1//===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code dealing with C++ code generation of classes
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGBlocks.h"
14#include "CGCXXABI.h"
15#include "CGDebugInfo.h"
16#include "CGRecordLayout.h"
17#include "CodeGenFunction.h"
18#include "TargetInfo.h"
19#include "clang/AST/Attr.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/EvaluatedExprVisitor.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/Basic/CodeGenOptions.h"
27#include "clang/Basic/TargetBuiltins.h"
28#include "clang/CodeGen/CGFunctionInfo.h"
29#include "llvm/IR/Intrinsics.h"
30#include "llvm/IR/Metadata.h"
31#include "llvm/Support/SaveAndRestore.h"
32#include "llvm/Transforms/Utils/SanitizerStats.h"
33#include <optional>
34
35using namespace clang;
36using namespace CodeGen;
37
38/// Return the best known alignment for an unknown pointer to a
39/// particular class.
40CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
41 if (!RD->hasDefinition())
42 return CharUnits::One(); // Hopefully won't be used anywhere.
43
44 auto &layout = getContext().getASTRecordLayout(RD);
45
46 // If the class is final, then we know that the pointer points to an
47 // object of that type and can use the full alignment.
48 if (RD->isEffectivelyFinal())
49 return layout.getAlignment();
50
51 // Otherwise, we have to assume it could be a subclass.
52 return layout.getNonVirtualAlignment();
53}
54
55/// Return the smallest possible amount of storage that might be allocated
56/// starting from the beginning of an object of a particular class.
57///
58/// This may be smaller than sizeof(RD) if RD has virtual base classes.
59CharUnits CodeGenModule::getMinimumClassObjectSize(const CXXRecordDecl *RD) {
60 if (!RD->hasDefinition())
61 return CharUnits::One();
62
63 auto &layout = getContext().getASTRecordLayout(RD);
64
65 // If the class is final, then we know that the pointer points to an
66 // object of that type and can use the full alignment.
67 if (RD->isEffectivelyFinal())
68 return layout.getSize();
69
70 // Otherwise, we have to assume it could be a subclass.
71 return std::max(layout.getNonVirtualSize(), CharUnits::One());
72}
73
74/// Return the best known alignment for a pointer to a virtual base,
75/// given the alignment of a pointer to the derived class.
76CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
77 const CXXRecordDecl *derivedClass,
78 const CXXRecordDecl *vbaseClass) {
79 // The basic idea here is that an underaligned derived pointer might
80 // indicate an underaligned base pointer.
81
82 assert(vbaseClass->isCompleteDefinition());
83 auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
84 CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
85
86 return getDynamicOffsetAlignment(ActualAlign: actualDerivedAlign, Class: derivedClass,
87 ExpectedTargetAlign: expectedVBaseAlign);
88}
89
90CharUnits
91CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
92 const CXXRecordDecl *baseDecl,
93 CharUnits expectedTargetAlign) {
94 // If the base is an incomplete type (which is, alas, possible with
95 // member pointers), be pessimistic.
96 if (!baseDecl->isCompleteDefinition())
97 return std::min(a: actualBaseAlign, b: expectedTargetAlign);
98
99 auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
100 CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
101
102 // If the class is properly aligned, assume the target offset is, too.
103 //
104 // This actually isn't necessarily the right thing to do --- if the
105 // class is a complete object, but it's only properly aligned for a
106 // base subobject, then the alignments of things relative to it are
107 // probably off as well. (Note that this requires the alignment of
108 // the target to be greater than the NV alignment of the derived
109 // class.)
110 //
111 // However, our approach to this kind of under-alignment can only
112 // ever be best effort; after all, we're never going to propagate
113 // alignments through variables or parameters. Note, in particular,
114 // that constructing a polymorphic type in an address that's less
115 // than pointer-aligned will generally trap in the constructor,
116 // unless we someday add some sort of attribute to change the
117 // assumed alignment of 'this'. So our goal here is pretty much
118 // just to allow the user to explicitly say that a pointer is
119 // under-aligned and then safely access its fields and vtables.
120 if (actualBaseAlign >= expectedBaseAlign) {
121 return expectedTargetAlign;
122 }
123
124 // Otherwise, we might be offset by an arbitrary multiple of the
125 // actual alignment. The correct adjustment is to take the min of
126 // the two alignments.
