1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SuperH MSIOF SPI Controller Interface
4 *
5 * Copyright (c) 2009 Magnus Damm
6 * Copyright (C) 2014 Renesas Electronics Corporation
7 * Copyright (C) 2014-2017 Glider bvba
8 */
9
10#include <linux/bitmap.h>
11#include <linux/clk.h>
12#include <linux/completion.h>
13#include <linux/delay.h>
14#include <linux/dma-mapping.h>
15#include <linux/dmaengine.h>
16#include <linux/err.h>
17#include <linux/interrupt.h>
18#include <linux/io.h>
19#include <linux/iopoll.h>
20#include <linux/kernel.h>
21#include <linux/module.h>
22#include <linux/of.h>
23#include <linux/platform_device.h>
24#include <linux/pm_runtime.h>
25#include <linux/sh_dma.h>
26
27#include <linux/spi/sh_msiof.h>
28#include <linux/spi/spi.h>
29
30#include <asm/unaligned.h>
31
32#define SH_MSIOF_FLAG_FIXED_DTDL_200 BIT(0)
33
34struct sh_msiof_chipdata {
35 u32 bits_per_word_mask;
36 u16 tx_fifo_size;
37 u16 rx_fifo_size;
38 u16 ctlr_flags;
39 u16 min_div_pow;
40 u32 flags;
41};
42
43struct sh_msiof_spi_priv {
44 struct spi_controller *ctlr;
45 void __iomem *mapbase;
46 struct clk *clk;
47 struct platform_device *pdev;
48 struct sh_msiof_spi_info *info;
49 struct completion done;
50 struct completion done_txdma;
51 unsigned int tx_fifo_size;
52 unsigned int rx_fifo_size;
53 unsigned int min_div_pow;
54 void *tx_dma_page;
55 void *rx_dma_page;
56 dma_addr_t tx_dma_addr;
57 dma_addr_t rx_dma_addr;
58 bool native_cs_inited;
59 bool native_cs_high;
60 bool target_aborted;
61};
62
63#define MAX_SS 3 /* Maximum number of native chip selects */
64
65#define SITMDR1 0x00 /* Transmit Mode Register 1 */
66#define SITMDR2 0x04 /* Transmit Mode Register 2 */
67#define SITMDR3 0x08 /* Transmit Mode Register 3 */
68#define SIRMDR1 0x10 /* Receive Mode Register 1 */
69#define SIRMDR2 0x14 /* Receive Mode Register 2 */
70#define SIRMDR3 0x18 /* Receive Mode Register 3 */
71#define SITSCR 0x20 /* Transmit Clock Select Register */
72#define SIRSCR 0x22 /* Receive Clock Select Register (SH, A1, APE6) */
73#define SICTR 0x28 /* Control Register */
74#define SIFCTR 0x30 /* FIFO Control Register */
75#define SISTR 0x40 /* Status Register */
76#define SIIER 0x44 /* Interrupt Enable Register */
77#define SITDR1 0x48 /* Transmit Control Data Register 1 (SH, A1) */
78#define SITDR2 0x4c /* Transmit Control Data Register 2 (SH, A1) */
79#define SITFDR 0x50 /* Transmit FIFO Data Register */
80#define SIRDR1 0x58 /* Receive Control Data Register 1 (SH, A1) */
81#define SIRDR2 0x5c /* Receive Control Data Register 2 (SH, A1) */
82#define SIRFDR 0x60 /* Receive FIFO Data Register */
83
84/* SITMDR1 and SIRMDR1 */
85#define SIMDR1_TRMD BIT(31) /* Transfer Mode (1 = Master mode) */
86#define SIMDR1_SYNCMD_MASK GENMASK(29, 28) /* SYNC Mode */
87#define SIMDR1_SYNCMD_SPI (2 << 28) /* Level mode/SPI */
88#define SIMDR1_SYNCMD_LR (3 << 28) /* L/R mode */
89#define SIMDR1_SYNCAC_SHIFT 25 /* Sync Polarity (1 = Active-low) */
90#define SIMDR1_BITLSB_SHIFT 24 /* MSB/LSB First (1 = LSB first) */
91#define SIMDR1_DTDL_SHIFT 20 /* Data Pin Bit Delay for MSIOF_SYNC */
92#define SIMDR1_SYNCDL_SHIFT 16 /* Frame Sync Signal Timing Delay */
93#define SIMDR1_FLD_MASK GENMASK(3, 2) /* Frame Sync Signal Interval (0-3) */
94#define SIMDR1_FLD_SHIFT 2
95#define SIMDR1_XXSTP BIT(0) /* Transmission/Reception Stop on FIFO */
96/* SITMDR1 */
97#define SITMDR1_PCON BIT(30) /* Transfer Signal Connection */
98#define SITMDR1_SYNCCH_MASK GENMASK(27, 26) /* Sync Signal Channel Select */
99#define SITMDR1_SYNCCH_SHIFT 26 /* 0=MSIOF_SYNC, 1=MSIOF_SS1, 2=MSIOF_SS2 */
100
101/* SITMDR2 and SIRMDR2 */
102#define SIMDR2_BITLEN1(i) (((i) - 1) << 24) /* Data Size (8-32 bits) */
103#define SIMDR2_WDLEN1(i) (((i) - 1) << 16) /* Word Count (1-64/256 (SH, A1))) */
104#define SIMDR2_GRPMASK1 BIT(0) /* Group Output Mask 1 (SH, A1) */
105
106/* SITSCR and SIRSCR */
107#define SISCR_BRPS_MASK GENMASK(12, 8) /* Prescaler Setting (1-32) */
108#define SISCR_BRPS(i) (((i) - 1) << 8)
109#define SISCR_BRDV_MASK GENMASK(2, 0) /* Baud Rate Generator's Division Ratio */
110#define SISCR_BRDV_DIV_2 0
111#define SISCR_BRDV_DIV_4 1
112#define SISCR_BRDV_DIV_8 2
113#define SISCR_BRDV_DIV_16 3
114#define SISCR_BRDV_DIV_32 4
115#define SISCR_BRDV_DIV_1 7
116
117/* SICTR */
118#define SICTR_TSCKIZ_MASK GENMASK(31, 30) /* Transmit Clock I/O Polarity Select */
119#define SICTR_TSCKIZ_SCK BIT(31) /* Disable SCK when TX disabled */
120#define SICTR_TSCKIZ_POL_SHIFT 30 /* Transmit Clock Polarity */
121#define SICTR_RSCKIZ_MASK GENMASK(29, 28) /* Receive Clock Polarity Select */
122#define SICTR_RSCKIZ_SCK BIT(29) /* Must match CTR_TSCKIZ_SCK */
123#define SICTR_RSCKIZ_POL_SHIFT 28 /* Receive Clock Polarity */
124#define SICTR_TEDG_SHIFT 27 /* Transmit Timing (1 = falling edge) */
125#define SICTR_REDG_SHIFT 26 /* Receive Timing (1 = falling edge) */
126#define SICTR_TXDIZ_MASK GENMASK(23, 22) /* Pin Output When TX is Disabled */
127#define SICTR_TXDIZ_LOW (0 << 22) /* 0 */
128#define SICTR_TXDIZ_HIGH (1 << 22) /* 1 */
129#define SICTR_TXDIZ_HIZ (2 << 22) /* High-impedance */
130#define SICTR_TSCKE BIT(15) /* Transmit Serial Clock Output Enable */
131#define SICTR_TFSE BIT(14) /* Transmit Frame Sync Signal Output Enable */
132#define SICTR_TXE BIT(9) /* Transmit Enable */
133#define SICTR_RXE BIT(8) /* Receive Enable */
134#define SICTR_TXRST BIT(1) /* Transmit Reset */
135#define SICTR_RXRST BIT(0) /* Receive Reset */
136
137/* SIFCTR */
138#define SIFCTR_TFWM_MASK GENMASK(31, 29) /* Transmit FIFO Watermark */
139#define SIFCTR_TFWM_64 (0UL << 29) /* Transfer Request when 64 empty stages */
