| 1 | // SPDX-License-Identifier: GPL-2.0 |
| 2 | /* |
| 3 | * NVMe PCI Endpoint Function target driver. |
| 4 | * |
| 5 | * Copyright (c) 2024, Western Digital Corporation or its affiliates. |
| 6 | * Copyright (c) 2024, Rick Wertenbroek <rick.wertenbroek@gmail.com> |
| 7 | * REDS Institute, HEIG-VD, HES-SO, Switzerland |
| 8 | */ |
| 9 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
| 10 | |
| 11 | #include <linux/delay.h> |
| 12 | #include <linux/dmaengine.h> |
| 13 | #include <linux/io.h> |
| 14 | #include <linux/mempool.h> |
| 15 | #include <linux/module.h> |
| 16 | #include <linux/mutex.h> |
| 17 | #include <linux/nvme.h> |
| 18 | #include <linux/pci_ids.h> |
| 19 | #include <linux/pci-epc.h> |
| 20 | #include <linux/pci-epf.h> |
| 21 | #include <linux/pci_regs.h> |
| 22 | #include <linux/slab.h> |
| 23 | |
| 24 | #include "nvmet.h" |
| 25 | |
| 26 | static LIST_HEAD(nvmet_pci_epf_ports); |
| 27 | static DEFINE_MUTEX(nvmet_pci_epf_ports_mutex); |
| 28 | |
| 29 | /* |
| 30 | * Default and maximum allowed data transfer size. For the default, |
| 31 | * allow up to 128 page-sized segments. For the maximum allowed, |
| 32 | * use 4 times the default (which is completely arbitrary). |
| 33 | */ |
| 34 | #define NVMET_PCI_EPF_MAX_SEGS 128 |
| 35 | #define NVMET_PCI_EPF_MDTS_KB \ |
| 36 | (NVMET_PCI_EPF_MAX_SEGS << (PAGE_SHIFT - 10)) |
| 37 | #define NVMET_PCI_EPF_MAX_MDTS_KB (NVMET_PCI_EPF_MDTS_KB * 4) |
| 38 | |
| 39 | /* |
| 40 | * IRQ vector coalescing threshold: by default, post 8 CQEs before raising an |
| 41 | * interrupt vector to the host. This default 8 is completely arbitrary and can |
| 42 | * be changed by the host with a nvme_set_features command. |
| 43 | */ |
| 44 | #define NVMET_PCI_EPF_IV_THRESHOLD 8 |
| 45 | |
| 46 | /* |
| 47 | * BAR CC register and SQ polling intervals. |
| 48 | */ |
| 49 | #define NVMET_PCI_EPF_CC_POLL_INTERVAL msecs_to_jiffies(10) |
| 50 | #define NVMET_PCI_EPF_SQ_POLL_INTERVAL msecs_to_jiffies(5) |
| 51 | #define NVMET_PCI_EPF_SQ_POLL_IDLE msecs_to_jiffies(5000) |
| 52 | |
| 53 | /* |
| 54 | * SQ arbitration burst default: fetch at most 8 commands at a time from an SQ. |
| 55 | */ |
| 56 | #define NVMET_PCI_EPF_SQ_AB 8 |
| 57 | |
| 58 | /* |
| 59 | * Handling of CQs is normally immediate, unless we fail to map a CQ or the CQ |
| 60 | * is full, in which case we retry the CQ processing after this interval. |
| 61 | */ |
| 62 | #define NVMET_PCI_EPF_CQ_RETRY_INTERVAL msecs_to_jiffies(1) |
| 63 | |
| 64 | enum nvmet_pci_epf_queue_flags { |
| 65 | NVMET_PCI_EPF_Q_LIVE = 0, /* The queue is live */ |
| 66 | NVMET_PCI_EPF_Q_IRQ_ENABLED, /* IRQ is enabled for this queue */ |
| 67 | }; |
| 68 | |
| 69 | /* |
| 70 | * IRQ vector descriptor. |
| 71 | */ |
| 72 | struct nvmet_pci_epf_irq_vector { |
| 73 | unsigned int vector; |
| 74 | unsigned int ref; |
| 75 | bool cd; |
| 76 | int nr_irqs; |
| 77 | }; |
| 78 | |
| 79 | struct nvmet_pci_epf_queue { |
| 80 | union { |
| 81 | struct nvmet_sq nvme_sq; |
| 82 | struct nvmet_cq nvme_cq; |
| 83 | }; |
| 84 | struct nvmet_pci_epf_ctrl *ctrl; |
| 85 | unsigned long flags; |
| 86 | |
| 87 | u64 pci_addr; |
| 88 | size_t pci_size; |
| 89 | struct pci_epc_map pci_map; |
| 90 | |
| 91 | u16 qid; |
| 92 | u16 depth; |
| 93 | u16 vector; |
| 94 | u16 head; |
| 95 | u16 tail; |
| 96 | u16 phase; |
| 97 | u32 db; |
| 98 | |
| 99 | size_t qes; |
| 100 | |
| 101 | struct nvmet_pci_epf_irq_vector *iv; |
| 102 | struct workqueue_struct *iod_wq; |
| 103 | struct delayed_work work; |
| 104 | spinlock_t lock; |
| 105 | struct list_head list; |
| 106 | }; |
| 107 | |
| 108 | /* |
| 109 | * PCI Root Complex (RC) address data segment for mapping an admin or |
| 110 | * I/O command buffer @buf of @length bytes to the PCI address @pci_addr. |
| 111 | */ |
| 112 | struct nvmet_pci_epf_segment { |
| 113 | void *buf; |
| 114 | u64 pci_addr; |
| 115 | u32 length; |
| 116 | }; |
| 117 | |
| 118 | /* |
| 119 | * Command descriptors. |
| 120 | */ |
| 121 | struct nvmet_pci_epf_iod { |
| 122 | struct list_head link; |
| 123 | |
| 124 | struct nvmet_req req; |
| 125 | struct nvme_command cmd; |
| 126 | struct nvme_completion cqe; |
| 127 | unsigned int status; |
| 128 | |
| 129 | struct nvmet_pci_epf_ctrl *ctrl; |
| 130 | |
| 131 | struct nvmet_pci_epf_queue *sq; |
| 132 | struct nvmet_pci_epf_queue *cq; |
| 133 | |
| 134 | /* Data transfer size and direction for the command. */ |
| 135 | size_t data_len; |
| 136 | enum dma_data_direction dma_dir; |
| 137 | |
| 138 | /* |
| 139 | * PCI Root Complex (RC) address data segments: if nr_data_segs is 1, we |
| 140 | * use only @data_seg. Otherwise, the array of segments @data_segs is |
| 141 | * allocated to manage multiple PCI address data segments. @data_sgl and |
| 142 | * @data_sgt are used to setup the command request for execution by the |
| 143 | * target core. |
| 144 | */ |
| 145 | unsigned int nr_data_segs; |
| 146 | struct nvmet_pci_epf_segment data_seg; |
| 147 | struct nvmet_pci_epf_segment *data_segs; |
| 148 | struct scatterlist data_sgl; |
| 149 | struct sg_table data_sgt; |
| 150 | |
| 151 | struct work_struct work; |
| 152 | struct completion done; |
| 153 | }; |
| 154 | |
| 155 | /* |
| 156 | * PCI target controller private data. |
| 157 | */ |
| 158 | struct nvmet_pci_epf_ctrl { |
| 159 | struct nvmet_pci_epf *nvme_epf; |
| 160 | struct nvmet_port *port; |
| 161 | struct nvmet_ctrl *tctrl; |
| 162 | struct device *dev; |
| 163 | |
| 164 | unsigned int nr_queues; |
| 165 | struct nvmet_pci_epf_queue *sq; |
| 166 | struct nvmet_pci_epf_queue *cq; |
| 167 | unsigned int sq_ab; |
| 168 | |
| 169 | mempool_t iod_pool; |
| 170 | void *bar; |
| 171 | u64 cap; |
| 172 | u32 cc; |
| 173 | u32 csts; |
| 174 | |
| 175 | size_t io_sqes; |
| 176 | size_t io_cqes; |
| 177 | |
| 178 | size_t mps_shift; |
| 179 | size_t mps; |
| 180 | size_t mps_mask; |
| 181 | |
| 182 | unsigned int mdts; |
| 183 | |
| 184 | struct delayed_work poll_cc; |
| 185 | struct delayed_work poll_sqs; |
| 186 | |
| 187 | struct mutex irq_lock; |
| 188 | struct nvmet_pci_epf_irq_vector *irq_vectors; |
| 189 | unsigned int irq_vector_threshold; |
| 190 | |
| 191 | bool link_up; |
| 192 | bool enabled; |
| 193 | }; |
| 194 | |
| 195 | /* |
| 196 | * PCI EPF driver private data. |
| 197 | */ |
| 198 | struct nvmet_pci_epf { |
| 199 | struct pci_epf *epf; |
| 200 | |
| 201 | const struct pci_epc_features *epc_features; |
| 202 | |
| 203 | void *reg_bar; |
| 204 | size_t msix_table_offset; |
| 205 | |
| 206 | unsigned int irq_type; |
| 207 | unsigned int nr_vectors; |
| 208 | |
| 209 | struct nvmet_pci_epf_ctrl ctrl; |
| 210 | |
| 211 | bool dma_enabled; |
| 212 | struct dma_chan *dma_tx_chan; |
| 213 | struct mutex dma_tx_lock; |
| 214 | struct dma_chan *dma_rx_chan; |
| 215 | struct mutex dma_rx_lock; |
| 216 | |
| 217 | struct mutex mmio_lock; |
| 218 | |
| 219 | /* PCI endpoint function configfs attributes. */ |
| 220 | struct config_group group; |
| 221 | __le16 portid; |
| 222 | char subsysnqn[NVMF_NQN_SIZE]; |
| 223 | unsigned int mdts_kb; |
| 224 | }; |
| 225 | |
| 226 | static inline u32 nvmet_pci_epf_bar_read32(struct nvmet_pci_epf_ctrl *ctrl, |
| 227 | u32 off) |
| 228 | { |
| 229 | __le32 *bar_reg = ctrl->bar + off; |
| 230 | |
| 231 | return le32_to_cpu(READ_ONCE(*bar_reg)); |
| 232 | } |
| 233 | |
| 234 | static inline void nvmet_pci_epf_bar_write32(struct nvmet_pci_epf_ctrl *ctrl, |
| 235 | u32 off, u32 val) |
| 236 | { |
| 237 | __le32 *bar_reg = ctrl->bar + off; |
| 238 | |
| 239 | WRITE_ONCE(*bar_reg, cpu_to_le32(val)); |
| 240 | } |
| 241 | |
| 242 | static inline u64 nvmet_pci_epf_bar_read64(struct nvmet_pci_epf_ctrl *ctrl, |
| 243 | u32 off) |
| 244 | { |
| 245 | return (u64)nvmet_pci_epf_bar_read32(ctrl, off) | |
| 246 | ((u64)nvmet_pci_epf_bar_read32(ctrl, off: off + 4) << 32); |
| 247 | } |
| 248 | |
| 249 | static inline void nvmet_pci_epf_bar_write64(struct nvmet_pci_epf_ctrl *ctrl, |
| 250 | u32 off, u64 val) |
| 251 | { |
| 252 | nvmet_pci_epf_bar_write32(ctrl, off, val: val & 0xFFFFFFFF); |
| 253 | nvmet_pci_epf_bar_write32(ctrl, off: off + 4, val: (val >> 32) & 0xFFFFFFFF); |
| 254 | } |
| 255 | |
| 256 | static inline int nvmet_pci_epf_mem_map(struct nvmet_pci_epf *nvme_epf, |
| 257 | u64 pci_addr, size_t size, struct pci_epc_map *map) |
| 258 | { |
| 259 | struct pci_epf *epf = nvme_epf->epf; |
| 260 | |
| 261 | return pci_epc_mem_map(epc: epf->epc, func_no: epf->func_no, vfunc_no: epf->vfunc_no, |
| 262 | pci_addr, pci_size: size, map); |
| 263 | } |
| 264 | |
| 265 | static inline void nvmet_pci_epf_mem_unmap(struct nvmet_pci_epf *nvme_epf, |
| 266 | struct pci_epc_map *map) |
| 267 | { |
| 268 | struct pci_epf *epf = nvme_epf->epf; |
| 269 | |
| 270 | pci_epc_mem_unmap(epc: epf->epc, func_no: epf->func_no, vfunc_no: epf->vfunc_no, map); |
| 271 | } |
| 272 | |
| 273 | struct nvmet_pci_epf_dma_filter { |
| 274 | struct device *dev; |
| 275 | u32 dma_mask; |
| 276 | }; |
| 277 | |
| 278 | static bool nvmet_pci_epf_dma_filter(struct dma_chan *chan, void *arg) |
| 279 | { |
| 280 | struct nvmet_pci_epf_dma_filter *filter = arg; |
| 281 | struct dma_slave_caps caps; |
| 282 | |
| 283 | memset(&caps, 0, sizeof(caps)); |
| 284 | dma_get_slave_caps(chan, caps: &caps); |
| 285 | |
| 286 | return chan->device->dev == filter->dev && |
| 287 | (filter->dma_mask & caps.directions); |
| 288 | } |
| 289 | |
| 290 | static void nvmet_pci_epf_init_dma(struct nvmet_pci_epf *nvme_epf) |
| 291 | { |
| 292 | struct pci_epf *epf = nvme_epf->epf; |
| 293 | struct device *dev = &epf->dev; |
| 294 | struct nvmet_pci_epf_dma_filter filter; |
| 295 | struct dma_chan *chan; |
| 296 | dma_cap_mask_t mask; |
| 297 | |
| 298 | mutex_init(&nvme_epf->dma_rx_lock); |
| 299 | mutex_init(&nvme_epf->dma_tx_lock); |
| 300 | |
| 301 | dma_cap_zero(mask); |
| 302 | dma_cap_set(DMA_SLAVE, mask); |
| 303 | |
| 304 | filter.dev = epf->epc->dev.parent; |
| 305 | filter.dma_mask = BIT(DMA_DEV_TO_MEM); |
| 306 | |
| 307 | chan = dma_request_channel(mask, nvmet_pci_epf_dma_filter, &filter); |
| 308 | if (!chan) |
| 309 | goto out_dma_no_rx; |
| 310 | |
| 311 | nvme_epf->dma_rx_chan = chan; |
| 312 | |
| 313 | filter.dma_mask = BIT(DMA_MEM_TO_DEV); |
| 314 | chan = dma_request_channel(mask, nvmet_pci_epf_dma_filter, &filter); |
| 315 | if (!chan) |
| 316 | goto out_dma_no_tx; |
| 317 | |
| 318 | nvme_epf->dma_tx_chan = chan; |
| 319 | |
| 320 | nvme_epf->dma_enabled = true; |
| 321 | |
| 322 | dev_dbg(dev, "Using DMA RX channel %s, maximum segment size %u B\n" , |
| 323 | dma_chan_name(chan), |
| 324 | dma_get_max_seg_size(dmaengine_get_dma_device(chan))); |
| 325 | |
| 326 | dev_dbg(dev, "Using DMA TX channel %s, maximum segment size %u B\n" , |
| 327 | dma_chan_name(chan), |
| 328 | dma_get_max_seg_size(dmaengine_get_dma_device(chan))); |
| 329 | |
| 330 | return; |
| 331 | |
| 332 | out_dma_no_tx: |
| 333 | dma_release_channel(chan: nvme_epf->dma_rx_chan); |
| 334 | nvme_epf->dma_rx_chan = NULL; |
| 335 | |
| 336 | out_dma_no_rx: |
| 337 | mutex_destroy(lock: &nvme_epf->dma_rx_lock); |
| 338 | mutex_destroy(lock: &nvme_epf->dma_tx_lock); |
| 339 | nvme_epf->dma_enabled = false; |
| 340 | |
| 341 | dev_info(&epf->dev, "DMA not supported, falling back to MMIO\n" ); |
| 342 | } |
| 343 | |
| 344 | static void nvmet_pci_epf_deinit_dma(struct nvmet_pci_epf *nvme_epf) |
| 345 | { |
| 346 | if (!nvme_epf->dma_enabled) |
| 347 | return; |
| 348 | |
| 349 | dma_release_channel(chan: nvme_epf->dma_tx_chan); |
| 350 | nvme_epf->dma_tx_chan = NULL; |
| 351 | dma_release_channel(chan: nvme_epf->dma_rx_chan); |