127 return std::min(a: actualBaseAlign, b: expectedTargetAlign);
128}
129
130Address CodeGenFunction::LoadCXXThisAddress() {
131 assert(CurFuncDecl && "loading 'this' without a func declaration?");
132 auto *MD = cast<CXXMethodDecl>(Val: CurFuncDecl);
133
134 // Lazily compute CXXThisAlignment.
135 if (CXXThisAlignment.isZero()) {
136 // Just use the best known alignment for the parent.
137 // TODO: if we're currently emitting a complete-object ctor/dtor,
138 // we can always use the complete-object alignment.
139 CXXThisAlignment = CGM.getClassPointerAlignment(RD: MD->getParent());
140 }
141
142 return makeNaturalAddressForPointer(
143 Ptr: LoadCXXThis(), T: MD->getFunctionObjectParameterType(), Alignment: CXXThisAlignment,
144 ForPointeeType: false, BaseInfo: nullptr, TBAAInfo: nullptr, IsKnownNonNull: KnownNonNull);
145}
146
147/// Emit the address of a field using a member data pointer.
148///
149/// \param E Only used for emergency diagnostics
150Address
151CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
152 llvm::Value *memberPtr,
153 const MemberPointerType *memberPtrType,
154 LValueBaseInfo *BaseInfo,
155 TBAAAccessInfo *TBAAInfo) {
156 // Ask the ABI to compute the actual address.
157 llvm::Value *ptr =
158 CGM.getCXXABI().EmitMemberDataPointerAddress(CGF&: *this, E, Base: base,
159 MemPtr: memberPtr, MPT: memberPtrType);
160
161 QualType memberType = memberPtrType->getPointeeType();
162 CharUnits memberAlign =
163 CGM.getNaturalTypeAlignment(T: memberType, BaseInfo, TBAAInfo);
164 memberAlign =
165 CGM.getDynamicOffsetAlignment(actualBaseAlign: base.getAlignment(),
166 baseDecl: memberPtrType->getClass()->getAsCXXRecordDecl(),
167 expectedTargetAlign: memberAlign);
168 return Address(ptr, ConvertTypeForMem(T: memberPtrType->getPointeeType()),
169 memberAlign);
170}
171
172CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
173 const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
174 CastExpr::path_const_iterator End) {
175 CharUnits Offset = CharUnits::Zero();
176
177 const ASTContext &Context = getContext();
178 const CXXRecordDecl *RD = DerivedClass;
179
180 for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
181 const CXXBaseSpecifier *Base = *I;
182 assert(!Base->isVirtual() && "Should not see virtual bases here!");
183
184 // Get the layout.
185 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
186
187 const auto *BaseDecl =
188 cast<CXXRecordDecl>(Val: Base->getType()->castAs<RecordType>()->getDecl());
189
190 // Add the offset.
191 Offset += Layout.getBaseClassOffset(Base: BaseDecl);
192
193 RD = BaseDecl;
194 }
195
196 return Offset;
197}
198
199llvm::Constant *
200CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
201 CastExpr::path_const_iterator PathBegin,
202 CastExpr::path_const_iterator PathEnd) {
203 assert(PathBegin != PathEnd && "Base path should not be empty!");
204
205 CharUnits Offset =
206 computeNonVirtualBaseClassOffset(DerivedClass: ClassDecl, Start: PathBegin, End: PathEnd);
207 if (Offset.isZero())
208 return nullptr;
209
210 llvm::Type *PtrDiffTy =
211 Types.ConvertType(T: getContext().getPointerDiffType());
212
213 return llvm::ConstantInt::get(Ty: PtrDiffTy, V: Offset.getQuantity());
214}
215
216/// Gets the address of a direct base class within a complete object.
217/// This should only be used for (1) non-virtual bases or (2) virtual bases
218/// when the type is known to be complete (e.g. in complete destructors).
219///
220/// The object pointed to by 'This' is assumed to be non-null.
221Address
222CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
223 const CXXRecordDecl *Derived,
224 const CXXRecordDecl *Base,
225 bool BaseIsVirtual) {
226 // 'this' must be a pointer (in some address space) to Derived.
227 assert(This.getElementType() == ConvertType(Derived));
228
229 // Compute the offset of the virtual base.