140#define SIFCTR_TFWM_32 (1UL << 29) /* Transfer Request when 32 empty stages */
141#define SIFCTR_TFWM_24 (2UL << 29) /* Transfer Request when 24 empty stages */
142#define SIFCTR_TFWM_16 (3UL << 29) /* Transfer Request when 16 empty stages */
143#define SIFCTR_TFWM_12 (4UL << 29) /* Transfer Request when 12 empty stages */
144#define SIFCTR_TFWM_8 (5UL << 29) /* Transfer Request when 8 empty stages */
145#define SIFCTR_TFWM_4 (6UL << 29) /* Transfer Request when 4 empty stages */
146#define SIFCTR_TFWM_1 (7UL << 29) /* Transfer Request when 1 empty stage */
147#define SIFCTR_TFUA_MASK GENMASK(26, 20) /* Transmit FIFO Usable Area */
148#define SIFCTR_TFUA_SHIFT 20
149#define SIFCTR_TFUA(i) ((i) << SIFCTR_TFUA_SHIFT)
150#define SIFCTR_RFWM_MASK GENMASK(15, 13) /* Receive FIFO Watermark */
151#define SIFCTR_RFWM_1 (0 << 13) /* Transfer Request when 1 valid stages */
152#define SIFCTR_RFWM_4 (1 << 13) /* Transfer Request when 4 valid stages */
153#define SIFCTR_RFWM_8 (2 << 13) /* Transfer Request when 8 valid stages */
154#define SIFCTR_RFWM_16 (3 << 13) /* Transfer Request when 16 valid stages */
155#define SIFCTR_RFWM_32 (4 << 13) /* Transfer Request when 32 valid stages */
156#define SIFCTR_RFWM_64 (5 << 13) /* Transfer Request when 64 valid stages */
157#define SIFCTR_RFWM_128 (6 << 13) /* Transfer Request when 128 valid stages */
158#define SIFCTR_RFWM_256 (7 << 13) /* Transfer Request when 256 valid stages */
159#define SIFCTR_RFUA_MASK GENMASK(12, 4) /* Receive FIFO Usable Area (0x40 = full) */
160#define SIFCTR_RFUA_SHIFT 4
161#define SIFCTR_RFUA(i) ((i) << SIFCTR_RFUA_SHIFT)
162
163/* SISTR */
164#define SISTR_TFEMP BIT(29) /* Transmit FIFO Empty */
165#define SISTR_TDREQ BIT(28) /* Transmit Data Transfer Request */
166#define SISTR_TEOF BIT(23) /* Frame Transmission End */
167#define SISTR_TFSERR BIT(21) /* Transmit Frame Synchronization Error */
168#define SISTR_TFOVF BIT(20) /* Transmit FIFO Overflow */
169#define SISTR_TFUDF BIT(19) /* Transmit FIFO Underflow */
170#define SISTR_RFFUL BIT(13) /* Receive FIFO Full */
171#define SISTR_RDREQ BIT(12) /* Receive Data Transfer Request */
172#define SISTR_REOF BIT(7) /* Frame Reception End */
173#define SISTR_RFSERR BIT(5) /* Receive Frame Synchronization Error */
174#define SISTR_RFUDF BIT(4) /* Receive FIFO Underflow */
175#define SISTR_RFOVF BIT(3) /* Receive FIFO Overflow */
176
177/* SIIER */
178#define SIIER_TDMAE BIT(31) /* Transmit Data DMA Transfer Req. Enable */
179#define SIIER_TFEMPE BIT(29) /* Transmit FIFO Empty Enable */
180#define SIIER_TDREQE BIT(28) /* Transmit Data Transfer Request Enable */
181#define SIIER_TEOFE BIT(23) /* Frame Transmission End Enable */
182#define SIIER_TFSERRE BIT(21) /* Transmit Frame Sync Error Enable */
183#define SIIER_TFOVFE BIT(20) /* Transmit FIFO Overflow Enable */
184#define SIIER_TFUDFE BIT(19) /* Transmit FIFO Underflow Enable */
185#define SIIER_RDMAE BIT(15) /* Receive Data DMA Transfer Req. Enable */
186#define SIIER_RFFULE BIT(13) /* Receive FIFO Full Enable */
187#define SIIER_RDREQE BIT(12) /* Receive Data Transfer Request Enable */
188#define SIIER_REOFE BIT(7) /* Frame Reception End Enable */
189#define SIIER_RFSERRE BIT(5) /* Receive Frame Sync Error Enable */
190#define SIIER_RFUDFE BIT(4) /* Receive FIFO Underflow Enable */
191#define SIIER_RFOVFE BIT(3) /* Receive FIFO Overflow Enable */
192
193
194static u32 sh_msiof_read(struct sh_msiof_spi_priv *p, int reg_offs)
195{
196 switch (reg_offs) {
197 case SITSCR:
198 case SIRSCR:
199 return ioread16(p->mapbase + reg_offs);
200 default:
201 return ioread32(p->mapbase + reg_offs);
202 }
203}
204
205static void sh_msiof_write(struct sh_msiof_spi_priv *p, int reg_offs,
206 u32 value)
207{
208 switch (reg_offs) {
209 case SITSCR:
210 case SIRSCR:
211 iowrite16(value, p->mapbase + reg_offs);
212 break;
213 default:
214 iowrite32(value, p->mapbase + reg_offs);
215 break;
216 }
217}
218
219static int sh_msiof_modify_ctr_wait(struct sh_msiof_spi_priv *p,
220 u32 clr, u32 set)
221{
222 u32 mask = clr | set;
223 u32 data;
224
225 data = sh_msiof_read(p, SICTR);
226 data &= ~clr;
227 data |= set;
228 sh_msiof_write(p, SICTR, value: data);
229
230 return readl_poll_timeout_atomic(p->mapbase + SICTR, data,
231 (data & mask) == set, 1, 100);
232}
233
234static irqreturn_t sh_msiof_spi_irq(int irq, void *data)
235{
236 struct sh_msiof_spi_priv *p = data;
237
238 /* just disable the interrupt and wake up */
239 sh_msiof_write(p, SIIER, value: 0);
240 complete(&p->done);
241
242 return IRQ_HANDLED;
243}
244
245static void sh_msiof_spi_reset_regs(struct sh_msiof_spi_priv *p)
246{
247 u32 mask = SICTR_TXRST | SICTR_RXRST;
248 u32 data;
249
250 data = sh_msiof_read(p, SICTR);
251 data |= mask;
252 sh_msiof_write(p, SICTR, value: data);
253
254 readl_poll_timeout_atomic(p->mapbase + SICTR, data, !(data & mask), 1,
255 100);
256}
257
258static const u32 sh_msiof_spi_div_array[] = {
259 SISCR_BRDV_DIV_1, SISCR_BRDV_DIV_2, SISCR_BRDV_DIV_4,
260 SISCR_BRDV_DIV_8, SISCR_BRDV_DIV_16, SISCR_BRDV_DIV_32,
261};
262
263static void sh_msiof_spi_set_clk_regs(struct sh_msiof_spi_priv *p,
264 struct spi_transfer *t)
265{
266 unsigned long parent_rate = clk_get_rate(clk: p->clk);
267 unsigned int div_pow = p->min_div_pow;
268 u32 spi_hz = t->speed_hz;
269 unsigned long div;
270 u32 brps, scr;
271
272 if (!spi_hz || !parent_rate) {
273 WARN(1, "Invalid clock rate parameters %lu and %u\n",
274 parent_rate, spi_hz);
275 return;
276 }
277
278 div = DIV_ROUND_UP(parent_rate, spi_hz);
279 if (div <= 1024) {
280 /* SISCR_BRDV_DIV_1 is valid only if BRPS is x 1/1 or x 1/2 */
281 if (!div_pow && div <= 32 && div > 2)
