1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2024 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24/**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50#include <linux/kernel.h>
51#include <linux/export.h>
52#include <linux/slab.h>
53#include <linux/list.h>
54#include <linux/ctype.h>
55#include <linux/nl80211.h>
56#include <linux/platform_device.h>
57#include <linux/verification.h>
58#include <linux/moduleparam.h>
59#include <linux/firmware.h>
60#include <linux/units.h>
61
62#include <net/cfg80211.h>
63#include "core.h"
64#include "reg.h"
65#include "rdev-ops.h"
66#include "nl80211.h"
67
68/*
69 * Grace period we give before making sure all current interfaces reside on
70 * channels allowed by the current regulatory domain.
71 */
72#define REG_ENFORCE_GRACE_MS 60000
73
74/**
75 * enum reg_request_treatment - regulatory request treatment
76 *
77 * @REG_REQ_OK: continue processing the regulatory request
78 * @REG_REQ_IGNORE: ignore the regulatory request
79 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
80 * be intersected with the current one.
81 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
82 * regulatory settings, and no further processing is required.
83 */
84enum reg_request_treatment {
85 REG_REQ_OK,
86 REG_REQ_IGNORE,
87 REG_REQ_INTERSECT,
88 REG_REQ_ALREADY_SET,
89};
90
91static struct regulatory_request core_request_world = {
92 .initiator = NL80211_REGDOM_SET_BY_CORE,
93 .alpha2[0] = '0',
94 .alpha2[1] = '0',
95 .intersect = false,
96 .processed = true,
97 .country_ie_env = ENVIRON_ANY,
98};
99
100/*
101 * Receipt of information from last regulatory request,
102 * protected by RTNL (and can be accessed with RCU protection)
103 */
104static struct regulatory_request __rcu *last_request =
105 (void __force __rcu *)&core_request_world;
106
107/* To trigger userspace events and load firmware */
108static struct platform_device *reg_pdev;
109
110/*
111 * Central wireless core regulatory domains, we only need two,
112 * the current one and a world regulatory domain in case we have no
113 * information to give us an alpha2.
114 * (protected by RTNL, can be read under RCU)
115 */
116const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
117
118/*
119 * Number of devices that registered to the core
120 * that support cellular base station regulatory hints
121 * (protected by RTNL)
122 */
123static int reg_num_devs_support_basehint;
124
125/*
126 * State variable indicating if the platform on which the devices
127 * are attached is operating in an indoor environment. The state variable
128 * is relevant for all registered devices.
129 */
130static bool reg_is_indoor;
131static DEFINE_SPINLOCK(reg_indoor_lock);
132
133/* Used to track the userspace process controlling the indoor setting */
134static u32 reg_is_indoor_portid;
135
136static void restore_regulatory_settings(bool reset_user, bool cached);
137static void print_regdomain(const struct ieee80211_regdomain *rd);
138static void reg_process_hint(struct regulatory_request *reg_request);
139
140static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
141{
142 return rcu_dereference_rtnl(cfg80211_regdomain);
143}
144
145/*
146 * Returns the regulatory domain associated with the wiphy.
147 *
148 * Requires any of RTNL, wiphy mutex or RCU protection.
149 */
150const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
151{
152 return rcu_dereference_check(wiphy->regd,
153 lockdep_is_held(&wiphy->mtx) ||
154 lockdep_rtnl_is_held());
155}
156EXPORT_SYMBOL(get_wiphy_regdom);
157
158static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
159{
160 switch (dfs_region) {
161 case NL80211_DFS_UNSET:
162 return "unset";
163 case NL80211_DFS_FCC:
164 return "FCC";
165 case NL80211_DFS_ETSI:
166 return "ETSI";
167 case NL80211_DFS_JP:
168 return "JP";
169 }
170 return "Unknown";
171}
172
173enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
174{
175 const struct ieee80211_regdomain *regd = NULL;
176 const struct ieee80211_regdomain *wiphy_regd = NULL;
177 enum nl80211_dfs_regions dfs_region;
178
179 rcu_read_lock();
180 regd = get_cfg80211_regdom();
181 dfs_region = regd->dfs_region;
182
183 if (!wiphy)
184 goto out;
185
186 wiphy_regd = get_wiphy_regdom(wiphy);
187 if (!wiphy_regd)
188 goto out;
189
190 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
191 dfs_region = wiphy_regd->dfs_region;
192 goto out;
193 }
194
195 if (wiphy_regd->dfs_region == regd->dfs_region)
196 goto out;
197
198 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
199 dev_name(&wiphy->dev),
200 reg_dfs_region_str(wiphy_regd->dfs_region),
201 reg_dfs_region_str(regd->dfs_region));
202
203out:
204 rcu_read_unlock();
205
206 return dfs_region;
207}
208
209static void rcu_free_regdom(const struct ieee80211_regdomain *r)
210{
211 if (!r)
212 return;
213 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
214}
215
216static struct regulatory_request *get_last_request(void)
217{
218 return rcu_dereference_rtnl(last_request);
219}
220
221/* Used to queue up regulatory hints */
222static LIST_HEAD(reg_requests_list);
223static DEFINE_SPINLOCK(reg_requests_lock);
224
225/* Used to queue up beacon hints for review */
226static LIST_HEAD(reg_pending_beacons);
227static DEFINE_SPINLOCK(reg_pending_beacons_lock);
228
229/* Used to keep track of processed beacon hints */
230static LIST_HEAD(reg_beacon_list);
231
232struct reg_beacon {
233 struct list_head list;
234 struct ieee80211_channel chan;
235};
236
237static void reg_check_chans_work(struct work_struct *work);
238static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
239
240static void reg_todo(struct work_struct *work);
241static DECLARE_WORK(reg_work, reg_todo);
242
243/* We keep a static world regulatory domain in case of the absence of CRDA */
244static const struct ieee80211_regdomain world_regdom = {
245 .n_reg_rules = 8,
246 .alpha2 = "00",
247 .reg_rules = {
248 /* IEEE 802.11b/g, channels 1..11 */
249 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
250 /* IEEE 802.11b/g, channels 12..13. */
251 REG_RULE(2467-10, 2472+10, 20, 6, 20,
252 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
253 /* IEEE 802.11 channel 14 - Only JP enables
254 * this and for 802.11b only */
255 REG_RULE(2484-10, 2484+10, 20, 6, 20,
256 NL80211_RRF_NO_IR |
257 NL80211_RRF_NO_OFDM),
258 /* IEEE 802.11a, channel 36..48 */
259 REG_RULE(5180-10, 5240+10, 80, 6, 20,
260 NL80211_RRF_NO_IR |
261 NL80211_RRF_AUTO_BW),
262
263 /* IEEE 802.11a, channel 52..64 - DFS required */
264 REG_RULE(5260-10, 5320+10, 80, 6, 20,
265 NL80211_RRF_NO_IR |
266 NL80211_RRF_AUTO_BW |
267 NL80211_RRF_DFS),
268
269 /* IEEE 802.11a, channel 100..144 - DFS required */
270 REG_RULE(5500-10, 5720+10, 160, 6, 20,
271 NL80211_RRF_NO_IR |
272 NL80211_RRF_DFS),
273
274 /* IEEE 802.11a, channel 149..165 */
275 REG_RULE(5745-10, 5825+10, 80, 6, 20,
276 NL80211_RRF_NO_IR),
277
278 /* IEEE 802.11ad (60GHz), channels 1..3 */
279 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
280 }
281};
282
283/* protected by RTNL */
284static const struct ieee80211_regdomain *cfg80211_world_regdom =
285 &world_regdom;
286
287static char *ieee80211_regdom = "00";
288static char user_alpha2[2];
289static const struct ieee80211_regdomain *cfg80211_user_regdom;
290
291module_param(ieee80211_regdom, charp, 0444);
292MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
293
294static void reg_free_request(struct regulatory_request *request)
295{
296 if (request == &core_request_world)
297 return;
298
299 if (request != get_last_request())
300 kfree(objp: request);
301}
302
303static void reg_free_last_request(void)
304{
305 struct regulatory_request *lr = get_last_request();
306
307 if (lr != &core_request_world && lr)
308 kfree_rcu(lr, rcu_head);
309}
310
311static void reg_update_last_request(struct regulatory_request *request)
312{
313 struct regulatory_request *lr;
314
315 lr = get_last_request();
316 if (lr == request)
317 return;
318
319 reg_free_last_request();
320 rcu_assign_pointer(last_request, request);
321}
322
323static void reset_regdomains(bool full_reset,
324 const struct ieee80211_regdomain *new_regdom)
325{
326 const struct ieee80211_regdomain *r;
327
328 ASSERT_RTNL();
329
330 r = get_cfg80211_regdom();
331
332 /* avoid freeing static information or freeing something twice */
333 if (r == cfg80211_world_regdom)
334 r = NULL;
335 if (cfg80211_world_regdom == &world_regdom)
336 cfg80211_world_regdom = NULL;
337 if (r == &world_regdom)
338 r = NULL;
339
340 rcu_free_regdom(r);
341 rcu_free_regdom(r: cfg80211_world_regdom);
342
343 cfg80211_world_regdom = &world_regdom;
344 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
345
346 if (!full_reset)
347 return;
348
349 reg_update_last_request(request: &core_request_world);
350}
351
352/*
353 * Dynamic world regulatory domain requested by the wireless
354 * core upon initialization
355 */
356static void update_world_regdomain(const struct ieee80211_regdomain *rd)
357{
358 struct regulatory_request *lr;
359
360 lr = get_last_request();
361
362 WARN_ON(!lr);
363
364 reset_regdomains(full_reset: false, new_regdom: rd);
365
366 cfg80211_world_regdom = rd;
367}
368
369bool is_world_regdom(const char *alpha2)
370{
371 if (!alpha2)
372 return false;
373 return alpha2[0] == '0' && alpha2[1] == '0';
374}
375
376static bool is_alpha2_set(const char *alpha2)
377{
378 if (!alpha2)
379 return false;
380 return alpha2[0] && alpha2[1];
381}
382
383static bool is_unknown_alpha2(const char *alpha2)
384{
385 if (!alpha2)
386 return false;
387 /*
388 * Special case where regulatory domain was built by driver
389 * but a specific alpha2 cannot be determined
390 */
391 return alpha2[0] == '9' && alpha2[1] == '9';
392}
393
394static bool is_intersected_alpha2(const char *alpha2)
395{
396 if (!alpha2)
397 return false;
398 /*
399 * Special case where regulatory domain is the
400 * result of an intersection between two regulatory domain
401 * structures
402 */
403 return alpha2[0] == '9' && alpha2[1] == '8';
404}
405
406static bool is_an_alpha2(const char *alpha2)
407{
408 if (!alpha2)
409 return false;
410 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
411}
412
413static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
414{
415 if (!alpha2_x || !alpha2_y)
416 return false;
417 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
418}
419
420static bool regdom_changes(const char *alpha2)
421{
422 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
423
424 if (!r)
425 return true;
426 return !alpha2_equal(alpha2_x: r->alpha2, alpha2_y: alpha2);
427}
428
429/*
430 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
431 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
432 * has ever been issued.
433 */
434static bool is_user_regdom_saved(void)
435{
436 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
437 return false;
438
439 /* This would indicate a mistake on the design */
440 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
441 "Unexpected user alpha2: %c%c\n",
442 user_alpha2[0], user_alpha2[1]))
443 return false;
444
445 return true;
446}
447
448static const struct ieee80211_regdomain *
449reg_copy_regd(const struct ieee80211_regdomain *src_regd)
450{
451 struct ieee80211_regdomain *regd;
452 unsigned int i;
453
454 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
455 GFP_KERNEL);
456 if (!regd)
457 return ERR_PTR(error: -ENOMEM);
458
459 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
460
461 for (i = 0; i < src_regd->n_reg_rules; i++)
462 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
463 sizeof(struct ieee80211_reg_rule));
464
465 return regd;
466}
467
468static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
469{
470 ASSERT_RTNL();
471
472 if (!IS_ERR(ptr: cfg80211_user_regdom))
473 kfree(objp: cfg80211_user_regdom);
474 cfg80211_user_regdom = reg_copy_regd(src_regd: rd);
475}
476
477struct reg_regdb_apply_request {
478 struct list_head list;
479 const struct ieee80211_regdomain *regdom;
480};
481
482static LIST_HEAD(reg_regdb_apply_list);
483static DEFINE_MUTEX(reg_regdb_apply_mutex);
484
485static void reg_regdb_apply(struct work_struct *work)
486{
487 struct reg_regdb_apply_request *request;
488
489 rtnl_lock();
490
491 mutex_lock(&reg_regdb_apply_mutex);
492 while (!list_empty(head: &reg_regdb_apply_list)) {
493 request = list_first_entry(&reg_regdb_apply_list,
494 struct reg_regdb_apply_request,
495 list);
496 list_del(entry: &request->list);
497
498 set_regdom(rd: request->regdom, regd_src: REGD_SOURCE_INTERNAL_DB);
499 kfree(objp: request);
500 }
501 mutex_unlock(lock: &reg_regdb_apply_mutex);
502
503 rtnl_unlock();
504}
505
506static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
507
508static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
509{
510 struct reg_regdb_apply_request *request;
511
512 request = kzalloc(size: sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
513 if (!request) {
514 kfree(objp: regdom);
515 return -ENOMEM;
516 }
517
518 request->regdom = regdom;
519
520 mutex_lock(&reg_regdb_apply_mutex);
521 list_add_tail(new: &request->list, head: &reg_regdb_apply_list);
522 mutex_unlock(lock: &reg_regdb_apply_mutex);
523
524 schedule_work(work: &reg_regdb_work);
525 return 0;
526}
527
528#ifdef CONFIG_CFG80211_CRDA_SUPPORT
529/* Max number of consecutive attempts to communicate with CRDA */
530#define REG_MAX_CRDA_TIMEOUTS 10
531
532static u32 reg_crda_timeouts;
533
534static void crda_timeout_work(struct work_struct *work);
535static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
536
537static void crda_timeout_work(struct work_struct *work)
538{
539 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
540 rtnl_lock();
541 reg_crda_timeouts++;
542 restore_regulatory_settings(reset_user: true, cached: false);
543 rtnl_unlock();
544}
545
546static void cancel_crda_timeout(void)
547{
548 cancel_delayed_work(dwork: &crda_timeout);
549}
550
551static void cancel_crda_timeout_sync(void)
552{
553 cancel_delayed_work_sync(dwork: &crda_timeout);
554}
555
556static void reset_crda_timeouts(void)
557{
558 reg_crda_timeouts = 0;
559}
560
561/*
562 * This lets us keep regulatory code which is updated on a regulatory
563 * basis in userspace.
