1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7#define pr_fmt(fmt) "GICv3: " fmt
8
9#include <linux/acpi.h>
10#include <linux/cpu.h>
11#include <linux/cpu_pm.h>
12#include <linux/delay.h>
13#include <linux/interrupt.h>
14#include <linux/irqdomain.h>
15#include <linux/kstrtox.h>
16#include <linux/of.h>
17#include <linux/of_address.h>
18#include <linux/of_irq.h>
19#include <linux/percpu.h>
20#include <linux/refcount.h>
21#include <linux/slab.h>
22
23#include <linux/irqchip.h>
24#include <linux/irqchip/arm-gic-common.h>
25#include <linux/irqchip/arm-gic-v3.h>
26#include <linux/irqchip/irq-partition-percpu.h>
27#include <linux/bitfield.h>
28#include <linux/bits.h>
29#include <linux/arm-smccc.h>
30
31#include <asm/cputype.h>
32#include <asm/exception.h>
33#include <asm/smp_plat.h>
34#include <asm/virt.h>
35
36#include "irq-gic-common.h"
37
38#define GICD_INT_NMI_PRI (GICD_INT_DEF_PRI & ~0x80)
39
40#define FLAGS_WORKAROUND_GICR_WAKER_MSM8996 (1ULL << 0)
41#define FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539 (1ULL << 1)
42
43#define GIC_IRQ_TYPE_PARTITION (GIC_IRQ_TYPE_LPI + 1)
44
45struct redist_region {
46 void __iomem *redist_base;
47 phys_addr_t phys_base;
48 bool single_redist;
49};
50
51struct gic_chip_data {
52 struct fwnode_handle *fwnode;
53 phys_addr_t dist_phys_base;
54 void __iomem *dist_base;
55 struct redist_region *redist_regions;
56 struct rdists rdists;
57 struct irq_domain *domain;
58 u64 redist_stride;
59 u32 nr_redist_regions;
60 u64 flags;
61 bool has_rss;
62 unsigned int ppi_nr;
63 struct partition_desc **ppi_descs;
64};
65
66#define T241_CHIPS_MAX 4
67static void __iomem *t241_dist_base_alias[T241_CHIPS_MAX] __read_mostly;
68static DEFINE_STATIC_KEY_FALSE(gic_nvidia_t241_erratum);
69
70static struct gic_chip_data gic_data __read_mostly;
71static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
72
73#define GIC_ID_NR (1U << GICD_TYPER_ID_BITS(gic_data.rdists.gicd_typer))
74#define GIC_LINE_NR min(GICD_TYPER_SPIS(gic_data.rdists.gicd_typer), 1020U)
75#define GIC_ESPI_NR GICD_TYPER_ESPIS(gic_data.rdists.gicd_typer)
76
77/*
78 * The behaviours of RPR and PMR registers differ depending on the value of
79 * SCR_EL3.FIQ, and the behaviour of non-secure priority registers of the
80 * distributor and redistributors depends on whether security is enabled in the
81 * GIC.
82 *
83 * When security is enabled, non-secure priority values from the (re)distributor
84 * are presented to the GIC CPUIF as follow:
85 * (GIC_(R)DIST_PRI[irq] >> 1) | 0x80;
86 *
87 * If SCR_EL3.FIQ == 1, the values written to/read from PMR and RPR at non-secure
88 * EL1 are subject to a similar operation thus matching the priorities presented
89 * from the (re)distributor when security is enabled. When SCR_EL3.FIQ == 0,
90 * these values are unchanged by the GIC.
91 *
92 * see GICv3/GICv4 Architecture Specification (IHI0069D):
93 * - section 4.8.1 Non-secure accesses to register fields for Secure interrupt
94 * priorities.
95 * - Figure 4-7 Secure read of the priority field for a Non-secure Group 1
96 * interrupt.
97 */
98static DEFINE_STATIC_KEY_FALSE(supports_pseudo_nmis);
99
100DEFINE_STATIC_KEY_FALSE(gic_nonsecure_priorities);
101EXPORT_SYMBOL(gic_nonsecure_priorities);
102
103/*
104 * When the Non-secure world has access to group 0 interrupts (as a
105 * consequence of SCR_EL3.FIQ == 0), reading the ICC_RPR_EL1 register will
106 * return the Distributor's view of the interrupt priority.
107 *
108 * When GIC security is enabled (GICD_CTLR.DS == 0), the interrupt priority
109 * written by software is moved to the Non-secure range by the Distributor.
110 *
111 * If both are true (which is when gic_nonsecure_priorities gets enabled),
112 * we need to shift down the priority programmed by software to match it
113 * against the value returned by ICC_RPR_EL1.
114 */
115#define GICD_INT_RPR_PRI(priority) \
116 ({ \
117 u32 __priority = (priority); \
118 if (static_branch_unlikely(&gic_nonsecure_priorities)) \
119 __priority = 0x80 | (__priority >> 1); \
120 \
121 __priority; \
122 })
123
124/* ppi_nmi_refs[n] == number of cpus having ppi[n + 16] set as NMI */
125static refcount_t *ppi_nmi_refs;
126
127static struct gic_kvm_info gic_v3_kvm_info __initdata;
128static DEFINE_PER_CPU(bool, has_rss);
129
130#define MPIDR_RS(mpidr) (((mpidr) & 0xF0UL) >> 4)
131#define gic_data_rdist() (this_cpu_ptr(gic_data.rdists.rdist))
132#define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
133#define gic_data_rdist_sgi_base() (gic_data_rdist_rd_base() + SZ_64K)
134
135/* Our default, arbitrary priority value. Linux only uses one anyway. */
136#define DEFAULT_PMR_VALUE 0xf0
137
138enum gic_intid_range {
139 SGI_RANGE,
140 PPI_RANGE,
141 SPI_RANGE,
142 EPPI_RANGE,
143 ESPI_RANGE,
144 LPI_RANGE,
145 __INVALID_RANGE__
146};
147
148static enum gic_intid_range __get_intid_range(irq_hw_number_t hwirq)
149{
150 switch (hwirq) {
151 case 0 ... 15:
152 return SGI_RANGE;
153 case 16 ... 31:
154 return PPI_RANGE;
155 case 32 ... 1019:
156 return SPI_RANGE;
157 case EPPI_BASE_INTID ... (EPPI_BASE_INTID + 63):
158 return EPPI_RANGE;
159 case ESPI_BASE_INTID ... (ESPI_BASE_INTID + 1023):
160 return ESPI_RANGE;
161 case 8192 ... GENMASK(23, 0):
162 return LPI_RANGE;
163 default:
164 return __INVALID_RANGE__;
165 }
166}
167
168static enum gic_intid_range get_intid_range(struct irq_data *d)
169{
170 return __get_intid_range(hwirq: d->hwirq);
171}
172
173static inline unsigned int gic_irq(struct irq_data *d)
174{
175 return d->hwirq;
176}
177
178static inline bool gic_irq_in_rdist(struct irq_data *d)
179{
180 switch (get_intid_range(d)) {
181 case SGI_RANGE:
182 case PPI_RANGE:
183 case EPPI_RANGE:
184 return true;
185 default:
186 return false;
187 }
188}
189
190static inline void __iomem *gic_dist_base_alias(struct irq_data *d)
191{
192 if (static_branch_unlikely(&gic_nvidia_t241_erratum)) {
193 irq_hw_number_t hwirq = irqd_to_hwirq(d);
194 u32 chip;
195
196 /*
197 * For the erratum T241-FABRIC-4, read accesses to GICD_In{E}
198 * registers are directed to the chip that owns the SPI. The
199 * the alias region can also be used for writes to the
200 * GICD_In{E} except GICD_ICENABLERn. Each chip has support
201 * for 320 {E}SPIs. Mappings for all 4 chips:
202 * Chip0 = 32-351
203 * Chip1 = 352-671
204 * Chip2 = 672-991
205 * Chip3 = 4096-4415
206 */
207 switch (__get_intid_range(hwirq)) {
208 case SPI_RANGE:
209 chip = (hwirq - 32) / 320;
210 break;
211 case ESPI_RANGE:
212 chip = 3;
213 break;
214 default:
215 unreachable();
216 }
217 return t241_dist_base_alias[chip];
218 }
219
220 return gic_data.dist_base;
221}
222
223static inline void __iomem *gic_dist_base(struct irq_data *d)
224{
225 switch (get_intid_range(d)) {
226 case SGI_RANGE:
227 case PPI_RANGE:
228 case EPPI_RANGE:
229 /* SGI+PPI -> SGI_base for this CPU */
230 return gic_data_rdist_sgi_base();
231
232 case SPI_RANGE:
233 case ESPI_RANGE:
234 /* SPI -> dist_base */
235 return gic_data.dist_base;
236
237 default:
238 return NULL;
239 }
240}
241
242static void gic_do_wait_for_rwp(void __iomem *base, u32 bit)
243{
244 u32 count = 1000000; /* 1s! */
245
246 while (readl_relaxed(base + GICD_CTLR) & bit) {
247 count--;
248 if (!count) {
249 pr_err_ratelimited("RWP timeout, gone fishing\n");
250 return;
251 }
252 cpu_relax();
253 udelay(1);
254 }
255}
256
257/* Wait for completion of a distributor change */
258static void gic_dist_wait_for_rwp(void)
259{
260 gic_do_wait_for_rwp(base: gic_data.dist_base, GICD_CTLR_RWP);
261}
262
263/* Wait for completion of a redistributor change */
264static void gic_redist_wait_for_rwp(void)
265{
266 gic_do_wait_for_rwp(gic_data_rdist_rd_base(), GICR_CTLR_RWP);
267}
268
269#ifdef CONFIG_ARM64
270
271static u64 __maybe_unused gic_read_iar(void)
272{
273 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_23154))
274 return gic_read_iar_cavium_thunderx();
275 else
276 return gic_read_iar_common();
277}
278#endif
279
280static void gic_enable_redist(bool enable)
281{
282 void __iomem *rbase;
283 u32 count = 1000000; /* 1s! */
284 u32 val;
285
286 if (gic_data.flags & FLAGS_WORKAROUND_GICR_WAKER_MSM8996)
287 return;
288
289 rbase = gic_data_rdist_rd_base();
290
291 val = readl_relaxed(rbase + GICR_WAKER);
292 if (enable)
293 /* Wake up this CPU redistributor */
294 val &= ~GICR_WAKER_ProcessorSleep;
295 else
296 val |= GICR_WAKER_ProcessorSleep;
297 writel_relaxed(val, rbase + GICR_WAKER);
298
299 if (!enable) { /* Check that GICR_WAKER is writeable */
300 val = readl_relaxed(rbase + GICR_WAKER);
301 if (!(val & GICR_WAKER_ProcessorSleep))
302 return; /* No PM support in this redistributor */
303 }
304
305 while (--count) {
306 val = readl_relaxed(rbase + GICR_WAKER);
307 if (enable ^ (bool)(val & GICR_WAKER_ChildrenAsleep))
308 break;
309 cpu_relax();
310 udelay(1);
311 }
312 if (!count)
313 pr_err_ratelimited("redistributor failed to %s...\n",
314 enable ? "wakeup" : "sleep");
315}
316
317/*
318 * Routines to disable, enable, EOI and route interrupts
319 */
320static u32 convert_offset_index(struct irq_data *d, u32 offset, u32 *index)
321{
322 switch (get_intid_range(d)) {
323 case SGI_RANGE:
324 case PPI_RANGE:
325 case SPI_RANGE:
326 *index = d->hwirq;
327 return offset;
328 case EPPI_RANGE:
329 /*
330 * Contrary to the ESPI range, the EPPI range is contiguous
331 * to the PPI range in the registers, so let's adjust the
332 * displacement accordingly. Consistency is overrated.
