1 | // SPDX-License-Identifier: GPL-2.0 |
---|---|
2 | /* |
3 | * NVM Express device driver |
4 | * Copyright (c) 2011-2014, Intel Corporation. |
5 | */ |
6 | |
7 | #include <linux/blkdev.h> |
8 | #include <linux/blk-mq.h> |
9 | #include <linux/blk-integrity.h> |
10 | #include <linux/compat.h> |
11 | #include <linux/delay.h> |
12 | #include <linux/errno.h> |
13 | #include <linux/hdreg.h> |
14 | #include <linux/kernel.h> |
15 | #include <linux/module.h> |
16 | #include <linux/backing-dev.h> |
17 | #include <linux/slab.h> |
18 | #include <linux/types.h> |
19 | #include <linux/pr.h> |
20 | #include <linux/ptrace.h> |
21 | #include <linux/nvme_ioctl.h> |
22 | #include <linux/pm_qos.h> |
23 | #include <linux/ratelimit.h> |
24 | #include <asm/unaligned.h> |
25 | |
26 | #include "nvme.h" |
27 | #include "fabrics.h" |
28 | #include <linux/nvme-auth.h> |
29 | |
30 | #define CREATE_TRACE_POINTS |
31 | #include "trace.h" |
32 | |
33 | #define NVME_MINORS (1U << MINORBITS) |
34 | |
35 | struct nvme_ns_info { |
36 | struct nvme_ns_ids ids; |
37 | u32 nsid; |
38 | __le32 anagrpid; |
39 | bool is_shared; |
40 | bool is_readonly; |
41 | bool is_ready; |
42 | bool is_removed; |
43 | }; |
44 | |
45 | unsigned int admin_timeout = 60; |
46 | module_param(admin_timeout, uint, 0644); |
47 | MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); |
48 | EXPORT_SYMBOL_GPL(admin_timeout); |
49 | |
50 | unsigned int nvme_io_timeout = 30; |
51 | module_param_named(io_timeout, nvme_io_timeout, uint, 0644); |
52 | MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); |
53 | EXPORT_SYMBOL_GPL(nvme_io_timeout); |
54 | |
55 | static unsigned char shutdown_timeout = 5; |
56 | module_param(shutdown_timeout, byte, 0644); |
57 | MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); |
58 | |
59 | static u8 nvme_max_retries = 5; |
60 | module_param_named(max_retries, nvme_max_retries, byte, 0644); |
61 | MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); |
62 | |
63 | static unsigned long default_ps_max_latency_us = 100000; |
64 | module_param(default_ps_max_latency_us, ulong, 0644); |
65 | MODULE_PARM_DESC(default_ps_max_latency_us, |
66 | "max power saving latency for new devices; use PM QOS to change per device"); |
67 | |
68 | static bool force_apst; |
69 | module_param(force_apst, bool, 0644); |
70 | MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); |
71 | |
72 | static unsigned long apst_primary_timeout_ms = 100; |
73 | module_param(apst_primary_timeout_ms, ulong, 0644); |
74 | MODULE_PARM_DESC(apst_primary_timeout_ms, |
75 | "primary APST timeout in ms"); |
76 | |
77 | static unsigned long apst_secondary_timeout_ms = 2000; |
78 | module_param(apst_secondary_timeout_ms, ulong, 0644); |
79 | MODULE_PARM_DESC(apst_secondary_timeout_ms, |
80 | "secondary APST timeout in ms"); |
81 | |
82 | static unsigned long apst_primary_latency_tol_us = 15000; |
83 | module_param(apst_primary_latency_tol_us, ulong, 0644); |
84 | MODULE_PARM_DESC(apst_primary_latency_tol_us, |
85 | "primary APST latency tolerance in us"); |
86 | |
87 | static unsigned long apst_secondary_latency_tol_us = 100000; |
88 | module_param(apst_secondary_latency_tol_us, ulong, 0644); |
89 | MODULE_PARM_DESC(apst_secondary_latency_tol_us, |
90 | "secondary APST latency tolerance in us"); |
91 | |
92 | /* |
93 | * nvme_wq - hosts nvme related works that are not reset or delete |
94 | * nvme_reset_wq - hosts nvme reset works |
95 | * nvme_delete_wq - hosts nvme delete works |
96 | * |
97 | * nvme_wq will host works such as scan, aen handling, fw activation, |
98 | * keep-alive, periodic reconnects etc. nvme_reset_wq |
99 | * runs reset works which also flush works hosted on nvme_wq for |
100 | * serialization purposes. nvme_delete_wq host controller deletion |
101 | * works which flush reset works for serialization. |
102 | */ |
103 | struct workqueue_struct *nvme_wq; |
104 | EXPORT_SYMBOL_GPL(nvme_wq); |
105 | |
106 | struct workqueue_struct *nvme_reset_wq; |
107 | EXPORT_SYMBOL_GPL(nvme_reset_wq); |
108 | |
109 | struct workqueue_struct *nvme_delete_wq; |
110 | EXPORT_SYMBOL_GPL(nvme_delete_wq); |
111 | |
112 | static LIST_HEAD(nvme_subsystems); |
113 | static DEFINE_MUTEX(nvme_subsystems_lock); |
114 | |
115 | static DEFINE_IDA(nvme_instance_ida); |
116 | static dev_t nvme_ctrl_base_chr_devt; |
117 | static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env); |
118 | static const struct class nvme_class = { |
119 | .name = "nvme", |
120 | .dev_uevent = nvme_class_uevent, |
121 | }; |
122 | |
123 | static const struct class nvme_subsys_class = { |
124 | .name = "nvme-subsystem", |
125 | }; |
126 | |
127 | static DEFINE_IDA(nvme_ns_chr_minor_ida); |
128 | static dev_t nvme_ns_chr_devt; |
129 | static const struct class nvme_ns_chr_class = { |
130 | .name = "nvme-generic", |
131 | }; |
132 | |
133 | static void nvme_put_subsystem(struct nvme_subsystem *subsys); |
134 | static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, |
135 | unsigned nsid); |
136 | static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, |
137 | struct nvme_command *cmd); |
138 | |
139 | void nvme_queue_scan(struct nvme_ctrl *ctrl) |
140 | { |
141 | /* |
142 | * Only new queue scan work when admin and IO queues are both alive |
143 | */ |
144 | if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset) |
145 | queue_work(wq: nvme_wq, work: &ctrl->scan_work); |
146 | } |
147 | |
148 | /* |
149 | * Use this function to proceed with scheduling reset_work for a controller |
150 | * that had previously been set to the resetting state. This is intended for |
151 | * code paths that can't be interrupted by other reset attempts. A hot removal |
152 | * may prevent this from succeeding. |
153 | */ |
154 | int nvme_try_sched_reset(struct nvme_ctrl *ctrl) |
155 | { |
156 | if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING) |
157 | return -EBUSY; |
158 | if (!queue_work(wq: nvme_reset_wq, work: &ctrl->reset_work)) |
159 | return -EBUSY; |
160 | return 0; |
161 | } |
162 | EXPORT_SYMBOL_GPL(nvme_try_sched_reset); |
163 | |
164 | static void nvme_failfast_work(struct work_struct *work) |
165 | { |
166 | struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), |
167 | struct nvme_ctrl, failfast_work); |
168 | |
169 | if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING) |
170 | return; |
171 | |
172 | set_bit(nr: NVME_CTRL_FAILFAST_EXPIRED, addr: &ctrl->flags); |
173 | dev_info(ctrl->device, "failfast expired\n"); |
174 | nvme_kick_requeue_lists(ctrl); |
175 | } |
176 | |
177 | static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) |
178 | { |
179 | if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) |
180 | return; |
181 | |
182 | schedule_delayed_work(dwork: &ctrl->failfast_work, |
183 | delay: ctrl->opts->fast_io_fail_tmo * HZ); |
184 | } |
185 | |
186 | static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) |
187 | { |
188 | if (!ctrl->opts) |
189 | return; |
190 | |
191 | cancel_delayed_work_sync(dwork: &ctrl->failfast_work); |
192 | clear_bit(nr: NVME_CTRL_FAILFAST_EXPIRED, addr: &ctrl->flags); |
193 | } |
194 | |
195 | |
196 | int nvme_reset_ctrl(struct nvme_ctrl *ctrl) |
197 | { |
198 | if (!nvme_change_ctrl_state(ctrl, new_state: NVME_CTRL_RESETTING)) |
199 | return -EBUSY; |
200 | if (!queue_work(wq: nvme_reset_wq, work: &ctrl->reset_work)) |
201 | return -EBUSY; |
202 | return 0; |
203 | } |
204 | EXPORT_SYMBOL_GPL(nvme_reset_ctrl); |
205 | |
206 | int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) |
207 | { |
208 | int ret; |
209 | |
210 | ret = nvme_reset_ctrl(ctrl); |
211 | if (!ret) { |
212 | flush_work(work: &ctrl->reset_work); |
213 | if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) |
214 | ret = -ENETRESET; |
215 | } |
216 | |
217 | return ret; |
218 | } |
219 | |
220 | static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) |
221 | { |
222 | dev_info(ctrl->device, |
223 | "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); |
224 | |
225 | flush_work(work: &ctrl->reset_work); |
226 | nvme_stop_ctrl(ctrl); |
227 | nvme_remove_namespaces(ctrl); |
228 | ctrl->ops->delete_ctrl(ctrl); |
229 | nvme_uninit_ctrl(ctrl); |
230 | } |
231 | |
232 | static void nvme_delete_ctrl_work(struct work_struct *work) |
233 | { |
234 | struct nvme_ctrl *ctrl = |
235 | container_of(work, struct nvme_ctrl, delete_work); |
236 | |
237 | nvme_do_delete_ctrl(ctrl); |
238 | } |
239 | |
240 | int nvme_delete_ctrl(struct nvme_ctrl *ctrl) |
241 | { |
242 | if (!nvme_change_ctrl_state(ctrl, new_state: NVME_CTRL_DELETING)) |
243 | return -EBUSY; |
244 | if (!queue_work(wq: nvme_delete_wq, work: &ctrl->delete_work)) |
245 | return -EBUSY; |
246 | return 0; |
247 | } |
248 | EXPORT_SYMBOL_GPL(nvme_delete_ctrl); |
249 | |
250 | void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) |
251 | { |
252 | /* |
253 | * Keep a reference until nvme_do_delete_ctrl() complete, |
254 | * since ->delete_ctrl can free the controller. |
255 | */ |
256 | nvme_get_ctrl(ctrl); |
257 | if (nvme_change_ctrl_state(ctrl, new_state: NVME_CTRL_DELETING)) |
258 | nvme_do_delete_ctrl(ctrl); |
259 | nvme_put_ctrl(ctrl); |
260 | } |
261 | |
262 | static blk_status_t nvme_error_status(u16 status) |
263 | { |
264 | switch (status & 0x7ff) { |
265 | case NVME_SC_SUCCESS: |
266 | return BLK_STS_OK; |
267 | case NVME_SC_CAP_EXCEEDED: |
268 | return BLK_STS_NOSPC; |
269 | case NVME_SC_LBA_RANGE: |
270 | case NVME_SC_CMD_INTERRUPTED: |
271 | case NVME_SC_NS_NOT_READY: |
272 | return BLK_STS_TARGET; |
273 | case NVME_SC_BAD_ATTRIBUTES: |
274 | case NVME_SC_ONCS_NOT_SUPPORTED: |
275 | case NVME_SC_INVALID_OPCODE: |
276 | case NVME_SC_INVALID_FIELD: |
277 | case NVME_SC_INVALID_NS: |
278 | return BLK_STS_NOTSUPP; |
279 | case NVME_SC_WRITE_FAULT: |
280 | case NVME_SC_READ_ERROR: |
281 | case NVME_SC_UNWRITTEN_BLOCK: |
282 | case NVME_SC_ACCESS_DENIED: |
283 | case NVME_SC_READ_ONLY: |
284 | case NVME_SC_COMPARE_FAILED: |
285 | return BLK_STS_MEDIUM; |
286 | case NVME_SC_GUARD_CHECK: |
287 | case NVME_SC_APPTAG_CHECK: |
288 | case NVME_SC_REFTAG_CHECK: |
289 | case NVME_SC_INVALID_PI: |
290 | return BLK_STS_PROTECTION; |
291 | case NVME_SC_RESERVATION_CONFLICT: |
292 | return BLK_STS_RESV_CONFLICT; |
293 | case NVME_SC_HOST_PATH_ERROR: |
294 | return BLK_STS_TRANSPORT; |
295 | case NVME_SC_ZONE_TOO_MANY_ACTIVE: |
296 | return BLK_STS_ZONE_ACTIVE_RESOURCE; |
297 | case NVME_SC_ZONE_TOO_MANY_OPEN: |
298 | return BLK_STS_ZONE_OPEN_RESOURCE; |
299 | default: |
300 | return BLK_STS_IOERR; |
301 | } |
302 | } |
303 | |
304 | static void nvme_retry_req(struct request *req) |
305 | { |
306 | unsigned long delay = 0; |
307 | u16 crd; |
308 | |
309 | /* The mask and shift result must be <= 3 */ |
310 | crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11; |
311 | if (crd) |
312 | delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; |
313 | |
314 | nvme_req(req)->retries++; |
315 | blk_mq_requeue_request(rq: req, kick_requeue_list: false); |
316 | blk_mq_delay_kick_requeue_list(q: req->q, msecs: delay); |
317 | } |
318 | |
319 | static void nvme_log_error(struct request *req) |
320 | { |
321 | struct nvme_ns *ns = req->q->queuedata; |
322 | struct nvme_request *nr = nvme_req(req); |
323 | |
324 | if (ns) { |
325 | pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", |
326 | ns->disk ? ns->disk->disk_name : "?", |
327 | nvme_get_opcode_str(nr->cmd->common.opcode), |
328 | nr->cmd->common.opcode, |
329 | nvme_sect_to_lba(ns->head, blk_rq_pos(req)), |
330 | blk_rq_bytes(req) >> ns->head->lba_shift, |
331 | nvme_get_error_status_str(nr->status), |
332 | nr->status >> 8 & 7, /* Status Code Type */ |
333 | nr->status & 0xff, /* Status Code */ |
334 | nr->status & NVME_SC_MORE ? "MORE ": "", |
335 | nr->status & NVME_SC_DNR ? "DNR ": ""); |
336 | return; |
337 | } |
338 | |
339 | pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", |
340 | dev_name(nr->ctrl->device), |
341 | nvme_get_admin_opcode_str(nr->cmd->common.opcode), |
342 | nr->cmd->common.opcode, |
343 | nvme_get_error_status_str(nr->status), |
344 | nr->status >> 8 & 7, /* Status Code Type */ |
345 | nr->status & 0xff, /* Status Code */ |
346 | nr->status & NVME_SC_MORE ? "MORE ": "", |
347 | nr->status & NVME_SC_DNR ? "DNR ": ""); |
348 | } |
349 | |
350 | static void nvme_log_err_passthru(struct request *req) |
351 | { |
352 | struct nvme_ns *ns = req->q->queuedata; |
353 | struct nvme_request *nr = nvme_req(req); |
354 | |
355 | pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s" |
356 | "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n", |
357 | ns ? ns->disk->disk_name : dev_name(nr->ctrl->device), |
358 | ns ? nvme_get_opcode_str(nr->cmd->common.opcode) : |
359 | nvme_get_admin_opcode_str(nr->cmd->common.opcode), |
360 | nr->cmd->common.opcode, |
361 | nvme_get_error_status_str(nr->status), |
362 | nr->status >> 8 & 7, /* Status Code Type */ |
363 | nr->status & 0xff, /* Status Code */ |
364 | nr->status & NVME_SC_MORE ? "MORE ": "", |
365 | nr->status & NVME_SC_DNR ? "DNR ": "", |
366 | nr->cmd->common.cdw10, |
367 | nr->cmd->common.cdw11, |
368 | nr->cmd->common.cdw12, |
369 | nr->cmd->common.cdw13, |
370 | nr->cmd->common.cdw14, |
371 | nr->cmd->common.cdw14); |
372 | } |
373 | |
374 | enum nvme_disposition { |
375 | COMPLETE, |
376 | RETRY, |
377 | FAILOVER, |
378 | AUTHENTICATE, |
379 | }; |
380 | |
381 | static inline enum nvme_disposition nvme_decide_disposition(struct request *req) |
382 | { |
383 | if (likely(nvme_req(req)->status == 0)) |
384 | return COMPLETE; |
385 | |
386 | if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED) |
387 | return AUTHENTICATE; |
388 | |
389 | if (blk_noretry_request(req) || |
390 | (nvme_req(req)->status & NVME_SC_DNR) || |
391 | nvme_req(req)->retries >= nvme_max_retries) |
392 | return COMPLETE; |
393 | |
394 | if (req->cmd_flags & REQ_NVME_MPATH) { |
395 | if (nvme_is_path_error(status: nvme_req(req)->status) || |
396 | blk_queue_dying(req->q)) |
397 | return FAILOVER; |
398 | } else { |
399 | if (blk_queue_dying(req->q)) |
400 | return COMPLETE; |
401 | } |
402 | |
403 | return RETRY; |
404 | } |
405 | |
406 | static inline void nvme_end_req_zoned(struct request *req) |
407 | { |
408 | if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && |
409 | req_op(req) == REQ_OP_ZONE_APPEND) { |
410 | struct nvme_ns *ns = req->q->queuedata; |
411 | |
412 | req->__sector = nvme_lba_to_sect(head: ns->head, |
413 | le64_to_cpu(nvme_req(req)->result.u64)); |
414 | } |
415 | } |
416 | |
417 | static inline void nvme_end_req(struct request *req) |
418 | { |
419 | blk_status_t status = nvme_error_status(status: nvme_req(req)->status); |
420 | |
421 | if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) { |
422 | if (blk_rq_is_passthrough(rq: req)) |
423 | nvme_log_err_passthru(req); |
424 | else |
425 | nvme_log_error(req); |
426 | } |
427 | nvme_end_req_zoned(req); |
428 | nvme_trace_bio_complete(req); |
429 | if (req->cmd_flags & REQ_NVME_MPATH) |
430 | nvme_mpath_end_request(rq: req); |
431 | blk_mq_end_request(rq: req, error: status); |
432 | } |
433 | |
434 | void nvme_complete_rq(struct request *req) |
435 | { |
436 | struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; |
437 | |
438 | trace_nvme_complete_rq(req); |
439 | nvme_cleanup_cmd(req); |
440 | |
441 | /* |
442 | * Completions of long-running commands should not be able to |
443 | * defer sending of periodic keep alives, since the controller |
444 | * may have completed processing such commands a long time ago |
445 | * (arbitrarily close to command submission time). |
446 | * req->deadline - req->timeout is the command submission time |
447 | * in jiffies. |
448 | */ |
449 | if (ctrl->kas && |
450 | req->deadline - req->timeout >= ctrl->ka_last_check_time) |
451 | ctrl->comp_seen = true; |
452 | |
453 | switch (nvme_decide_disposition(req)) { |
454 | case COMPLETE: |
455 | nvme_end_req(req); |
456 | return; |
457 | case RETRY: |
458 | nvme_retry_req(req); |
459 | return; |
460 | case FAILOVER: |
461 | nvme_failover_req(req); |
462 | return; |
463 | case AUTHENTICATE: |
464 | #ifdef CONFIG_NVME_HOST_AUTH |
465 | queue_work(wq: nvme_wq, work: &ctrl->dhchap_auth_work); |
466 | nvme_retry_req(req); |
467 | #else |
468 | nvme_end_req(req); |
469 | #endif |
470 | return; |
471 | } |
472 | } |
473 | EXPORT_SYMBOL_GPL(nvme_complete_rq); |
474 | |
475 | void nvme_complete_batch_req(struct request *req) |
476 | { |
477 | trace_nvme_complete_rq(req); |
478 | nvme_cleanup_cmd(req); |
479 | nvme_end_req_zoned(req); |
480 | } |
481 | EXPORT_SYMBOL_GPL(nvme_complete_batch_req); |
482 | |
483 | /* |
484 | * Called to unwind from ->queue_rq on a failed command submission so that the |
485 | * multipathing code gets called to potentially failover to another path. |
486 | * The caller needs to unwind all transport specific resource allocations and |
487 | * must return propagate the return value. |
488 | */ |
489 | blk_status_t nvme_host_path_error(struct request *req) |
490 | { |
491 | nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; |
492 | blk_mq_set_request_complete(rq: req); |
493 | nvme_complete_rq(req); |
494 | return BLK_STS_OK; |
495 | } |
496 | EXPORT_SYMBOL_GPL(nvme_host_path_error); |
497 | |
498 | bool nvme_cancel_request(struct request *req, void *data) |
499 | { |
500 | dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, |
501 | "Cancelling I/O %d", req->tag); |
502 | |
503 | /* don't abort one completed or idle request */ |
504 | if (blk_mq_rq_state(rq: req) != MQ_RQ_IN_FLIGHT) |
505 | return true; |
506 | |
507 | nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; |
508 | nvme_req(req)->flags |= NVME_REQ_CANCELLED; |
509 | blk_mq_complete_request(rq: req); |
510 | return true; |
511 | } |
512 | EXPORT_SYMBOL_GPL(nvme_cancel_request); |
513 | |
514 | void nvme_cancel_tagset(struct nvme_ctrl *ctrl) |
515 | { |
516 | if (ctrl->tagset) { |
517 | blk_mq_tagset_busy_iter(tagset: ctrl->tagset, |
518 | fn: nvme_cancel_request, priv: ctrl); |
519 | blk_mq_tagset_wait_completed_request(tagset: ctrl->tagset); |
520 | } |
521 | } |
522 | EXPORT_SYMBOL_GPL(nvme_cancel_tagset); |
523 | |
524 | void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) |
525 | { |
526 | if (ctrl->admin_tagset) { |
527 | blk_mq_tagset_busy_iter(tagset: ctrl->admin_tagset, |
528 | fn: nvme_cancel_request, priv: ctrl); |
529 | blk_mq_tagset_wait_completed_request(tagset: ctrl->admin_tagset); |
530 | } |
531 | } |
532 | EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); |
533 | |
534 | bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, |
535 | enum nvme_ctrl_state new_state) |
536 | { |
537 | enum nvme_ctrl_state old_state; |
538 | unsigned long flags; |
539 | bool changed = false; |
540 | |
541 | spin_lock_irqsave(&ctrl->lock, flags); |
542 | |
543 | old_state = nvme_ctrl_state(ctrl); |
544 | switch (new_state) { |
545 | case NVME_CTRL_LIVE: |
546 | switch (old_state) { |
547 | case NVME_CTRL_NEW: |
548 | case NVME_CTRL_RESETTING: |
549 | case NVME_CTRL_CONNECTING: |
550 | changed = true; |
551 | fallthrough; |
552 | default: |
553 | break; |
554 | } |
555 | break; |
556 | case NVME_CTRL_RESETTING: |
557 | switch (old_state) { |
558 | case NVME_CTRL_NEW: |
559 | case NVME_CTRL_LIVE: |
560 | changed = true; |
561 | fallthrough; |
562 | default: |
563 | break; |
564 | } |
565 | break; |
566 | case NVME_CTRL_CONNECTING: |
567 | switch (old_state) { |
568 | case NVME_CTRL_NEW: |
569 | case NVME_CTRL_RESETTING: |
570 | changed = true; |
571 | fallthrough; |
572 | default: |
573 | break; |
574 | } |
575 | break; |
576 | case NVME_CTRL_DELETING: |
577 | switch (old_state) { |
578 | case NVME_CTRL_LIVE: |
579 | case NVME_CTRL_RESETTING: |
580 | case NVME_CTRL_CONNECTING: |
581 | changed = true; |
582 | fallthrough; |
583 | default: |
584 | break; |
585 | } |
586 | break; |
587 | case NVME_CTRL_DELETING_NOIO: |
588 | switch (old_state) { |
589 | case NVME_CTRL_DELETING: |
590 | case NVME_CTRL_DEAD: |
591 | changed = true; |
592 | fallthrough; |
593 | default: |
594 | break; |
595 | } |
596 | break; |
597 | case NVME_CTRL_DEAD: |
598 | switch (old_state) { |
599 | case NVME_CTRL_DELETING: |
600 | changed = true; |
601 | fallthrough; |
602 | default: |
603 | break; |
604 | } |
605 | break; |
606 | default: |
607 | break; |
608 | } |
609 | |
610 | if (changed) { |
611 | WRITE_ONCE(ctrl->state, new_state); |
612 | wake_up_all(&ctrl->state_wq); |
613 | } |
614 | |
615 | spin_unlock_irqrestore(lock: &ctrl->lock, flags); |
616 | if (!changed) |
617 | return false; |
618 | |
619 | if (new_state == NVME_CTRL_LIVE) { |
620 | if (old_state == NVME_CTRL_CONNECTING) |
621 | nvme_stop_failfast_work(ctrl); |
622 | nvme_kick_requeue_lists(ctrl); |
623 | } else if (new_state == NVME_CTRL_CONNECTING && |
624 | old_state == NVME_CTRL_RESETTING) { |
625 | nvme_start_failfast_work(ctrl); |
626 | } |
627 | return changed; |
628 | } |
629 | EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); |
630 | |
631 | /* |
632 | * Returns true for sink states that can't ever transition back to live. |
633 | */ |
634 | static bool nvme_state_terminal(struct nvme_ctrl *ctrl) |
635 | { |
636 | switch (nvme_ctrl_state(ctrl)) { |
637 | case NVME_CTRL_NEW: |
638 | case NVME_CTRL_LIVE: |
639 | case NVME_CTRL_RESETTING: |
640 | case NVME_CTRL_CONNECTING: |
641 | return false; |
642 | case NVME_CTRL_DELETING: |
643 | case NVME_CTRL_DELETING_NOIO: |
644 | case NVME_CTRL_DEAD: |
645 | return true; |
646 | default: |
647 | WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state); |
648 | return true; |
649 | } |
650 | } |
651 | |
652 | /* |
653 | * Waits for the controller state to be resetting, or returns false if it is |
654 | * not possible to ever transition to that state. |
655 | */ |
656 | bool nvme_wait_reset(struct nvme_ctrl *ctrl) |
657 | { |
658 | wait_event(ctrl->state_wq, |
659 | nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || |
660 | nvme_state_terminal(ctrl)); |
661 | return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING; |
662 | } |
663 | EXPORT_SYMBOL_GPL(nvme_wait_reset); |
664 | |
665 | static void nvme_free_ns_head(struct kref *ref) |
666 | { |
667 | struct nvme_ns_head *head = |
668 | container_of(ref, struct nvme_ns_head, ref); |
669 | |
670 | nvme_mpath_remove_disk(head); |
671 | ida_free(&head->subsys->ns_ida, id: head->instance); |
