1 | // SPDX-License-Identifier: GPL-2.0-only |
---|---|
2 | /* |
3 | * Copyright (C) 2003 Jana Saout <jana@saout.de> |
4 | * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org> |
5 | * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved. |
6 | * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com> |
7 | * |
8 | * This file is released under the GPL. |
9 | */ |
10 | |
11 | #include <linux/completion.h> |
12 | #include <linux/err.h> |
13 | #include <linux/module.h> |
14 | #include <linux/init.h> |
15 | #include <linux/kernel.h> |
16 | #include <linux/key.h> |
17 | #include <linux/bio.h> |
18 | #include <linux/blkdev.h> |
19 | #include <linux/blk-integrity.h> |
20 | #include <linux/crc32.h> |
21 | #include <linux/mempool.h> |
22 | #include <linux/slab.h> |
23 | #include <linux/crypto.h> |
24 | #include <linux/workqueue.h> |
25 | #include <linux/kthread.h> |
26 | #include <linux/backing-dev.h> |
27 | #include <linux/atomic.h> |
28 | #include <linux/scatterlist.h> |
29 | #include <linux/rbtree.h> |
30 | #include <linux/ctype.h> |
31 | #include <asm/page.h> |
32 | #include <linux/unaligned.h> |
33 | #include <crypto/hash.h> |
34 | #include <crypto/md5.h> |
35 | #include <crypto/skcipher.h> |
36 | #include <crypto/aead.h> |
37 | #include <crypto/authenc.h> |
38 | #include <crypto/utils.h> |
39 | #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */ |
40 | #include <linux/key-type.h> |
41 | #include <keys/user-type.h> |
42 | #include <keys/encrypted-type.h> |
43 | #include <keys/trusted-type.h> |
44 | |
45 | #include <linux/device-mapper.h> |
46 | |
47 | #include "dm-audit.h" |
48 | |
49 | #define DM_MSG_PREFIX "crypt" |
50 | |
51 | static DEFINE_IDA(workqueue_ida); |
52 | |
53 | /* |
54 | * context holding the current state of a multi-part conversion |
55 | */ |
56 | struct convert_context { |
57 | struct completion restart; |
58 | struct bio *bio_in; |
59 | struct bvec_iter iter_in; |
60 | struct bio *bio_out; |
61 | struct bvec_iter iter_out; |
62 | atomic_t cc_pending; |
63 | unsigned int tag_offset; |
64 | u64 cc_sector; |
65 | union { |
66 | struct skcipher_request *req; |
67 | struct aead_request *req_aead; |
68 | } r; |
69 | bool aead_recheck; |
70 | bool aead_failed; |
71 | |
72 | }; |
73 | |
74 | /* |
75 | * per bio private data |
76 | */ |
77 | struct dm_crypt_io { |
78 | struct crypt_config *cc; |
79 | struct bio *base_bio; |
80 | u8 *integrity_metadata; |
81 | bool integrity_metadata_from_pool:1; |
82 | |
83 | struct work_struct work; |
84 | |
85 | struct convert_context ctx; |
86 | |
87 | atomic_t io_pending; |
88 | blk_status_t error; |
89 | sector_t sector; |
90 | |
91 | struct bvec_iter saved_bi_iter; |
92 | |
93 | struct rb_node rb_node; |
94 | } CRYPTO_MINALIGN_ATTR; |
95 | |
96 | struct dm_crypt_request { |
97 | struct convert_context *ctx; |
98 | struct scatterlist sg_in[4]; |
99 | struct scatterlist sg_out[4]; |
100 | u64 iv_sector; |
101 | }; |
102 | |
103 | struct crypt_config; |
104 | |
105 | struct crypt_iv_operations { |
106 | int (*ctr)(struct crypt_config *cc, struct dm_target *ti, |
107 | const char *opts); |
108 | void (*dtr)(struct crypt_config *cc); |
109 | int (*init)(struct crypt_config *cc); |
110 | int (*wipe)(struct crypt_config *cc); |
111 | int (*generator)(struct crypt_config *cc, u8 *iv, |
112 | struct dm_crypt_request *dmreq); |
113 | int (*post)(struct crypt_config *cc, u8 *iv, |
114 | struct dm_crypt_request *dmreq); |
115 | }; |
116 | |
117 | struct iv_benbi_private { |
118 | int shift; |
119 | }; |
120 | |
121 | #define LMK_SEED_SIZE 64 /* hash + 0 */ |
122 | struct iv_lmk_private { |
123 | struct crypto_shash *hash_tfm; |
124 | u8 *seed; |
125 | }; |
126 | |
127 | #define TCW_WHITENING_SIZE 16 |
128 | struct iv_tcw_private { |
129 | u8 *iv_seed; |
130 | u8 *whitening; |
131 | }; |
132 | |
133 | #define ELEPHANT_MAX_KEY_SIZE 32 |
134 | struct iv_elephant_private { |
135 | struct crypto_skcipher *tfm; |
136 | }; |
137 | |
138 | /* |
139 | * Crypt: maps a linear range of a block device |
140 | * and encrypts / decrypts at the same time. |
141 | */ |
142 | enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID, |
143 | DM_CRYPT_SAME_CPU, DM_CRYPT_HIGH_PRIORITY, |
144 | DM_CRYPT_NO_OFFLOAD, DM_CRYPT_NO_READ_WORKQUEUE, |
145 | DM_CRYPT_NO_WRITE_WORKQUEUE, DM_CRYPT_WRITE_INLINE }; |
146 | |
147 | enum cipher_flags { |
148 | CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cipher */ |
149 | CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */ |
150 | CRYPT_ENCRYPT_PREPROCESS, /* Must preprocess data for encryption (elephant) */ |
151 | CRYPT_KEY_MAC_SIZE_SET, /* The integrity_key_size option was used */ |
152 | }; |
153 | |
154 | /* |
155 | * The fields in here must be read only after initialization. |
156 | */ |
157 | struct crypt_config { |
158 | struct dm_dev *dev; |
159 | sector_t start; |
160 | |
161 | struct percpu_counter n_allocated_pages; |
162 | |
163 | struct workqueue_struct *io_queue; |
164 | struct workqueue_struct *crypt_queue; |
165 | |
166 | spinlock_t write_thread_lock; |
167 | struct task_struct *write_thread; |
168 | struct rb_root write_tree; |
169 | |
170 | char *cipher_string; |
171 | char *cipher_auth; |
172 | char *key_string; |
173 | |
174 | const struct crypt_iv_operations *iv_gen_ops; |
175 | union { |
176 | struct iv_benbi_private benbi; |
177 | struct iv_lmk_private lmk; |
178 | struct iv_tcw_private tcw; |
179 | struct iv_elephant_private elephant; |
180 | } iv_gen_private; |
181 | u64 iv_offset; |
182 | unsigned int iv_size; |
183 | unsigned short sector_size; |
184 | unsigned char sector_shift; |
185 | |
186 | union { |
187 | struct crypto_skcipher **tfms; |
188 | struct crypto_aead **tfms_aead; |
189 | } cipher_tfm; |
190 | unsigned int tfms_count; |
191 | int workqueue_id; |
192 | unsigned long cipher_flags; |
193 | |
194 | /* |
195 | * Layout of each crypto request: |
196 | * |
197 | * struct skcipher_request |
198 | * context |
199 | * padding |
200 | * struct dm_crypt_request |
201 | * padding |
202 | * IV |
203 | * |
204 | * The padding is added so that dm_crypt_request and the IV are |
205 | * correctly aligned. |
206 | */ |
207 | unsigned int dmreq_start; |
208 | |
209 | unsigned int per_bio_data_size; |
210 | |
211 | unsigned long flags; |
212 | unsigned int key_size; |
213 | unsigned int key_parts; /* independent parts in key buffer */ |
214 | unsigned int key_extra_size; /* additional keys length */ |
215 | unsigned int key_mac_size; /* MAC key size for authenc(...) */ |
216 | |
217 | unsigned int integrity_tag_size; |
218 | unsigned int integrity_iv_size; |
219 | unsigned int used_tag_size; |
220 | unsigned int tuple_size; |
221 | |
222 | /* |
223 | * pool for per bio private data, crypto requests, |
224 | * encryption requeusts/buffer pages and integrity tags |
225 | */ |
226 | unsigned int tag_pool_max_sectors; |
227 | mempool_t tag_pool; |
228 | mempool_t req_pool; |
229 | mempool_t page_pool; |
230 | |
231 | struct bio_set bs; |
232 | struct mutex bio_alloc_lock; |
233 | |
234 | u8 *authenc_key; /* space for keys in authenc() format (if used) */ |
235 | u8 key[] __counted_by(key_size); |
236 | }; |
237 | |
238 | #define MIN_IOS 64 |
239 | #define MAX_TAG_SIZE 480 |
240 | #define POOL_ENTRY_SIZE 512 |
241 | |
242 | static DEFINE_SPINLOCK(dm_crypt_clients_lock); |
243 | static unsigned int dm_crypt_clients_n; |
244 | static volatile unsigned long dm_crypt_pages_per_client; |
245 | #define DM_CRYPT_MEMORY_PERCENT 2 |
246 | #define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_VECS * 16) |
247 | #define DM_CRYPT_DEFAULT_MAX_READ_SIZE 131072 |
248 | #define DM_CRYPT_DEFAULT_MAX_WRITE_SIZE 131072 |
249 | |
250 | static unsigned int max_read_size = 0; |
251 | module_param(max_read_size, uint, 0644); |
252 | MODULE_PARM_DESC(max_read_size, "Maximum size of a read request"); |
253 | static unsigned int max_write_size = 0; |
254 | module_param(max_write_size, uint, 0644); |
255 | MODULE_PARM_DESC(max_write_size, "Maximum size of a write request"); |
256 | static unsigned get_max_request_size(struct crypt_config *cc, bool wrt) |
257 | { |
258 | unsigned val, sector_align; |
259 | val = !wrt ? READ_ONCE(max_read_size) : READ_ONCE(max_write_size); |
260 | if (likely(!val)) |
261 | val = !wrt ? DM_CRYPT_DEFAULT_MAX_READ_SIZE : DM_CRYPT_DEFAULT_MAX_WRITE_SIZE; |
262 | if (wrt || cc->used_tag_size) { |
263 | if (unlikely(val > BIO_MAX_VECS << PAGE_SHIFT)) |
264 | val = BIO_MAX_VECS << PAGE_SHIFT; |
265 | } |
266 | sector_align = max(bdev_logical_block_size(cc->dev->bdev), (unsigned)cc->sector_size); |
267 | val = round_down(val, sector_align); |
268 | if (unlikely(!val)) |
269 | val = sector_align; |
270 | return val >> SECTOR_SHIFT; |
271 | } |
272 | |
273 | static void crypt_endio(struct bio *clone); |
274 | static void kcryptd_queue_crypt(struct dm_crypt_io *io); |
275 | static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc, |
276 | struct scatterlist *sg); |
277 | |
278 | static bool crypt_integrity_aead(struct crypt_config *cc); |
279 | |
280 | /* |
281 | * Use this to access cipher attributes that are independent of the key. |
282 | */ |
283 | static struct crypto_skcipher *any_tfm(struct crypt_config *cc) |
284 | { |
285 | return cc->cipher_tfm.tfms[0]; |
286 | } |
287 | |
288 | static struct crypto_aead *any_tfm_aead(struct crypt_config *cc) |
289 | { |
290 | return cc->cipher_tfm.tfms_aead[0]; |
291 | } |
292 | |
293 | /* |
294 | * Different IV generation algorithms: |
295 | * |
296 | * plain: the initial vector is the 32-bit little-endian version of the sector |
297 | * number, padded with zeros if necessary. |
298 | * |
299 | * plain64: the initial vector is the 64-bit little-endian version of the sector |
300 | * number, padded with zeros if necessary. |
301 | * |
302 | * plain64be: the initial vector is the 64-bit big-endian version of the sector |
303 | * number, padded with zeros if necessary. |
304 | * |
305 | * essiv: "encrypted sector|salt initial vector", the sector number is |
306 | * encrypted with the bulk cipher using a salt as key. The salt |
307 | * should be derived from the bulk cipher's key via hashing. |
308 | * |
309 | * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1 |
310 | * (needed for LRW-32-AES and possible other narrow block modes) |
311 | * |
312 | * null: the initial vector is always zero. Provides compatibility with |
313 | * obsolete loop_fish2 devices. Do not use for new devices. |
314 | * |
315 | * lmk: Compatible implementation of the block chaining mode used |
316 | * by the Loop-AES block device encryption system |
317 | * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/ |
318 | * It operates on full 512 byte sectors and uses CBC |
319 | * with an IV derived from the sector number, the data and |
320 | * optionally extra IV seed. |
321 | * This means that after decryption the first block |
322 | * of sector must be tweaked according to decrypted data. |
323 | * Loop-AES can use three encryption schemes: |
324 | * version 1: is plain aes-cbc mode |
325 | * version 2: uses 64 multikey scheme with lmk IV generator |
326 | * version 3: the same as version 2 with additional IV seed |
327 | * (it uses 65 keys, last key is used as IV seed) |
328 | * |
329 | * tcw: Compatible implementation of the block chaining mode used |
330 | * by the TrueCrypt device encryption system (prior to version 4.1). |
331 | * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat |
332 | * It operates on full 512 byte sectors and uses CBC |
333 | * with an IV derived from initial key and the sector number. |
334 | * In addition, whitening value is applied on every sector, whitening |
335 | * is calculated from initial key, sector number and mixed using CRC32. |
336 | * Note that this encryption scheme is vulnerable to watermarking attacks |
337 | * and should be used for old compatible containers access only. |
338 | * |
339 | * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode) |
340 | * The IV is encrypted little-endian byte-offset (with the same key |
341 | * and cipher as the volume). |
342 | * |
343 | * elephant: The extended version of eboiv with additional Elephant diffuser |
344 | * used with Bitlocker CBC mode. |
345 | * This mode was used in older Windows systems |
346 | * https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf |
347 | */ |
348 | |
349 | static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, |
350 | struct dm_crypt_request *dmreq) |
351 | { |
352 | memset(iv, 0, cc->iv_size); |
353 | *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff); |
354 | |
355 | return 0; |
356 | } |
357 | |
358 | static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv, |
359 | struct dm_crypt_request *dmreq) |
360 | { |
361 | memset(iv, 0, cc->iv_size); |
362 | *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); |
363 | |
364 | return 0; |
365 | } |
366 | |
367 | static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv, |
368 | struct dm_crypt_request *dmreq) |
369 | { |
370 | memset(iv, 0, cc->iv_size); |
371 | /* iv_size is at least of size u64; usually it is 16 bytes */ |
372 | *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector); |
373 | |
374 | return 0; |
375 | } |
376 | |
377 | static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, |
378 | struct dm_crypt_request *dmreq) |
379 | { |
380 | /* |
381 | * ESSIV encryption of the IV is now handled by the crypto API, |
382 | * so just pass the plain sector number here. |
383 | */ |
384 | memset(iv, 0, cc->iv_size); |
385 | *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); |
386 | |
387 | return 0; |
388 | } |
389 | |
390 | static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti, |
391 | const char *opts) |
392 | { |
393 | unsigned int bs; |
394 | int log; |
395 | |
396 | if (crypt_integrity_aead(cc)) |
397 | bs = crypto_aead_blocksize(tfm: any_tfm_aead(cc)); |
398 | else |
399 | bs = crypto_skcipher_blocksize(tfm: any_tfm(cc)); |
400 | log = ilog2(bs); |
401 | |
402 | /* |
403 | * We need to calculate how far we must shift the sector count |
404 | * to get the cipher block count, we use this shift in _gen. |
405 | */ |
406 | if (1 << log != bs) { |
407 | ti->error = "cypher blocksize is not a power of 2"; |
408 | return -EINVAL; |
409 | } |
410 | |
411 | if (log > 9) { |
412 | ti->error = "cypher blocksize is > 512"; |
413 | return -EINVAL; |
414 | } |
415 | |
416 | cc->iv_gen_private.benbi.shift = 9 - log; |
417 | |
418 | return 0; |
419 | } |
420 | |
421 | static void crypt_iv_benbi_dtr(struct crypt_config *cc) |
422 | { |
423 | } |
424 | |
425 | static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, |
426 | struct dm_crypt_request *dmreq) |
427 | { |
428 | __be64 val; |
429 | |
430 | memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */ |
431 | |
432 | val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1); |
433 | put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64))); |
434 | |
435 | return 0; |
436 | } |
437 | |
438 | static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, |
439 | struct dm_crypt_request *dmreq) |
440 | { |
441 | memset(iv, 0, cc->iv_size); |
442 | |
443 | return 0; |
444 | } |
445 | |
446 | static void crypt_iv_lmk_dtr(struct crypt_config *cc) |
447 | { |
448 | struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; |
449 | |
450 | if (lmk->hash_tfm && !IS_ERR(ptr: lmk->hash_tfm)) |
451 | crypto_free_shash(tfm: lmk->hash_tfm); |
452 | lmk->hash_tfm = NULL; |
453 | |
454 | kfree_sensitive(objp: lmk->seed); |
455 | lmk->seed = NULL; |
456 | } |
457 | |
458 | static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti, |
459 | const char *opts) |
460 | { |
461 | struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; |
462 | |
463 | if (cc->sector_size != (1 << SECTOR_SHIFT)) { |
464 | ti->error = "Unsupported sector size for LMK"; |
465 | return -EINVAL; |
466 | } |
467 | |
468 | lmk->hash_tfm = crypto_alloc_shash(alg_name: "md5", type: 0, |
469 | CRYPTO_ALG_ALLOCATES_MEMORY); |
470 | if (IS_ERR(ptr: lmk->hash_tfm)) { |
471 | ti->error = "Error initializing LMK hash"; |
472 | return PTR_ERR(ptr: lmk->hash_tfm); |
473 | } |
474 | |
475 | /* No seed in LMK version 2 */ |
476 | if (cc->key_parts == cc->tfms_count) { |
477 | lmk->seed = NULL; |
478 | return 0; |
479 | } |
480 | |
481 | lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL); |
482 | if (!lmk->seed) { |
483 | crypt_iv_lmk_dtr(cc); |
484 | ti->error = "Error kmallocing seed storage in LMK"; |
485 | return -ENOMEM; |
486 | } |
487 | |
488 | return 0; |
489 | } |
