| 1 | // SPDX-License-Identifier: GPL-2.0-only |
| 2 | /* |
| 3 | * Copyright (C) 2003 Jana Saout <jana@saout.de> |
| 4 | * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org> |
| 5 | * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved. |
| 6 | * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com> |
| 7 | * |
| 8 | * This file is released under the GPL. |
| 9 | */ |
| 10 | |
| 11 | #include <linux/completion.h> |
| 12 | #include <linux/err.h> |
| 13 | #include <linux/module.h> |
| 14 | #include <linux/init.h> |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/key.h> |
| 17 | #include <linux/bio.h> |
| 18 | #include <linux/blkdev.h> |
| 19 | #include <linux/blk-integrity.h> |
| 20 | #include <linux/crc32.h> |
| 21 | #include <linux/mempool.h> |
| 22 | #include <linux/slab.h> |
| 23 | #include <linux/crypto.h> |
| 24 | #include <linux/workqueue.h> |
| 25 | #include <linux/kthread.h> |
| 26 | #include <linux/backing-dev.h> |
| 27 | #include <linux/atomic.h> |
| 28 | #include <linux/scatterlist.h> |
| 29 | #include <linux/rbtree.h> |
| 30 | #include <linux/ctype.h> |
| 31 | #include <asm/page.h> |
| 32 | #include <linux/unaligned.h> |
| 33 | #include <crypto/hash.h> |
| 34 | #include <crypto/md5.h> |
| 35 | #include <crypto/skcipher.h> |
| 36 | #include <crypto/aead.h> |
| 37 | #include <crypto/authenc.h> |
| 38 | #include <crypto/utils.h> |
| 39 | #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */ |
| 40 | #include <linux/key-type.h> |
| 41 | #include <keys/user-type.h> |
| 42 | #include <keys/encrypted-type.h> |
| 43 | #include <keys/trusted-type.h> |
| 44 | |
| 45 | #include <linux/device-mapper.h> |
| 46 | |
| 47 | #include "dm-audit.h" |
| 48 | |
| 49 | #define DM_MSG_PREFIX "crypt" |
| 50 | |
| 51 | static DEFINE_IDA(workqueue_ida); |
| 52 | |
| 53 | /* |
| 54 | * context holding the current state of a multi-part conversion |
| 55 | */ |
| 56 | struct convert_context { |
| 57 | struct completion restart; |
| 58 | struct bio *bio_in; |
| 59 | struct bvec_iter iter_in; |
| 60 | struct bio *bio_out; |
| 61 | struct bvec_iter iter_out; |
| 62 | atomic_t cc_pending; |
| 63 | unsigned int tag_offset; |
| 64 | u64 cc_sector; |
| 65 | union { |
| 66 | struct skcipher_request *req; |
| 67 | struct aead_request *req_aead; |
| 68 | } r; |
| 69 | bool aead_recheck; |
| 70 | bool aead_failed; |
| 71 | |
| 72 | }; |
| 73 | |
| 74 | /* |
| 75 | * per bio private data |
| 76 | */ |
| 77 | struct dm_crypt_io { |
| 78 | struct crypt_config *cc; |
| 79 | struct bio *base_bio; |
| 80 | u8 *integrity_metadata; |
| 81 | bool integrity_metadata_from_pool:1; |
| 82 | |
| 83 | struct work_struct work; |
| 84 | |
| 85 | struct convert_context ctx; |
| 86 | |
| 87 | atomic_t io_pending; |
| 88 | blk_status_t error; |
| 89 | sector_t sector; |
| 90 | |
| 91 | struct bvec_iter saved_bi_iter; |
| 92 | |
| 93 | struct rb_node rb_node; |
| 94 | } CRYPTO_MINALIGN_ATTR; |
| 95 | |
| 96 | struct dm_crypt_request { |
| 97 | struct convert_context *ctx; |
| 98 | struct scatterlist sg_in[4]; |
| 99 | struct scatterlist sg_out[4]; |
| 100 | u64 iv_sector; |
| 101 | }; |
| 102 | |
| 103 | struct crypt_config; |
| 104 | |
| 105 | struct crypt_iv_operations { |
| 106 | int (*ctr)(struct crypt_config *cc, struct dm_target *ti, |
| 107 | const char *opts); |
| 108 | void (*dtr)(struct crypt_config *cc); |
| 109 | int (*init)(struct crypt_config *cc); |
| 110 | int (*wipe)(struct crypt_config *cc); |
| 111 | int (*generator)(struct crypt_config *cc, u8 *iv, |
| 112 | struct dm_crypt_request *dmreq); |
| 113 | int (*post)(struct crypt_config *cc, u8 *iv, |
| 114 | struct dm_crypt_request *dmreq); |
| 115 | }; |
| 116 | |
| 117 | struct iv_benbi_private { |
| 118 | int shift; |
| 119 | }; |
| 120 | |
| 121 | #define LMK_SEED_SIZE 64 /* hash + 0 */ |
| 122 | struct iv_lmk_private { |
| 123 | struct crypto_shash *hash_tfm; |
| 124 | u8 *seed; |
| 125 | }; |
| 126 | |
| 127 | #define TCW_WHITENING_SIZE 16 |
| 128 | struct iv_tcw_private { |
| 129 | u8 *iv_seed; |
| 130 | u8 *whitening; |
| 131 | }; |
| 132 | |
| 133 | #define ELEPHANT_MAX_KEY_SIZE 32 |
| 134 | struct iv_elephant_private { |
| 135 | struct crypto_skcipher *tfm; |
| 136 | }; |
| 137 | |
| 138 | /* |
| 139 | * Crypt: maps a linear range of a block device |
| 140 | * and encrypts / decrypts at the same time. |
| 141 | */ |
| 142 | enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID, |
| 143 | DM_CRYPT_SAME_CPU, DM_CRYPT_HIGH_PRIORITY, |
| 144 | DM_CRYPT_NO_OFFLOAD, DM_CRYPT_NO_READ_WORKQUEUE, |
| 145 | DM_CRYPT_NO_WRITE_WORKQUEUE, DM_CRYPT_WRITE_INLINE }; |
| 146 | |
| 147 | enum cipher_flags { |
| 148 | CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cipher */ |
| 149 | CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */ |
| 150 | CRYPT_ENCRYPT_PREPROCESS, /* Must preprocess data for encryption (elephant) */ |
| 151 | CRYPT_KEY_MAC_SIZE_SET, /* The integrity_key_size option was used */ |
| 152 | }; |
| 153 | |
| 154 | /* |
| 155 | * The fields in here must be read only after initialization. |
| 156 | */ |
| 157 | struct crypt_config { |
| 158 | struct dm_dev *dev; |
| 159 | sector_t start; |
| 160 | |
| 161 | struct percpu_counter n_allocated_pages; |
| 162 | |
| 163 | struct workqueue_struct *io_queue; |
| 164 | struct workqueue_struct *crypt_queue; |
| 165 | |
| 166 | spinlock_t write_thread_lock; |
| 167 | struct task_struct *write_thread; |
| 168 | struct rb_root write_tree; |
| 169 | |
| 170 | char *cipher_string; |
| 171 | char *cipher_auth; |
| 172 | char *key_string; |
| 173 | |
| 174 | const struct crypt_iv_operations *iv_gen_ops; |
| 175 | union { |
| 176 | struct iv_benbi_private benbi; |
| 177 | struct iv_lmk_private lmk; |
| 178 | struct iv_tcw_private tcw; |
| 179 | struct iv_elephant_private elephant; |
| 180 | } iv_gen_private; |
| 181 | u64 iv_offset; |
| 182 | unsigned int iv_size; |
| 183 | unsigned short sector_size; |
| 184 | unsigned char sector_shift; |
| 185 | |
| 186 | union { |
| 187 | struct crypto_skcipher **tfms; |
| 188 | struct crypto_aead **tfms_aead; |
| 189 | } cipher_tfm; |
| 190 | unsigned int tfms_count; |
| 191 | int workqueue_id; |
| 192 | unsigned long cipher_flags; |
| 193 | |
| 194 | /* |
| 195 | * Layout of each crypto request: |
| 196 | * |
| 197 | * struct skcipher_request |
| 198 | * context |
| 199 | * padding |
| 200 | * struct dm_crypt_request |
| 201 | * padding |
| 202 | * IV |
| 203 | * |
| 204 | * The padding is added so that dm_crypt_request and the IV are |
| 205 | * correctly aligned. |
| 206 | */ |
| 207 | unsigned int dmreq_start; |
| 208 | |
| 209 | unsigned int per_bio_data_size; |
| 210 | |
| 211 | unsigned long flags; |
| 212 | unsigned int key_size; |
| 213 | unsigned int key_parts; /* independent parts in key buffer */ |
| 214 | unsigned int ; /* additional keys length */ |
| 215 | unsigned int key_mac_size; /* MAC key size for authenc(...) */ |
| 216 | |
| 217 | unsigned int integrity_tag_size; |
| 218 | unsigned int integrity_iv_size; |
| 219 | unsigned int used_tag_size; |
| 220 | unsigned int tuple_size; |
| 221 | |
| 222 | /* |
| 223 | * pool for per bio private data, crypto requests, |
| 224 | * encryption requeusts/buffer pages and integrity tags |
| 225 | */ |
| 226 | unsigned int tag_pool_max_sectors; |
| 227 | mempool_t tag_pool; |
| 228 | mempool_t req_pool; |
| 229 | mempool_t page_pool; |
| 230 | |
| 231 | struct bio_set bs; |
| 232 | struct mutex bio_alloc_lock; |
| 233 | |
| 234 | u8 *authenc_key; /* space for keys in authenc() format (if used) */ |
| 235 | u8 key[] __counted_by(key_size); |
| 236 | }; |
| 237 | |
| 238 | #define MIN_IOS 64 |
| 239 | #define MAX_TAG_SIZE 480 |
| 240 | #define POOL_ENTRY_SIZE 512 |
| 241 | |
| 242 | static DEFINE_SPINLOCK(dm_crypt_clients_lock); |
| 243 | static unsigned int dm_crypt_clients_n; |
| 244 | static volatile unsigned long dm_crypt_pages_per_client; |
| 245 | #define DM_CRYPT_MEMORY_PERCENT 2 |
| 246 | #define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_VECS * 16) |
| 247 | #define DM_CRYPT_DEFAULT_MAX_READ_SIZE 131072 |
| 248 | #define DM_CRYPT_DEFAULT_MAX_WRITE_SIZE 131072 |
| 249 | |
| 250 | static unsigned int max_read_size = 0; |
| 251 | module_param(max_read_size, uint, 0644); |
| 252 | MODULE_PARM_DESC(max_read_size, "Maximum size of a read request" ); |
| 253 | static unsigned int max_write_size = 0; |
| 254 | module_param(max_write_size, uint, 0644); |
| 255 | MODULE_PARM_DESC(max_write_size, "Maximum size of a write request" ); |
| 256 | static unsigned get_max_request_size(struct crypt_config *cc, bool wrt) |
| 257 | { |
| 258 | unsigned val, sector_align; |
| 259 | val = !wrt ? READ_ONCE(max_read_size) : READ_ONCE(max_write_size); |
| 260 | if (likely(!val)) |
| 261 | val = !wrt ? DM_CRYPT_DEFAULT_MAX_READ_SIZE : DM_CRYPT_DEFAULT_MAX_WRITE_SIZE; |
| 262 | if (wrt || cc->used_tag_size) { |
| 263 | if (unlikely(val > BIO_MAX_VECS << PAGE_SHIFT)) |
| 264 | val = BIO_MAX_VECS << PAGE_SHIFT; |
| 265 | } |
| 266 | sector_align = max(bdev_logical_block_size(cc->dev->bdev), (unsigned)cc->sector_size); |
| 267 | val = round_down(val, sector_align); |
| 268 | if (unlikely(!val)) |
| 269 | val = sector_align; |
| 270 | return val >> SECTOR_SHIFT; |
| 271 | } |
| 272 | |
| 273 | static void crypt_endio(struct bio *clone); |
| 274 | static void kcryptd_queue_crypt(struct dm_crypt_io *io); |
| 275 | static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc, |
| 276 | struct scatterlist *sg); |
| 277 | |
| 278 | static bool crypt_integrity_aead(struct crypt_config *cc); |
| 279 | |
| 280 | /* |
| 281 | * Use this to access cipher attributes that are independent of the key. |
| 282 | */ |
| 283 | static struct crypto_skcipher *any_tfm(struct crypt_config *cc) |
| 284 | { |
| 285 | return cc->cipher_tfm.tfms[0]; |
| 286 | } |
| 287 | |
| 288 | static struct crypto_aead *any_tfm_aead(struct crypt_config *cc) |
| 289 | { |
| 290 | return cc->cipher_tfm.tfms_aead[0]; |
| 291 | } |
| 292 | |
| 293 | /* |
| 294 | * Different IV generation algorithms: |
| 295 | * |
| 296 | * plain: the initial vector is the 32-bit little-endian version of the sector |
| 297 | * number, padded with zeros if necessary. |
| 298 | * |
| 299 | * plain64: the initial vector is the 64-bit little-endian version of the sector |
| 300 | * number, padded with zeros if necessary. |
| 301 | * |
| 302 | * plain64be: the initial vector is the 64-bit big-endian version of the sector |
| 303 | * number, padded with zeros if necessary. |
| 304 | * |
| 305 | * essiv: "encrypted sector|salt initial vector", the sector number is |
| 306 | * encrypted with the bulk cipher using a salt as key. The salt |
| 307 | * should be derived from the bulk cipher's key via hashing. |
| 308 | * |
| 309 | * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1 |
| 310 | * (needed for LRW-32-AES and possible other narrow block modes) |
| 311 | * |
| 312 | * null: the initial vector is always zero. Provides compatibility with |
| 313 | * obsolete loop_fish2 devices. Do not use for new devices. |
| 314 | * |
| 315 | * lmk: Compatible implementation of the block chaining mode used |
| 316 | * by the Loop-AES block device encryption system |
| 317 | * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/ |
| 318 | * It operates on full 512 byte sectors and uses CBC |
| 319 | * with an IV derived from the sector number, the data and |
| 320 | * optionally extra IV seed. |
| 321 | * This means that after decryption the first block |
| 322 | * of sector must be tweaked according to decrypted data. |
| 323 | * Loop-AES can use three encryption schemes: |
| 324 | * version 1: is plain aes-cbc mode |
| 325 | * version 2: uses 64 multikey scheme with lmk IV generator |
| 326 | * version 3: the same as version 2 with additional IV seed |
| 327 | * (it uses 65 keys, last key is used as IV seed) |
| 328 | * |
| 329 | * tcw: Compatible implementation of the block chaining mode used |
| 330 | * by the TrueCrypt device encryption system (prior to version 4.1). |
| 331 | * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat |
| 332 | * It operates on full 512 byte sectors and uses CBC |
| 333 | * with an IV derived from initial key and the sector number. |
| 334 | * In addition, whitening value is applied on every sector, whitening |
| 335 | * is calculated from initial key, sector number and mixed using CRC32. |
| 336 | * Note that this encryption scheme is vulnerable to watermarking attacks |
| 337 | * and should be used for old compatible containers access only. |
| 338 | * |
| 339 | * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode) |
| 340 | * The IV is encrypted little-endian byte-offset (with the same key |
| 341 | * and cipher as the volume). |
| 342 | * |
| 343 | * elephant: The extended version of eboiv with additional Elephant diffuser |
| 344 | * used with Bitlocker CBC mode. |
| 345 | * This mode was used in older Windows systems |
| 346 | * https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf |
| 347 | */ |
| 348 | |
| 349 | static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv, |
| 350 | struct dm_crypt_request *dmreq) |
| 351 | { |
| 352 | memset(iv, 0, cc->iv_size); |
| 353 | *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff); |
| 354 | |
| 355 | return 0; |
| 356 | } |
| 357 | |
| 358 | static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv, |
| 359 | struct dm_crypt_request *dmreq) |
| 360 | { |
| 361 | memset(iv, 0, cc->iv_size); |
| 362 | *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); |
| 363 | |
| 364 | return 0; |
| 365 | } |
| 366 | |
| 367 | static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv, |
| 368 | struct dm_crypt_request *dmreq) |
| 369 | { |
| 370 | memset(iv, 0, cc->iv_size); |
| 371 | /* iv_size is at least of size u64; usually it is 16 bytes */ |
| 372 | *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector); |
| 373 | |
| 374 | return 0; |
| 375 | } |
| 376 | |
| 377 | static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv, |
| 378 | struct dm_crypt_request *dmreq) |
| 379 | { |
| 380 | /* |
| 381 | * ESSIV encryption of the IV is now handled by the crypto API, |
| 382 | * so just pass the plain sector number here. |
| 383 | */ |
| 384 | memset(iv, 0, cc->iv_size); |
| 385 | *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector); |
| 386 | |
| 387 | return 0; |
| 388 | } |
| 389 | |
| 390 | static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti, |
| 391 | const char *opts) |
| 392 | { |
| 393 | unsigned int bs; |
| 394 | int log; |
| 395 | |
| 396 | if (crypt_integrity_aead(cc)) |
| 397 | bs = crypto_aead_blocksize(tfm: any_tfm_aead(cc)); |
| 398 | else |
| 399 | bs = crypto_skcipher_blocksize(tfm: any_tfm(cc)); |
| 400 | log = ilog2(bs); |
| 401 | |
| 402 | /* |
| 403 | * We need to calculate how far we must shift the sector count |
| 404 | * to get the cipher block count, we use this shift in _gen. |
| 405 | */ |
| 406 | if (1 << log != bs) { |
| 407 | ti->error = "cypher blocksize is not a power of 2" ; |
| 408 | return -EINVAL; |
| 409 | } |
| 410 | |
| 411 | if (log > 9) { |
| 412 | ti->error = "cypher blocksize is > 512" ; |
| 413 | return -EINVAL; |
| 414 | } |
| 415 | |
| 416 | cc->iv_gen_private.benbi.shift = 9 - log; |
| 417 | |
| 418 | return 0; |
| 419 | } |
| 420 | |
| 421 | static void crypt_iv_benbi_dtr(struct crypt_config *cc) |
| 422 | { |
| 423 | } |
| 424 | |
| 425 | static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv, |
| 426 | struct dm_crypt_request *dmreq) |
| 427 | { |
| 428 | __be64 val; |
| 429 | |
| 430 | memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */ |
| 431 | |
| 432 | val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1); |
| 433 | put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64))); |
| 434 | |
| 435 | return 0; |
| 436 | } |
| 437 | |
| 438 | static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv, |
| 439 | struct dm_crypt_request *dmreq) |
| 440 | { |
| 441 | memset(iv, 0, cc->iv_size); |
| 442 | |
| 443 | return 0; |
| 444 | } |
| 445 | |
| 446 | static void crypt_iv_lmk_dtr(struct crypt_config *cc) |
| 447 | { |
| 448 | struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; |
| 449 | |
| 450 | if (lmk->hash_tfm && !IS_ERR(ptr: lmk->hash_tfm)) |
| 451 | crypto_free_shash(tfm: lmk->hash_tfm); |
| 452 | lmk->hash_tfm = NULL; |
| 453 | |
| 454 | kfree_sensitive(objp: lmk->seed); |
| 455 | lmk->seed = NULL; |
| 456 | } |
| 457 | |
| 458 | static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti, |
| 459 | const char *opts) |
| 460 | { |
| 461 | struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; |
| 462 | |
| 463 | if (cc->sector_size != (1 << SECTOR_SHIFT)) { |
| 464 | ti->error = "Unsupported sector size for LMK" ; |
| 465 | return -EINVAL; |
| 466 | } |
| 467 | |
| 468 | lmk->hash_tfm = crypto_alloc_shash(alg_name: "md5" , type: 0, |
| 469 | CRYPTO_ALG_ALLOCATES_MEMORY); |
| 470 | if (IS_ERR(ptr: lmk->hash_tfm)) { |
| 471 | ti->error = "Error initializing LMK hash" ; |
| 472 | return PTR_ERR(ptr: lmk->hash_tfm); |
| 473 | } |
| 474 | |
| 475 | /* No seed in LMK version 2 */ |
| 476 | if (cc->key_parts == cc->tfms_count) { |