564 */
565static int call_crda(const char *alpha2)
566{
567 char country[12];
568 char *env[] = { country, NULL };
569 int ret;
570
571 snprintf(buf: country, size: sizeof(country), fmt: "COUNTRY=%c%c",
572 alpha2[0], alpha2[1]);
573
574 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
575 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
576 return -EINVAL;
577 }
578
579 if (!is_world_regdom(alpha2: (char *) alpha2))
580 pr_debug("Calling CRDA for country: %c%c\n",
581 alpha2[0], alpha2[1]);
582 else
583 pr_debug("Calling CRDA to update world regulatory domain\n");
584
585 ret = kobject_uevent_env(kobj: &reg_pdev->dev.kobj, action: KOBJ_CHANGE, envp: env);
586 if (ret)
587 return ret;
588
589 queue_delayed_work(wq: system_power_efficient_wq,
590 dwork: &crda_timeout, delay: msecs_to_jiffies(m: 3142));
591 return 0;
592}
593#else
594static inline void cancel_crda_timeout(void) {}
595static inline void cancel_crda_timeout_sync(void) {}
596static inline void reset_crda_timeouts(void) {}
597static inline int call_crda(const char *alpha2)
598{
599 return -ENODATA;
600}
601#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
602
603/* code to directly load a firmware database through request_firmware */
604static const struct fwdb_header *regdb;
605
606struct fwdb_country {
607 u8 alpha2[2];
608 __be16 coll_ptr;
609 /* this struct cannot be extended */
610} __packed __aligned(4);
611
612struct fwdb_collection {
613 u8 len;
614 u8 n_rules;
615 u8 dfs_region;
616 /* no optional data yet */
617 /* aligned to 2, then followed by __be16 array of rule pointers */
618} __packed __aligned(4);
619
620enum fwdb_flags {
621 FWDB_FLAG_NO_OFDM = BIT(0),
622 FWDB_FLAG_NO_OUTDOOR = BIT(1),
623 FWDB_FLAG_DFS = BIT(2),
624 FWDB_FLAG_NO_IR = BIT(3),
625 FWDB_FLAG_AUTO_BW = BIT(4),
626};
627
628struct fwdb_wmm_ac {
629 u8 ecw;
630 u8 aifsn;
631 __be16 cot;
632} __packed;
633
634struct fwdb_wmm_rule {
635 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
636 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
637} __packed;
638
639struct fwdb_rule {
640 u8 len;
641 u8 flags;
642 __be16 max_eirp;
643 __be32 start, end, max_bw;
644 /* start of optional data */
645 __be16 cac_timeout;
646 __be16 wmm_ptr;
647} __packed __aligned(4);
648
649#define FWDB_MAGIC 0x52474442
650#define FWDB_VERSION 20
651
652struct fwdb_header {
653 __be32 magic;
654 __be32 version;
655 struct fwdb_country country[];
656} __packed __aligned(4);
657
658static int ecw2cw(int ecw)
659{
660 return (1 << ecw) - 1;
661}
662
663static bool valid_wmm(struct fwdb_wmm_rule *rule)
664{
665 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
666 int i;
667
668 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
669 u16 cw_min = ecw2cw(ecw: (ac[i].ecw & 0xf0) >> 4);
670 u16 cw_max = ecw2cw(ecw: ac[i].ecw & 0x0f);
671 u8 aifsn = ac[i].aifsn;
672
673 if (cw_min >= cw_max)
674 return false;
675
676 if (aifsn < 1)
677 return false;
678 }
679
680 return true;
681}
682
683static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
684{
685 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
686
687 if ((u8 *)rule + sizeof(rule->len) > data + size)
688 return false;
689
690 /* mandatory fields */
691 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
692 return false;
693 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
694 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
695 struct fwdb_wmm_rule *wmm;
696
697 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
698 return false;
699
700 wmm = (void *)(data + wmm_ptr);
701
702 if (!valid_wmm(rule: wmm))
703 return false;
704 }
705 return true;
706}
707
708static bool valid_country(const u8 *data, unsigned int size,
709 const struct fwdb_country *country)
710{
711 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
712 struct fwdb_collection *coll = (void *)(data + ptr);
713 __be16 *rules_ptr;
714 unsigned int i;
715
716 /* make sure we can read len/n_rules */
717 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
718 return false;
719
720 /* make sure base struct and all rules fit */
721 if ((u8 *)coll + ALIGN(coll->len, 2) +
722 (coll->n_rules * 2) > data + size)
723 return false;
724
725 /* mandatory fields must exist */
726 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
727 return false;
728
729 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
730
731 for (i = 0; i < coll->n_rules; i++) {
732 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
733
734 if (!valid_rule(data, size, rule_ptr))
735 return false;
736 }
737
738 return true;
739}
740
741#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
742#include <keys/asymmetric-type.h>
743
744static struct key *builtin_regdb_keys;
745
746static int __init load_builtin_regdb_keys(void)
747{
748 builtin_regdb_keys =
749 keyring_alloc(description: ".builtin_regdb_keys",
750 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
751 perm: ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
752 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
753 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
754 if (IS_ERR(builtin_regdb_keys))
755 return PTR_ERR(builtin_regdb_keys);
756
757 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
758
759#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
760 x509_load_certificate_list(shipped_regdb_certs,
761 shipped_regdb_certs_len,
762 builtin_regdb_keys);
763#endif
764#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
765 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
766 x509_load_certificate_list(extra_regdb_certs,
767 extra_regdb_certs_len,
768 builtin_regdb_keys);
769#endif
770
771 return 0;
772}
773
774MODULE_FIRMWARE("regulatory.db.p7s");
775
776static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
777{
778 const struct firmware *sig;
779 bool result;
780
781 if (request_firmware(fw: &sig, name: "regulatory.db.p7s", device: &reg_pdev->dev))
782 return false;
783
784 result = verify_pkcs7_signature(data, len: size, raw_pkcs7: sig->data, pkcs7_len: sig->size,
785 trusted_keys: builtin_regdb_keys,
786 usage: VERIFYING_UNSPECIFIED_SIGNATURE,
787 NULL, NULL) == 0;
788
789 release_firmware(fw: sig);
790
791 return result;
792}
793
794static void free_regdb_keyring(void)
795{
796 key_put(key: builtin_regdb_keys);
797}
798#else
799static int load_builtin_regdb_keys(void)
800{
801 return 0;
802}
803
804static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
805{
806 return true;
807}
808
809static void free_regdb_keyring(void)
810{
811}
812#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
813
814static bool valid_regdb(const u8 *data, unsigned int size)
815{
816 const struct fwdb_header *hdr = (void *)data;
817 const struct fwdb_country *country;
818
819 if (size < sizeof(*hdr))
820 return false;
821
822 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
823 return false;
824
825 if (hdr->version != cpu_to_be32(FWDB_VERSION))
826 return false;
827
828 if (!regdb_has_valid_signature(data, size))
829 return false;
830
831 country = &hdr->country[0];
832 while ((u8 *)(country + 1) <= data + size) {
833 if (!country->coll_ptr)
834 break;
835 if (!valid_country(data, size, country))
836 return false;
837 country++;
838 }
839
840 return true;
841}
842
843static void set_wmm_rule(const struct fwdb_header *db,
844 const struct fwdb_country *country,
845 const struct fwdb_rule *rule,
846 struct ieee80211_reg_rule *rrule)
847{
848 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
849 struct fwdb_wmm_rule *wmm;
850 unsigned int i, wmm_ptr;
851
852 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
853 wmm = (void *)((u8 *)db + wmm_ptr);
854
855 if (!valid_wmm(rule: wmm)) {
856 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
857 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
858 country->alpha2[0], country->alpha2[1]);
859 return;
860 }
861
862 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
863 wmm_rule->client[i].cw_min =
864 ecw2cw(ecw: (wmm->client[i].ecw & 0xf0) >> 4);
865 wmm_rule->client[i].cw_max = ecw2cw(ecw: wmm->client[i].ecw & 0x0f);
866 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
867 wmm_rule->client[i].cot =
868 1000 * be16_to_cpu(wmm->client[i].cot);
869 wmm_rule->ap[i].cw_min = ecw2cw(ecw: (wmm->ap[i].ecw & 0xf0) >> 4);
870 wmm_rule->ap[i].cw_max = ecw2cw(ecw: wmm->ap[i].ecw & 0x0f);
871 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
872 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
873 }
874
875 rrule->has_wmm = true;
876}
877
878static int __regdb_query_wmm(const struct fwdb_header *db,
879 const struct fwdb_country *country, int freq,
880 struct ieee80211_reg_rule *rrule)
881{
882 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
883 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
884 int i;
885
886 for (i = 0; i < coll->n_rules; i++) {
887 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
888 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
889 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
890
891 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
892 continue;
893
894 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
895 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
896 set_wmm_rule(db, country, rule, rrule);
897 return 0;
898 }
899 }
900
901 return -ENODATA;
902}
903
904int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
905{
906 const struct fwdb_header *hdr = regdb;
907 const struct fwdb_country *country;
908
909 if (!regdb)
910 return -ENODATA;
911
912 if (IS_ERR(ptr: regdb))
913 return PTR_ERR(ptr: regdb);
914
915 country = &hdr->country[0];
916 while (country->coll_ptr) {
917 if (alpha2_equal(alpha2_x: alpha2, alpha2_y: country->alpha2))
918 return __regdb_query_wmm(db: regdb, country, freq, rrule: rule);
919
920 country++;
921 }
922
923 return -ENODATA;
924}
925EXPORT_SYMBOL(reg_query_regdb_wmm);
926
927static int regdb_query_country(const struct fwdb_header *db,
928 const struct fwdb_country *country)
929{
930 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
931 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
932 struct ieee80211_regdomain *regdom;
933 unsigned int i;
934
935 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
936 GFP_KERNEL);
937 if (!regdom)
938 return -ENOMEM;
939
940 regdom->n_reg_rules = coll->n_rules;
941 regdom->alpha2[0] = country->alpha2[0];
942 regdom->alpha2[1] = country->alpha2[1];
943 regdom->dfs_region = coll->dfs_region;
944
945 for (i = 0; i < regdom->n_reg_rules; i++) {
946 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
947 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
948 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
949 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
950
951 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
952 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
953 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
954
955 rrule->power_rule.max_antenna_gain = 0;
956 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
957
958 rrule->flags = 0;
959 if (rule->flags & FWDB_FLAG_NO_OFDM)
960 rrule->flags |= NL80211_RRF_NO_OFDM;
961 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
962 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
963 if (rule->flags & FWDB_FLAG_DFS)
964 rrule->flags |= NL80211_RRF_DFS;
965 if (rule->flags & FWDB_FLAG_NO_IR)
966 rrule->flags |= NL80211_RRF_NO_IR;
967 if (rule->flags & FWDB_FLAG_AUTO_BW)
968 rrule->flags |= NL80211_RRF_AUTO_BW;
969
970 rrule->dfs_cac_ms = 0;
971
972 /* handle optional data */
973 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
974 rrule->dfs_cac_ms =
975 1000 * be16_to_cpu(rule->cac_timeout);
976 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
977 set_wmm_rule(db, country, rule, rrule);
978 }
979
980 return reg_schedule_apply(regdom);
981}
982
983static int query_regdb(const char *alpha2)
984{
985 const struct fwdb_header *hdr = regdb;
986 const struct fwdb_country *country;
987
988 ASSERT_RTNL();
989
990 if (IS_ERR(ptr: regdb))
991 return PTR_ERR(ptr: regdb);
992
993 country = &hdr->country[0];
994 while (country->coll_ptr) {
995 if (alpha2_equal(alpha2_x: alpha2, alpha2_y: country->alpha2))
996 return regdb_query_country(db: regdb, country);
997 country++;
998 }
999
1000 return -ENODATA;
1001}
1002
1003static void regdb_fw_cb(const struct firmware *fw, void *context)
1004{
1005 int set_error = 0;
1006 bool restore = true;
1007 void *db;
1008
1009 if (!fw) {
1010 pr_info("failed to load regulatory.db\n");
1011 set_error = -ENODATA;
1012 } else if (!valid_regdb(data: fw->data, size: fw->size)) {
1013 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1014 set_error = -EINVAL;
1015 }
1016
1017 rtnl_lock();
1018 if (regdb && !IS_ERR(ptr: regdb)) {
1019 /* negative case - a bug
1020 * positive case - can happen due to race in case of multiple cb's in
1021 * queue, due to usage of asynchronous callback
1022 *
1023 * Either case, just restore and free new db.
1024 */
1025 } else if (set_error) {
1026 regdb = ERR_PTR(error: set_error);
1027 } else if (fw) {
1028 db = kmemdup(p: fw->data, size: fw->size, GFP_KERNEL);
1029 if (db) {
1030 regdb = db;
1031 restore = context && query_regdb(alpha2: context);
1032 } else {
1033 restore = true;
1034 }
1035 }
1036
1037 if (restore)
1038 restore_regulatory_settings(reset_user: true, cached: false);
1039
1040 rtnl_unlock();
1041
1042 kfree(objp: context);
1043
1044 release_firmware(fw);
1045}
1046
1047MODULE_FIRMWARE("regulatory.db");
1048
1049static int query_regdb_file(const char *alpha2)
1050{
1051 int err;
1052
1053 ASSERT_RTNL();
1054
1055 if (regdb)
1056 return query_regdb(alpha2);
1057
1058 alpha2 = kmemdup(p: alpha2, size: 2, GFP_KERNEL);
1059 if (!alpha2)
1060 return -ENOMEM;
1061
1062 err = request_firmware_nowait(THIS_MODULE, uevent: true, name: "regulatory.db",
1063 device: &reg_pdev->dev, GFP_KERNEL,
1064 context: (void *)alpha2, cont: regdb_fw_cb);
1065 if (err)
1066 kfree(objp: alpha2);
1067
1068 return err;
1069}
1070
1071int reg_reload_regdb(void)
1072{
1073 const struct firmware *fw;
1074 void *db;
1075 int err;
1076 const struct ieee80211_regdomain *current_regdomain;
1077 struct regulatory_request *request;
1078
1079 err = request_firmware(fw: &fw, name: "regulatory.db", device: &reg_pdev->dev);
1080 if (err)
1081 return err;
1082
1083 if (!valid_regdb(data: fw->data, size: fw->size)) {
1084 err = -ENODATA;
1085 goto out;
1086 }
1087
1088 db = kmemdup(p: fw->data, size: fw->size, GFP_KERNEL);
1089 if (!db) {
1090 err = -ENOMEM;
1091 goto out;
1092 }
1093
1094 rtnl_lock();
1095 if (!IS_ERR_OR_NULL(ptr: regdb))
1096 kfree(objp: regdb);
1097 regdb = db;
1098
1099 /* reset regulatory domain */
1100 current_regdomain = get_cfg80211_regdom();
1101
1102 request = kzalloc(size: sizeof(*request), GFP_KERNEL);
1103 if (!request) {
1104 err = -ENOMEM;
1105 goto out_unlock;
1106 }
1107
1108 request->wiphy_idx = WIPHY_IDX_INVALID;
1109 request->alpha2[0] = current_regdomain->alpha2[0];
1110 request->alpha2[1] = current_regdomain->alpha2[1];
1111 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1112 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1113
1114 reg_process_hint(reg_request: request);
1115
1116out_unlock:
1117 rtnl_unlock();
1118 out:
1119 release_firmware(fw);
1120 return err;
1121}
1122
1123static bool reg_query_database(struct regulatory_request *request)
1124{
1125 if (query_regdb_file(alpha2: request->alpha2) == 0)
1126 return true;
1127
1128 if (call_crda(alpha2: request->alpha2) == 0)
1129 return true;
1130
1131 return false;
1132}
1133
1134bool reg_is_valid_request(const char *alpha2)
1135{
1136 struct regulatory_request *lr = get_last_request();
1137
1138 if (!lr || lr->processed)
1139 return false;
1140
1141 return alpha2_equal(alpha2_x: lr->alpha2, alpha2_y: alpha2);
1142}
1143
1144static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1145{
1146 struct regulatory_request *lr = get_last_request();
1147
1148 /*
1149 * Follow the driver's regulatory domain, if present, unless a country
1150 * IE has been processed or a user wants to help complaince further
1151 */
1152 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1153 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1154 wiphy->regd)
1155 return get_wiphy_regdom(wiphy);
1156
1157 return get_cfg80211_regdom();
1158}
1159
1160static unsigned int
1161reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1162 const struct ieee80211_reg_rule *rule)
1163{
1164 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1165 const struct ieee80211_freq_range *freq_range_tmp;
1166 const struct ieee80211_reg_rule *tmp;
1167 u32 start_freq, end_freq, idx, no;
1168
1169 for (idx = 0; idx < rd->n_reg_rules; idx++)
1170 if (rule == &rd->reg_rules[idx])
1171 break;
1172
1173 if (idx == rd->n_reg_rules)
1174 return 0;
1175
1176 /* get start_freq */
1177 no = idx;
1178
1179 while (no) {
1180 tmp = &rd->reg_rules[--no];
1181 freq_range_tmp = &tmp->freq_range;
1182
1183 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1184 break;
1185
1186 freq_range = freq_range_tmp;
1187 }
1188
1189 start_freq = freq_range->start_freq_khz;
1190
1191 /* get end_freq */
1192 freq_range = &rule->freq_range;
1193 no = idx;
1194
1195 while (no < rd->n_reg_rules - 1) {
1196 tmp = &rd->reg_rules[++no];
1197 freq_range_tmp = &tmp->freq_range;
1198
1199 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1200 break;
1201
1202 freq_range = freq_range_tmp;
1203 }
1204
1205 end_freq = freq_range->end_freq_khz;
1206
1207 return end_freq - start_freq;
1208}
1209
1210unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1211 const struct ieee80211_reg_rule *rule)
1212{
1213 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1214
1215 if (rule->flags & NL80211_RRF_NO_320MHZ)
1216 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1217 if (rule->flags & NL80211_RRF_NO_160MHZ)
1218 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1219 if (rule->flags & NL80211_RRF_NO_80MHZ)
1220 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1221
1222 /*
1223 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1224 * are not allowed.
1225 */
1226 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1227 rule->flags & NL80211_RRF_NO_HT40PLUS)
1228 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1229
1230 return bw;
1231}
1232
1233/* Sanity check on a regulatory rule */
1234static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1235{
1236 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1237 u32 freq_diff;
1238
1239 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1240 return false;
1241
1242 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1243 return false;
1244
1245 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1246
1247 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1248 freq_range->max_bandwidth_khz > freq_diff)
1249 return false;
1250
1251 return true;
1252}
1253
1254static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1255{
1256 const struct ieee80211_reg_rule *reg_rule = NULL;
1257 unsigned int i;
1258
1259 if (!rd->n_reg_rules)
1260 return false;
1261
1262 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1263 return false;
1264
1265 for (i = 0; i < rd->n_reg_rules; i++) {
1266 reg_rule = &rd->reg_rules[i];
1267 if (!is_valid_reg_rule(rule: reg_rule))
1268 return false;
1269 }
1270
1271 return true;
1272}
1273
1274/**
1275 * freq_in_rule_band - tells us if a frequency is in a frequency band
1276 * @freq_range: frequency rule we want to query
1277 * @freq_khz: frequency we are inquiring about
1278 *
1279 * This lets us know if a specific frequency rule is or is not relevant to
1280 * a specific frequency's band. Bands are device specific and artificial
1281 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1282 * however it is safe for now to assume that a frequency rule should not be
1283 * part of a frequency's band if the start freq or end freq are off by more
1284 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1285 * 60 GHz band.
1286 * This resolution can be lowered and should be considered as we add
1287 * regulatory rule support for other "bands".
