1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/slab.h>
8#include <linux/sched.h>
9#include <linux/sched/mm.h>
10#include <linux/writeback.h>
11#include <linux/pagemap.h>
12#include <linux/blkdev.h>
13#include <linux/uuid.h>
14#include <linux/timekeeping.h>
15#include "misc.h"
16#include "ctree.h"
17#include "disk-io.h"
18#include "transaction.h"
19#include "locking.h"
20#include "tree-log.h"
21#include "volumes.h"
22#include "dev-replace.h"
23#include "qgroup.h"
24#include "block-group.h"
25#include "space-info.h"
26#include "fs.h"
27#include "accessors.h"
28#include "extent-tree.h"
29#include "root-tree.h"
30#include "dir-item.h"
31#include "uuid-tree.h"
32#include "ioctl.h"
33#include "relocation.h"
34#include "scrub.h"
35
36static struct kmem_cache *btrfs_trans_handle_cachep;
37
38/*
39 * Transaction states and transitions
40 *
41 * No running transaction (fs tree blocks are not modified)
42 * |
43 * | To next stage:
44 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
45 * V
46 * Transaction N [[TRANS_STATE_RUNNING]]
47 * |
48 * | New trans handles can be attached to transaction N by calling all
49 * | start_transaction() variants.
50 * |
51 * | To next stage:
52 * | Call btrfs_commit_transaction() on any trans handle attached to
53 * | transaction N
54 * V
55 * Transaction N [[TRANS_STATE_COMMIT_PREP]]
56 * |
57 * | If there are simultaneous calls to btrfs_commit_transaction() one will win
58 * | the race and the rest will wait for the winner to commit the transaction.
59 * |
60 * | The winner will wait for previous running transaction to completely finish
61 * | if there is one.
62 * |
63 * Transaction N [[TRANS_STATE_COMMIT_START]]
64 * |
65 * | Then one of the following happens:
66 * | - Wait for all other trans handle holders to release.
67 * | The btrfs_commit_transaction() caller will do the commit work.
68 * | - Wait for current transaction to be committed by others.
69 * | Other btrfs_commit_transaction() caller will do the commit work.
70 * |
71 * | At this stage, only btrfs_join_transaction*() variants can attach
72 * | to this running transaction.
73 * | All other variants will wait for current one to finish and attach to
74 * | transaction N+1.
75 * |
76 * | To next stage:
77 * | Caller is chosen to commit transaction N, and all other trans handle
78 * | haven been released.
79 * V
80 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
81 * |
82 * | The heavy lifting transaction work is started.
83 * | From running delayed refs (modifying extent tree) to creating pending
84 * | snapshots, running qgroups.
85 * | In short, modify supporting trees to reflect modifications of subvolume
86 * | trees.
87 * |
88 * | At this stage, all start_transaction() calls will wait for this
89 * | transaction to finish and attach to transaction N+1.
90 * |
91 * | To next stage:
92 * | Until all supporting trees are updated.
93 * V
94 * Transaction N [[TRANS_STATE_UNBLOCKED]]
95 * | Transaction N+1
96 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
97 * | need to write them back to disk and update |
98 * | super blocks. |
99 * | |
100 * | At this stage, new transaction is allowed to |
101 * | start. |
102 * | All new start_transaction() calls will be |
103 * | attached to transid N+1. |
104 * | |
105 * | To next stage: |
106 * | Until all tree blocks are super blocks are |
107 * | written to block devices |
108 * V |
109 * Transaction N [[TRANS_STATE_COMPLETED]] V
110 * All tree blocks and super blocks are written. Transaction N+1
111 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
112 * data structures will be cleaned up. | Life goes on
113 */
114static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
115 [TRANS_STATE_RUNNING] = 0U,
116 [TRANS_STATE_COMMIT_PREP] = 0U,
117 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
118 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
119 __TRANS_ATTACH |
120 __TRANS_JOIN |
121 __TRANS_JOIN_NOSTART),
122 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
123 __TRANS_ATTACH |
124 __TRANS_JOIN |
125 __TRANS_JOIN_NOLOCK |
126 __TRANS_JOIN_NOSTART),
127 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
128 __TRANS_ATTACH |
129 __TRANS_JOIN |
130 __TRANS_JOIN_NOLOCK |
131 __TRANS_JOIN_NOSTART),
132 [TRANS_STATE_COMPLETED] = (__TRANS_START |
133 __TRANS_ATTACH |
134 __TRANS_JOIN |
135 __TRANS_JOIN_NOLOCK |
136 __TRANS_JOIN_NOSTART),
137};
138
139void btrfs_put_transaction(struct btrfs_transaction *transaction)
140{
141 WARN_ON(refcount_read(&transaction->use_count) == 0);
142 if (refcount_dec_and_test(r: &transaction->use_count)) {
143 BUG_ON(!list_empty(&transaction->list));
144 WARN_ON(!RB_EMPTY_ROOT(
145 &transaction->delayed_refs.href_root.rb_root));
146 WARN_ON(!RB_EMPTY_ROOT(
147 &transaction->delayed_refs.dirty_extent_root));
148 if (transaction->delayed_refs.pending_csums)
149 btrfs_err(transaction->fs_info,
150 "pending csums is %llu",
151 transaction->delayed_refs.pending_csums);
152 /*
153 * If any block groups are found in ->deleted_bgs then it's
154 * because the transaction was aborted and a commit did not
155 * happen (things failed before writing the new superblock
156 * and calling btrfs_finish_extent_commit()), so we can not
157 * discard the physical locations of the block groups.
158 */
159 while (!list_empty(head: &transaction->deleted_bgs)) {
160 struct btrfs_block_group *cache;
161
162 cache = list_first_entry(&transaction->deleted_bgs,
163 struct btrfs_block_group,
164 bg_list);
165 list_del_init(entry: &cache->bg_list);
166 btrfs_unfreeze_block_group(cache);
167 btrfs_put_block_group(cache);
168 }
169 WARN_ON(!list_empty(&transaction->dev_update_list));
170 kfree(objp: transaction);
171 }
172}
173
174static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
175{
176 struct btrfs_transaction *cur_trans = trans->transaction;
177 struct btrfs_fs_info *fs_info = trans->fs_info;
178 struct btrfs_root *root, *tmp;
179
180 /*
181 * At this point no one can be using this transaction to modify any tree
182 * and no one can start another transaction to modify any tree either.
183 */
184 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
185
186 down_write(sem: &fs_info->commit_root_sem);
187
188 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
189 fs_info->last_reloc_trans = trans->transid;
190
191 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
192 dirty_list) {
193 list_del_init(entry: &root->dirty_list);
194 free_extent_buffer(eb: root->commit_root);
195 root->commit_root = btrfs_root_node(root);
196 extent_io_tree_release(tree: &root->dirty_log_pages);
197 btrfs_qgroup_clean_swapped_blocks(root);
198 }
199
200 /* We can free old roots now. */
201 spin_lock(lock: &cur_trans->dropped_roots_lock);
202 while (!list_empty(head: &cur_trans->dropped_roots)) {
203 root = list_first_entry(&cur_trans->dropped_roots,
204 struct btrfs_root, root_list);
205 list_del_init(entry: &root->root_list);
206 spin_unlock(lock: &cur_trans->dropped_roots_lock);
207 btrfs_free_log(trans, root);
208 btrfs_drop_and_free_fs_root(fs_info, root);
209 spin_lock(lock: &cur_trans->dropped_roots_lock);
210 }
211 spin_unlock(lock: &cur_trans->dropped_roots_lock);
212
213 up_write(sem: &fs_info->commit_root_sem);
214}
215
216static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
217 unsigned int type)
218{
219 if (type & TRANS_EXTWRITERS)
220 atomic_inc(v: &trans->num_extwriters);
221}
222
223static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
224 unsigned int type)
225{
226 if (type & TRANS_EXTWRITERS)
227 atomic_dec(v: &trans->num_extwriters);
228}
229
230static inline void extwriter_counter_init(struct btrfs_transaction *trans,
231 unsigned int type)
232{
233 atomic_set(v: &trans->num_extwriters, i: ((type & TRANS_EXTWRITERS) ? 1 : 0));
234}
235
236static inline int extwriter_counter_read(struct btrfs_transaction *trans)
237{
238 return atomic_read(v: &trans->num_extwriters);
239}
240
241/*
242 * To be called after doing the chunk btree updates right after allocating a new
243 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
244 * chunk after all chunk btree updates and after finishing the second phase of
245 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
246 * group had its chunk item insertion delayed to the second phase.
247 */
248void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
249{
250 struct btrfs_fs_info *fs_info = trans->fs_info;
251
252 if (!trans->chunk_bytes_reserved)
253 return;
254
255 btrfs_block_rsv_release(fs_info, block_rsv: &fs_info->chunk_block_rsv,
256 num_bytes: trans->chunk_bytes_reserved, NULL);
257 trans->chunk_bytes_reserved = 0;
258}
259
260/*
261 * either allocate a new transaction or hop into the existing one
262 */
263static noinline int join_transaction(struct btrfs_fs_info *fs_info,
264 unsigned int type)
265{
266 struct btrfs_transaction *cur_trans;
267
268 spin_lock(lock: &fs_info->trans_lock);
269loop:
270 /* The file system has been taken offline. No new transactions. */
271 if (BTRFS_FS_ERROR(fs_info)) {
272 spin_unlock(lock: &fs_info->trans_lock);
273 return -EROFS;
274 }
275
276 cur_trans = fs_info->running_transaction;
277 if (cur_trans) {
278 if (TRANS_ABORTED(cur_trans)) {
279 spin_unlock(lock: &fs_info->trans_lock);
280 return cur_trans->aborted;
281 }
282 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
283 spin_unlock(lock: &fs_info->trans_lock);
284 return -EBUSY;
285 }
286 refcount_inc(r: &cur_trans->use_count);
287 atomic_inc(v: &cur_trans->num_writers);
288 extwriter_counter_inc(trans: cur_trans, type);
289 spin_unlock(lock: &fs_info->trans_lock);
290 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
291 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
292 return 0;
293 }
294 spin_unlock(lock: &fs_info->trans_lock);
295
296 /*
297 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
298 * current transaction, and commit it. If there is no transaction, just
299 * return ENOENT.
300 */
301 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
302 return -ENOENT;
303
304 /*
305 * JOIN_NOLOCK only happens during the transaction commit, so
306 * it is impossible that ->running_transaction is NULL
307 */
308 BUG_ON(type == TRANS_JOIN_NOLOCK);
309
310 cur_trans = kmalloc(size: sizeof(*cur_trans), GFP_NOFS);
311 if (!cur_trans)
312 return -ENOMEM;
313
314 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
315 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
316
317 spin_lock(lock: &fs_info->trans_lock);
318 if (fs_info->running_transaction) {
319 /*
320 * someone started a transaction after we unlocked. Make sure
321 * to redo the checks above
322 */
323 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
324 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
325 kfree(objp: cur_trans);
326 goto loop;
327 } else if (BTRFS_FS_ERROR(fs_info)) {
328 spin_unlock(lock: &fs_info->trans_lock);
329 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
330 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
331 kfree(objp: cur_trans);
332 return -EROFS;
333 }
334
335 cur_trans->fs_info = fs_info;
336 atomic_set(v: &cur_trans->pending_ordered, i: 0);
337 init_waitqueue_head(&cur_trans->pending_wait);
338 atomic_set(v: &cur_trans->num_writers, i: 1);
339 extwriter_counter_init(trans: cur_trans, type);
340 init_waitqueue_head(&cur_trans->writer_wait);
341 init_waitqueue_head(&cur_trans->commit_wait);
342 cur_trans->state = TRANS_STATE_RUNNING;
343 /*
344 * One for this trans handle, one so it will live on until we
345 * commit the transaction.
