1 | // SPDX-License-Identifier: GPL-2.0 |
---|---|
2 | /* |
3 | * NVM Express device driver |
4 | * Copyright (c) 2011-2014, Intel Corporation. |
5 | */ |
6 | |
7 | #include <linux/async.h> |
8 | #include <linux/blkdev.h> |
9 | #include <linux/blk-mq.h> |
10 | #include <linux/blk-integrity.h> |
11 | #include <linux/compat.h> |
12 | #include <linux/delay.h> |
13 | #include <linux/errno.h> |
14 | #include <linux/hdreg.h> |
15 | #include <linux/kernel.h> |
16 | #include <linux/module.h> |
17 | #include <linux/backing-dev.h> |
18 | #include <linux/slab.h> |
19 | #include <linux/types.h> |
20 | #include <linux/pr.h> |
21 | #include <linux/ptrace.h> |
22 | #include <linux/nvme_ioctl.h> |
23 | #include <linux/pm_qos.h> |
24 | #include <linux/ratelimit.h> |
25 | #include <linux/unaligned.h> |
26 | |
27 | #include "nvme.h" |
28 | #include "fabrics.h" |
29 | #include <linux/nvme-auth.h> |
30 | |
31 | #define CREATE_TRACE_POINTS |
32 | #include "trace.h" |
33 | |
34 | #define NVME_MINORS (1U << MINORBITS) |
35 | |
36 | struct nvme_ns_info { |
37 | struct nvme_ns_ids ids; |
38 | u32 nsid; |
39 | __le32 anagrpid; |
40 | u8 pi_offset; |
41 | u16 endgid; |
42 | u64 runs; |
43 | bool is_shared; |
44 | bool is_readonly; |
45 | bool is_ready; |
46 | bool is_removed; |
47 | bool is_rotational; |
48 | bool no_vwc; |
49 | }; |
50 | |
51 | unsigned int admin_timeout = 60; |
52 | module_param(admin_timeout, uint, 0644); |
53 | MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands"); |
54 | EXPORT_SYMBOL_GPL(admin_timeout); |
55 | |
56 | unsigned int nvme_io_timeout = 30; |
57 | module_param_named(io_timeout, nvme_io_timeout, uint, 0644); |
58 | MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O"); |
59 | EXPORT_SYMBOL_GPL(nvme_io_timeout); |
60 | |
61 | static unsigned char shutdown_timeout = 5; |
62 | module_param(shutdown_timeout, byte, 0644); |
63 | MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown"); |
64 | |
65 | static u8 nvme_max_retries = 5; |
66 | module_param_named(max_retries, nvme_max_retries, byte, 0644); |
67 | MODULE_PARM_DESC(max_retries, "max number of retries a command may have"); |
68 | |
69 | static unsigned long default_ps_max_latency_us = 100000; |
70 | module_param(default_ps_max_latency_us, ulong, 0644); |
71 | MODULE_PARM_DESC(default_ps_max_latency_us, |
72 | "max power saving latency for new devices; use PM QOS to change per device"); |
73 | |
74 | static bool force_apst; |
75 | module_param(force_apst, bool, 0644); |
76 | MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off"); |
77 | |
78 | static unsigned long apst_primary_timeout_ms = 100; |
79 | module_param(apst_primary_timeout_ms, ulong, 0644); |
80 | MODULE_PARM_DESC(apst_primary_timeout_ms, |
81 | "primary APST timeout in ms"); |
82 | |
83 | static unsigned long apst_secondary_timeout_ms = 2000; |
84 | module_param(apst_secondary_timeout_ms, ulong, 0644); |
85 | MODULE_PARM_DESC(apst_secondary_timeout_ms, |
86 | "secondary APST timeout in ms"); |
87 | |
88 | static unsigned long apst_primary_latency_tol_us = 15000; |
89 | module_param(apst_primary_latency_tol_us, ulong, 0644); |
90 | MODULE_PARM_DESC(apst_primary_latency_tol_us, |
91 | "primary APST latency tolerance in us"); |
92 | |
93 | static unsigned long apst_secondary_latency_tol_us = 100000; |
94 | module_param(apst_secondary_latency_tol_us, ulong, 0644); |
95 | MODULE_PARM_DESC(apst_secondary_latency_tol_us, |
96 | "secondary APST latency tolerance in us"); |
97 | |
98 | /* |
99 | * Older kernels didn't enable protection information if it was at an offset. |
100 | * Newer kernels do, so it breaks reads on the upgrade if such formats were |
101 | * used in prior kernels since the metadata written did not contain a valid |
102 | * checksum. |
103 | */ |
104 | static bool disable_pi_offsets = false; |
105 | module_param(disable_pi_offsets, bool, 0444); |
106 | MODULE_PARM_DESC(disable_pi_offsets, |
107 | "disable protection information if it has an offset"); |
108 | |
109 | /* |
110 | * nvme_wq - hosts nvme related works that are not reset or delete |
111 | * nvme_reset_wq - hosts nvme reset works |
112 | * nvme_delete_wq - hosts nvme delete works |
113 | * |
114 | * nvme_wq will host works such as scan, aen handling, fw activation, |
115 | * keep-alive, periodic reconnects etc. nvme_reset_wq |
116 | * runs reset works which also flush works hosted on nvme_wq for |
117 | * serialization purposes. nvme_delete_wq host controller deletion |
118 | * works which flush reset works for serialization. |
119 | */ |
120 | struct workqueue_struct *nvme_wq; |
121 | EXPORT_SYMBOL_GPL(nvme_wq); |
122 | |
123 | struct workqueue_struct *nvme_reset_wq; |
124 | EXPORT_SYMBOL_GPL(nvme_reset_wq); |
125 | |
126 | struct workqueue_struct *nvme_delete_wq; |
127 | EXPORT_SYMBOL_GPL(nvme_delete_wq); |
128 | |
129 | static LIST_HEAD(nvme_subsystems); |
130 | DEFINE_MUTEX(nvme_subsystems_lock); |
131 | |
132 | static DEFINE_IDA(nvme_instance_ida); |
133 | static dev_t nvme_ctrl_base_chr_devt; |
134 | static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env); |
135 | static const struct class nvme_class = { |
136 | .name = "nvme", |
137 | .dev_uevent = nvme_class_uevent, |
138 | }; |
139 | |
140 | static const struct class nvme_subsys_class = { |
141 | .name = "nvme-subsystem", |
142 | }; |
143 | |
144 | static DEFINE_IDA(nvme_ns_chr_minor_ida); |
145 | static dev_t nvme_ns_chr_devt; |
146 | static const struct class nvme_ns_chr_class = { |
147 | .name = "nvme-generic", |
148 | }; |
149 | |
150 | static void nvme_put_subsystem(struct nvme_subsystem *subsys); |
151 | static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, |
152 | unsigned nsid); |
153 | static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, |
154 | struct nvme_command *cmd); |
155 | static int nvme_get_log_lsi(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, |
156 | u8 lsp, u8 csi, void *log, size_t size, u64 offset, u16 lsi); |
157 | |
158 | void nvme_queue_scan(struct nvme_ctrl *ctrl) |
159 | { |
160 | /* |
161 | * Only new queue scan work when admin and IO queues are both alive |
162 | */ |
163 | if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE && ctrl->tagset) |
164 | queue_work(wq: nvme_wq, work: &ctrl->scan_work); |
165 | } |
166 | |
167 | /* |
168 | * Use this function to proceed with scheduling reset_work for a controller |
169 | * that had previously been set to the resetting state. This is intended for |
170 | * code paths that can't be interrupted by other reset attempts. A hot removal |
171 | * may prevent this from succeeding. |
172 | */ |
173 | int nvme_try_sched_reset(struct nvme_ctrl *ctrl) |
174 | { |
175 | if (nvme_ctrl_state(ctrl) != NVME_CTRL_RESETTING) |
176 | return -EBUSY; |
177 | if (!queue_work(wq: nvme_reset_wq, work: &ctrl->reset_work)) |
178 | return -EBUSY; |
179 | return 0; |
180 | } |
181 | EXPORT_SYMBOL_GPL(nvme_try_sched_reset); |
182 | |
183 | static void nvme_failfast_work(struct work_struct *work) |
184 | { |
185 | struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), |
186 | struct nvme_ctrl, failfast_work); |
187 | |
188 | if (nvme_ctrl_state(ctrl) != NVME_CTRL_CONNECTING) |
189 | return; |
190 | |
191 | set_bit(nr: NVME_CTRL_FAILFAST_EXPIRED, addr: &ctrl->flags); |
192 | dev_info(ctrl->device, "failfast expired\n"); |
193 | nvme_kick_requeue_lists(ctrl); |
194 | } |
195 | |
196 | static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl) |
197 | { |
198 | if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1) |
199 | return; |
200 | |
201 | schedule_delayed_work(dwork: &ctrl->failfast_work, |
202 | delay: ctrl->opts->fast_io_fail_tmo * HZ); |
203 | } |
204 | |
205 | static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl) |
206 | { |
207 | if (!ctrl->opts) |
208 | return; |
209 | |
210 | cancel_delayed_work_sync(dwork: &ctrl->failfast_work); |
211 | clear_bit(nr: NVME_CTRL_FAILFAST_EXPIRED, addr: &ctrl->flags); |
212 | } |
213 | |
214 | |
215 | int nvme_reset_ctrl(struct nvme_ctrl *ctrl) |
216 | { |
217 | if (!nvme_change_ctrl_state(ctrl, new_state: NVME_CTRL_RESETTING)) |
218 | return -EBUSY; |
219 | if (!queue_work(wq: nvme_reset_wq, work: &ctrl->reset_work)) |
220 | return -EBUSY; |
221 | return 0; |
222 | } |
223 | EXPORT_SYMBOL_GPL(nvme_reset_ctrl); |
224 | |
225 | int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl) |
226 | { |
227 | int ret; |
228 | |
229 | ret = nvme_reset_ctrl(ctrl); |
230 | if (!ret) { |
231 | flush_work(work: &ctrl->reset_work); |
232 | if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) |
233 | ret = -ENETRESET; |
234 | } |
235 | |
236 | return ret; |
237 | } |
238 | |
239 | static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl) |
240 | { |
241 | dev_info(ctrl->device, |
242 | "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl)); |
243 | |
244 | flush_work(work: &ctrl->reset_work); |
245 | nvme_stop_ctrl(ctrl); |
246 | nvme_remove_namespaces(ctrl); |
247 | ctrl->ops->delete_ctrl(ctrl); |
248 | nvme_uninit_ctrl(ctrl); |
249 | } |
250 | |
251 | static void nvme_delete_ctrl_work(struct work_struct *work) |
252 | { |
253 | struct nvme_ctrl *ctrl = |
254 | container_of(work, struct nvme_ctrl, delete_work); |
255 | |
256 | nvme_do_delete_ctrl(ctrl); |
257 | } |
258 | |
259 | int nvme_delete_ctrl(struct nvme_ctrl *ctrl) |
260 | { |
261 | if (!nvme_change_ctrl_state(ctrl, new_state: NVME_CTRL_DELETING)) |
262 | return -EBUSY; |
263 | if (!queue_work(wq: nvme_delete_wq, work: &ctrl->delete_work)) |
264 | return -EBUSY; |
265 | return 0; |
266 | } |
267 | EXPORT_SYMBOL_GPL(nvme_delete_ctrl); |
268 | |
269 | void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl) |
270 | { |
271 | /* |
272 | * Keep a reference until nvme_do_delete_ctrl() complete, |
273 | * since ->delete_ctrl can free the controller. |
274 | */ |
275 | nvme_get_ctrl(ctrl); |
276 | if (nvme_change_ctrl_state(ctrl, new_state: NVME_CTRL_DELETING)) |
277 | nvme_do_delete_ctrl(ctrl); |
278 | nvme_put_ctrl(ctrl); |
279 | } |
280 | |
281 | static blk_status_t nvme_error_status(u16 status) |
282 | { |
283 | switch (status & NVME_SCT_SC_MASK) { |
284 | case NVME_SC_SUCCESS: |
285 | return BLK_STS_OK; |
286 | case NVME_SC_CAP_EXCEEDED: |
287 | return BLK_STS_NOSPC; |
288 | case NVME_SC_LBA_RANGE: |
289 | case NVME_SC_CMD_INTERRUPTED: |
290 | case NVME_SC_NS_NOT_READY: |
291 | return BLK_STS_TARGET; |
292 | case NVME_SC_BAD_ATTRIBUTES: |
293 | case NVME_SC_INVALID_OPCODE: |
294 | case NVME_SC_INVALID_FIELD: |
295 | case NVME_SC_INVALID_NS: |
296 | return BLK_STS_NOTSUPP; |
297 | case NVME_SC_WRITE_FAULT: |
298 | case NVME_SC_READ_ERROR: |
299 | case NVME_SC_UNWRITTEN_BLOCK: |
300 | case NVME_SC_ACCESS_DENIED: |
301 | case NVME_SC_READ_ONLY: |
302 | case NVME_SC_COMPARE_FAILED: |
303 | return BLK_STS_MEDIUM; |
304 | case NVME_SC_GUARD_CHECK: |
305 | case NVME_SC_APPTAG_CHECK: |
306 | case NVME_SC_REFTAG_CHECK: |
307 | case NVME_SC_INVALID_PI: |
308 | return BLK_STS_PROTECTION; |
309 | case NVME_SC_RESERVATION_CONFLICT: |
310 | return BLK_STS_RESV_CONFLICT; |
311 | case NVME_SC_HOST_PATH_ERROR: |
312 | return BLK_STS_TRANSPORT; |
313 | case NVME_SC_ZONE_TOO_MANY_ACTIVE: |
314 | return BLK_STS_ZONE_ACTIVE_RESOURCE; |
315 | case NVME_SC_ZONE_TOO_MANY_OPEN: |
316 | return BLK_STS_ZONE_OPEN_RESOURCE; |
317 | default: |
318 | return BLK_STS_IOERR; |
319 | } |
320 | } |
321 | |
322 | static void nvme_retry_req(struct request *req) |
323 | { |
324 | unsigned long delay = 0; |
325 | u16 crd; |
326 | |
327 | /* The mask and shift result must be <= 3 */ |
328 | crd = (nvme_req(req)->status & NVME_STATUS_CRD) >> 11; |
329 | if (crd) |
330 | delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100; |
331 | |
332 | nvme_req(req)->retries++; |
333 | blk_mq_requeue_request(rq: req, kick_requeue_list: false); |
334 | blk_mq_delay_kick_requeue_list(q: req->q, msecs: delay); |
335 | } |
336 | |
337 | static void nvme_log_error(struct request *req) |
338 | { |
339 | struct nvme_ns *ns = req->q->queuedata; |
340 | struct nvme_request *nr = nvme_req(req); |
341 | |
342 | if (ns) { |
343 | pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %u blocks, %s (sct 0x%x / sc 0x%x) %s%s\n", |
344 | ns->disk ? ns->disk->disk_name : "?", |
345 | nvme_get_opcode_str(nr->cmd->common.opcode), |
346 | nr->cmd->common.opcode, |
347 | nvme_sect_to_lba(ns->head, blk_rq_pos(req)), |
348 | blk_rq_bytes(req) >> ns->head->lba_shift, |
349 | nvme_get_error_status_str(nr->status), |
350 | NVME_SCT(nr->status), /* Status Code Type */ |
351 | nr->status & NVME_SC_MASK, /* Status Code */ |
352 | nr->status & NVME_STATUS_MORE ? "MORE ": "", |
353 | nr->status & NVME_STATUS_DNR ? "DNR ": ""); |
354 | return; |
355 | } |
356 | |
357 | pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n", |
358 | dev_name(nr->ctrl->device), |
359 | nvme_get_admin_opcode_str(nr->cmd->common.opcode), |
360 | nr->cmd->common.opcode, |
361 | nvme_get_error_status_str(nr->status), |
362 | NVME_SCT(nr->status), /* Status Code Type */ |
363 | nr->status & NVME_SC_MASK, /* Status Code */ |
364 | nr->status & NVME_STATUS_MORE ? "MORE ": "", |
365 | nr->status & NVME_STATUS_DNR ? "DNR ": ""); |
366 | } |
367 | |
368 | static void nvme_log_err_passthru(struct request *req) |
369 | { |
370 | struct nvme_ns *ns = req->q->queuedata; |
371 | struct nvme_request *nr = nvme_req(req); |
372 | |
373 | pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s" |
374 | "cdw10=0x%x cdw11=0x%x cdw12=0x%x cdw13=0x%x cdw14=0x%x cdw15=0x%x\n", |
375 | ns ? ns->disk->disk_name : dev_name(nr->ctrl->device), |
376 | ns ? nvme_get_opcode_str(nr->cmd->common.opcode) : |
377 | nvme_get_admin_opcode_str(nr->cmd->common.opcode), |
378 | nr->cmd->common.opcode, |
379 | nvme_get_error_status_str(nr->status), |
380 | NVME_SCT(nr->status), /* Status Code Type */ |
381 | nr->status & NVME_SC_MASK, /* Status Code */ |
382 | nr->status & NVME_STATUS_MORE ? "MORE ": "", |
383 | nr->status & NVME_STATUS_DNR ? "DNR ": "", |
384 | nr->cmd->common.cdw10, |
385 | nr->cmd->common.cdw11, |
386 | nr->cmd->common.cdw12, |
387 | nr->cmd->common.cdw13, |
388 | nr->cmd->common.cdw14, |
389 | nr->cmd->common.cdw14); |
390 | } |
391 | |
392 | enum nvme_disposition { |
393 | COMPLETE, |
394 | RETRY, |
395 | FAILOVER, |
396 | AUTHENTICATE, |
397 | }; |
398 | |
399 | static inline enum nvme_disposition nvme_decide_disposition(struct request *req) |
400 | { |
401 | if (likely(nvme_req(req)->status == 0)) |
402 | return COMPLETE; |
403 | |
404 | if (blk_noretry_request(req) || |
405 | (nvme_req(req)->status & NVME_STATUS_DNR) || |
406 | nvme_req(req)->retries >= nvme_max_retries) |
407 | return COMPLETE; |
408 | |
409 | if ((nvme_req(req)->status & NVME_SCT_SC_MASK) == NVME_SC_AUTH_REQUIRED) |
410 | return AUTHENTICATE; |
411 | |
412 | if (req->cmd_flags & REQ_NVME_MPATH) { |
413 | if (nvme_is_path_error(status: nvme_req(req)->status) || |
414 | blk_queue_dying(req->q)) |
415 | return FAILOVER; |
416 | } else { |
417 | if (blk_queue_dying(req->q)) |
418 | return COMPLETE; |
419 | } |
420 | |
421 | return RETRY; |
422 | } |
423 | |
424 | static inline void nvme_end_req_zoned(struct request *req) |
425 | { |
426 | if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && |
427 | req_op(req) == REQ_OP_ZONE_APPEND) { |
428 | struct nvme_ns *ns = req->q->queuedata; |
429 | |
430 | req->__sector = nvme_lba_to_sect(head: ns->head, |
431 | le64_to_cpu(nvme_req(req)->result.u64)); |
432 | } |
433 | } |
434 | |
435 | static inline void __nvme_end_req(struct request *req) |
436 | { |
437 | if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET))) { |
438 | if (blk_rq_is_passthrough(rq: req)) |
439 | nvme_log_err_passthru(req); |
440 | else |
441 | nvme_log_error(req); |
442 | } |
443 | nvme_end_req_zoned(req); |
444 | nvme_trace_bio_complete(req); |
445 | if (req->cmd_flags & REQ_NVME_MPATH) |
446 | nvme_mpath_end_request(rq: req); |
447 | } |
448 | |
449 | void nvme_end_req(struct request *req) |
450 | { |
451 | blk_status_t status = nvme_error_status(status: nvme_req(req)->status); |
452 | |
453 | __nvme_end_req(req); |
454 | blk_mq_end_request(rq: req, error: status); |
455 | } |
456 | |
457 | void nvme_complete_rq(struct request *req) |
458 | { |
459 | struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; |
460 | |
461 | trace_nvme_complete_rq(req); |
462 | nvme_cleanup_cmd(req); |
463 | |
464 | /* |
465 | * Completions of long-running commands should not be able to |
466 | * defer sending of periodic keep alives, since the controller |
467 | * may have completed processing such commands a long time ago |
468 | * (arbitrarily close to command submission time). |
469 | * req->deadline - req->timeout is the command submission time |
470 | * in jiffies. |
471 | */ |
472 | if (ctrl->kas && |
473 | req->deadline - req->timeout >= ctrl->ka_last_check_time) |
474 | ctrl->comp_seen = true; |
475 | |
476 | switch (nvme_decide_disposition(req)) { |
477 | case COMPLETE: |
478 | nvme_end_req(req); |
479 | return; |
480 | case RETRY: |
481 | nvme_retry_req(req); |
482 | return; |
483 | case FAILOVER: |
484 | nvme_failover_req(req); |
485 | return; |
486 | case AUTHENTICATE: |
487 | #ifdef CONFIG_NVME_HOST_AUTH |
488 | queue_work(wq: nvme_wq, work: &ctrl->dhchap_auth_work); |
489 | nvme_retry_req(req); |
490 | #else |
491 | nvme_end_req(req); |
492 | #endif |
493 | return; |
494 | } |
495 | } |
496 | EXPORT_SYMBOL_GPL(nvme_complete_rq); |
497 | |
498 | void nvme_complete_batch_req(struct request *req) |
499 | { |
500 | trace_nvme_complete_rq(req); |
501 | nvme_cleanup_cmd(req); |
502 | __nvme_end_req(req); |
503 | } |
504 | EXPORT_SYMBOL_GPL(nvme_complete_batch_req); |
505 | |
506 | /* |
507 | * Called to unwind from ->queue_rq on a failed command submission so that the |
508 | * multipathing code gets called to potentially failover to another path. |
509 | * The caller needs to unwind all transport specific resource allocations and |
510 | * must return propagate the return value. |
511 | */ |
512 | blk_status_t nvme_host_path_error(struct request *req) |
513 | { |
514 | nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR; |
515 | blk_mq_set_request_complete(rq: req); |
516 | nvme_complete_rq(req); |
517 | return BLK_STS_OK; |
518 | } |
519 | EXPORT_SYMBOL_GPL(nvme_host_path_error); |
520 | |
521 | bool nvme_cancel_request(struct request *req, void *data) |
522 | { |
523 | dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device, |
524 | "Cancelling I/O %d", req->tag); |
525 | |
526 | /* don't abort one completed or idle request */ |
527 | if (blk_mq_rq_state(rq: req) != MQ_RQ_IN_FLIGHT) |
528 | return true; |
529 | |
530 | nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD; |
531 | nvme_req(req)->flags |= NVME_REQ_CANCELLED; |
532 | blk_mq_complete_request(rq: req); |
533 | return true; |
534 | } |
535 | EXPORT_SYMBOL_GPL(nvme_cancel_request); |
536 | |
537 | void nvme_cancel_tagset(struct nvme_ctrl *ctrl) |
538 | { |
539 | if (ctrl->tagset) { |
540 | blk_mq_tagset_busy_iter(tagset: ctrl->tagset, |
541 | fn: nvme_cancel_request, priv: ctrl); |
542 | blk_mq_tagset_wait_completed_request(tagset: ctrl->tagset); |
543 | } |
544 | } |
545 | EXPORT_SYMBOL_GPL(nvme_cancel_tagset); |
546 | |
547 | void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl) |
548 | { |
549 | if (ctrl->admin_tagset) { |
550 | blk_mq_tagset_busy_iter(tagset: ctrl->admin_tagset, |
551 | fn: nvme_cancel_request, priv: ctrl); |
552 | blk_mq_tagset_wait_completed_request(tagset: ctrl->admin_tagset); |
553 | } |
554 | } |
555 | EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset); |
556 | |
557 | bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl, |
558 | enum nvme_ctrl_state new_state) |
559 | { |
560 | enum nvme_ctrl_state old_state; |
561 | unsigned long flags; |
562 | bool changed = false; |
563 | |
564 | spin_lock_irqsave(&ctrl->lock, flags); |
565 | |
566 | old_state = nvme_ctrl_state(ctrl); |
567 | switch (new_state) { |
568 | case NVME_CTRL_LIVE: |
569 | switch (old_state) { |
570 | case NVME_CTRL_CONNECTING: |
571 | changed = true; |
572 | fallthrough; |
573 | default: |
574 | break; |
575 | } |
576 | break; |
577 | case NVME_CTRL_RESETTING: |
578 | switch (old_state) { |
579 | case NVME_CTRL_NEW: |
580 | case NVME_CTRL_LIVE: |
581 | changed = true; |
582 | fallthrough; |
583 | default: |
584 | break; |
585 | } |
586 | break; |
587 | case NVME_CTRL_CONNECTING: |
588 | switch (old_state) { |
589 | case NVME_CTRL_NEW: |
590 | case NVME_CTRL_RESETTING: |
591 | changed = true; |
592 | fallthrough; |
593 | default: |
594 | break; |
595 | } |
596 | break; |
597 | case NVME_CTRL_DELETING: |
598 | switch (old_state) { |
599 | case NVME_CTRL_LIVE: |
600 | case NVME_CTRL_RESETTING: |
601 | case NVME_CTRL_CONNECTING: |
602 | changed = true; |
603 | fallthrough; |
604 | default: |
605 | break; |
606 | } |
607 | break; |
608 | case NVME_CTRL_DELETING_NOIO: |
609 | switch (old_state) { |
610 | case NVME_CTRL_DELETING: |
611 | case NVME_CTRL_DEAD: |
612 | changed = true; |
613 | fallthrough; |
614 | default: |
615 | break; |
616 | } |
617 | break; |
618 | case NVME_CTRL_DEAD: |
619 | switch (old_state) { |
620 | case NVME_CTRL_DELETING: |
621 | changed = true; |
622 | fallthrough; |
623 | default: |
624 | break; |
625 | } |
626 | break; |
627 | default: |
628 | break; |
629 | } |
630 | |
631 | if (changed) { |
632 | WRITE_ONCE(ctrl->state, new_state); |
633 | wake_up_all(&ctrl->state_wq); |
634 | } |
635 | |
636 | spin_unlock_irqrestore(lock: &ctrl->lock, flags); |
637 | if (!changed) |
638 | return false; |
639 | |
640 | if (new_state == NVME_CTRL_LIVE) { |
641 | if (old_state == NVME_CTRL_CONNECTING) |
642 | nvme_stop_failfast_work(ctrl); |
643 | nvme_kick_requeue_lists(ctrl); |
644 | } else if (new_state == NVME_CTRL_CONNECTING && |
645 | old_state == NVME_CTRL_RESETTING) { |
646 | nvme_start_failfast_work(ctrl); |
647 | } |
648 | return changed; |
649 | } |
650 | EXPORT_SYMBOL_GPL(nvme_change_ctrl_state); |
651 | |
652 | /* |
653 | * Waits for the controller state to be resetting, or returns false if it is |
654 | * not possible to ever transition to that state. |
655 | */ |
656 | bool nvme_wait_reset(struct nvme_ctrl *ctrl) |
657 | { |
658 | wait_event(ctrl->state_wq, |
659 | nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) || |
660 | nvme_state_terminal(ctrl)); |
661 | return nvme_ctrl_state(ctrl) == NVME_CTRL_RESETTING; |
662 | } |
663 | EXPORT_SYMBOL_GPL(nvme_wait_reset); |
664 | |
665 | static void nvme_free_ns_head(struct kref *ref) |
666 | { |
667 | struct nvme_ns_head *head = |
668 | container_of(ref, struct nvme_ns_head, ref); |
669 | |
670 | nvme_mpath_put_disk(head); |
671 | ida_free(&head->subsys->ns_ida, id: head->instance); |
672 | cleanup_srcu_struct(ssp: &head->srcu); |
673 | nvme_put_subsystem(subsys: head->subsys); |
674 | kfree(objp: head->plids); |
675 | kfree(objp: head); |
676 | } |
677 | |
678 | bool nvme_tryget_ns_head(struct nvme_ns_head *head) |
679 | { |
680 | return kref_get_unless_zero(kref: &head->ref); |
681 | } |
682 | |
683 | void nvme_put_ns_head(struct nvme_ns_head *head) |
684 | { |
685 | kref_put(kref: &head->ref, release: nvme_free_ns_head); |
686 | } |
687 | |
688 | static void nvme_free_ns(struct kref *kref) |
689 | { |
690 | struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref); |
691 | |
692 | put_disk(disk: ns->disk); |
693 | nvme_put_ns_head(head: ns->head); |
694 | nvme_put_ctrl(ctrl: ns->ctrl); |
695 | kfree(objp: ns); |
696 | } |
697 | |
698 | bool nvme_get_ns(struct nvme_ns *ns) |
699 | { |
700 | return kref_get_unless_zero(kref: &ns->kref); |
701 | } |
702 | |
703 | void nvme_put_ns(struct nvme_ns *ns) |
704 | { |
705 | kref_put(kref: &ns->kref, release: nvme_free_ns); |
706 | } |
707 | EXPORT_SYMBOL_NS_GPL(nvme_put_ns, "NVME_TARGET_PASSTHRU"); |
708 | |
709 | static inline void nvme_clear_nvme_request(struct request *req) |
710 | { |
711 | nvme_req(req)->status = 0; |
712 | nvme_req(req)->retries = 0; |
713 | nvme_req(req)->flags = 0; |
714 | req->rq_flags |= RQF_DONTPREP; |
715 | } |
716 | |
717 | /* initialize a passthrough request */ |
718 | void nvme_init_request(struct request *req, struct nvme_command *cmd) |
719 | { |
720 | struct nvme_request *nr = nvme_req(req); |
721 | bool logging_enabled; |
722 | |
723 | if (req->q->queuedata) { |
724 | struct nvme_ns *ns = req->q->disk->private_data; |
725 | |
726 | logging_enabled = ns->head->passthru_err_log_enabled; |