1288 *
1289 * Returns: whether or not the frequency is in the range
1290 */
1291static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1292 u32 freq_khz)
1293{
1294 /*
1295 * From 802.11ad: directional multi-gigabit (DMG):
1296 * Pertaining to operation in a frequency band containing a channel
1297 * with the Channel starting frequency above 45 GHz.
1298 */
1299 u32 limit = freq_khz > 45 * KHZ_PER_GHZ ? 20 * KHZ_PER_GHZ : 2 * KHZ_PER_GHZ;
1300 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1301 return true;
1302 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1303 return true;
1304 return false;
1305}
1306
1307/*
1308 * Later on we can perhaps use the more restrictive DFS
1309 * region but we don't have information for that yet so
1310 * for now simply disallow conflicts.
1311 */
1312static enum nl80211_dfs_regions
1313reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1314 const enum nl80211_dfs_regions dfs_region2)
1315{
1316 if (dfs_region1 != dfs_region2)
1317 return NL80211_DFS_UNSET;
1318 return dfs_region1;
1319}
1320
1321static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1322 const struct ieee80211_wmm_ac *wmm_ac2,
1323 struct ieee80211_wmm_ac *intersect)
1324{
1325 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1326 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1327 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1328 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1329}
1330
1331/*
1332 * Helper for regdom_intersect(), this does the real
1333 * mathematical intersection fun
1334 */
1335static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1336 const struct ieee80211_regdomain *rd2,
1337 const struct ieee80211_reg_rule *rule1,
1338 const struct ieee80211_reg_rule *rule2,
1339 struct ieee80211_reg_rule *intersected_rule)
1340{
1341 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1342 struct ieee80211_freq_range *freq_range;
1343 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1344 struct ieee80211_power_rule *power_rule;
1345 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1346 struct ieee80211_wmm_rule *wmm_rule;
1347 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1348
1349 freq_range1 = &rule1->freq_range;
1350 freq_range2 = &rule2->freq_range;
1351 freq_range = &intersected_rule->freq_range;
1352
1353 power_rule1 = &rule1->power_rule;
1354 power_rule2 = &rule2->power_rule;
1355 power_rule = &intersected_rule->power_rule;
1356
1357 wmm_rule1 = &rule1->wmm_rule;
1358 wmm_rule2 = &rule2->wmm_rule;
1359 wmm_rule = &intersected_rule->wmm_rule;
1360
1361 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1362 freq_range2->start_freq_khz);
1363 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1364 freq_range2->end_freq_khz);
1365
1366 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1367 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1368
1369 if (rule1->flags & NL80211_RRF_AUTO_BW)
1370 max_bandwidth1 = reg_get_max_bandwidth(rd: rd1, rule: rule1);
1371 if (rule2->flags & NL80211_RRF_AUTO_BW)
1372 max_bandwidth2 = reg_get_max_bandwidth(rd: rd2, rule: rule2);
1373
1374 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1375
1376 intersected_rule->flags = rule1->flags | rule2->flags;
1377
1378 /*
1379 * In case NL80211_RRF_AUTO_BW requested for both rules
1380 * set AUTO_BW in intersected rule also. Next we will
1381 * calculate BW correctly in handle_channel function.
1382 * In other case remove AUTO_BW flag while we calculate
1383 * maximum bandwidth correctly and auto calculation is
1384 * not required.
1385 */
1386 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1387 (rule2->flags & NL80211_RRF_AUTO_BW))
1388 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1389 else
1390 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1391
1392 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1393 if (freq_range->max_bandwidth_khz > freq_diff)
1394 freq_range->max_bandwidth_khz = freq_diff;
1395
1396 power_rule->max_eirp = min(power_rule1->max_eirp,
1397 power_rule2->max_eirp);
1398 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1399 power_rule2->max_antenna_gain);
1400
1401 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1402 rule2->dfs_cac_ms);
1403
1404 if (rule1->has_wmm && rule2->has_wmm) {
1405 u8 ac;
1406
1407 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1408 reg_wmm_rules_intersect(wmm_ac1: &wmm_rule1->client[ac],
1409 wmm_ac2: &wmm_rule2->client[ac],
1410 intersect: &wmm_rule->client[ac]);
1411 reg_wmm_rules_intersect(wmm_ac1: &wmm_rule1->ap[ac],
1412 wmm_ac2: &wmm_rule2->ap[ac],
1413 intersect: &wmm_rule->ap[ac]);
1414 }
1415
1416 intersected_rule->has_wmm = true;
1417 } else if (rule1->has_wmm) {
1418 *wmm_rule = *wmm_rule1;
1419 intersected_rule->has_wmm = true;
1420 } else if (rule2->has_wmm) {
1421 *wmm_rule = *wmm_rule2;
1422 intersected_rule->has_wmm = true;
1423 } else {
1424 intersected_rule->has_wmm = false;
1425 }
1426
1427 if (!is_valid_reg_rule(rule: intersected_rule))
1428 return -EINVAL;
1429
1430 return 0;
1431}
1432
1433/* check whether old rule contains new rule */
1434static bool rule_contains(struct ieee80211_reg_rule *r1,
1435 struct ieee80211_reg_rule *r2)
1436{
1437 /* for simplicity, currently consider only same flags */
1438 if (r1->flags != r2->flags)
1439 return false;
1440
1441 /* verify r1 is more restrictive */
1442 if ((r1->power_rule.max_antenna_gain >
1443 r2->power_rule.max_antenna_gain) ||
1444 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1445 return false;
1446
1447 /* make sure r2's range is contained within r1 */
1448 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1449 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1450 return false;
1451
1452 /* and finally verify that r1.max_bw >= r2.max_bw */
1453 if (r1->freq_range.max_bandwidth_khz <
1454 r2->freq_range.max_bandwidth_khz)
1455 return false;
1456
1457 return true;
1458}
1459
1460/* add or extend current rules. do nothing if rule is already contained */
1461static void add_rule(struct ieee80211_reg_rule *rule,
1462 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1463{
1464 struct ieee80211_reg_rule *tmp_rule;
1465 int i;
1466
1467 for (i = 0; i < *n_rules; i++) {
1468 tmp_rule = &reg_rules[i];
1469 /* rule is already contained - do nothing */
1470 if (rule_contains(r1: tmp_rule, r2: rule))
1471 return;
1472
1473 /* extend rule if possible */
1474 if (rule_contains(r1: rule, r2: tmp_rule)) {
1475 memcpy(tmp_rule, rule, sizeof(*rule));
1476 return;
1477 }
1478 }
1479
1480 memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1481 (*n_rules)++;
1482}
1483
1484/**
1485 * regdom_intersect - do the intersection between two regulatory domains
1486 * @rd1: first regulatory domain
1487 * @rd2: second regulatory domain
1488 *
1489 * Use this function to get the intersection between two regulatory domains.
1490 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1491 * as no one single alpha2 can represent this regulatory domain.
1492 *
1493 * Returns a pointer to the regulatory domain structure which will hold the
1494 * resulting intersection of rules between rd1 and rd2. We will
1495 * kzalloc() this structure for you.
1496 *
1497 * Returns: the intersected regdomain
1498 */
1499static struct ieee80211_regdomain *
1500regdom_intersect(const struct ieee80211_regdomain *rd1,
1501 const struct ieee80211_regdomain *rd2)
1502{
1503 int r;
1504 unsigned int x, y;
1505 unsigned int num_rules = 0;
1506 const struct ieee80211_reg_rule *rule1, *rule2;
1507 struct ieee80211_reg_rule intersected_rule;
1508 struct ieee80211_regdomain *rd;
1509
1510 if (!rd1 || !rd2)
1511 return NULL;
1512
1513 /*
1514 * First we get a count of the rules we'll need, then we actually
1515 * build them. This is to so we can malloc() and free() a
1516 * regdomain once. The reason we use reg_rules_intersect() here
1517 * is it will return -EINVAL if the rule computed makes no sense.
1518 * All rules that do check out OK are valid.
1519 */
1520
1521 for (x = 0; x < rd1->n_reg_rules; x++) {
1522 rule1 = &rd1->reg_rules[x];
1523 for (y = 0; y < rd2->n_reg_rules; y++) {
1524 rule2 = &rd2->reg_rules[y];
1525 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1526 intersected_rule: &intersected_rule))
1527 num_rules++;
1528 }
1529 }
1530
1531 if (!num_rules)
1532 return NULL;
1533
1534 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1535 if (!rd)
1536 return NULL;
1537
1538 for (x = 0; x < rd1->n_reg_rules; x++) {
1539 rule1 = &rd1->reg_rules[x];
1540 for (y = 0; y < rd2->n_reg_rules; y++) {
1541 rule2 = &rd2->reg_rules[y];
1542 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1543 intersected_rule: &intersected_rule);
1544 /*
1545 * No need to memset here the intersected rule here as
1546 * we're not using the stack anymore
1547 */
1548 if (r)
1549 continue;
1550
1551 add_rule(rule: &intersected_rule, reg_rules: rd->reg_rules,
1552 n_rules: &rd->n_reg_rules);
1553 }
1554 }
1555
1556 rd->alpha2[0] = '9';
1557 rd->alpha2[1] = '8';
1558 rd->dfs_region = reg_intersect_dfs_region(dfs_region1: rd1->dfs_region,
1559 dfs_region2: rd2->dfs_region);
1560
1561 return rd;
1562}
1563
1564/*
1565 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1566 * want to just have the channel structure use these
1567 */
1568static u32 map_regdom_flags(u32 rd_flags)
1569{
1570 u32 channel_flags = 0;
1571 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1572 channel_flags |= IEEE80211_CHAN_NO_IR;
1573 if (rd_flags & NL80211_RRF_DFS)
1574 channel_flags |= IEEE80211_CHAN_RADAR;
1575 if (rd_flags & NL80211_RRF_NO_OFDM)
1576 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1577 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1578 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1579 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1580 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1581 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1582 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1583 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1584 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1585 if (rd_flags & NL80211_RRF_NO_80MHZ)
1586 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1587 if (rd_flags & NL80211_RRF_NO_160MHZ)
1588 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1589 if (rd_flags & NL80211_RRF_NO_HE)
1590 channel_flags |= IEEE80211_CHAN_NO_HE;
1591 if (rd_flags & NL80211_RRF_NO_320MHZ)
1592 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1593 if (rd_flags & NL80211_RRF_NO_EHT)
1594 channel_flags |= IEEE80211_CHAN_NO_EHT;
1595 if (rd_flags & NL80211_RRF_DFS_CONCURRENT)
1596 channel_flags |= IEEE80211_CHAN_DFS_CONCURRENT;
1597 if (rd_flags & NL80211_RRF_NO_6GHZ_VLP_CLIENT)
1598 channel_flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT;
1599 if (rd_flags & NL80211_RRF_NO_6GHZ_AFC_CLIENT)
1600 channel_flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT;
1601 if (rd_flags & NL80211_RRF_PSD)
1602 channel_flags |= IEEE80211_CHAN_PSD;
1603 return channel_flags;
1604}
1605
1606static const struct ieee80211_reg_rule *
1607freq_reg_info_regd(u32 center_freq,
1608 const struct ieee80211_regdomain *regd, u32 bw)
1609{
1610 int i;
1611 bool band_rule_found = false;
1612 bool bw_fits = false;
1613
1614 if (!regd)
1615 return ERR_PTR(error: -EINVAL);
1616
1617 for (i = 0; i < regd->n_reg_rules; i++) {
1618 const struct ieee80211_reg_rule *rr;
1619 const struct ieee80211_freq_range *fr = NULL;
1620
1621 rr = &regd->reg_rules[i];
1622 fr = &rr->freq_range;
1623
1624 /*
1625 * We only need to know if one frequency rule was
1626 * in center_freq's band, that's enough, so let's
1627 * not overwrite it once found
1628 */
1629 if (!band_rule_found)
1630 band_rule_found = freq_in_rule_band(freq_range: fr, freq_khz: center_freq);
1631
1632 bw_fits = cfg80211_does_bw_fit_range(freq_range: fr, center_freq_khz: center_freq, bw_khz: bw);
1633
1634 if (band_rule_found && bw_fits)
1635 return rr;
1636 }
1637
1638 if (!band_rule_found)
1639 return ERR_PTR(error: -ERANGE);
1640
1641 return ERR_PTR(error: -EINVAL);
1642}
1643
1644static const struct ieee80211_reg_rule *
1645__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1646{
1647 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1648 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1649 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(error: -ERANGE);
1650 int i = ARRAY_SIZE(bws) - 1;
1651 u32 bw;
1652
1653 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1654 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1655 if (!IS_ERR(ptr: reg_rule))
1656 return reg_rule;
1657 }
1658
1659 return reg_rule;
1660}
1661
1662const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1663 u32 center_freq)
1664{
1665 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1666
1667 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1668}
1669EXPORT_SYMBOL(freq_reg_info);
1670
1671const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1672{
1673 switch (initiator) {
1674 case NL80211_REGDOM_SET_BY_CORE:
1675 return "core";
1676 case NL80211_REGDOM_SET_BY_USER:
1677 return "user";
1678 case NL80211_REGDOM_SET_BY_DRIVER:
1679 return "driver";
1680 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1681 return "country element";
1682 default:
1683 WARN_ON(1);
1684 return "bug";
1685 }
1686}
1687EXPORT_SYMBOL(reg_initiator_name);
1688
1689static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1690 const struct ieee80211_reg_rule *reg_rule,
1691 const struct ieee80211_channel *chan)
1692{
1693 const struct ieee80211_freq_range *freq_range = NULL;
1694 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1695 bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1696
1697 freq_range = &reg_rule->freq_range;
1698
1699 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1700 center_freq_khz = ieee80211_channel_to_khz(chan);
1701 /* Check if auto calculation requested */
1702 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1703 max_bandwidth_khz = reg_get_max_bandwidth(rd: regd, rule: reg_rule);
1704
1705 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1706 if (!cfg80211_does_bw_fit_range(freq_range,
1707 center_freq_khz,
1708 MHZ_TO_KHZ(10)))
1709 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1710 if (!cfg80211_does_bw_fit_range(freq_range,
1711 center_freq_khz,
1712 MHZ_TO_KHZ(20)))
1713 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1714
1715 if (is_s1g) {
1716 /* S1G is strict about non overlapping channels. We can
1717 * calculate which bandwidth is allowed per channel by finding
1718 * the largest bandwidth which cleanly divides the freq_range.
1719 */
1720 int edge_offset;
1721 int ch_bw = max_bandwidth_khz;
1722
1723 while (ch_bw) {
1724 edge_offset = (center_freq_khz - ch_bw / 2) -
1725 freq_range->start_freq_khz;
1726 if (edge_offset % ch_bw == 0) {
1727 switch (KHZ_TO_MHZ(ch_bw)) {
1728 case 1:
1729 bw_flags |= IEEE80211_CHAN_1MHZ;
1730 break;
1731 case 2:
1732 bw_flags |= IEEE80211_CHAN_2MHZ;
1733 break;
1734 case 4:
1735 bw_flags |= IEEE80211_CHAN_4MHZ;
1736 break;
1737 case 8:
1738 bw_flags |= IEEE80211_CHAN_8MHZ;
1739 break;
1740 case 16:
1741 bw_flags |= IEEE80211_CHAN_16MHZ;
1742 break;
1743 default:
1744 /* If we got here, no bandwidths fit on
1745 * this frequency, ie. band edge.
1746 */
1747 bw_flags |= IEEE80211_CHAN_DISABLED;
1748 break;
1749 }
1750 break;
1751 }
1752 ch_bw /= 2;
1753 }
1754 } else {
1755 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1756 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1757 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1758 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1759 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1760 bw_flags |= IEEE80211_CHAN_NO_HT40;
1761 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1762 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1763 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1764 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1765 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1766 bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1767 }
1768 return bw_flags;
1769}
1770
1771static void handle_channel_single_rule(struct wiphy *wiphy,
1772 enum nl80211_reg_initiator initiator,
1773 struct ieee80211_channel *chan,
1774 u32 flags,
1775 struct regulatory_request *lr,
1776 struct wiphy *request_wiphy,
1777 const struct ieee80211_reg_rule *reg_rule)
1778{
1779 u32 bw_flags = 0;
1780 const struct ieee80211_power_rule *power_rule = NULL;
1781 const struct ieee80211_regdomain *regd;
1782
1783 regd = reg_get_regdomain(wiphy);
1784
1785 power_rule = &reg_rule->power_rule;
1786 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1787
1788 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1789 request_wiphy && request_wiphy == wiphy &&
1790 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1791 /*
1792 * This guarantees the driver's requested regulatory domain
1793 * will always be used as a base for further regulatory
1794 * settings
1795 */
1796 chan->flags = chan->orig_flags =
1797 map_regdom_flags(rd_flags: reg_rule->flags) | bw_flags;
1798 chan->max_antenna_gain = chan->orig_mag =
1799 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1800 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1801 (int) MBM_TO_DBM(power_rule->max_eirp);
1802
1803 if (chan->flags & IEEE80211_CHAN_RADAR) {
1804 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1805 if (reg_rule->dfs_cac_ms)
1806 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1807 }
1808
1809 if (chan->flags & IEEE80211_CHAN_PSD)
1810 chan->psd = reg_rule->psd;
1811
1812 return;
1813 }
1814
1815 chan->dfs_state = NL80211_DFS_USABLE;
1816 chan->dfs_state_entered = jiffies;
1817
1818 chan->beacon_found = false;
1819 chan->flags = flags | bw_flags | map_regdom_flags(rd_flags: reg_rule->flags);
1820 chan->max_antenna_gain =
1821 min_t(int, chan->orig_mag,
1822 MBI_TO_DBI(power_rule->max_antenna_gain));
1823 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1824
1825 if (chan->flags & IEEE80211_CHAN_RADAR) {
1826 if (reg_rule->dfs_cac_ms)
1827 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1828 else
1829 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1830 }
1831
1832 if (chan->flags & IEEE80211_CHAN_PSD)
1833 chan->psd = reg_rule->psd;
1834
1835 if (chan->orig_mpwr) {
1836 /*
1837 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1838 * will always follow the passed country IE power settings.
