1 | /* CPU control. |
---|---|
2 | * (C) 2001, 2002, 2003, 2004 Rusty Russell |
3 | * |
4 | * This code is licenced under the GPL. |
5 | */ |
6 | #include <linux/sched/mm.h> |
7 | #include <linux/proc_fs.h> |
8 | #include <linux/smp.h> |
9 | #include <linux/init.h> |
10 | #include <linux/notifier.h> |
11 | #include <linux/sched/signal.h> |
12 | #include <linux/sched/hotplug.h> |
13 | #include <linux/sched/isolation.h> |
14 | #include <linux/sched/task.h> |
15 | #include <linux/sched/smt.h> |
16 | #include <linux/unistd.h> |
17 | #include <linux/cpu.h> |
18 | #include <linux/oom.h> |
19 | #include <linux/rcupdate.h> |
20 | #include <linux/delay.h> |
21 | #include <linux/export.h> |
22 | #include <linux/bug.h> |
23 | #include <linux/kthread.h> |
24 | #include <linux/stop_machine.h> |
25 | #include <linux/mutex.h> |
26 | #include <linux/gfp.h> |
27 | #include <linux/suspend.h> |
28 | #include <linux/lockdep.h> |
29 | #include <linux/tick.h> |
30 | #include <linux/irq.h> |
31 | #include <linux/nmi.h> |
32 | #include <linux/smpboot.h> |
33 | #include <linux/relay.h> |
34 | #include <linux/slab.h> |
35 | #include <linux/scs.h> |
36 | #include <linux/percpu-rwsem.h> |
37 | #include <linux/cpuset.h> |
38 | #include <linux/random.h> |
39 | #include <linux/cc_platform.h> |
40 | |
41 | #include <trace/events/power.h> |
42 | #define CREATE_TRACE_POINTS |
43 | #include <trace/events/cpuhp.h> |
44 | |
45 | #include "smpboot.h" |
46 | |
47 | /** |
48 | * struct cpuhp_cpu_state - Per cpu hotplug state storage |
49 | * @state: The current cpu state |
50 | * @target: The target state |
51 | * @fail: Current CPU hotplug callback state |
52 | * @thread: Pointer to the hotplug thread |
53 | * @should_run: Thread should execute |
54 | * @rollback: Perform a rollback |
55 | * @single: Single callback invocation |
56 | * @bringup: Single callback bringup or teardown selector |
57 | * @node: Remote CPU node; for multi-instance, do a |
58 | * single entry callback for install/remove |
59 | * @last: For multi-instance rollback, remember how far we got |
60 | * @cb_state: The state for a single callback (install/uninstall) |
61 | * @result: Result of the operation |
62 | * @ap_sync_state: State for AP synchronization |
63 | * @done_up: Signal completion to the issuer of the task for cpu-up |
64 | * @done_down: Signal completion to the issuer of the task for cpu-down |
65 | */ |
66 | struct cpuhp_cpu_state { |
67 | enum cpuhp_state state; |
68 | enum cpuhp_state target; |
69 | enum cpuhp_state fail; |
70 | #ifdef CONFIG_SMP |
71 | struct task_struct *thread; |
72 | bool should_run; |
73 | bool rollback; |
74 | bool single; |
75 | bool bringup; |
76 | struct hlist_node *node; |
77 | struct hlist_node *last; |
78 | enum cpuhp_state cb_state; |
79 | int result; |
80 | atomic_t ap_sync_state; |
81 | struct completion done_up; |
82 | struct completion done_down; |
83 | #endif |
84 | }; |
85 | |
86 | static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = { |
87 | .fail = CPUHP_INVALID, |
88 | }; |
89 | |
90 | #ifdef CONFIG_SMP |
91 | cpumask_t cpus_booted_once_mask; |
92 | #endif |
93 | |
94 | #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP) |
95 | static struct lockdep_map cpuhp_state_up_map = |
96 | STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map); |
97 | static struct lockdep_map cpuhp_state_down_map = |
98 | STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map); |
99 | |
100 | |
101 | static inline void cpuhp_lock_acquire(bool bringup) |
102 | { |
103 | lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); |
104 | } |
105 | |
106 | static inline void cpuhp_lock_release(bool bringup) |
107 | { |
108 | lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map); |
109 | } |
110 | #else |
111 | |
112 | static inline void cpuhp_lock_acquire(bool bringup) { } |
113 | static inline void cpuhp_lock_release(bool bringup) { } |
114 | |
115 | #endif |
116 | |
117 | /** |
118 | * struct cpuhp_step - Hotplug state machine step |
119 | * @name: Name of the step |
120 | * @startup: Startup function of the step |
121 | * @teardown: Teardown function of the step |
122 | * @cant_stop: Bringup/teardown can't be stopped at this step |
123 | * @multi_instance: State has multiple instances which get added afterwards |
124 | */ |
125 | struct cpuhp_step { |
126 | const char *name; |
127 | union { |
128 | int (*single)(unsigned int cpu); |
129 | int (*multi)(unsigned int cpu, |
130 | struct hlist_node *node); |
131 | } startup; |
132 | union { |
133 | int (*single)(unsigned int cpu); |
134 | int (*multi)(unsigned int cpu, |
135 | struct hlist_node *node); |
136 | } teardown; |
137 | /* private: */ |
138 | struct hlist_head list; |
139 | /* public: */ |
140 | bool cant_stop; |
141 | bool multi_instance; |
142 | }; |
143 | |
144 | static DEFINE_MUTEX(cpuhp_state_mutex); |
145 | static struct cpuhp_step cpuhp_hp_states[]; |
146 | |
147 | static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state) |
148 | { |
149 | return cpuhp_hp_states + state; |
150 | } |
151 | |
152 | static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step) |
153 | { |
154 | return bringup ? !step->startup.single : !step->teardown.single; |
155 | } |
156 | |
157 | /** |
158 | * cpuhp_invoke_callback - Invoke the callbacks for a given state |
159 | * @cpu: The cpu for which the callback should be invoked |
160 | * @state: The state to do callbacks for |
161 | * @bringup: True if the bringup callback should be invoked |
162 | * @node: For multi-instance, do a single entry callback for install/remove |
163 | * @lastp: For multi-instance rollback, remember how far we got |
164 | * |
165 | * Called from cpu hotplug and from the state register machinery. |
166 | * |
167 | * Return: %0 on success or a negative errno code |
168 | */ |
169 | static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state, |
170 | bool bringup, struct hlist_node *node, |
171 | struct hlist_node **lastp) |
172 | { |
173 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
174 | struct cpuhp_step *step = cpuhp_get_step(state); |
175 | int (*cbm)(unsigned int cpu, struct hlist_node *node); |
176 | int (*cb)(unsigned int cpu); |
177 | int ret, cnt; |
178 | |
179 | if (st->fail == state) { |
180 | st->fail = CPUHP_INVALID; |
181 | return -EAGAIN; |
182 | } |
183 | |
184 | if (cpuhp_step_empty(bringup, step)) { |
185 | WARN_ON_ONCE(1); |
186 | return 0; |
187 | } |
188 | |
189 | if (!step->multi_instance) { |
190 | WARN_ON_ONCE(lastp && *lastp); |
191 | cb = bringup ? step->startup.single : step->teardown.single; |
192 | |
193 | trace_cpuhp_enter(cpu, target: st->target, idx: state, fun: cb); |
194 | ret = cb(cpu); |
195 | trace_cpuhp_exit(cpu, state: st->state, idx: state, ret); |
196 | return ret; |
197 | } |
198 | cbm = bringup ? step->startup.multi : step->teardown.multi; |
199 | |
200 | /* Single invocation for instance add/remove */ |
201 | if (node) { |
202 | WARN_ON_ONCE(lastp && *lastp); |
203 | trace_cpuhp_multi_enter(cpu, target: st->target, idx: state, fun: cbm, node); |
204 | ret = cbm(cpu, node); |
205 | trace_cpuhp_exit(cpu, state: st->state, idx: state, ret); |
206 | return ret; |
207 | } |
208 | |
209 | /* State transition. Invoke on all instances */ |
210 | cnt = 0; |
211 | hlist_for_each(node, &step->list) { |
212 | if (lastp && node == *lastp) |
213 | break; |
214 | |
215 | trace_cpuhp_multi_enter(cpu, target: st->target, idx: state, fun: cbm, node); |
216 | ret = cbm(cpu, node); |
217 | trace_cpuhp_exit(cpu, state: st->state, idx: state, ret); |
218 | if (ret) { |
219 | if (!lastp) |
220 | goto err; |
221 | |
222 | *lastp = node; |
223 | return ret; |
224 | } |
225 | cnt++; |
226 | } |
227 | if (lastp) |
228 | *lastp = NULL; |
229 | return 0; |
230 | err: |
231 | /* Rollback the instances if one failed */ |
232 | cbm = !bringup ? step->startup.multi : step->teardown.multi; |
233 | if (!cbm) |
234 | return ret; |
235 | |
236 | hlist_for_each(node, &step->list) { |
237 | if (!cnt--) |
238 | break; |
239 | |
240 | trace_cpuhp_multi_enter(cpu, target: st->target, idx: state, fun: cbm, node); |
241 | ret = cbm(cpu, node); |
242 | trace_cpuhp_exit(cpu, state: st->state, idx: state, ret); |
243 | /* |
244 | * Rollback must not fail, |
245 | */ |
246 | WARN_ON_ONCE(ret); |
247 | } |
248 | return ret; |
249 | } |
250 | |
251 | #ifdef CONFIG_SMP |
252 | static bool cpuhp_is_ap_state(enum cpuhp_state state) |
253 | { |
254 | /* |
255 | * The extra check for CPUHP_TEARDOWN_CPU is only for documentation |
256 | * purposes as that state is handled explicitly in cpu_down. |
257 | */ |
258 | return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU; |
259 | } |
260 | |
261 | static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup) |
262 | { |
263 | struct completion *done = bringup ? &st->done_up : &st->done_down; |
264 | wait_for_completion(done); |
265 | } |
266 | |
267 | static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup) |
268 | { |
269 | struct completion *done = bringup ? &st->done_up : &st->done_down; |
270 | complete(done); |
271 | } |
272 | |
273 | /* |
274 | * The former STARTING/DYING states, ran with IRQs disabled and must not fail. |
275 | */ |
276 | static bool cpuhp_is_atomic_state(enum cpuhp_state state) |
277 | { |
278 | return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE; |
279 | } |
280 | |
281 | /* Synchronization state management */ |
282 | enum cpuhp_sync_state { |
283 | SYNC_STATE_DEAD, |
284 | SYNC_STATE_KICKED, |
285 | SYNC_STATE_SHOULD_DIE, |
286 | SYNC_STATE_ALIVE, |
287 | SYNC_STATE_SHOULD_ONLINE, |
288 | SYNC_STATE_ONLINE, |
289 | }; |
290 | |
291 | #ifdef CONFIG_HOTPLUG_CORE_SYNC |
292 | /** |
293 | * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown |
294 | * @state: The synchronization state to set |
295 | * |
296 | * No synchronization point. Just update of the synchronization state, but implies |
297 | * a full barrier so that the AP changes are visible before the control CPU proceeds. |
298 | */ |
299 | static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) |
300 | { |
301 | atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); |
302 | |
303 | (void)atomic_xchg(v: st, new: state); |
304 | } |
305 | |
306 | void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); } |
307 | |
308 | static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state, |
309 | enum cpuhp_sync_state next_state) |
310 | { |
311 | atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); |
312 | ktime_t now, end, start = ktime_get(); |
313 | int sync; |
314 | |
315 | end = start + 10ULL * NSEC_PER_SEC; |
316 | |
317 | sync = atomic_read(v: st); |
318 | while (1) { |
319 | if (sync == state) { |
320 | if (!atomic_try_cmpxchg(v: st, old: &sync, new: next_state)) |
321 | continue; |
322 | return true; |
323 | } |
324 | |
325 | now = ktime_get(); |
326 | if (now > end) { |
327 | /* Timeout. Leave the state unchanged */ |
328 | return false; |
329 | } else if (now - start < NSEC_PER_MSEC) { |
330 | /* Poll for one millisecond */ |
331 | arch_cpuhp_sync_state_poll(); |
332 | } else { |
333 | usleep_range(USEC_PER_MSEC, max: 2 * USEC_PER_MSEC); |
334 | } |
335 | sync = atomic_read(v: st); |
336 | } |
337 | return true; |
338 | } |
339 | #else /* CONFIG_HOTPLUG_CORE_SYNC */ |
340 | static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { } |
341 | #endif /* !CONFIG_HOTPLUG_CORE_SYNC */ |
342 | |
343 | #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD |
344 | /** |
345 | * cpuhp_ap_report_dead - Update synchronization state to DEAD |
346 | * |
347 | * No synchronization point. Just update of the synchronization state. |
348 | */ |
349 | void cpuhp_ap_report_dead(void) |
350 | { |
351 | cpuhp_ap_update_sync_state(state: SYNC_STATE_DEAD); |
352 | } |
353 | |
354 | void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { } |
355 | |
356 | /* |
357 | * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down |
358 | * because the AP cannot issue complete() at this stage. |
359 | */ |
360 | static void cpuhp_bp_sync_dead(unsigned int cpu) |
361 | { |
362 | atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); |
363 | int sync = atomic_read(v: st); |
364 | |
365 | do { |
366 | /* CPU can have reported dead already. Don't overwrite that! */ |
367 | if (sync == SYNC_STATE_DEAD) |
368 | break; |
369 | } while (!atomic_try_cmpxchg(v: st, old: &sync, new: SYNC_STATE_SHOULD_DIE)); |
370 | |
371 | if (cpuhp_wait_for_sync_state(cpu, state: SYNC_STATE_DEAD, next_state: SYNC_STATE_DEAD)) { |
372 | /* CPU reached dead state. Invoke the cleanup function */ |
373 | arch_cpuhp_cleanup_dead_cpu(cpu); |
374 | return; |
375 | } |
376 | |
377 | /* No further action possible. Emit message and give up. */ |
378 | pr_err("CPU%u failed to report dead state\n", cpu); |
379 | } |
380 | #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */ |
381 | static inline void cpuhp_bp_sync_dead(unsigned int cpu) { } |
382 | #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */ |
383 | |
384 | #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL |
385 | /** |
386 | * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive |
387 | * |
388 | * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits |
389 | * for the BP to release it. |
390 | */ |
391 | void cpuhp_ap_sync_alive(void) |
392 | { |
393 | atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state); |
394 | |
395 | cpuhp_ap_update_sync_state(state: SYNC_STATE_ALIVE); |
396 | |
397 | /* Wait for the control CPU to release it. */ |
398 | while (atomic_read(v: st) != SYNC_STATE_SHOULD_ONLINE) |
