1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * linux/fs/jbd2/transaction.c
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 *
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 *
9 * Generic filesystem transaction handling code; part of the ext2fs
10 * journaling system.
11 *
12 * This file manages transactions (compound commits managed by the
13 * journaling code) and handles (individual atomic operations by the
14 * filesystem).
15 */
16
17#include <linux/time.h>
18#include <linux/fs.h>
19#include <linux/jbd2.h>
20#include <linux/errno.h>
21#include <linux/slab.h>
22#include <linux/timer.h>
23#include <linux/mm.h>
24#include <linux/highmem.h>
25#include <linux/hrtimer.h>
26#include <linux/backing-dev.h>
27#include <linux/bug.h>
28#include <linux/module.h>
29#include <linux/sched/mm.h>
30
31#include <trace/events/jbd2.h>
32
33static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35
36static struct kmem_cache *transaction_cache;
37int __init jbd2_journal_init_transaction_cache(void)
38{
39 J_ASSERT(!transaction_cache);
40 transaction_cache = kmem_cache_create(name: "jbd2_transaction_s",
41 size: sizeof(transaction_t),
42 align: 0,
43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44 NULL);
45 if (!transaction_cache) {
46 pr_emerg("JBD2: failed to create transaction cache\n");
47 return -ENOMEM;
48 }
49 return 0;
50}
51
52void jbd2_journal_destroy_transaction_cache(void)
53{
54 kmem_cache_destroy(s: transaction_cache);
55 transaction_cache = NULL;
56}
57
58void jbd2_journal_free_transaction(transaction_t *transaction)
59{
60 if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61 return;
62 kmem_cache_free(s: transaction_cache, objp: transaction);
63}
64
65/*
66 * Base amount of descriptor blocks we reserve for each transaction.
67 */
68static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
69{
70 int tag_space = journal->j_blocksize - sizeof(journal_header_t);
71 int tags_per_block;
72
73 /* Subtract UUID */
74 tag_space -= 16;
75 if (jbd2_journal_has_csum_v2or3(journal))
76 tag_space -= sizeof(struct jbd2_journal_block_tail);
77 /* Commit code leaves a slack space of 16 bytes at the end of block */
78 tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
79 /*
80 * Revoke descriptors are accounted separately so we need to reserve
81 * space for commit block and normal transaction descriptor blocks.
82 */
83 return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
84 tags_per_block);
85}
86
87/*
88 * jbd2_get_transaction: obtain a new transaction_t object.
89 *
90 * Simply initialise a new transaction. Initialize it in
91 * RUNNING state and add it to the current journal (which should not
92 * have an existing running transaction: we only make a new transaction
93 * once we have started to commit the old one).
94 *
95 * Preconditions:
96 * The journal MUST be locked. We don't perform atomic mallocs on the
97 * new transaction and we can't block without protecting against other
98 * processes trying to touch the journal while it is in transition.
99 *
100 */
101
102static void jbd2_get_transaction(journal_t *journal,
103 transaction_t *transaction)
104{
105 transaction->t_journal = journal;
106 transaction->t_state = T_RUNNING;
107 transaction->t_start_time = ktime_get();
108 transaction->t_tid = journal->j_transaction_sequence++;
109 transaction->t_expires = jiffies + journal->j_commit_interval;
110 atomic_set(v: &transaction->t_updates, i: 0);
111 atomic_set(v: &transaction->t_outstanding_credits,
112 i: jbd2_descriptor_blocks_per_trans(journal) +
113 atomic_read(v: &journal->j_reserved_credits));
114 atomic_set(v: &transaction->t_outstanding_revokes, i: 0);
115 atomic_set(v: &transaction->t_handle_count, i: 0);
116 INIT_LIST_HEAD(list: &transaction->t_inode_list);
117 INIT_LIST_HEAD(list: &transaction->t_private_list);
118
119 /* Set up the commit timer for the new transaction. */
120 journal->j_commit_timer.expires = round_jiffies_up(j: transaction->t_expires);
121 add_timer(timer: &journal->j_commit_timer);
122
123 J_ASSERT(journal->j_running_transaction == NULL);
124 journal->j_running_transaction = transaction;
125 transaction->t_max_wait = 0;
126 transaction->t_start = jiffies;
127 transaction->t_requested = 0;
128}
129
130/*
131 * Handle management.
132 *
133 * A handle_t is an object which represents a single atomic update to a
134 * filesystem, and which tracks all of the modifications which form part
135 * of that one update.
136 */
137
138/*
139 * Update transaction's maximum wait time, if debugging is enabled.
140 *
141 * t_max_wait is carefully updated here with use of atomic compare exchange.
142 * Note that there could be multiplre threads trying to do this simultaneously
143 * hence using cmpxchg to avoid any use of locks in this case.
144 * With this t_max_wait can be updated w/o enabling jbd2_journal_enable_debug.
145 */
146static inline void update_t_max_wait(transaction_t *transaction,
147 unsigned long ts)
148{
149 unsigned long oldts, newts;
150
151 if (time_after(transaction->t_start, ts)) {
152 newts = jbd2_time_diff(start: ts, end: transaction->t_start);
153 oldts = READ_ONCE(transaction->t_max_wait);
154 while (oldts < newts)
155 oldts = cmpxchg(&transaction->t_max_wait, oldts, newts);
156 }
157}
158
159/*
160 * Wait until running transaction passes to T_FLUSH state and new transaction
161 * can thus be started. Also starts the commit if needed. The function expects
162 * running transaction to exist and releases j_state_lock.
163 */
164static void wait_transaction_locked(journal_t *journal)
165 __releases(journal->j_state_lock)
166{
167 DEFINE_WAIT(wait);
168 int need_to_start;
169 tid_t tid = journal->j_running_transaction->t_tid;
170
171 prepare_to_wait_exclusive(wq_head: &journal->j_wait_transaction_locked, wq_entry: &wait,
172 TASK_UNINTERRUPTIBLE);
173 need_to_start = !tid_geq(x: journal->j_commit_request, y: tid);
174 read_unlock(&journal->j_state_lock);
175 if (need_to_start)
176 jbd2_log_start_commit(journal, tid);
177 jbd2_might_wait_for_commit(journal);
178 schedule();
179 finish_wait(wq_head: &journal->j_wait_transaction_locked, wq_entry: &wait);
180}
181
182/*
183 * Wait until running transaction transitions from T_SWITCH to T_FLUSH
184 * state and new transaction can thus be started. The function releases
185 * j_state_lock.
186 */
187static void wait_transaction_switching(journal_t *journal)
188 __releases(journal->j_state_lock)
189{
190 DEFINE_WAIT(wait);
191
192 if (WARN_ON(!journal->j_running_transaction ||
193 journal->j_running_transaction->t_state != T_SWITCH)) {
194 read_unlock(&journal->j_state_lock);
195 return;
196 }
197 prepare_to_wait_exclusive(wq_head: &journal->j_wait_transaction_locked, wq_entry: &wait,
198 TASK_UNINTERRUPTIBLE);
199 read_unlock(&journal->j_state_lock);
200 /*
201 * We don't call jbd2_might_wait_for_commit() here as there's no
202 * waiting for outstanding handles happening anymore in T_SWITCH state
203 * and handling of reserved handles actually relies on that for
204 * correctness.
205 */
206 schedule();
207 finish_wait(wq_head: &journal->j_wait_transaction_locked, wq_entry: &wait);
208}
209
210static void sub_reserved_credits(journal_t *journal, int blocks)
211{
212 atomic_sub(i: blocks, v: &journal->j_reserved_credits);
213 wake_up(&journal->j_wait_reserved);
214}
215
216/*
217 * Wait until we can add credits for handle to the running transaction. Called
218 * with j_state_lock held for reading. Returns 0 if handle joined the running
219 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
220 * caller must retry.
221 *
222 * Note: because j_state_lock may be dropped depending on the return
223 * value, we need to fake out sparse so ti doesn't complain about a
224 * locking imbalance. Callers of add_transaction_credits will need to
225 * make a similar accomodation.
226 */
227static int add_transaction_credits(journal_t *journal, int blocks,
228 int rsv_blocks)
229__must_hold(&journal->j_state_lock)
230{
231 transaction_t *t = journal->j_running_transaction;
232 int needed;
233 int total = blocks + rsv_blocks;
234
235 /*
236 * If the current transaction is locked down for commit, wait
237 * for the lock to be released.
238 */
239 if (t->t_state != T_RUNNING) {
240 WARN_ON_ONCE(t->t_state >= T_FLUSH);
241 wait_transaction_locked(journal);
242 __acquire(&journal->j_state_lock); /* fake out sparse */
243 return 1;
244 }
245
246 /*
247 * If there is not enough space left in the log to write all
248 * potential buffers requested by this operation, we need to
249 * stall pending a log checkpoint to free some more log space.
250 */
251 needed = atomic_add_return(i: total, v: &t->t_outstanding_credits);
252 if (needed > journal->j_max_transaction_buffers) {
253 /*
254 * If the current transaction is already too large,
255 * then start to commit it: we can then go back and
256 * attach this handle to a new transaction.
257 */
258 atomic_sub(i: total, v: &t->t_outstanding_credits);
259
260 /*
261 * Is the number of reserved credits in the current transaction too
262 * big to fit this handle? Wait until reserved credits are freed.
263 */
264 if (atomic_read(v: &journal->j_reserved_credits) + total >
265 journal->j_max_transaction_buffers) {
266 read_unlock(&journal->j_state_lock);
267 jbd2_might_wait_for_commit(journal);
268 wait_event(journal->j_wait_reserved,
269 atomic_read(&journal->j_reserved_credits) + total <=
270 journal->j_max_transaction_buffers);
271 __acquire(&journal->j_state_lock); /* fake out sparse */
272 return 1;
273 }
274
275 wait_transaction_locked(journal);
276 __acquire(&journal->j_state_lock); /* fake out sparse */
277 return 1;
278 }
279
280 /*
281 * The commit code assumes that it can get enough log space
282 * without forcing a checkpoint. This is *critical* for
283 * correctness: a checkpoint of a buffer which is also
284 * associated with a committing transaction creates a deadlock,
285 * so commit simply cannot force through checkpoints.
286 *
287 * We must therefore ensure the necessary space in the journal
288 * *before* starting to dirty potentially checkpointed buffers
289 * in the new transaction.
290 */
291 if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
292 atomic_sub(i: total, v: &t->t_outstanding_credits);
293 read_unlock(&journal->j_state_lock);
294 jbd2_might_wait_for_commit(journal);
295 write_lock(&journal->j_state_lock);
296 if (jbd2_log_space_left(journal) <
297 journal->j_max_transaction_buffers)
298 __jbd2_log_wait_for_space(journal);
299 write_unlock(&journal->j_state_lock);
300 __acquire(&journal->j_state_lock); /* fake out sparse */
301 return 1;
302 }
303
304 /* No reservation? We are done... */
305 if (!rsv_blocks)
306 return 0;
307
308 needed = atomic_add_return(i: rsv_blocks, v: &journal->j_reserved_credits);
309 /* We allow at most half of a transaction to be reserved */
310 if (needed > journal->j_max_transaction_buffers / 2) {
311 sub_reserved_credits(journal, blocks: rsv_blocks);
312 atomic_sub(i: total, v: &t->t_outstanding_credits);
313 read_unlock(&journal->j_state_lock);
314 jbd2_might_wait_for_commit(journal);
315 wait_event(journal->j_wait_reserved,
316 atomic_read(&journal->j_reserved_credits) + rsv_blocks
317 <= journal->j_max_transaction_buffers / 2);
318 __acquire(&journal->j_state_lock); /* fake out sparse */
319 return 1;
320 }
321 return 0;
322}
323
324/*
325 * start_this_handle: Given a handle, deal with any locking or stalling
326 * needed to make sure that there is enough journal space for the handle
327 * to begin. Attach the handle to a transaction and set up the
328 * transaction's buffer credits.
329 */
330
331static int start_this_handle(journal_t *journal, handle_t *handle,
332 gfp_t gfp_mask)
333{
334 transaction_t *transaction, *new_transaction = NULL;
335 int blocks = handle->h_total_credits;
336 int rsv_blocks = 0;
337 unsigned long ts = jiffies;
338
339 if (handle->h_rsv_handle)
340 rsv_blocks = handle->h_rsv_handle->h_total_credits;
341
342 /*
343 * Limit the number of reserved credits to 1/2 of maximum transaction
344 * size and limit the number of total credits to not exceed maximum
345 * transaction size per operation.
