1// SPDX-License-Identifier: GPL-2.0
2/*
3 * NVM Express device driver
4 * Copyright (c) 2011-2014, Intel Corporation.
5 */
6
7#include <linux/acpi.h>
8#include <linux/async.h>
9#include <linux/blkdev.h>
10#include <linux/blk-mq.h>
11#include <linux/blk-mq-pci.h>
12#include <linux/blk-integrity.h>
13#include <linux/dmi.h>
14#include <linux/init.h>
15#include <linux/interrupt.h>
16#include <linux/io.h>
17#include <linux/kstrtox.h>
18#include <linux/memremap.h>
19#include <linux/mm.h>
20#include <linux/module.h>
21#include <linux/mutex.h>
22#include <linux/once.h>
23#include <linux/pci.h>
24#include <linux/suspend.h>
25#include <linux/t10-pi.h>
26#include <linux/types.h>
27#include <linux/io-64-nonatomic-lo-hi.h>
28#include <linux/io-64-nonatomic-hi-lo.h>
29#include <linux/sed-opal.h>
30#include <linux/pci-p2pdma.h>
31
32#include "trace.h"
33#include "nvme.h"
34
35#define SQ_SIZE(q) ((q)->q_depth << (q)->sqes)
36#define CQ_SIZE(q) ((q)->q_depth * sizeof(struct nvme_completion))
37
38#define SGES_PER_PAGE (NVME_CTRL_PAGE_SIZE / sizeof(struct nvme_sgl_desc))
39
40/*
41 * These can be higher, but we need to ensure that any command doesn't
42 * require an sg allocation that needs more than a page of data.
43 */
44#define NVME_MAX_KB_SZ 8192
45#define NVME_MAX_SEGS 128
46#define NVME_MAX_NR_ALLOCATIONS 5
47
48static int use_threaded_interrupts;
49module_param(use_threaded_interrupts, int, 0444);
50
51static bool use_cmb_sqes = true;
52module_param(use_cmb_sqes, bool, 0444);
53MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
54
55static unsigned int max_host_mem_size_mb = 128;
56module_param(max_host_mem_size_mb, uint, 0444);
57MODULE_PARM_DESC(max_host_mem_size_mb,
58 "Maximum Host Memory Buffer (HMB) size per controller (in MiB)");
59
60static unsigned int sgl_threshold = SZ_32K;
61module_param(sgl_threshold, uint, 0644);
62MODULE_PARM_DESC(sgl_threshold,
63 "Use SGLs when average request segment size is larger or equal to "
64 "this size. Use 0 to disable SGLs.");
65
66#define NVME_PCI_MIN_QUEUE_SIZE 2
67#define NVME_PCI_MAX_QUEUE_SIZE 4095
68static int io_queue_depth_set(const char *val, const struct kernel_param *kp);
69static const struct kernel_param_ops io_queue_depth_ops = {
70 .set = io_queue_depth_set,
71 .get = param_get_uint,
72};
73
74static unsigned int io_queue_depth = 1024;
75module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644);
76MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2 and < 4096");
77
78static int io_queue_count_set(const char *val, const struct kernel_param *kp)
79{
80 unsigned int n;
81 int ret;
82
83 ret = kstrtouint(s: val, base: 10, res: &n);
84 if (ret != 0 || n > num_possible_cpus())
85 return -EINVAL;
86 return param_set_uint(val, kp);
87}
88
89static const struct kernel_param_ops io_queue_count_ops = {
90 .set = io_queue_count_set,
91 .get = param_get_uint,
92};
93
94static unsigned int write_queues;
95module_param_cb(write_queues, &io_queue_count_ops, &write_queues, 0644);
96MODULE_PARM_DESC(write_queues,
97 "Number of queues to use for writes. If not set, reads and writes "
98 "will share a queue set.");
99
100static unsigned int poll_queues;
101module_param_cb(poll_queues, &io_queue_count_ops, &poll_queues, 0644);
102MODULE_PARM_DESC(poll_queues, "Number of queues to use for polled IO.");
103
104static bool noacpi;
105module_param(noacpi, bool, 0444);
106MODULE_PARM_DESC(noacpi, "disable acpi bios quirks");
107
108struct nvme_dev;
109struct nvme_queue;
110
111static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
112static void nvme_delete_io_queues(struct nvme_dev *dev);
113static void nvme_update_attrs(struct nvme_dev *dev);
114
115/*
116 * Represents an NVM Express device. Each nvme_dev is a PCI function.
117 */
118struct nvme_dev {
119 struct nvme_queue *queues;
120 struct blk_mq_tag_set tagset;
121 struct blk_mq_tag_set admin_tagset;
122 u32 __iomem *dbs;
123 struct device *dev;
124 struct dma_pool *prp_page_pool;
125 struct dma_pool *prp_small_pool;
126 unsigned online_queues;
127 unsigned max_qid;
128 unsigned io_queues[HCTX_MAX_TYPES];
129 unsigned int num_vecs;
130 u32 q_depth;
131 int io_sqes;
132 u32 db_stride;
133 void __iomem *bar;
134 unsigned long bar_mapped_size;
135 struct mutex shutdown_lock;
136 bool subsystem;
137 u64 cmb_size;
138 bool cmb_use_sqes;
139 u32 cmbsz;
140 u32 cmbloc;
141 struct nvme_ctrl ctrl;
142 u32 last_ps;
143 bool hmb;
144
145 mempool_t *iod_mempool;
146
147 /* shadow doorbell buffer support: */
148 __le32 *dbbuf_dbs;
149 dma_addr_t dbbuf_dbs_dma_addr;
150 __le32 *dbbuf_eis;
151 dma_addr_t dbbuf_eis_dma_addr;
152
153 /* host memory buffer support: */
154 u64 host_mem_size;
155 u32 nr_host_mem_descs;
156 dma_addr_t host_mem_descs_dma;
157 struct nvme_host_mem_buf_desc *host_mem_descs;
158 void **host_mem_desc_bufs;
159 unsigned int nr_allocated_queues;
160 unsigned int nr_write_queues;
161 unsigned int nr_poll_queues;
162};
163
164static int io_queue_depth_set(const char *val, const struct kernel_param *kp)
165{
166 return param_set_uint_minmax(val, kp, NVME_PCI_MIN_QUEUE_SIZE,
167 NVME_PCI_MAX_QUEUE_SIZE);
168}
169
170static inline unsigned int sq_idx(unsigned int qid, u32 stride)
171{
172 return qid * 2 * stride;
173}
174
175static inline unsigned int cq_idx(unsigned int qid, u32 stride)
176{
177 return (qid * 2 + 1) * stride;
178}
179
180static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
181{
182 return container_of(ctrl, struct nvme_dev, ctrl);
183}
184
185/*
186 * An NVM Express queue. Each device has at least two (one for admin
187 * commands and one for I/O commands).
188 */
189struct nvme_queue {
190 struct nvme_dev *dev;
191 spinlock_t sq_lock;
192 void *sq_cmds;
193 /* only used for poll queues: */
194 spinlock_t cq_poll_lock ____cacheline_aligned_in_smp;
195 struct nvme_completion *cqes;
196 dma_addr_t sq_dma_addr;
197 dma_addr_t cq_dma_addr;
198 u32 __iomem *q_db;
199 u32 q_depth;
200 u16 cq_vector;
201 u16 sq_tail;
202 u16 last_sq_tail;
203 u16 cq_head;
204 u16 qid;
205 u8 cq_phase;
206 u8 sqes;
207 unsigned long flags;
208#define NVMEQ_ENABLED 0
209#define NVMEQ_SQ_CMB 1
210#define NVMEQ_DELETE_ERROR 2
211#define NVMEQ_POLLED 3
212 __le32 *dbbuf_sq_db;
213 __le32 *dbbuf_cq_db;
214 __le32 *dbbuf_sq_ei;
215 __le32 *dbbuf_cq_ei;
216 struct completion delete_done;
217};
218
219union nvme_descriptor {
220 struct nvme_sgl_desc *sg_list;
221 __le64 *prp_list;
222};
223
224/*
225 * The nvme_iod describes the data in an I/O.
226 *
227 * The sg pointer contains the list of PRP/SGL chunk allocations in addition
228 * to the actual struct scatterlist.
229 */
230struct nvme_iod {
231 struct nvme_request req;
232 struct nvme_command cmd;
233 bool aborted;
234 s8 nr_allocations; /* PRP list pool allocations. 0 means small
235 pool in use */
236 unsigned int dma_len; /* length of single DMA segment mapping */
237 dma_addr_t first_dma;
238 dma_addr_t meta_dma;
239 struct sg_table sgt;
240 union nvme_descriptor list[NVME_MAX_NR_ALLOCATIONS];
241};
242
243static inline unsigned int nvme_dbbuf_size(struct nvme_dev *dev)
244{
245 return dev->nr_allocated_queues * 8 * dev->db_stride;
246}
247
248static void nvme_dbbuf_dma_alloc(struct nvme_dev *dev)
249{
250 unsigned int mem_size = nvme_dbbuf_size(dev);
251
252 if (!(dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP))
253 return;
254
255 if (dev->dbbuf_dbs) {
256 /*
257 * Clear the dbbuf memory so the driver doesn't observe stale
258 * values from the previous instantiation.
259 */
260 memset(dev->dbbuf_dbs, 0, mem_size);
261 memset(dev->dbbuf_eis, 0, mem_size);
262 return;
263 }
264
265 dev->dbbuf_dbs = dma_alloc_coherent(dev: dev->dev, size: mem_size,
266 dma_handle: &dev->dbbuf_dbs_dma_addr,
267 GFP_KERNEL);
268 if (!dev->dbbuf_dbs)
269 goto fail;
270 dev->dbbuf_eis = dma_alloc_coherent(dev: dev->dev, size: mem_size,
271 dma_handle: &dev->dbbuf_eis_dma_addr,
272 GFP_KERNEL);
273 if (!dev->dbbuf_eis)
274 goto fail_free_dbbuf_dbs;
275 return;
276
277fail_free_dbbuf_dbs:
278 dma_free_coherent(dev: dev->dev, size: mem_size, cpu_addr: dev->dbbuf_dbs,
279 dma_handle: dev->dbbuf_dbs_dma_addr);
280 dev->dbbuf_dbs = NULL;
281fail:
282 dev_warn(dev->dev, "unable to allocate dma for dbbuf\n");
283}
284
285static void nvme_dbbuf_dma_free(struct nvme_dev *dev)
286{
287 unsigned int mem_size = nvme_dbbuf_size(dev);
288
289 if (dev->dbbuf_dbs) {
290 dma_free_coherent(dev: dev->dev, size: mem_size,
291 cpu_addr: dev->dbbuf_dbs, dma_handle: dev->dbbuf_dbs_dma_addr);
292 dev->dbbuf_dbs = NULL;
293 }
294 if (dev->dbbuf_eis) {
295 dma_free_coherent(dev: dev->dev, size: mem_size,
296 cpu_addr: dev->dbbuf_eis, dma_handle: dev->dbbuf_eis_dma_addr);
297 dev->dbbuf_eis = NULL;
298 }
299}
300
301static void nvme_dbbuf_init(struct nvme_dev *dev,
302 struct nvme_queue *nvmeq, int qid)
303{
304 if (!dev->dbbuf_dbs || !qid)
305 return;
306
307 nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, stride: dev->db_stride)];
308 nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, stride: dev->db_stride)];
309 nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, stride: dev->db_stride)];
310 nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, stride: dev->db_stride)];
311}
312
313static void nvme_dbbuf_free(struct nvme_queue *nvmeq)
314{
315 if (!nvmeq->qid)
316 return;
317
318 nvmeq->dbbuf_sq_db = NULL;
319 nvmeq->dbbuf_cq_db = NULL;
320 nvmeq->dbbuf_sq_ei = NULL;
321 nvmeq->dbbuf_cq_ei = NULL;
322}
323
324static void nvme_dbbuf_set(struct nvme_dev *dev)
325{
326 struct nvme_command c = { };
327 unsigned int i;
328
329 if (!dev->dbbuf_dbs)
330 return;
331
332 c.dbbuf.opcode = nvme_admin_dbbuf;
333 c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr);
334 c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr);
335
336 if (nvme_submit_sync_cmd(q: dev->ctrl.admin_q, cmd: &c, NULL, bufflen: 0)) {
337 dev_warn(dev->ctrl.device, "unable to set dbbuf\n");
338 /* Free memory and continue on */
339 nvme_dbbuf_dma_free(dev);
340
341 for (i = 1; i <= dev->online_queues; i++)
342 nvme_dbbuf_free(nvmeq: &dev->queues[i]);
343 }
344}
345
346static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old)
347{
348 return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old);
349}
350
351/* Update dbbuf and return true if an MMIO is required */
352static bool nvme_dbbuf_update_and_check_event(u16 value, __le32 *dbbuf_db,
353 volatile __le32 *dbbuf_ei)
354{
355 if (dbbuf_db) {
356 u16 old_value, event_idx;
357
358 /*
359 * Ensure that the queue is written before updating
360 * the doorbell in memory
361 */
362 wmb();
363
364 old_value = le32_to_cpu(*dbbuf_db);
365 *dbbuf_db = cpu_to_le32(value);
366
367 /*
368 * Ensure that the doorbell is updated before reading the event
369 * index from memory. The controller needs to provide similar
370 * ordering to ensure the envent index is updated before reading
371 * the doorbell.
372 */
373 mb();
374
375 event_idx = le32_to_cpu(*dbbuf_ei);
376 if (!nvme_dbbuf_need_event(event_idx, new_idx: value, old: old_value))
377 return false;
378 }
379
380 return true;
381}
382
383/*
384 * Will slightly overestimate the number of pages needed. This is OK
385 * as it only leads to a small amount of wasted memory for the lifetime of
386 * the I/O.
387 */
388static int nvme_pci_npages_prp(void)
389{
390 unsigned max_bytes = (NVME_MAX_KB_SZ * 1024) + NVME_CTRL_PAGE_SIZE;
391 unsigned nprps = DIV_ROUND_UP(max_bytes, NVME_CTRL_PAGE_SIZE);
392 return DIV_ROUND_UP(8 * nprps, NVME_CTRL_PAGE_SIZE - 8);
393}
394
395static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
396 unsigned int hctx_idx)
397{
398 struct nvme_dev *dev = to_nvme_dev(ctrl: data);
399 struct nvme_queue *nvmeq = &dev->queues[0];
400
401 WARN_ON(hctx_idx != 0);
402 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
403
404 hctx->driver_data = nvmeq;
405 return 0;
406}
407
408static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
409 unsigned int hctx_idx)
410{
411 struct nvme_dev *dev = to_nvme_dev(ctrl: data);
412 struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1];
413
414 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
415 hctx->driver_data = nvmeq;
416 return 0;
417}
418
419static int nvme_pci_init_request(struct blk_mq_tag_set *set,
420 struct request *req, unsigned int hctx_idx,
421 unsigned int numa_node)
422{
423 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
424
425 nvme_req(req)->ctrl = set->driver_data;
426 nvme_req(req)->cmd = &iod->cmd;
427 return 0;
428}
429
430static int queue_irq_offset(struct nvme_dev *dev)
431{
432 /* if we have more than 1 vec, admin queue offsets us by 1 */
433 if (dev->num_vecs > 1)
434 return 1;
435
436 return 0;
437}
438
439static void nvme_pci_map_queues(struct blk_mq_tag_set *set)
440{
441 struct nvme_dev *dev = to_nvme_dev(ctrl: set->driver_data);
442 int i, qoff, offset;
443
444 offset = queue_irq_offset(dev);
445 for (i = 0, qoff = 0; i < set->nr_maps; i++) {
446 struct blk_mq_queue_map *map = &set->map[i];
447
448 map->nr_queues = dev->io_queues[i];
449 if (!map->nr_queues) {
450 BUG_ON(i == HCTX_TYPE_DEFAULT);
451 continue;
452 }
453
454 /*
455 * The poll queue(s) doesn't have an IRQ (and hence IRQ
456 * affinity), so use the regular blk-mq cpu mapping
457 */
458 map->queue_offset = qoff;
459 if (i != HCTX_TYPE_POLL && offset)
460 blk_mq_pci_map_queues(qmap: map, to_pci_dev(dev->dev), offset);
461 else
462 blk_mq_map_queues(qmap: map);
463 qoff += map->nr_queues;
464 offset += map->nr_queues;
465 }
466}
467
468/*
469 * Write sq tail if we are asked to, or if the next command would wrap.
