| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * NVM Express device driver |
| 4 | * Copyright (c) 2011-2014, Intel Corporation. |
| 5 | */ |
| 6 | |
| 7 | #include <linux/async.h> |
| 8 | #include <linux/blkdev.h> |
| 9 | #include <linux/blk-mq.h> |
| 10 | #include <linux/blk-integrity.h> |
| 11 | #include <linux/compat.h> |
| 12 | #include <linux/delay.h> |
| 13 | #include <linux/errno.h> |
| 14 | #include <linux/hdreg.h> |
| 15 | #include <linux/kernel.h> |
| 16 | #include <linux/module.h> |
| 17 | #include <linux/backing-dev.h> |
| 18 | #include <linux/slab.h> |
| 19 | #include <linux/types.h> |
| 20 | #include <linux/pr.h> |
| 21 | #include <linux/ptrace.h> |
| 22 | #include <linux/nvme_ioctl.h> |
| 23 | #include <linux/pm_qos.h> |
| 24 | #include <linux/ratelimit.h> |
| 25 | #include <linux/unaligned.h> |
| 26 | |
| 27 | #include "nvme.h" |
| 28 | #include "fabrics.h" |
| 29 | #include <linux/nvme-auth.h> |
| 30 | |
| 31 | #define CREATE_TRACE_POINTS |
| 32 | #include "trace.h" |
| 33 | |
| 34 | #define NVME_MINORS (1U << MINORBITS) |
| 35 | |
| 36 | struct nvme_ns_info { |
| 37 | struct nvme_ns_ids ids; |
| 38 | u32 nsid; |
| 39 | __le32 anagrpid; |
| 40 | u8 pi_offset; |
| 41 | u16 endgid; |
| 42 | u64 runs; |
| 43 | bool is_shared; |
| 44 | bool is_readonly; |
| 45 | bool is_ready; |
| 46 | bool is_removed; |
| 47 | bool is_rotational; |
| 48 | bool no_vwc; |
| 49 | }; |
| 50 | |
| 51 | unsigned int admin_timeout = 60; |
| 52 | module_param(admin_timeout, uint, 0644); |
| 53 | MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands" ); |
| 54 | EXPORT_SYMBOL_GPL(admin_timeout); |
| 55 | |
| 56 | unsigned int nvme_io_timeout = 30; |
| 57 | module_param_named(io_timeout, nvme_io_timeout, uint, 0644); |
| 58 | MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O" ); |
| 59 | EXPORT_SYMBOL_GPL(nvme_io_timeout); |
| 60 | |
| 61 | static unsigned char shutdown_timeout = 5; |
| 62 | module_param(shutdown_timeout, byte, 0644); |
| 63 | MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown" ); |
| 64 | |
| 65 | static u8 nvme_max_retries = 5; |
| 66 | module_param_named(max_retries, nvme_max_retries, byte, 0644); |
| 67 | MODULE_PARM_DESC(max_retries, "max number of retries a command may have" ); |
| 68 | |
| 69 | static unsigned long default_ps_max_latency_us = 100000; |
| 70 | module_param(default_ps_max_latency_us, ulong, 0644); |
| 71 | MODULE_PARM_DESC(default_ps_max_latency_us, |
| 72 | "max power saving latency for new devices; use PM QOS to change per device" ); |
| 73 | |
| 74 | static bool force_apst; |
| 75 | module_param(force_apst, bool, 0644); |
| 76 | MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off" ); |
| 77 | |
| 78 | static unsigned long apst_primary_timeout_ms = 100; |
| 79 | module_param(apst_primary_timeout_ms, ulong, 0644); |
| 80 | MODULE_PARM_DESC(apst_primary_timeout_ms, |
| 81 | "primary APST timeout in ms" ); |
| 82 | |
| 83 | static unsigned long apst_secondary_timeout_ms = 2000; |
| 84 | module_param(apst_secondary_timeout_ms, ulong, 0644); |
| 85 | MODULE_PARM_DESC(apst_secondary_timeout_ms, |
| 86 | "secondary APST timeout in ms" ); |
| 87 | |
| 88 | static unsigned long apst_primary_latency_tol_us = 15000; |
| 89 | module_param(apst_primary_latency_tol_us, ulong, 0644); |
| 90 | MODULE_PARM_DESC(apst_primary_latency_tol_us, |
| 91 | "primary APST latency tolerance in us" ); |
| 92 | |
| 93 | static unsigned long apst_secondary_latency_tol_us = 100000; |
| 94 | module_param(apst_secondary_latency_tol_us, ulong, 0644); |
| 95 | MODULE_PARM_DESC(apst_secondary_latency_tol_us, |
| 96 | "secondary APST latency tolerance in us" ); |
| 97 | |
| 98 | /* |
| 99 | * Older kernels didn't enable protection information if it was at an offset. |
| 100 | * Newer kernels do, so it breaks reads on the upgrade if such formats were |
| 101 | * used in prior kernels since the metadata written did not contain a valid |
| 102 | * checksum. |
| 103 | */ |
| 104 | static bool disable_pi_offsets = false; |
| 105 | module_param(disable_pi_offsets, bool, 0444); |
| 106 | MODULE_PARM_DESC(disable_pi_offsets, |
| 107 | "disable protection information if it has an offset" ); |
| 108 | |
| 109 | /* |
| 110 | * nvme_wq - hosts nvme related works that are not reset or delete |
| 111 | * nvme_reset_wq - hosts nvme reset works |
| 112 | * nvme_delete_wq - hosts nvme delete works |
| 113 | * |
| 114 | * nvme_wq will host works such as scan, aen handling, fw activation, |
| 115 | * keep-alive, periodic reconnects etc. nvme_reset_wq |
| 116 | * runs reset works which also flush works hosted on nvme_wq for |
| 117 | * serialization purposes. nvme_delete_wq host controller deletion |
| 118 | * works which flush reset works for serialization. |
| 119 | */ |
| 120 | struct workqueue_struct *nvme_wq; |
| 121 | EXPORT_SYMBOL_GPL(nvme_wq); |
| 122 | |
| 123 | struct workqueue_struct *nvme_reset_wq; |
| 124 | EXPORT_SYMBOL_GPL(nvme_reset_wq); |
| 125 | |
| 126 | struct workqueue_struct *nvme_delete_wq; |
| 127 | EXPORT_SYMBOL_GPL(nvme_delete_wq); |
| 128 | |
| 129 | static LIST_HEAD(nvme_subsystems); |
| 130 | DEFINE_MUTEX(nvme_subsystems_lock); |
| 131 | |
| 132 | static DEFINE_IDA(nvme_instance_ida); |
| 133 | static dev_t nvme_ctrl_base_chr_devt; |
| 134 | static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env); |
| 135 | static const struct class nvme_class = { |
| 136 | .name = "nvme" , |
| 137 | .dev_uevent = nvme_class_uevent, |
| 138 | }; |
| 139 | |
| 140 | static const struct class nvme_subsys_class = { |
| 141 | .name = "nvme-subsystem" , |
| 142 | }; |
| 143 | |
| 144 | static DEFINE_IDA(nvme_ns_chr_minor_ida); |
| 145 | static dev_t nvme_ns_chr_devt; |
| 146 | static const struct class nvme_ns_chr_class = { |
| 147 | .name = "nvme-generic" , |
| 148 | }; |
| 149 | |
| 150 | static void nvme_put_subsystem(struct nvme_subsystem *subsys); |
| 151 | static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, |
| 152 | unsigned nsid); |
| 153 | static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, |
| 154 | struct nvme_command *cmd); |
| 155 | static int nvme_get_log_lsi(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, |
| 156 | u8 lsp, u8 csi, void *log, size_t size, u64 offset, u16 lsi); |
| 157 | |
| 158 | void nvme_queue_scan(struct nvme_ctrl *ctrl) |
| 159 | { |
| 160 | /* |
| 161 | * Only new queue scan work when admin and IO queues are both alive |
| 162 | */ |
| 163 | if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset) |
| 164 | queue_work(wq: nvme_wq, work: &ctrl->scan_work); |
| 165 | } |
| 166 | |
| 167 | /* |
| 168 | * Use this function to proceed with scheduling reset_work for a controller |
| 169 | * that had previously been set to the resetting state. This is intended for |
| 170 | * code paths that can't be interrupted by other reset attempts. A hot removal |
| 171 | * may prevent this from succeeding. |
| 172 | */ |
| 173 | int nvme_try_sched_reset(struct nvme_ctrl *ctrl) |
| 174 | { |
| 175 | if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING) |
| 176 | return -EBUSY; |
| 177 | if (!queue_work(wq: nvme_reset_wq, work: &ctrl->reset_work)) |
| 178 | return -EBUSY; |
| 179 | return 0; |
| 180 | } |
| 181 | EXPORT_SYMBOL_GPL(nvme_try_sched_reset); |
| 182 | |
| 183 | static void nvme_failfast_work(struct work_struct *work) |
| 184 | { |
| 185 | struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), |
| 186 | struct nvme_ctrl, failfast_work); |
| 187 | |
| 188 | if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING) |
| 189 | return; |
| 190 | |
| 191 | set_bit(nr: NVME_CTRL_FAILFAST_EXPIRED, addr: &ctrl->flags); |
| 192 | dev_info(ctrl->device, "failfast expired\n" ); |
| 193 | nvme_kick_requeue_lists(ctrl); |
| 194 | } |
| 195 | |
| 196 | static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) |
| 197 | { |
| 198 | if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) |
| 199 | return; |
| 200 | |
| 201 | schedule_delayed_work(dwork: &ctrl->failfast_work, |
| 202 | delay: ctrl->opts->fast_io_fail_tmo * HZ); |
| 203 | } |
| 204 | |
| 205 | static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) |
| 206 | { |
| 207 | if (!ctrl->opts) |
| 208 | return; |
| 209 | |
| 210 | cancel_delayed_work_sync(dwork: &ctrl->failfast_work); |
| 211 | clear_bit(nr: NVME_CTRL_FAILFAST_EXPIRED, addr: &ctrl->flags); |
| 212 | } |
| 213 | |
| 214 | |
| 215 | int nvme_reset_ctrl(struct nvme_ctrl *ctrl) |
| 216 | { |
| 217 | if (!nvme_change_ctrl_state(ctrl, new_state: NVME_CTRL_RESETTING)) |
| 218 | return -EBUSY; |
| 219 | if (!queue_work(wq: nvme_reset_wq, work: &ctrl->reset_work)) |
| 220 | return -EBUSY; |
| 221 | return 0; |
| 222 | } |
| 223 | EXPORT_SYMBOL_GPL(nvme_reset_ctrl); |
| 224 | |
| 225 | int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) |
| 226 | { |
| 227 | int ret; |
| 228 | |
| 229 | ret = nvme_reset_ctrl(ctrl); |
| 230 | if (!ret) { |
| 231 | flush_work(work: &ctrl->reset_work); |
| 232 | if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) |
| 233 | ret = -ENETRESET; |
| 234 | } |
| 235 | |
| 236 | return ret; |
| 237 | } |
| 238 | |
| 239 | static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) |
| 240 | { |
| 241 | dev_info(ctrl->device, |
| 242 | "Removing ctrl: NQN \"%s\"\n" , nvmf_ctrl_subsysnqn(ctrl)); |
| 243 | |
| 244 | flush_work(work: &ctrl->reset_work); |
| 245 | nvme_stop_ctrl(ctrl); |
| 246 | nvme_remove_namespaces(ctrl); |
| 247 | ctrl->ops->delete_ctrl(ctrl); |
| 248 | nvme_uninit_ctrl(ctrl); |
| 249 | } |
| 250 | |
| 251 | static void nvme_delete_ctrl_work(struct work_struct *work) |
| 252 | { |
| 253 | struct nvme_ctrl *ctrl = |
| 254 | container_of(work, struct nvme_ctrl, delete_work); |
| 255 | |
| 256 | nvme_do_delete_ctrl(ctrl); |
| 257 | } |
| 258 | |
| 259 | int nvme_delete_ctrl(struct nvme_ctrl *ctrl) |
| 260 | { |
| 261 | if (!nvme_change_ctrl_state(ctrl, new_state: NVME_CTRL_DELETING)) |
| 262 | return -EBUSY; |
| 263 | if (!queue_work(wq: nvme_delete_wq, work: &ctrl->delete_work)) |
| 264 | return -EBUSY; |
| 265 | return 0; |
| 266 | } |
| 267 | EXPORT_SYMBOL_GPL(nvme_delete_ctrl); |
| 268 | |
| 269 | void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) |
| 270 | { |
| 271 | /* |
| 272 | * Keep a reference until nvme_do_delete_ctrl() complete, |
| 273 | * since ->delete_ctrl can free the controller. |
| 274 | */ |
| 275 | nvme_get_ctrl(ctrl); |
| 276 | if (nvme_change_ctrl_state(ctrl, new_state: NVME_CTRL_DELETING)) |
| 277 | nvme_do_delete_ctrl(ctrl); |
| 278 | nvme_put_ctrl(ctrl); |
| 279 | } |
| 280 | |
| 281 | static blk_status_t nvme_error_status(u16 status) |
| 282 | { |
| 283 | switch (status & NVME_SCT_SC_MASK) { |
| 284 | case NVME_SC_SUCCESS: |
| 285 | return BLK_STS_OK; |
| 286 | case NVME_SC_CAP_EXCEEDED: |
| 287 | return BLK_STS_NOSPC; |
| 288 | case NVME_SC_LBA_RANGE: |
| 289 | case NVME_SC_CMD_INTERRUPTED: |
| 290 | case NVME_SC_NS_NOT_READY: |
| 291 | return BLK_STS_TARGET; |
| 292 | case NVME_SC_BAD_ATTRIBUTES: |
| 293 | case NVME_SC_INVALID_OPCODE: |
| 294 | case NVME_SC_INVALID_FIELD: |
| 295 | case NVME_SC_INVALID_NS: |
| 296 | return BLK_STS_NOTSUPP; |
| 297 | case NVME_SC_WRITE_FAULT: |
| 298 | case NVME_SC_READ_ERROR: |
| 299 | case NVME_SC_UNWRITTEN_BLOCK: |
| 300 | case NVME_SC_ACCESS_DENIED: |
| 301 | case NVME_SC_READ_ONLY: |
| 302 | case NVME_SC_COMPARE_FAILED: |
| 303 | return BLK_STS_MEDIUM; |
| 304 | case NVME_SC_GUARD_CHECK: |
| 305 | case NVME_SC_APPTAG_CHECK: |
| 306 | case NVME_SC_REFTAG_CHECK: |
| 307 | case NVME_SC_INVALID_PI: |
| 308 | return BLK_STS_PROTECTION; |
| 309 | case NVME_SC_RESERVATION_CONFLICT: |
| 310 | return BLK_STS_RESV_CONFLICT; |
| 311 | case NVME_SC_HOST_PATH_ERROR: |
| 312 | return BLK_STS_TRANSPORT; |
| 313 | case NVME_SC_ZONE_TOO_MANY_ACTIVE: |
| 314 | return BLK_STS_ZONE_ACTIVE_RESOURCE; |
| 315 | case NVME_SC_ZONE_TOO_MANY_OPEN: |
| 316 | return BLK_STS_ZONE_OPEN_RESOURCE; |
| 317 | default: |
| 318 | return BLK_STS_IOERR; |
| 319 | } |
| 320 | } |
| 321 | |
| 322 | static void nvme_retry_req(struct request *req) |
| 323 | { |
| 324 | unsigned long delay = 0; |
| 325 | u16 crd; |
| 326 | |
| 327 | /* The mask and shift result must be <= 3 */ |
| 328 | crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11; |
| 329 | if (crd) |
| 330 | delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; |
| 331 | |
| 332 | nvme_req(req)->retries++; |
| 333 | blk_mq_requeue_request(rq: req, kick_requeue_list: false); |
| 334 | blk_mq_delay_kick_requeue_list(q: req->q, msecs: delay); |
| 335 | } |
| 336 | |
| 337 | static void nvme_log_error(struct request *req) |
| 338 | { |
| 339 | struct nvme_ns *ns = req->q->queuedata; |
| 340 | struct nvme_request *nr = nvme_req(req); |
| 341 | |
| 342 | if (ns) { |
| 343 | pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n" , |
| 344 | ns->disk ? ns->disk->disk_name : "?" , |
| 345 | nvme_get_opcode_str(nr->cmd->common.opcode), |
| 346 | nr->cmd->common.opcode, |
| 347 | nvme_sect_to_lba(ns->head, blk_rq_pos(req)), |
| 348 | blk_rq_bytes(req) >> ns->head->lba_shift, |
| 349 | nvme_get_error_status_str(nr->status), |
| 350 | NVME_SCT(nr->status), /* Status Code Type */ |
| 351 | nr->status & NVME_SC_MASK, /* Status Code */ |
| 352 | nr->status & NVME_STATUS_MORE ? "MORE " : "" , |
| 353 | nr->status & NVME_STATUS_DNR ? "DNR " : "" ); |
| 354 | return; |
| 355 | } |
| 356 | |
| 357 | pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n" , |
| 358 | dev_name(nr->ctrl->device), |
| 359 | nvme_get_admin_opcode_str(nr->cmd->common.opcode), |
| 360 | nr->cmd->common.opcode, |
| 361 | nvme_get_error_status_str(nr->status), |
| 362 | NVME_SCT(nr->status), /* Status Code Type */ |
| 363 | nr->status & NVME_SC_MASK, /* Status Code */ |
| 364 | nr->status & NVME_STATUS_MORE ? "MORE " : "" , |
| 365 | nr->status & NVME_STATUS_DNR ? "DNR " : "" ); |
| 366 | } |
| 367 | |
| 368 | static void nvme_log_err_passthru(struct request *req) |
| 369 | { |
| 370 | struct nvme_ns *ns = req->q->queuedata; |
| 371 | struct nvme_request *nr = nvme_req(req); |
| 372 | |
| 373 | pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s" |
| 374 | "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n" , |
| 375 | ns ? ns->disk->disk_name : dev_name(nr->ctrl->device), |
| 376 | ns ? nvme_get_opcode_str(nr->cmd->common.opcode) : |
| 377 | nvme_get_admin_opcode_str(nr->cmd->common.opcode), |
| 378 | nr->cmd->common.opcode, |
| 379 | nvme_get_error_status_str(nr->status), |
| 380 | NVME_SCT(nr->status), /* Status Code Type */ |
| 381 | nr->status & NVME_SC_MASK, /* Status Code */ |
| 382 | nr->status & NVME_STATUS_MORE ? "MORE " : "" , |
| 383 | nr->status & NVME_STATUS_DNR ? "DNR " : "" , |
| 384 | nr->cmd->common.cdw10, |
| 385 | nr->cmd->common.cdw11, |
| 386 | nr->cmd->common.cdw12, |
| 387 | nr->cmd->common.cdw13, |
| 388 | nr->cmd->common.cdw14, |
| 389 | nr->cmd->common.cdw14); |
| 390 | } |
| 391 | |
| 392 | enum nvme_disposition { |
| 393 | COMPLETE, |
| 394 | RETRY, |
| 395 | FAILOVER, |
| 396 | AUTHENTICATE, |
| 397 | }; |
| 398 | |
| 399 | static inline enum nvme_disposition nvme_decide_disposition(struct request *req) |
| 400 | { |
| 401 | if (likely(nvme_req(req)->status == 0)) |
| 402 | return COMPLETE; |
| 403 | |
| 404 | if (blk_noretry_request(req) || |
| 405 | (nvme_req(req)->status & NVME_STATUS_DNR) || |
| 406 | nvme_req(req)->retries >= nvme_max_retries) |
| 407 | return COMPLETE; |
| 408 | |
| 409 | if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED) |
| 410 | return AUTHENTICATE; |
| 411 | |
| 412 | if (req->cmd_flags & REQ_NVME_MPATH) { |
| 413 | if (nvme_is_path_error(status: nvme_req(req)->status) || |
| 414 | blk_queue_dying(req->q)) |
| 415 | return FAILOVER; |
| 416 | } else { |
| 417 | if (blk_queue_dying(req->q)) |
| 418 | return COMPLETE; |
| 419 | } |
| 420 | |
| 421 | return RETRY; |
| 422 | } |
| 423 | |
| 424 | static inline void nvme_end_req_zoned(struct request *req) |
| 425 | { |
| 426 | if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && |
| 427 | req_op(req) == REQ_OP_ZONE_APPEND) { |
| 428 | struct nvme_ns *ns = req->q->queuedata; |
| 429 | |
| 430 | req->__sector = nvme_lba_to_sect(head: ns->head, |
| 431 | le64_to_cpu(nvme_req(req)->result.u64)); |
| 432 | } |
| 433 | } |
| 434 | |
| 435 | static inline void __nvme_end_req(struct request *req) |
| 436 | { |
| 437 | if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) { |
| 438 | if (blk_rq_is_passthrough(rq: req)) |
| 439 | nvme_log_err_passthru(req); |
| 440 | else |
| 441 | nvme_log_error(req); |
| 442 | } |
| 443 | nvme_end_req_zoned(req); |
| 444 | nvme_trace_bio_complete(req); |
| 445 | if (req->cmd_flags & REQ_NVME_MPATH) |
| 446 | nvme_mpath_end_request(rq: req); |
| 447 | } |
| 448 | |
| 449 | void nvme_end_req(struct request *req) |
| 450 | { |
| 451 | blk_status_t status = nvme_error_status(status: nvme_req(req)->status); |
| 452 | |
| 453 | __nvme_end_req(req); |
| 454 | blk_mq_end_request(rq: req, error: status); |
| 455 | } |
| 456 | |
| 457 | void nvme_complete_rq(struct request *req) |
| 458 | { |
| 459 | struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; |
| 460 | |
| 461 | trace_nvme_complete_rq(req); |
| 462 | nvme_cleanup_cmd(req); |
| 463 | |
| 464 | /* |
| 465 | * Completions of long-running commands should not be able to |
| 466 | * defer sending of periodic keep alives, since the controller |
| 467 | * may have completed processing such commands a long time ago |
| 468 | * (arbitrarily close to command submission time). |
| 469 | * req->deadline - req->timeout is the command submission time |
| 470 | * in jiffies. |
| 471 | */ |
| 472 | if (ctrl->kas && |
| 473 | req->deadline - req->timeout >= ctrl->ka_last_check_time) |
| 474 | ctrl->comp_seen = true; |
| 475 | |
| 476 | switch (nvme_decide_disposition(req)) { |
| 477 | case COMPLETE: |
| 478 | nvme_end_req(req); |
| 479 | return; |
| 480 | case RETRY: |
| 481 | nvme_retry_req(req); |
| 482 | return; |
| 483 | case FAILOVER: |
| 484 | nvme_failover_req(req); |
| 485 | return; |
| 486 | case AUTHENTICATE: |
| 487 | #ifdef CONFIG_NVME_HOST_AUTH |
| 488 | queue_work(wq: nvme_wq, work: &ctrl->dhchap_auth_work); |
| 489 | nvme_retry_req(req); |
| 490 | #else |
| 491 | nvme_end_req(req); |
| 492 | #endif |
| 493 | return; |
| 494 | } |
| 495 | } |
| 496 | EXPORT_SYMBOL_GPL(nvme_complete_rq); |
| 497 | |
| 498 | void nvme_complete_batch_req(struct request *req) |
| 499 | { |
| 500 | trace_nvme_complete_rq(req); |
| 501 | nvme_cleanup_cmd(req); |
| 502 | __nvme_end_req(req); |
| 503 | } |
| 504 | EXPORT_SYMBOL_GPL(nvme_complete_batch_req); |
| 505 | |
| 506 | /* |
| 507 | * Called to unwind from ->queue_rq on a failed command submission so that the |
| 508 | * multipathing code gets called to potentially failover to another path. |
| 509 | * The caller needs to unwind all transport specific resource allocations and |
| 510 | * must return propagate the return value. |
| 511 | */ |
| 512 | blk_status_t nvme_host_path_error(struct request *req) |
| 513 | { |
| 514 | nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; |
| 515 | blk_mq_set_request_complete(rq: req); |
| 516 | nvme_complete_rq(req); |
| 517 | return BLK_STS_OK; |
| 518 | } |
| 519 | EXPORT_SYMBOL_GPL(nvme_host_path_error); |
| 520 | |
| 521 | bool nvme_cancel_request(struct request *req, void *data) |
| 522 | { |
| 523 | dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, |
| 524 | "Cancelling I/O %d" , req->tag); |
| 525 | |
| 526 | /* don't abort one completed or idle request */ |
| 527 | if (blk_mq_rq_state(rq: req) != MQ_RQ_IN_FLIGHT) |
| 528 | return true; |
| 529 | |
| 530 | nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; |
| 531 | nvme_req(req)->flags |= NVME_REQ_CANCELLED; |
| 532 | blk_mq_complete_request(rq: req); |
| 533 | return true; |
| 534 | } |
| 535 | EXPORT_SYMBOL_GPL(nvme_cancel_request); |
| 536 | |
| 537 | void nvme_cancel_tagset(struct nvme_ctrl *ctrl) |
| 538 | { |
| 539 | if (ctrl->tagset) { |
| 540 | blk_mq_tagset_busy_iter(tagset: ctrl->tagset, |
| 541 | fn: nvme_cancel_request, priv: ctrl); |
| 542 | blk_mq_tagset_wait_completed_request(tagset: ctrl->tagset); |
| 543 | } |
| 544 | } |
| 545 | EXPORT_SYMBOL_GPL(nvme_cancel_tagset); |
| 546 | |
| 547 | void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) |
| 548 | { |
| 549 | if (ctrl->admin_tagset) { |
| 550 | blk_mq_tagset_busy_iter(tagset: ctrl->admin_tagset, |
| 551 | fn: nvme_cancel_request, priv: ctrl); |
| 552 | blk_mq_tagset_wait_completed_request(tagset: ctrl->admin_tagset); |
| 553 | } |
| 554 | } |
| 555 | EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); |
| 556 | |
| 557 | bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, |
| 558 | enum nvme_ctrl_state new_state) |
| 559 | { |
| 560 | enum nvme_ctrl_state old_state; |
| 561 | unsigned long flags; |
| 562 | bool changed = false; |
| 563 | |
| 564 | spin_lock_irqsave(&ctrl->lock, flags); |
| 565 | |
| 566 | old_state = nvme_ctrl_state(ctrl); |
| 567 | switch (new_state) { |
| 568 | case NVME_CTRL_LIVE: |
| 569 | switch (old_state) { |
| 570 | case NVME_CTRL_CONNECTING: |
| 571 | changed = true; |
| 572 | fallthrough; |
| 573 | default: |
| 574 | break; |
| 575 | } |
| 576 | break; |
| 577 | case NVME_CTRL_RESETTING: |
| 578 | switch (old_state) { |
| 579 | case NVME_CTRL_NEW: |
| 580 | case NVME_CTRL_LIVE: |
| 581 | changed = true; |
| 582 | fallthrough; |
| 583 | default: |
| 584 | break; |
| 585 | } |
| 586 | break; |
| 587 | case NVME_CTRL_CONNECTING: |
| 588 | switch (old_state) { |
| 589 | case NVME_CTRL_NEW: |
| 590 | case NVME_CTRL_RESETTING: |
| 591 | changed = true; |
| 592 | fallthrough; |
| 593 | default: |
| 594 | break; |
| 595 | } |
| 596 | break; |
| 597 | case NVME_CTRL_DELETING: |
| 598 | switch (old_state) { |
| 599 | case NVME_CTRL_LIVE: |
| 600 | case NVME_CTRL_RESETTING: |
| 601 | case NVME_CTRL_CONNECTING: |
| 602 | changed = true; |
| 603 | fallthrough; |
| 604 | default: |
| 605 | break; |
| 606 | } |
| 607 | break; |
| 608 | case NVME_CTRL_DELETING_NOIO: |
| 609 | switch (old_state) { |
| 610 | case NVME_CTRL_DELETING: |
| 611 | case NVME_CTRL_DEAD: |
| 612 | changed = true; |
| 613 | fallthrough; |
| 614 | default: |
| 615 | break; |
| 616 | } |
| 617 | break; |
| 618 | case NVME_CTRL_DEAD: |
| 619 | switch (old_state) { |
| 620 | case NVME_CTRL_DELETING: |
| 621 | changed = true; |
| 622 | fallthrough; |
| 623 | default: |
| 624 | break; |
| 625 | } |
| 626 | break; |
| 627 | default: |
| 628 | break; |
| 629 | } |
| 630 | |
| 631 | if (changed) { |
| 632 | WRITE_ONCE(ctrl->state, new_state); |
| 633 | wake_up_all(&ctrl->state_wq); |
| 634 | } |
| 635 | |
| 636 | spin_unlock_irqrestore(lock: &ctrl->lock, flags); |
| 637 | if (!changed) |
| 638 | return false; |
| 639 | |
| 640 | if (new_state == NVME_CTRL_LIVE) { |
| 641 | if (old_state == NVME_CTRL_CONNECTING) |
| 642 | nvme_stop_failfast_work(ctrl); |
| 643 | nvme_kick_requeue_lists(ctrl); |
| 644 | } else if (new_state == NVME_CTRL_CONNECTING && |
| 645 | old_state == NVME_CTRL_RESETTING) { |
| 646 | nvme_start_failfast_work(ctrl); |
| 647 | } |
| 648 | return changed; |
| 649 | } |
| 650 | EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); |
| 651 | |
| 652 | /* |
| 653 | * Waits for the controller state to be resetting, or returns false if it is |
| 654 | * not possible to ever transition to that state. |
| 655 | */ |
| 656 | bool nvme_wait_reset(struct nvme_ctrl *ctrl) |
| 657 | { |
| 658 | wait_event(ctrl->state_wq, |
| 659 | nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || |
| 660 | nvme_state_terminal(ctrl)); |
| 661 | return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING; |
| 662 | } |
| 663 | EXPORT_SYMBOL_GPL(nvme_wait_reset); |
| 664 | |
| 665 | static void nvme_free_ns_head(struct kref *ref) |
| 666 | { |
| 667 | struct nvme_ns_head *head = |
| 668 | container_of(ref, struct nvme_ns_head, ref); |
| 669 | |
| 670 | nvme_mpath_put_disk(head); |
| 671 | ida_free(&head->subsys->ns_ida, id: head->instance); |
| 672 | cleanup_srcu_struct(ssp: &head->srcu); |
| 673 | nvme_put_subsystem(subsys: head->subsys); |
| 674 | kfree(objp: head->plids); |
| 675 | kfree(objp: head); |
| 676 | } |
| 677 | |
| 678 | bool nvme_tryget_ns_head(struct nvme_ns_head *head) |
| 679 | { |
| 680 | return kref_get_unless_zero(kref: &head->ref); |
| 681 | } |
| 682 | |
| 683 | void nvme_put_ns_head(struct nvme_ns_head *head) |
| 684 | { |
| 685 | kref_put(kref: &head->ref, release: nvme_free_ns_head); |
| 686 | } |
| 687 | |
| 688 | static void nvme_free_ns(struct kref *kref) |
| 689 | { |
| 690 | struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); |
| 691 | |
| 692 | put_disk(disk: ns->disk); |
| 693 | nvme_put_ns_head(head: ns->head); |
| 694 | nvme_put_ctrl(ctrl: ns->ctrl); |
| 695 | kfree(objp: ns); |
| 696 | } |
| 697 | |
| 698 | bool nvme_get_ns(struct nvme_ns *ns) |
| 699 | { |
| 700 | return kref_get_unless_zero(kref: &ns->kref); |
| 701 | } |
| 702 | |
| 703 | void nvme_put_ns(struct nvme_ns *ns) |
| 704 | { |
| 705 | kref_put(kref: &ns->kref, release: nvme_free_ns); |
| 706 | } |
| 707 | EXPORT_SYMBOL_NS_GPL(nvme_put_ns, "NVME_TARGET_PASSTHRU" ); |
