| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | |
| 3 | /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. |
| 4 | * Copyright (C) 2019-2024 Linaro Ltd. |
| 5 | */ |
| 6 | |
| 7 | #include <linux/bitfield.h> |
| 8 | #include <linux/bits.h> |
| 9 | #include <linux/device.h> |
| 10 | #include <linux/dma-direction.h> |
| 11 | #include <linux/if_rmnet.h> |
| 12 | #include <linux/types.h> |
| 13 | |
| 14 | #include "gsi.h" |
| 15 | #include "gsi_trans.h" |
| 16 | #include "ipa.h" |
| 17 | #include "ipa_cmd.h" |
| 18 | #include "ipa_data.h" |
| 19 | #include "ipa_endpoint.h" |
| 20 | #include "ipa_gsi.h" |
| 21 | #include "ipa_interrupt.h" |
| 22 | #include "ipa_mem.h" |
| 23 | #include "ipa_modem.h" |
| 24 | #include "ipa_power.h" |
| 25 | #include "ipa_reg.h" |
| 26 | #include "ipa_table.h" |
| 27 | #include "ipa_version.h" |
| 28 | |
| 29 | /* Hardware is told about receive buffers once a "batch" has been queued */ |
| 30 | #define IPA_REPLENISH_BATCH 16 /* Must be non-zero */ |
| 31 | |
| 32 | /* The amount of RX buffer space consumed by standard skb overhead */ |
| 33 | #define IPA_RX_BUFFER_OVERHEAD (PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0)) |
| 34 | |
| 35 | /* Where to find the QMAP mux_id for a packet within modem-supplied metadata */ |
| 36 | #define IPA_ENDPOINT_QMAP_METADATA_MASK 0x000000ff /* host byte order */ |
| 37 | |
| 38 | #define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX 3 |
| 39 | |
| 40 | /** enum ipa_status_opcode - IPA status opcode field hardware values */ |
| 41 | enum ipa_status_opcode { /* *Not* a bitmask */ |
| 42 | IPA_STATUS_OPCODE_PACKET = 1, |
| 43 | IPA_STATUS_OPCODE_NEW_RULE_PACKET = 2, |
| 44 | IPA_STATUS_OPCODE_DROPPED_PACKET = 4, |
| 45 | IPA_STATUS_OPCODE_SUSPENDED_PACKET = 8, |
| 46 | IPA_STATUS_OPCODE_LOG = 16, |
| 47 | IPA_STATUS_OPCODE_DCMP = 32, |
| 48 | IPA_STATUS_OPCODE_PACKET_2ND_PASS = 64, |
| 49 | }; |
| 50 | |
| 51 | /** enum ipa_status_exception - IPA status exception field hardware values */ |
| 52 | enum ipa_status_exception { /* *Not* a bitmask */ |
| 53 | /* 0 means no exception */ |
| 54 | IPA_STATUS_EXCEPTION_DEAGGR = 1, |
| 55 | IPA_STATUS_EXCEPTION_IPTYPE = 4, |
| 56 | IPA_STATUS_EXCEPTION_PACKET_LENGTH = 8, |
| 57 | IPA_STATUS_EXCEPTION_FRAG_RULE_MISS = 16, |
| 58 | IPA_STATUS_EXCEPTION_SW_FILTER = 32, |
| 59 | IPA_STATUS_EXCEPTION_NAT = 64, /* IPv4 */ |
| 60 | IPA_STATUS_EXCEPTION_IPV6_CONN_TRACK = 64, /* IPv6 */ |
| 61 | IPA_STATUS_EXCEPTION_UC = 128, |
| 62 | IPA_STATUS_EXCEPTION_INVALID_ENDPOINT = 129, |
| 63 | = 136, |
| 64 | IPA_STATUS_EXCEPTION_CHEKCSUM = 229, |
| 65 | }; |
| 66 | |
| 67 | /** enum ipa_status_mask - IPA status mask field bitmask hardware values */ |
| 68 | enum ipa_status_mask { |
| 69 | IPA_STATUS_MASK_FRAG_PROCESS = BIT(0), |
| 70 | IPA_STATUS_MASK_FILT_PROCESS = BIT(1), |
| 71 | IPA_STATUS_MASK_NAT_PROCESS = BIT(2), |
| 72 | IPA_STATUS_MASK_ROUTE_PROCESS = BIT(3), |
| 73 | IPA_STATUS_MASK_TAG_VALID = BIT(4), |
| 74 | IPA_STATUS_MASK_FRAGMENT = BIT(5), |
| 75 | IPA_STATUS_MASK_FIRST_FRAGMENT = BIT(6), |
| 76 | IPA_STATUS_MASK_V4 = BIT(7), |
| 77 | IPA_STATUS_MASK_CKSUM_PROCESS = BIT(8), |
| 78 | IPA_STATUS_MASK_AGGR_PROCESS = BIT(9), |
| 79 | IPA_STATUS_MASK_DEST_EOT = BIT(10), |
| 80 | IPA_STATUS_MASK_DEAGGR_PROCESS = BIT(11), |
| 81 | IPA_STATUS_MASK_DEAGG_FIRST = BIT(12), |
| 82 | IPA_STATUS_MASK_SRC_EOT = BIT(13), |
| 83 | IPA_STATUS_MASK_PREV_EOT = BIT(14), |
| 84 | IPA_STATUS_MASK_BYTE_LIMIT = BIT(15), |
| 85 | }; |
| 86 | |
| 87 | /* Special IPA filter/router rule field value indicating "rule miss" */ |
| 88 | #define IPA_STATUS_RULE_MISS 0x3ff /* 10-bit filter/router rule fields */ |
| 89 | |
| 90 | /** The IPA status nat_type field uses enum ipa_nat_type hardware values */ |
| 91 | |
| 92 | /* enum ipa_status_field_id - IPA packet status structure field identifiers */ |
| 93 | enum ipa_status_field_id { |
| 94 | STATUS_OPCODE, /* enum ipa_status_opcode */ |
| 95 | STATUS_EXCEPTION, /* enum ipa_status_exception */ |
| 96 | STATUS_MASK, /* enum ipa_status_mask (bitmask) */ |
| 97 | STATUS_LENGTH, |
| 98 | STATUS_SRC_ENDPOINT, |
| 99 | STATUS_DST_ENDPOINT, |
| 100 | STATUS_METADATA, |
| 101 | STATUS_FILTER_LOCAL, /* Boolean */ |
| 102 | STATUS_FILTER_HASH, /* Boolean */ |
| 103 | STATUS_FILTER_GLOBAL, /* Boolean */ |
| 104 | STATUS_FILTER_RETAIN, /* Boolean */ |
| 105 | STATUS_FILTER_RULE_INDEX, |
| 106 | STATUS_ROUTER_LOCAL, /* Boolean */ |
| 107 | STATUS_ROUTER_HASH, /* Boolean */ |
| 108 | STATUS_UCP, /* Boolean */ |
| 109 | STATUS_ROUTER_TABLE, |
| 110 | STATUS_ROUTER_RULE_INDEX, |
| 111 | STATUS_NAT_HIT, /* Boolean */ |
| 112 | STATUS_NAT_INDEX, |
| 113 | STATUS_NAT_TYPE, /* enum ipa_nat_type */ |
| 114 | STATUS_TAG_LOW32, /* Low-order 32 bits of 48-bit tag */ |
| 115 | STATUS_TAG_HIGH16, /* High-order 16 bits of 48-bit tag */ |
| 116 | STATUS_SEQUENCE, |
| 117 | STATUS_TIME_OF_DAY, |
| 118 | , /* Boolean */ |
| 119 | , |
| 120 | STATUS_FRAG_HIT, /* Boolean */ |
| 121 | STATUS_FRAG_RULE_INDEX, |
| 122 | }; |
| 123 | |
| 124 | /* Size in bytes of an IPA packet status structure */ |
| 125 | #define IPA_STATUS_SIZE sizeof(__le32[8]) |
| 126 | |
| 127 | /* IPA status structure decoder; looks up field values for a structure */ |
| 128 | static u32 (struct ipa *ipa, const void *data, |
| 129 | enum ipa_status_field_id field) |
| 130 | { |
| 131 | enum ipa_version version = ipa->version; |
| 132 | const __le32 *word = data; |
| 133 | |
| 134 | switch (field) { |
| 135 | case STATUS_OPCODE: |
| 136 | return le32_get_bits(v: word[0], GENMASK(7, 0)); |
| 137 | case STATUS_EXCEPTION: |
| 138 | return le32_get_bits(v: word[0], GENMASK(15, 8)); |
| 139 | case STATUS_MASK: |
| 140 | return le32_get_bits(v: word[0], GENMASK(31, 16)); |
| 141 | case STATUS_LENGTH: |
| 142 | return le32_get_bits(v: word[1], GENMASK(15, 0)); |
| 143 | case STATUS_SRC_ENDPOINT: |
| 144 | if (version < IPA_VERSION_5_0) |
| 145 | return le32_get_bits(v: word[1], GENMASK(20, 16)); |
| 146 | return le32_get_bits(v: word[1], GENMASK(23, 16)); |
| 147 | /* Status word 1, bits 21-23 are reserved (not IPA v5.0+) */ |
| 148 | /* Status word 1, bits 24-26 are reserved (IPA v5.0+) */ |
| 149 | case STATUS_DST_ENDPOINT: |
| 150 | if (version < IPA_VERSION_5_0) |
| 151 | return le32_get_bits(v: word[1], GENMASK(28, 24)); |
| 152 | return le32_get_bits(v: word[7], GENMASK(23, 16)); |
| 153 | /* Status word 1, bits 29-31 are reserved */ |
| 154 | case STATUS_METADATA: |
| 155 | return le32_to_cpu(word[2]); |
| 156 | case STATUS_FILTER_LOCAL: |
| 157 | return le32_get_bits(v: word[3], GENMASK(0, 0)); |
| 158 | case STATUS_FILTER_HASH: |
| 159 | return le32_get_bits(v: word[3], GENMASK(1, 1)); |
| 160 | case STATUS_FILTER_GLOBAL: |
| 161 | return le32_get_bits(v: word[3], GENMASK(2, 2)); |
| 162 | case STATUS_FILTER_RETAIN: |
| 163 | return le32_get_bits(v: word[3], GENMASK(3, 3)); |
| 164 | case STATUS_FILTER_RULE_INDEX: |
| 165 | return le32_get_bits(v: word[3], GENMASK(13, 4)); |
| 166 | /* ROUTER_TABLE is in word 3, bits 14-21 (IPA v5.0+) */ |
| 167 | case STATUS_ROUTER_LOCAL: |
| 168 | if (version < IPA_VERSION_5_0) |
| 169 | return le32_get_bits(v: word[3], GENMASK(14, 14)); |
| 170 | return le32_get_bits(v: word[1], GENMASK(27, 27)); |
| 171 | case STATUS_ROUTER_HASH: |
| 172 | if (version < IPA_VERSION_5_0) |
| 173 | return le32_get_bits(v: word[3], GENMASK(15, 15)); |
| 174 | return le32_get_bits(v: word[1], GENMASK(28, 28)); |
| 175 | case STATUS_UCP: |
| 176 | if (version < IPA_VERSION_5_0) |
| 177 | return le32_get_bits(v: word[3], GENMASK(16, 16)); |
| 178 | return le32_get_bits(v: word[7], GENMASK(31, 31)); |
| 179 | case STATUS_ROUTER_TABLE: |
| 180 | if (version < IPA_VERSION_5_0) |
| 181 | return le32_get_bits(v: word[3], GENMASK(21, 17)); |
| 182 | return le32_get_bits(v: word[3], GENMASK(21, 14)); |
| 183 | case STATUS_ROUTER_RULE_INDEX: |
| 184 | return le32_get_bits(v: word[3], GENMASK(31, 22)); |
| 185 | case STATUS_NAT_HIT: |
| 186 | return le32_get_bits(v: word[4], GENMASK(0, 0)); |
| 187 | case STATUS_NAT_INDEX: |
| 188 | return le32_get_bits(v: word[4], GENMASK(13, 1)); |
| 189 | case STATUS_NAT_TYPE: |
| 190 | return le32_get_bits(v: word[4], GENMASK(15, 14)); |
| 191 | case STATUS_TAG_LOW32: |
| 192 | return le32_get_bits(v: word[4], GENMASK(31, 16)) | |
| 193 | (le32_get_bits(v: word[5], GENMASK(15, 0)) << 16); |
| 194 | case STATUS_TAG_HIGH16: |
| 195 | return le32_get_bits(v: word[5], GENMASK(31, 16)); |
| 196 | case STATUS_SEQUENCE: |
| 197 | return le32_get_bits(v: word[6], GENMASK(7, 0)); |
| 198 | case STATUS_TIME_OF_DAY: |
| 199 | return le32_get_bits(v: word[6], GENMASK(31, 8)); |
| 200 | case STATUS_HEADER_LOCAL: |
| 201 | return le32_get_bits(v: word[7], GENMASK(0, 0)); |
| 202 | case STATUS_HEADER_OFFSET: |
| 203 | return le32_get_bits(v: word[7], GENMASK(10, 1)); |
| 204 | case STATUS_FRAG_HIT: |
| 205 | return le32_get_bits(v: word[7], GENMASK(11, 11)); |
| 206 | case STATUS_FRAG_RULE_INDEX: |
| 207 | return le32_get_bits(v: word[7], GENMASK(15, 12)); |
| 208 | /* Status word 7, bits 16-30 are reserved */ |
| 209 | /* Status word 7, bit 31 is reserved (not IPA v5.0+) */ |
| 210 | default: |
| 211 | WARN(true, "%s: bad field_id %u\n" , __func__, field); |
| 212 | return 0; |
| 213 | } |
| 214 | } |
| 215 | |
| 216 | /* Compute the aggregation size value to use for a given buffer size */ |
| 217 | static u32 ipa_aggr_size_kb(u32 rx_buffer_size, bool aggr_hard_limit) |
| 218 | { |
| 219 | /* A hard aggregation limit will not be crossed; aggregation closes |
| 220 | * if saving incoming data would cross the hard byte limit boundary. |
| 221 | * |
| 222 | * With a soft limit, aggregation closes *after* the size boundary |
| 223 | * has been crossed. In that case the limit must leave enough space |
| 224 | * after that limit to receive a full MTU of data plus overhead. |
| 225 | */ |
| 226 | if (!aggr_hard_limit) |
| 227 | rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD; |
| 228 | |
| 229 | /* The byte limit is encoded as a number of kilobytes */ |
| 230 | |
| 231 | return rx_buffer_size / SZ_1K; |
| 232 | } |
| 233 | |
| 234 | static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count, |
| 235 | const struct ipa_gsi_endpoint_data *all_data, |
| 236 | const struct ipa_gsi_endpoint_data *data) |
| 237 | { |
| 238 | const struct ipa_gsi_endpoint_data *other_data; |
| 239 | enum ipa_endpoint_name other_name; |
| 240 | struct device *dev = ipa->dev; |
| 241 | |
| 242 | if (ipa_gsi_endpoint_data_empty(data)) |
| 243 | return true; |
| 244 | |
| 245 | if (!data->toward_ipa) { |
| 246 | const struct ipa_endpoint_rx *rx_config; |
| 247 | const struct reg *reg; |
| 248 | u32 buffer_size; |
