1 | // SPDX-License-Identifier: GPL-2.0+ |
2 | |
3 | /* |
4 | * NXP FlexSPI(FSPI) controller driver. |
5 | * |
6 | * Copyright 2019-2020 NXP |
7 | * Copyright 2020 Puresoftware Ltd. |
8 | * |
9 | * FlexSPI is a flexsible SPI host controller which supports two SPI |
10 | * channels and up to 4 external devices. Each channel supports |
11 | * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional |
12 | * data lines). |
13 | * |
14 | * FlexSPI controller is driven by the LUT(Look-up Table) registers |
15 | * LUT registers are a look-up-table for sequences of instructions. |
16 | * A valid sequence consists of four LUT registers. |
17 | * Maximum 32 LUT sequences can be programmed simultaneously. |
18 | * |
19 | * LUTs are being created at run-time based on the commands passed |
20 | * from the spi-mem framework, thus using single LUT index. |
21 | * |
22 | * Software triggered Flash read/write access by IP Bus. |
23 | * |
24 | * Memory mapped read access by AHB Bus. |
25 | * |
26 | * Based on SPI MEM interface and spi-fsl-qspi.c driver. |
27 | * |
28 | * Author: |
29 | * Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com> |
30 | * Boris Brezillon <bbrezillon@kernel.org> |
31 | * Frieder Schrempf <frieder.schrempf@kontron.de> |
32 | */ |
33 | |
34 | #include <linux/acpi.h> |
35 | #include <linux/bitops.h> |
36 | #include <linux/bitfield.h> |
37 | #include <linux/clk.h> |
38 | #include <linux/completion.h> |
39 | #include <linux/delay.h> |
40 | #include <linux/err.h> |
41 | #include <linux/errno.h> |
42 | #include <linux/interrupt.h> |
43 | #include <linux/io.h> |
44 | #include <linux/iopoll.h> |
45 | #include <linux/jiffies.h> |
46 | #include <linux/kernel.h> |
47 | #include <linux/module.h> |
48 | #include <linux/mutex.h> |
49 | #include <linux/of.h> |
50 | #include <linux/platform_device.h> |
51 | #include <linux/pinctrl/consumer.h> |
52 | #include <linux/pm_runtime.h> |
53 | #include <linux/pm_qos.h> |
54 | #include <linux/regmap.h> |
55 | #include <linux/sizes.h> |
56 | #include <linux/sys_soc.h> |
57 | |
58 | #include <linux/mfd/syscon.h> |
59 | #include <linux/spi/spi.h> |
60 | #include <linux/spi/spi-mem.h> |
61 | |
62 | /* runtime pm timeout */ |
63 | #define FSPI_RPM_TIMEOUT 50 /* 50ms */ |
64 | |
65 | /* Registers used by the driver */ |
66 | #define FSPI_MCR0 0x00 |
67 | #define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24) |
68 | #define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16) |
69 | #define FSPI_MCR0_LEARN_EN BIT(15) |
70 | #define FSPI_MCR0_SCRFRUN_EN BIT(14) |
71 | #define FSPI_MCR0_OCTCOMB_EN BIT(13) |
72 | #define FSPI_MCR0_DOZE_EN BIT(12) |
73 | #define FSPI_MCR0_HSEN BIT(11) |
74 | #define FSPI_MCR0_SERCLKDIV BIT(8) |
75 | #define FSPI_MCR0_ATDF_EN BIT(7) |
76 | #define FSPI_MCR0_ARDF_EN BIT(6) |
77 | #define FSPI_MCR0_RXCLKSRC(x) ((x) << 4) |
78 | #define FSPI_MCR0_END_CFG(x) ((x) << 2) |
79 | #define FSPI_MCR0_MDIS BIT(1) |
80 | #define FSPI_MCR0_SWRST BIT(0) |
81 | |
82 | #define FSPI_MCR1 0x04 |
83 | #define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16) |
84 | #define FSPI_MCR1_AHB_TIMEOUT(x) (x) |
85 | |
86 | #define FSPI_MCR2 0x08 |
87 | #define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24) |
88 | #define FSPI_MCR2_SAMEDEVICEEN BIT(15) |
89 | #define FSPI_MCR2_CLRLRPHS BIT(14) |
90 | #define FSPI_MCR2_ABRDATSZ BIT(8) |
91 | #define FSPI_MCR2_ABRLEARN BIT(7) |
92 | #define FSPI_MCR2_ABR_READ BIT(6) |
93 | #define FSPI_MCR2_ABRWRITE BIT(5) |
94 | #define FSPI_MCR2_ABRDUMMY BIT(4) |
95 | #define FSPI_MCR2_ABR_MODE BIT(3) |
96 | #define FSPI_MCR2_ABRCADDR BIT(2) |
97 | #define FSPI_MCR2_ABRRADDR BIT(1) |
98 | #define FSPI_MCR2_ABR_CMD BIT(0) |
99 | |
100 | #define FSPI_AHBCR 0x0c |
101 | #define FSPI_AHBCR_RDADDROPT BIT(6) |
102 | #define FSPI_AHBCR_PREF_EN BIT(5) |
103 | #define FSPI_AHBCR_BUFF_EN BIT(4) |
104 | #define FSPI_AHBCR_CACH_EN BIT(3) |
105 | #define FSPI_AHBCR_CLRTXBUF BIT(2) |
106 | #define FSPI_AHBCR_CLRRXBUF BIT(1) |
107 | #define FSPI_AHBCR_PAR_EN BIT(0) |
108 | |
109 | #define FSPI_INTEN 0x10 |
110 | #define FSPI_INTEN_SCLKSBWR BIT(9) |
111 | #define FSPI_INTEN_SCLKSBRD BIT(8) |
112 | #define FSPI_INTEN_DATALRNFL BIT(7) |
113 | #define FSPI_INTEN_IPTXWE BIT(6) |
114 | #define FSPI_INTEN_IPRXWA BIT(5) |
115 | #define FSPI_INTEN_AHBCMDERR BIT(4) |
116 | #define FSPI_INTEN_IPCMDERR BIT(3) |
117 | #define FSPI_INTEN_AHBCMDGE BIT(2) |
118 | #define FSPI_INTEN_IPCMDGE BIT(1) |
119 | #define FSPI_INTEN_IPCMDDONE BIT(0) |
120 | |
121 | #define FSPI_INTR 0x14 |
122 | #define FSPI_INTR_SCLKSBWR BIT(9) |
123 | #define FSPI_INTR_SCLKSBRD BIT(8) |
124 | #define FSPI_INTR_DATALRNFL BIT(7) |
125 | #define FSPI_INTR_IPTXWE BIT(6) |
126 | #define FSPI_INTR_IPRXWA BIT(5) |
127 | #define FSPI_INTR_AHBCMDERR BIT(4) |
128 | #define FSPI_INTR_IPCMDERR BIT(3) |
129 | #define FSPI_INTR_AHBCMDGE BIT(2) |
130 | #define FSPI_INTR_IPCMDGE BIT(1) |
131 | #define FSPI_INTR_IPCMDDONE BIT(0) |
132 | |
133 | #define FSPI_LUTKEY 0x18 |
134 | #define FSPI_LUTKEY_VALUE 0x5AF05AF0 |
135 | |
136 | #define FSPI_LCKCR 0x1C |
137 | |
138 | #define FSPI_LCKER_LOCK 0x1 |
139 | #define FSPI_LCKER_UNLOCK 0x2 |
140 | |
141 | #define FSPI_BUFXCR_INVALID_MSTRID 0xE |
142 | #define FSPI_AHBRX_BUF0CR0 0x20 |
143 | #define FSPI_AHBRX_BUF1CR0 0x24 |
144 | #define FSPI_AHBRX_BUF2CR0 0x28 |
145 | #define FSPI_AHBRX_BUF3CR0 0x2C |
146 | #define FSPI_AHBRX_BUF4CR0 0x30 |
147 | #define FSPI_AHBRX_BUF5CR0 0x34 |
148 | #define FSPI_AHBRX_BUF6CR0 0x38 |
149 | #define FSPI_AHBRX_BUF7CR0 0x3C |
150 | #define FSPI_AHBRXBUF0CR7_PREF BIT(31) |
151 | |
152 | #define FSPI_AHBRX_BUF0CR1 0x40 |
153 | #define FSPI_AHBRX_BUF1CR1 0x44 |
154 | #define FSPI_AHBRX_BUF2CR1 0x48 |
155 | #define FSPI_AHBRX_BUF3CR1 0x4C |
156 | #define FSPI_AHBRX_BUF4CR1 0x50 |
157 | #define FSPI_AHBRX_BUF5CR1 0x54 |
158 | #define FSPI_AHBRX_BUF6CR1 0x58 |
159 | #define FSPI_AHBRX_BUF7CR1 0x5C |
160 | |
161 | #define FSPI_FLSHA1CR0 0x60 |
162 | #define FSPI_FLSHA2CR0 0x64 |
163 | #define FSPI_FLSHB1CR0 0x68 |
164 | #define FSPI_FLSHB2CR0 0x6C |
165 | #define FSPI_FLSHXCR0_SZ_KB 10 |