399 | cpu_relax(); |
400 | } |
401 | |
402 | static bool cpuhp_can_boot_ap(unsigned int cpu) |
403 | { |
404 | atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu); |
405 | int sync = atomic_read(v: st); |
406 | |
407 | again: |
408 | switch (sync) { |
409 | case SYNC_STATE_DEAD: |
410 | /* CPU is properly dead */ |
411 | break; |
412 | case SYNC_STATE_KICKED: |
413 | /* CPU did not come up in previous attempt */ |
414 | break; |
415 | case SYNC_STATE_ALIVE: |
416 | /* CPU is stuck cpuhp_ap_sync_alive(). */ |
417 | break; |
418 | default: |
419 | /* CPU failed to report online or dead and is in limbo state. */ |
420 | return false; |
421 | } |
422 | |
423 | /* Prepare for booting */ |
424 | if (!atomic_try_cmpxchg(v: st, old: &sync, new: SYNC_STATE_KICKED)) |
425 | goto again; |
426 | |
427 | return true; |
428 | } |
429 | |
430 | void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { } |
431 | |
432 | /* |
433 | * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up |
434 | * because the AP cannot issue complete() so early in the bringup. |
435 | */ |
436 | static int cpuhp_bp_sync_alive(unsigned int cpu) |
437 | { |
438 | int ret = 0; |
439 | |
440 | if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL)) |
441 | return 0; |
442 | |
443 | if (!cpuhp_wait_for_sync_state(cpu, state: SYNC_STATE_ALIVE, next_state: SYNC_STATE_SHOULD_ONLINE)) { |
444 | pr_err("CPU%u failed to report alive state\n", cpu); |
445 | ret = -EIO; |
446 | } |
447 | |
448 | /* Let the architecture cleanup the kick alive mechanics. */ |
449 | arch_cpuhp_cleanup_kick_cpu(cpu); |
450 | return ret; |
451 | } |
452 | #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */ |
453 | static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; } |
454 | static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; } |
455 | #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */ |
456 | |
457 | /* Serializes the updates to cpu_online_mask, cpu_present_mask */ |
458 | static DEFINE_MUTEX(cpu_add_remove_lock); |
459 | bool cpuhp_tasks_frozen; |
460 | EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen); |
461 | |
462 | /* |
463 | * The following two APIs (cpu_maps_update_begin/done) must be used when |
464 | * attempting to serialize the updates to cpu_online_mask & cpu_present_mask. |
465 | */ |
466 | void cpu_maps_update_begin(void) |
467 | { |
468 | mutex_lock(&cpu_add_remove_lock); |
469 | } |
470 | |
471 | void cpu_maps_update_done(void) |
472 | { |
473 | mutex_unlock(lock: &cpu_add_remove_lock); |
474 | } |
475 | |
476 | /* |
477 | * If set, cpu_up and cpu_down will return -EBUSY and do nothing. |
478 | * Should always be manipulated under cpu_add_remove_lock |
479 | */ |
480 | static int cpu_hotplug_disabled; |
481 | |
482 | #ifdef CONFIG_HOTPLUG_CPU |
483 | |
484 | DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock); |
485 | |
486 | static bool cpu_hotplug_offline_disabled __ro_after_init; |
487 | |
488 | void cpus_read_lock(void) |
489 | { |
490 | percpu_down_read(sem: &cpu_hotplug_lock); |
491 | } |
492 | EXPORT_SYMBOL_GPL(cpus_read_lock); |
493 | |
494 | int cpus_read_trylock(void) |
495 | { |
496 | return percpu_down_read_trylock(sem: &cpu_hotplug_lock); |
497 | } |
498 | EXPORT_SYMBOL_GPL(cpus_read_trylock); |
499 | |
500 | void cpus_read_unlock(void) |
501 | { |
502 | percpu_up_read(sem: &cpu_hotplug_lock); |
503 | } |
504 | EXPORT_SYMBOL_GPL(cpus_read_unlock); |
505 | |
506 | void cpus_write_lock(void) |
507 | { |
508 | percpu_down_write(&cpu_hotplug_lock); |
509 | } |
510 | |
511 | void cpus_write_unlock(void) |
512 | { |
513 | percpu_up_write(&cpu_hotplug_lock); |
514 | } |
515 | |
516 | void lockdep_assert_cpus_held(void) |
517 | { |
518 | /* |
519 | * We can't have hotplug operations before userspace starts running, |
520 | * and some init codepaths will knowingly not take the hotplug lock. |
521 | * This is all valid, so mute lockdep until it makes sense to report |
522 | * unheld locks. |
523 | */ |
524 | if (system_state < SYSTEM_RUNNING) |
525 | return; |
526 | |
527 | percpu_rwsem_assert_held(&cpu_hotplug_lock); |
528 | } |
529 | EXPORT_SYMBOL_GPL(lockdep_assert_cpus_held); |
530 | |
531 | #ifdef CONFIG_LOCKDEP |
532 | int lockdep_is_cpus_held(void) |
533 | { |
534 | return percpu_rwsem_is_held(&cpu_hotplug_lock); |
535 | } |
536 | #endif |
537 | |
538 | static void lockdep_acquire_cpus_lock(void) |
539 | { |
540 | rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_); |
541 | } |
542 | |
543 | static void lockdep_release_cpus_lock(void) |
544 | { |
545 | rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_); |
546 | } |
547 | |
548 | /* Declare CPU offlining not supported */ |
549 | void cpu_hotplug_disable_offlining(void) |
550 | { |
551 | cpu_maps_update_begin(); |
552 | cpu_hotplug_offline_disabled = true; |
553 | cpu_maps_update_done(); |
554 | } |
555 | |
556 | /* |
557 | * Wait for currently running CPU hotplug operations to complete (if any) and |
558 | * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects |
559 | * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the |
560 | * hotplug path before performing hotplug operations. So acquiring that lock |
561 | * guarantees mutual exclusion from any currently running hotplug operations. |
562 | */ |
563 | void cpu_hotplug_disable(void) |
564 | { |
565 | cpu_maps_update_begin(); |
566 | cpu_hotplug_disabled++; |
567 | cpu_maps_update_done(); |
568 | } |
569 | EXPORT_SYMBOL_GPL(cpu_hotplug_disable); |
570 | |
571 | static void __cpu_hotplug_enable(void) |
572 | { |
573 | if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n")) |
574 | return; |
575 | cpu_hotplug_disabled--; |
576 | } |
577 | |
578 | void cpu_hotplug_enable(void) |
579 | { |
580 | cpu_maps_update_begin(); |
581 | __cpu_hotplug_enable(); |
582 | cpu_maps_update_done(); |
583 | } |
584 | EXPORT_SYMBOL_GPL(cpu_hotplug_enable); |
585 | |
586 | #else |
587 | |
588 | static void lockdep_acquire_cpus_lock(void) |
589 | { |
590 | } |
591 | |
592 | static void lockdep_release_cpus_lock(void) |
593 | { |
594 | } |
595 | |
596 | #endif /* CONFIG_HOTPLUG_CPU */ |
597 | |
598 | /* |
599 | * Architectures that need SMT-specific errata handling during SMT hotplug |
600 | * should override this. |
601 | */ |
602 | void __weak arch_smt_update(void) { } |
603 | |
604 | #ifdef CONFIG_HOTPLUG_SMT |
605 | |
606 | enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED; |
607 | static unsigned int cpu_smt_max_threads __ro_after_init; |
608 | unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX; |
609 | |
610 | void __init cpu_smt_disable(bool force) |
611 | { |
612 | if (!cpu_smt_possible()) |
613 | return; |
614 | |
615 | if (force) { |
616 | pr_info("SMT: Force disabled\n"); |
617 | cpu_smt_control = CPU_SMT_FORCE_DISABLED; |
618 | } else { |
619 | pr_info("SMT: disabled\n"); |
620 | cpu_smt_control = CPU_SMT_DISABLED; |
621 | } |
622 | cpu_smt_num_threads = 1; |
623 | } |
624 | |
625 | /* |
626 | * The decision whether SMT is supported can only be done after the full |
627 | * CPU identification. Called from architecture code. |
628 | */ |
629 | void __init cpu_smt_set_num_threads(unsigned int num_threads, |
630 | unsigned int max_threads) |
631 | { |
632 | WARN_ON(!num_threads || (num_threads > max_threads)); |
633 | |
634 | if (max_threads == 1) |
635 | cpu_smt_control = CPU_SMT_NOT_SUPPORTED; |
636 | |
637 | cpu_smt_max_threads = max_threads; |
638 | |
639 | /* |
640 | * If SMT has been disabled via the kernel command line or SMT is |
641 | * not supported, set cpu_smt_num_threads to 1 for consistency. |
642 | * If enabled, take the architecture requested number of threads |
643 | * to bring up into account. |
644 | */ |
645 | if (cpu_smt_control != CPU_SMT_ENABLED) |
646 | cpu_smt_num_threads = 1; |
647 | else if (num_threads < cpu_smt_num_threads) |
648 | cpu_smt_num_threads = num_threads; |
649 | } |
650 | |
651 | static int __init smt_cmdline_disable(char *str) |
652 | { |
653 | cpu_smt_disable(force: str && !strcmp(str, "force")); |
654 | return 0; |
655 | } |
656 | early_param("nosmt", smt_cmdline_disable); |
657 | |
658 | /* |
659 | * For Archicture supporting partial SMT states check if the thread is allowed. |
660 | * Otherwise this has already been checked through cpu_smt_max_threads when |
661 | * setting the SMT level. |
662 | */ |
663 | static inline bool cpu_smt_thread_allowed(unsigned int cpu) |
664 | { |
665 | #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC |
666 | return topology_smt_thread_allowed(cpu); |
667 | #else |
668 | return true; |
669 | #endif |
670 | } |
671 | |
672 | static inline bool cpu_bootable(unsigned int cpu) |
673 | { |
674 | if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) |
675 | return true; |
676 | |
677 | /* All CPUs are bootable if controls are not configured */ |
678 | if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED) |
679 | return true; |
680 | |
681 | /* All CPUs are bootable if CPU is not SMT capable */ |
682 | if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) |
683 | return true; |
684 | |
685 | if (topology_is_primary_thread(cpu)) |
686 | return true; |
687 | |
688 | /* |
689 | * On x86 it's required to boot all logical CPUs at least once so |
690 | * that the init code can get a chance to set CR4.MCE on each |
691 | * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any |
692 | * core will shutdown the machine. |
693 | */ |
694 | return !cpumask_test_cpu(cpu, cpumask: &cpus_booted_once_mask); |
695 | } |
696 | |
697 | /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */ |
698 | bool cpu_smt_possible(void) |
699 | { |
700 | return cpu_smt_control != CPU_SMT_FORCE_DISABLED && |
701 | cpu_smt_control != CPU_SMT_NOT_SUPPORTED; |
702 | } |
703 | EXPORT_SYMBOL_GPL(cpu_smt_possible); |
704 | |
705 | #else |
706 | static inline bool cpu_bootable(unsigned int cpu) { return true; } |
707 | #endif |
708 | |
709 | static inline enum cpuhp_state |
710 | cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target) |
711 | { |
712 | enum cpuhp_state prev_state = st->state; |
713 | bool bringup = st->state < target; |
714 | |
715 | st->rollback = false; |
716 | st->last = NULL; |
717 | |
718 | st->target = target; |
719 | st->single = false; |
720 | st->bringup = bringup; |
721 | if (cpu_dying(cpu) != !bringup) |
722 | set_cpu_dying(cpu, !bringup); |
723 | |
724 | return prev_state; |
725 | } |
726 | |
727 | static inline void |
728 | cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st, |
729 | enum cpuhp_state prev_state) |
730 | { |
731 | bool bringup = !st->bringup; |
732 | |
733 | st->target = prev_state; |
734 | |
735 | /* |
736 | * Already rolling back. No need invert the bringup value or to change |
737 | * the current state. |
738 | */ |
739 | if (st->rollback) |
740 | return; |
741 | |
742 | st->rollback = true; |
743 | |
744 | /* |
745 | * If we have st->last we need to undo partial multi_instance of this |
746 | * state first. Otherwise start undo at the previous state. |
747 | */ |
748 | if (!st->last) { |
749 | if (st->bringup) |
750 | st->state--; |
751 | else |
752 | st->state++; |
753 | } |
754 | |
755 | st->bringup = bringup; |
756 | if (cpu_dying(cpu) != !bringup) |
757 | set_cpu_dying(cpu, !bringup); |
758 | } |
759 | |
760 | /* Regular hotplug invocation of the AP hotplug thread */ |
761 | static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st) |
762 | { |
763 | if (!st->single && st->state == st->target) |
764 | return; |
765 | |
766 | st->result = 0; |
767 | /* |
768 | * Make sure the above stores are visible before should_run becomes |
769 | * true. Paired with the mb() above in cpuhp_thread_fun() |
770 | */ |
771 | smp_mb(); |
772 | st->should_run = true; |
773 | wake_up_process(tsk: st->thread); |
774 | wait_for_ap_thread(st, bringup: st->bringup); |
775 | } |
776 | |
777 | static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st, |
778 | enum cpuhp_state target) |
779 | { |
780 | enum cpuhp_state prev_state; |
781 | int ret; |
782 | |
783 | prev_state = cpuhp_set_state(cpu, st, target); |
784 | __cpuhp_kick_ap(st); |
785 | if ((ret = st->result)) { |
786 | cpuhp_reset_state(cpu, st, prev_state); |
787 | __cpuhp_kick_ap(st); |
788 | } |
789 | |
790 | return ret; |
791 | } |
792 | |
793 | static int bringup_wait_for_ap_online(unsigned int cpu) |
794 | { |
795 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
796 | |
797 | /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */ |
798 | wait_for_ap_thread(st, bringup: true); |
799 | if (WARN_ON_ONCE((!cpu_online(cpu)))) |
800 | return -ECANCELED; |
801 | |
802 | /* Unpark the hotplug thread of the target cpu */ |
803 | kthread_unpark(k: st->thread); |
804 | |
805 | /* |
806 | * SMT soft disabling on X86 requires to bring the CPU out of the |
807 | * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The |
808 | * CPU marked itself as booted_once in notify_cpu_starting() so the |
809 | * cpu_bootable() check will now return false if this is not the |
810 | * primary sibling. |
811 | */ |
812 | if (!cpu_bootable(cpu)) |
813 | return -ECANCELED; |
814 | return 0; |
815 | } |
816 | |
817 | #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP |
818 | static int cpuhp_kick_ap_alive(unsigned int cpu) |
819 | { |
820 | if (!cpuhp_can_boot_ap(cpu)) |
821 | return -EAGAIN; |
822 | |
823 | return arch_cpuhp_kick_ap_alive(cpu, tidle: idle_thread_get(cpu)); |
824 | } |
825 | |
826 | static int cpuhp_bringup_ap(unsigned int cpu) |
827 | { |
828 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
829 | int ret; |
