1// SPDX-License-Identifier: GPL-2.0
2/*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7#include <linux/async.h>
8#include <linux/blkdev.h>
9#include <linux/blk-mq.h>
10#include <linux/blk-integrity.h>
11#include <linux/compat.h>
12#include <linux/delay.h>
13#include <linux/errno.h>
14#include <linux/hdreg.h>
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/backing-dev.h>
18#include <linux/slab.h>
19#include <linux/types.h>
20#include <linux/pr.h>
21#include <linux/ptrace.h>
22#include <linux/nvme_ioctl.h>
23#include <linux/pm_qos.h>
24#include <linux/ratelimit.h>
25#include <linux/unaligned.h>
26
27#include "nvme.h"
28#include "fabrics.h"
29#include <linux/nvme-auth.h>
30
31#define CREATE_TRACE_POINTS
32#include "trace.h"
33
34#define NVME_MINORS (1U << MINORBITS)
35
36struct nvme_ns_info {
37 struct nvme_ns_ids ids;
38 u32 nsid;
39 __le32 anagrpid;
40 u8 pi_offset;
41 u16 endgid;
42 u64 runs;
43 bool is_shared;
44 bool is_readonly;
45 bool is_ready;
46 bool is_removed;
47 bool is_rotational;
48 bool no_vwc;
49};
50
51unsigned int admin_timeout = 60;
52module_param(admin_timeout, uint, 0644);
53MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
54EXPORT_SYMBOL_GPL(admin_timeout);
55
56unsigned int nvme_io_timeout = 30;
57module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
58MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
59EXPORT_SYMBOL_GPL(nvme_io_timeout);
60
61static unsigned char shutdown_timeout = 5;
62module_param(shutdown_timeout, byte, 0644);
63MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
64
65static u8 nvme_max_retries = 5;
66module_param_named(max_retries, nvme_max_retries, byte, 0644);
67MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
68
69static unsigned long default_ps_max_latency_us = 100000;
70module_param(default_ps_max_latency_us, ulong, 0644);
71MODULE_PARM_DESC(default_ps_max_latency_us,
72 "max power saving latency for new devices; use PM QOS to change per device");
73
74static bool force_apst;
75module_param(force_apst, bool, 0644);
76MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
77
78static unsigned long apst_primary_timeout_ms = 100;
79module_param(apst_primary_timeout_ms, ulong, 0644);
80MODULE_PARM_DESC(apst_primary_timeout_ms,
81 "primary APST timeout in ms");
82
83static unsigned long apst_secondary_timeout_ms = 2000;
84module_param(apst_secondary_timeout_ms, ulong, 0644);
85MODULE_PARM_DESC(apst_secondary_timeout_ms,
86 "secondary APST timeout in ms");
87
88static unsigned long apst_primary_latency_tol_us = 15000;
89module_param(apst_primary_latency_tol_us, ulong, 0644);
90MODULE_PARM_DESC(apst_primary_latency_tol_us,
91 "primary APST latency tolerance in us");
92
93static unsigned long apst_secondary_latency_tol_us = 100000;
94module_param(apst_secondary_latency_tol_us, ulong, 0644);
95MODULE_PARM_DESC(apst_secondary_latency_tol_us,
96 "secondary APST latency tolerance in us");
97
98/*
99 * Older kernels didn't enable protection information if it was at an offset.
100 * Newer kernels do, so it breaks reads on the upgrade if such formats were
101 * used in prior kernels since the metadata written did not contain a valid
102 * checksum.
103 */
104static bool disable_pi_offsets = false;
105module_param(disable_pi_offsets, bool, 0444);
106MODULE_PARM_DESC(disable_pi_offsets,
107 "disable protection information if it has an offset");
108
109/*
110 * nvme_wq - hosts nvme related works that are not reset or delete
111 * nvme_reset_wq - hosts nvme reset works
112 * nvme_delete_wq - hosts nvme delete works
113 *
114 * nvme_wq will host works such as scan, aen handling, fw activation,
115 * keep-alive, periodic reconnects etc. nvme_reset_wq
116 * runs reset works which also flush works hosted on nvme_wq for
117 * serialization purposes. nvme_delete_wq host controller deletion
118 * works which flush reset works for serialization.
119 */
120struct workqueue_struct *nvme_wq;
121EXPORT_SYMBOL_GPL(nvme_wq);
122
123struct workqueue_struct *nvme_reset_wq;
124EXPORT_SYMBOL_GPL(nvme_reset_wq);
125
126struct workqueue_struct *nvme_delete_wq;
127EXPORT_SYMBOL_GPL(nvme_delete_wq);
128
129static LIST_HEAD(nvme_subsystems);
130DEFINE_MUTEX(nvme_subsystems_lock);
131
132static DEFINE_IDA(nvme_instance_ida);
133static dev_t nvme_ctrl_base_chr_devt;
134static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env);
135static const struct class nvme_class = {
136 .name = "nvme",
137 .dev_uevent = nvme_class_uevent,
138};
139
140static const struct class nvme_subsys_class = {
141 .name = "nvme-subsystem",
142};
143
144static DEFINE_IDA(nvme_ns_chr_minor_ida);
145static dev_t nvme_ns_chr_devt;
146static const struct class nvme_ns_chr_class = {
147 .name = "nvme-generic",
148};
149
150static void nvme_put_subsystem(struct nvme_subsystem *subsys);
151static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
152 unsigned nsid);
153static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
154 struct nvme_command *cmd);
155static int nvme_get_log_lsi(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page,
156 u8 lsp, u8 csi, void *log, size_t size, u64 offset, u16 lsi);
157
158void nvme_queue_scan(struct nvme_ctrl *ctrl)
159{
160 /*
161 * Only new queue scan work when admin and IO queues are both alive
162 */
163 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset)
164 queue_work(wq: nvme_wq, work: &ctrl->scan_work);
165}
166
167/*
168 * Use this function to proceed with scheduling reset_work for a controller
169 * that had previously been set to the resetting state. This is intended for
170 * code paths that can't be interrupted by other reset attempts. A hot removal
171 * may prevent this from succeeding.
172 */
173int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
174{
175 if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING)
176 return -EBUSY;
177 if (!queue_work(wq: nvme_reset_wq, work: &ctrl->reset_work))
178 return -EBUSY;
179 return 0;
180}
181EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
182
183static void nvme_failfast_work(struct work_struct *work)
184{
185 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
186 struct nvme_ctrl, failfast_work);
187
188 if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING)
189 return;
190
191 set_bit(nr: NVME_CTRL_FAILFAST_EXPIRED, addr: &ctrl->flags);
192 dev_info(ctrl->device, "failfast expired\n");
193 nvme_kick_requeue_lists(ctrl);
194}
195
196static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
197{
198 if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
199 return;
200
201 schedule_delayed_work(dwork: &ctrl->failfast_work,
202 delay: ctrl->opts->fast_io_fail_tmo * HZ);
203}
204
205static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
206{
207 if (!ctrl->opts)
208 return;
209
210 cancel_delayed_work_sync(dwork: &ctrl->failfast_work);
211 clear_bit(nr: NVME_CTRL_FAILFAST_EXPIRED, addr: &ctrl->flags);
212}
213
214
215int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
216{
217 if (!nvme_change_ctrl_state(ctrl, new_state: NVME_CTRL_RESETTING))
218 return -EBUSY;
219 if (!queue_work(wq: nvme_reset_wq, work: &ctrl->reset_work))
220 return -EBUSY;
221 return 0;
222}
223EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
224
225int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
226{
227 int ret;
228
229 ret = nvme_reset_ctrl(ctrl);
230 if (!ret) {
231 flush_work(work: &ctrl->reset_work);
232 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
233 ret = -ENETRESET;
234 }
235
236 return ret;
237}
238
239static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
240{
241 dev_info(ctrl->device,
242 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
243
244 flush_work(work: &ctrl->reset_work);
245 nvme_stop_ctrl(ctrl);
246 nvme_remove_namespaces(ctrl);
247 ctrl->ops->delete_ctrl(ctrl);
248 nvme_uninit_ctrl(ctrl);
249}
250
251static void nvme_delete_ctrl_work(struct work_struct *work)
252{
253 struct nvme_ctrl *ctrl =
254 container_of(work, struct nvme_ctrl, delete_work);
255
256 nvme_do_delete_ctrl(ctrl);
257}
258
259int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
260{
261 if (!nvme_change_ctrl_state(ctrl, new_state: NVME_CTRL_DELETING))
262 return -EBUSY;
263 if (!queue_work(wq: nvme_delete_wq, work: &ctrl->delete_work))
264 return -EBUSY;
265 return 0;
266}
267EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
268
269void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
270{
271 /*
272 * Keep a reference until nvme_do_delete_ctrl() complete,
273 * since ->delete_ctrl can free the controller.
274 */
275 nvme_get_ctrl(ctrl);
276 if (nvme_change_ctrl_state(ctrl, new_state: NVME_CTRL_DELETING))
277 nvme_do_delete_ctrl(ctrl);
278 nvme_put_ctrl(ctrl);
279}
280
281static blk_status_t nvme_error_status(u16 status)
282{
283 switch (status & NVME_SCT_SC_MASK) {
284 case NVME_SC_SUCCESS:
285 return BLK_STS_OK;
286 case NVME_SC_CAP_EXCEEDED:
287 return BLK_STS_NOSPC;
288 case NVME_SC_LBA_RANGE:
289 case NVME_SC_CMD_INTERRUPTED:
290 case NVME_SC_NS_NOT_READY:
291 return BLK_STS_TARGET;
292 case NVME_SC_BAD_ATTRIBUTES:
293 case NVME_SC_INVALID_OPCODE:
294 case NVME_SC_INVALID_FIELD:
295 case NVME_SC_INVALID_NS:
296 return BLK_STS_NOTSUPP;
297 case NVME_SC_WRITE_FAULT:
298 case NVME_SC_READ_ERROR:
299 case NVME_SC_UNWRITTEN_BLOCK:
300 case NVME_SC_ACCESS_DENIED:
301 case NVME_SC_READ_ONLY:
302 case NVME_SC_COMPARE_FAILED:
303 return BLK_STS_MEDIUM;
304 case NVME_SC_GUARD_CHECK:
305 case NVME_SC_APPTAG_CHECK:
306 case NVME_SC_REFTAG_CHECK:
307 case NVME_SC_INVALID_PI:
308 return BLK_STS_PROTECTION;
309 case NVME_SC_RESERVATION_CONFLICT:
310 return BLK_STS_RESV_CONFLICT;
311 case NVME_SC_HOST_PATH_ERROR:
312 return BLK_STS_TRANSPORT;
313 case NVME_SC_ZONE_TOO_MANY_ACTIVE:
314 return BLK_STS_ZONE_ACTIVE_RESOURCE;
315 case NVME_SC_ZONE_TOO_MANY_OPEN:
316 return BLK_STS_ZONE_OPEN_RESOURCE;
317 default:
318 return BLK_STS_IOERR;
319 }
320}
321
322static void nvme_retry_req(struct request *req)
323{
324 unsigned long delay = 0;
325 u16 crd;
326
327 /* The mask and shift result must be <= 3 */
328 crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11;
329 if (crd)
330 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
331
332 nvme_req(req)->retries++;
333 blk_mq_requeue_request(rq: req, kick_requeue_list: false);
334 blk_mq_delay_kick_requeue_list(q: req->q, msecs: delay);
335}
336
337static void nvme_log_error(struct request *req)
338{
339 struct nvme_ns *ns = req->q->queuedata;
340 struct nvme_request *nr = nvme_req(req);
341
342 if (ns) {
343 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
344 ns->disk ? ns->disk->disk_name : "?",
345 nvme_get_opcode_str(nr->cmd->common.opcode),
346 nr->cmd->common.opcode,
347 nvme_sect_to_lba(ns->head, blk_rq_pos(req)),
348 blk_rq_bytes(req) >> ns->head->lba_shift,
349 nvme_get_error_status_str(nr->status),
350 NVME_SCT(nr->status), /* Status Code Type */
351 nr->status & NVME_SC_MASK, /* Status Code */
352 nr->status & NVME_STATUS_MORE ? "MORE " : "",
353 nr->status & NVME_STATUS_DNR ? "DNR " : "");
354 return;
355 }
356
357 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
358 dev_name(nr->ctrl->device),
359 nvme_get_admin_opcode_str(nr->cmd->common.opcode),
360 nr->cmd->common.opcode,
361 nvme_get_error_status_str(nr->status),
362 NVME_SCT(nr->status), /* Status Code Type */
363 nr->status & NVME_SC_MASK, /* Status Code */
364 nr->status & NVME_STATUS_MORE ? "MORE " : "",
365 nr->status & NVME_STATUS_DNR ? "DNR " : "");
366}
367
368static void nvme_log_err_passthru(struct request *req)
369{
370 struct nvme_ns *ns = req->q->queuedata;
371 struct nvme_request *nr = nvme_req(req);
372
373 pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s"
374 "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n",
375 ns ? ns->disk->disk_name : dev_name(nr->ctrl->device),
376 ns ? nvme_get_opcode_str(nr->cmd->common.opcode) :
377 nvme_get_admin_opcode_str(nr->cmd->common.opcode),
378 nr->cmd->common.opcode,
379 nvme_get_error_status_str(nr->status),
380 NVME_SCT(nr->status), /* Status Code Type */
381 nr->status & NVME_SC_MASK, /* Status Code */
382 nr->status & NVME_STATUS_MORE ? "MORE " : "",
383 nr->status & NVME_STATUS_DNR ? "DNR " : "",
384 nr->cmd->common.cdw10,
385 nr->cmd->common.cdw11,
386 nr->cmd->common.cdw12,
387 nr->cmd->common.cdw13,
388 nr->cmd->common.cdw14,
389 nr->cmd->common.cdw14);
390}
391
392enum nvme_disposition {
393 COMPLETE,
394 RETRY,
395 FAILOVER,
396 AUTHENTICATE,
397};
398
399static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
400{
401 if (likely(nvme_req(req)->status == 0))
402 return COMPLETE;
403
404 if (blk_noretry_request(req) ||
405 (nvme_req(req)->status & NVME_STATUS_DNR) ||
406 nvme_req(req)->retries >= nvme_max_retries)
407 return COMPLETE;
408
409 if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED)
410 return AUTHENTICATE;
411
412 if (req->cmd_flags & REQ_NVME_MPATH) {
413 if (nvme_is_path_error(status: nvme_req(req)->status) ||
414 blk_queue_dying(req->q))
415 return FAILOVER;
416 } else {
417 if (blk_queue_dying(req->q))
418 return COMPLETE;
419 }
420
421 return RETRY;
422}
423
424static inline void nvme_end_req_zoned(struct request *req)
425{
426 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
427 req_op(req) == REQ_OP_ZONE_APPEND) {
428 struct nvme_ns *ns = req->q->queuedata;
429
430 req->__sector = nvme_lba_to_sect(head: ns->head,
431 le64_to_cpu(nvme_req(req)->result.u64));
432 }
433}
434
435static inline void __nvme_end_req(struct request *req)
436{
437 if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) {
438 if (blk_rq_is_passthrough(rq: req))
439 nvme_log_err_passthru(req);
440 else
441 nvme_log_error(req);
442 }
443 nvme_end_req_zoned(req);
444 nvme_trace_bio_complete(req);
445 if (req->cmd_flags & REQ_NVME_MPATH)
446 nvme_mpath_end_request(rq: req);
447}
448
449void nvme_end_req(struct request *req)
450{
451 blk_status_t status = nvme_error_status(status: nvme_req(req)->status);
452
453 __nvme_end_req(req);
454 blk_mq_end_request(rq: req, error: status);
455}
456
457void nvme_complete_rq(struct request *req)
458{
459 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
460
461 trace_nvme_complete_rq(req);
462 nvme_cleanup_cmd(req);
463
464 /*
465 * Completions of long-running commands should not be able to
466 * defer sending of periodic keep alives, since the controller
467 * may have completed processing such commands a long time ago
468 * (arbitrarily close to command submission time).
469 * req->deadline - req->timeout is the command submission time
470 * in jiffies.
471 */
472 if (ctrl->kas &&
473 req->deadline - req->timeout >= ctrl->ka_last_check_time)
474 ctrl->comp_seen = true;
475
476 switch (nvme_decide_disposition(req)) {
477 case COMPLETE:
478 nvme_end_req(req);
479 return;
480 case RETRY:
481 nvme_retry_req(req);
482 return;
483 case FAILOVER:
484 nvme_failover_req(req);
485 return;
486 case AUTHENTICATE:
487#ifdef CONFIG_NVME_HOST_AUTH
488 queue_work(wq: nvme_wq, work: &ctrl->dhchap_auth_work);
489 nvme_retry_req(req);
490#else
491 nvme_end_req(req);
492#endif
493 return;
494 }
495}
496EXPORT_SYMBOL_GPL(nvme_complete_rq);
497
498void nvme_complete_batch_req(struct request *req)
499{
500 trace_nvme_complete_rq(req);
501 nvme_cleanup_cmd(req);
502 __nvme_end_req(req);
503}
504EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
505
506/*
507 * Called to unwind from ->queue_rq on a failed command submission so that the
508 * multipathing code gets called to potentially failover to another path.
509 * The caller needs to unwind all transport specific resource allocations and
510 * must return propagate the return value.
511 */
512blk_status_t nvme_host_path_error(struct request *req)
513{
514 nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
515 blk_mq_set_request_complete(rq: req);
516 nvme_complete_rq(req);
517 return BLK_STS_OK;
518}
519EXPORT_SYMBOL_GPL(nvme_host_path_error);
520
521bool nvme_cancel_request(struct request *req, void *data)
522{
523 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
524 "Cancelling I/O %d", req->tag);
525
526 /* don't abort one completed or idle request */
527 if (blk_mq_rq_state(rq: req) != MQ_RQ_IN_FLIGHT)
528 return true;
529
530 nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
531 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
532 blk_mq_complete_request(rq: req);
533 return true;
534}
535EXPORT_SYMBOL_GPL(nvme_cancel_request);
536
537void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
538{
539 if (ctrl->tagset) {
540 blk_mq_tagset_busy_iter(tagset: ctrl->tagset,
541 fn: nvme_cancel_request, priv: ctrl);
542 blk_mq_tagset_wait_completed_request(tagset: ctrl->tagset);
543 }
544}
545EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
546
547void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
548{
549 if (ctrl->admin_tagset) {
550 blk_mq_tagset_busy_iter(tagset: ctrl->admin_tagset,
551 fn: nvme_cancel_request, priv: ctrl);
552 blk_mq_tagset_wait_completed_request(tagset: ctrl->admin_tagset);
553 }
554}
555EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
556
557bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
558 enum nvme_ctrl_state new_state)
559{
560 enum nvme_ctrl_state old_state;
561 unsigned long flags;
562 bool changed = false;
563
564 spin_lock_irqsave(&ctrl->lock, flags);
565
566 old_state = nvme_ctrl_state(ctrl);
567 switch (new_state) {
568 case NVME_CTRL_LIVE:
569 switch (old_state) {
570 case NVME_CTRL_CONNECTING:
571 changed = true;
572 fallthrough;
573 default:
574 break;
575 }
576 break;
577 case NVME_CTRL_RESETTING:
578 switch (old_state) {
579 case NVME_CTRL_NEW:
580 case NVME_CTRL_LIVE:
581 changed = true;
582 fallthrough;
583 default:
584 break;
585 }
586 break;
587 case NVME_CTRL_CONNECTING:
588 switch (old_state) {
589 case NVME_CTRL_NEW:
590 case NVME_CTRL_RESETTING:
591 changed = true;
592 fallthrough;
593 default:
594 break;
595 }
596 break;
597 case NVME_CTRL_DELETING:
598 switch (old_state) {
599 case NVME_CTRL_LIVE:
600 case NVME_CTRL_RESETTING:
601 case NVME_CTRL_CONNECTING:
602 changed = true;
603 fallthrough;
604 default:
605 break;
606 }
607 break;
608 case NVME_CTRL_DELETING_NOIO:
609 switch (old_state) {
610 case NVME_CTRL_DELETING:
611 case NVME_CTRL_DEAD:
612 changed = true;
613 fallthrough;
614 default:
615 break;
616 }
617 break;
618 case NVME_CTRL_DEAD:
619 switch (old_state) {
620 case NVME_CTRL_DELETING:
621 changed = true;
622 fallthrough;
623 default:
624 break;
625 }
626 break;
627 default:
628 break;
629 }
630
631 if (changed) {
632 WRITE_ONCE(ctrl->state, new_state);
633 wake_up_all(&ctrl->state_wq);
634 }
635
636 spin_unlock_irqrestore(lock: &ctrl->lock, flags);
637 if (!changed)
638 return false;
639
640 if (new_state == NVME_CTRL_LIVE) {
641 if (old_state == NVME_CTRL_CONNECTING)
642 nvme_stop_failfast_work(ctrl);
643 nvme_kick_requeue_lists(ctrl);
644 } else if (new_state == NVME_CTRL_CONNECTING &&
645 old_state == NVME_CTRL_RESETTING) {
646 nvme_start_failfast_work(ctrl);
647 }
648 return changed;
649}
650EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
651
652/*
653 * Waits for the controller state to be resetting, or returns false if it is
654 * not possible to ever transition to that state.