| 249 | u32 aggr_size; |
| 250 | u32 limit; |
| 251 | |
| 252 | if (data->endpoint.filter_support) { |
| 253 | dev_err(dev, "filtering not supported for " |
| 254 | "RX endpoint %u\n" , |
| 255 | data->endpoint_id); |
| 256 | return false; |
| 257 | } |
| 258 | |
| 259 | /* Nothing more to check for non-AP RX */ |
| 260 | if (data->ee_id != GSI_EE_AP) |
| 261 | return true; |
| 262 | |
| 263 | rx_config = &data->endpoint.config.rx; |
| 264 | |
| 265 | /* The buffer size must hold an MTU plus overhead */ |
| 266 | buffer_size = rx_config->buffer_size; |
| 267 | limit = IPA_MTU + IPA_RX_BUFFER_OVERHEAD; |
| 268 | if (buffer_size < limit) { |
| 269 | dev_err(dev, "RX buffer size too small for RX endpoint %u (%u < %u)\n" , |
| 270 | data->endpoint_id, buffer_size, limit); |
| 271 | return false; |
| 272 | } |
| 273 | |
| 274 | if (!data->endpoint.config.aggregation) { |
| 275 | bool result = true; |
| 276 | |
| 277 | /* No aggregation; check for bogus aggregation data */ |
| 278 | if (rx_config->aggr_time_limit) { |
| 279 | dev_err(dev, |
| 280 | "time limit with no aggregation for RX endpoint %u\n" , |
| 281 | data->endpoint_id); |
| 282 | result = false; |
| 283 | } |
| 284 | |
| 285 | if (rx_config->aggr_hard_limit) { |
| 286 | dev_err(dev, "hard limit with no aggregation for RX endpoint %u\n" , |
| 287 | data->endpoint_id); |
| 288 | result = false; |
| 289 | } |
| 290 | |
| 291 | if (rx_config->aggr_close_eof) { |
| 292 | dev_err(dev, "close EOF with no aggregation for RX endpoint %u\n" , |
| 293 | data->endpoint_id); |
| 294 | result = false; |
| 295 | } |
| 296 | |
| 297 | return result; /* Nothing more to check */ |
| 298 | } |
| 299 | |
| 300 | /* For an endpoint supporting receive aggregation, the byte |
| 301 | * limit defines the point at which aggregation closes. This |
| 302 | * check ensures the receive buffer size doesn't result in a |
| 303 | * limit that exceeds what's representable in the aggregation |
| 304 | * byte limit field. |
| 305 | */ |
| 306 | aggr_size = ipa_aggr_size_kb(rx_buffer_size: buffer_size - NET_SKB_PAD, |
| 307 | aggr_hard_limit: rx_config->aggr_hard_limit); |
| 308 | reg = ipa_reg(ipa, reg_id: ENDP_INIT_AGGR); |
| 309 | |
| 310 | limit = reg_field_max(reg, field_id: BYTE_LIMIT); |
| 311 | if (aggr_size > limit) { |
| 312 | dev_err(dev, "aggregated size too large for RX endpoint %u (%u KB > %u KB)\n" , |
| 313 | data->endpoint_id, aggr_size, limit); |
| 314 | |
| 315 | return false; |
| 316 | } |
| 317 | |
| 318 | return true; /* Nothing more to check for RX */ |
| 319 | } |
| 320 | |
| 321 | /* Starting with IPA v4.5 sequencer replication is obsolete */ |
| 322 | if (ipa->version >= IPA_VERSION_4_5) { |
| 323 | if (data->endpoint.config.tx.seq_rep_type) { |
| 324 | dev_err(dev, "no-zero seq_rep_type TX endpoint %u\n" , |
| 325 | data->endpoint_id); |
| 326 | return false; |
| 327 | } |
| 328 | } |
| 329 | |
| 330 | if (data->endpoint.config.status_enable) { |
| 331 | other_name = data->endpoint.config.tx.status_endpoint; |
| 332 | if (other_name >= count) { |
| 333 | dev_err(dev, "status endpoint name %u out of range " |
| 334 | "for endpoint %u\n" , |
| 335 | other_name, data->endpoint_id); |
| 336 | return false; |
| 337 | } |
| 338 | |
| 339 | /* Status endpoint must be defined... */ |
| 340 | other_data = &all_data[other_name]; |
| 341 | if (ipa_gsi_endpoint_data_empty(data: other_data)) { |
| 342 | dev_err(dev, "DMA endpoint name %u undefined " |
| 343 | "for endpoint %u\n" , |
| 344 | other_name, data->endpoint_id); |
| 345 | return false; |
| 346 | } |
| 347 | |
| 348 | /* ...and has to be an RX endpoint... */ |
| 349 | if (other_data->toward_ipa) { |
| 350 | dev_err(dev, |
| 351 | "status endpoint for endpoint %u not RX\n" , |
| 352 | data->endpoint_id); |
| 353 | return false; |
| 354 | } |
| 355 | |
| 356 | /* ...and if it's to be an AP endpoint... */ |
| 357 | if (other_data->ee_id == GSI_EE_AP) { |
| 358 | /* ...make sure it has status enabled. */ |
| 359 | if (!other_data->endpoint.config.status_enable) { |
| 360 | dev_err(dev, |
| 361 | "status not enabled for endpoint %u\n" , |
| 362 | other_data->endpoint_id); |
| 363 | return false; |
| 364 | } |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | if (data->endpoint.config.dma_mode) { |
| 369 | other_name = data->endpoint.config.dma_endpoint; |
| 370 | if (other_name >= count) { |
| 371 | dev_err(dev, "DMA endpoint name %u out of range " |
| 372 | "for endpoint %u\n" , |
| 373 | other_name, data->endpoint_id); |
| 374 | return false; |
| 375 | } |
| 376 | |
| 377 | other_data = &all_data[other_name]; |
| 378 | if (ipa_gsi_endpoint_data_empty(data: other_data)) { |
| 379 | dev_err(dev, "DMA endpoint name %u undefined " |
| 380 | "for endpoint %u\n" , |
| 381 | other_name, data->endpoint_id); |
| 382 | return false; |
| 383 | } |
| 384 | } |
| 385 | |
| 386 | return true; |
| 387 | } |
| 388 | |
| 389 | /* Validate endpoint configuration data. Return max defined endpoint ID */ |
| 390 | static u32 ipa_endpoint_max(struct ipa *ipa, u32 count, |
| 391 | const struct ipa_gsi_endpoint_data *data) |
| 392 | { |
| 393 | const struct ipa_gsi_endpoint_data *dp = data; |
| 394 | struct device *dev = ipa->dev; |
| 395 | enum ipa_endpoint_name name; |
| 396 | u32 max; |
| 397 | |
| 398 | if (count > IPA_ENDPOINT_COUNT) { |
| 399 | dev_err(dev, "too many endpoints specified (%u > %u)\n" , |
| 400 | count, IPA_ENDPOINT_COUNT); |
| 401 | return 0; |
| 402 | } |
| 403 | |
| 404 | /* Make sure needed endpoints have defined data */ |
| 405 | if (ipa_gsi_endpoint_data_empty(data: &data[IPA_ENDPOINT_AP_COMMAND_TX])) { |
| 406 | dev_err(dev, "command TX endpoint not defined\n" ); |
| 407 | return 0; |
| 408 | } |
| 409 | if (ipa_gsi_endpoint_data_empty(data: &data[IPA_ENDPOINT_AP_LAN_RX])) { |
| 410 | dev_err(dev, "LAN RX endpoint not defined\n" ); |
| 411 | return 0; |
| 412 | } |
| 413 | if (ipa_gsi_endpoint_data_empty(data: &data[IPA_ENDPOINT_AP_MODEM_TX])) { |
| 414 | dev_err(dev, "AP->modem TX endpoint not defined\n" ); |
| 415 | return 0; |
| 416 | } |
| 417 | if (ipa_gsi_endpoint_data_empty(data: &data[IPA_ENDPOINT_AP_MODEM_RX])) { |
| 418 | dev_err(dev, "AP<-modem RX endpoint not defined\n" ); |
| 419 | return 0; |
| 420 | } |
| 421 | |
| 422 | max = 0; |
| 423 | for (name = 0; name < count; name++, dp++) { |
| 424 | if (!ipa_endpoint_data_valid_one(ipa, count, all_data: data, data: dp)) |
| 425 | return 0; |
| 426 | max = max_t(u32, max, dp->endpoint_id); |
| 427 | } |
| 428 | |
| 429 | return max; |
| 430 | } |
| 431 | |
| 432 | /* Allocate a transaction to use on a non-command endpoint */ |
| 433 | static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint, |
| 434 | u32 tre_count) |
| 435 | { |
| 436 | struct gsi *gsi = &endpoint->ipa->gsi; |
| 437 | u32 channel_id = endpoint->channel_id; |
| 438 | enum dma_data_direction direction; |
| 439 | |
| 440 | direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE; |
| 441 | |
| 442 | return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction); |
| 443 | } |
| 444 | |
| 445 | /* suspend_delay represents suspend for RX, delay for TX endpoints. |
| 446 | * Note that suspend is not supported starting with IPA v4.0, and |
| 447 | * delay mode should not be used starting with IPA v4.2. |
| 448 | */ |
| 449 | static bool |
| 450 | ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay) |
| 451 | { |
| 452 | struct ipa *ipa = endpoint->ipa; |
| 453 | const struct reg *reg; |
| 454 | u32 field_id; |
| 455 | u32 offset; |
| 456 | bool state; |
| 457 | u32 mask; |
| 458 | u32 val; |
| 459 | |
| 460 | if (endpoint->toward_ipa) |
| 461 | WARN_ON(ipa->version >= IPA_VERSION_4_2); |
| 462 | else |
| 463 | WARN_ON(ipa->version >= IPA_VERSION_4_0); |
| 464 | |
| 465 | reg = ipa_reg(ipa, reg_id: ENDP_INIT_CTRL); |
| 466 | offset = reg_n_offset(reg, n: endpoint->endpoint_id); |
| 467 | val = ioread32(ipa->reg_virt + offset); |
| 468 | |
| 469 | field_id = endpoint->toward_ipa ? ENDP_DELAY : ENDP_SUSPEND; |
| 470 | mask = reg_bit(reg, field_id); |
| 471 | |
| 472 | state = !!(val & mask); |
| 473 | |
| 474 | /* Don't bother if it's already in the requested state */ |
| 475 | if (suspend_delay != state) { |
| 476 | val ^= mask; |
| 477 | iowrite32(val, ipa->reg_virt + offset); |
| 478 | } |
| 479 | |
| 480 | return state; |
| 481 | } |
| 482 | |
| 483 | /* We don't care what the previous state was for delay mode */ |
| 484 | static void |
| 485 | ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable) |
| 486 | { |
| 487 | /* Delay mode should not be used for IPA v4.2+ */ |
| 488 | WARN_ON(endpoint->ipa->version >= IPA_VERSION_4_2); |
| 489 | WARN_ON(!endpoint->toward_ipa); |
| 490 | |
| 491 | (void)ipa_endpoint_init_ctrl(endpoint, suspend_delay: enable); |
| 492 | } |
| 493 | |
| 494 | static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint) |
| 495 | { |
| 496 | u32 endpoint_id = endpoint->endpoint_id; |
| 497 | struct ipa *ipa = endpoint->ipa; |
| 498 | u32 unit = endpoint_id / 32; |
| 499 | const struct reg *reg; |
| 500 | u32 val; |
| 501 | |
| 502 | WARN_ON(!test_bit(endpoint_id, ipa->available)); |
| 503 | |
| 504 | reg = ipa_reg(ipa, reg_id: STATE_AGGR_ACTIVE); |
| 505 | val = ioread32(ipa->reg_virt + reg_n_offset(reg, n: unit)); |
| 506 | |
| 507 | return !!(val & BIT(endpoint_id % 32)); |
| 508 | } |
| 509 | |
| 510 | static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint) |
| 511 | { |
| 512 | u32 endpoint_id = endpoint->endpoint_id; |
| 513 | u32 mask = BIT(endpoint_id % 32); |
| 514 | struct ipa *ipa = endpoint->ipa; |
| 515 | u32 unit = endpoint_id / 32; |
| 516 | const struct reg *reg; |
| 517 | |
| 518 | WARN_ON(!test_bit(endpoint_id, ipa->available)); |
| 519 | |
| 520 | reg = ipa_reg(ipa, reg_id: AGGR_FORCE_CLOSE); |
| 521 | iowrite32(mask, ipa->reg_virt + reg_n_offset(reg, n: unit)); |
| 522 | } |
| 523 | |
| 524 | /** |
| 525 | * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt |
| 526 | * @endpoint: Endpoint on which to emulate a suspend |
| 527 | * |
| 528 | * Emulate suspend IPA interrupt to unsuspend an endpoint suspended |
| 529 | * with an open aggregation frame. This is to work around a hardware |
| 530 | * issue in IPA version 3.5.1 where the suspend interrupt will not be |
| 531 | * generated when it should be. |
| 532 | */ |
| 533 | static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint) |
| 534 | { |
| 535 | struct ipa *ipa = endpoint->ipa; |
| 536 | |
| 537 | if (!endpoint->config.aggregation) |
| 538 | return; |
| 539 | |
| 540 | /* Nothing to do if the endpoint doesn't have aggregation open */ |
| 541 | if (!ipa_endpoint_aggr_active(endpoint)) |
| 542 | return; |
| 543 | |
| 544 | /* Force close aggregation */ |