470 */
471static inline void nvme_write_sq_db(struct nvme_queue *nvmeq, bool write_sq)
472{
473 if (!write_sq) {
474 u16 next_tail = nvmeq->sq_tail + 1;
475
476 if (next_tail == nvmeq->q_depth)
477 next_tail = 0;
478 if (next_tail != nvmeq->last_sq_tail)
479 return;
480 }
481
482 if (nvme_dbbuf_update_and_check_event(value: nvmeq->sq_tail,
483 dbbuf_db: nvmeq->dbbuf_sq_db, dbbuf_ei: nvmeq->dbbuf_sq_ei))
484 writel(val: nvmeq->sq_tail, addr: nvmeq->q_db);
485 nvmeq->last_sq_tail = nvmeq->sq_tail;
486}
487
488static inline void nvme_sq_copy_cmd(struct nvme_queue *nvmeq,
489 struct nvme_command *cmd)
490{
491 memcpy(nvmeq->sq_cmds + (nvmeq->sq_tail << nvmeq->sqes),
492 absolute_pointer(cmd), sizeof(*cmd));
493 if (++nvmeq->sq_tail == nvmeq->q_depth)
494 nvmeq->sq_tail = 0;
495}
496
497static void nvme_commit_rqs(struct blk_mq_hw_ctx *hctx)
498{
499 struct nvme_queue *nvmeq = hctx->driver_data;
500
501 spin_lock(lock: &nvmeq->sq_lock);
502 if (nvmeq->sq_tail != nvmeq->last_sq_tail)
503 nvme_write_sq_db(nvmeq, write_sq: true);
504 spin_unlock(lock: &nvmeq->sq_lock);
505}
506
507static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req,
508 int nseg)
509{
510 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
511 unsigned int avg_seg_size;
512
513 avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg);
514
515 if (!nvme_ctrl_sgl_supported(ctrl: &dev->ctrl))
516 return false;
517 if (!nvmeq->qid)
518 return false;
519 if (!sgl_threshold || avg_seg_size < sgl_threshold)
520 return false;
521 return true;
522}
523
524static void nvme_free_prps(struct nvme_dev *dev, struct request *req)
525{
526 const int last_prp = NVME_CTRL_PAGE_SIZE / sizeof(__le64) - 1;
527 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
528 dma_addr_t dma_addr = iod->first_dma;
529 int i;
530
531 for (i = 0; i < iod->nr_allocations; i++) {
532 __le64 *prp_list = iod->list[i].prp_list;
533 dma_addr_t next_dma_addr = le64_to_cpu(prp_list[last_prp]);
534
535 dma_pool_free(pool: dev->prp_page_pool, vaddr: prp_list, addr: dma_addr);
536 dma_addr = next_dma_addr;
537 }
538}
539
540static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
541{
542 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
543
544 if (iod->dma_len) {
545 dma_unmap_page(dev->dev, iod->first_dma, iod->dma_len,
546 rq_dma_dir(req));
547 return;
548 }
549
550 WARN_ON_ONCE(!iod->sgt.nents);
551
552 dma_unmap_sgtable(dev: dev->dev, sgt: &iod->sgt, rq_dma_dir(req), attrs: 0);
553
554 if (iod->nr_allocations == 0)
555 dma_pool_free(pool: dev->prp_small_pool, vaddr: iod->list[0].sg_list,
556 addr: iod->first_dma);
557 else if (iod->nr_allocations == 1)
558 dma_pool_free(pool: dev->prp_page_pool, vaddr: iod->list[0].sg_list,
559 addr: iod->first_dma);
560 else
561 nvme_free_prps(dev, req);
562 mempool_free(element: iod->sgt.sgl, pool: dev->iod_mempool);
563}
564
565static void nvme_print_sgl(struct scatterlist *sgl, int nents)
566{
567 int i;
568 struct scatterlist *sg;
569
570 for_each_sg(sgl, sg, nents, i) {
571 dma_addr_t phys = sg_phys(sg);
572 pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d "
573 "dma_address:%pad dma_length:%d\n",
574 i, &phys, sg->offset, sg->length, &sg_dma_address(sg),
575 sg_dma_len(sg));
576 }
577}
578
579static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev,
580 struct request *req, struct nvme_rw_command *cmnd)
581{
582 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
583 struct dma_pool *pool;
584 int length = blk_rq_payload_bytes(rq: req);
585 struct scatterlist *sg = iod->sgt.sgl;
586 int dma_len = sg_dma_len(sg);
587 u64 dma_addr = sg_dma_address(sg);
588 int offset = dma_addr & (NVME_CTRL_PAGE_SIZE - 1);
589 __le64 *prp_list;
590 dma_addr_t prp_dma;
591 int nprps, i;
592
593 length -= (NVME_CTRL_PAGE_SIZE - offset);
594 if (length <= 0) {
595 iod->first_dma = 0;
596 goto done;
597 }
598
599 dma_len -= (NVME_CTRL_PAGE_SIZE - offset);
600 if (dma_len) {
601 dma_addr += (NVME_CTRL_PAGE_SIZE - offset);
602 } else {
603 sg = sg_next(sg);
604 dma_addr = sg_dma_address(sg);
605 dma_len = sg_dma_len(sg);
606 }
607
608 if (length <= NVME_CTRL_PAGE_SIZE) {
609 iod->first_dma = dma_addr;
610 goto done;
611 }
612
613 nprps = DIV_ROUND_UP(length, NVME_CTRL_PAGE_SIZE);
614 if (nprps <= (256 / 8)) {
615 pool = dev->prp_small_pool;
616 iod->nr_allocations = 0;
617 } else {
618 pool = dev->prp_page_pool;
619 iod->nr_allocations = 1;
620 }
621
622 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, handle: &prp_dma);
623 if (!prp_list) {
624 iod->nr_allocations = -1;
625 return BLK_STS_RESOURCE;
626 }
627 iod->list[0].prp_list = prp_list;
628 iod->first_dma = prp_dma;
629 i = 0;
630 for (;;) {
631 if (i == NVME_CTRL_PAGE_SIZE >> 3) {
632 __le64 *old_prp_list = prp_list;
633 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, handle: &prp_dma);
634 if (!prp_list)
635 goto free_prps;
636 iod->list[iod->nr_allocations++].prp_list = prp_list;
637 prp_list[0] = old_prp_list[i - 1];
638 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
639 i = 1;
640 }
641 prp_list[i++] = cpu_to_le64(dma_addr);
642 dma_len -= NVME_CTRL_PAGE_SIZE;
643 dma_addr += NVME_CTRL_PAGE_SIZE;
644 length -= NVME_CTRL_PAGE_SIZE;
645 if (length <= 0)
646 break;
647 if (dma_len > 0)
648 continue;
649 if (unlikely(dma_len < 0))
650 goto bad_sgl;
651 sg = sg_next(sg);
652 dma_addr = sg_dma_address(sg);
653 dma_len = sg_dma_len(sg);
654 }
655done:
656 cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sgt.sgl));
657 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma);
658 return BLK_STS_OK;
659free_prps:
660 nvme_free_prps(dev, req);
661 return BLK_STS_RESOURCE;
662bad_sgl:
663 WARN(DO_ONCE(nvme_print_sgl, iod->sgt.sgl, iod->sgt.nents),
664 "Invalid SGL for payload:%d nents:%d\n",
665 blk_rq_payload_bytes(req), iod->sgt.nents);
666 return BLK_STS_IOERR;
667}
668
669static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge,
670 struct scatterlist *sg)
671{
672 sge->addr = cpu_to_le64(sg_dma_address(sg));
673 sge->length = cpu_to_le32(sg_dma_len(sg));
674 sge->type = NVME_SGL_FMT_DATA_DESC << 4;
675}
676
677static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge,
678 dma_addr_t dma_addr, int entries)
679{
680 sge->addr = cpu_to_le64(dma_addr);
681 sge->length = cpu_to_le32(entries * sizeof(*sge));
682 sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4;
683}
684
685static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev,
686 struct request *req, struct nvme_rw_command *cmd)
687{
688 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
689 struct dma_pool *pool;
690 struct nvme_sgl_desc *sg_list;
691 struct scatterlist *sg = iod->sgt.sgl;
692 unsigned int entries = iod->sgt.nents;
693 dma_addr_t sgl_dma;
694 int i = 0;
695
696 /* setting the transfer type as SGL */
697 cmd->flags = NVME_CMD_SGL_METABUF;
698
699 if (entries == 1) {
700 nvme_pci_sgl_set_data(sge: &cmd->dptr.sgl, sg);
701 return BLK_STS_OK;
702 }
703
704 if (entries <= (256 / sizeof(struct nvme_sgl_desc))) {
705 pool = dev->prp_small_pool;
706 iod->nr_allocations = 0;
707 } else {
708 pool = dev->prp_page_pool;
709 iod->nr_allocations = 1;
710 }
711
712 sg_list = dma_pool_alloc(pool, GFP_ATOMIC, handle: &sgl_dma);
713 if (!sg_list) {
714 iod->nr_allocations = -1;
715 return BLK_STS_RESOURCE;
716 }
717
718 iod->list[0].sg_list = sg_list;
719 iod->first_dma = sgl_dma;
720
721 nvme_pci_sgl_set_seg(sge: &cmd->dptr.sgl, dma_addr: sgl_dma, entries);
722 do {
723 nvme_pci_sgl_set_data(sge: &sg_list[i++], sg);
724 sg = sg_next(sg);
725 } while (--entries > 0);
726
727 return BLK_STS_OK;
728}
729
730static blk_status_t nvme_setup_prp_simple(struct nvme_dev *dev,
731 struct request *req, struct nvme_rw_command *cmnd,
732 struct bio_vec *bv)
733{
734 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
735 unsigned int offset = bv->bv_offset & (NVME_CTRL_PAGE_SIZE - 1);
736 unsigned int first_prp_len = NVME_CTRL_PAGE_SIZE - offset;
737
738 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
739 if (dma_mapping_error(dev: dev->dev, dma_addr: iod->first_dma))
740 return BLK_STS_RESOURCE;
741 iod->dma_len = bv->bv_len;
742
743 cmnd->dptr.prp1 = cpu_to_le64(iod->first_dma);
744 if (bv->bv_len > first_prp_len)
745 cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma + first_prp_len);
746 else
747 cmnd->dptr.prp2 = 0;
748 return BLK_STS_OK;
749}
750
751static blk_status_t nvme_setup_sgl_simple(struct nvme_dev *dev,
752 struct request *req, struct nvme_rw_command *cmnd,
753 struct bio_vec *bv)
754{
755 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
756
757 iod->first_dma = dma_map_bvec(dev->dev, bv, rq_dma_dir(req), 0);
758 if (dma_mapping_error(dev: dev->dev, dma_addr: iod->first_dma))
759 return BLK_STS_RESOURCE;
760 iod->dma_len = bv->bv_len;
761
762 cmnd->flags = NVME_CMD_SGL_METABUF;
763 cmnd->dptr.sgl.addr = cpu_to_le64(iod->first_dma);
764 cmnd->dptr.sgl.length = cpu_to_le32(iod->dma_len);
765 cmnd->dptr.sgl.type = NVME_SGL_FMT_DATA_DESC << 4;
766 return BLK_STS_OK;
767}
768
769static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req,
770 struct nvme_command *cmnd)
771{
772 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
773 blk_status_t ret = BLK_STS_RESOURCE;
774 int rc;
775
776 if (blk_rq_nr_phys_segments(rq: req) == 1) {
777 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
778 struct bio_vec bv = req_bvec(rq: req);
779
780 if (!is_pci_p2pdma_page(page: bv.bv_page)) {
781 if (bv.bv_offset + bv.bv_len <= NVME_CTRL_PAGE_SIZE * 2)
782 return nvme_setup_prp_simple(dev, req,
783 cmnd: &cmnd->rw, bv: &bv);
784
785 if (nvmeq->qid && sgl_threshold &&
786 nvme_ctrl_sgl_supported(ctrl: &dev->ctrl))
787 return nvme_setup_sgl_simple(dev, req,
788 cmnd: &cmnd->rw, bv: &bv);
789 }
790 }
791
792 iod->dma_len = 0;
793 iod->sgt.sgl = mempool_alloc(pool: dev->iod_mempool, GFP_ATOMIC);
794 if (!iod->sgt.sgl)
795 return BLK_STS_RESOURCE;
796 sg_init_table(iod->sgt.sgl, blk_rq_nr_phys_segments(rq: req));
797 iod->sgt.orig_nents = blk_rq_map_sg(q: req->q, rq: req, sglist: iod->sgt.sgl);
798 if (!iod->sgt.orig_nents)
799 goto out_free_sg;
800
801 rc = dma_map_sgtable(dev: dev->dev, sgt: &iod->sgt, rq_dma_dir(req),
802 DMA_ATTR_NO_WARN);
803 if (rc) {
804 if (rc == -EREMOTEIO)
805 ret = BLK_STS_TARGET;
806 goto out_free_sg;
807 }
808
809 if (nvme_pci_use_sgls(dev, req, nseg: iod->sgt.nents))
810 ret = nvme_pci_setup_sgls(dev, req, cmd: &cmnd->rw);
811 else
812 ret = nvme_pci_setup_prps(dev, req, cmnd: &cmnd->rw);
813 if (ret != BLK_STS_OK)
814 goto out_unmap_sg;
815 return BLK_STS_OK;
816
817out_unmap_sg:
818 dma_unmap_sgtable(dev: dev->dev, sgt: &iod->sgt, rq_dma_dir(req), attrs: 0);
819out_free_sg:
820 mempool_free(element: iod->sgt.sgl, pool: dev->iod_mempool);
821 return ret;
822}
823
824static blk_status_t nvme_map_metadata(struct nvme_dev *dev, struct request *req,
825 struct nvme_command *cmnd)
826{
827 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
828
829 iod->meta_dma = dma_map_bvec(dev->dev, rq_integrity_vec(req),
830 rq_dma_dir(req), 0);
831 if (dma_mapping_error(dev: dev->dev, dma_addr: iod->meta_dma))
832 return BLK_STS_IOERR;
833 cmnd->rw.metadata = cpu_to_le64(iod->meta_dma);
834 return BLK_STS_OK;
835}
836
837static blk_status_t nvme_prep_rq(struct nvme_dev *dev, struct request *req)
838{
839 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
840 blk_status_t ret;
841
842 iod->aborted = false;
843 iod->nr_allocations = -1;
844 iod->sgt.nents = 0;
845
846 ret = nvme_setup_cmd(ns: req->q->queuedata, req);
847 if (ret)
848 return ret;
849
850 if (blk_rq_nr_phys_segments(rq: req)) {
851 ret = nvme_map_data(dev, req, cmnd: &iod->cmd);
852 if (ret)
853 goto out_free_cmd;
854 }
855
856 if (blk_integrity_rq(rq: req)) {
857 ret = nvme_map_metadata(dev, req, cmnd: &iod->cmd);
858 if (ret)
859 goto out_unmap_data;
860 }
861
862 nvme_start_request(rq: req);
863 return BLK_STS_OK;
864out_unmap_data:
865 nvme_unmap_data(dev, req);
866out_free_cmd:
867 nvme_cleanup_cmd(req);
868 return ret;
869}
870
871/*
872 * NOTE: ns is NULL when called on the admin queue.
873 */
874static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
875 const struct blk_mq_queue_data *bd)
876{
877 struct nvme_queue *nvmeq = hctx->driver_data;
878 struct nvme_dev *dev = nvmeq->dev;
879 struct request *req = bd->rq;
880 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
881 blk_status_t ret;
882
883 /*
884 * We should not need to do this, but we're still using this to
885 * ensure we can drain requests on a dying queue.
886 */
887 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
888 return BLK_STS_IOERR;
889
890 if (unlikely(!nvme_check_ready(&dev->ctrl, req, true)))
891 return nvme_fail_nonready_command(ctrl: &dev->ctrl, req);
892
893 ret = nvme_prep_rq(dev, req);
894 if (unlikely(ret))
895 return ret;
896 spin_lock(lock: &nvmeq->sq_lock);
897 nvme_sq_copy_cmd(nvmeq, cmd: &iod->cmd);
898 nvme_write_sq_db(nvmeq, write_sq: bd->last);
899 spin_unlock(lock: &nvmeq->sq_lock);
900 return BLK_STS_OK;
901}
902
903static void nvme_submit_cmds(struct nvme_queue *nvmeq, struct request **rqlist)
904{
905 spin_lock(lock: &nvmeq->sq_lock);
906 while (!rq_list_empty(*rqlist)) {
907 struct request *req = rq_list_pop(rqlist);
908 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
909
910 nvme_sq_copy_cmd(nvmeq, cmd: &iod->cmd);
911 }
912 nvme_write_sq_db(nvmeq, write_sq: true);
913 spin_unlock(lock: &nvmeq->sq_lock);
914}
915
916static bool nvme_prep_rq_batch(struct nvme_queue *nvmeq, struct request *req)
917{
918 /*
919 * We should not need to do this, but we're still using this to
920 * ensure we can drain requests on a dying queue.
921 */
922 if (unlikely(!test_bit(NVMEQ_ENABLED, &nvmeq->flags)))
923 return false;
924 if (unlikely(!nvme_check_ready(&nvmeq->dev->ctrl, req, true)))
925 return false;
926
927 return nvme_prep_rq(dev: nvmeq->dev, req) == BLK_STS_OK;
928}
929
930static void nvme_queue_rqs(struct request **rqlist)
931{
932 struct request *req, *next, *prev = NULL;
933 struct request *requeue_list = NULL;
934
935 rq_list_for_each_safe(rqlist, req, next) {
936 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
937
938 if (!nvme_prep_rq_batch(nvmeq, req)) {
939 /* detach 'req' and add to remainder list */
940 rq_list_move(src: rqlist, dst: &requeue_list, rq: req, prev);
941
942 req = prev;
943 if (!req)
944 continue;
945 }
946
947 if (!next || req->mq_hctx != next->mq_hctx) {
948 /* detach rest of list, and submit */
949 req->rq_next = NULL;
950 nvme_submit_cmds(nvmeq, rqlist);
951 *rqlist = next;
952 prev = NULL;
953 } else
954 prev = req;
955 }
956
957 *rqlist = requeue_list;
958}
959
960static __always_inline void nvme_pci_unmap_rq(struct request *req)
961{
962 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
963 struct nvme_dev *dev = nvmeq->dev;
964
965 if (blk_integrity_rq(rq: req)) {
966 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
967
968 dma_unmap_page(dev->dev, iod->meta_dma,
969 rq_integrity_vec(req)->bv_len, rq_dma_dir(req));
970 }
971
972 if (blk_rq_nr_phys_segments(rq: req))
973 nvme_unmap_data(dev, req);
974}
975
976static void nvme_pci_complete_rq(struct request *req)
977{
978 nvme_pci_unmap_rq(req);
979 nvme_complete_rq(req);
980}
981
982static void nvme_pci_complete_batch(struct io_comp_batch *iob)
983{
984 nvme_complete_batch(iob, fn: nvme_pci_unmap_rq);
985}
986
987/* We read the CQE phase first to check if the rest of the entry is valid */
988static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq)
989{
990 struct nvme_completion *hcqe = &nvmeq->cqes[nvmeq->cq_head];
991
992 return (le16_to_cpu(READ_ONCE(hcqe->status)) & 1) == nvmeq->cq_phase;
993}
994
995static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq)
996{
997 u16 head = nvmeq->cq_head;
998
999 if (nvme_dbbuf_update_and_check_event(value: head, dbbuf_db: nvmeq->dbbuf_cq_db,
1000 dbbuf_ei: nvmeq->dbbuf_cq_ei))
1001 writel(val: head, addr: nvmeq->q_db + nvmeq->dev->db_stride);
1002}
1003
1004static inline struct blk_mq_tags *nvme_queue_tagset(struct nvme_queue *nvmeq)
1005{
1006 if (!nvmeq->qid)
1007 return nvmeq->dev->admin_tagset.tags[0];
1008 return nvmeq->dev->tagset.tags[nvmeq->qid - 1];
1009}
1010
1011static inline void nvme_handle_cqe(struct nvme_queue *nvmeq,
1012 struct io_comp_batch *iob, u16 idx)
1013{
1014 struct nvme_completion *cqe = &nvmeq->cqes[idx];
1015 __u16 command_id = READ_ONCE(cqe->command_id);
1016 struct request *req;
1017
1018 /*
1019 * AEN requests are special as they don't time out and can
1020 * survive any kind of queue freeze and often don't respond to
1021 * aborts. We don't even bother to allocate a struct request
1022 * for them but rather special case them here.
