1 | // SPDX-License-Identifier: GPL-2.0-or-later |
2 | |
3 | /* |
4 | * VMA-specific functions. |
5 | */ |
6 | |
7 | #include "vma_internal.h" |
8 | #include "vma.h" |
9 | |
10 | struct mmap_state { |
11 | struct mm_struct *mm; |
12 | struct vma_iterator *vmi; |
13 | |
14 | unsigned long addr; |
15 | unsigned long end; |
16 | pgoff_t pgoff; |
17 | unsigned long pglen; |
18 | unsigned long flags; |
19 | struct file *file; |
20 | pgprot_t page_prot; |
21 | |
22 | /* User-defined fields, perhaps updated by .mmap_prepare(). */ |
23 | const struct vm_operations_struct *vm_ops; |
24 | void *vm_private_data; |
25 | |
26 | unsigned long charged; |
27 | |
28 | struct vm_area_struct *prev; |
29 | struct vm_area_struct *next; |
30 | |
31 | /* Unmapping state. */ |
32 | struct vma_munmap_struct vms; |
33 | struct ma_state mas_detach; |
34 | struct maple_tree mt_detach; |
35 | }; |
36 | |
37 | #define MMAP_STATE(name, mm_, vmi_, addr_, len_, pgoff_, flags_, file_) \ |
38 | struct mmap_state name = { \ |
39 | .mm = mm_, \ |
40 | .vmi = vmi_, \ |
41 | .addr = addr_, \ |
42 | .end = (addr_) + (len_), \ |
43 | .pgoff = pgoff_, \ |
44 | .pglen = PHYS_PFN(len_), \ |
45 | .flags = flags_, \ |
46 | .file = file_, \ |
47 | .page_prot = vm_get_page_prot(flags_), \ |
48 | } |
49 | |
50 | #define VMG_MMAP_STATE(name, map_, vma_) \ |
51 | struct vma_merge_struct name = { \ |
52 | .mm = (map_)->mm, \ |
53 | .vmi = (map_)->vmi, \ |
54 | .start = (map_)->addr, \ |
55 | .end = (map_)->end, \ |
56 | .flags = (map_)->flags, \ |
57 | .pgoff = (map_)->pgoff, \ |
58 | .file = (map_)->file, \ |
59 | .prev = (map_)->prev, \ |
60 | .middle = vma_, \ |
61 | .next = (vma_) ? NULL : (map_)->next, \ |
62 | .state = VMA_MERGE_START, \ |
63 | } |
64 | |
65 | /* |
66 | * If, at any point, the VMA had unCoW'd mappings from parents, it will maintain |
67 | * more than one anon_vma_chain connecting it to more than one anon_vma. A merge |
68 | * would mean a wider range of folios sharing the root anon_vma lock, and thus |
69 | * potential lock contention, we do not wish to encourage merging such that this |
70 | * scales to a problem. |
71 | */ |
72 | static bool vma_had_uncowed_parents(struct vm_area_struct *vma) |
73 | { |
74 | /* |
75 | * The list_is_singular() test is to avoid merging VMA cloned from |
76 | * parents. This can improve scalability caused by anon_vma lock. |
77 | */ |
78 | return vma && vma->anon_vma && !list_is_singular(head: &vma->anon_vma_chain); |
79 | } |
80 | |
81 | static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next) |
82 | { |
83 | struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev; |
84 | |
85 | if (!mpol_equal(a: vmg->policy, vma_policy(vma))) |
86 | return false; |
87 | /* |
88 | * VM_SOFTDIRTY should not prevent from VMA merging, if we |
89 | * match the flags but dirty bit -- the caller should mark |
90 | * merged VMA as dirty. If dirty bit won't be excluded from |
91 | * comparison, we increase pressure on the memory system forcing |
92 | * the kernel to generate new VMAs when old one could be |
93 | * extended instead. |
94 | */ |
95 | if ((vma->vm_flags ^ vmg->flags) & ~VM_SOFTDIRTY) |
96 | return false; |
97 | if (vma->vm_file != vmg->file) |
98 | return false; |
99 | if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_ctx: vmg->uffd_ctx)) |
100 | return false; |
101 | if (!anon_vma_name_eq(anon_name1: anon_vma_name(vma), anon_name2: vmg->anon_name)) |
102 | return false; |
103 | return true; |
104 | } |
105 | |
106 | static bool is_mergeable_anon_vma(struct vma_merge_struct *vmg, bool merge_next) |
107 | { |
108 | struct vm_area_struct *tgt = merge_next ? vmg->next : vmg->prev; |
109 | struct vm_area_struct *src = vmg->middle; /* exisitng merge case. */ |
110 | struct anon_vma *tgt_anon = tgt->anon_vma; |
111 | struct anon_vma *src_anon = vmg->anon_vma; |
112 | |
113 | /* |
114 | * We _can_ have !src, vmg->anon_vma via copy_vma(). In this instance we |
115 | * will remove the existing VMA's anon_vma's so there's no scalability |
116 | * concerns. |
117 | */ |
118 | VM_WARN_ON(src && src_anon != src->anon_vma); |
119 | |
120 | /* Case 1 - we will dup_anon_vma() from src into tgt. */ |
121 | if (!tgt_anon && src_anon) |
122 | return !vma_had_uncowed_parents(vma: src); |
123 | /* Case 2 - we will simply use tgt's anon_vma. */ |
124 | if (tgt_anon && !src_anon) |
125 | return !vma_had_uncowed_parents(vma: tgt); |
126 | /* Case 3 - the anon_vma's are already shared. */ |
127 | return src_anon == tgt_anon; |
128 | } |
129 | |
130 | /* |
131 | * init_multi_vma_prep() - Initializer for struct vma_prepare |
132 | * @vp: The vma_prepare struct |
133 | * @vma: The vma that will be altered once locked |
134 | * @vmg: The merge state that will be used to determine adjustment and VMA |
135 | * removal. |
136 | */ |
137 | static void init_multi_vma_prep(struct vma_prepare *vp, |
138 | struct vm_area_struct *vma, |
139 | struct vma_merge_struct *vmg) |
140 | { |
141 | struct vm_area_struct *adjust; |
142 | struct vm_area_struct **remove = &vp->remove; |
143 | |
144 | memset(vp, 0, sizeof(struct vma_prepare)); |
145 | vp->vma = vma; |
146 | vp->anon_vma = vma->anon_vma; |
147 | |
148 | if (vmg && vmg->__remove_middle) { |
149 | *remove = vmg->middle; |
150 | remove = &vp->remove2; |
151 | } |
152 | if (vmg && vmg->__remove_next) |
153 | *remove = vmg->next; |
154 | |
155 | if (vmg && vmg->__adjust_middle_start) |
156 | adjust = vmg->middle; |
157 | else if (vmg && vmg->__adjust_next_start) |
158 | adjust = vmg->next; |
159 | else |
160 | adjust = NULL; |
161 | |
162 | vp->adj_next = adjust; |
163 | if (!vp->anon_vma && adjust) |
164 | vp->anon_vma = adjust->anon_vma; |
165 | |
166 | VM_WARN_ON(vp->anon_vma && adjust && adjust->anon_vma && |
167 | vp->anon_vma != adjust->anon_vma); |
168 | |
169 | vp->file = vma->vm_file; |
170 | if (vp->file) |
171 | vp->mapping = vma->vm_file->f_mapping; |
172 | |
173 | if (vmg && vmg->skip_vma_uprobe) |
174 | vp->skip_vma_uprobe = true; |
175 | } |
176 | |
177 | /* |
178 | * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) |
179 | * in front of (at a lower virtual address and file offset than) the vma. |
180 | * |
181 | * We cannot merge two vmas if they have differently assigned (non-NULL) |
182 | * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. |
183 | * |
184 | * We don't check here for the merged mmap wrapping around the end of pagecache |
185 | * indices (16TB on ia32) because do_mmap() does not permit mmap's which |
186 | * wrap, nor mmaps which cover the final page at index -1UL. |
187 | * |
188 | * We assume the vma may be removed as part of the merge. |
189 | */ |
190 | static bool can_vma_merge_before(struct vma_merge_struct *vmg) |
191 | { |
192 | pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); |
193 | |
194 | if (is_mergeable_vma(vmg, /* merge_next = */ true) && |
195 | is_mergeable_anon_vma(vmg, /* merge_next = */ true)) { |
196 | if (vmg->next->vm_pgoff == vmg->pgoff + pglen) |
197 | return true; |
198 | } |
199 | |
200 | return false; |
201 | } |
202 | |
203 | /* |
204 | * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff) |
205 | * beyond (at a higher virtual address and file offset than) the vma. |
206 | * |
207 | * We cannot merge two vmas if they have differently assigned (non-NULL) |
208 | * anon_vmas, nor if same anon_vma is assigned but offsets incompatible. |
209 | * |
210 | * We assume that vma is not removed as part of the merge. |
211 | */ |
212 | static bool can_vma_merge_after(struct vma_merge_struct *vmg) |
213 | { |
214 | if (is_mergeable_vma(vmg, /* merge_next = */ false) && |
215 | is_mergeable_anon_vma(vmg, /* merge_next = */ false)) { |
216 | if (vmg->prev->vm_pgoff + vma_pages(vma: vmg->prev) == vmg->pgoff) |
217 | return true; |
218 | } |
219 | return false; |
220 | } |
221 | |
222 | static void __vma_link_file(struct vm_area_struct *vma, |
223 | struct address_space *mapping) |
224 | { |
225 | if (vma_is_shared_maywrite(vma)) |
226 | mapping_allow_writable(mapping); |
227 | |
228 | flush_dcache_mmap_lock(mapping); |
229 | vma_interval_tree_insert(node: vma, root: &mapping->i_mmap); |
230 | flush_dcache_mmap_unlock(mapping); |
231 | } |
232 | |
233 | /* |
234 | * Requires inode->i_mapping->i_mmap_rwsem |
235 | */ |
236 | static void __remove_shared_vm_struct(struct vm_area_struct *vma, |
237 | struct address_space *mapping) |
238 | { |
239 | if (vma_is_shared_maywrite(vma)) |
240 | mapping_unmap_writable(mapping); |
241 | |
242 | flush_dcache_mmap_lock(mapping); |
243 | vma_interval_tree_remove(node: vma, root: &mapping->i_mmap); |
244 | flush_dcache_mmap_unlock(mapping); |
245 | } |
246 | |
247 | /* |
248 | * vma has some anon_vma assigned, and is already inserted on that |
249 | * anon_vma's interval trees. |
250 | * |
251 | * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the |
252 | * vma must be removed from the anon_vma's interval trees using |
253 | * anon_vma_interval_tree_pre_update_vma(). |
254 | * |
255 | * After the update, the vma will be reinserted using |
256 | * anon_vma_interval_tree_post_update_vma(). |
257 | * |
258 | * The entire update must be protected by exclusive mmap_lock and by |
259 | * the root anon_vma's mutex. |
260 | */ |
261 | static void |
262 | anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma) |
263 | { |
264 | struct anon_vma_chain *avc; |
265 | |
266 | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) |
267 | anon_vma_interval_tree_remove(node: avc, root: &avc->anon_vma->rb_root); |
268 | } |
269 | |
270 | static void |
271 | anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma) |
272 | { |
273 | struct anon_vma_chain *avc; |
274 | |
275 | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) |
276 | anon_vma_interval_tree_insert(node: avc, root: &avc->anon_vma->rb_root); |
277 | } |
278 | |
279 | /* |
280 | * vma_prepare() - Helper function for handling locking VMAs prior to altering |
281 | * @vp: The initialized vma_prepare struct |
282 | */ |
283 | static void vma_prepare(struct vma_prepare *vp) |
284 | { |
285 | if (vp->file) { |
286 | uprobe_munmap(vma: vp->vma, start: vp->vma->vm_start, end: vp->vma->vm_end); |
287 | |
288 | if (vp->adj_next) |
289 | uprobe_munmap(vma: vp->adj_next, start: vp->adj_next->vm_start, |
290 | end: vp->adj_next->vm_end); |
291 | |
292 | i_mmap_lock_write(mapping: vp->mapping); |
293 | if (vp->insert && vp->insert->vm_file) { |
294 | /* |
295 | * Put into interval tree now, so instantiated pages |
296 | * are visible to arm/parisc __flush_dcache_page |
297 | * throughout; but we cannot insert into address |
298 | * space until vma start or end is updated. |
299 | */ |
300 | __vma_link_file(vma: vp->insert, |
301 | mapping: vp->insert->vm_file->f_mapping); |
302 | } |
303 | } |
304 | |
305 | if (vp->anon_vma) { |
306 | anon_vma_lock_write(anon_vma: vp->anon_vma); |
307 | anon_vma_interval_tree_pre_update_vma(vma: vp->vma); |
308 | if (vp->adj_next) |
309 | anon_vma_interval_tree_pre_update_vma(vma: vp->adj_next); |
310 | } |
311 | |
312 | if (vp->file) { |
313 | flush_dcache_mmap_lock(mapping: vp->mapping); |
314 | vma_interval_tree_remove(node: vp->vma, root: &vp->mapping->i_mmap); |
315 | if (vp->adj_next) |
316 | vma_interval_tree_remove(node: vp->adj_next, |
317 | root: &vp->mapping->i_mmap); |
318 | } |
319 | |
320 | } |
321 | |
322 | /* |
323 | * vma_complete- Helper function for handling the unlocking after altering VMAs, |
324 | * or for inserting a VMA. |
325 | * |
326 | * @vp: The vma_prepare struct |
327 | * @vmi: The vma iterator |
328 | * @mm: The mm_struct |
329 | */ |
330 | static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi, |
331 | struct mm_struct *mm) |
332 | { |
333 | if (vp->file) { |
334 | if (vp->adj_next) |
335 | vma_interval_tree_insert(node: vp->adj_next, |
336 | root: &vp->mapping->i_mmap); |
337 | vma_interval_tree_insert(node: vp->vma, root: &vp->mapping->i_mmap); |
338 | flush_dcache_mmap_unlock(mapping: vp->mapping); |
339 | } |
340 | |
341 | if (vp->remove && vp->file) { |
342 | __remove_shared_vm_struct(vma: vp->remove, mapping: vp->mapping); |
343 | if (vp->remove2) |
344 | __remove_shared_vm_struct(vma: vp->remove2, mapping: vp->mapping); |
345 | } else if (vp->insert) { |
346 | /* |
347 | * split_vma has split insert from vma, and needs |
348 | * us to insert it before dropping the locks |
349 | * (it may either follow vma or precede it). |
350 | */ |
351 | vma_iter_store_new(vmi, vma: vp->insert); |
352 | mm->map_count++; |
353 | } |
354 | |
355 | if (vp->anon_vma) { |
356 | anon_vma_interval_tree_post_update_vma(vma: vp->vma); |
357 | if (vp->adj_next) |
358 | anon_vma_interval_tree_post_update_vma(vma: vp->adj_next); |
359 | anon_vma_unlock_write(anon_vma: vp->anon_vma); |
360 | } |
361 | |
362 | if (vp->file) { |
363 | i_mmap_unlock_write(mapping: vp->mapping); |
364 | |
365 | if (!vp->skip_vma_uprobe) { |
366 | uprobe_mmap(vma: vp->vma); |
367 | |
368 | if (vp->adj_next) |
369 | uprobe_mmap(vma: vp->adj_next); |
370 | } |
371 | } |
372 | |
373 | if (vp->remove) { |
374 | again: |
375 | vma_mark_detached(vma: vp->remove); |
376 | if (vp->file) { |
377 | uprobe_munmap(vma: vp->remove, start: vp->remove->vm_start, |
378 | end: vp->remove->vm_end); |
379 | fput(vp->file); |
380 | } |
381 | if (vp->remove->anon_vma) |
382 | anon_vma_merge(vma: vp->vma, next: vp->remove); |
383 | mm->map_count--; |
384 | mpol_put(vma_policy(vp->remove)); |
385 | if (!vp->remove2) |
386 | WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end); |
387 | vm_area_free(vma: vp->remove); |
388 | |
389 | /* |
390 | * In mprotect's case 6 (see comments on vma_merge), |
391 | * we are removing both mid and next vmas |
392 | */ |
393 | if (vp->remove2) { |
394 | vp->remove = vp->remove2; |
395 | vp->remove2 = NULL; |
396 | goto again; |
397 | } |
398 | } |
399 | if (vp->insert && vp->file) |
400 | uprobe_mmap(vma: vp->insert); |
401 | } |
402 | |
403 | /* |
404 | * init_vma_prep() - Initializer wrapper for vma_prepare struct |
405 | * @vp: The vma_prepare struct |
406 | * @vma: The vma that will be altered once locked |
