| 1 | // SPDX-License-Identifier: GPL-2.0-or-later |
| 2 | /* |
| 3 | * vrf.c: device driver to encapsulate a VRF space |
| 4 | * |
| 5 | * Copyright (c) 2015 Cumulus Networks. All rights reserved. |
| 6 | * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com> |
| 7 | * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com> |
| 8 | * |
| 9 | * Based on dummy, team and ipvlan drivers |
| 10 | */ |
| 11 | |
| 12 | #include <linux/ethtool.h> |
| 13 | #include <linux/module.h> |
| 14 | #include <linux/kernel.h> |
| 15 | #include <linux/netdevice.h> |
| 16 | #include <linux/etherdevice.h> |
| 17 | #include <linux/ip.h> |
| 18 | #include <linux/init.h> |
| 19 | #include <linux/moduleparam.h> |
| 20 | #include <linux/netfilter.h> |
| 21 | #include <linux/rtnetlink.h> |
| 22 | #include <net/rtnetlink.h> |
| 23 | #include <linux/u64_stats_sync.h> |
| 24 | #include <linux/hashtable.h> |
| 25 | #include <linux/spinlock_types.h> |
| 26 | |
| 27 | #include <linux/inetdevice.h> |
| 28 | #include <net/arp.h> |
| 29 | #include <net/ip.h> |
| 30 | #include <net/ip_fib.h> |
| 31 | #include <net/ip6_fib.h> |
| 32 | #include <net/ip6_route.h> |
| 33 | #include <net/route.h> |
| 34 | #include <net/addrconf.h> |
| 35 | #include <net/l3mdev.h> |
| 36 | #include <net/fib_rules.h> |
| 37 | #include <net/netdev_lock.h> |
| 38 | #include <net/sch_generic.h> |
| 39 | #include <net/netns/generic.h> |
| 40 | #include <net/netfilter/nf_conntrack.h> |
| 41 | #include <net/inet_dscp.h> |
| 42 | |
| 43 | #define DRV_NAME "vrf" |
| 44 | #define DRV_VERSION "1.1" |
| 45 | |
| 46 | #define FIB_RULE_PREF 1000 /* default preference for FIB rules */ |
| 47 | |
| 48 | #define HT_MAP_BITS 4 |
| 49 | #define HASH_INITVAL ((u32)0xcafef00d) |
| 50 | |
| 51 | struct vrf_map { |
| 52 | DECLARE_HASHTABLE(ht, HT_MAP_BITS); |
| 53 | spinlock_t vmap_lock; |
| 54 | |
| 55 | /* shared_tables: |
| 56 | * count how many distinct tables do not comply with the strict mode |
| 57 | * requirement. |
| 58 | * shared_tables value must be 0 in order to enable the strict mode. |
| 59 | * |
| 60 | * example of the evolution of shared_tables: |
| 61 | * | time |
| 62 | * add vrf0 --> table 100 shared_tables = 0 | t0 |
| 63 | * add vrf1 --> table 101 shared_tables = 0 | t1 |
| 64 | * add vrf2 --> table 100 shared_tables = 1 | t2 |
| 65 | * add vrf3 --> table 100 shared_tables = 1 | t3 |
| 66 | * add vrf4 --> table 101 shared_tables = 2 v t4 |
| 67 | * |
| 68 | * shared_tables is a "step function" (or "staircase function") |
| 69 | * and it is increased by one when the second vrf is associated to a |
| 70 | * table. |
| 71 | * |
| 72 | * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1. |
| 73 | * |
| 74 | * at t3, another dev (vrf3) is bound to the same table 100 but the |
| 75 | * value of shared_tables is still 1. |
| 76 | * This means that no matter how many new vrfs will register on the |
| 77 | * table 100, the shared_tables will not increase (considering only |
| 78 | * table 100). |
| 79 | * |
| 80 | * at t4, vrf4 is bound to table 101, and shared_tables = 2. |
| 81 | * |
| 82 | * Looking at the value of shared_tables we can immediately know if |
| 83 | * the strict_mode can or cannot be enforced. Indeed, strict_mode |
| 84 | * can be enforced iff shared_tables = 0. |
| 85 | * |
| 86 | * Conversely, shared_tables is decreased when a vrf is de-associated |
| 87 | * from a table with exactly two associated vrfs. |
| 88 | */ |
| 89 | u32 shared_tables; |
| 90 | |
| 91 | bool strict_mode; |
| 92 | }; |
| 93 | |
| 94 | struct vrf_map_elem { |
| 95 | struct hlist_node hnode; |
| 96 | struct list_head vrf_list; /* VRFs registered to this table */ |
| 97 | |
| 98 | u32 table_id; |
| 99 | int users; |
| 100 | int ifindex; |
| 101 | }; |
| 102 | |
| 103 | static unsigned int vrf_net_id; |
| 104 | |
| 105 | /* per netns vrf data */ |
| 106 | struct netns_vrf { |
| 107 | /* protected by rtnl lock */ |
| 108 | bool add_fib_rules; |
| 109 | |
| 110 | struct vrf_map vmap; |
| 111 | struct ctl_table_header *ctl_hdr; |
| 112 | }; |
| 113 | |
| 114 | struct net_vrf { |
| 115 | struct rtable __rcu *rth; |
| 116 | struct rt6_info __rcu *rt6; |
| 117 | #if IS_ENABLED(CONFIG_IPV6) |
| 118 | struct fib6_table *fib6_table; |
| 119 | #endif |
| 120 | u32 tb_id; |
| 121 | |
| 122 | struct list_head me_list; /* entry in vrf_map_elem */ |
| 123 | int ifindex; |
| 124 | }; |
| 125 | |
| 126 | static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb) |
| 127 | { |
| 128 | vrf_dev->stats.tx_errors++; |
| 129 | kfree_skb(skb); |
| 130 | } |
| 131 | |
| 132 | static struct vrf_map *netns_vrf_map(struct net *net) |
| 133 | { |
| 134 | struct netns_vrf *nn_vrf = net_generic(net, id: vrf_net_id); |
| 135 | |
| 136 | return &nn_vrf->vmap; |
| 137 | } |
| 138 | |
| 139 | static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev) |
| 140 | { |
| 141 | return netns_vrf_map(net: dev_net(dev)); |
| 142 | } |
| 143 | |
| 144 | static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me) |
| 145 | { |
| 146 | struct list_head *me_head = &me->vrf_list; |
| 147 | struct net_vrf *vrf; |
| 148 | |
| 149 | if (list_empty(head: me_head)) |
| 150 | return -ENODEV; |
| 151 | |
| 152 | vrf = list_first_entry(me_head, struct net_vrf, me_list); |
| 153 | |
| 154 | return vrf->ifindex; |
| 155 | } |
| 156 | |
| 157 | static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags) |
| 158 | { |
| 159 | struct vrf_map_elem *me; |
| 160 | |
| 161 | me = kmalloc(sizeof(*me), flags); |
| 162 | if (!me) |
| 163 | return NULL; |
| 164 | |
| 165 | return me; |
| 166 | } |
| 167 | |
| 168 | static void vrf_map_elem_free(struct vrf_map_elem *me) |
| 169 | { |
| 170 | kfree(objp: me); |
| 171 | } |
| 172 | |
| 173 | static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id, |
| 174 | int ifindex, int users) |
| 175 | { |
| 176 | me->table_id = table_id; |
| 177 | me->ifindex = ifindex; |
| 178 | me->users = users; |
| 179 | INIT_LIST_HEAD(list: &me->vrf_list); |
| 180 | } |
| 181 | |
| 182 | static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap, |
| 183 | u32 table_id) |
| 184 | { |
| 185 | struct vrf_map_elem *me; |
| 186 | u32 key; |
| 187 | |
| 188 | key = jhash_1word(a: table_id, HASH_INITVAL); |
| 189 | hash_for_each_possible(vmap->ht, me, hnode, key) { |
| 190 | if (me->table_id == table_id) |
| 191 | return me; |
| 192 | } |
| 193 | |
| 194 | return NULL; |
| 195 | } |
| 196 | |
| 197 | static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me) |
| 198 | { |
| 199 | u32 table_id = me->table_id; |
| 200 | u32 key; |
| 201 | |
| 202 | key = jhash_1word(a: table_id, HASH_INITVAL); |
| 203 | hash_add(vmap->ht, &me->hnode, key); |
| 204 | } |
| 205 | |
| 206 | static void vrf_map_del_elem(struct vrf_map_elem *me) |
| 207 | { |
| 208 | hash_del(node: &me->hnode); |
| 209 | } |
| 210 | |
| 211 | static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock) |
| 212 | { |
| 213 | spin_lock(lock: &vmap->vmap_lock); |
| 214 | } |
| 215 | |
| 216 | static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock) |
| 217 | { |
| 218 | spin_unlock(lock: &vmap->vmap_lock); |
| 219 | } |
| 220 | |
| 221 | /* called with rtnl lock held */ |
| 222 | static int |
| 223 | vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack) |
| 224 | { |
| 225 | struct vrf_map *vmap = netns_vrf_map_by_dev(dev); |
| 226 | struct net_vrf *vrf = netdev_priv(dev); |
| 227 | struct vrf_map_elem *new_me, *me; |
| 228 | u32 table_id = vrf->tb_id; |
| 229 | bool free_new_me = false; |
| 230 | int users; |
| 231 | int res; |
| 232 | |
| 233 | /* we pre-allocate elements used in the spin-locked section (so that we |
| 234 | * keep the spinlock as short as possible). |
| 235 | */ |
| 236 | new_me = vrf_map_elem_alloc(GFP_KERNEL); |
| 237 | if (!new_me) |
| 238 | return -ENOMEM; |
| 239 | |
| 240 | vrf_map_elem_init(me: new_me, table_id, ifindex: dev->ifindex, users: 0); |
| 241 | |
| 242 | vrf_map_lock(vmap); |
| 243 | |
| 244 | me = vrf_map_lookup_elem(vmap, table_id); |
| 245 | if (!me) { |
| 246 | me = new_me; |
| 247 | vrf_map_add_elem(vmap, me); |
| 248 | goto link_vrf; |
| 249 | } |
| 250 | |
| 251 | /* we already have an entry in the vrf_map, so it means there is (at |