346 */
347 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
348 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
349 printk(KERN_ERR "JBD2: %s wants too many credits "
350 "credits:%d rsv_credits:%d max:%d\n",
351 current->comm, blocks, rsv_blocks,
352 journal->j_max_transaction_buffers);
353 WARN_ON(1);
354 return -ENOSPC;
355 }
356
357alloc_transaction:
358 /*
359 * This check is racy but it is just an optimization of allocating new
360 * transaction early if there are high chances we'll need it. If we
361 * guess wrong, we'll retry or free unused transaction.
362 */
363 if (!data_race(journal->j_running_transaction)) {
364 /*
365 * If __GFP_FS is not present, then we may be being called from
366 * inside the fs writeback layer, so we MUST NOT fail.
367 */
368 if ((gfp_mask & __GFP_FS) == 0)
369 gfp_mask |= __GFP_NOFAIL;
370 new_transaction = kmem_cache_zalloc(k: transaction_cache,
371 flags: gfp_mask);
372 if (!new_transaction)
373 return -ENOMEM;
374 }
375
376 jbd2_debug(3, "New handle %p going live.\n", handle);
377
378 /*
379 * We need to hold j_state_lock until t_updates has been incremented,
380 * for proper journal barrier handling
381 */
382repeat:
383 read_lock(&journal->j_state_lock);
384 BUG_ON(journal->j_flags & JBD2_UNMOUNT);
385 if (is_journal_aborted(journal) ||
386 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
387 read_unlock(&journal->j_state_lock);
388 jbd2_journal_free_transaction(transaction: new_transaction);
389 return -EROFS;
390 }
391
392 /*
393 * Wait on the journal's transaction barrier if necessary. Specifically
394 * we allow reserved handles to proceed because otherwise commit could
395 * deadlock on page writeback not being able to complete.
396 */
397 if (!handle->h_reserved && journal->j_barrier_count) {
398 read_unlock(&journal->j_state_lock);
399 wait_event(journal->j_wait_transaction_locked,
400 journal->j_barrier_count == 0);
401 goto repeat;
402 }
403
404 if (!journal->j_running_transaction) {
405 read_unlock(&journal->j_state_lock);
406 if (!new_transaction)
407 goto alloc_transaction;
408 write_lock(&journal->j_state_lock);
409 if (!journal->j_running_transaction &&
410 (handle->h_reserved || !journal->j_barrier_count)) {
411 jbd2_get_transaction(journal, transaction: new_transaction);
412 new_transaction = NULL;
413 }
414 write_unlock(&journal->j_state_lock);
415 goto repeat;
416 }
417
418 transaction = journal->j_running_transaction;
419
420 if (!handle->h_reserved) {
421 /* We may have dropped j_state_lock - restart in that case */
422 if (add_transaction_credits(journal, blocks, rsv_blocks)) {
423 /*
424 * add_transaction_credits releases
425 * j_state_lock on a non-zero return
426 */
427 __release(&journal->j_state_lock);
428 goto repeat;
429 }
430 } else {
431 /*
432 * We have handle reserved so we are allowed to join T_LOCKED
433 * transaction and we don't have to check for transaction size
434 * and journal space. But we still have to wait while running
435 * transaction is being switched to a committing one as it
436 * won't wait for any handles anymore.
437 */
438 if (transaction->t_state == T_SWITCH) {
439 wait_transaction_switching(journal);
440 goto repeat;
441 }
442 sub_reserved_credits(journal, blocks);
443 handle->h_reserved = 0;
444 }
445
446 /* OK, account for the buffers that this operation expects to
447 * use and add the handle to the running transaction.
448 */
449 update_t_max_wait(transaction, ts);
450 handle->h_transaction = transaction;
451 handle->h_requested_credits = blocks;
452 handle->h_revoke_credits_requested = handle->h_revoke_credits;
453 handle->h_start_jiffies = jiffies;
454 atomic_inc(v: &transaction->t_updates);
455 atomic_inc(v: &transaction->t_handle_count);
456 jbd2_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
457 handle, blocks,
458 atomic_read(&transaction->t_outstanding_credits),
459 jbd2_log_space_left(journal));
460 read_unlock(&journal->j_state_lock);
461 current->journal_info = handle;
462
463 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
464 jbd2_journal_free_transaction(transaction: new_transaction);
465 /*
466 * Ensure that no allocations done while the transaction is open are
467 * going to recurse back to the fs layer.
468 */
469 handle->saved_alloc_context = memalloc_nofs_save();
470 return 0;
471}
472
473/* Allocate a new handle. This should probably be in a slab... */
474static handle_t *new_handle(int nblocks)
475{
476 handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
477 if (!handle)
478 return NULL;
479 handle->h_total_credits = nblocks;
480 handle->h_ref = 1;
481
482 return handle;
483}
484
485handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
486 int revoke_records, gfp_t gfp_mask,
487 unsigned int type, unsigned int line_no)
488{
489 handle_t *handle = journal_current_handle();
490 int err;
491
492 if (!journal)
493 return ERR_PTR(error: -EROFS);
494
495 if (handle) {
496 J_ASSERT(handle->h_transaction->t_journal == journal);
497 handle->h_ref++;
498 return handle;
499 }
500
501 nblocks += DIV_ROUND_UP(revoke_records,
502 journal->j_revoke_records_per_block);
503 handle = new_handle(nblocks);
504 if (!handle)
505 return ERR_PTR(error: -ENOMEM);
506 if (rsv_blocks) {
507 handle_t *rsv_handle;
508
509 rsv_handle = new_handle(nblocks: rsv_blocks);
510 if (!rsv_handle) {
511 jbd2_free_handle(handle);
512 return ERR_PTR(error: -ENOMEM);
513 }
514 rsv_handle->h_reserved = 1;
515 rsv_handle->h_journal = journal;
516 handle->h_rsv_handle = rsv_handle;
517 }
518 handle->h_revoke_credits = revoke_records;
519
520 err = start_this_handle(journal, handle, gfp_mask);
521 if (err < 0) {
522 if (handle->h_rsv_handle)
523 jbd2_free_handle(handle: handle->h_rsv_handle);
524 jbd2_free_handle(handle);
525 return ERR_PTR(error: err);
526 }
527 handle->h_type = type;
528 handle->h_line_no = line_no;
529 trace_jbd2_handle_start(dev: journal->j_fs_dev->bd_dev,
530 tid: handle->h_transaction->t_tid, type,
531 line_no, requested_blocks: nblocks);
532
533 return handle;
534}
535EXPORT_SYMBOL(jbd2__journal_start);
536
537
538/**
539 * jbd2_journal_start() - Obtain a new handle.
540 * @journal: Journal to start transaction on.
541 * @nblocks: number of block buffer we might modify
542 *
543 * We make sure that the transaction can guarantee at least nblocks of
544 * modified buffers in the log. We block until the log can guarantee
545 * that much space. Additionally, if rsv_blocks > 0, we also create another
546 * handle with rsv_blocks reserved blocks in the journal. This handle is
547 * stored in h_rsv_handle. It is not attached to any particular transaction
548 * and thus doesn't block transaction commit. If the caller uses this reserved
549 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
550 * on the parent handle will dispose the reserved one. Reserved handle has to
551 * be converted to a normal handle using jbd2_journal_start_reserved() before
552 * it can be used.
553 *
554 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
555 * on failure.
556 */
557handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
558{
559 return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
560}
561EXPORT_SYMBOL(jbd2_journal_start);
562
563static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
564{
565 journal_t *journal = handle->h_journal;
566
567 WARN_ON(!handle->h_reserved);
568 sub_reserved_credits(journal, blocks: handle->h_total_credits);
569 if (t)
570 atomic_sub(i: handle->h_total_credits, v: &t->t_outstanding_credits);
571}
572
573void jbd2_journal_free_reserved(handle_t *handle)
574{
575 journal_t *journal = handle->h_journal;
576
577 /* Get j_state_lock to pin running transaction if it exists */
578 read_lock(&journal->j_state_lock);
579 __jbd2_journal_unreserve_handle(handle, t: journal->j_running_transaction);
580 read_unlock(&journal->j_state_lock);
581 jbd2_free_handle(handle);
582}
583EXPORT_SYMBOL(jbd2_journal_free_reserved);
584
585/**
586 * jbd2_journal_start_reserved() - start reserved handle
587 * @handle: handle to start
588 * @type: for handle statistics
589 * @line_no: for handle statistics
590 *
591 * Start handle that has been previously reserved with jbd2_journal_reserve().
592 * This attaches @handle to the running transaction (or creates one if there's
593 * not transaction running). Unlike jbd2_journal_start() this function cannot
594 * block on journal commit, checkpointing, or similar stuff. It can block on
595 * memory allocation or frozen journal though.
596 *
597 * Return 0 on success, non-zero on error - handle is freed in that case.
598 */
599int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
600 unsigned int line_no)
601{
602 journal_t *journal = handle->h_journal;
603 int ret = -EIO;
604
605 if (WARN_ON(!handle->h_reserved)) {
606 /* Someone passed in normal handle? Just stop it. */
607 jbd2_journal_stop(handle);
608 return ret;
609 }
610 /*
611 * Usefulness of mixing of reserved and unreserved handles is
612 * questionable. So far nobody seems to need it so just error out.
613 */
614 if (WARN_ON(current->journal_info)) {
615 jbd2_journal_free_reserved(handle);
616 return ret;
617 }
618
619 handle->h_journal = NULL;
620 /*
621 * GFP_NOFS is here because callers are likely from writeback or
622 * similarly constrained call sites
623 */
624 ret = start_this_handle(journal, handle, GFP_NOFS);
625 if (ret < 0) {
626 handle->h_journal = journal;
627 jbd2_journal_free_reserved(handle);
628 return ret;
629 }
630 handle->h_type = type;
631 handle->h_line_no = line_no;
632 trace_jbd2_handle_start(dev: journal->j_fs_dev->bd_dev,
633 tid: handle->h_transaction->t_tid, type,
634 line_no, requested_blocks: handle->h_total_credits);
635 return 0;
636}
637EXPORT_SYMBOL(jbd2_journal_start_reserved);
638
639/**
640 * jbd2_journal_extend() - extend buffer credits.
641 * @handle: handle to 'extend'
642 * @nblocks: nr blocks to try to extend by.
643 * @revoke_records: number of revoke records to try to extend by.
644 *
645 * Some transactions, such as large extends and truncates, can be done
646 * atomically all at once or in several stages. The operation requests
647 * a credit for a number of buffer modifications in advance, but can
648 * extend its credit if it needs more.
649 *
650 * jbd2_journal_extend tries to give the running handle more buffer credits.
651 * It does not guarantee that allocation - this is a best-effort only.
652 * The calling process MUST be able to deal cleanly with a failure to
653 * extend here.
654 *
655 * Return 0 on success, non-zero on failure.
656 *
657 * return code < 0 implies an error
658 * return code > 0 implies normal transaction-full status.
659 */
660int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
661{
662 transaction_t *transaction = handle->h_transaction;
663 journal_t *journal;
664 int result;
665 int wanted;
666
667 if (is_handle_aborted(handle))
668 return -EROFS;
669 journal = transaction->t_journal;
670
671 result = 1;
672
673 read_lock(&journal->j_state_lock);
674
675 /* Don't extend a locked-down transaction! */
676 if (transaction->t_state != T_RUNNING) {
677 jbd2_debug(3, "denied handle %p %d blocks: "
678 "transaction not running\n", handle, nblocks);
679 goto error_out;
680 }
681
682 nblocks += DIV_ROUND_UP(
683 handle->h_revoke_credits_requested + revoke_records,
684 journal->j_revoke_records_per_block) -
685 DIV_ROUND_UP(
686 handle->h_revoke_credits_requested,
687 journal->j_revoke_records_per_block);
688 wanted = atomic_add_return(i: nblocks,
689 v: &transaction->t_outstanding_credits);
690
691 if (wanted > journal->j_max_transaction_buffers) {
692 jbd2_debug(3, "denied handle %p %d blocks: "
693 "transaction too large\n", handle, nblocks);
694 atomic_sub(i: nblocks, v: &transaction->t_outstanding_credits);
695 goto error_out;
696 }
697
698 trace_jbd2_handle_extend(dev: journal->j_fs_dev->bd_dev,
699 tid: transaction->t_tid,
700 type: handle->h_type, line_no: handle->h_line_no,
701 buffer_credits: handle->h_total_credits,
702 requested_blocks: nblocks);
703
704 handle->h_total_credits += nblocks;
705 handle->h_requested_credits += nblocks;
706 handle->h_revoke_credits += revoke_records;
707 handle->h_revoke_credits_requested += revoke_records;
708 result = 0;
709
710 jbd2_debug(3, "extended handle %p by %d\n", handle, nblocks);
711error_out:
712 read_unlock(&journal->j_state_lock);
713 return result;
714}
715
716static void stop_this_handle(handle_t *handle)
717{
718 transaction_t *transaction = handle->h_transaction;
719 journal_t *journal = transaction->t_journal;
720 int revokes;
721
722 J_ASSERT(journal_current_handle() == handle);
723 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
724 current->journal_info = NULL;
725 /*
726 * Subtract necessary revoke descriptor blocks from handle credits. We
727 * take care to account only for revoke descriptor blocks the
728 * transaction will really need as large sequences of transactions with
729 * small numbers of revokes are relatively common.