655 */
656bool nvme_wait_reset(struct nvme_ctrl *ctrl)
657{
658 wait_event(ctrl->state_wq,
659 nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
660 nvme_state_terminal(ctrl));
661 return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING;
662}
663EXPORT_SYMBOL_GPL(nvme_wait_reset);
664
665static void nvme_free_ns_head(struct kref *ref)
666{
667 struct nvme_ns_head *head =
668 container_of(ref, struct nvme_ns_head, ref);
669
670 nvme_mpath_put_disk(head);
671 ida_free(&head->subsys->ns_ida, id: head->instance);
672 cleanup_srcu_struct(ssp: &head->srcu);
673 nvme_put_subsystem(subsys: head->subsys);
674 kfree(objp: head->plids);
675 kfree(objp: head);
676}
677
678bool nvme_tryget_ns_head(struct nvme_ns_head *head)
679{
680 return kref_get_unless_zero(kref: &head->ref);
681}
682
683void nvme_put_ns_head(struct nvme_ns_head *head)
684{
685 kref_put(kref: &head->ref, release: nvme_free_ns_head);
686}
687
688static void nvme_free_ns(struct kref *kref)
689{
690 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
691
692 put_disk(disk: ns->disk);
693 nvme_put_ns_head(head: ns->head);
694 nvme_put_ctrl(ctrl: ns->ctrl);
695 kfree(objp: ns);
696}
697
698bool nvme_get_ns(struct nvme_ns *ns)
699{
700 return kref_get_unless_zero(kref: &ns->kref);
701}
702
703void nvme_put_ns(struct nvme_ns *ns)
704{
705 kref_put(kref: &ns->kref, release: nvme_free_ns);
706}
707EXPORT_SYMBOL_NS_GPL(nvme_put_ns, "NVME_TARGET_PASSTHRU");
708
709static inline void nvme_clear_nvme_request(struct request *req)
710{
711 nvme_req(req)->status = 0;
712 nvme_req(req)->retries = 0;
713 nvme_req(req)->flags = 0;
714 req->rq_flags |= RQF_DONTPREP;
715}
716
717/* initialize a passthrough request */
718void nvme_init_request(struct request *req, struct nvme_command *cmd)
719{
720 struct nvme_request *nr = nvme_req(req);
721 bool logging_enabled;
722
723 if (req->q->queuedata) {
724 struct nvme_ns *ns = req->q->disk->private_data;
725
726 logging_enabled = ns->head->passthru_err_log_enabled;
727 req->timeout = NVME_IO_TIMEOUT;
728 } else { /* no queuedata implies admin queue */
729 logging_enabled = nr->ctrl->passthru_err_log_enabled;
730 req->timeout = NVME_ADMIN_TIMEOUT;
731 }
732
733 if (!logging_enabled)
734 req->rq_flags |= RQF_QUIET;
735
736 /* passthru commands should let the driver set the SGL flags */
737 cmd->common.flags &= ~NVME_CMD_SGL_ALL;
738
739 req->cmd_flags |= REQ_FAILFAST_DRIVER;
740 if (req->mq_hctx->type == HCTX_TYPE_POLL)
741 req->cmd_flags |= REQ_POLLED;
742 nvme_clear_nvme_request(req);
743 memcpy(nr->cmd, cmd, sizeof(*cmd));
744}
745EXPORT_SYMBOL_GPL(nvme_init_request);
746
747/*
748 * For something we're not in a state to send to the device the default action
749 * is to busy it and retry it after the controller state is recovered. However,
750 * if the controller is deleting or if anything is marked for failfast or
751 * nvme multipath it is immediately failed.
752 *
753 * Note: commands used to initialize the controller will be marked for failfast.
754 * Note: nvme cli/ioctl commands are marked for failfast.
755 */
756blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
757 struct request *rq)
758{
759 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
760
761 if (state != NVME_CTRL_DELETING_NOIO &&
762 state != NVME_CTRL_DELETING &&
763 state != NVME_CTRL_DEAD &&
764 !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
765 !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
766 return BLK_STS_RESOURCE;
767 return nvme_host_path_error(rq);
768}
769EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
770
771bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
772 bool queue_live, enum nvme_ctrl_state state)
773{
774 struct nvme_request *req = nvme_req(req: rq);
775
776 /*
777 * currently we have a problem sending passthru commands
778 * on the admin_q if the controller is not LIVE because we can't
779 * make sure that they are going out after the admin connect,
780 * controller enable and/or other commands in the initialization
781 * sequence. until the controller will be LIVE, fail with
782 * BLK_STS_RESOURCE so that they will be rescheduled.
783 */
784 if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
785 return false;
786
787 if (ctrl->ops->flags & NVME_F_FABRICS) {
788 /*
789 * Only allow commands on a live queue, except for the connect
790 * command, which is require to set the queue live in the
791 * appropinquate states.
792 */
793 switch (state) {
794 case NVME_CTRL_CONNECTING:
795 if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(cmd: req->cmd) &&
796 (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
797 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
798 req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
799 return true;
800 break;
801 default:
802 break;
803 case NVME_CTRL_DEAD:
804 return false;
805 }
806 }
807
808 return queue_live;
809}
810EXPORT_SYMBOL_GPL(__nvme_check_ready);
811
812static inline void nvme_setup_flush(struct nvme_ns *ns,
813 struct nvme_command *cmnd)
814{
815 memset(cmnd, 0, sizeof(*cmnd));
816 cmnd->common.opcode = nvme_cmd_flush;
817 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
818}
819
820static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
821 struct nvme_command *cmnd)
822{
823 unsigned short segments = blk_rq_nr_discard_segments(rq: req), n = 0;
824 struct nvme_dsm_range *range;
825 struct bio *bio;
826
827 /*
828 * Some devices do not consider the DSM 'Number of Ranges' field when
829 * determining how much data to DMA. Always allocate memory for maximum
830 * number of segments to prevent device reading beyond end of buffer.
831 */
832 static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
833
834 range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
835 if (!range) {
836 /*
837 * If we fail allocation our range, fallback to the controller
838 * discard page. If that's also busy, it's safe to return
839 * busy, as we know we can make progress once that's freed.
840 */
841 if (test_and_set_bit_lock(nr: 0, addr: &ns->ctrl->discard_page_busy))
842 return BLK_STS_RESOURCE;
843
844 range = page_address(ns->ctrl->discard_page);
845 }
846
847 if (queue_max_discard_segments(q: req->q) == 1) {
848 u64 slba = nvme_sect_to_lba(head: ns->head, sector: blk_rq_pos(rq: req));
849 u32 nlb = blk_rq_sectors(rq: req) >> (ns->head->lba_shift - 9);
850
851 range[0].cattr = cpu_to_le32(0);
852 range[0].nlb = cpu_to_le32(nlb);
853 range[0].slba = cpu_to_le64(slba);
854 n = 1;
855 } else {
856 __rq_for_each_bio(bio, req) {
857 u64 slba = nvme_sect_to_lba(head: ns->head,
858 sector: bio->bi_iter.bi_sector);
859 u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift;
860
861 if (n < segments) {
862 range[n].cattr = cpu_to_le32(0);
863 range[n].nlb = cpu_to_le32(nlb);
864 range[n].slba = cpu_to_le64(slba);
865 }
866 n++;
867 }
868 }
869
870 if (WARN_ON_ONCE(n != segments)) {
871 if (virt_to_page(range) == ns->ctrl->discard_page)
872 clear_bit_unlock(nr: 0, addr: &ns->ctrl->discard_page_busy);
873 else
874 kfree(objp: range);
875 return BLK_STS_IOERR;
876 }
877
878 memset(cmnd, 0, sizeof(*cmnd));
879 cmnd->dsm.opcode = nvme_cmd_dsm;
880 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
881 cmnd->dsm.nr = cpu_to_le32(segments - 1);
882 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
883
884 bvec_set_virt(bv: &req->special_vec, vaddr: range, len: alloc_size);
885 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
886
887 return BLK_STS_OK;
888}
889
890static void nvme_set_app_tag(struct request *req, struct nvme_command *cmnd)
891{
892 cmnd->rw.lbat = cpu_to_le16(bio_integrity(req->bio)->app_tag);
893 cmnd->rw.lbatm = cpu_to_le16(0xffff);
894}
895
896static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
897 struct request *req)
898{
899 u32 upper, lower;
900 u64 ref48;
901
902 /* both rw and write zeroes share the same reftag format */
903 switch (ns->head->guard_type) {
904 case NVME_NVM_NS_16B_GUARD:
905 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
906 break;
907 case NVME_NVM_NS_64B_GUARD:
908 ref48 = ext_pi_ref_tag(rq: req);
909 lower = lower_32_bits(ref48);
910 upper = upper_32_bits(ref48);
911
912 cmnd->rw.reftag = cpu_to_le32(lower);
913 cmnd->rw.cdw3 = cpu_to_le32(upper);
914 break;
915 default:
916 break;
917 }
918}
919
920static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
921 struct request *req, struct nvme_command *cmnd)
922{
923 memset(cmnd, 0, sizeof(*cmnd));
924
925 if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
926 return nvme_setup_discard(ns, req, cmnd);
927
928 cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
929 cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
930 cmnd->write_zeroes.slba =
931 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
932 cmnd->write_zeroes.length =
933 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
934
935 if (!(req->cmd_flags & REQ_NOUNMAP) &&
936 (ns->head->features & NVME_NS_DEAC))
937 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
938
939 if (nvme_ns_has_pi(head: ns->head)) {
940 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
941
942 switch (ns->head->pi_type) {
943 case NVME_NS_DPS_PI_TYPE1:
944 case NVME_NS_DPS_PI_TYPE2:
945 nvme_set_ref_tag(ns, cmnd, req);
946 break;
947 }
948 }
949
950 return BLK_STS_OK;
951}
952
953/*
954 * NVMe does not support a dedicated command to issue an atomic write. A write
955 * which does adhere to the device atomic limits will silently be executed
956 * non-atomically. The request issuer should ensure that the write is within
957 * the queue atomic writes limits, but just validate this in case it is not.
958 */
959static bool nvme_valid_atomic_write(struct request *req)
960{
961 struct request_queue *q = req->q;
962 u32 boundary_bytes = queue_atomic_write_boundary_bytes(q);
963
964 if (blk_rq_bytes(rq: req) > queue_atomic_write_unit_max_bytes(q))
965 return false;
966
967 if (boundary_bytes) {
968 u64 mask = boundary_bytes - 1, imask = ~mask;
969 u64 start = blk_rq_pos(rq: req) << SECTOR_SHIFT;
970 u64 end = start + blk_rq_bytes(rq: req) - 1;
971
972 /* If greater then must be crossing a boundary */
973 if (blk_rq_bytes(rq: req) > boundary_bytes)
974 return false;
975
976 if ((start & imask) != (end & imask))
977 return false;
978 }
979
980 return true;
981}
982
983static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
984 struct request *req, struct nvme_command *cmnd,
985 enum nvme_opcode op)
986{
987 u16 control = 0;
988 u32 dsmgmt = 0;
989
990 if (req->cmd_flags & REQ_FUA)
991 control |= NVME_RW_FUA;
992 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
993 control |= NVME_RW_LR;
994
995 if (req->cmd_flags & REQ_RAHEAD)
996 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
997
998 if (op == nvme_cmd_write && ns->head->nr_plids) {
999 u16 write_stream = req->bio->bi_write_stream;
1000
1001 if (WARN_ON_ONCE(write_stream > ns->head->nr_plids))
1002 return BLK_STS_INVAL;
1003
1004 if (write_stream) {
1005 dsmgmt |= ns->head->plids[write_stream - 1] << 16;
1006 control |= NVME_RW_DTYPE_DPLCMT;
1007 }
1008 }
1009
1010 if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req))
1011 return BLK_STS_INVAL;
1012
1013 cmnd->rw.opcode = op;
1014 cmnd->rw.flags = 0;
1015 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
1016 cmnd->rw.cdw2 = 0;
1017 cmnd->rw.cdw3 = 0;
1018 cmnd->rw.metadata = 0;
1019 cmnd->rw.slba =
1020 cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req)));
1021 cmnd->rw.length =
1022 cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1);
1023 cmnd->rw.reftag = 0;
1024 cmnd->rw.lbat = 0;
1025 cmnd->rw.lbatm = 0;
1026
1027 if (ns->head->ms) {
1028 /*
1029 * If formatted with metadata, the block layer always provides a
1030 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
1031 * we enable the PRACT bit for protection information or set the
1032 * namespace capacity to zero to prevent any I/O.
1033 */
1034 if (!blk_integrity_rq(rq: req)) {
1035 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head)))
1036 return BLK_STS_NOTSUPP;
1037 control |= NVME_RW_PRINFO_PRACT;
1038 }
1039
1040 if (bio_integrity_flagged(bio: req->bio, flag: BIP_CHECK_GUARD))
1041 control |= NVME_RW_PRINFO_PRCHK_GUARD;
1042 if (bio_integrity_flagged(bio: req->bio, flag: BIP_CHECK_REFTAG)) {
1043 control |= NVME_RW_PRINFO_PRCHK_REF;
1044 if (op == nvme_cmd_zone_append)
1045 control |= NVME_RW_APPEND_PIREMAP;
1046 nvme_set_ref_tag(ns, cmnd, req);
1047 }
1048 if (bio_integrity_flagged(bio: req->bio, flag: BIP_CHECK_APPTAG)) {
1049 control |= NVME_RW_PRINFO_PRCHK_APP;
1050 nvme_set_app_tag(req, cmnd);
1051 }
1052 }
1053
1054 cmnd->rw.control = cpu_to_le16(control);
1055 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
1056 return 0;
1057}
1058
1059void nvme_cleanup_cmd(struct request *req)
1060{
1061 if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
1062 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
1063
1064 if (req->special_vec.bv_page == ctrl->discard_page)
1065 clear_bit_unlock(nr: 0, addr: &ctrl->discard_page_busy);
1066 else
1067 kfree(objp: bvec_virt(bvec: &req->special_vec));
1068 req->rq_flags &= ~RQF_SPECIAL_PAYLOAD;
1069 }
1070}
1071EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
1072
1073blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
1074{
1075 struct nvme_command *cmd = nvme_req(req)->cmd;
1076 blk_status_t ret = BLK_STS_OK;
1077
1078 if (!(req->rq_flags & RQF_DONTPREP))
1079 nvme_clear_nvme_request(req);
1080
1081 switch (req_op(req)) {
1082 case REQ_OP_DRV_IN:
1083 case REQ_OP_DRV_OUT:
1084 /* these are setup prior to execution in nvme_init_request() */
1085 break;
1086 case REQ_OP_FLUSH:
1087 nvme_setup_flush(ns, cmnd: cmd);
1088 break;
1089 case REQ_OP_ZONE_RESET_ALL:
1090 case REQ_OP_ZONE_RESET:
1091 ret = nvme_setup_zone_mgmt_send(ns, req, cmnd: cmd, action: NVME_ZONE_RESET);
1092 break;
1093 case REQ_OP_ZONE_OPEN:
1094 ret = nvme_setup_zone_mgmt_send(ns, req, cmnd: cmd, action: NVME_ZONE_OPEN);
1095 break;
1096 case REQ_OP_ZONE_CLOSE:
1097 ret = nvme_setup_zone_mgmt_send(ns, req, cmnd: cmd, action: NVME_ZONE_CLOSE);
1098 break;
1099 case REQ_OP_ZONE_FINISH:
1100 ret = nvme_setup_zone_mgmt_send(ns, req, cmnd: cmd, action: NVME_ZONE_FINISH);
1101 break;
1102 case REQ_OP_WRITE_ZEROES:
1103 ret = nvme_setup_write_zeroes(ns, req, cmnd: cmd);
1104 break;
1105 case REQ_OP_DISCARD:
1106 ret = nvme_setup_discard(ns, req, cmnd: cmd);
1107 break;
1108 case REQ_OP_READ:
1109 ret = nvme_setup_rw(ns, req, cmnd: cmd, op: nvme_cmd_read);
1110 break;
1111 case REQ_OP_WRITE:
1112 ret = nvme_setup_rw(ns, req, cmnd: cmd, op: nvme_cmd_write);
1113 break;
1114 case REQ_OP_ZONE_APPEND:
1115 ret = nvme_setup_rw(ns, req, cmnd: cmd, op: nvme_cmd_zone_append);
1116 break;
1117 default:
1118 WARN_ON_ONCE(1);
1119 return BLK_STS_IOERR;
1120 }
1121
1122 cmd->common.command_id = nvme_cid(rq: req);
1123 trace_nvme_setup_cmd(req, cmd);
1124 return ret;
1125}
1126EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1127
1128/*
1129 * Return values:
1130 * 0: success
1131 * >0: nvme controller's cqe status response
1132 * <0: kernel error in lieu of controller response
1133 */
1134int nvme_execute_rq(struct request *rq, bool at_head)
1135{
1136 blk_status_t status;
1137
1138 status = blk_execute_rq(rq, at_head);
1139 if (nvme_req(req: rq)->flags & NVME_REQ_CANCELLED)
1140 return -EINTR;
1141 if (nvme_req(req: rq)->status)
1142 return nvme_req(req: rq)->status;
1143 return blk_status_to_errno(status);
1144}
1145EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, "NVME_TARGET_PASSTHRU");
1146
1147/*
1148 * Returns 0 on success. If the result is negative, it's a Linux error code;
1149 * if the result is positive, it's an NVM Express status code
1150 */
1151int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1152 union nvme_result *result, void *buffer, unsigned bufflen,
1153 int qid, nvme_submit_flags_t flags)
1154{
1155 struct request *req;
1156 int ret;
1157 blk_mq_req_flags_t blk_flags = 0;
1158
1159 if (flags & NVME_SUBMIT_NOWAIT)
1160 blk_flags |= BLK_MQ_REQ_NOWAIT;
1161 if (flags & NVME_SUBMIT_RESERVED)
1162 blk_flags |= BLK_MQ_REQ_RESERVED;
1163 if (qid == NVME_QID_ANY)
1164 req = blk_mq_alloc_request(q, opf: nvme_req_op(cmd), flags: blk_flags);
1165 else
1166 req = blk_mq_alloc_request_hctx(q, opf: nvme_req_op(cmd), flags: blk_flags,
1167 hctx_idx: qid - 1);
1168
1169 if (IS_ERR(ptr: req))
1170 return PTR_ERR(ptr: req);
1171 nvme_init_request(req, cmd);
1172 if (flags & NVME_SUBMIT_RETRY)
1173 req->cmd_flags &= ~REQ_FAILFAST_DRIVER;
1174
1175 if (buffer && bufflen) {
1176 ret = blk_rq_map_kern(rq: req, kbuf: buffer, len: bufflen, GFP_KERNEL);
1177 if (ret)
1178 goto out;
1179 }
1180
1181 ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD);
1182 if (result && ret >= 0)
1183 *result = nvme_req(req)->result;
1184 out:
1185 blk_mq_free_request(rq: req);
1186 return ret;
1187}
1188EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1189
1190int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1191 void *buffer, unsigned bufflen)
1192{
1193 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1194 NVME_QID_ANY, 0);
1195}
1196EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1197
1198u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1199{
1200 u32 effects = 0;
1201
1202 if (ns) {
1203 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1204 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1205 dev_warn_once(ctrl->device,
1206 "IO command:%02x has unusual effects:%08x\n",
1207 opcode, effects);
1208
1209 /*
1210 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1211 * which would deadlock when done on an I/O command. Note that
1212 * We already warn about an unusual effect above.
1213 */
1214 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1215 } else {
1216 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1217
1218 /* Ignore execution restrictions if any relaxation bits are set */
1219 if (effects & NVME_CMD_EFFECTS_CSER_MASK)
1220 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1221 }
1222
1223 return effects;
1224}
1225EXPORT_SYMBOL_NS_GPL(nvme_command_effects, "NVME_TARGET_PASSTHRU");
1226
1227u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1228{
1229 u32 effects = nvme_command_effects(ctrl, ns, opcode);
1230
1231 /*
1232 * For simplicity, IO to all namespaces is quiesced even if the command
1233 * effects say only one namespace is affected.
1234 */
1235 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1236 mutex_lock(&ctrl->scan_lock);
1237 mutex_lock(&ctrl->subsys->lock);
1238 nvme_mpath_start_freeze(subsys: ctrl->subsys);
1239 nvme_mpath_wait_freeze(subsys: ctrl->subsys);
1240 nvme_start_freeze(ctrl);
1241 nvme_wait_freeze(ctrl);
1242 }
1243 return effects;
1244}
1245EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, "NVME_TARGET_PASSTHRU");
1246
1247void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1248 struct nvme_command *cmd, int status)
1249{
1250 if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1251 nvme_unfreeze(ctrl);
1252 nvme_mpath_unfreeze(subsys: ctrl->subsys);
1253 mutex_unlock(lock: &ctrl->subsys->lock);
1254 mutex_unlock(lock: &ctrl->scan_lock);
1255 }
1256 if (effects & NVME_CMD_EFFECTS_CCC) {
1257 if (!test_and_set_bit(nr: NVME_CTRL_DIRTY_CAPABILITY,
1258 addr: &ctrl->flags)) {
1259 dev_info(ctrl->device,
1260"controller capabilities changed, reset may be required to take effect.\n");
1261 }
1262 }
1263 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1264 nvme_queue_scan(ctrl);
1265 flush_work(work: &ctrl->scan_work);
1266 }
1267 if (ns)
1268 return;
1269
1270 switch (cmd->common.opcode) {
1271 case nvme_admin_set_features:
1272 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1273 case NVME_FEAT_KATO:
1274 /*
1275 * Keep alive commands interval on the host should be
1276 * updated when KATO is modified by Set Features
1277 * commands.
1278 */
1279 if (!status)
1280 nvme_update_keep_alive(ctrl, cmd);
1281 break;
1282 default:
1283 break;
1284 }
1285 break;
1286 default:
1287 break;
1288 }
1289}
1290EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, "NVME_TARGET_PASSTHRU");
1291
1292/*
1293 * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1294 *
1295 * The host should send Keep Alive commands at half of the Keep Alive Timeout
1296 * accounting for transport roundtrip times [..].
1297 */
1298static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1299{
1300 unsigned long delay = ctrl->kato * HZ / 2;
1301
1302 /*
1303 * When using Traffic Based Keep Alive, we need to run
1304 * nvme_keep_alive_work at twice the normal frequency, as one
1305 * command completion can postpone sending a keep alive command
1306 * by up to twice the delay between runs.
1307 */
1308 if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1309 delay /= 2;
1310 return delay;
1311}
1312
1313static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1314{
1315 unsigned long now = jiffies;
1316 unsigned long delay = nvme_keep_alive_work_period(ctrl);
1317 unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay;
1318
1319 if (time_after(now, ka_next_check_tm))
1320 delay = 0;
1321 else
1322 delay = ka_next_check_tm - now;
1323
1324 queue_delayed_work(wq: nvme_wq, dwork: &ctrl->ka_work, delay);
1325}
1326
1327static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1328 blk_status_t status)
1329{
1330 struct nvme_ctrl *ctrl = rq->end_io_data;
1331 unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1332 unsigned long delay = nvme_keep_alive_work_period(ctrl);
1333 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
1334
1335 /*
1336 * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1337 * at the desired frequency.