1839 */
1840 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1841 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1842 chan->max_power = chan->max_reg_power;
1843 else
1844 chan->max_power = min(chan->orig_mpwr,
1845 chan->max_reg_power);
1846 } else
1847 chan->max_power = chan->max_reg_power;
1848}
1849
1850static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1851 enum nl80211_reg_initiator initiator,
1852 struct ieee80211_channel *chan,
1853 u32 flags,
1854 struct regulatory_request *lr,
1855 struct wiphy *request_wiphy,
1856 const struct ieee80211_reg_rule *rrule1,
1857 const struct ieee80211_reg_rule *rrule2,
1858 struct ieee80211_freq_range *comb_range)
1859{
1860 u32 bw_flags1 = 0;
1861 u32 bw_flags2 = 0;
1862 const struct ieee80211_power_rule *power_rule1 = NULL;
1863 const struct ieee80211_power_rule *power_rule2 = NULL;
1864 const struct ieee80211_regdomain *regd;
1865
1866 regd = reg_get_regdomain(wiphy);
1867
1868 power_rule1 = &rrule1->power_rule;
1869 power_rule2 = &rrule2->power_rule;
1870 bw_flags1 = reg_rule_to_chan_bw_flags(regd, reg_rule: rrule1, chan);
1871 bw_flags2 = reg_rule_to_chan_bw_flags(regd, reg_rule: rrule2, chan);
1872
1873 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1874 request_wiphy && request_wiphy == wiphy &&
1875 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1876 /* This guarantees the driver's requested regulatory domain
1877 * will always be used as a base for further regulatory
1878 * settings
1879 */
1880 chan->flags =
1881 map_regdom_flags(rd_flags: rrule1->flags) |
1882 map_regdom_flags(rd_flags: rrule2->flags) |
1883 bw_flags1 |
1884 bw_flags2;
1885 chan->orig_flags = chan->flags;
1886 chan->max_antenna_gain =
1887 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1888 MBI_TO_DBI(power_rule2->max_antenna_gain));
1889 chan->orig_mag = chan->max_antenna_gain;
1890 chan->max_reg_power =
1891 min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1892 MBM_TO_DBM(power_rule2->max_eirp));
1893 chan->max_power = chan->max_reg_power;
1894 chan->orig_mpwr = chan->max_reg_power;
1895
1896 if (chan->flags & IEEE80211_CHAN_RADAR) {
1897 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1898 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1899 chan->dfs_cac_ms = max_t(unsigned int,
1900 rrule1->dfs_cac_ms,
1901 rrule2->dfs_cac_ms);
1902 }
1903
1904 if ((rrule1->flags & NL80211_RRF_PSD) &&
1905 (rrule2->flags & NL80211_RRF_PSD))
1906 chan->psd = min_t(s8, rrule1->psd, rrule2->psd);
1907 else
1908 chan->flags &= ~NL80211_RRF_PSD;
1909
1910 return;
1911 }
1912
1913 chan->dfs_state = NL80211_DFS_USABLE;
1914 chan->dfs_state_entered = jiffies;
1915
1916 chan->beacon_found = false;
1917 chan->flags = flags | bw_flags1 | bw_flags2 |
1918 map_regdom_flags(rd_flags: rrule1->flags) |
1919 map_regdom_flags(rd_flags: rrule2->flags);
1920
1921 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1922 * (otherwise no adj. rule case), recheck therefore
1923 */
1924 if (cfg80211_does_bw_fit_range(freq_range: comb_range,
1925 center_freq_khz: ieee80211_channel_to_khz(chan),
1926 MHZ_TO_KHZ(10)))
1927 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1928 if (cfg80211_does_bw_fit_range(freq_range: comb_range,
1929 center_freq_khz: ieee80211_channel_to_khz(chan),
1930 MHZ_TO_KHZ(20)))
1931 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1932
1933 chan->max_antenna_gain =
1934 min_t(int, chan->orig_mag,
1935 min_t(int,
1936 MBI_TO_DBI(power_rule1->max_antenna_gain),
1937 MBI_TO_DBI(power_rule2->max_antenna_gain)));
1938 chan->max_reg_power = min_t(int,
1939 MBM_TO_DBM(power_rule1->max_eirp),
1940 MBM_TO_DBM(power_rule2->max_eirp));
1941
1942 if (chan->flags & IEEE80211_CHAN_RADAR) {
1943 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1944 chan->dfs_cac_ms = max_t(unsigned int,
1945 rrule1->dfs_cac_ms,
1946 rrule2->dfs_cac_ms);
1947 else
1948 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1949 }
1950
1951 if (chan->orig_mpwr) {
1952 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1953 * will always follow the passed country IE power settings.
1954 */
1955 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1956 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1957 chan->max_power = chan->max_reg_power;
1958 else
1959 chan->max_power = min(chan->orig_mpwr,
1960 chan->max_reg_power);
1961 } else {
1962 chan->max_power = chan->max_reg_power;
1963 }
1964}
1965
1966/* Note that right now we assume the desired channel bandwidth
1967 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1968 * per channel, the primary and the extension channel).
1969 */
1970static void handle_channel(struct wiphy *wiphy,
1971 enum nl80211_reg_initiator initiator,
1972 struct ieee80211_channel *chan)
1973{
1974 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1975 struct regulatory_request *lr = get_last_request();
1976 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(wiphy_idx: lr->wiphy_idx);
1977 const struct ieee80211_reg_rule *rrule = NULL;
1978 const struct ieee80211_reg_rule *rrule1 = NULL;
1979 const struct ieee80211_reg_rule *rrule2 = NULL;
1980
1981 u32 flags = chan->orig_flags;
1982
1983 rrule = freq_reg_info(wiphy, orig_chan_freq);
1984 if (IS_ERR(ptr: rrule)) {
1985 /* check for adjacent match, therefore get rules for
1986 * chan - 20 MHz and chan + 20 MHz and test
1987 * if reg rules are adjacent
1988 */
1989 rrule1 = freq_reg_info(wiphy,
1990 orig_chan_freq - MHZ_TO_KHZ(20));
1991 rrule2 = freq_reg_info(wiphy,
1992 orig_chan_freq + MHZ_TO_KHZ(20));
1993 if (!IS_ERR(ptr: rrule1) && !IS_ERR(ptr: rrule2)) {
1994 struct ieee80211_freq_range comb_range;
1995
1996 if (rrule1->freq_range.end_freq_khz !=
1997 rrule2->freq_range.start_freq_khz)
1998 goto disable_chan;
1999
2000 comb_range.start_freq_khz =
2001 rrule1->freq_range.start_freq_khz;
2002 comb_range.end_freq_khz =
2003 rrule2->freq_range.end_freq_khz;
2004 comb_range.max_bandwidth_khz =
2005 min_t(u32,
2006 rrule1->freq_range.max_bandwidth_khz,
2007 rrule2->freq_range.max_bandwidth_khz);
2008
2009 if (!cfg80211_does_bw_fit_range(freq_range: &comb_range,
2010 center_freq_khz: orig_chan_freq,
2011 MHZ_TO_KHZ(20)))
2012 goto disable_chan;
2013
2014 handle_channel_adjacent_rules(wiphy, initiator, chan,
2015 flags, lr, request_wiphy,
2016 rrule1, rrule2,
2017 comb_range: &comb_range);
2018 return;
2019 }
2020
2021disable_chan:
2022 /* We will disable all channels that do not match our
2023 * received regulatory rule unless the hint is coming
2024 * from a Country IE and the Country IE had no information
2025 * about a band. The IEEE 802.11 spec allows for an AP
2026 * to send only a subset of the regulatory rules allowed,
2027 * so an AP in the US that only supports 2.4 GHz may only send
2028 * a country IE with information for the 2.4 GHz band
2029 * while 5 GHz is still supported.
2030 */
2031 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2032 PTR_ERR(ptr: rrule) == -ERANGE)
2033 return;
2034
2035 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2036 request_wiphy && request_wiphy == wiphy &&
2037 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2038 pr_debug("Disabling freq %d.%03d MHz for good\n",
2039 chan->center_freq, chan->freq_offset);
2040 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2041 chan->flags = chan->orig_flags;
2042 } else {
2043 pr_debug("Disabling freq %d.%03d MHz\n",
2044 chan->center_freq, chan->freq_offset);
2045 chan->flags |= IEEE80211_CHAN_DISABLED;
2046 }
2047 return;
2048 }
2049
2050 handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2051 request_wiphy, reg_rule: rrule);
2052}
2053
2054static void handle_band(struct wiphy *wiphy,
2055 enum nl80211_reg_initiator initiator,
2056 struct ieee80211_supported_band *sband)
2057{
2058 unsigned int i;
2059
2060 if (!sband)
2061 return;
2062
2063 for (i = 0; i < sband->n_channels; i++)
2064 handle_channel(wiphy, initiator, chan: &sband->channels[i]);
2065}
2066
2067static bool reg_request_cell_base(struct regulatory_request *request)
2068{
2069 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2070 return false;
2071 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2072}
2073
2074bool reg_last_request_cell_base(void)
2075{
2076 return reg_request_cell_base(request: get_last_request());
2077}
2078
2079#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2080/* Core specific check */
2081static enum reg_request_treatment
2082reg_ignore_cell_hint(struct regulatory_request *pending_request)
2083{
2084 struct regulatory_request *lr = get_last_request();
2085
2086 if (!reg_num_devs_support_basehint)
2087 return REG_REQ_IGNORE;
2088
2089 if (reg_request_cell_base(request: lr) &&
2090 !regdom_changes(alpha2: pending_request->alpha2))
2091 return REG_REQ_ALREADY_SET;
2092
2093 return REG_REQ_OK;
2094}
2095
2096/* Device specific check */
2097static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2098{
2099 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2100}
2101#else
2102static enum reg_request_treatment
2103reg_ignore_cell_hint(struct regulatory_request *pending_request)
2104{
2105 return REG_REQ_IGNORE;
2106}
2107
2108static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2109{
2110 return true;
2111}
2112#endif
2113
2114static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2115{
2116 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2117 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2118 return true;
2119 return false;
2120}
2121
2122static bool ignore_reg_update(struct wiphy *wiphy,
2123 enum nl80211_reg_initiator initiator)
2124{
2125 struct regulatory_request *lr = get_last_request();
2126
2127 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2128 return true;
2129
2130 if (!lr) {
2131 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2132 reg_initiator_name(initiator));
2133 return true;
2134 }
2135
2136 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2137 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2138 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2139 reg_initiator_name(initiator));
2140 return true;
2141 }
2142
2143 /*
2144 * wiphy->regd will be set once the device has its own
2145 * desired regulatory domain set
2146 */
2147 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2148 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2149 !is_world_regdom(alpha2: lr->alpha2)) {
2150 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2151 reg_initiator_name(initiator));
2152 return true;
2153 }
2154
2155 if (reg_request_cell_base(request: lr))
2156 return reg_dev_ignore_cell_hint(wiphy);
2157
2158 return false;
2159}
2160
2161static bool reg_is_world_roaming(struct wiphy *wiphy)
2162{
2163 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2164 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2165 struct regulatory_request *lr = get_last_request();
2166
2167 if (is_world_regdom(alpha2: cr->alpha2) || (wr && is_world_regdom(alpha2: wr->alpha2)))
2168 return true;
2169
2170 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2171 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2172 return true;
2173
2174 return false;
2175}
2176
2177static void reg_call_notifier(struct wiphy *wiphy,
2178 struct regulatory_request *request)
2179{
2180 if (wiphy->reg_notifier)
2181 wiphy->reg_notifier(wiphy, request);
2182}
2183
2184static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2185 struct reg_beacon *reg_beacon)
2186{
2187 struct ieee80211_supported_band *sband;
2188 struct ieee80211_channel *chan;
2189 bool channel_changed = false;
2190 struct ieee80211_channel chan_before;
2191 struct regulatory_request *lr = get_last_request();
2192
2193 sband = wiphy->bands[reg_beacon->chan.band];
2194 chan = &sband->channels[chan_idx];
2195
2196 if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2197 return;
2198
2199 if (chan->beacon_found)
2200 return;
2201
2202 chan->beacon_found = true;
2203
2204 if (!reg_is_world_roaming(wiphy))
2205 return;
2206
2207 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2208 return;
2209
2210 chan_before = *chan;
2211
2212 if (chan->flags & IEEE80211_CHAN_NO_IR) {
2213 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2214 channel_changed = true;
2215 }
2216
2217 if (channel_changed) {
2218 nl80211_send_beacon_hint_event(wiphy, channel_before: &chan_before, channel_after: chan);
2219 if (wiphy->flags & WIPHY_FLAG_CHANNEL_CHANGE_ON_BEACON)
2220 reg_call_notifier(wiphy, request: lr);
2221 }
2222}
2223
2224/*
2225 * Called when a scan on a wiphy finds a beacon on
2226 * new channel
2227 */
2228static void wiphy_update_new_beacon(struct wiphy *wiphy,
2229 struct reg_beacon *reg_beacon)
2230{
2231 unsigned int i;
2232 struct ieee80211_supported_band *sband;
2233
2234 if (!wiphy->bands[reg_beacon->chan.band])
2235 return;
2236
2237 sband = wiphy->bands[reg_beacon->chan.band];
2238
2239 for (i = 0; i < sband->n_channels; i++)
2240 handle_reg_beacon(wiphy, chan_idx: i, reg_beacon);
2241}
2242
2243/*
2244 * Called upon reg changes or a new wiphy is added
2245 */
2246static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2247{
2248 unsigned int i;
2249 struct ieee80211_supported_band *sband;
2250 struct reg_beacon *reg_beacon;
2251
2252 list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2253 if (!wiphy->bands[reg_beacon->chan.band])
2254 continue;
2255 sband = wiphy->bands[reg_beacon->chan.band];
2256 for (i = 0; i < sband->n_channels; i++)
2257 handle_reg_beacon(wiphy, chan_idx: i, reg_beacon);
2258 }
2259}
2260
2261/* Reap the advantages of previously found beacons */
2262static void reg_process_beacons(struct wiphy *wiphy)
2263{
2264 /*
2265 * Means we are just firing up cfg80211, so no beacons would
2266 * have been processed yet.
2267 */
2268 if (!last_request)
2269 return;
2270 wiphy_update_beacon_reg(wiphy);
2271}
2272
2273static bool is_ht40_allowed(struct ieee80211_channel *chan)
2274{
2275 if (!chan)
2276 return false;
2277 if (chan->flags & IEEE80211_CHAN_DISABLED)
2278 return false;
2279 /* This would happen when regulatory rules disallow HT40 completely */
2280 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2281 return false;
2282 return true;
2283}
2284
2285static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2286 struct ieee80211_channel *channel)
2287{
2288 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2289 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2290 const struct ieee80211_regdomain *regd;
2291 unsigned int i;
2292 u32 flags;
2293
2294 if (!is_ht40_allowed(chan: channel)) {
2295 channel->flags |= IEEE80211_CHAN_NO_HT40;
2296 return;
2297 }
2298
2299 /*
2300 * We need to ensure the extension channels exist to
2301 * be able to use HT40- or HT40+, this finds them (or not)
2302 */
2303 for (i = 0; i < sband->n_channels; i++) {
2304 struct ieee80211_channel *c = &sband->channels[i];
2305
2306 if (c->center_freq == (channel->center_freq - 20))
2307 channel_before = c;
2308 if (c->center_freq == (channel->center_freq + 20))
2309 channel_after = c;
2310 }
2311
2312 flags = 0;
2313 regd = get_wiphy_regdom(wiphy);
2314 if (regd) {
2315 const struct ieee80211_reg_rule *reg_rule =
2316 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2317 regd, MHZ_TO_KHZ(20));
2318
2319 if (!IS_ERR(ptr: reg_rule))
2320 flags = reg_rule->flags;
2321 }
2322
2323 /*
2324 * Please note that this assumes target bandwidth is 20 MHz,
2325 * if that ever changes we also need to change the below logic
2326 * to include that as well.