490 | |
491 | static int crypt_iv_lmk_init(struct crypt_config *cc) |
492 | { |
493 | struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; |
494 | int subkey_size = cc->key_size / cc->key_parts; |
495 | |
496 | /* LMK seed is on the position of LMK_KEYS + 1 key */ |
497 | if (lmk->seed) |
498 | memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size), |
499 | crypto_shash_digestsize(lmk->hash_tfm)); |
500 | |
501 | return 0; |
502 | } |
503 | |
504 | static int crypt_iv_lmk_wipe(struct crypt_config *cc) |
505 | { |
506 | struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; |
507 | |
508 | if (lmk->seed) |
509 | memset(lmk->seed, 0, LMK_SEED_SIZE); |
510 | |
511 | return 0; |
512 | } |
513 | |
514 | static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv, |
515 | struct dm_crypt_request *dmreq, |
516 | u8 *data) |
517 | { |
518 | struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; |
519 | SHASH_DESC_ON_STACK(desc, lmk->hash_tfm); |
520 | struct md5_state md5state; |
521 | __le32 buf[4]; |
522 | int i, r; |
523 | |
524 | desc->tfm = lmk->hash_tfm; |
525 | |
526 | r = crypto_shash_init(desc); |
527 | if (r) |
528 | return r; |
529 | |
530 | if (lmk->seed) { |
531 | r = crypto_shash_update(desc, data: lmk->seed, LMK_SEED_SIZE); |
532 | if (r) |
533 | return r; |
534 | } |
535 | |
536 | /* Sector is always 512B, block size 16, add data of blocks 1-31 */ |
537 | r = crypto_shash_update(desc, data: data + 16, len: 16 * 31); |
538 | if (r) |
539 | return r; |
540 | |
541 | /* Sector is cropped to 56 bits here */ |
542 | buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF); |
543 | buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000); |
544 | buf[2] = cpu_to_le32(4024); |
545 | buf[3] = 0; |
546 | r = crypto_shash_update(desc, data: (u8 *)buf, len: sizeof(buf)); |
547 | if (r) |
548 | return r; |
549 | |
550 | /* No MD5 padding here */ |
551 | r = crypto_shash_export(desc, out: &md5state); |
552 | if (r) |
553 | return r; |
554 | |
555 | for (i = 0; i < MD5_HASH_WORDS; i++) |
556 | __cpu_to_le32s(&md5state.hash[i]); |
557 | memcpy(iv, &md5state.hash, cc->iv_size); |
558 | |
559 | return 0; |
560 | } |
561 | |
562 | static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv, |
563 | struct dm_crypt_request *dmreq) |
564 | { |
565 | struct scatterlist *sg; |
566 | u8 *src; |
567 | int r = 0; |
568 | |
569 | if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { |
570 | sg = crypt_get_sg_data(cc, sg: dmreq->sg_in); |
571 | src = kmap_local_page(page: sg_page(sg)); |
572 | r = crypt_iv_lmk_one(cc, iv, dmreq, data: src + sg->offset); |
573 | kunmap_local(src); |
574 | } else |
575 | memset(iv, 0, cc->iv_size); |
576 | |
577 | return r; |
578 | } |
579 | |
580 | static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv, |
581 | struct dm_crypt_request *dmreq) |
582 | { |
583 | struct scatterlist *sg; |
584 | u8 *dst; |
585 | int r; |
586 | |
587 | if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) |
588 | return 0; |
589 | |
590 | sg = crypt_get_sg_data(cc, sg: dmreq->sg_out); |
591 | dst = kmap_local_page(page: sg_page(sg)); |
592 | r = crypt_iv_lmk_one(cc, iv, dmreq, data: dst + sg->offset); |
593 | |
594 | /* Tweak the first block of plaintext sector */ |
595 | if (!r) |
596 | crypto_xor(dst: dst + sg->offset, src: iv, size: cc->iv_size); |
597 | |
598 | kunmap_local(dst); |
599 | return r; |
600 | } |
601 | |
602 | static void crypt_iv_tcw_dtr(struct crypt_config *cc) |
603 | { |
604 | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; |
605 | |
606 | kfree_sensitive(objp: tcw->iv_seed); |
607 | tcw->iv_seed = NULL; |
608 | kfree_sensitive(objp: tcw->whitening); |
609 | tcw->whitening = NULL; |
610 | } |
611 | |
612 | static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti, |
613 | const char *opts) |
614 | { |
615 | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; |
616 | |
617 | if (cc->sector_size != (1 << SECTOR_SHIFT)) { |
618 | ti->error = "Unsupported sector size for TCW"; |
619 | return -EINVAL; |
620 | } |
621 | |
622 | if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) { |
623 | ti->error = "Wrong key size for TCW"; |
624 | return -EINVAL; |
625 | } |
626 | |
627 | tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL); |
628 | tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL); |
629 | if (!tcw->iv_seed || !tcw->whitening) { |
630 | crypt_iv_tcw_dtr(cc); |
631 | ti->error = "Error allocating seed storage in TCW"; |
632 | return -ENOMEM; |
633 | } |
634 | |
635 | return 0; |
636 | } |
637 | |
638 | static int crypt_iv_tcw_init(struct crypt_config *cc) |
639 | { |
640 | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; |
641 | int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE; |
642 | |
643 | memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size); |
644 | memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size], |
645 | TCW_WHITENING_SIZE); |
646 | |
647 | return 0; |
648 | } |
649 | |
650 | static int crypt_iv_tcw_wipe(struct crypt_config *cc) |
651 | { |
652 | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; |
653 | |
654 | memset(tcw->iv_seed, 0, cc->iv_size); |
655 | memset(tcw->whitening, 0, TCW_WHITENING_SIZE); |
656 | |
657 | return 0; |
658 | } |
659 | |
660 | static void crypt_iv_tcw_whitening(struct crypt_config *cc, |
661 | struct dm_crypt_request *dmreq, u8 *data) |
662 | { |
663 | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; |
664 | __le64 sector = cpu_to_le64(dmreq->iv_sector); |
665 | u8 buf[TCW_WHITENING_SIZE]; |
666 | int i; |
667 | |
668 | /* xor whitening with sector number */ |
669 | crypto_xor_cpy(dst: buf, src1: tcw->whitening, src2: (u8 *)§or, size: 8); |
670 | crypto_xor_cpy(dst: &buf[8], src1: tcw->whitening + 8, src2: (u8 *)§or, size: 8); |
671 | |
672 | /* calculate crc32 for every 32bit part and xor it */ |
673 | for (i = 0; i < 4; i++) |
674 | put_unaligned_le32(crc32(0, &buf[i * 4], 4), p: &buf[i * 4]); |
675 | crypto_xor(dst: &buf[0], src: &buf[12], size: 4); |
676 | crypto_xor(dst: &buf[4], src: &buf[8], size: 4); |
677 | |
678 | /* apply whitening (8 bytes) to whole sector */ |
679 | for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++) |
680 | crypto_xor(dst: data + i * 8, src: buf, size: 8); |
681 | memzero_explicit(s: buf, count: sizeof(buf)); |
682 | } |
683 | |
684 | static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv, |
685 | struct dm_crypt_request *dmreq) |
686 | { |
687 | struct scatterlist *sg; |
688 | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; |
689 | __le64 sector = cpu_to_le64(dmreq->iv_sector); |
690 | u8 *src; |
691 | |
692 | /* Remove whitening from ciphertext */ |
693 | if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { |
694 | sg = crypt_get_sg_data(cc, sg: dmreq->sg_in); |
695 | src = kmap_local_page(page: sg_page(sg)); |
696 | crypt_iv_tcw_whitening(cc, dmreq, data: src + sg->offset); |
697 | kunmap_local(src); |
698 | } |
699 | |
700 | /* Calculate IV */ |
701 | crypto_xor_cpy(dst: iv, src1: tcw->iv_seed, src2: (u8 *)§or, size: 8); |
702 | if (cc->iv_size > 8) |
703 | crypto_xor_cpy(dst: &iv[8], src1: tcw->iv_seed + 8, src2: (u8 *)§or, |
704 | size: cc->iv_size - 8); |
705 | |
706 | return 0; |
707 | } |
708 | |
709 | static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv, |
710 | struct dm_crypt_request *dmreq) |
711 | { |
712 | struct scatterlist *sg; |
713 | u8 *dst; |
714 | |
715 | if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) |
716 | return 0; |
717 | |
718 | /* Apply whitening on ciphertext */ |
719 | sg = crypt_get_sg_data(cc, sg: dmreq->sg_out); |
720 | dst = kmap_local_page(page: sg_page(sg)); |
721 | crypt_iv_tcw_whitening(cc, dmreq, data: dst + sg->offset); |
722 | kunmap_local(dst); |
723 | |
724 | return 0; |
725 | } |
726 | |
727 | static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv, |
728 | struct dm_crypt_request *dmreq) |
729 | { |
730 | /* Used only for writes, there must be an additional space to store IV */ |
731 | get_random_bytes(buf: iv, len: cc->iv_size); |
732 | return 0; |
733 | } |
734 | |
735 | static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti, |
736 | const char *opts) |
737 | { |
738 | if (crypt_integrity_aead(cc)) { |
739 | ti->error = "AEAD transforms not supported for EBOIV"; |
740 | return -EINVAL; |
741 | } |
742 | |
743 | if (crypto_skcipher_blocksize(tfm: any_tfm(cc)) != cc->iv_size) { |
744 | ti->error = "Block size of EBOIV cipher does not match IV size of block cipher"; |
745 | return -EINVAL; |
746 | } |
747 | |
748 | return 0; |
749 | } |
750 | |
751 | static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv, |
752 | struct dm_crypt_request *dmreq) |
753 | { |
754 | struct crypto_skcipher *tfm = any_tfm(cc); |
755 | struct skcipher_request *req; |
756 | struct scatterlist src, dst; |
757 | DECLARE_CRYPTO_WAIT(wait); |
758 | unsigned int reqsize; |
759 | int err; |
760 | u8 *buf; |
761 | |
762 | reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm); |
763 | reqsize = ALIGN(reqsize, __alignof__(__le64)); |
764 | |
765 | req = kmalloc(reqsize + cc->iv_size, GFP_NOIO); |
766 | if (!req) |
767 | return -ENOMEM; |
768 | |
769 | skcipher_request_set_tfm(req, tfm); |
770 | |
771 | buf = (u8 *)req + reqsize; |
772 | memset(buf, 0, cc->iv_size); |
773 | *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size); |
774 | |
775 | sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size); |
776 | sg_init_one(&dst, iv, cc->iv_size); |
777 | skcipher_request_set_crypt(req, src: &src, dst: &dst, cryptlen: cc->iv_size, iv: buf); |
778 | skcipher_request_set_callback(req, flags: 0, compl: crypto_req_done, data: &wait); |
779 | err = crypto_wait_req(err: crypto_skcipher_encrypt(req), wait: &wait); |
780 | kfree_sensitive(objp: req); |
781 | |
782 | return err; |
783 | } |
784 | |
785 | static void crypt_iv_elephant_dtr(struct crypt_config *cc) |
786 | { |
787 | struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; |
788 | |
789 | crypto_free_skcipher(tfm: elephant->tfm); |
790 | elephant->tfm = NULL; |
791 | } |
792 | |
793 | static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti, |
794 | const char *opts) |
795 | { |
796 | struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; |
797 | int r; |
798 | |
799 | elephant->tfm = crypto_alloc_skcipher(alg_name: "ecb(aes)", type: 0, |
800 | CRYPTO_ALG_ALLOCATES_MEMORY); |
801 | if (IS_ERR(ptr: elephant->tfm)) { |
802 | r = PTR_ERR(ptr: elephant->tfm); |
803 | elephant->tfm = NULL; |
804 | return r; |
805 | } |
806 | |
807 | r = crypt_iv_eboiv_ctr(cc, ti, NULL); |
808 | if (r) |
809 | crypt_iv_elephant_dtr(cc); |
810 | return r; |
811 | } |
812 | |
813 | static void diffuser_disk_to_cpu(u32 *d, size_t n) |
814 | { |
815 | #ifndef __LITTLE_ENDIAN |
816 | int i; |
817 | |
818 | for (i = 0; i < n; i++) |
819 | d[i] = le32_to_cpu((__le32)d[i]); |
820 | #endif |
821 | } |
822 | |
823 | static void diffuser_cpu_to_disk(__le32 *d, size_t n) |
824 | { |
825 | #ifndef __LITTLE_ENDIAN |
826 | int i; |
827 | |
828 | for (i = 0; i < n; i++) |
829 | d[i] = cpu_to_le32((u32)d[i]); |
830 | #endif |
831 | } |
832 | |
833 | static void diffuser_a_decrypt(u32 *d, size_t n) |
834 | { |
835 | int i, i1, i2, i3; |
836 | |
837 | for (i = 0; i < 5; i++) { |
838 | i1 = 0; |
839 | i2 = n - 2; |
840 | i3 = n - 5; |
841 | |
842 | while (i1 < (n - 1)) { |
843 | d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23); |
844 | i1++; i2++; i3++; |
845 | |
846 | if (i3 >= n) |
847 | i3 -= n; |
848 | |
849 | d[i1] += d[i2] ^ d[i3]; |
850 | i1++; i2++; i3++; |
851 | |
852 | if (i2 >= n) |
853 | i2 -= n; |
854 | |
855 | d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19); |
856 | i1++; i2++; i3++; |
857 | |
858 | d[i1] += d[i2] ^ d[i3]; |
859 | i1++; i2++; i3++; |
860 | } |
861 | } |
862 | } |
863 | |
864 | static void diffuser_a_encrypt(u32 *d, size_t n) |
865 | { |
866 | int i, i1, i2, i3; |
867 | |
868 | for (i = 0; i < 5; i++) { |
869 | i1 = n - 1; |
870 | i2 = n - 2 - 1; |
871 | i3 = n - 5 - 1; |
872 | |
873 | while (i1 > 0) { |
874 | d[i1] -= d[i2] ^ d[i3]; |
875 | i1--; i2--; i3--; |
876 | |
877 | d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19); |
878 | i1--; i2--; i3--; |
879 | |
880 | if (i2 < 0) |
881 | i2 += n; |
882 | |
883 | d[i1] -= d[i2] ^ d[i3]; |
884 | i1--; i2--; i3--; |
885 | |
886 | if (i3 < 0) |
887 | i3 += n; |
888 | |
889 | d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23); |
890 | i1--; i2--; i3--; |
891 | } |
892 | } |
893 | } |
894 | |
895 | static void diffuser_b_decrypt(u32 *d, size_t n) |
896 | { |
897 | int i, i1, i2, i3; |
898 | |
899 | for (i = 0; i < 3; i++) { |
900 | i1 = 0; |
901 | i2 = 2; |
902 | i3 = 5; |
903 | |
904 | while (i1 < (n - 1)) { |
905 | d[i1] += d[i2] ^ d[i3]; |
906 | i1++; i2++; i3++; |
907 | |
908 | d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22); |
909 | i1++; i2++; i3++; |
910 | |
911 | if (i2 >= n) |
912 | i2 -= n; |
913 | |
914 | d[i1] += d[i2] ^ d[i3]; |
915 | i1++; i2++; i3++; |
916 | |
917 | if (i3 >= n) |
918 | i3 -= n; |
919 | |
920 | d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7); |
921 | i1++; i2++; i3++; |
922 | } |
923 | } |
924 | } |
925 | |
926 | static void diffuser_b_encrypt(u32 *d, size_t n) |
927 | { |
928 | int i, i1, i2, i3; |
929 | |
930 | for (i = 0; i < 3; i++) { |
931 | i1 = n - 1; |
932 | i2 = 2 - 1; |
933 | i3 = 5 - 1; |
934 | |
935 | while (i1 > 0) { |
936 | d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7); |
937 | i1--; i2--; i3--; |
938 | |
939 | if (i3 < 0) |
940 | i3 += n; |
941 | |
942 | d[i1] -= d[i2] ^ d[i3]; |
943 | i1--; i2--; i3--; |
944 | |
945 | if (i2 < 0) |
946 | i2 += n; |
947 | |
948 | d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22); |
949 | i1--; i2--; i3--; |
950 | |
951 | d[i1] -= d[i2] ^ d[i3]; |
952 | i1--; i2--; i3--; |
953 | } |
954 | } |
955 | } |
956 | |
957 | static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq) |
958 | { |
959 | struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; |
960 | u8 *es, *ks, *data, *data2, *data_offset; |
961 | struct skcipher_request *req; |
962 | struct scatterlist *sg, *sg2, src, dst; |
963 | DECLARE_CRYPTO_WAIT(wait); |
964 | int i, r; |
965 | |
966 | req = skcipher_request_alloc(elephant->tfm, GFP_NOIO); |
967 | es = kzalloc(16, GFP_NOIO); /* Key for AES */ |
968 | ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */ |
969 | |
970 | if (!req || !es || !ks) { |
971 | r = -ENOMEM; |
972 | goto out; |
973 | } |
974 | |
975 | *(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size); |
976 | |
977 | /* E(Ks, e(s)) */ |
978 | sg_init_one(&src, es, 16); |
979 | sg_init_one(&dst, ks, 16); |
980 | skcipher_request_set_crypt(req, src: &src, dst: &dst, cryptlen: 16, NULL); |
981 | skcipher_request_set_callback(req, flags: 0, compl: crypto_req_done, data: &wait); |
982 | r = crypto_wait_req(err: crypto_skcipher_encrypt(req), wait: &wait); |
983 | if (r) |
984 | goto out; |
985 | |
986 | /* E(Ks, e'(s)) */ |
987 | es[15] = 0x80; |
988 | sg_init_one(&dst, &ks[16], 16); |
989 | r = crypto_wait_req(err: crypto_skcipher_encrypt(req), wait: &wait); |
990 | if (r) |
991 | goto out; |
992 | |
993 | sg = crypt_get_sg_data(cc, sg: dmreq->sg_out); |
994 | data = kmap_local_page(page: sg_page(sg)); |
995 | data_offset = data + sg->offset; |
996 | |
997 | /* Cannot modify original bio, copy to sg_out and apply Elephant to it */ |
998 | if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { |
999 | sg2 = crypt_get_sg_data(cc, sg: dmreq->sg_in); |
1000 | data2 = kmap_local_page(page: sg_page(sg: sg2)); |
1001 | memcpy(data_offset, data2 + sg2->offset, cc->sector_size); |
1002 | kunmap_local(data2); |
1003 | } |
1004 | |
1005 | if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { |
1006 | diffuser_disk_to_cpu(d: (u32 *)data_offset, n: cc->sector_size / sizeof(u32)); |
1007 | diffuser_b_decrypt(d: (u32 *)data_offset, n: cc->sector_size / sizeof(u32)); |
1008 | diffuser_a_decrypt(d: (u32 *)data_offset, n: cc->sector_size / sizeof(u32)); |
1009 | diffuser_cpu_to_disk(d: (__le32 *)data_offset, n: cc->sector_size / sizeof(u32)); |
1010 | } |
1011 | |
1012 | for (i = 0; i < (cc->sector_size / 32); i++) |
1013 | crypto_xor(dst: data_offset + i * 32, src: ks, size: 32); |
1014 | |
1015 | if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { |
1016 | diffuser_disk_to_cpu(d: (u32 *)data_offset, n: cc->sector_size / sizeof(u32)); |
1017 | diffuser_a_encrypt(d: (u32 *)data_offset, n: cc->sector_size / sizeof(u32)); |