727 | req->timeout = NVME_IO_TIMEOUT; |
728 | } else { /* no queuedata implies admin queue */ |
729 | logging_enabled = nr->ctrl->passthru_err_log_enabled; |
730 | req->timeout = NVME_ADMIN_TIMEOUT; |
731 | } |
732 | |
733 | if (!logging_enabled) |
734 | req->rq_flags |= RQF_QUIET; |
735 | |
736 | /* passthru commands should let the driver set the SGL flags */ |
737 | cmd->common.flags &= ~NVME_CMD_SGL_ALL; |
738 | |
739 | req->cmd_flags |= REQ_FAILFAST_DRIVER; |
740 | if (req->mq_hctx->type == HCTX_TYPE_POLL) |
741 | req->cmd_flags |= REQ_POLLED; |
742 | nvme_clear_nvme_request(req); |
743 | memcpy(nr->cmd, cmd, sizeof(*cmd)); |
744 | } |
745 | EXPORT_SYMBOL_GPL(nvme_init_request); |
746 | |
747 | /* |
748 | * For something we're not in a state to send to the device the default action |
749 | * is to busy it and retry it after the controller state is recovered. However, |
750 | * if the controller is deleting or if anything is marked for failfast or |
751 | * nvme multipath it is immediately failed. |
752 | * |
753 | * Note: commands used to initialize the controller will be marked for failfast. |
754 | * Note: nvme cli/ioctl commands are marked for failfast. |
755 | */ |
756 | blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl, |
757 | struct request *rq) |
758 | { |
759 | enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); |
760 | |
761 | if (state != NVME_CTRL_DELETING_NOIO && |
762 | state != NVME_CTRL_DELETING && |
763 | state != NVME_CTRL_DEAD && |
764 | !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) && |
765 | !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH)) |
766 | return BLK_STS_RESOURCE; |
767 | return nvme_host_path_error(rq); |
768 | } |
769 | EXPORT_SYMBOL_GPL(nvme_fail_nonready_command); |
770 | |
771 | bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq, |
772 | bool queue_live, enum nvme_ctrl_state state) |
773 | { |
774 | struct nvme_request *req = nvme_req(req: rq); |
775 | |
776 | /* |
777 | * currently we have a problem sending passthru commands |
778 | * on the admin_q if the controller is not LIVE because we can't |
779 | * make sure that they are going out after the admin connect, |
780 | * controller enable and/or other commands in the initialization |
781 | * sequence. until the controller will be LIVE, fail with |
782 | * BLK_STS_RESOURCE so that they will be rescheduled. |
783 | */ |
784 | if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD)) |
785 | return false; |
786 | |
787 | if (ctrl->ops->flags & NVME_F_FABRICS) { |
788 | /* |
789 | * Only allow commands on a live queue, except for the connect |
790 | * command, which is require to set the queue live in the |
791 | * appropinquate states. |
792 | */ |
793 | switch (state) { |
794 | case NVME_CTRL_CONNECTING: |
795 | if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(cmd: req->cmd) && |
796 | (req->cmd->fabrics.fctype == nvme_fabrics_type_connect || |
797 | req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send || |
798 | req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive)) |
799 | return true; |
800 | break; |
801 | default: |
802 | break; |
803 | case NVME_CTRL_DEAD: |
804 | return false; |
805 | } |
806 | } |
807 | |
808 | return queue_live; |
809 | } |
810 | EXPORT_SYMBOL_GPL(__nvme_check_ready); |
811 | |
812 | static inline void nvme_setup_flush(struct nvme_ns *ns, |
813 | struct nvme_command *cmnd) |
814 | { |
815 | memset(cmnd, 0, sizeof(*cmnd)); |
816 | cmnd->common.opcode = nvme_cmd_flush; |
817 | cmnd->common.nsid = cpu_to_le32(ns->head->ns_id); |
818 | } |
819 | |
820 | static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req, |
821 | struct nvme_command *cmnd) |
822 | { |
823 | unsigned short segments = blk_rq_nr_discard_segments(rq: req), n = 0; |
824 | struct nvme_dsm_range *range; |
825 | struct bio *bio; |
826 | |
827 | /* |
828 | * Some devices do not consider the DSM 'Number of Ranges' field when |
829 | * determining how much data to DMA. Always allocate memory for maximum |
830 | * number of segments to prevent device reading beyond end of buffer. |
831 | */ |
832 | static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES; |
833 | |
834 | range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN); |
835 | if (!range) { |
836 | /* |
837 | * If we fail allocation our range, fallback to the controller |
838 | * discard page. If that's also busy, it's safe to return |
839 | * busy, as we know we can make progress once that's freed. |
840 | */ |
841 | if (test_and_set_bit_lock(nr: 0, addr: &ns->ctrl->discard_page_busy)) |
842 | return BLK_STS_RESOURCE; |
843 | |
844 | range = page_address(ns->ctrl->discard_page); |
845 | } |
846 | |
847 | if (queue_max_discard_segments(q: req->q) == 1) { |
848 | u64 slba = nvme_sect_to_lba(head: ns->head, sector: blk_rq_pos(rq: req)); |
849 | u32 nlb = blk_rq_sectors(rq: req) >> (ns->head->lba_shift - 9); |
850 | |
851 | range[0].cattr = cpu_to_le32(0); |
852 | range[0].nlb = cpu_to_le32(nlb); |
853 | range[0].slba = cpu_to_le64(slba); |
854 | n = 1; |
855 | } else { |
856 | __rq_for_each_bio(bio, req) { |
857 | u64 slba = nvme_sect_to_lba(head: ns->head, |
858 | sector: bio->bi_iter.bi_sector); |
859 | u32 nlb = bio->bi_iter.bi_size >> ns->head->lba_shift; |
860 | |
861 | if (n < segments) { |
862 | range[n].cattr = cpu_to_le32(0); |
863 | range[n].nlb = cpu_to_le32(nlb); |
864 | range[n].slba = cpu_to_le64(slba); |
865 | } |
866 | n++; |
867 | } |
868 | } |
869 | |
870 | if (WARN_ON_ONCE(n != segments)) { |
871 | if (virt_to_page(range) == ns->ctrl->discard_page) |
872 | clear_bit_unlock(nr: 0, addr: &ns->ctrl->discard_page_busy); |
873 | else |
874 | kfree(objp: range); |
875 | return BLK_STS_IOERR; |
876 | } |
877 | |
878 | memset(cmnd, 0, sizeof(*cmnd)); |
879 | cmnd->dsm.opcode = nvme_cmd_dsm; |
880 | cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id); |
881 | cmnd->dsm.nr = cpu_to_le32(segments - 1); |
882 | cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD); |
883 | |
884 | bvec_set_virt(bv: &req->special_vec, vaddr: range, len: alloc_size); |
885 | req->rq_flags |= RQF_SPECIAL_PAYLOAD; |
886 | |
887 | return BLK_STS_OK; |
888 | } |
889 | |
890 | static void nvme_set_app_tag(struct request *req, struct nvme_command *cmnd) |
891 | { |
892 | cmnd->rw.lbat = cpu_to_le16(bio_integrity(req->bio)->app_tag); |
893 | cmnd->rw.lbatm = cpu_to_le16(0xffff); |
894 | } |
895 | |
896 | static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd, |
897 | struct request *req) |
898 | { |
899 | u32 upper, lower; |
900 | u64 ref48; |
901 | |
902 | /* both rw and write zeroes share the same reftag format */ |
903 | switch (ns->head->guard_type) { |
904 | case NVME_NVM_NS_16B_GUARD: |
905 | cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req)); |
906 | break; |
907 | case NVME_NVM_NS_64B_GUARD: |
908 | ref48 = ext_pi_ref_tag(rq: req); |
909 | lower = lower_32_bits(ref48); |
910 | upper = upper_32_bits(ref48); |
911 | |
912 | cmnd->rw.reftag = cpu_to_le32(lower); |
913 | cmnd->rw.cdw3 = cpu_to_le32(upper); |
914 | break; |
915 | default: |
916 | break; |
917 | } |
918 | } |
919 | |
920 | static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns, |
921 | struct request *req, struct nvme_command *cmnd) |
922 | { |
923 | memset(cmnd, 0, sizeof(*cmnd)); |
924 | |
925 | if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) |
926 | return nvme_setup_discard(ns, req, cmnd); |
927 | |
928 | cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes; |
929 | cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id); |
930 | cmnd->write_zeroes.slba = |
931 | cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); |
932 | cmnd->write_zeroes.length = |
933 | cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); |
934 | |
935 | if (!(req->cmd_flags & REQ_NOUNMAP) && |
936 | (ns->head->features & NVME_NS_DEAC)) |
937 | cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC); |
938 | |
939 | if (nvme_ns_has_pi(head: ns->head)) { |
940 | cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT); |
941 | |
942 | switch (ns->head->pi_type) { |
943 | case NVME_NS_DPS_PI_TYPE1: |
944 | case NVME_NS_DPS_PI_TYPE2: |
945 | nvme_set_ref_tag(ns, cmnd, req); |
946 | break; |
947 | } |
948 | } |
949 | |
950 | return BLK_STS_OK; |
951 | } |
952 | |
953 | /* |
954 | * NVMe does not support a dedicated command to issue an atomic write. A write |
955 | * which does adhere to the device atomic limits will silently be executed |
956 | * non-atomically. The request issuer should ensure that the write is within |
957 | * the queue atomic writes limits, but just validate this in case it is not. |
958 | */ |
959 | static bool nvme_valid_atomic_write(struct request *req) |
960 | { |
961 | struct request_queue *q = req->q; |
962 | u32 boundary_bytes = queue_atomic_write_boundary_bytes(q); |
963 | |
964 | if (blk_rq_bytes(rq: req) > queue_atomic_write_unit_max_bytes(q)) |
965 | return false; |
966 | |
967 | if (boundary_bytes) { |
968 | u64 mask = boundary_bytes - 1, imask = ~mask; |
969 | u64 start = blk_rq_pos(rq: req) << SECTOR_SHIFT; |
970 | u64 end = start + blk_rq_bytes(rq: req) - 1; |
971 | |
972 | /* If greater then must be crossing a boundary */ |
973 | if (blk_rq_bytes(rq: req) > boundary_bytes) |
974 | return false; |
975 | |
976 | if ((start & imask) != (end & imask)) |
977 | return false; |
978 | } |
979 | |
980 | return true; |
981 | } |
982 | |
983 | static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns, |
984 | struct request *req, struct nvme_command *cmnd, |
985 | enum nvme_opcode op) |
986 | { |
987 | u16 control = 0; |
988 | u32 dsmgmt = 0; |
989 | |
990 | if (req->cmd_flags & REQ_FUA) |
991 | control |= NVME_RW_FUA; |
992 | if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD)) |
993 | control |= NVME_RW_LR; |
994 | |
995 | if (req->cmd_flags & REQ_RAHEAD) |
996 | dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH; |
997 | |
998 | if (op == nvme_cmd_write && ns->head->nr_plids) { |
999 | u16 write_stream = req->bio->bi_write_stream; |
1000 | |
1001 | if (WARN_ON_ONCE(write_stream > ns->head->nr_plids)) |
1002 | return BLK_STS_INVAL; |
1003 | |
1004 | if (write_stream) { |
1005 | dsmgmt |= ns->head->plids[write_stream - 1] << 16; |
1006 | control |= NVME_RW_DTYPE_DPLCMT; |
1007 | } |
1008 | } |
1009 | |
1010 | if (req->cmd_flags & REQ_ATOMIC && !nvme_valid_atomic_write(req)) |
1011 | return BLK_STS_INVAL; |
1012 | |
1013 | cmnd->rw.opcode = op; |
1014 | cmnd->rw.flags = 0; |
1015 | cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id); |
1016 | cmnd->rw.cdw2 = 0; |
1017 | cmnd->rw.cdw3 = 0; |
1018 | cmnd->rw.metadata = 0; |
1019 | cmnd->rw.slba = |
1020 | cpu_to_le64(nvme_sect_to_lba(ns->head, blk_rq_pos(req))); |
1021 | cmnd->rw.length = |
1022 | cpu_to_le16((blk_rq_bytes(req) >> ns->head->lba_shift) - 1); |
1023 | cmnd->rw.reftag = 0; |
1024 | cmnd->rw.lbat = 0; |
1025 | cmnd->rw.lbatm = 0; |
1026 | |
1027 | if (ns->head->ms) { |
1028 | /* |
1029 | * If formatted with metadata, the block layer always provides a |
1030 | * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else |
1031 | * we enable the PRACT bit for protection information or set the |
1032 | * namespace capacity to zero to prevent any I/O. |
1033 | */ |
1034 | if (!blk_integrity_rq(rq: req)) { |
1035 | if (WARN_ON_ONCE(!nvme_ns_has_pi(ns->head))) |
1036 | return BLK_STS_NOTSUPP; |
1037 | control |= NVME_RW_PRINFO_PRACT; |
1038 | } |
1039 | |
1040 | if (bio_integrity_flagged(bio: req->bio, flag: BIP_CHECK_GUARD)) |
1041 | control |= NVME_RW_PRINFO_PRCHK_GUARD; |
1042 | if (bio_integrity_flagged(bio: req->bio, flag: BIP_CHECK_REFTAG)) { |
1043 | control |= NVME_RW_PRINFO_PRCHK_REF; |
1044 | if (op == nvme_cmd_zone_append) |
1045 | control |= NVME_RW_APPEND_PIREMAP; |
1046 | nvme_set_ref_tag(ns, cmnd, req); |
1047 | } |
1048 | if (bio_integrity_flagged(bio: req->bio, flag: BIP_CHECK_APPTAG)) { |
1049 | control |= NVME_RW_PRINFO_PRCHK_APP; |
1050 | nvme_set_app_tag(req, cmnd); |
1051 | } |
1052 | } |
1053 | |
1054 | cmnd->rw.control = cpu_to_le16(control); |
1055 | cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt); |
1056 | return 0; |
1057 | } |
1058 | |
1059 | void nvme_cleanup_cmd(struct request *req) |
1060 | { |
1061 | if (req->rq_flags & RQF_SPECIAL_PAYLOAD) { |
1062 | struct nvme_ctrl *ctrl = nvme_req(req)->ctrl; |
1063 | |
1064 | if (req->special_vec.bv_page == ctrl->discard_page) |
1065 | clear_bit_unlock(nr: 0, addr: &ctrl->discard_page_busy); |
1066 | else |
1067 | kfree(objp: bvec_virt(bvec: &req->special_vec)); |
1068 | req->rq_flags &= ~RQF_SPECIAL_PAYLOAD; |
1069 | } |
1070 | } |
1071 | EXPORT_SYMBOL_GPL(nvme_cleanup_cmd); |
1072 | |
1073 | blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req) |
1074 | { |
1075 | struct nvme_command *cmd = nvme_req(req)->cmd; |
1076 | blk_status_t ret = BLK_STS_OK; |
1077 | |
1078 | if (!(req->rq_flags & RQF_DONTPREP)) |
1079 | nvme_clear_nvme_request(req); |
1080 | |
1081 | switch (req_op(req)) { |
1082 | case REQ_OP_DRV_IN: |
1083 | case REQ_OP_DRV_OUT: |
1084 | /* these are setup prior to execution in nvme_init_request() */ |
1085 | break; |
1086 | case REQ_OP_FLUSH: |
1087 | nvme_setup_flush(ns, cmnd: cmd); |
1088 | break; |
1089 | case REQ_OP_ZONE_RESET_ALL: |
1090 | case REQ_OP_ZONE_RESET: |
1091 | ret = nvme_setup_zone_mgmt_send(ns, req, cmnd: cmd, action: NVME_ZONE_RESET); |
1092 | break; |
1093 | case REQ_OP_ZONE_OPEN: |
1094 | ret = nvme_setup_zone_mgmt_send(ns, req, cmnd: cmd, action: NVME_ZONE_OPEN); |
1095 | break; |
1096 | case REQ_OP_ZONE_CLOSE: |
1097 | ret = nvme_setup_zone_mgmt_send(ns, req, cmnd: cmd, action: NVME_ZONE_CLOSE); |
1098 | break; |
1099 | case REQ_OP_ZONE_FINISH: |
1100 | ret = nvme_setup_zone_mgmt_send(ns, req, cmnd: cmd, action: NVME_ZONE_FINISH); |
1101 | break; |
1102 | case REQ_OP_WRITE_ZEROES: |
1103 | ret = nvme_setup_write_zeroes(ns, req, cmnd: cmd); |
1104 | break; |
1105 | case REQ_OP_DISCARD: |
1106 | ret = nvme_setup_discard(ns, req, cmnd: cmd); |
1107 | break; |
1108 | case REQ_OP_READ: |
1109 | ret = nvme_setup_rw(ns, req, cmnd: cmd, op: nvme_cmd_read); |
1110 | break; |
1111 | case REQ_OP_WRITE: |
1112 | ret = nvme_setup_rw(ns, req, cmnd: cmd, op: nvme_cmd_write); |
1113 | break; |
1114 | case REQ_OP_ZONE_APPEND: |
1115 | ret = nvme_setup_rw(ns, req, cmnd: cmd, op: nvme_cmd_zone_append); |
1116 | break; |
1117 | default: |
1118 | WARN_ON_ONCE(1); |
1119 | return BLK_STS_IOERR; |
1120 | } |
1121 | |
1122 | cmd->common.command_id = nvme_cid(rq: req); |
1123 | trace_nvme_setup_cmd(req, cmd); |
1124 | return ret; |
1125 | } |
1126 | EXPORT_SYMBOL_GPL(nvme_setup_cmd); |
1127 | |
1128 | /* |
1129 | * Return values: |
1130 | * 0: success |
1131 | * >0: nvme controller's cqe status response |
1132 | * <0: kernel error in lieu of controller response |
1133 | */ |
1134 | int nvme_execute_rq(struct request *rq, bool at_head) |
1135 | { |
1136 | blk_status_t status; |
1137 | |
1138 | status = blk_execute_rq(rq, at_head); |
1139 | if (nvme_req(req: rq)->flags & NVME_REQ_CANCELLED) |
1140 | return -EINTR; |
1141 | if (nvme_req(req: rq)->status) |
1142 | return nvme_req(req: rq)->status; |
1143 | return blk_status_to_errno(status); |
1144 | } |
1145 | EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, "NVME_TARGET_PASSTHRU"); |
1146 | |
1147 | /* |
1148 | * Returns 0 on success. If the result is negative, it's a Linux error code; |
1149 | * if the result is positive, it's an NVM Express status code |
1150 | */ |
1151 | int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, |
1152 | union nvme_result *result, void *buffer, unsigned bufflen, |
1153 | int qid, nvme_submit_flags_t flags) |
1154 | { |
1155 | struct request *req; |
1156 | int ret; |
1157 | blk_mq_req_flags_t blk_flags = 0; |
1158 | |
1159 | if (flags & NVME_SUBMIT_NOWAIT) |
1160 | blk_flags |= BLK_MQ_REQ_NOWAIT; |
1161 | if (flags & NVME_SUBMIT_RESERVED) |
1162 | blk_flags |= BLK_MQ_REQ_RESERVED; |
1163 | if (qid == NVME_QID_ANY) |
1164 | req = blk_mq_alloc_request(q, opf: nvme_req_op(cmd), flags: blk_flags); |
1165 | else |
1166 | req = blk_mq_alloc_request_hctx(q, opf: nvme_req_op(cmd), flags: blk_flags, |
1167 | hctx_idx: qid - 1); |
1168 | |
1169 | if (IS_ERR(ptr: req)) |
1170 | return PTR_ERR(ptr: req); |
1171 | nvme_init_request(req, cmd); |
1172 | if (flags & NVME_SUBMIT_RETRY) |
1173 | req->cmd_flags &= ~REQ_FAILFAST_DRIVER; |
1174 | |
1175 | if (buffer && bufflen) { |
1176 | ret = blk_rq_map_kern(rq: req, kbuf: buffer, len: bufflen, GFP_KERNEL); |
1177 | if (ret) |
1178 | goto out; |
1179 | } |
1180 | |
1181 | ret = nvme_execute_rq(req, flags & NVME_SUBMIT_AT_HEAD); |
1182 | if (result && ret >= 0) |
1183 | *result = nvme_req(req)->result; |
1184 | out: |
1185 | blk_mq_free_request(rq: req); |
1186 | return ret; |
1187 | } |
1188 | EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd); |
1189 | |
1190 | int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd, |
1191 | void *buffer, unsigned bufflen) |
1192 | { |
1193 | return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, |
1194 | NVME_QID_ANY, 0); |
1195 | } |
1196 | EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd); |
1197 | |
1198 | u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) |
1199 | { |
1200 | u32 effects = 0; |
1201 | |
1202 | if (ns) { |
1203 | effects = le32_to_cpu(ns->head->effects->iocs[opcode]); |
1204 | if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC)) |
1205 | dev_warn_once(ctrl->device, |
1206 | "IO command:%02x has unusual effects:%08x\n", |
1207 | opcode, effects); |
1208 | |
1209 | /* |
1210 | * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues, |
1211 | * which would deadlock when done on an I/O command. Note that |
1212 | * We already warn about an unusual effect above. |
1213 | */ |
1214 | effects &= ~NVME_CMD_EFFECTS_CSE_MASK; |
1215 | } else { |
1216 | effects = le32_to_cpu(ctrl->effects->acs[opcode]); |
1217 | |
1218 | /* Ignore execution restrictions if any relaxation bits are set */ |
1219 | if (effects & NVME_CMD_EFFECTS_CSER_MASK) |
1220 | effects &= ~NVME_CMD_EFFECTS_CSE_MASK; |
1221 | } |
1222 | |
1223 | return effects; |
1224 | } |
1225 | EXPORT_SYMBOL_NS_GPL(nvme_command_effects, "NVME_TARGET_PASSTHRU"); |
1226 | |
1227 | u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode) |
1228 | { |
1229 | u32 effects = nvme_command_effects(ctrl, ns, opcode); |
1230 | |
1231 | /* |
1232 | * For simplicity, IO to all namespaces is quiesced even if the command |
1233 | * effects say only one namespace is affected. |
1234 | */ |
1235 | if (effects & NVME_CMD_EFFECTS_CSE_MASK) { |
1236 | mutex_lock(&ctrl->scan_lock); |
1237 | mutex_lock(&ctrl->subsys->lock); |
1238 | nvme_mpath_start_freeze(subsys: ctrl->subsys); |
1239 | nvme_mpath_wait_freeze(subsys: ctrl->subsys); |
1240 | nvme_start_freeze(ctrl); |
1241 | nvme_wait_freeze(ctrl); |
1242 | } |
1243 | return effects; |
1244 | } |
1245 | EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, "NVME_TARGET_PASSTHRU"); |
1246 | |
1247 | void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects, |
1248 | struct nvme_command *cmd, int status) |
1249 | { |
1250 | if (effects & NVME_CMD_EFFECTS_CSE_MASK) { |
1251 | nvme_unfreeze(ctrl); |
1252 | nvme_mpath_unfreeze(subsys: ctrl->subsys); |
1253 | mutex_unlock(lock: &ctrl->subsys->lock); |
1254 | mutex_unlock(lock: &ctrl->scan_lock); |
1255 | } |
1256 | if (effects & NVME_CMD_EFFECTS_CCC) { |
1257 | if (!test_and_set_bit(nr: NVME_CTRL_DIRTY_CAPABILITY, |
1258 | addr: &ctrl->flags)) { |
1259 | dev_info(ctrl->device, |
1260 | "controller capabilities changed, reset may be required to take effect.\n"); |
1261 | } |
1262 | } |
1263 | if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) { |
1264 | nvme_queue_scan(ctrl); |
1265 | flush_work(work: &ctrl->scan_work); |
1266 | } |
1267 | if (ns) |
1268 | return; |
1269 | |
1270 | switch (cmd->common.opcode) { |
1271 | case nvme_admin_set_features: |
1272 | switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) { |
1273 | case NVME_FEAT_KATO: |
1274 | /* |
1275 | * Keep alive commands interval on the host should be |
1276 | * updated when KATO is modified by Set Features |
1277 | * commands. |
1278 | */ |
1279 | if (!status) |
1280 | nvme_update_keep_alive(ctrl, cmd); |
1281 | break; |
1282 | default: |
1283 | break; |
1284 | } |
1285 | break; |
1286 | default: |
1287 | break; |
1288 | } |
1289 | } |
1290 | EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, "NVME_TARGET_PASSTHRU"); |
1291 | |
1292 | /* |
1293 | * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1: |
1294 | * |
1295 | * The host should send Keep Alive commands at half of the Keep Alive Timeout |
1296 | * accounting for transport roundtrip times [..]. |
1297 | */ |
1298 | static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl) |
1299 | { |
1300 | unsigned long delay = ctrl->kato * HZ / 2; |
1301 | |
1302 | /* |
1303 | * When using Traffic Based Keep Alive, we need to run |
1304 | * nvme_keep_alive_work at twice the normal frequency, as one |
1305 | * command completion can postpone sending a keep alive command |
1306 | * by up to twice the delay between runs. |
1307 | */ |
1308 | if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) |
1309 | delay /= 2; |
1310 | return delay; |
1311 | } |
1312 | |
1313 | static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl) |
1314 | { |
1315 | unsigned long now = jiffies; |
1316 | unsigned long delay = nvme_keep_alive_work_period(ctrl); |
1317 | unsigned long ka_next_check_tm = ctrl->ka_last_check_time + delay; |
1318 | |
1319 | if (time_after(now, ka_next_check_tm)) |
1320 | delay = 0; |
1321 | else |
1322 | delay = ka_next_check_tm - now; |
1323 | |
1324 | queue_delayed_work(wq: nvme_wq, dwork: &ctrl->ka_work, delay); |
1325 | } |
1326 | |
1327 | static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq, |
1328 | blk_status_t status) |
1329 | { |
1330 | struct nvme_ctrl *ctrl = rq->end_io_data; |
1331 | unsigned long rtt = jiffies - (rq->deadline - rq->timeout); |
1332 | unsigned long delay = nvme_keep_alive_work_period(ctrl); |
1333 | enum nvme_ctrl_state state = nvme_ctrl_state(ctrl); |
1334 | |
1335 | /* |
1336 | * Subtract off the keepalive RTT so nvme_keep_alive_work runs |
1337 | * at the desired frequency. |
1338 | */ |
1339 | if (rtt <= delay) { |
1340 | delay -= rtt; |
1341 | } else { |
1342 | dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n", |
1343 | jiffies_to_msecs(rtt)); |
1344 | delay = 0; |
1345 | } |
1346 | |
1347 | blk_mq_free_request(rq); |
1348 | |
1349 | if (status) { |
1350 | dev_err(ctrl->device, |
1351 | "failed nvme_keep_alive_end_io error=%d\n", |
1352 | status); |
1353 | return RQ_END_IO_NONE; |
1354 | } |
1355 | |
1356 | ctrl->ka_last_check_time = jiffies; |
1357 | ctrl->comp_seen = false; |
1358 | if (state == NVME_CTRL_LIVE || state == NVME_CTRL_CONNECTING) |
1359 | queue_delayed_work(wq: nvme_wq, dwork: &ctrl->ka_work, delay); |
1360 | return RQ_END_IO_NONE; |
1361 | } |
1362 | |
1363 | static void nvme_keep_alive_work(struct work_struct *work) |
1364 | { |
1365 | struct nvme_ctrl *ctrl = container_of(to_delayed_work(work), |
1366 | struct nvme_ctrl, ka_work); |
1367 | bool comp_seen = ctrl->comp_seen; |
1368 | struct request *rq; |
1369 | |
1370 | ctrl->ka_last_check_time = jiffies; |
1371 | |
1372 | if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) { |
1373 | dev_dbg(ctrl->device, |
1374 | "reschedule traffic based keep-alive timer\n"); |
1375 | ctrl->comp_seen = false; |
1376 | nvme_queue_keep_alive_work(ctrl); |
1377 | return; |
1378 | } |
1379 | |
1380 | rq = blk_mq_alloc_request(q: ctrl->admin_q, opf: nvme_req_op(cmd: &ctrl->ka_cmd), |
1381 | flags: BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT); |
1382 | if (IS_ERR(ptr: rq)) { |
1383 | /* allocation failure, reset the controller */ |
1384 | dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq)); |
1385 | nvme_reset_ctrl(ctrl); |
1386 | return; |
1387 | } |
1388 | nvme_init_request(rq, &ctrl->ka_cmd); |
1389 | |
1390 | rq->timeout = ctrl->kato * HZ; |
1391 | rq->end_io = nvme_keep_alive_end_io; |
1392 | rq->end_io_data = ctrl; |
1393 | blk_execute_rq_nowait(rq, at_head: false); |
1394 | } |
1395 | |
1396 | static void nvme_start_keep_alive(struct nvme_ctrl *ctrl) |
1397 | { |
1398 | if (unlikely(ctrl->kato == 0)) |
1399 | return; |
1400 | |
1401 | nvme_queue_keep_alive_work(ctrl); |