| 708 | |
| 709 | static inline void nvme_clear_nvme_request(struct request *req) |
| 710 | { |
| 711 | nvme_req(req)->status = 0; |
| 712 | nvme_req(req)->retries = 0; |
| 713 | nvme_req(req)->flags = 0; |
| 714 | req->rq_flags |= RQF_DONTPREP; |
| 715 | } |
| 716 | |
| 717 | /* initialize a passthrough request */ |
| 718 | void nvme_init_request(struct request *req, struct nvme_command *cmd) |
| 719 | { |
| 720 | struct nvme_request *nr = nvme_req(req); |
| 721 | bool logging_enabled; |
| 722 | |
| 723 | if (req->q->queuedata) { |
| 724 | struct nvme_ns *ns = req->q->disk->private_data; |
| 725 | |
| 726 | logging_enabled = ns->head->passthru_err_log_enabled; |
| 727 | req->timeout = NVME_IO_TIMEOUT; |
| 728 | } else { /* no queuedata implies admin queue */ |
| 729 | logging_enabled = nr->ctrl->passthru_err_log_enabled; |
| 730 | req->timeout = NVME_ADMIN_TIMEOUT; |
| 731 | } |
| 732 | |
| 733 | if (!logging_enabled) |
| 734 | req->rq_flags |= RQF_QUIET; |
| 735 | |
| 736 | /* passthru commands should let the driver set the SGL flags */ |
| 737 | cmd->common.flags &= ~NVME_CMD_SGL_ALL; |
| 738 | |
| 739 | req->cmd_flags |= REQ_FAILFAST_DRIVER; |
| 740 | if (req->mq_hctx->type == HCTX_TYPE_POLL) |
| 741 | req->cmd_flags |= REQ_POLLED; |
| 742 | nvme_clear_nvme_request(req); |
| 743 | memcpy(nr->cmd, cmd, sizeof(*cmd)); |
| 744 | } |
| 745 | EXPORT_SYMBOL_GPL(nvme_init_request); |
| 746 | |
| 747 | /* |
| 748 | * For something we're not in a state to send to the device the default action |
| 749 | * is to busy it and retry it after the controller state is recovered. However, |
| 750 | * if the controller is deleting or if anything is marked for failfast or |
| 751 | * nvme multipath it is immediately failed. |
| 752 | * |
| 753 | * Note: commands used to initialize the controller will be marked for failfast. |
| 754 | * Note: nvme cli/ioctl commands are marked for failfast. |
| 755 | */ |
| 756 | blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, |
| 757 | struct request *rq) |
| 758 | { |
| 759 | enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); |
| 760 | |
| 761 | if (state != NVME_CTRL_DELETING_NOIO && |
| 762 | state != NVME_CTRL_DELETING && |
| 763 | state != NVME_CTRL_DEAD && |
| 764 | !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && |
| 765 | !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) |
| 766 | return BLK_STS_RESOURCE; |
| 767 | return nvme_host_path_error(rq); |
| 768 | } |
| 769 | EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); |
| 770 | |
| 771 | bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, |
| 772 | bool queue_live, enum nvme_ctrl_state state) |
| 773 | { |
| 774 | struct nvme_request *req = nvme_req(req: rq); |
| 775 | |
| 776 | /* |
| 777 | * currently we have a problem sending passthru commands |
| 778 | * on the admin_q if the controller is not LIVE because we can't |
| 779 | * make sure that they are going out after the admin connect, |
| 780 | * controller enable and/or other commands in the initialization |
| 781 | * sequence. until the controller will be LIVE, fail with |
| 782 | * BLK_STS_RESOURCE so that they will be rescheduled. |
| 783 | */ |
| 784 | if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) |
| 785 | return false; |
| 786 | |
| 787 | if (ctrl->ops->flags & NVME_F_FABRICS) { |
| 788 | /* |
| 789 | * Only allow commands on a live queue, except for the connect |
| 790 | * command, which is require to set the queue live in the |
| 791 | * appropinquate states. |
| 792 | */ |
| 793 | switch (state) { |
| 794 | case NVME_CTRL_CONNECTING: |
| 795 | if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(cmd: req->cmd) && |
| 796 | (req->cmd->fabrics.fctype == nvme_fabrics_type_connect || |
| 797 | req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send || |
| 798 | req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive)) |
| 799 | return true; |
| 800 | break; |
| 801 | default: |
| 802 | break; |
| 803 | case NVME_CTRL_DEAD: |
| 804 | return false; |
| 805 | } |
| 806 | } |
| 807 | |
| 808 | return queue_live; |
| 809 | } |
| 810 | EXPORT_SYMBOL_GPL(__nvme_check_ready); |
| 811 | |
| 812 | static inline void nvme_setup_flush(struct nvme_ns *ns, |
| 813 | struct nvme_command *cmnd) |
| 814 | { |
| 815 | memset(cmnd, 0, sizeof(*cmnd)); |
| 816 | cmnd->common.opcode = nvme_cmd_flush; |
| 817 | cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); |
| 818 | } |
| 819 | |
| 820 | static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, |
| 821 | struct nvme_command *cmnd) |
| 822 | { |
| 823 | unsigned short segments = blk_rq_nr_discard_segments(rq: req), n = 0; |
| 824 | struct nvme_dsm_range *range; |
| 825 | struct bio *bio; |
| 826 | |
| 827 | /* |
| 828 | * Some devices do not consider the DSM 'Number of Ranges' field when |
| 829 | * determining how much data to DMA. Always allocate memory for maximum |
| 830 | * number of segments to prevent device reading beyond end of buffer. |
| 831 | */ |
| 832 | static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; |
| 833 | |
| 834 | range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); |
| 835 | if (!range) { |
| 836 | /* |
| 837 | * If we fail allocation our range, fallback to the controller |
| 838 | * discard page. If that's also busy, it's safe to return |
| 839 | * busy, as we know we can make progress once that's freed. |
| 840 | */ |
| 841 | if (test_and_set_bit_lock(nr: 0, addr: &ns->ctrl->discard_page_busy)) |
| 842 | return BLK_STS_RESOURCE; |
| 843 | |
| 844 | range = page_address(ns->ctrl->discard_page); |
| 845 | } |
| 846 | |
| 847 | if (queue_max_discard_segments(q: req->q) == 1) { |
| 848 | u64 slba = nvme_sect_to_lba(head: ns->head, sector: blk_rq_pos(rq: req)); |
| 849 | u32 nlb = blk_rq_sectors(rq: req) >> (ns->head->lba_shift - 9); |
| 850 | |
| 851 | range[0].cattr = cpu_to_le32(0); |
| 852 | range[0].nlb = cpu_to_le32(nlb); |
| 853 | range[0].slba = cpu_to_le64(slba); |
| 854 | n = 1; |
| 855 | } else { |
| 856 | __rq_for_each_bio(bio, req) { |
| 857 | u64 slba = nvme_sect_to_lba(head: ns->head, |
| 858 | sector: bio->bi_iter.bi_sector); |
| 859 | u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift; |
| 860 | |
| 861 | if (n < segments) { |
| 862 | range[n].cattr = cpu_to_le32(0); |
| 863 | range[n].nlb = cpu_to_le32(nlb); |
| 864 | range[n].slba = cpu_to_le64(slba); |
| 865 | } |
| 866 | n++; |
| 867 | } |
| 868 | } |
| 869 | |
| 870 | if (WARN_ON_ONCE(n != segments)) { |
| 871 | if (virt_to_page(range) == ns->ctrl->discard_page) |
| 872 | clear_bit_unlock(nr: 0, addr: &ns->ctrl->discard_page_busy); |
| 873 | else |
| 874 | kfree(objp: range); |
| 875 | return BLK_STS_IOERR; |
| 876 | } |
| 877 | |
| 878 | memset(cmnd, 0, sizeof(*cmnd)); |
| 879 | cmnd->dsm.opcode = nvme_cmd_dsm; |
| 880 | cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); |
| 881 | cmnd->dsm.nr = cpu_to_le32(segments - 1); |
| 882 | cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); |
| 883 | |
| 884 | bvec_set_virt(bv: &req->special_vec, vaddr: range, len: alloc_size); |
| 885 | req->rq_flags |= RQF_SPECIAL_PAYLOAD; |
| 886 | |
| 887 | return BLK_STS_OK; |
| 888 | } |
| 889 | |
| 890 | static void nvme_set_app_tag(struct request *req, struct nvme_command *cmnd) |
| 891 | { |
| 892 | cmnd->rw.lbat = cpu_to_le16(bio_integrity(req->bio)->app_tag); |
| 893 | cmnd->rw.lbatm = cpu_to_le16(0xffff); |
| 894 | } |
| 895 | |
| 896 | static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, |
| 897 | struct request *req) |
| 898 | { |
| 899 | u32 upper, lower; |
| 900 | u64 ref48; |
| 901 | |
| 902 | /* both rw and write zeroes share the same reftag format */ |
| 903 | switch (ns->head->guard_type) { |
| 904 | case NVME_NVM_NS_16B_GUARD: |
| 905 | cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); |
| 906 | break; |
| 907 | case NVME_NVM_NS_64B_GUARD: |
| 908 | ref48 = ext_pi_ref_tag(rq: req); |
| 909 | lower = lower_32_bits(ref48); |
| 910 | upper = upper_32_bits(ref48); |
| 911 | |
| 912 | cmnd->rw.reftag = cpu_to_le32(lower); |
| 913 | cmnd->rw.cdw3 = cpu_to_le32(upper); |
| 914 | break; |
| 915 | default: |
| 916 | break; |
| 917 | } |
| 918 | } |
| 919 | |
| 920 | static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, |
| 921 | struct request *req, struct nvme_command *cmnd) |
| 922 | { |
| 923 | memset(cmnd, 0, sizeof(*cmnd)); |
| 924 | |
| 925 | if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) |
| 926 | return nvme_setup_discard(ns, req, cmnd); |
| 927 | |
| 928 | cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; |
| 929 | cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); |
| 930 | cmnd->write_zeroes.slba = |
| 931 | cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); |
| 932 | cmnd->write_zeroes.length = |
| 933 | cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); |
| 934 | |
| 935 | if (!(req->cmd_flags & REQ_NOUNMAP) && |
| 936 | (ns->head->features & NVME_NS_DEAC)) |
| 937 | cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC); |
| 938 | |
| 939 | if (nvme_ns_has_pi(head: ns->head)) { |
| 940 | cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT); |
| 941 | |
| 942 | switch (ns->head->pi_type) { |
| 943 | case NVME_NS_DPS_PI_TYPE1: |
| 944 | case NVME_NS_DPS_PI_TYPE2: |
| 945 | nvme_set_ref_tag(ns, cmnd, req); |
| 946 | break; |
| 947 | } |
| 948 | } |
| 949 | |
| 950 | return BLK_STS_OK; |
| 951 | } |
| 952 | |
| 953 | /* |
| 954 | * NVMe does not support a dedicated command to issue an atomic write. A write |
| 955 | * which does adhere to the device atomic limits will silently be executed |
| 956 | * non-atomically. The request issuer should ensure that the write is within |
| 957 | * the queue atomic writes limits, but just validate this in case it is not. |
| 958 | */ |
| 959 | static bool nvme_valid_atomic_write(struct request *req) |
| 960 | { |
| 961 | struct request_queue *q = req->q; |
| 962 | u32 boundary_bytes = queue_atomic_write_boundary_bytes(q); |
| 963 | |
| 964 | if (blk_rq_bytes(rq: req) > queue_atomic_write_unit_max_bytes(q)) |
| 965 | return false; |
| 966 | |
| 967 | if (boundary_bytes) { |
| 968 | u64 mask = boundary_bytes - 1, imask = ~mask; |
| 969 | u64 start = blk_rq_pos(rq: req) << SECTOR_SHIFT; |
| 970 | u64 end = start + blk_rq_bytes(rq: req) - 1; |
| 971 | |
| 972 | /* If greater then must be crossing a boundary */ |
| 973 | if (blk_rq_bytes(rq: req) > boundary_bytes) |
| 974 | return false; |
| 975 | |
| 976 | if ((start & imask) != (end & imask)) |
| 977 | return false; |
| 978 | } |
| 979 | |
| 980 | return true; |
| 981 | } |
| 982 | |
| 983 | static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, |
| 984 | struct request *req, struct nvme_command *cmnd, |
| 985 | enum nvme_opcode op) |
| 986 | { |
| 987 | u16 control = 0; |
| 988 | u32 dsmgmt = 0; |
| 989 | |
| 990 | if (req->cmd_flags & REQ_FUA) |
| 991 | control |= NVME_RW_FUA; |
| 992 | if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) |
| 993 | control |= NVME_RW_LR; |
| 994 | |
| 995 | if (req->cmd_flags & REQ_RAHEAD) |
| 996 | dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; |
| 997 | |
| 998 | if (op == nvme_cmd_write && ns->head->nr_plids) { |
| 999 | u16 write_stream = req->bio->bi_write_stream; |
| 1000 | |
| 1001 | if (WARN_ON_ONCE(write_stream > ns->head->nr_plids)) |
| 1002 | return BLK_STS_INVAL; |
| 1003 | |
| 1004 | if (write_stream) { |
| 1005 | dsmgmt |= ns->head->plids[write_stream - 1] << 16; |
| 1006 | control |= NVME_RW_DTYPE_DPLCMT; |
| 1007 | } |
| 1008 | } |
| 1009 | |
| 1010 | if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req)) |
| 1011 | return BLK_STS_INVAL; |
| 1012 | |
| 1013 | cmnd->rw.opcode = op; |
| 1014 | cmnd->rw.flags = 0; |
| 1015 | cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); |
| 1016 | cmnd->rw.cdw2 = 0; |
| 1017 | cmnd->rw.cdw3 = 0; |
| 1018 | cmnd->rw.metadata = 0; |
| 1019 | cmnd->rw.slba = |
| 1020 | cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); |
| 1021 | cmnd->rw.length = |
| 1022 | cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); |
| 1023 | cmnd->rw.reftag = 0; |
| 1024 | cmnd->rw.lbat = 0; |
| 1025 | cmnd->rw.lbatm = 0; |
| 1026 | |
| 1027 | if (ns->head->ms) { |
| 1028 | /* |
| 1029 | * If formatted with metadata, the block layer always provides a |
| 1030 | * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else |
| 1031 | * we enable the PRACT bit for protection information or set the |
| 1032 | * namespace capacity to zero to prevent any I/O. |
| 1033 | */ |
| 1034 | if (!blk_integrity_rq(rq: req)) { |
| 1035 | if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head))) |
| 1036 | return BLK_STS_NOTSUPP; |
| 1037 | control |= NVME_RW_PRINFO_PRACT; |
| 1038 | } |
| 1039 | |
| 1040 | if (bio_integrity_flagged(bio: req->bio, flag: BIP_CHECK_GUARD)) |
| 1041 | control |= NVME_RW_PRINFO_PRCHK_GUARD; |
| 1042 | if (bio_integrity_flagged(bio: req->bio, flag: BIP_CHECK_REFTAG)) { |
| 1043 | control |= NVME_RW_PRINFO_PRCHK_REF; |
| 1044 | if (op == nvme_cmd_zone_append) |
| 1045 | control |= NVME_RW_APPEND_PIREMAP; |
| 1046 | nvme_set_ref_tag(ns, cmnd, req); |
| 1047 | } |
| 1048 | if (bio_integrity_flagged(bio: req->bio, flag: BIP_CHECK_APPTAG)) { |
| 1049 | control |= NVME_RW_PRINFO_PRCHK_APP; |
| 1050 | nvme_set_app_tag(req, cmnd); |
| 1051 | } |
| 1052 | } |
| 1053 | |
| 1054 | cmnd->rw.control = cpu_to_le16(control); |
| 1055 | cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); |
| 1056 | return 0; |
| 1057 | } |
| 1058 | |
| 1059 | void nvme_cleanup_cmd(struct request *req) |
| 1060 | { |
| 1061 | if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { |
| 1062 | struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; |
| 1063 | |
| 1064 | if (req->special_vec.bv_page == ctrl->discard_page) |
| 1065 | clear_bit_unlock(nr: 0, addr: &ctrl->discard_page_busy); |
| 1066 | else |
| 1067 | kfree(objp: bvec_virt(bvec: &req->special_vec)); |
| 1068 | req->rq_flags &= ~RQF_SPECIAL_PAYLOAD; |
| 1069 | } |
| 1070 | } |
| 1071 | EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); |
| 1072 | |
| 1073 | blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) |
| 1074 | { |
| 1075 | struct nvme_command *cmd = nvme_req(req)->cmd; |
| 1076 | blk_status_t ret = BLK_STS_OK; |
| 1077 | |
| 1078 | if (!(req->rq_flags & RQF_DONTPREP)) |
| 1079 | nvme_clear_nvme_request(req); |
| 1080 | |
| 1081 | switch (req_op(req)) { |
| 1082 | case REQ_OP_DRV_IN: |
| 1083 | case REQ_OP_DRV_OUT: |
| 1084 | /* these are setup prior to execution in nvme_init_request() */ |
| 1085 | break; |
| 1086 | case REQ_OP_FLUSH: |
| 1087 | nvme_setup_flush(ns, cmnd: cmd); |
| 1088 | break; |
| 1089 | case REQ_OP_ZONE_RESET_ALL: |
| 1090 | case REQ_OP_ZONE_RESET: |
| 1091 | ret = nvme_setup_zone_mgmt_send(ns, req, cmnd: cmd, action: NVME_ZONE_RESET); |
| 1092 | break; |
| 1093 | case REQ_OP_ZONE_OPEN: |
| 1094 | ret = nvme_setup_zone_mgmt_send(ns, req, cmnd: cmd, action: NVME_ZONE_OPEN); |
| 1095 | break; |
| 1096 | case REQ_OP_ZONE_CLOSE: |
| 1097 | ret = nvme_setup_zone_mgmt_send(ns, req, cmnd: cmd, action: NVME_ZONE_CLOSE); |
| 1098 | break; |
| 1099 | case REQ_OP_ZONE_FINISH: |
| 1100 | ret = nvme_setup_zone_mgmt_send(ns, req, cmnd: cmd, action: NVME_ZONE_FINISH); |
| 1101 | break; |
| 1102 | case REQ_OP_WRITE_ZEROES: |
| 1103 | ret = nvme_setup_write_zeroes(ns, req, cmnd: cmd); |
| 1104 | break; |
| 1105 | case REQ_OP_DISCARD: |
| 1106 | ret = nvme_setup_discard(ns, req, cmnd: cmd); |
| 1107 | break; |
| 1108 | case REQ_OP_READ: |
| 1109 | ret = nvme_setup_rw(ns, req, cmnd: cmd, op: nvme_cmd_read); |
| 1110 | break; |
| 1111 | case REQ_OP_WRITE: |
| 1112 | ret = nvme_setup_rw(ns, req, cmnd: cmd, op: nvme_cmd_write); |
| 1113 | break; |
| 1114 | case REQ_OP_ZONE_APPEND: |
| 1115 | ret = nvme_setup_rw(ns, req, cmnd: cmd, op: nvme_cmd_zone_append); |
| 1116 | break; |
| 1117 | default: |
| 1118 | WARN_ON_ONCE(1); |
| 1119 | return BLK_STS_IOERR; |
| 1120 | } |
| 1121 | |
| 1122 | cmd->common.command_id = nvme_cid(rq: req); |
| 1123 | trace_nvme_setup_cmd(req, cmd); |
| 1124 | return ret; |
| 1125 | } |
| 1126 | EXPORT_SYMBOL_GPL(nvme_setup_cmd); |
| 1127 | |
| 1128 | /* |
| 1129 | * Return values: |
| 1130 | * 0: success |
| 1131 | * >0: nvme controller's cqe status response |
| 1132 | * <0: kernel error in lieu of controller response |
| 1133 | */ |
| 1134 | int nvme_execute_rq(struct request *rq, bool at_head) |
| 1135 | { |
| 1136 | blk_status_t status; |
| 1137 | |
| 1138 | status = blk_execute_rq(rq, at_head); |
| 1139 | if (nvme_req(req: rq)->flags & NVME_REQ_CANCELLED) |
| 1140 | return -EINTR; |
| 1141 | if (nvme_req(req: rq)->status) |
| 1142 | return nvme_req(req: rq)->status; |
| 1143 | return blk_status_to_errno(status); |
| 1144 | } |
| 1145 | EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, "NVME_TARGET_PASSTHRU" ); |
| 1146 | |
| 1147 | /* |
| 1148 | * Returns 0 on success. If the result is negative, it's a Linux error code; |
| 1149 | * if the result is positive, it's an NVM Express status code |
| 1150 | */ |
| 1151 | int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, |
| 1152 | union nvme_result *result, void *buffer, unsigned bufflen, |
| 1153 | int qid, nvme_submit_flags_t flags) |
| 1154 | { |
| 1155 | struct request *req; |
| 1156 | int ret; |
| 1157 | blk_mq_req_flags_t blk_flags = 0; |
| 1158 | |
| 1159 | if (flags & NVME_SUBMIT_NOWAIT) |
| 1160 | blk_flags |= BLK_MQ_REQ_NOWAIT; |
| 1161 | if (flags & NVME_SUBMIT_RESERVED) |
| 1162 | blk_flags |= BLK_MQ_REQ_RESERVED; |
| 1163 | if (qid == NVME_QID_ANY) |
| 1164 | req = blk_mq_alloc_request(q, opf: nvme_req_op(cmd), flags: blk_flags); |
| 1165 | else |
| 1166 | req = blk_mq_alloc_request_hctx(q, opf: nvme_req_op(cmd), flags: blk_flags, |
| 1167 | hctx_idx: qid - 1); |
| 1168 | |
| 1169 | if (IS_ERR(ptr: req)) |
| 1170 | return PTR_ERR(ptr: req); |
| 1171 | nvme_init_request(req, cmd); |
| 1172 | if (flags & NVME_SUBMIT_RETRY) |
| 1173 | req->cmd_flags &= ~REQ_FAILFAST_DRIVER; |
| 1174 | |
| 1175 | if (buffer && bufflen) { |
| 1176 | ret = blk_rq_map_kern(rq: req, kbuf: buffer, len: bufflen, GFP_KERNEL); |
| 1177 | if (ret) |
| 1178 | goto out; |
| 1179 | } |
| 1180 | |
| 1181 | ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD); |
| 1182 | if (result && ret >= 0) |
| 1183 | *result = nvme_req(req)->result; |
| 1184 | out: |
| 1185 | blk_mq_free_request(rq: req); |
| 1186 | return ret; |
| 1187 | } |
| 1188 | EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); |
| 1189 | |
| 1190 | int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, |
| 1191 | void *buffer, unsigned bufflen) |
| 1192 | { |
| 1193 | return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, |
| 1194 | NVME_QID_ANY, 0); |
| 1195 | } |
| 1196 | EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); |
| 1197 | |
| 1198 | u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) |
| 1199 | { |
| 1200 | u32 effects = 0; |
| 1201 | |
| 1202 | if (ns) { |
| 1203 | effects = le32_to_cpu(ns->head->effects->iocs[opcode]); |
| 1204 | if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) |
| 1205 | dev_warn_once(ctrl->device, |
| 1206 | "IO command:%02x has unusual effects:%08x\n" , |
| 1207 | opcode, effects); |
| 1208 | |
| 1209 | /* |
| 1210 | * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues, |
| 1211 | * which would deadlock when done on an I/O command. Note that |
| 1212 | * We already warn about an unusual effect above. |
| 1213 | */ |
| 1214 | effects &= ~NVME_CMD_EFFECTS_CSE_MASK; |
| 1215 | } else { |
| 1216 | effects = le32_to_cpu(ctrl->effects->acs[opcode]); |
| 1217 | |
| 1218 | /* Ignore execution restrictions if any relaxation bits are set */ |
| 1219 | if (effects & NVME_CMD_EFFECTS_CSER_MASK) |
| 1220 | effects &= ~NVME_CMD_EFFECTS_CSE_MASK; |
| 1221 | } |
| 1222 | |
| 1223 | return effects; |
| 1224 | } |
| 1225 | EXPORT_SYMBOL_NS_GPL(nvme_command_effects, "NVME_TARGET_PASSTHRU" ); |
| 1226 | |
| 1227 | u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) |
| 1228 | { |
| 1229 | u32 effects = nvme_command_effects(ctrl, ns, opcode); |
| 1230 | |
| 1231 | /* |
| 1232 | * For simplicity, IO to all namespaces is quiesced even if the command |
| 1233 | * effects say only one namespace is affected. |
| 1234 | */ |
| 1235 | if (effects & NVME_CMD_EFFECTS_CSE_MASK) { |
| 1236 | mutex_lock(&ctrl->scan_lock); |
| 1237 | mutex_lock(&ctrl->subsys->lock); |
| 1238 | nvme_mpath_start_freeze(subsys: ctrl->subsys); |
| 1239 | nvme_mpath_wait_freeze(subsys: ctrl->subsys); |
| 1240 | nvme_start_freeze(ctrl); |
| 1241 | nvme_wait_freeze(ctrl); |
| 1242 | } |
| 1243 | return effects; |
| 1244 | } |
| 1245 | EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, "NVME_TARGET_PASSTHRU" ); |
| 1246 | |
| 1247 | void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects, |
| 1248 | struct nvme_command *cmd, int status) |
| 1249 | { |
| 1250 | if (effects & NVME_CMD_EFFECTS_CSE_MASK) { |
| 1251 | nvme_unfreeze(ctrl); |
| 1252 | nvme_mpath_unfreeze(subsys: ctrl->subsys); |
| 1253 | mutex_unlock(lock: &ctrl->subsys->lock); |
| 1254 | mutex_unlock(lock: &ctrl->scan_lock); |
| 1255 | } |
| 1256 | if (effects & NVME_CMD_EFFECTS_CCC) { |
| 1257 | if (!test_and_set_bit(nr: NVME_CTRL_DIRTY_CAPABILITY, |
| 1258 | addr: &ctrl->flags)) { |
| 1259 | dev_info(ctrl->device, |
| 1260 | "controller capabilities changed, reset may be required to take effect.\n" ); |
| 1261 | } |
| 1262 | } |
| 1263 | if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { |
| 1264 | nvme_queue_scan(ctrl); |
| 1265 | flush_work(work: &ctrl->scan_work); |
| 1266 | } |
| 1267 | if (ns) |
| 1268 | return; |
| 1269 | |
| 1270 | switch (cmd->common.opcode) { |
| 1271 | case nvme_admin_set_features: |
| 1272 | switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { |
| 1273 | case NVME_FEAT_KATO: |
| 1274 | /* |
| 1275 | * Keep alive commands interval on the host should be |
| 1276 | * updated when KATO is modified by Set Features |
| 1277 | * commands. |
| 1278 | */ |
| 1279 | if (!status) |
| 1280 | nvme_update_keep_alive(ctrl, cmd); |
| 1281 | break; |
| 1282 | default: |
| 1283 | break; |
| 1284 | } |
| 1285 | break; |
| 1286 | default: |
| 1287 | break; |
| 1288 | } |
| 1289 | } |
| 1290 | EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, "NVME_TARGET_PASSTHRU" ); |
| 1291 | |
| 1292 | /* |
| 1293 | * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: |
| 1294 | * |
| 1295 | * The host should send Keep Alive commands at half of the Keep Alive Timeout |
| 1296 | * accounting for transport roundtrip times [..]. |
| 1297 | */ |
| 1298 | static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl) |
| 1299 | { |
| 1300 | unsigned long delay = ctrl->kato * HZ / 2; |
| 1301 | |
| 1302 | /* |
| 1303 | * When using Traffic Based Keep Alive, we need to run |
| 1304 | * nvme_keep_alive_work at twice the normal frequency, as one |
| 1305 | * command completion can postpone sending a keep alive command |
| 1306 | * by up to twice the delay between runs. |
| 1307 | */ |
| 1308 | if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) |
| 1309 | delay /= 2; |
| 1310 | return delay; |
| 1311 | } |
| 1312 | |
| 1313 | static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) |
| 1314 | { |
| 1315 | unsigned long now = jiffies; |
| 1316 | unsigned long delay = nvme_keep_alive_work_period(ctrl); |
| 1317 | unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay; |
| 1318 | |
| 1319 | if (time_after(now, ka_next_check_tm)) |
| 1320 | delay = 0; |
| 1321 | else |
| 1322 | delay = ka_next_check_tm - now; |
| 1323 | |
| 1324 | queue_delayed_work(wq: nvme_wq, dwork: &ctrl->ka_work, delay); |
| 1325 | } |
| 1326 | |
| 1327 | static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq, |
| 1328 | blk_status_t status) |
| 1329 | { |
| 1330 | struct nvme_ctrl *ctrl = rq->end_io_data; |
| 1331 | unsigned long rtt = jiffies - (rq->deadline - rq->timeout); |
| 1332 | unsigned long delay = nvme_keep_alive_work_period(ctrl); |
| 1333 | enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); |
| 1334 | |
| 1335 | /* |
| 1336 | * Subtract off the keepalive RTT so nvme_keep_alive_work runs |
| 1337 | * at the desired frequency. |
| 1338 | */ |
| 1339 | if (rtt <= delay) { |
| 1340 | delay -= rtt; |
| 1341 | } else { |
| 1342 | dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n" , |
| 1343 | jiffies_to_msecs(rtt)); |
| 1344 | delay = 0; |
| 1345 | } |
| 1346 | |
| 1347 | blk_mq_free_request(rq); |
| 1348 | |
| 1349 | if (status) { |
| 1350 | dev_err(ctrl->device, |
| 1351 | "failed nvme_keep_alive_end_io error=%d\n" , |
| 1352 | status); |
| 1353 | return RQ_END_IO_NONE; |
| 1354 | } |
| 1355 | |
| 1356 | ctrl->ka_last_check_time = jiffies; |
| 1357 | ctrl->comp_seen = false; |
| 1358 | if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING) |
| 1359 | queue_delayed_work(wq: nvme_wq, dwork: &ctrl->ka_work, delay); |
| 1360 | return RQ_END_IO_NONE; |
| 1361 | } |
| 1362 | |
| 1363 | static void nvme_keep_alive_work(struct work_struct *work) |
| 1364 | { |
| 1365 | struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), |