346 */
347 refcount_set(r: &cur_trans->use_count, n: 2);
348 cur_trans->flags = 0;
349 cur_trans->start_time = ktime_get_seconds();
350
351 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
352
353 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
354 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
355 atomic_set(v: &cur_trans->delayed_refs.num_entries, i: 0);
356
357 /*
358 * although the tree mod log is per file system and not per transaction,
359 * the log must never go across transaction boundaries.
360 */
361 smp_mb();
362 if (!list_empty(head: &fs_info->tree_mod_seq_list))
363 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
364 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
365 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
366 atomic64_set(v: &fs_info->tree_mod_seq, i: 0);
367
368 spin_lock_init(&cur_trans->delayed_refs.lock);
369
370 INIT_LIST_HEAD(list: &cur_trans->pending_snapshots);
371 INIT_LIST_HEAD(list: &cur_trans->dev_update_list);
372 INIT_LIST_HEAD(list: &cur_trans->switch_commits);
373 INIT_LIST_HEAD(list: &cur_trans->dirty_bgs);
374 INIT_LIST_HEAD(list: &cur_trans->io_bgs);
375 INIT_LIST_HEAD(list: &cur_trans->dropped_roots);
376 mutex_init(&cur_trans->cache_write_mutex);
377 spin_lock_init(&cur_trans->dirty_bgs_lock);
378 INIT_LIST_HEAD(list: &cur_trans->deleted_bgs);
379 spin_lock_init(&cur_trans->dropped_roots_lock);
380 list_add_tail(new: &cur_trans->list, head: &fs_info->trans_list);
381 extent_io_tree_init(fs_info, tree: &cur_trans->dirty_pages,
382 owner: IO_TREE_TRANS_DIRTY_PAGES);
383 extent_io_tree_init(fs_info, tree: &cur_trans->pinned_extents,
384 owner: IO_TREE_FS_PINNED_EXTENTS);
385 btrfs_set_fs_generation(fs_info, gen: fs_info->generation + 1);
386 cur_trans->transid = fs_info->generation;
387 fs_info->running_transaction = cur_trans;
388 cur_trans->aborted = 0;
389 spin_unlock(lock: &fs_info->trans_lock);
390
391 return 0;
392}
393
394/*
395 * This does all the record keeping required to make sure that a shareable root
396 * is properly recorded in a given transaction. This is required to make sure
397 * the old root from before we joined the transaction is deleted when the
398 * transaction commits.
399 */
400static int record_root_in_trans(struct btrfs_trans_handle *trans,
401 struct btrfs_root *root,
402 int force)
403{
404 struct btrfs_fs_info *fs_info = root->fs_info;
405 int ret = 0;
406
407 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
408 root->last_trans < trans->transid) || force) {
409 WARN_ON(!force && root->commit_root != root->node);
410
411 /*
412 * see below for IN_TRANS_SETUP usage rules
413 * we have the reloc mutex held now, so there
414 * is only one writer in this function
415 */
416 set_bit(nr: BTRFS_ROOT_IN_TRANS_SETUP, addr: &root->state);
417
418 /* make sure readers find IN_TRANS_SETUP before
419 * they find our root->last_trans update
420 */
421 smp_wmb();
422
423 spin_lock(lock: &fs_info->fs_roots_radix_lock);
424 if (root->last_trans == trans->transid && !force) {
425 spin_unlock(lock: &fs_info->fs_roots_radix_lock);
426 return 0;
427 }
428 radix_tree_tag_set(&fs_info->fs_roots_radix,
429 index: (unsigned long)root->root_key.objectid,
430 BTRFS_ROOT_TRANS_TAG);
431 spin_unlock(lock: &fs_info->fs_roots_radix_lock);
432 root->last_trans = trans->transid;
433
434 /* this is pretty tricky. We don't want to
435 * take the relocation lock in btrfs_record_root_in_trans
436 * unless we're really doing the first setup for this root in
437 * this transaction.
438 *
439 * Normally we'd use root->last_trans as a flag to decide
440 * if we want to take the expensive mutex.
441 *
442 * But, we have to set root->last_trans before we
443 * init the relocation root, otherwise, we trip over warnings
444 * in ctree.c. The solution used here is to flag ourselves
445 * with root IN_TRANS_SETUP. When this is 1, we're still
446 * fixing up the reloc trees and everyone must wait.
447 *
448 * When this is zero, they can trust root->last_trans and fly
449 * through btrfs_record_root_in_trans without having to take the
450 * lock. smp_wmb() makes sure that all the writes above are
451 * done before we pop in the zero below
452 */
453 ret = btrfs_init_reloc_root(trans, root);
454 smp_mb__before_atomic();
455 clear_bit(nr: BTRFS_ROOT_IN_TRANS_SETUP, addr: &root->state);
456 }
457 return ret;
458}
459
460
461void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
462 struct btrfs_root *root)
463{
464 struct btrfs_fs_info *fs_info = root->fs_info;
465 struct btrfs_transaction *cur_trans = trans->transaction;
466
467 /* Add ourselves to the transaction dropped list */
468 spin_lock(lock: &cur_trans->dropped_roots_lock);
469 list_add_tail(new: &root->root_list, head: &cur_trans->dropped_roots);
470 spin_unlock(lock: &cur_trans->dropped_roots_lock);
471
472 /* Make sure we don't try to update the root at commit time */
473 spin_lock(lock: &fs_info->fs_roots_radix_lock);
474 radix_tree_tag_clear(&fs_info->fs_roots_radix,
475 index: (unsigned long)root->root_key.objectid,
476 BTRFS_ROOT_TRANS_TAG);
477 spin_unlock(lock: &fs_info->fs_roots_radix_lock);
478}
479
480int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
481 struct btrfs_root *root)
482{
483 struct btrfs_fs_info *fs_info = root->fs_info;
484 int ret;
485
486 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
487 return 0;
488
489 /*
490 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
491 * and barriers
492 */
493 smp_rmb();
494 if (root->last_trans == trans->transid &&
495 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
496 return 0;
497
498 mutex_lock(&fs_info->reloc_mutex);
499 ret = record_root_in_trans(trans, root, force: 0);
500 mutex_unlock(lock: &fs_info->reloc_mutex);
501
502 return ret;
503}
504
505static inline int is_transaction_blocked(struct btrfs_transaction *trans)
506{
507 return (trans->state >= TRANS_STATE_COMMIT_START &&
508 trans->state < TRANS_STATE_UNBLOCKED &&
509 !TRANS_ABORTED(trans));
510}
511
512/* wait for commit against the current transaction to become unblocked
513 * when this is done, it is safe to start a new transaction, but the current
514 * transaction might not be fully on disk.
515 */
516static void wait_current_trans(struct btrfs_fs_info *fs_info)
517{
518 struct btrfs_transaction *cur_trans;
519
520 spin_lock(lock: &fs_info->trans_lock);
521 cur_trans = fs_info->running_transaction;
522 if (cur_trans && is_transaction_blocked(trans: cur_trans)) {
523 refcount_inc(r: &cur_trans->use_count);
524 spin_unlock(lock: &fs_info->trans_lock);
525
526 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
527 wait_event(fs_info->transaction_wait,
528 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
529 TRANS_ABORTED(cur_trans));
530 btrfs_put_transaction(transaction: cur_trans);
531 } else {
532 spin_unlock(lock: &fs_info->trans_lock);
533 }
534}
535
536static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
537{
538 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
539 return 0;
540
541 if (type == TRANS_START)
542 return 1;
543
544 return 0;
545}
546
547static inline bool need_reserve_reloc_root(struct btrfs_root *root)
548{
549 struct btrfs_fs_info *fs_info = root->fs_info;
550
551 if (!fs_info->reloc_ctl ||
552 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
553 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
554 root->reloc_root)
555 return false;
556
557 return true;
558}
559
560static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
561 enum btrfs_reserve_flush_enum flush,
562 u64 num_bytes,
563 u64 *delayed_refs_bytes)
564{
565 struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
566 u64 bytes = num_bytes + *delayed_refs_bytes;
567 int ret;
568
569 /*
570 * We want to reserve all the bytes we may need all at once, so we only
571 * do 1 enospc flushing cycle per transaction start.
572 */
573 ret = btrfs_reserve_metadata_bytes(fs_info, space_info: si, orig_bytes: bytes, flush);
574
575 /*
576 * If we are an emergency flush, which can steal from the global block
577 * reserve, then attempt to not reserve space for the delayed refs, as
578 * we will consume space for them from the global block reserve.
579 */
580 if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
581 bytes -= *delayed_refs_bytes;
582 *delayed_refs_bytes = 0;
583 ret = btrfs_reserve_metadata_bytes(fs_info, space_info: si, orig_bytes: bytes, flush);
584 }
585
586 return ret;
587}
588
589static struct btrfs_trans_handle *
590start_transaction(struct btrfs_root *root, unsigned int num_items,
591 unsigned int type, enum btrfs_reserve_flush_enum flush,
592 bool enforce_qgroups)
593{
594 struct btrfs_fs_info *fs_info = root->fs_info;
595 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
596 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
597 struct btrfs_trans_handle *h;
598 struct btrfs_transaction *cur_trans;
599 u64 num_bytes = 0;
600 u64 qgroup_reserved = 0;
601 u64 delayed_refs_bytes = 0;
602 bool reloc_reserved = false;
603 bool do_chunk_alloc = false;
604 int ret;
605
606 if (BTRFS_FS_ERROR(fs_info))
607 return ERR_PTR(error: -EROFS);
608
609 if (current->journal_info) {
610 WARN_ON(type & TRANS_EXTWRITERS);
611 h = current->journal_info;
612 refcount_inc(r: &h->use_count);
613 WARN_ON(refcount_read(&h->use_count) > 2);
614 h->orig_rsv = h->block_rsv;
615 h->block_rsv = NULL;
616 goto got_it;
617 }
618
619 /*
620 * Do the reservation before we join the transaction so we can do all
621 * the appropriate flushing if need be.
622 */
623 if (num_items && root != fs_info->chunk_root) {
624 qgroup_reserved = num_items * fs_info->nodesize;
625 /*
626 * Use prealloc for now, as there might be a currently running
627 * transaction that could free this reserved space prematurely
628 * by committing.
629 */
630 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes: qgroup_reserved,
631 enforce: enforce_qgroups, noflush: false);
632 if (ret)
633 return ERR_PTR(error: ret);
634
635 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
636 /*
637 * If we plan to insert/update/delete "num_items" from a btree,
638 * we will also generate delayed refs for extent buffers in the
639 * respective btree paths, so reserve space for the delayed refs
640 * that will be generated by the caller as it modifies btrees.
641 * Try to reserve them to avoid excessive use of the global
642 * block reserve.
643 */
644 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_delayed_refs: num_items);
645
646 /*
647 * Do the reservation for the relocation root creation
648 */
649 if (need_reserve_reloc_root(root)) {
650 num_bytes += fs_info->nodesize;
651 reloc_reserved = true;
652 }
653
654 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
655 delayed_refs_bytes: &delayed_refs_bytes);
656 if (ret)
657 goto reserve_fail;
658
659 btrfs_block_rsv_add_bytes(block_rsv: trans_rsv, num_bytes, update_size: true);
660
661 if (trans_rsv->space_info->force_alloc)
662 do_chunk_alloc = true;
663 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
664 !btrfs_block_rsv_full(rsv: delayed_refs_rsv)) {
665 /*
666 * Some people call with btrfs_start_transaction(root, 0)
667 * because they can be throttled, but have some other mechanism
668 * for reserving space. We still want these guys to refill the
669 * delayed block_rsv so just add 1 items worth of reservation
670 * here.
