| 1 | // SPDX-License-Identifier: GPL-2.0+ |
| 2 | |
| 3 | /* |
| 4 | * NXP FlexSPI(FSPI) controller driver. |
| 5 | * |
| 6 | * Copyright 2019-2020 NXP |
| 7 | * Copyright 2020 Puresoftware Ltd. |
| 8 | * |
| 9 | * FlexSPI is a flexsible SPI host controller which supports two SPI |
| 10 | * channels and up to 4 external devices. Each channel supports |
| 11 | * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional |
| 12 | * data lines). |
| 13 | * |
| 14 | * FlexSPI controller is driven by the LUT(Look-up Table) registers |
| 15 | * LUT registers are a look-up-table for sequences of instructions. |
| 16 | * A valid sequence consists of four LUT registers. |
| 17 | * Maximum 32 LUT sequences can be programmed simultaneously. |
| 18 | * |
| 19 | * LUTs are being created at run-time based on the commands passed |
| 20 | * from the spi-mem framework, thus using single LUT index. |
| 21 | * |
| 22 | * Software triggered Flash read/write access by IP Bus. |
| 23 | * |
| 24 | * Memory mapped read access by AHB Bus. |
| 25 | * |
| 26 | * Based on SPI MEM interface and spi-fsl-qspi.c driver. |
| 27 | * |
| 28 | * Author: |
| 29 | * Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com> |
| 30 | * Boris Brezillon <bbrezillon@kernel.org> |
| 31 | * Frieder Schrempf <frieder.schrempf@kontron.de> |
| 32 | */ |
| 33 | |
| 34 | #include <linux/acpi.h> |
| 35 | #include <linux/bitops.h> |
| 36 | #include <linux/bitfield.h> |
| 37 | #include <linux/clk.h> |
| 38 | #include <linux/completion.h> |
| 39 | #include <linux/delay.h> |
| 40 | #include <linux/err.h> |
| 41 | #include <linux/errno.h> |
| 42 | #include <linux/interrupt.h> |
| 43 | #include <linux/io.h> |
| 44 | #include <linux/iopoll.h> |
| 45 | #include <linux/jiffies.h> |
| 46 | #include <linux/kernel.h> |
| 47 | #include <linux/module.h> |
| 48 | #include <linux/mutex.h> |
| 49 | #include <linux/of.h> |
| 50 | #include <linux/platform_device.h> |
| 51 | #include <linux/pinctrl/consumer.h> |
| 52 | #include <linux/pm_runtime.h> |
| 53 | #include <linux/pm_qos.h> |
| 54 | #include <linux/regmap.h> |
| 55 | #include <linux/sizes.h> |
| 56 | #include <linux/sys_soc.h> |
| 57 | |
| 58 | #include <linux/mfd/syscon.h> |
| 59 | #include <linux/spi/spi.h> |
| 60 | #include <linux/spi/spi-mem.h> |
| 61 | |
| 62 | /* runtime pm timeout */ |
| 63 | #define FSPI_RPM_TIMEOUT 50 /* 50ms */ |
| 64 | |
| 65 | /* Registers used by the driver */ |
| 66 | #define FSPI_MCR0 0x00 |
| 67 | #define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24) |
| 68 | #define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16) |
| 69 | #define FSPI_MCR0_LEARN_EN BIT(15) |
| 70 | #define FSPI_MCR0_SCRFRUN_EN BIT(14) |
| 71 | #define FSPI_MCR0_OCTCOMB_EN BIT(13) |
| 72 | #define FSPI_MCR0_DOZE_EN BIT(12) |
| 73 | #define FSPI_MCR0_HSEN BIT(11) |
| 74 | #define FSPI_MCR0_SERCLKDIV BIT(8) |
| 75 | #define FSPI_MCR0_ATDF_EN BIT(7) |
| 76 | #define FSPI_MCR0_ARDF_EN BIT(6) |
| 77 | #define FSPI_MCR0_RXCLKSRC(x) ((x) << 4) |
| 78 | #define FSPI_MCR0_END_CFG(x) ((x) << 2) |
| 79 | #define FSPI_MCR0_MDIS BIT(1) |
| 80 | #define FSPI_MCR0_SWRST BIT(0) |
| 81 | |
| 82 | #define FSPI_MCR1 0x04 |
| 83 | #define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16) |
| 84 | #define FSPI_MCR1_AHB_TIMEOUT(x) (x) |
| 85 | |
| 86 | #define FSPI_MCR2 0x08 |
| 87 | #define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24) |
| 88 | #define FSPI_MCR2_SAMEDEVICEEN BIT(15) |
| 89 | #define FSPI_MCR2_CLRLRPHS BIT(14) |
| 90 | #define FSPI_MCR2_ABRDATSZ BIT(8) |
| 91 | #define FSPI_MCR2_ABRLEARN BIT(7) |
| 92 | #define FSPI_MCR2_ABR_READ BIT(6) |
| 93 | #define FSPI_MCR2_ABRWRITE BIT(5) |
| 94 | #define FSPI_MCR2_ABRDUMMY BIT(4) |
| 95 | #define FSPI_MCR2_ABR_MODE BIT(3) |
| 96 | #define FSPI_MCR2_ABRCADDR BIT(2) |
| 97 | #define FSPI_MCR2_ABRRADDR BIT(1) |
| 98 | #define FSPI_MCR2_ABR_CMD BIT(0) |
| 99 | |
| 100 | #define FSPI_AHBCR 0x0c |
| 101 | #define FSPI_AHBCR_RDADDROPT BIT(6) |
| 102 | #define FSPI_AHBCR_PREF_EN BIT(5) |
| 103 | #define FSPI_AHBCR_BUFF_EN BIT(4) |
| 104 | #define FSPI_AHBCR_CACH_EN BIT(3) |
| 105 | #define FSPI_AHBCR_CLRTXBUF BIT(2) |
| 106 | #define FSPI_AHBCR_CLRRXBUF BIT(1) |
| 107 | #define FSPI_AHBCR_PAR_EN BIT(0) |
| 108 | |
| 109 | #define FSPI_INTEN 0x10 |
| 110 | #define FSPI_INTEN_SCLKSBWR BIT(9) |
| 111 | #define FSPI_INTEN_SCLKSBRD BIT(8) |
| 112 | #define FSPI_INTEN_DATALRNFL BIT(7) |
| 113 | #define FSPI_INTEN_IPTXWE BIT(6) |
| 114 | #define FSPI_INTEN_IPRXWA BIT(5) |
| 115 | #define FSPI_INTEN_AHBCMDERR BIT(4) |
| 116 | #define FSPI_INTEN_IPCMDERR BIT(3) |
| 117 | #define FSPI_INTEN_AHBCMDGE BIT(2) |
| 118 | #define FSPI_INTEN_IPCMDGE BIT(1) |
| 119 | #define FSPI_INTEN_IPCMDDONE BIT(0) |
| 120 | |
| 121 | #define FSPI_INTR 0x14 |
| 122 | #define FSPI_INTR_SCLKSBWR BIT(9) |
| 123 | #define FSPI_INTR_SCLKSBRD BIT(8) |
| 124 | #define FSPI_INTR_DATALRNFL BIT(7) |
| 125 | #define FSPI_INTR_IPTXWE BIT(6) |
| 126 | #define FSPI_INTR_IPRXWA BIT(5) |
| 127 | #define FSPI_INTR_AHBCMDERR BIT(4) |
| 128 | #define FSPI_INTR_IPCMDERR BIT(3) |
| 129 | #define FSPI_INTR_AHBCMDGE BIT(2) |
| 130 | #define FSPI_INTR_IPCMDGE BIT(1) |
| 131 | #define FSPI_INTR_IPCMDDONE BIT(0) |
| 132 | |
| 133 | #define FSPI_LUTKEY 0x18 |
| 134 | #define FSPI_LUTKEY_VALUE 0x5AF05AF0 |
| 135 | |
| 136 | #define FSPI_LCKCR 0x1C |
| 137 | |
| 138 | #define FSPI_LCKER_LOCK 0x1 |
| 139 | #define FSPI_LCKER_UNLOCK 0x2 |
| 140 | |
| 141 | #define FSPI_BUFXCR_INVALID_MSTRID 0xE |
| 142 | #define FSPI_AHBRX_BUF0CR0 0x20 |
| 143 | #define FSPI_AHBRX_BUF1CR0 0x24 |
| 144 | #define FSPI_AHBRX_BUF2CR0 0x28 |
| 145 | #define FSPI_AHBRX_BUF3CR0 0x2C |
| 146 | #define FSPI_AHBRX_BUF4CR0 0x30 |
| 147 | #define FSPI_AHBRX_BUF5CR0 0x34 |
| 148 | #define FSPI_AHBRX_BUF6CR0 0x38 |
| 149 | #define FSPI_AHBRX_BUF7CR0 0x3C |
| 150 | #define FSPI_AHBRXBUF0CR7_PREF BIT(31) |
| 151 | |
| 152 | #define FSPI_AHBRX_BUF0CR1 0x40 |
| 153 | #define FSPI_AHBRX_BUF1CR1 0x44 |
| 154 | #define FSPI_AHBRX_BUF2CR1 0x48 |
| 155 | #define FSPI_AHBRX_BUF3CR1 0x4C |
| 156 | #define FSPI_AHBRX_BUF4CR1 0x50 |
| 157 | #define FSPI_AHBRX_BUF5CR1 0x54 |
| 158 | #define FSPI_AHBRX_BUF6CR1 0x58 |
| 159 | #define FSPI_AHBRX_BUF7CR1 0x5C |
| 160 | |
| 161 | #define FSPI_FLSHA1CR0 0x60 |
| 162 | #define FSPI_FLSHA2CR0 0x64 |
| 163 | #define FSPI_FLSHB1CR0 0x68 |
| 164 | #define FSPI_FLSHB2CR0 0x6C |
| 165 | #define FSPI_FLSHXCR0_SZ_KB 10 |