| 477 | lmk->seed = NULL; |
| 478 | return 0; |
| 479 | } |
| 480 | |
| 481 | lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL); |
| 482 | if (!lmk->seed) { |
| 483 | crypt_iv_lmk_dtr(cc); |
| 484 | ti->error = "Error kmallocing seed storage in LMK" ; |
| 485 | return -ENOMEM; |
| 486 | } |
| 487 | |
| 488 | return 0; |
| 489 | } |
| 490 | |
| 491 | static int crypt_iv_lmk_init(struct crypt_config *cc) |
| 492 | { |
| 493 | struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; |
| 494 | int subkey_size = cc->key_size / cc->key_parts; |
| 495 | |
| 496 | /* LMK seed is on the position of LMK_KEYS + 1 key */ |
| 497 | if (lmk->seed) |
| 498 | memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size), |
| 499 | crypto_shash_digestsize(lmk->hash_tfm)); |
| 500 | |
| 501 | return 0; |
| 502 | } |
| 503 | |
| 504 | static int crypt_iv_lmk_wipe(struct crypt_config *cc) |
| 505 | { |
| 506 | struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; |
| 507 | |
| 508 | if (lmk->seed) |
| 509 | memset(lmk->seed, 0, LMK_SEED_SIZE); |
| 510 | |
| 511 | return 0; |
| 512 | } |
| 513 | |
| 514 | static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv, |
| 515 | struct dm_crypt_request *dmreq, |
| 516 | u8 *data) |
| 517 | { |
| 518 | struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk; |
| 519 | SHASH_DESC_ON_STACK(desc, lmk->hash_tfm); |
| 520 | struct md5_state md5state; |
| 521 | __le32 buf[4]; |
| 522 | int i, r; |
| 523 | |
| 524 | desc->tfm = lmk->hash_tfm; |
| 525 | |
| 526 | r = crypto_shash_init(desc); |
| 527 | if (r) |
| 528 | return r; |
| 529 | |
| 530 | if (lmk->seed) { |
| 531 | r = crypto_shash_update(desc, data: lmk->seed, LMK_SEED_SIZE); |
| 532 | if (r) |
| 533 | return r; |
| 534 | } |
| 535 | |
| 536 | /* Sector is always 512B, block size 16, add data of blocks 1-31 */ |
| 537 | r = crypto_shash_update(desc, data: data + 16, len: 16 * 31); |
| 538 | if (r) |
| 539 | return r; |
| 540 | |
| 541 | /* Sector is cropped to 56 bits here */ |
| 542 | buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF); |
| 543 | buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000); |
| 544 | buf[2] = cpu_to_le32(4024); |
| 545 | buf[3] = 0; |
| 546 | r = crypto_shash_update(desc, data: (u8 *)buf, len: sizeof(buf)); |
| 547 | if (r) |
| 548 | return r; |
| 549 | |
| 550 | /* No MD5 padding here */ |
| 551 | r = crypto_shash_export(desc, out: &md5state); |
| 552 | if (r) |
| 553 | return r; |
| 554 | |
| 555 | for (i = 0; i < MD5_HASH_WORDS; i++) |
| 556 | __cpu_to_le32s(&md5state.hash[i]); |
| 557 | memcpy(iv, &md5state.hash, cc->iv_size); |
| 558 | |
| 559 | return 0; |
| 560 | } |
| 561 | |
| 562 | static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv, |
| 563 | struct dm_crypt_request *dmreq) |
| 564 | { |
| 565 | struct scatterlist *sg; |
| 566 | u8 *src; |
| 567 | int r = 0; |
| 568 | |
| 569 | if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { |
| 570 | sg = crypt_get_sg_data(cc, sg: dmreq->sg_in); |
| 571 | src = kmap_local_page(page: sg_page(sg)); |
| 572 | r = crypt_iv_lmk_one(cc, iv, dmreq, data: src + sg->offset); |
| 573 | kunmap_local(src); |
| 574 | } else |
| 575 | memset(iv, 0, cc->iv_size); |
| 576 | |
| 577 | return r; |
| 578 | } |
| 579 | |
| 580 | static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv, |
| 581 | struct dm_crypt_request *dmreq) |
| 582 | { |
| 583 | struct scatterlist *sg; |
| 584 | u8 *dst; |
| 585 | int r; |
| 586 | |
| 587 | if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) |
| 588 | return 0; |
| 589 | |
| 590 | sg = crypt_get_sg_data(cc, sg: dmreq->sg_out); |
| 591 | dst = kmap_local_page(page: sg_page(sg)); |
| 592 | r = crypt_iv_lmk_one(cc, iv, dmreq, data: dst + sg->offset); |
| 593 | |
| 594 | /* Tweak the first block of plaintext sector */ |
| 595 | if (!r) |
| 596 | crypto_xor(dst: dst + sg->offset, src: iv, size: cc->iv_size); |
| 597 | |
| 598 | kunmap_local(dst); |
| 599 | return r; |
| 600 | } |
| 601 | |
| 602 | static void crypt_iv_tcw_dtr(struct crypt_config *cc) |
| 603 | { |
| 604 | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; |
| 605 | |
| 606 | kfree_sensitive(objp: tcw->iv_seed); |
| 607 | tcw->iv_seed = NULL; |
| 608 | kfree_sensitive(objp: tcw->whitening); |
| 609 | tcw->whitening = NULL; |
| 610 | } |
| 611 | |
| 612 | static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti, |
| 613 | const char *opts) |
| 614 | { |
| 615 | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; |
| 616 | |
| 617 | if (cc->sector_size != (1 << SECTOR_SHIFT)) { |
| 618 | ti->error = "Unsupported sector size for TCW" ; |
| 619 | return -EINVAL; |
| 620 | } |
| 621 | |
| 622 | if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) { |
| 623 | ti->error = "Wrong key size for TCW" ; |
| 624 | return -EINVAL; |
| 625 | } |
| 626 | |
| 627 | tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL); |
| 628 | tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL); |
| 629 | if (!tcw->iv_seed || !tcw->whitening) { |
| 630 | crypt_iv_tcw_dtr(cc); |
| 631 | ti->error = "Error allocating seed storage in TCW" ; |
| 632 | return -ENOMEM; |
| 633 | } |
| 634 | |
| 635 | return 0; |
| 636 | } |
| 637 | |
| 638 | static int crypt_iv_tcw_init(struct crypt_config *cc) |
| 639 | { |
| 640 | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; |
| 641 | int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE; |
| 642 | |
| 643 | memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size); |
| 644 | memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size], |
| 645 | TCW_WHITENING_SIZE); |
| 646 | |
| 647 | return 0; |
| 648 | } |
| 649 | |
| 650 | static int crypt_iv_tcw_wipe(struct crypt_config *cc) |
| 651 | { |
| 652 | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; |
| 653 | |
| 654 | memset(tcw->iv_seed, 0, cc->iv_size); |
| 655 | memset(tcw->whitening, 0, TCW_WHITENING_SIZE); |
| 656 | |
| 657 | return 0; |
| 658 | } |
| 659 | |
| 660 | static void crypt_iv_tcw_whitening(struct crypt_config *cc, |
| 661 | struct dm_crypt_request *dmreq, u8 *data) |
| 662 | { |
| 663 | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; |
| 664 | __le64 sector = cpu_to_le64(dmreq->iv_sector); |
| 665 | u8 buf[TCW_WHITENING_SIZE]; |
| 666 | int i; |
| 667 | |
| 668 | /* xor whitening with sector number */ |
| 669 | crypto_xor_cpy(dst: buf, src1: tcw->whitening, src2: (u8 *)§or, size: 8); |
| 670 | crypto_xor_cpy(dst: &buf[8], src1: tcw->whitening + 8, src2: (u8 *)§or, size: 8); |
| 671 | |
| 672 | /* calculate crc32 for every 32bit part and xor it */ |
| 673 | for (i = 0; i < 4; i++) |
| 674 | put_unaligned_le32(crc32(0, &buf[i * 4], 4), p: &buf[i * 4]); |
| 675 | crypto_xor(dst: &buf[0], src: &buf[12], size: 4); |
| 676 | crypto_xor(dst: &buf[4], src: &buf[8], size: 4); |
| 677 | |
| 678 | /* apply whitening (8 bytes) to whole sector */ |
| 679 | for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++) |
| 680 | crypto_xor(dst: data + i * 8, src: buf, size: 8); |
| 681 | memzero_explicit(s: buf, count: sizeof(buf)); |
| 682 | } |
| 683 | |
| 684 | static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv, |
| 685 | struct dm_crypt_request *dmreq) |
| 686 | { |
| 687 | struct scatterlist *sg; |
| 688 | struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw; |
| 689 | __le64 sector = cpu_to_le64(dmreq->iv_sector); |
| 690 | u8 *src; |
| 691 | |
| 692 | /* Remove whitening from ciphertext */ |
| 693 | if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { |
| 694 | sg = crypt_get_sg_data(cc, sg: dmreq->sg_in); |
| 695 | src = kmap_local_page(page: sg_page(sg)); |
| 696 | crypt_iv_tcw_whitening(cc, dmreq, data: src + sg->offset); |
| 697 | kunmap_local(src); |
| 698 | } |
| 699 | |
| 700 | /* Calculate IV */ |
| 701 | crypto_xor_cpy(dst: iv, src1: tcw->iv_seed, src2: (u8 *)§or, size: 8); |
| 702 | if (cc->iv_size > 8) |
| 703 | crypto_xor_cpy(dst: &iv[8], src1: tcw->iv_seed + 8, src2: (u8 *)§or, |
| 704 | size: cc->iv_size - 8); |
| 705 | |
| 706 | return 0; |
| 707 | } |
| 708 | |
| 709 | static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv, |
| 710 | struct dm_crypt_request *dmreq) |
| 711 | { |
| 712 | struct scatterlist *sg; |
| 713 | u8 *dst; |
| 714 | |
| 715 | if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) |
| 716 | return 0; |
| 717 | |
| 718 | /* Apply whitening on ciphertext */ |
| 719 | sg = crypt_get_sg_data(cc, sg: dmreq->sg_out); |
| 720 | dst = kmap_local_page(page: sg_page(sg)); |
| 721 | crypt_iv_tcw_whitening(cc, dmreq, data: dst + sg->offset); |
| 722 | kunmap_local(dst); |
| 723 | |
| 724 | return 0; |
| 725 | } |
| 726 | |
| 727 | static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv, |
| 728 | struct dm_crypt_request *dmreq) |
| 729 | { |
| 730 | /* Used only for writes, there must be an additional space to store IV */ |
| 731 | get_random_bytes(buf: iv, len: cc->iv_size); |
| 732 | return 0; |
| 733 | } |
| 734 | |
| 735 | static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti, |
| 736 | const char *opts) |
| 737 | { |
| 738 | if (crypt_integrity_aead(cc)) { |
| 739 | ti->error = "AEAD transforms not supported for EBOIV" ; |
| 740 | return -EINVAL; |
| 741 | } |
| 742 | |
| 743 | if (crypto_skcipher_blocksize(tfm: any_tfm(cc)) != cc->iv_size) { |
| 744 | ti->error = "Block size of EBOIV cipher does not match IV size of block cipher" ; |
| 745 | return -EINVAL; |
| 746 | } |
| 747 | |
| 748 | return 0; |
| 749 | } |
| 750 | |
| 751 | static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv, |
| 752 | struct dm_crypt_request *dmreq) |
| 753 | { |
| 754 | struct crypto_skcipher *tfm = any_tfm(cc); |
| 755 | struct skcipher_request *req; |
| 756 | struct scatterlist src, dst; |
| 757 | DECLARE_CRYPTO_WAIT(wait); |
| 758 | unsigned int reqsize; |
| 759 | int err; |
| 760 | u8 *buf; |
| 761 | |
| 762 | reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm); |
| 763 | reqsize = ALIGN(reqsize, __alignof__(__le64)); |
| 764 | |
| 765 | req = kmalloc(reqsize + cc->iv_size, GFP_NOIO); |
| 766 | if (!req) |
| 767 | return -ENOMEM; |
| 768 | |
| 769 | skcipher_request_set_tfm(req, tfm); |
| 770 | |
| 771 | buf = (u8 *)req + reqsize; |
| 772 | memset(buf, 0, cc->iv_size); |
| 773 | *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size); |
| 774 | |
| 775 | sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size); |
| 776 | sg_init_one(&dst, iv, cc->iv_size); |
| 777 | skcipher_request_set_crypt(req, src: &src, dst: &dst, cryptlen: cc->iv_size, iv: buf); |
| 778 | skcipher_request_set_callback(req, flags: 0, compl: crypto_req_done, data: &wait); |
| 779 | err = crypto_wait_req(err: crypto_skcipher_encrypt(req), wait: &wait); |
| 780 | kfree_sensitive(objp: req); |
| 781 | |
| 782 | return err; |
| 783 | } |
| 784 | |
| 785 | static void crypt_iv_elephant_dtr(struct crypt_config *cc) |
| 786 | { |
| 787 | struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; |
| 788 | |
| 789 | crypto_free_skcipher(tfm: elephant->tfm); |
| 790 | elephant->tfm = NULL; |
| 791 | } |
| 792 | |
| 793 | static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti, |
| 794 | const char *opts) |
| 795 | { |
| 796 | struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; |
| 797 | int r; |
| 798 | |
| 799 | elephant->tfm = crypto_alloc_skcipher(alg_name: "ecb(aes)" , type: 0, |
| 800 | CRYPTO_ALG_ALLOCATES_MEMORY); |
| 801 | if (IS_ERR(ptr: elephant->tfm)) { |
| 802 | r = PTR_ERR(ptr: elephant->tfm); |
| 803 | elephant->tfm = NULL; |
| 804 | return r; |
| 805 | } |
| 806 | |
| 807 | r = crypt_iv_eboiv_ctr(cc, ti, NULL); |
| 808 | if (r) |
| 809 | crypt_iv_elephant_dtr(cc); |
| 810 | return r; |
| 811 | } |
| 812 | |
| 813 | static void diffuser_disk_to_cpu(u32 *d, size_t n) |
| 814 | { |
| 815 | #ifndef __LITTLE_ENDIAN |
| 816 | int i; |
| 817 | |
| 818 | for (i = 0; i < n; i++) |
| 819 | d[i] = le32_to_cpu((__le32)d[i]); |
| 820 | #endif |
| 821 | } |
| 822 | |
| 823 | static void diffuser_cpu_to_disk(__le32 *d, size_t n) |
| 824 | { |
| 825 | #ifndef __LITTLE_ENDIAN |
| 826 | int i; |
| 827 | |
| 828 | for (i = 0; i < n; i++) |
| 829 | d[i] = cpu_to_le32((u32)d[i]); |
| 830 | #endif |
| 831 | } |
| 832 | |
| 833 | static void diffuser_a_decrypt(u32 *d, size_t n) |
| 834 | { |
| 835 | int i, i1, i2, i3; |
| 836 | |
| 837 | for (i = 0; i < 5; i++) { |
| 838 | i1 = 0; |
| 839 | i2 = n - 2; |
| 840 | i3 = n - 5; |
| 841 | |
| 842 | while (i1 < (n - 1)) { |
| 843 | d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23); |
| 844 | i1++; i2++; i3++; |
| 845 | |
| 846 | if (i3 >= n) |
| 847 | i3 -= n; |
| 848 | |
| 849 | d[i1] += d[i2] ^ d[i3]; |
| 850 | i1++; i2++; i3++; |
| 851 | |
| 852 | if (i2 >= n) |
| 853 | i2 -= n; |
| 854 | |
| 855 | d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19); |
| 856 | i1++; i2++; i3++; |
| 857 | |
| 858 | d[i1] += d[i2] ^ d[i3]; |
| 859 | i1++; i2++; i3++; |
| 860 | } |
| 861 | } |
| 862 | } |
| 863 | |
| 864 | static void diffuser_a_encrypt(u32 *d, size_t n) |
| 865 | { |
| 866 | int i, i1, i2, i3; |
| 867 | |
| 868 | for (i = 0; i < 5; i++) { |
| 869 | i1 = n - 1; |
| 870 | i2 = n - 2 - 1; |
| 871 | i3 = n - 5 - 1; |
| 872 | |
| 873 | while (i1 > 0) { |
| 874 | d[i1] -= d[i2] ^ d[i3]; |
| 875 | i1--; i2--; i3--; |
| 876 | |
| 877 | d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19); |
| 878 | i1--; i2--; i3--; |
| 879 | |
| 880 | if (i2 < 0) |
| 881 | i2 += n; |
| 882 | |
| 883 | d[i1] -= d[i2] ^ d[i3]; |
| 884 | i1--; i2--; i3--; |
| 885 | |
| 886 | if (i3 < 0) |
| 887 | i3 += n; |
| 888 | |
| 889 | d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23); |
| 890 | i1--; i2--; i3--; |
| 891 | } |
| 892 | } |
| 893 | } |
| 894 | |
| 895 | static void diffuser_b_decrypt(u32 *d, size_t n) |
| 896 | { |
| 897 | int i, i1, i2, i3; |
| 898 | |
| 899 | for (i = 0; i < 3; i++) { |
| 900 | i1 = 0; |
| 901 | i2 = 2; |
| 902 | i3 = 5; |
| 903 | |
| 904 | while (i1 < (n - 1)) { |
| 905 | d[i1] += d[i2] ^ d[i3]; |
| 906 | i1++; i2++; i3++; |
| 907 | |
| 908 | d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22); |
| 909 | i1++; i2++; i3++; |
| 910 | |
| 911 | if (i2 >= n) |
| 912 | i2 -= n; |
| 913 | |
| 914 | d[i1] += d[i2] ^ d[i3]; |
| 915 | i1++; i2++; i3++; |
| 916 | |
| 917 | if (i3 >= n) |
| 918 | i3 -= n; |
| 919 | |
| 920 | d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7); |
| 921 | i1++; i2++; i3++; |
| 922 | } |
| 923 | } |
| 924 | } |
| 925 | |
| 926 | static void diffuser_b_encrypt(u32 *d, size_t n) |
| 927 | { |
| 928 | int i, i1, i2, i3; |
| 929 | |
| 930 | for (i = 0; i < 3; i++) { |
| 931 | i1 = n - 1; |
| 932 | i2 = 2 - 1; |
| 933 | i3 = 5 - 1; |
| 934 | |
| 935 | while (i1 > 0) { |
| 936 | d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7); |
| 937 | i1--; i2--; i3--; |
| 938 | |
| 939 | if (i3 < 0) |
| 940 | i3 += n; |
| 941 | |
| 942 | d[i1] -= d[i2] ^ d[i3]; |
| 943 | i1--; i2--; i3--; |
| 944 | |
| 945 | if (i2 < 0) |
| 946 | i2 += n; |
| 947 | |
| 948 | d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22); |
| 949 | i1--; i2--; i3--; |
| 950 | |
| 951 | d[i1] -= d[i2] ^ d[i3]; |
| 952 | i1--; i2--; i3--; |
| 953 | } |
| 954 | } |
| 955 | } |
| 956 | |
| 957 | static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq) |
| 958 | { |
| 959 | struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; |
| 960 | u8 *es, *ks, *data, *data2, *data_offset; |
| 961 | struct skcipher_request *req; |
| 962 | struct scatterlist *sg, *sg2, src, dst; |
| 963 | DECLARE_CRYPTO_WAIT(wait); |
| 964 | int i, r; |
| 965 | |
| 966 | req = skcipher_request_alloc(elephant->tfm, GFP_NOIO); |
| 967 | es = kzalloc(16, GFP_NOIO); /* Key for AES */ |
| 968 | ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */ |
| 969 | |
| 970 | if (!req || !es || !ks) { |
| 971 | r = -ENOMEM; |
| 972 | goto out; |
| 973 | } |
| 974 | |
| 975 | *(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size); |
| 976 | |
| 977 | /* E(Ks, e(s)) */ |
| 978 | sg_init_one(&src, es, 16); |
| 979 | sg_init_one(&dst, ks, 16); |
| 980 | skcipher_request_set_crypt(req, src: &src, dst: &dst, cryptlen: 16, NULL); |
| 981 | skcipher_request_set_callback(req, flags: 0, compl: crypto_req_done, data: &wait); |
| 982 | r = crypto_wait_req(err: crypto_skcipher_encrypt(req), wait: &wait); |
| 983 | if (r) |
| 984 | goto out; |
| 985 | |
| 986 | /* E(Ks, e'(s)) */ |
| 987 | es[15] = 0x80; |
| 988 | sg_init_one(&dst, &ks[16], 16); |
| 989 | r = crypto_wait_req(err: crypto_skcipher_encrypt(req), wait: &wait); |
| 990 | if (r) |
| 991 | goto out; |
| 992 | |
| 993 | sg = crypt_get_sg_data(cc, sg: dmreq->sg_out); |
| 994 | data = kmap_local_page(page: sg_page(sg)); |
| 995 | data_offset = data + sg->offset; |
| 996 | |
| 997 | /* Cannot modify original bio, copy to sg_out and apply Elephant to it */ |
| 998 | if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { |
| 999 | sg2 = crypt_get_sg_data(cc, sg: dmreq->sg_in); |
| 1000 | data2 = kmap_local_page(page: sg_page(sg: sg2)); |
| 1001 | memcpy(data_offset, data2 + sg2->offset, cc->sector_size); |
| 1002 | kunmap_local(data2); |
| 1003 | } |
| 1004 | |