1018 | diffuser_b_encrypt(d: (u32 *)data_offset, n: cc->sector_size / sizeof(u32)); |
1019 | diffuser_cpu_to_disk(d: (__le32 *)data_offset, n: cc->sector_size / sizeof(u32)); |
1020 | } |
1021 | |
1022 | kunmap_local(data); |
1023 | out: |
1024 | kfree_sensitive(objp: ks); |
1025 | kfree_sensitive(objp: es); |
1026 | skcipher_request_free(req); |
1027 | return r; |
1028 | } |
1029 | |
1030 | static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv, |
1031 | struct dm_crypt_request *dmreq) |
1032 | { |
1033 | int r; |
1034 | |
1035 | if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { |
1036 | r = crypt_iv_elephant(cc, dmreq); |
1037 | if (r) |
1038 | return r; |
1039 | } |
1040 | |
1041 | return crypt_iv_eboiv_gen(cc, iv, dmreq); |
1042 | } |
1043 | |
1044 | static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv, |
1045 | struct dm_crypt_request *dmreq) |
1046 | { |
1047 | if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) |
1048 | return crypt_iv_elephant(cc, dmreq); |
1049 | |
1050 | return 0; |
1051 | } |
1052 | |
1053 | static int crypt_iv_elephant_init(struct crypt_config *cc) |
1054 | { |
1055 | struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; |
1056 | int key_offset = cc->key_size - cc->key_extra_size; |
1057 | |
1058 | return crypto_skcipher_setkey(tfm: elephant->tfm, key: &cc->key[key_offset], keylen: cc->key_extra_size); |
1059 | } |
1060 | |
1061 | static int crypt_iv_elephant_wipe(struct crypt_config *cc) |
1062 | { |
1063 | struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; |
1064 | u8 key[ELEPHANT_MAX_KEY_SIZE]; |
1065 | |
1066 | memset(key, 0, cc->key_extra_size); |
1067 | return crypto_skcipher_setkey(tfm: elephant->tfm, key, keylen: cc->key_extra_size); |
1068 | } |
1069 | |
1070 | static const struct crypt_iv_operations crypt_iv_plain_ops = { |
1071 | .generator = crypt_iv_plain_gen |
1072 | }; |
1073 | |
1074 | static const struct crypt_iv_operations crypt_iv_plain64_ops = { |
1075 | .generator = crypt_iv_plain64_gen |
1076 | }; |
1077 | |
1078 | static const struct crypt_iv_operations crypt_iv_plain64be_ops = { |
1079 | .generator = crypt_iv_plain64be_gen |
1080 | }; |
1081 | |
1082 | static const struct crypt_iv_operations crypt_iv_essiv_ops = { |
1083 | .generator = crypt_iv_essiv_gen |
1084 | }; |
1085 | |
1086 | static const struct crypt_iv_operations crypt_iv_benbi_ops = { |
1087 | .ctr = crypt_iv_benbi_ctr, |
1088 | .dtr = crypt_iv_benbi_dtr, |
1089 | .generator = crypt_iv_benbi_gen |
1090 | }; |
1091 | |
1092 | static const struct crypt_iv_operations crypt_iv_null_ops = { |
1093 | .generator = crypt_iv_null_gen |
1094 | }; |
1095 | |
1096 | static const struct crypt_iv_operations crypt_iv_lmk_ops = { |
1097 | .ctr = crypt_iv_lmk_ctr, |
1098 | .dtr = crypt_iv_lmk_dtr, |
1099 | .init = crypt_iv_lmk_init, |
1100 | .wipe = crypt_iv_lmk_wipe, |
1101 | .generator = crypt_iv_lmk_gen, |
1102 | .post = crypt_iv_lmk_post |
1103 | }; |
1104 | |
1105 | static const struct crypt_iv_operations crypt_iv_tcw_ops = { |
1106 | .ctr = crypt_iv_tcw_ctr, |
1107 | .dtr = crypt_iv_tcw_dtr, |
1108 | .init = crypt_iv_tcw_init, |
1109 | .wipe = crypt_iv_tcw_wipe, |
1110 | .generator = crypt_iv_tcw_gen, |
1111 | .post = crypt_iv_tcw_post |
1112 | }; |
1113 | |
1114 | static const struct crypt_iv_operations crypt_iv_random_ops = { |
1115 | .generator = crypt_iv_random_gen |
1116 | }; |
1117 | |
1118 | static const struct crypt_iv_operations crypt_iv_eboiv_ops = { |
1119 | .ctr = crypt_iv_eboiv_ctr, |
1120 | .generator = crypt_iv_eboiv_gen |
1121 | }; |
1122 | |
1123 | static const struct crypt_iv_operations crypt_iv_elephant_ops = { |
1124 | .ctr = crypt_iv_elephant_ctr, |
1125 | .dtr = crypt_iv_elephant_dtr, |
1126 | .init = crypt_iv_elephant_init, |
1127 | .wipe = crypt_iv_elephant_wipe, |
1128 | .generator = crypt_iv_elephant_gen, |
1129 | .post = crypt_iv_elephant_post |
1130 | }; |
1131 | |
1132 | /* |
1133 | * Integrity extensions |
1134 | */ |
1135 | static bool crypt_integrity_aead(struct crypt_config *cc) |
1136 | { |
1137 | return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags); |
1138 | } |
1139 | |
1140 | static bool crypt_integrity_hmac(struct crypt_config *cc) |
1141 | { |
1142 | return crypt_integrity_aead(cc) && cc->key_mac_size; |
1143 | } |
1144 | |
1145 | /* Get sg containing data */ |
1146 | static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc, |
1147 | struct scatterlist *sg) |
1148 | { |
1149 | if (unlikely(crypt_integrity_aead(cc))) |
1150 | return &sg[2]; |
1151 | |
1152 | return sg; |
1153 | } |
1154 | |
1155 | static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio) |
1156 | { |
1157 | struct bio_integrity_payload *bip; |
1158 | unsigned int tag_len; |
1159 | int ret; |
1160 | |
1161 | if (!bio_sectors(bio) || !io->cc->tuple_size) |
1162 | return 0; |
1163 | |
1164 | bip = bio_integrity_alloc(bio, GFP_NOIO, nr: 1); |
1165 | if (IS_ERR(ptr: bip)) |
1166 | return PTR_ERR(ptr: bip); |
1167 | |
1168 | tag_len = io->cc->tuple_size * (bio_sectors(bio) >> io->cc->sector_shift); |
1169 | |
1170 | bip->bip_iter.bi_sector = bio->bi_iter.bi_sector; |
1171 | |
1172 | ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata), |
1173 | len: tag_len, offset_in_page(io->integrity_metadata)); |
1174 | if (unlikely(ret != tag_len)) |
1175 | return -ENOMEM; |
1176 | |
1177 | return 0; |
1178 | } |
1179 | |
1180 | static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti) |
1181 | { |
1182 | #ifdef CONFIG_BLK_DEV_INTEGRITY |
1183 | struct blk_integrity *bi = blk_get_integrity(disk: cc->dev->bdev->bd_disk); |
1184 | struct mapped_device *md = dm_table_get_md(t: ti->table); |
1185 | |
1186 | /* We require an underlying device with non-PI metadata */ |
1187 | if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) { |
1188 | ti->error = "Integrity profile not supported."; |
1189 | return -EINVAL; |
1190 | } |
1191 | |
1192 | if (bi->tuple_size < cc->used_tag_size) { |
1193 | ti->error = "Integrity profile tag size mismatch."; |
1194 | return -EINVAL; |
1195 | } |
1196 | cc->tuple_size = bi->tuple_size; |
1197 | if (1 << bi->interval_exp != cc->sector_size) { |
1198 | ti->error = "Integrity profile sector size mismatch."; |
1199 | return -EINVAL; |
1200 | } |
1201 | |
1202 | if (crypt_integrity_aead(cc)) { |
1203 | cc->integrity_tag_size = cc->used_tag_size - cc->integrity_iv_size; |
1204 | DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md), |
1205 | cc->integrity_tag_size, cc->integrity_iv_size); |
1206 | |
1207 | if (crypto_aead_setauthsize(tfm: any_tfm_aead(cc), authsize: cc->integrity_tag_size)) { |
1208 | ti->error = "Integrity AEAD auth tag size is not supported."; |
1209 | return -EINVAL; |
1210 | } |
1211 | } else if (cc->integrity_iv_size) |
1212 | DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md), |
1213 | cc->integrity_iv_size); |
1214 | |
1215 | if ((cc->integrity_tag_size + cc->integrity_iv_size) > cc->tuple_size) { |
1216 | ti->error = "Not enough space for integrity tag in the profile."; |
1217 | return -EINVAL; |
1218 | } |
1219 | |
1220 | return 0; |
1221 | #else |
1222 | ti->error = "Integrity profile not supported."; |
1223 | return -EINVAL; |
1224 | #endif |
1225 | } |
1226 | |
1227 | static void crypt_convert_init(struct crypt_config *cc, |
1228 | struct convert_context *ctx, |
1229 | struct bio *bio_out, struct bio *bio_in, |
1230 | sector_t sector) |
1231 | { |
1232 | ctx->bio_in = bio_in; |
1233 | ctx->bio_out = bio_out; |
1234 | if (bio_in) |
1235 | ctx->iter_in = bio_in->bi_iter; |
1236 | if (bio_out) |
1237 | ctx->iter_out = bio_out->bi_iter; |
1238 | ctx->cc_sector = sector + cc->iv_offset; |
1239 | ctx->tag_offset = 0; |
1240 | init_completion(x: &ctx->restart); |
1241 | } |
1242 | |
1243 | static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc, |
1244 | void *req) |
1245 | { |
1246 | return (struct dm_crypt_request *)((char *)req + cc->dmreq_start); |
1247 | } |
1248 | |
1249 | static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq) |
1250 | { |
1251 | return (void *)((char *)dmreq - cc->dmreq_start); |
1252 | } |
1253 | |
1254 | static u8 *iv_of_dmreq(struct crypt_config *cc, |
1255 | struct dm_crypt_request *dmreq) |
1256 | { |
1257 | if (crypt_integrity_aead(cc)) |
1258 | return (u8 *)ALIGN((unsigned long)(dmreq + 1), |
1259 | crypto_aead_alignmask(any_tfm_aead(cc)) + 1); |
1260 | else |
1261 | return (u8 *)ALIGN((unsigned long)(dmreq + 1), |
1262 | crypto_skcipher_alignmask(any_tfm(cc)) + 1); |
1263 | } |
1264 | |
1265 | static u8 *org_iv_of_dmreq(struct crypt_config *cc, |
1266 | struct dm_crypt_request *dmreq) |
1267 | { |
1268 | return iv_of_dmreq(cc, dmreq) + cc->iv_size; |
1269 | } |
1270 | |
1271 | static __le64 *org_sector_of_dmreq(struct crypt_config *cc, |
1272 | struct dm_crypt_request *dmreq) |
1273 | { |
1274 | u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size; |
1275 | |
1276 | return (__le64 *) ptr; |
1277 | } |
1278 | |
1279 | static unsigned int *org_tag_of_dmreq(struct crypt_config *cc, |
1280 | struct dm_crypt_request *dmreq) |
1281 | { |
1282 | u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + |
1283 | cc->iv_size + sizeof(uint64_t); |
1284 | |
1285 | return (unsigned int *)ptr; |
1286 | } |
1287 | |
1288 | static void *tag_from_dmreq(struct crypt_config *cc, |
1289 | struct dm_crypt_request *dmreq) |
1290 | { |
1291 | struct convert_context *ctx = dmreq->ctx; |
1292 | struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); |
1293 | |
1294 | return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) * |
1295 | cc->tuple_size]; |
1296 | } |
1297 | |
1298 | static void *iv_tag_from_dmreq(struct crypt_config *cc, |
1299 | struct dm_crypt_request *dmreq) |
1300 | { |
1301 | return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size; |
1302 | } |
1303 | |
1304 | static int crypt_convert_block_aead(struct crypt_config *cc, |
1305 | struct convert_context *ctx, |
1306 | struct aead_request *req, |
1307 | unsigned int tag_offset) |
1308 | { |
1309 | struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); |
1310 | struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); |
1311 | struct dm_crypt_request *dmreq; |
1312 | u8 *iv, *org_iv, *tag_iv, *tag; |
1313 | __le64 *sector; |
1314 | int r = 0; |
1315 | |
1316 | BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size); |
1317 | |
1318 | /* Reject unexpected unaligned bio. */ |
1319 | if (unlikely(bv_in.bv_len & (cc->sector_size - 1))) |
1320 | return -EIO; |
1321 | |
1322 | dmreq = dmreq_of_req(cc, req); |
1323 | dmreq->iv_sector = ctx->cc_sector; |
1324 | if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) |
1325 | dmreq->iv_sector >>= cc->sector_shift; |
1326 | dmreq->ctx = ctx; |
1327 | |
1328 | *org_tag_of_dmreq(cc, dmreq) = tag_offset; |
1329 | |
1330 | sector = org_sector_of_dmreq(cc, dmreq); |
1331 | *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset); |
1332 | |
1333 | iv = iv_of_dmreq(cc, dmreq); |
1334 | org_iv = org_iv_of_dmreq(cc, dmreq); |
1335 | tag = tag_from_dmreq(cc, dmreq); |
1336 | tag_iv = iv_tag_from_dmreq(cc, dmreq); |
1337 | |
1338 | /* AEAD request: |
1339 | * |----- AAD -------|------ DATA -------|-- AUTH TAG --| |
1340 | * | (authenticated) | (auth+encryption) | | |
1341 | * | sector_LE | IV | sector in/out | tag in/out | |
1342 | */ |
1343 | sg_init_table(dmreq->sg_in, 4); |
1344 | sg_set_buf(sg: &dmreq->sg_in[0], buf: sector, buflen: sizeof(uint64_t)); |
1345 | sg_set_buf(sg: &dmreq->sg_in[1], buf: org_iv, buflen: cc->iv_size); |
1346 | sg_set_page(sg: &dmreq->sg_in[2], page: bv_in.bv_page, len: cc->sector_size, offset: bv_in.bv_offset); |
1347 | sg_set_buf(sg: &dmreq->sg_in[3], buf: tag, buflen: cc->integrity_tag_size); |
1348 | |
1349 | sg_init_table(dmreq->sg_out, 4); |
1350 | sg_set_buf(sg: &dmreq->sg_out[0], buf: sector, buflen: sizeof(uint64_t)); |
1351 | sg_set_buf(sg: &dmreq->sg_out[1], buf: org_iv, buflen: cc->iv_size); |
1352 | sg_set_page(sg: &dmreq->sg_out[2], page: bv_out.bv_page, len: cc->sector_size, offset: bv_out.bv_offset); |
1353 | sg_set_buf(sg: &dmreq->sg_out[3], buf: tag, buflen: cc->integrity_tag_size); |
1354 | |
1355 | if (cc->iv_gen_ops) { |
1356 | /* For READs use IV stored in integrity metadata */ |
1357 | if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) { |
1358 | memcpy(org_iv, tag_iv, cc->iv_size); |
1359 | } else { |
1360 | r = cc->iv_gen_ops->generator(cc, org_iv, dmreq); |
1361 | if (r < 0) |
1362 | return r; |
1363 | /* Store generated IV in integrity metadata */ |
1364 | if (cc->integrity_iv_size) |
1365 | memcpy(tag_iv, org_iv, cc->iv_size); |
1366 | } |
1367 | /* Working copy of IV, to be modified in crypto API */ |
1368 | memcpy(iv, org_iv, cc->iv_size); |
1369 | } |
1370 | |
1371 | aead_request_set_ad(req, assoclen: sizeof(uint64_t) + cc->iv_size); |
1372 | if (bio_data_dir(ctx->bio_in) == WRITE) { |
1373 | aead_request_set_crypt(req, src: dmreq->sg_in, dst: dmreq->sg_out, |
1374 | cryptlen: cc->sector_size, iv); |
1375 | r = crypto_aead_encrypt(req); |
1376 | if (cc->integrity_tag_size + cc->integrity_iv_size != cc->tuple_size) |
1377 | memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0, |
1378 | cc->tuple_size - (cc->integrity_tag_size + cc->integrity_iv_size)); |
1379 | } else { |
1380 | aead_request_set_crypt(req, src: dmreq->sg_in, dst: dmreq->sg_out, |
1381 | cryptlen: cc->sector_size + cc->integrity_tag_size, iv); |
1382 | r = crypto_aead_decrypt(req); |
1383 | } |
1384 | |
1385 | if (r == -EBADMSG) { |
1386 | sector_t s = le64_to_cpu(*sector); |
1387 | |
1388 | ctx->aead_failed = true; |
1389 | if (ctx->aead_recheck) { |
1390 | DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu", |
1391 | ctx->bio_in->bi_bdev, s); |
1392 | dm_audit_log_bio(DM_MSG_PREFIX, op: "integrity-aead", |
1393 | bio: ctx->bio_in, sector: s, result: 0); |
1394 | } |
1395 | } |
1396 | |
1397 | if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) |
1398 | r = cc->iv_gen_ops->post(cc, org_iv, dmreq); |
1399 | |
1400 | bio_advance_iter(bio: ctx->bio_in, iter: &ctx->iter_in, bytes: cc->sector_size); |
1401 | bio_advance_iter(bio: ctx->bio_out, iter: &ctx->iter_out, bytes: cc->sector_size); |
1402 | |
1403 | return r; |
1404 | } |
1405 | |
1406 | static int crypt_convert_block_skcipher(struct crypt_config *cc, |
1407 | struct convert_context *ctx, |
1408 | struct skcipher_request *req, |
1409 | unsigned int tag_offset) |
1410 | { |
1411 | struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); |
1412 | struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); |
1413 | struct scatterlist *sg_in, *sg_out; |
1414 | struct dm_crypt_request *dmreq; |
1415 | u8 *iv, *org_iv, *tag_iv; |
1416 | __le64 *sector; |
1417 | int r = 0; |
1418 | |
1419 | /* Reject unexpected unaligned bio. */ |
1420 | if (unlikely(bv_in.bv_len & (cc->sector_size - 1))) |
1421 | return -EIO; |
1422 | |
1423 | dmreq = dmreq_of_req(cc, req); |
1424 | dmreq->iv_sector = ctx->cc_sector; |
1425 | if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) |
1426 | dmreq->iv_sector >>= cc->sector_shift; |
1427 | dmreq->ctx = ctx; |
1428 | |
1429 | *org_tag_of_dmreq(cc, dmreq) = tag_offset; |
1430 | |
1431 | iv = iv_of_dmreq(cc, dmreq); |
1432 | org_iv = org_iv_of_dmreq(cc, dmreq); |
1433 | tag_iv = iv_tag_from_dmreq(cc, dmreq); |
1434 | |
1435 | sector = org_sector_of_dmreq(cc, dmreq); |
1436 | *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset); |
1437 | |
1438 | /* For skcipher we use only the first sg item */ |
1439 | sg_in = &dmreq->sg_in[0]; |
1440 | sg_out = &dmreq->sg_out[0]; |
1441 | |
1442 | sg_init_table(sg_in, 1); |
1443 | sg_set_page(sg: sg_in, page: bv_in.bv_page, len: cc->sector_size, offset: bv_in.bv_offset); |
1444 | |
1445 | sg_init_table(sg_out, 1); |
1446 | sg_set_page(sg: sg_out, page: bv_out.bv_page, len: cc->sector_size, offset: bv_out.bv_offset); |
1447 | |
1448 | if (cc->iv_gen_ops) { |
1449 | /* For READs use IV stored in integrity metadata */ |
1450 | if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) { |
1451 | memcpy(org_iv, tag_iv, cc->integrity_iv_size); |
1452 | } else { |
1453 | r = cc->iv_gen_ops->generator(cc, org_iv, dmreq); |
1454 | if (r < 0) |
1455 | return r; |
1456 | /* Data can be already preprocessed in generator */ |
1457 | if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags)) |
1458 | sg_in = sg_out; |
1459 | /* Store generated IV in integrity metadata */ |
1460 | if (cc->integrity_iv_size) |
1461 | memcpy(tag_iv, org_iv, cc->integrity_iv_size); |
1462 | } |
1463 | /* Working copy of IV, to be modified in crypto API */ |