166 | #define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB) |
167 | |
168 | #define FSPI_FLSHA1CR1 0x70 |
169 | #define FSPI_FLSHA2CR1 0x74 |
170 | #define FSPI_FLSHB1CR1 0x78 |
171 | #define FSPI_FLSHB2CR1 0x7C |
172 | #define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16) |
173 | #define FSPI_FLSHXCR1_CAS(x) ((x) << 11) |
174 | #define FSPI_FLSHXCR1_WA BIT(10) |
175 | #define FSPI_FLSHXCR1_TCSH(x) ((x) << 5) |
176 | #define FSPI_FLSHXCR1_TCSS(x) (x) |
177 | |
178 | #define FSPI_FLSHA1CR2 0x80 |
179 | #define FSPI_FLSHA2CR2 0x84 |
180 | #define FSPI_FLSHB1CR2 0x88 |
181 | #define FSPI_FLSHB2CR2 0x8C |
182 | #define FSPI_FLSHXCR2_CLRINSP BIT(24) |
183 | #define FSPI_FLSHXCR2_AWRWAIT BIT(16) |
184 | #define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13 |
185 | #define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8 |
186 | #define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5 |
187 | #define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0 |
188 | |
189 | #define FSPI_IPCR0 0xA0 |
190 | |
191 | #define FSPI_IPCR1 0xA4 |
192 | #define FSPI_IPCR1_IPAREN BIT(31) |
193 | #define FSPI_IPCR1_SEQNUM_SHIFT 24 |
194 | #define FSPI_IPCR1_SEQID_SHIFT 16 |
195 | #define FSPI_IPCR1_IDATSZ(x) (x) |
196 | |
197 | #define FSPI_IPCMD 0xB0 |
198 | #define FSPI_IPCMD_TRG BIT(0) |
199 | |
200 | #define FSPI_DLPR 0xB4 |
201 | |
202 | #define FSPI_IPRXFCR 0xB8 |
203 | #define FSPI_IPRXFCR_CLR BIT(0) |
204 | #define FSPI_IPRXFCR_DMA_EN BIT(1) |
205 | #define FSPI_IPRXFCR_WMRK(x) ((x) << 2) |
206 | |
207 | #define FSPI_IPTXFCR 0xBC |
208 | #define FSPI_IPTXFCR_CLR BIT(0) |
209 | #define FSPI_IPTXFCR_DMA_EN BIT(1) |
210 | #define FSPI_IPTXFCR_WMRK(x) ((x) << 2) |
211 | |
212 | #define FSPI_DLLACR 0xC0 |
213 | #define FSPI_DLLACR_OVRDEN BIT(8) |
214 | #define FSPI_DLLACR_SLVDLY(x) ((x) << 3) |
215 | #define FSPI_DLLACR_DLLRESET BIT(1) |
216 | #define FSPI_DLLACR_DLLEN BIT(0) |
217 | |
218 | #define FSPI_DLLBCR 0xC4 |
219 | #define FSPI_DLLBCR_OVRDEN BIT(8) |
220 | #define FSPI_DLLBCR_SLVDLY(x) ((x) << 3) |
221 | #define FSPI_DLLBCR_DLLRESET BIT(1) |
222 | #define FSPI_DLLBCR_DLLEN BIT(0) |
223 | |
224 | #define FSPI_STS0 0xE0 |
225 | #define FSPI_STS0_DLPHB(x) ((x) << 8) |
226 | #define FSPI_STS0_DLPHA(x) ((x) << 4) |
227 | #define FSPI_STS0_CMD_SRC(x) ((x) << 2) |
228 | #define FSPI_STS0_ARB_IDLE BIT(1) |
229 | #define FSPI_STS0_SEQ_IDLE BIT(0) |
230 | |
231 | #define FSPI_STS1 0xE4 |
232 | #define FSPI_STS1_IP_ERRCD(x) ((x) << 24) |
233 | #define FSPI_STS1_IP_ERRID(x) ((x) << 16) |
234 | #define FSPI_STS1_AHB_ERRCD(x) ((x) << 8) |
235 | #define FSPI_STS1_AHB_ERRID(x) (x) |
236 | |
237 | #define FSPI_STS2 0xE8 |
238 | #define FSPI_STS2_BREFLOCK BIT(17) |
239 | #define FSPI_STS2_BSLVLOCK BIT(16) |
240 | #define FSPI_STS2_AREFLOCK BIT(1) |
241 | #define FSPI_STS2_ASLVLOCK BIT(0) |
242 | #define FSPI_STS2_AB_LOCK (FSPI_STS2_BREFLOCK | \ |
243 | FSPI_STS2_BSLVLOCK | \ |
244 | FSPI_STS2_AREFLOCK | \ |
245 | FSPI_STS2_ASLVLOCK) |
246 | |
247 | #define FSPI_AHBSPNST 0xEC |
248 | #define FSPI_AHBSPNST_DATLFT(x) ((x) << 16) |
249 | #define FSPI_AHBSPNST_BUFID(x) ((x) << 1) |
250 | #define FSPI_AHBSPNST_ACTIVE BIT(0) |
251 | |
252 | #define FSPI_IPRXFSTS 0xF0 |
253 | #define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16) |
254 | #define FSPI_IPRXFSTS_FILL(x) (x) |
255 | |
256 | #define FSPI_IPTXFSTS 0xF4 |
257 | #define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16) |
258 | #define FSPI_IPTXFSTS_FILL(x) (x) |
259 | |
260 | #define FSPI_RFDR 0x100 |
261 | #define FSPI_TFDR 0x180 |
262 | |
263 | #define FSPI_LUT_BASE 0x200 |
264 | |
265 | /* register map end */ |
266 | |
267 | /* Instruction set for the LUT register. */ |
268 | #define LUT_STOP 0x00 |
269 | #define LUT_CMD 0x01 |
270 | #define LUT_ADDR 0x02 |
271 | #define LUT_CADDR_SDR 0x03 |
272 | #define LUT_MODE 0x04 |
273 | #define LUT_MODE2 0x05 |
274 | #define LUT_MODE4 0x06 |
275 | #define LUT_MODE8 0x07 |
276 | #define LUT_NXP_WRITE 0x08 |
277 | #define LUT_NXP_READ 0x09 |
278 | #define LUT_LEARN_SDR 0x0A |
279 | #define LUT_DATSZ_SDR 0x0B |
280 | #define LUT_DUMMY 0x0C |
281 | #define LUT_DUMMY_RWDS_SDR 0x0D |
282 | #define LUT_JMP_ON_CS 0x1F |
283 | #define LUT_CMD_DDR 0x21 |
284 | #define LUT_ADDR_DDR 0x22 |
285 | #define LUT_CADDR_DDR 0x23 |
286 | #define LUT_MODE_DDR 0x24 |
287 | #define LUT_MODE2_DDR 0x25 |
288 | #define LUT_MODE4_DDR 0x26 |
289 | #define LUT_MODE8_DDR 0x27 |
290 | #define LUT_WRITE_DDR 0x28 |
291 | #define LUT_READ_DDR 0x29 |
292 | #define LUT_LEARN_DDR 0x2A |
293 | #define LUT_DATSZ_DDR 0x2B |
294 | #define LUT_DUMMY_DDR 0x2C |
295 | #define LUT_DUMMY_RWDS_DDR 0x2D |
296 | |
297 | /* |
298 | * Calculate number of required PAD bits for LUT register. |
299 | * |
300 | * The pad stands for the number of IO lines [0:7]. |
301 | * For example, the octal read needs eight IO lines, |
302 | * so you should use LUT_PAD(8). This macro |
303 | * returns 3 i.e. use eight (2^3) IP lines for read. |
304 | */ |
305 | #define LUT_PAD(x) (fls(x) - 1) |
306 | |
307 | /* |
308 | * Macro for constructing the LUT entries with the following |
309 | * register layout: |
310 | * |
311 | * --------------------------------------------------- |
312 | * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | |
313 | * --------------------------------------------------- |
314 | */ |
315 | #define PAD_SHIFT 8 |
316 | #define INSTR_SHIFT 10 |
317 | #define OPRND_SHIFT 16 |
318 | |
319 | /* Macros for constructing the LUT register. */ |
320 | #define LUT_DEF(idx, ins, pad, opr) \ |
321 | ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \ |
322 | (opr)) << (((idx) % 2) * OPRND_SHIFT)) |
323 | |
324 | #define POLL_TOUT 5000 |
325 | #define NXP_FSPI_MAX_CHIPSELECT 4 |
326 | #define NXP_FSPI_MIN_IOMAP SZ_4M |
327 | |
328 | #define DCFG_RCWSR1 0x100 |
329 | #define SYS_PLL_RAT GENMASK(6, 2) |
330 | |
331 | /* Access flash memory using IP bus only */ |
332 | #define FSPI_QUIRK_USE_IP_ONLY BIT(0) |
333 | |
334 | struct nxp_fspi_devtype_data { |
335 | unsigned int rxfifo; |
336 | unsigned int txfifo; |
337 | unsigned int ahb_buf_size; |
