set_cdclk(struct intel_display *display,
2125 const struct intel_cdclk_config *cdclk_config,
2126 enum pipe pipe)
2127{
2128 struct drm_i915_private *dev_priv = to_i915(dev: display->drm);
2129 struct intel_cdclk_config mid_cdclk_config;
2130 int cdclk = cdclk_config->cdclk;
2131 int ret = 0;
2132
2133 /*
2134 * Inform power controller of upcoming frequency change.
2135 * Display versions 14 and beyond do not follow the PUnit
2136 * mailbox communication, skip
2137 * this step.
2138 */
2139 if (DISPLAY_VER(display) >= 14 || display->platform.dg2)
2140 ; /* NOOP */
2141 else if (DISPLAY_VER(display) >= 11)
2142 ret = skl_pcode_request(uncore: &dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
2143 SKL_CDCLK_PREPARE_FOR_CHANGE,
2144 SKL_CDCLK_READY_FOR_CHANGE,
2145 SKL_CDCLK_READY_FOR_CHANGE, timeout_base_ms: 3);
2146 else
2147 /*
2148 * BSpec requires us to wait up to 150usec, but that leads to
2149 * timeouts; the 2ms used here is based on experiment.
2150 */
2151 ret = snb_pcode_write_timeout(uncore: &dev_priv->uncore,
2152 HSW_PCODE_DE_WRITE_FREQ_REQ,
2153 val: 0x80000000, fast_timeout_us: 150, slow_timeout_ms: 2);
2154
2155 if (ret) {
2156 drm_err(display->drm,
2157 "Failed to inform PCU about cdclk change (err %d, freq %d)\n",
2158 ret, cdclk);
2159 return;
2160 }
2161
2162 if (DISPLAY_VER(display) >= 20 && cdclk < display->cdclk.hw.cdclk)
2163 xe2lpd_mdclk_cdclk_ratio_program(display, cdclk_config);
2164
2165 if (cdclk_compute_crawl_and_squash_midpoint(display, old_cdclk_config: &display->cdclk.hw,
2166 new_cdclk_config: cdclk_config, mid_cdclk_config: &mid_cdclk_config)) {
2167 _bxt_set_cdclk(display, cdclk_config: &mid_cdclk_config, pipe);
2168 _bxt_set_cdclk(display, cdclk_config, pipe);
2169 } else {
2170 _bxt_set_cdclk(display, cdclk_config, pipe);
2171 }
2172
2173 if (DISPLAY_VER(display) >= 20 && cdclk > display->cdclk.hw.cdclk)
2174 xe2lpd_mdclk_cdclk_ratio_program(display, cdclk_config);
2175
2176 if (DISPLAY_VER(display) >= 14)
2177 /*
2178 * NOOP - No Pcode communication needed for
2179 * Display versions 14 and beyond
2180 */;
2181 else if (DISPLAY_VER(display) >= 11 && !display->platform.dg2)
2182 ret = snb_pcode_write(&dev_priv->uncore, SKL_PCODE_CDCLK_CONTROL,
2183 cdclk_config->voltage_level);
2184 if (DISPLAY_VER(display) < 11) {
2185 /*
2186 * The timeout isn't specified, the 2ms used here is based on
2187 * experiment.
2188 * FIXME: Waiting for the request completion could be delayed
2189 * until the next PCODE request based on BSpec.
2190 */
2191 ret = snb_pcode_write_timeout(uncore: &dev_priv->uncore,
2192 HSW_PCODE_DE_WRITE_FREQ_REQ,
2193 val: cdclk_config->voltage_level,
2194 fast_timeout_us: 150, slow_timeout_ms: 2);
2195 }
2196 if (ret) {
2197 drm_err(display->drm,
2198 "PCode CDCLK freq set failed, (err %d, freq %d)\n",
2199 ret, cdclk);
2200 return;
2201 }
2202
2203 intel_update_cdclk(display);
2204
2205 if (DISPLAY_VER(display) >= 11)
2206 /*
2207 * Can't read out the voltage level :(
2208 * Let's just assume everything is as expected.
2209 */
2210 display->cdclk.hw.voltage_level = cdclk_config->voltage_level;
2211}
2212
2213static void bxt_sanitize_cdclk(struct intel_display *display)
2214{
2215 u32 cdctl, expected;
2216 int cdclk, vco;
2217
2218 intel_update_cdclk(display);
2219 intel_cdclk_dump_config(display, cdclk_config: &display->cdclk.hw, context: "Current CDCLK");
2220
2221 if (display->cdclk.hw.vco == 0 ||
2222 display->cdclk.hw.cdclk == display->cdclk.hw.bypass)
2223 goto sanitize;
2224
2225 /* Make sure this is a legal cdclk value for the platform */
2226 cdclk = bxt_calc_cdclk(display, min_cdclk: display->cdclk.hw.cdclk);
2227 if (cdclk != display->cdclk.hw.cdclk)
2228 goto sanitize;
2229
2230 /* Make sure the VCO is correct for the cdclk */
2231 vco = bxt_calc_cdclk_pll_vco(display, cdclk);
2232 if (vco != display->cdclk.hw.vco)
2233 goto sanitize;
2234
2235 /*
2236 * Some BIOS versions leave an incorrect decimal frequency value and
2237 * set reserved MBZ bits in CDCLK_CTL at least during exiting from S4,
2238 * so sanitize this register.
2239 */
2240 cdctl = intel_de_read(display, CDCLK_CTL);
2241 expected = bxt_cdclk_ctl(display, cdclk_config: &display->cdclk.hw, pipe: INVALID_PIPE);
2242
2243 /*
2244 * Let's ignore the pipe field, since BIOS could have configured the
2245 * dividers both syncing to an active pipe, or asynchronously
2246 * (PIPE_NONE).
2247 */
2248 cdctl &= ~bxt_cdclk_cd2x_pipe(display, pipe: INVALID_PIPE);
2249 expected &= ~bxt_cdclk_cd2x_pipe(display, pipe: INVALID_PIPE);
2250
2251 if (cdctl == expected)
2252 /* All well; nothing to sanitize */
2253 return;
2254
2255sanitize:
2256 drm_dbg_kms(display->drm, "Sanitizing cdclk programmed by pre-os\n");
2257
2258 /* force cdclk programming */
2259 display->cdclk.hw.cdclk = 0;
2260
2261 /* force full PLL disable + enable */
2262 display->cdclk.hw.vco = ~0;
2263}
2264
2265static void bxt_cdclk_init_hw(struct intel_display *display)
2266{
2267 struct intel_cdclk_config cdclk_config;
2268
2269 bxt_sanitize_cdclk(display);
2270
2271 if (display->cdclk.hw.cdclk != 0 &&
2272 display->cdclk.hw.vco != 0)
2273 return;
2274
2275 cdclk_config = display->cdclk.hw;
2276
2277 /*
2278 * FIXME:
2279 * - The initial CDCLK needs to be read from VBT.
2280 * Need to make this change after VBT has changes for BXT.
2281 */
2282 cdclk_config.cdclk = bxt_calc_cdclk(display, min_cdclk: 0);
2283 cdclk_config.vco = bxt_calc_cdclk_pll_vco(display, cdclk: cdclk_config.cdclk);
2284 cdclk_config.voltage_level =
2285 intel_cdclk_calc_voltage_level(display, cdclk: cdclk_config.cdclk);
2286
2287 bxt_set_cdclk(display, cdclk_config: &cdclk_config, pipe: INVALID_PIPE);
2288}
2289
2290static void bxt_cdclk_uninit_hw(struct intel_display *display)
2291{
2292 struct intel_cdclk_config cdclk_config = display->cdclk.hw;
2293
2294 cdclk_config.cdclk = cdclk_config.bypass;
2295 cdclk_config.vco = 0;
2296 cdclk_config.voltage_level =
2297 intel_cdclk_calc_voltage_level(display, cdclk: cdclk_config.cdclk);
2298
2299 bxt_set_cdclk(display, cdclk_config: &cdclk_config, pipe: INVALID_PIPE);
2300}
2301
2302/**
2303 * intel_cdclk_init_hw - Initialize CDCLK hardware
2304 * @display: display instance
2305 *
2306 * Initialize CDCLK. This consists mainly of initializing display->cdclk.hw and
2307 * sanitizing the state of the hardware if needed. This is generally done only
2308 * during the display core initialization sequence, after which the DMC will
2309 * take care of turning CDCLK off/on as needed.
2310 */
2311void intel_cdclk_init_hw(struct intel_display *display)
2312{
2313 if (DISPLAY_VER(display) >= 10 || display->platform.broxton)
2314 bxt_cdclk_init_hw(display);
2315 else if (DISPLAY_VER(display) == 9)
2316 skl_cdclk_init_hw(display);
2317}
2318
2319/**
2320 * intel_cdclk_uninit_hw - Uninitialize CDCLK hardware
2321 * @display: display instance
2322 *
2323 * Uninitialize CDCLK. This is done only during the display core
2324 * uninitialization sequence.