1023 */
1024 if (unlikely(nvme_is_aen_req(nvmeq->qid, command_id))) {
1025 nvme_complete_async_event(ctrl: &nvmeq->dev->ctrl,
1026 status: cqe->status, res: &cqe->result);
1027 return;
1028 }
1029
1030 req = nvme_find_rq(tags: nvme_queue_tagset(nvmeq), command_id);
1031 if (unlikely(!req)) {
1032 dev_warn(nvmeq->dev->ctrl.device,
1033 "invalid id %d completed on queue %d\n",
1034 command_id, le16_to_cpu(cqe->sq_id));
1035 return;
1036 }
1037
1038 trace_nvme_sq(req, sq_head: cqe->sq_head, sq_tail: nvmeq->sq_tail);
1039 if (!nvme_try_complete_req(req, status: cqe->status, result: cqe->result) &&
1040 !blk_mq_add_to_batch(req, iob, ioerror: nvme_req(req)->status,
1041 complete: nvme_pci_complete_batch))
1042 nvme_pci_complete_rq(req);
1043}
1044
1045static inline void nvme_update_cq_head(struct nvme_queue *nvmeq)
1046{
1047 u32 tmp = nvmeq->cq_head + 1;
1048
1049 if (tmp == nvmeq->q_depth) {
1050 nvmeq->cq_head = 0;
1051 nvmeq->cq_phase ^= 1;
1052 } else {
1053 nvmeq->cq_head = tmp;
1054 }
1055}
1056
1057static inline int nvme_poll_cq(struct nvme_queue *nvmeq,
1058 struct io_comp_batch *iob)
1059{
1060 int found = 0;
1061
1062 while (nvme_cqe_pending(nvmeq)) {
1063 found++;
1064 /*
1065 * load-load control dependency between phase and the rest of
1066 * the cqe requires a full read memory barrier
1067 */
1068 dma_rmb();
1069 nvme_handle_cqe(nvmeq, iob, idx: nvmeq->cq_head);
1070 nvme_update_cq_head(nvmeq);
1071 }
1072
1073 if (found)
1074 nvme_ring_cq_doorbell(nvmeq);
1075 return found;
1076}
1077
1078static irqreturn_t nvme_irq(int irq, void *data)
1079{
1080 struct nvme_queue *nvmeq = data;
1081 DEFINE_IO_COMP_BATCH(iob);
1082
1083 if (nvme_poll_cq(nvmeq, iob: &iob)) {
1084 if (!rq_list_empty(iob.req_list))
1085 nvme_pci_complete_batch(iob: &iob);
1086 return IRQ_HANDLED;
1087 }
1088 return IRQ_NONE;
1089}
1090
1091static irqreturn_t nvme_irq_check(int irq, void *data)
1092{
1093 struct nvme_queue *nvmeq = data;
1094
1095 if (nvme_cqe_pending(nvmeq))
1096 return IRQ_WAKE_THREAD;
1097 return IRQ_NONE;
1098}
1099
1100/*
1101 * Poll for completions for any interrupt driven queue
1102 * Can be called from any context.
1103 */
1104static void nvme_poll_irqdisable(struct nvme_queue *nvmeq)
1105{
1106 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1107
1108 WARN_ON_ONCE(test_bit(NVMEQ_POLLED, &nvmeq->flags));
1109
1110 disable_irq(irq: pci_irq_vector(dev: pdev, nr: nvmeq->cq_vector));
1111 nvme_poll_cq(nvmeq, NULL);
1112 enable_irq(irq: pci_irq_vector(dev: pdev, nr: nvmeq->cq_vector));
1113}
1114
1115static int nvme_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1116{
1117 struct nvme_queue *nvmeq = hctx->driver_data;
1118 bool found;
1119
1120 if (!nvme_cqe_pending(nvmeq))
1121 return 0;
1122
1123 spin_lock(lock: &nvmeq->cq_poll_lock);
1124 found = nvme_poll_cq(nvmeq, iob);
1125 spin_unlock(lock: &nvmeq->cq_poll_lock);
1126
1127 return found;
1128}
1129
1130static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl)
1131{
1132 struct nvme_dev *dev = to_nvme_dev(ctrl);
1133 struct nvme_queue *nvmeq = &dev->queues[0];
1134 struct nvme_command c = { };
1135
1136 c.common.opcode = nvme_admin_async_event;
1137 c.common.command_id = NVME_AQ_BLK_MQ_DEPTH;
1138
1139 spin_lock(lock: &nvmeq->sq_lock);
1140 nvme_sq_copy_cmd(nvmeq, cmd: &c);
1141 nvme_write_sq_db(nvmeq, write_sq: true);
1142 spin_unlock(lock: &nvmeq->sq_lock);
1143}
1144
1145static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1146{
1147 struct nvme_command c = { };
1148
1149 c.delete_queue.opcode = opcode;
1150 c.delete_queue.qid = cpu_to_le16(id);
1151
1152 return nvme_submit_sync_cmd(q: dev->ctrl.admin_q, cmd: &c, NULL, bufflen: 0);
1153}
1154
1155static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1156 struct nvme_queue *nvmeq, s16 vector)
1157{
1158 struct nvme_command c = { };
1159 int flags = NVME_QUEUE_PHYS_CONTIG;
1160
1161 if (!test_bit(NVMEQ_POLLED, &nvmeq->flags))
1162 flags |= NVME_CQ_IRQ_ENABLED;
1163
1164 /*
1165 * Note: we (ab)use the fact that the prp fields survive if no data
1166 * is attached to the request.
1167 */
1168 c.create_cq.opcode = nvme_admin_create_cq;
1169 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1170 c.create_cq.cqid = cpu_to_le16(qid);
1171 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1172 c.create_cq.cq_flags = cpu_to_le16(flags);
1173 c.create_cq.irq_vector = cpu_to_le16(vector);
1174
1175 return nvme_submit_sync_cmd(q: dev->ctrl.admin_q, cmd: &c, NULL, bufflen: 0);
1176}
1177
1178static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1179 struct nvme_queue *nvmeq)
1180{
1181 struct nvme_ctrl *ctrl = &dev->ctrl;
1182 struct nvme_command c = { };
1183 int flags = NVME_QUEUE_PHYS_CONTIG;
1184
1185 /*
1186 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't
1187 * set. Since URGENT priority is zeroes, it makes all queues
1188 * URGENT.
1189 */
1190 if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ)
1191 flags |= NVME_SQ_PRIO_MEDIUM;
1192
1193 /*
1194 * Note: we (ab)use the fact that the prp fields survive if no data
1195 * is attached to the request.
1196 */
1197 c.create_sq.opcode = nvme_admin_create_sq;
1198 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1199 c.create_sq.sqid = cpu_to_le16(qid);
1200 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1201 c.create_sq.sq_flags = cpu_to_le16(flags);
1202 c.create_sq.cqid = cpu_to_le16(qid);
1203
1204 return nvme_submit_sync_cmd(q: dev->ctrl.admin_q, cmd: &c, NULL, bufflen: 0);
1205}
1206
1207static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1208{
1209 return adapter_delete_queue(dev, opcode: nvme_admin_delete_cq, id: cqid);
1210}
1211
1212static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1213{
1214 return adapter_delete_queue(dev, opcode: nvme_admin_delete_sq, id: sqid);
1215}
1216
1217static enum rq_end_io_ret abort_endio(struct request *req, blk_status_t error)
1218{
1219 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1220
1221 dev_warn(nvmeq->dev->ctrl.device,
1222 "Abort status: 0x%x", nvme_req(req)->status);
1223 atomic_inc(v: &nvmeq->dev->ctrl.abort_limit);
1224 blk_mq_free_request(rq: req);
1225 return RQ_END_IO_NONE;
1226}
1227
1228static bool nvme_should_reset(struct nvme_dev *dev, u32 csts)
1229{
1230 /* If true, indicates loss of adapter communication, possibly by a
1231 * NVMe Subsystem reset.
1232 */
1233 bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO);
1234
1235 /* If there is a reset/reinit ongoing, we shouldn't reset again. */
1236 switch (nvme_ctrl_state(ctrl: &dev->ctrl)) {
1237 case NVME_CTRL_RESETTING:
1238 case NVME_CTRL_CONNECTING:
1239 return false;
1240 default:
1241 break;
1242 }
1243
1244 /* We shouldn't reset unless the controller is on fatal error state
1245 * _or_ if we lost the communication with it.
1246 */
1247 if (!(csts & NVME_CSTS_CFS) && !nssro)
1248 return false;
1249
1250 return true;
1251}
1252
1253static void nvme_warn_reset(struct nvme_dev *dev, u32 csts)
1254{
1255 /* Read a config register to help see what died. */
1256 u16 pci_status;
1257 int result;
1258
1259 result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS,
1260 val: &pci_status);
1261 if (result == PCIBIOS_SUCCESSFUL)
1262 dev_warn(dev->ctrl.device,
1263 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n",
1264 csts, pci_status);
1265 else
1266 dev_warn(dev->ctrl.device,
1267 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n",
1268 csts, result);
1269
1270 if (csts != ~0)
1271 return;
1272
1273 dev_warn(dev->ctrl.device,
1274 "Does your device have a faulty power saving mode enabled?\n");
1275 dev_warn(dev->ctrl.device,
1276 "Try \"nvme_core.default_ps_max_latency_us=0 pcie_aspm=off\" and report a bug\n");
1277}
1278
1279static enum blk_eh_timer_return nvme_timeout(struct request *req)
1280{
1281 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq: req);
1282 struct nvme_queue *nvmeq = req->mq_hctx->driver_data;
1283 struct nvme_dev *dev = nvmeq->dev;
1284 struct request *abort_req;
1285 struct nvme_command cmd = { };
1286 u32 csts = readl(addr: dev->bar + NVME_REG_CSTS);
1287 u8 opcode;
1288
1289 /* If PCI error recovery process is happening, we cannot reset or
1290 * the recovery mechanism will surely fail.
1291 */
1292 mb();
1293 if (pci_channel_offline(to_pci_dev(dev->dev)))
1294 return BLK_EH_RESET_TIMER;
1295
1296 /*
1297 * Reset immediately if the controller is failed
1298 */
1299 if (nvme_should_reset(dev, csts)) {
1300 nvme_warn_reset(dev, csts);
1301 goto disable;
1302 }
1303
1304 /*
1305 * Did we miss an interrupt?
1306 */
1307 if (test_bit(NVMEQ_POLLED, &nvmeq->flags))
1308 nvme_poll(hctx: req->mq_hctx, NULL);
1309 else
1310 nvme_poll_irqdisable(nvmeq);
1311
1312 if (blk_mq_rq_state(rq: req) != MQ_RQ_IN_FLIGHT) {
1313 dev_warn(dev->ctrl.device,
1314 "I/O tag %d (%04x) QID %d timeout, completion polled\n",
1315 req->tag, nvme_cid(req), nvmeq->qid);
1316 return BLK_EH_DONE;
1317 }
1318
1319 /*
1320 * Shutdown immediately if controller times out while starting. The
1321 * reset work will see the pci device disabled when it gets the forced
1322 * cancellation error. All outstanding requests are completed on
1323 * shutdown, so we return BLK_EH_DONE.
1324 */
1325 switch (nvme_ctrl_state(ctrl: &dev->ctrl)) {
1326 case NVME_CTRL_CONNECTING:
1327 nvme_change_ctrl_state(ctrl: &dev->ctrl, new_state: NVME_CTRL_DELETING);
1328 fallthrough;
1329 case NVME_CTRL_DELETING:
1330 dev_warn_ratelimited(dev->ctrl.device,
1331 "I/O tag %d (%04x) QID %d timeout, disable controller\n",
1332 req->tag, nvme_cid(req), nvmeq->qid);
1333 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1334 nvme_dev_disable(dev, shutdown: true);
1335 return BLK_EH_DONE;
1336 case NVME_CTRL_RESETTING:
1337 return BLK_EH_RESET_TIMER;
1338 default:
1339 break;
1340 }
1341
1342 /*
1343 * Shutdown the controller immediately and schedule a reset if the
1344 * command was already aborted once before and still hasn't been
1345 * returned to the driver, or if this is the admin queue.
1346 */
1347 opcode = nvme_req(req)->cmd->common.opcode;
1348 if (!nvmeq->qid || iod->aborted) {
1349 dev_warn(dev->ctrl.device,
1350 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, reset controller\n",
1351 req->tag, nvme_cid(req), opcode,
1352 nvme_opcode_str(nvmeq->qid, opcode), nvmeq->qid);
1353 nvme_req(req)->flags |= NVME_REQ_CANCELLED;
1354 goto disable;
1355 }
1356
1357 if (atomic_dec_return(v: &dev->ctrl.abort_limit) < 0) {
1358 atomic_inc(v: &dev->ctrl.abort_limit);
1359 return BLK_EH_RESET_TIMER;
1360 }
1361 iod->aborted = true;
1362
1363 cmd.abort.opcode = nvme_admin_abort_cmd;
1364 cmd.abort.cid = nvme_cid(rq: req);
1365 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1366
1367 dev_warn(nvmeq->dev->ctrl.device,
1368 "I/O tag %d (%04x) opcode %#x (%s) QID %d timeout, aborting req_op:%s(%u) size:%u\n",
1369 req->tag, nvme_cid(req), opcode, nvme_get_opcode_str(opcode),
1370 nvmeq->qid, blk_op_str(req_op(req)), req_op(req),
1371 blk_rq_bytes(req));
1372
1373 abort_req = blk_mq_alloc_request(q: dev->ctrl.admin_q, opf: nvme_req_op(cmd: &cmd),
1374 flags: BLK_MQ_REQ_NOWAIT);
1375 if (IS_ERR(ptr: abort_req)) {
1376 atomic_inc(v: &dev->ctrl.abort_limit);
1377 return BLK_EH_RESET_TIMER;
1378 }
1379 nvme_init_request(req: abort_req, cmd: &cmd);
1380
1381 abort_req->end_io = abort_endio;
1382 abort_req->end_io_data = NULL;
1383 blk_execute_rq_nowait(rq: abort_req, at_head: false);
1384
1385 /*
1386 * The aborted req will be completed on receiving the abort req.
1387 * We enable the timer again. If hit twice, it'll cause a device reset,
1388 * as the device then is in a faulty state.
1389 */
1390 return BLK_EH_RESET_TIMER;
1391
1392disable:
1393 if (!nvme_change_ctrl_state(ctrl: &dev->ctrl, new_state: NVME_CTRL_RESETTING))
1394 return BLK_EH_DONE;
1395
1396 nvme_dev_disable(dev, shutdown: false);
1397 if (nvme_try_sched_reset(ctrl: &dev->ctrl))
1398 nvme_unquiesce_io_queues(ctrl: &dev->ctrl);
1399 return BLK_EH_DONE;
1400}
1401
1402static void nvme_free_queue(struct nvme_queue *nvmeq)
1403{
1404 dma_free_coherent(dev: nvmeq->dev->dev, CQ_SIZE(nvmeq),
1405 cpu_addr: (void *)nvmeq->cqes, dma_handle: nvmeq->cq_dma_addr);
1406 if (!nvmeq->sq_cmds)
1407 return;
1408
1409 if (test_and_clear_bit(NVMEQ_SQ_CMB, addr: &nvmeq->flags)) {
1410 pci_free_p2pmem(to_pci_dev(nvmeq->dev->dev),
1411 addr: nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1412 } else {
1413 dma_free_coherent(dev: nvmeq->dev->dev, SQ_SIZE(nvmeq),
1414 cpu_addr: nvmeq->sq_cmds, dma_handle: nvmeq->sq_dma_addr);
1415 }
1416}
1417
1418static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1419{
1420 int i;
1421
1422 for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) {
1423 dev->ctrl.queue_count--;
1424 nvme_free_queue(nvmeq: &dev->queues[i]);
1425 }
1426}
1427
1428static void nvme_suspend_queue(struct nvme_dev *dev, unsigned int qid)
1429{
1430 struct nvme_queue *nvmeq = &dev->queues[qid];
1431
1432 if (!test_and_clear_bit(NVMEQ_ENABLED, addr: &nvmeq->flags))
1433 return;
1434
1435 /* ensure that nvme_queue_rq() sees NVMEQ_ENABLED cleared */
1436 mb();
1437
1438 nvmeq->dev->online_queues--;
1439 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1440 nvme_quiesce_admin_queue(ctrl: &nvmeq->dev->ctrl);
1441 if (!test_and_clear_bit(NVMEQ_POLLED, addr: &nvmeq->flags))
1442 pci_free_irq(to_pci_dev(dev->dev), nr: nvmeq->cq_vector, dev_id: nvmeq);
1443}
1444
1445static void nvme_suspend_io_queues(struct nvme_dev *dev)
1446{
1447 int i;
1448
1449 for (i = dev->ctrl.queue_count - 1; i > 0; i--)
1450 nvme_suspend_queue(dev, qid: i);
1451}
1452
1453/*
1454 * Called only on a device that has been disabled and after all other threads
1455 * that can check this device's completion queues have synced, except
1456 * nvme_poll(). This is the last chance for the driver to see a natural
1457 * completion before nvme_cancel_request() terminates all incomplete requests.