338 | unsigned int quirks; |
339 | unsigned int lut_num; |
340 | bool little_endian; |
341 | }; |
342 | |
343 | static struct nxp_fspi_devtype_data lx2160a_data = { |
344 | .rxfifo = SZ_512, /* (64 * 64 bits) */ |
345 | .txfifo = SZ_1K, /* (128 * 64 bits) */ |
346 | .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ |
347 | .quirks = 0, |
348 | .lut_num = 32, |
349 | .little_endian = true, /* little-endian */ |
350 | }; |
351 | |
352 | static struct nxp_fspi_devtype_data imx8mm_data = { |
353 | .rxfifo = SZ_512, /* (64 * 64 bits) */ |
354 | .txfifo = SZ_1K, /* (128 * 64 bits) */ |
355 | .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ |
356 | .quirks = 0, |
357 | .lut_num = 32, |
358 | .little_endian = true, /* little-endian */ |
359 | }; |
360 | |
361 | static struct nxp_fspi_devtype_data imx8qxp_data = { |
362 | .rxfifo = SZ_512, /* (64 * 64 bits) */ |
363 | .txfifo = SZ_1K, /* (128 * 64 bits) */ |
364 | .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ |
365 | .quirks = 0, |
366 | .lut_num = 32, |
367 | .little_endian = true, /* little-endian */ |
368 | }; |
369 | |
370 | static struct nxp_fspi_devtype_data imx8dxl_data = { |
371 | .rxfifo = SZ_512, /* (64 * 64 bits) */ |
372 | .txfifo = SZ_1K, /* (128 * 64 bits) */ |
373 | .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ |
374 | .quirks = FSPI_QUIRK_USE_IP_ONLY, |
375 | .lut_num = 32, |
376 | .little_endian = true, /* little-endian */ |
377 | }; |
378 | |
379 | static struct nxp_fspi_devtype_data imx8ulp_data = { |
380 | .rxfifo = SZ_512, /* (64 * 64 bits) */ |
381 | .txfifo = SZ_1K, /* (128 * 64 bits) */ |
382 | .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ |
383 | .quirks = 0, |
384 | .lut_num = 16, |
385 | .little_endian = true, /* little-endian */ |
386 | }; |
387 | |
388 | struct nxp_fspi { |
389 | void __iomem *iobase; |
390 | void __iomem *ahb_addr; |
391 | u32 memmap_phy; |
392 | u32 memmap_phy_size; |
393 | u32 memmap_start; |
394 | u32 memmap_len; |
395 | struct clk *clk, *clk_en; |
396 | struct device *dev; |
397 | struct completion c; |
398 | struct nxp_fspi_devtype_data *devtype_data; |
399 | struct mutex lock; |
400 | struct pm_qos_request pm_qos_req; |
401 | int selected; |
402 | #define FSPI_NEED_INIT (1 << 0) |
403 | int flags; |
404 | }; |
405 | |
406 | static inline int needs_ip_only(struct nxp_fspi *f) |
407 | { |
408 | return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY; |
409 | } |
410 | |
411 | /* |
412 | * R/W functions for big- or little-endian registers: |
413 | * The FSPI controller's endianness is independent of |
414 | * the CPU core's endianness. So far, although the CPU |
415 | * core is little-endian the FSPI controller can use |
416 | * big-endian or little-endian. |
417 | */ |
418 | static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr) |
419 | { |
420 | if (f->devtype_data->little_endian) |
421 | iowrite32(val, addr); |
422 | else |
423 | iowrite32be(val, addr); |
424 | } |
425 | |
426 | static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr) |
427 | { |
428 | if (f->devtype_data->little_endian) |
429 | return ioread32(addr); |
430 | else |
431 | return ioread32be(addr); |
432 | } |
433 | |
434 | static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id) |
435 | { |
436 | struct nxp_fspi *f = dev_id; |
437 | u32 reg; |
438 | |
439 | /* clear interrupt */ |
440 | reg = fspi_readl(f, addr: f->iobase + FSPI_INTR); |
441 | fspi_writel(f, FSPI_INTR_IPCMDDONE, addr: f->iobase + FSPI_INTR); |
442 | |
443 | if (reg & FSPI_INTR_IPCMDDONE) |
444 | complete(&f->c); |
445 | |
446 | return IRQ_HANDLED; |
447 | } |
448 | |
449 | static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width) |
450 | { |
451 | switch (width) { |
452 | case 1: |
453 | case 2: |
454 | case 4: |
455 | case 8: |
456 | return 0; |
457 | } |
458 | |
459 | return -ENOTSUPP; |
460 | } |
461 | |
462 | static bool nxp_fspi_supports_op(struct spi_mem *mem, |
463 | const struct spi_mem_op *op) |
464 | { |
465 | struct nxp_fspi *f = spi_controller_get_devdata(ctlr: mem->spi->controller); |
466 | int ret; |
467 | |
468 | ret = nxp_fspi_check_buswidth(f, width: op->cmd.buswidth); |
469 | |
470 | if (op->addr.nbytes) |
471 | ret |= nxp_fspi_check_buswidth(f, width: op->addr.buswidth); |
472 | |
473 | if (op->dummy.nbytes) |
474 | ret |= nxp_fspi_check_buswidth(f, width: op->dummy.buswidth); |
475 | |
476 | if (op->data.nbytes) |
477 | ret |= nxp_fspi_check_buswidth(f, width: op->data.buswidth); |
478 | |
479 | if (ret) |
480 | return false; |
481 | |
482 | /* |
483 | * The number of address bytes should be equal to or less than 4 bytes. |
484 | */ |
485 | if (op->addr.nbytes > 4) |
486 | return false; |
487 | |
488 | /* |
489 | * If requested address value is greater than controller assigned |
490 | * memory mapped space, return error as it didn't fit in the range |
491 | * of assigned address space. |
492 | */ |
493 | if (op->addr.val >= f->memmap_phy_size) |
494 | return false; |
495 | |
496 | /* Max 64 dummy clock cycles supported */ |
497 | if (op->dummy.buswidth && |
498 | (op->dummy.nbytes * 8 / op->dummy.buswidth > 64)) |
499 | return false; |
500 | |
501 | /* Max data length, check controller limits and alignment */ |
502 | if (op->data.dir == SPI_MEM_DATA_IN && |
503 | (op->data.nbytes > f->devtype_data->ahb_buf_size || |
504 | (op->data.nbytes > f->devtype_data->rxfifo - 4 && |
505 | !IS_ALIGNED(op->data.nbytes, 8)))) |
506 | return false; |
507 | |
508 | if (op->data.dir == SPI_MEM_DATA_OUT && |
509 | op->data.nbytes > f->devtype_data->txfifo) |
510 | return false; |
511 | |
512 | return spi_mem_default_supports_op(mem, op); |
513 | } |
514 | |
515 | /* Instead of busy looping invoke readl_poll_timeout functionality. */ |
516 | static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base, |
517 | u32 mask, u32 delay_us, |
518 | u32 timeout_us, bool c) |
519 | { |
520 | u32 reg; |
521 | |
522 | if (!f->devtype_data->little_endian) |
523 | mask = (u32)cpu_to_be32(mask); |
524 | |
525 | if (c) |
526 | return readl_poll_timeout(base, reg, (reg & mask), |