230 CharUnits Offset;
231 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
232 if (BaseIsVirtual)
233 Offset = Layout.getVBaseClassOffset(VBase: Base);
234 else
235 Offset = Layout.getBaseClassOffset(Base);
236
237 // Shift and cast down to the base type.
238 // TODO: for complete types, this should be possible with a GEP.
239 Address V = This;
240 if (!Offset.isZero()) {
241 V = V.withElementType(ElemTy: Int8Ty);
242 V = Builder.CreateConstInBoundsByteGEP(Addr: V, Offset);
243 }
244 return V.withElementType(ElemTy: ConvertType(Base));
245}
246
247static Address
248ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
249 CharUnits nonVirtualOffset,
250 llvm::Value *virtualOffset,
251 const CXXRecordDecl *derivedClass,
252 const CXXRecordDecl *nearestVBase) {
253 // Assert that we have something to do.
254 assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
255
256 // Compute the offset from the static and dynamic components.
257 llvm::Value *baseOffset;
258 if (!nonVirtualOffset.isZero()) {
259 llvm::Type *OffsetType =
260 (CGF.CGM.getTarget().getCXXABI().isItaniumFamily() &&
261 CGF.CGM.getItaniumVTableContext().isRelativeLayout())
262 ? CGF.Int32Ty
263 : CGF.PtrDiffTy;
264 baseOffset =
265 llvm::ConstantInt::get(Ty: OffsetType, V: nonVirtualOffset.getQuantity());
266 if (virtualOffset) {
267 baseOffset = CGF.Builder.CreateAdd(LHS: virtualOffset, RHS: baseOffset);
268 }
269 } else {
270 baseOffset = virtualOffset;
271 }
272
273 // Apply the base offset.
274 llvm::Value *ptr = addr.emitRawPointer(CGF);
275 ptr = CGF.Builder.CreateInBoundsGEP(Ty: CGF.Int8Ty, Ptr: ptr, IdxList: baseOffset, Name: "add.ptr");
276
277 // If we have a virtual component, the alignment of the result will
278 // be relative only to the known alignment of that vbase.
279 CharUnits alignment;
280 if (virtualOffset) {
281 assert(nearestVBase && "virtual offset without vbase?");
282 alignment = CGF.CGM.getVBaseAlignment(actualDerivedAlign: addr.getAlignment(),
283 derivedClass, vbaseClass: nearestVBase);
284 } else {
285 alignment = addr.getAlignment();
286 }
287 alignment = alignment.alignmentAtOffset(offset: nonVirtualOffset);
288
289 return Address(ptr, CGF.Int8Ty, alignment);
290}
291
292Address CodeGenFunction::GetAddressOfBaseClass(
293 Address Value, const CXXRecordDecl *Derived,
294 CastExpr::path_const_iterator PathBegin,
295 CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
296 SourceLocation Loc) {
297 assert(PathBegin != PathEnd && "Base path should not be empty!");
298
299 CastExpr::path_const_iterator Start = PathBegin;
300 const CXXRecordDecl *VBase = nullptr;
301
302 // Sema has done some convenient canonicalization here: if the
303 // access path involved any virtual steps, the conversion path will
304 // *start* with a step down to the correct virtual base subobject,
305 // and hence will not require any further steps.
306 if ((*Start)->isVirtual()) {
307 VBase = cast<CXXRecordDecl>(
308 Val: (*Start)->getType()->castAs<RecordType>()->getDecl());
309 ++Start;
310 }
311
312 // Compute the static offset of the ultimate destination within its
313 // allocating subobject (the virtual base, if there is one, or else
314 // the "complete" object that we see).
315 CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
316 DerivedClass: VBase ? VBase : Derived, Start, End: PathEnd);
317
318 // If there's a virtual step, we can sometimes "devirtualize" it.
319 // For now, that's limited to when the derived type is final.
320 // TODO: "devirtualize" this for accesses to known-complete objects.
321 if (VBase && Derived->hasAttr<FinalAttr>()) {
322 const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
323 CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
324 NonVirtualOffset += vBaseOffset;
325 VBase = nullptr; // we no longer have a virtual step
326 }
327
328 // Get the base pointer type.