| 252 | * least) a vrf registered on the specific table. |
| 253 | */ |
| 254 | free_new_me = true; |
| 255 | if (vmap->strict_mode) { |
| 256 | /* vrfs cannot share the same table */ |
| 257 | NL_SET_ERR_MSG(extack, "Table is used by another VRF" ); |
| 258 | res = -EBUSY; |
| 259 | goto unlock; |
| 260 | } |
| 261 | |
| 262 | link_vrf: |
| 263 | users = ++me->users; |
| 264 | if (users == 2) |
| 265 | ++vmap->shared_tables; |
| 266 | |
| 267 | list_add(new: &vrf->me_list, head: &me->vrf_list); |
| 268 | |
| 269 | res = 0; |
| 270 | |
| 271 | unlock: |
| 272 | vrf_map_unlock(vmap); |
| 273 | |
| 274 | /* clean-up, if needed */ |
| 275 | if (free_new_me) |
| 276 | vrf_map_elem_free(me: new_me); |
| 277 | |
| 278 | return res; |
| 279 | } |
| 280 | |
| 281 | /* called with rtnl lock held */ |
| 282 | static void vrf_map_unregister_dev(struct net_device *dev) |
| 283 | { |
| 284 | struct vrf_map *vmap = netns_vrf_map_by_dev(dev); |
| 285 | struct net_vrf *vrf = netdev_priv(dev); |
| 286 | u32 table_id = vrf->tb_id; |
| 287 | struct vrf_map_elem *me; |
| 288 | int users; |
| 289 | |
| 290 | vrf_map_lock(vmap); |
| 291 | |
| 292 | me = vrf_map_lookup_elem(vmap, table_id); |
| 293 | if (!me) |
| 294 | goto unlock; |
| 295 | |
| 296 | list_del(entry: &vrf->me_list); |
| 297 | |
| 298 | users = --me->users; |
| 299 | if (users == 1) { |
| 300 | --vmap->shared_tables; |
| 301 | } else if (users == 0) { |
| 302 | vrf_map_del_elem(me); |
| 303 | |
| 304 | /* no one will refer to this element anymore */ |
| 305 | vrf_map_elem_free(me); |
| 306 | } |
| 307 | |
| 308 | unlock: |
| 309 | vrf_map_unlock(vmap); |
| 310 | } |
| 311 | |
| 312 | /* return the vrf device index associated with the table_id */ |
| 313 | static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id) |
| 314 | { |
| 315 | struct vrf_map *vmap = netns_vrf_map(net); |
| 316 | struct vrf_map_elem *me; |
| 317 | int ifindex; |
| 318 | |
| 319 | vrf_map_lock(vmap); |
| 320 | |
| 321 | if (!vmap->strict_mode) { |
| 322 | ifindex = -EPERM; |
| 323 | goto unlock; |
| 324 | } |
| 325 | |
| 326 | me = vrf_map_lookup_elem(vmap, table_id); |
| 327 | if (!me) { |
| 328 | ifindex = -ENODEV; |
| 329 | goto unlock; |
| 330 | } |
| 331 | |
| 332 | ifindex = vrf_map_elem_get_vrf_ifindex(me); |
| 333 | |
| 334 | unlock: |
| 335 | vrf_map_unlock(vmap); |
| 336 | |
| 337 | return ifindex; |
| 338 | } |
| 339 | |
| 340 | /* by default VRF devices do not have a qdisc and are expected |
| 341 | * to be created with only a single queue. |
| 342 | */ |
| 343 | static bool qdisc_tx_is_default(const struct net_device *dev) |
| 344 | { |
| 345 | struct netdev_queue *txq; |
| 346 | |
| 347 | if (dev->num_tx_queues > 1) |
| 348 | return false; |
| 349 | |
| 350 | txq = netdev_get_tx_queue(dev, index: 0); |
| 351 | |
| 352 | return qdisc_txq_has_no_queue(txq); |
| 353 | } |
| 354 | |
| 355 | /* Local traffic destined to local address. Reinsert the packet to rx |
| 356 | * path, similar to loopback handling. |
| 357 | */ |
| 358 | static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev, |
| 359 | struct dst_entry *dst) |
| 360 | { |
| 361 | unsigned int len = skb->len; |
| 362 | |
| 363 | skb_orphan(skb); |
| 364 | |
| 365 | skb_dst_set(skb, dst); |
| 366 | |
| 367 | /* set pkt_type to avoid skb hitting packet taps twice - |
| 368 | * once on Tx and again in Rx processing |
| 369 | */ |
| 370 | skb->pkt_type = PACKET_LOOPBACK; |
| 371 | |
| 372 | skb->protocol = eth_type_trans(skb, dev); |
| 373 | |
| 374 | if (likely(__netif_rx(skb) == NET_RX_SUCCESS)) |
| 375 | dev_dstats_rx_add(dev, len); |
| 376 | else |
| 377 | dev_dstats_rx_dropped(dev); |
| 378 | |
| 379 | return NETDEV_TX_OK; |
| 380 | } |
| 381 | |
| 382 | static void vrf_nf_set_untracked(struct sk_buff *skb) |
| 383 | { |
| 384 | if (skb_get_nfct(skb) == 0) |
| 385 | nf_ct_set(skb, NULL, info: IP_CT_UNTRACKED); |
| 386 | } |
| 387 | |
| 388 | static void vrf_nf_reset_ct(struct sk_buff *skb) |
| 389 | { |
| 390 | if (skb_get_nfct(skb) == IP_CT_UNTRACKED) |
| 391 | nf_reset_ct(skb); |
| 392 | } |
| 393 | |
| 394 | #if IS_ENABLED(CONFIG_IPV6) |
| 395 | static int vrf_ip6_local_out(struct net *net, struct sock *sk, |
| 396 | struct sk_buff *skb) |
| 397 | { |
| 398 | int err; |
| 399 | |
| 400 | vrf_nf_reset_ct(skb); |
| 401 | |
| 402 | err = nf_hook(pf: NFPROTO_IPV6, hook: NF_INET_LOCAL_OUT, net, |
| 403 | sk, skb, NULL, outdev: skb_dst(skb)->dev, okfn: dst_output); |
| 404 | |
| 405 | if (likely(err == 1)) |
| 406 | err = dst_output(net, sk, skb); |
| 407 | |
| 408 | return err; |
| 409 | } |
| 410 | |
| 411 | static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, |
| 412 | struct net_device *dev) |
| 413 | { |
| 414 | const struct ipv6hdr *iph; |
| 415 | struct net *net = dev_net(dev: skb->dev); |
| 416 | struct flowi6 fl6; |
| 417 | int ret = NET_XMIT_DROP; |
| 418 | struct dst_entry *dst; |
| 419 | struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst; |
| 420 | |
| 421 | if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr))) |
| 422 | goto err; |
| 423 | |
| 424 | iph = ipv6_hdr(skb); |
| 425 | |
| 426 | memset(&fl6, 0, sizeof(fl6)); |
| 427 | /* needed to match OIF rule */ |
| 428 | fl6.flowi6_l3mdev = dev->ifindex; |
| 429 | fl6.flowi6_iif = LOOPBACK_IFINDEX; |
| 430 | fl6.daddr = iph->daddr; |
| 431 | fl6.saddr = iph->saddr; |
| 432 | fl6.flowlabel = ip6_flowinfo(hdr: iph); |
| 433 | fl6.flowi6_mark = skb->mark; |
| 434 | fl6.flowi6_proto = iph->nexthdr; |
| 435 | |
| 436 | dst = ip6_dst_lookup_flow(net, NULL, fl6: &fl6, NULL); |
| 437 | if (IS_ERR(ptr: dst) || dst == dst_null) |
| 438 | goto err; |
| 439 | |
| 440 | skb_dst_drop(skb); |
| 441 | |
| 442 | /* if dst.dev is the VRF device again this is locally originated traffic |
| 443 | * destined to a local address. Short circuit to Rx path. |
| 444 | */ |
| 445 | if (dst->dev == dev) |
| 446 | return vrf_local_xmit(skb, dev, dst); |
| 447 | |
| 448 | skb_dst_set(skb, dst); |
| 449 | |
| 450 | /* strip the ethernet header added for pass through VRF device */ |
| 451 | __skb_pull(skb, len: skb_network_offset(skb)); |
| 452 | |
| 453 | memset(IP6CB(skb), 0, sizeof(*IP6CB(skb))); |
| 454 | ret = vrf_ip6_local_out(net, sk: skb->sk, skb); |
| 455 | if (unlikely(net_xmit_eval(ret))) |
| 456 | dev->stats.tx_errors++; |
| 457 | else |
| 458 | ret = NET_XMIT_SUCCESS; |
| 459 | |
| 460 | return ret; |
| 461 | err: |
| 462 | vrf_tx_error(vrf_dev: dev, skb); |
| 463 | return NET_XMIT_DROP; |
| 464 | } |
| 465 | #else |
| 466 | static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, |
| 467 | struct net_device *dev) |
| 468 | { |
| 469 | vrf_tx_error(dev, skb); |
| 470 | return NET_XMIT_DROP; |
| 471 | } |
| 472 | #endif |
| 473 | |
| 474 | /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */ |
| 475 | static int vrf_ip_local_out(struct net *net, struct sock *sk, |
| 476 | struct sk_buff *skb) |
| 477 | { |
| 478 | int err; |
| 479 | |
| 480 | vrf_nf_reset_ct(skb); |
| 481 | |
| 482 | err = nf_hook(pf: NFPROTO_IPV4, hook: NF_INET_LOCAL_OUT, net, sk, |
| 483 | skb, NULL, outdev: skb_dst(skb)->dev, okfn: dst_output); |
| 484 | if (likely(err == 1)) |
| 485 | err = dst_output(net, sk, skb); |
| 486 | |
| 487 | return err; |
| 488 | } |
| 489 | |
| 490 | static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb, |
| 491 | struct net_device *vrf_dev) |
| 492 | { |
| 493 | struct iphdr *ip4h; |
| 494 | int ret = NET_XMIT_DROP; |
| 495 | struct flowi4 fl4; |
| 496 | struct net *net = dev_net(dev: vrf_dev); |
| 497 | struct rtable *rt; |
| 498 | |
| 499 | if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr))) |
| 500 | goto err; |
| 501 | |
| 502 | ip4h = ip_hdr(skb); |
| 503 | |
| 504 | memset(&fl4, 0, sizeof(fl4)); |
| 505 | /* needed to match OIF rule */ |
| 506 | fl4.flowi4_l3mdev = vrf_dev->ifindex; |
| 507 | fl4.flowi4_iif = LOOPBACK_IFINDEX; |
| 508 | fl4.flowi4_tos = inet_dscp_to_dsfield(dscp: ip4h_dscp(ip4h)); |
| 509 | fl4.flowi4_flags = FLOWI_FLAG_ANYSRC; |
| 510 | fl4.flowi4_proto = ip4h->protocol; |
| 511 | fl4.daddr = ip4h->daddr; |
| 512 | fl4.saddr = ip4h->saddr; |
| 513 | |
| 514 | rt = ip_route_output_flow(net, flp: &fl4, NULL); |
| 515 | if (IS_ERR(ptr: rt)) |
| 516 | goto err; |
| 517 | |
