1// SPDX-License-Identifier: GPL-2.0-or-later
2
3/*
4 * VMA-specific functions.
5 */
6
7#include "vma_internal.h"
8#include "vma.h"
9
10struct mmap_state {
11 struct mm_struct *mm;
12 struct vma_iterator *vmi;
13
14 unsigned long addr;
15 unsigned long end;
16 pgoff_t pgoff;
17 unsigned long pglen;
18 unsigned long flags;
19 struct file *file;
20 pgprot_t page_prot;
21
22 /* User-defined fields, perhaps updated by .mmap_prepare(). */
23 const struct vm_operations_struct *vm_ops;
24 void *vm_private_data;
25
26 unsigned long charged;
27
28 struct vm_area_struct *prev;
29 struct vm_area_struct *next;
30
31 /* Unmapping state. */
32 struct vma_munmap_struct vms;
33 struct ma_state mas_detach;
34 struct maple_tree mt_detach;
35};
36
37#define MMAP_STATE(name, mm_, vmi_, addr_, len_, pgoff_, flags_, file_) \
38 struct mmap_state name = { \
39 .mm = mm_, \
40 .vmi = vmi_, \
41 .addr = addr_, \
42 .end = (addr_) + (len_), \
43 .pgoff = pgoff_, \
44 .pglen = PHYS_PFN(len_), \
45 .flags = flags_, \
46 .file = file_, \
47 .page_prot = vm_get_page_prot(flags_), \
48 }
49
50#define VMG_MMAP_STATE(name, map_, vma_) \
51 struct vma_merge_struct name = { \
52 .mm = (map_)->mm, \
53 .vmi = (map_)->vmi, \
54 .start = (map_)->addr, \
55 .end = (map_)->end, \
56 .flags = (map_)->flags, \
57 .pgoff = (map_)->pgoff, \
58 .file = (map_)->file, \
59 .prev = (map_)->prev, \
60 .middle = vma_, \
61 .next = (vma_) ? NULL : (map_)->next, \
62 .state = VMA_MERGE_START, \
63 }
64
65/*
66 * If, at any point, the VMA had unCoW'd mappings from parents, it will maintain
67 * more than one anon_vma_chain connecting it to more than one anon_vma. A merge
68 * would mean a wider range of folios sharing the root anon_vma lock, and thus
69 * potential lock contention, we do not wish to encourage merging such that this
70 * scales to a problem.
71 */
72static bool vma_had_uncowed_parents(struct vm_area_struct *vma)
73{
74 /*
75 * The list_is_singular() test is to avoid merging VMA cloned from
76 * parents. This can improve scalability caused by anon_vma lock.
77 */
78 return vma && vma->anon_vma && !list_is_singular(head: &vma->anon_vma_chain);
79}
80
81static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next)
82{
83 struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev;
84
85 if (!mpol_equal(a: vmg->policy, vma_policy(vma)))
86 return false;
87 /*
88 * VM_SOFTDIRTY should not prevent from VMA merging, if we
89 * match the flags but dirty bit -- the caller should mark
90 * merged VMA as dirty. If dirty bit won't be excluded from
91 * comparison, we increase pressure on the memory system forcing
92 * the kernel to generate new VMAs when old one could be
93 * extended instead.
94 */
95 if ((vma->vm_flags ^ vmg->flags) & ~VM_SOFTDIRTY)
96 return false;
97 if (vma->vm_file != vmg->file)
98 return false;
99 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_ctx: vmg->uffd_ctx))
100 return false;
101 if (!anon_vma_name_eq(anon_name1: anon_vma_name(vma), anon_name2: vmg->anon_name))
102 return false;
103 return true;
104}
105
106static bool is_mergeable_anon_vma(struct vma_merge_struct *vmg, bool merge_next)
107{
108 struct vm_area_struct *tgt = merge_next ? vmg->next : vmg->prev;
109 struct vm_area_struct *src = vmg->middle; /* exisitng merge case. */
110 struct anon_vma *tgt_anon = tgt->anon_vma;
111 struct anon_vma *src_anon = vmg->anon_vma;
112
113 /*
114 * We _can_ have !src, vmg->anon_vma via copy_vma(). In this instance we
115 * will remove the existing VMA's anon_vma's so there's no scalability
116 * concerns.
117 */
118 VM_WARN_ON(src && src_anon != src->anon_vma);
119
120 /* Case 1 - we will dup_anon_vma() from src into tgt. */
121 if (!tgt_anon && src_anon)
122 return !vma_had_uncowed_parents(vma: src);
123 /* Case 2 - we will simply use tgt's anon_vma. */
124 if (tgt_anon && !src_anon)
125 return !vma_had_uncowed_parents(vma: tgt);
126 /* Case 3 - the anon_vma's are already shared. */
127 return src_anon == tgt_anon;
128}
129
130/*
131 * init_multi_vma_prep() - Initializer for struct vma_prepare
132 * @vp: The vma_prepare struct
133 * @vma: The vma that will be altered once locked
134 * @vmg: The merge state that will be used to determine adjustment and VMA
135 * removal.
136 */
137static void init_multi_vma_prep(struct vma_prepare *vp,
138 struct vm_area_struct *vma,
139 struct vma_merge_struct *vmg)
140{
141 struct vm_area_struct *adjust;
142 struct vm_area_struct **remove = &vp->remove;
143
144 memset(vp, 0, sizeof(struct vma_prepare));
145 vp->vma = vma;
146 vp->anon_vma = vma->anon_vma;
147
148 if (vmg && vmg->__remove_middle) {
149 *remove = vmg->middle;
150 remove = &vp->remove2;
151 }
152 if (vmg && vmg->__remove_next)
153 *remove = vmg->next;
154
155 if (vmg && vmg->__adjust_middle_start)
156 adjust = vmg->middle;
157 else if (vmg && vmg->__adjust_next_start)
158 adjust = vmg->next;
159 else
160 adjust = NULL;
161
162 vp->adj_next = adjust;
163 if (!vp->anon_vma && adjust)
164 vp->anon_vma = adjust->anon_vma;
165
166 VM_WARN_ON(vp->anon_vma && adjust && adjust->anon_vma &&
167 vp->anon_vma != adjust->anon_vma);
168
169 vp->file = vma->vm_file;
170 if (vp->file)
171 vp->mapping = vma->vm_file->f_mapping;
172
173 if (vmg && vmg->skip_vma_uprobe)
174 vp->skip_vma_uprobe = true;
175}
176
177/*
178 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
179 * in front of (at a lower virtual address and file offset than) the vma.
180 *
181 * We cannot merge two vmas if they have differently assigned (non-NULL)
182 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
183 *
184 * We don't check here for the merged mmap wrapping around the end of pagecache
185 * indices (16TB on ia32) because do_mmap() does not permit mmap's which
186 * wrap, nor mmaps which cover the final page at index -1UL.
187 *
188 * We assume the vma may be removed as part of the merge.
189 */
190static bool can_vma_merge_before(struct vma_merge_struct *vmg)
191{
192 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
193
194 if (is_mergeable_vma(vmg, /* merge_next = */ true) &&
195 is_mergeable_anon_vma(vmg, /* merge_next = */ true)) {
196 if (vmg->next->vm_pgoff == vmg->pgoff + pglen)
197 return true;
198 }
199
200 return false;
201}
202
203/*
204 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
205 * beyond (at a higher virtual address and file offset than) the vma.
206 *
207 * We cannot merge two vmas if they have differently assigned (non-NULL)
208 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
209 *
210 * We assume that vma is not removed as part of the merge.
211 */
212static bool can_vma_merge_after(struct vma_merge_struct *vmg)
213{
214 if (is_mergeable_vma(vmg, /* merge_next = */ false) &&
215 is_mergeable_anon_vma(vmg, /* merge_next = */ false)) {
216 if (vmg->prev->vm_pgoff + vma_pages(vma: vmg->prev) == vmg->pgoff)
217 return true;
218 }
219 return false;
220}
221
222static void __vma_link_file(struct vm_area_struct *vma,
223 struct address_space *mapping)
224{
225 if (vma_is_shared_maywrite(vma))
226 mapping_allow_writable(mapping);
227
228 flush_dcache_mmap_lock(mapping);
229 vma_interval_tree_insert(node: vma, root: &mapping->i_mmap);
230 flush_dcache_mmap_unlock(mapping);
231}
232
233/*
234 * Requires inode->i_mapping->i_mmap_rwsem
235 */
236static void __remove_shared_vm_struct(struct vm_area_struct *vma,
237 struct address_space *mapping)
238{
239 if (vma_is_shared_maywrite(vma))
240 mapping_unmap_writable(mapping);
241
242 flush_dcache_mmap_lock(mapping);
243 vma_interval_tree_remove(node: vma, root: &mapping->i_mmap);
244 flush_dcache_mmap_unlock(mapping);
245}
246
247/*
248 * vma has some anon_vma assigned, and is already inserted on that
249 * anon_vma's interval trees.
250 *
251 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
252 * vma must be removed from the anon_vma's interval trees using
253 * anon_vma_interval_tree_pre_update_vma().
254 *
255 * After the update, the vma will be reinserted using
256 * anon_vma_interval_tree_post_update_vma().
257 *
258 * The entire update must be protected by exclusive mmap_lock and by
259 * the root anon_vma's mutex.
260 */
261static void
262anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
263{
264 struct anon_vma_chain *avc;
265
266 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
267 anon_vma_interval_tree_remove(node: avc, root: &avc->anon_vma->rb_root);
268}
269
270static void
271anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
272{
273 struct anon_vma_chain *avc;
274
275 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
276 anon_vma_interval_tree_insert(node: avc, root: &avc->anon_vma->rb_root);
277}
278
279/*
280 * vma_prepare() - Helper function for handling locking VMAs prior to altering
281 * @vp: The initialized vma_prepare struct
282 */
283static void vma_prepare(struct vma_prepare *vp)
284{
285 if (vp->file) {
286 uprobe_munmap(vma: vp->vma, start: vp->vma->vm_start, end: vp->vma->vm_end);
287
288 if (vp->adj_next)
289 uprobe_munmap(vma: vp->adj_next, start: vp->adj_next->vm_start,
290 end: vp->adj_next->vm_end);
291
292 i_mmap_lock_write(mapping: vp->mapping);
293 if (vp->insert && vp->insert->vm_file) {
294 /*
295 * Put into interval tree now, so instantiated pages
296 * are visible to arm/parisc __flush_dcache_page
297 * throughout; but we cannot insert into address
298 * space until vma start or end is updated.
299 */
300 __vma_link_file(vma: vp->insert,
301 mapping: vp->insert->vm_file->f_mapping);
302 }
303 }
304
305 if (vp->anon_vma) {
306 anon_vma_lock_write(anon_vma: vp->anon_vma);
307 anon_vma_interval_tree_pre_update_vma(vma: vp->vma);
308 if (vp->adj_next)
309 anon_vma_interval_tree_pre_update_vma(vma: vp->adj_next);
310 }
311
312 if (vp->file) {
313 flush_dcache_mmap_lock(mapping: vp->mapping);
314 vma_interval_tree_remove(node: vp->vma, root: &vp->mapping->i_mmap);
315 if (vp->adj_next)
316 vma_interval_tree_remove(node: vp->adj_next,
317 root: &vp->mapping->i_mmap);
318 }
319
320}
321
322/*
323 * vma_complete- Helper function for handling the unlocking after altering VMAs,
324 * or for inserting a VMA.
325 *
326 * @vp: The vma_prepare struct
327 * @vmi: The vma iterator
328 * @mm: The mm_struct
329 */
330static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi,
331 struct mm_struct *mm)
332{
333 if (vp->file) {
334 if (vp->adj_next)
335 vma_interval_tree_insert(node: vp->adj_next,
336 root: &vp->mapping->i_mmap);
337 vma_interval_tree_insert(node: vp->vma, root: &vp->mapping->i_mmap);
338 flush_dcache_mmap_unlock(mapping: vp->mapping);
339 }
340
341 if (vp->remove && vp->file) {
342 __remove_shared_vm_struct(vma: vp->remove, mapping: vp->mapping);
343 if (vp->remove2)
344 __remove_shared_vm_struct(vma: vp->remove2, mapping: vp->mapping);
345 } else if (vp->insert) {
346 /*
347 * split_vma has split insert from vma, and needs
348 * us to insert it before dropping the locks
349 * (it may either follow vma or precede it).
350 */
351 vma_iter_store_new(vmi, vma: vp->insert);
352 mm->map_count++;
353 }
354
355 if (vp->anon_vma) {
356 anon_vma_interval_tree_post_update_vma(vma: vp->vma);
357 if (vp->adj_next)
358 anon_vma_interval_tree_post_update_vma(vma: vp->adj_next);
359 anon_vma_unlock_write(anon_vma: vp->anon_vma);
360 }
361
362 if (vp->file) {
363 i_mmap_unlock_write(mapping: vp->mapping);
364
365 if (!vp->skip_vma_uprobe) {
366 uprobe_mmap(vma: vp->vma);
367
368 if (vp->adj_next)
369 uprobe_mmap(vma: vp->adj_next);
370 }
371 }
372
373 if (vp->remove) {
374again:
375 vma_mark_detached(vma: vp->remove);
376 if (vp->file) {
377 uprobe_munmap(vma: vp->remove, start: vp->remove->vm_start,
378 end: vp->remove->vm_end);
379 fput(vp->file);
380 }
381 if (vp->remove->anon_vma)
382 anon_vma_merge(vma: vp->vma, next: vp->remove);
383 mm->map_count--;
384 mpol_put(vma_policy(vp->remove));
385 if (!vp->remove2)
386 WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
387 vm_area_free(vma: vp->remove);
388
389 /*
390 * In mprotect's case 6 (see comments on vma_merge),
391 * we are removing both mid and next vmas
392 */
393 if (vp->remove2) {
394 vp->remove = vp->remove2;
395 vp->remove2 = NULL;
396 goto again;
397 }
398 }
399 if (vp->insert && vp->file)
400 uprobe_mmap(vma: vp->insert);
401}
402
403/*
404 * init_vma_prep() - Initializer wrapper for vma_prepare struct
405 * @vp: The vma_prepare struct
406 * @vma: The vma that will be altered once locked
407 */
408static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma)
409{
410 init_multi_vma_prep(vp, vma, NULL);
411}
412
413/*
414 * Can the proposed VMA be merged with the left (previous) VMA taking into
415 * account the start position of the proposed range.