527 | delay_us, timeout_us); |
528 | else |
529 | return readl_poll_timeout(base, reg, !(reg & mask), |
530 | delay_us, timeout_us); |
531 | } |
532 | |
533 | /* |
534 | * If the target device content being changed by Write/Erase, need to |
535 | * invalidate the AHB buffer. This can be achieved by doing the reset |
536 | * of controller after setting MCR0[SWRESET] bit. |
537 | */ |
538 | static inline void nxp_fspi_invalid(struct nxp_fspi *f) |
539 | { |
540 | u32 reg; |
541 | int ret; |
542 | |
543 | reg = fspi_readl(f, addr: f->iobase + FSPI_MCR0); |
544 | fspi_writel(f, val: reg | FSPI_MCR0_SWRST, addr: f->iobase + FSPI_MCR0); |
545 | |
546 | /* w1c register, wait unit clear */ |
547 | ret = fspi_readl_poll_tout(f, base: f->iobase + FSPI_MCR0, |
548 | FSPI_MCR0_SWRST, delay_us: 0, POLL_TOUT, c: false); |
549 | WARN_ON(ret); |
550 | } |
551 | |
552 | static void nxp_fspi_prepare_lut(struct nxp_fspi *f, |
553 | const struct spi_mem_op *op) |
554 | { |
555 | void __iomem *base = f->iobase; |
556 | u32 lutval[4] = {}; |
557 | int lutidx = 1, i; |
558 | u32 lut_offset = (f->devtype_data->lut_num - 1) * 4 * 4; |
559 | u32 target_lut_reg; |
560 | |
561 | /* cmd */ |
562 | lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth), |
563 | op->cmd.opcode); |
564 | |
565 | /* addr bytes */ |
566 | if (op->addr.nbytes) { |
567 | lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR, |
568 | LUT_PAD(op->addr.buswidth), |
569 | op->addr.nbytes * 8); |
570 | lutidx++; |
571 | } |
572 | |
573 | /* dummy bytes, if needed */ |
574 | if (op->dummy.nbytes) { |
575 | lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY, |
576 | /* |
577 | * Due to FlexSPI controller limitation number of PAD for dummy |
578 | * buswidth needs to be programmed as equal to data buswidth. |
579 | */ |
580 | LUT_PAD(op->data.buswidth), |
581 | op->dummy.nbytes * 8 / |
582 | op->dummy.buswidth); |
583 | lutidx++; |
584 | } |
585 | |
586 | /* read/write data bytes */ |
587 | if (op->data.nbytes) { |
588 | lutval[lutidx / 2] |= LUT_DEF(lutidx, |
589 | op->data.dir == SPI_MEM_DATA_IN ? |
590 | LUT_NXP_READ : LUT_NXP_WRITE, |
591 | LUT_PAD(op->data.buswidth), |
592 | 0); |
593 | lutidx++; |
594 | } |
595 | |
596 | /* stop condition. */ |
597 | lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0); |
598 | |
599 | /* unlock LUT */ |
600 | fspi_writel(f, FSPI_LUTKEY_VALUE, addr: f->iobase + FSPI_LUTKEY); |
601 | fspi_writel(f, FSPI_LCKER_UNLOCK, addr: f->iobase + FSPI_LCKCR); |
602 | |
603 | /* fill LUT */ |
604 | for (i = 0; i < ARRAY_SIZE(lutval); i++) { |
605 | target_lut_reg = FSPI_LUT_BASE + lut_offset + i * 4; |
606 | fspi_writel(f, val: lutval[i], addr: base + target_lut_reg); |
607 | } |
608 | |
609 | dev_dbg(f->dev, "CMD[%02x] lutval[0:%08x 1:%08x 2:%08x 3:%08x], size: 0x%08x\n" , |
610 | op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes); |
611 | |
612 | /* lock LUT */ |
613 | fspi_writel(f, FSPI_LUTKEY_VALUE, addr: f->iobase + FSPI_LUTKEY); |
614 | fspi_writel(f, FSPI_LCKER_LOCK, addr: f->iobase + FSPI_LCKCR); |
615 | } |
616 | |
617 | static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f) |
618 | { |
619 | int ret; |
620 | |
621 | if (is_acpi_node(dev_fwnode(f->dev))) |
622 | return 0; |
623 | |
624 | ret = clk_prepare_enable(clk: f->clk_en); |
625 | if (ret) |
626 | return ret; |
627 | |
628 | ret = clk_prepare_enable(clk: f->clk); |
629 | if (ret) { |
630 | clk_disable_unprepare(clk: f->clk_en); |
631 | return ret; |
632 | } |
633 | |
634 | return 0; |
635 | } |
636 | |
637 | static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f) |
638 | { |
639 | if (is_acpi_node(dev_fwnode(f->dev))) |
640 | return; |
641 | |
642 | clk_disable_unprepare(clk: f->clk); |
643 | clk_disable_unprepare(clk: f->clk_en); |
644 | |
645 | return; |
646 | } |
647 | |
648 | static void nxp_fspi_dll_calibration(struct nxp_fspi *f) |
649 | { |
650 | int ret; |
651 | |
652 | /* Reset the DLL, set the DLLRESET to 1 and then set to 0 */ |
653 | fspi_writel(f, FSPI_DLLACR_DLLRESET, addr: f->iobase + FSPI_DLLACR); |
654 | fspi_writel(f, FSPI_DLLBCR_DLLRESET, addr: f->iobase + FSPI_DLLBCR); |
655 | fspi_writel(f, val: 0, addr: f->iobase + FSPI_DLLACR); |
656 | fspi_writel(f, val: 0, addr: f->iobase + FSPI_DLLBCR); |
657 | |
658 | /* |
659 | * Enable the DLL calibration mode. |
660 | * The delay target for slave delay line is: |
661 | * ((SLVDLYTARGET+1) * 1/32 * clock cycle of reference clock. |
662 | * When clock rate > 100MHz, recommend SLVDLYTARGET is 0xF, which |
663 | * means half of clock cycle of reference clock. |
664 | */ |
665 | fspi_writel(f, FSPI_DLLACR_DLLEN | FSPI_DLLACR_SLVDLY(0xF), |
666 | addr: f->iobase + FSPI_DLLACR); |
667 | fspi_writel(f, FSPI_DLLBCR_DLLEN | FSPI_DLLBCR_SLVDLY(0xF), |
668 | addr: f->iobase + FSPI_DLLBCR); |
669 | |
670 | /* Wait to get REF/SLV lock */ |
671 | ret = fspi_readl_poll_tout(f, base: f->iobase + FSPI_STS2, FSPI_STS2_AB_LOCK, |
672 | delay_us: 0, POLL_TOUT, c: true); |
673 | if (ret) |
674 | dev_warn(f->dev, "DLL lock failed, please fix it!\n" ); |
675 | } |
676 | |
677 | /* |
678 | * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0 |
679 | * register and start base address of the target device. |
680 | * |
681 | * (Higher address) |
682 | * -------- <-- FLSHB2CR0 |
683 | * | B2 | |
684 | * | | |
685 | * B2 start address --> -------- <-- FLSHB1CR0 |
686 | * | B1 | |
687 | * | | |
688 | * B1 start address --> -------- <-- FLSHA2CR0 |
689 | * | A2 | |
690 | * | | |
691 | * A2 start address --> -------- <-- FLSHA1CR0 |
692 | * | A1 | |
693 | * | | |
694 | * A1 start address --> -------- (Lower address) |
695 | * |
696 | * |
697 | * Start base address defines the starting address range for given CS and |
698 | * FSPI_FLSHXXCR0 defines the size of the target device connected at given CS. |
699 | * |
700 | * But, different targets are having different combinations of number of CS, |
701 | * some targets only have single CS or two CS covering controller's full |
702 | * memory mapped space area. |
703 | * Thus, implementation is being done as independent of the size and number |