| 166 | #define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB) |
| 167 | |
| 168 | #define FSPI_FLSHA1CR1 0x70 |
| 169 | #define FSPI_FLSHA2CR1 0x74 |
| 170 | #define FSPI_FLSHB1CR1 0x78 |
| 171 | #define FSPI_FLSHB2CR1 0x7C |
| 172 | #define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16) |
| 173 | #define FSPI_FLSHXCR1_CAS(x) ((x) << 11) |
| 174 | #define FSPI_FLSHXCR1_WA BIT(10) |
| 175 | #define FSPI_FLSHXCR1_TCSH(x) ((x) << 5) |
| 176 | #define FSPI_FLSHXCR1_TCSS(x) (x) |
| 177 | |
| 178 | #define FSPI_FLSHA1CR2 0x80 |
| 179 | #define FSPI_FLSHA2CR2 0x84 |
| 180 | #define FSPI_FLSHB1CR2 0x88 |
| 181 | #define FSPI_FLSHB2CR2 0x8C |
| 182 | #define FSPI_FLSHXCR2_CLRINSP BIT(24) |
| 183 | #define FSPI_FLSHXCR2_AWRWAIT BIT(16) |
| 184 | #define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13 |
| 185 | #define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8 |
| 186 | #define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5 |
| 187 | #define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0 |
| 188 | |
| 189 | #define FSPI_IPCR0 0xA0 |
| 190 | |
| 191 | #define FSPI_IPCR1 0xA4 |
| 192 | #define FSPI_IPCR1_IPAREN BIT(31) |
| 193 | #define FSPI_IPCR1_SEQNUM_SHIFT 24 |
| 194 | #define FSPI_IPCR1_SEQID_SHIFT 16 |
| 195 | #define FSPI_IPCR1_IDATSZ(x) (x) |
| 196 | |
| 197 | #define FSPI_IPCMD 0xB0 |
| 198 | #define FSPI_IPCMD_TRG BIT(0) |
| 199 | |
| 200 | #define FSPI_DLPR 0xB4 |
| 201 | |
| 202 | #define FSPI_IPRXFCR 0xB8 |
| 203 | #define FSPI_IPRXFCR_CLR BIT(0) |
| 204 | #define FSPI_IPRXFCR_DMA_EN BIT(1) |
| 205 | #define FSPI_IPRXFCR_WMRK(x) ((x) << 2) |
| 206 | |
| 207 | #define FSPI_IPTXFCR 0xBC |
| 208 | #define FSPI_IPTXFCR_CLR BIT(0) |
| 209 | #define FSPI_IPTXFCR_DMA_EN BIT(1) |
| 210 | #define FSPI_IPTXFCR_WMRK(x) ((x) << 2) |
| 211 | |
| 212 | #define FSPI_DLLACR 0xC0 |
| 213 | #define FSPI_DLLACR_OVRDEN BIT(8) |
| 214 | #define FSPI_DLLACR_SLVDLY(x) ((x) << 3) |
| 215 | #define FSPI_DLLACR_DLLRESET BIT(1) |
| 216 | #define FSPI_DLLACR_DLLEN BIT(0) |
| 217 | |
| 218 | #define FSPI_DLLBCR 0xC4 |
| 219 | #define FSPI_DLLBCR_OVRDEN BIT(8) |
| 220 | #define FSPI_DLLBCR_SLVDLY(x) ((x) << 3) |
| 221 | #define FSPI_DLLBCR_DLLRESET BIT(1) |
| 222 | #define FSPI_DLLBCR_DLLEN BIT(0) |
| 223 | |
| 224 | #define FSPI_STS0 0xE0 |
| 225 | #define FSPI_STS0_DLPHB(x) ((x) << 8) |
| 226 | #define FSPI_STS0_DLPHA(x) ((x) << 4) |
| 227 | #define FSPI_STS0_CMD_SRC(x) ((x) << 2) |
| 228 | #define FSPI_STS0_ARB_IDLE BIT(1) |
| 229 | #define FSPI_STS0_SEQ_IDLE BIT(0) |
| 230 | |
| 231 | #define FSPI_STS1 0xE4 |
| 232 | #define FSPI_STS1_IP_ERRCD(x) ((x) << 24) |
| 233 | #define FSPI_STS1_IP_ERRID(x) ((x) << 16) |
| 234 | #define FSPI_STS1_AHB_ERRCD(x) ((x) << 8) |
| 235 | #define FSPI_STS1_AHB_ERRID(x) (x) |
| 236 | |
| 237 | #define FSPI_STS2 0xE8 |
| 238 | #define FSPI_STS2_BREFLOCK BIT(17) |
| 239 | #define FSPI_STS2_BSLVLOCK BIT(16) |
| 240 | #define FSPI_STS2_AREFLOCK BIT(1) |
| 241 | #define FSPI_STS2_ASLVLOCK BIT(0) |
| 242 | #define FSPI_STS2_AB_LOCK (FSPI_STS2_BREFLOCK | \ |
| 243 | FSPI_STS2_BSLVLOCK | \ |
| 244 | FSPI_STS2_AREFLOCK | \ |
| 245 | FSPI_STS2_ASLVLOCK) |
| 246 | |
| 247 | #define FSPI_AHBSPNST 0xEC |
| 248 | #define FSPI_AHBSPNST_DATLFT(x) ((x) << 16) |
| 249 | #define FSPI_AHBSPNST_BUFID(x) ((x) << 1) |
| 250 | #define FSPI_AHBSPNST_ACTIVE BIT(0) |
| 251 | |
| 252 | #define FSPI_IPRXFSTS 0xF0 |
| 253 | #define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16) |
| 254 | #define FSPI_IPRXFSTS_FILL(x) (x) |
| 255 | |
| 256 | #define FSPI_IPTXFSTS 0xF4 |
| 257 | #define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16) |
| 258 | #define FSPI_IPTXFSTS_FILL(x) (x) |
| 259 | |
| 260 | #define FSPI_RFDR 0x100 |
| 261 | #define FSPI_TFDR 0x180 |
| 262 | |
| 263 | #define FSPI_LUT_BASE 0x200 |
| 264 | |
| 265 | /* register map end */ |
| 266 | |
| 267 | /* Instruction set for the LUT register. */ |
| 268 | #define LUT_STOP 0x00 |
| 269 | #define LUT_CMD 0x01 |
| 270 | #define LUT_ADDR 0x02 |
| 271 | #define LUT_CADDR_SDR 0x03 |
| 272 | #define LUT_MODE 0x04 |
| 273 | #define LUT_MODE2 0x05 |
| 274 | #define LUT_MODE4 0x06 |
| 275 | #define LUT_MODE8 0x07 |
| 276 | #define LUT_NXP_WRITE 0x08 |
| 277 | #define LUT_NXP_READ 0x09 |
| 278 | #define LUT_LEARN_SDR 0x0A |
| 279 | #define LUT_DATSZ_SDR 0x0B |
| 280 | #define LUT_DUMMY 0x0C |
| 281 | #define LUT_DUMMY_RWDS_SDR 0x0D |
| 282 | #define LUT_JMP_ON_CS 0x1F |
| 283 | #define LUT_CMD_DDR 0x21 |
| 284 | #define LUT_ADDR_DDR 0x22 |
| 285 | #define LUT_CADDR_DDR 0x23 |
| 286 | #define LUT_MODE_DDR 0x24 |
| 287 | #define LUT_MODE2_DDR 0x25 |
| 288 | #define LUT_MODE4_DDR 0x26 |
| 289 | #define LUT_MODE8_DDR 0x27 |
| 290 | #define LUT_WRITE_DDR 0x28 |
| 291 | #define LUT_READ_DDR 0x29 |
| 292 | #define LUT_LEARN_DDR 0x2A |
| 293 | #define LUT_DATSZ_DDR 0x2B |
| 294 | #define LUT_DUMMY_DDR 0x2C |
| 295 | #define LUT_DUMMY_RWDS_DDR 0x2D |
| 296 | |
| 297 | /* |
| 298 | * Calculate number of required PAD bits for LUT register. |
| 299 | * |
| 300 | * The pad stands for the number of IO lines [0:7]. |
| 301 | * For example, the octal read needs eight IO lines, |
| 302 | * so you should use LUT_PAD(8). This macro |
| 303 | * returns 3 i.e. use eight (2^3) IP lines for read. |
| 304 | */ |
| 305 | #define LUT_PAD(x) (fls(x) - 1) |
| 306 | |
| 307 | /* |
| 308 | * Macro for constructing the LUT entries with the following |
| 309 | * register layout: |
| 310 | * |
| 311 | * --------------------------------------------------- |
| 312 | * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | |
| 313 | * --------------------------------------------------- |
| 314 | */ |
| 315 | #define PAD_SHIFT 8 |
| 316 | #define INSTR_SHIFT 10 |
| 317 | #define OPRND_SHIFT 16 |
| 318 | |
| 319 | /* Macros for constructing the LUT register. */ |
| 320 | #define LUT_DEF(idx, ins, pad, opr) \ |
| 321 | ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \ |
| 322 | (opr)) << (((idx) % 2) * OPRND_SHIFT)) |
| 323 | |
| 324 | #define POLL_TOUT 5000 |
| 325 | #define NXP_FSPI_MAX_CHIPSELECT 4 |
| 326 | #define NXP_FSPI_MIN_IOMAP SZ_4M |
| 327 | |
| 328 | #define DCFG_RCWSR1 0x100 |
| 329 | #define SYS_PLL_RAT GENMASK(6, 2) |
| 330 | |
| 331 | /* Access flash memory using IP bus only */ |
| 332 | #define FSPI_QUIRK_USE_IP_ONLY BIT(0) |
| 333 | |
| 334 | struct nxp_fspi_devtype_data { |
| 335 | unsigned int rxfifo; |
| 336 | unsigned int txfifo; |
| 337 | unsigned int ahb_buf_size; |