| 1005 | if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) { |
| 1006 | diffuser_disk_to_cpu(d: (u32 *)data_offset, n: cc->sector_size / sizeof(u32)); |
| 1007 | diffuser_b_decrypt(d: (u32 *)data_offset, n: cc->sector_size / sizeof(u32)); |
| 1008 | diffuser_a_decrypt(d: (u32 *)data_offset, n: cc->sector_size / sizeof(u32)); |
| 1009 | diffuser_cpu_to_disk(d: (__le32 *)data_offset, n: cc->sector_size / sizeof(u32)); |
| 1010 | } |
| 1011 | |
| 1012 | for (i = 0; i < (cc->sector_size / 32); i++) |
| 1013 | crypto_xor(dst: data_offset + i * 32, src: ks, size: 32); |
| 1014 | |
| 1015 | if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { |
| 1016 | diffuser_disk_to_cpu(d: (u32 *)data_offset, n: cc->sector_size / sizeof(u32)); |
| 1017 | diffuser_a_encrypt(d: (u32 *)data_offset, n: cc->sector_size / sizeof(u32)); |
| 1018 | diffuser_b_encrypt(d: (u32 *)data_offset, n: cc->sector_size / sizeof(u32)); |
| 1019 | diffuser_cpu_to_disk(d: (__le32 *)data_offset, n: cc->sector_size / sizeof(u32)); |
| 1020 | } |
| 1021 | |
| 1022 | kunmap_local(data); |
| 1023 | out: |
| 1024 | kfree_sensitive(objp: ks); |
| 1025 | kfree_sensitive(objp: es); |
| 1026 | skcipher_request_free(req); |
| 1027 | return r; |
| 1028 | } |
| 1029 | |
| 1030 | static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv, |
| 1031 | struct dm_crypt_request *dmreq) |
| 1032 | { |
| 1033 | int r; |
| 1034 | |
| 1035 | if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) { |
| 1036 | r = crypt_iv_elephant(cc, dmreq); |
| 1037 | if (r) |
| 1038 | return r; |
| 1039 | } |
| 1040 | |
| 1041 | return crypt_iv_eboiv_gen(cc, iv, dmreq); |
| 1042 | } |
| 1043 | |
| 1044 | static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv, |
| 1045 | struct dm_crypt_request *dmreq) |
| 1046 | { |
| 1047 | if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) |
| 1048 | return crypt_iv_elephant(cc, dmreq); |
| 1049 | |
| 1050 | return 0; |
| 1051 | } |
| 1052 | |
| 1053 | static int crypt_iv_elephant_init(struct crypt_config *cc) |
| 1054 | { |
| 1055 | struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; |
| 1056 | int key_offset = cc->key_size - cc->key_extra_size; |
| 1057 | |
| 1058 | return crypto_skcipher_setkey(tfm: elephant->tfm, key: &cc->key[key_offset], keylen: cc->key_extra_size); |
| 1059 | } |
| 1060 | |
| 1061 | static int crypt_iv_elephant_wipe(struct crypt_config *cc) |
| 1062 | { |
| 1063 | struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant; |
| 1064 | u8 key[ELEPHANT_MAX_KEY_SIZE]; |
| 1065 | |
| 1066 | memset(key, 0, cc->key_extra_size); |
| 1067 | return crypto_skcipher_setkey(tfm: elephant->tfm, key, keylen: cc->key_extra_size); |
| 1068 | } |
| 1069 | |
| 1070 | static const struct crypt_iv_operations crypt_iv_plain_ops = { |
| 1071 | .generator = crypt_iv_plain_gen |
| 1072 | }; |
| 1073 | |
| 1074 | static const struct crypt_iv_operations crypt_iv_plain64_ops = { |
| 1075 | .generator = crypt_iv_plain64_gen |
| 1076 | }; |
| 1077 | |
| 1078 | static const struct crypt_iv_operations crypt_iv_plain64be_ops = { |
| 1079 | .generator = crypt_iv_plain64be_gen |
| 1080 | }; |
| 1081 | |
| 1082 | static const struct crypt_iv_operations crypt_iv_essiv_ops = { |
| 1083 | .generator = crypt_iv_essiv_gen |
| 1084 | }; |
| 1085 | |
| 1086 | static const struct crypt_iv_operations crypt_iv_benbi_ops = { |
| 1087 | .ctr = crypt_iv_benbi_ctr, |
| 1088 | .dtr = crypt_iv_benbi_dtr, |
| 1089 | .generator = crypt_iv_benbi_gen |
| 1090 | }; |
| 1091 | |
| 1092 | static const struct crypt_iv_operations crypt_iv_null_ops = { |
| 1093 | .generator = crypt_iv_null_gen |
| 1094 | }; |
| 1095 | |
| 1096 | static const struct crypt_iv_operations crypt_iv_lmk_ops = { |
| 1097 | .ctr = crypt_iv_lmk_ctr, |
| 1098 | .dtr = crypt_iv_lmk_dtr, |
| 1099 | .init = crypt_iv_lmk_init, |
| 1100 | .wipe = crypt_iv_lmk_wipe, |
| 1101 | .generator = crypt_iv_lmk_gen, |
| 1102 | .post = crypt_iv_lmk_post |
| 1103 | }; |
| 1104 | |
| 1105 | static const struct crypt_iv_operations crypt_iv_tcw_ops = { |
| 1106 | .ctr = crypt_iv_tcw_ctr, |
| 1107 | .dtr = crypt_iv_tcw_dtr, |
| 1108 | .init = crypt_iv_tcw_init, |
| 1109 | .wipe = crypt_iv_tcw_wipe, |
| 1110 | .generator = crypt_iv_tcw_gen, |
| 1111 | .post = crypt_iv_tcw_post |
| 1112 | }; |
| 1113 | |
| 1114 | static const struct crypt_iv_operations crypt_iv_random_ops = { |
| 1115 | .generator = crypt_iv_random_gen |
| 1116 | }; |
| 1117 | |
| 1118 | static const struct crypt_iv_operations crypt_iv_eboiv_ops = { |
| 1119 | .ctr = crypt_iv_eboiv_ctr, |
| 1120 | .generator = crypt_iv_eboiv_gen |
| 1121 | }; |
| 1122 | |
| 1123 | static const struct crypt_iv_operations crypt_iv_elephant_ops = { |
| 1124 | .ctr = crypt_iv_elephant_ctr, |
| 1125 | .dtr = crypt_iv_elephant_dtr, |
| 1126 | .init = crypt_iv_elephant_init, |
| 1127 | .wipe = crypt_iv_elephant_wipe, |
| 1128 | .generator = crypt_iv_elephant_gen, |
| 1129 | .post = crypt_iv_elephant_post |
| 1130 | }; |
| 1131 | |
| 1132 | /* |
| 1133 | * Integrity extensions |
| 1134 | */ |
| 1135 | static bool crypt_integrity_aead(struct crypt_config *cc) |
| 1136 | { |
| 1137 | return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags); |
| 1138 | } |
| 1139 | |
| 1140 | static bool crypt_integrity_hmac(struct crypt_config *cc) |
| 1141 | { |
| 1142 | return crypt_integrity_aead(cc) && cc->key_mac_size; |
| 1143 | } |
| 1144 | |
| 1145 | /* Get sg containing data */ |
| 1146 | static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc, |
| 1147 | struct scatterlist *sg) |
| 1148 | { |
| 1149 | if (unlikely(crypt_integrity_aead(cc))) |
| 1150 | return &sg[2]; |
| 1151 | |
| 1152 | return sg; |
| 1153 | } |
| 1154 | |
| 1155 | static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio) |
| 1156 | { |
| 1157 | struct bio_integrity_payload *bip; |
| 1158 | unsigned int tag_len; |
| 1159 | int ret; |
| 1160 | |
| 1161 | if (!bio_sectors(bio) || !io->cc->tuple_size) |
| 1162 | return 0; |
| 1163 | |
| 1164 | bip = bio_integrity_alloc(bio, GFP_NOIO, nr: 1); |
| 1165 | if (IS_ERR(ptr: bip)) |
| 1166 | return PTR_ERR(ptr: bip); |
| 1167 | |
| 1168 | tag_len = io->cc->tuple_size * (bio_sectors(bio) >> io->cc->sector_shift); |
| 1169 | |
| 1170 | bip->bip_iter.bi_sector = bio->bi_iter.bi_sector; |
| 1171 | |
| 1172 | ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata), |
| 1173 | len: tag_len, offset_in_page(io->integrity_metadata)); |
| 1174 | if (unlikely(ret != tag_len)) |
| 1175 | return -ENOMEM; |
| 1176 | |
| 1177 | return 0; |
| 1178 | } |
| 1179 | |
| 1180 | static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti) |
| 1181 | { |
| 1182 | #ifdef CONFIG_BLK_DEV_INTEGRITY |
| 1183 | struct blk_integrity *bi = blk_get_integrity(disk: cc->dev->bdev->bd_disk); |
| 1184 | struct mapped_device *md = dm_table_get_md(t: ti->table); |
| 1185 | |
| 1186 | /* We require an underlying device with non-PI metadata */ |
| 1187 | if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) { |
| 1188 | ti->error = "Integrity profile not supported." ; |
| 1189 | return -EINVAL; |
| 1190 | } |
| 1191 | |
| 1192 | if (bi->tuple_size < cc->used_tag_size) { |
| 1193 | ti->error = "Integrity profile tag size mismatch." ; |
| 1194 | return -EINVAL; |
| 1195 | } |
| 1196 | cc->tuple_size = bi->tuple_size; |
| 1197 | if (1 << bi->interval_exp != cc->sector_size) { |
| 1198 | ti->error = "Integrity profile sector size mismatch." ; |
| 1199 | return -EINVAL; |
| 1200 | } |
| 1201 | |
| 1202 | if (crypt_integrity_aead(cc)) { |
| 1203 | cc->integrity_tag_size = cc->used_tag_size - cc->integrity_iv_size; |
| 1204 | DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u." , dm_device_name(md), |
| 1205 | cc->integrity_tag_size, cc->integrity_iv_size); |
| 1206 | |
| 1207 | if (crypto_aead_setauthsize(tfm: any_tfm_aead(cc), authsize: cc->integrity_tag_size)) { |
| 1208 | ti->error = "Integrity AEAD auth tag size is not supported." ; |
| 1209 | return -EINVAL; |
| 1210 | } |
| 1211 | } else if (cc->integrity_iv_size) |
| 1212 | DMDEBUG("%s: Additional per-sector space %u bytes for IV." , dm_device_name(md), |
| 1213 | cc->integrity_iv_size); |
| 1214 | |
| 1215 | if ((cc->integrity_tag_size + cc->integrity_iv_size) > cc->tuple_size) { |
| 1216 | ti->error = "Not enough space for integrity tag in the profile." ; |
| 1217 | return -EINVAL; |
| 1218 | } |
| 1219 | |
| 1220 | return 0; |
| 1221 | #else |
| 1222 | ti->error = "Integrity profile not supported." ; |
| 1223 | return -EINVAL; |
| 1224 | #endif |
| 1225 | } |
| 1226 | |
| 1227 | static void crypt_convert_init(struct crypt_config *cc, |
| 1228 | struct convert_context *ctx, |
| 1229 | struct bio *bio_out, struct bio *bio_in, |
| 1230 | sector_t sector) |
| 1231 | { |
| 1232 | ctx->bio_in = bio_in; |
| 1233 | ctx->bio_out = bio_out; |
| 1234 | if (bio_in) |
| 1235 | ctx->iter_in = bio_in->bi_iter; |
| 1236 | if (bio_out) |
| 1237 | ctx->iter_out = bio_out->bi_iter; |
| 1238 | ctx->cc_sector = sector + cc->iv_offset; |
| 1239 | ctx->tag_offset = 0; |
| 1240 | init_completion(x: &ctx->restart); |
| 1241 | } |
| 1242 | |
| 1243 | static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc, |
| 1244 | void *req) |
| 1245 | { |
| 1246 | return (struct dm_crypt_request *)((char *)req + cc->dmreq_start); |
| 1247 | } |
| 1248 | |
| 1249 | static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq) |
| 1250 | { |
| 1251 | return (void *)((char *)dmreq - cc->dmreq_start); |
| 1252 | } |
| 1253 | |
| 1254 | static u8 *iv_of_dmreq(struct crypt_config *cc, |
| 1255 | struct dm_crypt_request *dmreq) |
| 1256 | { |
| 1257 | if (crypt_integrity_aead(cc)) |
| 1258 | return (u8 *)ALIGN((unsigned long)(dmreq + 1), |
| 1259 | crypto_aead_alignmask(any_tfm_aead(cc)) + 1); |
| 1260 | else |
| 1261 | return (u8 *)ALIGN((unsigned long)(dmreq + 1), |
| 1262 | crypto_skcipher_alignmask(any_tfm(cc)) + 1); |
| 1263 | } |
| 1264 | |
| 1265 | static u8 *org_iv_of_dmreq(struct crypt_config *cc, |
| 1266 | struct dm_crypt_request *dmreq) |
| 1267 | { |
| 1268 | return iv_of_dmreq(cc, dmreq) + cc->iv_size; |
| 1269 | } |
| 1270 | |
| 1271 | static __le64 *org_sector_of_dmreq(struct crypt_config *cc, |
| 1272 | struct dm_crypt_request *dmreq) |
| 1273 | { |
| 1274 | u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size; |
| 1275 | |
| 1276 | return (__le64 *) ptr; |
| 1277 | } |
| 1278 | |
| 1279 | static unsigned int *org_tag_of_dmreq(struct crypt_config *cc, |
| 1280 | struct dm_crypt_request *dmreq) |
| 1281 | { |
| 1282 | u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + |
| 1283 | cc->iv_size + sizeof(uint64_t); |
| 1284 | |
| 1285 | return (unsigned int *)ptr; |
| 1286 | } |
| 1287 | |
| 1288 | static void *tag_from_dmreq(struct crypt_config *cc, |
| 1289 | struct dm_crypt_request *dmreq) |
| 1290 | { |
| 1291 | struct convert_context *ctx = dmreq->ctx; |
| 1292 | struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); |
| 1293 | |
| 1294 | return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) * |
| 1295 | cc->tuple_size]; |
| 1296 | } |
| 1297 | |
| 1298 | static void *iv_tag_from_dmreq(struct crypt_config *cc, |
| 1299 | struct dm_crypt_request *dmreq) |
| 1300 | { |
| 1301 | return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size; |
| 1302 | } |
| 1303 | |
| 1304 | static int crypt_convert_block_aead(struct crypt_config *cc, |
| 1305 | struct convert_context *ctx, |
| 1306 | struct aead_request *req, |
| 1307 | unsigned int tag_offset) |
| 1308 | { |
| 1309 | struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); |
| 1310 | struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); |
| 1311 | struct dm_crypt_request *dmreq; |
| 1312 | u8 *iv, *org_iv, *tag_iv, *tag; |
| 1313 | __le64 *sector; |
| 1314 | int r = 0; |
| 1315 | |
| 1316 | BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size); |
| 1317 | |
| 1318 | /* Reject unexpected unaligned bio. */ |
| 1319 | if (unlikely(bv_in.bv_len & (cc->sector_size - 1))) |
| 1320 | return -EIO; |
| 1321 | |
| 1322 | dmreq = dmreq_of_req(cc, req); |
| 1323 | dmreq->iv_sector = ctx->cc_sector; |
| 1324 | if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) |
| 1325 | dmreq->iv_sector >>= cc->sector_shift; |
| 1326 | dmreq->ctx = ctx; |
| 1327 | |
| 1328 | *org_tag_of_dmreq(cc, dmreq) = tag_offset; |
| 1329 | |
| 1330 | sector = org_sector_of_dmreq(cc, dmreq); |
| 1331 | *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset); |
| 1332 | |
| 1333 | iv = iv_of_dmreq(cc, dmreq); |
| 1334 | org_iv = org_iv_of_dmreq(cc, dmreq); |
| 1335 | tag = tag_from_dmreq(cc, dmreq); |
| 1336 | tag_iv = iv_tag_from_dmreq(cc, dmreq); |
| 1337 | |
| 1338 | /* AEAD request: |
| 1339 | * |----- AAD -------|------ DATA -------|-- AUTH TAG --| |
| 1340 | * | (authenticated) | (auth+encryption) | | |
| 1341 | * | sector_LE | IV | sector in/out | tag in/out | |
| 1342 | */ |
| 1343 | sg_init_table(dmreq->sg_in, 4); |
| 1344 | sg_set_buf(sg: &dmreq->sg_in[0], buf: sector, buflen: sizeof(uint64_t)); |
| 1345 | sg_set_buf(sg: &dmreq->sg_in[1], buf: org_iv, buflen: cc->iv_size); |
| 1346 | sg_set_page(sg: &dmreq->sg_in[2], page: bv_in.bv_page, len: cc->sector_size, offset: bv_in.bv_offset); |
| 1347 | sg_set_buf(sg: &dmreq->sg_in[3], buf: tag, buflen: cc->integrity_tag_size); |
| 1348 | |
| 1349 | sg_init_table(dmreq->sg_out, 4); |
| 1350 | sg_set_buf(sg: &dmreq->sg_out[0], buf: sector, buflen: sizeof(uint64_t)); |
| 1351 | sg_set_buf(sg: &dmreq->sg_out[1], buf: org_iv, buflen: cc->iv_size); |
| 1352 | sg_set_page(sg: &dmreq->sg_out[2], page: bv_out.bv_page, len: cc->sector_size, offset: bv_out.bv_offset); |
| 1353 | sg_set_buf(sg: &dmreq->sg_out[3], buf: tag, buflen: cc->integrity_tag_size); |
| 1354 | |
| 1355 | if (cc->iv_gen_ops) { |
| 1356 | /* For READs use IV stored in integrity metadata */ |
| 1357 | if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) { |
| 1358 | memcpy(org_iv, tag_iv, cc->iv_size); |
| 1359 | } else { |
| 1360 | r = cc->iv_gen_ops->generator(cc, org_iv, dmreq); |
| 1361 | if (r < 0) |
| 1362 | return r; |
| 1363 | /* Store generated IV in integrity metadata */ |
| 1364 | if (cc->integrity_iv_size) |
| 1365 | memcpy(tag_iv, org_iv, cc->iv_size); |
| 1366 | } |
| 1367 | /* Working copy of IV, to be modified in crypto API */ |
| 1368 | memcpy(iv, org_iv, cc->iv_size); |
| 1369 | } |
| 1370 | |
| 1371 | aead_request_set_ad(req, assoclen: sizeof(uint64_t) + cc->iv_size); |
| 1372 | if (bio_data_dir(ctx->bio_in) == WRITE) { |
| 1373 | aead_request_set_crypt(req, src: dmreq->sg_in, dst: dmreq->sg_out, |
| 1374 | cryptlen: cc->sector_size, iv); |
| 1375 | r = crypto_aead_encrypt(req); |
| 1376 | if (cc->integrity_tag_size + cc->integrity_iv_size != cc->tuple_size) |
| 1377 | memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0, |
| 1378 | cc->tuple_size - (cc->integrity_tag_size + cc->integrity_iv_size)); |
| 1379 | } else { |
| 1380 | aead_request_set_crypt(req, src: dmreq->sg_in, dst: dmreq->sg_out, |
| 1381 | cryptlen: cc->sector_size + cc->integrity_tag_size, iv); |
| 1382 | r = crypto_aead_decrypt(req); |
| 1383 | } |
| 1384 | |
| 1385 | if (r == -EBADMSG) { |
| 1386 | sector_t s = le64_to_cpu(*sector); |
| 1387 | |
| 1388 | ctx->aead_failed = true; |
| 1389 | if (ctx->aead_recheck) { |
| 1390 | DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu" , |
| 1391 | ctx->bio_in->bi_bdev, s); |
| 1392 | dm_audit_log_bio(DM_MSG_PREFIX, op: "integrity-aead" , |
| 1393 | bio: ctx->bio_in, sector: s, result: 0); |
| 1394 | } |
| 1395 | } |
| 1396 | |
| 1397 | if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) |
| 1398 | r = cc->iv_gen_ops->post(cc, org_iv, dmreq); |
| 1399 | |
| 1400 | bio_advance_iter(bio: ctx->bio_in, iter: &ctx->iter_in, bytes: cc->sector_size); |
| 1401 | bio_advance_iter(bio: ctx->bio_out, iter: &ctx->iter_out, bytes: cc->sector_size); |
| 1402 | |
| 1403 | return r; |
| 1404 | } |
| 1405 | |
| 1406 | static int crypt_convert_block_skcipher(struct crypt_config *cc, |
| 1407 | struct convert_context *ctx, |
| 1408 | struct skcipher_request *req, |
| 1409 | unsigned int tag_offset) |
| 1410 | { |
| 1411 | struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in); |
| 1412 | struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out); |
| 1413 | struct scatterlist *sg_in, *sg_out; |
| 1414 | struct dm_crypt_request *dmreq; |
| 1415 | u8 *iv, *org_iv, *tag_iv; |
| 1416 | __le64 *sector; |
| 1417 | int r = 0; |
| 1418 | |
| 1419 | /* Reject unexpected unaligned bio. */ |
| 1420 | if (unlikely(bv_in.bv_len & (cc->sector_size - 1))) |
| 1421 | return -EIO; |
| 1422 | |
| 1423 | dmreq = dmreq_of_req(cc, req); |
| 1424 | dmreq->iv_sector = ctx->cc_sector; |
| 1425 | if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) |
| 1426 | dmreq->iv_sector >>= cc->sector_shift; |
| 1427 | dmreq->ctx = ctx; |
| 1428 | |
| 1429 | *org_tag_of_dmreq(cc, dmreq) = tag_offset; |
| 1430 | |
| 1431 | iv = iv_of_dmreq(cc, dmreq); |
| 1432 | org_iv = org_iv_of_dmreq(cc, dmreq); |
| 1433 | tag_iv = iv_tag_from_dmreq(cc, dmreq); |
| 1434 | |
| 1435 | sector = org_sector_of_dmreq(cc, dmreq); |
| 1436 | *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset); |
| 1437 | |