1458 */
1459static void nvme_reap_pending_cqes(struct nvme_dev *dev)
1460{
1461 int i;
1462
1463 for (i = dev->ctrl.queue_count - 1; i > 0; i--) {
1464 spin_lock(lock: &dev->queues[i].cq_poll_lock);
1465 nvme_poll_cq(nvmeq: &dev->queues[i], NULL);
1466 spin_unlock(lock: &dev->queues[i].cq_poll_lock);
1467 }
1468}
1469
1470static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1471 int entry_size)
1472{
1473 int q_depth = dev->q_depth;
1474 unsigned q_size_aligned = roundup(q_depth * entry_size,
1475 NVME_CTRL_PAGE_SIZE);
1476
1477 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
1478 u64 mem_per_q = div_u64(dividend: dev->cmb_size, divisor: nr_io_queues);
1479
1480 mem_per_q = round_down(mem_per_q, NVME_CTRL_PAGE_SIZE);
1481 q_depth = div_u64(dividend: mem_per_q, divisor: entry_size);
1482
1483 /*
1484 * Ensure the reduced q_depth is above some threshold where it
1485 * would be better to map queues in system memory with the
1486 * original depth
1487 */
1488 if (q_depth < 64)
1489 return -ENOMEM;
1490 }
1491
1492 return q_depth;
1493}
1494
1495static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1496 int qid)
1497{
1498 struct pci_dev *pdev = to_pci_dev(dev->dev);
1499
1500 if (qid && dev->cmb_use_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) {
1501 nvmeq->sq_cmds = pci_alloc_p2pmem(pdev, SQ_SIZE(nvmeq));
1502 if (nvmeq->sq_cmds) {
1503 nvmeq->sq_dma_addr = pci_p2pmem_virt_to_bus(pdev,
1504 addr: nvmeq->sq_cmds);
1505 if (nvmeq->sq_dma_addr) {
1506 set_bit(NVMEQ_SQ_CMB, addr: &nvmeq->flags);
1507 return 0;
1508 }
1509
1510 pci_free_p2pmem(pdev, addr: nvmeq->sq_cmds, SQ_SIZE(nvmeq));
1511 }
1512 }
1513
1514 nvmeq->sq_cmds = dma_alloc_coherent(dev: dev->dev, SQ_SIZE(nvmeq),
1515 dma_handle: &nvmeq->sq_dma_addr, GFP_KERNEL);
1516 if (!nvmeq->sq_cmds)
1517 return -ENOMEM;
1518 return 0;
1519}
1520
1521static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth)
1522{
1523 struct nvme_queue *nvmeq = &dev->queues[qid];
1524
1525 if (dev->ctrl.queue_count > qid)
1526 return 0;
1527
1528 nvmeq->sqes = qid ? dev->io_sqes : NVME_ADM_SQES;
1529 nvmeq->q_depth = depth;
1530 nvmeq->cqes = dma_alloc_coherent(dev: dev->dev, CQ_SIZE(nvmeq),
1531 dma_handle: &nvmeq->cq_dma_addr, GFP_KERNEL);
1532 if (!nvmeq->cqes)
1533 goto free_nvmeq;
1534
1535 if (nvme_alloc_sq_cmds(dev, nvmeq, qid))
1536 goto free_cqdma;
1537
1538 nvmeq->dev = dev;
1539 spin_lock_init(&nvmeq->sq_lock);
1540 spin_lock_init(&nvmeq->cq_poll_lock);
1541 nvmeq->cq_head = 0;
1542 nvmeq->cq_phase = 1;
1543 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1544 nvmeq->qid = qid;
1545 dev->ctrl.queue_count++;
1546
1547 return 0;
1548
1549 free_cqdma:
1550 dma_free_coherent(dev: dev->dev, CQ_SIZE(nvmeq), cpu_addr: (void *)nvmeq->cqes,
1551 dma_handle: nvmeq->cq_dma_addr);
1552 free_nvmeq:
1553 return -ENOMEM;
1554}
1555
1556static int queue_request_irq(struct nvme_queue *nvmeq)
1557{
1558 struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev);
1559 int nr = nvmeq->dev->ctrl.instance;
1560
1561 if (use_threaded_interrupts) {
1562 return pci_request_irq(dev: pdev, nr: nvmeq->cq_vector, handler: nvme_irq_check,
1563 thread_fn: nvme_irq, dev_id: nvmeq, fmt: "nvme%dq%d", nr, nvmeq->qid);
1564 } else {
1565 return pci_request_irq(dev: pdev, nr: nvmeq->cq_vector, handler: nvme_irq,
1566 NULL, dev_id: nvmeq, fmt: "nvme%dq%d", nr, nvmeq->qid);
1567 }
1568}
1569
1570static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1571{
1572 struct nvme_dev *dev = nvmeq->dev;
1573
1574 nvmeq->sq_tail = 0;
1575 nvmeq->last_sq_tail = 0;
1576 nvmeq->cq_head = 0;
1577 nvmeq->cq_phase = 1;
1578 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1579 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq));
1580 nvme_dbbuf_init(dev, nvmeq, qid);
1581 dev->online_queues++;
1582 wmb(); /* ensure the first interrupt sees the initialization */
1583}
1584
1585/*
1586 * Try getting shutdown_lock while setting up IO queues.
1587 */
1588static int nvme_setup_io_queues_trylock(struct nvme_dev *dev)
1589{
1590 /*
1591 * Give up if the lock is being held by nvme_dev_disable.
1592 */
1593 if (!mutex_trylock(lock: &dev->shutdown_lock))
1594 return -ENODEV;
1595
1596 /*
1597 * Controller is in wrong state, fail early.
1598 */
1599 if (nvme_ctrl_state(ctrl: &dev->ctrl) != NVME_CTRL_CONNECTING) {
1600 mutex_unlock(lock: &dev->shutdown_lock);
1601 return -ENODEV;
1602 }
1603
1604 return 0;
1605}
1606
1607static int nvme_create_queue(struct nvme_queue *nvmeq, int qid, bool polled)
1608{
1609 struct nvme_dev *dev = nvmeq->dev;
1610 int result;
1611 u16 vector = 0;
1612
1613 clear_bit(NVMEQ_DELETE_ERROR, addr: &nvmeq->flags);
1614
1615 /*
1616 * A queue's vector matches the queue identifier unless the controller
1617 * has only one vector available.
1618 */
1619 if (!polled)
1620 vector = dev->num_vecs == 1 ? 0 : qid;
1621 else
1622 set_bit(NVMEQ_POLLED, addr: &nvmeq->flags);
1623
1624 result = adapter_alloc_cq(dev, qid, nvmeq, vector);
1625 if (result)
1626 return result;
1627
1628 result = adapter_alloc_sq(dev, qid, nvmeq);
1629 if (result < 0)
1630 return result;
1631 if (result)
1632 goto release_cq;
1633
1634 nvmeq->cq_vector = vector;
1635
1636 result = nvme_setup_io_queues_trylock(dev);
1637 if (result)
1638 return result;
1639 nvme_init_queue(nvmeq, qid);
1640 if (!polled) {
1641 result = queue_request_irq(nvmeq);
1642 if (result < 0)
1643 goto release_sq;
1644 }
1645
1646 set_bit(NVMEQ_ENABLED, addr: &nvmeq->flags);
1647 mutex_unlock(lock: &dev->shutdown_lock);
1648 return result;
1649
1650release_sq:
1651 dev->online_queues--;
1652 mutex_unlock(lock: &dev->shutdown_lock);
1653 adapter_delete_sq(dev, sqid: qid);
1654release_cq:
1655 adapter_delete_cq(dev, cqid: qid);
1656 return result;
1657}
1658
1659static const struct blk_mq_ops nvme_mq_admin_ops = {
1660 .queue_rq = nvme_queue_rq,
1661 .complete = nvme_pci_complete_rq,
1662 .init_hctx = nvme_admin_init_hctx,
1663 .init_request = nvme_pci_init_request,
1664 .timeout = nvme_timeout,
1665};
1666
1667static const struct blk_mq_ops nvme_mq_ops = {
1668 .queue_rq = nvme_queue_rq,
1669 .queue_rqs = nvme_queue_rqs,
1670 .complete = nvme_pci_complete_rq,
1671 .commit_rqs = nvme_commit_rqs,
1672 .init_hctx = nvme_init_hctx,
1673 .init_request = nvme_pci_init_request,
1674 .map_queues = nvme_pci_map_queues,
1675 .timeout = nvme_timeout,
1676 .poll = nvme_poll,
1677};
1678
1679static void nvme_dev_remove_admin(struct nvme_dev *dev)
1680{
1681 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1682 /*
1683 * If the controller was reset during removal, it's possible
1684 * user requests may be waiting on a stopped queue. Start the
1685 * queue to flush these to completion.
1686 */
1687 nvme_unquiesce_admin_queue(ctrl: &dev->ctrl);
1688 nvme_remove_admin_tag_set(ctrl: &dev->ctrl);
1689 }
1690}
1691
1692static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1693{
1694 return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride);
1695}
1696
1697static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size)
1698{
1699 struct pci_dev *pdev = to_pci_dev(dev->dev);
1700
1701 if (size <= dev->bar_mapped_size)
1702 return 0;
1703 if (size > pci_resource_len(pdev, 0))
1704 return -ENOMEM;
1705 if (dev->bar)
1706 iounmap(addr: dev->bar);
1707 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1708 if (!dev->bar) {
1709 dev->bar_mapped_size = 0;
1710 return -ENOMEM;
1711 }
1712 dev->bar_mapped_size = size;
1713 dev->dbs = dev->bar + NVME_REG_DBS;
1714
1715 return 0;
1716}
1717
1718static int nvme_pci_configure_admin_queue(struct nvme_dev *dev)
1719{
1720 int result;
1721 u32 aqa;
1722 struct nvme_queue *nvmeq;
1723
1724 result = nvme_remap_bar(dev, size: db_bar_size(dev, nr_io_queues: 0));
1725 if (result < 0)
1726 return result;
1727
1728 dev->subsystem = readl(addr: dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ?
1729 NVME_CAP_NSSRC(dev->ctrl.cap) : 0;
1730
1731 if (dev->subsystem &&
1732 (readl(addr: dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1733 writel(val: NVME_CSTS_NSSRO, addr: dev->bar + NVME_REG_CSTS);
1734
1735 /*
1736 * If the device has been passed off to us in an enabled state, just
1737 * clear the enabled bit. The spec says we should set the 'shutdown
1738 * notification bits', but doing so may cause the device to complete
1739 * commands to the admin queue ... and we don't know what memory that
1740 * might be pointing at!
1741 */
1742 result = nvme_disable_ctrl(ctrl: &dev->ctrl, shutdown: false);
1743 if (result < 0)
1744 return result;
1745
1746 result = nvme_alloc_queue(dev, qid: 0, NVME_AQ_DEPTH);
1747 if (result)
1748 return result;
1749
1750 dev->ctrl.numa_node = dev_to_node(dev: dev->dev);
1751
1752 nvmeq = &dev->queues[0];
1753 aqa = nvmeq->q_depth - 1;
1754 aqa |= aqa << 16;
1755
1756 writel(val: aqa, addr: dev->bar + NVME_REG_AQA);
1757 lo_hi_writeq(val: nvmeq->sq_dma_addr, addr: dev->bar + NVME_REG_ASQ);
1758 lo_hi_writeq(val: nvmeq->cq_dma_addr, addr: dev->bar + NVME_REG_ACQ);
1759
1760 result = nvme_enable_ctrl(ctrl: &dev->ctrl);
1761 if (result)
1762 return result;
1763
1764 nvmeq->cq_vector = 0;
1765 nvme_init_queue(nvmeq, qid: 0);
1766 result = queue_request_irq(nvmeq);
1767 if (result) {
1768 dev->online_queues--;
1769 return result;
1770 }
1771
1772 set_bit(NVMEQ_ENABLED, addr: &nvmeq->flags);
1773 return result;
1774}
1775
1776static int nvme_create_io_queues(struct nvme_dev *dev)
1777{
1778 unsigned i, max, rw_queues;
1779 int ret = 0;
1780
1781 for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) {
1782 if (nvme_alloc_queue(dev, qid: i, depth: dev->q_depth)) {
1783 ret = -ENOMEM;
1784 break;
1785 }
1786 }
1787
1788 max = min(dev->max_qid, dev->ctrl.queue_count - 1);
1789 if (max != 1 && dev->io_queues[HCTX_TYPE_POLL]) {
1790 rw_queues = dev->io_queues[HCTX_TYPE_DEFAULT] +
1791 dev->io_queues[HCTX_TYPE_READ];
1792 } else {
1793 rw_queues = max;
1794 }
1795
1796 for (i = dev->online_queues; i <= max; i++) {
1797 bool polled = i > rw_queues;
1798
1799 ret = nvme_create_queue(nvmeq: &dev->queues[i], qid: i, polled);
1800 if (ret)
1801 break;
1802 }
1803
1804 /*
1805 * Ignore failing Create SQ/CQ commands, we can continue with less
1806 * than the desired amount of queues, and even a controller without
1807 * I/O queues can still be used to issue admin commands. This might
1808 * be useful to upgrade a buggy firmware for example.