416 */
417static bool can_vma_merge_left(struct vma_merge_struct *vmg)
418
419{
420 return vmg->prev && vmg->prev->vm_end == vmg->start &&
421 can_vma_merge_after(vmg);
422}
423
424/*
425 * Can the proposed VMA be merged with the right (next) VMA taking into
426 * account the end position of the proposed range.
427 *
428 * In addition, if we can merge with the left VMA, ensure that left and right
429 * anon_vma's are also compatible.
430 */
431static bool can_vma_merge_right(struct vma_merge_struct *vmg,
432 bool can_merge_left)
433{
434 struct vm_area_struct *next = vmg->next;
435 struct vm_area_struct *prev;
436
437 if (!next || vmg->end != next->vm_start || !can_vma_merge_before(vmg))
438 return false;
439
440 if (!can_merge_left)
441 return true;
442
443 /*
444 * If we can merge with prev (left) and next (right), indicating that
445 * each VMA's anon_vma is compatible with the proposed anon_vma, this
446 * does not mean prev and next are compatible with EACH OTHER.
447 *
448 * We therefore check this in addition to mergeability to either side.
449 */
450 prev = vmg->prev;
451 return !prev->anon_vma || !next->anon_vma ||
452 prev->anon_vma == next->anon_vma;
453}
454
455/*
456 * Close a vm structure and free it.
457 */
458void remove_vma(struct vm_area_struct *vma)
459{
460 might_sleep();
461 vma_close(vma);
462 if (vma->vm_file)
463 fput(vma->vm_file);
464 mpol_put(vma_policy(vma));
465 vm_area_free(vma);
466}
467
468/*
469 * Get rid of page table information in the indicated region.
470 *
471 * Called with the mm semaphore held.
472 */
473void unmap_region(struct ma_state *mas, struct vm_area_struct *vma,
474 struct vm_area_struct *prev, struct vm_area_struct *next)
475{
476 struct mm_struct *mm = vma->vm_mm;
477 struct mmu_gather tlb;
478
479 tlb_gather_mmu(tlb: &tlb, mm);
480 update_hiwater_rss(mm);
481 unmap_vmas(tlb: &tlb, mas, start_vma: vma, start: vma->vm_start, end: vma->vm_end, tree_end: vma->vm_end,
482 /* mm_wr_locked = */ true);
483 mas_set(mas, index: vma->vm_end);
484 free_pgtables(tlb: &tlb, mas, start_vma: vma, floor: prev ? prev->vm_end : FIRST_USER_ADDRESS,
485 ceiling: next ? next->vm_start : USER_PGTABLES_CEILING,
486 /* mm_wr_locked = */ true);
487 tlb_finish_mmu(tlb: &tlb);
488}
489
490/*
491 * __split_vma() bypasses sysctl_max_map_count checking. We use this where it
492 * has already been checked or doesn't make sense to fail.
493 * VMA Iterator will point to the original VMA.
494 */
495static __must_check int
496__split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
497 unsigned long addr, int new_below)
498{
499 struct vma_prepare vp;
500 struct vm_area_struct *new;
501 int err;
502
503 WARN_ON(vma->vm_start >= addr);
504 WARN_ON(vma->vm_end <= addr);
505
506 if (vma->vm_ops && vma->vm_ops->may_split) {
507 err = vma->vm_ops->may_split(vma, addr);
508 if (err)
509 return err;
510 }
511
512 new = vm_area_dup(orig: vma);
513 if (!new)
514 return -ENOMEM;
515
516 if (new_below) {
517 new->vm_end = addr;
518 } else {
519 new->vm_start = addr;
520 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
521 }
522
523 err = -ENOMEM;
524 vma_iter_config(vmi, index: new->vm_start, last: new->vm_end);
525 if (vma_iter_prealloc(vmi, vma: new))
526 goto out_free_vma;
527
528 err = vma_dup_policy(src: vma, dst: new);
529 if (err)
530 goto out_free_vmi;
531
532 err = anon_vma_clone(new, vma);
533 if (err)
534 goto out_free_mpol;
535
536 if (new->vm_file)
537 get_file(f: new->vm_file);
538
539 if (new->vm_ops && new->vm_ops->open)
540 new->vm_ops->open(new);
541
542 vma_start_write(vma);
543 vma_start_write(vma: new);
544
545 init_vma_prep(vp: &vp, vma);
546 vp.insert = new;
547 vma_prepare(vp: &vp);
548
549 /*
550 * Get rid of huge pages and shared page tables straddling the split
551 * boundary.
552 */
553 vma_adjust_trans_huge(vma, start: vma->vm_start, end: addr, NULL);
554 if (is_vm_hugetlb_page(vma))
555 hugetlb_split(vma, addr);
556
557 if (new_below) {
558 vma->vm_start = addr;
559 vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
560 } else {
561 vma->vm_end = addr;
562 }
563
564 /* vma_complete stores the new vma */
565 vma_complete(vp: &vp, vmi, mm: vma->vm_mm);
566 validate_mm(mm: vma->vm_mm);
567
568 /* Success. */
569 if (new_below)
570 vma_next(vmi);
571 else
572 vma_prev(vmi);
573
574 return 0;
575
576out_free_mpol:
577 mpol_put(vma_policy(new));
578out_free_vmi:
579 vma_iter_free(vmi);
580out_free_vma:
581 vm_area_free(vma: new);
582 return err;
583}
584
585/*
586 * Split a vma into two pieces at address 'addr', a new vma is allocated
587 * either for the first part or the tail.
588 */
589static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
590 unsigned long addr, int new_below)
591{
592 if (vma->vm_mm->map_count >= sysctl_max_map_count)
593 return -ENOMEM;
594
595 return __split_vma(vmi, vma, addr, new_below);
596}
597
598/*
599 * dup_anon_vma() - Helper function to duplicate anon_vma on VMA merge in the
600 * instance that the destination VMA has no anon_vma but the source does.
601 *
602 * @dst: The destination VMA
603 * @src: The source VMA
604 * @dup: Pointer to the destination VMA when successful.
605 *
606 * Returns: 0 on success.
607 */
608static int dup_anon_vma(struct vm_area_struct *dst,
609 struct vm_area_struct *src, struct vm_area_struct **dup)
610{
611 /*
612 * There are three cases to consider for correctly propagating
613 * anon_vma's on merge.
614 *
615 * The first is trivial - neither VMA has anon_vma, we need not do
616 * anything.
617 *
618 * The second where both have anon_vma is also a no-op, as they must
619 * then be the same, so there is simply nothing to copy.
620 *
621 * Here we cover the third - if the destination VMA has no anon_vma,
622 * that is it is unfaulted, we need to ensure that the newly merged
623 * range is referenced by the anon_vma's of the source.
624 */
625 if (src->anon_vma && !dst->anon_vma) {
626 int ret;
627
628 vma_assert_write_locked(vma: dst);
629 dst->anon_vma = src->anon_vma;
630 ret = anon_vma_clone(dst, src);
631 if (ret)
632 return ret;
633
634 *dup = dst;
635 }
636
637 return 0;
638}
639
640#ifdef CONFIG_DEBUG_VM_MAPLE_TREE
641void validate_mm(struct mm_struct *mm)
642{
643 int bug = 0;
644 int i = 0;
645 struct vm_area_struct *vma;
646 VMA_ITERATOR(vmi, mm, 0);
647
648 mt_validate(mt: &mm->mm_mt);
649 for_each_vma(vmi, vma) {
650#ifdef CONFIG_DEBUG_VM_RB
651 struct anon_vma *anon_vma = vma->anon_vma;
652 struct anon_vma_chain *avc;
653#endif
654 unsigned long vmi_start, vmi_end;
655 bool warn = 0;
656
657 vmi_start = vma_iter_addr(vmi: &vmi);
658 vmi_end = vma_iter_end(vmi: &vmi);
659 if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
660 warn = 1;
661
662 if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
663 warn = 1;
664
665 if (warn) {
666 pr_emerg("issue in %s\n", current->comm);
667 dump_stack();
668 dump_vma(vma);
669 pr_emerg("tree range: %px start %lx end %lx\n", vma,
670 vmi_start, vmi_end - 1);
671 vma_iter_dump_tree(vmi: &vmi);
672 }
673
674#ifdef CONFIG_DEBUG_VM_RB
675 if (anon_vma) {
676 anon_vma_lock_read(anon_vma);
677 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
678 anon_vma_interval_tree_verify(node: avc);
679 anon_vma_unlock_read(anon_vma);
680 }
681#endif
682 /* Check for a infinite loop */
683 if (++i > mm->map_count + 10) {
684 i = -1;
685 break;
686 }
687 }
688 if (i != mm->map_count) {
689 pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
690 bug = 1;
691 }
692 VM_BUG_ON_MM(bug, mm);
693}
694#endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
695
696/*
697 * Based on the vmg flag indicating whether we need to adjust the vm_start field
698 * for the middle or next VMA, we calculate what the range of the newly adjusted
699 * VMA ought to be, and set the VMA's range accordingly.
700 */
701static void vmg_adjust_set_range(struct vma_merge_struct *vmg)
702{
703 struct vm_area_struct *adjust;
704 pgoff_t pgoff;
705
706 if (vmg->__adjust_middle_start) {
707 adjust = vmg->middle;
708 pgoff = adjust->vm_pgoff + PHYS_PFN(vmg->end - adjust->vm_start);
709 } else if (vmg->__adjust_next_start) {
710 adjust = vmg->next;
711 pgoff = adjust->vm_pgoff - PHYS_PFN(adjust->vm_start - vmg->end);
712 } else {
713 return;
714 }
715
716 vma_set_range(vma: adjust, start: vmg->end, end: adjust->vm_end, pgoff);
717}
718
719/*
720 * Actually perform the VMA merge operation.
721 *
722 * IMPORTANT: We guarantee that, should vmg->give_up_on_oom is set, to not
723 * modify any VMAs or cause inconsistent state should an OOM condition arise.
724 *
725 * Returns 0 on success, or an error value on failure.
726 */
727static int commit_merge(struct vma_merge_struct *vmg)
728{
729 struct vm_area_struct *vma;
730 struct vma_prepare vp;
731
732 if (vmg->__adjust_next_start) {
733 /* We manipulate middle and adjust next, which is the target. */
734 vma = vmg->middle;
735 vma_iter_config(vmi: vmg->vmi, index: vmg->end, last: vmg->next->vm_end);
736 } else {
737 vma = vmg->target;
738 /* Note: vma iterator must be pointing to 'start'. */
739 vma_iter_config(vmi: vmg->vmi, index: vmg->start, last: vmg->end);
740 }
741
742 init_multi_vma_prep(vp: &vp, vma, vmg);
743
744 /*
745 * If vmg->give_up_on_oom is set, we're safe, because we don't actually
746 * manipulate any VMAs until we succeed at preallocation.
747 *
748 * Past this point, we will not return an error.
749 */
750 if (vma_iter_prealloc(vmi: vmg->vmi, vma))
751 return -ENOMEM;
752
753 vma_prepare(vp: &vp);
754 /*
755 * THP pages may need to do additional splits if we increase
756 * middle->vm_start.
757 */
758 vma_adjust_trans_huge(vma, start: vmg->start, end: vmg->end,
759 next: vmg->__adjust_middle_start ? vmg->middle : NULL);
760 vma_set_range(vma, start: vmg->start, end: vmg->end, pgoff: vmg->pgoff);
761 vmg_adjust_set_range(vmg);
762 vma_iter_store_overwrite(vmi: vmg->vmi, vma: vmg->target);
763
764 vma_complete(vp: &vp, vmi: vmg->vmi, mm: vma->vm_mm);
765
766 return 0;
767}
768
769/* We can only remove VMAs when merging if they do not have a close hook. */
770static bool can_merge_remove_vma(struct vm_area_struct *vma)
771{
772 return !vma->vm_ops || !vma->vm_ops->close;
773}
774
775/*
776 * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its
777 * attributes modified.
778 *
779 * @vmg: Describes the modifications being made to a VMA and associated
780 * metadata.
781 *
782 * When the attributes of a range within a VMA change, then it might be possible
783 * for immediately adjacent VMAs to be merged into that VMA due to having
784 * identical properties.
785 *
786 * This function checks for the existence of any such mergeable VMAs and updates
787 * the maple tree describing the @vmg->middle->vm_mm address space to account
788 * for this, as well as any VMAs shrunk/expanded/deleted as a result of this
789 * merge.
790 *
791 * As part of this operation, if a merge occurs, the @vmg object will have its
792 * vma, start, end, and pgoff fields modified to execute the merge. Subsequent
793 * calls to this function should reset these fields.
794 *
795 * Returns: The merged VMA if merge succeeds, or NULL otherwise.
796 *
797 * ASSUMPTIONS:
798 * - The caller must assign the VMA to be modifed to @vmg->middle.
799 * - The caller must have set @vmg->prev to the previous VMA, if there is one.
800 * - The caller must not set @vmg->next, as we determine this.
801 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
802 * - vmi must be positioned within [@vmg->middle->vm_start, @vmg->middle->vm_end).
803 */
804static __must_check struct vm_area_struct *vma_merge_existing_range(
805 struct vma_merge_struct *vmg)
806{
807 struct vm_area_struct *middle = vmg->middle;
808 struct vm_area_struct *prev = vmg->prev;
809 struct vm_area_struct *next;
810 struct vm_area_struct *anon_dup = NULL;
811 unsigned long start = vmg->start;
812 unsigned long end = vmg->end;
813 bool left_side = middle && start == middle->vm_start;
814 bool right_side = middle && end == middle->vm_end;
815 int err = 0;
816 bool merge_left, merge_right, merge_both;
817
818 mmap_assert_write_locked(mm: vmg->mm);
819 VM_WARN_ON_VMG(!middle, vmg); /* We are modifying a VMA, so caller must specify. */
820 VM_WARN_ON_VMG(vmg->next, vmg); /* We set this. */
821 VM_WARN_ON_VMG(prev && start <= prev->vm_start, vmg);
822 VM_WARN_ON_VMG(start >= end, vmg);
823
824 /*
825 * If middle == prev, then we are offset into a VMA. Otherwise, if we are
826 * not, we must span a portion of the VMA.