| 1438 | /* For skcipher we use only the first sg item */ |
| 1439 | sg_in = &dmreq->sg_in[0]; |
| 1440 | sg_out = &dmreq->sg_out[0]; |
| 1441 | |
| 1442 | sg_init_table(sg_in, 1); |
| 1443 | sg_set_page(sg: sg_in, page: bv_in.bv_page, len: cc->sector_size, offset: bv_in.bv_offset); |
| 1444 | |
| 1445 | sg_init_table(sg_out, 1); |
| 1446 | sg_set_page(sg: sg_out, page: bv_out.bv_page, len: cc->sector_size, offset: bv_out.bv_offset); |
| 1447 | |
| 1448 | if (cc->iv_gen_ops) { |
| 1449 | /* For READs use IV stored in integrity metadata */ |
| 1450 | if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) { |
| 1451 | memcpy(org_iv, tag_iv, cc->integrity_iv_size); |
| 1452 | } else { |
| 1453 | r = cc->iv_gen_ops->generator(cc, org_iv, dmreq); |
| 1454 | if (r < 0) |
| 1455 | return r; |
| 1456 | /* Data can be already preprocessed in generator */ |
| 1457 | if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags)) |
| 1458 | sg_in = sg_out; |
| 1459 | /* Store generated IV in integrity metadata */ |
| 1460 | if (cc->integrity_iv_size) |
| 1461 | memcpy(tag_iv, org_iv, cc->integrity_iv_size); |
| 1462 | } |
| 1463 | /* Working copy of IV, to be modified in crypto API */ |
| 1464 | memcpy(iv, org_iv, cc->iv_size); |
| 1465 | } |
| 1466 | |
| 1467 | skcipher_request_set_crypt(req, src: sg_in, dst: sg_out, cryptlen: cc->sector_size, iv); |
| 1468 | |
| 1469 | if (bio_data_dir(ctx->bio_in) == WRITE) |
| 1470 | r = crypto_skcipher_encrypt(req); |
| 1471 | else |
| 1472 | r = crypto_skcipher_decrypt(req); |
| 1473 | |
| 1474 | if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post) |
| 1475 | r = cc->iv_gen_ops->post(cc, org_iv, dmreq); |
| 1476 | |
| 1477 | bio_advance_iter(bio: ctx->bio_in, iter: &ctx->iter_in, bytes: cc->sector_size); |
| 1478 | bio_advance_iter(bio: ctx->bio_out, iter: &ctx->iter_out, bytes: cc->sector_size); |
| 1479 | |
| 1480 | return r; |
| 1481 | } |
| 1482 | |
| 1483 | static void kcryptd_async_done(void *async_req, int error); |
| 1484 | |
| 1485 | static int crypt_alloc_req_skcipher(struct crypt_config *cc, |
| 1486 | struct convert_context *ctx) |
| 1487 | { |
| 1488 | unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1); |
| 1489 | |
| 1490 | if (!ctx->r.req) { |
| 1491 | ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO); |
| 1492 | if (!ctx->r.req) |
| 1493 | return -ENOMEM; |
| 1494 | } |
| 1495 | |
| 1496 | skcipher_request_set_tfm(req: ctx->r.req, tfm: cc->cipher_tfm.tfms[key_index]); |
| 1497 | |
| 1498 | /* |
| 1499 | * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs |
| 1500 | * requests if driver request queue is full. |
| 1501 | */ |
| 1502 | skcipher_request_set_callback(req: ctx->r.req, |
| 1503 | CRYPTO_TFM_REQ_MAY_BACKLOG, |
| 1504 | compl: kcryptd_async_done, data: dmreq_of_req(cc, req: ctx->r.req)); |
| 1505 | |
| 1506 | return 0; |
| 1507 | } |
| 1508 | |
| 1509 | static int crypt_alloc_req_aead(struct crypt_config *cc, |
| 1510 | struct convert_context *ctx) |
| 1511 | { |
| 1512 | if (!ctx->r.req_aead) { |
| 1513 | ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO); |
| 1514 | if (!ctx->r.req_aead) |
| 1515 | return -ENOMEM; |
| 1516 | } |
| 1517 | |
| 1518 | aead_request_set_tfm(req: ctx->r.req_aead, tfm: cc->cipher_tfm.tfms_aead[0]); |
| 1519 | |
| 1520 | /* |
| 1521 | * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs |
| 1522 | * requests if driver request queue is full. |
| 1523 | */ |
| 1524 | aead_request_set_callback(req: ctx->r.req_aead, |
| 1525 | CRYPTO_TFM_REQ_MAY_BACKLOG, |
| 1526 | compl: kcryptd_async_done, data: dmreq_of_req(cc, req: ctx->r.req_aead)); |
| 1527 | |
| 1528 | return 0; |
| 1529 | } |
| 1530 | |
| 1531 | static int crypt_alloc_req(struct crypt_config *cc, |
| 1532 | struct convert_context *ctx) |
| 1533 | { |
| 1534 | if (crypt_integrity_aead(cc)) |
| 1535 | return crypt_alloc_req_aead(cc, ctx); |
| 1536 | else |
| 1537 | return crypt_alloc_req_skcipher(cc, ctx); |
| 1538 | } |
| 1539 | |
| 1540 | static void crypt_free_req_skcipher(struct crypt_config *cc, |
| 1541 | struct skcipher_request *req, struct bio *base_bio) |
| 1542 | { |
| 1543 | struct dm_crypt_io *io = dm_per_bio_data(bio: base_bio, data_size: cc->per_bio_data_size); |
| 1544 | |
| 1545 | if ((struct skcipher_request *)(io + 1) != req) |
| 1546 | mempool_free(element: req, pool: &cc->req_pool); |
| 1547 | } |
| 1548 | |
| 1549 | static void crypt_free_req_aead(struct crypt_config *cc, |
| 1550 | struct aead_request *req, struct bio *base_bio) |
| 1551 | { |
| 1552 | struct dm_crypt_io *io = dm_per_bio_data(bio: base_bio, data_size: cc->per_bio_data_size); |
| 1553 | |
| 1554 | if ((struct aead_request *)(io + 1) != req) |
| 1555 | mempool_free(element: req, pool: &cc->req_pool); |
| 1556 | } |
| 1557 | |
| 1558 | static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio) |
| 1559 | { |
| 1560 | if (crypt_integrity_aead(cc)) |
| 1561 | crypt_free_req_aead(cc, req, base_bio); |
| 1562 | else |
| 1563 | crypt_free_req_skcipher(cc, req, base_bio); |
| 1564 | } |
| 1565 | |
| 1566 | /* |
| 1567 | * Encrypt / decrypt data from one bio to another one (can be the same one) |
| 1568 | */ |
| 1569 | static blk_status_t crypt_convert(struct crypt_config *cc, |
| 1570 | struct convert_context *ctx, bool atomic, bool reset_pending) |
| 1571 | { |
| 1572 | unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT; |
| 1573 | int r; |
| 1574 | |
| 1575 | /* |
| 1576 | * if reset_pending is set we are dealing with the bio for the first time, |
| 1577 | * else we're continuing to work on the previous bio, so don't mess with |
| 1578 | * the cc_pending counter |
| 1579 | */ |
| 1580 | if (reset_pending) |
| 1581 | atomic_set(v: &ctx->cc_pending, i: 1); |
| 1582 | |
| 1583 | while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) { |
| 1584 | |
| 1585 | r = crypt_alloc_req(cc, ctx); |
| 1586 | if (r) { |
| 1587 | complete(&ctx->restart); |
| 1588 | return BLK_STS_DEV_RESOURCE; |
| 1589 | } |
| 1590 | |
| 1591 | atomic_inc(v: &ctx->cc_pending); |
| 1592 | |
| 1593 | if (crypt_integrity_aead(cc)) |
| 1594 | r = crypt_convert_block_aead(cc, ctx, req: ctx->r.req_aead, tag_offset: ctx->tag_offset); |
| 1595 | else |
| 1596 | r = crypt_convert_block_skcipher(cc, ctx, req: ctx->r.req, tag_offset: ctx->tag_offset); |
| 1597 | |
| 1598 | switch (r) { |
| 1599 | /* |
| 1600 | * The request was queued by a crypto driver |
| 1601 | * but the driver request queue is full, let's wait. |
| 1602 | */ |
| 1603 | case -EBUSY: |
| 1604 | if (in_interrupt()) { |
| 1605 | if (try_wait_for_completion(x: &ctx->restart)) { |
| 1606 | /* |
| 1607 | * we don't have to block to wait for completion, |
| 1608 | * so proceed |
| 1609 | */ |
| 1610 | } else { |
| 1611 | /* |
| 1612 | * we can't wait for completion without blocking |
| 1613 | * exit and continue processing in a workqueue |
| 1614 | */ |
| 1615 | ctx->r.req = NULL; |
| 1616 | ctx->tag_offset++; |
| 1617 | ctx->cc_sector += sector_step; |
| 1618 | return BLK_STS_DEV_RESOURCE; |
| 1619 | } |
| 1620 | } else { |
| 1621 | wait_for_completion(&ctx->restart); |
| 1622 | } |
| 1623 | reinit_completion(x: &ctx->restart); |
| 1624 | fallthrough; |
| 1625 | /* |
| 1626 | * The request is queued and processed asynchronously, |
| 1627 | * completion function kcryptd_async_done() will be called. |
| 1628 | */ |
| 1629 | case -EINPROGRESS: |
| 1630 | ctx->r.req = NULL; |
| 1631 | ctx->tag_offset++; |
| 1632 | ctx->cc_sector += sector_step; |
| 1633 | continue; |
| 1634 | /* |
| 1635 | * The request was already processed (synchronously). |
| 1636 | */ |
| 1637 | case 0: |
| 1638 | atomic_dec(v: &ctx->cc_pending); |
| 1639 | ctx->cc_sector += sector_step; |
| 1640 | ctx->tag_offset++; |
| 1641 | if (!atomic) |
| 1642 | cond_resched(); |
| 1643 | continue; |
| 1644 | /* |
| 1645 | * There was a data integrity error. |
| 1646 | */ |
| 1647 | case -EBADMSG: |
| 1648 | atomic_dec(v: &ctx->cc_pending); |
| 1649 | return BLK_STS_PROTECTION; |
| 1650 | /* |
| 1651 | * There was an error while processing the request. |
| 1652 | */ |
| 1653 | default: |
| 1654 | atomic_dec(v: &ctx->cc_pending); |
| 1655 | return BLK_STS_IOERR; |
| 1656 | } |
| 1657 | } |
| 1658 | |
| 1659 | return 0; |
| 1660 | } |
| 1661 | |
| 1662 | static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone); |
| 1663 | |
| 1664 | /* |
| 1665 | * Generate a new unfragmented bio with the given size |
| 1666 | * This should never violate the device limitations (but if it did then block |
| 1667 | * core should split the bio as needed). |
| 1668 | * |
| 1669 | * This function may be called concurrently. If we allocate from the mempool |
| 1670 | * concurrently, there is a possibility of deadlock. For example, if we have |
| 1671 | * mempool of 256 pages, two processes, each wanting 256, pages allocate from |
| 1672 | * the mempool concurrently, it may deadlock in a situation where both processes |
| 1673 | * have allocated 128 pages and the mempool is exhausted. |
| 1674 | * |
| 1675 | * In order to avoid this scenario we allocate the pages under a mutex. |
| 1676 | * |
| 1677 | * In order to not degrade performance with excessive locking, we try |
| 1678 | * non-blocking allocations without a mutex first but on failure we fallback |
| 1679 | * to blocking allocations with a mutex. |
| 1680 | * |
| 1681 | * In order to reduce allocation overhead, we try to allocate compound pages in |
| 1682 | * the first pass. If they are not available, we fall back to the mempool. |
| 1683 | */ |
| 1684 | static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size) |
| 1685 | { |
| 1686 | struct crypt_config *cc = io->cc; |
| 1687 | struct bio *clone; |
| 1688 | unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT; |
| 1689 | gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM; |
| 1690 | unsigned int remaining_size; |
| 1691 | unsigned int order = MAX_PAGE_ORDER; |
| 1692 | |
| 1693 | retry: |
| 1694 | if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) |
| 1695 | mutex_lock(&cc->bio_alloc_lock); |
| 1696 | |
| 1697 | clone = bio_alloc_bioset(bdev: cc->dev->bdev, nr_vecs: nr_iovecs, opf: io->base_bio->bi_opf, |
| 1698 | GFP_NOIO, bs: &cc->bs); |
| 1699 | clone->bi_private = io; |
| 1700 | clone->bi_end_io = crypt_endio; |
| 1701 | clone->bi_ioprio = io->base_bio->bi_ioprio; |
| 1702 | clone->bi_iter.bi_sector = cc->start + io->sector; |
| 1703 | |
| 1704 | remaining_size = size; |
| 1705 | |
| 1706 | while (remaining_size) { |
| 1707 | struct page *pages; |
| 1708 | unsigned size_to_add; |
| 1709 | unsigned remaining_order = __fls(word: (remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT); |
| 1710 | order = min(order, remaining_order); |
| 1711 | |
| 1712 | while (order > 0) { |
| 1713 | if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) + |
| 1714 | (1 << order) > dm_crypt_pages_per_client)) |
| 1715 | goto decrease_order; |
| 1716 | pages = alloc_pages(gfp_mask |
| 1717 | | __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP, |
| 1718 | order); |
| 1719 | if (likely(pages != NULL)) { |
| 1720 | percpu_counter_add(fbc: &cc->n_allocated_pages, amount: 1 << order); |
| 1721 | goto have_pages; |
| 1722 | } |
| 1723 | decrease_order: |
| 1724 | order--; |
| 1725 | } |
| 1726 | |
| 1727 | pages = mempool_alloc(&cc->page_pool, gfp_mask); |
| 1728 | if (!pages) { |
| 1729 | crypt_free_buffer_pages(cc, clone); |
| 1730 | bio_put(clone); |
| 1731 | gfp_mask |= __GFP_DIRECT_RECLAIM; |
| 1732 | order = 0; |
| 1733 | goto retry; |
| 1734 | } |
| 1735 | |
| 1736 | have_pages: |
| 1737 | size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size); |
| 1738 | __bio_add_page(bio: clone, page: pages, len: size_to_add, off: 0); |
| 1739 | remaining_size -= size_to_add; |
| 1740 | } |
| 1741 | |
| 1742 | /* Allocate space for integrity tags */ |
| 1743 | if (dm_crypt_integrity_io_alloc(io, bio: clone)) { |
| 1744 | crypt_free_buffer_pages(cc, clone); |
| 1745 | bio_put(clone); |
| 1746 | clone = NULL; |
| 1747 | } |
| 1748 | |
| 1749 | if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM)) |
| 1750 | mutex_unlock(lock: &cc->bio_alloc_lock); |
| 1751 | |
| 1752 | return clone; |
| 1753 | } |
| 1754 | |
| 1755 | static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone) |
| 1756 | { |
| 1757 | struct folio_iter fi; |
| 1758 | |
| 1759 | if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */ |
| 1760 | bio_for_each_folio_all(fi, clone) { |
| 1761 | if (folio_test_large(folio: fi.folio)) { |
| 1762 | percpu_counter_sub(fbc: &cc->n_allocated_pages, |
| 1763 | amount: 1 << folio_order(folio: fi.folio)); |
| 1764 | folio_put(folio: fi.folio); |
| 1765 | } else { |
| 1766 | mempool_free(element: &fi.folio->page, pool: &cc->page_pool); |
| 1767 | } |
| 1768 | } |
| 1769 | } |
| 1770 | } |
| 1771 | |
| 1772 | static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc, |
| 1773 | struct bio *bio, sector_t sector) |
| 1774 | { |
| 1775 | io->cc = cc; |
| 1776 | io->base_bio = bio; |
| 1777 | io->sector = sector; |
| 1778 | io->error = 0; |
| 1779 | io->ctx.aead_recheck = false; |
| 1780 | io->ctx.aead_failed = false; |
| 1781 | io->ctx.r.req = NULL; |
| 1782 | io->integrity_metadata = NULL; |
| 1783 | io->integrity_metadata_from_pool = false; |
| 1784 | atomic_set(v: &io->io_pending, i: 0); |
| 1785 | } |
| 1786 | |
| 1787 | static void crypt_inc_pending(struct dm_crypt_io *io) |
| 1788 | { |
| 1789 | atomic_inc(v: &io->io_pending); |
| 1790 | } |
| 1791 | |
| 1792 | static void kcryptd_queue_read(struct dm_crypt_io *io); |
| 1793 | |
| 1794 | /* |
| 1795 | * One of the bios was finished. Check for completion of |
| 1796 | * the whole request and correctly clean up the buffer. |
| 1797 | */ |
| 1798 | static void crypt_dec_pending(struct dm_crypt_io *io) |
| 1799 | { |
| 1800 | struct crypt_config *cc = io->cc; |
| 1801 | struct bio *base_bio = io->base_bio; |
| 1802 | blk_status_t error = io->error; |
| 1803 | |
| 1804 | if (!atomic_dec_and_test(v: &io->io_pending)) |
| 1805 | return; |
| 1806 | |
| 1807 | if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) && |
| 1808 | cc->used_tag_size && bio_data_dir(base_bio) == READ) { |
| 1809 | io->ctx.aead_recheck = true; |
| 1810 | io->ctx.aead_failed = false; |
| 1811 | io->error = 0; |
| 1812 | kcryptd_queue_read(io); |
| 1813 | return; |
| 1814 | } |
| 1815 | |
| 1816 | if (io->ctx.r.req) |
| 1817 | crypt_free_req(cc, req: io->ctx.r.req, base_bio); |
| 1818 | |
| 1819 | if (unlikely(io->integrity_metadata_from_pool)) |
| 1820 | mempool_free(element: io->integrity_metadata, pool: &io->cc->tag_pool); |
| 1821 | else |
| 1822 | kfree(objp: io->integrity_metadata); |
| 1823 | |
| 1824 | base_bio->bi_status = error; |
| 1825 | |
| 1826 | bio_endio(base_bio); |
| 1827 | } |
| 1828 | |
| 1829 | /* |
| 1830 | * kcryptd/kcryptd_io: |
| 1831 | * |
| 1832 | * Needed because it would be very unwise to do decryption in an |
| 1833 | * interrupt context. |
| 1834 | * |
| 1835 | * kcryptd performs the actual encryption or decryption. |
| 1836 | * |
| 1837 | * kcryptd_io performs the IO submission. |
| 1838 | * |
| 1839 | * They must be separated as otherwise the final stages could be |
| 1840 | * starved by new requests which can block in the first stages due |
| 1841 | * to memory allocation. |
| 1842 | * |
| 1843 | * The work is done per CPU global for all dm-crypt instances. |
| 1844 | * They should not depend on each other and do not block. |
| 1845 | */ |
| 1846 | static void crypt_endio(struct bio *clone) |
| 1847 | { |
| 1848 | struct dm_crypt_io *io = clone->bi_private; |
| 1849 | struct crypt_config *cc = io->cc; |
| 1850 | unsigned int rw = bio_data_dir(clone); |
| 1851 | blk_status_t error = clone->bi_status; |
| 1852 | |
| 1853 | if (io->ctx.aead_recheck && !error) { |
| 1854 | kcryptd_queue_crypt(io); |
| 1855 | return; |
| 1856 | } |
| 1857 | |
| 1858 | /* |
| 1859 | * free the processed pages |
| 1860 | */ |
| 1861 | if (rw == WRITE || io->ctx.aead_recheck) |
| 1862 | crypt_free_buffer_pages(cc, clone); |
| 1863 | |
| 1864 | bio_put(clone); |
| 1865 | |
| 1866 | if (rw == READ && !error) { |
| 1867 | kcryptd_queue_crypt(io); |
| 1868 | return; |
| 1869 | } |
| 1870 | |
| 1871 | if (unlikely(error)) |
| 1872 | io->error = error; |
| 1873 | |
| 1874 | crypt_dec_pending(io); |
| 1875 | } |
| 1876 | |
| 1877 | #define CRYPT_MAP_READ_GFP GFP_NOWAIT |
| 1878 | |
| 1879 | static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp) |
| 1880 | { |
| 1881 | struct crypt_config *cc = io->cc; |
| 1882 | struct bio *clone; |
| 1883 | |
| 1884 | if (io->ctx.aead_recheck) { |
| 1885 | if (!(gfp & __GFP_DIRECT_RECLAIM)) |
| 1886 | return 1; |
| 1887 | crypt_inc_pending(io); |
| 1888 | clone = crypt_alloc_buffer(io, size: io->base_bio->bi_iter.bi_size); |
| 1889 | if (unlikely(!clone)) { |
| 1890 | crypt_dec_pending(io); |
| 1891 | return 1; |
| 1892 | } |
| 1893 | crypt_convert_init(cc, ctx: &io->ctx, bio_out: clone, bio_in: clone, sector: io->sector); |
| 1894 | io->saved_bi_iter = clone->bi_iter; |
| 1895 | dm_submit_bio_remap(clone: io->base_bio, tgt_clone: clone); |
| 1896 | return 0; |
| 1897 | } |
| 1898 | |
| 1899 | /* |