282 div_pow = 1;
283
284 if (div_pow)
285 brps = (div + 1) >> div_pow;
286 else
287 brps = div;
288
289 for (; brps > 32; div_pow++)
290 brps = (brps + 1) >> 1;
291 } else {
292 /* Set transfer rate composite divisor to 2^5 * 32 = 1024 */
293 dev_err(&p->pdev->dev,
294 "Requested SPI transfer rate %d is too low\n", spi_hz);
295 div_pow = 5;
296 brps = 32;
297 }
298
299 t->effective_speed_hz = parent_rate / (brps << div_pow);
300
301 scr = sh_msiof_spi_div_array[div_pow] | SISCR_BRPS(brps);
302 sh_msiof_write(p, SITSCR, value: scr);
303 if (!(p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
304 sh_msiof_write(p, SIRSCR, value: scr);
305}
306
307static u32 sh_msiof_get_delay_bit(u32 dtdl_or_syncdl)
308{
309 /*
310 * DTDL/SYNCDL bit : p->info->dtdl or p->info->syncdl
311 * b'000 : 0
312 * b'001 : 100
313 * b'010 : 200
314 * b'011 (SYNCDL only) : 300
315 * b'101 : 50
316 * b'110 : 150
317 */
318 if (dtdl_or_syncdl % 100)
319 return dtdl_or_syncdl / 100 + 5;
320 else
321 return dtdl_or_syncdl / 100;
322}
323
324static u32 sh_msiof_spi_get_dtdl_and_syncdl(struct sh_msiof_spi_priv *p)
325{
326 u32 val;
327
328 if (!p->info)
329 return 0;
330
331 /* check if DTDL and SYNCDL is allowed value */
332 if (p->info->dtdl > 200 || p->info->syncdl > 300) {
333 dev_warn(&p->pdev->dev, "DTDL or SYNCDL is too large\n");
334 return 0;
335 }
336
337 /* check if the sum of DTDL and SYNCDL becomes an integer value */
338 if ((p->info->dtdl + p->info->syncdl) % 100) {
339 dev_warn(&p->pdev->dev, "the sum of DTDL/SYNCDL is not good\n");
340 return 0;
341 }
342
343 val = sh_msiof_get_delay_bit(dtdl_or_syncdl: p->info->dtdl) << SIMDR1_DTDL_SHIFT;
344 val |= sh_msiof_get_delay_bit(dtdl_or_syncdl: p->info->syncdl) << SIMDR1_SYNCDL_SHIFT;
345
346 return val;
347}
348
349static void sh_msiof_spi_set_pin_regs(struct sh_msiof_spi_priv *p, u32 ss,
350 u32 cpol, u32 cpha,
351 u32 tx_hi_z, u32 lsb_first, u32 cs_high)
352{
353 u32 tmp;
354 int edge;
355
356 /*
357 * CPOL CPHA TSCKIZ RSCKIZ TEDG REDG
358 * 0 0 10 10 1 1
359 * 0 1 10 10 0 0
360 * 1 0 11 11 0 0
361 * 1 1 11 11 1 1
362 */
363 tmp = SIMDR1_SYNCMD_SPI | 1 << SIMDR1_FLD_SHIFT | SIMDR1_XXSTP;
364 tmp |= !cs_high << SIMDR1_SYNCAC_SHIFT;
365 tmp |= lsb_first << SIMDR1_BITLSB_SHIFT;
366 tmp |= sh_msiof_spi_get_dtdl_and_syncdl(p);
367 if (spi_controller_is_target(ctlr: p->ctlr)) {
368 sh_msiof_write(p, SITMDR1, value: tmp | SITMDR1_PCON);
369 } else {
370 sh_msiof_write(p, SITMDR1,
371 value: tmp | SIMDR1_TRMD | SITMDR1_PCON |
372 (ss < MAX_SS ? ss : 0) << SITMDR1_SYNCCH_SHIFT);
373 }
374 if (p->ctlr->flags & SPI_CONTROLLER_MUST_TX) {
375 /* These bits are reserved if RX needs TX */
376 tmp &= ~0x0000ffff;
377 }
378 sh_msiof_write(p, SIRMDR1, value: tmp);
379
380 tmp = 0;
381 tmp |= SICTR_TSCKIZ_SCK | cpol << SICTR_TSCKIZ_POL_SHIFT;
382 tmp |= SICTR_RSCKIZ_SCK | cpol << SICTR_RSCKIZ_POL_SHIFT;
383
384 edge = cpol ^ !cpha;
385
386 tmp |= edge << SICTR_TEDG_SHIFT;
387 tmp |= edge << SICTR_REDG_SHIFT;
388 tmp |= tx_hi_z ? SICTR_TXDIZ_HIZ : SICTR_TXDIZ_LOW;
389 sh_msiof_write(p, SICTR, value: tmp);
390}
391
392static void sh_msiof_spi_set_mode_regs(struct sh_msiof_spi_priv *p,
393 const void *tx_buf, void *rx_buf,
394 u32 bits, u32 words)
395{
396 u32 dr2 = SIMDR2_BITLEN1(bits) | SIMDR2_WDLEN1(words);
397
398 if (tx_buf || (p->ctlr->flags & SPI_CONTROLLER_MUST_TX))
399 sh_msiof_write(p, SITMDR2, value: dr2);
400 else
401 sh_msiof_write(p, SITMDR2, value: dr2 | SIMDR2_GRPMASK1);
402
403 if (rx_buf)
404 sh_msiof_write(p, SIRMDR2, value: dr2);
405}
406
407static void sh_msiof_reset_str(struct sh_msiof_spi_priv *p)
408{
409 sh_msiof_write(p, SISTR,
410 value: sh_msiof_read(p, SISTR) & ~(SISTR_TDREQ | SISTR_RDREQ));
411}
412
413static void sh_msiof_spi_write_fifo_8(struct sh_msiof_spi_priv *p,
414 const void *tx_buf, int words, int fs)
415{
416 const u8 *buf_8 = tx_buf;
417 int k;
418
419 for (k = 0; k < words; k++)
420 sh_msiof_write(p, SITFDR, value: buf_8[k] << fs);
421}
422
423static void sh_msiof_spi_write_fifo_16(struct sh_msiof_spi_priv *p,
424 const void *tx_buf, int words, int fs)
425{
426 const u16 *buf_16 = tx_buf;
427 int k;
428
429 for (k = 0; k < words; k++)
430 sh_msiof_write(p, SITFDR, value: buf_16[k] << fs);
431}
432
433static void sh_msiof_spi_write_fifo_16u(struct sh_msiof_spi_priv *p,
434 const void *tx_buf, int words, int fs)
435{
436 const u16 *buf_16 = tx_buf;
437 int k;
438
439 for (k = 0; k < words; k++)
440 sh_msiof_write(p, SITFDR, get_unaligned(&buf_16[k]) << fs);
441}
442
443static void sh_msiof_spi_write_fifo_32(struct sh_msiof_spi_priv *p,
444 const void *tx_buf, int words, int fs)
445{
446 const u32 *buf_32 = tx_buf;
447 int k;
448
449 for (k = 0; k < words; k++)
450 sh_msiof_write(p, SITFDR, value: buf_32[k] << fs);
451}
452
453static void sh_msiof_spi_write_fifo_32u(struct sh_msiof_spi_priv *p,
454 const void *tx_buf, int words, int fs)
455{
456 const u32 *buf_32 = tx_buf;
457 int k;
458
459 for (k = 0; k < words; k++)
460 sh_msiof_write(p, SITFDR, get_unaligned(&buf_32[k]) << fs);
461}
462
463static void sh_msiof_spi_write_fifo_s32(struct sh_msiof_spi_priv *p,
464 const void *tx_buf, int words, int fs)
465{
466 const u32 *buf_32 = tx_buf;
467 int k;
468
469 for (k = 0; k < words; k++)
470 sh_msiof_write(p, SITFDR, swab32(buf_32[k] << fs));
471}
472
473static void sh_msiof_spi_write_fifo_s32u(struct sh_msiof_spi_priv *p,
474 const void *tx_buf, int words, int fs)
475{
476 const u32 *buf_32 = tx_buf;
477 int k;
478
479 for (k = 0; k < words; k++)
480 sh_msiof_write(p, SITFDR, swab32(get_unaligned(&buf_32[k]) << fs));
481}
482
483static void sh_msiof_spi_read_fifo_8(struct sh_msiof_spi_priv *p,