333 */
334 *index = d->hwirq - EPPI_BASE_INTID + 32;
335 return offset;
336 case ESPI_RANGE:
337 *index = d->hwirq - ESPI_BASE_INTID;
338 switch (offset) {
339 case GICD_ISENABLER:
340 return GICD_ISENABLERnE;
341 case GICD_ICENABLER:
342 return GICD_ICENABLERnE;
343 case GICD_ISPENDR:
344 return GICD_ISPENDRnE;
345 case GICD_ICPENDR:
346 return GICD_ICPENDRnE;
347 case GICD_ISACTIVER:
348 return GICD_ISACTIVERnE;
349 case GICD_ICACTIVER:
350 return GICD_ICACTIVERnE;
351 case GICD_IPRIORITYR:
352 return GICD_IPRIORITYRnE;
353 case GICD_ICFGR:
354 return GICD_ICFGRnE;
355 case GICD_IROUTER:
356 return GICD_IROUTERnE;
357 default:
358 break;
359 }
360 break;
361 default:
362 break;
363 }
364
365 WARN_ON(1);
366 *index = d->hwirq;
367 return offset;
368}
369
370static int gic_peek_irq(struct irq_data *d, u32 offset)
371{
372 void __iomem *base;
373 u32 index, mask;
374
375 offset = convert_offset_index(d, offset, &index);
376 mask = 1 << (index % 32);
377
378 if (gic_irq_in_rdist(d))
379 base = gic_data_rdist_sgi_base();
380 else
381 base = gic_dist_base_alias(d);
382
383 return !!(readl_relaxed(base + offset + (index / 32) * 4) & mask);
384}
385
386static void gic_poke_irq(struct irq_data *d, u32 offset)
387{
388 void __iomem *base;
389 u32 index, mask;
390
391 offset = convert_offset_index(d, offset, &index);
392 mask = 1 << (index % 32);
393
394 if (gic_irq_in_rdist(d))
395 base = gic_data_rdist_sgi_base();
396 else
397 base = gic_data.dist_base;
398
399 writel_relaxed(mask, base + offset + (index / 32) * 4);
400}
401
402static void gic_mask_irq(struct irq_data *d)
403{
404 gic_poke_irq(d, GICD_ICENABLER);
405 if (gic_irq_in_rdist(d))
406 gic_redist_wait_for_rwp();
407 else
408 gic_dist_wait_for_rwp();
409}
410
411static void gic_eoimode1_mask_irq(struct irq_data *d)
412{
413 gic_mask_irq(d);
414 /*
415 * When masking a forwarded interrupt, make sure it is
416 * deactivated as well.
417 *
418 * This ensures that an interrupt that is getting
419 * disabled/masked will not get "stuck", because there is
420 * noone to deactivate it (guest is being terminated).
421 */
422 if (irqd_is_forwarded_to_vcpu(d))
423 gic_poke_irq(d, GICD_ICACTIVER);
424}
425
426static void gic_unmask_irq(struct irq_data *d)
427{
428 gic_poke_irq(d, GICD_ISENABLER);
429}
430
431static inline bool gic_supports_nmi(void)
432{
433 return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
434 static_branch_likely(&supports_pseudo_nmis);
435}
436
437static int gic_irq_set_irqchip_state(struct irq_data *d,
438 enum irqchip_irq_state which, bool val)
439{
440 u32 reg;
441
442 if (d->hwirq >= 8192) /* SGI/PPI/SPI only */
443 return -EINVAL;
444
445 switch (which) {
446 case IRQCHIP_STATE_PENDING:
447 reg = val ? GICD_ISPENDR : GICD_ICPENDR;
448 break;
449
450 case IRQCHIP_STATE_ACTIVE:
451 reg = val ? GICD_ISACTIVER : GICD_ICACTIVER;
452 break;
453
454 case IRQCHIP_STATE_MASKED:
455 if (val) {
456 gic_mask_irq(d);
457 return 0;
458 }
459 reg = GICD_ISENABLER;
460 break;
461
462 default:
463 return -EINVAL;
464 }
465
466 gic_poke_irq(d, offset: reg);
467 return 0;
468}
469
470static int gic_irq_get_irqchip_state(struct irq_data *d,
471 enum irqchip_irq_state which, bool *val)
472{
473 if (d->hwirq >= 8192) /* PPI/SPI only */
474 return -EINVAL;
475
476 switch (which) {
477 case IRQCHIP_STATE_PENDING:
478 *val = gic_peek_irq(d, GICD_ISPENDR);
479 break;
480
481 case IRQCHIP_STATE_ACTIVE:
482 *val = gic_peek_irq(d, GICD_ISACTIVER);
483 break;
484
485 case IRQCHIP_STATE_MASKED:
486 *val = !gic_peek_irq(d, GICD_ISENABLER);
487 break;
488
489 default:
490 return -EINVAL;
491 }
492
493 return 0;
494}
495
496static void gic_irq_set_prio(struct irq_data *d, u8 prio)
497{
498 void __iomem *base = gic_dist_base(d);
499 u32 offset, index;
500
501 offset = convert_offset_index(d, GICD_IPRIORITYR, &index);
502
503 writeb_relaxed(prio, base + offset + index);
504}
505
506static u32 __gic_get_ppi_index(irq_hw_number_t hwirq)
507{
508 switch (__get_intid_range(hwirq)) {
509 case PPI_RANGE:
510 return hwirq - 16;
511 case EPPI_RANGE:
512 return hwirq - EPPI_BASE_INTID + 16;
513 default:
514 unreachable();
515 }
516}
517
518static u32 gic_get_ppi_index(struct irq_data *d)
519{
520 return __gic_get_ppi_index(d->hwirq);
521}
522
523static int gic_irq_nmi_setup(struct irq_data *d)
524{
525 struct irq_desc *desc = irq_to_desc(irq: d->irq);
526
527 if (!gic_supports_nmi())
528 return -EINVAL;
529
530 if (gic_peek_irq(d, GICD_ISENABLER)) {
531 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
532 return -EINVAL;
533 }
534
535 /*
536 * A secondary irq_chip should be in charge of LPI request,
537 * it should not be possible to get there
538 */
539 if (WARN_ON(gic_irq(d) >= 8192))
540 return -EINVAL;
541
542 /* desc lock should already be held */
543 if (gic_irq_in_rdist(d)) {
544 u32 idx = gic_get_ppi_index(d);
545
546 /* Setting up PPI as NMI, only switch handler for first NMI */
547 if (!refcount_inc_not_zero(&ppi_nmi_refs[idx])) {
548 refcount_set(&ppi_nmi_refs[idx], 1);
549 desc->handle_irq = handle_percpu_devid_fasteoi_nmi;
550 }
551 } else {
552 desc->handle_irq = handle_fasteoi_nmi;
553 }
554
555 gic_irq_set_prio(d, GICD_INT_NMI_PRI);
556
557 return 0;
558}
559
560static void gic_irq_nmi_teardown(struct irq_data *d)
561{
562 struct irq_desc *desc = irq_to_desc(irq: d->irq);
563
564 if (WARN_ON(!gic_supports_nmi()))
565 return;
566
567 if (gic_peek_irq(d, GICD_ISENABLER)) {
568 pr_err("Cannot set NMI property of enabled IRQ %u\n", d->irq);
569 return;
570 }
571
572 /*
573 * A secondary irq_chip should be in charge of LPI request,
574 * it should not be possible to get there
575 */
576 if (WARN_ON(gic_irq(d) >= 8192))
577 return;
578
579 /* desc lock should already be held */
580 if (gic_irq_in_rdist(d)) {
581 u32 idx = gic_get_ppi_index(d);
582
583 /* Tearing down NMI, only switch handler for last NMI */
584 if (refcount_dec_and_test(&ppi_nmi_refs[idx]))
585 desc->handle_irq = handle_percpu_devid_irq;
586 } else {
587 desc->handle_irq = handle_fasteoi_irq;
588 }
589
590 gic_irq_set_prio(d, GICD_INT_DEF_PRI);
591}
592
593static void gic_eoi_irq(struct irq_data *d)
594{
595 write_gicreg(gic_irq(d), ICC_EOIR1_EL1);
596 isb();
597}
598
599static void gic_eoimode1_eoi_irq(struct irq_data *d)
600{
601 /*
602 * No need to deactivate an LPI, or an interrupt that
603 * is is getting forwarded to a vcpu.
604 */
605 if (gic_irq(d) >= 8192 || irqd_is_forwarded_to_vcpu(d))
606 return;
607 gic_write_dir(gic_irq(d));
608}
609
610static int gic_set_type(struct irq_data *d, unsigned int type)
611{
612 enum gic_intid_range range;
613 unsigned int irq = gic_irq(d);
614 void __iomem *base;
615 u32 offset, index;
616 int ret;
617
618 range = get_intid_range(d);
619
620 /* Interrupt configuration for SGIs can't be changed */
621 if (range == SGI_RANGE)
622 return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
623
624 /* SPIs have restrictions on the supported types */
625 if ((range == SPI_RANGE || range == ESPI_RANGE) &&
626 type != IRQ_TYPE_LEVEL_HIGH && type != IRQ_TYPE_EDGE_RISING)
627 return -EINVAL;
628
629 if (gic_irq_in_rdist(d))
630 base = gic_data_rdist_sgi_base();
631 else
632 base = gic_dist_base_alias(d);
633
634 offset = convert_offset_index(d, GICD_ICFGR, &index);
635
636 ret = gic_configure_irq(irq: index, type, base: base + offset, NULL);
637 if (ret && (range == PPI_RANGE || range == EPPI_RANGE)) {
638 /* Misconfigured PPIs are usually not fatal */
639 pr_warn("GIC: PPI INTID%d is secure or misconfigured\n", irq);
640 ret = 0;
641 }
642
643 return ret;
644}
645
646static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
647{
648 if (get_intid_range(d) == SGI_RANGE)
649 return -EINVAL;
650
651 if (vcpu)
652 irqd_set_forwarded_to_vcpu(d);
653 else
654 irqd_clr_forwarded_to_vcpu(d);
655 return 0;
656}
657
658static u64 gic_mpidr_to_affinity(unsigned long mpidr)
659{
660 u64 aff;
661
662 aff = ((u64)MPIDR_AFFINITY_LEVEL(mpidr, 3) << 32 |
663 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
664 MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
665 MPIDR_AFFINITY_LEVEL(mpidr, 0));
666
667 return aff;
668}
669
670static void gic_deactivate_unhandled(u32 irqnr)
671{
672 if (static_branch_likely(&supports_deactivate_key)) {
673 if (irqnr < 8192)
674 gic_write_dir(irqnr);
675 } else {
676 write_gicreg(irqnr, ICC_EOIR1_EL1);
677 isb();
678 }
679}
680
681/*
682 * Follow a read of the IAR with any HW maintenance that needs to happen prior
683 * to invoking the relevant IRQ handler. We must do two things:
684 *
685 * (1) Ensure instruction ordering between a read of IAR and subsequent
686 * instructions in the IRQ handler using an ISB.
687 *
688 * It is possible for the IAR to report an IRQ which was signalled *after*
689 * the CPU took an IRQ exception as multiple interrupts can race to be
690 * recognized by the GIC, earlier interrupts could be withdrawn, and/or
691 * later interrupts could be prioritized by the GIC.
692 *
693 * For devices which are tightly coupled to the CPU, such as PMUs, a
694 * context synchronization event is necessary to ensure that system
695 * register state is not stale, as these may have been indirectly written
696 * *after* exception entry.
697 *
698 * (2) Deactivate the interrupt when EOI mode 1 is in use.