| 518 | skb_dst_drop(skb); |
| 519 | |
| 520 | /* if dst.dev is the VRF device again this is locally originated traffic |
| 521 | * destined to a local address. Short circuit to Rx path. |
| 522 | */ |
| 523 | if (rt->dst.dev == vrf_dev) |
| 524 | return vrf_local_xmit(skb, dev: vrf_dev, dst: &rt->dst); |
| 525 | |
| 526 | skb_dst_set(skb, dst: &rt->dst); |
| 527 | |
| 528 | /* strip the ethernet header added for pass through VRF device */ |
| 529 | __skb_pull(skb, len: skb_network_offset(skb)); |
| 530 | |
| 531 | if (!ip4h->saddr) { |
| 532 | ip4h->saddr = inet_select_addr(dev: skb_dst(skb)->dev, dst: 0, |
| 533 | scope: RT_SCOPE_LINK); |
| 534 | } |
| 535 | |
| 536 | memset(IPCB(skb), 0, sizeof(*IPCB(skb))); |
| 537 | ret = vrf_ip_local_out(net: dev_net(dev: skb_dst(skb)->dev), sk: skb->sk, skb); |
| 538 | if (unlikely(net_xmit_eval(ret))) |
| 539 | vrf_dev->stats.tx_errors++; |
| 540 | else |
| 541 | ret = NET_XMIT_SUCCESS; |
| 542 | |
| 543 | out: |
| 544 | return ret; |
| 545 | err: |
| 546 | vrf_tx_error(vrf_dev, skb); |
| 547 | goto out; |
| 548 | } |
| 549 | |
| 550 | static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev) |
| 551 | { |
| 552 | switch (skb->protocol) { |
| 553 | case htons(ETH_P_IP): |
| 554 | return vrf_process_v4_outbound(skb, vrf_dev: dev); |
| 555 | case htons(ETH_P_IPV6): |
| 556 | return vrf_process_v6_outbound(skb, dev); |
| 557 | default: |
| 558 | vrf_tx_error(vrf_dev: dev, skb); |
| 559 | return NET_XMIT_DROP; |
| 560 | } |
| 561 | } |
| 562 | |
| 563 | static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev) |
| 564 | { |
| 565 | unsigned int len = skb->len; |
| 566 | netdev_tx_t ret; |
| 567 | |
| 568 | ret = is_ip_tx_frame(skb, dev); |
| 569 | if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) |
| 570 | dev_dstats_tx_add(dev, len); |
| 571 | else |
| 572 | dev_dstats_tx_dropped(dev); |
| 573 | |
| 574 | return ret; |
| 575 | } |
| 576 | |
| 577 | static void vrf_finish_direct(struct sk_buff *skb) |
| 578 | { |
| 579 | struct net_device *vrf_dev = skb->dev; |
| 580 | |
| 581 | if (!list_empty(head: &vrf_dev->ptype_all) && |
| 582 | likely(skb_headroom(skb) >= ETH_HLEN)) { |
| 583 | struct ethhdr *eth = skb_push(skb, ETH_HLEN); |
| 584 | |
| 585 | ether_addr_copy(dst: eth->h_source, src: vrf_dev->dev_addr); |
| 586 | eth_zero_addr(addr: eth->h_dest); |
| 587 | eth->h_proto = skb->protocol; |
| 588 | |
| 589 | rcu_read_lock_bh(); |
| 590 | dev_queue_xmit_nit(skb, dev: vrf_dev); |
| 591 | rcu_read_unlock_bh(); |
| 592 | |
| 593 | skb_pull(skb, ETH_HLEN); |
| 594 | } |
| 595 | |
| 596 | vrf_nf_reset_ct(skb); |
| 597 | } |
| 598 | |
| 599 | #if IS_ENABLED(CONFIG_IPV6) |
| 600 | /* modelled after ip6_finish_output2 */ |
| 601 | static int vrf_finish_output6(struct net *net, struct sock *sk, |
| 602 | struct sk_buff *skb) |
| 603 | { |
| 604 | struct dst_entry *dst = skb_dst(skb); |
| 605 | struct net_device *dev = dst->dev; |
| 606 | const struct in6_addr *nexthop; |
| 607 | struct neighbour *neigh; |
| 608 | int ret; |
| 609 | |
| 610 | vrf_nf_reset_ct(skb); |
| 611 | |
| 612 | skb->protocol = htons(ETH_P_IPV6); |
| 613 | skb->dev = dev; |
| 614 | |
| 615 | rcu_read_lock(); |
| 616 | nexthop = rt6_nexthop(dst_rt6_info(dst), daddr: &ipv6_hdr(skb)->daddr); |
| 617 | neigh = __ipv6_neigh_lookup_noref(dev: dst->dev, pkey: nexthop); |
| 618 | if (unlikely(!neigh)) |
| 619 | neigh = __neigh_create(tbl: &nd_tbl, pkey: nexthop, dev: dst->dev, want_ref: false); |
| 620 | if (!IS_ERR(ptr: neigh)) { |
| 621 | sock_confirm_neigh(skb, n: neigh); |
| 622 | ret = neigh_output(n: neigh, skb, skip_cache: false); |
| 623 | rcu_read_unlock(); |
| 624 | return ret; |
| 625 | } |
| 626 | rcu_read_unlock(); |
| 627 | |
| 628 | IP6_INC_STATS(dev_net(dst->dev), |
| 629 | ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES); |
| 630 | kfree_skb(skb); |
| 631 | return -EINVAL; |
| 632 | } |
| 633 | |
| 634 | /* modelled after ip6_output */ |
| 635 | static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb) |
| 636 | { |
| 637 | return NF_HOOK_COND(pf: NFPROTO_IPV6, hook: NF_INET_POST_ROUTING, |
| 638 | net, sk, skb, NULL, out: skb_dst(skb)->dev, |
| 639 | okfn: vrf_finish_output6, |
| 640 | cond: !(IP6CB(skb)->flags & IP6SKB_REROUTED)); |
| 641 | } |
| 642 | |
| 643 | /* set dst on skb to send packet to us via dev_xmit path. Allows |
| 644 | * packet to go through device based features such as qdisc, netfilter |
| 645 | * hooks and packet sockets with skb->dev set to vrf device. |
| 646 | */ |
| 647 | static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev, |
| 648 | struct sk_buff *skb) |
| 649 | { |
| 650 | struct net_vrf *vrf = netdev_priv(dev: vrf_dev); |
| 651 | struct dst_entry *dst = NULL; |
| 652 | struct rt6_info *rt6; |
| 653 | |
| 654 | rcu_read_lock(); |
| 655 | |
| 656 | rt6 = rcu_dereference(vrf->rt6); |
| 657 | if (likely(rt6)) { |
| 658 | dst = &rt6->dst; |
| 659 | dst_hold(dst); |
| 660 | } |
| 661 | |
| 662 | rcu_read_unlock(); |
| 663 | |
| 664 | if (unlikely(!dst)) { |
| 665 | vrf_tx_error(vrf_dev, skb); |
| 666 | return NULL; |
| 667 | } |
| 668 | |
| 669 | skb_dst_drop(skb); |
| 670 | skb_dst_set(skb, dst); |
| 671 | |
| 672 | return skb; |
| 673 | } |
| 674 | |
| 675 | static int vrf_output6_direct_finish(struct net *net, struct sock *sk, |
| 676 | struct sk_buff *skb) |
| 677 | { |
| 678 | vrf_finish_direct(skb); |
| 679 | |
| 680 | return vrf_ip6_local_out(net, sk, skb); |
| 681 | } |
| 682 | |
| 683 | static int vrf_output6_direct(struct net *net, struct sock *sk, |
| 684 | struct sk_buff *skb) |
| 685 | { |
| 686 | int err = 1; |
| 687 | |
| 688 | skb->protocol = htons(ETH_P_IPV6); |
| 689 | |
| 690 | if (!(IPCB(skb)->flags & IPSKB_REROUTED)) |
| 691 | err = nf_hook(pf: NFPROTO_IPV6, hook: NF_INET_POST_ROUTING, net, sk, skb, |
| 692 | NULL, outdev: skb->dev, okfn: vrf_output6_direct_finish); |
| 693 | |
| 694 | if (likely(err == 1)) |
| 695 | vrf_finish_direct(skb); |
| 696 | |
| 697 | return err; |
| 698 | } |
| 699 | |
| 700 | static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk, |
| 701 | struct sk_buff *skb) |
| 702 | { |
| 703 | int err; |
| 704 | |
| 705 | err = vrf_output6_direct(net, sk, skb); |
| 706 | if (likely(err == 1)) |
| 707 | err = vrf_ip6_local_out(net, sk, skb); |
| 708 | |
| 709 | return err; |
| 710 | } |
| 711 | |
| 712 | static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev, |
| 713 | struct sock *sk, |
| 714 | struct sk_buff *skb) |
| 715 | { |
| 716 | struct net *net = dev_net(dev: vrf_dev); |
| 717 | int err; |
| 718 | |
| 719 | skb->dev = vrf_dev; |
| 720 | |
| 721 | err = nf_hook(pf: NFPROTO_IPV6, hook: NF_INET_LOCAL_OUT, net, sk, |
| 722 | skb, NULL, outdev: vrf_dev, okfn: vrf_ip6_out_direct_finish); |
| 723 | |
| 724 | if (likely(err == 1)) |
| 725 | err = vrf_output6_direct(net, sk, skb); |
| 726 | |
| 727 | if (likely(err == 1)) |
| 728 | return skb; |
| 729 | |
| 730 | return NULL; |
| 731 | } |
| 732 | |
| 733 | static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, |
| 734 | struct sock *sk, |
| 735 | struct sk_buff *skb) |
| 736 | { |
| 737 | /* don't divert link scope packets */ |
| 738 | if (rt6_need_strict(daddr: &ipv6_hdr(skb)->daddr)) |
| 739 | return skb; |
| 740 | |
| 741 | vrf_nf_set_untracked(skb); |
| 742 | |
| 743 | if (qdisc_tx_is_default(dev: vrf_dev) || |
| 744 | IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) |
| 745 | return vrf_ip6_out_direct(vrf_dev, sk, skb); |
| 746 | |
| 747 | return vrf_ip6_out_redirect(vrf_dev, skb); |
| 748 | } |
| 749 | |
| 750 | /* holding rtnl */ |
| 751 | static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) |
| 752 | { |
| 753 | struct rt6_info *rt6 = rtnl_dereference(vrf->rt6); |
| 754 | struct net *net = dev_net(dev); |
| 755 | struct dst_entry *dst; |
| 756 | |
| 757 | RCU_INIT_POINTER(vrf->rt6, NULL); |
| 758 | synchronize_rcu(); |
| 759 | |
| 760 | /* move dev in dst's to loopback so this VRF device can be deleted |
| 761 | * - based on dst_ifdown |
| 762 | */ |
| 763 | if (rt6) { |
| 764 | dst = &rt6->dst; |
| 765 | netdev_ref_replace(odev: dst->dev, ndev: net->loopback_dev, |
| 766 | tracker: &dst->dev_tracker, GFP_KERNEL); |
| 767 | dst->dev = net->loopback_dev; |
| 768 | dst_release(dst); |