| 545 | ipa_endpoint_force_close(endpoint); |
| 546 | |
| 547 | ipa_interrupt_simulate_suspend(interrupt: ipa->interrupt); |
| 548 | } |
| 549 | |
| 550 | /* Returns previous suspend state (true means suspend was enabled) */ |
| 551 | static bool |
| 552 | ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable) |
| 553 | { |
| 554 | bool suspended; |
| 555 | |
| 556 | if (endpoint->ipa->version >= IPA_VERSION_4_0) |
| 557 | return enable; /* For IPA v4.0+, no change made */ |
| 558 | |
| 559 | WARN_ON(endpoint->toward_ipa); |
| 560 | |
| 561 | suspended = ipa_endpoint_init_ctrl(endpoint, suspend_delay: enable); |
| 562 | |
| 563 | /* A client suspended with an open aggregation frame will not |
| 564 | * generate a SUSPEND IPA interrupt. If enabling suspend, have |
| 565 | * ipa_endpoint_suspend_aggr() handle this. |
| 566 | */ |
| 567 | if (enable && !suspended) |
| 568 | ipa_endpoint_suspend_aggr(endpoint); |
| 569 | |
| 570 | return suspended; |
| 571 | } |
| 572 | |
| 573 | /* Put all modem RX endpoints into suspend mode, and stop transmission |
| 574 | * on all modem TX endpoints. Prior to IPA v4.2, endpoint DELAY mode is |
| 575 | * used for TX endpoints; starting with IPA v4.2 we use GSI channel flow |
| 576 | * control instead. |
| 577 | */ |
| 578 | void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable) |
| 579 | { |
| 580 | u32 endpoint_id = 0; |
| 581 | |
| 582 | while (endpoint_id < ipa->endpoint_count) { |
| 583 | struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id++]; |
| 584 | |
| 585 | if (endpoint->ee_id != GSI_EE_MODEM) |
| 586 | continue; |
| 587 | |
| 588 | if (!endpoint->toward_ipa) |
| 589 | (void)ipa_endpoint_program_suspend(endpoint, enable); |
| 590 | else if (ipa->version < IPA_VERSION_4_2) |
| 591 | ipa_endpoint_program_delay(endpoint, enable); |
| 592 | else |
| 593 | gsi_modem_channel_flow_control(gsi: &ipa->gsi, |
| 594 | channel_id: endpoint->channel_id, |
| 595 | enable); |
| 596 | } |
| 597 | } |
| 598 | |
| 599 | /* Reset all modem endpoints to use the default exception endpoint */ |
| 600 | int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa) |
| 601 | { |
| 602 | struct gsi_trans *trans; |
| 603 | u32 endpoint_id; |
| 604 | u32 count; |
| 605 | |
| 606 | /* We need one command per modem TX endpoint, plus the commands |
| 607 | * that clear the pipeline. |
| 608 | */ |
| 609 | count = ipa->modem_tx_count + ipa_cmd_pipeline_clear_count(); |
| 610 | trans = ipa_cmd_trans_alloc(ipa, tre_count: count); |
| 611 | if (!trans) { |
| 612 | dev_err(ipa->dev, |
| 613 | "no transaction to reset modem exception endpoints\n" ); |
| 614 | return -EBUSY; |
| 615 | } |
| 616 | |
| 617 | for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) { |
| 618 | struct ipa_endpoint *endpoint; |
| 619 | const struct reg *reg; |
| 620 | u32 offset; |
| 621 | |
| 622 | /* We only reset modem TX endpoints */ |
| 623 | endpoint = &ipa->endpoint[endpoint_id]; |
| 624 | if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa)) |
| 625 | continue; |
| 626 | |
| 627 | reg = ipa_reg(ipa, reg_id: ENDP_STATUS); |
| 628 | offset = reg_n_offset(reg, n: endpoint_id); |
| 629 | |
| 630 | /* Value written is 0, and all bits are updated. That |
| 631 | * means status is disabled on the endpoint, and as a |
| 632 | * result all other fields in the register are ignored. |
| 633 | */ |
| 634 | ipa_cmd_register_write_add(trans, offset, value: 0, mask: ~0, clear_full: false); |
| 635 | } |
| 636 | |
| 637 | ipa_cmd_pipeline_clear_add(trans); |
| 638 | |
| 639 | gsi_trans_commit_wait(trans); |
| 640 | |
| 641 | ipa_cmd_pipeline_clear_wait(ipa); |
| 642 | |
| 643 | return 0; |
| 644 | } |
| 645 | |
| 646 | static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint) |
| 647 | { |
| 648 | u32 endpoint_id = endpoint->endpoint_id; |
| 649 | struct ipa *ipa = endpoint->ipa; |
| 650 | enum ipa_cs_offload_en enabled; |
| 651 | const struct reg *reg; |
| 652 | u32 val = 0; |
| 653 | |
| 654 | reg = ipa_reg(ipa, reg_id: ENDP_INIT_CFG); |
| 655 | /* FRAG_OFFLOAD_EN is 0 */ |
| 656 | if (endpoint->config.checksum) { |
| 657 | enum ipa_version version = ipa->version; |
| 658 | |
| 659 | if (endpoint->toward_ipa) { |
| 660 | u32 off; |
| 661 | |
| 662 | /* Checksum header offset is in 4-byte units */ |
| 663 | off = sizeof(struct rmnet_map_header) / sizeof(u32); |
| 664 | val |= reg_encode(reg, field_id: CS_METADATA_HDR_OFFSET, val: off); |
| 665 | |
| 666 | enabled = version < IPA_VERSION_4_5 |
| 667 | ? IPA_CS_OFFLOAD_UL |
| 668 | : IPA_CS_OFFLOAD_INLINE; |
| 669 | } else { |
| 670 | enabled = version < IPA_VERSION_4_5 |
| 671 | ? IPA_CS_OFFLOAD_DL |
| 672 | : IPA_CS_OFFLOAD_INLINE; |
| 673 | } |
| 674 | } else { |
| 675 | enabled = IPA_CS_OFFLOAD_NONE; |
| 676 | } |
| 677 | val |= reg_encode(reg, field_id: CS_OFFLOAD_EN, val: enabled); |
| 678 | /* CS_GEN_QMB_MASTER_SEL is 0 */ |
| 679 | |
| 680 | iowrite32(val, ipa->reg_virt + reg_n_offset(reg, n: endpoint_id)); |
| 681 | } |
| 682 | |
| 683 | static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint) |
| 684 | { |
| 685 | u32 endpoint_id = endpoint->endpoint_id; |
| 686 | struct ipa *ipa = endpoint->ipa; |
| 687 | const struct reg *reg; |
| 688 | u32 val; |
| 689 | |
| 690 | if (!endpoint->toward_ipa) |
| 691 | return; |
| 692 | |
| 693 | reg = ipa_reg(ipa, reg_id: ENDP_INIT_NAT); |
| 694 | val = reg_encode(reg, field_id: NAT_EN, val: IPA_NAT_TYPE_BYPASS); |
| 695 | |
| 696 | iowrite32(val, ipa->reg_virt + reg_n_offset(reg, n: endpoint_id)); |
| 697 | } |
| 698 | |
| 699 | static u32 |
| 700 | (enum ipa_version version, struct ipa_endpoint *endpoint) |
| 701 | { |
| 702 | u32 = sizeof(struct rmnet_map_header); |
| 703 | |
| 704 | /* Without checksum offload, we just have the MAP header */ |
| 705 | if (!endpoint->config.checksum) |
| 706 | return header_size; |
| 707 | |
| 708 | if (version < IPA_VERSION_4_5) { |
| 709 | /* Checksum header inserted for AP TX endpoints only */ |
| 710 | if (endpoint->toward_ipa) |
| 711 | header_size += sizeof(struct rmnet_map_ul_csum_header); |
| 712 | } else { |
| 713 | /* Checksum header is used in both directions */ |
| 714 | header_size += sizeof(struct rmnet_map_v5_csum_header); |
| 715 | } |
| 716 | |
| 717 | return header_size; |
| 718 | } |
| 719 | |
| 720 | /* Encoded value for ENDP_INIT_HDR register HDR_LEN* field(s) */ |
| 721 | static u32 (enum ipa_version version, |
| 722 | const struct reg *reg, u32 ) |
| 723 | { |
| 724 | u32 field_max = reg_field_max(reg, field_id: HDR_LEN); |
| 725 | u32 val; |
| 726 | |
| 727 | /* We know field_max can be used as a mask (2^n - 1) */ |
| 728 | val = reg_encode(reg, field_id: HDR_LEN, val: header_size & field_max); |
| 729 | if (version < IPA_VERSION_4_5) { |
| 730 | WARN_ON(header_size > field_max); |
| 731 | return val; |
| 732 | } |
| 733 | |
| 734 | /* IPA v4.5 adds a few more most-significant bits */ |
| 735 | header_size >>= hweight32(field_max); |
| 736 | WARN_ON(header_size > reg_field_max(reg, HDR_LEN_MSB)); |
| 737 | val |= reg_encode(reg, field_id: HDR_LEN_MSB, val: header_size); |
| 738 | |
| 739 | return val; |
| 740 | } |
| 741 | |
| 742 | /* Encoded value for ENDP_INIT_HDR register OFST_METADATA* field(s) */ |
| 743 | static u32 ipa_metadata_offset_encode(enum ipa_version version, |
| 744 | const struct reg *reg, u32 offset) |
| 745 | { |
| 746 | u32 field_max = reg_field_max(reg, field_id: HDR_OFST_METADATA); |
| 747 | u32 val; |
| 748 | |
| 749 | /* We know field_max can be used as a mask (2^n - 1) */ |
| 750 | val = reg_encode(reg, field_id: HDR_OFST_METADATA, val: offset); |
| 751 | if (version < IPA_VERSION_4_5) { |
| 752 | WARN_ON(offset > field_max); |
| 753 | return val; |
| 754 | } |
| 755 | |
| 756 | /* IPA v4.5 adds a few more most-significant bits */ |
| 757 | offset >>= hweight32(field_max); |
| 758 | WARN_ON(offset > reg_field_max(reg, HDR_OFST_METADATA_MSB)); |
| 759 | val |= reg_encode(reg, field_id: HDR_OFST_METADATA_MSB, val: offset); |
| 760 | |
| 761 | return val; |
| 762 | } |
| 763 | |
| 764 | /** |
| 765 | * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register |
| 766 | * @endpoint: Endpoint pointer |
| 767 | * |
| 768 | * We program QMAP endpoints so each packet received is preceded by a QMAP |
| 769 | * header structure. The QMAP header contains a 1-byte mux_id and 2-byte |
| 770 | * packet size field, and we have the IPA hardware populate both for each |
| 771 | * received packet. The header is configured (in the HDR_EXT register) |
| 772 | * to use big endian format. |
| 773 | * |
| 774 | * The packet size is written into the QMAP header's pkt_len field. That |
| 775 | * location is defined here using the HDR_OFST_PKT_SIZE field. |
| 776 | * |
| 777 | * The mux_id comes from a 4-byte metadata value supplied with each packet |
| 778 | * by the modem. It is *not* a QMAP header, but it does contain the mux_id |
| 779 | * value that we want, in its low-order byte. A bitmask defined in the |
| 780 | * endpoint's METADATA_MASK register defines which byte within the modem |
| 781 | * metadata contains the mux_id. And the OFST_METADATA field programmed |
| 782 | * here indicates where the extracted byte should be placed within the QMAP |
| 783 | * header. |
| 784 | */ |
| 785 | static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint) |
| 786 | { |
| 787 | u32 endpoint_id = endpoint->endpoint_id; |
| 788 | struct ipa *ipa = endpoint->ipa; |
| 789 | const struct reg *reg; |
| 790 | u32 val = 0; |
| 791 | |
| 792 | reg = ipa_reg(ipa, reg_id: ENDP_INIT_HDR); |
| 793 | if (endpoint->config.qmap) { |
| 794 | enum ipa_version version = ipa->version; |
| 795 | size_t ; |
| 796 | |
| 797 | header_size = ipa_qmap_header_size(version, endpoint); |
| 798 | val = ipa_header_size_encode(version, reg, header_size); |
| 799 | |
| 800 | /* Define how to fill fields in a received QMAP header */ |
| 801 | if (!endpoint->toward_ipa) { |
| 802 | u32 off; /* Field offset within header */ |
| 803 | |
| 804 | /* Where IPA will write the metadata value */ |
| 805 | off = offsetof(struct rmnet_map_header, mux_id); |
| 806 | val |= ipa_metadata_offset_encode(version, reg, offset: off); |
| 807 | |
| 808 | /* Where IPA will write the length */ |
| 809 | off = offsetof(struct rmnet_map_header, pkt_len); |
| 810 | /* Upper bits are stored in HDR_EXT with IPA v4.5 */ |
| 811 | if (version >= IPA_VERSION_4_5) |
| 812 | off &= reg_field_max(reg, field_id: HDR_OFST_PKT_SIZE); |
| 813 | |
| 814 | val |= reg_bit(reg, field_id: HDR_OFST_PKT_SIZE_VALID); |
| 815 | val |= reg_encode(reg, field_id: HDR_OFST_PKT_SIZE, val: off); |
| 816 | } |
| 817 | /* For QMAP TX, metadata offset is 0 (modem assumes this) */ |