| 338 | unsigned int quirks; |
| 339 | unsigned int lut_num; |
| 340 | bool little_endian; |
| 341 | }; |
| 342 | |
| 343 | static struct nxp_fspi_devtype_data lx2160a_data = { |
| 344 | .rxfifo = SZ_512, /* (64 * 64 bits) */ |
| 345 | .txfifo = SZ_1K, /* (128 * 64 bits) */ |
| 346 | .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ |
| 347 | .quirks = 0, |
| 348 | .lut_num = 32, |
| 349 | .little_endian = true, /* little-endian */ |
| 350 | }; |
| 351 | |
| 352 | static struct nxp_fspi_devtype_data imx8mm_data = { |
| 353 | .rxfifo = SZ_512, /* (64 * 64 bits) */ |
| 354 | .txfifo = SZ_1K, /* (128 * 64 bits) */ |
| 355 | .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ |
| 356 | .quirks = 0, |
| 357 | .lut_num = 32, |
| 358 | .little_endian = true, /* little-endian */ |
| 359 | }; |
| 360 | |
| 361 | static struct nxp_fspi_devtype_data imx8qxp_data = { |
| 362 | .rxfifo = SZ_512, /* (64 * 64 bits) */ |
| 363 | .txfifo = SZ_1K, /* (128 * 64 bits) */ |
| 364 | .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ |
| 365 | .quirks = 0, |
| 366 | .lut_num = 32, |
| 367 | .little_endian = true, /* little-endian */ |
| 368 | }; |
| 369 | |
| 370 | static struct nxp_fspi_devtype_data imx8dxl_data = { |
| 371 | .rxfifo = SZ_512, /* (64 * 64 bits) */ |
| 372 | .txfifo = SZ_1K, /* (128 * 64 bits) */ |
| 373 | .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ |
| 374 | .quirks = FSPI_QUIRK_USE_IP_ONLY, |
| 375 | .lut_num = 32, |
| 376 | .little_endian = true, /* little-endian */ |
| 377 | }; |
| 378 | |
| 379 | static struct nxp_fspi_devtype_data imx8ulp_data = { |
| 380 | .rxfifo = SZ_512, /* (64 * 64 bits) */ |
| 381 | .txfifo = SZ_1K, /* (128 * 64 bits) */ |
| 382 | .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ |
| 383 | .quirks = 0, |
| 384 | .lut_num = 16, |
| 385 | .little_endian = true, /* little-endian */ |
| 386 | }; |
| 387 | |
| 388 | struct nxp_fspi { |
| 389 | void __iomem *iobase; |
| 390 | void __iomem *ahb_addr; |
| 391 | u32 memmap_phy; |
| 392 | u32 memmap_phy_size; |
| 393 | u32 memmap_start; |
| 394 | u32 memmap_len; |
| 395 | struct clk *clk, *clk_en; |
| 396 | struct device *dev; |
| 397 | struct completion c; |
| 398 | struct nxp_fspi_devtype_data *devtype_data; |
| 399 | struct mutex lock; |
| 400 | struct pm_qos_request pm_qos_req; |
| 401 | int selected; |
| 402 | #define FSPI_NEED_INIT (1 << 0) |
| 403 | int flags; |
| 404 | }; |
| 405 | |
| 406 | static inline int needs_ip_only(struct nxp_fspi *f) |
| 407 | { |
| 408 | return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY; |
| 409 | } |
| 410 | |
| 411 | /* |
| 412 | * R/W functions for big- or little-endian registers: |
| 413 | * The FSPI controller's endianness is independent of |
| 414 | * the CPU core's endianness. So far, although the CPU |
| 415 | * core is little-endian the FSPI controller can use |
| 416 | * big-endian or little-endian. |
| 417 | */ |
| 418 | static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr) |
| 419 | { |
| 420 | if (f->devtype_data->little_endian) |
| 421 | iowrite32(val, addr); |
| 422 | else |
| 423 | iowrite32be(val, addr); |
| 424 | } |
| 425 | |
| 426 | static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr) |
| 427 | { |
| 428 | if (f->devtype_data->little_endian) |
| 429 | return ioread32(addr); |
| 430 | else |
| 431 | return ioread32be(addr); |
| 432 | } |
| 433 | |
| 434 | static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id) |
| 435 | { |
| 436 | struct nxp_fspi *f = dev_id; |
| 437 | u32 reg; |
| 438 | |
| 439 | /* clear interrupt */ |
| 440 | reg = fspi_readl(f, addr: f->iobase + FSPI_INTR); |
| 441 | fspi_writel(f, FSPI_INTR_IPCMDDONE, addr: f->iobase + FSPI_INTR); |
| 442 | |
| 443 | if (reg & FSPI_INTR_IPCMDDONE) |
| 444 | complete(&f->c); |
| 445 | |
| 446 | return IRQ_HANDLED; |
| 447 | } |
| 448 | |
| 449 | static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width) |
| 450 | { |
| 451 | switch (width) { |
| 452 | case 1: |
| 453 | case 2: |
| 454 | case 4: |
| 455 | case 8: |
| 456 | return 0; |
| 457 | } |
| 458 | |
| 459 | return -ENOTSUPP; |
| 460 | } |
| 461 | |
| 462 | static bool nxp_fspi_supports_op(struct spi_mem *mem, |
| 463 | const struct spi_mem_op *op) |
| 464 | { |
| 465 | struct nxp_fspi *f = spi_controller_get_devdata(ctlr: mem->spi->controller); |
| 466 | int ret; |
| 467 | |
| 468 | ret = nxp_fspi_check_buswidth(f, width: op->cmd.buswidth); |
| 469 | |
| 470 | if (op->addr.nbytes) |
| 471 | ret |= nxp_fspi_check_buswidth(f, width: op->addr.buswidth); |
| 472 | |
| 473 | if (op->dummy.nbytes) |
| 474 | ret |= nxp_fspi_check_buswidth(f, width: op->dummy.buswidth); |
| 475 | |
| 476 | if (op->data.nbytes) |
| 477 | ret |= nxp_fspi_check_buswidth(f, width: op->data.buswidth); |
| 478 | |
| 479 | if (ret) |
| 480 | return false; |
| 481 | |
| 482 | /* |
| 483 | * The number of address bytes should be equal to or less than 4 bytes. |
| 484 | */ |
| 485 | if (op->addr.nbytes > 4) |
| 486 | return false; |
| 487 | |
| 488 | /* |
| 489 | * If requested address value is greater than controller assigned |
| 490 | * memory mapped space, return error as it didn't fit in the range |
| 491 | * of assigned address space. |
| 492 | */ |
| 493 | if (op->addr.val >= f->memmap_phy_size) |
| 494 | return false; |
| 495 | |
| 496 | /* Max 64 dummy clock cycles supported */ |
| 497 | if (op->dummy.buswidth && |
| 498 | (op->dummy.nbytes * 8 / op->dummy.buswidth > 64)) |
| 499 | return false; |
| 500 | |
| 501 | /* Max data length, check controller limits and alignment */ |
| 502 | if (op->data.dir == SPI_MEM_DATA_IN && |
| 503 | (op->data.nbytes > f->devtype_data->ahb_buf_size || |
| 504 | (op->data.nbytes > f->devtype_data->rxfifo - 4 && |
| 505 | !IS_ALIGNED(op->data.nbytes, 8)))) |
| 506 | return false; |
| 507 | |
| 508 | if (op->data.dir == SPI_MEM_DATA_OUT && |
| 509 | op->data.nbytes > f->devtype_data->txfifo) |
| 510 | return false; |
| 511 | |
| 512 | return spi_mem_default_supports_op(mem, op); |
| 513 | } |
| 514 | |
| 515 | /* Instead of busy looping invoke readl_poll_timeout functionality. */ |
| 516 | static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base, |
| 517 | u32 mask, u32 delay_us, |
| 518 | u32 timeout_us, bool c) |
| 519 | { |
| 520 | u32 reg; |
| 521 | |
| 522 | if (!f->devtype_data->little_endian) |
| 523 | mask = (u32)cpu_to_be32(mask); |
| 524 | |
| 525 | if (c) |
| 526 | return readl_poll_timeout(base, reg, (reg & mask), |