830 | |
831 | /* |
832 | * Some architectures have to walk the irq descriptors to |
833 | * setup the vector space for the cpu which comes online. |
834 | * Prevent irq alloc/free across the bringup. |
835 | */ |
836 | irq_lock_sparse(); |
837 | |
838 | ret = cpuhp_bp_sync_alive(cpu); |
839 | if (ret) |
840 | goto out_unlock; |
841 | |
842 | ret = bringup_wait_for_ap_online(cpu); |
843 | if (ret) |
844 | goto out_unlock; |
845 | |
846 | irq_unlock_sparse(); |
847 | |
848 | if (st->target <= CPUHP_AP_ONLINE_IDLE) |
849 | return 0; |
850 | |
851 | return cpuhp_kick_ap(cpu, st, target: st->target); |
852 | |
853 | out_unlock: |
854 | irq_unlock_sparse(); |
855 | return ret; |
856 | } |
857 | #else |
858 | static int bringup_cpu(unsigned int cpu) |
859 | { |
860 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
861 | struct task_struct *idle = idle_thread_get(cpu); |
862 | int ret; |
863 | |
864 | if (!cpuhp_can_boot_ap(cpu)) |
865 | return -EAGAIN; |
866 | |
867 | /* |
868 | * Some architectures have to walk the irq descriptors to |
869 | * setup the vector space for the cpu which comes online. |
870 | * |
871 | * Prevent irq alloc/free across the bringup by acquiring the |
872 | * sparse irq lock. Hold it until the upcoming CPU completes the |
873 | * startup in cpuhp_online_idle() which allows to avoid |
874 | * intermediate synchronization points in the architecture code. |
875 | */ |
876 | irq_lock_sparse(); |
877 | |
878 | ret = __cpu_up(cpu, idle); |
879 | if (ret) |
880 | goto out_unlock; |
881 | |
882 | ret = cpuhp_bp_sync_alive(cpu); |
883 | if (ret) |
884 | goto out_unlock; |
885 | |
886 | ret = bringup_wait_for_ap_online(cpu); |
887 | if (ret) |
888 | goto out_unlock; |
889 | |
890 | irq_unlock_sparse(); |
891 | |
892 | if (st->target <= CPUHP_AP_ONLINE_IDLE) |
893 | return 0; |
894 | |
895 | return cpuhp_kick_ap(cpu, st, st->target); |
896 | |
897 | out_unlock: |
898 | irq_unlock_sparse(); |
899 | return ret; |
900 | } |
901 | #endif |
902 | |
903 | static int finish_cpu(unsigned int cpu) |
904 | { |
905 | struct task_struct *idle = idle_thread_get(cpu); |
906 | struct mm_struct *mm = idle->active_mm; |
907 | |
908 | /* |
909 | * sched_force_init_mm() ensured the use of &init_mm, |
910 | * drop that refcount now that the CPU has stopped. |
911 | */ |
912 | WARN_ON(mm != &init_mm); |
913 | idle->active_mm = NULL; |
914 | mmdrop_lazy_tlb(mm); |
915 | |
916 | return 0; |
917 | } |
918 | |
919 | /* |
920 | * Hotplug state machine related functions |
921 | */ |
922 | |
923 | /* |
924 | * Get the next state to run. Empty ones will be skipped. Returns true if a |
925 | * state must be run. |
926 | * |
927 | * st->state will be modified ahead of time, to match state_to_run, as if it |
928 | * has already ran. |
929 | */ |
930 | static bool cpuhp_next_state(bool bringup, |
931 | enum cpuhp_state *state_to_run, |
932 | struct cpuhp_cpu_state *st, |
933 | enum cpuhp_state target) |
934 | { |
935 | do { |
936 | if (bringup) { |
937 | if (st->state >= target) |
938 | return false; |
939 | |
940 | *state_to_run = ++st->state; |
941 | } else { |
942 | if (st->state <= target) |
943 | return false; |
944 | |
945 | *state_to_run = st->state--; |
946 | } |
947 | |
948 | if (!cpuhp_step_empty(bringup, step: cpuhp_get_step(state: *state_to_run))) |
949 | break; |
950 | } while (true); |
951 | |
952 | return true; |
953 | } |
954 | |
955 | static int __cpuhp_invoke_callback_range(bool bringup, |
956 | unsigned int cpu, |
957 | struct cpuhp_cpu_state *st, |
958 | enum cpuhp_state target, |
959 | bool nofail) |
960 | { |
961 | enum cpuhp_state state; |
962 | int ret = 0; |
963 | |
964 | while (cpuhp_next_state(bringup, state_to_run: &state, st, target)) { |
965 | int err; |
966 | |
967 | err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL); |
968 | if (!err) |
969 | continue; |
970 | |
971 | if (nofail) { |
972 | pr_warn("CPU %u %s state %s (%d) failed (%d)\n", |
973 | cpu, bringup ? "UP": "DOWN", |
974 | cpuhp_get_step(st->state)->name, |
975 | st->state, err); |
976 | ret = -1; |
977 | } else { |
978 | ret = err; |
979 | break; |
980 | } |
981 | } |
982 | |
983 | return ret; |
984 | } |
985 | |
986 | static inline int cpuhp_invoke_callback_range(bool bringup, |
987 | unsigned int cpu, |
988 | struct cpuhp_cpu_state *st, |
989 | enum cpuhp_state target) |
990 | { |
991 | return __cpuhp_invoke_callback_range(bringup, cpu, st, target, nofail: false); |
992 | } |
993 | |
994 | static inline void cpuhp_invoke_callback_range_nofail(bool bringup, |
995 | unsigned int cpu, |
996 | struct cpuhp_cpu_state *st, |
997 | enum cpuhp_state target) |
998 | { |
999 | __cpuhp_invoke_callback_range(bringup, cpu, st, target, nofail: true); |
1000 | } |
1001 | |
1002 | static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st) |
1003 | { |
1004 | if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) |
1005 | return true; |
1006 | /* |
1007 | * When CPU hotplug is disabled, then taking the CPU down is not |
1008 | * possible because takedown_cpu() and the architecture and |
1009 | * subsystem specific mechanisms are not available. So the CPU |
1010 | * which would be completely unplugged again needs to stay around |
1011 | * in the current state. |
1012 | */ |
1013 | return st->state <= CPUHP_BRINGUP_CPU; |
1014 | } |
1015 | |
1016 | static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, |
1017 | enum cpuhp_state target) |
1018 | { |
1019 | enum cpuhp_state prev_state = st->state; |
1020 | int ret = 0; |
1021 | |
1022 | ret = cpuhp_invoke_callback_range(bringup: true, cpu, st, target); |
1023 | if (ret) { |
1024 | pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n", |
1025 | ret, cpu, cpuhp_get_step(st->state)->name, |
1026 | st->state); |
1027 | |
1028 | cpuhp_reset_state(cpu, st, prev_state); |
1029 | if (can_rollback_cpu(st)) |
1030 | WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, |
1031 | prev_state)); |
1032 | } |
1033 | return ret; |
1034 | } |
1035 | |
1036 | /* |
1037 | * The cpu hotplug threads manage the bringup and teardown of the cpus |
1038 | */ |
1039 | static int cpuhp_should_run(unsigned int cpu) |
1040 | { |
1041 | struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); |
1042 | |
1043 | return st->should_run; |
1044 | } |
1045 | |
1046 | /* |
1047 | * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke |
1048 | * callbacks when a state gets [un]installed at runtime. |
1049 | * |
1050 | * Each invocation of this function by the smpboot thread does a single AP |
1051 | * state callback. |
1052 | * |
1053 | * It has 3 modes of operation: |
1054 | * - single: runs st->cb_state |
1055 | * - up: runs ++st->state, while st->state < st->target |
1056 | * - down: runs st->state--, while st->state > st->target |
1057 | * |
1058 | * When complete or on error, should_run is cleared and the completion is fired. |
1059 | */ |
1060 | static void cpuhp_thread_fun(unsigned int cpu) |
1061 | { |
1062 | struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); |
1063 | bool bringup = st->bringup; |
1064 | enum cpuhp_state state; |
1065 | |
1066 | if (WARN_ON_ONCE(!st->should_run)) |
1067 | return; |
1068 | |
1069 | /* |
1070 | * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures |
1071 | * that if we see ->should_run we also see the rest of the state. |
1072 | */ |
1073 | smp_mb(); |
1074 | |
1075 | /* |
1076 | * The BP holds the hotplug lock, but we're now running on the AP, |
1077 | * ensure that anybody asserting the lock is held, will actually find |
1078 | * it so. |
1079 | */ |
1080 | lockdep_acquire_cpus_lock(); |
1081 | cpuhp_lock_acquire(bringup); |
1082 | |
1083 | if (st->single) { |
1084 | state = st->cb_state; |
1085 | st->should_run = false; |
1086 | } else { |
1087 | st->should_run = cpuhp_next_state(bringup, state_to_run: &state, st, target: st->target); |
1088 | if (!st->should_run) |
1089 | goto end; |
1090 | } |
1091 | |
1092 | WARN_ON_ONCE(!cpuhp_is_ap_state(state)); |
1093 | |
1094 | if (cpuhp_is_atomic_state(state)) { |
1095 | local_irq_disable(); |
1096 | st->result = cpuhp_invoke_callback(cpu, state, bringup, node: st->node, lastp: &st->last); |
1097 | local_irq_enable(); |
1098 | |
1099 | /* |
1100 | * STARTING/DYING must not fail! |
1101 | */ |
1102 | WARN_ON_ONCE(st->result); |
1103 | } else { |
1104 | st->result = cpuhp_invoke_callback(cpu, state, bringup, node: st->node, lastp: &st->last); |
1105 | } |
1106 | |
1107 | if (st->result) { |
1108 | /* |
1109 | * If we fail on a rollback, we're up a creek without no |
1110 | * paddle, no way forward, no way back. We loose, thanks for |
1111 | * playing. |
1112 | */ |
1113 | WARN_ON_ONCE(st->rollback); |
1114 | st->should_run = false; |
1115 | } |
1116 | |
1117 | end: |
1118 | cpuhp_lock_release(bringup); |
1119 | lockdep_release_cpus_lock(); |
1120 | |
1121 | if (!st->should_run) |
1122 | complete_ap_thread(st, bringup); |
1123 | } |
1124 | |
1125 | /* Invoke a single callback on a remote cpu */ |
1126 | static int |
1127 | cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup, |
1128 | struct hlist_node *node) |
1129 | { |
1130 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
1131 | int ret; |
1132 | |
1133 | if (!cpu_online(cpu)) |
1134 | return 0; |
1135 | |
1136 | cpuhp_lock_acquire(bringup: false); |
1137 | cpuhp_lock_release(bringup: false); |
1138 | |
1139 | cpuhp_lock_acquire(bringup: true); |
1140 | cpuhp_lock_release(bringup: true); |
1141 | |
1142 | /* |
1143 | * If we are up and running, use the hotplug thread. For early calls |
1144 | * we invoke the thread function directly. |
1145 | */ |
1146 | if (!st->thread) |
1147 | return cpuhp_invoke_callback(cpu, state, bringup, node, NULL); |
1148 | |
1149 | st->rollback = false; |
1150 | st->last = NULL; |
1151 | |
1152 | st->node = node; |
1153 | st->bringup = bringup; |
1154 | st->cb_state = state; |
1155 | st->single = true; |
1156 | |
1157 | __cpuhp_kick_ap(st); |
1158 | |
1159 | /* |
1160 | * If we failed and did a partial, do a rollback. |
1161 | */ |
1162 | if ((ret = st->result) && st->last) { |
1163 | st->rollback = true; |
1164 | st->bringup = !bringup; |
1165 | |
1166 | __cpuhp_kick_ap(st); |
1167 | } |
1168 | |
1169 | /* |
1170 | * Clean up the leftovers so the next hotplug operation wont use stale |
1171 | * data. |
1172 | */ |
1173 | st->node = st->last = NULL; |
1174 | return ret; |
1175 | } |
1176 | |
1177 | static int cpuhp_kick_ap_work(unsigned int cpu) |
1178 | { |
1179 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
1180 | enum cpuhp_state prev_state = st->state; |
1181 | int ret; |
1182 | |
1183 | cpuhp_lock_acquire(bringup: false); |
1184 | cpuhp_lock_release(bringup: false); |
1185 | |
1186 | cpuhp_lock_acquire(bringup: true); |
1187 | cpuhp_lock_release(bringup: true); |
1188 | |
1189 | trace_cpuhp_enter(cpu, target: st->target, idx: prev_state, fun: cpuhp_kick_ap_work); |
1190 | ret = cpuhp_kick_ap(cpu, st, target: st->target); |
1191 | trace_cpuhp_exit(cpu, state: st->state, idx: prev_state, ret); |
1192 | |
1193 | return ret; |
1194 | } |
1195 | |
1196 | static struct smp_hotplug_thread cpuhp_threads = { |
1197 | .store = &cpuhp_state.thread, |
1198 | .thread_should_run = cpuhp_should_run, |
1199 | .thread_fn = cpuhp_thread_fun, |
1200 | .thread_comm = "cpuhp/%u", |
1201 | .selfparking = true, |
1202 | }; |
1203 | |
1204 | static __init void cpuhp_init_state(void) |
1205 | { |
1206 | struct cpuhp_cpu_state *st; |
1207 | int cpu; |
1208 | |
1209 | for_each_possible_cpu(cpu) { |
1210 | st = per_cpu_ptr(&cpuhp_state, cpu); |
1211 | init_completion(x: &st->done_up); |
1212 | init_completion(x: &st->done_down); |
1213 | } |
1214 | } |
1215 | |
1216 | void __init cpuhp_threads_init(void) |
1217 | { |
1218 | cpuhp_init_state(); |
1219 | BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads)); |
1220 | kthread_unpark(this_cpu_read(cpuhp_state.thread)); |
1221 | } |
1222 | |
1223 | #ifdef CONFIG_HOTPLUG_CPU |
1224 | #ifndef arch_clear_mm_cpumask_cpu |
1225 | #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm)) |
1226 | #endif |
1227 | |
1228 | /** |
1229 | * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU |
1230 | * @cpu: a CPU id |
1231 | * |
1232 | * This function walks all processes, finds a valid mm struct for each one and |
1233 | * then clears a corresponding bit in mm's cpumask. While this all sounds |
1234 | * trivial, there are various non-obvious corner cases, which this function |
1235 | * tries to solve in a safe manner. |
1236 | * |
1237 | * Also note that the function uses a somewhat relaxed locking scheme, so it may |
1238 | * be called only for an already offlined CPU. |
1239 | */ |
1240 | void clear_tasks_mm_cpumask(int cpu) |
1241 | { |
1242 | struct task_struct *p; |
1243 | |
1244 | /* |
1245 | * This function is called after the cpu is taken down and marked |
1246 | * offline, so its not like new tasks will ever get this cpu set in |
1247 | * their mm mask. -- Peter Zijlstra |
1248 | * Thus, we may use rcu_read_lock() here, instead of grabbing |
1249 | * full-fledged tasklist_lock. |
1250 | */ |
1251 | WARN_ON(cpu_online(cpu)); |
1252 | rcu_read_lock(); |
1253 | for_each_process(p) { |
1254 | struct task_struct *t; |
1255 | |
1256 | /* |
1257 | * Main thread might exit, but other threads may still have |
1258 | * a valid mm. Find one. |
1259 | */ |
1260 | t = find_lock_task_mm(p); |
1261 | if (!t) |
1262 | continue; |
1263 | arch_clear_mm_cpumask_cpu(cpu, t->mm); |
1264 | task_unlock(p: t); |
1265 | } |
1266 | rcu_read_unlock(); |
1267 | } |
1268 | |
1269 | /* Take this CPU down. */ |