| 352 | nvme_epf->dma_rx_chan = NULL; |
| 353 | mutex_destroy(lock: &nvme_epf->dma_rx_lock); |
| 354 | mutex_destroy(lock: &nvme_epf->dma_tx_lock); |
| 355 | nvme_epf->dma_enabled = false; |
| 356 | } |
| 357 | |
| 358 | static int nvmet_pci_epf_dma_transfer(struct nvmet_pci_epf *nvme_epf, |
| 359 | struct nvmet_pci_epf_segment *seg, enum dma_data_direction dir) |
| 360 | { |
| 361 | struct pci_epf *epf = nvme_epf->epf; |
| 362 | struct dma_async_tx_descriptor *desc; |
| 363 | struct dma_slave_config sconf = {}; |
| 364 | struct device *dev = &epf->dev; |
| 365 | struct device *dma_dev; |
| 366 | struct dma_chan *chan; |
| 367 | dma_cookie_t cookie; |
| 368 | dma_addr_t dma_addr; |
| 369 | struct mutex *lock; |
| 370 | int ret; |
| 371 | |
| 372 | switch (dir) { |
| 373 | case DMA_FROM_DEVICE: |
| 374 | lock = &nvme_epf->dma_rx_lock; |
| 375 | chan = nvme_epf->dma_rx_chan; |
| 376 | sconf.direction = DMA_DEV_TO_MEM; |
| 377 | sconf.src_addr = seg->pci_addr; |
| 378 | break; |
| 379 | case DMA_TO_DEVICE: |
| 380 | lock = &nvme_epf->dma_tx_lock; |
| 381 | chan = nvme_epf->dma_tx_chan; |
| 382 | sconf.direction = DMA_MEM_TO_DEV; |
| 383 | sconf.dst_addr = seg->pci_addr; |
| 384 | break; |
| 385 | default: |
| 386 | return -EINVAL; |
| 387 | } |
| 388 | |
| 389 | mutex_lock(lock); |
| 390 | |
| 391 | dma_dev = dmaengine_get_dma_device(chan); |
| 392 | dma_addr = dma_map_single(dma_dev, seg->buf, seg->length, dir); |
| 393 | ret = dma_mapping_error(dev: dma_dev, dma_addr); |
| 394 | if (ret) |
| 395 | goto unlock; |
| 396 | |
| 397 | ret = dmaengine_slave_config(chan, config: &sconf); |
| 398 | if (ret) { |
| 399 | dev_err(dev, "Failed to configure DMA channel\n" ); |
| 400 | goto unmap; |
| 401 | } |
| 402 | |
| 403 | desc = dmaengine_prep_slave_single(chan, buf: dma_addr, len: seg->length, |
| 404 | dir: sconf.direction, flags: DMA_CTRL_ACK); |
| 405 | if (!desc) { |
| 406 | dev_err(dev, "Failed to prepare DMA\n" ); |
| 407 | ret = -EIO; |
| 408 | goto unmap; |
| 409 | } |
| 410 | |
| 411 | cookie = dmaengine_submit(desc); |
| 412 | ret = dma_submit_error(cookie); |
| 413 | if (ret) { |
| 414 | dev_err(dev, "Failed to do DMA submit (err=%d)\n" , ret); |
| 415 | goto unmap; |
| 416 | } |
| 417 | |
| 418 | if (dma_sync_wait(chan, cookie) != DMA_COMPLETE) { |
| 419 | dev_err(dev, "DMA transfer failed\n" ); |
| 420 | ret = -EIO; |
| 421 | } |
| 422 | |
| 423 | dmaengine_terminate_sync(chan); |
| 424 | |
| 425 | unmap: |
| 426 | dma_unmap_single(dma_dev, dma_addr, seg->length, dir); |
| 427 | |
| 428 | unlock: |
| 429 | mutex_unlock(lock); |
| 430 | |
| 431 | return ret; |
| 432 | } |
| 433 | |
| 434 | static int nvmet_pci_epf_mmio_transfer(struct nvmet_pci_epf *nvme_epf, |
| 435 | struct nvmet_pci_epf_segment *seg, enum dma_data_direction dir) |
| 436 | { |
| 437 | u64 pci_addr = seg->pci_addr; |
| 438 | u32 length = seg->length; |
| 439 | void *buf = seg->buf; |
| 440 | struct pci_epc_map map; |
| 441 | int ret = -EINVAL; |
| 442 | |
| 443 | /* |
| 444 | * Note: MMIO transfers do not need serialization but this is a |
| 445 | * simple way to avoid using too many mapping windows. |
| 446 | */ |
| 447 | mutex_lock(&nvme_epf->mmio_lock); |
| 448 | |
| 449 | while (length) { |
| 450 | ret = nvmet_pci_epf_mem_map(nvme_epf, pci_addr, size: length, map: &map); |
| 451 | if (ret) |
| 452 | break; |
| 453 | |
| 454 | switch (dir) { |
| 455 | case DMA_FROM_DEVICE: |
| 456 | memcpy_fromio(buf, map.virt_addr, map.pci_size); |
| 457 | break; |
| 458 | case DMA_TO_DEVICE: |
| 459 | memcpy_toio(map.virt_addr, buf, map.pci_size); |
| 460 | break; |
| 461 | default: |
| 462 | ret = -EINVAL; |
| 463 | goto unlock; |
| 464 | } |
| 465 | |
| 466 | pci_addr += map.pci_size; |
| 467 | buf += map.pci_size; |
| 468 | length -= map.pci_size; |
| 469 | |
| 470 | nvmet_pci_epf_mem_unmap(nvme_epf, map: &map); |
| 471 | } |
| 472 | |
| 473 | unlock: |
| 474 | mutex_unlock(lock: &nvme_epf->mmio_lock); |
| 475 | |
| 476 | return ret; |
| 477 | } |
| 478 | |
| 479 | static inline int nvmet_pci_epf_transfer_seg(struct nvmet_pci_epf *nvme_epf, |
| 480 | struct nvmet_pci_epf_segment *seg, enum dma_data_direction dir) |
| 481 | { |
| 482 | if (nvme_epf->dma_enabled) |
| 483 | return nvmet_pci_epf_dma_transfer(nvme_epf, seg, dir); |
| 484 | |
| 485 | return nvmet_pci_epf_mmio_transfer(nvme_epf, seg, dir); |
| 486 | } |
| 487 | |
| 488 | static inline int nvmet_pci_epf_transfer(struct nvmet_pci_epf_ctrl *ctrl, |
| 489 | void *buf, u64 pci_addr, u32 length, |
| 490 | enum dma_data_direction dir) |
| 491 | { |
| 492 | struct nvmet_pci_epf_segment seg = { |
| 493 | .buf = buf, |
| 494 | .pci_addr = pci_addr, |
| 495 | .length = length, |
| 496 | }; |
| 497 | |
| 498 | return nvmet_pci_epf_transfer_seg(nvme_epf: ctrl->nvme_epf, seg: &seg, dir); |
| 499 | } |
| 500 | |
| 501 | static int nvmet_pci_epf_alloc_irq_vectors(struct nvmet_pci_epf_ctrl *ctrl) |
| 502 | { |
| 503 | ctrl->irq_vectors = kcalloc(ctrl->nr_queues, |
| 504 | sizeof(struct nvmet_pci_epf_irq_vector), |
| 505 | GFP_KERNEL); |
| 506 | if (!ctrl->irq_vectors) |
| 507 | return -ENOMEM; |
| 508 | |
| 509 | mutex_init(&ctrl->irq_lock); |
| 510 | |
| 511 | return 0; |
| 512 | } |
| 513 | |
| 514 | static void nvmet_pci_epf_free_irq_vectors(struct nvmet_pci_epf_ctrl *ctrl) |
| 515 | { |
| 516 | if (ctrl->irq_vectors) { |
| 517 | mutex_destroy(lock: &ctrl->irq_lock); |
| 518 | kfree(objp: ctrl->irq_vectors); |
| 519 | ctrl->irq_vectors = NULL; |
| 520 | } |
| 521 | } |
| 522 | |
| 523 | static struct nvmet_pci_epf_irq_vector * |
| 524 | nvmet_pci_epf_find_irq_vector(struct nvmet_pci_epf_ctrl *ctrl, u16 vector) |
| 525 | { |
| 526 | struct nvmet_pci_epf_irq_vector *iv; |
| 527 | int i; |
| 528 | |
| 529 | lockdep_assert_held(&ctrl->irq_lock); |
| 530 | |
| 531 | for (i = 0; i < ctrl->nr_queues; i++) { |
| 532 | iv = &ctrl->irq_vectors[i]; |
| 533 | if (iv->ref && iv->vector == vector) |
| 534 | return iv; |
| 535 | } |
| 536 | |
| 537 | return NULL; |
| 538 | } |
| 539 | |
| 540 | static struct nvmet_pci_epf_irq_vector * |
| 541 | nvmet_pci_epf_add_irq_vector(struct nvmet_pci_epf_ctrl *ctrl, u16 vector) |
| 542 | { |
| 543 | struct nvmet_pci_epf_irq_vector *iv; |
| 544 | int i; |
| 545 | |
| 546 | mutex_lock(&ctrl->irq_lock); |
| 547 | |
| 548 | iv = nvmet_pci_epf_find_irq_vector(ctrl, vector); |
| 549 | if (iv) { |
| 550 | iv->ref++; |
| 551 | goto unlock; |
| 552 | } |
| 553 | |
| 554 | for (i = 0; i < ctrl->nr_queues; i++) { |
| 555 | iv = &ctrl->irq_vectors[i]; |
| 556 | if (!iv->ref) |
| 557 | break; |
| 558 | } |
| 559 | |
| 560 | if (WARN_ON_ONCE(!iv)) |
| 561 | goto unlock; |
| 562 | |
| 563 | iv->ref = 1; |
| 564 | iv->vector = vector; |
| 565 | iv->nr_irqs = 0; |
| 566 | |
| 567 | unlock: |
| 568 | mutex_unlock(lock: &ctrl->irq_lock); |
| 569 | |
| 570 | return iv; |
| 571 | } |
| 572 | |
| 573 | static void nvmet_pci_epf_remove_irq_vector(struct nvmet_pci_epf_ctrl *ctrl, |
| 574 | u16 vector) |
| 575 | { |
| 576 | struct nvmet_pci_epf_irq_vector *iv; |
| 577 | |
| 578 | mutex_lock(&ctrl->irq_lock); |
| 579 | |
| 580 | iv = nvmet_pci_epf_find_irq_vector(ctrl, vector); |
| 581 | if (iv) { |
| 582 | iv->ref--; |
| 583 | if (!iv->ref) { |
| 584 | iv->vector = 0; |
| 585 | iv->nr_irqs = 0; |
| 586 | } |
| 587 | } |
| 588 | |
| 589 | mutex_unlock(lock: &ctrl->irq_lock); |
| 590 | } |
| 591 | |
| 592 | static bool nvmet_pci_epf_should_raise_irq(struct nvmet_pci_epf_ctrl *ctrl, |
| 593 | struct nvmet_pci_epf_queue *cq, bool force) |
| 594 | { |
| 595 | struct nvmet_pci_epf_irq_vector *iv = cq->iv; |
| 596 | bool ret; |
| 597 | |
| 598 | /* IRQ coalescing for the admin queue is not allowed. */ |
| 599 | if (!cq->qid) |
| 600 | return true; |
| 601 | |
| 602 | if (iv->cd) |
| 603 | return true; |
| 604 | |
| 605 | if (force) { |
| 606 | ret = iv->nr_irqs > 0; |
| 607 | } else { |
| 608 | iv->nr_irqs++; |
| 609 | ret = iv->nr_irqs >= ctrl->irq_vector_threshold; |
| 610 | } |
| 611 | if (ret) |
| 612 | iv->nr_irqs = 0; |
| 613 | |
| 614 | return ret; |
| 615 | } |
| 616 | |
| 617 | static void nvmet_pci_epf_raise_irq(struct nvmet_pci_epf_ctrl *ctrl, |
| 618 | struct nvmet_pci_epf_queue *cq, bool force) |
| 619 | { |
| 620 | struct nvmet_pci_epf *nvme_epf = ctrl->nvme_epf; |
| 621 | struct pci_epf *epf = nvme_epf->epf; |
| 622 | int ret = 0; |
| 623 | |
| 624 | if (!test_bit(NVMET_PCI_EPF_Q_LIVE, &cq->flags) || |
| 625 | !test_bit(NVMET_PCI_EPF_Q_IRQ_ENABLED, &cq->flags)) |
| 626 | return; |
| 627 | |
| 628 | mutex_lock(&ctrl->irq_lock); |
| 629 | |
| 630 | if (!nvmet_pci_epf_should_raise_irq(ctrl, cq, force)) |
| 631 | goto unlock; |
| 632 | |
| 633 | switch (nvme_epf->irq_type) { |
| 634 | case PCI_IRQ_MSIX: |
| 635 | case PCI_IRQ_MSI: |
| 636 | /* |
| 637 | * If we fail to raise an MSI or MSI-X interrupt, it is likely |
| 638 | * because the host is using legacy INTX IRQs (e.g. BIOS, |
| 639 | * grub), but we can fallback to the INTX type only if the |
| 640 | * endpoint controller supports this type. |
| 641 | */ |
| 642 | ret = pci_epc_raise_irq(epc: epf->epc, func_no: epf->func_no, vfunc_no: epf->vfunc_no, |
| 643 | type: nvme_epf->irq_type, interrupt_num: cq->vector + 1); |
| 644 | if (!ret || !nvme_epf->epc_features->intx_capable) |
| 645 | break; |
| 646 | fallthrough; |
| 647 | case PCI_IRQ_INTX: |
| 648 | ret = pci_epc_raise_irq(epc: epf->epc, func_no: epf->func_no, vfunc_no: epf->vfunc_no, |
| 649 | PCI_IRQ_INTX, interrupt_num: 0); |
| 650 | break; |
| 651 | default: |
| 652 | WARN_ON_ONCE(1); |
| 653 | ret = -EINVAL; |
| 654 | break; |
| 655 | } |
| 656 | |
| 657 | if (ret) |
| 658 | dev_err_ratelimited(ctrl->dev, |
| 659 | "CQ[%u]: Failed to raise IRQ (err=%d)\n" , |
| 660 | cq->qid, ret); |
| 661 | |
| 662 | unlock: |
| 663 | mutex_unlock(lock: &ctrl->irq_lock); |
| 664 | } |
| 665 | |
| 666 | static inline const char *nvmet_pci_epf_iod_name(struct nvmet_pci_epf_iod *iod) |
| 667 | { |
| 668 | return nvme_opcode_str(qid: iod->sq->qid, opcode: iod->cmd.common.opcode); |
| 669 | } |
| 670 | |
| 671 | static void nvmet_pci_epf_exec_iod_work(struct work_struct *work); |
| 672 | |
| 673 | static struct nvmet_pci_epf_iod * |
| 674 | nvmet_pci_epf_alloc_iod(struct nvmet_pci_epf_queue *sq) |
| 675 | { |
| 676 | struct nvmet_pci_epf_ctrl *ctrl = sq->ctrl; |
| 677 | struct nvmet_pci_epf_iod *iod; |
| 678 | |
| 679 | iod = mempool_alloc(&ctrl->iod_pool, GFP_KERNEL); |
| 680 | if (unlikely(!iod)) |
| 681 | return NULL; |
| 682 | |
| 683 | memset(iod, 0, sizeof(*iod)); |
| 684 | iod->req.cmd = &iod->cmd; |
| 685 | iod->req.cqe = &iod->cqe; |
| 686 | iod->req.port = ctrl->port; |
| 687 | iod->ctrl = ctrl; |
| 688 | iod->sq = sq; |
| 689 | iod->cq = &ctrl->cq[sq->qid]; |
| 690 | INIT_LIST_HEAD(list: &iod->link); |
| 691 | iod->dma_dir = DMA_NONE; |
| 692 | INIT_WORK(&iod->work, nvmet_pci_epf_exec_iod_work); |
| 693 | init_completion(x: &iod->done); |
| 694 | |
| 695 | return iod; |
| 696 | } |
| 697 | |
| 698 | /* |
| 699 | * Allocate or grow a command table of PCI segments. |
| 700 | */ |
| 701 | static int nvmet_pci_epf_alloc_iod_data_segs(struct nvmet_pci_epf_iod *iod, |
| 702 | int nsegs) |
| 703 | { |
| 704 | struct nvmet_pci_epf_segment *segs; |
| 705 | int nr_segs = iod->nr_data_segs + nsegs; |
| 706 | |
| 707 | segs = krealloc(iod->data_segs, |
| 708 | nr_segs * sizeof(struct nvmet_pci_epf_segment), |
| 709 | GFP_KERNEL | __GFP_ZERO); |
| 710 | if (!segs) |
| 711 | return -ENOMEM; |
| 712 | |
| 713 | iod->nr_data_segs = nr_segs; |
| 714 | iod->data_segs = segs; |
| 715 | |