699 */
700static inline void gic_complete_ack(u32 irqnr)
701{
702 if (static_branch_likely(&supports_deactivate_key))
703 write_gicreg(irqnr, ICC_EOIR1_EL1);
704
705 isb();
706}
707
708static bool gic_rpr_is_nmi_prio(void)
709{
710 if (!gic_supports_nmi())
711 return false;
712
713 return unlikely(gic_read_rpr() == GICD_INT_RPR_PRI(GICD_INT_NMI_PRI));
714}
715
716static bool gic_irqnr_is_special(u32 irqnr)
717{
718 return irqnr >= 1020 && irqnr <= 1023;
719}
720
721static void __gic_handle_irq(u32 irqnr, struct pt_regs *regs)
722{
723 if (gic_irqnr_is_special(irqnr))
724 return;
725
726 gic_complete_ack(irqnr);
727
728 if (generic_handle_domain_irq(gic_data.domain, irqnr)) {
729 WARN_ONCE(true, "Unexpected interrupt (irqnr %u)\n", irqnr);
730 gic_deactivate_unhandled(irqnr);
731 }
732}
733
734static void __gic_handle_nmi(u32 irqnr, struct pt_regs *regs)
735{
736 if (gic_irqnr_is_special(irqnr))
737 return;
738
739 gic_complete_ack(irqnr);
740
741 if (generic_handle_domain_nmi(gic_data.domain, irqnr)) {
742 WARN_ONCE(true, "Unexpected pseudo-NMI (irqnr %u)\n", irqnr);
743 gic_deactivate_unhandled(irqnr);
744 }
745}
746
747/*
748 * An exception has been taken from a context with IRQs enabled, and this could
749 * be an IRQ or an NMI.
750 *
751 * The entry code called us with DAIF.IF set to keep NMIs masked. We must clear
752 * DAIF.IF (and update ICC_PMR_EL1 to mask regular IRQs) prior to returning,
753 * after handling any NMI but before handling any IRQ.
754 *
755 * The entry code has performed IRQ entry, and if an NMI is detected we must
756 * perform NMI entry/exit around invoking the handler.
757 */
758static void __gic_handle_irq_from_irqson(struct pt_regs *regs)
759{
760 bool is_nmi;
761 u32 irqnr;
762
763 irqnr = gic_read_iar();
764
765 is_nmi = gic_rpr_is_nmi_prio();
766
767 if (is_nmi) {
768 nmi_enter();
769 __gic_handle_nmi(irqnr, regs);
770 nmi_exit();
771 }
772
773 if (gic_prio_masking_enabled()) {
774 gic_pmr_mask_irqs();
775 gic_arch_enable_irqs();
776 }
777
778 if (!is_nmi)
779 __gic_handle_irq(irqnr, regs);
780}
781
782/*
783 * An exception has been taken from a context with IRQs disabled, which can only
784 * be an NMI.
785 *
786 * The entry code called us with DAIF.IF set to keep NMIs masked. We must leave
787 * DAIF.IF (and ICC_PMR_EL1) unchanged.
788 *
789 * The entry code has performed NMI entry.
790 */
791static void __gic_handle_irq_from_irqsoff(struct pt_regs *regs)
792{
793 u64 pmr;
794 u32 irqnr;
795
796 /*
797 * We were in a context with IRQs disabled. However, the
798 * entry code has set PMR to a value that allows any
799 * interrupt to be acknowledged, and not just NMIs. This can
800 * lead to surprising effects if the NMI has been retired in
801 * the meantime, and that there is an IRQ pending. The IRQ
802 * would then be taken in NMI context, something that nobody
803 * wants to debug twice.
804 *
805 * Until we sort this, drop PMR again to a level that will
806 * actually only allow NMIs before reading IAR, and then
807 * restore it to what it was.
808 */
809 pmr = gic_read_pmr();
810 gic_pmr_mask_irqs();
811 isb();
812 irqnr = gic_read_iar();
813 gic_write_pmr(pmr);
814
815 __gic_handle_nmi(irqnr, regs);
816}
817
818static asmlinkage void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
819{
820 if (unlikely(gic_supports_nmi() && !interrupts_enabled(regs)))
821 __gic_handle_irq_from_irqsoff(regs);
822 else
823 __gic_handle_irq_from_irqson(regs);
824}
825
826static u32 gic_get_pribits(void)
827{
828 u32 pribits;
829
830 pribits = gic_read_ctlr();
831 pribits &= ICC_CTLR_EL1_PRI_BITS_MASK;
832 pribits >>= ICC_CTLR_EL1_PRI_BITS_SHIFT;
833 pribits++;
834
835 return pribits;
836}
837
838static bool gic_has_group0(void)
839{
840 u32 val;
841 u32 old_pmr;
842
843 old_pmr = gic_read_pmr();
844
845 /*
846 * Let's find out if Group0 is under control of EL3 or not by
847 * setting the highest possible, non-zero priority in PMR.
848 *
849 * If SCR_EL3.FIQ is set, the priority gets shifted down in
850 * order for the CPU interface to set bit 7, and keep the
851 * actual priority in the non-secure range. In the process, it
852 * looses the least significant bit and the actual priority
853 * becomes 0x80. Reading it back returns 0, indicating that
854 * we're don't have access to Group0.
855 */
856 gic_write_pmr(BIT(8 - gic_get_pribits()));
857 val = gic_read_pmr();
858
859 gic_write_pmr(old_pmr);
860
861 return val != 0;
862}
863
864static void __init gic_dist_init(void)
865{
866 unsigned int i;
867 u64 affinity;
868 void __iomem *base = gic_data.dist_base;
869 u32 val;
870
871 /* Disable the distributor */
872 writel_relaxed(0, base + GICD_CTLR);
873 gic_dist_wait_for_rwp();
874
875 /*
876 * Configure SPIs as non-secure Group-1. This will only matter
877 * if the GIC only has a single security state. This will not
878 * do the right thing if the kernel is running in secure mode,
879 * but that's not the intended use case anyway.
880 */
881 for (i = 32; i < GIC_LINE_NR; i += 32)
882 writel_relaxed(~0, base + GICD_IGROUPR + i / 8);
883
884 /* Extended SPI range, not handled by the GICv2/GICv3 common code */
885 for (i = 0; i < GIC_ESPI_NR; i += 32) {
886 writel_relaxed(~0U, base + GICD_ICENABLERnE + i / 8);
887 writel_relaxed(~0U, base + GICD_ICACTIVERnE + i / 8);
888 }
889
890 for (i = 0; i < GIC_ESPI_NR; i += 32)
891 writel_relaxed(~0U, base + GICD_IGROUPRnE + i / 8);
892
893 for (i = 0; i < GIC_ESPI_NR; i += 16)
894 writel_relaxed(0, base + GICD_ICFGRnE + i / 4);
895
896 for (i = 0; i < GIC_ESPI_NR; i += 4)
897 writel_relaxed(GICD_INT_DEF_PRI_X4, base + GICD_IPRIORITYRnE + i);
898
899 /* Now do the common stuff */
900 gic_dist_config(base, GIC_LINE_NR, NULL);
901
902 val = GICD_CTLR_ARE_NS | GICD_CTLR_ENABLE_G1A | GICD_CTLR_ENABLE_G1;
903 if (gic_data.rdists.gicd_typer2 & GICD_TYPER2_nASSGIcap) {
904 pr_info("Enabling SGIs without active state\n");
905 val |= GICD_CTLR_nASSGIreq;
906 }
907
908 /* Enable distributor with ARE, Group1, and wait for it to drain */
909 writel_relaxed(val, base + GICD_CTLR);
910 gic_dist_wait_for_rwp();
911
912 /*
913 * Set all global interrupts to the boot CPU only. ARE must be
914 * enabled.
915 */
916 affinity = gic_mpidr_to_affinity(cpu_logical_map(smp_processor_id()));
917 for (i = 32; i < GIC_LINE_NR; i++)
918 gic_write_irouter(affinity, base + GICD_IROUTER + i * 8);
919
920 for (i = 0; i < GIC_ESPI_NR; i++)
921 gic_write_irouter(affinity, base + GICD_IROUTERnE + i * 8);
922}
923
924static int gic_iterate_rdists(int (*fn)(struct redist_region *, void __iomem *))
925{
926 int ret = -ENODEV;
927 int i;
928
929 for (i = 0; i < gic_data.nr_redist_regions; i++) {
930 void __iomem *ptr = gic_data.redist_regions[i].redist_base;
931 u64 typer;
932 u32 reg;
933
934 reg = readl_relaxed(ptr + GICR_PIDR2) & GIC_PIDR2_ARCH_MASK;
935 if (reg != GIC_PIDR2_ARCH_GICv3 &&
936 reg != GIC_PIDR2_ARCH_GICv4) { /* We're in trouble... */
937 pr_warn("No redistributor present @%p\n", ptr);
938 break;
939 }
940
941 do {
942 typer = gic_read_typer(ptr + GICR_TYPER);
943 ret = fn(gic_data.redist_regions + i, ptr);
944 if (!ret)
945 return 0;
946
947 if (gic_data.redist_regions[i].single_redist)
948 break;
949
950 if (gic_data.redist_stride) {
951 ptr += gic_data.redist_stride;
952 } else {
953 ptr += SZ_64K * 2; /* Skip RD_base + SGI_base */
954 if (typer & GICR_TYPER_VLPIS)
955 ptr += SZ_64K * 2; /* Skip VLPI_base + reserved page */
956 }
957 } while (!(typer & GICR_TYPER_LAST));
958 }
959
960 return ret ? -ENODEV : 0;
961}
962
963static int __gic_populate_rdist(struct redist_region *region, void __iomem *ptr)
964{
965 unsigned long mpidr = cpu_logical_map(smp_processor_id());
966 u64 typer;
967 u32 aff;
968
969 /*
970 * Convert affinity to a 32bit value that can be matched to
971 * GICR_TYPER bits [63:32].
972 */
973 aff = (MPIDR_AFFINITY_LEVEL(mpidr, 3) << 24 |
974 MPIDR_AFFINITY_LEVEL(mpidr, 2) << 16 |
975 MPIDR_AFFINITY_LEVEL(mpidr, 1) << 8 |
976 MPIDR_AFFINITY_LEVEL(mpidr, 0));
977
978 typer = gic_read_typer(ptr + GICR_TYPER);
979 if ((typer >> 32) == aff) {
980 u64 offset = ptr - region->redist_base;
981 raw_spin_lock_init(&gic_data_rdist()->rd_lock);
982 gic_data_rdist_rd_base() = ptr;
983 gic_data_rdist()->phys_base = region->phys_base + offset;
984
985 pr_info("CPU%d: found redistributor %lx region %d:%pa\n",
986 smp_processor_id(), mpidr,
987 (int)(region - gic_data.redist_regions),
988 &gic_data_rdist()->phys_base);
989 return 0;
990 }
991
992 /* Try next one */
993 return 1;
994}
995
996static int gic_populate_rdist(void)
997{
998 if (gic_iterate_rdists(__gic_populate_rdist) == 0)
999 return 0;
1000
1001 /* We couldn't even deal with ourselves... */
1002 WARN(true, "CPU%d: mpidr %lx has no re-distributor!\n",
1003 smp_processor_id(),
1004 (unsigned long)cpu_logical_map(smp_processor_id()));
1005 return -ENODEV;
1006}
1007
1008static int __gic_update_rdist_properties(struct redist_region *region,
1009 void __iomem *ptr)
1010{
1011 u64 typer = gic_read_typer(ptr + GICR_TYPER);
1012 u32 ctlr = readl_relaxed(ptr + GICR_CTLR);
1013
1014 /* Boot-time cleanup */
1015 if ((typer & GICR_TYPER_VLPIS) && (typer & GICR_TYPER_RVPEID)) {
1016 u64 val;
1017
1018 /* Deactivate any present vPE */
1019 val = gicr_read_vpendbaser(ptr + SZ_128K + GICR_VPENDBASER);
1020 if (val & GICR_VPENDBASER_Valid)
1021 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
1022 ptr + SZ_128K + GICR_VPENDBASER);
1023
1024 /* Mark the VPE table as invalid */
1025 val = gicr_read_vpropbaser(ptr + SZ_128K + GICR_VPROPBASER);
1026 val &= ~GICR_VPROPBASER_4_1_VALID;
1027 gicr_write_vpropbaser(val, ptr + SZ_128K + GICR_VPROPBASER);
1028 }
1029
1030 gic_data.rdists.has_vlpis &= !!(typer & GICR_TYPER_VLPIS);
1031
1032 /*
1033 * TYPER.RVPEID implies some form of DirectLPI, no matter what the
1034 * doc says... :-/ And CTLR.IR implies another subset of DirectLPI
1035 * that the ITS driver can make use of for LPIs (and not VLPIs).