1270 | static int take_cpu_down(void *_param) |
1271 | { |
1272 | struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); |
1273 | enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE); |
1274 | int err, cpu = smp_processor_id(); |
1275 | |
1276 | /* Ensure this CPU doesn't handle any more interrupts. */ |
1277 | err = __cpu_disable(); |
1278 | if (err < 0) |
1279 | return err; |
1280 | |
1281 | /* |
1282 | * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going |
1283 | * down, that the current state is CPUHP_TEARDOWN_CPU - 1. |
1284 | */ |
1285 | WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1)); |
1286 | |
1287 | /* |
1288 | * Invoke the former CPU_DYING callbacks. DYING must not fail! |
1289 | */ |
1290 | cpuhp_invoke_callback_range_nofail(bringup: false, cpu, st, target); |
1291 | |
1292 | /* Park the stopper thread */ |
1293 | stop_machine_park(cpu); |
1294 | return 0; |
1295 | } |
1296 | |
1297 | static int takedown_cpu(unsigned int cpu) |
1298 | { |
1299 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
1300 | int err; |
1301 | |
1302 | /* Park the smpboot threads */ |
1303 | kthread_park(k: st->thread); |
1304 | |
1305 | /* |
1306 | * Prevent irq alloc/free while the dying cpu reorganizes the |
1307 | * interrupt affinities. |
1308 | */ |
1309 | irq_lock_sparse(); |
1310 | |
1311 | /* |
1312 | * So now all preempt/rcu users must observe !cpu_active(). |
1313 | */ |
1314 | err = stop_machine_cpuslocked(fn: take_cpu_down, NULL, cpumask_of(cpu)); |
1315 | if (err) { |
1316 | /* CPU refused to die */ |
1317 | irq_unlock_sparse(); |
1318 | /* Unpark the hotplug thread so we can rollback there */ |
1319 | kthread_unpark(k: st->thread); |
1320 | return err; |
1321 | } |
1322 | BUG_ON(cpu_online(cpu)); |
1323 | |
1324 | /* |
1325 | * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed |
1326 | * all runnable tasks from the CPU, there's only the idle task left now |
1327 | * that the migration thread is done doing the stop_machine thing. |
1328 | * |
1329 | * Wait for the stop thread to go away. |
1330 | */ |
1331 | wait_for_ap_thread(st, bringup: false); |
1332 | BUG_ON(st->state != CPUHP_AP_IDLE_DEAD); |
1333 | |
1334 | /* Interrupts are moved away from the dying cpu, reenable alloc/free */ |
1335 | irq_unlock_sparse(); |
1336 | |
1337 | hotplug_cpu__broadcast_tick_pull(dead_cpu: cpu); |
1338 | /* This actually kills the CPU. */ |
1339 | __cpu_die(cpu); |
1340 | |
1341 | cpuhp_bp_sync_dead(cpu); |
1342 | |
1343 | lockdep_cleanup_dead_cpu(cpu, idle: idle_thread_get(cpu)); |
1344 | |
1345 | /* |
1346 | * Callbacks must be re-integrated right away to the RCU state machine. |
1347 | * Otherwise an RCU callback could block a further teardown function |
1348 | * waiting for its completion. |
1349 | */ |
1350 | rcutree_migrate_callbacks(cpu); |
1351 | |
1352 | return 0; |
1353 | } |
1354 | |
1355 | static void cpuhp_complete_idle_dead(void *arg) |
1356 | { |
1357 | struct cpuhp_cpu_state *st = arg; |
1358 | |
1359 | complete_ap_thread(st, bringup: false); |
1360 | } |
1361 | |
1362 | void cpuhp_report_idle_dead(void) |
1363 | { |
1364 | struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); |
1365 | |
1366 | BUG_ON(st->state != CPUHP_AP_OFFLINE); |
1367 | tick_assert_timekeeping_handover(); |
1368 | rcutree_report_cpu_dead(); |
1369 | st->state = CPUHP_AP_IDLE_DEAD; |
1370 | /* |
1371 | * We cannot call complete after rcutree_report_cpu_dead() so we delegate it |
1372 | * to an online cpu. |
1373 | */ |
1374 | smp_call_function_single(cpuid: cpumask_first(cpu_online_mask), |
1375 | func: cpuhp_complete_idle_dead, info: st, wait: 0); |
1376 | } |
1377 | |
1378 | static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st, |
1379 | enum cpuhp_state target) |
1380 | { |
1381 | enum cpuhp_state prev_state = st->state; |
1382 | int ret = 0; |
1383 | |
1384 | ret = cpuhp_invoke_callback_range(bringup: false, cpu, st, target); |
1385 | if (ret) { |
1386 | pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n", |
1387 | ret, cpu, cpuhp_get_step(st->state)->name, |
1388 | st->state); |
1389 | |
1390 | cpuhp_reset_state(cpu, st, prev_state); |
1391 | |
1392 | if (st->state < prev_state) |
1393 | WARN_ON(cpuhp_invoke_callback_range(true, cpu, st, |
1394 | prev_state)); |
1395 | } |
1396 | |
1397 | return ret; |
1398 | } |
1399 | |
1400 | /* Requires cpu_add_remove_lock to be held */ |
1401 | static int __ref _cpu_down(unsigned int cpu, int tasks_frozen, |
1402 | enum cpuhp_state target) |
1403 | { |
1404 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
1405 | int prev_state, ret = 0; |
1406 | |
1407 | if (num_online_cpus() == 1) |
1408 | return -EBUSY; |
1409 | |
1410 | if (!cpu_present(cpu)) |
1411 | return -EINVAL; |
1412 | |
1413 | cpus_write_lock(); |
1414 | |
1415 | cpuhp_tasks_frozen = tasks_frozen; |
1416 | |
1417 | prev_state = cpuhp_set_state(cpu, st, target); |
1418 | /* |
1419 | * If the current CPU state is in the range of the AP hotplug thread, |
1420 | * then we need to kick the thread. |
1421 | */ |
1422 | if (st->state > CPUHP_TEARDOWN_CPU) { |
1423 | st->target = max((int)target, CPUHP_TEARDOWN_CPU); |
1424 | ret = cpuhp_kick_ap_work(cpu); |
1425 | /* |
1426 | * The AP side has done the error rollback already. Just |
1427 | * return the error code.. |
1428 | */ |
1429 | if (ret) |
1430 | goto out; |
1431 | |
1432 | /* |
1433 | * We might have stopped still in the range of the AP hotplug |
1434 | * thread. Nothing to do anymore. |
1435 | */ |
1436 | if (st->state > CPUHP_TEARDOWN_CPU) |
1437 | goto out; |
1438 | |
1439 | st->target = target; |
1440 | } |
1441 | /* |
1442 | * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need |
1443 | * to do the further cleanups. |
1444 | */ |
1445 | ret = cpuhp_down_callbacks(cpu, st, target); |
1446 | if (ret && st->state < prev_state) { |
1447 | if (st->state == CPUHP_TEARDOWN_CPU) { |
1448 | cpuhp_reset_state(cpu, st, prev_state); |
1449 | __cpuhp_kick_ap(st); |
1450 | } else { |
1451 | WARN(1, "DEAD callback error for CPU%d", cpu); |
1452 | } |
1453 | } |
1454 | |
1455 | out: |
1456 | cpus_write_unlock(); |
1457 | arch_smt_update(); |
1458 | return ret; |
1459 | } |
1460 | |
1461 | struct cpu_down_work { |
1462 | unsigned int cpu; |
1463 | enum cpuhp_state target; |
1464 | }; |
1465 | |
1466 | static long __cpu_down_maps_locked(void *arg) |
1467 | { |
1468 | struct cpu_down_work *work = arg; |
1469 | |
1470 | return _cpu_down(cpu: work->cpu, tasks_frozen: 0, target: work->target); |
1471 | } |
1472 | |
1473 | static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target) |
1474 | { |
1475 | struct cpu_down_work work = { .cpu = cpu, .target = target, }; |
1476 | |
1477 | /* |
1478 | * If the platform does not support hotplug, report it explicitly to |
1479 | * differentiate it from a transient offlining failure. |
1480 | */ |
1481 | if (cpu_hotplug_offline_disabled) |
1482 | return -EOPNOTSUPP; |
1483 | if (cpu_hotplug_disabled) |
1484 | return -EBUSY; |
1485 | |
1486 | /* |
1487 | * Ensure that the control task does not run on the to be offlined |
1488 | * CPU to prevent a deadlock against cfs_b->period_timer. |
1489 | * Also keep at least one housekeeping cpu onlined to avoid generating |
1490 | * an empty sched_domain span. |
1491 | */ |
1492 | for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) { |
1493 | if (cpu != work.cpu) |
1494 | return work_on_cpu(cpu, __cpu_down_maps_locked, &work); |
1495 | } |
1496 | return -EBUSY; |
1497 | } |
1498 | |
1499 | static int cpu_down(unsigned int cpu, enum cpuhp_state target) |
1500 | { |
1501 | int err; |
1502 | |
1503 | cpu_maps_update_begin(); |
1504 | err = cpu_down_maps_locked(cpu, target); |
1505 | cpu_maps_update_done(); |
1506 | return err; |
1507 | } |
1508 | |
1509 | /** |
1510 | * cpu_device_down - Bring down a cpu device |
1511 | * @dev: Pointer to the cpu device to offline |
1512 | * |
1513 | * This function is meant to be used by device core cpu subsystem only. |
1514 | * |
1515 | * Other subsystems should use remove_cpu() instead. |
1516 | * |
1517 | * Return: %0 on success or a negative errno code |
1518 | */ |
1519 | int cpu_device_down(struct device *dev) |
1520 | { |
1521 | return cpu_down(cpu: dev->id, target: CPUHP_OFFLINE); |
1522 | } |
1523 | |
1524 | int remove_cpu(unsigned int cpu) |
1525 | { |
1526 | int ret; |
1527 | |
1528 | lock_device_hotplug(); |
1529 | ret = device_offline(dev: get_cpu_device(cpu)); |
1530 | unlock_device_hotplug(); |
1531 | |
1532 | return ret; |
1533 | } |
1534 | EXPORT_SYMBOL_GPL(remove_cpu); |
1535 | |
1536 | void smp_shutdown_nonboot_cpus(unsigned int primary_cpu) |
1537 | { |
1538 | unsigned int cpu; |
1539 | int error; |
1540 | |
1541 | cpu_maps_update_begin(); |
1542 | |
1543 | /* |
1544 | * Make certain the cpu I'm about to reboot on is online. |
1545 | * |
1546 | * This is inline to what migrate_to_reboot_cpu() already do. |
1547 | */ |
1548 | if (!cpu_online(cpu: primary_cpu)) |
1549 | primary_cpu = cpumask_first(cpu_online_mask); |
1550 | |
1551 | for_each_online_cpu(cpu) { |
1552 | if (cpu == primary_cpu) |
1553 | continue; |
1554 | |
1555 | error = cpu_down_maps_locked(cpu, target: CPUHP_OFFLINE); |
1556 | if (error) { |
1557 | pr_err("Failed to offline CPU%d - error=%d", |
1558 | cpu, error); |
1559 | break; |
1560 | } |
1561 | } |
1562 | |
1563 | /* |
1564 | * Ensure all but the reboot CPU are offline. |
1565 | */ |
1566 | BUG_ON(num_online_cpus() > 1); |
1567 | |
1568 | /* |
1569 | * Make sure the CPUs won't be enabled by someone else after this |
1570 | * point. Kexec will reboot to a new kernel shortly resetting |
1571 | * everything along the way. |
1572 | */ |
1573 | cpu_hotplug_disabled++; |
1574 | |
1575 | cpu_maps_update_done(); |
1576 | } |
1577 | |
1578 | #else |
1579 | #define takedown_cpu NULL |
1580 | #endif /*CONFIG_HOTPLUG_CPU*/ |
1581 | |
1582 | /** |
1583 | * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU |
1584 | * @cpu: cpu that just started |
1585 | * |
1586 | * It must be called by the arch code on the new cpu, before the new cpu |
1587 | * enables interrupts and before the "boot" cpu returns from __cpu_up(). |
1588 | */ |
1589 | void notify_cpu_starting(unsigned int cpu) |
1590 | { |
1591 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
1592 | enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE); |
1593 | |
1594 | rcutree_report_cpu_starting(cpu); /* Enables RCU usage on this CPU. */ |
1595 | cpumask_set_cpu(cpu, dstp: &cpus_booted_once_mask); |
1596 | |
1597 | /* |
1598 | * STARTING must not fail! |
1599 | */ |
1600 | cpuhp_invoke_callback_range_nofail(bringup: true, cpu, st, target); |
1601 | } |
1602 | |
1603 | /* |
1604 | * Called from the idle task. Wake up the controlling task which brings the |
1605 | * hotplug thread of the upcoming CPU up and then delegates the rest of the |
1606 | * online bringup to the hotplug thread. |
1607 | */ |
1608 | void cpuhp_online_idle(enum cpuhp_state state) |
1609 | { |
1610 | struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state); |
1611 | |
1612 | /* Happens for the boot cpu */ |
1613 | if (state != CPUHP_AP_ONLINE_IDLE) |
1614 | return; |
1615 | |
1616 | cpuhp_ap_update_sync_state(state: SYNC_STATE_ONLINE); |
1617 | |
1618 | /* |
1619 | * Unpark the stopper thread before we start the idle loop (and start |
1620 | * scheduling); this ensures the stopper task is always available. |
1621 | */ |
1622 | stop_machine_unpark(smp_processor_id()); |
1623 | |
1624 | st->state = CPUHP_AP_ONLINE_IDLE; |
1625 | complete_ap_thread(st, bringup: true); |
1626 | } |
1627 | |
1628 | /* Requires cpu_add_remove_lock to be held */ |
1629 | static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target) |
1630 | { |
1631 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
1632 | struct task_struct *idle; |
1633 | int ret = 0; |
1634 | |
1635 | cpus_write_lock(); |
1636 | |
1637 | if (!cpu_present(cpu)) { |
1638 | ret = -EINVAL; |
1639 | goto out; |
1640 | } |
1641 | |
1642 | /* |
1643 | * The caller of cpu_up() might have raced with another |
1644 | * caller. Nothing to do. |
1645 | */ |
1646 | if (st->state >= target) |
1647 | goto out; |
1648 | |
1649 | if (st->state == CPUHP_OFFLINE) { |
1650 | /* Let it fail before we try to bring the cpu up */ |
1651 | idle = idle_thread_get(cpu); |
1652 | if (IS_ERR(ptr: idle)) { |
1653 | ret = PTR_ERR(ptr: idle); |
1654 | goto out; |
1655 | } |
1656 | |
1657 | /* |
1658 | * Reset stale stack state from the last time this CPU was online. |
1659 | */ |
1660 | scs_task_reset(tsk: idle); |
1661 | kasan_unpoison_task_stack(task: idle); |
1662 | } |
1663 | |
1664 | cpuhp_tasks_frozen = tasks_frozen; |
1665 | |
1666 | cpuhp_set_state(cpu, st, target); |
1667 | /* |
1668 | * If the current CPU state is in the range of the AP hotplug thread, |
1669 | * then we need to kick the thread once more. |
1670 | */ |
1671 | if (st->state > CPUHP_BRINGUP_CPU) { |
1672 | ret = cpuhp_kick_ap_work(cpu); |
1673 | /* |
1674 | * The AP side has done the error rollback already. Just |
1675 | * return the error code.. |
1676 | */ |
1677 | if (ret) |
1678 | goto out; |
1679 | } |
1680 | |
1681 | /* |
1682 | * Try to reach the target state. We max out on the BP at |
1683 | * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is |
1684 | * responsible for bringing it up to the target state. |
1685 | */ |
1686 | target = min((int)target, CPUHP_BRINGUP_CPU); |
1687 | ret = cpuhp_up_callbacks(cpu, st, target); |
1688 | out: |
1689 | cpus_write_unlock(); |
1690 | arch_smt_update(); |
1691 | return ret; |
1692 | } |
1693 | |