1338 */
1339 if (rtt <= delay) {
1340 delay -= rtt;
1341 } else {
1342 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1343 jiffies_to_msecs(rtt));
1344 delay = 0;
1345 }
1346
1347 blk_mq_free_request(rq);
1348
1349 if (status) {
1350 dev_err(ctrl->device,
1351 "failed nvme_keep_alive_end_io error=%d\n",
1352 status);
1353 return RQ_END_IO_NONE;
1354 }
1355
1356 ctrl->ka_last_check_time = jiffies;
1357 ctrl->comp_seen = false;
1358 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING)
1359 queue_delayed_work(wq: nvme_wq, dwork: &ctrl->ka_work, delay);
1360 return RQ_END_IO_NONE;
1361}
1362
1363static void nvme_keep_alive_work(struct work_struct *work)
1364{
1365 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1366 struct nvme_ctrl, ka_work);
1367 bool comp_seen = ctrl->comp_seen;
1368 struct request *rq;
1369
1370 ctrl->ka_last_check_time = jiffies;
1371
1372 if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1373 dev_dbg(ctrl->device,
1374 "reschedule traffic based keep-alive timer\n");
1375 ctrl->comp_seen = false;
1376 nvme_queue_keep_alive_work(ctrl);
1377 return;
1378 }
1379
1380 rq = blk_mq_alloc_request(q: ctrl->admin_q, opf: nvme_req_op(cmd: &ctrl->ka_cmd),
1381 flags: BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1382 if (IS_ERR(ptr: rq)) {
1383 /* allocation failure, reset the controller */
1384 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1385 nvme_reset_ctrl(ctrl);
1386 return;
1387 }
1388 nvme_init_request(rq, &ctrl->ka_cmd);
1389
1390 rq->timeout = ctrl->kato * HZ;
1391 rq->end_io = nvme_keep_alive_end_io;
1392 rq->end_io_data = ctrl;
1393 blk_execute_rq_nowait(rq, at_head: false);
1394}
1395
1396static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1397{
1398 if (unlikely(ctrl->kato == 0))
1399 return;
1400
1401 nvme_queue_keep_alive_work(ctrl);
1402}
1403
1404void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1405{
1406 if (unlikely(ctrl->kato == 0))
1407 return;
1408
1409 cancel_delayed_work_sync(dwork: &ctrl->ka_work);
1410}
1411EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1412
1413static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1414 struct nvme_command *cmd)
1415{
1416 unsigned int new_kato =
1417 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1418
1419 dev_info(ctrl->device,
1420 "keep alive interval updated from %u ms to %u ms\n",
1421 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1422
1423 nvme_stop_keep_alive(ctrl);
1424 ctrl->kato = new_kato;
1425 nvme_start_keep_alive(ctrl);
1426}
1427
1428static bool nvme_id_cns_ok(struct nvme_ctrl *ctrl, u8 cns)
1429{
1430 /*
1431 * The CNS field occupies a full byte starting with NVMe 1.2
1432 */
1433 if (ctrl->vs >= NVME_VS(1, 2, 0))
1434 return true;
1435
1436 /*
1437 * NVMe 1.1 expanded the CNS value to two bits, which means values
1438 * larger than that could get truncated and treated as an incorrect
1439 * value.
1440 *
1441 * Qemu implemented 1.0 behavior for controllers claiming 1.1
1442 * compliance, so they need to be quirked here.
1443 */
1444 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1445 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS))
1446 return cns <= 3;
1447
1448 /*
1449 * NVMe 1.0 used a single bit for the CNS value.
1450 */
1451 return cns <= 1;
1452}
1453
1454static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1455{
1456 struct nvme_command c = { };
1457 int error;
1458
1459 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1460 c.identify.opcode = nvme_admin_identify;
1461 c.identify.cns = NVME_ID_CNS_CTRL;
1462
1463 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1464 if (!*id)
1465 return -ENOMEM;
1466
1467 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1468 sizeof(struct nvme_id_ctrl));
1469 if (error) {
1470 kfree(objp: *id);
1471 *id = NULL;
1472 }
1473 return error;
1474}
1475
1476static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1477 struct nvme_ns_id_desc *cur, bool *csi_seen)
1478{
1479 const char *warn_str = "ctrl returned bogus length:";
1480 void *data = cur;
1481
1482 switch (cur->nidt) {
1483 case NVME_NIDT_EUI64:
1484 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1485 dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1486 warn_str, cur->nidl);
1487 return -1;
1488 }
1489 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1490 return NVME_NIDT_EUI64_LEN;
1491 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1492 return NVME_NIDT_EUI64_LEN;
1493 case NVME_NIDT_NGUID:
1494 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1495 dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1496 warn_str, cur->nidl);
1497 return -1;
1498 }
1499 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1500 return NVME_NIDT_NGUID_LEN;
1501 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1502 return NVME_NIDT_NGUID_LEN;
1503 case NVME_NIDT_UUID:
1504 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1505 dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1506 warn_str, cur->nidl);
1507 return -1;
1508 }
1509 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1510 return NVME_NIDT_UUID_LEN;
1511 uuid_copy(dst: &ids->uuid, src: data + sizeof(*cur));
1512 return NVME_NIDT_UUID_LEN;
1513 case NVME_NIDT_CSI:
1514 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1515 dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1516 warn_str, cur->nidl);
1517 return -1;
1518 }
1519 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1520 *csi_seen = true;
1521 return NVME_NIDT_CSI_LEN;
1522 default:
1523 /* Skip unknown types */
1524 return cur->nidl;
1525 }
1526}
1527
1528static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1529 struct nvme_ns_info *info)
1530{
1531 struct nvme_command c = { };
1532 bool csi_seen = false;
1533 int status, pos, len;
1534 void *data;
1535
1536 if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1537 return 0;
1538 if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1539 return 0;
1540
1541 c.identify.opcode = nvme_admin_identify;
1542 c.identify.nsid = cpu_to_le32(info->nsid);
1543 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1544
1545 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1546 if (!data)
1547 return -ENOMEM;
1548
1549 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1550 NVME_IDENTIFY_DATA_SIZE);
1551 if (status) {
1552 dev_warn(ctrl->device,
1553 "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1554 info->nsid, status);
1555 goto free_data;
1556 }
1557
1558 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1559 struct nvme_ns_id_desc *cur = data + pos;
1560
1561 if (cur->nidl == 0)
1562 break;
1563
1564 len = nvme_process_ns_desc(ctrl, ids: &info->ids, cur, csi_seen: &csi_seen);
1565 if (len < 0)
1566 break;
1567
1568 len += sizeof(*cur);
1569 }
1570
1571 if (nvme_multi_css(ctrl) && !csi_seen) {
1572 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1573 info->nsid);
1574 status = -EINVAL;
1575 }
1576
1577free_data:
1578 kfree(objp: data);
1579 return status;
1580}
1581
1582int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1583 struct nvme_id_ns **id)
1584{
1585 struct nvme_command c = { };
1586 int error;
1587
1588 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1589 c.identify.opcode = nvme_admin_identify;
1590 c.identify.nsid = cpu_to_le32(nsid);
1591 c.identify.cns = NVME_ID_CNS_NS;
1592
1593 *id = kmalloc(sizeof(**id), GFP_KERNEL);
1594 if (!*id)
1595 return -ENOMEM;
1596
1597 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1598 if (error) {
1599 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1600 kfree(objp: *id);
1601 *id = NULL;
1602 }
1603 return error;
1604}
1605
1606static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1607 struct nvme_ns_info *info)
1608{
1609 struct nvme_ns_ids *ids = &info->ids;
1610 struct nvme_id_ns *id;
1611 int ret;
1612
1613 ret = nvme_identify_ns(ctrl, nsid: info->nsid, id: &id);
1614 if (ret)
1615 return ret;
1616
1617 if (id->ncap == 0) {
1618 /* namespace not allocated or attached */
1619 info->is_removed = true;
1620 ret = -ENODEV;
1621 goto error;
1622 }
1623
1624 info->anagrpid = id->anagrpid;
1625 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1626 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1627 info->is_ready = true;
1628 info->endgid = le16_to_cpu(id->endgid);
1629 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1630 dev_info(ctrl->device,
1631 "Ignoring bogus Namespace Identifiers\n");
1632 } else {
1633 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1634 !memchr_inv(p: ids->eui64, c: 0, size: sizeof(ids->eui64)))
1635 memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1636 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1637 !memchr_inv(p: ids->nguid, c: 0, size: sizeof(ids->nguid)))
1638 memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1639 }
1640
1641error:
1642 kfree(objp: id);
1643 return ret;
1644}
1645
1646static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1647 struct nvme_ns_info *info)
1648{
1649 struct nvme_id_ns_cs_indep *id;
1650 struct nvme_command c = {
1651 .identify.opcode = nvme_admin_identify,
1652 .identify.nsid = cpu_to_le32(info->nsid),
1653 .identify.cns = NVME_ID_CNS_NS_CS_INDEP,
1654 };
1655 int ret;
1656
1657 id = kmalloc(sizeof(*id), GFP_KERNEL);
1658 if (!id)
1659 return -ENOMEM;
1660
1661 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1662 if (!ret) {
1663 info->anagrpid = id->anagrpid;
1664 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1665 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1666 info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1667 info->is_rotational = id->nsfeat & NVME_NS_ROTATIONAL;
1668 info->no_vwc = id->nsfeat & NVME_NS_VWC_NOT_PRESENT;
1669 info->endgid = le16_to_cpu(id->endgid);
1670 }
1671 kfree(objp: id);
1672 return ret;
1673}
1674
1675static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1676 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1677{
1678 union nvme_result res = { 0 };
1679 struct nvme_command c = { };
1680 int ret;
1681
1682 c.features.opcode = op;
1683 c.features.fid = cpu_to_le32(fid);
1684 c.features.dword11 = cpu_to_le32(dword11);
1685
1686 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1687 buffer, buflen, NVME_QID_ANY, 0);
1688 if (ret >= 0 && result)
1689 *result = le32_to_cpu(res.u32);
1690 return ret;
1691}
1692
1693int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1694 unsigned int dword11, void *buffer, size_t buflen,
1695 void *result)
1696{
1697 return nvme_features(dev, op: nvme_admin_set_features, fid, dword11, buffer,
1698 buflen, result);
1699}
1700EXPORT_SYMBOL_GPL(nvme_set_features);
1701
1702int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1703 unsigned int dword11, void *buffer, size_t buflen,
1704 void *result)
1705{
1706 return nvme_features(dev, op: nvme_admin_get_features, fid, dword11, buffer,
1707 buflen, result);
1708}
1709EXPORT_SYMBOL_GPL(nvme_get_features);
1710
1711int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1712{
1713 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1714 u32 result;
1715 int status, nr_io_queues;
1716
1717 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1718 &result);
1719
1720 /*
1721 * It's either a kernel error or the host observed a connection
1722 * lost. In either case it's not possible communicate with the
1723 * controller and thus enter the error code path.
1724 */
1725 if (status < 0 || status == NVME_SC_HOST_PATH_ERROR)
1726 return status;
1727
1728 /*
1729 * Degraded controllers might return an error when setting the queue
1730 * count. We still want to be able to bring them online and offer
1731 * access to the admin queue, as that might be only way to fix them up.
1732 */
1733 if (status > 0) {
1734 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1735 *count = 0;
1736 } else {
1737 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1738 *count = min(*count, nr_io_queues);
1739 }
1740
1741 return 0;
1742}
1743EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1744
1745#define NVME_AEN_SUPPORTED \
1746 (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1747 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1748
1749static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1750{
1751 u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1752 int status;
1753
1754 if (!supported_aens)
1755 return;
1756
1757 status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1758 NULL, 0, &result);
1759 if (status)
1760 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1761 supported_aens);
1762
1763 queue_work(wq: nvme_wq, work: &ctrl->async_event_work);
1764}
1765
1766static int nvme_ns_open(struct nvme_ns *ns)
1767{
1768
1769 /* should never be called due to GENHD_FL_HIDDEN */
1770 if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1771 goto fail;
1772 if (!nvme_get_ns(ns))
1773 goto fail;
1774 if (!try_module_get(module: ns->ctrl->ops->module))
1775 goto fail_put_ns;
1776
1777 return 0;
1778
1779fail_put_ns:
1780 nvme_put_ns(ns);
1781fail:
1782 return -ENXIO;
1783}
1784
1785static void nvme_ns_release(struct nvme_ns *ns)
1786{
1787
1788 module_put(module: ns->ctrl->ops->module);
1789 nvme_put_ns(ns);
1790}
1791
1792static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1793{
1794 return nvme_ns_open(ns: disk->private_data);
1795}
1796
1797static void nvme_release(struct gendisk *disk)
1798{
1799 nvme_ns_release(ns: disk->private_data);
1800}
1801
1802int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1803{
1804 /* some standard values */
1805 geo->heads = 1 << 6;
1806 geo->sectors = 1 << 5;
1807 geo->cylinders = get_capacity(disk: bdev->bd_disk) >> 11;
1808 return 0;
1809}
1810
1811static bool nvme_init_integrity(struct nvme_ns_head *head,
1812 struct queue_limits *lim, struct nvme_ns_info *info)
1813{
1814 struct blk_integrity *bi = &lim->integrity;
1815
1816 memset(bi, 0, sizeof(*bi));
1817
1818 if (!head->ms)
1819 return true;
1820
1821 /*
1822 * PI can always be supported as we can ask the controller to simply
1823 * insert/strip it, which is not possible for other kinds of metadata.
1824 */
1825 if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) ||
1826 !(head->features & NVME_NS_METADATA_SUPPORTED))
1827 return nvme_ns_has_pi(head);
1828
1829 switch (head->pi_type) {
1830 case NVME_NS_DPS_PI_TYPE3:
1831 switch (head->guard_type) {
1832 case NVME_NVM_NS_16B_GUARD:
1833 bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1834 bi->tag_size = sizeof(u16) + sizeof(u32);
1835 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1836 break;
1837 case NVME_NVM_NS_64B_GUARD:
1838 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1839 bi->tag_size = sizeof(u16) + 6;
1840 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1841 break;
1842 default:
1843 break;
1844 }
1845 break;
1846 case NVME_NS_DPS_PI_TYPE1:
1847 case NVME_NS_DPS_PI_TYPE2:
1848 switch (head->guard_type) {
1849 case NVME_NVM_NS_16B_GUARD:
1850 bi->csum_type = BLK_INTEGRITY_CSUM_CRC;
1851 bi->tag_size = sizeof(u16);
1852 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1853 BLK_INTEGRITY_REF_TAG;
1854 break;
1855 case NVME_NVM_NS_64B_GUARD:
1856 bi->csum_type = BLK_INTEGRITY_CSUM_CRC64;
1857 bi->tag_size = sizeof(u16);
1858 bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE |
1859 BLK_INTEGRITY_REF_TAG;
1860 break;
1861 default:
1862 break;
1863 }
1864 break;
1865 default:
1866 break;
1867 }
1868
1869 bi->tuple_size = head->ms;
1870 bi->pi_offset = info->pi_offset;
1871 return true;
1872}
1873
1874static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim)
1875{
1876 struct nvme_ctrl *ctrl = ns->ctrl;
1877
1878 if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(head: ns->head, UINT_MAX))
1879 lim->max_hw_discard_sectors =
1880 nvme_lba_to_sect(head: ns->head, lba: ctrl->dmrsl);
1881 else if (ctrl->oncs & NVME_CTRL_ONCS_DSM)
1882 lim->max_hw_discard_sectors = UINT_MAX;
1883 else
1884 lim->max_hw_discard_sectors = 0;
1885
1886 lim->discard_granularity = lim->logical_block_size;
1887
1888 if (ctrl->dmrl)
1889 lim->max_discard_segments = ctrl->dmrl;
1890 else
1891 lim->max_discard_segments = NVME_DSM_MAX_RANGES;
1892}
1893
1894static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1895{
1896 return uuid_equal(u1: &a->uuid, u2: &b->uuid) &&
1897 memcmp(p: &a->nguid, q: &b->nguid, size: sizeof(a->nguid)) == 0 &&
1898 memcmp(p: &a->eui64, q: &b->eui64, size: sizeof(a->eui64)) == 0 &&
1899 a->csi == b->csi;
1900}
1901
1902static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid,
1903 struct nvme_id_ns_nvm **nvmp)
1904{
1905 struct nvme_command c = {
1906 .identify.opcode = nvme_admin_identify,
1907 .identify.nsid = cpu_to_le32(nsid),
1908 .identify.cns = NVME_ID_CNS_CS_NS,
1909 .identify.csi = NVME_CSI_NVM,
1910 };
1911 struct nvme_id_ns_nvm *nvm;
1912 int ret;
1913
1914 nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1915 if (!nvm)
1916 return -ENOMEM;
1917
1918 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm));
1919 if (ret)
1920 kfree(objp: nvm);
1921 else
1922 *nvmp = nvm;
1923 return ret;
1924}
1925
1926static void nvme_configure_pi_elbas(struct nvme_ns_head *head,
1927 struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm)
1928{
1929 u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]);
1930 u8 guard_type;
1931
1932 /* no support for storage tag formats right now */
1933 if (nvme_elbaf_sts(elbaf))
1934 return;
1935
1936 guard_type = nvme_elbaf_guard_type(elbaf);
1937 if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) &&
1938 guard_type == NVME_NVM_NS_QTYPE_GUARD)
1939 guard_type = nvme_elbaf_qualified_guard_type(elbaf);
1940
1941 head->guard_type = guard_type;
1942 switch (head->guard_type) {
1943 case NVME_NVM_NS_64B_GUARD:
1944 head->pi_size = sizeof(struct crc64_pi_tuple);
1945 break;
1946 case NVME_NVM_NS_16B_GUARD:
1947 head->pi_size = sizeof(struct t10_pi_tuple);
1948 break;
1949 default:
1950 break;
1951 }
1952}
1953
1954static void nvme_configure_metadata(struct nvme_ctrl *ctrl,
1955 struct nvme_ns_head *head, struct nvme_id_ns *id,
1956 struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info)
1957{
1958 head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1959 head->pi_type = 0;
1960 head->pi_size = 0;
1961 head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms);
1962 if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1963 return;
1964
1965 if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1966 nvme_configure_pi_elbas(head, id, nvm);
1967 } else {
1968 head->pi_size = sizeof(struct t10_pi_tuple);
1969 head->guard_type = NVME_NVM_NS_16B_GUARD;
1970 }
1971
1972 if (head->pi_size && head->ms >= head->pi_size)
1973 head->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1974 if (!(id->dps & NVME_NS_DPS_PI_FIRST)) {
1975 if (disable_pi_offsets)
1976 head->pi_type = 0;
1977 else
1978 info->pi_offset = head->ms - head->pi_size;
1979 }
1980
1981 if (ctrl->ops->flags & NVME_F_FABRICS) {
1982 /*
1983 * The NVMe over Fabrics specification only supports metadata as
1984 * part of the extended data LBA. We rely on HCA/HBA support to
1985 * remap the separate metadata buffer from the block layer.
1986 */
1987 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1988 return;
1989
1990 head->features |= NVME_NS_EXT_LBAS;
1991
1992 /*
1993 * The current fabrics transport drivers support namespace
1994 * metadata formats only if nvme_ns_has_pi() returns true.
1995 * Suppress support for all other formats so the namespace will
1996 * have a 0 capacity and not be usable through the block stack.
1997 *
1998 * Note, this check will need to be modified if any drivers
1999 * gain the ability to use other metadata formats.
2000 */
2001 if (ctrl->max_integrity_segments && nvme_ns_has_pi(head))
2002 head->features |= NVME_NS_METADATA_SUPPORTED;
2003 } else {
2004 /*
2005 * For PCIe controllers, we can't easily remap the separate
2006 * metadata buffer from the block layer and thus require a
2007 * separate metadata buffer for block layer metadata/PI support.
2008 * We allow extended LBAs for the passthrough interface, though.
2009 */
2010 if (id->flbas & NVME_NS_FLBAS_META_EXT)
2011 head->features |= NVME_NS_EXT_LBAS;
2012 else
2013 head->features |= NVME_NS_METADATA_SUPPORTED;
2014 }
2015}
2016
2017
2018static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns,
2019 struct nvme_id_ns *id, struct queue_limits *lim,
2020 u32 bs, u32 atomic_bs)
2021{
2022 unsigned int boundary = 0;
2023
2024 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) {
2025 if (le16_to_cpu(id->nabspf))
2026 boundary = (le16_to_cpu(id->nabspf) + 1) * bs;
2027 }
2028 lim->atomic_write_hw_max = atomic_bs;
2029 lim->atomic_write_hw_boundary = boundary;
2030 lim->atomic_write_hw_unit_min = bs;
2031 lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs);
2032 lim->features |= BLK_FEAT_ATOMIC_WRITES;
2033}
2034
2035static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl)
2036{
2037 return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1;
2038}
2039
2040static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl,
2041 struct queue_limits *lim)
2042{
2043 lim->max_hw_sectors = ctrl->max_hw_sectors;
2044 lim->max_segments = min_t(u32, USHRT_MAX,
2045 min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments));
2046 lim->max_integrity_segments = ctrl->max_integrity_segments;
2047 lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1;
2048 lim->max_segment_size = UINT_MAX;
2049 lim->dma_alignment = 3;
2050}
2051
2052static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id,
2053 struct queue_limits *lim)
2054{
2055 struct nvme_ns_head *head = ns->head;
2056 u32 bs = 1U << head->lba_shift;
2057 u32 atomic_bs, phys_bs, io_opt = 0;
2058 bool valid = true;
2059
2060 /*
2061 * The block layer can't support LBA sizes larger than the page size
2062 * or smaller than a sector size yet, so catch this early and don't
2063 * allow block I/O.
2064 */
2065 if (blk_validate_block_size(bsize: bs)) {
2066 bs = (1 << 9);
2067 valid = false;
2068 }
2069
2070 atomic_bs = phys_bs = bs;
2071 if (id->nabo == 0) {
2072 /*
2073 * Bit 1 indicates whether NAWUPF is defined for this namespace
2074 * and whether it should be used instead of AWUPF. If NAWUPF ==
2075 * 0 then AWUPF must be used instead.
2076 */
2077 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
2078 atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
2079 else
2080 atomic_bs = (1 + ns->ctrl->awupf) * bs;
2081
2082 /*
2083 * Set subsystem atomic bs.
2084 */
2085 if (ns->ctrl->subsys->atomic_bs) {
2086 if (atomic_bs != ns->ctrl->subsys->atomic_bs) {
2087 dev_err_ratelimited(ns->ctrl->device,
2088 "%s: Inconsistent Atomic Write Size, Namespace will not be added: Subsystem=%d bytes, Controller/Namespace=%d bytes\n",
2089 ns->disk ? ns->disk->disk_name : "?",
2090 ns->ctrl->subsys->atomic_bs,
2091 atomic_bs);
2092 }
2093 } else
2094 ns->ctrl->subsys->atomic_bs = atomic_bs;
2095
2096 nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs);
2097 }
2098
2099 if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
2100 /* NPWG = Namespace Preferred Write Granularity */
2101 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
2102 /* NOWS = Namespace Optimal Write Size */
2103 if (id->nows)
2104 io_opt = bs * (1 + le16_to_cpu(id->nows));
2105 }
2106
2107 /*
2108 * Linux filesystems assume writing a single physical block is
2109 * an atomic operation. Hence limit the physical block size to the
2110 * value of the Atomic Write Unit Power Fail parameter.