827 */
828 VM_WARN_ON_VMG(middle &&
829 ((middle != prev && vmg->start != middle->vm_start) ||
830 vmg->end > middle->vm_end), vmg);
831 /* The vmi must be positioned within vmg->middle. */
832 VM_WARN_ON_VMG(middle &&
833 !(vma_iter_addr(vmg->vmi) >= middle->vm_start &&
834 vma_iter_addr(vmg->vmi) < middle->vm_end), vmg);
835
836 vmg->state = VMA_MERGE_NOMERGE;
837
838 /*
839 * If a special mapping or if the range being modified is neither at the
840 * furthermost left or right side of the VMA, then we have no chance of
841 * merging and should abort.
842 */
843 if (vmg->flags & VM_SPECIAL || (!left_side && !right_side))
844 return NULL;
845
846 if (left_side)
847 merge_left = can_vma_merge_left(vmg);
848 else
849 merge_left = false;
850
851 if (right_side) {
852 next = vmg->next = vma_iter_next_range(vmi: vmg->vmi);
853 vma_iter_prev_range(vmi: vmg->vmi);
854
855 merge_right = can_vma_merge_right(vmg, can_merge_left: merge_left);
856 } else {
857 merge_right = false;
858 next = NULL;
859 }
860
861 if (merge_left) /* If merging prev, position iterator there. */
862 vma_prev(vmi: vmg->vmi);
863 else if (!merge_right) /* If we have nothing to merge, abort. */
864 return NULL;
865
866 merge_both = merge_left && merge_right;
867 /* If we span the entire VMA, a merge implies it will be deleted. */
868 vmg->__remove_middle = left_side && right_side;
869
870 /*
871 * If we need to remove middle in its entirety but are unable to do so,
872 * we have no sensible recourse but to abort the merge.
873 */
874 if (vmg->__remove_middle && !can_merge_remove_vma(vma: middle))
875 return NULL;
876
877 /*
878 * If we merge both VMAs, then next is also deleted. This implies
879 * merge_will_delete_vma also.
880 */
881 vmg->__remove_next = merge_both;
882
883 /*
884 * If we cannot delete next, then we can reduce the operation to merging
885 * prev and middle (thereby deleting middle).
886 */
887 if (vmg->__remove_next && !can_merge_remove_vma(vma: next)) {
888 vmg->__remove_next = false;
889 merge_right = false;
890 merge_both = false;
891 }
892
893 /* No matter what happens, we will be adjusting middle. */
894 vma_start_write(vma: middle);
895
896 if (merge_right) {
897 vma_start_write(vma: next);
898 vmg->target = next;
899 }
900
901 if (merge_left) {
902 vma_start_write(vma: prev);
903 vmg->target = prev;
904 }
905
906 if (merge_both) {
907 /*
908 * |<-------------------->|
909 * |-------********-------|
910 * prev middle next
911 * extend delete delete
912 */
913
914 vmg->start = prev->vm_start;
915 vmg->end = next->vm_end;
916 vmg->pgoff = prev->vm_pgoff;
917
918 /*
919 * We already ensured anon_vma compatibility above, so now it's
920 * simply a case of, if prev has no anon_vma object, which of
921 * next or middle contains the anon_vma we must duplicate.
922 */
923 err = dup_anon_vma(dst: prev, src: next->anon_vma ? next : middle,
924 dup: &anon_dup);
925 } else if (merge_left) {
926 /*
927 * |<------------>| OR
928 * |<----------------->|
929 * |-------*************
930 * prev middle
931 * extend shrink/delete
932 */
933
934 vmg->start = prev->vm_start;
935 vmg->pgoff = prev->vm_pgoff;
936
937 if (!vmg->__remove_middle)
938 vmg->__adjust_middle_start = true;
939
940 err = dup_anon_vma(dst: prev, src: middle, dup: &anon_dup);
941 } else { /* merge_right */
942 /*
943 * |<------------->| OR
944 * |<----------------->|
945 * *************-------|
946 * middle next
947 * shrink/delete extend
948 */
949
950 pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
951
952 VM_WARN_ON_VMG(!merge_right, vmg);
953 /* If we are offset into a VMA, then prev must be middle. */
954 VM_WARN_ON_VMG(vmg->start > middle->vm_start && prev && middle != prev, vmg);
955
956 if (vmg->__remove_middle) {
957 vmg->end = next->vm_end;
958 vmg->pgoff = next->vm_pgoff - pglen;
959 } else {
960 /* We shrink middle and expand next. */
961 vmg->__adjust_next_start = true;
962 vmg->start = middle->vm_start;
963 vmg->end = start;
964 vmg->pgoff = middle->vm_pgoff;
965 }
966
967 err = dup_anon_vma(dst: next, src: middle, dup: &anon_dup);
968 }
969
970 if (err)
971 goto abort;
972
973 err = commit_merge(vmg);
974 if (err) {
975 VM_WARN_ON(err != -ENOMEM);
976
977 if (anon_dup)
978 unlink_anon_vmas(anon_dup);
979
980 /*
981 * We've cleaned up any cloned anon_vma's, no VMAs have been
982 * modified, no harm no foul if the user requests that we not
983 * report this and just give up, leaving the VMAs unmerged.
984 */
985 if (!vmg->give_up_on_oom)
986 vmg->state = VMA_MERGE_ERROR_NOMEM;
987 return NULL;
988 }
989
990 khugepaged_enter_vma(vma: vmg->target, vm_flags: vmg->flags);
991 vmg->state = VMA_MERGE_SUCCESS;
992 return vmg->target;
993
994abort:
995 vma_iter_set(vmi: vmg->vmi, addr: start);
996 vma_iter_load(vmi: vmg->vmi);
997
998 /*
999 * This means we have failed to clone anon_vma's correctly, but no
1000 * actual changes to VMAs have occurred, so no harm no foul - if the
1001 * user doesn't want this reported and instead just wants to give up on
1002 * the merge, allow it.
1003 */
1004 if (!vmg->give_up_on_oom)
1005 vmg->state = VMA_MERGE_ERROR_NOMEM;
1006 return NULL;
1007}
1008
1009/*
1010 * vma_merge_new_range - Attempt to merge a new VMA into address space
1011 *
1012 * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end
1013 * (exclusive), which we try to merge with any adjacent VMAs if possible.
1014 *
1015 * We are about to add a VMA to the address space starting at @vmg->start and
1016 * ending at @vmg->end. There are three different possible scenarios:
1017 *
1018 * 1. There is a VMA with identical properties immediately adjacent to the
1019 * proposed new VMA [@vmg->start, @vmg->end) either before or after it -
1020 * EXPAND that VMA:
1021 *
1022 * Proposed: |-----| or |-----|
1023 * Existing: |----| |----|
1024 *
1025 * 2. There are VMAs with identical properties immediately adjacent to the
1026 * proposed new VMA [@vmg->start, @vmg->end) both before AND after it -
1027 * EXPAND the former and REMOVE the latter:
1028 *
1029 * Proposed: |-----|
1030 * Existing: |----| |----|
1031 *
1032 * 3. There are no VMAs immediately adjacent to the proposed new VMA or those
1033 * VMAs do not have identical attributes - NO MERGE POSSIBLE.
1034 *
1035 * In instances where we can merge, this function returns the expanded VMA which
1036 * will have its range adjusted accordingly and the underlying maple tree also
1037 * adjusted.
1038 *
1039 * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer
1040 * to the VMA we expanded.
1041 *
1042 * This function adjusts @vmg to provide @vmg->next if not already specified,
1043 * and adjusts [@vmg->start, @vmg->end) to span the expanded range.
1044 *
1045 * ASSUMPTIONS:
1046 * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
1047 * - The caller must have determined that [@vmg->start, @vmg->end) is empty,
1048 other than VMAs that will be unmapped should the operation succeed.
1049 * - The caller must have specified the previous vma in @vmg->prev.
1050 * - The caller must have specified the next vma in @vmg->next.
1051 * - The caller must have positioned the vmi at or before the gap.
1052 */
1053struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg)
1054{
1055 struct vm_area_struct *prev = vmg->prev;
1056 struct vm_area_struct *next = vmg->next;
1057 unsigned long end = vmg->end;
1058 bool can_merge_left, can_merge_right;
1059
1060 mmap_assert_write_locked(mm: vmg->mm);
1061 VM_WARN_ON_VMG(vmg->middle, vmg);
1062 /* vmi must point at or before the gap. */
1063 VM_WARN_ON_VMG(vma_iter_addr(vmg->vmi) > end, vmg);
1064
1065 vmg->state = VMA_MERGE_NOMERGE;
1066
1067 /* Special VMAs are unmergeable, also if no prev/next. */
1068 if ((vmg->flags & VM_SPECIAL) || (!prev && !next))
1069 return NULL;
1070
1071 can_merge_left = can_vma_merge_left(vmg);
1072 can_merge_right = !vmg->just_expand && can_vma_merge_right(vmg, can_merge_left);
1073
1074 /* If we can merge with the next VMA, adjust vmg accordingly. */
1075 if (can_merge_right) {
1076 vmg->end = next->vm_end;
1077 vmg->middle = next;
1078 }
1079
1080 /* If we can merge with the previous VMA, adjust vmg accordingly. */
1081 if (can_merge_left) {
1082 vmg->start = prev->vm_start;
1083 vmg->middle = prev;
1084 vmg->pgoff = prev->vm_pgoff;
1085
1086 /*
1087 * If this merge would result in removal of the next VMA but we
1088 * are not permitted to do so, reduce the operation to merging
1089 * prev and vma.
1090 */
1091 if (can_merge_right && !can_merge_remove_vma(vma: next))
1092 vmg->end = end;
1093
1094 /* In expand-only case we are already positioned at prev. */
1095 if (!vmg->just_expand) {
1096 /* Equivalent to going to the previous range. */
1097 vma_prev(vmi: vmg->vmi);
1098 }
1099 }
1100
1101 /*
1102 * Now try to expand adjacent VMA(s). This takes care of removing the
1103 * following VMA if we have VMAs on both sides.
1104 */
1105 if (vmg->middle && !vma_expand(vmg)) {
1106 khugepaged_enter_vma(vma: vmg->middle, vm_flags: vmg->flags);
1107 vmg->state = VMA_MERGE_SUCCESS;
1108 return vmg->middle;
1109 }
1110
1111 return NULL;
1112}
1113
1114/*
1115 * vma_expand - Expand an existing VMA
1116 *
1117 * @vmg: Describes a VMA expansion operation.
1118 *
1119 * Expand @vma to vmg->start and vmg->end. Can expand off the start and end.
1120 * Will expand over vmg->next if it's different from vmg->middle and vmg->end ==
1121 * vmg->next->vm_end. Checking if the vmg->middle can expand and merge with
1122 * vmg->next needs to be handled by the caller.
1123 *
1124 * Returns: 0 on success.
1125 *
1126 * ASSUMPTIONS:
1127 * - The caller must hold a WRITE lock on vmg->middle->mm->mmap_lock.
1128 * - The caller must have set @vmg->middle and @vmg->next.
1129 */
1130int vma_expand(struct vma_merge_struct *vmg)
1131{
1132 struct vm_area_struct *anon_dup = NULL;
1133 bool remove_next = false;
1134 struct vm_area_struct *middle = vmg->middle;
1135 struct vm_area_struct *next = vmg->next;
1136
1137 mmap_assert_write_locked(mm: vmg->mm);
1138
1139 vma_start_write(vma: middle);
1140 if (next && (middle != next) && (vmg->end == next->vm_end)) {
1141 int ret;
1142
1143 remove_next = true;
1144 /* This should already have been checked by this point. */
1145 VM_WARN_ON_VMG(!can_merge_remove_vma(next), vmg);
1146 vma_start_write(vma: next);
1147 /*
1148 * In this case we don't report OOM, so vmg->give_up_on_mm is
1149 * safe.
1150 */
1151 ret = dup_anon_vma(dst: middle, src: next, dup: &anon_dup);
1152 if (ret)
1153 return ret;
1154 }
1155
1156 /* Not merging but overwriting any part of next is not handled. */
1157 VM_WARN_ON_VMG(next && !remove_next &&
1158 next != middle && vmg->end > next->vm_start, vmg);
1159 /* Only handles expanding */
1160 VM_WARN_ON_VMG(middle->vm_start < vmg->start ||
1161 middle->vm_end > vmg->end, vmg);
1162
1163 vmg->target = middle;
1164 if (remove_next)
1165 vmg->__remove_next = true;
1166
1167 if (commit_merge(vmg))
1168 goto nomem;
1169
1170 return 0;
1171
1172nomem:
1173 if (anon_dup)
1174 unlink_anon_vmas(anon_dup);
1175 /*
1176 * If the user requests that we just give upon OOM, we are safe to do so
1177 * here, as commit merge provides this contract to us. Nothing has been
1178 * changed - no harm no foul, just don't report it.