672 | cleanup_srcu_struct(ssp: &head->srcu); |
673 | nvme_put_subsystem(subsys: head->subsys); |
674 | kfree(objp: head); |
675 | } |
676 | |
677 | bool nvme_tryget_ns_head(struct nvme_ns_head *head) |
678 | { |
679 | return kref_get_unless_zero(kref: &head->ref); |
680 | } |
681 | |
682 | void nvme_put_ns_head(struct nvme_ns_head *head) |
683 | { |
684 | kref_put(kref: &head->ref, release: nvme_free_ns_head); |
685 | } |
686 | |
687 | static void nvme_free_ns(struct kref *kref) |
688 | { |
689 | struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); |
690 | |
691 | put_disk(disk: ns->disk); |
692 | nvme_put_ns_head(head: ns->head); |
693 | nvme_put_ctrl(ctrl: ns->ctrl); |
694 | kfree(objp: ns); |
695 | } |
696 | |
697 | static inline bool nvme_get_ns(struct nvme_ns *ns) |
698 | { |
699 | return kref_get_unless_zero(kref: &ns->kref); |
700 | } |
701 | |
702 | void nvme_put_ns(struct nvme_ns *ns) |
703 | { |
704 | kref_put(kref: &ns->kref, release: nvme_free_ns); |
705 | } |
706 | EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU); |
707 | |
708 | static inline void nvme_clear_nvme_request(struct request *req) |
709 | { |
710 | nvme_req(req)->status = 0; |
711 | nvme_req(req)->retries = 0; |
712 | nvme_req(req)->flags = 0; |
713 | req->rq_flags |= RQF_DONTPREP; |
714 | } |
715 | |
716 | /* initialize a passthrough request */ |
717 | void nvme_init_request(struct request *req, struct nvme_command *cmd) |
718 | { |
719 | struct nvme_request *nr = nvme_req(req); |
720 | bool logging_enabled; |
721 | |
722 | if (req->q->queuedata) { |
723 | struct nvme_ns *ns = req->q->disk->private_data; |
724 | |
725 | logging_enabled = ns->head->passthru_err_log_enabled; |
726 | req->timeout = NVME_IO_TIMEOUT; |
727 | } else { /* no queuedata implies admin queue */ |
728 | logging_enabled = nr->ctrl->passthru_err_log_enabled; |
729 | req->timeout = NVME_ADMIN_TIMEOUT; |
730 | } |
731 | |
732 | if (!logging_enabled) |
733 | req->rq_flags |= RQF_QUIET; |
734 | |
735 | /* passthru commands should let the driver set the SGL flags */ |
736 | cmd->common.flags &= ~NVME_CMD_SGL_ALL; |
737 | |
738 | req->cmd_flags |= REQ_FAILFAST_DRIVER; |
739 | if (req->mq_hctx->type == HCTX_TYPE_POLL) |
740 | req->cmd_flags |= REQ_POLLED; |
741 | nvme_clear_nvme_request(req); |
742 | memcpy(nr->cmd, cmd, sizeof(*cmd)); |
743 | } |
744 | EXPORT_SYMBOL_GPL(nvme_init_request); |
745 | |
746 | /* |
747 | * For something we're not in a state to send to the device the default action |
748 | * is to busy it and retry it after the controller state is recovered. However, |
749 | * if the controller is deleting or if anything is marked for failfast or |
750 | * nvme multipath it is immediately failed. |
751 | * |
752 | * Note: commands used to initialize the controller will be marked for failfast. |
753 | * Note: nvme cli/ioctl commands are marked for failfast. |
754 | */ |
755 | blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, |
756 | struct request *rq) |
757 | { |
758 | enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); |
759 | |
760 | if (state != NVME_CTRL_DELETING_NOIO && |
761 | state != NVME_CTRL_DELETING && |
762 | state != NVME_CTRL_DEAD && |
763 | !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && |
764 | !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) |
765 | return BLK_STS_RESOURCE; |
766 | return nvme_host_path_error(rq); |
767 | } |
768 | EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); |
769 | |
770 | bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, |
771 | bool queue_live, enum nvme_ctrl_state state) |
772 | { |
773 | struct nvme_request *req = nvme_req(req: rq); |
774 | |
775 | /* |
776 | * currently we have a problem sending passthru commands |
777 | * on the admin_q if the controller is not LIVE because we can't |
778 | * make sure that they are going out after the admin connect, |
779 | * controller enable and/or other commands in the initialization |
780 | * sequence. until the controller will be LIVE, fail with |
781 | * BLK_STS_RESOURCE so that they will be rescheduled. |
782 | */ |
783 | if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) |
784 | return false; |
785 | |
786 | if (ctrl->ops->flags & NVME_F_FABRICS) { |
787 | /* |
788 | * Only allow commands on a live queue, except for the connect |
789 | * command, which is require to set the queue live in the |
790 | * appropinquate states. |
791 | */ |
792 | switch (state) { |
793 | case NVME_CTRL_CONNECTING: |
794 | if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(cmd: req->cmd) && |
795 | (req->cmd->fabrics.fctype == nvme_fabrics_type_connect || |
796 | req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send || |
797 | req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive)) |
798 | return true; |
799 | break; |
800 | default: |
801 | break; |
802 | case NVME_CTRL_DEAD: |
803 | return false; |
804 | } |
805 | } |
806 | |
807 | return queue_live; |
808 | } |
809 | EXPORT_SYMBOL_GPL(__nvme_check_ready); |
810 | |
811 | static inline void nvme_setup_flush(struct nvme_ns *ns, |
812 | struct nvme_command *cmnd) |
813 | { |
814 | memset(cmnd, 0, sizeof(*cmnd)); |
815 | cmnd->common.opcode = nvme_cmd_flush; |
816 | cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); |
817 | } |
818 | |
819 | static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, |
820 | struct nvme_command *cmnd) |
821 | { |
822 | unsigned short segments = blk_rq_nr_discard_segments(rq: req), n = 0; |
823 | struct nvme_dsm_range *range; |
824 | struct bio *bio; |
825 | |
826 | /* |
827 | * Some devices do not consider the DSM 'Number of Ranges' field when |
828 | * determining how much data to DMA. Always allocate memory for maximum |
829 | * number of segments to prevent device reading beyond end of buffer. |
830 | */ |
831 | static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; |
832 | |
833 | range = kzalloc(size: alloc_size, GFP_ATOMIC | __GFP_NOWARN); |
834 | if (!range) { |
835 | /* |
836 | * If we fail allocation our range, fallback to the controller |
837 | * discard page. If that's also busy, it's safe to return |
838 | * busy, as we know we can make progress once that's freed. |
839 | */ |
840 | if (test_and_set_bit_lock(nr: 0, addr: &ns->ctrl->discard_page_busy)) |
841 | return BLK_STS_RESOURCE; |
842 | |
843 | range = page_address(ns->ctrl->discard_page); |
844 | } |
845 | |
846 | if (queue_max_discard_segments(q: req->q) == 1) { |
847 | u64 slba = nvme_sect_to_lba(head: ns->head, sector: blk_rq_pos(rq: req)); |
848 | u32 nlb = blk_rq_sectors(rq: req) >> (ns->head->lba_shift - 9); |
849 | |
850 | range[0].cattr = cpu_to_le32(0); |
851 | range[0].nlb = cpu_to_le32(nlb); |
852 | range[0].slba = cpu_to_le64(slba); |
853 | n = 1; |
854 | } else { |
855 | __rq_for_each_bio(bio, req) { |
856 | u64 slba = nvme_sect_to_lba(head: ns->head, |
857 | sector: bio->bi_iter.bi_sector); |
858 | u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift; |
859 | |
860 | if (n < segments) { |
861 | range[n].cattr = cpu_to_le32(0); |
862 | range[n].nlb = cpu_to_le32(nlb); |
863 | range[n].slba = cpu_to_le64(slba); |
864 | } |
865 | n++; |
866 | } |
867 | } |
868 | |
869 | if (WARN_ON_ONCE(n != segments)) { |
870 | if (virt_to_page(range) == ns->ctrl->discard_page) |
871 | clear_bit_unlock(nr: 0, addr: &ns->ctrl->discard_page_busy); |
872 | else |
873 | kfree(objp: range); |
874 | return BLK_STS_IOERR; |
875 | } |
876 | |
877 | memset(cmnd, 0, sizeof(*cmnd)); |
878 | cmnd->dsm.opcode = nvme_cmd_dsm; |
879 | cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); |
880 | cmnd->dsm.nr = cpu_to_le32(segments - 1); |
881 | cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); |
882 | |
883 | bvec_set_virt(bv: &req->special_vec, vaddr: range, len: alloc_size); |
884 | req->rq_flags |= RQF_SPECIAL_PAYLOAD; |
885 | |
886 | return BLK_STS_OK; |
887 | } |
888 | |
889 | static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, |
890 | struct request *req) |
891 | { |
892 | u32 upper, lower; |
893 | u64 ref48; |
894 | |
895 | /* both rw and write zeroes share the same reftag format */ |
896 | switch (ns->head->guard_type) { |
897 | case NVME_NVM_NS_16B_GUARD: |
898 | cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); |
899 | break; |
900 | case NVME_NVM_NS_64B_GUARD: |
901 | ref48 = ext_pi_ref_tag(rq: req); |
902 | lower = lower_32_bits(ref48); |
903 | upper = upper_32_bits(ref48); |
904 | |
905 | cmnd->rw.reftag = cpu_to_le32(lower); |
906 | cmnd->rw.cdw3 = cpu_to_le32(upper); |
907 | break; |
908 | default: |
909 | break; |
910 | } |
911 | } |
912 | |
913 | static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, |
914 | struct request *req, struct nvme_command *cmnd) |
915 | { |
916 | memset(cmnd, 0, sizeof(*cmnd)); |
917 | |
918 | if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) |
919 | return nvme_setup_discard(ns, req, cmnd); |
920 | |
921 | cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; |
922 | cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); |
923 | cmnd->write_zeroes.slba = |
924 | cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); |
925 | cmnd->write_zeroes.length = |
926 | cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); |
927 | |
928 | if (!(req->cmd_flags & REQ_NOUNMAP) && |
929 | (ns->head->features & NVME_NS_DEAC)) |
930 | cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC); |
931 | |
932 | if (nvme_ns_has_pi(head: ns->head)) { |
933 | cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT); |
934 | |
935 | switch (ns->head->pi_type) { |
936 | case NVME_NS_DPS_PI_TYPE1: |
937 | case NVME_NS_DPS_PI_TYPE2: |
938 | nvme_set_ref_tag(ns, cmnd, req); |
939 | break; |
940 | } |
941 | } |
942 | |
943 | return BLK_STS_OK; |
944 | } |
945 | |
946 | static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, |
947 | struct request *req, struct nvme_command *cmnd, |
948 | enum nvme_opcode op) |
949 | { |
950 | u16 control = 0; |
951 | u32 dsmgmt = 0; |
952 | |
953 | if (req->cmd_flags & REQ_FUA) |
954 | control |= NVME_RW_FUA; |
955 | if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) |
956 | control |= NVME_RW_LR; |
957 | |
958 | if (req->cmd_flags & REQ_RAHEAD) |
959 | dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; |
960 | |
961 | cmnd->rw.opcode = op; |
962 | cmnd->rw.flags = 0; |
963 | cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); |
964 | cmnd->rw.cdw2 = 0; |
965 | cmnd->rw.cdw3 = 0; |
966 | cmnd->rw.metadata = 0; |
967 | cmnd->rw.slba = |
968 | cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); |
969 | cmnd->rw.length = |
970 | cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); |
971 | cmnd->rw.reftag = 0; |
972 | cmnd->rw.apptag = 0; |
973 | cmnd->rw.appmask = 0; |
974 | |
975 | if (ns->head->ms) { |
976 | /* |
977 | * If formated with metadata, the block layer always provides a |
978 | * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else |
979 | * we enable the PRACT bit for protection information or set the |
980 | * namespace capacity to zero to prevent any I/O. |
981 | */ |
982 | if (!blk_integrity_rq(rq: req)) { |
983 | if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head))) |
984 | return BLK_STS_NOTSUPP; |
985 | control |= NVME_RW_PRINFO_PRACT; |
986 | } |
987 | |
988 | switch (ns->head->pi_type) { |
989 | case NVME_NS_DPS_PI_TYPE3: |
990 | control |= NVME_RW_PRINFO_PRCHK_GUARD; |
991 | break; |
992 | case NVME_NS_DPS_PI_TYPE1: |
993 | case NVME_NS_DPS_PI_TYPE2: |
994 | control |= NVME_RW_PRINFO_PRCHK_GUARD | |
995 | NVME_RW_PRINFO_PRCHK_REF; |
996 | if (op == nvme_cmd_zone_append) |
997 | control |= NVME_RW_APPEND_PIREMAP; |
998 | nvme_set_ref_tag(ns, cmnd, req); |
999 | break; |
1000 | } |
1001 | } |
1002 | |
1003 | cmnd->rw.control = cpu_to_le16(control); |
1004 | cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); |
1005 | return 0; |
1006 | } |
1007 | |
1008 | void nvme_cleanup_cmd(struct request *req) |
1009 | { |
1010 | if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { |
1011 | struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; |
1012 | |
1013 | if (req->special_vec.bv_page == ctrl->discard_page) |
1014 | clear_bit_unlock(nr: 0, addr: &ctrl->discard_page_busy); |
1015 | else |
1016 | kfree(objp: bvec_virt(bvec: &req->special_vec)); |
1017 | } |
1018 | } |
1019 | EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); |
1020 | |
1021 | blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) |
1022 | { |
1023 | struct nvme_command *cmd = nvme_req(req)->cmd; |
1024 | blk_status_t ret = BLK_STS_OK; |
1025 | |
1026 | if (!(req->rq_flags & RQF_DONTPREP)) |
1027 | nvme_clear_nvme_request(req); |
1028 | |
1029 | switch (req_op(req)) { |
1030 | case REQ_OP_DRV_IN: |
1031 | case REQ_OP_DRV_OUT: |
1032 | /* these are setup prior to execution in nvme_init_request() */ |
1033 | break; |
1034 | case REQ_OP_FLUSH: |
1035 | nvme_setup_flush(ns, cmnd: cmd); |
1036 | break; |
1037 | case REQ_OP_ZONE_RESET_ALL: |
1038 | case REQ_OP_ZONE_RESET: |
1039 | ret = nvme_setup_zone_mgmt_send(ns, req, cmnd: cmd, action: NVME_ZONE_RESET); |
1040 | break; |
1041 | case REQ_OP_ZONE_OPEN: |
1042 | ret = nvme_setup_zone_mgmt_send(ns, req, cmnd: cmd, action: NVME_ZONE_OPEN); |
1043 | break; |
1044 | case REQ_OP_ZONE_CLOSE: |
1045 | ret = nvme_setup_zone_mgmt_send(ns, req, cmnd: cmd, action: NVME_ZONE_CLOSE); |
1046 | break; |
1047 | case REQ_OP_ZONE_FINISH: |
1048 | ret = nvme_setup_zone_mgmt_send(ns, req, cmnd: cmd, action: NVME_ZONE_FINISH); |
1049 | break; |
1050 | case REQ_OP_WRITE_ZEROES: |
1051 | ret = nvme_setup_write_zeroes(ns, req, cmnd: cmd); |
1052 | break; |
1053 | case REQ_OP_DISCARD: |
1054 | ret = nvme_setup_discard(ns, req, cmnd: cmd); |
1055 | break; |
1056 | case REQ_OP_READ: |
1057 | ret = nvme_setup_rw(ns, req, cmnd: cmd, op: nvme_cmd_read); |
1058 | break; |
1059 | case REQ_OP_WRITE: |
1060 | ret = nvme_setup_rw(ns, req, cmnd: cmd, op: nvme_cmd_write); |
1061 | break; |
1062 | case REQ_OP_ZONE_APPEND: |
1063 | ret = nvme_setup_rw(ns, req, cmnd: cmd, op: nvme_cmd_zone_append); |
1064 | break; |
1065 | default: |
1066 | WARN_ON_ONCE(1); |
1067 | return BLK_STS_IOERR; |
1068 | } |
1069 | |
1070 | cmd->common.command_id = nvme_cid(rq: req); |
1071 | trace_nvme_setup_cmd(req, cmd); |
1072 | return ret; |
1073 | } |
1074 | EXPORT_SYMBOL_GPL(nvme_setup_cmd); |
1075 | |
1076 | /* |
1077 | * Return values: |
1078 | * 0: success |
1079 | * >0: nvme controller's cqe status response |
1080 | * <0: kernel error in lieu of controller response |
1081 | */ |
1082 | int nvme_execute_rq(struct request *rq, bool at_head) |
1083 | { |
1084 | blk_status_t status; |
1085 | |
1086 | status = blk_execute_rq(rq, at_head); |
1087 | if (nvme_req(req: rq)->flags & NVME_REQ_CANCELLED) |
1088 | return -EINTR; |
1089 | if (nvme_req(req: rq)->status) |
1090 | return nvme_req(req: rq)->status; |
1091 | return blk_status_to_errno(status); |
1092 | } |
1093 | EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU); |
1094 | |
1095 | /* |
1096 | * Returns 0 on success. If the result is negative, it's a Linux error code; |
1097 | * if the result is positive, it's an NVM Express status code |
1098 | */ |
1099 | int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, |
1100 | union nvme_result *result, void *buffer, unsigned bufflen, |
1101 | int qid, nvme_submit_flags_t flags) |
1102 | { |
1103 | struct request *req; |
1104 | int ret; |
1105 | blk_mq_req_flags_t blk_flags = 0; |
1106 | |
1107 | if (flags & NVME_SUBMIT_NOWAIT) |
1108 | blk_flags |= BLK_MQ_REQ_NOWAIT; |
1109 | if (flags & NVME_SUBMIT_RESERVED) |
1110 | blk_flags |= BLK_MQ_REQ_RESERVED; |
1111 | if (qid == NVME_QID_ANY) |
1112 | req = blk_mq_alloc_request(q, opf: nvme_req_op(cmd), flags: blk_flags); |
1113 | else |
1114 | req = blk_mq_alloc_request_hctx(q, opf: nvme_req_op(cmd), flags: blk_flags, |
1115 | hctx_idx: qid - 1); |
1116 | |
1117 | if (IS_ERR(ptr: req)) |
1118 | return PTR_ERR(ptr: req); |
1119 | nvme_init_request(req, cmd); |
1120 | if (flags & NVME_SUBMIT_RETRY) |
1121 | req->cmd_flags &= ~REQ_FAILFAST_DRIVER; |
1122 | |
1123 | if (buffer && bufflen) { |
1124 | ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL); |
1125 | if (ret) |
1126 | goto out; |
1127 | } |
1128 | |
1129 | ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD); |
1130 | if (result && ret >= 0) |
1131 | *result = nvme_req(req)->result; |
1132 | out: |
1133 | blk_mq_free_request(rq: req); |
1134 | return ret; |
1135 | } |
1136 | EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); |
1137 | |
1138 | int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, |
1139 | void *buffer, unsigned bufflen) |
1140 | { |
1141 | return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, |
1142 | NVME_QID_ANY, 0); |
1143 | } |
1144 | EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); |
1145 | |
1146 | u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) |
1147 | { |
1148 | u32 effects = 0; |
1149 | |
1150 | if (ns) { |
1151 | effects = le32_to_cpu(ns->head->effects->iocs[opcode]); |
1152 | if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) |
1153 | dev_warn_once(ctrl->device, |
1154 | "IO command:%02x has unusual effects:%08x\n", |
1155 | opcode, effects); |
1156 | |
1157 | /* |
1158 | * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues, |
1159 | * which would deadlock when done on an I/O command. Note that |
1160 | * We already warn about an unusual effect above. |
1161 | */ |
1162 | effects &= ~NVME_CMD_EFFECTS_CSE_MASK; |
1163 | } else { |
1164 | effects = le32_to_cpu(ctrl->effects->acs[opcode]); |
1165 | |
1166 | /* Ignore execution restrictions if any relaxation bits are set */ |
1167 | if (effects & NVME_CMD_EFFECTS_CSER_MASK) |
1168 | effects &= ~NVME_CMD_EFFECTS_CSE_MASK; |
1169 | } |
1170 | |
1171 | return effects; |
1172 | } |
1173 | EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU); |
1174 | |
1175 | u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) |
1176 | { |
1177 | u32 effects = nvme_command_effects(ctrl, ns, opcode); |
1178 | |
1179 | /* |
1180 | * For simplicity, IO to all namespaces is quiesced even if the command |
1181 | * effects say only one namespace is affected. |
1182 | */ |
1183 | if (effects & NVME_CMD_EFFECTS_CSE_MASK) { |
1184 | mutex_lock(&ctrl->scan_lock); |
1185 | mutex_lock(&ctrl->subsys->lock); |
1186 | nvme_mpath_start_freeze(subsys: ctrl->subsys); |
1187 | nvme_mpath_wait_freeze(subsys: ctrl->subsys); |
1188 | nvme_start_freeze(ctrl); |
1189 | nvme_wait_freeze(ctrl); |
1190 | } |
1191 | return effects; |
1192 | } |
1193 | EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU); |
1194 | |
1195 | void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects, |
1196 | struct nvme_command *cmd, int status) |
1197 | { |
1198 | if (effects & NVME_CMD_EFFECTS_CSE_MASK) { |
1199 | nvme_unfreeze(ctrl); |
1200 | nvme_mpath_unfreeze(subsys: ctrl->subsys); |
1201 | mutex_unlock(lock: &ctrl->subsys->lock); |
1202 | mutex_unlock(lock: &ctrl->scan_lock); |
1203 | } |
1204 | if (effects & NVME_CMD_EFFECTS_CCC) { |
1205 | if (!test_and_set_bit(nr: NVME_CTRL_DIRTY_CAPABILITY, |
1206 | addr: &ctrl->flags)) { |
1207 | dev_info(ctrl->device, |
1208 | "controller capabilities changed, reset may be required to take effect.\n"); |
1209 | } |
1210 | } |
1211 | if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { |
1212 | nvme_queue_scan(ctrl); |
1213 | flush_work(work: &ctrl->scan_work); |
1214 | } |
1215 | if (ns) |
1216 | return; |
1217 | |
1218 | switch (cmd->common.opcode) { |
1219 | case nvme_admin_set_features: |
1220 | switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { |
1221 | case NVME_FEAT_KATO: |
1222 | /* |
1223 | * Keep alive commands interval on the host should be |
1224 | * updated when KATO is modified by Set Features |
1225 | * commands. |
1226 | */ |
1227 | if (!status) |
1228 | nvme_update_keep_alive(ctrl, cmd); |
1229 | break; |
1230 | default: |
1231 | break; |
1232 | } |
1233 | break; |
1234 | default: |
1235 | break; |
1236 | } |
1237 | } |
1238 | EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU); |
1239 | |
1240 | /* |
1241 | * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: |
1242 | * |
1243 | * The host should send Keep Alive commands at half of the Keep Alive Timeout |
1244 | * accounting for transport roundtrip times [..]. |
1245 | */ |
1246 | static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl) |
1247 | { |
1248 | unsigned long delay = ctrl->kato * HZ / 2; |
1249 | |
1250 | /* |
1251 | * When using Traffic Based Keep Alive, we need to run |
1252 | * nvme_keep_alive_work at twice the normal frequency, as one |
1253 | * command completion can postpone sending a keep alive command |
1254 | * by up to twice the delay between runs. |
1255 | */ |
1256 | if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) |
1257 | delay /= 2; |
1258 | return delay; |
1259 | } |
1260 | |
1261 | static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) |
1262 | { |
1263 | unsigned long now = jiffies; |
1264 | unsigned long delay = nvme_keep_alive_work_period(ctrl); |
1265 | unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay; |
1266 | |
1267 | if (time_after(now, ka_next_check_tm)) |
1268 | delay = 0; |
1269 | else |
1270 | delay = ka_next_check_tm - now; |
1271 | |
1272 | queue_delayed_work(wq: nvme_wq, dwork: &ctrl->ka_work, delay); |
1273 | } |
1274 | |
1275 | static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq, |
1276 | blk_status_t status) |
1277 | { |
1278 | struct nvme_ctrl *ctrl = rq->end_io_data; |
1279 | unsigned long flags; |
1280 | bool startka = false; |
1281 | unsigned long rtt = jiffies - (rq->deadline - rq->timeout); |
1282 | unsigned long delay = nvme_keep_alive_work_period(ctrl); |
1283 | |
1284 | /* |
1285 | * Subtract off the keepalive RTT so nvme_keep_alive_work runs |
1286 | * at the desired frequency. |
1287 | */ |
1288 | if (rtt <= delay) { |
1289 | delay -= rtt; |
1290 | } else { |
1291 | dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n", |
1292 | jiffies_to_msecs(rtt)); |
1293 | delay = 0; |
1294 | } |
1295 | |
1296 | blk_mq_free_request(rq); |
1297 | |
1298 | if (status) { |
1299 | dev_err(ctrl->device, |
1300 | "failed nvme_keep_alive_end_io error=%d\n", |
1301 | status); |
1302 | return RQ_END_IO_NONE; |
1303 | } |
1304 | |
1305 | ctrl->ka_last_check_time = jiffies; |