2111 */
2112 lim->logical_block_size = bs;
2113 lim->physical_block_size = min(phys_bs, atomic_bs);
2114 lim->io_min = phys_bs;
2115 lim->io_opt = io_opt;
2116 if ((ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) &&
2117 (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM))
2118 lim->max_write_zeroes_sectors = UINT_MAX;
2119 else
2120 lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors;
2121 return valid;
2122}
2123
2124static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
2125{
2126 return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
2127}
2128
2129static inline bool nvme_first_scan(struct gendisk *disk)
2130{
2131 /* nvme_alloc_ns() scans the disk prior to adding it */
2132 return !disk_live(disk);
2133}
2134
2135static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id,
2136 struct queue_limits *lim)
2137{
2138 struct nvme_ctrl *ctrl = ns->ctrl;
2139 u32 iob;
2140
2141 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
2142 is_power_of_2(n: ctrl->max_hw_sectors))
2143 iob = ctrl->max_hw_sectors;
2144 else
2145 iob = nvme_lba_to_sect(head: ns->head, le16_to_cpu(id->noiob));
2146
2147 if (!iob)
2148 return;
2149
2150 if (!is_power_of_2(n: iob)) {
2151 if (nvme_first_scan(disk: ns->disk))
2152 pr_warn("%s: ignoring unaligned IO boundary:%u\n",
2153 ns->disk->disk_name, iob);
2154 return;
2155 }
2156
2157 if (blk_queue_is_zoned(q: ns->disk->queue)) {
2158 if (nvme_first_scan(disk: ns->disk))
2159 pr_warn("%s: ignoring zoned namespace IO boundary\n",
2160 ns->disk->disk_name);
2161 return;
2162 }
2163
2164 lim->chunk_sectors = iob;
2165}
2166
2167static int nvme_update_ns_info_generic(struct nvme_ns *ns,
2168 struct nvme_ns_info *info)
2169{
2170 struct queue_limits lim;
2171 unsigned int memflags;
2172 int ret;
2173
2174 lim = queue_limits_start_update(q: ns->disk->queue);
2175 nvme_set_ctrl_limits(ctrl: ns->ctrl, lim: &lim);
2176
2177 memflags = blk_mq_freeze_queue(q: ns->disk->queue);
2178 ret = queue_limits_commit_update(q: ns->disk->queue, lim: &lim);
2179 set_disk_ro(disk: ns->disk, read_only: nvme_ns_is_readonly(ns, info));
2180 blk_mq_unfreeze_queue(q: ns->disk->queue, memflags);
2181
2182 /* Hide the block-interface for these devices */
2183 if (!ret)
2184 ret = -ENODEV;
2185 return ret;
2186}
2187
2188static int nvme_query_fdp_granularity(struct nvme_ctrl *ctrl,
2189 struct nvme_ns_info *info, u8 fdp_idx)
2190{
2191 struct nvme_fdp_config_log hdr, *h;
2192 struct nvme_fdp_config_desc *desc;
2193 size_t size = sizeof(hdr);
2194 void *log, *end;
2195 int i, n, ret;
2196
2197 ret = nvme_get_log_lsi(ctrl, nsid: 0, log_page: NVME_LOG_FDP_CONFIGS, lsp: 0,
2198 csi: NVME_CSI_NVM, log: &hdr, size, offset: 0, lsi: info->endgid);
2199 if (ret) {
2200 dev_warn(ctrl->device,
2201 "FDP configs log header status:0x%x endgid:%d\n", ret,
2202 info->endgid);
2203 return ret;
2204 }
2205
2206 size = le32_to_cpu(hdr.sze);
2207 if (size > PAGE_SIZE * MAX_ORDER_NR_PAGES) {
2208 dev_warn(ctrl->device, "FDP config size too large:%zu\n",
2209 size);
2210 return 0;
2211 }
2212
2213 h = kvmalloc(size, GFP_KERNEL);
2214 if (!h)
2215 return -ENOMEM;
2216
2217 ret = nvme_get_log_lsi(ctrl, nsid: 0, log_page: NVME_LOG_FDP_CONFIGS, lsp: 0,
2218 csi: NVME_CSI_NVM, log: h, size, offset: 0, lsi: info->endgid);
2219 if (ret) {
2220 dev_warn(ctrl->device,
2221 "FDP configs log status:0x%x endgid:%d\n", ret,
2222 info->endgid);
2223 goto out;
2224 }
2225
2226 n = le16_to_cpu(h->numfdpc) + 1;
2227 if (fdp_idx > n) {
2228 dev_warn(ctrl->device, "FDP index:%d out of range:%d\n",
2229 fdp_idx, n);
2230 /* Proceed without registering FDP streams */
2231 ret = 0;
2232 goto out;
2233 }
2234
2235 log = h + 1;
2236 desc = log;
2237 end = log + size - sizeof(*h);
2238 for (i = 0; i < fdp_idx; i++) {
2239 log += le16_to_cpu(desc->dsze);
2240 desc = log;
2241 if (log >= end) {
2242 dev_warn(ctrl->device,
2243 "FDP invalid config descriptor list\n");
2244 ret = 0;
2245 goto out;
2246 }
2247 }
2248
2249 if (le32_to_cpu(desc->nrg) > 1) {
2250 dev_warn(ctrl->device, "FDP NRG > 1 not supported\n");
2251 ret = 0;
2252 goto out;
2253 }
2254
2255 info->runs = le64_to_cpu(desc->runs);
2256out:
2257 kvfree(addr: h);
2258 return ret;
2259}
2260
2261static int nvme_query_fdp_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2262{
2263 struct nvme_ns_head *head = ns->head;
2264 struct nvme_ctrl *ctrl = ns->ctrl;
2265 struct nvme_fdp_ruh_status *ruhs;
2266 struct nvme_fdp_config fdp;
2267 struct nvme_command c = {};
2268 size_t size;
2269 int i, ret;
2270
2271 /*
2272 * The FDP configuration is static for the lifetime of the namespace,
2273 * so return immediately if we've already registered this namespace's
2274 * streams.
2275 */
2276 if (head->nr_plids)
2277 return 0;
2278
2279 ret = nvme_get_features(ctrl, NVME_FEAT_FDP, info->endgid, NULL, 0,
2280 &fdp);
2281 if (ret) {
2282 dev_warn(ctrl->device, "FDP get feature status:0x%x\n", ret);
2283 return ret;
2284 }
2285
2286 if (!(fdp.flags & FDPCFG_FDPE))
2287 return 0;
2288
2289 ret = nvme_query_fdp_granularity(ctrl, info, fdp_idx: fdp.fdpcidx);
2290 if (!info->runs)
2291 return ret;
2292
2293 size = struct_size(ruhs, ruhsd, S8_MAX - 1);
2294 ruhs = kzalloc(size, GFP_KERNEL);
2295 if (!ruhs)
2296 return -ENOMEM;
2297
2298 c.imr.opcode = nvme_cmd_io_mgmt_recv;
2299 c.imr.nsid = cpu_to_le32(head->ns_id);
2300 c.imr.mo = NVME_IO_MGMT_RECV_MO_RUHS;
2301 c.imr.numd = cpu_to_le32(nvme_bytes_to_numd(size));
2302 ret = nvme_submit_sync_cmd(ns->queue, &c, ruhs, size);
2303 if (ret) {
2304 dev_warn(ctrl->device, "FDP io-mgmt status:0x%x\n", ret);
2305 goto free;
2306 }
2307
2308 head->nr_plids = le16_to_cpu(ruhs->nruhsd);
2309 if (!head->nr_plids)
2310 goto free;
2311
2312 head->plids = kcalloc(head->nr_plids, sizeof(*head->plids),
2313 GFP_KERNEL);
2314 if (!head->plids) {
2315 dev_warn(ctrl->device,
2316 "failed to allocate %u FDP placement IDs\n",
2317 head->nr_plids);
2318 head->nr_plids = 0;
2319 ret = -ENOMEM;
2320 goto free;
2321 }
2322
2323 for (i = 0; i < head->nr_plids; i++)
2324 head->plids[i] = le16_to_cpu(ruhs->ruhsd[i].pid);
2325free:
2326 kfree(objp: ruhs);
2327 return ret;
2328}
2329
2330static int nvme_update_ns_info_block(struct nvme_ns *ns,
2331 struct nvme_ns_info *info)
2332{
2333 struct queue_limits lim;
2334 struct nvme_id_ns_nvm *nvm = NULL;
2335 struct nvme_zone_info zi = {};
2336 struct nvme_id_ns *id;
2337 unsigned int memflags;
2338 sector_t capacity;
2339 unsigned lbaf;
2340 int ret;
2341
2342 ret = nvme_identify_ns(ctrl: ns->ctrl, nsid: info->nsid, id: &id);
2343 if (ret)
2344 return ret;
2345
2346 if (id->ncap == 0) {
2347 /* namespace not allocated or attached */
2348 info->is_removed = true;
2349 ret = -ENXIO;
2350 goto out;
2351 }
2352 lbaf = nvme_lbaf_index(flbas: id->flbas);
2353
2354 if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) {
2355 ret = nvme_identify_ns_nvm(ctrl: ns->ctrl, nsid: info->nsid, nvmp: &nvm);
2356 if (ret < 0)
2357 goto out;
2358 }
2359
2360 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2361 ns->head->ids.csi == NVME_CSI_ZNS) {
2362 ret = nvme_query_zone_info(ns, lbaf, zi: &zi);
2363 if (ret < 0)
2364 goto out;
2365 }
2366
2367 if (ns->ctrl->ctratt & NVME_CTRL_ATTR_FDPS) {
2368 ret = nvme_query_fdp_info(ns, info);
2369 if (ret < 0)
2370 goto out;
2371 }
2372
2373 lim = queue_limits_start_update(q: ns->disk->queue);
2374
2375 memflags = blk_mq_freeze_queue(q: ns->disk->queue);
2376 ns->head->lba_shift = id->lbaf[lbaf].ds;
2377 ns->head->nuse = le64_to_cpu(id->nuse);
2378 capacity = nvme_lba_to_sect(head: ns->head, le64_to_cpu(id->nsze));
2379 nvme_set_ctrl_limits(ctrl: ns->ctrl, lim: &lim);
2380 nvme_configure_metadata(ctrl: ns->ctrl, head: ns->head, id, nvm, info);
2381 nvme_set_chunk_sectors(ns, id, lim: &lim);
2382 if (!nvme_update_disk_info(ns, id, lim: &lim))
2383 capacity = 0;
2384
2385 /*
2386 * Validate the max atomic write size fits within the subsystem's
2387 * atomic write capabilities.
2388 */
2389 if (lim.atomic_write_hw_max > ns->ctrl->subsys->atomic_bs) {
2390 blk_mq_unfreeze_queue(q: ns->disk->queue, memflags);
2391 ret = -ENXIO;
2392 goto out;
2393 }
2394
2395 nvme_config_discard(ns, lim: &lim);
2396 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
2397 ns->head->ids.csi == NVME_CSI_ZNS)
2398 nvme_update_zone_info(ns, lim: &lim, zi: &zi);
2399
2400 if ((ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) && !info->no_vwc)
2401 lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
2402 else
2403 lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2404
2405 if (info->is_rotational)
2406 lim.features |= BLK_FEAT_ROTATIONAL;
2407
2408 /*
2409 * Register a metadata profile for PI, or the plain non-integrity NVMe
2410 * metadata masquerading as Type 0 if supported, otherwise reject block
2411 * I/O to namespaces with metadata except when the namespace supports
2412 * PI, as it can strip/insert in that case.
2413 */
2414 if (!nvme_init_integrity(head: ns->head, lim: &lim, info))
2415 capacity = 0;
2416
2417 lim.max_write_streams = ns->head->nr_plids;
2418 if (lim.max_write_streams)
2419 lim.write_stream_granularity = min(info->runs, U32_MAX);
2420 else
2421 lim.write_stream_granularity = 0;
2422
2423 ret = queue_limits_commit_update(q: ns->disk->queue, lim: &lim);
2424 if (ret) {
2425 blk_mq_unfreeze_queue(q: ns->disk->queue, memflags);
2426 goto out;
2427 }
2428
2429 set_capacity_and_notify(disk: ns->disk, size: capacity);
2430
2431 /*
2432 * Only set the DEAC bit if the device guarantees that reads from
2433 * deallocated data return zeroes. While the DEAC bit does not
2434 * require that, it must be a no-op if reads from deallocated data
2435 * do not return zeroes.
2436 */
2437 if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2438 ns->head->features |= NVME_NS_DEAC;
2439 set_disk_ro(disk: ns->disk, read_only: nvme_ns_is_readonly(ns, info));
2440 set_bit(NVME_NS_READY, addr: &ns->flags);
2441 blk_mq_unfreeze_queue(q: ns->disk->queue, memflags);
2442
2443 if (blk_queue_is_zoned(q: ns->queue)) {
2444 ret = blk_revalidate_disk_zones(disk: ns->disk);
2445 if (ret && !nvme_first_scan(disk: ns->disk))
2446 goto out;
2447 }
2448
2449 ret = 0;
2450out:
2451 kfree(objp: nvm);
2452 kfree(objp: id);
2453 return ret;
2454}
2455
2456static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2457{
2458 bool unsupported = false;
2459 int ret;
2460
2461 switch (info->ids.csi) {
2462 case NVME_CSI_ZNS:
2463 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2464 dev_info(ns->ctrl->device,
2465 "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2466 info->nsid);
2467 ret = nvme_update_ns_info_generic(ns, info);
2468 break;
2469 }
2470 ret = nvme_update_ns_info_block(ns, info);
2471 break;
2472 case NVME_CSI_NVM:
2473 ret = nvme_update_ns_info_block(ns, info);
2474 break;
2475 default:
2476 dev_info(ns->ctrl->device,
2477 "block device for nsid %u not supported (csi %u)\n",
2478 info->nsid, info->ids.csi);
2479 ret = nvme_update_ns_info_generic(ns, info);
2480 break;
2481 }
2482
2483 /*
2484 * If probing fails due an unsupported feature, hide the block device,
2485 * but still allow other access.
2486 */
2487 if (ret == -ENODEV) {
2488 ns->disk->flags |= GENHD_FL_HIDDEN;
2489 set_bit(NVME_NS_READY, addr: &ns->flags);
2490 unsupported = true;
2491 ret = 0;
2492 }
2493
2494 if (!ret && nvme_ns_head_multipath(head: ns->head)) {
2495 struct queue_limits *ns_lim = &ns->disk->queue->limits;
2496 struct queue_limits lim;
2497 unsigned int memflags;
2498
2499 lim = queue_limits_start_update(q: ns->head->disk->queue);
2500 memflags = blk_mq_freeze_queue(q: ns->head->disk->queue);
2501 /*
2502 * queue_limits mixes values that are the hardware limitations
2503 * for bio splitting with what is the device configuration.
2504 *
2505 * For NVMe the device configuration can change after e.g. a
2506 * Format command, and we really want to pick up the new format
2507 * value here. But we must still stack the queue limits to the
2508 * least common denominator for multipathing to split the bios
2509 * properly.
2510 *
2511 * To work around this, we explicitly set the device
2512 * configuration to those that we just queried, but only stack
2513 * the splitting limits in to make sure we still obey possibly
2514 * lower limitations of other controllers.
2515 */
2516 lim.logical_block_size = ns_lim->logical_block_size;
2517 lim.physical_block_size = ns_lim->physical_block_size;
2518 lim.io_min = ns_lim->io_min;
2519 lim.io_opt = ns_lim->io_opt;
2520 queue_limits_stack_bdev(t: &lim, bdev: ns->disk->part0, offset: 0,
2521 pfx: ns->head->disk->disk_name);
2522 if (unsupported)
2523 ns->head->disk->flags |= GENHD_FL_HIDDEN;
2524 else
2525 nvme_init_integrity(head: ns->head, lim: &lim, info);
2526 lim.max_write_streams = ns_lim->max_write_streams;
2527 lim.write_stream_granularity = ns_lim->write_stream_granularity;
2528 ret = queue_limits_commit_update(q: ns->head->disk->queue, lim: &lim);
2529
2530 set_capacity_and_notify(disk: ns->head->disk, size: get_capacity(disk: ns->disk));
2531 set_disk_ro(disk: ns->head->disk, read_only: nvme_ns_is_readonly(ns, info));
2532 nvme_mpath_revalidate_paths(ns);
2533
2534 blk_mq_unfreeze_queue(q: ns->head->disk->queue, memflags);
2535 }
2536
2537 return ret;
2538}
2539
2540int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16],
2541 enum blk_unique_id type)
2542{
2543 struct nvme_ns_ids *ids = &ns->head->ids;
2544
2545 if (type != BLK_UID_EUI64)
2546 return -EINVAL;
2547
2548 if (memchr_inv(p: ids->nguid, c: 0, size: sizeof(ids->nguid))) {
2549 memcpy(id, &ids->nguid, sizeof(ids->nguid));
2550 return sizeof(ids->nguid);
2551 }
2552 if (memchr_inv(p: ids->eui64, c: 0, size: sizeof(ids->eui64))) {
2553 memcpy(id, &ids->eui64, sizeof(ids->eui64));
2554 return sizeof(ids->eui64);
2555 }
2556
2557 return -EINVAL;
2558}
2559
2560static int nvme_get_unique_id(struct gendisk *disk, u8 id[16],
2561 enum blk_unique_id type)
2562{
2563 return nvme_ns_get_unique_id(ns: disk->private_data, id, type);
2564}
2565
2566#ifdef CONFIG_BLK_SED_OPAL
2567static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2568 bool send)
2569{
2570 struct nvme_ctrl *ctrl = data;
2571 struct nvme_command cmd = { };
2572
2573 if (send)
2574 cmd.common.opcode = nvme_admin_security_send;
2575 else
2576 cmd.common.opcode = nvme_admin_security_recv;
2577 cmd.common.nsid = 0;
2578 cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2579 cmd.common.cdw11 = cpu_to_le32(len);
2580
2581 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2582 NVME_QID_ANY, NVME_SUBMIT_AT_HEAD);
2583}
2584
2585static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2586{
2587 if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2588 if (!ctrl->opal_dev)
2589 ctrl->opal_dev = init_opal_dev(data: ctrl, send_recv: &nvme_sec_submit);
2590 else if (was_suspended)
2591 opal_unlock_from_suspend(dev: ctrl->opal_dev);
2592 } else {
2593 free_opal_dev(dev: ctrl->opal_dev);
2594 ctrl->opal_dev = NULL;
2595 }
2596}
2597#else
2598static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2599{
2600}
2601#endif /* CONFIG_BLK_SED_OPAL */
2602
2603#ifdef CONFIG_BLK_DEV_ZONED
2604static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2605 unsigned int nr_zones, report_zones_cb cb, void *data)
2606{
2607 return nvme_ns_report_zones(ns: disk->private_data, sector, nr_zones, cb,
2608 data);
2609}
2610#else
2611#define nvme_report_zones NULL
2612#endif /* CONFIG_BLK_DEV_ZONED */
2613
2614const struct block_device_operations nvme_bdev_ops = {
2615 .owner = THIS_MODULE,
2616 .ioctl = nvme_ioctl,
2617 .compat_ioctl = blkdev_compat_ptr_ioctl,
2618 .open = nvme_open,
2619 .release = nvme_release,
2620 .getgeo = nvme_getgeo,
2621 .get_unique_id = nvme_get_unique_id,
2622 .report_zones = nvme_report_zones,
2623 .pr_ops = &nvme_pr_ops,
2624};
2625
2626static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2627 u32 timeout, const char *op)
2628{
2629 unsigned long timeout_jiffies = jiffies + timeout * HZ;
2630 u32 csts;
2631 int ret;
2632
2633 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2634 if (csts == ~0)
2635 return -ENODEV;
2636 if ((csts & mask) == val)
2637 break;
2638
2639 usleep_range(min: 1000, max: 2000);
2640 if (fatal_signal_pending(current))
2641 return -EINTR;
2642 if (time_after(jiffies, timeout_jiffies)) {
2643 dev_err(ctrl->device,
2644 "Device not ready; aborting %s, CSTS=0x%x\n",
2645 op, csts);
2646 return -ENODEV;
2647 }
2648 }
2649
2650 return ret;
2651}
2652
2653int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2654{
2655 int ret;
2656
2657 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2658 if (shutdown)
2659 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2660 else
2661 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2662
2663 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2664 if (ret)
2665 return ret;
2666
2667 if (shutdown) {
2668 return nvme_wait_ready(ctrl, mask: NVME_CSTS_SHST_MASK,
2669 val: NVME_CSTS_SHST_CMPLT,
2670 timeout: ctrl->shutdown_timeout, op: "shutdown");
2671 }
2672 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2673 msleep(NVME_QUIRK_DELAY_AMOUNT);
2674 return nvme_wait_ready(ctrl, mask: NVME_CSTS_RDY, val: 0,
2675 timeout: (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, op: "reset");
2676}
2677EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2678
2679int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2680{
2681 unsigned dev_page_min;
2682 u32 timeout;
2683 int ret;
2684
2685 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2686 if (ret) {
2687 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2688 return ret;
2689 }
2690 dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2691
2692 if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2693 dev_err(ctrl->device,
2694 "Minimum device page size %u too large for host (%u)\n",
2695 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2696 return -ENODEV;
2697 }
2698
2699 if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2700 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2701 else
2702 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2703
2704 /*
2705 * Setting CRIME results in CSTS.RDY before the media is ready. This
2706 * makes it possible for media related commands to return the error
2707 * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is
2708 * restructured to handle retries, disable CC.CRIME.
2709 */
2710 ctrl->ctrl_config &= ~NVME_CC_CRIME;
2711
2712 ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2713 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2714 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2715 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2716 if (ret)
2717 return ret;
2718
2719 /* CAP value may change after initial CC write */
2720 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2721 if (ret)
2722 return ret;
2723
2724 timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2725 if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2726 u32 crto, ready_timeout;
2727
2728 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2729 if (ret) {
2730 dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2731 ret);
2732 return ret;
2733 }
2734
2735 /*
2736 * CRTO should always be greater or equal to CAP.TO, but some
2737 * devices are known to get this wrong. Use the larger of the
2738 * two values.