1179 */
1180 if (!vmg->give_up_on_oom)
1181 vmg->state = VMA_MERGE_ERROR_NOMEM;
1182 return -ENOMEM;
1183}
1184
1185/*
1186 * vma_shrink() - Reduce an existing VMAs memory area
1187 * @vmi: The vma iterator
1188 * @vma: The VMA to modify
1189 * @start: The new start
1190 * @end: The new end
1191 *
1192 * Returns: 0 on success, -ENOMEM otherwise
1193 */
1194int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
1195 unsigned long start, unsigned long end, pgoff_t pgoff)
1196{
1197 struct vma_prepare vp;
1198
1199 WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
1200
1201 if (vma->vm_start < start)
1202 vma_iter_config(vmi, index: vma->vm_start, last: start);
1203 else
1204 vma_iter_config(vmi, index: end, last: vma->vm_end);
1205
1206 if (vma_iter_prealloc(vmi, NULL))
1207 return -ENOMEM;
1208
1209 vma_start_write(vma);
1210
1211 init_vma_prep(vp: &vp, vma);
1212 vma_prepare(vp: &vp);
1213 vma_adjust_trans_huge(vma, start, end, NULL);
1214
1215 vma_iter_clear(vmi);
1216 vma_set_range(vma, start, end, pgoff);
1217 vma_complete(vp: &vp, vmi, mm: vma->vm_mm);
1218 validate_mm(mm: vma->vm_mm);
1219 return 0;
1220}
1221
1222static inline void vms_clear_ptes(struct vma_munmap_struct *vms,
1223 struct ma_state *mas_detach, bool mm_wr_locked)
1224{
1225 struct mmu_gather tlb;
1226
1227 if (!vms->clear_ptes) /* Nothing to do */
1228 return;
1229
1230 /*
1231 * We can free page tables without write-locking mmap_lock because VMAs
1232 * were isolated before we downgraded mmap_lock.
1233 */
1234 mas_set(mas: mas_detach, index: 1);
1235 tlb_gather_mmu(tlb: &tlb, mm: vms->vma->vm_mm);
1236 update_hiwater_rss(mm: vms->vma->vm_mm);
1237 unmap_vmas(tlb: &tlb, mas: mas_detach, start_vma: vms->vma, start: vms->start, end: vms->end,
1238 tree_end: vms->vma_count, mm_wr_locked);
1239
1240 mas_set(mas: mas_detach, index: 1);
1241 /* start and end may be different if there is no prev or next vma. */
1242 free_pgtables(tlb: &tlb, mas: mas_detach, start_vma: vms->vma, floor: vms->unmap_start,
1243 ceiling: vms->unmap_end, mm_wr_locked);
1244 tlb_finish_mmu(tlb: &tlb);
1245 vms->clear_ptes = false;
1246}
1247
1248static void vms_clean_up_area(struct vma_munmap_struct *vms,
1249 struct ma_state *mas_detach)
1250{
1251 struct vm_area_struct *vma;
1252
1253 if (!vms->nr_pages)
1254 return;
1255
1256 vms_clear_ptes(vms, mas_detach, mm_wr_locked: true);
1257 mas_set(mas: mas_detach, index: 0);
1258 mas_for_each(mas_detach, vma, ULONG_MAX)
1259 vma_close(vma);
1260}
1261
1262/*
1263 * vms_complete_munmap_vmas() - Finish the munmap() operation
1264 * @vms: The vma munmap struct
1265 * @mas_detach: The maple state of the detached vmas
1266 *
1267 * This updates the mm_struct, unmaps the region, frees the resources
1268 * used for the munmap() and may downgrade the lock - if requested. Everything
1269 * needed to be done once the vma maple tree is updated.
1270 */
1271static void vms_complete_munmap_vmas(struct vma_munmap_struct *vms,
1272 struct ma_state *mas_detach)
1273{
1274 struct vm_area_struct *vma;
1275 struct mm_struct *mm;
1276
1277 mm = current->mm;
1278 mm->map_count -= vms->vma_count;
1279 mm->locked_vm -= vms->locked_vm;
1280 if (vms->unlock)
1281 mmap_write_downgrade(mm);
1282
1283 if (!vms->nr_pages)
1284 return;
1285
1286 vms_clear_ptes(vms, mas_detach, mm_wr_locked: !vms->unlock);
1287 /* Update high watermark before we lower total_vm */
1288 update_hiwater_vm(mm);
1289 /* Stat accounting */
1290 WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages);
1291 /* Paranoid bookkeeping */
1292 VM_WARN_ON(vms->exec_vm > mm->exec_vm);
1293 VM_WARN_ON(vms->stack_vm > mm->stack_vm);
1294 VM_WARN_ON(vms->data_vm > mm->data_vm);
1295 mm->exec_vm -= vms->exec_vm;
1296 mm->stack_vm -= vms->stack_vm;
1297 mm->data_vm -= vms->data_vm;
1298
1299 /* Remove and clean up vmas */
1300 mas_set(mas: mas_detach, index: 0);
1301 mas_for_each(mas_detach, vma, ULONG_MAX)
1302 remove_vma(vma);
1303
1304 vm_unacct_memory(pages: vms->nr_accounted);
1305 validate_mm(mm);
1306 if (vms->unlock)
1307 mmap_read_unlock(mm);
1308
1309 __mt_destroy(mt: mas_detach->tree);
1310}
1311
1312/*
1313 * reattach_vmas() - Undo any munmap work and free resources
1314 * @mas_detach: The maple state with the detached maple tree
1315 *
1316 * Reattach any detached vmas and free up the maple tree used to track the vmas.
1317 */
1318static void reattach_vmas(struct ma_state *mas_detach)
1319{
1320 struct vm_area_struct *vma;
1321
1322 mas_set(mas: mas_detach, index: 0);
1323 mas_for_each(mas_detach, vma, ULONG_MAX)
1324 vma_mark_attached(vma);
1325
1326 __mt_destroy(mt: mas_detach->tree);
1327}
1328
1329/*
1330 * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree
1331 * for removal at a later date. Handles splitting first and last if necessary
1332 * and marking the vmas as isolated.
1333 *
1334 * @vms: The vma munmap struct
1335 * @mas_detach: The maple state tracking the detached tree
1336 *
1337 * Return: 0 on success, error otherwise
1338 */
1339static int vms_gather_munmap_vmas(struct vma_munmap_struct *vms,
1340 struct ma_state *mas_detach)
1341{
1342 struct vm_area_struct *next = NULL;
1343 int error;
1344
1345 /*
1346 * If we need to split any vma, do it now to save pain later.
1347 * Does it split the first one?
1348 */
1349 if (vms->start > vms->vma->vm_start) {
1350
1351 /*
1352 * Make sure that map_count on return from munmap() will
1353 * not exceed its limit; but let map_count go just above
1354 * its limit temporarily, to help free resources as expected.
1355 */
1356 if (vms->end < vms->vma->vm_end &&
1357 vms->vma->vm_mm->map_count >= sysctl_max_map_count) {
1358 error = -ENOMEM;
1359 goto map_count_exceeded;
1360 }
1361
1362 /* Don't bother splitting the VMA if we can't unmap it anyway */
1363 if (!can_modify_vma(vma: vms->vma)) {
1364 error = -EPERM;
1365 goto start_split_failed;
1366 }
1367
1368 error = __split_vma(vmi: vms->vmi, vma: vms->vma, addr: vms->start, new_below: 1);
1369 if (error)
1370 goto start_split_failed;
1371 }
1372 vms->prev = vma_prev(vmi: vms->vmi);
1373 if (vms->prev)
1374 vms->unmap_start = vms->prev->vm_end;
1375
1376 /*
1377 * Detach a range of VMAs from the mm. Using next as a temp variable as
1378 * it is always overwritten.
1379 */
1380 for_each_vma_range(*(vms->vmi), next, vms->end) {
1381 long nrpages;
1382
1383 if (!can_modify_vma(vma: next)) {
1384 error = -EPERM;
1385 goto modify_vma_failed;
1386 }
1387 /* Does it split the end? */
1388 if (next->vm_end > vms->end) {
1389 error = __split_vma(vmi: vms->vmi, vma: next, addr: vms->end, new_below: 0);
1390 if (error)
1391 goto end_split_failed;
1392 }
1393 vma_start_write(vma: next);
1394 mas_set(mas: mas_detach, index: vms->vma_count++);
1395 error = mas_store_gfp(mas: mas_detach, entry: next, GFP_KERNEL);
1396 if (error)
1397 goto munmap_gather_failed;
1398
1399 vma_mark_detached(vma: next);
1400 nrpages = vma_pages(vma: next);
1401
1402 vms->nr_pages += nrpages;
1403 if (next->vm_flags & VM_LOCKED)
1404 vms->locked_vm += nrpages;
1405
1406 if (next->vm_flags & VM_ACCOUNT)
1407 vms->nr_accounted += nrpages;
1408
1409 if (is_exec_mapping(flags: next->vm_flags))
1410 vms->exec_vm += nrpages;
1411 else if (is_stack_mapping(flags: next->vm_flags))
1412 vms->stack_vm += nrpages;
1413 else if (is_data_mapping(flags: next->vm_flags))
1414 vms->data_vm += nrpages;
1415
1416 if (vms->uf) {
1417 /*
1418 * If userfaultfd_unmap_prep returns an error the vmas
1419 * will remain split, but userland will get a
1420 * highly unexpected error anyway. This is no
1421 * different than the case where the first of the two
1422 * __split_vma fails, but we don't undo the first
1423 * split, despite we could. This is unlikely enough
1424 * failure that it's not worth optimizing it for.
1425 */
1426 error = userfaultfd_unmap_prep(vma: next, start: vms->start,
1427 end: vms->end, uf: vms->uf);
1428 if (error)
1429 goto userfaultfd_error;
1430 }
1431#ifdef CONFIG_DEBUG_VM_MAPLE_TREE
1432 BUG_ON(next->vm_start < vms->start);
1433 BUG_ON(next->vm_start > vms->end);
1434#endif
1435 }
1436
1437 vms->next = vma_next(vmi: vms->vmi);
1438 if (vms->next)
1439 vms->unmap_end = vms->next->vm_start;
1440
1441#if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1442 /* Make sure no VMAs are about to be lost. */
1443 {
1444 MA_STATE(test, mas_detach->tree, 0, 0);
1445 struct vm_area_struct *vma_mas, *vma_test;
1446 int test_count = 0;
1447
1448 vma_iter_set(vmi: vms->vmi, addr: vms->start);
1449 rcu_read_lock();
1450 vma_test = mas_find(mas: &test, max: vms->vma_count - 1);
1451 for_each_vma_range(*(vms->vmi), vma_mas, vms->end) {
1452 BUG_ON(vma_mas != vma_test);
1453 test_count++;
1454 vma_test = mas_next(mas: &test, max: vms->vma_count - 1);
1455 }
1456 rcu_read_unlock();
1457 BUG_ON(vms->vma_count != test_count);
1458 }
1459#endif
1460
1461 while (vma_iter_addr(vmi: vms->vmi) > vms->start)
1462 vma_iter_prev_range(vmi: vms->vmi);
1463
1464 vms->clear_ptes = true;
1465 return 0;
1466
1467userfaultfd_error:
1468munmap_gather_failed:
1469end_split_failed:
1470modify_vma_failed:
1471 reattach_vmas(mas_detach);
1472start_split_failed:
1473map_count_exceeded:
1474 return error;
1475}
1476
1477/*
1478 * init_vma_munmap() - Initializer wrapper for vma_munmap_struct
1479 * @vms: The vma munmap struct
1480 * @vmi: The vma iterator
1481 * @vma: The first vm_area_struct to munmap
1482 * @start: The aligned start address to munmap
1483 * @end: The aligned end address to munmap
1484 * @uf: The userfaultfd list_head
1485 * @unlock: Unlock after the operation. Only unlocked on success
1486 */
1487static void init_vma_munmap(struct vma_munmap_struct *vms,
1488 struct vma_iterator *vmi, struct vm_area_struct *vma,
1489 unsigned long start, unsigned long end, struct list_head *uf,
1490 bool unlock)
1491{
1492 vms->vmi = vmi;
1493 vms->vma = vma;
1494 if (vma) {
1495 vms->start = start;
1496 vms->end = end;
1497 } else {
1498 vms->start = vms->end = 0;
1499 }
1500 vms->unlock = unlock;
1501 vms->uf = uf;
1502 vms->vma_count = 0;
1503 vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0;
1504 vms->exec_vm = vms->stack_vm = vms->data_vm = 0;
1505 vms->unmap_start = FIRST_USER_ADDRESS;
1506 vms->unmap_end = USER_PGTABLES_CEILING;
1507 vms->clear_ptes = false;
1508}
1509
1510/*
1511 * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
1512 * @vmi: The vma iterator
1513 * @vma: The starting vm_area_struct
1514 * @mm: The mm_struct
1515 * @start: The aligned start address to munmap.
1516 * @end: The aligned end address to munmap.
1517 * @uf: The userfaultfd list_head
1518 * @unlock: Set to true to drop the mmap_lock. unlocking only happens on
1519 * success.
1520 *
1521 * Return: 0 on success and drops the lock if so directed, error and leaves the
1522 * lock held otherwise.
1523 */
1524int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
1525 struct mm_struct *mm, unsigned long start, unsigned long end,
1526 struct list_head *uf, bool unlock)
1527{
1528 struct maple_tree mt_detach;
1529 MA_STATE(mas_detach, &mt_detach, 0, 0);
1530 mt_init_flags(mt: &mt_detach, flags: vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
1531 mt_on_stack(mt_detach);
1532 struct vma_munmap_struct vms;
1533 int error;
1534
1535 init_vma_munmap(vms: &vms, vmi, vma, start, end, uf, unlock);
1536 error = vms_gather_munmap_vmas(vms: &vms, mas_detach: &mas_detach);
1537 if (error)
1538 goto gather_failed;
1539
1540 error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
1541 if (error)
1542 goto clear_tree_failed;
1543
1544 /* Point of no return */
1545 vms_complete_munmap_vmas(vms: &vms, mas_detach: &mas_detach);
1546 return 0;
1547
1548clear_tree_failed:
1549 reattach_vmas(mas_detach: &mas_detach);
1550gather_failed:
1551 validate_mm(mm);
1552 return error;
1553}
1554
1555/*
1556 * do_vmi_munmap() - munmap a given range.
1557 * @vmi: The vma iterator
1558 * @mm: The mm_struct
1559 * @start: The start address to munmap
1560 * @len: The length of the range to munmap
1561 * @uf: The userfaultfd list_head
1562 * @unlock: set to true if the user wants to drop the mmap_lock on success
1563 *
1564 * This function takes a @mas that is either pointing to the previous VMA or set
1565 * to MA_START and sets it up to remove the mapping(s). The @len will be
1566 * aligned.
1567 *
1568 * Return: 0 on success and drops the lock if so directed, error and leaves the
1569 * lock held otherwise.