671 */
672 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
673 if (ret)
674 goto reserve_fail;
675 }
676again:
677 h = kmem_cache_zalloc(k: btrfs_trans_handle_cachep, GFP_NOFS);
678 if (!h) {
679 ret = -ENOMEM;
680 goto alloc_fail;
681 }
682
683 /*
684 * If we are JOIN_NOLOCK we're already committing a transaction and
685 * waiting on this guy, so we don't need to do the sb_start_intwrite
686 * because we're already holding a ref. We need this because we could
687 * have raced in and did an fsync() on a file which can kick a commit
688 * and then we deadlock with somebody doing a freeze.
689 *
690 * If we are ATTACH, it means we just want to catch the current
691 * transaction and commit it, so we needn't do sb_start_intwrite().
692 */
693 if (type & __TRANS_FREEZABLE)
694 sb_start_intwrite(sb: fs_info->sb);
695
696 if (may_wait_transaction(fs_info, type))
697 wait_current_trans(fs_info);
698
699 do {
700 ret = join_transaction(fs_info, type);
701 if (ret == -EBUSY) {
702 wait_current_trans(fs_info);
703 if (unlikely(type == TRANS_ATTACH ||
704 type == TRANS_JOIN_NOSTART))
705 ret = -ENOENT;
706 }
707 } while (ret == -EBUSY);
708
709 if (ret < 0)
710 goto join_fail;
711
712 cur_trans = fs_info->running_transaction;
713
714 h->transid = cur_trans->transid;
715 h->transaction = cur_trans;
716 refcount_set(r: &h->use_count, n: 1);
717 h->fs_info = root->fs_info;
718
719 h->type = type;
720 INIT_LIST_HEAD(list: &h->new_bgs);
721 btrfs_init_metadata_block_rsv(fs_info, rsv: &h->delayed_rsv, type: BTRFS_BLOCK_RSV_DELOPS);
722
723 smp_mb();
724 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
725 may_wait_transaction(fs_info, type)) {
726 current->journal_info = h;
727 btrfs_commit_transaction(trans: h);
728 goto again;
729 }
730
731 if (num_bytes) {
732 trace_btrfs_space_reservation(fs_info, type: "transaction",
733 val: h->transid, bytes: num_bytes, reserve: 1);
734 h->block_rsv = trans_rsv;
735 h->bytes_reserved = num_bytes;
736 if (delayed_refs_bytes > 0) {
737 trace_btrfs_space_reservation(fs_info,
738 type: "local_delayed_refs_rsv",
739 val: h->transid,
740 bytes: delayed_refs_bytes, reserve: 1);
741 h->delayed_refs_bytes_reserved = delayed_refs_bytes;
742 btrfs_block_rsv_add_bytes(block_rsv: &h->delayed_rsv, num_bytes: delayed_refs_bytes, update_size: true);
743 delayed_refs_bytes = 0;
744 }
745 h->reloc_reserved = reloc_reserved;
746 }
747
748got_it:
749 if (!current->journal_info)
750 current->journal_info = h;
751
752 /*
753 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
754 * ALLOC_FORCE the first run through, and then we won't allocate for
755 * anybody else who races in later. We don't care about the return
756 * value here.
757 */
758 if (do_chunk_alloc && num_bytes) {
759 u64 flags = h->block_rsv->space_info->flags;
760
761 btrfs_chunk_alloc(trans: h, flags: btrfs_get_alloc_profile(fs_info, orig_flags: flags),
762 force: CHUNK_ALLOC_NO_FORCE);
763 }
764
765 /*
766 * btrfs_record_root_in_trans() needs to alloc new extents, and may
767 * call btrfs_join_transaction() while we're also starting a
768 * transaction.
769 *
770 * Thus it need to be called after current->journal_info initialized,
771 * or we can deadlock.
772 */
773 ret = btrfs_record_root_in_trans(trans: h, root);
774 if (ret) {
775 /*
776 * The transaction handle is fully initialized and linked with
777 * other structures so it needs to be ended in case of errors,
778 * not just freed.
779 */
780 btrfs_end_transaction(trans: h);
781 goto reserve_fail;
782 }
783 /*
784 * Now that we have found a transaction to be a part of, convert the
785 * qgroup reservation from prealloc to pertrans. A different transaction
786 * can't race in and free our pertrans out from under us.
787 */
788 if (qgroup_reserved)
789 btrfs_qgroup_convert_reserved_meta(root, num_bytes: qgroup_reserved);
790
791 return h;
792
793join_fail:
794 if (type & __TRANS_FREEZABLE)
795 sb_end_intwrite(sb: fs_info->sb);
796 kmem_cache_free(s: btrfs_trans_handle_cachep, objp: h);
797alloc_fail:
798 if (num_bytes)
799 btrfs_block_rsv_release(fs_info, block_rsv: trans_rsv, num_bytes, NULL);
800 if (delayed_refs_bytes)
801 btrfs_space_info_free_bytes_may_use(fs_info, space_info: trans_rsv->space_info,
802 num_bytes: delayed_refs_bytes);
803reserve_fail:
804 btrfs_qgroup_free_meta_prealloc(root, num_bytes: qgroup_reserved);
805 return ERR_PTR(error: ret);
806}
807
808struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
809 unsigned int num_items)
810{
811 return start_transaction(root, num_items, TRANS_START,
812 flush: BTRFS_RESERVE_FLUSH_ALL, enforce_qgroups: true);
813}
814
815struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
816 struct btrfs_root *root,
817 unsigned int num_items)
818{
819 return start_transaction(root, num_items, TRANS_START,
820 flush: BTRFS_RESERVE_FLUSH_ALL_STEAL, enforce_qgroups: false);
821}
822
823struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
824{
825 return start_transaction(root, num_items: 0, TRANS_JOIN, flush: BTRFS_RESERVE_NO_FLUSH,
826 enforce_qgroups: true);
827}
828
829struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
830{
831 return start_transaction(root, num_items: 0, TRANS_JOIN_NOLOCK,
832 flush: BTRFS_RESERVE_NO_FLUSH, enforce_qgroups: true);
833}
834
835/*
836 * Similar to regular join but it never starts a transaction when none is
837 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
838 * This is similar to btrfs_attach_transaction() but it allows the join to
839 * happen if the transaction commit already started but it's not yet in the
840 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
841 */
842struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
843{
844 return start_transaction(root, num_items: 0, TRANS_JOIN_NOSTART,
845 flush: BTRFS_RESERVE_NO_FLUSH, enforce_qgroups: true);
846}
847
848/*
849 * Catch the running transaction.
850 *
851 * It is used when we want to commit the current the transaction, but
852 * don't want to start a new one.
853 *
854 * Note: If this function return -ENOENT, it just means there is no
855 * running transaction. But it is possible that the inactive transaction
856 * is still in the memory, not fully on disk. If you hope there is no
857 * inactive transaction in the fs when -ENOENT is returned, you should
858 * invoke
859 * btrfs_attach_transaction_barrier()
860 */
861struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
862{
863 return start_transaction(root, num_items: 0, TRANS_ATTACH,
864 flush: BTRFS_RESERVE_NO_FLUSH, enforce_qgroups: true);
865}
866
867/*
868 * Catch the running transaction.
869 *
870 * It is similar to the above function, the difference is this one
871 * will wait for all the inactive transactions until they fully
872 * complete.
873 */
874struct btrfs_trans_handle *
875btrfs_attach_transaction_barrier(struct btrfs_root *root)
876{
877 struct btrfs_trans_handle *trans;
878
879 trans = start_transaction(root, num_items: 0, TRANS_ATTACH,
880 flush: BTRFS_RESERVE_NO_FLUSH, enforce_qgroups: true);
881 if (trans == ERR_PTR(error: -ENOENT)) {
882 int ret;
883
884 ret = btrfs_wait_for_commit(fs_info: root->fs_info, transid: 0);
885 if (ret)
886 return ERR_PTR(error: ret);
887 }
888
889 return trans;
890}
891
892/* Wait for a transaction commit to reach at least the given state. */
893static noinline void wait_for_commit(struct btrfs_transaction *commit,
894 const enum btrfs_trans_state min_state)
895{
896 struct btrfs_fs_info *fs_info = commit->fs_info;
897 u64 transid = commit->transid;
898 bool put = false;
899
900 /*
901 * At the moment this function is called with min_state either being
902 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
903 */
904 if (min_state == TRANS_STATE_COMPLETED)
905 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
906 else
907 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
908
909 while (1) {
910 wait_event(commit->commit_wait, commit->state >= min_state);
911 if (put)
912 btrfs_put_transaction(transaction: commit);
913
914 if (min_state < TRANS_STATE_COMPLETED)
915 break;
916
917 /*
918 * A transaction isn't really completed until all of the
919 * previous transactions are completed, but with fsync we can
920 * end up with SUPER_COMMITTED transactions before a COMPLETED
921 * transaction. Wait for those.
