1/*
2 * Copyright (c) 2004 Topspin Communications. All rights reserved.
3 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#include <linux/module.h>
35#include <linux/string.h>
36#include <linux/errno.h>
37#include <linux/kernel.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/netdevice.h>
41#include <net/net_namespace.h>
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/hashtable.h>
45#include <rdma/rdma_netlink.h>
46#include <rdma/ib_addr.h>
47#include <rdma/ib_cache.h>
48#include <rdma/rdma_counter.h>
49
50#include "core_priv.h"
51#include "restrack.h"
52
53MODULE_AUTHOR("Roland Dreier");
54MODULE_DESCRIPTION("core kernel InfiniBand API");
55MODULE_LICENSE("Dual BSD/GPL");
56
57struct workqueue_struct *ib_comp_wq;
58struct workqueue_struct *ib_comp_unbound_wq;
59struct workqueue_struct *ib_wq;
60EXPORT_SYMBOL_GPL(ib_wq);
61static struct workqueue_struct *ib_unreg_wq;
62
63/*
64 * Each of the three rwsem locks (devices, clients, client_data) protects the
65 * xarray of the same name. Specifically it allows the caller to assert that
66 * the MARK will/will not be changing under the lock, and for devices and
67 * clients, that the value in the xarray is still a valid pointer. Change of
68 * the MARK is linked to the object state, so holding the lock and testing the
69 * MARK also asserts that the contained object is in a certain state.
70 *
71 * This is used to build a two stage register/unregister flow where objects
72 * can continue to be in the xarray even though they are still in progress to
73 * register/unregister.
74 *
75 * The xarray itself provides additional locking, and restartable iteration,
76 * which is also relied on.
77 *
78 * Locks should not be nested, with the exception of client_data, which is
79 * allowed to nest under the read side of the other two locks.
80 *
81 * The devices_rwsem also protects the device name list, any change or
82 * assignment of device name must also hold the write side to guarantee unique
83 * names.
84 */
85
86/*
87 * devices contains devices that have had their names assigned. The
88 * devices may not be registered. Users that care about the registration
89 * status need to call ib_device_try_get() on the device to ensure it is
90 * registered, and keep it registered, for the required duration.
91 *
92 */
93static DEFINE_XARRAY_FLAGS(devices, XA_FLAGS_ALLOC);
94static DECLARE_RWSEM(devices_rwsem);
95#define DEVICE_REGISTERED XA_MARK_1
96
97static u32 highest_client_id;
98#define CLIENT_REGISTERED XA_MARK_1
99static DEFINE_XARRAY_FLAGS(clients, XA_FLAGS_ALLOC);
100static DECLARE_RWSEM(clients_rwsem);
101
102static void ib_client_put(struct ib_client *client)
103{
104 if (refcount_dec_and_test(r: &client->uses))
105 complete(&client->uses_zero);
106}
107
108/*
109 * If client_data is registered then the corresponding client must also still
110 * be registered.
111 */
112#define CLIENT_DATA_REGISTERED XA_MARK_1
113
114unsigned int rdma_dev_net_id;
115
116/*
117 * A list of net namespaces is maintained in an xarray. This is necessary
118 * because we can't get the locking right using the existing net ns list. We
119 * would require a init_net callback after the list is updated.
120 */
121static DEFINE_XARRAY_FLAGS(rdma_nets, XA_FLAGS_ALLOC);
122/*
123 * rwsem to protect accessing the rdma_nets xarray entries.
124 */
125static DECLARE_RWSEM(rdma_nets_rwsem);
126
127bool ib_devices_shared_netns = true;
128module_param_named(netns_mode, ib_devices_shared_netns, bool, 0444);
129MODULE_PARM_DESC(netns_mode,
130 "Share device among net namespaces; default=1 (shared)");
131/**
132 * rdma_dev_access_netns() - Return whether an rdma device can be accessed
133 * from a specified net namespace or not.
134 * @dev: Pointer to rdma device which needs to be checked
135 * @net: Pointer to net namesapce for which access to be checked
136 *
137 * When the rdma device is in shared mode, it ignores the net namespace.
138 * When the rdma device is exclusive to a net namespace, rdma device net
139 * namespace is checked against the specified one.
140 */
141bool rdma_dev_access_netns(const struct ib_device *dev, const struct net *net)
142{
143 return (ib_devices_shared_netns ||
144 net_eq(net1: read_pnet(pnet: &dev->coredev.rdma_net), net2: net));
145}
146EXPORT_SYMBOL(rdma_dev_access_netns);
147
148/*
149 * xarray has this behavior where it won't iterate over NULL values stored in
150 * allocated arrays. So we need our own iterator to see all values stored in
151 * the array. This does the same thing as xa_for_each except that it also
152 * returns NULL valued entries if the array is allocating. Simplified to only
153 * work on simple xarrays.
154 */
155static void *xan_find_marked(struct xarray *xa, unsigned long *indexp,
156 xa_mark_t filter)
157{
158 XA_STATE(xas, xa, *indexp);
159 void *entry;
160
161 rcu_read_lock();
162 do {
163 entry = xas_find_marked(&xas, ULONG_MAX, filter);
164 if (xa_is_zero(entry))
165 break;
166 } while (xas_retry(xas: &xas, entry));
167 rcu_read_unlock();
168
169 if (entry) {
170 *indexp = xas.xa_index;
171 if (xa_is_zero(entry))
172 return NULL;
173 return entry;
174 }
175 return XA_ERROR(-ENOENT);
176}
177#define xan_for_each_marked(xa, index, entry, filter) \
178 for (index = 0, entry = xan_find_marked(xa, &(index), filter); \
179 !xa_is_err(entry); \
180 (index)++, entry = xan_find_marked(xa, &(index), filter))
181
182/* RCU hash table mapping netdevice pointers to struct ib_port_data */
183static DEFINE_SPINLOCK(ndev_hash_lock);
184static DECLARE_HASHTABLE(ndev_hash, 5);
185
186static void free_netdevs(struct ib_device *ib_dev);
187static void ib_unregister_work(struct work_struct *work);
188static void __ib_unregister_device(struct ib_device *device);
189static int ib_security_change(struct notifier_block *nb, unsigned long event,
190 void *lsm_data);
191static void ib_policy_change_task(struct work_struct *work);
192static DECLARE_WORK(ib_policy_change_work, ib_policy_change_task);
193
194static void __ibdev_printk(const char *level, const struct ib_device *ibdev,
195 struct va_format *vaf)
196{
197 if (ibdev && ibdev->dev.parent)
198 dev_printk_emit(level: level[1] - '0',
199 dev: ibdev->dev.parent,
200 fmt: "%s %s %s: %pV",
201 dev_driver_string(dev: ibdev->dev.parent),
202 dev_name(dev: ibdev->dev.parent),
203 dev_name(dev: &ibdev->dev),
204 vaf);
205 else if (ibdev)
206 printk("%s%s: %pV",
207 level, dev_name(&ibdev->dev), vaf);
208 else
209 printk("%s(NULL ib_device): %pV", level, vaf);
210}
211
212void ibdev_printk(const char *level, const struct ib_device *ibdev,
213 const char *format, ...)
214{
215 struct va_format vaf;
216 va_list args;
217
218 va_start(args, format);
219
220 vaf.fmt = format;
221 vaf.va = &args;
222
223 __ibdev_printk(level, ibdev, vaf: &vaf);
224
225 va_end(args);
226}
227EXPORT_SYMBOL(ibdev_printk);
228
229#define define_ibdev_printk_level(func, level) \
230void func(const struct ib_device *ibdev, const char *fmt, ...) \
231{ \
232 struct va_format vaf; \
233 va_list args; \
234 \
235 va_start(args, fmt); \
236 \
237 vaf.fmt = fmt; \
238 vaf.va = &args; \
239 \
240 __ibdev_printk(level, ibdev, &vaf); \
241 \
242 va_end(args); \
243} \
244EXPORT_SYMBOL(func);
245
246define_ibdev_printk_level(ibdev_emerg, KERN_EMERG);
247define_ibdev_printk_level(ibdev_alert, KERN_ALERT);
248define_ibdev_printk_level(ibdev_crit, KERN_CRIT);
249define_ibdev_printk_level(ibdev_err, KERN_ERR);
250define_ibdev_printk_level(ibdev_warn, KERN_WARNING);
251define_ibdev_printk_level(ibdev_notice, KERN_NOTICE);
252define_ibdev_printk_level(ibdev_info, KERN_INFO);
253
254static struct notifier_block ibdev_lsm_nb = {
255 .notifier_call = ib_security_change,
256};
257
258static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
259 struct net *net);
260
261/* Pointer to the RCU head at the start of the ib_port_data array */
262struct ib_port_data_rcu {
263 struct rcu_head rcu_head;
264 struct ib_port_data pdata[];
265};
266
267static void ib_device_check_mandatory(struct ib_device *device)
268{
269#define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device_ops, x), #x }
270 static const struct {
271 size_t offset;
272 char *name;
273 } mandatory_table[] = {
274 IB_MANDATORY_FUNC(query_device),
275 IB_MANDATORY_FUNC(query_port),
276 IB_MANDATORY_FUNC(alloc_pd),
277 IB_MANDATORY_FUNC(dealloc_pd),
278 IB_MANDATORY_FUNC(create_qp),
279 IB_MANDATORY_FUNC(modify_qp),
280 IB_MANDATORY_FUNC(destroy_qp),
281 IB_MANDATORY_FUNC(post_send),
282 IB_MANDATORY_FUNC(post_recv),
283 IB_MANDATORY_FUNC(create_cq),
284 IB_MANDATORY_FUNC(destroy_cq),
285 IB_MANDATORY_FUNC(poll_cq),
286 IB_MANDATORY_FUNC(req_notify_cq),
287 IB_MANDATORY_FUNC(get_dma_mr),
288 IB_MANDATORY_FUNC(reg_user_mr),
289 IB_MANDATORY_FUNC(dereg_mr),
290 IB_MANDATORY_FUNC(get_port_immutable)
291 };
292 int i;
293
294 device->kverbs_provider = true;
295 for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) {
296 if (!*(void **) ((void *) &device->ops +
297 mandatory_table[i].offset)) {
298 device->kverbs_provider = false;
299 break;
300 }
301 }
302}
303
304/*
305 * Caller must perform ib_device_put() to return the device reference count
306 * when ib_device_get_by_index() returns valid device pointer.
307 */
308struct ib_device *ib_device_get_by_index(const struct net *net, u32 index)
309{
310 struct ib_device *device;
311
312 down_read(sem: &devices_rwsem);
313 device = xa_load(&devices, index);
314 if (device) {
315 if (!rdma_dev_access_netns(device, net)) {
316 device = NULL;
317 goto out;
318 }
319
320 if (!ib_device_try_get(dev: device))
321 device = NULL;
322 }
323out:
324 up_read(sem: &devices_rwsem);
325 return device;
326}
327
328/**
329 * ib_device_put - Release IB device reference
330 * @device: device whose reference to be released
331 *
332 * ib_device_put() releases reference to the IB device to allow it to be
333 * unregistered and eventually free.
334 */
335void ib_device_put(struct ib_device *device)
336{
337 if (refcount_dec_and_test(r: &device->refcount))
338 complete(&device->unreg_completion);
339}
340EXPORT_SYMBOL(ib_device_put);
341
342static struct ib_device *__ib_device_get_by_name(const char *name)
343{
344 struct ib_device *device;
345 unsigned long index;
346
347 xa_for_each (&devices, index, device)
348 if (!strcmp(name, dev_name(dev: &device->dev)))
349 return device;
350
351 return NULL;
352}
353
354/**
355 * ib_device_get_by_name - Find an IB device by name
356 * @name: The name to look for
357 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
358 *
359 * Find and hold an ib_device by its name. The caller must call
360 * ib_device_put() on the returned pointer.