730 */
731 revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
732 if (revokes) {
733 int t_revokes, revoke_descriptors;
734 int rr_per_blk = journal->j_revoke_records_per_block;
735
736 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
737 > handle->h_total_credits);
738 t_revokes = atomic_add_return(i: revokes,
739 v: &transaction->t_outstanding_revokes);
740 revoke_descriptors =
741 DIV_ROUND_UP(t_revokes, rr_per_blk) -
742 DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
743 handle->h_total_credits -= revoke_descriptors;
744 }
745 atomic_sub(i: handle->h_total_credits,
746 v: &transaction->t_outstanding_credits);
747 if (handle->h_rsv_handle)
748 __jbd2_journal_unreserve_handle(handle: handle->h_rsv_handle,
749 t: transaction);
750 if (atomic_dec_and_test(v: &transaction->t_updates))
751 wake_up(&journal->j_wait_updates);
752
753 rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
754 /*
755 * Scope of the GFP_NOFS context is over here and so we can restore the
756 * original alloc context.
757 */
758 memalloc_nofs_restore(flags: handle->saved_alloc_context);
759}
760
761/**
762 * jbd2__journal_restart() - restart a handle .
763 * @handle: handle to restart
764 * @nblocks: nr credits requested
765 * @revoke_records: number of revoke record credits requested
766 * @gfp_mask: memory allocation flags (for start_this_handle)
767 *
768 * Restart a handle for a multi-transaction filesystem
769 * operation.
770 *
771 * If the jbd2_journal_extend() call above fails to grant new buffer credits
772 * to a running handle, a call to jbd2_journal_restart will commit the
773 * handle's transaction so far and reattach the handle to a new
774 * transaction capable of guaranteeing the requested number of
775 * credits. We preserve reserved handle if there's any attached to the
776 * passed in handle.
777 */
778int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
779 gfp_t gfp_mask)
780{
781 transaction_t *transaction = handle->h_transaction;
782 journal_t *journal;
783 tid_t tid;
784 int need_to_start;
785 int ret;
786
787 /* If we've had an abort of any type, don't even think about
788 * actually doing the restart! */
789 if (is_handle_aborted(handle))
790 return 0;
791 journal = transaction->t_journal;
792 tid = transaction->t_tid;
793
794 /*
795 * First unlink the handle from its current transaction, and start the
796 * commit on that.
797 */
798 jbd2_debug(2, "restarting handle %p\n", handle);
799 stop_this_handle(handle);
800 handle->h_transaction = NULL;
801
802 /*
803 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
804 * get rid of pointless j_state_lock traffic like this.
805 */
806 read_lock(&journal->j_state_lock);
807 need_to_start = !tid_geq(x: journal->j_commit_request, y: tid);
808 read_unlock(&journal->j_state_lock);
809 if (need_to_start)
810 jbd2_log_start_commit(journal, tid);
811 handle->h_total_credits = nblocks +
812 DIV_ROUND_UP(revoke_records,
813 journal->j_revoke_records_per_block);
814 handle->h_revoke_credits = revoke_records;
815 ret = start_this_handle(journal, handle, gfp_mask);
816 trace_jbd2_handle_restart(dev: journal->j_fs_dev->bd_dev,
817 tid: ret ? 0 : handle->h_transaction->t_tid,
818 type: handle->h_type, line_no: handle->h_line_no,
819 requested_blocks: handle->h_total_credits);
820 return ret;
821}
822EXPORT_SYMBOL(jbd2__journal_restart);
823
824
825int jbd2_journal_restart(handle_t *handle, int nblocks)
826{
827 return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
828}
829EXPORT_SYMBOL(jbd2_journal_restart);
830
831/*
832 * Waits for any outstanding t_updates to finish.
833 * This is called with write j_state_lock held.
834 */
835void jbd2_journal_wait_updates(journal_t *journal)
836{
837 DEFINE_WAIT(wait);
838
839 while (1) {
840 /*
841 * Note that the running transaction can get freed under us if
842 * this transaction is getting committed in
843 * jbd2_journal_commit_transaction() ->
844 * jbd2_journal_free_transaction(). This can only happen when we
845 * release j_state_lock -> schedule() -> acquire j_state_lock.
846 * Hence we should everytime retrieve new j_running_transaction
847 * value (after j_state_lock release acquire cycle), else it may
848 * lead to use-after-free of old freed transaction.
849 */
850 transaction_t *transaction = journal->j_running_transaction;
851
852 if (!transaction)
853 break;
854
855 prepare_to_wait(wq_head: &journal->j_wait_updates, wq_entry: &wait,
856 TASK_UNINTERRUPTIBLE);
857 if (!atomic_read(v: &transaction->t_updates)) {
858 finish_wait(wq_head: &journal->j_wait_updates, wq_entry: &wait);
859 break;
860 }
861 write_unlock(&journal->j_state_lock);
862 schedule();
863 finish_wait(wq_head: &journal->j_wait_updates, wq_entry: &wait);
864 write_lock(&journal->j_state_lock);
865 }
866}
867
868/**
869 * jbd2_journal_lock_updates () - establish a transaction barrier.
870 * @journal: Journal to establish a barrier on.
871 *
872 * This locks out any further updates from being started, and blocks
873 * until all existing updates have completed, returning only once the
874 * journal is in a quiescent state with no updates running.
875 *
876 * The journal lock should not be held on entry.
877 */
878void jbd2_journal_lock_updates(journal_t *journal)
879{
880 jbd2_might_wait_for_commit(journal);
881
882 write_lock(&journal->j_state_lock);
883 ++journal->j_barrier_count;
884
885 /* Wait until there are no reserved handles */
886 if (atomic_read(v: &journal->j_reserved_credits)) {
887 write_unlock(&journal->j_state_lock);
888 wait_event(journal->j_wait_reserved,
889 atomic_read(&journal->j_reserved_credits) == 0);
890 write_lock(&journal->j_state_lock);
891 }
892
893 /* Wait until there are no running t_updates */
894 jbd2_journal_wait_updates(journal);
895
896 write_unlock(&journal->j_state_lock);
897
898 /*
899 * We have now established a barrier against other normal updates, but
900 * we also need to barrier against other jbd2_journal_lock_updates() calls
901 * to make sure that we serialise special journal-locked operations
902 * too.
903 */
904 mutex_lock(&journal->j_barrier);
905}
906
907/**
908 * jbd2_journal_unlock_updates () - release barrier
909 * @journal: Journal to release the barrier on.
910 *
911 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
912 *
913 * Should be called without the journal lock held.
914 */
915void jbd2_journal_unlock_updates (journal_t *journal)
916{
917 J_ASSERT(journal->j_barrier_count != 0);
918
919 mutex_unlock(lock: &journal->j_barrier);
920 write_lock(&journal->j_state_lock);
921 --journal->j_barrier_count;
922 write_unlock(&journal->j_state_lock);
923 wake_up_all(&journal->j_wait_transaction_locked);
924}
925
926static void warn_dirty_buffer(struct buffer_head *bh)
927{
928 printk(KERN_WARNING
929 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
930 "There's a risk of filesystem corruption in case of system "
931 "crash.\n",
932 bh->b_bdev, (unsigned long long)bh->b_blocknr);
933}
934
935/* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
936static void jbd2_freeze_jh_data(struct journal_head *jh)
937{
938 char *source;
939 struct buffer_head *bh = jh2bh(jh);
940
941 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
942 source = kmap_local_folio(folio: bh->b_folio, offset: bh_offset(bh));
943 /* Fire data frozen trigger just before we copy the data */
944 jbd2_buffer_frozen_trigger(jh, mapped_data: source, triggers: jh->b_triggers);
945 memcpy(jh->b_frozen_data, source, bh->b_size);
946 kunmap_local(source);
947
948 /*
949 * Now that the frozen data is saved off, we need to store any matching
950 * triggers.
951 */
952 jh->b_frozen_triggers = jh->b_triggers;
953}
954
955/*
956 * If the buffer is already part of the current transaction, then there
957 * is nothing we need to do. If it is already part of a prior
958 * transaction which we are still committing to disk, then we need to
959 * make sure that we do not overwrite the old copy: we do copy-out to
960 * preserve the copy going to disk. We also account the buffer against
961 * the handle's metadata buffer credits (unless the buffer is already
962 * part of the transaction, that is).
963 *
964 */
965static int
966do_get_write_access(handle_t *handle, struct journal_head *jh,
967 int force_copy)
968{
969 struct buffer_head *bh;
970 transaction_t *transaction = handle->h_transaction;
971 journal_t *journal;
972 int error;
973 char *frozen_buffer = NULL;
974 unsigned long start_lock, time_lock;
975
976 journal = transaction->t_journal;
977
978 jbd2_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
979
980 JBUFFER_TRACE(jh, "entry");
981repeat:
982 bh = jh2bh(jh);
983
984 /* @@@ Need to check for errors here at some point. */
985
986 start_lock = jiffies;
987 lock_buffer(bh);
988 spin_lock(lock: &jh->b_state_lock);
989
990 /* If it takes too long to lock the buffer, trace it */
991 time_lock = jbd2_time_diff(start: start_lock, end: jiffies);
992 if (time_lock > HZ/10)
993 trace_jbd2_lock_buffer_stall(dev: bh->b_bdev->bd_dev,
994 stall_ms: jiffies_to_msecs(j: time_lock));
995
996 /* We now hold the buffer lock so it is safe to query the buffer
997 * state. Is the buffer dirty?
998 *
999 * If so, there are two possibilities. The buffer may be
1000 * non-journaled, and undergoing a quite legitimate writeback.
1001 * Otherwise, it is journaled, and we don't expect dirty buffers
1002 * in that state (the buffers should be marked JBD_Dirty
1003 * instead.) So either the IO is being done under our own
1004 * control and this is a bug, or it's a third party IO such as
1005 * dump(8) (which may leave the buffer scheduled for read ---
1006 * ie. locked but not dirty) or tune2fs (which may actually have
1007 * the buffer dirtied, ugh.) */
1008
1009 if (buffer_dirty(bh) && jh->b_transaction) {
1010 warn_dirty_buffer(bh);
1011 /*
1012 * We need to clean the dirty flag and we must do it under the
1013 * buffer lock to be sure we don't race with running write-out.
1014 */
1015 JBUFFER_TRACE(jh, "Journalling dirty buffer");
1016 clear_buffer_dirty(bh);
1017 /*
1018 * The buffer is going to be added to BJ_Reserved list now and
1019 * nothing guarantees jbd2_journal_dirty_metadata() will be
1020 * ever called for it. So we need to set jbddirty bit here to
1021 * make sure the buffer is dirtied and written out when the
1022 * journaling machinery is done with it.
1023 */
1024 set_buffer_jbddirty(bh);
1025 }
1026
1027 error = -EROFS;
1028 if (is_handle_aborted(handle)) {
1029 spin_unlock(lock: &jh->b_state_lock);
1030 unlock_buffer(bh);
1031 goto out;
1032 }
1033 error = 0;
1034
1035 /*
1036 * The buffer is already part of this transaction if b_transaction or
1037 * b_next_transaction points to it
1038 */
1039 if (jh->b_transaction == transaction ||
1040 jh->b_next_transaction == transaction) {
1041 unlock_buffer(bh);
1042 goto done;
1043 }
1044
1045 /*
1046 * this is the first time this transaction is touching this buffer,
1047 * reset the modified flag
1048 */
1049 jh->b_modified = 0;
1050
1051 /*
1052 * If the buffer is not journaled right now, we need to make sure it
1053 * doesn't get written to disk before the caller actually commits the
1054 * new data
1055 */
1056 if (!jh->b_transaction) {
1057 JBUFFER_TRACE(jh, "no transaction");
1058 J_ASSERT_JH(jh, !jh->b_next_transaction);
1059 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1060 /*
1061 * Make sure all stores to jh (b_modified, b_frozen_data) are
1062 * visible before attaching it to the running transaction.