1809 */
1810 return ret >= 0 ? 0 : ret;
1811}
1812
1813static u64 nvme_cmb_size_unit(struct nvme_dev *dev)
1814{
1815 u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK;
1816
1817 return 1ULL << (12 + 4 * szu);
1818}
1819
1820static u32 nvme_cmb_size(struct nvme_dev *dev)
1821{
1822 return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK;
1823}
1824
1825static void nvme_map_cmb(struct nvme_dev *dev)
1826{
1827 u64 size, offset;
1828 resource_size_t bar_size;
1829 struct pci_dev *pdev = to_pci_dev(dev->dev);
1830 int bar;
1831
1832 if (dev->cmb_size)
1833 return;
1834
1835 if (NVME_CAP_CMBS(dev->ctrl.cap))
1836 writel(val: NVME_CMBMSC_CRE, addr: dev->bar + NVME_REG_CMBMSC);
1837
1838 dev->cmbsz = readl(addr: dev->bar + NVME_REG_CMBSZ);
1839 if (!dev->cmbsz)
1840 return;
1841 dev->cmbloc = readl(addr: dev->bar + NVME_REG_CMBLOC);
1842
1843 size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev);
1844 offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc);
1845 bar = NVME_CMB_BIR(dev->cmbloc);
1846 bar_size = pci_resource_len(pdev, bar);
1847
1848 if (offset > bar_size)
1849 return;
1850
1851 /*
1852 * Tell the controller about the host side address mapping the CMB,
1853 * and enable CMB decoding for the NVMe 1.4+ scheme:
1854 */
1855 if (NVME_CAP_CMBS(dev->ctrl.cap)) {
1856 hi_lo_writeq(val: NVME_CMBMSC_CRE | NVME_CMBMSC_CMSE |
1857 (pci_bus_address(pdev, bar) + offset),
1858 addr: dev->bar + NVME_REG_CMBMSC);
1859 }
1860
1861 /*
1862 * Controllers may support a CMB size larger than their BAR,
1863 * for example, due to being behind a bridge. Reduce the CMB to
1864 * the reported size of the BAR
1865 */
1866 if (size > bar_size - offset)
1867 size = bar_size - offset;
1868
1869 if (pci_p2pdma_add_resource(pdev, bar, size, offset)) {
1870 dev_warn(dev->ctrl.device,
1871 "failed to register the CMB\n");
1872 return;
1873 }
1874
1875 dev->cmb_size = size;
1876 dev->cmb_use_sqes = use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS);
1877
1878 if ((dev->cmbsz & (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS)) ==
1879 (NVME_CMBSZ_WDS | NVME_CMBSZ_RDS))
1880 pci_p2pmem_publish(pdev, publish: true);
1881
1882 nvme_update_attrs(dev);
1883}
1884
1885static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits)
1886{
1887 u32 host_mem_size = dev->host_mem_size >> NVME_CTRL_PAGE_SHIFT;
1888 u64 dma_addr = dev->host_mem_descs_dma;
1889 struct nvme_command c = { };
1890 int ret;
1891
1892 c.features.opcode = nvme_admin_set_features;
1893 c.features.fid = cpu_to_le32(NVME_FEAT_HOST_MEM_BUF);
1894 c.features.dword11 = cpu_to_le32(bits);
1895 c.features.dword12 = cpu_to_le32(host_mem_size);
1896 c.features.dword13 = cpu_to_le32(lower_32_bits(dma_addr));
1897 c.features.dword14 = cpu_to_le32(upper_32_bits(dma_addr));
1898 c.features.dword15 = cpu_to_le32(dev->nr_host_mem_descs);
1899
1900 ret = nvme_submit_sync_cmd(q: dev->ctrl.admin_q, cmd: &c, NULL, bufflen: 0);
1901 if (ret) {
1902 dev_warn(dev->ctrl.device,
1903 "failed to set host mem (err %d, flags %#x).\n",
1904 ret, bits);
1905 } else
1906 dev->hmb = bits & NVME_HOST_MEM_ENABLE;
1907
1908 return ret;
1909}
1910
1911static void nvme_free_host_mem(struct nvme_dev *dev)
1912{
1913 int i;
1914
1915 for (i = 0; i < dev->nr_host_mem_descs; i++) {
1916 struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i];
1917 size_t size = le32_to_cpu(desc->size) * NVME_CTRL_PAGE_SIZE;
1918
1919 dma_free_attrs(dev: dev->dev, size, cpu_addr: dev->host_mem_desc_bufs[i],
1920 le64_to_cpu(desc->addr),
1921 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1922 }
1923
1924 kfree(objp: dev->host_mem_desc_bufs);
1925 dev->host_mem_desc_bufs = NULL;
1926 dma_free_coherent(dev: dev->dev,
1927 size: dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs),
1928 cpu_addr: dev->host_mem_descs, dma_handle: dev->host_mem_descs_dma);
1929 dev->host_mem_descs = NULL;
1930 dev->nr_host_mem_descs = 0;
1931}
1932
1933static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred,
1934 u32 chunk_size)
1935{
1936 struct nvme_host_mem_buf_desc *descs;
1937 u32 max_entries, len;
1938 dma_addr_t descs_dma;
1939 int i = 0;
1940 void **bufs;
1941 u64 size, tmp;
1942
1943 tmp = (preferred + chunk_size - 1);
1944 do_div(tmp, chunk_size);
1945 max_entries = tmp;
1946
1947 if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries)
1948 max_entries = dev->ctrl.hmmaxd;
1949
1950 descs = dma_alloc_coherent(dev: dev->dev, size: max_entries * sizeof(*descs),
1951 dma_handle: &descs_dma, GFP_KERNEL);
1952 if (!descs)
1953 goto out;
1954
1955 bufs = kcalloc(n: max_entries, size: sizeof(*bufs), GFP_KERNEL);
1956 if (!bufs)
1957 goto out_free_descs;
1958
1959 for (size = 0; size < preferred && i < max_entries; size += len) {
1960 dma_addr_t dma_addr;
1961
1962 len = min_t(u64, chunk_size, preferred - size);
1963 bufs[i] = dma_alloc_attrs(dev: dev->dev, size: len, dma_handle: &dma_addr, GFP_KERNEL,
1964 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1965 if (!bufs[i])
1966 break;
1967
1968 descs[i].addr = cpu_to_le64(dma_addr);
1969 descs[i].size = cpu_to_le32(len / NVME_CTRL_PAGE_SIZE);
1970 i++;
1971 }
1972
1973 if (!size)
1974 goto out_free_bufs;
1975
1976 dev->nr_host_mem_descs = i;
1977 dev->host_mem_size = size;
1978 dev->host_mem_descs = descs;
1979 dev->host_mem_descs_dma = descs_dma;
1980 dev->host_mem_desc_bufs = bufs;
1981 return 0;
1982
1983out_free_bufs:
1984 while (--i >= 0) {
1985 size_t size = le32_to_cpu(descs[i].size) * NVME_CTRL_PAGE_SIZE;
1986
1987 dma_free_attrs(dev: dev->dev, size, cpu_addr: bufs[i],
1988 le64_to_cpu(descs[i].addr),
1989 DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN);
1990 }
1991
1992 kfree(objp: bufs);
1993out_free_descs:
1994 dma_free_coherent(dev: dev->dev, size: max_entries * sizeof(*descs), cpu_addr: descs,
1995 dma_handle: descs_dma);
1996out:
1997 dev->host_mem_descs = NULL;
1998 return -ENOMEM;
1999}
2000
2001static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred)
2002{
2003 u64 min_chunk = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES);
2004 u64 hmminds = max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2);
2005 u64 chunk_size;
2006
2007 /* start big and work our way down */
2008 for (chunk_size = min_chunk; chunk_size >= hmminds; chunk_size /= 2) {
2009 if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) {
2010 if (!min || dev->host_mem_size >= min)
2011 return 0;
2012 nvme_free_host_mem(dev);
2013 }
2014 }
2015
2016 return -ENOMEM;
2017}
2018
2019static int nvme_setup_host_mem(struct nvme_dev *dev)
2020{
2021 u64 max = (u64)max_host_mem_size_mb * SZ_1M;
2022 u64 preferred = (u64)dev->ctrl.hmpre * 4096;
2023 u64 min = (u64)dev->ctrl.hmmin * 4096;
2024 u32 enable_bits = NVME_HOST_MEM_ENABLE;
2025 int ret;
2026
2027 if (!dev->ctrl.hmpre)
2028 return 0;
2029
2030 preferred = min(preferred, max);
2031 if (min > max) {
2032 dev_warn(dev->ctrl.device,
2033 "min host memory (%lld MiB) above limit (%d MiB).\n",
2034 min >> ilog2(SZ_1M), max_host_mem_size_mb);
2035 nvme_free_host_mem(dev);
2036 return 0;
2037 }
2038
2039 /*
2040 * If we already have a buffer allocated check if we can reuse it.
2041 */
2042 if (dev->host_mem_descs) {
2043 if (dev->host_mem_size >= min)
2044 enable_bits |= NVME_HOST_MEM_RETURN;
2045 else
2046 nvme_free_host_mem(dev);
2047 }
2048
2049 if (!dev->host_mem_descs) {
2050 if (nvme_alloc_host_mem(dev, min, preferred)) {
2051 dev_warn(dev->ctrl.device,
2052 "failed to allocate host memory buffer.\n");
2053 return 0; /* controller must work without HMB */
2054 }
2055
2056 dev_info(dev->ctrl.device,
2057 "allocated %lld MiB host memory buffer.\n",
2058 dev->host_mem_size >> ilog2(SZ_1M));
2059 }
2060
2061 ret = nvme_set_host_mem(dev, bits: enable_bits);
2062 if (ret)
2063 nvme_free_host_mem(dev);
2064 return ret;
2065}
2066
2067static ssize_t cmb_show(struct device *dev, struct device_attribute *attr,
2068 char *buf)
2069{
2070 struct nvme_dev *ndev = to_nvme_dev(ctrl: dev_get_drvdata(dev));
2071
2072 return sysfs_emit(buf, fmt: "cmbloc : x%08x\ncmbsz : x%08x\n",
2073 ndev->cmbloc, ndev->cmbsz);
2074}
2075static DEVICE_ATTR_RO(cmb);
2076
2077static ssize_t cmbloc_show(struct device *dev, struct device_attribute *attr,
2078 char *buf)
2079{
2080 struct nvme_dev *ndev = to_nvme_dev(ctrl: dev_get_drvdata(dev));
2081
2082 return sysfs_emit(buf, fmt: "%u\n", ndev->cmbloc);
2083}
2084static DEVICE_ATTR_RO(cmbloc);
2085
2086static ssize_t cmbsz_show(struct device *dev, struct device_attribute *attr,
2087 char *buf)
2088{
2089 struct nvme_dev *ndev = to_nvme_dev(ctrl: dev_get_drvdata(dev));
2090
2091 return sysfs_emit(buf, fmt: "%u\n", ndev->cmbsz);
2092}
2093static DEVICE_ATTR_RO(cmbsz);
2094
2095static ssize_t hmb_show(struct device *dev, struct device_attribute *attr,
2096 char *buf)
2097{
2098 struct nvme_dev *ndev = to_nvme_dev(ctrl: dev_get_drvdata(dev));
2099
2100 return sysfs_emit(buf, fmt: "%d\n", ndev->hmb);
2101}
2102
2103static ssize_t hmb_store(struct device *dev, struct device_attribute *attr,
2104 const char *buf, size_t count)
2105{
2106 struct nvme_dev *ndev = to_nvme_dev(ctrl: dev_get_drvdata(dev));
2107 bool new;
2108 int ret;
2109
2110 if (kstrtobool(s: buf, res: &new) < 0)
2111 return -EINVAL;
2112
2113 if (new == ndev->hmb)
2114 return count;
2115
2116 if (new) {
2117 ret = nvme_setup_host_mem(dev: ndev);
2118 } else {
2119 ret = nvme_set_host_mem(dev: ndev, bits: 0);
2120 if (!ret)
2121 nvme_free_host_mem(dev: ndev);
2122 }
2123
2124 if (ret < 0)
2125 return ret;
2126
2127 return count;
2128}
2129static DEVICE_ATTR_RW(hmb);
2130
2131static umode_t nvme_pci_attrs_are_visible(struct kobject *kobj,
2132 struct attribute *a, int n)
2133{
2134 struct nvme_ctrl *ctrl =
2135 dev_get_drvdata(container_of(kobj, struct device, kobj));
2136 struct nvme_dev *dev = to_nvme_dev(ctrl);
2137
2138 if (a == &dev_attr_cmb.attr ||
2139 a == &dev_attr_cmbloc.attr ||
2140 a == &dev_attr_cmbsz.attr) {
2141 if (!dev->cmbsz)
2142 return 0;
2143 }
2144 if (a == &dev_attr_hmb.attr && !ctrl->hmpre)
2145 return 0;
2146
2147 return a->mode;
2148}
2149
2150static struct attribute *nvme_pci_attrs[] = {
2151 &dev_attr_cmb.attr,
2152 &dev_attr_cmbloc.attr,
2153 &dev_attr_cmbsz.attr,
2154 &dev_attr_hmb.attr,
2155 NULL,
2156};
2157
2158static const struct attribute_group nvme_pci_dev_attrs_group = {
2159 .attrs = nvme_pci_attrs,
2160 .is_visible = nvme_pci_attrs_are_visible,
2161};
2162
2163static const struct attribute_group *nvme_pci_dev_attr_groups[] = {
2164 &nvme_dev_attrs_group,
2165 &nvme_pci_dev_attrs_group,
2166 NULL,
2167};
2168
2169static void nvme_update_attrs(struct nvme_dev *dev)
2170{
2171 sysfs_update_group(kobj: &dev->ctrl.device->kobj, grp: &nvme_pci_dev_attrs_group);
2172}
2173
2174/*
2175 * nirqs is the number of interrupts available for write and read
2176 * queues. The core already reserved an interrupt for the admin queue.
2177 */
2178static void nvme_calc_irq_sets(struct irq_affinity *affd, unsigned int nrirqs)
2179{
2180 struct nvme_dev *dev = affd->priv;
2181 unsigned int nr_read_queues, nr_write_queues = dev->nr_write_queues;
2182
2183 /*
2184 * If there is no interrupt available for queues, ensure that
2185 * the default queue is set to 1. The affinity set size is
2186 * also set to one, but the irq core ignores it for this case.
2187 *
2188 * If only one interrupt is available or 'write_queue' == 0, combine
2189 * write and read queues.
2190 *
2191 * If 'write_queues' > 0, ensure it leaves room for at least one read
2192 * queue.
2193 */
2194 if (!nrirqs) {
2195 nrirqs = 1;
2196 nr_read_queues = 0;
2197 } else if (nrirqs == 1 || !nr_write_queues) {
2198 nr_read_queues = 0;
2199 } else if (nr_write_queues >= nrirqs) {
2200 nr_read_queues = 1;
2201 } else {
2202 nr_read_queues = nrirqs - nr_write_queues;
2203 }
2204
2205 dev->io_queues[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2206 affd->set_size[HCTX_TYPE_DEFAULT] = nrirqs - nr_read_queues;
2207 dev->io_queues[HCTX_TYPE_READ] = nr_read_queues;
2208 affd->set_size[HCTX_TYPE_READ] = nr_read_queues;
2209 affd->nr_sets = nr_read_queues ? 2 : 1;
2210}
2211
2212static int nvme_setup_irqs(struct nvme_dev *dev, unsigned int nr_io_queues)
2213{
2214 struct pci_dev *pdev = to_pci_dev(dev->dev);
2215 struct irq_affinity affd = {
2216 .pre_vectors = 1,
2217 .calc_sets = nvme_calc_irq_sets,
2218 .priv = dev,
2219 };
2220 unsigned int irq_queues, poll_queues;
2221
2222 /*
2223 * Poll queues don't need interrupts, but we need at least one I/O queue
2224 * left over for non-polled I/O.
2225 */
2226 poll_queues = min(dev->nr_poll_queues, nr_io_queues - 1);
2227 dev->io_queues[HCTX_TYPE_POLL] = poll_queues;
2228
2229 /*
2230 * Initialize for the single interrupt case, will be updated in
2231 * nvme_calc_irq_sets().
2232 */
2233 dev->io_queues[HCTX_TYPE_DEFAULT] = 1;
2234 dev->io_queues[HCTX_TYPE_READ] = 0;
2235
2236 /*
2237 * We need interrupts for the admin queue and each non-polled I/O queue,
2238 * but some Apple controllers require all queues to use the first
2239 * vector.
2240 */
2241 irq_queues = 1;
2242 if (!(dev->ctrl.quirks & NVME_QUIRK_SINGLE_VECTOR))
2243 irq_queues += (nr_io_queues - poll_queues);
2244 return pci_alloc_irq_vectors_affinity(dev: pdev, min_vecs: 1, max_vecs: irq_queues,
2245 PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, affd: &affd);
2246}
2247
2248static unsigned int nvme_max_io_queues(struct nvme_dev *dev)
2249{
2250 /*
2251 * If tags are shared with admin queue (Apple bug), then
2252 * make sure we only use one IO queue.
2253 */
2254 if (dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS)
2255 return 1;
2256 return num_possible_cpus() + dev->nr_write_queues + dev->nr_poll_queues;
2257}
2258
2259static int nvme_setup_io_queues(struct nvme_dev *dev)
2260{
2261 struct nvme_queue *adminq = &dev->queues[0];
2262 struct pci_dev *pdev = to_pci_dev(dev->dev);
2263 unsigned int nr_io_queues;
2264 unsigned long size;
2265 int result;
2266
2267 /*
2268 * Sample the module parameters once at reset time so that we have
2269 * stable values to work with.
2270 */
2271 dev->nr_write_queues = write_queues;
2272 dev->nr_poll_queues = poll_queues;
2273
2274 nr_io_queues = dev->nr_allocated_queues - 1;
2275 result = nvme_set_queue_count(ctrl: &dev->ctrl, count: &nr_io_queues);
2276 if (result < 0)
2277 return result;
2278
2279 if (nr_io_queues == 0)
2280 return 0;
2281
2282 /*
2283 * Free IRQ resources as soon as NVMEQ_ENABLED bit transitions
2284 * from set to unset. If there is a window to it is truely freed,
2285 * pci_free_irq_vectors() jumping into this window will crash.
2286 * And take lock to avoid racing with pci_free_irq_vectors() in
2287 * nvme_dev_disable() path.
2288 */
2289 result = nvme_setup_io_queues_trylock(dev);
2290 if (result)
2291 return result;
2292 if (test_and_clear_bit(NVMEQ_ENABLED, addr: &adminq->flags))
2293 pci_free_irq(dev: pdev, nr: 0, dev_id: adminq);
2294
2295 if (dev->cmb_use_sqes) {
2296 result = nvme_cmb_qdepth(dev, nr_io_queues,
2297 entry_size: sizeof(struct nvme_command));
2298 if (result > 0) {
2299 dev->q_depth = result;
2300 dev->ctrl.sqsize = result - 1;
2301 } else {
2302 dev->cmb_use_sqes = false;
2303 }
2304 }
2305
2306 do {
2307 size = db_bar_size(dev, nr_io_queues);
2308 result = nvme_remap_bar(dev, size);
2309 if (!result)
2310 break;
2311 if (!--nr_io_queues) {
2312 result = -ENOMEM;
2313 goto out_unlock;
2314 }
2315 } while (1);
2316 adminq->q_db = dev->dbs;
2317
2318 retry:
2319 /* Deregister the admin queue's interrupt */
2320 if (test_and_clear_bit(NVMEQ_ENABLED, addr: &adminq->flags))
2321 pci_free_irq(dev: pdev, nr: 0, dev_id: adminq);
2322
2323 /*
2324 * If we enable msix early due to not intx, disable it again before
2325 * setting up the full range we need.
2326 */
2327 pci_free_irq_vectors(dev: pdev);
2328
2329 result = nvme_setup_irqs(dev, nr_io_queues);
2330 if (result <= 0) {
2331 result = -EIO;
2332 goto out_unlock;
2333 }
2334
2335 dev->num_vecs = result;
2336 result = max(result - 1, 1);
2337 dev->max_qid = result + dev->io_queues[HCTX_TYPE_POLL];
2338
2339 /*
2340 * Should investigate if there's a performance win from allocating
2341 * more queues than interrupt vectors; it might allow the submission
2342 * path to scale better, even if the receive path is limited by the
2343 * number of interrupts.