| 1900 | * We need the original biovec array in order to decrypt the whole bio |
| 1901 | * data *afterwards* -- thanks to immutable biovecs we don't need to |
| 1902 | * worry about the block layer modifying the biovec array; so leverage |
| 1903 | * bio_alloc_clone(). |
| 1904 | */ |
| 1905 | clone = bio_alloc_clone(bdev: cc->dev->bdev, bio_src: io->base_bio, gfp, bs: &cc->bs); |
| 1906 | if (!clone) |
| 1907 | return 1; |
| 1908 | |
| 1909 | clone->bi_iter.bi_sector = cc->start + io->sector; |
| 1910 | clone->bi_private = io; |
| 1911 | clone->bi_end_io = crypt_endio; |
| 1912 | |
| 1913 | crypt_inc_pending(io); |
| 1914 | |
| 1915 | if (dm_crypt_integrity_io_alloc(io, bio: clone)) { |
| 1916 | crypt_dec_pending(io); |
| 1917 | bio_put(clone); |
| 1918 | return 1; |
| 1919 | } |
| 1920 | |
| 1921 | dm_submit_bio_remap(clone: io->base_bio, tgt_clone: clone); |
| 1922 | return 0; |
| 1923 | } |
| 1924 | |
| 1925 | static void kcryptd_io_read_work(struct work_struct *work) |
| 1926 | { |
| 1927 | struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); |
| 1928 | |
| 1929 | crypt_inc_pending(io); |
| 1930 | if (kcryptd_io_read(io, GFP_NOIO)) |
| 1931 | io->error = BLK_STS_RESOURCE; |
| 1932 | crypt_dec_pending(io); |
| 1933 | } |
| 1934 | |
| 1935 | static void kcryptd_queue_read(struct dm_crypt_io *io) |
| 1936 | { |
| 1937 | struct crypt_config *cc = io->cc; |
| 1938 | |
| 1939 | INIT_WORK(&io->work, kcryptd_io_read_work); |
| 1940 | queue_work(wq: cc->io_queue, work: &io->work); |
| 1941 | } |
| 1942 | |
| 1943 | static void kcryptd_io_write(struct dm_crypt_io *io) |
| 1944 | { |
| 1945 | struct bio *clone = io->ctx.bio_out; |
| 1946 | |
| 1947 | dm_submit_bio_remap(clone: io->base_bio, tgt_clone: clone); |
| 1948 | } |
| 1949 | |
| 1950 | #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node) |
| 1951 | |
| 1952 | static int dmcrypt_write(void *data) |
| 1953 | { |
| 1954 | struct crypt_config *cc = data; |
| 1955 | struct dm_crypt_io *io; |
| 1956 | |
| 1957 | while (1) { |
| 1958 | struct rb_root write_tree; |
| 1959 | struct blk_plug plug; |
| 1960 | |
| 1961 | spin_lock_irq(lock: &cc->write_thread_lock); |
| 1962 | continue_locked: |
| 1963 | |
| 1964 | if (!RB_EMPTY_ROOT(&cc->write_tree)) |
| 1965 | goto pop_from_list; |
| 1966 | |
| 1967 | set_current_state(TASK_INTERRUPTIBLE); |
| 1968 | |
| 1969 | spin_unlock_irq(lock: &cc->write_thread_lock); |
| 1970 | |
| 1971 | if (unlikely(kthread_should_stop())) { |
| 1972 | set_current_state(TASK_RUNNING); |
| 1973 | break; |
| 1974 | } |
| 1975 | |
| 1976 | schedule(); |
| 1977 | |
| 1978 | spin_lock_irq(lock: &cc->write_thread_lock); |
| 1979 | goto continue_locked; |
| 1980 | |
| 1981 | pop_from_list: |
| 1982 | write_tree = cc->write_tree; |
| 1983 | cc->write_tree = RB_ROOT; |
| 1984 | spin_unlock_irq(lock: &cc->write_thread_lock); |
| 1985 | |
| 1986 | BUG_ON(rb_parent(write_tree.rb_node)); |
| 1987 | |
| 1988 | /* |
| 1989 | * Note: we cannot walk the tree here with rb_next because |
| 1990 | * the structures may be freed when kcryptd_io_write is called. |
| 1991 | */ |
| 1992 | blk_start_plug(&plug); |
| 1993 | do { |
| 1994 | io = crypt_io_from_node(rb_first(&write_tree)); |
| 1995 | rb_erase(&io->rb_node, &write_tree); |
| 1996 | kcryptd_io_write(io); |
| 1997 | cond_resched(); |
| 1998 | } while (!RB_EMPTY_ROOT(&write_tree)); |
| 1999 | blk_finish_plug(&plug); |
| 2000 | } |
| 2001 | return 0; |
| 2002 | } |
| 2003 | |
| 2004 | static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async) |
| 2005 | { |
| 2006 | struct bio *clone = io->ctx.bio_out; |
| 2007 | struct crypt_config *cc = io->cc; |
| 2008 | unsigned long flags; |
| 2009 | sector_t sector; |
| 2010 | struct rb_node **rbp, *parent; |
| 2011 | |
| 2012 | if (unlikely(io->error)) { |
| 2013 | crypt_free_buffer_pages(cc, clone); |
| 2014 | bio_put(clone); |
| 2015 | crypt_dec_pending(io); |
| 2016 | return; |
| 2017 | } |
| 2018 | |
| 2019 | /* crypt_convert should have filled the clone bio */ |
| 2020 | BUG_ON(io->ctx.iter_out.bi_size); |
| 2021 | |
| 2022 | if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) || |
| 2023 | test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) { |
| 2024 | dm_submit_bio_remap(clone: io->base_bio, tgt_clone: clone); |
| 2025 | return; |
| 2026 | } |
| 2027 | |
| 2028 | spin_lock_irqsave(&cc->write_thread_lock, flags); |
| 2029 | if (RB_EMPTY_ROOT(&cc->write_tree)) |
| 2030 | wake_up_process(tsk: cc->write_thread); |
| 2031 | rbp = &cc->write_tree.rb_node; |
| 2032 | parent = NULL; |
| 2033 | sector = io->sector; |
| 2034 | while (*rbp) { |
| 2035 | parent = *rbp; |
| 2036 | if (sector < crypt_io_from_node(parent)->sector) |
| 2037 | rbp = &(*rbp)->rb_left; |
| 2038 | else |
| 2039 | rbp = &(*rbp)->rb_right; |
| 2040 | } |
| 2041 | rb_link_node(node: &io->rb_node, parent, rb_link: rbp); |
| 2042 | rb_insert_color(&io->rb_node, &cc->write_tree); |
| 2043 | spin_unlock_irqrestore(lock: &cc->write_thread_lock, flags); |
| 2044 | } |
| 2045 | |
| 2046 | static bool kcryptd_crypt_write_inline(struct crypt_config *cc, |
| 2047 | struct convert_context *ctx) |
| 2048 | |
| 2049 | { |
| 2050 | if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags)) |
| 2051 | return false; |
| 2052 | |
| 2053 | /* |
| 2054 | * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering |
| 2055 | * constraints so they do not need to be issued inline by |
| 2056 | * kcryptd_crypt_write_convert(). |
| 2057 | */ |
| 2058 | switch (bio_op(bio: ctx->bio_in)) { |
| 2059 | case REQ_OP_WRITE: |
| 2060 | case REQ_OP_WRITE_ZEROES: |
| 2061 | return true; |
| 2062 | default: |
| 2063 | return false; |
| 2064 | } |
| 2065 | } |
| 2066 | |
| 2067 | static void kcryptd_crypt_write_continue(struct work_struct *work) |
| 2068 | { |
| 2069 | struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); |
| 2070 | struct crypt_config *cc = io->cc; |
| 2071 | struct convert_context *ctx = &io->ctx; |
| 2072 | int crypt_finished; |
| 2073 | blk_status_t r; |
| 2074 | |
| 2075 | wait_for_completion(&ctx->restart); |
| 2076 | reinit_completion(x: &ctx->restart); |
| 2077 | |
| 2078 | r = crypt_convert(cc, ctx: &io->ctx, atomic: false, reset_pending: false); |
| 2079 | if (r) |
| 2080 | io->error = r; |
| 2081 | crypt_finished = atomic_dec_and_test(v: &ctx->cc_pending); |
| 2082 | if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) { |
| 2083 | /* Wait for completion signaled by kcryptd_async_done() */ |
| 2084 | wait_for_completion(&ctx->restart); |
| 2085 | crypt_finished = 1; |
| 2086 | } |
| 2087 | |
| 2088 | /* Encryption was already finished, submit io now */ |
| 2089 | if (crypt_finished) |
| 2090 | kcryptd_crypt_write_io_submit(io, async: 0); |
| 2091 | |
| 2092 | crypt_dec_pending(io); |
| 2093 | } |
| 2094 | |
| 2095 | static void kcryptd_crypt_write_convert(struct dm_crypt_io *io) |
| 2096 | { |
| 2097 | struct crypt_config *cc = io->cc; |
| 2098 | struct convert_context *ctx = &io->ctx; |
| 2099 | struct bio *clone; |
| 2100 | int crypt_finished; |
| 2101 | blk_status_t r; |
| 2102 | |
| 2103 | /* |
| 2104 | * Prevent io from disappearing until this function completes. |
| 2105 | */ |
| 2106 | crypt_inc_pending(io); |
| 2107 | crypt_convert_init(cc, ctx, NULL, bio_in: io->base_bio, sector: io->sector); |
| 2108 | |
| 2109 | clone = crypt_alloc_buffer(io, size: io->base_bio->bi_iter.bi_size); |
| 2110 | if (unlikely(!clone)) { |
| 2111 | io->error = BLK_STS_IOERR; |
| 2112 | goto dec; |
| 2113 | } |
| 2114 | |
| 2115 | io->ctx.bio_out = clone; |
| 2116 | io->ctx.iter_out = clone->bi_iter; |
| 2117 | |
| 2118 | if (crypt_integrity_aead(cc)) { |
| 2119 | bio_copy_data(dst: clone, src: io->base_bio); |
| 2120 | io->ctx.bio_in = clone; |
| 2121 | io->ctx.iter_in = clone->bi_iter; |
| 2122 | } |
| 2123 | |
| 2124 | crypt_inc_pending(io); |
| 2125 | r = crypt_convert(cc, ctx, |
| 2126 | test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), reset_pending: true); |
| 2127 | /* |
| 2128 | * Crypto API backlogged the request, because its queue was full |
| 2129 | * and we're in softirq context, so continue from a workqueue |
| 2130 | * (TODO: is it actually possible to be in softirq in the write path?) |
| 2131 | */ |
| 2132 | if (r == BLK_STS_DEV_RESOURCE) { |
| 2133 | INIT_WORK(&io->work, kcryptd_crypt_write_continue); |
| 2134 | queue_work(wq: cc->crypt_queue, work: &io->work); |
| 2135 | return; |
| 2136 | } |
| 2137 | if (r) |
| 2138 | io->error = r; |
| 2139 | crypt_finished = atomic_dec_and_test(v: &ctx->cc_pending); |
| 2140 | if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) { |
| 2141 | /* Wait for completion signaled by kcryptd_async_done() */ |
| 2142 | wait_for_completion(&ctx->restart); |
| 2143 | crypt_finished = 1; |
| 2144 | } |
| 2145 | |
| 2146 | /* Encryption was already finished, submit io now */ |
| 2147 | if (crypt_finished) |
| 2148 | kcryptd_crypt_write_io_submit(io, async: 0); |
| 2149 | |
| 2150 | dec: |
| 2151 | crypt_dec_pending(io); |
| 2152 | } |
| 2153 | |
| 2154 | static void kcryptd_crypt_read_done(struct dm_crypt_io *io) |
| 2155 | { |
| 2156 | if (io->ctx.aead_recheck) { |
| 2157 | if (!io->error) { |
| 2158 | io->ctx.bio_in->bi_iter = io->saved_bi_iter; |
| 2159 | bio_copy_data(dst: io->base_bio, src: io->ctx.bio_in); |
| 2160 | } |
| 2161 | crypt_free_buffer_pages(cc: io->cc, clone: io->ctx.bio_in); |
| 2162 | bio_put(io->ctx.bio_in); |
| 2163 | } |
| 2164 | crypt_dec_pending(io); |
| 2165 | } |
| 2166 | |
| 2167 | static void kcryptd_crypt_read_continue(struct work_struct *work) |
| 2168 | { |
| 2169 | struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); |
| 2170 | struct crypt_config *cc = io->cc; |
| 2171 | blk_status_t r; |
| 2172 | |
| 2173 | wait_for_completion(&io->ctx.restart); |
| 2174 | reinit_completion(x: &io->ctx.restart); |
| 2175 | |
| 2176 | r = crypt_convert(cc, ctx: &io->ctx, atomic: false, reset_pending: false); |
| 2177 | if (r) |
| 2178 | io->error = r; |
| 2179 | |
| 2180 | if (atomic_dec_and_test(v: &io->ctx.cc_pending)) |
| 2181 | kcryptd_crypt_read_done(io); |
| 2182 | |
| 2183 | crypt_dec_pending(io); |
| 2184 | } |
| 2185 | |
| 2186 | static void kcryptd_crypt_read_convert(struct dm_crypt_io *io) |
| 2187 | { |
| 2188 | struct crypt_config *cc = io->cc; |
| 2189 | blk_status_t r; |
| 2190 | |
| 2191 | crypt_inc_pending(io); |
| 2192 | |
| 2193 | if (io->ctx.aead_recheck) { |
| 2194 | r = crypt_convert(cc, ctx: &io->ctx, |
| 2195 | test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), reset_pending: true); |
| 2196 | } else { |
| 2197 | crypt_convert_init(cc, ctx: &io->ctx, bio_out: io->base_bio, bio_in: io->base_bio, |
| 2198 | sector: io->sector); |
| 2199 | |
| 2200 | r = crypt_convert(cc, ctx: &io->ctx, |
| 2201 | test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), reset_pending: true); |
| 2202 | } |
| 2203 | /* |
| 2204 | * Crypto API backlogged the request, because its queue was full |
| 2205 | * and we're in softirq context, so continue from a workqueue |
| 2206 | */ |
| 2207 | if (r == BLK_STS_DEV_RESOURCE) { |
| 2208 | INIT_WORK(&io->work, kcryptd_crypt_read_continue); |
| 2209 | queue_work(wq: cc->crypt_queue, work: &io->work); |
| 2210 | return; |
| 2211 | } |
| 2212 | if (r) |
| 2213 | io->error = r; |
| 2214 | |
| 2215 | if (atomic_dec_and_test(v: &io->ctx.cc_pending)) |
| 2216 | kcryptd_crypt_read_done(io); |
| 2217 | |
| 2218 | crypt_dec_pending(io); |
| 2219 | } |
| 2220 | |
| 2221 | static void kcryptd_async_done(void *data, int error) |
| 2222 | { |
| 2223 | struct dm_crypt_request *dmreq = data; |
| 2224 | struct convert_context *ctx = dmreq->ctx; |
| 2225 | struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx); |
| 2226 | struct crypt_config *cc = io->cc; |
| 2227 | |
| 2228 | /* |
| 2229 | * A request from crypto driver backlog is going to be processed now, |
| 2230 | * finish the completion and continue in crypt_convert(). |
| 2231 | * (Callback will be called for the second time for this request.) |
| 2232 | */ |
| 2233 | if (error == -EINPROGRESS) { |
| 2234 | complete(&ctx->restart); |
| 2235 | return; |
| 2236 | } |
| 2237 | |
| 2238 | if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post) |
| 2239 | error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq); |
| 2240 | |
| 2241 | if (error == -EBADMSG) { |
| 2242 | sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)); |
| 2243 | |
| 2244 | ctx->aead_failed = true; |
| 2245 | if (ctx->aead_recheck) { |
| 2246 | DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu" , |
| 2247 | ctx->bio_in->bi_bdev, s); |
| 2248 | dm_audit_log_bio(DM_MSG_PREFIX, op: "integrity-aead" , |
| 2249 | bio: ctx->bio_in, sector: s, result: 0); |
| 2250 | } |
| 2251 | io->error = BLK_STS_PROTECTION; |
| 2252 | } else if (error < 0) |
| 2253 | io->error = BLK_STS_IOERR; |
| 2254 | |
| 2255 | crypt_free_req(cc, req: req_of_dmreq(cc, dmreq), base_bio: io->base_bio); |
| 2256 | |
| 2257 | if (!atomic_dec_and_test(v: &ctx->cc_pending)) |
| 2258 | return; |
| 2259 | |
| 2260 | /* |
| 2261 | * The request is fully completed: for inline writes, let |
| 2262 | * kcryptd_crypt_write_convert() do the IO submission. |
| 2263 | */ |
| 2264 | if (bio_data_dir(io->base_bio) == READ) { |
| 2265 | kcryptd_crypt_read_done(io); |
| 2266 | return; |
| 2267 | } |
| 2268 | |
| 2269 | if (kcryptd_crypt_write_inline(cc, ctx)) { |
| 2270 | complete(&ctx->restart); |
| 2271 | return; |
| 2272 | } |
| 2273 | |
| 2274 | kcryptd_crypt_write_io_submit(io, async: 1); |
| 2275 | } |
| 2276 | |
| 2277 | static void kcryptd_crypt(struct work_struct *work) |
| 2278 | { |
| 2279 | struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work); |
| 2280 | |
| 2281 | if (bio_data_dir(io->base_bio) == READ) |
| 2282 | kcryptd_crypt_read_convert(io); |
| 2283 | else |
| 2284 | kcryptd_crypt_write_convert(io); |
| 2285 | } |
| 2286 | |
| 2287 | static void kcryptd_queue_crypt(struct dm_crypt_io *io) |
| 2288 | { |
| 2289 | struct crypt_config *cc = io->cc; |
| 2290 | |
| 2291 | if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) || |
| 2292 | (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) { |
| 2293 | /* |
| 2294 | * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context. |
| 2295 | * irqs_disabled(): the kernel may run some IO completion from the idle thread, but |
| 2296 | * it is being executed with irqs disabled. |
| 2297 | */ |
| 2298 | if (in_hardirq() || irqs_disabled()) { |
| 2299 | INIT_WORK(&io->work, kcryptd_crypt); |
| 2300 | queue_work(wq: system_bh_wq, work: &io->work); |
| 2301 | return; |
| 2302 | } else { |
| 2303 | kcryptd_crypt(work: &io->work); |
| 2304 | return; |
| 2305 | } |
| 2306 | } |
| 2307 | |
| 2308 | INIT_WORK(&io->work, kcryptd_crypt); |
| 2309 | queue_work(wq: cc->crypt_queue, work: &io->work); |
| 2310 | } |
| 2311 | |
| 2312 | static void crypt_free_tfms_aead(struct crypt_config *cc) |
| 2313 | { |
| 2314 | if (!cc->cipher_tfm.tfms_aead) |
| 2315 | return; |
| 2316 | |
| 2317 | if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(ptr: cc->cipher_tfm.tfms_aead[0])) { |
| 2318 | crypto_free_aead(tfm: cc->cipher_tfm.tfms_aead[0]); |
| 2319 | cc->cipher_tfm.tfms_aead[0] = NULL; |
| 2320 | } |
| 2321 | |
| 2322 | kfree(objp: cc->cipher_tfm.tfms_aead); |
| 2323 | cc->cipher_tfm.tfms_aead = NULL; |
| 2324 | } |
| 2325 | |
| 2326 | static void crypt_free_tfms_skcipher(struct crypt_config *cc) |
| 2327 | { |
| 2328 | unsigned int i; |
| 2329 | |
| 2330 | if (!cc->cipher_tfm.tfms) |
| 2331 | return; |
| 2332 | |
| 2333 | for (i = 0; i < cc->tfms_count; i++) |
| 2334 | if (cc->cipher_tfm.tfms[i] && !IS_ERR(ptr: cc->cipher_tfm.tfms[i])) { |
| 2335 | crypto_free_skcipher(tfm: cc->cipher_tfm.tfms[i]); |
| 2336 | cc->cipher_tfm.tfms[i] = NULL; |
| 2337 | } |
| 2338 | |
| 2339 | kfree(objp: cc->cipher_tfm.tfms); |
| 2340 | cc->cipher_tfm.tfms = NULL; |
| 2341 | } |
| 2342 | |
| 2343 | static void crypt_free_tfms(struct crypt_config *cc) |
| 2344 | { |
| 2345 | if (crypt_integrity_aead(cc)) |
| 2346 | crypt_free_tfms_aead(cc); |
| 2347 | else |
| 2348 | crypt_free_tfms_skcipher(cc); |
| 2349 | } |
| 2350 | |
| 2351 | static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode) |
| 2352 | { |
| 2353 | unsigned int i; |
| 2354 | int err; |
| 2355 | |
| 2356 | cc->cipher_tfm.tfms = kcalloc(cc->tfms_count, |
| 2357 | sizeof(struct crypto_skcipher *), |
| 2358 | GFP_KERNEL); |
| 2359 | if (!cc->cipher_tfm.tfms) |
| 2360 | return -ENOMEM; |
| 2361 | |
| 2362 | for (i = 0; i < cc->tfms_count; i++) { |
| 2363 | cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(alg_name: ciphermode, type: 0, |
| 2364 | CRYPTO_ALG_ALLOCATES_MEMORY); |
| 2365 | if (IS_ERR(ptr: cc->cipher_tfm.tfms[i])) { |
| 2366 | err = PTR_ERR(ptr: cc->cipher_tfm.tfms[i]); |
| 2367 | crypt_free_tfms(cc); |
| 2368 | return err; |
| 2369 | } |
| 2370 | } |
| 2371 | |
| 2372 | /* |
| 2373 | * dm-crypt performance can vary greatly depending on which crypto |
| 2374 | * algorithm implementation is used. Help people debug performance |
| 2375 | * problems by logging the ->cra_driver_name. |
| 2376 | */ |
| 2377 | DMDEBUG_LIMIT("%s using implementation \"%s\"" , ciphermode, |