| 716 | return 0; |
| 717 | } |
| 718 | |
| 719 | static void nvmet_pci_epf_free_iod(struct nvmet_pci_epf_iod *iod) |
| 720 | { |
| 721 | int i; |
| 722 | |
| 723 | if (iod->data_segs) { |
| 724 | for (i = 0; i < iod->nr_data_segs; i++) |
| 725 | kfree(objp: iod->data_segs[i].buf); |
| 726 | if (iod->data_segs != &iod->data_seg) |
| 727 | kfree(objp: iod->data_segs); |
| 728 | } |
| 729 | if (iod->data_sgt.nents > 1) |
| 730 | sg_free_table(&iod->data_sgt); |
| 731 | mempool_free(element: iod, pool: &iod->ctrl->iod_pool); |
| 732 | } |
| 733 | |
| 734 | static int nvmet_pci_epf_transfer_iod_data(struct nvmet_pci_epf_iod *iod) |
| 735 | { |
| 736 | struct nvmet_pci_epf *nvme_epf = iod->ctrl->nvme_epf; |
| 737 | struct nvmet_pci_epf_segment *seg = &iod->data_segs[0]; |
| 738 | int i, ret; |
| 739 | |
| 740 | /* Split the data transfer according to the PCI segments. */ |
| 741 | for (i = 0; i < iod->nr_data_segs; i++, seg++) { |
| 742 | ret = nvmet_pci_epf_transfer_seg(nvme_epf, seg, dir: iod->dma_dir); |
| 743 | if (ret) { |
| 744 | iod->status = NVME_SC_DATA_XFER_ERROR | NVME_STATUS_DNR; |
| 745 | return ret; |
| 746 | } |
| 747 | } |
| 748 | |
| 749 | return 0; |
| 750 | } |
| 751 | |
| 752 | static inline u32 nvmet_pci_epf_prp_ofst(struct nvmet_pci_epf_ctrl *ctrl, |
| 753 | u64 prp) |
| 754 | { |
| 755 | return prp & ctrl->mps_mask; |
| 756 | } |
| 757 | |
| 758 | static inline size_t nvmet_pci_epf_prp_size(struct nvmet_pci_epf_ctrl *ctrl, |
| 759 | u64 prp) |
| 760 | { |
| 761 | return ctrl->mps - nvmet_pci_epf_prp_ofst(ctrl, prp); |
| 762 | } |
| 763 | |
| 764 | /* |
| 765 | * Transfer a PRP list from the host and return the number of prps. |
| 766 | */ |
| 767 | static int nvmet_pci_epf_get_prp_list(struct nvmet_pci_epf_ctrl *ctrl, u64 prp, |
| 768 | size_t xfer_len, __le64 *prps) |
| 769 | { |
| 770 | size_t nr_prps = (xfer_len + ctrl->mps_mask) >> ctrl->mps_shift; |
| 771 | u32 length; |
| 772 | int ret; |
| 773 | |
| 774 | /* |
| 775 | * Compute the number of PRPs required for the number of bytes to |
| 776 | * transfer (xfer_len). If this number overflows the memory page size |
| 777 | * with the PRP list pointer specified, only return the space available |
| 778 | * in the memory page, the last PRP in there will be a PRP list pointer |
| 779 | * to the remaining PRPs. |
| 780 | */ |
| 781 | length = min(nvmet_pci_epf_prp_size(ctrl, prp), nr_prps << 3); |
| 782 | ret = nvmet_pci_epf_transfer(ctrl, buf: prps, pci_addr: prp, length, dir: DMA_FROM_DEVICE); |
| 783 | if (ret) |
| 784 | return ret; |
| 785 | |
| 786 | return length >> 3; |
| 787 | } |
| 788 | |
| 789 | static int nvmet_pci_epf_iod_parse_prp_list(struct nvmet_pci_epf_ctrl *ctrl, |
| 790 | struct nvmet_pci_epf_iod *iod) |
| 791 | { |
| 792 | struct nvme_command *cmd = &iod->cmd; |
| 793 | struct nvmet_pci_epf_segment *seg; |
| 794 | size_t size = 0, ofst, prp_size, xfer_len; |
| 795 | size_t transfer_len = iod->data_len; |
| 796 | int nr_segs, nr_prps = 0; |
| 797 | u64 pci_addr, prp; |
| 798 | int i = 0, ret; |
| 799 | __le64 *prps; |
| 800 | |
| 801 | prps = kzalloc(ctrl->mps, GFP_KERNEL); |
| 802 | if (!prps) |
| 803 | goto err_internal; |
| 804 | |
| 805 | /* |
| 806 | * Allocate PCI segments for the command: this considers the worst case |
| 807 | * scenario where all prps are discontiguous, so get as many segments |
| 808 | * as we can have prps. In practice, most of the time, we will have |
| 809 | * far less PCI segments than prps. |
| 810 | */ |
| 811 | prp = le64_to_cpu(cmd->common.dptr.prp1); |
| 812 | if (!prp) |
| 813 | goto err_invalid_field; |
| 814 | |
| 815 | ofst = nvmet_pci_epf_prp_ofst(ctrl, prp); |
| 816 | nr_segs = (transfer_len + ofst + ctrl->mps - 1) >> ctrl->mps_shift; |
| 817 | |
| 818 | ret = nvmet_pci_epf_alloc_iod_data_segs(iod, nsegs: nr_segs); |
| 819 | if (ret) |
| 820 | goto err_internal; |
| 821 | |
| 822 | /* Set the first segment using prp1. */ |
| 823 | seg = &iod->data_segs[0]; |
| 824 | seg->pci_addr = prp; |
| 825 | seg->length = nvmet_pci_epf_prp_size(ctrl, prp); |
| 826 | |
| 827 | size = seg->length; |
| 828 | pci_addr = prp + size; |
| 829 | nr_segs = 1; |
| 830 | |
| 831 | /* |
| 832 | * Now build the PCI address segments using the PRP lists, starting |
| 833 | * from prp2. |
| 834 | */ |
| 835 | prp = le64_to_cpu(cmd->common.dptr.prp2); |
| 836 | if (!prp) |
| 837 | goto err_invalid_field; |
| 838 | |
| 839 | while (size < transfer_len) { |
| 840 | xfer_len = transfer_len - size; |
| 841 | |
| 842 | if (!nr_prps) { |
| 843 | nr_prps = nvmet_pci_epf_get_prp_list(ctrl, prp, |
| 844 | xfer_len, prps); |
| 845 | if (nr_prps < 0) |
| 846 | goto err_internal; |
| 847 | |
| 848 | i = 0; |
| 849 | ofst = 0; |
| 850 | } |
| 851 | |
| 852 | /* Current entry */ |
| 853 | prp = le64_to_cpu(prps[i]); |
| 854 | if (!prp) |
| 855 | goto err_invalid_field; |
| 856 | |
| 857 | /* Did we reach the last PRP entry of the list? */ |
| 858 | if (xfer_len > ctrl->mps && i == nr_prps - 1) { |
| 859 | /* We need more PRPs: PRP is a list pointer. */ |
| 860 | nr_prps = 0; |
| 861 | continue; |
| 862 | } |
| 863 | |
| 864 | /* Only the first PRP is allowed to have an offset. */ |
| 865 | if (nvmet_pci_epf_prp_ofst(ctrl, prp)) |
| 866 | goto err_invalid_offset; |
| 867 | |
| 868 | if (prp != pci_addr) { |
| 869 | /* Discontiguous prp: new segment. */ |
| 870 | nr_segs++; |
| 871 | if (WARN_ON_ONCE(nr_segs > iod->nr_data_segs)) |
| 872 | goto err_internal; |
| 873 | |
| 874 | seg++; |
| 875 | seg->pci_addr = prp; |
| 876 | seg->length = 0; |
| 877 | pci_addr = prp; |
| 878 | } |
| 879 | |
| 880 | prp_size = min_t(size_t, ctrl->mps, xfer_len); |
| 881 | seg->length += prp_size; |
| 882 | pci_addr += prp_size; |
| 883 | size += prp_size; |
| 884 | |
| 885 | i++; |
| 886 | } |
| 887 | |
| 888 | iod->nr_data_segs = nr_segs; |
| 889 | ret = 0; |
| 890 | |
| 891 | if (size != transfer_len) { |
| 892 | dev_err(ctrl->dev, |
| 893 | "PRPs transfer length mismatch: got %zu B, need %zu B\n" , |
| 894 | size, transfer_len); |
| 895 | goto err_internal; |
| 896 | } |
| 897 | |
| 898 | kfree(objp: prps); |
| 899 | |
| 900 | return 0; |
| 901 | |
| 902 | err_invalid_offset: |
| 903 | dev_err(ctrl->dev, "PRPs list invalid offset\n" ); |
| 904 | iod->status = NVME_SC_PRP_INVALID_OFFSET | NVME_STATUS_DNR; |
| 905 | goto err; |
| 906 | |
| 907 | err_invalid_field: |
| 908 | dev_err(ctrl->dev, "PRPs list invalid field\n" ); |
| 909 | iod->status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; |
| 910 | goto err; |
| 911 | |
| 912 | err_internal: |
| 913 | dev_err(ctrl->dev, "PRPs list internal error\n" ); |
| 914 | iod->status = NVME_SC_INTERNAL | NVME_STATUS_DNR; |
| 915 | |
| 916 | err: |
| 917 | kfree(objp: prps); |
| 918 | return -EINVAL; |
| 919 | } |
| 920 | |
| 921 | static int nvmet_pci_epf_iod_parse_prp_simple(struct nvmet_pci_epf_ctrl *ctrl, |
| 922 | struct nvmet_pci_epf_iod *iod) |
| 923 | { |
| 924 | struct nvme_command *cmd = &iod->cmd; |
| 925 | size_t transfer_len = iod->data_len; |
| 926 | int ret, nr_segs = 1; |
| 927 | u64 prp1, prp2 = 0; |
| 928 | size_t prp1_size; |
| 929 | |
| 930 | prp1 = le64_to_cpu(cmd->common.dptr.prp1); |
| 931 | prp1_size = nvmet_pci_epf_prp_size(ctrl, prp: prp1); |
| 932 | |
| 933 | /* For commands crossing a page boundary, we should have prp2. */ |
| 934 | if (transfer_len > prp1_size) { |
| 935 | prp2 = le64_to_cpu(cmd->common.dptr.prp2); |
| 936 | if (!prp2) { |
| 937 | iod->status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; |
| 938 | return -EINVAL; |
| 939 | } |
| 940 | if (nvmet_pci_epf_prp_ofst(ctrl, prp: prp2)) { |
| 941 | iod->status = |
| 942 | NVME_SC_PRP_INVALID_OFFSET | NVME_STATUS_DNR; |
| 943 | return -EINVAL; |
| 944 | } |
| 945 | if (prp2 != prp1 + prp1_size) |
| 946 | nr_segs = 2; |
| 947 | } |
| 948 | |
| 949 | if (nr_segs == 1) { |
| 950 | iod->nr_data_segs = 1; |
| 951 | iod->data_segs = &iod->data_seg; |
| 952 | iod->data_segs[0].pci_addr = prp1; |
| 953 | iod->data_segs[0].length = transfer_len; |
| 954 | return 0; |
| 955 | } |
| 956 | |
| 957 | ret = nvmet_pci_epf_alloc_iod_data_segs(iod, nsegs: nr_segs); |
| 958 | if (ret) { |
| 959 | iod->status = NVME_SC_INTERNAL | NVME_STATUS_DNR; |
| 960 | return ret; |
| 961 | } |
| 962 | |
| 963 | iod->data_segs[0].pci_addr = prp1; |
| 964 | iod->data_segs[0].length = prp1_size; |
| 965 | iod->data_segs[1].pci_addr = prp2; |
| 966 | iod->data_segs[1].length = transfer_len - prp1_size; |
| 967 | |
| 968 | return 0; |
| 969 | } |
| 970 | |
| 971 | static int nvmet_pci_epf_iod_parse_prps(struct nvmet_pci_epf_iod *iod) |
| 972 | { |
| 973 | struct nvmet_pci_epf_ctrl *ctrl = iod->ctrl; |
| 974 | u64 prp1 = le64_to_cpu(iod->cmd.common.dptr.prp1); |
| 975 | size_t ofst; |
| 976 | |
| 977 | /* Get the PCI address segments for the command using its PRPs. */ |
| 978 | ofst = nvmet_pci_epf_prp_ofst(ctrl, prp: prp1); |
| 979 | if (ofst & 0x3) { |
| 980 | iod->status = NVME_SC_PRP_INVALID_OFFSET | NVME_STATUS_DNR; |
| 981 | return -EINVAL; |
| 982 | } |
| 983 | |
| 984 | if (iod->data_len + ofst <= ctrl->mps * 2) |
| 985 | return nvmet_pci_epf_iod_parse_prp_simple(ctrl, iod); |
| 986 | |
| 987 | return nvmet_pci_epf_iod_parse_prp_list(ctrl, iod); |
| 988 | } |
| 989 | |
| 990 | /* |
| 991 | * Transfer an SGL segment from the host and return the number of data |
| 992 | * descriptors and the next segment descriptor, if any. |
| 993 | */ |
| 994 | static struct nvme_sgl_desc * |
| 995 | nvmet_pci_epf_get_sgl_segment(struct nvmet_pci_epf_ctrl *ctrl, |
| 996 | struct nvme_sgl_desc *desc, unsigned int *nr_sgls) |
| 997 | { |
| 998 | struct nvme_sgl_desc *sgls; |
| 999 | u32 length = le32_to_cpu(desc->length); |
| 1000 | int nr_descs, ret; |
| 1001 | void *buf; |
| 1002 | |
| 1003 | buf = kmalloc(length, GFP_KERNEL); |
| 1004 | if (!buf) |
| 1005 | return NULL; |
| 1006 | |
| 1007 | ret = nvmet_pci_epf_transfer(ctrl, buf, le64_to_cpu(desc->addr), length, |
| 1008 | dir: DMA_FROM_DEVICE); |
| 1009 | if (ret) { |
| 1010 | kfree(objp: buf); |
| 1011 | return NULL; |
| 1012 | } |
| 1013 | |
| 1014 | sgls = buf; |
| 1015 | nr_descs = length / sizeof(struct nvme_sgl_desc); |
| 1016 | if (sgls[nr_descs - 1].type == (NVME_SGL_FMT_SEG_DESC << 4) || |
| 1017 | sgls[nr_descs - 1].type == (NVME_SGL_FMT_LAST_SEG_DESC << 4)) { |
| 1018 | /* |
| 1019 | * We have another SGL segment following this one: do not count |
| 1020 | * it as a regular data SGL descriptor and return it to the |
| 1021 | * caller. |
| 1022 | */ |
| 1023 | *desc = sgls[nr_descs - 1]; |
| 1024 | nr_descs--; |
| 1025 | } else { |
| 1026 | /* We do not have another SGL segment after this one. */ |
| 1027 | desc->length = 0; |
| 1028 | } |
| 1029 | |
| 1030 | *nr_sgls = nr_descs; |
| 1031 | |
| 1032 | return sgls; |
| 1033 | } |
| 1034 | |
| 1035 | static int nvmet_pci_epf_iod_parse_sgl_segments(struct nvmet_pci_epf_ctrl *ctrl, |
| 1036 | struct nvmet_pci_epf_iod *iod) |
| 1037 | { |
| 1038 | struct nvme_command *cmd = &iod->cmd; |
| 1039 | struct nvme_sgl_desc seg = cmd->common.dptr.sgl; |
| 1040 | struct nvme_sgl_desc *sgls = NULL; |
| 1041 | int n = 0, i, nr_sgls; |
| 1042 | int ret; |
| 1043 | |
| 1044 | /* |
| 1045 | * We do not support inline data nor keyed SGLs, so we should be seeing |
| 1046 | * only segment descriptors. |
| 1047 | */ |
| 1048 | if (seg.type != (NVME_SGL_FMT_SEG_DESC << 4) && |
| 1049 | seg.type != (NVME_SGL_FMT_LAST_SEG_DESC << 4)) { |
| 1050 | iod->status = NVME_SC_SGL_INVALID_TYPE | NVME_STATUS_DNR; |
| 1051 | return -EIO; |
| 1052 | } |
| 1053 | |
| 1054 | while (seg.length) { |