| 1366 | struct nvme_ctrl, ka_work); |
| 1367 | bool comp_seen = ctrl->comp_seen; |
| 1368 | struct request *rq; |
| 1369 | |
| 1370 | ctrl->ka_last_check_time = jiffies; |
| 1371 | |
| 1372 | if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { |
| 1373 | dev_dbg(ctrl->device, |
| 1374 | "reschedule traffic based keep-alive timer\n" ); |
| 1375 | ctrl->comp_seen = false; |
| 1376 | nvme_queue_keep_alive_work(ctrl); |
| 1377 | return; |
| 1378 | } |
| 1379 | |
| 1380 | rq = blk_mq_alloc_request(q: ctrl->admin_q, opf: nvme_req_op(cmd: &ctrl->ka_cmd), |
| 1381 | flags: BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); |
| 1382 | if (IS_ERR(ptr: rq)) { |
| 1383 | /* allocation failure, reset the controller */ |
| 1384 | dev_err(ctrl->device, "keep-alive failed: %ld\n" , PTR_ERR(rq)); |
| 1385 | nvme_reset_ctrl(ctrl); |
| 1386 | return; |
| 1387 | } |
| 1388 | nvme_init_request(rq, &ctrl->ka_cmd); |
| 1389 | |
| 1390 | rq->timeout = ctrl->kato * HZ; |
| 1391 | rq->end_io = nvme_keep_alive_end_io; |
| 1392 | rq->end_io_data = ctrl; |
| 1393 | blk_execute_rq_nowait(rq, at_head: false); |
| 1394 | } |
| 1395 | |
| 1396 | static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) |
| 1397 | { |
| 1398 | if (unlikely(ctrl->kato == 0)) |
| 1399 | return; |
| 1400 | |
| 1401 | nvme_queue_keep_alive_work(ctrl); |
| 1402 | } |
| 1403 | |
| 1404 | void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) |
| 1405 | { |
| 1406 | if (unlikely(ctrl->kato == 0)) |
| 1407 | return; |
| 1408 | |
| 1409 | cancel_delayed_work_sync(dwork: &ctrl->ka_work); |
| 1410 | } |
| 1411 | EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); |
| 1412 | |
| 1413 | static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, |
| 1414 | struct nvme_command *cmd) |
| 1415 | { |
| 1416 | unsigned int new_kato = |
| 1417 | DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); |
| 1418 | |
| 1419 | dev_info(ctrl->device, |
| 1420 | "keep alive interval updated from %u ms to %u ms\n" , |
| 1421 | ctrl->kato * 1000 / 2, new_kato * 1000 / 2); |
| 1422 | |
| 1423 | nvme_stop_keep_alive(ctrl); |
| 1424 | ctrl->kato = new_kato; |
| 1425 | nvme_start_keep_alive(ctrl); |
| 1426 | } |
| 1427 | |
| 1428 | static bool nvme_id_cns_ok(struct nvme_ctrl *ctrl, u8 cns) |
| 1429 | { |
| 1430 | /* |
| 1431 | * The CNS field occupies a full byte starting with NVMe 1.2 |
| 1432 | */ |
| 1433 | if (ctrl->vs >= NVME_VS(1, 2, 0)) |
| 1434 | return true; |
| 1435 | |
| 1436 | /* |
| 1437 | * NVMe 1.1 expanded the CNS value to two bits, which means values |
| 1438 | * larger than that could get truncated and treated as an incorrect |
| 1439 | * value. |
| 1440 | * |
| 1441 | * Qemu implemented 1.0 behavior for controllers claiming 1.1 |
| 1442 | * compliance, so they need to be quirked here. |
| 1443 | */ |
| 1444 | if (ctrl->vs >= NVME_VS(1, 1, 0) && |
| 1445 | !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) |
| 1446 | return cns <= 3; |
| 1447 | |
| 1448 | /* |
| 1449 | * NVMe 1.0 used a single bit for the CNS value. |
| 1450 | */ |
| 1451 | return cns <= 1; |
| 1452 | } |
| 1453 | |
| 1454 | static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) |
| 1455 | { |
| 1456 | struct nvme_command c = { }; |
| 1457 | int error; |
| 1458 | |
| 1459 | /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ |
| 1460 | c.identify.opcode = nvme_admin_identify; |
| 1461 | c.identify.cns = NVME_ID_CNS_CTRL; |
| 1462 | |
| 1463 | *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); |
| 1464 | if (!*id) |
| 1465 | return -ENOMEM; |
| 1466 | |
| 1467 | error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, |
| 1468 | sizeof(struct nvme_id_ctrl)); |
| 1469 | if (error) { |
| 1470 | kfree(objp: *id); |
| 1471 | *id = NULL; |
| 1472 | } |
| 1473 | return error; |
| 1474 | } |
| 1475 | |
| 1476 | static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, |
| 1477 | struct nvme_ns_id_desc *cur, bool *csi_seen) |
| 1478 | { |
| 1479 | const char *warn_str = "ctrl returned bogus length:" ; |
| 1480 | void *data = cur; |
| 1481 | |
| 1482 | switch (cur->nidt) { |
| 1483 | case NVME_NIDT_EUI64: |
| 1484 | if (cur->nidl != NVME_NIDT_EUI64_LEN) { |
| 1485 | dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n" , |
| 1486 | warn_str, cur->nidl); |
| 1487 | return -1; |
| 1488 | } |
| 1489 | if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) |
| 1490 | return NVME_NIDT_EUI64_LEN; |
| 1491 | memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); |
| 1492 | return NVME_NIDT_EUI64_LEN; |
| 1493 | case NVME_NIDT_NGUID: |
| 1494 | if (cur->nidl != NVME_NIDT_NGUID_LEN) { |
| 1495 | dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n" , |
| 1496 | warn_str, cur->nidl); |
| 1497 | return -1; |
| 1498 | } |
| 1499 | if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) |
| 1500 | return NVME_NIDT_NGUID_LEN; |
| 1501 | memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); |
| 1502 | return NVME_NIDT_NGUID_LEN; |
| 1503 | case NVME_NIDT_UUID: |
| 1504 | if (cur->nidl != NVME_NIDT_UUID_LEN) { |
| 1505 | dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n" , |
| 1506 | warn_str, cur->nidl); |
| 1507 | return -1; |
| 1508 | } |
| 1509 | if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) |
| 1510 | return NVME_NIDT_UUID_LEN; |
| 1511 | uuid_copy(dst: &ids->uuid, src: data + sizeof(*cur)); |
| 1512 | return NVME_NIDT_UUID_LEN; |
| 1513 | case NVME_NIDT_CSI: |
| 1514 | if (cur->nidl != NVME_NIDT_CSI_LEN) { |
| 1515 | dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n" , |
| 1516 | warn_str, cur->nidl); |
| 1517 | return -1; |
| 1518 | } |
| 1519 | memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); |
| 1520 | *csi_seen = true; |
| 1521 | return NVME_NIDT_CSI_LEN; |
| 1522 | default: |
| 1523 | /* Skip unknown types */ |
| 1524 | return cur->nidl; |
| 1525 | } |
| 1526 | } |
| 1527 | |
| 1528 | static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, |
| 1529 | struct nvme_ns_info *info) |
| 1530 | { |
| 1531 | struct nvme_command c = { }; |
| 1532 | bool csi_seen = false; |
| 1533 | int status, pos, len; |
| 1534 | void *data; |
| 1535 | |
| 1536 | if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) |
| 1537 | return 0; |
| 1538 | if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) |
| 1539 | return 0; |
| 1540 | |
| 1541 | c.identify.opcode = nvme_admin_identify; |
| 1542 | c.identify.nsid = cpu_to_le32(info->nsid); |
| 1543 | c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; |
| 1544 | |
| 1545 | data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); |
| 1546 | if (!data) |
| 1547 | return -ENOMEM; |
| 1548 | |
| 1549 | status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, |
| 1550 | NVME_IDENTIFY_DATA_SIZE); |
| 1551 | if (status) { |
| 1552 | dev_warn(ctrl->device, |
| 1553 | "Identify Descriptors failed (nsid=%u, status=0x%x)\n" , |
| 1554 | info->nsid, status); |
| 1555 | goto free_data; |
| 1556 | } |
| 1557 | |
| 1558 | for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { |
| 1559 | struct nvme_ns_id_desc *cur = data + pos; |
| 1560 | |
| 1561 | if (cur->nidl == 0) |
| 1562 | break; |
| 1563 | |
| 1564 | len = nvme_process_ns_desc(ctrl, ids: &info->ids, cur, csi_seen: &csi_seen); |
| 1565 | if (len < 0) |
| 1566 | break; |
| 1567 | |
| 1568 | len += sizeof(*cur); |
| 1569 | } |
| 1570 | |
| 1571 | if (nvme_multi_css(ctrl) && !csi_seen) { |
| 1572 | dev_warn(ctrl->device, "Command set not reported for nsid:%d\n" , |
| 1573 | info->nsid); |
| 1574 | status = -EINVAL; |
| 1575 | } |
| 1576 | |
| 1577 | free_data: |
| 1578 | kfree(objp: data); |
| 1579 | return status; |
| 1580 | } |
| 1581 | |
| 1582 | int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, |
| 1583 | struct nvme_id_ns **id) |
| 1584 | { |
| 1585 | struct nvme_command c = { }; |
| 1586 | int error; |
| 1587 | |
| 1588 | /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ |
| 1589 | c.identify.opcode = nvme_admin_identify; |
| 1590 | c.identify.nsid = cpu_to_le32(nsid); |
| 1591 | c.identify.cns = NVME_ID_CNS_NS; |
| 1592 | |
| 1593 | *id = kmalloc(sizeof(**id), GFP_KERNEL); |
| 1594 | if (!*id) |
| 1595 | return -ENOMEM; |
| 1596 | |
| 1597 | error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); |
| 1598 | if (error) { |
| 1599 | dev_warn(ctrl->device, "Identify namespace failed (%d)\n" , error); |
| 1600 | kfree(objp: *id); |
| 1601 | *id = NULL; |
| 1602 | } |
| 1603 | return error; |
| 1604 | } |
| 1605 | |
| 1606 | static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl, |
| 1607 | struct nvme_ns_info *info) |
| 1608 | { |
| 1609 | struct nvme_ns_ids *ids = &info->ids; |
| 1610 | struct nvme_id_ns *id; |
| 1611 | int ret; |
| 1612 | |
| 1613 | ret = nvme_identify_ns(ctrl, nsid: info->nsid, id: &id); |
| 1614 | if (ret) |
| 1615 | return ret; |
| 1616 | |
| 1617 | if (id->ncap == 0) { |
| 1618 | /* namespace not allocated or attached */ |
| 1619 | info->is_removed = true; |
| 1620 | ret = -ENODEV; |
| 1621 | goto error; |
| 1622 | } |
| 1623 | |
| 1624 | info->anagrpid = id->anagrpid; |
| 1625 | info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; |
| 1626 | info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; |
| 1627 | info->is_ready = true; |
| 1628 | info->endgid = le16_to_cpu(id->endgid); |
| 1629 | if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { |
| 1630 | dev_info(ctrl->device, |
| 1631 | "Ignoring bogus Namespace Identifiers\n" ); |
| 1632 | } else { |
| 1633 | if (ctrl->vs >= NVME_VS(1, 1, 0) && |
| 1634 | !memchr_inv(p: ids->eui64, c: 0, size: sizeof(ids->eui64))) |
| 1635 | memcpy(ids->eui64, id->eui64, sizeof(ids->eui64)); |
| 1636 | if (ctrl->vs >= NVME_VS(1, 2, 0) && |
| 1637 | !memchr_inv(p: ids->nguid, c: 0, size: sizeof(ids->nguid))) |
| 1638 | memcpy(ids->nguid, id->nguid, sizeof(ids->nguid)); |
| 1639 | } |
| 1640 | |
| 1641 | error: |
| 1642 | kfree(objp: id); |
| 1643 | return ret; |
| 1644 | } |
| 1645 | |
| 1646 | static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl, |
| 1647 | struct nvme_ns_info *info) |
| 1648 | { |
| 1649 | struct nvme_id_ns_cs_indep *id; |
| 1650 | struct nvme_command c = { |
| 1651 | .identify.opcode = nvme_admin_identify, |
| 1652 | .identify.nsid = cpu_to_le32(info->nsid), |
| 1653 | .identify.cns = NVME_ID_CNS_NS_CS_INDEP, |
| 1654 | }; |
| 1655 | int ret; |
| 1656 | |
| 1657 | id = kmalloc(sizeof(*id), GFP_KERNEL); |
| 1658 | if (!id) |
| 1659 | return -ENOMEM; |
| 1660 | |
| 1661 | ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); |
| 1662 | if (!ret) { |
| 1663 | info->anagrpid = id->anagrpid; |
| 1664 | info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; |
| 1665 | info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; |
| 1666 | info->is_ready = id->nstat & NVME_NSTAT_NRDY; |
| 1667 | info->is_rotational = id->nsfeat & NVME_NS_ROTATIONAL; |
| 1668 | info->no_vwc = id->nsfeat & NVME_NS_VWC_NOT_PRESENT; |
| 1669 | info->endgid = le16_to_cpu(id->endgid); |
| 1670 | } |
| 1671 | kfree(objp: id); |
| 1672 | return ret; |
| 1673 | } |
| 1674 | |
| 1675 | static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, |
| 1676 | unsigned int dword11, void *buffer, size_t buflen, u32 *result) |
| 1677 | { |
| 1678 | union nvme_result res = { 0 }; |
| 1679 | struct nvme_command c = { }; |
| 1680 | int ret; |
| 1681 | |
| 1682 | c.features.opcode = op; |
| 1683 | c.features.fid = cpu_to_le32(fid); |
| 1684 | c.features.dword11 = cpu_to_le32(dword11); |
| 1685 | |
| 1686 | ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, |
| 1687 | buffer, buflen, NVME_QID_ANY, 0); |
| 1688 | if (ret >= 0 && result) |
| 1689 | *result = le32_to_cpu(res.u32); |
| 1690 | return ret; |
| 1691 | } |
| 1692 | |
| 1693 | int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, |
| 1694 | unsigned int dword11, void *buffer, size_t buflen, |
| 1695 | void *result) |
| 1696 | { |
| 1697 | return nvme_features(dev, op: nvme_admin_set_features, fid, dword11, buffer, |
| 1698 | buflen, result); |
| 1699 | } |
| 1700 | EXPORT_SYMBOL_GPL(nvme_set_features); |
| 1701 | |
| 1702 | int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, |
| 1703 | unsigned int dword11, void *buffer, size_t buflen, |
| 1704 | void *result) |
| 1705 | { |
| 1706 | return nvme_features(dev, op: nvme_admin_get_features, fid, dword11, buffer, |
| 1707 | buflen, result); |
| 1708 | } |
| 1709 | EXPORT_SYMBOL_GPL(nvme_get_features); |
| 1710 | |
| 1711 | int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) |
| 1712 | { |
| 1713 | u32 q_count = (*count - 1) | ((*count - 1) << 16); |
| 1714 | u32 result; |
| 1715 | int status, nr_io_queues; |
| 1716 | |
| 1717 | status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, |
| 1718 | &result); |
| 1719 | |
| 1720 | /* |
| 1721 | * It's either a kernel error or the host observed a connection |
| 1722 | * lost. In either case it's not possible communicate with the |
| 1723 | * controller and thus enter the error code path. |
| 1724 | */ |
| 1725 | if (status < 0 || status == NVME_SC_HOST_PATH_ERROR) |
| 1726 | return status; |
| 1727 | |
| 1728 | /* |
| 1729 | * Degraded controllers might return an error when setting the queue |
| 1730 | * count. We still want to be able to bring them online and offer |
| 1731 | * access to the admin queue, as that might be only way to fix them up. |
| 1732 | */ |
| 1733 | if (status > 0) { |
| 1734 | dev_err(ctrl->device, "Could not set queue count (%d)\n" , status); |
| 1735 | *count = 0; |
| 1736 | } else { |
| 1737 | nr_io_queues = min(result & 0xffff, result >> 16) + 1; |
| 1738 | *count = min(*count, nr_io_queues); |
| 1739 | } |
| 1740 | |
| 1741 | return 0; |
| 1742 | } |
| 1743 | EXPORT_SYMBOL_GPL(nvme_set_queue_count); |
| 1744 | |
| 1745 | #define NVME_AEN_SUPPORTED \ |
| 1746 | (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ |
| 1747 | NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) |
| 1748 | |
| 1749 | static void nvme_enable_aen(struct nvme_ctrl *ctrl) |
| 1750 | { |
| 1751 | u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; |
| 1752 | int status; |
| 1753 | |
| 1754 | if (!supported_aens) |
| 1755 | return; |
| 1756 | |
| 1757 | status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, |
| 1758 | NULL, 0, &result); |
| 1759 | if (status) |
| 1760 | dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n" , |
| 1761 | supported_aens); |
| 1762 | |
| 1763 | queue_work(wq: nvme_wq, work: &ctrl->async_event_work); |
| 1764 | } |
| 1765 | |
| 1766 | static int nvme_ns_open(struct nvme_ns *ns) |
| 1767 | { |
| 1768 | |
| 1769 | /* should never be called due to GENHD_FL_HIDDEN */ |
| 1770 | if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) |
| 1771 | goto fail; |
| 1772 | if (!nvme_get_ns(ns)) |
| 1773 | goto fail; |
| 1774 | if (!try_module_get(module: ns->ctrl->ops->module)) |
| 1775 | goto fail_put_ns; |
| 1776 | |
| 1777 | return 0; |
| 1778 | |
| 1779 | fail_put_ns: |
| 1780 | nvme_put_ns(ns); |
| 1781 | fail: |
| 1782 | return -ENXIO; |
| 1783 | } |
| 1784 | |
| 1785 | static void nvme_ns_release(struct nvme_ns *ns) |
| 1786 | { |
| 1787 | |
| 1788 | module_put(module: ns->ctrl->ops->module); |
| 1789 | nvme_put_ns(ns); |
| 1790 | } |
| 1791 | |
| 1792 | static int nvme_open(struct gendisk *disk, blk_mode_t mode) |
| 1793 | { |
| 1794 | return nvme_ns_open(ns: disk->private_data); |
| 1795 | } |
| 1796 | |
| 1797 | static void nvme_release(struct gendisk *disk) |
| 1798 | { |
| 1799 | nvme_ns_release(ns: disk->private_data); |
| 1800 | } |
| 1801 | |
| 1802 | int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) |
| 1803 | { |
| 1804 | /* some standard values */ |
| 1805 | geo->heads = 1 << 6; |
| 1806 | geo->sectors = 1 << 5; |
| 1807 | geo->cylinders = get_capacity(disk: bdev->bd_disk) >> 11; |
| 1808 | return 0; |
| 1809 | } |
| 1810 | |
| 1811 | static bool nvme_init_integrity(struct nvme_ns_head *head, |
| 1812 | struct queue_limits *lim, struct nvme_ns_info *info) |
| 1813 | { |
| 1814 | struct blk_integrity *bi = &lim->integrity; |
| 1815 | |
| 1816 | memset(bi, 0, sizeof(*bi)); |
| 1817 | |
| 1818 | if (!head->ms) |
| 1819 | return true; |
| 1820 | |
| 1821 | /* |
| 1822 | * PI can always be supported as we can ask the controller to simply |
| 1823 | * insert/strip it, which is not possible for other kinds of metadata. |
| 1824 | */ |
| 1825 | if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) || |
| 1826 | !(head->features & NVME_NS_METADATA_SUPPORTED)) |
| 1827 | return nvme_ns_has_pi(head); |
| 1828 | |
| 1829 | switch (head->pi_type) { |
| 1830 | case NVME_NS_DPS_PI_TYPE3: |
| 1831 | switch (head->guard_type) { |
| 1832 | case NVME_NVM_NS_16B_GUARD: |
| 1833 | bi->csum_type = BLK_INTEGRITY_CSUM_CRC; |
| 1834 | bi->tag_size = sizeof(u16) + sizeof(u32); |
| 1835 | bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; |
| 1836 | break; |
| 1837 | case NVME_NVM_NS_64B_GUARD: |
| 1838 | bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; |
| 1839 | bi->tag_size = sizeof(u16) + 6; |
| 1840 | bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; |
| 1841 | break; |
| 1842 | default: |
| 1843 | break; |
| 1844 | } |
| 1845 | break; |
| 1846 | case NVME_NS_DPS_PI_TYPE1: |
| 1847 | case NVME_NS_DPS_PI_TYPE2: |
| 1848 | switch (head->guard_type) { |
| 1849 | case NVME_NVM_NS_16B_GUARD: |
| 1850 | bi->csum_type = BLK_INTEGRITY_CSUM_CRC; |
| 1851 | bi->tag_size = sizeof(u16); |
| 1852 | bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | |
| 1853 | BLK_INTEGRITY_REF_TAG; |
| 1854 | break; |
| 1855 | case NVME_NVM_NS_64B_GUARD: |
| 1856 | bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; |
| 1857 | bi->tag_size = sizeof(u16); |
| 1858 | bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | |
| 1859 | BLK_INTEGRITY_REF_TAG; |
| 1860 | break; |
| 1861 | default: |
| 1862 | break; |
| 1863 | } |
| 1864 | break; |
| 1865 | default: |
| 1866 | break; |
| 1867 | } |
| 1868 | |
| 1869 | bi->tuple_size = head->ms; |
| 1870 | bi->pi_offset = info->pi_offset; |
| 1871 | return true; |
| 1872 | } |
| 1873 | |
| 1874 | static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim) |
| 1875 | { |
| 1876 | struct nvme_ctrl *ctrl = ns->ctrl; |
| 1877 | |
| 1878 | if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(head: ns->head, UINT_MAX)) |
| 1879 | lim->max_hw_discard_sectors = |
| 1880 | nvme_lba_to_sect(head: ns->head, lba: ctrl->dmrsl); |
| 1881 | else if (ctrl->oncs & NVME_CTRL_ONCS_DSM) |
| 1882 | lim->max_hw_discard_sectors = UINT_MAX; |
| 1883 | else |
| 1884 | lim->max_hw_discard_sectors = 0; |
| 1885 | |
| 1886 | lim->discard_granularity = lim->logical_block_size; |
| 1887 | |
| 1888 | if (ctrl->dmrl) |
| 1889 | lim->max_discard_segments = ctrl->dmrl; |
| 1890 | else |
| 1891 | lim->max_discard_segments = NVME_DSM_MAX_RANGES; |
| 1892 | } |
| 1893 | |
| 1894 | static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) |
| 1895 | { |
| 1896 | return uuid_equal(u1: &a->uuid, u2: &b->uuid) && |
| 1897 | memcmp(p: &a->nguid, q: &b->nguid, size: sizeof(a->nguid)) == 0 && |
| 1898 | memcmp(p: &a->eui64, q: &b->eui64, size: sizeof(a->eui64)) == 0 && |
| 1899 | a->csi == b->csi; |
| 1900 | } |
| 1901 | |
| 1902 | static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid, |
| 1903 | struct nvme_id_ns_nvm **nvmp) |
| 1904 | { |
| 1905 | struct nvme_command c = { |
| 1906 | .identify.opcode = nvme_admin_identify, |
| 1907 | .identify.nsid = cpu_to_le32(nsid), |
| 1908 | .identify.cns = NVME_ID_CNS_CS_NS, |
| 1909 | .identify.csi = NVME_CSI_NVM, |
| 1910 | }; |
| 1911 | struct nvme_id_ns_nvm *nvm; |
| 1912 | int ret; |
| 1913 | |
| 1914 | nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); |
| 1915 | if (!nvm) |
| 1916 | return -ENOMEM; |
| 1917 | |
| 1918 | ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm)); |
| 1919 | if (ret) |
| 1920 | kfree(objp: nvm); |
| 1921 | else |
| 1922 | *nvmp = nvm; |
| 1923 | return ret; |
| 1924 | } |
| 1925 | |
| 1926 | static void nvme_configure_pi_elbas(struct nvme_ns_head *head, |
| 1927 | struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm) |
| 1928 | { |
| 1929 | u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]); |
| 1930 | u8 guard_type; |
| 1931 | |
| 1932 | /* no support for storage tag formats right now */ |
| 1933 | if (nvme_elbaf_sts(elbaf)) |
| 1934 | return; |
| 1935 | |
| 1936 | guard_type = nvme_elbaf_guard_type(elbaf); |
| 1937 | if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) && |
| 1938 | guard_type == NVME_NVM_NS_QTYPE_GUARD) |
| 1939 | guard_type = nvme_elbaf_qualified_guard_type(elbaf); |
| 1940 | |
| 1941 | head->guard_type = guard_type; |
| 1942 | switch (head->guard_type) { |
| 1943 | case NVME_NVM_NS_64B_GUARD: |
| 1944 | head->pi_size = sizeof(struct crc64_pi_tuple); |
| 1945 | break; |
| 1946 | case NVME_NVM_NS_16B_GUARD: |
| 1947 | head->pi_size = sizeof(struct t10_pi_tuple); |
| 1948 | break; |
| 1949 | default: |
| 1950 | break; |
| 1951 | } |
| 1952 | } |
| 1953 | |
| 1954 | static void nvme_configure_metadata(struct nvme_ctrl *ctrl, |
| 1955 | struct nvme_ns_head *head, struct nvme_id_ns *id, |
| 1956 | struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info) |
| 1957 | { |
| 1958 | head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); |
| 1959 | head->pi_type = 0; |
| 1960 | head->pi_size = 0; |
| 1961 | head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms); |
| 1962 | if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) |
| 1963 | return; |
| 1964 | |
| 1965 | if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { |
| 1966 | nvme_configure_pi_elbas(head, id, nvm); |
| 1967 | } else { |
| 1968 | head->pi_size = sizeof(struct t10_pi_tuple); |
| 1969 | head->guard_type = NVME_NVM_NS_16B_GUARD; |
| 1970 | } |
| 1971 | |
| 1972 | if (head->pi_size && head->ms >= head->pi_size) |
| 1973 | head->pi_type = id->dps & NVME_NS_DPS_PI_MASK; |
| 1974 | if (!(id->dps & NVME_NS_DPS_PI_FIRST)) { |
| 1975 | if (disable_pi_offsets) |
| 1976 | head->pi_type = 0; |
| 1977 | else |
| 1978 | info->pi_offset = head->ms - head->pi_size; |
| 1979 | } |
| 1980 | |
| 1981 | if (ctrl->ops->flags & NVME_F_FABRICS) { |
| 1982 | /* |
| 1983 | * The NVMe over Fabrics specification only supports metadata as |
| 1984 | * part of the extended data LBA. We rely on HCA/HBA support to |
| 1985 | * remap the separate metadata buffer from the block layer. |
| 1986 | */ |
| 1987 | if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) |
| 1988 | return; |
| 1989 | |
| 1990 | head->features |= NVME_NS_EXT_LBAS; |
| 1991 | |
| 1992 | /* |
| 1993 | * The current fabrics transport drivers support namespace |
| 1994 | * metadata formats only if nvme_ns_has_pi() returns true. |
| 1995 | * Suppress support for all other formats so the namespace will |
| 1996 | * have a 0 capacity and not be usable through the block stack. |
| 1997 | * |
| 1998 | * Note, this check will need to be modified if any drivers |
| 1999 | * gain the ability to use other metadata formats. |
| 2000 | */ |
| 2001 | if (ctrl->max_integrity_segments && nvme_ns_has_pi(head)) |
| 2002 | head->features |= NVME_NS_METADATA_SUPPORTED; |
| 2003 | } else { |
| 2004 | /* |
| 2005 | * For PCIe controllers, we can't easily remap the separate |
| 2006 | * metadata buffer from the block layer and thus require a |
| 2007 | * separate metadata buffer for block layer metadata/PI support. |
| 2008 | * We allow extended LBAs for the passthrough interface, though. |
| 2009 | */ |
| 2010 | if (id->flbas & NVME_NS_FLBAS_META_EXT) |
| 2011 | head->features |= NVME_NS_EXT_LBAS; |
| 2012 | else |
| 2013 | head->features |= NVME_NS_METADATA_SUPPORTED; |
| 2014 | } |
| 2015 | } |
| 2016 | |
| 2017 | |
| 2018 | static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns, |
| 2019 | struct nvme_id_ns *id, struct queue_limits *lim, |
| 2020 | u32 bs, u32 atomic_bs) |
| 2021 | { |
| 2022 | unsigned int boundary = 0; |
| 2023 | |
| 2024 | if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) { |
| 2025 | if (le16_to_cpu(id->nabspf)) |
| 2026 | boundary = (le16_to_cpu(id->nabspf) + 1) * bs; |
| 2027 | } |
| 2028 | lim->atomic_write_hw_max = atomic_bs; |
| 2029 | lim->atomic_write_hw_boundary = boundary; |
| 2030 | lim->atomic_write_hw_unit_min = bs; |
| 2031 | lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs); |
| 2032 | lim->features |= BLK_FEAT_ATOMIC_WRITES; |
| 2033 | } |
| 2034 | |
| 2035 | static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl) |
| 2036 | { |
| 2037 | return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1; |
| 2038 | } |
| 2039 | |
| 2040 | static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl, |
| 2041 | struct queue_limits *lim) |
| 2042 | { |
| 2043 | lim->max_hw_sectors = ctrl->max_hw_sectors; |
| 2044 | lim->max_segments = min_t(u32, USHRT_MAX, |
| 2045 | min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments)); |
| 2046 | lim->max_integrity_segments = ctrl->max_integrity_segments; |
| 2047 | lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1; |
| 2048 | lim->max_segment_size = UINT_MAX; |
| 2049 | lim->dma_alignment = 3; |
| 2050 | } |
| 2051 | |