1063 * Paired with barrier in jbd2_write_access_granted()
1064 */
1065 smp_wmb();
1066 spin_lock(lock: &journal->j_list_lock);
1067 if (test_clear_buffer_dirty(bh)) {
1068 /*
1069 * Execute buffer dirty clearing and jh->b_transaction
1070 * assignment under journal->j_list_lock locked to
1071 * prevent bh being removed from checkpoint list if
1072 * the buffer is in an intermediate state (not dirty
1073 * and jh->b_transaction is NULL).
1074 */
1075 JBUFFER_TRACE(jh, "Journalling dirty buffer");
1076 set_buffer_jbddirty(bh);
1077 }
1078 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1079 spin_unlock(lock: &journal->j_list_lock);
1080 unlock_buffer(bh);
1081 goto done;
1082 }
1083 unlock_buffer(bh);
1084
1085 /*
1086 * If there is already a copy-out version of this buffer, then we don't
1087 * need to make another one
1088 */
1089 if (jh->b_frozen_data) {
1090 JBUFFER_TRACE(jh, "has frozen data");
1091 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1092 goto attach_next;
1093 }
1094
1095 JBUFFER_TRACE(jh, "owned by older transaction");
1096 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1097 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1098
1099 /*
1100 * There is one case we have to be very careful about. If the
1101 * committing transaction is currently writing this buffer out to disk
1102 * and has NOT made a copy-out, then we cannot modify the buffer
1103 * contents at all right now. The essence of copy-out is that it is
1104 * the extra copy, not the primary copy, which gets journaled. If the
1105 * primary copy is already going to disk then we cannot do copy-out
1106 * here.
1107 */
1108 if (buffer_shadow(bh)) {
1109 JBUFFER_TRACE(jh, "on shadow: sleep");
1110 spin_unlock(lock: &jh->b_state_lock);
1111 wait_on_bit_io(word: &bh->b_state, bit: BH_Shadow, TASK_UNINTERRUPTIBLE);
1112 goto repeat;
1113 }
1114
1115 /*
1116 * Only do the copy if the currently-owning transaction still needs it.
1117 * If buffer isn't on BJ_Metadata list, the committing transaction is
1118 * past that stage (here we use the fact that BH_Shadow is set under
1119 * bh_state lock together with refiling to BJ_Shadow list and at this
1120 * point we know the buffer doesn't have BH_Shadow set).
1121 *
1122 * Subtle point, though: if this is a get_undo_access, then we will be
1123 * relying on the frozen_data to contain the new value of the
1124 * committed_data record after the transaction, so we HAVE to force the
1125 * frozen_data copy in that case.
1126 */
1127 if (jh->b_jlist == BJ_Metadata || force_copy) {
1128 JBUFFER_TRACE(jh, "generate frozen data");
1129 if (!frozen_buffer) {
1130 JBUFFER_TRACE(jh, "allocate memory for buffer");
1131 spin_unlock(lock: &jh->b_state_lock);
1132 frozen_buffer = jbd2_alloc(size: jh2bh(jh)->b_size,
1133 GFP_NOFS | __GFP_NOFAIL);
1134 goto repeat;
1135 }
1136 jh->b_frozen_data = frozen_buffer;
1137 frozen_buffer = NULL;
1138 jbd2_freeze_jh_data(jh);
1139 }
1140attach_next:
1141 /*
1142 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1143 * before attaching it to the running transaction. Paired with barrier
1144 * in jbd2_write_access_granted()
1145 */
1146 smp_wmb();
1147 jh->b_next_transaction = transaction;
1148
1149done:
1150 spin_unlock(lock: &jh->b_state_lock);
1151
1152 /*
1153 * If we are about to journal a buffer, then any revoke pending on it is
1154 * no longer valid
1155 */
1156 jbd2_journal_cancel_revoke(handle, jh);
1157
1158out:
1159 if (unlikely(frozen_buffer)) /* It's usually NULL */
1160 jbd2_free(ptr: frozen_buffer, size: bh->b_size);
1161
1162 JBUFFER_TRACE(jh, "exit");
1163 return error;
1164}
1165
1166/* Fast check whether buffer is already attached to the required transaction */
1167static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1168 bool undo)
1169{
1170 struct journal_head *jh;
1171 bool ret = false;
1172
1173 /* Dirty buffers require special handling... */
1174 if (buffer_dirty(bh))
1175 return false;
1176
1177 /*
1178 * RCU protects us from dereferencing freed pages. So the checks we do
1179 * are guaranteed not to oops. However the jh slab object can get freed
1180 * & reallocated while we work with it. So we have to be careful. When
1181 * we see jh attached to the running transaction, we know it must stay
1182 * so until the transaction is committed. Thus jh won't be freed and
1183 * will be attached to the same bh while we run. However it can
1184 * happen jh gets freed, reallocated, and attached to the transaction
1185 * just after we get pointer to it from bh. So we have to be careful
1186 * and recheck jh still belongs to our bh before we return success.
1187 */
1188 rcu_read_lock();
1189 if (!buffer_jbd(bh))
1190 goto out;
1191 /* This should be bh2jh() but that doesn't work with inline functions */
1192 jh = READ_ONCE(bh->b_private);
1193 if (!jh)
1194 goto out;
1195 /* For undo access buffer must have data copied */
1196 if (undo && !jh->b_committed_data)
1197 goto out;
1198 if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1199 READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1200 goto out;
1201 /*
1202 * There are two reasons for the barrier here:
1203 * 1) Make sure to fetch b_bh after we did previous checks so that we
1204 * detect when jh went through free, realloc, attach to transaction
1205 * while we were checking. Paired with implicit barrier in that path.
1206 * 2) So that access to bh done after jbd2_write_access_granted()
1207 * doesn't get reordered and see inconsistent state of concurrent
1208 * do_get_write_access().
1209 */
1210 smp_mb();
1211 if (unlikely(jh->b_bh != bh))
1212 goto out;
1213 ret = true;
1214out:
1215 rcu_read_unlock();
1216 return ret;
1217}
1218
1219/**
1220 * jbd2_journal_get_write_access() - notify intent to modify a buffer
1221 * for metadata (not data) update.
1222 * @handle: transaction to add buffer modifications to
1223 * @bh: bh to be used for metadata writes
1224 *
1225 * Returns: error code or 0 on success.
1226 *
1227 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1228 * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1229 */
1230
1231int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1232{
1233 struct journal_head *jh;
1234 journal_t *journal;
1235 int rc;
1236
1237 if (is_handle_aborted(handle))
1238 return -EROFS;
1239
1240 journal = handle->h_transaction->t_journal;
1241 if (jbd2_check_fs_dev_write_error(journal)) {
1242 /*
1243 * If the fs dev has writeback errors, it may have failed
1244 * to async write out metadata buffers in the background.
1245 * In this case, we could read old data from disk and write
1246 * it out again, which may lead to on-disk filesystem
1247 * inconsistency. Aborting journal can avoid it happen.
1248 */
1249 jbd2_journal_abort(journal, -EIO);
1250 return -EIO;
1251 }
1252
1253 if (jbd2_write_access_granted(handle, bh, undo: false))
1254 return 0;
1255
1256 jh = jbd2_journal_add_journal_head(bh);
1257 /* We do not want to get caught playing with fields which the
1258 * log thread also manipulates. Make sure that the buffer
1259 * completes any outstanding IO before proceeding. */
1260 rc = do_get_write_access(handle, jh, force_copy: 0);
1261 jbd2_journal_put_journal_head(jh);
1262 return rc;
1263}
1264
1265
1266/*
1267 * When the user wants to journal a newly created buffer_head
1268 * (ie. getblk() returned a new buffer and we are going to populate it
1269 * manually rather than reading off disk), then we need to keep the
1270 * buffer_head locked until it has been completely filled with new
1271 * data. In this case, we should be able to make the assertion that
1272 * the bh is not already part of an existing transaction.
1273 *
1274 * The buffer should already be locked by the caller by this point.
1275 * There is no lock ranking violation: it was a newly created,
1276 * unlocked buffer beforehand. */
1277
1278/**
1279 * jbd2_journal_get_create_access () - notify intent to use newly created bh
1280 * @handle: transaction to new buffer to
1281 * @bh: new buffer.
1282 *
1283 * Call this if you create a new bh.
1284 */
1285int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1286{
1287 transaction_t *transaction = handle->h_transaction;
1288 journal_t *journal;
1289 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1290 int err;
1291
1292 jbd2_debug(5, "journal_head %p\n", jh);
1293 err = -EROFS;
1294 if (is_handle_aborted(handle))
1295 goto out;
1296 journal = transaction->t_journal;
1297 err = 0;
1298
1299 JBUFFER_TRACE(jh, "entry");
1300 /*
1301 * The buffer may already belong to this transaction due to pre-zeroing
1302 * in the filesystem's new_block code. It may also be on the previous,
1303 * committing transaction's lists, but it HAS to be in Forget state in
1304 * that case: the transaction must have deleted the buffer for it to be
1305 * reused here.
1306 */
1307 spin_lock(lock: &jh->b_state_lock);
1308 J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1309 jh->b_transaction == NULL ||
1310 (jh->b_transaction == journal->j_committing_transaction &&
1311 jh->b_jlist == BJ_Forget)));
1312
1313 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1314 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1315
1316 if (jh->b_transaction == NULL) {
1317 /*
1318 * Previous jbd2_journal_forget() could have left the buffer
1319 * with jbddirty bit set because it was being committed. When
1320 * the commit finished, we've filed the buffer for
1321 * checkpointing and marked it dirty. Now we are reallocating
1322 * the buffer so the transaction freeing it must have
1323 * committed and so it's safe to clear the dirty bit.
1324 */
1325 clear_buffer_dirty(bh: jh2bh(jh));
1326 /* first access by this transaction */
1327 jh->b_modified = 0;
1328
1329 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1330 spin_lock(lock: &journal->j_list_lock);
1331 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1332 spin_unlock(lock: &journal->j_list_lock);
1333 } else if (jh->b_transaction == journal->j_committing_transaction) {
1334 /* first access by this transaction */
1335 jh->b_modified = 0;
1336
1337 JBUFFER_TRACE(jh, "set next transaction");
1338 spin_lock(lock: &journal->j_list_lock);
1339 jh->b_next_transaction = transaction;
1340 spin_unlock(lock: &journal->j_list_lock);
1341 }
1342 spin_unlock(lock: &jh->b_state_lock);
1343
1344 /*
1345 * akpm: I added this. ext3_alloc_branch can pick up new indirect
1346 * blocks which contain freed but then revoked metadata. We need
1347 * to cancel the revoke in case we end up freeing it yet again
1348 * and the reallocating as data - this would cause a second revoke,
1349 * which hits an assertion error.
1350 */
1351 JBUFFER_TRACE(jh, "cancelling revoke");
1352 jbd2_journal_cancel_revoke(handle, jh);
1353out:
1354 jbd2_journal_put_journal_head(jh);
1355 return err;
1356}
1357
1358/**
1359 * jbd2_journal_get_undo_access() - Notify intent to modify metadata with
1360 * non-rewindable consequences
1361 * @handle: transaction
1362 * @bh: buffer to undo
1363 *
1364 * Sometimes there is a need to distinguish between metadata which has
1365 * been committed to disk and that which has not. The ext3fs code uses
1366 * this for freeing and allocating space, we have to make sure that we
1367 * do not reuse freed space until the deallocation has been committed,
1368 * since if we overwrote that space we would make the delete
1369 * un-rewindable in case of a crash.
1370 *
1371 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1372 * buffer for parts of non-rewindable operations such as delete
1373 * operations on the bitmaps. The journaling code must keep a copy of
1374 * the buffer's contents prior to the undo_access call until such time
1375 * as we know that the buffer has definitely been committed to disk.
1376 *
1377 * We never need to know which transaction the committed data is part
1378 * of, buffers touched here are guaranteed to be dirtied later and so
1379 * will be committed to a new transaction in due course, at which point
1380 * we can discard the old committed data pointer.
1381 *
1382 * Returns error number or 0 on success.
