1 | // SPDX-License-Identifier: GPL-2.0+ |
---|---|
2 | |
3 | /* |
4 | * NXP FlexSPI(FSPI) controller driver. |
5 | * |
6 | * Copyright 2019-2020 NXP |
7 | * Copyright 2020 Puresoftware Ltd. |
8 | * |
9 | * FlexSPI is a flexsible SPI host controller which supports two SPI |
10 | * channels and up to 4 external devices. Each channel supports |
11 | * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional |
12 | * data lines). |
13 | * |
14 | * FlexSPI controller is driven by the LUT(Look-up Table) registers |
15 | * LUT registers are a look-up-table for sequences of instructions. |
16 | * A valid sequence consists of four LUT registers. |
17 | * Maximum 32 LUT sequences can be programmed simultaneously. |
18 | * |
19 | * LUTs are being created at run-time based on the commands passed |
20 | * from the spi-mem framework, thus using single LUT index. |
21 | * |
22 | * Software triggered Flash read/write access by IP Bus. |
23 | * |
24 | * Memory mapped read access by AHB Bus. |
25 | * |
26 | * Based on SPI MEM interface and spi-fsl-qspi.c driver. |
27 | * |
28 | * Author: |
29 | * Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com> |
30 | * Boris Brezillon <bbrezillon@kernel.org> |
31 | * Frieder Schrempf <frieder.schrempf@kontron.de> |
32 | */ |
33 | |
34 | #include <linux/acpi.h> |
35 | #include <linux/bitops.h> |
36 | #include <linux/bitfield.h> |
37 | #include <linux/clk.h> |
38 | #include <linux/completion.h> |
39 | #include <linux/delay.h> |
40 | #include <linux/err.h> |
41 | #include <linux/errno.h> |
42 | #include <linux/interrupt.h> |
43 | #include <linux/io.h> |
44 | #include <linux/iopoll.h> |
45 | #include <linux/jiffies.h> |
46 | #include <linux/kernel.h> |
47 | #include <linux/module.h> |
48 | #include <linux/mutex.h> |
49 | #include <linux/of.h> |
50 | #include <linux/platform_device.h> |
51 | #include <linux/pm_qos.h> |
52 | #include <linux/regmap.h> |
53 | #include <linux/sizes.h> |
54 | #include <linux/sys_soc.h> |
55 | |
56 | #include <linux/mfd/syscon.h> |
57 | #include <linux/spi/spi.h> |
58 | #include <linux/spi/spi-mem.h> |
59 | |
60 | /* |
61 | * The driver only uses one single LUT entry, that is updated on |
62 | * each call of exec_op(). Index 0 is preset at boot with a basic |
63 | * read operation, so let's use the last entry (31). |
64 | */ |
65 | #define SEQID_LUT 31 |
66 | |
67 | /* Registers used by the driver */ |
68 | #define FSPI_MCR0 0x00 |
69 | #define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24) |
70 | #define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16) |
71 | #define FSPI_MCR0_LEARN_EN BIT(15) |
72 | #define FSPI_MCR0_SCRFRUN_EN BIT(14) |
73 | #define FSPI_MCR0_OCTCOMB_EN BIT(13) |
74 | #define FSPI_MCR0_DOZE_EN BIT(12) |
75 | #define FSPI_MCR0_HSEN BIT(11) |
76 | #define FSPI_MCR0_SERCLKDIV BIT(8) |
77 | #define FSPI_MCR0_ATDF_EN BIT(7) |
78 | #define FSPI_MCR0_ARDF_EN BIT(6) |
79 | #define FSPI_MCR0_RXCLKSRC(x) ((x) << 4) |
80 | #define FSPI_MCR0_END_CFG(x) ((x) << 2) |
81 | #define FSPI_MCR0_MDIS BIT(1) |
82 | #define FSPI_MCR0_SWRST BIT(0) |
83 | |
84 | #define FSPI_MCR1 0x04 |
85 | #define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16) |
86 | #define FSPI_MCR1_AHB_TIMEOUT(x) (x) |
87 | |
88 | #define FSPI_MCR2 0x08 |
89 | #define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24) |
90 | #define FSPI_MCR2_SAMEDEVICEEN BIT(15) |
91 | #define FSPI_MCR2_CLRLRPHS BIT(14) |
92 | #define FSPI_MCR2_ABRDATSZ BIT(8) |
93 | #define FSPI_MCR2_ABRLEARN BIT(7) |
94 | #define FSPI_MCR2_ABR_READ BIT(6) |
95 | #define FSPI_MCR2_ABRWRITE BIT(5) |
96 | #define FSPI_MCR2_ABRDUMMY BIT(4) |
97 | #define FSPI_MCR2_ABR_MODE BIT(3) |
98 | #define FSPI_MCR2_ABRCADDR BIT(2) |
99 | #define FSPI_MCR2_ABRRADDR BIT(1) |
100 | #define FSPI_MCR2_ABR_CMD BIT(0) |
101 | |
102 | #define FSPI_AHBCR 0x0c |
103 | #define FSPI_AHBCR_RDADDROPT BIT(6) |
104 | #define FSPI_AHBCR_PREF_EN BIT(5) |
105 | #define FSPI_AHBCR_BUFF_EN BIT(4) |
106 | #define FSPI_AHBCR_CACH_EN BIT(3) |
107 | #define FSPI_AHBCR_CLRTXBUF BIT(2) |
108 | #define FSPI_AHBCR_CLRRXBUF BIT(1) |
109 | #define FSPI_AHBCR_PAR_EN BIT(0) |
110 | |
111 | #define FSPI_INTEN 0x10 |
112 | #define FSPI_INTEN_SCLKSBWR BIT(9) |
113 | #define FSPI_INTEN_SCLKSBRD BIT(8) |
114 | #define FSPI_INTEN_DATALRNFL BIT(7) |
115 | #define FSPI_INTEN_IPTXWE BIT(6) |
116 | #define FSPI_INTEN_IPRXWA BIT(5) |
117 | #define FSPI_INTEN_AHBCMDERR BIT(4) |
118 | #define FSPI_INTEN_IPCMDERR BIT(3) |
119 | #define FSPI_INTEN_AHBCMDGE BIT(2) |
120 | #define FSPI_INTEN_IPCMDGE BIT(1) |
121 | #define FSPI_INTEN_IPCMDDONE BIT(0) |
122 | |
123 | #define FSPI_INTR 0x14 |
124 | #define FSPI_INTR_SCLKSBWR BIT(9) |
125 | #define FSPI_INTR_SCLKSBRD BIT(8) |
126 | #define FSPI_INTR_DATALRNFL BIT(7) |
127 | #define FSPI_INTR_IPTXWE BIT(6) |
128 | #define FSPI_INTR_IPRXWA BIT(5) |
129 | #define FSPI_INTR_AHBCMDERR BIT(4) |
130 | #define FSPI_INTR_IPCMDERR BIT(3) |
131 | #define FSPI_INTR_AHBCMDGE BIT(2) |
132 | #define FSPI_INTR_IPCMDGE BIT(1) |
133 | #define FSPI_INTR_IPCMDDONE BIT(0) |
134 | |
135 | #define FSPI_LUTKEY 0x18 |
136 | #define FSPI_LUTKEY_VALUE 0x5AF05AF0 |
137 | |
138 | #define FSPI_LCKCR 0x1C |
139 | |
140 | #define FSPI_LCKER_LOCK 0x1 |
141 | #define FSPI_LCKER_UNLOCK 0x2 |
142 | |
143 | #define FSPI_BUFXCR_INVALID_MSTRID 0xE |
144 | #define FSPI_AHBRX_BUF0CR0 0x20 |
145 | #define FSPI_AHBRX_BUF1CR0 0x24 |
146 | #define FSPI_AHBRX_BUF2CR0 0x28 |
147 | #define FSPI_AHBRX_BUF3CR0 0x2C |
148 | #define FSPI_AHBRX_BUF4CR0 0x30 |
149 | #define FSPI_AHBRX_BUF5CR0 0x34 |
150 | #define FSPI_AHBRX_BUF6CR0 0x38 |
151 | #define FSPI_AHBRX_BUF7CR0 0x3C |
152 | #define FSPI_AHBRXBUF0CR7_PREF BIT(31) |
153 | |
154 | #define FSPI_AHBRX_BUF0CR1 0x40 |
155 | #define FSPI_AHBRX_BUF1CR1 0x44 |
156 | #define FSPI_AHBRX_BUF2CR1 0x48 |
157 | #define FSPI_AHBRX_BUF3CR1 0x4C |
158 | #define FSPI_AHBRX_BUF4CR1 0x50 |