1036 *
1037 * These are 3 different ways to express the same thing, depending
1038 * on the revision of the architecture and its relaxations over
1039 * time. Just group them under the 'direct_lpi' banner.
1040 */
1041 gic_data.rdists.has_rvpeid &= !!(typer & GICR_TYPER_RVPEID);
1042 gic_data.rdists.has_direct_lpi &= (!!(typer & GICR_TYPER_DirectLPIS) |
1043 !!(ctlr & GICR_CTLR_IR) |
1044 gic_data.rdists.has_rvpeid);
1045 gic_data.rdists.has_vpend_valid_dirty &= !!(typer & GICR_TYPER_DIRTY);
1046
1047 /* Detect non-sensical configurations */
1048 if (WARN_ON_ONCE(gic_data.rdists.has_rvpeid && !gic_data.rdists.has_vlpis)) {
1049 gic_data.rdists.has_direct_lpi = false;
1050 gic_data.rdists.has_vlpis = false;
1051 gic_data.rdists.has_rvpeid = false;
1052 }
1053
1054 gic_data.ppi_nr = min(GICR_TYPER_NR_PPIS(typer), gic_data.ppi_nr);
1055
1056 return 1;
1057}
1058
1059static void gic_update_rdist_properties(void)
1060{
1061 gic_data.ppi_nr = UINT_MAX;
1062 gic_iterate_rdists(__gic_update_rdist_properties);
1063 if (WARN_ON(gic_data.ppi_nr == UINT_MAX))
1064 gic_data.ppi_nr = 0;
1065 pr_info("GICv3 features: %d PPIs%s%s\n",
1066 gic_data.ppi_nr,
1067 gic_data.has_rss ? ", RSS" : "",
1068 gic_data.rdists.has_direct_lpi ? ", DirectLPI" : "");
1069
1070 if (gic_data.rdists.has_vlpis)
1071 pr_info("GICv4 features: %s%s%s\n",
1072 gic_data.rdists.has_direct_lpi ? "DirectLPI " : "",
1073 gic_data.rdists.has_rvpeid ? "RVPEID " : "",
1074 gic_data.rdists.has_vpend_valid_dirty ? "Valid+Dirty " : "");
1075}
1076
1077/* Check whether it's single security state view */
1078static inline bool gic_dist_security_disabled(void)
1079{
1080 return readl_relaxed(gic_data.dist_base + GICD_CTLR) & GICD_CTLR_DS;
1081}
1082
1083static void gic_cpu_sys_reg_init(void)
1084{
1085 int i, cpu = smp_processor_id();
1086 u64 mpidr = cpu_logical_map(cpu);
1087 u64 need_rss = MPIDR_RS(mpidr);
1088 bool group0;
1089 u32 pribits;
1090
1091 /*
1092 * Need to check that the SRE bit has actually been set. If
1093 * not, it means that SRE is disabled at EL2. We're going to
1094 * die painfully, and there is nothing we can do about it.
1095 *
1096 * Kindly inform the luser.
1097 */
1098 if (!gic_enable_sre())
1099 pr_err("GIC: unable to set SRE (disabled at EL2), panic ahead\n");
1100
1101 pribits = gic_get_pribits();
1102
1103 group0 = gic_has_group0();
1104
1105 /* Set priority mask register */
1106 if (!gic_prio_masking_enabled()) {
1107 write_gicreg(DEFAULT_PMR_VALUE, ICC_PMR_EL1);
1108 } else if (gic_supports_nmi()) {
1109 /*
1110 * Mismatch configuration with boot CPU, the system is likely
1111 * to die as interrupt masking will not work properly on all
1112 * CPUs
1113 *
1114 * The boot CPU calls this function before enabling NMI support,
1115 * and as a result we'll never see this warning in the boot path
1116 * for that CPU.
1117 */
1118 if (static_branch_unlikely(&gic_nonsecure_priorities))
1119 WARN_ON(!group0 || gic_dist_security_disabled());
1120 else
1121 WARN_ON(group0 && !gic_dist_security_disabled());
1122 }
1123
1124 /*
1125 * Some firmwares hand over to the kernel with the BPR changed from
1126 * its reset value (and with a value large enough to prevent
1127 * any pre-emptive interrupts from working at all). Writing a zero
1128 * to BPR restores is reset value.
1129 */
1130 gic_write_bpr1(0);
1131
1132 if (static_branch_likely(&supports_deactivate_key)) {
1133 /* EOI drops priority only (mode 1) */
1134 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop);
1135 } else {
1136 /* EOI deactivates interrupt too (mode 0) */
1137 gic_write_ctlr(ICC_CTLR_EL1_EOImode_drop_dir);
1138 }
1139
1140 /* Always whack Group0 before Group1 */
1141 if (group0) {
1142 switch(pribits) {
1143 case 8:
1144 case 7:
1145 write_gicreg(0, ICC_AP0R3_EL1);
1146 write_gicreg(0, ICC_AP0R2_EL1);
1147 fallthrough;
1148 case 6:
1149 write_gicreg(0, ICC_AP0R1_EL1);
1150 fallthrough;
1151 case 5:
1152 case 4:
1153 write_gicreg(0, ICC_AP0R0_EL1);
1154 }
1155
1156 isb();
1157 }
1158
1159 switch(pribits) {
1160 case 8:
1161 case 7:
1162 write_gicreg(0, ICC_AP1R3_EL1);
1163 write_gicreg(0, ICC_AP1R2_EL1);
1164 fallthrough;
1165 case 6:
1166 write_gicreg(0, ICC_AP1R1_EL1);
1167 fallthrough;
1168 case 5:
1169 case 4:
1170 write_gicreg(0, ICC_AP1R0_EL1);
1171 }
1172
1173 isb();
1174
1175 /* ... and let's hit the road... */
1176 gic_write_grpen1(1);
1177
1178 /* Keep the RSS capability status in per_cpu variable */
1179 per_cpu(has_rss, cpu) = !!(gic_read_ctlr() & ICC_CTLR_EL1_RSS);
1180
1181 /* Check all the CPUs have capable of sending SGIs to other CPUs */
1182 for_each_online_cpu(i) {
1183 bool have_rss = per_cpu(has_rss, i) && per_cpu(has_rss, cpu);
1184
1185 need_rss |= MPIDR_RS(cpu_logical_map(i));
1186 if (need_rss && (!have_rss))
1187 pr_crit("CPU%d (%lx) can't SGI CPU%d (%lx), no RSS\n",
1188 cpu, (unsigned long)mpidr,
1189 i, (unsigned long)cpu_logical_map(i));
1190 }
1191
1192 /**
1193 * GIC spec says, when ICC_CTLR_EL1.RSS==1 and GICD_TYPER.RSS==0,
1194 * writing ICC_ASGI1R_EL1 register with RS != 0 is a CONSTRAINED
1195 * UNPREDICTABLE choice of :
1196 * - The write is ignored.
1197 * - The RS field is treated as 0.
1198 */
1199 if (need_rss && (!gic_data.has_rss))
1200 pr_crit_once("RSS is required but GICD doesn't support it\n");
1201}
1202
1203static bool gicv3_nolpi;
1204
1205static int __init gicv3_nolpi_cfg(char *buf)
1206{
1207 return kstrtobool(buf, &gicv3_nolpi);
1208}
1209early_param("irqchip.gicv3_nolpi", gicv3_nolpi_cfg);
1210
1211static int gic_dist_supports_lpis(void)
1212{
1213 return (IS_ENABLED(CONFIG_ARM_GIC_V3_ITS) &&
1214 !!(readl_relaxed(gic_data.dist_base + GICD_TYPER) & GICD_TYPER_LPIS) &&
1215 !gicv3_nolpi);
1216}
1217
1218static void gic_cpu_init(void)
1219{
1220 void __iomem *rbase;
1221 int i;
1222
1223 /* Register ourselves with the rest of the world */
1224 if (gic_populate_rdist())
1225 return;
1226
1227 gic_enable_redist(enable: true);
1228
1229 WARN((gic_data.ppi_nr > 16 || GIC_ESPI_NR != 0) &&
1230 !(gic_read_ctlr() & ICC_CTLR_EL1_ExtRange),
1231 "Distributor has extended ranges, but CPU%d doesn't\n",
1232 smp_processor_id());
1233
1234 rbase = gic_data_rdist_sgi_base();
1235
1236 /* Configure SGIs/PPIs as non-secure Group-1 */
1237 for (i = 0; i < gic_data.ppi_nr + 16; i += 32)
1238 writel_relaxed(~0, rbase + GICR_IGROUPR0 + i / 8);
1239
1240 gic_cpu_config(base: rbase, nr: gic_data.ppi_nr + 16, sync_access: gic_redist_wait_for_rwp);
1241
1242 /* initialise system registers */
1243 gic_cpu_sys_reg_init();
1244}
1245
1246#ifdef CONFIG_SMP
1247
1248#define MPIDR_TO_SGI_RS(mpidr) (MPIDR_RS(mpidr) << ICC_SGI1R_RS_SHIFT)
1249#define MPIDR_TO_SGI_CLUSTER_ID(mpidr) ((mpidr) & ~0xFUL)
1250
1251static int gic_starting_cpu(unsigned int cpu)
1252{
1253 gic_cpu_init();
1254
1255 if (gic_dist_supports_lpis())
1256 its_cpu_init();
1257
1258 return 0;
1259}
1260
1261static u16 gic_compute_target_list(int *base_cpu, const struct cpumask *mask,
1262 unsigned long cluster_id)
1263{
1264 int next_cpu, cpu = *base_cpu;
1265 unsigned long mpidr = cpu_logical_map(cpu);
1266 u16 tlist = 0;
1267
1268 while (cpu < nr_cpu_ids) {
1269 tlist |= 1 << (mpidr & 0xf);
1270
1271 next_cpu = cpumask_next(cpu, mask);
1272 if (next_cpu >= nr_cpu_ids)
1273 goto out;
1274 cpu = next_cpu;
1275
1276 mpidr = cpu_logical_map(cpu);
1277
1278 if (cluster_id != MPIDR_TO_SGI_CLUSTER_ID(mpidr)) {
1279 cpu--;
1280 goto out;
1281 }
1282 }
1283out:
1284 *base_cpu = cpu;
1285 return tlist;
1286}
1287
1288#define MPIDR_TO_SGI_AFFINITY(cluster_id, level) \
1289 (MPIDR_AFFINITY_LEVEL(cluster_id, level) \
1290 << ICC_SGI1R_AFFINITY_## level ##_SHIFT)
1291
1292static void gic_send_sgi(u64 cluster_id, u16 tlist, unsigned int irq)
1293{
1294 u64 val;
1295
1296 val = (MPIDR_TO_SGI_AFFINITY(cluster_id, 3) |
1297 MPIDR_TO_SGI_AFFINITY(cluster_id, 2) |
1298 irq << ICC_SGI1R_SGI_ID_SHIFT |
1299 MPIDR_TO_SGI_AFFINITY(cluster_id, 1) |
1300 MPIDR_TO_SGI_RS(cluster_id) |
1301 tlist << ICC_SGI1R_TARGET_LIST_SHIFT);
1302
1303 pr_devel("CPU%d: ICC_SGI1R_EL1 %llx\n", smp_processor_id(), val);
1304 gic_write_sgi1r(val);
1305}
1306
1307static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
1308{
1309 int cpu;
1310
1311 if (WARN_ON(d->hwirq >= 16))
1312 return;
1313
1314 /*
1315 * Ensure that stores to Normal memory are visible to the
1316 * other CPUs before issuing the IPI.