2325 */
2326void intel_cdclk_uninit_hw(struct intel_display *display)
2327{
2328 if (DISPLAY_VER(display) >= 10 || display->platform.broxton)
2329 bxt_cdclk_uninit_hw(display);
2330 else if (DISPLAY_VER(display) == 9)
2331 skl_cdclk_uninit_hw(display);
2332}
2333
2334static bool intel_cdclk_can_crawl_and_squash(struct intel_display *display,
2335 const struct intel_cdclk_config *a,
2336 const struct intel_cdclk_config *b)
2337{
2338 u16 old_waveform;
2339 u16 new_waveform;
2340
2341 drm_WARN_ON(display->drm, cdclk_pll_is_unknown(a->vco));
2342
2343 if (a->vco == 0 || b->vco == 0)
2344 return false;
2345
2346 if (!HAS_CDCLK_CRAWL(display) || !HAS_CDCLK_SQUASH(display))
2347 return false;
2348
2349 old_waveform = cdclk_squash_waveform(display, cdclk: a->cdclk);
2350 new_waveform = cdclk_squash_waveform(display, cdclk: b->cdclk);
2351
2352 return a->vco != b->vco &&
2353 old_waveform != new_waveform;
2354}
2355
2356static bool intel_cdclk_can_crawl(struct intel_display *display,
2357 const struct intel_cdclk_config *a,
2358 const struct intel_cdclk_config *b)
2359{
2360 int a_div, b_div;
2361
2362 if (!HAS_CDCLK_CRAWL(display))
2363 return false;
2364
2365 /*
2366 * The vco and cd2x divider will change independently
2367 * from each, so we disallow cd2x change when crawling.
2368 */
2369 a_div = DIV_ROUND_CLOSEST(a->vco, a->cdclk);
2370 b_div = DIV_ROUND_CLOSEST(b->vco, b->cdclk);
2371
2372 return a->vco != 0 && b->vco != 0 &&
2373 a->vco != b->vco &&
2374 a_div == b_div &&
2375 a->ref == b->ref;
2376}
2377
2378static bool intel_cdclk_can_squash(struct intel_display *display,
2379 const struct intel_cdclk_config *a,
2380 const struct intel_cdclk_config *b)
2381{
2382 /*
2383 * FIXME should store a bit more state in intel_cdclk_config
2384 * to differentiate squasher vs. cd2x divider properly. For
2385 * the moment all platforms with squasher use a fixed cd2x
2386 * divider.
2387 */
2388 if (!HAS_CDCLK_SQUASH(display))
2389 return false;
2390
2391 return a->cdclk != b->cdclk &&
2392 a->vco != 0 &&
2393 a->vco == b->vco &&
2394 a->ref == b->ref;
2395}
2396
2397/**
2398 * intel_cdclk_clock_changed - Check whether the clock changed
2399 * @a: first CDCLK configuration
2400 * @b: second CDCLK configuration
2401 *
2402 * Returns:
2403 * True if CDCLK changed in a way that requires re-programming and
2404 * False otherwise.
2405 */
2406bool intel_cdclk_clock_changed(const struct intel_cdclk_config *a,
2407 const struct intel_cdclk_config *b)
2408{
2409 return a->cdclk != b->cdclk ||
2410 a->vco != b->vco ||
2411 a->ref != b->ref;
2412}
2413
2414/**
2415 * intel_cdclk_can_cd2x_update - Determine if changing between the two CDCLK
2416 * configurations requires only a cd2x divider update
2417 * @display: display instance
2418 * @a: first CDCLK configuration
2419 * @b: second CDCLK configuration
2420 *
2421 * Returns:
2422 * True if changing between the two CDCLK configurations
2423 * can be done with just a cd2x divider update, false if not.
2424 */
2425static bool intel_cdclk_can_cd2x_update(struct intel_display *display,
2426 const struct intel_cdclk_config *a,
2427 const struct intel_cdclk_config *b)
2428{
2429 /* Older hw doesn't have the capability */
2430 if (DISPLAY_VER(display) < 10 && !display->platform.broxton)
2431 return false;
2432
2433 /*
2434 * FIXME should store a bit more state in intel_cdclk_config
2435 * to differentiate squasher vs. cd2x divider properly. For
2436 * the moment all platforms with squasher use a fixed cd2x
2437 * divider.
2438 */
2439 if (HAS_CDCLK_SQUASH(display))
2440 return false;
2441
2442 return a->cdclk != b->cdclk &&
2443 a->vco != 0 &&
2444 a->vco == b->vco &&
2445 a->ref == b->ref;
2446}
2447
2448/**
2449 * intel_cdclk_changed - Determine if two CDCLK configurations are different
2450 * @a: first CDCLK configuration
2451 * @b: second CDCLK configuration
2452 *
2453 * Returns:
2454 * True if the CDCLK configurations don't match, false if they do.
2455 */
2456static bool intel_cdclk_changed(const struct intel_cdclk_config *a,
2457 const struct intel_cdclk_config *b)
2458{
2459 return intel_cdclk_clock_changed(a, b) ||
2460 a->voltage_level != b->voltage_level;
2461}
2462
2463void intel_cdclk_dump_config(struct intel_display *display,
2464 const struct intel_cdclk_config *cdclk_config,
2465 const char *context)
2466{
2467 drm_dbg_kms(display->drm, "%s %d kHz, VCO %d kHz, ref %d kHz, bypass %d kHz, voltage level %d\n",
2468 context, cdclk_config->cdclk, cdclk_config->vco,
2469 cdclk_config->ref, cdclk_config->bypass,
2470 cdclk_config->voltage_level);
2471}
2472
2473static void intel_pcode_notify(struct intel_display *display,
2474 u8 voltage_level,
2475 u8 active_pipe_count,
2476 u16 cdclk,
2477 bool cdclk_update_valid,
2478 bool pipe_count_update_valid)
2479{
2480 struct drm_i915_private *i915 = to_i915(dev: display->drm);
2481 int ret;
2482 u32 update_mask = 0;
2483
2484 if (!display->platform.dg2)
2485 return;
2486
2487 update_mask = DISPLAY_TO_PCODE_UPDATE_MASK(cdclk, active_pipe_count, voltage_level);
2488
2489 if (cdclk_update_valid)
2490 update_mask |= DISPLAY_TO_PCODE_CDCLK_VALID;
2491
2492 if (pipe_count_update_valid)
2493 update_mask |= DISPLAY_TO_PCODE_PIPE_COUNT_VALID;
2494
2495 ret = skl_pcode_request(uncore: &i915->uncore, SKL_PCODE_CDCLK_CONTROL,
2496 SKL_CDCLK_PREPARE_FOR_CHANGE |
2497 update_mask,
2498 SKL_CDCLK_READY_FOR_CHANGE,
2499 SKL_CDCLK_READY_FOR_CHANGE, timeout_base_ms: 3);
2500 if (ret)
2501 drm_err(display->drm,
2502 "Failed to inform PCU about display config (err %d)\n",
2503 ret);
2504}
2505
2506static void intel_set_cdclk(struct intel_display *display,
2507 const struct intel_cdclk_config *cdclk_config,
2508 enum pipe pipe, const char *context)
2509{
2510 struct intel_encoder *encoder;
2511
2512 if (!intel_cdclk_changed(a: &display->cdclk.hw, b: cdclk_config))
2513 return;
2514
2515 if (drm_WARN_ON_ONCE(display->drm, !display->funcs.cdclk->set_cdclk))
2516 return;
2517
2518 intel_cdclk_dump_config(display, cdclk_config, context);
2519
2520 for_each_intel_encoder_with_psr(display->drm, encoder) {
2521 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2522
2523 intel_psr_pause(intel_dp);
2524 }
2525
2526 intel_audio_cdclk_change_pre(display);
2527
2528 /*
2529 * Lock aux/gmbus while we change cdclk in case those
2530 * functions use cdclk. Not all platforms/ports do,
2531 * but we'll lock them all for simplicity.
