| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved. |
| 4 | * Author: Marc Zyngier <marc.zyngier@arm.com> |
| 5 | */ |
| 6 | |
| 7 | #define pr_fmt(fmt) "GICv3: " fmt |
| 8 | |
| 9 | #include <linux/acpi.h> |
| 10 | #include <linux/cpu.h> |
| 11 | #include <linux/cpu_pm.h> |
| 12 | #include <linux/delay.h> |
| 13 | #include <linux/interrupt.h> |
| 14 | #include <linux/irqdomain.h> |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/kstrtox.h> |
| 17 | #include <linux/of.h> |
| 18 | #include <linux/of_address.h> |
| 19 | #include <linux/of_irq.h> |
| 20 | #include <linux/percpu.h> |
| 21 | #include <linux/refcount.h> |
| 22 | #include <linux/slab.h> |
| 23 | #include <linux/iopoll.h> |
| 24 | |
| 25 | #include <linux/irqchip.h> |
| 26 | #include <linux/irqchip/arm-gic-common.h> |
| 27 | #include <linux/irqchip/arm-gic-v3.h> |
| 28 | #include <linux/irqchip/arm-gic-v3-prio.h> |
| 29 | #include <linux/irqchip/irq-partition-percpu.h> |
| 30 | #include <linux/bitfield.h> |
| 31 | #include <linux/bits.h> |
| 32 | #include <linux/arm-smccc.h> |
| 33 | |
| 34 | #include <asm/cputype.h> |
| 35 | #include <asm/exception.h> |
| 36 | #include <asm/smp_plat.h> |
| 37 | #include <asm/virt.h> |
| 38 | |
| 39 | #include "irq-gic-common.h" |
| 40 | |
| 41 | static u8 dist_prio_irq __ro_after_init = GICV3_PRIO_IRQ; |
| 42 | static u8 dist_prio_nmi __ro_after_init = GICV3_PRIO_NMI; |
| 43 | |
| 44 | #define FLAGS_WORKAROUND_GICR_WAKER_MSM8996 (1ULL << 0) |
| 45 | #define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539 (1ULL << 1) |
| 46 | #define FLAGS_WORKAROUND_ASR_ERRATUM_8601001 (1ULL << 2) |
| 47 | #define FLAGS_WORKAROUND_INSECURE (1ULL << 3) |
| 48 | |
| 49 | #define GIC_IRQ_TYPE_PARTITION (GIC_IRQ_TYPE_LPI + 1) |
| 50 | |
| 51 | static struct cpumask broken_rdists __read_mostly __maybe_unused; |
| 52 | |
| 53 | struct redist_region { |
| 54 | void __iomem *redist_base; |
| 55 | phys_addr_t phys_base; |
| 56 | bool single_redist; |
| 57 | }; |
| 58 | |
| 59 | struct gic_chip_data { |
| 60 | struct fwnode_handle *fwnode; |
| 61 | phys_addr_t dist_phys_base; |
| 62 | void __iomem *dist_base; |
| 63 | struct redist_region *redist_regions; |
| 64 | struct rdists rdists; |
| 65 | struct irq_domain *domain; |
| 66 | u64 redist_stride; |
| 67 | u32 nr_redist_regions; |
| 68 | u64 flags; |
| 69 | bool ; |
| 70 | unsigned int ppi_nr; |
| 71 | struct partition_desc **ppi_descs; |
| 72 | }; |
| 73 | |
| 74 | #define T241_CHIPS_MAX 4 |
| 75 | static void __iomem *t241_dist_base_alias[T241_CHIPS_MAX] __read_mostly; |
| 76 | static DEFINE_STATIC_KEY_FALSE(gic_nvidia_t241_erratum); |
| 77 | |
| 78 | static DEFINE_STATIC_KEY_FALSE(gic_arm64_2941627_erratum); |
| 79 | |
| 80 | static struct gic_chip_data gic_data __read_mostly; |
| 81 | static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key); |
| 82 | |
| 83 | #define GIC_ID_NR (1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer)) |
| 84 | #define GIC_LINE_NR min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U) |
| 85 | #define GIC_ESPI_NR GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer) |
| 86 | |
| 87 | static bool nmi_support_forbidden; |
| 88 | |
| 89 | /* |
| 90 | * There are 16 SGIs, though we only actually use 8 in Linux. The other 8 SGIs |
| 91 | * are potentially stolen by the secure side. Some code, especially code dealing |
| 92 | * with hwirq IDs, is simplified by accounting for all 16. |
| 93 | */ |
| 94 | #define SGI_NR 16 |
| 95 | |
| 96 | /* |
| 97 | * The behaviours of RPR and PMR registers differ depending on the value of |
| 98 | * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the |
| 99 | * distributor and redistributors depends on whether security is enabled in the |
| 100 | * GIC. |
| 101 | * |
| 102 | * When security is enabled, non-secure priority values from the (re)distributor |
| 103 | * are presented to the GIC CPUIF as follow: |
| 104 | * (GIC_(R)DIST_PRI[irq] >> 1) | 0x80; |
| 105 | * |
| 106 | * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure |
| 107 | * EL1 are subject to a similar operation thus matching the priorities presented |
| 108 | * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0, |
| 109 | * these values are unchanged by the GIC. |
| 110 | * |
| 111 | * see GICv3/GICv4 Architecture Specification (IHI0069D): |
| 112 | * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt |
| 113 | * priorities. |
| 114 | * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1 |
| 115 | * interrupt. |
| 116 | */ |
| 117 | static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis); |
| 118 | |
| 119 | static u32 gic_get_pribits(void) |
| 120 | { |
| 121 | u32 pribits; |
| 122 | |
| 123 | pribits = gic_read_ctlr(); |
| 124 | pribits &= ICC_CTLR_EL1_PRI_BITS_MASK; |
| 125 | pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT; |
| 126 | pribits++; |
| 127 | |
| 128 | return pribits; |
| 129 | } |
| 130 | |
| 131 | static bool gic_has_group0(void) |
| 132 | { |
| 133 | u32 val; |
| 134 | u32 old_pmr; |
| 135 | |
| 136 | old_pmr = gic_read_pmr(); |
| 137 | |
| 138 | /* |
| 139 | * Let's find out if Group0 is under control of EL3 or not by |
| 140 | * setting the highest possible, non-zero priority in PMR. |
| 141 | * |
| 142 | * If SCR_EL3.FIQ is set, the priority gets shifted down in |
| 143 | * order for the CPU interface to set bit 7, and keep the |
| 144 | * actual priority in the non-secure range. In the process, it |
| 145 | * looses the least significant bit and the actual priority |
| 146 | * becomes 0x80. Reading it back returns 0, indicating that |
| 147 | * we're don't have access to Group0. |
| 148 | */ |
| 149 | gic_write_pmr(BIT(8 - gic_get_pribits())); |
| 150 | val = gic_read_pmr(); |
| 151 | |
| 152 | gic_write_pmr(old_pmr); |
| 153 | |
| 154 | return val != 0; |
| 155 | } |
| 156 | |
| 157 | static inline bool gic_dist_security_disabled(void) |
| 158 | { |
| 159 | return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS; |
| 160 | } |
| 161 | |
| 162 | static bool cpus_have_security_disabled __ro_after_init; |
| 163 | static bool cpus_have_group0 __ro_after_init; |
| 164 | |
| 165 | static void __init gic_prio_init(void) |
| 166 | { |
| 167 | bool ds; |
| 168 | |
| 169 | cpus_have_group0 = gic_has_group0(); |
| 170 | |
| 171 | ds = gic_dist_security_disabled(); |
| 172 | if ((gic_data.flags & FLAGS_WORKAROUND_INSECURE) && !ds) { |
| 173 | if (cpus_have_group0) { |
| 174 | u32 val; |
| 175 | |
| 176 | val = readl_relaxed(gic_data.dist_base + GICD_CTLR); |
| 177 | val |= GICD_CTLR_DS; |
| 178 | writel_relaxed(val, gic_data.dist_base + GICD_CTLR); |
| 179 | |
| 180 | ds = gic_dist_security_disabled(); |
| 181 | if (ds) |
| 182 | pr_warn("Broken GIC integration, security disabled\n" ); |
| 183 | } else { |
| 184 | pr_warn("Broken GIC integration, pNMI forbidden\n" ); |
| 185 | nmi_support_forbidden = true; |
| 186 | } |
| 187 | } |
| 188 | |
| 189 | cpus_have_security_disabled = ds; |
| 190 | |
| 191 | /* |
| 192 | * How priority values are used by the GIC depends on two things: |
| 193 | * the security state of the GIC (controlled by the GICD_CTRL.DS bit) |
| 194 | * and if Group 0 interrupts can be delivered to Linux in the non-secure |
| 195 | * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the |
| 196 | * way priorities are presented in ICC_PMR_EL1 and in the distributor: |
| 197 | * |
| 198 | * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Distributor |
| 199 | * ------------------------------------------------------- |
| 200 | * 1 | - | unchanged | unchanged |
| 201 | * ------------------------------------------------------- |
| 202 | * 0 | 1 | non-secure | non-secure |
| 203 | * ------------------------------------------------------- |
| 204 | * 0 | 0 | unchanged | non-secure |
| 205 | * |
| 206 | * In the non-secure view reads and writes are modified: |
| 207 | * |
| 208 | * - A value written is right-shifted by one and the MSB is set, |
| 209 | * forcing the priority into the non-secure range. |
| 210 | * |
| 211 | * - A value read is left-shifted by one. |
| 212 | * |
| 213 | * In the first two cases, where ICC_PMR_EL1 and the interrupt priority |
| 214 | * are both either modified or unchanged, we can use the same set of |
| 215 | * priorities. |
| 216 | * |
| 217 | * In the last case, where only the interrupt priorities are modified to |
| 218 | * be in the non-secure range, we program the non-secure values into |
| 219 | * the distributor to match the PMR values we want. |
| 220 | */ |
| 221 | if (cpus_have_group0 && !cpus_have_security_disabled) { |
| 222 | dist_prio_irq = __gicv3_prio_to_ns(dist_prio_irq); |
| 223 | dist_prio_nmi = __gicv3_prio_to_ns(dist_prio_nmi); |
| 224 | } |
| 225 | |
| 226 | pr_info("GICD_CTRL.DS=%d, SCR_EL3.FIQ=%d\n" , |
| 227 | cpus_have_security_disabled, |
| 228 | !cpus_have_group0); |
| 229 | } |
| 230 | |
| 231 | /* rdist_nmi_refs[n] == number of cpus having the rdist interrupt n set as NMI */ |
| 232 | static refcount_t *rdist_nmi_refs; |
| 233 | |
| 234 | static struct gic_kvm_info gic_v3_kvm_info __initdata; |
| 235 | static DEFINE_PER_CPU(bool, ); |
| 236 | |
| 237 | #define MPIDR_RS(mpidr) (((mpidr) & 0xF0UL) >> 4) |
| 238 | #define gic_data_rdist() (this_cpu_ptr(gic_data.rdists.rdist)) |
| 239 | #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base) |
| 240 | #define gic_data_rdist_sgi_base() (gic_data_rdist_rd_base() + SZ_64K) |
| 241 | |
| 242 | /* Our default, arbitrary priority value. Linux only uses one anyway. */ |
| 243 | #define DEFAULT_PMR_VALUE 0xf0 |
| 244 | |
| 245 | enum gic_intid_range { |
| 246 | SGI_RANGE, |
| 247 | PPI_RANGE, |
| 248 | SPI_RANGE, |
| 249 | EPPI_RANGE, |
| 250 | ESPI_RANGE, |
| 251 | LPI_RANGE, |
| 252 | __INVALID_RANGE__ |
| 253 | }; |
| 254 | |
| 255 | static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq) |
| 256 | { |
| 257 | switch (hwirq) { |
| 258 | case 0 ... 15: |
| 259 | return SGI_RANGE; |
| 260 | case 16 ... 31: |
| 261 | return PPI_RANGE; |
| 262 | case 32 ... 1019: |
| 263 | return SPI_RANGE; |
| 264 | case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63): |
| 265 | return EPPI_RANGE; |
| 266 | case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023): |
| 267 | return ESPI_RANGE; |
| 268 | case 8192 ... GENMASK(23, 0): |
| 269 | return LPI_RANGE; |
| 270 | default: |
| 271 | return __INVALID_RANGE__; |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | static enum gic_intid_range get_intid_range(struct irq_data *d) |
| 276 | { |
| 277 | return __get_intid_range(hwirq: d->hwirq); |
| 278 | } |
| 279 | |
| 280 | static inline bool gic_irq_in_rdist(struct irq_data *d) |
| 281 | { |
| 282 | switch (get_intid_range(d)) { |
| 283 | case SGI_RANGE: |
| 284 | case PPI_RANGE: |
| 285 | case EPPI_RANGE: |
| 286 | return true; |
| 287 | default: |
| 288 | return false; |
| 289 | } |
| 290 | } |
| 291 | |
| 292 | static inline void __iomem *gic_dist_base_alias(struct irq_data *d) |
| 293 | { |
| 294 | if (static_branch_unlikely(&gic_nvidia_t241_erratum)) { |
| 295 | irq_hw_number_t hwirq = irqd_to_hwirq(d); |
| 296 | u32 chip; |
| 297 | |
| 298 | /* |
| 299 | * For the erratum T241-FABRIC-4, read accesses to GICD_In{E} |
| 300 | * registers are directed to the chip that owns the SPI. The |
| 301 | * the alias region can also be used for writes to the |
| 302 | * GICD_In{E} except GICD_ICENABLERn. Each chip has support |
| 303 | * for 320 {E}SPIs. Mappings for all 4 chips: |
| 304 | * Chip0 = 32-351 |
| 305 | * Chip1 = 352-671 |
| 306 | * Chip2 = 672-991 |
| 307 | * Chip3 = 4096-4415 |
| 308 | */ |
| 309 | switch (__get_intid_range(hwirq)) { |
| 310 | case SPI_RANGE: |
| 311 | chip = (hwirq - 32) / 320; |
| 312 | break; |
| 313 | case ESPI_RANGE: |
| 314 | chip = 3; |
| 315 | break; |
| 316 | default: |
| 317 | unreachable(); |
| 318 | } |
| 319 | return t241_dist_base_alias[chip]; |
| 320 | } |
| 321 | |
| 322 | return gic_data.dist_base; |
| 323 | } |
| 324 | |