2739 */
2740 ready_timeout = NVME_CRTO_CRWMT(crto);
2741
2742 if (ready_timeout < timeout)
2743 dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n",
2744 crto, ctrl->cap);
2745 else
2746 timeout = ready_timeout;
2747 }
2748
2749 ctrl->ctrl_config |= NVME_CC_ENABLE;
2750 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2751 if (ret)
2752 return ret;
2753 return nvme_wait_ready(ctrl, mask: NVME_CSTS_RDY, val: NVME_CSTS_RDY,
2754 timeout: (timeout + 1) / 2, op: "initialisation");
2755}
2756EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2757
2758static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2759{
2760 __le64 ts;
2761 int ret;
2762
2763 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2764 return 0;
2765
2766 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2767 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2768 NULL);
2769 if (ret)
2770 dev_warn_once(ctrl->device,
2771 "could not set timestamp (%d)\n", ret);
2772 return ret;
2773}
2774
2775static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2776{
2777 struct nvme_feat_host_behavior *host;
2778 u8 acre = 0, lbafee = 0;
2779 int ret;
2780
2781 /* Don't bother enabling the feature if retry delay is not reported */
2782 if (ctrl->crdt[0])
2783 acre = NVME_ENABLE_ACRE;
2784 if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2785 lbafee = NVME_ENABLE_LBAFEE;
2786
2787 if (!acre && !lbafee)
2788 return 0;
2789
2790 host = kzalloc(sizeof(*host), GFP_KERNEL);
2791 if (!host)
2792 return 0;
2793
2794 host->acre = acre;
2795 host->lbafee = lbafee;
2796 ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2797 host, sizeof(*host), NULL);
2798 kfree(objp: host);
2799 return ret;
2800}
2801
2802/*
2803 * The function checks whether the given total (exlat + enlat) latency of
2804 * a power state allows the latter to be used as an APST transition target.
2805 * It does so by comparing the latency to the primary and secondary latency
2806 * tolerances defined by module params. If there's a match, the corresponding
2807 * timeout value is returned and the matching tolerance index (1 or 2) is
2808 * reported.
2809 */
2810static bool nvme_apst_get_transition_time(u64 total_latency,
2811 u64 *transition_time, unsigned *last_index)
2812{
2813 if (total_latency <= apst_primary_latency_tol_us) {
2814 if (*last_index == 1)
2815 return false;
2816 *last_index = 1;
2817 *transition_time = apst_primary_timeout_ms;
2818 return true;
2819 }
2820 if (apst_secondary_timeout_ms &&
2821 total_latency <= apst_secondary_latency_tol_us) {
2822 if (*last_index <= 2)
2823 return false;
2824 *last_index = 2;
2825 *transition_time = apst_secondary_timeout_ms;
2826 return true;
2827 }
2828 return false;
2829}
2830
2831/*
2832 * APST (Autonomous Power State Transition) lets us program a table of power
2833 * state transitions that the controller will perform automatically.
2834 *
2835 * Depending on module params, one of the two supported techniques will be used:
2836 *
2837 * - If the parameters provide explicit timeouts and tolerances, they will be
2838 * used to build a table with up to 2 non-operational states to transition to.
2839 * The default parameter values were selected based on the values used by
2840 * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2841 * regeneration of the APST table in the event of switching between external
2842 * and battery power, the timeouts and tolerances reflect a compromise
2843 * between values used by Microsoft for AC and battery scenarios.
2844 * - If not, we'll configure the table with a simple heuristic: we are willing
2845 * to spend at most 2% of the time transitioning between power states.
2846 * Therefore, when running in any given state, we will enter the next
2847 * lower-power non-operational state after waiting 50 * (enlat + exlat)
2848 * microseconds, as long as that state's exit latency is under the requested
2849 * maximum latency.
2850 *
2851 * We will not autonomously enter any non-operational state for which the total
2852 * latency exceeds ps_max_latency_us.
2853 *
2854 * Users can set ps_max_latency_us to zero to turn off APST.
2855 */
2856static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2857{
2858 struct nvme_feat_auto_pst *table;
2859 unsigned apste = 0;
2860 u64 max_lat_us = 0;
2861 __le64 target = 0;
2862 int max_ps = -1;
2863 int state;
2864 int ret;
2865 unsigned last_lt_index = UINT_MAX;
2866
2867 /*
2868 * If APST isn't supported or if we haven't been initialized yet,
2869 * then don't do anything.
2870 */
2871 if (!ctrl->apsta)
2872 return 0;
2873
2874 if (ctrl->npss > 31) {
2875 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2876 return 0;
2877 }
2878
2879 table = kzalloc(sizeof(*table), GFP_KERNEL);
2880 if (!table)
2881 return 0;
2882
2883 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2884 /* Turn off APST. */
2885 dev_dbg(ctrl->device, "APST disabled\n");
2886 goto done;
2887 }
2888
2889 /*
2890 * Walk through all states from lowest- to highest-power.
2891 * According to the spec, lower-numbered states use more power. NPSS,
2892 * despite the name, is the index of the lowest-power state, not the
2893 * number of states.
2894 */
2895 for (state = (int)ctrl->npss; state >= 0; state--) {
2896 u64 total_latency_us, exit_latency_us, transition_ms;
2897
2898 if (target)
2899 table->entries[state] = target;
2900
2901 /*
2902 * Don't allow transitions to the deepest state if it's quirked
2903 * off.
2904 */
2905 if (state == ctrl->npss &&
2906 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2907 continue;
2908
2909 /*
2910 * Is this state a useful non-operational state for higher-power
2911 * states to autonomously transition to?
2912 */
2913 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2914 continue;
2915
2916 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2917 if (exit_latency_us > ctrl->ps_max_latency_us)
2918 continue;
2919
2920 total_latency_us = exit_latency_us +
2921 le32_to_cpu(ctrl->psd[state].entry_lat);
2922
2923 /*
2924 * This state is good. It can be used as the APST idle target
2925 * for higher power states.
2926 */
2927 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2928 if (!nvme_apst_get_transition_time(total_latency: total_latency_us,
2929 transition_time: &transition_ms, last_index: &last_lt_index))
2930 continue;
2931 } else {
2932 transition_ms = total_latency_us + 19;
2933 do_div(transition_ms, 20);
2934 if (transition_ms > (1 << 24) - 1)
2935 transition_ms = (1 << 24) - 1;
2936 }
2937
2938 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2939 if (max_ps == -1)
2940 max_ps = state;
2941 if (total_latency_us > max_lat_us)
2942 max_lat_us = total_latency_us;
2943 }
2944
2945 if (max_ps == -1)
2946 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2947 else
2948 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2949 max_ps, max_lat_us, (int)sizeof(*table), table);
2950 apste = 1;
2951
2952done:
2953 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2954 table, sizeof(*table), NULL);
2955 if (ret)
2956 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2957 kfree(objp: table);
2958 return ret;
2959}
2960
2961static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2962{
2963 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2964 u64 latency;
2965
2966 switch (val) {
2967 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2968 case PM_QOS_LATENCY_ANY:
2969 latency = U64_MAX;
2970 break;
2971
2972 default:
2973 latency = val;
2974 }
2975
2976 if (ctrl->ps_max_latency_us != latency) {
2977 ctrl->ps_max_latency_us = latency;
2978 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
2979 nvme_configure_apst(ctrl);
2980 }
2981}
2982
2983struct nvme_core_quirk_entry {
2984 /*
2985 * NVMe model and firmware strings are padded with spaces. For
2986 * simplicity, strings in the quirk table are padded with NULLs
2987 * instead.
2988 */
2989 u16 vid;
2990 const char *mn;
2991 const char *fr;
2992 unsigned long quirks;
2993};
2994
2995static const struct nvme_core_quirk_entry core_quirks[] = {
2996 {
2997 /*
2998 * This Toshiba device seems to die using any APST states. See:
2999 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
3000 */
3001 .vid = 0x1179,
3002 .mn = "THNSF5256GPUK TOSHIBA",
3003 .quirks = NVME_QUIRK_NO_APST,
3004 },
3005 {
3006 /*
3007 * This LiteON CL1-3D*-Q11 firmware version has a race
3008 * condition associated with actions related to suspend to idle
3009 * LiteON has resolved the problem in future firmware
3010 */
3011 .vid = 0x14a4,
3012 .fr = "22301111",
3013 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
3014 },
3015 {
3016 /*
3017 * This Kioxia CD6-V Series / HPE PE8030 device times out and
3018 * aborts I/O during any load, but more easily reproducible
3019 * with discards (fstrim).
3020 *
3021 * The device is left in a state where it is also not possible
3022 * to use "nvme set-feature" to disable APST, but booting with
3023 * nvme_core.default_ps_max_latency=0 works.
3024 */
3025 .vid = 0x1e0f,
3026 .mn = "KCD6XVUL6T40",
3027 .quirks = NVME_QUIRK_NO_APST,
3028 },
3029 {
3030 /*
3031 * The external Samsung X5 SSD fails initialization without a
3032 * delay before checking if it is ready and has a whole set of
3033 * other problems. To make this even more interesting, it
3034 * shares the PCI ID with internal Samsung 970 Evo Plus that
3035 * does not need or want these quirks.
3036 */
3037 .vid = 0x144d,
3038 .mn = "Samsung Portable SSD X5",
3039 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3040 NVME_QUIRK_NO_DEEPEST_PS |
3041 NVME_QUIRK_IGNORE_DEV_SUBNQN,
3042 }
3043};
3044
3045/* match is null-terminated but idstr is space-padded. */
3046static bool string_matches(const char *idstr, const char *match, size_t len)
3047{
3048 size_t matchlen;
3049
3050 if (!match)
3051 return true;
3052
3053 matchlen = strlen(match);
3054 WARN_ON_ONCE(matchlen > len);
3055
3056 if (memcmp(p: idstr, q: match, size: matchlen))
3057 return false;
3058
3059 for (; matchlen < len; matchlen++)
3060 if (idstr[matchlen] != ' ')
3061 return false;
3062
3063 return true;
3064}
3065
3066static bool quirk_matches(const struct nvme_id_ctrl *id,
3067 const struct nvme_core_quirk_entry *q)
3068{
3069 return q->vid == le16_to_cpu(id->vid) &&
3070 string_matches(idstr: id->mn, match: q->mn, len: sizeof(id->mn)) &&
3071 string_matches(idstr: id->fr, match: q->fr, len: sizeof(id->fr));
3072}
3073
3074static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
3075 struct nvme_id_ctrl *id)
3076{
3077 size_t nqnlen;
3078 int off;
3079
3080 if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
3081 nqnlen = strnlen(p: id->subnqn, NVMF_NQN_SIZE);
3082 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
3083 strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
3084 return;
3085 }
3086
3087 if (ctrl->vs >= NVME_VS(1, 2, 1))
3088 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
3089 }
3090
3091 /*
3092 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
3093 * Base Specification 2.0. It is slightly different from the format
3094 * specified there due to historic reasons, and we can't change it now.
3095 */
3096 off = snprintf(buf: subsys->subnqn, NVMF_NQN_SIZE,
3097 fmt: "nqn.2014.08.org.nvmexpress:%04x%04x",
3098 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
3099 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
3100 off += sizeof(id->sn);
3101 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
3102 off += sizeof(id->mn);
3103 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
3104}
3105
3106static void nvme_release_subsystem(struct device *dev)
3107{
3108 struct nvme_subsystem *subsys =
3109 container_of(dev, struct nvme_subsystem, dev);
3110
3111 if (subsys->instance >= 0)
3112 ida_free(&nvme_instance_ida, id: subsys->instance);
3113 kfree(objp: subsys);
3114}
3115
3116static void nvme_destroy_subsystem(struct kref *ref)
3117{
3118 struct nvme_subsystem *subsys =
3119 container_of(ref, struct nvme_subsystem, ref);
3120
3121 mutex_lock(&nvme_subsystems_lock);
3122 list_del(entry: &subsys->entry);
3123 mutex_unlock(lock: &nvme_subsystems_lock);
3124
3125 ida_destroy(ida: &subsys->ns_ida);
3126 device_del(dev: &subsys->dev);
3127 put_device(dev: &subsys->dev);
3128}
3129
3130static void nvme_put_subsystem(struct nvme_subsystem *subsys)
3131{
3132 kref_put(kref: &subsys->ref, release: nvme_destroy_subsystem);
3133}
3134
3135static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
3136{
3137 struct nvme_subsystem *subsys;
3138
3139 lockdep_assert_held(&nvme_subsystems_lock);
3140
3141 /*
3142 * Fail matches for discovery subsystems. This results
3143 * in each discovery controller bound to a unique subsystem.
3144 * This avoids issues with validating controller values
3145 * that can only be true when there is a single unique subsystem.
3146 * There may be multiple and completely independent entities
3147 * that provide discovery controllers.
3148 */
3149 if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
3150 return NULL;
3151
3152 list_for_each_entry(subsys, &nvme_subsystems, entry) {
3153 if (strcmp(subsys->subnqn, subsysnqn))
3154 continue;
3155 if (!kref_get_unless_zero(kref: &subsys->ref))
3156 continue;
3157 return subsys;
3158 }
3159
3160 return NULL;
3161}
3162
3163static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
3164{
3165 return ctrl->opts && ctrl->opts->discovery_nqn;
3166}
3167
3168static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
3169 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3170{
3171 struct nvme_ctrl *tmp;
3172
3173 lockdep_assert_held(&nvme_subsystems_lock);
3174
3175 list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
3176 if (nvme_state_terminal(ctrl: tmp))
3177 continue;
3178
3179 if (tmp->cntlid == ctrl->cntlid) {
3180 dev_err(ctrl->device,
3181 "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
3182 ctrl->cntlid, dev_name(tmp->device),
3183 subsys->subnqn);
3184 return false;
3185 }
3186
3187 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
3188 nvme_discovery_ctrl(ctrl))
3189 continue;
3190
3191 dev_err(ctrl->device,
3192 "Subsystem does not support multiple controllers\n");
3193 return false;
3194 }
3195
3196 return true;
3197}
3198
3199static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3200{
3201 struct nvme_subsystem *subsys, *found;
3202 int ret;
3203
3204 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
3205 if (!subsys)
3206 return -ENOMEM;
3207
3208 subsys->instance = -1;
3209 mutex_init(&subsys->lock);
3210 kref_init(kref: &subsys->ref);
3211 INIT_LIST_HEAD(list: &subsys->ctrls);
3212 INIT_LIST_HEAD(list: &subsys->nsheads);
3213 nvme_init_subnqn(subsys, ctrl, id);
3214 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
3215 memcpy(subsys->model, id->mn, sizeof(subsys->model));
3216 subsys->vendor_id = le16_to_cpu(id->vid);
3217 subsys->cmic = id->cmic;
3218
3219 /* Versions prior to 1.4 don't necessarily report a valid type */
3220 if (id->cntrltype == NVME_CTRL_DISC ||
3221 !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
3222 subsys->subtype = NVME_NQN_DISC;
3223 else
3224 subsys->subtype = NVME_NQN_NVME;
3225
3226 if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
3227 dev_err(ctrl->device,
3228 "Subsystem %s is not a discovery controller",
3229 subsys->subnqn);
3230 kfree(objp: subsys);
3231 return -EINVAL;
3232 }
3233 nvme_mpath_default_iopolicy(subsys);
3234
3235 subsys->dev.class = &nvme_subsys_class;
3236 subsys->dev.release = nvme_release_subsystem;
3237 subsys->dev.groups = nvme_subsys_attrs_groups;
3238 dev_set_name(dev: &subsys->dev, name: "nvme-subsys%d", ctrl->instance);
3239 device_initialize(dev: &subsys->dev);
3240
3241 mutex_lock(&nvme_subsystems_lock);
3242 found = __nvme_find_get_subsystem(subsysnqn: subsys->subnqn);
3243 if (found) {
3244 put_device(dev: &subsys->dev);
3245 subsys = found;
3246
3247 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
3248 ret = -EINVAL;
3249 goto out_put_subsystem;
3250 }
3251 } else {
3252 ret = device_add(dev: &subsys->dev);
3253 if (ret) {
3254 dev_err(ctrl->device,
3255 "failed to register subsystem device.\n");
3256 put_device(dev: &subsys->dev);
3257 goto out_unlock;
3258 }
3259 ida_init(ida: &subsys->ns_ida);
3260 list_add_tail(new: &subsys->entry, head: &nvme_subsystems);
3261 }
3262
3263 ret = sysfs_create_link(kobj: &subsys->dev.kobj, target: &ctrl->device->kobj,
3264 name: dev_name(dev: ctrl->device));
3265 if (ret) {
3266 dev_err(ctrl->device,
3267 "failed to create sysfs link from subsystem.\n");
3268 goto out_put_subsystem;
3269 }
3270
3271 if (!found)
3272 subsys->instance = ctrl->instance;
3273 ctrl->subsys = subsys;
3274 list_add_tail(new: &ctrl->subsys_entry, head: &subsys->ctrls);
3275 mutex_unlock(lock: &nvme_subsystems_lock);
3276 return 0;
3277
3278out_put_subsystem:
3279 nvme_put_subsystem(subsys);
3280out_unlock:
3281 mutex_unlock(lock: &nvme_subsystems_lock);
3282 return ret;
3283}
3284
3285static int nvme_get_log_lsi(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page,
3286 u8 lsp, u8 csi, void *log, size_t size, u64 offset, u16 lsi)
3287{
3288 struct nvme_command c = { };
3289 u32 dwlen = nvme_bytes_to_numd(len: size);
3290
3291 c.get_log_page.opcode = nvme_admin_get_log_page;
3292 c.get_log_page.nsid = cpu_to_le32(nsid);
3293 c.get_log_page.lid = log_page;
3294 c.get_log_page.lsp = lsp;
3295 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
3296 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
3297 c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3298 c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3299 c.get_log_page.csi = csi;
3300 c.get_log_page.lsi = cpu_to_le16(lsi);
3301
3302 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3303}
3304
3305int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
3306 void *log, size_t size, u64 offset)
3307{
3308 return nvme_get_log_lsi(ctrl, nsid, log_page, lsp, csi, log, size,
3309 offset, lsi: 0);
3310}
3311
3312static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3313 struct nvme_effects_log **log)
3314{
3315 struct nvme_effects_log *old, *cel = xa_load(&ctrl->cels, index: csi);
3316 int ret;
3317
3318 if (cel)
3319 goto out;
3320
3321 cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3322 if (!cel)
3323 return -ENOMEM;
3324
3325 ret = nvme_get_log(ctrl, nsid: 0x00, log_page: NVME_LOG_CMD_EFFECTS, lsp: 0, csi,
3326 log: cel, size: sizeof(*cel), offset: 0);
3327 if (ret) {
3328 kfree(objp: cel);
3329 return ret;
3330 }
3331
3332 old = xa_store(&ctrl->cels, index: csi, entry: cel, GFP_KERNEL);
3333 if (xa_is_err(entry: old)) {
3334 kfree(objp: cel);
3335 return xa_err(entry: old);
3336 }
3337out:
3338 *log = cel;
3339 return 0;
3340}
3341
3342static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3343{
3344 u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3345
3346 if (check_shl_overflow(1U, units + page_shift - 9, &val))
3347 return UINT_MAX;
3348 return val;
3349}
3350
3351static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3352{
3353 struct nvme_command c = { };
3354 struct nvme_id_ctrl_nvm *id;
3355 int ret;
3356
3357 /*
3358 * Even though NVMe spec explicitly states that MDTS is not applicable
3359 * to the write-zeroes, we are cautious and limit the size to the
3360 * controllers max_hw_sectors value, which is based on the MDTS field
3361 * and possibly other limiting factors.
3362 */
3363 if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3364 !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3365 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3366 else
3367 ctrl->max_zeroes_sectors = 0;
3368
3369 if (ctrl->subsys->subtype != NVME_NQN_NVME ||
3370 !nvme_id_cns_ok(ctrl, cns: NVME_ID_CNS_CS_CTRL) ||
3371 test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
3372 return 0;
3373
3374 id = kzalloc(sizeof(*id), GFP_KERNEL);
3375 if (!id)
3376 return -ENOMEM;
3377
3378 c.identify.opcode = nvme_admin_identify;
3379 c.identify.cns = NVME_ID_CNS_CS_CTRL;
3380 c.identify.csi = NVME_CSI_NVM;
3381
3382 ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3383 if (ret)
3384 goto free_data;
3385
3386 ctrl->dmrl = id->dmrl;
3387 ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3388 if (id->wzsl)
3389 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, units: id->wzsl);
3390
3391free_data:
3392 if (ret > 0)
3393 set_bit(nr: NVME_CTRL_SKIP_ID_CNS_CS, addr: &ctrl->flags);
3394 kfree(objp: id);
3395 return ret;
3396}
3397
3398static int nvme_init_effects_log(struct nvme_ctrl *ctrl,
3399 u8 csi, struct nvme_effects_log **log)
3400{
3401 struct nvme_effects_log *effects, *old;
3402
3403 effects = kzalloc(sizeof(*effects), GFP_KERNEL);
3404 if (!effects)
3405 return -ENOMEM;
3406
3407 old = xa_store(&ctrl->cels, index: csi, entry: effects, GFP_KERNEL);
3408 if (xa_is_err(entry: old)) {
3409 kfree(objp: effects);
3410 return xa_err(entry: old);
3411 }
3412
3413 *log = effects;
3414 return 0;
3415}
3416
3417static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
3418{
3419 struct nvme_effects_log *log = ctrl->effects;
3420
3421 log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3422 NVME_CMD_EFFECTS_NCC |
3423 NVME_CMD_EFFECTS_CSE_MASK);
3424 log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
3425 NVME_CMD_EFFECTS_CSE_MASK);
3426
3427 /*
3428 * The spec says the result of a security receive command depends on
3429 * the previous security send command. As such, many vendors log this
3430 * command as one to submitted only when no other commands to the same
3431 * namespace are outstanding. The intention is to tell the host to
3432 * prevent mixing security send and receive.
3433 *
3434 * This driver can only enforce such exclusive access against IO
3435 * queues, though. We are not readily able to enforce such a rule for
3436 * two commands to the admin queue, which is the only queue that
3437 * matters for this command.
3438 *
3439 * Rather than blindly freezing the IO queues for this effect that
3440 * doesn't even apply to IO, mask it off.