361 */
362struct ib_device *ib_device_get_by_name(const char *name,
363 enum rdma_driver_id driver_id)
364{
365 struct ib_device *device;
366
367 down_read(sem: &devices_rwsem);
368 device = __ib_device_get_by_name(name);
369 if (device && driver_id != RDMA_DRIVER_UNKNOWN &&
370 device->ops.driver_id != driver_id)
371 device = NULL;
372
373 if (device) {
374 if (!ib_device_try_get(dev: device))
375 device = NULL;
376 }
377 up_read(sem: &devices_rwsem);
378 return device;
379}
380EXPORT_SYMBOL(ib_device_get_by_name);
381
382static int rename_compat_devs(struct ib_device *device)
383{
384 struct ib_core_device *cdev;
385 unsigned long index;
386 int ret = 0;
387
388 mutex_lock(&device->compat_devs_mutex);
389 xa_for_each (&device->compat_devs, index, cdev) {
390 ret = device_rename(dev: &cdev->dev, new_name: dev_name(dev: &device->dev));
391 if (ret) {
392 dev_warn(&cdev->dev,
393 "Fail to rename compatdev to new name %s\n",
394 dev_name(&device->dev));
395 break;
396 }
397 }
398 mutex_unlock(lock: &device->compat_devs_mutex);
399 return ret;
400}
401
402int ib_device_rename(struct ib_device *ibdev, const char *name)
403{
404 unsigned long index;
405 void *client_data;
406 int ret;
407
408 down_write(sem: &devices_rwsem);
409 if (!strcmp(name, dev_name(dev: &ibdev->dev))) {
410 up_write(sem: &devices_rwsem);
411 return 0;
412 }
413
414 if (__ib_device_get_by_name(name)) {
415 up_write(sem: &devices_rwsem);
416 return -EEXIST;
417 }
418
419 ret = device_rename(dev: &ibdev->dev, new_name: name);
420 if (ret) {
421 up_write(sem: &devices_rwsem);
422 return ret;
423 }
424
425 strscpy(ibdev->name, name, IB_DEVICE_NAME_MAX);
426 ret = rename_compat_devs(device: ibdev);
427
428 downgrade_write(sem: &devices_rwsem);
429 down_read(sem: &ibdev->client_data_rwsem);
430 xan_for_each_marked(&ibdev->client_data, index, client_data,
431 CLIENT_DATA_REGISTERED) {
432 struct ib_client *client = xa_load(&clients, index);
433
434 if (!client || !client->rename)
435 continue;
436
437 client->rename(ibdev, client_data);
438 }
439 up_read(sem: &ibdev->client_data_rwsem);
440 up_read(sem: &devices_rwsem);
441 return 0;
442}
443
444int ib_device_set_dim(struct ib_device *ibdev, u8 use_dim)
445{
446 if (use_dim > 1)
447 return -EINVAL;
448 ibdev->use_cq_dim = use_dim;
449
450 return 0;
451}
452
453static int alloc_name(struct ib_device *ibdev, const char *name)
454{
455 struct ib_device *device;
456 unsigned long index;
457 struct ida inuse;
458 int rc;
459 int i;
460
461 lockdep_assert_held_write(&devices_rwsem);
462 ida_init(ida: &inuse);
463 xa_for_each (&devices, index, device) {
464 char buf[IB_DEVICE_NAME_MAX];
465
466 if (sscanf(dev_name(dev: &device->dev), name, &i) != 1)
467 continue;
468 if (i < 0 || i >= INT_MAX)
469 continue;
470 snprintf(buf, size: sizeof buf, fmt: name, i);
471 if (strcmp(buf, dev_name(dev: &device->dev)) != 0)
472 continue;
473
474 rc = ida_alloc_range(&inuse, min: i, max: i, GFP_KERNEL);
475 if (rc < 0)
476 goto out;
477 }
478
479 rc = ida_alloc(ida: &inuse, GFP_KERNEL);
480 if (rc < 0)
481 goto out;
482
483 rc = dev_set_name(dev: &ibdev->dev, name, rc);
484out:
485 ida_destroy(ida: &inuse);
486 return rc;
487}
488
489static void ib_device_release(struct device *device)
490{
491 struct ib_device *dev = container_of(device, struct ib_device, dev);
492
493 free_netdevs(ib_dev: dev);
494 WARN_ON(refcount_read(&dev->refcount));
495 if (dev->hw_stats_data)
496 ib_device_release_hw_stats(data: dev->hw_stats_data);
497 if (dev->port_data) {
498 ib_cache_release_one(device: dev);
499 ib_security_release_port_pkey_list(device: dev);
500 rdma_counter_release(dev);
501 kfree_rcu(container_of(dev->port_data, struct ib_port_data_rcu,
502 pdata[0]),
503 rcu_head);
504 }
505
506 mutex_destroy(lock: &dev->unregistration_lock);
507 mutex_destroy(lock: &dev->compat_devs_mutex);
508
509 xa_destroy(&dev->compat_devs);
510 xa_destroy(&dev->client_data);
511 kfree_rcu(dev, rcu_head);
512}
513
514static int ib_device_uevent(const struct device *device,
515 struct kobj_uevent_env *env)
516{
517 if (add_uevent_var(env, format: "NAME=%s", dev_name(dev: device)))
518 return -ENOMEM;
519
520 /*
521 * It would be nice to pass the node GUID with the event...
522 */
523
524 return 0;
525}
526
527static const void *net_namespace(const struct device *d)
528{
529 const struct ib_core_device *coredev =
530 container_of(d, struct ib_core_device, dev);
531
532 return read_pnet(pnet: &coredev->rdma_net);
533}
534
535static struct class ib_class = {
536 .name = "infiniband",
537 .dev_release = ib_device_release,
538 .dev_uevent = ib_device_uevent,
539 .ns_type = &net_ns_type_operations,
540 .namespace = net_namespace,
541};
542
543static void rdma_init_coredev(struct ib_core_device *coredev,
544 struct ib_device *dev, struct net *net)
545{
546 /* This BUILD_BUG_ON is intended to catch layout change
547 * of union of ib_core_device and device.
548 * dev must be the first element as ib_core and providers
549 * driver uses it. Adding anything in ib_core_device before
550 * device will break this assumption.
551 */
552 BUILD_BUG_ON(offsetof(struct ib_device, coredev.dev) !=
553 offsetof(struct ib_device, dev));
554
555 coredev->dev.class = &ib_class;
556 coredev->dev.groups = dev->groups;
557 device_initialize(dev: &coredev->dev);
558 coredev->owner = dev;
559 INIT_LIST_HEAD(list: &coredev->port_list);
560 write_pnet(pnet: &coredev->rdma_net, net);
561}
562
563/**
564 * _ib_alloc_device - allocate an IB device struct
565 * @size:size of structure to allocate
566 *
567 * Low-level drivers should use ib_alloc_device() to allocate &struct
568 * ib_device. @size is the size of the structure to be allocated,
569 * including any private data used by the low-level driver.
570 * ib_dealloc_device() must be used to free structures allocated with
571 * ib_alloc_device().
572 */
573struct ib_device *_ib_alloc_device(size_t size)
574{
575 struct ib_device *device;
576 unsigned int i;
577
578 if (WARN_ON(size < sizeof(struct ib_device)))
579 return NULL;
580
581 device = kzalloc(size, GFP_KERNEL);
582 if (!device)
583 return NULL;
584
585 if (rdma_restrack_init(dev: device)) {
586 kfree(objp: device);
587 return NULL;
588 }
589
590 rdma_init_coredev(coredev: &device->coredev, dev: device, net: &init_net);
591
592 INIT_LIST_HEAD(list: &device->event_handler_list);
593 spin_lock_init(&device->qp_open_list_lock);
594 init_rwsem(&device->event_handler_rwsem);
595 mutex_init(&device->unregistration_lock);
596 /*
597 * client_data needs to be alloc because we don't want our mark to be
598 * destroyed if the user stores NULL in the client data.
599 */
600 xa_init_flags(xa: &device->client_data, XA_FLAGS_ALLOC);
601 init_rwsem(&device->client_data_rwsem);
602 xa_init_flags(xa: &device->compat_devs, XA_FLAGS_ALLOC);
603 mutex_init(&device->compat_devs_mutex);
604 init_completion(x: &device->unreg_completion);
605 INIT_WORK(&device->unregistration_work, ib_unregister_work);
606
607 spin_lock_init(&device->cq_pools_lock);
608 for (i = 0; i < ARRAY_SIZE(device->cq_pools); i++)
609 INIT_LIST_HEAD(list: &device->cq_pools[i]);
610
611 rwlock_init(&device->cache_lock);
612
613 device->uverbs_cmd_mask =
614 BIT_ULL(IB_USER_VERBS_CMD_ALLOC_MW) |
615 BIT_ULL(IB_USER_VERBS_CMD_ALLOC_PD) |
616 BIT_ULL(IB_USER_VERBS_CMD_ATTACH_MCAST) |
617 BIT_ULL(IB_USER_VERBS_CMD_CLOSE_XRCD) |
618 BIT_ULL(IB_USER_VERBS_CMD_CREATE_AH) |
619 BIT_ULL(IB_USER_VERBS_CMD_CREATE_COMP_CHANNEL) |
620 BIT_ULL(IB_USER_VERBS_CMD_CREATE_CQ) |
621 BIT_ULL(IB_USER_VERBS_CMD_CREATE_QP) |
622 BIT_ULL(IB_USER_VERBS_CMD_CREATE_SRQ) |
623 BIT_ULL(IB_USER_VERBS_CMD_CREATE_XSRQ) |
624 BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_MW) |
625 BIT_ULL(IB_USER_VERBS_CMD_DEALLOC_PD) |
626 BIT_ULL(IB_USER_VERBS_CMD_DEREG_MR) |
627 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_AH) |
628 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_CQ) |
629 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_QP) |
630 BIT_ULL(IB_USER_VERBS_CMD_DESTROY_SRQ) |
631 BIT_ULL(IB_USER_VERBS_CMD_DETACH_MCAST) |
632 BIT_ULL(IB_USER_VERBS_CMD_GET_CONTEXT) |
633 BIT_ULL(IB_USER_VERBS_CMD_MODIFY_QP) |
634 BIT_ULL(IB_USER_VERBS_CMD_MODIFY_SRQ) |
635 BIT_ULL(IB_USER_VERBS_CMD_OPEN_QP) |
636 BIT_ULL(IB_USER_VERBS_CMD_OPEN_XRCD) |
637 BIT_ULL(IB_USER_VERBS_CMD_QUERY_DEVICE) |
638 BIT_ULL(IB_USER_VERBS_CMD_QUERY_PORT) |
639 BIT_ULL(IB_USER_VERBS_CMD_QUERY_QP) |
640 BIT_ULL(IB_USER_VERBS_CMD_QUERY_SRQ) |
641 BIT_ULL(IB_USER_VERBS_CMD_REG_MR) |
642 BIT_ULL(IB_USER_VERBS_CMD_REREG_MR) |
643 BIT_ULL(IB_USER_VERBS_CMD_RESIZE_CQ);
644 return device;
645}
646EXPORT_SYMBOL(_ib_alloc_device);
647
648/**
649 * ib_dealloc_device - free an IB device struct
650 * @device:structure to free
651 *
652 * Free a structure allocated with ib_alloc_device().
653 */
654void ib_dealloc_device(struct ib_device *device)
655{
656 if (device->ops.dealloc_driver)
657 device->ops.dealloc_driver(device);
658
659 /*
660 * ib_unregister_driver() requires all devices to remain in the xarray
661 * while their ops are callable. The last op we call is dealloc_driver
662 * above. This is needed to create a fence on op callbacks prior to
663 * allowing the driver module to unload.
664 */
665 down_write(sem: &devices_rwsem);
666 if (xa_load(&devices, index: device->index) == device)
667 xa_erase(&devices, index: device->index);
668 up_write(sem: &devices_rwsem);
669
670 /* Expedite releasing netdev references */
671 free_netdevs(ib_dev: device);
672
673 WARN_ON(!xa_empty(&device->compat_devs));
674 WARN_ON(!xa_empty(&device->client_data));
675 WARN_ON(refcount_read(&device->refcount));
676 rdma_restrack_clean(dev: device);
677 /* Balances with device_initialize */
678 put_device(dev: &device->dev);
679}
680EXPORT_SYMBOL(ib_dealloc_device);
681
682/*
683 * add_client_context() and remove_client_context() must be safe against
684 * parallel calls on the same device - registration/unregistration of both the
685 * device and client can be occurring in parallel.
686 *
687 * The routines need to be a fence, any caller must not return until the add
688 * or remove is fully completed.
689 */
690static int add_client_context(struct ib_device *device,
691 struct ib_client *client)
692{
693 int ret = 0;
694
695 if (!device->kverbs_provider && !client->no_kverbs_req)
696 return 0;
697
698 down_write(sem: &device->client_data_rwsem);
699 /*
700 * So long as the client is registered hold both the client and device
701 * unregistration locks.
702 */
703 if (!refcount_inc_not_zero(r: &client->uses))
704 goto out_unlock;
705 refcount_inc(r: &device->refcount);
706
707 /*
708 * Another caller to add_client_context got here first and has already
709 * completely initialized context.
710 */
711 if (xa_get_mark(&device->client_data, index: client->client_id,
712 CLIENT_DATA_REGISTERED))
713 goto out;
714
715 ret = xa_err(entry: xa_store(&device->client_data, index: client->client_id, NULL,
716 GFP_KERNEL));
717 if (ret)
718 goto out;
719 downgrade_write(sem: &device->client_data_rwsem);
720 if (client->add) {
721 if (client->add(device)) {
722 /*
723 * If a client fails to add then the error code is
724 * ignored, but we won't call any more ops on this
725 * client.
726 */
727 xa_erase(&device->client_data, index: client->client_id);
728 up_read(sem: &device->client_data_rwsem);
729 ib_device_put(device);
730 ib_client_put(client);
731 return 0;
732 }
733 }
734
735 /* Readers shall not see a client until add has been completed */
736 xa_set_mark(&device->client_data, index: client->client_id,
737 CLIENT_DATA_REGISTERED);
738 up_read(sem: &device->client_data_rwsem);
739 return 0;
740
741out:
742 ib_device_put(device);
743 ib_client_put(client);
744out_unlock:
745 up_write(sem: &device->client_data_rwsem);
746 return ret;
747}
748
749static void remove_client_context(struct ib_device *device,
750 unsigned int client_id)
751{
752 struct ib_client *client;
753 void *client_data;
754
755 down_write(sem: &device->client_data_rwsem);
756 if (!xa_get_mark(&device->client_data, index: client_id,
757 CLIENT_DATA_REGISTERED)) {
758 up_write(sem: &device->client_data_rwsem);
759 return;
760 }
761 client_data = xa_load(&device->client_data, index: client_id);
762 xa_clear_mark(&device->client_data, index: client_id, CLIENT_DATA_REGISTERED);
763 client = xa_load(&clients, index: client_id);
764 up_write(sem: &device->client_data_rwsem);
765
766 /*
767 * Notice we cannot be holding any exclusive locks when calling the
768 * remove callback as the remove callback can recurse back into any
769 * public functions in this module and thus try for any locks those
770 * functions take.