922 */
923
924 spin_lock(lock: &fs_info->trans_lock);
925 commit = list_first_entry_or_null(&fs_info->trans_list,
926 struct btrfs_transaction,
927 list);
928 if (!commit || commit->transid > transid) {
929 spin_unlock(lock: &fs_info->trans_lock);
930 break;
931 }
932 refcount_inc(r: &commit->use_count);
933 put = true;
934 spin_unlock(lock: &fs_info->trans_lock);
935 }
936}
937
938int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
939{
940 struct btrfs_transaction *cur_trans = NULL, *t;
941 int ret = 0;
942
943 if (transid) {
944 if (transid <= btrfs_get_last_trans_committed(fs_info))
945 goto out;
946
947 /* find specified transaction */
948 spin_lock(lock: &fs_info->trans_lock);
949 list_for_each_entry(t, &fs_info->trans_list, list) {
950 if (t->transid == transid) {
951 cur_trans = t;
952 refcount_inc(r: &cur_trans->use_count);
953 ret = 0;
954 break;
955 }
956 if (t->transid > transid) {
957 ret = 0;
958 break;
959 }
960 }
961 spin_unlock(lock: &fs_info->trans_lock);
962
963 /*
964 * The specified transaction doesn't exist, or we
965 * raced with btrfs_commit_transaction
966 */
967 if (!cur_trans) {
968 if (transid > btrfs_get_last_trans_committed(fs_info))
969 ret = -EINVAL;
970 goto out;
971 }
972 } else {
973 /* find newest transaction that is committing | committed */
974 spin_lock(lock: &fs_info->trans_lock);
975 list_for_each_entry_reverse(t, &fs_info->trans_list,
976 list) {
977 if (t->state >= TRANS_STATE_COMMIT_START) {
978 if (t->state == TRANS_STATE_COMPLETED)
979 break;
980 cur_trans = t;
981 refcount_inc(r: &cur_trans->use_count);
982 break;
983 }
984 }
985 spin_unlock(lock: &fs_info->trans_lock);
986 if (!cur_trans)
987 goto out; /* nothing committing|committed */
988 }
989
990 wait_for_commit(commit: cur_trans, min_state: TRANS_STATE_COMPLETED);
991 ret = cur_trans->aborted;
992 btrfs_put_transaction(transaction: cur_trans);
993out:
994 return ret;
995}
996
997void btrfs_throttle(struct btrfs_fs_info *fs_info)
998{
999 wait_current_trans(fs_info);
1000}
1001
1002bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
1003{
1004 struct btrfs_transaction *cur_trans = trans->transaction;
1005
1006 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
1007 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
1008 return true;
1009
1010 if (btrfs_check_space_for_delayed_refs(fs_info: trans->fs_info))
1011 return true;
1012
1013 return !!btrfs_block_rsv_check(block_rsv: &trans->fs_info->global_block_rsv, min_percent: 50);
1014}
1015
1016static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1017
1018{
1019 struct btrfs_fs_info *fs_info = trans->fs_info;
1020
1021 if (!trans->block_rsv) {
1022 ASSERT(!trans->bytes_reserved);
1023 ASSERT(!trans->delayed_refs_bytes_reserved);
1024 return;
1025 }
1026
1027 if (!trans->bytes_reserved) {
1028 ASSERT(!trans->delayed_refs_bytes_reserved);
1029 return;
1030 }
1031
1032 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1033 trace_btrfs_space_reservation(fs_info, type: "transaction",
1034 val: trans->transid, bytes: trans->bytes_reserved, reserve: 0);
1035 btrfs_block_rsv_release(fs_info, block_rsv: trans->block_rsv,
1036 num_bytes: trans->bytes_reserved, NULL);
1037 trans->bytes_reserved = 0;
1038
1039 if (!trans->delayed_refs_bytes_reserved)
1040 return;
1041
1042 trace_btrfs_space_reservation(fs_info, type: "local_delayed_refs_rsv",
1043 val: trans->transid,
1044 bytes: trans->delayed_refs_bytes_reserved, reserve: 0);
1045 btrfs_block_rsv_release(fs_info, block_rsv: &trans->delayed_rsv,
1046 num_bytes: trans->delayed_refs_bytes_reserved, NULL);
1047 trans->delayed_refs_bytes_reserved = 0;
1048}
1049
1050static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1051 int throttle)
1052{
1053 struct btrfs_fs_info *info = trans->fs_info;
1054 struct btrfs_transaction *cur_trans = trans->transaction;
1055 int err = 0;
1056
1057 if (refcount_read(r: &trans->use_count) > 1) {
1058 refcount_dec(r: &trans->use_count);
1059 trans->block_rsv = trans->orig_rsv;
1060 return 0;
1061 }
1062
1063 btrfs_trans_release_metadata(trans);
1064 trans->block_rsv = NULL;
1065
1066 btrfs_create_pending_block_groups(trans);
1067
1068 btrfs_trans_release_chunk_metadata(trans);
1069
1070 if (trans->type & __TRANS_FREEZABLE)
1071 sb_end_intwrite(sb: info->sb);
1072
1073 WARN_ON(cur_trans != info->running_transaction);
1074 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1075 atomic_dec(v: &cur_trans->num_writers);
1076 extwriter_counter_dec(trans: cur_trans, type: trans->type);
1077
1078 cond_wake_up(wq: &cur_trans->writer_wait);
1079
1080 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1081 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1082
1083 btrfs_put_transaction(transaction: cur_trans);
1084
1085 if (current->journal_info == trans)
1086 current->journal_info = NULL;
1087
1088 if (throttle)
1089 btrfs_run_delayed_iputs(fs_info: info);
1090
1091 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1092 wake_up_process(tsk: info->transaction_kthread);
1093 if (TRANS_ABORTED(trans))
1094 err = trans->aborted;
1095 else
1096 err = -EROFS;
1097 }
1098
1099 kmem_cache_free(s: btrfs_trans_handle_cachep, objp: trans);
1100 return err;
1101}
1102
1103int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1104{
1105 return __btrfs_end_transaction(trans, throttle: 0);
1106}
1107
1108int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1109{
1110 return __btrfs_end_transaction(trans, throttle: 1);
1111}
1112
1113/*
1114 * when btree blocks are allocated, they have some corresponding bits set for
1115 * them in one of two extent_io trees. This is used to make sure all of
1116 * those extents are sent to disk but does not wait on them
1117 */
1118int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1119 struct extent_io_tree *dirty_pages, int mark)
1120{
1121 int err = 0;
1122 int werr = 0;
1123 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1124 struct extent_state *cached_state = NULL;
1125 u64 start = 0;
1126 u64 end;
1127
1128 while (find_first_extent_bit(tree: dirty_pages, start, start_ret: &start, end_ret: &end,
1129 bits: mark, cached_state: &cached_state)) {
1130 bool wait_writeback = false;
1131
1132 err = convert_extent_bit(tree: dirty_pages, start, end,
1133 bits: EXTENT_NEED_WAIT,
1134 clear_bits: mark, cached_state: &cached_state);
1135 /*
1136 * convert_extent_bit can return -ENOMEM, which is most of the
1137 * time a temporary error. So when it happens, ignore the error
1138 * and wait for writeback of this range to finish - because we
1139 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1140 * to __btrfs_wait_marked_extents() would not know that
1141 * writeback for this range started and therefore wouldn't
1142 * wait for it to finish - we don't want to commit a
1143 * superblock that points to btree nodes/leafs for which
1144 * writeback hasn't finished yet (and without errors).
1145 * We cleanup any entries left in the io tree when committing
1146 * the transaction (through extent_io_tree_release()).
1147 */
1148 if (err == -ENOMEM) {
1149 err = 0;
1150 wait_writeback = true;
1151 }
1152 if (!err)
1153 err = filemap_fdatawrite_range(mapping, start, end);
1154 if (err)
1155 werr = err;
1156 else if (wait_writeback)
1157 werr = filemap_fdatawait_range(mapping, lstart: start, lend: end);
1158 free_extent_state(state: cached_state);
1159 cached_state = NULL;
1160 cond_resched();
1161 start = end + 1;
1162 }
1163 return werr;
1164}
1165
1166/*
1167 * when btree blocks are allocated, they have some corresponding bits set for
1168 * them in one of two extent_io trees. This is used to make sure all of
1169 * those extents are on disk for transaction or log commit. We wait
1170 * on all the pages and clear them from the dirty pages state tree
1171 */
1172static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1173 struct extent_io_tree *dirty_pages)
1174{
1175 int err = 0;
1176 int werr = 0;
1177 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1178 struct extent_state *cached_state = NULL;
1179 u64 start = 0;
1180 u64 end;
1181
1182 while (find_first_extent_bit(tree: dirty_pages, start, start_ret: &start, end_ret: &end,
1183 bits: EXTENT_NEED_WAIT, cached_state: &cached_state)) {
1184 /*
1185 * Ignore -ENOMEM errors returned by clear_extent_bit().
1186 * When committing the transaction, we'll remove any entries
1187 * left in the io tree. For a log commit, we don't remove them
1188 * after committing the log because the tree can be accessed
1189 * concurrently - we do it only at transaction commit time when
1190 * it's safe to do it (through extent_io_tree_release()).
1191 */
1192 err = clear_extent_bit(tree: dirty_pages, start, end,
1193 bits: EXTENT_NEED_WAIT, cached: &cached_state);
1194 if (err == -ENOMEM)
1195 err = 0;
1196 if (!err)
1197 err = filemap_fdatawait_range(mapping, lstart: start, lend: end);
1198 if (err)
1199 werr = err;
1200 free_extent_state(state: cached_state);
1201 cached_state = NULL;
1202 cond_resched();
1203 start = end + 1;
1204 }
1205 if (err)
1206 werr = err;
1207 return werr;
1208}
1209
1210static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1211 struct extent_io_tree *dirty_pages)
1212{
1213 bool errors = false;
1214 int err;
1215
1216 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1217 if (test_and_clear_bit(nr: BTRFS_FS_BTREE_ERR, addr: &fs_info->flags))
1218 errors = true;
1219
1220 if (errors && !err)
1221 err = -EIO;
1222 return err;
1223}
1224
1225int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1226{
1227 struct btrfs_fs_info *fs_info = log_root->fs_info;
1228 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1229 bool errors = false;
1230 int err;
1231
1232 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1233
1234 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1235 if ((mark & EXTENT_DIRTY) &&
1236 test_and_clear_bit(nr: BTRFS_FS_LOG1_ERR, addr: &fs_info->flags))
1237 errors = true;
1238
1239 if ((mark & EXTENT_NEW) &&
1240 test_and_clear_bit(nr: BTRFS_FS_LOG2_ERR, addr: &fs_info->flags))
1241 errors = true;
1242
1243 if (errors && !err)
1244 err = -EIO;
1245 return err;
1246}
1247
1248/*
1249 * When btree blocks are allocated the corresponding extents are marked dirty.
1250 * This function ensures such extents are persisted on disk for transaction or
1251 * log commit.
1252 *
1253 * @trans: transaction whose dirty pages we'd like to write
1254 */
1255static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1256{
1257 int ret;
1258 int ret2;
1259 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1260 struct btrfs_fs_info *fs_info = trans->fs_info;
1261 struct blk_plug plug;
1262
1263 blk_start_plug(&plug);
1264 ret = btrfs_write_marked_extents(fs_info, dirty_pages, mark: EXTENT_DIRTY);
1265 blk_finish_plug(&plug);
1266 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1267
1268 extent_io_tree_release(tree: &trans->transaction->dirty_pages);
1269
1270 if (ret)
1271 return ret;
1272 else if (ret2)
1273 return ret2;
1274 else
1275 return 0;
1276}
1277
1278/*
1279 * this is used to update the root pointer in the tree of tree roots.
1280 *
1281 * But, in the case of the extent allocation tree, updating the root
1282 * pointer may allocate blocks which may change the root of the extent
1283 * allocation tree.
1284 *
1285 * So, this loops and repeats and makes sure the cowonly root didn't
1286 * change while the root pointer was being updated in the metadata.
1287 */
1288static int update_cowonly_root(struct btrfs_trans_handle *trans,
1289 struct btrfs_root *root)
1290{
1291 int ret;
1292 u64 old_root_bytenr;
1293 u64 old_root_used;
1294 struct btrfs_fs_info *fs_info = root->fs_info;
1295 struct btrfs_root *tree_root = fs_info->tree_root;
1296
1297 old_root_used = btrfs_root_used(s: &root->root_item);
1298
1299 while (1) {
1300 old_root_bytenr = btrfs_root_bytenr(s: &root->root_item);
1301 if (old_root_bytenr == root->node->start &&
1302 old_root_used == btrfs_root_used(s: &root->root_item))
1303 break;
1304
1305 btrfs_set_root_node(item: &root->root_item, node: root->node);
1306 ret = btrfs_update_root(trans, root: tree_root,
1307 key: &root->root_key,
1308 item: &root->root_item);
1309 if (ret)
1310 return ret;
1311
1312 old_root_used = btrfs_root_used(s: &root->root_item);
1313 }
1314
1315 return 0;
1316}
1317
1318/*
1319 * update all the cowonly tree roots on disk
1320 *
1321 * The error handling in this function may not be obvious. Any of the
1322 * failures will cause the file system to go offline. We still need
1323 * to clean up the delayed refs.
1324 */
1325static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1326{
1327 struct btrfs_fs_info *fs_info = trans->fs_info;
1328 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1329 struct list_head *io_bgs = &trans->transaction->io_bgs;
1330 struct list_head *next;
1331 struct extent_buffer *eb;
1332 int ret;
1333
1334 /*
1335 * At this point no one can be using this transaction to modify any tree
1336 * and no one can start another transaction to modify any tree either.
1337 */
1338 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1339
1340 eb = btrfs_lock_root_node(root: fs_info->tree_root);
1341 ret = btrfs_cow_block(trans, root: fs_info->tree_root, buf: eb, NULL,
1342 parent_slot: 0, cow_ret: &eb, nest: BTRFS_NESTING_COW);
1343 btrfs_tree_unlock(eb);
1344 free_extent_buffer(eb);
1345
1346 if (ret)
1347 return ret;
1348
1349 ret = btrfs_run_dev_stats(trans);
1350 if (ret)
1351 return ret;
1352 ret = btrfs_run_dev_replace(trans);
1353 if (ret)
1354 return ret;
1355 ret = btrfs_run_qgroups(trans);
1356 if (ret)
1357 return ret;
1358
1359 ret = btrfs_setup_space_cache(trans);
1360 if (ret)
1361 return ret;
1362
1363again:
1364 while (!list_empty(head: &fs_info->dirty_cowonly_roots)) {
1365 struct btrfs_root *root;
1366 next = fs_info->dirty_cowonly_roots.next;
1367 list_del_init(entry: next);
1368 root = list_entry(next, struct btrfs_root, dirty_list);
1369 clear_bit(nr: BTRFS_ROOT_DIRTY, addr: &root->state);
1370
1371 list_add_tail(new: &root->dirty_list,
1372 head: &trans->transaction->switch_commits);
1373 ret = update_cowonly_root(trans, root);
1374 if (ret)
1375 return ret;
1376 }
1377
1378 /* Now flush any delayed refs generated by updating all of the roots */
1379 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1380 if (ret)
1381 return ret;
1382
1383 while (!list_empty(head: dirty_bgs) || !list_empty(head: io_bgs)) {
1384 ret = btrfs_write_dirty_block_groups(trans);
1385 if (ret)
1386 return ret;
1387
1388 /*
1389 * We're writing the dirty block groups, which could generate
1390 * delayed refs, which could generate more dirty block groups,
1391 * so we want to keep this flushing in this loop to make sure
1392 * everything gets run.