3441 */
3442 log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
3443
3444 log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3445 log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3446 log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
3447}
3448
3449static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3450{
3451 int ret = 0;
3452
3453 if (ctrl->effects)
3454 return 0;
3455
3456 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3457 ret = nvme_get_effects_log(ctrl, csi: NVME_CSI_NVM, log: &ctrl->effects);
3458 if (ret < 0)
3459 return ret;
3460 }
3461
3462 if (!ctrl->effects) {
3463 ret = nvme_init_effects_log(ctrl, csi: NVME_CSI_NVM, log: &ctrl->effects);
3464 if (ret < 0)
3465 return ret;
3466 }
3467
3468 nvme_init_known_nvm_effects(ctrl);
3469 return 0;
3470}
3471
3472static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
3473{
3474 /*
3475 * In fabrics we need to verify the cntlid matches the
3476 * admin connect
3477 */
3478 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3479 dev_err(ctrl->device,
3480 "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n",
3481 ctrl->cntlid, le16_to_cpu(id->cntlid));
3482 return -EINVAL;
3483 }
3484
3485 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3486 dev_err(ctrl->device,
3487 "keep-alive support is mandatory for fabrics\n");
3488 return -EINVAL;
3489 }
3490
3491 if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) {
3492 dev_err(ctrl->device,
3493 "I/O queue command capsule supported size %d < 4\n",
3494 ctrl->ioccsz);
3495 return -EINVAL;
3496 }
3497
3498 if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) {
3499 dev_err(ctrl->device,
3500 "I/O queue response capsule supported size %d < 1\n",
3501 ctrl->iorcsz);
3502 return -EINVAL;
3503 }
3504
3505 if (!ctrl->maxcmd) {
3506 dev_warn(ctrl->device,
3507 "Firmware bug: maximum outstanding commands is 0\n");
3508 ctrl->maxcmd = ctrl->sqsize + 1;
3509 }
3510
3511 return 0;
3512}
3513
3514static int nvme_init_identify(struct nvme_ctrl *ctrl)
3515{
3516 struct queue_limits lim;
3517 struct nvme_id_ctrl *id;
3518 u32 max_hw_sectors;
3519 bool prev_apst_enabled;
3520 int ret;
3521
3522 ret = nvme_identify_ctrl(dev: ctrl, id: &id);
3523 if (ret) {
3524 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3525 return -EIO;
3526 }
3527
3528 if (!(ctrl->ops->flags & NVME_F_FABRICS))
3529 ctrl->cntlid = le16_to_cpu(id->cntlid);
3530
3531 if (!ctrl->identified) {
3532 unsigned int i;
3533
3534 /*
3535 * Check for quirks. Quirk can depend on firmware version,
3536 * so, in principle, the set of quirks present can change
3537 * across a reset. As a possible future enhancement, we
3538 * could re-scan for quirks every time we reinitialize
3539 * the device, but we'd have to make sure that the driver
3540 * behaves intelligently if the quirks change.
3541 */
3542 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3543 if (quirk_matches(id, q: &core_quirks[i]))
3544 ctrl->quirks |= core_quirks[i].quirks;
3545 }
3546
3547 ret = nvme_init_subsystem(ctrl, id);
3548 if (ret)
3549 goto out_free;
3550
3551 ret = nvme_init_effects(ctrl, id);
3552 if (ret)
3553 goto out_free;
3554 }
3555 memcpy(ctrl->subsys->firmware_rev, id->fr,
3556 sizeof(ctrl->subsys->firmware_rev));
3557
3558 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3559 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3560 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3561 }
3562
3563 ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3564 ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3565 ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3566
3567 ctrl->oacs = le16_to_cpu(id->oacs);
3568 ctrl->oncs = le16_to_cpu(id->oncs);
3569 ctrl->mtfa = le16_to_cpu(id->mtfa);
3570 ctrl->oaes = le32_to_cpu(id->oaes);
3571 ctrl->wctemp = le16_to_cpu(id->wctemp);
3572 ctrl->cctemp = le16_to_cpu(id->cctemp);
3573
3574 atomic_set(v: &ctrl->abort_limit, i: id->acl + 1);
3575 ctrl->vwc = id->vwc;
3576 if (id->mdts)
3577 max_hw_sectors = nvme_mps_to_sectors(ctrl, units: id->mdts);
3578 else
3579 max_hw_sectors = UINT_MAX;
3580 ctrl->max_hw_sectors =
3581 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3582
3583 lim = queue_limits_start_update(q: ctrl->admin_q);
3584 nvme_set_ctrl_limits(ctrl, lim: &lim);
3585 ret = queue_limits_commit_update(q: ctrl->admin_q, lim: &lim);
3586 if (ret)
3587 goto out_free;
3588
3589 ctrl->sgls = le32_to_cpu(id->sgls);
3590 ctrl->kas = le16_to_cpu(id->kas);
3591 ctrl->max_namespaces = le32_to_cpu(id->mnan);
3592 ctrl->ctratt = le32_to_cpu(id->ctratt);
3593
3594 ctrl->cntrltype = id->cntrltype;
3595 ctrl->dctype = id->dctype;
3596
3597 if (id->rtd3e) {
3598 /* us -> s */
3599 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3600
3601 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3602 shutdown_timeout, 60);
3603
3604 if (ctrl->shutdown_timeout != shutdown_timeout)
3605 dev_info(ctrl->device,
3606 "D3 entry latency set to %u seconds\n",
3607 ctrl->shutdown_timeout);
3608 } else
3609 ctrl->shutdown_timeout = shutdown_timeout;
3610
3611 ctrl->npss = id->npss;
3612 ctrl->apsta = id->apsta;
3613 prev_apst_enabled = ctrl->apst_enabled;
3614 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3615 if (force_apst && id->apsta) {
3616 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3617 ctrl->apst_enabled = true;
3618 } else {
3619 ctrl->apst_enabled = false;
3620 }
3621 } else {
3622 ctrl->apst_enabled = id->apsta;
3623 }
3624 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3625
3626 if (ctrl->ops->flags & NVME_F_FABRICS) {
3627 ctrl->icdoff = le16_to_cpu(id->icdoff);
3628 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3629 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3630 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3631
3632 ret = nvme_check_ctrl_fabric_info(ctrl, id);
3633 if (ret)
3634 goto out_free;
3635 } else {
3636 ctrl->hmpre = le32_to_cpu(id->hmpre);
3637 ctrl->hmmin = le32_to_cpu(id->hmmin);
3638 ctrl->hmminds = le32_to_cpu(id->hmminds);
3639 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3640 }
3641
3642 ret = nvme_mpath_init_identify(ctrl, id);
3643 if (ret < 0)
3644 goto out_free;
3645
3646 if (ctrl->apst_enabled && !prev_apst_enabled)
3647 dev_pm_qos_expose_latency_tolerance(dev: ctrl->device);
3648 else if (!ctrl->apst_enabled && prev_apst_enabled)
3649 dev_pm_qos_hide_latency_tolerance(dev: ctrl->device);
3650 ctrl->awupf = le16_to_cpu(id->awupf);
3651out_free:
3652 kfree(objp: id);
3653 return ret;
3654}
3655
3656/*
3657 * Initialize the cached copies of the Identify data and various controller
3658 * register in our nvme_ctrl structure. This should be called as soon as
3659 * the admin queue is fully up and running.
3660 */
3661int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3662{
3663 int ret;
3664
3665 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3666 if (ret) {
3667 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3668 return ret;
3669 }
3670
3671 ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3672
3673 if (ctrl->vs >= NVME_VS(1, 1, 0))
3674 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3675
3676 ret = nvme_init_identify(ctrl);
3677 if (ret)
3678 return ret;
3679
3680 ret = nvme_configure_apst(ctrl);
3681 if (ret < 0)
3682 return ret;
3683
3684 ret = nvme_configure_timestamp(ctrl);
3685 if (ret < 0)
3686 return ret;
3687
3688 ret = nvme_configure_host_options(ctrl);
3689 if (ret < 0)
3690 return ret;
3691
3692 nvme_configure_opal(ctrl, was_suspended);
3693
3694 if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3695 /*
3696 * Do not return errors unless we are in a controller reset,
3697 * the controller works perfectly fine without hwmon.
3698 */
3699 ret = nvme_hwmon_init(ctrl);
3700 if (ret == -EINTR)
3701 return ret;
3702 }
3703
3704 clear_bit(nr: NVME_CTRL_DIRTY_CAPABILITY, addr: &ctrl->flags);
3705 ctrl->identified = true;
3706
3707 nvme_start_keep_alive(ctrl);
3708
3709 return 0;
3710}
3711EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3712
3713static int nvme_dev_open(struct inode *inode, struct file *file)
3714{
3715 struct nvme_ctrl *ctrl =
3716 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3717
3718 switch (nvme_ctrl_state(ctrl)) {
3719 case NVME_CTRL_LIVE:
3720 break;
3721 default:
3722 return -EWOULDBLOCK;
3723 }
3724
3725 nvme_get_ctrl(ctrl);
3726 if (!try_module_get(module: ctrl->ops->module)) {
3727 nvme_put_ctrl(ctrl);
3728 return -EINVAL;
3729 }
3730
3731 file->private_data = ctrl;
3732 return 0;
3733}
3734
3735static int nvme_dev_release(struct inode *inode, struct file *file)
3736{
3737 struct nvme_ctrl *ctrl =
3738 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3739
3740 module_put(module: ctrl->ops->module);
3741 nvme_put_ctrl(ctrl);
3742 return 0;
3743}
3744
3745static const struct file_operations nvme_dev_fops = {
3746 .owner = THIS_MODULE,
3747 .open = nvme_dev_open,
3748 .release = nvme_dev_release,
3749 .unlocked_ioctl = nvme_dev_ioctl,
3750 .compat_ioctl = compat_ptr_ioctl,
3751 .uring_cmd = nvme_dev_uring_cmd,
3752};
3753
3754static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3755 unsigned nsid)
3756{
3757 struct nvme_ns_head *h;
3758
3759 lockdep_assert_held(&ctrl->subsys->lock);
3760
3761 list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3762 /*
3763 * Private namespaces can share NSIDs under some conditions.
3764 * In that case we can't use the same ns_head for namespaces
3765 * with the same NSID.
3766 */
3767 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, head: h))
3768 continue;
3769 if (nvme_tryget_ns_head(head: h))
3770 return h;
3771 }
3772
3773 return NULL;
3774}
3775
3776static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3777 struct nvme_ns_ids *ids)
3778{
3779 bool has_uuid = !uuid_is_null(uuid: &ids->uuid);
3780 bool has_nguid = memchr_inv(p: ids->nguid, c: 0, size: sizeof(ids->nguid));
3781 bool has_eui64 = memchr_inv(p: ids->eui64, c: 0, size: sizeof(ids->eui64));
3782 struct nvme_ns_head *h;
3783
3784 lockdep_assert_held(&subsys->lock);
3785
3786 list_for_each_entry(h, &subsys->nsheads, entry) {
3787 if (has_uuid && uuid_equal(u1: &ids->uuid, u2: &h->ids.uuid))
3788 return -EINVAL;
3789 if (has_nguid &&
3790 memcmp(p: &ids->nguid, q: &h->ids.nguid, size: sizeof(ids->nguid)) == 0)
3791 return -EINVAL;
3792 if (has_eui64 &&
3793 memcmp(p: &ids->eui64, q: &h->ids.eui64, size: sizeof(ids->eui64)) == 0)
3794 return -EINVAL;
3795 }
3796
3797 return 0;
3798}
3799
3800static void nvme_cdev_rel(struct device *dev)
3801{
3802 ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3803}
3804
3805void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3806{
3807 cdev_device_del(cdev, dev: cdev_device);
3808 put_device(dev: cdev_device);
3809}
3810
3811int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3812 const struct file_operations *fops, struct module *owner)
3813{
3814 int minor, ret;
3815
3816 minor = ida_alloc(ida: &nvme_ns_chr_minor_ida, GFP_KERNEL);
3817 if (minor < 0)
3818 return minor;
3819 cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3820 cdev_device->class = &nvme_ns_chr_class;
3821 cdev_device->release = nvme_cdev_rel;
3822 device_initialize(dev: cdev_device);
3823 cdev_init(cdev, fops);
3824 cdev->owner = owner;
3825 ret = cdev_device_add(cdev, dev: cdev_device);
3826 if (ret)
3827 put_device(dev: cdev_device);
3828
3829 return ret;
3830}
3831
3832static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3833{
3834 return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3835}
3836
3837static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3838{
3839 nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3840 return 0;
3841}
3842
3843static const struct file_operations nvme_ns_chr_fops = {
3844 .owner = THIS_MODULE,
3845 .open = nvme_ns_chr_open,
3846 .release = nvme_ns_chr_release,
3847 .unlocked_ioctl = nvme_ns_chr_ioctl,
3848 .compat_ioctl = compat_ptr_ioctl,
3849 .uring_cmd = nvme_ns_chr_uring_cmd,
3850 .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3851};
3852
3853static int nvme_add_ns_cdev(struct nvme_ns *ns)
3854{
3855 int ret;
3856
3857 ns->cdev_device.parent = ns->ctrl->device;
3858 ret = dev_set_name(dev: &ns->cdev_device, name: "ng%dn%d",
3859 ns->ctrl->instance, ns->head->instance);
3860 if (ret)
3861 return ret;
3862
3863 return nvme_cdev_add(cdev: &ns->cdev, cdev_device: &ns->cdev_device, fops: &nvme_ns_chr_fops,
3864 owner: ns->ctrl->ops->module);
3865}
3866
3867static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3868 struct nvme_ns_info *info)
3869{
3870 struct nvme_ns_head *head;
3871 size_t size = sizeof(*head);
3872 int ret = -ENOMEM;
3873
3874#ifdef CONFIG_NVME_MULTIPATH
3875 size += num_possible_nodes() * sizeof(struct nvme_ns *);
3876#endif
3877
3878 head = kzalloc(size, GFP_KERNEL);
3879 if (!head)
3880 goto out;
3881 ret = ida_alloc_min(ida: &ctrl->subsys->ns_ida, min: 1, GFP_KERNEL);
3882 if (ret < 0)
3883 goto out_free_head;
3884 head->instance = ret;
3885 INIT_LIST_HEAD(list: &head->list);
3886 ret = init_srcu_struct(&head->srcu);
3887 if (ret)
3888 goto out_ida_remove;
3889 head->subsys = ctrl->subsys;
3890 head->ns_id = info->nsid;
3891 head->ids = info->ids;
3892 head->shared = info->is_shared;
3893 head->rotational = info->is_rotational;
3894 ratelimit_state_init(rs: &head->rs_nuse, interval: 5 * HZ, burst: 1);
3895 ratelimit_set_flags(rs: &head->rs_nuse, RATELIMIT_MSG_ON_RELEASE);
3896 kref_init(kref: &head->ref);
3897
3898 if (head->ids.csi) {
3899 ret = nvme_get_effects_log(ctrl, csi: head->ids.csi, log: &head->effects);
3900 if (ret)
3901 goto out_cleanup_srcu;
3902 } else
3903 head->effects = ctrl->effects;
3904
3905 ret = nvme_mpath_alloc_disk(ctrl, head);
3906 if (ret)
3907 goto out_cleanup_srcu;
3908
3909 list_add_tail(new: &head->entry, head: &ctrl->subsys->nsheads);
3910
3911 kref_get(kref: &ctrl->subsys->ref);
3912
3913 return head;
3914out_cleanup_srcu:
3915 cleanup_srcu_struct(ssp: &head->srcu);
3916out_ida_remove:
3917 ida_free(&ctrl->subsys->ns_ida, id: head->instance);
3918out_free_head:
3919 kfree(objp: head);
3920out:
3921 if (ret > 0)
3922 ret = blk_status_to_errno(status: nvme_error_status(status: ret));
3923 return ERR_PTR(error: ret);
3924}
3925
3926static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3927 struct nvme_ns_ids *ids)
3928{
3929 struct nvme_subsystem *s;
3930 int ret = 0;
3931
3932 /*
3933 * Note that this check is racy as we try to avoid holding the global
3934 * lock over the whole ns_head creation. But it is only intended as
3935 * a sanity check anyway.
3936 */
3937 mutex_lock(&nvme_subsystems_lock);
3938 list_for_each_entry(s, &nvme_subsystems, entry) {
3939 if (s == this)
3940 continue;
3941 mutex_lock(&s->lock);
3942 ret = nvme_subsys_check_duplicate_ids(subsys: s, ids);
3943 mutex_unlock(lock: &s->lock);
3944 if (ret)
3945 break;
3946 }
3947 mutex_unlock(lock: &nvme_subsystems_lock);
3948
3949 return ret;
3950}
3951
3952static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3953{
3954 struct nvme_ctrl *ctrl = ns->ctrl;
3955 struct nvme_ns_head *head = NULL;
3956 int ret;
3957
3958 ret = nvme_global_check_duplicate_ids(this: ctrl->subsys, ids: &info->ids);
3959 if (ret) {
3960 /*
3961 * We've found two different namespaces on two different
3962 * subsystems that report the same ID. This is pretty nasty
3963 * for anything that actually requires unique device
3964 * identification. In the kernel we need this for multipathing,
3965 * and in user space the /dev/disk/by-id/ links rely on it.
3966 *
3967 * If the device also claims to be multi-path capable back off
3968 * here now and refuse the probe the second device as this is a
3969 * recipe for data corruption. If not this is probably a
3970 * cheap consumer device if on the PCIe bus, so let the user
3971 * proceed and use the shiny toy, but warn that with changing
3972 * probing order (which due to our async probing could just be
3973 * device taking longer to startup) the other device could show
3974 * up at any time.
3975 */
3976 nvme_print_device_info(ctrl);
3977 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3978 ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3979 info->is_shared)) {
3980 dev_err(ctrl->device,
3981 "ignoring nsid %d because of duplicate IDs\n",
3982 info->nsid);
3983 return ret;
3984 }
3985
3986 dev_err(ctrl->device,
3987 "clearing duplicate IDs for nsid %d\n", info->nsid);
3988 dev_err(ctrl->device,
3989 "use of /dev/disk/by-id/ may cause data corruption\n");
3990 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3991 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3992 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3993 ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3994 }
3995
3996 mutex_lock(&ctrl->subsys->lock);
3997 head = nvme_find_ns_head(ctrl, nsid: info->nsid);
3998 if (!head) {
3999 ret = nvme_subsys_check_duplicate_ids(subsys: ctrl->subsys, ids: &info->ids);
4000 if (ret) {
4001 dev_err(ctrl->device,
4002 "duplicate IDs in subsystem for nsid %d\n",
4003 info->nsid);
4004 goto out_unlock;
4005 }
4006 head = nvme_alloc_ns_head(ctrl, info);
4007 if (IS_ERR(ptr: head)) {
4008 ret = PTR_ERR(ptr: head);
4009 goto out_unlock;
4010 }
4011 } else {
4012 ret = -EINVAL;
4013 if ((!info->is_shared || !head->shared) &&
4014 !list_empty(head: &head->list)) {
4015 dev_err(ctrl->device,
4016 "Duplicate unshared namespace %d\n",
4017 info->nsid);
4018 goto out_put_ns_head;
4019 }
4020 if (!nvme_ns_ids_equal(a: &head->ids, b: &info->ids)) {
4021 dev_err(ctrl->device,
4022 "IDs don't match for shared namespace %d\n",
4023 info->nsid);
4024 goto out_put_ns_head;
4025 }
4026
4027 if (!multipath) {
4028 dev_warn(ctrl->device,
4029 "Found shared namespace %d, but multipathing not supported.\n",
4030 info->nsid);
4031 dev_warn_once(ctrl->device,
4032 "Shared namespace support requires core_nvme.multipath=Y.\n");
4033 }
4034 }
4035
4036 list_add_tail_rcu(new: &ns->siblings, head: &head->list);
4037 ns->head = head;
4038 mutex_unlock(lock: &ctrl->subsys->lock);
4039 return 0;
4040
4041out_put_ns_head:
4042 nvme_put_ns_head(head);
4043out_unlock:
4044 mutex_unlock(lock: &ctrl->subsys->lock);
4045 return ret;
4046}
4047
4048struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4049{
4050 struct nvme_ns *ns, *ret = NULL;
4051 int srcu_idx;
4052
4053 srcu_idx = srcu_read_lock(ssp: &ctrl->srcu);
4054 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
4055 srcu_read_lock_held(&ctrl->srcu)) {
4056 if (ns->head->ns_id == nsid) {
4057 if (!nvme_get_ns(ns))
4058 continue;
4059 ret = ns;
4060 break;
4061 }
4062 if (ns->head->ns_id > nsid)
4063 break;
4064 }
4065 srcu_read_unlock(ssp: &ctrl->srcu, idx: srcu_idx);
4066 return ret;
4067}
4068EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, "NVME_TARGET_PASSTHRU");
4069
4070/*
4071 * Add the namespace to the controller list while keeping the list ordered.
4072 */
4073static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
4074{
4075 struct nvme_ns *tmp;
4076
4077 list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
4078 if (tmp->head->ns_id < ns->head->ns_id) {
4079 list_add_rcu(new: &ns->list, head: &tmp->list);
4080 return;
4081 }
4082 }
4083 list_add(new: &ns->list, head: &ns->ctrl->namespaces);
4084}
4085
4086static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
4087{
4088 struct queue_limits lim = { };
4089 struct nvme_ns *ns;
4090 struct gendisk *disk;
4091 int node = ctrl->numa_node;
4092
4093 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
4094 if (!ns)
4095 return;
4096
4097 if (ctrl->opts && ctrl->opts->data_digest)
4098 lim.features |= BLK_FEAT_STABLE_WRITES;
4099 if (ctrl->ops->supports_pci_p2pdma &&
4100 ctrl->ops->supports_pci_p2pdma(ctrl))
4101 lim.features |= BLK_FEAT_PCI_P2PDMA;
4102
4103 disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns);
4104 if (IS_ERR(ptr: disk))
4105 goto out_free_ns;
4106 disk->fops = &nvme_bdev_ops;
4107 disk->private_data = ns;
4108
4109 ns->disk = disk;
4110 ns->queue = disk->queue;
4111 ns->ctrl = ctrl;
4112 kref_init(kref: &ns->kref);
4113
4114 if (nvme_init_ns_head(ns, info))
4115 goto out_cleanup_disk;
4116
4117 /*
4118 * If multipathing is enabled, the device name for all disks and not
4119 * just those that represent shared namespaces needs to be based on the
4120 * subsystem instance. Using the controller instance for private
4121 * namespaces could lead to naming collisions between shared and private
4122 * namespaces if they don't use a common numbering scheme.
4123 *
4124 * If multipathing is not enabled, disk names must use the controller
4125 * instance as shared namespaces will show up as multiple block
4126 * devices.
4127 */
4128 if (nvme_ns_head_multipath(head: ns->head)) {
4129 sprintf(buf: disk->disk_name, fmt: "nvme%dc%dn%d", ctrl->subsys->instance,
4130 ctrl->instance, ns->head->instance);
4131 disk->flags |= GENHD_FL_HIDDEN;
4132 } else if (multipath) {
4133 sprintf(buf: disk->disk_name, fmt: "nvme%dn%d", ctrl->subsys->instance,
4134 ns->head->instance);
4135 } else {
4136 sprintf(buf: disk->disk_name, fmt: "nvme%dn%d", ctrl->instance,
4137 ns->head->instance);
4138 }
4139
4140 if (nvme_update_ns_info(ns, info))
4141 goto out_unlink_ns;
4142
4143 mutex_lock(&ctrl->namespaces_lock);
4144 /*
4145 * Ensure that no namespaces are added to the ctrl list after the queues
4146 * are frozen, thereby avoiding a deadlock between scan and reset.