1383 */
1384int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1385{
1386 int err;
1387 struct journal_head *jh;
1388 char *committed_data = NULL;
1389
1390 if (is_handle_aborted(handle))
1391 return -EROFS;
1392
1393 if (jbd2_write_access_granted(handle, bh, undo: true))
1394 return 0;
1395
1396 jh = jbd2_journal_add_journal_head(bh);
1397 JBUFFER_TRACE(jh, "entry");
1398
1399 /*
1400 * Do this first --- it can drop the journal lock, so we want to
1401 * make sure that obtaining the committed_data is done
1402 * atomically wrt. completion of any outstanding commits.
1403 */
1404 err = do_get_write_access(handle, jh, force_copy: 1);
1405 if (err)
1406 goto out;
1407
1408repeat:
1409 if (!jh->b_committed_data)
1410 committed_data = jbd2_alloc(size: jh2bh(jh)->b_size,
1411 GFP_NOFS|__GFP_NOFAIL);
1412
1413 spin_lock(lock: &jh->b_state_lock);
1414 if (!jh->b_committed_data) {
1415 /* Copy out the current buffer contents into the
1416 * preserved, committed copy. */
1417 JBUFFER_TRACE(jh, "generate b_committed data");
1418 if (!committed_data) {
1419 spin_unlock(lock: &jh->b_state_lock);
1420 goto repeat;
1421 }
1422
1423 jh->b_committed_data = committed_data;
1424 committed_data = NULL;
1425 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1426 }
1427 spin_unlock(lock: &jh->b_state_lock);
1428out:
1429 jbd2_journal_put_journal_head(jh);
1430 if (unlikely(committed_data))
1431 jbd2_free(ptr: committed_data, size: bh->b_size);
1432 return err;
1433}
1434
1435/**
1436 * jbd2_journal_set_triggers() - Add triggers for commit writeout
1437 * @bh: buffer to trigger on
1438 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1439 *
1440 * Set any triggers on this journal_head. This is always safe, because
1441 * triggers for a committing buffer will be saved off, and triggers for
1442 * a running transaction will match the buffer in that transaction.
1443 *
1444 * Call with NULL to clear the triggers.
1445 */
1446void jbd2_journal_set_triggers(struct buffer_head *bh,
1447 struct jbd2_buffer_trigger_type *type)
1448{
1449 struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1450
1451 if (WARN_ON_ONCE(!jh))
1452 return;
1453 jh->b_triggers = type;
1454 jbd2_journal_put_journal_head(jh);
1455}
1456
1457void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1458 struct jbd2_buffer_trigger_type *triggers)
1459{
1460 struct buffer_head *bh = jh2bh(jh);
1461
1462 if (!triggers || !triggers->t_frozen)
1463 return;
1464
1465 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1466}
1467
1468void jbd2_buffer_abort_trigger(struct journal_head *jh,
1469 struct jbd2_buffer_trigger_type *triggers)
1470{
1471 if (!triggers || !triggers->t_abort)
1472 return;
1473
1474 triggers->t_abort(triggers, jh2bh(jh));
1475}
1476
1477/**
1478 * jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata
1479 * @handle: transaction to add buffer to.
1480 * @bh: buffer to mark
1481 *
1482 * mark dirty metadata which needs to be journaled as part of the current
1483 * transaction.
1484 *
1485 * The buffer must have previously had jbd2_journal_get_write_access()
1486 * called so that it has a valid journal_head attached to the buffer
1487 * head.
1488 *
1489 * The buffer is placed on the transaction's metadata list and is marked
1490 * as belonging to the transaction.
1491 *
1492 * Returns error number or 0 on success.
1493 *
1494 * Special care needs to be taken if the buffer already belongs to the
1495 * current committing transaction (in which case we should have frozen
1496 * data present for that commit). In that case, we don't relink the
1497 * buffer: that only gets done when the old transaction finally
1498 * completes its commit.
1499 */
1500int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1501{
1502 transaction_t *transaction = handle->h_transaction;
1503 journal_t *journal;
1504 struct journal_head *jh;
1505 int ret = 0;
1506
1507 if (!buffer_jbd(bh))
1508 return -EUCLEAN;
1509
1510 /*
1511 * We don't grab jh reference here since the buffer must be part
1512 * of the running transaction.
1513 */
1514 jh = bh2jh(bh);
1515 jbd2_debug(5, "journal_head %p\n", jh);
1516 JBUFFER_TRACE(jh, "entry");
1517
1518 /*
1519 * This and the following assertions are unreliable since we may see jh
1520 * in inconsistent state unless we grab bh_state lock. But this is
1521 * crucial to catch bugs so let's do a reliable check until the
1522 * lockless handling is fully proven.
1523 */
1524 if (data_race(jh->b_transaction != transaction &&
1525 jh->b_next_transaction != transaction)) {
1526 spin_lock(lock: &jh->b_state_lock);
1527 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1528 jh->b_next_transaction == transaction);
1529 spin_unlock(lock: &jh->b_state_lock);
1530 }
1531 if (jh->b_modified == 1) {
1532 /* If it's in our transaction it must be in BJ_Metadata list. */
1533 if (data_race(jh->b_transaction == transaction &&
1534 jh->b_jlist != BJ_Metadata)) {
1535 spin_lock(lock: &jh->b_state_lock);
1536 if (jh->b_transaction == transaction &&
1537 jh->b_jlist != BJ_Metadata)
1538 pr_err("JBD2: assertion failure: h_type=%u "
1539 "h_line_no=%u block_no=%llu jlist=%u\n",
1540 handle->h_type, handle->h_line_no,
1541 (unsigned long long) bh->b_blocknr,
1542 jh->b_jlist);
1543 J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1544 jh->b_jlist == BJ_Metadata);
1545 spin_unlock(lock: &jh->b_state_lock);
1546 }
1547 goto out;
1548 }
1549
1550 journal = transaction->t_journal;
1551 spin_lock(lock: &jh->b_state_lock);
1552
1553 if (is_handle_aborted(handle)) {
1554 /*
1555 * Check journal aborting with @jh->b_state_lock locked,
1556 * since 'jh->b_transaction' could be replaced with
1557 * 'jh->b_next_transaction' during old transaction
1558 * committing if journal aborted, which may fail
1559 * assertion on 'jh->b_frozen_data == NULL'.
1560 */
1561 ret = -EROFS;
1562 goto out_unlock_bh;
1563 }
1564
1565 if (jh->b_modified == 0) {
1566 /*
1567 * This buffer's got modified and becoming part
1568 * of the transaction. This needs to be done
1569 * once a transaction -bzzz
1570 */
1571 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1572 ret = -ENOSPC;
1573 goto out_unlock_bh;
1574 }
1575 jh->b_modified = 1;
1576 handle->h_total_credits--;
1577 }
1578
1579 /*
1580 * fastpath, to avoid expensive locking. If this buffer is already
1581 * on the running transaction's metadata list there is nothing to do.
1582 * Nobody can take it off again because there is a handle open.
1583 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1584 * result in this test being false, so we go in and take the locks.
1585 */
1586 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1587 JBUFFER_TRACE(jh, "fastpath");
1588 if (unlikely(jh->b_transaction !=
1589 journal->j_running_transaction)) {
1590 printk(KERN_ERR "JBD2: %s: "
1591 "jh->b_transaction (%llu, %p, %u) != "
1592 "journal->j_running_transaction (%p, %u)\n",
1593 journal->j_devname,
1594 (unsigned long long) bh->b_blocknr,
1595 jh->b_transaction,
1596 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1597 journal->j_running_transaction,
1598 journal->j_running_transaction ?
1599 journal->j_running_transaction->t_tid : 0);
1600 ret = -EINVAL;
1601 }
1602 goto out_unlock_bh;
1603 }
1604
1605 set_buffer_jbddirty(bh);
1606
1607 /*
1608 * Metadata already on the current transaction list doesn't
1609 * need to be filed. Metadata on another transaction's list must
1610 * be committing, and will be refiled once the commit completes:
1611 * leave it alone for now.
1612 */
1613 if (jh->b_transaction != transaction) {
1614 JBUFFER_TRACE(jh, "already on other transaction");
1615 if (unlikely(((jh->b_transaction !=
1616 journal->j_committing_transaction)) ||
1617 (jh->b_next_transaction != transaction))) {
1618 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1619 "bad jh for block %llu: "
1620 "transaction (%p, %u), "
1621 "jh->b_transaction (%p, %u), "
1622 "jh->b_next_transaction (%p, %u), jlist %u\n",
1623 journal->j_devname,
1624 (unsigned long long) bh->b_blocknr,
1625 transaction, transaction->t_tid,
1626 jh->b_transaction,
1627 jh->b_transaction ?
1628 jh->b_transaction->t_tid : 0,
1629 jh->b_next_transaction,
1630 jh->b_next_transaction ?
1631 jh->b_next_transaction->t_tid : 0,
1632 jh->b_jlist);
1633 WARN_ON(1);
1634 ret = -EINVAL;
1635 }
1636 /* And this case is illegal: we can't reuse another
1637 * transaction's data buffer, ever. */
1638 goto out_unlock_bh;
1639 }
1640
1641 /* That test should have eliminated the following case: */
1642 J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1643
1644 JBUFFER_TRACE(jh, "file as BJ_Metadata");
1645 spin_lock(lock: &journal->j_list_lock);
1646 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1647 spin_unlock(lock: &journal->j_list_lock);
1648out_unlock_bh:
1649 spin_unlock(lock: &jh->b_state_lock);
1650out:
1651 JBUFFER_TRACE(jh, "exit");
1652 return ret;
1653}
1654
1655/**
1656 * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1657 * @handle: transaction handle
1658 * @bh: bh to 'forget'
1659 *
1660 * We can only do the bforget if there are no commits pending against the
1661 * buffer. If the buffer is dirty in the current running transaction we
1662 * can safely unlink it.
1663 *
1664 * bh may not be a journalled buffer at all - it may be a non-JBD
1665 * buffer which came off the hashtable. Check for this.
1666 *
1667 * Decrements bh->b_count by one.
1668 *
1669 * Allow this call even if the handle has aborted --- it may be part of
1670 * the caller's cleanup after an abort.
1671 */
1672int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1673{
1674 transaction_t *transaction = handle->h_transaction;
1675 journal_t *journal;
1676 struct journal_head *jh;
1677 int drop_reserve = 0;
1678 int err = 0;
1679 int was_modified = 0;
1680
1681 if (is_handle_aborted(handle))
1682 return -EROFS;
1683 journal = transaction->t_journal;
1684
1685 BUFFER_TRACE(bh, "entry");
1686
1687 jh = jbd2_journal_grab_journal_head(bh);
1688 if (!jh) {
1689 __bforget(bh);
1690 return 0;
1691 }
1692
1693 spin_lock(lock: &jh->b_state_lock);
1694
1695 /* Critical error: attempting to delete a bitmap buffer, maybe?
1696 * Don't do any jbd operations, and return an error. */
1697 if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1698 "inconsistent data on disk")) {
1699 err = -EIO;
1700 goto drop;
1701 }
1702
1703 /* keep track of whether or not this transaction modified us */
1704 was_modified = jh->b_modified;
1705
1706 /*
1707 * The buffer's going from the transaction, we must drop
1708 * all references -bzzz
1709 */
1710 jh->b_modified = 0;
1711
1712 if (jh->b_transaction == transaction) {
1713 J_ASSERT_JH(jh, !jh->b_frozen_data);
1714
1715 /* If we are forgetting a buffer which is already part
1716 * of this transaction, then we can just drop it from
1717 * the transaction immediately. */
1718 clear_buffer_dirty(bh);
1719 clear_buffer_jbddirty(bh);
1720
1721 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1722
1723 /*
1724 * we only want to drop a reference if this transaction
1725 * modified the buffer
1726 */
1727 if (was_modified)
1728 drop_reserve = 1;
1729
1730 /*
1731 * We are no longer going to journal this buffer.
1732 * However, the commit of this transaction is still
1733 * important to the buffer: the delete that we are now
1734 * processing might obsolete an old log entry, so by
1735 * committing, we can satisfy the buffer's checkpoint.
1736 *
1737 * So, if we have a checkpoint on the buffer, we should
1738 * now refile the buffer on our BJ_Forget list so that
1739 * we know to remove the checkpoint after we commit.