1317 */
1318 dsb(ishst);
1319
1320 for_each_cpu(cpu, mask) {
1321 u64 cluster_id = MPIDR_TO_SGI_CLUSTER_ID(cpu_logical_map(cpu));
1322 u16 tlist;
1323
1324 tlist = gic_compute_target_list(&cpu, mask, cluster_id);
1325 gic_send_sgi(cluster_id, tlist, d->hwirq);
1326 }
1327
1328 /* Force the above writes to ICC_SGI1R_EL1 to be executed */
1329 isb();
1330}
1331
1332static void __init gic_smp_init(void)
1333{
1334 struct irq_fwspec sgi_fwspec = {
1335 .fwnode = gic_data.fwnode,
1336 .param_count = 1,
1337 };
1338 int base_sgi;
1339
1340 cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
1341 "irqchip/arm/gicv3:starting",
1342 gic_starting_cpu, NULL);
1343
1344 /* Register all 8 non-secure SGIs */
1345 base_sgi = irq_domain_alloc_irqs(gic_data.domain, 8, NUMA_NO_NODE, &sgi_fwspec);
1346 if (WARN_ON(base_sgi <= 0))
1347 return;
1348
1349 set_smp_ipi_range(base_sgi, 8);
1350}
1351
1352static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1353 bool force)
1354{
1355 unsigned int cpu;
1356 u32 offset, index;
1357 void __iomem *reg;
1358 int enabled;
1359 u64 val;
1360
1361 if (force)
1362 cpu = cpumask_first(mask_val);
1363 else
1364 cpu = cpumask_any_and(mask_val, cpu_online_mask);
1365
1366 if (cpu >= nr_cpu_ids)
1367 return -EINVAL;
1368
1369 if (gic_irq_in_rdist(d))
1370 return -EINVAL;
1371
1372 /* If interrupt was enabled, disable it first */
1373 enabled = gic_peek_irq(d, GICD_ISENABLER);
1374 if (enabled)
1375 gic_mask_irq(d);
1376
1377 offset = convert_offset_index(d, GICD_IROUTER, &index);
1378 reg = gic_dist_base(d) + offset + (index * 8);
1379 val = gic_mpidr_to_affinity(cpu_logical_map(cpu));
1380
1381 gic_write_irouter(val, reg);
1382
1383 /*
1384 * If the interrupt was enabled, enabled it again. Otherwise,
1385 * just wait for the distributor to have digested our changes.
1386 */
1387 if (enabled)
1388 gic_unmask_irq(d);
1389
1390 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1391
1392 return IRQ_SET_MASK_OK_DONE;
1393}
1394#else
1395#define gic_set_affinity NULL
1396#define gic_ipi_send_mask NULL
1397#define gic_smp_init() do { } while(0)
1398#endif
1399
1400static int gic_retrigger(struct irq_data *data)
1401{
1402 return !gic_irq_set_irqchip_state(d: data, which: IRQCHIP_STATE_PENDING, val: true);
1403}
1404
1405#ifdef CONFIG_CPU_PM
1406static int gic_cpu_pm_notifier(struct notifier_block *self,
1407 unsigned long cmd, void *v)
1408{
1409 if (cmd == CPU_PM_EXIT) {
1410 if (gic_dist_security_disabled())
1411 gic_enable_redist(true);
1412 gic_cpu_sys_reg_init();
1413 } else if (cmd == CPU_PM_ENTER && gic_dist_security_disabled()) {
1414 gic_write_grpen1(0);
1415 gic_enable_redist(false);
1416 }
1417 return NOTIFY_OK;
1418}
1419
1420static struct notifier_block gic_cpu_pm_notifier_block = {
1421 .notifier_call = gic_cpu_pm_notifier,
1422};
1423
1424static void gic_cpu_pm_init(void)
1425{
1426 cpu_pm_register_notifier(&gic_cpu_pm_notifier_block);
1427}
1428
1429#else
1430static inline void gic_cpu_pm_init(void) { }
1431#endif /* CONFIG_CPU_PM */
1432
1433static struct irq_chip gic_chip = {
1434 .name = "GICv3",
1435 .irq_mask = gic_mask_irq,
1436 .irq_unmask = gic_unmask_irq,
1437 .irq_eoi = gic_eoi_irq,
1438 .irq_set_type = gic_set_type,
1439 .irq_set_affinity = gic_set_affinity,
1440 .irq_retrigger = gic_retrigger,
1441 .irq_get_irqchip_state = gic_irq_get_irqchip_state,
1442 .irq_set_irqchip_state = gic_irq_set_irqchip_state,
1443 .irq_nmi_setup = gic_irq_nmi_setup,
1444 .irq_nmi_teardown = gic_irq_nmi_teardown,
1445 .ipi_send_mask = gic_ipi_send_mask,
1446 .flags = IRQCHIP_SET_TYPE_MASKED |
1447 IRQCHIP_SKIP_SET_WAKE |
1448 IRQCHIP_MASK_ON_SUSPEND,
1449};
1450
1451static struct irq_chip gic_eoimode1_chip = {
1452 .name = "GICv3",
1453 .irq_mask = gic_eoimode1_mask_irq,
1454 .irq_unmask = gic_unmask_irq,
1455 .irq_eoi = gic_eoimode1_eoi_irq,
1456 .irq_set_type = gic_set_type,
1457 .irq_set_affinity = gic_set_affinity,
1458 .irq_retrigger = gic_retrigger,
1459 .irq_get_irqchip_state = gic_irq_get_irqchip_state,
1460 .irq_set_irqchip_state = gic_irq_set_irqchip_state,
1461 .irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity,
1462 .irq_nmi_setup = gic_irq_nmi_setup,
1463 .irq_nmi_teardown = gic_irq_nmi_teardown,
1464 .ipi_send_mask = gic_ipi_send_mask,
1465 .flags = IRQCHIP_SET_TYPE_MASKED |
1466 IRQCHIP_SKIP_SET_WAKE |
1467 IRQCHIP_MASK_ON_SUSPEND,
1468};
1469
1470static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1471 irq_hw_number_t hw)
1472{
1473 struct irq_chip *chip = &gic_chip;
1474 struct irq_data *irqd = irq_desc_get_irq_data(desc: irq_to_desc(irq));
1475
1476 if (static_branch_likely(&supports_deactivate_key))
1477 chip = &gic_eoimode1_chip;
1478
1479 switch (__get_intid_range(hwirq: hw)) {
1480 case SGI_RANGE:
1481 case PPI_RANGE:
1482 case EPPI_RANGE:
1483 irq_set_percpu_devid(irq);
1484 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1485 handle_percpu_devid_irq, NULL, NULL);
1486 break;
1487
1488 case SPI_RANGE:
1489 case ESPI_RANGE:
1490 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1491 handle_fasteoi_irq, NULL, NULL);
1492 irq_set_probe(irq);
1493 irqd_set_single_target(d: irqd);
1494 break;
1495
1496 case LPI_RANGE:
1497 if (!gic_dist_supports_lpis())
1498 return -EPERM;
1499 irq_domain_set_info(d, irq, hw, chip, d->host_data,
1500 handle_fasteoi_irq, NULL, NULL);
1501 break;
1502
1503 default:
1504 return -EPERM;
1505 }
1506
1507 /* Prevents SW retriggers which mess up the ACK/EOI ordering */
1508 irqd_set_handle_enforce_irqctx(d: irqd);
1509 return 0;
1510}
1511
1512static int gic_irq_domain_translate(struct irq_domain *d,
1513 struct irq_fwspec *fwspec,
1514 unsigned long *hwirq,
1515 unsigned int *type)
1516{
1517 if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1518 *hwirq = fwspec->param[0];
1519 *type = IRQ_TYPE_EDGE_RISING;
1520 return 0;
1521 }
1522
1523 if (is_of_node(fwnode: fwspec->fwnode)) {
1524 if (fwspec->param_count < 3)
1525 return -EINVAL;
1526
1527 switch (fwspec->param[0]) {
1528 case 0: /* SPI */
1529 *hwirq = fwspec->param[1] + 32;
1530 break;
1531 case 1: /* PPI */
1532 *hwirq = fwspec->param[1] + 16;
1533 break;
1534 case 2: /* ESPI */
1535 *hwirq = fwspec->param[1] + ESPI_BASE_INTID;
1536 break;
1537 case 3: /* EPPI */
1538 *hwirq = fwspec->param[1] + EPPI_BASE_INTID;
1539 break;
1540 case GIC_IRQ_TYPE_LPI: /* LPI */
1541 *hwirq = fwspec->param[1];
1542 break;
1543 case GIC_IRQ_TYPE_PARTITION:
1544 *hwirq = fwspec->param[1];
1545 if (fwspec->param[1] >= 16)
1546 *hwirq += EPPI_BASE_INTID - 16;
1547 else
1548 *hwirq += 16;
1549 break;
1550 default:
1551 return -EINVAL;
1552 }
1553
1554 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1555
1556 /*
1557 * Make it clear that broken DTs are... broken.
1558 * Partitioned PPIs are an unfortunate exception.
1559 */
1560 WARN_ON(*type == IRQ_TYPE_NONE &&
1561 fwspec->param[0] != GIC_IRQ_TYPE_PARTITION);
1562 return 0;
1563 }
1564
1565 if (is_fwnode_irqchip(fwspec->fwnode)) {
1566 if(fwspec->param_count != 2)
1567 return -EINVAL;
1568
1569 if (fwspec->param[0] < 16) {
1570 pr_err(FW_BUG "Illegal GSI%d translation request\n",
1571 fwspec->param[0]);
1572 return -EINVAL;
1573 }
1574
1575 *hwirq = fwspec->param[0];
1576 *type = fwspec->param[1];
1577
1578 WARN_ON(*type == IRQ_TYPE_NONE);
1579 return 0;
1580 }
1581
1582 return -EINVAL;
1583}
1584
1585static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1586 unsigned int nr_irqs, void *arg)
1587{
1588 int i, ret;
1589 irq_hw_number_t hwirq;
1590 unsigned int type = IRQ_TYPE_NONE;
1591 struct irq_fwspec *fwspec = arg;
1592
1593 ret = gic_irq_domain_translate(d: domain, fwspec, hwirq: &hwirq, type: &type);
1594 if (ret)
1595 return ret;
1596
1597 for (i = 0; i < nr_irqs; i++) {
1598 ret = gic_irq_domain_map(d: domain, irq: virq + i, hw: hwirq + i);
1599 if (ret)
1600 return ret;
1601 }
1602
1603 return 0;
1604}
1605
1606static void gic_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1607 unsigned int nr_irqs)
1608{
1609 int i;
1610
1611 for (i = 0; i < nr_irqs; i++) {
1612 struct irq_data *d = irq_domain_get_irq_data(domain, virq + i);
1613 irq_set_handler(irq: virq + i, NULL);
1614 irq_domain_reset_irq_data(d);
1615 }
1616}
1617
1618static bool fwspec_is_partitioned_ppi(struct irq_fwspec *fwspec,
1619 irq_hw_number_t hwirq)
1620{
1621 enum gic_intid_range range;
1622
1623 if (!gic_data.ppi_descs)
1624 return false;
1625
1626 if (!is_of_node(fwnode: fwspec->fwnode))
1627 return false;
1628
1629 if (fwspec->param_count < 4 || !fwspec->param[3])
1630 return false;
1631
1632 range = __get_intid_range(hwirq);
1633 if (range != PPI_RANGE && range != EPPI_RANGE)
1634 return false;
1635
1636 return true;
1637}
1638
1639static int gic_irq_domain_select(struct irq_domain *d,
1640 struct irq_fwspec *fwspec,
1641 enum irq_domain_bus_token bus_token)
1642{
1643 unsigned int type, ret, ppi_idx;
1644 irq_hw_number_t hwirq;
1645
1646 /* Not for us */
1647 if (fwspec->fwnode != d->fwnode)
1648 return 0;
1649
1650 /* If this is not DT, then we have a single domain */
1651 if (!is_of_node(fwnode: fwspec->fwnode))
1652 return 1;
1653
1654 ret = gic_irq_domain_translate(d, fwspec, hwirq: &hwirq, type: &type);
1655 if (WARN_ON_ONCE(ret))
1656 return 0;
1657
1658 if (!fwspec_is_partitioned_ppi(fwspec, hwirq))
1659 return d == gic_data.domain;
1660
1661 /*
1662 * If this is a PPI and we have a 4th (non-null) parameter,
1663 * then we need to match the partition domain.