2327 */
2328 if (!is_ht40_allowed(chan: channel_before) ||
2329 flags & NL80211_RRF_NO_HT40MINUS)
2330 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2331 else
2332 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2333
2334 if (!is_ht40_allowed(chan: channel_after) ||
2335 flags & NL80211_RRF_NO_HT40PLUS)
2336 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2337 else
2338 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2339}
2340
2341static void reg_process_ht_flags_band(struct wiphy *wiphy,
2342 struct ieee80211_supported_band *sband)
2343{
2344 unsigned int i;
2345
2346 if (!sband)
2347 return;
2348
2349 for (i = 0; i < sband->n_channels; i++)
2350 reg_process_ht_flags_channel(wiphy, channel: &sband->channels[i]);
2351}
2352
2353static void reg_process_ht_flags(struct wiphy *wiphy)
2354{
2355 enum nl80211_band band;
2356
2357 if (!wiphy)
2358 return;
2359
2360 for (band = 0; band < NUM_NL80211_BANDS; band++)
2361 reg_process_ht_flags_band(wiphy, sband: wiphy->bands[band]);
2362}
2363
2364static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2365{
2366 struct cfg80211_chan_def chandef = {};
2367 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2368 enum nl80211_iftype iftype;
2369 bool ret;
2370 int link;
2371
2372 iftype = wdev->iftype;
2373
2374 /* make sure the interface is active */
2375 if (!wdev->netdev || !netif_running(dev: wdev->netdev))
2376 return true;
2377
2378 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2379 struct ieee80211_channel *chan;
2380
2381 if (!wdev->valid_links && link > 0)
2382 break;
2383 if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2384 continue;
2385 switch (iftype) {
2386 case NL80211_IFTYPE_AP:
2387 case NL80211_IFTYPE_P2P_GO:
2388 if (!wdev->links[link].ap.beacon_interval)
2389 continue;
2390 chandef = wdev->links[link].ap.chandef;
2391 break;
2392 case NL80211_IFTYPE_MESH_POINT:
2393 if (!wdev->u.mesh.beacon_interval)
2394 continue;
2395 chandef = wdev->u.mesh.chandef;
2396 break;
2397 case NL80211_IFTYPE_ADHOC:
2398 if (!wdev->u.ibss.ssid_len)
2399 continue;
2400 chandef = wdev->u.ibss.chandef;
2401 break;
2402 case NL80211_IFTYPE_STATION:
2403 case NL80211_IFTYPE_P2P_CLIENT:
2404 /* Maybe we could consider disabling that link only? */
2405 if (!wdev->links[link].client.current_bss)
2406 continue;
2407
2408 chan = wdev->links[link].client.current_bss->pub.channel;
2409 if (!chan)
2410 continue;
2411
2412 if (!rdev->ops->get_channel ||
2413 rdev_get_channel(rdev, wdev, link_id: link, chandef: &chandef))
2414 cfg80211_chandef_create(chandef: &chandef, channel: chan,
2415 chantype: NL80211_CHAN_NO_HT);
2416 break;
2417 case NL80211_IFTYPE_MONITOR:
2418 case NL80211_IFTYPE_AP_VLAN:
2419 case NL80211_IFTYPE_P2P_DEVICE:
2420 /* no enforcement required */
2421 break;
2422 case NL80211_IFTYPE_OCB:
2423 if (!wdev->u.ocb.chandef.chan)
2424 continue;
2425 chandef = wdev->u.ocb.chandef;
2426 break;
2427 case NL80211_IFTYPE_NAN:
2428 /* we have no info, but NAN is also pretty universal */
2429 continue;
2430 default:
2431 /* others not implemented for now */
2432 WARN_ON_ONCE(1);
2433 break;
2434 }
2435
2436 switch (iftype) {
2437 case NL80211_IFTYPE_AP:
2438 case NL80211_IFTYPE_P2P_GO:
2439 case NL80211_IFTYPE_ADHOC:
2440 case NL80211_IFTYPE_MESH_POINT:
2441 ret = cfg80211_reg_can_beacon_relax(wiphy, chandef: &chandef,
2442 iftype);
2443 if (!ret)
2444 return ret;
2445 break;
2446 case NL80211_IFTYPE_STATION:
2447 case NL80211_IFTYPE_P2P_CLIENT:
2448 ret = cfg80211_chandef_usable(wiphy, chandef: &chandef,
2449 prohibited_flags: IEEE80211_CHAN_DISABLED);
2450 if (!ret)
2451 return ret;
2452 break;
2453 default:
2454 break;
2455 }
2456 }
2457
2458 return true;
2459}
2460
2461static void reg_leave_invalid_chans(struct wiphy *wiphy)
2462{
2463 struct wireless_dev *wdev;
2464 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2465
2466 wiphy_lock(wiphy);
2467 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2468 if (!reg_wdev_chan_valid(wiphy, wdev))
2469 cfg80211_leave(rdev, wdev);
2470 wiphy_unlock(wiphy);
2471}
2472
2473static void reg_check_chans_work(struct work_struct *work)
2474{
2475 struct cfg80211_registered_device *rdev;
2476
2477 pr_debug("Verifying active interfaces after reg change\n");
2478 rtnl_lock();
2479
2480 for_each_rdev(rdev)
2481 reg_leave_invalid_chans(wiphy: &rdev->wiphy);
2482
2483 rtnl_unlock();
2484}
2485
2486void reg_check_channels(void)
2487{
2488 /*
2489 * Give usermode a chance to do something nicer (move to another
2490 * channel, orderly disconnection), before forcing a disconnection.
2491 */
2492 mod_delayed_work(wq: system_power_efficient_wq,
2493 dwork: &reg_check_chans,
2494 delay: msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2495}
2496
2497static void wiphy_update_regulatory(struct wiphy *wiphy,
2498 enum nl80211_reg_initiator initiator)
2499{
2500 enum nl80211_band band;
2501 struct regulatory_request *lr = get_last_request();
2502
2503 if (ignore_reg_update(wiphy, initiator)) {
2504 /*
2505 * Regulatory updates set by CORE are ignored for custom
2506 * regulatory cards. Let us notify the changes to the driver,
2507 * as some drivers used this to restore its orig_* reg domain.
2508 */
2509 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2510 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2511 !(wiphy->regulatory_flags &
2512 REGULATORY_WIPHY_SELF_MANAGED))
2513 reg_call_notifier(wiphy, request: lr);
2514 return;
2515 }
2516
2517 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2518
2519 for (band = 0; band < NUM_NL80211_BANDS; band++)
2520 handle_band(wiphy, initiator, sband: wiphy->bands[band]);
2521
2522 reg_process_beacons(wiphy);
2523 reg_process_ht_flags(wiphy);
2524 reg_call_notifier(wiphy, request: lr);
2525}
2526
2527static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2528{
2529 struct cfg80211_registered_device *rdev;
2530 struct wiphy *wiphy;
2531
2532 ASSERT_RTNL();
2533
2534 for_each_rdev(rdev) {
2535 wiphy = &rdev->wiphy;
2536 wiphy_update_regulatory(wiphy, initiator);
2537 }
2538
2539 reg_check_channels();
2540}
2541
2542static void handle_channel_custom(struct wiphy *wiphy,
2543 struct ieee80211_channel *chan,
2544 const struct ieee80211_regdomain *regd,
2545 u32 min_bw)
2546{
2547 u32 bw_flags = 0;
2548 const struct ieee80211_reg_rule *reg_rule = NULL;
2549 const struct ieee80211_power_rule *power_rule = NULL;
2550 u32 bw, center_freq_khz;
2551
2552 center_freq_khz = ieee80211_channel_to_khz(chan);
2553 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2554 reg_rule = freq_reg_info_regd(center_freq: center_freq_khz, regd, bw);
2555 if (!IS_ERR(ptr: reg_rule))
2556 break;
2557 }
2558
2559 if (IS_ERR_OR_NULL(ptr: reg_rule)) {
2560 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2561 chan->center_freq, chan->freq_offset);
2562 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2563 chan->flags |= IEEE80211_CHAN_DISABLED;
2564 } else {
2565 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2566 chan->flags = chan->orig_flags;
2567 }
2568 return;
2569 }
2570
2571 power_rule = &reg_rule->power_rule;
2572 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2573
2574 chan->dfs_state_entered = jiffies;
2575 chan->dfs_state = NL80211_DFS_USABLE;
2576
2577 chan->beacon_found = false;
2578
2579 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2580 chan->flags = chan->orig_flags | bw_flags |
2581 map_regdom_flags(rd_flags: reg_rule->flags);
2582 else
2583 chan->flags |= map_regdom_flags(rd_flags: reg_rule->flags) | bw_flags;
2584
2585 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2586 chan->max_reg_power = chan->max_power =
2587 (int) MBM_TO_DBM(power_rule->max_eirp);
2588
2589 if (chan->flags & IEEE80211_CHAN_RADAR) {
2590 if (reg_rule->dfs_cac_ms)
2591 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2592 else
2593 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2594 }
2595
2596 if (chan->flags & IEEE80211_CHAN_PSD)
2597 chan->psd = reg_rule->psd;
2598
2599 chan->max_power = chan->max_reg_power;
2600}
2601
2602static void handle_band_custom(struct wiphy *wiphy,
2603 struct ieee80211_supported_band *sband,
2604 const struct ieee80211_regdomain *regd)
2605{
2606 unsigned int i;
2607
2608 if (!sband)
2609 return;
2610
2611 /*
2612 * We currently assume that you always want at least 20 MHz,
2613 * otherwise channel 12 might get enabled if this rule is
2614 * compatible to US, which permits 2402 - 2472 MHz.
2615 */
2616 for (i = 0; i < sband->n_channels; i++)
2617 handle_channel_custom(wiphy, chan: &sband->channels[i], regd,
2618 MHZ_TO_KHZ(20));
2619}
2620
2621/* Used by drivers prior to wiphy registration */
2622void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2623 const struct ieee80211_regdomain *regd)
2624{
2625 const struct ieee80211_regdomain *new_regd, *tmp;
2626 enum nl80211_band band;
2627 unsigned int bands_set = 0;
2628
2629 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2630 "wiphy should have REGULATORY_CUSTOM_REG\n");
2631 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2632
2633 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2634 if (!wiphy->bands[band])
2635 continue;
2636 handle_band_custom(wiphy, sband: wiphy->bands[band], regd);
2637 bands_set++;
2638 }
2639
2640 /*
2641 * no point in calling this if it won't have any effect
2642 * on your device's supported bands.
2643 */
2644 WARN_ON(!bands_set);
2645 new_regd = reg_copy_regd(src_regd: regd);
2646 if (IS_ERR(ptr: new_regd))
2647 return;
2648
2649 rtnl_lock();
2650 wiphy_lock(wiphy);
2651
2652 tmp = get_wiphy_regdom(wiphy);
2653 rcu_assign_pointer(wiphy->regd, new_regd);
2654 rcu_free_regdom(r: tmp);
2655
2656 wiphy_unlock(wiphy);
2657 rtnl_unlock();
2658}
2659EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2660
2661static void reg_set_request_processed(void)
2662{
2663 bool need_more_processing = false;
2664 struct regulatory_request *lr = get_last_request();
2665
2666 lr->processed = true;
2667
2668 spin_lock(lock: &reg_requests_lock);
2669 if (!list_empty(head: &reg_requests_list))
2670 need_more_processing = true;
2671 spin_unlock(lock: &reg_requests_lock);
2672
2673 cancel_crda_timeout();
2674
2675 if (need_more_processing)
2676 schedule_work(work: &reg_work);
2677}
2678
2679/**
2680 * reg_process_hint_core - process core regulatory requests
2681 * @core_request: a pending core regulatory request
2682 *
2683 * The wireless subsystem can use this function to process
2684 * a regulatory request issued by the regulatory core.
2685 *
2686 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2687 * hint was processed or ignored
2688 */
2689static enum reg_request_treatment
2690reg_process_hint_core(struct regulatory_request *core_request)
2691{
2692 if (reg_query_database(request: core_request)) {
2693 core_request->intersect = false;
2694 core_request->processed = false;
2695 reg_update_last_request(request: core_request);
2696 return REG_REQ_OK;
2697 }
2698
2699 return REG_REQ_IGNORE;
2700}
2701
2702static enum reg_request_treatment
2703__reg_process_hint_user(struct regulatory_request *user_request)
2704{
2705 struct regulatory_request *lr = get_last_request();
2706
2707 if (reg_request_cell_base(request: user_request))
2708 return reg_ignore_cell_hint(pending_request: user_request);
2709
2710 if (reg_request_cell_base(request: lr))
2711 return REG_REQ_IGNORE;
2712
2713 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2714 return REG_REQ_INTERSECT;
2715 /*
2716 * If the user knows better the user should set the regdom
2717 * to their country before the IE is picked up
2718 */
2719 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2720 lr->intersect)
2721 return REG_REQ_IGNORE;
2722 /*
2723 * Process user requests only after previous user/driver/core
2724 * requests have been processed
2725 */
2726 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2727 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2728 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2729 regdom_changes(alpha2: lr->alpha2))
2730 return REG_REQ_IGNORE;
2731
2732 if (!regdom_changes(alpha2: user_request->alpha2))
2733 return REG_REQ_ALREADY_SET;
2734
2735 return REG_REQ_OK;
2736}
2737
2738/**
2739 * reg_process_hint_user - process user regulatory requests
2740 * @user_request: a pending user regulatory request
2741 *
2742 * The wireless subsystem can use this function to process
2743 * a regulatory request initiated by userspace.
2744 *
2745 * Returns: %REG_REQ_OK or %REG_REQ_IGNORE, indicating if the
2746 * hint was processed or ignored
2747 */
2748static enum reg_request_treatment
2749reg_process_hint_user(struct regulatory_request *user_request)
2750{
2751 enum reg_request_treatment treatment;
2752
2753 treatment = __reg_process_hint_user(user_request);
2754 if (treatment == REG_REQ_IGNORE ||
2755 treatment == REG_REQ_ALREADY_SET)
2756 return REG_REQ_IGNORE;
2757
2758 user_request->intersect = treatment == REG_REQ_INTERSECT;
2759 user_request->processed = false;
2760
2761 if (reg_query_database(request: user_request)) {
2762 reg_update_last_request(request: user_request);
2763 user_alpha2[0] = user_request->alpha2[0];
2764 user_alpha2[1] = user_request->alpha2[1];
2765 return REG_REQ_OK;
2766 }
2767
2768 return REG_REQ_IGNORE;
2769}
2770
2771static enum reg_request_treatment
2772__reg_process_hint_driver(struct regulatory_request *driver_request)
2773{
2774 struct regulatory_request *lr = get_last_request();
2775
2776 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2777 if (regdom_changes(alpha2: driver_request->alpha2))
2778 return REG_REQ_OK;
2779 return REG_REQ_ALREADY_SET;
2780 }
2781
2782 /*
2783 * This would happen if you unplug and plug your card
2784 * back in or if you add a new device for which the previously
2785 * loaded card also agrees on the regulatory domain.
2786 */
2787 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2788 !regdom_changes(alpha2: driver_request->alpha2))
2789 return REG_REQ_ALREADY_SET;
2790
2791 return REG_REQ_INTERSECT;
2792}
2793
2794/**
2795 * reg_process_hint_driver - process driver regulatory requests
2796 * @wiphy: the wireless device for the regulatory request
2797 * @driver_request: a pending driver regulatory request
2798 *
2799 * The wireless subsystem can use this function to process
2800 * a regulatory request issued by an 802.11 driver.
2801 *
2802 * Returns: one of the different reg request treatment values.
2803 */
2804static enum reg_request_treatment
2805reg_process_hint_driver(struct wiphy *wiphy,
2806 struct regulatory_request *driver_request)
2807{
2808 const struct ieee80211_regdomain *regd, *tmp;
2809 enum reg_request_treatment treatment;
2810
2811 treatment = __reg_process_hint_driver(driver_request);
2812
2813 switch (treatment) {
2814 case REG_REQ_OK:
2815 break;
2816 case REG_REQ_IGNORE:
2817 return REG_REQ_IGNORE;
2818 case REG_REQ_INTERSECT:
2819 case REG_REQ_ALREADY_SET:
2820 regd = reg_copy_regd(src_regd: get_cfg80211_regdom());
2821 if (IS_ERR(ptr: regd))
2822 return REG_REQ_IGNORE;
2823
2824 tmp = get_wiphy_regdom(wiphy);
2825 ASSERT_RTNL();
2826 wiphy_lock(wiphy);
2827 rcu_assign_pointer(wiphy->regd, regd);
2828 wiphy_unlock(wiphy);
2829 rcu_free_regdom(r: tmp);
2830 }
2831
2832
2833 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2834 driver_request->processed = false;
2835
2836 /*
2837 * Since CRDA will not be called in this case as we already
2838 * have applied the requested regulatory domain before we just
2839 * inform userspace we have processed the request
2840 */
2841 if (treatment == REG_REQ_ALREADY_SET) {
2842 nl80211_send_reg_change_event(request: driver_request);
2843 reg_update_last_request(request: driver_request);
2844 reg_set_request_processed();
2845 return REG_REQ_ALREADY_SET;
2846 }
2847
2848 if (reg_query_database(request: driver_request)) {
2849 reg_update_last_request(request: driver_request);
2850 return REG_REQ_OK;
2851 }
2852
2853 return REG_REQ_IGNORE;
2854}
2855
2856static enum reg_request_treatment
2857__reg_process_hint_country_ie(struct wiphy *wiphy,
2858 struct regulatory_request *country_ie_request)
2859{
2860 struct wiphy *last_wiphy = NULL;
2861 struct regulatory_request *lr = get_last_request();
2862
2863 if (reg_request_cell_base(request: lr)) {
2864 /* Trust a Cell base station over the AP's country IE */
2865 if (regdom_changes(alpha2: country_ie_request->alpha2))
2866 return REG_REQ_IGNORE;
2867 return REG_REQ_ALREADY_SET;
2868 } else {
2869 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2870 return REG_REQ_IGNORE;
2871 }
2872
2873 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2874 return -EINVAL;
2875
2876 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2877 return REG_REQ_OK;
2878
2879 last_wiphy = wiphy_idx_to_wiphy(wiphy_idx: lr->wiphy_idx);
2880
2881 if (last_wiphy != wiphy) {
2882 /*
2883 * Two cards with two APs claiming different
2884 * Country IE alpha2s. We could
2885 * intersect them, but that seems unlikely
2886 * to be correct. Reject second one for now.