1694 | static int cpu_up(unsigned int cpu, enum cpuhp_state target) |
1695 | { |
1696 | int err = 0; |
1697 | |
1698 | if (!cpu_possible(cpu)) { |
1699 | pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n", |
1700 | cpu); |
1701 | return -EINVAL; |
1702 | } |
1703 | |
1704 | err = try_online_node(cpu_to_node(cpu)); |
1705 | if (err) |
1706 | return err; |
1707 | |
1708 | cpu_maps_update_begin(); |
1709 | |
1710 | if (cpu_hotplug_disabled) { |
1711 | err = -EBUSY; |
1712 | goto out; |
1713 | } |
1714 | if (!cpu_bootable(cpu)) { |
1715 | err = -EPERM; |
1716 | goto out; |
1717 | } |
1718 | |
1719 | err = _cpu_up(cpu, tasks_frozen: 0, target); |
1720 | out: |
1721 | cpu_maps_update_done(); |
1722 | return err; |
1723 | } |
1724 | |
1725 | /** |
1726 | * cpu_device_up - Bring up a cpu device |
1727 | * @dev: Pointer to the cpu device to online |
1728 | * |
1729 | * This function is meant to be used by device core cpu subsystem only. |
1730 | * |
1731 | * Other subsystems should use add_cpu() instead. |
1732 | * |
1733 | * Return: %0 on success or a negative errno code |
1734 | */ |
1735 | int cpu_device_up(struct device *dev) |
1736 | { |
1737 | return cpu_up(cpu: dev->id, target: CPUHP_ONLINE); |
1738 | } |
1739 | |
1740 | int add_cpu(unsigned int cpu) |
1741 | { |
1742 | int ret; |
1743 | |
1744 | lock_device_hotplug(); |
1745 | ret = device_online(dev: get_cpu_device(cpu)); |
1746 | unlock_device_hotplug(); |
1747 | |
1748 | return ret; |
1749 | } |
1750 | EXPORT_SYMBOL_GPL(add_cpu); |
1751 | |
1752 | /** |
1753 | * bringup_hibernate_cpu - Bring up the CPU that we hibernated on |
1754 | * @sleep_cpu: The cpu we hibernated on and should be brought up. |
1755 | * |
1756 | * On some architectures like arm64, we can hibernate on any CPU, but on |
1757 | * wake up the CPU we hibernated on might be offline as a side effect of |
1758 | * using maxcpus= for example. |
1759 | * |
1760 | * Return: %0 on success or a negative errno code |
1761 | */ |
1762 | int bringup_hibernate_cpu(unsigned int sleep_cpu) |
1763 | { |
1764 | int ret; |
1765 | |
1766 | if (!cpu_online(cpu: sleep_cpu)) { |
1767 | pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n"); |
1768 | ret = cpu_up(cpu: sleep_cpu, target: CPUHP_ONLINE); |
1769 | if (ret) { |
1770 | pr_err("Failed to bring hibernate-CPU up!\n"); |
1771 | return ret; |
1772 | } |
1773 | } |
1774 | return 0; |
1775 | } |
1776 | |
1777 | static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus, |
1778 | enum cpuhp_state target) |
1779 | { |
1780 | unsigned int cpu; |
1781 | |
1782 | for_each_cpu(cpu, mask) { |
1783 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
1784 | |
1785 | if (cpu_up(cpu, target) && can_rollback_cpu(st)) { |
1786 | /* |
1787 | * If this failed then cpu_up() might have only |
1788 | * rolled back to CPUHP_BP_KICK_AP for the final |
1789 | * online. Clean it up. NOOP if already rolled back. |
1790 | */ |
1791 | WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE)); |
1792 | } |
1793 | |
1794 | if (!--ncpus) |
1795 | break; |
1796 | } |
1797 | } |
1798 | |
1799 | #ifdef CONFIG_HOTPLUG_PARALLEL |
1800 | static bool __cpuhp_parallel_bringup __ro_after_init = true; |
1801 | |
1802 | static int __init parallel_bringup_parse_param(char *arg) |
1803 | { |
1804 | return kstrtobool(s: arg, res: &__cpuhp_parallel_bringup); |
1805 | } |
1806 | early_param("cpuhp.parallel", parallel_bringup_parse_param); |
1807 | |
1808 | #ifdef CONFIG_HOTPLUG_SMT |
1809 | static inline bool cpuhp_smt_aware(void) |
1810 | { |
1811 | return cpu_smt_max_threads > 1; |
1812 | } |
1813 | |
1814 | static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) |
1815 | { |
1816 | return cpu_primary_thread_mask; |
1817 | } |
1818 | #else |
1819 | static inline bool cpuhp_smt_aware(void) |
1820 | { |
1821 | return false; |
1822 | } |
1823 | static inline const struct cpumask *cpuhp_get_primary_thread_mask(void) |
1824 | { |
1825 | return cpu_none_mask; |
1826 | } |
1827 | #endif |
1828 | |
1829 | bool __weak arch_cpuhp_init_parallel_bringup(void) |
1830 | { |
1831 | return true; |
1832 | } |
1833 | |
1834 | /* |
1835 | * On architectures which have enabled parallel bringup this invokes all BP |
1836 | * prepare states for each of the to be onlined APs first. The last state |
1837 | * sends the startup IPI to the APs. The APs proceed through the low level |
1838 | * bringup code in parallel and then wait for the control CPU to release |
1839 | * them one by one for the final onlining procedure. |
1840 | * |
1841 | * This avoids waiting for each AP to respond to the startup IPI in |
1842 | * CPUHP_BRINGUP_CPU. |
1843 | */ |
1844 | static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus) |
1845 | { |
1846 | const struct cpumask *mask = cpu_present_mask; |
1847 | |
1848 | if (__cpuhp_parallel_bringup) |
1849 | __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup(); |
1850 | if (!__cpuhp_parallel_bringup) |
1851 | return false; |
1852 | |
1853 | if (cpuhp_smt_aware()) { |
1854 | const struct cpumask *pmask = cpuhp_get_primary_thread_mask(); |
1855 | static struct cpumask tmp_mask __initdata; |
1856 | |
1857 | /* |
1858 | * X86 requires to prevent that SMT siblings stopped while |
1859 | * the primary thread does a microcode update for various |
1860 | * reasons. Bring the primary threads up first. |
1861 | */ |
1862 | cpumask_and(dstp: &tmp_mask, src1p: mask, src2p: pmask); |
1863 | cpuhp_bringup_mask(mask: &tmp_mask, ncpus, target: CPUHP_BP_KICK_AP); |
1864 | cpuhp_bringup_mask(mask: &tmp_mask, ncpus, target: CPUHP_ONLINE); |
1865 | /* Account for the online CPUs */ |
1866 | ncpus -= num_online_cpus(); |
1867 | if (!ncpus) |
1868 | return true; |
1869 | /* Create the mask for secondary CPUs */ |
1870 | cpumask_andnot(dstp: &tmp_mask, src1p: mask, src2p: pmask); |
1871 | mask = &tmp_mask; |
1872 | } |
1873 | |
1874 | /* Bring the not-yet started CPUs up */ |
1875 | cpuhp_bringup_mask(mask, ncpus, target: CPUHP_BP_KICK_AP); |
1876 | cpuhp_bringup_mask(mask, ncpus, target: CPUHP_ONLINE); |
1877 | return true; |
1878 | } |
1879 | #else |
1880 | static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; } |
1881 | #endif /* CONFIG_HOTPLUG_PARALLEL */ |
1882 | |
1883 | void __init bringup_nonboot_cpus(unsigned int max_cpus) |
1884 | { |
1885 | if (!max_cpus) |
1886 | return; |
1887 | |
1888 | /* Try parallel bringup optimization if enabled */ |
1889 | if (cpuhp_bringup_cpus_parallel(ncpus: max_cpus)) |
1890 | return; |
1891 | |
1892 | /* Full per CPU serialized bringup */ |
1893 | cpuhp_bringup_mask(cpu_present_mask, ncpus: max_cpus, target: CPUHP_ONLINE); |
1894 | } |
1895 | |
1896 | #ifdef CONFIG_PM_SLEEP_SMP |
1897 | static cpumask_var_t frozen_cpus; |
1898 | |
1899 | int freeze_secondary_cpus(int primary) |
1900 | { |
1901 | int cpu, error = 0; |
1902 | |
1903 | cpu_maps_update_begin(); |
1904 | if (primary == -1) { |
1905 | primary = cpumask_first(cpu_online_mask); |
1906 | if (!housekeeping_cpu(cpu: primary, type: HK_TYPE_TIMER)) |
1907 | primary = housekeeping_any_cpu(type: HK_TYPE_TIMER); |
1908 | } else { |
1909 | if (!cpu_online(cpu: primary)) |
1910 | primary = cpumask_first(cpu_online_mask); |
1911 | } |
1912 | |
1913 | /* |
1914 | * We take down all of the non-boot CPUs in one shot to avoid races |
1915 | * with the userspace trying to use the CPU hotplug at the same time |
1916 | */ |
1917 | cpumask_clear(dstp: frozen_cpus); |
1918 | |
1919 | pr_info("Disabling non-boot CPUs ...\n"); |
1920 | for (cpu = nr_cpu_ids - 1; cpu >= 0; cpu--) { |
1921 | if (!cpu_online(cpu) || cpu == primary) |
1922 | continue; |
1923 | |
1924 | if (pm_wakeup_pending()) { |
1925 | pr_info("Wakeup pending. Abort CPU freeze\n"); |
1926 | error = -EBUSY; |
1927 | break; |
1928 | } |
1929 | |
1930 | trace_suspend_resume(TPS("CPU_OFF"), val: cpu, start: true); |
1931 | error = _cpu_down(cpu, tasks_frozen: 1, target: CPUHP_OFFLINE); |
1932 | trace_suspend_resume(TPS("CPU_OFF"), val: cpu, start: false); |
1933 | if (!error) |
1934 | cpumask_set_cpu(cpu, dstp: frozen_cpus); |
1935 | else { |
1936 | pr_err("Error taking CPU%d down: %d\n", cpu, error); |
1937 | break; |
1938 | } |
1939 | } |
1940 | |
1941 | if (!error) |
1942 | BUG_ON(num_online_cpus() > 1); |
1943 | else |
1944 | pr_err("Non-boot CPUs are not disabled\n"); |
1945 | |
1946 | /* |
1947 | * Make sure the CPUs won't be enabled by someone else. We need to do |
1948 | * this even in case of failure as all freeze_secondary_cpus() users are |
1949 | * supposed to do thaw_secondary_cpus() on the failure path. |
1950 | */ |
1951 | cpu_hotplug_disabled++; |
1952 | |
1953 | cpu_maps_update_done(); |
1954 | return error; |
1955 | } |
1956 | |
1957 | void __weak arch_thaw_secondary_cpus_begin(void) |
1958 | { |
1959 | } |
1960 | |
1961 | void __weak arch_thaw_secondary_cpus_end(void) |
1962 | { |
1963 | } |
1964 | |
1965 | void thaw_secondary_cpus(void) |
1966 | { |
1967 | int cpu, error; |
1968 | |
1969 | /* Allow everyone to use the CPU hotplug again */ |
1970 | cpu_maps_update_begin(); |
1971 | __cpu_hotplug_enable(); |
1972 | if (cpumask_empty(srcp: frozen_cpus)) |
1973 | goto out; |
1974 | |
1975 | pr_info("Enabling non-boot CPUs ...\n"); |
1976 | |
1977 | arch_thaw_secondary_cpus_begin(); |
1978 | |
1979 | for_each_cpu(cpu, frozen_cpus) { |
1980 | trace_suspend_resume(TPS("CPU_ON"), val: cpu, start: true); |
1981 | error = _cpu_up(cpu, tasks_frozen: 1, target: CPUHP_ONLINE); |
1982 | trace_suspend_resume(TPS("CPU_ON"), val: cpu, start: false); |
1983 | if (!error) { |
1984 | pr_info("CPU%d is up\n", cpu); |
1985 | continue; |
1986 | } |
1987 | pr_warn("Error taking CPU%d up: %d\n", cpu, error); |
1988 | } |
1989 | |
1990 | arch_thaw_secondary_cpus_end(); |
1991 | |
1992 | cpumask_clear(dstp: frozen_cpus); |
1993 | out: |
1994 | cpu_maps_update_done(); |
1995 | } |
1996 | |
1997 | static int __init alloc_frozen_cpus(void) |
1998 | { |
1999 | if (!alloc_cpumask_var(mask: &frozen_cpus, GFP_KERNEL|__GFP_ZERO)) |
2000 | return -ENOMEM; |
2001 | return 0; |
2002 | } |
2003 | core_initcall(alloc_frozen_cpus); |
2004 | |
2005 | /* |
2006 | * When callbacks for CPU hotplug notifications are being executed, we must |
2007 | * ensure that the state of the system with respect to the tasks being frozen |
2008 | * or not, as reported by the notification, remains unchanged *throughout the |
2009 | * duration* of the execution of the callbacks. |
2010 | * Hence we need to prevent the freezer from racing with regular CPU hotplug. |
2011 | * |
2012 | * This synchronization is implemented by mutually excluding regular CPU |
2013 | * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/ |
2014 | * Hibernate notifications. |
2015 | */ |
2016 | static int |
2017 | cpu_hotplug_pm_callback(struct notifier_block *nb, |
2018 | unsigned long action, void *ptr) |
2019 | { |
2020 | switch (action) { |
2021 | |
2022 | case PM_SUSPEND_PREPARE: |
2023 | case PM_HIBERNATION_PREPARE: |
2024 | cpu_hotplug_disable(); |
2025 | break; |
2026 | |
2027 | case PM_POST_SUSPEND: |
2028 | case PM_POST_HIBERNATION: |
2029 | cpu_hotplug_enable(); |
2030 | break; |
2031 | |
2032 | default: |
2033 | return NOTIFY_DONE; |
2034 | } |
2035 | |
2036 | return NOTIFY_OK; |
2037 | } |
2038 | |
2039 | |
2040 | static int __init cpu_hotplug_pm_sync_init(void) |
2041 | { |
2042 | /* |
2043 | * cpu_hotplug_pm_callback has higher priority than x86 |
2044 | * bsp_pm_callback which depends on cpu_hotplug_pm_callback |
2045 | * to disable cpu hotplug to avoid cpu hotplug race. |
2046 | */ |
2047 | pm_notifier(cpu_hotplug_pm_callback, 0); |
2048 | return 0; |
2049 | } |
2050 | core_initcall(cpu_hotplug_pm_sync_init); |
2051 | |
2052 | #endif /* CONFIG_PM_SLEEP_SMP */ |
2053 | |
2054 | int __boot_cpu_id; |
2055 | |
2056 | #endif /* CONFIG_SMP */ |
2057 | |
2058 | /* Boot processor state steps */ |
2059 | static struct cpuhp_step cpuhp_hp_states[] = { |
2060 | [CPUHP_OFFLINE] = { |
2061 | .name = "offline", |
2062 | .startup.single = NULL, |
2063 | .teardown.single = NULL, |
2064 | }, |
2065 | #ifdef CONFIG_SMP |
2066 | [CPUHP_CREATE_THREADS]= { |
2067 | .name = "threads:prepare", |
2068 | .startup.single = smpboot_create_threads, |
2069 | .teardown.single = NULL, |
2070 | .cant_stop = true, |
2071 | }, |
2072 | [CPUHP_RANDOM_PREPARE] = { |
2073 | .name = "random:prepare", |
2074 | .startup.single = random_prepare_cpu, |
2075 | .teardown.single = NULL, |
2076 | }, |
2077 | [CPUHP_WORKQUEUE_PREP] = { |
2078 | .name = "workqueue:prepare", |
2079 | .startup.single = workqueue_prepare_cpu, |
2080 | .teardown.single = NULL, |
2081 | }, |
2082 | [CPUHP_HRTIMERS_PREPARE] = { |
2083 | .name = "hrtimers:prepare", |
2084 | .startup.single = hrtimers_prepare_cpu, |
2085 | .teardown.single = NULL, |
2086 | }, |
2087 | [CPUHP_SMPCFD_PREPARE] = { |
2088 | .name = "smpcfd:prepare", |
2089 | .startup.single = smpcfd_prepare_cpu, |
2090 | .teardown.single = smpcfd_dead_cpu, |
2091 | }, |
2092 | [CPUHP_RELAY_PREPARE] = { |
2093 | .name = "relay:prepare", |
2094 | .startup.single = relay_prepare_cpu, |
2095 | .teardown.single = NULL, |
2096 | }, |
2097 | [CPUHP_RCUTREE_PREP] = { |
2098 | .name = "RCU/tree:prepare", |
2099 | .startup.single = rcutree_prepare_cpu, |
2100 | .teardown.single = rcutree_dead_cpu, |
2101 | }, |
2102 | /* |
2103 | * On the tear-down path, timers_dead_cpu() must be invoked |
2104 | * before blk_mq_queue_reinit_notify() from notify_dead(), |
2105 | * otherwise a RCU stall occurs. |
2106 | */ |
2107 | [CPUHP_TIMERS_PREPARE] = { |
2108 | .name = "timers:prepare", |
2109 | .startup.single = timers_prepare_cpu, |