| 2052 | static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id, |
| 2053 | struct queue_limits *lim) |
| 2054 | { |
| 2055 | struct nvme_ns_head *head = ns->head; |
| 2056 | u32 bs = 1U << head->lba_shift; |
| 2057 | u32 atomic_bs, phys_bs, io_opt = 0; |
| 2058 | bool valid = true; |
| 2059 | |
| 2060 | /* |
| 2061 | * The block layer can't support LBA sizes larger than the page size |
| 2062 | * or smaller than a sector size yet, so catch this early and don't |
| 2063 | * allow block I/O. |
| 2064 | */ |
| 2065 | if (blk_validate_block_size(bsize: bs)) { |
| 2066 | bs = (1 << 9); |
| 2067 | valid = false; |
| 2068 | } |
| 2069 | |
| 2070 | atomic_bs = phys_bs = bs; |
| 2071 | if (id->nabo == 0) { |
| 2072 | /* |
| 2073 | * Bit 1 indicates whether NAWUPF is defined for this namespace |
| 2074 | * and whether it should be used instead of AWUPF. If NAWUPF == |
| 2075 | * 0 then AWUPF must be used instead. |
| 2076 | */ |
| 2077 | if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) |
| 2078 | atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; |
| 2079 | else |
| 2080 | atomic_bs = (1 + ns->ctrl->awupf) * bs; |
| 2081 | |
| 2082 | /* |
| 2083 | * Set subsystem atomic bs. |
| 2084 | */ |
| 2085 | if (ns->ctrl->subsys->atomic_bs) { |
| 2086 | if (atomic_bs != ns->ctrl->subsys->atomic_bs) { |
| 2087 | dev_err_ratelimited(ns->ctrl->device, |
| 2088 | "%s: Inconsistent Atomic Write Size, Namespace will not be added: Subsystem=%d bytes, Controller/Namespace=%d bytes\n" , |
| 2089 | ns->disk ? ns->disk->disk_name : "?" , |
| 2090 | ns->ctrl->subsys->atomic_bs, |
| 2091 | atomic_bs); |
| 2092 | } |
| 2093 | } else |
| 2094 | ns->ctrl->subsys->atomic_bs = atomic_bs; |
| 2095 | |
| 2096 | nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs); |
| 2097 | } |
| 2098 | |
| 2099 | if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { |
| 2100 | /* NPWG = Namespace Preferred Write Granularity */ |
| 2101 | phys_bs = bs * (1 + le16_to_cpu(id->npwg)); |
| 2102 | /* NOWS = Namespace Optimal Write Size */ |
| 2103 | if (id->nows) |
| 2104 | io_opt = bs * (1 + le16_to_cpu(id->nows)); |
| 2105 | } |
| 2106 | |
| 2107 | /* |
| 2108 | * Linux filesystems assume writing a single physical block is |
| 2109 | * an atomic operation. Hence limit the physical block size to the |
| 2110 | * value of the Atomic Write Unit Power Fail parameter. |
| 2111 | */ |
| 2112 | lim->logical_block_size = bs; |
| 2113 | lim->physical_block_size = min(phys_bs, atomic_bs); |
| 2114 | lim->io_min = phys_bs; |
| 2115 | lim->io_opt = io_opt; |
| 2116 | if ((ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) && |
| 2117 | (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)) |
| 2118 | lim->max_write_zeroes_sectors = UINT_MAX; |
| 2119 | else |
| 2120 | lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors; |
| 2121 | return valid; |
| 2122 | } |
| 2123 | |
| 2124 | static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info) |
| 2125 | { |
| 2126 | return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags); |
| 2127 | } |
| 2128 | |
| 2129 | static inline bool nvme_first_scan(struct gendisk *disk) |
| 2130 | { |
| 2131 | /* nvme_alloc_ns() scans the disk prior to adding it */ |
| 2132 | return !disk_live(disk); |
| 2133 | } |
| 2134 | |
| 2135 | static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id, |
| 2136 | struct queue_limits *lim) |
| 2137 | { |
| 2138 | struct nvme_ctrl *ctrl = ns->ctrl; |
| 2139 | u32 iob; |
| 2140 | |
| 2141 | if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && |
| 2142 | is_power_of_2(n: ctrl->max_hw_sectors)) |
| 2143 | iob = ctrl->max_hw_sectors; |
| 2144 | else |
| 2145 | iob = nvme_lba_to_sect(head: ns->head, le16_to_cpu(id->noiob)); |
| 2146 | |
| 2147 | if (!iob) |
| 2148 | return; |
| 2149 | |
| 2150 | if (!is_power_of_2(n: iob)) { |
| 2151 | if (nvme_first_scan(disk: ns->disk)) |
| 2152 | pr_warn("%s: ignoring unaligned IO boundary:%u\n" , |
| 2153 | ns->disk->disk_name, iob); |
| 2154 | return; |
| 2155 | } |
| 2156 | |
| 2157 | if (blk_queue_is_zoned(q: ns->disk->queue)) { |
| 2158 | if (nvme_first_scan(disk: ns->disk)) |
| 2159 | pr_warn("%s: ignoring zoned namespace IO boundary\n" , |
| 2160 | ns->disk->disk_name); |
| 2161 | return; |
| 2162 | } |
| 2163 | |
| 2164 | lim->chunk_sectors = iob; |
| 2165 | } |
| 2166 | |
| 2167 | static int nvme_update_ns_info_generic(struct nvme_ns *ns, |
| 2168 | struct nvme_ns_info *info) |
| 2169 | { |
| 2170 | struct queue_limits lim; |
| 2171 | unsigned int memflags; |
| 2172 | int ret; |
| 2173 | |
| 2174 | lim = queue_limits_start_update(q: ns->disk->queue); |
| 2175 | nvme_set_ctrl_limits(ctrl: ns->ctrl, lim: &lim); |
| 2176 | |
| 2177 | memflags = blk_mq_freeze_queue(q: ns->disk->queue); |
| 2178 | ret = queue_limits_commit_update(q: ns->disk->queue, lim: &lim); |
| 2179 | set_disk_ro(disk: ns->disk, read_only: nvme_ns_is_readonly(ns, info)); |
| 2180 | blk_mq_unfreeze_queue(q: ns->disk->queue, memflags); |
| 2181 | |
| 2182 | /* Hide the block-interface for these devices */ |
| 2183 | if (!ret) |
| 2184 | ret = -ENODEV; |
| 2185 | return ret; |
| 2186 | } |
| 2187 | |
| 2188 | static int nvme_query_fdp_granularity(struct nvme_ctrl *ctrl, |
| 2189 | struct nvme_ns_info *info, u8 fdp_idx) |
| 2190 | { |
| 2191 | struct nvme_fdp_config_log hdr, *h; |
| 2192 | struct nvme_fdp_config_desc *desc; |
| 2193 | size_t size = sizeof(hdr); |
| 2194 | void *log, *end; |
| 2195 | int i, n, ret; |
| 2196 | |
| 2197 | ret = nvme_get_log_lsi(ctrl, nsid: 0, log_page: NVME_LOG_FDP_CONFIGS, lsp: 0, |
| 2198 | csi: NVME_CSI_NVM, log: &hdr, size, offset: 0, lsi: info->endgid); |
| 2199 | if (ret) { |
| 2200 | dev_warn(ctrl->device, |
| 2201 | "FDP configs log header status:0x%x endgid:%d\n" , ret, |
| 2202 | info->endgid); |
| 2203 | return ret; |
| 2204 | } |
| 2205 | |
| 2206 | size = le32_to_cpu(hdr.sze); |
| 2207 | if (size > PAGE_SIZE * MAX_ORDER_NR_PAGES) { |
| 2208 | dev_warn(ctrl->device, "FDP config size too large:%zu\n" , |
| 2209 | size); |
| 2210 | return 0; |
| 2211 | } |
| 2212 | |
| 2213 | h = kvmalloc(size, GFP_KERNEL); |
| 2214 | if (!h) |
| 2215 | return -ENOMEM; |
| 2216 | |
| 2217 | ret = nvme_get_log_lsi(ctrl, nsid: 0, log_page: NVME_LOG_FDP_CONFIGS, lsp: 0, |
| 2218 | csi: NVME_CSI_NVM, log: h, size, offset: 0, lsi: info->endgid); |
| 2219 | if (ret) { |
| 2220 | dev_warn(ctrl->device, |
| 2221 | "FDP configs log status:0x%x endgid:%d\n" , ret, |
| 2222 | info->endgid); |
| 2223 | goto out; |
| 2224 | } |
| 2225 | |
| 2226 | n = le16_to_cpu(h->numfdpc) + 1; |
| 2227 | if (fdp_idx > n) { |
| 2228 | dev_warn(ctrl->device, "FDP index:%d out of range:%d\n" , |
| 2229 | fdp_idx, n); |
| 2230 | /* Proceed without registering FDP streams */ |
| 2231 | ret = 0; |
| 2232 | goto out; |
| 2233 | } |
| 2234 | |
| 2235 | log = h + 1; |
| 2236 | desc = log; |
| 2237 | end = log + size - sizeof(*h); |
| 2238 | for (i = 0; i < fdp_idx; i++) { |
| 2239 | log += le16_to_cpu(desc->dsze); |
| 2240 | desc = log; |
| 2241 | if (log >= end) { |
| 2242 | dev_warn(ctrl->device, |
| 2243 | "FDP invalid config descriptor list\n" ); |
| 2244 | ret = 0; |
| 2245 | goto out; |
| 2246 | } |
| 2247 | } |
| 2248 | |
| 2249 | if (le32_to_cpu(desc->nrg) > 1) { |
| 2250 | dev_warn(ctrl->device, "FDP NRG > 1 not supported\n" ); |
| 2251 | ret = 0; |
| 2252 | goto out; |
| 2253 | } |
| 2254 | |
| 2255 | info->runs = le64_to_cpu(desc->runs); |
| 2256 | out: |
| 2257 | kvfree(addr: h); |
| 2258 | return ret; |
| 2259 | } |
| 2260 | |
| 2261 | static int nvme_query_fdp_info(struct nvme_ns *ns, struct nvme_ns_info *info) |
| 2262 | { |
| 2263 | struct nvme_ns_head *head = ns->head; |
| 2264 | struct nvme_ctrl *ctrl = ns->ctrl; |
| 2265 | struct nvme_fdp_ruh_status *ruhs; |
| 2266 | struct nvme_fdp_config fdp; |
| 2267 | struct nvme_command c = {}; |
| 2268 | size_t size; |
| 2269 | int i, ret; |
| 2270 | |
| 2271 | /* |
| 2272 | * The FDP configuration is static for the lifetime of the namespace, |
| 2273 | * so return immediately if we've already registered this namespace's |
| 2274 | * streams. |
| 2275 | */ |
| 2276 | if (head->nr_plids) |
| 2277 | return 0; |
| 2278 | |
| 2279 | ret = nvme_get_features(ctrl, NVME_FEAT_FDP, info->endgid, NULL, 0, |
| 2280 | &fdp); |
| 2281 | if (ret) { |
| 2282 | dev_warn(ctrl->device, "FDP get feature status:0x%x\n" , ret); |
| 2283 | return ret; |
| 2284 | } |
| 2285 | |
| 2286 | if (!(fdp.flags & FDPCFG_FDPE)) |
| 2287 | return 0; |
| 2288 | |
| 2289 | ret = nvme_query_fdp_granularity(ctrl, info, fdp_idx: fdp.fdpcidx); |
| 2290 | if (!info->runs) |
| 2291 | return ret; |
| 2292 | |
| 2293 | size = struct_size(ruhs, ruhsd, S8_MAX - 1); |
| 2294 | ruhs = kzalloc(size, GFP_KERNEL); |
| 2295 | if (!ruhs) |
| 2296 | return -ENOMEM; |
| 2297 | |
| 2298 | c.imr.opcode = nvme_cmd_io_mgmt_recv; |
| 2299 | c.imr.nsid = cpu_to_le32(head->ns_id); |
| 2300 | c.imr.mo = NVME_IO_MGMT_RECV_MO_RUHS; |
| 2301 | c.imr.numd = cpu_to_le32(nvme_bytes_to_numd(size)); |
| 2302 | ret = nvme_submit_sync_cmd(ns->queue, &c, ruhs, size); |
| 2303 | if (ret) { |
| 2304 | dev_warn(ctrl->device, "FDP io-mgmt status:0x%x\n" , ret); |
| 2305 | goto free; |
| 2306 | } |
| 2307 | |
| 2308 | head->nr_plids = le16_to_cpu(ruhs->nruhsd); |
| 2309 | if (!head->nr_plids) |
| 2310 | goto free; |
| 2311 | |
| 2312 | head->plids = kcalloc(head->nr_plids, sizeof(*head->plids), |
| 2313 | GFP_KERNEL); |
| 2314 | if (!head->plids) { |
| 2315 | dev_warn(ctrl->device, |
| 2316 | "failed to allocate %u FDP placement IDs\n" , |
| 2317 | head->nr_plids); |
| 2318 | head->nr_plids = 0; |
| 2319 | ret = -ENOMEM; |
| 2320 | goto free; |
| 2321 | } |
| 2322 | |
| 2323 | for (i = 0; i < head->nr_plids; i++) |
| 2324 | head->plids[i] = le16_to_cpu(ruhs->ruhsd[i].pid); |
| 2325 | free: |
| 2326 | kfree(objp: ruhs); |
| 2327 | return ret; |
| 2328 | } |
| 2329 | |
| 2330 | static int nvme_update_ns_info_block(struct nvme_ns *ns, |
| 2331 | struct nvme_ns_info *info) |
| 2332 | { |
| 2333 | struct queue_limits lim; |
| 2334 | struct nvme_id_ns_nvm *nvm = NULL; |
| 2335 | struct nvme_zone_info zi = {}; |
| 2336 | struct nvme_id_ns *id; |
| 2337 | unsigned int memflags; |
| 2338 | sector_t capacity; |
| 2339 | unsigned lbaf; |
| 2340 | int ret; |
| 2341 | |
| 2342 | ret = nvme_identify_ns(ctrl: ns->ctrl, nsid: info->nsid, id: &id); |
| 2343 | if (ret) |
| 2344 | return ret; |
| 2345 | |
| 2346 | if (id->ncap == 0) { |
| 2347 | /* namespace not allocated or attached */ |
| 2348 | info->is_removed = true; |
| 2349 | ret = -ENXIO; |
| 2350 | goto out; |
| 2351 | } |
| 2352 | lbaf = nvme_lbaf_index(flbas: id->flbas); |
| 2353 | |
| 2354 | if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) { |
| 2355 | ret = nvme_identify_ns_nvm(ctrl: ns->ctrl, nsid: info->nsid, nvmp: &nvm); |
| 2356 | if (ret < 0) |
| 2357 | goto out; |
| 2358 | } |
| 2359 | |
| 2360 | if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && |
| 2361 | ns->head->ids.csi == NVME_CSI_ZNS) { |
| 2362 | ret = nvme_query_zone_info(ns, lbaf, zi: &zi); |
| 2363 | if (ret < 0) |
| 2364 | goto out; |
| 2365 | } |
| 2366 | |
| 2367 | if (ns->ctrl->ctratt & NVME_CTRL_ATTR_FDPS) { |
| 2368 | ret = nvme_query_fdp_info(ns, info); |
| 2369 | if (ret < 0) |
| 2370 | goto out; |
| 2371 | } |
| 2372 | |
| 2373 | lim = queue_limits_start_update(q: ns->disk->queue); |
| 2374 | |
| 2375 | memflags = blk_mq_freeze_queue(q: ns->disk->queue); |
| 2376 | ns->head->lba_shift = id->lbaf[lbaf].ds; |
| 2377 | ns->head->nuse = le64_to_cpu(id->nuse); |
| 2378 | capacity = nvme_lba_to_sect(head: ns->head, le64_to_cpu(id->nsze)); |
| 2379 | nvme_set_ctrl_limits(ctrl: ns->ctrl, lim: &lim); |
| 2380 | nvme_configure_metadata(ctrl: ns->ctrl, head: ns->head, id, nvm, info); |
| 2381 | nvme_set_chunk_sectors(ns, id, lim: &lim); |
| 2382 | if (!nvme_update_disk_info(ns, id, lim: &lim)) |
| 2383 | capacity = 0; |
| 2384 | |
| 2385 | /* |
| 2386 | * Validate the max atomic write size fits within the subsystem's |
| 2387 | * atomic write capabilities. |
| 2388 | */ |
| 2389 | if (lim.atomic_write_hw_max > ns->ctrl->subsys->atomic_bs) { |
| 2390 | blk_mq_unfreeze_queue(q: ns->disk->queue, memflags); |
| 2391 | ret = -ENXIO; |
| 2392 | goto out; |
| 2393 | } |
| 2394 | |
| 2395 | nvme_config_discard(ns, lim: &lim); |
| 2396 | if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && |
| 2397 | ns->head->ids.csi == NVME_CSI_ZNS) |
| 2398 | nvme_update_zone_info(ns, lim: &lim, zi: &zi); |
| 2399 | |
| 2400 | if ((ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) && !info->no_vwc) |
| 2401 | lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA; |
| 2402 | else |
| 2403 | lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA); |
| 2404 | |
| 2405 | if (info->is_rotational) |
| 2406 | lim.features |= BLK_FEAT_ROTATIONAL; |
| 2407 | |
| 2408 | /* |
| 2409 | * Register a metadata profile for PI, or the plain non-integrity NVMe |
| 2410 | * metadata masquerading as Type 0 if supported, otherwise reject block |
| 2411 | * I/O to namespaces with metadata except when the namespace supports |
| 2412 | * PI, as it can strip/insert in that case. |
| 2413 | */ |
| 2414 | if (!nvme_init_integrity(head: ns->head, lim: &lim, info)) |
| 2415 | capacity = 0; |
| 2416 | |
| 2417 | lim.max_write_streams = ns->head->nr_plids; |
| 2418 | if (lim.max_write_streams) |
| 2419 | lim.write_stream_granularity = min(info->runs, U32_MAX); |
| 2420 | else |
| 2421 | lim.write_stream_granularity = 0; |
| 2422 | |
| 2423 | ret = queue_limits_commit_update(q: ns->disk->queue, lim: &lim); |
| 2424 | if (ret) { |
| 2425 | blk_mq_unfreeze_queue(q: ns->disk->queue, memflags); |
| 2426 | goto out; |
| 2427 | } |
| 2428 | |
| 2429 | set_capacity_and_notify(disk: ns->disk, size: capacity); |
| 2430 | |
| 2431 | /* |
| 2432 | * Only set the DEAC bit if the device guarantees that reads from |
| 2433 | * deallocated data return zeroes. While the DEAC bit does not |
| 2434 | * require that, it must be a no-op if reads from deallocated data |
| 2435 | * do not return zeroes. |
| 2436 | */ |
| 2437 | if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) |
| 2438 | ns->head->features |= NVME_NS_DEAC; |
| 2439 | set_disk_ro(disk: ns->disk, read_only: nvme_ns_is_readonly(ns, info)); |
| 2440 | set_bit(NVME_NS_READY, addr: &ns->flags); |
| 2441 | blk_mq_unfreeze_queue(q: ns->disk->queue, memflags); |
| 2442 | |
| 2443 | if (blk_queue_is_zoned(q: ns->queue)) { |
| 2444 | ret = blk_revalidate_disk_zones(disk: ns->disk); |
| 2445 | if (ret && !nvme_first_scan(disk: ns->disk)) |
| 2446 | goto out; |
| 2447 | } |
| 2448 | |
| 2449 | ret = 0; |
| 2450 | out: |
| 2451 | kfree(objp: nvm); |
| 2452 | kfree(objp: id); |
| 2453 | return ret; |
| 2454 | } |
| 2455 | |
| 2456 | static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info) |
| 2457 | { |
| 2458 | bool unsupported = false; |
| 2459 | int ret; |
| 2460 | |
| 2461 | switch (info->ids.csi) { |
| 2462 | case NVME_CSI_ZNS: |
| 2463 | if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { |
| 2464 | dev_info(ns->ctrl->device, |
| 2465 | "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n" , |
| 2466 | info->nsid); |
| 2467 | ret = nvme_update_ns_info_generic(ns, info); |
| 2468 | break; |
| 2469 | } |
| 2470 | ret = nvme_update_ns_info_block(ns, info); |
| 2471 | break; |
| 2472 | case NVME_CSI_NVM: |
| 2473 | ret = nvme_update_ns_info_block(ns, info); |
| 2474 | break; |
| 2475 | default: |
| 2476 | dev_info(ns->ctrl->device, |
| 2477 | "block device for nsid %u not supported (csi %u)\n" , |
| 2478 | info->nsid, info->ids.csi); |
| 2479 | ret = nvme_update_ns_info_generic(ns, info); |
| 2480 | break; |
| 2481 | } |
| 2482 | |
| 2483 | /* |
| 2484 | * If probing fails due an unsupported feature, hide the block device, |
| 2485 | * but still allow other access. |
| 2486 | */ |
| 2487 | if (ret == -ENODEV) { |
| 2488 | ns->disk->flags |= GENHD_FL_HIDDEN; |
| 2489 | set_bit(NVME_NS_READY, addr: &ns->flags); |
| 2490 | unsupported = true; |
| 2491 | ret = 0; |
| 2492 | } |
| 2493 | |
| 2494 | if (!ret && nvme_ns_head_multipath(head: ns->head)) { |
| 2495 | struct queue_limits *ns_lim = &ns->disk->queue->limits; |
| 2496 | struct queue_limits lim; |
| 2497 | unsigned int memflags; |
| 2498 | |
| 2499 | lim = queue_limits_start_update(q: ns->head->disk->queue); |
| 2500 | memflags = blk_mq_freeze_queue(q: ns->head->disk->queue); |
| 2501 | /* |
| 2502 | * queue_limits mixes values that are the hardware limitations |
| 2503 | * for bio splitting with what is the device configuration. |
| 2504 | * |
| 2505 | * For NVMe the device configuration can change after e.g. a |
| 2506 | * Format command, and we really want to pick up the new format |
| 2507 | * value here. But we must still stack the queue limits to the |
| 2508 | * least common denominator for multipathing to split the bios |
| 2509 | * properly. |
| 2510 | * |
| 2511 | * To work around this, we explicitly set the device |
| 2512 | * configuration to those that we just queried, but only stack |
| 2513 | * the splitting limits in to make sure we still obey possibly |
| 2514 | * lower limitations of other controllers. |
| 2515 | */ |
| 2516 | lim.logical_block_size = ns_lim->logical_block_size; |
| 2517 | lim.physical_block_size = ns_lim->physical_block_size; |
| 2518 | lim.io_min = ns_lim->io_min; |
| 2519 | lim.io_opt = ns_lim->io_opt; |
| 2520 | queue_limits_stack_bdev(t: &lim, bdev: ns->disk->part0, offset: 0, |
| 2521 | pfx: ns->head->disk->disk_name); |
| 2522 | if (unsupported) |
| 2523 | ns->head->disk->flags |= GENHD_FL_HIDDEN; |
| 2524 | else |
| 2525 | nvme_init_integrity(head: ns->head, lim: &lim, info); |
| 2526 | lim.max_write_streams = ns_lim->max_write_streams; |
| 2527 | lim.write_stream_granularity = ns_lim->write_stream_granularity; |
| 2528 | ret = queue_limits_commit_update(q: ns->head->disk->queue, lim: &lim); |
| 2529 | |
| 2530 | set_capacity_and_notify(disk: ns->head->disk, size: get_capacity(disk: ns->disk)); |
| 2531 | set_disk_ro(disk: ns->head->disk, read_only: nvme_ns_is_readonly(ns, info)); |
| 2532 | nvme_mpath_revalidate_paths(ns); |
| 2533 | |
| 2534 | blk_mq_unfreeze_queue(q: ns->head->disk->queue, memflags); |
| 2535 | } |
| 2536 | |
| 2537 | return ret; |
| 2538 | } |
| 2539 | |
| 2540 | int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16], |
| 2541 | enum blk_unique_id type) |
| 2542 | { |
| 2543 | struct nvme_ns_ids *ids = &ns->head->ids; |
| 2544 | |
| 2545 | if (type != BLK_UID_EUI64) |
| 2546 | return -EINVAL; |
| 2547 | |
| 2548 | if (memchr_inv(p: ids->nguid, c: 0, size: sizeof(ids->nguid))) { |
| 2549 | memcpy(id, &ids->nguid, sizeof(ids->nguid)); |
| 2550 | return sizeof(ids->nguid); |
| 2551 | } |
| 2552 | if (memchr_inv(p: ids->eui64, c: 0, size: sizeof(ids->eui64))) { |
| 2553 | memcpy(id, &ids->eui64, sizeof(ids->eui64)); |
| 2554 | return sizeof(ids->eui64); |
| 2555 | } |
| 2556 | |
| 2557 | return -EINVAL; |
| 2558 | } |
| 2559 | |
| 2560 | static int nvme_get_unique_id(struct gendisk *disk, u8 id[16], |
| 2561 | enum blk_unique_id type) |
| 2562 | { |
| 2563 | return nvme_ns_get_unique_id(ns: disk->private_data, id, type); |
| 2564 | } |
| 2565 | |
| 2566 | #ifdef CONFIG_BLK_SED_OPAL |
| 2567 | static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, |
| 2568 | bool send) |
| 2569 | { |
| 2570 | struct nvme_ctrl *ctrl = data; |
| 2571 | struct nvme_command cmd = { }; |
| 2572 | |
| 2573 | if (send) |
| 2574 | cmd.common.opcode = nvme_admin_security_send; |
| 2575 | else |
| 2576 | cmd.common.opcode = nvme_admin_security_recv; |
| 2577 | cmd.common.nsid = 0; |
| 2578 | cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); |
| 2579 | cmd.common.cdw11 = cpu_to_le32(len); |
| 2580 | |
| 2581 | return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, |
| 2582 | NVME_QID_ANY, NVME_SUBMIT_AT_HEAD); |
| 2583 | } |
| 2584 | |
| 2585 | static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) |
| 2586 | { |
| 2587 | if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) { |
| 2588 | if (!ctrl->opal_dev) |
| 2589 | ctrl->opal_dev = init_opal_dev(data: ctrl, send_recv: &nvme_sec_submit); |
| 2590 | else if (was_suspended) |
| 2591 | opal_unlock_from_suspend(dev: ctrl->opal_dev); |
| 2592 | } else { |
| 2593 | free_opal_dev(dev: ctrl->opal_dev); |
| 2594 | ctrl->opal_dev = NULL; |
| 2595 | } |
| 2596 | } |
| 2597 | #else |
| 2598 | static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) |
| 2599 | { |
| 2600 | } |
| 2601 | #endif /* CONFIG_BLK_SED_OPAL */ |
| 2602 | |
| 2603 | #ifdef CONFIG_BLK_DEV_ZONED |
| 2604 | static int nvme_report_zones(struct gendisk *disk, sector_t sector, |
| 2605 | unsigned int nr_zones, report_zones_cb cb, void *data) |
| 2606 | { |
| 2607 | return nvme_ns_report_zones(ns: disk->private_data, sector, nr_zones, cb, |
| 2608 | data); |
| 2609 | } |
| 2610 | #else |
| 2611 | #define nvme_report_zones NULL |
| 2612 | #endif /* CONFIG_BLK_DEV_ZONED */ |
| 2613 | |
| 2614 | const struct block_device_operations nvme_bdev_ops = { |
| 2615 | .owner = THIS_MODULE, |
| 2616 | .ioctl = nvme_ioctl, |
| 2617 | .compat_ioctl = blkdev_compat_ptr_ioctl, |
| 2618 | .open = nvme_open, |
| 2619 | .release = nvme_release, |
| 2620 | .getgeo = nvme_getgeo, |
| 2621 | .get_unique_id = nvme_get_unique_id, |
| 2622 | .report_zones = nvme_report_zones, |
| 2623 | .pr_ops = &nvme_pr_ops, |
| 2624 | }; |
| 2625 | |
| 2626 | static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val, |
| 2627 | u32 timeout, const char *op) |
| 2628 | { |
| 2629 | unsigned long timeout_jiffies = jiffies + timeout * HZ; |
| 2630 | u32 csts; |
| 2631 | int ret; |
| 2632 | |
| 2633 | while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { |
| 2634 | if (csts == ~0) |
| 2635 | return -ENODEV; |
| 2636 | if ((csts & mask) == val) |
| 2637 | break; |
| 2638 | |
| 2639 | usleep_range(min: 1000, max: 2000); |
| 2640 | if (fatal_signal_pending(current)) |
| 2641 | return -EINTR; |
| 2642 | if (time_after(jiffies, timeout_jiffies)) { |
| 2643 | dev_err(ctrl->device, |
| 2644 | "Device not ready; aborting %s, CSTS=0x%x\n" , |
| 2645 | op, csts); |
| 2646 | return -ENODEV; |
| 2647 | } |
| 2648 | } |
| 2649 | |
| 2650 | return ret; |
| 2651 | } |
| 2652 | |
| 2653 | int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown) |
| 2654 | { |
| 2655 | int ret; |
| 2656 | |
| 2657 | ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; |
| 2658 | if (shutdown) |
| 2659 | ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; |
| 2660 | else |
| 2661 | ctrl->ctrl_config &= ~NVME_CC_ENABLE; |
| 2662 | |
| 2663 | ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); |
| 2664 | if (ret) |
| 2665 | return ret; |
| 2666 | |
| 2667 | if (shutdown) { |
| 2668 | return nvme_wait_ready(ctrl, mask: NVME_CSTS_SHST_MASK, |
| 2669 | val: NVME_CSTS_SHST_CMPLT, |
| 2670 | timeout: ctrl->shutdown_timeout, op: "shutdown" ); |
| 2671 | } |
| 2672 | if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) |
| 2673 | msleep(NVME_QUIRK_DELAY_AMOUNT); |
| 2674 | return nvme_wait_ready(ctrl, mask: NVME_CSTS_RDY, val: 0, |
| 2675 | timeout: (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, op: "reset" ); |
| 2676 | } |
| 2677 | EXPORT_SYMBOL_GPL(nvme_disable_ctrl); |
| 2678 | |
| 2679 | int nvme_enable_ctrl(struct nvme_ctrl *ctrl) |
| 2680 | { |
| 2681 | unsigned dev_page_min; |
| 2682 | u32 timeout; |
| 2683 | int ret; |
| 2684 | |
| 2685 | ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); |
| 2686 | if (ret) { |
| 2687 | dev_err(ctrl->device, "Reading CAP failed (%d)\n" , ret); |
| 2688 | return ret; |
| 2689 | } |
| 2690 | dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; |
| 2691 | |
| 2692 | if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { |
| 2693 | dev_err(ctrl->device, |
| 2694 | "Minimum device page size %u too large for host (%u)\n" , |
| 2695 | 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); |
| 2696 | return -ENODEV; |
| 2697 | } |
| 2698 | |
| 2699 | if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) |
| 2700 | ctrl->ctrl_config = NVME_CC_CSS_CSI; |
| 2701 | else |
| 2702 | ctrl->ctrl_config = NVME_CC_CSS_NVM; |
| 2703 | |
| 2704 | /* |
| 2705 | * Setting CRIME results in CSTS.RDY before the media is ready. This |
| 2706 | * makes it possible for media related commands to return the error |
| 2707 | * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is |
| 2708 | * restructured to handle retries, disable CC.CRIME. |
| 2709 | */ |
| 2710 | ctrl->ctrl_config &= ~NVME_CC_CRIME; |
| 2711 | |
| 2712 | ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; |
| 2713 | ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; |
| 2714 | ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; |
| 2715 | ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); |
| 2716 | if (ret) |
| 2717 | return ret; |
| 2718 | |
| 2719 | /* CAP value may change after initial CC write */ |
| 2720 | ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); |
| 2721 | if (ret) |
| 2722 | return ret; |
| 2723 | |
| 2724 | timeout = NVME_CAP_TIMEOUT(ctrl->cap); |
| 2725 | if (ctrl->cap & NVME_CAP_CRMS_CRWMS) { |