| 1055 | sgls = nvmet_pci_epf_get_sgl_segment(ctrl, desc: &seg, nr_sgls: &nr_sgls); |
| 1056 | if (!sgls) { |
| 1057 | iod->status = NVME_SC_INTERNAL | NVME_STATUS_DNR; |
| 1058 | return -EIO; |
| 1059 | } |
| 1060 | |
| 1061 | /* Grow the PCI segment table as needed. */ |
| 1062 | ret = nvmet_pci_epf_alloc_iod_data_segs(iod, nsegs: nr_sgls); |
| 1063 | if (ret) { |
| 1064 | iod->status = NVME_SC_INTERNAL | NVME_STATUS_DNR; |
| 1065 | goto out; |
| 1066 | } |
| 1067 | |
| 1068 | /* |
| 1069 | * Parse the SGL descriptors to build the PCI segment table, |
| 1070 | * checking the descriptor type as we go. |
| 1071 | */ |
| 1072 | for (i = 0; i < nr_sgls; i++) { |
| 1073 | if (sgls[i].type != (NVME_SGL_FMT_DATA_DESC << 4)) { |
| 1074 | iod->status = NVME_SC_SGL_INVALID_TYPE | |
| 1075 | NVME_STATUS_DNR; |
| 1076 | goto out; |
| 1077 | } |
| 1078 | iod->data_segs[n].pci_addr = le64_to_cpu(sgls[i].addr); |
| 1079 | iod->data_segs[n].length = le32_to_cpu(sgls[i].length); |
| 1080 | n++; |
| 1081 | } |
| 1082 | |
| 1083 | kfree(objp: sgls); |
| 1084 | } |
| 1085 | |
| 1086 | out: |
| 1087 | if (iod->status != NVME_SC_SUCCESS) { |
| 1088 | kfree(objp: sgls); |
| 1089 | return -EIO; |
| 1090 | } |
| 1091 | |
| 1092 | return 0; |
| 1093 | } |
| 1094 | |
| 1095 | static int nvmet_pci_epf_iod_parse_sgls(struct nvmet_pci_epf_iod *iod) |
| 1096 | { |
| 1097 | struct nvmet_pci_epf_ctrl *ctrl = iod->ctrl; |
| 1098 | struct nvme_sgl_desc *sgl = &iod->cmd.common.dptr.sgl; |
| 1099 | |
| 1100 | if (sgl->type == (NVME_SGL_FMT_DATA_DESC << 4)) { |
| 1101 | /* Single data descriptor case. */ |
| 1102 | iod->nr_data_segs = 1; |
| 1103 | iod->data_segs = &iod->data_seg; |
| 1104 | iod->data_seg.pci_addr = le64_to_cpu(sgl->addr); |
| 1105 | iod->data_seg.length = le32_to_cpu(sgl->length); |
| 1106 | return 0; |
| 1107 | } |
| 1108 | |
| 1109 | return nvmet_pci_epf_iod_parse_sgl_segments(ctrl, iod); |
| 1110 | } |
| 1111 | |
| 1112 | static int nvmet_pci_epf_alloc_iod_data_buf(struct nvmet_pci_epf_iod *iod) |
| 1113 | { |
| 1114 | struct nvmet_pci_epf_ctrl *ctrl = iod->ctrl; |
| 1115 | struct nvmet_req *req = &iod->req; |
| 1116 | struct nvmet_pci_epf_segment *seg; |
| 1117 | struct scatterlist *sg; |
| 1118 | int ret, i; |
| 1119 | |
| 1120 | if (iod->data_len > ctrl->mdts) { |
| 1121 | iod->status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; |
| 1122 | return -EINVAL; |
| 1123 | } |
| 1124 | |
| 1125 | /* |
| 1126 | * Get the PCI address segments for the command data buffer using either |
| 1127 | * its SGLs or PRPs. |
| 1128 | */ |
| 1129 | if (iod->cmd.common.flags & NVME_CMD_SGL_ALL) |
| 1130 | ret = nvmet_pci_epf_iod_parse_sgls(iod); |
| 1131 | else |
| 1132 | ret = nvmet_pci_epf_iod_parse_prps(iod); |
| 1133 | if (ret) |
| 1134 | return ret; |
| 1135 | |
| 1136 | /* Get a command buffer using SGLs matching the PCI segments. */ |
| 1137 | if (iod->nr_data_segs == 1) { |
| 1138 | sg_init_table(&iod->data_sgl, 1); |
| 1139 | iod->data_sgt.sgl = &iod->data_sgl; |
| 1140 | iod->data_sgt.nents = 1; |
| 1141 | iod->data_sgt.orig_nents = 1; |
| 1142 | } else { |
| 1143 | ret = sg_alloc_table(&iod->data_sgt, iod->nr_data_segs, |
| 1144 | GFP_KERNEL); |
| 1145 | if (ret) |
| 1146 | goto err_nomem; |
| 1147 | } |
| 1148 | |
| 1149 | for_each_sgtable_sg(&iod->data_sgt, sg, i) { |
| 1150 | seg = &iod->data_segs[i]; |
| 1151 | seg->buf = kmalloc(seg->length, GFP_KERNEL); |
| 1152 | if (!seg->buf) |
| 1153 | goto err_nomem; |
| 1154 | sg_set_buf(sg, buf: seg->buf, buflen: seg->length); |
| 1155 | } |
| 1156 | |
| 1157 | req->transfer_len = iod->data_len; |
| 1158 | req->sg = iod->data_sgt.sgl; |
| 1159 | req->sg_cnt = iod->data_sgt.nents; |
| 1160 | |
| 1161 | return 0; |
| 1162 | |
| 1163 | err_nomem: |
| 1164 | iod->status = NVME_SC_INTERNAL | NVME_STATUS_DNR; |
| 1165 | return -ENOMEM; |
| 1166 | } |
| 1167 | |
| 1168 | static void nvmet_pci_epf_complete_iod(struct nvmet_pci_epf_iod *iod) |
| 1169 | { |
| 1170 | struct nvmet_pci_epf_queue *cq = iod->cq; |
| 1171 | unsigned long flags; |
| 1172 | |
| 1173 | /* Print an error message for failed commands, except AENs. */ |
| 1174 | iod->status = le16_to_cpu(iod->cqe.status) >> 1; |
| 1175 | if (iod->status && iod->cmd.common.opcode != nvme_admin_async_event) |
| 1176 | dev_err(iod->ctrl->dev, |
| 1177 | "CQ[%d]: Command %s (0x%x) status 0x%0x\n" , |
| 1178 | iod->sq->qid, nvmet_pci_epf_iod_name(iod), |
| 1179 | iod->cmd.common.opcode, iod->status); |
| 1180 | |
| 1181 | /* |
| 1182 | * Add the command to the list of completed commands and schedule the |
| 1183 | * CQ work. |
| 1184 | */ |
| 1185 | spin_lock_irqsave(&cq->lock, flags); |
| 1186 | list_add_tail(new: &iod->link, head: &cq->list); |
| 1187 | queue_delayed_work(wq: system_highpri_wq, dwork: &cq->work, delay: 0); |
| 1188 | spin_unlock_irqrestore(lock: &cq->lock, flags); |
| 1189 | } |
| 1190 | |
| 1191 | static void nvmet_pci_epf_drain_queue(struct nvmet_pci_epf_queue *queue) |
| 1192 | { |
| 1193 | struct nvmet_pci_epf_iod *iod; |
| 1194 | unsigned long flags; |
| 1195 | |
| 1196 | spin_lock_irqsave(&queue->lock, flags); |
| 1197 | while (!list_empty(head: &queue->list)) { |
| 1198 | iod = list_first_entry(&queue->list, struct nvmet_pci_epf_iod, |
| 1199 | link); |
| 1200 | list_del_init(entry: &iod->link); |
| 1201 | nvmet_pci_epf_free_iod(iod); |
| 1202 | } |
| 1203 | spin_unlock_irqrestore(lock: &queue->lock, flags); |
| 1204 | } |
| 1205 | |
| 1206 | static int nvmet_pci_epf_add_port(struct nvmet_port *port) |
| 1207 | { |
| 1208 | mutex_lock(&nvmet_pci_epf_ports_mutex); |
| 1209 | list_add_tail(new: &port->entry, head: &nvmet_pci_epf_ports); |
| 1210 | mutex_unlock(lock: &nvmet_pci_epf_ports_mutex); |
| 1211 | return 0; |
| 1212 | } |
| 1213 | |
| 1214 | static void nvmet_pci_epf_remove_port(struct nvmet_port *port) |
| 1215 | { |
| 1216 | mutex_lock(&nvmet_pci_epf_ports_mutex); |
| 1217 | list_del_init(entry: &port->entry); |
| 1218 | mutex_unlock(lock: &nvmet_pci_epf_ports_mutex); |
| 1219 | } |
| 1220 | |
| 1221 | static struct nvmet_port * |
| 1222 | nvmet_pci_epf_find_port(struct nvmet_pci_epf_ctrl *ctrl, __le16 portid) |
| 1223 | { |
| 1224 | struct nvmet_port *p, *port = NULL; |
| 1225 | |
| 1226 | mutex_lock(&nvmet_pci_epf_ports_mutex); |
| 1227 | list_for_each_entry(p, &nvmet_pci_epf_ports, entry) { |
| 1228 | if (p->disc_addr.portid == portid) { |
| 1229 | port = p; |
| 1230 | break; |
| 1231 | } |
| 1232 | } |
| 1233 | mutex_unlock(lock: &nvmet_pci_epf_ports_mutex); |
| 1234 | |
| 1235 | return port; |
| 1236 | } |
| 1237 | |
| 1238 | static void nvmet_pci_epf_queue_response(struct nvmet_req *req) |
| 1239 | { |
| 1240 | struct nvmet_pci_epf_iod *iod = |
| 1241 | container_of(req, struct nvmet_pci_epf_iod, req); |
| 1242 | |
| 1243 | iod->status = le16_to_cpu(req->cqe->status) >> 1; |
| 1244 | |
| 1245 | /* If we have no data to transfer, directly complete the command. */ |
| 1246 | if (!iod->data_len || iod->dma_dir != DMA_TO_DEVICE) { |
| 1247 | nvmet_pci_epf_complete_iod(iod); |
| 1248 | return; |
| 1249 | } |
| 1250 | |
| 1251 | complete(&iod->done); |
| 1252 | } |
| 1253 | |
| 1254 | static u8 nvmet_pci_epf_get_mdts(const struct nvmet_ctrl *tctrl) |
| 1255 | { |
| 1256 | struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata; |
| 1257 | int page_shift = NVME_CAP_MPSMIN(tctrl->cap) + 12; |
| 1258 | |
| 1259 | return ilog2(ctrl->mdts) - page_shift; |
| 1260 | } |
| 1261 | |
| 1262 | static u16 nvmet_pci_epf_create_cq(struct nvmet_ctrl *tctrl, |
| 1263 | u16 cqid, u16 flags, u16 qsize, u64 pci_addr, u16 vector) |
| 1264 | { |
| 1265 | struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata; |
| 1266 | struct nvmet_pci_epf_queue *cq = &ctrl->cq[cqid]; |
| 1267 | u16 status; |
| 1268 | int ret; |
| 1269 | |
| 1270 | if (test_bit(NVMET_PCI_EPF_Q_LIVE, &cq->flags)) |
| 1271 | return NVME_SC_QID_INVALID | NVME_STATUS_DNR; |
| 1272 | |
| 1273 | if (!(flags & NVME_QUEUE_PHYS_CONTIG)) |
| 1274 | return NVME_SC_INVALID_QUEUE | NVME_STATUS_DNR; |
| 1275 | |
| 1276 | cq->pci_addr = pci_addr; |
| 1277 | cq->qid = cqid; |
| 1278 | cq->depth = qsize + 1; |
| 1279 | cq->vector = vector; |
| 1280 | cq->head = 0; |
| 1281 | cq->tail = 0; |
| 1282 | cq->phase = 1; |
| 1283 | cq->db = NVME_REG_DBS + (((cqid * 2) + 1) * sizeof(u32)); |
| 1284 | nvmet_pci_epf_bar_write32(ctrl, off: cq->db, val: 0); |
| 1285 | |
| 1286 | if (!cqid) |
| 1287 | cq->qes = sizeof(struct nvme_completion); |
| 1288 | else |
| 1289 | cq->qes = ctrl->io_cqes; |
| 1290 | cq->pci_size = cq->qes * cq->depth; |
| 1291 | |
| 1292 | if (flags & NVME_CQ_IRQ_ENABLED) { |
| 1293 | cq->iv = nvmet_pci_epf_add_irq_vector(ctrl, vector); |
| 1294 | if (!cq->iv) |
| 1295 | return NVME_SC_INTERNAL | NVME_STATUS_DNR; |
| 1296 | set_bit(nr: NVMET_PCI_EPF_Q_IRQ_ENABLED, addr: &cq->flags); |
| 1297 | } |
| 1298 | |
| 1299 | status = nvmet_cq_create(ctrl: tctrl, cq: &cq->nvme_cq, qid: cqid, size: cq->depth); |
| 1300 | if (status != NVME_SC_SUCCESS) |
| 1301 | goto err; |
| 1302 | |
| 1303 | /* |
| 1304 | * Map the CQ PCI address space and since PCI endpoint controllers may |
| 1305 | * return a partial mapping, check that the mapping is large enough. |
| 1306 | */ |
| 1307 | ret = nvmet_pci_epf_mem_map(nvme_epf: ctrl->nvme_epf, pci_addr: cq->pci_addr, size: cq->pci_size, |
| 1308 | map: &cq->pci_map); |
| 1309 | if (ret) { |
| 1310 | dev_err(ctrl->dev, "Failed to map CQ %u (err=%d)\n" , |
| 1311 | cq->qid, ret); |
| 1312 | goto err_internal; |
| 1313 | } |
| 1314 | |
| 1315 | if (cq->pci_map.pci_size < cq->pci_size) { |
| 1316 | dev_err(ctrl->dev, "Invalid partial mapping of queue %u\n" , |
| 1317 | cq->qid); |
| 1318 | goto err_unmap_queue; |
| 1319 | } |
| 1320 | |
| 1321 | set_bit(nr: NVMET_PCI_EPF_Q_LIVE, addr: &cq->flags); |
| 1322 | |
| 1323 | if (test_bit(NVMET_PCI_EPF_Q_IRQ_ENABLED, &cq->flags)) |
| 1324 | dev_dbg(ctrl->dev, |
| 1325 | "CQ[%u]: %u entries of %zu B, IRQ vector %u\n" , |
| 1326 | cqid, qsize, cq->qes, cq->vector); |
| 1327 | else |
| 1328 | dev_dbg(ctrl->dev, |
| 1329 | "CQ[%u]: %u entries of %zu B, IRQ disabled\n" , |
| 1330 | cqid, qsize, cq->qes); |
| 1331 | |
| 1332 | return NVME_SC_SUCCESS; |
| 1333 | |
| 1334 | err_unmap_queue: |
| 1335 | nvmet_pci_epf_mem_unmap(nvme_epf: ctrl->nvme_epf, map: &cq->pci_map); |
| 1336 | err_internal: |
| 1337 | status = NVME_SC_INTERNAL | NVME_STATUS_DNR; |
| 1338 | err: |
| 1339 | if (test_and_clear_bit(nr: NVMET_PCI_EPF_Q_IRQ_ENABLED, addr: &cq->flags)) |
| 1340 | nvmet_pci_epf_remove_irq_vector(ctrl, vector: cq->vector); |
| 1341 | return status; |
| 1342 | } |
| 1343 | |
| 1344 | static u16 nvmet_pci_epf_delete_cq(struct nvmet_ctrl *tctrl, u16 cqid) |
| 1345 | { |
| 1346 | struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata; |
| 1347 | struct nvmet_pci_epf_queue *cq = &ctrl->cq[cqid]; |
| 1348 | |
| 1349 | if (!test_and_clear_bit(nr: NVMET_PCI_EPF_Q_LIVE, addr: &cq->flags)) |
| 1350 | return NVME_SC_QID_INVALID | NVME_STATUS_DNR; |
| 1351 | |
| 1352 | cancel_delayed_work_sync(dwork: &cq->work); |
| 1353 | nvmet_pci_epf_drain_queue(queue: cq); |
| 1354 | if (test_and_clear_bit(nr: NVMET_PCI_EPF_Q_IRQ_ENABLED, addr: &cq->flags)) |
| 1355 | nvmet_pci_epf_remove_irq_vector(ctrl, vector: cq->vector); |
| 1356 | nvmet_pci_epf_mem_unmap(nvme_epf: ctrl->nvme_epf, map: &cq->pci_map); |
| 1357 | nvmet_cq_put(cq: &cq->nvme_cq); |
| 1358 | |
| 1359 | return NVME_SC_SUCCESS; |
| 1360 | } |
| 1361 | |
| 1362 | static u16 nvmet_pci_epf_create_sq(struct nvmet_ctrl *tctrl, |
| 1363 | u16 sqid, u16 cqid, u16 flags, u16 qsize, u64 pci_addr) |