| 2378 | crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name); |
| 2379 | return 0; |
| 2380 | } |
| 2381 | |
| 2382 | static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode) |
| 2383 | { |
| 2384 | int err; |
| 2385 | |
| 2386 | cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL); |
| 2387 | if (!cc->cipher_tfm.tfms) |
| 2388 | return -ENOMEM; |
| 2389 | |
| 2390 | cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(alg_name: ciphermode, type: 0, |
| 2391 | CRYPTO_ALG_ALLOCATES_MEMORY); |
| 2392 | if (IS_ERR(ptr: cc->cipher_tfm.tfms_aead[0])) { |
| 2393 | err = PTR_ERR(ptr: cc->cipher_tfm.tfms_aead[0]); |
| 2394 | crypt_free_tfms(cc); |
| 2395 | return err; |
| 2396 | } |
| 2397 | |
| 2398 | DMDEBUG_LIMIT("%s using implementation \"%s\"" , ciphermode, |
| 2399 | crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name); |
| 2400 | return 0; |
| 2401 | } |
| 2402 | |
| 2403 | static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode) |
| 2404 | { |
| 2405 | if (crypt_integrity_aead(cc)) |
| 2406 | return crypt_alloc_tfms_aead(cc, ciphermode); |
| 2407 | else |
| 2408 | return crypt_alloc_tfms_skcipher(cc, ciphermode); |
| 2409 | } |
| 2410 | |
| 2411 | static unsigned int crypt_subkey_size(struct crypt_config *cc) |
| 2412 | { |
| 2413 | return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count); |
| 2414 | } |
| 2415 | |
| 2416 | static unsigned int crypt_authenckey_size(struct crypt_config *cc) |
| 2417 | { |
| 2418 | return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param)); |
| 2419 | } |
| 2420 | |
| 2421 | /* |
| 2422 | * If AEAD is composed like authenc(hmac(sha256),xts(aes)), |
| 2423 | * the key must be for some reason in special format. |
| 2424 | * This funcion converts cc->key to this special format. |
| 2425 | */ |
| 2426 | static void crypt_copy_authenckey(char *p, const void *key, |
| 2427 | unsigned int enckeylen, unsigned int authkeylen) |
| 2428 | { |
| 2429 | struct crypto_authenc_key_param *param; |
| 2430 | struct rtattr *rta; |
| 2431 | |
| 2432 | rta = (struct rtattr *)p; |
| 2433 | param = RTA_DATA(rta); |
| 2434 | param->enckeylen = cpu_to_be32(enckeylen); |
| 2435 | rta->rta_len = RTA_LENGTH(sizeof(*param)); |
| 2436 | rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM; |
| 2437 | p += RTA_SPACE(sizeof(*param)); |
| 2438 | memcpy(p, key + enckeylen, authkeylen); |
| 2439 | p += authkeylen; |
| 2440 | memcpy(p, key, enckeylen); |
| 2441 | } |
| 2442 | |
| 2443 | static int crypt_setkey(struct crypt_config *cc) |
| 2444 | { |
| 2445 | unsigned int subkey_size; |
| 2446 | int err = 0, i, r; |
| 2447 | |
| 2448 | /* Ignore extra keys (which are used for IV etc) */ |
| 2449 | subkey_size = crypt_subkey_size(cc); |
| 2450 | |
| 2451 | if (crypt_integrity_hmac(cc)) { |
| 2452 | if (subkey_size < cc->key_mac_size) |
| 2453 | return -EINVAL; |
| 2454 | |
| 2455 | crypt_copy_authenckey(p: cc->authenc_key, key: cc->key, |
| 2456 | enckeylen: subkey_size - cc->key_mac_size, |
| 2457 | authkeylen: cc->key_mac_size); |
| 2458 | } |
| 2459 | |
| 2460 | for (i = 0; i < cc->tfms_count; i++) { |
| 2461 | if (crypt_integrity_hmac(cc)) |
| 2462 | r = crypto_aead_setkey(tfm: cc->cipher_tfm.tfms_aead[i], |
| 2463 | key: cc->authenc_key, keylen: crypt_authenckey_size(cc)); |
| 2464 | else if (crypt_integrity_aead(cc)) |
| 2465 | r = crypto_aead_setkey(tfm: cc->cipher_tfm.tfms_aead[i], |
| 2466 | key: cc->key + (i * subkey_size), |
| 2467 | keylen: subkey_size); |
| 2468 | else |
| 2469 | r = crypto_skcipher_setkey(tfm: cc->cipher_tfm.tfms[i], |
| 2470 | key: cc->key + (i * subkey_size), |
| 2471 | keylen: subkey_size); |
| 2472 | if (r) |
| 2473 | err = r; |
| 2474 | } |
| 2475 | |
| 2476 | if (crypt_integrity_hmac(cc)) |
| 2477 | memzero_explicit(s: cc->authenc_key, count: crypt_authenckey_size(cc)); |
| 2478 | |
| 2479 | return err; |
| 2480 | } |
| 2481 | |
| 2482 | #ifdef CONFIG_KEYS |
| 2483 | |
| 2484 | static bool contains_whitespace(const char *str) |
| 2485 | { |
| 2486 | while (*str) |
| 2487 | if (isspace(*str++)) |
| 2488 | return true; |
| 2489 | return false; |
| 2490 | } |
| 2491 | |
| 2492 | static int set_key_user(struct crypt_config *cc, struct key *key) |
| 2493 | { |
| 2494 | const struct user_key_payload *ukp; |
| 2495 | |
| 2496 | ukp = user_key_payload_locked(key); |
| 2497 | if (!ukp) |
| 2498 | return -EKEYREVOKED; |
| 2499 | |
| 2500 | if (cc->key_size != ukp->datalen) |
| 2501 | return -EINVAL; |
| 2502 | |
| 2503 | memcpy(cc->key, ukp->data, cc->key_size); |
| 2504 | |
| 2505 | return 0; |
| 2506 | } |
| 2507 | |
| 2508 | static int set_key_encrypted(struct crypt_config *cc, struct key *key) |
| 2509 | { |
| 2510 | const struct encrypted_key_payload *ekp; |
| 2511 | |
| 2512 | ekp = key->payload.data[0]; |
| 2513 | if (!ekp) |
| 2514 | return -EKEYREVOKED; |
| 2515 | |
| 2516 | if (cc->key_size != ekp->decrypted_datalen) |
| 2517 | return -EINVAL; |
| 2518 | |
| 2519 | memcpy(cc->key, ekp->decrypted_data, cc->key_size); |
| 2520 | |
| 2521 | return 0; |
| 2522 | } |
| 2523 | |
| 2524 | static int set_key_trusted(struct crypt_config *cc, struct key *key) |
| 2525 | { |
| 2526 | const struct trusted_key_payload *tkp; |
| 2527 | |
| 2528 | tkp = key->payload.data[0]; |
| 2529 | if (!tkp) |
| 2530 | return -EKEYREVOKED; |
| 2531 | |
| 2532 | if (cc->key_size != tkp->key_len) |
| 2533 | return -EINVAL; |
| 2534 | |
| 2535 | memcpy(cc->key, tkp->key, cc->key_size); |
| 2536 | |
| 2537 | return 0; |
| 2538 | } |
| 2539 | |
| 2540 | static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) |
| 2541 | { |
| 2542 | char *new_key_string, *key_desc; |
| 2543 | int ret; |
| 2544 | struct key_type *type; |
| 2545 | struct key *key; |
| 2546 | int (*set_key)(struct crypt_config *cc, struct key *key); |
| 2547 | |
| 2548 | /* |
| 2549 | * Reject key_string with whitespace. dm core currently lacks code for |
| 2550 | * proper whitespace escaping in arguments on DM_TABLE_STATUS path. |
| 2551 | */ |
| 2552 | if (contains_whitespace(str: key_string)) { |
| 2553 | DMERR("whitespace chars not allowed in key string" ); |
| 2554 | return -EINVAL; |
| 2555 | } |
| 2556 | |
| 2557 | /* look for next ':' separating key_type from key_description */ |
| 2558 | key_desc = strchr(key_string, ':'); |
| 2559 | if (!key_desc || key_desc == key_string || !strlen(key_desc + 1)) |
| 2560 | return -EINVAL; |
| 2561 | |
| 2562 | if (!strncmp(key_string, "logon:" , key_desc - key_string + 1)) { |
| 2563 | type = &key_type_logon; |
| 2564 | set_key = set_key_user; |
| 2565 | } else if (!strncmp(key_string, "user:" , key_desc - key_string + 1)) { |
| 2566 | type = &key_type_user; |
| 2567 | set_key = set_key_user; |
| 2568 | } else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) && |
| 2569 | !strncmp(key_string, "encrypted:" , key_desc - key_string + 1)) { |
| 2570 | type = &key_type_encrypted; |
| 2571 | set_key = set_key_encrypted; |
| 2572 | } else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) && |
| 2573 | !strncmp(key_string, "trusted:" , key_desc - key_string + 1)) { |
| 2574 | type = &key_type_trusted; |
| 2575 | set_key = set_key_trusted; |
| 2576 | } else { |
| 2577 | return -EINVAL; |
| 2578 | } |
| 2579 | |
| 2580 | new_key_string = kstrdup(s: key_string, GFP_KERNEL); |
| 2581 | if (!new_key_string) |
| 2582 | return -ENOMEM; |
| 2583 | |
| 2584 | key = request_key(type, description: key_desc + 1, NULL); |
| 2585 | if (IS_ERR(ptr: key)) { |
| 2586 | ret = PTR_ERR(ptr: key); |
| 2587 | goto free_new_key_string; |
| 2588 | } |
| 2589 | |
| 2590 | down_read(sem: &key->sem); |
| 2591 | ret = set_key(cc, key); |
| 2592 | up_read(sem: &key->sem); |
| 2593 | key_put(key); |
| 2594 | if (ret < 0) |
| 2595 | goto free_new_key_string; |
| 2596 | |
| 2597 | /* clear the flag since following operations may invalidate previously valid key */ |
| 2598 | clear_bit(nr: DM_CRYPT_KEY_VALID, addr: &cc->flags); |
| 2599 | |
| 2600 | ret = crypt_setkey(cc); |
| 2601 | if (ret) |
| 2602 | goto free_new_key_string; |
| 2603 | |
| 2604 | set_bit(nr: DM_CRYPT_KEY_VALID, addr: &cc->flags); |
| 2605 | kfree_sensitive(objp: cc->key_string); |
| 2606 | cc->key_string = new_key_string; |
| 2607 | return 0; |
| 2608 | |
| 2609 | free_new_key_string: |
| 2610 | kfree_sensitive(objp: new_key_string); |
| 2611 | return ret; |
| 2612 | } |
| 2613 | |
| 2614 | static int get_key_size(char **key_string) |
| 2615 | { |
| 2616 | char *colon, dummy; |
| 2617 | int ret; |
| 2618 | |
| 2619 | if (*key_string[0] != ':') |
| 2620 | return strlen(*key_string) >> 1; |
| 2621 | |
| 2622 | /* look for next ':' in key string */ |
| 2623 | colon = strpbrk(*key_string + 1, ":" ); |
| 2624 | if (!colon) |
| 2625 | return -EINVAL; |
| 2626 | |
| 2627 | if (sscanf(*key_string + 1, "%u%c" , &ret, &dummy) != 2 || dummy != ':') |
| 2628 | return -EINVAL; |
| 2629 | |
| 2630 | *key_string = colon; |
| 2631 | |
| 2632 | /* remaining key string should be :<logon|user>:<key_desc> */ |
| 2633 | |
| 2634 | return ret; |
| 2635 | } |
| 2636 | |
| 2637 | #else |
| 2638 | |
| 2639 | static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string) |
| 2640 | { |
| 2641 | return -EINVAL; |
| 2642 | } |
| 2643 | |
| 2644 | static int get_key_size(char **key_string) |
| 2645 | { |
| 2646 | return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1); |
| 2647 | } |
| 2648 | |
| 2649 | #endif /* CONFIG_KEYS */ |
| 2650 | |
| 2651 | static int crypt_set_key(struct crypt_config *cc, char *key) |
| 2652 | { |
| 2653 | int r = -EINVAL; |
| 2654 | int key_string_len = strlen(key); |
| 2655 | |
| 2656 | /* Hyphen (which gives a key_size of zero) means there is no key. */ |
| 2657 | if (!cc->key_size && strcmp(key, "-" )) |
| 2658 | goto out; |
| 2659 | |
| 2660 | /* ':' means the key is in kernel keyring, short-circuit normal key processing */ |
| 2661 | if (key[0] == ':') { |
| 2662 | r = crypt_set_keyring_key(cc, key_string: key + 1); |
| 2663 | goto out; |
| 2664 | } |
| 2665 | |
| 2666 | /* clear the flag since following operations may invalidate previously valid key */ |
| 2667 | clear_bit(nr: DM_CRYPT_KEY_VALID, addr: &cc->flags); |
| 2668 | |
| 2669 | /* wipe references to any kernel keyring key */ |
| 2670 | kfree_sensitive(objp: cc->key_string); |
| 2671 | cc->key_string = NULL; |
| 2672 | |
| 2673 | /* Decode key from its hex representation. */ |
| 2674 | if (cc->key_size && hex2bin(dst: cc->key, src: key, count: cc->key_size) < 0) |
| 2675 | goto out; |
| 2676 | |
| 2677 | r = crypt_setkey(cc); |
| 2678 | if (!r) |
| 2679 | set_bit(nr: DM_CRYPT_KEY_VALID, addr: &cc->flags); |
| 2680 | |
| 2681 | out: |
| 2682 | /* Hex key string not needed after here, so wipe it. */ |
| 2683 | memset(key, '0', key_string_len); |
| 2684 | |
| 2685 | return r; |
| 2686 | } |
| 2687 | |
| 2688 | static int crypt_wipe_key(struct crypt_config *cc) |
| 2689 | { |
| 2690 | int r; |
| 2691 | |
| 2692 | clear_bit(nr: DM_CRYPT_KEY_VALID, addr: &cc->flags); |
| 2693 | get_random_bytes(buf: &cc->key, len: cc->key_size); |
| 2694 | |
| 2695 | /* Wipe IV private keys */ |
| 2696 | if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) { |
| 2697 | r = cc->iv_gen_ops->wipe(cc); |
| 2698 | if (r) |
| 2699 | return r; |
| 2700 | } |
| 2701 | |
| 2702 | kfree_sensitive(objp: cc->key_string); |
| 2703 | cc->key_string = NULL; |
| 2704 | r = crypt_setkey(cc); |
| 2705 | memset(&cc->key, 0, cc->key_size * sizeof(u8)); |
| 2706 | |
| 2707 | return r; |
| 2708 | } |
| 2709 | |
| 2710 | static void crypt_calculate_pages_per_client(void) |
| 2711 | { |
| 2712 | unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100; |
| 2713 | |
| 2714 | if (!dm_crypt_clients_n) |
| 2715 | return; |
| 2716 | |
| 2717 | pages /= dm_crypt_clients_n; |
| 2718 | if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT) |
| 2719 | pages = DM_CRYPT_MIN_PAGES_PER_CLIENT; |
| 2720 | dm_crypt_pages_per_client = pages; |
| 2721 | } |
| 2722 | |
| 2723 | static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data) |
| 2724 | { |
| 2725 | struct crypt_config *cc = pool_data; |
| 2726 | struct page *page; |
| 2727 | |
| 2728 | /* |
| 2729 | * Note, percpu_counter_read_positive() may over (and under) estimate |
| 2730 | * the current usage by at most (batch - 1) * num_online_cpus() pages, |
| 2731 | * but avoids potential spinlock contention of an exact result. |
| 2732 | */ |
| 2733 | if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) && |
| 2734 | likely(gfp_mask & __GFP_NORETRY)) |
| 2735 | return NULL; |
| 2736 | |
| 2737 | page = alloc_page(gfp_mask); |
| 2738 | if (likely(page != NULL)) |
| 2739 | percpu_counter_add(fbc: &cc->n_allocated_pages, amount: 1); |
| 2740 | |
| 2741 | return page; |
| 2742 | } |
| 2743 | |
| 2744 | static void crypt_page_free(void *page, void *pool_data) |
| 2745 | { |
| 2746 | struct crypt_config *cc = pool_data; |
| 2747 | |
| 2748 | __free_page(page); |
| 2749 | percpu_counter_sub(fbc: &cc->n_allocated_pages, amount: 1); |
| 2750 | } |
| 2751 | |
| 2752 | static void crypt_dtr(struct dm_target *ti) |
| 2753 | { |
| 2754 | struct crypt_config *cc = ti->private; |
| 2755 | |
| 2756 | ti->private = NULL; |
| 2757 | |
| 2758 | if (!cc) |
| 2759 | return; |
| 2760 | |
| 2761 | if (cc->write_thread) |
| 2762 | kthread_stop(k: cc->write_thread); |
| 2763 | |
| 2764 | if (cc->io_queue) |
| 2765 | destroy_workqueue(wq: cc->io_queue); |
| 2766 | if (cc->crypt_queue) |
| 2767 | destroy_workqueue(wq: cc->crypt_queue); |
| 2768 | |
| 2769 | if (cc->workqueue_id) |
| 2770 | ida_free(&workqueue_ida, id: cc->workqueue_id); |
| 2771 | |
| 2772 | crypt_free_tfms(cc); |
| 2773 | |
| 2774 | bioset_exit(&cc->bs); |
| 2775 | |
| 2776 | mempool_exit(pool: &cc->page_pool); |
| 2777 | mempool_exit(pool: &cc->req_pool); |
| 2778 | mempool_exit(pool: &cc->tag_pool); |
| 2779 | |
| 2780 | WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0); |
| 2781 | percpu_counter_destroy(fbc: &cc->n_allocated_pages); |
| 2782 | |
| 2783 | if (cc->iv_gen_ops && cc->iv_gen_ops->dtr) |
| 2784 | cc->iv_gen_ops->dtr(cc); |
| 2785 | |
| 2786 | if (cc->dev) |
| 2787 | dm_put_device(ti, d: cc->dev); |
| 2788 | |
| 2789 | kfree_sensitive(objp: cc->cipher_string); |
| 2790 | kfree_sensitive(objp: cc->key_string); |
| 2791 | kfree_sensitive(objp: cc->cipher_auth); |
| 2792 | kfree_sensitive(objp: cc->authenc_key); |
| 2793 | |
| 2794 | mutex_destroy(lock: &cc->bio_alloc_lock); |
| 2795 | |
| 2796 | /* Must zero key material before freeing */ |
| 2797 | kfree_sensitive(objp: cc); |
| 2798 | |
| 2799 | spin_lock(lock: &dm_crypt_clients_lock); |
| 2800 | WARN_ON(!dm_crypt_clients_n); |
| 2801 | dm_crypt_clients_n--; |
| 2802 | crypt_calculate_pages_per_client(); |
| 2803 | spin_unlock(lock: &dm_crypt_clients_lock); |
| 2804 | |
| 2805 | dm_audit_log_dtr(DM_MSG_PREFIX, ti, result: 1); |
| 2806 | } |
| 2807 | |
| 2808 | static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode) |
| 2809 | { |
| 2810 | struct crypt_config *cc = ti->private; |
| 2811 | |
| 2812 | if (crypt_integrity_aead(cc)) |
| 2813 | cc->iv_size = crypto_aead_ivsize(tfm: any_tfm_aead(cc)); |
| 2814 | else |
| 2815 | cc->iv_size = crypto_skcipher_ivsize(tfm: any_tfm(cc)); |
| 2816 | |
| 2817 | if (cc->iv_size) |
| 2818 | /* at least a 64 bit sector number should fit in our buffer */ |
| 2819 | cc->iv_size = max(cc->iv_size, |
| 2820 | (unsigned int)(sizeof(u64) / sizeof(u8))); |
| 2821 | else if (ivmode) { |
| 2822 | DMWARN("Selected cipher does not support IVs" ); |
| 2823 | ivmode = NULL; |
| 2824 | } |
| 2825 | |
| 2826 | /* Choose ivmode, see comments at iv code. */ |
| 2827 | if (ivmode == NULL) |
| 2828 | cc->iv_gen_ops = NULL; |
| 2829 | else if (strcmp(ivmode, "plain" ) == 0) |
| 2830 | cc->iv_gen_ops = &crypt_iv_plain_ops; |
| 2831 | else if (strcmp(ivmode, "plain64" ) == 0) |
| 2832 | cc->iv_gen_ops = &crypt_iv_plain64_ops; |
| 2833 | else if (strcmp(ivmode, "plain64be" ) == 0) |
| 2834 | cc->iv_gen_ops = &crypt_iv_plain64be_ops; |
| 2835 | else if (strcmp(ivmode, "essiv" ) == 0) |
| 2836 | cc->iv_gen_ops = &crypt_iv_essiv_ops; |
| 2837 | else if (strcmp(ivmode, "benbi" ) == 0) |
| 2838 | cc->iv_gen_ops = &crypt_iv_benbi_ops; |
| 2839 | else if (strcmp(ivmode, "null" ) == 0) |
| 2840 | cc->iv_gen_ops = &crypt_iv_null_ops; |
| 2841 | else if (strcmp(ivmode, "eboiv" ) == 0) |
| 2842 | cc->iv_gen_ops = &crypt_iv_eboiv_ops; |
| 2843 | else if (strcmp(ivmode, "elephant" ) == 0) { |
| 2844 | cc->iv_gen_ops = &crypt_iv_elephant_ops; |
| 2845 | cc->key_parts = 2; |
| 2846 | cc->key_extra_size = cc->key_size / 2; |
| 2847 | if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE) |
| 2848 | return -EINVAL; |
| 2849 | set_bit(nr: CRYPT_ENCRYPT_PREPROCESS, addr: &cc->cipher_flags); |
| 2850 | } else if (strcmp(ivmode, "lmk" ) == 0) { |
| 2851 | cc->iv_gen_ops = &crypt_iv_lmk_ops; |
| 2852 | /* |
| 2853 | * Version 2 and 3 is recognised according |
| 2854 | * to length of provided multi-key string. |
| 2855 | * If present (version 3), last key is used as IV seed. |
| 2856 | * All keys (including IV seed) are always the same size. |
| 2857 | */ |
| 2858 | if (cc->key_size % cc->key_parts) { |
| 2859 | cc->key_parts++; |