| 818 | val |= reg_bit(reg, field_id: HDR_OFST_METADATA_VALID); |
| 819 | |
| 820 | /* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */ |
| 821 | /* HDR_A5_MUX is 0 */ |
| 822 | /* HDR_LEN_INC_DEAGG_HDR is 0 */ |
| 823 | /* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */ |
| 824 | } |
| 825 | |
| 826 | iowrite32(val, ipa->reg_virt + reg_n_offset(reg, n: endpoint_id)); |
| 827 | } |
| 828 | |
| 829 | static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint) |
| 830 | { |
| 831 | u32 pad_align = endpoint->config.rx.pad_align; |
| 832 | u32 endpoint_id = endpoint->endpoint_id; |
| 833 | struct ipa *ipa = endpoint->ipa; |
| 834 | const struct reg *reg; |
| 835 | u32 val = 0; |
| 836 | |
| 837 | reg = ipa_reg(ipa, reg_id: ENDP_INIT_HDR_EXT); |
| 838 | if (endpoint->config.qmap) { |
| 839 | /* We have a header, so we must specify its endianness */ |
| 840 | val |= reg_bit(reg, field_id: HDR_ENDIANNESS); /* big endian */ |
| 841 | |
| 842 | /* A QMAP header contains a 6 bit pad field at offset 0. |
| 843 | * The RMNet driver assumes this field is meaningful in |
| 844 | * packets it receives, and assumes the header's payload |
| 845 | * length includes that padding. The RMNet driver does |
| 846 | * *not* pad packets it sends, however, so the pad field |
| 847 | * (although 0) should be ignored. |
| 848 | */ |
| 849 | if (!endpoint->toward_ipa) { |
| 850 | val |= reg_bit(reg, field_id: HDR_TOTAL_LEN_OR_PAD_VALID); |
| 851 | /* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */ |
| 852 | val |= reg_bit(reg, field_id: HDR_PAYLOAD_LEN_INC_PADDING); |
| 853 | /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */ |
| 854 | } |
| 855 | } |
| 856 | |
| 857 | /* HDR_PAYLOAD_LEN_INC_PADDING is 0 */ |
| 858 | if (!endpoint->toward_ipa) |
| 859 | val |= reg_encode(reg, field_id: HDR_PAD_TO_ALIGNMENT, val: pad_align); |
| 860 | |
| 861 | /* IPA v4.5 adds some most-significant bits to a few fields, |
| 862 | * two of which are defined in the HDR (not HDR_EXT) register. |
| 863 | */ |
| 864 | if (ipa->version >= IPA_VERSION_4_5) { |
| 865 | /* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */ |
| 866 | if (endpoint->config.qmap && !endpoint->toward_ipa) { |
| 867 | u32 mask = reg_field_max(reg, field_id: HDR_OFST_PKT_SIZE); |
| 868 | u32 off; /* Field offset within header */ |
| 869 | |
| 870 | off = offsetof(struct rmnet_map_header, pkt_len); |
| 871 | /* Low bits are in the ENDP_INIT_HDR register */ |
| 872 | off >>= hweight32(mask); |
| 873 | val |= reg_encode(reg, field_id: HDR_OFST_PKT_SIZE_MSB, val: off); |
| 874 | /* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */ |
| 875 | } |
| 876 | } |
| 877 | |
| 878 | iowrite32(val, ipa->reg_virt + reg_n_offset(reg, n: endpoint_id)); |
| 879 | } |
| 880 | |
| 881 | static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint) |
| 882 | { |
| 883 | u32 endpoint_id = endpoint->endpoint_id; |
| 884 | struct ipa *ipa = endpoint->ipa; |
| 885 | const struct reg *reg; |
| 886 | u32 val = 0; |
| 887 | u32 offset; |
| 888 | |
| 889 | if (endpoint->toward_ipa) |
| 890 | return; /* Register not valid for TX endpoints */ |
| 891 | |
| 892 | reg = ipa_reg(ipa, reg_id: ENDP_INIT_HDR_METADATA_MASK); |
| 893 | offset = reg_n_offset(reg, n: endpoint_id); |
| 894 | |
| 895 | /* Note that HDR_ENDIANNESS indicates big endian header fields */ |
| 896 | if (endpoint->config.qmap) |
| 897 | val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK); |
| 898 | |
| 899 | iowrite32(val, ipa->reg_virt + offset); |
| 900 | } |
| 901 | |
| 902 | static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint) |
| 903 | { |
| 904 | struct ipa *ipa = endpoint->ipa; |
| 905 | const struct reg *reg; |
| 906 | u32 offset; |
| 907 | u32 val; |
| 908 | |
| 909 | if (!endpoint->toward_ipa) |
| 910 | return; /* Register not valid for RX endpoints */ |
| 911 | |
| 912 | reg = ipa_reg(ipa, reg_id: ENDP_INIT_MODE); |
| 913 | if (endpoint->config.dma_mode) { |
| 914 | enum ipa_endpoint_name name = endpoint->config.dma_endpoint; |
| 915 | u32 dma_endpoint_id = ipa->name_map[name]->endpoint_id; |
| 916 | |
| 917 | val = reg_encode(reg, field_id: ENDP_MODE, val: IPA_DMA); |
| 918 | val |= reg_encode(reg, field_id: DEST_PIPE_INDEX, val: dma_endpoint_id); |
| 919 | } else { |
| 920 | val = reg_encode(reg, field_id: ENDP_MODE, val: IPA_BASIC); |
| 921 | } |
| 922 | /* All other bits unspecified (and 0) */ |
| 923 | |
| 924 | offset = reg_n_offset(reg, n: endpoint->endpoint_id); |
| 925 | iowrite32(val, ipa->reg_virt + offset); |
| 926 | } |
| 927 | |
| 928 | /* For IPA v4.5+, times are expressed using Qtime. A time is represented |
| 929 | * at one of several available granularities, which are configured in |
| 930 | * ipa_qtime_config(). Three (or, starting with IPA v5.0, four) pulse |
| 931 | * generators are set up with different "tick" periods. A Qtime value |
| 932 | * encodes a tick count along with an indication of a pulse generator |
| 933 | * (which has a fixed tick period). Two pulse generators are always |
| 934 | * available to the AP; a third is available starting with IPA v5.0. |
| 935 | * This function determines which pulse generator most accurately |
| 936 | * represents the time period provided, and returns the tick count to |
| 937 | * use to represent that time. |
| 938 | */ |
| 939 | static u32 |
| 940 | ipa_qtime_val(struct ipa *ipa, u32 microseconds, u32 max, u32 *select) |
| 941 | { |
| 942 | u32 which = 0; |
| 943 | u32 ticks; |
| 944 | |
| 945 | /* Pulse generator 0 has 100 microsecond granularity */ |
| 946 | ticks = DIV_ROUND_CLOSEST(microseconds, 100); |
| 947 | if (ticks <= max) |
| 948 | goto out; |
| 949 | |
| 950 | /* Pulse generator 1 has millisecond granularity */ |
| 951 | which = 1; |
| 952 | ticks = DIV_ROUND_CLOSEST(microseconds, 1000); |
| 953 | if (ticks <= max) |
| 954 | goto out; |
| 955 | |
| 956 | if (ipa->version >= IPA_VERSION_5_0) { |
| 957 | /* Pulse generator 2 has 10 millisecond granularity */ |
| 958 | which = 2; |
| 959 | ticks = DIV_ROUND_CLOSEST(microseconds, 100); |
| 960 | } |
| 961 | WARN_ON(ticks > max); |
| 962 | out: |
| 963 | *select = which; |
| 964 | |
| 965 | return ticks; |
| 966 | } |
| 967 | |
| 968 | /* Encode the aggregation timer limit (microseconds) based on IPA version */ |
| 969 | static u32 aggr_time_limit_encode(struct ipa *ipa, const struct reg *reg, |
| 970 | u32 microseconds) |
| 971 | { |
| 972 | u32 ticks; |
| 973 | u32 max; |
| 974 | |
| 975 | if (!microseconds) |
| 976 | return 0; /* Nothing to compute if time limit is 0 */ |
| 977 | |
| 978 | max = reg_field_max(reg, field_id: TIME_LIMIT); |
| 979 | if (ipa->version >= IPA_VERSION_4_5) { |
| 980 | u32 select; |
| 981 | |
| 982 | ticks = ipa_qtime_val(ipa, microseconds, max, select: &select); |
| 983 | |
| 984 | return reg_encode(reg, field_id: AGGR_GRAN_SEL, val: select) | |
| 985 | reg_encode(reg, field_id: TIME_LIMIT, val: ticks); |
| 986 | } |
| 987 | |
| 988 | /* We program aggregation granularity in ipa_hardware_config() */ |
| 989 | ticks = DIV_ROUND_CLOSEST(microseconds, IPA_AGGR_GRANULARITY); |
| 990 | WARN(ticks > max, "aggr_time_limit too large (%u > %u usec)\n" , |
| 991 | microseconds, max * IPA_AGGR_GRANULARITY); |
| 992 | |
| 993 | return reg_encode(reg, field_id: TIME_LIMIT, val: ticks); |
| 994 | } |
| 995 | |
| 996 | static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint) |
| 997 | { |
| 998 | u32 endpoint_id = endpoint->endpoint_id; |
| 999 | struct ipa *ipa = endpoint->ipa; |
| 1000 | const struct reg *reg; |
| 1001 | u32 val = 0; |
| 1002 | |
| 1003 | reg = ipa_reg(ipa, reg_id: ENDP_INIT_AGGR); |
| 1004 | if (endpoint->config.aggregation) { |
| 1005 | if (!endpoint->toward_ipa) { |
| 1006 | const struct ipa_endpoint_rx *rx_config; |
| 1007 | u32 buffer_size; |
| 1008 | u32 limit; |
| 1009 | |
| 1010 | rx_config = &endpoint->config.rx; |
| 1011 | val |= reg_encode(reg, field_id: AGGR_EN, val: IPA_ENABLE_AGGR); |
| 1012 | val |= reg_encode(reg, field_id: AGGR_TYPE, val: IPA_GENERIC); |
| 1013 | |
| 1014 | buffer_size = rx_config->buffer_size; |
| 1015 | limit = ipa_aggr_size_kb(rx_buffer_size: buffer_size - NET_SKB_PAD, |
| 1016 | aggr_hard_limit: rx_config->aggr_hard_limit); |
| 1017 | val |= reg_encode(reg, field_id: BYTE_LIMIT, val: limit); |
| 1018 | |
| 1019 | limit = rx_config->aggr_time_limit; |
| 1020 | val |= aggr_time_limit_encode(ipa, reg, microseconds: limit); |
| 1021 | |
| 1022 | /* AGGR_PKT_LIMIT is 0 (unlimited) */ |
| 1023 | |
| 1024 | if (rx_config->aggr_close_eof) |
| 1025 | val |= reg_bit(reg, field_id: SW_EOF_ACTIVE); |
| 1026 | } else { |
| 1027 | val |= reg_encode(reg, field_id: AGGR_EN, val: IPA_ENABLE_DEAGGR); |
| 1028 | val |= reg_encode(reg, field_id: AGGR_TYPE, val: IPA_QCMAP); |
| 1029 | /* other fields ignored */ |
| 1030 | } |
| 1031 | /* AGGR_FORCE_CLOSE is 0 */ |
| 1032 | /* AGGR_GRAN_SEL is 0 for IPA v4.5 */ |
| 1033 | } else { |
| 1034 | val |= reg_encode(reg, field_id: AGGR_EN, val: IPA_BYPASS_AGGR); |
| 1035 | /* other fields ignored */ |
| 1036 | } |
| 1037 | |
| 1038 | iowrite32(val, ipa->reg_virt + reg_n_offset(reg, n: endpoint_id)); |
| 1039 | } |
| 1040 | |
| 1041 | /* The head-of-line blocking timer is defined as a tick count. For |
| 1042 | * IPA version 4.5 the tick count is based on the Qtimer, which is |
| 1043 | * derived from the 19.2 MHz SoC XO clock. For older IPA versions |
| 1044 | * each tick represents 128 cycles of the IPA core clock. |
| 1045 | * |
| 1046 | * Return the encoded value representing the timeout period provided |
| 1047 | * that should be written to the ENDP_INIT_HOL_BLOCK_TIMER register. |
| 1048 | */ |
| 1049 | static u32 hol_block_timer_encode(struct ipa *ipa, const struct reg *reg, |
| 1050 | u32 microseconds) |
| 1051 | { |
| 1052 | u32 width; |
| 1053 | u32 scale; |
| 1054 | u64 ticks; |
| 1055 | u64 rate; |
| 1056 | u32 high; |
| 1057 | u32 val; |
| 1058 | |
| 1059 | if (!microseconds) |
| 1060 | return 0; /* Nothing to compute if timer period is 0 */ |
| 1061 | |
| 1062 | if (ipa->version >= IPA_VERSION_4_5) { |
| 1063 | u32 max = reg_field_max(reg, field_id: TIMER_LIMIT); |
| 1064 | u32 select; |
| 1065 | u32 ticks; |
| 1066 | |
| 1067 | ticks = ipa_qtime_val(ipa, microseconds, max, select: &select); |
| 1068 | |
| 1069 | return reg_encode(reg, field_id: TIMER_GRAN_SEL, val: 1) | |
| 1070 | reg_encode(reg, field_id: TIMER_LIMIT, val: ticks); |
| 1071 | } |
| 1072 | |
| 1073 | /* Use 64 bit arithmetic to avoid overflow */ |
| 1074 | rate = ipa_core_clock_rate(ipa); |
| 1075 | ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC); |
| 1076 | |
| 1077 | /* We still need the result to fit into the field */ |
| 1078 | WARN_ON(ticks > reg_field_max(reg, TIMER_BASE_VALUE)); |