1664 */
1665 ppi_idx = __gic_get_ppi_index(hwirq);
1666 return d == partition_get_domain(dsc: gic_data.ppi_descs[ppi_idx]);
1667}
1668
1669static const struct irq_domain_ops gic_irq_domain_ops = {
1670 .translate = gic_irq_domain_translate,
1671 .alloc = gic_irq_domain_alloc,
1672 .free = gic_irq_domain_free,
1673 .select = gic_irq_domain_select,
1674};
1675
1676static int partition_domain_translate(struct irq_domain *d,
1677 struct irq_fwspec *fwspec,
1678 unsigned long *hwirq,
1679 unsigned int *type)
1680{
1681 unsigned long ppi_intid;
1682 struct device_node *np;
1683 unsigned int ppi_idx;
1684 int ret;
1685
1686 if (!gic_data.ppi_descs)
1687 return -ENOMEM;
1688
1689 np = of_find_node_by_phandle(handle: fwspec->param[3]);
1690 if (WARN_ON(!np))
1691 return -EINVAL;
1692
1693 ret = gic_irq_domain_translate(d, fwspec, hwirq: &ppi_intid, type);
1694 if (WARN_ON_ONCE(ret))
1695 return 0;
1696
1697 ppi_idx = __gic_get_ppi_index(ppi_intid);
1698 ret = partition_translate_id(desc: gic_data.ppi_descs[ppi_idx],
1699 partition_id: of_node_to_fwnode(np));
1700 if (ret < 0)
1701 return ret;
1702
1703 *hwirq = ret;
1704 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1705
1706 return 0;
1707}
1708
1709static const struct irq_domain_ops partition_domain_ops = {
1710 .translate = partition_domain_translate,
1711 .select = gic_irq_domain_select,
1712};
1713
1714static bool gic_enable_quirk_msm8996(void *data)
1715{
1716 struct gic_chip_data *d = data;
1717
1718 d->flags |= FLAGS_WORKAROUND_GICR_WAKER_MSM8996;
1719
1720 return true;
1721}
1722
1723static bool gic_enable_quirk_cavium_38539(void *data)
1724{
1725 struct gic_chip_data *d = data;
1726
1727 d->flags |= FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539;
1728
1729 return true;
1730}
1731
1732static bool gic_enable_quirk_hip06_07(void *data)
1733{
1734 struct gic_chip_data *d = data;
1735
1736 /*
1737 * HIP06 GICD_IIDR clashes with GIC-600 product number (despite
1738 * not being an actual ARM implementation). The saving grace is
1739 * that GIC-600 doesn't have ESPI, so nothing to do in that case.
1740 * HIP07 doesn't even have a proper IIDR, and still pretends to
1741 * have ESPI. In both cases, put them right.
1742 */
1743 if (d->rdists.gicd_typer & GICD_TYPER_ESPI) {
1744 /* Zero both ESPI and the RES0 field next to it... */
1745 d->rdists.gicd_typer &= ~GENMASK(9, 8);
1746 return true;
1747 }
1748
1749 return false;
1750}
1751
1752#define T241_CHIPN_MASK GENMASK_ULL(45, 44)
1753#define T241_CHIP_GICDA_OFFSET 0x1580000
1754#define SMCCC_SOC_ID_T241 0x036b0241
1755
1756static bool gic_enable_quirk_nvidia_t241(void *data)
1757{
1758 s32 soc_id = arm_smccc_get_soc_id_version();
1759 unsigned long chip_bmask = 0;
1760 phys_addr_t phys;
1761 u32 i;
1762
1763 /* Check JEP106 code for NVIDIA T241 chip (036b:0241) */
1764 if ((soc_id < 0) || (soc_id != SMCCC_SOC_ID_T241))
1765 return false;
1766
1767 /* Find the chips based on GICR regions PHYS addr */
1768 for (i = 0; i < gic_data.nr_redist_regions; i++) {
1769 chip_bmask |= BIT(FIELD_GET(T241_CHIPN_MASK,
1770 (u64)gic_data.redist_regions[i].phys_base));
1771 }
1772
1773 if (hweight32(chip_bmask) < 3)
1774 return false;
1775
1776 /* Setup GICD alias regions */
1777 for (i = 0; i < ARRAY_SIZE(t241_dist_base_alias); i++) {
1778 if (chip_bmask & BIT(i)) {
1779 phys = gic_data.dist_phys_base + T241_CHIP_GICDA_OFFSET;
1780 phys |= FIELD_PREP(T241_CHIPN_MASK, i);
1781 t241_dist_base_alias[i] = ioremap(phys, SZ_64K);
1782 WARN_ON_ONCE(!t241_dist_base_alias[i]);
1783 }
1784 }
1785 static_branch_enable(&gic_nvidia_t241_erratum);
1786 return true;
1787}
1788
1789static const struct gic_quirk gic_quirks[] = {
1790 {
1791 .desc = "GICv3: Qualcomm MSM8996 broken firmware",
1792 .compatible = "qcom,msm8996-gic-v3",
1793 .init = gic_enable_quirk_msm8996,
1794 },
1795 {
1796 .desc = "GICv3: HIP06 erratum 161010803",
1797 .iidr = 0x0204043b,
1798 .mask = 0xffffffff,
1799 .init = gic_enable_quirk_hip06_07,
1800 },
1801 {
1802 .desc = "GICv3: HIP07 erratum 161010803",
1803 .iidr = 0x00000000,
1804 .mask = 0xffffffff,
1805 .init = gic_enable_quirk_hip06_07,
1806 },
1807 {
1808 /*
1809 * Reserved register accesses generate a Synchronous
1810 * External Abort. This erratum applies to:
1811 * - ThunderX: CN88xx
1812 * - OCTEON TX: CN83xx, CN81xx
1813 * - OCTEON TX2: CN93xx, CN96xx, CN98xx, CNF95xx*
1814 */
1815 .desc = "GICv3: Cavium erratum 38539",
1816 .iidr = 0xa000034c,
1817 .mask = 0xe8f00fff,
1818 .init = gic_enable_quirk_cavium_38539,
1819 },
1820 {
1821 .desc = "GICv3: NVIDIA erratum T241-FABRIC-4",
1822 .iidr = 0x0402043b,
1823 .mask = 0xffffffff,
1824 .init = gic_enable_quirk_nvidia_t241,
1825 },
1826 {
1827 }
1828};
1829
1830static void gic_enable_nmi_support(void)
1831{
1832 int i;
1833
1834 if (!gic_prio_masking_enabled())
1835 return;
1836
1837 ppi_nmi_refs = kcalloc(n: gic_data.ppi_nr, size: sizeof(*ppi_nmi_refs), GFP_KERNEL);
1838 if (!ppi_nmi_refs)
1839 return;
1840
1841 for (i = 0; i < gic_data.ppi_nr; i++)
1842 refcount_set(r: &ppi_nmi_refs[i], n: 0);
1843
1844 pr_info("Pseudo-NMIs enabled using %s ICC_PMR_EL1 synchronisation\n",
1845 gic_has_relaxed_pmr_sync() ? "relaxed" : "forced");
1846
1847 /*
1848 * How priority values are used by the GIC depends on two things:
1849 * the security state of the GIC (controlled by the GICD_CTRL.DS bit)
1850 * and if Group 0 interrupts can be delivered to Linux in the non-secure
1851 * world as FIQs (controlled by the SCR_EL3.FIQ bit). These affect the
1852 * ICC_PMR_EL1 register and the priority that software assigns to
1853 * interrupts:
1854 *
1855 * GICD_CTRL.DS | SCR_EL3.FIQ | ICC_PMR_EL1 | Group 1 priority
1856 * -----------------------------------------------------------
1857 * 1 | - | unchanged | unchanged
1858 * -----------------------------------------------------------
1859 * 0 | 1 | non-secure | non-secure
1860 * -----------------------------------------------------------
1861 * 0 | 0 | unchanged | non-secure
1862 *
1863 * where non-secure means that the value is right-shifted by one and the
1864 * MSB bit set, to make it fit in the non-secure priority range.
1865 *
1866 * In the first two cases, where ICC_PMR_EL1 and the interrupt priority
1867 * are both either modified or unchanged, we can use the same set of
1868 * priorities.
1869 *
1870 * In the last case, where only the interrupt priorities are modified to
1871 * be in the non-secure range, we use a different PMR value to mask IRQs
1872 * and the rest of the values that we use remain unchanged.
1873 */
1874 if (gic_has_group0() && !gic_dist_security_disabled())
1875 static_branch_enable(&gic_nonsecure_priorities);
1876
1877 static_branch_enable(&supports_pseudo_nmis);
1878
1879 if (static_branch_likely(&supports_deactivate_key))
1880 gic_eoimode1_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1881 else
1882 gic_chip.flags |= IRQCHIP_SUPPORTS_NMI;
1883}
1884
1885static int __init gic_init_bases(phys_addr_t dist_phys_base,
1886 void __iomem *dist_base,
1887 struct redist_region *rdist_regs,
1888 u32 nr_redist_regions,
1889 u64 redist_stride,
1890 struct fwnode_handle *handle)
1891{
1892 u32 typer;
1893 int err;
1894
1895 if (!is_hyp_mode_available())
1896 static_branch_disable(&supports_deactivate_key);
1897
1898 if (static_branch_likely(&supports_deactivate_key))
1899 pr_info("GIC: Using split EOI/Deactivate mode\n");
1900
1901 gic_data.fwnode = handle;
1902 gic_data.dist_phys_base = dist_phys_base;
1903 gic_data.dist_base = dist_base;
1904 gic_data.redist_regions = rdist_regs;
1905 gic_data.nr_redist_regions = nr_redist_regions;
1906 gic_data.redist_stride = redist_stride;
1907
1908 /*
1909 * Find out how many interrupts are supported.