771 *
772 * For this reason clients and drivers should not call the
773 * unregistration functions will holdling any locks.
774 */
775 if (client->remove)
776 client->remove(device, client_data);
777
778 xa_erase(&device->client_data, index: client_id);
779 ib_device_put(device);
780 ib_client_put(client);
781}
782
783static int alloc_port_data(struct ib_device *device)
784{
785 struct ib_port_data_rcu *pdata_rcu;
786 u32 port;
787
788 if (device->port_data)
789 return 0;
790
791 /* This can only be called once the physical port range is defined */
792 if (WARN_ON(!device->phys_port_cnt))
793 return -EINVAL;
794
795 /* Reserve U32_MAX so the logic to go over all the ports is sane */
796 if (WARN_ON(device->phys_port_cnt == U32_MAX))
797 return -EINVAL;
798
799 /*
800 * device->port_data is indexed directly by the port number to make
801 * access to this data as efficient as possible.
802 *
803 * Therefore port_data is declared as a 1 based array with potential
804 * empty slots at the beginning.
805 */
806 pdata_rcu = kzalloc(struct_size(pdata_rcu, pdata,
807 size_add(rdma_end_port(device), 1)),
808 GFP_KERNEL);
809 if (!pdata_rcu)
810 return -ENOMEM;
811 /*
812 * The rcu_head is put in front of the port data array and the stored
813 * pointer is adjusted since we never need to see that member until
814 * kfree_rcu.
815 */
816 device->port_data = pdata_rcu->pdata;
817
818 rdma_for_each_port (device, port) {
819 struct ib_port_data *pdata = &device->port_data[port];
820
821 pdata->ib_dev = device;
822 spin_lock_init(&pdata->pkey_list_lock);
823 INIT_LIST_HEAD(list: &pdata->pkey_list);
824 spin_lock_init(&pdata->netdev_lock);
825 INIT_HLIST_NODE(h: &pdata->ndev_hash_link);
826 }
827 return 0;
828}
829
830static int verify_immutable(const struct ib_device *dev, u32 port)
831{
832 return WARN_ON(!rdma_cap_ib_mad(dev, port) &&
833 rdma_max_mad_size(dev, port) != 0);
834}
835
836static int setup_port_data(struct ib_device *device)
837{
838 u32 port;
839 int ret;
840
841 ret = alloc_port_data(device);
842 if (ret)
843 return ret;
844
845 rdma_for_each_port (device, port) {
846 struct ib_port_data *pdata = &device->port_data[port];
847
848 ret = device->ops.get_port_immutable(device, port,
849 &pdata->immutable);
850 if (ret)
851 return ret;
852
853 if (verify_immutable(dev: device, port))
854 return -EINVAL;
855 }
856 return 0;
857}
858
859/**
860 * ib_port_immutable_read() - Read rdma port's immutable data
861 * @dev: IB device
862 * @port: port number whose immutable data to read. It starts with index 1 and
863 * valid upto including rdma_end_port().
864 */
865const struct ib_port_immutable*
866ib_port_immutable_read(struct ib_device *dev, unsigned int port)
867{
868 WARN_ON(!rdma_is_port_valid(dev, port));
869 return &dev->port_data[port].immutable;
870}
871EXPORT_SYMBOL(ib_port_immutable_read);
872
873void ib_get_device_fw_str(struct ib_device *dev, char *str)
874{
875 if (dev->ops.get_dev_fw_str)
876 dev->ops.get_dev_fw_str(dev, str);
877 else
878 str[0] = '\0';
879}
880EXPORT_SYMBOL(ib_get_device_fw_str);
881
882static void ib_policy_change_task(struct work_struct *work)
883{
884 struct ib_device *dev;
885 unsigned long index;
886
887 down_read(sem: &devices_rwsem);
888 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
889 unsigned int i;
890
891 rdma_for_each_port (dev, i) {
892 u64 sp;
893 ib_get_cached_subnet_prefix(device: dev, port_num: i, sn_pfx: &sp);
894 ib_security_cache_change(device: dev, port_num: i, subnet_prefix: sp);
895 }
896 }
897 up_read(sem: &devices_rwsem);
898}
899
900static int ib_security_change(struct notifier_block *nb, unsigned long event,
901 void *lsm_data)
902{
903 if (event != LSM_POLICY_CHANGE)
904 return NOTIFY_DONE;
905
906 schedule_work(work: &ib_policy_change_work);
907 ib_mad_agent_security_change();
908
909 return NOTIFY_OK;
910}
911
912static void compatdev_release(struct device *dev)
913{
914 struct ib_core_device *cdev =
915 container_of(dev, struct ib_core_device, dev);
916
917 kfree(objp: cdev);
918}
919
920static int add_one_compat_dev(struct ib_device *device,
921 struct rdma_dev_net *rnet)
922{
923 struct ib_core_device *cdev;
924 int ret;
925
926 lockdep_assert_held(&rdma_nets_rwsem);
927 if (!ib_devices_shared_netns)
928 return 0;
929
930 /*
931 * Create and add compat device in all namespaces other than where it
932 * is currently bound to.
933 */
934 if (net_eq(net1: read_pnet(pnet: &rnet->net),
935 net2: read_pnet(pnet: &device->coredev.rdma_net)))
936 return 0;
937
938 /*
939 * The first of init_net() or ib_register_device() to take the
940 * compat_devs_mutex wins and gets to add the device. Others will wait
941 * for completion here.
942 */
943 mutex_lock(&device->compat_devs_mutex);
944 cdev = xa_load(&device->compat_devs, index: rnet->id);
945 if (cdev) {
946 ret = 0;
947 goto done;
948 }
949 ret = xa_reserve(xa: &device->compat_devs, index: rnet->id, GFP_KERNEL);
950 if (ret)
951 goto done;
952
953 cdev = kzalloc(size: sizeof(*cdev), GFP_KERNEL);
954 if (!cdev) {
955 ret = -ENOMEM;
956 goto cdev_err;
957 }
958
959 cdev->dev.parent = device->dev.parent;
960 rdma_init_coredev(coredev: cdev, dev: device, net: read_pnet(pnet: &rnet->net));
961 cdev->dev.release = compatdev_release;
962 ret = dev_set_name(dev: &cdev->dev, name: "%s", dev_name(dev: &device->dev));
963 if (ret)
964 goto add_err;
965
966 ret = device_add(dev: &cdev->dev);
967 if (ret)
968 goto add_err;
969 ret = ib_setup_port_attrs(coredev: cdev);
970 if (ret)
971 goto port_err;
972
973 ret = xa_err(entry: xa_store(&device->compat_devs, index: rnet->id,
974 entry: cdev, GFP_KERNEL));
975 if (ret)
976 goto insert_err;
977
978 mutex_unlock(lock: &device->compat_devs_mutex);
979 return 0;
980
981insert_err:
982 ib_free_port_attrs(coredev: cdev);
983port_err:
984 device_del(dev: &cdev->dev);
985add_err:
986 put_device(dev: &cdev->dev);
987cdev_err:
988 xa_release(xa: &device->compat_devs, index: rnet->id);
989done:
990 mutex_unlock(lock: &device->compat_devs_mutex);
991 return ret;
992}
993
994static void remove_one_compat_dev(struct ib_device *device, u32 id)
995{
996 struct ib_core_device *cdev;
997
998 mutex_lock(&device->compat_devs_mutex);
999 cdev = xa_erase(&device->compat_devs, index: id);
1000 mutex_unlock(lock: &device->compat_devs_mutex);
1001 if (cdev) {
1002 ib_free_port_attrs(coredev: cdev);
1003 device_del(dev: &cdev->dev);
1004 put_device(dev: &cdev->dev);
1005 }
1006}
1007
1008static void remove_compat_devs(struct ib_device *device)
1009{
1010 struct ib_core_device *cdev;
1011 unsigned long index;
1012
1013 xa_for_each (&device->compat_devs, index, cdev)
1014 remove_one_compat_dev(device, id: index);
1015}
1016
1017static int add_compat_devs(struct ib_device *device)
1018{
1019 struct rdma_dev_net *rnet;
1020 unsigned long index;
1021 int ret = 0;
1022
1023 lockdep_assert_held(&devices_rwsem);
1024
1025 down_read(sem: &rdma_nets_rwsem);
1026 xa_for_each (&rdma_nets, index, rnet) {
1027 ret = add_one_compat_dev(device, rnet);
1028 if (ret)
1029 break;
1030 }
1031 up_read(sem: &rdma_nets_rwsem);
1032 return ret;
1033}
1034
1035static void remove_all_compat_devs(void)
1036{
1037 struct ib_compat_device *cdev;
1038 struct ib_device *dev;
1039 unsigned long index;
1040
1041 down_read(sem: &devices_rwsem);
1042 xa_for_each (&devices, index, dev) {
1043 unsigned long c_index = 0;
1044
1045 /* Hold nets_rwsem so that any other thread modifying this
1046 * system param can sync with this thread.
1047 */
1048 down_read(sem: &rdma_nets_rwsem);
1049 xa_for_each (&dev->compat_devs, c_index, cdev)
1050 remove_one_compat_dev(device: dev, id: c_index);
1051 up_read(sem: &rdma_nets_rwsem);
1052 }
1053 up_read(sem: &devices_rwsem);
1054}
1055
1056static int add_all_compat_devs(void)
1057{
1058 struct rdma_dev_net *rnet;
1059 struct ib_device *dev;
1060 unsigned long index;
1061 int ret = 0;
1062
1063 down_read(sem: &devices_rwsem);
1064 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1065 unsigned long net_index = 0;
1066
1067 /* Hold nets_rwsem so that any other thread modifying this
1068 * system param can sync with this thread.
1069 */
1070 down_read(sem: &rdma_nets_rwsem);
1071 xa_for_each (&rdma_nets, net_index, rnet) {
1072 ret = add_one_compat_dev(device: dev, rnet);
1073 if (ret)
1074 break;
1075 }
1076 up_read(sem: &rdma_nets_rwsem);
1077 }
1078 up_read(sem: &devices_rwsem);
1079 if (ret)
1080 remove_all_compat_devs();
1081 return ret;
1082}
1083
1084int rdma_compatdev_set(u8 enable)
1085{
1086 struct rdma_dev_net *rnet;
1087 unsigned long index;
1088 int ret = 0;
1089
1090 down_write(sem: &rdma_nets_rwsem);
1091 if (ib_devices_shared_netns == enable) {
1092 up_write(sem: &rdma_nets_rwsem);
1093 return 0;
1094 }
1095
1096 /* enable/disable of compat devices is not supported
1097 * when more than default init_net exists.
1098 */
1099 xa_for_each (&rdma_nets, index, rnet) {
1100 ret++;
1101 break;
1102 }
1103 if (!ret)
1104 ib_devices_shared_netns = enable;
1105 up_write(sem: &rdma_nets_rwsem);
1106 if (ret)
1107 return -EBUSY;
1108
1109 if (enable)
1110 ret = add_all_compat_devs();
1111 else
1112 remove_all_compat_devs();
1113 return ret;
1114}
1115
1116static void rdma_dev_exit_net(struct net *net)
1117{
1118 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1119 struct ib_device *dev;
1120 unsigned long index;
1121 int ret;
1122
1123 down_write(sem: &rdma_nets_rwsem);
1124 /*
1125 * Prevent the ID from being re-used and hide the id from xa_for_each.
1126 */
1127 ret = xa_err(entry: xa_store(&rdma_nets, index: rnet->id, NULL, GFP_KERNEL));
1128 WARN_ON(ret);
1129 up_write(sem: &rdma_nets_rwsem);
1130
1131 down_read(sem: &devices_rwsem);
1132 xa_for_each (&devices, index, dev) {
1133 get_device(dev: &dev->dev);
1134 /*
1135 * Release the devices_rwsem so that pontentially blocking
1136 * device_del, doesn't hold the devices_rwsem for too long.
1137 */
1138 up_read(sem: &devices_rwsem);
1139
1140 remove_one_compat_dev(device: dev, id: rnet->id);
1141
1142 /*
1143 * If the real device is in the NS then move it back to init.
1144 */
1145 rdma_dev_change_netns(device: dev, cur_net: net, net: &init_net);
1146
1147 put_device(dev: &dev->dev);
1148 down_read(sem: &devices_rwsem);
1149 }
1150 up_read(sem: &devices_rwsem);
1151
1152 rdma_nl_net_exit(rnet);
1153 xa_erase(&rdma_nets, index: rnet->id);
1154}
1155
1156static __net_init int rdma_dev_init_net(struct net *net)
1157{
1158 struct rdma_dev_net *rnet = rdma_net_to_dev_net(net);
1159 unsigned long index;
1160 struct ib_device *dev;
1161 int ret;
1162
1163 write_pnet(pnet: &rnet->net, net);
1164
1165 ret = rdma_nl_net_init(rnet);
1166 if (ret)
1167 return ret;
1168
1169 /* No need to create any compat devices in default init_net. */
1170 if (net_eq(net1: net, net2: &init_net))
1171 return 0;
1172
1173 ret = xa_alloc(xa: &rdma_nets, id: &rnet->id, entry: rnet, xa_limit_32b, GFP_KERNEL);
1174 if (ret) {
1175 rdma_nl_net_exit(rnet);
1176 return ret;
1177 }
1178
1179 down_read(sem: &devices_rwsem);
1180 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
1181 /* Hold nets_rwsem so that netlink command cannot change
1182 * system configuration for device sharing mode.