407 | */ |
408 | static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma) |
409 | { |
410 | init_multi_vma_prep(vp, vma, NULL); |
411 | } |
412 | |
413 | /* |
414 | * Can the proposed VMA be merged with the left (previous) VMA taking into |
415 | * account the start position of the proposed range. |
416 | */ |
417 | static bool can_vma_merge_left(struct vma_merge_struct *vmg) |
418 | |
419 | { |
420 | return vmg->prev && vmg->prev->vm_end == vmg->start && |
421 | can_vma_merge_after(vmg); |
422 | } |
423 | |
424 | /* |
425 | * Can the proposed VMA be merged with the right (next) VMA taking into |
426 | * account the end position of the proposed range. |
427 | * |
428 | * In addition, if we can merge with the left VMA, ensure that left and right |
429 | * anon_vma's are also compatible. |
430 | */ |
431 | static bool can_vma_merge_right(struct vma_merge_struct *vmg, |
432 | bool can_merge_left) |
433 | { |
434 | struct vm_area_struct *next = vmg->next; |
435 | struct vm_area_struct *prev; |
436 | |
437 | if (!next || vmg->end != next->vm_start || !can_vma_merge_before(vmg)) |
438 | return false; |
439 | |
440 | if (!can_merge_left) |
441 | return true; |
442 | |
443 | /* |
444 | * If we can merge with prev (left) and next (right), indicating that |
445 | * each VMA's anon_vma is compatible with the proposed anon_vma, this |
446 | * does not mean prev and next are compatible with EACH OTHER. |
447 | * |
448 | * We therefore check this in addition to mergeability to either side. |
449 | */ |
450 | prev = vmg->prev; |
451 | return !prev->anon_vma || !next->anon_vma || |
452 | prev->anon_vma == next->anon_vma; |
453 | } |
454 | |
455 | /* |
456 | * Close a vm structure and free it. |
457 | */ |
458 | void remove_vma(struct vm_area_struct *vma) |
459 | { |
460 | might_sleep(); |
461 | vma_close(vma); |
462 | if (vma->vm_file) |
463 | fput(vma->vm_file); |
464 | mpol_put(vma_policy(vma)); |
465 | vm_area_free(vma); |
466 | } |
467 | |
468 | /* |
469 | * Get rid of page table information in the indicated region. |
470 | * |
471 | * Called with the mm semaphore held. |
472 | */ |
473 | void unmap_region(struct ma_state *mas, struct vm_area_struct *vma, |
474 | struct vm_area_struct *prev, struct vm_area_struct *next) |
475 | { |
476 | struct mm_struct *mm = vma->vm_mm; |
477 | struct mmu_gather tlb; |
478 | |
479 | tlb_gather_mmu(tlb: &tlb, mm); |
480 | update_hiwater_rss(mm); |
481 | unmap_vmas(tlb: &tlb, mas, start_vma: vma, start: vma->vm_start, end: vma->vm_end, tree_end: vma->vm_end, |
482 | /* mm_wr_locked = */ true); |
483 | mas_set(mas, index: vma->vm_end); |
484 | free_pgtables(tlb: &tlb, mas, start_vma: vma, floor: prev ? prev->vm_end : FIRST_USER_ADDRESS, |
485 | ceiling: next ? next->vm_start : USER_PGTABLES_CEILING, |
486 | /* mm_wr_locked = */ true); |
487 | tlb_finish_mmu(tlb: &tlb); |
488 | } |
489 | |
490 | /* |
491 | * __split_vma() bypasses sysctl_max_map_count checking. We use this where it |
492 | * has already been checked or doesn't make sense to fail. |
493 | * VMA Iterator will point to the original VMA. |
494 | */ |
495 | static __must_check int |
496 | __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, |
497 | unsigned long addr, int new_below) |
498 | { |
499 | struct vma_prepare vp; |
500 | struct vm_area_struct *new; |
501 | int err; |
502 | |
503 | WARN_ON(vma->vm_start >= addr); |
504 | WARN_ON(vma->vm_end <= addr); |
505 | |
506 | if (vma->vm_ops && vma->vm_ops->may_split) { |
507 | err = vma->vm_ops->may_split(vma, addr); |
508 | if (err) |
509 | return err; |
510 | } |
511 | |
512 | new = vm_area_dup(orig: vma); |
513 | if (!new) |
514 | return -ENOMEM; |
515 | |
516 | if (new_below) { |
517 | new->vm_end = addr; |
518 | } else { |
519 | new->vm_start = addr; |
520 | new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT); |
521 | } |
522 | |
523 | err = -ENOMEM; |
524 | vma_iter_config(vmi, index: new->vm_start, last: new->vm_end); |
525 | if (vma_iter_prealloc(vmi, vma: new)) |
526 | goto out_free_vma; |
527 | |
528 | err = vma_dup_policy(src: vma, dst: new); |
529 | if (err) |
530 | goto out_free_vmi; |
531 | |
532 | err = anon_vma_clone(new, vma); |
533 | if (err) |
534 | goto out_free_mpol; |
535 | |
536 | if (new->vm_file) |
537 | get_file(f: new->vm_file); |
538 | |
539 | if (new->vm_ops && new->vm_ops->open) |
540 | new->vm_ops->open(new); |
541 | |
542 | vma_start_write(vma); |
543 | vma_start_write(vma: new); |
544 | |
545 | init_vma_prep(vp: &vp, vma); |
546 | vp.insert = new; |
547 | vma_prepare(vp: &vp); |
548 | |
549 | /* |
550 | * Get rid of huge pages and shared page tables straddling the split |
551 | * boundary. |
552 | */ |
553 | vma_adjust_trans_huge(vma, start: vma->vm_start, end: addr, NULL); |
554 | if (is_vm_hugetlb_page(vma)) |
555 | hugetlb_split(vma, addr); |
556 | |
557 | if (new_below) { |
558 | vma->vm_start = addr; |
559 | vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT; |
560 | } else { |
561 | vma->vm_end = addr; |
562 | } |
563 | |
564 | /* vma_complete stores the new vma */ |
565 | vma_complete(vp: &vp, vmi, mm: vma->vm_mm); |
566 | validate_mm(mm: vma->vm_mm); |
567 | |
568 | /* Success. */ |
569 | if (new_below) |
570 | vma_next(vmi); |
571 | else |
572 | vma_prev(vmi); |
573 | |
574 | return 0; |
575 | |
576 | out_free_mpol: |
577 | mpol_put(vma_policy(new)); |
578 | out_free_vmi: |
579 | vma_iter_free(vmi); |
580 | out_free_vma: |
581 | vm_area_free(vma: new); |
582 | return err; |
583 | } |
584 | |
585 | /* |
586 | * Split a vma into two pieces at address 'addr', a new vma is allocated |
587 | * either for the first part or the tail. |
588 | */ |
589 | static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma, |
590 | unsigned long addr, int new_below) |
591 | { |
592 | if (vma->vm_mm->map_count >= sysctl_max_map_count) |
593 | return -ENOMEM; |
594 | |
595 | return __split_vma(vmi, vma, addr, new_below); |
596 | } |
597 | |
598 | /* |
599 | * dup_anon_vma() - Helper function to duplicate anon_vma on VMA merge in the |
600 | * instance that the destination VMA has no anon_vma but the source does. |
601 | * |
602 | * @dst: The destination VMA |
603 | * @src: The source VMA |
604 | * @dup: Pointer to the destination VMA when successful. |
605 | * |
606 | * Returns: 0 on success. |
607 | */ |
608 | static int dup_anon_vma(struct vm_area_struct *dst, |
609 | struct vm_area_struct *src, struct vm_area_struct **dup) |
610 | { |
611 | /* |
612 | * There are three cases to consider for correctly propagating |
613 | * anon_vma's on merge. |
614 | * |
615 | * The first is trivial - neither VMA has anon_vma, we need not do |
616 | * anything. |
617 | * |
618 | * The second where both have anon_vma is also a no-op, as they must |
619 | * then be the same, so there is simply nothing to copy. |
620 | * |
621 | * Here we cover the third - if the destination VMA has no anon_vma, |
622 | * that is it is unfaulted, we need to ensure that the newly merged |
623 | * range is referenced by the anon_vma's of the source. |
624 | */ |
625 | if (src->anon_vma && !dst->anon_vma) { |
626 | int ret; |
627 | |
628 | vma_assert_write_locked(vma: dst); |
629 | dst->anon_vma = src->anon_vma; |
630 | ret = anon_vma_clone(dst, src); |
631 | if (ret) |
632 | return ret; |
633 | |
634 | *dup = dst; |
635 | } |
636 | |
637 | return 0; |
638 | } |
639 | |
640 | #ifdef CONFIG_DEBUG_VM_MAPLE_TREE |
641 | void validate_mm(struct mm_struct *mm) |
642 | { |
643 | int bug = 0; |
644 | int i = 0; |
645 | struct vm_area_struct *vma; |
646 | VMA_ITERATOR(vmi, mm, 0); |
647 | |
648 | mt_validate(mt: &mm->mm_mt); |
649 | for_each_vma(vmi, vma) { |
650 | #ifdef CONFIG_DEBUG_VM_RB |
651 | struct anon_vma *anon_vma = vma->anon_vma; |
652 | struct anon_vma_chain *avc; |
653 | #endif |
654 | unsigned long vmi_start, vmi_end; |
655 | bool warn = 0; |
656 | |
657 | vmi_start = vma_iter_addr(vmi: &vmi); |
658 | vmi_end = vma_iter_end(vmi: &vmi); |
659 | if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm)) |
660 | warn = 1; |
661 | |
662 | if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm)) |
663 | warn = 1; |
664 | |
665 | if (warn) { |
666 | pr_emerg("issue in %s\n" , current->comm); |
667 | dump_stack(); |
668 | dump_vma(vma); |
669 | pr_emerg("tree range: %px start %lx end %lx\n" , vma, |
670 | vmi_start, vmi_end - 1); |
671 | vma_iter_dump_tree(vmi: &vmi); |
672 | } |
673 | |
674 | #ifdef CONFIG_DEBUG_VM_RB |
675 | if (anon_vma) { |
676 | anon_vma_lock_read(anon_vma); |
677 | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) |
678 | anon_vma_interval_tree_verify(node: avc); |
679 | anon_vma_unlock_read(anon_vma); |
680 | } |
681 | #endif |
682 | /* Check for a infinite loop */ |
683 | if (++i > mm->map_count + 10) { |
684 | i = -1; |
685 | break; |
686 | } |
687 | } |
688 | if (i != mm->map_count) { |
689 | pr_emerg("map_count %d vma iterator %d\n" , mm->map_count, i); |
690 | bug = 1; |
691 | } |
692 | VM_BUG_ON_MM(bug, mm); |
693 | } |
694 | #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */ |
695 | |
696 | /* |
697 | * Based on the vmg flag indicating whether we need to adjust the vm_start field |
698 | * for the middle or next VMA, we calculate what the range of the newly adjusted |
699 | * VMA ought to be, and set the VMA's range accordingly. |
700 | */ |
701 | static void vmg_adjust_set_range(struct vma_merge_struct *vmg) |
702 | { |
703 | struct vm_area_struct *adjust; |
704 | pgoff_t pgoff; |
705 | |
706 | if (vmg->__adjust_middle_start) { |
707 | adjust = vmg->middle; |
708 | pgoff = adjust->vm_pgoff + PHYS_PFN(vmg->end - adjust->vm_start); |
709 | } else if (vmg->__adjust_next_start) { |
710 | adjust = vmg->next; |
711 | pgoff = adjust->vm_pgoff - PHYS_PFN(adjust->vm_start - vmg->end); |
712 | } else { |
713 | return; |
714 | } |
715 | |
716 | vma_set_range(vma: adjust, start: vmg->end, end: adjust->vm_end, pgoff); |
717 | } |
718 | |
719 | /* |
720 | * Actually perform the VMA merge operation. |
721 | * |
722 | * IMPORTANT: We guarantee that, should vmg->give_up_on_oom is set, to not |
723 | * modify any VMAs or cause inconsistent state should an OOM condition arise. |
724 | * |
725 | * Returns 0 on success, or an error value on failure. |
726 | */ |
727 | static int commit_merge(struct vma_merge_struct *vmg) |
728 | { |
729 | struct vm_area_struct *vma; |
730 | struct vma_prepare vp; |
731 | |
732 | if (vmg->__adjust_next_start) { |
733 | /* We manipulate middle and adjust next, which is the target. */ |
734 | vma = vmg->middle; |
735 | vma_iter_config(vmi: vmg->vmi, index: vmg->end, last: vmg->next->vm_end); |
736 | } else { |
737 | vma = vmg->target; |
738 | /* Note: vma iterator must be pointing to 'start'. */ |
739 | vma_iter_config(vmi: vmg->vmi, index: vmg->start, last: vmg->end); |
740 | } |
741 | |
742 | init_multi_vma_prep(vp: &vp, vma, vmg); |
743 | |
744 | /* |
745 | * If vmg->give_up_on_oom is set, we're safe, because we don't actually |
746 | * manipulate any VMAs until we succeed at preallocation. |
747 | * |
748 | * Past this point, we will not return an error. |
749 | */ |
750 | if (vma_iter_prealloc(vmi: vmg->vmi, vma)) |
751 | return -ENOMEM; |
752 | |
753 | vma_prepare(vp: &vp); |
754 | /* |
755 | * THP pages may need to do additional splits if we increase |
756 | * middle->vm_start. |
757 | */ |
758 | vma_adjust_trans_huge(vma, start: vmg->start, end: vmg->end, |
759 | next: vmg->__adjust_middle_start ? vmg->middle : NULL); |
760 | vma_set_range(vma, start: vmg->start, end: vmg->end, pgoff: vmg->pgoff); |
761 | vmg_adjust_set_range(vmg); |
762 | vma_iter_store_overwrite(vmi: vmg->vmi, vma: vmg->target); |
763 | |
764 | vma_complete(vp: &vp, vmi: vmg->vmi, mm: vma->vm_mm); |
765 | |
766 | return 0; |
767 | } |
768 | |
769 | /* We can only remove VMAs when merging if they do not have a close hook. */ |
770 | static bool can_merge_remove_vma(struct vm_area_struct *vma) |
771 | { |
772 | return !vma->vm_ops || !vma->vm_ops->close; |
773 | } |
774 | |
775 | /* |
776 | * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its |
777 | * attributes modified. |
778 | * |
779 | * @vmg: Describes the modifications being made to a VMA and associated |
780 | * metadata. |
781 | * |
782 | * When the attributes of a range within a VMA change, then it might be possible |
783 | * for immediately adjacent VMAs to be merged into that VMA due to having |
784 | * identical properties. |
785 | * |
786 | * This function checks for the existence of any such mergeable VMAs and updates |
787 | * the maple tree describing the @vmg->middle->vm_mm address space to account |
788 | * for this, as well as any VMAs shrunk/expanded/deleted as a result of this |
789 | * merge. |
790 | * |
791 | * As part of this operation, if a merge occurs, the @vmg object will have its |
792 | * vma, start, end, and pgoff fields modified to execute the merge. Subsequent |
793 | * calls to this function should reset these fields. |
794 | * |
795 | * Returns: The merged VMA if merge succeeds, or NULL otherwise. |
796 | * |
797 | * ASSUMPTIONS: |
798 | * - The caller must assign the VMA to be modifed to @vmg->middle. |
799 | * - The caller must have set @vmg->prev to the previous VMA, if there is one. |
800 | * - The caller must not set @vmg->next, as we determine this. |
801 | * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. |
802 | * - vmi must be positioned within [@vmg->middle->vm_start, @vmg->middle->vm_end). |
803 | */ |
804 | static __must_check struct vm_area_struct *vma_merge_existing_range( |
805 | struct vma_merge_struct *vmg) |
806 | { |
807 | struct vm_area_struct *middle = vmg->middle; |
808 | struct vm_area_struct *prev = vmg->prev; |
809 | struct vm_area_struct *next; |
810 | struct vm_area_struct *anon_dup = NULL; |
811 | unsigned long start = vmg->start; |
812 | unsigned long end = vmg->end; |
813 | bool left_side = middle && start == middle->vm_start; |
814 | bool right_side = middle && end == middle->vm_end; |
815 | int err = 0; |
816 | bool merge_left, merge_right, merge_both; |
817 | |
818 | mmap_assert_write_locked(mm: vmg->mm); |