1402 | } |
1403 | |
1404 | void nvme_stop_keep_alive(struct nvme_ctrl *ctrl) |
1405 | { |
1406 | if (unlikely(ctrl->kato == 0)) |
1407 | return; |
1408 | |
1409 | cancel_delayed_work_sync(dwork: &ctrl->ka_work); |
1410 | } |
1411 | EXPORT_SYMBOL_GPL(nvme_stop_keep_alive); |
1412 | |
1413 | static void nvme_update_keep_alive(struct nvme_ctrl *ctrl, |
1414 | struct nvme_command *cmd) |
1415 | { |
1416 | unsigned int new_kato = |
1417 | DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000); |
1418 | |
1419 | dev_info(ctrl->device, |
1420 | "keep alive interval updated from %u ms to %u ms\n", |
1421 | ctrl->kato * 1000 / 2, new_kato * 1000 / 2); |
1422 | |
1423 | nvme_stop_keep_alive(ctrl); |
1424 | ctrl->kato = new_kato; |
1425 | nvme_start_keep_alive(ctrl); |
1426 | } |
1427 | |
1428 | static bool nvme_id_cns_ok(struct nvme_ctrl *ctrl, u8 cns) |
1429 | { |
1430 | /* |
1431 | * The CNS field occupies a full byte starting with NVMe 1.2 |
1432 | */ |
1433 | if (ctrl->vs >= NVME_VS(1, 2, 0)) |
1434 | return true; |
1435 | |
1436 | /* |
1437 | * NVMe 1.1 expanded the CNS value to two bits, which means values |
1438 | * larger than that could get truncated and treated as an incorrect |
1439 | * value. |
1440 | * |
1441 | * Qemu implemented 1.0 behavior for controllers claiming 1.1 |
1442 | * compliance, so they need to be quirked here. |
1443 | */ |
1444 | if (ctrl->vs >= NVME_VS(1, 1, 0) && |
1445 | !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) |
1446 | return cns <= 3; |
1447 | |
1448 | /* |
1449 | * NVMe 1.0 used a single bit for the CNS value. |
1450 | */ |
1451 | return cns <= 1; |
1452 | } |
1453 | |
1454 | static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id) |
1455 | { |
1456 | struct nvme_command c = { }; |
1457 | int error; |
1458 | |
1459 | /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ |
1460 | c.identify.opcode = nvme_admin_identify; |
1461 | c.identify.cns = NVME_ID_CNS_CTRL; |
1462 | |
1463 | *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL); |
1464 | if (!*id) |
1465 | return -ENOMEM; |
1466 | |
1467 | error = nvme_submit_sync_cmd(dev->admin_q, &c, *id, |
1468 | sizeof(struct nvme_id_ctrl)); |
1469 | if (error) { |
1470 | kfree(objp: *id); |
1471 | *id = NULL; |
1472 | } |
1473 | return error; |
1474 | } |
1475 | |
1476 | static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids, |
1477 | struct nvme_ns_id_desc *cur, bool *csi_seen) |
1478 | { |
1479 | const char *warn_str = "ctrl returned bogus length:"; |
1480 | void *data = cur; |
1481 | |
1482 | switch (cur->nidt) { |
1483 | case NVME_NIDT_EUI64: |
1484 | if (cur->nidl != NVME_NIDT_EUI64_LEN) { |
1485 | dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n", |
1486 | warn_str, cur->nidl); |
1487 | return -1; |
1488 | } |
1489 | if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) |
1490 | return NVME_NIDT_EUI64_LEN; |
1491 | memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN); |
1492 | return NVME_NIDT_EUI64_LEN; |
1493 | case NVME_NIDT_NGUID: |
1494 | if (cur->nidl != NVME_NIDT_NGUID_LEN) { |
1495 | dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n", |
1496 | warn_str, cur->nidl); |
1497 | return -1; |
1498 | } |
1499 | if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) |
1500 | return NVME_NIDT_NGUID_LEN; |
1501 | memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN); |
1502 | return NVME_NIDT_NGUID_LEN; |
1503 | case NVME_NIDT_UUID: |
1504 | if (cur->nidl != NVME_NIDT_UUID_LEN) { |
1505 | dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n", |
1506 | warn_str, cur->nidl); |
1507 | return -1; |
1508 | } |
1509 | if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) |
1510 | return NVME_NIDT_UUID_LEN; |
1511 | uuid_copy(dst: &ids->uuid, src: data + sizeof(*cur)); |
1512 | return NVME_NIDT_UUID_LEN; |
1513 | case NVME_NIDT_CSI: |
1514 | if (cur->nidl != NVME_NIDT_CSI_LEN) { |
1515 | dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n", |
1516 | warn_str, cur->nidl); |
1517 | return -1; |
1518 | } |
1519 | memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN); |
1520 | *csi_seen = true; |
1521 | return NVME_NIDT_CSI_LEN; |
1522 | default: |
1523 | /* Skip unknown types */ |
1524 | return cur->nidl; |
1525 | } |
1526 | } |
1527 | |
1528 | static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, |
1529 | struct nvme_ns_info *info) |
1530 | { |
1531 | struct nvme_command c = { }; |
1532 | bool csi_seen = false; |
1533 | int status, pos, len; |
1534 | void *data; |
1535 | |
1536 | if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl)) |
1537 | return 0; |
1538 | if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST) |
1539 | return 0; |
1540 | |
1541 | c.identify.opcode = nvme_admin_identify; |
1542 | c.identify.nsid = cpu_to_le32(info->nsid); |
1543 | c.identify.cns = NVME_ID_CNS_NS_DESC_LIST; |
1544 | |
1545 | data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); |
1546 | if (!data) |
1547 | return -ENOMEM; |
1548 | |
1549 | status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data, |
1550 | NVME_IDENTIFY_DATA_SIZE); |
1551 | if (status) { |
1552 | dev_warn(ctrl->device, |
1553 | "Identify Descriptors failed (nsid=%u, status=0x%x)\n", |
1554 | info->nsid, status); |
1555 | goto free_data; |
1556 | } |
1557 | |
1558 | for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) { |
1559 | struct nvme_ns_id_desc *cur = data + pos; |
1560 | |
1561 | if (cur->nidl == 0) |
1562 | break; |
1563 | |
1564 | len = nvme_process_ns_desc(ctrl, ids: &info->ids, cur, csi_seen: &csi_seen); |
1565 | if (len < 0) |
1566 | break; |
1567 | |
1568 | len += sizeof(*cur); |
1569 | } |
1570 | |
1571 | if (nvme_multi_css(ctrl) && !csi_seen) { |
1572 | dev_warn(ctrl->device, "Command set not reported for nsid:%d\n", |
1573 | info->nsid); |
1574 | status = -EINVAL; |
1575 | } |
1576 | |
1577 | free_data: |
1578 | kfree(objp: data); |
1579 | return status; |
1580 | } |
1581 | |
1582 | int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid, |
1583 | struct nvme_id_ns **id) |
1584 | { |
1585 | struct nvme_command c = { }; |
1586 | int error; |
1587 | |
1588 | /* gcc-4.4.4 (at least) has issues with initializers and anon unions */ |
1589 | c.identify.opcode = nvme_admin_identify; |
1590 | c.identify.nsid = cpu_to_le32(nsid); |
1591 | c.identify.cns = NVME_ID_CNS_NS; |
1592 | |
1593 | *id = kmalloc(sizeof(**id), GFP_KERNEL); |
1594 | if (!*id) |
1595 | return -ENOMEM; |
1596 | |
1597 | error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id)); |
1598 | if (error) { |
1599 | dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error); |
1600 | kfree(objp: *id); |
1601 | *id = NULL; |
1602 | } |
1603 | return error; |
1604 | } |
1605 | |
1606 | static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl, |
1607 | struct nvme_ns_info *info) |
1608 | { |
1609 | struct nvme_ns_ids *ids = &info->ids; |
1610 | struct nvme_id_ns *id; |
1611 | int ret; |
1612 | |
1613 | ret = nvme_identify_ns(ctrl, nsid: info->nsid, id: &id); |
1614 | if (ret) |
1615 | return ret; |
1616 | |
1617 | if (id->ncap == 0) { |
1618 | /* namespace not allocated or attached */ |
1619 | info->is_removed = true; |
1620 | ret = -ENODEV; |
1621 | goto error; |
1622 | } |
1623 | |
1624 | info->anagrpid = id->anagrpid; |
1625 | info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; |
1626 | info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; |
1627 | info->is_ready = true; |
1628 | info->endgid = le16_to_cpu(id->endgid); |
1629 | if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) { |
1630 | dev_info(ctrl->device, |
1631 | "Ignoring bogus Namespace Identifiers\n"); |
1632 | } else { |
1633 | if (ctrl->vs >= NVME_VS(1, 1, 0) && |
1634 | !memchr_inv(p: ids->eui64, c: 0, size: sizeof(ids->eui64))) |
1635 | memcpy(ids->eui64, id->eui64, sizeof(ids->eui64)); |
1636 | if (ctrl->vs >= NVME_VS(1, 2, 0) && |
1637 | !memchr_inv(p: ids->nguid, c: 0, size: sizeof(ids->nguid))) |
1638 | memcpy(ids->nguid, id->nguid, sizeof(ids->nguid)); |
1639 | } |
1640 | |
1641 | error: |
1642 | kfree(objp: id); |
1643 | return ret; |
1644 | } |
1645 | |
1646 | static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl, |
1647 | struct nvme_ns_info *info) |
1648 | { |
1649 | struct nvme_id_ns_cs_indep *id; |
1650 | struct nvme_command c = { |
1651 | .identify.opcode = nvme_admin_identify, |
1652 | .identify.nsid = cpu_to_le32(info->nsid), |
1653 | .identify.cns = NVME_ID_CNS_NS_CS_INDEP, |
1654 | }; |
1655 | int ret; |
1656 | |
1657 | id = kmalloc(sizeof(*id), GFP_KERNEL); |
1658 | if (!id) |
1659 | return -ENOMEM; |
1660 | |
1661 | ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); |
1662 | if (!ret) { |
1663 | info->anagrpid = id->anagrpid; |
1664 | info->is_shared = id->nmic & NVME_NS_NMIC_SHARED; |
1665 | info->is_readonly = id->nsattr & NVME_NS_ATTR_RO; |
1666 | info->is_ready = id->nstat & NVME_NSTAT_NRDY; |
1667 | info->is_rotational = id->nsfeat & NVME_NS_ROTATIONAL; |
1668 | info->no_vwc = id->nsfeat & NVME_NS_VWC_NOT_PRESENT; |
1669 | info->endgid = le16_to_cpu(id->endgid); |
1670 | } |
1671 | kfree(objp: id); |
1672 | return ret; |
1673 | } |
1674 | |
1675 | static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid, |
1676 | unsigned int dword11, void *buffer, size_t buflen, u32 *result) |
1677 | { |
1678 | union nvme_result res = { 0 }; |
1679 | struct nvme_command c = { }; |
1680 | int ret; |
1681 | |
1682 | c.features.opcode = op; |
1683 | c.features.fid = cpu_to_le32(fid); |
1684 | c.features.dword11 = cpu_to_le32(dword11); |
1685 | |
1686 | ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res, |
1687 | buffer, buflen, NVME_QID_ANY, 0); |
1688 | if (ret >= 0 && result) |
1689 | *result = le32_to_cpu(res.u32); |
1690 | return ret; |
1691 | } |
1692 | |
1693 | int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid, |
1694 | unsigned int dword11, void *buffer, size_t buflen, |
1695 | void *result) |
1696 | { |
1697 | return nvme_features(dev, op: nvme_admin_set_features, fid, dword11, buffer, |
1698 | buflen, result); |
1699 | } |
1700 | EXPORT_SYMBOL_GPL(nvme_set_features); |
1701 | |
1702 | int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid, |
1703 | unsigned int dword11, void *buffer, size_t buflen, |
1704 | void *result) |
1705 | { |
1706 | return nvme_features(dev, op: nvme_admin_get_features, fid, dword11, buffer, |
1707 | buflen, result); |
1708 | } |
1709 | EXPORT_SYMBOL_GPL(nvme_get_features); |
1710 | |
1711 | int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count) |
1712 | { |
1713 | u32 q_count = (*count - 1) | ((*count - 1) << 16); |
1714 | u32 result; |
1715 | int status, nr_io_queues; |
1716 | |
1717 | status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0, |
1718 | &result); |
1719 | |
1720 | /* |
1721 | * It's either a kernel error or the host observed a connection |
1722 | * lost. In either case it's not possible communicate with the |
1723 | * controller and thus enter the error code path. |
1724 | */ |
1725 | if (status < 0 || status == NVME_SC_HOST_PATH_ERROR) |
1726 | return status; |
1727 | |
1728 | /* |
1729 | * Degraded controllers might return an error when setting the queue |
1730 | * count. We still want to be able to bring them online and offer |
1731 | * access to the admin queue, as that might be only way to fix them up. |
1732 | */ |
1733 | if (status > 0) { |
1734 | dev_err(ctrl->device, "Could not set queue count (%d)\n", status); |
1735 | *count = 0; |
1736 | } else { |
1737 | nr_io_queues = min(result & 0xffff, result >> 16) + 1; |
1738 | *count = min(*count, nr_io_queues); |
1739 | } |
1740 | |
1741 | return 0; |
1742 | } |
1743 | EXPORT_SYMBOL_GPL(nvme_set_queue_count); |
1744 | |
1745 | #define NVME_AEN_SUPPORTED \ |
1746 | (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \ |
1747 | NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE) |
1748 | |
1749 | static void nvme_enable_aen(struct nvme_ctrl *ctrl) |
1750 | { |
1751 | u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED; |
1752 | int status; |
1753 | |
1754 | if (!supported_aens) |
1755 | return; |
1756 | |
1757 | status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens, |
1758 | NULL, 0, &result); |
1759 | if (status) |
1760 | dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n", |
1761 | supported_aens); |
1762 | |
1763 | queue_work(wq: nvme_wq, work: &ctrl->async_event_work); |
1764 | } |
1765 | |
1766 | static int nvme_ns_open(struct nvme_ns *ns) |
1767 | { |
1768 | |
1769 | /* should never be called due to GENHD_FL_HIDDEN */ |
1770 | if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head))) |
1771 | goto fail; |
1772 | if (!nvme_get_ns(ns)) |
1773 | goto fail; |
1774 | if (!try_module_get(module: ns->ctrl->ops->module)) |
1775 | goto fail_put_ns; |
1776 | |
1777 | return 0; |
1778 | |
1779 | fail_put_ns: |
1780 | nvme_put_ns(ns); |
1781 | fail: |
1782 | return -ENXIO; |
1783 | } |
1784 | |
1785 | static void nvme_ns_release(struct nvme_ns *ns) |
1786 | { |
1787 | |
1788 | module_put(module: ns->ctrl->ops->module); |
1789 | nvme_put_ns(ns); |
1790 | } |
1791 | |
1792 | static int nvme_open(struct gendisk *disk, blk_mode_t mode) |
1793 | { |
1794 | return nvme_ns_open(ns: disk->private_data); |
1795 | } |
1796 | |
1797 | static void nvme_release(struct gendisk *disk) |
1798 | { |
1799 | nvme_ns_release(ns: disk->private_data); |
1800 | } |
1801 | |
1802 | int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo) |
1803 | { |
1804 | /* some standard values */ |
1805 | geo->heads = 1 << 6; |
1806 | geo->sectors = 1 << 5; |
1807 | geo->cylinders = get_capacity(disk: bdev->bd_disk) >> 11; |
1808 | return 0; |
1809 | } |
1810 | |
1811 | static bool nvme_init_integrity(struct nvme_ns_head *head, |
1812 | struct queue_limits *lim, struct nvme_ns_info *info) |
1813 | { |
1814 | struct blk_integrity *bi = &lim->integrity; |
1815 | |
1816 | memset(bi, 0, sizeof(*bi)); |
1817 | |
1818 | if (!head->ms) |
1819 | return true; |
1820 | |
1821 | /* |
1822 | * PI can always be supported as we can ask the controller to simply |
1823 | * insert/strip it, which is not possible for other kinds of metadata. |
1824 | */ |
1825 | if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) || |
1826 | !(head->features & NVME_NS_METADATA_SUPPORTED)) |
1827 | return nvme_ns_has_pi(head); |
1828 | |
1829 | switch (head->pi_type) { |
1830 | case NVME_NS_DPS_PI_TYPE3: |
1831 | switch (head->guard_type) { |
1832 | case NVME_NVM_NS_16B_GUARD: |
1833 | bi->csum_type = BLK_INTEGRITY_CSUM_CRC; |
1834 | bi->tag_size = sizeof(u16) + sizeof(u32); |
1835 | bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; |
1836 | break; |
1837 | case NVME_NVM_NS_64B_GUARD: |
1838 | bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; |
1839 | bi->tag_size = sizeof(u16) + 6; |
1840 | bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE; |
1841 | break; |
1842 | default: |
1843 | break; |
1844 | } |
1845 | break; |
1846 | case NVME_NS_DPS_PI_TYPE1: |
1847 | case NVME_NS_DPS_PI_TYPE2: |
1848 | switch (head->guard_type) { |
1849 | case NVME_NVM_NS_16B_GUARD: |
1850 | bi->csum_type = BLK_INTEGRITY_CSUM_CRC; |
1851 | bi->tag_size = sizeof(u16); |
1852 | bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | |
1853 | BLK_INTEGRITY_REF_TAG; |
1854 | break; |
1855 | case NVME_NVM_NS_64B_GUARD: |
1856 | bi->csum_type = BLK_INTEGRITY_CSUM_CRC64; |
1857 | bi->tag_size = sizeof(u16); |
1858 | bi->flags |= BLK_INTEGRITY_DEVICE_CAPABLE | |
1859 | BLK_INTEGRITY_REF_TAG; |
1860 | break; |
1861 | default: |
1862 | break; |
1863 | } |
1864 | break; |
1865 | default: |
1866 | break; |
1867 | } |
1868 | |
1869 | bi->tuple_size = head->ms; |
1870 | bi->pi_offset = info->pi_offset; |
1871 | return true; |
1872 | } |
1873 | |
1874 | static void nvme_config_discard(struct nvme_ns *ns, struct queue_limits *lim) |
1875 | { |
1876 | struct nvme_ctrl *ctrl = ns->ctrl; |
1877 | |
1878 | if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(head: ns->head, UINT_MAX)) |
1879 | lim->max_hw_discard_sectors = |
1880 | nvme_lba_to_sect(head: ns->head, lba: ctrl->dmrsl); |
1881 | else if (ctrl->oncs & NVME_CTRL_ONCS_DSM) |
1882 | lim->max_hw_discard_sectors = UINT_MAX; |
1883 | else |
1884 | lim->max_hw_discard_sectors = 0; |
1885 | |
1886 | lim->discard_granularity = lim->logical_block_size; |
1887 | |
1888 | if (ctrl->dmrl) |
1889 | lim->max_discard_segments = ctrl->dmrl; |
1890 | else |
1891 | lim->max_discard_segments = NVME_DSM_MAX_RANGES; |
1892 | } |
1893 | |
1894 | static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b) |
1895 | { |
1896 | return uuid_equal(u1: &a->uuid, u2: &b->uuid) && |
1897 | memcmp(p: &a->nguid, q: &b->nguid, size: sizeof(a->nguid)) == 0 && |
1898 | memcmp(p: &a->eui64, q: &b->eui64, size: sizeof(a->eui64)) == 0 && |
1899 | a->csi == b->csi; |
1900 | } |
1901 | |
1902 | static int nvme_identify_ns_nvm(struct nvme_ctrl *ctrl, unsigned int nsid, |
1903 | struct nvme_id_ns_nvm **nvmp) |
1904 | { |
1905 | struct nvme_command c = { |
1906 | .identify.opcode = nvme_admin_identify, |
1907 | .identify.nsid = cpu_to_le32(nsid), |
1908 | .identify.cns = NVME_ID_CNS_CS_NS, |
1909 | .identify.csi = NVME_CSI_NVM, |
1910 | }; |
1911 | struct nvme_id_ns_nvm *nvm; |
1912 | int ret; |
1913 | |
1914 | nvm = kzalloc(sizeof(*nvm), GFP_KERNEL); |
1915 | if (!nvm) |
1916 | return -ENOMEM; |
1917 | |
1918 | ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, nvm, sizeof(*nvm)); |
1919 | if (ret) |
1920 | kfree(objp: nvm); |
1921 | else |
1922 | *nvmp = nvm; |
1923 | return ret; |
1924 | } |
1925 | |
1926 | static void nvme_configure_pi_elbas(struct nvme_ns_head *head, |
1927 | struct nvme_id_ns *id, struct nvme_id_ns_nvm *nvm) |
1928 | { |
1929 | u32 elbaf = le32_to_cpu(nvm->elbaf[nvme_lbaf_index(id->flbas)]); |
1930 | u8 guard_type; |
1931 | |
1932 | /* no support for storage tag formats right now */ |
1933 | if (nvme_elbaf_sts(elbaf)) |
1934 | return; |
1935 | |
1936 | guard_type = nvme_elbaf_guard_type(elbaf); |
1937 | if ((nvm->pic & NVME_ID_NS_NVM_QPIFS) && |
1938 | guard_type == NVME_NVM_NS_QTYPE_GUARD) |
1939 | guard_type = nvme_elbaf_qualified_guard_type(elbaf); |
1940 | |
1941 | head->guard_type = guard_type; |
1942 | switch (head->guard_type) { |
1943 | case NVME_NVM_NS_64B_GUARD: |
1944 | head->pi_size = sizeof(struct crc64_pi_tuple); |
1945 | break; |
1946 | case NVME_NVM_NS_16B_GUARD: |
1947 | head->pi_size = sizeof(struct t10_pi_tuple); |
1948 | break; |
1949 | default: |
1950 | break; |
1951 | } |
1952 | } |
1953 | |
1954 | static void nvme_configure_metadata(struct nvme_ctrl *ctrl, |
1955 | struct nvme_ns_head *head, struct nvme_id_ns *id, |
1956 | struct nvme_id_ns_nvm *nvm, struct nvme_ns_info *info) |
1957 | { |
1958 | head->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS); |
1959 | head->pi_type = 0; |
1960 | head->pi_size = 0; |
1961 | head->ms = le16_to_cpu(id->lbaf[nvme_lbaf_index(id->flbas)].ms); |
1962 | if (!head->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED)) |
1963 | return; |
1964 | |
1965 | if (nvm && (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) { |
1966 | nvme_configure_pi_elbas(head, id, nvm); |
1967 | } else { |
1968 | head->pi_size = sizeof(struct t10_pi_tuple); |
1969 | head->guard_type = NVME_NVM_NS_16B_GUARD; |
1970 | } |
1971 | |
1972 | if (head->pi_size && head->ms >= head->pi_size) |
1973 | head->pi_type = id->dps & NVME_NS_DPS_PI_MASK; |
1974 | if (!(id->dps & NVME_NS_DPS_PI_FIRST)) { |
1975 | if (disable_pi_offsets) |
1976 | head->pi_type = 0; |
1977 | else |
1978 | info->pi_offset = head->ms - head->pi_size; |
1979 | } |
1980 | |
1981 | if (ctrl->ops->flags & NVME_F_FABRICS) { |
1982 | /* |
1983 | * The NVMe over Fabrics specification only supports metadata as |
1984 | * part of the extended data LBA. We rely on HCA/HBA support to |
1985 | * remap the separate metadata buffer from the block layer. |
1986 | */ |
1987 | if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT))) |
1988 | return; |
1989 | |
1990 | head->features |= NVME_NS_EXT_LBAS; |
1991 | |
1992 | /* |
1993 | * The current fabrics transport drivers support namespace |
1994 | * metadata formats only if nvme_ns_has_pi() returns true. |
1995 | * Suppress support for all other formats so the namespace will |
1996 | * have a 0 capacity and not be usable through the block stack. |
1997 | * |
1998 | * Note, this check will need to be modified if any drivers |
1999 | * gain the ability to use other metadata formats. |
2000 | */ |
2001 | if (ctrl->max_integrity_segments && nvme_ns_has_pi(head)) |
2002 | head->features |= NVME_NS_METADATA_SUPPORTED; |
2003 | } else { |
2004 | /* |
2005 | * For PCIe controllers, we can't easily remap the separate |
2006 | * metadata buffer from the block layer and thus require a |
2007 | * separate metadata buffer for block layer metadata/PI support. |
2008 | * We allow extended LBAs for the passthrough interface, though. |
2009 | */ |
2010 | if (id->flbas & NVME_NS_FLBAS_META_EXT) |
2011 | head->features |= NVME_NS_EXT_LBAS; |
2012 | else |
2013 | head->features |= NVME_NS_METADATA_SUPPORTED; |
2014 | } |
2015 | } |
2016 | |
2017 | |
2018 | static void nvme_update_atomic_write_disk_info(struct nvme_ns *ns, |
2019 | struct nvme_id_ns *id, struct queue_limits *lim, |
2020 | u32 bs, u32 atomic_bs) |
2021 | { |
2022 | unsigned int boundary = 0; |
2023 | |
2024 | if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) { |
2025 | if (le16_to_cpu(id->nabspf)) |
2026 | boundary = (le16_to_cpu(id->nabspf) + 1) * bs; |
2027 | } |
2028 | lim->atomic_write_hw_max = atomic_bs; |
2029 | lim->atomic_write_hw_boundary = boundary; |
2030 | lim->atomic_write_hw_unit_min = bs; |
2031 | lim->atomic_write_hw_unit_max = rounddown_pow_of_two(atomic_bs); |
2032 | lim->features |= BLK_FEAT_ATOMIC_WRITES; |
2033 | } |
2034 | |
2035 | static u32 nvme_max_drv_segments(struct nvme_ctrl *ctrl) |
2036 | { |
2037 | return ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> SECTOR_SHIFT) + 1; |
2038 | } |
2039 | |
2040 | static void nvme_set_ctrl_limits(struct nvme_ctrl *ctrl, |
2041 | struct queue_limits *lim) |
2042 | { |
2043 | lim->max_hw_sectors = ctrl->max_hw_sectors; |
2044 | lim->max_segments = min_t(u32, USHRT_MAX, |
2045 | min_not_zero(nvme_max_drv_segments(ctrl), ctrl->max_segments)); |
2046 | lim->max_integrity_segments = ctrl->max_integrity_segments; |
2047 | lim->virt_boundary_mask = NVME_CTRL_PAGE_SIZE - 1; |
2048 | lim->max_segment_size = UINT_MAX; |
2049 | lim->dma_alignment = 3; |
2050 | } |
2051 | |
2052 | static bool nvme_update_disk_info(struct nvme_ns *ns, struct nvme_id_ns *id, |
2053 | struct queue_limits *lim) |
2054 | { |
2055 | struct nvme_ns_head *head = ns->head; |
2056 | u32 bs = 1U << head->lba_shift; |
2057 | u32 atomic_bs, phys_bs, io_opt = 0; |
2058 | bool valid = true; |
2059 | |
2060 | /* |
2061 | * The block layer can't support LBA sizes larger than the page size |
2062 | * or smaller than a sector size yet, so catch this early and don't |
2063 | * allow block I/O. |
2064 | */ |
2065 | if (blk_validate_block_size(bsize: bs)) { |
2066 | bs = (1 << 9); |
2067 | valid = false; |
2068 | } |
2069 | |
2070 | atomic_bs = phys_bs = bs; |
2071 | if (id->nabo == 0) { |
2072 | /* |
2073 | * Bit 1 indicates whether NAWUPF is defined for this namespace |
2074 | * and whether it should be used instead of AWUPF. If NAWUPF == |
2075 | * 0 then AWUPF must be used instead. |
2076 | */ |
2077 | if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf) |
2078 | atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs; |
2079 | else |
2080 | atomic_bs = (1 + ns->ctrl->awupf) * bs; |
2081 | |
2082 | /* |
2083 | * Set subsystem atomic bs. |
2084 | */ |
2085 | if (ns->ctrl->subsys->atomic_bs) { |
2086 | if (atomic_bs != ns->ctrl->subsys->atomic_bs) { |
2087 | dev_err_ratelimited(ns->ctrl->device, |
2088 | "%s: Inconsistent Atomic Write Size, Namespace will not be added: Subsystem=%d bytes, Controller/Namespace=%d bytes\n", |
2089 | ns->disk ? ns->disk->disk_name : "?", |
2090 | ns->ctrl->subsys->atomic_bs, |
2091 | atomic_bs); |
2092 | } |
2093 | } else |
2094 | ns->ctrl->subsys->atomic_bs = atomic_bs; |
2095 | |
2096 | nvme_update_atomic_write_disk_info(ns, id, lim, bs, atomic_bs); |
2097 | } |
2098 | |
2099 | if (id->nsfeat & NVME_NS_FEAT_IO_OPT) { |
2100 | /* NPWG = Namespace Preferred Write Granularity */ |
2101 | phys_bs = bs * (1 + le16_to_cpu(id->npwg)); |