1464 | memcpy(iv, org_iv, cc->iv_size); |
1465 | } |
1466 | |
1467 | skcipher_request_set_crypt(req, src: sg_in, dst: sg_out, cryptlen: cc->sector_size, iv); |
1468 | |
1469 | if (bio_data_dir(ctx->bio_in) == WRITE) |
1470 | r = crypto_skcipher_encrypt(req); |
1471 | else |
1472 | r = crypto_skcipher_decrypt(req); |
1473 | |
1474 | if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) |
1475 | r = cc->iv_gen_ops->post(cc, org_iv, dmreq); |
1476 | |
1477 | bio_advance_iter(bio: ctx->bio_in, iter: &ctx->iter_in, bytes: cc->sector_size); |
1478 | bio_advance_iter(bio: ctx->bio_out, iter: &ctx->iter_out, bytes: cc->sector_size); |
1479 | |
1480 | return r; |
1481 | } |
1482 | |
1483 | static void kcryptd_async_done(void *async_req, int error); |
1484 | |
1485 | static int crypt_alloc_req_skcipher(struct crypt_config *cc, |
1486 | struct convert_context *ctx) |
1487 | { |
1488 | unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1); |
1489 | |
1490 | if (!ctx->r.req) { |
1491 | ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO); |
1492 | if (!ctx->r.req) |
1493 | return -ENOMEM; |
1494 | } |
1495 | |
1496 | skcipher_request_set_tfm(req: ctx->r.req, tfm: cc->cipher_tfm.tfms[key_index]); |
1497 | |
1498 | /* |
1499 | * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs |
1500 | * requests if driver request queue is full. |
1501 | */ |
1502 | skcipher_request_set_callback(req: ctx->r.req, |
1503 | CRYPTO_TFM_REQ_MAY_BACKLOG, |
1504 | compl: kcryptd_async_done, data: dmreq_of_req(cc, req: ctx->r.req)); |
1505 | |
1506 | return 0; |
1507 | } |
1508 | |
1509 | static int crypt_alloc_req_aead(struct crypt_config *cc, |
1510 | struct convert_context *ctx) |
1511 | { |
1512 | if (!ctx->r.req_aead) { |
1513 | ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO); |
1514 | if (!ctx->r.req_aead) |
1515 | return -ENOMEM; |
1516 | } |
1517 | |
1518 | aead_request_set_tfm(req: ctx->r.req_aead, tfm: cc->cipher_tfm.tfms_aead[0]); |
1519 | |
1520 | /* |
1521 | * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs |
1522 | * requests if driver request queue is full. |
1523 | */ |
1524 | aead_request_set_callback(req: ctx->r.req_aead, |
1525 | CRYPTO_TFM_REQ_MAY_BACKLOG, |
1526 | compl: kcryptd_async_done, data: dmreq_of_req(cc, req: ctx->r.req_aead)); |
1527 | |
1528 | return 0; |
1529 | } |
1530 | |
1531 | static int crypt_alloc_req(struct crypt_config *cc, |
1532 | struct convert_context *ctx) |
1533 | { |
1534 | if (crypt_integrity_aead(cc)) |
1535 | return crypt_alloc_req_aead(cc, ctx); |
1536 | else |
1537 | return crypt_alloc_req_skcipher(cc, ctx); |
1538 | } |
1539 | |
1540 | static void crypt_free_req_skcipher(struct crypt_config *cc, |
1541 | struct skcipher_request *req, struct bio *base_bio) |
1542 | { |
1543 | struct dm_crypt_io *io = dm_per_bio_data(bio: base_bio, data_size: cc->per_bio_data_size); |
1544 | |
1545 | if ((struct skcipher_request *)(io + 1) != req) |
1546 | mempool_free(element: req, pool: &cc->req_pool); |
1547 | } |
1548 | |
1549 | static void crypt_free_req_aead(struct crypt_config *cc, |
1550 | struct aead_request *req, struct bio *base_bio) |
1551 | { |
1552 | struct dm_crypt_io *io = dm_per_bio_data(bio: base_bio, data_size: cc->per_bio_data_size); |
1553 | |
1554 | if ((struct aead_request *)(io + 1) != req) |
1555 | mempool_free(element: req, pool: &cc->req_pool); |
1556 | } |
1557 | |
1558 | static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio) |
1559 | { |
1560 | if (crypt_integrity_aead(cc)) |
1561 | crypt_free_req_aead(cc, req, base_bio); |
1562 | else |
1563 | crypt_free_req_skcipher(cc, req, base_bio); |
1564 | } |
1565 | |
1566 | /* |
1567 | * Encrypt / decrypt data from one bio to another one (can be the same one) |
1568 | */ |
1569 | static blk_status_t crypt_convert(struct crypt_config *cc, |
1570 | struct convert_context *ctx, bool atomic, bool reset_pending) |
1571 | { |
1572 | unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT; |
1573 | int r; |
1574 | |
1575 | /* |
1576 | * if reset_pending is set we are dealing with the bio for the first time, |
1577 | * else we're continuing to work on the previous bio, so don't mess with |
1578 | * the cc_pending counter |
1579 | */ |
1580 | if (reset_pending) |
1581 | atomic_set(v: &ctx->cc_pending, i: 1); |
1582 | |
1583 | while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) { |
1584 | |
1585 | r = crypt_alloc_req(cc, ctx); |
1586 | if (r) { |
1587 | complete(&ctx->restart); |
1588 | return BLK_STS_DEV_RESOURCE; |
1589 | } |
1590 | |
1591 | atomic_inc(v: &ctx->cc_pending); |
1592 | |
1593 | if (crypt_integrity_aead(cc)) |
1594 | r = crypt_convert_block_aead(cc, ctx, req: ctx->r.req_aead, tag_offset: ctx->tag_offset); |
1595 | else |
1596 | r = crypt_convert_block_skcipher(cc, ctx, req: ctx->r.req, tag_offset: ctx->tag_offset); |
1597 | |
1598 | switch (r) { |
1599 | /* |
1600 | * The request was queued by a crypto driver |
1601 | * but the driver request queue is full, let's wait. |
1602 | */ |
1603 | case -EBUSY: |
1604 | if (in_interrupt()) { |
1605 | if (try_wait_for_completion(x: &ctx->restart)) { |
1606 | /* |
1607 | * we don't have to block to wait for completion, |
1608 | * so proceed |
1609 | */ |
1610 | } else { |
1611 | /* |
1612 | * we can't wait for completion without blocking |
1613 | * exit and continue processing in a workqueue |
1614 | */ |
1615 | ctx->r.req = NULL; |
1616 | ctx->tag_offset++; |
1617 | ctx->cc_sector += sector_step; |
1618 | return BLK_STS_DEV_RESOURCE; |
1619 | } |
1620 | } else { |
1621 | wait_for_completion(&ctx->restart); |
1622 | } |
1623 | reinit_completion(x: &ctx->restart); |
1624 | fallthrough; |
1625 | /* |
1626 | * The request is queued and processed asynchronously, |
1627 | * completion function kcryptd_async_done() will be called. |
1628 | */ |
1629 | case -EINPROGRESS: |
1630 | ctx->r.req = NULL; |
1631 | ctx->tag_offset++; |
1632 | ctx->cc_sector += sector_step; |
1633 | continue; |
1634 | /* |
1635 | * The request was already processed (synchronously). |
1636 | */ |
1637 | case 0: |
1638 | atomic_dec(v: &ctx->cc_pending); |
1639 | ctx->cc_sector += sector_step; |
1640 | ctx->tag_offset++; |
1641 | if (!atomic) |
1642 | cond_resched(); |
1643 | continue; |
1644 | /* |
1645 | * There was a data integrity error. |
1646 | */ |
1647 | case -EBADMSG: |
1648 | atomic_dec(v: &ctx->cc_pending); |
1649 | return BLK_STS_PROTECTION; |
1650 | /* |
1651 | * There was an error while processing the request. |
1652 | */ |
1653 | default: |
1654 | atomic_dec(v: &ctx->cc_pending); |
1655 | return BLK_STS_IOERR; |
1656 | } |
1657 | } |
1658 | |
1659 | return 0; |
1660 | } |
1661 | |
1662 | static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone); |
1663 | |
1664 | /* |
1665 | * Generate a new unfragmented bio with the given size |
1666 | * This should never violate the device limitations (but if it did then block |
1667 | * core should split the bio as needed). |
1668 | * |
1669 | * This function may be called concurrently. If we allocate from the mempool |
1670 | * concurrently, there is a possibility of deadlock. For example, if we have |
1671 | * mempool of 256 pages, two processes, each wanting 256, pages allocate from |
1672 | * the mempool concurrently, it may deadlock in a situation where both processes |
1673 | * have allocated 128 pages and the mempool is exhausted. |
1674 | * |
1675 | * In order to avoid this scenario we allocate the pages under a mutex. |
1676 | * |
1677 | * In order to not degrade performance with excessive locking, we try |
1678 | * non-blocking allocations without a mutex first but on failure we fallback |
1679 | * to blocking allocations with a mutex. |
1680 | * |
1681 | * In order to reduce allocation overhead, we try to allocate compound pages in |
1682 | * the first pass. If they are not available, we fall back to the mempool. |
1683 | */ |
1684 | static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size) |
1685 | { |
1686 | struct crypt_config *cc = io->cc; |
1687 | struct bio *clone; |
1688 | unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; |
1689 | gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM; |
1690 | unsigned int remaining_size; |
1691 | unsigned int order = MAX_PAGE_ORDER; |
1692 | |
1693 | retry: |
1694 | if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) |
1695 | mutex_lock(&cc->bio_alloc_lock); |
1696 | |
1697 | clone = bio_alloc_bioset(bdev: cc->dev->bdev, nr_vecs: nr_iovecs, opf: io->base_bio->bi_opf, |
1698 | GFP_NOIO, bs: &cc->bs); |
1699 | clone->bi_private = io; |
1700 | clone->bi_end_io = crypt_endio; |
1701 | clone->bi_ioprio = io->base_bio->bi_ioprio; |
1702 | clone->bi_iter.bi_sector = cc->start + io->sector; |
1703 | |
1704 | remaining_size = size; |
1705 | |
1706 | while (remaining_size) { |
1707 | struct page *pages; |
1708 | unsigned size_to_add; |
1709 | unsigned remaining_order = __fls(word: (remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT); |
1710 | order = min(order, remaining_order); |
1711 | |
1712 | while (order > 0) { |
1713 | if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) + |
1714 | (1 << order) > dm_crypt_pages_per_client)) |
1715 | goto decrease_order; |
1716 | pages = alloc_pages(gfp_mask |
1717 | | __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP, |
1718 | order); |
1719 | if (likely(pages != NULL)) { |
1720 | percpu_counter_add(fbc: &cc->n_allocated_pages, amount: 1 << order); |
1721 | goto have_pages; |
1722 | } |
1723 | decrease_order: |
1724 | order--; |
1725 | } |
1726 | |
1727 | pages = mempool_alloc(&cc->page_pool, gfp_mask); |
1728 | if (!pages) { |
1729 | crypt_free_buffer_pages(cc, clone); |
1730 | bio_put(clone); |
1731 | gfp_mask |= __GFP_DIRECT_RECLAIM; |
1732 | order = 0; |
1733 | goto retry; |
1734 | } |
1735 | |
1736 | have_pages: |
1737 | size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size); |
1738 | __bio_add_page(bio: clone, page: pages, len: size_to_add, off: 0); |
1739 | remaining_size -= size_to_add; |
1740 | } |
1741 | |
1742 | /* Allocate space for integrity tags */ |
1743 | if (dm_crypt_integrity_io_alloc(io, bio: clone)) { |
1744 | crypt_free_buffer_pages(cc, clone); |
1745 | bio_put(clone); |
1746 | clone = NULL; |
1747 | } |
1748 | |
1749 | if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) |
1750 | mutex_unlock(lock: &cc->bio_alloc_lock); |
1751 | |
1752 | return clone; |
1753 | } |
1754 | |
1755 | static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone) |
1756 | { |
1757 | struct folio_iter fi; |
1758 | |
1759 | if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */ |
1760 | bio_for_each_folio_all(fi, clone) { |
1761 | if (folio_test_large(folio: fi.folio)) { |
1762 | percpu_counter_sub(fbc: &cc->n_allocated_pages, |
1763 | amount: 1 << folio_order(folio: fi.folio)); |
1764 | folio_put(folio: fi.folio); |
1765 | } else { |
1766 | mempool_free(element: &fi.folio->page, pool: &cc->page_pool); |
1767 | } |
1768 | } |
1769 | } |
1770 | } |
1771 | |
1772 | static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc, |
1773 | struct bio *bio, sector_t sector) |
1774 | { |
1775 | io->cc = cc; |
1776 | io->base_bio = bio; |
1777 | io->sector = sector; |
1778 | io->error = 0; |
1779 | io->ctx.aead_recheck = false; |
1780 | io->ctx.aead_failed = false; |
1781 | io->ctx.r.req = NULL; |
1782 | io->integrity_metadata = NULL; |
1783 | io->integrity_metadata_from_pool = false; |
1784 | atomic_set(v: &io->io_pending, i: 0); |
1785 | } |
1786 | |
1787 | static void crypt_inc_pending(struct dm_crypt_io *io) |
1788 | { |
1789 | atomic_inc(v: &io->io_pending); |
1790 | } |
1791 | |
1792 | static void kcryptd_queue_read(struct dm_crypt_io *io); |
1793 | |
1794 | /* |
1795 | * One of the bios was finished. Check for completion of |
1796 | * the whole request and correctly clean up the buffer. |
1797 | */ |
1798 | static void crypt_dec_pending(struct dm_crypt_io *io) |
1799 | { |
1800 | struct crypt_config *cc = io->cc; |
1801 | struct bio *base_bio = io->base_bio; |
1802 | blk_status_t error = io->error; |
1803 | |
1804 | if (!atomic_dec_and_test(v: &io->io_pending)) |
1805 | return; |
1806 | |
1807 | if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) && |
1808 | cc->used_tag_size && bio_data_dir(base_bio) == READ) { |
1809 | io->ctx.aead_recheck = true; |
1810 | io->ctx.aead_failed = false; |
1811 | io->error = 0; |
1812 | kcryptd_queue_read(io); |
1813 | return; |
1814 | } |
1815 | |
1816 | if (io->ctx.r.req) |
1817 | crypt_free_req(cc, req: io->ctx.r.req, base_bio); |
1818 | |
1819 | if (unlikely(io->integrity_metadata_from_pool)) |
1820 | mempool_free(element: io->integrity_metadata, pool: &io->cc->tag_pool); |
1821 | else |
1822 | kfree(objp: io->integrity_metadata); |
1823 | |
1824 | base_bio->bi_status = error; |
1825 | |
1826 | bio_endio(base_bio); |
1827 | } |
1828 | |
1829 | /* |
1830 | * kcryptd/kcryptd_io: |
1831 | * |
1832 | * Needed because it would be very unwise to do decryption in an |
1833 | * interrupt context. |
1834 | * |
1835 | * kcryptd performs the actual encryption or decryption. |
1836 | * |
1837 | * kcryptd_io performs the IO submission. |
1838 | * |
1839 | * They must be separated as otherwise the final stages could be |
1840 | * starved by new requests which can block in the first stages due |
1841 | * to memory allocation. |
1842 | * |
1843 | * The work is done per CPU global for all dm-crypt instances. |
1844 | * They should not depend on each other and do not block. |
1845 | */ |
1846 | static void crypt_endio(struct bio *clone) |
1847 | { |
1848 | struct dm_crypt_io *io = clone->bi_private; |
1849 | struct crypt_config *cc = io->cc; |
1850 | unsigned int rw = bio_data_dir(clone); |
1851 | blk_status_t error = clone->bi_status; |
1852 | |
1853 | if (io->ctx.aead_recheck && !error) { |
1854 | kcryptd_queue_crypt(io); |
1855 | return; |
1856 | } |
1857 | |
1858 | /* |
1859 | * free the processed pages |
1860 | */ |
1861 | if (rw == WRITE || io->ctx.aead_recheck) |
1862 | crypt_free_buffer_pages(cc, clone); |
1863 | |
1864 | bio_put(clone); |
1865 | |
1866 | if (rw == READ && !error) { |
1867 | kcryptd_queue_crypt(io); |
1868 | return; |
1869 | } |
1870 | |
1871 | if (unlikely(error)) |
1872 | io->error = error; |
1873 | |
1874 | crypt_dec_pending(io); |
1875 | } |
1876 | |
1877 | #define CRYPT_MAP_READ_GFP GFP_NOWAIT |
1878 | |
1879 | static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp) |
1880 | { |
1881 | struct crypt_config *cc = io->cc; |
1882 | struct bio *clone; |
1883 | |
1884 | if (io->ctx.aead_recheck) { |
1885 | if (!(gfp & __GFP_DIRECT_RECLAIM)) |
1886 | return 1; |
1887 | crypt_inc_pending(io); |
1888 | clone = crypt_alloc_buffer(io, size: io->base_bio->bi_iter.bi_size); |
1889 | if (unlikely(!clone)) { |
1890 | crypt_dec_pending(io); |
1891 | return 1; |
1892 | } |
1893 | crypt_convert_init(cc, ctx: &io->ctx, bio_out: clone, bio_in: clone, sector: io->sector); |
1894 | io->saved_bi_iter = clone->bi_iter; |
1895 | dm_submit_bio_remap(clone: io->base_bio, tgt_clone: clone); |
1896 | return 0; |
1897 | } |
1898 | |
1899 | /* |
1900 | * We need the original biovec array in order to decrypt the whole bio |
1901 | * data *afterwards* -- thanks to immutable biovecs we don't need to |
1902 | * worry about the block layer modifying the biovec array; so leverage |
1903 | * bio_alloc_clone(). |
1904 | */ |
1905 | clone = bio_alloc_clone(bdev: cc->dev->bdev, bio_src: io->base_bio, gfp, bs: &cc->bs); |
1906 | if (!clone) |
1907 | return 1; |
1908 | |
1909 | clone->bi_iter.bi_sector = cc->start + io->sector; |
1910 | clone->bi_private = io; |
1911 | clone->bi_end_io = crypt_endio; |
1912 | |
1913 | crypt_inc_pending(io); |
1914 | |
1915 | if (dm_crypt_integrity_io_alloc(io, bio: clone)) { |
1916 | crypt_dec_pending(io); |
1917 | bio_put(clone); |
1918 | return 1; |
1919 | } |
1920 | |
1921 | dm_submit_bio_remap(clone: io->base_bio, tgt_clone: clone); |
1922 | return 0; |
1923 | } |
1924 | |
1925 | static void kcryptd_io_read_work(struct work_struct *work) |
1926 | { |
1927 | struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); |
1928 | |
1929 | crypt_inc_pending(io); |
1930 | if (kcryptd_io_read(io, GFP_NOIO)) |
1931 | io->error = BLK_STS_RESOURCE; |
1932 | crypt_dec_pending(io); |
1933 | } |
1934 | |
1935 | static void kcryptd_queue_read(struct dm_crypt_io *io) |
1936 | { |
1937 | struct crypt_config *cc = io->cc; |
1938 | |
1939 | INIT_WORK(&io->work, kcryptd_io_read_work); |
1940 | queue_work(wq: cc->io_queue, work: &io->work); |
1941 | } |
1942 | |