| 527 | delay_us, timeout_us); |
| 528 | else |
| 529 | return readl_poll_timeout(base, reg, !(reg & mask), |
| 530 | delay_us, timeout_us); |
| 531 | } |
| 532 | |
| 533 | /* |
| 534 | * If the target device content being changed by Write/Erase, need to |
| 535 | * invalidate the AHB buffer. This can be achieved by doing the reset |
| 536 | * of controller after setting MCR0[SWRESET] bit. |
| 537 | */ |
| 538 | static inline void nxp_fspi_invalid(struct nxp_fspi *f) |
| 539 | { |
| 540 | u32 reg; |
| 541 | int ret; |
| 542 | |
| 543 | reg = fspi_readl(f, addr: f->iobase + FSPI_MCR0); |
| 544 | fspi_writel(f, val: reg | FSPI_MCR0_SWRST, addr: f->iobase + FSPI_MCR0); |
| 545 | |
| 546 | /* w1c register, wait unit clear */ |
| 547 | ret = fspi_readl_poll_tout(f, base: f->iobase + FSPI_MCR0, |
| 548 | FSPI_MCR0_SWRST, delay_us: 0, POLL_TOUT, c: false); |
| 549 | WARN_ON(ret); |
| 550 | } |
| 551 | |
| 552 | static void nxp_fspi_prepare_lut(struct nxp_fspi *f, |
| 553 | const struct spi_mem_op *op) |
| 554 | { |
| 555 | void __iomem *base = f->iobase; |
| 556 | u32 lutval[4] = {}; |
| 557 | int lutidx = 1, i; |
| 558 | u32 lut_offset = (f->devtype_data->lut_num - 1) * 4 * 4; |
| 559 | u32 target_lut_reg; |
| 560 | |
| 561 | /* cmd */ |
| 562 | lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth), |
| 563 | op->cmd.opcode); |
| 564 | |
| 565 | /* addr bytes */ |
| 566 | if (op->addr.nbytes) { |
| 567 | lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR, |
| 568 | LUT_PAD(op->addr.buswidth), |
| 569 | op->addr.nbytes * 8); |
| 570 | lutidx++; |
| 571 | } |
| 572 | |
| 573 | /* dummy bytes, if needed */ |
| 574 | if (op->dummy.nbytes) { |
| 575 | lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY, |
| 576 | /* |
| 577 | * Due to FlexSPI controller limitation number of PAD for dummy |
| 578 | * buswidth needs to be programmed as equal to data buswidth. |
| 579 | */ |
| 580 | LUT_PAD(op->data.buswidth), |
| 581 | op->dummy.nbytes * 8 / |
| 582 | op->dummy.buswidth); |
| 583 | lutidx++; |
| 584 | } |
| 585 | |
| 586 | /* read/write data bytes */ |
| 587 | if (op->data.nbytes) { |
| 588 | lutval[lutidx / 2] |= LUT_DEF(lutidx, |
| 589 | op->data.dir == SPI_MEM_DATA_IN ? |
| 590 | LUT_NXP_READ : LUT_NXP_WRITE, |
| 591 | LUT_PAD(op->data.buswidth), |
| 592 | 0); |
| 593 | lutidx++; |
| 594 | } |
| 595 | |
| 596 | /* stop condition. */ |
| 597 | lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0); |
| 598 | |
| 599 | /* unlock LUT */ |
| 600 | fspi_writel(f, FSPI_LUTKEY_VALUE, addr: f->iobase + FSPI_LUTKEY); |
| 601 | fspi_writel(f, FSPI_LCKER_UNLOCK, addr: f->iobase + FSPI_LCKCR); |
| 602 | |
| 603 | /* fill LUT */ |
| 604 | for (i = 0; i < ARRAY_SIZE(lutval); i++) { |
| 605 | target_lut_reg = FSPI_LUT_BASE + lut_offset + i * 4; |
| 606 | fspi_writel(f, val: lutval[i], addr: base + target_lut_reg); |
| 607 | } |
| 608 | |
| 609 | dev_dbg(f->dev, "CMD[%02x] lutval[0:%08x 1:%08x 2:%08x 3:%08x], size: 0x%08x\n" , |
| 610 | op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes); |
| 611 | |
| 612 | /* lock LUT */ |
| 613 | fspi_writel(f, FSPI_LUTKEY_VALUE, addr: f->iobase + FSPI_LUTKEY); |
| 614 | fspi_writel(f, FSPI_LCKER_LOCK, addr: f->iobase + FSPI_LCKCR); |
| 615 | } |
| 616 | |
| 617 | static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f) |
| 618 | { |
| 619 | int ret; |
| 620 | |
| 621 | if (is_acpi_node(dev_fwnode(f->dev))) |
| 622 | return 0; |
| 623 | |
| 624 | ret = clk_prepare_enable(clk: f->clk_en); |
| 625 | if (ret) |
| 626 | return ret; |
| 627 | |
| 628 | ret = clk_prepare_enable(clk: f->clk); |
| 629 | if (ret) { |
| 630 | clk_disable_unprepare(clk: f->clk_en); |
| 631 | return ret; |
| 632 | } |
| 633 | |
| 634 | return 0; |
| 635 | } |
| 636 | |
| 637 | static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f) |
| 638 | { |
| 639 | if (is_acpi_node(dev_fwnode(f->dev))) |
| 640 | return; |
| 641 | |
| 642 | clk_disable_unprepare(clk: f->clk); |
| 643 | clk_disable_unprepare(clk: f->clk_en); |
| 644 | |
| 645 | return; |
| 646 | } |
| 647 | |
| 648 | static void nxp_fspi_dll_calibration(struct nxp_fspi *f) |
| 649 | { |
| 650 | int ret; |
| 651 | |
| 652 | /* Reset the DLL, set the DLLRESET to 1 and then set to 0 */ |
| 653 | fspi_writel(f, FSPI_DLLACR_DLLRESET, addr: f->iobase + FSPI_DLLACR); |
| 654 | fspi_writel(f, FSPI_DLLBCR_DLLRESET, addr: f->iobase + FSPI_DLLBCR); |
| 655 | fspi_writel(f, val: 0, addr: f->iobase + FSPI_DLLACR); |
| 656 | fspi_writel(f, val: 0, addr: f->iobase + FSPI_DLLBCR); |
| 657 | |
| 658 | /* |
| 659 | * Enable the DLL calibration mode. |
| 660 | * The delay target for slave delay line is: |
| 661 | * ((SLVDLYTARGET+1) * 1/32 * clock cycle of reference clock. |
| 662 | * When clock rate > 100MHz, recommend SLVDLYTARGET is 0xF, which |
| 663 | * means half of clock cycle of reference clock. |
| 664 | */ |
| 665 | fspi_writel(f, FSPI_DLLACR_DLLEN | FSPI_DLLACR_SLVDLY(0xF), |
| 666 | addr: f->iobase + FSPI_DLLACR); |
| 667 | fspi_writel(f, FSPI_DLLBCR_DLLEN | FSPI_DLLBCR_SLVDLY(0xF), |
| 668 | addr: f->iobase + FSPI_DLLBCR); |
| 669 | |
| 670 | /* Wait to get REF/SLV lock */ |
| 671 | ret = fspi_readl_poll_tout(f, base: f->iobase + FSPI_STS2, FSPI_STS2_AB_LOCK, |
| 672 | delay_us: 0, POLL_TOUT, c: true); |
| 673 | if (ret) |
| 674 | dev_warn(f->dev, "DLL lock failed, please fix it!\n" ); |
| 675 | } |
| 676 | |
| 677 | /* |
| 678 | * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0 |
| 679 | * register and start base address of the target device. |
| 680 | * |
| 681 | * (Higher address) |
| 682 | * -------- <-- FLSHB2CR0 |
| 683 | * | B2 | |
| 684 | * | | |
| 685 | * B2 start address --> -------- <-- FLSHB1CR0 |
| 686 | * | B1 | |
| 687 | * | | |
| 688 | * B1 start address --> -------- <-- FLSHA2CR0 |
| 689 | * | A2 | |
| 690 | * | | |
| 691 | * A2 start address --> -------- <-- FLSHA1CR0 |
| 692 | * | A1 | |
| 693 | * | | |
| 694 | * A1 start address --> -------- (Lower address) |
| 695 | * |
| 696 | * |
| 697 | * Start base address defines the starting address range for given CS and |
| 698 | * FSPI_FLSHXXCR0 defines the size of the target device connected at given CS. |
| 699 | * |
| 700 | * But, different targets are having different combinations of number of CS, |
| 701 | * some targets only have single CS or two CS covering controller's full |
| 702 | * memory mapped space area. |
| 703 | * Thus, implementation is being done as independent of the size and number |