1183 */
1184 down_read(sem: &rdma_nets_rwsem);
1185 ret = add_one_compat_dev(device: dev, rnet);
1186 up_read(sem: &rdma_nets_rwsem);
1187 if (ret)
1188 break;
1189 }
1190 up_read(sem: &devices_rwsem);
1191
1192 if (ret)
1193 rdma_dev_exit_net(net);
1194
1195 return ret;
1196}
1197
1198/*
1199 * Assign the unique string device name and the unique device index. This is
1200 * undone by ib_dealloc_device.
1201 */
1202static int assign_name(struct ib_device *device, const char *name)
1203{
1204 static u32 last_id;
1205 int ret;
1206
1207 down_write(sem: &devices_rwsem);
1208 /* Assign a unique name to the device */
1209 if (strchr(name, '%'))
1210 ret = alloc_name(ibdev: device, name);
1211 else
1212 ret = dev_set_name(dev: &device->dev, name);
1213 if (ret)
1214 goto out;
1215
1216 if (__ib_device_get_by_name(name: dev_name(dev: &device->dev))) {
1217 ret = -ENFILE;
1218 goto out;
1219 }
1220 strscpy(device->name, dev_name(&device->dev), IB_DEVICE_NAME_MAX);
1221
1222 ret = xa_alloc_cyclic(xa: &devices, id: &device->index, entry: device, xa_limit_31b,
1223 next: &last_id, GFP_KERNEL);
1224 if (ret > 0)
1225 ret = 0;
1226
1227out:
1228 up_write(sem: &devices_rwsem);
1229 return ret;
1230}
1231
1232/*
1233 * setup_device() allocates memory and sets up data that requires calling the
1234 * device ops, this is the only reason these actions are not done during
1235 * ib_alloc_device. It is undone by ib_dealloc_device().
1236 */
1237static int setup_device(struct ib_device *device)
1238{
1239 struct ib_udata uhw = {.outlen = 0, .inlen = 0};
1240 int ret;
1241
1242 ib_device_check_mandatory(device);
1243
1244 ret = setup_port_data(device);
1245 if (ret) {
1246 dev_warn(&device->dev, "Couldn't create per-port data\n");
1247 return ret;
1248 }
1249
1250 memset(&device->attrs, 0, sizeof(device->attrs));
1251 ret = device->ops.query_device(device, &device->attrs, &uhw);
1252 if (ret) {
1253 dev_warn(&device->dev,
1254 "Couldn't query the device attributes\n");
1255 return ret;
1256 }
1257
1258 return 0;
1259}
1260
1261static void disable_device(struct ib_device *device)
1262{
1263 u32 cid;
1264
1265 WARN_ON(!refcount_read(&device->refcount));
1266
1267 down_write(sem: &devices_rwsem);
1268 xa_clear_mark(&devices, index: device->index, DEVICE_REGISTERED);
1269 up_write(sem: &devices_rwsem);
1270
1271 /*
1272 * Remove clients in LIFO order, see assign_client_id. This could be
1273 * more efficient if xarray learns to reverse iterate. Since no new
1274 * clients can be added to this ib_device past this point we only need
1275 * the maximum possible client_id value here.
1276 */
1277 down_read(sem: &clients_rwsem);
1278 cid = highest_client_id;
1279 up_read(sem: &clients_rwsem);
1280 while (cid) {
1281 cid--;
1282 remove_client_context(device, client_id: cid);
1283 }
1284
1285 ib_cq_pool_cleanup(dev: device);
1286
1287 /* Pairs with refcount_set in enable_device */
1288 ib_device_put(device);
1289 wait_for_completion(&device->unreg_completion);
1290
1291 /*
1292 * compat devices must be removed after device refcount drops to zero.
1293 * Otherwise init_net() may add more compatdevs after removing compat
1294 * devices and before device is disabled.
1295 */
1296 remove_compat_devs(device);
1297}
1298
1299/*
1300 * An enabled device is visible to all clients and to all the public facing
1301 * APIs that return a device pointer. This always returns with a new get, even
1302 * if it fails.
1303 */
1304static int enable_device_and_get(struct ib_device *device)
1305{
1306 struct ib_client *client;
1307 unsigned long index;
1308 int ret = 0;
1309
1310 /*
1311 * One ref belongs to the xa and the other belongs to this
1312 * thread. This is needed to guard against parallel unregistration.
1313 */
1314 refcount_set(r: &device->refcount, n: 2);
1315 down_write(sem: &devices_rwsem);
1316 xa_set_mark(&devices, index: device->index, DEVICE_REGISTERED);
1317
1318 /*
1319 * By using downgrade_write() we ensure that no other thread can clear
1320 * DEVICE_REGISTERED while we are completing the client setup.
1321 */
1322 downgrade_write(sem: &devices_rwsem);
1323
1324 if (device->ops.enable_driver) {
1325 ret = device->ops.enable_driver(device);
1326 if (ret)
1327 goto out;
1328 }
1329
1330 down_read(sem: &clients_rwsem);
1331 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1332 ret = add_client_context(device, client);
1333 if (ret)
1334 break;
1335 }
1336 up_read(sem: &clients_rwsem);
1337 if (!ret)
1338 ret = add_compat_devs(device);
1339out:
1340 up_read(sem: &devices_rwsem);
1341 return ret;
1342}
1343
1344static void prevent_dealloc_device(struct ib_device *ib_dev)
1345{
1346}
1347
1348/**
1349 * ib_register_device - Register an IB device with IB core
1350 * @device: Device to register
1351 * @name: unique string device name. This may include a '%' which will
1352 * cause a unique index to be added to the passed device name.
1353 * @dma_device: pointer to a DMA-capable device. If %NULL, then the IB
1354 * device will be used. In this case the caller should fully
1355 * setup the ibdev for DMA. This usually means using dma_virt_ops.
1356 *
1357 * Low-level drivers use ib_register_device() to register their
1358 * devices with the IB core. All registered clients will receive a
1359 * callback for each device that is added. @device must be allocated
1360 * with ib_alloc_device().
1361 *
1362 * If the driver uses ops.dealloc_driver and calls any ib_unregister_device()
1363 * asynchronously then the device pointer may become freed as soon as this
1364 * function returns.
1365 */
1366int ib_register_device(struct ib_device *device, const char *name,
1367 struct device *dma_device)
1368{
1369 int ret;
1370
1371 ret = assign_name(device, name);
1372 if (ret)
1373 return ret;
1374
1375 /*
1376 * If the caller does not provide a DMA capable device then the IB core
1377 * will set up ib_sge and scatterlist structures that stash the kernel
1378 * virtual address into the address field.
1379 */
1380 WARN_ON(dma_device && !dma_device->dma_parms);
1381 device->dma_device = dma_device;
1382
1383 ret = setup_device(device);
1384 if (ret)
1385 return ret;
1386
1387 ret = ib_cache_setup_one(device);
1388 if (ret) {
1389 dev_warn(&device->dev,
1390 "Couldn't set up InfiniBand P_Key/GID cache\n");
1391 return ret;
1392 }
1393
1394 device->groups[0] = &ib_dev_attr_group;
1395 device->groups[1] = device->ops.device_group;
1396 ret = ib_setup_device_attrs(ibdev: device);
1397 if (ret)
1398 goto cache_cleanup;
1399
1400 ib_device_register_rdmacg(device);
1401
1402 rdma_counter_init(dev: device);
1403
1404 /*
1405 * Ensure that ADD uevent is not fired because it
1406 * is too early amd device is not initialized yet.
1407 */
1408 dev_set_uevent_suppress(dev: &device->dev, val: true);
1409 ret = device_add(dev: &device->dev);
1410 if (ret)
1411 goto cg_cleanup;
1412
1413 ret = ib_setup_port_attrs(coredev: &device->coredev);
1414 if (ret) {
1415 dev_warn(&device->dev,
1416 "Couldn't register device with driver model\n");
1417 goto dev_cleanup;
1418 }
1419
1420 ret = enable_device_and_get(device);
1421 if (ret) {
1422 void (*dealloc_fn)(struct ib_device *);
1423
1424 /*
1425 * If we hit this error flow then we don't want to
1426 * automatically dealloc the device since the caller is
1427 * expected to call ib_dealloc_device() after
1428 * ib_register_device() fails. This is tricky due to the
1429 * possibility for a parallel unregistration along with this
1430 * error flow. Since we have a refcount here we know any
1431 * parallel flow is stopped in disable_device and will see the
1432 * special dealloc_driver pointer, causing the responsibility to
1433 * ib_dealloc_device() to revert back to this thread.
1434 */
1435 dealloc_fn = device->ops.dealloc_driver;
1436 device->ops.dealloc_driver = prevent_dealloc_device;
1437 ib_device_put(device);
1438 __ib_unregister_device(device);
1439 device->ops.dealloc_driver = dealloc_fn;
1440 dev_set_uevent_suppress(dev: &device->dev, val: false);
1441 return ret;
1442 }
1443 dev_set_uevent_suppress(dev: &device->dev, val: false);
1444 /* Mark for userspace that device is ready */
1445 kobject_uevent(kobj: &device->dev.kobj, action: KOBJ_ADD);
1446 ib_device_put(device);
1447
1448 return 0;
1449
1450dev_cleanup:
1451 device_del(dev: &device->dev);
1452cg_cleanup:
1453 dev_set_uevent_suppress(dev: &device->dev, val: false);
1454 ib_device_unregister_rdmacg(device);
1455cache_cleanup:
1456 ib_cache_cleanup_one(device);
1457 return ret;
1458}
1459EXPORT_SYMBOL(ib_register_device);
1460
1461/* Callers must hold a get on the device. */
1462static void __ib_unregister_device(struct ib_device *ib_dev)
1463{
1464 /*
1465 * We have a registration lock so that all the calls to unregister are
1466 * fully fenced, once any unregister returns the device is truely
1467 * unregistered even if multiple callers are unregistering it at the
1468 * same time. This also interacts with the registration flow and
1469 * provides sane semantics if register and unregister are racing.
1470 */
1471 mutex_lock(&ib_dev->unregistration_lock);
1472 if (!refcount_read(r: &ib_dev->refcount))
1473 goto out;
1474
1475 disable_device(device: ib_dev);
1476
1477 /* Expedite removing unregistered pointers from the hash table */
1478 free_netdevs(ib_dev);
1479
1480 ib_free_port_attrs(coredev: &ib_dev->coredev);
1481 device_del(dev: &ib_dev->dev);
1482 ib_device_unregister_rdmacg(device: ib_dev);
1483 ib_cache_cleanup_one(device: ib_dev);
1484
1485 /*
1486 * Drivers using the new flow may not call ib_dealloc_device except
1487 * in error unwind prior to registration success.
1488 */
1489 if (ib_dev->ops.dealloc_driver &&
1490 ib_dev->ops.dealloc_driver != prevent_dealloc_device) {
1491 WARN_ON(kref_read(&ib_dev->dev.kobj.kref) <= 1);
1492 ib_dealloc_device(ib_dev);
1493 }
1494out:
1495 mutex_unlock(lock: &ib_dev->unregistration_lock);
1496}
1497
1498/**
1499 * ib_unregister_device - Unregister an IB device
1500 * @ib_dev: The device to unregister
1501 *
1502 * Unregister an IB device. All clients will receive a remove callback.
1503 *
1504 * Callers should call this routine only once, and protect against races with
1505 * registration. Typically it should only be called as part of a remove
1506 * callback in an implementation of driver core's struct device_driver and
1507 * related.
1508 *
1509 * If ops.dealloc_driver is used then ib_dev will be freed upon return from
1510 * this function.
1511 */
1512void ib_unregister_device(struct ib_device *ib_dev)
1513{
1514 get_device(dev: &ib_dev->dev);
1515 __ib_unregister_device(ib_dev);
1516 put_device(dev: &ib_dev->dev);
1517}
1518EXPORT_SYMBOL(ib_unregister_device);
1519
1520/**
1521 * ib_unregister_device_and_put - Unregister a device while holding a 'get'
1522 * @ib_dev: The device to unregister
1523 *
1524 * This is the same as ib_unregister_device(), except it includes an internal
1525 * ib_device_put() that should match a 'get' obtained by the caller.
1526 *
1527 * It is safe to call this routine concurrently from multiple threads while
1528 * holding the 'get'. When the function returns the device is fully
1529 * unregistered.
1530 *
1531 * Drivers using this flow MUST use the driver_unregister callback to clean up
1532 * their resources associated with the device and dealloc it.
1533 */
1534void ib_unregister_device_and_put(struct ib_device *ib_dev)
1535{
1536 WARN_ON(!ib_dev->ops.dealloc_driver);
1537 get_device(dev: &ib_dev->dev);
1538 ib_device_put(ib_dev);
1539 __ib_unregister_device(ib_dev);
1540 put_device(dev: &ib_dev->dev);
1541}
1542EXPORT_SYMBOL(ib_unregister_device_and_put);
1543
1544/**
1545 * ib_unregister_driver - Unregister all IB devices for a driver
1546 * @driver_id: The driver to unregister
1547 *
1548 * This implements a fence for device unregistration. It only returns once all
1549 * devices associated with the driver_id have fully completed their
1550 * unregistration and returned from ib_unregister_device*().