2110 | .teardown.single = timers_dead_cpu, |
2111 | }, |
2112 | |
2113 | #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP |
2114 | /* |
2115 | * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until |
2116 | * the next step will release it. |
2117 | */ |
2118 | [CPUHP_BP_KICK_AP] = { |
2119 | .name = "cpu:kick_ap", |
2120 | .startup.single = cpuhp_kick_ap_alive, |
2121 | }, |
2122 | |
2123 | /* |
2124 | * Waits for the AP to reach cpuhp_ap_sync_alive() and then |
2125 | * releases it for the complete bringup. |
2126 | */ |
2127 | [CPUHP_BRINGUP_CPU] = { |
2128 | .name = "cpu:bringup", |
2129 | .startup.single = cpuhp_bringup_ap, |
2130 | .teardown.single = finish_cpu, |
2131 | .cant_stop = true, |
2132 | }, |
2133 | #else |
2134 | /* |
2135 | * All-in-one CPU bringup state which includes the kick alive. |
2136 | */ |
2137 | [CPUHP_BRINGUP_CPU] = { |
2138 | .name = "cpu:bringup", |
2139 | .startup.single = bringup_cpu, |
2140 | .teardown.single = finish_cpu, |
2141 | .cant_stop = true, |
2142 | }, |
2143 | #endif |
2144 | /* Final state before CPU kills itself */ |
2145 | [CPUHP_AP_IDLE_DEAD] = { |
2146 | .name = "idle:dead", |
2147 | }, |
2148 | /* |
2149 | * Last state before CPU enters the idle loop to die. Transient state |
2150 | * for synchronization. |
2151 | */ |
2152 | [CPUHP_AP_OFFLINE] = { |
2153 | .name = "ap:offline", |
2154 | .cant_stop = true, |
2155 | }, |
2156 | /* First state is scheduler control. Interrupts are disabled */ |
2157 | [CPUHP_AP_SCHED_STARTING] = { |
2158 | .name = "sched:starting", |
2159 | .startup.single = sched_cpu_starting, |
2160 | .teardown.single = sched_cpu_dying, |
2161 | }, |
2162 | [CPUHP_AP_RCUTREE_DYING] = { |
2163 | .name = "RCU/tree:dying", |
2164 | .startup.single = NULL, |
2165 | .teardown.single = rcutree_dying_cpu, |
2166 | }, |
2167 | [CPUHP_AP_SMPCFD_DYING] = { |
2168 | .name = "smpcfd:dying", |
2169 | .startup.single = NULL, |
2170 | .teardown.single = smpcfd_dying_cpu, |
2171 | }, |
2172 | [CPUHP_AP_HRTIMERS_DYING] = { |
2173 | .name = "hrtimers:dying", |
2174 | .startup.single = hrtimers_cpu_starting, |
2175 | .teardown.single = hrtimers_cpu_dying, |
2176 | }, |
2177 | [CPUHP_AP_TICK_DYING] = { |
2178 | .name = "tick:dying", |
2179 | .startup.single = NULL, |
2180 | .teardown.single = tick_cpu_dying, |
2181 | }, |
2182 | /* Entry state on starting. Interrupts enabled from here on. Transient |
2183 | * state for synchronsization */ |
2184 | [CPUHP_AP_ONLINE] = { |
2185 | .name = "ap:online", |
2186 | }, |
2187 | /* |
2188 | * Handled on control processor until the plugged processor manages |
2189 | * this itself. |
2190 | */ |
2191 | [CPUHP_TEARDOWN_CPU] = { |
2192 | .name = "cpu:teardown", |
2193 | .startup.single = NULL, |
2194 | .teardown.single = takedown_cpu, |
2195 | .cant_stop = true, |
2196 | }, |
2197 | |
2198 | [CPUHP_AP_SCHED_WAIT_EMPTY] = { |
2199 | .name = "sched:waitempty", |
2200 | .startup.single = NULL, |
2201 | .teardown.single = sched_cpu_wait_empty, |
2202 | }, |
2203 | |
2204 | /* Handle smpboot threads park/unpark */ |
2205 | [CPUHP_AP_SMPBOOT_THREADS] = { |
2206 | .name = "smpboot/threads:online", |
2207 | .startup.single = smpboot_unpark_threads, |
2208 | .teardown.single = smpboot_park_threads, |
2209 | }, |
2210 | [CPUHP_AP_IRQ_AFFINITY_ONLINE] = { |
2211 | .name = "irq/affinity:online", |
2212 | .startup.single = irq_affinity_online_cpu, |
2213 | .teardown.single = NULL, |
2214 | }, |
2215 | [CPUHP_AP_PERF_ONLINE] = { |
2216 | .name = "perf:online", |
2217 | .startup.single = perf_event_init_cpu, |
2218 | .teardown.single = perf_event_exit_cpu, |
2219 | }, |
2220 | [CPUHP_AP_WATCHDOG_ONLINE] = { |
2221 | .name = "lockup_detector:online", |
2222 | .startup.single = lockup_detector_online_cpu, |
2223 | .teardown.single = lockup_detector_offline_cpu, |
2224 | }, |
2225 | [CPUHP_AP_WORKQUEUE_ONLINE] = { |
2226 | .name = "workqueue:online", |
2227 | .startup.single = workqueue_online_cpu, |
2228 | .teardown.single = workqueue_offline_cpu, |
2229 | }, |
2230 | [CPUHP_AP_RANDOM_ONLINE] = { |
2231 | .name = "random:online", |
2232 | .startup.single = random_online_cpu, |
2233 | .teardown.single = NULL, |
2234 | }, |
2235 | [CPUHP_AP_RCUTREE_ONLINE] = { |
2236 | .name = "RCU/tree:online", |
2237 | .startup.single = rcutree_online_cpu, |
2238 | .teardown.single = rcutree_offline_cpu, |
2239 | }, |
2240 | #endif |
2241 | /* |
2242 | * The dynamically registered state space is here |
2243 | */ |
2244 | |
2245 | #ifdef CONFIG_SMP |
2246 | /* Last state is scheduler control setting the cpu active */ |
2247 | [CPUHP_AP_ACTIVE] = { |
2248 | .name = "sched:active", |
2249 | .startup.single = sched_cpu_activate, |
2250 | .teardown.single = sched_cpu_deactivate, |
2251 | }, |
2252 | #endif |
2253 | |
2254 | /* CPU is fully up and running. */ |
2255 | [CPUHP_ONLINE] = { |
2256 | .name = "online", |
2257 | .startup.single = NULL, |
2258 | .teardown.single = NULL, |
2259 | }, |
2260 | }; |
2261 | |
2262 | /* Sanity check for callbacks */ |
2263 | static int cpuhp_cb_check(enum cpuhp_state state) |
2264 | { |
2265 | if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE) |
2266 | return -EINVAL; |
2267 | return 0; |
2268 | } |
2269 | |
2270 | /* |
2271 | * Returns a free for dynamic slot assignment of the Online state. The states |
2272 | * are protected by the cpuhp_slot_states mutex and an empty slot is identified |
2273 | * by having no name assigned. |
2274 | */ |
2275 | static int cpuhp_reserve_state(enum cpuhp_state state) |
2276 | { |
2277 | enum cpuhp_state i, end; |
2278 | struct cpuhp_step *step; |
2279 | |
2280 | switch (state) { |
2281 | case CPUHP_AP_ONLINE_DYN: |
2282 | step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN; |
2283 | end = CPUHP_AP_ONLINE_DYN_END; |
2284 | break; |
2285 | case CPUHP_BP_PREPARE_DYN: |
2286 | step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN; |
2287 | end = CPUHP_BP_PREPARE_DYN_END; |
2288 | break; |
2289 | default: |
2290 | return -EINVAL; |
2291 | } |
2292 | |
2293 | for (i = state; i <= end; i++, step++) { |
2294 | if (!step->name) |
2295 | return i; |
2296 | } |
2297 | WARN(1, "No more dynamic states available for CPU hotplug\n"); |
2298 | return -ENOSPC; |
2299 | } |
2300 | |
2301 | static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name, |
2302 | int (*startup)(unsigned int cpu), |
2303 | int (*teardown)(unsigned int cpu), |
2304 | bool multi_instance) |
2305 | { |
2306 | /* (Un)Install the callbacks for further cpu hotplug operations */ |
2307 | struct cpuhp_step *sp; |
2308 | int ret = 0; |
2309 | |
2310 | /* |
2311 | * If name is NULL, then the state gets removed. |
2312 | * |
2313 | * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on |
2314 | * the first allocation from these dynamic ranges, so the removal |
2315 | * would trigger a new allocation and clear the wrong (already |
2316 | * empty) state, leaving the callbacks of the to be cleared state |
2317 | * dangling, which causes wreckage on the next hotplug operation. |
2318 | */ |
2319 | if (name && (state == CPUHP_AP_ONLINE_DYN || |
2320 | state == CPUHP_BP_PREPARE_DYN)) { |
2321 | ret = cpuhp_reserve_state(state); |
2322 | if (ret < 0) |
2323 | return ret; |
2324 | state = ret; |
2325 | } |
2326 | sp = cpuhp_get_step(state); |
2327 | if (name && sp->name) |
2328 | return -EBUSY; |
2329 | |
2330 | sp->startup.single = startup; |
2331 | sp->teardown.single = teardown; |
2332 | sp->name = name; |
2333 | sp->multi_instance = multi_instance; |
2334 | INIT_HLIST_HEAD(&sp->list); |
2335 | return ret; |
2336 | } |
2337 | |
2338 | static void *cpuhp_get_teardown_cb(enum cpuhp_state state) |
2339 | { |
2340 | return cpuhp_get_step(state)->teardown.single; |
2341 | } |
2342 | |
2343 | /* |
2344 | * Call the startup/teardown function for a step either on the AP or |
2345 | * on the current CPU. |
2346 | */ |
2347 | static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup, |
2348 | struct hlist_node *node) |
2349 | { |
2350 | struct cpuhp_step *sp = cpuhp_get_step(state); |
2351 | int ret; |
2352 | |
2353 | /* |
2354 | * If there's nothing to do, we done. |
2355 | * Relies on the union for multi_instance. |
2356 | */ |
2357 | if (cpuhp_step_empty(bringup, step: sp)) |
2358 | return 0; |
2359 | /* |
2360 | * The non AP bound callbacks can fail on bringup. On teardown |
2361 | * e.g. module removal we crash for now. |
2362 | */ |
2363 | #ifdef CONFIG_SMP |
2364 | if (cpuhp_is_ap_state(state)) |
2365 | ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node); |
2366 | else |
2367 | ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); |
2368 | #else |
2369 | ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL); |
2370 | #endif |
2371 | BUG_ON(ret && !bringup); |
2372 | return ret; |
2373 | } |
2374 | |
2375 | /* |
2376 | * Called from __cpuhp_setup_state on a recoverable failure. |
2377 | * |
2378 | * Note: The teardown callbacks for rollback are not allowed to fail! |
2379 | */ |
2380 | static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state, |
2381 | struct hlist_node *node) |
2382 | { |
2383 | int cpu; |
2384 | |
2385 | /* Roll back the already executed steps on the other cpus */ |
2386 | for_each_present_cpu(cpu) { |
2387 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
2388 | int cpustate = st->state; |
2389 | |
2390 | if (cpu >= failedcpu) |
2391 | break; |
2392 | |
2393 | /* Did we invoke the startup call on that cpu ? */ |
2394 | if (cpustate >= state) |
2395 | cpuhp_issue_call(cpu, state, bringup: false, node); |
2396 | } |
2397 | } |
2398 | |
2399 | int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state, |
2400 | struct hlist_node *node, |
2401 | bool invoke) |
2402 | { |
2403 | struct cpuhp_step *sp; |
2404 | int cpu; |
2405 | int ret; |
2406 | |
2407 | lockdep_assert_cpus_held(); |
2408 | |
2409 | sp = cpuhp_get_step(state); |
2410 | if (sp->multi_instance == false) |
2411 | return -EINVAL; |
2412 | |
2413 | mutex_lock(&cpuhp_state_mutex); |
2414 | |
2415 | if (!invoke || !sp->startup.multi) |
2416 | goto add_node; |
2417 | |
2418 | /* |
2419 | * Try to call the startup callback for each present cpu |
2420 | * depending on the hotplug state of the cpu. |
2421 | */ |
2422 | for_each_present_cpu(cpu) { |
2423 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
2424 | int cpustate = st->state; |
2425 | |
2426 | if (cpustate < state) |
2427 | continue; |
2428 | |
2429 | ret = cpuhp_issue_call(cpu, state, bringup: true, node); |
2430 | if (ret) { |
2431 | if (sp->teardown.multi) |
2432 | cpuhp_rollback_install(failedcpu: cpu, state, node); |
2433 | goto unlock; |
2434 | } |
2435 | } |
2436 | add_node: |
2437 | ret = 0; |
2438 | hlist_add_head(n: node, h: &sp->list); |
2439 | unlock: |
2440 | mutex_unlock(lock: &cpuhp_state_mutex); |
2441 | return ret; |
2442 | } |
2443 | |
2444 | int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node, |
2445 | bool invoke) |
2446 | { |
2447 | int ret; |
2448 | |
2449 | cpus_read_lock(); |
2450 | ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke); |
2451 | cpus_read_unlock(); |
2452 | return ret; |
2453 | } |
2454 | EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance); |
2455 | |
2456 | /** |
2457 | * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state |
2458 | * @state: The state to setup |
2459 | * @name: Name of the step |
2460 | * @invoke: If true, the startup function is invoked for cpus where |
2461 | * cpu state >= @state |
2462 | * @startup: startup callback function |
2463 | * @teardown: teardown callback function |
2464 | * @multi_instance: State is set up for multiple instances which get |
2465 | * added afterwards. |
2466 | * |
2467 | * The caller needs to hold cpus read locked while calling this function. |
2468 | * Return: |
2469 | * On success: |
2470 | * Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN; |
2471 | * 0 for all other states |
2472 | * On failure: proper (negative) error code |
2473 | */ |
2474 | int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state, |
2475 | const char *name, bool invoke, |
2476 | int (*startup)(unsigned int cpu), |
2477 | int (*teardown)(unsigned int cpu), |
2478 | bool multi_instance) |
2479 | { |
2480 | int cpu, ret = 0; |
2481 | bool dynstate; |
2482 | |
2483 | lockdep_assert_cpus_held(); |
2484 | |
2485 | if (cpuhp_cb_check(state) || !name) |
2486 | return -EINVAL; |
2487 | |
2488 | mutex_lock(&cpuhp_state_mutex); |
2489 | |
2490 | ret = cpuhp_store_callbacks(state, name, startup, teardown, |
2491 | multi_instance); |
2492 | |
2493 | dynstate = state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN; |
2494 | if (ret > 0 && dynstate) { |
2495 | state = ret; |
2496 | ret = 0; |
2497 | } |
2498 | |
2499 | if (ret || !invoke || !startup) |
2500 | goto out; |
2501 | |
2502 | /* |
2503 | * Try to call the startup callback for each present cpu |
2504 | * depending on the hotplug state of the cpu. |
2505 | */ |
2506 | for_each_present_cpu(cpu) { |
2507 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
2508 | int cpustate = st->state; |
2509 | |
2510 | if (cpustate < state) |
2511 | continue; |
2512 | |
2513 | ret = cpuhp_issue_call(cpu, state, bringup: true, NULL); |
2514 | if (ret) { |
2515 | if (teardown) |
2516 | cpuhp_rollback_install(failedcpu: cpu, state, NULL); |
2517 | cpuhp_store_callbacks(state, NULL, NULL, NULL, multi_instance: false); |
2518 | goto out; |
2519 | } |
2520 | } |
2521 | out: |
2522 | mutex_unlock(lock: &cpuhp_state_mutex); |
2523 | /* |
2524 | * If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN, |