| 704 | * of the connected target device. |
| 705 | * Assign controller memory mapped space size as the size to the connected |
| 706 | * target device. |
| 707 | * Mark FLSHxxCR0 as zero initially and then assign value only to the selected |
| 708 | * chip-select Flash configuration register. |
| 709 | * |
| 710 | * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the |
| 711 | * memory mapped size of the controller. |
| 712 | * Value for rest of the CS FLSHxxCR0 register would be zero. |
| 713 | * |
| 714 | */ |
| 715 | static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi, |
| 716 | const struct spi_mem_op *op) |
| 717 | { |
| 718 | unsigned long rate = op->max_freq; |
| 719 | int ret; |
| 720 | uint64_t size_kb; |
| 721 | |
| 722 | /* |
| 723 | * Return, if previously selected target device is same as current |
| 724 | * requested target device. |
| 725 | */ |
| 726 | if (f->selected == spi_get_chipselect(spi, idx: 0)) |
| 727 | return; |
| 728 | |
| 729 | /* Reset FLSHxxCR0 registers */ |
| 730 | fspi_writel(f, val: 0, addr: f->iobase + FSPI_FLSHA1CR0); |
| 731 | fspi_writel(f, val: 0, addr: f->iobase + FSPI_FLSHA2CR0); |
| 732 | fspi_writel(f, val: 0, addr: f->iobase + FSPI_FLSHB1CR0); |
| 733 | fspi_writel(f, val: 0, addr: f->iobase + FSPI_FLSHB2CR0); |
| 734 | |
| 735 | /* Assign controller memory mapped space as size, KBytes, of flash. */ |
| 736 | size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size); |
| 737 | |
| 738 | fspi_writel(f, val: size_kb, addr: f->iobase + FSPI_FLSHA1CR0 + |
| 739 | 4 * spi_get_chipselect(spi, idx: 0)); |
| 740 | |
| 741 | dev_dbg(f->dev, "Target device [CS:%x] selected\n" , spi_get_chipselect(spi, 0)); |
| 742 | |
| 743 | nxp_fspi_clk_disable_unprep(f); |
| 744 | |
| 745 | ret = clk_set_rate(clk: f->clk, rate); |
| 746 | if (ret) |
| 747 | return; |
| 748 | |
| 749 | ret = nxp_fspi_clk_prep_enable(f); |
| 750 | if (ret) |
| 751 | return; |
| 752 | |
| 753 | /* |
| 754 | * If clock rate > 100MHz, then switch from DLL override mode to |
| 755 | * DLL calibration mode. |
| 756 | */ |
| 757 | if (rate > 100000000) |
| 758 | nxp_fspi_dll_calibration(f); |
| 759 | |
| 760 | f->selected = spi_get_chipselect(spi, idx: 0); |
| 761 | } |
| 762 | |
| 763 | static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op) |
| 764 | { |
| 765 | u32 start = op->addr.val; |
| 766 | u32 len = op->data.nbytes; |
| 767 | |
| 768 | /* if necessary, ioremap before AHB read */ |
| 769 | if ((!f->ahb_addr) || start < f->memmap_start || |
| 770 | start + len > f->memmap_start + f->memmap_len) { |
| 771 | if (f->ahb_addr) |
| 772 | iounmap(addr: f->ahb_addr); |
| 773 | |
| 774 | f->memmap_start = start; |
| 775 | f->memmap_len = max_t(u32, len, NXP_FSPI_MIN_IOMAP); |
| 776 | |
| 777 | f->ahb_addr = ioremap(offset: f->memmap_phy + f->memmap_start, |
| 778 | size: f->memmap_len); |
| 779 | |
| 780 | if (!f->ahb_addr) { |
| 781 | dev_err(f->dev, "failed to alloc memory\n" ); |
| 782 | return -ENOMEM; |
| 783 | } |
| 784 | } |
| 785 | |
| 786 | /* Read out the data directly from the AHB buffer. */ |
| 787 | memcpy_fromio(op->data.buf.in, |
| 788 | f->ahb_addr + start - f->memmap_start, len); |
| 789 | |
| 790 | return 0; |
| 791 | } |
| 792 | |
| 793 | static void nxp_fspi_fill_txfifo(struct nxp_fspi *f, |
| 794 | const struct spi_mem_op *op) |
| 795 | { |
| 796 | void __iomem *base = f->iobase; |
| 797 | int i, ret; |
| 798 | u8 *buf = (u8 *) op->data.buf.out; |
| 799 | |
| 800 | /* clear the TX FIFO. */ |
| 801 | fspi_writel(f, FSPI_IPTXFCR_CLR, addr: base + FSPI_IPTXFCR); |
| 802 | |
| 803 | /* |
| 804 | * Default value of water mark level is 8 bytes, hence in single |
| 805 | * write request controller can write max 8 bytes of data. |
| 806 | */ |
| 807 | |
| 808 | for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) { |
| 809 | /* Wait for TXFIFO empty */ |
| 810 | ret = fspi_readl_poll_tout(f, base: f->iobase + FSPI_INTR, |
| 811 | FSPI_INTR_IPTXWE, delay_us: 0, |
| 812 | POLL_TOUT, c: true); |
| 813 | WARN_ON(ret); |
| 814 | |
| 815 | fspi_writel(f, val: *(u32 *) (buf + i), addr: base + FSPI_TFDR); |
| 816 | fspi_writel(f, val: *(u32 *) (buf + i + 4), addr: base + FSPI_TFDR + 4); |
| 817 | fspi_writel(f, FSPI_INTR_IPTXWE, addr: base + FSPI_INTR); |
| 818 | } |
| 819 | |
| 820 | if (i < op->data.nbytes) { |
| 821 | u32 data = 0; |
| 822 | int j; |
| 823 | int remaining = op->data.nbytes - i; |
| 824 | /* Wait for TXFIFO empty */ |
| 825 | ret = fspi_readl_poll_tout(f, base: f->iobase + FSPI_INTR, |
| 826 | FSPI_INTR_IPTXWE, delay_us: 0, |
| 827 | POLL_TOUT, c: true); |
| 828 | WARN_ON(ret); |
| 829 | |
| 830 | for (j = 0; j < ALIGN(remaining, 4); j += 4) { |
| 831 | memcpy(&data, buf + i + j, min_t(int, 4, remaining - j)); |
| 832 | fspi_writel(f, val: data, addr: base + FSPI_TFDR + j); |
| 833 | } |
| 834 | fspi_writel(f, FSPI_INTR_IPTXWE, addr: base + FSPI_INTR); |
| 835 | } |
| 836 | } |
| 837 | |
| 838 | static void nxp_fspi_read_rxfifo(struct nxp_fspi *f, |
| 839 | const struct spi_mem_op *op) |
| 840 | { |
| 841 | void __iomem *base = f->iobase; |
| 842 | int i, ret; |
| 843 | int len = op->data.nbytes; |
| 844 | u8 *buf = (u8 *) op->data.buf.in; |
| 845 | |
| 846 | /* |
| 847 | * Default value of water mark level is 8 bytes, hence in single |
| 848 | * read request controller can read max 8 bytes of data. |
| 849 | */ |
| 850 | for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) { |
| 851 | /* Wait for RXFIFO available */ |
| 852 | ret = fspi_readl_poll_tout(f, base: f->iobase + FSPI_INTR, |
| 853 | FSPI_INTR_IPRXWA, delay_us: 0, |
| 854 | POLL_TOUT, c: true); |
| 855 | WARN_ON(ret); |
| 856 | |
| 857 | *(u32 *)(buf + i) = fspi_readl(f, addr: base + FSPI_RFDR); |
| 858 | *(u32 *)(buf + i + 4) = fspi_readl(f, addr: base + FSPI_RFDR + 4); |
| 859 | /* move the FIFO pointer */ |
| 860 | fspi_writel(f, FSPI_INTR_IPRXWA, addr: base + FSPI_INTR); |
| 861 | } |
| 862 | |
| 863 | if (i < len) { |
| 864 | u32 tmp; |
| 865 | int size, j; |
| 866 | |
| 867 | buf = op->data.buf.in + i; |
| 868 | /* Wait for RXFIFO available */ |
| 869 | ret = fspi_readl_poll_tout(f, base: f->iobase + FSPI_INTR, |
| 870 | FSPI_INTR_IPRXWA, delay_us: 0, |
| 871 | POLL_TOUT, c: true); |
| 872 | WARN_ON(ret); |
| 873 | |
| 874 | len = op->data.nbytes - i; |
| 875 | for (j = 0; j < op->data.nbytes - i; j += 4) { |
| 876 | tmp = fspi_readl(f, addr: base + FSPI_RFDR + j); |