2887 */
2888 if (regdom_changes(alpha2: country_ie_request->alpha2))
2889 return REG_REQ_IGNORE;
2890 return REG_REQ_ALREADY_SET;
2891 }
2892
2893 if (regdom_changes(alpha2: country_ie_request->alpha2))
2894 return REG_REQ_OK;
2895 return REG_REQ_ALREADY_SET;
2896}
2897
2898/**
2899 * reg_process_hint_country_ie - process regulatory requests from country IEs
2900 * @wiphy: the wireless device for the regulatory request
2901 * @country_ie_request: a regulatory request from a country IE
2902 *
2903 * The wireless subsystem can use this function to process
2904 * a regulatory request issued by a country Information Element.
2905 *
2906 * Returns: one of the different reg request treatment values.
2907 */
2908static enum reg_request_treatment
2909reg_process_hint_country_ie(struct wiphy *wiphy,
2910 struct regulatory_request *country_ie_request)
2911{
2912 enum reg_request_treatment treatment;
2913
2914 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2915
2916 switch (treatment) {
2917 case REG_REQ_OK:
2918 break;
2919 case REG_REQ_IGNORE:
2920 return REG_REQ_IGNORE;
2921 case REG_REQ_ALREADY_SET:
2922 reg_free_request(request: country_ie_request);
2923 return REG_REQ_ALREADY_SET;
2924 case REG_REQ_INTERSECT:
2925 /*
2926 * This doesn't happen yet, not sure we
2927 * ever want to support it for this case.
2928 */
2929 WARN_ONCE(1, "Unexpected intersection for country elements");
2930 return REG_REQ_IGNORE;
2931 }
2932
2933 country_ie_request->intersect = false;
2934 country_ie_request->processed = false;
2935
2936 if (reg_query_database(request: country_ie_request)) {
2937 reg_update_last_request(request: country_ie_request);
2938 return REG_REQ_OK;
2939 }
2940
2941 return REG_REQ_IGNORE;
2942}
2943
2944bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2945{
2946 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2947 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2948 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2949 bool dfs_domain_same;
2950
2951 rcu_read_lock();
2952
2953 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2954 wiphy1_regd = rcu_dereference(wiphy1->regd);
2955 if (!wiphy1_regd)
2956 wiphy1_regd = cfg80211_regd;
2957
2958 wiphy2_regd = rcu_dereference(wiphy2->regd);
2959 if (!wiphy2_regd)
2960 wiphy2_regd = cfg80211_regd;
2961
2962 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2963
2964 rcu_read_unlock();
2965
2966 return dfs_domain_same;
2967}
2968
2969static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2970 struct ieee80211_channel *src_chan)
2971{
2972 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2973 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2974 return;
2975
2976 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2977 src_chan->flags & IEEE80211_CHAN_DISABLED)
2978 return;
2979
2980 if (src_chan->center_freq == dst_chan->center_freq &&
2981 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2982 dst_chan->dfs_state = src_chan->dfs_state;
2983 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2984 }
2985}
2986
2987static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2988 struct wiphy *src_wiphy)
2989{
2990 struct ieee80211_supported_band *src_sband, *dst_sband;
2991 struct ieee80211_channel *src_chan, *dst_chan;
2992 int i, j, band;
2993
2994 if (!reg_dfs_domain_same(wiphy1: dst_wiphy, wiphy2: src_wiphy))
2995 return;
2996
2997 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2998 dst_sband = dst_wiphy->bands[band];
2999 src_sband = src_wiphy->bands[band];
3000 if (!dst_sband || !src_sband)
3001 continue;
3002
3003 for (i = 0; i < dst_sband->n_channels; i++) {
3004 dst_chan = &dst_sband->channels[i];
3005 for (j = 0; j < src_sband->n_channels; j++) {
3006 src_chan = &src_sband->channels[j];
3007 reg_copy_dfs_chan_state(dst_chan, src_chan);
3008 }
3009 }
3010 }
3011}
3012
3013static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
3014{
3015 struct cfg80211_registered_device *rdev;
3016
3017 ASSERT_RTNL();
3018
3019 for_each_rdev(rdev) {
3020 if (wiphy == &rdev->wiphy)
3021 continue;
3022 wiphy_share_dfs_chan_state(dst_wiphy: wiphy, src_wiphy: &rdev->wiphy);
3023 }
3024}
3025
3026/* This processes *all* regulatory hints */
3027static void reg_process_hint(struct regulatory_request *reg_request)
3028{
3029 struct wiphy *wiphy = NULL;
3030 enum reg_request_treatment treatment;
3031 enum nl80211_reg_initiator initiator = reg_request->initiator;
3032
3033 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3034 wiphy = wiphy_idx_to_wiphy(wiphy_idx: reg_request->wiphy_idx);
3035
3036 switch (initiator) {
3037 case NL80211_REGDOM_SET_BY_CORE:
3038 treatment = reg_process_hint_core(core_request: reg_request);
3039 break;
3040 case NL80211_REGDOM_SET_BY_USER:
3041 treatment = reg_process_hint_user(user_request: reg_request);
3042 break;
3043 case NL80211_REGDOM_SET_BY_DRIVER:
3044 if (!wiphy)
3045 goto out_free;
3046 treatment = reg_process_hint_driver(wiphy, driver_request: reg_request);
3047 break;
3048 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3049 if (!wiphy)
3050 goto out_free;
3051 treatment = reg_process_hint_country_ie(wiphy, country_ie_request: reg_request);
3052 break;
3053 default:
3054 WARN(1, "invalid initiator %d\n", initiator);
3055 goto out_free;
3056 }
3057
3058 if (treatment == REG_REQ_IGNORE)
3059 goto out_free;
3060
3061 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3062 "unexpected treatment value %d\n", treatment);
3063
3064 /* This is required so that the orig_* parameters are saved.
3065 * NOTE: treatment must be set for any case that reaches here!
3066 */
3067 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3068 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3069 wiphy_update_regulatory(wiphy, initiator);
3070 wiphy_all_share_dfs_chan_state(wiphy);
3071 reg_check_channels();
3072 }
3073
3074 return;
3075
3076out_free:
3077 reg_free_request(request: reg_request);
3078}
3079
3080static void notify_self_managed_wiphys(struct regulatory_request *request)
3081{
3082 struct cfg80211_registered_device *rdev;
3083 struct wiphy *wiphy;
3084
3085 for_each_rdev(rdev) {
3086 wiphy = &rdev->wiphy;
3087 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3088 request->initiator == NL80211_REGDOM_SET_BY_USER)
3089 reg_call_notifier(wiphy, request);
3090 }
3091}
3092
3093/*
3094 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3095 * Regulatory hints come on a first come first serve basis and we
3096 * must process each one atomically.
3097 */
3098static void reg_process_pending_hints(void)
3099{
3100 struct regulatory_request *reg_request, *lr;
3101
3102 lr = get_last_request();
3103
3104 /* When last_request->processed becomes true this will be rescheduled */
3105 if (lr && !lr->processed) {
3106 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3107 return;
3108 }
3109
3110 spin_lock(lock: &reg_requests_lock);
3111
3112 if (list_empty(head: &reg_requests_list)) {
3113 spin_unlock(lock: &reg_requests_lock);
3114 return;
3115 }
3116
3117 reg_request = list_first_entry(&reg_requests_list,
3118 struct regulatory_request,
3119 list);
3120 list_del_init(entry: &reg_request->list);
3121
3122 spin_unlock(lock: &reg_requests_lock);
3123
3124 notify_self_managed_wiphys(request: reg_request);
3125
3126 reg_process_hint(reg_request);
3127
3128 lr = get_last_request();
3129
3130 spin_lock(lock: &reg_requests_lock);
3131 if (!list_empty(head: &reg_requests_list) && lr && lr->processed)
3132 schedule_work(work: &reg_work);
3133 spin_unlock(lock: &reg_requests_lock);
3134}
3135
3136/* Processes beacon hints -- this has nothing to do with country IEs */
3137static void reg_process_pending_beacon_hints(void)
3138{
3139 struct cfg80211_registered_device *rdev;
3140 struct reg_beacon *pending_beacon, *tmp;
3141
3142 /* This goes through the _pending_ beacon list */
3143 spin_lock_bh(lock: &reg_pending_beacons_lock);
3144
3145 list_for_each_entry_safe(pending_beacon, tmp,
3146 &reg_pending_beacons, list) {
3147 list_del_init(entry: &pending_beacon->list);
3148
3149 /* Applies the beacon hint to current wiphys */
3150 for_each_rdev(rdev)
3151 wiphy_update_new_beacon(wiphy: &rdev->wiphy, reg_beacon: pending_beacon);
3152
3153 /* Remembers the beacon hint for new wiphys or reg changes */
3154 list_add_tail(new: &pending_beacon->list, head: &reg_beacon_list);
3155 }
3156
3157 spin_unlock_bh(lock: &reg_pending_beacons_lock);
3158}
3159
3160static void reg_process_self_managed_hint(struct wiphy *wiphy)
3161{
3162 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3163 const struct ieee80211_regdomain *tmp;
3164 const struct ieee80211_regdomain *regd;
3165 enum nl80211_band band;
3166 struct regulatory_request request = {};
3167
3168 ASSERT_RTNL();
3169 lockdep_assert_wiphy(wiphy);
3170
3171 spin_lock(lock: &reg_requests_lock);
3172 regd = rdev->requested_regd;
3173 rdev->requested_regd = NULL;
3174 spin_unlock(lock: &reg_requests_lock);
3175
3176 if (!regd)
3177 return;
3178
3179 tmp = get_wiphy_regdom(wiphy);
3180 rcu_assign_pointer(wiphy->regd, regd);
3181 rcu_free_regdom(r: tmp);
3182
3183 for (band = 0; band < NUM_NL80211_BANDS; band++)
3184 handle_band_custom(wiphy, sband: wiphy->bands[band], regd);
3185
3186 reg_process_ht_flags(wiphy);
3187
3188 request.wiphy_idx = get_wiphy_idx(wiphy);
3189 request.alpha2[0] = regd->alpha2[0];
3190 request.alpha2[1] = regd->alpha2[1];
3191 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3192
3193 if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3194 reg_call_notifier(wiphy, request: &request);
3195
3196 nl80211_send_wiphy_reg_change_event(request: &request);
3197}
3198
3199static void reg_process_self_managed_hints(void)
3200{
3201 struct cfg80211_registered_device *rdev;
3202
3203 ASSERT_RTNL();
3204
3205 for_each_rdev(rdev) {
3206 wiphy_lock(wiphy: &rdev->wiphy);
3207 reg_process_self_managed_hint(wiphy: &rdev->wiphy);
3208 wiphy_unlock(wiphy: &rdev->wiphy);
3209 }
3210
3211 reg_check_channels();
3212}
3213
3214static void reg_todo(struct work_struct *work)
3215{
3216 rtnl_lock();
3217 reg_process_pending_hints();
3218 reg_process_pending_beacon_hints();
3219 reg_process_self_managed_hints();
3220 rtnl_unlock();
3221}
3222
3223static void queue_regulatory_request(struct regulatory_request *request)
3224{
3225 request->alpha2[0] = toupper(request->alpha2[0]);
3226 request->alpha2[1] = toupper(request->alpha2[1]);
3227
3228 spin_lock(lock: &reg_requests_lock);
3229 list_add_tail(new: &request->list, head: &reg_requests_list);
3230 spin_unlock(lock: &reg_requests_lock);
3231
3232 schedule_work(work: &reg_work);
3233}
3234
3235/*
3236 * Core regulatory hint -- happens during cfg80211_init()
3237 * and when we restore regulatory settings.
3238 */
3239static int regulatory_hint_core(const char *alpha2)
3240{
3241 struct regulatory_request *request;
3242
3243 request = kzalloc(size: sizeof(struct regulatory_request), GFP_KERNEL);
3244 if (!request)
3245 return -ENOMEM;
3246
3247 request->alpha2[0] = alpha2[0];
3248 request->alpha2[1] = alpha2[1];
3249 request->initiator = NL80211_REGDOM_SET_BY_CORE;
3250 request->wiphy_idx = WIPHY_IDX_INVALID;
3251
3252 queue_regulatory_request(request);
3253
3254 return 0;
3255}
3256
3257/* User hints */
3258int regulatory_hint_user(const char *alpha2,
3259 enum nl80211_user_reg_hint_type user_reg_hint_type)
3260{
3261 struct regulatory_request *request;
3262
3263 if (WARN_ON(!alpha2))
3264 return -EINVAL;
3265
3266 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3267 return -EINVAL;
3268
3269 request = kzalloc(size: sizeof(struct regulatory_request), GFP_KERNEL);
3270 if (!request)
3271 return -ENOMEM;
3272
3273 request->wiphy_idx = WIPHY_IDX_INVALID;
3274 request->alpha2[0] = alpha2[0];
3275 request->alpha2[1] = alpha2[1];
3276 request->initiator = NL80211_REGDOM_SET_BY_USER;
3277 request->user_reg_hint_type = user_reg_hint_type;
3278
3279 /* Allow calling CRDA again */
3280 reset_crda_timeouts();
3281
3282 queue_regulatory_request(request);
3283
3284 return 0;
3285}
3286
3287int regulatory_hint_indoor(bool is_indoor, u32 portid)
3288{
3289 spin_lock(lock: &reg_indoor_lock);
3290
3291 /* It is possible that more than one user space process is trying to
3292 * configure the indoor setting. To handle such cases, clear the indoor
3293 * setting in case that some process does not think that the device
3294 * is operating in an indoor environment. In addition, if a user space
3295 * process indicates that it is controlling the indoor setting, save its
3296 * portid, i.e., make it the owner.
3297 */
3298 reg_is_indoor = is_indoor;
3299 if (reg_is_indoor) {
3300 if (!reg_is_indoor_portid)
3301 reg_is_indoor_portid = portid;
3302 } else {
3303 reg_is_indoor_portid = 0;
3304 }
3305
3306 spin_unlock(lock: &reg_indoor_lock);
3307
3308 if (!is_indoor)
3309 reg_check_channels();
3310
3311 return 0;
3312}
3313
3314void regulatory_netlink_notify(u32 portid)
3315{
3316 spin_lock(lock: &reg_indoor_lock);
3317
3318 if (reg_is_indoor_portid != portid) {
3319 spin_unlock(lock: &reg_indoor_lock);
3320 return;
3321 }
3322
3323 reg_is_indoor = false;
3324 reg_is_indoor_portid = 0;
3325
3326 spin_unlock(lock: &reg_indoor_lock);
3327
3328 reg_check_channels();
3329}
3330
3331/* Driver hints */
3332int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3333{
3334 struct regulatory_request *request;
3335
3336 if (WARN_ON(!alpha2 || !wiphy))
3337 return -EINVAL;
3338
3339 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3340
3341 request = kzalloc(size: sizeof(struct regulatory_request), GFP_KERNEL);
3342 if (!request)
3343 return -ENOMEM;
3344
3345 request->wiphy_idx = get_wiphy_idx(wiphy);
3346
3347 request->alpha2[0] = alpha2[0];
3348 request->alpha2[1] = alpha2[1];
3349 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3350
3351 /* Allow calling CRDA again */
3352 reset_crda_timeouts();
3353
3354 queue_regulatory_request(request);
3355
3356 return 0;
3357}
3358EXPORT_SYMBOL(regulatory_hint);
3359
3360void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3361 const u8 *country_ie, u8 country_ie_len)
3362{
3363 char alpha2[2];
3364 enum environment_cap env = ENVIRON_ANY;
3365 struct regulatory_request *request = NULL, *lr;
3366
3367 /* IE len must be evenly divisible by 2 */
3368 if (country_ie_len & 0x01)
3369 return;
3370
3371 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3372 return;
3373
3374 request = kzalloc(size: sizeof(*request), GFP_KERNEL);
3375 if (!request)
3376 return;
3377
3378 alpha2[0] = country_ie[0];
3379 alpha2[1] = country_ie[1];
3380
3381 if (country_ie[2] == 'I')
3382 env = ENVIRON_INDOOR;
3383 else if (country_ie[2] == 'O')
3384 env = ENVIRON_OUTDOOR;
3385
3386 rcu_read_lock();
3387 lr = get_last_request();
3388
3389 if (unlikely(!lr))
3390 goto out;
3391
3392 /*
3393 * We will run this only upon a successful connection on cfg80211.