| 1079 | |
| 1080 | /* IPA v3.5.1 through v4.1 just record the tick count */ |
| 1081 | if (ipa->version < IPA_VERSION_4_2) |
| 1082 | return reg_encode(reg, field_id: TIMER_BASE_VALUE, val: (u32)ticks); |
| 1083 | |
| 1084 | /* For IPA v4.2, the tick count is represented by base and |
| 1085 | * scale fields within the 32-bit timer register, where: |
| 1086 | * ticks = base << scale; |
| 1087 | * The best precision is achieved when the base value is as |
| 1088 | * large as possible. Find the highest set bit in the tick |
| 1089 | * count, and extract the number of bits in the base field |
| 1090 | * such that high bit is included. |
| 1091 | */ |
| 1092 | high = fls(x: ticks); /* 1..32 (or warning above) */ |
| 1093 | width = hweight32(reg_fmask(reg, TIMER_BASE_VALUE)); |
| 1094 | scale = high > width ? high - width : 0; |
| 1095 | if (scale) { |
| 1096 | /* If we're scaling, round up to get a closer result */ |
| 1097 | ticks += 1 << (scale - 1); |
| 1098 | /* High bit was set, so rounding might have affected it */ |
| 1099 | if (fls(x: ticks) != high) |
| 1100 | scale++; |
| 1101 | } |
| 1102 | |
| 1103 | val = reg_encode(reg, field_id: TIMER_SCALE, val: scale); |
| 1104 | val |= reg_encode(reg, field_id: TIMER_BASE_VALUE, val: (u32)ticks >> scale); |
| 1105 | |
| 1106 | return val; |
| 1107 | } |
| 1108 | |
| 1109 | /* If microseconds is 0, timeout is immediate */ |
| 1110 | static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint, |
| 1111 | u32 microseconds) |
| 1112 | { |
| 1113 | u32 endpoint_id = endpoint->endpoint_id; |
| 1114 | struct ipa *ipa = endpoint->ipa; |
| 1115 | const struct reg *reg; |
| 1116 | u32 val; |
| 1117 | |
| 1118 | /* This should only be changed when HOL_BLOCK_EN is disabled */ |
| 1119 | reg = ipa_reg(ipa, reg_id: ENDP_INIT_HOL_BLOCK_TIMER); |
| 1120 | val = hol_block_timer_encode(ipa, reg, microseconds); |
| 1121 | |
| 1122 | iowrite32(val, ipa->reg_virt + reg_n_offset(reg, n: endpoint_id)); |
| 1123 | } |
| 1124 | |
| 1125 | static void |
| 1126 | ipa_endpoint_init_hol_block_en(struct ipa_endpoint *endpoint, bool enable) |
| 1127 | { |
| 1128 | u32 endpoint_id = endpoint->endpoint_id; |
| 1129 | struct ipa *ipa = endpoint->ipa; |
| 1130 | const struct reg *reg; |
| 1131 | u32 offset; |
| 1132 | u32 val; |
| 1133 | |
| 1134 | reg = ipa_reg(ipa, reg_id: ENDP_INIT_HOL_BLOCK_EN); |
| 1135 | offset = reg_n_offset(reg, n: endpoint_id); |
| 1136 | val = enable ? reg_bit(reg, field_id: HOL_BLOCK_EN) : 0; |
| 1137 | |
| 1138 | iowrite32(val, ipa->reg_virt + offset); |
| 1139 | |
| 1140 | /* When enabling, the register must be written twice for IPA v4.5+ */ |
| 1141 | if (enable && ipa->version >= IPA_VERSION_4_5) |
| 1142 | iowrite32(val, ipa->reg_virt + offset); |
| 1143 | } |
| 1144 | |
| 1145 | /* Assumes HOL_BLOCK is in disabled state */ |
| 1146 | static void ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint, |
| 1147 | u32 microseconds) |
| 1148 | { |
| 1149 | ipa_endpoint_init_hol_block_timer(endpoint, microseconds); |
| 1150 | ipa_endpoint_init_hol_block_en(endpoint, enable: true); |
| 1151 | } |
| 1152 | |
| 1153 | static void ipa_endpoint_init_hol_block_disable(struct ipa_endpoint *endpoint) |
| 1154 | { |
| 1155 | ipa_endpoint_init_hol_block_en(endpoint, enable: false); |
| 1156 | } |
| 1157 | |
| 1158 | void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa) |
| 1159 | { |
| 1160 | u32 endpoint_id = 0; |
| 1161 | |
| 1162 | while (endpoint_id < ipa->endpoint_count) { |
| 1163 | struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id++]; |
| 1164 | |
| 1165 | if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM) |
| 1166 | continue; |
| 1167 | |
| 1168 | ipa_endpoint_init_hol_block_disable(endpoint); |
| 1169 | ipa_endpoint_init_hol_block_enable(endpoint, microseconds: 0); |
| 1170 | } |
| 1171 | } |
| 1172 | |
| 1173 | static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint) |
| 1174 | { |
| 1175 | u32 endpoint_id = endpoint->endpoint_id; |
| 1176 | struct ipa *ipa = endpoint->ipa; |
| 1177 | const struct reg *reg; |
| 1178 | u32 val = 0; |
| 1179 | |
| 1180 | if (!endpoint->toward_ipa) |
| 1181 | return; /* Register not valid for RX endpoints */ |
| 1182 | |
| 1183 | reg = ipa_reg(ipa, reg_id: ENDP_INIT_DEAGGR); |
| 1184 | /* DEAGGR_HDR_LEN is 0 */ |
| 1185 | /* PACKET_OFFSET_VALID is 0 */ |
| 1186 | /* PACKET_OFFSET_LOCATION is ignored (not valid) */ |
| 1187 | /* MAX_PACKET_LEN is 0 (not enforced) */ |
| 1188 | |
| 1189 | iowrite32(val, ipa->reg_virt + reg_n_offset(reg, n: endpoint_id)); |
| 1190 | } |
| 1191 | |
| 1192 | static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint) |
| 1193 | { |
| 1194 | u32 resource_group = endpoint->config.resource_group; |
| 1195 | u32 endpoint_id = endpoint->endpoint_id; |
| 1196 | struct ipa *ipa = endpoint->ipa; |
| 1197 | const struct reg *reg; |
| 1198 | u32 val; |
| 1199 | |
| 1200 | reg = ipa_reg(ipa, reg_id: ENDP_INIT_RSRC_GRP); |
| 1201 | val = reg_encode(reg, field_id: ENDP_RSRC_GRP, val: resource_group); |
| 1202 | |
| 1203 | iowrite32(val, ipa->reg_virt + reg_n_offset(reg, n: endpoint_id)); |
| 1204 | } |
| 1205 | |
| 1206 | static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint) |
| 1207 | { |
| 1208 | u32 endpoint_id = endpoint->endpoint_id; |
| 1209 | struct ipa *ipa = endpoint->ipa; |
| 1210 | const struct reg *reg; |
| 1211 | u32 val; |
| 1212 | |
| 1213 | if (!endpoint->toward_ipa) |
| 1214 | return; /* Register not valid for RX endpoints */ |
| 1215 | |
| 1216 | reg = ipa_reg(ipa, reg_id: ENDP_INIT_SEQ); |
| 1217 | |
| 1218 | /* Low-order byte configures primary packet processing */ |
| 1219 | val = reg_encode(reg, field_id: SEQ_TYPE, val: endpoint->config.tx.seq_type); |
| 1220 | |
| 1221 | /* Second byte (if supported) configures replicated packet processing */ |
| 1222 | if (ipa->version < IPA_VERSION_4_5) |
| 1223 | val |= reg_encode(reg, field_id: SEQ_REP_TYPE, |
| 1224 | val: endpoint->config.tx.seq_rep_type); |
| 1225 | |
| 1226 | iowrite32(val, ipa->reg_virt + reg_n_offset(reg, n: endpoint_id)); |
| 1227 | } |
| 1228 | |
| 1229 | /** |
| 1230 | * ipa_endpoint_skb_tx() - Transmit a socket buffer |
| 1231 | * @endpoint: Endpoint pointer |
| 1232 | * @skb: Socket buffer to send |
| 1233 | * |
| 1234 | * Returns: 0 if successful, or a negative error code |
| 1235 | */ |
| 1236 | int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb) |
| 1237 | { |
| 1238 | struct gsi_trans *trans; |
| 1239 | u32 nr_frags; |
| 1240 | int ret; |
| 1241 | |
| 1242 | /* Make sure source endpoint's TLV FIFO has enough entries to |
| 1243 | * hold the linear portion of the skb and all its fragments. |
| 1244 | * If not, see if we can linearize it before giving up. |
| 1245 | */ |
| 1246 | nr_frags = skb_shinfo(skb)->nr_frags; |
| 1247 | if (nr_frags > endpoint->skb_frag_max) { |
| 1248 | if (skb_linearize(skb)) |
| 1249 | return -E2BIG; |
| 1250 | nr_frags = 0; |
| 1251 | } |
| 1252 | |
| 1253 | trans = ipa_endpoint_trans_alloc(endpoint, tre_count: 1 + nr_frags); |
| 1254 | if (!trans) |
| 1255 | return -EBUSY; |
| 1256 | |
| 1257 | ret = gsi_trans_skb_add(trans, skb); |
| 1258 | if (ret) |
| 1259 | goto err_trans_free; |
| 1260 | trans->data = skb; /* transaction owns skb now */ |
| 1261 | |
| 1262 | gsi_trans_commit(trans, ring_db: !netdev_xmit_more()); |
| 1263 | |
| 1264 | return 0; |
| 1265 | |
| 1266 | err_trans_free: |
| 1267 | gsi_trans_free(trans); |
| 1268 | |
| 1269 | return -ENOMEM; |
| 1270 | } |
| 1271 | |
| 1272 | static void ipa_endpoint_status(struct ipa_endpoint *endpoint) |
| 1273 | { |
| 1274 | u32 endpoint_id = endpoint->endpoint_id; |
| 1275 | struct ipa *ipa = endpoint->ipa; |
| 1276 | const struct reg *reg; |
| 1277 | u32 val = 0; |
| 1278 | |
| 1279 | reg = ipa_reg(ipa, reg_id: ENDP_STATUS); |
| 1280 | if (endpoint->config.status_enable) { |
| 1281 | val |= reg_bit(reg, field_id: STATUS_EN); |
| 1282 | if (endpoint->toward_ipa) { |
| 1283 | enum ipa_endpoint_name name; |
| 1284 | u32 status_endpoint_id; |
| 1285 | |
| 1286 | name = endpoint->config.tx.status_endpoint; |
| 1287 | status_endpoint_id = ipa->name_map[name]->endpoint_id; |
| 1288 | |
| 1289 | val |= reg_encode(reg, field_id: STATUS_ENDP, val: status_endpoint_id); |
| 1290 | } |
| 1291 | /* STATUS_LOCATION is 0, meaning IPA packet status |
| 1292 | * precedes the packet (not present for IPA v4.5+) |
| 1293 | */ |
| 1294 | /* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v4.0+) */ |
| 1295 | } |
| 1296 | |
| 1297 | iowrite32(val, ipa->reg_virt + reg_n_offset(reg, n: endpoint_id)); |
| 1298 | } |
| 1299 | |
| 1300 | static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint, |
| 1301 | struct gsi_trans *trans) |
| 1302 | { |
| 1303 | struct page *page; |
| 1304 | u32 buffer_size; |
| 1305 | u32 offset; |
| 1306 | u32 len; |
| 1307 | int ret; |
| 1308 | |
| 1309 | buffer_size = endpoint->config.rx.buffer_size; |
| 1310 | page = dev_alloc_pages(get_order(buffer_size)); |
| 1311 | if (!page) |
| 1312 | return -ENOMEM; |
| 1313 | |
| 1314 | /* Offset the buffer to make space for skb headroom */ |
| 1315 | offset = NET_SKB_PAD; |
| 1316 | len = buffer_size - offset; |
| 1317 | |
| 1318 | ret = gsi_trans_page_add(trans, page, size: len, offset); |
| 1319 | if (ret) |
| 1320 | put_page(page); |
| 1321 | else |
| 1322 | trans->data = page; /* transaction owns page now */ |
| 1323 | |
| 1324 | return ret; |
| 1325 | } |
| 1326 | |
| 1327 | /** |
| 1328 | * ipa_endpoint_replenish() - Replenish endpoint receive buffers |
| 1329 | * @endpoint: Endpoint to be replenished |
| 1330 | * |
| 1331 | * The IPA hardware can hold a fixed number of receive buffers for an RX |
| 1332 | * endpoint, based on the number of entries in the underlying channel ring |
| 1333 | * buffer. If an endpoint's "backlog" is non-zero, it indicates how many |
| 1334 | * more receive buffers can be supplied to the hardware. Replenishing for |
| 1335 | * an endpoint can be disabled, in which case buffers are not queued to |
| 1336 | * the hardware. |
| 1337 | */ |
| 1338 | static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint) |
| 1339 | { |
| 1340 | struct gsi_trans *trans; |
| 1341 | |
| 1342 | if (!test_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags)) |
| 1343 | return; |
| 1344 | |
| 1345 | /* Skip it if it's already active */ |
| 1346 | if (test_and_set_bit(nr: IPA_REPLENISH_ACTIVE, addr: endpoint->replenish_flags)) |
| 1347 | return; |
| 1348 | |
| 1349 | while ((trans = ipa_endpoint_trans_alloc(endpoint, tre_count: 1))) { |
| 1350 | bool doorbell; |
| 1351 | |
| 1352 | if (ipa_endpoint_replenish_one(endpoint, trans)) |
| 1353 | goto try_again_later; |
| 1354 | |
| 1355 | |