| 325 | static inline void __iomem *gic_dist_base(struct irq_data *d) |
| 326 | { |
| 327 | switch (get_intid_range(d)) { |
| 328 | case SGI_RANGE: |
| 329 | case PPI_RANGE: |
| 330 | case EPPI_RANGE: |
| 331 | /* SGI+PPI -> SGI_base for this CPU */ |
| 332 | return gic_data_rdist_sgi_base(); |
| 333 | |
| 334 | case SPI_RANGE: |
| 335 | case ESPI_RANGE: |
| 336 | /* SPI -> dist_base */ |
| 337 | return gic_data.dist_base; |
| 338 | |
| 339 | default: |
| 340 | return NULL; |
| 341 | } |
| 342 | } |
| 343 | |
| 344 | static void gic_do_wait_for_rwp(void __iomem *base, u32 bit) |
| 345 | { |
| 346 | u32 val; |
| 347 | int ret; |
| 348 | |
| 349 | ret = readl_relaxed_poll_timeout_atomic(base + GICD_CTLR, val, !(val & bit), |
| 350 | 1, USEC_PER_SEC); |
| 351 | if (ret == -ETIMEDOUT) |
| 352 | pr_err_ratelimited("RWP timeout, gone fishing\n" ); |
| 353 | } |
| 354 | |
| 355 | /* Wait for completion of a distributor change */ |
| 356 | static void gic_dist_wait_for_rwp(void) |
| 357 | { |
| 358 | gic_do_wait_for_rwp(base: gic_data.dist_base, GICD_CTLR_RWP); |
| 359 | } |
| 360 | |
| 361 | /* Wait for completion of a redistributor change */ |
| 362 | static void gic_redist_wait_for_rwp(void) |
| 363 | { |
| 364 | gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP); |
| 365 | } |
| 366 | |
| 367 | static void gic_enable_redist(bool enable) |
| 368 | { |
| 369 | void __iomem *rbase; |
| 370 | u32 val; |
| 371 | int ret; |
| 372 | |
| 373 | if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996) |
| 374 | return; |
| 375 | |
| 376 | rbase = gic_data_rdist_rd_base(); |
| 377 | |
| 378 | val = readl_relaxed(rbase + GICR_WAKER); |
| 379 | if (enable) |
| 380 | /* Wake up this CPU redistributor */ |
| 381 | val &= ~GICR_WAKER_ProcessorSleep; |
| 382 | else |
| 383 | val |= GICR_WAKER_ProcessorSleep; |
| 384 | writel_relaxed(val, rbase + GICR_WAKER); |
| 385 | |
| 386 | if (!enable) { /* Check that GICR_WAKER is writeable */ |
| 387 | val = readl_relaxed(rbase + GICR_WAKER); |
| 388 | if (!(val & GICR_WAKER_ProcessorSleep)) |
| 389 | return; /* No PM support in this redistributor */ |
| 390 | } |
| 391 | |
| 392 | ret = readl_relaxed_poll_timeout_atomic(rbase + GICR_WAKER, val, |
| 393 | enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep), |
| 394 | 1, USEC_PER_SEC); |
| 395 | if (ret == -ETIMEDOUT) { |
| 396 | pr_err_ratelimited("redistributor failed to %s...\n" , |
| 397 | enable ? "wakeup" : "sleep" ); |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | /* |
| 402 | * Routines to disable, enable, EOI and route interrupts |
| 403 | */ |
| 404 | static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index) |
| 405 | { |
| 406 | switch (get_intid_range(d)) { |
| 407 | case SGI_RANGE: |
| 408 | case PPI_RANGE: |
| 409 | case SPI_RANGE: |
| 410 | *index = d->hwirq; |
| 411 | return offset; |
| 412 | case EPPI_RANGE: |
| 413 | /* |
| 414 | * Contrary to the ESPI range, the EPPI range is contiguous |
| 415 | * to the PPI range in the registers, so let's adjust the |
| 416 | * displacement accordingly. Consistency is overrated. |
| 417 | */ |
| 418 | *index = d->hwirq - EPPI_BASE_INTID + 32; |
| 419 | return offset; |
| 420 | case ESPI_RANGE: |
| 421 | *index = d->hwirq - ESPI_BASE_INTID; |
| 422 | switch (offset) { |
| 423 | case GICD_ISENABLER: |
| 424 | return GICD_ISENABLERnE; |
| 425 | case GICD_ICENABLER: |
| 426 | return GICD_ICENABLERnE; |
| 427 | case GICD_ISPENDR: |
| 428 | return GICD_ISPENDRnE; |
| 429 | case GICD_ICPENDR: |
| 430 | return GICD_ICPENDRnE; |
| 431 | case GICD_ISACTIVER: |
| 432 | return GICD_ISACTIVERnE; |
| 433 | case GICD_ICACTIVER: |
| 434 | return GICD_ICACTIVERnE; |
| 435 | case GICD_IPRIORITYR: |
| 436 | return GICD_IPRIORITYRnE; |
| 437 | case GICD_ICFGR: |
| 438 | return GICD_ICFGRnE; |
| 439 | case GICD_IROUTER: |
| 440 | return GICD_IROUTERnE; |
| 441 | default: |
| 442 | break; |
| 443 | } |
| 444 | break; |
| 445 | default: |
| 446 | break; |
| 447 | } |
| 448 | |
| 449 | WARN_ON(1); |
| 450 | *index = d->hwirq; |
| 451 | return offset; |
| 452 | } |
| 453 | |
| 454 | static int gic_peek_irq(struct irq_data *d, u32 offset) |
| 455 | { |
| 456 | void __iomem *base; |
| 457 | u32 index, mask; |
| 458 | |
| 459 | offset = convert_offset_index(d, offset, index: &index); |
| 460 | mask = 1 << (index % 32); |
| 461 | |
| 462 | if (gic_irq_in_rdist(d)) |
| 463 | base = gic_data_rdist_sgi_base(); |
| 464 | else |
| 465 | base = gic_dist_base_alias(d); |
| 466 | |
| 467 | return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask); |
| 468 | } |
| 469 | |
| 470 | static void gic_poke_irq(struct irq_data *d, u32 offset) |
| 471 | { |
| 472 | void __iomem *base; |
| 473 | u32 index, mask; |
| 474 | |
| 475 | offset = convert_offset_index(d, offset, index: &index); |
| 476 | mask = 1 << (index % 32); |
| 477 | |
| 478 | if (gic_irq_in_rdist(d)) |
| 479 | base = gic_data_rdist_sgi_base(); |
| 480 | else |
| 481 | base = gic_data.dist_base; |
| 482 | |
| 483 | writel_relaxed(mask, base + offset + (index / 32) * 4); |
| 484 | } |
| 485 | |
| 486 | static void gic_mask_irq(struct irq_data *d) |
| 487 | { |
| 488 | gic_poke_irq(d, GICD_ICENABLER); |
| 489 | if (gic_irq_in_rdist(d)) |
| 490 | gic_redist_wait_for_rwp(); |
| 491 | else |
| 492 | gic_dist_wait_for_rwp(); |
| 493 | } |
| 494 | |
| 495 | static void gic_eoimode1_mask_irq(struct irq_data *d) |
| 496 | { |
| 497 | gic_mask_irq(d); |
| 498 | /* |
| 499 | * When masking a forwarded interrupt, make sure it is |
| 500 | * deactivated as well. |
| 501 | * |
| 502 | * This ensures that an interrupt that is getting |
| 503 | * disabled/masked will not get "stuck", because there is |
| 504 | * noone to deactivate it (guest is being terminated). |
| 505 | */ |
| 506 | if (irqd_is_forwarded_to_vcpu(d)) |
| 507 | gic_poke_irq(d, GICD_ICACTIVER); |
| 508 | } |
| 509 | |
| 510 | static void gic_unmask_irq(struct irq_data *d) |
| 511 | { |
| 512 | gic_poke_irq(d, GICD_ISENABLER); |
| 513 | } |
| 514 | |
| 515 | static inline bool gic_supports_nmi(void) |
| 516 | { |
| 517 | return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && |
| 518 | static_branch_likely(&supports_pseudo_nmis); |
| 519 | } |
| 520 | |
| 521 | static int gic_irq_set_irqchip_state(struct irq_data *d, |
| 522 | enum irqchip_irq_state which, bool val) |
| 523 | { |
| 524 | u32 reg; |
| 525 | |
| 526 | if (d->hwirq >= 8192) /* SGI/PPI/SPI only */ |
| 527 | return -EINVAL; |
| 528 | |
| 529 | switch (which) { |
| 530 | case IRQCHIP_STATE_PENDING: |
| 531 | reg = val ? GICD_ISPENDR : GICD_ICPENDR; |
| 532 | break; |
| 533 | |
| 534 | case IRQCHIP_STATE_ACTIVE: |
| 535 | reg = val ? GICD_ISACTIVER : GICD_ICACTIVER; |
| 536 | break; |
| 537 | |
| 538 | case IRQCHIP_STATE_MASKED: |
| 539 | if (val) { |
| 540 | gic_mask_irq(d); |
| 541 | return 0; |
| 542 | } |
| 543 | reg = GICD_ISENABLER; |
| 544 | break; |
| 545 | |
| 546 | default: |
| 547 | return -EINVAL; |
| 548 | } |
| 549 | |
| 550 | gic_poke_irq(d, offset: reg); |
| 551 | |
| 552 | /* |
| 553 | * Force read-back to guarantee that the active state has taken |
| 554 | * effect, and won't race with a guest-driven deactivation. |
| 555 | */ |
| 556 | if (reg == GICD_ISACTIVER) |
| 557 | gic_peek_irq(d, offset: reg); |
| 558 | return 0; |
| 559 | } |
| 560 | |
| 561 | static int gic_irq_get_irqchip_state(struct irq_data *d, |
| 562 | enum irqchip_irq_state which, bool *val) |
| 563 | { |
| 564 | if (d->hwirq >= 8192) /* PPI/SPI only */ |
| 565 | return -EINVAL; |
| 566 | |
| 567 | switch (which) { |
| 568 | case IRQCHIP_STATE_PENDING: |
| 569 | *val = gic_peek_irq(d, GICD_ISPENDR); |
| 570 | break; |
| 571 | |
| 572 | case IRQCHIP_STATE_ACTIVE: |
| 573 | *val = gic_peek_irq(d, GICD_ISACTIVER); |
| 574 | break; |
| 575 | |
| 576 | case IRQCHIP_STATE_MASKED: |
| 577 | *val = !gic_peek_irq(d, GICD_ISENABLER); |
| 578 | break; |
| 579 | |
| 580 | default: |
| 581 | return -EINVAL; |
| 582 | } |
| 583 | |
| 584 | return 0; |
| 585 | } |
| 586 | |
| 587 | static void gic_irq_set_prio(struct irq_data *d, u8 prio) |
| 588 | { |
| 589 | void __iomem *base = gic_dist_base(d); |
| 590 | u32 offset, index; |
| 591 | |
| 592 | offset = convert_offset_index(d, GICD_IPRIORITYR, index: &index); |
| 593 | |
| 594 | writeb_relaxed(prio, base + offset + index); |
| 595 | } |
| 596 | |
| 597 | static u32 __gic_get_ppi_index(irq_hw_number_t hwirq) |
| 598 | { |
| 599 | switch (__get_intid_range(hwirq)) { |
| 600 | case PPI_RANGE: |
| 601 | return hwirq - 16; |
| 602 | case EPPI_RANGE: |
| 603 | return hwirq - EPPI_BASE_INTID + 16; |
| 604 | default: |
| 605 | unreachable(); |
| 606 | } |
| 607 | } |
| 608 | |
| 609 | static u32 __gic_get_rdist_index(irq_hw_number_t hwirq) |
| 610 | { |
| 611 | switch (__get_intid_range(hwirq)) { |
| 612 | case SGI_RANGE: |
| 613 | case PPI_RANGE: |
| 614 | return hwirq; |
| 615 | case EPPI_RANGE: |
| 616 | return hwirq - EPPI_BASE_INTID + 32; |
| 617 | default: |
| 618 | unreachable(); |
| 619 | } |
| 620 | } |
| 621 | |
| 622 | static u32 gic_get_rdist_index(struct irq_data *d) |
| 623 | { |
| 624 | return __gic_get_rdist_index(hwirq: d->hwirq); |
| 625 | } |
| 626 | |
| 627 | static int gic_irq_nmi_setup(struct irq_data *d) |
| 628 | { |
| 629 | struct irq_desc *desc = irq_to_desc(irq: d->irq); |
| 630 | |
| 631 | if (!gic_supports_nmi()) |
| 632 | return -EINVAL; |
| 633 | |
| 634 | if (gic_peek_irq(d, GICD_ISENABLER)) { |
| 635 | pr_err("Cannot set NMI property of enabled IRQ %u\n" , d->irq); |
| 636 | return -EINVAL; |
| 637 | } |
| 638 | |
| 639 | /* |
| 640 | * A secondary irq_chip should be in charge of LPI request, |
| 641 | * it should not be possible to get there |
| 642 | */ |
| 643 | if (WARN_ON(irqd_to_hwirq(d) >= 8192)) |
| 644 | return -EINVAL; |
| 645 | |
| 646 | /* desc lock should already be held */ |
| 647 | if (gic_irq_in_rdist(d)) { |
| 648 | u32 idx = gic_get_rdist_index(d); |
| 649 | |
| 650 | /* |
| 651 | * Setting up a percpu interrupt as NMI, only switch handler |
| 652 | * for first NMI |
| 653 | */ |
| 654 | if (!refcount_inc_not_zero(r: &rdist_nmi_refs[idx])) { |
| 655 | refcount_set(r: &rdist_nmi_refs[idx], n: 1); |
| 656 | desc->handle_irq = handle_percpu_devid_fasteoi_nmi; |
| 657 | } |
| 658 | } else { |
| 659 | desc->handle_irq = handle_fasteoi_nmi; |
| 660 | } |
| 661 | |
| 662 | gic_irq_set_prio(d, prio: dist_prio_nmi); |
| 663 | |
| 664 | return 0; |
| 665 | } |
| 666 | |
| 667 | static void gic_irq_nmi_teardown(struct irq_data *d) |
| 668 | { |
| 669 | struct irq_desc *desc = irq_to_desc(irq: d->irq); |
| 670 | |
| 671 | if (WARN_ON(!gic_supports_nmi())) |
| 672 | return; |
| 673 | |
| 674 | if (gic_peek_irq(d, GICD_ISENABLER)) { |
| 675 | pr_err("Cannot set NMI property of enabled IRQ %u\n" , d->irq); |
| 676 | return; |
| 677 | } |
| 678 | |
| 679 | /* |
| 680 | * A secondary irq_chip should be in charge of LPI request, |
| 681 | * it should not be possible to get there |
| 682 | */ |
| 683 | if (WARN_ON(irqd_to_hwirq(d) >= 8192)) |
| 684 | return; |
| 685 | |
| 686 | /* desc lock should already be held */ |
| 687 | if (gic_irq_in_rdist(d)) { |
| 688 | u32 idx = gic_get_rdist_index(d); |
| 689 | |
| 690 | /* Tearing down NMI, only switch handler for last NMI */ |
| 691 | if (refcount_dec_and_test(r: &rdist_nmi_refs[idx])) |
| 692 | desc->handle_irq = handle_percpu_devid_irq; |
| 693 | } else { |
| 694 | desc->handle_irq = handle_fasteoi_irq; |
| 695 | } |
| 696 | |
| 697 | gic_irq_set_prio(d, prio: dist_prio_irq); |
| 698 | } |
| 699 | |
| 700 | static bool gic_arm64_erratum_2941627_needed(struct irq_data *d) |
| 701 | { |
| 702 | enum gic_intid_range range; |
| 703 | |
| 704 | if (!static_branch_unlikely(&gic_arm64_2941627_erratum)) |
| 705 | return false; |
| 706 | |
| 707 | range = get_intid_range(d); |
| 708 | |
| 709 | /* |
| 710 | * The workaround is needed if the IRQ is an SPI and |
| 711 | * the target cpu is different from the one we are |
| 712 | * executing on. |
| 713 | */ |