484 void *rx_buf, int words, int fs)
485{
486 u8 *buf_8 = rx_buf;
487 int k;
488
489 for (k = 0; k < words; k++)
490 buf_8[k] = sh_msiof_read(p, SIRFDR) >> fs;
491}
492
493static void sh_msiof_spi_read_fifo_16(struct sh_msiof_spi_priv *p,
494 void *rx_buf, int words, int fs)
495{
496 u16 *buf_16 = rx_buf;
497 int k;
498
499 for (k = 0; k < words; k++)
500 buf_16[k] = sh_msiof_read(p, SIRFDR) >> fs;
501}
502
503static void sh_msiof_spi_read_fifo_16u(struct sh_msiof_spi_priv *p,
504 void *rx_buf, int words, int fs)
505{
506 u16 *buf_16 = rx_buf;
507 int k;
508
509 for (k = 0; k < words; k++)
510 put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_16[k]);
511}
512
513static void sh_msiof_spi_read_fifo_32(struct sh_msiof_spi_priv *p,
514 void *rx_buf, int words, int fs)
515{
516 u32 *buf_32 = rx_buf;
517 int k;
518
519 for (k = 0; k < words; k++)
520 buf_32[k] = sh_msiof_read(p, SIRFDR) >> fs;
521}
522
523static void sh_msiof_spi_read_fifo_32u(struct sh_msiof_spi_priv *p,
524 void *rx_buf, int words, int fs)
525{
526 u32 *buf_32 = rx_buf;
527 int k;
528
529 for (k = 0; k < words; k++)
530 put_unaligned(sh_msiof_read(p, SIRFDR) >> fs, &buf_32[k]);
531}
532
533static void sh_msiof_spi_read_fifo_s32(struct sh_msiof_spi_priv *p,
534 void *rx_buf, int words, int fs)
535{
536 u32 *buf_32 = rx_buf;
537 int k;
538
539 for (k = 0; k < words; k++)
540 buf_32[k] = swab32(sh_msiof_read(p, SIRFDR) >> fs);
541}
542
543static void sh_msiof_spi_read_fifo_s32u(struct sh_msiof_spi_priv *p,
544 void *rx_buf, int words, int fs)
545{
546 u32 *buf_32 = rx_buf;
547 int k;
548
549 for (k = 0; k < words; k++)
550 put_unaligned(swab32(sh_msiof_read(p, SIRFDR) >> fs), &buf_32[k]);
551}
552
553static int sh_msiof_spi_setup(struct spi_device *spi)
554{
555 struct sh_msiof_spi_priv *p =
556 spi_controller_get_devdata(ctlr: spi->controller);
557 u32 clr, set, tmp;
558
559 if (spi_get_csgpiod(spi, idx: 0) || spi_controller_is_target(ctlr: p->ctlr))
560 return 0;
561
562 if (p->native_cs_inited &&
563 (p->native_cs_high == !!(spi->mode & SPI_CS_HIGH)))
564 return 0;
565
566 /* Configure native chip select mode/polarity early */
567 clr = SIMDR1_SYNCMD_MASK;
568 set = SIMDR1_SYNCMD_SPI;
569 if (spi->mode & SPI_CS_HIGH)
570 clr |= BIT(SIMDR1_SYNCAC_SHIFT);
571 else
572 set |= BIT(SIMDR1_SYNCAC_SHIFT);
573 pm_runtime_get_sync(dev: &p->pdev->dev);
574 tmp = sh_msiof_read(p, SITMDR1) & ~clr;
575 sh_msiof_write(p, SITMDR1, value: tmp | set | SIMDR1_TRMD | SITMDR1_PCON);
576 tmp = sh_msiof_read(p, SIRMDR1) & ~clr;
577 sh_msiof_write(p, SIRMDR1, value: tmp | set);
578 pm_runtime_put(dev: &p->pdev->dev);
579 p->native_cs_high = spi->mode & SPI_CS_HIGH;
580 p->native_cs_inited = true;
581 return 0;
582}
583
584static int sh_msiof_prepare_message(struct spi_controller *ctlr,
585 struct spi_message *msg)
586{
587 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
588 const struct spi_device *spi = msg->spi;
589 u32 ss, cs_high;
590
591 /* Configure pins before asserting CS */
592 if (spi_get_csgpiod(spi, idx: 0)) {
593 ss = ctlr->unused_native_cs;
594 cs_high = p->native_cs_high;
595 } else {
596 ss = spi_get_chipselect(spi, idx: 0);
597 cs_high = !!(spi->mode & SPI_CS_HIGH);
598 }
599 sh_msiof_spi_set_pin_regs(p, ss, cpol: !!(spi->mode & SPI_CPOL),
600 cpha: !!(spi->mode & SPI_CPHA),
601 tx_hi_z: !!(spi->mode & SPI_3WIRE),
602 lsb_first: !!(spi->mode & SPI_LSB_FIRST), cs_high);
603 return 0;
604}
605
606static int sh_msiof_spi_start(struct sh_msiof_spi_priv *p, void *rx_buf)
607{
608 bool target = spi_controller_is_target(ctlr: p->ctlr);
609 int ret = 0;
610
611 /* setup clock and rx/tx signals */
612 if (!target)
613 ret = sh_msiof_modify_ctr_wait(p, clr: 0, SICTR_TSCKE);
614 if (rx_buf && !ret)
615 ret = sh_msiof_modify_ctr_wait(p, clr: 0, SICTR_RXE);
616 if (!ret)
617 ret = sh_msiof_modify_ctr_wait(p, clr: 0, SICTR_TXE);
618
619 /* start by setting frame bit */
620 if (!ret && !target)
621 ret = sh_msiof_modify_ctr_wait(p, clr: 0, SICTR_TFSE);
622
623 return ret;
624}
625
626static int sh_msiof_spi_stop(struct sh_msiof_spi_priv *p, void *rx_buf)
627{
628 bool target = spi_controller_is_target(ctlr: p->ctlr);
629 int ret = 0;
630
631 /* shut down frame, rx/tx and clock signals */
632 if (!target)
633 ret = sh_msiof_modify_ctr_wait(p, SICTR_TFSE, set: 0);
634 if (!ret)
635 ret = sh_msiof_modify_ctr_wait(p, SICTR_TXE, set: 0);
636 if (rx_buf && !ret)
637 ret = sh_msiof_modify_ctr_wait(p, SICTR_RXE, set: 0);
638 if (!ret && !target)
639 ret = sh_msiof_modify_ctr_wait(p, SICTR_TSCKE, set: 0);
640
641 return ret;
642}
643
644static int sh_msiof_target_abort(struct spi_controller *ctlr)
645{
646 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
647
648 p->target_aborted = true;
649 complete(&p->done);
650 complete(&p->done_txdma);
651 return 0;
652}
653
654static int sh_msiof_wait_for_completion(struct sh_msiof_spi_priv *p,
655 struct completion *x)
656{
657 if (spi_controller_is_target(ctlr: p->ctlr)) {
658 if (wait_for_completion_interruptible(x) ||
659 p->target_aborted) {
660 dev_dbg(&p->pdev->dev, "interrupted\n");
661 return -EINTR;
662 }
663 } else {
664 if (!wait_for_completion_timeout(x, HZ)) {
665 dev_err(&p->pdev->dev, "timeout\n");
666 return -ETIMEDOUT;
667 }
668 }
669
670 return 0;
671}
672
673static int sh_msiof_spi_txrx_once(struct sh_msiof_spi_priv *p,
674 void (*tx_fifo)(struct sh_msiof_spi_priv *,
675 const void *, int, int),
676 void (*rx_fifo)(struct sh_msiof_spi_priv *,
677 void *, int, int),
678 const void *tx_buf, void *rx_buf,
679 int words, int bits)
680{
681 int fifo_shift;
682 int ret;
683