329 llvm::Type *BaseValueTy = ConvertType(T: (PathEnd[-1])->getType());
330 llvm::Type *PtrTy = llvm::PointerType::get(
331 C&: CGM.getLLVMContext(), AddressSpace: Value.getType()->getPointerAddressSpace());
332
333 QualType DerivedTy = getContext().getRecordType(Derived);
334 CharUnits DerivedAlign = CGM.getClassPointerAlignment(RD: Derived);
335
336 // If the static offset is zero and we don't have a virtual step,
337 // just do a bitcast; null checks are unnecessary.
338 if (NonVirtualOffset.isZero() && !VBase) {
339 if (sanitizePerformTypeCheck()) {
340 SanitizerSet SkippedChecks;
341 SkippedChecks.set(K: SanitizerKind::Null, Value: !NullCheckValue);
342 EmitTypeCheck(TCK: TCK_Upcast, Loc, V: Value.emitRawPointer(CGF&: *this), Type: DerivedTy,
343 Alignment: DerivedAlign, SkippedChecks);
344 }
345 return Value.withElementType(ElemTy: BaseValueTy);
346 }
347
348 llvm::BasicBlock *origBB = nullptr;
349 llvm::BasicBlock *endBB = nullptr;
350
351 // Skip over the offset (and the vtable load) if we're supposed to
352 // null-check the pointer.
353 if (NullCheckValue) {
354 origBB = Builder.GetInsertBlock();
355 llvm::BasicBlock *notNullBB = createBasicBlock(name: "cast.notnull");
356 endBB = createBasicBlock(name: "cast.end");
357
358 llvm::Value *isNull = Builder.CreateIsNull(Addr: Value);
359 Builder.CreateCondBr(Cond: isNull, True: endBB, False: notNullBB);
360 EmitBlock(BB: notNullBB);
361 }
362
363 if (sanitizePerformTypeCheck()) {
364 SanitizerSet SkippedChecks;
365 SkippedChecks.set(K: SanitizerKind::Null, Value: true);
366 EmitTypeCheck(TCK: VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
367 V: Value.emitRawPointer(CGF&: *this), Type: DerivedTy, Alignment: DerivedAlign,
368 SkippedChecks);
369 }
370
371 // Compute the virtual offset.
372 llvm::Value *VirtualOffset = nullptr;
373 if (VBase) {
374 VirtualOffset =
375 CGM.getCXXABI().GetVirtualBaseClassOffset(CGF&: *this, This: Value, ClassDecl: Derived, BaseClassDecl: VBase);
376 }
377
378 // Apply both offsets.
379 Value = ApplyNonVirtualAndVirtualOffset(CGF&: *this, addr: Value, nonVirtualOffset: NonVirtualOffset,
380 virtualOffset: VirtualOffset, derivedClass: Derived, nearestVBase: VBase);
381
382 // Cast to the destination type.
383 Value = Value.withElementType(ElemTy: BaseValueTy);
384
385 // Build a phi if we needed a null check.
386 if (NullCheckValue) {
387 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
388 Builder.CreateBr(Dest: endBB);
389 EmitBlock(BB: endBB);
390
391 llvm::PHINode *PHI = Builder.CreatePHI(Ty: PtrTy, NumReservedValues: 2, Name: "cast.result");
392 PHI->addIncoming(V: Value.emitRawPointer(CGF&: *this), BB: notNullBB);
393 PHI->addIncoming(V: llvm::Constant::getNullValue(Ty: PtrTy), BB: origBB);
394 Value = Value.withPointer(NewPointer: PHI, IsKnownNonNull: NotKnownNonNull);
395 }
396
397 return Value;
398}
399
400Address
401CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
402 const CXXRecordDecl *Derived,
403 CastExpr::path_const_iterator PathBegin,
404 CastExpr::path_const_iterator PathEnd,
405 bool NullCheckValue) {
406 assert(PathBegin != PathEnd && "Base path should not be empty!");
407
408 QualType DerivedTy =
409 getContext().getCanonicalType(T: getContext().getTagDeclType(Derived));
410 llvm::Type *DerivedValueTy = ConvertType(T: DerivedTy);
411
412 llvm::Value *NonVirtualOffset =
413 CGM.GetNonVirtualBaseClassOffset(ClassDecl: Derived, PathBegin, PathEnd);
414
415 if (!NonVirtualOffset) {
416 // No offset, we can just cast back.