704 | * of the connected target device. |
705 | * Assign controller memory mapped space size as the size to the connected |
706 | * target device. |
707 | * Mark FLSHxxCR0 as zero initially and then assign value only to the selected |
708 | * chip-select Flash configuration register. |
709 | * |
710 | * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the |
711 | * memory mapped size of the controller. |
712 | * Value for rest of the CS FLSHxxCR0 register would be zero. |
713 | * |
714 | */ |
715 | static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi, |
716 | const struct spi_mem_op *op) |
717 | { |
718 | unsigned long rate = op->max_freq; |
719 | int ret; |
720 | uint64_t size_kb; |
721 | |
722 | /* |
723 | * Return, if previously selected target device is same as current |
724 | * requested target device. |
725 | */ |
726 | if (f->selected == spi_get_chipselect(spi, idx: 0)) |
727 | return; |
728 | |
729 | /* Reset FLSHxxCR0 registers */ |
730 | fspi_writel(f, val: 0, addr: f->iobase + FSPI_FLSHA1CR0); |
731 | fspi_writel(f, val: 0, addr: f->iobase + FSPI_FLSHA2CR0); |
732 | fspi_writel(f, val: 0, addr: f->iobase + FSPI_FLSHB1CR0); |
733 | fspi_writel(f, val: 0, addr: f->iobase + FSPI_FLSHB2CR0); |
734 | |
735 | /* Assign controller memory mapped space as size, KBytes, of flash. */ |
736 | size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size); |
737 | |
738 | fspi_writel(f, val: size_kb, addr: f->iobase + FSPI_FLSHA1CR0 + |
739 | 4 * spi_get_chipselect(spi, idx: 0)); |
740 | |
741 | dev_dbg(f->dev, "Target device [CS:%x] selected\n" , spi_get_chipselect(spi, 0)); |
742 | |
743 | nxp_fspi_clk_disable_unprep(f); |
744 | |
745 | ret = clk_set_rate(clk: f->clk, rate); |
746 | if (ret) |
747 | return; |
748 | |
749 | ret = nxp_fspi_clk_prep_enable(f); |
750 | if (ret) |
751 | return; |
752 | |
753 | /* |
754 | * If clock rate > 100MHz, then switch from DLL override mode to |
755 | * DLL calibration mode. |
756 | */ |
757 | if (rate > 100000000) |
758 | nxp_fspi_dll_calibration(f); |
759 | |
760 | f->selected = spi_get_chipselect(spi, idx: 0); |
761 | } |
762 | |
763 | static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op) |
764 | { |
765 | u32 start = op->addr.val; |
766 | u32 len = op->data.nbytes; |
767 | |
768 | /* if necessary, ioremap before AHB read */ |
769 | if ((!f->ahb_addr) || start < f->memmap_start || |
770 | start + len > f->memmap_start + f->memmap_len) { |
771 | if (f->ahb_addr) |
772 | iounmap(addr: f->ahb_addr); |
773 | |
774 | f->memmap_start = start; |
775 | f->memmap_len = max_t(u32, len, NXP_FSPI_MIN_IOMAP); |
776 | |
777 | f->ahb_addr = ioremap(offset: f->memmap_phy + f->memmap_start, |
778 | size: f->memmap_len); |
779 | |
780 | if (!f->ahb_addr) { |
781 | dev_err(f->dev, "failed to alloc memory\n" ); |
782 | return -ENOMEM; |
783 | } |
784 | } |
785 | |
786 | /* Read out the data directly from the AHB buffer. */ |
787 | memcpy_fromio(op->data.buf.in, |
788 | f->ahb_addr + start - f->memmap_start, len); |
789 | |
790 | return 0; |
791 | } |
792 | |
793 | static void nxp_fspi_fill_txfifo(struct nxp_fspi *f, |
794 | const struct spi_mem_op *op) |
795 | { |
796 | void __iomem *base = f->iobase; |
797 | int i, ret; |
798 | u8 *buf = (u8 *) op->data.buf.out; |
799 | |
800 | /* clear the TX FIFO. */ |
801 | fspi_writel(f, FSPI_IPTXFCR_CLR, addr: base + FSPI_IPTXFCR); |
802 | |
803 | /* |
804 | * Default value of water mark level is 8 bytes, hence in single |
805 | * write request controller can write max 8 bytes of data. |
806 | */ |
807 | |
808 | for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) { |
809 | /* Wait for TXFIFO empty */ |
810 | ret = fspi_readl_poll_tout(f, base: f->iobase + FSPI_INTR, |
811 | FSPI_INTR_IPTXWE, delay_us: 0, |
812 | POLL_TOUT, c: true); |
813 | WARN_ON(ret); |
814 | |
815 | fspi_writel(f, val: *(u32 *) (buf + i), addr: base + FSPI_TFDR); |
816 | fspi_writel(f, val: *(u32 *) (buf + i + 4), addr: base + FSPI_TFDR + 4); |
817 | fspi_writel(f, FSPI_INTR_IPTXWE, addr: base + FSPI_INTR); |
818 | } |
819 | |
820 | if (i < op->data.nbytes) { |
821 | u32 data = 0; |
822 | int j; |
823 | int remaining = op->data.nbytes - i; |
824 | /* Wait for TXFIFO empty */ |
825 | ret = fspi_readl_poll_tout(f, base: f->iobase + FSPI_INTR, |
826 | FSPI_INTR_IPTXWE, delay_us: 0, |
827 | POLL_TOUT, c: true); |
828 | WARN_ON(ret); |
829 | |
830 | for (j = 0; j < ALIGN(remaining, 4); j += 4) { |
831 | memcpy(&data, buf + i + j, min_t(int, 4, remaining - j)); |
832 | fspi_writel(f, val: data, addr: base + FSPI_TFDR + j); |
833 | } |
834 | fspi_writel(f, FSPI_INTR_IPTXWE, addr: base + FSPI_INTR); |
835 | } |
836 | } |
837 | |
838 | static void nxp_fspi_read_rxfifo(struct nxp_fspi *f, |
839 | const struct spi_mem_op *op) |
840 | { |
841 | void __iomem *base = f->iobase; |
842 | int i, ret; |
843 | int len = op->data.nbytes; |
844 | u8 *buf = (u8 *) op->data.buf.in; |
845 | |
846 | /* |
847 | * Default value of water mark level is 8 bytes, hence in single |
848 | * read request controller can read max 8 bytes of data. |
849 | */ |
850 | for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) { |
851 | /* Wait for RXFIFO available */ |
852 | ret = fspi_readl_poll_tout(f, base: f->iobase + FSPI_INTR, |
853 | FSPI_INTR_IPRXWA, delay_us: 0, |
854 | POLL_TOUT, c: true); |
855 | WARN_ON(ret); |
856 | |
857 | *(u32 *)(buf + i) = fspi_readl(f, addr: base + FSPI_RFDR); |
858 | *(u32 *)(buf + i + 4) = fspi_readl(f, addr: base + FSPI_RFDR + 4); |
859 | /* move the FIFO pointer */ |
860 | fspi_writel(f, FSPI_INTR_IPRXWA, addr: base + FSPI_INTR); |
861 | } |
862 | |
863 | if (i < len) { |
864 | u32 tmp; |
865 | int size, j; |
866 | |
867 | buf = op->data.buf.in + i; |
868 | /* Wait for RXFIFO available */ |
869 | ret = fspi_readl_poll_tout(f, base: f->iobase + FSPI_INTR, |
870 | FSPI_INTR_IPRXWA, delay_us: 0, |
871 | POLL_TOUT, c: true); |
872 | WARN_ON(ret); |
873 | |
874 | len = op->data.nbytes - i; |
875 | for (j = 0; j < op->data.nbytes - i; j += 4) { |
876 | tmp = fspi_readl(f, addr: base + FSPI_RFDR + j); |
877 | size = min(len, 4); |