684 /* limit maximum word transfer to rx/tx fifo size */
685 if (tx_buf)
686 words = min_t(int, words, p->tx_fifo_size);
687 if (rx_buf)
688 words = min_t(int, words, p->rx_fifo_size);
689
690 /* the fifo contents need shifting */
691 fifo_shift = 32 - bits;
692
693 /* default FIFO watermarks for PIO */
694 sh_msiof_write(p, SIFCTR, value: 0);
695
696 /* setup msiof transfer mode registers */
697 sh_msiof_spi_set_mode_regs(p, tx_buf, rx_buf, bits, words);
698 sh_msiof_write(p, SIIER, SIIER_TEOFE | SIIER_REOFE);
699
700 /* write tx fifo */
701 if (tx_buf)
702 tx_fifo(p, tx_buf, words, fifo_shift);
703
704 reinit_completion(x: &p->done);
705 p->target_aborted = false;
706
707 ret = sh_msiof_spi_start(p, rx_buf);
708 if (ret) {
709 dev_err(&p->pdev->dev, "failed to start hardware\n");
710 goto stop_ier;
711 }
712
713 /* wait for tx fifo to be emptied / rx fifo to be filled */
714 ret = sh_msiof_wait_for_completion(p, x: &p->done);
715 if (ret)
716 goto stop_reset;
717
718 /* read rx fifo */
719 if (rx_buf)
720 rx_fifo(p, rx_buf, words, fifo_shift);
721
722 /* clear status bits */
723 sh_msiof_reset_str(p);
724
725 ret = sh_msiof_spi_stop(p, rx_buf);
726 if (ret) {
727 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
728 return ret;
729 }
730
731 return words;
732
733stop_reset:
734 sh_msiof_reset_str(p);
735 sh_msiof_spi_stop(p, rx_buf);
736stop_ier:
737 sh_msiof_write(p, SIIER, value: 0);
738 return ret;
739}
740
741static void sh_msiof_dma_complete(void *arg)
742{
743 complete(arg);
744}
745
746static int sh_msiof_dma_once(struct sh_msiof_spi_priv *p, const void *tx,
747 void *rx, unsigned int len)
748{
749 u32 ier_bits = 0;
750 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
751 dma_cookie_t cookie;
752 int ret;
753
754 /* First prepare and submit the DMA request(s), as this may fail */
755 if (rx) {
756 ier_bits |= SIIER_RDREQE | SIIER_RDMAE;
757 desc_rx = dmaengine_prep_slave_single(chan: p->ctlr->dma_rx,
758 buf: p->rx_dma_addr, len, dir: DMA_DEV_TO_MEM,
759 flags: DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
760 if (!desc_rx)
761 return -EAGAIN;
762
763 desc_rx->callback = sh_msiof_dma_complete;
764 desc_rx->callback_param = &p->done;
765 cookie = dmaengine_submit(desc: desc_rx);
766 if (dma_submit_error(cookie))
767 return cookie;
768 }
769
770 if (tx) {
771 ier_bits |= SIIER_TDREQE | SIIER_TDMAE;
772 dma_sync_single_for_device(dev: p->ctlr->dma_tx->device->dev,
773 addr: p->tx_dma_addr, size: len, dir: DMA_TO_DEVICE);
774 desc_tx = dmaengine_prep_slave_single(chan: p->ctlr->dma_tx,
775 buf: p->tx_dma_addr, len, dir: DMA_MEM_TO_DEV,
776 flags: DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
777 if (!desc_tx) {
778 ret = -EAGAIN;
779 goto no_dma_tx;
780 }
781
782 desc_tx->callback = sh_msiof_dma_complete;
783 desc_tx->callback_param = &p->done_txdma;
784 cookie = dmaengine_submit(desc: desc_tx);
785 if (dma_submit_error(cookie)) {
786 ret = cookie;
787 goto no_dma_tx;
788 }
789 }
790
791 /* 1 stage FIFO watermarks for DMA */
792 sh_msiof_write(p, SIFCTR, SIFCTR_TFWM_1 | SIFCTR_RFWM_1);
793
794 /* setup msiof transfer mode registers (32-bit words) */
795 sh_msiof_spi_set_mode_regs(p, tx_buf: tx, rx_buf: rx, bits: 32, words: len / 4);
796
797 sh_msiof_write(p, SIIER, value: ier_bits);
798
799 reinit_completion(x: &p->done);
800 if (tx)
801 reinit_completion(x: &p->done_txdma);
802 p->target_aborted = false;
803
804 /* Now start DMA */
805 if (rx)
806 dma_async_issue_pending(chan: p->ctlr->dma_rx);
807 if (tx)
808 dma_async_issue_pending(chan: p->ctlr->dma_tx);
809
810 ret = sh_msiof_spi_start(p, rx_buf: rx);
811 if (ret) {
812 dev_err(&p->pdev->dev, "failed to start hardware\n");
813 goto stop_dma;
814 }
815
816 if (tx) {
817 /* wait for tx DMA completion */
818 ret = sh_msiof_wait_for_completion(p, x: &p->done_txdma);
819 if (ret)
820 goto stop_reset;
821 }
822
823 if (rx) {
824 /* wait for rx DMA completion */
825 ret = sh_msiof_wait_for_completion(p, x: &p->done);
826 if (ret)
827 goto stop_reset;
828
829 sh_msiof_write(p, SIIER, value: 0);
830 } else {
831 /* wait for tx fifo to be emptied */
832 sh_msiof_write(p, SIIER, SIIER_TEOFE);
833 ret = sh_msiof_wait_for_completion(p, x: &p->done);
834 if (ret)
835 goto stop_reset;
836 }
837
838 /* clear status bits */
839 sh_msiof_reset_str(p);
840
841 ret = sh_msiof_spi_stop(p, rx_buf: rx);
842 if (ret) {
843 dev_err(&p->pdev->dev, "failed to shut down hardware\n");
844 return ret;
845 }
846
847 if (rx)
848 dma_sync_single_for_cpu(dev: p->ctlr->dma_rx->device->dev,
849 addr: p->rx_dma_addr, size: len, dir: DMA_FROM_DEVICE);
850
851 return 0;
852
853stop_reset:
854 sh_msiof_reset_str(p);
855 sh_msiof_spi_stop(p, rx_buf: rx);
856stop_dma:
857 if (tx)
858 dmaengine_terminate_sync(chan: p->ctlr->dma_tx);
859no_dma_tx:
860 if (rx)
861 dmaengine_terminate_sync(chan: p->ctlr->dma_rx);
862 sh_msiof_write(p, SIIER, value: 0);
863 return ret;
864}
865
866static void copy_bswap32(u32 *dst, const u32 *src, unsigned int words)
867{
868 /* src or dst can be unaligned, but not both */
869 if ((unsigned long)src & 3) {
870 while (words--) {
871 *dst++ = swab32(get_unaligned(src));
872 src++;
873 }
874 } else if ((unsigned long)dst & 3) {
875 while (words--) {
876 put_unaligned(swab32(*src++), dst);
877 dst++;
878 }
879 } else {
880 while (words--)
881 *dst++ = swab32(*src++);
882 }
883}
884
885static void copy_wswap32(u32 *dst, const u32 *src, unsigned int words)
886{
887 /* src or dst can be unaligned, but not both */
888 if ((unsigned long)src & 3) {
889 while (words--) {
890 *dst++ = swahw32(get_unaligned(src));
891 src++;
892 }
893 } else if ((unsigned long)dst & 3) {