| 877 | size = min(len, 4); |
| 878 | memcpy(buf + j, &tmp, size); |
| 879 | len -= size; |
| 880 | } |
| 881 | } |
| 882 | |
| 883 | /* invalid the RXFIFO */ |
| 884 | fspi_writel(f, FSPI_IPRXFCR_CLR, addr: base + FSPI_IPRXFCR); |
| 885 | /* move the FIFO pointer */ |
| 886 | fspi_writel(f, FSPI_INTR_IPRXWA, addr: base + FSPI_INTR); |
| 887 | } |
| 888 | |
| 889 | static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op) |
| 890 | { |
| 891 | void __iomem *base = f->iobase; |
| 892 | int seqnum = 0; |
| 893 | int err = 0; |
| 894 | u32 reg, seqid_lut; |
| 895 | |
| 896 | reg = fspi_readl(f, addr: base + FSPI_IPRXFCR); |
| 897 | /* invalid RXFIFO first */ |
| 898 | reg &= ~FSPI_IPRXFCR_DMA_EN; |
| 899 | reg = reg | FSPI_IPRXFCR_CLR; |
| 900 | fspi_writel(f, val: reg, addr: base + FSPI_IPRXFCR); |
| 901 | |
| 902 | init_completion(x: &f->c); |
| 903 | |
| 904 | fspi_writel(f, val: op->addr.val, addr: base + FSPI_IPCR0); |
| 905 | /* |
| 906 | * Always start the sequence at the same index since we update |
| 907 | * the LUT at each exec_op() call. And also specify the DATA |
| 908 | * length, since it's has not been specified in the LUT. |
| 909 | */ |
| 910 | seqid_lut = f->devtype_data->lut_num - 1; |
| 911 | fspi_writel(f, val: op->data.nbytes | |
| 912 | (seqid_lut << FSPI_IPCR1_SEQID_SHIFT) | |
| 913 | (seqnum << FSPI_IPCR1_SEQNUM_SHIFT), |
| 914 | addr: base + FSPI_IPCR1); |
| 915 | |
| 916 | /* Trigger the LUT now. */ |
| 917 | fspi_writel(f, FSPI_IPCMD_TRG, addr: base + FSPI_IPCMD); |
| 918 | |
| 919 | /* Wait for the interrupt. */ |
| 920 | if (!wait_for_completion_timeout(x: &f->c, timeout: msecs_to_jiffies(m: 1000))) |
| 921 | err = -ETIMEDOUT; |
| 922 | |
| 923 | /* Invoke IP data read, if request is of data read. */ |
| 924 | if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) |
| 925 | nxp_fspi_read_rxfifo(f, op); |
| 926 | |
| 927 | return err; |
| 928 | } |
| 929 | |
| 930 | static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) |
| 931 | { |
| 932 | struct nxp_fspi *f = spi_controller_get_devdata(ctlr: mem->spi->controller); |
| 933 | int err = 0; |
| 934 | |
| 935 | guard(mutex)(T: &f->lock); |
| 936 | |
| 937 | err = pm_runtime_get_sync(dev: f->dev); |
| 938 | if (err < 0) { |
| 939 | dev_err(f->dev, "Failed to enable clock %d\n" , __LINE__); |
| 940 | return err; |
| 941 | } |
| 942 | |
| 943 | /* Wait for controller being ready. */ |
| 944 | err = fspi_readl_poll_tout(f, base: f->iobase + FSPI_STS0, |
| 945 | FSPI_STS0_ARB_IDLE, delay_us: 1, POLL_TOUT, c: true); |
| 946 | WARN_ON(err); |
| 947 | |
| 948 | nxp_fspi_select_mem(f, spi: mem->spi, op); |
| 949 | |
| 950 | nxp_fspi_prepare_lut(f, op); |
| 951 | /* |
| 952 | * If we have large chunks of data, we read them through the AHB bus by |
| 953 | * accessing the mapped memory. In all other cases we use IP commands |
| 954 | * to access the flash. Read via AHB bus may be corrupted due to |
| 955 | * existence of an errata and therefore discard AHB read in such cases. |
| 956 | */ |
| 957 | if (op->data.nbytes > (f->devtype_data->rxfifo - 4) && |
| 958 | op->data.dir == SPI_MEM_DATA_IN && |
| 959 | !needs_ip_only(f)) { |
| 960 | err = nxp_fspi_read_ahb(f, op); |
| 961 | } else { |
| 962 | if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) |
| 963 | nxp_fspi_fill_txfifo(f, op); |
| 964 | |
| 965 | err = nxp_fspi_do_op(f, op); |
| 966 | } |
| 967 | |
| 968 | /* Invalidate the data in the AHB buffer. */ |
| 969 | nxp_fspi_invalid(f); |
| 970 | |
| 971 | pm_runtime_mark_last_busy(dev: f->dev); |
| 972 | pm_runtime_put_autosuspend(dev: f->dev); |
| 973 | |
| 974 | return err; |
| 975 | } |
| 976 | |
| 977 | static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) |
| 978 | { |
| 979 | struct nxp_fspi *f = spi_controller_get_devdata(ctlr: mem->spi->controller); |
| 980 | |
| 981 | if (op->data.dir == SPI_MEM_DATA_OUT) { |
| 982 | if (op->data.nbytes > f->devtype_data->txfifo) |
| 983 | op->data.nbytes = f->devtype_data->txfifo; |
| 984 | } else { |
| 985 | if (op->data.nbytes > f->devtype_data->ahb_buf_size) |
| 986 | op->data.nbytes = f->devtype_data->ahb_buf_size; |
| 987 | else if (op->data.nbytes > (f->devtype_data->rxfifo - 4)) |
| 988 | op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8); |
| 989 | } |
| 990 | |
| 991 | /* Limit data bytes to RX FIFO in case of IP read only */ |
| 992 | if (op->data.dir == SPI_MEM_DATA_IN && |
| 993 | needs_ip_only(f) && |
| 994 | op->data.nbytes > f->devtype_data->rxfifo) |
| 995 | op->data.nbytes = f->devtype_data->rxfifo; |
| 996 | |
| 997 | return 0; |
| 998 | } |
| 999 | |
| 1000 | static void erratum_err050568(struct nxp_fspi *f) |
| 1001 | { |
| 1002 | static const struct soc_device_attribute ls1028a_soc_attr[] = { |
| 1003 | { .family = "QorIQ LS1028A" }, |
| 1004 | { /* sentinel */ } |
| 1005 | }; |
| 1006 | struct regmap *map; |
| 1007 | u32 val, sys_pll_ratio; |
| 1008 | int ret; |
| 1009 | |
| 1010 | /* Check for LS1028A family */ |
| 1011 | if (!soc_device_match(matches: ls1028a_soc_attr)) { |
| 1012 | dev_dbg(f->dev, "Errata applicable only for LS1028A\n" ); |
| 1013 | return; |
| 1014 | } |
| 1015 | |
| 1016 | map = syscon_regmap_lookup_by_compatible(s: "fsl,ls1028a-dcfg" ); |
| 1017 | if (IS_ERR(ptr: map)) { |
| 1018 | dev_err(f->dev, "No syscon regmap\n" ); |
| 1019 | goto err; |
| 1020 | } |
| 1021 | |
| 1022 | ret = regmap_read(map, DCFG_RCWSR1, val: &val); |
| 1023 | if (ret < 0) |
| 1024 | goto err; |
| 1025 | |
| 1026 | sys_pll_ratio = FIELD_GET(SYS_PLL_RAT, val); |
| 1027 | dev_dbg(f->dev, "val: 0x%08x, sys_pll_ratio: %d\n" , val, sys_pll_ratio); |
| 1028 | |
| 1029 | /* Use IP bus only if platform clock is 300MHz */ |
| 1030 | if (sys_pll_ratio == 3) |
| 1031 | f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY; |
| 1032 | |
| 1033 | return; |
| 1034 | |
| 1035 | err: |
| 1036 | dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n" ); |
| 1037 | } |
| 1038 | |
| 1039 | static int nxp_fspi_default_setup(struct nxp_fspi *f) |
| 1040 | { |
| 1041 | void __iomem *base = f->iobase; |
| 1042 | int ret, i; |
| 1043 | u32 reg, seqid_lut; |
| 1044 | |
| 1045 | /* disable and unprepare clock to avoid glitch pass to controller */ |
| 1046 | nxp_fspi_clk_disable_unprep(f); |
| 1047 | |
| 1048 | /* the default frequency, we will change it later if necessary. */ |
| 1049 | ret = clk_set_rate(clk: f->clk, rate: 20000000); |
| 1050 | if (ret) |
| 1051 | return ret; |
| 1052 | |