| 2860 | cc->key_extra_size = cc->key_size / cc->key_parts; |
| 2861 | } |
| 2862 | } else if (strcmp(ivmode, "tcw" ) == 0) { |
| 2863 | cc->iv_gen_ops = &crypt_iv_tcw_ops; |
| 2864 | cc->key_parts += 2; /* IV + whitening */ |
| 2865 | cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE; |
| 2866 | } else if (strcmp(ivmode, "random" ) == 0) { |
| 2867 | cc->iv_gen_ops = &crypt_iv_random_ops; |
| 2868 | /* Need storage space in integrity fields. */ |
| 2869 | cc->integrity_iv_size = cc->iv_size; |
| 2870 | } else { |
| 2871 | ti->error = "Invalid IV mode" ; |
| 2872 | return -EINVAL; |
| 2873 | } |
| 2874 | |
| 2875 | return 0; |
| 2876 | } |
| 2877 | |
| 2878 | /* |
| 2879 | * Workaround to parse HMAC algorithm from AEAD crypto API spec. |
| 2880 | * The HMAC is needed to calculate tag size (HMAC digest size). |
| 2881 | * This should be probably done by crypto-api calls (once available...) |
| 2882 | */ |
| 2883 | static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api) |
| 2884 | { |
| 2885 | char *start, *end, *mac_alg = NULL; |
| 2886 | struct crypto_ahash *mac; |
| 2887 | |
| 2888 | if (!strstarts(str: cipher_api, prefix: "authenc(" )) |
| 2889 | return 0; |
| 2890 | |
| 2891 | start = strchr(cipher_api, '('); |
| 2892 | end = strchr(cipher_api, ','); |
| 2893 | if (!start || !end || ++start > end) |
| 2894 | return -EINVAL; |
| 2895 | |
| 2896 | mac_alg = kmemdup_nul(s: start, len: end - start, GFP_KERNEL); |
| 2897 | if (!mac_alg) |
| 2898 | return -ENOMEM; |
| 2899 | |
| 2900 | mac = crypto_alloc_ahash(alg_name: mac_alg, type: 0, CRYPTO_ALG_ALLOCATES_MEMORY); |
| 2901 | kfree(objp: mac_alg); |
| 2902 | |
| 2903 | if (IS_ERR(ptr: mac)) |
| 2904 | return PTR_ERR(ptr: mac); |
| 2905 | |
| 2906 | if (!test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags)) |
| 2907 | cc->key_mac_size = crypto_ahash_digestsize(tfm: mac); |
| 2908 | crypto_free_ahash(tfm: mac); |
| 2909 | |
| 2910 | cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL); |
| 2911 | if (!cc->authenc_key) |
| 2912 | return -ENOMEM; |
| 2913 | |
| 2914 | return 0; |
| 2915 | } |
| 2916 | |
| 2917 | static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key, |
| 2918 | char **ivmode, char **ivopts) |
| 2919 | { |
| 2920 | struct crypt_config *cc = ti->private; |
| 2921 | char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME]; |
| 2922 | int ret = -EINVAL; |
| 2923 | |
| 2924 | cc->tfms_count = 1; |
| 2925 | |
| 2926 | /* |
| 2927 | * New format (capi: prefix) |
| 2928 | * capi:cipher_api_spec-iv:ivopts |
| 2929 | */ |
| 2930 | tmp = &cipher_in[strlen("capi:" )]; |
| 2931 | |
| 2932 | /* Separate IV options if present, it can contain another '-' in hash name */ |
| 2933 | *ivopts = strrchr(tmp, ':'); |
| 2934 | if (*ivopts) { |
| 2935 | **ivopts = '\0'; |
| 2936 | (*ivopts)++; |
| 2937 | } |
| 2938 | /* Parse IV mode */ |
| 2939 | *ivmode = strrchr(tmp, '-'); |
| 2940 | if (*ivmode) { |
| 2941 | **ivmode = '\0'; |
| 2942 | (*ivmode)++; |
| 2943 | } |
| 2944 | /* The rest is crypto API spec */ |
| 2945 | cipher_api = tmp; |
| 2946 | |
| 2947 | /* Alloc AEAD, can be used only in new format. */ |
| 2948 | if (crypt_integrity_aead(cc)) { |
| 2949 | ret = crypt_ctr_auth_cipher(cc, cipher_api); |
| 2950 | if (ret < 0) { |
| 2951 | ti->error = "Invalid AEAD cipher spec" ; |
| 2952 | return ret; |
| 2953 | } |
| 2954 | } |
| 2955 | |
| 2956 | if (*ivmode && !strcmp(*ivmode, "lmk" )) |
| 2957 | cc->tfms_count = 64; |
| 2958 | |
| 2959 | if (*ivmode && !strcmp(*ivmode, "essiv" )) { |
| 2960 | if (!*ivopts) { |
| 2961 | ti->error = "Digest algorithm missing for ESSIV mode" ; |
| 2962 | return -EINVAL; |
| 2963 | } |
| 2964 | ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, fmt: "essiv(%s,%s)" , |
| 2965 | cipher_api, *ivopts); |
| 2966 | if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) { |
| 2967 | ti->error = "Cannot allocate cipher string" ; |
| 2968 | return -ENOMEM; |
| 2969 | } |
| 2970 | cipher_api = buf; |
| 2971 | } |
| 2972 | |
| 2973 | cc->key_parts = cc->tfms_count; |
| 2974 | |
| 2975 | /* Allocate cipher */ |
| 2976 | ret = crypt_alloc_tfms(cc, ciphermode: cipher_api); |
| 2977 | if (ret < 0) { |
| 2978 | ti->error = "Error allocating crypto tfm" ; |
| 2979 | return ret; |
| 2980 | } |
| 2981 | |
| 2982 | if (crypt_integrity_aead(cc)) |
| 2983 | cc->iv_size = crypto_aead_ivsize(tfm: any_tfm_aead(cc)); |
| 2984 | else |
| 2985 | cc->iv_size = crypto_skcipher_ivsize(tfm: any_tfm(cc)); |
| 2986 | |
| 2987 | return 0; |
| 2988 | } |
| 2989 | |
| 2990 | static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key, |
| 2991 | char **ivmode, char **ivopts) |
| 2992 | { |
| 2993 | struct crypt_config *cc = ti->private; |
| 2994 | char *tmp, *cipher, *chainmode, *keycount; |
| 2995 | char *cipher_api = NULL; |
| 2996 | int ret = -EINVAL; |
| 2997 | char dummy; |
| 2998 | |
| 2999 | if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) { |
| 3000 | ti->error = "Bad cipher specification" ; |
| 3001 | return -EINVAL; |
| 3002 | } |
| 3003 | |
| 3004 | /* |
| 3005 | * Legacy dm-crypt cipher specification |
| 3006 | * cipher[:keycount]-mode-iv:ivopts |
| 3007 | */ |
| 3008 | tmp = cipher_in; |
| 3009 | keycount = strsep(&tmp, "-" ); |
| 3010 | cipher = strsep(&keycount, ":" ); |
| 3011 | |
| 3012 | if (!keycount) |
| 3013 | cc->tfms_count = 1; |
| 3014 | else if (sscanf(keycount, "%u%c" , &cc->tfms_count, &dummy) != 1 || |
| 3015 | !is_power_of_2(n: cc->tfms_count)) { |
| 3016 | ti->error = "Bad cipher key count specification" ; |
| 3017 | return -EINVAL; |
| 3018 | } |
| 3019 | cc->key_parts = cc->tfms_count; |
| 3020 | |
| 3021 | chainmode = strsep(&tmp, "-" ); |
| 3022 | *ivmode = strsep(&tmp, ":" ); |
| 3023 | *ivopts = tmp; |
| 3024 | |
| 3025 | /* |
| 3026 | * For compatibility with the original dm-crypt mapping format, if |
| 3027 | * only the cipher name is supplied, use cbc-plain. |
| 3028 | */ |
| 3029 | if (!chainmode || (!strcmp(chainmode, "plain" ) && !*ivmode)) { |
| 3030 | chainmode = "cbc" ; |
| 3031 | *ivmode = "plain" ; |
| 3032 | } |
| 3033 | |
| 3034 | if (strcmp(chainmode, "ecb" ) && !*ivmode) { |
| 3035 | ti->error = "IV mechanism required" ; |
| 3036 | return -EINVAL; |
| 3037 | } |
| 3038 | |
| 3039 | cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL); |
| 3040 | if (!cipher_api) |
| 3041 | goto bad_mem; |
| 3042 | |
| 3043 | if (*ivmode && !strcmp(*ivmode, "essiv" )) { |
| 3044 | if (!*ivopts) { |
| 3045 | ti->error = "Digest algorithm missing for ESSIV mode" ; |
| 3046 | kfree(objp: cipher_api); |
| 3047 | return -EINVAL; |
| 3048 | } |
| 3049 | ret = snprintf(buf: cipher_api, CRYPTO_MAX_ALG_NAME, |
| 3050 | fmt: "essiv(%s(%s),%s)" , chainmode, cipher, *ivopts); |
| 3051 | } else { |
| 3052 | ret = snprintf(buf: cipher_api, CRYPTO_MAX_ALG_NAME, |
| 3053 | fmt: "%s(%s)" , chainmode, cipher); |
| 3054 | } |
| 3055 | if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) { |
| 3056 | kfree(objp: cipher_api); |
| 3057 | goto bad_mem; |
| 3058 | } |
| 3059 | |
| 3060 | /* Allocate cipher */ |
| 3061 | ret = crypt_alloc_tfms(cc, ciphermode: cipher_api); |
| 3062 | if (ret < 0) { |
| 3063 | ti->error = "Error allocating crypto tfm" ; |
| 3064 | kfree(objp: cipher_api); |
| 3065 | return ret; |
| 3066 | } |
| 3067 | kfree(objp: cipher_api); |
| 3068 | |
| 3069 | return 0; |
| 3070 | bad_mem: |
| 3071 | ti->error = "Cannot allocate cipher strings" ; |
| 3072 | return -ENOMEM; |
| 3073 | } |
| 3074 | |
| 3075 | static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key) |
| 3076 | { |
| 3077 | struct crypt_config *cc = ti->private; |
| 3078 | char *ivmode = NULL, *ivopts = NULL; |
| 3079 | int ret; |
| 3080 | |
| 3081 | cc->cipher_string = kstrdup(s: cipher_in, GFP_KERNEL); |
| 3082 | if (!cc->cipher_string) { |
| 3083 | ti->error = "Cannot allocate cipher strings" ; |
| 3084 | return -ENOMEM; |
| 3085 | } |
| 3086 | |
| 3087 | if (strstarts(str: cipher_in, prefix: "capi:" )) |
| 3088 | ret = crypt_ctr_cipher_new(ti, cipher_in, key, ivmode: &ivmode, ivopts: &ivopts); |
| 3089 | else |
| 3090 | ret = crypt_ctr_cipher_old(ti, cipher_in, key, ivmode: &ivmode, ivopts: &ivopts); |
| 3091 | if (ret) |
| 3092 | return ret; |
| 3093 | |
| 3094 | /* Initialize IV */ |
| 3095 | ret = crypt_ctr_ivmode(ti, ivmode); |
| 3096 | if (ret < 0) |
| 3097 | return ret; |
| 3098 | |
| 3099 | /* Initialize and set key */ |
| 3100 | ret = crypt_set_key(cc, key); |
| 3101 | if (ret < 0) { |
| 3102 | ti->error = "Error decoding and setting key" ; |
| 3103 | return ret; |
| 3104 | } |
| 3105 | |
| 3106 | /* Allocate IV */ |
| 3107 | if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) { |
| 3108 | ret = cc->iv_gen_ops->ctr(cc, ti, ivopts); |
| 3109 | if (ret < 0) { |
| 3110 | ti->error = "Error creating IV" ; |
| 3111 | return ret; |
| 3112 | } |
| 3113 | } |
| 3114 | |
| 3115 | /* Initialize IV (set keys for ESSIV etc) */ |
| 3116 | if (cc->iv_gen_ops && cc->iv_gen_ops->init) { |
| 3117 | ret = cc->iv_gen_ops->init(cc); |
| 3118 | if (ret < 0) { |
| 3119 | ti->error = "Error initialising IV" ; |
| 3120 | return ret; |
| 3121 | } |
| 3122 | } |
| 3123 | |
| 3124 | /* wipe the kernel key payload copy */ |
| 3125 | if (cc->key_string) |
| 3126 | memset(cc->key, 0, cc->key_size * sizeof(u8)); |
| 3127 | |
| 3128 | return ret; |
| 3129 | } |
| 3130 | |
| 3131 | static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv) |
| 3132 | { |
| 3133 | struct crypt_config *cc = ti->private; |
| 3134 | struct dm_arg_set as; |
| 3135 | static const struct dm_arg _args[] = { |
| 3136 | {0, 9, "Invalid number of feature args" }, |
| 3137 | }; |
| 3138 | unsigned int opt_params, val; |
| 3139 | const char *opt_string, *sval; |
| 3140 | char dummy; |
| 3141 | int ret; |
| 3142 | |
| 3143 | /* Optional parameters */ |
| 3144 | as.argc = argc; |
| 3145 | as.argv = argv; |
| 3146 | |
| 3147 | ret = dm_read_arg_group(arg: _args, arg_set: &as, num_args: &opt_params, error: &ti->error); |
| 3148 | if (ret) |
| 3149 | return ret; |
| 3150 | |
| 3151 | while (opt_params--) { |
| 3152 | opt_string = dm_shift_arg(as: &as); |
| 3153 | if (!opt_string) { |
| 3154 | ti->error = "Not enough feature arguments" ; |
| 3155 | return -EINVAL; |
| 3156 | } |
| 3157 | |
| 3158 | if (!strcasecmp(s1: opt_string, s2: "allow_discards" )) |
| 3159 | ti->num_discard_bios = 1; |
| 3160 | |
| 3161 | else if (!strcasecmp(s1: opt_string, s2: "same_cpu_crypt" )) |
| 3162 | set_bit(nr: DM_CRYPT_SAME_CPU, addr: &cc->flags); |
| 3163 | else if (!strcasecmp(s1: opt_string, s2: "high_priority" )) |
| 3164 | set_bit(nr: DM_CRYPT_HIGH_PRIORITY, addr: &cc->flags); |
| 3165 | |
| 3166 | else if (!strcasecmp(s1: opt_string, s2: "submit_from_crypt_cpus" )) |
| 3167 | set_bit(nr: DM_CRYPT_NO_OFFLOAD, addr: &cc->flags); |
| 3168 | else if (!strcasecmp(s1: opt_string, s2: "no_read_workqueue" )) |
| 3169 | set_bit(nr: DM_CRYPT_NO_READ_WORKQUEUE, addr: &cc->flags); |
| 3170 | else if (!strcasecmp(s1: opt_string, s2: "no_write_workqueue" )) |
| 3171 | set_bit(nr: DM_CRYPT_NO_WRITE_WORKQUEUE, addr: &cc->flags); |
| 3172 | else if (sscanf(opt_string, "integrity:%u:" , &val) == 1) { |
| 3173 | if (val == 0 || val > MAX_TAG_SIZE) { |
| 3174 | ti->error = "Invalid integrity arguments" ; |
| 3175 | return -EINVAL; |
| 3176 | } |
| 3177 | cc->used_tag_size = val; |
| 3178 | sval = strchr(opt_string + strlen("integrity:" ), ':') + 1; |
| 3179 | if (!strcasecmp(s1: sval, s2: "aead" )) { |
| 3180 | set_bit(nr: CRYPT_MODE_INTEGRITY_AEAD, addr: &cc->cipher_flags); |
| 3181 | } else if (strcasecmp(s1: sval, s2: "none" )) { |
| 3182 | ti->error = "Unknown integrity profile" ; |
| 3183 | return -EINVAL; |
| 3184 | } |
| 3185 | |
| 3186 | cc->cipher_auth = kstrdup(s: sval, GFP_KERNEL); |
| 3187 | if (!cc->cipher_auth) |
| 3188 | return -ENOMEM; |
| 3189 | } else if (sscanf(opt_string, "integrity_key_size:%u%c" , &val, &dummy) == 1) { |
| 3190 | if (!val) { |
| 3191 | ti->error = "Invalid integrity_key_size argument" ; |
| 3192 | return -EINVAL; |
| 3193 | } |
| 3194 | cc->key_mac_size = val; |
| 3195 | set_bit(nr: CRYPT_KEY_MAC_SIZE_SET, addr: &cc->cipher_flags); |
| 3196 | } else if (sscanf(opt_string, "sector_size:%hu%c" , &cc->sector_size, &dummy) == 1) { |
| 3197 | if (cc->sector_size < (1 << SECTOR_SHIFT) || |
| 3198 | cc->sector_size > 4096 || |
| 3199 | (cc->sector_size & (cc->sector_size - 1))) { |
| 3200 | ti->error = "Invalid feature value for sector_size" ; |
| 3201 | return -EINVAL; |
| 3202 | } |
| 3203 | if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) { |
| 3204 | ti->error = "Device size is not multiple of sector_size feature" ; |
| 3205 | return -EINVAL; |
| 3206 | } |
| 3207 | cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT; |
| 3208 | } else if (!strcasecmp(s1: opt_string, s2: "iv_large_sectors" )) |
| 3209 | set_bit(nr: CRYPT_IV_LARGE_SECTORS, addr: &cc->cipher_flags); |
| 3210 | else { |
| 3211 | ti->error = "Invalid feature arguments" ; |
| 3212 | return -EINVAL; |
| 3213 | } |
| 3214 | } |
| 3215 | |
| 3216 | return 0; |
| 3217 | } |
| 3218 | |
| 3219 | #ifdef CONFIG_BLK_DEV_ZONED |
| 3220 | static int crypt_report_zones(struct dm_target *ti, |
| 3221 | struct dm_report_zones_args *args, unsigned int nr_zones) |
| 3222 | { |
| 3223 | struct crypt_config *cc = ti->private; |
| 3224 | |
| 3225 | return dm_report_zones(bdev: cc->dev->bdev, start: cc->start, |
| 3226 | sector: cc->start + dm_target_offset(ti, args->next_sector), |
| 3227 | args, nr_zones); |
| 3228 | } |
| 3229 | #else |
| 3230 | #define crypt_report_zones NULL |
| 3231 | #endif |
| 3232 | |
| 3233 | /* |
| 3234 | * Construct an encryption mapping: |
| 3235 | * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start> |
| 3236 | */ |
| 3237 | static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv) |
| 3238 | { |
| 3239 | struct crypt_config *cc; |
| 3240 | const char *devname = dm_table_device_name(t: ti->table); |
| 3241 | int key_size, wq_id; |
| 3242 | unsigned int align_mask; |
| 3243 | unsigned int common_wq_flags; |
| 3244 | unsigned long long tmpll; |
| 3245 | int ret; |
| 3246 | size_t iv_size_padding, additional_req_size; |
| 3247 | char dummy; |
| 3248 | |
| 3249 | if (argc < 5) { |
| 3250 | ti->error = "Not enough arguments" ; |
| 3251 | return -EINVAL; |
| 3252 | } |
| 3253 | |
| 3254 | key_size = get_key_size(key_string: &argv[1]); |
| 3255 | if (key_size < 0) { |
| 3256 | ti->error = "Cannot parse key size" ; |
| 3257 | return -EINVAL; |
| 3258 | } |
| 3259 | |
| 3260 | cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL); |
| 3261 | if (!cc) { |
| 3262 | ti->error = "Cannot allocate encryption context" ; |
| 3263 | return -ENOMEM; |
| 3264 | } |
| 3265 | cc->key_size = key_size; |
| 3266 | cc->sector_size = (1 << SECTOR_SHIFT); |
| 3267 | cc->sector_shift = 0; |
| 3268 | |
| 3269 | ti->private = cc; |
| 3270 | |
| 3271 | spin_lock(lock: &dm_crypt_clients_lock); |
| 3272 | dm_crypt_clients_n++; |
| 3273 | crypt_calculate_pages_per_client(); |
| 3274 | spin_unlock(lock: &dm_crypt_clients_lock); |
| 3275 | |
| 3276 | ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL); |
| 3277 | if (ret < 0) |
| 3278 | goto bad; |
| 3279 | |
| 3280 | /* Optional parameters need to be read before cipher constructor */ |
| 3281 | if (argc > 5) { |
| 3282 | ret = crypt_ctr_optional(ti, argc: argc - 5, argv: &argv[5]); |
| 3283 | if (ret) |
| 3284 | goto bad; |
| 3285 | } |
| 3286 | |
| 3287 | ret = crypt_ctr_cipher(ti, cipher_in: argv[0], key: argv[1]); |
| 3288 | if (ret < 0) |
| 3289 | goto bad; |
| 3290 | |
| 3291 | if (crypt_integrity_aead(cc)) { |
| 3292 | cc->dmreq_start = sizeof(struct aead_request); |
| 3293 | cc->dmreq_start += crypto_aead_reqsize(tfm: any_tfm_aead(cc)); |
| 3294 | align_mask = crypto_aead_alignmask(tfm: any_tfm_aead(cc)); |
| 3295 | } else { |
| 3296 | cc->dmreq_start = sizeof(struct skcipher_request); |
| 3297 | cc->dmreq_start += crypto_skcipher_reqsize(tfm: any_tfm(cc)); |
| 3298 | align_mask = crypto_skcipher_alignmask(tfm: any_tfm(cc)); |
| 3299 | } |
| 3300 | cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request)); |
| 3301 | |
| 3302 | if (align_mask < CRYPTO_MINALIGN) { |
| 3303 | /* Allocate the padding exactly */ |
| 3304 | iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request)) |
| 3305 | & align_mask; |
| 3306 | } else { |
| 3307 | /* |
| 3308 | * If the cipher requires greater alignment than kmalloc |
| 3309 | * alignment, we don't know the exact position of the |
| 3310 | * initialization vector. We must assume worst case. |
| 3311 | */ |
| 3312 | iv_size_padding = align_mask; |
| 3313 | } |
| 3314 | |
| 3315 | /* ...| IV + padding | original IV | original sec. number | bio tag offset | */ |
| 3316 | additional_req_size = sizeof(struct dm_crypt_request) + |
| 3317 | iv_size_padding + cc->iv_size + |
| 3318 | cc->iv_size + |
| 3319 | sizeof(uint64_t) + |
| 3320 | sizeof(unsigned int); |
| 3321 | |
| 3322 | ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size); |
| 3323 | if (ret) { |
| 3324 | ti->error = "Cannot allocate crypt request mempool" ; |
| 3325 | goto bad; |
| 3326 | } |
| 3327 | |