| 769 | } |
| 770 | } |
| 771 | |
| 772 | static int vrf_rt6_create(struct net_device *dev) |
| 773 | { |
| 774 | int flags = DST_NOPOLICY | DST_NOXFRM; |
| 775 | struct net_vrf *vrf = netdev_priv(dev); |
| 776 | struct net *net = dev_net(dev); |
| 777 | struct rt6_info *rt6; |
| 778 | int rc = -ENOMEM; |
| 779 | |
| 780 | /* IPv6 can be CONFIG enabled and then disabled runtime */ |
| 781 | if (!ipv6_mod_enabled()) |
| 782 | return 0; |
| 783 | |
| 784 | vrf->fib6_table = fib6_new_table(net, id: vrf->tb_id); |
| 785 | if (!vrf->fib6_table) |
| 786 | goto out; |
| 787 | |
| 788 | /* create a dst for routing packets out a VRF device */ |
| 789 | rt6 = ip6_dst_alloc(net, dev, flags); |
| 790 | if (!rt6) |
| 791 | goto out; |
| 792 | |
| 793 | rt6->dst.output = vrf_output6; |
| 794 | |
| 795 | rcu_assign_pointer(vrf->rt6, rt6); |
| 796 | |
| 797 | rc = 0; |
| 798 | out: |
| 799 | return rc; |
| 800 | } |
| 801 | #else |
| 802 | static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, |
| 803 | struct sock *sk, |
| 804 | struct sk_buff *skb) |
| 805 | { |
| 806 | return skb; |
| 807 | } |
| 808 | |
| 809 | static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) |
| 810 | { |
| 811 | } |
| 812 | |
| 813 | static int vrf_rt6_create(struct net_device *dev) |
| 814 | { |
| 815 | return 0; |
| 816 | } |
| 817 | #endif |
| 818 | |
| 819 | /* modelled after ip_finish_output2 */ |
| 820 | static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) |
| 821 | { |
| 822 | struct dst_entry *dst = skb_dst(skb); |
| 823 | struct rtable *rt = dst_rtable(dst); |
| 824 | struct net_device *dev = dst->dev; |
| 825 | unsigned int hh_len = LL_RESERVED_SPACE(dev); |
| 826 | struct neighbour *neigh; |
| 827 | bool is_v6gw = false; |
| 828 | |
| 829 | vrf_nf_reset_ct(skb); |
| 830 | |
| 831 | /* Be paranoid, rather than too clever. */ |
| 832 | if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { |
| 833 | skb = skb_expand_head(skb, headroom: hh_len); |
| 834 | if (!skb) { |
| 835 | dev->stats.tx_errors++; |
| 836 | return -ENOMEM; |
| 837 | } |
| 838 | } |
| 839 | |
| 840 | rcu_read_lock(); |
| 841 | |
| 842 | neigh = ip_neigh_for_gw(rt, skb, is_v6gw: &is_v6gw); |
| 843 | if (!IS_ERR(ptr: neigh)) { |
| 844 | int ret; |
| 845 | |
| 846 | sock_confirm_neigh(skb, n: neigh); |
| 847 | /* if crossing protocols, can not use the cached header */ |
| 848 | ret = neigh_output(n: neigh, skb, skip_cache: is_v6gw); |
| 849 | rcu_read_unlock(); |
| 850 | return ret; |
| 851 | } |
| 852 | |
| 853 | rcu_read_unlock(); |
| 854 | vrf_tx_error(vrf_dev: skb->dev, skb); |
| 855 | return -EINVAL; |
| 856 | } |
| 857 | |
| 858 | static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb) |
| 859 | { |
| 860 | struct net_device *dev = skb_dst(skb)->dev; |
| 861 | |
| 862 | IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); |
| 863 | |
| 864 | skb->dev = dev; |
| 865 | skb->protocol = htons(ETH_P_IP); |
| 866 | |
| 867 | return NF_HOOK_COND(pf: NFPROTO_IPV4, hook: NF_INET_POST_ROUTING, |
| 868 | net, sk, skb, NULL, out: dev, |
| 869 | okfn: vrf_finish_output, |
| 870 | cond: !(IPCB(skb)->flags & IPSKB_REROUTED)); |
| 871 | } |
| 872 | |
| 873 | /* set dst on skb to send packet to us via dev_xmit path. Allows |
| 874 | * packet to go through device based features such as qdisc, netfilter |
| 875 | * hooks and packet sockets with skb->dev set to vrf device. |
| 876 | */ |
| 877 | static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev, |
| 878 | struct sk_buff *skb) |
| 879 | { |
| 880 | struct net_vrf *vrf = netdev_priv(dev: vrf_dev); |
| 881 | struct dst_entry *dst = NULL; |
| 882 | struct rtable *rth; |
| 883 | |
| 884 | rcu_read_lock(); |
| 885 | |
| 886 | rth = rcu_dereference(vrf->rth); |
| 887 | if (likely(rth)) { |
| 888 | dst = &rth->dst; |
| 889 | dst_hold(dst); |
| 890 | } |
| 891 | |
| 892 | rcu_read_unlock(); |
| 893 | |
| 894 | if (unlikely(!dst)) { |
| 895 | vrf_tx_error(vrf_dev, skb); |
| 896 | return NULL; |
| 897 | } |
| 898 | |
| 899 | skb_dst_drop(skb); |
| 900 | skb_dst_set(skb, dst); |
| 901 | |
| 902 | return skb; |
| 903 | } |
| 904 | |
| 905 | static int vrf_output_direct_finish(struct net *net, struct sock *sk, |
| 906 | struct sk_buff *skb) |
| 907 | { |
| 908 | vrf_finish_direct(skb); |
| 909 | |
| 910 | return vrf_ip_local_out(net, sk, skb); |
| 911 | } |
| 912 | |
| 913 | static int vrf_output_direct(struct net *net, struct sock *sk, |
| 914 | struct sk_buff *skb) |
| 915 | { |
| 916 | int err = 1; |
| 917 | |
| 918 | skb->protocol = htons(ETH_P_IP); |
| 919 | |
| 920 | if (!(IPCB(skb)->flags & IPSKB_REROUTED)) |
| 921 | err = nf_hook(pf: NFPROTO_IPV4, hook: NF_INET_POST_ROUTING, net, sk, skb, |
| 922 | NULL, outdev: skb->dev, okfn: vrf_output_direct_finish); |
| 923 | |
| 924 | if (likely(err == 1)) |
| 925 | vrf_finish_direct(skb); |
| 926 | |
| 927 | return err; |
| 928 | } |
| 929 | |
| 930 | static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk, |
| 931 | struct sk_buff *skb) |
| 932 | { |
| 933 | int err; |
| 934 | |
| 935 | err = vrf_output_direct(net, sk, skb); |
| 936 | if (likely(err == 1)) |
| 937 | err = vrf_ip_local_out(net, sk, skb); |
| 938 | |
| 939 | return err; |
| 940 | } |
| 941 | |
| 942 | static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev, |
| 943 | struct sock *sk, |
| 944 | struct sk_buff *skb) |
| 945 | { |
| 946 | struct net *net = dev_net(dev: vrf_dev); |
| 947 | int err; |
| 948 | |
| 949 | skb->dev = vrf_dev; |
| 950 | |
| 951 | err = nf_hook(pf: NFPROTO_IPV4, hook: NF_INET_LOCAL_OUT, net, sk, |
| 952 | skb, NULL, outdev: vrf_dev, okfn: vrf_ip_out_direct_finish); |
| 953 | |
| 954 | if (likely(err == 1)) |
| 955 | err = vrf_output_direct(net, sk, skb); |
| 956 | |
| 957 | if (likely(err == 1)) |
| 958 | return skb; |
| 959 | |
| 960 | return NULL; |
| 961 | } |
| 962 | |
| 963 | static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev, |
| 964 | struct sock *sk, |
| 965 | struct sk_buff *skb) |
| 966 | { |
| 967 | /* don't divert multicast or local broadcast */ |
| 968 | if (ipv4_is_multicast(addr: ip_hdr(skb)->daddr) || |
| 969 | ipv4_is_lbcast(addr: ip_hdr(skb)->daddr)) |
| 970 | return skb; |
| 971 | |
| 972 | vrf_nf_set_untracked(skb); |
| 973 | |
| 974 | if (qdisc_tx_is_default(dev: vrf_dev) || |
| 975 | IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) |
| 976 | return vrf_ip_out_direct(vrf_dev, sk, skb); |
| 977 | |
| 978 | return vrf_ip_out_redirect(vrf_dev, skb); |
| 979 | } |
| 980 | |
| 981 | /* called with rcu lock held */ |
| 982 | static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev, |
| 983 | struct sock *sk, |
| 984 | struct sk_buff *skb, |
| 985 | u16 proto) |
| 986 | { |
| 987 | switch (proto) { |
| 988 | case AF_INET: |
| 989 | return vrf_ip_out(vrf_dev, sk, skb); |
| 990 | case AF_INET6: |
| 991 | return vrf_ip6_out(vrf_dev, sk, skb); |
| 992 | } |
| 993 | |
| 994 | return skb; |
| 995 | } |
| 996 | |
| 997 | /* holding rtnl */ |
| 998 | static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf) |
| 999 | { |
| 1000 | struct rtable *rth = rtnl_dereference(vrf->rth); |
| 1001 | struct net *net = dev_net(dev); |
| 1002 | struct dst_entry *dst; |
| 1003 | |
| 1004 | RCU_INIT_POINTER(vrf->rth, NULL); |
| 1005 | synchronize_rcu(); |
| 1006 | |
| 1007 | /* move dev in dst's to loopback so this VRF device can be deleted |
| 1008 | * - based on dst_ifdown |
| 1009 | */ |
| 1010 | if (rth) { |
| 1011 | dst = &rth->dst; |
| 1012 | netdev_ref_replace(odev: dst->dev, ndev: net->loopback_dev, |
| 1013 | tracker: &dst->dev_tracker, GFP_KERNEL); |
| 1014 | dst->dev = net->loopback_dev; |
| 1015 | dst_release(dst); |
| 1016 | } |
| 1017 | } |
| 1018 | |
| 1019 | static int vrf_rtable_create(struct net_device *dev) |
| 1020 | { |
| 1021 | struct net_vrf *vrf = netdev_priv(dev); |
| 1022 | struct rtable *rth; |
| 1023 | |
| 1024 | if (!fib_new_table(net: dev_net(dev), id: vrf->tb_id)) |
| 1025 | return -ENOMEM; |
| 1026 | |
| 1027 | /* create a dst for routing packets out through a VRF device */ |
| 1028 | rth = rt_dst_alloc(dev, flags: 0, type: RTN_UNICAST, noxfrm: 1); |
| 1029 | if (!rth) |
| 1030 | return -ENOMEM; |
| 1031 | |
| 1032 | rth->dst.output = vrf_output; |