1740 */
1741
1742 spin_lock(lock: &journal->j_list_lock);
1743 if (jh->b_cp_transaction) {
1744 __jbd2_journal_temp_unlink_buffer(jh);
1745 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1746 } else {
1747 __jbd2_journal_unfile_buffer(jh);
1748 jbd2_journal_put_journal_head(jh);
1749 }
1750 spin_unlock(lock: &journal->j_list_lock);
1751 } else if (jh->b_transaction) {
1752 J_ASSERT_JH(jh, (jh->b_transaction ==
1753 journal->j_committing_transaction));
1754 /* However, if the buffer is still owned by a prior
1755 * (committing) transaction, we can't drop it yet... */
1756 JBUFFER_TRACE(jh, "belongs to older transaction");
1757 /* ... but we CAN drop it from the new transaction through
1758 * marking the buffer as freed and set j_next_transaction to
1759 * the new transaction, so that not only the commit code
1760 * knows it should clear dirty bits when it is done with the
1761 * buffer, but also the buffer can be checkpointed only
1762 * after the new transaction commits. */
1763
1764 set_buffer_freed(bh);
1765
1766 if (!jh->b_next_transaction) {
1767 spin_lock(lock: &journal->j_list_lock);
1768 jh->b_next_transaction = transaction;
1769 spin_unlock(lock: &journal->j_list_lock);
1770 } else {
1771 J_ASSERT(jh->b_next_transaction == transaction);
1772
1773 /*
1774 * only drop a reference if this transaction modified
1775 * the buffer
1776 */
1777 if (was_modified)
1778 drop_reserve = 1;
1779 }
1780 } else {
1781 /*
1782 * Finally, if the buffer is not belongs to any
1783 * transaction, we can just drop it now if it has no
1784 * checkpoint.
1785 */
1786 spin_lock(lock: &journal->j_list_lock);
1787 if (!jh->b_cp_transaction) {
1788 JBUFFER_TRACE(jh, "belongs to none transaction");
1789 spin_unlock(lock: &journal->j_list_lock);
1790 goto drop;
1791 }
1792
1793 /*
1794 * Otherwise, if the buffer has been written to disk,
1795 * it is safe to remove the checkpoint and drop it.
1796 */
1797 if (jbd2_journal_try_remove_checkpoint(jh) >= 0) {
1798 spin_unlock(lock: &journal->j_list_lock);
1799 goto drop;
1800 }
1801
1802 /*
1803 * The buffer is still not written to disk, we should
1804 * attach this buffer to current transaction so that the
1805 * buffer can be checkpointed only after the current
1806 * transaction commits.
1807 */
1808 clear_buffer_dirty(bh);
1809 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1810 spin_unlock(lock: &journal->j_list_lock);
1811 }
1812drop:
1813 __brelse(bh);
1814 spin_unlock(lock: &jh->b_state_lock);
1815 jbd2_journal_put_journal_head(jh);
1816 if (drop_reserve) {
1817 /* no need to reserve log space for this block -bzzz */
1818 handle->h_total_credits++;
1819 }
1820 return err;
1821}
1822
1823/**
1824 * jbd2_journal_stop() - complete a transaction
1825 * @handle: transaction to complete.
1826 *
1827 * All done for a particular handle.
1828 *
1829 * There is not much action needed here. We just return any remaining
1830 * buffer credits to the transaction and remove the handle. The only
1831 * complication is that we need to start a commit operation if the
1832 * filesystem is marked for synchronous update.
1833 *
1834 * jbd2_journal_stop itself will not usually return an error, but it may
1835 * do so in unusual circumstances. In particular, expect it to
1836 * return -EIO if a jbd2_journal_abort has been executed since the
1837 * transaction began.
1838 */
1839int jbd2_journal_stop(handle_t *handle)
1840{
1841 transaction_t *transaction = handle->h_transaction;
1842 journal_t *journal;
1843 int err = 0, wait_for_commit = 0;
1844 tid_t tid;
1845 pid_t pid;
1846
1847 if (--handle->h_ref > 0) {
1848 jbd2_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1849 handle->h_ref);
1850 if (is_handle_aborted(handle))
1851 return -EIO;
1852 return 0;
1853 }
1854 if (!transaction) {
1855 /*
1856 * Handle is already detached from the transaction so there is
1857 * nothing to do other than free the handle.
1858 */
1859 memalloc_nofs_restore(flags: handle->saved_alloc_context);
1860 goto free_and_exit;
1861 }
1862 journal = transaction->t_journal;
1863 tid = transaction->t_tid;
1864
1865 if (is_handle_aborted(handle))
1866 err = -EIO;
1867
1868 jbd2_debug(4, "Handle %p going down\n", handle);
1869 trace_jbd2_handle_stats(dev: journal->j_fs_dev->bd_dev,
1870 tid, type: handle->h_type, line_no: handle->h_line_no,
1871 interval: jiffies - handle->h_start_jiffies,
1872 sync: handle->h_sync, requested_blocks: handle->h_requested_credits,
1873 dirtied_blocks: (handle->h_requested_credits -
1874 handle->h_total_credits));
1875
1876 /*
1877 * Implement synchronous transaction batching. If the handle
1878 * was synchronous, don't force a commit immediately. Let's
1879 * yield and let another thread piggyback onto this
1880 * transaction. Keep doing that while new threads continue to
1881 * arrive. It doesn't cost much - we're about to run a commit
1882 * and sleep on IO anyway. Speeds up many-threaded, many-dir
1883 * operations by 30x or more...
1884 *
1885 * We try and optimize the sleep time against what the
1886 * underlying disk can do, instead of having a static sleep
1887 * time. This is useful for the case where our storage is so
1888 * fast that it is more optimal to go ahead and force a flush
1889 * and wait for the transaction to be committed than it is to
1890 * wait for an arbitrary amount of time for new writers to
1891 * join the transaction. We achieve this by measuring how
1892 * long it takes to commit a transaction, and compare it with
1893 * how long this transaction has been running, and if run time
1894 * < commit time then we sleep for the delta and commit. This
1895 * greatly helps super fast disks that would see slowdowns as
1896 * more threads started doing fsyncs.
1897 *
1898 * But don't do this if this process was the most recent one
1899 * to perform a synchronous write. We do this to detect the
1900 * case where a single process is doing a stream of sync
1901 * writes. No point in waiting for joiners in that case.
1902 *
1903 * Setting max_batch_time to 0 disables this completely.
1904 */
1905 pid = current->pid;
1906 if (handle->h_sync && journal->j_last_sync_writer != pid &&
1907 journal->j_max_batch_time) {
1908 u64 commit_time, trans_time;
1909
1910 journal->j_last_sync_writer = pid;
1911
1912 read_lock(&journal->j_state_lock);
1913 commit_time = journal->j_average_commit_time;
1914 read_unlock(&journal->j_state_lock);
1915
1916 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1917 transaction->t_start_time));
1918
1919 commit_time = max_t(u64, commit_time,
1920 1000*journal->j_min_batch_time);
1921 commit_time = min_t(u64, commit_time,
1922 1000*journal->j_max_batch_time);
1923
1924 if (trans_time < commit_time) {
1925 ktime_t expires = ktime_add_ns(ktime_get(),
1926 commit_time);
1927 set_current_state(TASK_UNINTERRUPTIBLE);
1928 schedule_hrtimeout(expires: &expires, mode: HRTIMER_MODE_ABS);
1929 }
1930 }
1931
1932 if (handle->h_sync)
1933 transaction->t_synchronous_commit = 1;
1934
1935 /*
1936 * If the handle is marked SYNC, we need to set another commit
1937 * going! We also want to force a commit if the transaction is too
1938 * old now.
1939 */
1940 if (handle->h_sync ||
1941 time_after_eq(jiffies, transaction->t_expires)) {
1942 /* Do this even for aborted journals: an abort still
1943 * completes the commit thread, it just doesn't write
1944 * anything to disk. */
1945
1946 jbd2_debug(2, "transaction too old, requesting commit for "
1947 "handle %p\n", handle);
1948 /* This is non-blocking */
1949 jbd2_log_start_commit(journal, tid);
1950
1951 /*
1952 * Special case: JBD2_SYNC synchronous updates require us
1953 * to wait for the commit to complete.
1954 */
1955 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1956 wait_for_commit = 1;
1957 }
1958
1959 /*
1960 * Once stop_this_handle() drops t_updates, the transaction could start
1961 * committing on us and eventually disappear. So we must not
1962 * dereference transaction pointer again after calling
1963 * stop_this_handle().
1964 */
1965 stop_this_handle(handle);
1966
1967 if (wait_for_commit)
1968 err = jbd2_log_wait_commit(journal, tid);
1969
1970free_and_exit:
1971 if (handle->h_rsv_handle)
1972 jbd2_free_handle(handle: handle->h_rsv_handle);
1973 jbd2_free_handle(handle);
1974 return err;
1975}
1976
1977/*
1978 *
1979 * List management code snippets: various functions for manipulating the
1980 * transaction buffer lists.
1981 *
1982 */
1983
1984/*
1985 * Append a buffer to a transaction list, given the transaction's list head
1986 * pointer.
1987 *
1988 * j_list_lock is held.
1989 *
1990 * jh->b_state_lock is held.
1991 */
1992
1993static inline void
1994__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1995{
1996 if (!*list) {
1997 jh->b_tnext = jh->b_tprev = jh;
1998 *list = jh;
1999 } else {
2000 /* Insert at the tail of the list to preserve order */
2001 struct journal_head *first = *list, *last = first->b_tprev;
2002 jh->b_tprev = last;
2003 jh->b_tnext = first;
2004 last->b_tnext = first->b_tprev = jh;
2005 }
2006}
2007
2008/*
2009 * Remove a buffer from a transaction list, given the transaction's list
2010 * head pointer.
2011 *
2012 * Called with j_list_lock held, and the journal may not be locked.
2013 *
2014 * jh->b_state_lock is held.
2015 */
2016
2017static inline void
2018__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
2019{
2020 if (*list == jh) {
2021 *list = jh->b_tnext;
2022 if (*list == jh)
2023 *list = NULL;
2024 }
2025 jh->b_tprev->b_tnext = jh->b_tnext;
2026 jh->b_tnext->b_tprev = jh->b_tprev;
2027}
2028
2029/*
2030 * Remove a buffer from the appropriate transaction list.
2031 *
2032 * Note that this function can *change* the value of
2033 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
2034 * t_reserved_list. If the caller is holding onto a copy of one of these
2035 * pointers, it could go bad. Generally the caller needs to re-read the
2036 * pointer from the transaction_t.
2037 *
2038 * Called under j_list_lock.
2039 */
2040static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
2041{
2042 struct journal_head **list = NULL;
2043 transaction_t *transaction;
2044 struct buffer_head *bh = jh2bh(jh);
2045
2046 lockdep_assert_held(&jh->b_state_lock);
2047 transaction = jh->b_transaction;
2048 if (transaction)
2049 assert_spin_locked(&transaction->t_journal->j_list_lock);
2050
2051 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2052 if (jh->b_jlist != BJ_None)
2053 J_ASSERT_JH(jh, transaction != NULL);
2054
2055 switch (jh->b_jlist) {
2056 case BJ_None:
2057 return;
2058 case BJ_Metadata:
2059 transaction->t_nr_buffers--;
2060 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2061 list = &transaction->t_buffers;
2062 break;
2063 case BJ_Forget:
2064 list = &transaction->t_forget;
2065 break;
2066 case BJ_Shadow:
2067 list = &transaction->t_shadow_list;
2068 break;
2069 case BJ_Reserved:
2070 list = &transaction->t_reserved_list;
2071 break;
2072 }
2073
2074 __blist_del_buffer(list, jh);
2075 jh->b_jlist = BJ_None;
2076 if (transaction && is_journal_aborted(journal: transaction->t_journal))
2077 clear_buffer_jbddirty(bh);
2078 else if (test_clear_buffer_jbddirty(bh))
2079 mark_buffer_dirty(bh); /* Expose it to the VM */
2080}
2081
2082/*
2083 * Remove buffer from all transactions. The caller is responsible for dropping
2084 * the jh reference that belonged to the transaction.
2085 *
2086 * Called with bh_state lock and j_list_lock
2087 */
2088static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2089{
2090 J_ASSERT_JH(jh, jh->b_transaction != NULL);
2091 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2092
2093 __jbd2_journal_temp_unlink_buffer(jh);
2094 jh->b_transaction = NULL;
2095}
2096
2097void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2098{
2099 struct buffer_head *bh = jh2bh(jh);
2100
2101 /* Get reference so that buffer cannot be freed before we unlock it */
2102 get_bh(bh);
2103 spin_lock(lock: &jh->b_state_lock);
2104 spin_lock(lock: &journal->j_list_lock);
2105 __jbd2_journal_unfile_buffer(jh);
2106 spin_unlock(lock: &journal->j_list_lock);
2107 spin_unlock(lock: &jh->b_state_lock);
2108 jbd2_journal_put_journal_head(jh);
2109 __brelse(bh);
2110}
2111
2112/**
2113 * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2114 * @journal: journal for operation
2115 * @folio: Folio to detach data from.