1551 *
1552 * If device's are not yet unregistered it goes ahead and starts unregistering
1553 * them.
1554 *
1555 * This does not block creation of new devices with the given driver_id, that
1556 * is the responsibility of the caller.
1557 */
1558void ib_unregister_driver(enum rdma_driver_id driver_id)
1559{
1560 struct ib_device *ib_dev;
1561 unsigned long index;
1562
1563 down_read(sem: &devices_rwsem);
1564 xa_for_each (&devices, index, ib_dev) {
1565 if (ib_dev->ops.driver_id != driver_id)
1566 continue;
1567
1568 get_device(dev: &ib_dev->dev);
1569 up_read(sem: &devices_rwsem);
1570
1571 WARN_ON(!ib_dev->ops.dealloc_driver);
1572 __ib_unregister_device(ib_dev);
1573
1574 put_device(dev: &ib_dev->dev);
1575 down_read(sem: &devices_rwsem);
1576 }
1577 up_read(sem: &devices_rwsem);
1578}
1579EXPORT_SYMBOL(ib_unregister_driver);
1580
1581static void ib_unregister_work(struct work_struct *work)
1582{
1583 struct ib_device *ib_dev =
1584 container_of(work, struct ib_device, unregistration_work);
1585
1586 __ib_unregister_device(ib_dev);
1587 put_device(dev: &ib_dev->dev);
1588}
1589
1590/**
1591 * ib_unregister_device_queued - Unregister a device using a work queue
1592 * @ib_dev: The device to unregister
1593 *
1594 * This schedules an asynchronous unregistration using a WQ for the device. A
1595 * driver should use this to avoid holding locks while doing unregistration,
1596 * such as holding the RTNL lock.
1597 *
1598 * Drivers using this API must use ib_unregister_driver before module unload
1599 * to ensure that all scheduled unregistrations have completed.
1600 */
1601void ib_unregister_device_queued(struct ib_device *ib_dev)
1602{
1603 WARN_ON(!refcount_read(&ib_dev->refcount));
1604 WARN_ON(!ib_dev->ops.dealloc_driver);
1605 get_device(dev: &ib_dev->dev);
1606 if (!queue_work(wq: ib_unreg_wq, work: &ib_dev->unregistration_work))
1607 put_device(dev: &ib_dev->dev);
1608}
1609EXPORT_SYMBOL(ib_unregister_device_queued);
1610
1611/*
1612 * The caller must pass in a device that has the kref held and the refcount
1613 * released. If the device is in cur_net and still registered then it is moved
1614 * into net.
1615 */
1616static int rdma_dev_change_netns(struct ib_device *device, struct net *cur_net,
1617 struct net *net)
1618{
1619 int ret2 = -EINVAL;
1620 int ret;
1621
1622 mutex_lock(&device->unregistration_lock);
1623
1624 /*
1625 * If a device not under ib_device_get() or if the unregistration_lock
1626 * is not held, the namespace can be changed, or it can be unregistered.
1627 * Check again under the lock.
1628 */
1629 if (refcount_read(r: &device->refcount) == 0 ||
1630 !net_eq(net1: cur_net, net2: read_pnet(pnet: &device->coredev.rdma_net))) {
1631 ret = -ENODEV;
1632 goto out;
1633 }
1634
1635 kobject_uevent(kobj: &device->dev.kobj, action: KOBJ_REMOVE);
1636 disable_device(device);
1637
1638 /*
1639 * At this point no one can be using the device, so it is safe to
1640 * change the namespace.
1641 */
1642 write_pnet(pnet: &device->coredev.rdma_net, net);
1643
1644 down_read(sem: &devices_rwsem);
1645 /*
1646 * Currently rdma devices are system wide unique. So the device name
1647 * is guaranteed free in the new namespace. Publish the new namespace
1648 * at the sysfs level.
1649 */
1650 ret = device_rename(dev: &device->dev, new_name: dev_name(dev: &device->dev));
1651 up_read(sem: &devices_rwsem);
1652 if (ret) {
1653 dev_warn(&device->dev,
1654 "%s: Couldn't rename device after namespace change\n",
1655 __func__);
1656 /* Try and put things back and re-enable the device */
1657 write_pnet(pnet: &device->coredev.rdma_net, net: cur_net);
1658 }
1659
1660 ret2 = enable_device_and_get(device);
1661 if (ret2) {
1662 /*
1663 * This shouldn't really happen, but if it does, let the user
1664 * retry at later point. So don't disable the device.
1665 */
1666 dev_warn(&device->dev,
1667 "%s: Couldn't re-enable device after namespace change\n",
1668 __func__);
1669 }
1670 kobject_uevent(kobj: &device->dev.kobj, action: KOBJ_ADD);
1671
1672 ib_device_put(device);
1673out:
1674 mutex_unlock(lock: &device->unregistration_lock);
1675 if (ret)
1676 return ret;
1677 return ret2;
1678}
1679
1680int ib_device_set_netns_put(struct sk_buff *skb,
1681 struct ib_device *dev, u32 ns_fd)
1682{
1683 struct net *net;
1684 int ret;
1685
1686 net = get_net_ns_by_fd(fd: ns_fd);
1687 if (IS_ERR(ptr: net)) {
1688 ret = PTR_ERR(ptr: net);
1689 goto net_err;
1690 }
1691
1692 if (!netlink_ns_capable(skb, ns: net->user_ns, CAP_NET_ADMIN)) {
1693 ret = -EPERM;
1694 goto ns_err;
1695 }
1696
1697 /*
1698 * All the ib_clients, including uverbs, are reset when the namespace is
1699 * changed and this cannot be blocked waiting for userspace to do
1700 * something, so disassociation is mandatory.
1701 */
1702 if (!dev->ops.disassociate_ucontext || ib_devices_shared_netns) {
1703 ret = -EOPNOTSUPP;
1704 goto ns_err;
1705 }
1706
1707 get_device(dev: &dev->dev);
1708 ib_device_put(dev);
1709 ret = rdma_dev_change_netns(device: dev, current->nsproxy->net_ns, net);
1710 put_device(dev: &dev->dev);
1711
1712 put_net(net);
1713 return ret;
1714
1715ns_err:
1716 put_net(net);
1717net_err:
1718 ib_device_put(dev);
1719 return ret;
1720}
1721
1722static struct pernet_operations rdma_dev_net_ops = {
1723 .init = rdma_dev_init_net,
1724 .exit = rdma_dev_exit_net,
1725 .id = &rdma_dev_net_id,
1726 .size = sizeof(struct rdma_dev_net),
1727};
1728
1729static int assign_client_id(struct ib_client *client)
1730{
1731 int ret;
1732
1733 lockdep_assert_held(&clients_rwsem);
1734 /*
1735 * The add/remove callbacks must be called in FIFO/LIFO order. To
1736 * achieve this we assign client_ids so they are sorted in
1737 * registration order.
1738 */
1739 client->client_id = highest_client_id;
1740 ret = xa_insert(xa: &clients, index: client->client_id, entry: client, GFP_KERNEL);
1741 if (ret)
1742 return ret;
1743
1744 highest_client_id++;
1745 xa_set_mark(&clients, index: client->client_id, CLIENT_REGISTERED);
1746 return 0;
1747}
1748
1749static void remove_client_id(struct ib_client *client)
1750{
1751 down_write(sem: &clients_rwsem);
1752 xa_erase(&clients, index: client->client_id);
1753 for (; highest_client_id; highest_client_id--)
1754 if (xa_load(&clients, index: highest_client_id - 1))
1755 break;
1756 up_write(sem: &clients_rwsem);
1757}
1758
1759/**
1760 * ib_register_client - Register an IB client
1761 * @client:Client to register
1762 *
1763 * Upper level users of the IB drivers can use ib_register_client() to
1764 * register callbacks for IB device addition and removal. When an IB
1765 * device is added, each registered client's add method will be called
1766 * (in the order the clients were registered), and when a device is
1767 * removed, each client's remove method will be called (in the reverse
1768 * order that clients were registered). In addition, when
1769 * ib_register_client() is called, the client will receive an add
1770 * callback for all devices already registered.
1771 */
1772int ib_register_client(struct ib_client *client)
1773{
1774 struct ib_device *device;
1775 unsigned long index;
1776 bool need_unreg = false;
1777 int ret;
1778
1779 refcount_set(r: &client->uses, n: 1);
1780 init_completion(x: &client->uses_zero);
1781
1782 /*
1783 * The devices_rwsem is held in write mode to ensure that a racing
1784 * ib_register_device() sees a consisent view of clients and devices.
1785 */
1786 down_write(sem: &devices_rwsem);
1787 down_write(sem: &clients_rwsem);
1788 ret = assign_client_id(client);
1789 if (ret)
1790 goto out;
1791
1792 need_unreg = true;
1793 xa_for_each_marked (&devices, index, device, DEVICE_REGISTERED) {
1794 ret = add_client_context(device, client);
1795 if (ret)
1796 goto out;
1797 }
1798 ret = 0;
1799out:
1800 up_write(sem: &clients_rwsem);
1801 up_write(sem: &devices_rwsem);
1802 if (need_unreg && ret)
1803 ib_unregister_client(client);
1804 return ret;
1805}
1806EXPORT_SYMBOL(ib_register_client);
1807
1808/**
1809 * ib_unregister_client - Unregister an IB client
1810 * @client:Client to unregister
1811 *
1812 * Upper level users use ib_unregister_client() to remove their client
1813 * registration. When ib_unregister_client() is called, the client
1814 * will receive a remove callback for each IB device still registered.
1815 *
1816 * This is a full fence, once it returns no client callbacks will be called,
1817 * or are running in another thread.
1818 */
1819void ib_unregister_client(struct ib_client *client)
1820{
1821 struct ib_device *device;
1822 unsigned long index;
1823
1824 down_write(sem: &clients_rwsem);
1825 ib_client_put(client);
1826 xa_clear_mark(&clients, index: client->client_id, CLIENT_REGISTERED);
1827 up_write(sem: &clients_rwsem);
1828
1829 /* We do not want to have locks while calling client->remove() */
1830 rcu_read_lock();
1831 xa_for_each (&devices, index, device) {
1832 if (!ib_device_try_get(dev: device))
1833 continue;
1834 rcu_read_unlock();
1835
1836 remove_client_context(device, client_id: client->client_id);
1837
1838 ib_device_put(device);
1839 rcu_read_lock();
1840 }
1841 rcu_read_unlock();
1842
1843 /*
1844 * remove_client_context() is not a fence, it can return even though a
1845 * removal is ongoing. Wait until all removals are completed.
1846 */
1847 wait_for_completion(&client->uses_zero);
1848 remove_client_id(client);
1849}
1850EXPORT_SYMBOL(ib_unregister_client);
1851
1852static int __ib_get_global_client_nl_info(const char *client_name,
1853 struct ib_client_nl_info *res)
1854{
1855 struct ib_client *client;
1856 unsigned long index;
1857 int ret = -ENOENT;
1858
1859 down_read(sem: &clients_rwsem);
1860 xa_for_each_marked (&clients, index, client, CLIENT_REGISTERED) {
1861 if (strcmp(client->name, client_name) != 0)
1862 continue;
1863 if (!client->get_global_nl_info) {
1864 ret = -EOPNOTSUPP;
1865 break;
1866 }
1867 ret = client->get_global_nl_info(res);
1868 if (WARN_ON(ret == -ENOENT))
1869 ret = -EINVAL;
1870 if (!ret && res->cdev)
1871 get_device(dev: res->cdev);
1872 break;
1873 }
1874 up_read(sem: &clients_rwsem);
1875 return ret;
1876}
1877
1878static int __ib_get_client_nl_info(struct ib_device *ibdev,
1879 const char *client_name,
1880 struct ib_client_nl_info *res)
1881{
1882 unsigned long index;
1883 void *client_data;
1884 int ret = -ENOENT;
1885
1886 down_read(sem: &ibdev->client_data_rwsem);
1887 xan_for_each_marked (&ibdev->client_data, index, client_data,
1888 CLIENT_DATA_REGISTERED) {
1889 struct ib_client *client = xa_load(&clients, index);
1890
1891 if (!client || strcmp(client->name, client_name) != 0)
1892 continue;
1893 if (!client->get_nl_info) {
1894 ret = -EOPNOTSUPP;
1895 break;
1896 }
1897 ret = client->get_nl_info(ibdev, client_data, res);
1898 if (WARN_ON(ret == -ENOENT))
1899 ret = -EINVAL;
1900
1901 /*
1902 * The cdev is guaranteed valid as long as we are inside the
1903 * client_data_rwsem as remove_one can't be called. Keep it
1904 * valid for the caller.