1393 */
1394 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1395 if (ret)
1396 return ret;
1397 }
1398
1399 if (!list_empty(head: &fs_info->dirty_cowonly_roots))
1400 goto again;
1401
1402 /* Update dev-replace pointer once everything is committed */
1403 fs_info->dev_replace.committed_cursor_left =
1404 fs_info->dev_replace.cursor_left_last_write_of_item;
1405
1406 return 0;
1407}
1408
1409/*
1410 * If we had a pending drop we need to see if there are any others left in our
1411 * dead roots list, and if not clear our bit and wake any waiters.
1412 */
1413void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1414{
1415 /*
1416 * We put the drop in progress roots at the front of the list, so if the
1417 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1418 * up.
1419 */
1420 spin_lock(lock: &fs_info->trans_lock);
1421 if (!list_empty(head: &fs_info->dead_roots)) {
1422 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1423 struct btrfs_root,
1424 root_list);
1425 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1426 spin_unlock(lock: &fs_info->trans_lock);
1427 return;
1428 }
1429 }
1430 spin_unlock(lock: &fs_info->trans_lock);
1431
1432 btrfs_wake_unfinished_drop(fs_info);
1433}
1434
1435/*
1436 * dead roots are old snapshots that need to be deleted. This allocates
1437 * a dirty root struct and adds it into the list of dead roots that need to
1438 * be deleted
1439 */
1440void btrfs_add_dead_root(struct btrfs_root *root)
1441{
1442 struct btrfs_fs_info *fs_info = root->fs_info;
1443
1444 spin_lock(lock: &fs_info->trans_lock);
1445 if (list_empty(head: &root->root_list)) {
1446 btrfs_grab_root(root);
1447
1448 /* We want to process the partially complete drops first. */
1449 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1450 list_add(new: &root->root_list, head: &fs_info->dead_roots);
1451 else
1452 list_add_tail(new: &root->root_list, head: &fs_info->dead_roots);
1453 }
1454 spin_unlock(lock: &fs_info->trans_lock);
1455}
1456
1457/*
1458 * Update each subvolume root and its relocation root, if it exists, in the tree
1459 * of tree roots. Also free log roots if they exist.
1460 */
1461static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1462{
1463 struct btrfs_fs_info *fs_info = trans->fs_info;
1464 struct btrfs_root *gang[8];
1465 int i;
1466 int ret;
1467
1468 /*
1469 * At this point no one can be using this transaction to modify any tree
1470 * and no one can start another transaction to modify any tree either.
1471 */
1472 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1473
1474 spin_lock(lock: &fs_info->fs_roots_radix_lock);
1475 while (1) {
1476 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1477 results: (void **)gang, first_index: 0,
1478 ARRAY_SIZE(gang),
1479 BTRFS_ROOT_TRANS_TAG);
1480 if (ret == 0)
1481 break;
1482 for (i = 0; i < ret; i++) {
1483 struct btrfs_root *root = gang[i];
1484 int ret2;
1485
1486 /*
1487 * At this point we can neither have tasks logging inodes
1488 * from a root nor trying to commit a log tree.
1489 */
1490 ASSERT(atomic_read(&root->log_writers) == 0);
1491 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1492 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1493
1494 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1495 index: (unsigned long)root->root_key.objectid,
1496 BTRFS_ROOT_TRANS_TAG);
1497 btrfs_qgroup_free_meta_all_pertrans(root);
1498 spin_unlock(lock: &fs_info->fs_roots_radix_lock);
1499
1500 btrfs_free_log(trans, root);
1501 ret2 = btrfs_update_reloc_root(trans, root);
1502 if (ret2)
1503 return ret2;
1504
1505 /* see comments in should_cow_block() */
1506 clear_bit(nr: BTRFS_ROOT_FORCE_COW, addr: &root->state);
1507 smp_mb__after_atomic();
1508
1509 if (root->commit_root != root->node) {
1510 list_add_tail(new: &root->dirty_list,
1511 head: &trans->transaction->switch_commits);
1512 btrfs_set_root_node(item: &root->root_item,
1513 node: root->node);
1514 }
1515
1516 ret2 = btrfs_update_root(trans, root: fs_info->tree_root,
1517 key: &root->root_key,
1518 item: &root->root_item);
1519 if (ret2)
1520 return ret2;
1521 spin_lock(lock: &fs_info->fs_roots_radix_lock);
1522 }
1523 }
1524 spin_unlock(lock: &fs_info->fs_roots_radix_lock);
1525 return 0;
1526}
1527
1528/*
1529 * Do all special snapshot related qgroup dirty hack.
1530 *
1531 * Will do all needed qgroup inherit and dirty hack like switch commit
1532 * roots inside one transaction and write all btree into disk, to make
1533 * qgroup works.
1534 */
1535static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1536 struct btrfs_root *src,
1537 struct btrfs_root *parent,
1538 struct btrfs_qgroup_inherit *inherit,
1539 u64 dst_objectid)
1540{
1541 struct btrfs_fs_info *fs_info = src->fs_info;
1542 int ret;
1543
1544 /*
1545 * Save some performance in the case that qgroups are not enabled. If
1546 * this check races with the ioctl, rescan will kick in anyway.
1547 */
1548 if (!btrfs_qgroup_full_accounting(fs_info))
1549 return 0;
1550
1551 /*
1552 * Ensure dirty @src will be committed. Or, after coming
1553 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1554 * recorded root will never be updated again, causing an outdated root
1555 * item.
1556 */
1557 ret = record_root_in_trans(trans, root: src, force: 1);
1558 if (ret)
1559 return ret;
1560
1561 /*
1562 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1563 * src root, so we must run the delayed refs here.
1564 *
1565 * However this isn't particularly fool proof, because there's no
1566 * synchronization keeping us from changing the tree after this point
1567 * before we do the qgroup_inherit, or even from making changes while
1568 * we're doing the qgroup_inherit. But that's a problem for the future,
1569 * for now flush the delayed refs to narrow the race window where the
1570 * qgroup counters could end up wrong.
1571 */
1572 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1573 if (ret) {
1574 btrfs_abort_transaction(trans, ret);
1575 return ret;
1576 }
1577
1578 ret = commit_fs_roots(trans);
1579 if (ret)
1580 goto out;
1581 ret = btrfs_qgroup_account_extents(trans);
1582 if (ret < 0)
1583 goto out;
1584
1585 /* Now qgroup are all updated, we can inherit it to new qgroups */
1586 ret = btrfs_qgroup_inherit(trans, srcid: src->root_key.objectid, objectid: dst_objectid,
1587 inode_rootid: parent->root_key.objectid, inherit);
1588 if (ret < 0)
1589 goto out;
1590
1591 /*
1592 * Now we do a simplified commit transaction, which will:
1593 * 1) commit all subvolume and extent tree
1594 * To ensure all subvolume and extent tree have a valid
1595 * commit_root to accounting later insert_dir_item()
1596 * 2) write all btree blocks onto disk
1597 * This is to make sure later btree modification will be cowed
1598 * Or commit_root can be populated and cause wrong qgroup numbers
1599 * In this simplified commit, we don't really care about other trees
1600 * like chunk and root tree, as they won't affect qgroup.
1601 * And we don't write super to avoid half committed status.
1602 */
1603 ret = commit_cowonly_roots(trans);
1604 if (ret)
1605 goto out;
1606 switch_commit_roots(trans);
1607 ret = btrfs_write_and_wait_transaction(trans);
1608 if (ret)
1609 btrfs_handle_fs_error(fs_info, ret,
1610 "Error while writing out transaction for qgroup");
1611
1612out:
1613 /*
1614 * Force parent root to be updated, as we recorded it before so its
1615 * last_trans == cur_transid.
1616 * Or it won't be committed again onto disk after later
1617 * insert_dir_item()
1618 */
1619 if (!ret)
1620 ret = record_root_in_trans(trans, root: parent, force: 1);
1621 return ret;
1622}
1623
1624/*
1625 * new snapshots need to be created at a very specific time in the
1626 * transaction commit. This does the actual creation.
1627 *
1628 * Note:
1629 * If the error which may affect the commitment of the current transaction
1630 * happens, we should return the error number. If the error which just affect
1631 * the creation of the pending snapshots, just return 0.
1632 */
1633static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1634 struct btrfs_pending_snapshot *pending)
1635{
1636
1637 struct btrfs_fs_info *fs_info = trans->fs_info;
1638 struct btrfs_key key;
1639 struct btrfs_root_item *new_root_item;
1640 struct btrfs_root *tree_root = fs_info->tree_root;
1641 struct btrfs_root *root = pending->root;
1642 struct btrfs_root *parent_root;
1643 struct btrfs_block_rsv *rsv;
1644 struct inode *parent_inode = pending->dir;
1645 struct btrfs_path *path;
1646 struct btrfs_dir_item *dir_item;
1647 struct extent_buffer *tmp;
1648 struct extent_buffer *old;
1649 struct timespec64 cur_time;
1650 int ret = 0;
1651 u64 to_reserve = 0;
1652 u64 index = 0;
1653 u64 objectid;
1654 u64 root_flags;
1655 unsigned int nofs_flags;
1656 struct fscrypt_name fname;
1657
1658 ASSERT(pending->path);
1659 path = pending->path;
1660
1661 ASSERT(pending->root_item);
1662 new_root_item = pending->root_item;
1663
1664 /*
1665 * We're inside a transaction and must make sure that any potential
1666 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1667 * filesystem.
1668 */
1669 nofs_flags = memalloc_nofs_save();
1670 pending->error = fscrypt_setup_filename(inode: parent_inode,
1671 iname: &pending->dentry->d_name, lookup: 0,
1672 fname: &fname);
1673 memalloc_nofs_restore(flags: nofs_flags);
1674 if (pending->error)
1675 goto free_pending;
1676
1677 pending->error = btrfs_get_free_objectid(root: tree_root, objectid: &objectid);
1678 if (pending->error)
1679 goto free_fname;
1680
1681 /*
1682 * Make qgroup to skip current new snapshot's qgroupid, as it is
1683 * accounted by later btrfs_qgroup_inherit().