| 1364 | { |
| 1365 | struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata; |
| 1366 | struct nvmet_pci_epf_queue *sq = &ctrl->sq[sqid]; |
| 1367 | struct nvmet_pci_epf_queue *cq = &ctrl->cq[cqid]; |
| 1368 | u16 status; |
| 1369 | |
| 1370 | if (test_bit(NVMET_PCI_EPF_Q_LIVE, &sq->flags)) |
| 1371 | return NVME_SC_QID_INVALID | NVME_STATUS_DNR; |
| 1372 | |
| 1373 | if (!(flags & NVME_QUEUE_PHYS_CONTIG)) |
| 1374 | return NVME_SC_INVALID_QUEUE | NVME_STATUS_DNR; |
| 1375 | |
| 1376 | sq->pci_addr = pci_addr; |
| 1377 | sq->qid = sqid; |
| 1378 | sq->depth = qsize + 1; |
| 1379 | sq->head = 0; |
| 1380 | sq->tail = 0; |
| 1381 | sq->phase = 0; |
| 1382 | sq->db = NVME_REG_DBS + (sqid * 2 * sizeof(u32)); |
| 1383 | nvmet_pci_epf_bar_write32(ctrl, off: sq->db, val: 0); |
| 1384 | if (!sqid) |
| 1385 | sq->qes = 1UL << NVME_ADM_SQES; |
| 1386 | else |
| 1387 | sq->qes = ctrl->io_sqes; |
| 1388 | sq->pci_size = sq->qes * sq->depth; |
| 1389 | |
| 1390 | status = nvmet_sq_create(ctrl: tctrl, sq: &sq->nvme_sq, cq: &cq->nvme_cq, qid: sqid, |
| 1391 | size: sq->depth); |
| 1392 | if (status != NVME_SC_SUCCESS) |
| 1393 | return status; |
| 1394 | |
| 1395 | sq->iod_wq = alloc_workqueue(fmt: "sq%d_wq" , flags: WQ_UNBOUND, |
| 1396 | min_t(int, sq->depth, WQ_MAX_ACTIVE), sqid); |
| 1397 | if (!sq->iod_wq) { |
| 1398 | dev_err(ctrl->dev, "Failed to create SQ %d work queue\n" , sqid); |
| 1399 | status = NVME_SC_INTERNAL | NVME_STATUS_DNR; |
| 1400 | goto out_destroy_sq; |
| 1401 | } |
| 1402 | |
| 1403 | set_bit(nr: NVMET_PCI_EPF_Q_LIVE, addr: &sq->flags); |
| 1404 | |
| 1405 | dev_dbg(ctrl->dev, "SQ[%u]: %u entries of %zu B\n" , |
| 1406 | sqid, qsize, sq->qes); |
| 1407 | |
| 1408 | return NVME_SC_SUCCESS; |
| 1409 | |
| 1410 | out_destroy_sq: |
| 1411 | nvmet_sq_destroy(sq: &sq->nvme_sq); |
| 1412 | return status; |
| 1413 | } |
| 1414 | |
| 1415 | static u16 nvmet_pci_epf_delete_sq(struct nvmet_ctrl *tctrl, u16 sqid) |
| 1416 | { |
| 1417 | struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata; |
| 1418 | struct nvmet_pci_epf_queue *sq = &ctrl->sq[sqid]; |
| 1419 | |
| 1420 | if (!test_and_clear_bit(nr: NVMET_PCI_EPF_Q_LIVE, addr: &sq->flags)) |
| 1421 | return NVME_SC_QID_INVALID | NVME_STATUS_DNR; |
| 1422 | |
| 1423 | destroy_workqueue(wq: sq->iod_wq); |
| 1424 | sq->iod_wq = NULL; |
| 1425 | |
| 1426 | nvmet_pci_epf_drain_queue(queue: sq); |
| 1427 | |
| 1428 | if (sq->nvme_sq.ctrl) |
| 1429 | nvmet_sq_destroy(sq: &sq->nvme_sq); |
| 1430 | |
| 1431 | return NVME_SC_SUCCESS; |
| 1432 | } |
| 1433 | |
| 1434 | static u16 nvmet_pci_epf_get_feat(const struct nvmet_ctrl *tctrl, |
| 1435 | u8 feat, void *data) |
| 1436 | { |
| 1437 | struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata; |
| 1438 | struct nvmet_feat_arbitration *arb; |
| 1439 | struct nvmet_feat_irq_coalesce *irqc; |
| 1440 | struct nvmet_feat_irq_config *irqcfg; |
| 1441 | struct nvmet_pci_epf_irq_vector *iv; |
| 1442 | u16 status; |
| 1443 | |
| 1444 | switch (feat) { |
| 1445 | case NVME_FEAT_ARBITRATION: |
| 1446 | arb = data; |
| 1447 | if (!ctrl->sq_ab) |
| 1448 | arb->ab = 0x7; |
| 1449 | else |
| 1450 | arb->ab = ilog2(ctrl->sq_ab); |
| 1451 | return NVME_SC_SUCCESS; |
| 1452 | |
| 1453 | case NVME_FEAT_IRQ_COALESCE: |
| 1454 | irqc = data; |
| 1455 | irqc->thr = ctrl->irq_vector_threshold; |
| 1456 | irqc->time = 0; |
| 1457 | return NVME_SC_SUCCESS; |
| 1458 | |
| 1459 | case NVME_FEAT_IRQ_CONFIG: |
| 1460 | irqcfg = data; |
| 1461 | mutex_lock(&ctrl->irq_lock); |
| 1462 | iv = nvmet_pci_epf_find_irq_vector(ctrl, vector: irqcfg->iv); |
| 1463 | if (iv) { |
| 1464 | irqcfg->cd = iv->cd; |
| 1465 | status = NVME_SC_SUCCESS; |
| 1466 | } else { |
| 1467 | status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; |
| 1468 | } |
| 1469 | mutex_unlock(lock: &ctrl->irq_lock); |
| 1470 | return status; |
| 1471 | |
| 1472 | default: |
| 1473 | return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; |
| 1474 | } |
| 1475 | } |
| 1476 | |
| 1477 | static u16 nvmet_pci_epf_set_feat(const struct nvmet_ctrl *tctrl, |
| 1478 | u8 feat, void *data) |
| 1479 | { |
| 1480 | struct nvmet_pci_epf_ctrl *ctrl = tctrl->drvdata; |
| 1481 | struct nvmet_feat_arbitration *arb; |
| 1482 | struct nvmet_feat_irq_coalesce *irqc; |
| 1483 | struct nvmet_feat_irq_config *irqcfg; |
| 1484 | struct nvmet_pci_epf_irq_vector *iv; |
| 1485 | u16 status; |
| 1486 | |
| 1487 | switch (feat) { |
| 1488 | case NVME_FEAT_ARBITRATION: |
| 1489 | arb = data; |
| 1490 | if (arb->ab == 0x7) |
| 1491 | ctrl->sq_ab = 0; |
| 1492 | else |
| 1493 | ctrl->sq_ab = 1 << arb->ab; |
| 1494 | return NVME_SC_SUCCESS; |
| 1495 | |
| 1496 | case NVME_FEAT_IRQ_COALESCE: |
| 1497 | /* |
| 1498 | * Since we do not implement precise IRQ coalescing timing, |
| 1499 | * ignore the time field. |
| 1500 | */ |
| 1501 | irqc = data; |
| 1502 | ctrl->irq_vector_threshold = irqc->thr + 1; |
| 1503 | return NVME_SC_SUCCESS; |
| 1504 | |
| 1505 | case NVME_FEAT_IRQ_CONFIG: |
| 1506 | irqcfg = data; |
| 1507 | mutex_lock(&ctrl->irq_lock); |
| 1508 | iv = nvmet_pci_epf_find_irq_vector(ctrl, vector: irqcfg->iv); |
| 1509 | if (iv) { |
| 1510 | iv->cd = irqcfg->cd; |
| 1511 | status = NVME_SC_SUCCESS; |
| 1512 | } else { |
| 1513 | status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; |
| 1514 | } |
| 1515 | mutex_unlock(lock: &ctrl->irq_lock); |
| 1516 | return status; |
| 1517 | |
| 1518 | default: |
| 1519 | return NVME_SC_INVALID_FIELD | NVME_STATUS_DNR; |
| 1520 | } |
| 1521 | } |
| 1522 | |
| 1523 | static const struct nvmet_fabrics_ops nvmet_pci_epf_fabrics_ops = { |
| 1524 | .owner = THIS_MODULE, |
| 1525 | .type = NVMF_TRTYPE_PCI, |
| 1526 | .add_port = nvmet_pci_epf_add_port, |
| 1527 | .remove_port = nvmet_pci_epf_remove_port, |
| 1528 | .queue_response = nvmet_pci_epf_queue_response, |
| 1529 | .get_mdts = nvmet_pci_epf_get_mdts, |
| 1530 | .create_cq = nvmet_pci_epf_create_cq, |
| 1531 | .delete_cq = nvmet_pci_epf_delete_cq, |
| 1532 | .create_sq = nvmet_pci_epf_create_sq, |
| 1533 | .delete_sq = nvmet_pci_epf_delete_sq, |
| 1534 | .get_feature = nvmet_pci_epf_get_feat, |
| 1535 | .set_feature = nvmet_pci_epf_set_feat, |
| 1536 | }; |
| 1537 | |
| 1538 | static void nvmet_pci_epf_cq_work(struct work_struct *work); |
| 1539 | |
| 1540 | static void nvmet_pci_epf_init_queue(struct nvmet_pci_epf_ctrl *ctrl, |
| 1541 | unsigned int qid, bool sq) |
| 1542 | { |
| 1543 | struct nvmet_pci_epf_queue *queue; |
| 1544 | |
| 1545 | if (sq) { |
| 1546 | queue = &ctrl->sq[qid]; |
| 1547 | } else { |
| 1548 | queue = &ctrl->cq[qid]; |
| 1549 | INIT_DELAYED_WORK(&queue->work, nvmet_pci_epf_cq_work); |
| 1550 | } |
| 1551 | queue->ctrl = ctrl; |
| 1552 | queue->qid = qid; |
| 1553 | spin_lock_init(&queue->lock); |
| 1554 | INIT_LIST_HEAD(list: &queue->list); |
| 1555 | } |
| 1556 | |
| 1557 | static int nvmet_pci_epf_alloc_queues(struct nvmet_pci_epf_ctrl *ctrl) |
| 1558 | { |
| 1559 | unsigned int qid; |
| 1560 | |
| 1561 | ctrl->sq = kcalloc(ctrl->nr_queues, |
| 1562 | sizeof(struct nvmet_pci_epf_queue), GFP_KERNEL); |
| 1563 | if (!ctrl->sq) |
| 1564 | return -ENOMEM; |
| 1565 | |
| 1566 | ctrl->cq = kcalloc(ctrl->nr_queues, |
| 1567 | sizeof(struct nvmet_pci_epf_queue), GFP_KERNEL); |
| 1568 | if (!ctrl->cq) { |
| 1569 | kfree(objp: ctrl->sq); |
| 1570 | ctrl->sq = NULL; |
| 1571 | return -ENOMEM; |
| 1572 | } |
| 1573 | |
| 1574 | for (qid = 0; qid < ctrl->nr_queues; qid++) { |
| 1575 | nvmet_pci_epf_init_queue(ctrl, qid, sq: true); |
| 1576 | nvmet_pci_epf_init_queue(ctrl, qid, sq: false); |
| 1577 | } |
| 1578 | |
| 1579 | return 0; |
| 1580 | } |
| 1581 | |
| 1582 | static void nvmet_pci_epf_free_queues(struct nvmet_pci_epf_ctrl *ctrl) |
| 1583 | { |
| 1584 | kfree(objp: ctrl->sq); |
| 1585 | ctrl->sq = NULL; |
| 1586 | kfree(objp: ctrl->cq); |
| 1587 | ctrl->cq = NULL; |
| 1588 | } |
| 1589 | |
| 1590 | static void nvmet_pci_epf_exec_iod_work(struct work_struct *work) |
| 1591 | { |
| 1592 | struct nvmet_pci_epf_iod *iod = |
| 1593 | container_of(work, struct nvmet_pci_epf_iod, work); |
| 1594 | struct nvmet_req *req = &iod->req; |
| 1595 | int ret; |
| 1596 | |
| 1597 | if (!iod->ctrl->link_up) { |
| 1598 | nvmet_pci_epf_free_iod(iod); |
| 1599 | return; |
| 1600 | } |
| 1601 | |
| 1602 | if (!test_bit(NVMET_PCI_EPF_Q_LIVE, &iod->sq->flags)) { |
| 1603 | iod->status = NVME_SC_QID_INVALID | NVME_STATUS_DNR; |
| 1604 | goto complete; |
| 1605 | } |
| 1606 | |
| 1607 | if (!nvmet_req_init(req, sq: &iod->sq->nvme_sq, ops: &nvmet_pci_epf_fabrics_ops)) |
| 1608 | goto complete; |
| 1609 | |
| 1610 | iod->data_len = nvmet_req_transfer_len(req); |
| 1611 | if (iod->data_len) { |
| 1612 | /* |
| 1613 | * Get the data DMA transfer direction. Here "device" means the |
| 1614 | * PCI root-complex host. |
| 1615 | */ |
| 1616 | if (nvme_is_write(cmd: &iod->cmd)) |
| 1617 | iod->dma_dir = DMA_FROM_DEVICE; |
| 1618 | else |
| 1619 | iod->dma_dir = DMA_TO_DEVICE; |
| 1620 | |
| 1621 | /* |
| 1622 | * Setup the command data buffer and get the command data from |
| 1623 | * the host if needed. |
| 1624 | */ |
| 1625 | ret = nvmet_pci_epf_alloc_iod_data_buf(iod); |
| 1626 | if (!ret && iod->dma_dir == DMA_FROM_DEVICE) |
| 1627 | ret = nvmet_pci_epf_transfer_iod_data(iod); |
| 1628 | if (ret) { |
| 1629 | nvmet_req_uninit(req); |
| 1630 | goto complete; |
| 1631 | } |
| 1632 | } |
| 1633 | |
| 1634 | req->execute(req); |
| 1635 | |
| 1636 | /* |
| 1637 | * If we do not have data to transfer after the command execution |
| 1638 | * finishes, nvmet_pci_epf_queue_response() will complete the command |
| 1639 | * directly. No need to wait for the completion in this case. |
| 1640 | */ |
| 1641 | if (!iod->data_len || iod->dma_dir != DMA_TO_DEVICE) |
| 1642 | return; |
| 1643 | |
| 1644 | wait_for_completion(&iod->done); |
| 1645 | |
| 1646 | if (iod->status == NVME_SC_SUCCESS) { |
| 1647 | WARN_ON_ONCE(!iod->data_len || iod->dma_dir != DMA_TO_DEVICE); |
| 1648 | nvmet_pci_epf_transfer_iod_data(iod); |
| 1649 | } |
| 1650 | |
| 1651 | complete: |
| 1652 | nvmet_pci_epf_complete_iod(iod); |
| 1653 | } |
| 1654 | |
| 1655 | static int nvmet_pci_epf_process_sq(struct nvmet_pci_epf_ctrl *ctrl, |
| 1656 | struct nvmet_pci_epf_queue *sq) |
| 1657 | { |
| 1658 | struct nvmet_pci_epf_iod *iod; |
| 1659 | int ret, n = 0; |
| 1660 | u16 head = sq->head; |
| 1661 | |
| 1662 | sq->tail = nvmet_pci_epf_bar_read32(ctrl, off: sq->db); |
| 1663 | while (head != sq->tail && (!ctrl->sq_ab || n < ctrl->sq_ab)) { |
| 1664 | iod = nvmet_pci_epf_alloc_iod(sq); |
| 1665 | if (!iod) |
| 1666 | break; |
| 1667 | |
| 1668 | /* Get the NVMe command submitted by the host. */ |
| 1669 | ret = nvmet_pci_epf_transfer(ctrl, buf: &iod->cmd, |
| 1670 | pci_addr: sq->pci_addr + head * sq->qes, |
| 1671 | length: sq->qes, dir: DMA_FROM_DEVICE); |
| 1672 | if (ret) { |
| 1673 | /* Not much we can do... */ |
| 1674 | nvmet_pci_epf_free_iod(iod); |
| 1675 | break; |
| 1676 | } |
| 1677 | |
| 1678 | dev_dbg(ctrl->dev, "SQ[%u]: head %u, tail %u, command %s\n" , |
| 1679 | sq->qid, head, sq->tail, |
| 1680 | nvmet_pci_epf_iod_name(iod)); |
| 1681 | |
| 1682 | head++; |
| 1683 | if (head == sq->depth) |
| 1684 | head = 0; |
| 1685 | WRITE_ONCE(sq->head, head); |
| 1686 | n++; |
| 1687 | |
| 1688 | queue_work_on(cpu: WORK_CPU_UNBOUND, wq: sq->iod_wq, work: &iod->work); |
| 1689 | |
| 1690 | sq->tail = nvmet_pci_epf_bar_read32(ctrl, off: sq->db); |
| 1691 | } |
| 1692 | |
| 1693 | return n; |
| 1694 | } |
| 1695 | |