1943 | static void kcryptd_io_write(struct dm_crypt_io *io) |
1944 | { |
1945 | struct bio *clone = io->ctx.bio_out; |
1946 | |
1947 | dm_submit_bio_remap(clone: io->base_bio, tgt_clone: clone); |
1948 | } |
1949 | |
1950 | #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node) |
1951 | |
1952 | static int dmcrypt_write(void *data) |
1953 | { |
1954 | struct crypt_config *cc = data; |
1955 | struct dm_crypt_io *io; |
1956 | |
1957 | while (1) { |
1958 | struct rb_root write_tree; |
1959 | struct blk_plug plug; |
1960 | |
1961 | spin_lock_irq(lock: &cc->write_thread_lock); |
1962 | continue_locked: |
1963 | |
1964 | if (!RB_EMPTY_ROOT(&cc->write_tree)) |
1965 | goto pop_from_list; |
1966 | |
1967 | set_current_state(TASK_INTERRUPTIBLE); |
1968 | |
1969 | spin_unlock_irq(lock: &cc->write_thread_lock); |
1970 | |
1971 | if (unlikely(kthread_should_stop())) { |
1972 | set_current_state(TASK_RUNNING); |
1973 | break; |
1974 | } |
1975 | |
1976 | schedule(); |
1977 | |
1978 | spin_lock_irq(lock: &cc->write_thread_lock); |
1979 | goto continue_locked; |
1980 | |
1981 | pop_from_list: |
1982 | write_tree = cc->write_tree; |
1983 | cc->write_tree = RB_ROOT; |
1984 | spin_unlock_irq(lock: &cc->write_thread_lock); |
1985 | |
1986 | BUG_ON(rb_parent(write_tree.rb_node)); |
1987 | |
1988 | /* |
1989 | * Note: we cannot walk the tree here with rb_next because |
1990 | * the structures may be freed when kcryptd_io_write is called. |
1991 | */ |
1992 | blk_start_plug(&plug); |
1993 | do { |
1994 | io = crypt_io_from_node(rb_first(&write_tree)); |
1995 | rb_erase(&io->rb_node, &write_tree); |
1996 | kcryptd_io_write(io); |
1997 | cond_resched(); |
1998 | } while (!RB_EMPTY_ROOT(&write_tree)); |
1999 | blk_finish_plug(&plug); |
2000 | } |
2001 | return 0; |
2002 | } |
2003 | |
2004 | static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async) |
2005 | { |
2006 | struct bio *clone = io->ctx.bio_out; |
2007 | struct crypt_config *cc = io->cc; |
2008 | unsigned long flags; |
2009 | sector_t sector; |
2010 | struct rb_node **rbp, *parent; |
2011 | |
2012 | if (unlikely(io->error)) { |
2013 | crypt_free_buffer_pages(cc, clone); |
2014 | bio_put(clone); |
2015 | crypt_dec_pending(io); |
2016 | return; |
2017 | } |
2018 | |
2019 | /* crypt_convert should have filled the clone bio */ |
2020 | BUG_ON(io->ctx.iter_out.bi_size); |
2021 | |
2022 | if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) || |
2023 | test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) { |
2024 | dm_submit_bio_remap(clone: io->base_bio, tgt_clone: clone); |
2025 | return; |
2026 | } |
2027 | |
2028 | spin_lock_irqsave(&cc->write_thread_lock, flags); |
2029 | if (RB_EMPTY_ROOT(&cc->write_tree)) |
2030 | wake_up_process(tsk: cc->write_thread); |
2031 | rbp = &cc->write_tree.rb_node; |
2032 | parent = NULL; |
2033 | sector = io->sector; |
2034 | while (*rbp) { |
2035 | parent = *rbp; |
2036 | if (sector < crypt_io_from_node(parent)->sector) |
2037 | rbp = &(*rbp)->rb_left; |
2038 | else |
2039 | rbp = &(*rbp)->rb_right; |
2040 | } |
2041 | rb_link_node(node: &io->rb_node, parent, rb_link: rbp); |
2042 | rb_insert_color(&io->rb_node, &cc->write_tree); |
2043 | spin_unlock_irqrestore(lock: &cc->write_thread_lock, flags); |
2044 | } |
2045 | |
2046 | static bool kcryptd_crypt_write_inline(struct crypt_config *cc, |
2047 | struct convert_context *ctx) |
2048 | |
2049 | { |
2050 | if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags)) |
2051 | return false; |
2052 | |
2053 | /* |
2054 | * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering |
2055 | * constraints so they do not need to be issued inline by |
2056 | * kcryptd_crypt_write_convert(). |
2057 | */ |
2058 | switch (bio_op(bio: ctx->bio_in)) { |
2059 | case REQ_OP_WRITE: |
2060 | case REQ_OP_WRITE_ZEROES: |
2061 | return true; |
2062 | default: |
2063 | return false; |
2064 | } |
2065 | } |
2066 | |
2067 | static void kcryptd_crypt_write_continue(struct work_struct *work) |
2068 | { |
2069 | struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); |
2070 | struct crypt_config *cc = io->cc; |
2071 | struct convert_context *ctx = &io->ctx; |
2072 | int crypt_finished; |
2073 | blk_status_t r; |
2074 | |
2075 | wait_for_completion(&ctx->restart); |
2076 | reinit_completion(x: &ctx->restart); |
2077 | |
2078 | r = crypt_convert(cc, ctx: &io->ctx, atomic: false, reset_pending: false); |
2079 | if (r) |
2080 | io->error = r; |
2081 | crypt_finished = atomic_dec_and_test(v: &ctx->cc_pending); |
2082 | if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) { |
2083 | /* Wait for completion signaled by kcryptd_async_done() */ |
2084 | wait_for_completion(&ctx->restart); |
2085 | crypt_finished = 1; |
2086 | } |
2087 | |
2088 | /* Encryption was already finished, submit io now */ |
2089 | if (crypt_finished) |
2090 | kcryptd_crypt_write_io_submit(io, async: 0); |
2091 | |
2092 | crypt_dec_pending(io); |
2093 | } |
2094 | |
2095 | static void kcryptd_crypt_write_convert(struct dm_crypt_io *io) |
2096 | { |
2097 | struct crypt_config *cc = io->cc; |
2098 | struct convert_context *ctx = &io->ctx; |
2099 | struct bio *clone; |
2100 | int crypt_finished; |
2101 | blk_status_t r; |
2102 | |
2103 | /* |
2104 | * Prevent io from disappearing until this function completes. |
2105 | */ |
2106 | crypt_inc_pending(io); |
2107 | crypt_convert_init(cc, ctx, NULL, bio_in: io->base_bio, sector: io->sector); |
2108 | |
2109 | clone = crypt_alloc_buffer(io, size: io->base_bio->bi_iter.bi_size); |
2110 | if (unlikely(!clone)) { |
2111 | io->error = BLK_STS_IOERR; |
2112 | goto dec; |
2113 | } |
2114 | |
2115 | io->ctx.bio_out = clone; |
2116 | io->ctx.iter_out = clone->bi_iter; |
2117 | |
2118 | if (crypt_integrity_aead(cc)) { |
2119 | bio_copy_data(dst: clone, src: io->base_bio); |
2120 | io->ctx.bio_in = clone; |
2121 | io->ctx.iter_in = clone->bi_iter; |
2122 | } |
2123 | |
2124 | crypt_inc_pending(io); |
2125 | r = crypt_convert(cc, ctx, |
2126 | test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), reset_pending: true); |
2127 | /* |
2128 | * Crypto API backlogged the request, because its queue was full |
2129 | * and we're in softirq context, so continue from a workqueue |
2130 | * (TODO: is it actually possible to be in softirq in the write path?) |
2131 | */ |
2132 | if (r == BLK_STS_DEV_RESOURCE) { |
2133 | INIT_WORK(&io->work, kcryptd_crypt_write_continue); |
2134 | queue_work(wq: cc->crypt_queue, work: &io->work); |
2135 | return; |
2136 | } |
2137 | if (r) |
2138 | io->error = r; |
2139 | crypt_finished = atomic_dec_and_test(v: &ctx->cc_pending); |
2140 | if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) { |
2141 | /* Wait for completion signaled by kcryptd_async_done() */ |
2142 | wait_for_completion(&ctx->restart); |
2143 | crypt_finished = 1; |
2144 | } |
2145 | |
2146 | /* Encryption was already finished, submit io now */ |
2147 | if (crypt_finished) |
2148 | kcryptd_crypt_write_io_submit(io, async: 0); |
2149 | |
2150 | dec: |
2151 | crypt_dec_pending(io); |
2152 | } |
2153 | |
2154 | static void kcryptd_crypt_read_done(struct dm_crypt_io *io) |
2155 | { |
2156 | if (io->ctx.aead_recheck) { |
2157 | if (!io->error) { |
2158 | io->ctx.bio_in->bi_iter = io->saved_bi_iter; |
2159 | bio_copy_data(dst: io->base_bio, src: io->ctx.bio_in); |
2160 | } |
2161 | crypt_free_buffer_pages(cc: io->cc, clone: io->ctx.bio_in); |
2162 | bio_put(io->ctx.bio_in); |
2163 | } |
2164 | crypt_dec_pending(io); |
2165 | } |
2166 | |
2167 | static void kcryptd_crypt_read_continue(struct work_struct *work) |
2168 | { |
2169 | struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); |
2170 | struct crypt_config *cc = io->cc; |
2171 | blk_status_t r; |
2172 | |
2173 | wait_for_completion(&io->ctx.restart); |
2174 | reinit_completion(x: &io->ctx.restart); |
2175 | |
2176 | r = crypt_convert(cc, ctx: &io->ctx, atomic: false, reset_pending: false); |
2177 | if (r) |
2178 | io->error = r; |
2179 | |
2180 | if (atomic_dec_and_test(v: &io->ctx.cc_pending)) |
2181 | kcryptd_crypt_read_done(io); |
2182 | |
2183 | crypt_dec_pending(io); |
2184 | } |
2185 | |
2186 | static void kcryptd_crypt_read_convert(struct dm_crypt_io *io) |
2187 | { |
2188 | struct crypt_config *cc = io->cc; |
2189 | blk_status_t r; |
2190 | |
2191 | crypt_inc_pending(io); |
2192 | |
2193 | if (io->ctx.aead_recheck) { |
2194 | r = crypt_convert(cc, ctx: &io->ctx, |
2195 | test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), reset_pending: true); |
2196 | } else { |
2197 | crypt_convert_init(cc, ctx: &io->ctx, bio_out: io->base_bio, bio_in: io->base_bio, |
2198 | sector: io->sector); |
2199 | |
2200 | r = crypt_convert(cc, ctx: &io->ctx, |
2201 | test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), reset_pending: true); |
2202 | } |
2203 | /* |
2204 | * Crypto API backlogged the request, because its queue was full |
2205 | * and we're in softirq context, so continue from a workqueue |
2206 | */ |
2207 | if (r == BLK_STS_DEV_RESOURCE) { |
2208 | INIT_WORK(&io->work, kcryptd_crypt_read_continue); |
2209 | queue_work(wq: cc->crypt_queue, work: &io->work); |
2210 | return; |
2211 | } |
2212 | if (r) |
2213 | io->error = r; |
2214 | |
2215 | if (atomic_dec_and_test(v: &io->ctx.cc_pending)) |
2216 | kcryptd_crypt_read_done(io); |
2217 | |
2218 | crypt_dec_pending(io); |
2219 | } |
2220 | |
2221 | static void kcryptd_async_done(void *data, int error) |
2222 | { |
2223 | struct dm_crypt_request *dmreq = data; |
2224 | struct convert_context *ctx = dmreq->ctx; |
2225 | struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); |
2226 | struct crypt_config *cc = io->cc; |
2227 | |
2228 | /* |
2229 | * A request from crypto driver backlog is going to be processed now, |
2230 | * finish the completion and continue in crypt_convert(). |
2231 | * (Callback will be called for the second time for this request.) |
2232 | */ |
2233 | if (error == -EINPROGRESS) { |
2234 | complete(&ctx->restart); |
2235 | return; |
2236 | } |
2237 | |
2238 | if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post) |
2239 | error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq); |
2240 | |
2241 | if (error == -EBADMSG) { |
2242 | sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)); |
2243 | |
2244 | ctx->aead_failed = true; |
2245 | if (ctx->aead_recheck) { |
2246 | DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu", |
2247 | ctx->bio_in->bi_bdev, s); |
2248 | dm_audit_log_bio(DM_MSG_PREFIX, op: "integrity-aead", |
2249 | bio: ctx->bio_in, sector: s, result: 0); |
2250 | } |
2251 | io->error = BLK_STS_PROTECTION; |
2252 | } else if (error < 0) |
2253 | io->error = BLK_STS_IOERR; |
2254 | |
2255 | crypt_free_req(cc, req: req_of_dmreq(cc, dmreq), base_bio: io->base_bio); |
2256 | |
2257 | if (!atomic_dec_and_test(v: &ctx->cc_pending)) |
2258 | return; |
2259 | |
2260 | /* |
2261 | * The request is fully completed: for inline writes, let |
2262 | * kcryptd_crypt_write_convert() do the IO submission. |
2263 | */ |
2264 | if (bio_data_dir(io->base_bio) == READ) { |
2265 | kcryptd_crypt_read_done(io); |
2266 | return; |
2267 | } |
2268 | |
2269 | if (kcryptd_crypt_write_inline(cc, ctx)) { |
2270 | complete(&ctx->restart); |
2271 | return; |
2272 | } |
2273 | |
2274 | kcryptd_crypt_write_io_submit(io, async: 1); |
2275 | } |
2276 | |
2277 | static void kcryptd_crypt(struct work_struct *work) |
2278 | { |
2279 | struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); |
2280 | |
2281 | if (bio_data_dir(io->base_bio) == READ) |
2282 | kcryptd_crypt_read_convert(io); |
2283 | else |
2284 | kcryptd_crypt_write_convert(io); |
2285 | } |
2286 | |
2287 | static void kcryptd_queue_crypt(struct dm_crypt_io *io) |
2288 | { |
2289 | struct crypt_config *cc = io->cc; |
2290 | |
2291 | if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) || |
2292 | (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) { |
2293 | /* |
2294 | * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context. |
2295 | * irqs_disabled(): the kernel may run some IO completion from the idle thread, but |
2296 | * it is being executed with irqs disabled. |
2297 | */ |
2298 | if (in_hardirq() || irqs_disabled()) { |
2299 | INIT_WORK(&io->work, kcryptd_crypt); |
2300 | queue_work(wq: system_bh_wq, work: &io->work); |
2301 | return; |
2302 | } else { |
2303 | kcryptd_crypt(work: &io->work); |
2304 | return; |
2305 | } |
2306 | } |
2307 | |
2308 | INIT_WORK(&io->work, kcryptd_crypt); |
2309 | queue_work(wq: cc->crypt_queue, work: &io->work); |
2310 | } |
2311 | |
2312 | static void crypt_free_tfms_aead(struct crypt_config *cc) |
2313 | { |
2314 | if (!cc->cipher_tfm.tfms_aead) |
2315 | return; |
2316 | |
2317 | if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(ptr: cc->cipher_tfm.tfms_aead[0])) { |
2318 | crypto_free_aead(tfm: cc->cipher_tfm.tfms_aead[0]); |
2319 | cc->cipher_tfm.tfms_aead[0] = NULL; |
2320 | } |
2321 | |
2322 | kfree(objp: cc->cipher_tfm.tfms_aead); |
2323 | cc->cipher_tfm.tfms_aead = NULL; |
2324 | } |
2325 | |
2326 | static void crypt_free_tfms_skcipher(struct crypt_config *cc) |
2327 | { |
2328 | unsigned int i; |
2329 | |
2330 | if (!cc->cipher_tfm.tfms) |
2331 | return; |
2332 | |
2333 | for (i = 0; i < cc->tfms_count; i++) |
2334 | if (cc->cipher_tfm.tfms[i] && !IS_ERR(ptr: cc->cipher_tfm.tfms[i])) { |
2335 | crypto_free_skcipher(tfm: cc->cipher_tfm.tfms[i]); |
2336 | cc->cipher_tfm.tfms[i] = NULL; |
2337 | } |
2338 | |
2339 | kfree(objp: cc->cipher_tfm.tfms); |
2340 | cc->cipher_tfm.tfms = NULL; |
2341 | } |
2342 | |
2343 | static void crypt_free_tfms(struct crypt_config *cc) |
2344 | { |
2345 | if (crypt_integrity_aead(cc)) |
2346 | crypt_free_tfms_aead(cc); |
2347 | else |
2348 | crypt_free_tfms_skcipher(cc); |
2349 | } |
2350 | |
2351 | static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode) |
2352 | { |
2353 | unsigned int i; |
2354 | int err; |
2355 | |
2356 | cc->cipher_tfm.tfms = kcalloc(cc->tfms_count, |
2357 | sizeof(struct crypto_skcipher *), |
2358 | GFP_KERNEL); |
2359 | if (!cc->cipher_tfm.tfms) |
2360 | return -ENOMEM; |
2361 | |
2362 | for (i = 0; i < cc->tfms_count; i++) { |
2363 | cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(alg_name: ciphermode, type: 0, |
2364 | CRYPTO_ALG_ALLOCATES_MEMORY); |
2365 | if (IS_ERR(ptr: cc->cipher_tfm.tfms[i])) { |
2366 | err = PTR_ERR(ptr: cc->cipher_tfm.tfms[i]); |
2367 | crypt_free_tfms(cc); |
2368 | return err; |
2369 | } |
2370 | } |
2371 | |
2372 | /* |
2373 | * dm-crypt performance can vary greatly depending on which crypto |
2374 | * algorithm implementation is used. Help people debug performance |
2375 | * problems by logging the ->cra_driver_name. |
2376 | */ |
2377 | DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode, |
2378 | crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name); |
2379 | return 0; |
2380 | } |
2381 | |
2382 | static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode) |
2383 | { |
2384 | int err; |
2385 | |
2386 | cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL); |
2387 | if (!cc->cipher_tfm.tfms) |
2388 | return -ENOMEM; |
2389 | |
2390 | cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(alg_name: ciphermode, type: 0, |
2391 | CRYPTO_ALG_ALLOCATES_MEMORY); |
2392 | if (IS_ERR(ptr: cc->cipher_tfm.tfms_aead[0])) { |
2393 | err = PTR_ERR(ptr: cc->cipher_tfm.tfms_aead[0]); |
2394 | crypt_free_tfms(cc); |
2395 | return err; |
2396 | } |
2397 | |
2398 | DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode, |
2399 | crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name); |
2400 | return 0; |
2401 | } |
2402 | |
2403 | static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode) |
2404 | { |
2405 | if (crypt_integrity_aead(cc)) |
2406 | return crypt_alloc_tfms_aead(cc, ciphermode); |
2407 | else |
2408 | return crypt_alloc_tfms_skcipher(cc, ciphermode); |
2409 | } |
2410 | |
2411 | static unsigned int crypt_subkey_size(struct crypt_config *cc) |
2412 | { |
2413 | return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count); |
2414 | } |
2415 | |
2416 | static unsigned int crypt_authenckey_size(struct crypt_config *cc) |
2417 | { |
2418 | return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param)); |
2419 | } |
2420 | |
2421 | /* |
2422 | * If AEAD is composed like authenc(hmac(sha256),xts(aes)), |
2423 | * the key must be for some reason in special format. |
2424 | * This funcion converts cc->key to this special format. |
2425 | */ |
2426 | static void crypt_copy_authenckey(char *p, const void *key, |
2427 | unsigned int enckeylen, unsigned int authkeylen) |