1684 */
1685 btrfs_set_skip_qgroup(trans, qgroupid: objectid);
1686
1687 btrfs_reloc_pre_snapshot(pending, bytes_to_reserve: &to_reserve);
1688
1689 if (to_reserve > 0) {
1690 pending->error = btrfs_block_rsv_add(fs_info,
1691 block_rsv: &pending->block_rsv,
1692 num_bytes: to_reserve,
1693 flush: BTRFS_RESERVE_NO_FLUSH);
1694 if (pending->error)
1695 goto clear_skip_qgroup;
1696 }
1697
1698 key.objectid = objectid;
1699 key.offset = (u64)-1;
1700 key.type = BTRFS_ROOT_ITEM_KEY;
1701
1702 rsv = trans->block_rsv;
1703 trans->block_rsv = &pending->block_rsv;
1704 trans->bytes_reserved = trans->block_rsv->reserved;
1705 trace_btrfs_space_reservation(fs_info, type: "transaction",
1706 val: trans->transid,
1707 bytes: trans->bytes_reserved, reserve: 1);
1708 parent_root = BTRFS_I(inode: parent_inode)->root;
1709 ret = record_root_in_trans(trans, root: parent_root, force: 0);
1710 if (ret)
1711 goto fail;
1712 cur_time = current_time(inode: parent_inode);
1713
1714 /*
1715 * insert the directory item
1716 */
1717 ret = btrfs_set_inode_index(dir: BTRFS_I(inode: parent_inode), index: &index);
1718 if (ret) {
1719 btrfs_abort_transaction(trans, ret);
1720 goto fail;
1721 }
1722
1723 /* check if there is a file/dir which has the same name. */
1724 dir_item = btrfs_lookup_dir_item(NULL, root: parent_root, path,
1725 dir: btrfs_ino(inode: BTRFS_I(inode: parent_inode)),
1726 name: &fname.disk_name, mod: 0);
1727 if (dir_item != NULL && !IS_ERR(ptr: dir_item)) {
1728 pending->error = -EEXIST;
1729 goto dir_item_existed;
1730 } else if (IS_ERR(ptr: dir_item)) {
1731 ret = PTR_ERR(ptr: dir_item);
1732 btrfs_abort_transaction(trans, ret);
1733 goto fail;
1734 }
1735 btrfs_release_path(p: path);
1736
1737 ret = btrfs_create_qgroup(trans, qgroupid: objectid);
1738 if (ret && ret != -EEXIST) {
1739 btrfs_abort_transaction(trans, ret);
1740 goto fail;
1741 }
1742
1743 /*
1744 * pull in the delayed directory update
1745 * and the delayed inode item
1746 * otherwise we corrupt the FS during
1747 * snapshot
1748 */
1749 ret = btrfs_run_delayed_items(trans);
1750 if (ret) { /* Transaction aborted */
1751 btrfs_abort_transaction(trans, ret);
1752 goto fail;
1753 }
1754
1755 ret = record_root_in_trans(trans, root, force: 0);
1756 if (ret) {
1757 btrfs_abort_transaction(trans, ret);
1758 goto fail;
1759 }
1760 btrfs_set_root_last_snapshot(s: &root->root_item, val: trans->transid);
1761 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1762 btrfs_check_and_init_root_item(item: new_root_item);
1763
1764 root_flags = btrfs_root_flags(s: new_root_item);
1765 if (pending->readonly)
1766 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1767 else
1768 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1769 btrfs_set_root_flags(s: new_root_item, val: root_flags);
1770
1771 btrfs_set_root_generation_v2(s: new_root_item,
1772 val: trans->transid);
1773 generate_random_guid(guid: new_root_item->uuid);
1774 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1775 BTRFS_UUID_SIZE);
1776 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1777 memset(new_root_item->received_uuid, 0,
1778 sizeof(new_root_item->received_uuid));
1779 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1780 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1781 btrfs_set_root_stransid(s: new_root_item, val: 0);
1782 btrfs_set_root_rtransid(s: new_root_item, val: 0);
1783 }
1784 btrfs_set_stack_timespec_sec(s: &new_root_item->otime, val: cur_time.tv_sec);
1785 btrfs_set_stack_timespec_nsec(s: &new_root_item->otime, val: cur_time.tv_nsec);
1786 btrfs_set_root_otransid(s: new_root_item, val: trans->transid);
1787
1788 old = btrfs_lock_root_node(root);
1789 ret = btrfs_cow_block(trans, root, buf: old, NULL, parent_slot: 0, cow_ret: &old,
1790 nest: BTRFS_NESTING_COW);
1791 if (ret) {
1792 btrfs_tree_unlock(eb: old);
1793 free_extent_buffer(eb: old);
1794 btrfs_abort_transaction(trans, ret);
1795 goto fail;
1796 }
1797
1798 ret = btrfs_copy_root(trans, root, buf: old, cow_ret: &tmp, new_root_objectid: objectid);
1799 /* clean up in any case */
1800 btrfs_tree_unlock(eb: old);
1801 free_extent_buffer(eb: old);
1802 if (ret) {
1803 btrfs_abort_transaction(trans, ret);
1804 goto fail;
1805 }
1806 /* see comments in should_cow_block() */
1807 set_bit(nr: BTRFS_ROOT_FORCE_COW, addr: &root->state);
1808 smp_wmb();
1809
1810 btrfs_set_root_node(item: new_root_item, node: tmp);
1811 /* record when the snapshot was created in key.offset */
1812 key.offset = trans->transid;
1813 ret = btrfs_insert_root(trans, root: tree_root, key: &key, item: new_root_item);
1814 btrfs_tree_unlock(eb: tmp);
1815 free_extent_buffer(eb: tmp);
1816 if (ret) {
1817 btrfs_abort_transaction(trans, ret);
1818 goto fail;
1819 }
1820
1821 /*
1822 * insert root back/forward references
1823 */
1824 ret = btrfs_add_root_ref(trans, root_id: objectid,
1825 ref_id: parent_root->root_key.objectid,
1826 dirid: btrfs_ino(inode: BTRFS_I(inode: parent_inode)), sequence: index,
1827 name: &fname.disk_name);
1828 if (ret) {
1829 btrfs_abort_transaction(trans, ret);
1830 goto fail;
1831 }
1832
1833 key.offset = (u64)-1;
1834 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, anon_dev: &pending->anon_dev);
1835 if (IS_ERR(ptr: pending->snap)) {
1836 ret = PTR_ERR(ptr: pending->snap);
1837 pending->snap = NULL;
1838 btrfs_abort_transaction(trans, ret);
1839 goto fail;
1840 }
1841
1842 ret = btrfs_reloc_post_snapshot(trans, pending);
1843 if (ret) {
1844 btrfs_abort_transaction(trans, ret);
1845 goto fail;
1846 }
1847
1848 /*
1849 * Do special qgroup accounting for snapshot, as we do some qgroup
1850 * snapshot hack to do fast snapshot.
1851 * To co-operate with that hack, we do hack again.
1852 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1853 */
1854 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1855 ret = qgroup_account_snapshot(trans, src: root, parent: parent_root,
1856 inherit: pending->inherit, dst_objectid: objectid);
1857 else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1858 ret = btrfs_qgroup_inherit(trans, srcid: root->root_key.objectid, objectid,
1859 inode_rootid: parent_root->root_key.objectid, inherit: pending->inherit);
1860 if (ret < 0)
1861 goto fail;
1862
1863 ret = btrfs_insert_dir_item(trans, name: &fname.disk_name,
1864 dir: BTRFS_I(inode: parent_inode), location: &key, BTRFS_FT_DIR,
1865 index);
1866 /* We have check then name at the beginning, so it is impossible. */
1867 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1868 if (ret) {
1869 btrfs_abort_transaction(trans, ret);
1870 goto fail;
1871 }
1872
1873 btrfs_i_size_write(inode: BTRFS_I(inode: parent_inode), size: parent_inode->i_size +
1874 fname.disk_name.len * 2);
1875 inode_set_mtime_to_ts(inode: parent_inode,
1876 ts: inode_set_ctime_current(inode: parent_inode));
1877 ret = btrfs_update_inode_fallback(trans, inode: BTRFS_I(inode: parent_inode));
1878 if (ret) {
1879 btrfs_abort_transaction(trans, ret);
1880 goto fail;
1881 }
1882 ret = btrfs_uuid_tree_add(trans, uuid: new_root_item->uuid,
1883 BTRFS_UUID_KEY_SUBVOL,
1884 subid: objectid);
1885 if (ret) {
1886 btrfs_abort_transaction(trans, ret);
1887 goto fail;
1888 }
1889 if (!btrfs_is_empty_uuid(uuid: new_root_item->received_uuid)) {
1890 ret = btrfs_uuid_tree_add(trans, uuid: new_root_item->received_uuid,
1891 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1892 subid: objectid);
1893 if (ret && ret != -EEXIST) {
1894 btrfs_abort_transaction(trans, ret);
1895 goto fail;
1896 }
1897 }
1898
1899fail:
1900 pending->error = ret;
1901dir_item_existed:
1902 trans->block_rsv = rsv;
1903 trans->bytes_reserved = 0;
1904clear_skip_qgroup:
1905 btrfs_clear_skip_qgroup(trans);
1906free_fname:
1907 fscrypt_free_filename(fname: &fname);
1908free_pending:
1909 kfree(objp: new_root_item);
1910 pending->root_item = NULL;
1911 btrfs_free_path(p: path);
1912 pending->path = NULL;
1913
1914 return ret;
1915}
1916
1917/*
1918 * create all the snapshots we've scheduled for creation
1919 */
1920static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1921{
1922 struct btrfs_pending_snapshot *pending, *next;
1923 struct list_head *head = &trans->transaction->pending_snapshots;
1924 int ret = 0;
1925
1926 list_for_each_entry_safe(pending, next, head, list) {
1927 list_del(entry: &pending->list);
1928 ret = create_pending_snapshot(trans, pending);
1929 if (ret)
1930 break;
1931 }
1932 return ret;
1933}
1934
1935static void update_super_roots(struct btrfs_fs_info *fs_info)
1936{
1937 struct btrfs_root_item *root_item;
1938 struct btrfs_super_block *super;
1939
1940 super = fs_info->super_copy;
1941
1942 root_item = &fs_info->chunk_root->root_item;
1943 super->chunk_root = root_item->bytenr;
1944 super->chunk_root_generation = root_item->generation;
1945 super->chunk_root_level = root_item->level;
1946
1947 root_item = &fs_info->tree_root->root_item;
1948 super->root = root_item->bytenr;
1949 super->generation = root_item->generation;
1950 super->root_level = root_item->level;
1951 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1952 super->cache_generation = root_item->generation;
1953 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1954 super->cache_generation = 0;
1955 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1956 super->uuid_tree_generation = root_item->generation;
1957}
1958
1959int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1960{
1961 struct btrfs_transaction *trans;
1962 int ret = 0;
1963
1964 spin_lock(lock: &info->trans_lock);
1965 trans = info->running_transaction;
1966 if (trans)
1967 ret = is_transaction_blocked(trans);
1968 spin_unlock(lock: &info->trans_lock);
1969 return ret;
1970}
1971
1972void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1973{
1974 struct btrfs_fs_info *fs_info = trans->fs_info;
1975 struct btrfs_transaction *cur_trans;
1976
1977 /* Kick the transaction kthread. */
1978 set_bit(nr: BTRFS_FS_COMMIT_TRANS, addr: &fs_info->flags);
1979 wake_up_process(tsk: fs_info->transaction_kthread);
1980
1981 /* take transaction reference */
1982 cur_trans = trans->transaction;
1983 refcount_inc(r: &cur_trans->use_count);
1984
1985 btrfs_end_transaction(trans);
1986
1987 /*
1988 * Wait for the current transaction commit to start and block
1989 * subsequent transaction joins
1990 */
1991 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
1992 wait_event(fs_info->transaction_blocked_wait,
1993 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1994 TRANS_ABORTED(cur_trans));
1995 btrfs_put_transaction(transaction: cur_trans);
1996}
1997
1998static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1999{
2000 struct btrfs_fs_info *fs_info = trans->fs_info;
2001 struct btrfs_transaction *cur_trans = trans->transaction;
2002
2003 WARN_ON(refcount_read(&trans->use_count) > 1);
2004
2005 btrfs_abort_transaction(trans, err);
2006
2007 spin_lock(lock: &fs_info->trans_lock);
2008
2009 /*
2010 * If the transaction is removed from the list, it means this
2011 * transaction has been committed successfully, so it is impossible
2012 * to call the cleanup function.
2013 */
2014 BUG_ON(list_empty(&cur_trans->list));
2015
2016 if (cur_trans == fs_info->running_transaction) {
2017 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2018 spin_unlock(lock: &fs_info->trans_lock);
2019
2020 /*
2021 * The thread has already released the lockdep map as reader
2022 * already in btrfs_commit_transaction().