2532 */
2533 mutex_lock(&display->gmbus.mutex);
2534 for_each_intel_dp(display->drm, encoder) {
2535 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2536
2537 mutex_lock_nest_lock(&intel_dp->aux.hw_mutex,
2538 &display->gmbus.mutex);
2539 }
2540
2541 intel_cdclk_set_cdclk(display, cdclk_config, pipe);
2542
2543 for_each_intel_dp(display->drm, encoder) {
2544 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2545
2546 mutex_unlock(lock: &intel_dp->aux.hw_mutex);
2547 }
2548 mutex_unlock(lock: &display->gmbus.mutex);
2549
2550 for_each_intel_encoder_with_psr(display->drm, encoder) {
2551 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2552
2553 intel_psr_resume(intel_dp);
2554 }
2555
2556 intel_audio_cdclk_change_post(display);
2557
2558 if (drm_WARN(display->drm,
2559 intel_cdclk_changed(&display->cdclk.hw, cdclk_config),
2560 "cdclk state doesn't match!\n")) {
2561 intel_cdclk_dump_config(display, cdclk_config: &display->cdclk.hw, context: "[hw state]");
2562 intel_cdclk_dump_config(display, cdclk_config, context: "[sw state]");
2563 }
2564}
2565
2566static void intel_cdclk_pcode_pre_notify(struct intel_atomic_state *state)
2567{
2568 struct intel_display *display = to_intel_display(state);
2569 const struct intel_cdclk_state *old_cdclk_state =
2570 intel_atomic_get_old_cdclk_state(state);
2571 const struct intel_cdclk_state *new_cdclk_state =
2572 intel_atomic_get_new_cdclk_state(state);
2573 unsigned int cdclk = 0; u8 voltage_level, num_active_pipes = 0;
2574 bool change_cdclk, update_pipe_count;
2575
2576 if (!intel_cdclk_changed(a: &old_cdclk_state->actual,
2577 b: &new_cdclk_state->actual) &&
2578 new_cdclk_state->active_pipes ==
2579 old_cdclk_state->active_pipes)
2580 return;
2581
2582 /* According to "Sequence Before Frequency Change", voltage level set to 0x3 */
2583 voltage_level = DISPLAY_TO_PCODE_VOLTAGE_MAX;
2584
2585 change_cdclk = new_cdclk_state->actual.cdclk != old_cdclk_state->actual.cdclk;
2586 update_pipe_count = hweight8(new_cdclk_state->active_pipes) >
2587 hweight8(old_cdclk_state->active_pipes);
2588
2589 /*
2590 * According to "Sequence Before Frequency Change",
2591 * if CDCLK is increasing, set bits 25:16 to upcoming CDCLK,
2592 * if CDCLK is decreasing or not changing, set bits 25:16 to current CDCLK,
2593 * which basically means we choose the maximum of old and new CDCLK, if we know both
2594 */
2595 if (change_cdclk)
2596 cdclk = max(new_cdclk_state->actual.cdclk, old_cdclk_state->actual.cdclk);
2597
2598 /*
2599 * According to "Sequence For Pipe Count Change",
2600 * if pipe count is increasing, set bits 25:16 to upcoming pipe count
2601 * (power well is enabled)
2602 * no action if it is decreasing, before the change
2603 */
2604 if (update_pipe_count)
2605 num_active_pipes = hweight8(new_cdclk_state->active_pipes);
2606
2607 intel_pcode_notify(display, voltage_level, active_pipe_count: num_active_pipes, cdclk,
2608 cdclk_update_valid: change_cdclk, pipe_count_update_valid: update_pipe_count);
2609}
2610
2611static void intel_cdclk_pcode_post_notify(struct intel_atomic_state *state)
2612{
2613 struct intel_display *display = to_intel_display(state);
2614 const struct intel_cdclk_state *new_cdclk_state =
2615 intel_atomic_get_new_cdclk_state(state);
2616 const struct intel_cdclk_state *old_cdclk_state =
2617 intel_atomic_get_old_cdclk_state(state);
2618 unsigned int cdclk = 0; u8 voltage_level, num_active_pipes = 0;
2619 bool update_cdclk, update_pipe_count;
2620
2621 /* According to "Sequence After Frequency Change", set voltage to used level */
2622 voltage_level = new_cdclk_state->actual.voltage_level;
2623
2624 update_cdclk = new_cdclk_state->actual.cdclk != old_cdclk_state->actual.cdclk;
2625 update_pipe_count = hweight8(new_cdclk_state->active_pipes) <
2626 hweight8(old_cdclk_state->active_pipes);
2627
2628 /*
2629 * According to "Sequence After Frequency Change",
2630 * set bits 25:16 to current CDCLK
2631 */
2632 if (update_cdclk)
2633 cdclk = new_cdclk_state->actual.cdclk;
2634
2635 /*
2636 * According to "Sequence For Pipe Count Change",
2637 * if pipe count is decreasing, set bits 25:16 to current pipe count,
2638 * after the change(power well is disabled)
2639 * no action if it is increasing, after the change
2640 */
2641 if (update_pipe_count)
2642 num_active_pipes = hweight8(new_cdclk_state->active_pipes);
2643
2644 intel_pcode_notify(display, voltage_level, active_pipe_count: num_active_pipes, cdclk,
2645 cdclk_update_valid: update_cdclk, pipe_count_update_valid: update_pipe_count);
2646}
2647
2648bool intel_cdclk_is_decreasing_later(struct intel_atomic_state *state)
2649{
2650 const struct intel_cdclk_state *old_cdclk_state =
2651 intel_atomic_get_old_cdclk_state(state);
2652 const struct intel_cdclk_state *new_cdclk_state =
2653 intel_atomic_get_new_cdclk_state(state);
2654
2655 return new_cdclk_state && !new_cdclk_state->disable_pipes &&
2656 new_cdclk_state->actual.cdclk < old_cdclk_state->actual.cdclk;
2657}
2658
2659/**
2660 * intel_set_cdclk_pre_plane_update - Push the CDCLK state to the hardware
2661 * @state: intel atomic state
2662 *
2663 * Program the hardware before updating the HW plane state based on the
2664 * new CDCLK state, if necessary.
2665 */
2666void
2667intel_set_cdclk_pre_plane_update(struct intel_atomic_state *state)
2668{
2669 struct intel_display *display = to_intel_display(state);
2670 const struct intel_cdclk_state *old_cdclk_state =
2671 intel_atomic_get_old_cdclk_state(state);
2672 const struct intel_cdclk_state *new_cdclk_state =
2673 intel_atomic_get_new_cdclk_state(state);
2674 struct intel_cdclk_config cdclk_config;
2675 enum pipe pipe;
2676
2677 if (!intel_cdclk_changed(a: &old_cdclk_state->actual,
2678 b: &new_cdclk_state->actual))
2679 return;
2680
2681 if (display->platform.dg2)
2682 intel_cdclk_pcode_pre_notify(state);
2683
2684 if (new_cdclk_state->disable_pipes) {
2685 cdclk_config = new_cdclk_state->actual;
2686 pipe = INVALID_PIPE;
2687 } else {
2688 if (new_cdclk_state->actual.cdclk >= old_cdclk_state->actual.cdclk) {
2689 cdclk_config = new_cdclk_state->actual;
2690 pipe = new_cdclk_state->pipe;
2691 } else {
2692 cdclk_config = old_cdclk_state->actual;
2693 pipe = INVALID_PIPE;
2694 }
2695
2696 cdclk_config.voltage_level = max(new_cdclk_state->actual.voltage_level,
2697 old_cdclk_state->actual.voltage_level);
2698 }
2699
2700 /*
2701 * mbus joining will be changed later by
2702 * intel_dbuf_mbus_{pre,post}_ddb_update()
2703 */
2704 cdclk_config.joined_mbus = old_cdclk_state->actual.joined_mbus;
2705
2706 drm_WARN_ON(display->drm, !new_cdclk_state->base.changed);
2707
2708 intel_set_cdclk(display, cdclk_config: &cdclk_config, pipe,
2709 context: "Pre changing CDCLK to");
2710}
2711
2712/**
2713 * intel_set_cdclk_post_plane_update - Push the CDCLK state to the hardware
2714 * @state: intel atomic state
2715 *
2716 * Program the hardware after updating the HW plane state based on the
2717 * new CDCLK state, if necessary.