878 | memcpy(buf + j, &tmp, size); |
879 | len -= size; |
880 | } |
881 | } |
882 | |
883 | /* invalid the RXFIFO */ |
884 | fspi_writel(f, FSPI_IPRXFCR_CLR, addr: base + FSPI_IPRXFCR); |
885 | /* move the FIFO pointer */ |
886 | fspi_writel(f, FSPI_INTR_IPRXWA, addr: base + FSPI_INTR); |
887 | } |
888 | |
889 | static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op) |
890 | { |
891 | void __iomem *base = f->iobase; |
892 | int seqnum = 0; |
893 | int err = 0; |
894 | u32 reg, seqid_lut; |
895 | |
896 | reg = fspi_readl(f, addr: base + FSPI_IPRXFCR); |
897 | /* invalid RXFIFO first */ |
898 | reg &= ~FSPI_IPRXFCR_DMA_EN; |
899 | reg = reg | FSPI_IPRXFCR_CLR; |
900 | fspi_writel(f, val: reg, addr: base + FSPI_IPRXFCR); |
901 | |
902 | init_completion(x: &f->c); |
903 | |
904 | fspi_writel(f, val: op->addr.val, addr: base + FSPI_IPCR0); |
905 | /* |
906 | * Always start the sequence at the same index since we update |
907 | * the LUT at each exec_op() call. And also specify the DATA |
908 | * length, since it's has not been specified in the LUT. |
909 | */ |
910 | seqid_lut = f->devtype_data->lut_num - 1; |
911 | fspi_writel(f, val: op->data.nbytes | |
912 | (seqid_lut << FSPI_IPCR1_SEQID_SHIFT) | |
913 | (seqnum << FSPI_IPCR1_SEQNUM_SHIFT), |
914 | addr: base + FSPI_IPCR1); |
915 | |
916 | /* Trigger the LUT now. */ |
917 | fspi_writel(f, FSPI_IPCMD_TRG, addr: base + FSPI_IPCMD); |
918 | |
919 | /* Wait for the interrupt. */ |
920 | if (!wait_for_completion_timeout(x: &f->c, timeout: msecs_to_jiffies(m: 1000))) |
921 | err = -ETIMEDOUT; |
922 | |
923 | /* Invoke IP data read, if request is of data read. */ |
924 | if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) |
925 | nxp_fspi_read_rxfifo(f, op); |
926 | |
927 | return err; |
928 | } |
929 | |
930 | static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) |
931 | { |
932 | struct nxp_fspi *f = spi_controller_get_devdata(ctlr: mem->spi->controller); |
933 | int err = 0; |
934 | |
935 | guard(mutex)(T: &f->lock); |
936 | |
937 | err = pm_runtime_get_sync(dev: f->dev); |
938 | if (err < 0) { |
939 | dev_err(f->dev, "Failed to enable clock %d\n" , __LINE__); |
940 | return err; |
941 | } |
942 | |
943 | /* Wait for controller being ready. */ |
944 | err = fspi_readl_poll_tout(f, base: f->iobase + FSPI_STS0, |
945 | FSPI_STS0_ARB_IDLE, delay_us: 1, POLL_TOUT, c: true); |
946 | WARN_ON(err); |
947 | |
948 | nxp_fspi_select_mem(f, spi: mem->spi, op); |
949 | |
950 | nxp_fspi_prepare_lut(f, op); |
951 | /* |
952 | * If we have large chunks of data, we read them through the AHB bus by |
953 | * accessing the mapped memory. In all other cases we use IP commands |
954 | * to access the flash. Read via AHB bus may be corrupted due to |
955 | * existence of an errata and therefore discard AHB read in such cases. |
956 | */ |
957 | if (op->data.nbytes > (f->devtype_data->rxfifo - 4) && |
958 | op->data.dir == SPI_MEM_DATA_IN && |
959 | !needs_ip_only(f)) { |
960 | err = nxp_fspi_read_ahb(f, op); |
961 | } else { |
962 | if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) |
963 | nxp_fspi_fill_txfifo(f, op); |
964 | |
965 | err = nxp_fspi_do_op(f, op); |
966 | } |
967 | |
968 | /* Invalidate the data in the AHB buffer. */ |
969 | nxp_fspi_invalid(f); |
970 | |
971 | pm_runtime_mark_last_busy(dev: f->dev); |
972 | pm_runtime_put_autosuspend(dev: f->dev); |
973 | |
974 | return err; |
975 | } |
976 | |
977 | static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) |
978 | { |
979 | struct nxp_fspi *f = spi_controller_get_devdata(ctlr: mem->spi->controller); |
980 | |
981 | if (op->data.dir == SPI_MEM_DATA_OUT) { |
982 | if (op->data.nbytes > f->devtype_data->txfifo) |
983 | op->data.nbytes = f->devtype_data->txfifo; |
984 | } else { |
985 | if (op->data.nbytes > f->devtype_data->ahb_buf_size) |
986 | op->data.nbytes = f->devtype_data->ahb_buf_size; |
987 | else if (op->data.nbytes > (f->devtype_data->rxfifo - 4)) |
988 | op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8); |
989 | } |
990 | |
991 | /* Limit data bytes to RX FIFO in case of IP read only */ |
992 | if (op->data.dir == SPI_MEM_DATA_IN && |
993 | needs_ip_only(f) && |
994 | op->data.nbytes > f->devtype_data->rxfifo) |
995 | op->data.nbytes = f->devtype_data->rxfifo; |
996 | |
997 | return 0; |
998 | } |
999 | |
1000 | static void erratum_err050568(struct nxp_fspi *f) |
1001 | { |
1002 | static const struct soc_device_attribute ls1028a_soc_attr[] = { |
1003 | { .family = "QorIQ LS1028A" }, |
1004 | { /* sentinel */ } |
1005 | }; |
1006 | struct regmap *map; |
1007 | u32 val, sys_pll_ratio; |
1008 | int ret; |
1009 | |
1010 | /* Check for LS1028A family */ |
1011 | if (!soc_device_match(matches: ls1028a_soc_attr)) { |
1012 | dev_dbg(f->dev, "Errata applicable only for LS1028A\n" ); |
1013 | return; |
1014 | } |
1015 | |
1016 | map = syscon_regmap_lookup_by_compatible(s: "fsl,ls1028a-dcfg" ); |
1017 | if (IS_ERR(ptr: map)) { |
1018 | dev_err(f->dev, "No syscon regmap\n" ); |
1019 | goto err; |
1020 | } |
1021 | |
1022 | ret = regmap_read(map, DCFG_RCWSR1, val: &val); |
1023 | if (ret < 0) |
1024 | goto err; |
1025 | |
1026 | sys_pll_ratio = FIELD_GET(SYS_PLL_RAT, val); |
1027 | dev_dbg(f->dev, "val: 0x%08x, sys_pll_ratio: %d\n" , val, sys_pll_ratio); |
1028 | |
1029 | /* Use IP bus only if platform clock is 300MHz */ |
1030 | if (sys_pll_ratio == 3) |
1031 | f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY; |
1032 | |
1033 | return; |
1034 | |
1035 | err: |
1036 | dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n" ); |
1037 | } |
1038 | |
1039 | static int nxp_fspi_default_setup(struct nxp_fspi *f) |
1040 | { |
1041 | void __iomem *base = f->iobase; |
1042 | int ret, i; |
1043 | u32 reg, seqid_lut; |
1044 | |
1045 | /* disable and unprepare clock to avoid glitch pass to controller */ |
1046 | nxp_fspi_clk_disable_unprep(f); |
1047 | |
1048 | /* the default frequency, we will change it later if necessary. */ |
1049 | ret = clk_set_rate(clk: f->clk, rate: 20000000); |
1050 | if (ret) |
1051 | return ret; |
1052 | |
1053 | ret = nxp_fspi_clk_prep_enable(f); |