| 714 | return (range == SPI_RANGE || range == ESPI_RANGE) && |
| 715 | !cpumask_test_cpu(raw_smp_processor_id(), |
| 716 | cpumask: irq_data_get_effective_affinity_mask(d)); |
| 717 | } |
| 718 | |
| 719 | static void gic_eoi_irq(struct irq_data *d) |
| 720 | { |
| 721 | write_gicreg(irqd_to_hwirq(d), ICC_EOIR1_EL1); |
| 722 | isb(); |
| 723 | |
| 724 | if (gic_arm64_erratum_2941627_needed(d)) { |
| 725 | /* |
| 726 | * Make sure the GIC stream deactivate packet |
| 727 | * issued by ICC_EOIR1_EL1 has completed before |
| 728 | * deactivating through GICD_IACTIVER. |
| 729 | */ |
| 730 | dsb(sy); |
| 731 | gic_poke_irq(d, GICD_ICACTIVER); |
| 732 | } |
| 733 | } |
| 734 | |
| 735 | static void gic_eoimode1_eoi_irq(struct irq_data *d) |
| 736 | { |
| 737 | /* |
| 738 | * No need to deactivate an LPI, or an interrupt that |
| 739 | * is is getting forwarded to a vcpu. |
| 740 | */ |
| 741 | if (irqd_to_hwirq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d)) |
| 742 | return; |
| 743 | |
| 744 | if (!gic_arm64_erratum_2941627_needed(d)) |
| 745 | gic_write_dir(irqd_to_hwirq(d)); |
| 746 | else |
| 747 | gic_poke_irq(d, GICD_ICACTIVER); |
| 748 | } |
| 749 | |
| 750 | static int gic_set_type(struct irq_data *d, unsigned int type) |
| 751 | { |
| 752 | irq_hw_number_t irq = irqd_to_hwirq(d); |
| 753 | enum gic_intid_range range; |
| 754 | void __iomem *base; |
| 755 | u32 offset, index; |
| 756 | int ret; |
| 757 | |
| 758 | range = get_intid_range(d); |
| 759 | |
| 760 | /* Interrupt configuration for SGIs can't be changed */ |
| 761 | if (range == SGI_RANGE) |
| 762 | return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0; |
| 763 | |
| 764 | /* SPIs have restrictions on the supported types */ |
| 765 | if ((range == SPI_RANGE || range == ESPI_RANGE) && |
| 766 | type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING) |
| 767 | return -EINVAL; |
| 768 | |
| 769 | if (gic_irq_in_rdist(d)) |
| 770 | base = gic_data_rdist_sgi_base(); |
| 771 | else |
| 772 | base = gic_dist_base_alias(d); |
| 773 | |
| 774 | offset = convert_offset_index(d, GICD_ICFGR, index: &index); |
| 775 | |
| 776 | ret = gic_configure_irq(irq: index, type, base: base + offset); |
| 777 | if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) { |
| 778 | /* Misconfigured PPIs are usually not fatal */ |
| 779 | pr_warn("GIC: PPI INTID%ld is secure or misconfigured\n" , irq); |
| 780 | ret = 0; |
| 781 | } |
| 782 | |
| 783 | return ret; |
| 784 | } |
| 785 | |
| 786 | static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu) |
| 787 | { |
| 788 | if (get_intid_range(d) == SGI_RANGE) |
| 789 | return -EINVAL; |
| 790 | |
| 791 | if (vcpu) |
| 792 | irqd_set_forwarded_to_vcpu(d); |
| 793 | else |
| 794 | irqd_clr_forwarded_to_vcpu(d); |
| 795 | return 0; |
| 796 | } |
| 797 | |
| 798 | static u64 gic_cpu_to_affinity(int cpu) |
| 799 | { |
| 800 | u64 mpidr = cpu_logical_map(cpu); |
| 801 | u64 aff; |
| 802 | |
| 803 | /* ASR8601 needs to have its affinities shifted down... */ |
| 804 | if (unlikely(gic_data.flags & FLAGS_WORKAROUND_ASR_ERRATUM_8601001)) |
| 805 | mpidr = (MPIDR_AFFINITY_LEVEL(mpidr, 1) | |
| 806 | (MPIDR_AFFINITY_LEVEL(mpidr, 2) << 8)); |
| 807 | |
| 808 | aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 | |
| 809 | MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 | |
| 810 | MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 | |
| 811 | MPIDR_AFFINITY_LEVEL(mpidr, 0)); |
| 812 | |
| 813 | return aff; |
| 814 | } |
| 815 | |
| 816 | static void gic_deactivate_unhandled(u32 irqnr) |
| 817 | { |
| 818 | if (static_branch_likely(&supports_deactivate_key)) { |
| 819 | if (irqnr < 8192) |
| 820 | gic_write_dir(irqnr); |
| 821 | } else { |
| 822 | write_gicreg(irqnr, ICC_EOIR1_EL1); |
| 823 | isb(); |
| 824 | } |
| 825 | } |
| 826 | |
| 827 | /* |
| 828 | * Follow a read of the IAR with any HW maintenance that needs to happen prior |
| 829 | * to invoking the relevant IRQ handler. We must do two things: |
| 830 | * |
| 831 | * (1) Ensure instruction ordering between a read of IAR and subsequent |
| 832 | * instructions in the IRQ handler using an ISB. |
| 833 | * |
| 834 | * It is possible for the IAR to report an IRQ which was signalled *after* |
| 835 | * the CPU took an IRQ exception as multiple interrupts can race to be |
| 836 | * recognized by the GIC, earlier interrupts could be withdrawn, and/or |
| 837 | * later interrupts could be prioritized by the GIC. |
| 838 | * |
| 839 | * For devices which are tightly coupled to the CPU, such as PMUs, a |
| 840 | * context synchronization event is necessary to ensure that system |
| 841 | * register state is not stale, as these may have been indirectly written |
| 842 | * *after* exception entry. |
| 843 | * |
| 844 | * (2) Execute an interrupt priority drop when EOI mode 1 is in use. |
| 845 | */ |
| 846 | static inline void gic_complete_ack(u32 irqnr) |
| 847 | { |
| 848 | if (static_branch_likely(&supports_deactivate_key)) |
| 849 | write_gicreg(irqnr, ICC_EOIR1_EL1); |
| 850 | |
| 851 | isb(); |
| 852 | } |
| 853 | |
| 854 | static bool gic_rpr_is_nmi_prio(void) |
| 855 | { |
| 856 | if (!gic_supports_nmi()) |
| 857 | return false; |
| 858 | |
| 859 | return unlikely(gic_read_rpr() == GICV3_PRIO_NMI); |
| 860 | } |
| 861 | |
| 862 | static bool gic_irqnr_is_special(u32 irqnr) |
| 863 | { |
| 864 | return irqnr >= 1020 && irqnr <= 1023; |
| 865 | } |
| 866 | |
| 867 | static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs) |
| 868 | { |
| 869 | if (gic_irqnr_is_special(irqnr)) |
| 870 | return; |
| 871 | |
| 872 | gic_complete_ack(irqnr); |
| 873 | |
| 874 | if (generic_handle_domain_irq(domain: gic_data.domain, hwirq: irqnr)) { |
| 875 | WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n" , irqnr); |
| 876 | gic_deactivate_unhandled(irqnr); |
| 877 | } |
| 878 | } |
| 879 | |
| 880 | static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs) |
| 881 | { |
| 882 | if (gic_irqnr_is_special(irqnr)) |
| 883 | return; |
| 884 | |
| 885 | gic_complete_ack(irqnr); |
| 886 | |
| 887 | if (generic_handle_domain_nmi(domain: gic_data.domain, hwirq: irqnr)) { |
| 888 | WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n" , irqnr); |
| 889 | gic_deactivate_unhandled(irqnr); |
| 890 | } |
| 891 | } |
| 892 | |
| 893 | /* |
| 894 | * An exception has been taken from a context with IRQs enabled, and this could |
| 895 | * be an IRQ or an NMI. |
| 896 | * |
| 897 | * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear |
| 898 | * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning, |
| 899 | * after handling any NMI but before handling any IRQ. |
| 900 | * |
| 901 | * The entry code has performed IRQ entry, and if an NMI is detected we must |
| 902 | * perform NMI entry/exit around invoking the handler. |
| 903 | */ |
| 904 | static void __gic_handle_irq_from_irqson(struct pt_regs *regs) |
| 905 | { |
| 906 | bool is_nmi; |
| 907 | u32 irqnr; |
| 908 | |
| 909 | irqnr = gic_read_iar(); |
| 910 | |
| 911 | is_nmi = gic_rpr_is_nmi_prio(); |
| 912 | |
| 913 | if (is_nmi) { |
| 914 | nmi_enter(); |
| 915 | __gic_handle_nmi(irqnr, regs); |
| 916 | nmi_exit(); |
| 917 | } |
| 918 | |
| 919 | if (gic_prio_masking_enabled()) { |
| 920 | gic_pmr_mask_irqs(); |
| 921 | gic_arch_enable_irqs(); |
| 922 | } |
| 923 | |
| 924 | if (!is_nmi) |
| 925 | __gic_handle_irq(irqnr, regs); |
| 926 | } |
| 927 | |
| 928 | /* |
| 929 | * An exception has been taken from a context with IRQs disabled, which can only |
| 930 | * be an NMI. |
| 931 | * |
| 932 | * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave |
| 933 | * DAIF.IF (and ICC_PMR_EL1) unchanged. |
| 934 | * |
| 935 | * The entry code has performed NMI entry. |
| 936 | */ |
| 937 | static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs) |
| 938 | { |
| 939 | u64 pmr; |
| 940 | u32 irqnr; |
| 941 | |
| 942 | /* |
| 943 | * We were in a context with IRQs disabled. However, the |
| 944 | * entry code has set PMR to a value that allows any |
| 945 | * interrupt to be acknowledged, and not just NMIs. This can |
| 946 | * lead to surprising effects if the NMI has been retired in |
| 947 | * the meantime, and that there is an IRQ pending. The IRQ |
| 948 | * would then be taken in NMI context, something that nobody |
| 949 | * wants to debug twice. |
| 950 | * |
| 951 | * Until we sort this, drop PMR again to a level that will |
| 952 | * actually only allow NMIs before reading IAR, and then |
| 953 | * restore it to what it was. |
| 954 | */ |
| 955 | pmr = gic_read_pmr(); |
| 956 | gic_pmr_mask_irqs(); |
| 957 | isb(); |
| 958 | irqnr = gic_read_iar(); |
| 959 | gic_write_pmr(pmr); |
| 960 | |
| 961 | __gic_handle_nmi(irqnr, regs); |
| 962 | } |
| 963 | |
| 964 | static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs) |
| 965 | { |
| 966 | if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs))) |
| 967 | __gic_handle_irq_from_irqsoff(regs); |
| 968 | else |
| 969 | __gic_handle_irq_from_irqson(regs); |
| 970 | } |
| 971 | |
| 972 | static void __init gic_dist_init(void) |
| 973 | { |
| 974 | unsigned int i; |
| 975 | u64 affinity; |
| 976 | void __iomem *base = gic_data.dist_base; |
| 977 | u32 val; |
| 978 | |
| 979 | /* Disable the distributor */ |
| 980 | writel_relaxed(0, base + GICD_CTLR); |
| 981 | gic_dist_wait_for_rwp(); |
| 982 | |
| 983 | /* |
| 984 | * Configure SPIs as non-secure Group-1. This will only matter |
| 985 | * if the GIC only has a single security state. This will not |
| 986 | * do the right thing if the kernel is running in secure mode, |
| 987 | * but that's not the intended use case anyway. |
| 988 | */ |
| 989 | for (i = 32; i < GIC_LINE_NR; i += 32) |
| 990 | writel_relaxed(~0, base + GICD_IGROUPR + i / 8); |
| 991 | |
| 992 | /* Extended SPI range, not handled by the GICv2/GICv3 common code */ |
| 993 | for (i = 0; i < GIC_ESPI_NR; i += 32) { |
| 994 | writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8); |
| 995 | writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8); |
| 996 | } |
| 997 | |
| 998 | for (i = 0; i < GIC_ESPI_NR; i += 32) |
| 999 | writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8); |
| 1000 | |
| 1001 | for (i = 0; i < GIC_ESPI_NR; i += 16) |
| 1002 | writel_relaxed(0, base + GICD_ICFGRnE + i / 4); |
| 1003 | |
| 1004 | for (i = 0; i < GIC_ESPI_NR; i += 4) |
| 1005 | writel_relaxed(REPEAT_BYTE_U32(dist_prio_irq), |
| 1006 | base + GICD_IPRIORITYRnE + i); |
| 1007 | |
| 1008 | /* Now do the common stuff */ |
| 1009 | gic_dist_config(base, GIC_LINE_NR, priority: dist_prio_irq); |
| 1010 | |
| 1011 | val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1; |
| 1012 | if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) { |
| 1013 | pr_info("Enabling SGIs without active state\n" ); |
| 1014 | val |= GICD_CTLR_nASSGIreq; |
| 1015 | } |
| 1016 | |
| 1017 | /* Enable distributor with ARE, Group1, and wait for it to drain */ |
| 1018 | writel_relaxed(val, base + GICD_CTLR); |
| 1019 | gic_dist_wait_for_rwp(); |
| 1020 | |
| 1021 | /* |
| 1022 | * Set all global interrupts to the boot CPU only. ARE must be |
| 1023 | * enabled. |
| 1024 | */ |
| 1025 | affinity = gic_cpu_to_affinity(smp_processor_id()); |
| 1026 | for (i = 32; i < GIC_LINE_NR; i++) |
| 1027 | gic_write_irouter(affinity, base + GICD_IROUTER + i * 8); |
| 1028 | |
| 1029 | for (i = 0; i < GIC_ESPI_NR; i++) |
| 1030 | gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8); |
| 1031 | } |
| 1032 | |
| 1033 | static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *)) |
| 1034 | { |
| 1035 | int ret = -ENODEV; |
| 1036 | int i; |
| 1037 | |
| 1038 | for (i = 0; i < gic_data.nr_redist_regions; i++) { |
| 1039 | void __iomem *ptr = gic_data.redist_regions[i].redist_base; |
| 1040 | u64 typer; |
| 1041 | u32 reg; |
| 1042 | |
| 1043 | reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK; |
| 1044 | if (reg != GIC_PIDR2_ARCH_GICv3 && |
| 1045 | reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */ |
| 1046 | pr_warn("No redistributor present @%p\n" , ptr); |
| 1047 | break; |
| 1048 | } |
| 1049 | |
| 1050 | do { |
| 1051 | typer = gic_read_typer(ptr + GICR_TYPER); |
| 1052 | ret = fn(gic_data.redist_regions + i, ptr); |
| 1053 | if (!ret) |
| 1054 | return 0; |
| 1055 | |
| 1056 | if (gic_data.redist_regions[i].single_redist) |
| 1057 | break; |
| 1058 | |
| 1059 | if (gic_data.redist_stride) { |
| 1060 | ptr += gic_data.redist_stride; |
| 1061 | } else { |
| 1062 | ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */ |
| 1063 | if (typer & GICR_TYPER_VLPIS) |
| 1064 | ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */ |
| 1065 | } |
| 1066 | } while (!(typer & GICR_TYPER_LAST)); |
| 1067 | } |
| 1068 | |
| 1069 | return ret ? -ENODEV : 0; |
| 1070 | } |
| 1071 | |
| 1072 | static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr) |
| 1073 | { |
| 1074 | unsigned long mpidr; |
| 1075 | u64 typer; |
| 1076 | u32 aff; |
| 1077 | |
| 1078 | /* |
| 1079 | * Convert affinity to a 32bit value that can be matched to |
| 1080 | * GICR_TYPER bits [63:32]. |
| 1081 | */ |
| 1082 | mpidr = gic_cpu_to_affinity(smp_processor_id()); |
| 1083 | |
| 1084 | aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 | |
| 1085 | MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 | |
| 1086 | MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 | |
| 1087 | MPIDR_AFFINITY_LEVEL(mpidr, 0)); |
| 1088 | |
| 1089 | typer = gic_read_typer(ptr + GICR_TYPER); |
| 1090 | if ((typer >> 32) == aff) { |
| 1091 | u64 offset = ptr - region->redist_base; |
| 1092 | raw_spin_lock_init(&gic_data_rdist()->rd_lock); |
| 1093 | gic_data_rdist_rd_base() = ptr; |
| 1094 | gic_data_rdist()->phys_base = region->phys_base + offset; |
| 1095 | |
| 1096 | pr_info("CPU%d: found redistributor %lx region %d:%pa\n" , |
| 1097 | smp_processor_id(), mpidr, |
| 1098 | (int)(region - gic_data.redist_regions), |
| 1099 | &gic_data_rdist()->phys_base); |
| 1100 | return 0; |
| 1101 | } |
| 1102 | |
| 1103 | /* Try next one */ |
| 1104 | return 1; |
| 1105 | } |
| 1106 | |
| 1107 | static int gic_populate_rdist(void) |
| 1108 | { |
| 1109 | if (gic_iterate_rdists(fn: __gic_populate_rdist) == 0) |
| 1110 | return 0; |
| 1111 | |
| 1112 | /* We couldn't even deal with ourselves... */ |
| 1113 | WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n" , |
| 1114 | smp_processor_id(), |
| 1115 | (unsigned long)cpu_logical_map(smp_processor_id())); |
| 1116 | return -ENODEV; |
| 1117 | } |
| 1118 | |
| 1119 | static int __gic_update_rdist_properties(struct redist_region *region, |
| 1120 | void __iomem *ptr) |
| 1121 | { |
| 1122 | u64 typer = gic_read_typer(ptr + GICR_TYPER); |
| 1123 | u32 ctlr = readl_relaxed(ptr + GICR_CTLR); |
| 1124 | |
| 1125 | /* Boot-time cleanup */ |
| 1126 | if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) { |
| 1127 | u64 val; |
| 1128 | |
| 1129 | /* Deactivate any present vPE */ |
| 1130 | val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER); |
| 1131 | if (val & GICR_VPENDBASER_Valid) |
| 1132 | gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast, |
| 1133 | ptr + SZ_128K + GICR_VPENDBASER); |
| 1134 | |
| 1135 | /* Mark the VPE table as invalid */ |
| 1136 | val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER); |
| 1137 | val &= ~GICR_VPROPBASER_4_1_VALID; |
| 1138 | gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER); |
| 1139 | } |
| 1140 | |
| 1141 | gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS); |
| 1142 | |
| 1143 | /* |
| 1144 | * TYPER.RVPEID implies some form of DirectLPI, no matter what the |
| 1145 | * doc says... :-/ And CTLR.IR implies another subset of DirectLPI |
| 1146 | * that the ITS driver can make use of for LPIs (and not VLPIs). |
| 1147 | * |
| 1148 | * These are 3 different ways to express the same thing, depending |
| 1149 | * on the revision of the architecture and its relaxations over |
| 1150 | * time. Just group them under the 'direct_lpi' banner. |
| 1151 | */ |
| 1152 | gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID); |
| 1153 | gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) | |
| 1154 | !!(ctlr & GICR_CTLR_IR) | |
| 1155 | gic_data.rdists.has_rvpeid); |
| 1156 | gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY); |
| 1157 | |
| 1158 | /* Detect non-sensical configurations */ |
| 1159 | if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) { |
| 1160 | gic_data.rdists.has_direct_lpi = false; |
| 1161 | gic_data.rdists.has_vlpis = false; |
| 1162 | gic_data.rdists.has_rvpeid = false; |
| 1163 | } |
| 1164 | |
| 1165 | gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr); |
| 1166 | |
| 1167 | return 1; |
| 1168 | } |
| 1169 | |
| 1170 | static void gic_update_rdist_properties(void) |
| 1171 | { |
| 1172 | gic_data.ppi_nr = UINT_MAX; |
| 1173 | gic_iterate_rdists(fn: __gic_update_rdist_properties); |
| 1174 | if (WARN_ON(gic_data.ppi_nr == UINT_MAX)) |
| 1175 | gic_data.ppi_nr = 0; |
| 1176 | pr_info("GICv3 features: %d PPIs%s%s\n" , |
| 1177 | gic_data.ppi_nr, |
| 1178 | gic_data.has_rss ? ", RSS" : "" , |
| 1179 | gic_data.rdists.has_direct_lpi ? ", DirectLPI" : "" ); |
| 1180 | |
| 1181 | if (gic_data.rdists.has_vlpis) |
| 1182 | pr_info("GICv4 features: %s%s%s\n" , |
| 1183 | gic_data.rdists.has_direct_lpi ? "DirectLPI " : "" , |
| 1184 | gic_data.rdists.has_rvpeid ? "RVPEID " : "" , |
| 1185 | gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "" ); |
| 1186 | } |
| 1187 | |
| 1188 | static void gic_cpu_sys_reg_enable(void) |
| 1189 | { |
| 1190 | /* |
| 1191 | * Need to check that the SRE bit has actually been set. If |
| 1192 | * not, it means that SRE is disabled at EL2. We're going to |
| 1193 | * die painfully, and there is nothing we can do about it. |
| 1194 | * |
| 1195 | * Kindly inform the luser. |
| 1196 | */ |
| 1197 | if (!gic_enable_sre()) |
| 1198 | pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n" ); |
| 1199 | |
| 1200 | } |
| 1201 | |
| 1202 | static void gic_cpu_sys_reg_init(void) |
| 1203 | { |
| 1204 | int i, cpu = smp_processor_id(); |
| 1205 | u64 mpidr = gic_cpu_to_affinity(cpu); |
| 1206 | u64 = MPIDR_RS(mpidr); |
| 1207 | bool group0; |
| 1208 | u32 pribits; |
| 1209 | |
| 1210 | pribits = gic_get_pribits(); |
| 1211 | |
| 1212 | group0 = gic_has_group0(); |
| 1213 | |
| 1214 | /* Set priority mask register */ |
| 1215 | if (!gic_prio_masking_enabled()) { |
| 1216 | write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1); |
| 1217 | } else if (gic_supports_nmi()) { |
| 1218 | /* |
| 1219 | * Check that all CPUs use the same priority space. |
| 1220 | * |
| 1221 | * If there's a mismatch with the boot CPU, the system is |
| 1222 | * likely to die as interrupt masking will not work properly on |
| 1223 | * all CPUs. |
| 1224 | */ |
| 1225 | WARN_ON(group0 != cpus_have_group0); |
| 1226 | WARN_ON(gic_dist_security_disabled() != cpus_have_security_disabled); |
| 1227 | } |
| 1228 | |
| 1229 | /* |
| 1230 | * Some firmwares hand over to the kernel with the BPR changed from |
| 1231 | * its reset value (and with a value large enough to prevent |
| 1232 | * any pre-emptive interrupts from working at all). Writing a zero |
| 1233 | * to BPR restores is reset value. |
| 1234 | */ |
| 1235 | gic_write_bpr1(0); |
| 1236 | |
| 1237 | if (static_branch_likely(&supports_deactivate_key)) { |
| 1238 | /* EOI drops priority only (mode 1) */ |
| 1239 | gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop); |
| 1240 | } else { |
| 1241 | /* EOI deactivates interrupt too (mode 0) */ |
| 1242 | gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir); |
| 1243 | } |
| 1244 | |
| 1245 | /* Always whack Group0 before Group1 */ |
| 1246 | if (group0) { |
| 1247 | switch(pribits) { |
| 1248 | case 8: |
| 1249 | case 7: |
| 1250 | write_gicreg(0, ICC_AP0R3_EL1); |
| 1251 | write_gicreg(0, ICC_AP0R2_EL1); |
| 1252 | fallthrough; |
| 1253 | case 6: |
| 1254 | write_gicreg(0, ICC_AP0R1_EL1); |
| 1255 | fallthrough; |
| 1256 | case 5: |
| 1257 | case 4: |
| 1258 | write_gicreg(0, ICC_AP0R0_EL1); |
| 1259 | } |
| 1260 | |
| 1261 | isb(); |
| 1262 | } |
| 1263 | |
| 1264 | switch(pribits) { |
| 1265 | case 8: |
| 1266 | case 7: |
| 1267 | write_gicreg(0, ICC_AP1R3_EL1); |
| 1268 | write_gicreg(0, ICC_AP1R2_EL1); |
| 1269 | fallthrough; |
| 1270 | case 6: |
| 1271 | write_gicreg(0, ICC_AP1R1_EL1); |
| 1272 | fallthrough; |
| 1273 | case 5: |
| 1274 | case 4: |
| 1275 | write_gicreg(0, ICC_AP1R0_EL1); |
| 1276 | } |
| 1277 | |
| 1278 | isb(); |
| 1279 | |
| 1280 | /* ... and let's hit the road... */ |
| 1281 | gic_write_grpen1(1); |
| 1282 | |
| 1283 | /* Keep the RSS capability status in per_cpu variable */ |
| 1284 | per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS); |
| 1285 | |
| 1286 | /* Check all the CPUs have capable of sending SGIs to other CPUs */ |
| 1287 | for_each_online_cpu(i) { |
| 1288 | bool = per_cpu(has_rss, i) && per_cpu(has_rss, cpu); |
| 1289 | |
| 1290 | need_rss |= MPIDR_RS(gic_cpu_to_affinity(i)); |
| 1291 | if (need_rss && (!have_rss)) |
| 1292 | pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n" , |
| 1293 | cpu, (unsigned long)mpidr, |
| 1294 | i, (unsigned long)gic_cpu_to_affinity(i)); |
| 1295 | } |
| 1296 | |
| 1297 | /** |
| 1298 | * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0, |
| 1299 | * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED |
| 1300 | * UNPREDICTABLE choice of : |
| 1301 | * - The write is ignored. |
| 1302 | * - The RS field is treated as 0. |
| 1303 | */ |
| 1304 | if (need_rss && (!gic_data.has_rss)) |
| 1305 | pr_crit_once("RSS is required but GICD doesn't support it\n" ); |
| 1306 | } |
| 1307 | |
| 1308 | static bool gicv3_nolpi; |
| 1309 | |
| 1310 | static int __init gicv3_nolpi_cfg(char *buf) |
| 1311 | { |
| 1312 | return kstrtobool(s: buf, res: &gicv3_nolpi); |
| 1313 | } |
| 1314 | early_param("irqchip.gicv3_nolpi" , gicv3_nolpi_cfg); |
| 1315 | |
| 1316 | static int gic_dist_supports_lpis(void) |
| 1317 | { |
| 1318 | return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) && |
| 1319 | !!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) && |
| 1320 | !gicv3_nolpi); |
| 1321 | } |
| 1322 | |
| 1323 | static void gic_cpu_init(void) |
| 1324 | { |
| 1325 | void __iomem *rbase; |
| 1326 | int i; |
| 1327 | |
| 1328 | /* Register ourselves with the rest of the world */ |
| 1329 | if (gic_populate_rdist()) |
| 1330 | return; |
| 1331 | |
| 1332 | gic_enable_redist(enable: true); |
| 1333 | |
| 1334 | WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) && |
| 1335 | !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange), |
| 1336 | "Distributor has extended ranges, but CPU%d doesn't\n" , |
| 1337 | smp_processor_id()); |
| 1338 | |
| 1339 | rbase = gic_data_rdist_sgi_base(); |
| 1340 | |
| 1341 | /* Configure SGIs/PPIs as non-secure Group-1 */ |
| 1342 | for (i = 0; i < gic_data.ppi_nr + SGI_NR; i += 32) |
| 1343 | writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8); |
| 1344 | |
| 1345 | gic_cpu_config(base: rbase, nr: gic_data.ppi_nr + SGI_NR, priority: dist_prio_irq); |
| 1346 | gic_redist_wait_for_rwp(); |
| 1347 | |
| 1348 | /* initialise system registers */ |
| 1349 | gic_cpu_sys_reg_init(); |
| 1350 | } |
| 1351 | |
| 1352 | #ifdef CONFIG_SMP |
| 1353 | |
| 1354 | #define MPIDR_TO_SGI_RS(mpidr) (MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT) |
| 1355 | #define MPIDR_TO_SGI_CLUSTER_ID(mpidr) ((mpidr) & ~0xFUL) |
| 1356 | |
| 1357 | /* |
| 1358 | * gic_starting_cpu() is called after the last point where cpuhp is allowed |
| 1359 | * to fail. So pre check for problems earlier. |
| 1360 | */ |
| 1361 | static int gic_check_rdist(unsigned int cpu) |
| 1362 | { |
| 1363 | if (cpumask_test_cpu(cpu, cpumask: &broken_rdists)) |
| 1364 | return -EINVAL; |
| 1365 | |
| 1366 | return 0; |
| 1367 | } |
| 1368 | |
| 1369 | static int gic_starting_cpu(unsigned int cpu) |
| 1370 | { |
| 1371 | gic_cpu_sys_reg_enable(); |