819 | VM_WARN_ON_VMG(!middle, vmg); /* We are modifying a VMA, so caller must specify. */ |
820 | VM_WARN_ON_VMG(vmg->next, vmg); /* We set this. */ |
821 | VM_WARN_ON_VMG(prev && start <= prev->vm_start, vmg); |
822 | VM_WARN_ON_VMG(start >= end, vmg); |
823 | |
824 | /* |
825 | * If middle == prev, then we are offset into a VMA. Otherwise, if we are |
826 | * not, we must span a portion of the VMA. |
827 | */ |
828 | VM_WARN_ON_VMG(middle && |
829 | ((middle != prev && vmg->start != middle->vm_start) || |
830 | vmg->end > middle->vm_end), vmg); |
831 | /* The vmi must be positioned within vmg->middle. */ |
832 | VM_WARN_ON_VMG(middle && |
833 | !(vma_iter_addr(vmg->vmi) >= middle->vm_start && |
834 | vma_iter_addr(vmg->vmi) < middle->vm_end), vmg); |
835 | |
836 | vmg->state = VMA_MERGE_NOMERGE; |
837 | |
838 | /* |
839 | * If a special mapping or if the range being modified is neither at the |
840 | * furthermost left or right side of the VMA, then we have no chance of |
841 | * merging and should abort. |
842 | */ |
843 | if (vmg->flags & VM_SPECIAL || (!left_side && !right_side)) |
844 | return NULL; |
845 | |
846 | if (left_side) |
847 | merge_left = can_vma_merge_left(vmg); |
848 | else |
849 | merge_left = false; |
850 | |
851 | if (right_side) { |
852 | next = vmg->next = vma_iter_next_range(vmi: vmg->vmi); |
853 | vma_iter_prev_range(vmi: vmg->vmi); |
854 | |
855 | merge_right = can_vma_merge_right(vmg, can_merge_left: merge_left); |
856 | } else { |
857 | merge_right = false; |
858 | next = NULL; |
859 | } |
860 | |
861 | if (merge_left) /* If merging prev, position iterator there. */ |
862 | vma_prev(vmi: vmg->vmi); |
863 | else if (!merge_right) /* If we have nothing to merge, abort. */ |
864 | return NULL; |
865 | |
866 | merge_both = merge_left && merge_right; |
867 | /* If we span the entire VMA, a merge implies it will be deleted. */ |
868 | vmg->__remove_middle = left_side && right_side; |
869 | |
870 | /* |
871 | * If we need to remove middle in its entirety but are unable to do so, |
872 | * we have no sensible recourse but to abort the merge. |
873 | */ |
874 | if (vmg->__remove_middle && !can_merge_remove_vma(vma: middle)) |
875 | return NULL; |
876 | |
877 | /* |
878 | * If we merge both VMAs, then next is also deleted. This implies |
879 | * merge_will_delete_vma also. |
880 | */ |
881 | vmg->__remove_next = merge_both; |
882 | |
883 | /* |
884 | * If we cannot delete next, then we can reduce the operation to merging |
885 | * prev and middle (thereby deleting middle). |
886 | */ |
887 | if (vmg->__remove_next && !can_merge_remove_vma(vma: next)) { |
888 | vmg->__remove_next = false; |
889 | merge_right = false; |
890 | merge_both = false; |
891 | } |
892 | |
893 | /* No matter what happens, we will be adjusting middle. */ |
894 | vma_start_write(vma: middle); |
895 | |
896 | if (merge_right) { |
897 | vma_start_write(vma: next); |
898 | vmg->target = next; |
899 | } |
900 | |
901 | if (merge_left) { |
902 | vma_start_write(vma: prev); |
903 | vmg->target = prev; |
904 | } |
905 | |
906 | if (merge_both) { |
907 | /* |
908 | * |<-------------------->| |
909 | * |-------********-------| |
910 | * prev middle next |
911 | * extend delete delete |
912 | */ |
913 | |
914 | vmg->start = prev->vm_start; |
915 | vmg->end = next->vm_end; |
916 | vmg->pgoff = prev->vm_pgoff; |
917 | |
918 | /* |
919 | * We already ensured anon_vma compatibility above, so now it's |
920 | * simply a case of, if prev has no anon_vma object, which of |
921 | * next or middle contains the anon_vma we must duplicate. |
922 | */ |
923 | err = dup_anon_vma(dst: prev, src: next->anon_vma ? next : middle, |
924 | dup: &anon_dup); |
925 | } else if (merge_left) { |
926 | /* |
927 | * |<------------>| OR |
928 | * |<----------------->| |
929 | * |-------************* |
930 | * prev middle |
931 | * extend shrink/delete |
932 | */ |
933 | |
934 | vmg->start = prev->vm_start; |
935 | vmg->pgoff = prev->vm_pgoff; |
936 | |
937 | if (!vmg->__remove_middle) |
938 | vmg->__adjust_middle_start = true; |
939 | |
940 | err = dup_anon_vma(dst: prev, src: middle, dup: &anon_dup); |
941 | } else { /* merge_right */ |
942 | /* |
943 | * |<------------->| OR |
944 | * |<----------------->| |
945 | * *************-------| |
946 | * middle next |
947 | * shrink/delete extend |
948 | */ |
949 | |
950 | pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start); |
951 | |
952 | VM_WARN_ON_VMG(!merge_right, vmg); |
953 | /* If we are offset into a VMA, then prev must be middle. */ |
954 | VM_WARN_ON_VMG(vmg->start > middle->vm_start && prev && middle != prev, vmg); |
955 | |
956 | if (vmg->__remove_middle) { |
957 | vmg->end = next->vm_end; |
958 | vmg->pgoff = next->vm_pgoff - pglen; |
959 | } else { |
960 | /* We shrink middle and expand next. */ |
961 | vmg->__adjust_next_start = true; |
962 | vmg->start = middle->vm_start; |
963 | vmg->end = start; |
964 | vmg->pgoff = middle->vm_pgoff; |
965 | } |
966 | |
967 | err = dup_anon_vma(dst: next, src: middle, dup: &anon_dup); |
968 | } |
969 | |
970 | if (err) |
971 | goto abort; |
972 | |
973 | err = commit_merge(vmg); |
974 | if (err) { |
975 | VM_WARN_ON(err != -ENOMEM); |
976 | |
977 | if (anon_dup) |
978 | unlink_anon_vmas(anon_dup); |
979 | |
980 | /* |
981 | * We've cleaned up any cloned anon_vma's, no VMAs have been |
982 | * modified, no harm no foul if the user requests that we not |
983 | * report this and just give up, leaving the VMAs unmerged. |
984 | */ |
985 | if (!vmg->give_up_on_oom) |
986 | vmg->state = VMA_MERGE_ERROR_NOMEM; |
987 | return NULL; |
988 | } |
989 | |
990 | khugepaged_enter_vma(vma: vmg->target, vm_flags: vmg->flags); |
991 | vmg->state = VMA_MERGE_SUCCESS; |
992 | return vmg->target; |
993 | |
994 | abort: |
995 | vma_iter_set(vmi: vmg->vmi, addr: start); |
996 | vma_iter_load(vmi: vmg->vmi); |
997 | |
998 | /* |
999 | * This means we have failed to clone anon_vma's correctly, but no |
1000 | * actual changes to VMAs have occurred, so no harm no foul - if the |
1001 | * user doesn't want this reported and instead just wants to give up on |
1002 | * the merge, allow it. |
1003 | */ |
1004 | if (!vmg->give_up_on_oom) |
1005 | vmg->state = VMA_MERGE_ERROR_NOMEM; |
1006 | return NULL; |
1007 | } |
1008 | |
1009 | /* |
1010 | * vma_merge_new_range - Attempt to merge a new VMA into address space |
1011 | * |
1012 | * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end |
1013 | * (exclusive), which we try to merge with any adjacent VMAs if possible. |
1014 | * |
1015 | * We are about to add a VMA to the address space starting at @vmg->start and |
1016 | * ending at @vmg->end. There are three different possible scenarios: |
1017 | * |
1018 | * 1. There is a VMA with identical properties immediately adjacent to the |
1019 | * proposed new VMA [@vmg->start, @vmg->end) either before or after it - |
1020 | * EXPAND that VMA: |
1021 | * |
1022 | * Proposed: |-----| or |-----| |
1023 | * Existing: |----| |----| |
1024 | * |
1025 | * 2. There are VMAs with identical properties immediately adjacent to the |
1026 | * proposed new VMA [@vmg->start, @vmg->end) both before AND after it - |
1027 | * EXPAND the former and REMOVE the latter: |
1028 | * |
1029 | * Proposed: |-----| |
1030 | * Existing: |----| |----| |
1031 | * |
1032 | * 3. There are no VMAs immediately adjacent to the proposed new VMA or those |
1033 | * VMAs do not have identical attributes - NO MERGE POSSIBLE. |
1034 | * |
1035 | * In instances where we can merge, this function returns the expanded VMA which |
1036 | * will have its range adjusted accordingly and the underlying maple tree also |
1037 | * adjusted. |
1038 | * |
1039 | * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer |
1040 | * to the VMA we expanded. |
1041 | * |
1042 | * This function adjusts @vmg to provide @vmg->next if not already specified, |
1043 | * and adjusts [@vmg->start, @vmg->end) to span the expanded range. |
1044 | * |
1045 | * ASSUMPTIONS: |
1046 | * - The caller must hold a WRITE lock on the mm_struct->mmap_lock. |
1047 | * - The caller must have determined that [@vmg->start, @vmg->end) is empty, |
1048 | other than VMAs that will be unmapped should the operation succeed. |
1049 | * - The caller must have specified the previous vma in @vmg->prev. |
1050 | * - The caller must have specified the next vma in @vmg->next. |
1051 | * - The caller must have positioned the vmi at or before the gap. |
1052 | */ |
1053 | struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg) |
1054 | { |
1055 | struct vm_area_struct *prev = vmg->prev; |
1056 | struct vm_area_struct *next = vmg->next; |
1057 | unsigned long end = vmg->end; |
1058 | bool can_merge_left, can_merge_right; |
1059 | |
1060 | mmap_assert_write_locked(mm: vmg->mm); |
1061 | VM_WARN_ON_VMG(vmg->middle, vmg); |
1062 | /* vmi must point at or before the gap. */ |
1063 | VM_WARN_ON_VMG(vma_iter_addr(vmg->vmi) > end, vmg); |
1064 | |
1065 | vmg->state = VMA_MERGE_NOMERGE; |
1066 | |
1067 | /* Special VMAs are unmergeable, also if no prev/next. */ |
1068 | if ((vmg->flags & VM_SPECIAL) || (!prev && !next)) |
1069 | return NULL; |
1070 | |
1071 | can_merge_left = can_vma_merge_left(vmg); |
1072 | can_merge_right = !vmg->just_expand && can_vma_merge_right(vmg, can_merge_left); |
1073 | |
1074 | /* If we can merge with the next VMA, adjust vmg accordingly. */ |
1075 | if (can_merge_right) { |
1076 | vmg->end = next->vm_end; |
1077 | vmg->middle = next; |
1078 | } |
1079 | |
1080 | /* If we can merge with the previous VMA, adjust vmg accordingly. */ |
1081 | if (can_merge_left) { |
1082 | vmg->start = prev->vm_start; |
1083 | vmg->middle = prev; |
1084 | vmg->pgoff = prev->vm_pgoff; |
1085 | |
1086 | /* |
1087 | * If this merge would result in removal of the next VMA but we |
1088 | * are not permitted to do so, reduce the operation to merging |
1089 | * prev and vma. |
1090 | */ |
1091 | if (can_merge_right && !can_merge_remove_vma(vma: next)) |
1092 | vmg->end = end; |
1093 | |
1094 | /* In expand-only case we are already positioned at prev. */ |
1095 | if (!vmg->just_expand) { |
1096 | /* Equivalent to going to the previous range. */ |
1097 | vma_prev(vmi: vmg->vmi); |
1098 | } |
1099 | } |
1100 | |
1101 | /* |
1102 | * Now try to expand adjacent VMA(s). This takes care of removing the |
1103 | * following VMA if we have VMAs on both sides. |
1104 | */ |
1105 | if (vmg->middle && !vma_expand(vmg)) { |
1106 | khugepaged_enter_vma(vma: vmg->middle, vm_flags: vmg->flags); |
1107 | vmg->state = VMA_MERGE_SUCCESS; |
1108 | return vmg->middle; |
1109 | } |
1110 | |
1111 | return NULL; |
1112 | } |
1113 | |
1114 | /* |
1115 | * vma_expand - Expand an existing VMA |
1116 | * |
1117 | * @vmg: Describes a VMA expansion operation. |
1118 | * |
1119 | * Expand @vma to vmg->start and vmg->end. Can expand off the start and end. |
1120 | * Will expand over vmg->next if it's different from vmg->middle and vmg->end == |
1121 | * vmg->next->vm_end. Checking if the vmg->middle can expand and merge with |
1122 | * vmg->next needs to be handled by the caller. |
1123 | * |
1124 | * Returns: 0 on success. |
1125 | * |
1126 | * ASSUMPTIONS: |
1127 | * - The caller must hold a WRITE lock on vmg->middle->mm->mmap_lock. |
1128 | * - The caller must have set @vmg->middle and @vmg->next. |
1129 | */ |
1130 | int vma_expand(struct vma_merge_struct *vmg) |
1131 | { |
1132 | struct vm_area_struct *anon_dup = NULL; |
1133 | bool remove_next = false; |
1134 | struct vm_area_struct *middle = vmg->middle; |
1135 | struct vm_area_struct *next = vmg->next; |
1136 | |
1137 | mmap_assert_write_locked(mm: vmg->mm); |
1138 | |
1139 | vma_start_write(vma: middle); |
1140 | if (next && (middle != next) && (vmg->end == next->vm_end)) { |
1141 | int ret; |
1142 | |
1143 | remove_next = true; |
1144 | /* This should already have been checked by this point. */ |
1145 | VM_WARN_ON_VMG(!can_merge_remove_vma(next), vmg); |
1146 | vma_start_write(vma: next); |
1147 | /* |
1148 | * In this case we don't report OOM, so vmg->give_up_on_mm is |
1149 | * safe. |
1150 | */ |
1151 | ret = dup_anon_vma(dst: middle, src: next, dup: &anon_dup); |
1152 | if (ret) |
1153 | return ret; |
1154 | } |
1155 | |
1156 | /* Not merging but overwriting any part of next is not handled. */ |
1157 | VM_WARN_ON_VMG(next && !remove_next && |
1158 | next != middle && vmg->end > next->vm_start, vmg); |
1159 | /* Only handles expanding */ |
1160 | VM_WARN_ON_VMG(middle->vm_start < vmg->start || |
1161 | middle->vm_end > vmg->end, vmg); |
1162 | |
1163 | vmg->target = middle; |
1164 | if (remove_next) |
1165 | vmg->__remove_next = true; |
1166 | |
1167 | if (commit_merge(vmg)) |
1168 | goto nomem; |
1169 | |
1170 | return 0; |
1171 | |
1172 | nomem: |
1173 | if (anon_dup) |
1174 | unlink_anon_vmas(anon_dup); |
1175 | /* |
1176 | * If the user requests that we just give upon OOM, we are safe to do so |
1177 | * here, as commit merge provides this contract to us. Nothing has been |
1178 | * changed - no harm no foul, just don't report it. |
1179 | */ |
1180 | if (!vmg->give_up_on_oom) |
1181 | vmg->state = VMA_MERGE_ERROR_NOMEM; |
1182 | return -ENOMEM; |
1183 | } |
1184 | |
1185 | /* |
1186 | * vma_shrink() - Reduce an existing VMAs memory area |
1187 | * @vmi: The vma iterator |
1188 | * @vma: The VMA to modify |
1189 | * @start: The new start |
1190 | * @end: The new end |
1191 | * |
1192 | * Returns: 0 on success, -ENOMEM otherwise |
1193 | */ |
1194 | int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, |
1195 | unsigned long start, unsigned long end, pgoff_t pgoff) |
1196 | { |
1197 | struct vma_prepare vp; |
1198 | |
1199 | WARN_ON((vma->vm_start != start) && (vma->vm_end != end)); |
1200 | |
1201 | if (vma->vm_start < start) |
1202 | vma_iter_config(vmi, index: vma->vm_start, last: start); |
1203 | else |
1204 | vma_iter_config(vmi, index: end, last: vma->vm_end); |
1205 | |
1206 | if (vma_iter_prealloc(vmi, NULL)) |
1207 | return -ENOMEM; |
1208 | |
1209 | vma_start_write(vma); |
1210 | |
1211 | init_vma_prep(vp: &vp, vma); |
1212 | vma_prepare(vp: &vp); |