1905 */
1906 if (!ret && res->cdev)
1907 get_device(dev: res->cdev);
1908 break;
1909 }
1910 up_read(sem: &ibdev->client_data_rwsem);
1911
1912 return ret;
1913}
1914
1915/**
1916 * ib_get_client_nl_info - Fetch the nl_info from a client
1917 * @ibdev: IB device
1918 * @client_name: Name of the client
1919 * @res: Result of the query
1920 */
1921int ib_get_client_nl_info(struct ib_device *ibdev, const char *client_name,
1922 struct ib_client_nl_info *res)
1923{
1924 int ret;
1925
1926 if (ibdev)
1927 ret = __ib_get_client_nl_info(ibdev, client_name, res);
1928 else
1929 ret = __ib_get_global_client_nl_info(client_name, res);
1930#ifdef CONFIG_MODULES
1931 if (ret == -ENOENT) {
1932 request_module("rdma-client-%s", client_name);
1933 if (ibdev)
1934 ret = __ib_get_client_nl_info(ibdev, client_name, res);
1935 else
1936 ret = __ib_get_global_client_nl_info(client_name, res);
1937 }
1938#endif
1939 if (ret) {
1940 if (ret == -ENOENT)
1941 return -EOPNOTSUPP;
1942 return ret;
1943 }
1944
1945 if (WARN_ON(!res->cdev))
1946 return -EINVAL;
1947 return 0;
1948}
1949
1950/**
1951 * ib_set_client_data - Set IB client context
1952 * @device:Device to set context for
1953 * @client:Client to set context for
1954 * @data:Context to set
1955 *
1956 * ib_set_client_data() sets client context data that can be retrieved with
1957 * ib_get_client_data(). This can only be called while the client is
1958 * registered to the device, once the ib_client remove() callback returns this
1959 * cannot be called.
1960 */
1961void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1962 void *data)
1963{
1964 void *rc;
1965
1966 if (WARN_ON(IS_ERR(data)))
1967 data = NULL;
1968
1969 rc = xa_store(&device->client_data, index: client->client_id, entry: data,
1970 GFP_KERNEL);
1971 WARN_ON(xa_is_err(rc));
1972}
1973EXPORT_SYMBOL(ib_set_client_data);
1974
1975/**
1976 * ib_register_event_handler - Register an IB event handler
1977 * @event_handler:Handler to register
1978 *
1979 * ib_register_event_handler() registers an event handler that will be
1980 * called back when asynchronous IB events occur (as defined in
1981 * chapter 11 of the InfiniBand Architecture Specification). This
1982 * callback occurs in workqueue context.
1983 */
1984void ib_register_event_handler(struct ib_event_handler *event_handler)
1985{
1986 down_write(sem: &event_handler->device->event_handler_rwsem);
1987 list_add_tail(new: &event_handler->list,
1988 head: &event_handler->device->event_handler_list);
1989 up_write(sem: &event_handler->device->event_handler_rwsem);
1990}
1991EXPORT_SYMBOL(ib_register_event_handler);
1992
1993/**
1994 * ib_unregister_event_handler - Unregister an event handler
1995 * @event_handler:Handler to unregister
1996 *
1997 * Unregister an event handler registered with
1998 * ib_register_event_handler().
1999 */
2000void ib_unregister_event_handler(struct ib_event_handler *event_handler)
2001{
2002 down_write(sem: &event_handler->device->event_handler_rwsem);
2003 list_del(entry: &event_handler->list);
2004 up_write(sem: &event_handler->device->event_handler_rwsem);
2005}
2006EXPORT_SYMBOL(ib_unregister_event_handler);
2007
2008void ib_dispatch_event_clients(struct ib_event *event)
2009{
2010 struct ib_event_handler *handler;
2011
2012 down_read(sem: &event->device->event_handler_rwsem);
2013
2014 list_for_each_entry(handler, &event->device->event_handler_list, list)
2015 handler->handler(handler, event);
2016
2017 up_read(sem: &event->device->event_handler_rwsem);
2018}
2019
2020static int iw_query_port(struct ib_device *device,
2021 u32 port_num,
2022 struct ib_port_attr *port_attr)
2023{
2024 struct in_device *inetdev;
2025 struct net_device *netdev;
2026
2027 memset(port_attr, 0, sizeof(*port_attr));
2028
2029 netdev = ib_device_get_netdev(ib_dev: device, port: port_num);
2030 if (!netdev)
2031 return -ENODEV;
2032
2033 port_attr->max_mtu = IB_MTU_4096;
2034 port_attr->active_mtu = ib_mtu_int_to_enum(mtu: netdev->mtu);
2035
2036 if (!netif_carrier_ok(dev: netdev)) {
2037 port_attr->state = IB_PORT_DOWN;
2038 port_attr->phys_state = IB_PORT_PHYS_STATE_DISABLED;
2039 } else {
2040 rcu_read_lock();
2041 inetdev = __in_dev_get_rcu(dev: netdev);
2042
2043 if (inetdev && inetdev->ifa_list) {
2044 port_attr->state = IB_PORT_ACTIVE;
2045 port_attr->phys_state = IB_PORT_PHYS_STATE_LINK_UP;
2046 } else {
2047 port_attr->state = IB_PORT_INIT;
2048 port_attr->phys_state =
2049 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING;
2050 }
2051
2052 rcu_read_unlock();
2053 }
2054
2055 dev_put(dev: netdev);
2056 return device->ops.query_port(device, port_num, port_attr);
2057}
2058
2059static int __ib_query_port(struct ib_device *device,
2060 u32 port_num,
2061 struct ib_port_attr *port_attr)
2062{
2063 int err;
2064
2065 memset(port_attr, 0, sizeof(*port_attr));
2066
2067 err = device->ops.query_port(device, port_num, port_attr);
2068 if (err || port_attr->subnet_prefix)
2069 return err;
2070
2071 if (rdma_port_get_link_layer(device, port_num) !=
2072 IB_LINK_LAYER_INFINIBAND)
2073 return 0;
2074
2075 ib_get_cached_subnet_prefix(device, port_num,
2076 sn_pfx: &port_attr->subnet_prefix);
2077 return 0;
2078}
2079
2080/**
2081 * ib_query_port - Query IB port attributes
2082 * @device:Device to query
2083 * @port_num:Port number to query
2084 * @port_attr:Port attributes
2085 *
2086 * ib_query_port() returns the attributes of a port through the
2087 * @port_attr pointer.
2088 */
2089int ib_query_port(struct ib_device *device,
2090 u32 port_num,
2091 struct ib_port_attr *port_attr)
2092{
2093 if (!rdma_is_port_valid(device, port: port_num))
2094 return -EINVAL;
2095
2096 if (rdma_protocol_iwarp(device, port_num))
2097 return iw_query_port(device, port_num, port_attr);
2098 else
2099 return __ib_query_port(device, port_num, port_attr);
2100}
2101EXPORT_SYMBOL(ib_query_port);
2102
2103static void add_ndev_hash(struct ib_port_data *pdata)
2104{
2105 unsigned long flags;
2106
2107 might_sleep();
2108
2109 spin_lock_irqsave(&ndev_hash_lock, flags);
2110 if (hash_hashed(node: &pdata->ndev_hash_link)) {
2111 hash_del_rcu(node: &pdata->ndev_hash_link);
2112 spin_unlock_irqrestore(lock: &ndev_hash_lock, flags);
2113 /*
2114 * We cannot do hash_add_rcu after a hash_del_rcu until the
2115 * grace period
2116 */
2117 synchronize_rcu();
2118 spin_lock_irqsave(&ndev_hash_lock, flags);
2119 }
2120 if (pdata->netdev)
2121 hash_add_rcu(ndev_hash, &pdata->ndev_hash_link,
2122 (uintptr_t)pdata->netdev);
2123 spin_unlock_irqrestore(lock: &ndev_hash_lock, flags);
2124}
2125
2126/**
2127 * ib_device_set_netdev - Associate the ib_dev with an underlying net_device
2128 * @ib_dev: Device to modify
2129 * @ndev: net_device to affiliate, may be NULL
2130 * @port: IB port the net_device is connected to
2131 *
2132 * Drivers should use this to link the ib_device to a netdev so the netdev
2133 * shows up in interfaces like ib_enum_roce_netdev. Only one netdev may be
2134 * affiliated with any port.
2135 *
2136 * The caller must ensure that the given ndev is not unregistered or
2137 * unregistering, and that either the ib_device is unregistered or
2138 * ib_device_set_netdev() is called with NULL when the ndev sends a
2139 * NETDEV_UNREGISTER event.
2140 */
2141int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
2142 u32 port)
2143{
2144 struct net_device *old_ndev;
2145 struct ib_port_data *pdata;
2146 unsigned long flags;
2147 int ret;
2148
2149 /*
2150 * Drivers wish to call this before ib_register_driver, so we have to
2151 * setup the port data early.
2152 */
2153 ret = alloc_port_data(device: ib_dev);
2154 if (ret)
2155 return ret;
2156
2157 if (!rdma_is_port_valid(device: ib_dev, port))
2158 return -EINVAL;
2159
2160 pdata = &ib_dev->port_data[port];
2161 spin_lock_irqsave(&pdata->netdev_lock, flags);
2162 old_ndev = rcu_dereference_protected(
2163 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2164 if (old_ndev == ndev) {
2165 spin_unlock_irqrestore(lock: &pdata->netdev_lock, flags);
2166 return 0;
2167 }
2168
2169 if (old_ndev)
2170 netdev_tracker_free(dev: ndev, tracker: &pdata->netdev_tracker);
2171 if (ndev)
2172 netdev_hold(dev: ndev, tracker: &pdata->netdev_tracker, GFP_ATOMIC);
2173 rcu_assign_pointer(pdata->netdev, ndev);
2174 spin_unlock_irqrestore(lock: &pdata->netdev_lock, flags);
2175
2176 add_ndev_hash(pdata);
2177 if (old_ndev)
2178 __dev_put(dev: old_ndev);
2179
2180 return 0;
2181}
2182EXPORT_SYMBOL(ib_device_set_netdev);
2183
2184static void free_netdevs(struct ib_device *ib_dev)
2185{
2186 unsigned long flags;
2187 u32 port;
2188
2189 if (!ib_dev->port_data)
2190 return;
2191
2192 rdma_for_each_port (ib_dev, port) {
2193 struct ib_port_data *pdata = &ib_dev->port_data[port];
2194 struct net_device *ndev;
2195
2196 spin_lock_irqsave(&pdata->netdev_lock, flags);
2197 ndev = rcu_dereference_protected(
2198 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2199 if (ndev) {
2200 spin_lock(lock: &ndev_hash_lock);
2201 hash_del_rcu(node: &pdata->ndev_hash_link);
2202 spin_unlock(lock: &ndev_hash_lock);
2203
2204 /*
2205 * If this is the last dev_put there is still a
2206 * synchronize_rcu before the netdev is kfreed, so we
2207 * can continue to rely on unlocked pointer
2208 * comparisons after the put
2209 */
2210 rcu_assign_pointer(pdata->netdev, NULL);
2211 netdev_put(dev: ndev, tracker: &pdata->netdev_tracker);
2212 }
2213 spin_unlock_irqrestore(lock: &pdata->netdev_lock, flags);
2214 }
2215}
2216
2217struct net_device *ib_device_get_netdev(struct ib_device *ib_dev,
2218 u32 port)
2219{
2220 struct ib_port_data *pdata;
2221 struct net_device *res;
2222
2223 if (!rdma_is_port_valid(device: ib_dev, port))
2224 return NULL;
2225
2226 pdata = &ib_dev->port_data[port];
2227
2228 /*
2229 * New drivers should use ib_device_set_netdev() not the legacy
2230 * get_netdev().
2231 */
2232 if (ib_dev->ops.get_netdev)
2233 res = ib_dev->ops.get_netdev(ib_dev, port);
2234 else {
2235 spin_lock(lock: &pdata->netdev_lock);
2236 res = rcu_dereference_protected(
2237 pdata->netdev, lockdep_is_held(&pdata->netdev_lock));
2238 if (res)
2239 dev_hold(dev: res);
2240 spin_unlock(lock: &pdata->netdev_lock);
2241 }
2242
2243 /*
2244 * If we are starting to unregister expedite things by preventing
2245 * propagation of an unregistering netdev.
2246 */
2247 if (res && res->reg_state != NETREG_REGISTERED) {
2248 dev_put(dev: res);
2249 return NULL;
2250 }
2251
2252 return res;
2253}
2254
2255/**
2256 * ib_device_get_by_netdev - Find an IB device associated with a netdev
2257 * @ndev: netdev to locate
2258 * @driver_id: The driver ID that must match (RDMA_DRIVER_UNKNOWN matches all)
2259 *
2260 * Find and hold an ib_device that is associated with a netdev via
2261 * ib_device_set_netdev(). The caller must call ib_device_put() on the
2262 * returned pointer.
2263 */
2264struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
2265 enum rdma_driver_id driver_id)
2266{
2267 struct ib_device *res = NULL;
2268 struct ib_port_data *cur;
2269
2270 rcu_read_lock();
2271 hash_for_each_possible_rcu (ndev_hash, cur, ndev_hash_link,
2272 (uintptr_t)ndev) {
2273 if (rcu_access_pointer(cur->netdev) == ndev &&
2274 (driver_id == RDMA_DRIVER_UNKNOWN ||
2275 cur->ib_dev->ops.driver_id == driver_id) &&
2276 ib_device_try_get(dev: cur->ib_dev)) {
2277 res = cur->ib_dev;
2278 break;
2279 }
2280 }
2281 rcu_read_unlock();
2282
2283 return res;
2284}
2285EXPORT_SYMBOL(ib_device_get_by_netdev);
2286
2287/**
2288 * ib_enum_roce_netdev - enumerate all RoCE ports
2289 * @ib_dev : IB device we want to query
2290 * @filter: Should we call the callback?
2291 * @filter_cookie: Cookie passed to filter
2292 * @cb: Callback to call for each found RoCE ports
2293 * @cookie: Cookie passed back to the callback
2294 *
2295 * Enumerates all of the physical RoCE ports of ib_dev
2296 * which are related to netdevice and calls callback() on each
2297 * device for which filter() function returns non zero.