| 1372 | gic_cpu_init(); |
| 1373 | |
| 1374 | if (gic_dist_supports_lpis()) |
| 1375 | its_cpu_init(); |
| 1376 | |
| 1377 | return 0; |
| 1378 | } |
| 1379 | |
| 1380 | static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask, |
| 1381 | unsigned long cluster_id) |
| 1382 | { |
| 1383 | int next_cpu, cpu = *base_cpu; |
| 1384 | unsigned long mpidr; |
| 1385 | u16 tlist = 0; |
| 1386 | |
| 1387 | mpidr = gic_cpu_to_affinity(cpu); |
| 1388 | |
| 1389 | while (cpu < nr_cpu_ids) { |
| 1390 | tlist |= 1 << (mpidr & 0xf); |
| 1391 | |
| 1392 | next_cpu = cpumask_next(n: cpu, srcp: mask); |
| 1393 | if (next_cpu >= nr_cpu_ids) |
| 1394 | goto out; |
| 1395 | cpu = next_cpu; |
| 1396 | |
| 1397 | mpidr = gic_cpu_to_affinity(cpu); |
| 1398 | |
| 1399 | if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) { |
| 1400 | cpu--; |
| 1401 | goto out; |
| 1402 | } |
| 1403 | } |
| 1404 | out: |
| 1405 | *base_cpu = cpu; |
| 1406 | return tlist; |
| 1407 | } |
| 1408 | |
| 1409 | #define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \ |
| 1410 | (MPIDR_AFFINITY_LEVEL(cluster_id, level) \ |
| 1411 | << ICC_SGI1R_AFFINITY_## level ##_SHIFT) |
| 1412 | |
| 1413 | static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq) |
| 1414 | { |
| 1415 | u64 val; |
| 1416 | |
| 1417 | val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3) | |
| 1418 | MPIDR_TO_SGI_AFFINITY(cluster_id, 2) | |
| 1419 | irq << ICC_SGI1R_SGI_ID_SHIFT | |
| 1420 | MPIDR_TO_SGI_AFFINITY(cluster_id, 1) | |
| 1421 | MPIDR_TO_SGI_RS(cluster_id) | |
| 1422 | tlist << ICC_SGI1R_TARGET_LIST_SHIFT); |
| 1423 | |
| 1424 | pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n" , smp_processor_id(), val); |
| 1425 | gic_write_sgi1r(val); |
| 1426 | } |
| 1427 | |
| 1428 | static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask) |
| 1429 | { |
| 1430 | int cpu; |
| 1431 | |
| 1432 | if (WARN_ON(d->hwirq >= 16)) |
| 1433 | return; |
| 1434 | |
| 1435 | /* |
| 1436 | * Ensure that stores to Normal memory are visible to the |
| 1437 | * other CPUs before issuing the IPI. |
| 1438 | */ |
| 1439 | dsb(ishst); |
| 1440 | |
| 1441 | for_each_cpu(cpu, mask) { |
| 1442 | u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(gic_cpu_to_affinity(cpu)); |
| 1443 | u16 tlist; |
| 1444 | |
| 1445 | tlist = gic_compute_target_list(base_cpu: &cpu, mask, cluster_id); |
| 1446 | gic_send_sgi(cluster_id, tlist, irq: d->hwirq); |
| 1447 | } |
| 1448 | |
| 1449 | /* Force the above writes to ICC_SGI1R_EL1 to be executed */ |
| 1450 | isb(); |
| 1451 | } |
| 1452 | |
| 1453 | static void __init gic_smp_init(void) |
| 1454 | { |
| 1455 | struct irq_fwspec sgi_fwspec = { |
| 1456 | .fwnode = gic_data.fwnode, |
| 1457 | .param_count = 1, |
| 1458 | }; |
| 1459 | int base_sgi; |
| 1460 | |
| 1461 | cpuhp_setup_state_nocalls(state: CPUHP_BP_PREPARE_DYN, |
| 1462 | name: "irqchip/arm/gicv3:checkrdist" , |
| 1463 | startup: gic_check_rdist, NULL); |
| 1464 | |
| 1465 | cpuhp_setup_state_nocalls(state: CPUHP_AP_IRQ_GIC_STARTING, |
| 1466 | name: "irqchip/arm/gicv3:starting" , |
| 1467 | startup: gic_starting_cpu, NULL); |
| 1468 | |
| 1469 | /* Register all 8 non-secure SGIs */ |
| 1470 | base_sgi = irq_domain_alloc_irqs(domain: gic_data.domain, nr_irqs: 8, NUMA_NO_NODE, arg: &sgi_fwspec); |
| 1471 | if (WARN_ON(base_sgi <= 0)) |
| 1472 | return; |
| 1473 | |
| 1474 | set_smp_ipi_range(base_sgi, 8); |
| 1475 | } |
| 1476 | |
| 1477 | static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val, |
| 1478 | bool force) |
| 1479 | { |
| 1480 | unsigned int cpu; |
| 1481 | u32 offset, index; |
| 1482 | void __iomem *reg; |
| 1483 | int enabled; |
| 1484 | u64 val; |
| 1485 | |
| 1486 | if (force) |
| 1487 | cpu = cpumask_first(srcp: mask_val); |
| 1488 | else |
| 1489 | cpu = cpumask_any_and(mask_val, cpu_online_mask); |
| 1490 | |
| 1491 | if (cpu >= nr_cpu_ids) |
| 1492 | return -EINVAL; |
| 1493 | |
| 1494 | if (gic_irq_in_rdist(d)) |
| 1495 | return -EINVAL; |
| 1496 | |
| 1497 | /* If interrupt was enabled, disable it first */ |
| 1498 | enabled = gic_peek_irq(d, GICD_ISENABLER); |
| 1499 | if (enabled) |
| 1500 | gic_mask_irq(d); |
| 1501 | |
| 1502 | offset = convert_offset_index(d, GICD_IROUTER, index: &index); |
| 1503 | reg = gic_dist_base(d) + offset + (index * 8); |
| 1504 | val = gic_cpu_to_affinity(cpu); |
| 1505 | |
| 1506 | gic_write_irouter(val, reg); |
| 1507 | |
| 1508 | /* |
| 1509 | * If the interrupt was enabled, enabled it again. Otherwise, |
| 1510 | * just wait for the distributor to have digested our changes. |
| 1511 | */ |
| 1512 | if (enabled) |
| 1513 | gic_unmask_irq(d); |
| 1514 | |
| 1515 | irq_data_update_effective_affinity(d, cpumask_of(cpu)); |
| 1516 | |
| 1517 | return IRQ_SET_MASK_OK_DONE; |
| 1518 | } |
| 1519 | #else |
| 1520 | #define gic_set_affinity NULL |
| 1521 | #define gic_ipi_send_mask NULL |
| 1522 | #define gic_smp_init() do { } while(0) |
| 1523 | #endif |
| 1524 | |
| 1525 | static int gic_retrigger(struct irq_data *data) |
| 1526 | { |
| 1527 | return !gic_irq_set_irqchip_state(d: data, which: IRQCHIP_STATE_PENDING, val: true); |
| 1528 | } |
| 1529 | |
| 1530 | #ifdef CONFIG_CPU_PM |
| 1531 | static int gic_cpu_pm_notifier(struct notifier_block *self, |
| 1532 | unsigned long cmd, void *v) |
| 1533 | { |
| 1534 | if (cmd == CPU_PM_EXIT || cmd == CPU_PM_ENTER_FAILED) { |
| 1535 | if (gic_dist_security_disabled()) |
| 1536 | gic_enable_redist(true); |
| 1537 | gic_cpu_sys_reg_enable(); |
| 1538 | gic_cpu_sys_reg_init(); |
| 1539 | } else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) { |
| 1540 | gic_write_grpen1(0); |
| 1541 | gic_enable_redist(false); |
| 1542 | } |
| 1543 | return NOTIFY_OK; |
| 1544 | } |
| 1545 | |
| 1546 | static struct notifier_block gic_cpu_pm_notifier_block = { |
| 1547 | .notifier_call = gic_cpu_pm_notifier, |
| 1548 | }; |
| 1549 | |
| 1550 | static void gic_cpu_pm_init(void) |
| 1551 | { |
| 1552 | cpu_pm_register_notifier(&gic_cpu_pm_notifier_block); |
| 1553 | } |
| 1554 | |
| 1555 | #else |
| 1556 | static inline void gic_cpu_pm_init(void) { } |
| 1557 | #endif /* CONFIG_CPU_PM */ |
| 1558 | |
| 1559 | static struct irq_chip gic_chip = { |
| 1560 | .name = "GICv3" , |
| 1561 | .irq_mask = gic_mask_irq, |
| 1562 | .irq_unmask = gic_unmask_irq, |
| 1563 | .irq_eoi = gic_eoi_irq, |
| 1564 | .irq_set_type = gic_set_type, |
| 1565 | .irq_set_affinity = gic_set_affinity, |
| 1566 | .irq_retrigger = gic_retrigger, |
| 1567 | .irq_get_irqchip_state = gic_irq_get_irqchip_state, |
| 1568 | .irq_set_irqchip_state = gic_irq_set_irqchip_state, |
| 1569 | .irq_nmi_setup = gic_irq_nmi_setup, |
| 1570 | .irq_nmi_teardown = gic_irq_nmi_teardown, |
| 1571 | .ipi_send_mask = gic_ipi_send_mask, |
| 1572 | .flags = IRQCHIP_SET_TYPE_MASKED | |
| 1573 | IRQCHIP_SKIP_SET_WAKE | |
| 1574 | IRQCHIP_MASK_ON_SUSPEND, |
| 1575 | }; |
| 1576 | |
| 1577 | static struct irq_chip gic_eoimode1_chip = { |
| 1578 | .name = "GICv3" , |
| 1579 | .irq_mask = gic_eoimode1_mask_irq, |
| 1580 | .irq_unmask = gic_unmask_irq, |
| 1581 | .irq_eoi = gic_eoimode1_eoi_irq, |
| 1582 | .irq_set_type = gic_set_type, |
| 1583 | .irq_set_affinity = gic_set_affinity, |
| 1584 | .irq_retrigger = gic_retrigger, |
| 1585 | .irq_get_irqchip_state = gic_irq_get_irqchip_state, |
| 1586 | .irq_set_irqchip_state = gic_irq_set_irqchip_state, |
| 1587 | .irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity, |
| 1588 | .irq_nmi_setup = gic_irq_nmi_setup, |
| 1589 | .irq_nmi_teardown = gic_irq_nmi_teardown, |
| 1590 | .ipi_send_mask = gic_ipi_send_mask, |
| 1591 | .flags = IRQCHIP_SET_TYPE_MASKED | |
| 1592 | IRQCHIP_SKIP_SET_WAKE | |
| 1593 | IRQCHIP_MASK_ON_SUSPEND, |
| 1594 | }; |
| 1595 | |
| 1596 | static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq, |
| 1597 | irq_hw_number_t hw) |
| 1598 | { |
| 1599 | struct irq_chip *chip = &gic_chip; |
| 1600 | struct irq_data *irqd = irq_desc_get_irq_data(desc: irq_to_desc(irq)); |
| 1601 | |
| 1602 | if (static_branch_likely(&supports_deactivate_key)) |
| 1603 | chip = &gic_eoimode1_chip; |
| 1604 | |
| 1605 | switch (__get_intid_range(hwirq: hw)) { |
| 1606 | case SGI_RANGE: |
| 1607 | case PPI_RANGE: |
| 1608 | case EPPI_RANGE: |
| 1609 | irq_set_percpu_devid(irq); |
| 1610 | irq_domain_set_info(domain: d, virq: irq, hwirq: hw, chip, chip_data: d->host_data, |
| 1611 | handler: handle_percpu_devid_irq, NULL, NULL); |
| 1612 | break; |
| 1613 | |
| 1614 | case SPI_RANGE: |
| 1615 | case ESPI_RANGE: |
| 1616 | irq_domain_set_info(domain: d, virq: irq, hwirq: hw, chip, chip_data: d->host_data, |
| 1617 | handler: handle_fasteoi_irq, NULL, NULL); |
| 1618 | irq_set_probe(irq); |
| 1619 | irqd_set_single_target(d: irqd); |
| 1620 | break; |
| 1621 | |
| 1622 | case LPI_RANGE: |
| 1623 | if (!gic_dist_supports_lpis()) |
| 1624 | return -EPERM; |
| 1625 | irq_domain_set_info(domain: d, virq: irq, hwirq: hw, chip, chip_data: d->host_data, |
| 1626 | handler: handle_fasteoi_irq, NULL, NULL); |
| 1627 | break; |
| 1628 | |
| 1629 | default: |
| 1630 | return -EPERM; |
| 1631 | } |
| 1632 | |
| 1633 | /* Prevents SW retriggers which mess up the ACK/EOI ordering */ |
| 1634 | irqd_set_handle_enforce_irqctx(d: irqd); |
| 1635 | return 0; |
| 1636 | } |
| 1637 | |
| 1638 | static int gic_irq_domain_translate(struct irq_domain *d, |
| 1639 | struct irq_fwspec *fwspec, |
| 1640 | unsigned long *hwirq, |
| 1641 | unsigned int *type) |
| 1642 | { |
| 1643 | if (fwspec->param_count == 1 && fwspec->param[0] < 16) { |
| 1644 | *hwirq = fwspec->param[0]; |
| 1645 | *type = IRQ_TYPE_EDGE_RISING; |
| 1646 | return 0; |
| 1647 | } |
| 1648 | |
| 1649 | if (is_of_node(fwnode: fwspec->fwnode)) { |
| 1650 | if (fwspec->param_count < 3) |
| 1651 | return -EINVAL; |
| 1652 | |
| 1653 | switch (fwspec->param[0]) { |
| 1654 | case 0: /* SPI */ |
| 1655 | *hwirq = fwspec->param[1] + 32; |
| 1656 | break; |
| 1657 | case 1: /* PPI */ |
| 1658 | *hwirq = fwspec->param[1] + 16; |
| 1659 | break; |
| 1660 | case 2: /* ESPI */ |
| 1661 | *hwirq = fwspec->param[1] + ESPI_BASE_INTID; |
| 1662 | break; |
| 1663 | case 3: /* EPPI */ |
| 1664 | *hwirq = fwspec->param[1] + EPPI_BASE_INTID; |
| 1665 | break; |
| 1666 | case GIC_IRQ_TYPE_LPI: /* LPI */ |
| 1667 | *hwirq = fwspec->param[1]; |
| 1668 | break; |
| 1669 | case GIC_IRQ_TYPE_PARTITION: |
| 1670 | *hwirq = fwspec->param[1]; |
| 1671 | if (fwspec->param[1] >= 16) |
| 1672 | *hwirq += EPPI_BASE_INTID - 16; |
| 1673 | else |
| 1674 | *hwirq += 16; |
| 1675 | break; |
| 1676 | default: |
| 1677 | return -EINVAL; |
| 1678 | } |
| 1679 | |
| 1680 | *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; |
| 1681 | |
| 1682 | /* |
| 1683 | * Make it clear that broken DTs are... broken. |
| 1684 | * Partitioned PPIs are an unfortunate exception. |
| 1685 | */ |
| 1686 | WARN_ON(*type == IRQ_TYPE_NONE && |
| 1687 | fwspec->param[0] != GIC_IRQ_TYPE_PARTITION); |
| 1688 | return 0; |
| 1689 | } |
| 1690 | |
| 1691 | if (is_fwnode_irqchip(fwnode: fwspec->fwnode)) { |
| 1692 | if(fwspec->param_count != 2) |
| 1693 | return -EINVAL; |
| 1694 | |
| 1695 | if (fwspec->param[0] < 16) { |
| 1696 | pr_err(FW_BUG "Illegal GSI%d translation request\n" , |
| 1697 | fwspec->param[0]); |
| 1698 | return -EINVAL; |
| 1699 | } |
| 1700 | |
| 1701 | *hwirq = fwspec->param[0]; |
| 1702 | *type = fwspec->param[1]; |
| 1703 | |
| 1704 | WARN_ON(*type == IRQ_TYPE_NONE); |
| 1705 | return 0; |
| 1706 | } |
| 1707 | |
| 1708 | return -EINVAL; |
| 1709 | } |
| 1710 | |
| 1711 | static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq, |
| 1712 | unsigned int nr_irqs, void *arg) |
| 1713 | { |
| 1714 | int i, ret; |
| 1715 | irq_hw_number_t hwirq; |
| 1716 | unsigned int type = IRQ_TYPE_NONE; |
| 1717 | struct irq_fwspec *fwspec = arg; |
| 1718 | |
| 1719 | ret = gic_irq_domain_translate(d: domain, fwspec, hwirq: &hwirq, type: &type); |
| 1720 | if (ret) |
| 1721 | return ret; |
| 1722 | |
| 1723 | for (i = 0; i < nr_irqs; i++) { |