2718 */
2719void
2720intel_set_cdclk_post_plane_update(struct intel_atomic_state *state)
2721{
2722 struct intel_display *display = to_intel_display(state);
2723 const struct intel_cdclk_state *old_cdclk_state =
2724 intel_atomic_get_old_cdclk_state(state);
2725 const struct intel_cdclk_state *new_cdclk_state =
2726 intel_atomic_get_new_cdclk_state(state);
2727 enum pipe pipe;
2728
2729 if (!intel_cdclk_changed(a: &old_cdclk_state->actual,
2730 b: &new_cdclk_state->actual))
2731 return;
2732
2733 if (display->platform.dg2)
2734 intel_cdclk_pcode_post_notify(state);
2735
2736 if (!new_cdclk_state->disable_pipes &&
2737 new_cdclk_state->actual.cdclk < old_cdclk_state->actual.cdclk)
2738 pipe = new_cdclk_state->pipe;
2739 else
2740 pipe = INVALID_PIPE;
2741
2742 drm_WARN_ON(display->drm, !new_cdclk_state->base.changed);
2743
2744 intel_set_cdclk(display, cdclk_config: &new_cdclk_state->actual, pipe,
2745 context: "Post changing CDCLK to");
2746}
2747
2748/* pixels per CDCLK */
2749static int intel_cdclk_ppc(struct intel_display *display, bool double_wide)
2750{
2751 return DISPLAY_VER(display) >= 10 || double_wide ? 2 : 1;
2752}
2753
2754/* max pixel rate as % of CDCLK (not accounting for PPC) */
2755static int intel_cdclk_guardband(struct intel_display *display)
2756{
2757 if (DISPLAY_VER(display) >= 9 ||
2758 display->platform.broadwell || display->platform.haswell)
2759 return 100;
2760 else if (display->platform.cherryview)
2761 return 95;
2762 else
2763 return 90;
2764}
2765
2766static int intel_pixel_rate_to_cdclk(const struct intel_crtc_state *crtc_state)
2767{
2768 struct intel_display *display = to_intel_display(crtc_state);
2769 int ppc = intel_cdclk_ppc(display, double_wide: crtc_state->double_wide);
2770 int guardband = intel_cdclk_guardband(display);
2771 int pixel_rate = crtc_state->pixel_rate;
2772
2773 return DIV_ROUND_UP(pixel_rate * 100, guardband * ppc);
2774}
2775
2776static int intel_planes_min_cdclk(const struct intel_crtc_state *crtc_state)
2777{
2778 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2779 struct intel_display *display = to_intel_display(crtc);
2780 struct intel_plane *plane;
2781 int min_cdclk = 0;
2782
2783 for_each_intel_plane_on_crtc(display->drm, crtc, plane)
2784 min_cdclk = max(min_cdclk, crtc_state->min_cdclk[plane->id]);
2785
2786 return min_cdclk;
2787}
2788
2789static int intel_crtc_compute_min_cdclk(const struct intel_crtc_state *crtc_state)
2790{
2791 int min_cdclk;
2792
2793 if (!crtc_state->hw.enable)
2794 return 0;
2795
2796 min_cdclk = intel_pixel_rate_to_cdclk(crtc_state);
2797 min_cdclk = max(min_cdclk, hsw_ips_min_cdclk(crtc_state));
2798 min_cdclk = max(min_cdclk, intel_audio_min_cdclk(crtc_state));
2799 min_cdclk = max(min_cdclk, vlv_dsi_min_cdclk(crtc_state));
2800 min_cdclk = max(min_cdclk, intel_planes_min_cdclk(crtc_state));
2801 min_cdclk = max(min_cdclk, intel_vdsc_min_cdclk(crtc_state));
2802
2803 return min_cdclk;
2804}
2805
2806static int intel_compute_min_cdclk(struct intel_atomic_state *state)
2807{
2808 struct intel_display *display = to_intel_display(state);
2809 struct intel_cdclk_state *cdclk_state =
2810 intel_atomic_get_new_cdclk_state(state);
2811 const struct intel_bw_state *bw_state;
2812 struct intel_crtc *crtc;
2813 struct intel_crtc_state *crtc_state;
2814 int min_cdclk, i;
2815 enum pipe pipe;
2816
2817 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
2818 int ret;
2819
2820 min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
2821 if (min_cdclk < 0)
2822 return min_cdclk;
2823
2824 if (cdclk_state->min_cdclk[crtc->pipe] == min_cdclk)
2825 continue;
2826
2827 cdclk_state->min_cdclk[crtc->pipe] = min_cdclk;
2828
2829 ret = intel_atomic_lock_global_state(obj_state: &cdclk_state->base);
2830 if (ret)
2831 return ret;
2832 }
2833
2834 bw_state = intel_atomic_get_new_bw_state(state);
2835 if (bw_state) {
2836 min_cdclk = intel_bw_min_cdclk(display, bw_state);
2837
2838 if (cdclk_state->bw_min_cdclk != min_cdclk) {
2839 int ret;
2840
2841 cdclk_state->bw_min_cdclk = min_cdclk;
2842
2843 ret = intel_atomic_lock_global_state(obj_state: &cdclk_state->base);
2844 if (ret)
2845 return ret;
2846 }
2847 }
2848
2849 min_cdclk = max(cdclk_state->force_min_cdclk,
2850 cdclk_state->bw_min_cdclk);
2851 for_each_pipe(display, pipe)
2852 min_cdclk = max(min_cdclk, cdclk_state->min_cdclk[pipe]);
2853
2854 /*
2855 * Avoid glk_force_audio_cdclk() causing excessive screen
2856 * blinking when multiple pipes are active by making sure
2857 * CDCLK frequency is always high enough for audio. With a
2858 * single active pipe we can always change CDCLK frequency
2859 * by changing the cd2x divider (see glk_cdclk_table[]) and
2860 * thus a full modeset won't be needed then.
2861 */
2862 if (display->platform.geminilake && cdclk_state->active_pipes &&
2863 !is_power_of_2(n: cdclk_state->active_pipes))
2864 min_cdclk = max(min_cdclk, 2 * 96000);
2865
2866 if (min_cdclk > display->cdclk.max_cdclk_freq) {
2867 drm_dbg_kms(display->drm,
2868 "required cdclk (%d kHz) exceeds max (%d kHz)\n",
2869 min_cdclk, display->cdclk.max_cdclk_freq);
2870 return -EINVAL;
2871 }
2872
2873 return min_cdclk;
2874}
2875
2876/*
2877 * Account for port clock min voltage level requirements.
2878 * This only really does something on DISPLA_VER >= 11 but can be
2879 * called on earlier platforms as well.
2880 *
2881 * Note that this functions assumes that 0 is
2882 * the lowest voltage value, and higher values
2883 * correspond to increasingly higher voltages.
2884 *
2885 * Should that relationship no longer hold on
2886 * future platforms this code will need to be
2887 * adjusted.
2888 */
2889static int bxt_compute_min_voltage_level(struct intel_atomic_state *state)
2890{
2891 struct intel_display *display = to_intel_display(state);
2892 struct intel_cdclk_state *cdclk_state =
2893 intel_atomic_get_new_cdclk_state(state);
2894 struct intel_crtc *crtc;
2895 struct intel_crtc_state *crtc_state;
2896 u8 min_voltage_level;
2897 int i;
2898 enum pipe pipe;
2899
2900 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
2901 int ret;
2902
2903 if (crtc_state->hw.enable)
2904 min_voltage_level = crtc_state->min_voltage_level;
2905 else
2906 min_voltage_level = 0;
2907
2908 if (cdclk_state->min_voltage_level[crtc->pipe] == min_voltage_level)
2909 continue;
2910
2911 cdclk_state->min_voltage_level[crtc->pipe] = min_voltage_level;
2912
2913 ret = intel_atomic_lock_global_state(obj_state: &cdclk_state->base);
2914 if (ret)
2915 return ret;
2916 }
2917
2918 min_voltage_level = 0;
2919 for_each_pipe(display, pipe)
2920 min_voltage_level = max(min_voltage_level,
2921 cdclk_state->min_voltage_level[pipe]);
2922
2923 return min_voltage_level;
2924}
2925
2926static int vlv_modeset_calc_cdclk(struct intel_atomic_state *state)
2927{
2928 struct intel_display *display = to_intel_display(state);
2929 struct intel_cdclk_state *cdclk_state =
2930 intel_atomic_get_new_cdclk_state(state);
2931 int min_cdclk, cdclk;
2932
2933 min_cdclk = intel_compute_min_cdclk(state);
2934 if (min_cdclk < 0)
2935 return min_cdclk;
2936
2937 cdclk = vlv_calc_cdclk(display, min_cdclk);
2938
2939 cdclk_state->logical.cdclk = cdclk;
2940 cdclk_state->logical.voltage_level =
2941 vlv_calc_voltage_level(display, cdclk);
2942
2943 if (!cdclk_state->active_pipes) {
2944 cdclk = vlv_calc_cdclk(display, min_cdclk: cdclk_state->force_min_cdclk);
2945
2946 cdclk_state->actual.cdclk = cdclk;
2947 cdclk_state->actual.voltage_level =
2948 vlv_calc_voltage_level(display, cdclk);
2949 } else {
2950 cdclk_state->actual = cdclk_state->logical;
2951 }
2952
2953 return 0;
2954}
2955
2956static int bdw_modeset_calc_cdclk(struct intel_atomic_state *state)
2957{
2958 struct intel_cdclk_state *cdclk_state =
2959 intel_atomic_get_new_cdclk_state(state);
2960 int min_cdclk, cdclk;
2961
2962 min_cdclk = intel_compute_min_cdclk(state);
2963 if (min_cdclk < 0)
2964 return min_cdclk;
2965
2966 cdclk = bdw_calc_cdclk(min_cdclk);
2967
2968 cdclk_state->logical.cdclk = cdclk;
2969 cdclk_state->logical.voltage_level =
2970 bdw_calc_voltage_level(cdclk);
2971
2972 if (!cdclk_state->active_pipes) {
2973 cdclk = bdw_calc_cdclk(min_cdclk: cdclk_state->force_min_cdclk);
2974
2975 cdclk_state->actual.cdclk = cdclk;
2976 cdclk_state->actual.voltage_level =
2977 bdw_calc_voltage_level(cdclk);
2978 } else {
2979 cdclk_state->actual = cdclk_state->logical;
2980 }
2981
2982 return 0;
2983}
2984
2985static int skl_dpll0_vco(struct intel_atomic_state *state)
2986{
2987 struct intel_display *display = to_intel_display(state);
2988 struct intel_cdclk_state *cdclk_state =
2989 intel_atomic_get_new_cdclk_state(state);
2990 struct intel_crtc *crtc;
2991 struct intel_crtc_state *crtc_state;
2992 int vco, i;
2993
2994 vco = cdclk_state->logical.vco;
2995 if (!vco)
2996 vco = display->cdclk.skl_preferred_vco_freq;
2997
2998 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
2999 if (!crtc_state->hw.enable)
3000 continue;
3001
3002 if (!intel_crtc_has_type(crtc_state, type: INTEL_OUTPUT_EDP))
3003 continue;
3004
3005 /*
3006 * DPLL0 VCO may need to be adjusted to get the correct
3007 * clock for eDP. This will affect cdclk as well.