2344 */
2345 result = queue_request_irq(nvmeq: adminq);
2346 if (result)
2347 goto out_unlock;
2348 set_bit(NVMEQ_ENABLED, addr: &adminq->flags);
2349 mutex_unlock(lock: &dev->shutdown_lock);
2350
2351 result = nvme_create_io_queues(dev);
2352 if (result || dev->online_queues < 2)
2353 return result;
2354
2355 if (dev->online_queues - 1 < dev->max_qid) {
2356 nr_io_queues = dev->online_queues - 1;
2357 nvme_delete_io_queues(dev);
2358 result = nvme_setup_io_queues_trylock(dev);
2359 if (result)
2360 return result;
2361 nvme_suspend_io_queues(dev);
2362 goto retry;
2363 }
2364 dev_info(dev->ctrl.device, "%d/%d/%d default/read/poll queues\n",
2365 dev->io_queues[HCTX_TYPE_DEFAULT],
2366 dev->io_queues[HCTX_TYPE_READ],
2367 dev->io_queues[HCTX_TYPE_POLL]);
2368 return 0;
2369out_unlock:
2370 mutex_unlock(lock: &dev->shutdown_lock);
2371 return result;
2372}
2373
2374static enum rq_end_io_ret nvme_del_queue_end(struct request *req,
2375 blk_status_t error)
2376{
2377 struct nvme_queue *nvmeq = req->end_io_data;
2378
2379 blk_mq_free_request(rq: req);
2380 complete(&nvmeq->delete_done);
2381 return RQ_END_IO_NONE;
2382}
2383
2384static enum rq_end_io_ret nvme_del_cq_end(struct request *req,
2385 blk_status_t error)
2386{
2387 struct nvme_queue *nvmeq = req->end_io_data;
2388
2389 if (error)
2390 set_bit(NVMEQ_DELETE_ERROR, addr: &nvmeq->flags);
2391
2392 return nvme_del_queue_end(req, error);
2393}
2394
2395static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
2396{
2397 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
2398 struct request *req;
2399 struct nvme_command cmd = { };
2400
2401 cmd.delete_queue.opcode = opcode;
2402 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2403
2404 req = blk_mq_alloc_request(q, opf: nvme_req_op(cmd: &cmd), flags: BLK_MQ_REQ_NOWAIT);
2405 if (IS_ERR(ptr: req))
2406 return PTR_ERR(ptr: req);
2407 nvme_init_request(req, cmd: &cmd);
2408
2409 if (opcode == nvme_admin_delete_cq)
2410 req->end_io = nvme_del_cq_end;
2411 else
2412 req->end_io = nvme_del_queue_end;
2413 req->end_io_data = nvmeq;
2414
2415 init_completion(x: &nvmeq->delete_done);
2416 blk_execute_rq_nowait(rq: req, at_head: false);
2417 return 0;
2418}
2419
2420static bool __nvme_delete_io_queues(struct nvme_dev *dev, u8 opcode)
2421{
2422 int nr_queues = dev->online_queues - 1, sent = 0;
2423 unsigned long timeout;
2424
2425 retry:
2426 timeout = NVME_ADMIN_TIMEOUT;
2427 while (nr_queues > 0) {
2428 if (nvme_delete_queue(nvmeq: &dev->queues[nr_queues], opcode))
2429 break;
2430 nr_queues--;
2431 sent++;
2432 }
2433 while (sent) {
2434 struct nvme_queue *nvmeq = &dev->queues[nr_queues + sent];
2435
2436 timeout = wait_for_completion_io_timeout(x: &nvmeq->delete_done,
2437 timeout);
2438 if (timeout == 0)
2439 return false;
2440
2441 sent--;
2442 if (nr_queues)
2443 goto retry;
2444 }
2445 return true;
2446}
2447
2448static void nvme_delete_io_queues(struct nvme_dev *dev)
2449{
2450 if (__nvme_delete_io_queues(dev, opcode: nvme_admin_delete_sq))
2451 __nvme_delete_io_queues(dev, opcode: nvme_admin_delete_cq);
2452}
2453
2454static unsigned int nvme_pci_nr_maps(struct nvme_dev *dev)
2455{
2456 if (dev->io_queues[HCTX_TYPE_POLL])
2457 return 3;
2458 if (dev->io_queues[HCTX_TYPE_READ])
2459 return 2;
2460 return 1;
2461}
2462
2463static void nvme_pci_update_nr_queues(struct nvme_dev *dev)
2464{
2465 blk_mq_update_nr_hw_queues(set: &dev->tagset, nr_hw_queues: dev->online_queues - 1);
2466 /* free previously allocated queues that are no longer usable */
2467 nvme_free_queues(dev, lowest: dev->online_queues);
2468}
2469
2470static int nvme_pci_enable(struct nvme_dev *dev)
2471{
2472 int result = -ENOMEM;
2473 struct pci_dev *pdev = to_pci_dev(dev->dev);
2474
2475 if (pci_enable_device_mem(dev: pdev))
2476 return result;
2477
2478 pci_set_master(dev: pdev);
2479
2480 if (readl(addr: dev->bar + NVME_REG_CSTS) == -1) {
2481 result = -ENODEV;
2482 goto disable;
2483 }
2484
2485 /*
2486 * Some devices and/or platforms don't advertise or work with INTx
2487 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll
2488 * adjust this later.
2489 */
2490 result = pci_alloc_irq_vectors(dev: pdev, min_vecs: 1, max_vecs: 1, PCI_IRQ_ALL_TYPES);
2491 if (result < 0)
2492 goto disable;
2493
2494 dev->ctrl.cap = lo_hi_readq(addr: dev->bar + NVME_REG_CAP);
2495
2496 dev->q_depth = min_t(u32, NVME_CAP_MQES(dev->ctrl.cap) + 1,
2497 io_queue_depth);
2498 dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap);
2499 dev->dbs = dev->bar + 4096;
2500
2501 /*
2502 * Some Apple controllers require a non-standard SQE size.
2503 * Interestingly they also seem to ignore the CC:IOSQES register
2504 * so we don't bother updating it here.
2505 */
2506 if (dev->ctrl.quirks & NVME_QUIRK_128_BYTES_SQES)
2507 dev->io_sqes = 7;
2508 else
2509 dev->io_sqes = NVME_NVM_IOSQES;
2510
2511 /*
2512 * Temporary fix for the Apple controller found in the MacBook8,1 and
2513 * some MacBook7,1 to avoid controller resets and data loss.
2514 */
2515 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
2516 dev->q_depth = 2;
2517 dev_warn(dev->ctrl.device, "detected Apple NVMe controller, "
2518 "set queue depth=%u to work around controller resets\n",
2519 dev->q_depth);
2520 } else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG &&
2521 (pdev->device == 0xa821 || pdev->device == 0xa822) &&
2522 NVME_CAP_MQES(dev->ctrl.cap) == 0) {
2523 dev->q_depth = 64;
2524 dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, "
2525 "set queue depth=%u\n", dev->q_depth);
2526 }
2527
2528 /*
2529 * Controllers with the shared tags quirk need the IO queue to be
2530 * big enough so that we get 32 tags for the admin queue
2531 */
2532 if ((dev->ctrl.quirks & NVME_QUIRK_SHARED_TAGS) &&
2533 (dev->q_depth < (NVME_AQ_DEPTH + 2))) {
2534 dev->q_depth = NVME_AQ_DEPTH + 2;
2535 dev_warn(dev->ctrl.device, "IO queue depth clamped to %d\n",
2536 dev->q_depth);
2537 }
2538 dev->ctrl.sqsize = dev->q_depth - 1; /* 0's based queue depth */
2539
2540 nvme_map_cmb(dev);
2541
2542 pci_save_state(dev: pdev);
2543
2544 result = nvme_pci_configure_admin_queue(dev);
2545 if (result)
2546 goto free_irq;
2547 return result;
2548
2549 free_irq:
2550 pci_free_irq_vectors(dev: pdev);
2551 disable:
2552 pci_disable_device(dev: pdev);
2553 return result;
2554}
2555
2556static void nvme_dev_unmap(struct nvme_dev *dev)
2557{
2558 if (dev->bar)
2559 iounmap(addr: dev->bar);
2560 pci_release_mem_regions(to_pci_dev(dev->dev));
2561}
2562
2563static bool nvme_pci_ctrl_is_dead(struct nvme_dev *dev)
2564{
2565 struct pci_dev *pdev = to_pci_dev(dev->dev);
2566 u32 csts;
2567
2568 if (!pci_is_enabled(pdev) || !pci_device_is_present(pdev))
2569 return true;
2570 if (pdev->error_state != pci_channel_io_normal)
2571 return true;
2572
2573 csts = readl(addr: dev->bar + NVME_REG_CSTS);
2574 return (csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY);
2575}
2576
2577static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
2578{
2579 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl: &dev->ctrl);
2580 struct pci_dev *pdev = to_pci_dev(dev->dev);
2581 bool dead;
2582
2583 mutex_lock(&dev->shutdown_lock);
2584 dead = nvme_pci_ctrl_is_dead(dev);
2585 if (state == NVME_CTRL_LIVE || state == NVME_CTRL_RESETTING) {
2586 if (pci_is_enabled(pdev))
2587 nvme_start_freeze(ctrl: &dev->ctrl);
2588 /*
2589 * Give the controller a chance to complete all entered requests
2590 * if doing a safe shutdown.
2591 */
2592 if (!dead && shutdown)
2593 nvme_wait_freeze_timeout(ctrl: &dev->ctrl, NVME_IO_TIMEOUT);
2594 }
2595
2596 nvme_quiesce_io_queues(ctrl: &dev->ctrl);
2597
2598 if (!dead && dev->ctrl.queue_count > 0) {
2599 nvme_delete_io_queues(dev);
2600 nvme_disable_ctrl(ctrl: &dev->ctrl, shutdown);
2601 nvme_poll_irqdisable(nvmeq: &dev->queues[0]);
2602 }
2603 nvme_suspend_io_queues(dev);
2604 nvme_suspend_queue(dev, qid: 0);
2605 pci_free_irq_vectors(dev: pdev);
2606 if (pci_is_enabled(pdev))
2607 pci_disable_device(dev: pdev);
2608 nvme_reap_pending_cqes(dev);
2609
2610 nvme_cancel_tagset(ctrl: &dev->ctrl);
2611 nvme_cancel_admin_tagset(ctrl: &dev->ctrl);
2612
2613 /*
2614 * The driver will not be starting up queues again if shutting down so
2615 * must flush all entered requests to their failed completion to avoid
2616 * deadlocking blk-mq hot-cpu notifier.
2617 */
2618 if (shutdown) {
2619 nvme_unquiesce_io_queues(ctrl: &dev->ctrl);
2620 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q))
2621 nvme_unquiesce_admin_queue(ctrl: &dev->ctrl);
2622 }
2623 mutex_unlock(lock: &dev->shutdown_lock);
2624}
2625
2626static int nvme_disable_prepare_reset(struct nvme_dev *dev, bool shutdown)
2627{
2628 if (!nvme_wait_reset(ctrl: &dev->ctrl))
2629 return -EBUSY;
2630 nvme_dev_disable(dev, shutdown);
2631 return 0;
2632}
2633
2634static int nvme_setup_prp_pools(struct nvme_dev *dev)
2635{
2636 dev->prp_page_pool = dma_pool_create(name: "prp list page", dev: dev->dev,
2637 NVME_CTRL_PAGE_SIZE,
2638 NVME_CTRL_PAGE_SIZE, allocation: 0);
2639 if (!dev->prp_page_pool)
2640 return -ENOMEM;
2641
2642 /* Optimisation for I/Os between 4k and 128k */
2643 dev->prp_small_pool = dma_pool_create(name: "prp list 256", dev: dev->dev,
2644 size: 256, align: 256, allocation: 0);
2645 if (!dev->prp_small_pool) {
2646 dma_pool_destroy(pool: dev->prp_page_pool);
2647 return -ENOMEM;
2648 }
2649 return 0;
2650}
2651
2652static void nvme_release_prp_pools(struct nvme_dev *dev)
2653{
2654 dma_pool_destroy(pool: dev->prp_page_pool);
2655 dma_pool_destroy(pool: dev->prp_small_pool);
2656}
2657
2658static int nvme_pci_alloc_iod_mempool(struct nvme_dev *dev)
2659{
2660 size_t alloc_size = sizeof(struct scatterlist) * NVME_MAX_SEGS;
2661
2662 dev->iod_mempool = mempool_create_node(min_nr: 1,
2663 alloc_fn: mempool_kmalloc, free_fn: mempool_kfree,
2664 pool_data: (void *)alloc_size, GFP_KERNEL,
2665 nid: dev_to_node(dev: dev->dev));
2666 if (!dev->iod_mempool)
2667 return -ENOMEM;
2668 return 0;
2669}
2670
2671static void nvme_free_tagset(struct nvme_dev *dev)
2672{
2673 if (dev->tagset.tags)
2674 nvme_remove_io_tag_set(ctrl: &dev->ctrl);
2675 dev->ctrl.tagset = NULL;
2676}
2677
2678/* pairs with nvme_pci_alloc_dev */
2679static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
2680{
2681 struct nvme_dev *dev = to_nvme_dev(ctrl);
2682
2683 nvme_free_tagset(dev);
2684 put_device(dev: dev->dev);
2685 kfree(objp: dev->queues);
2686 kfree(objp: dev);
2687}
2688
2689static void nvme_reset_work(struct work_struct *work)
2690{
2691 struct nvme_dev *dev =
2692 container_of(work, struct nvme_dev, ctrl.reset_work);
2693 bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL);
2694 int result;
2695
2696 if (nvme_ctrl_state(ctrl: &dev->ctrl) != NVME_CTRL_RESETTING) {
2697 dev_warn(dev->ctrl.device, "ctrl state %d is not RESETTING\n",
2698 dev->ctrl.state);
2699 result = -ENODEV;
2700 goto out;
2701 }
2702
2703 /*
2704 * If we're called to reset a live controller first shut it down before
2705 * moving on.
2706 */
2707 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
2708 nvme_dev_disable(dev, shutdown: false);
2709 nvme_sync_queues(ctrl: &dev->ctrl);
2710
2711 mutex_lock(&dev->shutdown_lock);
2712 result = nvme_pci_enable(dev);
2713 if (result)
2714 goto out_unlock;
2715 nvme_unquiesce_admin_queue(ctrl: &dev->ctrl);
2716 mutex_unlock(lock: &dev->shutdown_lock);
2717
2718 /*
2719 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the
2720 * initializing procedure here.
2721 */
2722 if (!nvme_change_ctrl_state(ctrl: &dev->ctrl, new_state: NVME_CTRL_CONNECTING)) {
2723 dev_warn(dev->ctrl.device,
2724 "failed to mark controller CONNECTING\n");
2725 result = -EBUSY;
2726 goto out;
2727 }
2728
2729 result = nvme_init_ctrl_finish(ctrl: &dev->ctrl, was_suspended: was_suspend);
2730 if (result)
2731 goto out;
2732
2733 nvme_dbbuf_dma_alloc(dev);
2734
2735 result = nvme_setup_host_mem(dev);
2736 if (result < 0)
2737 goto out;
2738
2739 result = nvme_setup_io_queues(dev);
2740 if (result)
2741 goto out;
2742
2743 /*
2744 * Freeze and update the number of I/O queues as thos might have
2745 * changed. If there are no I/O queues left after this reset, keep the
2746 * controller around but remove all namespaces.
2747 */
2748 if (dev->online_queues > 1) {
2749 nvme_dbbuf_set(dev);
2750 nvme_unquiesce_io_queues(ctrl: &dev->ctrl);
2751 nvme_wait_freeze(ctrl: &dev->ctrl);
2752 nvme_pci_update_nr_queues(dev);
2753 nvme_unfreeze(ctrl: &dev->ctrl);
2754 } else {
2755 dev_warn(dev->ctrl.device, "IO queues lost\n");
2756 nvme_mark_namespaces_dead(ctrl: &dev->ctrl);
2757 nvme_unquiesce_io_queues(ctrl: &dev->ctrl);
2758 nvme_remove_namespaces(ctrl: &dev->ctrl);
2759 nvme_free_tagset(dev);
2760 }
2761
2762 /*
2763 * If only admin queue live, keep it to do further investigation or
2764 * recovery.
2765 */
2766 if (!nvme_change_ctrl_state(ctrl: &dev->ctrl, new_state: NVME_CTRL_LIVE)) {
2767 dev_warn(dev->ctrl.device,
2768 "failed to mark controller live state\n");
2769 result = -ENODEV;
2770 goto out;
2771 }
2772
2773 nvme_start_ctrl(ctrl: &dev->ctrl);
2774 return;
2775
2776 out_unlock:
2777 mutex_unlock(lock: &dev->shutdown_lock);
2778 out:
2779 /*
2780 * Set state to deleting now to avoid blocking nvme_wait_reset(), which
2781 * may be holding this pci_dev's device lock.