894 while (words--) {
895 put_unaligned(swahw32(*src++), dst);
896 dst++;
897 }
898 } else {
899 while (words--)
900 *dst++ = swahw32(*src++);
901 }
902}
903
904static void copy_plain32(u32 *dst, const u32 *src, unsigned int words)
905{
906 memcpy(dst, src, words * 4);
907}
908
909static int sh_msiof_transfer_one(struct spi_controller *ctlr,
910 struct spi_device *spi,
911 struct spi_transfer *t)
912{
913 struct sh_msiof_spi_priv *p = spi_controller_get_devdata(ctlr);
914 void (*copy32)(u32 *, const u32 *, unsigned int);
915 void (*tx_fifo)(struct sh_msiof_spi_priv *, const void *, int, int);
916 void (*rx_fifo)(struct sh_msiof_spi_priv *, void *, int, int);
917 const void *tx_buf = t->tx_buf;
918 void *rx_buf = t->rx_buf;
919 unsigned int len = t->len;
920 unsigned int bits = t->bits_per_word;
921 unsigned int bytes_per_word;
922 unsigned int words;
923 int n;
924 bool swab;
925 int ret;
926
927 /* reset registers */
928 sh_msiof_spi_reset_regs(p);
929
930 /* setup clocks (clock already enabled in chipselect()) */
931 if (!spi_controller_is_target(ctlr: p->ctlr))
932 sh_msiof_spi_set_clk_regs(p, t);
933
934 while (ctlr->dma_tx && len > 15) {
935 /*
936 * DMA supports 32-bit words only, hence pack 8-bit and 16-bit
937 * words, with byte resp. word swapping.
938 */
939 unsigned int l = 0;
940
941 if (tx_buf)
942 l = min(round_down(len, 4), p->tx_fifo_size * 4);
943 if (rx_buf)
944 l = min(round_down(len, 4), p->rx_fifo_size * 4);
945
946 if (bits <= 8) {
947 copy32 = copy_bswap32;
948 } else if (bits <= 16) {
949 copy32 = copy_wswap32;
950 } else {
951 copy32 = copy_plain32;
952 }
953
954 if (tx_buf)
955 copy32(p->tx_dma_page, tx_buf, l / 4);
956
957 ret = sh_msiof_dma_once(p, tx: tx_buf, rx: rx_buf, len: l);
958 if (ret == -EAGAIN) {
959 dev_warn_once(&p->pdev->dev,
960 "DMA not available, falling back to PIO\n");
961 break;
962 }
963 if (ret)
964 return ret;
965
966 if (rx_buf) {
967 copy32(rx_buf, p->rx_dma_page, l / 4);
968 rx_buf += l;
969 }
970 if (tx_buf)
971 tx_buf += l;
972
973 len -= l;
974 if (!len)
975 return 0;
976 }
977
978 if (bits <= 8 && len > 15) {
979 bits = 32;
980 swab = true;
981 } else {
982 swab = false;
983 }
984
985 /* setup bytes per word and fifo read/write functions */
986 if (bits <= 8) {
987 bytes_per_word = 1;
988 tx_fifo = sh_msiof_spi_write_fifo_8;
989 rx_fifo = sh_msiof_spi_read_fifo_8;
990 } else if (bits <= 16) {
991 bytes_per_word = 2;
992 if ((unsigned long)tx_buf & 0x01)
993 tx_fifo = sh_msiof_spi_write_fifo_16u;
994 else
995 tx_fifo = sh_msiof_spi_write_fifo_16;
996
997 if ((unsigned long)rx_buf & 0x01)
998 rx_fifo = sh_msiof_spi_read_fifo_16u;
999 else
1000 rx_fifo = sh_msiof_spi_read_fifo_16;
1001 } else if (swab) {
1002 bytes_per_word = 4;
1003 if ((unsigned long)tx_buf & 0x03)
1004 tx_fifo = sh_msiof_spi_write_fifo_s32u;
1005 else
1006 tx_fifo = sh_msiof_spi_write_fifo_s32;
1007
1008 if ((unsigned long)rx_buf & 0x03)
1009 rx_fifo = sh_msiof_spi_read_fifo_s32u;
1010 else
1011 rx_fifo = sh_msiof_spi_read_fifo_s32;
1012 } else {
1013 bytes_per_word = 4;
1014 if ((unsigned long)tx_buf & 0x03)
1015 tx_fifo = sh_msiof_spi_write_fifo_32u;
1016 else
1017 tx_fifo = sh_msiof_spi_write_fifo_32;
1018
1019 if ((unsigned long)rx_buf & 0x03)
1020 rx_fifo = sh_msiof_spi_read_fifo_32u;
1021 else
1022 rx_fifo = sh_msiof_spi_read_fifo_32;
1023 }
1024
1025 /* transfer in fifo sized chunks */
1026 words = len / bytes_per_word;
1027
1028 while (words > 0) {
1029 n = sh_msiof_spi_txrx_once(p, tx_fifo, rx_fifo, tx_buf, rx_buf,
1030 words, bits);
1031 if (n < 0)
1032 return n;
1033
1034 if (tx_buf)
1035 tx_buf += n * bytes_per_word;
1036 if (rx_buf)
1037 rx_buf += n * bytes_per_word;
1038 words -= n;
1039
1040 if (words == 0 && (len % bytes_per_word)) {
1041 words = len % bytes_per_word;
1042 bits = t->bits_per_word;
1043 bytes_per_word = 1;
1044 tx_fifo = sh_msiof_spi_write_fifo_8;
1045 rx_fifo = sh_msiof_spi_read_fifo_8;
1046 }
1047 }
1048
1049 return 0;
1050}
1051
1052static const struct sh_msiof_chipdata sh_data = {
1053 .bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32),
1054 .tx_fifo_size = 64,
1055 .rx_fifo_size = 64,
1056 .ctlr_flags = 0,
1057 .min_div_pow = 0,
1058};
1059
1060static const struct sh_msiof_chipdata rcar_gen2_data = {
1061 .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1062 SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1063 .tx_fifo_size = 64,
1064 .rx_fifo_size = 64,
1065 .ctlr_flags = SPI_CONTROLLER_MUST_TX,
1066 .min_div_pow = 0,
1067};
1068
1069static const struct sh_msiof_chipdata rcar_gen3_data = {
1070 .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1071 SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1072 .tx_fifo_size = 64,
1073 .rx_fifo_size = 64,
1074 .ctlr_flags = SPI_CONTROLLER_MUST_TX,
1075 .min_div_pow = 1,
1076};
1077
1078static const struct sh_msiof_chipdata rcar_r8a7795_data = {
1079 .bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16) |
1080 SPI_BPW_MASK(24) | SPI_BPW_MASK(32),
1081 .tx_fifo_size = 64,
1082 .rx_fifo_size = 64,
1083 .ctlr_flags = SPI_CONTROLLER_MUST_TX,
1084 .min_div_pow = 1,
1085 .flags = SH_MSIOF_FLAG_FIXED_DTDL_200,
1086};
1087
1088static const struct of_device_id sh_msiof_match[] __maybe_unused = {
1089 { .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
1090 { .compatible = "renesas,msiof-r8a7743", .data = &rcar_gen2_data },
1091 { .compatible = "renesas,msiof-r8a7745", .data = &rcar_gen2_data },
1092 { .compatible = "renesas,msiof-r8a7790", .data = &rcar_gen2_data },
1093 { .compatible = "renesas,msiof-r8a7791", .data = &rcar_gen2_data },
1094 { .compatible = "renesas,msiof-r8a7792", .data = &rcar_gen2_data },