159 | #define FSPI_AHBRX_BUF5CR1 0x54 |
160 | #define FSPI_AHBRX_BUF6CR1 0x58 |
161 | #define FSPI_AHBRX_BUF7CR1 0x5C |
162 | |
163 | #define FSPI_FLSHA1CR0 0x60 |
164 | #define FSPI_FLSHA2CR0 0x64 |
165 | #define FSPI_FLSHB1CR0 0x68 |
166 | #define FSPI_FLSHB2CR0 0x6C |
167 | #define FSPI_FLSHXCR0_SZ_KB 10 |
168 | #define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB) |
169 | |
170 | #define FSPI_FLSHA1CR1 0x70 |
171 | #define FSPI_FLSHA2CR1 0x74 |
172 | #define FSPI_FLSHB1CR1 0x78 |
173 | #define FSPI_FLSHB2CR1 0x7C |
174 | #define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16) |
175 | #define FSPI_FLSHXCR1_CAS(x) ((x) << 11) |
176 | #define FSPI_FLSHXCR1_WA BIT(10) |
177 | #define FSPI_FLSHXCR1_TCSH(x) ((x) << 5) |
178 | #define FSPI_FLSHXCR1_TCSS(x) (x) |
179 | |
180 | #define FSPI_FLSHA1CR2 0x80 |
181 | #define FSPI_FLSHA2CR2 0x84 |
182 | #define FSPI_FLSHB1CR2 0x88 |
183 | #define FSPI_FLSHB2CR2 0x8C |
184 | #define FSPI_FLSHXCR2_CLRINSP BIT(24) |
185 | #define FSPI_FLSHXCR2_AWRWAIT BIT(16) |
186 | #define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13 |
187 | #define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8 |
188 | #define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5 |
189 | #define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0 |
190 | |
191 | #define FSPI_IPCR0 0xA0 |
192 | |
193 | #define FSPI_IPCR1 0xA4 |
194 | #define FSPI_IPCR1_IPAREN BIT(31) |
195 | #define FSPI_IPCR1_SEQNUM_SHIFT 24 |
196 | #define FSPI_IPCR1_SEQID_SHIFT 16 |
197 | #define FSPI_IPCR1_IDATSZ(x) (x) |
198 | |
199 | #define FSPI_IPCMD 0xB0 |
200 | #define FSPI_IPCMD_TRG BIT(0) |
201 | |
202 | #define FSPI_DLPR 0xB4 |
203 | |
204 | #define FSPI_IPRXFCR 0xB8 |
205 | #define FSPI_IPRXFCR_CLR BIT(0) |
206 | #define FSPI_IPRXFCR_DMA_EN BIT(1) |
207 | #define FSPI_IPRXFCR_WMRK(x) ((x) << 2) |
208 | |
209 | #define FSPI_IPTXFCR 0xBC |
210 | #define FSPI_IPTXFCR_CLR BIT(0) |
211 | #define FSPI_IPTXFCR_DMA_EN BIT(1) |
212 | #define FSPI_IPTXFCR_WMRK(x) ((x) << 2) |
213 | |
214 | #define FSPI_DLLACR 0xC0 |
215 | #define FSPI_DLLACR_OVRDEN BIT(8) |
216 | #define FSPI_DLLACR_SLVDLY(x) ((x) << 3) |
217 | #define FSPI_DLLACR_DLLRESET BIT(1) |
218 | #define FSPI_DLLACR_DLLEN BIT(0) |
219 | |
220 | #define FSPI_DLLBCR 0xC4 |
221 | #define FSPI_DLLBCR_OVRDEN BIT(8) |
222 | #define FSPI_DLLBCR_SLVDLY(x) ((x) << 3) |
223 | #define FSPI_DLLBCR_DLLRESET BIT(1) |
224 | #define FSPI_DLLBCR_DLLEN BIT(0) |
225 | |
226 | #define FSPI_STS0 0xE0 |
227 | #define FSPI_STS0_DLPHB(x) ((x) << 8) |
228 | #define FSPI_STS0_DLPHA(x) ((x) << 4) |
229 | #define FSPI_STS0_CMD_SRC(x) ((x) << 2) |
230 | #define FSPI_STS0_ARB_IDLE BIT(1) |
231 | #define FSPI_STS0_SEQ_IDLE BIT(0) |
232 | |
233 | #define FSPI_STS1 0xE4 |
234 | #define FSPI_STS1_IP_ERRCD(x) ((x) << 24) |
235 | #define FSPI_STS1_IP_ERRID(x) ((x) << 16) |
236 | #define FSPI_STS1_AHB_ERRCD(x) ((x) << 8) |
237 | #define FSPI_STS1_AHB_ERRID(x) (x) |
238 | |
239 | #define FSPI_STS2 0xE8 |
240 | #define FSPI_STS2_BREFLOCK BIT(17) |
241 | #define FSPI_STS2_BSLVLOCK BIT(16) |
242 | #define FSPI_STS2_AREFLOCK BIT(1) |
243 | #define FSPI_STS2_ASLVLOCK BIT(0) |
244 | #define FSPI_STS2_AB_LOCK (FSPI_STS2_BREFLOCK | \ |
245 | FSPI_STS2_BSLVLOCK | \ |
246 | FSPI_STS2_AREFLOCK | \ |
247 | FSPI_STS2_ASLVLOCK) |
248 | |
249 | #define FSPI_AHBSPNST 0xEC |
250 | #define FSPI_AHBSPNST_DATLFT(x) ((x) << 16) |
251 | #define FSPI_AHBSPNST_BUFID(x) ((x) << 1) |
252 | #define FSPI_AHBSPNST_ACTIVE BIT(0) |
253 | |
254 | #define FSPI_IPRXFSTS 0xF0 |
255 | #define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16) |
256 | #define FSPI_IPRXFSTS_FILL(x) (x) |
257 | |
258 | #define FSPI_IPTXFSTS 0xF4 |
259 | #define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16) |
260 | #define FSPI_IPTXFSTS_FILL(x) (x) |
261 | |
262 | #define FSPI_RFDR 0x100 |
263 | #define FSPI_TFDR 0x180 |
264 | |
265 | #define FSPI_LUT_BASE 0x200 |
266 | #define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4) |
267 | #define FSPI_LUT_REG(idx) \ |
268 | (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4) |
269 | |
270 | /* register map end */ |
271 | |
272 | /* Instruction set for the LUT register. */ |
273 | #define LUT_STOP 0x00 |
274 | #define LUT_CMD 0x01 |
275 | #define LUT_ADDR 0x02 |
276 | #define LUT_CADDR_SDR 0x03 |
277 | #define LUT_MODE 0x04 |
278 | #define LUT_MODE2 0x05 |
279 | #define LUT_MODE4 0x06 |
280 | #define LUT_MODE8 0x07 |
281 | #define LUT_NXP_WRITE 0x08 |
282 | #define LUT_NXP_READ 0x09 |
283 | #define LUT_LEARN_SDR 0x0A |
284 | #define LUT_DATSZ_SDR 0x0B |
285 | #define LUT_DUMMY 0x0C |
286 | #define LUT_DUMMY_RWDS_SDR 0x0D |
287 | #define LUT_JMP_ON_CS 0x1F |
288 | #define LUT_CMD_DDR 0x21 |
289 | #define LUT_ADDR_DDR 0x22 |
290 | #define LUT_CADDR_DDR 0x23 |
291 | #define LUT_MODE_DDR 0x24 |
292 | #define LUT_MODE2_DDR 0x25 |
293 | #define LUT_MODE4_DDR 0x26 |
294 | #define LUT_MODE8_DDR 0x27 |
295 | #define LUT_WRITE_DDR 0x28 |
296 | #define LUT_READ_DDR 0x29 |
297 | #define LUT_LEARN_DDR 0x2A |
298 | #define LUT_DATSZ_DDR 0x2B |
299 | #define LUT_DUMMY_DDR 0x2C |
300 | #define LUT_DUMMY_RWDS_DDR 0x2D |
301 | |
302 | /* |
303 | * Calculate number of required PAD bits for LUT register. |
304 | * |
305 | * The pad stands for the number of IO lines [0:7]. |
306 | * For example, the octal read needs eight IO lines, |
307 | * so you should use LUT_PAD(8). This macro |
308 | * returns 3 i.e. use eight (2^3) IP lines for read. |
309 | */ |
310 | #define LUT_PAD(x) (fls(x) - 1) |
311 | |
312 | /* |
313 | * Macro for constructing the LUT entries with the following |
314 | * register layout: |
315 | * |
316 | * --------------------------------------------------- |
317 | * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | |
318 | * --------------------------------------------------- |
319 | */ |
320 | #define PAD_SHIFT 8 |
321 | #define INSTR_SHIFT 10 |