2023 */
2024 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2025 wait_event(cur_trans->writer_wait,
2026 atomic_read(&cur_trans->num_writers) == 1);
2027
2028 spin_lock(lock: &fs_info->trans_lock);
2029 }
2030
2031 /*
2032 * Now that we know no one else is still using the transaction we can
2033 * remove the transaction from the list of transactions. This avoids
2034 * the transaction kthread from cleaning up the transaction while some
2035 * other task is still using it, which could result in a use-after-free
2036 * on things like log trees, as it forces the transaction kthread to
2037 * wait for this transaction to be cleaned up by us.
2038 */
2039 list_del_init(entry: &cur_trans->list);
2040
2041 spin_unlock(lock: &fs_info->trans_lock);
2042
2043 btrfs_cleanup_one_transaction(trans: trans->transaction, fs_info);
2044
2045 spin_lock(lock: &fs_info->trans_lock);
2046 if (cur_trans == fs_info->running_transaction)
2047 fs_info->running_transaction = NULL;
2048 spin_unlock(lock: &fs_info->trans_lock);
2049
2050 if (trans->type & __TRANS_FREEZABLE)
2051 sb_end_intwrite(sb: fs_info->sb);
2052 btrfs_put_transaction(transaction: cur_trans);
2053 btrfs_put_transaction(transaction: cur_trans);
2054
2055 trace_btrfs_transaction_commit(fs_info);
2056
2057 if (current->journal_info == trans)
2058 current->journal_info = NULL;
2059
2060 /*
2061 * If relocation is running, we can't cancel scrub because that will
2062 * result in a deadlock. Before relocating a block group, relocation
2063 * pauses scrub, then starts and commits a transaction before unpausing
2064 * scrub. If the transaction commit is being done by the relocation
2065 * task or triggered by another task and the relocation task is waiting
2066 * for the commit, and we end up here due to an error in the commit
2067 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2068 * asking for scrub to stop while having it asked to be paused higher
2069 * above in relocation code.
2070 */
2071 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2072 btrfs_scrub_cancel(info: fs_info);
2073
2074 kmem_cache_free(s: btrfs_trans_handle_cachep, objp: trans);
2075}
2076
2077/*
2078 * Release reserved delayed ref space of all pending block groups of the
2079 * transaction and remove them from the list
2080 */
2081static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2082{
2083 struct btrfs_fs_info *fs_info = trans->fs_info;
2084 struct btrfs_block_group *block_group, *tmp;
2085
2086 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2087 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2088 list_del_init(entry: &block_group->bg_list);
2089 }
2090}
2091
2092static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2093{
2094 /*
2095 * We use try_to_writeback_inodes_sb() here because if we used
2096 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2097 * Currently are holding the fs freeze lock, if we do an async flush
2098 * we'll do btrfs_join_transaction() and deadlock because we need to
2099 * wait for the fs freeze lock. Using the direct flushing we benefit
2100 * from already being in a transaction and our join_transaction doesn't
2101 * have to re-take the fs freeze lock.
2102 *
2103 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2104 * if it can read lock sb->s_umount. It will always be able to lock it,
2105 * except when the filesystem is being unmounted or being frozen, but in
2106 * those cases sync_filesystem() is called, which results in calling
2107 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2108 * Note that we don't call writeback_inodes_sb() directly, because it
2109 * will emit a warning if sb->s_umount is not locked.
2110 */
2111 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2112 try_to_writeback_inodes_sb(sb: fs_info->sb, reason: WB_REASON_SYNC);
2113 return 0;
2114}
2115
2116static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2117{
2118 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2119 btrfs_wait_ordered_roots(fs_info, U64_MAX, range_start: 0, range_len: (u64)-1);
2120}
2121
2122/*
2123 * Add a pending snapshot associated with the given transaction handle to the
2124 * respective handle. This must be called after the transaction commit started
2125 * and while holding fs_info->trans_lock.
2126 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2127 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2128 * returns an error.
2129 */
2130static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2131{
2132 struct btrfs_transaction *cur_trans = trans->transaction;
2133
2134 if (!trans->pending_snapshot)
2135 return;
2136
2137 lockdep_assert_held(&trans->fs_info->trans_lock);
2138 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2139
2140 list_add(new: &trans->pending_snapshot->list, head: &cur_trans->pending_snapshots);
2141}
2142
2143static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2144{
2145 fs_info->commit_stats.commit_count++;
2146 fs_info->commit_stats.last_commit_dur = interval;
2147 fs_info->commit_stats.max_commit_dur =
2148 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2149 fs_info->commit_stats.total_commit_dur += interval;
2150}
2151
2152int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2153{
2154 struct btrfs_fs_info *fs_info = trans->fs_info;
2155 struct btrfs_transaction *cur_trans = trans->transaction;
2156 struct btrfs_transaction *prev_trans = NULL;
2157 int ret;
2158 ktime_t start_time;
2159 ktime_t interval;
2160
2161 ASSERT(refcount_read(&trans->use_count) == 1);
2162 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2163
2164 clear_bit(nr: BTRFS_FS_NEED_TRANS_COMMIT, addr: &fs_info->flags);
2165
2166 /* Stop the commit early if ->aborted is set */
2167 if (TRANS_ABORTED(cur_trans)) {
2168 ret = cur_trans->aborted;
2169 goto lockdep_trans_commit_start_release;
2170 }
2171
2172 btrfs_trans_release_metadata(trans);
2173 trans->block_rsv = NULL;
2174
2175 /*
2176 * We only want one transaction commit doing the flushing so we do not
2177 * waste a bunch of time on lock contention on the extent root node.
2178 */
2179 if (!test_and_set_bit(nr: BTRFS_DELAYED_REFS_FLUSHING,
2180 addr: &cur_trans->delayed_refs.flags)) {
2181 /*
2182 * Make a pass through all the delayed refs we have so far.
2183 * Any running threads may add more while we are here.
2184 */
2185 ret = btrfs_run_delayed_refs(trans, min_bytes: 0);
2186 if (ret)
2187 goto lockdep_trans_commit_start_release;
2188 }
2189
2190 btrfs_create_pending_block_groups(trans);
2191
2192 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2193 int run_it = 0;
2194
2195 /* this mutex is also taken before trying to set
2196 * block groups readonly. We need to make sure
2197 * that nobody has set a block group readonly
2198 * after a extents from that block group have been
2199 * allocated for cache files. btrfs_set_block_group_ro
2200 * will wait for the transaction to commit if it
2201 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2202 *
2203 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2204 * only one process starts all the block group IO. It wouldn't
2205 * hurt to have more than one go through, but there's no
2206 * real advantage to it either.
2207 */
2208 mutex_lock(&fs_info->ro_block_group_mutex);
2209 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2210 addr: &cur_trans->flags))
2211 run_it = 1;
2212 mutex_unlock(lock: &fs_info->ro_block_group_mutex);
2213
2214 if (run_it) {
2215 ret = btrfs_start_dirty_block_groups(trans);
2216 if (ret)
2217 goto lockdep_trans_commit_start_release;
2218 }
2219 }
2220
2221 spin_lock(lock: &fs_info->trans_lock);
2222 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2223 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2224
2225 add_pending_snapshot(trans);
2226
2227 spin_unlock(lock: &fs_info->trans_lock);
2228 refcount_inc(r: &cur_trans->use_count);
2229
2230 if (trans->in_fsync)
2231 want_state = TRANS_STATE_SUPER_COMMITTED;
2232
2233 btrfs_trans_state_lockdep_release(fs_info,
2234 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2235 ret = btrfs_end_transaction(trans);
2236 wait_for_commit(commit: cur_trans, min_state: want_state);
2237
2238 if (TRANS_ABORTED(cur_trans))
2239 ret = cur_trans->aborted;
2240
2241 btrfs_put_transaction(transaction: cur_trans);
2242
2243 return ret;
2244 }
2245
2246 cur_trans->state = TRANS_STATE_COMMIT_PREP;
2247 wake_up(&fs_info->transaction_blocked_wait);
2248 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2249
2250 if (cur_trans->list.prev != &fs_info->trans_list) {
2251 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2252
2253 if (trans->in_fsync)
2254 want_state = TRANS_STATE_SUPER_COMMITTED;
2255
2256 prev_trans = list_entry(cur_trans->list.prev,
2257 struct btrfs_transaction, list);
2258 if (prev_trans->state < want_state) {
2259 refcount_inc(r: &prev_trans->use_count);
2260 spin_unlock(lock: &fs_info->trans_lock);
2261
2262 wait_for_commit(commit: prev_trans, min_state: want_state);
2263
2264 ret = READ_ONCE(prev_trans->aborted);
2265
2266 btrfs_put_transaction(transaction: prev_trans);
2267 if (ret)
2268 goto lockdep_release;
2269 spin_lock(lock: &fs_info->trans_lock);
2270 }
2271 } else {
2272 /*
2273 * The previous transaction was aborted and was already removed
2274 * from the list of transactions at fs_info->trans_list. So we
2275 * abort to prevent writing a new superblock that reflects a
2276 * corrupt state (pointing to trees with unwritten nodes/leafs).
2277 */
2278 if (BTRFS_FS_ERROR(fs_info)) {
2279 spin_unlock(lock: &fs_info->trans_lock);
2280 ret = -EROFS;
2281 goto lockdep_release;
2282 }
2283 }
2284
2285 cur_trans->state = TRANS_STATE_COMMIT_START;
2286 wake_up(&fs_info->transaction_blocked_wait);
2287 spin_unlock(lock: &fs_info->trans_lock);
2288
2289 /*
2290 * Get the time spent on the work done by the commit thread and not
2291 * the time spent waiting on a previous commit
2292 */
2293 start_time = ktime_get_ns();
2294
2295 extwriter_counter_dec(trans: cur_trans, type: trans->type);
2296
2297 ret = btrfs_start_delalloc_flush(fs_info);
2298 if (ret)
2299 goto lockdep_release;
2300
2301 ret = btrfs_run_delayed_items(trans);
2302 if (ret)
2303 goto lockdep_release;
2304
2305 /*
2306 * The thread has started/joined the transaction thus it holds the
2307 * lockdep map as a reader. It has to release it before acquiring the
2308 * lockdep map as a writer.
2309 */
2310 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2311 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2312 wait_event(cur_trans->writer_wait,
2313 extwriter_counter_read(cur_trans) == 0);
2314
2315 /* some pending stuffs might be added after the previous flush. */
2316 ret = btrfs_run_delayed_items(trans);
2317 if (ret) {
2318 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2319 goto cleanup_transaction;
2320 }
2321
2322 btrfs_wait_delalloc_flush(fs_info);
2323
2324 /*
2325 * Wait for all ordered extents started by a fast fsync that joined this
2326 * transaction. Otherwise if this transaction commits before the ordered
2327 * extents complete we lose logged data after a power failure.
2328 */
2329 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2330 wait_event(cur_trans->pending_wait,
2331 atomic_read(&cur_trans->pending_ordered) == 0);
2332
2333 btrfs_scrub_pause(fs_info);
2334 /*
2335 * Ok now we need to make sure to block out any other joins while we
2336 * commit the transaction. We could have started a join before setting
2337 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2338 */
2339 spin_lock(lock: &fs_info->trans_lock);
2340 add_pending_snapshot(trans);
2341 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2342 spin_unlock(lock: &fs_info->trans_lock);
2343
2344 /*
2345 * The thread has started/joined the transaction thus it holds the
2346 * lockdep map as a reader. It has to release it before acquiring the
2347 * lockdep map as a writer.
2348 */
2349 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2350 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2351 wait_event(cur_trans->writer_wait,
2352 atomic_read(&cur_trans->num_writers) == 1);
2353
2354 /*
2355 * Make lockdep happy by acquiring the state locks after
2356 * btrfs_trans_num_writers is released. If we acquired the state locks
2357 * before releasing the btrfs_trans_num_writers lock then lockdep would
2358 * complain because we did not follow the reverse order unlocking rule.