| 1696 | static void nvmet_pci_epf_poll_sqs_work(struct work_struct *work) |
| 1697 | { |
| 1698 | struct nvmet_pci_epf_ctrl *ctrl = |
| 1699 | container_of(work, struct nvmet_pci_epf_ctrl, poll_sqs.work); |
| 1700 | struct nvmet_pci_epf_queue *sq; |
| 1701 | unsigned long limit = jiffies; |
| 1702 | unsigned long last = 0; |
| 1703 | int i, nr_sqs; |
| 1704 | |
| 1705 | while (ctrl->link_up && ctrl->enabled) { |
| 1706 | nr_sqs = 0; |
| 1707 | /* Do round-robin arbitration. */ |
| 1708 | for (i = 0; i < ctrl->nr_queues; i++) { |
| 1709 | sq = &ctrl->sq[i]; |
| 1710 | if (!test_bit(NVMET_PCI_EPF_Q_LIVE, &sq->flags)) |
| 1711 | continue; |
| 1712 | if (nvmet_pci_epf_process_sq(ctrl, sq)) |
| 1713 | nr_sqs++; |
| 1714 | } |
| 1715 | |
| 1716 | /* |
| 1717 | * If we have been running for a while, reschedule to let other |
| 1718 | * tasks run and to avoid RCU stalls. |
| 1719 | */ |
| 1720 | if (time_is_before_jiffies(limit + secs_to_jiffies(1))) { |
| 1721 | cond_resched(); |
| 1722 | limit = jiffies; |
| 1723 | continue; |
| 1724 | } |
| 1725 | |
| 1726 | if (nr_sqs) { |
| 1727 | last = jiffies; |
| 1728 | continue; |
| 1729 | } |
| 1730 | |
| 1731 | /* |
| 1732 | * If we have not received any command on any queue for more |
| 1733 | * than NVMET_PCI_EPF_SQ_POLL_IDLE, assume we are idle and |
| 1734 | * reschedule. This avoids "burning" a CPU when the controller |
| 1735 | * is idle for a long time. |
| 1736 | */ |
| 1737 | if (time_is_before_jiffies(last + NVMET_PCI_EPF_SQ_POLL_IDLE)) |
| 1738 | break; |
| 1739 | |
| 1740 | cpu_relax(); |
| 1741 | } |
| 1742 | |
| 1743 | schedule_delayed_work(dwork: &ctrl->poll_sqs, NVMET_PCI_EPF_SQ_POLL_INTERVAL); |
| 1744 | } |
| 1745 | |
| 1746 | static void nvmet_pci_epf_cq_work(struct work_struct *work) |
| 1747 | { |
| 1748 | struct nvmet_pci_epf_queue *cq = |
| 1749 | container_of(work, struct nvmet_pci_epf_queue, work.work); |
| 1750 | struct nvmet_pci_epf_ctrl *ctrl = cq->ctrl; |
| 1751 | struct nvme_completion *cqe; |
| 1752 | struct nvmet_pci_epf_iod *iod; |
| 1753 | unsigned long flags; |
| 1754 | int ret = 0, n = 0; |
| 1755 | |
| 1756 | while (test_bit(NVMET_PCI_EPF_Q_LIVE, &cq->flags) && ctrl->link_up) { |
| 1757 | |
| 1758 | /* Check that the CQ is not full. */ |
| 1759 | cq->head = nvmet_pci_epf_bar_read32(ctrl, off: cq->db); |
| 1760 | if (cq->head == cq->tail + 1) { |
| 1761 | ret = -EAGAIN; |
| 1762 | break; |
| 1763 | } |
| 1764 | |
| 1765 | spin_lock_irqsave(&cq->lock, flags); |
| 1766 | iod = list_first_entry_or_null(&cq->list, |
| 1767 | struct nvmet_pci_epf_iod, link); |
| 1768 | if (iod) |
| 1769 | list_del_init(entry: &iod->link); |
| 1770 | spin_unlock_irqrestore(lock: &cq->lock, flags); |
| 1771 | |
| 1772 | if (!iod) |
| 1773 | break; |
| 1774 | |
| 1775 | /* |
| 1776 | * Post the IOD completion entry. If the IOD request was |
| 1777 | * executed (req->execute() called), the CQE is already |
| 1778 | * initialized. However, the IOD may have been failed before |
| 1779 | * that, leaving the CQE not properly initialized. So always |
| 1780 | * initialize it here. |
| 1781 | */ |
| 1782 | cqe = &iod->cqe; |
| 1783 | cqe->sq_head = cpu_to_le16(READ_ONCE(iod->sq->head)); |
| 1784 | cqe->sq_id = cpu_to_le16(iod->sq->qid); |
| 1785 | cqe->command_id = iod->cmd.common.command_id; |
| 1786 | cqe->status = cpu_to_le16((iod->status << 1) | cq->phase); |
| 1787 | |
| 1788 | dev_dbg(ctrl->dev, |
| 1789 | "CQ[%u]: %s status 0x%x, result 0x%llx, head %u, tail %u, phase %u\n" , |
| 1790 | cq->qid, nvmet_pci_epf_iod_name(iod), iod->status, |
| 1791 | le64_to_cpu(cqe->result.u64), cq->head, cq->tail, |
| 1792 | cq->phase); |
| 1793 | |
| 1794 | memcpy_toio(cq->pci_map.virt_addr + cq->tail * cq->qes, |
| 1795 | cqe, cq->qes); |
| 1796 | |
| 1797 | cq->tail++; |
| 1798 | if (cq->tail >= cq->depth) { |
| 1799 | cq->tail = 0; |
| 1800 | cq->phase ^= 1; |
| 1801 | } |
| 1802 | |
| 1803 | nvmet_pci_epf_free_iod(iod); |
| 1804 | |
| 1805 | /* Signal the host. */ |
| 1806 | nvmet_pci_epf_raise_irq(ctrl, cq, force: false); |
| 1807 | n++; |
| 1808 | } |
| 1809 | |
| 1810 | /* |
| 1811 | * We do not support precise IRQ coalescing time (100ns units as per |
| 1812 | * NVMe specifications). So if we have posted completion entries without |
| 1813 | * reaching the interrupt coalescing threshold, raise an interrupt. |
| 1814 | */ |
| 1815 | if (n) |
| 1816 | nvmet_pci_epf_raise_irq(ctrl, cq, force: true); |
| 1817 | |
| 1818 | if (ret < 0) |
| 1819 | queue_delayed_work(wq: system_highpri_wq, dwork: &cq->work, |
| 1820 | NVMET_PCI_EPF_CQ_RETRY_INTERVAL); |
| 1821 | } |
| 1822 | |
| 1823 | static void nvmet_pci_epf_clear_ctrl_config(struct nvmet_pci_epf_ctrl *ctrl) |
| 1824 | { |
| 1825 | struct nvmet_ctrl *tctrl = ctrl->tctrl; |
| 1826 | |
| 1827 | /* Initialize controller status. */ |
| 1828 | tctrl->csts = 0; |
| 1829 | ctrl->csts = 0; |
| 1830 | nvmet_pci_epf_bar_write32(ctrl, off: NVME_REG_CSTS, val: ctrl->csts); |
| 1831 | |
| 1832 | /* Initialize controller configuration and start polling. */ |
| 1833 | tctrl->cc = 0; |
| 1834 | ctrl->cc = 0; |
| 1835 | nvmet_pci_epf_bar_write32(ctrl, off: NVME_REG_CC, val: ctrl->cc); |
| 1836 | } |
| 1837 | |
| 1838 | static int nvmet_pci_epf_enable_ctrl(struct nvmet_pci_epf_ctrl *ctrl) |
| 1839 | { |
| 1840 | u64 pci_addr, asq, acq; |
| 1841 | u32 aqa; |
| 1842 | u16 status, qsize; |
| 1843 | |
| 1844 | if (ctrl->enabled) |
| 1845 | return 0; |
| 1846 | |
| 1847 | dev_info(ctrl->dev, "Enabling controller\n" ); |
| 1848 | |
| 1849 | ctrl->mps_shift = nvmet_cc_mps(cc: ctrl->cc) + 12; |
| 1850 | ctrl->mps = 1UL << ctrl->mps_shift; |
| 1851 | ctrl->mps_mask = ctrl->mps - 1; |
| 1852 | |
| 1853 | ctrl->io_sqes = 1UL << nvmet_cc_iosqes(cc: ctrl->cc); |
| 1854 | if (ctrl->io_sqes < sizeof(struct nvme_command)) { |
| 1855 | dev_err(ctrl->dev, "Unsupported I/O SQES %zu (need %zu)\n" , |
| 1856 | ctrl->io_sqes, sizeof(struct nvme_command)); |
| 1857 | goto err; |
| 1858 | } |
| 1859 | |
| 1860 | ctrl->io_cqes = 1UL << nvmet_cc_iocqes(cc: ctrl->cc); |
| 1861 | if (ctrl->io_cqes < sizeof(struct nvme_completion)) { |
| 1862 | dev_err(ctrl->dev, "Unsupported I/O CQES %zu (need %zu)\n" , |
| 1863 | ctrl->io_sqes, sizeof(struct nvme_completion)); |
| 1864 | goto err; |
| 1865 | } |
| 1866 | |
| 1867 | /* Create the admin queue. */ |
| 1868 | aqa = nvmet_pci_epf_bar_read32(ctrl, off: NVME_REG_AQA); |
| 1869 | asq = nvmet_pci_epf_bar_read64(ctrl, off: NVME_REG_ASQ); |
| 1870 | acq = nvmet_pci_epf_bar_read64(ctrl, off: NVME_REG_ACQ); |
| 1871 | |
| 1872 | qsize = (aqa & 0x0fff0000) >> 16; |
| 1873 | pci_addr = acq & GENMASK_ULL(63, 12); |
| 1874 | status = nvmet_pci_epf_create_cq(tctrl: ctrl->tctrl, cqid: 0, |
| 1875 | flags: NVME_CQ_IRQ_ENABLED | NVME_QUEUE_PHYS_CONTIG, |
| 1876 | qsize, pci_addr, vector: 0); |
| 1877 | if (status != NVME_SC_SUCCESS) { |
| 1878 | dev_err(ctrl->dev, "Failed to create admin completion queue\n" ); |
| 1879 | goto err; |
| 1880 | } |
| 1881 | |
| 1882 | qsize = aqa & 0x00000fff; |
| 1883 | pci_addr = asq & GENMASK_ULL(63, 12); |
| 1884 | status = nvmet_pci_epf_create_sq(tctrl: ctrl->tctrl, sqid: 0, cqid: 0, |
| 1885 | flags: NVME_QUEUE_PHYS_CONTIG, qsize, pci_addr); |
| 1886 | if (status != NVME_SC_SUCCESS) { |
| 1887 | dev_err(ctrl->dev, "Failed to create admin submission queue\n" ); |
| 1888 | nvmet_pci_epf_delete_cq(tctrl: ctrl->tctrl, cqid: 0); |
| 1889 | goto err; |
| 1890 | } |
| 1891 | |
| 1892 | ctrl->sq_ab = NVMET_PCI_EPF_SQ_AB; |
| 1893 | ctrl->irq_vector_threshold = NVMET_PCI_EPF_IV_THRESHOLD; |
| 1894 | ctrl->enabled = true; |
| 1895 | ctrl->csts = NVME_CSTS_RDY; |
| 1896 | |
| 1897 | /* Start polling the controller SQs. */ |
| 1898 | schedule_delayed_work(dwork: &ctrl->poll_sqs, delay: 0); |
| 1899 | |
| 1900 | return 0; |
| 1901 | |
| 1902 | err: |
| 1903 | nvmet_pci_epf_clear_ctrl_config(ctrl); |
| 1904 | return -EINVAL; |
| 1905 | } |
| 1906 | |
| 1907 | static void nvmet_pci_epf_disable_ctrl(struct nvmet_pci_epf_ctrl *ctrl, |
| 1908 | bool shutdown) |
| 1909 | { |
| 1910 | int qid; |
| 1911 | |
| 1912 | if (!ctrl->enabled) |
| 1913 | return; |
| 1914 | |
| 1915 | dev_info(ctrl->dev, "%s controller\n" , |
| 1916 | shutdown ? "Shutting down" : "Disabling" ); |
| 1917 | |
| 1918 | ctrl->enabled = false; |
| 1919 | cancel_delayed_work_sync(dwork: &ctrl->poll_sqs); |
| 1920 | |
| 1921 | /* Delete all I/O queues first. */ |
| 1922 | for (qid = 1; qid < ctrl->nr_queues; qid++) |
| 1923 | nvmet_pci_epf_delete_sq(tctrl: ctrl->tctrl, sqid: qid); |
| 1924 | |
| 1925 | for (qid = 1; qid < ctrl->nr_queues; qid++) |
| 1926 | nvmet_pci_epf_delete_cq(tctrl: ctrl->tctrl, cqid: qid); |
| 1927 | |
| 1928 | /* Delete the admin queue last. */ |
| 1929 | nvmet_pci_epf_delete_sq(tctrl: ctrl->tctrl, sqid: 0); |
| 1930 | nvmet_pci_epf_delete_cq(tctrl: ctrl->tctrl, cqid: 0); |
| 1931 | |
| 1932 | ctrl->csts &= ~NVME_CSTS_RDY; |
| 1933 | if (shutdown) { |
| 1934 | ctrl->csts |= NVME_CSTS_SHST_CMPLT; |
| 1935 | ctrl->cc &= ~NVME_CC_ENABLE; |
| 1936 | nvmet_pci_epf_bar_write32(ctrl, off: NVME_REG_CC, val: ctrl->cc); |
| 1937 | } |
| 1938 | } |
| 1939 | |
| 1940 | static void nvmet_pci_epf_poll_cc_work(struct work_struct *work) |
| 1941 | { |
| 1942 | struct nvmet_pci_epf_ctrl *ctrl = |
| 1943 | container_of(work, struct nvmet_pci_epf_ctrl, poll_cc.work); |
| 1944 | u32 old_cc, new_cc; |
| 1945 | int ret; |
| 1946 | |
| 1947 | if (!ctrl->tctrl) |
| 1948 | return; |
| 1949 | |
| 1950 | old_cc = ctrl->cc; |
| 1951 | new_cc = nvmet_pci_epf_bar_read32(ctrl, off: NVME_REG_CC); |
| 1952 | if (new_cc == old_cc) |
| 1953 | goto reschedule_work; |
| 1954 | |
| 1955 | ctrl->cc = new_cc; |
| 1956 | |
| 1957 | if (nvmet_cc_en(cc: new_cc) && !nvmet_cc_en(cc: old_cc)) { |
| 1958 | ret = nvmet_pci_epf_enable_ctrl(ctrl); |
| 1959 | if (ret) |
| 1960 | goto reschedule_work; |
| 1961 | } |
| 1962 | |
| 1963 | if (!nvmet_cc_en(cc: new_cc) && nvmet_cc_en(cc: old_cc)) |
| 1964 | nvmet_pci_epf_disable_ctrl(ctrl, shutdown: false); |
| 1965 | |
| 1966 | if (nvmet_cc_shn(cc: new_cc) && !nvmet_cc_shn(cc: old_cc)) |
| 1967 | nvmet_pci_epf_disable_ctrl(ctrl, shutdown: true); |
| 1968 | |
| 1969 | if (!nvmet_cc_shn(cc: new_cc) && nvmet_cc_shn(cc: old_cc)) |
| 1970 | ctrl->csts &= ~NVME_CSTS_SHST_CMPLT; |
| 1971 | |
| 1972 | nvmet_update_cc(ctrl: ctrl->tctrl, new: ctrl->cc); |
| 1973 | nvmet_pci_epf_bar_write32(ctrl, off: NVME_REG_CSTS, val: ctrl->csts); |
| 1974 | |
| 1975 | reschedule_work: |
| 1976 | schedule_delayed_work(dwork: &ctrl->poll_cc, NVMET_PCI_EPF_CC_POLL_INTERVAL); |
| 1977 | } |
| 1978 | |
| 1979 | static void nvmet_pci_epf_init_bar(struct nvmet_pci_epf_ctrl *ctrl) |
| 1980 | { |
| 1981 | struct nvmet_ctrl *tctrl = ctrl->tctrl; |
| 1982 | |
| 1983 | ctrl->bar = ctrl->nvme_epf->reg_bar; |
| 1984 | |
| 1985 | /* Copy the target controller capabilities as a base. */ |
| 1986 | ctrl->cap = tctrl->cap; |
| 1987 | |
| 1988 | /* Contiguous Queues Required (CQR). */ |
| 1989 | ctrl->cap |= 0x1ULL << 16; |
| 1990 | |
| 1991 | /* Set Doorbell stride to 4B (DSTRB). */ |
| 1992 | ctrl->cap &= ~GENMASK_ULL(35, 32); |
| 1993 | |
| 1994 | /* Clear NVM Subsystem Reset Supported (NSSRS). */ |
| 1995 | ctrl->cap &= ~(0x1ULL << 36); |
| 1996 | |
| 1997 | /* Clear Boot Partition Support (BPS). */ |
| 1998 | ctrl->cap &= ~(0x1ULL << 45); |
| 1999 | |
| 2000 | /* Clear Persistent Memory Region Supported (PMRS). */ |
| 2001 | ctrl->cap &= ~(0x1ULL << 56); |
| 2002 | |
| 2003 | /* Clear Controller Memory Buffer Supported (CMBS). */ |
| 2004 | ctrl->cap &= ~(0x1ULL << 57); |
| 2005 | |