322 | #define OPRND_SHIFT 16 |
323 | |
324 | /* Macros for constructing the LUT register. */ |
325 | #define LUT_DEF(idx, ins, pad, opr) \ |
326 | ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \ |
327 | (opr)) << (((idx) % 2) * OPRND_SHIFT)) |
328 | |
329 | #define POLL_TOUT 5000 |
330 | #define NXP_FSPI_MAX_CHIPSELECT 4 |
331 | #define NXP_FSPI_MIN_IOMAP SZ_4M |
332 | |
333 | #define DCFG_RCWSR1 0x100 |
334 | #define SYS_PLL_RAT GENMASK(6, 2) |
335 | |
336 | /* Access flash memory using IP bus only */ |
337 | #define FSPI_QUIRK_USE_IP_ONLY BIT(0) |
338 | |
339 | struct nxp_fspi_devtype_data { |
340 | unsigned int rxfifo; |
341 | unsigned int txfifo; |
342 | unsigned int ahb_buf_size; |
343 | unsigned int quirks; |
344 | bool little_endian; |
345 | }; |
346 | |
347 | static struct nxp_fspi_devtype_data lx2160a_data = { |
348 | .rxfifo = SZ_512, /* (64 * 64 bits) */ |
349 | .txfifo = SZ_1K, /* (128 * 64 bits) */ |
350 | .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ |
351 | .quirks = 0, |
352 | .little_endian = true, /* little-endian */ |
353 | }; |
354 | |
355 | static struct nxp_fspi_devtype_data imx8mm_data = { |
356 | .rxfifo = SZ_512, /* (64 * 64 bits) */ |
357 | .txfifo = SZ_1K, /* (128 * 64 bits) */ |
358 | .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ |
359 | .quirks = 0, |
360 | .little_endian = true, /* little-endian */ |
361 | }; |
362 | |
363 | static struct nxp_fspi_devtype_data imx8qxp_data = { |
364 | .rxfifo = SZ_512, /* (64 * 64 bits) */ |
365 | .txfifo = SZ_1K, /* (128 * 64 bits) */ |
366 | .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ |
367 | .quirks = 0, |
368 | .little_endian = true, /* little-endian */ |
369 | }; |
370 | |
371 | static struct nxp_fspi_devtype_data imx8dxl_data = { |
372 | .rxfifo = SZ_512, /* (64 * 64 bits) */ |
373 | .txfifo = SZ_1K, /* (128 * 64 bits) */ |
374 | .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ |
375 | .quirks = FSPI_QUIRK_USE_IP_ONLY, |
376 | .little_endian = true, /* little-endian */ |
377 | }; |
378 | |
379 | struct nxp_fspi { |
380 | void __iomem *iobase; |
381 | void __iomem *ahb_addr; |
382 | u32 memmap_phy; |
383 | u32 memmap_phy_size; |
384 | u32 memmap_start; |
385 | u32 memmap_len; |
386 | struct clk *clk, *clk_en; |
387 | struct device *dev; |
388 | struct completion c; |
389 | struct nxp_fspi_devtype_data *devtype_data; |
390 | struct mutex lock; |
391 | struct pm_qos_request pm_qos_req; |
392 | int selected; |
393 | }; |
394 | |
395 | static inline int needs_ip_only(struct nxp_fspi *f) |
396 | { |
397 | return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY; |
398 | } |
399 | |
400 | /* |
401 | * R/W functions for big- or little-endian registers: |
402 | * The FSPI controller's endianness is independent of |
403 | * the CPU core's endianness. So far, although the CPU |
404 | * core is little-endian the FSPI controller can use |
405 | * big-endian or little-endian. |
406 | */ |
407 | static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr) |
408 | { |
409 | if (f->devtype_data->little_endian) |
410 | iowrite32(val, addr); |
411 | else |
412 | iowrite32be(val, addr); |
413 | } |
414 | |
415 | static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr) |
416 | { |
417 | if (f->devtype_data->little_endian) |
418 | return ioread32(addr); |
419 | else |
420 | return ioread32be(addr); |
421 | } |
422 | |
423 | static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id) |
424 | { |
425 | struct nxp_fspi *f = dev_id; |
426 | u32 reg; |
427 | |
428 | /* clear interrupt */ |
429 | reg = fspi_readl(f, addr: f->iobase + FSPI_INTR); |
430 | fspi_writel(f, FSPI_INTR_IPCMDDONE, addr: f->iobase + FSPI_INTR); |
431 | |
432 | if (reg & FSPI_INTR_IPCMDDONE) |
433 | complete(&f->c); |
434 | |
435 | return IRQ_HANDLED; |
436 | } |
437 | |
438 | static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width) |
439 | { |
440 | switch (width) { |
441 | case 1: |
442 | case 2: |
443 | case 4: |
444 | case 8: |
445 | return 0; |
446 | } |
447 | |
448 | return -ENOTSUPP; |
449 | } |
450 | |
451 | static bool nxp_fspi_supports_op(struct spi_mem *mem, |
452 | const struct spi_mem_op *op) |
453 | { |
454 | struct nxp_fspi *f = spi_controller_get_devdata(ctlr: mem->spi->controller); |
455 | int ret; |
456 | |
457 | ret = nxp_fspi_check_buswidth(f, width: op->cmd.buswidth); |
458 | |
459 | if (op->addr.nbytes) |
460 | ret |= nxp_fspi_check_buswidth(f, width: op->addr.buswidth); |
461 | |
462 | if (op->dummy.nbytes) |
463 | ret |= nxp_fspi_check_buswidth(f, width: op->dummy.buswidth); |
464 | |
465 | if (op->data.nbytes) |
466 | ret |= nxp_fspi_check_buswidth(f, width: op->data.buswidth); |
467 | |
468 | if (ret) |
469 | return false; |
470 | |
471 | /* |
472 | * The number of address bytes should be equal to or less than 4 bytes. |
473 | */ |
474 | if (op->addr.nbytes > 4) |
475 | return false; |
476 | |
477 | /* |
478 | * If requested address value is greater than controller assigned |
479 | * memory mapped space, return error as it didn't fit in the range |
480 | * of assigned address space. |
481 | */ |
482 | if (op->addr.val >= f->memmap_phy_size) |
483 | return false; |
484 | |
485 | /* Max 64 dummy clock cycles supported */ |
486 | if (op->dummy.buswidth && |
487 | (op->dummy.nbytes * 8 / op->dummy.buswidth > 64)) |
488 | return false; |
489 | |
490 | /* Max data length, check controller limits and alignment */ |
491 | if (op->data.dir == SPI_MEM_DATA_IN && |
492 | (op->data.nbytes > f->devtype_data->ahb_buf_size || |
493 | (op->data.nbytes > f->devtype_data->rxfifo - 4 && |
494 | !IS_ALIGNED(op->data.nbytes, 8)))) |
495 | return false; |
496 | |
497 | if (op->data.dir == SPI_MEM_DATA_OUT && |
498 | op->data.nbytes > f->devtype_data->txfifo) |
499 | return false; |
500 | |
501 | return spi_mem_default_supports_op(mem, op); |
502 | } |
503 | |
504 | /* Instead of busy looping invoke readl_poll_timeout functionality. */ |