| 2726 | u32 crto, ready_timeout; |
| 2727 | |
| 2728 | ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto); |
| 2729 | if (ret) { |
| 2730 | dev_err(ctrl->device, "Reading CRTO failed (%d)\n" , |
| 2731 | ret); |
| 2732 | return ret; |
| 2733 | } |
| 2734 | |
| 2735 | /* |
| 2736 | * CRTO should always be greater or equal to CAP.TO, but some |
| 2737 | * devices are known to get this wrong. Use the larger of the |
| 2738 | * two values. |
| 2739 | */ |
| 2740 | ready_timeout = NVME_CRTO_CRWMT(crto); |
| 2741 | |
| 2742 | if (ready_timeout < timeout) |
| 2743 | dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n" , |
| 2744 | crto, ctrl->cap); |
| 2745 | else |
| 2746 | timeout = ready_timeout; |
| 2747 | } |
| 2748 | |
| 2749 | ctrl->ctrl_config |= NVME_CC_ENABLE; |
| 2750 | ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); |
| 2751 | if (ret) |
| 2752 | return ret; |
| 2753 | return nvme_wait_ready(ctrl, mask: NVME_CSTS_RDY, val: NVME_CSTS_RDY, |
| 2754 | timeout: (timeout + 1) / 2, op: "initialisation" ); |
| 2755 | } |
| 2756 | EXPORT_SYMBOL_GPL(nvme_enable_ctrl); |
| 2757 | |
| 2758 | static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) |
| 2759 | { |
| 2760 | __le64 ts; |
| 2761 | int ret; |
| 2762 | |
| 2763 | if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) |
| 2764 | return 0; |
| 2765 | |
| 2766 | ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); |
| 2767 | ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), |
| 2768 | NULL); |
| 2769 | if (ret) |
| 2770 | dev_warn_once(ctrl->device, |
| 2771 | "could not set timestamp (%d)\n" , ret); |
| 2772 | return ret; |
| 2773 | } |
| 2774 | |
| 2775 | static int nvme_configure_host_options(struct nvme_ctrl *ctrl) |
| 2776 | { |
| 2777 | struct nvme_feat_host_behavior *host; |
| 2778 | u8 acre = 0, lbafee = 0; |
| 2779 | int ret; |
| 2780 | |
| 2781 | /* Don't bother enabling the feature if retry delay is not reported */ |
| 2782 | if (ctrl->crdt[0]) |
| 2783 | acre = NVME_ENABLE_ACRE; |
| 2784 | if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) |
| 2785 | lbafee = NVME_ENABLE_LBAFEE; |
| 2786 | |
| 2787 | if (!acre && !lbafee) |
| 2788 | return 0; |
| 2789 | |
| 2790 | host = kzalloc(sizeof(*host), GFP_KERNEL); |
| 2791 | if (!host) |
| 2792 | return 0; |
| 2793 | |
| 2794 | host->acre = acre; |
| 2795 | host->lbafee = lbafee; |
| 2796 | ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, |
| 2797 | host, sizeof(*host), NULL); |
| 2798 | kfree(objp: host); |
| 2799 | return ret; |
| 2800 | } |
| 2801 | |
| 2802 | /* |
| 2803 | * The function checks whether the given total (exlat + enlat) latency of |
| 2804 | * a power state allows the latter to be used as an APST transition target. |
| 2805 | * It does so by comparing the latency to the primary and secondary latency |
| 2806 | * tolerances defined by module params. If there's a match, the corresponding |
| 2807 | * timeout value is returned and the matching tolerance index (1 or 2) is |
| 2808 | * reported. |
| 2809 | */ |
| 2810 | static bool nvme_apst_get_transition_time(u64 total_latency, |
| 2811 | u64 *transition_time, unsigned *last_index) |
| 2812 | { |
| 2813 | if (total_latency <= apst_primary_latency_tol_us) { |
| 2814 | if (*last_index == 1) |
| 2815 | return false; |
| 2816 | *last_index = 1; |
| 2817 | *transition_time = apst_primary_timeout_ms; |
| 2818 | return true; |
| 2819 | } |
| 2820 | if (apst_secondary_timeout_ms && |
| 2821 | total_latency <= apst_secondary_latency_tol_us) { |
| 2822 | if (*last_index <= 2) |
| 2823 | return false; |
| 2824 | *last_index = 2; |
| 2825 | *transition_time = apst_secondary_timeout_ms; |
| 2826 | return true; |
| 2827 | } |
| 2828 | return false; |
| 2829 | } |
| 2830 | |
| 2831 | /* |
| 2832 | * APST (Autonomous Power State Transition) lets us program a table of power |
| 2833 | * state transitions that the controller will perform automatically. |
| 2834 | * |
| 2835 | * Depending on module params, one of the two supported techniques will be used: |
| 2836 | * |
| 2837 | * - If the parameters provide explicit timeouts and tolerances, they will be |
| 2838 | * used to build a table with up to 2 non-operational states to transition to. |
| 2839 | * The default parameter values were selected based on the values used by |
| 2840 | * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic |
| 2841 | * regeneration of the APST table in the event of switching between external |
| 2842 | * and battery power, the timeouts and tolerances reflect a compromise |
| 2843 | * between values used by Microsoft for AC and battery scenarios. |
| 2844 | * - If not, we'll configure the table with a simple heuristic: we are willing |
| 2845 | * to spend at most 2% of the time transitioning between power states. |
| 2846 | * Therefore, when running in any given state, we will enter the next |
| 2847 | * lower-power non-operational state after waiting 50 * (enlat + exlat) |
| 2848 | * microseconds, as long as that state's exit latency is under the requested |
| 2849 | * maximum latency. |
| 2850 | * |
| 2851 | * We will not autonomously enter any non-operational state for which the total |
| 2852 | * latency exceeds ps_max_latency_us. |
| 2853 | * |
| 2854 | * Users can set ps_max_latency_us to zero to turn off APST. |
| 2855 | */ |
| 2856 | static int nvme_configure_apst(struct nvme_ctrl *ctrl) |
| 2857 | { |
| 2858 | struct nvme_feat_auto_pst *table; |
| 2859 | unsigned apste = 0; |
| 2860 | u64 max_lat_us = 0; |
| 2861 | __le64 target = 0; |
| 2862 | int max_ps = -1; |
| 2863 | int state; |
| 2864 | int ret; |
| 2865 | unsigned last_lt_index = UINT_MAX; |
| 2866 | |
| 2867 | /* |
| 2868 | * If APST isn't supported or if we haven't been initialized yet, |
| 2869 | * then don't do anything. |
| 2870 | */ |
| 2871 | if (!ctrl->apsta) |
| 2872 | return 0; |
| 2873 | |
| 2874 | if (ctrl->npss > 31) { |
| 2875 | dev_warn(ctrl->device, "NPSS is invalid; not using APST\n" ); |
| 2876 | return 0; |
| 2877 | } |
| 2878 | |
| 2879 | table = kzalloc(sizeof(*table), GFP_KERNEL); |
| 2880 | if (!table) |
| 2881 | return 0; |
| 2882 | |
| 2883 | if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { |
| 2884 | /* Turn off APST. */ |
| 2885 | dev_dbg(ctrl->device, "APST disabled\n" ); |
| 2886 | goto done; |
| 2887 | } |
| 2888 | |
| 2889 | /* |
| 2890 | * Walk through all states from lowest- to highest-power. |
| 2891 | * According to the spec, lower-numbered states use more power. NPSS, |
| 2892 | * despite the name, is the index of the lowest-power state, not the |
| 2893 | * number of states. |
| 2894 | */ |
| 2895 | for (state = (int)ctrl->npss; state >= 0; state--) { |
| 2896 | u64 total_latency_us, exit_latency_us, transition_ms; |
| 2897 | |
| 2898 | if (target) |
| 2899 | table->entries[state] = target; |
| 2900 | |
| 2901 | /* |
| 2902 | * Don't allow transitions to the deepest state if it's quirked |
| 2903 | * off. |
| 2904 | */ |
| 2905 | if (state == ctrl->npss && |
| 2906 | (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) |
| 2907 | continue; |
| 2908 | |
| 2909 | /* |
| 2910 | * Is this state a useful non-operational state for higher-power |
| 2911 | * states to autonomously transition to? |
| 2912 | */ |
| 2913 | if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) |
| 2914 | continue; |
| 2915 | |
| 2916 | exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); |
| 2917 | if (exit_latency_us > ctrl->ps_max_latency_us) |
| 2918 | continue; |
| 2919 | |
| 2920 | total_latency_us = exit_latency_us + |
| 2921 | le32_to_cpu(ctrl->psd[state].entry_lat); |
| 2922 | |
| 2923 | /* |
| 2924 | * This state is good. It can be used as the APST idle target |
| 2925 | * for higher power states. |
| 2926 | */ |
| 2927 | if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { |
| 2928 | if (!nvme_apst_get_transition_time(total_latency: total_latency_us, |
| 2929 | transition_time: &transition_ms, last_index: &last_lt_index)) |
| 2930 | continue; |
| 2931 | } else { |
| 2932 | transition_ms = total_latency_us + 19; |
| 2933 | do_div(transition_ms, 20); |
| 2934 | if (transition_ms > (1 << 24) - 1) |
| 2935 | transition_ms = (1 << 24) - 1; |
| 2936 | } |
| 2937 | |
| 2938 | target = cpu_to_le64((state << 3) | (transition_ms << 8)); |
| 2939 | if (max_ps == -1) |
| 2940 | max_ps = state; |
| 2941 | if (total_latency_us > max_lat_us) |
| 2942 | max_lat_us = total_latency_us; |
| 2943 | } |
| 2944 | |
| 2945 | if (max_ps == -1) |
| 2946 | dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n" ); |
| 2947 | else |
| 2948 | dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n" , |
| 2949 | max_ps, max_lat_us, (int)sizeof(*table), table); |
| 2950 | apste = 1; |
| 2951 | |
| 2952 | done: |
| 2953 | ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, |
| 2954 | table, sizeof(*table), NULL); |
| 2955 | if (ret) |
| 2956 | dev_err(ctrl->device, "failed to set APST feature (%d)\n" , ret); |
| 2957 | kfree(objp: table); |
| 2958 | return ret; |
| 2959 | } |
| 2960 | |
| 2961 | static void nvme_set_latency_tolerance(struct device *dev, s32 val) |
| 2962 | { |
| 2963 | struct nvme_ctrl *ctrl = dev_get_drvdata(dev); |
| 2964 | u64 latency; |
| 2965 | |
| 2966 | switch (val) { |
| 2967 | case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: |
| 2968 | case PM_QOS_LATENCY_ANY: |
| 2969 | latency = U64_MAX; |
| 2970 | break; |
| 2971 | |
| 2972 | default: |
| 2973 | latency = val; |
| 2974 | } |
| 2975 | |
| 2976 | if (ctrl->ps_max_latency_us != latency) { |
| 2977 | ctrl->ps_max_latency_us = latency; |
| 2978 | if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) |
| 2979 | nvme_configure_apst(ctrl); |
| 2980 | } |
| 2981 | } |
| 2982 | |
| 2983 | struct nvme_core_quirk_entry { |
| 2984 | /* |
| 2985 | * NVMe model and firmware strings are padded with spaces. For |
| 2986 | * simplicity, strings in the quirk table are padded with NULLs |
| 2987 | * instead. |
| 2988 | */ |
| 2989 | u16 vid; |
| 2990 | const char *mn; |
| 2991 | const char *fr; |
| 2992 | unsigned long quirks; |
| 2993 | }; |
| 2994 | |
| 2995 | static const struct nvme_core_quirk_entry core_quirks[] = { |
| 2996 | { |
| 2997 | /* |
| 2998 | * This Toshiba device seems to die using any APST states. See: |
| 2999 | * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 |
| 3000 | */ |
| 3001 | .vid = 0x1179, |
| 3002 | .mn = "THNSF5256GPUK TOSHIBA" , |
| 3003 | .quirks = NVME_QUIRK_NO_APST, |
| 3004 | }, |
| 3005 | { |
| 3006 | /* |
| 3007 | * This LiteON CL1-3D*-Q11 firmware version has a race |
| 3008 | * condition associated with actions related to suspend to idle |
| 3009 | * LiteON has resolved the problem in future firmware |
| 3010 | */ |
| 3011 | .vid = 0x14a4, |
| 3012 | .fr = "22301111" , |
| 3013 | .quirks = NVME_QUIRK_SIMPLE_SUSPEND, |
| 3014 | }, |
| 3015 | { |
| 3016 | /* |
| 3017 | * This Kioxia CD6-V Series / HPE PE8030 device times out and |
| 3018 | * aborts I/O during any load, but more easily reproducible |
| 3019 | * with discards (fstrim). |
| 3020 | * |
| 3021 | * The device is left in a state where it is also not possible |
| 3022 | * to use "nvme set-feature" to disable APST, but booting with |
| 3023 | * nvme_core.default_ps_max_latency=0 works. |
| 3024 | */ |
| 3025 | .vid = 0x1e0f, |
| 3026 | .mn = "KCD6XVUL6T40" , |
| 3027 | .quirks = NVME_QUIRK_NO_APST, |
| 3028 | }, |
| 3029 | { |
| 3030 | /* |
| 3031 | * The external Samsung X5 SSD fails initialization without a |
| 3032 | * delay before checking if it is ready and has a whole set of |
| 3033 | * other problems. To make this even more interesting, it |
| 3034 | * shares the PCI ID with internal Samsung 970 Evo Plus that |
| 3035 | * does not need or want these quirks. |
| 3036 | */ |
| 3037 | .vid = 0x144d, |
| 3038 | .mn = "Samsung Portable SSD X5" , |
| 3039 | .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | |
| 3040 | NVME_QUIRK_NO_DEEPEST_PS | |
| 3041 | NVME_QUIRK_IGNORE_DEV_SUBNQN, |
| 3042 | } |
| 3043 | }; |
| 3044 | |
| 3045 | /* match is null-terminated but idstr is space-padded. */ |
| 3046 | static bool string_matches(const char *idstr, const char *match, size_t len) |
| 3047 | { |
| 3048 | size_t matchlen; |
| 3049 | |
| 3050 | if (!match) |
| 3051 | return true; |
| 3052 | |
| 3053 | matchlen = strlen(match); |
| 3054 | WARN_ON_ONCE(matchlen > len); |
| 3055 | |
| 3056 | if (memcmp(p: idstr, q: match, size: matchlen)) |
| 3057 | return false; |
| 3058 | |
| 3059 | for (; matchlen < len; matchlen++) |
| 3060 | if (idstr[matchlen] != ' ') |
| 3061 | return false; |
| 3062 | |
| 3063 | return true; |
| 3064 | } |
| 3065 | |
| 3066 | static bool quirk_matches(const struct nvme_id_ctrl *id, |
| 3067 | const struct nvme_core_quirk_entry *q) |
| 3068 | { |
| 3069 | return q->vid == le16_to_cpu(id->vid) && |
| 3070 | string_matches(idstr: id->mn, match: q->mn, len: sizeof(id->mn)) && |
| 3071 | string_matches(idstr: id->fr, match: q->fr, len: sizeof(id->fr)); |
| 3072 | } |
| 3073 | |
| 3074 | static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, |
| 3075 | struct nvme_id_ctrl *id) |
| 3076 | { |
| 3077 | size_t nqnlen; |
| 3078 | int off; |
| 3079 | |
| 3080 | if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { |
| 3081 | nqnlen = strnlen(p: id->subnqn, NVMF_NQN_SIZE); |
| 3082 | if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { |
| 3083 | strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); |
| 3084 | return; |
| 3085 | } |
| 3086 | |
| 3087 | if (ctrl->vs >= NVME_VS(1, 2, 1)) |
| 3088 | dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n" ); |
| 3089 | } |
| 3090 | |
| 3091 | /* |
| 3092 | * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe |
| 3093 | * Base Specification 2.0. It is slightly different from the format |
| 3094 | * specified there due to historic reasons, and we can't change it now. |
| 3095 | */ |
| 3096 | off = snprintf(buf: subsys->subnqn, NVMF_NQN_SIZE, |
| 3097 | fmt: "nqn.2014.08.org.nvmexpress:%04x%04x" , |
| 3098 | le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); |
| 3099 | memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); |
| 3100 | off += sizeof(id->sn); |
| 3101 | memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); |
| 3102 | off += sizeof(id->mn); |
| 3103 | memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); |
| 3104 | } |
| 3105 | |
| 3106 | static void nvme_release_subsystem(struct device *dev) |
| 3107 | { |
| 3108 | struct nvme_subsystem *subsys = |
| 3109 | container_of(dev, struct nvme_subsystem, dev); |
| 3110 | |
| 3111 | if (subsys->instance >= 0) |
| 3112 | ida_free(&nvme_instance_ida, id: subsys->instance); |
| 3113 | kfree(objp: subsys); |
| 3114 | } |
| 3115 | |
| 3116 | static void nvme_destroy_subsystem(struct kref *ref) |
| 3117 | { |
| 3118 | struct nvme_subsystem *subsys = |
| 3119 | container_of(ref, struct nvme_subsystem, ref); |
| 3120 | |
| 3121 | mutex_lock(&nvme_subsystems_lock); |
| 3122 | list_del(entry: &subsys->entry); |
| 3123 | mutex_unlock(lock: &nvme_subsystems_lock); |
| 3124 | |
| 3125 | ida_destroy(ida: &subsys->ns_ida); |
| 3126 | device_del(dev: &subsys->dev); |
| 3127 | put_device(dev: &subsys->dev); |
| 3128 | } |
| 3129 | |
| 3130 | static void nvme_put_subsystem(struct nvme_subsystem *subsys) |
| 3131 | { |
| 3132 | kref_put(kref: &subsys->ref, release: nvme_destroy_subsystem); |
| 3133 | } |
| 3134 | |
| 3135 | static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) |
| 3136 | { |
| 3137 | struct nvme_subsystem *subsys; |
| 3138 | |
| 3139 | lockdep_assert_held(&nvme_subsystems_lock); |
| 3140 | |
| 3141 | /* |
| 3142 | * Fail matches for discovery subsystems. This results |
| 3143 | * in each discovery controller bound to a unique subsystem. |
| 3144 | * This avoids issues with validating controller values |
| 3145 | * that can only be true when there is a single unique subsystem. |
| 3146 | * There may be multiple and completely independent entities |
| 3147 | * that provide discovery controllers. |
| 3148 | */ |
| 3149 | if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) |
| 3150 | return NULL; |
| 3151 | |
| 3152 | list_for_each_entry(subsys, &nvme_subsystems, entry) { |
| 3153 | if (strcmp(subsys->subnqn, subsysnqn)) |
| 3154 | continue; |
| 3155 | if (!kref_get_unless_zero(kref: &subsys->ref)) |
| 3156 | continue; |
| 3157 | return subsys; |
| 3158 | } |
| 3159 | |
| 3160 | return NULL; |
| 3161 | } |
| 3162 | |
| 3163 | static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) |
| 3164 | { |
| 3165 | return ctrl->opts && ctrl->opts->discovery_nqn; |
| 3166 | } |
| 3167 | |
| 3168 | static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, |
| 3169 | struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) |
| 3170 | { |
| 3171 | struct nvme_ctrl *tmp; |
| 3172 | |
| 3173 | lockdep_assert_held(&nvme_subsystems_lock); |
| 3174 | |
| 3175 | list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { |
| 3176 | if (nvme_state_terminal(ctrl: tmp)) |
| 3177 | continue; |
| 3178 | |
| 3179 | if (tmp->cntlid == ctrl->cntlid) { |
| 3180 | dev_err(ctrl->device, |
| 3181 | "Duplicate cntlid %u with %s, subsys %s, rejecting\n" , |
| 3182 | ctrl->cntlid, dev_name(tmp->device), |
| 3183 | subsys->subnqn); |
| 3184 | return false; |
| 3185 | } |
| 3186 | |
| 3187 | if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || |
| 3188 | nvme_discovery_ctrl(ctrl)) |
| 3189 | continue; |
| 3190 | |
| 3191 | dev_err(ctrl->device, |
| 3192 | "Subsystem does not support multiple controllers\n" ); |
| 3193 | return false; |
| 3194 | } |
| 3195 | |
| 3196 | return true; |
| 3197 | } |
| 3198 | |
| 3199 | static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) |
| 3200 | { |
| 3201 | struct nvme_subsystem *subsys, *found; |
| 3202 | int ret; |
| 3203 | |
| 3204 | subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); |
| 3205 | if (!subsys) |
| 3206 | return -ENOMEM; |
| 3207 | |
| 3208 | subsys->instance = -1; |
| 3209 | mutex_init(&subsys->lock); |
| 3210 | kref_init(kref: &subsys->ref); |
| 3211 | INIT_LIST_HEAD(list: &subsys->ctrls); |
| 3212 | INIT_LIST_HEAD(list: &subsys->nsheads); |
| 3213 | nvme_init_subnqn(subsys, ctrl, id); |
| 3214 | memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); |
| 3215 | memcpy(subsys->model, id->mn, sizeof(subsys->model)); |
| 3216 | subsys->vendor_id = le16_to_cpu(id->vid); |
| 3217 | subsys->cmic = id->cmic; |
| 3218 | |
| 3219 | /* Versions prior to 1.4 don't necessarily report a valid type */ |
| 3220 | if (id->cntrltype == NVME_CTRL_DISC || |
| 3221 | !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) |
| 3222 | subsys->subtype = NVME_NQN_DISC; |
| 3223 | else |
| 3224 | subsys->subtype = NVME_NQN_NVME; |
| 3225 | |
| 3226 | if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { |
| 3227 | dev_err(ctrl->device, |
| 3228 | "Subsystem %s is not a discovery controller" , |
| 3229 | subsys->subnqn); |
| 3230 | kfree(objp: subsys); |
| 3231 | return -EINVAL; |
| 3232 | } |
| 3233 | nvme_mpath_default_iopolicy(subsys); |
| 3234 | |
| 3235 | subsys->dev.class = &nvme_subsys_class; |
| 3236 | subsys->dev.release = nvme_release_subsystem; |
| 3237 | subsys->dev.groups = nvme_subsys_attrs_groups; |
| 3238 | dev_set_name(dev: &subsys->dev, name: "nvme-subsys%d" , ctrl->instance); |
| 3239 | device_initialize(dev: &subsys->dev); |
| 3240 | |
| 3241 | mutex_lock(&nvme_subsystems_lock); |
| 3242 | found = __nvme_find_get_subsystem(subsysnqn: subsys->subnqn); |
| 3243 | if (found) { |
| 3244 | put_device(dev: &subsys->dev); |
| 3245 | subsys = found; |
| 3246 | |
| 3247 | if (!nvme_validate_cntlid(subsys, ctrl, id)) { |
| 3248 | ret = -EINVAL; |
| 3249 | goto out_put_subsystem; |
| 3250 | } |
| 3251 | } else { |
| 3252 | ret = device_add(dev: &subsys->dev); |
| 3253 | if (ret) { |
| 3254 | dev_err(ctrl->device, |
| 3255 | "failed to register subsystem device.\n" ); |
| 3256 | put_device(dev: &subsys->dev); |
| 3257 | goto out_unlock; |
| 3258 | } |
| 3259 | ida_init(ida: &subsys->ns_ida); |
| 3260 | list_add_tail(new: &subsys->entry, head: &nvme_subsystems); |
| 3261 | } |
| 3262 | |
| 3263 | ret = sysfs_create_link(kobj: &subsys->dev.kobj, target: &ctrl->device->kobj, |
| 3264 | name: dev_name(dev: ctrl->device)); |
| 3265 | if (ret) { |
| 3266 | dev_err(ctrl->device, |
| 3267 | "failed to create sysfs link from subsystem.\n" ); |
| 3268 | goto out_put_subsystem; |
| 3269 | } |
| 3270 | |
| 3271 | if (!found) |
| 3272 | subsys->instance = ctrl->instance; |
| 3273 | ctrl->subsys = subsys; |
| 3274 | list_add_tail(new: &ctrl->subsys_entry, head: &subsys->ctrls); |
| 3275 | mutex_unlock(lock: &nvme_subsystems_lock); |
| 3276 | return 0; |
| 3277 | |
| 3278 | out_put_subsystem: |
| 3279 | nvme_put_subsystem(subsys); |
| 3280 | out_unlock: |
| 3281 | mutex_unlock(lock: &nvme_subsystems_lock); |
| 3282 | return ret; |
| 3283 | } |
| 3284 | |
| 3285 | static int nvme_get_log_lsi(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, |
| 3286 | u8 lsp, u8 csi, void *log, size_t size, u64 offset, u16 lsi) |
| 3287 | { |
| 3288 | struct nvme_command c = { }; |
| 3289 | u32 dwlen = nvme_bytes_to_numd(len: size); |
| 3290 | |
| 3291 | c.get_log_page.opcode = nvme_admin_get_log_page; |
| 3292 | c.get_log_page.nsid = cpu_to_le32(nsid); |
| 3293 | c.get_log_page.lid = log_page; |
| 3294 | c.get_log_page.lsp = lsp; |
| 3295 | c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); |
| 3296 | c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); |
| 3297 | c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); |
| 3298 | c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); |
| 3299 | c.get_log_page.csi = csi; |
| 3300 | c.get_log_page.lsi = cpu_to_le16(lsi); |
| 3301 | |
| 3302 | return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); |
| 3303 | } |
| 3304 | |
| 3305 | int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, |
| 3306 | void *log, size_t size, u64 offset) |
| 3307 | { |
| 3308 | return nvme_get_log_lsi(ctrl, nsid, log_page, lsp, csi, log, size, |
| 3309 | offset, lsi: 0); |
| 3310 | } |
| 3311 | |
| 3312 | static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, |
| 3313 | struct nvme_effects_log **log) |
| 3314 | { |
| 3315 | struct nvme_effects_log *old, *cel = xa_load(&ctrl->cels, index: csi); |
| 3316 | int ret; |
| 3317 | |
| 3318 | if (cel) |
| 3319 | goto out; |
| 3320 | |
| 3321 | cel = kzalloc(sizeof(*cel), GFP_KERNEL); |
| 3322 | if (!cel) |
| 3323 | return -ENOMEM; |
| 3324 | |
| 3325 | ret = nvme_get_log(ctrl, nsid: 0x00, log_page: NVME_LOG_CMD_EFFECTS, lsp: 0, csi, |
| 3326 | log: cel, size: sizeof(*cel), offset: 0); |
| 3327 | if (ret) { |
| 3328 | kfree(objp: cel); |
| 3329 | return ret; |
| 3330 | } |
| 3331 | |
| 3332 | old = xa_store(&ctrl->cels, index: csi, entry: cel, GFP_KERNEL); |
| 3333 | if (xa_is_err(entry: old)) { |
| 3334 | kfree(objp: cel); |
| 3335 | return xa_err(entry: old); |
| 3336 | } |
| 3337 | out: |
| 3338 | *log = cel; |
| 3339 | return 0; |
| 3340 | } |
| 3341 | |
| 3342 | static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) |
| 3343 | { |
| 3344 | u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; |
| 3345 | |
| 3346 | if (check_shl_overflow(1U, units + page_shift - 9, &val)) |
| 3347 | return UINT_MAX; |
| 3348 | return val; |
| 3349 | } |
| 3350 | |
| 3351 | static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) |
| 3352 | { |
| 3353 | struct nvme_command c = { }; |
| 3354 | struct nvme_id_ctrl_nvm *id; |
| 3355 | int ret; |
| 3356 | |
| 3357 | /* |
| 3358 | * Even though NVMe spec explicitly states that MDTS is not applicable |
| 3359 | * to the write-zeroes, we are cautious and limit the size to the |
| 3360 | * controllers max_hw_sectors value, which is based on the MDTS field |
| 3361 | * and possibly other limiting factors. |
| 3362 | */ |
| 3363 | if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && |
| 3364 | !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) |
| 3365 | ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; |
| 3366 | else |
| 3367 | ctrl->max_zeroes_sectors = 0; |
| 3368 | |
| 3369 | if (ctrl->subsys->subtype != NVME_NQN_NVME || |
| 3370 | !nvme_id_cns_ok(ctrl, cns: NVME_ID_CNS_CS_CTRL) || |
| 3371 | test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags)) |
| 3372 | return 0; |
| 3373 | |
| 3374 | id = kzalloc(sizeof(*id), GFP_KERNEL); |
| 3375 | if (!id) |
| 3376 | return -ENOMEM; |
| 3377 | |
| 3378 | c.identify.opcode = nvme_admin_identify; |
| 3379 | c.identify.cns = NVME_ID_CNS_CS_CTRL; |
| 3380 | c.identify.csi = NVME_CSI_NVM; |
| 3381 | |
| 3382 | ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); |
| 3383 | if (ret) |
| 3384 | goto free_data; |
| 3385 | |
| 3386 | ctrl->dmrl = id->dmrl; |
| 3387 | ctrl->dmrsl = le32_to_cpu(id->dmrsl); |
| 3388 | if (id->wzsl) |
| 3389 | ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, units: id->wzsl); |
| 3390 | |
| 3391 | free_data: |
| 3392 | if (ret > 0) |
| 3393 | set_bit(nr: NVME_CTRL_SKIP_ID_CNS_CS, addr: &ctrl->flags); |
| 3394 | kfree(objp: id); |
| 3395 | return ret; |
| 3396 | } |
| 3397 | |
| 3398 | static int nvme_init_effects_log(struct nvme_ctrl *ctrl, |