2428 | { |
2429 | struct crypto_authenc_key_param *param; |
2430 | struct rtattr *rta; |
2431 | |
2432 | rta = (struct rtattr *)p; |
2433 | param = RTA_DATA(rta); |
2434 | param->enckeylen = cpu_to_be32(enckeylen); |
2435 | rta->rta_len = RTA_LENGTH(sizeof(*param)); |
2436 | rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM; |
2437 | p += RTA_SPACE(sizeof(*param)); |
2438 | memcpy(p, key + enckeylen, authkeylen); |
2439 | p += authkeylen; |
2440 | memcpy(p, key, enckeylen); |
2441 | } |
2442 | |
2443 | static int crypt_setkey(struct crypt_config *cc) |
2444 | { |
2445 | unsigned int subkey_size; |
2446 | int err = 0, i, r; |
2447 | |
2448 | /* Ignore extra keys (which are used for IV etc) */ |
2449 | subkey_size = crypt_subkey_size(cc); |
2450 | |
2451 | if (crypt_integrity_hmac(cc)) { |
2452 | if (subkey_size < cc->key_mac_size) |
2453 | return -EINVAL; |
2454 | |
2455 | crypt_copy_authenckey(p: cc->authenc_key, key: cc->key, |
2456 | enckeylen: subkey_size - cc->key_mac_size, |
2457 | authkeylen: cc->key_mac_size); |
2458 | } |
2459 | |
2460 | for (i = 0; i < cc->tfms_count; i++) { |
2461 | if (crypt_integrity_hmac(cc)) |
2462 | r = crypto_aead_setkey(tfm: cc->cipher_tfm.tfms_aead[i], |
2463 | key: cc->authenc_key, keylen: crypt_authenckey_size(cc)); |
2464 | else if (crypt_integrity_aead(cc)) |
2465 | r = crypto_aead_setkey(tfm: cc->cipher_tfm.tfms_aead[i], |
2466 | key: cc->key + (i * subkey_size), |
2467 | keylen: subkey_size); |
2468 | else |
2469 | r = crypto_skcipher_setkey(tfm: cc->cipher_tfm.tfms[i], |
2470 | key: cc->key + (i * subkey_size), |
2471 | keylen: subkey_size); |
2472 | if (r) |
2473 | err = r; |
2474 | } |
2475 | |
2476 | if (crypt_integrity_hmac(cc)) |
2477 | memzero_explicit(s: cc->authenc_key, count: crypt_authenckey_size(cc)); |
2478 | |
2479 | return err; |
2480 | } |
2481 | |
2482 | #ifdef CONFIG_KEYS |
2483 | |
2484 | static bool contains_whitespace(const char *str) |
2485 | { |
2486 | while (*str) |
2487 | if (isspace(*str++)) |
2488 | return true; |
2489 | return false; |
2490 | } |
2491 | |
2492 | static int set_key_user(struct crypt_config *cc, struct key *key) |
2493 | { |
2494 | const struct user_key_payload *ukp; |
2495 | |
2496 | ukp = user_key_payload_locked(key); |
2497 | if (!ukp) |
2498 | return -EKEYREVOKED; |
2499 | |
2500 | if (cc->key_size != ukp->datalen) |
2501 | return -EINVAL; |
2502 | |
2503 | memcpy(cc->key, ukp->data, cc->key_size); |
2504 | |
2505 | return 0; |
2506 | } |
2507 | |
2508 | static int set_key_encrypted(struct crypt_config *cc, struct key *key) |
2509 | { |
2510 | const struct encrypted_key_payload *ekp; |
2511 | |
2512 | ekp = key->payload.data[0]; |
2513 | if (!ekp) |
2514 | return -EKEYREVOKED; |
2515 | |
2516 | if (cc->key_size != ekp->decrypted_datalen) |
2517 | return -EINVAL; |
2518 | |
2519 | memcpy(cc->key, ekp->decrypted_data, cc->key_size); |
2520 | |
2521 | return 0; |
2522 | } |
2523 | |
2524 | static int set_key_trusted(struct crypt_config *cc, struct key *key) |
2525 | { |
2526 | const struct trusted_key_payload *tkp; |
2527 | |
2528 | tkp = key->payload.data[0]; |
2529 | if (!tkp) |
2530 | return -EKEYREVOKED; |
2531 | |
2532 | if (cc->key_size != tkp->key_len) |
2533 | return -EINVAL; |
2534 | |
2535 | memcpy(cc->key, tkp->key, cc->key_size); |
2536 | |
2537 | return 0; |
2538 | } |
2539 | |
2540 | static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) |
2541 | { |
2542 | char *new_key_string, *key_desc; |
2543 | int ret; |
2544 | struct key_type *type; |
2545 | struct key *key; |
2546 | int (*set_key)(struct crypt_config *cc, struct key *key); |
2547 | |
2548 | /* |
2549 | * Reject key_string with whitespace. dm core currently lacks code for |
2550 | * proper whitespace escaping in arguments on DM_TABLE_STATUS path. |
2551 | */ |
2552 | if (contains_whitespace(str: key_string)) { |
2553 | DMERR("whitespace chars not allowed in key string"); |
2554 | return -EINVAL; |
2555 | } |
2556 | |
2557 | /* look for next ':' separating key_type from key_description */ |
2558 | key_desc = strchr(key_string, ':'); |
2559 | if (!key_desc || key_desc == key_string || !strlen(key_desc + 1)) |
2560 | return -EINVAL; |
2561 | |
2562 | if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) { |
2563 | type = &key_type_logon; |
2564 | set_key = set_key_user; |
2565 | } else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) { |
2566 | type = &key_type_user; |
2567 | set_key = set_key_user; |
2568 | } else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) && |
2569 | !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) { |
2570 | type = &key_type_encrypted; |
2571 | set_key = set_key_encrypted; |
2572 | } else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) && |
2573 | !strncmp(key_string, "trusted:", key_desc - key_string + 1)) { |
2574 | type = &key_type_trusted; |
2575 | set_key = set_key_trusted; |
2576 | } else { |
2577 | return -EINVAL; |
2578 | } |
2579 | |
2580 | new_key_string = kstrdup(s: key_string, GFP_KERNEL); |
2581 | if (!new_key_string) |
2582 | return -ENOMEM; |
2583 | |
2584 | key = request_key(type, description: key_desc + 1, NULL); |
2585 | if (IS_ERR(ptr: key)) { |
2586 | ret = PTR_ERR(ptr: key); |
2587 | goto free_new_key_string; |
2588 | } |
2589 | |
2590 | down_read(sem: &key->sem); |
2591 | ret = set_key(cc, key); |
2592 | up_read(sem: &key->sem); |
2593 | key_put(key); |
2594 | if (ret < 0) |
2595 | goto free_new_key_string; |
2596 | |
2597 | /* clear the flag since following operations may invalidate previously valid key */ |
2598 | clear_bit(nr: DM_CRYPT_KEY_VALID, addr: &cc->flags); |
2599 | |
2600 | ret = crypt_setkey(cc); |
2601 | if (ret) |
2602 | goto free_new_key_string; |
2603 | |
2604 | set_bit(nr: DM_CRYPT_KEY_VALID, addr: &cc->flags); |
2605 | kfree_sensitive(objp: cc->key_string); |
2606 | cc->key_string = new_key_string; |
2607 | return 0; |
2608 | |
2609 | free_new_key_string: |
2610 | kfree_sensitive(objp: new_key_string); |
2611 | return ret; |
2612 | } |
2613 | |
2614 | static int get_key_size(char **key_string) |
2615 | { |
2616 | char *colon, dummy; |
2617 | int ret; |
2618 | |
2619 | if (*key_string[0] != ':') |
2620 | return strlen(*key_string) >> 1; |
2621 | |
2622 | /* look for next ':' in key string */ |
2623 | colon = strpbrk(*key_string + 1, ":"); |
2624 | if (!colon) |
2625 | return -EINVAL; |
2626 | |
2627 | if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':') |
2628 | return -EINVAL; |
2629 | |
2630 | *key_string = colon; |
2631 | |
2632 | /* remaining key string should be :<logon|user>:<key_desc> */ |
2633 | |
2634 | return ret; |
2635 | } |
2636 | |
2637 | #else |
2638 | |
2639 | static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) |
2640 | { |
2641 | return -EINVAL; |
2642 | } |
2643 | |
2644 | static int get_key_size(char **key_string) |
2645 | { |
2646 | return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1); |
2647 | } |
2648 | |
2649 | #endif /* CONFIG_KEYS */ |
2650 | |
2651 | static int crypt_set_key(struct crypt_config *cc, char *key) |
2652 | { |
2653 | int r = -EINVAL; |
2654 | int key_string_len = strlen(key); |
2655 | |
2656 | /* Hyphen (which gives a key_size of zero) means there is no key. */ |
2657 | if (!cc->key_size && strcmp(key, "-")) |
2658 | goto out; |
2659 | |
2660 | /* ':' means the key is in kernel keyring, short-circuit normal key processing */ |
2661 | if (key[0] == ':') { |
2662 | r = crypt_set_keyring_key(cc, key_string: key + 1); |
2663 | goto out; |
2664 | } |
2665 | |
2666 | /* clear the flag since following operations may invalidate previously valid key */ |
2667 | clear_bit(nr: DM_CRYPT_KEY_VALID, addr: &cc->flags); |
2668 | |
2669 | /* wipe references to any kernel keyring key */ |
2670 | kfree_sensitive(objp: cc->key_string); |
2671 | cc->key_string = NULL; |
2672 | |
2673 | /* Decode key from its hex representation. */ |
2674 | if (cc->key_size && hex2bin(dst: cc->key, src: key, count: cc->key_size) < 0) |
2675 | goto out; |
2676 | |
2677 | r = crypt_setkey(cc); |
2678 | if (!r) |
2679 | set_bit(nr: DM_CRYPT_KEY_VALID, addr: &cc->flags); |
2680 | |
2681 | out: |
2682 | /* Hex key string not needed after here, so wipe it. */ |
2683 | memset(key, '0', key_string_len); |
2684 | |
2685 | return r; |
2686 | } |
2687 | |
2688 | static int crypt_wipe_key(struct crypt_config *cc) |
2689 | { |
2690 | int r; |
2691 | |
2692 | clear_bit(nr: DM_CRYPT_KEY_VALID, addr: &cc->flags); |
2693 | get_random_bytes(buf: &cc->key, len: cc->key_size); |
2694 | |
2695 | /* Wipe IV private keys */ |
2696 | if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) { |
2697 | r = cc->iv_gen_ops->wipe(cc); |
2698 | if (r) |
2699 | return r; |
2700 | } |
2701 | |
2702 | kfree_sensitive(objp: cc->key_string); |
2703 | cc->key_string = NULL; |
2704 | r = crypt_setkey(cc); |
2705 | memset(&cc->key, 0, cc->key_size * sizeof(u8)); |
2706 | |
2707 | return r; |
2708 | } |
2709 | |
2710 | static void crypt_calculate_pages_per_client(void) |
2711 | { |
2712 | unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100; |
2713 | |
2714 | if (!dm_crypt_clients_n) |
2715 | return; |
2716 | |
2717 | pages /= dm_crypt_clients_n; |
2718 | if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT) |
2719 | pages = DM_CRYPT_MIN_PAGES_PER_CLIENT; |
2720 | dm_crypt_pages_per_client = pages; |
2721 | } |
2722 | |
2723 | static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data) |
2724 | { |
2725 | struct crypt_config *cc = pool_data; |
2726 | struct page *page; |
2727 | |
2728 | /* |
2729 | * Note, percpu_counter_read_positive() may over (and under) estimate |
2730 | * the current usage by at most (batch - 1) * num_online_cpus() pages, |
2731 | * but avoids potential spinlock contention of an exact result. |
2732 | */ |
2733 | if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) && |
2734 | likely(gfp_mask & __GFP_NORETRY)) |
2735 | return NULL; |
2736 | |
2737 | page = alloc_page(gfp_mask); |
2738 | if (likely(page != NULL)) |
2739 | percpu_counter_add(fbc: &cc->n_allocated_pages, amount: 1); |
2740 | |
2741 | return page; |
2742 | } |
2743 | |
2744 | static void crypt_page_free(void *page, void *pool_data) |
2745 | { |
2746 | struct crypt_config *cc = pool_data; |
2747 | |
2748 | __free_page(page); |
2749 | percpu_counter_sub(fbc: &cc->n_allocated_pages, amount: 1); |
2750 | } |
2751 | |
2752 | static void crypt_dtr(struct dm_target *ti) |
2753 | { |
2754 | struct crypt_config *cc = ti->private; |
2755 | |
2756 | ti->private = NULL; |
2757 | |
2758 | if (!cc) |
2759 | return; |
2760 | |
2761 | if (cc->write_thread) |
2762 | kthread_stop(k: cc->write_thread); |
2763 | |
2764 | if (cc->io_queue) |
2765 | destroy_workqueue(wq: cc->io_queue); |
2766 | if (cc->crypt_queue) |
2767 | destroy_workqueue(wq: cc->crypt_queue); |
2768 | |
2769 | if (cc->workqueue_id) |
2770 | ida_free(&workqueue_ida, id: cc->workqueue_id); |
2771 | |
2772 | crypt_free_tfms(cc); |
2773 | |
2774 | bioset_exit(&cc->bs); |
2775 | |
2776 | mempool_exit(pool: &cc->page_pool); |
2777 | mempool_exit(pool: &cc->req_pool); |
2778 | mempool_exit(pool: &cc->tag_pool); |
2779 | |
2780 | WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0); |
2781 | percpu_counter_destroy(fbc: &cc->n_allocated_pages); |
2782 | |
2783 | if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) |
2784 | cc->iv_gen_ops->dtr(cc); |
2785 | |
2786 | if (cc->dev) |
2787 | dm_put_device(ti, d: cc->dev); |
2788 | |
2789 | kfree_sensitive(objp: cc->cipher_string); |
2790 | kfree_sensitive(objp: cc->key_string); |
2791 | kfree_sensitive(objp: cc->cipher_auth); |
2792 | kfree_sensitive(objp: cc->authenc_key); |
2793 | |
2794 | mutex_destroy(lock: &cc->bio_alloc_lock); |
2795 | |
2796 | /* Must zero key material before freeing */ |
2797 | kfree_sensitive(objp: cc); |
2798 | |
2799 | spin_lock(lock: &dm_crypt_clients_lock); |
2800 | WARN_ON(!dm_crypt_clients_n); |
2801 | dm_crypt_clients_n--; |
2802 | crypt_calculate_pages_per_client(); |
2803 | spin_unlock(lock: &dm_crypt_clients_lock); |
2804 | |
2805 | dm_audit_log_dtr(DM_MSG_PREFIX, ti, result: 1); |
2806 | } |
2807 | |
2808 | static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode) |
2809 | { |
2810 | struct crypt_config *cc = ti->private; |
2811 | |
2812 | if (crypt_integrity_aead(cc)) |
2813 | cc->iv_size = crypto_aead_ivsize(tfm: any_tfm_aead(cc)); |
2814 | else |
2815 | cc->iv_size = crypto_skcipher_ivsize(tfm: any_tfm(cc)); |
2816 | |
2817 | if (cc->iv_size) |
2818 | /* at least a 64 bit sector number should fit in our buffer */ |
2819 | cc->iv_size = max(cc->iv_size, |
2820 | (unsigned int)(sizeof(u64) / sizeof(u8))); |
2821 | else if (ivmode) { |
2822 | DMWARN("Selected cipher does not support IVs"); |
2823 | ivmode = NULL; |
2824 | } |
2825 | |
2826 | /* Choose ivmode, see comments at iv code. */ |
2827 | if (ivmode == NULL) |
2828 | cc->iv_gen_ops = NULL; |
2829 | else if (strcmp(ivmode, "plain") == 0) |
2830 | cc->iv_gen_ops = &crypt_iv_plain_ops; |
2831 | else if (strcmp(ivmode, "plain64") == 0) |
2832 | cc->iv_gen_ops = &crypt_iv_plain64_ops; |
2833 | else if (strcmp(ivmode, "plain64be") == 0) |
2834 | cc->iv_gen_ops = &crypt_iv_plain64be_ops; |
2835 | else if (strcmp(ivmode, "essiv") == 0) |
2836 | cc->iv_gen_ops = &crypt_iv_essiv_ops; |
2837 | else if (strcmp(ivmode, "benbi") == 0) |
2838 | cc->iv_gen_ops = &crypt_iv_benbi_ops; |
2839 | else if (strcmp(ivmode, "null") == 0) |
2840 | cc->iv_gen_ops = &crypt_iv_null_ops; |
2841 | else if (strcmp(ivmode, "eboiv") == 0) |
2842 | cc->iv_gen_ops = &crypt_iv_eboiv_ops; |
2843 | else if (strcmp(ivmode, "elephant") == 0) { |
2844 | cc->iv_gen_ops = &crypt_iv_elephant_ops; |
2845 | cc->key_parts = 2; |
2846 | cc->key_extra_size = cc->key_size / 2; |
2847 | if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE) |
2848 | return -EINVAL; |
2849 | set_bit(nr: CRYPT_ENCRYPT_PREPROCESS, addr: &cc->cipher_flags); |
2850 | } else if (strcmp(ivmode, "lmk") == 0) { |
2851 | cc->iv_gen_ops = &crypt_iv_lmk_ops; |
2852 | /* |
2853 | * Version 2 and 3 is recognised according |
2854 | * to length of provided multi-key string. |
2855 | * If present (version 3), last key is used as IV seed. |
2856 | * All keys (including IV seed) are always the same size. |
2857 | */ |
2858 | if (cc->key_size % cc->key_parts) { |
2859 | cc->key_parts++; |
2860 | cc->key_extra_size = cc->key_size / cc->key_parts; |
2861 | } |
2862 | } else if (strcmp(ivmode, "tcw") == 0) { |
2863 | cc->iv_gen_ops = &crypt_iv_tcw_ops; |
2864 | cc->key_parts += 2; /* IV + whitening */ |
2865 | cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE; |
2866 | } else if (strcmp(ivmode, "random") == 0) { |
2867 | cc->iv_gen_ops = &crypt_iv_random_ops; |
2868 | /* Need storage space in integrity fields. */ |
2869 | cc->integrity_iv_size = cc->iv_size; |
2870 | } else { |
2871 | ti->error = "Invalid IV mode"; |
2872 | return -EINVAL; |
2873 | } |
2874 | |
2875 | return 0; |
2876 | } |
2877 | |
2878 | /* |
2879 | * Workaround to parse HMAC algorithm from AEAD crypto API spec. |
2880 | * The HMAC is needed to calculate tag size (HMAC digest size). |
2881 | * This should be probably done by crypto-api calls (once available...) |
2882 | */ |
2883 | static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api) |
2884 | { |
2885 | char *start, *end, *mac_alg = NULL; |
2886 | struct crypto_ahash *mac; |
2887 | |
2888 | if (!strstarts(str: cipher_api, prefix: "authenc(")) |
2889 | return 0; |
2890 | |
2891 | start = strchr(cipher_api, '('); |
2892 | end = strchr(cipher_api, ','); |
2893 | if (!start || !end || ++start > end) |
2894 | return -EINVAL; |
2895 | |
2896 | mac_alg = kmemdup_nul(s: start, len: end - start, GFP_KERNEL); |
2897 | if (!mac_alg) |
2898 | return -ENOMEM; |
2899 | |
2900 | mac = crypto_alloc_ahash(alg_name: mac_alg, type: 0, CRYPTO_ALG_ALLOCATES_MEMORY); |
2901 | kfree(objp: mac_alg); |
2902 | |
2903 | if (IS_ERR(ptr: mac)) |
2904 | return PTR_ERR(ptr: mac); |
2905 | |
2906 | if (!test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags)) |
2907 | cc->key_mac_size = crypto_ahash_digestsize(tfm: mac); |
2908 | crypto_free_ahash(tfm: mac); |
2909 | |
2910 | cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL); |
2911 | if (!cc->authenc_key) |
2912 | return -ENOMEM; |
2913 | |
2914 | return 0; |
2915 | } |
2916 | |
2917 | static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key, |
2918 | char **ivmode, char **ivopts) |
2919 | { |
2920 | struct crypt_config *cc = ti->private; |
2921 | char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME]; |