505 | static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base, |
506 | u32 mask, u32 delay_us, |
507 | u32 timeout_us, bool c) |
508 | { |
509 | u32 reg; |
510 | |
511 | if (!f->devtype_data->little_endian) |
512 | mask = (u32)cpu_to_be32(mask); |
513 | |
514 | if (c) |
515 | return readl_poll_timeout(base, reg, (reg & mask), |
516 | delay_us, timeout_us); |
517 | else |
518 | return readl_poll_timeout(base, reg, !(reg & mask), |
519 | delay_us, timeout_us); |
520 | } |
521 | |
522 | /* |
523 | * If the target device content being changed by Write/Erase, need to |
524 | * invalidate the AHB buffer. This can be achieved by doing the reset |
525 | * of controller after setting MCR0[SWRESET] bit. |
526 | */ |
527 | static inline void nxp_fspi_invalid(struct nxp_fspi *f) |
528 | { |
529 | u32 reg; |
530 | int ret; |
531 | |
532 | reg = fspi_readl(f, addr: f->iobase + FSPI_MCR0); |
533 | fspi_writel(f, val: reg | FSPI_MCR0_SWRST, addr: f->iobase + FSPI_MCR0); |
534 | |
535 | /* w1c register, wait unit clear */ |
536 | ret = fspi_readl_poll_tout(f, base: f->iobase + FSPI_MCR0, |
537 | FSPI_MCR0_SWRST, delay_us: 0, POLL_TOUT, c: false); |
538 | WARN_ON(ret); |
539 | } |
540 | |
541 | static void nxp_fspi_prepare_lut(struct nxp_fspi *f, |
542 | const struct spi_mem_op *op) |
543 | { |
544 | void __iomem *base = f->iobase; |
545 | u32 lutval[4] = {}; |
546 | int lutidx = 1, i; |
547 | |
548 | /* cmd */ |
549 | lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth), |
550 | op->cmd.opcode); |
551 | |
552 | /* addr bytes */ |
553 | if (op->addr.nbytes) { |
554 | lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR, |
555 | LUT_PAD(op->addr.buswidth), |
556 | op->addr.nbytes * 8); |
557 | lutidx++; |
558 | } |
559 | |
560 | /* dummy bytes, if needed */ |
561 | if (op->dummy.nbytes) { |
562 | lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY, |
563 | /* |
564 | * Due to FlexSPI controller limitation number of PAD for dummy |
565 | * buswidth needs to be programmed as equal to data buswidth. |
566 | */ |
567 | LUT_PAD(op->data.buswidth), |
568 | op->dummy.nbytes * 8 / |
569 | op->dummy.buswidth); |
570 | lutidx++; |
571 | } |
572 | |
573 | /* read/write data bytes */ |
574 | if (op->data.nbytes) { |
575 | lutval[lutidx / 2] |= LUT_DEF(lutidx, |
576 | op->data.dir == SPI_MEM_DATA_IN ? |
577 | LUT_NXP_READ : LUT_NXP_WRITE, |
578 | LUT_PAD(op->data.buswidth), |
579 | 0); |
580 | lutidx++; |
581 | } |
582 | |
583 | /* stop condition. */ |
584 | lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0); |
585 | |
586 | /* unlock LUT */ |
587 | fspi_writel(f, FSPI_LUTKEY_VALUE, addr: f->iobase + FSPI_LUTKEY); |
588 | fspi_writel(f, FSPI_LCKER_UNLOCK, addr: f->iobase + FSPI_LCKCR); |
589 | |
590 | /* fill LUT */ |
591 | for (i = 0; i < ARRAY_SIZE(lutval); i++) |
592 | fspi_writel(f, val: lutval[i], addr: base + FSPI_LUT_REG(i)); |
593 | |
594 | dev_dbg(f->dev, "CMD[%02x] lutval[0:%08x 1:%08x 2:%08x 3:%08x], size: 0x%08x\n", |
595 | op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes); |
596 | |
597 | /* lock LUT */ |
598 | fspi_writel(f, FSPI_LUTKEY_VALUE, addr: f->iobase + FSPI_LUTKEY); |
599 | fspi_writel(f, FSPI_LCKER_LOCK, addr: f->iobase + FSPI_LCKCR); |
600 | } |
601 | |
602 | static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f) |
603 | { |
604 | int ret; |
605 | |
606 | if (is_acpi_node(dev_fwnode(f->dev))) |
607 | return 0; |
608 | |
609 | ret = clk_prepare_enable(clk: f->clk_en); |
610 | if (ret) |
611 | return ret; |
612 | |
613 | ret = clk_prepare_enable(clk: f->clk); |
614 | if (ret) { |
615 | clk_disable_unprepare(clk: f->clk_en); |
616 | return ret; |
617 | } |
618 | |
619 | return 0; |
620 | } |
621 | |
622 | static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f) |
623 | { |
624 | if (is_acpi_node(dev_fwnode(f->dev))) |
625 | return 0; |
626 | |
627 | clk_disable_unprepare(clk: f->clk); |
628 | clk_disable_unprepare(clk: f->clk_en); |
629 | |
630 | return 0; |
631 | } |
632 | |
633 | static void nxp_fspi_dll_calibration(struct nxp_fspi *f) |
634 | { |
635 | int ret; |
636 | |
637 | /* Reset the DLL, set the DLLRESET to 1 and then set to 0 */ |
638 | fspi_writel(f, FSPI_DLLACR_DLLRESET, addr: f->iobase + FSPI_DLLACR); |
639 | fspi_writel(f, FSPI_DLLBCR_DLLRESET, addr: f->iobase + FSPI_DLLBCR); |
640 | fspi_writel(f, val: 0, addr: f->iobase + FSPI_DLLACR); |
641 | fspi_writel(f, val: 0, addr: f->iobase + FSPI_DLLBCR); |
642 | |
643 | /* |
644 | * Enable the DLL calibration mode. |
645 | * The delay target for slave delay line is: |
646 | * ((SLVDLYTARGET+1) * 1/32 * clock cycle of reference clock. |
647 | * When clock rate > 100MHz, recommend SLVDLYTARGET is 0xF, which |
648 | * means half of clock cycle of reference clock. |
649 | */ |
650 | fspi_writel(f, FSPI_DLLACR_DLLEN | FSPI_DLLACR_SLVDLY(0xF), |
651 | addr: f->iobase + FSPI_DLLACR); |
652 | fspi_writel(f, FSPI_DLLBCR_DLLEN | FSPI_DLLBCR_SLVDLY(0xF), |
653 | addr: f->iobase + FSPI_DLLBCR); |
654 | |
655 | /* Wait to get REF/SLV lock */ |
656 | ret = fspi_readl_poll_tout(f, base: f->iobase + FSPI_STS2, FSPI_STS2_AB_LOCK, |
657 | delay_us: 0, POLL_TOUT, c: true); |
658 | if (ret) |
659 | dev_warn(f->dev, "DLL lock failed, please fix it!\n"); |
660 | } |
661 | |
662 | /* |
663 | * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0 |
664 | * register and start base address of the target device. |
665 | * |
666 | * (Higher address) |
667 | * -------- <-- FLSHB2CR0 |
668 | * | B2 | |
669 | * | | |
670 | * B2 start address --> -------- <-- FLSHB1CR0 |
671 | * | B1 | |
672 | * | | |
673 | * B1 start address --> -------- <-- FLSHA2CR0 |
674 | * | A2 | |
675 | * | | |
676 | * A2 start address --> -------- <-- FLSHA1CR0 |
677 | * | A1 | |
678 | * | | |
679 | * A1 start address --> -------- (Lower address) |
680 | * |
681 | * |
682 | * Start base address defines the starting address range for given CS and |