1570 */
1571int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
1572 unsigned long start, size_t len, struct list_head *uf,
1573 bool unlock)
1574{
1575 unsigned long end;
1576 struct vm_area_struct *vma;
1577
1578 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
1579 return -EINVAL;
1580
1581 end = start + PAGE_ALIGN(len);
1582 if (end == start)
1583 return -EINVAL;
1584
1585 /* Find the first overlapping VMA */
1586 vma = vma_find(vmi, max: end);
1587 if (!vma) {
1588 if (unlock)
1589 mmap_write_unlock(mm);
1590 return 0;
1591 }
1592
1593 return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
1594}
1595
1596/*
1597 * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
1598 * context and anonymous VMA name within the range [start, end).
1599 *
1600 * As a result, we might be able to merge the newly modified VMA range with an
1601 * adjacent VMA with identical properties.
1602 *
1603 * If no merge is possible and the range does not span the entirety of the VMA,
1604 * we then need to split the VMA to accommodate the change.
1605 *
1606 * The function returns either the merged VMA, the original VMA if a split was
1607 * required instead, or an error if the split failed.
1608 */
1609static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg)
1610{
1611 struct vm_area_struct *vma = vmg->middle;
1612 unsigned long start = vmg->start;
1613 unsigned long end = vmg->end;
1614 struct vm_area_struct *merged;
1615
1616 /* First, try to merge. */
1617 merged = vma_merge_existing_range(vmg);
1618 if (merged)
1619 return merged;
1620 if (vmg_nomem(vmg))
1621 return ERR_PTR(error: -ENOMEM);
1622
1623 /*
1624 * Split can fail for reasons other than OOM, so if the user requests
1625 * this it's probably a mistake.
1626 */
1627 VM_WARN_ON(vmg->give_up_on_oom &&
1628 (vma->vm_start != start || vma->vm_end != end));
1629
1630 /* Split any preceding portion of the VMA. */
1631 if (vma->vm_start < start) {
1632 int err = split_vma(vmi: vmg->vmi, vma, addr: start, new_below: 1);
1633
1634 if (err)
1635 return ERR_PTR(error: err);
1636 }
1637
1638 /* Split any trailing portion of the VMA. */
1639 if (vma->vm_end > end) {
1640 int err = split_vma(vmi: vmg->vmi, vma, addr: end, new_below: 0);
1641
1642 if (err)
1643 return ERR_PTR(error: err);
1644 }
1645
1646 return vma;
1647}
1648
1649struct vm_area_struct *vma_modify_flags(
1650 struct vma_iterator *vmi, struct vm_area_struct *prev,
1651 struct vm_area_struct *vma, unsigned long start, unsigned long end,
1652 unsigned long new_flags)
1653{
1654 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1655
1656 vmg.flags = new_flags;
1657
1658 return vma_modify(vmg: &vmg);
1659}
1660
1661struct vm_area_struct
1662*vma_modify_flags_name(struct vma_iterator *vmi,
1663 struct vm_area_struct *prev,
1664 struct vm_area_struct *vma,
1665 unsigned long start,
1666 unsigned long end,
1667 unsigned long new_flags,
1668 struct anon_vma_name *new_name)
1669{
1670 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1671
1672 vmg.flags = new_flags;
1673 vmg.anon_name = new_name;
1674
1675 return vma_modify(vmg: &vmg);
1676}
1677
1678struct vm_area_struct
1679*vma_modify_policy(struct vma_iterator *vmi,
1680 struct vm_area_struct *prev,
1681 struct vm_area_struct *vma,
1682 unsigned long start, unsigned long end,
1683 struct mempolicy *new_pol)
1684{
1685 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1686
1687 vmg.policy = new_pol;
1688
1689 return vma_modify(vmg: &vmg);
1690}
1691
1692struct vm_area_struct
1693*vma_modify_flags_uffd(struct vma_iterator *vmi,
1694 struct vm_area_struct *prev,
1695 struct vm_area_struct *vma,
1696 unsigned long start, unsigned long end,
1697 unsigned long new_flags,
1698 struct vm_userfaultfd_ctx new_ctx,
1699 bool give_up_on_oom)
1700{
1701 VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1702
1703 vmg.flags = new_flags;
1704 vmg.uffd_ctx = new_ctx;
1705 if (give_up_on_oom)
1706 vmg.give_up_on_oom = true;
1707
1708 return vma_modify(vmg: &vmg);
1709}
1710
1711/*
1712 * Expand vma by delta bytes, potentially merging with an immediately adjacent
1713 * VMA with identical properties.
1714 */
1715struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
1716 struct vm_area_struct *vma,
1717 unsigned long delta)
1718{
1719 VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta);
1720
1721 vmg.next = vma_iter_next_rewind(vmi, NULL);
1722 vmg.middle = NULL; /* We use the VMA to populate VMG fields only. */
1723
1724 return vma_merge_new_range(vmg: &vmg);
1725}
1726
1727void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb)
1728{
1729 vb->count = 0;
1730}
1731
1732static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb)
1733{
1734 struct address_space *mapping;
1735 int i;
1736
1737 mapping = vb->vmas[0]->vm_file->f_mapping;
1738 i_mmap_lock_write(mapping);
1739 for (i = 0; i < vb->count; i++) {
1740 VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping);
1741 __remove_shared_vm_struct(vma: vb->vmas[i], mapping);
1742 }
1743 i_mmap_unlock_write(mapping);
1744
1745 unlink_file_vma_batch_init(vb);
1746}
1747
1748void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
1749 struct vm_area_struct *vma)
1750{
1751 if (vma->vm_file == NULL)
1752 return;
1753
1754 if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) ||
1755 vb->count == ARRAY_SIZE(vb->vmas))
1756 unlink_file_vma_batch_process(vb);
1757
1758 vb->vmas[vb->count] = vma;
1759 vb->count++;
1760}
1761
1762void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb)
1763{
1764 if (vb->count > 0)
1765 unlink_file_vma_batch_process(vb);
1766}
1767
1768/*
1769 * Unlink a file-based vm structure from its interval tree, to hide
1770 * vma from rmap and vmtruncate before freeing its page tables.
1771 */
1772void unlink_file_vma(struct vm_area_struct *vma)
1773{
1774 struct file *file = vma->vm_file;
1775
1776 if (file) {
1777 struct address_space *mapping = file->f_mapping;
1778
1779 i_mmap_lock_write(mapping);
1780 __remove_shared_vm_struct(vma, mapping);
1781 i_mmap_unlock_write(mapping);
1782 }
1783}
1784
1785void vma_link_file(struct vm_area_struct *vma)
1786{
1787 struct file *file = vma->vm_file;
1788 struct address_space *mapping;
1789
1790 if (file) {
1791 mapping = file->f_mapping;
1792 i_mmap_lock_write(mapping);
1793 __vma_link_file(vma, mapping);
1794 i_mmap_unlock_write(mapping);
1795 }
1796}
1797
1798int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
1799{
1800 VMA_ITERATOR(vmi, mm, 0);
1801
1802 vma_iter_config(vmi: &vmi, index: vma->vm_start, last: vma->vm_end);
1803 if (vma_iter_prealloc(vmi: &vmi, vma))
1804 return -ENOMEM;
1805
1806 vma_start_write(vma);
1807 vma_iter_store_new(vmi: &vmi, vma);
1808 vma_link_file(vma);
1809 mm->map_count++;
1810 validate_mm(mm);
1811 return 0;
1812}
1813
1814/*
1815 * Copy the vma structure to a new location in the same mm,
1816 * prior to moving page table entries, to effect an mremap move.
1817 */
1818struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
1819 unsigned long addr, unsigned long len, pgoff_t pgoff,
1820 bool *need_rmap_locks)
1821{
1822 struct vm_area_struct *vma = *vmap;
1823 unsigned long vma_start = vma->vm_start;
1824 struct mm_struct *mm = vma->vm_mm;
1825 struct vm_area_struct *new_vma;
1826 bool faulted_in_anon_vma = true;
1827 VMA_ITERATOR(vmi, mm, addr);
1828 VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len);
1829
1830 /*
1831 * If anonymous vma has not yet been faulted, update new pgoff
1832 * to match new location, to increase its chance of merging.
1833 */
1834 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
1835 pgoff = addr >> PAGE_SHIFT;
1836 faulted_in_anon_vma = false;
1837 }
1838
1839 /*
1840 * If the VMA we are copying might contain a uprobe PTE, ensure
1841 * that we do not establish one upon merge. Otherwise, when mremap()
1842 * moves page tables, it will orphan the newly created PTE.
1843 */
1844 if (vma->vm_file)
1845 vmg.skip_vma_uprobe = true;
1846
1847 new_vma = find_vma_prev(mm, addr, pprev: &vmg.prev);
1848 if (new_vma && new_vma->vm_start < addr + len)
1849 return NULL; /* should never get here */
1850
1851 vmg.middle = NULL; /* New VMA range. */
1852 vmg.pgoff = pgoff;
1853 vmg.next = vma_iter_next_rewind(vmi: &vmi, NULL);
1854 new_vma = vma_merge_new_range(vmg: &vmg);
1855
1856 if (new_vma) {
1857 /*
1858 * Source vma may have been merged into new_vma
1859 */
1860 if (unlikely(vma_start >= new_vma->vm_start &&
1861 vma_start < new_vma->vm_end)) {
1862 /*
1863 * The only way we can get a vma_merge with
1864 * self during an mremap is if the vma hasn't
1865 * been faulted in yet and we were allowed to
1866 * reset the dst vma->vm_pgoff to the
1867 * destination address of the mremap to allow
1868 * the merge to happen. mremap must change the
1869 * vm_pgoff linearity between src and dst vmas
1870 * (in turn preventing a vma_merge) to be
1871 * safe. It is only safe to keep the vm_pgoff
1872 * linear if there are no pages mapped yet.
1873 */
1874 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
1875 *vmap = vma = new_vma;
1876 }
1877 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
1878 } else {
1879 new_vma = vm_area_dup(orig: vma);
1880 if (!new_vma)
1881 goto out;
1882 vma_set_range(vma: new_vma, start: addr, end: addr + len, pgoff);
1883 if (vma_dup_policy(src: vma, dst: new_vma))
1884 goto out_free_vma;
1885 if (anon_vma_clone(new_vma, vma))
1886 goto out_free_mempol;
1887 if (new_vma->vm_file)
1888 get_file(f: new_vma->vm_file);
1889 if (new_vma->vm_ops && new_vma->vm_ops->open)
1890 new_vma->vm_ops->open(new_vma);
1891 if (vma_link(mm, vma: new_vma))
1892 goto out_vma_link;
1893 *need_rmap_locks = false;
1894 }
1895 return new_vma;
1896
1897out_vma_link:
1898 fixup_hugetlb_reservations(vma: new_vma);
1899 vma_close(vma: new_vma);
1900
1901 if (new_vma->vm_file)
1902 fput(new_vma->vm_file);
1903
1904 unlink_anon_vmas(new_vma);
1905out_free_mempol:
1906 mpol_put(vma_policy(new_vma));
1907out_free_vma:
1908 vm_area_free(vma: new_vma);
1909out:
1910 return NULL;
1911}
1912
1913/*
1914 * Rough compatibility check to quickly see if it's even worth looking
1915 * at sharing an anon_vma.
1916 *
1917 * They need to have the same vm_file, and the flags can only differ
1918 * in things that mprotect may change.
1919 *
1920 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1921 * we can merge the two vma's. For example, we refuse to merge a vma if
1922 * there is a vm_ops->close() function, because that indicates that the
1923 * driver is doing some kind of reference counting. But that doesn't
1924 * really matter for the anon_vma sharing case.
1925 */
1926static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1927{
1928 return a->vm_end == b->vm_start &&
1929 mpol_equal(vma_policy(a), vma_policy(b)) &&
1930 a->vm_file == b->vm_file &&
1931 !((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1932 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1933}
1934
1935/*
1936 * Do some basic sanity checking to see if we can re-use the anon_vma
1937 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1938 * the same as 'old', the other will be the new one that is trying
1939 * to share the anon_vma.
1940 *
1941 * NOTE! This runs with mmap_lock held for reading, so it is possible that
1942 * the anon_vma of 'old' is concurrently in the process of being set up
1943 * by another page fault trying to merge _that_. But that's ok: if it
1944 * is being set up, that automatically means that it will be a singleton
1945 * acceptable for merging, so we can do all of this optimistically. But
1946 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1947 *
1948 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1949 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1950 * is to return an anon_vma that is "complex" due to having gone through
1951 * a fork).
1952 *
1953 * We also make sure that the two vma's are compatible (adjacent,
1954 * and with the same memory policies). That's all stable, even with just
1955 * a read lock on the mmap_lock.
1956 */
1957static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old,
1958 struct vm_area_struct *a,
1959 struct vm_area_struct *b)
1960{
1961 if (anon_vma_compatible(a, b)) {
1962 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1963
1964 if (anon_vma && list_is_singular(head: &old->anon_vma_chain))
1965 return anon_vma;
1966 }
1967 return NULL;
1968}
1969
1970/*
1971 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1972 * neighbouring vmas for a suitable anon_vma, before it goes off
1973 * to allocate a new anon_vma. It checks because a repetitive
1974 * sequence of mprotects and faults may otherwise lead to distinct
1975 * anon_vmas being allocated, preventing vma merge in subsequent
1976 * mprotect.
1977 */
1978struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1979{
1980 struct anon_vma *anon_vma = NULL;
1981 struct vm_area_struct *prev, *next;
1982 VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1983
1984 /* Try next first. */
1985 next = vma_iter_load(vmi: &vmi);
1986 if (next) {
1987 anon_vma = reusable_anon_vma(old: next, a: vma, b: next);
1988 if (anon_vma)
1989 return anon_vma;
1990 }
1991
1992 prev = vma_prev(vmi: &vmi);
1993 VM_BUG_ON_VMA(prev != vma, vma);
1994 prev = vma_prev(vmi: &vmi);
1995 /* Try prev next. */
1996 if (prev)
1997 anon_vma = reusable_anon_vma(old: prev, a: prev, b: vma);
1998
1999 /*
2000 * We might reach here with anon_vma == NULL if we can't find
2001 * any reusable anon_vma.