2102 | /* NOWS = Namespace Optimal Write Size */ |
2103 | if (id->nows) |
2104 | io_opt = bs * (1 + le16_to_cpu(id->nows)); |
2105 | } |
2106 | |
2107 | /* |
2108 | * Linux filesystems assume writing a single physical block is |
2109 | * an atomic operation. Hence limit the physical block size to the |
2110 | * value of the Atomic Write Unit Power Fail parameter. |
2111 | */ |
2112 | lim->logical_block_size = bs; |
2113 | lim->physical_block_size = min(phys_bs, atomic_bs); |
2114 | lim->io_min = phys_bs; |
2115 | lim->io_opt = io_opt; |
2116 | if ((ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES) && |
2117 | (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)) |
2118 | lim->max_write_zeroes_sectors = UINT_MAX; |
2119 | else |
2120 | lim->max_write_zeroes_sectors = ns->ctrl->max_zeroes_sectors; |
2121 | return valid; |
2122 | } |
2123 | |
2124 | static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info) |
2125 | { |
2126 | return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags); |
2127 | } |
2128 | |
2129 | static inline bool nvme_first_scan(struct gendisk *disk) |
2130 | { |
2131 | /* nvme_alloc_ns() scans the disk prior to adding it */ |
2132 | return !disk_live(disk); |
2133 | } |
2134 | |
2135 | static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id, |
2136 | struct queue_limits *lim) |
2137 | { |
2138 | struct nvme_ctrl *ctrl = ns->ctrl; |
2139 | u32 iob; |
2140 | |
2141 | if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) && |
2142 | is_power_of_2(n: ctrl->max_hw_sectors)) |
2143 | iob = ctrl->max_hw_sectors; |
2144 | else |
2145 | iob = nvme_lba_to_sect(head: ns->head, le16_to_cpu(id->noiob)); |
2146 | |
2147 | if (!iob) |
2148 | return; |
2149 | |
2150 | if (!is_power_of_2(n: iob)) { |
2151 | if (nvme_first_scan(disk: ns->disk)) |
2152 | pr_warn("%s: ignoring unaligned IO boundary:%u\n", |
2153 | ns->disk->disk_name, iob); |
2154 | return; |
2155 | } |
2156 | |
2157 | if (blk_queue_is_zoned(q: ns->disk->queue)) { |
2158 | if (nvme_first_scan(disk: ns->disk)) |
2159 | pr_warn("%s: ignoring zoned namespace IO boundary\n", |
2160 | ns->disk->disk_name); |
2161 | return; |
2162 | } |
2163 | |
2164 | lim->chunk_sectors = iob; |
2165 | } |
2166 | |
2167 | static int nvme_update_ns_info_generic(struct nvme_ns *ns, |
2168 | struct nvme_ns_info *info) |
2169 | { |
2170 | struct queue_limits lim; |
2171 | unsigned int memflags; |
2172 | int ret; |
2173 | |
2174 | lim = queue_limits_start_update(q: ns->disk->queue); |
2175 | nvme_set_ctrl_limits(ctrl: ns->ctrl, lim: &lim); |
2176 | |
2177 | memflags = blk_mq_freeze_queue(q: ns->disk->queue); |
2178 | ret = queue_limits_commit_update(q: ns->disk->queue, lim: &lim); |
2179 | set_disk_ro(disk: ns->disk, read_only: nvme_ns_is_readonly(ns, info)); |
2180 | blk_mq_unfreeze_queue(q: ns->disk->queue, memflags); |
2181 | |
2182 | /* Hide the block-interface for these devices */ |
2183 | if (!ret) |
2184 | ret = -ENODEV; |
2185 | return ret; |
2186 | } |
2187 | |
2188 | static int nvme_query_fdp_granularity(struct nvme_ctrl *ctrl, |
2189 | struct nvme_ns_info *info, u8 fdp_idx) |
2190 | { |
2191 | struct nvme_fdp_config_log hdr, *h; |
2192 | struct nvme_fdp_config_desc *desc; |
2193 | size_t size = sizeof(hdr); |
2194 | void *log, *end; |
2195 | int i, n, ret; |
2196 | |
2197 | ret = nvme_get_log_lsi(ctrl, nsid: 0, log_page: NVME_LOG_FDP_CONFIGS, lsp: 0, |
2198 | csi: NVME_CSI_NVM, log: &hdr, size, offset: 0, lsi: info->endgid); |
2199 | if (ret) { |
2200 | dev_warn(ctrl->device, |
2201 | "FDP configs log header status:0x%x endgid:%d\n", ret, |
2202 | info->endgid); |
2203 | return ret; |
2204 | } |
2205 | |
2206 | size = le32_to_cpu(hdr.sze); |
2207 | if (size > PAGE_SIZE * MAX_ORDER_NR_PAGES) { |
2208 | dev_warn(ctrl->device, "FDP config size too large:%zu\n", |
2209 | size); |
2210 | return 0; |
2211 | } |
2212 | |
2213 | h = kvmalloc(size, GFP_KERNEL); |
2214 | if (!h) |
2215 | return -ENOMEM; |
2216 | |
2217 | ret = nvme_get_log_lsi(ctrl, nsid: 0, log_page: NVME_LOG_FDP_CONFIGS, lsp: 0, |
2218 | csi: NVME_CSI_NVM, log: h, size, offset: 0, lsi: info->endgid); |
2219 | if (ret) { |
2220 | dev_warn(ctrl->device, |
2221 | "FDP configs log status:0x%x endgid:%d\n", ret, |
2222 | info->endgid); |
2223 | goto out; |
2224 | } |
2225 | |
2226 | n = le16_to_cpu(h->numfdpc) + 1; |
2227 | if (fdp_idx > n) { |
2228 | dev_warn(ctrl->device, "FDP index:%d out of range:%d\n", |
2229 | fdp_idx, n); |
2230 | /* Proceed without registering FDP streams */ |
2231 | ret = 0; |
2232 | goto out; |
2233 | } |
2234 | |
2235 | log = h + 1; |
2236 | desc = log; |
2237 | end = log + size - sizeof(*h); |
2238 | for (i = 0; i < fdp_idx; i++) { |
2239 | log += le16_to_cpu(desc->dsze); |
2240 | desc = log; |
2241 | if (log >= end) { |
2242 | dev_warn(ctrl->device, |
2243 | "FDP invalid config descriptor list\n"); |
2244 | ret = 0; |
2245 | goto out; |
2246 | } |
2247 | } |
2248 | |
2249 | if (le32_to_cpu(desc->nrg) > 1) { |
2250 | dev_warn(ctrl->device, "FDP NRG > 1 not supported\n"); |
2251 | ret = 0; |
2252 | goto out; |
2253 | } |
2254 | |
2255 | info->runs = le64_to_cpu(desc->runs); |
2256 | out: |
2257 | kvfree(addr: h); |
2258 | return ret; |
2259 | } |
2260 | |
2261 | static int nvme_query_fdp_info(struct nvme_ns *ns, struct nvme_ns_info *info) |
2262 | { |
2263 | struct nvme_ns_head *head = ns->head; |
2264 | struct nvme_ctrl *ctrl = ns->ctrl; |
2265 | struct nvme_fdp_ruh_status *ruhs; |
2266 | struct nvme_fdp_config fdp; |
2267 | struct nvme_command c = {}; |
2268 | size_t size; |
2269 | int i, ret; |
2270 | |
2271 | /* |
2272 | * The FDP configuration is static for the lifetime of the namespace, |
2273 | * so return immediately if we've already registered this namespace's |
2274 | * streams. |
2275 | */ |
2276 | if (head->nr_plids) |
2277 | return 0; |
2278 | |
2279 | ret = nvme_get_features(ctrl, NVME_FEAT_FDP, info->endgid, NULL, 0, |
2280 | &fdp); |
2281 | if (ret) { |
2282 | dev_warn(ctrl->device, "FDP get feature status:0x%x\n", ret); |
2283 | return ret; |
2284 | } |
2285 | |
2286 | if (!(fdp.flags & FDPCFG_FDPE)) |
2287 | return 0; |
2288 | |
2289 | ret = nvme_query_fdp_granularity(ctrl, info, fdp_idx: fdp.fdpcidx); |
2290 | if (!info->runs) |
2291 | return ret; |
2292 | |
2293 | size = struct_size(ruhs, ruhsd, S8_MAX - 1); |
2294 | ruhs = kzalloc(size, GFP_KERNEL); |
2295 | if (!ruhs) |
2296 | return -ENOMEM; |
2297 | |
2298 | c.imr.opcode = nvme_cmd_io_mgmt_recv; |
2299 | c.imr.nsid = cpu_to_le32(head->ns_id); |
2300 | c.imr.mo = NVME_IO_MGMT_RECV_MO_RUHS; |
2301 | c.imr.numd = cpu_to_le32(nvme_bytes_to_numd(size)); |
2302 | ret = nvme_submit_sync_cmd(ns->queue, &c, ruhs, size); |
2303 | if (ret) { |
2304 | dev_warn(ctrl->device, "FDP io-mgmt status:0x%x\n", ret); |
2305 | goto free; |
2306 | } |
2307 | |
2308 | head->nr_plids = le16_to_cpu(ruhs->nruhsd); |
2309 | if (!head->nr_plids) |
2310 | goto free; |
2311 | |
2312 | head->plids = kcalloc(head->nr_plids, sizeof(*head->plids), |
2313 | GFP_KERNEL); |
2314 | if (!head->plids) { |
2315 | dev_warn(ctrl->device, |
2316 | "failed to allocate %u FDP placement IDs\n", |
2317 | head->nr_plids); |
2318 | head->nr_plids = 0; |
2319 | ret = -ENOMEM; |
2320 | goto free; |
2321 | } |
2322 | |
2323 | for (i = 0; i < head->nr_plids; i++) |
2324 | head->plids[i] = le16_to_cpu(ruhs->ruhsd[i].pid); |
2325 | free: |
2326 | kfree(objp: ruhs); |
2327 | return ret; |
2328 | } |
2329 | |
2330 | static int nvme_update_ns_info_block(struct nvme_ns *ns, |
2331 | struct nvme_ns_info *info) |
2332 | { |
2333 | struct queue_limits lim; |
2334 | struct nvme_id_ns_nvm *nvm = NULL; |
2335 | struct nvme_zone_info zi = {}; |
2336 | struct nvme_id_ns *id; |
2337 | unsigned int memflags; |
2338 | sector_t capacity; |
2339 | unsigned lbaf; |
2340 | int ret; |
2341 | |
2342 | ret = nvme_identify_ns(ctrl: ns->ctrl, nsid: info->nsid, id: &id); |
2343 | if (ret) |
2344 | return ret; |
2345 | |
2346 | if (id->ncap == 0) { |
2347 | /* namespace not allocated or attached */ |
2348 | info->is_removed = true; |
2349 | ret = -ENXIO; |
2350 | goto out; |
2351 | } |
2352 | lbaf = nvme_lbaf_index(flbas: id->flbas); |
2353 | |
2354 | if (ns->ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) { |
2355 | ret = nvme_identify_ns_nvm(ctrl: ns->ctrl, nsid: info->nsid, nvmp: &nvm); |
2356 | if (ret < 0) |
2357 | goto out; |
2358 | } |
2359 | |
2360 | if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && |
2361 | ns->head->ids.csi == NVME_CSI_ZNS) { |
2362 | ret = nvme_query_zone_info(ns, lbaf, zi: &zi); |
2363 | if (ret < 0) |
2364 | goto out; |
2365 | } |
2366 | |
2367 | if (ns->ctrl->ctratt & NVME_CTRL_ATTR_FDPS) { |
2368 | ret = nvme_query_fdp_info(ns, info); |
2369 | if (ret < 0) |
2370 | goto out; |
2371 | } |
2372 | |
2373 | lim = queue_limits_start_update(q: ns->disk->queue); |
2374 | |
2375 | memflags = blk_mq_freeze_queue(q: ns->disk->queue); |
2376 | ns->head->lba_shift = id->lbaf[lbaf].ds; |
2377 | ns->head->nuse = le64_to_cpu(id->nuse); |
2378 | capacity = nvme_lba_to_sect(head: ns->head, le64_to_cpu(id->nsze)); |
2379 | nvme_set_ctrl_limits(ctrl: ns->ctrl, lim: &lim); |
2380 | nvme_configure_metadata(ctrl: ns->ctrl, head: ns->head, id, nvm, info); |
2381 | nvme_set_chunk_sectors(ns, id, lim: &lim); |
2382 | if (!nvme_update_disk_info(ns, id, lim: &lim)) |
2383 | capacity = 0; |
2384 | |
2385 | /* |
2386 | * Validate the max atomic write size fits within the subsystem's |
2387 | * atomic write capabilities. |
2388 | */ |
2389 | if (lim.atomic_write_hw_max > ns->ctrl->subsys->atomic_bs) { |
2390 | blk_mq_unfreeze_queue(q: ns->disk->queue, memflags); |
2391 | ret = -ENXIO; |
2392 | goto out; |
2393 | } |
2394 | |
2395 | nvme_config_discard(ns, lim: &lim); |
2396 | if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) && |
2397 | ns->head->ids.csi == NVME_CSI_ZNS) |
2398 | nvme_update_zone_info(ns, lim: &lim, zi: &zi); |
2399 | |
2400 | if ((ns->ctrl->vwc & NVME_CTRL_VWC_PRESENT) && !info->no_vwc) |
2401 | lim.features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA; |
2402 | else |
2403 | lim.features &= ~(BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA); |
2404 | |
2405 | if (info->is_rotational) |
2406 | lim.features |= BLK_FEAT_ROTATIONAL; |
2407 | |
2408 | /* |
2409 | * Register a metadata profile for PI, or the plain non-integrity NVMe |
2410 | * metadata masquerading as Type 0 if supported, otherwise reject block |
2411 | * I/O to namespaces with metadata except when the namespace supports |
2412 | * PI, as it can strip/insert in that case. |
2413 | */ |
2414 | if (!nvme_init_integrity(head: ns->head, lim: &lim, info)) |
2415 | capacity = 0; |
2416 | |
2417 | lim.max_write_streams = ns->head->nr_plids; |
2418 | if (lim.max_write_streams) |
2419 | lim.write_stream_granularity = min(info->runs, U32_MAX); |
2420 | else |
2421 | lim.write_stream_granularity = 0; |
2422 | |
2423 | ret = queue_limits_commit_update(q: ns->disk->queue, lim: &lim); |
2424 | if (ret) { |
2425 | blk_mq_unfreeze_queue(q: ns->disk->queue, memflags); |
2426 | goto out; |
2427 | } |
2428 | |
2429 | set_capacity_and_notify(disk: ns->disk, size: capacity); |
2430 | |
2431 | /* |
2432 | * Only set the DEAC bit if the device guarantees that reads from |
2433 | * deallocated data return zeroes. While the DEAC bit does not |
2434 | * require that, it must be a no-op if reads from deallocated data |
2435 | * do not return zeroes. |
2436 | */ |
2437 | if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3))) |
2438 | ns->head->features |= NVME_NS_DEAC; |
2439 | set_disk_ro(disk: ns->disk, read_only: nvme_ns_is_readonly(ns, info)); |
2440 | set_bit(NVME_NS_READY, addr: &ns->flags); |
2441 | blk_mq_unfreeze_queue(q: ns->disk->queue, memflags); |
2442 | |
2443 | if (blk_queue_is_zoned(q: ns->queue)) { |
2444 | ret = blk_revalidate_disk_zones(disk: ns->disk); |
2445 | if (ret && !nvme_first_scan(disk: ns->disk)) |
2446 | goto out; |
2447 | } |
2448 | |
2449 | ret = 0; |
2450 | out: |
2451 | kfree(objp: nvm); |
2452 | kfree(objp: id); |
2453 | return ret; |
2454 | } |
2455 | |
2456 | static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info) |
2457 | { |
2458 | bool unsupported = false; |
2459 | int ret; |
2460 | |
2461 | switch (info->ids.csi) { |
2462 | case NVME_CSI_ZNS: |
2463 | if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) { |
2464 | dev_info(ns->ctrl->device, |
2465 | "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n", |
2466 | info->nsid); |
2467 | ret = nvme_update_ns_info_generic(ns, info); |
2468 | break; |
2469 | } |
2470 | ret = nvme_update_ns_info_block(ns, info); |
2471 | break; |
2472 | case NVME_CSI_NVM: |
2473 | ret = nvme_update_ns_info_block(ns, info); |
2474 | break; |
2475 | default: |
2476 | dev_info(ns->ctrl->device, |
2477 | "block device for nsid %u not supported (csi %u)\n", |
2478 | info->nsid, info->ids.csi); |
2479 | ret = nvme_update_ns_info_generic(ns, info); |
2480 | break; |
2481 | } |
2482 | |
2483 | /* |
2484 | * If probing fails due an unsupported feature, hide the block device, |
2485 | * but still allow other access. |
2486 | */ |
2487 | if (ret == -ENODEV) { |
2488 | ns->disk->flags |= GENHD_FL_HIDDEN; |
2489 | set_bit(NVME_NS_READY, addr: &ns->flags); |
2490 | unsupported = true; |
2491 | ret = 0; |
2492 | } |
2493 | |
2494 | if (!ret && nvme_ns_head_multipath(head: ns->head)) { |
2495 | struct queue_limits *ns_lim = &ns->disk->queue->limits; |
2496 | struct queue_limits lim; |
2497 | unsigned int memflags; |
2498 | |
2499 | lim = queue_limits_start_update(q: ns->head->disk->queue); |
2500 | memflags = blk_mq_freeze_queue(q: ns->head->disk->queue); |
2501 | /* |
2502 | * queue_limits mixes values that are the hardware limitations |
2503 | * for bio splitting with what is the device configuration. |
2504 | * |
2505 | * For NVMe the device configuration can change after e.g. a |
2506 | * Format command, and we really want to pick up the new format |
2507 | * value here. But we must still stack the queue limits to the |
2508 | * least common denominator for multipathing to split the bios |
2509 | * properly. |
2510 | * |
2511 | * To work around this, we explicitly set the device |
2512 | * configuration to those that we just queried, but only stack |
2513 | * the splitting limits in to make sure we still obey possibly |
2514 | * lower limitations of other controllers. |
2515 | */ |
2516 | lim.logical_block_size = ns_lim->logical_block_size; |
2517 | lim.physical_block_size = ns_lim->physical_block_size; |
2518 | lim.io_min = ns_lim->io_min; |
2519 | lim.io_opt = ns_lim->io_opt; |
2520 | queue_limits_stack_bdev(t: &lim, bdev: ns->disk->part0, offset: 0, |
2521 | pfx: ns->head->disk->disk_name); |
2522 | if (unsupported) |
2523 | ns->head->disk->flags |= GENHD_FL_HIDDEN; |
2524 | else |
2525 | nvme_init_integrity(head: ns->head, lim: &lim, info); |
2526 | lim.max_write_streams = ns_lim->max_write_streams; |
2527 | lim.write_stream_granularity = ns_lim->write_stream_granularity; |
2528 | ret = queue_limits_commit_update(q: ns->head->disk->queue, lim: &lim); |
2529 | |
2530 | set_capacity_and_notify(disk: ns->head->disk, size: get_capacity(disk: ns->disk)); |
2531 | set_disk_ro(disk: ns->head->disk, read_only: nvme_ns_is_readonly(ns, info)); |
2532 | nvme_mpath_revalidate_paths(ns); |
2533 | |
2534 | blk_mq_unfreeze_queue(q: ns->head->disk->queue, memflags); |
2535 | } |
2536 | |
2537 | return ret; |
2538 | } |
2539 | |
2540 | int nvme_ns_get_unique_id(struct nvme_ns *ns, u8 id[16], |
2541 | enum blk_unique_id type) |
2542 | { |
2543 | struct nvme_ns_ids *ids = &ns->head->ids; |
2544 | |
2545 | if (type != BLK_UID_EUI64) |
2546 | return -EINVAL; |
2547 | |
2548 | if (memchr_inv(p: ids->nguid, c: 0, size: sizeof(ids->nguid))) { |
2549 | memcpy(id, &ids->nguid, sizeof(ids->nguid)); |
2550 | return sizeof(ids->nguid); |
2551 | } |
2552 | if (memchr_inv(p: ids->eui64, c: 0, size: sizeof(ids->eui64))) { |
2553 | memcpy(id, &ids->eui64, sizeof(ids->eui64)); |
2554 | return sizeof(ids->eui64); |
2555 | } |
2556 | |
2557 | return -EINVAL; |
2558 | } |
2559 | |
2560 | static int nvme_get_unique_id(struct gendisk *disk, u8 id[16], |
2561 | enum blk_unique_id type) |
2562 | { |
2563 | return nvme_ns_get_unique_id(ns: disk->private_data, id, type); |
2564 | } |
2565 | |
2566 | #ifdef CONFIG_BLK_SED_OPAL |
2567 | static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len, |
2568 | bool send) |
2569 | { |
2570 | struct nvme_ctrl *ctrl = data; |
2571 | struct nvme_command cmd = { }; |
2572 | |
2573 | if (send) |
2574 | cmd.common.opcode = nvme_admin_security_send; |
2575 | else |
2576 | cmd.common.opcode = nvme_admin_security_recv; |
2577 | cmd.common.nsid = 0; |
2578 | cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8); |
2579 | cmd.common.cdw11 = cpu_to_le32(len); |
2580 | |
2581 | return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len, |
2582 | NVME_QID_ANY, NVME_SUBMIT_AT_HEAD); |
2583 | } |
2584 | |
2585 | static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) |
2586 | { |
2587 | if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) { |
2588 | if (!ctrl->opal_dev) |
2589 | ctrl->opal_dev = init_opal_dev(data: ctrl, send_recv: &nvme_sec_submit); |
2590 | else if (was_suspended) |
2591 | opal_unlock_from_suspend(dev: ctrl->opal_dev); |
2592 | } else { |
2593 | free_opal_dev(dev: ctrl->opal_dev); |
2594 | ctrl->opal_dev = NULL; |
2595 | } |
2596 | } |
2597 | #else |
2598 | static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended) |
2599 | { |
2600 | } |
2601 | #endif /* CONFIG_BLK_SED_OPAL */ |
2602 | |
2603 | #ifdef CONFIG_BLK_DEV_ZONED |
2604 | static int nvme_report_zones(struct gendisk *disk, sector_t sector, |
2605 | unsigned int nr_zones, report_zones_cb cb, void *data) |
2606 | { |
2607 | return nvme_ns_report_zones(ns: disk->private_data, sector, nr_zones, cb, |
2608 | data); |
2609 | } |
2610 | #else |
2611 | #define nvme_report_zones NULL |
2612 | #endif /* CONFIG_BLK_DEV_ZONED */ |
2613 | |
2614 | const struct block_device_operations nvme_bdev_ops = { |
2615 | .owner = THIS_MODULE, |
2616 | .ioctl = nvme_ioctl, |
2617 | .compat_ioctl = blkdev_compat_ptr_ioctl, |
2618 | .open = nvme_open, |
2619 | .release = nvme_release, |
2620 | .getgeo = nvme_getgeo, |
2621 | .get_unique_id = nvme_get_unique_id, |
2622 | .report_zones = nvme_report_zones, |
2623 | .pr_ops = &nvme_pr_ops, |
2624 | }; |
2625 | |
2626 | static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val, |
2627 | u32 timeout, const char *op) |
2628 | { |
2629 | unsigned long timeout_jiffies = jiffies + timeout * HZ; |
2630 | u32 csts; |
2631 | int ret; |
2632 | |
2633 | while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) { |
2634 | if (csts == ~0) |
2635 | return -ENODEV; |
2636 | if ((csts & mask) == val) |
2637 | break; |
2638 | |
2639 | usleep_range(min: 1000, max: 2000); |
2640 | if (fatal_signal_pending(current)) |
2641 | return -EINTR; |
2642 | if (time_after(jiffies, timeout_jiffies)) { |
2643 | dev_err(ctrl->device, |
2644 | "Device not ready; aborting %s, CSTS=0x%x\n", |
2645 | op, csts); |
2646 | return -ENODEV; |
2647 | } |
2648 | } |
2649 | |
2650 | return ret; |
2651 | } |
2652 | |
2653 | int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown) |
2654 | { |
2655 | int ret; |
2656 | |
2657 | ctrl->ctrl_config &= ~NVME_CC_SHN_MASK; |
2658 | if (shutdown) |
2659 | ctrl->ctrl_config |= NVME_CC_SHN_NORMAL; |
2660 | else |
2661 | ctrl->ctrl_config &= ~NVME_CC_ENABLE; |
2662 | |
2663 | ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); |
2664 | if (ret) |
2665 | return ret; |
2666 | |
2667 | if (shutdown) { |
2668 | return nvme_wait_ready(ctrl, mask: NVME_CSTS_SHST_MASK, |
2669 | val: NVME_CSTS_SHST_CMPLT, |
2670 | timeout: ctrl->shutdown_timeout, op: "shutdown"); |
2671 | } |
2672 | if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) |
2673 | msleep(NVME_QUIRK_DELAY_AMOUNT); |
2674 | return nvme_wait_ready(ctrl, mask: NVME_CSTS_RDY, val: 0, |
2675 | timeout: (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, op: "reset"); |
2676 | } |
2677 | EXPORT_SYMBOL_GPL(nvme_disable_ctrl); |
2678 | |
2679 | int nvme_enable_ctrl(struct nvme_ctrl *ctrl) |
2680 | { |
2681 | unsigned dev_page_min; |
2682 | u32 timeout; |
2683 | int ret; |
2684 | |
2685 | ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); |
2686 | if (ret) { |
2687 | dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret); |
2688 | return ret; |
2689 | } |
2690 | dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12; |
2691 | |
2692 | if (NVME_CTRL_PAGE_SHIFT < dev_page_min) { |
2693 | dev_err(ctrl->device, |
2694 | "Minimum device page size %u too large for host (%u)\n", |
2695 | 1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT); |
2696 | return -ENODEV; |
2697 | } |
2698 | |
2699 | if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI) |
2700 | ctrl->ctrl_config = NVME_CC_CSS_CSI; |
2701 | else |
2702 | ctrl->ctrl_config = NVME_CC_CSS_NVM; |
2703 | |
2704 | /* |
2705 | * Setting CRIME results in CSTS.RDY before the media is ready. This |
2706 | * makes it possible for media related commands to return the error |
2707 | * NVME_SC_ADMIN_COMMAND_MEDIA_NOT_READY. Until the driver is |
2708 | * restructured to handle retries, disable CC.CRIME. |
2709 | */ |
2710 | ctrl->ctrl_config &= ~NVME_CC_CRIME; |
2711 | |
2712 | ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT; |
2713 | ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE; |
2714 | ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; |
2715 | ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); |
2716 | if (ret) |
2717 | return ret; |
2718 | |
2719 | /* CAP value may change after initial CC write */ |
2720 | ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap); |
2721 | if (ret) |
2722 | return ret; |
2723 | |
2724 | timeout = NVME_CAP_TIMEOUT(ctrl->cap); |
2725 | if (ctrl->cap & NVME_CAP_CRMS_CRWMS) { |
2726 | u32 crto, ready_timeout; |
2727 | |
2728 | ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto); |
2729 | if (ret) { |
2730 | dev_err(ctrl->device, "Reading CRTO failed (%d)\n", |
2731 | ret); |
2732 | return ret; |
2733 | } |
2734 | |
2735 | /* |
2736 | * CRTO should always be greater or equal to CAP.TO, but some |
2737 | * devices are known to get this wrong. Use the larger of the |
2738 | * two values. |
2739 | */ |
2740 | ready_timeout = NVME_CRTO_CRWMT(crto); |
2741 | |
2742 | if (ready_timeout < timeout) |
2743 | dev_warn_once(ctrl->device, "bad crto:%x cap:%llx\n", |
2744 | crto, ctrl->cap); |
2745 | else |
2746 | timeout = ready_timeout; |
2747 | } |
2748 | |
2749 | ctrl->ctrl_config |= NVME_CC_ENABLE; |
2750 | ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config); |
2751 | if (ret) |
2752 | return ret; |
2753 | return nvme_wait_ready(ctrl, mask: NVME_CSTS_RDY, val: NVME_CSTS_RDY, |
2754 | timeout: (timeout + 1) / 2, op: "initialisation"); |
2755 | } |
2756 | EXPORT_SYMBOL_GPL(nvme_enable_ctrl); |
2757 | |
2758 | static int nvme_configure_timestamp(struct nvme_ctrl *ctrl) |
2759 | { |
2760 | __le64 ts; |
2761 | int ret; |
2762 | |
2763 | if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP)) |
2764 | return 0; |
2765 | |
2766 | ts = cpu_to_le64(ktime_to_ms(ktime_get_real())); |
2767 | ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts), |
2768 | NULL); |
2769 | if (ret) |
2770 | dev_warn_once(ctrl->device, |
2771 | "could not set timestamp (%d)\n", ret); |
2772 | return ret; |
2773 | } |
2774 | |
2775 | static int nvme_configure_host_options(struct nvme_ctrl *ctrl) |
2776 | { |
2777 | struct nvme_feat_host_behavior *host; |
2778 | u8 acre = 0, lbafee = 0; |
2779 | int ret; |
2780 | |
2781 | /* Don't bother enabling the feature if retry delay is not reported */ |
2782 | if (ctrl->crdt[0]) |
2783 | acre = NVME_ENABLE_ACRE; |
2784 | if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS) |
2785 | lbafee = NVME_ENABLE_LBAFEE; |
2786 | |
2787 | if (!acre && !lbafee) |
2788 | return 0; |
2789 | |
2790 | host = kzalloc(sizeof(*host), GFP_KERNEL); |
2791 | if (!host) |
2792 | return 0; |
2793 | |
2794 | host->acre = acre; |
2795 | host->lbafee = lbafee; |
2796 | ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0, |
2797 | host, sizeof(*host), NULL); |
2798 | kfree(objp: host); |
2799 | return ret; |
2800 | } |
2801 | |
2802 | /* |
2803 | * The function checks whether the given total (exlat + enlat) latency of |