683 | * FSPI_FLSHXXCR0 defines the size of the target device connected at given CS. |
684 | * |
685 | * But, different targets are having different combinations of number of CS, |
686 | * some targets only have single CS or two CS covering controller's full |
687 | * memory mapped space area. |
688 | * Thus, implementation is being done as independent of the size and number |
689 | * of the connected target device. |
690 | * Assign controller memory mapped space size as the size to the connected |
691 | * target device. |
692 | * Mark FLSHxxCR0 as zero initially and then assign value only to the selected |
693 | * chip-select Flash configuration register. |
694 | * |
695 | * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the |
696 | * memory mapped size of the controller. |
697 | * Value for rest of the CS FLSHxxCR0 register would be zero. |
698 | * |
699 | */ |
700 | static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi) |
701 | { |
702 | unsigned long rate = spi->max_speed_hz; |
703 | int ret; |
704 | uint64_t size_kb; |
705 | |
706 | /* |
707 | * Return, if previously selected target device is same as current |
708 | * requested target device. |
709 | */ |
710 | if (f->selected == spi_get_chipselect(spi, idx: 0)) |
711 | return; |
712 | |
713 | /* Reset FLSHxxCR0 registers */ |
714 | fspi_writel(f, val: 0, addr: f->iobase + FSPI_FLSHA1CR0); |
715 | fspi_writel(f, val: 0, addr: f->iobase + FSPI_FLSHA2CR0); |
716 | fspi_writel(f, val: 0, addr: f->iobase + FSPI_FLSHB1CR0); |
717 | fspi_writel(f, val: 0, addr: f->iobase + FSPI_FLSHB2CR0); |
718 | |
719 | /* Assign controller memory mapped space as size, KBytes, of flash. */ |
720 | size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size); |
721 | |
722 | fspi_writel(f, val: size_kb, addr: f->iobase + FSPI_FLSHA1CR0 + |
723 | 4 * spi_get_chipselect(spi, idx: 0)); |
724 | |
725 | dev_dbg(f->dev, "Target device [CS:%x] selected\n", spi_get_chipselect(spi, 0)); |
726 | |
727 | nxp_fspi_clk_disable_unprep(f); |
728 | |
729 | ret = clk_set_rate(clk: f->clk, rate); |
730 | if (ret) |
731 | return; |
732 | |
733 | ret = nxp_fspi_clk_prep_enable(f); |
734 | if (ret) |
735 | return; |
736 | |
737 | /* |
738 | * If clock rate > 100MHz, then switch from DLL override mode to |
739 | * DLL calibration mode. |
740 | */ |
741 | if (rate > 100000000) |
742 | nxp_fspi_dll_calibration(f); |
743 | |
744 | f->selected = spi_get_chipselect(spi, idx: 0); |
745 | } |
746 | |
747 | static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op) |
748 | { |
749 | u32 start = op->addr.val; |
750 | u32 len = op->data.nbytes; |
751 | |
752 | /* if necessary, ioremap before AHB read */ |
753 | if ((!f->ahb_addr) || start < f->memmap_start || |
754 | start + len > f->memmap_start + f->memmap_len) { |
755 | if (f->ahb_addr) |
756 | iounmap(addr: f->ahb_addr); |
757 | |
758 | f->memmap_start = start; |
759 | f->memmap_len = len > NXP_FSPI_MIN_IOMAP ? |
760 | len : NXP_FSPI_MIN_IOMAP; |
761 | |
762 | f->ahb_addr = ioremap(offset: f->memmap_phy + f->memmap_start, |
763 | size: f->memmap_len); |
764 | |
765 | if (!f->ahb_addr) { |
766 | dev_err(f->dev, "failed to alloc memory\n"); |
767 | return -ENOMEM; |
768 | } |
769 | } |
770 | |
771 | /* Read out the data directly from the AHB buffer. */ |
772 | memcpy_fromio(op->data.buf.in, |
773 | f->ahb_addr + start - f->memmap_start, len); |
774 | |
775 | return 0; |
776 | } |
777 | |
778 | static void nxp_fspi_fill_txfifo(struct nxp_fspi *f, |
779 | const struct spi_mem_op *op) |
780 | { |
781 | void __iomem *base = f->iobase; |
782 | int i, ret; |
783 | u8 *buf = (u8 *) op->data.buf.out; |
784 | |
785 | /* clear the TX FIFO. */ |
786 | fspi_writel(f, FSPI_IPTXFCR_CLR, addr: base + FSPI_IPTXFCR); |
787 | |
788 | /* |
789 | * Default value of water mark level is 8 bytes, hence in single |
790 | * write request controller can write max 8 bytes of data. |
791 | */ |
792 | |
793 | for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) { |
794 | /* Wait for TXFIFO empty */ |
795 | ret = fspi_readl_poll_tout(f, base: f->iobase + FSPI_INTR, |
796 | FSPI_INTR_IPTXWE, delay_us: 0, |
797 | POLL_TOUT, c: true); |
798 | WARN_ON(ret); |
799 | |
800 | fspi_writel(f, val: *(u32 *) (buf + i), addr: base + FSPI_TFDR); |
801 | fspi_writel(f, val: *(u32 *) (buf + i + 4), addr: base + FSPI_TFDR + 4); |
802 | fspi_writel(f, FSPI_INTR_IPTXWE, addr: base + FSPI_INTR); |
803 | } |
804 | |
805 | if (i < op->data.nbytes) { |
806 | u32 data = 0; |
807 | int j; |
808 | /* Wait for TXFIFO empty */ |
809 | ret = fspi_readl_poll_tout(f, base: f->iobase + FSPI_INTR, |
810 | FSPI_INTR_IPTXWE, delay_us: 0, |
811 | POLL_TOUT, c: true); |
812 | WARN_ON(ret); |
813 | |
814 | for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) { |
815 | memcpy(&data, buf + i + j, 4); |
816 | fspi_writel(f, val: data, addr: base + FSPI_TFDR + j); |
817 | } |
818 | fspi_writel(f, FSPI_INTR_IPTXWE, addr: base + FSPI_INTR); |
819 | } |
820 | } |
821 | |
822 | static void nxp_fspi_read_rxfifo(struct nxp_fspi *f, |
823 | const struct spi_mem_op *op) |
824 | { |
825 | void __iomem *base = f->iobase; |
826 | int i, ret; |
827 | int len = op->data.nbytes; |
828 | u8 *buf = (u8 *) op->data.buf.in; |
829 | |
830 | /* |
831 | * Default value of water mark level is 8 bytes, hence in single |
832 | * read request controller can read max 8 bytes of data. |
833 | */ |
834 | for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) { |
835 | /* Wait for RXFIFO available */ |
836 | ret = fspi_readl_poll_tout(f, base: f->iobase + FSPI_INTR, |
837 | FSPI_INTR_IPRXWA, delay_us: 0, |
838 | POLL_TOUT, c: true); |
839 | WARN_ON(ret); |
840 | |
841 | *(u32 *)(buf + i) = fspi_readl(f, addr: base + FSPI_RFDR); |
842 | *(u32 *)(buf + i + 4) = fspi_readl(f, addr: base + FSPI_RFDR + 4); |
843 | /* move the FIFO pointer */ |