2002 * There's no absolute need to look only at touching neighbours:
2003 * we could search further afield for "compatible" anon_vmas.
2004 * But it would probably just be a waste of time searching,
2005 * or lead to too many vmas hanging off the same anon_vma.
2006 * We're trying to allow mprotect remerging later on,
2007 * not trying to minimize memory used for anon_vmas.
2008 */
2009 return anon_vma;
2010}
2011
2012static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
2013{
2014 return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
2015}
2016
2017static bool vma_is_shared_writable(struct vm_area_struct *vma)
2018{
2019 return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
2020 (VM_WRITE | VM_SHARED);
2021}
2022
2023static bool vma_fs_can_writeback(struct vm_area_struct *vma)
2024{
2025 /* No managed pages to writeback. */
2026 if (vma->vm_flags & VM_PFNMAP)
2027 return false;
2028
2029 return vma->vm_file && vma->vm_file->f_mapping &&
2030 mapping_can_writeback(mapping: vma->vm_file->f_mapping);
2031}
2032
2033/*
2034 * Does this VMA require the underlying folios to have their dirty state
2035 * tracked?
2036 */
2037bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
2038{
2039 /* Only shared, writable VMAs require dirty tracking. */
2040 if (!vma_is_shared_writable(vma))
2041 return false;
2042
2043 /* Does the filesystem need to be notified? */
2044 if (vm_ops_needs_writenotify(vm_ops: vma->vm_ops))
2045 return true;
2046
2047 /*
2048 * Even if the filesystem doesn't indicate a need for writenotify, if it
2049 * can writeback, dirty tracking is still required.
2050 */
2051 return vma_fs_can_writeback(vma);
2052}
2053
2054/*
2055 * Some shared mappings will want the pages marked read-only
2056 * to track write events. If so, we'll downgrade vm_page_prot
2057 * to the private version (using protection_map[] without the
2058 * VM_SHARED bit).
2059 */
2060bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
2061{
2062 /* If it was private or non-writable, the write bit is already clear */
2063 if (!vma_is_shared_writable(vma))
2064 return false;
2065
2066 /* The backer wishes to know when pages are first written to? */
2067 if (vm_ops_needs_writenotify(vm_ops: vma->vm_ops))
2068 return true;
2069
2070 /* The open routine did something to the protections that pgprot_modify
2071 * won't preserve? */
2072 if (pgprot_val(vm_page_prot) !=
2073 pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
2074 return false;
2075
2076 /*
2077 * Do we need to track softdirty? hugetlb does not support softdirty
2078 * tracking yet.
2079 */
2080 if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
2081 return true;
2082
2083 /* Do we need write faults for uffd-wp tracking? */
2084 if (userfaultfd_wp(vma))
2085 return true;
2086
2087 /* Can the mapping track the dirty pages? */
2088 return vma_fs_can_writeback(vma);
2089}
2090
2091static DEFINE_MUTEX(mm_all_locks_mutex);
2092
2093static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2094{
2095 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
2096 /*
2097 * The LSB of head.next can't change from under us
2098 * because we hold the mm_all_locks_mutex.
2099 */
2100 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
2101 /*
2102 * We can safely modify head.next after taking the
2103 * anon_vma->root->rwsem. If some other vma in this mm shares
2104 * the same anon_vma we won't take it again.
2105 *
2106 * No need of atomic instructions here, head.next
2107 * can't change from under us thanks to the
2108 * anon_vma->root->rwsem.
2109 */
2110 if (__test_and_set_bit(0, (unsigned long *)
2111 &anon_vma->root->rb_root.rb_root.rb_node))
2112 BUG();
2113 }
2114}
2115
2116static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2117{
2118 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2119 /*
2120 * AS_MM_ALL_LOCKS can't change from under us because
2121 * we hold the mm_all_locks_mutex.
2122 *
2123 * Operations on ->flags have to be atomic because
2124 * even if AS_MM_ALL_LOCKS is stable thanks to the
2125 * mm_all_locks_mutex, there may be other cpus
2126 * changing other bitflags in parallel to us.
2127 */
2128 if (test_and_set_bit(nr: AS_MM_ALL_LOCKS, addr: &mapping->flags))
2129 BUG();
2130 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
2131 }
2132}
2133
2134/*
2135 * This operation locks against the VM for all pte/vma/mm related
2136 * operations that could ever happen on a certain mm. This includes
2137 * vmtruncate, try_to_unmap, and all page faults.
2138 *
2139 * The caller must take the mmap_lock in write mode before calling
2140 * mm_take_all_locks(). The caller isn't allowed to release the
2141 * mmap_lock until mm_drop_all_locks() returns.
2142 *
2143 * mmap_lock in write mode is required in order to block all operations
2144 * that could modify pagetables and free pages without need of
2145 * altering the vma layout. It's also needed in write mode to avoid new
2146 * anon_vmas to be associated with existing vmas.
2147 *
2148 * A single task can't take more than one mm_take_all_locks() in a row
2149 * or it would deadlock.
2150 *
2151 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
2152 * mapping->flags avoid to take the same lock twice, if more than one
2153 * vma in this mm is backed by the same anon_vma or address_space.
2154 *
2155 * We take locks in following order, accordingly to comment at beginning
2156 * of mm/rmap.c:
2157 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
2158 * hugetlb mapping);
2159 * - all vmas marked locked
2160 * - all i_mmap_rwsem locks;
2161 * - all anon_vma->rwseml
2162 *
2163 * We can take all locks within these types randomly because the VM code
2164 * doesn't nest them and we protected from parallel mm_take_all_locks() by
2165 * mm_all_locks_mutex.
2166 *
2167 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2168 * that may have to take thousand of locks.
2169 *
2170 * mm_take_all_locks() can fail if it's interrupted by signals.
2171 */
2172int mm_take_all_locks(struct mm_struct *mm)
2173{
2174 struct vm_area_struct *vma;
2175 struct anon_vma_chain *avc;
2176 VMA_ITERATOR(vmi, mm, 0);
2177
2178 mmap_assert_write_locked(mm);
2179
2180 mutex_lock(&mm_all_locks_mutex);
2181
2182 /*
2183 * vma_start_write() does not have a complement in mm_drop_all_locks()
2184 * because vma_start_write() is always asymmetrical; it marks a VMA as
2185 * being written to until mmap_write_unlock() or mmap_write_downgrade()
2186 * is reached.
2187 */
2188 for_each_vma(vmi, vma) {
2189 if (signal_pending(current))
2190 goto out_unlock;
2191 vma_start_write(vma);
2192 }
2193
2194 vma_iter_init(vmi: &vmi, mm, addr: 0);
2195 for_each_vma(vmi, vma) {
2196 if (signal_pending(current))
2197 goto out_unlock;
2198 if (vma->vm_file && vma->vm_file->f_mapping &&
2199 is_vm_hugetlb_page(vma))
2200 vm_lock_mapping(mm, mapping: vma->vm_file->f_mapping);
2201 }
2202
2203 vma_iter_init(vmi: &vmi, mm, addr: 0);
2204 for_each_vma(vmi, vma) {
2205 if (signal_pending(current))
2206 goto out_unlock;
2207 if (vma->vm_file && vma->vm_file->f_mapping &&
2208 !is_vm_hugetlb_page(vma))
2209 vm_lock_mapping(mm, mapping: vma->vm_file->f_mapping);
2210 }
2211
2212 vma_iter_init(vmi: &vmi, mm, addr: 0);
2213 for_each_vma(vmi, vma) {
2214 if (signal_pending(current))
2215 goto out_unlock;
2216 if (vma->anon_vma)
2217 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2218 vm_lock_anon_vma(mm, anon_vma: avc->anon_vma);
2219 }
2220
2221 return 0;
2222
2223out_unlock:
2224 mm_drop_all_locks(mm);
2225 return -EINTR;
2226}
2227
2228static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2229{
2230 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
2231 /*
2232 * The LSB of head.next can't change to 0 from under
2233 * us because we hold the mm_all_locks_mutex.
2234 *
2235 * We must however clear the bitflag before unlocking
2236 * the vma so the users using the anon_vma->rb_root will
2237 * never see our bitflag.
2238 *
2239 * No need of atomic instructions here, head.next
2240 * can't change from under us until we release the
2241 * anon_vma->root->rwsem.
2242 */
2243 if (!__test_and_clear_bit(0, (unsigned long *)
2244 &anon_vma->root->rb_root.rb_root.rb_node))
2245 BUG();
2246 anon_vma_unlock_write(anon_vma);
2247 }
2248}
2249
2250static void vm_unlock_mapping(struct address_space *mapping)
2251{
2252 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2253 /*
2254 * AS_MM_ALL_LOCKS can't change to 0 from under us
2255 * because we hold the mm_all_locks_mutex.
2256 */
2257 i_mmap_unlock_write(mapping);
2258 if (!test_and_clear_bit(nr: AS_MM_ALL_LOCKS,
2259 addr: &mapping->flags))
2260 BUG();
2261 }
2262}
2263
2264/*
2265 * The mmap_lock cannot be released by the caller until
2266 * mm_drop_all_locks() returns.
2267 */
2268void mm_drop_all_locks(struct mm_struct *mm)
2269{
2270 struct vm_area_struct *vma;
2271 struct anon_vma_chain *avc;
2272 VMA_ITERATOR(vmi, mm, 0);
2273
2274 mmap_assert_write_locked(mm);
2275 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2276
2277 for_each_vma(vmi, vma) {
2278 if (vma->anon_vma)
2279 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2280 vm_unlock_anon_vma(anon_vma: avc->anon_vma);
2281 if (vma->vm_file && vma->vm_file->f_mapping)
2282 vm_unlock_mapping(mapping: vma->vm_file->f_mapping);
2283 }
2284
2285 mutex_unlock(lock: &mm_all_locks_mutex);
2286}
2287
2288/*
2289 * We account for memory if it's a private writeable mapping,
2290 * not hugepages and VM_NORESERVE wasn't set.
2291 */
2292static bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
2293{
2294 /*
2295 * hugetlb has its own accounting separate from the core VM
2296 * VM_HUGETLB may not be set yet so we cannot check for that flag.
2297 */
2298 if (file && is_file_hugepages(file))
2299 return false;
2300
2301 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
2302}
2303
2304/*
2305 * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap()
2306 * operation.
2307 * @vms: The vma unmap structure
2308 * @mas_detach: The maple state with the detached maple tree
2309 *
2310 * Reattach any detached vmas, free up the maple tree used to track the vmas.
2311 * If that's not possible because the ptes are cleared (and vm_ops->closed() may
2312 * have been called), then a NULL is written over the vmas and the vmas are
2313 * removed (munmap() completed).
2314 */
2315static void vms_abort_munmap_vmas(struct vma_munmap_struct *vms,
2316 struct ma_state *mas_detach)
2317{
2318 struct ma_state *mas = &vms->vmi->mas;
2319
2320 if (!vms->nr_pages)
2321 return;
2322
2323 if (vms->clear_ptes)
2324 return reattach_vmas(mas_detach);
2325
2326 /*
2327 * Aborting cannot just call the vm_ops open() because they are often
2328 * not symmetrical and state data has been lost. Resort to the old
2329 * failure method of leaving a gap where the MAP_FIXED mapping failed.
2330 */
2331 mas_set_range(mas, start: vms->start, last: vms->end - 1);
2332 mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL);
2333 /* Clean up the insertion of the unfortunate gap */
2334 vms_complete_munmap_vmas(vms, mas_detach);
2335}
2336
2337/*
2338 * __mmap_prepare() - Prepare to gather any overlapping VMAs that need to be
2339 * unmapped once the map operation is completed, check limits, account mapping
2340 * and clean up any pre-existing VMAs.
2341 *
2342 * @map: Mapping state.
2343 * @uf: Userfaultfd context list.
2344 *
2345 * Returns: 0 on success, error code otherwise.
2346 */
2347static int __mmap_prepare(struct mmap_state *map, struct list_head *uf)
2348{
2349 int error;
2350 struct vma_iterator *vmi = map->vmi;
2351 struct vma_munmap_struct *vms = &map->vms;
2352
2353 /* Find the first overlapping VMA and initialise unmap state. */
2354 vms->vma = vma_find(vmi, max: map->end);
2355 init_vma_munmap(vms, vmi, vma: vms->vma, start: map->addr, end: map->end, uf,
2356 /* unlock = */ false);
2357
2358 /* OK, we have overlapping VMAs - prepare to unmap them. */
2359 if (vms->vma) {
2360 mt_init_flags(mt: &map->mt_detach,
2361 flags: vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2362 mt_on_stack(map->mt_detach);
2363 mas_init(mas: &map->mas_detach, tree: &map->mt_detach, /* addr = */ 0);
2364 /* Prepare to unmap any existing mapping in the area */
2365 error = vms_gather_munmap_vmas(vms, mas_detach: &map->mas_detach);
2366 if (error) {
2367 /* On error VMAs will already have been reattached. */
2368 vms->nr_pages = 0;
2369 return error;
2370 }
2371
2372 map->next = vms->next;
2373 map->prev = vms->prev;
2374 } else {
2375 map->next = vma_iter_next_rewind(vmi, pprev: &map->prev);
2376 }
2377
2378 /* Check against address space limit. */
2379 if (!may_expand_vm(map->mm, map->flags, npages: map->pglen - vms->nr_pages))
2380 return -ENOMEM;
2381
2382 /* Private writable mapping: check memory availability. */
2383 if (accountable_mapping(file: map->file, vm_flags: map->flags)) {
2384 map->charged = map->pglen;
2385 map->charged -= vms->nr_accounted;
2386 if (map->charged) {
2387 error = security_vm_enough_memory_mm(mm: map->mm, pages: map->charged);
2388 if (error)
2389 return error;
2390 }
2391
2392 vms->nr_accounted = 0;
2393 map->flags |= VM_ACCOUNT;
2394 }
2395
2396 /*
2397 * Clear PTEs while the vma is still in the tree so that rmap
2398 * cannot race with the freeing later in the truncate scenario.
2399 * This is also needed for mmap_file(), which is why vm_ops
2400 * close function is called.