| 1033 | |
| 1034 | rcu_assign_pointer(vrf->rth, rth); |
| 1035 | |
| 1036 | return 0; |
| 1037 | } |
| 1038 | |
| 1039 | /**************************** device handling ********************/ |
| 1040 | |
| 1041 | /* cycle interface to flush neighbor cache and move routes across tables */ |
| 1042 | static void cycle_netdev(struct net_device *dev, |
| 1043 | struct netlink_ext_ack *extack) |
| 1044 | { |
| 1045 | unsigned int flags = dev->flags; |
| 1046 | int ret; |
| 1047 | |
| 1048 | if (!netif_running(dev)) |
| 1049 | return; |
| 1050 | |
| 1051 | ret = dev_change_flags(dev, flags: flags & ~IFF_UP, extack); |
| 1052 | if (ret >= 0) |
| 1053 | ret = dev_change_flags(dev, flags, extack); |
| 1054 | |
| 1055 | if (ret < 0) { |
| 1056 | netdev_err(dev, |
| 1057 | format: "Failed to cycle device %s; route tables might be wrong!\n" , |
| 1058 | dev->name); |
| 1059 | } |
| 1060 | } |
| 1061 | |
| 1062 | static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev, |
| 1063 | struct netlink_ext_ack *extack) |
| 1064 | { |
| 1065 | int ret; |
| 1066 | |
| 1067 | /* do not allow loopback device to be enslaved to a VRF. |
| 1068 | * The vrf device acts as the loopback for the vrf. |
| 1069 | */ |
| 1070 | if (port_dev == dev_net(dev)->loopback_dev) { |
| 1071 | NL_SET_ERR_MSG(extack, |
| 1072 | "Can not enslave loopback device to a VRF" ); |
| 1073 | return -EOPNOTSUPP; |
| 1074 | } |
| 1075 | |
| 1076 | port_dev->priv_flags |= IFF_L3MDEV_SLAVE; |
| 1077 | ret = netdev_master_upper_dev_link(dev: port_dev, upper_dev: dev, NULL, NULL, extack); |
| 1078 | if (ret < 0) |
| 1079 | goto err; |
| 1080 | |
| 1081 | cycle_netdev(dev: port_dev, extack); |
| 1082 | |
| 1083 | return 0; |
| 1084 | |
| 1085 | err: |
| 1086 | port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; |
| 1087 | return ret; |
| 1088 | } |
| 1089 | |
| 1090 | static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev, |
| 1091 | struct netlink_ext_ack *extack) |
| 1092 | { |
| 1093 | if (netif_is_l3_master(dev: port_dev)) { |
| 1094 | NL_SET_ERR_MSG(extack, |
| 1095 | "Can not enslave an L3 master device to a VRF" ); |
| 1096 | return -EINVAL; |
| 1097 | } |
| 1098 | |
| 1099 | if (netif_is_l3_slave(dev: port_dev)) |
| 1100 | return -EINVAL; |
| 1101 | |
| 1102 | return do_vrf_add_slave(dev, port_dev, extack); |
| 1103 | } |
| 1104 | |
| 1105 | /* inverse of do_vrf_add_slave */ |
| 1106 | static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev) |
| 1107 | { |
| 1108 | netdev_upper_dev_unlink(dev: port_dev, upper_dev: dev); |
| 1109 | port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; |
| 1110 | |
| 1111 | cycle_netdev(dev: port_dev, NULL); |
| 1112 | |
| 1113 | return 0; |
| 1114 | } |
| 1115 | |
| 1116 | static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev) |
| 1117 | { |
| 1118 | return do_vrf_del_slave(dev, port_dev); |
| 1119 | } |
| 1120 | |
| 1121 | static void vrf_dev_uninit(struct net_device *dev) |
| 1122 | { |
| 1123 | struct net_vrf *vrf = netdev_priv(dev); |
| 1124 | |
| 1125 | vrf_rtable_release(dev, vrf); |
| 1126 | vrf_rt6_release(dev, vrf); |
| 1127 | } |
| 1128 | |
| 1129 | static int vrf_dev_init(struct net_device *dev) |
| 1130 | { |
| 1131 | struct net_vrf *vrf = netdev_priv(dev); |
| 1132 | |
| 1133 | /* create the default dst which points back to us */ |
| 1134 | if (vrf_rtable_create(dev) != 0) |
| 1135 | goto out_nomem; |
| 1136 | |
| 1137 | if (vrf_rt6_create(dev) != 0) |
| 1138 | goto out_rth; |
| 1139 | |
| 1140 | dev->flags = IFF_MASTER | IFF_NOARP; |
| 1141 | |
| 1142 | /* similarly, oper state is irrelevant; set to up to avoid confusion */ |
| 1143 | dev->operstate = IF_OPER_UP; |
| 1144 | netdev_lockdep_set_classes(dev); |
| 1145 | return 0; |
| 1146 | |
| 1147 | out_rth: |
| 1148 | vrf_rtable_release(dev, vrf); |
| 1149 | out_nomem: |
| 1150 | return -ENOMEM; |
| 1151 | } |
| 1152 | |
| 1153 | static const struct net_device_ops vrf_netdev_ops = { |
| 1154 | .ndo_init = vrf_dev_init, |
| 1155 | .ndo_uninit = vrf_dev_uninit, |
| 1156 | .ndo_start_xmit = vrf_xmit, |
| 1157 | .ndo_set_mac_address = eth_mac_addr, |
| 1158 | .ndo_add_slave = vrf_add_slave, |
| 1159 | .ndo_del_slave = vrf_del_slave, |
| 1160 | }; |
| 1161 | |
| 1162 | static u32 vrf_fib_table(const struct net_device *dev) |
| 1163 | { |
| 1164 | struct net_vrf *vrf = netdev_priv(dev); |
| 1165 | |
| 1166 | return vrf->tb_id; |
| 1167 | } |
| 1168 | |
| 1169 | static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb) |
| 1170 | { |
| 1171 | kfree_skb(skb); |
| 1172 | return 0; |
| 1173 | } |
| 1174 | |
| 1175 | static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook, |
| 1176 | struct sk_buff *skb, |
| 1177 | struct net_device *dev) |
| 1178 | { |
| 1179 | struct net *net = dev_net(dev); |
| 1180 | |
| 1181 | if (nf_hook(pf, hook, net, NULL, skb, indev: dev, NULL, okfn: vrf_rcv_finish) != 1) |
| 1182 | skb = NULL; /* kfree_skb(skb) handled by nf code */ |
| 1183 | |
| 1184 | return skb; |
| 1185 | } |
| 1186 | |
| 1187 | static int (struct sk_buff *skb, |
| 1188 | struct net_device *vrf_dev, u16 proto) |
| 1189 | { |
| 1190 | struct ethhdr *eth; |
| 1191 | int err; |
| 1192 | |
| 1193 | /* in general, we do not know if there is enough space in the head of |
| 1194 | * the packet for hosting the mac header. |
| 1195 | */ |
| 1196 | err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev)); |
| 1197 | if (unlikely(err)) |
| 1198 | /* no space in the skb head */ |
| 1199 | return -ENOBUFS; |
| 1200 | |
| 1201 | __skb_push(skb, ETH_HLEN); |
| 1202 | eth = (struct ethhdr *)skb->data; |
| 1203 | |
| 1204 | skb_reset_mac_header(skb); |
| 1205 | skb_reset_mac_len(skb); |
| 1206 | |
| 1207 | /* we set the ethernet destination and the source addresses to the |
| 1208 | * address of the VRF device. |
| 1209 | */ |
| 1210 | ether_addr_copy(dst: eth->h_dest, src: vrf_dev->dev_addr); |
| 1211 | ether_addr_copy(dst: eth->h_source, src: vrf_dev->dev_addr); |
| 1212 | eth->h_proto = htons(proto); |
| 1213 | |
| 1214 | /* the destination address of the Ethernet frame corresponds to the |
| 1215 | * address set on the VRF interface; therefore, the packet is intended |
| 1216 | * to be processed locally. |
| 1217 | */ |
| 1218 | skb->protocol = eth->h_proto; |
| 1219 | skb->pkt_type = PACKET_HOST; |
| 1220 | |
| 1221 | skb_postpush_rcsum(skb, start: skb->data, ETH_HLEN); |
| 1222 | |
| 1223 | skb_pull_inline(skb, ETH_HLEN); |
| 1224 | |
| 1225 | return 0; |
| 1226 | } |
| 1227 | |
| 1228 | /* prepare and add the mac header to the packet if it was not set previously. |
| 1229 | * In this way, packet sniffers such as tcpdump can parse the packet correctly. |
| 1230 | * If the mac header was already set, the original mac header is left |
| 1231 | * untouched and the function returns immediately. |
| 1232 | */ |
| 1233 | static int (struct sk_buff *skb, |
| 1234 | struct net_device *vrf_dev, |
| 1235 | u16 proto, struct net_device *orig_dev) |
| 1236 | { |
| 1237 | if (skb_mac_header_was_set(skb) && dev_has_header(dev: orig_dev)) |
| 1238 | return 0; |
| 1239 | |
| 1240 | return vrf_prepare_mac_header(skb, vrf_dev, proto); |
| 1241 | } |
| 1242 | |
| 1243 | #if IS_ENABLED(CONFIG_IPV6) |
| 1244 | /* neighbor handling is done with actual device; do not want |
| 1245 | * to flip skb->dev for those ndisc packets. This really fails |
| 1246 | * for multiple next protocols (e.g., NEXTHDR_HOP). But it is |
| 1247 | * a start. |
| 1248 | */ |
| 1249 | static bool ipv6_ndisc_frame(const struct sk_buff *skb) |
| 1250 | { |
| 1251 | const struct ipv6hdr *iph = ipv6_hdr(skb); |
| 1252 | bool rc = false; |
| 1253 | |
| 1254 | if (iph->nexthdr == NEXTHDR_ICMP) { |
| 1255 | const struct icmp6hdr *icmph; |
| 1256 | struct icmp6hdr _icmph; |
| 1257 | |
| 1258 | icmph = skb_header_pointer(skb, offset: sizeof(*iph), |
| 1259 | len: sizeof(_icmph), buffer: &_icmph); |
| 1260 | if (!icmph) |
| 1261 | goto out; |
| 1262 | |
| 1263 | switch (icmph->icmp6_type) { |
| 1264 | case NDISC_ROUTER_SOLICITATION: |
| 1265 | case NDISC_ROUTER_ADVERTISEMENT: |
| 1266 | case NDISC_NEIGHBOUR_SOLICITATION: |
| 1267 | case NDISC_NEIGHBOUR_ADVERTISEMENT: |
| 1268 | case NDISC_REDIRECT: |
| 1269 | rc = true; |
| 1270 | break; |
| 1271 | } |