844 | fspi_writel(f, FSPI_INTR_IPRXWA, addr: base + FSPI_INTR); |
845 | } |
846 | |
847 | if (i < len) { |
848 | u32 tmp; |
849 | int size, j; |
850 | |
851 | buf = op->data.buf.in + i; |
852 | /* Wait for RXFIFO available */ |
853 | ret = fspi_readl_poll_tout(f, base: f->iobase + FSPI_INTR, |
854 | FSPI_INTR_IPRXWA, delay_us: 0, |
855 | POLL_TOUT, c: true); |
856 | WARN_ON(ret); |
857 | |
858 | len = op->data.nbytes - i; |
859 | for (j = 0; j < op->data.nbytes - i; j += 4) { |
860 | tmp = fspi_readl(f, addr: base + FSPI_RFDR + j); |
861 | size = min(len, 4); |
862 | memcpy(buf + j, &tmp, size); |
863 | len -= size; |
864 | } |
865 | } |
866 | |
867 | /* invalid the RXFIFO */ |
868 | fspi_writel(f, FSPI_IPRXFCR_CLR, addr: base + FSPI_IPRXFCR); |
869 | /* move the FIFO pointer */ |
870 | fspi_writel(f, FSPI_INTR_IPRXWA, addr: base + FSPI_INTR); |
871 | } |
872 | |
873 | static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op) |
874 | { |
875 | void __iomem *base = f->iobase; |
876 | int seqnum = 0; |
877 | int err = 0; |
878 | u32 reg; |
879 | |
880 | reg = fspi_readl(f, addr: base + FSPI_IPRXFCR); |
881 | /* invalid RXFIFO first */ |
882 | reg &= ~FSPI_IPRXFCR_DMA_EN; |
883 | reg = reg | FSPI_IPRXFCR_CLR; |
884 | fspi_writel(f, val: reg, addr: base + FSPI_IPRXFCR); |
885 | |
886 | init_completion(x: &f->c); |
887 | |
888 | fspi_writel(f, val: op->addr.val, addr: base + FSPI_IPCR0); |
889 | /* |
890 | * Always start the sequence at the same index since we update |
891 | * the LUT at each exec_op() call. And also specify the DATA |
892 | * length, since it's has not been specified in the LUT. |
893 | */ |
894 | fspi_writel(f, val: op->data.nbytes | |
895 | (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) | |
896 | (seqnum << FSPI_IPCR1_SEQNUM_SHIFT), |
897 | addr: base + FSPI_IPCR1); |
898 | |
899 | /* Trigger the LUT now. */ |
900 | fspi_writel(f, FSPI_IPCMD_TRG, addr: base + FSPI_IPCMD); |
901 | |
902 | /* Wait for the interrupt. */ |
903 | if (!wait_for_completion_timeout(x: &f->c, timeout: msecs_to_jiffies(m: 1000))) |
904 | err = -ETIMEDOUT; |
905 | |
906 | /* Invoke IP data read, if request is of data read. */ |
907 | if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) |
908 | nxp_fspi_read_rxfifo(f, op); |
909 | |
910 | return err; |
911 | } |
912 | |
913 | static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) |
914 | { |
915 | struct nxp_fspi *f = spi_controller_get_devdata(ctlr: mem->spi->controller); |
916 | int err = 0; |
917 | |
918 | mutex_lock(&f->lock); |
919 | |
920 | /* Wait for controller being ready. */ |
921 | err = fspi_readl_poll_tout(f, base: f->iobase + FSPI_STS0, |
922 | FSPI_STS0_ARB_IDLE, delay_us: 1, POLL_TOUT, c: true); |
923 | WARN_ON(err); |
924 | |
925 | nxp_fspi_select_mem(f, spi: mem->spi); |
926 | |
927 | nxp_fspi_prepare_lut(f, op); |
928 | /* |
929 | * If we have large chunks of data, we read them through the AHB bus by |
930 | * accessing the mapped memory. In all other cases we use IP commands |
931 | * to access the flash. Read via AHB bus may be corrupted due to |
932 | * existence of an errata and therefore discard AHB read in such cases. |
933 | */ |
934 | if (op->data.nbytes > (f->devtype_data->rxfifo - 4) && |
935 | op->data.dir == SPI_MEM_DATA_IN && |
936 | !needs_ip_only(f)) { |
937 | err = nxp_fspi_read_ahb(f, op); |
938 | } else { |
939 | if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) |
940 | nxp_fspi_fill_txfifo(f, op); |
941 | |
942 | err = nxp_fspi_do_op(f, op); |
943 | } |
944 | |
945 | /* Invalidate the data in the AHB buffer. */ |
946 | nxp_fspi_invalid(f); |
947 | |
948 | mutex_unlock(lock: &f->lock); |
949 | |
950 | return err; |
951 | } |
952 | |
953 | static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) |
954 | { |
955 | struct nxp_fspi *f = spi_controller_get_devdata(ctlr: mem->spi->controller); |
956 | |
957 | if (op->data.dir == SPI_MEM_DATA_OUT) { |
958 | if (op->data.nbytes > f->devtype_data->txfifo) |
959 | op->data.nbytes = f->devtype_data->txfifo; |
960 | } else { |
961 | if (op->data.nbytes > f->devtype_data->ahb_buf_size) |
962 | op->data.nbytes = f->devtype_data->ahb_buf_size; |
963 | else if (op->data.nbytes > (f->devtype_data->rxfifo - 4)) |
964 | op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8); |
965 | } |
966 | |
967 | /* Limit data bytes to RX FIFO in case of IP read only */ |
968 | if (op->data.dir == SPI_MEM_DATA_IN && |
969 | needs_ip_only(f) && |
970 | op->data.nbytes > f->devtype_data->rxfifo) |
971 | op->data.nbytes = f->devtype_data->rxfifo; |
972 | |
973 | return 0; |
974 | } |
975 | |
976 | static void erratum_err050568(struct nxp_fspi *f) |
977 | { |
978 | static const struct soc_device_attribute ls1028a_soc_attr[] = { |
979 | { .family = "QorIQ LS1028A"}, |
980 | { /* sentinel */ } |
981 | }; |
982 | struct regmap *map; |
983 | u32 val, sys_pll_ratio; |
984 | int ret; |
985 | |
986 | /* Check for LS1028A family */ |
987 | if (!soc_device_match(matches: ls1028a_soc_attr)) { |
988 | dev_dbg(f->dev, "Errata applicable only for LS1028A\n"); |
989 | return; |
990 | } |
991 | |
992 | map = syscon_regmap_lookup_by_compatible(s: "fsl,ls1028a-dcfg"); |
993 | if (IS_ERR(ptr: map)) { |
994 | dev_err(f->dev, "No syscon regmap\n"); |
995 | goto err; |
996 | } |
997 | |
998 | ret = regmap_read(map, DCFG_RCWSR1, val: &val); |
999 | if (ret < 0) |
1000 | goto err; |
1001 | |
1002 | sys_pll_ratio = FIELD_GET(SYS_PLL_RAT, val); |
1003 | dev_dbg(f->dev, "val: 0x%08x, sys_pll_ratio: %d\n", val, sys_pll_ratio); |
1004 | |
1005 | /* Use IP bus only if platform clock is 300MHz */ |
1006 | if (sys_pll_ratio == 3) |
1007 | f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY; |
1008 | |
1009 | return; |
1010 | |
1011 | err: |
1012 | dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n"); |
1013 | } |
1014 | |
1015 | static int nxp_fspi_default_setup(struct nxp_fspi *f) |
1016 | { |