| 3328 | cc->per_bio_data_size = ti->per_io_data_size = |
| 3329 | ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size, |
| 3330 | ARCH_DMA_MINALIGN); |
| 3331 | |
| 3332 | ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc); |
| 3333 | if (ret) { |
| 3334 | ti->error = "Cannot allocate page mempool" ; |
| 3335 | goto bad; |
| 3336 | } |
| 3337 | |
| 3338 | ret = bioset_init(&cc->bs, MIN_IOS, 0, flags: BIOSET_NEED_BVECS); |
| 3339 | if (ret) { |
| 3340 | ti->error = "Cannot allocate crypt bioset" ; |
| 3341 | goto bad; |
| 3342 | } |
| 3343 | |
| 3344 | mutex_init(&cc->bio_alloc_lock); |
| 3345 | |
| 3346 | ret = -EINVAL; |
| 3347 | if ((sscanf(argv[2], "%llu%c" , &tmpll, &dummy) != 1) || |
| 3348 | (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) { |
| 3349 | ti->error = "Invalid iv_offset sector" ; |
| 3350 | goto bad; |
| 3351 | } |
| 3352 | cc->iv_offset = tmpll; |
| 3353 | |
| 3354 | ret = dm_get_device(ti, path: argv[3], mode: dm_table_get_mode(t: ti->table), result: &cc->dev); |
| 3355 | if (ret) { |
| 3356 | ti->error = "Device lookup failed" ; |
| 3357 | goto bad; |
| 3358 | } |
| 3359 | |
| 3360 | ret = -EINVAL; |
| 3361 | if (sscanf(argv[4], "%llu%c" , &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) { |
| 3362 | ti->error = "Invalid device sector" ; |
| 3363 | goto bad; |
| 3364 | } |
| 3365 | cc->start = tmpll; |
| 3366 | |
| 3367 | if (bdev_is_zoned(bdev: cc->dev->bdev)) { |
| 3368 | /* |
| 3369 | * For zoned block devices, we need to preserve the issuer write |
| 3370 | * ordering. To do so, disable write workqueues and force inline |
| 3371 | * encryption completion. |
| 3372 | */ |
| 3373 | set_bit(nr: DM_CRYPT_NO_WRITE_WORKQUEUE, addr: &cc->flags); |
| 3374 | set_bit(nr: DM_CRYPT_WRITE_INLINE, addr: &cc->flags); |
| 3375 | |
| 3376 | /* |
| 3377 | * All zone append writes to a zone of a zoned block device will |
| 3378 | * have the same BIO sector, the start of the zone. When the |
| 3379 | * cypher IV mode uses sector values, all data targeting a |
| 3380 | * zone will be encrypted using the first sector numbers of the |
| 3381 | * zone. This will not result in write errors but will |
| 3382 | * cause most reads to fail as reads will use the sector values |
| 3383 | * for the actual data locations, resulting in IV mismatch. |
| 3384 | * To avoid this problem, ask DM core to emulate zone append |
| 3385 | * operations with regular writes. |
| 3386 | */ |
| 3387 | DMDEBUG("Zone append operations will be emulated" ); |
| 3388 | ti->emulate_zone_append = true; |
| 3389 | } |
| 3390 | |
| 3391 | if (crypt_integrity_aead(cc) || cc->integrity_iv_size) { |
| 3392 | ret = crypt_integrity_ctr(cc, ti); |
| 3393 | if (ret) |
| 3394 | goto bad; |
| 3395 | |
| 3396 | cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->tuple_size; |
| 3397 | if (!cc->tag_pool_max_sectors) |
| 3398 | cc->tag_pool_max_sectors = 1; |
| 3399 | |
| 3400 | ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS, |
| 3401 | cc->tag_pool_max_sectors * cc->tuple_size); |
| 3402 | if (ret) { |
| 3403 | ti->error = "Cannot allocate integrity tags mempool" ; |
| 3404 | goto bad; |
| 3405 | } |
| 3406 | |
| 3407 | cc->tag_pool_max_sectors <<= cc->sector_shift; |
| 3408 | } |
| 3409 | |
| 3410 | wq_id = ida_alloc_min(ida: &workqueue_ida, min: 1, GFP_KERNEL); |
| 3411 | if (wq_id < 0) { |
| 3412 | ti->error = "Couldn't get workqueue id" ; |
| 3413 | ret = wq_id; |
| 3414 | goto bad; |
| 3415 | } |
| 3416 | cc->workqueue_id = wq_id; |
| 3417 | |
| 3418 | ret = -ENOMEM; |
| 3419 | common_wq_flags = WQ_MEM_RECLAIM | WQ_SYSFS; |
| 3420 | if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) |
| 3421 | common_wq_flags |= WQ_HIGHPRI; |
| 3422 | |
| 3423 | cc->io_queue = alloc_workqueue(fmt: "kcryptd_io-%s-%d" , flags: common_wq_flags, max_active: 1, devname, wq_id); |
| 3424 | if (!cc->io_queue) { |
| 3425 | ti->error = "Couldn't create kcryptd io queue" ; |
| 3426 | goto bad; |
| 3427 | } |
| 3428 | |
| 3429 | if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) { |
| 3430 | cc->crypt_queue = alloc_workqueue(fmt: "kcryptd-%s-%d" , |
| 3431 | flags: common_wq_flags | WQ_CPU_INTENSIVE, |
| 3432 | max_active: 1, devname, wq_id); |
| 3433 | } else { |
| 3434 | /* |
| 3435 | * While crypt_queue is certainly CPU intensive, the use of |
| 3436 | * WQ_CPU_INTENSIVE is meaningless with WQ_UNBOUND. |
| 3437 | */ |
| 3438 | cc->crypt_queue = alloc_workqueue(fmt: "kcryptd-%s-%d" , |
| 3439 | flags: common_wq_flags | WQ_UNBOUND, |
| 3440 | max_active: num_online_cpus(), devname, wq_id); |
| 3441 | } |
| 3442 | if (!cc->crypt_queue) { |
| 3443 | ti->error = "Couldn't create kcryptd queue" ; |
| 3444 | goto bad; |
| 3445 | } |
| 3446 | |
| 3447 | spin_lock_init(&cc->write_thread_lock); |
| 3448 | cc->write_tree = RB_ROOT; |
| 3449 | |
| 3450 | cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s" , devname); |
| 3451 | if (IS_ERR(ptr: cc->write_thread)) { |
| 3452 | ret = PTR_ERR(ptr: cc->write_thread); |
| 3453 | cc->write_thread = NULL; |
| 3454 | ti->error = "Couldn't spawn write thread" ; |
| 3455 | goto bad; |
| 3456 | } |
| 3457 | if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) |
| 3458 | set_user_nice(p: cc->write_thread, MIN_NICE); |
| 3459 | |
| 3460 | ti->num_flush_bios = 1; |
| 3461 | ti->limit_swap_bios = true; |
| 3462 | ti->accounts_remapped_io = true; |
| 3463 | |
| 3464 | dm_audit_log_ctr(DM_MSG_PREFIX, ti, result: 1); |
| 3465 | return 0; |
| 3466 | |
| 3467 | bad: |
| 3468 | dm_audit_log_ctr(DM_MSG_PREFIX, ti, result: 0); |
| 3469 | crypt_dtr(ti); |
| 3470 | return ret; |
| 3471 | } |
| 3472 | |
| 3473 | static int crypt_map(struct dm_target *ti, struct bio *bio) |
| 3474 | { |
| 3475 | struct dm_crypt_io *io; |
| 3476 | struct crypt_config *cc = ti->private; |
| 3477 | unsigned max_sectors; |
| 3478 | |
| 3479 | /* |
| 3480 | * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues. |
| 3481 | * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight |
| 3482 | * - for REQ_OP_DISCARD caller must use flush if IO ordering matters |
| 3483 | */ |
| 3484 | if (unlikely(bio->bi_opf & REQ_PREFLUSH || |
| 3485 | bio_op(bio) == REQ_OP_DISCARD)) { |
| 3486 | bio_set_dev(bio, bdev: cc->dev->bdev); |
| 3487 | if (bio_sectors(bio)) |
| 3488 | bio->bi_iter.bi_sector = cc->start + |
| 3489 | dm_target_offset(ti, bio->bi_iter.bi_sector); |
| 3490 | return DM_MAPIO_REMAPPED; |
| 3491 | } |
| 3492 | |
| 3493 | /* |
| 3494 | * Check if bio is too large, split as needed. |
| 3495 | */ |
| 3496 | max_sectors = get_max_request_size(cc, bio_data_dir(bio) == WRITE); |
| 3497 | if (unlikely(bio_sectors(bio) > max_sectors)) |
| 3498 | dm_accept_partial_bio(bio, n_sectors: max_sectors); |
| 3499 | |
| 3500 | /* |
| 3501 | * Ensure that bio is a multiple of internal sector encryption size |
| 3502 | * and is aligned to this size as defined in IO hints. |
| 3503 | */ |
| 3504 | if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0)) |
| 3505 | return DM_MAPIO_KILL; |
| 3506 | |
| 3507 | if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1))) |
| 3508 | return DM_MAPIO_KILL; |
| 3509 | |
| 3510 | io = dm_per_bio_data(bio, data_size: cc->per_bio_data_size); |
| 3511 | crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector)); |
| 3512 | |
| 3513 | if (cc->tuple_size) { |
| 3514 | unsigned int tag_len = cc->tuple_size * (bio_sectors(bio) >> cc->sector_shift); |
| 3515 | |
| 3516 | if (unlikely(tag_len > KMALLOC_MAX_SIZE)) |
| 3517 | io->integrity_metadata = NULL; |
| 3518 | else |
| 3519 | io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN); |
| 3520 | |
| 3521 | if (unlikely(!io->integrity_metadata)) { |
| 3522 | if (bio_sectors(bio) > cc->tag_pool_max_sectors) |
| 3523 | dm_accept_partial_bio(bio, n_sectors: cc->tag_pool_max_sectors); |
| 3524 | io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO); |
| 3525 | io->integrity_metadata_from_pool = true; |
| 3526 | } |
| 3527 | } |
| 3528 | |
| 3529 | if (crypt_integrity_aead(cc)) |
| 3530 | io->ctx.r.req_aead = (struct aead_request *)(io + 1); |
| 3531 | else |
| 3532 | io->ctx.r.req = (struct skcipher_request *)(io + 1); |
| 3533 | |
| 3534 | if (bio_data_dir(io->base_bio) == READ) { |
| 3535 | if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP)) |
| 3536 | kcryptd_queue_read(io); |
| 3537 | } else |
| 3538 | kcryptd_queue_crypt(io); |
| 3539 | |
| 3540 | return DM_MAPIO_SUBMITTED; |
| 3541 | } |
| 3542 | |
| 3543 | static char hex2asc(unsigned char c) |
| 3544 | { |
| 3545 | return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27); |
| 3546 | } |
| 3547 | |
| 3548 | static void crypt_status(struct dm_target *ti, status_type_t type, |
| 3549 | unsigned int status_flags, char *result, unsigned int maxlen) |
| 3550 | { |
| 3551 | struct crypt_config *cc = ti->private; |
| 3552 | unsigned int i, sz = 0; |
| 3553 | int num_feature_args = 0; |
| 3554 | |
| 3555 | switch (type) { |
| 3556 | case STATUSTYPE_INFO: |
| 3557 | result[0] = '\0'; |
| 3558 | break; |
| 3559 | |
| 3560 | case STATUSTYPE_TABLE: |
| 3561 | DMEMIT("%s " , cc->cipher_string); |
| 3562 | |
| 3563 | if (cc->key_size > 0) { |
| 3564 | if (cc->key_string) |
| 3565 | DMEMIT(":%u:%s" , cc->key_size, cc->key_string); |
| 3566 | else { |
| 3567 | for (i = 0; i < cc->key_size; i++) { |
| 3568 | DMEMIT("%c%c" , hex2asc(cc->key[i] >> 4), |
| 3569 | hex2asc(cc->key[i] & 0xf)); |
| 3570 | } |
| 3571 | } |
| 3572 | } else |
| 3573 | DMEMIT("-" ); |
| 3574 | |
| 3575 | DMEMIT(" %llu %s %llu" , (unsigned long long)cc->iv_offset, |
| 3576 | cc->dev->name, (unsigned long long)cc->start); |
| 3577 | |
| 3578 | num_feature_args += !!ti->num_discard_bios; |
| 3579 | num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags); |
| 3580 | num_feature_args += test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags); |
| 3581 | num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags); |
| 3582 | num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags); |
| 3583 | num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags); |
| 3584 | num_feature_args += !!cc->used_tag_size; |
| 3585 | num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT); |
| 3586 | num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags); |
| 3587 | num_feature_args += test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags); |
| 3588 | if (num_feature_args) { |
| 3589 | DMEMIT(" %d" , num_feature_args); |
| 3590 | if (ti->num_discard_bios) |
| 3591 | DMEMIT(" allow_discards" ); |
| 3592 | if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) |
| 3593 | DMEMIT(" same_cpu_crypt" ); |
| 3594 | if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags)) |
| 3595 | DMEMIT(" high_priority" ); |
| 3596 | if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) |
| 3597 | DMEMIT(" submit_from_crypt_cpus" ); |
| 3598 | if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) |
| 3599 | DMEMIT(" no_read_workqueue" ); |
| 3600 | if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) |
| 3601 | DMEMIT(" no_write_workqueue" ); |
| 3602 | if (cc->used_tag_size) |
| 3603 | DMEMIT(" integrity:%u:%s" , cc->used_tag_size, cc->cipher_auth); |
| 3604 | if (cc->sector_size != (1 << SECTOR_SHIFT)) |
| 3605 | DMEMIT(" sector_size:%d" , cc->sector_size); |
| 3606 | if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags)) |
| 3607 | DMEMIT(" iv_large_sectors" ); |
| 3608 | if (test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags)) |
| 3609 | DMEMIT(" integrity_key_size:%u" , cc->key_mac_size); |
| 3610 | } |
| 3611 | break; |
| 3612 | |
| 3613 | case STATUSTYPE_IMA: |
| 3614 | DMEMIT_TARGET_NAME_VERSION(ti->type); |
| 3615 | DMEMIT(",allow_discards=%c" , ti->num_discard_bios ? 'y' : 'n'); |
| 3616 | DMEMIT(",same_cpu_crypt=%c" , test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n'); |
| 3617 | DMEMIT(",high_priority=%c" , test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags) ? 'y' : 'n'); |
| 3618 | DMEMIT(",submit_from_crypt_cpus=%c" , test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ? |
| 3619 | 'y' : 'n'); |
| 3620 | DMEMIT(",no_read_workqueue=%c" , test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ? |
| 3621 | 'y' : 'n'); |
| 3622 | DMEMIT(",no_write_workqueue=%c" , test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ? |
| 3623 | 'y' : 'n'); |
| 3624 | DMEMIT(",iv_large_sectors=%c" , test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ? |
| 3625 | 'y' : 'n'); |
| 3626 | |
| 3627 | if (cc->used_tag_size) |
| 3628 | DMEMIT(",integrity_tag_size=%u,cipher_auth=%s" , |
| 3629 | cc->used_tag_size, cc->cipher_auth); |
| 3630 | if (cc->sector_size != (1 << SECTOR_SHIFT)) |
| 3631 | DMEMIT(",sector_size=%d" , cc->sector_size); |
| 3632 | if (cc->cipher_string) |
| 3633 | DMEMIT(",cipher_string=%s" , cc->cipher_string); |
| 3634 | |
| 3635 | DMEMIT(",key_size=%u" , cc->key_size); |
| 3636 | DMEMIT(",key_parts=%u" , cc->key_parts); |
| 3637 | DMEMIT(",key_extra_size=%u" , cc->key_extra_size); |
| 3638 | DMEMIT(",key_mac_size=%u" , cc->key_mac_size); |
| 3639 | DMEMIT(";" ); |
| 3640 | break; |
| 3641 | } |
| 3642 | } |
| 3643 | |
| 3644 | static void crypt_postsuspend(struct dm_target *ti) |
| 3645 | { |
| 3646 | struct crypt_config *cc = ti->private; |
| 3647 | |
| 3648 | set_bit(nr: DM_CRYPT_SUSPENDED, addr: &cc->flags); |
| 3649 | } |
| 3650 | |
| 3651 | static int crypt_preresume(struct dm_target *ti) |
| 3652 | { |
| 3653 | struct crypt_config *cc = ti->private; |
| 3654 | |
| 3655 | if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) { |
| 3656 | DMERR("aborting resume - crypt key is not set." ); |
| 3657 | return -EAGAIN; |
| 3658 | } |
| 3659 | |
| 3660 | return 0; |
| 3661 | } |
| 3662 | |
| 3663 | static void crypt_resume(struct dm_target *ti) |
| 3664 | { |
| 3665 | struct crypt_config *cc = ti->private; |
| 3666 | |
| 3667 | clear_bit(nr: DM_CRYPT_SUSPENDED, addr: &cc->flags); |
| 3668 | } |
| 3669 | |
| 3670 | /* Message interface |
| 3671 | * key set <key> |
| 3672 | * key wipe |
| 3673 | */ |
| 3674 | static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv, |
| 3675 | char *result, unsigned int maxlen) |
| 3676 | { |
| 3677 | struct crypt_config *cc = ti->private; |
| 3678 | int key_size, ret = -EINVAL; |
| 3679 | |
| 3680 | if (argc < 2) |
| 3681 | goto error; |
| 3682 | |
| 3683 | if (!strcasecmp(s1: argv[0], s2: "key" )) { |
| 3684 | if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) { |
| 3685 | DMWARN("not suspended during key manipulation." ); |
| 3686 | return -EINVAL; |
| 3687 | } |
| 3688 | if (argc == 3 && !strcasecmp(s1: argv[1], s2: "set" )) { |
| 3689 | /* The key size may not be changed. */ |
| 3690 | key_size = get_key_size(key_string: &argv[2]); |
| 3691 | if (key_size < 0 || cc->key_size != key_size) { |
| 3692 | memset(argv[2], '0', strlen(argv[2])); |
| 3693 | return -EINVAL; |
| 3694 | } |
| 3695 | |
| 3696 | ret = crypt_set_key(cc, key: argv[2]); |
| 3697 | if (ret) |
| 3698 | return ret; |
| 3699 | if (cc->iv_gen_ops && cc->iv_gen_ops->init) |
| 3700 | ret = cc->iv_gen_ops->init(cc); |
| 3701 | /* wipe the kernel key payload copy */ |
| 3702 | if (cc->key_string) |
| 3703 | memset(cc->key, 0, cc->key_size * sizeof(u8)); |
| 3704 | return ret; |
| 3705 | } |
| 3706 | if (argc == 2 && !strcasecmp(s1: argv[1], s2: "wipe" )) |
| 3707 | return crypt_wipe_key(cc); |
| 3708 | } |
| 3709 | |
| 3710 | error: |
| 3711 | DMWARN("unrecognised message received." ); |
| 3712 | return -EINVAL; |
| 3713 | } |
| 3714 | |
| 3715 | static int crypt_iterate_devices(struct dm_target *ti, |
| 3716 | iterate_devices_callout_fn fn, void *data) |
| 3717 | { |
| 3718 | struct crypt_config *cc = ti->private; |
| 3719 | |
| 3720 | return fn(ti, cc->dev, cc->start, ti->len, data); |
| 3721 | } |
| 3722 | |
| 3723 | static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits) |
| 3724 | { |
| 3725 | struct crypt_config *cc = ti->private; |
| 3726 | |
| 3727 | limits->logical_block_size = |
| 3728 | max_t(unsigned int, limits->logical_block_size, cc->sector_size); |
| 3729 | limits->physical_block_size = |
| 3730 | max_t(unsigned int, limits->physical_block_size, cc->sector_size); |
| 3731 | limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size); |
| 3732 | limits->dma_alignment = limits->logical_block_size - 1; |
| 3733 | } |
| 3734 | |
| 3735 | static struct target_type crypt_target = { |
| 3736 | .name = "crypt" , |
| 3737 | .version = {1, 28, 0}, |
| 3738 | .module = THIS_MODULE, |
| 3739 | .ctr = crypt_ctr, |
| 3740 | .dtr = crypt_dtr, |
| 3741 | .features = DM_TARGET_ZONED_HM, |
| 3742 | .report_zones = crypt_report_zones, |
| 3743 | .map = crypt_map, |
| 3744 | .status = crypt_status, |
| 3745 | .postsuspend = crypt_postsuspend, |
| 3746 | .preresume = crypt_preresume, |
| 3747 | .resume = crypt_resume, |
| 3748 | .message = crypt_message, |
| 3749 | .iterate_devices = crypt_iterate_devices, |
| 3750 | .io_hints = crypt_io_hints, |
| 3751 | }; |
| 3752 | module_dm(crypt); |
| 3753 | |
| 3754 | MODULE_AUTHOR("Jana Saout <jana@saout.de>" ); |
| 3755 | MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption" ); |
| 3756 | MODULE_LICENSE("GPL" ); |
| 3757 | |