| 3399 | u8 csi, struct nvme_effects_log **log) |
| 3400 | { |
| 3401 | struct nvme_effects_log *effects, *old; |
| 3402 | |
| 3403 | effects = kzalloc(sizeof(*effects), GFP_KERNEL); |
| 3404 | if (!effects) |
| 3405 | return -ENOMEM; |
| 3406 | |
| 3407 | old = xa_store(&ctrl->cels, index: csi, entry: effects, GFP_KERNEL); |
| 3408 | if (xa_is_err(entry: old)) { |
| 3409 | kfree(objp: effects); |
| 3410 | return xa_err(entry: old); |
| 3411 | } |
| 3412 | |
| 3413 | *log = effects; |
| 3414 | return 0; |
| 3415 | } |
| 3416 | |
| 3417 | static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl) |
| 3418 | { |
| 3419 | struct nvme_effects_log *log = ctrl->effects; |
| 3420 | |
| 3421 | log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | |
| 3422 | NVME_CMD_EFFECTS_NCC | |
| 3423 | NVME_CMD_EFFECTS_CSE_MASK); |
| 3424 | log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | |
| 3425 | NVME_CMD_EFFECTS_CSE_MASK); |
| 3426 | |
| 3427 | /* |
| 3428 | * The spec says the result of a security receive command depends on |
| 3429 | * the previous security send command. As such, many vendors log this |
| 3430 | * command as one to submitted only when no other commands to the same |
| 3431 | * namespace are outstanding. The intention is to tell the host to |
| 3432 | * prevent mixing security send and receive. |
| 3433 | * |
| 3434 | * This driver can only enforce such exclusive access against IO |
| 3435 | * queues, though. We are not readily able to enforce such a rule for |
| 3436 | * two commands to the admin queue, which is the only queue that |
| 3437 | * matters for this command. |
| 3438 | * |
| 3439 | * Rather than blindly freezing the IO queues for this effect that |
| 3440 | * doesn't even apply to IO, mask it off. |
| 3441 | */ |
| 3442 | log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK); |
| 3443 | |
| 3444 | log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); |
| 3445 | log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); |
| 3446 | log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); |
| 3447 | } |
| 3448 | |
| 3449 | static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) |
| 3450 | { |
| 3451 | int ret = 0; |
| 3452 | |
| 3453 | if (ctrl->effects) |
| 3454 | return 0; |
| 3455 | |
| 3456 | if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { |
| 3457 | ret = nvme_get_effects_log(ctrl, csi: NVME_CSI_NVM, log: &ctrl->effects); |
| 3458 | if (ret < 0) |
| 3459 | return ret; |
| 3460 | } |
| 3461 | |
| 3462 | if (!ctrl->effects) { |
| 3463 | ret = nvme_init_effects_log(ctrl, csi: NVME_CSI_NVM, log: &ctrl->effects); |
| 3464 | if (ret < 0) |
| 3465 | return ret; |
| 3466 | } |
| 3467 | |
| 3468 | nvme_init_known_nvm_effects(ctrl); |
| 3469 | return 0; |
| 3470 | } |
| 3471 | |
| 3472 | static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) |
| 3473 | { |
| 3474 | /* |
| 3475 | * In fabrics we need to verify the cntlid matches the |
| 3476 | * admin connect |
| 3477 | */ |
| 3478 | if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { |
| 3479 | dev_err(ctrl->device, |
| 3480 | "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n" , |
| 3481 | ctrl->cntlid, le16_to_cpu(id->cntlid)); |
| 3482 | return -EINVAL; |
| 3483 | } |
| 3484 | |
| 3485 | if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { |
| 3486 | dev_err(ctrl->device, |
| 3487 | "keep-alive support is mandatory for fabrics\n" ); |
| 3488 | return -EINVAL; |
| 3489 | } |
| 3490 | |
| 3491 | if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) { |
| 3492 | dev_err(ctrl->device, |
| 3493 | "I/O queue command capsule supported size %d < 4\n" , |
| 3494 | ctrl->ioccsz); |
| 3495 | return -EINVAL; |
| 3496 | } |
| 3497 | |
| 3498 | if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) { |
| 3499 | dev_err(ctrl->device, |
| 3500 | "I/O queue response capsule supported size %d < 1\n" , |
| 3501 | ctrl->iorcsz); |
| 3502 | return -EINVAL; |
| 3503 | } |
| 3504 | |
| 3505 | if (!ctrl->maxcmd) { |
| 3506 | dev_warn(ctrl->device, |
| 3507 | "Firmware bug: maximum outstanding commands is 0\n" ); |
| 3508 | ctrl->maxcmd = ctrl->sqsize + 1; |
| 3509 | } |
| 3510 | |
| 3511 | return 0; |
| 3512 | } |
| 3513 | |
| 3514 | static int nvme_init_identify(struct nvme_ctrl *ctrl) |
| 3515 | { |
| 3516 | struct queue_limits lim; |
| 3517 | struct nvme_id_ctrl *id; |
| 3518 | u32 max_hw_sectors; |
| 3519 | bool prev_apst_enabled; |
| 3520 | int ret; |
| 3521 | |
| 3522 | ret = nvme_identify_ctrl(dev: ctrl, id: &id); |
| 3523 | if (ret) { |
| 3524 | dev_err(ctrl->device, "Identify Controller failed (%d)\n" , ret); |
| 3525 | return -EIO; |
| 3526 | } |
| 3527 | |
| 3528 | if (!(ctrl->ops->flags & NVME_F_FABRICS)) |
| 3529 | ctrl->cntlid = le16_to_cpu(id->cntlid); |
| 3530 | |
| 3531 | if (!ctrl->identified) { |
| 3532 | unsigned int i; |
| 3533 | |
| 3534 | /* |
| 3535 | * Check for quirks. Quirk can depend on firmware version, |
| 3536 | * so, in principle, the set of quirks present can change |
| 3537 | * across a reset. As a possible future enhancement, we |
| 3538 | * could re-scan for quirks every time we reinitialize |
| 3539 | * the device, but we'd have to make sure that the driver |
| 3540 | * behaves intelligently if the quirks change. |
| 3541 | */ |
| 3542 | for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { |
| 3543 | if (quirk_matches(id, q: &core_quirks[i])) |
| 3544 | ctrl->quirks |= core_quirks[i].quirks; |
| 3545 | } |
| 3546 | |
| 3547 | ret = nvme_init_subsystem(ctrl, id); |
| 3548 | if (ret) |
| 3549 | goto out_free; |
| 3550 | |
| 3551 | ret = nvme_init_effects(ctrl, id); |
| 3552 | if (ret) |
| 3553 | goto out_free; |
| 3554 | } |
| 3555 | memcpy(ctrl->subsys->firmware_rev, id->fr, |
| 3556 | sizeof(ctrl->subsys->firmware_rev)); |
| 3557 | |
| 3558 | if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { |
| 3559 | dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n" ); |
| 3560 | ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; |
| 3561 | } |
| 3562 | |
| 3563 | ctrl->crdt[0] = le16_to_cpu(id->crdt1); |
| 3564 | ctrl->crdt[1] = le16_to_cpu(id->crdt2); |
| 3565 | ctrl->crdt[2] = le16_to_cpu(id->crdt3); |
| 3566 | |
| 3567 | ctrl->oacs = le16_to_cpu(id->oacs); |
| 3568 | ctrl->oncs = le16_to_cpu(id->oncs); |
| 3569 | ctrl->mtfa = le16_to_cpu(id->mtfa); |
| 3570 | ctrl->oaes = le32_to_cpu(id->oaes); |
| 3571 | ctrl->wctemp = le16_to_cpu(id->wctemp); |
| 3572 | ctrl->cctemp = le16_to_cpu(id->cctemp); |
| 3573 | |
| 3574 | atomic_set(v: &ctrl->abort_limit, i: id->acl + 1); |
| 3575 | ctrl->vwc = id->vwc; |
| 3576 | if (id->mdts) |
| 3577 | max_hw_sectors = nvme_mps_to_sectors(ctrl, units: id->mdts); |
| 3578 | else |
| 3579 | max_hw_sectors = UINT_MAX; |
| 3580 | ctrl->max_hw_sectors = |
| 3581 | min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); |
| 3582 | |
| 3583 | lim = queue_limits_start_update(q: ctrl->admin_q); |
| 3584 | nvme_set_ctrl_limits(ctrl, lim: &lim); |
| 3585 | ret = queue_limits_commit_update(q: ctrl->admin_q, lim: &lim); |
| 3586 | if (ret) |
| 3587 | goto out_free; |
| 3588 | |
| 3589 | ctrl->sgls = le32_to_cpu(id->sgls); |
| 3590 | ctrl->kas = le16_to_cpu(id->kas); |
| 3591 | ctrl->max_namespaces = le32_to_cpu(id->mnan); |
| 3592 | ctrl->ctratt = le32_to_cpu(id->ctratt); |
| 3593 | |
| 3594 | ctrl->cntrltype = id->cntrltype; |
| 3595 | ctrl->dctype = id->dctype; |
| 3596 | |
| 3597 | if (id->rtd3e) { |
| 3598 | /* us -> s */ |
| 3599 | u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; |
| 3600 | |
| 3601 | ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, |
| 3602 | shutdown_timeout, 60); |
| 3603 | |
| 3604 | if (ctrl->shutdown_timeout != shutdown_timeout) |
| 3605 | dev_info(ctrl->device, |
| 3606 | "D3 entry latency set to %u seconds\n" , |
| 3607 | ctrl->shutdown_timeout); |
| 3608 | } else |
| 3609 | ctrl->shutdown_timeout = shutdown_timeout; |
| 3610 | |
| 3611 | ctrl->npss = id->npss; |
| 3612 | ctrl->apsta = id->apsta; |
| 3613 | prev_apst_enabled = ctrl->apst_enabled; |
| 3614 | if (ctrl->quirks & NVME_QUIRK_NO_APST) { |
| 3615 | if (force_apst && id->apsta) { |
| 3616 | dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n" ); |
| 3617 | ctrl->apst_enabled = true; |
| 3618 | } else { |
| 3619 | ctrl->apst_enabled = false; |
| 3620 | } |
| 3621 | } else { |
| 3622 | ctrl->apst_enabled = id->apsta; |
| 3623 | } |
| 3624 | memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); |
| 3625 | |
| 3626 | if (ctrl->ops->flags & NVME_F_FABRICS) { |
| 3627 | ctrl->icdoff = le16_to_cpu(id->icdoff); |
| 3628 | ctrl->ioccsz = le32_to_cpu(id->ioccsz); |
| 3629 | ctrl->iorcsz = le32_to_cpu(id->iorcsz); |
| 3630 | ctrl->maxcmd = le16_to_cpu(id->maxcmd); |
| 3631 | |
| 3632 | ret = nvme_check_ctrl_fabric_info(ctrl, id); |
| 3633 | if (ret) |
| 3634 | goto out_free; |
| 3635 | } else { |
| 3636 | ctrl->hmpre = le32_to_cpu(id->hmpre); |
| 3637 | ctrl->hmmin = le32_to_cpu(id->hmmin); |
| 3638 | ctrl->hmminds = le32_to_cpu(id->hmminds); |
| 3639 | ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); |
| 3640 | } |
| 3641 | |
| 3642 | ret = nvme_mpath_init_identify(ctrl, id); |
| 3643 | if (ret < 0) |
| 3644 | goto out_free; |
| 3645 | |
| 3646 | if (ctrl->apst_enabled && !prev_apst_enabled) |
| 3647 | dev_pm_qos_expose_latency_tolerance(dev: ctrl->device); |
| 3648 | else if (!ctrl->apst_enabled && prev_apst_enabled) |
| 3649 | dev_pm_qos_hide_latency_tolerance(dev: ctrl->device); |
| 3650 | ctrl->awupf = le16_to_cpu(id->awupf); |
| 3651 | out_free: |
| 3652 | kfree(objp: id); |
| 3653 | return ret; |
| 3654 | } |
| 3655 | |
| 3656 | /* |
| 3657 | * Initialize the cached copies of the Identify data and various controller |
| 3658 | * register in our nvme_ctrl structure. This should be called as soon as |
| 3659 | * the admin queue is fully up and running. |
| 3660 | */ |
| 3661 | int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended) |
| 3662 | { |
| 3663 | int ret; |
| 3664 | |
| 3665 | ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); |
| 3666 | if (ret) { |
| 3667 | dev_err(ctrl->device, "Reading VS failed (%d)\n" , ret); |
| 3668 | return ret; |
| 3669 | } |
| 3670 | |
| 3671 | ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); |
| 3672 | |
| 3673 | if (ctrl->vs >= NVME_VS(1, 1, 0)) |
| 3674 | ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); |
| 3675 | |
| 3676 | ret = nvme_init_identify(ctrl); |
| 3677 | if (ret) |
| 3678 | return ret; |
| 3679 | |
| 3680 | ret = nvme_configure_apst(ctrl); |
| 3681 | if (ret < 0) |
| 3682 | return ret; |
| 3683 | |
| 3684 | ret = nvme_configure_timestamp(ctrl); |
| 3685 | if (ret < 0) |
| 3686 | return ret; |
| 3687 | |
| 3688 | ret = nvme_configure_host_options(ctrl); |
| 3689 | if (ret < 0) |
| 3690 | return ret; |
| 3691 | |
| 3692 | nvme_configure_opal(ctrl, was_suspended); |
| 3693 | |
| 3694 | if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { |
| 3695 | /* |
| 3696 | * Do not return errors unless we are in a controller reset, |
| 3697 | * the controller works perfectly fine without hwmon. |
| 3698 | */ |
| 3699 | ret = nvme_hwmon_init(ctrl); |
| 3700 | if (ret == -EINTR) |
| 3701 | return ret; |
| 3702 | } |
| 3703 | |
| 3704 | clear_bit(nr: NVME_CTRL_DIRTY_CAPABILITY, addr: &ctrl->flags); |
| 3705 | ctrl->identified = true; |
| 3706 | |
| 3707 | nvme_start_keep_alive(ctrl); |
| 3708 | |
| 3709 | return 0; |
| 3710 | } |
| 3711 | EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); |
| 3712 | |
| 3713 | static int nvme_dev_open(struct inode *inode, struct file *file) |
| 3714 | { |
| 3715 | struct nvme_ctrl *ctrl = |
| 3716 | container_of(inode->i_cdev, struct nvme_ctrl, cdev); |
| 3717 | |
| 3718 | switch (nvme_ctrl_state(ctrl)) { |
| 3719 | case NVME_CTRL_LIVE: |
| 3720 | break; |
| 3721 | default: |
| 3722 | return -EWOULDBLOCK; |
| 3723 | } |
| 3724 | |
| 3725 | nvme_get_ctrl(ctrl); |
| 3726 | if (!try_module_get(module: ctrl->ops->module)) { |
| 3727 | nvme_put_ctrl(ctrl); |
| 3728 | return -EINVAL; |
| 3729 | } |
| 3730 | |
| 3731 | file->private_data = ctrl; |
| 3732 | return 0; |
| 3733 | } |
| 3734 | |
| 3735 | static int nvme_dev_release(struct inode *inode, struct file *file) |
| 3736 | { |
| 3737 | struct nvme_ctrl *ctrl = |
| 3738 | container_of(inode->i_cdev, struct nvme_ctrl, cdev); |
| 3739 | |
| 3740 | module_put(module: ctrl->ops->module); |
| 3741 | nvme_put_ctrl(ctrl); |
| 3742 | return 0; |
| 3743 | } |
| 3744 | |
| 3745 | static const struct file_operations nvme_dev_fops = { |
| 3746 | .owner = THIS_MODULE, |
| 3747 | .open = nvme_dev_open, |
| 3748 | .release = nvme_dev_release, |
| 3749 | .unlocked_ioctl = nvme_dev_ioctl, |
| 3750 | .compat_ioctl = compat_ptr_ioctl, |
| 3751 | .uring_cmd = nvme_dev_uring_cmd, |
| 3752 | }; |
| 3753 | |
| 3754 | static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, |
| 3755 | unsigned nsid) |
| 3756 | { |
| 3757 | struct nvme_ns_head *h; |
| 3758 | |
| 3759 | lockdep_assert_held(&ctrl->subsys->lock); |
| 3760 | |
| 3761 | list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { |
| 3762 | /* |
| 3763 | * Private namespaces can share NSIDs under some conditions. |
| 3764 | * In that case we can't use the same ns_head for namespaces |
| 3765 | * with the same NSID. |
| 3766 | */ |
| 3767 | if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, head: h)) |
| 3768 | continue; |
| 3769 | if (nvme_tryget_ns_head(head: h)) |
| 3770 | return h; |
| 3771 | } |
| 3772 | |
| 3773 | return NULL; |
| 3774 | } |
| 3775 | |
| 3776 | static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, |
| 3777 | struct nvme_ns_ids *ids) |
| 3778 | { |
| 3779 | bool has_uuid = !uuid_is_null(uuid: &ids->uuid); |
| 3780 | bool has_nguid = memchr_inv(p: ids->nguid, c: 0, size: sizeof(ids->nguid)); |
| 3781 | bool has_eui64 = memchr_inv(p: ids->eui64, c: 0, size: sizeof(ids->eui64)); |
| 3782 | struct nvme_ns_head *h; |
| 3783 | |
| 3784 | lockdep_assert_held(&subsys->lock); |
| 3785 | |
| 3786 | list_for_each_entry(h, &subsys->nsheads, entry) { |
| 3787 | if (has_uuid && uuid_equal(u1: &ids->uuid, u2: &h->ids.uuid)) |
| 3788 | return -EINVAL; |
| 3789 | if (has_nguid && |
| 3790 | memcmp(p: &ids->nguid, q: &h->ids.nguid, size: sizeof(ids->nguid)) == 0) |
| 3791 | return -EINVAL; |
| 3792 | if (has_eui64 && |
| 3793 | memcmp(p: &ids->eui64, q: &h->ids.eui64, size: sizeof(ids->eui64)) == 0) |
| 3794 | return -EINVAL; |
| 3795 | } |
| 3796 | |
| 3797 | return 0; |
| 3798 | } |
| 3799 | |
| 3800 | static void nvme_cdev_rel(struct device *dev) |
| 3801 | { |
| 3802 | ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); |
| 3803 | } |
| 3804 | |
| 3805 | void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) |
| 3806 | { |
| 3807 | cdev_device_del(cdev, dev: cdev_device); |
| 3808 | put_device(dev: cdev_device); |
| 3809 | } |
| 3810 | |
| 3811 | int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, |
| 3812 | const struct file_operations *fops, struct module *owner) |
| 3813 | { |
| 3814 | int minor, ret; |
| 3815 | |
| 3816 | minor = ida_alloc(ida: &nvme_ns_chr_minor_ida, GFP_KERNEL); |
| 3817 | if (minor < 0) |
| 3818 | return minor; |
| 3819 | cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); |
| 3820 | cdev_device->class = &nvme_ns_chr_class; |
| 3821 | cdev_device->release = nvme_cdev_rel; |
| 3822 | device_initialize(dev: cdev_device); |
| 3823 | cdev_init(cdev, fops); |
| 3824 | cdev->owner = owner; |
| 3825 | ret = cdev_device_add(cdev, dev: cdev_device); |
| 3826 | if (ret) |
| 3827 | put_device(dev: cdev_device); |
| 3828 | |
| 3829 | return ret; |
| 3830 | } |
| 3831 | |
| 3832 | static int nvme_ns_chr_open(struct inode *inode, struct file *file) |
| 3833 | { |
| 3834 | return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); |
| 3835 | } |
| 3836 | |
| 3837 | static int nvme_ns_chr_release(struct inode *inode, struct file *file) |
| 3838 | { |
| 3839 | nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); |
| 3840 | return 0; |
| 3841 | } |
| 3842 | |
| 3843 | static const struct file_operations nvme_ns_chr_fops = { |
| 3844 | .owner = THIS_MODULE, |
| 3845 | .open = nvme_ns_chr_open, |
| 3846 | .release = nvme_ns_chr_release, |
| 3847 | .unlocked_ioctl = nvme_ns_chr_ioctl, |
| 3848 | .compat_ioctl = compat_ptr_ioctl, |
| 3849 | .uring_cmd = nvme_ns_chr_uring_cmd, |
| 3850 | .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, |
| 3851 | }; |
| 3852 | |
| 3853 | static int nvme_add_ns_cdev(struct nvme_ns *ns) |
| 3854 | { |
| 3855 | int ret; |
| 3856 | |
| 3857 | ns->cdev_device.parent = ns->ctrl->device; |
| 3858 | ret = dev_set_name(dev: &ns->cdev_device, name: "ng%dn%d" , |
| 3859 | ns->ctrl->instance, ns->head->instance); |
| 3860 | if (ret) |
| 3861 | return ret; |
| 3862 | |
| 3863 | return nvme_cdev_add(cdev: &ns->cdev, cdev_device: &ns->cdev_device, fops: &nvme_ns_chr_fops, |
| 3864 | owner: ns->ctrl->ops->module); |
| 3865 | } |
| 3866 | |
| 3867 | static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, |
| 3868 | struct nvme_ns_info *info) |
| 3869 | { |
| 3870 | struct nvme_ns_head *head; |
| 3871 | size_t size = sizeof(*head); |
| 3872 | int ret = -ENOMEM; |
| 3873 | |
| 3874 | #ifdef CONFIG_NVME_MULTIPATH |
| 3875 | size += num_possible_nodes() * sizeof(struct nvme_ns *); |
| 3876 | #endif |
| 3877 | |
| 3878 | head = kzalloc(size, GFP_KERNEL); |
| 3879 | if (!head) |
| 3880 | goto out; |
| 3881 | ret = ida_alloc_min(ida: &ctrl->subsys->ns_ida, min: 1, GFP_KERNEL); |
| 3882 | if (ret < 0) |
| 3883 | goto out_free_head; |
| 3884 | head->instance = ret; |
| 3885 | INIT_LIST_HEAD(list: &head->list); |
| 3886 | ret = init_srcu_struct(&head->srcu); |
| 3887 | if (ret) |
| 3888 | goto out_ida_remove; |
| 3889 | head->subsys = ctrl->subsys; |
| 3890 | head->ns_id = info->nsid; |
| 3891 | head->ids = info->ids; |
| 3892 | head->shared = info->is_shared; |
| 3893 | head->rotational = info->is_rotational; |
| 3894 | ratelimit_state_init(rs: &head->rs_nuse, interval: 5 * HZ, burst: 1); |
| 3895 | ratelimit_set_flags(rs: &head->rs_nuse, RATELIMIT_MSG_ON_RELEASE); |
| 3896 | kref_init(kref: &head->ref); |
| 3897 | |
| 3898 | if (head->ids.csi) { |
| 3899 | ret = nvme_get_effects_log(ctrl, csi: head->ids.csi, log: &head->effects); |
| 3900 | if (ret) |
| 3901 | goto out_cleanup_srcu; |
| 3902 | } else |
| 3903 | head->effects = ctrl->effects; |
| 3904 | |
| 3905 | ret = nvme_mpath_alloc_disk(ctrl, head); |
| 3906 | if (ret) |
| 3907 | goto out_cleanup_srcu; |
| 3908 | |
| 3909 | list_add_tail(new: &head->entry, head: &ctrl->subsys->nsheads); |
| 3910 | |
| 3911 | kref_get(kref: &ctrl->subsys->ref); |
| 3912 | |
| 3913 | return head; |
| 3914 | out_cleanup_srcu: |
| 3915 | cleanup_srcu_struct(ssp: &head->srcu); |
| 3916 | out_ida_remove: |
| 3917 | ida_free(&ctrl->subsys->ns_ida, id: head->instance); |
| 3918 | out_free_head: |
| 3919 | kfree(objp: head); |
| 3920 | out: |
| 3921 | if (ret > 0) |
| 3922 | ret = blk_status_to_errno(status: nvme_error_status(status: ret)); |
| 3923 | return ERR_PTR(error: ret); |
| 3924 | } |
| 3925 | |
| 3926 | static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, |
| 3927 | struct nvme_ns_ids *ids) |
| 3928 | { |
| 3929 | struct nvme_subsystem *s; |
| 3930 | int ret = 0; |
| 3931 | |
| 3932 | /* |
| 3933 | * Note that this check is racy as we try to avoid holding the global |
| 3934 | * lock over the whole ns_head creation. But it is only intended as |
| 3935 | * a sanity check anyway. |
| 3936 | */ |
| 3937 | mutex_lock(&nvme_subsystems_lock); |
| 3938 | list_for_each_entry(s, &nvme_subsystems, entry) { |
| 3939 | if (s == this) |
| 3940 | continue; |
| 3941 | mutex_lock(&s->lock); |
| 3942 | ret = nvme_subsys_check_duplicate_ids(subsys: s, ids); |
| 3943 | mutex_unlock(lock: &s->lock); |
| 3944 | if (ret) |
| 3945 | break; |
| 3946 | } |
| 3947 | mutex_unlock(lock: &nvme_subsystems_lock); |
| 3948 | |
| 3949 | return ret; |
| 3950 | } |
| 3951 | |
| 3952 | static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info) |
| 3953 | { |
| 3954 | struct nvme_ctrl *ctrl = ns->ctrl; |
| 3955 | struct nvme_ns_head *head = NULL; |
| 3956 | int ret; |
| 3957 | |
| 3958 | ret = nvme_global_check_duplicate_ids(this: ctrl->subsys, ids: &info->ids); |
| 3959 | if (ret) { |
| 3960 | /* |
| 3961 | * We've found two different namespaces on two different |
| 3962 | * subsystems that report the same ID. This is pretty nasty |
| 3963 | * for anything that actually requires unique device |
| 3964 | * identification. In the kernel we need this for multipathing, |
| 3965 | * and in user space the /dev/disk/by-id/ links rely on it. |
| 3966 | * |
| 3967 | * If the device also claims to be multi-path capable back off |
| 3968 | * here now and refuse the probe the second device as this is a |
| 3969 | * recipe for data corruption. If not this is probably a |
| 3970 | * cheap consumer device if on the PCIe bus, so let the user |
| 3971 | * proceed and use the shiny toy, but warn that with changing |
| 3972 | * probing order (which due to our async probing could just be |
| 3973 | * device taking longer to startup) the other device could show |
| 3974 | * up at any time. |
| 3975 | */ |
| 3976 | nvme_print_device_info(ctrl); |
| 3977 | if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */ |
| 3978 | ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) && |
| 3979 | info->is_shared)) { |
| 3980 | dev_err(ctrl->device, |
| 3981 | "ignoring nsid %d because of duplicate IDs\n" , |
| 3982 | info->nsid); |
| 3983 | return ret; |
| 3984 | } |
| 3985 | |
| 3986 | dev_err(ctrl->device, |
| 3987 | "clearing duplicate IDs for nsid %d\n" , info->nsid); |
| 3988 | dev_err(ctrl->device, |
| 3989 | "use of /dev/disk/by-id/ may cause data corruption\n" ); |
| 3990 | memset(&info->ids.nguid, 0, sizeof(info->ids.nguid)); |
| 3991 | memset(&info->ids.uuid, 0, sizeof(info->ids.uuid)); |
| 3992 | memset(&info->ids.eui64, 0, sizeof(info->ids.eui64)); |
| 3993 | ctrl->quirks |= NVME_QUIRK_BOGUS_NID; |
| 3994 | } |
| 3995 | |
| 3996 | mutex_lock(&ctrl->subsys->lock); |
| 3997 | head = nvme_find_ns_head(ctrl, nsid: info->nsid); |
| 3998 | if (!head) { |
| 3999 | ret = nvme_subsys_check_duplicate_ids(subsys: ctrl->subsys, ids: &info->ids); |
| 4000 | if (ret) { |
| 4001 | dev_err(ctrl->device, |
| 4002 | "duplicate IDs in subsystem for nsid %d\n" , |
| 4003 | info->nsid); |
| 4004 | goto out_unlock; |
| 4005 | } |
| 4006 | head = nvme_alloc_ns_head(ctrl, info); |
| 4007 | if (IS_ERR(ptr: head)) { |
| 4008 | ret = PTR_ERR(ptr: head); |
| 4009 | goto out_unlock; |
| 4010 | } |
| 4011 | } else { |
| 4012 | ret = -EINVAL; |
| 4013 | if ((!info->is_shared || !head->shared) && |
| 4014 | !list_empty(head: &head->list)) { |
| 4015 | dev_err(ctrl->device, |
| 4016 | "Duplicate unshared namespace %d\n" , |
| 4017 | info->nsid); |
| 4018 | goto out_put_ns_head; |
| 4019 | } |
| 4020 | if (!nvme_ns_ids_equal(a: &head->ids, b: &info->ids)) { |
| 4021 | dev_err(ctrl->device, |
| 4022 | "IDs don't match for shared namespace %d\n" , |
| 4023 | info->nsid); |
| 4024 | goto out_put_ns_head; |
| 4025 | } |
| 4026 | |
| 4027 | if (!multipath) { |
| 4028 | dev_warn(ctrl->device, |
| 4029 | "Found shared namespace %d, but multipathing not supported.\n" , |
| 4030 | info->nsid); |
| 4031 | dev_warn_once(ctrl->device, |
| 4032 | "Shared namespace support requires core_nvme.multipath=Y.\n" ); |
| 4033 | } |
| 4034 | } |
| 4035 | |
| 4036 | list_add_tail_rcu(new: &ns->siblings, head: &head->list); |
| 4037 | ns->head = head; |
| 4038 | mutex_unlock(lock: &ctrl->subsys->lock); |
| 4039 | return 0; |
| 4040 | |
| 4041 | out_put_ns_head: |
| 4042 | nvme_put_ns_head(head); |
| 4043 | out_unlock: |
| 4044 | mutex_unlock(lock: &ctrl->subsys->lock); |
| 4045 | return ret; |
| 4046 | } |
| 4047 | |
| 4048 | struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) |
| 4049 | { |
| 4050 | struct nvme_ns *ns, *ret = NULL; |
| 4051 | int srcu_idx; |
| 4052 | |
| 4053 | srcu_idx = srcu_read_lock(ssp: &ctrl->srcu); |
| 4054 | list_for_each_entry_srcu(ns, &ctrl->namespaces, list, |
| 4055 | srcu_read_lock_held(&ctrl->srcu)) { |
| 4056 | if (ns->head->ns_id == nsid) { |
| 4057 | if (!nvme_get_ns(ns)) |
| 4058 | continue; |
| 4059 | ret = ns; |
| 4060 | break; |
| 4061 | } |
| 4062 | if (ns->head->ns_id > nsid) |
| 4063 | break; |
| 4064 | } |
| 4065 | srcu_read_unlock(ssp: &ctrl->srcu, idx: srcu_idx); |
| 4066 | return ret; |
| 4067 | } |
| 4068 | EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, "NVME_TARGET_PASSTHRU" ); |
| 4069 | |
| 4070 | /* |
| 4071 | * Add the namespace to the controller list while keeping the list ordered. |
| 4072 | */ |
| 4073 | static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) |
| 4074 | { |
| 4075 | struct nvme_ns *tmp; |
| 4076 | |
| 4077 | list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { |
| 4078 | if (tmp->head->ns_id < ns->head->ns_id) { |
| 4079 | list_add_rcu(new: &ns->list, head: &tmp->list); |
| 4080 | return; |
| 4081 | } |
| 4082 | } |
| 4083 | list_add(new: &ns->list, head: &ns->ctrl->namespaces); |
| 4084 | } |
| 4085 | |
| 4086 | static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) |