2922 | int ret = -EINVAL; |
2923 | |
2924 | cc->tfms_count = 1; |
2925 | |
2926 | /* |
2927 | * New format (capi: prefix) |
2928 | * capi:cipher_api_spec-iv:ivopts |
2929 | */ |
2930 | tmp = &cipher_in[strlen("capi:")]; |
2931 | |
2932 | /* Separate IV options if present, it can contain another '-' in hash name */ |
2933 | *ivopts = strrchr(tmp, ':'); |
2934 | if (*ivopts) { |
2935 | **ivopts = '\0'; |
2936 | (*ivopts)++; |
2937 | } |
2938 | /* Parse IV mode */ |
2939 | *ivmode = strrchr(tmp, '-'); |
2940 | if (*ivmode) { |
2941 | **ivmode = '\0'; |
2942 | (*ivmode)++; |
2943 | } |
2944 | /* The rest is crypto API spec */ |
2945 | cipher_api = tmp; |
2946 | |
2947 | /* Alloc AEAD, can be used only in new format. */ |
2948 | if (crypt_integrity_aead(cc)) { |
2949 | ret = crypt_ctr_auth_cipher(cc, cipher_api); |
2950 | if (ret < 0) { |
2951 | ti->error = "Invalid AEAD cipher spec"; |
2952 | return ret; |
2953 | } |
2954 | } |
2955 | |
2956 | if (*ivmode && !strcmp(*ivmode, "lmk")) |
2957 | cc->tfms_count = 64; |
2958 | |
2959 | if (*ivmode && !strcmp(*ivmode, "essiv")) { |
2960 | if (!*ivopts) { |
2961 | ti->error = "Digest algorithm missing for ESSIV mode"; |
2962 | return -EINVAL; |
2963 | } |
2964 | ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, fmt: "essiv(%s,%s)", |
2965 | cipher_api, *ivopts); |
2966 | if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) { |
2967 | ti->error = "Cannot allocate cipher string"; |
2968 | return -ENOMEM; |
2969 | } |
2970 | cipher_api = buf; |
2971 | } |
2972 | |
2973 | cc->key_parts = cc->tfms_count; |
2974 | |
2975 | /* Allocate cipher */ |
2976 | ret = crypt_alloc_tfms(cc, ciphermode: cipher_api); |
2977 | if (ret < 0) { |
2978 | ti->error = "Error allocating crypto tfm"; |
2979 | return ret; |
2980 | } |
2981 | |
2982 | if (crypt_integrity_aead(cc)) |
2983 | cc->iv_size = crypto_aead_ivsize(tfm: any_tfm_aead(cc)); |
2984 | else |
2985 | cc->iv_size = crypto_skcipher_ivsize(tfm: any_tfm(cc)); |
2986 | |
2987 | return 0; |
2988 | } |
2989 | |
2990 | static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key, |
2991 | char **ivmode, char **ivopts) |
2992 | { |
2993 | struct crypt_config *cc = ti->private; |
2994 | char *tmp, *cipher, *chainmode, *keycount; |
2995 | char *cipher_api = NULL; |
2996 | int ret = -EINVAL; |
2997 | char dummy; |
2998 | |
2999 | if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) { |
3000 | ti->error = "Bad cipher specification"; |
3001 | return -EINVAL; |
3002 | } |
3003 | |
3004 | /* |
3005 | * Legacy dm-crypt cipher specification |
3006 | * cipher[:keycount]-mode-iv:ivopts |
3007 | */ |
3008 | tmp = cipher_in; |
3009 | keycount = strsep(&tmp, "-"); |
3010 | cipher = strsep(&keycount, ":"); |
3011 | |
3012 | if (!keycount) |
3013 | cc->tfms_count = 1; |
3014 | else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 || |
3015 | !is_power_of_2(n: cc->tfms_count)) { |
3016 | ti->error = "Bad cipher key count specification"; |
3017 | return -EINVAL; |
3018 | } |
3019 | cc->key_parts = cc->tfms_count; |
3020 | |
3021 | chainmode = strsep(&tmp, "-"); |
3022 | *ivmode = strsep(&tmp, ":"); |
3023 | *ivopts = tmp; |
3024 | |
3025 | /* |
3026 | * For compatibility with the original dm-crypt mapping format, if |
3027 | * only the cipher name is supplied, use cbc-plain. |
3028 | */ |
3029 | if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) { |
3030 | chainmode = "cbc"; |
3031 | *ivmode = "plain"; |
3032 | } |
3033 | |
3034 | if (strcmp(chainmode, "ecb") && !*ivmode) { |
3035 | ti->error = "IV mechanism required"; |
3036 | return -EINVAL; |
3037 | } |
3038 | |
3039 | cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL); |
3040 | if (!cipher_api) |
3041 | goto bad_mem; |
3042 | |
3043 | if (*ivmode && !strcmp(*ivmode, "essiv")) { |
3044 | if (!*ivopts) { |
3045 | ti->error = "Digest algorithm missing for ESSIV mode"; |
3046 | kfree(objp: cipher_api); |
3047 | return -EINVAL; |
3048 | } |
3049 | ret = snprintf(buf: cipher_api, CRYPTO_MAX_ALG_NAME, |
3050 | fmt: "essiv(%s(%s),%s)", chainmode, cipher, *ivopts); |
3051 | } else { |
3052 | ret = snprintf(buf: cipher_api, CRYPTO_MAX_ALG_NAME, |
3053 | fmt: "%s(%s)", chainmode, cipher); |
3054 | } |
3055 | if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) { |
3056 | kfree(objp: cipher_api); |
3057 | goto bad_mem; |
3058 | } |
3059 | |
3060 | /* Allocate cipher */ |
3061 | ret = crypt_alloc_tfms(cc, ciphermode: cipher_api); |
3062 | if (ret < 0) { |
3063 | ti->error = "Error allocating crypto tfm"; |
3064 | kfree(objp: cipher_api); |
3065 | return ret; |
3066 | } |
3067 | kfree(objp: cipher_api); |
3068 | |
3069 | return 0; |
3070 | bad_mem: |
3071 | ti->error = "Cannot allocate cipher strings"; |
3072 | return -ENOMEM; |
3073 | } |
3074 | |
3075 | static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key) |
3076 | { |
3077 | struct crypt_config *cc = ti->private; |
3078 | char *ivmode = NULL, *ivopts = NULL; |
3079 | int ret; |
3080 | |
3081 | cc->cipher_string = kstrdup(s: cipher_in, GFP_KERNEL); |
3082 | if (!cc->cipher_string) { |
3083 | ti->error = "Cannot allocate cipher strings"; |
3084 | return -ENOMEM; |
3085 | } |
3086 | |
3087 | if (strstarts(str: cipher_in, prefix: "capi:")) |
3088 | ret = crypt_ctr_cipher_new(ti, cipher_in, key, ivmode: &ivmode, ivopts: &ivopts); |
3089 | else |
3090 | ret = crypt_ctr_cipher_old(ti, cipher_in, key, ivmode: &ivmode, ivopts: &ivopts); |
3091 | if (ret) |
3092 | return ret; |
3093 | |
3094 | /* Initialize IV */ |
3095 | ret = crypt_ctr_ivmode(ti, ivmode); |
3096 | if (ret < 0) |
3097 | return ret; |
3098 | |
3099 | /* Initialize and set key */ |
3100 | ret = crypt_set_key(cc, key); |
3101 | if (ret < 0) { |
3102 | ti->error = "Error decoding and setting key"; |
3103 | return ret; |
3104 | } |
3105 | |
3106 | /* Allocate IV */ |
3107 | if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) { |
3108 | ret = cc->iv_gen_ops->ctr(cc, ti, ivopts); |
3109 | if (ret < 0) { |
3110 | ti->error = "Error creating IV"; |
3111 | return ret; |
3112 | } |
3113 | } |
3114 | |
3115 | /* Initialize IV (set keys for ESSIV etc) */ |
3116 | if (cc->iv_gen_ops && cc->iv_gen_ops->init) { |
3117 | ret = cc->iv_gen_ops->init(cc); |
3118 | if (ret < 0) { |
3119 | ti->error = "Error initialising IV"; |
3120 | return ret; |
3121 | } |
3122 | } |
3123 | |
3124 | /* wipe the kernel key payload copy */ |
3125 | if (cc->key_string) |
3126 | memset(cc->key, 0, cc->key_size * sizeof(u8)); |
3127 | |
3128 | return ret; |
3129 | } |
3130 | |
3131 | static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv) |
3132 | { |
3133 | struct crypt_config *cc = ti->private; |
3134 | struct dm_arg_set as; |
3135 | static const struct dm_arg _args[] = { |
3136 | {0, 9, "Invalid number of feature args"}, |
3137 | }; |
3138 | unsigned int opt_params, val; |
3139 | const char *opt_string, *sval; |
3140 | char dummy; |
3141 | int ret; |
3142 | |
3143 | /* Optional parameters */ |
3144 | as.argc = argc; |
3145 | as.argv = argv; |
3146 | |
3147 | ret = dm_read_arg_group(arg: _args, arg_set: &as, num_args: &opt_params, error: &ti->error); |
3148 | if (ret) |
3149 | return ret; |
3150 | |
3151 | while (opt_params--) { |
3152 | opt_string = dm_shift_arg(as: &as); |
3153 | if (!opt_string) { |
3154 | ti->error = "Not enough feature arguments"; |
3155 | return -EINVAL; |
3156 | } |
3157 | |
3158 | if (!strcasecmp(s1: opt_string, s2: "allow_discards")) |
3159 | ti->num_discard_bios = 1; |
3160 | |
3161 | else if (!strcasecmp(s1: opt_string, s2: "same_cpu_crypt")) |
3162 | set_bit(nr: DM_CRYPT_SAME_CPU, addr: &cc->flags); |
3163 | else if (!strcasecmp(s1: opt_string, s2: "high_priority")) |
3164 | set_bit(nr: DM_CRYPT_HIGH_PRIORITY, addr: &cc->flags); |
3165 | |
3166 | else if (!strcasecmp(s1: opt_string, s2: "submit_from_crypt_cpus")) |
3167 | set_bit(nr: DM_CRYPT_NO_OFFLOAD, addr: &cc->flags); |
3168 | else if (!strcasecmp(s1: opt_string, s2: "no_read_workqueue")) |
3169 | set_bit(nr: DM_CRYPT_NO_READ_WORKQUEUE, addr: &cc->flags); |
3170 | else if (!strcasecmp(s1: opt_string, s2: "no_write_workqueue")) |
3171 | set_bit(nr: DM_CRYPT_NO_WRITE_WORKQUEUE, addr: &cc->flags); |
3172 | else if (sscanf(opt_string, "integrity:%u:", &val) == 1) { |
3173 | if (val == 0 || val > MAX_TAG_SIZE) { |
3174 | ti->error = "Invalid integrity arguments"; |
3175 | return -EINVAL; |
3176 | } |
3177 | cc->used_tag_size = val; |
3178 | sval = strchr(opt_string + strlen("integrity:"), ':') + 1; |
3179 | if (!strcasecmp(s1: sval, s2: "aead")) { |
3180 | set_bit(nr: CRYPT_MODE_INTEGRITY_AEAD, addr: &cc->cipher_flags); |
3181 | } else if (strcasecmp(s1: sval, s2: "none")) { |
3182 | ti->error = "Unknown integrity profile"; |
3183 | return -EINVAL; |
3184 | } |
3185 | |
3186 | cc->cipher_auth = kstrdup(s: sval, GFP_KERNEL); |
3187 | if (!cc->cipher_auth) |
3188 | return -ENOMEM; |
3189 | } else if (sscanf(opt_string, "integrity_key_size:%u%c", &val, &dummy) == 1) { |
3190 | if (!val) { |
3191 | ti->error = "Invalid integrity_key_size argument"; |
3192 | return -EINVAL; |
3193 | } |
3194 | cc->key_mac_size = val; |
3195 | set_bit(nr: CRYPT_KEY_MAC_SIZE_SET, addr: &cc->cipher_flags); |
3196 | } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) { |
3197 | if (cc->sector_size < (1 << SECTOR_SHIFT) || |
3198 | cc->sector_size > 4096 || |
3199 | (cc->sector_size & (cc->sector_size - 1))) { |
3200 | ti->error = "Invalid feature value for sector_size"; |
3201 | return -EINVAL; |
3202 | } |
3203 | if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) { |
3204 | ti->error = "Device size is not multiple of sector_size feature"; |
3205 | return -EINVAL; |
3206 | } |
3207 | cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT; |
3208 | } else if (!strcasecmp(s1: opt_string, s2: "iv_large_sectors")) |
3209 | set_bit(nr: CRYPT_IV_LARGE_SECTORS, addr: &cc->cipher_flags); |
3210 | else { |
3211 | ti->error = "Invalid feature arguments"; |
3212 | return -EINVAL; |
3213 | } |
3214 | } |
3215 | |
3216 | return 0; |
3217 | } |
3218 | |
3219 | #ifdef CONFIG_BLK_DEV_ZONED |
3220 | static int crypt_report_zones(struct dm_target *ti, |
3221 | struct dm_report_zones_args *args, unsigned int nr_zones) |
3222 | { |
3223 | struct crypt_config *cc = ti->private; |
3224 | |
3225 | return dm_report_zones(bdev: cc->dev->bdev, start: cc->start, |
3226 | sector: cc->start + dm_target_offset(ti, args->next_sector), |
3227 | args, nr_zones); |
3228 | } |
3229 | #else |
3230 | #define crypt_report_zones NULL |
3231 | #endif |
3232 | |
3233 | /* |
3234 | * Construct an encryption mapping: |
3235 | * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start> |
3236 | */ |
3237 | static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv) |
3238 | { |
3239 | struct crypt_config *cc; |
3240 | const char *devname = dm_table_device_name(t: ti->table); |
3241 | int key_size, wq_id; |
3242 | unsigned int align_mask; |
3243 | unsigned int common_wq_flags; |
3244 | unsigned long long tmpll; |
3245 | int ret; |
3246 | size_t iv_size_padding, additional_req_size; |
3247 | char dummy; |
3248 | |
3249 | if (argc < 5) { |
3250 | ti->error = "Not enough arguments"; |
3251 | return -EINVAL; |
3252 | } |
3253 | |
3254 | key_size = get_key_size(key_string: &argv[1]); |
3255 | if (key_size < 0) { |
3256 | ti->error = "Cannot parse key size"; |
3257 | return -EINVAL; |
3258 | } |
3259 | |
3260 | cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL); |
3261 | if (!cc) { |
3262 | ti->error = "Cannot allocate encryption context"; |
3263 | return -ENOMEM; |
3264 | } |
3265 | cc->key_size = key_size; |
3266 | cc->sector_size = (1 << SECTOR_SHIFT); |
3267 | cc->sector_shift = 0; |
3268 | |
3269 | ti->private = cc; |
3270 | |
3271 | spin_lock(lock: &dm_crypt_clients_lock); |
3272 | dm_crypt_clients_n++; |
3273 | crypt_calculate_pages_per_client(); |
3274 | spin_unlock(lock: &dm_crypt_clients_lock); |
3275 | |
3276 | ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL); |
3277 | if (ret < 0) |
3278 | goto bad; |
3279 | |
3280 | /* Optional parameters need to be read before cipher constructor */ |
3281 | if (argc > 5) { |
3282 | ret = crypt_ctr_optional(ti, argc: argc - 5, argv: &argv[5]); |
3283 | if (ret) |
3284 | goto bad; |
3285 | } |
3286 | |
3287 | ret = crypt_ctr_cipher(ti, cipher_in: argv[0], key: argv[1]); |
3288 | if (ret < 0) |
3289 | goto bad; |
3290 | |
3291 | if (crypt_integrity_aead(cc)) { |
3292 | cc->dmreq_start = sizeof(struct aead_request); |
3293 | cc->dmreq_start += crypto_aead_reqsize(tfm: any_tfm_aead(cc)); |
3294 | align_mask = crypto_aead_alignmask(tfm: any_tfm_aead(cc)); |
3295 | } else { |
3296 | cc->dmreq_start = sizeof(struct skcipher_request); |
3297 | cc->dmreq_start += crypto_skcipher_reqsize(tfm: any_tfm(cc)); |
3298 | align_mask = crypto_skcipher_alignmask(tfm: any_tfm(cc)); |
3299 | } |
3300 | cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request)); |
3301 | |
3302 | if (align_mask < CRYPTO_MINALIGN) { |
3303 | /* Allocate the padding exactly */ |
3304 | iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request)) |
3305 | & align_mask; |
3306 | } else { |
3307 | /* |
3308 | * If the cipher requires greater alignment than kmalloc |
3309 | * alignment, we don't know the exact position of the |
3310 | * initialization vector. We must assume worst case. |
3311 | */ |
3312 | iv_size_padding = align_mask; |
3313 | } |
3314 | |
3315 | /* ...| IV + padding | original IV | original sec. number | bio tag offset | */ |
3316 | additional_req_size = sizeof(struct dm_crypt_request) + |
3317 | iv_size_padding + cc->iv_size + |
3318 | cc->iv_size + |
3319 | sizeof(uint64_t) + |
3320 | sizeof(unsigned int); |
3321 | |
3322 | ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size); |
3323 | if (ret) { |
3324 | ti->error = "Cannot allocate crypt request mempool"; |
3325 | goto bad; |
3326 | } |
3327 | |
3328 | cc->per_bio_data_size = ti->per_io_data_size = |
3329 | ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size, |
3330 | ARCH_DMA_MINALIGN); |
3331 | |
3332 | ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc); |
3333 | if (ret) { |
3334 | ti->error = "Cannot allocate page mempool"; |
3335 | goto bad; |
3336 | } |
3337 | |
3338 | ret = bioset_init(&cc->bs, MIN_IOS, 0, flags: BIOSET_NEED_BVECS); |
3339 | if (ret) { |
3340 | ti->error = "Cannot allocate crypt bioset"; |
3341 | goto bad; |
3342 | } |
3343 | |
3344 | mutex_init(&cc->bio_alloc_lock); |
3345 | |
3346 | ret = -EINVAL; |
3347 | if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) || |
3348 | (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) { |
3349 | ti->error = "Invalid iv_offset sector"; |
3350 | goto bad; |
3351 | } |
3352 | cc->iv_offset = tmpll; |
3353 | |
3354 | ret = dm_get_device(ti, path: argv[3], mode: dm_table_get_mode(t: ti->table), result: &cc->dev); |
3355 | if (ret) { |
3356 | ti->error = "Device lookup failed"; |
3357 | goto bad; |
3358 | } |
3359 | |
3360 | ret = -EINVAL; |
3361 | if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) { |
3362 | ti->error = "Invalid device sector"; |
3363 | goto bad; |
3364 | } |
3365 | cc->start = tmpll; |
3366 | |
3367 | if (bdev_is_zoned(bdev: cc->dev->bdev)) { |
3368 | /* |
3369 | * For zoned block devices, we need to preserve the issuer write |
3370 | * ordering. To do so, disable write workqueues and force inline |
3371 | * encryption completion. |
3372 | */ |
3373 | set_bit(nr: DM_CRYPT_NO_WRITE_WORKQUEUE, addr: &cc->flags); |
3374 | set_bit(nr: DM_CRYPT_WRITE_INLINE, addr: &cc->flags); |
3375 | |
3376 | /* |
3377 | * All zone append writes to a zone of a zoned block device will |
3378 | * have the same BIO sector, the start of the zone. When the |
3379 | * cypher IV mode uses sector values, all data targeting a |
3380 | * zone will be encrypted using the first sector numbers of the |
3381 | * zone. This will not result in write errors but will |
3382 | * cause most reads to fail as reads will use the sector values |
3383 | * for the actual data locations, resulting in IV mismatch. |
3384 | * To avoid this problem, ask DM core to emulate zone append |
3385 | * operations with regular writes. |
3386 | */ |
3387 | DMDEBUG("Zone append operations will be emulated"); |
3388 | ti->emulate_zone_append = true; |
3389 | } |
3390 | |
3391 | if (crypt_integrity_aead(cc) || cc->integrity_iv_size) { |
3392 | ret = crypt_integrity_ctr(cc, ti); |
3393 | if (ret) |
3394 | goto bad; |
3395 | |
3396 | cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->tuple_size; |
3397 | if (!cc->tag_pool_max_sectors) |