2116 *
2117 * For all the buffers on this page,
2118 * if they are fully written out ordered data, move them onto BUF_CLEAN
2119 * so try_to_free_buffers() can reap them.
2120 *
2121 * This function returns non-zero if we wish try_to_free_buffers()
2122 * to be called. We do this if the page is releasable by try_to_free_buffers().
2123 * We also do it if the page has locked or dirty buffers and the caller wants
2124 * us to perform sync or async writeout.
2125 *
2126 * This complicates JBD locking somewhat. We aren't protected by the
2127 * BKL here. We wish to remove the buffer from its committing or
2128 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2129 *
2130 * This may *change* the value of transaction_t->t_datalist, so anyone
2131 * who looks at t_datalist needs to lock against this function.
2132 *
2133 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2134 * buffer. So we need to lock against that. jbd2_journal_dirty_data()
2135 * will come out of the lock with the buffer dirty, which makes it
2136 * ineligible for release here.
2137 *
2138 * Who else is affected by this? hmm... Really the only contender
2139 * is do_get_write_access() - it could be looking at the buffer while
2140 * journal_try_to_free_buffer() is changing its state. But that
2141 * cannot happen because we never reallocate freed data as metadata
2142 * while the data is part of a transaction. Yes?
2143 *
2144 * Return false on failure, true on success
2145 */
2146bool jbd2_journal_try_to_free_buffers(journal_t *journal, struct folio *folio)
2147{
2148 struct buffer_head *head;
2149 struct buffer_head *bh;
2150 bool ret = false;
2151
2152 J_ASSERT(folio_test_locked(folio));
2153
2154 head = folio_buffers(folio);
2155 bh = head;
2156 do {
2157 struct journal_head *jh;
2158
2159 /*
2160 * We take our own ref against the journal_head here to avoid
2161 * having to add tons of locking around each instance of
2162 * jbd2_journal_put_journal_head().
2163 */
2164 jh = jbd2_journal_grab_journal_head(bh);
2165 if (!jh)
2166 continue;
2167
2168 spin_lock(lock: &jh->b_state_lock);
2169 if (!jh->b_transaction && !jh->b_next_transaction) {
2170 spin_lock(lock: &journal->j_list_lock);
2171 /* Remove written-back checkpointed metadata buffer */
2172 if (jh->b_cp_transaction != NULL)
2173 jbd2_journal_try_remove_checkpoint(jh);
2174 spin_unlock(lock: &journal->j_list_lock);
2175 }
2176 spin_unlock(lock: &jh->b_state_lock);
2177 jbd2_journal_put_journal_head(jh);
2178 if (buffer_jbd(bh))
2179 goto busy;
2180 } while ((bh = bh->b_this_page) != head);
2181
2182 ret = try_to_free_buffers(folio);
2183busy:
2184 return ret;
2185}
2186
2187/*
2188 * This buffer is no longer needed. If it is on an older transaction's
2189 * checkpoint list we need to record it on this transaction's forget list
2190 * to pin this buffer (and hence its checkpointing transaction) down until
2191 * this transaction commits. If the buffer isn't on a checkpoint list, we
2192 * release it.
2193 * Returns non-zero if JBD no longer has an interest in the buffer.
2194 *
2195 * Called under j_list_lock.
2196 *
2197 * Called under jh->b_state_lock.
2198 */
2199static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2200{
2201 int may_free = 1;
2202 struct buffer_head *bh = jh2bh(jh);
2203
2204 if (jh->b_cp_transaction) {
2205 JBUFFER_TRACE(jh, "on running+cp transaction");
2206 __jbd2_journal_temp_unlink_buffer(jh);
2207 /*
2208 * We don't want to write the buffer anymore, clear the
2209 * bit so that we don't confuse checks in
2210 * __journal_file_buffer
2211 */
2212 clear_buffer_dirty(bh);
2213 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2214 may_free = 0;
2215 } else {
2216 JBUFFER_TRACE(jh, "on running transaction");
2217 __jbd2_journal_unfile_buffer(jh);
2218 jbd2_journal_put_journal_head(jh);
2219 }
2220 return may_free;
2221}
2222
2223/*
2224 * jbd2_journal_invalidate_folio
2225 *
2226 * This code is tricky. It has a number of cases to deal with.
2227 *
2228 * There are two invariants which this code relies on:
2229 *
2230 * i_size must be updated on disk before we start calling invalidate_folio
2231 * on the data.
2232 *
2233 * This is done in ext3 by defining an ext3_setattr method which
2234 * updates i_size before truncate gets going. By maintaining this
2235 * invariant, we can be sure that it is safe to throw away any buffers
2236 * attached to the current transaction: once the transaction commits,
2237 * we know that the data will not be needed.
2238 *
2239 * Note however that we can *not* throw away data belonging to the
2240 * previous, committing transaction!
2241 *
2242 * Any disk blocks which *are* part of the previous, committing
2243 * transaction (and which therefore cannot be discarded immediately) are
2244 * not going to be reused in the new running transaction
2245 *
2246 * The bitmap committed_data images guarantee this: any block which is
2247 * allocated in one transaction and removed in the next will be marked
2248 * as in-use in the committed_data bitmap, so cannot be reused until
2249 * the next transaction to delete the block commits. This means that
2250 * leaving committing buffers dirty is quite safe: the disk blocks
2251 * cannot be reallocated to a different file and so buffer aliasing is
2252 * not possible.
2253 *
2254 *
2255 * The above applies mainly to ordered data mode. In writeback mode we
2256 * don't make guarantees about the order in which data hits disk --- in
2257 * particular we don't guarantee that new dirty data is flushed before
2258 * transaction commit --- so it is always safe just to discard data
2259 * immediately in that mode. --sct
2260 */
2261
2262/*
2263 * The journal_unmap_buffer helper function returns zero if the buffer
2264 * concerned remains pinned as an anonymous buffer belonging to an older
2265 * transaction.
2266 *
2267 * We're outside-transaction here. Either or both of j_running_transaction
2268 * and j_committing_transaction may be NULL.
2269 */
2270static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2271 int partial_page)
2272{
2273 transaction_t *transaction;
2274 struct journal_head *jh;
2275 int may_free = 1;
2276
2277 BUFFER_TRACE(bh, "entry");
2278
2279 /*
2280 * It is safe to proceed here without the j_list_lock because the
2281 * buffers cannot be stolen by try_to_free_buffers as long as we are
2282 * holding the page lock. --sct
2283 */
2284
2285 jh = jbd2_journal_grab_journal_head(bh);
2286 if (!jh)
2287 goto zap_buffer_unlocked;
2288
2289 /* OK, we have data buffer in journaled mode */
2290 write_lock(&journal->j_state_lock);
2291 spin_lock(lock: &jh->b_state_lock);
2292 spin_lock(lock: &journal->j_list_lock);
2293
2294 /*
2295 * We cannot remove the buffer from checkpoint lists until the
2296 * transaction adding inode to orphan list (let's call it T)
2297 * is committed. Otherwise if the transaction changing the
2298 * buffer would be cleaned from the journal before T is
2299 * committed, a crash will cause that the correct contents of
2300 * the buffer will be lost. On the other hand we have to
2301 * clear the buffer dirty bit at latest at the moment when the
2302 * transaction marking the buffer as freed in the filesystem
2303 * structures is committed because from that moment on the
2304 * block can be reallocated and used by a different page.
2305 * Since the block hasn't been freed yet but the inode has
2306 * already been added to orphan list, it is safe for us to add
2307 * the buffer to BJ_Forget list of the newest transaction.
2308 *
2309 * Also we have to clear buffer_mapped flag of a truncated buffer
2310 * because the buffer_head may be attached to the page straddling
2311 * i_size (can happen only when blocksize < pagesize) and thus the
2312 * buffer_head can be reused when the file is extended again. So we end
2313 * up keeping around invalidated buffers attached to transactions'
2314 * BJ_Forget list just to stop checkpointing code from cleaning up
2315 * the transaction this buffer was modified in.
2316 */
2317 transaction = jh->b_transaction;
2318 if (transaction == NULL) {
2319 /* First case: not on any transaction. If it
2320 * has no checkpoint link, then we can zap it:
2321 * it's a writeback-mode buffer so we don't care
2322 * if it hits disk safely. */
2323 if (!jh->b_cp_transaction) {
2324 JBUFFER_TRACE(jh, "not on any transaction: zap");
2325 goto zap_buffer;
2326 }
2327
2328 if (!buffer_dirty(bh)) {
2329 /* bdflush has written it. We can drop it now */
2330 __jbd2_journal_remove_checkpoint(jh);
2331 goto zap_buffer;
2332 }
2333
2334 /* OK, it must be in the journal but still not
2335 * written fully to disk: it's metadata or
2336 * journaled data... */
2337
2338 if (journal->j_running_transaction) {
2339 /* ... and once the current transaction has
2340 * committed, the buffer won't be needed any
2341 * longer. */
2342 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2343 may_free = __dispose_buffer(jh,
2344 transaction: journal->j_running_transaction);
2345 goto zap_buffer;
2346 } else {
2347 /* There is no currently-running transaction. So the
2348 * orphan record which we wrote for this file must have
2349 * passed into commit. We must attach this buffer to
2350 * the committing transaction, if it exists. */
2351 if (journal->j_committing_transaction) {
2352 JBUFFER_TRACE(jh, "give to committing trans");
2353 may_free = __dispose_buffer(jh,
2354 transaction: journal->j_committing_transaction);
2355 goto zap_buffer;
2356 } else {
2357 /* The orphan record's transaction has
2358 * committed. We can cleanse this buffer */
2359 clear_buffer_jbddirty(bh);
2360 __jbd2_journal_remove_checkpoint(jh);
2361 goto zap_buffer;
2362 }
2363 }
2364 } else if (transaction == journal->j_committing_transaction) {
2365 JBUFFER_TRACE(jh, "on committing transaction");
2366 /*
2367 * The buffer is committing, we simply cannot touch
2368 * it. If the page is straddling i_size we have to wait
2369 * for commit and try again.
2370 */
2371 if (partial_page) {
2372 spin_unlock(lock: &journal->j_list_lock);
2373 spin_unlock(lock: &jh->b_state_lock);
2374 write_unlock(&journal->j_state_lock);
2375 jbd2_journal_put_journal_head(jh);
2376 /* Already zapped buffer? Nothing to do... */
2377 if (!bh->b_bdev)
2378 return 0;
2379 return -EBUSY;
2380 }
2381 /*
2382 * OK, buffer won't be reachable after truncate. We just clear
2383 * b_modified to not confuse transaction credit accounting, and
2384 * set j_next_transaction to the running transaction (if there
2385 * is one) and mark buffer as freed so that commit code knows
2386 * it should clear dirty bits when it is done with the buffer.
2387 */
2388 set_buffer_freed(bh);
2389 if (journal->j_running_transaction && buffer_jbddirty(bh))
2390 jh->b_next_transaction = journal->j_running_transaction;
2391 jh->b_modified = 0;
2392 spin_unlock(lock: &journal->j_list_lock);
2393 spin_unlock(lock: &jh->b_state_lock);
2394 write_unlock(&journal->j_state_lock);
2395 jbd2_journal_put_journal_head(jh);
2396 return 0;
2397 } else {
2398 /* Good, the buffer belongs to the running transaction.
2399 * We are writing our own transaction's data, not any
2400 * previous one's, so it is safe to throw it away
2401 * (remember that we expect the filesystem to have set
2402 * i_size already for this truncate so recovery will not
2403 * expose the disk blocks we are discarding here.) */
2404 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2405 JBUFFER_TRACE(jh, "on running transaction");
2406 may_free = __dispose_buffer(jh, transaction);
2407 }
2408
2409zap_buffer:
2410 /*
2411 * This is tricky. Although the buffer is truncated, it may be reused
2412 * if blocksize < pagesize and it is attached to the page straddling
2413 * EOF. Since the buffer might have been added to BJ_Forget list of the
2414 * running transaction, journal_get_write_access() won't clear
2415 * b_modified and credit accounting gets confused. So clear b_modified
2416 * here.