2401 */
2402 vms_clean_up_area(vms, mas_detach: &map->mas_detach);
2403
2404 return 0;
2405}
2406
2407
2408static int __mmap_new_file_vma(struct mmap_state *map,
2409 struct vm_area_struct *vma)
2410{
2411 struct vma_iterator *vmi = map->vmi;
2412 int error;
2413
2414 vma->vm_file = get_file(f: map->file);
2415
2416 if (!map->file->f_op->mmap)
2417 return 0;
2418
2419 error = mmap_file(file: vma->vm_file, vma);
2420 if (error) {
2421 fput(vma->vm_file);
2422 vma->vm_file = NULL;
2423
2424 vma_iter_set(vmi, addr: vma->vm_end);
2425 /* Undo any partial mapping done by a device driver. */
2426 unmap_region(mas: &vmi->mas, vma, prev: map->prev, next: map->next);
2427
2428 return error;
2429 }
2430
2431 /* Drivers cannot alter the address of the VMA. */
2432 WARN_ON_ONCE(map->addr != vma->vm_start);
2433 /*
2434 * Drivers should not permit writability when previously it was
2435 * disallowed.
2436 */
2437 VM_WARN_ON_ONCE(map->flags != vma->vm_flags &&
2438 !(map->flags & VM_MAYWRITE) &&
2439 (vma->vm_flags & VM_MAYWRITE));
2440
2441 map->flags = vma->vm_flags;
2442
2443 return 0;
2444}
2445
2446/*
2447 * __mmap_new_vma() - Allocate a new VMA for the region, as merging was not
2448 * possible.
2449 *
2450 * @map: Mapping state.
2451 * @vmap: Output pointer for the new VMA.
2452 *
2453 * Returns: Zero on success, or an error.
2454 */
2455static int __mmap_new_vma(struct mmap_state *map, struct vm_area_struct **vmap)
2456{
2457 struct vma_iterator *vmi = map->vmi;
2458 int error = 0;
2459 struct vm_area_struct *vma;
2460
2461 /*
2462 * Determine the object being mapped and call the appropriate
2463 * specific mapper. the address has already been validated, but
2464 * not unmapped, but the maps are removed from the list.
2465 */
2466 vma = vm_area_alloc(mm: map->mm);
2467 if (!vma)
2468 return -ENOMEM;
2469
2470 vma_iter_config(vmi, index: map->addr, last: map->end);
2471 vma_set_range(vma, start: map->addr, end: map->end, pgoff: map->pgoff);
2472 vm_flags_init(vma, flags: map->flags);
2473 vma->vm_page_prot = map->page_prot;
2474
2475 if (vma_iter_prealloc(vmi, vma)) {
2476 error = -ENOMEM;
2477 goto free_vma;
2478 }
2479
2480 if (map->file)
2481 error = __mmap_new_file_vma(map, vma);
2482 else if (map->flags & VM_SHARED)
2483 error = shmem_zero_setup(vma);
2484 else
2485 vma_set_anonymous(vma);
2486
2487 if (error)
2488 goto free_iter_vma;
2489
2490#ifdef CONFIG_SPARC64
2491 /* TODO: Fix SPARC ADI! */
2492 WARN_ON_ONCE(!arch_validate_flags(map->flags));
2493#endif
2494
2495 /* Lock the VMA since it is modified after insertion into VMA tree */
2496 vma_start_write(vma);
2497 vma_iter_store_new(vmi, vma);
2498 map->mm->map_count++;
2499 vma_link_file(vma);
2500
2501 /*
2502 * vma_merge_new_range() calls khugepaged_enter_vma() too, the below
2503 * call covers the non-merge case.
2504 */
2505 if (!vma_is_anonymous(vma))
2506 khugepaged_enter_vma(vma, vm_flags: map->flags);
2507 ksm_add_vma(vma);
2508 *vmap = vma;
2509 return 0;
2510
2511free_iter_vma:
2512 vma_iter_free(vmi);
2513free_vma:
2514 vm_area_free(vma);
2515 return error;
2516}
2517
2518/*
2519 * __mmap_complete() - Unmap any VMAs we overlap, account memory mapping
2520 * statistics, handle locking and finalise the VMA.
2521 *
2522 * @map: Mapping state.
2523 * @vma: Merged or newly allocated VMA for the mmap()'d region.
2524 */
2525static void __mmap_complete(struct mmap_state *map, struct vm_area_struct *vma)
2526{
2527 struct mm_struct *mm = map->mm;
2528 unsigned long vm_flags = vma->vm_flags;
2529
2530 perf_event_mmap(vma);
2531
2532 /* Unmap any existing mapping in the area. */
2533 vms_complete_munmap_vmas(vms: &map->vms, mas_detach: &map->mas_detach);
2534
2535 vm_stat_account(mm, vma->vm_flags, npages: map->pglen);
2536 if (vm_flags & VM_LOCKED) {
2537 if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2538 is_vm_hugetlb_page(vma) ||
2539 vma == get_gate_vma(mm))
2540 vm_flags_clear(vma, VM_LOCKED_MASK);
2541 else
2542 mm->locked_vm += map->pglen;
2543 }
2544
2545 if (vma->vm_file)
2546 uprobe_mmap(vma);
2547
2548 /*
2549 * New (or expanded) vma always get soft dirty status.
2550 * Otherwise user-space soft-dirty page tracker won't
2551 * be able to distinguish situation when vma area unmapped,
2552 * then new mapped in-place (which must be aimed as
2553 * a completely new data area).
2554 */
2555 vm_flags_set(vma, VM_SOFTDIRTY);
2556
2557 vma_set_page_prot(vma);
2558}
2559
2560/*
2561 * Invoke the f_op->mmap_prepare() callback for a file-backed mapping that
2562 * specifies it.
2563 *
2564 * This is called prior to any merge attempt, and updates whitelisted fields
2565 * that are permitted to be updated by the caller.
2566 *
2567 * All but user-defined fields will be pre-populated with original values.
2568 *
2569 * Returns 0 on success, or an error code otherwise.
2570 */
2571static int call_mmap_prepare(struct mmap_state *map)
2572{
2573 int err;
2574 struct vm_area_desc desc = {
2575 .mm = map->mm,
2576 .start = map->addr,
2577 .end = map->end,
2578
2579 .pgoff = map->pgoff,
2580 .file = map->file,
2581 .vm_flags = map->flags,
2582 .page_prot = map->page_prot,
2583 };
2584
2585 /* Invoke the hook. */
2586 err = __call_mmap_prepare(file: map->file, desc: &desc);
2587 if (err)
2588 return err;
2589
2590 /* Update fields permitted to be changed. */
2591 map->pgoff = desc.pgoff;
2592 map->file = desc.file;
2593 map->flags = desc.vm_flags;
2594 map->page_prot = desc.page_prot;
2595 /* User-defined fields. */
2596 map->vm_ops = desc.vm_ops;
2597 map->vm_private_data = desc.private_data;
2598
2599 return 0;
2600}
2601
2602static void set_vma_user_defined_fields(struct vm_area_struct *vma,
2603 struct mmap_state *map)
2604{
2605 if (map->vm_ops)
2606 vma->vm_ops = map->vm_ops;
2607 vma->vm_private_data = map->vm_private_data;
2608}
2609
2610static unsigned long __mmap_region(struct file *file, unsigned long addr,
2611 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2612 struct list_head *uf)
2613{
2614 struct mm_struct *mm = current->mm;
2615 struct vm_area_struct *vma = NULL;
2616 int error;
2617 bool have_mmap_prepare = file && file->f_op->mmap_prepare;
2618 VMA_ITERATOR(vmi, mm, addr);
2619 MMAP_STATE(map, mm, &vmi, addr, len, pgoff, vm_flags, file);
2620
2621 error = __mmap_prepare(map: &map, uf);
2622 if (!error && have_mmap_prepare)
2623 error = call_mmap_prepare(map: &map);
2624 if (error)
2625 goto abort_munmap;
2626
2627 /* Attempt to merge with adjacent VMAs... */
2628 if (map.prev || map.next) {
2629 VMG_MMAP_STATE(vmg, &map, /* vma = */ NULL);
2630
2631 vma = vma_merge_new_range(vmg: &vmg);
2632 }
2633
2634 /* ...but if we can't, allocate a new VMA. */
2635 if (!vma) {
2636 error = __mmap_new_vma(map: &map, vmap: &vma);
2637 if (error)
2638 goto unacct_error;
2639 }
2640
2641 if (have_mmap_prepare)
2642 set_vma_user_defined_fields(vma, map: &map);
2643
2644 __mmap_complete(map: &map, vma);
2645
2646 return addr;
2647
2648 /* Accounting was done by __mmap_prepare(). */
2649unacct_error:
2650 if (map.charged)
2651 vm_unacct_memory(pages: map.charged);
2652abort_munmap:
2653 vms_abort_munmap_vmas(vms: &map.vms, mas_detach: &map.mas_detach);
2654 return error;
2655}
2656
2657/**
2658 * mmap_region() - Actually perform the userland mapping of a VMA into
2659 * current->mm with known, aligned and overflow-checked @addr and @len, and
2660 * correctly determined VMA flags @vm_flags and page offset @pgoff.
2661 *
2662 * This is an internal memory management function, and should not be used
2663 * directly.
2664 *
2665 * The caller must write-lock current->mm->mmap_lock.
2666 *
2667 * @file: If a file-backed mapping, a pointer to the struct file describing the
2668 * file to be mapped, otherwise NULL.
2669 * @addr: The page-aligned address at which to perform the mapping.
2670 * @len: The page-aligned, non-zero, length of the mapping.
2671 * @vm_flags: The VMA flags which should be applied to the mapping.
2672 * @pgoff: If @file is specified, the page offset into the file, if not then
2673 * the virtual page offset in memory of the anonymous mapping.
2674 * @uf: Optionally, a pointer to a list head used for tracking userfaultfd unmap
2675 * events.
2676 *
2677 * Returns: Either an error, or the address at which the requested mapping has
2678 * been performed.
2679 */
2680unsigned long mmap_region(struct file *file, unsigned long addr,
2681 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2682 struct list_head *uf)
2683{
2684 unsigned long ret;
2685 bool writable_file_mapping = false;
2686
2687 mmap_assert_write_locked(current->mm);
2688
2689 /* Check to see if MDWE is applicable. */
2690 if (map_deny_write_exec(old: vm_flags, new: vm_flags))
2691 return -EACCES;
2692
2693 /* Allow architectures to sanity-check the vm_flags. */
2694 if (!arch_validate_flags(flags: vm_flags))
2695 return -EINVAL;
2696
2697 /* Map writable and ensure this isn't a sealed memfd. */
2698 if (file && is_shared_maywrite(vm_flags)) {
2699 int error = mapping_map_writable(mapping: file->f_mapping);
2700
2701 if (error)
2702 return error;
2703 writable_file_mapping = true;
2704 }
2705
2706 ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf);
2707
2708 /* Clear our write mapping regardless of error. */
2709 if (writable_file_mapping)
2710 mapping_unmap_writable(mapping: file->f_mapping);
2711
2712 validate_mm(current->mm);
2713 return ret;
2714}
2715
2716/*
2717 * do_brk_flags() - Increase the brk vma if the flags match.
2718 * @vmi: The vma iterator
2719 * @addr: The start address
2720 * @len: The length of the increase
2721 * @vma: The vma,
2722 * @flags: The VMA Flags
2723 *
2724 * Extend the brk VMA from addr to addr + len. If the VMA is NULL or the flags
2725 * do not match then create a new anonymous VMA. Eventually we may be able to
2726 * do some brk-specific accounting here.
2727 */
2728int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
2729 unsigned long addr, unsigned long len, unsigned long flags)
2730{
2731 struct mm_struct *mm = current->mm;
2732
2733 /*
2734 * Check against address space limits by the changed size
2735 * Note: This happens *after* clearing old mappings in some code paths.
2736 */
2737 flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2738 if (!may_expand_vm(mm, flags, npages: len >> PAGE_SHIFT))
2739 return -ENOMEM;
2740
2741 if (mm->map_count > sysctl_max_map_count)
2742 return -ENOMEM;
2743
2744 if (security_vm_enough_memory_mm(mm, pages: len >> PAGE_SHIFT))
2745 return -ENOMEM;
2746
2747 /*
2748 * Expand the existing vma if possible; Note that singular lists do not
2749 * occur after forking, so the expand will only happen on new VMAs.
2750 */
2751 if (vma && vma->vm_end == addr) {
2752 VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr));
2753
2754 vmg.prev = vma;
2755 /* vmi is positioned at prev, which this mode expects. */
2756 vmg.just_expand = true;
2757
2758 if (vma_merge_new_range(vmg: &vmg))
2759 goto out;
2760 else if (vmg_nomem(vmg: &vmg))
2761 goto unacct_fail;
2762 }
2763
2764 if (vma)
2765 vma_iter_next_range(vmi);
2766 /* create a vma struct for an anonymous mapping */
2767 vma = vm_area_alloc(mm);
2768 if (!vma)
2769 goto unacct_fail;
2770
2771 vma_set_anonymous(vma);
2772 vma_set_range(vma, start: addr, end: addr + len, pgoff: addr >> PAGE_SHIFT);
2773 vm_flags_init(vma, flags);
2774 vma->vm_page_prot = vm_get_page_prot(vm_flags: flags);
2775 vma_start_write(vma);
2776 if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
2777 goto mas_store_fail;
2778
2779 mm->map_count++;
2780 validate_mm(mm);
2781 ksm_add_vma(vma);
2782out:
2783 perf_event_mmap(vma);
2784 mm->total_vm += len >> PAGE_SHIFT;
2785 mm->data_vm += len >> PAGE_SHIFT;
2786 if (flags & VM_LOCKED)
2787 mm->locked_vm += (len >> PAGE_SHIFT);
2788 vm_flags_set(vma, VM_SOFTDIRTY);
2789 return 0;
2790
2791mas_store_fail:
2792 vm_area_free(vma);
2793unacct_fail:
2794 vm_unacct_memory(pages: len >> PAGE_SHIFT);
2795 return -ENOMEM;
2796}
2797
2798/**
2799 * unmapped_area() - Find an area between the low_limit and the high_limit with
2800 * the correct alignment and offset, all from @info. Note: current->mm is used
2801 * for the search.