2298 */
2299void ib_enum_roce_netdev(struct ib_device *ib_dev,
2300 roce_netdev_filter filter,
2301 void *filter_cookie,
2302 roce_netdev_callback cb,
2303 void *cookie)
2304{
2305 u32 port;
2306
2307 rdma_for_each_port (ib_dev, port)
2308 if (rdma_protocol_roce(device: ib_dev, port_num: port)) {
2309 struct net_device *idev =
2310 ib_device_get_netdev(ib_dev, port);
2311
2312 if (filter(ib_dev, port, idev, filter_cookie))
2313 cb(ib_dev, port, idev, cookie);
2314
2315 if (idev)
2316 dev_put(dev: idev);
2317 }
2318}
2319
2320/**
2321 * ib_enum_all_roce_netdevs - enumerate all RoCE devices
2322 * @filter: Should we call the callback?
2323 * @filter_cookie: Cookie passed to filter
2324 * @cb: Callback to call for each found RoCE ports
2325 * @cookie: Cookie passed back to the callback
2326 *
2327 * Enumerates all RoCE devices' physical ports which are related
2328 * to netdevices and calls callback() on each device for which
2329 * filter() function returns non zero.
2330 */
2331void ib_enum_all_roce_netdevs(roce_netdev_filter filter,
2332 void *filter_cookie,
2333 roce_netdev_callback cb,
2334 void *cookie)
2335{
2336 struct ib_device *dev;
2337 unsigned long index;
2338
2339 down_read(sem: &devices_rwsem);
2340 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED)
2341 ib_enum_roce_netdev(ib_dev: dev, filter, filter_cookie, cb, cookie);
2342 up_read(sem: &devices_rwsem);
2343}
2344
2345/*
2346 * ib_enum_all_devs - enumerate all ib_devices
2347 * @cb: Callback to call for each found ib_device
2348 *
2349 * Enumerates all ib_devices and calls callback() on each device.
2350 */
2351int ib_enum_all_devs(nldev_callback nldev_cb, struct sk_buff *skb,
2352 struct netlink_callback *cb)
2353{
2354 unsigned long index;
2355 struct ib_device *dev;
2356 unsigned int idx = 0;
2357 int ret = 0;
2358
2359 down_read(sem: &devices_rwsem);
2360 xa_for_each_marked (&devices, index, dev, DEVICE_REGISTERED) {
2361 if (!rdma_dev_access_netns(dev, sock_net(sk: skb->sk)))
2362 continue;
2363
2364 ret = nldev_cb(dev, skb, cb, idx);
2365 if (ret)
2366 break;
2367 idx++;
2368 }
2369 up_read(sem: &devices_rwsem);
2370 return ret;
2371}
2372
2373/**
2374 * ib_query_pkey - Get P_Key table entry
2375 * @device:Device to query
2376 * @port_num:Port number to query
2377 * @index:P_Key table index to query
2378 * @pkey:Returned P_Key
2379 *
2380 * ib_query_pkey() fetches the specified P_Key table entry.
2381 */
2382int ib_query_pkey(struct ib_device *device,
2383 u32 port_num, u16 index, u16 *pkey)
2384{
2385 if (!rdma_is_port_valid(device, port: port_num))
2386 return -EINVAL;
2387
2388 if (!device->ops.query_pkey)
2389 return -EOPNOTSUPP;
2390
2391 return device->ops.query_pkey(device, port_num, index, pkey);
2392}
2393EXPORT_SYMBOL(ib_query_pkey);
2394
2395/**
2396 * ib_modify_device - Change IB device attributes
2397 * @device:Device to modify
2398 * @device_modify_mask:Mask of attributes to change
2399 * @device_modify:New attribute values
2400 *
2401 * ib_modify_device() changes a device's attributes as specified by
2402 * the @device_modify_mask and @device_modify structure.
2403 */
2404int ib_modify_device(struct ib_device *device,
2405 int device_modify_mask,
2406 struct ib_device_modify *device_modify)
2407{
2408 if (!device->ops.modify_device)
2409 return -EOPNOTSUPP;
2410
2411 return device->ops.modify_device(device, device_modify_mask,
2412 device_modify);
2413}
2414EXPORT_SYMBOL(ib_modify_device);
2415
2416/**
2417 * ib_modify_port - Modifies the attributes for the specified port.
2418 * @device: The device to modify.
2419 * @port_num: The number of the port to modify.
2420 * @port_modify_mask: Mask used to specify which attributes of the port
2421 * to change.
2422 * @port_modify: New attribute values for the port.
2423 *
2424 * ib_modify_port() changes a port's attributes as specified by the
2425 * @port_modify_mask and @port_modify structure.
2426 */
2427int ib_modify_port(struct ib_device *device,
2428 u32 port_num, int port_modify_mask,
2429 struct ib_port_modify *port_modify)
2430{
2431 int rc;
2432
2433 if (!rdma_is_port_valid(device, port: port_num))
2434 return -EINVAL;
2435
2436 if (device->ops.modify_port)
2437 rc = device->ops.modify_port(device, port_num,
2438 port_modify_mask,
2439 port_modify);
2440 else if (rdma_protocol_roce(device, port_num) &&
2441 ((port_modify->set_port_cap_mask & ~IB_PORT_CM_SUP) == 0 ||
2442 (port_modify->clr_port_cap_mask & ~IB_PORT_CM_SUP) == 0))
2443 rc = 0;
2444 else
2445 rc = -EOPNOTSUPP;
2446 return rc;
2447}
2448EXPORT_SYMBOL(ib_modify_port);
2449
2450/**
2451 * ib_find_gid - Returns the port number and GID table index where
2452 * a specified GID value occurs. Its searches only for IB link layer.
2453 * @device: The device to query.
2454 * @gid: The GID value to search for.
2455 * @port_num: The port number of the device where the GID value was found.
2456 * @index: The index into the GID table where the GID was found. This
2457 * parameter may be NULL.
2458 */
2459int ib_find_gid(struct ib_device *device, union ib_gid *gid,
2460 u32 *port_num, u16 *index)
2461{
2462 union ib_gid tmp_gid;
2463 u32 port;
2464 int ret, i;
2465
2466 rdma_for_each_port (device, port) {
2467 if (!rdma_protocol_ib(device, port_num: port))
2468 continue;
2469
2470 for (i = 0; i < device->port_data[port].immutable.gid_tbl_len;
2471 ++i) {
2472 ret = rdma_query_gid(device, port_num: port, index: i, gid: &tmp_gid);
2473 if (ret)
2474 continue;
2475
2476 if (!memcmp(p: &tmp_gid, q: gid, size: sizeof *gid)) {
2477 *port_num = port;
2478 if (index)
2479 *index = i;
2480 return 0;
2481 }
2482 }
2483 }
2484
2485 return -ENOENT;
2486}
2487EXPORT_SYMBOL(ib_find_gid);
2488
2489/**
2490 * ib_find_pkey - Returns the PKey table index where a specified
2491 * PKey value occurs.
2492 * @device: The device to query.
2493 * @port_num: The port number of the device to search for the PKey.
2494 * @pkey: The PKey value to search for.
2495 * @index: The index into the PKey table where the PKey was found.
2496 */
2497int ib_find_pkey(struct ib_device *device,
2498 u32 port_num, u16 pkey, u16 *index)
2499{
2500 int ret, i;
2501 u16 tmp_pkey;
2502 int partial_ix = -1;
2503
2504 for (i = 0; i < device->port_data[port_num].immutable.pkey_tbl_len;
2505 ++i) {
2506 ret = ib_query_pkey(device, port_num, i, &tmp_pkey);
2507 if (ret)
2508 return ret;
2509 if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) {
2510 /* if there is full-member pkey take it.*/
2511 if (tmp_pkey & 0x8000) {
2512 *index = i;
2513 return 0;
2514 }
2515 if (partial_ix < 0)
2516 partial_ix = i;
2517 }
2518 }
2519
2520 /*no full-member, if exists take the limited*/
2521 if (partial_ix >= 0) {
2522 *index = partial_ix;
2523 return 0;
2524 }
2525 return -ENOENT;
2526}
2527EXPORT_SYMBOL(ib_find_pkey);
2528
2529/**
2530 * ib_get_net_dev_by_params() - Return the appropriate net_dev
2531 * for a received CM request
2532 * @dev: An RDMA device on which the request has been received.
2533 * @port: Port number on the RDMA device.
2534 * @pkey: The Pkey the request came on.
2535 * @gid: A GID that the net_dev uses to communicate.
2536 * @addr: Contains the IP address that the request specified as its
2537 * destination.
2538 *
2539 */
2540struct net_device *ib_get_net_dev_by_params(struct ib_device *dev,
2541 u32 port,
2542 u16 pkey,
2543 const union ib_gid *gid,
2544 const struct sockaddr *addr)
2545{
2546 struct net_device *net_dev = NULL;
2547 unsigned long index;
2548 void *client_data;
2549
2550 if (!rdma_protocol_ib(device: dev, port_num: port))
2551 return NULL;
2552
2553 /*
2554 * Holding the read side guarantees that the client will not become
2555 * unregistered while we are calling get_net_dev_by_params()
2556 */
2557 down_read(sem: &dev->client_data_rwsem);
2558 xan_for_each_marked (&dev->client_data, index, client_data,
2559 CLIENT_DATA_REGISTERED) {
2560 struct ib_client *client = xa_load(&clients, index);
2561
2562 if (!client || !client->get_net_dev_by_params)
2563 continue;
2564
2565 net_dev = client->get_net_dev_by_params(dev, port, pkey, gid,
2566 addr, client_data);
2567 if (net_dev)
2568 break;
2569 }
2570 up_read(sem: &dev->client_data_rwsem);
2571
2572 return net_dev;
2573}
2574EXPORT_SYMBOL(ib_get_net_dev_by_params);
2575
2576void ib_set_device_ops(struct ib_device *dev, const struct ib_device_ops *ops)
2577{
2578 struct ib_device_ops *dev_ops = &dev->ops;
2579#define SET_DEVICE_OP(ptr, name) \
2580 do { \
2581 if (ops->name) \
2582 if (!((ptr)->name)) \
2583 (ptr)->name = ops->name; \
2584 } while (0)
2585
2586#define SET_OBJ_SIZE(ptr, name) SET_DEVICE_OP(ptr, size_##name)
2587
2588 if (ops->driver_id != RDMA_DRIVER_UNKNOWN) {
2589 WARN_ON(dev_ops->driver_id != RDMA_DRIVER_UNKNOWN &&
2590 dev_ops->driver_id != ops->driver_id);
2591 dev_ops->driver_id = ops->driver_id;
2592 }
2593 if (ops->owner) {
2594 WARN_ON(dev_ops->owner && dev_ops->owner != ops->owner);
2595 dev_ops->owner = ops->owner;
2596 }
2597 if (ops->uverbs_abi_ver)
2598 dev_ops->uverbs_abi_ver = ops->uverbs_abi_ver;
2599
2600 dev_ops->uverbs_no_driver_id_binding |=
2601 ops->uverbs_no_driver_id_binding;
2602
2603 SET_DEVICE_OP(dev_ops, add_gid);
2604 SET_DEVICE_OP(dev_ops, advise_mr);
2605 SET_DEVICE_OP(dev_ops, alloc_dm);
2606 SET_DEVICE_OP(dev_ops, alloc_hw_device_stats);
2607 SET_DEVICE_OP(dev_ops, alloc_hw_port_stats);
2608 SET_DEVICE_OP(dev_ops, alloc_mr);
2609 SET_DEVICE_OP(dev_ops, alloc_mr_integrity);
2610 SET_DEVICE_OP(dev_ops, alloc_mw);
2611 SET_DEVICE_OP(dev_ops, alloc_pd);