2804 | * a power state allows the latter to be used as an APST transition target. |
2805 | * It does so by comparing the latency to the primary and secondary latency |
2806 | * tolerances defined by module params. If there's a match, the corresponding |
2807 | * timeout value is returned and the matching tolerance index (1 or 2) is |
2808 | * reported. |
2809 | */ |
2810 | static bool nvme_apst_get_transition_time(u64 total_latency, |
2811 | u64 *transition_time, unsigned *last_index) |
2812 | { |
2813 | if (total_latency <= apst_primary_latency_tol_us) { |
2814 | if (*last_index == 1) |
2815 | return false; |
2816 | *last_index = 1; |
2817 | *transition_time = apst_primary_timeout_ms; |
2818 | return true; |
2819 | } |
2820 | if (apst_secondary_timeout_ms && |
2821 | total_latency <= apst_secondary_latency_tol_us) { |
2822 | if (*last_index <= 2) |
2823 | return false; |
2824 | *last_index = 2; |
2825 | *transition_time = apst_secondary_timeout_ms; |
2826 | return true; |
2827 | } |
2828 | return false; |
2829 | } |
2830 | |
2831 | /* |
2832 | * APST (Autonomous Power State Transition) lets us program a table of power |
2833 | * state transitions that the controller will perform automatically. |
2834 | * |
2835 | * Depending on module params, one of the two supported techniques will be used: |
2836 | * |
2837 | * - If the parameters provide explicit timeouts and tolerances, they will be |
2838 | * used to build a table with up to 2 non-operational states to transition to. |
2839 | * The default parameter values were selected based on the values used by |
2840 | * Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic |
2841 | * regeneration of the APST table in the event of switching between external |
2842 | * and battery power, the timeouts and tolerances reflect a compromise |
2843 | * between values used by Microsoft for AC and battery scenarios. |
2844 | * - If not, we'll configure the table with a simple heuristic: we are willing |
2845 | * to spend at most 2% of the time transitioning between power states. |
2846 | * Therefore, when running in any given state, we will enter the next |
2847 | * lower-power non-operational state after waiting 50 * (enlat + exlat) |
2848 | * microseconds, as long as that state's exit latency is under the requested |
2849 | * maximum latency. |
2850 | * |
2851 | * We will not autonomously enter any non-operational state for which the total |
2852 | * latency exceeds ps_max_latency_us. |
2853 | * |
2854 | * Users can set ps_max_latency_us to zero to turn off APST. |
2855 | */ |
2856 | static int nvme_configure_apst(struct nvme_ctrl *ctrl) |
2857 | { |
2858 | struct nvme_feat_auto_pst *table; |
2859 | unsigned apste = 0; |
2860 | u64 max_lat_us = 0; |
2861 | __le64 target = 0; |
2862 | int max_ps = -1; |
2863 | int state; |
2864 | int ret; |
2865 | unsigned last_lt_index = UINT_MAX; |
2866 | |
2867 | /* |
2868 | * If APST isn't supported or if we haven't been initialized yet, |
2869 | * then don't do anything. |
2870 | */ |
2871 | if (!ctrl->apsta) |
2872 | return 0; |
2873 | |
2874 | if (ctrl->npss > 31) { |
2875 | dev_warn(ctrl->device, "NPSS is invalid; not using APST\n"); |
2876 | return 0; |
2877 | } |
2878 | |
2879 | table = kzalloc(sizeof(*table), GFP_KERNEL); |
2880 | if (!table) |
2881 | return 0; |
2882 | |
2883 | if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) { |
2884 | /* Turn off APST. */ |
2885 | dev_dbg(ctrl->device, "APST disabled\n"); |
2886 | goto done; |
2887 | } |
2888 | |
2889 | /* |
2890 | * Walk through all states from lowest- to highest-power. |
2891 | * According to the spec, lower-numbered states use more power. NPSS, |
2892 | * despite the name, is the index of the lowest-power state, not the |
2893 | * number of states. |
2894 | */ |
2895 | for (state = (int)ctrl->npss; state >= 0; state--) { |
2896 | u64 total_latency_us, exit_latency_us, transition_ms; |
2897 | |
2898 | if (target) |
2899 | table->entries[state] = target; |
2900 | |
2901 | /* |
2902 | * Don't allow transitions to the deepest state if it's quirked |
2903 | * off. |
2904 | */ |
2905 | if (state == ctrl->npss && |
2906 | (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) |
2907 | continue; |
2908 | |
2909 | /* |
2910 | * Is this state a useful non-operational state for higher-power |
2911 | * states to autonomously transition to? |
2912 | */ |
2913 | if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE)) |
2914 | continue; |
2915 | |
2916 | exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat); |
2917 | if (exit_latency_us > ctrl->ps_max_latency_us) |
2918 | continue; |
2919 | |
2920 | total_latency_us = exit_latency_us + |
2921 | le32_to_cpu(ctrl->psd[state].entry_lat); |
2922 | |
2923 | /* |
2924 | * This state is good. It can be used as the APST idle target |
2925 | * for higher power states. |
2926 | */ |
2927 | if (apst_primary_timeout_ms && apst_primary_latency_tol_us) { |
2928 | if (!nvme_apst_get_transition_time(total_latency: total_latency_us, |
2929 | transition_time: &transition_ms, last_index: &last_lt_index)) |
2930 | continue; |
2931 | } else { |
2932 | transition_ms = total_latency_us + 19; |
2933 | do_div(transition_ms, 20); |
2934 | if (transition_ms > (1 << 24) - 1) |
2935 | transition_ms = (1 << 24) - 1; |
2936 | } |
2937 | |
2938 | target = cpu_to_le64((state << 3) | (transition_ms << 8)); |
2939 | if (max_ps == -1) |
2940 | max_ps = state; |
2941 | if (total_latency_us > max_lat_us) |
2942 | max_lat_us = total_latency_us; |
2943 | } |
2944 | |
2945 | if (max_ps == -1) |
2946 | dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n"); |
2947 | else |
2948 | dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n", |
2949 | max_ps, max_lat_us, (int)sizeof(*table), table); |
2950 | apste = 1; |
2951 | |
2952 | done: |
2953 | ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste, |
2954 | table, sizeof(*table), NULL); |
2955 | if (ret) |
2956 | dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret); |
2957 | kfree(objp: table); |
2958 | return ret; |
2959 | } |
2960 | |
2961 | static void nvme_set_latency_tolerance(struct device *dev, s32 val) |
2962 | { |
2963 | struct nvme_ctrl *ctrl = dev_get_drvdata(dev); |
2964 | u64 latency; |
2965 | |
2966 | switch (val) { |
2967 | case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT: |
2968 | case PM_QOS_LATENCY_ANY: |
2969 | latency = U64_MAX; |
2970 | break; |
2971 | |
2972 | default: |
2973 | latency = val; |
2974 | } |
2975 | |
2976 | if (ctrl->ps_max_latency_us != latency) { |
2977 | ctrl->ps_max_latency_us = latency; |
2978 | if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) |
2979 | nvme_configure_apst(ctrl); |
2980 | } |
2981 | } |
2982 | |
2983 | struct nvme_core_quirk_entry { |
2984 | /* |
2985 | * NVMe model and firmware strings are padded with spaces. For |
2986 | * simplicity, strings in the quirk table are padded with NULLs |
2987 | * instead. |
2988 | */ |
2989 | u16 vid; |
2990 | const char *mn; |
2991 | const char *fr; |
2992 | unsigned long quirks; |
2993 | }; |
2994 | |
2995 | static const struct nvme_core_quirk_entry core_quirks[] = { |
2996 | { |
2997 | /* |
2998 | * This Toshiba device seems to die using any APST states. See: |
2999 | * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11 |
3000 | */ |
3001 | .vid = 0x1179, |
3002 | .mn = "THNSF5256GPUK TOSHIBA", |
3003 | .quirks = NVME_QUIRK_NO_APST, |
3004 | }, |
3005 | { |
3006 | /* |
3007 | * This LiteON CL1-3D*-Q11 firmware version has a race |
3008 | * condition associated with actions related to suspend to idle |
3009 | * LiteON has resolved the problem in future firmware |
3010 | */ |
3011 | .vid = 0x14a4, |
3012 | .fr = "22301111", |
3013 | .quirks = NVME_QUIRK_SIMPLE_SUSPEND, |
3014 | }, |
3015 | { |
3016 | /* |
3017 | * This Kioxia CD6-V Series / HPE PE8030 device times out and |
3018 | * aborts I/O during any load, but more easily reproducible |
3019 | * with discards (fstrim). |
3020 | * |
3021 | * The device is left in a state where it is also not possible |
3022 | * to use "nvme set-feature" to disable APST, but booting with |
3023 | * nvme_core.default_ps_max_latency=0 works. |
3024 | */ |
3025 | .vid = 0x1e0f, |
3026 | .mn = "KCD6XVUL6T40", |
3027 | .quirks = NVME_QUIRK_NO_APST, |
3028 | }, |
3029 | { |
3030 | /* |
3031 | * The external Samsung X5 SSD fails initialization without a |
3032 | * delay before checking if it is ready and has a whole set of |
3033 | * other problems. To make this even more interesting, it |
3034 | * shares the PCI ID with internal Samsung 970 Evo Plus that |
3035 | * does not need or want these quirks. |
3036 | */ |
3037 | .vid = 0x144d, |
3038 | .mn = "Samsung Portable SSD X5", |
3039 | .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY | |
3040 | NVME_QUIRK_NO_DEEPEST_PS | |
3041 | NVME_QUIRK_IGNORE_DEV_SUBNQN, |
3042 | } |
3043 | }; |
3044 | |
3045 | /* match is null-terminated but idstr is space-padded. */ |
3046 | static bool string_matches(const char *idstr, const char *match, size_t len) |
3047 | { |
3048 | size_t matchlen; |
3049 | |
3050 | if (!match) |
3051 | return true; |
3052 | |
3053 | matchlen = strlen(match); |
3054 | WARN_ON_ONCE(matchlen > len); |
3055 | |
3056 | if (memcmp(p: idstr, q: match, size: matchlen)) |
3057 | return false; |
3058 | |
3059 | for (; matchlen < len; matchlen++) |
3060 | if (idstr[matchlen] != ' ') |
3061 | return false; |
3062 | |
3063 | return true; |
3064 | } |
3065 | |
3066 | static bool quirk_matches(const struct nvme_id_ctrl *id, |
3067 | const struct nvme_core_quirk_entry *q) |
3068 | { |
3069 | return q->vid == le16_to_cpu(id->vid) && |
3070 | string_matches(idstr: id->mn, match: q->mn, len: sizeof(id->mn)) && |
3071 | string_matches(idstr: id->fr, match: q->fr, len: sizeof(id->fr)); |
3072 | } |
3073 | |
3074 | static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl, |
3075 | struct nvme_id_ctrl *id) |
3076 | { |
3077 | size_t nqnlen; |
3078 | int off; |
3079 | |
3080 | if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) { |
3081 | nqnlen = strnlen(p: id->subnqn, NVMF_NQN_SIZE); |
3082 | if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) { |
3083 | strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE); |
3084 | return; |
3085 | } |
3086 | |
3087 | if (ctrl->vs >= NVME_VS(1, 2, 1)) |
3088 | dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n"); |
3089 | } |
3090 | |
3091 | /* |
3092 | * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe |
3093 | * Base Specification 2.0. It is slightly different from the format |
3094 | * specified there due to historic reasons, and we can't change it now. |
3095 | */ |
3096 | off = snprintf(buf: subsys->subnqn, NVMF_NQN_SIZE, |
3097 | fmt: "nqn.2014.08.org.nvmexpress:%04x%04x", |
3098 | le16_to_cpu(id->vid), le16_to_cpu(id->ssvid)); |
3099 | memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn)); |
3100 | off += sizeof(id->sn); |
3101 | memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn)); |
3102 | off += sizeof(id->mn); |
3103 | memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off); |
3104 | } |
3105 | |
3106 | static void nvme_release_subsystem(struct device *dev) |
3107 | { |
3108 | struct nvme_subsystem *subsys = |
3109 | container_of(dev, struct nvme_subsystem, dev); |
3110 | |
3111 | if (subsys->instance >= 0) |
3112 | ida_free(&nvme_instance_ida, id: subsys->instance); |
3113 | kfree(objp: subsys); |
3114 | } |
3115 | |
3116 | static void nvme_destroy_subsystem(struct kref *ref) |
3117 | { |
3118 | struct nvme_subsystem *subsys = |
3119 | container_of(ref, struct nvme_subsystem, ref); |
3120 | |
3121 | mutex_lock(&nvme_subsystems_lock); |
3122 | list_del(entry: &subsys->entry); |
3123 | mutex_unlock(lock: &nvme_subsystems_lock); |
3124 | |
3125 | ida_destroy(ida: &subsys->ns_ida); |
3126 | device_del(dev: &subsys->dev); |
3127 | put_device(dev: &subsys->dev); |
3128 | } |
3129 | |
3130 | static void nvme_put_subsystem(struct nvme_subsystem *subsys) |
3131 | { |
3132 | kref_put(kref: &subsys->ref, release: nvme_destroy_subsystem); |
3133 | } |
3134 | |
3135 | static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn) |
3136 | { |
3137 | struct nvme_subsystem *subsys; |
3138 | |
3139 | lockdep_assert_held(&nvme_subsystems_lock); |
3140 | |
3141 | /* |
3142 | * Fail matches for discovery subsystems. This results |
3143 | * in each discovery controller bound to a unique subsystem. |
3144 | * This avoids issues with validating controller values |
3145 | * that can only be true when there is a single unique subsystem. |
3146 | * There may be multiple and completely independent entities |
3147 | * that provide discovery controllers. |
3148 | */ |
3149 | if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME)) |
3150 | return NULL; |
3151 | |
3152 | list_for_each_entry(subsys, &nvme_subsystems, entry) { |
3153 | if (strcmp(subsys->subnqn, subsysnqn)) |
3154 | continue; |
3155 | if (!kref_get_unless_zero(kref: &subsys->ref)) |
3156 | continue; |
3157 | return subsys; |
3158 | } |
3159 | |
3160 | return NULL; |
3161 | } |
3162 | |
3163 | static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl) |
3164 | { |
3165 | return ctrl->opts && ctrl->opts->discovery_nqn; |
3166 | } |
3167 | |
3168 | static bool nvme_validate_cntlid(struct nvme_subsystem *subsys, |
3169 | struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) |
3170 | { |
3171 | struct nvme_ctrl *tmp; |
3172 | |
3173 | lockdep_assert_held(&nvme_subsystems_lock); |
3174 | |
3175 | list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) { |
3176 | if (nvme_state_terminal(ctrl: tmp)) |
3177 | continue; |
3178 | |
3179 | if (tmp->cntlid == ctrl->cntlid) { |
3180 | dev_err(ctrl->device, |
3181 | "Duplicate cntlid %u with %s, subsys %s, rejecting\n", |
3182 | ctrl->cntlid, dev_name(tmp->device), |
3183 | subsys->subnqn); |
3184 | return false; |
3185 | } |
3186 | |
3187 | if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || |
3188 | nvme_discovery_ctrl(ctrl)) |
3189 | continue; |
3190 | |
3191 | dev_err(ctrl->device, |
3192 | "Subsystem does not support multiple controllers\n"); |
3193 | return false; |
3194 | } |
3195 | |
3196 | return true; |
3197 | } |
3198 | |
3199 | static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) |
3200 | { |
3201 | struct nvme_subsystem *subsys, *found; |
3202 | int ret; |
3203 | |
3204 | subsys = kzalloc(sizeof(*subsys), GFP_KERNEL); |
3205 | if (!subsys) |
3206 | return -ENOMEM; |
3207 | |
3208 | subsys->instance = -1; |
3209 | mutex_init(&subsys->lock); |
3210 | kref_init(kref: &subsys->ref); |
3211 | INIT_LIST_HEAD(list: &subsys->ctrls); |
3212 | INIT_LIST_HEAD(list: &subsys->nsheads); |
3213 | nvme_init_subnqn(subsys, ctrl, id); |
3214 | memcpy(subsys->serial, id->sn, sizeof(subsys->serial)); |
3215 | memcpy(subsys->model, id->mn, sizeof(subsys->model)); |
3216 | subsys->vendor_id = le16_to_cpu(id->vid); |
3217 | subsys->cmic = id->cmic; |
3218 | |
3219 | /* Versions prior to 1.4 don't necessarily report a valid type */ |
3220 | if (id->cntrltype == NVME_CTRL_DISC || |
3221 | !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME)) |
3222 | subsys->subtype = NVME_NQN_DISC; |
3223 | else |
3224 | subsys->subtype = NVME_NQN_NVME; |
3225 | |
3226 | if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) { |
3227 | dev_err(ctrl->device, |
3228 | "Subsystem %s is not a discovery controller", |
3229 | subsys->subnqn); |
3230 | kfree(objp: subsys); |
3231 | return -EINVAL; |
3232 | } |
3233 | nvme_mpath_default_iopolicy(subsys); |
3234 | |
3235 | subsys->dev.class = &nvme_subsys_class; |
3236 | subsys->dev.release = nvme_release_subsystem; |
3237 | subsys->dev.groups = nvme_subsys_attrs_groups; |
3238 | dev_set_name(dev: &subsys->dev, name: "nvme-subsys%d", ctrl->instance); |
3239 | device_initialize(dev: &subsys->dev); |
3240 | |
3241 | mutex_lock(&nvme_subsystems_lock); |
3242 | found = __nvme_find_get_subsystem(subsysnqn: subsys->subnqn); |
3243 | if (found) { |
3244 | put_device(dev: &subsys->dev); |
3245 | subsys = found; |
3246 | |
3247 | if (!nvme_validate_cntlid(subsys, ctrl, id)) { |
3248 | ret = -EINVAL; |
3249 | goto out_put_subsystem; |
3250 | } |
3251 | } else { |
3252 | ret = device_add(dev: &subsys->dev); |
3253 | if (ret) { |
3254 | dev_err(ctrl->device, |
3255 | "failed to register subsystem device.\n"); |
3256 | put_device(dev: &subsys->dev); |
3257 | goto out_unlock; |
3258 | } |
3259 | ida_init(ida: &subsys->ns_ida); |
3260 | list_add_tail(new: &subsys->entry, head: &nvme_subsystems); |
3261 | } |
3262 | |
3263 | ret = sysfs_create_link(kobj: &subsys->dev.kobj, target: &ctrl->device->kobj, |
3264 | name: dev_name(dev: ctrl->device)); |
3265 | if (ret) { |
3266 | dev_err(ctrl->device, |
3267 | "failed to create sysfs link from subsystem.\n"); |
3268 | goto out_put_subsystem; |
3269 | } |
3270 | |
3271 | if (!found) |
3272 | subsys->instance = ctrl->instance; |
3273 | ctrl->subsys = subsys; |
3274 | list_add_tail(new: &ctrl->subsys_entry, head: &subsys->ctrls); |
3275 | mutex_unlock(lock: &nvme_subsystems_lock); |
3276 | return 0; |
3277 | |
3278 | out_put_subsystem: |
3279 | nvme_put_subsystem(subsys); |
3280 | out_unlock: |
3281 | mutex_unlock(lock: &nvme_subsystems_lock); |
3282 | return ret; |
3283 | } |
3284 | |
3285 | static int nvme_get_log_lsi(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, |
3286 | u8 lsp, u8 csi, void *log, size_t size, u64 offset, u16 lsi) |
3287 | { |
3288 | struct nvme_command c = { }; |
3289 | u32 dwlen = nvme_bytes_to_numd(len: size); |
3290 | |
3291 | c.get_log_page.opcode = nvme_admin_get_log_page; |
3292 | c.get_log_page.nsid = cpu_to_le32(nsid); |
3293 | c.get_log_page.lid = log_page; |
3294 | c.get_log_page.lsp = lsp; |
3295 | c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1)); |
3296 | c.get_log_page.numdu = cpu_to_le16(dwlen >> 16); |
3297 | c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset)); |
3298 | c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset)); |
3299 | c.get_log_page.csi = csi; |
3300 | c.get_log_page.lsi = cpu_to_le16(lsi); |
3301 | |
3302 | return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size); |
3303 | } |
3304 | |
3305 | int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi, |
3306 | void *log, size_t size, u64 offset) |
3307 | { |
3308 | return nvme_get_log_lsi(ctrl, nsid, log_page, lsp, csi, log, size, |
3309 | offset, lsi: 0); |
3310 | } |
3311 | |
3312 | static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi, |
3313 | struct nvme_effects_log **log) |
3314 | { |
3315 | struct nvme_effects_log *old, *cel = xa_load(&ctrl->cels, index: csi); |
3316 | int ret; |
3317 | |
3318 | if (cel) |
3319 | goto out; |
3320 | |
3321 | cel = kzalloc(sizeof(*cel), GFP_KERNEL); |
3322 | if (!cel) |
3323 | return -ENOMEM; |
3324 | |
3325 | ret = nvme_get_log(ctrl, nsid: 0x00, log_page: NVME_LOG_CMD_EFFECTS, lsp: 0, csi, |
3326 | log: cel, size: sizeof(*cel), offset: 0); |
3327 | if (ret) { |
3328 | kfree(objp: cel); |
3329 | return ret; |
3330 | } |
3331 | |
3332 | old = xa_store(&ctrl->cels, index: csi, entry: cel, GFP_KERNEL); |
3333 | if (xa_is_err(entry: old)) { |
3334 | kfree(objp: cel); |
3335 | return xa_err(entry: old); |
3336 | } |
3337 | out: |
3338 | *log = cel; |
3339 | return 0; |
3340 | } |
3341 | |
3342 | static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units) |
3343 | { |
3344 | u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val; |
3345 | |
3346 | if (check_shl_overflow(1U, units + page_shift - 9, &val)) |
3347 | return UINT_MAX; |
3348 | return val; |
3349 | } |
3350 | |
3351 | static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl) |
3352 | { |
3353 | struct nvme_command c = { }; |
3354 | struct nvme_id_ctrl_nvm *id; |
3355 | int ret; |
3356 | |
3357 | /* |
3358 | * Even though NVMe spec explicitly states that MDTS is not applicable |
3359 | * to the write-zeroes, we are cautious and limit the size to the |
3360 | * controllers max_hw_sectors value, which is based on the MDTS field |
3361 | * and possibly other limiting factors. |
3362 | */ |
3363 | if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) && |
3364 | !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES)) |
3365 | ctrl->max_zeroes_sectors = ctrl->max_hw_sectors; |
3366 | else |
3367 | ctrl->max_zeroes_sectors = 0; |
3368 | |
3369 | if (ctrl->subsys->subtype != NVME_NQN_NVME || |
3370 | !nvme_id_cns_ok(ctrl, cns: NVME_ID_CNS_CS_CTRL) || |
3371 | test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags)) |
3372 | return 0; |
3373 | |
3374 | id = kzalloc(sizeof(*id), GFP_KERNEL); |
3375 | if (!id) |
3376 | return -ENOMEM; |
3377 | |
3378 | c.identify.opcode = nvme_admin_identify; |
3379 | c.identify.cns = NVME_ID_CNS_CS_CTRL; |
3380 | c.identify.csi = NVME_CSI_NVM; |
3381 | |
3382 | ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id)); |
3383 | if (ret) |
3384 | goto free_data; |
3385 | |
3386 | ctrl->dmrl = id->dmrl; |
3387 | ctrl->dmrsl = le32_to_cpu(id->dmrsl); |
3388 | if (id->wzsl) |
3389 | ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, units: id->wzsl); |
3390 | |
3391 | free_data: |
3392 | if (ret > 0) |
3393 | set_bit(nr: NVME_CTRL_SKIP_ID_CNS_CS, addr: &ctrl->flags); |
3394 | kfree(objp: id); |
3395 | return ret; |
3396 | } |
3397 | |
3398 | static int nvme_init_effects_log(struct nvme_ctrl *ctrl, |
3399 | u8 csi, struct nvme_effects_log **log) |
3400 | { |
3401 | struct nvme_effects_log *effects, *old; |
3402 | |
3403 | effects = kzalloc(sizeof(*effects), GFP_KERNEL); |
3404 | if (!effects) |
3405 | return -ENOMEM; |
3406 | |
3407 | old = xa_store(&ctrl->cels, index: csi, entry: effects, GFP_KERNEL); |
3408 | if (xa_is_err(entry: old)) { |
3409 | kfree(objp: effects); |
3410 | return xa_err(entry: old); |
3411 | } |
3412 | |
3413 | *log = effects; |
3414 | return 0; |
3415 | } |
3416 | |
3417 | static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl) |
3418 | { |
3419 | struct nvme_effects_log *log = ctrl->effects; |
3420 | |
3421 | log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | |
3422 | NVME_CMD_EFFECTS_NCC | |
3423 | NVME_CMD_EFFECTS_CSE_MASK); |
3424 | log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC | |
3425 | NVME_CMD_EFFECTS_CSE_MASK); |
3426 | |
3427 | /* |
3428 | * The spec says the result of a security receive command depends on |
3429 | * the previous security send command. As such, many vendors log this |
3430 | * command as one to submitted only when no other commands to the same |
3431 | * namespace are outstanding. The intention is to tell the host to |
3432 | * prevent mixing security send and receive. |
3433 | * |
3434 | * This driver can only enforce such exclusive access against IO |
3435 | * queues, though. We are not readily able to enforce such a rule for |
3436 | * two commands to the admin queue, which is the only queue that |
3437 | * matters for this command. |
3438 | * |
3439 | * Rather than blindly freezing the IO queues for this effect that |
3440 | * doesn't even apply to IO, mask it off. |
3441 | */ |
3442 | log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK); |
3443 | |
3444 | log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); |
3445 | log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); |
3446 | log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC); |
3447 | } |
3448 | |
3449 | static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) |
3450 | { |
3451 | int ret = 0; |
3452 | |
3453 | if (ctrl->effects) |
3454 | return 0; |
3455 | |
3456 | if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) { |
3457 | ret = nvme_get_effects_log(ctrl, csi: NVME_CSI_NVM, log: &ctrl->effects); |
3458 | if (ret < 0) |
3459 | return ret; |
3460 | } |
3461 | |
3462 | if (!ctrl->effects) { |
3463 | ret = nvme_init_effects_log(ctrl, csi: NVME_CSI_NVM, log: &ctrl->effects); |
3464 | if (ret < 0) |
3465 | return ret; |
3466 | } |
3467 | |
3468 | nvme_init_known_nvm_effects(ctrl); |
3469 | return 0; |
3470 | } |
3471 | |
3472 | static int nvme_check_ctrl_fabric_info(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id) |
3473 | { |
3474 | /* |
3475 | * In fabrics we need to verify the cntlid matches the |
3476 | * admin connect |
3477 | */ |
3478 | if (ctrl->cntlid != le16_to_cpu(id->cntlid)) { |
3479 | dev_err(ctrl->device, |
3480 | "Mismatching cntlid: Connect %u vs Identify %u, rejecting\n", |
3481 | ctrl->cntlid, le16_to_cpu(id->cntlid)); |
3482 | return -EINVAL; |