2782 */
2783 dev_warn(dev->ctrl.device, "Disabling device after reset failure: %d\n",
2784 result);
2785 nvme_change_ctrl_state(ctrl: &dev->ctrl, new_state: NVME_CTRL_DELETING);
2786 nvme_dev_disable(dev, shutdown: true);
2787 nvme_sync_queues(ctrl: &dev->ctrl);
2788 nvme_mark_namespaces_dead(ctrl: &dev->ctrl);
2789 nvme_unquiesce_io_queues(ctrl: &dev->ctrl);
2790 nvme_change_ctrl_state(ctrl: &dev->ctrl, new_state: NVME_CTRL_DEAD);
2791}
2792
2793static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2794{
2795 *val = readl(addr: to_nvme_dev(ctrl)->bar + off);
2796 return 0;
2797}
2798
2799static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2800{
2801 writel(val, addr: to_nvme_dev(ctrl)->bar + off);
2802 return 0;
2803}
2804
2805static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2806{
2807 *val = lo_hi_readq(addr: to_nvme_dev(ctrl)->bar + off);
2808 return 0;
2809}
2810
2811static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2812{
2813 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2814
2815 return snprintf(buf, size, fmt: "%s\n", dev_name(dev: &pdev->dev));
2816}
2817
2818static void nvme_pci_print_device_info(struct nvme_ctrl *ctrl)
2819{
2820 struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev);
2821 struct nvme_subsystem *subsys = ctrl->subsys;
2822
2823 dev_err(ctrl->device,
2824 "VID:DID %04x:%04x model:%.*s firmware:%.*s\n",
2825 pdev->vendor, pdev->device,
2826 nvme_strlen(subsys->model, sizeof(subsys->model)),
2827 subsys->model, nvme_strlen(subsys->firmware_rev,
2828 sizeof(subsys->firmware_rev)),
2829 subsys->firmware_rev);
2830}
2831
2832static bool nvme_pci_supports_pci_p2pdma(struct nvme_ctrl *ctrl)
2833{
2834 struct nvme_dev *dev = to_nvme_dev(ctrl);
2835
2836 return dma_pci_p2pdma_supported(dev: dev->dev);
2837}
2838
2839static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2840 .name = "pcie",
2841 .module = THIS_MODULE,
2842 .flags = NVME_F_METADATA_SUPPORTED,
2843 .dev_attr_groups = nvme_pci_dev_attr_groups,
2844 .reg_read32 = nvme_pci_reg_read32,
2845 .reg_write32 = nvme_pci_reg_write32,
2846 .reg_read64 = nvme_pci_reg_read64,
2847 .free_ctrl = nvme_pci_free_ctrl,
2848 .submit_async_event = nvme_pci_submit_async_event,
2849 .get_address = nvme_pci_get_address,
2850 .print_device_info = nvme_pci_print_device_info,
2851 .supports_pci_p2pdma = nvme_pci_supports_pci_p2pdma,
2852};
2853
2854static int nvme_dev_map(struct nvme_dev *dev)
2855{
2856 struct pci_dev *pdev = to_pci_dev(dev->dev);
2857
2858 if (pci_request_mem_regions(pdev, name: "nvme"))
2859 return -ENODEV;
2860
2861 if (nvme_remap_bar(dev, size: NVME_REG_DBS + 4096))
2862 goto release;
2863
2864 return 0;
2865 release:
2866 pci_release_mem_regions(pdev);
2867 return -ENODEV;
2868}
2869
2870static unsigned long check_vendor_combination_bug(struct pci_dev *pdev)
2871{
2872 if (pdev->vendor == 0x144d && pdev->device == 0xa802) {
2873 /*
2874 * Several Samsung devices seem to drop off the PCIe bus
2875 * randomly when APST is on and uses the deepest sleep state.
2876 * This has been observed on a Samsung "SM951 NVMe SAMSUNG
2877 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD
2878 * 950 PRO 256GB", but it seems to be restricted to two Dell
2879 * laptops.
2880 */
2881 if (dmi_match(f: DMI_SYS_VENDOR, str: "Dell Inc.") &&
2882 (dmi_match(f: DMI_PRODUCT_NAME, str: "XPS 15 9550") ||
2883 dmi_match(f: DMI_PRODUCT_NAME, str: "Precision 5510")))
2884 return NVME_QUIRK_NO_DEEPEST_PS;
2885 } else if (pdev->vendor == 0x144d && pdev->device == 0xa804) {
2886 /*
2887 * Samsung SSD 960 EVO drops off the PCIe bus after system
2888 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as
2889 * within few minutes after bootup on a Coffee Lake board -
2890 * ASUS PRIME Z370-A
2891 */
2892 if (dmi_match(f: DMI_BOARD_VENDOR, str: "ASUSTeK COMPUTER INC.") &&
2893 (dmi_match(f: DMI_BOARD_NAME, str: "PRIME B350M-A") ||
2894 dmi_match(f: DMI_BOARD_NAME, str: "PRIME Z370-A")))
2895 return NVME_QUIRK_NO_APST;
2896 } else if ((pdev->vendor == 0x144d && (pdev->device == 0xa801 ||
2897 pdev->device == 0xa808 || pdev->device == 0xa809)) ||
2898 (pdev->vendor == 0x1e0f && pdev->device == 0x0001)) {
2899 /*
2900 * Forcing to use host managed nvme power settings for
2901 * lowest idle power with quick resume latency on
2902 * Samsung and Toshiba SSDs based on suspend behavior
2903 * on Coffee Lake board for LENOVO C640
2904 */
2905 if ((dmi_match(f: DMI_BOARD_VENDOR, str: "LENOVO")) &&
2906 dmi_match(f: DMI_BOARD_NAME, str: "LNVNB161216"))
2907 return NVME_QUIRK_SIMPLE_SUSPEND;
2908 } else if (pdev->vendor == 0x2646 && (pdev->device == 0x2263 ||
2909 pdev->device == 0x500f)) {
2910 /*
2911 * Exclude some Kingston NV1 and A2000 devices from
2912 * NVME_QUIRK_SIMPLE_SUSPEND. Do a full suspend to save a
2913 * lot fo energy with s2idle sleep on some TUXEDO platforms.
2914 */
2915 if (dmi_match(f: DMI_BOARD_NAME, str: "NS5X_NS7XAU") ||
2916 dmi_match(f: DMI_BOARD_NAME, str: "NS5x_7xAU") ||
2917 dmi_match(f: DMI_BOARD_NAME, str: "NS5x_7xPU") ||
2918 dmi_match(f: DMI_BOARD_NAME, str: "PH4PRX1_PH6PRX1"))
2919 return NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND;
2920 }
2921
2922 return 0;
2923}
2924
2925static struct nvme_dev *nvme_pci_alloc_dev(struct pci_dev *pdev,
2926 const struct pci_device_id *id)
2927{
2928 unsigned long quirks = id->driver_data;
2929 int node = dev_to_node(dev: &pdev->dev);
2930 struct nvme_dev *dev;
2931 int ret = -ENOMEM;
2932
2933 dev = kzalloc_node(size: sizeof(*dev), GFP_KERNEL, node);
2934 if (!dev)
2935 return ERR_PTR(error: -ENOMEM);
2936 INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work);
2937 mutex_init(&dev->shutdown_lock);
2938
2939 dev->nr_write_queues = write_queues;
2940 dev->nr_poll_queues = poll_queues;
2941 dev->nr_allocated_queues = nvme_max_io_queues(dev) + 1;
2942 dev->queues = kcalloc_node(n: dev->nr_allocated_queues,
2943 size: sizeof(struct nvme_queue), GFP_KERNEL, node);
2944 if (!dev->queues)
2945 goto out_free_dev;
2946
2947 dev->dev = get_device(dev: &pdev->dev);
2948
2949 quirks |= check_vendor_combination_bug(pdev);
2950 if (!noacpi &&
2951 !(quirks & NVME_QUIRK_FORCE_NO_SIMPLE_SUSPEND) &&
2952 acpi_storage_d3(dev: &pdev->dev)) {
2953 /*
2954 * Some systems use a bios work around to ask for D3 on
2955 * platforms that support kernel managed suspend.
2956 */
2957 dev_info(&pdev->dev,
2958 "platform quirk: setting simple suspend\n");
2959 quirks |= NVME_QUIRK_SIMPLE_SUSPEND;
2960 }
2961 ret = nvme_init_ctrl(ctrl: &dev->ctrl, dev: &pdev->dev, ops: &nvme_pci_ctrl_ops,
2962 quirks);
2963 if (ret)
2964 goto out_put_device;
2965
2966 if (dev->ctrl.quirks & NVME_QUIRK_DMA_ADDRESS_BITS_48)
2967 dma_set_mask_and_coherent(dev: &pdev->dev, DMA_BIT_MASK(48));
2968 else
2969 dma_set_mask_and_coherent(dev: &pdev->dev, DMA_BIT_MASK(64));
2970 dma_set_min_align_mask(dev: &pdev->dev, NVME_CTRL_PAGE_SIZE - 1);
2971 dma_set_max_seg_size(dev: &pdev->dev, size: 0xffffffff);
2972
2973 /*
2974 * Limit the max command size to prevent iod->sg allocations going
2975 * over a single page.
2976 */
2977 dev->ctrl.max_hw_sectors = min_t(u32,
2978 NVME_MAX_KB_SZ << 1, dma_opt_mapping_size(&pdev->dev) >> 9);
2979 dev->ctrl.max_segments = NVME_MAX_SEGS;
2980
2981 /*
2982 * There is no support for SGLs for metadata (yet), so we are limited to
2983 * a single integrity segment for the separate metadata pointer.
2984 */
2985 dev->ctrl.max_integrity_segments = 1;
2986 return dev;
2987
2988out_put_device:
2989 put_device(dev: dev->dev);
2990 kfree(objp: dev->queues);
2991out_free_dev:
2992 kfree(objp: dev);
2993 return ERR_PTR(error: ret);
2994}
2995
2996static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2997{
2998 struct nvme_dev *dev;
2999 int result = -ENOMEM;
3000
3001 dev = nvme_pci_alloc_dev(pdev, id);
3002 if (IS_ERR(ptr: dev))
3003 return PTR_ERR(ptr: dev);
3004
3005 result = nvme_dev_map(dev);
3006 if (result)
3007 goto out_uninit_ctrl;
3008
3009 result = nvme_setup_prp_pools(dev);
3010 if (result)
3011 goto out_dev_unmap;
3012
3013 result = nvme_pci_alloc_iod_mempool(dev);
3014 if (result)
3015 goto out_release_prp_pools;
3016
3017 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
3018
3019 result = nvme_pci_enable(dev);
3020 if (result)
3021 goto out_release_iod_mempool;
3022
3023 result = nvme_alloc_admin_tag_set(ctrl: &dev->ctrl, set: &dev->admin_tagset,
3024 ops: &nvme_mq_admin_ops, cmd_size: sizeof(struct nvme_iod));
3025 if (result)
3026 goto out_disable;
3027
3028 /*
3029 * Mark the controller as connecting before sending admin commands to
3030 * allow the timeout handler to do the right thing.
3031 */
3032 if (!nvme_change_ctrl_state(ctrl: &dev->ctrl, new_state: NVME_CTRL_CONNECTING)) {
3033 dev_warn(dev->ctrl.device,
3034 "failed to mark controller CONNECTING\n");
3035 result = -EBUSY;
3036 goto out_disable;
3037 }
3038
3039 result = nvme_init_ctrl_finish(ctrl: &dev->ctrl, was_suspended: false);
3040 if (result)
3041 goto out_disable;
3042
3043 nvme_dbbuf_dma_alloc(dev);
3044
3045 result = nvme_setup_host_mem(dev);
3046 if (result < 0)
3047 goto out_disable;
3048
3049 result = nvme_setup_io_queues(dev);
3050 if (result)
3051 goto out_disable;
3052
3053 if (dev->online_queues > 1) {
3054 nvme_alloc_io_tag_set(ctrl: &dev->ctrl, set: &dev->tagset, ops: &nvme_mq_ops,
3055 nr_maps: nvme_pci_nr_maps(dev), cmd_size: sizeof(struct nvme_iod));
3056 nvme_dbbuf_set(dev);
3057 }
3058
3059 if (!dev->ctrl.tagset)
3060 dev_warn(dev->ctrl.device, "IO queues not created\n");
3061
3062 if (!nvme_change_ctrl_state(ctrl: &dev->ctrl, new_state: NVME_CTRL_LIVE)) {
3063 dev_warn(dev->ctrl.device,
3064 "failed to mark controller live state\n");
3065 result = -ENODEV;
3066 goto out_disable;
3067 }
3068
3069 pci_set_drvdata(pdev, data: dev);
3070
3071 nvme_start_ctrl(ctrl: &dev->ctrl);
3072 nvme_put_ctrl(ctrl: &dev->ctrl);
3073 flush_work(work: &dev->ctrl.scan_work);
3074 return 0;
3075
3076out_disable:
3077 nvme_change_ctrl_state(ctrl: &dev->ctrl, new_state: NVME_CTRL_DELETING);
3078 nvme_dev_disable(dev, shutdown: true);
3079 nvme_free_host_mem(dev);
3080 nvme_dev_remove_admin(dev);
3081 nvme_dbbuf_dma_free(dev);
3082 nvme_free_queues(dev, lowest: 0);
3083out_release_iod_mempool:
3084 mempool_destroy(pool: dev->iod_mempool);
3085out_release_prp_pools:
3086 nvme_release_prp_pools(dev);
3087out_dev_unmap:
3088 nvme_dev_unmap(dev);
3089out_uninit_ctrl:
3090 nvme_uninit_ctrl(ctrl: &dev->ctrl);
3091 nvme_put_ctrl(ctrl: &dev->ctrl);
3092 return result;
3093}
3094
3095static void nvme_reset_prepare(struct pci_dev *pdev)
3096{
3097 struct nvme_dev *dev = pci_get_drvdata(pdev);
3098
3099 /*
3100 * We don't need to check the return value from waiting for the reset
3101 * state as pci_dev device lock is held, making it impossible to race
3102 * with ->remove().
3103 */
3104 nvme_disable_prepare_reset(dev, shutdown: false);
3105 nvme_sync_queues(ctrl: &dev->ctrl);
3106}
3107
3108static void nvme_reset_done(struct pci_dev *pdev)
3109{
3110 struct nvme_dev *dev = pci_get_drvdata(pdev);
3111
3112 if (!nvme_try_sched_reset(ctrl: &dev->ctrl))
3113 flush_work(work: &dev->ctrl.reset_work);
3114}
3115
3116static void nvme_shutdown(struct pci_dev *pdev)
3117{
3118 struct nvme_dev *dev = pci_get_drvdata(pdev);
3119
3120 nvme_disable_prepare_reset(dev, shutdown: true);
3121}
3122
3123/*
3124 * The driver's remove may be called on a device in a partially initialized
3125 * state. This function must not have any dependencies on the device state in
3126 * order to proceed.
3127 */
3128static void nvme_remove(struct pci_dev *pdev)
3129{
3130 struct nvme_dev *dev = pci_get_drvdata(pdev);
3131
3132 nvme_change_ctrl_state(ctrl: &dev->ctrl, new_state: NVME_CTRL_DELETING);
3133 pci_set_drvdata(pdev, NULL);
3134
3135 if (!pci_device_is_present(pdev)) {
3136 nvme_change_ctrl_state(ctrl: &dev->ctrl, new_state: NVME_CTRL_DEAD);
3137 nvme_dev_disable(dev, shutdown: true);
3138 }
3139
3140 flush_work(work: &dev->ctrl.reset_work);
3141 nvme_stop_ctrl(ctrl: &dev->ctrl);
3142 nvme_remove_namespaces(ctrl: &dev->ctrl);
3143 nvme_dev_disable(dev, shutdown: true);
3144 nvme_free_host_mem(dev);
3145 nvme_dev_remove_admin(dev);
3146 nvme_dbbuf_dma_free(dev);
3147 nvme_free_queues(dev, lowest: 0);
3148 mempool_destroy(pool: dev->iod_mempool);
3149 nvme_release_prp_pools(dev);
3150 nvme_dev_unmap(dev);
3151 nvme_uninit_ctrl(ctrl: &dev->ctrl);
3152}
3153
3154#ifdef CONFIG_PM_SLEEP
3155static int nvme_get_power_state(struct nvme_ctrl *ctrl, u32 *ps)
3156{
3157 return nvme_get_features(dev: ctrl, fid: NVME_FEAT_POWER_MGMT, dword11: 0, NULL, buflen: 0, result: ps);
3158}
3159
3160static int nvme_set_power_state(struct nvme_ctrl *ctrl, u32 ps)
3161{
3162 return nvme_set_features(dev: ctrl, fid: NVME_FEAT_POWER_MGMT, dword11: ps, NULL, buflen: 0, NULL);
3163}
3164
3165static int nvme_resume(struct device *dev)
3166{
3167 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3168 struct nvme_ctrl *ctrl = &ndev->ctrl;
3169
3170 if (ndev->last_ps == U32_MAX ||
3171 nvme_set_power_state(ctrl, ps: ndev->last_ps) != 0)
3172 goto reset;
3173 if (ctrl->hmpre && nvme_setup_host_mem(dev: ndev))
3174 goto reset;
3175
3176 return 0;
3177reset:
3178 return nvme_try_sched_reset(ctrl);
3179}
3180
3181static int nvme_suspend(struct device *dev)
3182{
3183 struct pci_dev *pdev = to_pci_dev(dev);
3184 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3185 struct nvme_ctrl *ctrl = &ndev->ctrl;
3186 int ret = -EBUSY;
3187
3188 ndev->last_ps = U32_MAX;
3189
3190 /*
3191 * The platform does not remove power for a kernel managed suspend so
3192 * use host managed nvme power settings for lowest idle power if
3193 * possible. This should have quicker resume latency than a full device
3194 * shutdown. But if the firmware is involved after the suspend or the
3195 * device does not support any non-default power states, shut down the
3196 * device fully.
3197 *
3198 * If ASPM is not enabled for the device, shut down the device and allow
3199 * the PCI bus layer to put it into D3 in order to take the PCIe link
3200 * down, so as to allow the platform to achieve its minimum low-power
3201 * state (which may not be possible if the link is up).
3202 */
3203 if (pm_suspend_via_firmware() || !ctrl->npss ||
3204 !pcie_aspm_enabled(pdev) ||
3205 (ndev->ctrl.quirks & NVME_QUIRK_SIMPLE_SUSPEND))
3206 return nvme_disable_prepare_reset(dev: ndev, shutdown: true);
3207
3208 nvme_start_freeze(ctrl);
3209 nvme_wait_freeze(ctrl);
3210 nvme_sync_queues(ctrl);
3211
3212 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE)
3213 goto unfreeze;
3214
3215 /*
3216 * Host memory access may not be successful in a system suspend state,
3217 * but the specification allows the controller to access memory in a
3218 * non-operational power state.