2612 SET_DEVICE_OP(dev_ops, alloc_rdma_netdev);
2613 SET_DEVICE_OP(dev_ops, alloc_ucontext);
2614 SET_DEVICE_OP(dev_ops, alloc_xrcd);
2615 SET_DEVICE_OP(dev_ops, attach_mcast);
2616 SET_DEVICE_OP(dev_ops, check_mr_status);
2617 SET_DEVICE_OP(dev_ops, counter_alloc_stats);
2618 SET_DEVICE_OP(dev_ops, counter_bind_qp);
2619 SET_DEVICE_OP(dev_ops, counter_dealloc);
2620 SET_DEVICE_OP(dev_ops, counter_unbind_qp);
2621 SET_DEVICE_OP(dev_ops, counter_update_stats);
2622 SET_DEVICE_OP(dev_ops, create_ah);
2623 SET_DEVICE_OP(dev_ops, create_counters);
2624 SET_DEVICE_OP(dev_ops, create_cq);
2625 SET_DEVICE_OP(dev_ops, create_flow);
2626 SET_DEVICE_OP(dev_ops, create_qp);
2627 SET_DEVICE_OP(dev_ops, create_rwq_ind_table);
2628 SET_DEVICE_OP(dev_ops, create_srq);
2629 SET_DEVICE_OP(dev_ops, create_user_ah);
2630 SET_DEVICE_OP(dev_ops, create_wq);
2631 SET_DEVICE_OP(dev_ops, dealloc_dm);
2632 SET_DEVICE_OP(dev_ops, dealloc_driver);
2633 SET_DEVICE_OP(dev_ops, dealloc_mw);
2634 SET_DEVICE_OP(dev_ops, dealloc_pd);
2635 SET_DEVICE_OP(dev_ops, dealloc_ucontext);
2636 SET_DEVICE_OP(dev_ops, dealloc_xrcd);
2637 SET_DEVICE_OP(dev_ops, del_gid);
2638 SET_DEVICE_OP(dev_ops, dereg_mr);
2639 SET_DEVICE_OP(dev_ops, destroy_ah);
2640 SET_DEVICE_OP(dev_ops, destroy_counters);
2641 SET_DEVICE_OP(dev_ops, destroy_cq);
2642 SET_DEVICE_OP(dev_ops, destroy_flow);
2643 SET_DEVICE_OP(dev_ops, destroy_flow_action);
2644 SET_DEVICE_OP(dev_ops, destroy_qp);
2645 SET_DEVICE_OP(dev_ops, destroy_rwq_ind_table);
2646 SET_DEVICE_OP(dev_ops, destroy_srq);
2647 SET_DEVICE_OP(dev_ops, destroy_wq);
2648 SET_DEVICE_OP(dev_ops, device_group);
2649 SET_DEVICE_OP(dev_ops, detach_mcast);
2650 SET_DEVICE_OP(dev_ops, disassociate_ucontext);
2651 SET_DEVICE_OP(dev_ops, drain_rq);
2652 SET_DEVICE_OP(dev_ops, drain_sq);
2653 SET_DEVICE_OP(dev_ops, enable_driver);
2654 SET_DEVICE_OP(dev_ops, fill_res_cm_id_entry);
2655 SET_DEVICE_OP(dev_ops, fill_res_cq_entry);
2656 SET_DEVICE_OP(dev_ops, fill_res_cq_entry_raw);
2657 SET_DEVICE_OP(dev_ops, fill_res_mr_entry);
2658 SET_DEVICE_OP(dev_ops, fill_res_mr_entry_raw);
2659 SET_DEVICE_OP(dev_ops, fill_res_qp_entry);
2660 SET_DEVICE_OP(dev_ops, fill_res_qp_entry_raw);
2661 SET_DEVICE_OP(dev_ops, fill_res_srq_entry);
2662 SET_DEVICE_OP(dev_ops, fill_res_srq_entry_raw);
2663 SET_DEVICE_OP(dev_ops, fill_stat_mr_entry);
2664 SET_DEVICE_OP(dev_ops, get_dev_fw_str);
2665 SET_DEVICE_OP(dev_ops, get_dma_mr);
2666 SET_DEVICE_OP(dev_ops, get_hw_stats);
2667 SET_DEVICE_OP(dev_ops, get_link_layer);
2668 SET_DEVICE_OP(dev_ops, get_netdev);
2669 SET_DEVICE_OP(dev_ops, get_numa_node);
2670 SET_DEVICE_OP(dev_ops, get_port_immutable);
2671 SET_DEVICE_OP(dev_ops, get_vector_affinity);
2672 SET_DEVICE_OP(dev_ops, get_vf_config);
2673 SET_DEVICE_OP(dev_ops, get_vf_guid);
2674 SET_DEVICE_OP(dev_ops, get_vf_stats);
2675 SET_DEVICE_OP(dev_ops, iw_accept);
2676 SET_DEVICE_OP(dev_ops, iw_add_ref);
2677 SET_DEVICE_OP(dev_ops, iw_connect);
2678 SET_DEVICE_OP(dev_ops, iw_create_listen);
2679 SET_DEVICE_OP(dev_ops, iw_destroy_listen);
2680 SET_DEVICE_OP(dev_ops, iw_get_qp);
2681 SET_DEVICE_OP(dev_ops, iw_reject);
2682 SET_DEVICE_OP(dev_ops, iw_rem_ref);
2683 SET_DEVICE_OP(dev_ops, map_mr_sg);
2684 SET_DEVICE_OP(dev_ops, map_mr_sg_pi);
2685 SET_DEVICE_OP(dev_ops, mmap);
2686 SET_DEVICE_OP(dev_ops, mmap_free);
2687 SET_DEVICE_OP(dev_ops, modify_ah);
2688 SET_DEVICE_OP(dev_ops, modify_cq);
2689 SET_DEVICE_OP(dev_ops, modify_device);
2690 SET_DEVICE_OP(dev_ops, modify_hw_stat);
2691 SET_DEVICE_OP(dev_ops, modify_port);
2692 SET_DEVICE_OP(dev_ops, modify_qp);
2693 SET_DEVICE_OP(dev_ops, modify_srq);
2694 SET_DEVICE_OP(dev_ops, modify_wq);
2695 SET_DEVICE_OP(dev_ops, peek_cq);
2696 SET_DEVICE_OP(dev_ops, poll_cq);
2697 SET_DEVICE_OP(dev_ops, port_groups);
2698 SET_DEVICE_OP(dev_ops, post_recv);
2699 SET_DEVICE_OP(dev_ops, post_send);
2700 SET_DEVICE_OP(dev_ops, post_srq_recv);
2701 SET_DEVICE_OP(dev_ops, process_mad);
2702 SET_DEVICE_OP(dev_ops, query_ah);
2703 SET_DEVICE_OP(dev_ops, query_device);
2704 SET_DEVICE_OP(dev_ops, query_gid);
2705 SET_DEVICE_OP(dev_ops, query_pkey);
2706 SET_DEVICE_OP(dev_ops, query_port);
2707 SET_DEVICE_OP(dev_ops, query_qp);
2708 SET_DEVICE_OP(dev_ops, query_srq);
2709 SET_DEVICE_OP(dev_ops, query_ucontext);
2710 SET_DEVICE_OP(dev_ops, rdma_netdev_get_params);
2711 SET_DEVICE_OP(dev_ops, read_counters);
2712 SET_DEVICE_OP(dev_ops, reg_dm_mr);
2713 SET_DEVICE_OP(dev_ops, reg_user_mr);
2714 SET_DEVICE_OP(dev_ops, reg_user_mr_dmabuf);
2715 SET_DEVICE_OP(dev_ops, req_notify_cq);
2716 SET_DEVICE_OP(dev_ops, rereg_user_mr);
2717 SET_DEVICE_OP(dev_ops, resize_cq);
2718 SET_DEVICE_OP(dev_ops, set_vf_guid);
2719 SET_DEVICE_OP(dev_ops, set_vf_link_state);
2720
2721 SET_OBJ_SIZE(dev_ops, ib_ah);
2722 SET_OBJ_SIZE(dev_ops, ib_counters);
2723 SET_OBJ_SIZE(dev_ops, ib_cq);
2724 SET_OBJ_SIZE(dev_ops, ib_mw);
2725 SET_OBJ_SIZE(dev_ops, ib_pd);
2726 SET_OBJ_SIZE(dev_ops, ib_qp);
2727 SET_OBJ_SIZE(dev_ops, ib_rwq_ind_table);
2728 SET_OBJ_SIZE(dev_ops, ib_srq);
2729 SET_OBJ_SIZE(dev_ops, ib_ucontext);
2730 SET_OBJ_SIZE(dev_ops, ib_xrcd);
2731}
2732EXPORT_SYMBOL(ib_set_device_ops);
2733
2734#ifdef CONFIG_INFINIBAND_VIRT_DMA
2735int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents)
2736{
2737 struct scatterlist *s;
2738 int i;
2739
2740 for_each_sg(sg, s, nents, i) {
2741 sg_dma_address(s) = (uintptr_t)sg_virt(sg: s);
2742 sg_dma_len(s) = s->length;
2743 }
2744 return nents;
2745}
2746EXPORT_SYMBOL(ib_dma_virt_map_sg);
2747#endif /* CONFIG_INFINIBAND_VIRT_DMA */
2748
2749static const struct rdma_nl_cbs ibnl_ls_cb_table[RDMA_NL_LS_NUM_OPS] = {
2750 [RDMA_NL_LS_OP_RESOLVE] = {
2751 .doit = ib_nl_handle_resolve_resp,
2752 .flags = RDMA_NL_ADMIN_PERM,
2753 },
2754 [RDMA_NL_LS_OP_SET_TIMEOUT] = {
2755 .doit = ib_nl_handle_set_timeout,
2756 .flags = RDMA_NL_ADMIN_PERM,
2757 },
2758 [RDMA_NL_LS_OP_IP_RESOLVE] = {
2759 .doit = ib_nl_handle_ip_res_resp,
2760 .flags = RDMA_NL_ADMIN_PERM,
2761 },
2762};
2763
2764static int __init ib_core_init(void)
2765{
2766 int ret = -ENOMEM;
2767
2768 ib_wq = alloc_workqueue(fmt: "infiniband", flags: 0, max_active: 0);
2769 if (!ib_wq)
2770 return -ENOMEM;
2771
2772 ib_unreg_wq = alloc_workqueue(fmt: "ib-unreg-wq", flags: WQ_UNBOUND,
2773 max_active: WQ_UNBOUND_MAX_ACTIVE);
2774 if (!ib_unreg_wq)
2775 goto err;
2776
2777 ib_comp_wq = alloc_workqueue(fmt: "ib-comp-wq",
2778 flags: WQ_HIGHPRI | WQ_MEM_RECLAIM | WQ_SYSFS, max_active: 0);
2779 if (!ib_comp_wq)
2780 goto err_unbound;
2781
2782 ib_comp_unbound_wq =
2783 alloc_workqueue(fmt: "ib-comp-unb-wq",
2784 flags: WQ_UNBOUND | WQ_HIGHPRI | WQ_MEM_RECLAIM |
2785 WQ_SYSFS, max_active: WQ_UNBOUND_MAX_ACTIVE);
2786 if (!ib_comp_unbound_wq)
2787 goto err_comp;
2788
2789 ret = class_register(class: &ib_class);
2790 if (ret) {
2791 pr_warn("Couldn't create InfiniBand device class\n");
2792 goto err_comp_unbound;
2793 }
2794
2795 rdma_nl_init();
2796
2797 ret = addr_init();
2798 if (ret) {
2799 pr_warn("Couldn't init IB address resolution\n");
2800 goto err_ibnl;
2801 }
2802
2803 ret = ib_mad_init();
2804 if (ret) {
2805 pr_warn("Couldn't init IB MAD\n");
2806 goto err_addr;
2807 }
2808
2809 ret = ib_sa_init();
2810 if (ret) {
2811 pr_warn("Couldn't init SA\n");
2812 goto err_mad;
2813 }
2814
2815 ret = register_blocking_lsm_notifier(nb: &ibdev_lsm_nb);
2816 if (ret) {
2817 pr_warn("Couldn't register LSM notifier. ret %d\n", ret);
2818 goto err_sa;
2819 }
2820
2821 ret = register_pernet_device(&rdma_dev_net_ops);
2822 if (ret) {
2823 pr_warn("Couldn't init compat dev. ret %d\n", ret);
2824 goto err_compat;
2825 }
2826
2827 nldev_init();
2828 rdma_nl_register(index: RDMA_NL_LS, cb_table: ibnl_ls_cb_table);
2829 ret = roce_gid_mgmt_init();
2830 if (ret) {
2831 pr_warn("Couldn't init RoCE GID management\n");
2832 goto err_parent;
2833 }
2834
2835 return 0;
2836
2837err_parent:
2838 rdma_nl_unregister(index: RDMA_NL_LS);
2839 nldev_exit();
2840 unregister_pernet_device(&rdma_dev_net_ops);
2841err_compat:
2842 unregister_blocking_lsm_notifier(nb: &ibdev_lsm_nb);
2843err_sa:
2844 ib_sa_cleanup();
2845err_mad:
2846 ib_mad_cleanup();
2847err_addr:
2848 addr_cleanup();
2849err_ibnl:
2850 class_unregister(class: &ib_class);
2851err_comp_unbound:
2852 destroy_workqueue(wq: ib_comp_unbound_wq);
2853err_comp:
2854 destroy_workqueue(wq: ib_comp_wq);
2855err_unbound:
2856 destroy_workqueue(wq: ib_unreg_wq);
2857err:
2858 destroy_workqueue(wq: ib_wq);
2859 return ret;
2860}
2861
2862static void __exit ib_core_cleanup(void)
2863{
2864 roce_gid_mgmt_cleanup();
2865 rdma_nl_unregister(index: RDMA_NL_LS);
2866 nldev_exit();
2867 unregister_pernet_device(&rdma_dev_net_ops);
2868 unregister_blocking_lsm_notifier(nb: &ibdev_lsm_nb);
2869 ib_sa_cleanup();
2870 ib_mad_cleanup();
2871 addr_cleanup();
2872 rdma_nl_exit();
2873 class_unregister(class: &ib_class);
2874 destroy_workqueue(wq: ib_comp_unbound_wq);
2875 destroy_workqueue(wq: ib_comp_wq);
2876 /* Make sure that any pending umem accounting work is done. */
2877 destroy_workqueue(wq: ib_wq);
2878 destroy_workqueue(wq: ib_unreg_wq);
2879 WARN_ON(!xa_empty(&clients));
2880 WARN_ON(!xa_empty(&devices));
2881}
2882
2883MODULE_ALIAS_RDMA_NETLINK(RDMA_NL_LS, 4);
2884
2885/* ib core relies on netdev stack to first register net_ns_type_operations
2886 * ns kobject type before ib_core initialization.
2887 */
2888fs_initcall(ib_core_init);
2889module_exit(ib_core_cleanup);
2890

source code of linux/drivers/infiniband/core/device.c