3008 */
3009 switch (crtc_state->port_clock / 2) {
3010 case 108000:
3011 case 216000:
3012 vco = 8640000;
3013 break;
3014 default:
3015 vco = 8100000;
3016 break;
3017 }
3018 }
3019
3020 return vco;
3021}
3022
3023static int skl_modeset_calc_cdclk(struct intel_atomic_state *state)
3024{
3025 struct intel_cdclk_state *cdclk_state =
3026 intel_atomic_get_new_cdclk_state(state);
3027 int min_cdclk, cdclk, vco;
3028
3029 min_cdclk = intel_compute_min_cdclk(state);
3030 if (min_cdclk < 0)
3031 return min_cdclk;
3032
3033 vco = skl_dpll0_vco(state);
3034
3035 cdclk = skl_calc_cdclk(min_cdclk, vco);
3036
3037 cdclk_state->logical.vco = vco;
3038 cdclk_state->logical.cdclk = cdclk;
3039 cdclk_state->logical.voltage_level =
3040 skl_calc_voltage_level(cdclk);
3041
3042 if (!cdclk_state->active_pipes) {
3043 cdclk = skl_calc_cdclk(min_cdclk: cdclk_state->force_min_cdclk, vco);
3044
3045 cdclk_state->actual.vco = vco;
3046 cdclk_state->actual.cdclk = cdclk;
3047 cdclk_state->actual.voltage_level =
3048 skl_calc_voltage_level(cdclk);
3049 } else {
3050 cdclk_state->actual = cdclk_state->logical;
3051 }
3052
3053 return 0;
3054}
3055
3056static int bxt_modeset_calc_cdclk(struct intel_atomic_state *state)
3057{
3058 struct intel_display *display = to_intel_display(state);
3059 struct intel_cdclk_state *cdclk_state =
3060 intel_atomic_get_new_cdclk_state(state);
3061 int min_cdclk, min_voltage_level, cdclk, vco;
3062
3063 min_cdclk = intel_compute_min_cdclk(state);
3064 if (min_cdclk < 0)
3065 return min_cdclk;
3066
3067 min_voltage_level = bxt_compute_min_voltage_level(state);
3068 if (min_voltage_level < 0)
3069 return min_voltage_level;
3070
3071 cdclk = bxt_calc_cdclk(display, min_cdclk);
3072 vco = bxt_calc_cdclk_pll_vco(display, cdclk);
3073
3074 cdclk_state->logical.vco = vco;
3075 cdclk_state->logical.cdclk = cdclk;
3076 cdclk_state->logical.voltage_level =
3077 max_t(int, min_voltage_level,
3078 intel_cdclk_calc_voltage_level(display, cdclk));
3079
3080 if (!cdclk_state->active_pipes) {
3081 cdclk = bxt_calc_cdclk(display, min_cdclk: cdclk_state->force_min_cdclk);
3082 vco = bxt_calc_cdclk_pll_vco(display, cdclk);
3083
3084 cdclk_state->actual.vco = vco;
3085 cdclk_state->actual.cdclk = cdclk;
3086 cdclk_state->actual.voltage_level =
3087 intel_cdclk_calc_voltage_level(display, cdclk);
3088 } else {
3089 cdclk_state->actual = cdclk_state->logical;
3090 }
3091
3092 return 0;
3093}
3094
3095static int fixed_modeset_calc_cdclk(struct intel_atomic_state *state)
3096{
3097 int min_cdclk;
3098
3099 /*
3100 * We can't change the cdclk frequency, but we still want to
3101 * check that the required minimum frequency doesn't exceed
3102 * the actual cdclk frequency.
3103 */
3104 min_cdclk = intel_compute_min_cdclk(state);
3105 if (min_cdclk < 0)
3106 return min_cdclk;
3107
3108 return 0;
3109}
3110
3111static struct intel_global_state *intel_cdclk_duplicate_state(struct intel_global_obj *obj)
3112{
3113 struct intel_cdclk_state *cdclk_state;
3114
3115 cdclk_state = kmemdup(obj->state, sizeof(*cdclk_state), GFP_KERNEL);
3116 if (!cdclk_state)
3117 return NULL;
3118
3119 cdclk_state->pipe = INVALID_PIPE;
3120 cdclk_state->disable_pipes = false;
3121
3122 return &cdclk_state->base;
3123}
3124
3125static void intel_cdclk_destroy_state(struct intel_global_obj *obj,
3126 struct intel_global_state *state)
3127{
3128 kfree(objp: state);
3129}
3130
3131static const struct intel_global_state_funcs intel_cdclk_funcs = {
3132 .atomic_duplicate_state = intel_cdclk_duplicate_state,
3133 .atomic_destroy_state = intel_cdclk_destroy_state,
3134};
3135
3136struct intel_cdclk_state *
3137intel_atomic_get_cdclk_state(struct intel_atomic_state *state)
3138{
3139 struct intel_display *display = to_intel_display(state);
3140 struct intel_global_state *cdclk_state;
3141
3142 cdclk_state = intel_atomic_get_global_obj_state(state, obj: &display->cdclk.obj);
3143 if (IS_ERR(ptr: cdclk_state))
3144 return ERR_CAST(ptr: cdclk_state);
3145
3146 return to_intel_cdclk_state(cdclk_state);
3147}
3148
3149int intel_cdclk_atomic_check(struct intel_atomic_state *state,
3150 bool *need_cdclk_calc)
3151{
3152 const struct intel_cdclk_state *old_cdclk_state;
3153 const struct intel_cdclk_state *new_cdclk_state;
3154 struct intel_plane_state __maybe_unused *plane_state;
3155 struct intel_plane *plane;
3156 int ret;
3157 int i;
3158
3159 /*
3160 * active_planes bitmask has been updated, and potentially affected
3161 * planes are part of the state. We can now compute the minimum cdclk
3162 * for each plane.
3163 */
3164 for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
3165 ret = intel_plane_calc_min_cdclk(state, plane, need_cdclk_calc);
3166 if (ret)
3167 return ret;
3168 }
3169
3170 ret = intel_bw_calc_min_cdclk(state, need_cdclk_calc);
3171 if (ret)
3172 return ret;
3173
3174 old_cdclk_state = intel_atomic_get_old_cdclk_state(state);
3175 new_cdclk_state = intel_atomic_get_new_cdclk_state(state);
3176
3177 if (new_cdclk_state &&
3178 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk)
3179 *need_cdclk_calc = true;
3180
3181 return 0;
3182}
3183
3184int intel_cdclk_state_set_joined_mbus(struct intel_atomic_state *state, bool joined_mbus)
3185{
3186 struct intel_cdclk_state *cdclk_state;
3187
3188 cdclk_state = intel_atomic_get_cdclk_state(state);
3189 if (IS_ERR(ptr: cdclk_state))
3190 return PTR_ERR(ptr: cdclk_state);
3191
3192 cdclk_state->actual.joined_mbus = joined_mbus;
3193 cdclk_state->logical.joined_mbus = joined_mbus;
3194
3195 return intel_atomic_lock_global_state(obj_state: &cdclk_state->base);
3196}
3197
3198int intel_cdclk_init(struct intel_display *display)
3199{
3200 struct intel_cdclk_state *cdclk_state;
3201
3202 cdclk_state = kzalloc(sizeof(*cdclk_state), GFP_KERNEL);
3203 if (!cdclk_state)
3204 return -ENOMEM;
3205
3206 intel_atomic_global_obj_init(display, obj: &display->cdclk.obj,
3207 state: &cdclk_state->base, funcs: &intel_cdclk_funcs);
3208
3209 return 0;
3210}
3211
3212static bool intel_cdclk_need_serialize(struct intel_display *display,
3213 const struct intel_cdclk_state *old_cdclk_state,
3214 const struct intel_cdclk_state *new_cdclk_state)
3215{
3216 bool power_well_cnt_changed = hweight8(old_cdclk_state->active_pipes) !=
3217 hweight8(new_cdclk_state->active_pipes);
3218 bool cdclk_changed = intel_cdclk_changed(a: &old_cdclk_state->actual,
3219 b: &new_cdclk_state->actual);
3220 /*
3221 * We need to poke hw for gen >= 12, because we notify PCode if
3222 * pipe power well count changes.