1910 */
1911 typer = readl_relaxed(gic_data.dist_base + GICD_TYPER);
1912 gic_data.rdists.gicd_typer = typer;
1913
1914 gic_enable_quirks(readl_relaxed(gic_data.dist_base + GICD_IIDR),
1915 quirks: gic_quirks, data: &gic_data);
1916
1917 pr_info("%d SPIs implemented\n", GIC_LINE_NR - 32);
1918 pr_info("%d Extended SPIs implemented\n", GIC_ESPI_NR);
1919
1920 /*
1921 * ThunderX1 explodes on reading GICD_TYPER2, in violation of the
1922 * architecture spec (which says that reserved registers are RES0).
1923 */
1924 if (!(gic_data.flags & FLAGS_WORKAROUND_CAVIUM_ERRATUM_38539))
1925 gic_data.rdists.gicd_typer2 = readl_relaxed(gic_data.dist_base + GICD_TYPER2);
1926
1927 gic_data.domain = irq_domain_create_tree(handle, &gic_irq_domain_ops,
1928 &gic_data);
1929 gic_data.rdists.rdist = alloc_percpu(typeof(*gic_data.rdists.rdist));
1930 if (!static_branch_unlikely(&gic_nvidia_t241_erratum)) {
1931 /* Disable GICv4.x features for the erratum T241-FABRIC-4 */
1932 gic_data.rdists.has_rvpeid = true;
1933 gic_data.rdists.has_vlpis = true;
1934 gic_data.rdists.has_direct_lpi = true;
1935 gic_data.rdists.has_vpend_valid_dirty = true;
1936 }
1937
1938 if (WARN_ON(!gic_data.domain) || WARN_ON(!gic_data.rdists.rdist)) {
1939 err = -ENOMEM;
1940 goto out_free;
1941 }
1942
1943 irq_domain_update_bus_token(gic_data.domain, DOMAIN_BUS_WIRED);
1944
1945 gic_data.has_rss = !!(typer & GICD_TYPER_RSS);
1946
1947 if (typer & GICD_TYPER_MBIS) {
1948 err = mbi_init(fwnode: handle, parent: gic_data.domain);
1949 if (err)
1950 pr_err("Failed to initialize MBIs\n");
1951 }
1952
1953 set_handle_irq(gic_handle_irq);
1954
1955 gic_update_rdist_properties();
1956
1957 gic_dist_init();
1958 gic_cpu_init();
1959 gic_smp_init();
1960 gic_cpu_pm_init();
1961
1962 if (gic_dist_supports_lpis()) {
1963 its_init(handle, rdists: &gic_data.rdists, domain: gic_data.domain);
1964 its_cpu_init();
1965 its_lpi_memreserve_init();
1966 } else {
1967 if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1968 gicv2m_init(parent_handle: handle, parent: gic_data.domain);
1969 }
1970
1971 gic_enable_nmi_support();
1972
1973 return 0;
1974
1975out_free:
1976 if (gic_data.domain)
1977 irq_domain_remove(gic_data.domain);
1978 free_percpu(pdata: gic_data.rdists.rdist);
1979 return err;
1980}
1981
1982static int __init gic_validate_dist_version(void __iomem *dist_base)
1983{
1984 u32 reg = readl_relaxed(dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
1985
1986 if (reg != GIC_PIDR2_ARCH_GICv3 && reg != GIC_PIDR2_ARCH_GICv4)
1987 return -ENODEV;
1988
1989 return 0;
1990}
1991
1992/* Create all possible partitions at boot time */
1993static void __init gic_populate_ppi_partitions(struct device_node *gic_node)
1994{
1995 struct device_node *parts_node, *child_part;
1996 int part_idx = 0, i;
1997 int nr_parts;
1998 struct partition_affinity *parts;
1999
2000 parts_node = of_get_child_by_name(node: gic_node, name: "ppi-partitions");
2001 if (!parts_node)
2002 return;
2003
2004 gic_data.ppi_descs = kcalloc(n: gic_data.ppi_nr, size: sizeof(*gic_data.ppi_descs), GFP_KERNEL);
2005 if (!gic_data.ppi_descs)
2006 goto out_put_node;
2007
2008 nr_parts = of_get_child_count(np: parts_node);
2009
2010 if (!nr_parts)
2011 goto out_put_node;
2012
2013 parts = kcalloc(n: nr_parts, size: sizeof(*parts), GFP_KERNEL);
2014 if (WARN_ON(!parts))
2015 goto out_put_node;
2016
2017 for_each_child_of_node(parts_node, child_part) {
2018 struct partition_affinity *part;
2019 int n;
2020
2021 part = &parts[part_idx];
2022
2023 part->partition_id = of_node_to_fwnode(child_part);
2024
2025 pr_info("GIC: PPI partition %pOFn[%d] { ",
2026 child_part, part_idx);
2027
2028 n = of_property_count_elems_of_size(np: child_part, propname: "affinity",
2029 elem_size: sizeof(u32));
2030 WARN_ON(n <= 0);
2031
2032 for (i = 0; i < n; i++) {
2033 int err, cpu;
2034 u32 cpu_phandle;
2035 struct device_node *cpu_node;
2036
2037 err = of_property_read_u32_index(np: child_part, propname: "affinity",
2038 index: i, out_value: &cpu_phandle);
2039 if (WARN_ON(err))
2040 continue;
2041
2042 cpu_node = of_find_node_by_phandle(handle: cpu_phandle);
2043 if (WARN_ON(!cpu_node))
2044 continue;
2045
2046 cpu = of_cpu_node_to_id(np: cpu_node);
2047 if (WARN_ON(cpu < 0)) {
2048 of_node_put(node: cpu_node);
2049 continue;
2050 }
2051
2052 pr_cont("%pOF[%d] ", cpu_node, cpu);
2053
2054 cpumask_set_cpu(cpu, dstp: &part->mask);
2055 of_node_put(node: cpu_node);
2056 }
2057
2058 pr_cont("}\n");
2059 part_idx++;
2060 }
2061
2062 for (i = 0; i < gic_data.ppi_nr; i++) {
2063 unsigned int irq;
2064 struct partition_desc *desc;
2065 struct irq_fwspec ppi_fwspec = {
2066 .fwnode = gic_data.fwnode,
2067 .param_count = 3,
2068 .param = {
2069 [0] = GIC_IRQ_TYPE_PARTITION,
2070 [1] = i,
2071 [2] = IRQ_TYPE_NONE,
2072 },
2073 };
2074
2075 irq = irq_create_fwspec_mapping(&ppi_fwspec);
2076 if (WARN_ON(!irq))
2077 continue;
2078 desc = partition_create_desc(fwnode: gic_data.fwnode, parts, nr_parts,
2079 chained_irq: irq, ops: &partition_domain_ops);
2080 if (WARN_ON(!desc))
2081 continue;
2082
2083 gic_data.ppi_descs[i] = desc;
2084 }
2085
2086out_put_node:
2087 of_node_put(node: parts_node);
2088}
2089
2090static void __init gic_of_setup_kvm_info(struct device_node *node)
2091{
2092 int ret;
2093 struct resource r;
2094 u32 gicv_idx;
2095
2096 gic_v3_kvm_info.type = GIC_V3;
2097
2098 gic_v3_kvm_info.maint_irq = irq_of_parse_and_map(dev: node, index: 0);
2099 if (!gic_v3_kvm_info.maint_irq)
2100 return;
2101
2102 if (of_property_read_u32(np: node, propname: "#redistributor-regions",
2103 out_value: &gicv_idx))
2104 gicv_idx = 1;
2105
2106 gicv_idx += 3; /* Also skip GICD, GICC, GICH */
2107 ret = of_address_to_resource(dev: node, index: gicv_idx, r: &r);
2108 if (!ret)
2109 gic_v3_kvm_info.vcpu = r;
2110
2111 gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2112 gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2113 vgic_set_kvm_info(info: &gic_v3_kvm_info);
2114}
2115
2116static void gic_request_region(resource_size_t base, resource_size_t size,
2117 const char *name)
2118{
2119 if (!request_mem_region(base, size, name))
2120 pr_warn_once(FW_BUG "%s region %pa has overlapping address\n",
2121 name, &base);
2122}
2123
2124static void __iomem *gic_of_iomap(struct device_node *node, int idx,
2125 const char *name, struct resource *res)
2126{
2127 void __iomem *base;
2128 int ret;
2129
2130 ret = of_address_to_resource(dev: node, index: idx, r: res);
2131 if (ret)
2132 return IOMEM_ERR_PTR(ret);
2133
2134 gic_request_region(base: res->start, size: resource_size(res), name);
2135 base = of_iomap(device: node, index: idx);
2136
2137 return base ?: IOMEM_ERR_PTR(-ENOMEM);
2138}
2139
2140static int __init gic_of_init(struct device_node *node, struct device_node *parent)
2141{
2142 phys_addr_t dist_phys_base;
2143 void __iomem *dist_base;
2144 struct redist_region *rdist_regs;
2145 struct resource res;
2146 u64 redist_stride;
2147 u32 nr_redist_regions;
2148 int err, i;
2149
2150 dist_base = gic_of_iomap(node, idx: 0, name: "GICD", res: &res);
2151 if (IS_ERR(ptr: dist_base)) {
2152 pr_err("%pOF: unable to map gic dist registers\n", node);
2153 return PTR_ERR(ptr: dist_base);
2154 }
2155
2156 dist_phys_base = res.start;
2157
2158 err = gic_validate_dist_version(dist_base);
2159 if (err) {
2160 pr_err("%pOF: no distributor detected, giving up\n", node);
2161 goto out_unmap_dist;
2162 }
2163
2164 if (of_property_read_u32(np: node, propname: "#redistributor-regions", out_value: &nr_redist_regions))
2165 nr_redist_regions = 1;
2166
2167 rdist_regs = kcalloc(n: nr_redist_regions, size: sizeof(*rdist_regs),
2168 GFP_KERNEL);
2169 if (!rdist_regs) {
2170 err = -ENOMEM;
2171 goto out_unmap_dist;
2172 }
2173
2174 for (i = 0; i < nr_redist_regions; i++) {
2175 rdist_regs[i].redist_base = gic_of_iomap(node, idx: 1 + i, name: "GICR", res: &res);
2176 if (IS_ERR(ptr: rdist_regs[i].redist_base)) {
2177 pr_err("%pOF: couldn't map region %d\n", node, i);
2178 err = -ENODEV;
2179 goto out_unmap_rdist;
2180 }
2181 rdist_regs[i].phys_base = res.start;
2182 }
2183
2184 if (of_property_read_u64(node, "redistributor-stride", &redist_stride))
2185 redist_stride = 0;
2186
2187 gic_enable_of_quirks(np: node, quirks: gic_quirks, data: &gic_data);
2188
2189 err = gic_init_bases(dist_phys_base, dist_base, rdist_regs,
2190 nr_redist_regions, redist_stride, &node->fwnode);
2191 if (err)
2192 goto out_unmap_rdist;
2193
2194 gic_populate_ppi_partitions(gic_node: node);
2195
2196 if (static_branch_likely(&supports_deactivate_key))
2197 gic_of_setup_kvm_info(node);
2198 return 0;
2199
2200out_unmap_rdist:
2201 for (i = 0; i < nr_redist_regions; i++)
2202 if (rdist_regs[i].redist_base && !IS_ERR(ptr: rdist_regs[i].redist_base))
2203 iounmap(addr: rdist_regs[i].redist_base);
2204 kfree(objp: rdist_regs);
2205out_unmap_dist:
2206 iounmap(addr: dist_base);
2207 return err;
2208}
2209
2210IRQCHIP_DECLARE(gic_v3, "arm,gic-v3", gic_of_init);
2211
2212#ifdef CONFIG_ACPI
2213static struct
2214{
2215 void __iomem *dist_base;
2216 struct redist_region *redist_regs;
2217 u32 nr_redist_regions;
2218 bool single_redist;
2219 int enabled_rdists;
2220 u32 maint_irq;
2221 int maint_irq_mode;
2222 phys_addr_t vcpu_base;
2223} acpi_data __initdata;
2224
2225static void __init
2226gic_acpi_register_redist(phys_addr_t phys_base, void __iomem *redist_base)
2227{
2228 static int count = 0;
2229
2230 acpi_data.redist_regs[count].phys_base = phys_base;