1213 | vma_adjust_trans_huge(vma, start, end, NULL); |
1214 | |
1215 | vma_iter_clear(vmi); |
1216 | vma_set_range(vma, start, end, pgoff); |
1217 | vma_complete(vp: &vp, vmi, mm: vma->vm_mm); |
1218 | validate_mm(mm: vma->vm_mm); |
1219 | return 0; |
1220 | } |
1221 | |
1222 | static inline void vms_clear_ptes(struct vma_munmap_struct *vms, |
1223 | struct ma_state *mas_detach, bool mm_wr_locked) |
1224 | { |
1225 | struct mmu_gather tlb; |
1226 | |
1227 | if (!vms->clear_ptes) /* Nothing to do */ |
1228 | return; |
1229 | |
1230 | /* |
1231 | * We can free page tables without write-locking mmap_lock because VMAs |
1232 | * were isolated before we downgraded mmap_lock. |
1233 | */ |
1234 | mas_set(mas: mas_detach, index: 1); |
1235 | tlb_gather_mmu(tlb: &tlb, mm: vms->vma->vm_mm); |
1236 | update_hiwater_rss(mm: vms->vma->vm_mm); |
1237 | unmap_vmas(tlb: &tlb, mas: mas_detach, start_vma: vms->vma, start: vms->start, end: vms->end, |
1238 | tree_end: vms->vma_count, mm_wr_locked); |
1239 | |
1240 | mas_set(mas: mas_detach, index: 1); |
1241 | /* start and end may be different if there is no prev or next vma. */ |
1242 | free_pgtables(tlb: &tlb, mas: mas_detach, start_vma: vms->vma, floor: vms->unmap_start, |
1243 | ceiling: vms->unmap_end, mm_wr_locked); |
1244 | tlb_finish_mmu(tlb: &tlb); |
1245 | vms->clear_ptes = false; |
1246 | } |
1247 | |
1248 | static void vms_clean_up_area(struct vma_munmap_struct *vms, |
1249 | struct ma_state *mas_detach) |
1250 | { |
1251 | struct vm_area_struct *vma; |
1252 | |
1253 | if (!vms->nr_pages) |
1254 | return; |
1255 | |
1256 | vms_clear_ptes(vms, mas_detach, mm_wr_locked: true); |
1257 | mas_set(mas: mas_detach, index: 0); |
1258 | mas_for_each(mas_detach, vma, ULONG_MAX) |
1259 | vma_close(vma); |
1260 | } |
1261 | |
1262 | /* |
1263 | * vms_complete_munmap_vmas() - Finish the munmap() operation |
1264 | * @vms: The vma munmap struct |
1265 | * @mas_detach: The maple state of the detached vmas |
1266 | * |
1267 | * This updates the mm_struct, unmaps the region, frees the resources |
1268 | * used for the munmap() and may downgrade the lock - if requested. Everything |
1269 | * needed to be done once the vma maple tree is updated. |
1270 | */ |
1271 | static void vms_complete_munmap_vmas(struct vma_munmap_struct *vms, |
1272 | struct ma_state *mas_detach) |
1273 | { |
1274 | struct vm_area_struct *vma; |
1275 | struct mm_struct *mm; |
1276 | |
1277 | mm = current->mm; |
1278 | mm->map_count -= vms->vma_count; |
1279 | mm->locked_vm -= vms->locked_vm; |
1280 | if (vms->unlock) |
1281 | mmap_write_downgrade(mm); |
1282 | |
1283 | if (!vms->nr_pages) |
1284 | return; |
1285 | |
1286 | vms_clear_ptes(vms, mas_detach, mm_wr_locked: !vms->unlock); |
1287 | /* Update high watermark before we lower total_vm */ |
1288 | update_hiwater_vm(mm); |
1289 | /* Stat accounting */ |
1290 | WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages); |
1291 | /* Paranoid bookkeeping */ |
1292 | VM_WARN_ON(vms->exec_vm > mm->exec_vm); |
1293 | VM_WARN_ON(vms->stack_vm > mm->stack_vm); |
1294 | VM_WARN_ON(vms->data_vm > mm->data_vm); |
1295 | mm->exec_vm -= vms->exec_vm; |
1296 | mm->stack_vm -= vms->stack_vm; |
1297 | mm->data_vm -= vms->data_vm; |
1298 | |
1299 | /* Remove and clean up vmas */ |
1300 | mas_set(mas: mas_detach, index: 0); |
1301 | mas_for_each(mas_detach, vma, ULONG_MAX) |
1302 | remove_vma(vma); |
1303 | |
1304 | vm_unacct_memory(pages: vms->nr_accounted); |
1305 | validate_mm(mm); |
1306 | if (vms->unlock) |
1307 | mmap_read_unlock(mm); |
1308 | |
1309 | __mt_destroy(mt: mas_detach->tree); |
1310 | } |
1311 | |
1312 | /* |
1313 | * reattach_vmas() - Undo any munmap work and free resources |
1314 | * @mas_detach: The maple state with the detached maple tree |
1315 | * |
1316 | * Reattach any detached vmas and free up the maple tree used to track the vmas. |
1317 | */ |
1318 | static void reattach_vmas(struct ma_state *mas_detach) |
1319 | { |
1320 | struct vm_area_struct *vma; |
1321 | |
1322 | mas_set(mas: mas_detach, index: 0); |
1323 | mas_for_each(mas_detach, vma, ULONG_MAX) |
1324 | vma_mark_attached(vma); |
1325 | |
1326 | __mt_destroy(mt: mas_detach->tree); |
1327 | } |
1328 | |
1329 | /* |
1330 | * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree |
1331 | * for removal at a later date. Handles splitting first and last if necessary |
1332 | * and marking the vmas as isolated. |
1333 | * |
1334 | * @vms: The vma munmap struct |
1335 | * @mas_detach: The maple state tracking the detached tree |
1336 | * |
1337 | * Return: 0 on success, error otherwise |
1338 | */ |
1339 | static int vms_gather_munmap_vmas(struct vma_munmap_struct *vms, |
1340 | struct ma_state *mas_detach) |
1341 | { |
1342 | struct vm_area_struct *next = NULL; |
1343 | int error; |
1344 | |
1345 | /* |
1346 | * If we need to split any vma, do it now to save pain later. |
1347 | * Does it split the first one? |
1348 | */ |
1349 | if (vms->start > vms->vma->vm_start) { |
1350 | |
1351 | /* |
1352 | * Make sure that map_count on return from munmap() will |
1353 | * not exceed its limit; but let map_count go just above |
1354 | * its limit temporarily, to help free resources as expected. |
1355 | */ |
1356 | if (vms->end < vms->vma->vm_end && |
1357 | vms->vma->vm_mm->map_count >= sysctl_max_map_count) { |
1358 | error = -ENOMEM; |
1359 | goto map_count_exceeded; |
1360 | } |
1361 | |
1362 | /* Don't bother splitting the VMA if we can't unmap it anyway */ |
1363 | if (!can_modify_vma(vma: vms->vma)) { |
1364 | error = -EPERM; |
1365 | goto start_split_failed; |
1366 | } |
1367 | |
1368 | error = __split_vma(vmi: vms->vmi, vma: vms->vma, addr: vms->start, new_below: 1); |
1369 | if (error) |
1370 | goto start_split_failed; |
1371 | } |
1372 | vms->prev = vma_prev(vmi: vms->vmi); |
1373 | if (vms->prev) |
1374 | vms->unmap_start = vms->prev->vm_end; |
1375 | |
1376 | /* |
1377 | * Detach a range of VMAs from the mm. Using next as a temp variable as |
1378 | * it is always overwritten. |
1379 | */ |
1380 | for_each_vma_range(*(vms->vmi), next, vms->end) { |
1381 | long nrpages; |
1382 | |
1383 | if (!can_modify_vma(vma: next)) { |
1384 | error = -EPERM; |
1385 | goto modify_vma_failed; |
1386 | } |
1387 | /* Does it split the end? */ |
1388 | if (next->vm_end > vms->end) { |
1389 | error = __split_vma(vmi: vms->vmi, vma: next, addr: vms->end, new_below: 0); |
1390 | if (error) |
1391 | goto end_split_failed; |
1392 | } |
1393 | vma_start_write(vma: next); |
1394 | mas_set(mas: mas_detach, index: vms->vma_count++); |
1395 | error = mas_store_gfp(mas: mas_detach, entry: next, GFP_KERNEL); |
1396 | if (error) |
1397 | goto munmap_gather_failed; |
1398 | |
1399 | vma_mark_detached(vma: next); |
1400 | nrpages = vma_pages(vma: next); |
1401 | |
1402 | vms->nr_pages += nrpages; |
1403 | if (next->vm_flags & VM_LOCKED) |
1404 | vms->locked_vm += nrpages; |
1405 | |
1406 | if (next->vm_flags & VM_ACCOUNT) |
1407 | vms->nr_accounted += nrpages; |
1408 | |
1409 | if (is_exec_mapping(flags: next->vm_flags)) |
1410 | vms->exec_vm += nrpages; |
1411 | else if (is_stack_mapping(flags: next->vm_flags)) |
1412 | vms->stack_vm += nrpages; |
1413 | else if (is_data_mapping(flags: next->vm_flags)) |
1414 | vms->data_vm += nrpages; |
1415 | |
1416 | if (vms->uf) { |
1417 | /* |
1418 | * If userfaultfd_unmap_prep returns an error the vmas |
1419 | * will remain split, but userland will get a |
1420 | * highly unexpected error anyway. This is no |
1421 | * different than the case where the first of the two |
1422 | * __split_vma fails, but we don't undo the first |
1423 | * split, despite we could. This is unlikely enough |
1424 | * failure that it's not worth optimizing it for. |
1425 | */ |
1426 | error = userfaultfd_unmap_prep(vma: next, start: vms->start, |
1427 | end: vms->end, uf: vms->uf); |
1428 | if (error) |
1429 | goto userfaultfd_error; |
1430 | } |
1431 | #ifdef CONFIG_DEBUG_VM_MAPLE_TREE |
1432 | BUG_ON(next->vm_start < vms->start); |
1433 | BUG_ON(next->vm_start > vms->end); |
1434 | #endif |
1435 | } |
1436 | |
1437 | vms->next = vma_next(vmi: vms->vmi); |
1438 | if (vms->next) |
1439 | vms->unmap_end = vms->next->vm_start; |
1440 | |
1441 | #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) |
1442 | /* Make sure no VMAs are about to be lost. */ |
1443 | { |
1444 | MA_STATE(test, mas_detach->tree, 0, 0); |
1445 | struct vm_area_struct *vma_mas, *vma_test; |
1446 | int test_count = 0; |
1447 | |
1448 | vma_iter_set(vmi: vms->vmi, addr: vms->start); |
1449 | rcu_read_lock(); |
1450 | vma_test = mas_find(mas: &test, max: vms->vma_count - 1); |
1451 | for_each_vma_range(*(vms->vmi), vma_mas, vms->end) { |
1452 | BUG_ON(vma_mas != vma_test); |
1453 | test_count++; |
1454 | vma_test = mas_next(mas: &test, max: vms->vma_count - 1); |
1455 | } |
1456 | rcu_read_unlock(); |
1457 | BUG_ON(vms->vma_count != test_count); |
1458 | } |
1459 | #endif |
1460 | |
1461 | while (vma_iter_addr(vmi: vms->vmi) > vms->start) |
1462 | vma_iter_prev_range(vmi: vms->vmi); |
1463 | |
1464 | vms->clear_ptes = true; |
1465 | return 0; |
1466 | |
1467 | userfaultfd_error: |
1468 | munmap_gather_failed: |
1469 | end_split_failed: |
1470 | modify_vma_failed: |
1471 | reattach_vmas(mas_detach); |
1472 | start_split_failed: |
1473 | map_count_exceeded: |
1474 | return error; |
1475 | } |
1476 | |
1477 | /* |
1478 | * init_vma_munmap() - Initializer wrapper for vma_munmap_struct |
1479 | * @vms: The vma munmap struct |
1480 | * @vmi: The vma iterator |
1481 | * @vma: The first vm_area_struct to munmap |
1482 | * @start: The aligned start address to munmap |
1483 | * @end: The aligned end address to munmap |
1484 | * @uf: The userfaultfd list_head |
1485 | * @unlock: Unlock after the operation. Only unlocked on success |
1486 | */ |
1487 | static void init_vma_munmap(struct vma_munmap_struct *vms, |
1488 | struct vma_iterator *vmi, struct vm_area_struct *vma, |
1489 | unsigned long start, unsigned long end, struct list_head *uf, |
1490 | bool unlock) |
1491 | { |
1492 | vms->vmi = vmi; |
1493 | vms->vma = vma; |
1494 | if (vma) { |
1495 | vms->start = start; |
1496 | vms->end = end; |
1497 | } else { |
1498 | vms->start = vms->end = 0; |
1499 | } |
1500 | vms->unlock = unlock; |
1501 | vms->uf = uf; |
1502 | vms->vma_count = 0; |
1503 | vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0; |
1504 | vms->exec_vm = vms->stack_vm = vms->data_vm = 0; |
1505 | vms->unmap_start = FIRST_USER_ADDRESS; |
1506 | vms->unmap_end = USER_PGTABLES_CEILING; |
1507 | vms->clear_ptes = false; |
1508 | } |
1509 | |
1510 | /* |
1511 | * do_vmi_align_munmap() - munmap the aligned region from @start to @end. |
1512 | * @vmi: The vma iterator |
1513 | * @vma: The starting vm_area_struct |
1514 | * @mm: The mm_struct |
1515 | * @start: The aligned start address to munmap. |
1516 | * @end: The aligned end address to munmap. |
1517 | * @uf: The userfaultfd list_head |
1518 | * @unlock: Set to true to drop the mmap_lock. unlocking only happens on |
1519 | * success. |
1520 | * |
1521 | * Return: 0 on success and drops the lock if so directed, error and leaves the |
1522 | * lock held otherwise. |
1523 | */ |
1524 | int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, |
1525 | struct mm_struct *mm, unsigned long start, unsigned long end, |
1526 | struct list_head *uf, bool unlock) |
1527 | { |
1528 | struct maple_tree mt_detach; |
1529 | MA_STATE(mas_detach, &mt_detach, 0, 0); |
1530 | mt_init_flags(mt: &mt_detach, flags: vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); |
1531 | mt_on_stack(mt_detach); |
1532 | struct vma_munmap_struct vms; |
1533 | int error; |
1534 | |
1535 | init_vma_munmap(vms: &vms, vmi, vma, start, end, uf, unlock); |
1536 | error = vms_gather_munmap_vmas(vms: &vms, mas_detach: &mas_detach); |
1537 | if (error) |
1538 | goto gather_failed; |
1539 | |
1540 | error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL); |
1541 | if (error) |
1542 | goto clear_tree_failed; |
1543 | |
1544 | /* Point of no return */ |
1545 | vms_complete_munmap_vmas(vms: &vms, mas_detach: &mas_detach); |
1546 | return 0; |
1547 | |
1548 | clear_tree_failed: |
1549 | reattach_vmas(mas_detach: &mas_detach); |
1550 | gather_failed: |
1551 | validate_mm(mm); |
1552 | return error; |
1553 | } |
1554 | |
1555 | /* |
1556 | * do_vmi_munmap() - munmap a given range. |
1557 | * @vmi: The vma iterator |
1558 | * @mm: The mm_struct |
1559 | * @start: The start address to munmap |
1560 | * @len: The length of the range to munmap |
1561 | * @uf: The userfaultfd list_head |
1562 | * @unlock: set to true if the user wants to drop the mmap_lock on success |
1563 | * |
1564 | * This function takes a @mas that is either pointing to the previous VMA or set |
1565 | * to MA_START and sets it up to remove the mapping(s). The @len will be |
1566 | * aligned. |
1567 | * |
1568 | * Return: 0 on success and drops the lock if so directed, error and leaves the |
1569 | * lock held otherwise. |
1570 | */ |
1571 | int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, |
1572 | unsigned long start, size_t len, struct list_head *uf, |
1573 | bool unlock) |
1574 | { |
1575 | unsigned long end; |
1576 | struct vm_area_struct *vma; |
1577 | |
1578 | if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start) |
1579 | return -EINVAL; |
1580 | |
1581 | end = start + PAGE_ALIGN(len); |
1582 | if (end == start) |
1583 | return -EINVAL; |
1584 | |
1585 | /* Find the first overlapping VMA */ |
1586 | vma = vma_find(vmi, max: end); |
1587 | if (!vma) { |
1588 | if (unlock) |
1589 | mmap_write_unlock(mm); |
1590 | return 0; |
1591 | } |
1592 | |
1593 | return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock); |
1594 | } |
1595 | |
1596 | /* |
1597 | * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd |
1598 | * context and anonymous VMA name within the range [start, end). |
1599 | * |
1600 | * As a result, we might be able to merge the newly modified VMA range with an |
1601 | * adjacent VMA with identical properties. |
1602 | * |