| 2006 | nvmet_pci_epf_bar_write64(ctrl, off: NVME_REG_CAP, val: ctrl->cap); |
| 2007 | nvmet_pci_epf_bar_write32(ctrl, off: NVME_REG_VS, val: tctrl->subsys->ver); |
| 2008 | |
| 2009 | nvmet_pci_epf_clear_ctrl_config(ctrl); |
| 2010 | } |
| 2011 | |
| 2012 | static int nvmet_pci_epf_create_ctrl(struct nvmet_pci_epf *nvme_epf, |
| 2013 | unsigned int max_nr_queues) |
| 2014 | { |
| 2015 | struct nvmet_pci_epf_ctrl *ctrl = &nvme_epf->ctrl; |
| 2016 | struct nvmet_alloc_ctrl_args args = {}; |
| 2017 | char hostnqn[NVMF_NQN_SIZE]; |
| 2018 | uuid_t id; |
| 2019 | int ret; |
| 2020 | |
| 2021 | memset(ctrl, 0, sizeof(*ctrl)); |
| 2022 | ctrl->dev = &nvme_epf->epf->dev; |
| 2023 | mutex_init(&ctrl->irq_lock); |
| 2024 | ctrl->nvme_epf = nvme_epf; |
| 2025 | ctrl->mdts = nvme_epf->mdts_kb * SZ_1K; |
| 2026 | INIT_DELAYED_WORK(&ctrl->poll_cc, nvmet_pci_epf_poll_cc_work); |
| 2027 | INIT_DELAYED_WORK(&ctrl->poll_sqs, nvmet_pci_epf_poll_sqs_work); |
| 2028 | |
| 2029 | ret = mempool_init_kmalloc_pool(&ctrl->iod_pool, |
| 2030 | max_nr_queues * NVMET_MAX_QUEUE_SIZE, |
| 2031 | sizeof(struct nvmet_pci_epf_iod)); |
| 2032 | if (ret) { |
| 2033 | dev_err(ctrl->dev, "Failed to initialize IOD mempool\n" ); |
| 2034 | return ret; |
| 2035 | } |
| 2036 | |
| 2037 | ctrl->port = nvmet_pci_epf_find_port(ctrl, portid: nvme_epf->portid); |
| 2038 | if (!ctrl->port) { |
| 2039 | dev_err(ctrl->dev, "Port not found\n" ); |
| 2040 | ret = -EINVAL; |
| 2041 | goto out_mempool_exit; |
| 2042 | } |
| 2043 | |
| 2044 | /* Create the target controller. */ |
| 2045 | uuid_gen(u: &id); |
| 2046 | snprintf(buf: hostnqn, NVMF_NQN_SIZE, |
| 2047 | fmt: "nqn.2014-08.org.nvmexpress:uuid:%pUb" , &id); |
| 2048 | args.port = ctrl->port; |
| 2049 | args.subsysnqn = nvme_epf->subsysnqn; |
| 2050 | memset(&id, 0, sizeof(uuid_t)); |
| 2051 | args.hostid = &id; |
| 2052 | args.hostnqn = hostnqn; |
| 2053 | args.ops = &nvmet_pci_epf_fabrics_ops; |
| 2054 | |
| 2055 | ctrl->tctrl = nvmet_alloc_ctrl(args: &args); |
| 2056 | if (!ctrl->tctrl) { |
| 2057 | dev_err(ctrl->dev, "Failed to create target controller\n" ); |
| 2058 | ret = -ENOMEM; |
| 2059 | goto out_mempool_exit; |
| 2060 | } |
| 2061 | ctrl->tctrl->drvdata = ctrl; |
| 2062 | |
| 2063 | /* We do not support protection information for now. */ |
| 2064 | if (ctrl->tctrl->pi_support) { |
| 2065 | dev_err(ctrl->dev, |
| 2066 | "Protection information (PI) is not supported\n" ); |
| 2067 | ret = -ENOTSUPP; |
| 2068 | goto out_put_ctrl; |
| 2069 | } |
| 2070 | |
| 2071 | /* Allocate our queues, up to the maximum number. */ |
| 2072 | ctrl->nr_queues = min(ctrl->tctrl->subsys->max_qid + 1, max_nr_queues); |
| 2073 | ret = nvmet_pci_epf_alloc_queues(ctrl); |
| 2074 | if (ret) |
| 2075 | goto out_put_ctrl; |
| 2076 | |
| 2077 | /* |
| 2078 | * Allocate the IRQ vectors descriptors. We cannot have more than the |
| 2079 | * maximum number of queues. |
| 2080 | */ |
| 2081 | ret = nvmet_pci_epf_alloc_irq_vectors(ctrl); |
| 2082 | if (ret) |
| 2083 | goto out_free_queues; |
| 2084 | |
| 2085 | dev_info(ctrl->dev, |
| 2086 | "New PCI ctrl \"%s\", %u I/O queues, mdts %u B\n" , |
| 2087 | ctrl->tctrl->subsys->subsysnqn, ctrl->nr_queues - 1, |
| 2088 | ctrl->mdts); |
| 2089 | |
| 2090 | /* Initialize BAR 0 using the target controller CAP. */ |
| 2091 | nvmet_pci_epf_init_bar(ctrl); |
| 2092 | |
| 2093 | return 0; |
| 2094 | |
| 2095 | out_free_queues: |
| 2096 | nvmet_pci_epf_free_queues(ctrl); |
| 2097 | out_put_ctrl: |
| 2098 | nvmet_ctrl_put(ctrl: ctrl->tctrl); |
| 2099 | ctrl->tctrl = NULL; |
| 2100 | out_mempool_exit: |
| 2101 | mempool_exit(pool: &ctrl->iod_pool); |
| 2102 | return ret; |
| 2103 | } |
| 2104 | |
| 2105 | static void nvmet_pci_epf_start_ctrl(struct nvmet_pci_epf_ctrl *ctrl) |
| 2106 | { |
| 2107 | |
| 2108 | dev_info(ctrl->dev, "PCI link up\n" ); |
| 2109 | ctrl->link_up = true; |
| 2110 | |
| 2111 | schedule_delayed_work(dwork: &ctrl->poll_cc, NVMET_PCI_EPF_CC_POLL_INTERVAL); |
| 2112 | } |
| 2113 | |
| 2114 | static void nvmet_pci_epf_stop_ctrl(struct nvmet_pci_epf_ctrl *ctrl) |
| 2115 | { |
| 2116 | dev_info(ctrl->dev, "PCI link down\n" ); |
| 2117 | ctrl->link_up = false; |
| 2118 | |
| 2119 | cancel_delayed_work_sync(dwork: &ctrl->poll_cc); |
| 2120 | |
| 2121 | nvmet_pci_epf_disable_ctrl(ctrl, shutdown: false); |
| 2122 | nvmet_pci_epf_clear_ctrl_config(ctrl); |
| 2123 | } |
| 2124 | |
| 2125 | static void nvmet_pci_epf_destroy_ctrl(struct nvmet_pci_epf_ctrl *ctrl) |
| 2126 | { |
| 2127 | if (!ctrl->tctrl) |
| 2128 | return; |
| 2129 | |
| 2130 | dev_info(ctrl->dev, "Destroying PCI ctrl \"%s\"\n" , |
| 2131 | ctrl->tctrl->subsys->subsysnqn); |
| 2132 | |
| 2133 | nvmet_pci_epf_stop_ctrl(ctrl); |
| 2134 | |
| 2135 | nvmet_pci_epf_free_queues(ctrl); |
| 2136 | nvmet_pci_epf_free_irq_vectors(ctrl); |
| 2137 | |
| 2138 | nvmet_ctrl_put(ctrl: ctrl->tctrl); |
| 2139 | ctrl->tctrl = NULL; |
| 2140 | |
| 2141 | mempool_exit(pool: &ctrl->iod_pool); |
| 2142 | } |
| 2143 | |
| 2144 | static int nvmet_pci_epf_configure_bar(struct nvmet_pci_epf *nvme_epf) |
| 2145 | { |
| 2146 | struct pci_epf *epf = nvme_epf->epf; |
| 2147 | const struct pci_epc_features *epc_features = nvme_epf->epc_features; |
| 2148 | size_t reg_size, reg_bar_size; |
| 2149 | size_t msix_table_size = 0; |
| 2150 | |
| 2151 | /* |
| 2152 | * The first free BAR will be our register BAR and per NVMe |
| 2153 | * specifications, it must be BAR 0. |
| 2154 | */ |
| 2155 | if (pci_epc_get_first_free_bar(epc_features) != BAR_0) { |
| 2156 | dev_err(&epf->dev, "BAR 0 is not free\n" ); |
| 2157 | return -ENODEV; |
| 2158 | } |
| 2159 | |
| 2160 | /* |
| 2161 | * While NVMe PCIe Transport Specification 1.1, section 2.1.10, claims |
| 2162 | * that the BAR0 type is Implementation Specific, in NVMe 1.1, the type |
| 2163 | * is required to be 64-bit. Thus, for interoperability, always set the |
| 2164 | * type to 64-bit. In the rare case that the PCI EPC does not support |
| 2165 | * configuring BAR0 as 64-bit, the call to pci_epc_set_bar() will fail, |
| 2166 | * and we will return failure back to the user. |
| 2167 | */ |
| 2168 | epf->bar[BAR_0].flags |= PCI_BASE_ADDRESS_MEM_TYPE_64; |
| 2169 | |
| 2170 | /* |
| 2171 | * Calculate the size of the register bar: NVMe registers first with |
| 2172 | * enough space for the doorbells, followed by the MSI-X table |
| 2173 | * if supported. |
| 2174 | */ |
| 2175 | reg_size = NVME_REG_DBS + (NVMET_NR_QUEUES * 2 * sizeof(u32)); |
| 2176 | reg_size = ALIGN(reg_size, 8); |
| 2177 | |
| 2178 | if (epc_features->msix_capable) { |
| 2179 | size_t pba_size; |
| 2180 | |
| 2181 | msix_table_size = PCI_MSIX_ENTRY_SIZE * epf->msix_interrupts; |
| 2182 | nvme_epf->msix_table_offset = reg_size; |
| 2183 | pba_size = ALIGN(DIV_ROUND_UP(epf->msix_interrupts, 8), 8); |
| 2184 | |
| 2185 | reg_size += msix_table_size + pba_size; |
| 2186 | } |
| 2187 | |
| 2188 | if (epc_features->bar[BAR_0].type == BAR_FIXED) { |
| 2189 | if (reg_size > epc_features->bar[BAR_0].fixed_size) { |
| 2190 | dev_err(&epf->dev, |
| 2191 | "BAR 0 size %llu B too small, need %zu B\n" , |
| 2192 | epc_features->bar[BAR_0].fixed_size, |
| 2193 | reg_size); |
| 2194 | return -ENOMEM; |
| 2195 | } |
| 2196 | reg_bar_size = epc_features->bar[BAR_0].fixed_size; |
| 2197 | } else { |
| 2198 | reg_bar_size = ALIGN(reg_size, max(epc_features->align, 4096)); |
| 2199 | } |
| 2200 | |
| 2201 | nvme_epf->reg_bar = pci_epf_alloc_space(epf, size: reg_bar_size, bar: BAR_0, |
| 2202 | epc_features, type: PRIMARY_INTERFACE); |
| 2203 | if (!nvme_epf->reg_bar) { |
| 2204 | dev_err(&epf->dev, "Failed to allocate BAR 0\n" ); |
| 2205 | return -ENOMEM; |
| 2206 | } |
| 2207 | memset(nvme_epf->reg_bar, 0, reg_bar_size); |
| 2208 | |
| 2209 | return 0; |
| 2210 | } |
| 2211 | |
| 2212 | static void nvmet_pci_epf_free_bar(struct nvmet_pci_epf *nvme_epf) |
| 2213 | { |
| 2214 | struct pci_epf *epf = nvme_epf->epf; |
| 2215 | |
| 2216 | if (!nvme_epf->reg_bar) |
| 2217 | return; |
| 2218 | |
| 2219 | pci_epf_free_space(epf, addr: nvme_epf->reg_bar, bar: BAR_0, type: PRIMARY_INTERFACE); |
| 2220 | nvme_epf->reg_bar = NULL; |
| 2221 | } |
| 2222 | |
| 2223 | static void nvmet_pci_epf_clear_bar(struct nvmet_pci_epf *nvme_epf) |
| 2224 | { |
| 2225 | struct pci_epf *epf = nvme_epf->epf; |
| 2226 | |
| 2227 | pci_epc_clear_bar(epc: epf->epc, func_no: epf->func_no, vfunc_no: epf->vfunc_no, |
| 2228 | epf_bar: &epf->bar[BAR_0]); |
| 2229 | } |
| 2230 | |
| 2231 | static int nvmet_pci_epf_init_irq(struct nvmet_pci_epf *nvme_epf) |
| 2232 | { |
| 2233 | const struct pci_epc_features *epc_features = nvme_epf->epc_features; |
| 2234 | struct pci_epf *epf = nvme_epf->epf; |
| 2235 | int ret; |
| 2236 | |
| 2237 | /* Enable MSI-X if supported, otherwise, use MSI. */ |
| 2238 | if (epc_features->msix_capable && epf->msix_interrupts) { |
| 2239 | ret = pci_epc_set_msix(epc: epf->epc, func_no: epf->func_no, vfunc_no: epf->vfunc_no, |
| 2240 | nr_irqs: epf->msix_interrupts, BAR_0, |
| 2241 | offset: nvme_epf->msix_table_offset); |
| 2242 | if (ret) { |
| 2243 | dev_err(&epf->dev, "Failed to configure MSI-X\n" ); |
| 2244 | return ret; |
| 2245 | } |
| 2246 | |
| 2247 | nvme_epf->nr_vectors = epf->msix_interrupts; |
| 2248 | nvme_epf->irq_type = PCI_IRQ_MSIX; |
| 2249 | |
| 2250 | return 0; |
| 2251 | } |
| 2252 | |
| 2253 | if (epc_features->msi_capable && epf->msi_interrupts) { |
| 2254 | ret = pci_epc_set_msi(epc: epf->epc, func_no: epf->func_no, vfunc_no: epf->vfunc_no, |
| 2255 | nr_irqs: epf->msi_interrupts); |
| 2256 | if (ret) { |
| 2257 | dev_err(&epf->dev, "Failed to configure MSI\n" ); |
| 2258 | return ret; |
| 2259 | } |
| 2260 | |
| 2261 | nvme_epf->nr_vectors = epf->msi_interrupts; |
| 2262 | nvme_epf->irq_type = PCI_IRQ_MSI; |
| 2263 | |
| 2264 | return 0; |
| 2265 | } |
| 2266 | |
| 2267 | /* MSI and MSI-X are not supported: fall back to INTx. */ |
| 2268 | nvme_epf->nr_vectors = 1; |
| 2269 | nvme_epf->irq_type = PCI_IRQ_INTX; |
| 2270 | |
| 2271 | return 0; |
| 2272 | } |
| 2273 | |
| 2274 | static int nvmet_pci_epf_epc_init(struct pci_epf *epf) |
| 2275 | { |
| 2276 | struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf); |
| 2277 | const struct pci_epc_features *epc_features = nvme_epf->epc_features; |
| 2278 | struct nvmet_pci_epf_ctrl *ctrl = &nvme_epf->ctrl; |
| 2279 | unsigned int max_nr_queues = NVMET_NR_QUEUES; |
| 2280 | int ret; |
| 2281 | |
| 2282 | /* For now, do not support virtual functions. */ |
| 2283 | if (epf->vfunc_no > 0) { |
| 2284 | dev_err(&epf->dev, "Virtual functions are not supported\n" ); |
| 2285 | return -EINVAL; |
| 2286 | } |
| 2287 | |
| 2288 | /* |
| 2289 | * Cap the maximum number of queues we can support on the controller |
| 2290 | * with the number of IRQs we can use. |
| 2291 | */ |
| 2292 | if (epc_features->msix_capable && epf->msix_interrupts) { |
| 2293 | dev_info(&epf->dev, |
| 2294 | "PCI endpoint controller supports MSI-X, %u vectors\n" , |
| 2295 | epf->msix_interrupts); |
| 2296 | max_nr_queues = min(max_nr_queues, epf->msix_interrupts); |
| 2297 | } else if (epc_features->msi_capable && epf->msi_interrupts) { |
| 2298 | dev_info(&epf->dev, |
| 2299 | "PCI endpoint controller supports MSI, %u vectors\n" , |
| 2300 | epf->msi_interrupts); |
| 2301 | max_nr_queues = min(max_nr_queues, epf->msi_interrupts); |
| 2302 | } |
| 2303 | |
| 2304 | if (max_nr_queues < 2) { |
| 2305 | dev_err(&epf->dev, "Invalid maximum number of queues %u\n" , |
| 2306 | max_nr_queues); |
| 2307 | return -EINVAL; |
| 2308 | } |
| 2309 | |
| 2310 | /* Create the target controller. */ |