| 1053 | ret = nxp_fspi_clk_prep_enable(f); |
| 1054 | if (ret) |
| 1055 | return ret; |
| 1056 | |
| 1057 | /* |
| 1058 | * ERR050568: Flash access by FlexSPI AHB command may not work with |
| 1059 | * platform frequency equal to 300 MHz on LS1028A. |
| 1060 | * LS1028A reuses LX2160A compatible entry. Make errata applicable for |
| 1061 | * Layerscape LS1028A platform. |
| 1062 | */ |
| 1063 | if (of_device_is_compatible(device: f->dev->of_node, "nxp,lx2160a-fspi" )) |
| 1064 | erratum_err050568(f); |
| 1065 | |
| 1066 | /* Reset the module */ |
| 1067 | /* w1c register, wait unit clear */ |
| 1068 | ret = fspi_readl_poll_tout(f, base: f->iobase + FSPI_MCR0, |
| 1069 | FSPI_MCR0_SWRST, delay_us: 0, POLL_TOUT, c: false); |
| 1070 | WARN_ON(ret); |
| 1071 | |
| 1072 | /* Disable the module */ |
| 1073 | fspi_writel(f, FSPI_MCR0_MDIS, addr: base + FSPI_MCR0); |
| 1074 | |
| 1075 | /* |
| 1076 | * Config the DLL register to default value, enable the target clock delay |
| 1077 | * line delay cell override mode, and use 1 fixed delay cell in DLL delay |
| 1078 | * chain, this is the suggested setting when clock rate < 100MHz. |
| 1079 | */ |
| 1080 | fspi_writel(f, FSPI_DLLACR_OVRDEN, addr: base + FSPI_DLLACR); |
| 1081 | fspi_writel(f, FSPI_DLLBCR_OVRDEN, addr: base + FSPI_DLLBCR); |
| 1082 | |
| 1083 | /* enable module */ |
| 1084 | fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | |
| 1085 | FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN, |
| 1086 | addr: base + FSPI_MCR0); |
| 1087 | |
| 1088 | /* |
| 1089 | * Disable same device enable bit and configure all target devices |
| 1090 | * independently. |
| 1091 | */ |
| 1092 | reg = fspi_readl(f, addr: f->iobase + FSPI_MCR2); |
| 1093 | reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN); |
| 1094 | fspi_writel(f, val: reg, addr: base + FSPI_MCR2); |
| 1095 | |
| 1096 | /* AHB configuration for access buffer 0~7. */ |
| 1097 | for (i = 0; i < 7; i++) |
| 1098 | fspi_writel(f, val: 0, addr: base + FSPI_AHBRX_BUF0CR0 + 4 * i); |
| 1099 | |
| 1100 | /* |
| 1101 | * Set ADATSZ with the maximum AHB buffer size to improve the read |
| 1102 | * performance. |
| 1103 | */ |
| 1104 | fspi_writel(f, val: (f->devtype_data->ahb_buf_size / 8 | |
| 1105 | FSPI_AHBRXBUF0CR7_PREF), addr: base + FSPI_AHBRX_BUF7CR0); |
| 1106 | |
| 1107 | /* prefetch and no start address alignment limitation */ |
| 1108 | fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT, |
| 1109 | addr: base + FSPI_AHBCR); |
| 1110 | |
| 1111 | /* Reset the FLSHxCR1 registers. */ |
| 1112 | reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3); |
| 1113 | fspi_writel(f, val: reg, addr: base + FSPI_FLSHA1CR1); |
| 1114 | fspi_writel(f, val: reg, addr: base + FSPI_FLSHA2CR1); |
| 1115 | fspi_writel(f, val: reg, addr: base + FSPI_FLSHB1CR1); |
| 1116 | fspi_writel(f, val: reg, addr: base + FSPI_FLSHB2CR1); |
| 1117 | |
| 1118 | /* |
| 1119 | * The driver only uses one single LUT entry, that is updated on |
| 1120 | * each call of exec_op(). Index 0 is preset at boot with a basic |
| 1121 | * read operation, so let's use the last entry. |
| 1122 | */ |
| 1123 | seqid_lut = f->devtype_data->lut_num - 1; |
| 1124 | /* AHB Read - Set lut sequence ID for all CS. */ |
| 1125 | fspi_writel(f, val: seqid_lut, addr: base + FSPI_FLSHA1CR2); |
| 1126 | fspi_writel(f, val: seqid_lut, addr: base + FSPI_FLSHA2CR2); |
| 1127 | fspi_writel(f, val: seqid_lut, addr: base + FSPI_FLSHB1CR2); |
| 1128 | fspi_writel(f, val: seqid_lut, addr: base + FSPI_FLSHB2CR2); |
| 1129 | |
| 1130 | f->selected = -1; |
| 1131 | |
| 1132 | /* enable the interrupt */ |
| 1133 | fspi_writel(f, FSPI_INTEN_IPCMDDONE, addr: base + FSPI_INTEN); |
| 1134 | |
| 1135 | return 0; |
| 1136 | } |
| 1137 | |
| 1138 | static const char *nxp_fspi_get_name(struct spi_mem *mem) |
| 1139 | { |
| 1140 | struct nxp_fspi *f = spi_controller_get_devdata(ctlr: mem->spi->controller); |
| 1141 | struct device *dev = &mem->spi->dev; |
| 1142 | const char *name; |
| 1143 | |
| 1144 | // Set custom name derived from the platform_device of the controller. |
| 1145 | if (of_get_available_child_count(np: f->dev->of_node) == 1) |
| 1146 | return dev_name(dev: f->dev); |
| 1147 | |
| 1148 | name = devm_kasprintf(dev, GFP_KERNEL, |
| 1149 | fmt: "%s-%d" , dev_name(dev: f->dev), |
| 1150 | spi_get_chipselect(spi: mem->spi, idx: 0)); |
| 1151 | |
| 1152 | if (!name) { |
| 1153 | dev_err(dev, "failed to get memory for custom flash name\n" ); |
| 1154 | return ERR_PTR(error: -ENOMEM); |
| 1155 | } |
| 1156 | |
| 1157 | return name; |
| 1158 | } |
| 1159 | |
| 1160 | static const struct spi_controller_mem_ops nxp_fspi_mem_ops = { |
| 1161 | .adjust_op_size = nxp_fspi_adjust_op_size, |
| 1162 | .supports_op = nxp_fspi_supports_op, |
| 1163 | .exec_op = nxp_fspi_exec_op, |
| 1164 | .get_name = nxp_fspi_get_name, |
| 1165 | }; |
| 1166 | |
| 1167 | static const struct spi_controller_mem_caps nxp_fspi_mem_caps = { |
| 1168 | .per_op_freq = true, |
| 1169 | }; |
| 1170 | |
| 1171 | static void nxp_fspi_cleanup(void *data) |
| 1172 | { |
| 1173 | struct nxp_fspi *f = data; |
| 1174 | |
| 1175 | /* enable clock first since there is register access */ |
| 1176 | pm_runtime_get_sync(dev: f->dev); |
| 1177 | |
| 1178 | /* disable the hardware */ |
| 1179 | fspi_writel(f, FSPI_MCR0_MDIS, addr: f->iobase + FSPI_MCR0); |
| 1180 | |
| 1181 | pm_runtime_disable(dev: f->dev); |
| 1182 | pm_runtime_put_noidle(dev: f->dev); |
| 1183 | nxp_fspi_clk_disable_unprep(f); |
| 1184 | |
| 1185 | if (f->ahb_addr) |
| 1186 | iounmap(addr: f->ahb_addr); |
| 1187 | } |
| 1188 | |
| 1189 | static int nxp_fspi_probe(struct platform_device *pdev) |
| 1190 | { |
| 1191 | struct spi_controller *ctlr; |
| 1192 | struct device *dev = &pdev->dev; |
| 1193 | struct device_node *np = dev->of_node; |
| 1194 | struct resource *res; |
| 1195 | struct nxp_fspi *f; |
| 1196 | int ret, irq; |
| 1197 | u32 reg; |
| 1198 | |
| 1199 | ctlr = devm_spi_alloc_host(dev: &pdev->dev, size: sizeof(*f)); |
| 1200 | if (!ctlr) |
| 1201 | return -ENOMEM; |
| 1202 | |
| 1203 | ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL | |
| 1204 | SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL; |
| 1205 | |
| 1206 | f = spi_controller_get_devdata(ctlr); |
| 1207 | f->dev = dev; |
| 1208 | f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev); |
| 1209 | if (!f->devtype_data) |
| 1210 | return -ENODEV; |
| 1211 | |