3483 | } |
3484 | |
3485 | if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) { |
3486 | dev_err(ctrl->device, |
3487 | "keep-alive support is mandatory for fabrics\n"); |
3488 | return -EINVAL; |
3489 | } |
3490 | |
3491 | if (!nvme_discovery_ctrl(ctrl) && ctrl->ioccsz < 4) { |
3492 | dev_err(ctrl->device, |
3493 | "I/O queue command capsule supported size %d < 4\n", |
3494 | ctrl->ioccsz); |
3495 | return -EINVAL; |
3496 | } |
3497 | |
3498 | if (!nvme_discovery_ctrl(ctrl) && ctrl->iorcsz < 1) { |
3499 | dev_err(ctrl->device, |
3500 | "I/O queue response capsule supported size %d < 1\n", |
3501 | ctrl->iorcsz); |
3502 | return -EINVAL; |
3503 | } |
3504 | |
3505 | if (!ctrl->maxcmd) { |
3506 | dev_warn(ctrl->device, |
3507 | "Firmware bug: maximum outstanding commands is 0\n"); |
3508 | ctrl->maxcmd = ctrl->sqsize + 1; |
3509 | } |
3510 | |
3511 | return 0; |
3512 | } |
3513 | |
3514 | static int nvme_init_identify(struct nvme_ctrl *ctrl) |
3515 | { |
3516 | struct queue_limits lim; |
3517 | struct nvme_id_ctrl *id; |
3518 | u32 max_hw_sectors; |
3519 | bool prev_apst_enabled; |
3520 | int ret; |
3521 | |
3522 | ret = nvme_identify_ctrl(dev: ctrl, id: &id); |
3523 | if (ret) { |
3524 | dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret); |
3525 | return -EIO; |
3526 | } |
3527 | |
3528 | if (!(ctrl->ops->flags & NVME_F_FABRICS)) |
3529 | ctrl->cntlid = le16_to_cpu(id->cntlid); |
3530 | |
3531 | if (!ctrl->identified) { |
3532 | unsigned int i; |
3533 | |
3534 | /* |
3535 | * Check for quirks. Quirk can depend on firmware version, |
3536 | * so, in principle, the set of quirks present can change |
3537 | * across a reset. As a possible future enhancement, we |
3538 | * could re-scan for quirks every time we reinitialize |
3539 | * the device, but we'd have to make sure that the driver |
3540 | * behaves intelligently if the quirks change. |
3541 | */ |
3542 | for (i = 0; i < ARRAY_SIZE(core_quirks); i++) { |
3543 | if (quirk_matches(id, q: &core_quirks[i])) |
3544 | ctrl->quirks |= core_quirks[i].quirks; |
3545 | } |
3546 | |
3547 | ret = nvme_init_subsystem(ctrl, id); |
3548 | if (ret) |
3549 | goto out_free; |
3550 | |
3551 | ret = nvme_init_effects(ctrl, id); |
3552 | if (ret) |
3553 | goto out_free; |
3554 | } |
3555 | memcpy(ctrl->subsys->firmware_rev, id->fr, |
3556 | sizeof(ctrl->subsys->firmware_rev)); |
3557 | |
3558 | if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) { |
3559 | dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n"); |
3560 | ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS; |
3561 | } |
3562 | |
3563 | ctrl->crdt[0] = le16_to_cpu(id->crdt1); |
3564 | ctrl->crdt[1] = le16_to_cpu(id->crdt2); |
3565 | ctrl->crdt[2] = le16_to_cpu(id->crdt3); |
3566 | |
3567 | ctrl->oacs = le16_to_cpu(id->oacs); |
3568 | ctrl->oncs = le16_to_cpu(id->oncs); |
3569 | ctrl->mtfa = le16_to_cpu(id->mtfa); |
3570 | ctrl->oaes = le32_to_cpu(id->oaes); |
3571 | ctrl->wctemp = le16_to_cpu(id->wctemp); |
3572 | ctrl->cctemp = le16_to_cpu(id->cctemp); |
3573 | |
3574 | atomic_set(v: &ctrl->abort_limit, i: id->acl + 1); |
3575 | ctrl->vwc = id->vwc; |
3576 | if (id->mdts) |
3577 | max_hw_sectors = nvme_mps_to_sectors(ctrl, units: id->mdts); |
3578 | else |
3579 | max_hw_sectors = UINT_MAX; |
3580 | ctrl->max_hw_sectors = |
3581 | min_not_zero(ctrl->max_hw_sectors, max_hw_sectors); |
3582 | |
3583 | lim = queue_limits_start_update(q: ctrl->admin_q); |
3584 | nvme_set_ctrl_limits(ctrl, lim: &lim); |
3585 | ret = queue_limits_commit_update(q: ctrl->admin_q, lim: &lim); |
3586 | if (ret) |
3587 | goto out_free; |
3588 | |
3589 | ctrl->sgls = le32_to_cpu(id->sgls); |
3590 | ctrl->kas = le16_to_cpu(id->kas); |
3591 | ctrl->max_namespaces = le32_to_cpu(id->mnan); |
3592 | ctrl->ctratt = le32_to_cpu(id->ctratt); |
3593 | |
3594 | ctrl->cntrltype = id->cntrltype; |
3595 | ctrl->dctype = id->dctype; |
3596 | |
3597 | if (id->rtd3e) { |
3598 | /* us -> s */ |
3599 | u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC; |
3600 | |
3601 | ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time, |
3602 | shutdown_timeout, 60); |
3603 | |
3604 | if (ctrl->shutdown_timeout != shutdown_timeout) |
3605 | dev_info(ctrl->device, |
3606 | "D3 entry latency set to %u seconds\n", |
3607 | ctrl->shutdown_timeout); |
3608 | } else |
3609 | ctrl->shutdown_timeout = shutdown_timeout; |
3610 | |
3611 | ctrl->npss = id->npss; |
3612 | ctrl->apsta = id->apsta; |
3613 | prev_apst_enabled = ctrl->apst_enabled; |
3614 | if (ctrl->quirks & NVME_QUIRK_NO_APST) { |
3615 | if (force_apst && id->apsta) { |
3616 | dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n"); |
3617 | ctrl->apst_enabled = true; |
3618 | } else { |
3619 | ctrl->apst_enabled = false; |
3620 | } |
3621 | } else { |
3622 | ctrl->apst_enabled = id->apsta; |
3623 | } |
3624 | memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd)); |
3625 | |
3626 | if (ctrl->ops->flags & NVME_F_FABRICS) { |
3627 | ctrl->icdoff = le16_to_cpu(id->icdoff); |
3628 | ctrl->ioccsz = le32_to_cpu(id->ioccsz); |
3629 | ctrl->iorcsz = le32_to_cpu(id->iorcsz); |
3630 | ctrl->maxcmd = le16_to_cpu(id->maxcmd); |
3631 | |
3632 | ret = nvme_check_ctrl_fabric_info(ctrl, id); |
3633 | if (ret) |
3634 | goto out_free; |
3635 | } else { |
3636 | ctrl->hmpre = le32_to_cpu(id->hmpre); |
3637 | ctrl->hmmin = le32_to_cpu(id->hmmin); |
3638 | ctrl->hmminds = le32_to_cpu(id->hmminds); |
3639 | ctrl->hmmaxd = le16_to_cpu(id->hmmaxd); |
3640 | } |
3641 | |
3642 | ret = nvme_mpath_init_identify(ctrl, id); |
3643 | if (ret < 0) |
3644 | goto out_free; |
3645 | |
3646 | if (ctrl->apst_enabled && !prev_apst_enabled) |
3647 | dev_pm_qos_expose_latency_tolerance(dev: ctrl->device); |
3648 | else if (!ctrl->apst_enabled && prev_apst_enabled) |
3649 | dev_pm_qos_hide_latency_tolerance(dev: ctrl->device); |
3650 | ctrl->awupf = le16_to_cpu(id->awupf); |
3651 | out_free: |
3652 | kfree(objp: id); |
3653 | return ret; |
3654 | } |
3655 | |
3656 | /* |
3657 | * Initialize the cached copies of the Identify data and various controller |
3658 | * register in our nvme_ctrl structure. This should be called as soon as |
3659 | * the admin queue is fully up and running. |
3660 | */ |
3661 | int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended) |
3662 | { |
3663 | int ret; |
3664 | |
3665 | ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs); |
3666 | if (ret) { |
3667 | dev_err(ctrl->device, "Reading VS failed (%d)\n", ret); |
3668 | return ret; |
3669 | } |
3670 | |
3671 | ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize); |
3672 | |
3673 | if (ctrl->vs >= NVME_VS(1, 1, 0)) |
3674 | ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap); |
3675 | |
3676 | ret = nvme_init_identify(ctrl); |
3677 | if (ret) |
3678 | return ret; |
3679 | |
3680 | ret = nvme_configure_apst(ctrl); |
3681 | if (ret < 0) |
3682 | return ret; |
3683 | |
3684 | ret = nvme_configure_timestamp(ctrl); |
3685 | if (ret < 0) |
3686 | return ret; |
3687 | |
3688 | ret = nvme_configure_host_options(ctrl); |
3689 | if (ret < 0) |
3690 | return ret; |
3691 | |
3692 | nvme_configure_opal(ctrl, was_suspended); |
3693 | |
3694 | if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) { |
3695 | /* |
3696 | * Do not return errors unless we are in a controller reset, |
3697 | * the controller works perfectly fine without hwmon. |
3698 | */ |
3699 | ret = nvme_hwmon_init(ctrl); |
3700 | if (ret == -EINTR) |
3701 | return ret; |
3702 | } |
3703 | |
3704 | clear_bit(nr: NVME_CTRL_DIRTY_CAPABILITY, addr: &ctrl->flags); |
3705 | ctrl->identified = true; |
3706 | |
3707 | nvme_start_keep_alive(ctrl); |
3708 | |
3709 | return 0; |
3710 | } |
3711 | EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish); |
3712 | |
3713 | static int nvme_dev_open(struct inode *inode, struct file *file) |
3714 | { |
3715 | struct nvme_ctrl *ctrl = |
3716 | container_of(inode->i_cdev, struct nvme_ctrl, cdev); |
3717 | |
3718 | switch (nvme_ctrl_state(ctrl)) { |
3719 | case NVME_CTRL_LIVE: |
3720 | break; |
3721 | default: |
3722 | return -EWOULDBLOCK; |
3723 | } |
3724 | |
3725 | nvme_get_ctrl(ctrl); |
3726 | if (!try_module_get(module: ctrl->ops->module)) { |
3727 | nvme_put_ctrl(ctrl); |
3728 | return -EINVAL; |
3729 | } |
3730 | |
3731 | file->private_data = ctrl; |
3732 | return 0; |
3733 | } |
3734 | |
3735 | static int nvme_dev_release(struct inode *inode, struct file *file) |
3736 | { |
3737 | struct nvme_ctrl *ctrl = |
3738 | container_of(inode->i_cdev, struct nvme_ctrl, cdev); |
3739 | |
3740 | module_put(module: ctrl->ops->module); |
3741 | nvme_put_ctrl(ctrl); |
3742 | return 0; |
3743 | } |
3744 | |
3745 | static const struct file_operations nvme_dev_fops = { |
3746 | .owner = THIS_MODULE, |
3747 | .open = nvme_dev_open, |
3748 | .release = nvme_dev_release, |
3749 | .unlocked_ioctl = nvme_dev_ioctl, |
3750 | .compat_ioctl = compat_ptr_ioctl, |
3751 | .uring_cmd = nvme_dev_uring_cmd, |
3752 | }; |
3753 | |
3754 | static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl, |
3755 | unsigned nsid) |
3756 | { |
3757 | struct nvme_ns_head *h; |
3758 | |
3759 | lockdep_assert_held(&ctrl->subsys->lock); |
3760 | |
3761 | list_for_each_entry(h, &ctrl->subsys->nsheads, entry) { |
3762 | /* |
3763 | * Private namespaces can share NSIDs under some conditions. |
3764 | * In that case we can't use the same ns_head for namespaces |
3765 | * with the same NSID. |
3766 | */ |
3767 | if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, head: h)) |
3768 | continue; |
3769 | if (nvme_tryget_ns_head(head: h)) |
3770 | return h; |
3771 | } |
3772 | |
3773 | return NULL; |
3774 | } |
3775 | |
3776 | static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys, |
3777 | struct nvme_ns_ids *ids) |
3778 | { |
3779 | bool has_uuid = !uuid_is_null(uuid: &ids->uuid); |
3780 | bool has_nguid = memchr_inv(p: ids->nguid, c: 0, size: sizeof(ids->nguid)); |
3781 | bool has_eui64 = memchr_inv(p: ids->eui64, c: 0, size: sizeof(ids->eui64)); |
3782 | struct nvme_ns_head *h; |
3783 | |
3784 | lockdep_assert_held(&subsys->lock); |
3785 | |
3786 | list_for_each_entry(h, &subsys->nsheads, entry) { |
3787 | if (has_uuid && uuid_equal(u1: &ids->uuid, u2: &h->ids.uuid)) |
3788 | return -EINVAL; |
3789 | if (has_nguid && |
3790 | memcmp(p: &ids->nguid, q: &h->ids.nguid, size: sizeof(ids->nguid)) == 0) |
3791 | return -EINVAL; |
3792 | if (has_eui64 && |
3793 | memcmp(p: &ids->eui64, q: &h->ids.eui64, size: sizeof(ids->eui64)) == 0) |
3794 | return -EINVAL; |
3795 | } |
3796 | |
3797 | return 0; |
3798 | } |
3799 | |
3800 | static void nvme_cdev_rel(struct device *dev) |
3801 | { |
3802 | ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt)); |
3803 | } |
3804 | |
3805 | void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device) |
3806 | { |
3807 | cdev_device_del(cdev, dev: cdev_device); |
3808 | put_device(dev: cdev_device); |
3809 | } |
3810 | |
3811 | int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device, |
3812 | const struct file_operations *fops, struct module *owner) |
3813 | { |
3814 | int minor, ret; |
3815 | |
3816 | minor = ida_alloc(ida: &nvme_ns_chr_minor_ida, GFP_KERNEL); |
3817 | if (minor < 0) |
3818 | return minor; |
3819 | cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor); |
3820 | cdev_device->class = &nvme_ns_chr_class; |
3821 | cdev_device->release = nvme_cdev_rel; |
3822 | device_initialize(dev: cdev_device); |
3823 | cdev_init(cdev, fops); |
3824 | cdev->owner = owner; |
3825 | ret = cdev_device_add(cdev, dev: cdev_device); |
3826 | if (ret) |
3827 | put_device(dev: cdev_device); |
3828 | |
3829 | return ret; |
3830 | } |
3831 | |
3832 | static int nvme_ns_chr_open(struct inode *inode, struct file *file) |
3833 | { |
3834 | return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev)); |
3835 | } |
3836 | |
3837 | static int nvme_ns_chr_release(struct inode *inode, struct file *file) |
3838 | { |
3839 | nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev)); |
3840 | return 0; |
3841 | } |
3842 | |
3843 | static const struct file_operations nvme_ns_chr_fops = { |
3844 | .owner = THIS_MODULE, |
3845 | .open = nvme_ns_chr_open, |
3846 | .release = nvme_ns_chr_release, |
3847 | .unlocked_ioctl = nvme_ns_chr_ioctl, |
3848 | .compat_ioctl = compat_ptr_ioctl, |
3849 | .uring_cmd = nvme_ns_chr_uring_cmd, |
3850 | .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll, |
3851 | }; |
3852 | |
3853 | static int nvme_add_ns_cdev(struct nvme_ns *ns) |
3854 | { |
3855 | int ret; |
3856 | |
3857 | ns->cdev_device.parent = ns->ctrl->device; |
3858 | ret = dev_set_name(dev: &ns->cdev_device, name: "ng%dn%d", |
3859 | ns->ctrl->instance, ns->head->instance); |
3860 | if (ret) |
3861 | return ret; |
3862 | |
3863 | return nvme_cdev_add(cdev: &ns->cdev, cdev_device: &ns->cdev_device, fops: &nvme_ns_chr_fops, |
3864 | owner: ns->ctrl->ops->module); |
3865 | } |
3866 | |
3867 | static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl, |
3868 | struct nvme_ns_info *info) |
3869 | { |
3870 | struct nvme_ns_head *head; |
3871 | size_t size = sizeof(*head); |
3872 | int ret = -ENOMEM; |
3873 | |
3874 | #ifdef CONFIG_NVME_MULTIPATH |
3875 | size += num_possible_nodes() * sizeof(struct nvme_ns *); |
3876 | #endif |
3877 | |
3878 | head = kzalloc(size, GFP_KERNEL); |
3879 | if (!head) |
3880 | goto out; |
3881 | ret = ida_alloc_min(ida: &ctrl->subsys->ns_ida, min: 1, GFP_KERNEL); |
3882 | if (ret < 0) |
3883 | goto out_free_head; |
3884 | head->instance = ret; |
3885 | INIT_LIST_HEAD(list: &head->list); |
3886 | ret = init_srcu_struct(&head->srcu); |
3887 | if (ret) |
3888 | goto out_ida_remove; |
3889 | head->subsys = ctrl->subsys; |
3890 | head->ns_id = info->nsid; |
3891 | head->ids = info->ids; |
3892 | head->shared = info->is_shared; |
3893 | head->rotational = info->is_rotational; |
3894 | ratelimit_state_init(rs: &head->rs_nuse, interval: 5 * HZ, burst: 1); |
3895 | ratelimit_set_flags(rs: &head->rs_nuse, RATELIMIT_MSG_ON_RELEASE); |
3896 | kref_init(kref: &head->ref); |
3897 | |
3898 | if (head->ids.csi) { |
3899 | ret = nvme_get_effects_log(ctrl, csi: head->ids.csi, log: &head->effects); |
3900 | if (ret) |
3901 | goto out_cleanup_srcu; |
3902 | } else |
3903 | head->effects = ctrl->effects; |
3904 | |
3905 | ret = nvme_mpath_alloc_disk(ctrl, head); |
3906 | if (ret) |
3907 | goto out_cleanup_srcu; |
3908 | |
3909 | list_add_tail(new: &head->entry, head: &ctrl->subsys->nsheads); |
3910 | |
3911 | kref_get(kref: &ctrl->subsys->ref); |
3912 | |
3913 | return head; |
3914 | out_cleanup_srcu: |
3915 | cleanup_srcu_struct(ssp: &head->srcu); |
3916 | out_ida_remove: |
3917 | ida_free(&ctrl->subsys->ns_ida, id: head->instance); |
3918 | out_free_head: |
3919 | kfree(objp: head); |
3920 | out: |
3921 | if (ret > 0) |
3922 | ret = blk_status_to_errno(status: nvme_error_status(status: ret)); |
3923 | return ERR_PTR(error: ret); |
3924 | } |
3925 | |
3926 | static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this, |
3927 | struct nvme_ns_ids *ids) |
3928 | { |
3929 | struct nvme_subsystem *s; |
3930 | int ret = 0; |
3931 | |
3932 | /* |
3933 | * Note that this check is racy as we try to avoid holding the global |
3934 | * lock over the whole ns_head creation. But it is only intended as |
3935 | * a sanity check anyway. |
3936 | */ |
3937 | mutex_lock(&nvme_subsystems_lock); |
3938 | list_for_each_entry(s, &nvme_subsystems, entry) { |
3939 | if (s == this) |
3940 | continue; |
3941 | mutex_lock(&s->lock); |
3942 | ret = nvme_subsys_check_duplicate_ids(subsys: s, ids); |
3943 | mutex_unlock(lock: &s->lock); |
3944 | if (ret) |
3945 | break; |
3946 | } |
3947 | mutex_unlock(lock: &nvme_subsystems_lock); |
3948 | |
3949 | return ret; |
3950 | } |
3951 | |
3952 | static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info) |
3953 | { |
3954 | struct nvme_ctrl *ctrl = ns->ctrl; |
3955 | struct nvme_ns_head *head = NULL; |
3956 | int ret; |
3957 | |
3958 | ret = nvme_global_check_duplicate_ids(this: ctrl->subsys, ids: &info->ids); |
3959 | if (ret) { |
3960 | /* |
3961 | * We've found two different namespaces on two different |
3962 | * subsystems that report the same ID. This is pretty nasty |
3963 | * for anything that actually requires unique device |
3964 | * identification. In the kernel we need this for multipathing, |
3965 | * and in user space the /dev/disk/by-id/ links rely on it. |
3966 | * |
3967 | * If the device also claims to be multi-path capable back off |
3968 | * here now and refuse the probe the second device as this is a |
3969 | * recipe for data corruption. If not this is probably a |
3970 | * cheap consumer device if on the PCIe bus, so let the user |
3971 | * proceed and use the shiny toy, but warn that with changing |
3972 | * probing order (which due to our async probing could just be |
3973 | * device taking longer to startup) the other device could show |
3974 | * up at any time. |
3975 | */ |
3976 | nvme_print_device_info(ctrl); |
3977 | if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */ |
3978 | ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) && |
3979 | info->is_shared)) { |
3980 | dev_err(ctrl->device, |
3981 | "ignoring nsid %d because of duplicate IDs\n", |
3982 | info->nsid); |
3983 | return ret; |
3984 | } |
3985 | |
3986 | dev_err(ctrl->device, |
3987 | "clearing duplicate IDs for nsid %d\n", info->nsid); |
3988 | dev_err(ctrl->device, |
3989 | "use of /dev/disk/by-id/ may cause data corruption\n"); |
3990 | memset(&info->ids.nguid, 0, sizeof(info->ids.nguid)); |
3991 | memset(&info->ids.uuid, 0, sizeof(info->ids.uuid)); |
3992 | memset(&info->ids.eui64, 0, sizeof(info->ids.eui64)); |
3993 | ctrl->quirks |= NVME_QUIRK_BOGUS_NID; |
3994 | } |
3995 | |
3996 | mutex_lock(&ctrl->subsys->lock); |
3997 | head = nvme_find_ns_head(ctrl, nsid: info->nsid); |
3998 | if (!head) { |
3999 | ret = nvme_subsys_check_duplicate_ids(subsys: ctrl->subsys, ids: &info->ids); |
4000 | if (ret) { |
4001 | dev_err(ctrl->device, |
4002 | "duplicate IDs in subsystem for nsid %d\n", |
4003 | info->nsid); |
4004 | goto out_unlock; |
4005 | } |
4006 | head = nvme_alloc_ns_head(ctrl, info); |
4007 | if (IS_ERR(ptr: head)) { |
4008 | ret = PTR_ERR(ptr: head); |
4009 | goto out_unlock; |
4010 | } |
4011 | } else { |
4012 | ret = -EINVAL; |
4013 | if ((!info->is_shared || !head->shared) && |
4014 | !list_empty(head: &head->list)) { |
4015 | dev_err(ctrl->device, |
4016 | "Duplicate unshared namespace %d\n", |
4017 | info->nsid); |
4018 | goto out_put_ns_head; |
4019 | } |
4020 | if (!nvme_ns_ids_equal(a: &head->ids, b: &info->ids)) { |
4021 | dev_err(ctrl->device, |
4022 | "IDs don't match for shared namespace %d\n", |
4023 | info->nsid); |
4024 | goto out_put_ns_head; |
4025 | } |
4026 | |
4027 | if (!multipath) { |
4028 | dev_warn(ctrl->device, |
4029 | "Found shared namespace %d, but multipathing not supported.\n", |
4030 | info->nsid); |
4031 | dev_warn_once(ctrl->device, |
4032 | "Shared namespace support requires core_nvme.multipath=Y.\n"); |
4033 | } |
4034 | } |
4035 | |
4036 | list_add_tail_rcu(new: &ns->siblings, head: &head->list); |
4037 | ns->head = head; |
4038 | mutex_unlock(lock: &ctrl->subsys->lock); |
4039 | return 0; |
4040 | |
4041 | out_put_ns_head: |
4042 | nvme_put_ns_head(head); |
4043 | out_unlock: |
4044 | mutex_unlock(lock: &ctrl->subsys->lock); |
4045 | return ret; |
4046 | } |
4047 | |
4048 | struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid) |
4049 | { |
4050 | struct nvme_ns *ns, *ret = NULL; |
4051 | int srcu_idx; |
4052 | |
4053 | srcu_idx = srcu_read_lock(ssp: &ctrl->srcu); |
4054 | list_for_each_entry_srcu(ns, &ctrl->namespaces, list, |
4055 | srcu_read_lock_held(&ctrl->srcu)) { |
4056 | if (ns->head->ns_id == nsid) { |
4057 | if (!nvme_get_ns(ns)) |
4058 | continue; |
4059 | ret = ns; |
4060 | break; |
4061 | } |
4062 | if (ns->head->ns_id > nsid) |
4063 | break; |
4064 | } |
4065 | srcu_read_unlock(ssp: &ctrl->srcu, idx: srcu_idx); |
4066 | return ret; |
4067 | } |
4068 | EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, "NVME_TARGET_PASSTHRU"); |
4069 | |
4070 | /* |
4071 | * Add the namespace to the controller list while keeping the list ordered. |
4072 | */ |
4073 | static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns) |
4074 | { |
4075 | struct nvme_ns *tmp; |
4076 | |
4077 | list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) { |
4078 | if (tmp->head->ns_id < ns->head->ns_id) { |
4079 | list_add_rcu(new: &ns->list, head: &tmp->list); |
4080 | return; |
4081 | } |
4082 | } |
4083 | list_add(new: &ns->list, head: &ns->ctrl->namespaces); |
4084 | } |
4085 | |
4086 | static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info) |
4087 | { |
4088 | struct queue_limits lim = { }; |
4089 | struct nvme_ns *ns; |
4090 | struct gendisk *disk; |
4091 | int node = ctrl->numa_node; |
4092 | |
4093 | ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node); |
4094 | if (!ns) |
4095 | return; |
4096 | |
4097 | if (ctrl->opts && ctrl->opts->data_digest) |
4098 | lim.features |= BLK_FEAT_STABLE_WRITES; |
4099 | if (ctrl->ops->supports_pci_p2pdma && |
4100 | ctrl->ops->supports_pci_p2pdma(ctrl)) |
4101 | lim.features |= BLK_FEAT_PCI_P2PDMA; |
4102 | |
4103 | disk = blk_mq_alloc_disk(ctrl->tagset, &lim, ns); |
4104 | if (IS_ERR(ptr: disk)) |
4105 | goto out_free_ns; |
4106 | disk->fops = &nvme_bdev_ops; |
4107 | disk->private_data = ns; |
4108 | |
4109 | ns->disk = disk; |
4110 | ns->queue = disk->queue; |
4111 | ns->ctrl = ctrl; |
4112 | kref_init(kref: &ns->kref); |
4113 | |
4114 | if (nvme_init_ns_head(ns, info)) |
4115 | goto out_cleanup_disk; |
4116 | |
4117 | /* |
4118 | * If multipathing is enabled, the device name for all disks and not |
4119 | * just those that represent shared namespaces needs to be based on the |
4120 | * subsystem instance. Using the controller instance for private |
4121 | * namespaces could lead to naming collisions between shared and private |
4122 | * namespaces if they don't use a common numbering scheme. |
4123 | * |
4124 | * If multipathing is not enabled, disk names must use the controller |
4125 | * instance as shared namespaces will show up as multiple block |
4126 | * devices. |
4127 | */ |
4128 | if (nvme_ns_head_multipath(head: ns->head)) { |
4129 | sprintf(buf: disk->disk_name, fmt: "nvme%dc%dn%d", ctrl->subsys->instance, |
4130 | ctrl->instance, ns->head->instance); |
4131 | disk->flags |= GENHD_FL_HIDDEN; |
4132 | } else if (multipath) { |
4133 | sprintf(buf: disk->disk_name, fmt: "nvme%dn%d", ctrl->subsys->instance, |
4134 | ns->head->instance); |
4135 | } else { |
4136 | sprintf(buf: disk->disk_name, fmt: "nvme%dn%d", ctrl->instance, |
4137 | ns->head->instance); |
4138 | } |
4139 | |
4140 | if (nvme_update_ns_info(ns, info)) |
4141 | goto out_unlink_ns; |
4142 | |
4143 | mutex_lock(&ctrl->namespaces_lock); |
4144 | /* |
4145 | * Ensure that no namespaces are added to the ctrl list after the queues |
4146 | * are frozen, thereby avoiding a deadlock between scan and reset. |
4147 | */ |
4148 | if (test_bit(NVME_CTRL_FROZEN, &ctrl->flags)) { |
4149 | mutex_unlock(lock: &ctrl->namespaces_lock); |
4150 | goto out_unlink_ns; |
4151 | } |
4152 | nvme_ns_add_to_ctrl_list(ns); |
4153 | mutex_unlock(lock: &ctrl->namespaces_lock); |
4154 | synchronize_srcu(ssp: &ctrl->srcu); |
4155 | nvme_get_ctrl(ctrl); |
4156 | |
4157 | if (device_add_disk(parent: ctrl->device, disk: ns->disk, groups: nvme_ns_attr_groups)) |
4158 | goto out_cleanup_ns_from_list; |
4159 | |
4160 | if (!nvme_ns_head_multipath(head: ns->head)) |
4161 | nvme_add_ns_cdev(ns); |
4162 | |
4163 | nvme_mpath_add_disk(ns, anagrpid: info->anagrpid); |
4164 | nvme_fault_inject_init(fault_inj: &ns->fault_inject, dev_name: ns->disk->disk_name); |
4165 | |
4166 | /* |
4167 | * Set ns->disk->device->driver_data to ns so we can access |
4168 | * ns->head->passthru_err_log_enabled in |
4169 | * nvme_io_passthru_err_log_enabled_[store | show](). |
4170 | */ |
4171 | dev_set_drvdata(disk_to_dev(ns->disk), data: ns); |
4172 | |
4173 | return; |
4174 | |
4175 | out_cleanup_ns_from_list: |
4176 | nvme_put_ctrl(ctrl); |
4177 | mutex_lock(&ctrl->namespaces_lock); |
4178 | list_del_rcu(entry: &ns->list); |
4179 | mutex_unlock(lock: &ctrl->namespaces_lock); |
4180 | synchronize_srcu(ssp: &ctrl->srcu); |
4181 | out_unlink_ns: |
4182 | mutex_lock(&ctrl->subsys->lock); |
4183 | list_del_rcu(entry: &ns->siblings); |