| 1724 | ret = gic_irq_domain_map(d: domain, irq: virq + i, hw: hwirq + i); |
| 1725 | if (ret) |
| 1726 | return ret; |
| 1727 | } |
| 1728 | |
| 1729 | return 0; |
| 1730 | } |
| 1731 | |
| 1732 | static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq, |
| 1733 | unsigned int nr_irqs) |
| 1734 | { |
| 1735 | int i; |
| 1736 | |
| 1737 | for (i = 0; i < nr_irqs; i++) { |
| 1738 | struct irq_data *d = irq_domain_get_irq_data(domain, virq: virq + i); |
| 1739 | irq_set_handler(irq: virq + i, NULL); |
| 1740 | irq_domain_reset_irq_data(irq_data: d); |
| 1741 | } |
| 1742 | } |
| 1743 | |
| 1744 | static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec, |
| 1745 | irq_hw_number_t hwirq) |
| 1746 | { |
| 1747 | enum gic_intid_range range; |
| 1748 | |
| 1749 | if (!gic_data.ppi_descs) |
| 1750 | return false; |
| 1751 | |
| 1752 | if (!is_of_node(fwnode: fwspec->fwnode)) |
| 1753 | return false; |
| 1754 | |
| 1755 | if (fwspec->param_count < 4 || !fwspec->param[3]) |
| 1756 | return false; |
| 1757 | |
| 1758 | range = __get_intid_range(hwirq); |
| 1759 | if (range != PPI_RANGE && range != EPPI_RANGE) |
| 1760 | return false; |
| 1761 | |
| 1762 | return true; |
| 1763 | } |
| 1764 | |
| 1765 | static int gic_irq_domain_select(struct irq_domain *d, |
| 1766 | struct irq_fwspec *fwspec, |
| 1767 | enum irq_domain_bus_token bus_token) |
| 1768 | { |
| 1769 | unsigned int type, ret, ppi_idx; |
| 1770 | irq_hw_number_t hwirq; |
| 1771 | |
| 1772 | /* Not for us */ |
| 1773 | if (fwspec->fwnode != d->fwnode) |
| 1774 | return 0; |
| 1775 | |
| 1776 | /* Handle pure domain searches */ |
| 1777 | if (!fwspec->param_count) |
| 1778 | return d->bus_token == bus_token; |
| 1779 | |
| 1780 | /* If this is not DT, then we have a single domain */ |
| 1781 | if (!is_of_node(fwnode: fwspec->fwnode)) |
| 1782 | return 1; |
| 1783 | |
| 1784 | ret = gic_irq_domain_translate(d, fwspec, hwirq: &hwirq, type: &type); |
| 1785 | if (WARN_ON_ONCE(ret)) |
| 1786 | return 0; |
| 1787 | |
| 1788 | if (!fwspec_is_partitioned_ppi(fwspec, hwirq)) |
| 1789 | return d == gic_data.domain; |
| 1790 | |
| 1791 | /* |
| 1792 | * If this is a PPI and we have a 4th (non-null) parameter, |
| 1793 | * then we need to match the partition domain. |
| 1794 | */ |
| 1795 | ppi_idx = __gic_get_ppi_index(hwirq); |
| 1796 | return d == partition_get_domain(dsc: gic_data.ppi_descs[ppi_idx]); |
| 1797 | } |
| 1798 | |
| 1799 | static const struct irq_domain_ops gic_irq_domain_ops = { |
| 1800 | .translate = gic_irq_domain_translate, |
| 1801 | .alloc = gic_irq_domain_alloc, |
| 1802 | .free = gic_irq_domain_free, |
| 1803 | .select = gic_irq_domain_select, |
| 1804 | }; |
| 1805 | |
| 1806 | static int partition_domain_translate(struct irq_domain *d, |
| 1807 | struct irq_fwspec *fwspec, |
| 1808 | unsigned long *hwirq, |
| 1809 | unsigned int *type) |
| 1810 | { |
| 1811 | unsigned long ppi_intid; |
| 1812 | struct device_node *np; |
| 1813 | unsigned int ppi_idx; |
| 1814 | int ret; |
| 1815 | |
| 1816 | if (!gic_data.ppi_descs) |
| 1817 | return -ENOMEM; |
| 1818 | |
| 1819 | np = of_find_node_by_phandle(handle: fwspec->param[3]); |
| 1820 | if (WARN_ON(!np)) |
| 1821 | return -EINVAL; |
| 1822 | |
| 1823 | ret = gic_irq_domain_translate(d, fwspec, hwirq: &ppi_intid, type); |
| 1824 | if (WARN_ON_ONCE(ret)) |
| 1825 | return 0; |
| 1826 | |
| 1827 | ppi_idx = __gic_get_ppi_index(hwirq: ppi_intid); |
| 1828 | ret = partition_translate_id(desc: gic_data.ppi_descs[ppi_idx], |
| 1829 | of_fwnode_handle(np)); |
| 1830 | if (ret < 0) |
| 1831 | return ret; |
| 1832 | |
| 1833 | *hwirq = ret; |
| 1834 | *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; |
| 1835 | |
| 1836 | return 0; |
| 1837 | } |
| 1838 | |
| 1839 | static const struct irq_domain_ops partition_domain_ops = { |
| 1840 | .translate = partition_domain_translate, |
| 1841 | .select = gic_irq_domain_select, |
| 1842 | }; |
| 1843 | |
| 1844 | static bool gic_enable_quirk_msm8996(void *data) |
| 1845 | { |
| 1846 | struct gic_chip_data *d = data; |
| 1847 | |
| 1848 | d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996; |
| 1849 | |
| 1850 | return true; |
| 1851 | } |
| 1852 | |
| 1853 | static bool gic_enable_quirk_cavium_38539(void *data) |
| 1854 | { |
| 1855 | struct gic_chip_data *d = data; |
| 1856 | |
| 1857 | d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539; |
| 1858 | |
| 1859 | return true; |
| 1860 | } |
| 1861 | |
| 1862 | static bool gic_enable_quirk_hip06_07(void *data) |
| 1863 | { |
| 1864 | struct gic_chip_data *d = data; |
| 1865 | |
| 1866 | /* |
| 1867 | * HIP06 GICD_IIDR clashes with GIC-600 product number (despite |
| 1868 | * not being an actual ARM implementation). The saving grace is |
| 1869 | * that GIC-600 doesn't have ESPI, so nothing to do in that case. |
| 1870 | * HIP07 doesn't even have a proper IIDR, and still pretends to |
| 1871 | * have ESPI. In both cases, put them right. |
| 1872 | */ |
| 1873 | if (d->rdists.gicd_typer & GICD_TYPER_ESPI) { |
| 1874 | /* Zero both ESPI and the RES0 field next to it... */ |
| 1875 | d->rdists.gicd_typer &= ~GENMASK(9, 8); |
| 1876 | return true; |
| 1877 | } |
| 1878 | |
| 1879 | return false; |
| 1880 | } |
| 1881 | |
| 1882 | #define T241_CHIPN_MASK GENMASK_ULL(45, 44) |
| 1883 | #define T241_CHIP_GICDA_OFFSET 0x1580000 |
| 1884 | #define SMCCC_SOC_ID_T241 0x036b0241 |
| 1885 | |
| 1886 | static bool gic_enable_quirk_nvidia_t241(void *data) |
| 1887 | { |
| 1888 | s32 soc_id = arm_smccc_get_soc_id_version(); |
| 1889 | unsigned long chip_bmask = 0; |
| 1890 | phys_addr_t phys; |
| 1891 | u32 i; |
| 1892 | |
| 1893 | /* Check JEP106 code for NVIDIA T241 chip (036b:0241) */ |
| 1894 | if ((soc_id < 0) || (soc_id != SMCCC_SOC_ID_T241)) |
| 1895 | return false; |
| 1896 | |
| 1897 | /* Find the chips based on GICR regions PHYS addr */ |
| 1898 | for (i = 0; i < gic_data.nr_redist_regions; i++) { |
| 1899 | chip_bmask |= BIT(FIELD_GET(T241_CHIPN_MASK, |
| 1900 | (u64)gic_data.redist_regions[i].phys_base)); |
| 1901 | } |
| 1902 | |
| 1903 | if (hweight32(chip_bmask) < 3) |
| 1904 | return false; |
| 1905 | |
| 1906 | /* Setup GICD alias regions */ |
| 1907 | for (i = 0; i < ARRAY_SIZE(t241_dist_base_alias); i++) { |
| 1908 | if (chip_bmask & BIT(i)) { |
| 1909 | phys = gic_data.dist_phys_base + T241_CHIP_GICDA_OFFSET; |
| 1910 | phys |= FIELD_PREP(T241_CHIPN_MASK, i); |
| 1911 | t241_dist_base_alias[i] = ioremap(offset: phys, SZ_64K); |
| 1912 | WARN_ON_ONCE(!t241_dist_base_alias[i]); |
| 1913 | } |
| 1914 | } |
| 1915 | static_branch_enable(&gic_nvidia_t241_erratum); |
| 1916 | return true; |
| 1917 | } |
| 1918 | |
| 1919 | static bool gic_enable_quirk_asr8601(void *data) |
| 1920 | { |
| 1921 | struct gic_chip_data *d = data; |
| 1922 | |
| 1923 | d->flags |= FLAGS_WORKAROUND_ASR_ERRATUM_8601001; |
| 1924 | |
| 1925 | return true; |
| 1926 | } |
| 1927 | |
| 1928 | static bool gic_enable_quirk_arm64_2941627(void *data) |
| 1929 | { |
| 1930 | static_branch_enable(&gic_arm64_2941627_erratum); |
| 1931 | return true; |
| 1932 | } |
| 1933 | |
| 1934 | static bool gic_enable_quirk_rk3399(void *data) |
| 1935 | { |
| 1936 | struct gic_chip_data *d = data; |
| 1937 | |
| 1938 | if (of_machine_is_compatible(compat: "rockchip,rk3399" )) { |
| 1939 | d->flags |= FLAGS_WORKAROUND_INSECURE; |
| 1940 | return true; |
| 1941 | } |
| 1942 | |
| 1943 | return false; |
| 1944 | } |
| 1945 | |
| 1946 | static bool rd_set_non_coherent(void *data) |
| 1947 | { |
| 1948 | struct gic_chip_data *d = data; |
| 1949 | |
| 1950 | d->rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; |
| 1951 | return true; |
| 1952 | } |
| 1953 | |
| 1954 | static const struct gic_quirk gic_quirks[] = { |
| 1955 | { |
| 1956 | .desc = "GICv3: Qualcomm MSM8996 broken firmware" , |
| 1957 | .compatible = "qcom,msm8996-gic-v3" , |
| 1958 | .init = gic_enable_quirk_msm8996, |
| 1959 | }, |
| 1960 | { |
| 1961 | .desc = "GICv3: ASR erratum 8601001" , |
| 1962 | .compatible = "asr,asr8601-gic-v3" , |
| 1963 | .init = gic_enable_quirk_asr8601, |
| 1964 | }, |
| 1965 | { |
| 1966 | .desc = "GICv3: HIP06 erratum 161010803" , |
| 1967 | .iidr = 0x0204043b, |
| 1968 | .mask = 0xffffffff, |
| 1969 | .init = gic_enable_quirk_hip06_07, |
| 1970 | }, |
| 1971 | { |
| 1972 | .desc = "GICv3: HIP07 erratum 161010803" , |
| 1973 | .iidr = 0x00000000, |
| 1974 | .mask = 0xffffffff, |
| 1975 | .init = gic_enable_quirk_hip06_07, |
| 1976 | }, |
| 1977 | { |
| 1978 | /* |
| 1979 | * Reserved register accesses generate a Synchronous |
| 1980 | * External Abort. This erratum applies to: |
| 1981 | * - ThunderX: CN88xx |
| 1982 | * - OCTEON TX: CN83xx, CN81xx |
| 1983 | * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx* |
| 1984 | */ |
| 1985 | .desc = "GICv3: Cavium erratum 38539" , |
| 1986 | .iidr = 0xa000034c, |
| 1987 | .mask = 0xe8f00fff, |
| 1988 | .init = gic_enable_quirk_cavium_38539, |
| 1989 | }, |
| 1990 | { |
| 1991 | .desc = "GICv3: NVIDIA erratum T241-FABRIC-4" , |
| 1992 | .iidr = 0x0402043b, |
| 1993 | .mask = 0xffffffff, |
| 1994 | .init = gic_enable_quirk_nvidia_t241, |
| 1995 | }, |
| 1996 | { |
| 1997 | /* |
| 1998 | * GIC-700: 2941627 workaround - IP variant [0,1] |
| 1999 | * |
| 2000 | */ |
| 2001 | .desc = "GICv3: ARM64 erratum 2941627" , |
| 2002 | .iidr = 0x0400043b, |
| 2003 | .mask = 0xff0e0fff, |
| 2004 | .init = gic_enable_quirk_arm64_2941627, |
| 2005 | }, |
| 2006 | { |
| 2007 | /* |
| 2008 | * GIC-700: 2941627 workaround - IP variant [2] |
| 2009 | */ |
| 2010 | .desc = "GICv3: ARM64 erratum 2941627" , |
| 2011 | .iidr = 0x0402043b, |
| 2012 | .mask = 0xff0f0fff, |
| 2013 | .init = gic_enable_quirk_arm64_2941627, |
| 2014 | }, |
| 2015 | { |
| 2016 | .desc = "GICv3: non-coherent attribute" , |
| 2017 | .property = "dma-noncoherent" , |
| 2018 | .init = rd_set_non_coherent, |
| 2019 | }, |
| 2020 | { |
| 2021 | .desc = "GICv3: Insecure RK3399 integration" , |
| 2022 | .iidr = 0x0000043b, |
| 2023 | .mask = 0xff000fff, |
| 2024 | .init = gic_enable_quirk_rk3399, |
| 2025 | }, |
| 2026 | { |
| 2027 | } |
| 2028 | }; |
| 2029 | |
| 2030 | static void gic_enable_nmi_support(void) |
| 2031 | { |
| 2032 | int i; |
| 2033 | |
| 2034 | if (!gic_prio_masking_enabled() || nmi_support_forbidden) |
| 2035 | return; |
| 2036 | |
| 2037 | rdist_nmi_refs = kcalloc(gic_data.ppi_nr + SGI_NR, |
| 2038 | sizeof(*rdist_nmi_refs), GFP_KERNEL); |
| 2039 | if (!rdist_nmi_refs) |
| 2040 | return; |
| 2041 | |
| 2042 | for (i = 0; i < gic_data.ppi_nr + SGI_NR; i++) |
| 2043 | refcount_set(r: &rdist_nmi_refs[i], n: 0); |
| 2044 | |
| 2045 | pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n" , |
| 2046 | gic_has_relaxed_pmr_sync() ? "relaxed" : "forced" ); |
| 2047 | |
| 2048 | static_branch_enable(&supports_pseudo_nmis); |
| 2049 | |
| 2050 | if (static_branch_likely(&supports_deactivate_key)) |
| 2051 | gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI; |
| 2052 | else |
| 2053 | gic_chip.flags |= IRQCHIP_SUPPORTS_NMI; |
| 2054 | } |
| 2055 | |
| 2056 | static int __init gic_init_bases(phys_addr_t dist_phys_base, |
| 2057 | void __iomem *dist_base, |
| 2058 | struct redist_region *rdist_regs, |
| 2059 | u32 nr_redist_regions, |
| 2060 | u64 redist_stride, |
| 2061 | struct fwnode_handle *handle) |
| 2062 | { |
| 2063 | u32 typer; |
| 2064 | int err; |
| 2065 | |
| 2066 | if (!is_hyp_mode_available()) |
| 2067 | static_branch_disable(&supports_deactivate_key); |
| 2068 | |
| 2069 | if (static_branch_likely(&supports_deactivate_key)) |
| 2070 | pr_info("GIC: Using split EOI/Deactivate mode\n" ); |
| 2071 | |
| 2072 | gic_data.fwnode = handle; |
| 2073 | gic_data.dist_phys_base = dist_phys_base; |
| 2074 | gic_data.dist_base = dist_base; |
| 2075 | gic_data.redist_regions = rdist_regs; |
| 2076 | gic_data.nr_redist_regions = nr_redist_regions; |
| 2077 | gic_data.redist_stride = redist_stride; |
| 2078 | |
| 2079 | /* |
| 2080 | * Find out how many interrupts are supported. |