1017 | void __iomem *base = f->iobase; |
1018 | int ret, i; |
1019 | u32 reg; |
1020 | |
1021 | /* disable and unprepare clock to avoid glitch pass to controller */ |
1022 | nxp_fspi_clk_disable_unprep(f); |
1023 | |
1024 | /* the default frequency, we will change it later if necessary. */ |
1025 | ret = clk_set_rate(clk: f->clk, rate: 20000000); |
1026 | if (ret) |
1027 | return ret; |
1028 | |
1029 | ret = nxp_fspi_clk_prep_enable(f); |
1030 | if (ret) |
1031 | return ret; |
1032 | |
1033 | /* |
1034 | * ERR050568: Flash access by FlexSPI AHB command may not work with |
1035 | * platform frequency equal to 300 MHz on LS1028A. |
1036 | * LS1028A reuses LX2160A compatible entry. Make errata applicable for |
1037 | * Layerscape LS1028A platform. |
1038 | */ |
1039 | if (of_device_is_compatible(device: f->dev->of_node, "nxp,lx2160a-fspi")) |
1040 | erratum_err050568(f); |
1041 | |
1042 | /* Reset the module */ |
1043 | /* w1c register, wait unit clear */ |
1044 | ret = fspi_readl_poll_tout(f, base: f->iobase + FSPI_MCR0, |
1045 | FSPI_MCR0_SWRST, delay_us: 0, POLL_TOUT, c: false); |
1046 | WARN_ON(ret); |
1047 | |
1048 | /* Disable the module */ |
1049 | fspi_writel(f, FSPI_MCR0_MDIS, addr: base + FSPI_MCR0); |
1050 | |
1051 | /* |
1052 | * Config the DLL register to default value, enable the target clock delay |
1053 | * line delay cell override mode, and use 1 fixed delay cell in DLL delay |
1054 | * chain, this is the suggested setting when clock rate < 100MHz. |
1055 | */ |
1056 | fspi_writel(f, FSPI_DLLACR_OVRDEN, addr: base + FSPI_DLLACR); |
1057 | fspi_writel(f, FSPI_DLLBCR_OVRDEN, addr: base + FSPI_DLLBCR); |
1058 | |
1059 | /* enable module */ |
1060 | fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | |
1061 | FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN, |
1062 | addr: base + FSPI_MCR0); |
1063 | |
1064 | /* |
1065 | * Disable same device enable bit and configure all target devices |
1066 | * independently. |
1067 | */ |
1068 | reg = fspi_readl(f, addr: f->iobase + FSPI_MCR2); |
1069 | reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN); |
1070 | fspi_writel(f, val: reg, addr: base + FSPI_MCR2); |
1071 | |
1072 | /* AHB configuration for access buffer 0~7. */ |
1073 | for (i = 0; i < 7; i++) |
1074 | fspi_writel(f, val: 0, addr: base + FSPI_AHBRX_BUF0CR0 + 4 * i); |
1075 | |
1076 | /* |
1077 | * Set ADATSZ with the maximum AHB buffer size to improve the read |
1078 | * performance. |
1079 | */ |
1080 | fspi_writel(f, val: (f->devtype_data->ahb_buf_size / 8 | |
1081 | FSPI_AHBRXBUF0CR7_PREF), addr: base + FSPI_AHBRX_BUF7CR0); |
1082 | |
1083 | /* prefetch and no start address alignment limitation */ |
1084 | fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT, |
1085 | addr: base + FSPI_AHBCR); |
1086 | |
1087 | /* Reset the FLSHxCR1 registers. */ |
1088 | reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3); |
1089 | fspi_writel(f, val: reg, addr: base + FSPI_FLSHA1CR1); |
1090 | fspi_writel(f, val: reg, addr: base + FSPI_FLSHA2CR1); |
1091 | fspi_writel(f, val: reg, addr: base + FSPI_FLSHB1CR1); |
1092 | fspi_writel(f, val: reg, addr: base + FSPI_FLSHB2CR1); |
1093 | |
1094 | /* AHB Read - Set lut sequence ID for all CS. */ |
1095 | fspi_writel(f, SEQID_LUT, addr: base + FSPI_FLSHA1CR2); |
1096 | fspi_writel(f, SEQID_LUT, addr: base + FSPI_FLSHA2CR2); |
1097 | fspi_writel(f, SEQID_LUT, addr: base + FSPI_FLSHB1CR2); |
1098 | fspi_writel(f, SEQID_LUT, addr: base + FSPI_FLSHB2CR2); |
1099 | |
1100 | f->selected = -1; |
1101 | |
1102 | /* enable the interrupt */ |
1103 | fspi_writel(f, FSPI_INTEN_IPCMDDONE, addr: base + FSPI_INTEN); |
1104 | |
1105 | return 0; |
1106 | } |
1107 | |
1108 | static const char *nxp_fspi_get_name(struct spi_mem *mem) |
1109 | { |
1110 | struct nxp_fspi *f = spi_controller_get_devdata(ctlr: mem->spi->controller); |
1111 | struct device *dev = &mem->spi->dev; |
1112 | const char *name; |
1113 | |
1114 | // Set custom name derived from the platform_device of the controller. |
1115 | if (of_get_available_child_count(np: f->dev->of_node) == 1) |
1116 | return dev_name(dev: f->dev); |
1117 | |
1118 | name = devm_kasprintf(dev, GFP_KERNEL, |
1119 | fmt: "%s-%d", dev_name(dev: f->dev), |
1120 | spi_get_chipselect(spi: mem->spi, idx: 0)); |
1121 | |
1122 | if (!name) { |
1123 | dev_err(dev, "failed to get memory for custom flash name\n"); |
1124 | return ERR_PTR(error: -ENOMEM); |
1125 | } |
1126 | |
1127 | return name; |
1128 | } |
1129 | |
1130 | static const struct spi_controller_mem_ops nxp_fspi_mem_ops = { |
1131 | .adjust_op_size = nxp_fspi_adjust_op_size, |
1132 | .supports_op = nxp_fspi_supports_op, |
1133 | .exec_op = nxp_fspi_exec_op, |
1134 | .get_name = nxp_fspi_get_name, |
1135 | }; |
1136 | |
1137 | static int nxp_fspi_probe(struct platform_device *pdev) |
1138 | { |
1139 | struct spi_controller *ctlr; |
1140 | struct device *dev = &pdev->dev; |
1141 | struct device_node *np = dev->of_node; |
1142 | struct resource *res; |
1143 | struct nxp_fspi *f; |
1144 | int ret; |
1145 | u32 reg; |
1146 | |
1147 | ctlr = spi_alloc_host(dev: &pdev->dev, size: sizeof(*f)); |
1148 | if (!ctlr) |
1149 | return -ENOMEM; |
1150 | |
1151 | ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL | |
1152 | SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL; |
1153 | |
1154 | f = spi_controller_get_devdata(ctlr); |
1155 | f->dev = dev; |
1156 | f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev); |
1157 | if (!f->devtype_data) { |
1158 | ret = -ENODEV; |
1159 | goto err_put_ctrl; |
1160 | } |
1161 | |
1162 | platform_set_drvdata(pdev, data: f); |
1163 | |
1164 | /* find the resources - configuration register address space */ |
1165 | if (is_acpi_node(dev_fwnode(f->dev))) |
1166 | f->iobase = devm_platform_ioremap_resource(pdev, index: 0); |
1167 | else |
1168 | f->iobase = devm_platform_ioremap_resource_byname(pdev, name: "fspi_base"); |