| 1272 | } |
| 1273 | |
| 1274 | out: |
| 1275 | return rc; |
| 1276 | } |
| 1277 | |
| 1278 | static struct rt6_info *vrf_ip6_route_lookup(struct net *net, |
| 1279 | const struct net_device *dev, |
| 1280 | struct flowi6 *fl6, |
| 1281 | int ifindex, |
| 1282 | const struct sk_buff *skb, |
| 1283 | int flags) |
| 1284 | { |
| 1285 | struct net_vrf *vrf = netdev_priv(dev); |
| 1286 | |
| 1287 | return ip6_pol_route(net, table: vrf->fib6_table, ifindex, fl6, skb, flags); |
| 1288 | } |
| 1289 | |
| 1290 | static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev, |
| 1291 | int ifindex) |
| 1292 | { |
| 1293 | const struct ipv6hdr *iph = ipv6_hdr(skb); |
| 1294 | struct flowi6 fl6 = { |
| 1295 | .flowi6_iif = ifindex, |
| 1296 | .flowi6_mark = skb->mark, |
| 1297 | .flowi6_proto = iph->nexthdr, |
| 1298 | .daddr = iph->daddr, |
| 1299 | .saddr = iph->saddr, |
| 1300 | .flowlabel = ip6_flowinfo(hdr: iph), |
| 1301 | }; |
| 1302 | struct net *net = dev_net(dev: vrf_dev); |
| 1303 | struct rt6_info *rt6; |
| 1304 | |
| 1305 | rt6 = vrf_ip6_route_lookup(net, dev: vrf_dev, fl6: &fl6, ifindex, skb, |
| 1306 | RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE); |
| 1307 | if (unlikely(!rt6)) |
| 1308 | return; |
| 1309 | |
| 1310 | if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst)) |
| 1311 | return; |
| 1312 | |
| 1313 | skb_dst_set(skb, dst: &rt6->dst); |
| 1314 | } |
| 1315 | |
| 1316 | static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, |
| 1317 | struct sk_buff *skb) |
| 1318 | { |
| 1319 | int orig_iif = skb->skb_iif; |
| 1320 | bool need_strict = rt6_need_strict(daddr: &ipv6_hdr(skb)->daddr); |
| 1321 | bool is_ndisc = ipv6_ndisc_frame(skb); |
| 1322 | |
| 1323 | /* loopback, multicast & non-ND link-local traffic; do not push through |
| 1324 | * packet taps again. Reset pkt_type for upper layers to process skb. |
| 1325 | * For non-loopback strict packets, determine the dst using the original |
| 1326 | * ifindex. |
| 1327 | */ |
| 1328 | if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) { |
| 1329 | skb->dev = vrf_dev; |
| 1330 | skb->skb_iif = vrf_dev->ifindex; |
| 1331 | IP6CB(skb)->flags |= IP6SKB_L3SLAVE; |
| 1332 | |
| 1333 | if (skb->pkt_type == PACKET_LOOPBACK) |
| 1334 | skb->pkt_type = PACKET_HOST; |
| 1335 | else |
| 1336 | vrf_ip6_input_dst(skb, vrf_dev, ifindex: orig_iif); |
| 1337 | |
| 1338 | goto out; |
| 1339 | } |
| 1340 | |
| 1341 | /* if packet is NDISC then keep the ingress interface */ |
| 1342 | if (!is_ndisc) { |
| 1343 | struct net_device *orig_dev = skb->dev; |
| 1344 | |
| 1345 | dev_dstats_rx_add(dev: vrf_dev, len: skb->len); |
| 1346 | skb->dev = vrf_dev; |
| 1347 | skb->skb_iif = vrf_dev->ifindex; |
| 1348 | |
| 1349 | if (!list_empty(head: &vrf_dev->ptype_all)) { |
| 1350 | int err; |
| 1351 | |
| 1352 | err = vrf_add_mac_header_if_unset(skb, vrf_dev, |
| 1353 | ETH_P_IPV6, |
| 1354 | orig_dev); |
| 1355 | if (likely(!err)) { |
| 1356 | skb_push(skb, len: skb->mac_len); |
| 1357 | dev_queue_xmit_nit(skb, dev: vrf_dev); |
| 1358 | skb_pull(skb, len: skb->mac_len); |
| 1359 | } |
| 1360 | } |
| 1361 | |
| 1362 | IP6CB(skb)->flags |= IP6SKB_L3SLAVE; |
| 1363 | } |
| 1364 | |
| 1365 | if (need_strict) |
| 1366 | vrf_ip6_input_dst(skb, vrf_dev, ifindex: orig_iif); |
| 1367 | |
| 1368 | skb = vrf_rcv_nfhook(pf: NFPROTO_IPV6, hook: NF_INET_PRE_ROUTING, skb, dev: vrf_dev); |
| 1369 | out: |
| 1370 | return skb; |
| 1371 | } |
| 1372 | |
| 1373 | #else |
| 1374 | static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, |
| 1375 | struct sk_buff *skb) |
| 1376 | { |
| 1377 | return skb; |
| 1378 | } |
| 1379 | #endif |
| 1380 | |
| 1381 | static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev, |
| 1382 | struct sk_buff *skb) |
| 1383 | { |
| 1384 | struct net_device *orig_dev = skb->dev; |
| 1385 | |
| 1386 | skb->dev = vrf_dev; |
| 1387 | skb->skb_iif = vrf_dev->ifindex; |
| 1388 | IPCB(skb)->flags |= IPSKB_L3SLAVE; |
| 1389 | |
| 1390 | if (ipv4_is_multicast(addr: ip_hdr(skb)->daddr)) |
| 1391 | goto out; |
| 1392 | |
| 1393 | /* loopback traffic; do not push through packet taps again. |
| 1394 | * Reset pkt_type for upper layers to process skb |
| 1395 | */ |
| 1396 | if (skb->pkt_type == PACKET_LOOPBACK) { |
| 1397 | skb->pkt_type = PACKET_HOST; |
| 1398 | goto out; |
| 1399 | } |
| 1400 | |
| 1401 | dev_dstats_rx_add(dev: vrf_dev, len: skb->len); |
| 1402 | |
| 1403 | if (!list_empty(head: &vrf_dev->ptype_all)) { |
| 1404 | int err; |
| 1405 | |
| 1406 | err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP, |
| 1407 | orig_dev); |
| 1408 | if (likely(!err)) { |
| 1409 | skb_push(skb, len: skb->mac_len); |
| 1410 | dev_queue_xmit_nit(skb, dev: vrf_dev); |
| 1411 | skb_pull(skb, len: skb->mac_len); |
| 1412 | } |
| 1413 | } |
| 1414 | |
| 1415 | skb = vrf_rcv_nfhook(pf: NFPROTO_IPV4, hook: NF_INET_PRE_ROUTING, skb, dev: vrf_dev); |
| 1416 | out: |
| 1417 | return skb; |
| 1418 | } |
| 1419 | |
| 1420 | /* called with rcu lock held */ |
| 1421 | static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev, |
| 1422 | struct sk_buff *skb, |
| 1423 | u16 proto) |
| 1424 | { |
| 1425 | switch (proto) { |
| 1426 | case AF_INET: |
| 1427 | return vrf_ip_rcv(vrf_dev, skb); |
| 1428 | case AF_INET6: |
| 1429 | return vrf_ip6_rcv(vrf_dev, skb); |
| 1430 | } |
| 1431 | |
| 1432 | return skb; |
| 1433 | } |
| 1434 | |
| 1435 | #if IS_ENABLED(CONFIG_IPV6) |
| 1436 | /* send to link-local or multicast address via interface enslaved to |
| 1437 | * VRF device. Force lookup to VRF table without changing flow struct |
| 1438 | * Note: Caller to this function must hold rcu_read_lock() and no refcnt |
| 1439 | * is taken on the dst by this function. |
| 1440 | */ |
| 1441 | static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev, |
| 1442 | struct flowi6 *fl6) |
| 1443 | { |
| 1444 | struct net *net = dev_net(dev); |
| 1445 | int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF; |
| 1446 | struct dst_entry *dst = NULL; |
| 1447 | struct rt6_info *rt; |
| 1448 | |
| 1449 | /* VRF device does not have a link-local address and |
| 1450 | * sending packets to link-local or mcast addresses over |
| 1451 | * a VRF device does not make sense |
| 1452 | */ |
| 1453 | if (fl6->flowi6_oif == dev->ifindex) { |
| 1454 | dst = &net->ipv6.ip6_null_entry->dst; |
| 1455 | return dst; |
| 1456 | } |
| 1457 | |
| 1458 | if (!ipv6_addr_any(a: &fl6->saddr)) |
| 1459 | flags |= RT6_LOOKUP_F_HAS_SADDR; |
| 1460 | |
| 1461 | rt = vrf_ip6_route_lookup(net, dev, fl6, ifindex: fl6->flowi6_oif, NULL, flags); |
| 1462 | if (rt) |
| 1463 | dst = &rt->dst; |
| 1464 | |
| 1465 | return dst; |
| 1466 | } |
| 1467 | #endif |
| 1468 | |
| 1469 | static const struct l3mdev_ops vrf_l3mdev_ops = { |
| 1470 | .l3mdev_fib_table = vrf_fib_table, |
| 1471 | .l3mdev_l3_rcv = vrf_l3_rcv, |
| 1472 | .l3mdev_l3_out = vrf_l3_out, |
| 1473 | #if IS_ENABLED(CONFIG_IPV6) |
| 1474 | .l3mdev_link_scope_lookup = vrf_link_scope_lookup, |
| 1475 | #endif |
| 1476 | }; |
| 1477 | |
| 1478 | static void vrf_get_drvinfo(struct net_device *dev, |
| 1479 | struct ethtool_drvinfo *info) |
| 1480 | { |
| 1481 | strscpy(info->driver, DRV_NAME, sizeof(info->driver)); |
| 1482 | strscpy(info->version, DRV_VERSION, sizeof(info->version)); |
| 1483 | } |
| 1484 | |
| 1485 | static const struct ethtool_ops vrf_ethtool_ops = { |
| 1486 | .get_drvinfo = vrf_get_drvinfo, |
| 1487 | }; |
| 1488 | |
| 1489 | static inline size_t vrf_fib_rule_nl_size(void) |
| 1490 | { |
| 1491 | size_t sz; |
| 1492 | |
| 1493 | sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr)); |
| 1494 | sz += nla_total_size(payload: sizeof(u8)); /* FRA_L3MDEV */ |
| 1495 | sz += nla_total_size(payload: sizeof(u32)); /* FRA_PRIORITY */ |
| 1496 | sz += nla_total_size(payload: sizeof(u8)); /* FRA_PROTOCOL */ |
| 1497 | |
| 1498 | return sz; |
| 1499 | } |
| 1500 | |
| 1501 | static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it) |
| 1502 | { |
| 1503 | struct fib_rule_hdr *frh; |
| 1504 | struct nlmsghdr *nlh; |
| 1505 | struct sk_buff *skb; |
| 1506 | int err; |
| 1507 | |
| 1508 | if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) && |
| 1509 | !ipv6_mod_enabled()) |
| 1510 | return 0; |