2525 | * return the dynamically allocated state in case of success. |
2526 | */ |
2527 | if (!ret && dynstate) |
2528 | return state; |
2529 | return ret; |
2530 | } |
2531 | EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked); |
2532 | |
2533 | int __cpuhp_setup_state(enum cpuhp_state state, |
2534 | const char *name, bool invoke, |
2535 | int (*startup)(unsigned int cpu), |
2536 | int (*teardown)(unsigned int cpu), |
2537 | bool multi_instance) |
2538 | { |
2539 | int ret; |
2540 | |
2541 | cpus_read_lock(); |
2542 | ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup, |
2543 | teardown, multi_instance); |
2544 | cpus_read_unlock(); |
2545 | return ret; |
2546 | } |
2547 | EXPORT_SYMBOL(__cpuhp_setup_state); |
2548 | |
2549 | int __cpuhp_state_remove_instance(enum cpuhp_state state, |
2550 | struct hlist_node *node, bool invoke) |
2551 | { |
2552 | struct cpuhp_step *sp = cpuhp_get_step(state); |
2553 | int cpu; |
2554 | |
2555 | BUG_ON(cpuhp_cb_check(state)); |
2556 | |
2557 | if (!sp->multi_instance) |
2558 | return -EINVAL; |
2559 | |
2560 | cpus_read_lock(); |
2561 | mutex_lock(&cpuhp_state_mutex); |
2562 | |
2563 | if (!invoke || !cpuhp_get_teardown_cb(state)) |
2564 | goto remove; |
2565 | /* |
2566 | * Call the teardown callback for each present cpu depending |
2567 | * on the hotplug state of the cpu. This function is not |
2568 | * allowed to fail currently! |
2569 | */ |
2570 | for_each_present_cpu(cpu) { |
2571 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
2572 | int cpustate = st->state; |
2573 | |
2574 | if (cpustate >= state) |
2575 | cpuhp_issue_call(cpu, state, bringup: false, node); |
2576 | } |
2577 | |
2578 | remove: |
2579 | hlist_del(n: node); |
2580 | mutex_unlock(lock: &cpuhp_state_mutex); |
2581 | cpus_read_unlock(); |
2582 | |
2583 | return 0; |
2584 | } |
2585 | EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance); |
2586 | |
2587 | /** |
2588 | * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state |
2589 | * @state: The state to remove |
2590 | * @invoke: If true, the teardown function is invoked for cpus where |
2591 | * cpu state >= @state |
2592 | * |
2593 | * The caller needs to hold cpus read locked while calling this function. |
2594 | * The teardown callback is currently not allowed to fail. Think |
2595 | * about module removal! |
2596 | */ |
2597 | void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke) |
2598 | { |
2599 | struct cpuhp_step *sp = cpuhp_get_step(state); |
2600 | int cpu; |
2601 | |
2602 | BUG_ON(cpuhp_cb_check(state)); |
2603 | |
2604 | lockdep_assert_cpus_held(); |
2605 | |
2606 | mutex_lock(&cpuhp_state_mutex); |
2607 | if (sp->multi_instance) { |
2608 | WARN(!hlist_empty(&sp->list), |
2609 | "Error: Removing state %d which has instances left.\n", |
2610 | state); |
2611 | goto remove; |
2612 | } |
2613 | |
2614 | if (!invoke || !cpuhp_get_teardown_cb(state)) |
2615 | goto remove; |
2616 | |
2617 | /* |
2618 | * Call the teardown callback for each present cpu depending |
2619 | * on the hotplug state of the cpu. This function is not |
2620 | * allowed to fail currently! |
2621 | */ |
2622 | for_each_present_cpu(cpu) { |
2623 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu); |
2624 | int cpustate = st->state; |
2625 | |
2626 | if (cpustate >= state) |
2627 | cpuhp_issue_call(cpu, state, bringup: false, NULL); |
2628 | } |
2629 | remove: |
2630 | cpuhp_store_callbacks(state, NULL, NULL, NULL, multi_instance: false); |
2631 | mutex_unlock(lock: &cpuhp_state_mutex); |
2632 | } |
2633 | EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked); |
2634 | |
2635 | void __cpuhp_remove_state(enum cpuhp_state state, bool invoke) |
2636 | { |
2637 | cpus_read_lock(); |
2638 | __cpuhp_remove_state_cpuslocked(state, invoke); |
2639 | cpus_read_unlock(); |
2640 | } |
2641 | EXPORT_SYMBOL(__cpuhp_remove_state); |
2642 | |
2643 | #ifdef CONFIG_HOTPLUG_SMT |
2644 | static void cpuhp_offline_cpu_device(unsigned int cpu) |
2645 | { |
2646 | struct device *dev = get_cpu_device(cpu); |
2647 | |
2648 | dev->offline = true; |
2649 | /* Tell user space about the state change */ |
2650 | kobject_uevent(kobj: &dev->kobj, action: KOBJ_OFFLINE); |
2651 | } |
2652 | |
2653 | static void cpuhp_online_cpu_device(unsigned int cpu) |
2654 | { |
2655 | struct device *dev = get_cpu_device(cpu); |
2656 | |
2657 | dev->offline = false; |
2658 | /* Tell user space about the state change */ |
2659 | kobject_uevent(kobj: &dev->kobj, action: KOBJ_ONLINE); |
2660 | } |
2661 | |
2662 | int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval) |
2663 | { |
2664 | int cpu, ret = 0; |
2665 | |
2666 | cpu_maps_update_begin(); |
2667 | for_each_online_cpu(cpu) { |
2668 | if (topology_is_primary_thread(cpu)) |
2669 | continue; |
2670 | /* |
2671 | * Disable can be called with CPU_SMT_ENABLED when changing |
2672 | * from a higher to lower number of SMT threads per core. |
2673 | */ |
2674 | if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu)) |
2675 | continue; |
2676 | ret = cpu_down_maps_locked(cpu, target: CPUHP_OFFLINE); |
2677 | if (ret) |
2678 | break; |
2679 | /* |
2680 | * As this needs to hold the cpu maps lock it's impossible |
2681 | * to call device_offline() because that ends up calling |
2682 | * cpu_down() which takes cpu maps lock. cpu maps lock |
2683 | * needs to be held as this might race against in kernel |
2684 | * abusers of the hotplug machinery (thermal management). |
2685 | * |
2686 | * So nothing would update device:offline state. That would |
2687 | * leave the sysfs entry stale and prevent onlining after |
2688 | * smt control has been changed to 'off' again. This is |
2689 | * called under the sysfs hotplug lock, so it is properly |
2690 | * serialized against the regular offline usage. |
2691 | */ |
2692 | cpuhp_offline_cpu_device(cpu); |
2693 | } |
2694 | if (!ret) |
2695 | cpu_smt_control = ctrlval; |
2696 | cpu_maps_update_done(); |
2697 | return ret; |
2698 | } |
2699 | |
2700 | /* Check if the core a CPU belongs to is online */ |
2701 | #if !defined(topology_is_core_online) |
2702 | static inline bool topology_is_core_online(unsigned int cpu) |
2703 | { |
2704 | return true; |
2705 | } |
2706 | #endif |
2707 | |
2708 | int cpuhp_smt_enable(void) |
2709 | { |
2710 | int cpu, ret = 0; |
2711 | |
2712 | cpu_maps_update_begin(); |
2713 | cpu_smt_control = CPU_SMT_ENABLED; |
2714 | for_each_present_cpu(cpu) { |
2715 | /* Skip online CPUs and CPUs on offline nodes */ |
2716 | if (cpu_online(cpu) || !node_online(cpu_to_node(cpu))) |
2717 | continue; |
2718 | if (!cpu_smt_thread_allowed(cpu) || !topology_is_core_online(cpu)) |
2719 | continue; |
2720 | ret = _cpu_up(cpu, tasks_frozen: 0, target: CPUHP_ONLINE); |
2721 | if (ret) |
2722 | break; |
2723 | /* See comment in cpuhp_smt_disable() */ |
2724 | cpuhp_online_cpu_device(cpu); |
2725 | } |
2726 | cpu_maps_update_done(); |
2727 | return ret; |
2728 | } |
2729 | #endif |
2730 | |
2731 | #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU) |
2732 | static ssize_t state_show(struct device *dev, |
2733 | struct device_attribute *attr, char *buf) |
2734 | { |
2735 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); |
2736 | |
2737 | return sprintf(buf, fmt: "%d\n", st->state); |
2738 | } |
2739 | static DEVICE_ATTR_RO(state); |
2740 | |
2741 | static ssize_t target_store(struct device *dev, struct device_attribute *attr, |
2742 | const char *buf, size_t count) |
2743 | { |
2744 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); |
2745 | struct cpuhp_step *sp; |
2746 | int target, ret; |
2747 | |
2748 | ret = kstrtoint(s: buf, base: 10, res: &target); |
2749 | if (ret) |
2750 | return ret; |
2751 | |
2752 | #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL |
2753 | if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE) |
2754 | return -EINVAL; |
2755 | #else |
2756 | if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE) |
2757 | return -EINVAL; |
2758 | #endif |
2759 | |
2760 | ret = lock_device_hotplug_sysfs(); |
2761 | if (ret) |
2762 | return ret; |
2763 | |
2764 | mutex_lock(&cpuhp_state_mutex); |
2765 | sp = cpuhp_get_step(state: target); |
2766 | ret = !sp->name || sp->cant_stop ? -EINVAL : 0; |
2767 | mutex_unlock(lock: &cpuhp_state_mutex); |
2768 | if (ret) |
2769 | goto out; |
2770 | |
2771 | if (st->state < target) |
2772 | ret = cpu_up(cpu: dev->id, target); |
2773 | else if (st->state > target) |
2774 | ret = cpu_down(cpu: dev->id, target); |
2775 | else if (WARN_ON(st->target != target)) |
2776 | st->target = target; |
2777 | out: |
2778 | unlock_device_hotplug(); |
2779 | return ret ? ret : count; |
2780 | } |
2781 | |
2782 | static ssize_t target_show(struct device *dev, |
2783 | struct device_attribute *attr, char *buf) |
2784 | { |
2785 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); |
2786 | |
2787 | return sprintf(buf, fmt: "%d\n", st->target); |
2788 | } |
2789 | static DEVICE_ATTR_RW(target); |
2790 | |
2791 | static ssize_t fail_store(struct device *dev, struct device_attribute *attr, |
2792 | const char *buf, size_t count) |
2793 | { |
2794 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); |
2795 | struct cpuhp_step *sp; |
2796 | int fail, ret; |
2797 | |
2798 | ret = kstrtoint(s: buf, base: 10, res: &fail); |
2799 | if (ret) |
2800 | return ret; |
2801 | |
2802 | if (fail == CPUHP_INVALID) { |
2803 | st->fail = fail; |
2804 | return count; |
2805 | } |
2806 | |
2807 | if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE) |
2808 | return -EINVAL; |
2809 | |
2810 | /* |
2811 | * Cannot fail STARTING/DYING callbacks. |
2812 | */ |
2813 | if (cpuhp_is_atomic_state(state: fail)) |
2814 | return -EINVAL; |
2815 | |
2816 | /* |
2817 | * DEAD callbacks cannot fail... |
2818 | * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter |
2819 | * triggering STARTING callbacks, a failure in this state would |
2820 | * hinder rollback. |
2821 | */ |
2822 | if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU) |
2823 | return -EINVAL; |
2824 | |
2825 | /* |
2826 | * Cannot fail anything that doesn't have callbacks. |
2827 | */ |
2828 | mutex_lock(&cpuhp_state_mutex); |
2829 | sp = cpuhp_get_step(state: fail); |
2830 | if (!sp->startup.single && !sp->teardown.single) |
2831 | ret = -EINVAL; |
2832 | mutex_unlock(lock: &cpuhp_state_mutex); |
2833 | if (ret) |
2834 | return ret; |
2835 | |
2836 | st->fail = fail; |
2837 | |
2838 | return count; |
2839 | } |
2840 | |
2841 | static ssize_t fail_show(struct device *dev, |
2842 | struct device_attribute *attr, char *buf) |
2843 | { |
2844 | struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id); |
2845 | |
2846 | return sprintf(buf, fmt: "%d\n", st->fail); |
2847 | } |
2848 | |
2849 | static DEVICE_ATTR_RW(fail); |
2850 | |
2851 | static struct attribute *cpuhp_cpu_attrs[] = { |
2852 | &dev_attr_state.attr, |
2853 | &dev_attr_target.attr, |
2854 | &dev_attr_fail.attr, |
2855 | NULL |
2856 | }; |
2857 | |
2858 | static const struct attribute_group cpuhp_cpu_attr_group = { |
2859 | .attrs = cpuhp_cpu_attrs, |
2860 | .name = "hotplug", |
2861 | }; |
2862 | |
2863 | static ssize_t states_show(struct device *dev, |
2864 | struct device_attribute *attr, char *buf) |
2865 | { |
2866 | ssize_t cur, res = 0; |
2867 | int i; |
2868 | |
2869 | mutex_lock(&cpuhp_state_mutex); |
2870 | for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) { |
2871 | struct cpuhp_step *sp = cpuhp_get_step(state: i); |
2872 | |
2873 | if (sp->name) { |
2874 | cur = sprintf(buf, fmt: "%3d: %s\n", i, sp->name); |
2875 | buf += cur; |
2876 | res += cur; |
2877 | } |
2878 | } |
2879 | mutex_unlock(lock: &cpuhp_state_mutex); |
2880 | return res; |
2881 | } |
2882 | static DEVICE_ATTR_RO(states); |
2883 | |
2884 | static struct attribute *cpuhp_cpu_root_attrs[] = { |
2885 | &dev_attr_states.attr, |
2886 | NULL |
2887 | }; |
2888 | |
2889 | static const struct attribute_group cpuhp_cpu_root_attr_group = { |
2890 | .attrs = cpuhp_cpu_root_attrs, |
2891 | .name = "hotplug", |
2892 | }; |
2893 | |
2894 | #ifdef CONFIG_HOTPLUG_SMT |
2895 | |
2896 | static bool cpu_smt_num_threads_valid(unsigned int threads) |
2897 | { |
2898 | if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC)) |
2899 | return threads >= 1 && threads <= cpu_smt_max_threads; |
2900 | return threads == 1 || threads == cpu_smt_max_threads; |
2901 | } |
2902 | |
2903 | static ssize_t |
2904 | __store_smt_control(struct device *dev, struct device_attribute *attr, |
2905 | const char *buf, size_t count) |
2906 | { |
2907 | int ctrlval, ret, num_threads, orig_threads; |
2908 | bool force_off; |
2909 | |
2910 | if (cpu_smt_control == CPU_SMT_FORCE_DISABLED) |
2911 | return -EPERM; |
2912 | |
2913 | if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED) |
2914 | return -ENODEV; |
2915 | |
2916 | if (sysfs_streq(s1: buf, s2: "on")) { |
2917 | ctrlval = CPU_SMT_ENABLED; |
2918 | num_threads = cpu_smt_max_threads; |
2919 | } else if (sysfs_streq(s1: buf, s2: "off")) { |
2920 | ctrlval = CPU_SMT_DISABLED; |
2921 | num_threads = 1; |
2922 | } else if (sysfs_streq(s1: buf, s2: "forceoff")) { |
2923 | ctrlval = CPU_SMT_FORCE_DISABLED; |
2924 | num_threads = 1; |
2925 | } else if (kstrtoint(s: buf, base: 10, res: &num_threads) == 0) { |
2926 | if (num_threads == 1) |
2927 | ctrlval = CPU_SMT_DISABLED; |
2928 | else if (cpu_smt_num_threads_valid(threads: num_threads)) |
2929 | ctrlval = CPU_SMT_ENABLED; |
2930 | else |
2931 | return -EINVAL; |
2932 | } else { |
2933 | return -EINVAL; |
2934 | } |
2935 | |
2936 | ret = lock_device_hotplug_sysfs(); |
2937 | if (ret) |