2802 *
2803 * @info: The unmapped area information including the range [low_limit -
2804 * high_limit), the alignment offset and mask.
2805 *
2806 * Return: A memory address or -ENOMEM.
2807 */
2808unsigned long unmapped_area(struct vm_unmapped_area_info *info)
2809{
2810 unsigned long length, gap;
2811 unsigned long low_limit, high_limit;
2812 struct vm_area_struct *tmp;
2813 VMA_ITERATOR(vmi, current->mm, 0);
2814
2815 /* Adjust search length to account for worst case alignment overhead */
2816 length = info->length + info->align_mask + info->start_gap;
2817 if (length < info->length)
2818 return -ENOMEM;
2819
2820 low_limit = info->low_limit;
2821 if (low_limit < mmap_min_addr)
2822 low_limit = mmap_min_addr;
2823 high_limit = info->high_limit;
2824retry:
2825 if (vma_iter_area_lowest(vmi: &vmi, min: low_limit, max: high_limit, size: length))
2826 return -ENOMEM;
2827
2828 /*
2829 * Adjust for the gap first so it doesn't interfere with the
2830 * later alignment. The first step is the minimum needed to
2831 * fulill the start gap, the next steps is the minimum to align
2832 * that. It is the minimum needed to fulill both.
2833 */
2834 gap = vma_iter_addr(vmi: &vmi) + info->start_gap;
2835 gap += (info->align_offset - gap) & info->align_mask;
2836 tmp = vma_next(vmi: &vmi);
2837 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
2838 if (vm_start_gap(vma: tmp) < gap + length - 1) {
2839 low_limit = tmp->vm_end;
2840 vma_iter_reset(vmi: &vmi);
2841 goto retry;
2842 }
2843 } else {
2844 tmp = vma_prev(vmi: &vmi);
2845 if (tmp && vm_end_gap(vma: tmp) > gap) {
2846 low_limit = vm_end_gap(vma: tmp);
2847 vma_iter_reset(vmi: &vmi);
2848 goto retry;
2849 }
2850 }
2851
2852 return gap;
2853}
2854
2855/**
2856 * unmapped_area_topdown() - Find an area between the low_limit and the
2857 * high_limit with the correct alignment and offset at the highest available
2858 * address, all from @info. Note: current->mm is used for the search.
2859 *
2860 * @info: The unmapped area information including the range [low_limit -
2861 * high_limit), the alignment offset and mask.
2862 *
2863 * Return: A memory address or -ENOMEM.
2864 */
2865unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2866{
2867 unsigned long length, gap, gap_end;
2868 unsigned long low_limit, high_limit;
2869 struct vm_area_struct *tmp;
2870 VMA_ITERATOR(vmi, current->mm, 0);
2871
2872 /* Adjust search length to account for worst case alignment overhead */
2873 length = info->length + info->align_mask + info->start_gap;
2874 if (length < info->length)
2875 return -ENOMEM;
2876
2877 low_limit = info->low_limit;
2878 if (low_limit < mmap_min_addr)
2879 low_limit = mmap_min_addr;
2880 high_limit = info->high_limit;
2881retry:
2882 if (vma_iter_area_highest(vmi: &vmi, min: low_limit, max: high_limit, size: length))
2883 return -ENOMEM;
2884
2885 gap = vma_iter_end(vmi: &vmi) - info->length;
2886 gap -= (gap - info->align_offset) & info->align_mask;
2887 gap_end = vma_iter_end(vmi: &vmi);
2888 tmp = vma_next(vmi: &vmi);
2889 if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
2890 if (vm_start_gap(vma: tmp) < gap_end) {
2891 high_limit = vm_start_gap(vma: tmp);
2892 vma_iter_reset(vmi: &vmi);
2893 goto retry;
2894 }
2895 } else {
2896 tmp = vma_prev(vmi: &vmi);
2897 if (tmp && vm_end_gap(vma: tmp) > gap) {
2898 high_limit = tmp->vm_start;
2899 vma_iter_reset(vmi: &vmi);
2900 goto retry;
2901 }
2902 }
2903
2904 return gap;
2905}
2906
2907/*
2908 * Verify that the stack growth is acceptable and
2909 * update accounting. This is shared with both the
2910 * grow-up and grow-down cases.
2911 */
2912static int acct_stack_growth(struct vm_area_struct *vma,
2913 unsigned long size, unsigned long grow)
2914{
2915 struct mm_struct *mm = vma->vm_mm;
2916 unsigned long new_start;
2917
2918 /* address space limit tests */
2919 if (!may_expand_vm(mm, vma->vm_flags, npages: grow))
2920 return -ENOMEM;
2921
2922 /* Stack limit test */
2923 if (size > rlimit(RLIMIT_STACK))
2924 return -ENOMEM;
2925
2926 /* mlock limit tests */
2927 if (!mlock_future_ok(mm, flags: vma->vm_flags, bytes: grow << PAGE_SHIFT))
2928 return -ENOMEM;
2929
2930 /* Check to ensure the stack will not grow into a hugetlb-only region */
2931 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2932 vma->vm_end - size;
2933 if (is_hugepage_only_range(mm: vma->vm_mm, addr: new_start, len: size))
2934 return -EFAULT;
2935
2936 /*
2937 * Overcommit.. This must be the final test, as it will
2938 * update security statistics.
2939 */
2940 if (security_vm_enough_memory_mm(mm, pages: grow))
2941 return -ENOMEM;
2942
2943 return 0;
2944}
2945
2946#if defined(CONFIG_STACK_GROWSUP)
2947/*
2948 * PA-RISC uses this for its stack.
2949 * vma is the last one with address > vma->vm_end. Have to extend vma.
2950 */
2951int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2952{
2953 struct mm_struct *mm = vma->vm_mm;
2954 struct vm_area_struct *next;
2955 unsigned long gap_addr;
2956 int error = 0;
2957 VMA_ITERATOR(vmi, mm, vma->vm_start);
2958
2959 if (!(vma->vm_flags & VM_GROWSUP))
2960 return -EFAULT;
2961
2962 mmap_assert_write_locked(mm);
2963
2964 /* Guard against exceeding limits of the address space. */
2965 address &= PAGE_MASK;
2966 if (address >= (TASK_SIZE & PAGE_MASK))
2967 return -ENOMEM;
2968 address += PAGE_SIZE;
2969
2970 /* Enforce stack_guard_gap */
2971 gap_addr = address + stack_guard_gap;
2972
2973 /* Guard against overflow */
2974 if (gap_addr < address || gap_addr > TASK_SIZE)
2975 gap_addr = TASK_SIZE;
2976
2977 next = find_vma_intersection(mm, vma->vm_end, gap_addr);
2978 if (next && vma_is_accessible(next)) {
2979 if (!(next->vm_flags & VM_GROWSUP))
2980 return -ENOMEM;
2981 /* Check that both stack segments have the same anon_vma? */
2982 }
2983
2984 if (next)
2985 vma_iter_prev_range_limit(&vmi, address);
2986
2987 vma_iter_config(&vmi, vma->vm_start, address);
2988 if (vma_iter_prealloc(&vmi, vma))
2989 return -ENOMEM;
2990
2991 /* We must make sure the anon_vma is allocated. */
2992 if (unlikely(anon_vma_prepare(vma))) {
2993 vma_iter_free(&vmi);
2994 return -ENOMEM;
2995 }
2996
2997 /* Lock the VMA before expanding to prevent concurrent page faults */
2998 vma_start_write(vma);
2999 /* We update the anon VMA tree. */
3000 anon_vma_lock_write(vma->anon_vma);
3001
3002 /* Somebody else might have raced and expanded it already */
3003 if (address > vma->vm_end) {
3004 unsigned long size, grow;
3005
3006 size = address - vma->vm_start;
3007 grow = (address - vma->vm_end) >> PAGE_SHIFT;
3008
3009 error = -ENOMEM;
3010 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
3011 error = acct_stack_growth(vma, size, grow);
3012 if (!error) {
3013 if (vma->vm_flags & VM_LOCKED)
3014 mm->locked_vm += grow;
3015 vm_stat_account(mm, vma->vm_flags, grow);
3016 anon_vma_interval_tree_pre_update_vma(vma);
3017 vma->vm_end = address;
3018 /* Overwrite old entry in mtree. */
3019 vma_iter_store_overwrite(&vmi, vma);
3020 anon_vma_interval_tree_post_update_vma(vma);
3021
3022 perf_event_mmap(vma);
3023 }
3024 }
3025 }
3026 anon_vma_unlock_write(vma->anon_vma);
3027 vma_iter_free(&vmi);
3028 validate_mm(mm);
3029 return error;
3030}
3031#endif /* CONFIG_STACK_GROWSUP */
3032
3033/*
3034 * vma is the first one with address < vma->vm_start. Have to extend vma.
3035 * mmap_lock held for writing.
3036 */
3037int expand_downwards(struct vm_area_struct *vma, unsigned long address)
3038{
3039 struct mm_struct *mm = vma->vm_mm;
3040 struct vm_area_struct *prev;
3041 int error = 0;
3042 VMA_ITERATOR(vmi, mm, vma->vm_start);
3043
3044 if (!(vma->vm_flags & VM_GROWSDOWN))
3045 return -EFAULT;
3046
3047 mmap_assert_write_locked(mm);
3048
3049 address &= PAGE_MASK;
3050 if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
3051 return -EPERM;
3052
3053 /* Enforce stack_guard_gap */
3054 prev = vma_prev(vmi: &vmi);
3055 /* Check that both stack segments have the same anon_vma? */
3056 if (prev) {
3057 if (!(prev->vm_flags & VM_GROWSDOWN) &&
3058 vma_is_accessible(vma: prev) &&
3059 (address - prev->vm_end < stack_guard_gap))
3060 return -ENOMEM;
3061 }
3062
3063 if (prev)
3064 vma_iter_next_range_limit(vmi: &vmi, max: vma->vm_start);
3065
3066 vma_iter_config(vmi: &vmi, index: address, last: vma->vm_end);
3067 if (vma_iter_prealloc(vmi: &vmi, vma))
3068 return -ENOMEM;
3069
3070 /* We must make sure the anon_vma is allocated. */
3071 if (unlikely(anon_vma_prepare(vma))) {
3072 vma_iter_free(vmi: &vmi);
3073 return -ENOMEM;
3074 }
3075
3076 /* Lock the VMA before expanding to prevent concurrent page faults */
3077 vma_start_write(vma);
3078 /* We update the anon VMA tree. */
3079 anon_vma_lock_write(anon_vma: vma->anon_vma);
3080
3081 /* Somebody else might have raced and expanded it already */
3082 if (address < vma->vm_start) {
3083 unsigned long size, grow;
3084
3085 size = vma->vm_end - address;
3086 grow = (vma->vm_start - address) >> PAGE_SHIFT;
3087
3088 error = -ENOMEM;
3089 if (grow <= vma->vm_pgoff) {
3090 error = acct_stack_growth(vma, size, grow);
3091 if (!error) {
3092 if (vma->vm_flags & VM_LOCKED)
3093 mm->locked_vm += grow;
3094 vm_stat_account(mm, vma->vm_flags, npages: grow);
3095 anon_vma_interval_tree_pre_update_vma(vma);
3096 vma->vm_start = address;
3097 vma->vm_pgoff -= grow;
3098 /* Overwrite old entry in mtree. */
3099 vma_iter_store_overwrite(vmi: &vmi, vma);
3100 anon_vma_interval_tree_post_update_vma(vma);
3101
3102 perf_event_mmap(vma);
3103 }
3104 }
3105 }
3106 anon_vma_unlock_write(anon_vma: vma->anon_vma);
3107 vma_iter_free(vmi: &vmi);
3108 validate_mm(mm);
3109 return error;
3110}
3111
3112int __vm_munmap(unsigned long start, size_t len, bool unlock)
3113{
3114 int ret;
3115 struct mm_struct *mm = current->mm;
3116 LIST_HEAD(uf);
3117 VMA_ITERATOR(vmi, mm, start);
3118
3119 if (mmap_write_lock_killable(mm))
3120 return -EINTR;
3121
3122 ret = do_vmi_munmap(vmi: &vmi, mm, start, len, uf: &uf, unlock);
3123 if (ret || !unlock)
3124 mmap_write_unlock(mm);
3125
3126 userfaultfd_unmap_complete(mm, uf: &uf);
3127 return ret;
3128}
3129
3130
3131/* Insert vm structure into process list sorted by address
3132 * and into the inode's i_mmap tree. If vm_file is non-NULL
3133 * then i_mmap_rwsem is taken here.
3134 */
3135int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3136{
3137 unsigned long charged = vma_pages(vma);
3138
3139
3140 if (find_vma_intersection(mm, start_addr: vma->vm_start, end_addr: vma->vm_end))
3141 return -ENOMEM;
3142
3143 if ((vma->vm_flags & VM_ACCOUNT) &&
3144 security_vm_enough_memory_mm(mm, pages: charged))
3145 return -ENOMEM;
3146
3147 /*
3148 * The vm_pgoff of a purely anonymous vma should be irrelevant
3149 * until its first write fault, when page's anon_vma and index
3150 * are set. But now set the vm_pgoff it will almost certainly
3151 * end up with (unless mremap moves it elsewhere before that
3152 * first wfault), so /proc/pid/maps tells a consistent story.
3153 *
3154 * By setting it to reflect the virtual start address of the
3155 * vma, merges and splits can happen in a seamless way, just
3156 * using the existing file pgoff checks and manipulations.
3157 * Similarly in do_mmap and in do_brk_flags.
3158 */
3159 if (vma_is_anonymous(vma)) {
3160 BUG_ON(vma->anon_vma);
3161 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3162 }
3163
3164 if (vma_link(mm, vma)) {
3165 if (vma->vm_flags & VM_ACCOUNT)
3166 vm_unacct_memory(pages: charged);
3167 return -ENOMEM;
3168 }
3169
3170 return 0;
3171}
3172

source code of linux/mm/vma.c