2417 */
2418 jh->b_modified = 0;
2419 spin_unlock(lock: &journal->j_list_lock);
2420 spin_unlock(lock: &jh->b_state_lock);
2421 write_unlock(&journal->j_state_lock);
2422 jbd2_journal_put_journal_head(jh);
2423zap_buffer_unlocked:
2424 clear_buffer_dirty(bh);
2425 J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2426 clear_buffer_mapped(bh);
2427 clear_buffer_req(bh);
2428 clear_buffer_new(bh);
2429 clear_buffer_delay(bh);
2430 clear_buffer_unwritten(bh);
2431 bh->b_bdev = NULL;
2432 return may_free;
2433}
2434
2435/**
2436 * jbd2_journal_invalidate_folio()
2437 * @journal: journal to use for flush...
2438 * @folio: folio to flush
2439 * @offset: start of the range to invalidate
2440 * @length: length of the range to invalidate
2441 *
2442 * Reap page buffers containing data after in the specified range in page.
2443 * Can return -EBUSY if buffers are part of the committing transaction and
2444 * the page is straddling i_size. Caller then has to wait for current commit
2445 * and try again.
2446 */
2447int jbd2_journal_invalidate_folio(journal_t *journal, struct folio *folio,
2448 size_t offset, size_t length)
2449{
2450 struct buffer_head *head, *bh, *next;
2451 unsigned int stop = offset + length;
2452 unsigned int curr_off = 0;
2453 int partial_page = (offset || length < folio_size(folio));
2454 int may_free = 1;
2455 int ret = 0;
2456
2457 if (!folio_test_locked(folio))
2458 BUG();
2459 head = folio_buffers(folio);
2460 if (!head)
2461 return 0;
2462
2463 BUG_ON(stop > folio_size(folio) || stop < length);
2464
2465 /* We will potentially be playing with lists other than just the
2466 * data lists (especially for journaled data mode), so be
2467 * cautious in our locking. */
2468
2469 bh = head;
2470 do {
2471 unsigned int next_off = curr_off + bh->b_size;
2472 next = bh->b_this_page;
2473
2474 if (next_off > stop)
2475 return 0;
2476
2477 if (offset <= curr_off) {
2478 /* This block is wholly outside the truncation point */
2479 lock_buffer(bh);
2480 ret = journal_unmap_buffer(journal, bh, partial_page);
2481 unlock_buffer(bh);
2482 if (ret < 0)
2483 return ret;
2484 may_free &= ret;
2485 }
2486 curr_off = next_off;
2487 bh = next;
2488
2489 } while (bh != head);
2490
2491 if (!partial_page) {
2492 if (may_free && try_to_free_buffers(folio))
2493 J_ASSERT(!folio_buffers(folio));
2494 }
2495 return 0;
2496}
2497
2498/*
2499 * File a buffer on the given transaction list.
2500 */
2501void __jbd2_journal_file_buffer(struct journal_head *jh,
2502 transaction_t *transaction, int jlist)
2503{
2504 struct journal_head **list = NULL;
2505 int was_dirty = 0;
2506 struct buffer_head *bh = jh2bh(jh);
2507
2508 lockdep_assert_held(&jh->b_state_lock);
2509 assert_spin_locked(&transaction->t_journal->j_list_lock);
2510
2511 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2512 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2513 jh->b_transaction == NULL);
2514
2515 if (jh->b_transaction && jh->b_jlist == jlist)
2516 return;
2517
2518 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2519 jlist == BJ_Shadow || jlist == BJ_Forget) {
2520 /*
2521 * For metadata buffers, we track dirty bit in buffer_jbddirty
2522 * instead of buffer_dirty. We should not see a dirty bit set
2523 * here because we clear it in do_get_write_access but e.g.
2524 * tune2fs can modify the sb and set the dirty bit at any time
2525 * so we try to gracefully handle that.
2526 */
2527 if (buffer_dirty(bh))
2528 warn_dirty_buffer(bh);
2529 if (test_clear_buffer_dirty(bh) ||
2530 test_clear_buffer_jbddirty(bh))
2531 was_dirty = 1;
2532 }
2533
2534 if (jh->b_transaction)
2535 __jbd2_journal_temp_unlink_buffer(jh);
2536 else
2537 jbd2_journal_grab_journal_head(bh);
2538 jh->b_transaction = transaction;
2539
2540 switch (jlist) {
2541 case BJ_None:
2542 J_ASSERT_JH(jh, !jh->b_committed_data);
2543 J_ASSERT_JH(jh, !jh->b_frozen_data);
2544 return;
2545 case BJ_Metadata:
2546 transaction->t_nr_buffers++;
2547 list = &transaction->t_buffers;
2548 break;
2549 case BJ_Forget:
2550 list = &transaction->t_forget;
2551 break;
2552 case BJ_Shadow:
2553 list = &transaction->t_shadow_list;
2554 break;
2555 case BJ_Reserved:
2556 list = &transaction->t_reserved_list;
2557 break;
2558 }
2559
2560 __blist_add_buffer(list, jh);
2561 jh->b_jlist = jlist;
2562
2563 if (was_dirty)
2564 set_buffer_jbddirty(bh);
2565}
2566
2567void jbd2_journal_file_buffer(struct journal_head *jh,
2568 transaction_t *transaction, int jlist)
2569{
2570 spin_lock(lock: &jh->b_state_lock);
2571 spin_lock(lock: &transaction->t_journal->j_list_lock);
2572 __jbd2_journal_file_buffer(jh, transaction, jlist);
2573 spin_unlock(lock: &transaction->t_journal->j_list_lock);
2574 spin_unlock(lock: &jh->b_state_lock);
2575}
2576
2577/*
2578 * Remove a buffer from its current buffer list in preparation for
2579 * dropping it from its current transaction entirely. If the buffer has
2580 * already started to be used by a subsequent transaction, refile the
2581 * buffer on that transaction's metadata list.
2582 *
2583 * Called under j_list_lock
2584 * Called under jh->b_state_lock
2585 *
2586 * When this function returns true, there's no next transaction to refile to
2587 * and the caller has to drop jh reference through
2588 * jbd2_journal_put_journal_head().
2589 */
2590bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2591{
2592 int was_dirty, jlist;
2593 struct buffer_head *bh = jh2bh(jh);
2594
2595 lockdep_assert_held(&jh->b_state_lock);
2596 if (jh->b_transaction)
2597 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2598
2599 /* If the buffer is now unused, just drop it. */
2600 if (jh->b_next_transaction == NULL) {
2601 __jbd2_journal_unfile_buffer(jh);
2602 return true;
2603 }
2604
2605 /*
2606 * It has been modified by a later transaction: add it to the new
2607 * transaction's metadata list.
2608 */
2609
2610 was_dirty = test_clear_buffer_jbddirty(bh);
2611 __jbd2_journal_temp_unlink_buffer(jh);
2612
2613 /*
2614 * b_transaction must be set, otherwise the new b_transaction won't
2615 * be holding jh reference
2616 */
2617 J_ASSERT_JH(jh, jh->b_transaction != NULL);
2618
2619 /*
2620 * We set b_transaction here because b_next_transaction will inherit
2621 * our jh reference and thus __jbd2_journal_file_buffer() must not
2622 * take a new one.
2623 */
2624 WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2625 WRITE_ONCE(jh->b_next_transaction, NULL);
2626 if (buffer_freed(bh))
2627 jlist = BJ_Forget;
2628 else if (jh->b_modified)
2629 jlist = BJ_Metadata;
2630 else
2631 jlist = BJ_Reserved;
2632 __jbd2_journal_file_buffer(jh, transaction: jh->b_transaction, jlist);
2633 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2634
2635 if (was_dirty)
2636 set_buffer_jbddirty(bh);
2637 return false;
2638}
2639
2640/*
2641 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2642 * bh reference so that we can safely unlock bh.
2643 *
2644 * The jh and bh may be freed by this call.
2645 */
2646void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2647{
2648 bool drop;
2649
2650 spin_lock(lock: &jh->b_state_lock);
2651 spin_lock(lock: &journal->j_list_lock);
2652 drop = __jbd2_journal_refile_buffer(jh);
2653 spin_unlock(lock: &jh->b_state_lock);
2654 spin_unlock(lock: &journal->j_list_lock);
2655 if (drop)
2656 jbd2_journal_put_journal_head(jh);
2657}
2658
2659/*
2660 * File inode in the inode list of the handle's transaction
2661 */
2662static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2663 unsigned long flags, loff_t start_byte, loff_t end_byte)
2664{
2665 transaction_t *transaction = handle->h_transaction;
2666 journal_t *journal;
2667
2668 if (is_handle_aborted(handle))
2669 return -EROFS;
2670 journal = transaction->t_journal;
2671
2672 jbd2_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2673 transaction->t_tid);
2674
2675 spin_lock(lock: &journal->j_list_lock);
2676 jinode->i_flags |= flags;
2677
2678 if (jinode->i_dirty_end) {
2679 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2680 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2681 } else {
2682 jinode->i_dirty_start = start_byte;
2683 jinode->i_dirty_end = end_byte;
2684 }
2685
2686 /* Is inode already attached where we need it? */
2687 if (jinode->i_transaction == transaction ||
2688 jinode->i_next_transaction == transaction)
2689 goto done;
2690
2691 /*
2692 * We only ever set this variable to 1 so the test is safe. Since
2693 * t_need_data_flush is likely to be set, we do the test to save some
2694 * cacheline bouncing
2695 */
2696 if (!transaction->t_need_data_flush)
2697 transaction->t_need_data_flush = 1;
2698 /* On some different transaction's list - should be
2699 * the committing one */
2700 if (jinode->i_transaction) {
2701 J_ASSERT(jinode->i_next_transaction == NULL);
2702 J_ASSERT(jinode->i_transaction ==
2703 journal->j_committing_transaction);
2704 jinode->i_next_transaction = transaction;
2705 goto done;
2706 }
2707 /* Not on any transaction list... */
2708 J_ASSERT(!jinode->i_next_transaction);
2709 jinode->i_transaction = transaction;
2710 list_add(new: &jinode->i_list, head: &transaction->t_inode_list);
2711done:
2712 spin_unlock(lock: &journal->j_list_lock);
2713
2714 return 0;
2715}
2716
2717int jbd2_journal_inode_ranged_write(handle_t *handle,
2718 struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2719{
2720 return jbd2_journal_file_inode(handle, jinode,
2721 JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2722 end_byte: start_byte + length - 1);
2723}
2724
2725int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2726 loff_t start_byte, loff_t length)
2727{
2728 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2729 start_byte, end_byte: start_byte + length - 1);
2730}
2731
2732/*
2733 * File truncate and transaction commit interact with each other in a
2734 * non-trivial way. If a transaction writing data block A is
2735 * committing, we cannot discard the data by truncate until we have
2736 * written them. Otherwise if we crashed after the transaction with
2737 * write has committed but before the transaction with truncate has
2738 * committed, we could see stale data in block A. This function is a
2739 * helper to solve this problem. It starts writeout of the truncated
2740 * part in case it is in the committing transaction.
2741 *
2742 * Filesystem code must call this function when inode is journaled in
2743 * ordered mode before truncation happens and after the inode has been
2744 * placed on orphan list with the new inode size. The second condition
2745 * avoids the race that someone writes new data and we start
2746 * committing the transaction after this function has been called but
2747 * before a transaction for truncate is started (and furthermore it
2748 * allows us to optimize the case where the addition to orphan list
2749 * happens in the same transaction as write --- we don't have to write
2750 * any data in such case).
2751 */
2752int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2753 struct jbd2_inode *jinode,
2754 loff_t new_size)
2755{
2756 transaction_t *inode_trans, *commit_trans;
2757 int ret = 0;
2758
2759 /* This is a quick check to avoid locking if not necessary */
2760 if (!jinode->i_transaction)
2761 goto out;
2762 /* Locks are here just to force reading of recent values, it is
2763 * enough that the transaction was not committing before we started
2764 * a transaction adding the inode to orphan list */
2765 read_lock(&journal->j_state_lock);
2766 commit_trans = journal->j_committing_transaction;
2767 read_unlock(&journal->j_state_lock);
2768 spin_lock(lock: &journal->j_list_lock);
2769 inode_trans = jinode->i_transaction;
2770 spin_unlock(lock: &journal->j_list_lock);
2771 if (inode_trans == commit_trans) {
2772 ret = filemap_fdatawrite_range(mapping: jinode->i_vfs_inode->i_mapping,
2773 start: new_size, LLONG_MAX);
2774 if (ret)
2775 jbd2_journal_abort(journal, ret);
2776 }
2777out:
2778 return ret;
2779}
2780

source code of linux/fs/jbd2/transaction.c