1603 | * If no merge is possible and the range does not span the entirety of the VMA, |
1604 | * we then need to split the VMA to accommodate the change. |
1605 | * |
1606 | * The function returns either the merged VMA, the original VMA if a split was |
1607 | * required instead, or an error if the split failed. |
1608 | */ |
1609 | static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg) |
1610 | { |
1611 | struct vm_area_struct *vma = vmg->middle; |
1612 | unsigned long start = vmg->start; |
1613 | unsigned long end = vmg->end; |
1614 | struct vm_area_struct *merged; |
1615 | |
1616 | /* First, try to merge. */ |
1617 | merged = vma_merge_existing_range(vmg); |
1618 | if (merged) |
1619 | return merged; |
1620 | if (vmg_nomem(vmg)) |
1621 | return ERR_PTR(error: -ENOMEM); |
1622 | |
1623 | /* |
1624 | * Split can fail for reasons other than OOM, so if the user requests |
1625 | * this it's probably a mistake. |
1626 | */ |
1627 | VM_WARN_ON(vmg->give_up_on_oom && |
1628 | (vma->vm_start != start || vma->vm_end != end)); |
1629 | |
1630 | /* Split any preceding portion of the VMA. */ |
1631 | if (vma->vm_start < start) { |
1632 | int err = split_vma(vmi: vmg->vmi, vma, addr: start, new_below: 1); |
1633 | |
1634 | if (err) |
1635 | return ERR_PTR(error: err); |
1636 | } |
1637 | |
1638 | /* Split any trailing portion of the VMA. */ |
1639 | if (vma->vm_end > end) { |
1640 | int err = split_vma(vmi: vmg->vmi, vma, addr: end, new_below: 0); |
1641 | |
1642 | if (err) |
1643 | return ERR_PTR(error: err); |
1644 | } |
1645 | |
1646 | return vma; |
1647 | } |
1648 | |
1649 | struct vm_area_struct *vma_modify_flags( |
1650 | struct vma_iterator *vmi, struct vm_area_struct *prev, |
1651 | struct vm_area_struct *vma, unsigned long start, unsigned long end, |
1652 | unsigned long new_flags) |
1653 | { |
1654 | VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); |
1655 | |
1656 | vmg.flags = new_flags; |
1657 | |
1658 | return vma_modify(vmg: &vmg); |
1659 | } |
1660 | |
1661 | struct vm_area_struct |
1662 | *vma_modify_flags_name(struct vma_iterator *vmi, |
1663 | struct vm_area_struct *prev, |
1664 | struct vm_area_struct *vma, |
1665 | unsigned long start, |
1666 | unsigned long end, |
1667 | unsigned long new_flags, |
1668 | struct anon_vma_name *new_name) |
1669 | { |
1670 | VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); |
1671 | |
1672 | vmg.flags = new_flags; |
1673 | vmg.anon_name = new_name; |
1674 | |
1675 | return vma_modify(vmg: &vmg); |
1676 | } |
1677 | |
1678 | struct vm_area_struct |
1679 | *vma_modify_policy(struct vma_iterator *vmi, |
1680 | struct vm_area_struct *prev, |
1681 | struct vm_area_struct *vma, |
1682 | unsigned long start, unsigned long end, |
1683 | struct mempolicy *new_pol) |
1684 | { |
1685 | VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); |
1686 | |
1687 | vmg.policy = new_pol; |
1688 | |
1689 | return vma_modify(vmg: &vmg); |
1690 | } |
1691 | |
1692 | struct vm_area_struct |
1693 | *vma_modify_flags_uffd(struct vma_iterator *vmi, |
1694 | struct vm_area_struct *prev, |
1695 | struct vm_area_struct *vma, |
1696 | unsigned long start, unsigned long end, |
1697 | unsigned long new_flags, |
1698 | struct vm_userfaultfd_ctx new_ctx, |
1699 | bool give_up_on_oom) |
1700 | { |
1701 | VMG_VMA_STATE(vmg, vmi, prev, vma, start, end); |
1702 | |
1703 | vmg.flags = new_flags; |
1704 | vmg.uffd_ctx = new_ctx; |
1705 | if (give_up_on_oom) |
1706 | vmg.give_up_on_oom = true; |
1707 | |
1708 | return vma_modify(vmg: &vmg); |
1709 | } |
1710 | |
1711 | /* |
1712 | * Expand vma by delta bytes, potentially merging with an immediately adjacent |
1713 | * VMA with identical properties. |
1714 | */ |
1715 | struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, |
1716 | struct vm_area_struct *vma, |
1717 | unsigned long delta) |
1718 | { |
1719 | VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta); |
1720 | |
1721 | vmg.next = vma_iter_next_rewind(vmi, NULL); |
1722 | vmg.middle = NULL; /* We use the VMA to populate VMG fields only. */ |
1723 | |
1724 | return vma_merge_new_range(vmg: &vmg); |
1725 | } |
1726 | |
1727 | void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb) |
1728 | { |
1729 | vb->count = 0; |
1730 | } |
1731 | |
1732 | static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb) |
1733 | { |
1734 | struct address_space *mapping; |
1735 | int i; |
1736 | |
1737 | mapping = vb->vmas[0]->vm_file->f_mapping; |
1738 | i_mmap_lock_write(mapping); |
1739 | for (i = 0; i < vb->count; i++) { |
1740 | VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping); |
1741 | __remove_shared_vm_struct(vma: vb->vmas[i], mapping); |
1742 | } |
1743 | i_mmap_unlock_write(mapping); |
1744 | |
1745 | unlink_file_vma_batch_init(vb); |
1746 | } |
1747 | |
1748 | void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb, |
1749 | struct vm_area_struct *vma) |
1750 | { |
1751 | if (vma->vm_file == NULL) |
1752 | return; |
1753 | |
1754 | if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) || |
1755 | vb->count == ARRAY_SIZE(vb->vmas)) |
1756 | unlink_file_vma_batch_process(vb); |
1757 | |
1758 | vb->vmas[vb->count] = vma; |
1759 | vb->count++; |
1760 | } |
1761 | |
1762 | void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb) |
1763 | { |
1764 | if (vb->count > 0) |
1765 | unlink_file_vma_batch_process(vb); |
1766 | } |
1767 | |
1768 | /* |
1769 | * Unlink a file-based vm structure from its interval tree, to hide |
1770 | * vma from rmap and vmtruncate before freeing its page tables. |
1771 | */ |
1772 | void unlink_file_vma(struct vm_area_struct *vma) |
1773 | { |
1774 | struct file *file = vma->vm_file; |
1775 | |
1776 | if (file) { |
1777 | struct address_space *mapping = file->f_mapping; |
1778 | |
1779 | i_mmap_lock_write(mapping); |
1780 | __remove_shared_vm_struct(vma, mapping); |
1781 | i_mmap_unlock_write(mapping); |
1782 | } |
1783 | } |
1784 | |
1785 | void vma_link_file(struct vm_area_struct *vma) |
1786 | { |
1787 | struct file *file = vma->vm_file; |
1788 | struct address_space *mapping; |
1789 | |
1790 | if (file) { |
1791 | mapping = file->f_mapping; |
1792 | i_mmap_lock_write(mapping); |
1793 | __vma_link_file(vma, mapping); |
1794 | i_mmap_unlock_write(mapping); |
1795 | } |
1796 | } |
1797 | |
1798 | int vma_link(struct mm_struct *mm, struct vm_area_struct *vma) |
1799 | { |
1800 | VMA_ITERATOR(vmi, mm, 0); |
1801 | |
1802 | vma_iter_config(vmi: &vmi, index: vma->vm_start, last: vma->vm_end); |
1803 | if (vma_iter_prealloc(vmi: &vmi, vma)) |
1804 | return -ENOMEM; |
1805 | |
1806 | vma_start_write(vma); |
1807 | vma_iter_store_new(vmi: &vmi, vma); |
1808 | vma_link_file(vma); |
1809 | mm->map_count++; |
1810 | validate_mm(mm); |
1811 | return 0; |
1812 | } |
1813 | |
1814 | /* |
1815 | * Copy the vma structure to a new location in the same mm, |
1816 | * prior to moving page table entries, to effect an mremap move. |
1817 | */ |
1818 | struct vm_area_struct *copy_vma(struct vm_area_struct **vmap, |
1819 | unsigned long addr, unsigned long len, pgoff_t pgoff, |
1820 | bool *need_rmap_locks) |
1821 | { |
1822 | struct vm_area_struct *vma = *vmap; |
1823 | unsigned long vma_start = vma->vm_start; |
1824 | struct mm_struct *mm = vma->vm_mm; |
1825 | struct vm_area_struct *new_vma; |
1826 | bool faulted_in_anon_vma = true; |
1827 | VMA_ITERATOR(vmi, mm, addr); |
1828 | VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len); |
1829 | |
1830 | /* |
1831 | * If anonymous vma has not yet been faulted, update new pgoff |
1832 | * to match new location, to increase its chance of merging. |
1833 | */ |
1834 | if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) { |
1835 | pgoff = addr >> PAGE_SHIFT; |
1836 | faulted_in_anon_vma = false; |
1837 | } |
1838 | |
1839 | /* |
1840 | * If the VMA we are copying might contain a uprobe PTE, ensure |
1841 | * that we do not establish one upon merge. Otherwise, when mremap() |
1842 | * moves page tables, it will orphan the newly created PTE. |
1843 | */ |
1844 | if (vma->vm_file) |
1845 | vmg.skip_vma_uprobe = true; |
1846 | |
1847 | new_vma = find_vma_prev(mm, addr, pprev: &vmg.prev); |
1848 | if (new_vma && new_vma->vm_start < addr + len) |
1849 | return NULL; /* should never get here */ |
1850 | |
1851 | vmg.middle = NULL; /* New VMA range. */ |
1852 | vmg.pgoff = pgoff; |
1853 | vmg.next = vma_iter_next_rewind(vmi: &vmi, NULL); |
1854 | new_vma = vma_merge_new_range(vmg: &vmg); |
1855 | |
1856 | if (new_vma) { |
1857 | /* |
1858 | * Source vma may have been merged into new_vma |
1859 | */ |
1860 | if (unlikely(vma_start >= new_vma->vm_start && |
1861 | vma_start < new_vma->vm_end)) { |
1862 | /* |
1863 | * The only way we can get a vma_merge with |
1864 | * self during an mremap is if the vma hasn't |
1865 | * been faulted in yet and we were allowed to |
1866 | * reset the dst vma->vm_pgoff to the |
1867 | * destination address of the mremap to allow |
1868 | * the merge to happen. mremap must change the |
1869 | * vm_pgoff linearity between src and dst vmas |
1870 | * (in turn preventing a vma_merge) to be |
1871 | * safe. It is only safe to keep the vm_pgoff |
1872 | * linear if there are no pages mapped yet. |
1873 | */ |
1874 | VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma); |
1875 | *vmap = vma = new_vma; |
1876 | } |
1877 | *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff); |
1878 | } else { |
1879 | new_vma = vm_area_dup(orig: vma); |
1880 | if (!new_vma) |
1881 | goto out; |
1882 | vma_set_range(vma: new_vma, start: addr, end: addr + len, pgoff); |
1883 | if (vma_dup_policy(src: vma, dst: new_vma)) |
1884 | goto out_free_vma; |
1885 | if (anon_vma_clone(new_vma, vma)) |
1886 | goto out_free_mempol; |
1887 | if (new_vma->vm_file) |
1888 | get_file(f: new_vma->vm_file); |
1889 | if (new_vma->vm_ops && new_vma->vm_ops->open) |
1890 | new_vma->vm_ops->open(new_vma); |
1891 | if (vma_link(mm, vma: new_vma)) |
1892 | goto out_vma_link; |
1893 | *need_rmap_locks = false; |
1894 | } |
1895 | return new_vma; |
1896 | |
1897 | out_vma_link: |
1898 | fixup_hugetlb_reservations(vma: new_vma); |
1899 | vma_close(vma: new_vma); |
1900 | |
1901 | if (new_vma->vm_file) |
1902 | fput(new_vma->vm_file); |
1903 | |
1904 | unlink_anon_vmas(new_vma); |
1905 | out_free_mempol: |
1906 | mpol_put(vma_policy(new_vma)); |
1907 | out_free_vma: |
1908 | vm_area_free(vma: new_vma); |
1909 | out: |
1910 | return NULL; |
1911 | } |
1912 | |
1913 | /* |
1914 | * Rough compatibility check to quickly see if it's even worth looking |
1915 | * at sharing an anon_vma. |
1916 | * |
1917 | * They need to have the same vm_file, and the flags can only differ |
1918 | * in things that mprotect may change. |
1919 | * |
1920 | * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that |
1921 | * we can merge the two vma's. For example, we refuse to merge a vma if |
1922 | * there is a vm_ops->close() function, because that indicates that the |
1923 | * driver is doing some kind of reference counting. But that doesn't |
1924 | * really matter for the anon_vma sharing case. |
1925 | */ |
1926 | static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b) |
1927 | { |
1928 | return a->vm_end == b->vm_start && |
1929 | mpol_equal(vma_policy(a), vma_policy(b)) && |
1930 | a->vm_file == b->vm_file && |
1931 | !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) && |
1932 | b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT); |
1933 | } |
1934 | |
1935 | /* |
1936 | * Do some basic sanity checking to see if we can re-use the anon_vma |
1937 | * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be |
1938 | * the same as 'old', the other will be the new one that is trying |
1939 | * to share the anon_vma. |
1940 | * |
1941 | * NOTE! This runs with mmap_lock held for reading, so it is possible that |
1942 | * the anon_vma of 'old' is concurrently in the process of being set up |
1943 | * by another page fault trying to merge _that_. But that's ok: if it |
1944 | * is being set up, that automatically means that it will be a singleton |
1945 | * acceptable for merging, so we can do all of this optimistically. But |
1946 | * we do that READ_ONCE() to make sure that we never re-load the pointer. |
1947 | * |
1948 | * IOW: that the "list_is_singular()" test on the anon_vma_chain only |
1949 | * matters for the 'stable anon_vma' case (ie the thing we want to avoid |
1950 | * is to return an anon_vma that is "complex" due to having gone through |
1951 | * a fork). |
1952 | * |
1953 | * We also make sure that the two vma's are compatible (adjacent, |
1954 | * and with the same memory policies). That's all stable, even with just |
1955 | * a read lock on the mmap_lock. |
1956 | */ |
1957 | static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, |
1958 | struct vm_area_struct *a, |
1959 | struct vm_area_struct *b) |
1960 | { |
1961 | if (anon_vma_compatible(a, b)) { |
1962 | struct anon_vma *anon_vma = READ_ONCE(old->anon_vma); |
1963 | |
1964 | if (anon_vma && list_is_singular(head: &old->anon_vma_chain)) |
1965 | return anon_vma; |
1966 | } |
1967 | return NULL; |
1968 | } |
1969 | |
1970 | /* |
1971 | * find_mergeable_anon_vma is used by anon_vma_prepare, to check |
1972 | * neighbouring vmas for a suitable anon_vma, before it goes off |
1973 | * to allocate a new anon_vma. It checks because a repetitive |
1974 | * sequence of mprotects and faults may otherwise lead to distinct |
1975 | * anon_vmas being allocated, preventing vma merge in subsequent |
1976 | * mprotect. |
1977 | */ |
1978 | struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma) |
1979 | { |
1980 | struct anon_vma *anon_vma = NULL; |
1981 | struct vm_area_struct *prev, *next; |
1982 | VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end); |
1983 | |
1984 | /* Try next first. */ |
1985 | next = vma_iter_load(vmi: &vmi); |
1986 | if (next) { |
1987 | anon_vma = reusable_anon_vma(old: next, a: vma, b: next); |
1988 | if (anon_vma) |
1989 | return anon_vma; |
1990 | } |
1991 | |
1992 | prev = vma_prev(vmi: &vmi); |
1993 | VM_BUG_ON_VMA(prev != vma, vma); |
1994 | prev = vma_prev(vmi: &vmi); |