4147 */
4148 if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) {
4149 mutex_unlock(lock: &ctrl->namespaces_lock);
4150 goto out_unlink_ns;
4151 }
4152 nvme_ns_add_to_ctrl_list(ns);
4153 mutex_unlock(lock: &ctrl->namespaces_lock);
4154 synchronize_srcu(ssp: &ctrl->srcu);
4155 nvme_get_ctrl(ctrl);
4156
4157 if (device_add_disk(parent: ctrl->device, disk: ns->disk, groups: nvme_ns_attr_groups))
4158 goto out_cleanup_ns_from_list;
4159
4160 if (!nvme_ns_head_multipath(head: ns->head))
4161 nvme_add_ns_cdev(ns);
4162
4163 nvme_mpath_add_disk(ns, anagrpid: info->anagrpid);
4164 nvme_fault_inject_init(fault_inj: &ns->fault_inject, dev_name: ns->disk->disk_name);
4165
4166 /*
4167 * Set ns->disk->device->driver_data to ns so we can access
4168 * ns->head->passthru_err_log_enabled in
4169 * nvme_io_passthru_err_log_enabled_[store | show]().
4170 */
4171 dev_set_drvdata(disk_to_dev(ns->disk), data: ns);
4172
4173 return;
4174
4175 out_cleanup_ns_from_list:
4176 nvme_put_ctrl(ctrl);
4177 mutex_lock(&ctrl->namespaces_lock);
4178 list_del_rcu(entry: &ns->list);
4179 mutex_unlock(lock: &ctrl->namespaces_lock);
4180 synchronize_srcu(ssp: &ctrl->srcu);
4181 out_unlink_ns:
4182 mutex_lock(&ctrl->subsys->lock);
4183 list_del_rcu(entry: &ns->siblings);
4184 if (list_empty(head: &ns->head->list))
4185 list_del_init(entry: &ns->head->entry);
4186 mutex_unlock(lock: &ctrl->subsys->lock);
4187 nvme_put_ns_head(head: ns->head);
4188 out_cleanup_disk:
4189 put_disk(disk);
4190 out_free_ns:
4191 kfree(objp: ns);
4192}
4193
4194static void nvme_ns_remove(struct nvme_ns *ns)
4195{
4196 bool last_path = false;
4197
4198 if (test_and_set_bit(NVME_NS_REMOVING, addr: &ns->flags))
4199 return;
4200
4201 clear_bit(NVME_NS_READY, addr: &ns->flags);
4202 set_capacity(disk: ns->disk, size: 0);
4203 nvme_fault_inject_fini(fault_inject: &ns->fault_inject);
4204
4205 /*
4206 * Ensure that !NVME_NS_READY is seen by other threads to prevent
4207 * this ns going back into current_path.
4208 */
4209 synchronize_srcu(ssp: &ns->head->srcu);
4210
4211 /* wait for concurrent submissions */
4212 if (nvme_mpath_clear_current_path(ns))
4213 synchronize_srcu(ssp: &ns->head->srcu);
4214
4215 mutex_lock(&ns->ctrl->subsys->lock);
4216 list_del_rcu(entry: &ns->siblings);
4217 if (list_empty(head: &ns->head->list)) {
4218 if (!nvme_mpath_queue_if_no_path(head: ns->head))
4219 list_del_init(entry: &ns->head->entry);
4220 last_path = true;
4221 }
4222 mutex_unlock(lock: &ns->ctrl->subsys->lock);
4223
4224 /* guarantee not available in head->list */
4225 synchronize_srcu(ssp: &ns->head->srcu);
4226
4227 if (!nvme_ns_head_multipath(head: ns->head))
4228 nvme_cdev_del(cdev: &ns->cdev, cdev_device: &ns->cdev_device);
4229
4230 nvme_mpath_remove_sysfs_link(ns);
4231
4232 del_gendisk(gp: ns->disk);
4233
4234 mutex_lock(&ns->ctrl->namespaces_lock);
4235 list_del_rcu(entry: &ns->list);
4236 mutex_unlock(lock: &ns->ctrl->namespaces_lock);
4237 synchronize_srcu(ssp: &ns->ctrl->srcu);
4238
4239 if (last_path)
4240 nvme_mpath_remove_disk(head: ns->head);
4241 nvme_put_ns(ns);
4242}
4243
4244static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4245{
4246 struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4247
4248 if (ns) {
4249 nvme_ns_remove(ns);
4250 nvme_put_ns(ns);
4251 }
4252}
4253
4254static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
4255{
4256 int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR;
4257
4258 if (!nvme_ns_ids_equal(a: &ns->head->ids, b: &info->ids)) {
4259 dev_err(ns->ctrl->device,
4260 "identifiers changed for nsid %d\n", ns->head->ns_id);
4261 goto out;
4262 }
4263
4264 ret = nvme_update_ns_info(ns, info);
4265out:
4266 /*
4267 * Only remove the namespace if we got a fatal error back from the
4268 * device, otherwise ignore the error and just move on.
4269 *
4270 * TODO: we should probably schedule a delayed retry here.
4271 */
4272 if (ret > 0 && (ret & NVME_STATUS_DNR))
4273 nvme_ns_remove(ns);
4274}
4275
4276static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4277{
4278 struct nvme_ns_info info = { .nsid = nsid };
4279 struct nvme_ns *ns;
4280 int ret = 1;
4281
4282 if (nvme_identify_ns_descs(ctrl, info: &info))
4283 return;
4284
4285 if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4286 dev_warn(ctrl->device,
4287 "command set not reported for nsid: %d\n", nsid);
4288 return;
4289 }
4290
4291 /*
4292 * If available try to use the Command Set Idependent Identify Namespace
4293 * data structure to find all the generic information that is needed to
4294 * set up a namespace. If not fall back to the legacy version.
4295 */
4296 if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4297 (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS) ||
4298 ctrl->vs >= NVME_VS(2, 0, 0))
4299 ret = nvme_ns_info_from_id_cs_indep(ctrl, info: &info);
4300 if (ret > 0)
4301 ret = nvme_ns_info_from_identify(ctrl, info: &info);
4302
4303 if (info.is_removed)
4304 nvme_ns_remove_by_nsid(ctrl, nsid);
4305
4306 /*
4307 * Ignore the namespace if it is not ready. We will get an AEN once it
4308 * becomes ready and restart the scan.
4309 */
4310 if (ret || !info.is_ready)
4311 return;
4312
4313 ns = nvme_find_get_ns(ctrl, nsid);
4314 if (ns) {
4315 nvme_validate_ns(ns, info: &info);
4316 nvme_put_ns(ns);
4317 } else {
4318 nvme_alloc_ns(ctrl, info: &info);
4319 }
4320}
4321
4322/**
4323 * struct async_scan_info - keeps track of controller & NSIDs to scan
4324 * @ctrl: Controller on which namespaces are being scanned
4325 * @next_nsid: Index of next NSID to scan in ns_list
4326 * @ns_list: Pointer to list of NSIDs to scan
4327 *
4328 * Note: There is a single async_scan_info structure shared by all instances
4329 * of nvme_scan_ns_async() scanning a given controller, so the atomic
4330 * operations on next_nsid are critical to ensure each instance scans a unique
4331 * NSID.
4332 */
4333struct async_scan_info {
4334 struct nvme_ctrl *ctrl;
4335 atomic_t next_nsid;
4336 __le32 *ns_list;
4337};
4338
4339static void nvme_scan_ns_async(void *data, async_cookie_t cookie)
4340{
4341 struct async_scan_info *scan_info = data;
4342 int idx;
4343 u32 nsid;
4344
4345 idx = (u32)atomic_fetch_inc(v: &scan_info->next_nsid);
4346 nsid = le32_to_cpu(scan_info->ns_list[idx]);
4347
4348 nvme_scan_ns(ctrl: scan_info->ctrl, nsid);
4349}
4350
4351static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4352 unsigned nsid)
4353{
4354 struct nvme_ns *ns, *next;
4355 LIST_HEAD(rm_list);
4356
4357 mutex_lock(&ctrl->namespaces_lock);
4358 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4359 if (ns->head->ns_id > nsid) {
4360 list_del_rcu(entry: &ns->list);
4361 synchronize_srcu(ssp: &ctrl->srcu);
4362 list_add_tail_rcu(new: &ns->list, head: &rm_list);
4363 }
4364 }
4365 mutex_unlock(lock: &ctrl->namespaces_lock);
4366
4367 list_for_each_entry_safe(ns, next, &rm_list, list)
4368 nvme_ns_remove(ns);
4369}
4370
4371static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4372{
4373 const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4374 __le32 *ns_list;
4375 u32 prev = 0;
4376 int ret = 0, i;
4377 ASYNC_DOMAIN(domain);
4378 struct async_scan_info scan_info;
4379
4380 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4381 if (!ns_list)
4382 return -ENOMEM;
4383
4384 scan_info.ctrl = ctrl;
4385 scan_info.ns_list = ns_list;
4386 for (;;) {
4387 struct nvme_command cmd = {
4388 .identify.opcode = nvme_admin_identify,
4389 .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST,
4390 .identify.nsid = cpu_to_le32(prev),
4391 };
4392
4393 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4394 NVME_IDENTIFY_DATA_SIZE);
4395 if (ret) {
4396 dev_warn(ctrl->device,
4397 "Identify NS List failed (status=0x%x)\n", ret);
4398 goto free;
4399 }
4400
4401 atomic_set(v: &scan_info.next_nsid, i: 0);
4402 for (i = 0; i < nr_entries; i++) {
4403 u32 nsid = le32_to_cpu(ns_list[i]);
4404
4405 if (!nsid) /* end of the list? */
4406 goto out;
4407 async_schedule_domain(func: nvme_scan_ns_async, data: &scan_info,
4408 domain: &domain);
4409 while (++prev < nsid)
4410 nvme_ns_remove_by_nsid(ctrl, nsid: prev);
4411 }
4412 async_synchronize_full_domain(domain: &domain);
4413 }
4414 out:
4415 nvme_remove_invalid_namespaces(ctrl, nsid: prev);
4416 free:
4417 async_synchronize_full_domain(domain: &domain);
4418 kfree(objp: ns_list);
4419 return ret;
4420}
4421
4422static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4423{
4424 struct nvme_id_ctrl *id;
4425 u32 nn, i;
4426
4427 if (nvme_identify_ctrl(dev: ctrl, id: &id))
4428 return;
4429 nn = le32_to_cpu(id->nn);
4430 kfree(objp: id);
4431
4432 for (i = 1; i <= nn; i++)
4433 nvme_scan_ns(ctrl, nsid: i);
4434
4435 nvme_remove_invalid_namespaces(ctrl, nsid: nn);
4436}
4437
4438static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4439{
4440 size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4441 __le32 *log;
4442 int error;
4443
4444 log = kzalloc(log_size, GFP_KERNEL);
4445 if (!log)
4446 return;
4447
4448 /*
4449 * We need to read the log to clear the AEN, but we don't want to rely
4450 * on it for the changed namespace information as userspace could have
4451 * raced with us in reading the log page, which could cause us to miss
4452 * updates.
4453 */
4454 error = nvme_get_log(ctrl, NVME_NSID_ALL, log_page: NVME_LOG_CHANGED_NS, lsp: 0,
4455 csi: NVME_CSI_NVM, log, size: log_size, offset: 0);
4456 if (error)
4457 dev_warn(ctrl->device,
4458 "reading changed ns log failed: %d\n", error);
4459
4460 kfree(objp: log);
4461}
4462
4463static void nvme_scan_work(struct work_struct *work)
4464{
4465 struct nvme_ctrl *ctrl =
4466 container_of(work, struct nvme_ctrl, scan_work);
4467 int ret;
4468
4469 /* No tagset on a live ctrl means IO queues could not created */
4470 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset)
4471 return;
4472
4473 /*
4474 * Identify controller limits can change at controller reset due to
4475 * new firmware download, even though it is not common we cannot ignore
4476 * such scenario. Controller's non-mdts limits are reported in the unit
4477 * of logical blocks that is dependent on the format of attached
4478 * namespace. Hence re-read the limits at the time of ns allocation.
4479 */
4480 ret = nvme_init_non_mdts_limits(ctrl);
4481 if (ret < 0) {
4482 dev_warn(ctrl->device,
4483 "reading non-mdts-limits failed: %d\n", ret);
4484 return;
4485 }
4486
4487 if (test_and_clear_bit(nr: NVME_AER_NOTICE_NS_CHANGED, addr: &ctrl->events)) {
4488 dev_info(ctrl->device, "rescanning namespaces.\n");
4489 nvme_clear_changed_ns_log(ctrl);
4490 }
4491
4492 mutex_lock(&ctrl->scan_lock);
4493 if (!nvme_id_cns_ok(ctrl, cns: NVME_ID_CNS_NS_ACTIVE_LIST)) {
4494 nvme_scan_ns_sequential(ctrl);
4495 } else {
4496 /*
4497 * Fall back to sequential scan if DNR is set to handle broken
4498 * devices which should support Identify NS List (as per the VS
4499 * they report) but don't actually support it.
4500 */
4501 ret = nvme_scan_ns_list(ctrl);
4502 if (ret > 0 && ret & NVME_STATUS_DNR)
4503 nvme_scan_ns_sequential(ctrl);
4504 }
4505 mutex_unlock(lock: &ctrl->scan_lock);
4506
4507 /* Requeue if we have missed AENs */
4508 if (test_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events))
4509 nvme_queue_scan(ctrl);
4510#ifdef CONFIG_NVME_MULTIPATH
4511 else if (ctrl->ana_log_buf)
4512 /* Re-read the ANA log page to not miss updates */
4513 queue_work(wq: nvme_wq, work: &ctrl->ana_work);
4514#endif
4515}
4516
4517/*
4518 * This function iterates the namespace list unlocked to allow recovery from
4519 * controller failure. It is up to the caller to ensure the namespace list is
4520 * not modified by scan work while this function is executing.
4521 */
4522void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4523{
4524 struct nvme_ns *ns, *next;
4525 LIST_HEAD(ns_list);
4526
4527 /*
4528 * make sure to requeue I/O to all namespaces as these
4529 * might result from the scan itself and must complete
4530 * for the scan_work to make progress
4531 */
4532 nvme_mpath_clear_ctrl_paths(ctrl);
4533
4534 /*
4535 * Unquiesce io queues so any pending IO won't hang, especially
4536 * those submitted from scan work
4537 */
4538 nvme_unquiesce_io_queues(ctrl);
4539
4540 /* prevent racing with ns scanning */
4541 flush_work(work: &ctrl->scan_work);
4542
4543 /*
4544 * The dead states indicates the controller was not gracefully
4545 * disconnected. In that case, we won't be able to flush any data while
4546 * removing the namespaces' disks; fail all the queues now to avoid
4547 * potentially having to clean up the failed sync later.
4548 */
4549 if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD)
4550 nvme_mark_namespaces_dead(ctrl);
4551
4552 /* this is a no-op when called from the controller reset handler */
4553 nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4554
4555 mutex_lock(&ctrl->namespaces_lock);
4556 list_splice_init_rcu(list: &ctrl->namespaces, head: &ns_list, sync: synchronize_rcu);
4557 mutex_unlock(lock: &ctrl->namespaces_lock);
4558 synchronize_srcu(ssp: &ctrl->srcu);
4559
4560 list_for_each_entry_safe(ns, next, &ns_list, list)
4561 nvme_ns_remove(ns);
4562}
4563EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4564
4565static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
4566{
4567 const struct nvme_ctrl *ctrl =
4568 container_of(dev, struct nvme_ctrl, ctrl_device);
4569 struct nvmf_ctrl_options *opts = ctrl->opts;
4570 int ret;
4571
4572 ret = add_uevent_var(env, format: "NVME_TRTYPE=%s", ctrl->ops->name);
4573 if (ret)
4574 return ret;
4575
4576 if (opts) {
4577 ret = add_uevent_var(env, format: "NVME_TRADDR=%s", opts->traddr);
4578 if (ret)
4579 return ret;
4580
4581 ret = add_uevent_var(env, format: "NVME_TRSVCID=%s",
4582 opts->trsvcid ?: "none");
4583 if (ret)
4584 return ret;
4585
4586 ret = add_uevent_var(env, format: "NVME_HOST_TRADDR=%s",
4587 opts->host_traddr ?: "none");
4588 if (ret)
4589 return ret;
4590
4591 ret = add_uevent_var(env, format: "NVME_HOST_IFACE=%s",
4592 opts->host_iface ?: "none");
4593 }
4594 return ret;
4595}
4596
4597static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4598{
4599 char *envp[2] = { envdata, NULL };
4600
4601 kobject_uevent_env(kobj: &ctrl->device->kobj, action: KOBJ_CHANGE, envp);
4602}
4603
4604static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4605{
4606 char *envp[2] = { NULL, NULL };
4607 u32 aen_result = ctrl->aen_result;
4608
4609 ctrl->aen_result = 0;
4610 if (!aen_result)
4611 return;
4612
4613 envp[0] = kasprintf(GFP_KERNEL, fmt: "NVME_AEN=%#08x", aen_result);
4614 if (!envp[0])
4615 return;
4616 kobject_uevent_env(kobj: &ctrl->device->kobj, action: KOBJ_CHANGE, envp);
4617 kfree(objp: envp[0]);
4618}
4619
4620static void nvme_async_event_work(struct work_struct *work)
4621{
4622 struct nvme_ctrl *ctrl =
4623 container_of(work, struct nvme_ctrl, async_event_work);
4624
4625 nvme_aen_uevent(ctrl);
4626
4627 /*
4628 * The transport drivers must guarantee AER submission here is safe by
4629 * flushing ctrl async_event_work after changing the controller state
4630 * from LIVE and before freeing the admin queue.
4631 */
4632 if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE)
4633 ctrl->ops->submit_async_event(ctrl);
4634}
4635
4636static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4637{
4638
4639 u32 csts;
4640
4641 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4642 return false;
4643
4644 if (csts == ~0)
4645 return false;
4646
4647 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4648}
4649
4650static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4651{
4652 struct nvme_fw_slot_info_log *log;
4653 u8 next_fw_slot, cur_fw_slot;
4654
4655 log = kmalloc(sizeof(*log), GFP_KERNEL);
4656 if (!log)
4657 return;
4658
4659 if (nvme_get_log(ctrl, NVME_NSID_ALL, log_page: NVME_LOG_FW_SLOT, lsp: 0, csi: NVME_CSI_NVM,
4660 log, size: sizeof(*log), offset: 0)) {
4661 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4662 goto out_free_log;
4663 }
4664
4665 cur_fw_slot = log->afi & 0x7;
4666 next_fw_slot = (log->afi & 0x70) >> 4;
4667 if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) {
4668 dev_info(ctrl->device,
4669 "Firmware is activated after next Controller Level Reset\n");
4670 goto out_free_log;
4671 }
4672
4673 memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1],
4674 sizeof(ctrl->subsys->firmware_rev));
4675
4676out_free_log:
4677 kfree(objp: log);
4678}
4679
4680static void nvme_fw_act_work(struct work_struct *work)
4681{
4682 struct nvme_ctrl *ctrl = container_of(work,
4683 struct nvme_ctrl, fw_act_work);
4684 unsigned long fw_act_timeout;
4685
4686 nvme_auth_stop(ctrl);
4687
4688 if (ctrl->mtfa)
4689 fw_act_timeout = jiffies + msecs_to_jiffies(m: ctrl->mtfa * 100);
4690 else
4691 fw_act_timeout = jiffies + secs_to_jiffies(admin_timeout);
4692
4693 nvme_quiesce_io_queues(ctrl);
4694 while (nvme_ctrl_pp_status(ctrl)) {
4695 if (time_after(jiffies, fw_act_timeout)) {
4696 dev_warn(ctrl->device,
4697 "Fw activation timeout, reset controller\n");
4698 nvme_try_sched_reset(ctrl);
4699 return;
4700 }
4701 msleep(msecs: 100);
4702 }
4703
4704 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING) ||
4705 !nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4706 return;
4707
4708 nvme_unquiesce_io_queues(ctrl);
4709 /* read FW slot information to clear the AER */
4710 nvme_get_fw_slot_info(ctrl);
4711
4712 queue_work(wq: nvme_wq, work: &ctrl->async_event_work);
4713}
4714
4715static u32 nvme_aer_type(u32 result)
4716{
4717 return result & 0x7;
4718}
4719
4720static u32 nvme_aer_subtype(u32 result)
4721{
4722 return (result & 0xff00) >> 8;
4723}
4724
4725static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4726{
4727 u32 aer_notice_type = nvme_aer_subtype(result);
4728 bool requeue = true;
4729
4730 switch (aer_notice_type) {
4731 case NVME_AER_NOTICE_NS_CHANGED:
4732 set_bit(nr: NVME_AER_NOTICE_NS_CHANGED, addr: &ctrl->events);
4733 nvme_queue_scan(ctrl);
4734 break;
4735 case NVME_AER_NOTICE_FW_ACT_STARTING:
4736 /*
4737 * We are (ab)using the RESETTING state to prevent subsequent
4738 * recovery actions from interfering with the controller's
4739 * firmware activation.
4740 */
4741 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4742 requeue = false;
4743 queue_work(wq: nvme_wq, work: &ctrl->fw_act_work);
4744 }
4745 break;
4746#ifdef CONFIG_NVME_MULTIPATH
4747 case NVME_AER_NOTICE_ANA:
4748 if (!ctrl->ana_log_buf)
4749 break;
4750 queue_work(wq: nvme_wq, work: &ctrl->ana_work);
4751 break;
4752#endif
4753 case NVME_AER_NOTICE_DISC_CHANGED:
4754 ctrl->aen_result = result;
4755 break;
4756 default:
4757 dev_warn(ctrl->device, "async event result %08x\n", result);
4758 }
4759 return requeue;
4760}
4761
4762static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4763{
4764 dev_warn(ctrl->device,
4765 "resetting controller due to persistent internal error\n");
4766 nvme_reset_ctrl(ctrl);
4767}
4768
4769void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4770 volatile union nvme_result *res)
4771{
4772 u32 result = le32_to_cpu(res->u32);
4773 u32 aer_type = nvme_aer_type(result);
4774 u32 aer_subtype = nvme_aer_subtype(result);
4775 bool requeue = true;
4776
4777 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4778 return;
4779
4780 trace_nvme_async_event(ctrl, result);
4781 switch (aer_type) {
4782 case NVME_AER_NOTICE:
4783 requeue = nvme_handle_aen_notice(ctrl, result);
4784 break;
4785 case NVME_AER_ERROR:
4786 /*
4787 * For a persistent internal error, don't run async_event_work
4788 * to submit a new AER. The controller reset will do it.