1306 | ctrl->comp_seen = false; |
1307 | spin_lock_irqsave(&ctrl->lock, flags); |
1308 | if (ctrl->state == NVME_CTRL_LIVE || |
1309 | ctrl->state == NVME_CTRL_CONNECTING) |
1310 | startka = true; |
1311 | spin_unlock_irqrestore(lock: &ctrl->lock, flags); |
1312 | if (startka) |
1313 | queue_delayed_work(wq: nvme_wq, dwork: &ctrl->ka_work, delay); |
1314 | return RQ_END_IO_NONE; |
1315 | } |
1316 | |
1317 | static void nvme_keep_alive_work(struct work_struct *work) |
1318 | { |
1319 | struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), |
1320 | struct nvme_ctrl, ka_work); |
1321 | bool comp_seen = ctrl->comp_seen; |
1322 | struct request *rq; |
1323 | |
1324 | ctrl->ka_last_check_time = jiffies; |
1325 | |
1326 | if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { |
1327 | dev_dbg(ctrl->device, |
1328 | "reschedule traffic based keep-alive timer\n"); |
1329 | ctrl->comp_seen = false; |
1330 | nvme_queue_keep_alive_work(ctrl); |
1331 | return; |
1332 | } |
1333 | |
1334 | rq = blk_mq_alloc_request(q: ctrl->admin_q, opf: nvme_req_op(cmd: &ctrl->ka_cmd), |
1335 | flags: BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); |
1336 | if (IS_ERR(ptr: rq)) { |
1337 | /* allocation failure, reset the controller */ |
1338 | dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); |
1339 | nvme_reset_ctrl(ctrl); |
1340 | return; |
1341 | } |
1342 | nvme_init_request(rq, &ctrl->ka_cmd); |
1343 | |
1344 | rq->timeout = ctrl->kato * HZ; |
1345 | rq->end_io = nvme_keep_alive_end_io; |
1346 | rq->end_io_data = ctrl; |
1347 | blk_execute_rq_nowait(rq, at_head: false); |
1348 | } |
1349 | |
1350 | static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) |
1351 | { |
1352 | if (unlikely(ctrl->kato == 0)) |
1353 | return; |
1354 | |
1355 | nvme_queue_keep_alive_work(ctrl); |
1356 | } |
1357 | |
1358 | void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) |
1359 | { |
1360 | if (unlikely(ctrl->kato == 0)) |
1361 | return; |
1362 | |
1363 | cancel_delayed_work_sync(dwork: &ctrl->ka_work); |
1364 | } |
1365 | EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); |
1366 | |
1367 | static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, |
1368 | struct nvme_command *cmd) |
1369 | { |
1370 | unsigned int new_kato = |
1371 | DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); |
1372 | |
1373 | dev_info(ctrl->device, |
1374 | "keep alive interval updated from %u ms to %u ms\n", |
1375 | ctrl->kato * 1000 / 2, new_kato * 1000 / 2); |
1376 | |
1377 | nvme_stop_keep_alive(ctrl); |
1378 | ctrl->kato = new_kato; |
1379 | nvme_start_keep_alive(ctrl); |
1380 | } |
1381 | |
1382 | /* |
1383 | * In NVMe 1.0 the CNS field was just a binary controller or namespace |
1384 | * flag, thus sending any new CNS opcodes has a big chance of not working. |
1385 | * Qemu unfortunately had that bug after reporting a 1.1 version compliance |
1386 | * (but not for any later version). |
1387 | */ |
1388 | static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl) |
1389 | { |
1390 | if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS) |
1391 | return ctrl->vs < NVME_VS(1, 2, 0); |
1392 | return ctrl->vs < NVME_VS(1, 1, 0); |
1393 | } |
1394 | |
1395 | static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) |
1396 | { |
1397 | struct nvme_command c = { }; |
1398 | int error; |
1399 | |
1400 | /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ |
1401 | c.identify.opcode = nvme_admin_identify; |
1402 | c.identify.cns = NVME_ID_CNS_CTRL; |
1403 | |
1404 | *id = kmalloc(size: sizeof(struct nvme_id_ctrl), GFP_KERNEL); |
1405 | if (!*id) |
1406 | return -ENOMEM; |
1407 | |
1408 | error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, |
1409 | sizeof(struct nvme_id_ctrl)); |
1410 | if (error) { |
1411 | kfree(objp: *id); |
1412 | *id = NULL; |
1413 | } |
1414 | return error; |
1415 | } |
1416 | |
1417 | static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, |
1418 | struct nvme_ns_id_desc *cur, bool *csi_seen) |
1419 | { |
1420 | const char *warn_str = "ctrl returned bogus length:"; |
1421 | void *data = cur; |
1422 | |
1423 | switch (cur->nidt) { |
1424 | case NVME_NIDT_EUI64: |
1425 | if (cur->nidl != NVME_NIDT_EUI64_LEN) { |
1426 | dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", |
1427 | warn_str, cur->nidl); |
1428 | return -1; |
1429 | } |
1430 | if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) |
1431 | return NVME_NIDT_EUI64_LEN; |
1432 | memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); |
1433 | return NVME_NIDT_EUI64_LEN; |
1434 | case NVME_NIDT_NGUID: |
1435 | if (cur->nidl != NVME_NIDT_NGUID_LEN) { |
1436 | dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", |
1437 | warn_str, cur->nidl); |
1438 | return -1; |
1439 | } |
1440 | if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) |
1441 | return NVME_NIDT_NGUID_LEN; |
1442 | memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); |
1443 | return NVME_NIDT_NGUID_LEN; |
1444 | case NVME_NIDT_UUID: |
1445 | if (cur->nidl != NVME_NIDT_UUID_LEN) { |
1446 | dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", |
1447 | warn_str, cur->nidl); |
1448 | return -1; |
1449 | } |
1450 | if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) |
1451 | return NVME_NIDT_UUID_LEN; |
1452 | uuid_copy(dst: &ids->uuid, src: data + sizeof(*cur)); |
1453 | return NVME_NIDT_UUID_LEN; |
1454 | case NVME_NIDT_CSI: |
1455 | if (cur->nidl != NVME_NIDT_CSI_LEN) { |
1456 | dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", |
1457 | warn_str, cur->nidl); |
1458 | return -1; |
1459 | } |
1460 | memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); |
1461 | *csi_seen = true; |
1462 | return NVME_NIDT_CSI_LEN; |
1463 | default: |
1464 | /* Skip unknown types */ |
1465 | return cur->nidl; |
1466 | } |
1467 | } |
1468 | |
1469 | static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, |
1470 | struct nvme_ns_info *info) |
1471 | { |
1472 | struct nvme_command c = { }; |
1473 | bool csi_seen = false; |
1474 | int status, pos, len; |
1475 | void *data; |
1476 | |
1477 | if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) |
1478 | return 0; |
1479 | if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) |
1480 | return 0; |
1481 | |
1482 | c.identify.opcode = nvme_admin_identify; |
1483 | c.identify.nsid = cpu_to_le32(info->nsid); |
1484 | c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; |
1485 | |
1486 | data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); |
1487 | if (!data) |
1488 | return -ENOMEM; |
1489 | |
1490 | status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, |
1491 | NVME_IDENTIFY_DATA_SIZE); |
1492 | if (status) { |
1493 | dev_warn(ctrl->device, |
1494 | "Identify Descriptors failed (nsid=%u, status=0x%x)\n", |
1495 | info->nsid, status); |
1496 | goto free_data; |
1497 | } |
1498 | |
1499 | for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { |
1500 | struct nvme_ns_id_desc *cur = data + pos; |
1501 | |
1502 | if (cur->nidl == 0) |
1503 | break; |
1504 | |
1505 | len = nvme_process_ns_desc(ctrl, ids: &info->ids, cur, csi_seen: &csi_seen); |
1506 | if (len < 0) |
1507 | break; |
1508 | |
1509 | len += sizeof(*cur); |
1510 | } |
1511 | |
1512 | if (nvme_multi_css(ctrl) && !csi_seen) { |
1513 | dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", |
1514 | info->nsid); |
1515 | status = -EINVAL; |
1516 | } |
1517 | |
1518 | free_data: |
1519 | kfree(objp: data); |
1520 | return status; |
1521 | } |
1522 | |
1523 | int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, |
1524 | struct nvme_id_ns **id) |
1525 | { |
1526 | struct nvme_command c = { }; |
1527 | int error; |
1528 | |
1529 | /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ |
1530 | c.identify.opcode = nvme_admin_identify; |
1531 | c.identify.nsid = cpu_to_le32(nsid); |
1532 | c.identify.cns = NVME_ID_CNS_NS; |
1533 | |
1534 | *id = kmalloc(size: sizeof(**id), GFP_KERNEL); |
1535 | if (!*id) |
1536 | return -ENOMEM; |
1537 | |
1538 | error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); |
1539 | if (error) { |
1540 | dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); |
1541 | kfree(objp: *id); |
1542 | *id = NULL; |
1543 | } |
1544 | return error; |
1545 | } |
1546 | |
1547 | static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl, |
1548 | struct nvme_ns_info *info) |
1549 | { |
1550 | struct nvme_ns_ids *ids = &info->ids; |
1551 | struct nvme_id_ns *id; |
1552 | int ret; |
1553 | |
1554 | ret = nvme_identify_ns(ctrl, nsid: info->nsid, id: &id); |
1555 | if (ret) |
1556 | return ret; |
1557 | |
1558 | if (id->ncap == 0) { |
1559 | /* namespace not allocated or attached */ |
1560 | info->is_removed = true; |
1561 | ret = -ENODEV; |
1562 | goto error; |
1563 | } |
1564 | |
1565 | info->anagrpid = id->anagrpid; |
1566 | info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; |
1567 | info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; |
1568 | info->is_ready = true; |
1569 | if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { |
1570 | dev_info(ctrl->device, |
1571 | "Ignoring bogus Namespace Identifiers\n"); |
1572 | } else { |
1573 | if (ctrl->vs >= NVME_VS(1, 1, 0) && |
1574 | !memchr_inv(p: ids->eui64, c: 0, size: sizeof(ids->eui64))) |
1575 | memcpy(ids->eui64, id->eui64, sizeof(ids->eui64)); |
1576 | if (ctrl->vs >= NVME_VS(1, 2, 0) && |
1577 | !memchr_inv(p: ids->nguid, c: 0, size: sizeof(ids->nguid))) |
1578 | memcpy(ids->nguid, id->nguid, sizeof(ids->nguid)); |
1579 | } |
1580 | |
1581 | error: |
1582 | kfree(objp: id); |
1583 | return ret; |
1584 | } |
1585 | |
1586 | static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl, |
1587 | struct nvme_ns_info *info) |
1588 | { |
1589 | struct nvme_id_ns_cs_indep *id; |
1590 | struct nvme_command c = { |
1591 | .identify.opcode = nvme_admin_identify, |
1592 | .identify.nsid = cpu_to_le32(info->nsid), |
1593 | .identify.cns = NVME_ID_CNS_NS_CS_INDEP, |
1594 | }; |
1595 | int ret; |
1596 | |
1597 | id = kmalloc(size: sizeof(*id), GFP_KERNEL); |
1598 | if (!id) |
1599 | return -ENOMEM; |
1600 | |
1601 | ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); |
1602 | if (!ret) { |
1603 | info->anagrpid = id->anagrpid; |
1604 | info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; |
1605 | info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; |
1606 | info->is_ready = id->nstat & NVME_NSTAT_NRDY; |
1607 | } |
1608 | kfree(objp: id); |
1609 | return ret; |
1610 | } |
1611 | |
1612 | static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, |
1613 | unsigned int dword11, void *buffer, size_t buflen, u32 *result) |
1614 | { |
1615 | union nvme_result res = { 0 }; |
1616 | struct nvme_command c = { }; |
1617 | int ret; |
1618 | |
1619 | c.features.opcode = op; |
1620 | c.features.fid = cpu_to_le32(fid); |
1621 | c.features.dword11 = cpu_to_le32(dword11); |
1622 | |
1623 | ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, |
1624 | buffer, buflen, NVME_QID_ANY, 0); |
1625 | if (ret >= 0 && result) |
1626 | *result = le32_to_cpu(res.u32); |
1627 | return ret; |
1628 | } |
1629 | |
1630 | int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, |
1631 | unsigned int dword11, void *buffer, size_t buflen, |
1632 | u32 *result) |
1633 | { |
1634 | return nvme_features(dev, op: nvme_admin_set_features, fid, dword11, buffer, |
1635 | buflen, result); |
1636 | } |
1637 | EXPORT_SYMBOL_GPL(nvme_set_features); |
1638 | |
1639 | int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, |
1640 | unsigned int dword11, void *buffer, size_t buflen, |
1641 | u32 *result) |
1642 | { |
1643 | return nvme_features(dev, op: nvme_admin_get_features, fid, dword11, buffer, |
1644 | buflen, result); |
1645 | } |
1646 | EXPORT_SYMBOL_GPL(nvme_get_features); |
1647 | |
1648 | int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) |
1649 | { |
1650 | u32 q_count = (*count - 1) | ((*count - 1) << 16); |
1651 | u32 result; |
1652 | int status, nr_io_queues; |
1653 | |
1654 | status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, |
1655 | &result); |
1656 | if (status < 0) |
1657 | return status; |
1658 | |
1659 | /* |
1660 | * Degraded controllers might return an error when setting the queue |
1661 | * count. We still want to be able to bring them online and offer |
1662 | * access to the admin queue, as that might be only way to fix them up. |
1663 | */ |
1664 | if (status > 0) { |
1665 | dev_err(ctrl->device, "Could not set queue count (%d)\n", status); |
1666 | *count = 0; |
1667 | } else { |
1668 | nr_io_queues = min(result & 0xffff, result >> 16) + 1; |
1669 | *count = min(*count, nr_io_queues); |
1670 | } |
1671 | |
1672 | return 0; |
1673 | } |
1674 | EXPORT_SYMBOL_GPL(nvme_set_queue_count); |
1675 | |
1676 | #define NVME_AEN_SUPPORTED \ |
1677 | (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ |
1678 | NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) |
1679 | |
1680 | static void nvme_enable_aen(struct nvme_ctrl *ctrl) |
1681 | { |
1682 | u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; |
1683 | int status; |
1684 | |
1685 | if (!supported_aens) |
1686 | return; |
1687 | |
1688 | status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, |
1689 | NULL, 0, &result); |
1690 | if (status) |
1691 | dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", |
1692 | supported_aens); |
1693 | |
1694 | queue_work(wq: nvme_wq, work: &ctrl->async_event_work); |
1695 | } |
1696 | |
1697 | static int nvme_ns_open(struct nvme_ns *ns) |
1698 | { |
1699 | |
1700 | /* should never be called due to GENHD_FL_HIDDEN */ |
1701 | if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) |
1702 | goto fail; |
1703 | if (!nvme_get_ns(ns)) |
1704 | goto fail; |
1705 | if (!try_module_get(module: ns->ctrl->ops->module)) |
1706 | goto fail_put_ns; |
1707 | |
1708 | return 0; |
1709 | |
1710 | fail_put_ns: |
1711 | nvme_put_ns(ns); |
1712 | fail: |
1713 | return -ENXIO; |
1714 | } |
1715 | |
1716 | static void nvme_ns_release(struct nvme_ns *ns) |
1717 | { |
1718 | |
1719 | module_put(module: ns->ctrl->ops->module); |
1720 | nvme_put_ns(ns); |
1721 | } |
1722 | |
1723 | static int nvme_open(struct gendisk *disk, blk_mode_t mode) |
1724 | { |
1725 | return nvme_ns_open(ns: disk->private_data); |
1726 | } |
1727 | |
1728 | static void nvme_release(struct gendisk *disk) |
1729 | { |
1730 | nvme_ns_release(ns: disk->private_data); |
1731 | } |
1732 | |
1733 | int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) |
1734 | { |
1735 | /* some standard values */ |
1736 | geo->heads = 1 << 6; |
1737 | geo->sectors = 1 << 5; |
1738 | geo->cylinders = get_capacity(disk: bdev->bd_disk) >> 11; |
1739 | return 0; |
1740 | } |
1741 | |
1742 | static bool nvme_init_integrity(struct gendisk *disk, struct nvme_ns_head *head) |
1743 | { |
1744 | struct blk_integrity integrity = { }; |
1745 | |
1746 | blk_integrity_unregister(disk); |
1747 | |
1748 | if (!head->ms) |
1749 | return true; |
1750 | |
1751 | /* |
1752 | * PI can always be supported as we can ask the controller to simply |
1753 | * insert/strip it, which is not possible for other kinds of metadata. |
1754 | */ |
1755 | if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) || |
1756 | !(head->features & NVME_NS_METADATA_SUPPORTED)) |
1757 | return nvme_ns_has_pi(head); |
1758 | |
1759 | switch (head->pi_type) { |
1760 | case NVME_NS_DPS_PI_TYPE3: |
1761 | switch (head->guard_type) { |
1762 | case NVME_NVM_NS_16B_GUARD: |
1763 | integrity.profile = &t10_pi_type3_crc; |
1764 | integrity.tag_size = sizeof(u16) + sizeof(u32); |
1765 | integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; |
1766 | break; |
1767 | case NVME_NVM_NS_64B_GUARD: |
1768 | integrity.profile = &ext_pi_type3_crc64; |
1769 | integrity.tag_size = sizeof(u16) + 6; |
1770 | integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; |
1771 | break; |
1772 | default: |
1773 | integrity.profile = NULL; |
1774 | break; |
1775 | } |
1776 | break; |
1777 | case NVME_NS_DPS_PI_TYPE1: |
1778 | case NVME_NS_DPS_PI_TYPE2: |
1779 | switch (head->guard_type) { |
1780 | case NVME_NVM_NS_16B_GUARD: |
1781 | integrity.profile = &t10_pi_type1_crc; |
1782 | integrity.tag_size = sizeof(u16); |
1783 | integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; |
1784 | break; |
1785 | case NVME_NVM_NS_64B_GUARD: |
1786 | integrity.profile = &ext_pi_type1_crc64; |
1787 | integrity.tag_size = sizeof(u16); |
1788 | integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE; |
1789 | break; |
1790 | default: |
1791 | integrity.profile = NULL; |
1792 | break; |
1793 | } |
1794 | break; |
1795 | default: |
1796 | integrity.profile = NULL; |
1797 | break; |
1798 | } |
1799 | |
1800 | integrity.tuple_size = head->ms; |
1801 | integrity.pi_offset = head->pi_offset; |
1802 | blk_integrity_register(disk, &integrity); |
1803 | return true; |
1804 | } |
1805 | |
1806 | static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim) |
1807 | { |
1808 | struct nvme_ctrl *ctrl = ns->ctrl; |
1809 | |
1810 | if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(head: ns->head, UINT_MAX)) |
1811 | lim->max_hw_discard_sectors = |
1812 | nvme_lba_to_sect(head: ns->head, lba: ctrl->dmrsl); |
1813 | else if (ctrl->oncs & NVME_CTRL_ONCS_DSM) |
1814 | lim->max_hw_discard_sectors = UINT_MAX; |
1815 | else |
1816 | lim->max_hw_discard_sectors = 0; |
1817 | |
1818 | lim->discard_granularity = lim->logical_block_size; |
1819 | |
1820 | if (ctrl->dmrl) |
1821 | lim->max_discard_segments = ctrl->dmrl; |
1822 | else |
1823 | lim->max_discard_segments = NVME_DSM_MAX_RANGES; |
1824 | } |
1825 | |
1826 | static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) |
1827 | { |
1828 | return uuid_equal(u1: &a->uuid, u2: &b->uuid) && |
1829 | memcmp(p: &a->nguid, q: &b->nguid, size: sizeof(a->nguid)) == 0 && |
1830 | memcmp(p: &a->eui64, q: &b->eui64, size: sizeof(a->eui64)) == 0 && |
1831 | a->csi == b->csi; |
1832 | } |
1833 | |
1834 | static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid, |
1835 | struct nvme_id_ns_nvm **nvmp) |
1836 | { |
1837 | struct nvme_command c = { |
1838 | .identify.opcode = nvme_admin_identify, |
1839 | .identify.nsid = cpu_to_le32(nsid), |
1840 | .identify.cns = NVME_ID_CNS_CS_NS, |
1841 | .identify.csi = NVME_CSI_NVM, |
1842 | }; |
1843 | struct nvme_id_ns_nvm *nvm; |
1844 | int ret; |
1845 | |
1846 | nvm = kzalloc(size: sizeof(*nvm), GFP_KERNEL); |
1847 | if (!nvm) |
1848 | return -ENOMEM; |
1849 | |
1850 | ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm)); |
1851 | if (ret) |
1852 | kfree(objp: nvm); |
1853 | else |
1854 | *nvmp = nvm; |
1855 | return ret; |
1856 | } |
1857 | |
1858 | static void nvme_configure_pi_elbas(struct nvme_ns_head *head, |
1859 | struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm) |
1860 | { |
1861 | u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]); |
1862 | |
1863 | /* no support for storage tag formats right now */ |
1864 | if (nvme_elbaf_sts(elbaf)) |
1865 | return; |
1866 | |
1867 | head->guard_type = nvme_elbaf_guard_type(elbaf); |
1868 | switch (head->guard_type) { |
1869 | case NVME_NVM_NS_64B_GUARD: |
1870 | head->pi_size = sizeof(struct crc64_pi_tuple); |
1871 | break; |
1872 | case NVME_NVM_NS_16B_GUARD: |
1873 | head->pi_size = sizeof(struct t10_pi_tuple); |
1874 | break; |
1875 | default: |
1876 | break; |
1877 | } |
1878 | } |
1879 | |
1880 | static void nvme_configure_metadata(struct nvme_ctrl *ctrl, |
1881 | struct nvme_ns_head *head, struct nvme_id_ns *id, |
1882 | struct nvme_id_ns_nvm *nvm) |
1883 | { |
1884 | head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); |
1885 | head->pi_type = 0; |
1886 | head->pi_size = 0; |
1887 | head->pi_offset = 0; |
1888 | head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms); |
1889 | if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) |
1890 | return; |
1891 | |
1892 | if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { |
1893 | nvme_configure_pi_elbas(head, id, nvm); |
1894 | } else { |
1895 | head->pi_size = sizeof(struct t10_pi_tuple); |
1896 | head->guard_type = NVME_NVM_NS_16B_GUARD; |
1897 | } |
1898 | |
1899 | if (head->pi_size && head->ms >= head->pi_size) |
1900 | head->pi_type = id->dps & NVME_NS_DPS_PI_MASK; |
1901 | if (!(id->dps & NVME_NS_DPS_PI_FIRST)) |
1902 | head->pi_offset = head->ms - head->pi_size; |
1903 | |
1904 | if (ctrl->ops->flags & NVME_F_FABRICS) { |
1905 | /* |
1906 | * The NVMe over Fabrics specification only supports metadata as |
1907 | * part of the extended data LBA. We rely on HCA/HBA support to |
1908 | * remap the separate metadata buffer from the block layer. |
1909 | */ |
1910 | if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) |
1911 | return; |
1912 | |
1913 | head->features |= NVME_NS_EXT_LBAS; |
1914 | |
1915 | /* |
1916 | * The current fabrics transport drivers support namespace |
1917 | * metadata formats only if nvme_ns_has_pi() returns true. |
1918 | * Suppress support for all other formats so the namespace will |
1919 | * have a 0 capacity and not be usable through the block stack. |
1920 | * |
1921 | * Note, this check will need to be modified if any drivers |
1922 | * gain the ability to use other metadata formats. |
1923 | */ |
1924 | if (ctrl->max_integrity_segments && nvme_ns_has_pi(head)) |
1925 | head->features |= NVME_NS_METADATA_SUPPORTED; |
1926 | } else { |
1927 | /* |
1928 | * For PCIe controllers, we can't easily remap the separate |
1929 | * metadata buffer from the block layer and thus require a |
1930 | * separate metadata buffer for block layer metadata/PI support. |
1931 | * We allow extended LBAs for the passthrough interface, though. |
1932 | */ |
1933 | if (id->flbas & NVME_NS_FLBAS_META_EXT) |
1934 | head->features |= NVME_NS_EXT_LBAS; |
1935 | else |
1936 | head->features |= NVME_NS_METADATA_SUPPORTED; |
1937 | } |
1938 | } |
1939 | |
1940 | static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl) |
1941 | { |
1942 | return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1; |
1943 | } |
1944 | |
1945 | static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl, |
1946 | struct queue_limits *lim) |
1947 | { |
1948 | lim->max_hw_sectors = ctrl->max_hw_sectors; |
1949 | lim->max_segments = min_t(u32, USHRT_MAX, |
1950 | min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments)); |