3223 */
3224 return cdclk_changed || (display->platform.dg2 && power_well_cnt_changed);
3225}
3226
3227int intel_modeset_calc_cdclk(struct intel_atomic_state *state)
3228{
3229 struct intel_display *display = to_intel_display(state);
3230 const struct intel_cdclk_state *old_cdclk_state;
3231 struct intel_cdclk_state *new_cdclk_state;
3232 enum pipe pipe = INVALID_PIPE;
3233 int ret;
3234
3235 new_cdclk_state = intel_atomic_get_cdclk_state(state);
3236 if (IS_ERR(ptr: new_cdclk_state))
3237 return PTR_ERR(ptr: new_cdclk_state);
3238
3239 old_cdclk_state = intel_atomic_get_old_cdclk_state(state);
3240
3241 new_cdclk_state->active_pipes =
3242 intel_calc_active_pipes(state, active_pipes: old_cdclk_state->active_pipes);
3243
3244 ret = intel_cdclk_modeset_calc_cdclk(state);
3245 if (ret)
3246 return ret;
3247
3248 if (intel_cdclk_need_serialize(display, old_cdclk_state, new_cdclk_state)) {
3249 /*
3250 * Also serialize commits across all crtcs
3251 * if the actual hw needs to be poked.
3252 */
3253 ret = intel_atomic_serialize_global_state(obj_state: &new_cdclk_state->base);
3254 if (ret)
3255 return ret;
3256 } else if (old_cdclk_state->active_pipes != new_cdclk_state->active_pipes ||
3257 old_cdclk_state->force_min_cdclk != new_cdclk_state->force_min_cdclk ||
3258 intel_cdclk_changed(a: &old_cdclk_state->logical,
3259 b: &new_cdclk_state->logical)) {
3260 ret = intel_atomic_lock_global_state(obj_state: &new_cdclk_state->base);
3261 if (ret)
3262 return ret;
3263 } else {
3264 return 0;
3265 }
3266
3267 if (is_power_of_2(n: new_cdclk_state->active_pipes) &&
3268 intel_cdclk_can_cd2x_update(display,
3269 a: &old_cdclk_state->actual,
3270 b: &new_cdclk_state->actual)) {
3271 struct intel_crtc *crtc;
3272 struct intel_crtc_state *crtc_state;
3273
3274 pipe = ilog2(new_cdclk_state->active_pipes);
3275 crtc = intel_crtc_for_pipe(display, pipe);
3276
3277 crtc_state = intel_atomic_get_crtc_state(state: &state->base, crtc);
3278 if (IS_ERR(ptr: crtc_state))
3279 return PTR_ERR(ptr: crtc_state);
3280
3281 if (intel_crtc_needs_modeset(crtc_state))
3282 pipe = INVALID_PIPE;
3283 }
3284
3285 if (intel_cdclk_can_crawl_and_squash(display,
3286 a: &old_cdclk_state->actual,
3287 b: &new_cdclk_state->actual)) {
3288 drm_dbg_kms(display->drm,
3289 "Can change cdclk via crawling and squashing\n");
3290 } else if (intel_cdclk_can_squash(display,
3291 a: &old_cdclk_state->actual,
3292 b: &new_cdclk_state->actual)) {
3293 drm_dbg_kms(display->drm,
3294 "Can change cdclk via squashing\n");
3295 } else if (intel_cdclk_can_crawl(display,
3296 a: &old_cdclk_state->actual,
3297 b: &new_cdclk_state->actual)) {
3298 drm_dbg_kms(display->drm,
3299 "Can change cdclk via crawling\n");
3300 } else if (pipe != INVALID_PIPE) {
3301 new_cdclk_state->pipe = pipe;
3302
3303 drm_dbg_kms(display->drm,
3304 "Can change cdclk cd2x divider with pipe %c active\n",
3305 pipe_name(pipe));
3306 } else if (intel_cdclk_clock_changed(a: &old_cdclk_state->actual,
3307 b: &new_cdclk_state->actual)) {
3308 /* All pipes must be switched off while we change the cdclk. */
3309 ret = intel_modeset_all_pipes_late(state, reason: "CDCLK change");
3310 if (ret)
3311 return ret;
3312
3313 new_cdclk_state->disable_pipes = true;
3314
3315 drm_dbg_kms(display->drm,
3316 "Modeset required for cdclk change\n");
3317 }
3318
3319 if (intel_mdclk_cdclk_ratio(display, cdclk_config: &old_cdclk_state->actual) !=
3320 intel_mdclk_cdclk_ratio(display, cdclk_config: &new_cdclk_state->actual)) {
3321 int ratio = intel_mdclk_cdclk_ratio(display, cdclk_config: &new_cdclk_state->actual);
3322
3323 ret = intel_dbuf_state_set_mdclk_cdclk_ratio(state, ratio);
3324 if (ret)
3325 return ret;
3326 }
3327
3328 drm_dbg_kms(display->drm,
3329 "New cdclk calculated to be logical %u kHz, actual %u kHz\n",
3330 new_cdclk_state->logical.cdclk,
3331 new_cdclk_state->actual.cdclk);
3332 drm_dbg_kms(display->drm,
3333 "New voltage level calculated to be logical %u, actual %u\n",
3334 new_cdclk_state->logical.voltage_level,
3335 new_cdclk_state->actual.voltage_level);
3336
3337 return 0;
3338}
3339
3340void intel_cdclk_update_hw_state(struct intel_display *display)
3341{
3342 const struct intel_bw_state *bw_state =
3343 to_intel_bw_state(display->bw.obj.state);
3344 struct intel_cdclk_state *cdclk_state =
3345 to_intel_cdclk_state(display->cdclk.obj.state);
3346 struct intel_crtc *crtc;
3347
3348 cdclk_state->active_pipes = 0;
3349
3350 for_each_intel_crtc(display->drm, crtc) {
3351 const struct intel_crtc_state *crtc_state =
3352 to_intel_crtc_state(crtc->base.state);
3353 enum pipe pipe = crtc->pipe;
3354
3355 if (crtc_state->hw.active)
3356 cdclk_state->active_pipes |= BIT(pipe);
3357
3358 cdclk_state->min_cdclk[pipe] = intel_crtc_compute_min_cdclk(crtc_state);
3359 cdclk_state->min_voltage_level[pipe] = crtc_state->min_voltage_level;
3360 }
3361
3362 cdclk_state->bw_min_cdclk = intel_bw_min_cdclk(display, bw_state);
3363}
3364
3365void intel_cdclk_crtc_disable_noatomic(struct intel_crtc *crtc)
3366{
3367 struct intel_display *display = to_intel_display(crtc);
3368
3369 intel_cdclk_update_hw_state(display);
3370}
3371
3372static int intel_compute_max_dotclk(struct intel_display *display)
3373{
3374 int ppc = intel_cdclk_ppc(display, HAS_DOUBLE_WIDE(display));
3375 int guardband = intel_cdclk_guardband(display);
3376 int max_cdclk_freq = display->cdclk.max_cdclk_freq;
3377
3378 return ppc * max_cdclk_freq * guardband / 100;
3379}
3380
3381/**
3382 * intel_update_max_cdclk - Determine the maximum support CDCLK frequency
3383 * @display: display instance
3384 *
3385 * Determine the maximum CDCLK frequency the platform supports, and also
3386 * derive the maximum dot clock frequency the maximum CDCLK frequency
3387 * allows.
3388 */
3389void intel_update_max_cdclk(struct intel_display *display)
3390{
3391 if (DISPLAY_VER(display) >= 30) {
3392 display->cdclk.max_cdclk_freq = 691200;
3393 } else if (display->platform.jasperlake || display->platform.elkhartlake) {
3394 if (display->cdclk.hw.ref == 24000)
3395 display->cdclk.max_cdclk_freq = 552000;
3396 else
3397 display->cdclk.max_cdclk_freq = 556800;
3398 } else if (DISPLAY_VER(display) >= 11) {
3399 if (display->cdclk.hw.ref == 24000)
3400 display->cdclk.max_cdclk_freq = 648000;
3401 else
3402 display->cdclk.max_cdclk_freq = 652800;
3403 } else if (display->platform.geminilake) {
3404 display->cdclk.max_cdclk_freq = 316800;
3405 } else if (display->platform.broxton) {
3406 display->cdclk.max_cdclk_freq = 624000;
3407 } else if (DISPLAY_VER(display) == 9) {
3408 u32 limit = intel_de_read(display, SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
3409 int max_cdclk, vco;
3410
3411 vco = display->cdclk.skl_preferred_vco_freq;
3412 drm_WARN_ON(display->drm, vco != 8100000 && vco != 8640000);
3413
3414 /*
3415 * Use the lower (vco 8640) cdclk values as a
3416 * first guess. skl_calc_cdclk() will correct it
3417 * if the preferred vco is 8100 instead.
3418 */
3419 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
3420 max_cdclk = 617143;
3421 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
3422 max_cdclk = 540000;
3423 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
3424 max_cdclk = 432000;
3425 else
3426 max_cdclk = 308571;
3427
3428 display->cdclk.max_cdclk_freq = skl_calc_cdclk(min_cdclk: max_cdclk, vco);
3429 } else if (display->platform.broadwell) {
3430 /*
3431 * FIXME with extra cooling we can allow
3432 * 540 MHz for ULX and 675 Mhz for ULT.
3433 * How can we know if extra cooling is
3434 * available? PCI ID, VTB, something else?