4789 */
4790 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4791 nvme_handle_aer_persistent_error(ctrl);
4792 return;
4793 }
4794 fallthrough;
4795 case NVME_AER_SMART:
4796 case NVME_AER_CSS:
4797 case NVME_AER_VS:
4798 ctrl->aen_result = result;
4799 break;
4800 default:
4801 break;
4802 }
4803
4804 if (requeue)
4805 queue_work(wq: nvme_wq, work: &ctrl->async_event_work);
4806}
4807EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4808
4809int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4810 const struct blk_mq_ops *ops, unsigned int cmd_size)
4811{
4812 struct queue_limits lim = {};
4813 int ret;
4814
4815 memset(set, 0, sizeof(*set));
4816 set->ops = ops;
4817 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4818 if (ctrl->ops->flags & NVME_F_FABRICS)
4819 /* Reserved for fabric connect and keep alive */
4820 set->reserved_tags = 2;
4821 set->numa_node = ctrl->numa_node;
4822 if (ctrl->ops->flags & NVME_F_BLOCKING)
4823 set->flags |= BLK_MQ_F_BLOCKING;
4824 set->cmd_size = cmd_size;
4825 set->driver_data = ctrl;
4826 set->nr_hw_queues = 1;
4827 set->timeout = NVME_ADMIN_TIMEOUT;
4828 ret = blk_mq_alloc_tag_set(set);
4829 if (ret)
4830 return ret;
4831
4832 ctrl->admin_q = blk_mq_alloc_queue(set, lim: &lim, NULL);
4833 if (IS_ERR(ptr: ctrl->admin_q)) {
4834 ret = PTR_ERR(ptr: ctrl->admin_q);
4835 goto out_free_tagset;
4836 }
4837
4838 if (ctrl->ops->flags & NVME_F_FABRICS) {
4839 ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL);
4840 if (IS_ERR(ptr: ctrl->fabrics_q)) {
4841 ret = PTR_ERR(ptr: ctrl->fabrics_q);
4842 goto out_cleanup_admin_q;
4843 }
4844 }
4845
4846 ctrl->admin_tagset = set;
4847 return 0;
4848
4849out_cleanup_admin_q:
4850 blk_mq_destroy_queue(ctrl->admin_q);
4851 blk_put_queue(ctrl->admin_q);
4852out_free_tagset:
4853 blk_mq_free_tag_set(set);
4854 ctrl->admin_q = NULL;
4855 ctrl->fabrics_q = NULL;
4856 return ret;
4857}
4858EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4859
4860void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4861{
4862 /*
4863 * As we're about to destroy the queue and free tagset
4864 * we can not have keep-alive work running.
4865 */
4866 nvme_stop_keep_alive(ctrl);
4867 blk_mq_destroy_queue(ctrl->admin_q);
4868 blk_put_queue(ctrl->admin_q);
4869 if (ctrl->ops->flags & NVME_F_FABRICS) {
4870 blk_mq_destroy_queue(ctrl->fabrics_q);
4871 blk_put_queue(ctrl->fabrics_q);
4872 }
4873 blk_mq_free_tag_set(set: ctrl->admin_tagset);
4874}
4875EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4876
4877int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4878 const struct blk_mq_ops *ops, unsigned int nr_maps,
4879 unsigned int cmd_size)
4880{
4881 int ret;
4882
4883 memset(set, 0, sizeof(*set));
4884 set->ops = ops;
4885 set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4886 /*
4887 * Some Apple controllers requires tags to be unique across admin and
4888 * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4889 */
4890 if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4891 set->reserved_tags = NVME_AQ_DEPTH;
4892 else if (ctrl->ops->flags & NVME_F_FABRICS)
4893 /* Reserved for fabric connect */
4894 set->reserved_tags = 1;
4895 set->numa_node = ctrl->numa_node;
4896 if (ctrl->ops->flags & NVME_F_BLOCKING)
4897 set->flags |= BLK_MQ_F_BLOCKING;
4898 set->cmd_size = cmd_size;
4899 set->driver_data = ctrl;
4900 set->nr_hw_queues = ctrl->queue_count - 1;
4901 set->timeout = NVME_IO_TIMEOUT;
4902 set->nr_maps = nr_maps;
4903 ret = blk_mq_alloc_tag_set(set);
4904 if (ret)
4905 return ret;
4906
4907 if (ctrl->ops->flags & NVME_F_FABRICS) {
4908 struct queue_limits lim = {
4909 .features = BLK_FEAT_SKIP_TAGSET_QUIESCE,
4910 };
4911
4912 ctrl->connect_q = blk_mq_alloc_queue(set, lim: &lim, NULL);
4913 if (IS_ERR(ptr: ctrl->connect_q)) {
4914 ret = PTR_ERR(ptr: ctrl->connect_q);
4915 goto out_free_tag_set;
4916 }
4917 }
4918
4919 ctrl->tagset = set;
4920 return 0;
4921
4922out_free_tag_set:
4923 blk_mq_free_tag_set(set);
4924 ctrl->connect_q = NULL;
4925 return ret;
4926}
4927EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4928
4929void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4930{
4931 if (ctrl->ops->flags & NVME_F_FABRICS) {
4932 blk_mq_destroy_queue(ctrl->connect_q);
4933 blk_put_queue(ctrl->connect_q);
4934 }
4935 blk_mq_free_tag_set(set: ctrl->tagset);
4936}
4937EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4938
4939void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4940{
4941 nvme_mpath_stop(ctrl);
4942 nvme_auth_stop(ctrl);
4943 nvme_stop_failfast_work(ctrl);
4944 flush_work(work: &ctrl->async_event_work);
4945 cancel_work_sync(work: &ctrl->fw_act_work);
4946 if (ctrl->ops->stop_ctrl)
4947 ctrl->ops->stop_ctrl(ctrl);
4948}
4949EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4950
4951void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4952{
4953 nvme_enable_aen(ctrl);
4954
4955 /*
4956 * persistent discovery controllers need to send indication to userspace
4957 * to re-read the discovery log page to learn about possible changes
4958 * that were missed. We identify persistent discovery controllers by
4959 * checking that they started once before, hence are reconnecting back.
4960 */
4961 if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4962 nvme_discovery_ctrl(ctrl))
4963 nvme_change_uevent(ctrl, envdata: "NVME_EVENT=rediscover");
4964
4965 if (ctrl->queue_count > 1) {
4966 nvme_queue_scan(ctrl);
4967 nvme_unquiesce_io_queues(ctrl);
4968 nvme_mpath_update(ctrl);
4969 }
4970
4971 nvme_change_uevent(ctrl, envdata: "NVME_EVENT=connected");
4972 set_bit(nr: NVME_CTRL_STARTED_ONCE, addr: &ctrl->flags);
4973}
4974EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4975
4976void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4977{
4978 nvme_stop_keep_alive(ctrl);
4979 nvme_hwmon_exit(ctrl);
4980 nvme_fault_inject_fini(fault_inject: &ctrl->fault_inject);
4981 dev_pm_qos_hide_latency_tolerance(dev: ctrl->device);
4982 cdev_device_del(cdev: &ctrl->cdev, dev: ctrl->device);
4983 nvme_put_ctrl(ctrl);
4984}
4985EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4986
4987static void nvme_free_cels(struct nvme_ctrl *ctrl)
4988{
4989 struct nvme_effects_log *cel;
4990 unsigned long i;
4991
4992 xa_for_each(&ctrl->cels, i, cel) {
4993 xa_erase(&ctrl->cels, index: i);
4994 kfree(objp: cel);
4995 }
4996
4997 xa_destroy(&ctrl->cels);
4998}
4999
5000static void nvme_free_ctrl(struct device *dev)
5001{
5002 struct nvme_ctrl *ctrl =
5003 container_of(dev, struct nvme_ctrl, ctrl_device);
5004 struct nvme_subsystem *subsys = ctrl->subsys;
5005
5006 if (!subsys || ctrl->instance != subsys->instance)
5007 ida_free(&nvme_instance_ida, id: ctrl->instance);
5008 nvme_free_cels(ctrl);
5009 nvme_mpath_uninit(ctrl);
5010 cleanup_srcu_struct(ssp: &ctrl->srcu);
5011 nvme_auth_stop(ctrl);
5012 nvme_auth_free(ctrl);
5013 __free_page(ctrl->discard_page);
5014 free_opal_dev(dev: ctrl->opal_dev);
5015
5016 if (subsys) {
5017 mutex_lock(&nvme_subsystems_lock);
5018 list_del(entry: &ctrl->subsys_entry);
5019 sysfs_remove_link(kobj: &subsys->dev.kobj, name: dev_name(dev: ctrl->device));
5020 mutex_unlock(lock: &nvme_subsystems_lock);
5021 }
5022
5023 ctrl->ops->free_ctrl(ctrl);
5024
5025 if (subsys)
5026 nvme_put_subsystem(subsys);
5027}
5028
5029/*
5030 * Initialize a NVMe controller structures. This needs to be called during
5031 * earliest initialization so that we have the initialized structured around
5032 * during probing.
5033 *
5034 * On success, the caller must use the nvme_put_ctrl() to release this when
5035 * needed, which also invokes the ops->free_ctrl() callback.
5036 */
5037int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
5038 const struct nvme_ctrl_ops *ops, unsigned long quirks)
5039{
5040 int ret;
5041
5042 WRITE_ONCE(ctrl->state, NVME_CTRL_NEW);
5043 ctrl->passthru_err_log_enabled = false;
5044 clear_bit(nr: NVME_CTRL_FAILFAST_EXPIRED, addr: &ctrl->flags);
5045 spin_lock_init(&ctrl->lock);
5046 mutex_init(&ctrl->namespaces_lock);
5047
5048 ret = init_srcu_struct(&ctrl->srcu);
5049 if (ret)
5050 return ret;
5051
5052 mutex_init(&ctrl->scan_lock);
5053 INIT_LIST_HEAD(list: &ctrl->namespaces);
5054 xa_init(xa: &ctrl->cels);
5055 ctrl->dev = dev;
5056 ctrl->ops = ops;
5057 ctrl->quirks = quirks;
5058 ctrl->numa_node = NUMA_NO_NODE;
5059 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
5060 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
5061 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
5062 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
5063 init_waitqueue_head(&ctrl->state_wq);
5064
5065 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
5066 INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
5067 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
5068 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
5069 ctrl->ka_last_check_time = jiffies;
5070
5071 BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
5072 PAGE_SIZE);
5073 ctrl->discard_page = alloc_page(GFP_KERNEL);
5074 if (!ctrl->discard_page) {
5075 ret = -ENOMEM;
5076 goto out;
5077 }
5078
5079 ret = ida_alloc(ida: &nvme_instance_ida, GFP_KERNEL);
5080 if (ret < 0)
5081 goto out;
5082 ctrl->instance = ret;
5083
5084 ret = nvme_auth_init_ctrl(ctrl);
5085 if (ret)
5086 goto out_release_instance;
5087
5088 nvme_mpath_init_ctrl(ctrl);
5089
5090 device_initialize(dev: &ctrl->ctrl_device);
5091 ctrl->device = &ctrl->ctrl_device;
5092 ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
5093 ctrl->instance);
5094 ctrl->device->class = &nvme_class;
5095 ctrl->device->parent = ctrl->dev;
5096 if (ops->dev_attr_groups)
5097 ctrl->device->groups = ops->dev_attr_groups;
5098 else
5099 ctrl->device->groups = nvme_dev_attr_groups;
5100 ctrl->device->release = nvme_free_ctrl;
5101 dev_set_drvdata(dev: ctrl->device, data: ctrl);
5102
5103 return ret;
5104
5105out_release_instance:
5106 ida_free(&nvme_instance_ida, id: ctrl->instance);
5107out:
5108 if (ctrl->discard_page)
5109 __free_page(ctrl->discard_page);
5110 cleanup_srcu_struct(ssp: &ctrl->srcu);
5111 return ret;
5112}
5113EXPORT_SYMBOL_GPL(nvme_init_ctrl);
5114
5115/*
5116 * On success, returns with an elevated controller reference and caller must
5117 * use nvme_uninit_ctrl() to properly free resources associated with the ctrl.
5118 */
5119int nvme_add_ctrl(struct nvme_ctrl *ctrl)
5120{
5121 int ret;
5122
5123 ret = dev_set_name(dev: ctrl->device, name: "nvme%d", ctrl->instance);
5124 if (ret)
5125 return ret;
5126
5127 cdev_init(&ctrl->cdev, &nvme_dev_fops);
5128 ctrl->cdev.owner = ctrl->ops->module;
5129 ret = cdev_device_add(cdev: &ctrl->cdev, dev: ctrl->device);
5130 if (ret)
5131 return ret;
5132
5133 /*
5134 * Initialize latency tolerance controls. The sysfs files won't
5135 * be visible to userspace unless the device actually supports APST.
5136 */
5137 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
5138 dev_pm_qos_update_user_latency_tolerance(dev: ctrl->device,
5139 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
5140
5141 nvme_fault_inject_init(fault_inj: &ctrl->fault_inject, dev_name: dev_name(dev: ctrl->device));
5142 nvme_get_ctrl(ctrl);
5143
5144 return 0;
5145}
5146EXPORT_SYMBOL_GPL(nvme_add_ctrl);
5147
5148/* let I/O to all namespaces fail in preparation for surprise removal */
5149void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
5150{
5151 struct nvme_ns *ns;
5152 int srcu_idx;
5153
5154 srcu_idx = srcu_read_lock(ssp: &ctrl->srcu);
5155 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5156 srcu_read_lock_held(&ctrl->srcu))
5157 blk_mark_disk_dead(disk: ns->disk);
5158 srcu_read_unlock(ssp: &ctrl->srcu, idx: srcu_idx);
5159}
5160EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
5161
5162void nvme_unfreeze(struct nvme_ctrl *ctrl)
5163{
5164 struct nvme_ns *ns;
5165 int srcu_idx;
5166
5167 srcu_idx = srcu_read_lock(ssp: &ctrl->srcu);
5168 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5169 srcu_read_lock_held(&ctrl->srcu))
5170 blk_mq_unfreeze_queue_non_owner(q: ns->queue);
5171 srcu_read_unlock(ssp: &ctrl->srcu, idx: srcu_idx);
5172 clear_bit(nr: NVME_CTRL_FROZEN, addr: &ctrl->flags);
5173}
5174EXPORT_SYMBOL_GPL(nvme_unfreeze);
5175
5176int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
5177{
5178 struct nvme_ns *ns;
5179 int srcu_idx;
5180
5181 srcu_idx = srcu_read_lock(ssp: &ctrl->srcu);
5182 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5183 srcu_read_lock_held(&ctrl->srcu)) {
5184 timeout = blk_mq_freeze_queue_wait_timeout(q: ns->queue, timeout);
5185 if (timeout <= 0)
5186 break;
5187 }
5188 srcu_read_unlock(ssp: &ctrl->srcu, idx: srcu_idx);
5189 return timeout;
5190}
5191EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
5192
5193void nvme_wait_freeze(struct nvme_ctrl *ctrl)
5194{
5195 struct nvme_ns *ns;
5196 int srcu_idx;
5197
5198 srcu_idx = srcu_read_lock(ssp: &ctrl->srcu);
5199 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5200 srcu_read_lock_held(&ctrl->srcu))
5201 blk_mq_freeze_queue_wait(q: ns->queue);
5202 srcu_read_unlock(ssp: &ctrl->srcu, idx: srcu_idx);
5203}
5204EXPORT_SYMBOL_GPL(nvme_wait_freeze);
5205
5206void nvme_start_freeze(struct nvme_ctrl *ctrl)
5207{
5208 struct nvme_ns *ns;
5209 int srcu_idx;
5210
5211 set_bit(nr: NVME_CTRL_FROZEN, addr: &ctrl->flags);
5212 srcu_idx = srcu_read_lock(ssp: &ctrl->srcu);
5213 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5214 srcu_read_lock_held(&ctrl->srcu))
5215 /*
5216 * Typical non_owner use case is from pci driver, in which
5217 * start_freeze is called from timeout work function, but
5218 * unfreeze is done in reset work context
5219 */
5220 blk_freeze_queue_start_non_owner(q: ns->queue);
5221 srcu_read_unlock(ssp: &ctrl->srcu, idx: srcu_idx);
5222}
5223EXPORT_SYMBOL_GPL(nvme_start_freeze);
5224
5225void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
5226{
5227 if (!ctrl->tagset)
5228 return;
5229 if (!test_and_set_bit(nr: NVME_CTRL_STOPPED, addr: &ctrl->flags))
5230 blk_mq_quiesce_tagset(set: ctrl->tagset);
5231 else
5232 blk_mq_wait_quiesce_done(set: ctrl->tagset);
5233}
5234EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
5235
5236void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
5237{
5238 if (!ctrl->tagset)
5239 return;
5240 if (test_and_clear_bit(nr: NVME_CTRL_STOPPED, addr: &ctrl->flags))
5241 blk_mq_unquiesce_tagset(set: ctrl->tagset);
5242}
5243EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
5244
5245void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
5246{
5247 if (!test_and_set_bit(nr: NVME_CTRL_ADMIN_Q_STOPPED, addr: &ctrl->flags))
5248 blk_mq_quiesce_queue(q: ctrl->admin_q);
5249 else
5250 blk_mq_wait_quiesce_done(set: ctrl->admin_q->tag_set);
5251}
5252EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
5253
5254void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
5255{
5256 if (test_and_clear_bit(nr: NVME_CTRL_ADMIN_Q_STOPPED, addr: &ctrl->flags))
5257 blk_mq_unquiesce_queue(q: ctrl->admin_q);
5258}
5259EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
5260
5261void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
5262{
5263 struct nvme_ns *ns;
5264 int srcu_idx;
5265
5266 srcu_idx = srcu_read_lock(ssp: &ctrl->srcu);
5267 list_for_each_entry_srcu(ns, &ctrl->namespaces, list,
5268 srcu_read_lock_held(&ctrl->srcu))
5269 blk_sync_queue(q: ns->queue);
5270 srcu_read_unlock(ssp: &ctrl->srcu, idx: srcu_idx);
5271}
5272EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
5273
5274void nvme_sync_queues(struct nvme_ctrl *ctrl)
5275{
5276 nvme_sync_io_queues(ctrl);
5277 if (ctrl->admin_q)
5278 blk_sync_queue(q: ctrl->admin_q);
5279}
5280EXPORT_SYMBOL_GPL(nvme_sync_queues);
5281
5282struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
5283{
5284 if (file->f_op != &nvme_dev_fops)
5285 return NULL;
5286 return file->private_data;
5287}
5288EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, "NVME_TARGET_PASSTHRU");
5289
5290/*
5291 * Check we didn't inadvertently grow the command structure sizes:
5292 */
5293static inline void _nvme_check_size(void)
5294{
5295 BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
5296 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
5297 BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
5298 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
5299 BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
5300 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
5301 BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
5302 BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
5303 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
5304 BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5305 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5306 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5307 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5308 BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5309 NVME_IDENTIFY_DATA_SIZE);
5310 BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5311 BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5312 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5313 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5314 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5315 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5316 BUILD_BUG_ON(sizeof(struct nvme_endurance_group_log) != 512);
5317 BUILD_BUG_ON(sizeof(struct nvme_rotational_media_log) != 512);
5318 BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5319 BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5320 BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5321}
5322
5323
5324static int __init nvme_core_init(void)
5325{
5326 unsigned int wq_flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS;
5327 int result = -ENOMEM;
5328
5329 _nvme_check_size();
5330
5331 nvme_wq = alloc_workqueue(fmt: "nvme-wq", flags: wq_flags, max_active: 0);
5332 if (!nvme_wq)
5333 goto out;
5334
5335 nvme_reset_wq = alloc_workqueue(fmt: "nvme-reset-wq", flags: wq_flags, max_active: 0);
5336 if (!nvme_reset_wq)
5337 goto destroy_wq;
5338
5339 nvme_delete_wq = alloc_workqueue(fmt: "nvme-delete-wq", flags: wq_flags, max_active: 0);
5340 if (!nvme_delete_wq)
5341 goto destroy_reset_wq;
5342
5343 result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5344 NVME_MINORS, "nvme");
5345 if (result < 0)
5346 goto destroy_delete_wq;
5347
5348 result = class_register(class: &nvme_class);
5349 if (result)
5350 goto unregister_chrdev;
5351
5352 result = class_register(class: &nvme_subsys_class);
5353 if (result)
5354 goto destroy_class;
5355
5356 result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5357 "nvme-generic");
5358 if (result < 0)
5359 goto destroy_subsys_class;
5360
5361 result = class_register(class: &nvme_ns_chr_class);
5362 if (result)
5363 goto unregister_generic_ns;
5364
5365 result = nvme_init_auth();
5366 if (result)
5367 goto destroy_ns_chr;
5368 return 0;
5369
5370destroy_ns_chr:
5371 class_unregister(class: &nvme_ns_chr_class);
5372unregister_generic_ns:
5373 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5374destroy_subsys_class:
5375 class_unregister(class: &nvme_subsys_class);
5376destroy_class:
5377 class_unregister(class: &nvme_class);
5378unregister_chrdev:
5379 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5380destroy_delete_wq:
5381 destroy_workqueue(wq: nvme_delete_wq);
5382destroy_reset_wq:
5383 destroy_workqueue(wq: nvme_reset_wq);
5384destroy_wq:
5385 destroy_workqueue(wq: nvme_wq);
5386out:
5387 return result;
5388}
5389
5390static void __exit nvme_core_exit(void)
5391{
5392 nvme_exit_auth();
5393 class_unregister(class: &nvme_ns_chr_class);
5394 class_unregister(class: &nvme_subsys_class);
5395 class_unregister(class: &nvme_class);
5396 unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5397 unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5398 destroy_workqueue(wq: nvme_delete_wq);
5399 destroy_workqueue(wq: nvme_reset_wq);
5400 destroy_workqueue(wq: nvme_wq);
5401 ida_destroy(ida: &nvme_ns_chr_minor_ida);
5402 ida_destroy(ida: &nvme_instance_ida);
5403}
5404
5405MODULE_LICENSE("GPL");
5406MODULE_VERSION("1.0");
5407MODULE_DESCRIPTION("NVMe host core framework");
5408module_init(nvme_core_init);
5409module_exit(nvme_core_exit);
5410

Provided by KDAB

Privacy Policy
Improve your Profiling and Debugging skills
Find out more

source code of linux/drivers/nvme/host/core.c