1951 | lim->max_integrity_segments = ctrl->max_integrity_segments; |
1952 | lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1; |
1953 | lim->max_segment_size = UINT_MAX; |
1954 | lim->dma_alignment = 3; |
1955 | } |
1956 | |
1957 | static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id, |
1958 | struct queue_limits *lim) |
1959 | { |
1960 | struct nvme_ns_head *head = ns->head; |
1961 | u32 bs = 1U << head->lba_shift; |
1962 | u32 atomic_bs, phys_bs, io_opt = 0; |
1963 | bool valid = true; |
1964 | |
1965 | /* |
1966 | * The block layer can't support LBA sizes larger than the page size |
1967 | * or smaller than a sector size yet, so catch this early and don't |
1968 | * allow block I/O. |
1969 | */ |
1970 | if (head->lba_shift > PAGE_SHIFT || head->lba_shift < SECTOR_SHIFT) { |
1971 | bs = (1 << 9); |
1972 | valid = false; |
1973 | } |
1974 | |
1975 | atomic_bs = phys_bs = bs; |
1976 | if (id->nabo == 0) { |
1977 | /* |
1978 | * Bit 1 indicates whether NAWUPF is defined for this namespace |
1979 | * and whether it should be used instead of AWUPF. If NAWUPF == |
1980 | * 0 then AWUPF must be used instead. |
1981 | */ |
1982 | if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) |
1983 | atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; |
1984 | else |
1985 | atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs; |
1986 | } |
1987 | |
1988 | if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { |
1989 | /* NPWG = Namespace Preferred Write Granularity */ |
1990 | phys_bs = bs * (1 + le16_to_cpu(id->npwg)); |
1991 | /* NOWS = Namespace Optimal Write Size */ |
1992 | io_opt = bs * (1 + le16_to_cpu(id->nows)); |
1993 | } |
1994 | |
1995 | /* |
1996 | * Linux filesystems assume writing a single physical block is |
1997 | * an atomic operation. Hence limit the physical block size to the |
1998 | * value of the Atomic Write Unit Power Fail parameter. |
1999 | */ |
2000 | lim->logical_block_size = bs; |
2001 | lim->physical_block_size = min(phys_bs, atomic_bs); |
2002 | lim->io_min = phys_bs; |
2003 | lim->io_opt = io_opt; |
2004 | if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) |
2005 | lim->max_write_zeroes_sectors = UINT_MAX; |
2006 | else |
2007 | lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors; |
2008 | return valid; |
2009 | } |
2010 | |
2011 | static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info) |
2012 | { |
2013 | return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags); |
2014 | } |
2015 | |
2016 | static inline bool nvme_first_scan(struct gendisk *disk) |
2017 | { |
2018 | /* nvme_alloc_ns() scans the disk prior to adding it */ |
2019 | return !disk_live(disk); |
2020 | } |
2021 | |
2022 | static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id, |
2023 | struct queue_limits *lim) |
2024 | { |
2025 | struct nvme_ctrl *ctrl = ns->ctrl; |
2026 | u32 iob; |
2027 | |
2028 | if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && |
2029 | is_power_of_2(n: ctrl->max_hw_sectors)) |
2030 | iob = ctrl->max_hw_sectors; |
2031 | else |
2032 | iob = nvme_lba_to_sect(head: ns->head, le16_to_cpu(id->noiob)); |
2033 | |
2034 | if (!iob) |
2035 | return; |
2036 | |
2037 | if (!is_power_of_2(n: iob)) { |
2038 | if (nvme_first_scan(disk: ns->disk)) |
2039 | pr_warn("%s: ignoring unaligned IO boundary:%u\n", |
2040 | ns->disk->disk_name, iob); |
2041 | return; |
2042 | } |
2043 | |
2044 | if (blk_queue_is_zoned(q: ns->disk->queue)) { |
2045 | if (nvme_first_scan(disk: ns->disk)) |
2046 | pr_warn("%s: ignoring zoned namespace IO boundary\n", |
2047 | ns->disk->disk_name); |
2048 | return; |
2049 | } |
2050 | |
2051 | lim->chunk_sectors = iob; |
2052 | } |
2053 | |
2054 | static int nvme_update_ns_info_generic(struct nvme_ns *ns, |
2055 | struct nvme_ns_info *info) |
2056 | { |
2057 | struct queue_limits lim; |
2058 | int ret; |
2059 | |
2060 | blk_mq_freeze_queue(q: ns->disk->queue); |
2061 | lim = queue_limits_start_update(q: ns->disk->queue); |
2062 | nvme_set_ctrl_limits(ctrl: ns->ctrl, lim: &lim); |
2063 | ret = queue_limits_commit_update(q: ns->disk->queue, lim: &lim); |
2064 | set_disk_ro(disk: ns->disk, read_only: nvme_ns_is_readonly(ns, info)); |
2065 | blk_mq_unfreeze_queue(q: ns->disk->queue); |
2066 | |
2067 | /* Hide the block-interface for these devices */ |
2068 | if (!ret) |
2069 | ret = -ENODEV; |
2070 | return ret; |
2071 | } |
2072 | |
2073 | static int nvme_update_ns_info_block(struct nvme_ns *ns, |
2074 | struct nvme_ns_info *info) |
2075 | { |
2076 | bool vwc = ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT; |
2077 | struct queue_limits lim; |
2078 | struct nvme_id_ns_nvm *nvm = NULL; |
2079 | struct nvme_zone_info zi = {}; |
2080 | struct nvme_id_ns *id; |
2081 | sector_t capacity; |
2082 | unsigned lbaf; |
2083 | int ret; |
2084 | |
2085 | ret = nvme_identify_ns(ctrl: ns->ctrl, nsid: info->nsid, id: &id); |
2086 | if (ret) |
2087 | return ret; |
2088 | |
2089 | if (id->ncap == 0) { |
2090 | /* namespace not allocated or attached */ |
2091 | info->is_removed = true; |
2092 | ret = -ENXIO; |
2093 | goto out; |
2094 | } |
2095 | lbaf = nvme_lbaf_index(flbas: id->flbas); |
2096 | |
2097 | if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) { |
2098 | ret = nvme_identify_ns_nvm(ctrl: ns->ctrl, nsid: info->nsid, nvmp: &nvm); |
2099 | if (ret < 0) |
2100 | goto out; |
2101 | } |
2102 | |
2103 | if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && |
2104 | ns->head->ids.csi == NVME_CSI_ZNS) { |
2105 | ret = nvme_query_zone_info(ns, lbaf, zi: &zi); |
2106 | if (ret < 0) |
2107 | goto out; |
2108 | } |
2109 | |
2110 | blk_mq_freeze_queue(q: ns->disk->queue); |
2111 | ns->head->lba_shift = id->lbaf[lbaf].ds; |
2112 | ns->head->nuse = le64_to_cpu(id->nuse); |
2113 | capacity = nvme_lba_to_sect(head: ns->head, le64_to_cpu(id->nsze)); |
2114 | |
2115 | lim = queue_limits_start_update(q: ns->disk->queue); |
2116 | nvme_set_ctrl_limits(ctrl: ns->ctrl, lim: &lim); |
2117 | nvme_configure_metadata(ctrl: ns->ctrl, head: ns->head, id, nvm); |
2118 | nvme_set_chunk_sectors(ns, id, lim: &lim); |
2119 | if (!nvme_update_disk_info(ns, id, lim: &lim)) |
2120 | capacity = 0; |
2121 | nvme_config_discard(ns, lim: &lim); |
2122 | if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && |
2123 | ns->head->ids.csi == NVME_CSI_ZNS) |
2124 | nvme_update_zone_info(ns, lim: &lim, zi: &zi); |
2125 | ret = queue_limits_commit_update(q: ns->disk->queue, lim: &lim); |
2126 | if (ret) { |
2127 | blk_mq_unfreeze_queue(q: ns->disk->queue); |
2128 | goto out; |
2129 | } |
2130 | |
2131 | /* |
2132 | * Register a metadata profile for PI, or the plain non-integrity NVMe |
2133 | * metadata masquerading as Type 0 if supported, otherwise reject block |
2134 | * I/O to namespaces with metadata except when the namespace supports |
2135 | * PI, as it can strip/insert in that case. |
2136 | */ |
2137 | if (!nvme_init_integrity(disk: ns->disk, head: ns->head)) |
2138 | capacity = 0; |
2139 | |
2140 | set_capacity_and_notify(disk: ns->disk, size: capacity); |
2141 | |
2142 | /* |
2143 | * Only set the DEAC bit if the device guarantees that reads from |
2144 | * deallocated data return zeroes. While the DEAC bit does not |
2145 | * require that, it must be a no-op if reads from deallocated data |
2146 | * do not return zeroes. |
2147 | */ |
2148 | if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) |
2149 | ns->head->features |= NVME_NS_DEAC; |
2150 | set_disk_ro(disk: ns->disk, read_only: nvme_ns_is_readonly(ns, info)); |
2151 | blk_queue_write_cache(q: ns->disk->queue, enabled: vwc, fua: vwc); |
2152 | set_bit(NVME_NS_READY, addr: &ns->flags); |
2153 | blk_mq_unfreeze_queue(q: ns->disk->queue); |
2154 | |
2155 | if (blk_queue_is_zoned(q: ns->queue)) { |
2156 | ret = blk_revalidate_disk_zones(disk: ns->disk, NULL); |
2157 | if (ret && !nvme_first_scan(disk: ns->disk)) |
2158 | goto out; |
2159 | } |
2160 | |
2161 | ret = 0; |
2162 | out: |
2163 | kfree(objp: nvm); |
2164 | kfree(objp: id); |
2165 | return ret; |
2166 | } |
2167 | |
2168 | static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info) |
2169 | { |
2170 | bool unsupported = false; |
2171 | int ret; |
2172 | |
2173 | switch (info->ids.csi) { |
2174 | case NVME_CSI_ZNS: |
2175 | if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { |
2176 | dev_info(ns->ctrl->device, |
2177 | "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", |
2178 | info->nsid); |
2179 | ret = nvme_update_ns_info_generic(ns, info); |
2180 | break; |
2181 | } |
2182 | ret = nvme_update_ns_info_block(ns, info); |
2183 | break; |
2184 | case NVME_CSI_NVM: |
2185 | ret = nvme_update_ns_info_block(ns, info); |
2186 | break; |
2187 | default: |
2188 | dev_info(ns->ctrl->device, |
2189 | "block device for nsid %u not supported (csi %u)\n", |
2190 | info->nsid, info->ids.csi); |
2191 | ret = nvme_update_ns_info_generic(ns, info); |
2192 | break; |
2193 | } |
2194 | |
2195 | /* |
2196 | * If probing fails due an unsupported feature, hide the block device, |
2197 | * but still allow other access. |
2198 | */ |
2199 | if (ret == -ENODEV) { |
2200 | ns->disk->flags |= GENHD_FL_HIDDEN; |
2201 | set_bit(NVME_NS_READY, addr: &ns->flags); |
2202 | unsupported = true; |
2203 | ret = 0; |
2204 | } |
2205 | |
2206 | if (!ret && nvme_ns_head_multipath(head: ns->head)) { |
2207 | struct queue_limits *ns_lim = &ns->disk->queue->limits; |
2208 | struct queue_limits lim; |
2209 | |
2210 | blk_mq_freeze_queue(q: ns->head->disk->queue); |
2211 | if (unsupported) |
2212 | ns->head->disk->flags |= GENHD_FL_HIDDEN; |
2213 | else |
2214 | nvme_init_integrity(disk: ns->head->disk, head: ns->head); |
2215 | set_capacity_and_notify(disk: ns->head->disk, size: get_capacity(disk: ns->disk)); |
2216 | set_disk_ro(disk: ns->head->disk, read_only: nvme_ns_is_readonly(ns, info)); |
2217 | nvme_mpath_revalidate_paths(ns); |
2218 | |
2219 | /* |
2220 | * queue_limits mixes values that are the hardware limitations |
2221 | * for bio splitting with what is the device configuration. |
2222 | * |
2223 | * For NVMe the device configuration can change after e.g. a |
2224 | * Format command, and we really want to pick up the new format |
2225 | * value here. But we must still stack the queue limits to the |
2226 | * least common denominator for multipathing to split the bios |
2227 | * properly. |
2228 | * |
2229 | * To work around this, we explicitly set the device |
2230 | * configuration to those that we just queried, but only stack |
2231 | * the splitting limits in to make sure we still obey possibly |
2232 | * lower limitations of other controllers. |
2233 | */ |
2234 | lim = queue_limits_start_update(q: ns->head->disk->queue); |
2235 | lim.logical_block_size = ns_lim->logical_block_size; |
2236 | lim.physical_block_size = ns_lim->physical_block_size; |
2237 | lim.io_min = ns_lim->io_min; |
2238 | lim.io_opt = ns_lim->io_opt; |
2239 | queue_limits_stack_bdev(t: &lim, bdev: ns->disk->part0, offset: 0, |
2240 | pfx: ns->head->disk->disk_name); |
2241 | ret = queue_limits_commit_update(q: ns->head->disk->queue, lim: &lim); |
2242 | blk_mq_unfreeze_queue(q: ns->head->disk->queue); |
2243 | } |
2244 | |
2245 | return ret; |
2246 | } |
2247 | |
2248 | #ifdef CONFIG_BLK_SED_OPAL |
2249 | static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, |
2250 | bool send) |
2251 | { |
2252 | struct nvme_ctrl *ctrl = data; |
2253 | struct nvme_command cmd = { }; |
2254 | |
2255 | if (send) |
2256 | cmd.common.opcode = nvme_admin_security_send; |
2257 | else |
2258 | cmd.common.opcode = nvme_admin_security_recv; |
2259 | cmd.common.nsid = 0; |
2260 | cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); |
2261 | cmd.common.cdw11 = cpu_to_le32(len); |
2262 | |
2263 | return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, |
2264 | NVME_QID_ANY, NVME_SUBMIT_AT_HEAD); |
2265 | } |
2266 | |
2267 | static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) |
2268 | { |
2269 | if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) { |
2270 | if (!ctrl->opal_dev) |
2271 | ctrl->opal_dev = init_opal_dev(data: ctrl, send_recv: &nvme_sec_submit); |
2272 | else if (was_suspended) |
2273 | opal_unlock_from_suspend(dev: ctrl->opal_dev); |
2274 | } else { |
2275 | free_opal_dev(dev: ctrl->opal_dev); |
2276 | ctrl->opal_dev = NULL; |
2277 | } |
2278 | } |
2279 | #else |
2280 | static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) |
2281 | { |
2282 | } |
2283 | #endif /* CONFIG_BLK_SED_OPAL */ |
2284 | |
2285 | #ifdef CONFIG_BLK_DEV_ZONED |
2286 | static int nvme_report_zones(struct gendisk *disk, sector_t sector, |
2287 | unsigned int nr_zones, report_zones_cb cb, void *data) |
2288 | { |
2289 | return nvme_ns_report_zones(ns: disk->private_data, sector, nr_zones, cb, |
2290 | data); |
2291 | } |
2292 | #else |
2293 | #define nvme_report_zones NULL |
2294 | #endif /* CONFIG_BLK_DEV_ZONED */ |
2295 | |
2296 | const struct block_device_operations nvme_bdev_ops = { |
2297 | .owner = THIS_MODULE, |
2298 | .ioctl = nvme_ioctl, |
2299 | .compat_ioctl = blkdev_compat_ptr_ioctl, |
2300 | .open = nvme_open, |
2301 | .release = nvme_release, |
2302 | .getgeo = nvme_getgeo, |
2303 | .report_zones = nvme_report_zones, |
2304 | .pr_ops = &nvme_pr_ops, |
2305 | }; |
2306 | |
2307 | static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val, |
2308 | u32 timeout, const char *op) |
2309 | { |
2310 | unsigned long timeout_jiffies = jiffies + timeout * HZ; |
2311 | u32 csts; |
2312 | int ret; |
2313 | |
2314 | while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { |
2315 | if (csts == ~0) |
2316 | return -ENODEV; |
2317 | if ((csts & mask) == val) |
2318 | break; |
2319 | |
2320 | usleep_range(min: 1000, max: 2000); |
2321 | if (fatal_signal_pending(current)) |
2322 | return -EINTR; |
2323 | if (time_after(jiffies, timeout_jiffies)) { |
2324 | dev_err(ctrl->device, |
2325 | "Device not ready; aborting %s, CSTS=0x%x\n", |
2326 | op, csts); |
2327 | return -ENODEV; |
2328 | } |
2329 | } |
2330 | |
2331 | return ret; |
2332 | } |
2333 | |
2334 | int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown) |
2335 | { |
2336 | int ret; |
2337 | |
2338 | ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; |
2339 | if (shutdown) |
2340 | ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; |
2341 | else |
2342 | ctrl->ctrl_config &= ~NVME_CC_ENABLE; |
2343 | |
2344 | ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); |
2345 | if (ret) |
2346 | return ret; |
2347 | |
2348 | if (shutdown) { |
2349 | return nvme_wait_ready(ctrl, mask: NVME_CSTS_SHST_MASK, |
2350 | val: NVME_CSTS_SHST_CMPLT, |
2351 | timeout: ctrl->shutdown_timeout, op: "shutdown"); |
2352 | } |
2353 | if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) |
2354 | msleep(NVME_QUIRK_DELAY_AMOUNT); |
2355 | return nvme_wait_ready(ctrl, mask: NVME_CSTS_RDY, val: 0, |
2356 | timeout: (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, op: "reset"); |
2357 | } |
2358 | EXPORT_SYMBOL_GPL(nvme_disable_ctrl); |
2359 | |
2360 | int nvme_enable_ctrl(struct nvme_ctrl *ctrl) |
2361 | { |
2362 | unsigned dev_page_min; |
2363 | u32 timeout; |
2364 | int ret; |
2365 | |
2366 | ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); |
2367 | if (ret) { |
2368 | dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); |
2369 | return ret; |
2370 | } |
2371 | dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; |
2372 | |
2373 | if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { |
2374 | dev_err(ctrl->device, |
2375 | "Minimum device page size %u too large for host (%u)\n", |
2376 | 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); |
2377 | return -ENODEV; |
2378 | } |
2379 | |
2380 | if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) |
2381 | ctrl->ctrl_config = NVME_CC_CSS_CSI; |
2382 | else |
2383 | ctrl->ctrl_config = NVME_CC_CSS_NVM; |
2384 | |
2385 | if (ctrl->cap & NVME_CAP_CRMS_CRWMS && ctrl->cap & NVME_CAP_CRMS_CRIMS) |
2386 | ctrl->ctrl_config |= NVME_CC_CRIME; |
2387 | |
2388 | ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; |
2389 | ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; |
2390 | ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; |
2391 | ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); |
2392 | if (ret) |
2393 | return ret; |
2394 | |
2395 | /* Flush write to device (required if transport is PCI) */ |
2396 | ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config); |
2397 | if (ret) |
2398 | return ret; |
2399 | |
2400 | /* CAP value may change after initial CC write */ |
2401 | ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); |
2402 | if (ret) |
2403 | return ret; |
2404 | |
2405 | timeout = NVME_CAP_TIMEOUT(ctrl->cap); |
2406 | if (ctrl->cap & NVME_CAP_CRMS_CRWMS) { |
2407 | u32 crto, ready_timeout; |
2408 | |
2409 | ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto); |
2410 | if (ret) { |
2411 | dev_err(ctrl->device, "Reading CRTO failed (%d)\n", |
2412 | ret); |
2413 | return ret; |
2414 | } |
2415 | |
2416 | /* |
2417 | * CRTO should always be greater or equal to CAP.TO, but some |
2418 | * devices are known to get this wrong. Use the larger of the |
2419 | * two values. |
2420 | */ |
2421 | if (ctrl->ctrl_config & NVME_CC_CRIME) |
2422 | ready_timeout = NVME_CRTO_CRIMT(crto); |
2423 | else |
2424 | ready_timeout = NVME_CRTO_CRWMT(crto); |
2425 | |
2426 | if (ready_timeout < timeout) |
2427 | dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n", |
2428 | crto, ctrl->cap); |
2429 | else |
2430 | timeout = ready_timeout; |
2431 | } |
2432 | |
2433 | ctrl->ctrl_config |= NVME_CC_ENABLE; |
2434 | ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); |
2435 | if (ret) |
2436 | return ret; |
2437 | return nvme_wait_ready(ctrl, mask: NVME_CSTS_RDY, val: NVME_CSTS_RDY, |
2438 | timeout: (timeout + 1) / 2, op: "initialisation"); |
2439 | } |
2440 | EXPORT_SYMBOL_GPL(nvme_enable_ctrl); |
2441 | |
2442 | static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) |
2443 | { |
2444 | __le64 ts; |
2445 | int ret; |
2446 | |
2447 | if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) |
2448 | return 0; |
2449 | |
2450 | ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); |
2451 | ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), |
2452 | NULL); |
2453 | if (ret) |
2454 | dev_warn_once(ctrl->device, |
2455 | "could not set timestamp (%d)\n", ret); |
2456 | return ret; |
2457 | } |
2458 | |
2459 | static int nvme_configure_host_options(struct nvme_ctrl *ctrl) |
2460 | { |
2461 | struct nvme_feat_host_behavior *host; |
2462 | u8 acre = 0, lbafee = 0; |
2463 | int ret; |
2464 | |
2465 | /* Don't bother enabling the feature if retry delay is not reported */ |
2466 | if (ctrl->crdt[0]) |
2467 | acre = NVME_ENABLE_ACRE; |
2468 | if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) |
2469 | lbafee = NVME_ENABLE_LBAFEE; |
2470 | |
2471 | if (!acre && !lbafee) |
2472 | return 0; |
2473 | |
2474 | host = kzalloc(size: sizeof(*host), GFP_KERNEL); |
2475 | if (!host) |
2476 | return 0; |
2477 | |
2478 | host->acre = acre; |
2479 | host->lbafee = lbafee; |
2480 | ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, |
2481 | host, sizeof(*host), NULL); |
2482 | kfree(objp: host); |
2483 | return ret; |
2484 | } |
2485 | |
2486 | /* |
2487 | * The function checks whether the given total (exlat + enlat) latency of |
2488 | * a power state allows the latter to be used as an APST transition target. |
2489 | * It does so by comparing the latency to the primary and secondary latency |
2490 | * tolerances defined by module params. If there's a match, the corresponding |
2491 | * timeout value is returned and the matching tolerance index (1 or 2) is |
2492 | * reported. |
2493 | */ |
2494 | static bool nvme_apst_get_transition_time(u64 total_latency, |
2495 | u64 *transition_time, unsigned *last_index) |
2496 | { |
2497 | if (total_latency <= apst_primary_latency_tol_us) { |
2498 | if (*last_index == 1) |
2499 | return false; |
2500 | *last_index = 1; |
2501 | *transition_time = apst_primary_timeout_ms; |
2502 | return true; |
2503 | } |
2504 | if (apst_secondary_timeout_ms && |
2505 | total_latency <= apst_secondary_latency_tol_us) { |
2506 | if (*last_index <= 2) |
2507 | return false; |
2508 | *last_index = 2; |
2509 | *transition_time = apst_secondary_timeout_ms; |
2510 | return true; |
2511 | } |
2512 | return false; |
2513 | } |
2514 | |
2515 | /* |
2516 | * APST (Autonomous Power State Transition) lets us program a table of power |
2517 | * state transitions that the controller will perform automatically. |
2518 | * |
2519 | * Depending on module params, one of the two supported techniques will be used: |
2520 | * |
2521 | * - If the parameters provide explicit timeouts and tolerances, they will be |
2522 | * used to build a table with up to 2 non-operational states to transition to. |
2523 | * The default parameter values were selected based on the values used by |
2524 | * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic |
2525 | * regeneration of the APST table in the event of switching between external |
2526 | * and battery power, the timeouts and tolerances reflect a compromise |
2527 | * between values used by Microsoft for AC and battery scenarios. |
2528 | * - If not, we'll configure the table with a simple heuristic: we are willing |
2529 | * to spend at most 2% of the time transitioning between power states. |
2530 | * Therefore, when running in any given state, we will enter the next |
2531 | * lower-power non-operational state after waiting 50 * (enlat + exlat) |
2532 | * microseconds, as long as that state's exit latency is under the requested |
2533 | * maximum latency. |
2534 | * |
2535 | * We will not autonomously enter any non-operational state for which the total |
2536 | * latency exceeds ps_max_latency_us. |
2537 | * |
2538 | * Users can set ps_max_latency_us to zero to turn off APST. |
2539 | */ |
2540 | static int nvme_configure_apst(struct nvme_ctrl *ctrl) |
2541 | { |
2542 | struct nvme_feat_auto_pst *table; |
2543 | unsigned apste = 0; |
2544 | u64 max_lat_us = 0; |
2545 | __le64 target = 0; |
2546 | int max_ps = -1; |
2547 | int state; |
2548 | int ret; |
2549 | unsigned last_lt_index = UINT_MAX; |
2550 | |
2551 | /* |
2552 | * If APST isn't supported or if we haven't been initialized yet, |
2553 | * then don't do anything. |
2554 | */ |