2231 acpi_data.redist_regs[count].redist_base = redist_base;
2232 acpi_data.redist_regs[count].single_redist = acpi_data.single_redist;
2233 count++;
2234}
2235
2236static int __init
2237gic_acpi_parse_madt_redist(union acpi_subtable_headers *header,
2238 const unsigned long end)
2239{
2240 struct acpi_madt_generic_redistributor *redist =
2241 (struct acpi_madt_generic_redistributor *)header;
2242 void __iomem *redist_base;
2243
2244 redist_base = ioremap(redist->base_address, redist->length);
2245 if (!redist_base) {
2246 pr_err("Couldn't map GICR region @%llx\n", redist->base_address);
2247 return -ENOMEM;
2248 }
2249 gic_request_region(redist->base_address, redist->length, "GICR");
2250
2251 gic_acpi_register_redist(redist->base_address, redist_base);
2252 return 0;
2253}
2254
2255static int __init
2256gic_acpi_parse_madt_gicc(union acpi_subtable_headers *header,
2257 const unsigned long end)
2258{
2259 struct acpi_madt_generic_interrupt *gicc =
2260 (struct acpi_madt_generic_interrupt *)header;
2261 u32 reg = readl_relaxed(acpi_data.dist_base + GICD_PIDR2) & GIC_PIDR2_ARCH_MASK;
2262 u32 size = reg == GIC_PIDR2_ARCH_GICv4 ? SZ_64K * 4 : SZ_64K * 2;
2263 void __iomem *redist_base;
2264
2265 /* GICC entry which has !ACPI_MADT_ENABLED is not unusable so skip */
2266 if (!(gicc->flags & ACPI_MADT_ENABLED))
2267 return 0;
2268
2269 redist_base = ioremap(gicc->gicr_base_address, size);
2270 if (!redist_base)
2271 return -ENOMEM;
2272 gic_request_region(gicc->gicr_base_address, size, "GICR");
2273
2274 gic_acpi_register_redist(gicc->gicr_base_address, redist_base);
2275 return 0;
2276}
2277
2278static int __init gic_acpi_collect_gicr_base(void)
2279{
2280 acpi_tbl_entry_handler redist_parser;
2281 enum acpi_madt_type type;
2282
2283 if (acpi_data.single_redist) {
2284 type = ACPI_MADT_TYPE_GENERIC_INTERRUPT;
2285 redist_parser = gic_acpi_parse_madt_gicc;
2286 } else {
2287 type = ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR;
2288 redist_parser = gic_acpi_parse_madt_redist;
2289 }
2290
2291 /* Collect redistributor base addresses in GICR entries */
2292 if (acpi_table_parse_madt(type, redist_parser, 0) > 0)
2293 return 0;
2294
2295 pr_info("No valid GICR entries exist\n");
2296 return -ENODEV;
2297}
2298
2299static int __init gic_acpi_match_gicr(union acpi_subtable_headers *header,
2300 const unsigned long end)
2301{
2302 /* Subtable presence means that redist exists, that's it */
2303 return 0;
2304}
2305
2306static int __init gic_acpi_match_gicc(union acpi_subtable_headers *header,
2307 const unsigned long end)
2308{
2309 struct acpi_madt_generic_interrupt *gicc =
2310 (struct acpi_madt_generic_interrupt *)header;
2311
2312 /*
2313 * If GICC is enabled and has valid gicr base address, then it means
2314 * GICR base is presented via GICC
2315 */
2316 if ((gicc->flags & ACPI_MADT_ENABLED) && gicc->gicr_base_address) {
2317 acpi_data.enabled_rdists++;
2318 return 0;
2319 }
2320
2321 /*
2322 * It's perfectly valid firmware can pass disabled GICC entry, driver
2323 * should not treat as errors, skip the entry instead of probe fail.
2324 */
2325 if (!(gicc->flags & ACPI_MADT_ENABLED))
2326 return 0;
2327
2328 return -ENODEV;
2329}
2330
2331static int __init gic_acpi_count_gicr_regions(void)
2332{
2333 int count;
2334
2335 /*
2336 * Count how many redistributor regions we have. It is not allowed
2337 * to mix redistributor description, GICR and GICC subtables have to be
2338 * mutually exclusive.
2339 */
2340 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
2341 gic_acpi_match_gicr, 0);
2342 if (count > 0) {
2343 acpi_data.single_redist = false;
2344 return count;
2345 }
2346
2347 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2348 gic_acpi_match_gicc, 0);
2349 if (count > 0) {
2350 acpi_data.single_redist = true;
2351 count = acpi_data.enabled_rdists;
2352 }
2353
2354 return count;
2355}
2356
2357static bool __init acpi_validate_gic_table(struct acpi_subtable_header *header,
2358 struct acpi_probe_entry *ape)
2359{
2360 struct acpi_madt_generic_distributor *dist;
2361 int count;
2362
2363 dist = (struct acpi_madt_generic_distributor *)header;
2364 if (dist->version != ape->driver_data)
2365 return false;
2366
2367 /* We need to do that exercise anyway, the sooner the better */
2368 count = gic_acpi_count_gicr_regions();
2369 if (count <= 0)
2370 return false;
2371
2372 acpi_data.nr_redist_regions = count;
2373 return true;
2374}
2375
2376static int __init gic_acpi_parse_virt_madt_gicc(union acpi_subtable_headers *header,
2377 const unsigned long end)
2378{
2379 struct acpi_madt_generic_interrupt *gicc =
2380 (struct acpi_madt_generic_interrupt *)header;
2381 int maint_irq_mode;
2382 static int first_madt = true;
2383
2384 /* Skip unusable CPUs */
2385 if (!(gicc->flags & ACPI_MADT_ENABLED))
2386 return 0;
2387
2388 maint_irq_mode = (gicc->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
2389 ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
2390
2391 if (first_madt) {
2392 first_madt = false;
2393
2394 acpi_data.maint_irq = gicc->vgic_interrupt;
2395 acpi_data.maint_irq_mode = maint_irq_mode;
2396 acpi_data.vcpu_base = gicc->gicv_base_address;
2397
2398 return 0;
2399 }
2400
2401 /*
2402 * The maintenance interrupt and GICV should be the same for every CPU
2403 */
2404 if ((acpi_data.maint_irq != gicc->vgic_interrupt) ||
2405 (acpi_data.maint_irq_mode != maint_irq_mode) ||
2406 (acpi_data.vcpu_base != gicc->gicv_base_address))
2407 return -EINVAL;
2408
2409 return 0;
2410}
2411
2412static bool __init gic_acpi_collect_virt_info(void)
2413{
2414 int count;
2415
2416 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
2417 gic_acpi_parse_virt_madt_gicc, 0);
2418
2419 return (count > 0);
2420}
2421
2422#define ACPI_GICV3_DIST_MEM_SIZE (SZ_64K)
2423#define ACPI_GICV2_VCTRL_MEM_SIZE (SZ_4K)
2424#define ACPI_GICV2_VCPU_MEM_SIZE (SZ_8K)
2425
2426static void __init gic_acpi_setup_kvm_info(void)
2427{
2428 int irq;
2429
2430 if (!gic_acpi_collect_virt_info()) {
2431 pr_warn("Unable to get hardware information used for virtualization\n");
2432 return;
2433 }
2434
2435 gic_v3_kvm_info.type = GIC_V3;
2436
2437 irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
2438 acpi_data.maint_irq_mode,
2439 ACPI_ACTIVE_HIGH);
2440 if (irq <= 0)
2441 return;
2442
2443 gic_v3_kvm_info.maint_irq = irq;
2444
2445 if (acpi_data.vcpu_base) {
2446 struct resource *vcpu = &gic_v3_kvm_info.vcpu;
2447
2448 vcpu->flags = IORESOURCE_MEM;
2449 vcpu->start = acpi_data.vcpu_base;
2450 vcpu->end = vcpu->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
2451 }
2452
2453 gic_v3_kvm_info.has_v4 = gic_data.rdists.has_vlpis;
2454 gic_v3_kvm_info.has_v4_1 = gic_data.rdists.has_rvpeid;
2455 vgic_set_kvm_info(&gic_v3_kvm_info);
2456}
2457
2458static struct fwnode_handle *gsi_domain_handle;
2459
2460static struct fwnode_handle *gic_v3_get_gsi_domain_id(u32 gsi)
2461{
2462 return gsi_domain_handle;
2463}
2464
2465static int __init
2466gic_acpi_init(union acpi_subtable_headers *header, const unsigned long end)
2467{
2468 struct acpi_madt_generic_distributor *dist;
2469 size_t size;
2470 int i, err;
2471
2472 /* Get distributor base address */
2473 dist = (struct acpi_madt_generic_distributor *)header;
2474 acpi_data.dist_base = ioremap(dist->base_address,
2475 ACPI_GICV3_DIST_MEM_SIZE);
2476 if (!acpi_data.dist_base) {
2477 pr_err("Unable to map GICD registers\n");
2478 return -ENOMEM;
2479 }
2480 gic_request_region(dist->base_address, ACPI_GICV3_DIST_MEM_SIZE, "GICD");
2481
2482 err = gic_validate_dist_version(acpi_data.dist_base);
2483 if (err) {
2484 pr_err("No distributor detected at @%p, giving up\n",
2485 acpi_data.dist_base);
2486 goto out_dist_unmap;
2487 }
2488
2489 size = sizeof(*acpi_data.redist_regs) * acpi_data.nr_redist_regions;
2490 acpi_data.redist_regs = kzalloc(size, GFP_KERNEL);
2491 if (!acpi_data.redist_regs) {
2492 err = -ENOMEM;
2493 goto out_dist_unmap;
2494 }
2495
2496 err = gic_acpi_collect_gicr_base();
2497 if (err)
2498 goto out_redist_unmap;
2499
2500 gsi_domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
2501 if (!gsi_domain_handle) {
2502 err = -ENOMEM;
2503 goto out_redist_unmap;
2504 }
2505
2506 err = gic_init_bases(dist->base_address, acpi_data.dist_base,
2507 acpi_data.redist_regs, acpi_data.nr_redist_regions,
2508 0, gsi_domain_handle);
2509 if (err)
2510 goto out_fwhandle_free;
2511
2512 acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, gic_v3_get_gsi_domain_id);
2513
2514 if (static_branch_likely(&supports_deactivate_key))
2515 gic_acpi_setup_kvm_info();
2516
2517 return 0;
2518
2519out_fwhandle_free:
2520 irq_domain_free_fwnode(gsi_domain_handle);
2521out_redist_unmap:
2522 for (i = 0; i < acpi_data.nr_redist_regions; i++)
2523 if (acpi_data.redist_regs[i].redist_base)
2524 iounmap(acpi_data.redist_regs[i].redist_base);
2525 kfree(acpi_data.redist_regs);
2526out_dist_unmap:
2527 iounmap(acpi_data.dist_base);
2528 return err;
2529}
2530IRQCHIP_ACPI_DECLARE(gic_v3, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2531 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V3,
2532 gic_acpi_init);
2533IRQCHIP_ACPI_DECLARE(gic_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2534 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_V4,
2535 gic_acpi_init);
2536IRQCHIP_ACPI_DECLARE(gic_v3_or_v4, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
2537 acpi_validate_gic_table, ACPI_MADT_GIC_VERSION_NONE,
2538 gic_acpi_init);
2539#endif
2540

source code of linux/drivers/irqchip/irq-gic-v3.c