1054 | if (ret) |
1055 | return ret; |
1056 | |
1057 | /* |
1058 | * ERR050568: Flash access by FlexSPI AHB command may not work with |
1059 | * platform frequency equal to 300 MHz on LS1028A. |
1060 | * LS1028A reuses LX2160A compatible entry. Make errata applicable for |
1061 | * Layerscape LS1028A platform. |
1062 | */ |
1063 | if (of_device_is_compatible(device: f->dev->of_node, "nxp,lx2160a-fspi" )) |
1064 | erratum_err050568(f); |
1065 | |
1066 | /* Reset the module */ |
1067 | /* w1c register, wait unit clear */ |
1068 | ret = fspi_readl_poll_tout(f, base: f->iobase + FSPI_MCR0, |
1069 | FSPI_MCR0_SWRST, delay_us: 0, POLL_TOUT, c: false); |
1070 | WARN_ON(ret); |
1071 | |
1072 | /* Disable the module */ |
1073 | fspi_writel(f, FSPI_MCR0_MDIS, addr: base + FSPI_MCR0); |
1074 | |
1075 | /* |
1076 | * Config the DLL register to default value, enable the target clock delay |
1077 | * line delay cell override mode, and use 1 fixed delay cell in DLL delay |
1078 | * chain, this is the suggested setting when clock rate < 100MHz. |
1079 | */ |
1080 | fspi_writel(f, FSPI_DLLACR_OVRDEN, addr: base + FSPI_DLLACR); |
1081 | fspi_writel(f, FSPI_DLLBCR_OVRDEN, addr: base + FSPI_DLLBCR); |
1082 | |
1083 | /* enable module */ |
1084 | fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | |
1085 | FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN, |
1086 | addr: base + FSPI_MCR0); |
1087 | |
1088 | /* |
1089 | * Disable same device enable bit and configure all target devices |
1090 | * independently. |
1091 | */ |
1092 | reg = fspi_readl(f, addr: f->iobase + FSPI_MCR2); |
1093 | reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN); |
1094 | fspi_writel(f, val: reg, addr: base + FSPI_MCR2); |
1095 | |
1096 | /* AHB configuration for access buffer 0~7. */ |
1097 | for (i = 0; i < 7; i++) |
1098 | fspi_writel(f, val: 0, addr: base + FSPI_AHBRX_BUF0CR0 + 4 * i); |
1099 | |
1100 | /* |
1101 | * Set ADATSZ with the maximum AHB buffer size to improve the read |
1102 | * performance. |
1103 | */ |
1104 | fspi_writel(f, val: (f->devtype_data->ahb_buf_size / 8 | |
1105 | FSPI_AHBRXBUF0CR7_PREF), addr: base + FSPI_AHBRX_BUF7CR0); |
1106 | |
1107 | /* prefetch and no start address alignment limitation */ |
1108 | fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT, |
1109 | addr: base + FSPI_AHBCR); |
1110 | |
1111 | /* Reset the FLSHxCR1 registers. */ |
1112 | reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3); |
1113 | fspi_writel(f, val: reg, addr: base + FSPI_FLSHA1CR1); |
1114 | fspi_writel(f, val: reg, addr: base + FSPI_FLSHA2CR1); |
1115 | fspi_writel(f, val: reg, addr: base + FSPI_FLSHB1CR1); |
1116 | fspi_writel(f, val: reg, addr: base + FSPI_FLSHB2CR1); |
1117 | |
1118 | /* |
1119 | * The driver only uses one single LUT entry, that is updated on |
1120 | * each call of exec_op(). Index 0 is preset at boot with a basic |
1121 | * read operation, so let's use the last entry. |
1122 | */ |
1123 | seqid_lut = f->devtype_data->lut_num - 1; |
1124 | /* AHB Read - Set lut sequence ID for all CS. */ |
1125 | fspi_writel(f, val: seqid_lut, addr: base + FSPI_FLSHA1CR2); |
1126 | fspi_writel(f, val: seqid_lut, addr: base + FSPI_FLSHA2CR2); |
1127 | fspi_writel(f, val: seqid_lut, addr: base + FSPI_FLSHB1CR2); |
1128 | fspi_writel(f, val: seqid_lut, addr: base + FSPI_FLSHB2CR2); |
1129 | |
1130 | f->selected = -1; |
1131 | |
1132 | /* enable the interrupt */ |
1133 | fspi_writel(f, FSPI_INTEN_IPCMDDONE, addr: base + FSPI_INTEN); |
1134 | |
1135 | return 0; |
1136 | } |
1137 | |
1138 | static const char *nxp_fspi_get_name(struct spi_mem *mem) |
1139 | { |
1140 | struct nxp_fspi *f = spi_controller_get_devdata(ctlr: mem->spi->controller); |
1141 | struct device *dev = &mem->spi->dev; |
1142 | const char *name; |
1143 | |
1144 | // Set custom name derived from the platform_device of the controller. |
1145 | if (of_get_available_child_count(np: f->dev->of_node) == 1) |
1146 | return dev_name(dev: f->dev); |
1147 | |
1148 | name = devm_kasprintf(dev, GFP_KERNEL, |
1149 | fmt: "%s-%d" , dev_name(dev: f->dev), |
1150 | spi_get_chipselect(spi: mem->spi, idx: 0)); |
1151 | |
1152 | if (!name) { |
1153 | dev_err(dev, "failed to get memory for custom flash name\n" ); |
1154 | return ERR_PTR(error: -ENOMEM); |
1155 | } |
1156 | |
1157 | return name; |
1158 | } |
1159 | |
1160 | static const struct spi_controller_mem_ops nxp_fspi_mem_ops = { |
1161 | .adjust_op_size = nxp_fspi_adjust_op_size, |
1162 | .supports_op = nxp_fspi_supports_op, |
1163 | .exec_op = nxp_fspi_exec_op, |
1164 | .get_name = nxp_fspi_get_name, |
1165 | }; |
1166 | |
1167 | static const struct spi_controller_mem_caps nxp_fspi_mem_caps = { |
1168 | .per_op_freq = true, |
1169 | }; |
1170 | |
1171 | static void nxp_fspi_cleanup(void *data) |
1172 | { |
1173 | struct nxp_fspi *f = data; |
1174 | |
1175 | /* enable clock first since there is register access */ |
1176 | pm_runtime_get_sync(dev: f->dev); |
1177 | |
1178 | /* disable the hardware */ |
1179 | fspi_writel(f, FSPI_MCR0_MDIS, addr: f->iobase + FSPI_MCR0); |
1180 | |
1181 | pm_runtime_disable(dev: f->dev); |
1182 | pm_runtime_put_noidle(dev: f->dev); |
1183 | nxp_fspi_clk_disable_unprep(f); |
1184 | |
1185 | if (f->ahb_addr) |
1186 | iounmap(addr: f->ahb_addr); |
1187 | } |
1188 | |
1189 | static int nxp_fspi_probe(struct platform_device *pdev) |
1190 | { |
1191 | struct spi_controller *ctlr; |
1192 | struct device *dev = &pdev->dev; |
1193 | struct device_node *np = dev->of_node; |
1194 | struct resource *res; |
1195 | struct nxp_fspi *f; |
1196 | int ret, irq; |
1197 | u32 reg; |
1198 | |
1199 | ctlr = devm_spi_alloc_host(dev: &pdev->dev, size: sizeof(*f)); |
1200 | if (!ctlr) |
1201 | return -ENOMEM; |
1202 | |
1203 | ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL | |
1204 | SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL; |
1205 | |
1206 | f = spi_controller_get_devdata(ctlr); |
1207 | f->dev = dev; |
1208 | f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev); |
1209 | if (!f->devtype_data) |
1210 | return -ENODEV; |
1211 | |
1212 | platform_set_drvdata(pdev, data: f); |