1995 | /* Try prev next. */ |
1996 | if (prev) |
1997 | anon_vma = reusable_anon_vma(old: prev, a: prev, b: vma); |
1998 | |
1999 | /* |
2000 | * We might reach here with anon_vma == NULL if we can't find |
2001 | * any reusable anon_vma. |
2002 | * There's no absolute need to look only at touching neighbours: |
2003 | * we could search further afield for "compatible" anon_vmas. |
2004 | * But it would probably just be a waste of time searching, |
2005 | * or lead to too many vmas hanging off the same anon_vma. |
2006 | * We're trying to allow mprotect remerging later on, |
2007 | * not trying to minimize memory used for anon_vmas. |
2008 | */ |
2009 | return anon_vma; |
2010 | } |
2011 | |
2012 | static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops) |
2013 | { |
2014 | return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite); |
2015 | } |
2016 | |
2017 | static bool vma_is_shared_writable(struct vm_area_struct *vma) |
2018 | { |
2019 | return (vma->vm_flags & (VM_WRITE | VM_SHARED)) == |
2020 | (VM_WRITE | VM_SHARED); |
2021 | } |
2022 | |
2023 | static bool vma_fs_can_writeback(struct vm_area_struct *vma) |
2024 | { |
2025 | /* No managed pages to writeback. */ |
2026 | if (vma->vm_flags & VM_PFNMAP) |
2027 | return false; |
2028 | |
2029 | return vma->vm_file && vma->vm_file->f_mapping && |
2030 | mapping_can_writeback(mapping: vma->vm_file->f_mapping); |
2031 | } |
2032 | |
2033 | /* |
2034 | * Does this VMA require the underlying folios to have their dirty state |
2035 | * tracked? |
2036 | */ |
2037 | bool vma_needs_dirty_tracking(struct vm_area_struct *vma) |
2038 | { |
2039 | /* Only shared, writable VMAs require dirty tracking. */ |
2040 | if (!vma_is_shared_writable(vma)) |
2041 | return false; |
2042 | |
2043 | /* Does the filesystem need to be notified? */ |
2044 | if (vm_ops_needs_writenotify(vm_ops: vma->vm_ops)) |
2045 | return true; |
2046 | |
2047 | /* |
2048 | * Even if the filesystem doesn't indicate a need for writenotify, if it |
2049 | * can writeback, dirty tracking is still required. |
2050 | */ |
2051 | return vma_fs_can_writeback(vma); |
2052 | } |
2053 | |
2054 | /* |
2055 | * Some shared mappings will want the pages marked read-only |
2056 | * to track write events. If so, we'll downgrade vm_page_prot |
2057 | * to the private version (using protection_map[] without the |
2058 | * VM_SHARED bit). |
2059 | */ |
2060 | bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot) |
2061 | { |
2062 | /* If it was private or non-writable, the write bit is already clear */ |
2063 | if (!vma_is_shared_writable(vma)) |
2064 | return false; |
2065 | |
2066 | /* The backer wishes to know when pages are first written to? */ |
2067 | if (vm_ops_needs_writenotify(vm_ops: vma->vm_ops)) |
2068 | return true; |
2069 | |
2070 | /* The open routine did something to the protections that pgprot_modify |
2071 | * won't preserve? */ |
2072 | if (pgprot_val(vm_page_prot) != |
2073 | pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags))) |
2074 | return false; |
2075 | |
2076 | /* |
2077 | * Do we need to track softdirty? hugetlb does not support softdirty |
2078 | * tracking yet. |
2079 | */ |
2080 | if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma)) |
2081 | return true; |
2082 | |
2083 | /* Do we need write faults for uffd-wp tracking? */ |
2084 | if (userfaultfd_wp(vma)) |
2085 | return true; |
2086 | |
2087 | /* Can the mapping track the dirty pages? */ |
2088 | return vma_fs_can_writeback(vma); |
2089 | } |
2090 | |
2091 | static DEFINE_MUTEX(mm_all_locks_mutex); |
2092 | |
2093 | static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma) |
2094 | { |
2095 | if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { |
2096 | /* |
2097 | * The LSB of head.next can't change from under us |
2098 | * because we hold the mm_all_locks_mutex. |
2099 | */ |
2100 | down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock); |
2101 | /* |
2102 | * We can safely modify head.next after taking the |
2103 | * anon_vma->root->rwsem. If some other vma in this mm shares |
2104 | * the same anon_vma we won't take it again. |
2105 | * |
2106 | * No need of atomic instructions here, head.next |
2107 | * can't change from under us thanks to the |
2108 | * anon_vma->root->rwsem. |
2109 | */ |
2110 | if (__test_and_set_bit(0, (unsigned long *) |
2111 | &anon_vma->root->rb_root.rb_root.rb_node)) |
2112 | BUG(); |
2113 | } |
2114 | } |
2115 | |
2116 | static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping) |
2117 | { |
2118 | if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { |
2119 | /* |
2120 | * AS_MM_ALL_LOCKS can't change from under us because |
2121 | * we hold the mm_all_locks_mutex. |
2122 | * |
2123 | * Operations on ->flags have to be atomic because |
2124 | * even if AS_MM_ALL_LOCKS is stable thanks to the |
2125 | * mm_all_locks_mutex, there may be other cpus |
2126 | * changing other bitflags in parallel to us. |
2127 | */ |
2128 | if (test_and_set_bit(nr: AS_MM_ALL_LOCKS, addr: &mapping->flags)) |
2129 | BUG(); |
2130 | down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock); |
2131 | } |
2132 | } |
2133 | |
2134 | /* |
2135 | * This operation locks against the VM for all pte/vma/mm related |
2136 | * operations that could ever happen on a certain mm. This includes |
2137 | * vmtruncate, try_to_unmap, and all page faults. |
2138 | * |
2139 | * The caller must take the mmap_lock in write mode before calling |
2140 | * mm_take_all_locks(). The caller isn't allowed to release the |
2141 | * mmap_lock until mm_drop_all_locks() returns. |
2142 | * |
2143 | * mmap_lock in write mode is required in order to block all operations |
2144 | * that could modify pagetables and free pages without need of |
2145 | * altering the vma layout. It's also needed in write mode to avoid new |
2146 | * anon_vmas to be associated with existing vmas. |
2147 | * |
2148 | * A single task can't take more than one mm_take_all_locks() in a row |
2149 | * or it would deadlock. |
2150 | * |
2151 | * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in |
2152 | * mapping->flags avoid to take the same lock twice, if more than one |
2153 | * vma in this mm is backed by the same anon_vma or address_space. |
2154 | * |
2155 | * We take locks in following order, accordingly to comment at beginning |
2156 | * of mm/rmap.c: |
2157 | * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for |
2158 | * hugetlb mapping); |
2159 | * - all vmas marked locked |
2160 | * - all i_mmap_rwsem locks; |
2161 | * - all anon_vma->rwseml |
2162 | * |
2163 | * We can take all locks within these types randomly because the VM code |
2164 | * doesn't nest them and we protected from parallel mm_take_all_locks() by |
2165 | * mm_all_locks_mutex. |
2166 | * |
2167 | * mm_take_all_locks() and mm_drop_all_locks are expensive operations |
2168 | * that may have to take thousand of locks. |
2169 | * |
2170 | * mm_take_all_locks() can fail if it's interrupted by signals. |
2171 | */ |
2172 | int mm_take_all_locks(struct mm_struct *mm) |
2173 | { |
2174 | struct vm_area_struct *vma; |
2175 | struct anon_vma_chain *avc; |
2176 | VMA_ITERATOR(vmi, mm, 0); |
2177 | |
2178 | mmap_assert_write_locked(mm); |
2179 | |
2180 | mutex_lock(&mm_all_locks_mutex); |
2181 | |
2182 | /* |
2183 | * vma_start_write() does not have a complement in mm_drop_all_locks() |
2184 | * because vma_start_write() is always asymmetrical; it marks a VMA as |
2185 | * being written to until mmap_write_unlock() or mmap_write_downgrade() |
2186 | * is reached. |
2187 | */ |
2188 | for_each_vma(vmi, vma) { |
2189 | if (signal_pending(current)) |
2190 | goto out_unlock; |
2191 | vma_start_write(vma); |
2192 | } |
2193 | |
2194 | vma_iter_init(vmi: &vmi, mm, addr: 0); |
2195 | for_each_vma(vmi, vma) { |
2196 | if (signal_pending(current)) |
2197 | goto out_unlock; |
2198 | if (vma->vm_file && vma->vm_file->f_mapping && |
2199 | is_vm_hugetlb_page(vma)) |
2200 | vm_lock_mapping(mm, mapping: vma->vm_file->f_mapping); |
2201 | } |
2202 | |
2203 | vma_iter_init(vmi: &vmi, mm, addr: 0); |
2204 | for_each_vma(vmi, vma) { |
2205 | if (signal_pending(current)) |
2206 | goto out_unlock; |
2207 | if (vma->vm_file && vma->vm_file->f_mapping && |
2208 | !is_vm_hugetlb_page(vma)) |
2209 | vm_lock_mapping(mm, mapping: vma->vm_file->f_mapping); |
2210 | } |
2211 | |
2212 | vma_iter_init(vmi: &vmi, mm, addr: 0); |
2213 | for_each_vma(vmi, vma) { |
2214 | if (signal_pending(current)) |
2215 | goto out_unlock; |
2216 | if (vma->anon_vma) |
2217 | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) |
2218 | vm_lock_anon_vma(mm, anon_vma: avc->anon_vma); |
2219 | } |
2220 | |
2221 | return 0; |
2222 | |
2223 | out_unlock: |
2224 | mm_drop_all_locks(mm); |
2225 | return -EINTR; |
2226 | } |
2227 | |
2228 | static void vm_unlock_anon_vma(struct anon_vma *anon_vma) |
2229 | { |
2230 | if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) { |
2231 | /* |
2232 | * The LSB of head.next can't change to 0 from under |
2233 | * us because we hold the mm_all_locks_mutex. |
2234 | * |
2235 | * We must however clear the bitflag before unlocking |
2236 | * the vma so the users using the anon_vma->rb_root will |
2237 | * never see our bitflag. |
2238 | * |
2239 | * No need of atomic instructions here, head.next |
2240 | * can't change from under us until we release the |
2241 | * anon_vma->root->rwsem. |
2242 | */ |
2243 | if (!__test_and_clear_bit(0, (unsigned long *) |
2244 | &anon_vma->root->rb_root.rb_root.rb_node)) |
2245 | BUG(); |
2246 | anon_vma_unlock_write(anon_vma); |
2247 | } |
2248 | } |
2249 | |
2250 | static void vm_unlock_mapping(struct address_space *mapping) |
2251 | { |
2252 | if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) { |
2253 | /* |
2254 | * AS_MM_ALL_LOCKS can't change to 0 from under us |
2255 | * because we hold the mm_all_locks_mutex. |
2256 | */ |
2257 | i_mmap_unlock_write(mapping); |
2258 | if (!test_and_clear_bit(nr: AS_MM_ALL_LOCKS, |
2259 | addr: &mapping->flags)) |
2260 | BUG(); |
2261 | } |
2262 | } |
2263 | |
2264 | /* |
2265 | * The mmap_lock cannot be released by the caller until |
2266 | * mm_drop_all_locks() returns. |
2267 | */ |
2268 | void mm_drop_all_locks(struct mm_struct *mm) |
2269 | { |
2270 | struct vm_area_struct *vma; |
2271 | struct anon_vma_chain *avc; |
2272 | VMA_ITERATOR(vmi, mm, 0); |
2273 | |
2274 | mmap_assert_write_locked(mm); |
2275 | BUG_ON(!mutex_is_locked(&mm_all_locks_mutex)); |
2276 | |
2277 | for_each_vma(vmi, vma) { |
2278 | if (vma->anon_vma) |
2279 | list_for_each_entry(avc, &vma->anon_vma_chain, same_vma) |
2280 | vm_unlock_anon_vma(anon_vma: avc->anon_vma); |
2281 | if (vma->vm_file && vma->vm_file->f_mapping) |
2282 | vm_unlock_mapping(mapping: vma->vm_file->f_mapping); |
2283 | } |
2284 | |
2285 | mutex_unlock(lock: &mm_all_locks_mutex); |
2286 | } |
2287 | |
2288 | /* |
2289 | * We account for memory if it's a private writeable mapping, |
2290 | * not hugepages and VM_NORESERVE wasn't set. |
2291 | */ |
2292 | static bool accountable_mapping(struct file *file, vm_flags_t vm_flags) |
2293 | { |
2294 | /* |
2295 | * hugetlb has its own accounting separate from the core VM |
2296 | * VM_HUGETLB may not be set yet so we cannot check for that flag. |
2297 | */ |
2298 | if (file && is_file_hugepages(file)) |
2299 | return false; |
2300 | |
2301 | return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE; |
2302 | } |
2303 | |
2304 | /* |
2305 | * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap() |
2306 | * operation. |
2307 | * @vms: The vma unmap structure |
2308 | * @mas_detach: The maple state with the detached maple tree |
2309 | * |
2310 | * Reattach any detached vmas, free up the maple tree used to track the vmas. |
2311 | * If that's not possible because the ptes are cleared (and vm_ops->closed() may |
2312 | * have been called), then a NULL is written over the vmas and the vmas are |
2313 | * removed (munmap() completed). |
2314 | */ |
2315 | static void vms_abort_munmap_vmas(struct vma_munmap_struct *vms, |
2316 | struct ma_state *mas_detach) |
2317 | { |
2318 | struct ma_state *mas = &vms->vmi->mas; |
2319 | |
2320 | if (!vms->nr_pages) |
2321 | return; |
2322 | |
2323 | if (vms->clear_ptes) |
2324 | return reattach_vmas(mas_detach); |
2325 | |
2326 | /* |
2327 | * Aborting cannot just call the vm_ops open() because they are often |
2328 | * not symmetrical and state data has been lost. Resort to the old |
2329 | * failure method of leaving a gap where the MAP_FIXED mapping failed. |
2330 | */ |
2331 | mas_set_range(mas, start: vms->start, last: vms->end - 1); |
2332 | mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL); |
2333 | /* Clean up the insertion of the unfortunate gap */ |
2334 | vms_complete_munmap_vmas(vms, mas_detach); |
2335 | } |
2336 | |
2337 | /* |
2338 | * __mmap_prepare() - Prepare to gather any overlapping VMAs that need to be |
2339 | * unmapped once the map operation is completed, check limits, account mapping |
2340 | * and clean up any pre-existing VMAs. |
2341 | * |
2342 | * @map: Mapping state. |
2343 | * @uf: Userfaultfd context list. |
2344 | * |
2345 | * Returns: 0 on success, error code otherwise. |
2346 | */ |
2347 | static int __mmap_prepare(struct mmap_state *map, struct list_head *uf) |
2348 | { |
2349 | int error; |
2350 | struct vma_iterator *vmi = map->vmi; |
2351 | struct vma_munmap_struct *vms = &map->vms; |
2352 | |
2353 | /* Find the first overlapping VMA and initialise unmap state. */ |
2354 | vms->vma = vma_find(vmi, max: map->end); |
2355 | init_vma_munmap(vms, vmi, vma: vms->vma, start: map->addr, end: map->end, uf, |
2356 | /* unlock = */ false); |
2357 | |
2358 | /* OK, we have overlapping VMAs - prepare to unmap them. */ |
2359 | if (vms->vma) { |
2360 | mt_init_flags(mt: &map->mt_detach, |
2361 | flags: vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK); |
2362 | mt_on_stack(map->mt_detach); |
2363 | mas_init(mas: &map->mas_detach, tree: &map->mt_detach, /* addr = */ 0); |
2364 | /* Prepare to unmap any existing mapping in the area */ |