| 2311 | ret = nvmet_pci_epf_create_ctrl(nvme_epf, max_nr_queues); |
| 2312 | if (ret) { |
| 2313 | dev_err(&epf->dev, |
| 2314 | "Failed to create NVMe PCI target controller (err=%d)\n" , |
| 2315 | ret); |
| 2316 | return ret; |
| 2317 | } |
| 2318 | |
| 2319 | /* Set device ID, class, etc. */ |
| 2320 | epf->header->vendorid = ctrl->tctrl->subsys->vendor_id; |
| 2321 | epf->header->subsys_vendor_id = ctrl->tctrl->subsys->subsys_vendor_id; |
| 2322 | ret = pci_epc_write_header(epc: epf->epc, func_no: epf->func_no, vfunc_no: epf->vfunc_no, |
| 2323 | hdr: epf->header); |
| 2324 | if (ret) { |
| 2325 | dev_err(&epf->dev, |
| 2326 | "Failed to write configuration header (err=%d)\n" , ret); |
| 2327 | goto out_destroy_ctrl; |
| 2328 | } |
| 2329 | |
| 2330 | ret = pci_epc_set_bar(epc: epf->epc, func_no: epf->func_no, vfunc_no: epf->vfunc_no, |
| 2331 | epf_bar: &epf->bar[BAR_0]); |
| 2332 | if (ret) { |
| 2333 | dev_err(&epf->dev, "Failed to set BAR 0 (err=%d)\n" , ret); |
| 2334 | goto out_destroy_ctrl; |
| 2335 | } |
| 2336 | |
| 2337 | /* |
| 2338 | * Enable interrupts and start polling the controller BAR if we do not |
| 2339 | * have a link up notifier. |
| 2340 | */ |
| 2341 | ret = nvmet_pci_epf_init_irq(nvme_epf); |
| 2342 | if (ret) |
| 2343 | goto out_clear_bar; |
| 2344 | |
| 2345 | if (!epc_features->linkup_notifier) |
| 2346 | nvmet_pci_epf_start_ctrl(ctrl: &nvme_epf->ctrl); |
| 2347 | |
| 2348 | return 0; |
| 2349 | |
| 2350 | out_clear_bar: |
| 2351 | nvmet_pci_epf_clear_bar(nvme_epf); |
| 2352 | out_destroy_ctrl: |
| 2353 | nvmet_pci_epf_destroy_ctrl(ctrl: &nvme_epf->ctrl); |
| 2354 | return ret; |
| 2355 | } |
| 2356 | |
| 2357 | static void nvmet_pci_epf_epc_deinit(struct pci_epf *epf) |
| 2358 | { |
| 2359 | struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf); |
| 2360 | struct nvmet_pci_epf_ctrl *ctrl = &nvme_epf->ctrl; |
| 2361 | |
| 2362 | nvmet_pci_epf_destroy_ctrl(ctrl); |
| 2363 | |
| 2364 | nvmet_pci_epf_deinit_dma(nvme_epf); |
| 2365 | nvmet_pci_epf_clear_bar(nvme_epf); |
| 2366 | } |
| 2367 | |
| 2368 | static int nvmet_pci_epf_link_up(struct pci_epf *epf) |
| 2369 | { |
| 2370 | struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf); |
| 2371 | struct nvmet_pci_epf_ctrl *ctrl = &nvme_epf->ctrl; |
| 2372 | |
| 2373 | nvmet_pci_epf_start_ctrl(ctrl); |
| 2374 | |
| 2375 | return 0; |
| 2376 | } |
| 2377 | |
| 2378 | static int nvmet_pci_epf_link_down(struct pci_epf *epf) |
| 2379 | { |
| 2380 | struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf); |
| 2381 | struct nvmet_pci_epf_ctrl *ctrl = &nvme_epf->ctrl; |
| 2382 | |
| 2383 | nvmet_pci_epf_stop_ctrl(ctrl); |
| 2384 | |
| 2385 | return 0; |
| 2386 | } |
| 2387 | |
| 2388 | static const struct pci_epc_event_ops nvmet_pci_epf_event_ops = { |
| 2389 | .epc_init = nvmet_pci_epf_epc_init, |
| 2390 | .epc_deinit = nvmet_pci_epf_epc_deinit, |
| 2391 | .link_up = nvmet_pci_epf_link_up, |
| 2392 | .link_down = nvmet_pci_epf_link_down, |
| 2393 | }; |
| 2394 | |
| 2395 | static int nvmet_pci_epf_bind(struct pci_epf *epf) |
| 2396 | { |
| 2397 | struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf); |
| 2398 | const struct pci_epc_features *epc_features; |
| 2399 | struct pci_epc *epc = epf->epc; |
| 2400 | int ret; |
| 2401 | |
| 2402 | if (WARN_ON_ONCE(!epc)) |
| 2403 | return -EINVAL; |
| 2404 | |
| 2405 | epc_features = pci_epc_get_features(epc, func_no: epf->func_no, vfunc_no: epf->vfunc_no); |
| 2406 | if (!epc_features) { |
| 2407 | dev_err(&epf->dev, "epc_features not implemented\n" ); |
| 2408 | return -EOPNOTSUPP; |
| 2409 | } |
| 2410 | nvme_epf->epc_features = epc_features; |
| 2411 | |
| 2412 | ret = nvmet_pci_epf_configure_bar(nvme_epf); |
| 2413 | if (ret) |
| 2414 | return ret; |
| 2415 | |
| 2416 | nvmet_pci_epf_init_dma(nvme_epf); |
| 2417 | |
| 2418 | return 0; |
| 2419 | } |
| 2420 | |
| 2421 | static void nvmet_pci_epf_unbind(struct pci_epf *epf) |
| 2422 | { |
| 2423 | struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf); |
| 2424 | struct pci_epc *epc = epf->epc; |
| 2425 | |
| 2426 | nvmet_pci_epf_destroy_ctrl(ctrl: &nvme_epf->ctrl); |
| 2427 | |
| 2428 | if (epc->init_complete) { |
| 2429 | nvmet_pci_epf_deinit_dma(nvme_epf); |
| 2430 | nvmet_pci_epf_clear_bar(nvme_epf); |
| 2431 | } |
| 2432 | |
| 2433 | nvmet_pci_epf_free_bar(nvme_epf); |
| 2434 | } |
| 2435 | |
| 2436 | static struct pci_epf_header = { |
| 2437 | .vendorid = PCI_ANY_ID, |
| 2438 | .deviceid = PCI_ANY_ID, |
| 2439 | .progif_code = 0x02, /* NVM Express */ |
| 2440 | .baseclass_code = PCI_BASE_CLASS_STORAGE, |
| 2441 | .subclass_code = 0x08, /* Non-Volatile Memory controller */ |
| 2442 | .interrupt_pin = PCI_INTERRUPT_INTA, |
| 2443 | }; |
| 2444 | |
| 2445 | static int nvmet_pci_epf_probe(struct pci_epf *epf, |
| 2446 | const struct pci_epf_device_id *id) |
| 2447 | { |
| 2448 | struct nvmet_pci_epf *nvme_epf; |
| 2449 | int ret; |
| 2450 | |
| 2451 | nvme_epf = devm_kzalloc(dev: &epf->dev, size: sizeof(*nvme_epf), GFP_KERNEL); |
| 2452 | if (!nvme_epf) |
| 2453 | return -ENOMEM; |
| 2454 | |
| 2455 | ret = devm_mutex_init(&epf->dev, &nvme_epf->mmio_lock); |
| 2456 | if (ret) |
| 2457 | return ret; |
| 2458 | |
| 2459 | nvme_epf->epf = epf; |
| 2460 | nvme_epf->mdts_kb = NVMET_PCI_EPF_MDTS_KB; |
| 2461 | |
| 2462 | epf->event_ops = &nvmet_pci_epf_event_ops; |
| 2463 | epf->header = &nvme_epf_pci_header; |
| 2464 | epf_set_drvdata(epf, data: nvme_epf); |
| 2465 | |
| 2466 | return 0; |
| 2467 | } |
| 2468 | |
| 2469 | #define to_nvme_epf(epf_group) \ |
| 2470 | container_of(epf_group, struct nvmet_pci_epf, group) |
| 2471 | |
| 2472 | static ssize_t nvmet_pci_epf_portid_show(struct config_item *item, char *page) |
| 2473 | { |
| 2474 | struct config_group *group = to_config_group(item); |
| 2475 | struct nvmet_pci_epf *nvme_epf = to_nvme_epf(group); |
| 2476 | |
| 2477 | return sysfs_emit(buf: page, fmt: "%u\n" , le16_to_cpu(nvme_epf->portid)); |
| 2478 | } |
| 2479 | |
| 2480 | static ssize_t nvmet_pci_epf_portid_store(struct config_item *item, |
| 2481 | const char *page, size_t len) |
| 2482 | { |
| 2483 | struct config_group *group = to_config_group(item); |
| 2484 | struct nvmet_pci_epf *nvme_epf = to_nvme_epf(group); |
| 2485 | u16 portid; |
| 2486 | |
| 2487 | /* Do not allow setting this when the function is already started. */ |
| 2488 | if (nvme_epf->ctrl.tctrl) |
| 2489 | return -EBUSY; |
| 2490 | |
| 2491 | if (!len) |
| 2492 | return -EINVAL; |
| 2493 | |
| 2494 | if (kstrtou16(s: page, base: 0, res: &portid)) |
| 2495 | return -EINVAL; |
| 2496 | |
| 2497 | nvme_epf->portid = cpu_to_le16(portid); |
| 2498 | |
| 2499 | return len; |
| 2500 | } |
| 2501 | |
| 2502 | CONFIGFS_ATTR(nvmet_pci_epf_, portid); |
| 2503 | |
| 2504 | static ssize_t nvmet_pci_epf_subsysnqn_show(struct config_item *item, |
| 2505 | char *page) |
| 2506 | { |
| 2507 | struct config_group *group = to_config_group(item); |
| 2508 | struct nvmet_pci_epf *nvme_epf = to_nvme_epf(group); |
| 2509 | |
| 2510 | return sysfs_emit(buf: page, fmt: "%s\n" , nvme_epf->subsysnqn); |
| 2511 | } |
| 2512 | |
| 2513 | static ssize_t nvmet_pci_epf_subsysnqn_store(struct config_item *item, |
| 2514 | const char *page, size_t len) |
| 2515 | { |
| 2516 | struct config_group *group = to_config_group(item); |
| 2517 | struct nvmet_pci_epf *nvme_epf = to_nvme_epf(group); |
| 2518 | |
| 2519 | /* Do not allow setting this when the function is already started. */ |
| 2520 | if (nvme_epf->ctrl.tctrl) |
| 2521 | return -EBUSY; |
| 2522 | |
| 2523 | if (!len) |
| 2524 | return -EINVAL; |
| 2525 | |
| 2526 | strscpy(nvme_epf->subsysnqn, page, len); |
| 2527 | |
| 2528 | return len; |
| 2529 | } |
| 2530 | |
| 2531 | CONFIGFS_ATTR(nvmet_pci_epf_, subsysnqn); |
| 2532 | |
| 2533 | static ssize_t nvmet_pci_epf_mdts_kb_show(struct config_item *item, char *page) |
| 2534 | { |
| 2535 | struct config_group *group = to_config_group(item); |
| 2536 | struct nvmet_pci_epf *nvme_epf = to_nvme_epf(group); |
| 2537 | |
| 2538 | return sysfs_emit(buf: page, fmt: "%u\n" , nvme_epf->mdts_kb); |
| 2539 | } |
| 2540 | |
| 2541 | static ssize_t nvmet_pci_epf_mdts_kb_store(struct config_item *item, |
| 2542 | const char *page, size_t len) |
| 2543 | { |
| 2544 | struct config_group *group = to_config_group(item); |
| 2545 | struct nvmet_pci_epf *nvme_epf = to_nvme_epf(group); |
| 2546 | unsigned long mdts_kb; |
| 2547 | int ret; |
| 2548 | |
| 2549 | if (nvme_epf->ctrl.tctrl) |
| 2550 | return -EBUSY; |
| 2551 | |
| 2552 | ret = kstrtoul(s: page, base: 0, res: &mdts_kb); |
| 2553 | if (ret) |
| 2554 | return ret; |
| 2555 | if (!mdts_kb) |
| 2556 | mdts_kb = NVMET_PCI_EPF_MDTS_KB; |
| 2557 | else if (mdts_kb > NVMET_PCI_EPF_MAX_MDTS_KB) |
| 2558 | mdts_kb = NVMET_PCI_EPF_MAX_MDTS_KB; |
| 2559 | |
| 2560 | if (!is_power_of_2(n: mdts_kb)) |
| 2561 | return -EINVAL; |
| 2562 | |
| 2563 | nvme_epf->mdts_kb = mdts_kb; |
| 2564 | |
| 2565 | return len; |
| 2566 | } |
| 2567 | |
| 2568 | CONFIGFS_ATTR(nvmet_pci_epf_, mdts_kb); |
| 2569 | |
| 2570 | static struct configfs_attribute *nvmet_pci_epf_attrs[] = { |
| 2571 | &nvmet_pci_epf_attr_portid, |
| 2572 | &nvmet_pci_epf_attr_subsysnqn, |
| 2573 | &nvmet_pci_epf_attr_mdts_kb, |
| 2574 | NULL, |
| 2575 | }; |
| 2576 | |
| 2577 | static const struct config_item_type nvmet_pci_epf_group_type = { |
| 2578 | .ct_attrs = nvmet_pci_epf_attrs, |
| 2579 | .ct_owner = THIS_MODULE, |
| 2580 | }; |
| 2581 | |
| 2582 | static struct config_group *nvmet_pci_epf_add_cfs(struct pci_epf *epf, |
| 2583 | struct config_group *group) |
| 2584 | { |
| 2585 | struct nvmet_pci_epf *nvme_epf = epf_get_drvdata(epf); |
| 2586 | |
| 2587 | config_group_init_type_name(group: &nvme_epf->group, name: "nvme" , |
| 2588 | type: &nvmet_pci_epf_group_type); |
| 2589 | |
| 2590 | return &nvme_epf->group; |
| 2591 | } |
| 2592 | |
| 2593 | static const struct pci_epf_device_id nvmet_pci_epf_ids[] = { |
| 2594 | { .name = "nvmet_pci_epf" }, |
| 2595 | {}, |
| 2596 | }; |
| 2597 | |
| 2598 | static struct pci_epf_ops nvmet_pci_epf_ops = { |
| 2599 | .bind = nvmet_pci_epf_bind, |
| 2600 | .unbind = nvmet_pci_epf_unbind, |
| 2601 | .add_cfs = nvmet_pci_epf_add_cfs, |
| 2602 | }; |
| 2603 | |
| 2604 | static struct pci_epf_driver nvmet_pci_epf_driver = { |
| 2605 | .driver.name = "nvmet_pci_epf" , |
| 2606 | .probe = nvmet_pci_epf_probe, |
| 2607 | .id_table = nvmet_pci_epf_ids, |
| 2608 | .ops = &nvmet_pci_epf_ops, |
| 2609 | .owner = THIS_MODULE, |
| 2610 | }; |
| 2611 | |
| 2612 | static int __init nvmet_pci_epf_init_module(void) |
| 2613 | { |
| 2614 | int ret; |
| 2615 | |
| 2616 | ret = pci_epf_register_driver(&nvmet_pci_epf_driver); |
| 2617 | if (ret) |
| 2618 | return ret; |
| 2619 | |
| 2620 | ret = nvmet_register_transport(ops: &nvmet_pci_epf_fabrics_ops); |
| 2621 | if (ret) { |
| 2622 | pci_epf_unregister_driver(driver: &nvmet_pci_epf_driver); |
| 2623 | return ret; |
| 2624 | } |
| 2625 | |
| 2626 | return 0; |
| 2627 | } |
| 2628 | |
| 2629 | static void __exit nvmet_pci_epf_cleanup_module(void) |
| 2630 | { |
| 2631 | nvmet_unregister_transport(ops: &nvmet_pci_epf_fabrics_ops); |
| 2632 | pci_epf_unregister_driver(driver: &nvmet_pci_epf_driver); |
| 2633 | } |
| 2634 | |
| 2635 | module_init(nvmet_pci_epf_init_module); |
| 2636 | module_exit(nvmet_pci_epf_cleanup_module); |
| 2637 | |
| 2638 | MODULE_DESCRIPTION("NVMe PCI Endpoint Function target driver" ); |
| 2639 | MODULE_AUTHOR("Damien Le Moal <dlemoal@kernel.org>" ); |
| 2640 | MODULE_LICENSE("GPL" ); |
| 2641 | |