4184 | if (list_empty(head: &ns->head->list)) |
4185 | list_del_init(entry: &ns->head->entry); |
4186 | mutex_unlock(lock: &ctrl->subsys->lock); |
4187 | nvme_put_ns_head(head: ns->head); |
4188 | out_cleanup_disk: |
4189 | put_disk(disk); |
4190 | out_free_ns: |
4191 | kfree(objp: ns); |
4192 | } |
4193 | |
4194 | static void nvme_ns_remove(struct nvme_ns *ns) |
4195 | { |
4196 | bool last_path = false; |
4197 | |
4198 | if (test_and_set_bit(NVME_NS_REMOVING, addr: &ns->flags)) |
4199 | return; |
4200 | |
4201 | clear_bit(NVME_NS_READY, addr: &ns->flags); |
4202 | set_capacity(disk: ns->disk, size: 0); |
4203 | nvme_fault_inject_fini(fault_inject: &ns->fault_inject); |
4204 | |
4205 | /* |
4206 | * Ensure that !NVME_NS_READY is seen by other threads to prevent |
4207 | * this ns going back into current_path. |
4208 | */ |
4209 | synchronize_srcu(ssp: &ns->head->srcu); |
4210 | |
4211 | /* wait for concurrent submissions */ |
4212 | if (nvme_mpath_clear_current_path(ns)) |
4213 | synchronize_srcu(ssp: &ns->head->srcu); |
4214 | |
4215 | mutex_lock(&ns->ctrl->subsys->lock); |
4216 | list_del_rcu(entry: &ns->siblings); |
4217 | if (list_empty(head: &ns->head->list)) { |
4218 | if (!nvme_mpath_queue_if_no_path(head: ns->head)) |
4219 | list_del_init(entry: &ns->head->entry); |
4220 | last_path = true; |
4221 | } |
4222 | mutex_unlock(lock: &ns->ctrl->subsys->lock); |
4223 | |
4224 | /* guarantee not available in head->list */ |
4225 | synchronize_srcu(ssp: &ns->head->srcu); |
4226 | |
4227 | if (!nvme_ns_head_multipath(head: ns->head)) |
4228 | nvme_cdev_del(cdev: &ns->cdev, cdev_device: &ns->cdev_device); |
4229 | |
4230 | nvme_mpath_remove_sysfs_link(ns); |
4231 | |
4232 | del_gendisk(gp: ns->disk); |
4233 | |
4234 | mutex_lock(&ns->ctrl->namespaces_lock); |
4235 | list_del_rcu(entry: &ns->list); |
4236 | mutex_unlock(lock: &ns->ctrl->namespaces_lock); |
4237 | synchronize_srcu(ssp: &ns->ctrl->srcu); |
4238 | |
4239 | if (last_path) |
4240 | nvme_mpath_remove_disk(head: ns->head); |
4241 | nvme_put_ns(ns); |
4242 | } |
4243 | |
4244 | static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid) |
4245 | { |
4246 | struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid); |
4247 | |
4248 | if (ns) { |
4249 | nvme_ns_remove(ns); |
4250 | nvme_put_ns(ns); |
4251 | } |
4252 | } |
4253 | |
4254 | static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info) |
4255 | { |
4256 | int ret = NVME_SC_INVALID_NS | NVME_STATUS_DNR; |
4257 | |
4258 | if (!nvme_ns_ids_equal(a: &ns->head->ids, b: &info->ids)) { |
4259 | dev_err(ns->ctrl->device, |
4260 | "identifiers changed for nsid %d\n", ns->head->ns_id); |
4261 | goto out; |
4262 | } |
4263 | |
4264 | ret = nvme_update_ns_info(ns, info); |
4265 | out: |
4266 | /* |
4267 | * Only remove the namespace if we got a fatal error back from the |
4268 | * device, otherwise ignore the error and just move on. |
4269 | * |
4270 | * TODO: we should probably schedule a delayed retry here. |
4271 | */ |
4272 | if (ret > 0 && (ret & NVME_STATUS_DNR)) |
4273 | nvme_ns_remove(ns); |
4274 | } |
4275 | |
4276 | static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid) |
4277 | { |
4278 | struct nvme_ns_info info = { .nsid = nsid }; |
4279 | struct nvme_ns *ns; |
4280 | int ret = 1; |
4281 | |
4282 | if (nvme_identify_ns_descs(ctrl, info: &info)) |
4283 | return; |
4284 | |
4285 | if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) { |
4286 | dev_warn(ctrl->device, |
4287 | "command set not reported for nsid: %d\n", nsid); |
4288 | return; |
4289 | } |
4290 | |
4291 | /* |
4292 | * If available try to use the Command Set Idependent Identify Namespace |
4293 | * data structure to find all the generic information that is needed to |
4294 | * set up a namespace. If not fall back to the legacy version. |
4295 | */ |
4296 | if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) || |
4297 | (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS) || |
4298 | ctrl->vs >= NVME_VS(2, 0, 0)) |
4299 | ret = nvme_ns_info_from_id_cs_indep(ctrl, info: &info); |
4300 | if (ret > 0) |
4301 | ret = nvme_ns_info_from_identify(ctrl, info: &info); |
4302 | |
4303 | if (info.is_removed) |
4304 | nvme_ns_remove_by_nsid(ctrl, nsid); |
4305 | |
4306 | /* |
4307 | * Ignore the namespace if it is not ready. We will get an AEN once it |
4308 | * becomes ready and restart the scan. |
4309 | */ |
4310 | if (ret || !info.is_ready) |
4311 | return; |
4312 | |
4313 | ns = nvme_find_get_ns(ctrl, nsid); |
4314 | if (ns) { |
4315 | nvme_validate_ns(ns, info: &info); |
4316 | nvme_put_ns(ns); |
4317 | } else { |
4318 | nvme_alloc_ns(ctrl, info: &info); |
4319 | } |
4320 | } |
4321 | |
4322 | /** |
4323 | * struct async_scan_info - keeps track of controller & NSIDs to scan |
4324 | * @ctrl: Controller on which namespaces are being scanned |
4325 | * @next_nsid: Index of next NSID to scan in ns_list |
4326 | * @ns_list: Pointer to list of NSIDs to scan |
4327 | * |
4328 | * Note: There is a single async_scan_info structure shared by all instances |
4329 | * of nvme_scan_ns_async() scanning a given controller, so the atomic |
4330 | * operations on next_nsid are critical to ensure each instance scans a unique |
4331 | * NSID. |
4332 | */ |
4333 | struct async_scan_info { |
4334 | struct nvme_ctrl *ctrl; |
4335 | atomic_t next_nsid; |
4336 | __le32 *ns_list; |
4337 | }; |
4338 | |
4339 | static void nvme_scan_ns_async(void *data, async_cookie_t cookie) |
4340 | { |
4341 | struct async_scan_info *scan_info = data; |
4342 | int idx; |
4343 | u32 nsid; |
4344 | |
4345 | idx = (u32)atomic_fetch_inc(v: &scan_info->next_nsid); |
4346 | nsid = le32_to_cpu(scan_info->ns_list[idx]); |
4347 | |
4348 | nvme_scan_ns(ctrl: scan_info->ctrl, nsid); |
4349 | } |
4350 | |
4351 | static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl, |
4352 | unsigned nsid) |
4353 | { |
4354 | struct nvme_ns *ns, *next; |
4355 | LIST_HEAD(rm_list); |
4356 | |
4357 | mutex_lock(&ctrl->namespaces_lock); |
4358 | list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) { |
4359 | if (ns->head->ns_id > nsid) { |
4360 | list_del_rcu(entry: &ns->list); |
4361 | synchronize_srcu(ssp: &ctrl->srcu); |
4362 | list_add_tail_rcu(new: &ns->list, head: &rm_list); |
4363 | } |
4364 | } |
4365 | mutex_unlock(lock: &ctrl->namespaces_lock); |
4366 | |
4367 | list_for_each_entry_safe(ns, next, &rm_list, list) |
4368 | nvme_ns_remove(ns); |
4369 | } |
4370 | |
4371 | static int nvme_scan_ns_list(struct nvme_ctrl *ctrl) |
4372 | { |
4373 | const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32); |
4374 | __le32 *ns_list; |
4375 | u32 prev = 0; |
4376 | int ret = 0, i; |
4377 | ASYNC_DOMAIN(domain); |
4378 | struct async_scan_info scan_info; |
4379 | |
4380 | ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL); |
4381 | if (!ns_list) |
4382 | return -ENOMEM; |
4383 | |
4384 | scan_info.ctrl = ctrl; |
4385 | scan_info.ns_list = ns_list; |
4386 | for (;;) { |
4387 | struct nvme_command cmd = { |
4388 | .identify.opcode = nvme_admin_identify, |
4389 | .identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST, |
4390 | .identify.nsid = cpu_to_le32(prev), |
4391 | }; |
4392 | |
4393 | ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list, |
4394 | NVME_IDENTIFY_DATA_SIZE); |
4395 | if (ret) { |
4396 | dev_warn(ctrl->device, |
4397 | "Identify NS List failed (status=0x%x)\n", ret); |
4398 | goto free; |
4399 | } |
4400 | |
4401 | atomic_set(v: &scan_info.next_nsid, i: 0); |
4402 | for (i = 0; i < nr_entries; i++) { |
4403 | u32 nsid = le32_to_cpu(ns_list[i]); |
4404 | |
4405 | if (!nsid) /* end of the list? */ |
4406 | goto out; |
4407 | async_schedule_domain(func: nvme_scan_ns_async, data: &scan_info, |
4408 | domain: &domain); |
4409 | while (++prev < nsid) |
4410 | nvme_ns_remove_by_nsid(ctrl, nsid: prev); |
4411 | } |
4412 | async_synchronize_full_domain(domain: &domain); |
4413 | } |
4414 | out: |
4415 | nvme_remove_invalid_namespaces(ctrl, nsid: prev); |
4416 | free: |
4417 | async_synchronize_full_domain(domain: &domain); |
4418 | kfree(objp: ns_list); |
4419 | return ret; |
4420 | } |
4421 | |
4422 | static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl) |
4423 | { |
4424 | struct nvme_id_ctrl *id; |
4425 | u32 nn, i; |
4426 | |
4427 | if (nvme_identify_ctrl(dev: ctrl, id: &id)) |
4428 | return; |
4429 | nn = le32_to_cpu(id->nn); |
4430 | kfree(objp: id); |
4431 | |
4432 | for (i = 1; i <= nn; i++) |
4433 | nvme_scan_ns(ctrl, nsid: i); |
4434 | |
4435 | nvme_remove_invalid_namespaces(ctrl, nsid: nn); |
4436 | } |
4437 | |
4438 | static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl) |
4439 | { |
4440 | size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32); |
4441 | __le32 *log; |
4442 | int error; |
4443 | |
4444 | log = kzalloc(log_size, GFP_KERNEL); |
4445 | if (!log) |
4446 | return; |
4447 | |
4448 | /* |
4449 | * We need to read the log to clear the AEN, but we don't want to rely |
4450 | * on it for the changed namespace information as userspace could have |
4451 | * raced with us in reading the log page, which could cause us to miss |
4452 | * updates. |
4453 | */ |
4454 | error = nvme_get_log(ctrl, NVME_NSID_ALL, log_page: NVME_LOG_CHANGED_NS, lsp: 0, |
4455 | csi: NVME_CSI_NVM, log, size: log_size, offset: 0); |
4456 | if (error) |
4457 | dev_warn(ctrl->device, |
4458 | "reading changed ns log failed: %d\n", error); |
4459 | |
4460 | kfree(objp: log); |
4461 | } |
4462 | |
4463 | static void nvme_scan_work(struct work_struct *work) |
4464 | { |
4465 | struct nvme_ctrl *ctrl = |
4466 | container_of(work, struct nvme_ctrl, scan_work); |
4467 | int ret; |
4468 | |
4469 | /* No tagset on a live ctrl means IO queues could not created */ |
4470 | if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE || !ctrl->tagset) |
4471 | return; |
4472 | |
4473 | /* |
4474 | * Identify controller limits can change at controller reset due to |
4475 | * new firmware download, even though it is not common we cannot ignore |
4476 | * such scenario. Controller's non-mdts limits are reported in the unit |
4477 | * of logical blocks that is dependent on the format of attached |
4478 | * namespace. Hence re-read the limits at the time of ns allocation. |
4479 | */ |
4480 | ret = nvme_init_non_mdts_limits(ctrl); |
4481 | if (ret < 0) { |
4482 | dev_warn(ctrl->device, |
4483 | "reading non-mdts-limits failed: %d\n", ret); |
4484 | return; |
4485 | } |
4486 | |
4487 | if (test_and_clear_bit(nr: NVME_AER_NOTICE_NS_CHANGED, addr: &ctrl->events)) { |
4488 | dev_info(ctrl->device, "rescanning namespaces.\n"); |
4489 | nvme_clear_changed_ns_log(ctrl); |
4490 | } |
4491 | |
4492 | mutex_lock(&ctrl->scan_lock); |
4493 | if (!nvme_id_cns_ok(ctrl, cns: NVME_ID_CNS_NS_ACTIVE_LIST)) { |
4494 | nvme_scan_ns_sequential(ctrl); |
4495 | } else { |
4496 | /* |
4497 | * Fall back to sequential scan if DNR is set to handle broken |
4498 | * devices which should support Identify NS List (as per the VS |
4499 | * they report) but don't actually support it. |
4500 | */ |
4501 | ret = nvme_scan_ns_list(ctrl); |
4502 | if (ret > 0 && ret & NVME_STATUS_DNR) |
4503 | nvme_scan_ns_sequential(ctrl); |
4504 | } |
4505 | mutex_unlock(lock: &ctrl->scan_lock); |
4506 | |
4507 | /* Requeue if we have missed AENs */ |
4508 | if (test_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) |
4509 | nvme_queue_scan(ctrl); |
4510 | #ifdef CONFIG_NVME_MULTIPATH |
4511 | else if (ctrl->ana_log_buf) |
4512 | /* Re-read the ANA log page to not miss updates */ |
4513 | queue_work(wq: nvme_wq, work: &ctrl->ana_work); |
4514 | #endif |
4515 | } |
4516 | |
4517 | /* |
4518 | * This function iterates the namespace list unlocked to allow recovery from |
4519 | * controller failure. It is up to the caller to ensure the namespace list is |
4520 | * not modified by scan work while this function is executing. |
4521 | */ |
4522 | void nvme_remove_namespaces(struct nvme_ctrl *ctrl) |
4523 | { |
4524 | struct nvme_ns *ns, *next; |
4525 | LIST_HEAD(ns_list); |
4526 | |
4527 | /* |
4528 | * make sure to requeue I/O to all namespaces as these |
4529 | * might result from the scan itself and must complete |
4530 | * for the scan_work to make progress |
4531 | */ |
4532 | nvme_mpath_clear_ctrl_paths(ctrl); |
4533 | |
4534 | /* |
4535 | * Unquiesce io queues so any pending IO won't hang, especially |
4536 | * those submitted from scan work |
4537 | */ |
4538 | nvme_unquiesce_io_queues(ctrl); |
4539 | |
4540 | /* prevent racing with ns scanning */ |
4541 | flush_work(work: &ctrl->scan_work); |
4542 | |
4543 | /* |
4544 | * The dead states indicates the controller was not gracefully |
4545 | * disconnected. In that case, we won't be able to flush any data while |
4546 | * removing the namespaces' disks; fail all the queues now to avoid |
4547 | * potentially having to clean up the failed sync later. |
4548 | */ |
4549 | if (nvme_ctrl_state(ctrl) == NVME_CTRL_DEAD) |
4550 | nvme_mark_namespaces_dead(ctrl); |
4551 | |
4552 | /* this is a no-op when called from the controller reset handler */ |
4553 | nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO); |
4554 | |
4555 | mutex_lock(&ctrl->namespaces_lock); |
4556 | list_splice_init_rcu(list: &ctrl->namespaces, head: &ns_list, sync: synchronize_rcu); |
4557 | mutex_unlock(lock: &ctrl->namespaces_lock); |
4558 | synchronize_srcu(ssp: &ctrl->srcu); |
4559 | |
4560 | list_for_each_entry_safe(ns, next, &ns_list, list) |
4561 | nvme_ns_remove(ns); |
4562 | } |
4563 | EXPORT_SYMBOL_GPL(nvme_remove_namespaces); |
4564 | |
4565 | static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env) |
4566 | { |
4567 | const struct nvme_ctrl *ctrl = |
4568 | container_of(dev, struct nvme_ctrl, ctrl_device); |
4569 | struct nvmf_ctrl_options *opts = ctrl->opts; |
4570 | int ret; |
4571 | |
4572 | ret = add_uevent_var(env, format: "NVME_TRTYPE=%s", ctrl->ops->name); |
4573 | if (ret) |
4574 | return ret; |
4575 | |
4576 | if (opts) { |
4577 | ret = add_uevent_var(env, format: "NVME_TRADDR=%s", opts->traddr); |
4578 | if (ret) |
4579 | return ret; |
4580 | |
4581 | ret = add_uevent_var(env, format: "NVME_TRSVCID=%s", |
4582 | opts->trsvcid ?: "none"); |
4583 | if (ret) |
4584 | return ret; |
4585 | |
4586 | ret = add_uevent_var(env, format: "NVME_HOST_TRADDR=%s", |
4587 | opts->host_traddr ?: "none"); |
4588 | if (ret) |
4589 | return ret; |
4590 | |
4591 | ret = add_uevent_var(env, format: "NVME_HOST_IFACE=%s", |
4592 | opts->host_iface ?: "none"); |
4593 | } |
4594 | return ret; |
4595 | } |
4596 | |
4597 | static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata) |
4598 | { |
4599 | char *envp[2] = { envdata, NULL }; |
4600 | |
4601 | kobject_uevent_env(kobj: &ctrl->device->kobj, action: KOBJ_CHANGE, envp); |
4602 | } |
4603 | |
4604 | static void nvme_aen_uevent(struct nvme_ctrl *ctrl) |
4605 | { |
4606 | char *envp[2] = { NULL, NULL }; |
4607 | u32 aen_result = ctrl->aen_result; |
4608 | |
4609 | ctrl->aen_result = 0; |
4610 | if (!aen_result) |
4611 | return; |
4612 | |
4613 | envp[0] = kasprintf(GFP_KERNEL, fmt: "NVME_AEN=%#08x", aen_result); |
4614 | if (!envp[0]) |
4615 | return; |
4616 | kobject_uevent_env(kobj: &ctrl->device->kobj, action: KOBJ_CHANGE, envp); |
4617 | kfree(objp: envp[0]); |
4618 | } |
4619 | |
4620 | static void nvme_async_event_work(struct work_struct *work) |
4621 | { |
4622 | struct nvme_ctrl *ctrl = |
4623 | container_of(work, struct nvme_ctrl, async_event_work); |
4624 | |
4625 | nvme_aen_uevent(ctrl); |
4626 | |
4627 | /* |
4628 | * The transport drivers must guarantee AER submission here is safe by |
4629 | * flushing ctrl async_event_work after changing the controller state |
4630 | * from LIVE and before freeing the admin queue. |
4631 | */ |
4632 | if (nvme_ctrl_state(ctrl) == NVME_CTRL_LIVE) |
4633 | ctrl->ops->submit_async_event(ctrl); |
4634 | } |
4635 | |
4636 | static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl) |
4637 | { |
4638 | |
4639 | u32 csts; |
4640 | |
4641 | if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) |
4642 | return false; |
4643 | |
4644 | if (csts == ~0) |
4645 | return false; |
4646 | |
4647 | return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP)); |
4648 | } |
4649 | |
4650 | static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl) |
4651 | { |
4652 | struct nvme_fw_slot_info_log *log; |
4653 | u8 next_fw_slot, cur_fw_slot; |
4654 | |
4655 | log = kmalloc(sizeof(*log), GFP_KERNEL); |
4656 | if (!log) |
4657 | return; |
4658 | |
4659 | if (nvme_get_log(ctrl, NVME_NSID_ALL, log_page: NVME_LOG_FW_SLOT, lsp: 0, csi: NVME_CSI_NVM, |
4660 | log, size: sizeof(*log), offset: 0)) { |
4661 | dev_warn(ctrl->device, "Get FW SLOT INFO log error\n"); |
4662 | goto out_free_log; |
4663 | } |
4664 | |
4665 | cur_fw_slot = log->afi & 0x7; |
4666 | next_fw_slot = (log->afi & 0x70) >> 4; |
4667 | if (!cur_fw_slot || (next_fw_slot && (cur_fw_slot != next_fw_slot))) { |
4668 | dev_info(ctrl->device, |
4669 | "Firmware is activated after next Controller Level Reset\n"); |
4670 | goto out_free_log; |
4671 | } |
4672 | |
4673 | memcpy(ctrl->subsys->firmware_rev, &log->frs[cur_fw_slot - 1], |
4674 | sizeof(ctrl->subsys->firmware_rev)); |
4675 | |
4676 | out_free_log: |
4677 | kfree(objp: log); |
4678 | } |
4679 | |
4680 | static void nvme_fw_act_work(struct work_struct *work) |
4681 | { |
4682 | struct nvme_ctrl *ctrl = container_of(work, |
4683 | struct nvme_ctrl, fw_act_work); |
4684 | unsigned long fw_act_timeout; |
4685 | |
4686 | nvme_auth_stop(ctrl); |
4687 | |
4688 | if (ctrl->mtfa) |
4689 | fw_act_timeout = jiffies + msecs_to_jiffies(m: ctrl->mtfa * 100); |
4690 | else |
4691 | fw_act_timeout = jiffies + secs_to_jiffies(admin_timeout); |
4692 | |
4693 | nvme_quiesce_io_queues(ctrl); |
4694 | while (nvme_ctrl_pp_status(ctrl)) { |
4695 | if (time_after(jiffies, fw_act_timeout)) { |
4696 | dev_warn(ctrl->device, |
4697 | "Fw activation timeout, reset controller\n"); |
4698 | nvme_try_sched_reset(ctrl); |
4699 | return; |
4700 | } |
4701 | msleep(msecs: 100); |
4702 | } |
4703 | |
4704 | if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING) || |
4705 | !nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) |
4706 | return; |
4707 | |
4708 | nvme_unquiesce_io_queues(ctrl); |
4709 | /* read FW slot information to clear the AER */ |
4710 | nvme_get_fw_slot_info(ctrl); |
4711 | |
4712 | queue_work(wq: nvme_wq, work: &ctrl->async_event_work); |
4713 | } |
4714 | |
4715 | static u32 nvme_aer_type(u32 result) |
4716 | { |
4717 | return result & 0x7; |
4718 | } |
4719 | |
4720 | static u32 nvme_aer_subtype(u32 result) |
4721 | { |
4722 | return (result & 0xff00) >> 8; |
4723 | } |
4724 | |
4725 | static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result) |
4726 | { |
4727 | u32 aer_notice_type = nvme_aer_subtype(result); |
4728 | bool requeue = true; |
4729 | |
4730 | switch (aer_notice_type) { |
4731 | case NVME_AER_NOTICE_NS_CHANGED: |
4732 | set_bit(nr: NVME_AER_NOTICE_NS_CHANGED, addr: &ctrl->events); |
4733 | nvme_queue_scan(ctrl); |
4734 | break; |
4735 | case NVME_AER_NOTICE_FW_ACT_STARTING: |
4736 | /* |
4737 | * We are (ab)using the RESETTING state to prevent subsequent |
4738 | * recovery actions from interfering with the controller's |
4739 | * firmware activation. |
4740 | */ |
4741 | if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) { |
4742 | requeue = false; |
4743 | queue_work(wq: nvme_wq, work: &ctrl->fw_act_work); |
4744 | } |
4745 | break; |
4746 | #ifdef CONFIG_NVME_MULTIPATH |
4747 | case NVME_AER_NOTICE_ANA: |
4748 | if (!ctrl->ana_log_buf) |
4749 | break; |
4750 | queue_work(wq: nvme_wq, work: &ctrl->ana_work); |
4751 | break; |
4752 | #endif |
4753 | case NVME_AER_NOTICE_DISC_CHANGED: |
4754 | ctrl->aen_result = result; |
4755 | break; |
4756 | default: |
4757 | dev_warn(ctrl->device, "async event result %08x\n", result); |
4758 | } |
4759 | return requeue; |
4760 | } |
4761 | |
4762 | static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl) |
4763 | { |
4764 | dev_warn(ctrl->device, |
4765 | "resetting controller due to persistent internal error\n"); |
4766 | nvme_reset_ctrl(ctrl); |
4767 | } |
4768 | |
4769 | void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status, |
4770 | volatile union nvme_result *res) |
4771 | { |
4772 | u32 result = le32_to_cpu(res->u32); |
4773 | u32 aer_type = nvme_aer_type(result); |
4774 | u32 aer_subtype = nvme_aer_subtype(result); |
4775 | bool requeue = true; |
4776 | |
4777 | if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS) |
4778 | return; |
4779 | |
4780 | trace_nvme_async_event(ctrl, result); |
4781 | switch (aer_type) { |
4782 | case NVME_AER_NOTICE: |
4783 | requeue = nvme_handle_aen_notice(ctrl, result); |
4784 | break; |
4785 | case NVME_AER_ERROR: |
4786 | /* |
4787 | * For a persistent internal error, don't run async_event_work |
4788 | * to submit a new AER. The controller reset will do it. |
4789 | */ |
4790 | if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) { |
4791 | nvme_handle_aer_persistent_error(ctrl); |
4792 | return; |
4793 | } |
4794 | fallthrough; |
4795 | case NVME_AER_SMART: |
4796 | case NVME_AER_CSS: |
4797 | case NVME_AER_VS: |
4798 | ctrl->aen_result = result; |
4799 | break; |
4800 | default: |
4801 | break; |
4802 | } |
4803 | |
4804 | if (requeue) |
4805 | queue_work(wq: nvme_wq, work: &ctrl->async_event_work); |
4806 | } |
4807 | EXPORT_SYMBOL_GPL(nvme_complete_async_event); |
4808 | |
4809 | int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, |
4810 | const struct blk_mq_ops *ops, unsigned int cmd_size) |
4811 | { |
4812 | struct queue_limits lim = {}; |
4813 | int ret; |
4814 | |
4815 | memset(set, 0, sizeof(*set)); |
4816 | set->ops = ops; |
4817 | set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; |
4818 | if (ctrl->ops->flags & NVME_F_FABRICS) |
4819 | /* Reserved for fabric connect and keep alive */ |
4820 | set->reserved_tags = 2; |
4821 | set->numa_node = ctrl->numa_node; |
4822 | if (ctrl->ops->flags & NVME_F_BLOCKING) |
4823 | set->flags |= BLK_MQ_F_BLOCKING; |
4824 | set->cmd_size = cmd_size; |
4825 | set->driver_data = ctrl; |
4826 | set->nr_hw_queues = 1; |
4827 | set->timeout = NVME_ADMIN_TIMEOUT; |
4828 | ret = blk_mq_alloc_tag_set(set); |
4829 | if (ret) |
4830 | return ret; |
4831 | |
4832 | ctrl->admin_q = blk_mq_alloc_queue(set, lim: &lim, NULL); |
4833 | if (IS_ERR(ptr: ctrl->admin_q)) { |
4834 | ret = PTR_ERR(ptr: ctrl->admin_q); |
4835 | goto out_free_tagset; |
4836 | } |
4837 | |
4838 | if (ctrl->ops->flags & NVME_F_FABRICS) { |
4839 | ctrl->fabrics_q = blk_mq_alloc_queue(set, NULL, NULL); |
4840 | if (IS_ERR(ptr: ctrl->fabrics_q)) { |
4841 | ret = PTR_ERR(ptr: ctrl->fabrics_q); |
4842 | goto out_cleanup_admin_q; |
4843 | } |
4844 | } |
4845 | |
4846 | ctrl->admin_tagset = set; |
4847 | return 0; |
4848 | |
4849 | out_cleanup_admin_q: |
4850 | blk_mq_destroy_queue(ctrl->admin_q); |
4851 | blk_put_queue(ctrl->admin_q); |
4852 | out_free_tagset: |
4853 | blk_mq_free_tag_set(set); |
4854 | ctrl->admin_q = NULL; |
4855 | ctrl->fabrics_q = NULL; |
4856 | return ret; |
4857 | } |
4858 | EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set); |
4859 | |
4860 | void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl) |
4861 | { |
4862 | /* |
4863 | * As we're about to destroy the queue and free tagset |
4864 | * we can not have keep-alive work running. |
4865 | */ |
4866 | nvme_stop_keep_alive(ctrl); |
4867 | blk_mq_destroy_queue(ctrl->admin_q); |
4868 | blk_put_queue(ctrl->admin_q); |
4869 | if (ctrl->ops->flags & NVME_F_FABRICS) { |
4870 | blk_mq_destroy_queue(ctrl->fabrics_q); |
4871 | blk_put_queue(ctrl->fabrics_q); |
4872 | } |
4873 | blk_mq_free_tag_set(set: ctrl->admin_tagset); |
4874 | } |
4875 | EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set); |
4876 | |
4877 | int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set, |
4878 | const struct blk_mq_ops *ops, unsigned int nr_maps, |
4879 | unsigned int cmd_size) |
4880 | { |
4881 | int ret; |
4882 | |
4883 | memset(set, 0, sizeof(*set)); |
4884 | set->ops = ops; |
4885 | set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1); |
4886 | /* |
4887 | * Some Apple controllers requires tags to be unique across admin and |
4888 | * the (only) I/O queue, so reserve the first 32 tags of the I/O queue. |
4889 | */ |
4890 | if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS) |