3435 */
3436 if (intel_de_read(display, FUSE_STRAP) & HSW_CDCLK_LIMIT)
3437 display->cdclk.max_cdclk_freq = 450000;
3438 else if (display->platform.broadwell_ulx)
3439 display->cdclk.max_cdclk_freq = 450000;
3440 else if (display->platform.broadwell_ult)
3441 display->cdclk.max_cdclk_freq = 540000;
3442 else
3443 display->cdclk.max_cdclk_freq = 675000;
3444 } else if (display->platform.cherryview) {
3445 display->cdclk.max_cdclk_freq = 320000;
3446 } else if (display->platform.valleyview) {
3447 display->cdclk.max_cdclk_freq = 400000;
3448 } else {
3449 /* otherwise assume cdclk is fixed */
3450 display->cdclk.max_cdclk_freq = display->cdclk.hw.cdclk;
3451 }
3452
3453 display->cdclk.max_dotclk_freq = intel_compute_max_dotclk(display);
3454
3455 drm_dbg(display->drm, "Max CD clock rate: %d kHz\n",
3456 display->cdclk.max_cdclk_freq);
3457
3458 drm_dbg(display->drm, "Max dotclock rate: %d kHz\n",
3459 display->cdclk.max_dotclk_freq);
3460}
3461
3462/**
3463 * intel_update_cdclk - Determine the current CDCLK frequency
3464 * @display: display instance
3465 *
3466 * Determine the current CDCLK frequency.
3467 */
3468void intel_update_cdclk(struct intel_display *display)
3469{
3470 intel_cdclk_get_cdclk(display, cdclk_config: &display->cdclk.hw);
3471
3472 /*
3473 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
3474 * Programmng [sic] note: bit[9:2] should be programmed to the number
3475 * of cdclk that generates 4MHz reference clock freq which is used to
3476 * generate GMBus clock. This will vary with the cdclk freq.
3477 */
3478 if (display->platform.valleyview || display->platform.cherryview)
3479 intel_de_write(display, GMBUSFREQ_VLV,
3480 DIV_ROUND_UP(display->cdclk.hw.cdclk, 1000));
3481}
3482
3483static int dg1_rawclk(struct intel_display *display)
3484{
3485 /*
3486 * DG1 always uses a 38.4 MHz rawclk. The bspec tells us
3487 * "Program Numerator=2, Denominator=4, Divider=37 decimal."
3488 */
3489 intel_de_write(display, PCH_RAWCLK_FREQ,
3490 CNP_RAWCLK_DEN(4) | CNP_RAWCLK_DIV(37) | ICP_RAWCLK_NUM(2));
3491
3492 return 38400;
3493}
3494
3495static int cnp_rawclk(struct intel_display *display)
3496{
3497 int divider, fraction;
3498 u32 rawclk;
3499
3500 if (intel_de_read(display, SFUSE_STRAP) & SFUSE_STRAP_RAW_FREQUENCY) {
3501 /* 24 MHz */
3502 divider = 24000;
3503 fraction = 0;
3504 } else {
3505 /* 19.2 MHz */
3506 divider = 19000;
3507 fraction = 200;
3508 }
3509
3510 rawclk = CNP_RAWCLK_DIV(divider / 1000);
3511 if (fraction) {
3512 int numerator = 1;
3513
3514 rawclk |= CNP_RAWCLK_DEN(DIV_ROUND_CLOSEST(numerator * 1000,
3515 fraction) - 1);
3516 if (INTEL_PCH_TYPE(display) >= PCH_ICP)
3517 rawclk |= ICP_RAWCLK_NUM(numerator);
3518 }
3519
3520 intel_de_write(display, PCH_RAWCLK_FREQ, val: rawclk);
3521 return divider + fraction;
3522}
3523
3524static int pch_rawclk(struct intel_display *display)
3525{
3526 return (intel_de_read(display, PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
3527}
3528
3529static int vlv_hrawclk(struct intel_display *display)
3530{
3531 struct drm_i915_private *dev_priv = to_i915(dev: display->drm);
3532
3533 /* RAWCLK_FREQ_VLV register updated from power well code */
3534 return vlv_get_cck_clock_hpll(dev_priv, name: "hrawclk",
3535 CCK_DISPLAY_REF_CLOCK_CONTROL);
3536}
3537
3538static int i9xx_hrawclk(struct intel_display *display)
3539{
3540 struct drm_i915_private *i915 = to_i915(dev: display->drm);
3541
3542 /* hrawclock is 1/4 the FSB frequency */
3543 return DIV_ROUND_CLOSEST(i9xx_fsb_freq(i915), 4);
3544}
3545
3546/**
3547 * intel_read_rawclk - Determine the current RAWCLK frequency
3548 * @display: display instance
3549 *
3550 * Determine the current RAWCLK frequency. RAWCLK is a fixed
3551 * frequency clock so this needs to done only once.
3552 */
3553u32 intel_read_rawclk(struct intel_display *display)
3554{
3555 u32 freq;
3556
3557 if (INTEL_PCH_TYPE(display) >= PCH_MTL)
3558 /*
3559 * MTL always uses a 38.4 MHz rawclk. The bspec tells us
3560 * "RAWCLK_FREQ defaults to the values for 38.4 and does
3561 * not need to be programmed."
3562 */
3563 freq = 38400;
3564 else if (INTEL_PCH_TYPE(display) >= PCH_DG1)
3565 freq = dg1_rawclk(display);
3566 else if (INTEL_PCH_TYPE(display) >= PCH_CNP)
3567 freq = cnp_rawclk(display);
3568 else if (HAS_PCH_SPLIT(display))
3569 freq = pch_rawclk(display);
3570 else if (display->platform.valleyview || display->platform.cherryview)
3571 freq = vlv_hrawclk(display);
3572 else if (DISPLAY_VER(display) >= 3)
3573 freq = i9xx_hrawclk(display);
3574 else
3575 /* no rawclk on other platforms, or no need to know it */
3576 return 0;
3577
3578 return freq;
3579}
3580
3581static int i915_cdclk_info_show(struct seq_file *m, void *unused)
3582{
3583 struct intel_display *display = m->private;
3584
3585 seq_printf(m, fmt: "Current CD clock frequency: %d kHz\n", display->cdclk.hw.cdclk);
3586 seq_printf(m, fmt: "Max CD clock frequency: %d kHz\n", display->cdclk.max_cdclk_freq);
3587 seq_printf(m, fmt: "Max pixel clock frequency: %d kHz\n", display->cdclk.max_dotclk_freq);
3588
3589 return 0;
3590}
3591
3592DEFINE_SHOW_ATTRIBUTE(i915_cdclk_info);
3593
3594void intel_cdclk_debugfs_register(struct intel_display *display)
3595{
3596 struct drm_minor *minor = display->drm->primary;
3597
3598 debugfs_create_file("i915_cdclk_info", 0444, minor->debugfs_root,
3599 display, &i915_cdclk_info_fops);
3600}
3601
3602static const struct intel_cdclk_funcs xe3lpd_cdclk_funcs = {
3603 .get_cdclk = bxt_get_cdclk,
3604 .set_cdclk = bxt_set_cdclk,
3605 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3606 .calc_voltage_level = xe3lpd_calc_voltage_level,
3607};
3608
3609static const struct intel_cdclk_funcs rplu_cdclk_funcs = {
3610 .get_cdclk = bxt_get_cdclk,
3611 .set_cdclk = bxt_set_cdclk,
3612 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3613 .calc_voltage_level = rplu_calc_voltage_level,
3614};
3615
3616static const struct intel_cdclk_funcs tgl_cdclk_funcs = {
3617 .get_cdclk = bxt_get_cdclk,
3618 .set_cdclk = bxt_set_cdclk,
3619 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3620 .calc_voltage_level = tgl_calc_voltage_level,
3621};
3622
3623static const struct intel_cdclk_funcs ehl_cdclk_funcs = {
3624 .get_cdclk = bxt_get_cdclk,
3625 .set_cdclk = bxt_set_cdclk,
3626 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3627 .calc_voltage_level = ehl_calc_voltage_level,
3628};
3629
3630static const struct intel_cdclk_funcs icl_cdclk_funcs = {
3631 .get_cdclk = bxt_get_cdclk,
3632 .set_cdclk = bxt_set_cdclk,
3633 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3634 .calc_voltage_level = icl_calc_voltage_level,
3635};
3636
3637static const struct intel_cdclk_funcs bxt_cdclk_funcs = {
3638 .get_cdclk = bxt_get_cdclk,
3639 .set_cdclk = bxt_set_cdclk,
3640 .modeset_calc_cdclk = bxt_modeset_calc_cdclk,
3641 .calc_voltage_level = bxt_calc_voltage_level,
3642};
3643
3644static const struct intel_cdclk_funcs skl_cdclk_funcs = {
3645 .get_cdclk = skl_get_cdclk,
3646 .set_cdclk = skl_set_cdclk,
3647 .modeset_calc_cdclk = skl_modeset_calc_cdclk,
3648};
3649
3650static const struct intel_cdclk_funcs bdw_cdclk_funcs = {
3651 .get_cdclk = bdw_get_cdclk,
3652 .set_cdclk = bdw_set_cdclk,
3653 .modeset_calc_cdclk = bdw_modeset_calc_cdclk,
3654};
3655
3656static const struct intel_cdclk_funcs chv_cdclk_funcs = {