| 1356 | /* Ring the doorbell if we've got a full batch */ |
| 1357 | doorbell = !(++endpoint->replenish_count % IPA_REPLENISH_BATCH); |
| 1358 | gsi_trans_commit(trans, ring_db: doorbell); |
| 1359 | } |
| 1360 | |
| 1361 | clear_bit(nr: IPA_REPLENISH_ACTIVE, addr: endpoint->replenish_flags); |
| 1362 | |
| 1363 | return; |
| 1364 | |
| 1365 | try_again_later: |
| 1366 | gsi_trans_free(trans); |
| 1367 | clear_bit(nr: IPA_REPLENISH_ACTIVE, addr: endpoint->replenish_flags); |
| 1368 | |
| 1369 | /* Whenever a receive buffer transaction completes we'll try to |
| 1370 | * replenish again. It's unlikely, but if we fail to supply even |
| 1371 | * one buffer, nothing will trigger another replenish attempt. |
| 1372 | * If the hardware has no receive buffers queued, schedule work to |
| 1373 | * try replenishing again. |
| 1374 | */ |
| 1375 | if (gsi_channel_trans_idle(gsi: &endpoint->ipa->gsi, channel_id: endpoint->channel_id)) |
| 1376 | schedule_delayed_work(dwork: &endpoint->replenish_work, |
| 1377 | delay: msecs_to_jiffies(m: 1)); |
| 1378 | } |
| 1379 | |
| 1380 | static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint) |
| 1381 | { |
| 1382 | set_bit(nr: IPA_REPLENISH_ENABLED, addr: endpoint->replenish_flags); |
| 1383 | |
| 1384 | /* Start replenishing if hardware currently has no buffers */ |
| 1385 | if (gsi_channel_trans_idle(gsi: &endpoint->ipa->gsi, channel_id: endpoint->channel_id)) |
| 1386 | ipa_endpoint_replenish(endpoint); |
| 1387 | } |
| 1388 | |
| 1389 | static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint) |
| 1390 | { |
| 1391 | clear_bit(nr: IPA_REPLENISH_ENABLED, addr: endpoint->replenish_flags); |
| 1392 | } |
| 1393 | |
| 1394 | static void ipa_endpoint_replenish_work(struct work_struct *work) |
| 1395 | { |
| 1396 | struct delayed_work *dwork = to_delayed_work(work); |
| 1397 | struct ipa_endpoint *endpoint; |
| 1398 | |
| 1399 | endpoint = container_of(dwork, struct ipa_endpoint, replenish_work); |
| 1400 | |
| 1401 | ipa_endpoint_replenish(endpoint); |
| 1402 | } |
| 1403 | |
| 1404 | static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint, |
| 1405 | void *data, u32 len, u32 ) |
| 1406 | { |
| 1407 | struct sk_buff *skb; |
| 1408 | |
| 1409 | if (!endpoint->netdev) |
| 1410 | return; |
| 1411 | |
| 1412 | skb = __dev_alloc_skb(length: len, GFP_ATOMIC); |
| 1413 | if (skb) { |
| 1414 | /* Copy the data into the socket buffer and receive it */ |
| 1415 | skb_put(skb, len); |
| 1416 | memcpy(skb->data, data, len); |
| 1417 | skb->truesize += extra; |
| 1418 | } |
| 1419 | |
| 1420 | ipa_modem_skb_rx(netdev: endpoint->netdev, skb); |
| 1421 | } |
| 1422 | |
| 1423 | static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint, |
| 1424 | struct page *page, u32 len) |
| 1425 | { |
| 1426 | u32 buffer_size = endpoint->config.rx.buffer_size; |
| 1427 | struct sk_buff *skb; |
| 1428 | |
| 1429 | /* Nothing to do if there's no netdev */ |
| 1430 | if (!endpoint->netdev) |
| 1431 | return false; |
| 1432 | |
| 1433 | WARN_ON(len > SKB_WITH_OVERHEAD(buffer_size - NET_SKB_PAD)); |
| 1434 | |
| 1435 | skb = build_skb(page_address(page), frag_size: buffer_size); |
| 1436 | if (skb) { |
| 1437 | /* Reserve the headroom and account for the data */ |
| 1438 | skb_reserve(skb, NET_SKB_PAD); |
| 1439 | skb_put(skb, len); |
| 1440 | } |
| 1441 | |
| 1442 | /* Receive the buffer (or record drop if unable to build it) */ |
| 1443 | ipa_modem_skb_rx(netdev: endpoint->netdev, skb); |
| 1444 | |
| 1445 | return skb != NULL; |
| 1446 | } |
| 1447 | |
| 1448 | /* The format of an IPA packet status structure is the same for several |
| 1449 | * status types (opcodes). Other types aren't currently supported. |
| 1450 | */ |
| 1451 | static bool ipa_status_format_packet(enum ipa_status_opcode opcode) |
| 1452 | { |
| 1453 | switch (opcode) { |
| 1454 | case IPA_STATUS_OPCODE_PACKET: |
| 1455 | case IPA_STATUS_OPCODE_DROPPED_PACKET: |
| 1456 | case IPA_STATUS_OPCODE_SUSPENDED_PACKET: |
| 1457 | case IPA_STATUS_OPCODE_PACKET_2ND_PASS: |
| 1458 | return true; |
| 1459 | default: |
| 1460 | return false; |
| 1461 | } |
| 1462 | } |
| 1463 | |
| 1464 | static bool |
| 1465 | ipa_endpoint_status_skip(struct ipa_endpoint *endpoint, const void *data) |
| 1466 | { |
| 1467 | struct ipa *ipa = endpoint->ipa; |
| 1468 | enum ipa_status_opcode opcode; |
| 1469 | u32 endpoint_id; |
| 1470 | |
| 1471 | opcode = ipa_status_extract(ipa, data, field: STATUS_OPCODE); |
| 1472 | if (!ipa_status_format_packet(opcode)) |
| 1473 | return true; |
| 1474 | |
| 1475 | endpoint_id = ipa_status_extract(ipa, data, field: STATUS_DST_ENDPOINT); |
| 1476 | if (endpoint_id != endpoint->endpoint_id) |
| 1477 | return true; |
| 1478 | |
| 1479 | return false; /* Don't skip this packet, process it */ |
| 1480 | } |
| 1481 | |
| 1482 | static bool |
| 1483 | ipa_endpoint_status_tag_valid(struct ipa_endpoint *endpoint, const void *data) |
| 1484 | { |
| 1485 | struct ipa_endpoint *command_endpoint; |
| 1486 | enum ipa_status_mask status_mask; |
| 1487 | struct ipa *ipa = endpoint->ipa; |
| 1488 | u32 endpoint_id; |
| 1489 | |
| 1490 | status_mask = ipa_status_extract(ipa, data, field: STATUS_MASK); |
| 1491 | if (!status_mask) |
| 1492 | return false; /* No valid tag */ |
| 1493 | |
| 1494 | /* The status contains a valid tag. We know the packet was sent to |
| 1495 | * this endpoint (already verified by ipa_endpoint_status_skip()). |
| 1496 | * If the packet came from the AP->command TX endpoint we know |
| 1497 | * this packet was sent as part of the pipeline clear process. |
| 1498 | */ |
| 1499 | endpoint_id = ipa_status_extract(ipa, data, field: STATUS_SRC_ENDPOINT); |
| 1500 | command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]; |
| 1501 | if (endpoint_id == command_endpoint->endpoint_id) { |
| 1502 | complete(&ipa->completion); |
| 1503 | } else { |
| 1504 | dev_err(ipa->dev, "unexpected tagged packet from endpoint %u\n" , |
| 1505 | endpoint_id); |
| 1506 | } |
| 1507 | |
| 1508 | return true; |
| 1509 | } |
| 1510 | |
| 1511 | /* Return whether the status indicates the packet should be dropped */ |
| 1512 | static bool |
| 1513 | ipa_endpoint_status_drop(struct ipa_endpoint *endpoint, const void *data) |
| 1514 | { |
| 1515 | enum ipa_status_exception exception; |
| 1516 | struct ipa *ipa = endpoint->ipa; |
| 1517 | u32 rule; |
| 1518 | |
| 1519 | /* If the status indicates a tagged transfer, we'll drop the packet */ |
| 1520 | if (ipa_endpoint_status_tag_valid(endpoint, data)) |
| 1521 | return true; |
| 1522 | |
| 1523 | /* Deaggregation exceptions we drop; all other types we consume */ |
| 1524 | exception = ipa_status_extract(ipa, data, field: STATUS_EXCEPTION); |
| 1525 | if (exception) |
| 1526 | return exception == IPA_STATUS_EXCEPTION_DEAGGR; |
| 1527 | |
| 1528 | /* Drop the packet if it fails to match a routing rule; otherwise no */ |
| 1529 | rule = ipa_status_extract(ipa, data, field: STATUS_ROUTER_RULE_INDEX); |
| 1530 | |
| 1531 | return rule == IPA_STATUS_RULE_MISS; |
| 1532 | } |
| 1533 | |
| 1534 | static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint, |
| 1535 | struct page *page, u32 total_len) |
| 1536 | { |
| 1537 | u32 buffer_size = endpoint->config.rx.buffer_size; |
| 1538 | void *data = page_address(page) + NET_SKB_PAD; |
| 1539 | u32 unused = buffer_size - total_len; |
| 1540 | struct ipa *ipa = endpoint->ipa; |
| 1541 | struct device *dev = ipa->dev; |
| 1542 | u32 resid = total_len; |
| 1543 | |
| 1544 | while (resid) { |
| 1545 | u32 length; |
| 1546 | u32 align; |
| 1547 | u32 len; |
| 1548 | |
| 1549 | if (resid < IPA_STATUS_SIZE) { |
| 1550 | dev_err(dev, |
| 1551 | "short message (%u bytes < %zu byte status)\n" , |
| 1552 | resid, IPA_STATUS_SIZE); |
| 1553 | break; |
| 1554 | } |
| 1555 | |
| 1556 | /* Skip over status packets that lack packet data */ |
| 1557 | length = ipa_status_extract(ipa, data, field: STATUS_LENGTH); |
| 1558 | if (!length || ipa_endpoint_status_skip(endpoint, data)) { |
| 1559 | data += IPA_STATUS_SIZE; |
| 1560 | resid -= IPA_STATUS_SIZE; |
| 1561 | continue; |
| 1562 | } |
| 1563 | |
| 1564 | /* Compute the amount of buffer space consumed by the packet, |
| 1565 | * including the status. If the hardware is configured to |
| 1566 | * pad packet data to an aligned boundary, account for that. |
| 1567 | * And if checksum offload is enabled a trailer containing |
| 1568 | * computed checksum information will be appended. |
| 1569 | */ |
| 1570 | align = endpoint->config.rx.pad_align ? : 1; |
| 1571 | len = IPA_STATUS_SIZE + ALIGN(length, align); |
| 1572 | if (endpoint->config.checksum) |
| 1573 | len += sizeof(struct rmnet_map_dl_csum_trailer); |
| 1574 | |
| 1575 | if (!ipa_endpoint_status_drop(endpoint, data)) { |
| 1576 | void *data2; |
| 1577 | u32 ; |
| 1578 | |
| 1579 | /* Client receives only packet data (no status) */ |
| 1580 | data2 = data + IPA_STATUS_SIZE; |
| 1581 | |
| 1582 | /* Have the true size reflect the extra unused space in |
| 1583 | * the original receive buffer. Distribute the "cost" |
| 1584 | * proportionately across all aggregated packets in the |
| 1585 | * buffer. |
| 1586 | */ |
| 1587 | extra = DIV_ROUND_CLOSEST(unused * len, total_len); |
| 1588 | ipa_endpoint_skb_copy(endpoint, data: data2, len: length, extra); |
| 1589 | } |
| 1590 | |
| 1591 | /* Consume status and the full packet it describes */ |
| 1592 | data += len; |
| 1593 | resid -= len; |
| 1594 | } |
| 1595 | } |
| 1596 | |
| 1597 | void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint, |
| 1598 | struct gsi_trans *trans) |
| 1599 | { |
| 1600 | struct page *page; |
| 1601 | |
| 1602 | if (endpoint->toward_ipa) |
| 1603 | return; |
| 1604 | |
| 1605 | if (trans->cancelled) |
| 1606 | goto done; |
| 1607 | |
| 1608 | /* Parse or build a socket buffer using the actual received length */ |
| 1609 | page = trans->data; |
| 1610 | if (endpoint->config.status_enable) |
| 1611 | ipa_endpoint_status_parse(endpoint, page, total_len: trans->len); |
| 1612 | else if (ipa_endpoint_skb_build(endpoint, page, len: trans->len)) |
| 1613 | trans->data = NULL; /* Pages have been consumed */ |
| 1614 | done: |
| 1615 | ipa_endpoint_replenish(endpoint); |
| 1616 | } |
| 1617 | |
| 1618 | void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint, |
| 1619 | struct gsi_trans *trans) |
| 1620 | { |
| 1621 | if (endpoint->toward_ipa) { |
| 1622 | struct ipa *ipa = endpoint->ipa; |
| 1623 | |
| 1624 | /* Nothing to do for command transactions */ |
| 1625 | if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) { |
| 1626 | struct sk_buff *skb = trans->data; |
| 1627 | |
| 1628 | if (skb) |
| 1629 | dev_kfree_skb_any(skb); |
| 1630 | } |
| 1631 | } else { |
| 1632 | struct page *page = trans->data; |