1169 | |
1170 | if (IS_ERR(ptr: f->iobase)) { |
1171 | ret = PTR_ERR(ptr: f->iobase); |
1172 | goto err_put_ctrl; |
1173 | } |
1174 | |
1175 | /* find the resources - controller memory mapped space */ |
1176 | if (is_acpi_node(dev_fwnode(f->dev))) |
1177 | res = platform_get_resource(pdev, IORESOURCE_MEM, 1); |
1178 | else |
1179 | res = platform_get_resource_byname(pdev, |
1180 | IORESOURCE_MEM, "fspi_mmap"); |
1181 | |
1182 | if (!res) { |
1183 | ret = -ENODEV; |
1184 | goto err_put_ctrl; |
1185 | } |
1186 | |
1187 | /* assign memory mapped starting address and mapped size. */ |
1188 | f->memmap_phy = res->start; |
1189 | f->memmap_phy_size = resource_size(res); |
1190 | |
1191 | /* find the clocks */ |
1192 | if (dev_of_node(dev: &pdev->dev)) { |
1193 | f->clk_en = devm_clk_get(dev, id: "fspi_en"); |
1194 | if (IS_ERR(ptr: f->clk_en)) { |
1195 | ret = PTR_ERR(ptr: f->clk_en); |
1196 | goto err_put_ctrl; |
1197 | } |
1198 | |
1199 | f->clk = devm_clk_get(dev, id: "fspi"); |
1200 | if (IS_ERR(ptr: f->clk)) { |
1201 | ret = PTR_ERR(ptr: f->clk); |
1202 | goto err_put_ctrl; |
1203 | } |
1204 | |
1205 | ret = nxp_fspi_clk_prep_enable(f); |
1206 | if (ret) { |
1207 | dev_err(dev, "can not enable the clock\n"); |
1208 | goto err_put_ctrl; |
1209 | } |
1210 | } |
1211 | |
1212 | /* Clear potential interrupts */ |
1213 | reg = fspi_readl(f, addr: f->iobase + FSPI_INTR); |
1214 | if (reg) |
1215 | fspi_writel(f, val: reg, addr: f->iobase + FSPI_INTR); |
1216 | |
1217 | /* find the irq */ |
1218 | ret = platform_get_irq(pdev, 0); |
1219 | if (ret < 0) |
1220 | goto err_disable_clk; |
1221 | |
1222 | ret = devm_request_irq(dev, irq: ret, |
1223 | handler: nxp_fspi_irq_handler, irqflags: 0, devname: pdev->name, dev_id: f); |
1224 | if (ret) { |
1225 | dev_err(dev, "failed to request irq: %d\n", ret); |
1226 | goto err_disable_clk; |
1227 | } |
1228 | |
1229 | mutex_init(&f->lock); |
1230 | |
1231 | ctlr->bus_num = -1; |
1232 | ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT; |
1233 | ctlr->mem_ops = &nxp_fspi_mem_ops; |
1234 | |
1235 | nxp_fspi_default_setup(f); |
1236 | |
1237 | ctlr->dev.of_node = np; |
1238 | |
1239 | ret = devm_spi_register_controller(dev: &pdev->dev, ctlr); |
1240 | if (ret) |
1241 | goto err_destroy_mutex; |
1242 | |
1243 | return 0; |
1244 | |
1245 | err_destroy_mutex: |
1246 | mutex_destroy(lock: &f->lock); |
1247 | |
1248 | err_disable_clk: |
1249 | nxp_fspi_clk_disable_unprep(f); |
1250 | |
1251 | err_put_ctrl: |
1252 | spi_controller_put(ctlr); |
1253 | |
1254 | dev_err(dev, "NXP FSPI probe failed\n"); |
1255 | return ret; |
1256 | } |
1257 | |
1258 | static void nxp_fspi_remove(struct platform_device *pdev) |
1259 | { |
1260 | struct nxp_fspi *f = platform_get_drvdata(pdev); |
1261 | |
1262 | /* disable the hardware */ |
1263 | fspi_writel(f, FSPI_MCR0_MDIS, addr: f->iobase + FSPI_MCR0); |
1264 | |
1265 | nxp_fspi_clk_disable_unprep(f); |
1266 | |
1267 | mutex_destroy(lock: &f->lock); |
1268 | |
1269 | if (f->ahb_addr) |
1270 | iounmap(addr: f->ahb_addr); |
1271 | } |
1272 | |
1273 | static int nxp_fspi_suspend(struct device *dev) |
1274 | { |
1275 | return 0; |
1276 | } |
1277 | |
1278 | static int nxp_fspi_resume(struct device *dev) |
1279 | { |
1280 | struct nxp_fspi *f = dev_get_drvdata(dev); |
1281 | |
1282 | nxp_fspi_default_setup(f); |
1283 | |
1284 | return 0; |
1285 | } |
1286 | |
1287 | static const struct of_device_id nxp_fspi_dt_ids[] = { |
1288 | { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, }, |
1289 | { .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, }, |
1290 | { .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, }, |
1291 | { .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, }, |
1292 | { .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, }, |
1293 | { /* sentinel */ } |
1294 | }; |
1295 | MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids); |
1296 | |
1297 | #ifdef CONFIG_ACPI |
1298 | static const struct acpi_device_id nxp_fspi_acpi_ids[] = { |
1299 | { "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, }, |
1300 | {} |
1301 | }; |
1302 | MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids); |
1303 | #endif |
1304 | |
1305 | static const struct dev_pm_ops nxp_fspi_pm_ops = { |
1306 | .suspend = nxp_fspi_suspend, |
1307 | .resume = nxp_fspi_resume, |
1308 | }; |
1309 | |
1310 | static struct platform_driver nxp_fspi_driver = { |
1311 | .driver = { |
1312 | .name = "nxp-fspi", |
1313 | .of_match_table = nxp_fspi_dt_ids, |
1314 | .acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids), |
1315 | .pm = &nxp_fspi_pm_ops, |
1316 | }, |
1317 | .probe = nxp_fspi_probe, |
1318 | .remove_new = nxp_fspi_remove, |
1319 | }; |
1320 | module_platform_driver(nxp_fspi_driver); |
1321 | |
1322 | MODULE_DESCRIPTION("NXP FSPI Controller Driver"); |
1323 | MODULE_AUTHOR("NXP Semiconductor"); |
1324 | MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>"); |
1325 | MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>"); |
1326 | MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>"); |
1327 | MODULE_LICENSE("GPL v2"); |
1328 |
Definitions
- nxp_fspi_devtype_data
- lx2160a_data
- imx8mm_data
- imx8qxp_data
- imx8dxl_data
- nxp_fspi
- needs_ip_only
- fspi_writel
- fspi_readl
- nxp_fspi_irq_handler
- nxp_fspi_check_buswidth
- nxp_fspi_supports_op
- fspi_readl_poll_tout
- nxp_fspi_invalid
- nxp_fspi_prepare_lut
- nxp_fspi_clk_prep_enable
- nxp_fspi_clk_disable_unprep
- nxp_fspi_dll_calibration
- nxp_fspi_select_mem
- nxp_fspi_read_ahb
- nxp_fspi_fill_txfifo
- nxp_fspi_read_rxfifo
- nxp_fspi_do_op
- nxp_fspi_exec_op
- nxp_fspi_adjust_op_size
- erratum_err050568
- nxp_fspi_default_setup
- nxp_fspi_get_name
- nxp_fspi_mem_ops
- nxp_fspi_probe
- nxp_fspi_remove
- nxp_fspi_suspend
- nxp_fspi_resume
- nxp_fspi_dt_ids
- nxp_fspi_acpi_ids
- nxp_fspi_pm_ops
Improve your Profiling and Debugging skills
Find out more