1095 { .compatible = "renesas,msiof-r8a7793", .data = &rcar_gen2_data },
1096 { .compatible = "renesas,msiof-r8a7794", .data = &rcar_gen2_data },
1097 { .compatible = "renesas,rcar-gen2-msiof", .data = &rcar_gen2_data },
1098 { .compatible = "renesas,msiof-r8a7795", .data = &rcar_r8a7795_data },
1099 { .compatible = "renesas,msiof-r8a7796", .data = &rcar_gen3_data },
1100 { .compatible = "renesas,rcar-gen3-msiof", .data = &rcar_gen3_data },
1101 { .compatible = "renesas,rcar-gen4-msiof", .data = &rcar_gen3_data },
1102 { .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */
1103 {},
1104};
1105MODULE_DEVICE_TABLE(of, sh_msiof_match);
1106
1107#ifdef CONFIG_OF
1108static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1109{
1110 struct sh_msiof_spi_info *info;
1111 struct device_node *np = dev->of_node;
1112 u32 num_cs = 1;
1113
1114 info = devm_kzalloc(dev, size: sizeof(struct sh_msiof_spi_info), GFP_KERNEL);
1115 if (!info)
1116 return NULL;
1117
1118 info->mode = of_property_read_bool(np, propname: "spi-slave") ? MSIOF_SPI_TARGET
1119 : MSIOF_SPI_HOST;
1120
1121 /* Parse the MSIOF properties */
1122 if (info->mode == MSIOF_SPI_HOST)
1123 of_property_read_u32(np, propname: "num-cs", out_value: &num_cs);
1124 of_property_read_u32(np, propname: "renesas,tx-fifo-size",
1125 out_value: &info->tx_fifo_override);
1126 of_property_read_u32(np, propname: "renesas,rx-fifo-size",
1127 out_value: &info->rx_fifo_override);
1128 of_property_read_u32(np, propname: "renesas,dtdl", out_value: &info->dtdl);
1129 of_property_read_u32(np, propname: "renesas,syncdl", out_value: &info->syncdl);
1130
1131 info->num_chipselect = num_cs;
1132
1133 return info;
1134}
1135#else
1136static struct sh_msiof_spi_info *sh_msiof_spi_parse_dt(struct device *dev)
1137{
1138 return NULL;
1139}
1140#endif
1141
1142static struct dma_chan *sh_msiof_request_dma_chan(struct device *dev,
1143 enum dma_transfer_direction dir, unsigned int id, dma_addr_t port_addr)
1144{
1145 dma_cap_mask_t mask;
1146 struct dma_chan *chan;
1147 struct dma_slave_config cfg;
1148 int ret;
1149
1150 dma_cap_zero(mask);
1151 dma_cap_set(DMA_SLAVE, mask);
1152
1153 chan = dma_request_slave_channel_compat(mask, fn: shdma_chan_filter,
1154 fn_param: (void *)(unsigned long)id, dev,
1155 name: dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1156 if (!chan) {
1157 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1158 return NULL;
1159 }
1160
1161 memset(&cfg, 0, sizeof(cfg));
1162 cfg.direction = dir;
1163 if (dir == DMA_MEM_TO_DEV) {
1164 cfg.dst_addr = port_addr;
1165 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1166 } else {
1167 cfg.src_addr = port_addr;
1168 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1169 }
1170
1171 ret = dmaengine_slave_config(chan, config: &cfg);
1172 if (ret) {
1173 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1174 dma_release_channel(chan);
1175 return NULL;
1176 }
1177
1178 return chan;
1179}
1180
1181static int sh_msiof_request_dma(struct sh_msiof_spi_priv *p)
1182{
1183 struct platform_device *pdev = p->pdev;
1184 struct device *dev = &pdev->dev;
1185 const struct sh_msiof_spi_info *info = p->info;
1186 unsigned int dma_tx_id, dma_rx_id;
1187 const struct resource *res;
1188 struct spi_controller *ctlr;
1189 struct device *tx_dev, *rx_dev;
1190
1191 if (dev->of_node) {
1192 /* In the OF case we will get the slave IDs from the DT */
1193 dma_tx_id = 0;
1194 dma_rx_id = 0;
1195 } else if (info && info->dma_tx_id && info->dma_rx_id) {
1196 dma_tx_id = info->dma_tx_id;
1197 dma_rx_id = info->dma_rx_id;
1198 } else {
1199 /* The driver assumes no error */
1200 return 0;
1201 }
1202
1203 /* The DMA engine uses the second register set, if present */
1204 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1205 if (!res)
1206 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1207
1208 ctlr = p->ctlr;
1209 ctlr->dma_tx = sh_msiof_request_dma_chan(dev, dir: DMA_MEM_TO_DEV,
1210 id: dma_tx_id, port_addr: res->start + SITFDR);
1211 if (!ctlr->dma_tx)
1212 return -ENODEV;
1213
1214 ctlr->dma_rx = sh_msiof_request_dma_chan(dev, dir: DMA_DEV_TO_MEM,
1215 id: dma_rx_id, port_addr: res->start + SIRFDR);
1216 if (!ctlr->dma_rx)
1217 goto free_tx_chan;
1218
1219 p->tx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1220 if (!p->tx_dma_page)
1221 goto free_rx_chan;
1222
1223 p->rx_dma_page = (void *)__get_free_page(GFP_KERNEL | GFP_DMA);
1224 if (!p->rx_dma_page)
1225 goto free_tx_page;
1226
1227 tx_dev = ctlr->dma_tx->device->dev;
1228 p->tx_dma_addr = dma_map_single(tx_dev, p->tx_dma_page, PAGE_SIZE,
1229 DMA_TO_DEVICE);
1230 if (dma_mapping_error(dev: tx_dev, dma_addr: p->tx_dma_addr))
1231 goto free_rx_page;
1232
1233 rx_dev = ctlr->dma_rx->device->dev;
1234 p->rx_dma_addr = dma_map_single(rx_dev, p->rx_dma_page, PAGE_SIZE,
1235 DMA_FROM_DEVICE);
1236 if (dma_mapping_error(dev: rx_dev, dma_addr: p->rx_dma_addr))
1237 goto unmap_tx_page;
1238
1239 dev_info(dev, "DMA available");
1240 return 0;
1241
1242unmap_tx_page:
1243 dma_unmap_single(tx_dev, p->tx_dma_addr, PAGE_SIZE, DMA_TO_DEVICE);
1244free_rx_page:
1245 free_page((unsigned long)p->rx_dma_page);
1246free_tx_page:
1247 free_page((unsigned long)p->tx_dma_page);
1248free_rx_chan:
1249 dma_release_channel(chan: ctlr->dma_rx);
1250free_tx_chan:
1251 dma_release_channel(chan: ctlr->dma_tx);
1252 ctlr->dma_tx = NULL;
1253 return -ENODEV;
1254}
1255
1256static void sh_msiof_release_dma(struct sh_msiof_spi_priv *p)
1257{
1258 struct spi_controller *ctlr = p->ctlr;
1259
1260 if (!ctlr->dma_tx)
1261 return;
1262
1263 dma_unmap_single(ctlr->dma_rx->device->dev, p->rx_dma_addr, PAGE_SIZE,