3657 .get_cdclk = vlv_get_cdclk,
3658 .set_cdclk = chv_set_cdclk,
3659 .modeset_calc_cdclk = vlv_modeset_calc_cdclk,
3660};
3661
3662static const struct intel_cdclk_funcs vlv_cdclk_funcs = {
3663 .get_cdclk = vlv_get_cdclk,
3664 .set_cdclk = vlv_set_cdclk,
3665 .modeset_calc_cdclk = vlv_modeset_calc_cdclk,
3666};
3667
3668static const struct intel_cdclk_funcs hsw_cdclk_funcs = {
3669 .get_cdclk = hsw_get_cdclk,
3670 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3671};
3672
3673/* SNB, IVB, 965G, 945G */
3674static const struct intel_cdclk_funcs fixed_400mhz_cdclk_funcs = {
3675 .get_cdclk = fixed_400mhz_get_cdclk,
3676 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3677};
3678
3679static const struct intel_cdclk_funcs ilk_cdclk_funcs = {
3680 .get_cdclk = fixed_450mhz_get_cdclk,
3681 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3682};
3683
3684static const struct intel_cdclk_funcs gm45_cdclk_funcs = {
3685 .get_cdclk = gm45_get_cdclk,
3686 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3687};
3688
3689/* G45 uses G33 */
3690
3691static const struct intel_cdclk_funcs i965gm_cdclk_funcs = {
3692 .get_cdclk = i965gm_get_cdclk,
3693 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3694};
3695
3696/* i965G uses fixed 400 */
3697
3698static const struct intel_cdclk_funcs pnv_cdclk_funcs = {
3699 .get_cdclk = pnv_get_cdclk,
3700 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3701};
3702
3703static const struct intel_cdclk_funcs g33_cdclk_funcs = {
3704 .get_cdclk = g33_get_cdclk,
3705 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3706};
3707
3708static const struct intel_cdclk_funcs i945gm_cdclk_funcs = {
3709 .get_cdclk = i945gm_get_cdclk,
3710 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3711};
3712
3713/* i945G uses fixed 400 */
3714
3715static const struct intel_cdclk_funcs i915gm_cdclk_funcs = {
3716 .get_cdclk = i915gm_get_cdclk,
3717 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3718};
3719
3720static const struct intel_cdclk_funcs i915g_cdclk_funcs = {
3721 .get_cdclk = fixed_333mhz_get_cdclk,
3722 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3723};
3724
3725static const struct intel_cdclk_funcs i865g_cdclk_funcs = {
3726 .get_cdclk = fixed_266mhz_get_cdclk,
3727 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3728};
3729
3730static const struct intel_cdclk_funcs i85x_cdclk_funcs = {
3731 .get_cdclk = i85x_get_cdclk,
3732 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3733};
3734
3735static const struct intel_cdclk_funcs i845g_cdclk_funcs = {
3736 .get_cdclk = fixed_200mhz_get_cdclk,
3737 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3738};
3739
3740static const struct intel_cdclk_funcs i830_cdclk_funcs = {
3741 .get_cdclk = fixed_133mhz_get_cdclk,
3742 .modeset_calc_cdclk = fixed_modeset_calc_cdclk,
3743};
3744
3745/**
3746 * intel_init_cdclk_hooks - Initialize CDCLK related modesetting hooks
3747 * @display: display instance
3748 */
3749void intel_init_cdclk_hooks(struct intel_display *display)
3750{
3751 if (DISPLAY_VER(display) >= 30) {
3752 display->funcs.cdclk = &xe3lpd_cdclk_funcs;
3753 display->cdclk.table = xe3lpd_cdclk_table;
3754 } else if (DISPLAY_VER(display) >= 20) {
3755 display->funcs.cdclk = &rplu_cdclk_funcs;
3756 display->cdclk.table = xe2lpd_cdclk_table;
3757 } else if (DISPLAY_VERx100(display) >= 1401) {
3758 display->funcs.cdclk = &rplu_cdclk_funcs;
3759 display->cdclk.table = xe2hpd_cdclk_table;
3760 } else if (DISPLAY_VER(display) >= 14) {
3761 display->funcs.cdclk = &rplu_cdclk_funcs;
3762 display->cdclk.table = mtl_cdclk_table;
3763 } else if (display->platform.dg2) {
3764 display->funcs.cdclk = &tgl_cdclk_funcs;
3765 display->cdclk.table = dg2_cdclk_table;
3766 } else if (display->platform.alderlake_p) {
3767 /* Wa_22011320316:adl-p[a0] */
3768 if (display->platform.alderlake_p && IS_DISPLAY_STEP(display, STEP_A0, STEP_B0)) {
3769 display->cdclk.table = adlp_a_step_cdclk_table;
3770 display->funcs.cdclk = &tgl_cdclk_funcs;
3771 } else if (display->platform.alderlake_p_raptorlake_u) {
3772 display->cdclk.table = rplu_cdclk_table;
3773 display->funcs.cdclk = &rplu_cdclk_funcs;
3774 } else {
3775 display->cdclk.table = adlp_cdclk_table;
3776 display->funcs.cdclk = &tgl_cdclk_funcs;
3777 }
3778 } else if (display->platform.rocketlake) {
3779 display->funcs.cdclk = &tgl_cdclk_funcs;
3780 display->cdclk.table = rkl_cdclk_table;
3781 } else if (DISPLAY_VER(display) >= 12) {
3782 display->funcs.cdclk = &tgl_cdclk_funcs;
3783 display->cdclk.table = icl_cdclk_table;
3784 } else if (display->platform.jasperlake || display->platform.elkhartlake) {
3785 display->funcs.cdclk = &ehl_cdclk_funcs;
3786 display->cdclk.table = icl_cdclk_table;
3787 } else if (DISPLAY_VER(display) >= 11) {
3788 display->funcs.cdclk = &icl_cdclk_funcs;
3789 display->cdclk.table = icl_cdclk_table;
3790 } else if (display->platform.geminilake || display->platform.broxton) {
3791 display->funcs.cdclk = &bxt_cdclk_funcs;
3792 if (display->platform.geminilake)
3793 display->cdclk.table = glk_cdclk_table;
3794 else
3795 display->cdclk.table = bxt_cdclk_table;
3796 } else if (DISPLAY_VER(display) == 9) {
3797 display->funcs.cdclk = &skl_cdclk_funcs;
3798 } else if (display->platform.broadwell) {
3799 display->funcs.cdclk = &bdw_cdclk_funcs;
3800 } else if (display->platform.haswell) {
3801 display->funcs.cdclk = &hsw_cdclk_funcs;
3802 } else if (display->platform.cherryview) {
3803 display->funcs.cdclk = &chv_cdclk_funcs;
3804 } else if (display->platform.valleyview) {
3805 display->funcs.cdclk = &vlv_cdclk_funcs;
3806 } else if (display->platform.sandybridge || display->platform.ivybridge) {
3807 display->funcs.cdclk = &fixed_400mhz_cdclk_funcs;
3808 } else if (display->platform.ironlake) {
3809 display->funcs.cdclk = &ilk_cdclk_funcs;
3810 } else if (display->platform.gm45) {
3811 display->funcs.cdclk = &gm45_cdclk_funcs;
3812 } else if (display->platform.g45) {
3813 display->funcs.cdclk = &g33_cdclk_funcs;
3814 } else if (display->platform.i965gm) {
3815 display->funcs.cdclk = &i965gm_cdclk_funcs;
3816 } else if (display->platform.i965g) {
3817 display->funcs.cdclk = &fixed_400mhz_cdclk_funcs;
3818 } else if (display->platform.pineview) {
3819 display->funcs.cdclk = &pnv_cdclk_funcs;
3820 } else if (display->platform.g33) {
3821 display->funcs.cdclk = &g33_cdclk_funcs;
3822 } else if (display->platform.i945gm) {
3823 display->funcs.cdclk = &i945gm_cdclk_funcs;
3824 } else if (display->platform.i945g) {
3825 display->funcs.cdclk = &fixed_400mhz_cdclk_funcs;
3826 } else if (display->platform.i915gm) {
3827 display->funcs.cdclk = &i915gm_cdclk_funcs;
3828 } else if (display->platform.i915g) {
3829 display->funcs.cdclk = &i915g_cdclk_funcs;
3830 } else if (display->platform.i865g) {
3831 display->funcs.cdclk = &i865g_cdclk_funcs;
3832 } else if (display->platform.i85x) {
3833 display->funcs.cdclk = &i85x_cdclk_funcs;
3834 } else if (display->platform.i845g) {
3835 display->funcs.cdclk = &i845g_cdclk_funcs;
3836 } else if (display->platform.i830) {
3837 display->funcs.cdclk = &i830_cdclk_funcs;
3838 }
3839
3840 if (drm_WARN(display->drm, !display->funcs.cdclk,
3841 "Unknown platform. Assuming i830\n"))
3842 display->funcs.cdclk = &i830_cdclk_funcs;
3843}
3844

source code of linux/drivers/gpu/drm/i915/display/intel_cdclk.c