2365 | error = vms_gather_munmap_vmas(vms, mas_detach: &map->mas_detach); |
2366 | if (error) { |
2367 | /* On error VMAs will already have been reattached. */ |
2368 | vms->nr_pages = 0; |
2369 | return error; |
2370 | } |
2371 | |
2372 | map->next = vms->next; |
2373 | map->prev = vms->prev; |
2374 | } else { |
2375 | map->next = vma_iter_next_rewind(vmi, pprev: &map->prev); |
2376 | } |
2377 | |
2378 | /* Check against address space limit. */ |
2379 | if (!may_expand_vm(map->mm, map->flags, npages: map->pglen - vms->nr_pages)) |
2380 | return -ENOMEM; |
2381 | |
2382 | /* Private writable mapping: check memory availability. */ |
2383 | if (accountable_mapping(file: map->file, vm_flags: map->flags)) { |
2384 | map->charged = map->pglen; |
2385 | map->charged -= vms->nr_accounted; |
2386 | if (map->charged) { |
2387 | error = security_vm_enough_memory_mm(mm: map->mm, pages: map->charged); |
2388 | if (error) |
2389 | return error; |
2390 | } |
2391 | |
2392 | vms->nr_accounted = 0; |
2393 | map->flags |= VM_ACCOUNT; |
2394 | } |
2395 | |
2396 | /* |
2397 | * Clear PTEs while the vma is still in the tree so that rmap |
2398 | * cannot race with the freeing later in the truncate scenario. |
2399 | * This is also needed for mmap_file(), which is why vm_ops |
2400 | * close function is called. |
2401 | */ |
2402 | vms_clean_up_area(vms, mas_detach: &map->mas_detach); |
2403 | |
2404 | return 0; |
2405 | } |
2406 | |
2407 | |
2408 | static int __mmap_new_file_vma(struct mmap_state *map, |
2409 | struct vm_area_struct *vma) |
2410 | { |
2411 | struct vma_iterator *vmi = map->vmi; |
2412 | int error; |
2413 | |
2414 | vma->vm_file = get_file(f: map->file); |
2415 | |
2416 | if (!map->file->f_op->mmap) |
2417 | return 0; |
2418 | |
2419 | error = mmap_file(file: vma->vm_file, vma); |
2420 | if (error) { |
2421 | fput(vma->vm_file); |
2422 | vma->vm_file = NULL; |
2423 | |
2424 | vma_iter_set(vmi, addr: vma->vm_end); |
2425 | /* Undo any partial mapping done by a device driver. */ |
2426 | unmap_region(mas: &vmi->mas, vma, prev: map->prev, next: map->next); |
2427 | |
2428 | return error; |
2429 | } |
2430 | |
2431 | /* Drivers cannot alter the address of the VMA. */ |
2432 | WARN_ON_ONCE(map->addr != vma->vm_start); |
2433 | /* |
2434 | * Drivers should not permit writability when previously it was |
2435 | * disallowed. |
2436 | */ |
2437 | VM_WARN_ON_ONCE(map->flags != vma->vm_flags && |
2438 | !(map->flags & VM_MAYWRITE) && |
2439 | (vma->vm_flags & VM_MAYWRITE)); |
2440 | |
2441 | map->flags = vma->vm_flags; |
2442 | |
2443 | return 0; |
2444 | } |
2445 | |
2446 | /* |
2447 | * __mmap_new_vma() - Allocate a new VMA for the region, as merging was not |
2448 | * possible. |
2449 | * |
2450 | * @map: Mapping state. |
2451 | * @vmap: Output pointer for the new VMA. |
2452 | * |
2453 | * Returns: Zero on success, or an error. |
2454 | */ |
2455 | static int __mmap_new_vma(struct mmap_state *map, struct vm_area_struct **vmap) |
2456 | { |
2457 | struct vma_iterator *vmi = map->vmi; |
2458 | int error = 0; |
2459 | struct vm_area_struct *vma; |
2460 | |
2461 | /* |
2462 | * Determine the object being mapped and call the appropriate |
2463 | * specific mapper. the address has already been validated, but |
2464 | * not unmapped, but the maps are removed from the list. |
2465 | */ |
2466 | vma = vm_area_alloc(mm: map->mm); |
2467 | if (!vma) |
2468 | return -ENOMEM; |
2469 | |
2470 | vma_iter_config(vmi, index: map->addr, last: map->end); |
2471 | vma_set_range(vma, start: map->addr, end: map->end, pgoff: map->pgoff); |
2472 | vm_flags_init(vma, flags: map->flags); |
2473 | vma->vm_page_prot = map->page_prot; |
2474 | |
2475 | if (vma_iter_prealloc(vmi, vma)) { |
2476 | error = -ENOMEM; |
2477 | goto free_vma; |
2478 | } |
2479 | |
2480 | if (map->file) |
2481 | error = __mmap_new_file_vma(map, vma); |
2482 | else if (map->flags & VM_SHARED) |
2483 | error = shmem_zero_setup(vma); |
2484 | else |
2485 | vma_set_anonymous(vma); |
2486 | |
2487 | if (error) |
2488 | goto free_iter_vma; |
2489 | |
2490 | #ifdef CONFIG_SPARC64 |
2491 | /* TODO: Fix SPARC ADI! */ |
2492 | WARN_ON_ONCE(!arch_validate_flags(map->flags)); |
2493 | #endif |
2494 | |
2495 | /* Lock the VMA since it is modified after insertion into VMA tree */ |
2496 | vma_start_write(vma); |
2497 | vma_iter_store_new(vmi, vma); |
2498 | map->mm->map_count++; |
2499 | vma_link_file(vma); |
2500 | |
2501 | /* |
2502 | * vma_merge_new_range() calls khugepaged_enter_vma() too, the below |
2503 | * call covers the non-merge case. |
2504 | */ |
2505 | if (!vma_is_anonymous(vma)) |
2506 | khugepaged_enter_vma(vma, vm_flags: map->flags); |
2507 | ksm_add_vma(vma); |
2508 | *vmap = vma; |
2509 | return 0; |
2510 | |
2511 | free_iter_vma: |
2512 | vma_iter_free(vmi); |
2513 | free_vma: |
2514 | vm_area_free(vma); |
2515 | return error; |
2516 | } |
2517 | |
2518 | /* |
2519 | * __mmap_complete() - Unmap any VMAs we overlap, account memory mapping |
2520 | * statistics, handle locking and finalise the VMA. |
2521 | * |
2522 | * @map: Mapping state. |
2523 | * @vma: Merged or newly allocated VMA for the mmap()'d region. |
2524 | */ |
2525 | static void __mmap_complete(struct mmap_state *map, struct vm_area_struct *vma) |
2526 | { |
2527 | struct mm_struct *mm = map->mm; |
2528 | unsigned long vm_flags = vma->vm_flags; |
2529 | |
2530 | perf_event_mmap(vma); |
2531 | |
2532 | /* Unmap any existing mapping in the area. */ |
2533 | vms_complete_munmap_vmas(vms: &map->vms, mas_detach: &map->mas_detach); |
2534 | |
2535 | vm_stat_account(mm, vma->vm_flags, npages: map->pglen); |
2536 | if (vm_flags & VM_LOCKED) { |
2537 | if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) || |
2538 | is_vm_hugetlb_page(vma) || |
2539 | vma == get_gate_vma(mm)) |
2540 | vm_flags_clear(vma, VM_LOCKED_MASK); |
2541 | else |
2542 | mm->locked_vm += map->pglen; |
2543 | } |
2544 | |
2545 | if (vma->vm_file) |
2546 | uprobe_mmap(vma); |
2547 | |
2548 | /* |
2549 | * New (or expanded) vma always get soft dirty status. |
2550 | * Otherwise user-space soft-dirty page tracker won't |
2551 | * be able to distinguish situation when vma area unmapped, |
2552 | * then new mapped in-place (which must be aimed as |
2553 | * a completely new data area). |
2554 | */ |
2555 | vm_flags_set(vma, VM_SOFTDIRTY); |
2556 | |
2557 | vma_set_page_prot(vma); |
2558 | } |
2559 | |
2560 | /* |
2561 | * Invoke the f_op->mmap_prepare() callback for a file-backed mapping that |
2562 | * specifies it. |
2563 | * |
2564 | * This is called prior to any merge attempt, and updates whitelisted fields |
2565 | * that are permitted to be updated by the caller. |
2566 | * |
2567 | * All but user-defined fields will be pre-populated with original values. |
2568 | * |
2569 | * Returns 0 on success, or an error code otherwise. |
2570 | */ |
2571 | static int call_mmap_prepare(struct mmap_state *map) |
2572 | { |
2573 | int err; |
2574 | struct vm_area_desc desc = { |
2575 | .mm = map->mm, |
2576 | .start = map->addr, |
2577 | .end = map->end, |
2578 | |
2579 | .pgoff = map->pgoff, |
2580 | .file = map->file, |
2581 | .vm_flags = map->flags, |
2582 | .page_prot = map->page_prot, |
2583 | }; |
2584 | |
2585 | /* Invoke the hook. */ |
2586 | err = __call_mmap_prepare(file: map->file, desc: &desc); |
2587 | if (err) |
2588 | return err; |
2589 | |
2590 | /* Update fields permitted to be changed. */ |
2591 | map->pgoff = desc.pgoff; |
2592 | map->file = desc.file; |
2593 | map->flags = desc.vm_flags; |
2594 | map->page_prot = desc.page_prot; |
2595 | /* User-defined fields. */ |
2596 | map->vm_ops = desc.vm_ops; |
2597 | map->vm_private_data = desc.private_data; |
2598 | |
2599 | return 0; |
2600 | } |
2601 | |
2602 | static void set_vma_user_defined_fields(struct vm_area_struct *vma, |
2603 | struct mmap_state *map) |
2604 | { |
2605 | if (map->vm_ops) |
2606 | vma->vm_ops = map->vm_ops; |
2607 | vma->vm_private_data = map->vm_private_data; |
2608 | } |
2609 | |
2610 | static unsigned long __mmap_region(struct file *file, unsigned long addr, |
2611 | unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, |
2612 | struct list_head *uf) |
2613 | { |
2614 | struct mm_struct *mm = current->mm; |
2615 | struct vm_area_struct *vma = NULL; |
2616 | int error; |
2617 | bool have_mmap_prepare = file && file->f_op->mmap_prepare; |
2618 | VMA_ITERATOR(vmi, mm, addr); |
2619 | MMAP_STATE(map, mm, &vmi, addr, len, pgoff, vm_flags, file); |
2620 | |
2621 | error = __mmap_prepare(map: &map, uf); |
2622 | if (!error && have_mmap_prepare) |
2623 | error = call_mmap_prepare(map: &map); |
2624 | if (error) |
2625 | goto abort_munmap; |
2626 | |
2627 | /* Attempt to merge with adjacent VMAs... */ |
2628 | if (map.prev || map.next) { |
2629 | VMG_MMAP_STATE(vmg, &map, /* vma = */ NULL); |
2630 | |
2631 | vma = vma_merge_new_range(vmg: &vmg); |
2632 | } |
2633 | |
2634 | /* ...but if we can't, allocate a new VMA. */ |
2635 | if (!vma) { |
2636 | error = __mmap_new_vma(map: &map, vmap: &vma); |
2637 | if (error) |
2638 | goto unacct_error; |
2639 | } |
2640 | |
2641 | if (have_mmap_prepare) |
2642 | set_vma_user_defined_fields(vma, map: &map); |
2643 | |
2644 | __mmap_complete(map: &map, vma); |
2645 | |
2646 | return addr; |
2647 | |
2648 | /* Accounting was done by __mmap_prepare(). */ |
2649 | unacct_error: |
2650 | if (map.charged) |
2651 | vm_unacct_memory(pages: map.charged); |
2652 | abort_munmap: |
2653 | vms_abort_munmap_vmas(vms: &map.vms, mas_detach: &map.mas_detach); |
2654 | return error; |
2655 | } |
2656 | |
2657 | /** |
2658 | * mmap_region() - Actually perform the userland mapping of a VMA into |
2659 | * current->mm with known, aligned and overflow-checked @addr and @len, and |
2660 | * correctly determined VMA flags @vm_flags and page offset @pgoff. |
2661 | * |
2662 | * This is an internal memory management function, and should not be used |
2663 | * directly. |
2664 | * |
2665 | * The caller must write-lock current->mm->mmap_lock. |
2666 | * |
2667 | * @file: If a file-backed mapping, a pointer to the struct file describing the |
2668 | * file to be mapped, otherwise NULL. |
2669 | * @addr: The page-aligned address at which to perform the mapping. |
2670 | * @len: The page-aligned, non-zero, length of the mapping. |
2671 | * @vm_flags: The VMA flags which should be applied to the mapping. |
2672 | * @pgoff: If @file is specified, the page offset into the file, if not then |
2673 | * the virtual page offset in memory of the anonymous mapping. |
2674 | * @uf: Optionally, a pointer to a list head used for tracking userfaultfd unmap |
2675 | * events. |
2676 | * |
2677 | * Returns: Either an error, or the address at which the requested mapping has |
2678 | * been performed. |
2679 | */ |
2680 | unsigned long mmap_region(struct file *file, unsigned long addr, |
2681 | unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, |
2682 | struct list_head *uf) |
2683 | { |
2684 | unsigned long ret; |
2685 | bool writable_file_mapping = false; |
2686 | |
2687 | mmap_assert_write_locked(current->mm); |
2688 | |
2689 | /* Check to see if MDWE is applicable. */ |
2690 | if (map_deny_write_exec(old: vm_flags, new: vm_flags)) |
2691 | return -EACCES; |
2692 | |
2693 | /* Allow architectures to sanity-check the vm_flags. */ |
2694 | if (!arch_validate_flags(flags: vm_flags)) |
2695 | return -EINVAL; |
2696 | |
2697 | /* Map writable and ensure this isn't a sealed memfd. */ |
2698 | if (file && is_shared_maywrite(vm_flags)) { |
2699 | int error = mapping_map_writable(mapping: file->f_mapping); |
2700 | |
2701 | if (error) |
2702 | return error; |
2703 | writable_file_mapping = true; |
2704 | } |
2705 | |
2706 | ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf); |
2707 | |
2708 | /* Clear our write mapping regardless of error. */ |
2709 | if (writable_file_mapping) |
2710 | mapping_unmap_writable(mapping: file->f_mapping); |
2711 | |
2712 | validate_mm(current->mm); |
2713 | return ret; |
2714 | } |
2715 | |
2716 | /* |
2717 | * do_brk_flags() - Increase the brk vma if the flags match. |
2718 | * @vmi: The vma iterator |
2719 | * @addr: The start address |
2720 | * @len: The length of the increase |
2721 | * @vma: The vma, |
2722 | * @flags: The VMA Flags |
2723 | * |
2724 | * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags |
2725 | * do not match then create a new anonymous VMA. Eventually we may be able to |
2726 | * do some brk-specific accounting here. |
2727 | */ |
2728 | int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma, |
2729 | unsigned long addr, unsigned long len, unsigned long flags) |
2730 | { |
2731 | struct mm_struct *mm = current->mm; |
2732 | |
2733 | /* |
2734 | * Check against address space limits by the changed size |
2735 | * Note: This happens *after* clearing old mappings in some code paths. |
2736 | */ |
2737 | flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags; |
2738 | if (!may_expand_vm(mm, flags, npages: len >> PAGE_SHIFT)) |
2739 | return -ENOMEM; |
2740 | |
2741 | if (mm->map_count > sysctl_max_map_count) |
2742 | return -ENOMEM; |
2743 | |
2744 | if (security_vm_enough_memory_mm(mm, pages: len >> PAGE_SHIFT)) |
2745 | return -ENOMEM; |
2746 | |
2747 | /* |
2748 | * Expand the existing vma if possible; Note that singular lists do not |
2749 | * occur after forking, so the expand will only happen on new VMAs. |
2750 | */ |
2751 | if (vma && vma->vm_end == addr) { |
2752 | VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr)); |
2753 | |
2754 | vmg.prev = vma; |
2755 | /* vmi is positioned at prev, which this mode expects. */ |
2756 | vmg.just_expand = true; |
2757 | |
2758 | if (vma_merge_new_range(vmg: &vmg)) |
2759 | goto out; |
2760 | else if (vmg_nomem(vmg: &vmg)) |
2761 | goto unacct_fail; |
2762 | } |
2763 | |
2764 | if (vma) |
2765 | vma_iter_next_range(vmi); |
2766 | /* create a vma struct for an anonymous mapping */ |
2767 | vma = vm_area_alloc(mm); |
2768 | if (!vma) |
2769 | goto unacct_fail; |
2770 | |
2771 | vma_set_anonymous(vma); |