| 2081 | */ |
| 2082 | typer = readl_relaxed(gic_data.dist_base + GICD_TYPER); |
| 2083 | gic_data.rdists.gicd_typer = typer; |
| 2084 | |
| 2085 | gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR), |
| 2086 | quirks: gic_quirks, data: &gic_data); |
| 2087 | |
| 2088 | pr_info("%d SPIs implemented\n" , GIC_LINE_NR - 32); |
| 2089 | pr_info("%d Extended SPIs implemented\n" , GIC_ESPI_NR); |
| 2090 | |
| 2091 | /* |
| 2092 | * ThunderX1 explodes on reading GICD_TYPER2, in violation of the |
| 2093 | * architecture spec (which says that reserved registers are RES0). |
| 2094 | */ |
| 2095 | if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539)) |
| 2096 | gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2); |
| 2097 | |
| 2098 | gic_data.domain = irq_domain_create_tree(fwnode: handle, ops: &gic_irq_domain_ops, |
| 2099 | host_data: &gic_data); |
| 2100 | gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist)); |
| 2101 | if (!static_branch_unlikely(&gic_nvidia_t241_erratum)) { |
| 2102 | /* Disable GICv4.x features for the erratum T241-FABRIC-4 */ |
| 2103 | gic_data.rdists.has_rvpeid = true; |
| 2104 | gic_data.rdists.has_vlpis = true; |
| 2105 | gic_data.rdists.has_direct_lpi = true; |
| 2106 | gic_data.rdists.has_vpend_valid_dirty = true; |
| 2107 | } |
| 2108 | |
| 2109 | if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) { |
| 2110 | err = -ENOMEM; |
| 2111 | goto out_free; |
| 2112 | } |
| 2113 | |
| 2114 | irq_domain_update_bus_token(domain: gic_data.domain, bus_token: DOMAIN_BUS_WIRED); |
| 2115 | |
| 2116 | gic_data.has_rss = !!(typer & GICD_TYPER_RSS); |
| 2117 | |
| 2118 | if (typer & GICD_TYPER_MBIS) { |
| 2119 | err = mbi_init(fwnode: handle, parent: gic_data.domain); |
| 2120 | if (err) |
| 2121 | pr_err("Failed to initialize MBIs\n" ); |
| 2122 | } |
| 2123 | |
| 2124 | set_handle_irq(gic_handle_irq); |
| 2125 | |
| 2126 | gic_update_rdist_properties(); |
| 2127 | |
| 2128 | gic_cpu_sys_reg_enable(); |
| 2129 | gic_prio_init(); |
| 2130 | gic_dist_init(); |
| 2131 | gic_cpu_init(); |
| 2132 | gic_enable_nmi_support(); |
| 2133 | gic_smp_init(); |
| 2134 | gic_cpu_pm_init(); |
| 2135 | |
| 2136 | if (gic_dist_supports_lpis()) { |
| 2137 | its_init(handle, rdists: &gic_data.rdists, domain: gic_data.domain, irq_prio: dist_prio_irq); |
| 2138 | its_cpu_init(); |
| 2139 | its_lpi_memreserve_init(); |
| 2140 | } else { |
| 2141 | if (IS_ENABLED(CONFIG_ARM_GIC_V2M)) |
| 2142 | gicv2m_init(parent_handle: handle, parent: gic_data.domain); |
| 2143 | } |
| 2144 | |
| 2145 | return 0; |
| 2146 | |
| 2147 | out_free: |
| 2148 | if (gic_data.domain) |
| 2149 | irq_domain_remove(domain: gic_data.domain); |
| 2150 | free_percpu(pdata: gic_data.rdists.rdist); |
| 2151 | return err; |
| 2152 | } |
| 2153 | |
| 2154 | static int __init gic_validate_dist_version(void __iomem *dist_base) |
| 2155 | { |
| 2156 | u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK; |
| 2157 | |
| 2158 | if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4) |
| 2159 | return -ENODEV; |
| 2160 | |
| 2161 | return 0; |
| 2162 | } |
| 2163 | |
| 2164 | /* Create all possible partitions at boot time */ |
| 2165 | static void __init gic_populate_ppi_partitions(struct device_node *gic_node) |
| 2166 | { |
| 2167 | struct device_node *parts_node, *child_part; |
| 2168 | int part_idx = 0, i; |
| 2169 | int nr_parts; |
| 2170 | struct partition_affinity *parts; |
| 2171 | |
| 2172 | parts_node = of_get_child_by_name(node: gic_node, name: "ppi-partitions" ); |
| 2173 | if (!parts_node) |
| 2174 | return; |
| 2175 | |
| 2176 | gic_data.ppi_descs = kcalloc(gic_data.ppi_nr, sizeof(*gic_data.ppi_descs), GFP_KERNEL); |
| 2177 | if (!gic_data.ppi_descs) |
| 2178 | goto out_put_node; |
| 2179 | |
| 2180 | nr_parts = of_get_child_count(np: parts_node); |
| 2181 | |
| 2182 | if (!nr_parts) |
| 2183 | goto out_put_node; |
| 2184 | |
| 2185 | parts = kcalloc(nr_parts, sizeof(*parts), GFP_KERNEL); |
| 2186 | if (WARN_ON(!parts)) |
| 2187 | goto out_put_node; |
| 2188 | |
| 2189 | for_each_child_of_node(parts_node, child_part) { |
| 2190 | struct partition_affinity *part; |
| 2191 | int n; |
| 2192 | |
| 2193 | part = &parts[part_idx]; |
| 2194 | |
| 2195 | part->partition_id = of_fwnode_handle(child_part); |
| 2196 | |
| 2197 | pr_info("GIC: PPI partition %pOFn[%d] { " , |
| 2198 | child_part, part_idx); |
| 2199 | |
| 2200 | n = of_property_count_elems_of_size(np: child_part, propname: "affinity" , |
| 2201 | elem_size: sizeof(u32)); |
| 2202 | WARN_ON(n <= 0); |
| 2203 | |
| 2204 | for (i = 0; i < n; i++) { |
| 2205 | int err, cpu; |
| 2206 | u32 cpu_phandle; |
| 2207 | struct device_node *cpu_node; |
| 2208 | |
| 2209 | err = of_property_read_u32_index(np: child_part, propname: "affinity" , |
| 2210 | index: i, out_value: &cpu_phandle); |
| 2211 | if (WARN_ON(err)) |
| 2212 | continue; |
| 2213 | |
| 2214 | cpu_node = of_find_node_by_phandle(handle: cpu_phandle); |
| 2215 | if (WARN_ON(!cpu_node)) |
| 2216 | continue; |
| 2217 | |
| 2218 | cpu = of_cpu_node_to_id(np: cpu_node); |
| 2219 | if (WARN_ON(cpu < 0)) { |
| 2220 | of_node_put(node: cpu_node); |
| 2221 | continue; |
| 2222 | } |
| 2223 | |
| 2224 | pr_cont("%pOF[%d] " , cpu_node, cpu); |
| 2225 | |
| 2226 | cpumask_set_cpu(cpu, dstp: &part->mask); |
| 2227 | of_node_put(node: cpu_node); |
| 2228 | } |
| 2229 | |
| 2230 | pr_cont("}\n" ); |
| 2231 | part_idx++; |
| 2232 | } |
| 2233 | |
| 2234 | for (i = 0; i < gic_data.ppi_nr; i++) { |
| 2235 | unsigned int irq; |
| 2236 | struct partition_desc *desc; |
| 2237 | struct irq_fwspec ppi_fwspec = { |
| 2238 | .fwnode = gic_data.fwnode, |
| 2239 | .param_count = 3, |
| 2240 | .param = { |
| 2241 | [0] = GIC_IRQ_TYPE_PARTITION, |
| 2242 | [1] = i, |
| 2243 | [2] = IRQ_TYPE_NONE, |
| 2244 | }, |
| 2245 | }; |
| 2246 | |
| 2247 | irq = irq_create_fwspec_mapping(fwspec: &ppi_fwspec); |
| 2248 | if (WARN_ON(!irq)) |
| 2249 | continue; |
| 2250 | desc = partition_create_desc(fwnode: gic_data.fwnode, parts, nr_parts, |
| 2251 | chained_irq: irq, ops: &partition_domain_ops); |
| 2252 | if (WARN_ON(!desc)) |
| 2253 | continue; |
| 2254 | |
| 2255 | gic_data.ppi_descs[i] = desc; |
| 2256 | } |
| 2257 | |
| 2258 | out_put_node: |
| 2259 | of_node_put(node: parts_node); |
| 2260 | } |
| 2261 | |
| 2262 | static void __init gic_of_setup_kvm_info(struct device_node *node, u32 nr_redist_regions) |
| 2263 | { |
| 2264 | int ret; |
| 2265 | struct resource r; |
| 2266 | |
| 2267 | gic_v3_kvm_info.type = GIC_V3; |
| 2268 | |
| 2269 | gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(node, index: 0); |
| 2270 | if (!gic_v3_kvm_info.maint_irq) |
| 2271 | return; |
| 2272 | |
| 2273 | /* Also skip GICD, GICC, GICH */ |
| 2274 | ret = of_address_to_resource(dev: node, index: nr_redist_regions + 3, r: &r); |
| 2275 | if (!ret) |
| 2276 | gic_v3_kvm_info.vcpu = r; |
| 2277 | |
| 2278 | gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis; |
| 2279 | gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid; |
| 2280 | vgic_set_kvm_info(info: &gic_v3_kvm_info); |
| 2281 | } |
| 2282 | |
| 2283 | static void gic_request_region(resource_size_t base, resource_size_t size, |
| 2284 | const char *name) |
| 2285 | { |
| 2286 | if (!request_mem_region(base, size, name)) |
| 2287 | pr_warn_once(FW_BUG "%s region %pa has overlapping address\n" , |
| 2288 | name, &base); |
| 2289 | } |
| 2290 | |
| 2291 | static void __iomem *gic_of_iomap(struct device_node *node, int idx, |
| 2292 | const char *name, struct resource *res) |
| 2293 | { |
| 2294 | void __iomem *base; |
| 2295 | int ret; |
| 2296 | |
| 2297 | ret = of_address_to_resource(dev: node, index: idx, r: res); |
| 2298 | if (ret) |
| 2299 | return IOMEM_ERR_PTR(ret); |
| 2300 | |
| 2301 | gic_request_region(base: res->start, size: resource_size(res), name); |
| 2302 | base = of_iomap(node, index: idx); |
| 2303 | |
| 2304 | return base ?: IOMEM_ERR_PTR(-ENOMEM); |
| 2305 | } |
| 2306 | |
| 2307 | static int __init gic_of_init(struct device_node *node, struct device_node *parent) |
| 2308 | { |
| 2309 | phys_addr_t dist_phys_base; |
| 2310 | void __iomem *dist_base; |
| 2311 | struct redist_region *rdist_regs; |
| 2312 | struct resource res; |
| 2313 | u64 redist_stride; |
| 2314 | u32 nr_redist_regions; |
| 2315 | int err, i; |
| 2316 | |
| 2317 | dist_base = gic_of_iomap(node, idx: 0, name: "GICD" , res: &res); |
| 2318 | if (IS_ERR(ptr: dist_base)) { |
| 2319 | pr_err("%pOF: unable to map gic dist registers\n" , node); |
| 2320 | return PTR_ERR(ptr: dist_base); |
| 2321 | } |
| 2322 | |
| 2323 | dist_phys_base = res.start; |
| 2324 | |
| 2325 | err = gic_validate_dist_version(dist_base); |
| 2326 | if (err) { |
| 2327 | pr_err("%pOF: no distributor detected, giving up\n" , node); |
| 2328 | goto out_unmap_dist; |
| 2329 | } |
| 2330 | |
| 2331 | if (of_property_read_u32(np: node, propname: "#redistributor-regions" , out_value: &nr_redist_regions)) |
| 2332 | nr_redist_regions = 1; |
| 2333 | |
| 2334 | rdist_regs = kcalloc(nr_redist_regions, sizeof(*rdist_regs), |
| 2335 | GFP_KERNEL); |
| 2336 | if (!rdist_regs) { |
| 2337 | err = -ENOMEM; |
| 2338 | goto out_unmap_dist; |
| 2339 | } |
| 2340 | |
| 2341 | for (i = 0; i < nr_redist_regions; i++) { |
| 2342 | rdist_regs[i].redist_base = gic_of_iomap(node, idx: 1 + i, name: "GICR" , res: &res); |
| 2343 | if (IS_ERR(ptr: rdist_regs[i].redist_base)) { |
| 2344 | pr_err("%pOF: couldn't map region %d\n" , node, i); |
| 2345 | err = -ENODEV; |
| 2346 | goto out_unmap_rdist; |
| 2347 | } |
| 2348 | rdist_regs[i].phys_base = res.start; |
| 2349 | } |
| 2350 | |
| 2351 | if (of_property_read_u64(np: node, propname: "redistributor-stride" , out_value: &redist_stride)) |
| 2352 | redist_stride = 0; |
| 2353 | |
| 2354 | gic_enable_of_quirks(np: node, quirks: gic_quirks, data: &gic_data); |
| 2355 | |
| 2356 | err = gic_init_bases(dist_phys_base, dist_base, rdist_regs, |
| 2357 | nr_redist_regions, redist_stride, handle: &node->fwnode); |
| 2358 | if (err) |
| 2359 | goto out_unmap_rdist; |
| 2360 | |
| 2361 | gic_populate_ppi_partitions(gic_node: node); |
| 2362 | |
| 2363 | if (static_branch_likely(&supports_deactivate_key)) |
| 2364 | gic_of_setup_kvm_info(node, nr_redist_regions); |
| 2365 | return 0; |
| 2366 | |
| 2367 | out_unmap_rdist: |
| 2368 | for (i = 0; i < nr_redist_regions; i++) |
| 2369 | if (rdist_regs[i].redist_base && !IS_ERR(ptr: rdist_regs[i].redist_base)) |
| 2370 | iounmap(addr: rdist_regs[i].redist_base); |
| 2371 | kfree(objp: rdist_regs); |
| 2372 | out_unmap_dist: |
| 2373 | iounmap(addr: dist_base); |
| 2374 | return err; |
| 2375 | } |
| 2376 | |
| 2377 | IRQCHIP_DECLARE(gic_v3, "arm,gic-v3" , gic_of_init); |
| 2378 | |
| 2379 | #ifdef CONFIG_ACPI |
| 2380 | static struct |
| 2381 | { |
| 2382 | void __iomem *dist_base; |
| 2383 | struct redist_region *redist_regs; |
| 2384 | u32 nr_redist_regions; |
| 2385 | bool single_redist; |
| 2386 | int enabled_rdists; |
| 2387 | u32 maint_irq; |
| 2388 | int maint_irq_mode; |
| 2389 | phys_addr_t vcpu_base; |
| 2390 | } acpi_data __initdata; |
| 2391 | |
| 2392 | static void __init |
| 2393 | gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base) |
| 2394 | { |
| 2395 | static int count = 0; |
| 2396 | |
| 2397 | acpi_data.redist_regs[count].phys_base = phys_base; |
| 2398 | acpi_data.redist_regs[count].redist_base = redist_base; |
| 2399 | acpi_data.redist_regs[count].single_redist = acpi_data.single_redist; |
| 2400 | count++; |
| 2401 | } |
| 2402 | |
| 2403 | static int __init |
| 2404 | gic_acpi_parse_madt_redist(union acpi_subtable_headers *, |
| 2405 | const unsigned long end) |
| 2406 | { |
| 2407 | struct acpi_madt_generic_redistributor *redist = |
| 2408 | (struct acpi_madt_generic_redistributor *)header; |
| 2409 | void __iomem *redist_base; |
| 2410 | |
| 2411 | redist_base = ioremap(offset: redist->base_address, size: redist->length); |
| 2412 | if (!redist_base) { |