2938 | return ret; |
2939 | |
2940 | orig_threads = cpu_smt_num_threads; |
2941 | cpu_smt_num_threads = num_threads; |
2942 | |
2943 | force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED; |
2944 | |
2945 | if (num_threads > orig_threads) |
2946 | ret = cpuhp_smt_enable(); |
2947 | else if (num_threads < orig_threads || force_off) |
2948 | ret = cpuhp_smt_disable(ctrlval); |
2949 | |
2950 | unlock_device_hotplug(); |
2951 | return ret ? ret : count; |
2952 | } |
2953 | |
2954 | #else /* !CONFIG_HOTPLUG_SMT */ |
2955 | static ssize_t |
2956 | __store_smt_control(struct device *dev, struct device_attribute *attr, |
2957 | const char *buf, size_t count) |
2958 | { |
2959 | return -ENODEV; |
2960 | } |
2961 | #endif /* CONFIG_HOTPLUG_SMT */ |
2962 | |
2963 | static const char *smt_states[] = { |
2964 | [CPU_SMT_ENABLED] = "on", |
2965 | [CPU_SMT_DISABLED] = "off", |
2966 | [CPU_SMT_FORCE_DISABLED] = "forceoff", |
2967 | [CPU_SMT_NOT_SUPPORTED] = "notsupported", |
2968 | [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented", |
2969 | }; |
2970 | |
2971 | static ssize_t control_show(struct device *dev, |
2972 | struct device_attribute *attr, char *buf) |
2973 | { |
2974 | const char *state = smt_states[cpu_smt_control]; |
2975 | |
2976 | #ifdef CONFIG_HOTPLUG_SMT |
2977 | /* |
2978 | * If SMT is enabled but not all threads are enabled then show the |
2979 | * number of threads. If all threads are enabled show "on". Otherwise |
2980 | * show the state name. |
2981 | */ |
2982 | if (cpu_smt_control == CPU_SMT_ENABLED && |
2983 | cpu_smt_num_threads != cpu_smt_max_threads) |
2984 | return sysfs_emit(buf, fmt: "%d\n", cpu_smt_num_threads); |
2985 | #endif |
2986 | |
2987 | return sysfs_emit(buf, fmt: "%s\n", state); |
2988 | } |
2989 | |
2990 | static ssize_t control_store(struct device *dev, struct device_attribute *attr, |
2991 | const char *buf, size_t count) |
2992 | { |
2993 | return __store_smt_control(dev, attr, buf, count); |
2994 | } |
2995 | static DEVICE_ATTR_RW(control); |
2996 | |
2997 | static ssize_t active_show(struct device *dev, |
2998 | struct device_attribute *attr, char *buf) |
2999 | { |
3000 | return sysfs_emit(buf, fmt: "%d\n", sched_smt_active()); |
3001 | } |
3002 | static DEVICE_ATTR_RO(active); |
3003 | |
3004 | static struct attribute *cpuhp_smt_attrs[] = { |
3005 | &dev_attr_control.attr, |
3006 | &dev_attr_active.attr, |
3007 | NULL |
3008 | }; |
3009 | |
3010 | static const struct attribute_group cpuhp_smt_attr_group = { |
3011 | .attrs = cpuhp_smt_attrs, |
3012 | .name = "smt", |
3013 | }; |
3014 | |
3015 | static int __init cpu_smt_sysfs_init(void) |
3016 | { |
3017 | struct device *dev_root; |
3018 | int ret = -ENODEV; |
3019 | |
3020 | dev_root = bus_get_dev_root(bus: &cpu_subsys); |
3021 | if (dev_root) { |
3022 | ret = sysfs_create_group(kobj: &dev_root->kobj, grp: &cpuhp_smt_attr_group); |
3023 | put_device(dev: dev_root); |
3024 | } |
3025 | return ret; |
3026 | } |
3027 | |
3028 | static int __init cpuhp_sysfs_init(void) |
3029 | { |
3030 | struct device *dev_root; |
3031 | int cpu, ret; |
3032 | |
3033 | ret = cpu_smt_sysfs_init(); |
3034 | if (ret) |
3035 | return ret; |
3036 | |
3037 | dev_root = bus_get_dev_root(bus: &cpu_subsys); |
3038 | if (dev_root) { |
3039 | ret = sysfs_create_group(kobj: &dev_root->kobj, grp: &cpuhp_cpu_root_attr_group); |
3040 | put_device(dev: dev_root); |
3041 | if (ret) |
3042 | return ret; |
3043 | } |
3044 | |
3045 | for_each_possible_cpu(cpu) { |
3046 | struct device *dev = get_cpu_device(cpu); |
3047 | |
3048 | if (!dev) |
3049 | continue; |
3050 | ret = sysfs_create_group(kobj: &dev->kobj, grp: &cpuhp_cpu_attr_group); |
3051 | if (ret) |
3052 | return ret; |
3053 | } |
3054 | return 0; |
3055 | } |
3056 | device_initcall(cpuhp_sysfs_init); |
3057 | #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */ |
3058 | |
3059 | /* |
3060 | * cpu_bit_bitmap[] is a special, "compressed" data structure that |
3061 | * represents all NR_CPUS bits binary values of 1<<nr. |
3062 | * |
3063 | * It is used by cpumask_of() to get a constant address to a CPU |
3064 | * mask value that has a single bit set only. |
3065 | */ |
3066 | |
3067 | /* cpu_bit_bitmap[0] is empty - so we can back into it */ |
3068 | #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x)) |
3069 | #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1) |
3070 | #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2) |
3071 | #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4) |
3072 | |
3073 | const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = { |
3074 | |
3075 | MASK_DECLARE_8(0), MASK_DECLARE_8(8), |
3076 | MASK_DECLARE_8(16), MASK_DECLARE_8(24), |
3077 | #if BITS_PER_LONG > 32 |
3078 | MASK_DECLARE_8(32), MASK_DECLARE_8(40), |
3079 | MASK_DECLARE_8(48), MASK_DECLARE_8(56), |
3080 | #endif |
3081 | }; |
3082 | EXPORT_SYMBOL_GPL(cpu_bit_bitmap); |
3083 | |
3084 | const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL; |
3085 | EXPORT_SYMBOL(cpu_all_bits); |
3086 | |
3087 | #ifdef CONFIG_INIT_ALL_POSSIBLE |
3088 | struct cpumask __cpu_possible_mask __ro_after_init |
3089 | = {CPU_BITS_ALL}; |
3090 | #else |
3091 | struct cpumask __cpu_possible_mask __ro_after_init; |
3092 | #endif |
3093 | EXPORT_SYMBOL(__cpu_possible_mask); |
3094 | |
3095 | struct cpumask __cpu_online_mask __read_mostly; |
3096 | EXPORT_SYMBOL(__cpu_online_mask); |
3097 | |
3098 | struct cpumask __cpu_enabled_mask __read_mostly; |
3099 | EXPORT_SYMBOL(__cpu_enabled_mask); |
3100 | |
3101 | struct cpumask __cpu_present_mask __read_mostly; |
3102 | EXPORT_SYMBOL(__cpu_present_mask); |
3103 | |
3104 | struct cpumask __cpu_active_mask __read_mostly; |
3105 | EXPORT_SYMBOL(__cpu_active_mask); |
3106 | |
3107 | struct cpumask __cpu_dying_mask __read_mostly; |
3108 | EXPORT_SYMBOL(__cpu_dying_mask); |
3109 | |
3110 | atomic_t __num_online_cpus __read_mostly; |
3111 | EXPORT_SYMBOL(__num_online_cpus); |
3112 | |
3113 | void init_cpu_present(const struct cpumask *src) |
3114 | { |
3115 | cpumask_copy(dstp: &__cpu_present_mask, srcp: src); |
3116 | } |
3117 | |
3118 | void init_cpu_possible(const struct cpumask *src) |
3119 | { |
3120 | cpumask_copy(dstp: &__cpu_possible_mask, srcp: src); |
3121 | } |
3122 | |
3123 | void set_cpu_online(unsigned int cpu, bool online) |
3124 | { |
3125 | /* |
3126 | * atomic_inc/dec() is required to handle the horrid abuse of this |
3127 | * function by the reboot and kexec code which invoke it from |
3128 | * IPI/NMI broadcasts when shutting down CPUs. Invocation from |
3129 | * regular CPU hotplug is properly serialized. |
3130 | * |
3131 | * Note, that the fact that __num_online_cpus is of type atomic_t |
3132 | * does not protect readers which are not serialized against |
3133 | * concurrent hotplug operations. |
3134 | */ |
3135 | if (online) { |
3136 | if (!cpumask_test_and_set_cpu(cpu, cpumask: &__cpu_online_mask)) |
3137 | atomic_inc(v: &__num_online_cpus); |
3138 | } else { |
3139 | if (cpumask_test_and_clear_cpu(cpu, cpumask: &__cpu_online_mask)) |
3140 | atomic_dec(v: &__num_online_cpus); |
3141 | } |
3142 | } |
3143 | |
3144 | /* |
3145 | * Activate the first processor. |
3146 | */ |
3147 | void __init boot_cpu_init(void) |
3148 | { |
3149 | int cpu = smp_processor_id(); |
3150 | |
3151 | /* Mark the boot cpu "present", "online" etc for SMP and UP case */ |
3152 | set_cpu_online(cpu, online: true); |
3153 | set_cpu_active(cpu, true); |
3154 | set_cpu_present(cpu, true); |
3155 | set_cpu_possible(cpu, true); |
3156 | |
3157 | #ifdef CONFIG_SMP |
3158 | __boot_cpu_id = cpu; |
3159 | #endif |
3160 | } |
3161 | |
3162 | /* |
3163 | * Must be called _AFTER_ setting up the per_cpu areas |
3164 | */ |
3165 | void __init boot_cpu_hotplug_init(void) |
3166 | { |
3167 | #ifdef CONFIG_SMP |
3168 | cpumask_set_cpu(smp_processor_id(), dstp: &cpus_booted_once_mask); |
3169 | atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), i: SYNC_STATE_ONLINE); |
3170 | #endif |
3171 | this_cpu_write(cpuhp_state.state, CPUHP_ONLINE); |
3172 | this_cpu_write(cpuhp_state.target, CPUHP_ONLINE); |
3173 | } |
3174 | |
3175 | #ifdef CONFIG_CPU_MITIGATIONS |
3176 | /* |
3177 | * These are used for a global "mitigations=" cmdline option for toggling |
3178 | * optional CPU mitigations. |
3179 | */ |
3180 | enum cpu_mitigations { |
3181 | CPU_MITIGATIONS_OFF, |
3182 | CPU_MITIGATIONS_AUTO, |
3183 | CPU_MITIGATIONS_AUTO_NOSMT, |
3184 | }; |
3185 | |
3186 | static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO; |
3187 | |
3188 | static int __init mitigations_parse_cmdline(char *arg) |
3189 | { |
3190 | if (!strcmp(arg, "off")) |
3191 | cpu_mitigations = CPU_MITIGATIONS_OFF; |
3192 | else if (!strcmp(arg, "auto")) |
3193 | cpu_mitigations = CPU_MITIGATIONS_AUTO; |
3194 | else if (!strcmp(arg, "auto,nosmt")) |
3195 | cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT; |
3196 | else |
3197 | pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n", |
3198 | arg); |
3199 | |
3200 | return 0; |
3201 | } |
3202 | |
3203 | /* mitigations=off */ |
3204 | bool cpu_mitigations_off(void) |
3205 | { |
3206 | return cpu_mitigations == CPU_MITIGATIONS_OFF; |
3207 | } |
3208 | EXPORT_SYMBOL_GPL(cpu_mitigations_off); |
3209 | |
3210 | /* mitigations=auto,nosmt */ |
3211 | bool cpu_mitigations_auto_nosmt(void) |
3212 | { |
3213 | return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT; |
3214 | } |
3215 | EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt); |
3216 | #else |
3217 | static int __init mitigations_parse_cmdline(char *arg) |
3218 | { |
3219 | pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n"); |
3220 | return 0; |
3221 | } |
3222 | #endif |
3223 | early_param("mitigations", mitigations_parse_cmdline); |
3224 |
Definitions
- cpuhp_cpu_state
- cpuhp_state
- cpus_booted_once_mask
- cpuhp_state_up_map
- cpuhp_state_down_map
- cpuhp_lock_acquire
- cpuhp_lock_release
- cpuhp_step
- cpuhp_state_mutex
- cpuhp_hp_states
- cpuhp_get_step
- cpuhp_step_empty
- cpuhp_invoke_callback
- cpuhp_is_ap_state
- wait_for_ap_thread
- complete_ap_thread
- cpuhp_is_atomic_state
- cpuhp_sync_state
- cpuhp_ap_update_sync_state
- arch_cpuhp_sync_state_poll
- cpuhp_wait_for_sync_state
- cpuhp_ap_report_dead
- arch_cpuhp_cleanup_dead_cpu
- cpuhp_bp_sync_dead
- cpuhp_ap_sync_alive
- cpuhp_can_boot_ap
- arch_cpuhp_cleanup_kick_cpu
- cpuhp_bp_sync_alive
- cpu_add_remove_lock
- cpuhp_tasks_frozen
- cpu_maps_update_begin
- cpu_maps_update_done
- cpu_hotplug_disabled
- cpu_hotplug_lock
- cpu_hotplug_offline_disabled
- cpus_read_lock
- cpus_read_trylock
- cpus_read_unlock
- cpus_write_lock
- cpus_write_unlock
- lockdep_assert_cpus_held
- lockdep_is_cpus_held
- lockdep_acquire_cpus_lock
- lockdep_release_cpus_lock
- cpu_hotplug_disable_offlining
- cpu_hotplug_disable
- __cpu_hotplug_enable
- cpu_hotplug_enable
- arch_smt_update
- cpu_smt_control
- cpu_smt_max_threads
- cpu_smt_num_threads
- cpu_smt_disable
- cpu_smt_set_num_threads
- smt_cmdline_disable
- cpu_smt_thread_allowed
- cpu_bootable
- cpu_smt_possible
- cpuhp_set_state
- cpuhp_reset_state
- __cpuhp_kick_ap
- cpuhp_kick_ap
- bringup_wait_for_ap_online
- cpuhp_kick_ap_alive
- cpuhp_bringup_ap
- finish_cpu
- cpuhp_next_state
- __cpuhp_invoke_callback_range
- cpuhp_invoke_callback_range
- cpuhp_invoke_callback_range_nofail
- can_rollback_cpu
- cpuhp_up_callbacks
- cpuhp_should_run
- cpuhp_thread_fun
- cpuhp_invoke_ap_callback
- cpuhp_kick_ap_work
- cpuhp_threads
- cpuhp_init_state
- cpuhp_threads_init
- clear_tasks_mm_cpumask
- take_cpu_down
- takedown_cpu
- cpuhp_complete_idle_dead
- cpuhp_report_idle_dead
- cpuhp_down_callbacks
- _cpu_down
- cpu_down_work
- __cpu_down_maps_locked
- cpu_down_maps_locked
- cpu_down
- cpu_device_down
- remove_cpu
- smp_shutdown_nonboot_cpus
- notify_cpu_starting
- cpuhp_online_idle
- _cpu_up
- cpu_up
- cpu_device_up
- add_cpu
- bringup_hibernate_cpu
- cpuhp_bringup_mask
- __cpuhp_parallel_bringup
- parallel_bringup_parse_param
- cpuhp_smt_aware
- cpuhp_get_primary_thread_mask
- arch_cpuhp_init_parallel_bringup
- cpuhp_bringup_cpus_parallel
- bringup_nonboot_cpus
- frozen_cpus
- freeze_secondary_cpus
- arch_thaw_secondary_cpus_begin
- arch_thaw_secondary_cpus_end
- thaw_secondary_cpus
- alloc_frozen_cpus
- cpu_hotplug_pm_callback
- cpu_hotplug_pm_sync_init
- __boot_cpu_id
- cpuhp_hp_states
- cpuhp_cb_check
- cpuhp_reserve_state
- cpuhp_store_callbacks
- cpuhp_get_teardown_cb
- cpuhp_issue_call
- cpuhp_rollback_install
- __cpuhp_state_add_instance_cpuslocked
- __cpuhp_state_add_instance
- __cpuhp_setup_state_cpuslocked
- __cpuhp_setup_state
- __cpuhp_state_remove_instance
- __cpuhp_remove_state_cpuslocked
- __cpuhp_remove_state
- cpuhp_offline_cpu_device
- cpuhp_online_cpu_device
- cpuhp_smt_disable
- topology_is_core_online
- cpuhp_smt_enable
- state_show
- target_store
- target_show
- fail_store
- fail_show
- cpuhp_cpu_attrs
- cpuhp_cpu_attr_group
- states_show
- cpuhp_cpu_root_attrs
- cpuhp_cpu_root_attr_group
- cpu_smt_num_threads_valid
- __store_smt_control
- smt_states
- control_show
- control_store
- active_show
- cpuhp_smt_attrs
- cpuhp_smt_attr_group
- cpu_smt_sysfs_init
- cpuhp_sysfs_init
- cpu_bit_bitmap
- cpu_all_bits
- __cpu_possible_mask
- __cpu_online_mask
- __cpu_enabled_mask
- __cpu_present_mask
- __cpu_active_mask
- __cpu_dying_mask
- __num_online_cpus
- init_cpu_present
- init_cpu_possible
- set_cpu_online
- boot_cpu_init
- boot_cpu_hotplug_init
- cpu_mitigations
- cpu_mitigations
- mitigations_parse_cmdline
- cpu_mitigations_off
Improve your Profiling and Debugging skills
Find out more