3394 * We leave conflict resolution to the workqueue, where can hold
3395 * the RTNL.
3396 */
3397 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3398 lr->wiphy_idx != WIPHY_IDX_INVALID)
3399 goto out;
3400
3401 request->wiphy_idx = get_wiphy_idx(wiphy);
3402 request->alpha2[0] = alpha2[0];
3403 request->alpha2[1] = alpha2[1];
3404 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3405 request->country_ie_env = env;
3406
3407 /* Allow calling CRDA again */
3408 reset_crda_timeouts();
3409
3410 queue_regulatory_request(request);
3411 request = NULL;
3412out:
3413 kfree(objp: request);
3414 rcu_read_unlock();
3415}
3416
3417static void restore_alpha2(char *alpha2, bool reset_user)
3418{
3419 /* indicates there is no alpha2 to consider for restoration */
3420 alpha2[0] = '9';
3421 alpha2[1] = '7';
3422
3423 /* The user setting has precedence over the module parameter */
3424 if (is_user_regdom_saved()) {
3425 /* Unless we're asked to ignore it and reset it */
3426 if (reset_user) {
3427 pr_debug("Restoring regulatory settings including user preference\n");
3428 user_alpha2[0] = '9';
3429 user_alpha2[1] = '7';
3430
3431 /*
3432 * If we're ignoring user settings, we still need to
3433 * check the module parameter to ensure we put things
3434 * back as they were for a full restore.
3435 */
3436 if (!is_world_regdom(alpha2: ieee80211_regdom)) {
3437 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3438 ieee80211_regdom[0], ieee80211_regdom[1]);
3439 alpha2[0] = ieee80211_regdom[0];
3440 alpha2[1] = ieee80211_regdom[1];
3441 }
3442 } else {
3443 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3444 user_alpha2[0], user_alpha2[1]);
3445 alpha2[0] = user_alpha2[0];
3446 alpha2[1] = user_alpha2[1];
3447 }
3448 } else if (!is_world_regdom(alpha2: ieee80211_regdom)) {
3449 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3450 ieee80211_regdom[0], ieee80211_regdom[1]);
3451 alpha2[0] = ieee80211_regdom[0];
3452 alpha2[1] = ieee80211_regdom[1];
3453 } else
3454 pr_debug("Restoring regulatory settings\n");
3455}
3456
3457static void restore_custom_reg_settings(struct wiphy *wiphy)
3458{
3459 struct ieee80211_supported_band *sband;
3460 enum nl80211_band band;
3461 struct ieee80211_channel *chan;
3462 int i;
3463
3464 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3465 sband = wiphy->bands[band];
3466 if (!sband)
3467 continue;
3468 for (i = 0; i < sband->n_channels; i++) {
3469 chan = &sband->channels[i];
3470 chan->flags = chan->orig_flags;
3471 chan->max_antenna_gain = chan->orig_mag;
3472 chan->max_power = chan->orig_mpwr;
3473 chan->beacon_found = false;
3474 }
3475 }
3476}
3477
3478/*
3479 * Restoring regulatory settings involves ignoring any
3480 * possibly stale country IE information and user regulatory
3481 * settings if so desired, this includes any beacon hints
3482 * learned as we could have traveled outside to another country
3483 * after disconnection. To restore regulatory settings we do
3484 * exactly what we did at bootup:
3485 *
3486 * - send a core regulatory hint
3487 * - send a user regulatory hint if applicable
3488 *
3489 * Device drivers that send a regulatory hint for a specific country
3490 * keep their own regulatory domain on wiphy->regd so that does
3491 * not need to be remembered.
3492 */
3493static void restore_regulatory_settings(bool reset_user, bool cached)
3494{
3495 char alpha2[2];
3496 char world_alpha2[2];
3497 struct reg_beacon *reg_beacon, *btmp;
3498 LIST_HEAD(tmp_reg_req_list);
3499 struct cfg80211_registered_device *rdev;
3500
3501 ASSERT_RTNL();
3502
3503 /*
3504 * Clear the indoor setting in case that it is not controlled by user
3505 * space, as otherwise there is no guarantee that the device is still
3506 * operating in an indoor environment.
3507 */
3508 spin_lock(lock: &reg_indoor_lock);
3509 if (reg_is_indoor && !reg_is_indoor_portid) {
3510 reg_is_indoor = false;
3511 reg_check_channels();
3512 }
3513 spin_unlock(lock: &reg_indoor_lock);
3514
3515 reset_regdomains(full_reset: true, new_regdom: &world_regdom);
3516 restore_alpha2(alpha2, reset_user);
3517
3518 /*
3519 * If there's any pending requests we simply
3520 * stash them to a temporary pending queue and
3521 * add then after we've restored regulatory
3522 * settings.
3523 */
3524 spin_lock(lock: &reg_requests_lock);
3525 list_splice_tail_init(list: &reg_requests_list, head: &tmp_reg_req_list);
3526 spin_unlock(lock: &reg_requests_lock);
3527
3528 /* Clear beacon hints */
3529 spin_lock_bh(lock: &reg_pending_beacons_lock);
3530 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3531 list_del(entry: &reg_beacon->list);
3532 kfree(objp: reg_beacon);
3533 }
3534 spin_unlock_bh(lock: &reg_pending_beacons_lock);
3535
3536 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3537 list_del(entry: &reg_beacon->list);
3538 kfree(objp: reg_beacon);
3539 }
3540
3541 /* First restore to the basic regulatory settings */
3542 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3543 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3544
3545 for_each_rdev(rdev) {
3546 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3547 continue;
3548 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3549 restore_custom_reg_settings(wiphy: &rdev->wiphy);
3550 }
3551
3552 if (cached && (!is_an_alpha2(alpha2) ||
3553 !IS_ERR_OR_NULL(ptr: cfg80211_user_regdom))) {
3554 reset_regdomains(full_reset: false, new_regdom: cfg80211_world_regdom);
3555 update_all_wiphy_regulatory(initiator: NL80211_REGDOM_SET_BY_CORE);
3556 print_regdomain(rd: get_cfg80211_regdom());
3557 nl80211_send_reg_change_event(request: &core_request_world);
3558 reg_set_request_processed();
3559
3560 if (is_an_alpha2(alpha2) &&
3561 !regulatory_hint_user(alpha2, user_reg_hint_type: NL80211_USER_REG_HINT_USER)) {
3562 struct regulatory_request *ureq;
3563
3564 spin_lock(lock: &reg_requests_lock);
3565 ureq = list_last_entry(&reg_requests_list,
3566 struct regulatory_request,
3567 list);
3568 list_del(entry: &ureq->list);
3569 spin_unlock(lock: &reg_requests_lock);
3570
3571 notify_self_managed_wiphys(request: ureq);
3572 reg_update_last_request(request: ureq);
3573 set_regdom(rd: reg_copy_regd(src_regd: cfg80211_user_regdom),
3574 regd_src: REGD_SOURCE_CACHED);
3575 }
3576 } else {
3577 regulatory_hint_core(alpha2: world_alpha2);
3578
3579 /*
3580 * This restores the ieee80211_regdom module parameter
3581 * preference or the last user requested regulatory
3582 * settings, user regulatory settings takes precedence.
3583 */
3584 if (is_an_alpha2(alpha2))
3585 regulatory_hint_user(alpha2, user_reg_hint_type: NL80211_USER_REG_HINT_USER);
3586 }
3587
3588 spin_lock(lock: &reg_requests_lock);
3589 list_splice_tail_init(list: &tmp_reg_req_list, head: &reg_requests_list);
3590 spin_unlock(lock: &reg_requests_lock);
3591
3592 pr_debug("Kicking the queue\n");
3593
3594 schedule_work(work: &reg_work);
3595}
3596
3597static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3598{
3599 struct cfg80211_registered_device *rdev;
3600 struct wireless_dev *wdev;
3601
3602 for_each_rdev(rdev) {
3603 wiphy_lock(wiphy: &rdev->wiphy);
3604 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3605 if (!(wdev->wiphy->regulatory_flags & flag)) {
3606 wiphy_unlock(wiphy: &rdev->wiphy);
3607 return false;
3608 }
3609 }
3610 wiphy_unlock(wiphy: &rdev->wiphy);
3611 }
3612
3613 return true;
3614}
3615
3616void regulatory_hint_disconnect(void)
3617{
3618 /* Restore of regulatory settings is not required when wiphy(s)
3619 * ignore IE from connected access point but clearance of beacon hints
3620 * is required when wiphy(s) supports beacon hints.
3621 */
3622 if (is_wiphy_all_set_reg_flag(flag: REGULATORY_COUNTRY_IE_IGNORE)) {
3623 struct reg_beacon *reg_beacon, *btmp;
3624
3625 if (is_wiphy_all_set_reg_flag(flag: REGULATORY_DISABLE_BEACON_HINTS))
3626 return;
3627
3628 spin_lock_bh(lock: &reg_pending_beacons_lock);
3629 list_for_each_entry_safe(reg_beacon, btmp,
3630 &reg_pending_beacons, list) {
3631 list_del(entry: &reg_beacon->list);
3632 kfree(objp: reg_beacon);
3633 }
3634 spin_unlock_bh(lock: &reg_pending_beacons_lock);
3635
3636 list_for_each_entry_safe(reg_beacon, btmp,
3637 &reg_beacon_list, list) {
3638 list_del(entry: &reg_beacon->list);
3639 kfree(objp: reg_beacon);
3640 }
3641
3642 return;
3643 }
3644
3645 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3646 restore_regulatory_settings(reset_user: false, cached: true);
3647}
3648
3649static bool freq_is_chan_12_13_14(u32 freq)
3650{
3651 if (freq == ieee80211_channel_to_frequency(chan: 12, band: NL80211_BAND_2GHZ) ||
3652 freq == ieee80211_channel_to_frequency(chan: 13, band: NL80211_BAND_2GHZ) ||
3653 freq == ieee80211_channel_to_frequency(chan: 14, band: NL80211_BAND_2GHZ))
3654 return true;
3655 return false;
3656}
3657
3658static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3659{
3660 struct reg_beacon *pending_beacon;
3661
3662 list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3663 if (ieee80211_channel_equal(a: beacon_chan,
3664 b: &pending_beacon->chan))
3665 return true;
3666 return false;
3667}
3668
3669int regulatory_hint_found_beacon(struct wiphy *wiphy,
3670 struct ieee80211_channel *beacon_chan,
3671 gfp_t gfp)
3672{
3673 struct reg_beacon *reg_beacon;
3674 bool processing;
3675
3676 if (beacon_chan->beacon_found ||
3677 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3678 (beacon_chan->band == NL80211_BAND_2GHZ &&
3679 !freq_is_chan_12_13_14(freq: beacon_chan->center_freq)))
3680 return 0;
3681
3682 spin_lock_bh(lock: &reg_pending_beacons_lock);
3683 processing = pending_reg_beacon(beacon_chan);
3684 spin_unlock_bh(lock: &reg_pending_beacons_lock);
3685
3686 if (processing)
3687 return 0;
3688
3689 reg_beacon = kzalloc(size: sizeof(struct reg_beacon), flags: gfp);
3690 if (!reg_beacon)
3691 return -ENOMEM;
3692
3693 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3694 beacon_chan->center_freq, beacon_chan->freq_offset,
3695 ieee80211_freq_khz_to_channel(
3696 ieee80211_channel_to_khz(beacon_chan)),
3697 wiphy_name(wiphy));
3698
3699 memcpy(&reg_beacon->chan, beacon_chan,
3700 sizeof(struct ieee80211_channel));
3701
3702 /*
3703 * Since we can be called from BH or and non-BH context
3704 * we must use spin_lock_bh()
3705 */
3706 spin_lock_bh(lock: &reg_pending_beacons_lock);
3707 list_add_tail(new: &reg_beacon->list, head: &reg_pending_beacons);
3708 spin_unlock_bh(lock: &reg_pending_beacons_lock);
3709
3710 schedule_work(work: &reg_work);
3711
3712 return 0;
3713}
3714
3715static void print_rd_rules(const struct ieee80211_regdomain *rd)
3716{
3717 unsigned int i;
3718 const struct ieee80211_reg_rule *reg_rule = NULL;
3719 const struct ieee80211_freq_range *freq_range = NULL;
3720 const struct ieee80211_power_rule *power_rule = NULL;
3721 char bw[32], cac_time[32];
3722
3723 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3724
3725 for (i = 0; i < rd->n_reg_rules; i++) {
3726 reg_rule = &rd->reg_rules[i];
3727 freq_range = &reg_rule->freq_range;
3728 power_rule = &reg_rule->power_rule;
3729
3730 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3731 snprintf(buf: bw, size: sizeof(bw), fmt: "%d KHz, %u KHz AUTO",
3732 freq_range->max_bandwidth_khz,
3733 reg_get_max_bandwidth(rd, rule: reg_rule));
3734 else
3735 snprintf(buf: bw, size: sizeof(bw), fmt: "%d KHz",
3736 freq_range->max_bandwidth_khz);
3737
3738 if (reg_rule->flags & NL80211_RRF_DFS)
3739 scnprintf(buf: cac_time, size: sizeof(cac_time), fmt: "%u s",
3740 reg_rule->dfs_cac_ms/1000);
3741 else
3742 scnprintf(buf: cac_time, size: sizeof(cac_time), fmt: "N/A");
3743
3744
3745 /*
3746 * There may not be documentation for max antenna gain
3747 * in certain regions
3748 */
3749 if (power_rule->max_antenna_gain)
3750 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3751 freq_range->start_freq_khz,
3752 freq_range->end_freq_khz,
3753 bw,
3754 power_rule->max_antenna_gain,
3755 power_rule->max_eirp,
3756 cac_time);
3757 else
3758 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3759 freq_range->start_freq_khz,
3760 freq_range->end_freq_khz,
3761 bw,
3762 power_rule->max_eirp,
3763 cac_time);
3764 }
3765}
3766
3767bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3768{
3769 switch (dfs_region) {
3770 case NL80211_DFS_UNSET:
3771 case NL80211_DFS_FCC:
3772 case NL80211_DFS_ETSI:
3773 case NL80211_DFS_JP:
3774 return true;
3775 default:
3776 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3777 return false;
3778 }
3779}
3780
3781static void print_regdomain(const struct ieee80211_regdomain *rd)
3782{
3783 struct regulatory_request *lr = get_last_request();
3784
3785 if (is_intersected_alpha2(alpha2: rd->alpha2)) {
3786 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3787 struct cfg80211_registered_device *rdev;
3788 rdev = cfg80211_rdev_by_wiphy_idx(wiphy_idx: lr->wiphy_idx);
3789 if (rdev) {
3790 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3791 rdev->country_ie_alpha2[0],
3792 rdev->country_ie_alpha2[1]);
3793 } else
3794 pr_debug("Current regulatory domain intersected:\n");
3795 } else
3796 pr_debug("Current regulatory domain intersected:\n");
3797 } else if (is_world_regdom(alpha2: rd->alpha2)) {
3798 pr_debug("World regulatory domain updated:\n");
3799 } else {
3800 if (is_unknown_alpha2(alpha2: rd->alpha2))
3801 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3802 else {
3803 if (reg_request_cell_base(request: lr))
3804 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3805 rd->alpha2[0], rd->alpha2[1]);
3806 else
3807 pr_debug("Regulatory domain changed to country: %c%c\n",
3808 rd->alpha2[0], rd->alpha2[1]);
3809 }
3810 }
3811
3812 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3813 print_rd_rules(rd);
3814}
3815
3816static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3817{
3818 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3819 print_rd_rules(rd);
3820}
3821
3822static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3823{
3824 if (!is_world_regdom(alpha2: rd->alpha2))
3825 return -EINVAL;
3826 update_world_regdomain(rd);
3827 return 0;
3828}
3829
3830static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3831 struct regulatory_request *user_request)
3832{
3833 const struct ieee80211_regdomain *intersected_rd = NULL;
3834
3835 if (!regdom_changes(alpha2: rd->alpha2))
3836 return -EALREADY;
3837
3838 if (!is_valid_rd(rd)) {
3839 pr_err("Invalid regulatory domain detected: %c%c\n",
3840 rd->alpha2[0], rd->alpha2[1]);
3841 print_regdomain_info(rd);
3842 return -EINVAL;
3843 }
3844
3845 if (!user_request->intersect) {
3846 reset_regdomains(full_reset: false, new_regdom: rd);
3847 return 0;
3848 }
3849
3850 intersected_rd = regdom_intersect(rd1: rd, rd2: get_cfg80211_regdom());
3851 if (!intersected_rd)
3852 return -EINVAL;
3853
3854 kfree(objp: rd);
3855 rd = NULL;
3856 reset_regdomains(full_reset: false, new_regdom: intersected_rd);
3857
3858 return 0;
3859}
3860
3861static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3862 struct regulatory_request *driver_request)
3863{
3864 const struct ieee80211_regdomain *regd;
3865 const struct ieee80211_regdomain *intersected_rd = NULL;
3866 const struct ieee80211_regdomain *tmp = NULL;
3867 struct wiphy *request_wiphy;
3868
3869 if (is_world_regdom(alpha2: rd->alpha2))
3870 return -EINVAL;
3871
3872 if (!regdom_changes(alpha2: rd->alpha2))
3873 return -EALREADY;
3874
3875 if (!is_valid_rd(rd)) {
3876 pr_err("Invalid regulatory domain detected: %c%c\n",
3877 rd->alpha2[0], rd->alpha2[1]);
3878 print_regdomain_info(rd);
3879 return -EINVAL;
3880 }
3881
3882 request_wiphy = wiphy_idx_to_wiphy(wiphy_idx: driver_request->wiphy_idx);
3883 if (!request_wiphy)
3884 return -ENODEV;
3885
3886 if (!driver_request->intersect) {
3887 ASSERT_RTNL();
3888 wiphy_lock(wiphy: request_wiphy);
3889 if (request_wiphy->regd)
3890 tmp = get_wiphy_regdom(request_wiphy);
3891
3892 regd = reg_copy_regd(src_regd: rd);
3893 if (IS_ERR(ptr: regd)) {
3894 wiphy_unlock(wiphy: request_wiphy);
3895 return PTR_ERR(ptr: regd);
3896 }
3897
3898 rcu_assign_pointer(request_wiphy->regd, regd);
3899 rcu_free_regdom(r: tmp);
3900 wiphy_unlock(wiphy: request_wiphy);
3901 reset_regdomains(full_reset: false, new_regdom: rd);
3902 return 0;
3903 }
3904
3905 intersected_rd = regdom_intersect(rd1: rd, rd2: get_cfg80211_regdom());
3906 if (!intersected_rd)
3907 return -EINVAL;
3908
3909 /*
3910 * We can trash what CRDA provided now.