2555 | if (!ctrl->apsta) |
2556 | return 0; |
2557 | |
2558 | if (ctrl->npss > 31) { |
2559 | dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); |
2560 | return 0; |
2561 | } |
2562 | |
2563 | table = kzalloc(size: sizeof(*table), GFP_KERNEL); |
2564 | if (!table) |
2565 | return 0; |
2566 | |
2567 | if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { |
2568 | /* Turn off APST. */ |
2569 | dev_dbg(ctrl->device, "APST disabled\n"); |
2570 | goto done; |
2571 | } |
2572 | |
2573 | /* |
2574 | * Walk through all states from lowest- to highest-power. |
2575 | * According to the spec, lower-numbered states use more power. NPSS, |
2576 | * despite the name, is the index of the lowest-power state, not the |
2577 | * number of states. |
2578 | */ |
2579 | for (state = (int)ctrl->npss; state >= 0; state--) { |
2580 | u64 total_latency_us, exit_latency_us, transition_ms; |
2581 | |
2582 | if (target) |
2583 | table->entries[state] = target; |
2584 | |
2585 | /* |
2586 | * Don't allow transitions to the deepest state if it's quirked |
2587 | * off. |
2588 | */ |
2589 | if (state == ctrl->npss && |
2590 | (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) |
2591 | continue; |
2592 | |
2593 | /* |
2594 | * Is this state a useful non-operational state for higher-power |
2595 | * states to autonomously transition to? |
2596 | */ |
2597 | if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) |
2598 | continue; |
2599 | |
2600 | exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); |
2601 | if (exit_latency_us > ctrl->ps_max_latency_us) |
2602 | continue; |
2603 | |
2604 | total_latency_us = exit_latency_us + |
2605 | le32_to_cpu(ctrl->psd[state].entry_lat); |
2606 | |
2607 | /* |
2608 | * This state is good. It can be used as the APST idle target |
2609 | * for higher power states. |
2610 | */ |
2611 | if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { |
2612 | if (!nvme_apst_get_transition_time(total_latency: total_latency_us, |
2613 | transition_time: &transition_ms, last_index: &last_lt_index)) |
2614 | continue; |
2615 | } else { |
2616 | transition_ms = total_latency_us + 19; |
2617 | do_div(transition_ms, 20); |
2618 | if (transition_ms > (1 << 24) - 1) |
2619 | transition_ms = (1 << 24) - 1; |
2620 | } |
2621 | |
2622 | target = cpu_to_le64((state << 3) | (transition_ms << 8)); |
2623 | if (max_ps == -1) |
2624 | max_ps = state; |
2625 | if (total_latency_us > max_lat_us) |
2626 | max_lat_us = total_latency_us; |
2627 | } |
2628 | |
2629 | if (max_ps == -1) |
2630 | dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); |
2631 | else |
2632 | dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", |
2633 | max_ps, max_lat_us, (int)sizeof(*table), table); |
2634 | apste = 1; |
2635 | |
2636 | done: |
2637 | ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, |
2638 | table, sizeof(*table), NULL); |
2639 | if (ret) |
2640 | dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); |
2641 | kfree(objp: table); |
2642 | return ret; |
2643 | } |
2644 | |
2645 | static void nvme_set_latency_tolerance(struct device *dev, s32 val) |
2646 | { |
2647 | struct nvme_ctrl *ctrl = dev_get_drvdata(dev); |
2648 | u64 latency; |
2649 | |
2650 | switch (val) { |
2651 | case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: |
2652 | case PM_QOS_LATENCY_ANY: |
2653 | latency = U64_MAX; |
2654 | break; |
2655 | |
2656 | default: |
2657 | latency = val; |
2658 | } |
2659 | |
2660 | if (ctrl->ps_max_latency_us != latency) { |
2661 | ctrl->ps_max_latency_us = latency; |
2662 | if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) |
2663 | nvme_configure_apst(ctrl); |
2664 | } |
2665 | } |
2666 | |
2667 | struct nvme_core_quirk_entry { |
2668 | /* |
2669 | * NVMe model and firmware strings are padded with spaces. For |
2670 | * simplicity, strings in the quirk table are padded with NULLs |
2671 | * instead. |
2672 | */ |
2673 | u16 vid; |
2674 | const char *mn; |
2675 | const char *fr; |
2676 | unsigned long quirks; |
2677 | }; |
2678 | |
2679 | static const struct nvme_core_quirk_entry core_quirks[] = { |
2680 | { |
2681 | /* |
2682 | * This Toshiba device seems to die using any APST states. See: |
2683 | * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 |
2684 | */ |
2685 | .vid = 0x1179, |
2686 | .mn = "THNSF5256GPUK TOSHIBA", |
2687 | .quirks = NVME_QUIRK_NO_APST, |
2688 | }, |
2689 | { |
2690 | /* |
2691 | * This LiteON CL1-3D*-Q11 firmware version has a race |
2692 | * condition associated with actions related to suspend to idle |
2693 | * LiteON has resolved the problem in future firmware |
2694 | */ |
2695 | .vid = 0x14a4, |
2696 | .fr = "22301111", |
2697 | .quirks = NVME_QUIRK_SIMPLE_SUSPEND, |
2698 | }, |
2699 | { |
2700 | /* |
2701 | * This Kioxia CD6-V Series / HPE PE8030 device times out and |
2702 | * aborts I/O during any load, but more easily reproducible |
2703 | * with discards (fstrim). |
2704 | * |
2705 | * The device is left in a state where it is also not possible |
2706 | * to use "nvme set-feature" to disable APST, but booting with |
2707 | * nvme_core.default_ps_max_latency=0 works. |
2708 | */ |
2709 | .vid = 0x1e0f, |
2710 | .mn = "KCD6XVUL6T40", |
2711 | .quirks = NVME_QUIRK_NO_APST, |
2712 | }, |
2713 | { |
2714 | /* |
2715 | * The external Samsung X5 SSD fails initialization without a |
2716 | * delay before checking if it is ready and has a whole set of |
2717 | * other problems. To make this even more interesting, it |
2718 | * shares the PCI ID with internal Samsung 970 Evo Plus that |
2719 | * does not need or want these quirks. |
2720 | */ |
2721 | .vid = 0x144d, |
2722 | .mn = "Samsung Portable SSD X5", |
2723 | .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | |
2724 | NVME_QUIRK_NO_DEEPEST_PS | |
2725 | NVME_QUIRK_IGNORE_DEV_SUBNQN, |
2726 | } |
2727 | }; |
2728 | |
2729 | /* match is null-terminated but idstr is space-padded. */ |
2730 | static bool string_matches(const char *idstr, const char *match, size_t len) |
2731 | { |
2732 | size_t matchlen; |
2733 | |
2734 | if (!match) |
2735 | return true; |
2736 | |
2737 | matchlen = strlen(match); |
2738 | WARN_ON_ONCE(matchlen > len); |
2739 | |
2740 | if (memcmp(p: idstr, q: match, size: matchlen)) |
2741 | return false; |
2742 | |
2743 | for (; matchlen < len; matchlen++) |
2744 | if (idstr[matchlen] != ' ') |
2745 | return false; |
2746 | |
2747 | return true; |
2748 | } |
2749 | |
2750 | static bool quirk_matches(const struct nvme_id_ctrl *id, |
2751 | const struct nvme_core_quirk_entry *q) |
2752 | { |
2753 | return q->vid == le16_to_cpu(id->vid) && |
2754 | string_matches(idstr: id->mn, match: q->mn, len: sizeof(id->mn)) && |
2755 | string_matches(idstr: id->fr, match: q->fr, len: sizeof(id->fr)); |
2756 | } |
2757 | |
2758 | static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, |
2759 | struct nvme_id_ctrl *id) |
2760 | { |
2761 | size_t nqnlen; |
2762 | int off; |
2763 | |
2764 | if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { |
2765 | nqnlen = strnlen(p: id->subnqn, NVMF_NQN_SIZE); |
2766 | if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { |
2767 | strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); |
2768 | return; |
2769 | } |
2770 | |
2771 | if (ctrl->vs >= NVME_VS(1, 2, 1)) |
2772 | dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); |
2773 | } |
2774 | |
2775 | /* |
2776 | * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe |
2777 | * Base Specification 2.0. It is slightly different from the format |
2778 | * specified there due to historic reasons, and we can't change it now. |
2779 | */ |
2780 | off = snprintf(buf: subsys->subnqn, NVMF_NQN_SIZE, |
2781 | fmt: "nqn.2014.08.org.nvmexpress:%04x%04x", |
2782 | le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); |
2783 | memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); |
2784 | off += sizeof(id->sn); |
2785 | memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); |
2786 | off += sizeof(id->mn); |
2787 | memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); |
2788 | } |
2789 | |
2790 | static void nvme_release_subsystem(struct device *dev) |
2791 | { |
2792 | struct nvme_subsystem *subsys = |
2793 | container_of(dev, struct nvme_subsystem, dev); |
2794 | |
2795 | if (subsys->instance >= 0) |
2796 | ida_free(&nvme_instance_ida, id: subsys->instance); |
2797 | kfree(objp: subsys); |
2798 | } |
2799 | |
2800 | static void nvme_destroy_subsystem(struct kref *ref) |
2801 | { |
2802 | struct nvme_subsystem *subsys = |
2803 | container_of(ref, struct nvme_subsystem, ref); |
2804 | |
2805 | mutex_lock(&nvme_subsystems_lock); |
2806 | list_del(entry: &subsys->entry); |
2807 | mutex_unlock(lock: &nvme_subsystems_lock); |
2808 | |
2809 | ida_destroy(ida: &subsys->ns_ida); |
2810 | device_del(dev: &subsys->dev); |
2811 | put_device(dev: &subsys->dev); |
2812 | } |
2813 | |
2814 | static void nvme_put_subsystem(struct nvme_subsystem *subsys) |
2815 | { |
2816 | kref_put(kref: &subsys->ref, release: nvme_destroy_subsystem); |
2817 | } |
2818 | |
2819 | static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) |
2820 | { |
2821 | struct nvme_subsystem *subsys; |
2822 | |
2823 | lockdep_assert_held(&nvme_subsystems_lock); |
2824 | |
2825 | /* |
2826 | * Fail matches for discovery subsystems. This results |
2827 | * in each discovery controller bound to a unique subsystem. |
2828 | * This avoids issues with validating controller values |
2829 | * that can only be true when there is a single unique subsystem. |
2830 | * There may be multiple and completely independent entities |
2831 | * that provide discovery controllers. |
2832 | */ |
2833 | if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) |
2834 | return NULL; |
2835 | |
2836 | list_for_each_entry(subsys, &nvme_subsystems, entry) { |
2837 | if (strcmp(subsys->subnqn, subsysnqn)) |
2838 | continue; |
2839 | if (!kref_get_unless_zero(kref: &subsys->ref)) |
2840 | continue; |
2841 | return subsys; |
2842 | } |
2843 | |
2844 | return NULL; |
2845 | } |
2846 | |
2847 | static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) |
2848 | { |
2849 | return ctrl->opts && ctrl->opts->discovery_nqn; |
2850 | } |
2851 | |
2852 | static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, |
2853 | struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) |
2854 | { |
2855 | struct nvme_ctrl *tmp; |
2856 | |
2857 | lockdep_assert_held(&nvme_subsystems_lock); |
2858 | |
2859 | list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { |
2860 | if (nvme_state_terminal(ctrl: tmp)) |
2861 | continue; |
2862 | |
2863 | if (tmp->cntlid == ctrl->cntlid) { |
2864 | dev_err(ctrl->device, |
2865 | "Duplicate cntlid %u with %s, subsys %s, rejecting\n", |
2866 | ctrl->cntlid, dev_name(tmp->device), |
2867 | subsys->subnqn); |
2868 | return false; |
2869 | } |
2870 | |
2871 | if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || |
2872 | nvme_discovery_ctrl(ctrl)) |
2873 | continue; |
2874 | |
2875 | dev_err(ctrl->device, |
2876 | "Subsystem does not support multiple controllers\n"); |
2877 | return false; |
2878 | } |
2879 | |
2880 | return true; |
2881 | } |
2882 | |
2883 | static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) |
2884 | { |
2885 | struct nvme_subsystem *subsys, *found; |
2886 | int ret; |
2887 | |
2888 | subsys = kzalloc(size: sizeof(*subsys), GFP_KERNEL); |
2889 | if (!subsys) |
2890 | return -ENOMEM; |
2891 | |
2892 | subsys->instance = -1; |
2893 | mutex_init(&subsys->lock); |
2894 | kref_init(kref: &subsys->ref); |
2895 | INIT_LIST_HEAD(list: &subsys->ctrls); |
2896 | INIT_LIST_HEAD(list: &subsys->nsheads); |
2897 | nvme_init_subnqn(subsys, ctrl, id); |
2898 | memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); |
2899 | memcpy(subsys->model, id->mn, sizeof(subsys->model)); |
2900 | subsys->vendor_id = le16_to_cpu(id->vid); |
2901 | subsys->cmic = id->cmic; |
2902 | |
2903 | /* Versions prior to 1.4 don't necessarily report a valid type */ |
2904 | if (id->cntrltype == NVME_CTRL_DISC || |
2905 | !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) |
2906 | subsys->subtype = NVME_NQN_DISC; |
2907 | else |
2908 | subsys->subtype = NVME_NQN_NVME; |
2909 | |
2910 | if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { |
2911 | dev_err(ctrl->device, |
2912 | "Subsystem %s is not a discovery controller", |
2913 | subsys->subnqn); |
2914 | kfree(objp: subsys); |
2915 | return -EINVAL; |
2916 | } |
2917 | subsys->awupf = le16_to_cpu(id->awupf); |
2918 | nvme_mpath_default_iopolicy(subsys); |
2919 | |
2920 | subsys->dev.class = &nvme_subsys_class; |
2921 | subsys->dev.release = nvme_release_subsystem; |
2922 | subsys->dev.groups = nvme_subsys_attrs_groups; |
2923 | dev_set_name(dev: &subsys->dev, name: "nvme-subsys%d", ctrl->instance); |
2924 | device_initialize(dev: &subsys->dev); |
2925 | |
2926 | mutex_lock(&nvme_subsystems_lock); |
2927 | found = __nvme_find_get_subsystem(subsysnqn: subsys->subnqn); |
2928 | if (found) { |
2929 | put_device(dev: &subsys->dev); |
2930 | subsys = found; |
2931 | |
2932 | if (!nvme_validate_cntlid(subsys, ctrl, id)) { |
2933 | ret = -EINVAL; |
2934 | goto out_put_subsystem; |
2935 | } |
2936 | } else { |
2937 | ret = device_add(dev: &subsys->dev); |
2938 | if (ret) { |
2939 | dev_err(ctrl->device, |
2940 | "failed to register subsystem device.\n"); |
2941 | put_device(dev: &subsys->dev); |
2942 | goto out_unlock; |
2943 | } |
2944 | ida_init(ida: &subsys->ns_ida); |
2945 | list_add_tail(new: &subsys->entry, head: &nvme_subsystems); |
2946 | } |
2947 | |
2948 | ret = sysfs_create_link(kobj: &subsys->dev.kobj, target: &ctrl->device->kobj, |
2949 | name: dev_name(dev: ctrl->device)); |
2950 | if (ret) { |
2951 | dev_err(ctrl->device, |
2952 | "failed to create sysfs link from subsystem.\n"); |
2953 | goto out_put_subsystem; |
2954 | } |
2955 | |
2956 | if (!found) |
2957 | subsys->instance = ctrl->instance; |
2958 | ctrl->subsys = subsys; |
2959 | list_add_tail(new: &ctrl->subsys_entry, head: &subsys->ctrls); |
2960 | mutex_unlock(lock: &nvme_subsystems_lock); |
2961 | return 0; |
2962 | |
2963 | out_put_subsystem: |
2964 | nvme_put_subsystem(subsys); |
2965 | out_unlock: |
2966 | mutex_unlock(lock: &nvme_subsystems_lock); |
2967 | return ret; |
2968 | } |
2969 | |
2970 | int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, |
2971 | void *log, size_t size, u64 offset) |
2972 | { |
2973 | struct nvme_command c = { }; |
2974 | u32 dwlen = nvme_bytes_to_numd(len: size); |
2975 | |
2976 | c.get_log_page.opcode = nvme_admin_get_log_page; |
2977 | c.get_log_page.nsid = cpu_to_le32(nsid); |
2978 | c.get_log_page.lid = log_page; |
2979 | c.get_log_page.lsp = lsp; |
2980 | c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); |
2981 | c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); |
2982 | c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); |
2983 | c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); |
2984 | c.get_log_page.csi = csi; |
2985 | |
2986 | return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); |
2987 | } |
2988 | |
2989 | static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, |
2990 | struct nvme_effects_log **log) |
2991 | { |
2992 | struct nvme_effects_log *cel = xa_load(&ctrl->cels, index: csi); |
2993 | int ret; |
2994 | |
2995 | if (cel) |
2996 | goto out; |
2997 | |
2998 | cel = kzalloc(size: sizeof(*cel), GFP_KERNEL); |
2999 | if (!cel) |
3000 | return -ENOMEM; |
3001 | |
3002 | ret = nvme_get_log(ctrl, nsid: 0x00, log_page: NVME_LOG_CMD_EFFECTS, lsp: 0, csi, |
3003 | log: cel, size: sizeof(*cel), offset: 0); |
3004 | if (ret) { |
3005 | kfree(objp: cel); |
3006 | return ret; |
3007 | } |
3008 | |
3009 | xa_store(&ctrl->cels, index: csi, entry: cel, GFP_KERNEL); |
3010 | out: |
3011 | *log = cel; |
3012 | return 0; |
3013 | } |
3014 | |
3015 | static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) |
3016 | { |
3017 | u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; |
3018 | |
3019 | if (check_shl_overflow(1U, units + page_shift - 9, &val)) |
3020 | return UINT_MAX; |
3021 | return val; |
3022 | } |
3023 | |
3024 | static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) |
3025 | { |
3026 | struct nvme_command c = { }; |
3027 | struct nvme_id_ctrl_nvm *id; |
3028 | int ret; |
3029 | |
3030 | /* |
3031 | * Even though NVMe spec explicitly states that MDTS is not applicable |
3032 | * to the write-zeroes, we are cautious and limit the size to the |
3033 | * controllers max_hw_sectors value, which is based on the MDTS field |
3034 | * and possibly other limiting factors. |
3035 | */ |
3036 | if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && |
3037 | !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) |
3038 | ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; |
3039 | else |
3040 | ctrl->max_zeroes_sectors = 0; |
3041 | |
3042 | if (ctrl->subsys->subtype != NVME_NQN_NVME || |
3043 | nvme_ctrl_limited_cns(ctrl) || |
3044 | test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags)) |
3045 | return 0; |
3046 | |
3047 | id = kzalloc(size: sizeof(*id), GFP_KERNEL); |
3048 | if (!id) |
3049 | return -ENOMEM; |
3050 | |
3051 | c.identify.opcode = nvme_admin_identify; |
3052 | c.identify.cns = NVME_ID_CNS_CS_CTRL; |
3053 | c.identify.csi = NVME_CSI_NVM; |
3054 | |
3055 | ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); |
3056 | if (ret) |
3057 | goto free_data; |
3058 | |
3059 | ctrl->dmrl = id->dmrl; |
3060 | ctrl->dmrsl = le32_to_cpu(id->dmrsl); |
3061 | if (id->wzsl) |
3062 | ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, units: id->wzsl); |
3063 | |
3064 | free_data: |
3065 | if (ret > 0) |
3066 | set_bit(nr: NVME_CTRL_SKIP_ID_CNS_CS, addr: &ctrl->flags); |
3067 | kfree(objp: id); |
3068 | return ret; |
3069 | } |
3070 | |
3071 | static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl) |
3072 | { |
3073 | struct nvme_effects_log *log = ctrl->effects; |
3074 | |
3075 | log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | |
3076 | NVME_CMD_EFFECTS_NCC | |
3077 | NVME_CMD_EFFECTS_CSE_MASK); |
3078 | log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | |
3079 | NVME_CMD_EFFECTS_CSE_MASK); |
3080 | |
3081 | /* |
3082 | * The spec says the result of a security receive command depends on |
3083 | * the previous security send command. As such, many vendors log this |
3084 | * command as one to submitted only when no other commands to the same |
3085 | * namespace are outstanding. The intention is to tell the host to |
3086 | * prevent mixing security send and receive. |
3087 | * |
3088 | * This driver can only enforce such exclusive access against IO |
3089 | * queues, though. We are not readily able to enforce such a rule for |
3090 | * two commands to the admin queue, which is the only queue that |
3091 | * matters for this command. |
3092 | * |
3093 | * Rather than blindly freezing the IO queues for this effect that |
3094 | * doesn't even apply to IO, mask it off. |
3095 | */ |
3096 | log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK); |
3097 | |
3098 | log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); |
3099 | log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); |
3100 | log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); |
3101 | } |
3102 | |
3103 | static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) |
3104 | { |
3105 | int ret = 0; |
3106 | |
3107 | if (ctrl->effects) |
3108 | return 0; |
3109 | |
3110 | if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { |
3111 | ret = nvme_get_effects_log(ctrl, csi: NVME_CSI_NVM, log: &ctrl->effects); |
3112 | if (ret < 0) |
3113 | return ret; |
3114 | } |
3115 | |
3116 | if (!ctrl->effects) { |
3117 | ctrl->effects = kzalloc(size: sizeof(*ctrl->effects), GFP_KERNEL); |
3118 | if (!ctrl->effects) |
3119 | return -ENOMEM; |
3120 | xa_store(&ctrl->cels, index: NVME_CSI_NVM, entry: ctrl->effects, GFP_KERNEL); |
3121 | } |
3122 | |
3123 | nvme_init_known_nvm_effects(ctrl); |
3124 | return 0; |
3125 | } |
3126 | |
3127 | static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) |
3128 | { |
3129 | /* |
3130 | * In fabrics we need to verify the cntlid matches the |
3131 | * admin connect |
3132 | */ |
3133 | if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { |
3134 | dev_err(ctrl->device, |
3135 | "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n", |
3136 | ctrl->cntlid, le16_to_cpu(id->cntlid)); |
3137 | return -EINVAL; |
3138 | } |
3139 | |
3140 | if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { |
3141 | dev_err(ctrl->device, |
3142 | "keep-alive support is mandatory for fabrics\n"); |
3143 | return -EINVAL; |
3144 | } |
3145 | |
3146 | if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) { |
3147 | dev_err(ctrl->device, |
3148 | "I/O queue command capsule supported size %d < 4\n", |
3149 | ctrl->ioccsz); |
3150 | return -EINVAL; |
3151 | } |
3152 | |
3153 | if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) { |
3154 | dev_err(ctrl->device, |
3155 | "I/O queue response capsule supported size %d < 1\n", |
3156 | ctrl->iorcsz); |
3157 | return -EINVAL; |
3158 | } |
3159 | |
3160 | if (!ctrl->maxcmd) { |
3161 | dev_err(ctrl->device, "Maximum outstanding commands is 0\n"); |
3162 | return -EINVAL; |
3163 | } |
3164 | |
3165 | return 0; |
3166 | } |
3167 | |
3168 | static int nvme_init_identify(struct nvme_ctrl *ctrl) |
3169 | { |
3170 | struct queue_limits lim; |
3171 | struct nvme_id_ctrl *id; |
3172 | u32 max_hw_sectors; |
3173 | bool prev_apst_enabled; |
3174 | int ret; |
3175 | |
3176 | ret = nvme_identify_ctrl(dev: ctrl, id: &id); |
3177 | if (ret) { |
3178 | dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); |
3179 | return -EIO; |
3180 | } |
3181 | |
3182 | if (!(ctrl->ops->flags & NVME_F_FABRICS)) |
3183 | ctrl->cntlid = le16_to_cpu(id->cntlid); |
3184 | |
3185 | if (!ctrl->identified) { |
3186 | unsigned int i; |
3187 | |
3188 | /* |
3189 | * Check for quirks. Quirk can depend on firmware version, |
3190 | * so, in principle, the set of quirks present can change |
3191 | * across a reset. As a possible future enhancement, we |
3192 | * could re-scan for quirks every time we reinitialize |
3193 | * the device, but we'd have to make sure that the driver |
3194 | * behaves intelligently if the quirks change. |
3195 | */ |
3196 | for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { |
3197 | if (quirk_matches(id, q: &core_quirks[i])) |
3198 | ctrl->quirks |= core_quirks[i].quirks; |
3199 | } |
3200 | |
3201 | ret = nvme_init_subsystem(ctrl, id); |
3202 | if (ret) |
3203 | goto out_free; |
3204 | |
3205 | ret = nvme_init_effects(ctrl, id); |
3206 | if (ret) |
3207 | goto out_free; |
3208 | } |
3209 | memcpy(ctrl->subsys->firmware_rev, id->fr, |
3210 | sizeof(ctrl->subsys->firmware_rev)); |
3211 | |
3212 | if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { |
3213 | dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); |
3214 | ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; |
3215 | } |
3216 | |
3217 | ctrl->crdt[0] = le16_to_cpu(id->crdt1); |
3218 | ctrl->crdt[1] = le16_to_cpu(id->crdt2); |
3219 | ctrl->crdt[2] = le16_to_cpu(id->crdt3); |
3220 | |
3221 | ctrl->oacs = le16_to_cpu(id->oacs); |
3222 | ctrl->oncs = le16_to_cpu(id->oncs); |
3223 | ctrl->mtfa = le16_to_cpu(id->mtfa); |
3224 | ctrl->oaes = le32_to_cpu(id->oaes); |
3225 | ctrl->wctemp = le16_to_cpu(id->wctemp); |
3226 | ctrl->cctemp = le16_to_cpu(id->cctemp); |
3227 | |
3228 | atomic_set(v: &ctrl->abort_limit, i: id->acl + 1); |
3229 | ctrl->vwc = id->vwc; |
3230 | if (id->mdts) |
3231 | max_hw_sectors = nvme_mps_to_sectors(ctrl, units: id->mdts); |
3232 | else |
3233 | max_hw_sectors = UINT_MAX; |
3234 | ctrl->max_hw_sectors = |
3235 | min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); |
3236 | |
3237 | lim = queue_limits_start_update(q: ctrl->admin_q); |
3238 | nvme_set_ctrl_limits(ctrl, lim: &lim); |
3239 | ret = queue_limits_commit_update(q: ctrl->admin_q, lim: &lim); |
3240 | if (ret) |
3241 | goto out_free; |
3242 | |
3243 | ctrl->sgls = le32_to_cpu(id->sgls); |
3244 | ctrl->kas = le16_to_cpu(id->kas); |
3245 | ctrl->max_namespaces = le32_to_cpu(id->mnan); |
3246 | ctrl->ctratt = le32_to_cpu(id->ctratt); |
3247 | |
3248 | ctrl->cntrltype = id->cntrltype; |
3249 | ctrl->dctype = id->dctype; |
3250 | |
3251 | if (id->rtd3e) { |
3252 | /* us -> s */ |
3253 | u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; |
3254 | |
3255 | ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, |
3256 | shutdown_timeout, 60); |
3257 | |
3258 | if (ctrl->shutdown_timeout != shutdown_timeout) |
3259 | dev_info(ctrl->device, |
3260 | "D3 entry latency set to %u seconds\n", |
3261 | ctrl->shutdown_timeout); |
3262 | } else |
3263 | ctrl->shutdown_timeout = shutdown_timeout; |
3264 | |
3265 | ctrl->npss = id->npss; |
3266 | ctrl->apsta = id->apsta; |
3267 | prev_apst_enabled = ctrl->apst_enabled; |
3268 | if (ctrl->quirks & NVME_QUIRK_NO_APST) { |
3269 | if (force_apst && id->apsta) { |
3270 | dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); |
3271 | ctrl->apst_enabled = true; |
3272 | } else { |
3273 | ctrl->apst_enabled = false; |
3274 | } |
3275 | } else { |
3276 | ctrl->apst_enabled = id->apsta; |
3277 | } |
3278 | memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); |
3279 | |
3280 | if (ctrl->ops->flags & NVME_F_FABRICS) { |
3281 | ctrl->icdoff = le16_to_cpu(id->icdoff); |
3282 | ctrl->ioccsz = le32_to_cpu(id->ioccsz); |
3283 | ctrl->iorcsz = le32_to_cpu(id->iorcsz); |
3284 | ctrl->maxcmd = le16_to_cpu(id->maxcmd); |
3285 | |
3286 | ret = nvme_check_ctrl_fabric_info(ctrl, id); |
3287 | if (ret) |
3288 | goto out_free; |
3289 | } else { |
3290 | ctrl->hmpre = le32_to_cpu(id->hmpre); |
3291 | ctrl->hmmin = le32_to_cpu(id->hmmin); |
3292 | ctrl->hmminds = le32_to_cpu(id->hmminds); |
3293 | ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); |
3294 | } |
3295 | |
3296 | ret = nvme_mpath_init_identify(ctrl, id); |
3297 | if (ret < 0) |
3298 | goto out_free; |
3299 | |
3300 | if (ctrl->apst_enabled && !prev_apst_enabled) |
3301 | dev_pm_qos_expose_latency_tolerance(dev: ctrl->device); |
3302 | else if (!ctrl->apst_enabled && prev_apst_enabled) |
3303 | dev_pm_qos_hide_latency_tolerance(dev: ctrl->device); |
3304 | |
3305 | out_free: |
3306 | kfree(objp: id); |
3307 | return ret; |
3308 | } |
3309 | |
3310 | /* |
3311 | * Initialize the cached copies of the Identify data and various controller |
3312 | * register in our nvme_ctrl structure. This should be called as soon as |
3313 | * the admin queue is fully up and running. |
3314 | */ |
3315 | int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended) |
3316 | { |
3317 | int ret; |
3318 | |
3319 | ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); |
3320 | if (ret) { |
3321 | dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); |
3322 | return ret; |
3323 | } |
3324 | |
3325 | ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); |
3326 | |
3327 | if (ctrl->vs >= NVME_VS(1, 1, 0)) |
3328 | ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); |
3329 | |
3330 | ret = nvme_init_identify(ctrl); |
3331 | if (ret) |
3332 | return ret; |
3333 | |
3334 | ret = nvme_configure_apst(ctrl); |
3335 | if (ret < 0) |
3336 | return ret; |
3337 | |
3338 | ret = nvme_configure_timestamp(ctrl); |
3339 | if (ret < 0) |
3340 | return ret; |
3341 | |
3342 | ret = nvme_configure_host_options(ctrl); |
3343 | if (ret < 0) |
3344 | return ret; |
3345 | |
3346 | nvme_configure_opal(ctrl, was_suspended); |
3347 | |
3348 | if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { |
3349 | /* |
3350 | * Do not return errors unless we are in a controller reset, |
3351 | * the controller works perfectly fine without hwmon. |
3352 | */ |
3353 | ret = nvme_hwmon_init(ctrl); |
3354 | if (ret == -EINTR) |
3355 | return ret; |
3356 | } |
3357 | |
3358 | clear_bit(nr: NVME_CTRL_DIRTY_CAPABILITY, addr: &ctrl->flags); |
3359 | ctrl->identified = true; |
3360 | |
3361 | nvme_start_keep_alive(ctrl); |
3362 | |
3363 | return 0; |
3364 | } |
3365 | EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); |
3366 | |
3367 | static int nvme_dev_open(struct inode *inode, struct file *file) |
3368 | { |
3369 | struct nvme_ctrl *ctrl = |
3370 | container_of(inode->i_cdev, struct nvme_ctrl, cdev); |
3371 | |
3372 | switch (nvme_ctrl_state(ctrl)) { |
3373 | case NVME_CTRL_LIVE: |
3374 | break; |
3375 | default: |
3376 | return -EWOULDBLOCK; |
3377 | } |
3378 | |
3379 | nvme_get_ctrl(ctrl); |
3380 | if (!try_module_get(module: ctrl->ops->module)) { |
3381 | nvme_put_ctrl(ctrl); |
3382 | return -EINVAL; |
3383 | } |
3384 | |
3385 | file->private_data = ctrl; |
3386 | return 0; |
3387 | } |
3388 | |
3389 | static int nvme_dev_release(struct inode *inode, struct file *file) |
3390 | { |
3391 | struct nvme_ctrl *ctrl = |
3392 | container_of(inode->i_cdev, struct nvme_ctrl, cdev); |
3393 | |
3394 | module_put(module: ctrl->ops->module); |
3395 | nvme_put_ctrl(ctrl); |
3396 | return 0; |
3397 | } |
3398 | |
3399 | static const struct file_operations nvme_dev_fops = { |
3400 | .owner = THIS_MODULE, |
3401 | .open = nvme_dev_open, |
3402 | .release = nvme_dev_release, |
3403 | .unlocked_ioctl = nvme_dev_ioctl, |
3404 | .compat_ioctl = compat_ptr_ioctl, |
3405 | .uring_cmd = nvme_dev_uring_cmd, |
3406 | }; |
3407 | |
3408 | static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, |
3409 | unsigned nsid) |
3410 | { |
3411 | struct nvme_ns_head *h; |
3412 | |
3413 | lockdep_assert_held(&ctrl->subsys->lock); |
3414 | |
3415 | list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { |
3416 | /* |
3417 | * Private namespaces can share NSIDs under some conditions. |
3418 | * In that case we can't use the same ns_head for namespaces |
3419 | * with the same NSID. |
3420 | */ |
3421 | if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, head: h)) |
3422 | continue; |
3423 | if (!list_empty(head: &h->list) && nvme_tryget_ns_head(head: h)) |
3424 | return h; |
3425 | } |
3426 | |
3427 | return NULL; |
3428 | } |
3429 | |
3430 | static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, |
3431 | struct nvme_ns_ids *ids) |
3432 | { |
3433 | bool has_uuid = !uuid_is_null(uuid: &ids->uuid); |
3434 | bool has_nguid = memchr_inv(p: ids->nguid, c: 0, size: sizeof(ids->nguid)); |
3435 | bool has_eui64 = memchr_inv(p: ids->eui64, c: 0, size: sizeof(ids->eui64)); |
3436 | struct nvme_ns_head *h; |
3437 | |
3438 | lockdep_assert_held(&subsys->lock); |
3439 | |
3440 | list_for_each_entry(h, &subsys->nsheads, entry) { |
3441 | if (has_uuid && uuid_equal(u1: &ids->uuid, u2: &h->ids.uuid)) |
3442 | return -EINVAL; |
3443 | if (has_nguid && |
3444 | memcmp(p: &ids->nguid, q: &h->ids.nguid, size: sizeof(ids->nguid)) == 0) |
3445 | return -EINVAL; |
3446 | if (has_eui64 && |
3447 | memcmp(p: &ids->eui64, q: &h->ids.eui64, size: sizeof(ids->eui64)) == 0) |
3448 | return -EINVAL; |
3449 | } |
3450 | |
3451 | return 0; |
3452 | } |
3453 | |
3454 | static void nvme_cdev_rel(struct device *dev) |
3455 | { |
3456 | ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); |
3457 | } |
3458 | |
3459 | void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) |
3460 | { |
3461 | cdev_device_del(cdev, dev: cdev_device); |
3462 | put_device(dev: cdev_device); |
3463 | } |
3464 | |
3465 | int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, |
3466 | const struct file_operations *fops, struct module *owner) |
3467 | { |
3468 | int minor, ret; |
3469 | |
3470 | minor = ida_alloc(ida: &nvme_ns_chr_minor_ida, GFP_KERNEL); |
3471 | if (minor < 0) |
3472 | return minor; |
3473 | cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); |
3474 | cdev_device->class = &nvme_ns_chr_class; |
3475 | cdev_device->release = nvme_cdev_rel; |
3476 | device_initialize(dev: cdev_device); |
3477 | cdev_init(cdev, fops); |
3478 | cdev->owner = owner; |
3479 | ret = cdev_device_add(cdev, dev: cdev_device); |
3480 | if (ret) |
3481 | put_device(dev: cdev_device); |
3482 | |
3483 | return ret; |
3484 | } |
3485 | |
3486 | static int nvme_ns_chr_open(struct inode *inode, struct file *file) |
3487 | { |
3488 | return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); |
3489 | } |
3490 | |
3491 | static int nvme_ns_chr_release(struct inode *inode, struct file *file) |
3492 | { |
3493 | nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); |
3494 | return 0; |
3495 | } |
3496 | |
3497 | static const struct file_operations nvme_ns_chr_fops = { |
3498 | .owner = THIS_MODULE, |
3499 | .open = nvme_ns_chr_open, |
3500 | .release = nvme_ns_chr_release, |
3501 | .unlocked_ioctl = nvme_ns_chr_ioctl, |
3502 | .compat_ioctl = compat_ptr_ioctl, |
3503 | .uring_cmd = nvme_ns_chr_uring_cmd, |
3504 | .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, |
3505 | }; |
3506 | |
3507 | static int nvme_add_ns_cdev(struct nvme_ns *ns) |
3508 | { |
3509 | int ret; |
3510 | |
3511 | ns->cdev_device.parent = ns->ctrl->device; |
3512 | ret = dev_set_name(dev: &ns->cdev_device, name: "ng%dn%d", |
3513 | ns->ctrl->instance, ns->head->instance); |
3514 | if (ret) |
3515 | return ret; |
3516 | |
3517 | return nvme_cdev_add(cdev: &ns->cdev, cdev_device: &ns->cdev_device, fops: &nvme_ns_chr_fops, |
3518 | owner: ns->ctrl->ops->module); |
3519 | } |
3520 | |
3521 | static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, |
3522 | struct nvme_ns_info *info) |
3523 | { |
3524 | struct nvme_ns_head *head; |
3525 | size_t size = sizeof(*head); |
3526 | int ret = -ENOMEM; |
3527 | |
3528 | #ifdef CONFIG_NVME_MULTIPATH |
3529 | size += num_possible_nodes() * sizeof(struct nvme_ns *); |
3530 | #endif |
3531 | |
3532 | head = kzalloc(size, GFP_KERNEL); |
3533 | if (!head) |
3534 | goto out; |
3535 | ret = ida_alloc_min(ida: &ctrl->subsys->ns_ida, min: 1, GFP_KERNEL); |
3536 | if (ret < 0) |
3537 | goto out_free_head; |
3538 | head->instance = ret; |
3539 | INIT_LIST_HEAD(list: &head->list); |
3540 | ret = init_srcu_struct(&head->srcu); |
3541 | if (ret) |
3542 | goto out_ida_remove; |
3543 | head->subsys = ctrl->subsys; |
3544 | head->ns_id = info->nsid; |
3545 | head->ids = info->ids; |
3546 | head->shared = info->is_shared; |
3547 | ratelimit_state_init(rs: &head->rs_nuse, interval: 5 * HZ, burst: 1); |
3548 | ratelimit_set_flags(rs: &head->rs_nuse, RATELIMIT_MSG_ON_RELEASE); |
3549 | kref_init(kref: &head->ref); |
3550 | |
3551 | if (head->ids.csi) { |
3552 | ret = nvme_get_effects_log(ctrl, csi: head->ids.csi, log: &head->effects); |
3553 | if (ret) |
3554 | goto out_cleanup_srcu; |
3555 | } else |
3556 | head->effects = ctrl->effects; |
3557 | |
3558 | ret = nvme_mpath_alloc_disk(ctrl, head); |
3559 | if (ret) |
3560 | goto out_cleanup_srcu; |
3561 | |
3562 | list_add_tail(new: &head->entry, head: &ctrl->subsys->nsheads); |
3563 | |
3564 | kref_get(kref: &ctrl->subsys->ref); |
3565 | |
3566 | return head; |
3567 | out_cleanup_srcu: |
3568 | cleanup_srcu_struct(ssp: &head->srcu); |
3569 | out_ida_remove: |
3570 | ida_free(&ctrl->subsys->ns_ida, id: head->instance); |
3571 | out_free_head: |
3572 | kfree(objp: head); |
3573 | out: |
3574 | if (ret > 0) |
3575 | ret = blk_status_to_errno(status: nvme_error_status(status: ret)); |
3576 | return ERR_PTR(error: ret); |
3577 | } |
3578 | |
3579 | static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, |
3580 | struct nvme_ns_ids *ids) |
3581 | { |
3582 | struct nvme_subsystem *s; |
3583 | int ret = 0; |
3584 | |
3585 | /* |
3586 | * Note that this check is racy as we try to avoid holding the global |
3587 | * lock over the whole ns_head creation. But it is only intended as |
3588 | * a sanity check anyway. |
3589 | */ |
3590 | mutex_lock(&nvme_subsystems_lock); |
3591 | list_for_each_entry(s, &nvme_subsystems, entry) { |
3592 | if (s == this) |
3593 | continue; |
3594 | mutex_lock(&s->lock); |
3595 | ret = nvme_subsys_check_duplicate_ids(subsys: s, ids); |
3596 | mutex_unlock(lock: &s->lock); |
3597 | if (ret) |
3598 | break; |
3599 | } |
3600 | mutex_unlock(lock: &nvme_subsystems_lock); |
3601 | |
3602 | return ret; |
3603 | } |
3604 | |
3605 | static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info) |
3606 | { |
3607 | struct nvme_ctrl *ctrl = ns->ctrl; |
3608 | struct nvme_ns_head *head = NULL; |
3609 | int ret; |
3610 | |
3611 | ret = nvme_global_check_duplicate_ids(this: ctrl->subsys, ids: &info->ids); |
3612 | if (ret) { |
3613 | /* |
3614 | * We've found two different namespaces on two different |
3615 | * subsystems that report the same ID. This is pretty nasty |
3616 | * for anything that actually requires unique device |
3617 | * identification. In the kernel we need this for multipathing, |
3618 | * and in user space the /dev/disk/by-id/ links rely on it. |
3619 | * |
3620 | * If the device also claims to be multi-path capable back off |
3621 | * here now and refuse the probe the second device as this is a |
3622 | * recipe for data corruption. If not this is probably a |
3623 | * cheap consumer device if on the PCIe bus, so let the user |
3624 | * proceed and use the shiny toy, but warn that with changing |
3625 | * probing order (which due to our async probing could just be |
3626 | * device taking longer to startup) the other device could show |
3627 | * up at any time. |
3628 | */ |
3629 | nvme_print_device_info(ctrl); |
3630 | if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */ |
3631 | ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) && |
3632 | info->is_shared)) { |
3633 | dev_err(ctrl->device, |
3634 | "ignoring nsid %d because of duplicate IDs\n", |
3635 | info->nsid); |
3636 | return ret; |
3637 | } |
3638 | |
3639 | dev_err(ctrl->device, |
3640 | "clearing duplicate IDs for nsid %d\n", info->nsid); |
3641 | dev_err(ctrl->device, |
3642 | "use of /dev/disk/by-id/ may cause data corruption\n"); |
3643 | memset(&info->ids.nguid, 0, sizeof(info->ids.nguid)); |
3644 | memset(&info->ids.uuid, 0, sizeof(info->ids.uuid)); |
3645 | memset(&info->ids.eui64, 0, sizeof(info->ids.eui64)); |
3646 | ctrl->quirks |= NVME_QUIRK_BOGUS_NID; |
3647 | } |
3648 | |
3649 | mutex_lock(&ctrl->subsys->lock); |
3650 | head = nvme_find_ns_head(ctrl, nsid: info->nsid); |
3651 | if (!head) { |
3652 | ret = nvme_subsys_check_duplicate_ids(subsys: ctrl->subsys, ids: &info->ids); |
3653 | if (ret) { |
3654 | dev_err(ctrl->device, |
3655 | "duplicate IDs in subsystem for nsid %d\n", |
3656 | info->nsid); |
3657 | goto out_unlock; |
3658 | } |
3659 | head = nvme_alloc_ns_head(ctrl, info); |
3660 | if (IS_ERR(ptr: head)) { |
3661 | ret = PTR_ERR(ptr: head); |
3662 | goto out_unlock; |
3663 | } |
3664 | } else { |
3665 | ret = -EINVAL; |
3666 | if (!info->is_shared || !head->shared) { |
3667 | dev_err(ctrl->device, |
3668 | "Duplicate unshared namespace %d\n", |
3669 | info->nsid); |
3670 | goto out_put_ns_head; |
3671 | } |
3672 | if (!nvme_ns_ids_equal(a: &head->ids, b: &info->ids)) { |
3673 | dev_err(ctrl->device, |
3674 | "IDs don't match for shared namespace %d\n", |
3675 | info->nsid); |
3676 | goto out_put_ns_head; |
3677 | } |
3678 | |
3679 | if (!multipath) { |
3680 | dev_warn(ctrl->device, |
3681 | "Found shared namespace %d, but multipathing not supported.\n", |
3682 | info->nsid); |
3683 | dev_warn_once(ctrl->device, |
3684 | "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n."); |
3685 | } |
3686 | } |
3687 | |
3688 | list_add_tail_rcu(new: &ns->siblings, head: &head->list); |
3689 | ns->head = head; |
3690 | mutex_unlock(lock: &ctrl->subsys->lock); |
3691 | return 0; |
3692 | |
3693 | out_put_ns_head: |
3694 | nvme_put_ns_head(head); |
3695 | out_unlock: |
3696 | mutex_unlock(lock: &ctrl->subsys->lock); |
3697 | return ret; |
3698 | } |
3699 | |
3700 | struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) |
3701 | { |
3702 | struct nvme_ns *ns, *ret = NULL; |
3703 | |
3704 | down_read(sem: &ctrl->namespaces_rwsem); |
3705 | list_for_each_entry(ns, &ctrl->namespaces, list) { |
3706 | if (ns->head->ns_id == nsid) { |
3707 | if (!nvme_get_ns(ns)) |
3708 | continue; |
3709 | ret = ns; |
3710 | break; |
3711 | } |
3712 | if (ns->head->ns_id > nsid) |
3713 | break; |
3714 | } |
3715 | up_read(sem: &ctrl->namespaces_rwsem); |
3716 | return ret; |
3717 | } |
3718 | EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU); |
3719 | |
3720 | /* |
3721 | * Add the namespace to the controller list while keeping the list ordered. |
3722 | */ |
3723 | static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) |
3724 | { |
3725 | struct nvme_ns *tmp; |
3726 | |
3727 | list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { |
3728 | if (tmp->head->ns_id < ns->head->ns_id) { |
3729 | list_add(new: &ns->list, head: &tmp->list); |
3730 | return; |
3731 | } |
3732 | } |
3733 | list_add(new: &ns->list, head: &ns->ctrl->namespaces); |
3734 | } |
3735 | |
3736 | static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) |
3737 | { |
3738 | struct nvme_ns *ns; |
3739 | struct gendisk *disk; |
3740 | int node = ctrl->numa_node; |
3741 | |
3742 | ns = kzalloc_node(size: sizeof(*ns), GFP_KERNEL, node); |
3743 | if (!ns) |
3744 | return; |
3745 | |
3746 | disk = blk_mq_alloc_disk(ctrl->tagset, NULL, ns); |
3747 | if (IS_ERR(ptr: disk)) |
3748 | goto out_free_ns; |
3749 | disk->fops = &nvme_bdev_ops; |
3750 | disk->private_data = ns; |
3751 | |
3752 | ns->disk = disk; |
3753 | ns->queue = disk->queue; |
3754 | |
3755 | if (ctrl->opts && ctrl->opts->data_digest) |
3756 | blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q: ns->queue); |
3757 | |
3758 | blk_queue_flag_set(QUEUE_FLAG_NONROT, q: ns->queue); |
3759 | if (ctrl->ops->supports_pci_p2pdma && |
3760 | ctrl->ops->supports_pci_p2pdma(ctrl)) |
3761 | blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, q: ns->queue); |
3762 | |
3763 | ns->ctrl = ctrl; |
3764 | kref_init(kref: &ns->kref); |
3765 | |
3766 | if (nvme_init_ns_head(ns, info)) |
3767 | goto out_cleanup_disk; |
3768 | |
3769 | /* |
3770 | * If multipathing is enabled, the device name for all disks and not |
3771 | * just those that represent shared namespaces needs to be based on the |
3772 | * subsystem instance. Using the controller instance for private |
3773 | * namespaces could lead to naming collisions between shared and private |
3774 | * namespaces if they don't use a common numbering scheme. |
3775 | * |
3776 | * If multipathing is not enabled, disk names must use the controller |
3777 | * instance as shared namespaces will show up as multiple block |
3778 | * devices. |
3779 | */ |
3780 | if (nvme_ns_head_multipath(head: ns->head)) { |
3781 | sprintf(buf: disk->disk_name, fmt: "nvme%dc%dn%d", ctrl->subsys->instance, |
3782 | ctrl->instance, ns->head->instance); |
3783 | disk->flags |= GENHD_FL_HIDDEN; |
3784 | } else if (multipath) { |
3785 | sprintf(buf: disk->disk_name, fmt: "nvme%dn%d", ctrl->subsys->instance, |
3786 | ns->head->instance); |
3787 | } else { |
3788 | sprintf(buf: disk->disk_name, fmt: "nvme%dn%d", ctrl->instance, |
3789 | ns->head->instance); |
3790 | } |
3791 | |
3792 | if (nvme_update_ns_info(ns, info)) |
3793 | goto out_unlink_ns; |
3794 | |
3795 | down_write(sem: &ctrl->namespaces_rwsem); |
3796 | /* |
3797 | * Ensure that no namespaces are added to the ctrl list after the queues |
3798 | * are frozen, thereby avoiding a deadlock between scan and reset. |
3799 | */ |
3800 | if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) { |
3801 | up_write(sem: &ctrl->namespaces_rwsem); |
3802 | goto out_unlink_ns; |
3803 | } |
3804 | nvme_ns_add_to_ctrl_list(ns); |
3805 | up_write(sem: &ctrl->namespaces_rwsem); |
3806 | nvme_get_ctrl(ctrl); |
3807 | |
3808 | if (device_add_disk(parent: ctrl->device, disk: ns->disk, groups: nvme_ns_attr_groups)) |
3809 | goto out_cleanup_ns_from_list; |
3810 | |
3811 | if (!nvme_ns_head_multipath(head: ns->head)) |
3812 | nvme_add_ns_cdev(ns); |
3813 | |
3814 | nvme_mpath_add_disk(ns, anagrpid: info->anagrpid); |
3815 | nvme_fault_inject_init(fault_inj: &ns->fault_inject, dev_name: ns->disk->disk_name); |
3816 | |
3817 | /* |
3818 | * Set ns->disk->device->driver_data to ns so we can access |
3819 | * ns->head->passthru_err_log_enabled in |
3820 | * nvme_io_passthru_err_log_enabled_[store | show](). |
3821 | */ |
3822 | dev_set_drvdata(disk_to_dev(ns->disk), data: ns); |
3823 | |
3824 | return; |
3825 | |
3826 | out_cleanup_ns_from_list: |
3827 | nvme_put_ctrl(ctrl); |
3828 | down_write(sem: &ctrl->namespaces_rwsem); |
3829 | list_del_init(entry: &ns->list); |
3830 | up_write(sem: &ctrl->namespaces_rwsem); |
3831 | out_unlink_ns: |
3832 | mutex_lock(&ctrl->subsys->lock); |
3833 | list_del_rcu(entry: &ns->siblings); |
3834 | if (list_empty(head: &ns->head->list)) |
3835 | list_del_init(entry: &ns->head->entry); |