3219 */
3220 if (ndev->hmb) {
3221 ret = nvme_set_host_mem(dev: ndev, bits: 0);
3222 if (ret < 0)
3223 goto unfreeze;
3224 }
3225
3226 ret = nvme_get_power_state(ctrl, ps: &ndev->last_ps);
3227 if (ret < 0)
3228 goto unfreeze;
3229
3230 /*
3231 * A saved state prevents pci pm from generically controlling the
3232 * device's power. If we're using protocol specific settings, we don't
3233 * want pci interfering.
3234 */
3235 pci_save_state(dev: pdev);
3236
3237 ret = nvme_set_power_state(ctrl, ps: ctrl->npss);
3238 if (ret < 0)
3239 goto unfreeze;
3240
3241 if (ret) {
3242 /* discard the saved state */
3243 pci_load_saved_state(dev: pdev, NULL);
3244
3245 /*
3246 * Clearing npss forces a controller reset on resume. The
3247 * correct value will be rediscovered then.
3248 */
3249 ret = nvme_disable_prepare_reset(dev: ndev, shutdown: true);
3250 ctrl->npss = 0;
3251 }
3252unfreeze:
3253 nvme_unfreeze(ctrl);
3254 return ret;
3255}
3256
3257static int nvme_simple_suspend(struct device *dev)
3258{
3259 struct nvme_dev *ndev = pci_get_drvdata(to_pci_dev(dev));
3260
3261 return nvme_disable_prepare_reset(dev: ndev, shutdown: true);
3262}
3263
3264static int nvme_simple_resume(struct device *dev)
3265{
3266 struct pci_dev *pdev = to_pci_dev(dev);
3267 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3268
3269 return nvme_try_sched_reset(ctrl: &ndev->ctrl);
3270}
3271
3272static const struct dev_pm_ops nvme_dev_pm_ops = {
3273 .suspend = nvme_suspend,
3274 .resume = nvme_resume,
3275 .freeze = nvme_simple_suspend,
3276 .thaw = nvme_simple_resume,
3277 .poweroff = nvme_simple_suspend,
3278 .restore = nvme_simple_resume,
3279};
3280#endif /* CONFIG_PM_SLEEP */
3281
3282static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
3283 pci_channel_state_t state)
3284{
3285 struct nvme_dev *dev = pci_get_drvdata(pdev);
3286
3287 /*
3288 * A frozen channel requires a reset. When detected, this method will
3289 * shutdown the controller to quiesce. The controller will be restarted
3290 * after the slot reset through driver's slot_reset callback.
3291 */
3292 switch (state) {
3293 case pci_channel_io_normal:
3294 return PCI_ERS_RESULT_CAN_RECOVER;
3295 case pci_channel_io_frozen:
3296 dev_warn(dev->ctrl.device,
3297 "frozen state error detected, reset controller\n");
3298 if (!nvme_change_ctrl_state(ctrl: &dev->ctrl, new_state: NVME_CTRL_RESETTING)) {
3299 nvme_dev_disable(dev, shutdown: true);
3300 return PCI_ERS_RESULT_DISCONNECT;
3301 }
3302 nvme_dev_disable(dev, shutdown: false);
3303 return PCI_ERS_RESULT_NEED_RESET;
3304 case pci_channel_io_perm_failure:
3305 dev_warn(dev->ctrl.device,
3306 "failure state error detected, request disconnect\n");
3307 return PCI_ERS_RESULT_DISCONNECT;
3308 }
3309 return PCI_ERS_RESULT_NEED_RESET;
3310}
3311
3312static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
3313{
3314 struct nvme_dev *dev = pci_get_drvdata(pdev);
3315
3316 dev_info(dev->ctrl.device, "restart after slot reset\n");
3317 pci_restore_state(dev: pdev);
3318 if (!nvme_try_sched_reset(ctrl: &dev->ctrl))
3319 nvme_unquiesce_io_queues(ctrl: &dev->ctrl);
3320 return PCI_ERS_RESULT_RECOVERED;
3321}
3322
3323static void nvme_error_resume(struct pci_dev *pdev)
3324{
3325 struct nvme_dev *dev = pci_get_drvdata(pdev);
3326
3327 flush_work(work: &dev->ctrl.reset_work);
3328}
3329
3330static const struct pci_error_handlers nvme_err_handler = {
3331 .error_detected = nvme_error_detected,
3332 .slot_reset = nvme_slot_reset,
3333 .resume = nvme_error_resume,
3334 .reset_prepare = nvme_reset_prepare,
3335 .reset_done = nvme_reset_done,
3336};
3337
3338static const struct pci_device_id nvme_id_table[] = {
3339 { PCI_VDEVICE(INTEL, 0x0953), /* Intel 750/P3500/P3600/P3700 */
3340 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3341 NVME_QUIRK_DEALLOCATE_ZEROES, },
3342 { PCI_VDEVICE(INTEL, 0x0a53), /* Intel P3520 */
3343 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3344 NVME_QUIRK_DEALLOCATE_ZEROES, },
3345 { PCI_VDEVICE(INTEL, 0x0a54), /* Intel P4500/P4600 */
3346 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3347 NVME_QUIRK_DEALLOCATE_ZEROES |
3348 NVME_QUIRK_IGNORE_DEV_SUBNQN |
3349 NVME_QUIRK_BOGUS_NID, },
3350 { PCI_VDEVICE(INTEL, 0x0a55), /* Dell Express Flash P4600 */
3351 .driver_data = NVME_QUIRK_STRIPE_SIZE |
3352 NVME_QUIRK_DEALLOCATE_ZEROES, },
3353 { PCI_VDEVICE(INTEL, 0xf1a5), /* Intel 600P/P3100 */
3354 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3355 NVME_QUIRK_MEDIUM_PRIO_SQ |
3356 NVME_QUIRK_NO_TEMP_THRESH_CHANGE |
3357 NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3358 { PCI_VDEVICE(INTEL, 0xf1a6), /* Intel 760p/Pro 7600p */
3359 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3360 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
3361 .driver_data = NVME_QUIRK_IDENTIFY_CNS |
3362 NVME_QUIRK_DISABLE_WRITE_ZEROES |
3363 NVME_QUIRK_BOGUS_NID, },
3364 { PCI_VDEVICE(REDHAT, 0x0010), /* Qemu emulated controller */
3365 .driver_data = NVME_QUIRK_BOGUS_NID, },
3366 { PCI_DEVICE(0x126f, 0x2262), /* Silicon Motion generic */
3367 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3368 NVME_QUIRK_BOGUS_NID, },
3369 { PCI_DEVICE(0x126f, 0x2263), /* Silicon Motion unidentified */
3370 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3371 NVME_QUIRK_BOGUS_NID, },
3372 { PCI_DEVICE(0x1bb1, 0x0100), /* Seagate Nytro Flash Storage */
3373 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3374 NVME_QUIRK_NO_NS_DESC_LIST, },
3375 { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */
3376 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3377 { PCI_DEVICE(0x1c58, 0x0023), /* WDC SN200 adapter */
3378 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3379 { PCI_DEVICE(0x1c5f, 0x0540), /* Memblaze Pblaze4 adapter */
3380 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3381 { PCI_DEVICE(0x144d, 0xa821), /* Samsung PM1725 */
3382 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, },
3383 { PCI_DEVICE(0x144d, 0xa822), /* Samsung PM1725a */
3384 .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
3385 NVME_QUIRK_DISABLE_WRITE_ZEROES|
3386 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3387 { PCI_DEVICE(0x1987, 0x5012), /* Phison E12 */
3388 .driver_data = NVME_QUIRK_BOGUS_NID, },
3389 { PCI_DEVICE(0x1987, 0x5016), /* Phison E16 */
3390 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3391 NVME_QUIRK_BOGUS_NID, },
3392 { PCI_DEVICE(0x1987, 0x5019), /* phison E19 */
3393 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3394 { PCI_DEVICE(0x1987, 0x5021), /* Phison E21 */
3395 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3396 { PCI_DEVICE(0x1b4b, 0x1092), /* Lexar 256 GB SSD */
3397 .driver_data = NVME_QUIRK_NO_NS_DESC_LIST |
3398 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3399 { PCI_DEVICE(0x1cc1, 0x33f8), /* ADATA IM2P33F8ABR1 1 TB */
3400 .driver_data = NVME_QUIRK_BOGUS_NID, },
3401 { PCI_DEVICE(0x10ec, 0x5762), /* ADATA SX6000LNP */
3402 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN |
3403 NVME_QUIRK_BOGUS_NID, },
3404 { PCI_DEVICE(0x10ec, 0x5763), /* ADATA SX6000PNP */
3405 .driver_data = NVME_QUIRK_BOGUS_NID, },
3406 { PCI_DEVICE(0x1cc1, 0x8201), /* ADATA SX8200PNP 512GB */
3407 .driver_data = NVME_QUIRK_NO_DEEPEST_PS |
3408 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3409 { PCI_DEVICE(0x1344, 0x5407), /* Micron Technology Inc NVMe SSD */
3410 .driver_data = NVME_QUIRK_IGNORE_DEV_SUBNQN },
3411 { PCI_DEVICE(0x1344, 0x6001), /* Micron Nitro NVMe */
3412 .driver_data = NVME_QUIRK_BOGUS_NID, },
3413 { PCI_DEVICE(0x1c5c, 0x1504), /* SK Hynix PC400 */
3414 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3415 { PCI_DEVICE(0x1c5c, 0x174a), /* SK Hynix P31 SSD */
3416 .driver_data = NVME_QUIRK_BOGUS_NID, },
3417 { PCI_DEVICE(0x1c5c, 0x1D59), /* SK Hynix BC901 */
3418 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3419 { PCI_DEVICE(0x15b7, 0x2001), /* Sandisk Skyhawk */
3420 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3421 { PCI_DEVICE(0x1d97, 0x2263), /* SPCC */
3422 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3423 { PCI_DEVICE(0x144d, 0xa80b), /* Samsung PM9B1 256G and 512G */
3424 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES |
3425 NVME_QUIRK_BOGUS_NID, },
3426 { PCI_DEVICE(0x144d, 0xa809), /* Samsung MZALQ256HBJD 256G */
3427 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3428 { PCI_DEVICE(0x144d, 0xa802), /* Samsung SM953 */
3429 .driver_data = NVME_QUIRK_BOGUS_NID, },
3430 { PCI_DEVICE(0x1cc4, 0x6303), /* UMIS RPJTJ512MGE1QDY 512G */
3431 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3432 { PCI_DEVICE(0x1cc4, 0x6302), /* UMIS RPJTJ256MGE1QDY 256G */
3433 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3434 { PCI_DEVICE(0x2646, 0x2262), /* KINGSTON SKC2000 NVMe SSD */
3435 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3436 { PCI_DEVICE(0x2646, 0x2263), /* KINGSTON A2000 NVMe SSD */
3437 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3438 { PCI_DEVICE(0x2646, 0x5013), /* Kingston KC3000, Kingston FURY Renegade */
3439 .driver_data = NVME_QUIRK_NO_SECONDARY_TEMP_THRESH, },
3440 { PCI_DEVICE(0x2646, 0x5018), /* KINGSTON OM8SFP4xxxxP OS21012 NVMe SSD */
3441 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3442 { PCI_DEVICE(0x2646, 0x5016), /* KINGSTON OM3PGP4xxxxP OS21011 NVMe SSD */
3443 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3444 { PCI_DEVICE(0x2646, 0x501A), /* KINGSTON OM8PGP4xxxxP OS21005 NVMe SSD */
3445 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3446 { PCI_DEVICE(0x2646, 0x501B), /* KINGSTON OM8PGP4xxxxQ OS21005 NVMe SSD */
3447 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3448 { PCI_DEVICE(0x2646, 0x501E), /* KINGSTON OM3PGP4xxxxQ OS21011 NVMe SSD */
3449 .driver_data = NVME_QUIRK_DISABLE_WRITE_ZEROES, },
3450 { PCI_DEVICE(0x1f40, 0x1202), /* Netac Technologies Co. NV3000 NVMe SSD */
3451 .driver_data = NVME_QUIRK_BOGUS_NID, },
3452 { PCI_DEVICE(0x1f40, 0x5236), /* Netac Technologies Co. NV7000 NVMe SSD */
3453 .driver_data = NVME_QUIRK_BOGUS_NID, },
3454 { PCI_DEVICE(0x1e4B, 0x1001), /* MAXIO MAP1001 */
3455 .driver_data = NVME_QUIRK_BOGUS_NID, },
3456 { PCI_DEVICE(0x1e4B, 0x1002), /* MAXIO MAP1002 */
3457 .driver_data = NVME_QUIRK_BOGUS_NID, },
3458 { PCI_DEVICE(0x1e4B, 0x1202), /* MAXIO MAP1202 */
3459 .driver_data = NVME_QUIRK_BOGUS_NID, },
3460 { PCI_DEVICE(0x1e4B, 0x1602), /* MAXIO MAP1602 */
3461 .driver_data = NVME_QUIRK_BOGUS_NID, },
3462 { PCI_DEVICE(0x1cc1, 0x5350), /* ADATA XPG GAMMIX S50 */
3463 .driver_data = NVME_QUIRK_BOGUS_NID, },
3464 { PCI_DEVICE(0x1dbe, 0x5236), /* ADATA XPG GAMMIX S70 */
3465 .driver_data = NVME_QUIRK_BOGUS_NID, },
3466 { PCI_DEVICE(0x1e49, 0x0021), /* ZHITAI TiPro5000 NVMe SSD */
3467 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3468 { PCI_DEVICE(0x1e49, 0x0041), /* ZHITAI TiPro7000 NVMe SSD */
3469 .driver_data = NVME_QUIRK_NO_DEEPEST_PS, },
3470 { PCI_DEVICE(0xc0a9, 0x540a), /* Crucial P2 */
3471 .driver_data = NVME_QUIRK_BOGUS_NID, },
3472 { PCI_DEVICE(0x1d97, 0x2263), /* Lexar NM610 */
3473 .driver_data = NVME_QUIRK_BOGUS_NID, },
3474 { PCI_DEVICE(0x1d97, 0x1d97), /* Lexar NM620 */
3475 .driver_data = NVME_QUIRK_BOGUS_NID, },
3476 { PCI_DEVICE(0x1d97, 0x2269), /* Lexar NM760 */
3477 .driver_data = NVME_QUIRK_BOGUS_NID |
3478 NVME_QUIRK_IGNORE_DEV_SUBNQN, },
3479 { PCI_DEVICE(0x10ec, 0x5763), /* TEAMGROUP T-FORCE CARDEA ZERO Z330 SSD */
3480 .driver_data = NVME_QUIRK_BOGUS_NID, },
3481 { PCI_DEVICE(0x1e4b, 0x1602), /* HS-SSD-FUTURE 2048G */
3482 .driver_data = NVME_QUIRK_BOGUS_NID, },
3483 { PCI_DEVICE(0x10ec, 0x5765), /* TEAMGROUP MP33 2TB SSD */
3484 .driver_data = NVME_QUIRK_BOGUS_NID, },
3485 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0061),
3486 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3487 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x0065),
3488 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3489 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0x8061),
3490 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3491 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd00),
3492 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3493 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd01),
3494 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3495 { PCI_DEVICE(PCI_VENDOR_ID_AMAZON, 0xcd02),
3496 .driver_data = NVME_QUIRK_DMA_ADDRESS_BITS_48, },
3497 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001),
3498 .driver_data = NVME_QUIRK_SINGLE_VECTOR },
3499 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) },
3500 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2005),
3501 .driver_data = NVME_QUIRK_SINGLE_VECTOR |
3502 NVME_QUIRK_128_BYTES_SQES |
3503 NVME_QUIRK_SHARED_TAGS |
3504 NVME_QUIRK_SKIP_CID_GEN |
3505 NVME_QUIRK_IDENTIFY_CNS },
3506 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3507 { 0, }
3508};
3509MODULE_DEVICE_TABLE(pci, nvme_id_table);
3510
3511static struct pci_driver nvme_driver = {
3512 .name = "nvme",
3513 .id_table = nvme_id_table,
3514 .probe = nvme_probe,
3515 .remove = nvme_remove,
3516 .shutdown = nvme_shutdown,
3517 .driver = {
3518 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
3519#ifdef CONFIG_PM_SLEEP
3520 .pm = &nvme_dev_pm_ops,
3521#endif
3522 },
3523 .sriov_configure = pci_sriov_configure_simple,
3524 .err_handler = &nvme_err_handler,
3525};
3526
3527static int __init nvme_init(void)
3528{
3529 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
3530 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
3531 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
3532 BUILD_BUG_ON(IRQ_AFFINITY_MAX_SETS < 2);
3533 BUILD_BUG_ON(NVME_MAX_SEGS > SGES_PER_PAGE);
3534 BUILD_BUG_ON(sizeof(struct scatterlist) * NVME_MAX_SEGS > PAGE_SIZE);
3535 BUILD_BUG_ON(nvme_pci_npages_prp() > NVME_MAX_NR_ALLOCATIONS);
3536
3537 return pci_register_driver(&nvme_driver);
3538}
3539
3540static void __exit nvme_exit(void)
3541{
3542 pci_unregister_driver(dev: &nvme_driver);
3543 flush_workqueue(nvme_wq);
3544}
3545
3546MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3547MODULE_LICENSE("GPL");
3548MODULE_VERSION("1.0");
3549MODULE_DESCRIPTION("NVMe host PCIe transport driver");
3550module_init(nvme_init);
3551module_exit(nvme_exit);
3552

source code of linux/drivers/nvme/host/pci.c