3398 | cc->tag_pool_max_sectors = 1; |
3399 | |
3400 | ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS, |
3401 | cc->tag_pool_max_sectors * cc->tuple_size); |
3402 | if (ret) { |
3403 | ti->error = "Cannot allocate integrity tags mempool"; |
3404 | goto bad; |
3405 | } |
3406 | |
3407 | cc->tag_pool_max_sectors <<= cc->sector_shift; |
3408 | } |
3409 | |
3410 | wq_id = ida_alloc_min(ida: &workqueue_ida, min: 1, GFP_KERNEL); |
3411 | if (wq_id < 0) { |
3412 | ti->error = "Couldn't get workqueue id"; |
3413 | ret = wq_id; |
3414 | goto bad; |
3415 | } |
3416 | cc->workqueue_id = wq_id; |
3417 | |
3418 | ret = -ENOMEM; |
3419 | common_wq_flags = WQ_MEM_RECLAIM | WQ_SYSFS; |
3420 | if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) |
3421 | common_wq_flags |= WQ_HIGHPRI; |
3422 | |
3423 | cc->io_queue = alloc_workqueue(fmt: "kcryptd_io-%s-%d", flags: common_wq_flags, max_active: 1, devname, wq_id); |
3424 | if (!cc->io_queue) { |
3425 | ti->error = "Couldn't create kcryptd io queue"; |
3426 | goto bad; |
3427 | } |
3428 | |
3429 | if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) { |
3430 | cc->crypt_queue = alloc_workqueue(fmt: "kcryptd-%s-%d", |
3431 | flags: common_wq_flags | WQ_CPU_INTENSIVE, |
3432 | max_active: 1, devname, wq_id); |
3433 | } else { |
3434 | /* |
3435 | * While crypt_queue is certainly CPU intensive, the use of |
3436 | * WQ_CPU_INTENSIVE is meaningless with WQ_UNBOUND. |
3437 | */ |
3438 | cc->crypt_queue = alloc_workqueue(fmt: "kcryptd-%s-%d", |
3439 | flags: common_wq_flags | WQ_UNBOUND, |
3440 | max_active: num_online_cpus(), devname, wq_id); |
3441 | } |
3442 | if (!cc->crypt_queue) { |
3443 | ti->error = "Couldn't create kcryptd queue"; |
3444 | goto bad; |
3445 | } |
3446 | |
3447 | spin_lock_init(&cc->write_thread_lock); |
3448 | cc->write_tree = RB_ROOT; |
3449 | |
3450 | cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname); |
3451 | if (IS_ERR(ptr: cc->write_thread)) { |
3452 | ret = PTR_ERR(ptr: cc->write_thread); |
3453 | cc->write_thread = NULL; |
3454 | ti->error = "Couldn't spawn write thread"; |
3455 | goto bad; |
3456 | } |
3457 | if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) |
3458 | set_user_nice(p: cc->write_thread, MIN_NICE); |
3459 | |
3460 | ti->num_flush_bios = 1; |
3461 | ti->limit_swap_bios = true; |
3462 | ti->accounts_remapped_io = true; |
3463 | |
3464 | dm_audit_log_ctr(DM_MSG_PREFIX, ti, result: 1); |
3465 | return 0; |
3466 | |
3467 | bad: |
3468 | dm_audit_log_ctr(DM_MSG_PREFIX, ti, result: 0); |
3469 | crypt_dtr(ti); |
3470 | return ret; |
3471 | } |
3472 | |
3473 | static int crypt_map(struct dm_target *ti, struct bio *bio) |
3474 | { |
3475 | struct dm_crypt_io *io; |
3476 | struct crypt_config *cc = ti->private; |
3477 | unsigned max_sectors; |
3478 | |
3479 | /* |
3480 | * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues. |
3481 | * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight |
3482 | * - for REQ_OP_DISCARD caller must use flush if IO ordering matters |
3483 | */ |
3484 | if (unlikely(bio->bi_opf & REQ_PREFLUSH || |
3485 | bio_op(bio) == REQ_OP_DISCARD)) { |
3486 | bio_set_dev(bio, bdev: cc->dev->bdev); |
3487 | if (bio_sectors(bio)) |
3488 | bio->bi_iter.bi_sector = cc->start + |
3489 | dm_target_offset(ti, bio->bi_iter.bi_sector); |
3490 | return DM_MAPIO_REMAPPED; |
3491 | } |
3492 | |
3493 | /* |
3494 | * Check if bio is too large, split as needed. |
3495 | */ |
3496 | max_sectors = get_max_request_size(cc, bio_data_dir(bio) == WRITE); |
3497 | if (unlikely(bio_sectors(bio) > max_sectors)) |
3498 | dm_accept_partial_bio(bio, n_sectors: max_sectors); |
3499 | |
3500 | /* |
3501 | * Ensure that bio is a multiple of internal sector encryption size |
3502 | * and is aligned to this size as defined in IO hints. |
3503 | */ |
3504 | if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0)) |
3505 | return DM_MAPIO_KILL; |
3506 | |
3507 | if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1))) |
3508 | return DM_MAPIO_KILL; |
3509 | |
3510 | io = dm_per_bio_data(bio, data_size: cc->per_bio_data_size); |
3511 | crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector)); |
3512 | |
3513 | if (cc->tuple_size) { |
3514 | unsigned int tag_len = cc->tuple_size * (bio_sectors(bio) >> cc->sector_shift); |
3515 | |
3516 | if (unlikely(tag_len > KMALLOC_MAX_SIZE)) |
3517 | io->integrity_metadata = NULL; |
3518 | else |
3519 | io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); |
3520 | |
3521 | if (unlikely(!io->integrity_metadata)) { |
3522 | if (bio_sectors(bio) > cc->tag_pool_max_sectors) |
3523 | dm_accept_partial_bio(bio, n_sectors: cc->tag_pool_max_sectors); |
3524 | io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO); |
3525 | io->integrity_metadata_from_pool = true; |
3526 | } |
3527 | } |
3528 | |
3529 | if (crypt_integrity_aead(cc)) |
3530 | io->ctx.r.req_aead = (struct aead_request *)(io + 1); |
3531 | else |
3532 | io->ctx.r.req = (struct skcipher_request *)(io + 1); |
3533 | |
3534 | if (bio_data_dir(io->base_bio) == READ) { |
3535 | if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP)) |
3536 | kcryptd_queue_read(io); |
3537 | } else |
3538 | kcryptd_queue_crypt(io); |
3539 | |
3540 | return DM_MAPIO_SUBMITTED; |
3541 | } |
3542 | |
3543 | static char hex2asc(unsigned char c) |
3544 | { |
3545 | return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27); |
3546 | } |
3547 | |
3548 | static void crypt_status(struct dm_target *ti, status_type_t type, |
3549 | unsigned int status_flags, char *result, unsigned int maxlen) |
3550 | { |
3551 | struct crypt_config *cc = ti->private; |
3552 | unsigned int i, sz = 0; |
3553 | int num_feature_args = 0; |
3554 | |
3555 | switch (type) { |
3556 | case STATUSTYPE_INFO: |
3557 | result[0] = '\0'; |
3558 | break; |
3559 | |
3560 | case STATUSTYPE_TABLE: |
3561 | DMEMIT("%s ", cc->cipher_string); |
3562 | |
3563 | if (cc->key_size > 0) { |
3564 | if (cc->key_string) |
3565 | DMEMIT(":%u:%s", cc->key_size, cc->key_string); |
3566 | else { |
3567 | for (i = 0; i < cc->key_size; i++) { |
3568 | DMEMIT("%c%c", hex2asc(cc->key[i] >> 4), |
3569 | hex2asc(cc->key[i] & 0xf)); |
3570 | } |
3571 | } |
3572 | } else |
3573 | DMEMIT("-"); |
3574 | |
3575 | DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset, |
3576 | cc->dev->name, (unsigned long long)cc->start); |
3577 | |
3578 | num_feature_args += !!ti->num_discard_bios; |
3579 | num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags); |
3580 | num_feature_args += test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags); |
3581 | num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); |
3582 | num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags); |
3583 | num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); |
3584 | num_feature_args += !!cc->used_tag_size; |
3585 | num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT); |
3586 | num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags); |
3587 | num_feature_args += test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags); |
3588 | if (num_feature_args) { |
3589 | DMEMIT(" %d", num_feature_args); |
3590 | if (ti->num_discard_bios) |
3591 | DMEMIT(" allow_discards"); |
3592 | if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) |
3593 | DMEMIT(" same_cpu_crypt"); |
3594 | if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) |
3595 | DMEMIT(" high_priority"); |
3596 | if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) |
3597 | DMEMIT(" submit_from_crypt_cpus"); |
3598 | if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) |
3599 | DMEMIT(" no_read_workqueue"); |
3600 | if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) |
3601 | DMEMIT(" no_write_workqueue"); |
3602 | if (cc->used_tag_size) |
3603 | DMEMIT(" integrity:%u:%s", cc->used_tag_size, cc->cipher_auth); |
3604 | if (cc->sector_size != (1 << SECTOR_SHIFT)) |
3605 | DMEMIT(" sector_size:%d", cc->sector_size); |
3606 | if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) |
3607 | DMEMIT(" iv_large_sectors"); |
3608 | if (test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags)) |
3609 | DMEMIT(" integrity_key_size:%u", cc->key_mac_size); |
3610 | } |
3611 | break; |
3612 | |
3613 | case STATUSTYPE_IMA: |
3614 | DMEMIT_TARGET_NAME_VERSION(ti->type); |
3615 | DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n'); |
3616 | DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n'); |
3617 | DMEMIT(",high_priority=%c", test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags) ? 'y' : 'n'); |
3618 | DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ? |
3619 | 'y' : 'n'); |
3620 | DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ? |
3621 | 'y' : 'n'); |
3622 | DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ? |
3623 | 'y' : 'n'); |
3624 | DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ? |
3625 | 'y' : 'n'); |
3626 | |
3627 | if (cc->used_tag_size) |
3628 | DMEMIT(",integrity_tag_size=%u,cipher_auth=%s", |
3629 | cc->used_tag_size, cc->cipher_auth); |
3630 | if (cc->sector_size != (1 << SECTOR_SHIFT)) |
3631 | DMEMIT(",sector_size=%d", cc->sector_size); |
3632 | if (cc->cipher_string) |
3633 | DMEMIT(",cipher_string=%s", cc->cipher_string); |
3634 | |
3635 | DMEMIT(",key_size=%u", cc->key_size); |
3636 | DMEMIT(",key_parts=%u", cc->key_parts); |
3637 | DMEMIT(",key_extra_size=%u", cc->key_extra_size); |
3638 | DMEMIT(",key_mac_size=%u", cc->key_mac_size); |
3639 | DMEMIT(";"); |
3640 | break; |
3641 | } |
3642 | } |
3643 | |
3644 | static void crypt_postsuspend(struct dm_target *ti) |
3645 | { |
3646 | struct crypt_config *cc = ti->private; |
3647 | |
3648 | set_bit(nr: DM_CRYPT_SUSPENDED, addr: &cc->flags); |
3649 | } |
3650 | |
3651 | static int crypt_preresume(struct dm_target *ti) |
3652 | { |
3653 | struct crypt_config *cc = ti->private; |
3654 | |
3655 | if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) { |
3656 | DMERR("aborting resume - crypt key is not set."); |
3657 | return -EAGAIN; |
3658 | } |
3659 | |
3660 | return 0; |
3661 | } |
3662 | |
3663 | static void crypt_resume(struct dm_target *ti) |
3664 | { |
3665 | struct crypt_config *cc = ti->private; |
3666 | |
3667 | clear_bit(nr: DM_CRYPT_SUSPENDED, addr: &cc->flags); |
3668 | } |
3669 | |
3670 | /* Message interface |
3671 | * key set <key> |
3672 | * key wipe |
3673 | */ |
3674 | static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv, |
3675 | char *result, unsigned int maxlen) |
3676 | { |
3677 | struct crypt_config *cc = ti->private; |
3678 | int key_size, ret = -EINVAL; |
3679 | |
3680 | if (argc < 2) |
3681 | goto error; |
3682 | |
3683 | if (!strcasecmp(s1: argv[0], s2: "key")) { |
3684 | if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) { |
3685 | DMWARN("not suspended during key manipulation."); |
3686 | return -EINVAL; |
3687 | } |
3688 | if (argc == 3 && !strcasecmp(s1: argv[1], s2: "set")) { |
3689 | /* The key size may not be changed. */ |
3690 | key_size = get_key_size(key_string: &argv[2]); |
3691 | if (key_size < 0 || cc->key_size != key_size) { |
3692 | memset(argv[2], '0', strlen(argv[2])); |
3693 | return -EINVAL; |
3694 | } |
3695 | |
3696 | ret = crypt_set_key(cc, key: argv[2]); |
3697 | if (ret) |
3698 | return ret; |
3699 | if (cc->iv_gen_ops && cc->iv_gen_ops->init) |
3700 | ret = cc->iv_gen_ops->init(cc); |
3701 | /* wipe the kernel key payload copy */ |
3702 | if (cc->key_string) |
3703 | memset(cc->key, 0, cc->key_size * sizeof(u8)); |
3704 | return ret; |
3705 | } |
3706 | if (argc == 2 && !strcasecmp(s1: argv[1], s2: "wipe")) |
3707 | return crypt_wipe_key(cc); |
3708 | } |
3709 | |
3710 | error: |
3711 | DMWARN("unrecognised message received."); |
3712 | return -EINVAL; |
3713 | } |
3714 | |
3715 | static int crypt_iterate_devices(struct dm_target *ti, |
3716 | iterate_devices_callout_fn fn, void *data) |
3717 | { |
3718 | struct crypt_config *cc = ti->private; |
3719 | |
3720 | return fn(ti, cc->dev, cc->start, ti->len, data); |
3721 | } |
3722 | |
3723 | static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits) |
3724 | { |
3725 | struct crypt_config *cc = ti->private; |
3726 | |
3727 | limits->logical_block_size = |
3728 | max_t(unsigned int, limits->logical_block_size, cc->sector_size); |
3729 | limits->physical_block_size = |
3730 | max_t(unsigned int, limits->physical_block_size, cc->sector_size); |
3731 | limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size); |
3732 | limits->dma_alignment = limits->logical_block_size - 1; |
3733 | } |
3734 | |
3735 | static struct target_type crypt_target = { |
3736 | .name = "crypt", |
3737 | .version = {1, 28, 0}, |
3738 | .module = THIS_MODULE, |
3739 | .ctr = crypt_ctr, |
3740 | .dtr = crypt_dtr, |
3741 | .features = DM_TARGET_ZONED_HM, |
3742 | .report_zones = crypt_report_zones, |
3743 | .map = crypt_map, |
3744 | .status = crypt_status, |
3745 | .postsuspend = crypt_postsuspend, |
3746 | .preresume = crypt_preresume, |
3747 | .resume = crypt_resume, |
3748 | .message = crypt_message, |
3749 | .iterate_devices = crypt_iterate_devices, |
3750 | .io_hints = crypt_io_hints, |
3751 | }; |
3752 | module_dm(crypt); |
3753 | |
3754 | MODULE_AUTHOR("Jana Saout <jana@saout.de>"); |
3755 | MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption"); |
3756 | MODULE_LICENSE("GPL"); |
3757 |
Definitions
- workqueue_ida
- convert_context
- dm_crypt_io
- dm_crypt_request
- crypt_iv_operations
- iv_benbi_private
- iv_lmk_private
- iv_tcw_private
- iv_elephant_private
- flags
- cipher_flags
- crypt_config
- dm_crypt_clients_lock
- dm_crypt_clients_n
- dm_crypt_pages_per_client
- max_read_size
- max_write_size
- get_max_request_size
- any_tfm
- any_tfm_aead
- crypt_iv_plain_gen
- crypt_iv_plain64_gen
- crypt_iv_plain64be_gen
- crypt_iv_essiv_gen
- crypt_iv_benbi_ctr
- crypt_iv_benbi_dtr
- crypt_iv_benbi_gen
- crypt_iv_null_gen
- crypt_iv_lmk_dtr
- crypt_iv_lmk_ctr
- crypt_iv_lmk_init
- crypt_iv_lmk_wipe
- crypt_iv_lmk_one
- crypt_iv_lmk_gen
- crypt_iv_lmk_post
- crypt_iv_tcw_dtr
- crypt_iv_tcw_ctr
- crypt_iv_tcw_init
- crypt_iv_tcw_wipe
- crypt_iv_tcw_whitening
- crypt_iv_tcw_gen
- crypt_iv_tcw_post
- crypt_iv_random_gen
- crypt_iv_eboiv_ctr
- crypt_iv_eboiv_gen
- crypt_iv_elephant_dtr
- crypt_iv_elephant_ctr
- diffuser_disk_to_cpu
- diffuser_cpu_to_disk
- diffuser_a_decrypt
- diffuser_a_encrypt
- diffuser_b_decrypt
- diffuser_b_encrypt
- crypt_iv_elephant
- crypt_iv_elephant_gen
- crypt_iv_elephant_post
- crypt_iv_elephant_init
- crypt_iv_elephant_wipe
- crypt_iv_plain_ops
- crypt_iv_plain64_ops
- crypt_iv_plain64be_ops
- crypt_iv_essiv_ops
- crypt_iv_benbi_ops
- crypt_iv_null_ops
- crypt_iv_lmk_ops
- crypt_iv_tcw_ops
- crypt_iv_random_ops
- crypt_iv_eboiv_ops
- crypt_iv_elephant_ops
- crypt_integrity_aead
- crypt_integrity_hmac
- crypt_get_sg_data
- dm_crypt_integrity_io_alloc
- crypt_integrity_ctr
- crypt_convert_init
- dmreq_of_req
- req_of_dmreq
- iv_of_dmreq
- org_iv_of_dmreq
- org_sector_of_dmreq
- org_tag_of_dmreq
- tag_from_dmreq
- iv_tag_from_dmreq
- crypt_convert_block_aead
- crypt_convert_block_skcipher
- crypt_alloc_req_skcipher
- crypt_alloc_req_aead
- crypt_alloc_req
- crypt_free_req_skcipher
- crypt_free_req_aead
- crypt_free_req
- crypt_convert
- crypt_alloc_buffer
- crypt_free_buffer_pages
- crypt_io_init
- crypt_inc_pending
- crypt_dec_pending
- crypt_endio
- kcryptd_io_read
- kcryptd_io_read_work
- kcryptd_queue_read
- kcryptd_io_write
- dmcrypt_write
- kcryptd_crypt_write_io_submit
- kcryptd_crypt_write_inline
- kcryptd_crypt_write_continue
- kcryptd_crypt_write_convert
- kcryptd_crypt_read_done
- kcryptd_crypt_read_continue
- kcryptd_crypt_read_convert
- kcryptd_async_done
- kcryptd_crypt
- kcryptd_queue_crypt
- crypt_free_tfms_aead
- crypt_free_tfms_skcipher
- crypt_free_tfms
- crypt_alloc_tfms_skcipher
- crypt_alloc_tfms_aead
- crypt_alloc_tfms
- crypt_subkey_size
- crypt_authenckey_size
- crypt_copy_authenckey
- crypt_setkey
- contains_whitespace
- set_key_user
- set_key_encrypted
- set_key_trusted
- crypt_set_keyring_key
- get_key_size
- crypt_set_key
- crypt_wipe_key
- crypt_calculate_pages_per_client
- crypt_page_alloc
- crypt_page_free
- crypt_dtr
- crypt_ctr_ivmode
- crypt_ctr_auth_cipher
- crypt_ctr_cipher_new
- crypt_ctr_cipher_old
- crypt_ctr_cipher
- crypt_ctr_optional
- crypt_report_zones
- crypt_ctr
- crypt_map
- hex2asc
- crypt_status
- crypt_postsuspend
- crypt_preresume
- crypt_resume
- crypt_message
- crypt_iterate_devices
- crypt_io_hints
Improve your Profiling and Debugging skills
Find out more