3836 | mutex_unlock(lock: &ctrl->subsys->lock); |
3837 | nvme_put_ns_head(head: ns->head); |
3838 | out_cleanup_disk: |
3839 | put_disk(disk); |
3840 | out_free_ns: |
3841 | kfree(objp: ns); |
3842 | } |
3843 | |
3844 | static void nvme_ns_remove(struct nvme_ns *ns) |
3845 | { |
3846 | bool last_path = false; |
3847 | |
3848 | if (test_and_set_bit(NVME_NS_REMOVING, addr: &ns->flags)) |
3849 | return; |
3850 | |
3851 | clear_bit(NVME_NS_READY, addr: &ns->flags); |
3852 | set_capacity(disk: ns->disk, size: 0); |
3853 | nvme_fault_inject_fini(fault_inject: &ns->fault_inject); |
3854 | |
3855 | /* |
3856 | * Ensure that !NVME_NS_READY is seen by other threads to prevent |
3857 | * this ns going back into current_path. |
3858 | */ |
3859 | synchronize_srcu(ssp: &ns->head->srcu); |
3860 | |
3861 | /* wait for concurrent submissions */ |
3862 | if (nvme_mpath_clear_current_path(ns)) |
3863 | synchronize_srcu(ssp: &ns->head->srcu); |
3864 | |
3865 | mutex_lock(&ns->ctrl->subsys->lock); |
3866 | list_del_rcu(entry: &ns->siblings); |
3867 | if (list_empty(head: &ns->head->list)) { |
3868 | list_del_init(entry: &ns->head->entry); |
3869 | last_path = true; |
3870 | } |
3871 | mutex_unlock(lock: &ns->ctrl->subsys->lock); |
3872 | |
3873 | /* guarantee not available in head->list */ |
3874 | synchronize_srcu(ssp: &ns->head->srcu); |
3875 | |
3876 | if (!nvme_ns_head_multipath(head: ns->head)) |
3877 | nvme_cdev_del(cdev: &ns->cdev, cdev_device: &ns->cdev_device); |
3878 | del_gendisk(gp: ns->disk); |
3879 | |
3880 | down_write(sem: &ns->ctrl->namespaces_rwsem); |
3881 | list_del_init(entry: &ns->list); |
3882 | up_write(sem: &ns->ctrl->namespaces_rwsem); |
3883 | |
3884 | if (last_path) |
3885 | nvme_mpath_shutdown_disk(head: ns->head); |
3886 | nvme_put_ns(ns); |
3887 | } |
3888 | |
3889 | static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) |
3890 | { |
3891 | struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); |
3892 | |
3893 | if (ns) { |
3894 | nvme_ns_remove(ns); |
3895 | nvme_put_ns(ns); |
3896 | } |
3897 | } |
3898 | |
3899 | static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info) |
3900 | { |
3901 | int ret = NVME_SC_INVALID_NS | NVME_SC_DNR; |
3902 | |
3903 | if (!nvme_ns_ids_equal(a: &ns->head->ids, b: &info->ids)) { |
3904 | dev_err(ns->ctrl->device, |
3905 | "identifiers changed for nsid %d\n", ns->head->ns_id); |
3906 | goto out; |
3907 | } |
3908 | |
3909 | ret = nvme_update_ns_info(ns, info); |
3910 | out: |
3911 | /* |
3912 | * Only remove the namespace if we got a fatal error back from the |
3913 | * device, otherwise ignore the error and just move on. |
3914 | * |
3915 | * TODO: we should probably schedule a delayed retry here. |
3916 | */ |
3917 | if (ret > 0 && (ret & NVME_SC_DNR)) |
3918 | nvme_ns_remove(ns); |
3919 | } |
3920 | |
3921 | static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid) |
3922 | { |
3923 | struct nvme_ns_info info = { .nsid = nsid }; |
3924 | struct nvme_ns *ns; |
3925 | int ret; |
3926 | |
3927 | if (nvme_identify_ns_descs(ctrl, info: &info)) |
3928 | return; |
3929 | |
3930 | if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) { |
3931 | dev_warn(ctrl->device, |
3932 | "command set not reported for nsid: %d\n", nsid); |
3933 | return; |
3934 | } |
3935 | |
3936 | /* |
3937 | * If available try to use the Command Set Idependent Identify Namespace |
3938 | * data structure to find all the generic information that is needed to |
3939 | * set up a namespace. If not fall back to the legacy version. |
3940 | */ |
3941 | if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) || |
3942 | (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS)) |
3943 | ret = nvme_ns_info_from_id_cs_indep(ctrl, info: &info); |
3944 | else |
3945 | ret = nvme_ns_info_from_identify(ctrl, info: &info); |
3946 | |
3947 | if (info.is_removed) |
3948 | nvme_ns_remove_by_nsid(ctrl, nsid); |
3949 | |
3950 | /* |
3951 | * Ignore the namespace if it is not ready. We will get an AEN once it |
3952 | * becomes ready and restart the scan. |
3953 | */ |
3954 | if (ret || !info.is_ready) |
3955 | return; |
3956 | |
3957 | ns = nvme_find_get_ns(ctrl, nsid); |
3958 | if (ns) { |
3959 | nvme_validate_ns(ns, info: &info); |
3960 | nvme_put_ns(ns); |
3961 | } else { |
3962 | nvme_alloc_ns(ctrl, info: &info); |
3963 | } |
3964 | } |
3965 | |
3966 | static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, |
3967 | unsigned nsid) |
3968 | { |
3969 | struct nvme_ns *ns, *next; |
3970 | LIST_HEAD(rm_list); |
3971 | |
3972 | down_write(sem: &ctrl->namespaces_rwsem); |
3973 | list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { |
3974 | if (ns->head->ns_id > nsid) |
3975 | list_move_tail(list: &ns->list, head: &rm_list); |
3976 | } |
3977 | up_write(sem: &ctrl->namespaces_rwsem); |
3978 | |
3979 | list_for_each_entry_safe(ns, next, &rm_list, list) |
3980 | nvme_ns_remove(ns); |
3981 | |
3982 | } |
3983 | |
3984 | static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) |
3985 | { |
3986 | const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); |
3987 | __le32 *ns_list; |
3988 | u32 prev = 0; |
3989 | int ret = 0, i; |
3990 | |
3991 | ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); |
3992 | if (!ns_list) |
3993 | return -ENOMEM; |
3994 | |
3995 | for (;;) { |
3996 | struct nvme_command cmd = { |
3997 | .identify.opcode = nvme_admin_identify, |
3998 | .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, |
3999 | .identify.nsid = cpu_to_le32(prev), |
4000 | }; |
4001 | |
4002 | ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, |
4003 | NVME_IDENTIFY_DATA_SIZE); |
4004 | if (ret) { |
4005 | dev_warn(ctrl->device, |
4006 | "Identify NS List failed (status=0x%x)\n", ret); |
4007 | goto free; |
4008 | } |
4009 | |
4010 | for (i = 0; i < nr_entries; i++) { |
4011 | u32 nsid = le32_to_cpu(ns_list[i]); |
4012 | |
4013 | if (!nsid) /* end of the list? */ |
4014 | goto out; |
4015 | nvme_scan_ns(ctrl, nsid); |
4016 | while (++prev < nsid) |
4017 | nvme_ns_remove_by_nsid(ctrl, nsid: prev); |
4018 | } |
4019 | } |
4020 | out: |
4021 | nvme_remove_invalid_namespaces(ctrl, nsid: prev); |
4022 | free: |
4023 | kfree(objp: ns_list); |
4024 | return ret; |
4025 | } |
4026 | |
4027 | static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) |
4028 | { |
4029 | struct nvme_id_ctrl *id; |
4030 | u32 nn, i; |
4031 | |
4032 | if (nvme_identify_ctrl(dev: ctrl, id: &id)) |
4033 | return; |
4034 | nn = le32_to_cpu(id->nn); |
4035 | kfree(objp: id); |
4036 | |
4037 | for (i = 1; i <= nn; i++) |
4038 | nvme_scan_ns(ctrl, nsid: i); |
4039 | |
4040 | nvme_remove_invalid_namespaces(ctrl, nsid: nn); |
4041 | } |
4042 | |
4043 | static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) |
4044 | { |
4045 | size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); |
4046 | __le32 *log; |
4047 | int error; |
4048 | |
4049 | log = kzalloc(size: log_size, GFP_KERNEL); |
4050 | if (!log) |
4051 | return; |
4052 | |
4053 | /* |
4054 | * We need to read the log to clear the AEN, but we don't want to rely |
4055 | * on it for the changed namespace information as userspace could have |
4056 | * raced with us in reading the log page, which could cause us to miss |
4057 | * updates. |
4058 | */ |
4059 | error = nvme_get_log(ctrl, NVME_NSID_ALL, log_page: NVME_LOG_CHANGED_NS, lsp: 0, |
4060 | csi: NVME_CSI_NVM, log, size: log_size, offset: 0); |
4061 | if (error) |
4062 | dev_warn(ctrl->device, |
4063 | "reading changed ns log failed: %d\n", error); |
4064 | |
4065 | kfree(objp: log); |
4066 | } |
4067 | |
4068 | static void nvme_scan_work(struct work_struct *work) |
4069 | { |
4070 | struct nvme_ctrl *ctrl = |
4071 | container_of(work, struct nvme_ctrl, scan_work); |
4072 | int ret; |
4073 | |
4074 | /* No tagset on a live ctrl means IO queues could not created */ |
4075 | if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset) |
4076 | return; |
4077 | |
4078 | /* |
4079 | * Identify controller limits can change at controller reset due to |
4080 | * new firmware download, even though it is not common we cannot ignore |
4081 | * such scenario. Controller's non-mdts limits are reported in the unit |
4082 | * of logical blocks that is dependent on the format of attached |
4083 | * namespace. Hence re-read the limits at the time of ns allocation. |
4084 | */ |
4085 | ret = nvme_init_non_mdts_limits(ctrl); |
4086 | if (ret < 0) { |
4087 | dev_warn(ctrl->device, |
4088 | "reading non-mdts-limits failed: %d\n", ret); |
4089 | return; |
4090 | } |
4091 | |
4092 | if (test_and_clear_bit(nr: NVME_AER_NOTICE_NS_CHANGED, addr: &ctrl->events)) { |
4093 | dev_info(ctrl->device, "rescanning namespaces.\n"); |
4094 | nvme_clear_changed_ns_log(ctrl); |
4095 | } |
4096 | |
4097 | mutex_lock(&ctrl->scan_lock); |
4098 | if (nvme_ctrl_limited_cns(ctrl)) { |
4099 | nvme_scan_ns_sequential(ctrl); |
4100 | } else { |
4101 | /* |
4102 | * Fall back to sequential scan if DNR is set to handle broken |
4103 | * devices which should support Identify NS List (as per the VS |
4104 | * they report) but don't actually support it. |
4105 | */ |
4106 | ret = nvme_scan_ns_list(ctrl); |
4107 | if (ret > 0 && ret & NVME_SC_DNR) |
4108 | nvme_scan_ns_sequential(ctrl); |
4109 | } |
4110 | mutex_unlock(lock: &ctrl->scan_lock); |
4111 | } |
4112 | |
4113 | /* |
4114 | * This function iterates the namespace list unlocked to allow recovery from |
4115 | * controller failure. It is up to the caller to ensure the namespace list is |
4116 | * not modified by scan work while this function is executing. |
4117 | */ |
4118 | void nvme_remove_namespaces(struct nvme_ctrl *ctrl) |
4119 | { |
4120 | struct nvme_ns *ns, *next; |
4121 | LIST_HEAD(ns_list); |
4122 | |
4123 | /* |
4124 | * make sure to requeue I/O to all namespaces as these |
4125 | * might result from the scan itself and must complete |
4126 | * for the scan_work to make progress |
4127 | */ |
4128 | nvme_mpath_clear_ctrl_paths(ctrl); |
4129 | |
4130 | /* |
4131 | * Unquiesce io queues so any pending IO won't hang, especially |
4132 | * those submitted from scan work |
4133 | */ |
4134 | nvme_unquiesce_io_queues(ctrl); |
4135 | |
4136 | /* prevent racing with ns scanning */ |
4137 | flush_work(work: &ctrl->scan_work); |
4138 | |
4139 | /* |
4140 | * The dead states indicates the controller was not gracefully |
4141 | * disconnected. In that case, we won't be able to flush any data while |
4142 | * removing the namespaces' disks; fail all the queues now to avoid |
4143 | * potentially having to clean up the failed sync later. |
4144 | */ |
4145 | if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD) |
4146 | nvme_mark_namespaces_dead(ctrl); |
4147 | |
4148 | /* this is a no-op when called from the controller reset handler */ |
4149 | nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); |
4150 | |
4151 | down_write(sem: &ctrl->namespaces_rwsem); |
4152 | list_splice_init(list: &ctrl->namespaces, head: &ns_list); |
4153 | up_write(sem: &ctrl->namespaces_rwsem); |
4154 | |
4155 | list_for_each_entry_safe(ns, next, &ns_list, list) |
4156 | nvme_ns_remove(ns); |
4157 | } |
4158 | EXPORT_SYMBOL_GPL(nvme_remove_namespaces); |
4159 | |
4160 | static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env) |
4161 | { |
4162 | const struct nvme_ctrl *ctrl = |
4163 | container_of(dev, struct nvme_ctrl, ctrl_device); |
4164 | struct nvmf_ctrl_options *opts = ctrl->opts; |
4165 | int ret; |
4166 | |
4167 | ret = add_uevent_var(env, format: "NVME_TRTYPE=%s", ctrl->ops->name); |
4168 | if (ret) |
4169 | return ret; |
4170 | |
4171 | if (opts) { |
4172 | ret = add_uevent_var(env, format: "NVME_TRADDR=%s", opts->traddr); |
4173 | if (ret) |
4174 | return ret; |
4175 | |
4176 | ret = add_uevent_var(env, format: "NVME_TRSVCID=%s", |
4177 | opts->trsvcid ?: "none"); |
4178 | if (ret) |
4179 | return ret; |
4180 | |
4181 | ret = add_uevent_var(env, format: "NVME_HOST_TRADDR=%s", |
4182 | opts->host_traddr ?: "none"); |
4183 | if (ret) |
4184 | return ret; |
4185 | |
4186 | ret = add_uevent_var(env, format: "NVME_HOST_IFACE=%s", |
4187 | opts->host_iface ?: "none"); |
4188 | } |
4189 | return ret; |
4190 | } |
4191 | |
4192 | static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) |
4193 | { |
4194 | char *envp[2] = { envdata, NULL }; |
4195 | |
4196 | kobject_uevent_env(kobj: &ctrl->device->kobj, action: KOBJ_CHANGE, envp); |
4197 | } |
4198 | |
4199 | static void nvme_aen_uevent(struct nvme_ctrl *ctrl) |
4200 | { |
4201 | char *envp[2] = { NULL, NULL }; |
4202 | u32 aen_result = ctrl->aen_result; |
4203 | |
4204 | ctrl->aen_result = 0; |
4205 | if (!aen_result) |
4206 | return; |
4207 | |
4208 | envp[0] = kasprintf(GFP_KERNEL, fmt: "NVME_AEN=%#08x", aen_result); |
4209 | if (!envp[0]) |
4210 | return; |
4211 | kobject_uevent_env(kobj: &ctrl->device->kobj, action: KOBJ_CHANGE, envp); |
4212 | kfree(objp: envp[0]); |
4213 | } |
4214 | |
4215 | static void nvme_async_event_work(struct work_struct *work) |
4216 | { |
4217 | struct nvme_ctrl *ctrl = |
4218 | container_of(work, struct nvme_ctrl, async_event_work); |
4219 | |
4220 | nvme_aen_uevent(ctrl); |
4221 | |
4222 | /* |
4223 | * The transport drivers must guarantee AER submission here is safe by |
4224 | * flushing ctrl async_event_work after changing the controller state |
4225 | * from LIVE and before freeing the admin queue. |
4226 | */ |
4227 | if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) |
4228 | ctrl->ops->submit_async_event(ctrl); |
4229 | } |
4230 | |
4231 | static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) |
4232 | { |
4233 | |
4234 | u32 csts; |
4235 | |
4236 | if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) |
4237 | return false; |
4238 | |
4239 | if (csts == ~0) |
4240 | return false; |
4241 | |
4242 | return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); |
4243 | } |
4244 | |
4245 | static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) |
4246 | { |
4247 | struct nvme_fw_slot_info_log *log; |
4248 | u8 next_fw_slot, cur_fw_slot; |
4249 | |
4250 | log = kmalloc(size: sizeof(*log), GFP_KERNEL); |
4251 | if (!log) |
4252 | return; |
4253 | |
4254 | if (nvme_get_log(ctrl, NVME_NSID_ALL, log_page: NVME_LOG_FW_SLOT, lsp: 0, csi: NVME_CSI_NVM, |
4255 | log, size: sizeof(*log), offset: 0)) { |
4256 | dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); |
4257 | goto out_free_log; |
4258 | } |
4259 | |
4260 | cur_fw_slot = log->afi & 0x7; |
4261 | next_fw_slot = (log->afi & 0x70) >> 4; |
4262 | if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) { |
4263 | dev_info(ctrl->device, |
4264 | "Firmware is activated after next Controller Level Reset\n"); |
4265 | goto out_free_log; |
4266 | } |
4267 | |
4268 | memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1], |
4269 | sizeof(ctrl->subsys->firmware_rev)); |
4270 | |
4271 | out_free_log: |
4272 | kfree(objp: log); |
4273 | } |
4274 | |
4275 | static void nvme_fw_act_work(struct work_struct *work) |
4276 | { |
4277 | struct nvme_ctrl *ctrl = container_of(work, |
4278 | struct nvme_ctrl, fw_act_work); |
4279 | unsigned long fw_act_timeout; |
4280 | |
4281 | nvme_auth_stop(ctrl); |
4282 | |
4283 | if (ctrl->mtfa) |
4284 | fw_act_timeout = jiffies + |
4285 | msecs_to_jiffies(m: ctrl->mtfa * 100); |
4286 | else |
4287 | fw_act_timeout = jiffies + |
4288 | msecs_to_jiffies(m: admin_timeout * 1000); |
4289 | |
4290 | nvme_quiesce_io_queues(ctrl); |
4291 | while (nvme_ctrl_pp_status(ctrl)) { |
4292 | if (time_after(jiffies, fw_act_timeout)) { |
4293 | dev_warn(ctrl->device, |
4294 | "Fw activation timeout, reset controller\n"); |
4295 | nvme_try_sched_reset(ctrl); |
4296 | return; |
4297 | } |
4298 | msleep(msecs: 100); |
4299 | } |
4300 | |
4301 | if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) |
4302 | return; |
4303 | |
4304 | nvme_unquiesce_io_queues(ctrl); |
4305 | /* read FW slot information to clear the AER */ |
4306 | nvme_get_fw_slot_info(ctrl); |
4307 | |
4308 | queue_work(wq: nvme_wq, work: &ctrl->async_event_work); |
4309 | } |
4310 | |
4311 | static u32 nvme_aer_type(u32 result) |
4312 | { |
4313 | return result & 0x7; |
4314 | } |
4315 | |
4316 | static u32 nvme_aer_subtype(u32 result) |
4317 | { |
4318 | return (result & 0xff00) >> 8; |
4319 | } |
4320 | |
4321 | static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) |
4322 | { |
4323 | u32 aer_notice_type = nvme_aer_subtype(result); |
4324 | bool requeue = true; |
4325 | |
4326 | switch (aer_notice_type) { |
4327 | case NVME_AER_NOTICE_NS_CHANGED: |
4328 | set_bit(nr: NVME_AER_NOTICE_NS_CHANGED, addr: &ctrl->events); |
4329 | nvme_queue_scan(ctrl); |
4330 | break; |
4331 | case NVME_AER_NOTICE_FW_ACT_STARTING: |
4332 | /* |
4333 | * We are (ab)using the RESETTING state to prevent subsequent |
4334 | * recovery actions from interfering with the controller's |
4335 | * firmware activation. |
4336 | */ |
4337 | if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { |
4338 | requeue = false; |
4339 | queue_work(wq: nvme_wq, work: &ctrl->fw_act_work); |
4340 | } |
4341 | break; |
4342 | #ifdef CONFIG_NVME_MULTIPATH |
4343 | case NVME_AER_NOTICE_ANA: |
4344 | if (!ctrl->ana_log_buf) |
4345 | break; |
4346 | queue_work(wq: nvme_wq, work: &ctrl->ana_work); |
4347 | break; |
4348 | #endif |
4349 | case NVME_AER_NOTICE_DISC_CHANGED: |
4350 | ctrl->aen_result = result; |
4351 | break; |
4352 | default: |
4353 | dev_warn(ctrl->device, "async event result %08x\n", result); |
4354 | } |
4355 | return requeue; |
4356 | } |
4357 | |
4358 | static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl) |
4359 | { |
4360 | dev_warn(ctrl->device, "resetting controller due to AER\n"); |
4361 | nvme_reset_ctrl(ctrl); |
4362 | } |
4363 | |
4364 | void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, |
4365 | volatile union nvme_result *res) |
4366 | { |
4367 | u32 result = le32_to_cpu(res->u32); |
4368 | u32 aer_type = nvme_aer_type(result); |
4369 | u32 aer_subtype = nvme_aer_subtype(result); |
4370 | bool requeue = true; |
4371 | |
4372 | if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) |
4373 | return; |
4374 | |
4375 | trace_nvme_async_event(ctrl, result); |
4376 | switch (aer_type) { |
4377 | case NVME_AER_NOTICE: |
4378 | requeue = nvme_handle_aen_notice(ctrl, result); |
4379 | break; |
4380 | case NVME_AER_ERROR: |
4381 | /* |
4382 | * For a persistent internal error, don't run async_event_work |
4383 | * to submit a new AER. The controller reset will do it. |
4384 | */ |
4385 | if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) { |
4386 | nvme_handle_aer_persistent_error(ctrl); |
4387 | return; |
4388 | } |
4389 | fallthrough; |
4390 | case NVME_AER_SMART: |
4391 | case NVME_AER_CSS: |
4392 | case NVME_AER_VS: |
4393 | ctrl->aen_result = result; |
4394 | break; |
4395 | default: |
4396 | break; |
4397 | } |
4398 | |
4399 | if (requeue) |
4400 | queue_work(wq: nvme_wq, work: &ctrl->async_event_work); |
4401 | } |
4402 | EXPORT_SYMBOL_GPL(nvme_complete_async_event); |
4403 | |
4404 | int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, |
4405 | const struct blk_mq_ops *ops, unsigned int cmd_size) |
4406 | { |
4407 | struct queue_limits lim = {}; |
4408 | int ret; |
4409 | |
4410 | memset(set, 0, sizeof(*set)); |
4411 | set->ops = ops; |
4412 | set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; |
4413 | if (ctrl->ops->flags & NVME_F_FABRICS) |
4414 | /* Reserved for fabric connect and keep alive */ |
4415 | set->reserved_tags = 2; |
4416 | set->numa_node = ctrl->numa_node; |
4417 | set->flags = BLK_MQ_F_NO_SCHED; |
4418 | if (ctrl->ops->flags & NVME_F_BLOCKING) |
4419 | set->flags |= BLK_MQ_F_BLOCKING; |
4420 | set->cmd_size = cmd_size; |
4421 | set->driver_data = ctrl; |
4422 | set->nr_hw_queues = 1; |
4423 | set->timeout = NVME_ADMIN_TIMEOUT; |
4424 | ret = blk_mq_alloc_tag_set(set); |
4425 | if (ret) |
4426 | return ret; |
4427 | |
4428 | ctrl->admin_q = blk_mq_alloc_queue(set, lim: &lim, NULL); |
4429 | if (IS_ERR(ptr: ctrl->admin_q)) { |
4430 | ret = PTR_ERR(ptr: ctrl->admin_q); |
4431 | goto out_free_tagset; |
4432 | } |
4433 | |
4434 | if (ctrl->ops->flags & NVME_F_FABRICS) { |
4435 | ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL); |
4436 | if (IS_ERR(ptr: ctrl->fabrics_q)) { |
4437 | ret = PTR_ERR(ptr: ctrl->fabrics_q); |
4438 | goto out_cleanup_admin_q; |
4439 | } |
4440 | } |
4441 | |
4442 | ctrl->admin_tagset = set; |
4443 | return 0; |
4444 | |
4445 | out_cleanup_admin_q: |
4446 | blk_mq_destroy_queue(ctrl->admin_q); |
4447 | blk_put_queue(ctrl->admin_q); |
4448 | out_free_tagset: |
4449 | blk_mq_free_tag_set(set); |
4450 | ctrl->admin_q = NULL; |
4451 | ctrl->fabrics_q = NULL; |
4452 | return ret; |
4453 | } |
4454 | EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set); |
4455 | |
4456 | void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl) |
4457 | { |
4458 | blk_mq_destroy_queue(ctrl->admin_q); |
4459 | blk_put_queue(ctrl->admin_q); |
4460 | if (ctrl->ops->flags & NVME_F_FABRICS) { |
4461 | blk_mq_destroy_queue(ctrl->fabrics_q); |
4462 | blk_put_queue(ctrl->fabrics_q); |
4463 | } |
4464 | blk_mq_free_tag_set(set: ctrl->admin_tagset); |
4465 | } |
4466 | EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set); |
4467 | |
4468 | int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, |
4469 | const struct blk_mq_ops *ops, unsigned int nr_maps, |
4470 | unsigned int cmd_size) |
4471 | { |
4472 | int ret; |
4473 | |
4474 | memset(set, 0, sizeof(*set)); |
4475 | set->ops = ops; |
4476 | set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1); |
4477 | /* |
4478 | * Some Apple controllers requires tags to be unique across admin and |
4479 | * the (only) I/O queue, so reserve the first 32 tags of the I/O queue. |
4480 | */ |
4481 | if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS) |
4482 | set->reserved_tags = NVME_AQ_DEPTH; |
4483 | else if (ctrl->ops->flags & NVME_F_FABRICS) |
4484 | /* Reserved for fabric connect */ |
4485 | set->reserved_tags = 1; |
4486 | set->numa_node = ctrl->numa_node; |
4487 | set->flags = BLK_MQ_F_SHOULD_MERGE; |
4488 | if (ctrl->ops->flags & NVME_F_BLOCKING) |
4489 | set->flags |= BLK_MQ_F_BLOCKING; |
4490 | set->cmd_size = cmd_size, |
4491 | set->driver_data = ctrl; |
4492 | set->nr_hw_queues = ctrl->queue_count - 1; |
4493 | set->timeout = NVME_IO_TIMEOUT; |
4494 | set->nr_maps = nr_maps; |