| 1511 | |
| 1512 | skb = nlmsg_new(payload: vrf_fib_rule_nl_size(), GFP_KERNEL); |
| 1513 | if (!skb) |
| 1514 | return -ENOMEM; |
| 1515 | |
| 1516 | nlh = nlmsg_put(skb, portid: 0, seq: 0, type: 0, payload: sizeof(*frh), flags: 0); |
| 1517 | if (!nlh) |
| 1518 | goto nla_put_failure; |
| 1519 | |
| 1520 | /* rule only needs to appear once */ |
| 1521 | nlh->nlmsg_flags |= NLM_F_EXCL; |
| 1522 | |
| 1523 | frh = nlmsg_data(nlh); |
| 1524 | memset(frh, 0, sizeof(*frh)); |
| 1525 | frh->family = family; |
| 1526 | frh->action = FR_ACT_TO_TBL; |
| 1527 | |
| 1528 | if (nla_put_u8(skb, attrtype: FRA_PROTOCOL, RTPROT_KERNEL)) |
| 1529 | goto nla_put_failure; |
| 1530 | |
| 1531 | if (nla_put_u8(skb, attrtype: FRA_L3MDEV, value: 1)) |
| 1532 | goto nla_put_failure; |
| 1533 | |
| 1534 | if (nla_put_u32(skb, attrtype: FRA_PRIORITY, FIB_RULE_PREF)) |
| 1535 | goto nla_put_failure; |
| 1536 | |
| 1537 | nlmsg_end(skb, nlh); |
| 1538 | |
| 1539 | if (add_it) { |
| 1540 | err = fib_newrule(net: dev_net(dev), skb, nlh, NULL, rtnl_held: true); |
| 1541 | if (err == -EEXIST) |
| 1542 | err = 0; |
| 1543 | } else { |
| 1544 | err = fib_delrule(net: dev_net(dev), skb, nlh, NULL, rtnl_held: true); |
| 1545 | if (err == -ENOENT) |
| 1546 | err = 0; |
| 1547 | } |
| 1548 | nlmsg_free(skb); |
| 1549 | |
| 1550 | return err; |
| 1551 | |
| 1552 | nla_put_failure: |
| 1553 | nlmsg_free(skb); |
| 1554 | |
| 1555 | return -EMSGSIZE; |
| 1556 | } |
| 1557 | |
| 1558 | static int vrf_add_fib_rules(const struct net_device *dev) |
| 1559 | { |
| 1560 | int err; |
| 1561 | |
| 1562 | err = vrf_fib_rule(dev, AF_INET, add_it: true); |
| 1563 | if (err < 0) |
| 1564 | goto out_err; |
| 1565 | |
| 1566 | err = vrf_fib_rule(dev, AF_INET6, add_it: true); |
| 1567 | if (err < 0) |
| 1568 | goto ipv6_err; |
| 1569 | |
| 1570 | #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) |
| 1571 | err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, add_it: true); |
| 1572 | if (err < 0) |
| 1573 | goto ipmr_err; |
| 1574 | #endif |
| 1575 | |
| 1576 | #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES) |
| 1577 | err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, add_it: true); |
| 1578 | if (err < 0) |
| 1579 | goto ip6mr_err; |
| 1580 | #endif |
| 1581 | |
| 1582 | return 0; |
| 1583 | |
| 1584 | #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES) |
| 1585 | ip6mr_err: |
| 1586 | vrf_fib_rule(dev, RTNL_FAMILY_IPMR, add_it: false); |
| 1587 | #endif |
| 1588 | |
| 1589 | #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) |
| 1590 | ipmr_err: |
| 1591 | vrf_fib_rule(dev, AF_INET6, add_it: false); |
| 1592 | #endif |
| 1593 | |
| 1594 | ipv6_err: |
| 1595 | vrf_fib_rule(dev, AF_INET, add_it: false); |
| 1596 | |
| 1597 | out_err: |
| 1598 | netdev_err(dev, format: "Failed to add FIB rules.\n" ); |
| 1599 | return err; |
| 1600 | } |
| 1601 | |
| 1602 | static void vrf_setup(struct net_device *dev) |
| 1603 | { |
| 1604 | ether_setup(dev); |
| 1605 | |
| 1606 | /* Initialize the device structure. */ |
| 1607 | dev->netdev_ops = &vrf_netdev_ops; |
| 1608 | dev->l3mdev_ops = &vrf_l3mdev_ops; |
| 1609 | dev->ethtool_ops = &vrf_ethtool_ops; |
| 1610 | dev->needs_free_netdev = true; |
| 1611 | |
| 1612 | /* Fill in device structure with ethernet-generic values. */ |
| 1613 | eth_hw_addr_random(dev); |
| 1614 | |
| 1615 | /* don't acquire vrf device's netif_tx_lock when transmitting */ |
| 1616 | dev->lltx = true; |
| 1617 | |
| 1618 | /* don't allow vrf devices to change network namespaces. */ |
| 1619 | dev->netns_immutable = true; |
| 1620 | |
| 1621 | /* does not make sense for a VLAN to be added to a vrf device */ |
| 1622 | dev->features |= NETIF_F_VLAN_CHALLENGED; |
| 1623 | |
| 1624 | /* enable offload features */ |
| 1625 | dev->features |= NETIF_F_GSO_SOFTWARE; |
| 1626 | dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC; |
| 1627 | dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA; |
| 1628 | |
| 1629 | dev->hw_features = dev->features; |
| 1630 | dev->hw_enc_features = dev->features; |
| 1631 | |
| 1632 | /* default to no qdisc; user can add if desired */ |
| 1633 | dev->priv_flags |= IFF_NO_QUEUE; |
| 1634 | dev->priv_flags |= IFF_NO_RX_HANDLER; |
| 1635 | dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; |
| 1636 | |
| 1637 | /* VRF devices do not care about MTU, but if the MTU is set |
| 1638 | * too low then the ipv4 and ipv6 protocols are disabled |
| 1639 | * which breaks networking. |
| 1640 | */ |
| 1641 | dev->min_mtu = IPV6_MIN_MTU; |
| 1642 | dev->max_mtu = IP6_MAX_MTU; |
| 1643 | dev->mtu = dev->max_mtu; |
| 1644 | |
| 1645 | dev->pcpu_stat_type = NETDEV_PCPU_STAT_DSTATS; |
| 1646 | } |
| 1647 | |
| 1648 | static int vrf_validate(struct nlattr *tb[], struct nlattr *data[], |
| 1649 | struct netlink_ext_ack *extack) |
| 1650 | { |
| 1651 | if (tb[IFLA_ADDRESS]) { |
| 1652 | if (nla_len(nla: tb[IFLA_ADDRESS]) != ETH_ALEN) { |
| 1653 | NL_SET_ERR_MSG(extack, "Invalid hardware address" ); |
| 1654 | return -EINVAL; |
| 1655 | } |
| 1656 | if (!is_valid_ether_addr(addr: nla_data(nla: tb[IFLA_ADDRESS]))) { |
| 1657 | NL_SET_ERR_MSG(extack, "Invalid hardware address" ); |
| 1658 | return -EADDRNOTAVAIL; |
| 1659 | } |
| 1660 | } |
| 1661 | return 0; |
| 1662 | } |
| 1663 | |
| 1664 | static void vrf_dellink(struct net_device *dev, struct list_head *head) |
| 1665 | { |
| 1666 | struct net_device *port_dev; |
| 1667 | struct list_head *iter; |
| 1668 | |
| 1669 | netdev_for_each_lower_dev(dev, port_dev, iter) |
| 1670 | vrf_del_slave(dev, port_dev); |
| 1671 | |
| 1672 | vrf_map_unregister_dev(dev); |
| 1673 | |
| 1674 | unregister_netdevice_queue(dev, head); |
| 1675 | } |
| 1676 | |
| 1677 | static int vrf_newlink(struct net_device *dev, |
| 1678 | struct rtnl_newlink_params *params, |
| 1679 | struct netlink_ext_ack *extack) |
| 1680 | { |
| 1681 | struct net_vrf *vrf = netdev_priv(dev); |
| 1682 | struct nlattr **data = params->data; |
| 1683 | struct netns_vrf *nn_vrf; |
| 1684 | bool *add_fib_rules; |
| 1685 | struct net *net; |
| 1686 | int err; |
| 1687 | |
| 1688 | if (!data || !data[IFLA_VRF_TABLE]) { |
| 1689 | NL_SET_ERR_MSG(extack, "VRF table id is missing" ); |
| 1690 | return -EINVAL; |
| 1691 | } |
| 1692 | |
| 1693 | vrf->tb_id = nla_get_u32(nla: data[IFLA_VRF_TABLE]); |
| 1694 | if (vrf->tb_id == RT_TABLE_UNSPEC) { |
| 1695 | NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE], |
| 1696 | "Invalid VRF table id" ); |
| 1697 | return -EINVAL; |
| 1698 | } |
| 1699 | |
| 1700 | dev->priv_flags |= IFF_L3MDEV_MASTER; |
| 1701 | |
| 1702 | err = register_netdevice(dev); |
| 1703 | if (err) |
| 1704 | goto out; |
| 1705 | |
| 1706 | /* mapping between table_id and vrf; |
| 1707 | * note: such binding could not be done in the dev init function |
| 1708 | * because dev->ifindex id is not available yet. |
| 1709 | */ |
| 1710 | vrf->ifindex = dev->ifindex; |
| 1711 | |
| 1712 | err = vrf_map_register_dev(dev, extack); |
| 1713 | if (err) { |
| 1714 | unregister_netdevice(dev); |
| 1715 | goto out; |
| 1716 | } |
| 1717 | |
| 1718 | net = dev_net(dev); |
| 1719 | nn_vrf = net_generic(net, id: vrf_net_id); |
| 1720 | |
| 1721 | add_fib_rules = &nn_vrf->add_fib_rules; |
| 1722 | if (*add_fib_rules) { |
| 1723 | err = vrf_add_fib_rules(dev); |
| 1724 | if (err) { |
| 1725 | vrf_map_unregister_dev(dev); |
| 1726 | unregister_netdevice(dev); |
| 1727 | goto out; |
| 1728 | } |
| 1729 | *add_fib_rules = false; |
| 1730 | } |
| 1731 | |
| 1732 | out: |
| 1733 | return err; |
| 1734 | } |
| 1735 | |
| 1736 | static size_t vrf_nl_getsize(const struct net_device *dev) |
| 1737 | { |
| 1738 | return nla_total_size(payload: sizeof(u32)); /* IFLA_VRF_TABLE */ |
| 1739 | } |
| 1740 | |
| 1741 | static int vrf_fillinfo(struct sk_buff *skb, |
| 1742 | const struct net_device *dev) |
| 1743 | { |
| 1744 | struct net_vrf *vrf = netdev_priv(dev); |
| 1745 | |
| 1746 | return nla_put_u32(skb, attrtype: IFLA_VRF_TABLE, value: vrf->tb_id); |
| 1747 | } |
| 1748 | |
| 1749 | static size_t vrf_get_slave_size(const struct net_device *bond_dev, |
| 1750 | const struct net_device *slave_dev) |
| 1751 | { |
| 1752 | return nla_total_size(payload: sizeof(u32)); /* IFLA_VRF_PORT_TABLE */ |