| 4087 | { |
| 4088 | struct queue_limits lim = { }; |
| 4089 | struct nvme_ns *ns; |
| 4090 | struct gendisk *disk; |
| 4091 | int node = ctrl->numa_node; |
| 4092 | |
| 4093 | ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); |
| 4094 | if (!ns) |
| 4095 | return; |
| 4096 | |
| 4097 | if (ctrl->opts && ctrl->opts->data_digest) |
| 4098 | lim.features |= BLK_FEAT_STABLE_WRITES; |
| 4099 | if (ctrl->ops->supports_pci_p2pdma && |
| 4100 | ctrl->ops->supports_pci_p2pdma(ctrl)) |
| 4101 | lim.features |= BLK_FEAT_PCI_P2PDMA; |
| 4102 | |
| 4103 | disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns); |
| 4104 | if (IS_ERR(ptr: disk)) |
| 4105 | goto out_free_ns; |
| 4106 | disk->fops = &nvme_bdev_ops; |
| 4107 | disk->private_data = ns; |
| 4108 | |
| 4109 | ns->disk = disk; |
| 4110 | ns->queue = disk->queue; |
| 4111 | ns->ctrl = ctrl; |
| 4112 | kref_init(kref: &ns->kref); |
| 4113 | |
| 4114 | if (nvme_init_ns_head(ns, info)) |
| 4115 | goto out_cleanup_disk; |
| 4116 | |
| 4117 | /* |
| 4118 | * If multipathing is enabled, the device name for all disks and not |
| 4119 | * just those that represent shared namespaces needs to be based on the |
| 4120 | * subsystem instance. Using the controller instance for private |
| 4121 | * namespaces could lead to naming collisions between shared and private |
| 4122 | * namespaces if they don't use a common numbering scheme. |
| 4123 | * |
| 4124 | * If multipathing is not enabled, disk names must use the controller |
| 4125 | * instance as shared namespaces will show up as multiple block |
| 4126 | * devices. |
| 4127 | */ |
| 4128 | if (nvme_ns_head_multipath(head: ns->head)) { |
| 4129 | sprintf(buf: disk->disk_name, fmt: "nvme%dc%dn%d" , ctrl->subsys->instance, |
| 4130 | ctrl->instance, ns->head->instance); |
| 4131 | disk->flags |= GENHD_FL_HIDDEN; |
| 4132 | } else if (multipath) { |
| 4133 | sprintf(buf: disk->disk_name, fmt: "nvme%dn%d" , ctrl->subsys->instance, |
| 4134 | ns->head->instance); |
| 4135 | } else { |
| 4136 | sprintf(buf: disk->disk_name, fmt: "nvme%dn%d" , ctrl->instance, |
| 4137 | ns->head->instance); |
| 4138 | } |
| 4139 | |
| 4140 | if (nvme_update_ns_info(ns, info)) |
| 4141 | goto out_unlink_ns; |
| 4142 | |
| 4143 | mutex_lock(&ctrl->namespaces_lock); |
| 4144 | /* |
| 4145 | * Ensure that no namespaces are added to the ctrl list after the queues |
| 4146 | * are frozen, thereby avoiding a deadlock between scan and reset. |
| 4147 | */ |
| 4148 | if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) { |
| 4149 | mutex_unlock(lock: &ctrl->namespaces_lock); |
| 4150 | goto out_unlink_ns; |
| 4151 | } |
| 4152 | nvme_ns_add_to_ctrl_list(ns); |
| 4153 | mutex_unlock(lock: &ctrl->namespaces_lock); |
| 4154 | synchronize_srcu(ssp: &ctrl->srcu); |
| 4155 | nvme_get_ctrl(ctrl); |
| 4156 | |
| 4157 | if (device_add_disk(parent: ctrl->device, disk: ns->disk, groups: nvme_ns_attr_groups)) |
| 4158 | goto out_cleanup_ns_from_list; |
| 4159 | |
| 4160 | if (!nvme_ns_head_multipath(head: ns->head)) |
| 4161 | nvme_add_ns_cdev(ns); |
| 4162 | |
| 4163 | nvme_mpath_add_disk(ns, anagrpid: info->anagrpid); |
| 4164 | nvme_fault_inject_init(fault_inj: &ns->fault_inject, dev_name: ns->disk->disk_name); |
| 4165 | |
| 4166 | /* |
| 4167 | * Set ns->disk->device->driver_data to ns so we can access |
| 4168 | * ns->head->passthru_err_log_enabled in |
| 4169 | * nvme_io_passthru_err_log_enabled_[store | show](). |
| 4170 | */ |
| 4171 | dev_set_drvdata(disk_to_dev(ns->disk), data: ns); |
| 4172 | |
| 4173 | return; |
| 4174 | |
| 4175 | out_cleanup_ns_from_list: |
| 4176 | nvme_put_ctrl(ctrl); |
| 4177 | mutex_lock(&ctrl->namespaces_lock); |
| 4178 | list_del_rcu(entry: &ns->list); |
| 4179 | mutex_unlock(lock: &ctrl->namespaces_lock); |
| 4180 | synchronize_srcu(ssp: &ctrl->srcu); |
| 4181 | out_unlink_ns: |
| 4182 | mutex_lock(&ctrl->subsys->lock); |
| 4183 | list_del_rcu(entry: &ns->siblings); |
| 4184 | if (list_empty(head: &ns->head->list)) |
| 4185 | list_del_init(entry: &ns->head->entry); |
| 4186 | mutex_unlock(lock: &ctrl->subsys->lock); |
| 4187 | nvme_put_ns_head(head: ns->head); |
| 4188 | out_cleanup_disk: |
| 4189 | put_disk(disk); |
| 4190 | out_free_ns: |
| 4191 | kfree(objp: ns); |
| 4192 | } |
| 4193 | |
| 4194 | static void nvme_ns_remove(struct nvme_ns *ns) |
| 4195 | { |
| 4196 | bool last_path = false; |
| 4197 | |
| 4198 | if (test_and_set_bit(NVME_NS_REMOVING, addr: &ns->flags)) |
| 4199 | return; |
| 4200 | |
| 4201 | clear_bit(NVME_NS_READY, addr: &ns->flags); |
| 4202 | set_capacity(disk: ns->disk, size: 0); |
| 4203 | nvme_fault_inject_fini(fault_inject: &ns->fault_inject); |
| 4204 | |
| 4205 | /* |
| 4206 | * Ensure that !NVME_NS_READY is seen by other threads to prevent |
| 4207 | * this ns going back into current_path. |
| 4208 | */ |
| 4209 | synchronize_srcu(ssp: &ns->head->srcu); |
| 4210 | |
| 4211 | /* wait for concurrent submissions */ |
| 4212 | if (nvme_mpath_clear_current_path(ns)) |
| 4213 | synchronize_srcu(ssp: &ns->head->srcu); |
| 4214 | |
| 4215 | mutex_lock(&ns->ctrl->subsys->lock); |
| 4216 | list_del_rcu(entry: &ns->siblings); |
| 4217 | if (list_empty(head: &ns->head->list)) { |
| 4218 | if (!nvme_mpath_queue_if_no_path(head: ns->head)) |
| 4219 | list_del_init(entry: &ns->head->entry); |
| 4220 | last_path = true; |
| 4221 | } |
| 4222 | mutex_unlock(lock: &ns->ctrl->subsys->lock); |
| 4223 | |
| 4224 | /* guarantee not available in head->list */ |
| 4225 | synchronize_srcu(ssp: &ns->head->srcu); |
| 4226 | |
| 4227 | if (!nvme_ns_head_multipath(head: ns->head)) |
| 4228 | nvme_cdev_del(cdev: &ns->cdev, cdev_device: &ns->cdev_device); |
| 4229 | |
| 4230 | nvme_mpath_remove_sysfs_link(ns); |
| 4231 | |
| 4232 | del_gendisk(gp: ns->disk); |
| 4233 | |
| 4234 | mutex_lock(&ns->ctrl->namespaces_lock); |
| 4235 | list_del_rcu(entry: &ns->list); |
| 4236 | mutex_unlock(lock: &ns->ctrl->namespaces_lock); |
| 4237 | synchronize_srcu(ssp: &ns->ctrl->srcu); |
| 4238 | |
| 4239 | if (last_path) |
| 4240 | nvme_mpath_remove_disk(head: ns->head); |
| 4241 | nvme_put_ns(ns); |
| 4242 | } |
| 4243 | |
| 4244 | static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) |
| 4245 | { |
| 4246 | struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); |
| 4247 | |
| 4248 | if (ns) { |
| 4249 | nvme_ns_remove(ns); |
| 4250 | nvme_put_ns(ns); |
| 4251 | } |
| 4252 | } |
| 4253 | |
| 4254 | static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info) |
| 4255 | { |
| 4256 | int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR; |
| 4257 | |
| 4258 | if (!nvme_ns_ids_equal(a: &ns->head->ids, b: &info->ids)) { |
| 4259 | dev_err(ns->ctrl->device, |
| 4260 | "identifiers changed for nsid %d\n" , ns->head->ns_id); |
| 4261 | goto out; |
| 4262 | } |
| 4263 | |
| 4264 | ret = nvme_update_ns_info(ns, info); |
| 4265 | out: |
| 4266 | /* |
| 4267 | * Only remove the namespace if we got a fatal error back from the |
| 4268 | * device, otherwise ignore the error and just move on. |
| 4269 | * |
| 4270 | * TODO: we should probably schedule a delayed retry here. |
| 4271 | */ |
| 4272 | if (ret > 0 && (ret & NVME_STATUS_DNR)) |
| 4273 | nvme_ns_remove(ns); |
| 4274 | } |
| 4275 | |
| 4276 | static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid) |
| 4277 | { |
| 4278 | struct nvme_ns_info info = { .nsid = nsid }; |
| 4279 | struct nvme_ns *ns; |
| 4280 | int ret = 1; |
| 4281 | |
| 4282 | if (nvme_identify_ns_descs(ctrl, info: &info)) |
| 4283 | return; |
| 4284 | |
| 4285 | if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) { |
| 4286 | dev_warn(ctrl->device, |
| 4287 | "command set not reported for nsid: %d\n" , nsid); |
| 4288 | return; |
| 4289 | } |
| 4290 | |
| 4291 | /* |
| 4292 | * If available try to use the Command Set Idependent Identify Namespace |
| 4293 | * data structure to find all the generic information that is needed to |
| 4294 | * set up a namespace. If not fall back to the legacy version. |
| 4295 | */ |
| 4296 | if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) || |
| 4297 | (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS) || |
| 4298 | ctrl->vs >= NVME_VS(2, 0, 0)) |
| 4299 | ret = nvme_ns_info_from_id_cs_indep(ctrl, info: &info); |
| 4300 | if (ret > 0) |
| 4301 | ret = nvme_ns_info_from_identify(ctrl, info: &info); |
| 4302 | |
| 4303 | if (info.is_removed) |
| 4304 | nvme_ns_remove_by_nsid(ctrl, nsid); |
| 4305 | |
| 4306 | /* |
| 4307 | * Ignore the namespace if it is not ready. We will get an AEN once it |
| 4308 | * becomes ready and restart the scan. |
| 4309 | */ |
| 4310 | if (ret || !info.is_ready) |
| 4311 | return; |
| 4312 | |
| 4313 | ns = nvme_find_get_ns(ctrl, nsid); |
| 4314 | if (ns) { |
| 4315 | nvme_validate_ns(ns, info: &info); |
| 4316 | nvme_put_ns(ns); |
| 4317 | } else { |
| 4318 | nvme_alloc_ns(ctrl, info: &info); |
| 4319 | } |
| 4320 | } |
| 4321 | |
| 4322 | /** |
| 4323 | * struct async_scan_info - keeps track of controller & NSIDs to scan |
| 4324 | * @ctrl: Controller on which namespaces are being scanned |
| 4325 | * @next_nsid: Index of next NSID to scan in ns_list |
| 4326 | * @ns_list: Pointer to list of NSIDs to scan |
| 4327 | * |
| 4328 | * Note: There is a single async_scan_info structure shared by all instances |
| 4329 | * of nvme_scan_ns_async() scanning a given controller, so the atomic |
| 4330 | * operations on next_nsid are critical to ensure each instance scans a unique |
| 4331 | * NSID. |
| 4332 | */ |
| 4333 | struct async_scan_info { |
| 4334 | struct nvme_ctrl *ctrl; |
| 4335 | atomic_t next_nsid; |
| 4336 | __le32 *ns_list; |
| 4337 | }; |
| 4338 | |
| 4339 | static void nvme_scan_ns_async(void *data, async_cookie_t cookie) |
| 4340 | { |
| 4341 | struct async_scan_info *scan_info = data; |
| 4342 | int idx; |
| 4343 | u32 nsid; |
| 4344 | |
| 4345 | idx = (u32)atomic_fetch_inc(v: &scan_info->next_nsid); |
| 4346 | nsid = le32_to_cpu(scan_info->ns_list[idx]); |
| 4347 | |
| 4348 | nvme_scan_ns(ctrl: scan_info->ctrl, nsid); |
| 4349 | } |
| 4350 | |
| 4351 | static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, |
| 4352 | unsigned nsid) |
| 4353 | { |
| 4354 | struct nvme_ns *ns, *next; |
| 4355 | LIST_HEAD(rm_list); |
| 4356 | |
| 4357 | mutex_lock(&ctrl->namespaces_lock); |
| 4358 | list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { |
| 4359 | if (ns->head->ns_id > nsid) { |
| 4360 | list_del_rcu(entry: &ns->list); |
| 4361 | synchronize_srcu(ssp: &ctrl->srcu); |
| 4362 | list_add_tail_rcu(new: &ns->list, head: &rm_list); |
| 4363 | } |
| 4364 | } |
| 4365 | mutex_unlock(lock: &ctrl->namespaces_lock); |
| 4366 | |
| 4367 | list_for_each_entry_safe(ns, next, &rm_list, list) |
| 4368 | nvme_ns_remove(ns); |
| 4369 | } |
| 4370 | |
| 4371 | static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) |
| 4372 | { |
| 4373 | const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); |
| 4374 | __le32 *ns_list; |
| 4375 | u32 prev = 0; |
| 4376 | int ret = 0, i; |
| 4377 | ASYNC_DOMAIN(domain); |
| 4378 | struct async_scan_info scan_info; |
| 4379 | |
| 4380 | ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); |
| 4381 | if (!ns_list) |
| 4382 | return -ENOMEM; |
| 4383 | |
| 4384 | scan_info.ctrl = ctrl; |
| 4385 | scan_info.ns_list = ns_list; |
| 4386 | for (;;) { |
| 4387 | struct nvme_command cmd = { |
| 4388 | .identify.opcode = nvme_admin_identify, |
| 4389 | .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, |
| 4390 | .identify.nsid = cpu_to_le32(prev), |
| 4391 | }; |
| 4392 | |
| 4393 | ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, |
| 4394 | NVME_IDENTIFY_DATA_SIZE); |
| 4395 | if (ret) { |
| 4396 | dev_warn(ctrl->device, |
| 4397 | "Identify NS List failed (status=0x%x)\n" , ret); |
| 4398 | goto free; |
| 4399 | } |
| 4400 | |
| 4401 | atomic_set(v: &scan_info.next_nsid, i: 0); |
| 4402 | for (i = 0; i < nr_entries; i++) { |
| 4403 | u32 nsid = le32_to_cpu(ns_list[i]); |
| 4404 | |
| 4405 | if (!nsid) /* end of the list? */ |
| 4406 | goto out; |
| 4407 | async_schedule_domain(func: nvme_scan_ns_async, data: &scan_info, |
| 4408 | domain: &domain); |
| 4409 | while (++prev < nsid) |
| 4410 | nvme_ns_remove_by_nsid(ctrl, nsid: prev); |
| 4411 | } |
| 4412 | async_synchronize_full_domain(domain: &domain); |
| 4413 | } |
| 4414 | out: |
| 4415 | nvme_remove_invalid_namespaces(ctrl, nsid: prev); |
| 4416 | free: |
| 4417 | async_synchronize_full_domain(domain: &domain); |
| 4418 | kfree(objp: ns_list); |
| 4419 | return ret; |
| 4420 | } |
| 4421 | |
| 4422 | static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) |
| 4423 | { |
| 4424 | struct nvme_id_ctrl *id; |
| 4425 | u32 nn, i; |
| 4426 | |
| 4427 | if (nvme_identify_ctrl(dev: ctrl, id: &id)) |
| 4428 | return; |
| 4429 | nn = le32_to_cpu(id->nn); |
| 4430 | kfree(objp: id); |
| 4431 | |
| 4432 | for (i = 1; i <= nn; i++) |
| 4433 | nvme_scan_ns(ctrl, nsid: i); |
| 4434 | |
| 4435 | nvme_remove_invalid_namespaces(ctrl, nsid: nn); |
| 4436 | } |
| 4437 | |
| 4438 | static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) |
| 4439 | { |
| 4440 | size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); |
| 4441 | __le32 *log; |
| 4442 | int error; |
| 4443 | |
| 4444 | log = kzalloc(log_size, GFP_KERNEL); |
| 4445 | if (!log) |
| 4446 | return; |
| 4447 | |
| 4448 | /* |
| 4449 | * We need to read the log to clear the AEN, but we don't want to rely |
| 4450 | * on it for the changed namespace information as userspace could have |
| 4451 | * raced with us in reading the log page, which could cause us to miss |
| 4452 | * updates. |
| 4453 | */ |
| 4454 | error = nvme_get_log(ctrl, NVME_NSID_ALL, log_page: NVME_LOG_CHANGED_NS, lsp: 0, |
| 4455 | csi: NVME_CSI_NVM, log, size: log_size, offset: 0); |
| 4456 | if (error) |
| 4457 | dev_warn(ctrl->device, |
| 4458 | "reading changed ns log failed: %d\n" , error); |
| 4459 | |
| 4460 | kfree(objp: log); |
| 4461 | } |
| 4462 | |
| 4463 | static void nvme_scan_work(struct work_struct *work) |
| 4464 | { |
| 4465 | struct nvme_ctrl *ctrl = |
| 4466 | container_of(work, struct nvme_ctrl, scan_work); |
| 4467 | int ret; |
| 4468 | |
| 4469 | /* No tagset on a live ctrl means IO queues could not created */ |
| 4470 | if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset) |
| 4471 | return; |
| 4472 | |
| 4473 | /* |
| 4474 | * Identify controller limits can change at controller reset due to |
| 4475 | * new firmware download, even though it is not common we cannot ignore |
| 4476 | * such scenario. Controller's non-mdts limits are reported in the unit |
| 4477 | * of logical blocks that is dependent on the format of attached |
| 4478 | * namespace. Hence re-read the limits at the time of ns allocation. |
| 4479 | */ |
| 4480 | ret = nvme_init_non_mdts_limits(ctrl); |
| 4481 | if (ret < 0) { |
| 4482 | dev_warn(ctrl->device, |
| 4483 | "reading non-mdts-limits failed: %d\n" , ret); |
| 4484 | return; |
| 4485 | } |
| 4486 | |
| 4487 | if (test_and_clear_bit(nr: NVME_AER_NOTICE_NS_CHANGED, addr: &ctrl->events)) { |
| 4488 | dev_info(ctrl->device, "rescanning namespaces.\n" ); |
| 4489 | nvme_clear_changed_ns_log(ctrl); |
| 4490 | } |
| 4491 | |
| 4492 | mutex_lock(&ctrl->scan_lock); |
| 4493 | if (!nvme_id_cns_ok(ctrl, cns: NVME_ID_CNS_NS_ACTIVE_LIST)) { |
| 4494 | nvme_scan_ns_sequential(ctrl); |
| 4495 | } else { |
| 4496 | /* |
| 4497 | * Fall back to sequential scan if DNR is set to handle broken |
| 4498 | * devices which should support Identify NS List (as per the VS |
| 4499 | * they report) but don't actually support it. |
| 4500 | */ |
| 4501 | ret = nvme_scan_ns_list(ctrl); |
| 4502 | if (ret > 0 && ret & NVME_STATUS_DNR) |
| 4503 | nvme_scan_ns_sequential(ctrl); |
| 4504 | } |
| 4505 | mutex_unlock(lock: &ctrl->scan_lock); |
| 4506 | |
| 4507 | /* Requeue if we have missed AENs */ |
| 4508 | if (test_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) |
| 4509 | nvme_queue_scan(ctrl); |
| 4510 | #ifdef CONFIG_NVME_MULTIPATH |
| 4511 | else if (ctrl->ana_log_buf) |
| 4512 | /* Re-read the ANA log page to not miss updates */ |
| 4513 | queue_work(wq: nvme_wq, work: &ctrl->ana_work); |
| 4514 | #endif |
| 4515 | } |
| 4516 | |
| 4517 | /* |
| 4518 | * This function iterates the namespace list unlocked to allow recovery from |
| 4519 | * controller failure. It is up to the caller to ensure the namespace list is |
| 4520 | * not modified by scan work while this function is executing. |
| 4521 | */ |
| 4522 | void nvme_remove_namespaces(struct nvme_ctrl *ctrl) |
| 4523 | { |
| 4524 | struct nvme_ns *ns, *next; |
| 4525 | LIST_HEAD(ns_list); |
| 4526 | |
| 4527 | /* |
| 4528 | * make sure to requeue I/O to all namespaces as these |
| 4529 | * might result from the scan itself and must complete |
| 4530 | * for the scan_work to make progress |
| 4531 | */ |
| 4532 | nvme_mpath_clear_ctrl_paths(ctrl); |
| 4533 | |
| 4534 | /* |
| 4535 | * Unquiesce io queues so any pending IO won't hang, especially |
| 4536 | * those submitted from scan work |
| 4537 | */ |
| 4538 | nvme_unquiesce_io_queues(ctrl); |
| 4539 | |
| 4540 | /* prevent racing with ns scanning */ |
| 4541 | flush_work(work: &ctrl->scan_work); |
| 4542 | |
| 4543 | /* |
| 4544 | * The dead states indicates the controller was not gracefully |
| 4545 | * disconnected. In that case, we won't be able to flush any data while |
| 4546 | * removing the namespaces' disks; fail all the queues now to avoid |
| 4547 | * potentially having to clean up the failed sync later. |
| 4548 | */ |
| 4549 | if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD) |
| 4550 | nvme_mark_namespaces_dead(ctrl); |
| 4551 | |
| 4552 | /* this is a no-op when called from the controller reset handler */ |
| 4553 | nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); |
| 4554 | |
| 4555 | mutex_lock(&ctrl->namespaces_lock); |
| 4556 | list_splice_init_rcu(list: &ctrl->namespaces, head: &ns_list, sync: synchronize_rcu); |
| 4557 | mutex_unlock(lock: &ctrl->namespaces_lock); |
| 4558 | synchronize_srcu(ssp: &ctrl->srcu); |
| 4559 | |
| 4560 | list_for_each_entry_safe(ns, next, &ns_list, list) |
| 4561 | nvme_ns_remove(ns); |
| 4562 | } |
| 4563 | EXPORT_SYMBOL_GPL(nvme_remove_namespaces); |
| 4564 | |
| 4565 | static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env) |
| 4566 | { |
| 4567 | const struct nvme_ctrl *ctrl = |
| 4568 | container_of(dev, struct nvme_ctrl, ctrl_device); |
| 4569 | struct nvmf_ctrl_options *opts = ctrl->opts; |
| 4570 | int ret; |
| 4571 | |
| 4572 | ret = add_uevent_var(env, format: "NVME_TRTYPE=%s" , ctrl->ops->name); |
| 4573 | if (ret) |
| 4574 | return ret; |
| 4575 | |
| 4576 | if (opts) { |
| 4577 | ret = add_uevent_var(env, format: "NVME_TRADDR=%s" , opts->traddr); |
| 4578 | if (ret) |
| 4579 | return ret; |
| 4580 | |
| 4581 | ret = add_uevent_var(env, format: "NVME_TRSVCID=%s" , |
| 4582 | opts->trsvcid ?: "none" ); |
| 4583 | if (ret) |
| 4584 | return ret; |
| 4585 | |
| 4586 | ret = add_uevent_var(env, format: "NVME_HOST_TRADDR=%s" , |
| 4587 | opts->host_traddr ?: "none" ); |
| 4588 | if (ret) |
| 4589 | return ret; |
| 4590 | |
| 4591 | ret = add_uevent_var(env, format: "NVME_HOST_IFACE=%s" , |
| 4592 | opts->host_iface ?: "none" ); |
| 4593 | } |
| 4594 | return ret; |
| 4595 | } |
| 4596 | |
| 4597 | static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) |
| 4598 | { |
| 4599 | char *envp[2] = { envdata, NULL }; |
| 4600 | |
| 4601 | kobject_uevent_env(kobj: &ctrl->device->kobj, action: KOBJ_CHANGE, envp); |
| 4602 | } |
| 4603 | |
| 4604 | static void nvme_aen_uevent(struct nvme_ctrl *ctrl) |
| 4605 | { |
| 4606 | char *envp[2] = { NULL, NULL }; |
| 4607 | u32 aen_result = ctrl->aen_result; |
| 4608 | |
| 4609 | ctrl->aen_result = 0; |
| 4610 | if (!aen_result) |
| 4611 | return; |
| 4612 | |
| 4613 | envp[0] = kasprintf(GFP_KERNEL, fmt: "NVME_AEN=%#08x" , aen_result); |
| 4614 | if (!envp[0]) |
| 4615 | return; |
| 4616 | kobject_uevent_env(kobj: &ctrl->device->kobj, action: KOBJ_CHANGE, envp); |
| 4617 | kfree(objp: envp[0]); |
| 4618 | } |
| 4619 | |
| 4620 | static void nvme_async_event_work(struct work_struct *work) |
| 4621 | { |
| 4622 | struct nvme_ctrl *ctrl = |
| 4623 | container_of(work, struct nvme_ctrl, async_event_work); |
| 4624 | |
| 4625 | nvme_aen_uevent(ctrl); |
| 4626 | |
| 4627 | /* |
| 4628 | * The transport drivers must guarantee AER submission here is safe by |
| 4629 | * flushing ctrl async_event_work after changing the controller state |
| 4630 | * from LIVE and before freeing the admin queue. |
| 4631 | */ |
| 4632 | if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) |
| 4633 | ctrl->ops->submit_async_event(ctrl); |
| 4634 | } |
| 4635 | |
| 4636 | static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) |
| 4637 | { |
| 4638 | |
| 4639 | u32 csts; |
| 4640 | |
| 4641 | if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) |
| 4642 | return false; |
| 4643 | |
| 4644 | if (csts == ~0) |
| 4645 | return false; |
| 4646 | |
| 4647 | return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); |
| 4648 | } |
| 4649 | |
| 4650 | static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) |
| 4651 | { |
| 4652 | struct nvme_fw_slot_info_log *log; |
| 4653 | u8 next_fw_slot, cur_fw_slot; |
| 4654 | |
| 4655 | log = kmalloc(sizeof(*log), GFP_KERNEL); |
| 4656 | if (!log) |
| 4657 | return; |
| 4658 | |
| 4659 | if (nvme_get_log(ctrl, NVME_NSID_ALL, log_page: NVME_LOG_FW_SLOT, lsp: 0, csi: NVME_CSI_NVM, |
| 4660 | log, size: sizeof(*log), offset: 0)) { |
| 4661 | dev_warn(ctrl->device, "Get FW SLOT INFO log error\n" ); |
| 4662 | goto out_free_log; |
| 4663 | } |
| 4664 | |
| 4665 | cur_fw_slot = log->afi & 0x7; |
| 4666 | next_fw_slot = (log->afi & 0x70) >> 4; |
| 4667 | if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) { |
| 4668 | dev_info(ctrl->device, |
| 4669 | "Firmware is activated after next Controller Level Reset\n" ); |
| 4670 | goto out_free_log; |
| 4671 | } |
| 4672 | |
| 4673 | memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1], |
| 4674 | sizeof(ctrl->subsys->firmware_rev)); |
| 4675 | |
| 4676 | out_free_log: |
| 4677 | kfree(objp: log); |
| 4678 | } |
| 4679 | |
| 4680 | static void nvme_fw_act_work(struct work_struct *work) |
| 4681 | { |
| 4682 | struct nvme_ctrl *ctrl = container_of(work, |
| 4683 | struct nvme_ctrl, fw_act_work); |
| 4684 | unsigned long fw_act_timeout; |
| 4685 | |
| 4686 | nvme_auth_stop(ctrl); |
| 4687 | |
| 4688 | if (ctrl->mtfa) |
| 4689 | fw_act_timeout = jiffies + msecs_to_jiffies(m: ctrl->mtfa * 100); |
| 4690 | else |
| 4691 | fw_act_timeout = jiffies + secs_to_jiffies(admin_timeout); |
| 4692 | |
| 4693 | nvme_quiesce_io_queues(ctrl); |
| 4694 | while (nvme_ctrl_pp_status(ctrl)) { |
| 4695 | if (time_after(jiffies, fw_act_timeout)) { |
| 4696 | dev_warn(ctrl->device, |
| 4697 | "Fw activation timeout, reset controller\n" ); |
| 4698 | nvme_try_sched_reset(ctrl); |
| 4699 | return; |
| 4700 | } |
| 4701 | msleep(msecs: 100); |
| 4702 | } |
| 4703 | |
| 4704 | if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING) || |
| 4705 | !nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) |
| 4706 | return; |
| 4707 | |
| 4708 | nvme_unquiesce_io_queues(ctrl); |
| 4709 | /* read FW slot information to clear the AER */ |
| 4710 | nvme_get_fw_slot_info(ctrl); |
| 4711 | |
| 4712 | queue_work(wq: nvme_wq, work: &ctrl->async_event_work); |
| 4713 | } |
| 4714 | |
| 4715 | static u32 nvme_aer_type(u32 result) |
| 4716 | { |
| 4717 | return result & 0x7; |
| 4718 | } |
| 4719 | |
| 4720 | static u32 nvme_aer_subtype(u32 result) |
| 4721 | { |
| 4722 | return (result & 0xff00) >> 8; |
| 4723 | } |
| 4724 | |
| 4725 | static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) |
| 4726 | { |
| 4727 | u32 aer_notice_type = nvme_aer_subtype(result); |
| 4728 | bool requeue = true; |
| 4729 | |
| 4730 | switch (aer_notice_type) { |
| 4731 | case NVME_AER_NOTICE_NS_CHANGED: |
| 4732 | set_bit(nr: NVME_AER_NOTICE_NS_CHANGED, addr: &ctrl->events); |
| 4733 | nvme_queue_scan(ctrl); |
| 4734 | break; |
| 4735 | case NVME_AER_NOTICE_FW_ACT_STARTING: |
| 4736 | /* |
| 4737 | * We are (ab)using the RESETTING state to prevent subsequent |
| 4738 | * recovery actions from interfering with the controller's |
| 4739 | * firmware activation. |
| 4740 | */ |
| 4741 | if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { |
| 4742 | requeue = false; |
| 4743 | queue_work(wq: nvme_wq, work: &ctrl->fw_act_work); |
| 4744 | } |
| 4745 | break; |
| 4746 | #ifdef CONFIG_NVME_MULTIPATH |
| 4747 | case NVME_AER_NOTICE_ANA: |
| 4748 | if (!ctrl->ana_log_buf) |
| 4749 | break; |
| 4750 | queue_work(wq: nvme_wq, work: &ctrl->ana_work); |
| 4751 | break; |
| 4752 | #endif |
| 4753 | case NVME_AER_NOTICE_DISC_CHANGED: |
| 4754 | ctrl->aen_result = result; |
| 4755 | break; |
| 4756 | default: |
| 4757 | dev_warn(ctrl->device, "async event result %08x\n" , result); |
| 4758 | } |
| 4759 | return requeue; |
| 4760 | } |
| 4761 | |
| 4762 | static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl) |
| 4763 | { |
| 4764 | dev_warn(ctrl->device, |