1213 | |
1214 | /* find the resources - configuration register address space */ |
1215 | if (is_acpi_node(dev_fwnode(f->dev))) |
1216 | f->iobase = devm_platform_ioremap_resource(pdev, index: 0); |
1217 | else |
1218 | f->iobase = devm_platform_ioremap_resource_byname(pdev, name: "fspi_base" ); |
1219 | if (IS_ERR(ptr: f->iobase)) |
1220 | return PTR_ERR(ptr: f->iobase); |
1221 | |
1222 | /* find the resources - controller memory mapped space */ |
1223 | if (is_acpi_node(dev_fwnode(f->dev))) |
1224 | res = platform_get_resource(pdev, IORESOURCE_MEM, 1); |
1225 | else |
1226 | res = platform_get_resource_byname(pdev, |
1227 | IORESOURCE_MEM, "fspi_mmap" ); |
1228 | if (!res) |
1229 | return -ENODEV; |
1230 | |
1231 | /* assign memory mapped starting address and mapped size. */ |
1232 | f->memmap_phy = res->start; |
1233 | f->memmap_phy_size = resource_size(res); |
1234 | |
1235 | /* find the clocks */ |
1236 | if (dev_of_node(dev: &pdev->dev)) { |
1237 | f->clk_en = devm_clk_get(dev, id: "fspi_en" ); |
1238 | if (IS_ERR(ptr: f->clk_en)) |
1239 | return PTR_ERR(ptr: f->clk_en); |
1240 | |
1241 | f->clk = devm_clk_get(dev, id: "fspi" ); |
1242 | if (IS_ERR(ptr: f->clk)) |
1243 | return PTR_ERR(ptr: f->clk); |
1244 | } |
1245 | |
1246 | /* find the irq */ |
1247 | irq = platform_get_irq(pdev, 0); |
1248 | if (irq < 0) |
1249 | return dev_err_probe(dev, err: irq, fmt: "Failed to get irq source" ); |
1250 | |
1251 | pm_runtime_enable(dev); |
1252 | pm_runtime_set_autosuspend_delay(dev, FSPI_RPM_TIMEOUT); |
1253 | pm_runtime_use_autosuspend(dev); |
1254 | |
1255 | /* enable clock */ |
1256 | ret = pm_runtime_get_sync(dev: f->dev); |
1257 | if (ret < 0) |
1258 | return dev_err_probe(dev, err: ret, fmt: "Failed to enable clock" ); |
1259 | |
1260 | /* Clear potential interrupts */ |
1261 | reg = fspi_readl(f, addr: f->iobase + FSPI_INTR); |
1262 | if (reg) |
1263 | fspi_writel(f, val: reg, addr: f->iobase + FSPI_INTR); |
1264 | |
1265 | nxp_fspi_default_setup(f); |
1266 | |
1267 | ret = pm_runtime_put_sync(dev); |
1268 | if (ret < 0) |
1269 | return dev_err_probe(dev, err: ret, fmt: "Failed to disable clock" ); |
1270 | |
1271 | ret = devm_request_irq(dev, irq, |
1272 | handler: nxp_fspi_irq_handler, irqflags: 0, devname: pdev->name, dev_id: f); |
1273 | if (ret) |
1274 | return dev_err_probe(dev, err: ret, fmt: "Failed to request irq\n" ); |
1275 | |
1276 | devm_mutex_init(dev, &f->lock); |
1277 | |
1278 | ctlr->bus_num = -1; |
1279 | ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT; |
1280 | ctlr->mem_ops = &nxp_fspi_mem_ops; |
1281 | ctlr->mem_caps = &nxp_fspi_mem_caps; |
1282 | ctlr->dev.of_node = np; |
1283 | |
1284 | ret = devm_add_action_or_reset(dev, nxp_fspi_cleanup, f); |
1285 | if (ret) |
1286 | return dev_err_probe(dev, err: ret, fmt: "Failed to register nxp_fspi_cleanup\n" ); |
1287 | |
1288 | return devm_spi_register_controller(dev: &pdev->dev, ctlr); |
1289 | } |
1290 | |
1291 | static int nxp_fspi_runtime_suspend(struct device *dev) |
1292 | { |
1293 | struct nxp_fspi *f = dev_get_drvdata(dev); |
1294 | |
1295 | nxp_fspi_clk_disable_unprep(f); |
1296 | |
1297 | return 0; |
1298 | } |
1299 | |
1300 | static int nxp_fspi_runtime_resume(struct device *dev) |
1301 | { |
1302 | struct nxp_fspi *f = dev_get_drvdata(dev); |
1303 | int ret; |
1304 | |
1305 | ret = nxp_fspi_clk_prep_enable(f); |
1306 | if (ret) |
1307 | return ret; |
1308 | |
1309 | if (f->flags & FSPI_NEED_INIT) { |
1310 | nxp_fspi_default_setup(f); |
1311 | ret = pinctrl_pm_select_default_state(dev); |
1312 | if (ret) |
1313 | dev_err(dev, "select flexspi default pinctrl failed!\n" ); |
1314 | f->flags &= ~FSPI_NEED_INIT; |
1315 | } |
1316 | |
1317 | return ret; |
1318 | } |
1319 | |
1320 | static int nxp_fspi_suspend(struct device *dev) |
1321 | { |
1322 | struct nxp_fspi *f = dev_get_drvdata(dev); |
1323 | int ret; |
1324 | |
1325 | ret = pinctrl_pm_select_sleep_state(dev); |
1326 | if (ret) { |
1327 | dev_err(dev, "select flexspi sleep pinctrl failed!\n" ); |
1328 | return ret; |
1329 | } |
1330 | |
1331 | f->flags |= FSPI_NEED_INIT; |
1332 | |
1333 | return pm_runtime_force_suspend(dev); |
1334 | } |
1335 | |
1336 | static const struct dev_pm_ops nxp_fspi_pm_ops = { |
1337 | RUNTIME_PM_OPS(nxp_fspi_runtime_suspend, nxp_fspi_runtime_resume, NULL) |
1338 | SYSTEM_SLEEP_PM_OPS(nxp_fspi_suspend, pm_runtime_force_resume) |
1339 | }; |
1340 | |
1341 | static const struct of_device_id nxp_fspi_dt_ids[] = { |
1342 | { .compatible = "nxp,lx2160a-fspi" , .data = (void *)&lx2160a_data, }, |
1343 | { .compatible = "nxp,imx8mm-fspi" , .data = (void *)&imx8mm_data, }, |
1344 | { .compatible = "nxp,imx8mp-fspi" , .data = (void *)&imx8mm_data, }, |
1345 | { .compatible = "nxp,imx8qxp-fspi" , .data = (void *)&imx8qxp_data, }, |
1346 | { .compatible = "nxp,imx8dxl-fspi" , .data = (void *)&imx8dxl_data, }, |
1347 | { .compatible = "nxp,imx8ulp-fspi" , .data = (void *)&imx8ulp_data, }, |
1348 | { /* sentinel */ } |
1349 | }; |
1350 | MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids); |
1351 | |
1352 | #ifdef CONFIG_ACPI |
1353 | static const struct acpi_device_id nxp_fspi_acpi_ids[] = { |
1354 | { "NXP0009" , .driver_data = (kernel_ulong_t)&lx2160a_data, }, |
1355 | {} |
1356 | }; |
1357 | MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids); |
1358 | #endif |
1359 | |
1360 | static struct platform_driver nxp_fspi_driver = { |
1361 | .driver = { |
1362 | .name = "nxp-fspi" , |
1363 | .of_match_table = nxp_fspi_dt_ids, |
1364 | .acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids), |
1365 | .pm = pm_ptr(&nxp_fspi_pm_ops), |
1366 | }, |
1367 | .probe = nxp_fspi_probe, |
1368 | }; |
1369 | module_platform_driver(nxp_fspi_driver); |
1370 | |
1371 | MODULE_DESCRIPTION("NXP FSPI Controller Driver" ); |
1372 | MODULE_AUTHOR("NXP Semiconductor" ); |
1373 | MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>" ); |
1374 | MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>" ); |
1375 | MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>" ); |
1376 | MODULE_LICENSE("GPL v2" ); |
1377 | |