| 1633 | |
| 1634 | if (page) |
| 1635 | put_page(page); |
| 1636 | } |
| 1637 | } |
| 1638 | |
| 1639 | void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id) |
| 1640 | { |
| 1641 | const struct reg *reg; |
| 1642 | u32 val; |
| 1643 | |
| 1644 | reg = ipa_reg(ipa, reg_id: ROUTE); |
| 1645 | /* ROUTE_DIS is 0 */ |
| 1646 | val = reg_encode(reg, field_id: ROUTE_DEF_PIPE, val: endpoint_id); |
| 1647 | val |= reg_bit(reg, field_id: ROUTE_DEF_HDR_TABLE); |
| 1648 | /* ROUTE_DEF_HDR_OFST is 0 */ |
| 1649 | val |= reg_encode(reg, field_id: ROUTE_FRAG_DEF_PIPE, val: endpoint_id); |
| 1650 | val |= reg_bit(reg, field_id: ROUTE_DEF_RETAIN_HDR); |
| 1651 | |
| 1652 | iowrite32(val, ipa->reg_virt + reg_offset(reg)); |
| 1653 | } |
| 1654 | |
| 1655 | void ipa_endpoint_default_route_clear(struct ipa *ipa) |
| 1656 | { |
| 1657 | ipa_endpoint_default_route_set(ipa, endpoint_id: 0); |
| 1658 | } |
| 1659 | |
| 1660 | /** |
| 1661 | * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active |
| 1662 | * @endpoint: Endpoint to be reset |
| 1663 | * |
| 1664 | * If aggregation is active on an RX endpoint when a reset is performed |
| 1665 | * on its underlying GSI channel, a special sequence of actions must be |
| 1666 | * taken to ensure the IPA pipeline is properly cleared. |
| 1667 | * |
| 1668 | * Return: 0 if successful, or a negative error code |
| 1669 | */ |
| 1670 | static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint) |
| 1671 | { |
| 1672 | struct ipa *ipa = endpoint->ipa; |
| 1673 | struct device *dev = ipa->dev; |
| 1674 | struct gsi *gsi = &ipa->gsi; |
| 1675 | bool suspended = false; |
| 1676 | dma_addr_t addr; |
| 1677 | u32 retries; |
| 1678 | u32 len = 1; |
| 1679 | void *virt; |
| 1680 | int ret; |
| 1681 | |
| 1682 | virt = kzalloc(len, GFP_KERNEL); |
| 1683 | if (!virt) |
| 1684 | return -ENOMEM; |
| 1685 | |
| 1686 | addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE); |
| 1687 | if (dma_mapping_error(dev, dma_addr: addr)) { |
| 1688 | ret = -ENOMEM; |
| 1689 | goto out_kfree; |
| 1690 | } |
| 1691 | |
| 1692 | /* Force close aggregation before issuing the reset */ |
| 1693 | ipa_endpoint_force_close(endpoint); |
| 1694 | |
| 1695 | /* Reset and reconfigure the channel with the doorbell engine |
| 1696 | * disabled. Then poll until we know aggregation is no longer |
| 1697 | * active. We'll re-enable the doorbell (if appropriate) when |
| 1698 | * we reset again below. |
| 1699 | */ |
| 1700 | gsi_channel_reset(gsi, channel_id: endpoint->channel_id, doorbell: false); |
| 1701 | |
| 1702 | /* Make sure the channel isn't suspended */ |
| 1703 | suspended = ipa_endpoint_program_suspend(endpoint, enable: false); |
| 1704 | |
| 1705 | /* Start channel and do a 1 byte read */ |
| 1706 | ret = gsi_channel_start(gsi, channel_id: endpoint->channel_id); |
| 1707 | if (ret) |
| 1708 | goto out_suspend_again; |
| 1709 | |
| 1710 | ret = gsi_trans_read_byte(gsi, channel_id: endpoint->channel_id, addr); |
| 1711 | if (ret) |
| 1712 | goto err_endpoint_stop; |
| 1713 | |
| 1714 | /* Wait for aggregation to be closed on the channel */ |
| 1715 | retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX; |
| 1716 | do { |
| 1717 | if (!ipa_endpoint_aggr_active(endpoint)) |
| 1718 | break; |
| 1719 | usleep_range(USEC_PER_MSEC, max: 2 * USEC_PER_MSEC); |
| 1720 | } while (retries--); |
| 1721 | |
| 1722 | /* Check one last time */ |
| 1723 | if (ipa_endpoint_aggr_active(endpoint)) |
| 1724 | dev_err(dev, "endpoint %u still active during reset\n" , |
| 1725 | endpoint->endpoint_id); |
| 1726 | |
| 1727 | gsi_trans_read_byte_done(gsi, channel_id: endpoint->channel_id); |
| 1728 | |
| 1729 | ret = gsi_channel_stop(gsi, channel_id: endpoint->channel_id); |
| 1730 | if (ret) |
| 1731 | goto out_suspend_again; |
| 1732 | |
| 1733 | /* Finally, reset and reconfigure the channel again (re-enabling |
| 1734 | * the doorbell engine if appropriate). Sleep for 1 millisecond to |
| 1735 | * complete the channel reset sequence. Finish by suspending the |
| 1736 | * channel again (if necessary). |
| 1737 | */ |
| 1738 | gsi_channel_reset(gsi, channel_id: endpoint->channel_id, doorbell: true); |
| 1739 | |
| 1740 | usleep_range(USEC_PER_MSEC, max: 2 * USEC_PER_MSEC); |
| 1741 | |
| 1742 | goto out_suspend_again; |
| 1743 | |
| 1744 | err_endpoint_stop: |
| 1745 | (void)gsi_channel_stop(gsi, channel_id: endpoint->channel_id); |
| 1746 | out_suspend_again: |
| 1747 | if (suspended) |
| 1748 | (void)ipa_endpoint_program_suspend(endpoint, enable: true); |
| 1749 | dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE); |
| 1750 | out_kfree: |
| 1751 | kfree(objp: virt); |
| 1752 | |
| 1753 | return ret; |
| 1754 | } |
| 1755 | |
| 1756 | static void ipa_endpoint_reset(struct ipa_endpoint *endpoint) |
| 1757 | { |
| 1758 | u32 channel_id = endpoint->channel_id; |
| 1759 | struct ipa *ipa = endpoint->ipa; |
| 1760 | bool special; |
| 1761 | int ret = 0; |
| 1762 | |
| 1763 | /* On IPA v3.5.1, if an RX endpoint is reset while aggregation |
| 1764 | * is active, we need to handle things specially to recover. |
| 1765 | * All other cases just need to reset the underlying GSI channel. |
| 1766 | */ |
| 1767 | special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa && |
| 1768 | endpoint->config.aggregation; |
| 1769 | if (special && ipa_endpoint_aggr_active(endpoint)) |
| 1770 | ret = ipa_endpoint_reset_rx_aggr(endpoint); |
| 1771 | else |
| 1772 | gsi_channel_reset(gsi: &ipa->gsi, channel_id, doorbell: true); |
| 1773 | |
| 1774 | if (ret) |
| 1775 | dev_err(ipa->dev, |
| 1776 | "error %d resetting channel %u for endpoint %u\n" , |
| 1777 | ret, endpoint->channel_id, endpoint->endpoint_id); |
| 1778 | } |
| 1779 | |
| 1780 | static void ipa_endpoint_program(struct ipa_endpoint *endpoint) |
| 1781 | { |
| 1782 | if (endpoint->toward_ipa) { |
| 1783 | /* Newer versions of IPA use GSI channel flow control |
| 1784 | * instead of endpoint DELAY mode to prevent sending data. |
| 1785 | * Flow control is disabled for newly-allocated channels, |
| 1786 | * and we can assume flow control is not (ever) enabled |
| 1787 | * for AP TX channels. |
| 1788 | */ |
| 1789 | if (endpoint->ipa->version < IPA_VERSION_4_2) |
| 1790 | ipa_endpoint_program_delay(endpoint, enable: false); |
| 1791 | } else { |
| 1792 | /* Ensure suspend mode is off on all AP RX endpoints */ |
| 1793 | (void)ipa_endpoint_program_suspend(endpoint, enable: false); |
| 1794 | } |
| 1795 | ipa_endpoint_init_cfg(endpoint); |
| 1796 | ipa_endpoint_init_nat(endpoint); |
| 1797 | ipa_endpoint_init_hdr(endpoint); |
| 1798 | ipa_endpoint_init_hdr_ext(endpoint); |
| 1799 | ipa_endpoint_init_hdr_metadata_mask(endpoint); |
| 1800 | ipa_endpoint_init_mode(endpoint); |
| 1801 | ipa_endpoint_init_aggr(endpoint); |
| 1802 | if (!endpoint->toward_ipa) { |
| 1803 | if (endpoint->config.rx.holb_drop) |
| 1804 | ipa_endpoint_init_hol_block_enable(endpoint, microseconds: 0); |
| 1805 | else |
| 1806 | ipa_endpoint_init_hol_block_disable(endpoint); |
| 1807 | } |
| 1808 | ipa_endpoint_init_deaggr(endpoint); |
| 1809 | ipa_endpoint_init_rsrc_grp(endpoint); |
| 1810 | ipa_endpoint_init_seq(endpoint); |
| 1811 | ipa_endpoint_status(endpoint); |
| 1812 | } |
| 1813 | |
| 1814 | int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint) |
| 1815 | { |
| 1816 | u32 endpoint_id = endpoint->endpoint_id; |
| 1817 | struct ipa *ipa = endpoint->ipa; |
| 1818 | struct gsi *gsi = &ipa->gsi; |
| 1819 | int ret; |
| 1820 | |
| 1821 | ret = gsi_channel_start(gsi, channel_id: endpoint->channel_id); |
| 1822 | if (ret) { |
| 1823 | dev_err(ipa->dev, |
| 1824 | "error %d starting %cX channel %u for endpoint %u\n" , |
| 1825 | ret, endpoint->toward_ipa ? 'T' : 'R', |
| 1826 | endpoint->channel_id, endpoint_id); |
| 1827 | return ret; |
| 1828 | } |
| 1829 | |
| 1830 | if (!endpoint->toward_ipa) { |
| 1831 | ipa_interrupt_suspend_enable(interrupt: ipa->interrupt, endpoint_id); |
| 1832 | ipa_endpoint_replenish_enable(endpoint); |
| 1833 | } |
| 1834 | |
| 1835 | __set_bit(endpoint_id, ipa->enabled); |
| 1836 | |
| 1837 | return 0; |
| 1838 | } |
| 1839 | |
| 1840 | void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint) |
| 1841 | { |
| 1842 | u32 endpoint_id = endpoint->endpoint_id; |
| 1843 | struct ipa *ipa = endpoint->ipa; |
| 1844 | struct gsi *gsi = &ipa->gsi; |
| 1845 | int ret; |
| 1846 | |
| 1847 | if (!test_bit(endpoint_id, ipa->enabled)) |
| 1848 | return; |
| 1849 | |
| 1850 | __clear_bit(endpoint_id, endpoint->ipa->enabled); |
| 1851 | |
| 1852 | if (!endpoint->toward_ipa) { |
| 1853 | ipa_endpoint_replenish_disable(endpoint); |
| 1854 | ipa_interrupt_suspend_disable(interrupt: ipa->interrupt, endpoint_id); |
| 1855 | } |
| 1856 | |
| 1857 | /* Note that if stop fails, the channel's state is not well-defined */ |
| 1858 | ret = gsi_channel_stop(gsi, channel_id: endpoint->channel_id); |
| 1859 | if (ret) |
| 1860 | dev_err(ipa->dev, "error %d attempting to stop endpoint %u\n" , |
| 1861 | ret, endpoint_id); |
| 1862 | } |
| 1863 | |
| 1864 | void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint) |
| 1865 | { |
| 1866 | struct device *dev = endpoint->ipa->dev; |
| 1867 | struct gsi *gsi = &endpoint->ipa->gsi; |
| 1868 | int ret; |
| 1869 | |
| 1870 | if (!test_bit(endpoint->endpoint_id, endpoint->ipa->enabled)) |
| 1871 | return; |
| 1872 | |
| 1873 | if (!endpoint->toward_ipa) { |
| 1874 | ipa_endpoint_replenish_disable(endpoint); |
| 1875 | (void)ipa_endpoint_program_suspend(endpoint, enable: true); |
| 1876 | } |
| 1877 | |
| 1878 | ret = gsi_channel_suspend(gsi, channel_id: endpoint->channel_id); |
| 1879 | if (ret) |
| 1880 | dev_err(dev, "error %d suspending channel %u\n" , ret, |
| 1881 | endpoint->channel_id); |
| 1882 | } |
| 1883 | |
| 1884 | void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint) |
| 1885 | { |
| 1886 | struct device *dev = endpoint->ipa->dev; |
| 1887 | struct gsi *gsi = &endpoint->ipa->gsi; |
| 1888 | int ret; |
| 1889 | |
| 1890 | if (!test_bit(endpoint->endpoint_id, endpoint->ipa->enabled)) |
| 1891 | return; |
| 1892 | |
| 1893 | if (!endpoint->toward_ipa) |
| 1894 | (void)ipa_endpoint_program_suspend(endpoint, enable: false); |
| 1895 | |
| 1896 | ret = gsi_channel_resume(gsi, channel_id: endpoint->channel_id); |
| 1897 | if (ret) |
| 1898 | dev_err(dev, "error %d resuming channel %u\n" , ret, |
| 1899 | endpoint->channel_id); |
| 1900 | else if (!endpoint->toward_ipa) |
| 1901 | ipa_endpoint_replenish_enable(endpoint); |
| 1902 | } |
| 1903 | |
| 1904 | void ipa_endpoint_suspend(struct ipa *ipa) |
| 1905 | { |
| 1906 | if (!ipa->setup_complete) |
| 1907 | return; |
| 1908 | |
| 1909 | if (ipa->modem_netdev) |