3911 * However if a driver requested this specific regulatory
3912 * domain we keep it for its private use
3913 */
3914 tmp = get_wiphy_regdom(request_wiphy);
3915 rcu_assign_pointer(request_wiphy->regd, rd);
3916 rcu_free_regdom(r: tmp);
3917
3918 rd = NULL;
3919
3920 reset_regdomains(full_reset: false, new_regdom: intersected_rd);
3921
3922 return 0;
3923}
3924
3925static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3926 struct regulatory_request *country_ie_request)
3927{
3928 struct wiphy *request_wiphy;
3929
3930 if (!is_alpha2_set(alpha2: rd->alpha2) && !is_an_alpha2(alpha2: rd->alpha2) &&
3931 !is_unknown_alpha2(alpha2: rd->alpha2))
3932 return -EINVAL;
3933
3934 /*
3935 * Lets only bother proceeding on the same alpha2 if the current
3936 * rd is non static (it means CRDA was present and was used last)
3937 * and the pending request came in from a country IE
3938 */
3939
3940 if (!is_valid_rd(rd)) {
3941 pr_err("Invalid regulatory domain detected: %c%c\n",
3942 rd->alpha2[0], rd->alpha2[1]);
3943 print_regdomain_info(rd);
3944 return -EINVAL;
3945 }
3946
3947 request_wiphy = wiphy_idx_to_wiphy(wiphy_idx: country_ie_request->wiphy_idx);
3948 if (!request_wiphy)
3949 return -ENODEV;
3950
3951 if (country_ie_request->intersect)
3952 return -EINVAL;
3953
3954 reset_regdomains(full_reset: false, new_regdom: rd);
3955 return 0;
3956}
3957
3958/*
3959 * Use this call to set the current regulatory domain. Conflicts with
3960 * multiple drivers can be ironed out later. Caller must've already
3961 * kmalloc'd the rd structure.
3962 */
3963int set_regdom(const struct ieee80211_regdomain *rd,
3964 enum ieee80211_regd_source regd_src)
3965{
3966 struct regulatory_request *lr;
3967 bool user_reset = false;
3968 int r;
3969
3970 if (IS_ERR_OR_NULL(ptr: rd))
3971 return -ENODATA;
3972
3973 if (!reg_is_valid_request(alpha2: rd->alpha2)) {
3974 kfree(objp: rd);
3975 return -EINVAL;
3976 }
3977
3978 if (regd_src == REGD_SOURCE_CRDA)
3979 reset_crda_timeouts();
3980
3981 lr = get_last_request();
3982
3983 /* Note that this doesn't update the wiphys, this is done below */
3984 switch (lr->initiator) {
3985 case NL80211_REGDOM_SET_BY_CORE:
3986 r = reg_set_rd_core(rd);
3987 break;
3988 case NL80211_REGDOM_SET_BY_USER:
3989 cfg80211_save_user_regdom(rd);
3990 r = reg_set_rd_user(rd, user_request: lr);
3991 user_reset = true;
3992 break;
3993 case NL80211_REGDOM_SET_BY_DRIVER:
3994 r = reg_set_rd_driver(rd, driver_request: lr);
3995 break;
3996 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3997 r = reg_set_rd_country_ie(rd, country_ie_request: lr);
3998 break;
3999 default:
4000 WARN(1, "invalid initiator %d\n", lr->initiator);
4001 kfree(objp: rd);
4002 return -EINVAL;
4003 }
4004
4005 if (r) {
4006 switch (r) {
4007 case -EALREADY:
4008 reg_set_request_processed();
4009 break;
4010 default:
4011 /* Back to world regulatory in case of errors */
4012 restore_regulatory_settings(reset_user: user_reset, cached: false);
4013 }
4014
4015 kfree(objp: rd);
4016 return r;
4017 }
4018
4019 /* This would make this whole thing pointless */
4020 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
4021 return -EINVAL;
4022
4023 /* update all wiphys now with the new established regulatory domain */
4024 update_all_wiphy_regulatory(initiator: lr->initiator);
4025
4026 print_regdomain(rd: get_cfg80211_regdom());
4027
4028 nl80211_send_reg_change_event(request: lr);
4029
4030 reg_set_request_processed();
4031
4032 return 0;
4033}
4034
4035static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4036 struct ieee80211_regdomain *rd)
4037{
4038 const struct ieee80211_regdomain *regd;
4039 const struct ieee80211_regdomain *prev_regd;
4040 struct cfg80211_registered_device *rdev;
4041
4042 if (WARN_ON(!wiphy || !rd))
4043 return -EINVAL;
4044
4045 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4046 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4047 return -EPERM;
4048
4049 if (WARN(!is_valid_rd(rd),
4050 "Invalid regulatory domain detected: %c%c\n",
4051 rd->alpha2[0], rd->alpha2[1])) {
4052 print_regdomain_info(rd);
4053 return -EINVAL;
4054 }
4055
4056 regd = reg_copy_regd(src_regd: rd);
4057 if (IS_ERR(ptr: regd))
4058 return PTR_ERR(ptr: regd);
4059
4060 rdev = wiphy_to_rdev(wiphy);
4061
4062 spin_lock(lock: &reg_requests_lock);
4063 prev_regd = rdev->requested_regd;
4064 rdev->requested_regd = regd;
4065 spin_unlock(lock: &reg_requests_lock);
4066
4067 kfree(objp: prev_regd);
4068 return 0;
4069}
4070
4071int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4072 struct ieee80211_regdomain *rd)
4073{
4074 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4075
4076 if (ret)
4077 return ret;
4078
4079 schedule_work(work: &reg_work);
4080 return 0;
4081}
4082EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4083
4084int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4085 struct ieee80211_regdomain *rd)
4086{
4087 int ret;
4088
4089 ASSERT_RTNL();
4090
4091 ret = __regulatory_set_wiphy_regd(wiphy, rd);
4092 if (ret)
4093 return ret;
4094
4095 /* process the request immediately */
4096 reg_process_self_managed_hint(wiphy);
4097 reg_check_channels();
4098 return 0;
4099}
4100EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4101
4102void wiphy_regulatory_register(struct wiphy *wiphy)
4103{
4104 struct regulatory_request *lr = get_last_request();
4105
4106 /* self-managed devices ignore beacon hints and country IE */
4107 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4108 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4109 REGULATORY_COUNTRY_IE_IGNORE;
4110
4111 /*
4112 * The last request may have been received before this
4113 * registration call. Call the driver notifier if
4114 * initiator is USER.
4115 */
4116 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4117 reg_call_notifier(wiphy, request: lr);
4118 }
4119
4120 if (!reg_dev_ignore_cell_hint(wiphy))
4121 reg_num_devs_support_basehint++;
4122
4123 wiphy_update_regulatory(wiphy, initiator: lr->initiator);
4124 wiphy_all_share_dfs_chan_state(wiphy);
4125 reg_process_self_managed_hints();
4126}
4127
4128void wiphy_regulatory_deregister(struct wiphy *wiphy)
4129{
4130 struct wiphy *request_wiphy = NULL;
4131 struct regulatory_request *lr;
4132
4133 lr = get_last_request();
4134
4135 if (!reg_dev_ignore_cell_hint(wiphy))
4136 reg_num_devs_support_basehint--;
4137
4138 rcu_free_regdom(r: get_wiphy_regdom(wiphy));
4139 RCU_INIT_POINTER(wiphy->regd, NULL);
4140
4141 if (lr)
4142 request_wiphy = wiphy_idx_to_wiphy(wiphy_idx: lr->wiphy_idx);
4143
4144 if (!request_wiphy || request_wiphy != wiphy)
4145 return;
4146
4147 lr->wiphy_idx = WIPHY_IDX_INVALID;
4148 lr->country_ie_env = ENVIRON_ANY;
4149}
4150
4151/*
4152 * See FCC notices for UNII band definitions
4153 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4154 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4155 */
4156int cfg80211_get_unii(int freq)
4157{
4158 /* UNII-1 */
4159 if (freq >= 5150 && freq <= 5250)
4160 return 0;
4161
4162 /* UNII-2A */
4163 if (freq > 5250 && freq <= 5350)
4164 return 1;
4165
4166 /* UNII-2B */
4167 if (freq > 5350 && freq <= 5470)
4168 return 2;
4169
4170 /* UNII-2C */
4171 if (freq > 5470 && freq <= 5725)
4172 return 3;
4173
4174 /* UNII-3 */
4175 if (freq > 5725 && freq <= 5825)
4176 return 4;
4177
4178 /* UNII-5 */
4179 if (freq > 5925 && freq <= 6425)
4180 return 5;
4181
4182 /* UNII-6 */
4183 if (freq > 6425 && freq <= 6525)
4184 return 6;
4185
4186 /* UNII-7 */
4187 if (freq > 6525 && freq <= 6875)
4188 return 7;
4189
4190 /* UNII-8 */
4191 if (freq > 6875 && freq <= 7125)
4192 return 8;
4193
4194 return -EINVAL;
4195}
4196
4197bool regulatory_indoor_allowed(void)
4198{
4199 return reg_is_indoor;
4200}
4201
4202bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4203{
4204 const struct ieee80211_regdomain *regd = NULL;
4205 const struct ieee80211_regdomain *wiphy_regd = NULL;
4206 bool pre_cac_allowed = false;
4207
4208 rcu_read_lock();
4209
4210 regd = rcu_dereference(cfg80211_regdomain);
4211 wiphy_regd = rcu_dereference(wiphy->regd);
4212 if (!wiphy_regd) {
4213 if (regd->dfs_region == NL80211_DFS_ETSI)
4214 pre_cac_allowed = true;
4215
4216 rcu_read_unlock();
4217
4218 return pre_cac_allowed;
4219 }
4220
4221 if (regd->dfs_region == wiphy_regd->dfs_region &&
4222 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4223 pre_cac_allowed = true;
4224
4225 rcu_read_unlock();
4226
4227 return pre_cac_allowed;
4228}
4229EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4230
4231static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4232{
4233 struct wireless_dev *wdev;
4234 /* If we finished CAC or received radar, we should end any
4235 * CAC running on the same channels.
4236 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4237 * either all channels are available - those the CAC_FINISHED
4238 * event has effected another wdev state, or there is a channel
4239 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4240 * event has effected another wdev state.
4241 * In both cases we should end the CAC on the wdev.
4242 */
4243 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4244 struct cfg80211_chan_def *chandef;
4245
4246 if (!wdev->cac_started)
4247 continue;
4248
4249 /* FIXME: radar detection is tied to link 0 for now */
4250 chandef = wdev_chandef(wdev, link_id: 0);
4251 if (!chandef)
4252 continue;
4253
4254 if (!cfg80211_chandef_dfs_usable(wiphy: &rdev->wiphy, chandef))
4255 rdev_end_cac(rdev, dev: wdev->netdev);
4256 }
4257}
4258
4259void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4260 struct cfg80211_chan_def *chandef,
4261 enum nl80211_dfs_state dfs_state,
4262 enum nl80211_radar_event event)
4263{
4264 struct cfg80211_registered_device *rdev;
4265
4266 ASSERT_RTNL();
4267
4268 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4269 return;
4270
4271 for_each_rdev(rdev) {
4272 if (wiphy == &rdev->wiphy)
4273 continue;
4274
4275 if (!reg_dfs_domain_same(wiphy1: wiphy, wiphy2: &rdev->wiphy))
4276 continue;
4277
4278 if (!ieee80211_get_channel(wiphy: &rdev->wiphy,
4279 freq: chandef->chan->center_freq))
4280 continue;
4281
4282 cfg80211_set_dfs_state(wiphy: &rdev->wiphy, chandef, dfs_state);
4283
4284 if (event == NL80211_RADAR_DETECTED ||
4285 event == NL80211_RADAR_CAC_FINISHED) {
4286 cfg80211_sched_dfs_chan_update(rdev);
4287 cfg80211_check_and_end_cac(rdev);
4288 }
4289
4290 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4291 }
4292}
4293
4294static int __init regulatory_init_db(void)
4295{
4296 int err;
4297
4298 /*
4299 * It's possible that - due to other bugs/issues - cfg80211
4300 * never called regulatory_init() below, or that it failed;
4301 * in that case, don't try to do any further work here as
4302 * it's doomed to lead to crashes.
4303 */
4304 if (IS_ERR_OR_NULL(ptr: reg_pdev))
4305 return -EINVAL;
4306
4307 err = load_builtin_regdb_keys();
4308 if (err) {
4309 platform_device_unregister(reg_pdev);
4310 return err;
4311 }
4312
4313 /* We always try to get an update for the static regdomain */
4314 err = regulatory_hint_core(alpha2: cfg80211_world_regdom->alpha2);
4315 if (err) {
4316 if (err == -ENOMEM) {
4317 platform_device_unregister(reg_pdev);
4318 return err;
4319 }
4320 /*
4321 * N.B. kobject_uevent_env() can fail mainly for when we're out
4322 * memory which is handled and propagated appropriately above
4323 * but it can also fail during a netlink_broadcast() or during
4324 * early boot for call_usermodehelper(). For now treat these
4325 * errors as non-fatal.
4326 */
4327 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4328 }
4329
4330 /*
4331 * Finally, if the user set the module parameter treat it
4332 * as a user hint.
4333 */
4334 if (!is_world_regdom(alpha2: ieee80211_regdom))
4335 regulatory_hint_user(alpha2: ieee80211_regdom,
4336 user_reg_hint_type: NL80211_USER_REG_HINT_USER);
4337
4338 return 0;
4339}
4340#ifndef MODULE
4341late_initcall(regulatory_init_db);
4342#endif
4343
4344int __init regulatory_init(void)
4345{
4346 reg_pdev = platform_device_register_simple(name: "regulatory", id: 0, NULL, num: 0);
4347 if (IS_ERR(ptr: reg_pdev))
4348 return PTR_ERR(ptr: reg_pdev);
4349
4350 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4351
4352 user_alpha2[0] = '9';
4353 user_alpha2[1] = '7';
4354
4355#ifdef MODULE
4356 return regulatory_init_db();
4357#else
4358 return 0;
4359#endif
4360}
4361
4362void regulatory_exit(void)
4363{
4364 struct regulatory_request *reg_request, *tmp;
4365 struct reg_beacon *reg_beacon, *btmp;
4366
4367 cancel_work_sync(work: &reg_work);
4368 cancel_crda_timeout_sync();
4369 cancel_delayed_work_sync(dwork: &reg_check_chans);
4370
4371 /* Lock to suppress warnings */
4372 rtnl_lock();
4373 reset_regdomains(full_reset: true, NULL);
4374 rtnl_unlock();
4375
4376 dev_set_uevent_suppress(dev: &reg_pdev->dev, val: true);
4377
4378 platform_device_unregister(reg_pdev);
4379
4380 list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4381 list_del(entry: &reg_beacon->list);
4382 kfree(objp: reg_beacon);
4383 }
4384
4385 list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4386 list_del(entry: &reg_beacon->list);
4387 kfree(objp: reg_beacon);
4388 }
4389
4390 list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4391 list_del(entry: &reg_request->list);
4392 kfree(objp: reg_request);
4393 }
4394
4395 if (!IS_ERR_OR_NULL(ptr: regdb))
4396 kfree(objp: regdb);
4397 if (!IS_ERR_OR_NULL(ptr: cfg80211_user_regdom))
4398 kfree(objp: cfg80211_user_regdom);
4399
4400 free_regdb_keyring();
4401}
4402

source code of linux/net/wireless/reg.c