4495 | ret = blk_mq_alloc_tag_set(set); |
4496 | if (ret) |
4497 | return ret; |
4498 | |
4499 | if (ctrl->ops->flags & NVME_F_FABRICS) { |
4500 | ctrl->connect_q = blk_mq_alloc_queue(set, NULL, NULL); |
4501 | if (IS_ERR(ptr: ctrl->connect_q)) { |
4502 | ret = PTR_ERR(ptr: ctrl->connect_q); |
4503 | goto out_free_tag_set; |
4504 | } |
4505 | blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE, |
4506 | q: ctrl->connect_q); |
4507 | } |
4508 | |
4509 | ctrl->tagset = set; |
4510 | return 0; |
4511 | |
4512 | out_free_tag_set: |
4513 | blk_mq_free_tag_set(set); |
4514 | ctrl->connect_q = NULL; |
4515 | return ret; |
4516 | } |
4517 | EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set); |
4518 | |
4519 | void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl) |
4520 | { |
4521 | if (ctrl->ops->flags & NVME_F_FABRICS) { |
4522 | blk_mq_destroy_queue(ctrl->connect_q); |
4523 | blk_put_queue(ctrl->connect_q); |
4524 | } |
4525 | blk_mq_free_tag_set(set: ctrl->tagset); |
4526 | } |
4527 | EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set); |
4528 | |
4529 | void nvme_stop_ctrl(struct nvme_ctrl *ctrl) |
4530 | { |
4531 | nvme_mpath_stop(ctrl); |
4532 | nvme_auth_stop(ctrl); |
4533 | nvme_stop_keep_alive(ctrl); |
4534 | nvme_stop_failfast_work(ctrl); |
4535 | flush_work(work: &ctrl->async_event_work); |
4536 | cancel_work_sync(work: &ctrl->fw_act_work); |
4537 | if (ctrl->ops->stop_ctrl) |
4538 | ctrl->ops->stop_ctrl(ctrl); |
4539 | } |
4540 | EXPORT_SYMBOL_GPL(nvme_stop_ctrl); |
4541 | |
4542 | void nvme_start_ctrl(struct nvme_ctrl *ctrl) |
4543 | { |
4544 | nvme_enable_aen(ctrl); |
4545 | |
4546 | /* |
4547 | * persistent discovery controllers need to send indication to userspace |
4548 | * to re-read the discovery log page to learn about possible changes |
4549 | * that were missed. We identify persistent discovery controllers by |
4550 | * checking that they started once before, hence are reconnecting back. |
4551 | */ |
4552 | if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) && |
4553 | nvme_discovery_ctrl(ctrl)) |
4554 | nvme_change_uevent(ctrl, envdata: "NVME_EVENT=rediscover"); |
4555 | |
4556 | if (ctrl->queue_count > 1) { |
4557 | nvme_queue_scan(ctrl); |
4558 | nvme_unquiesce_io_queues(ctrl); |
4559 | nvme_mpath_update(ctrl); |
4560 | } |
4561 | |
4562 | nvme_change_uevent(ctrl, envdata: "NVME_EVENT=connected"); |
4563 | set_bit(nr: NVME_CTRL_STARTED_ONCE, addr: &ctrl->flags); |
4564 | } |
4565 | EXPORT_SYMBOL_GPL(nvme_start_ctrl); |
4566 | |
4567 | void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) |
4568 | { |
4569 | nvme_hwmon_exit(ctrl); |
4570 | nvme_fault_inject_fini(fault_inject: &ctrl->fault_inject); |
4571 | dev_pm_qos_hide_latency_tolerance(dev: ctrl->device); |
4572 | cdev_device_del(cdev: &ctrl->cdev, dev: ctrl->device); |
4573 | nvme_put_ctrl(ctrl); |
4574 | } |
4575 | EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); |
4576 | |
4577 | static void nvme_free_cels(struct nvme_ctrl *ctrl) |
4578 | { |
4579 | struct nvme_effects_log *cel; |
4580 | unsigned long i; |
4581 | |
4582 | xa_for_each(&ctrl->cels, i, cel) { |
4583 | xa_erase(&ctrl->cels, index: i); |
4584 | kfree(objp: cel); |
4585 | } |
4586 | |
4587 | xa_destroy(&ctrl->cels); |
4588 | } |
4589 | |
4590 | static void nvme_free_ctrl(struct device *dev) |
4591 | { |
4592 | struct nvme_ctrl *ctrl = |
4593 | container_of(dev, struct nvme_ctrl, ctrl_device); |
4594 | struct nvme_subsystem *subsys = ctrl->subsys; |
4595 | |
4596 | if (!subsys || ctrl->instance != subsys->instance) |
4597 | ida_free(&nvme_instance_ida, id: ctrl->instance); |
4598 | key_put(key: ctrl->tls_key); |
4599 | nvme_free_cels(ctrl); |
4600 | nvme_mpath_uninit(ctrl); |
4601 | nvme_auth_stop(ctrl); |
4602 | nvme_auth_free(ctrl); |
4603 | __free_page(ctrl->discard_page); |
4604 | free_opal_dev(dev: ctrl->opal_dev); |
4605 | |
4606 | if (subsys) { |
4607 | mutex_lock(&nvme_subsystems_lock); |
4608 | list_del(entry: &ctrl->subsys_entry); |
4609 | sysfs_remove_link(kobj: &subsys->dev.kobj, name: dev_name(dev: ctrl->device)); |
4610 | mutex_unlock(lock: &nvme_subsystems_lock); |
4611 | } |
4612 | |
4613 | ctrl->ops->free_ctrl(ctrl); |
4614 | |
4615 | if (subsys) |
4616 | nvme_put_subsystem(subsys); |
4617 | } |
4618 | |
4619 | /* |
4620 | * Initialize a NVMe controller structures. This needs to be called during |
4621 | * earliest initialization so that we have the initialized structured around |
4622 | * during probing. |
4623 | */ |
4624 | int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, |
4625 | const struct nvme_ctrl_ops *ops, unsigned long quirks) |
4626 | { |
4627 | int ret; |
4628 | |
4629 | WRITE_ONCE(ctrl->state, NVME_CTRL_NEW); |
4630 | ctrl->passthru_err_log_enabled = false; |
4631 | clear_bit(nr: NVME_CTRL_FAILFAST_EXPIRED, addr: &ctrl->flags); |
4632 | spin_lock_init(&ctrl->lock); |
4633 | mutex_init(&ctrl->scan_lock); |
4634 | INIT_LIST_HEAD(list: &ctrl->namespaces); |
4635 | xa_init(xa: &ctrl->cels); |
4636 | init_rwsem(&ctrl->namespaces_rwsem); |
4637 | ctrl->dev = dev; |
4638 | ctrl->ops = ops; |
4639 | ctrl->quirks = quirks; |
4640 | ctrl->numa_node = NUMA_NO_NODE; |
4641 | INIT_WORK(&ctrl->scan_work, nvme_scan_work); |
4642 | INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); |
4643 | INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); |
4644 | INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); |
4645 | init_waitqueue_head(&ctrl->state_wq); |
4646 | |
4647 | INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); |
4648 | INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); |
4649 | memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); |
4650 | ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; |
4651 | ctrl->ka_last_check_time = jiffies; |
4652 | |
4653 | BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > |
4654 | PAGE_SIZE); |
4655 | ctrl->discard_page = alloc_page(GFP_KERNEL); |
4656 | if (!ctrl->discard_page) { |
4657 | ret = -ENOMEM; |
4658 | goto out; |
4659 | } |
4660 | |
4661 | ret = ida_alloc(ida: &nvme_instance_ida, GFP_KERNEL); |
4662 | if (ret < 0) |
4663 | goto out; |
4664 | ctrl->instance = ret; |
4665 | |
4666 | device_initialize(dev: &ctrl->ctrl_device); |
4667 | ctrl->device = &ctrl->ctrl_device; |
4668 | ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), |
4669 | ctrl->instance); |
4670 | ctrl->device->class = &nvme_class; |
4671 | ctrl->device->parent = ctrl->dev; |
4672 | if (ops->dev_attr_groups) |
4673 | ctrl->device->groups = ops->dev_attr_groups; |
4674 | else |
4675 | ctrl->device->groups = nvme_dev_attr_groups; |
4676 | ctrl->device->release = nvme_free_ctrl; |
4677 | dev_set_drvdata(dev: ctrl->device, data: ctrl); |
4678 | ret = dev_set_name(dev: ctrl->device, name: "nvme%d", ctrl->instance); |
4679 | if (ret) |
4680 | goto out_release_instance; |
4681 | |
4682 | nvme_get_ctrl(ctrl); |
4683 | cdev_init(&ctrl->cdev, &nvme_dev_fops); |
4684 | ctrl->cdev.owner = ops->module; |
4685 | ret = cdev_device_add(cdev: &ctrl->cdev, dev: ctrl->device); |
4686 | if (ret) |
4687 | goto out_free_name; |
4688 | |
4689 | /* |
4690 | * Initialize latency tolerance controls. The sysfs files won't |
4691 | * be visible to userspace unless the device actually supports APST. |
4692 | */ |
4693 | ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; |
4694 | dev_pm_qos_update_user_latency_tolerance(dev: ctrl->device, |
4695 | min(default_ps_max_latency_us, (unsigned long)S32_MAX)); |
4696 | |
4697 | nvme_fault_inject_init(fault_inj: &ctrl->fault_inject, dev_name: dev_name(dev: ctrl->device)); |
4698 | nvme_mpath_init_ctrl(ctrl); |
4699 | ret = nvme_auth_init_ctrl(ctrl); |
4700 | if (ret) |
4701 | goto out_free_cdev; |
4702 | |
4703 | return 0; |
4704 | out_free_cdev: |
4705 | nvme_fault_inject_fini(fault_inject: &ctrl->fault_inject); |
4706 | dev_pm_qos_hide_latency_tolerance(dev: ctrl->device); |
4707 | cdev_device_del(cdev: &ctrl->cdev, dev: ctrl->device); |
4708 | out_free_name: |
4709 | nvme_put_ctrl(ctrl); |
4710 | kfree_const(x: ctrl->device->kobj.name); |
4711 | out_release_instance: |
4712 | ida_free(&nvme_instance_ida, id: ctrl->instance); |
4713 | out: |
4714 | if (ctrl->discard_page) |
4715 | __free_page(ctrl->discard_page); |
4716 | return ret; |
4717 | } |
4718 | EXPORT_SYMBOL_GPL(nvme_init_ctrl); |
4719 | |
4720 | /* let I/O to all namespaces fail in preparation for surprise removal */ |
4721 | void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl) |
4722 | { |
4723 | struct nvme_ns *ns; |
4724 | |
4725 | down_read(sem: &ctrl->namespaces_rwsem); |
4726 | list_for_each_entry(ns, &ctrl->namespaces, list) |
4727 | blk_mark_disk_dead(disk: ns->disk); |
4728 | up_read(sem: &ctrl->namespaces_rwsem); |
4729 | } |
4730 | EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead); |
4731 | |
4732 | void nvme_unfreeze(struct nvme_ctrl *ctrl) |
4733 | { |
4734 | struct nvme_ns *ns; |
4735 | |
4736 | down_read(sem: &ctrl->namespaces_rwsem); |
4737 | list_for_each_entry(ns, &ctrl->namespaces, list) |
4738 | blk_mq_unfreeze_queue(q: ns->queue); |
4739 | up_read(sem: &ctrl->namespaces_rwsem); |
4740 | clear_bit(nr: NVME_CTRL_FROZEN, addr: &ctrl->flags); |
4741 | } |
4742 | EXPORT_SYMBOL_GPL(nvme_unfreeze); |
4743 | |
4744 | int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) |
4745 | { |
4746 | struct nvme_ns *ns; |
4747 | |
4748 | down_read(sem: &ctrl->namespaces_rwsem); |
4749 | list_for_each_entry(ns, &ctrl->namespaces, list) { |
4750 | timeout = blk_mq_freeze_queue_wait_timeout(q: ns->queue, timeout); |
4751 | if (timeout <= 0) |
4752 | break; |
4753 | } |
4754 | up_read(sem: &ctrl->namespaces_rwsem); |
4755 | return timeout; |
4756 | } |
4757 | EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); |
4758 | |
4759 | void nvme_wait_freeze(struct nvme_ctrl *ctrl) |
4760 | { |
4761 | struct nvme_ns *ns; |
4762 | |
4763 | down_read(sem: &ctrl->namespaces_rwsem); |
4764 | list_for_each_entry(ns, &ctrl->namespaces, list) |
4765 | blk_mq_freeze_queue_wait(q: ns->queue); |
4766 | up_read(sem: &ctrl->namespaces_rwsem); |
4767 | } |
4768 | EXPORT_SYMBOL_GPL(nvme_wait_freeze); |
4769 | |
4770 | void nvme_start_freeze(struct nvme_ctrl *ctrl) |
4771 | { |
4772 | struct nvme_ns *ns; |
4773 | |
4774 | set_bit(nr: NVME_CTRL_FROZEN, addr: &ctrl->flags); |
4775 | down_read(sem: &ctrl->namespaces_rwsem); |
4776 | list_for_each_entry(ns, &ctrl->namespaces, list) |
4777 | blk_freeze_queue_start(q: ns->queue); |
4778 | up_read(sem: &ctrl->namespaces_rwsem); |
4779 | } |
4780 | EXPORT_SYMBOL_GPL(nvme_start_freeze); |
4781 | |
4782 | void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl) |
4783 | { |
4784 | if (!ctrl->tagset) |
4785 | return; |
4786 | if (!test_and_set_bit(nr: NVME_CTRL_STOPPED, addr: &ctrl->flags)) |
4787 | blk_mq_quiesce_tagset(set: ctrl->tagset); |
4788 | else |
4789 | blk_mq_wait_quiesce_done(set: ctrl->tagset); |
4790 | } |
4791 | EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues); |
4792 | |
4793 | void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl) |
4794 | { |
4795 | if (!ctrl->tagset) |
4796 | return; |
4797 | if (test_and_clear_bit(nr: NVME_CTRL_STOPPED, addr: &ctrl->flags)) |
4798 | blk_mq_unquiesce_tagset(set: ctrl->tagset); |
4799 | } |
4800 | EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues); |
4801 | |
4802 | void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl) |
4803 | { |
4804 | if (!test_and_set_bit(nr: NVME_CTRL_ADMIN_Q_STOPPED, addr: &ctrl->flags)) |
4805 | blk_mq_quiesce_queue(q: ctrl->admin_q); |
4806 | else |
4807 | blk_mq_wait_quiesce_done(set: ctrl->admin_q->tag_set); |
4808 | } |
4809 | EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue); |
4810 | |
4811 | void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl) |
4812 | { |
4813 | if (test_and_clear_bit(nr: NVME_CTRL_ADMIN_Q_STOPPED, addr: &ctrl->flags)) |
4814 | blk_mq_unquiesce_queue(q: ctrl->admin_q); |
4815 | } |
4816 | EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue); |
4817 | |
4818 | void nvme_sync_io_queues(struct nvme_ctrl *ctrl) |
4819 | { |
4820 | struct nvme_ns *ns; |
4821 | |
4822 | down_read(sem: &ctrl->namespaces_rwsem); |
4823 | list_for_each_entry(ns, &ctrl->namespaces, list) |
4824 | blk_sync_queue(q: ns->queue); |
4825 | up_read(sem: &ctrl->namespaces_rwsem); |
4826 | } |
4827 | EXPORT_SYMBOL_GPL(nvme_sync_io_queues); |
4828 | |
4829 | void nvme_sync_queues(struct nvme_ctrl *ctrl) |
4830 | { |
4831 | nvme_sync_io_queues(ctrl); |
4832 | if (ctrl->admin_q) |
4833 | blk_sync_queue(q: ctrl->admin_q); |
4834 | } |
4835 | EXPORT_SYMBOL_GPL(nvme_sync_queues); |
4836 | |
4837 | struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) |
4838 | { |
4839 | if (file->f_op != &nvme_dev_fops) |
4840 | return NULL; |
4841 | return file->private_data; |
4842 | } |
4843 | EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU); |
4844 | |
4845 | /* |
4846 | * Check we didn't inadvertently grow the command structure sizes: |
4847 | */ |
4848 | static inline void _nvme_check_size(void) |
4849 | { |
4850 | BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); |
4851 | BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); |
4852 | BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); |
4853 | BUILD_BUG_ON(sizeof(struct nvme_features) != 64); |
4854 | BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); |
4855 | BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); |
4856 | BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); |
4857 | BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); |
4858 | BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); |
4859 | BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); |
4860 | BUILD_BUG_ON(sizeof(struct nvme_command) != 64); |
4861 | BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); |
4862 | BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); |
4863 | BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) != |
4864 | NVME_IDENTIFY_DATA_SIZE); |
4865 | BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); |
4866 | BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); |
4867 | BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); |
4868 | BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); |
4869 | BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); |
4870 | BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); |
4871 | BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); |
4872 | BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); |
4873 | BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); |
4874 | } |
4875 | |
4876 | |
4877 | static int __init nvme_core_init(void) |
4878 | { |
4879 | int result = -ENOMEM; |
4880 | |
4881 | _nvme_check_size(); |
4882 | |
4883 | nvme_wq = alloc_workqueue(fmt: "nvme-wq", |
4884 | flags: WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, max_active: 0); |
4885 | if (!nvme_wq) |
4886 | goto out; |
4887 | |
4888 | nvme_reset_wq = alloc_workqueue(fmt: "nvme-reset-wq", |
4889 | flags: WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, max_active: 0); |
4890 | if (!nvme_reset_wq) |
4891 | goto destroy_wq; |
4892 | |
4893 | nvme_delete_wq = alloc_workqueue(fmt: "nvme-delete-wq", |
4894 | flags: WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, max_active: 0); |
4895 | if (!nvme_delete_wq) |
4896 | goto destroy_reset_wq; |
4897 | |
4898 | result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, |
4899 | NVME_MINORS, "nvme"); |
4900 | if (result < 0) |
4901 | goto destroy_delete_wq; |
4902 | |
4903 | result = class_register(class: &nvme_class); |
4904 | if (result) |
4905 | goto unregister_chrdev; |
4906 | |
4907 | result = class_register(class: &nvme_subsys_class); |
4908 | if (result) |
4909 | goto destroy_class; |
4910 | |
4911 | result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, |
4912 | "nvme-generic"); |
4913 | if (result < 0) |
4914 | goto destroy_subsys_class; |
4915 | |
4916 | result = class_register(class: &nvme_ns_chr_class); |
4917 | if (result) |
4918 | goto unregister_generic_ns; |
4919 | |
4920 | result = nvme_init_auth(); |
4921 | if (result) |
4922 | goto destroy_ns_chr; |
4923 | return 0; |
4924 | |
4925 | destroy_ns_chr: |
4926 | class_unregister(class: &nvme_ns_chr_class); |
4927 | unregister_generic_ns: |
4928 | unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); |
4929 | destroy_subsys_class: |
4930 | class_unregister(class: &nvme_subsys_class); |
4931 | destroy_class: |
4932 | class_unregister(class: &nvme_class); |
4933 | unregister_chrdev: |
4934 | unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); |
4935 | destroy_delete_wq: |
4936 | destroy_workqueue(wq: nvme_delete_wq); |
4937 | destroy_reset_wq: |
4938 | destroy_workqueue(wq: nvme_reset_wq); |
4939 | destroy_wq: |
4940 | destroy_workqueue(wq: nvme_wq); |
4941 | out: |
4942 | return result; |
4943 | } |
4944 | |
4945 | static void __exit nvme_core_exit(void) |
4946 | { |
4947 | nvme_exit_auth(); |
4948 | class_unregister(class: &nvme_ns_chr_class); |
4949 | class_unregister(class: &nvme_subsys_class); |
4950 | class_unregister(class: &nvme_class); |
4951 | unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); |
4952 | unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); |
4953 | destroy_workqueue(wq: nvme_delete_wq); |
4954 | destroy_workqueue(wq: nvme_reset_wq); |
4955 | destroy_workqueue(wq: nvme_wq); |
4956 | ida_destroy(ida: &nvme_ns_chr_minor_ida); |
4957 | ida_destroy(ida: &nvme_instance_ida); |
4958 | } |
4959 | |
4960 | MODULE_LICENSE("GPL"); |
4961 | MODULE_VERSION("1.0"); |
4962 | MODULE_DESCRIPTION("NVMe host core framework"); |
4963 | module_init(nvme_core_init); |
4964 | module_exit(nvme_core_exit); |
4965 |
Definitions
- nvme_ns_info
- admin_timeout
- nvme_io_timeout
- shutdown_timeout
- nvme_max_retries
- default_ps_max_latency_us
- force_apst
- apst_primary_timeout_ms
- apst_secondary_timeout_ms
- apst_primary_latency_tol_us
- apst_secondary_latency_tol_us
- nvme_wq
- nvme_reset_wq
- nvme_delete_wq
- nvme_subsystems
- nvme_subsystems_lock
- nvme_instance_ida
- nvme_ctrl_base_chr_devt
- nvme_class
- nvme_subsys_class
- nvme_ns_chr_minor_ida
- nvme_ns_chr_devt
- nvme_ns_chr_class
- nvme_queue_scan
- nvme_try_sched_reset
- nvme_failfast_work
- nvme_start_failfast_work
- nvme_stop_failfast_work
- nvme_reset_ctrl
- nvme_reset_ctrl_sync
- nvme_do_delete_ctrl
- nvme_delete_ctrl_work
- nvme_delete_ctrl
- nvme_delete_ctrl_sync
- nvme_error_status
- nvme_retry_req
- nvme_log_error
- nvme_log_err_passthru
- nvme_disposition
- nvme_decide_disposition
- nvme_end_req_zoned
- nvme_end_req
- nvme_complete_rq
- nvme_complete_batch_req
- nvme_host_path_error
- nvme_cancel_request
- nvme_cancel_tagset
- nvme_cancel_admin_tagset
- nvme_change_ctrl_state
- nvme_state_terminal
- nvme_wait_reset
- nvme_free_ns_head
- nvme_tryget_ns_head
- nvme_put_ns_head
- nvme_free_ns
- nvme_get_ns
- nvme_put_ns
- nvme_clear_nvme_request
- nvme_init_request
- nvme_fail_nonready_command
- __nvme_check_ready
- nvme_setup_flush
- nvme_setup_discard
- nvme_set_ref_tag
- nvme_setup_write_zeroes
- nvme_setup_rw
- nvme_cleanup_cmd
- nvme_setup_cmd
- nvme_execute_rq
- __nvme_submit_sync_cmd
- nvme_submit_sync_cmd
- nvme_command_effects
- nvme_passthru_start
- nvme_passthru_end
- nvme_keep_alive_work_period
- nvme_queue_keep_alive_work
- nvme_keep_alive_end_io
- nvme_keep_alive_work
- nvme_start_keep_alive
- nvme_stop_keep_alive
- nvme_update_keep_alive
- nvme_ctrl_limited_cns
- nvme_identify_ctrl
- nvme_process_ns_desc
- nvme_identify_ns_descs
- nvme_identify_ns
- nvme_ns_info_from_identify
- nvme_ns_info_from_id_cs_indep
- nvme_features
- nvme_set_features
- nvme_get_features
- nvme_set_queue_count
- nvme_enable_aen
- nvme_ns_open
- nvme_ns_release
- nvme_open
- nvme_release
- nvme_getgeo
- nvme_init_integrity
- nvme_config_discard
- nvme_ns_ids_equal
- nvme_identify_ns_nvm
- nvme_configure_pi_elbas
- nvme_configure_metadata
- nvme_max_drv_segments
- nvme_set_ctrl_limits
- nvme_update_disk_info
- nvme_ns_is_readonly
- nvme_first_scan
- nvme_set_chunk_sectors
- nvme_update_ns_info_generic
- nvme_update_ns_info_block
- nvme_update_ns_info
- nvme_sec_submit
- nvme_configure_opal
- nvme_report_zones
- nvme_bdev_ops
- nvme_wait_ready
- nvme_disable_ctrl
- nvme_enable_ctrl
- nvme_configure_timestamp
- nvme_configure_host_options
- nvme_apst_get_transition_time
- nvme_configure_apst
- nvme_set_latency_tolerance
- nvme_core_quirk_entry
- core_quirks
- string_matches
- quirk_matches
- nvme_init_subnqn
- nvme_release_subsystem
- nvme_destroy_subsystem
- nvme_put_subsystem
- __nvme_find_get_subsystem
- nvme_discovery_ctrl
- nvme_validate_cntlid
- nvme_init_subsystem
- nvme_get_log
- nvme_get_effects_log
- nvme_mps_to_sectors
- nvme_init_non_mdts_limits
- nvme_init_known_nvm_effects
- nvme_init_effects
- nvme_check_ctrl_fabric_info
- nvme_init_identify
- nvme_init_ctrl_finish
- nvme_dev_open
- nvme_dev_release
- nvme_dev_fops
- nvme_find_ns_head
- nvme_subsys_check_duplicate_ids
- nvme_cdev_rel
- nvme_cdev_del
- nvme_cdev_add
- nvme_ns_chr_open
- nvme_ns_chr_release
- nvme_ns_chr_fops
- nvme_add_ns_cdev
- nvme_alloc_ns_head
- nvme_global_check_duplicate_ids
- nvme_init_ns_head
- nvme_find_get_ns
- nvme_ns_add_to_ctrl_list
- nvme_alloc_ns
- nvme_ns_remove
- nvme_ns_remove_by_nsid
- nvme_validate_ns
- nvme_scan_ns
- nvme_remove_invalid_namespaces
- nvme_scan_ns_list
- nvme_scan_ns_sequential
- nvme_clear_changed_ns_log
- nvme_scan_work
- nvme_remove_namespaces
- nvme_class_uevent
- nvme_change_uevent
- nvme_aen_uevent
- nvme_async_event_work
- nvme_ctrl_pp_status
- nvme_get_fw_slot_info
- nvme_fw_act_work
- nvme_aer_type
- nvme_aer_subtype
- nvme_handle_aen_notice
- nvme_handle_aer_persistent_error
- nvme_complete_async_event
- nvme_alloc_admin_tag_set
- nvme_remove_admin_tag_set
- nvme_alloc_io_tag_set
- nvme_remove_io_tag_set
- nvme_stop_ctrl
- nvme_start_ctrl
- nvme_uninit_ctrl
- nvme_free_cels
- nvme_free_ctrl
- nvme_init_ctrl
- nvme_mark_namespaces_dead
- nvme_unfreeze
- nvme_wait_freeze_timeout
- nvme_wait_freeze
- nvme_start_freeze
- nvme_quiesce_io_queues
- nvme_unquiesce_io_queues
- nvme_quiesce_admin_queue
- nvme_unquiesce_admin_queue
- nvme_sync_io_queues
- nvme_sync_queues
- nvme_ctrl_from_file
- _nvme_check_size
- nvme_core_init
Improve your Profiling and Debugging skills
Find out more