| 1910 | ipa_modem_suspend(netdev: ipa->modem_netdev); |
| 1911 | |
| 1912 | ipa_endpoint_suspend_one(endpoint: ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); |
| 1913 | ipa_endpoint_suspend_one(endpoint: ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); |
| 1914 | } |
| 1915 | |
| 1916 | void ipa_endpoint_resume(struct ipa *ipa) |
| 1917 | { |
| 1918 | if (!ipa->setup_complete) |
| 1919 | return; |
| 1920 | |
| 1921 | ipa_endpoint_resume_one(endpoint: ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]); |
| 1922 | ipa_endpoint_resume_one(endpoint: ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]); |
| 1923 | |
| 1924 | if (ipa->modem_netdev) |
| 1925 | ipa_modem_resume(netdev: ipa->modem_netdev); |
| 1926 | } |
| 1927 | |
| 1928 | static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint) |
| 1929 | { |
| 1930 | struct gsi *gsi = &endpoint->ipa->gsi; |
| 1931 | u32 channel_id = endpoint->channel_id; |
| 1932 | |
| 1933 | /* Only AP endpoints get set up */ |
| 1934 | if (endpoint->ee_id != GSI_EE_AP) |
| 1935 | return; |
| 1936 | |
| 1937 | endpoint->skb_frag_max = gsi->channel[channel_id].trans_tre_max - 1; |
| 1938 | if (!endpoint->toward_ipa) { |
| 1939 | /* RX transactions require a single TRE, so the maximum |
| 1940 | * backlog is the same as the maximum outstanding TREs. |
| 1941 | */ |
| 1942 | clear_bit(nr: IPA_REPLENISH_ENABLED, addr: endpoint->replenish_flags); |
| 1943 | clear_bit(nr: IPA_REPLENISH_ACTIVE, addr: endpoint->replenish_flags); |
| 1944 | INIT_DELAYED_WORK(&endpoint->replenish_work, |
| 1945 | ipa_endpoint_replenish_work); |
| 1946 | } |
| 1947 | |
| 1948 | ipa_endpoint_program(endpoint); |
| 1949 | |
| 1950 | __set_bit(endpoint->endpoint_id, endpoint->ipa->set_up); |
| 1951 | } |
| 1952 | |
| 1953 | static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint) |
| 1954 | { |
| 1955 | __clear_bit(endpoint->endpoint_id, endpoint->ipa->set_up); |
| 1956 | |
| 1957 | if (!endpoint->toward_ipa) |
| 1958 | cancel_delayed_work_sync(dwork: &endpoint->replenish_work); |
| 1959 | |
| 1960 | ipa_endpoint_reset(endpoint); |
| 1961 | } |
| 1962 | |
| 1963 | void ipa_endpoint_setup(struct ipa *ipa) |
| 1964 | { |
| 1965 | u32 endpoint_id; |
| 1966 | |
| 1967 | for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) |
| 1968 | ipa_endpoint_setup_one(endpoint: &ipa->endpoint[endpoint_id]); |
| 1969 | } |
| 1970 | |
| 1971 | void ipa_endpoint_teardown(struct ipa *ipa) |
| 1972 | { |
| 1973 | u32 endpoint_id; |
| 1974 | |
| 1975 | for_each_set_bit(endpoint_id, ipa->set_up, ipa->endpoint_count) |
| 1976 | ipa_endpoint_teardown_one(endpoint: &ipa->endpoint[endpoint_id]); |
| 1977 | } |
| 1978 | |
| 1979 | void ipa_endpoint_deconfig(struct ipa *ipa) |
| 1980 | { |
| 1981 | ipa->available_count = 0; |
| 1982 | bitmap_free(bitmap: ipa->available); |
| 1983 | ipa->available = NULL; |
| 1984 | } |
| 1985 | |
| 1986 | int ipa_endpoint_config(struct ipa *ipa) |
| 1987 | { |
| 1988 | struct device *dev = ipa->dev; |
| 1989 | const struct reg *reg; |
| 1990 | u32 endpoint_id; |
| 1991 | u32 hw_limit; |
| 1992 | u32 tx_count; |
| 1993 | u32 rx_count; |
| 1994 | u32 rx_base; |
| 1995 | u32 limit; |
| 1996 | u32 val; |
| 1997 | |
| 1998 | /* Prior to IPA v3.5, the FLAVOR_0 register was not supported. |
| 1999 | * Furthermore, the endpoints were not grouped such that TX |
| 2000 | * endpoint numbers started with 0 and RX endpoints had numbers |
| 2001 | * higher than all TX endpoints, so we can't do the simple |
| 2002 | * direction check used for newer hardware below. |
| 2003 | * |
| 2004 | * For hardware that doesn't support the FLAVOR_0 register, |
| 2005 | * just set the available mask to support any endpoint, and |
| 2006 | * assume the configuration is valid. |
| 2007 | */ |
| 2008 | if (ipa->version < IPA_VERSION_3_5) { |
| 2009 | ipa->available = bitmap_zalloc(IPA_ENDPOINT_MAX, GFP_KERNEL); |
| 2010 | if (!ipa->available) |
| 2011 | return -ENOMEM; |
| 2012 | ipa->available_count = IPA_ENDPOINT_MAX; |
| 2013 | |
| 2014 | bitmap_set(map: ipa->available, start: 0, IPA_ENDPOINT_MAX); |
| 2015 | |
| 2016 | return 0; |
| 2017 | } |
| 2018 | |
| 2019 | /* Find out about the endpoints supplied by the hardware, and ensure |
| 2020 | * the highest one doesn't exceed the number supported by software. |
| 2021 | */ |
| 2022 | reg = ipa_reg(ipa, reg_id: FLAVOR_0); |
| 2023 | val = ioread32(ipa->reg_virt + reg_offset(reg)); |
| 2024 | |
| 2025 | /* Our RX is an IPA producer; our TX is an IPA consumer. */ |
| 2026 | tx_count = reg_decode(reg, field_id: MAX_CONS_PIPES, val); |
| 2027 | rx_count = reg_decode(reg, field_id: MAX_PROD_PIPES, val); |
| 2028 | rx_base = reg_decode(reg, field_id: PROD_LOWEST, val); |
| 2029 | |
| 2030 | limit = rx_base + rx_count; |
| 2031 | if (limit > IPA_ENDPOINT_MAX) { |
| 2032 | dev_err(dev, "too many endpoints, %u > %u\n" , |
| 2033 | limit, IPA_ENDPOINT_MAX); |
| 2034 | return -EINVAL; |
| 2035 | } |
| 2036 | |
| 2037 | /* Until IPA v5.0, the max endpoint ID was 32 */ |
| 2038 | hw_limit = ipa->version < IPA_VERSION_5_0 ? 32 : U8_MAX + 1; |
| 2039 | if (limit > hw_limit) { |
| 2040 | dev_err(dev, "unexpected endpoint count, %u > %u\n" , |
| 2041 | limit, hw_limit); |
| 2042 | return -EINVAL; |
| 2043 | } |
| 2044 | |
| 2045 | /* Allocate and initialize the available endpoint bitmap */ |
| 2046 | ipa->available = bitmap_zalloc(nbits: limit, GFP_KERNEL); |
| 2047 | if (!ipa->available) |
| 2048 | return -ENOMEM; |
| 2049 | ipa->available_count = limit; |
| 2050 | |
| 2051 | /* Mark all supported RX and TX endpoints as available */ |
| 2052 | bitmap_set(map: ipa->available, start: 0, nbits: tx_count); |
| 2053 | bitmap_set(map: ipa->available, start: rx_base, nbits: rx_count); |
| 2054 | |
| 2055 | for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) { |
| 2056 | struct ipa_endpoint *endpoint; |
| 2057 | |
| 2058 | if (endpoint_id >= limit) { |
| 2059 | dev_err(dev, "invalid endpoint id, %u > %u\n" , |
| 2060 | endpoint_id, limit - 1); |
| 2061 | goto err_free_bitmap; |
| 2062 | } |
| 2063 | |
| 2064 | if (!test_bit(endpoint_id, ipa->available)) { |
| 2065 | dev_err(dev, "unavailable endpoint id %u\n" , |
| 2066 | endpoint_id); |
| 2067 | goto err_free_bitmap; |
| 2068 | } |
| 2069 | |
| 2070 | /* Make sure it's pointing in the right direction */ |
| 2071 | endpoint = &ipa->endpoint[endpoint_id]; |
| 2072 | if (endpoint->toward_ipa) { |
| 2073 | if (endpoint_id < tx_count) |
| 2074 | continue; |
| 2075 | } else if (endpoint_id >= rx_base) { |
| 2076 | continue; |
| 2077 | } |
| 2078 | |
| 2079 | dev_err(dev, "endpoint id %u wrong direction\n" , endpoint_id); |
| 2080 | goto err_free_bitmap; |
| 2081 | } |
| 2082 | |
| 2083 | return 0; |
| 2084 | |
| 2085 | err_free_bitmap: |
| 2086 | ipa_endpoint_deconfig(ipa); |
| 2087 | |
| 2088 | return -EINVAL; |
| 2089 | } |
| 2090 | |
| 2091 | static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name, |
| 2092 | const struct ipa_gsi_endpoint_data *data) |
| 2093 | { |
| 2094 | struct ipa_endpoint *endpoint; |
| 2095 | |
| 2096 | endpoint = &ipa->endpoint[data->endpoint_id]; |
| 2097 | |
| 2098 | if (data->ee_id == GSI_EE_AP) |
| 2099 | ipa->channel_map[data->channel_id] = endpoint; |
| 2100 | ipa->name_map[name] = endpoint; |
| 2101 | |
| 2102 | endpoint->ipa = ipa; |
| 2103 | endpoint->ee_id = data->ee_id; |
| 2104 | endpoint->channel_id = data->channel_id; |
| 2105 | endpoint->endpoint_id = data->endpoint_id; |
| 2106 | endpoint->toward_ipa = data->toward_ipa; |
| 2107 | endpoint->config = data->endpoint.config; |
| 2108 | |
| 2109 | __set_bit(endpoint->endpoint_id, ipa->defined); |
| 2110 | } |
| 2111 | |
| 2112 | static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint) |
| 2113 | { |
| 2114 | __clear_bit(endpoint->endpoint_id, endpoint->ipa->defined); |
| 2115 | |
| 2116 | memset(endpoint, 0, sizeof(*endpoint)); |
| 2117 | } |
| 2118 | |
| 2119 | void ipa_endpoint_exit(struct ipa *ipa) |
| 2120 | { |
| 2121 | u32 endpoint_id; |
| 2122 | |
| 2123 | ipa->filtered = 0; |
| 2124 | |
| 2125 | for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) |
| 2126 | ipa_endpoint_exit_one(endpoint: &ipa->endpoint[endpoint_id]); |
| 2127 | |
| 2128 | bitmap_free(bitmap: ipa->enabled); |
| 2129 | ipa->enabled = NULL; |
| 2130 | bitmap_free(bitmap: ipa->set_up); |
| 2131 | ipa->set_up = NULL; |
| 2132 | bitmap_free(bitmap: ipa->defined); |
| 2133 | ipa->defined = NULL; |
| 2134 | |
| 2135 | memset(ipa->name_map, 0, sizeof(ipa->name_map)); |
| 2136 | memset(ipa->channel_map, 0, sizeof(ipa->channel_map)); |
| 2137 | } |
| 2138 | |
| 2139 | /* Returns a bitmask of endpoints that support filtering, or 0 on error */ |
| 2140 | int ipa_endpoint_init(struct ipa *ipa, u32 count, |
| 2141 | const struct ipa_gsi_endpoint_data *data) |
| 2142 | { |
| 2143 | enum ipa_endpoint_name name; |
| 2144 | u32 filtered; |
| 2145 | |
| 2146 | BUILD_BUG_ON(!IPA_REPLENISH_BATCH); |
| 2147 | |
| 2148 | /* Number of endpoints is one more than the maximum ID */ |
| 2149 | ipa->endpoint_count = ipa_endpoint_max(ipa, count, data) + 1; |
| 2150 | if (!ipa->endpoint_count) |
| 2151 | return -EINVAL; |
| 2152 | |
| 2153 | /* Initialize endpoint state bitmaps */ |
| 2154 | ipa->defined = bitmap_zalloc(nbits: ipa->endpoint_count, GFP_KERNEL); |
| 2155 | if (!ipa->defined) |
| 2156 | return -ENOMEM; |
| 2157 | |
| 2158 | ipa->set_up = bitmap_zalloc(nbits: ipa->endpoint_count, GFP_KERNEL); |
| 2159 | if (!ipa->set_up) |
| 2160 | goto err_free_defined; |
| 2161 | |
| 2162 | ipa->enabled = bitmap_zalloc(nbits: ipa->endpoint_count, GFP_KERNEL); |
| 2163 | if (!ipa->enabled) |
| 2164 | goto err_free_set_up; |
| 2165 | |
| 2166 | filtered = 0; |
| 2167 | for (name = 0; name < count; name++, data++) { |
| 2168 | if (ipa_gsi_endpoint_data_empty(data)) |
| 2169 | continue; /* Skip over empty slots */ |
| 2170 | |
| 2171 | ipa_endpoint_init_one(ipa, name, data); |
| 2172 | |
| 2173 | if (data->endpoint.filter_support) |
| 2174 | filtered |= BIT(data->endpoint_id); |
| 2175 | if (data->ee_id == GSI_EE_MODEM && data->toward_ipa) |
| 2176 | ipa->modem_tx_count++; |
| 2177 | } |
| 2178 | |
| 2179 | /* Make sure the set of filtered endpoints is valid */ |
| 2180 | if (!ipa_filtered_valid(ipa, filtered)) { |
| 2181 | ipa_endpoint_exit(ipa); |
| 2182 | |
| 2183 | return -EINVAL; |
| 2184 | } |
| 2185 | |
| 2186 | ipa->filtered = filtered; |
| 2187 | |
| 2188 | return 0; |
| 2189 | |
| 2190 | err_free_set_up: |
| 2191 | bitmap_free(bitmap: ipa->set_up); |
| 2192 | ipa->set_up = NULL; |
| 2193 | err_free_defined: |
| 2194 | bitmap_free(bitmap: ipa->defined); |
| 2195 | ipa->defined = NULL; |
| 2196 | |
| 2197 | return -ENOMEM; |
| 2198 | } |
| 2199 | |