| 1212 | platform_set_drvdata(pdev, data: f); |
| 1213 | |
| 1214 | /* find the resources - configuration register address space */ |
| 1215 | if (is_acpi_node(dev_fwnode(f->dev))) |
| 1216 | f->iobase = devm_platform_ioremap_resource(pdev, index: 0); |
| 1217 | else |
| 1218 | f->iobase = devm_platform_ioremap_resource_byname(pdev, name: "fspi_base" ); |
| 1219 | if (IS_ERR(ptr: f->iobase)) |
| 1220 | return PTR_ERR(ptr: f->iobase); |
| 1221 | |
| 1222 | /* find the resources - controller memory mapped space */ |
| 1223 | if (is_acpi_node(dev_fwnode(f->dev))) |
| 1224 | res = platform_get_resource(pdev, IORESOURCE_MEM, 1); |
| 1225 | else |
| 1226 | res = platform_get_resource_byname(pdev, |
| 1227 | IORESOURCE_MEM, "fspi_mmap" ); |
| 1228 | if (!res) |
| 1229 | return -ENODEV; |
| 1230 | |
| 1231 | /* assign memory mapped starting address and mapped size. */ |
| 1232 | f->memmap_phy = res->start; |
| 1233 | f->memmap_phy_size = resource_size(res); |
| 1234 | |
| 1235 | /* find the clocks */ |
| 1236 | if (dev_of_node(dev: &pdev->dev)) { |
| 1237 | f->clk_en = devm_clk_get(dev, id: "fspi_en" ); |
| 1238 | if (IS_ERR(ptr: f->clk_en)) |
| 1239 | return PTR_ERR(ptr: f->clk_en); |
| 1240 | |
| 1241 | f->clk = devm_clk_get(dev, id: "fspi" ); |
| 1242 | if (IS_ERR(ptr: f->clk)) |
| 1243 | return PTR_ERR(ptr: f->clk); |
| 1244 | } |
| 1245 | |
| 1246 | /* find the irq */ |
| 1247 | irq = platform_get_irq(pdev, 0); |
| 1248 | if (irq < 0) |
| 1249 | return dev_err_probe(dev, err: irq, fmt: "Failed to get irq source" ); |
| 1250 | |
| 1251 | pm_runtime_enable(dev); |
| 1252 | pm_runtime_set_autosuspend_delay(dev, FSPI_RPM_TIMEOUT); |
| 1253 | pm_runtime_use_autosuspend(dev); |
| 1254 | |
| 1255 | /* enable clock */ |
| 1256 | ret = pm_runtime_get_sync(dev: f->dev); |
| 1257 | if (ret < 0) |
| 1258 | return dev_err_probe(dev, err: ret, fmt: "Failed to enable clock" ); |
| 1259 | |
| 1260 | /* Clear potential interrupts */ |
| 1261 | reg = fspi_readl(f, addr: f->iobase + FSPI_INTR); |
| 1262 | if (reg) |
| 1263 | fspi_writel(f, val: reg, addr: f->iobase + FSPI_INTR); |
| 1264 | |
| 1265 | nxp_fspi_default_setup(f); |
| 1266 | |
| 1267 | ret = pm_runtime_put_sync(dev); |
| 1268 | if (ret < 0) |
| 1269 | return dev_err_probe(dev, err: ret, fmt: "Failed to disable clock" ); |
| 1270 | |
| 1271 | ret = devm_request_irq(dev, irq, |
| 1272 | handler: nxp_fspi_irq_handler, irqflags: 0, devname: pdev->name, dev_id: f); |
| 1273 | if (ret) |
| 1274 | return dev_err_probe(dev, err: ret, fmt: "Failed to request irq\n" ); |
| 1275 | |
| 1276 | devm_mutex_init(dev, &f->lock); |
| 1277 | |
| 1278 | ctlr->bus_num = -1; |
| 1279 | ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT; |
| 1280 | ctlr->mem_ops = &nxp_fspi_mem_ops; |
| 1281 | ctlr->mem_caps = &nxp_fspi_mem_caps; |
| 1282 | ctlr->dev.of_node = np; |
| 1283 | |
| 1284 | ret = devm_add_action_or_reset(dev, nxp_fspi_cleanup, f); |
| 1285 | if (ret) |
| 1286 | return dev_err_probe(dev, err: ret, fmt: "Failed to register nxp_fspi_cleanup\n" ); |
| 1287 | |
| 1288 | return devm_spi_register_controller(dev: &pdev->dev, ctlr); |
| 1289 | } |
| 1290 | |
| 1291 | static int nxp_fspi_runtime_suspend(struct device *dev) |
| 1292 | { |
| 1293 | struct nxp_fspi *f = dev_get_drvdata(dev); |
| 1294 | |
| 1295 | nxp_fspi_clk_disable_unprep(f); |
| 1296 | |
| 1297 | return 0; |
| 1298 | } |
| 1299 | |
| 1300 | static int nxp_fspi_runtime_resume(struct device *dev) |
| 1301 | { |
| 1302 | struct nxp_fspi *f = dev_get_drvdata(dev); |
| 1303 | int ret; |
| 1304 | |
| 1305 | ret = nxp_fspi_clk_prep_enable(f); |
| 1306 | if (ret) |
| 1307 | return ret; |
| 1308 | |
| 1309 | if (f->flags & FSPI_NEED_INIT) { |
| 1310 | nxp_fspi_default_setup(f); |
| 1311 | ret = pinctrl_pm_select_default_state(dev); |
| 1312 | if (ret) |
| 1313 | dev_err(dev, "select flexspi default pinctrl failed!\n" ); |
| 1314 | f->flags &= ~FSPI_NEED_INIT; |
| 1315 | } |
| 1316 | |
| 1317 | return ret; |
| 1318 | } |
| 1319 | |
| 1320 | static int nxp_fspi_suspend(struct device *dev) |
| 1321 | { |
| 1322 | struct nxp_fspi *f = dev_get_drvdata(dev); |
| 1323 | int ret; |
| 1324 | |
| 1325 | ret = pinctrl_pm_select_sleep_state(dev); |
| 1326 | if (ret) { |
| 1327 | dev_err(dev, "select flexspi sleep pinctrl failed!\n" ); |
| 1328 | return ret; |
| 1329 | } |
| 1330 | |
| 1331 | f->flags |= FSPI_NEED_INIT; |
| 1332 | |
| 1333 | return pm_runtime_force_suspend(dev); |
| 1334 | } |
| 1335 | |
| 1336 | static const struct dev_pm_ops nxp_fspi_pm_ops = { |
| 1337 | RUNTIME_PM_OPS(nxp_fspi_runtime_suspend, nxp_fspi_runtime_resume, NULL) |
| 1338 | SYSTEM_SLEEP_PM_OPS(nxp_fspi_suspend, pm_runtime_force_resume) |
| 1339 | }; |
| 1340 | |
| 1341 | static const struct of_device_id nxp_fspi_dt_ids[] = { |
| 1342 | { .compatible = "nxp,lx2160a-fspi" , .data = (void *)&lx2160a_data, }, |
| 1343 | { .compatible = "nxp,imx8mm-fspi" , .data = (void *)&imx8mm_data, }, |
| 1344 | { .compatible = "nxp,imx8mp-fspi" , .data = (void *)&imx8mm_data, }, |
| 1345 | { .compatible = "nxp,imx8qxp-fspi" , .data = (void *)&imx8qxp_data, }, |
| 1346 | { .compatible = "nxp,imx8dxl-fspi" , .data = (void *)&imx8dxl_data, }, |
| 1347 | { .compatible = "nxp,imx8ulp-fspi" , .data = (void *)&imx8ulp_data, }, |
| 1348 | { /* sentinel */ } |
| 1349 | }; |
| 1350 | MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids); |
| 1351 | |
| 1352 | #ifdef CONFIG_ACPI |
| 1353 | static const struct acpi_device_id nxp_fspi_acpi_ids[] = { |
| 1354 | { "NXP0009" , .driver_data = (kernel_ulong_t)&lx2160a_data, }, |
| 1355 | {} |
| 1356 | }; |
| 1357 | MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids); |
| 1358 | #endif |
| 1359 | |
| 1360 | static struct platform_driver nxp_fspi_driver = { |
| 1361 | .driver = { |
| 1362 | .name = "nxp-fspi" , |
| 1363 | .of_match_table = nxp_fspi_dt_ids, |
| 1364 | .acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids), |
| 1365 | .pm = pm_ptr(&nxp_fspi_pm_ops), |
| 1366 | }, |
| 1367 | .probe = nxp_fspi_probe, |
| 1368 | }; |
| 1369 | module_platform_driver(nxp_fspi_driver); |
| 1370 | |
| 1371 | MODULE_DESCRIPTION("NXP FSPI Controller Driver" ); |
| 1372 | MODULE_AUTHOR("NXP Semiconductor" ); |
| 1373 | MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>" ); |
| 1374 | MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>" ); |
| 1375 | MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>" ); |
| 1376 | MODULE_LICENSE("GPL v2" ); |
| 1377 | |