2359 */
2360 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2361 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2362 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2363
2364 /*
2365 * We've started the commit, clear the flag in case we were triggered to
2366 * do an async commit but somebody else started before the transaction
2367 * kthread could do the work.
2368 */
2369 clear_bit(nr: BTRFS_FS_COMMIT_TRANS, addr: &fs_info->flags);
2370
2371 if (TRANS_ABORTED(cur_trans)) {
2372 ret = cur_trans->aborted;
2373 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2374 goto scrub_continue;
2375 }
2376 /*
2377 * the reloc mutex makes sure that we stop
2378 * the balancing code from coming in and moving
2379 * extents around in the middle of the commit
2380 */
2381 mutex_lock(&fs_info->reloc_mutex);
2382
2383 /*
2384 * We needn't worry about the delayed items because we will
2385 * deal with them in create_pending_snapshot(), which is the
2386 * core function of the snapshot creation.
2387 */
2388 ret = create_pending_snapshots(trans);
2389 if (ret)
2390 goto unlock_reloc;
2391
2392 /*
2393 * We insert the dir indexes of the snapshots and update the inode
2394 * of the snapshots' parents after the snapshot creation, so there
2395 * are some delayed items which are not dealt with. Now deal with
2396 * them.
2397 *
2398 * We needn't worry that this operation will corrupt the snapshots,
2399 * because all the tree which are snapshoted will be forced to COW
2400 * the nodes and leaves.
2401 */
2402 ret = btrfs_run_delayed_items(trans);
2403 if (ret)
2404 goto unlock_reloc;
2405
2406 ret = btrfs_run_delayed_refs(trans, U64_MAX);
2407 if (ret)
2408 goto unlock_reloc;
2409
2410 /*
2411 * make sure none of the code above managed to slip in a
2412 * delayed item
2413 */
2414 btrfs_assert_delayed_root_empty(fs_info);
2415
2416 WARN_ON(cur_trans != trans->transaction);
2417
2418 ret = commit_fs_roots(trans);
2419 if (ret)
2420 goto unlock_reloc;
2421
2422 /* commit_fs_roots gets rid of all the tree log roots, it is now
2423 * safe to free the root of tree log roots
2424 */
2425 btrfs_free_log_root_tree(trans, fs_info);
2426
2427 /*
2428 * Since fs roots are all committed, we can get a quite accurate
2429 * new_roots. So let's do quota accounting.
2430 */
2431 ret = btrfs_qgroup_account_extents(trans);
2432 if (ret < 0)
2433 goto unlock_reloc;
2434
2435 ret = commit_cowonly_roots(trans);
2436 if (ret)
2437 goto unlock_reloc;
2438
2439 /*
2440 * The tasks which save the space cache and inode cache may also
2441 * update ->aborted, check it.
2442 */
2443 if (TRANS_ABORTED(cur_trans)) {
2444 ret = cur_trans->aborted;
2445 goto unlock_reloc;
2446 }
2447
2448 cur_trans = fs_info->running_transaction;
2449
2450 btrfs_set_root_node(item: &fs_info->tree_root->root_item,
2451 node: fs_info->tree_root->node);
2452 list_add_tail(new: &fs_info->tree_root->dirty_list,
2453 head: &cur_trans->switch_commits);
2454
2455 btrfs_set_root_node(item: &fs_info->chunk_root->root_item,
2456 node: fs_info->chunk_root->node);
2457 list_add_tail(new: &fs_info->chunk_root->dirty_list,
2458 head: &cur_trans->switch_commits);
2459
2460 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2461 btrfs_set_root_node(item: &fs_info->block_group_root->root_item,
2462 node: fs_info->block_group_root->node);
2463 list_add_tail(new: &fs_info->block_group_root->dirty_list,
2464 head: &cur_trans->switch_commits);
2465 }
2466
2467 switch_commit_roots(trans);
2468
2469 ASSERT(list_empty(&cur_trans->dirty_bgs));
2470 ASSERT(list_empty(&cur_trans->io_bgs));
2471 update_super_roots(fs_info);
2472
2473 btrfs_set_super_log_root(s: fs_info->super_copy, val: 0);
2474 btrfs_set_super_log_root_level(s: fs_info->super_copy, val: 0);
2475 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2476 sizeof(*fs_info->super_copy));
2477
2478 btrfs_commit_device_sizes(trans: cur_trans);
2479
2480 clear_bit(nr: BTRFS_FS_LOG1_ERR, addr: &fs_info->flags);
2481 clear_bit(nr: BTRFS_FS_LOG2_ERR, addr: &fs_info->flags);
2482
2483 btrfs_trans_release_chunk_metadata(trans);
2484
2485 /*
2486 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2487 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2488 * make sure that before we commit our superblock, no other task can
2489 * start a new transaction and commit a log tree before we commit our
2490 * superblock. Anyone trying to commit a log tree locks this mutex before
2491 * writing its superblock.
2492 */
2493 mutex_lock(&fs_info->tree_log_mutex);
2494
2495 spin_lock(lock: &fs_info->trans_lock);
2496 cur_trans->state = TRANS_STATE_UNBLOCKED;
2497 fs_info->running_transaction = NULL;
2498 spin_unlock(lock: &fs_info->trans_lock);
2499 mutex_unlock(lock: &fs_info->reloc_mutex);
2500
2501 wake_up(&fs_info->transaction_wait);
2502 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2503
2504 /* If we have features changed, wake up the cleaner to update sysfs. */
2505 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2506 fs_info->cleaner_kthread)
2507 wake_up_process(tsk: fs_info->cleaner_kthread);
2508
2509 ret = btrfs_write_and_wait_transaction(trans);
2510 if (ret) {
2511 btrfs_handle_fs_error(fs_info, ret,
2512 "Error while writing out transaction");
2513 mutex_unlock(lock: &fs_info->tree_log_mutex);
2514 goto scrub_continue;
2515 }
2516
2517 ret = write_all_supers(fs_info, max_mirrors: 0);
2518 /*
2519 * the super is written, we can safely allow the tree-loggers
2520 * to go about their business
2521 */
2522 mutex_unlock(lock: &fs_info->tree_log_mutex);
2523 if (ret)
2524 goto scrub_continue;
2525
2526 /*
2527 * We needn't acquire the lock here because there is no other task
2528 * which can change it.
2529 */
2530 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2531 wake_up(&cur_trans->commit_wait);
2532 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2533
2534 btrfs_finish_extent_commit(trans);
2535
2536 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2537 btrfs_clear_space_info_full(info: fs_info);
2538
2539 btrfs_set_last_trans_committed(fs_info, gen: cur_trans->transid);
2540 /*
2541 * We needn't acquire the lock here because there is no other task
2542 * which can change it.
2543 */
2544 cur_trans->state = TRANS_STATE_COMPLETED;
2545 wake_up(&cur_trans->commit_wait);
2546 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2547
2548 spin_lock(lock: &fs_info->trans_lock);
2549 list_del_init(entry: &cur_trans->list);
2550 spin_unlock(lock: &fs_info->trans_lock);
2551
2552 btrfs_put_transaction(transaction: cur_trans);
2553 btrfs_put_transaction(transaction: cur_trans);
2554
2555 if (trans->type & __TRANS_FREEZABLE)
2556 sb_end_intwrite(sb: fs_info->sb);
2557
2558 trace_btrfs_transaction_commit(fs_info);
2559
2560 interval = ktime_get_ns() - start_time;
2561
2562 btrfs_scrub_continue(fs_info);
2563
2564 if (current->journal_info == trans)
2565 current->journal_info = NULL;
2566
2567 kmem_cache_free(s: btrfs_trans_handle_cachep, objp: trans);
2568
2569 update_commit_stats(fs_info, interval);
2570
2571 return ret;
2572
2573unlock_reloc:
2574 mutex_unlock(lock: &fs_info->reloc_mutex);
2575 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2576scrub_continue:
2577 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2578 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2579 btrfs_scrub_continue(fs_info);
2580cleanup_transaction:
2581 btrfs_trans_release_metadata(trans);
2582 btrfs_cleanup_pending_block_groups(trans);
2583 btrfs_trans_release_chunk_metadata(trans);
2584 trans->block_rsv = NULL;
2585 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2586 if (current->journal_info == trans)
2587 current->journal_info = NULL;
2588 cleanup_transaction(trans, err: ret);
2589
2590 return ret;
2591
2592lockdep_release:
2593 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2594 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2595 goto cleanup_transaction;
2596
2597lockdep_trans_commit_start_release:
2598 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2599 btrfs_end_transaction(trans);
2600 return ret;
2601}
2602
2603/*
2604 * return < 0 if error
2605 * 0 if there are no more dead_roots at the time of call
2606 * 1 there are more to be processed, call me again
2607 *
2608 * The return value indicates there are certainly more snapshots to delete, but
2609 * if there comes a new one during processing, it may return 0. We don't mind,
2610 * because btrfs_commit_super will poke cleaner thread and it will process it a
2611 * few seconds later.
2612 */
2613int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2614{
2615 struct btrfs_root *root;
2616 int ret;
2617
2618 spin_lock(lock: &fs_info->trans_lock);
2619 if (list_empty(head: &fs_info->dead_roots)) {
2620 spin_unlock(lock: &fs_info->trans_lock);
2621 return 0;
2622 }
2623 root = list_first_entry(&fs_info->dead_roots,
2624 struct btrfs_root, root_list);
2625 list_del_init(entry: &root->root_list);
2626 spin_unlock(lock: &fs_info->trans_lock);
2627
2628 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2629
2630 btrfs_kill_all_delayed_nodes(root);
2631
2632 if (btrfs_header_backref_rev(eb: root->node) <
2633 BTRFS_MIXED_BACKREF_REV)
2634 ret = btrfs_drop_snapshot(root, update_ref: 0, for_reloc: 0);
2635 else
2636 ret = btrfs_drop_snapshot(root, update_ref: 1, for_reloc: 0);
2637
2638 btrfs_put_root(root);
2639 return (ret < 0) ? 0 : 1;
2640}
2641
2642/*
2643 * We only mark the transaction aborted and then set the file system read-only.
2644 * This will prevent new transactions from starting or trying to join this
2645 * one.
2646 *
2647 * This means that error recovery at the call site is limited to freeing
2648 * any local memory allocations and passing the error code up without
2649 * further cleanup. The transaction should complete as it normally would
2650 * in the call path but will return -EIO.
2651 *
2652 * We'll complete the cleanup in btrfs_end_transaction and
2653 * btrfs_commit_transaction.
2654 */
2655void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2656 const char *function,
2657 unsigned int line, int error, bool first_hit)
2658{
2659 struct btrfs_fs_info *fs_info = trans->fs_info;
2660
2661 WRITE_ONCE(trans->aborted, error);
2662 WRITE_ONCE(trans->transaction->aborted, error);
2663 if (first_hit && error == -ENOSPC)
2664 btrfs_dump_space_info_for_trans_abort(fs_info);
2665 /* Wake up anybody who may be waiting on this transaction */
2666 wake_up(&fs_info->transaction_wait);
2667 wake_up(&fs_info->transaction_blocked_wait);
2668 __btrfs_handle_fs_error(fs_info, function, line, error, NULL);
2669}
2670
2671int __init btrfs_transaction_init(void)
2672{
2673 btrfs_trans_handle_cachep = KMEM_CACHE(btrfs_trans_handle, SLAB_TEMPORARY);
2674 if (!btrfs_trans_handle_cachep)
2675 return -ENOMEM;
2676 return 0;
2677}
2678
2679void __cold btrfs_transaction_exit(void)
2680{
2681 kmem_cache_destroy(s: btrfs_trans_handle_cachep);
2682}
2683

source code of linux/fs/btrfs/transaction.c