4891 | set->reserved_tags = NVME_AQ_DEPTH; |
4892 | else if (ctrl->ops->flags & NVME_F_FABRICS) |
4893 | /* Reserved for fabric connect */ |
4894 | set->reserved_tags = 1; |
4895 | set->numa_node = ctrl->numa_node; |
4896 | if (ctrl->ops->flags & NVME_F_BLOCKING) |
4897 | set->flags |= BLK_MQ_F_BLOCKING; |
4898 | set->cmd_size = cmd_size; |
4899 | set->driver_data = ctrl; |
4900 | set->nr_hw_queues = ctrl->queue_count - 1; |
4901 | set->timeout = NVME_IO_TIMEOUT; |
4902 | set->nr_maps = nr_maps; |
4903 | ret = blk_mq_alloc_tag_set(set); |
4904 | if (ret) |
4905 | return ret; |
4906 | |
4907 | if (ctrl->ops->flags & NVME_F_FABRICS) { |
4908 | struct queue_limits lim = { |
4909 | .features = BLK_FEAT_SKIP_TAGSET_QUIESCE, |
4910 | }; |
4911 | |
4912 | ctrl->connect_q = blk_mq_alloc_queue(set, lim: &lim, NULL); |
4913 | if (IS_ERR(ptr: ctrl->connect_q)) { |
4914 | ret = PTR_ERR(ptr: ctrl->connect_q); |
4915 | goto out_free_tag_set; |
4916 | } |
4917 | } |
4918 | |
4919 | ctrl->tagset = set; |
4920 | return 0; |
4921 | |
4922 | out_free_tag_set: |
4923 | blk_mq_free_tag_set(set); |
4924 | ctrl->connect_q = NULL; |
4925 | return ret; |
4926 | } |
4927 | EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set); |
4928 | |
4929 | void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl) |
4930 | { |
4931 | if (ctrl->ops->flags & NVME_F_FABRICS) { |
4932 | blk_mq_destroy_queue(ctrl->connect_q); |
4933 | blk_put_queue(ctrl->connect_q); |
4934 | } |
4935 | blk_mq_free_tag_set(set: ctrl->tagset); |
4936 | } |
4937 | EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set); |
4938 | |
4939 | void nvme_stop_ctrl(struct nvme_ctrl *ctrl) |
4940 | { |
4941 | nvme_mpath_stop(ctrl); |
4942 | nvme_auth_stop(ctrl); |
4943 | nvme_stop_failfast_work(ctrl); |
4944 | flush_work(work: &ctrl->async_event_work); |
4945 | cancel_work_sync(work: &ctrl->fw_act_work); |
4946 | if (ctrl->ops->stop_ctrl) |
4947 | ctrl->ops->stop_ctrl(ctrl); |
4948 | } |
4949 | EXPORT_SYMBOL_GPL(nvme_stop_ctrl); |
4950 | |
4951 | void nvme_start_ctrl(struct nvme_ctrl *ctrl) |
4952 | { |
4953 | nvme_enable_aen(ctrl); |
4954 | |
4955 | /* |
4956 | * persistent discovery controllers need to send indication to userspace |
4957 | * to re-read the discovery log page to learn about possible changes |
4958 | * that were missed. We identify persistent discovery controllers by |
4959 | * checking that they started once before, hence are reconnecting back. |
4960 | */ |
4961 | if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) && |
4962 | nvme_discovery_ctrl(ctrl)) |
4963 | nvme_change_uevent(ctrl, envdata: "NVME_EVENT=rediscover"); |
4964 | |
4965 | if (ctrl->queue_count > 1) { |
4966 | nvme_queue_scan(ctrl); |
4967 | nvme_unquiesce_io_queues(ctrl); |
4968 | nvme_mpath_update(ctrl); |
4969 | } |
4970 | |
4971 | nvme_change_uevent(ctrl, envdata: "NVME_EVENT=connected"); |
4972 | set_bit(nr: NVME_CTRL_STARTED_ONCE, addr: &ctrl->flags); |
4973 | } |
4974 | EXPORT_SYMBOL_GPL(nvme_start_ctrl); |
4975 | |
4976 | void nvme_uninit_ctrl(struct nvme_ctrl *ctrl) |
4977 | { |
4978 | nvme_stop_keep_alive(ctrl); |
4979 | nvme_hwmon_exit(ctrl); |
4980 | nvme_fault_inject_fini(fault_inject: &ctrl->fault_inject); |
4981 | dev_pm_qos_hide_latency_tolerance(dev: ctrl->device); |
4982 | cdev_device_del(cdev: &ctrl->cdev, dev: ctrl->device); |
4983 | nvme_put_ctrl(ctrl); |
4984 | } |
4985 | EXPORT_SYMBOL_GPL(nvme_uninit_ctrl); |
4986 | |
4987 | static void nvme_free_cels(struct nvme_ctrl *ctrl) |
4988 | { |
4989 | struct nvme_effects_log *cel; |
4990 | unsigned long i; |
4991 | |
4992 | xa_for_each(&ctrl->cels, i, cel) { |
4993 | xa_erase(&ctrl->cels, index: i); |
4994 | kfree(objp: cel); |
4995 | } |
4996 | |
4997 | xa_destroy(&ctrl->cels); |
4998 | } |
4999 | |
5000 | static void nvme_free_ctrl(struct device *dev) |
5001 | { |
5002 | struct nvme_ctrl *ctrl = |
5003 | container_of(dev, struct nvme_ctrl, ctrl_device); |
5004 | struct nvme_subsystem *subsys = ctrl->subsys; |
5005 | |
5006 | if (!subsys || ctrl->instance != subsys->instance) |
5007 | ida_free(&nvme_instance_ida, id: ctrl->instance); |
5008 | nvme_free_cels(ctrl); |
5009 | nvme_mpath_uninit(ctrl); |
5010 | cleanup_srcu_struct(ssp: &ctrl->srcu); |
5011 | nvme_auth_stop(ctrl); |
5012 | nvme_auth_free(ctrl); |
5013 | __free_page(ctrl->discard_page); |
5014 | free_opal_dev(dev: ctrl->opal_dev); |
5015 | |
5016 | if (subsys) { |
5017 | mutex_lock(&nvme_subsystems_lock); |
5018 | list_del(entry: &ctrl->subsys_entry); |
5019 | sysfs_remove_link(kobj: &subsys->dev.kobj, name: dev_name(dev: ctrl->device)); |
5020 | mutex_unlock(lock: &nvme_subsystems_lock); |
5021 | } |
5022 | |
5023 | ctrl->ops->free_ctrl(ctrl); |
5024 | |
5025 | if (subsys) |
5026 | nvme_put_subsystem(subsys); |
5027 | } |
5028 | |
5029 | /* |
5030 | * Initialize a NVMe controller structures. This needs to be called during |
5031 | * earliest initialization so that we have the initialized structured around |
5032 | * during probing. |
5033 | * |
5034 | * On success, the caller must use the nvme_put_ctrl() to release this when |
5035 | * needed, which also invokes the ops->free_ctrl() callback. |
5036 | */ |
5037 | int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev, |
5038 | const struct nvme_ctrl_ops *ops, unsigned long quirks) |
5039 | { |
5040 | int ret; |
5041 | |
5042 | WRITE_ONCE(ctrl->state, NVME_CTRL_NEW); |
5043 | ctrl->passthru_err_log_enabled = false; |
5044 | clear_bit(nr: NVME_CTRL_FAILFAST_EXPIRED, addr: &ctrl->flags); |
5045 | spin_lock_init(&ctrl->lock); |
5046 | mutex_init(&ctrl->namespaces_lock); |
5047 | |
5048 | ret = init_srcu_struct(&ctrl->srcu); |
5049 | if (ret) |
5050 | return ret; |
5051 | |
5052 | mutex_init(&ctrl->scan_lock); |
5053 | INIT_LIST_HEAD(list: &ctrl->namespaces); |
5054 | xa_init(xa: &ctrl->cels); |
5055 | ctrl->dev = dev; |
5056 | ctrl->ops = ops; |
5057 | ctrl->quirks = quirks; |
5058 | ctrl->numa_node = NUMA_NO_NODE; |
5059 | INIT_WORK(&ctrl->scan_work, nvme_scan_work); |
5060 | INIT_WORK(&ctrl->async_event_work, nvme_async_event_work); |
5061 | INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work); |
5062 | INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work); |
5063 | init_waitqueue_head(&ctrl->state_wq); |
5064 | |
5065 | INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work); |
5066 | INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work); |
5067 | memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd)); |
5068 | ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive; |
5069 | ctrl->ka_last_check_time = jiffies; |
5070 | |
5071 | BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) > |
5072 | PAGE_SIZE); |
5073 | ctrl->discard_page = alloc_page(GFP_KERNEL); |
5074 | if (!ctrl->discard_page) { |
5075 | ret = -ENOMEM; |
5076 | goto out; |
5077 | } |
5078 | |
5079 | ret = ida_alloc(ida: &nvme_instance_ida, GFP_KERNEL); |
5080 | if (ret < 0) |
5081 | goto out; |
5082 | ctrl->instance = ret; |
5083 | |
5084 | ret = nvme_auth_init_ctrl(ctrl); |
5085 | if (ret) |
5086 | goto out_release_instance; |
5087 | |
5088 | nvme_mpath_init_ctrl(ctrl); |
5089 | |
5090 | device_initialize(dev: &ctrl->ctrl_device); |
5091 | ctrl->device = &ctrl->ctrl_device; |
5092 | ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt), |
5093 | ctrl->instance); |
5094 | ctrl->device->class = &nvme_class; |
5095 | ctrl->device->parent = ctrl->dev; |
5096 | if (ops->dev_attr_groups) |
5097 | ctrl->device->groups = ops->dev_attr_groups; |
5098 | else |
5099 | ctrl->device->groups = nvme_dev_attr_groups; |
5100 | ctrl->device->release = nvme_free_ctrl; |
5101 | dev_set_drvdata(dev: ctrl->device, data: ctrl); |
5102 | |
5103 | return ret; |
5104 | |
5105 | out_release_instance: |
5106 | ida_free(&nvme_instance_ida, id: ctrl->instance); |
5107 | out: |
5108 | if (ctrl->discard_page) |
5109 | __free_page(ctrl->discard_page); |
5110 | cleanup_srcu_struct(ssp: &ctrl->srcu); |
5111 | return ret; |
5112 | } |
5113 | EXPORT_SYMBOL_GPL(nvme_init_ctrl); |
5114 | |
5115 | /* |
5116 | * On success, returns with an elevated controller reference and caller must |
5117 | * use nvme_uninit_ctrl() to properly free resources associated with the ctrl. |
5118 | */ |
5119 | int nvme_add_ctrl(struct nvme_ctrl *ctrl) |
5120 | { |
5121 | int ret; |
5122 | |
5123 | ret = dev_set_name(dev: ctrl->device, name: "nvme%d", ctrl->instance); |
5124 | if (ret) |
5125 | return ret; |
5126 | |
5127 | cdev_init(&ctrl->cdev, &nvme_dev_fops); |
5128 | ctrl->cdev.owner = ctrl->ops->module; |
5129 | ret = cdev_device_add(cdev: &ctrl->cdev, dev: ctrl->device); |
5130 | if (ret) |
5131 | return ret; |
5132 | |
5133 | /* |
5134 | * Initialize latency tolerance controls. The sysfs files won't |
5135 | * be visible to userspace unless the device actually supports APST. |
5136 | */ |
5137 | ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance; |
5138 | dev_pm_qos_update_user_latency_tolerance(dev: ctrl->device, |
5139 | min(default_ps_max_latency_us, (unsigned long)S32_MAX)); |
5140 | |
5141 | nvme_fault_inject_init(fault_inj: &ctrl->fault_inject, dev_name: dev_name(dev: ctrl->device)); |
5142 | nvme_get_ctrl(ctrl); |
5143 | |
5144 | return 0; |
5145 | } |
5146 | EXPORT_SYMBOL_GPL(nvme_add_ctrl); |
5147 | |
5148 | /* let I/O to all namespaces fail in preparation for surprise removal */ |
5149 | void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl) |
5150 | { |
5151 | struct nvme_ns *ns; |
5152 | int srcu_idx; |
5153 | |
5154 | srcu_idx = srcu_read_lock(ssp: &ctrl->srcu); |
5155 | list_for_each_entry_srcu(ns, &ctrl->namespaces, list, |
5156 | srcu_read_lock_held(&ctrl->srcu)) |
5157 | blk_mark_disk_dead(disk: ns->disk); |
5158 | srcu_read_unlock(ssp: &ctrl->srcu, idx: srcu_idx); |
5159 | } |
5160 | EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead); |
5161 | |
5162 | void nvme_unfreeze(struct nvme_ctrl *ctrl) |
5163 | { |
5164 | struct nvme_ns *ns; |
5165 | int srcu_idx; |
5166 | |
5167 | srcu_idx = srcu_read_lock(ssp: &ctrl->srcu); |
5168 | list_for_each_entry_srcu(ns, &ctrl->namespaces, list, |
5169 | srcu_read_lock_held(&ctrl->srcu)) |
5170 | blk_mq_unfreeze_queue_non_owner(q: ns->queue); |
5171 | srcu_read_unlock(ssp: &ctrl->srcu, idx: srcu_idx); |
5172 | clear_bit(nr: NVME_CTRL_FROZEN, addr: &ctrl->flags); |
5173 | } |
5174 | EXPORT_SYMBOL_GPL(nvme_unfreeze); |
5175 | |
5176 | int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout) |
5177 | { |
5178 | struct nvme_ns *ns; |
5179 | int srcu_idx; |
5180 | |
5181 | srcu_idx = srcu_read_lock(ssp: &ctrl->srcu); |
5182 | list_for_each_entry_srcu(ns, &ctrl->namespaces, list, |
5183 | srcu_read_lock_held(&ctrl->srcu)) { |
5184 | timeout = blk_mq_freeze_queue_wait_timeout(q: ns->queue, timeout); |
5185 | if (timeout <= 0) |
5186 | break; |
5187 | } |
5188 | srcu_read_unlock(ssp: &ctrl->srcu, idx: srcu_idx); |
5189 | return timeout; |
5190 | } |
5191 | EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout); |
5192 | |
5193 | void nvme_wait_freeze(struct nvme_ctrl *ctrl) |
5194 | { |
5195 | struct nvme_ns *ns; |
5196 | int srcu_idx; |
5197 | |
5198 | srcu_idx = srcu_read_lock(ssp: &ctrl->srcu); |
5199 | list_for_each_entry_srcu(ns, &ctrl->namespaces, list, |
5200 | srcu_read_lock_held(&ctrl->srcu)) |
5201 | blk_mq_freeze_queue_wait(q: ns->queue); |
5202 | srcu_read_unlock(ssp: &ctrl->srcu, idx: srcu_idx); |
5203 | } |
5204 | EXPORT_SYMBOL_GPL(nvme_wait_freeze); |
5205 | |
5206 | void nvme_start_freeze(struct nvme_ctrl *ctrl) |
5207 | { |
5208 | struct nvme_ns *ns; |
5209 | int srcu_idx; |
5210 | |
5211 | set_bit(nr: NVME_CTRL_FROZEN, addr: &ctrl->flags); |
5212 | srcu_idx = srcu_read_lock(ssp: &ctrl->srcu); |
5213 | list_for_each_entry_srcu(ns, &ctrl->namespaces, list, |
5214 | srcu_read_lock_held(&ctrl->srcu)) |
5215 | /* |
5216 | * Typical non_owner use case is from pci driver, in which |
5217 | * start_freeze is called from timeout work function, but |
5218 | * unfreeze is done in reset work context |
5219 | */ |
5220 | blk_freeze_queue_start_non_owner(q: ns->queue); |
5221 | srcu_read_unlock(ssp: &ctrl->srcu, idx: srcu_idx); |
5222 | } |
5223 | EXPORT_SYMBOL_GPL(nvme_start_freeze); |
5224 | |
5225 | void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl) |
5226 | { |
5227 | if (!ctrl->tagset) |
5228 | return; |
5229 | if (!test_and_set_bit(nr: NVME_CTRL_STOPPED, addr: &ctrl->flags)) |
5230 | blk_mq_quiesce_tagset(set: ctrl->tagset); |
5231 | else |
5232 | blk_mq_wait_quiesce_done(set: ctrl->tagset); |
5233 | } |
5234 | EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues); |
5235 | |
5236 | void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl) |
5237 | { |
5238 | if (!ctrl->tagset) |
5239 | return; |
5240 | if (test_and_clear_bit(nr: NVME_CTRL_STOPPED, addr: &ctrl->flags)) |
5241 | blk_mq_unquiesce_tagset(set: ctrl->tagset); |
5242 | } |
5243 | EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues); |
5244 | |
5245 | void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl) |
5246 | { |
5247 | if (!test_and_set_bit(nr: NVME_CTRL_ADMIN_Q_STOPPED, addr: &ctrl->flags)) |
5248 | blk_mq_quiesce_queue(q: ctrl->admin_q); |
5249 | else |
5250 | blk_mq_wait_quiesce_done(set: ctrl->admin_q->tag_set); |
5251 | } |
5252 | EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue); |
5253 | |
5254 | void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl) |
5255 | { |
5256 | if (test_and_clear_bit(nr: NVME_CTRL_ADMIN_Q_STOPPED, addr: &ctrl->flags)) |
5257 | blk_mq_unquiesce_queue(q: ctrl->admin_q); |
5258 | } |
5259 | EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue); |
5260 | |
5261 | void nvme_sync_io_queues(struct nvme_ctrl *ctrl) |
5262 | { |
5263 | struct nvme_ns *ns; |
5264 | int srcu_idx; |
5265 | |
5266 | srcu_idx = srcu_read_lock(ssp: &ctrl->srcu); |
5267 | list_for_each_entry_srcu(ns, &ctrl->namespaces, list, |
5268 | srcu_read_lock_held(&ctrl->srcu)) |
5269 | blk_sync_queue(q: ns->queue); |
5270 | srcu_read_unlock(ssp: &ctrl->srcu, idx: srcu_idx); |
5271 | } |
5272 | EXPORT_SYMBOL_GPL(nvme_sync_io_queues); |
5273 | |
5274 | void nvme_sync_queues(struct nvme_ctrl *ctrl) |
5275 | { |
5276 | nvme_sync_io_queues(ctrl); |
5277 | if (ctrl->admin_q) |
5278 | blk_sync_queue(q: ctrl->admin_q); |
5279 | } |
5280 | EXPORT_SYMBOL_GPL(nvme_sync_queues); |
5281 | |
5282 | struct nvme_ctrl *nvme_ctrl_from_file(struct file *file) |
5283 | { |
5284 | if (file->f_op != &nvme_dev_fops) |
5285 | return NULL; |
5286 | return file->private_data; |
5287 | } |
5288 | EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, "NVME_TARGET_PASSTHRU"); |
5289 | |
5290 | /* |
5291 | * Check we didn't inadvertently grow the command structure sizes: |
5292 | */ |
5293 | static inline void _nvme_check_size(void) |
5294 | { |
5295 | BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64); |
5296 | BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); |
5297 | BUILD_BUG_ON(sizeof(struct nvme_identify) != 64); |
5298 | BUILD_BUG_ON(sizeof(struct nvme_features) != 64); |
5299 | BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64); |
5300 | BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); |
5301 | BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64); |
5302 | BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64); |
5303 | BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); |
5304 | BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64); |
5305 | BUILD_BUG_ON(sizeof(struct nvme_command) != 64); |
5306 | BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); |
5307 | BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); |
5308 | BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) != |
5309 | NVME_IDENTIFY_DATA_SIZE); |
5310 | BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE); |
5311 | BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE); |
5312 | BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE); |
5313 | BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE); |
5314 | BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); |
5315 | BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); |
5316 | BUILD_BUG_ON(sizeof(struct nvme_endurance_group_log) != 512); |
5317 | BUILD_BUG_ON(sizeof(struct nvme_rotational_media_log) != 512); |
5318 | BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); |
5319 | BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64); |
5320 | BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512); |
5321 | } |
5322 | |
5323 | |
5324 | static int __init nvme_core_init(void) |
5325 | { |
5326 | unsigned int wq_flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS; |
5327 | int result = -ENOMEM; |
5328 | |
5329 | _nvme_check_size(); |
5330 | |
5331 | nvme_wq = alloc_workqueue(fmt: "nvme-wq", flags: wq_flags, max_active: 0); |
5332 | if (!nvme_wq) |
5333 | goto out; |
5334 | |
5335 | nvme_reset_wq = alloc_workqueue(fmt: "nvme-reset-wq", flags: wq_flags, max_active: 0); |
5336 | if (!nvme_reset_wq) |
5337 | goto destroy_wq; |
5338 | |
5339 | nvme_delete_wq = alloc_workqueue(fmt: "nvme-delete-wq", flags: wq_flags, max_active: 0); |
5340 | if (!nvme_delete_wq) |
5341 | goto destroy_reset_wq; |
5342 | |
5343 | result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0, |
5344 | NVME_MINORS, "nvme"); |
5345 | if (result < 0) |
5346 | goto destroy_delete_wq; |
5347 | |
5348 | result = class_register(class: &nvme_class); |
5349 | if (result) |
5350 | goto unregister_chrdev; |
5351 | |
5352 | result = class_register(class: &nvme_subsys_class); |
5353 | if (result) |
5354 | goto destroy_class; |
5355 | |
5356 | result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS, |
5357 | "nvme-generic"); |
5358 | if (result < 0) |
5359 | goto destroy_subsys_class; |
5360 | |
5361 | result = class_register(class: &nvme_ns_chr_class); |
5362 | if (result) |
5363 | goto unregister_generic_ns; |
5364 | |
5365 | result = nvme_init_auth(); |
5366 | if (result) |
5367 | goto destroy_ns_chr; |
5368 | return 0; |
5369 | |
5370 | destroy_ns_chr: |
5371 | class_unregister(class: &nvme_ns_chr_class); |
5372 | unregister_generic_ns: |
5373 | unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); |
5374 | destroy_subsys_class: |
5375 | class_unregister(class: &nvme_subsys_class); |
5376 | destroy_class: |
5377 | class_unregister(class: &nvme_class); |
5378 | unregister_chrdev: |
5379 | unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); |
5380 | destroy_delete_wq: |
5381 | destroy_workqueue(wq: nvme_delete_wq); |
5382 | destroy_reset_wq: |
5383 | destroy_workqueue(wq: nvme_reset_wq); |
5384 | destroy_wq: |
5385 | destroy_workqueue(wq: nvme_wq); |
5386 | out: |
5387 | return result; |
5388 | } |
5389 | |
5390 | static void __exit nvme_core_exit(void) |
5391 | { |
5392 | nvme_exit_auth(); |
5393 | class_unregister(class: &nvme_ns_chr_class); |
5394 | class_unregister(class: &nvme_subsys_class); |
5395 | class_unregister(class: &nvme_class); |
5396 | unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS); |
5397 | unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS); |
5398 | destroy_workqueue(wq: nvme_delete_wq); |
5399 | destroy_workqueue(wq: nvme_reset_wq); |
5400 | destroy_workqueue(wq: nvme_wq); |
5401 | ida_destroy(ida: &nvme_ns_chr_minor_ida); |
5402 | ida_destroy(ida: &nvme_instance_ida); |
5403 | } |
5404 | |
5405 | MODULE_LICENSE("GPL"); |
5406 | MODULE_VERSION("1.0"); |
5407 | MODULE_DESCRIPTION("NVMe host core framework"); |
5408 | module_init(nvme_core_init); |
5409 | module_exit(nvme_core_exit); |
5410 |
Definitions
- nvme_ns_info
- admin_timeout
- nvme_io_timeout
- shutdown_timeout
- nvme_max_retries
- default_ps_max_latency_us
- force_apst
- apst_primary_timeout_ms
- apst_secondary_timeout_ms
- apst_primary_latency_tol_us
- apst_secondary_latency_tol_us
- disable_pi_offsets
- nvme_wq
- nvme_reset_wq
- nvme_delete_wq
- nvme_subsystems
- nvme_subsystems_lock
- nvme_instance_ida
- nvme_ctrl_base_chr_devt
- nvme_class
- nvme_subsys_class
- nvme_ns_chr_minor_ida
- nvme_ns_chr_devt
- nvme_ns_chr_class
- nvme_queue_scan
- nvme_try_sched_reset
- nvme_failfast_work
- nvme_start_failfast_work
- nvme_stop_failfast_work
- nvme_reset_ctrl
- nvme_reset_ctrl_sync
- nvme_do_delete_ctrl
- nvme_delete_ctrl_work
- nvme_delete_ctrl
- nvme_delete_ctrl_sync
- nvme_error_status
- nvme_retry_req
- nvme_log_error
- nvme_log_err_passthru
- nvme_disposition
- nvme_decide_disposition
- nvme_end_req_zoned
- __nvme_end_req
- nvme_end_req
- nvme_complete_rq
- nvme_complete_batch_req
- nvme_host_path_error
- nvme_cancel_request
- nvme_cancel_tagset
- nvme_cancel_admin_tagset
- nvme_change_ctrl_state
- nvme_wait_reset
- nvme_free_ns_head
- nvme_tryget_ns_head
- nvme_put_ns_head
- nvme_free_ns
- nvme_get_ns
- nvme_put_ns
- nvme_clear_nvme_request
- nvme_init_request
- nvme_fail_nonready_command
- __nvme_check_ready
- nvme_setup_flush
- nvme_setup_discard
- nvme_set_app_tag
- nvme_set_ref_tag
- nvme_setup_write_zeroes
- nvme_valid_atomic_write
- nvme_setup_rw
- nvme_cleanup_cmd
- nvme_setup_cmd
- nvme_execute_rq
- __nvme_submit_sync_cmd
- nvme_submit_sync_cmd
- nvme_command_effects
- nvme_passthru_start
- nvme_passthru_end
- nvme_keep_alive_work_period
- nvme_queue_keep_alive_work
- nvme_keep_alive_end_io
- nvme_keep_alive_work
- nvme_start_keep_alive
- nvme_stop_keep_alive
- nvme_update_keep_alive
- nvme_id_cns_ok
- nvme_identify_ctrl
- nvme_process_ns_desc
- nvme_identify_ns_descs
- nvme_identify_ns
- nvme_ns_info_from_identify
- nvme_ns_info_from_id_cs_indep
- nvme_features
- nvme_set_features
- nvme_get_features
- nvme_set_queue_count
- nvme_enable_aen
- nvme_ns_open
- nvme_ns_release
- nvme_open
- nvme_release
- nvme_getgeo
- nvme_init_integrity
- nvme_config_discard
- nvme_ns_ids_equal
- nvme_identify_ns_nvm
- nvme_configure_pi_elbas
- nvme_configure_metadata
- nvme_update_atomic_write_disk_info
- nvme_max_drv_segments
- nvme_set_ctrl_limits
- nvme_update_disk_info
- nvme_ns_is_readonly
- nvme_first_scan
- nvme_set_chunk_sectors
- nvme_update_ns_info_generic
- nvme_query_fdp_granularity
- nvme_query_fdp_info
- nvme_update_ns_info_block
- nvme_update_ns_info
- nvme_ns_get_unique_id
- nvme_get_unique_id
- nvme_sec_submit
- nvme_configure_opal
- nvme_report_zones
- nvme_bdev_ops
- nvme_wait_ready
- nvme_disable_ctrl
- nvme_enable_ctrl
- nvme_configure_timestamp
- nvme_configure_host_options
- nvme_apst_get_transition_time
- nvme_configure_apst
- nvme_set_latency_tolerance
- nvme_core_quirk_entry
- core_quirks
- string_matches
- quirk_matches
- nvme_init_subnqn
- nvme_release_subsystem
- nvme_destroy_subsystem
- nvme_put_subsystem
- __nvme_find_get_subsystem
- nvme_discovery_ctrl
- nvme_validate_cntlid
- nvme_init_subsystem
- nvme_get_log_lsi
- nvme_get_log
- nvme_get_effects_log
- nvme_mps_to_sectors
- nvme_init_non_mdts_limits
- nvme_init_effects_log
- nvme_init_known_nvm_effects
- nvme_init_effects
- nvme_check_ctrl_fabric_info
- nvme_init_identify
- nvme_init_ctrl_finish
- nvme_dev_open
- nvme_dev_release
- nvme_dev_fops
- nvme_find_ns_head
- nvme_subsys_check_duplicate_ids
- nvme_cdev_rel
- nvme_cdev_del
- nvme_cdev_add
- nvme_ns_chr_open
- nvme_ns_chr_release
- nvme_ns_chr_fops
- nvme_add_ns_cdev
- nvme_alloc_ns_head
- nvme_global_check_duplicate_ids
- nvme_init_ns_head
- nvme_find_get_ns
- nvme_ns_add_to_ctrl_list
- nvme_alloc_ns
- nvme_ns_remove
- nvme_ns_remove_by_nsid
- nvme_validate_ns
- nvme_scan_ns
- async_scan_info
- nvme_scan_ns_async
- nvme_remove_invalid_namespaces
- nvme_scan_ns_list
- nvme_scan_ns_sequential
- nvme_clear_changed_ns_log
- nvme_scan_work
- nvme_remove_namespaces
- nvme_class_uevent
- nvme_change_uevent
- nvme_aen_uevent
- nvme_async_event_work
- nvme_ctrl_pp_status
- nvme_get_fw_slot_info
- nvme_fw_act_work
- nvme_aer_type
- nvme_aer_subtype
- nvme_handle_aen_notice
- nvme_handle_aer_persistent_error
- nvme_complete_async_event
- nvme_alloc_admin_tag_set
- nvme_remove_admin_tag_set
- nvme_alloc_io_tag_set
- nvme_remove_io_tag_set
- nvme_stop_ctrl
- nvme_start_ctrl
- nvme_uninit_ctrl
- nvme_free_cels
- nvme_free_ctrl
- nvme_init_ctrl
- nvme_add_ctrl
- nvme_mark_namespaces_dead
- nvme_unfreeze
- nvme_wait_freeze_timeout
- nvme_wait_freeze
- nvme_start_freeze
- nvme_quiesce_io_queues
- nvme_unquiesce_io_queues
- nvme_quiesce_admin_queue
- nvme_unquiesce_admin_queue
- nvme_sync_io_queues
- nvme_sync_queues
- nvme_ctrl_from_file
- _nvme_check_size
- nvme_core_init
Improve your Profiling and Debugging skills
Find out more