| 2413 | pr_err("Couldn't map GICR region @%llx\n" , redist->base_address); |
| 2414 | return -ENOMEM; |
| 2415 | } |
| 2416 | |
| 2417 | if (acpi_get_madt_revision() >= 7 && |
| 2418 | (redist->flags & ACPI_MADT_GICR_NON_COHERENT)) |
| 2419 | gic_data.rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; |
| 2420 | |
| 2421 | gic_request_region(base: redist->base_address, size: redist->length, name: "GICR" ); |
| 2422 | |
| 2423 | gic_acpi_register_redist(phys_base: redist->base_address, redist_base); |
| 2424 | return 0; |
| 2425 | } |
| 2426 | |
| 2427 | static int __init |
| 2428 | gic_acpi_parse_madt_gicc(union acpi_subtable_headers *, |
| 2429 | const unsigned long end) |
| 2430 | { |
| 2431 | struct acpi_madt_generic_interrupt *gicc = |
| 2432 | (struct acpi_madt_generic_interrupt *)header; |
| 2433 | u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK; |
| 2434 | u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2; |
| 2435 | void __iomem *redist_base; |
| 2436 | |
| 2437 | /* Neither enabled or online capable means it doesn't exist, skip it */ |
| 2438 | if (!(gicc->flags & (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE))) |
| 2439 | return 0; |
| 2440 | |
| 2441 | /* |
| 2442 | * Capable but disabled CPUs can be brought online later. What about |
| 2443 | * the redistributor? ACPI doesn't want to say! |
| 2444 | * Virtual hotplug systems can use the MADT's "always-on" GICR entries. |
| 2445 | * Otherwise, prevent such CPUs from being brought online. |
| 2446 | */ |
| 2447 | if (!(gicc->flags & ACPI_MADT_ENABLED)) { |
| 2448 | int cpu = get_cpu_for_acpi_id(gicc->uid); |
| 2449 | |
| 2450 | pr_warn("CPU %u's redistributor is inaccessible: this CPU can't be brought online\n" , cpu); |
| 2451 | if (cpu >= 0) |
| 2452 | cpumask_set_cpu(cpu, dstp: &broken_rdists); |
| 2453 | return 0; |
| 2454 | } |
| 2455 | |
| 2456 | redist_base = ioremap(offset: gicc->gicr_base_address, size); |
| 2457 | if (!redist_base) |
| 2458 | return -ENOMEM; |
| 2459 | gic_request_region(base: gicc->gicr_base_address, size, name: "GICR" ); |
| 2460 | |
| 2461 | if (acpi_get_madt_revision() >= 7 && |
| 2462 | (gicc->flags & ACPI_MADT_GICC_NON_COHERENT)) |
| 2463 | gic_data.rdists.flags |= RDIST_FLAGS_FORCE_NON_SHAREABLE; |
| 2464 | |
| 2465 | gic_acpi_register_redist(phys_base: gicc->gicr_base_address, redist_base); |
| 2466 | return 0; |
| 2467 | } |
| 2468 | |
| 2469 | static int __init gic_acpi_collect_gicr_base(void) |
| 2470 | { |
| 2471 | acpi_tbl_entry_handler redist_parser; |
| 2472 | enum acpi_madt_type type; |
| 2473 | |
| 2474 | if (acpi_data.single_redist) { |
| 2475 | type = ACPI_MADT_TYPE_GENERIC_INTERRUPT; |
| 2476 | redist_parser = gic_acpi_parse_madt_gicc; |
| 2477 | } else { |
| 2478 | type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR; |
| 2479 | redist_parser = gic_acpi_parse_madt_redist; |
| 2480 | } |
| 2481 | |
| 2482 | /* Collect redistributor base addresses in GICR entries */ |
| 2483 | if (acpi_table_parse_madt(id: type, handler: redist_parser, max_entries: 0) > 0) |
| 2484 | return 0; |
| 2485 | |
| 2486 | pr_info("No valid GICR entries exist\n" ); |
| 2487 | return -ENODEV; |
| 2488 | } |
| 2489 | |
| 2490 | static int __init gic_acpi_match_gicr(union acpi_subtable_headers *, |
| 2491 | const unsigned long end) |
| 2492 | { |
| 2493 | /* Subtable presence means that redist exists, that's it */ |
| 2494 | return 0; |
| 2495 | } |
| 2496 | |
| 2497 | static int __init gic_acpi_match_gicc(union acpi_subtable_headers *, |
| 2498 | const unsigned long end) |
| 2499 | { |
| 2500 | struct acpi_madt_generic_interrupt *gicc = |
| 2501 | (struct acpi_madt_generic_interrupt *)header; |
| 2502 | |
| 2503 | /* |
| 2504 | * If GICC is enabled and has valid gicr base address, then it means |
| 2505 | * GICR base is presented via GICC. The redistributor is only known to |
| 2506 | * be accessible if the GICC is marked as enabled. If this bit is not |
| 2507 | * set, we'd need to add the redistributor at runtime, which isn't |
| 2508 | * supported. |
| 2509 | */ |
| 2510 | if (gicc->flags & ACPI_MADT_ENABLED && gicc->gicr_base_address) |
| 2511 | acpi_data.enabled_rdists++; |
| 2512 | |
| 2513 | return 0; |
| 2514 | } |
| 2515 | |
| 2516 | static int __init gic_acpi_count_gicr_regions(void) |
| 2517 | { |
| 2518 | int count; |
| 2519 | |
| 2520 | /* |
| 2521 | * Count how many redistributor regions we have. It is not allowed |
| 2522 | * to mix redistributor description, GICR and GICC subtables have to be |
| 2523 | * mutually exclusive. |
| 2524 | */ |
| 2525 | count = acpi_table_parse_madt(id: ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR, |
| 2526 | handler: gic_acpi_match_gicr, max_entries: 0); |
| 2527 | if (count > 0) { |
| 2528 | acpi_data.single_redist = false; |
| 2529 | return count; |
| 2530 | } |
| 2531 | |
| 2532 | count = acpi_table_parse_madt(id: ACPI_MADT_TYPE_GENERIC_INTERRUPT, |
| 2533 | handler: gic_acpi_match_gicc, max_entries: 0); |
| 2534 | if (count > 0) { |
| 2535 | acpi_data.single_redist = true; |
| 2536 | count = acpi_data.enabled_rdists; |
| 2537 | } |
| 2538 | |
| 2539 | return count; |
| 2540 | } |
| 2541 | |
| 2542 | static bool __init acpi_validate_gic_table(struct acpi_subtable_header *, |
| 2543 | struct acpi_probe_entry *ape) |
| 2544 | { |
| 2545 | struct acpi_madt_generic_distributor *dist; |
| 2546 | int count; |
| 2547 | |
| 2548 | dist = (struct acpi_madt_generic_distributor *)header; |
| 2549 | if (dist->version != ape->driver_data) |
| 2550 | return false; |
| 2551 | |
| 2552 | /* We need to do that exercise anyway, the sooner the better */ |
| 2553 | count = gic_acpi_count_gicr_regions(); |
| 2554 | if (count <= 0) |
| 2555 | return false; |
| 2556 | |
| 2557 | acpi_data.nr_redist_regions = count; |
| 2558 | return true; |
| 2559 | } |
| 2560 | |
| 2561 | static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *, |
| 2562 | const unsigned long end) |
| 2563 | { |
| 2564 | struct acpi_madt_generic_interrupt *gicc = |
| 2565 | (struct acpi_madt_generic_interrupt *)header; |
| 2566 | int maint_irq_mode; |
| 2567 | static int first_madt = true; |
| 2568 | |
| 2569 | if (!(gicc->flags & |
| 2570 | (ACPI_MADT_ENABLED | ACPI_MADT_GICC_ONLINE_CAPABLE))) |
| 2571 | return 0; |
| 2572 | |
| 2573 | maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ? |
| 2574 | ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE; |
| 2575 | |
| 2576 | if (first_madt) { |
| 2577 | first_madt = false; |
| 2578 | |
| 2579 | acpi_data.maint_irq = gicc->vgic_interrupt; |
| 2580 | acpi_data.maint_irq_mode = maint_irq_mode; |
| 2581 | acpi_data.vcpu_base = gicc->gicv_base_address; |
| 2582 | |
| 2583 | return 0; |
| 2584 | } |
| 2585 | |
| 2586 | /* |
| 2587 | * The maintenance interrupt and GICV should be the same for every CPU |
| 2588 | */ |
| 2589 | if ((acpi_data.maint_irq != gicc->vgic_interrupt) || |
| 2590 | (acpi_data.maint_irq_mode != maint_irq_mode) || |
| 2591 | (acpi_data.vcpu_base != gicc->gicv_base_address)) |
| 2592 | return -EINVAL; |
| 2593 | |
| 2594 | return 0; |
| 2595 | } |
| 2596 | |
| 2597 | static bool __init gic_acpi_collect_virt_info(void) |
| 2598 | { |
| 2599 | int count; |
| 2600 | |
| 2601 | count = acpi_table_parse_madt(id: ACPI_MADT_TYPE_GENERIC_INTERRUPT, |
| 2602 | handler: gic_acpi_parse_virt_madt_gicc, max_entries: 0); |
| 2603 | |
| 2604 | return (count > 0); |
| 2605 | } |
| 2606 | |
| 2607 | #define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K) |
| 2608 | #define ACPI_GICV2_VCTRL_MEM_SIZE (SZ_4K) |
| 2609 | #define ACPI_GICV2_VCPU_MEM_SIZE (SZ_8K) |
| 2610 | |
| 2611 | static void __init gic_acpi_setup_kvm_info(void) |
| 2612 | { |
| 2613 | int irq; |
| 2614 | |
| 2615 | if (!gic_acpi_collect_virt_info()) { |
| 2616 | pr_warn("Unable to get hardware information used for virtualization\n" ); |
| 2617 | return; |
| 2618 | } |
| 2619 | |
| 2620 | gic_v3_kvm_info.type = GIC_V3; |
| 2621 | |
| 2622 | irq = acpi_register_gsi(NULL, gsi: acpi_data.maint_irq, |
| 2623 | triggering: acpi_data.maint_irq_mode, |
| 2624 | ACPI_ACTIVE_HIGH); |
| 2625 | if (irq <= 0) |
| 2626 | return; |
| 2627 | |
| 2628 | gic_v3_kvm_info.maint_irq = irq; |
| 2629 | |
| 2630 | if (acpi_data.vcpu_base) { |
| 2631 | struct resource *vcpu = &gic_v3_kvm_info.vcpu; |
| 2632 | |
| 2633 | vcpu->flags = IORESOURCE_MEM; |
| 2634 | vcpu->start = acpi_data.vcpu_base; |
| 2635 | vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1; |
| 2636 | } |
| 2637 | |
| 2638 | gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis; |
| 2639 | gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid; |
| 2640 | vgic_set_kvm_info(info: &gic_v3_kvm_info); |
| 2641 | } |
| 2642 | |
| 2643 | static struct fwnode_handle *gsi_domain_handle; |
| 2644 | |
| 2645 | static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi) |
| 2646 | { |
| 2647 | return gsi_domain_handle; |
| 2648 | } |
| 2649 | |
| 2650 | static int __init |
| 2651 | gic_acpi_init(union acpi_subtable_headers *, const unsigned long end) |
| 2652 | { |
| 2653 | struct acpi_madt_generic_distributor *dist; |
| 2654 | size_t size; |
| 2655 | int i, err; |
| 2656 | |
| 2657 | /* Get distributor base address */ |
| 2658 | dist = (struct acpi_madt_generic_distributor *)header; |
| 2659 | acpi_data.dist_base = ioremap(offset: dist->base_address, |
| 2660 | ACPI_GICV3_DIST_MEM_SIZE); |
| 2661 | if (!acpi_data.dist_base) { |
| 2662 | pr_err("Unable to map GICD registers\n" ); |
| 2663 | return -ENOMEM; |
| 2664 | } |
| 2665 | gic_request_region(base: dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, name: "GICD" ); |
| 2666 | |
| 2667 | err = gic_validate_dist_version(dist_base: acpi_data.dist_base); |
| 2668 | if (err) { |
| 2669 | pr_err("No distributor detected at @%p, giving up\n" , |
| 2670 | acpi_data.dist_base); |
| 2671 | goto out_dist_unmap; |
| 2672 | } |
| 2673 | |
| 2674 | size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions; |
| 2675 | acpi_data.redist_regs = kzalloc(size, GFP_KERNEL); |
| 2676 | if (!acpi_data.redist_regs) { |
| 2677 | err = -ENOMEM; |
| 2678 | goto out_dist_unmap; |
| 2679 | } |
| 2680 | |
| 2681 | err = gic_acpi_collect_gicr_base(); |
| 2682 | if (err) |
| 2683 | goto out_redist_unmap; |
| 2684 | |
| 2685 | gsi_domain_handle = irq_domain_alloc_fwnode(pa: &dist->base_address); |
| 2686 | if (!gsi_domain_handle) { |
| 2687 | err = -ENOMEM; |
| 2688 | goto out_redist_unmap; |
| 2689 | } |
| 2690 | |
| 2691 | err = gic_init_bases(dist_phys_base: dist->base_address, dist_base: acpi_data.dist_base, |
| 2692 | rdist_regs: acpi_data.redist_regs, nr_redist_regions: acpi_data.nr_redist_regions, |
| 2693 | redist_stride: 0, handle: gsi_domain_handle); |
| 2694 | if (err) |
| 2695 | goto out_fwhandle_free; |
| 2696 | |
| 2697 | acpi_set_irq_model(model: ACPI_IRQ_MODEL_GIC, fn: gic_v3_get_gsi_domain_id); |
| 2698 | |
| 2699 | if (static_branch_likely(&supports_deactivate_key)) |
| 2700 | gic_acpi_setup_kvm_info(); |
| 2701 | |
| 2702 | return 0; |
| 2703 | |
| 2704 | out_fwhandle_free: |
| 2705 | irq_domain_free_fwnode(fwnode: gsi_domain_handle); |
| 2706 | out_redist_unmap: |
| 2707 | for (i = 0; i < acpi_data.nr_redist_regions; i++) |
| 2708 | if (acpi_data.redist_regs[i].redist_base) |
| 2709 | iounmap(addr: acpi_data.redist_regs[i].redist_base); |
| 2710 | kfree(objp: acpi_data.redist_regs); |
| 2711 | out_dist_unmap: |
| 2712 | iounmap(addr: acpi_data.dist_base); |
| 2713 | return err; |
| 2714 | } |
| 2715 | IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, |
| 2716 | acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3, |
| 2717 | gic_acpi_init); |
| 2718 | IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, |
| 2719 | acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4, |
| 2720 | gic_acpi_init); |
| 2721 | IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR, |
| 2722 | acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE, |
| 2723 | gic_acpi_init); |
| 2724 | #endif |
| 2725 | |