1264 DMA_FROM_DEVICE);
1265 dma_unmap_single(ctlr->dma_tx->device->dev, p->tx_dma_addr, PAGE_SIZE,
1266 DMA_TO_DEVICE);
1267 free_page((unsigned long)p->rx_dma_page);
1268 free_page((unsigned long)p->tx_dma_page);
1269 dma_release_channel(chan: ctlr->dma_rx);
1270 dma_release_channel(chan: ctlr->dma_tx);
1271}
1272
1273static int sh_msiof_spi_probe(struct platform_device *pdev)
1274{
1275 struct spi_controller *ctlr;
1276 const struct sh_msiof_chipdata *chipdata;
1277 struct sh_msiof_spi_info *info;
1278 struct sh_msiof_spi_priv *p;
1279 unsigned long clksrc;
1280 int i;
1281 int ret;
1282
1283 chipdata = of_device_get_match_data(dev: &pdev->dev);
1284 if (chipdata) {
1285 info = sh_msiof_spi_parse_dt(dev: &pdev->dev);
1286 } else {
1287 chipdata = (const void *)pdev->id_entry->driver_data;
1288 info = dev_get_platdata(dev: &pdev->dev);
1289 }
1290
1291 if (!info) {
1292 dev_err(&pdev->dev, "failed to obtain device info\n");
1293 return -ENXIO;
1294 }
1295
1296 if (chipdata->flags & SH_MSIOF_FLAG_FIXED_DTDL_200)
1297 info->dtdl = 200;
1298
1299 if (info->mode == MSIOF_SPI_TARGET)
1300 ctlr = spi_alloc_target(dev: &pdev->dev,
1301 size: sizeof(struct sh_msiof_spi_priv));
1302 else
1303 ctlr = spi_alloc_host(dev: &pdev->dev,
1304 size: sizeof(struct sh_msiof_spi_priv));
1305 if (ctlr == NULL)
1306 return -ENOMEM;
1307
1308 p = spi_controller_get_devdata(ctlr);
1309
1310 platform_set_drvdata(pdev, data: p);
1311 p->ctlr = ctlr;
1312 p->info = info;
1313 p->min_div_pow = chipdata->min_div_pow;
1314
1315 init_completion(x: &p->done);
1316 init_completion(x: &p->done_txdma);
1317
1318 p->clk = devm_clk_get(dev: &pdev->dev, NULL);
1319 if (IS_ERR(ptr: p->clk)) {
1320 dev_err(&pdev->dev, "cannot get clock\n");
1321 ret = PTR_ERR(ptr: p->clk);
1322 goto err1;
1323 }
1324
1325 i = platform_get_irq(pdev, 0);
1326 if (i < 0) {
1327 ret = i;
1328 goto err1;
1329 }
1330
1331 p->mapbase = devm_platform_ioremap_resource(pdev, index: 0);
1332 if (IS_ERR(ptr: p->mapbase)) {
1333 ret = PTR_ERR(ptr: p->mapbase);
1334 goto err1;
1335 }
1336
1337 ret = devm_request_irq(dev: &pdev->dev, irq: i, handler: sh_msiof_spi_irq, irqflags: 0,
1338 devname: dev_name(dev: &pdev->dev), dev_id: p);
1339 if (ret) {
1340 dev_err(&pdev->dev, "unable to request irq\n");
1341 goto err1;
1342 }
1343
1344 p->pdev = pdev;
1345 pm_runtime_enable(dev: &pdev->dev);
1346
1347 /* Platform data may override FIFO sizes */
1348 p->tx_fifo_size = chipdata->tx_fifo_size;
1349 p->rx_fifo_size = chipdata->rx_fifo_size;
1350 if (p->info->tx_fifo_override)
1351 p->tx_fifo_size = p->info->tx_fifo_override;
1352 if (p->info->rx_fifo_override)
1353 p->rx_fifo_size = p->info->rx_fifo_override;
1354
1355 /* init controller code */
1356 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1357 ctlr->mode_bits |= SPI_LSB_FIRST | SPI_3WIRE;
1358 clksrc = clk_get_rate(clk: p->clk);
1359 ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, 1024);
1360 ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, 1 << p->min_div_pow);
1361 ctlr->flags = chipdata->ctlr_flags;
1362 ctlr->bus_num = pdev->id;
1363 ctlr->num_chipselect = p->info->num_chipselect;
1364 ctlr->dev.of_node = pdev->dev.of_node;
1365 ctlr->setup = sh_msiof_spi_setup;
1366 ctlr->prepare_message = sh_msiof_prepare_message;
1367 ctlr->target_abort = sh_msiof_target_abort;
1368 ctlr->bits_per_word_mask = chipdata->bits_per_word_mask;
1369 ctlr->auto_runtime_pm = true;
1370 ctlr->transfer_one = sh_msiof_transfer_one;
1371 ctlr->use_gpio_descriptors = true;
1372 ctlr->max_native_cs = MAX_SS;
1373
1374 ret = sh_msiof_request_dma(p);
1375 if (ret < 0)
1376 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1377
1378 ret = devm_spi_register_controller(dev: &pdev->dev, ctlr);
1379 if (ret < 0) {
1380 dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1381 goto err2;
1382 }
1383
1384 return 0;
1385
1386 err2:
1387 sh_msiof_release_dma(p);
1388 pm_runtime_disable(dev: &pdev->dev);
1389 err1:
1390 spi_controller_put(ctlr);
1391 return ret;
1392}
1393
1394static void sh_msiof_spi_remove(struct platform_device *pdev)
1395{
1396 struct sh_msiof_spi_priv *p = platform_get_drvdata(pdev);
1397
1398 sh_msiof_release_dma(p);
1399 pm_runtime_disable(dev: &pdev->dev);
1400}
1401
1402static const struct platform_device_id spi_driver_ids[] = {
1403 { "spi_sh_msiof", (kernel_ulong_t)&sh_data },
1404 {},
1405};
1406MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1407
1408#ifdef CONFIG_PM_SLEEP
1409static int sh_msiof_spi_suspend(struct device *dev)
1410{
1411 struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1412
1413 return spi_controller_suspend(ctlr: p->ctlr);
1414}
1415
1416static int sh_msiof_spi_resume(struct device *dev)
1417{
1418 struct sh_msiof_spi_priv *p = dev_get_drvdata(dev);
1419
1420 return spi_controller_resume(ctlr: p->ctlr);
1421}
1422
1423static SIMPLE_DEV_PM_OPS(sh_msiof_spi_pm_ops, sh_msiof_spi_suspend,
1424 sh_msiof_spi_resume);
1425#define DEV_PM_OPS (&sh_msiof_spi_pm_ops)
1426#else
1427#define DEV_PM_OPS NULL
1428#endif /* CONFIG_PM_SLEEP */
1429
1430static struct platform_driver sh_msiof_spi_drv = {
1431 .probe = sh_msiof_spi_probe,
1432 .remove_new = sh_msiof_spi_remove,
1433 .id_table = spi_driver_ids,
1434 .driver = {
1435 .name = "spi_sh_msiof",
1436 .pm = DEV_PM_OPS,
1437 .of_match_table = of_match_ptr(sh_msiof_match),
1438 },
1439};
1440module_platform_driver(sh_msiof_spi_drv);
1441
1442MODULE_DESCRIPTION("SuperH MSIOF SPI Controller Interface Driver");
1443MODULE_AUTHOR("Magnus Damm");
1444MODULE_LICENSE("GPL v2");
1445

source code of linux/drivers/spi/spi-sh-msiof.c