| 1753 | } |
| 1754 | |
| 1755 | static int vrf_fill_slave_info(struct sk_buff *skb, |
| 1756 | const struct net_device *vrf_dev, |
| 1757 | const struct net_device *slave_dev) |
| 1758 | { |
| 1759 | struct net_vrf *vrf = netdev_priv(dev: vrf_dev); |
| 1760 | |
| 1761 | if (nla_put_u32(skb, attrtype: IFLA_VRF_PORT_TABLE, value: vrf->tb_id)) |
| 1762 | return -EMSGSIZE; |
| 1763 | |
| 1764 | return 0; |
| 1765 | } |
| 1766 | |
| 1767 | static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = { |
| 1768 | [IFLA_VRF_TABLE] = { .type = NLA_U32 }, |
| 1769 | }; |
| 1770 | |
| 1771 | static struct rtnl_link_ops vrf_link_ops __read_mostly = { |
| 1772 | .kind = DRV_NAME, |
| 1773 | .priv_size = sizeof(struct net_vrf), |
| 1774 | |
| 1775 | .get_size = vrf_nl_getsize, |
| 1776 | .policy = vrf_nl_policy, |
| 1777 | .validate = vrf_validate, |
| 1778 | .fill_info = vrf_fillinfo, |
| 1779 | |
| 1780 | .get_slave_size = vrf_get_slave_size, |
| 1781 | .fill_slave_info = vrf_fill_slave_info, |
| 1782 | |
| 1783 | .newlink = vrf_newlink, |
| 1784 | .dellink = vrf_dellink, |
| 1785 | .setup = vrf_setup, |
| 1786 | .maxtype = IFLA_VRF_MAX, |
| 1787 | }; |
| 1788 | |
| 1789 | static int vrf_device_event(struct notifier_block *unused, |
| 1790 | unsigned long event, void *ptr) |
| 1791 | { |
| 1792 | struct net_device *dev = netdev_notifier_info_to_dev(info: ptr); |
| 1793 | |
| 1794 | /* only care about unregister events to drop slave references */ |
| 1795 | if (event == NETDEV_UNREGISTER) { |
| 1796 | struct net_device *vrf_dev; |
| 1797 | |
| 1798 | if (!netif_is_l3_slave(dev)) |
| 1799 | goto out; |
| 1800 | |
| 1801 | vrf_dev = netdev_master_upper_dev_get(dev); |
| 1802 | vrf_del_slave(dev: vrf_dev, port_dev: dev); |
| 1803 | } |
| 1804 | out: |
| 1805 | return NOTIFY_DONE; |
| 1806 | } |
| 1807 | |
| 1808 | static struct notifier_block vrf_notifier_block __read_mostly = { |
| 1809 | .notifier_call = vrf_device_event, |
| 1810 | }; |
| 1811 | |
| 1812 | static int vrf_map_init(struct vrf_map *vmap) |
| 1813 | { |
| 1814 | spin_lock_init(&vmap->vmap_lock); |
| 1815 | hash_init(vmap->ht); |
| 1816 | |
| 1817 | vmap->strict_mode = false; |
| 1818 | |
| 1819 | return 0; |
| 1820 | } |
| 1821 | |
| 1822 | #ifdef CONFIG_SYSCTL |
| 1823 | static bool vrf_strict_mode(struct vrf_map *vmap) |
| 1824 | { |
| 1825 | bool strict_mode; |
| 1826 | |
| 1827 | vrf_map_lock(vmap); |
| 1828 | strict_mode = vmap->strict_mode; |
| 1829 | vrf_map_unlock(vmap); |
| 1830 | |
| 1831 | return strict_mode; |
| 1832 | } |
| 1833 | |
| 1834 | static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode) |
| 1835 | { |
| 1836 | bool *cur_mode; |
| 1837 | int res = 0; |
| 1838 | |
| 1839 | vrf_map_lock(vmap); |
| 1840 | |
| 1841 | cur_mode = &vmap->strict_mode; |
| 1842 | if (*cur_mode == new_mode) |
| 1843 | goto unlock; |
| 1844 | |
| 1845 | if (*cur_mode) { |
| 1846 | /* disable strict mode */ |
| 1847 | *cur_mode = false; |
| 1848 | } else { |
| 1849 | if (vmap->shared_tables) { |
| 1850 | /* we cannot allow strict_mode because there are some |
| 1851 | * vrfs that share one or more tables. |
| 1852 | */ |
| 1853 | res = -EBUSY; |
| 1854 | goto unlock; |
| 1855 | } |
| 1856 | |
| 1857 | /* no tables are shared among vrfs, so we can go back |
| 1858 | * to 1:1 association between a vrf with its table. |
| 1859 | */ |
| 1860 | *cur_mode = true; |
| 1861 | } |
| 1862 | |
| 1863 | unlock: |
| 1864 | vrf_map_unlock(vmap); |
| 1865 | |
| 1866 | return res; |
| 1867 | } |
| 1868 | |
| 1869 | static int vrf_shared_table_handler(const struct ctl_table *table, int write, |
| 1870 | void *buffer, size_t *lenp, loff_t *ppos) |
| 1871 | { |
| 1872 | struct net *net = (struct net *)table->extra1; |
| 1873 | struct vrf_map *vmap = netns_vrf_map(net); |
| 1874 | int proc_strict_mode = 0; |
| 1875 | struct ctl_table tmp = { |
| 1876 | .procname = table->procname, |
| 1877 | .data = &proc_strict_mode, |
| 1878 | .maxlen = sizeof(int), |
| 1879 | .mode = table->mode, |
| 1880 | .extra1 = SYSCTL_ZERO, |
| 1881 | .extra2 = SYSCTL_ONE, |
| 1882 | }; |
| 1883 | int ret; |
| 1884 | |
| 1885 | if (!write) |
| 1886 | proc_strict_mode = vrf_strict_mode(vmap); |
| 1887 | |
| 1888 | ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); |
| 1889 | |
| 1890 | if (write && ret == 0) |
| 1891 | ret = vrf_strict_mode_change(vmap, new_mode: (bool)proc_strict_mode); |
| 1892 | |
| 1893 | return ret; |
| 1894 | } |
| 1895 | |
| 1896 | static const struct ctl_table vrf_table[] = { |
| 1897 | { |
| 1898 | .procname = "strict_mode" , |
| 1899 | .data = NULL, |
| 1900 | .maxlen = sizeof(int), |
| 1901 | .mode = 0644, |
| 1902 | .proc_handler = vrf_shared_table_handler, |
| 1903 | /* set by the vrf_netns_init */ |
| 1904 | .extra1 = NULL, |
| 1905 | }, |
| 1906 | }; |
| 1907 | |
| 1908 | static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf) |
| 1909 | { |
| 1910 | struct ctl_table *table; |
| 1911 | |
| 1912 | table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL); |
| 1913 | if (!table) |
| 1914 | return -ENOMEM; |
| 1915 | |
| 1916 | /* init the extra1 parameter with the reference to current netns */ |
| 1917 | table[0].extra1 = net; |
| 1918 | |
| 1919 | nn_vrf->ctl_hdr = register_net_sysctl_sz(net, path: "net/vrf" , table, |
| 1920 | ARRAY_SIZE(vrf_table)); |
| 1921 | if (!nn_vrf->ctl_hdr) { |
| 1922 | kfree(objp: table); |
| 1923 | return -ENOMEM; |
| 1924 | } |
| 1925 | |
| 1926 | return 0; |
| 1927 | } |
| 1928 | |
| 1929 | static void vrf_netns_exit_sysctl(struct net *net) |
| 1930 | { |
| 1931 | struct netns_vrf *nn_vrf = net_generic(net, id: vrf_net_id); |
| 1932 | const struct ctl_table *table; |
| 1933 | |
| 1934 | table = nn_vrf->ctl_hdr->ctl_table_arg; |
| 1935 | unregister_net_sysctl_table(header: nn_vrf->ctl_hdr); |
| 1936 | kfree(objp: table); |
| 1937 | } |
| 1938 | #else |
| 1939 | static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf) |
| 1940 | { |
| 1941 | return 0; |
| 1942 | } |
| 1943 | |
| 1944 | static void vrf_netns_exit_sysctl(struct net *net) |
| 1945 | { |
| 1946 | } |
| 1947 | #endif |
| 1948 | |
| 1949 | /* Initialize per network namespace state */ |
| 1950 | static int __net_init vrf_netns_init(struct net *net) |
| 1951 | { |
| 1952 | struct netns_vrf *nn_vrf = net_generic(net, id: vrf_net_id); |
| 1953 | |
| 1954 | nn_vrf->add_fib_rules = true; |
| 1955 | vrf_map_init(vmap: &nn_vrf->vmap); |
| 1956 | |
| 1957 | return vrf_netns_init_sysctl(net, nn_vrf); |
| 1958 | } |
| 1959 | |
| 1960 | static void __net_exit vrf_netns_exit(struct net *net) |
| 1961 | { |
| 1962 | vrf_netns_exit_sysctl(net); |
| 1963 | } |
| 1964 | |
| 1965 | static struct pernet_operations vrf_net_ops __net_initdata = { |
| 1966 | .init = vrf_netns_init, |
| 1967 | .exit = vrf_netns_exit, |
| 1968 | .id = &vrf_net_id, |
| 1969 | .size = sizeof(struct netns_vrf), |
| 1970 | }; |
| 1971 | |
| 1972 | static int __init vrf_init_module(void) |
| 1973 | { |
| 1974 | int rc; |
| 1975 | |
| 1976 | register_netdevice_notifier(nb: &vrf_notifier_block); |
| 1977 | |
| 1978 | rc = register_pernet_subsys(&vrf_net_ops); |
| 1979 | if (rc < 0) |
| 1980 | goto error; |
| 1981 | |
| 1982 | rc = l3mdev_table_lookup_register(l3type: L3MDEV_TYPE_VRF, |
| 1983 | fn: vrf_ifindex_lookup_by_table_id); |
| 1984 | if (rc < 0) |
| 1985 | goto unreg_pernet; |
| 1986 | |
| 1987 | rc = rtnl_link_register(ops: &vrf_link_ops); |
| 1988 | if (rc < 0) |
| 1989 | goto table_lookup_unreg; |
| 1990 | |
| 1991 | return 0; |
| 1992 | |
| 1993 | table_lookup_unreg: |
| 1994 | l3mdev_table_lookup_unregister(l3type: L3MDEV_TYPE_VRF, |
| 1995 | fn: vrf_ifindex_lookup_by_table_id); |
| 1996 | |
| 1997 | unreg_pernet: |
| 1998 | unregister_pernet_subsys(&vrf_net_ops); |
| 1999 | |
| 2000 | error: |
| 2001 | unregister_netdevice_notifier(nb: &vrf_notifier_block); |
| 2002 | return rc; |
| 2003 | } |
| 2004 | |
| 2005 | module_init(vrf_init_module); |
| 2006 | MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern" ); |
| 2007 | MODULE_DESCRIPTION("Device driver to instantiate VRF domains" ); |
| 2008 | MODULE_LICENSE("GPL" ); |
| 2009 | MODULE_ALIAS_RTNL_LINK(DRV_NAME); |
| 2010 | MODULE_VERSION(DRV_VERSION); |
| 2011 | |