| 4765 | "resetting controller due to persistent internal error\n" ); |
| 4766 | nvme_reset_ctrl(ctrl); |
| 4767 | } |
| 4768 | |
| 4769 | void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, |
| 4770 | volatile union nvme_result *res) |
| 4771 | { |
| 4772 | u32 result = le32_to_cpu(res->u32); |
| 4773 | u32 aer_type = nvme_aer_type(result); |
| 4774 | u32 aer_subtype = nvme_aer_subtype(result); |
| 4775 | bool requeue = true; |
| 4776 | |
| 4777 | if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) |
| 4778 | return; |
| 4779 | |
| 4780 | trace_nvme_async_event(ctrl, result); |
| 4781 | switch (aer_type) { |
| 4782 | case NVME_AER_NOTICE: |
| 4783 | requeue = nvme_handle_aen_notice(ctrl, result); |
| 4784 | break; |
| 4785 | case NVME_AER_ERROR: |
| 4786 | /* |
| 4787 | * For a persistent internal error, don't run async_event_work |
| 4788 | * to submit a new AER. The controller reset will do it. |
| 4789 | */ |
| 4790 | if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) { |
| 4791 | nvme_handle_aer_persistent_error(ctrl); |
| 4792 | return; |
| 4793 | } |
| 4794 | fallthrough; |
| 4795 | case NVME_AER_SMART: |
| 4796 | case NVME_AER_CSS: |
| 4797 | case NVME_AER_VS: |
| 4798 | ctrl->aen_result = result; |
| 4799 | break; |
| 4800 | default: |
| 4801 | break; |
| 4802 | } |
| 4803 | |
| 4804 | if (requeue) |
| 4805 | queue_work(wq: nvme_wq, work: &ctrl->async_event_work); |
| 4806 | } |
| 4807 | EXPORT_SYMBOL_GPL(nvme_complete_async_event); |
| 4808 | |
| 4809 | int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, |
| 4810 | const struct blk_mq_ops *ops, unsigned int cmd_size) |
| 4811 | { |
| 4812 | struct queue_limits lim = {}; |
| 4813 | int ret; |
| 4814 | |
| 4815 | memset(set, 0, sizeof(*set)); |
| 4816 | set->ops = ops; |
| 4817 | set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; |
| 4818 | if (ctrl->ops->flags & NVME_F_FABRICS) |
| 4819 | /* Reserved for fabric connect and keep alive */ |
| 4820 | set->reserved_tags = 2; |
| 4821 | set->numa_node = ctrl->numa_node; |
| 4822 | if (ctrl->ops->flags & NVME_F_BLOCKING) |
| 4823 | set->flags |= BLK_MQ_F_BLOCKING; |
| 4824 | set->cmd_size = cmd_size; |
| 4825 | set->driver_data = ctrl; |
| 4826 | set->nr_hw_queues = 1; |
| 4827 | set->timeout = NVME_ADMIN_TIMEOUT; |
| 4828 | ret = blk_mq_alloc_tag_set(set); |
| 4829 | if (ret) |
| 4830 | return ret; |
| 4831 | |
| 4832 | ctrl->admin_q = blk_mq_alloc_queue(set, lim: &lim, NULL); |
| 4833 | if (IS_ERR(ptr: ctrl->admin_q)) { |
| 4834 | ret = PTR_ERR(ptr: ctrl->admin_q); |
| 4835 | goto out_free_tagset; |
| 4836 | } |
| 4837 | |
| 4838 | if (ctrl->ops->flags & NVME_F_FABRICS) { |
| 4839 | ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL); |
| 4840 | if (IS_ERR(ptr: ctrl->fabrics_q)) { |
| 4841 | ret = PTR_ERR(ptr: ctrl->fabrics_q); |
| 4842 | goto out_cleanup_admin_q; |
| 4843 | } |
| 4844 | } |
| 4845 | |
| 4846 | ctrl->admin_tagset = set; |
| 4847 | return 0; |
| 4848 | |
| 4849 | out_cleanup_admin_q: |
| 4850 | blk_mq_destroy_queue(ctrl->admin_q); |
| 4851 | blk_put_queue(ctrl->admin_q); |
| 4852 | out_free_tagset: |
| 4853 | blk_mq_free_tag_set(set); |
| 4854 | ctrl->admin_q = NULL; |
| 4855 | ctrl->fabrics_q = NULL; |
| 4856 | return ret; |
| 4857 | } |
| 4858 | EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set); |
| 4859 | |
| 4860 | void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl) |
| 4861 | { |
| 4862 | /* |
| 4863 | * As we're about to destroy the queue and free tagset |
| 4864 | * we can not have keep-alive work running. |
| 4865 | */ |
| 4866 | nvme_stop_keep_alive(ctrl); |
| 4867 | blk_mq_destroy_queue(ctrl->admin_q); |
| 4868 | blk_put_queue(ctrl->admin_q); |
| 4869 | if (ctrl->ops->flags & NVME_F_FABRICS) { |
| 4870 | blk_mq_destroy_queue(ctrl->fabrics_q); |
| 4871 | blk_put_queue(ctrl->fabrics_q); |
| 4872 | } |
| 4873 | blk_mq_free_tag_set(set: ctrl->admin_tagset); |
| 4874 | } |
| 4875 | EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set); |
| 4876 | |
| 4877 | int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, |
| 4878 | const struct blk_mq_ops *ops, unsigned int nr_maps, |
| 4879 | unsigned int cmd_size) |
| 4880 | { |
| 4881 | int ret; |
| 4882 | |
| 4883 | memset(set, 0, sizeof(*set)); |
| 4884 | set->ops = ops; |
| 4885 | set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1); |
| 4886 | /* |
| 4887 | * Some Apple controllers requires tags to be unique across admin and |
| 4888 | * the (only) I/O queue, so reserve the first 32 tags of the I/O queue. |
| 4889 | */ |
| 4890 | if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS) |
| 4891 | set->reserved_tags = NVME_AQ_DEPTH; |
| 4892 | else if (ctrl->ops->flags & NVME_F_FABRICS) |
| 4893 | /* Reserved for fabric connect */ |
| 4894 | set->reserved_tags = 1; |
| 4895 | set->numa_node = ctrl->numa_node; |
| 4896 | if (ctrl->ops->flags & NVME_F_BLOCKING) |
| 4897 | set->flags |= BLK_MQ_F_BLOCKING; |
| 4898 | set->cmd_size = cmd_size; |
| 4899 | set->driver_data = ctrl; |
| 4900 | set->nr_hw_queues = ctrl->queue_count - 1; |
| 4901 | set->timeout = NVME_IO_TIMEOUT; |
| 4902 | set->nr_maps = nr_maps; |
| 4903 | ret = blk_mq_alloc_tag_set(set); |
| 4904 | if (ret) |
| 4905 | return ret; |
| 4906 | |
| 4907 | if (ctrl->ops->flags & NVME_F_FABRICS) { |
| 4908 | struct queue_limits lim = { |
| 4909 | .features = BLK_FEAT_SKIP_TAGSET_QUIESCE, |
| 4910 | }; |
| 4911 | |
| 4912 | ctrl->connect_q = blk_mq_alloc_queue(set, lim: &lim, NULL); |
| 4913 | if (IS_ERR(ptr: ctrl->connect_q)) { |
| 4914 | ret = PTR_ERR(ptr: ctrl->connect_q); |
| 4915 | goto out_free_tag_set; |
| 4916 | } |
| 4917 | } |
| 4918 | |
| 4919 | ctrl->tagset = set; |
| 4920 | return 0; |
| 4921 | |
| 4922 | out_free_tag_set: |
| 4923 | blk_mq_free_tag_set(set); |
| 4924 | ctrl->connect_q = NULL; |
| 4925 | return ret; |
| 4926 | } |
| 4927 | EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set); |
| 4928 | |
| 4929 | void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl) |
| 4930 | { |
| 4931 | if (ctrl->ops->flags & NVME_F_FABRICS) { |
| 4932 | blk_mq_destroy_queue(ctrl->connect_q); |
| 4933 | blk_put_queue(ctrl->connect_q); |
| 4934 | } |
| 4935 | blk_mq_free_tag_set(set: ctrl->tagset); |
| 4936 | } |
| 4937 | EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set); |
| 4938 | |
| 4939 | void nvme_stop_ctrl(struct nvme_ctrl *ctrl) |
| 4940 | { |
| 4941 | nvme_mpath_stop(ctrl); |
| 4942 | nvme_auth_stop(ctrl); |
| 4943 | nvme_stop_failfast_work(ctrl); |
| 4944 | flush_work(work: &ctrl->async_event_work); |
| 4945 | cancel_work_sync(work: &ctrl->fw_act_work); |
| 4946 | if (ctrl->ops->stop_ctrl) |
| 4947 | ctrl->ops->stop_ctrl(ctrl); |
| 4948 | } |
| 4949 | EXPORT_SYMBOL_GPL(nvme_stop_ctrl); |
| 4950 | |
| 4951 | void nvme_start_ctrl(struct nvme_ctrl *ctrl) |
| 4952 | { |
| 4953 | nvme_enable_aen(ctrl); |
| 4954 | |
| 4955 | /* |
| 4956 | * persistent discovery controllers need to send indication to userspace |
| 4957 | * to re-read the discovery log page to learn about possible changes |
| 4958 | * that were missed. We identify persistent discovery controllers by |
| 4959 | * checking that they started once before, hence are reconnecting back. |
| 4960 | */ |
| 4961 | if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) && |
| 4962 | nvme_discovery_ctrl(ctrl)) |
| 4963 | nvme_change_uevent(ctrl, envdata: "NVME_EVENT=rediscover" ); |
| 4964 | |
| 4965 | if (ctrl->queue_count > 1) { |
| 4966 | nvme_queue_scan(ctrl); |
| 4967 | nvme_unquiesce_io_queues(ctrl); |
| 4968 | nvme_mpath_update(ctrl); |
| 4969 | } |
| 4970 | |
| 4971 | nvme_change_uevent(ctrl, envdata: "NVME_EVENT=connected" ); |
| 4972 | set_bit(nr: NVME_CTRL_STARTED_ONCE, addr: &ctrl->flags); |
| 4973 | } |
| 4974 | EXPORT_SYMBOL_GPL(nvme_start_ctrl); |
| 4975 | |
| 4976 | void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) |
| 4977 | { |
| 4978 | nvme_stop_keep_alive(ctrl); |
| 4979 | nvme_hwmon_exit(ctrl); |
| 4980 | nvme_fault_inject_fini(fault_inject: &ctrl->fault_inject); |
| 4981 | dev_pm_qos_hide_latency_tolerance(dev: ctrl->device); |
| 4982 | cdev_device_del(cdev: &ctrl->cdev, dev: ctrl->device); |
| 4983 | nvme_put_ctrl(ctrl); |
| 4984 | } |
| 4985 | EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); |
| 4986 | |
| 4987 | static void nvme_free_cels(struct nvme_ctrl *ctrl) |
| 4988 | { |
| 4989 | struct nvme_effects_log *cel; |
| 4990 | unsigned long i; |
| 4991 | |
| 4992 | xa_for_each(&ctrl->cels, i, cel) { |
| 4993 | xa_erase(&ctrl->cels, index: i); |
| 4994 | kfree(objp: cel); |
| 4995 | } |
| 4996 | |
| 4997 | xa_destroy(&ctrl->cels); |
| 4998 | } |
| 4999 | |
| 5000 | static void nvme_free_ctrl(struct device *dev) |
| 5001 | { |
| 5002 | struct nvme_ctrl *ctrl = |
| 5003 | container_of(dev, struct nvme_ctrl, ctrl_device); |
| 5004 | struct nvme_subsystem *subsys = ctrl->subsys; |
| 5005 | |
| 5006 | if (!subsys || ctrl->instance != subsys->instance) |
| 5007 | ida_free(&nvme_instance_ida, id: ctrl->instance); |
| 5008 | nvme_free_cels(ctrl); |
| 5009 | nvme_mpath_uninit(ctrl); |
| 5010 | cleanup_srcu_struct(ssp: &ctrl->srcu); |
| 5011 | nvme_auth_stop(ctrl); |
| 5012 | nvme_auth_free(ctrl); |
| 5013 | __free_page(ctrl->discard_page); |
| 5014 | free_opal_dev(dev: ctrl->opal_dev); |
| 5015 | |
| 5016 | if (subsys) { |
| 5017 | mutex_lock(&nvme_subsystems_lock); |
| 5018 | list_del(entry: &ctrl->subsys_entry); |
| 5019 | sysfs_remove_link(kobj: &subsys->dev.kobj, name: dev_name(dev: ctrl->device)); |
| 5020 | mutex_unlock(lock: &nvme_subsystems_lock); |
| 5021 | } |
| 5022 | |
| 5023 | ctrl->ops->free_ctrl(ctrl); |
| 5024 | |
| 5025 | if (subsys) |
| 5026 | nvme_put_subsystem(subsys); |
| 5027 | } |
| 5028 | |
| 5029 | /* |
| 5030 | * Initialize a NVMe controller structures. This needs to be called during |
| 5031 | * earliest initialization so that we have the initialized structured around |
| 5032 | * during probing. |
| 5033 | * |
| 5034 | * On success, the caller must use the nvme_put_ctrl() to release this when |
| 5035 | * needed, which also invokes the ops->free_ctrl() callback. |
| 5036 | */ |
| 5037 | int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, |
| 5038 | const struct nvme_ctrl_ops *ops, unsigned long quirks) |
| 5039 | { |
| 5040 | int ret; |
| 5041 | |
| 5042 | WRITE_ONCE(ctrl->state, NVME_CTRL_NEW); |
| 5043 | ctrl->passthru_err_log_enabled = false; |
| 5044 | clear_bit(nr: NVME_CTRL_FAILFAST_EXPIRED, addr: &ctrl->flags); |
| 5045 | spin_lock_init(&ctrl->lock); |
| 5046 | mutex_init(&ctrl->namespaces_lock); |
| 5047 | |
| 5048 | ret = init_srcu_struct(&ctrl->srcu); |
| 5049 | if (ret) |
| 5050 | return ret; |
| 5051 | |
| 5052 | mutex_init(&ctrl->scan_lock); |
| 5053 | INIT_LIST_HEAD(list: &ctrl->namespaces); |
| 5054 | xa_init(xa: &ctrl->cels); |
| 5055 | ctrl->dev = dev; |
| 5056 | ctrl->ops = ops; |
| 5057 | ctrl->quirks = quirks; |
| 5058 | ctrl->numa_node = NUMA_NO_NODE; |
| 5059 | INIT_WORK(&ctrl->scan_work, nvme_scan_work); |
| 5060 | INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); |
| 5061 | INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); |
| 5062 | INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); |
| 5063 | init_waitqueue_head(&ctrl->state_wq); |
| 5064 | |
| 5065 | INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); |
| 5066 | INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); |
| 5067 | memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); |
| 5068 | ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; |
| 5069 | ctrl->ka_last_check_time = jiffies; |
| 5070 | |
| 5071 | BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > |
| 5072 | PAGE_SIZE); |
| 5073 | ctrl->discard_page = alloc_page(GFP_KERNEL); |
| 5074 | if (!ctrl->discard_page) { |
| 5075 | ret = -ENOMEM; |
| 5076 | goto out; |
| 5077 | } |
| 5078 | |
| 5079 | ret = ida_alloc(ida: &nvme_instance_ida, GFP_KERNEL); |
| 5080 | if (ret < 0) |
| 5081 | goto out; |
| 5082 | ctrl->instance = ret; |
| 5083 | |
| 5084 | ret = nvme_auth_init_ctrl(ctrl); |
| 5085 | if (ret) |
| 5086 | goto out_release_instance; |
| 5087 | |
| 5088 | nvme_mpath_init_ctrl(ctrl); |
| 5089 | |
| 5090 | device_initialize(dev: &ctrl->ctrl_device); |
| 5091 | ctrl->device = &ctrl->ctrl_device; |
| 5092 | ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), |
| 5093 | ctrl->instance); |
| 5094 | ctrl->device->class = &nvme_class; |
| 5095 | ctrl->device->parent = ctrl->dev; |
| 5096 | if (ops->dev_attr_groups) |
| 5097 | ctrl->device->groups = ops->dev_attr_groups; |
| 5098 | else |
| 5099 | ctrl->device->groups = nvme_dev_attr_groups; |
| 5100 | ctrl->device->release = nvme_free_ctrl; |
| 5101 | dev_set_drvdata(dev: ctrl->device, data: ctrl); |
| 5102 | |
| 5103 | return ret; |
| 5104 | |
| 5105 | out_release_instance: |
| 5106 | ida_free(&nvme_instance_ida, id: ctrl->instance); |
| 5107 | out: |
| 5108 | if (ctrl->discard_page) |
| 5109 | __free_page(ctrl->discard_page); |
| 5110 | cleanup_srcu_struct(ssp: &ctrl->srcu); |
| 5111 | return ret; |
| 5112 | } |
| 5113 | EXPORT_SYMBOL_GPL(nvme_init_ctrl); |
| 5114 | |
| 5115 | /* |
| 5116 | * On success, returns with an elevated controller reference and caller must |
| 5117 | * use nvme_uninit_ctrl() to properly free resources associated with the ctrl. |
| 5118 | */ |
| 5119 | int nvme_add_ctrl(struct nvme_ctrl *ctrl) |
| 5120 | { |
| 5121 | int ret; |
| 5122 | |
| 5123 | ret = dev_set_name(dev: ctrl->device, name: "nvme%d" , ctrl->instance); |
| 5124 | if (ret) |
| 5125 | return ret; |
| 5126 | |
| 5127 | cdev_init(&ctrl->cdev, &nvme_dev_fops); |
| 5128 | ctrl->cdev.owner = ctrl->ops->module; |
| 5129 | ret = cdev_device_add(cdev: &ctrl->cdev, dev: ctrl->device); |
| 5130 | if (ret) |
| 5131 | return ret; |
| 5132 | |
| 5133 | /* |
| 5134 | * Initialize latency tolerance controls. The sysfs files won't |
| 5135 | * be visible to userspace unless the device actually supports APST. |
| 5136 | */ |
| 5137 | ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; |
| 5138 | dev_pm_qos_update_user_latency_tolerance(dev: ctrl->device, |
| 5139 | min(default_ps_max_latency_us, (unsigned long)S32_MAX)); |
| 5140 | |
| 5141 | nvme_fault_inject_init(fault_inj: &ctrl->fault_inject, dev_name: dev_name(dev: ctrl->device)); |
| 5142 | nvme_get_ctrl(ctrl); |
| 5143 | |
| 5144 | return 0; |
| 5145 | } |
| 5146 | EXPORT_SYMBOL_GPL(nvme_add_ctrl); |
| 5147 | |
| 5148 | /* let I/O to all namespaces fail in preparation for surprise removal */ |
| 5149 | void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl) |
| 5150 | { |
| 5151 | struct nvme_ns *ns; |
| 5152 | int srcu_idx; |
| 5153 | |
| 5154 | srcu_idx = srcu_read_lock(ssp: &ctrl->srcu); |
| 5155 | list_for_each_entry_srcu(ns, &ctrl->namespaces, list, |
| 5156 | srcu_read_lock_held(&ctrl->srcu)) |
| 5157 | blk_mark_disk_dead(disk: ns->disk); |
| 5158 | srcu_read_unlock(ssp: &ctrl->srcu, idx: srcu_idx); |
| 5159 | } |
| 5160 | EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead); |
| 5161 | |
| 5162 | void nvme_unfreeze(struct nvme_ctrl *ctrl) |
| 5163 | { |
| 5164 | struct nvme_ns *ns; |
| 5165 | int srcu_idx; |
| 5166 | |
| 5167 | srcu_idx = srcu_read_lock(ssp: &ctrl->srcu); |
| 5168 | list_for_each_entry_srcu(ns, &ctrl->namespaces, list, |
| 5169 | srcu_read_lock_held(&ctrl->srcu)) |
| 5170 | blk_mq_unfreeze_queue_non_owner(q: ns->queue); |
| 5171 | srcu_read_unlock(ssp: &ctrl->srcu, idx: srcu_idx); |
| 5172 | clear_bit(nr: NVME_CTRL_FROZEN, addr: &ctrl->flags); |
| 5173 | } |
| 5174 | EXPORT_SYMBOL_GPL(nvme_unfreeze); |
| 5175 | |
| 5176 | int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) |
| 5177 | { |
| 5178 | struct nvme_ns *ns; |
| 5179 | int srcu_idx; |
| 5180 | |
| 5181 | srcu_idx = srcu_read_lock(ssp: &ctrl->srcu); |
| 5182 | list_for_each_entry_srcu(ns, &ctrl->namespaces, list, |
| 5183 | srcu_read_lock_held(&ctrl->srcu)) { |
| 5184 | timeout = blk_mq_freeze_queue_wait_timeout(q: ns->queue, timeout); |
| 5185 | if (timeout <= 0) |
| 5186 | break; |
| 5187 | } |
| 5188 | srcu_read_unlock(ssp: &ctrl->srcu, idx: srcu_idx); |
| 5189 | return timeout; |
| 5190 | } |
| 5191 | EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); |
| 5192 | |
| 5193 | void nvme_wait_freeze(struct nvme_ctrl *ctrl) |
| 5194 | { |
| 5195 | struct nvme_ns *ns; |
| 5196 | int srcu_idx; |
| 5197 | |
| 5198 | srcu_idx = srcu_read_lock(ssp: &ctrl->srcu); |
| 5199 | list_for_each_entry_srcu(ns, &ctrl->namespaces, list, |
| 5200 | srcu_read_lock_held(&ctrl->srcu)) |
| 5201 | blk_mq_freeze_queue_wait(q: ns->queue); |
| 5202 | srcu_read_unlock(ssp: &ctrl->srcu, idx: srcu_idx); |
| 5203 | } |
| 5204 | EXPORT_SYMBOL_GPL(nvme_wait_freeze); |
| 5205 | |
| 5206 | void nvme_start_freeze(struct nvme_ctrl *ctrl) |
| 5207 | { |
| 5208 | struct nvme_ns *ns; |
| 5209 | int srcu_idx; |
| 5210 | |
| 5211 | set_bit(nr: NVME_CTRL_FROZEN, addr: &ctrl->flags); |
| 5212 | srcu_idx = srcu_read_lock(ssp: &ctrl->srcu); |
| 5213 | list_for_each_entry_srcu(ns, &ctrl->namespaces, list, |
| 5214 | srcu_read_lock_held(&ctrl->srcu)) |
| 5215 | /* |
| 5216 | * Typical non_owner use case is from pci driver, in which |
| 5217 | * start_freeze is called from timeout work function, but |
| 5218 | * unfreeze is done in reset work context |
| 5219 | */ |
| 5220 | blk_freeze_queue_start_non_owner(q: ns->queue); |
| 5221 | srcu_read_unlock(ssp: &ctrl->srcu, idx: srcu_idx); |
| 5222 | } |
| 5223 | EXPORT_SYMBOL_GPL(nvme_start_freeze); |
| 5224 | |
| 5225 | void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl) |
| 5226 | { |
| 5227 | if (!ctrl->tagset) |
| 5228 | return; |
| 5229 | if (!test_and_set_bit(nr: NVME_CTRL_STOPPED, addr: &ctrl->flags)) |
| 5230 | blk_mq_quiesce_tagset(set: ctrl->tagset); |
| 5231 | else |
| 5232 | blk_mq_wait_quiesce_done(set: ctrl->tagset); |
| 5233 | } |
| 5234 | EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues); |
| 5235 | |
| 5236 | void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl) |
| 5237 | { |
| 5238 | if (!ctrl->tagset) |
| 5239 | return; |
| 5240 | if (test_and_clear_bit(nr: NVME_CTRL_STOPPED, addr: &ctrl->flags)) |
| 5241 | blk_mq_unquiesce_tagset(set: ctrl->tagset); |
| 5242 | } |
| 5243 | EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues); |
| 5244 | |
| 5245 | void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl) |
| 5246 | { |
| 5247 | if (!test_and_set_bit(nr: NVME_CTRL_ADMIN_Q_STOPPED, addr: &ctrl->flags)) |
| 5248 | blk_mq_quiesce_queue(q: ctrl->admin_q); |
| 5249 | else |
| 5250 | blk_mq_wait_quiesce_done(set: ctrl->admin_q->tag_set); |
| 5251 | } |
| 5252 | EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue); |
| 5253 | |
| 5254 | void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl) |
| 5255 | { |
| 5256 | if (test_and_clear_bit(nr: NVME_CTRL_ADMIN_Q_STOPPED, addr: &ctrl->flags)) |
| 5257 | blk_mq_unquiesce_queue(q: ctrl->admin_q); |
| 5258 | } |
| 5259 | EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue); |
| 5260 | |
| 5261 | void nvme_sync_io_queues(struct nvme_ctrl *ctrl) |
| 5262 | { |
| 5263 | struct nvme_ns *ns; |
| 5264 | int srcu_idx; |
| 5265 | |
| 5266 | srcu_idx = srcu_read_lock(ssp: &ctrl->srcu); |
| 5267 | list_for_each_entry_srcu(ns, &ctrl->namespaces, list, |
| 5268 | srcu_read_lock_held(&ctrl->srcu)) |
| 5269 | blk_sync_queue(q: ns->queue); |
| 5270 | srcu_read_unlock(ssp: &ctrl->srcu, idx: srcu_idx); |
| 5271 | } |
| 5272 | EXPORT_SYMBOL_GPL(nvme_sync_io_queues); |
| 5273 | |
| 5274 | void nvme_sync_queues(struct nvme_ctrl *ctrl) |
| 5275 | { |
| 5276 | nvme_sync_io_queues(ctrl); |
| 5277 | if (ctrl->admin_q) |
| 5278 | blk_sync_queue(q: ctrl->admin_q); |
| 5279 | } |
| 5280 | EXPORT_SYMBOL_GPL(nvme_sync_queues); |
| 5281 | |
| 5282 | struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) |
| 5283 | { |
| 5284 | if (file->f_op != &nvme_dev_fops) |
| 5285 | return NULL; |
| 5286 | return file->private_data; |
| 5287 | } |
| 5288 | EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, "NVME_TARGET_PASSTHRU" ); |
| 5289 | |
| 5290 | /* |
| 5291 | * Check we didn't inadvertently grow the command structure sizes: |
| 5292 | */ |
| 5293 | static inline void _nvme_check_size(void) |
| 5294 | { |
| 5295 | BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); |
| 5296 | BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); |
| 5297 | BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); |
| 5298 | BUILD_BUG_ON(sizeof(struct nvme_features) != 64); |
| 5299 | BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); |
| 5300 | BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); |
| 5301 | BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); |
| 5302 | BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); |
| 5303 | BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); |
| 5304 | BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); |
| 5305 | BUILD_BUG_ON(sizeof(struct nvme_command) != 64); |
| 5306 | BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); |
| 5307 | BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); |
| 5308 | BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) != |
| 5309 | NVME_IDENTIFY_DATA_SIZE); |
| 5310 | BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); |
| 5311 | BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); |
| 5312 | BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); |
| 5313 | BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); |
| 5314 | BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); |
| 5315 | BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); |
| 5316 | BUILD_BUG_ON(sizeof(struct nvme_endurance_group_log) != 512); |
| 5317 | BUILD_BUG_ON(sizeof(struct nvme_rotational_media_log) != 512); |
| 5318 | BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); |
| 5319 | BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); |
| 5320 | BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); |
| 5321 | } |
| 5322 | |
| 5323 | |
| 5324 | static int __init nvme_core_init(void) |
| 5325 | { |
| 5326 | unsigned int wq_flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS; |
| 5327 | int result = -ENOMEM; |
| 5328 | |
| 5329 | _nvme_check_size(); |
| 5330 | |
| 5331 | nvme_wq = alloc_workqueue(fmt: "nvme-wq" , flags: wq_flags, max_active: 0); |
| 5332 | if (!nvme_wq) |
| 5333 | goto out; |
| 5334 | |
| 5335 | nvme_reset_wq = alloc_workqueue(fmt: "nvme-reset-wq" , flags: wq_flags, max_active: 0); |
| 5336 | if (!nvme_reset_wq) |
| 5337 | goto destroy_wq; |
| 5338 | |
| 5339 | nvme_delete_wq = alloc_workqueue(fmt: "nvme-delete-wq" , flags: wq_flags, max_active: 0); |
| 5340 | if (!nvme_delete_wq) |
| 5341 | goto destroy_reset_wq; |
| 5342 | |
| 5343 | result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, |
| 5344 | NVME_MINORS, "nvme" ); |
| 5345 | if (result < 0) |
| 5346 | goto destroy_delete_wq; |
| 5347 | |
| 5348 | result = class_register(class: &nvme_class); |
| 5349 | if (result) |
| 5350 | goto unregister_chrdev; |
| 5351 | |
| 5352 | result = class_register(class: &nvme_subsys_class); |
| 5353 | if (result) |
| 5354 | goto destroy_class; |
| 5355 | |
| 5356 | result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, |
| 5357 | "nvme-generic" ); |
| 5358 | if (result < 0) |
| 5359 | goto destroy_subsys_class; |
| 5360 | |
| 5361 | result = class_register(class: &nvme_ns_chr_class); |
| 5362 | if (result) |
| 5363 | goto unregister_generic_ns; |
| 5364 | |
| 5365 | result = nvme_init_auth(); |
| 5366 | if (result) |
| 5367 | goto destroy_ns_chr; |
| 5368 | return 0; |
| 5369 | |
| 5370 | destroy_ns_chr: |
| 5371 | class_unregister(class: &nvme_ns_chr_class); |
| 5372 | unregister_generic_ns: |
| 5373 | unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); |
| 5374 | destroy_subsys_class: |
| 5375 | class_unregister(class: &nvme_subsys_class); |
| 5376 | destroy_class: |
| 5377 | class_unregister(class: &nvme_class); |
| 5378 | unregister_chrdev: |
| 5379 | unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); |
| 5380 | destroy_delete_wq: |
| 5381 | destroy_workqueue(wq: nvme_delete_wq); |
| 5382 | destroy_reset_wq: |
| 5383 | destroy_workqueue(wq: nvme_reset_wq); |
| 5384 | destroy_wq: |
| 5385 | destroy_workqueue(wq: nvme_wq); |
| 5386 | out: |
| 5387 | return result; |
| 5388 | } |
| 5389 | |
| 5390 | static void __exit nvme_core_exit(void) |
| 5391 | { |
| 5392 | nvme_exit_auth(); |
| 5393 | class_unregister(class: &nvme_ns_chr_class); |
| 5394 | class_unregister(class: &nvme_subsys_class); |
| 5395 | class_unregister(class: &nvme_class); |
| 5396 | unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); |
| 5397 | unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); |
| 5398 | destroy_workqueue(wq: nvme_delete_wq); |
| 5399 | destroy_workqueue(wq: nvme_reset_wq); |
| 5400 | destroy_workqueue(wq: nvme_wq); |
| 5401 | ida_destroy(ida: &nvme_ns_chr_minor_ida); |
| 5402 | ida_destroy(ida: &nvme_instance_ida); |
| 5403 | } |
| 5404 | |
| 5405 | MODULE_LICENSE("GPL" ); |
| 5406 | MODULE_VERSION("1.0" ); |
| 5407 | MODULE_DESCRIPTION("NVMe host core framework" ); |
| 5408 | module_init(nvme_core_init); |
| 5409 | module_exit(nvme_core_exit); |
| 5410 | |