2772 | vma_set_range(vma, start: addr, end: addr + len, pgoff: addr >> PAGE_SHIFT); |
2773 | vm_flags_init(vma, flags); |
2774 | vma->vm_page_prot = vm_get_page_prot(vm_flags: flags); |
2775 | vma_start_write(vma); |
2776 | if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL)) |
2777 | goto mas_store_fail; |
2778 | |
2779 | mm->map_count++; |
2780 | validate_mm(mm); |
2781 | ksm_add_vma(vma); |
2782 | out: |
2783 | perf_event_mmap(vma); |
2784 | mm->total_vm += len >> PAGE_SHIFT; |
2785 | mm->data_vm += len >> PAGE_SHIFT; |
2786 | if (flags & VM_LOCKED) |
2787 | mm->locked_vm += (len >> PAGE_SHIFT); |
2788 | vm_flags_set(vma, VM_SOFTDIRTY); |
2789 | return 0; |
2790 | |
2791 | mas_store_fail: |
2792 | vm_area_free(vma); |
2793 | unacct_fail: |
2794 | vm_unacct_memory(pages: len >> PAGE_SHIFT); |
2795 | return -ENOMEM; |
2796 | } |
2797 | |
2798 | /** |
2799 | * unmapped_area() - Find an area between the low_limit and the high_limit with |
2800 | * the correct alignment and offset, all from @info. Note: current->mm is used |
2801 | * for the search. |
2802 | * |
2803 | * @info: The unmapped area information including the range [low_limit - |
2804 | * high_limit), the alignment offset and mask. |
2805 | * |
2806 | * Return: A memory address or -ENOMEM. |
2807 | */ |
2808 | unsigned long unmapped_area(struct vm_unmapped_area_info *info) |
2809 | { |
2810 | unsigned long length, gap; |
2811 | unsigned long low_limit, high_limit; |
2812 | struct vm_area_struct *tmp; |
2813 | VMA_ITERATOR(vmi, current->mm, 0); |
2814 | |
2815 | /* Adjust search length to account for worst case alignment overhead */ |
2816 | length = info->length + info->align_mask + info->start_gap; |
2817 | if (length < info->length) |
2818 | return -ENOMEM; |
2819 | |
2820 | low_limit = info->low_limit; |
2821 | if (low_limit < mmap_min_addr) |
2822 | low_limit = mmap_min_addr; |
2823 | high_limit = info->high_limit; |
2824 | retry: |
2825 | if (vma_iter_area_lowest(vmi: &vmi, min: low_limit, max: high_limit, size: length)) |
2826 | return -ENOMEM; |
2827 | |
2828 | /* |
2829 | * Adjust for the gap first so it doesn't interfere with the |
2830 | * later alignment. The first step is the minimum needed to |
2831 | * fulill the start gap, the next steps is the minimum to align |
2832 | * that. It is the minimum needed to fulill both. |
2833 | */ |
2834 | gap = vma_iter_addr(vmi: &vmi) + info->start_gap; |
2835 | gap += (info->align_offset - gap) & info->align_mask; |
2836 | tmp = vma_next(vmi: &vmi); |
2837 | if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ |
2838 | if (vm_start_gap(vma: tmp) < gap + length - 1) { |
2839 | low_limit = tmp->vm_end; |
2840 | vma_iter_reset(vmi: &vmi); |
2841 | goto retry; |
2842 | } |
2843 | } else { |
2844 | tmp = vma_prev(vmi: &vmi); |
2845 | if (tmp && vm_end_gap(vma: tmp) > gap) { |
2846 | low_limit = vm_end_gap(vma: tmp); |
2847 | vma_iter_reset(vmi: &vmi); |
2848 | goto retry; |
2849 | } |
2850 | } |
2851 | |
2852 | return gap; |
2853 | } |
2854 | |
2855 | /** |
2856 | * unmapped_area_topdown() - Find an area between the low_limit and the |
2857 | * high_limit with the correct alignment and offset at the highest available |
2858 | * address, all from @info. Note: current->mm is used for the search. |
2859 | * |
2860 | * @info: The unmapped area information including the range [low_limit - |
2861 | * high_limit), the alignment offset and mask. |
2862 | * |
2863 | * Return: A memory address or -ENOMEM. |
2864 | */ |
2865 | unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info) |
2866 | { |
2867 | unsigned long length, gap, gap_end; |
2868 | unsigned long low_limit, high_limit; |
2869 | struct vm_area_struct *tmp; |
2870 | VMA_ITERATOR(vmi, current->mm, 0); |
2871 | |
2872 | /* Adjust search length to account for worst case alignment overhead */ |
2873 | length = info->length + info->align_mask + info->start_gap; |
2874 | if (length < info->length) |
2875 | return -ENOMEM; |
2876 | |
2877 | low_limit = info->low_limit; |
2878 | if (low_limit < mmap_min_addr) |
2879 | low_limit = mmap_min_addr; |
2880 | high_limit = info->high_limit; |
2881 | retry: |
2882 | if (vma_iter_area_highest(vmi: &vmi, min: low_limit, max: high_limit, size: length)) |
2883 | return -ENOMEM; |
2884 | |
2885 | gap = vma_iter_end(vmi: &vmi) - info->length; |
2886 | gap -= (gap - info->align_offset) & info->align_mask; |
2887 | gap_end = vma_iter_end(vmi: &vmi); |
2888 | tmp = vma_next(vmi: &vmi); |
2889 | if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */ |
2890 | if (vm_start_gap(vma: tmp) < gap_end) { |
2891 | high_limit = vm_start_gap(vma: tmp); |
2892 | vma_iter_reset(vmi: &vmi); |
2893 | goto retry; |
2894 | } |
2895 | } else { |
2896 | tmp = vma_prev(vmi: &vmi); |
2897 | if (tmp && vm_end_gap(vma: tmp) > gap) { |
2898 | high_limit = tmp->vm_start; |
2899 | vma_iter_reset(vmi: &vmi); |
2900 | goto retry; |
2901 | } |
2902 | } |
2903 | |
2904 | return gap; |
2905 | } |
2906 | |
2907 | /* |
2908 | * Verify that the stack growth is acceptable and |
2909 | * update accounting. This is shared with both the |
2910 | * grow-up and grow-down cases. |
2911 | */ |
2912 | static int acct_stack_growth(struct vm_area_struct *vma, |
2913 | unsigned long size, unsigned long grow) |
2914 | { |
2915 | struct mm_struct *mm = vma->vm_mm; |
2916 | unsigned long new_start; |
2917 | |
2918 | /* address space limit tests */ |
2919 | if (!may_expand_vm(mm, vma->vm_flags, npages: grow)) |
2920 | return -ENOMEM; |
2921 | |
2922 | /* Stack limit test */ |
2923 | if (size > rlimit(RLIMIT_STACK)) |
2924 | return -ENOMEM; |
2925 | |
2926 | /* mlock limit tests */ |
2927 | if (!mlock_future_ok(mm, flags: vma->vm_flags, bytes: grow << PAGE_SHIFT)) |
2928 | return -ENOMEM; |
2929 | |
2930 | /* Check to ensure the stack will not grow into a hugetlb-only region */ |
2931 | new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start : |
2932 | vma->vm_end - size; |
2933 | if (is_hugepage_only_range(mm: vma->vm_mm, addr: new_start, len: size)) |
2934 | return -EFAULT; |
2935 | |
2936 | /* |
2937 | * Overcommit.. This must be the final test, as it will |
2938 | * update security statistics. |
2939 | */ |
2940 | if (security_vm_enough_memory_mm(mm, pages: grow)) |
2941 | return -ENOMEM; |
2942 | |
2943 | return 0; |
2944 | } |
2945 | |
2946 | #if defined(CONFIG_STACK_GROWSUP) |
2947 | /* |
2948 | * PA-RISC uses this for its stack. |
2949 | * vma is the last one with address > vma->vm_end. Have to extend vma. |
2950 | */ |
2951 | int expand_upwards(struct vm_area_struct *vma, unsigned long address) |
2952 | { |
2953 | struct mm_struct *mm = vma->vm_mm; |
2954 | struct vm_area_struct *next; |
2955 | unsigned long gap_addr; |
2956 | int error = 0; |
2957 | VMA_ITERATOR(vmi, mm, vma->vm_start); |
2958 | |
2959 | if (!(vma->vm_flags & VM_GROWSUP)) |
2960 | return -EFAULT; |
2961 | |
2962 | mmap_assert_write_locked(mm); |
2963 | |
2964 | /* Guard against exceeding limits of the address space. */ |
2965 | address &= PAGE_MASK; |
2966 | if (address >= (TASK_SIZE & PAGE_MASK)) |
2967 | return -ENOMEM; |
2968 | address += PAGE_SIZE; |
2969 | |
2970 | /* Enforce stack_guard_gap */ |
2971 | gap_addr = address + stack_guard_gap; |
2972 | |
2973 | /* Guard against overflow */ |
2974 | if (gap_addr < address || gap_addr > TASK_SIZE) |
2975 | gap_addr = TASK_SIZE; |
2976 | |
2977 | next = find_vma_intersection(mm, vma->vm_end, gap_addr); |
2978 | if (next && vma_is_accessible(next)) { |
2979 | if (!(next->vm_flags & VM_GROWSUP)) |
2980 | return -ENOMEM; |
2981 | /* Check that both stack segments have the same anon_vma? */ |
2982 | } |
2983 | |
2984 | if (next) |
2985 | vma_iter_prev_range_limit(&vmi, address); |
2986 | |
2987 | vma_iter_config(&vmi, vma->vm_start, address); |
2988 | if (vma_iter_prealloc(&vmi, vma)) |
2989 | return -ENOMEM; |
2990 | |
2991 | /* We must make sure the anon_vma is allocated. */ |
2992 | if (unlikely(anon_vma_prepare(vma))) { |
2993 | vma_iter_free(&vmi); |
2994 | return -ENOMEM; |
2995 | } |
2996 | |
2997 | /* Lock the VMA before expanding to prevent concurrent page faults */ |
2998 | vma_start_write(vma); |
2999 | /* We update the anon VMA tree. */ |
3000 | anon_vma_lock_write(vma->anon_vma); |
3001 | |
3002 | /* Somebody else might have raced and expanded it already */ |
3003 | if (address > vma->vm_end) { |
3004 | unsigned long size, grow; |
3005 | |
3006 | size = address - vma->vm_start; |
3007 | grow = (address - vma->vm_end) >> PAGE_SHIFT; |
3008 | |
3009 | error = -ENOMEM; |
3010 | if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) { |
3011 | error = acct_stack_growth(vma, size, grow); |
3012 | if (!error) { |
3013 | if (vma->vm_flags & VM_LOCKED) |
3014 | mm->locked_vm += grow; |
3015 | vm_stat_account(mm, vma->vm_flags, grow); |
3016 | anon_vma_interval_tree_pre_update_vma(vma); |
3017 | vma->vm_end = address; |
3018 | /* Overwrite old entry in mtree. */ |
3019 | vma_iter_store_overwrite(&vmi, vma); |
3020 | anon_vma_interval_tree_post_update_vma(vma); |
3021 | |
3022 | perf_event_mmap(vma); |
3023 | } |
3024 | } |
3025 | } |
3026 | anon_vma_unlock_write(vma->anon_vma); |
3027 | vma_iter_free(&vmi); |
3028 | validate_mm(mm); |
3029 | return error; |
3030 | } |
3031 | #endif /* CONFIG_STACK_GROWSUP */ |
3032 | |
3033 | /* |
3034 | * vma is the first one with address < vma->vm_start. Have to extend vma. |
3035 | * mmap_lock held for writing. |
3036 | */ |
3037 | int expand_downwards(struct vm_area_struct *vma, unsigned long address) |
3038 | { |
3039 | struct mm_struct *mm = vma->vm_mm; |
3040 | struct vm_area_struct *prev; |
3041 | int error = 0; |
3042 | VMA_ITERATOR(vmi, mm, vma->vm_start); |
3043 | |
3044 | if (!(vma->vm_flags & VM_GROWSDOWN)) |
3045 | return -EFAULT; |
3046 | |
3047 | mmap_assert_write_locked(mm); |
3048 | |
3049 | address &= PAGE_MASK; |
3050 | if (address < mmap_min_addr || address < FIRST_USER_ADDRESS) |
3051 | return -EPERM; |
3052 | |
3053 | /* Enforce stack_guard_gap */ |
3054 | prev = vma_prev(vmi: &vmi); |
3055 | /* Check that both stack segments have the same anon_vma? */ |
3056 | if (prev) { |
3057 | if (!(prev->vm_flags & VM_GROWSDOWN) && |
3058 | vma_is_accessible(vma: prev) && |
3059 | (address - prev->vm_end < stack_guard_gap)) |
3060 | return -ENOMEM; |
3061 | } |
3062 | |
3063 | if (prev) |
3064 | vma_iter_next_range_limit(vmi: &vmi, max: vma->vm_start); |
3065 | |
3066 | vma_iter_config(vmi: &vmi, index: address, last: vma->vm_end); |
3067 | if (vma_iter_prealloc(vmi: &vmi, vma)) |
3068 | return -ENOMEM; |
3069 | |
3070 | /* We must make sure the anon_vma is allocated. */ |
3071 | if (unlikely(anon_vma_prepare(vma))) { |
3072 | vma_iter_free(vmi: &vmi); |
3073 | return -ENOMEM; |
3074 | } |
3075 | |
3076 | /* Lock the VMA before expanding to prevent concurrent page faults */ |
3077 | vma_start_write(vma); |
3078 | /* We update the anon VMA tree. */ |
3079 | anon_vma_lock_write(anon_vma: vma->anon_vma); |
3080 | |
3081 | /* Somebody else might have raced and expanded it already */ |
3082 | if (address < vma->vm_start) { |
3083 | unsigned long size, grow; |
3084 | |
3085 | size = vma->vm_end - address; |
3086 | grow = (vma->vm_start - address) >> PAGE_SHIFT; |
3087 | |
3088 | error = -ENOMEM; |
3089 | if (grow <= vma->vm_pgoff) { |
3090 | error = acct_stack_growth(vma, size, grow); |
3091 | if (!error) { |
3092 | if (vma->vm_flags & VM_LOCKED) |
3093 | mm->locked_vm += grow; |
3094 | vm_stat_account(mm, vma->vm_flags, npages: grow); |
3095 | anon_vma_interval_tree_pre_update_vma(vma); |
3096 | vma->vm_start = address; |
3097 | vma->vm_pgoff -= grow; |
3098 | /* Overwrite old entry in mtree. */ |
3099 | vma_iter_store_overwrite(vmi: &vmi, vma); |
3100 | anon_vma_interval_tree_post_update_vma(vma); |
3101 | |
3102 | perf_event_mmap(vma); |
3103 | } |
3104 | } |
3105 | } |
3106 | anon_vma_unlock_write(anon_vma: vma->anon_vma); |
3107 | vma_iter_free(vmi: &vmi); |
3108 | validate_mm(mm); |
3109 | return error; |
3110 | } |
3111 | |
3112 | int __vm_munmap(unsigned long start, size_t len, bool unlock) |
3113 | { |
3114 | int ret; |
3115 | struct mm_struct *mm = current->mm; |
3116 | LIST_HEAD(uf); |
3117 | VMA_ITERATOR(vmi, mm, start); |
3118 | |
3119 | if (mmap_write_lock_killable(mm)) |
3120 | return -EINTR; |
3121 | |
3122 | ret = do_vmi_munmap(vmi: &vmi, mm, start, len, uf: &uf, unlock); |
3123 | if (ret || !unlock) |
3124 | mmap_write_unlock(mm); |
3125 | |
3126 | userfaultfd_unmap_complete(mm, uf: &uf); |
3127 | return ret; |
3128 | } |
3129 | |
3130 | |
3131 | /* Insert vm structure into process list sorted by address |
3132 | * and into the inode's i_mmap tree. If vm_file is non-NULL |
3133 | * then i_mmap_rwsem is taken here. |
3134 | */ |
3135 | int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma) |
3136 | { |
3137 | unsigned long charged = vma_pages(vma); |
3138 | |
3139 | |
3140 | if (find_vma_intersection(mm, start_addr: vma->vm_start, end_addr: vma->vm_end)) |
3141 | return -ENOMEM; |
3142 | |
3143 | if ((vma->vm_flags & VM_ACCOUNT) && |
3144 | security_vm_enough_memory_mm(mm, pages: charged)) |
3145 | return -ENOMEM; |
3146 | |
3147 | /* |
3148 | * The vm_pgoff of a purely anonymous vma should be irrelevant |
3149 | * until its first write fault, when page's anon_vma and index |
3150 | * are set. But now set the vm_pgoff it will almost certainly |
3151 | * end up with (unless mremap moves it elsewhere before that |
3152 | * first wfault), so /proc/pid/maps tells a consistent story. |
3153 | * |
3154 | * By setting it to reflect the virtual start address of the |
3155 | * vma, merges and splits can happen in a seamless way, just |
3156 | * using the existing file pgoff checks and manipulations. |
3157 | * Similarly in do_mmap and in do_brk_flags. |
3158 | */ |
3159 | if (vma_is_anonymous(vma)) { |
3160 | BUG_ON(vma->anon_vma); |
3161 | vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; |
3162 | } |
3163 | |
3164 | if (vma_link(mm, vma)) { |
3165 | if (vma->vm_flags & VM_ACCOUNT) |
3166 | vm_unacct_memory(pages: charged); |
3167 | return -ENOMEM; |
3168 | } |
3169 | |
3170 | return 0; |
3171 | } |
3172 | |