417 return BaseAddr.withElementType(ElemTy: DerivedValueTy);
418 }
419
420 llvm::BasicBlock *CastNull = nullptr;
421 llvm::BasicBlock *CastNotNull = nullptr;
422 llvm::BasicBlock *CastEnd = nullptr;
423
424 if (NullCheckValue) {
425 CastNull = createBasicBlock(name: "cast.null");
426 CastNotNull = createBasicBlock(name: "cast.notnull");
427 CastEnd = createBasicBlock(name: "cast.end");
428
429 llvm::Value *IsNull = Builder.CreateIsNull(Addr: BaseAddr);
430 Builder.CreateCondBr(Cond: IsNull, True: CastNull, False: CastNotNull);
431 EmitBlock(BB: CastNotNull);
432 }
433
434 // Apply the offset.
435 Address Addr = BaseAddr.withElementType(ElemTy: Int8Ty);
436 Addr = Builder.CreateInBoundsGEP(
437 Addr, IdxList: Builder.CreateNeg(V: NonVirtualOffset), ElementType: Int8Ty,
438 Align: CGM.getClassPointerAlignment(RD: Derived), Name: "sub.ptr");
439
440 // Just cast.
441 Addr = Addr.withElementType(ElemTy: DerivedValueTy);
442
443 // Produce a PHI if we had a null-check.
444 if (NullCheckValue) {
445 Builder.CreateBr(Dest: CastEnd);
446 EmitBlock(BB: CastNull);
447 Builder.CreateBr(Dest: CastEnd);
448 EmitBlock(BB: CastEnd);
449
450 llvm::Value *Value = Addr.emitRawPointer(CGF&: *this);
451 llvm::PHINode *PHI = Builder.CreatePHI(Ty: Value->getType(), NumReservedValues: 2);
452 PHI->addIncoming(V: Value, BB: CastNotNull);
453 PHI->addIncoming(V: llvm::Constant::getNullValue(Ty: Value->getType()), BB: CastNull);
454 return Address(PHI, Addr.getElementType(),
455 CGM.getClassPointerAlignment(RD: Derived));
456 }
457
458 return Addr;
459}
460
461llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
462 bool ForVirtualBase,
463 bool Delegating) {
464 if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
465 // This constructor/destructor does not need a VTT parameter.
466 return nullptr;
467 }
468
469 const CXXRecordDecl *RD = cast<CXXMethodDecl>(Val: CurCodeDecl)->getParent();
470 const CXXRecordDecl *Base = cast<CXXMethodDecl>(Val: GD.getDecl())->getParent();
471
472 uint64_t SubVTTIndex;
473
474 if (Delegating) {
475 // If this is a delegating constructor call, just load the VTT.
476 return LoadCXXVTT();
477 } else if (RD == Base) {
478 // If the record matches the base, this is the complete ctor/dtor
479 // variant calling the base variant in a class with virtual bases.
480 assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
481 "doing no-op VTT offset in base dtor/ctor?");
482 assert(!ForVirtualBase && "Can't have same class as virtual base!");
483 SubVTTIndex = 0;
484 } else {
485 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
486 CharUnits BaseOffset = ForVirtualBase ?
487 Layout.getVBaseClassOffset(VBase: Base) :
488 Layout.getBaseClassOffset(Base);
489
490 SubVTTIndex =
491 CGM.getVTables().getSubVTTIndex(RD, Base: BaseSubobject(Base, BaseOffset));
492 assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
493 }
494
495 if (CGM.getCXXABI().NeedsVTTParameter(GD: CurGD)) {
496 // A VTT parameter was passed to the constructor, use it.
497 llvm::Value *VTT = LoadCXXVTT();
498 return Builder.CreateConstInBoundsGEP1_64(Ty: VoidPtrTy, Ptr: VTT, Idx0: SubVTTIndex);
499 } else {
500 // We're the complete constructor, so get the VTT by name.
501 llvm::GlobalValue *VTT = CGM.getVTables().GetAddrOfVTT(RD);
502 return Builder.CreateConstInBoundsGEP2_64(
503 Ty: VTT->getValueType(), Ptr: VTT, Idx0: 0, Idx1: SubVTTIndex);
504 }
505}
506
507namespace {
508 /// Call the destructor for a direct base class.
509 struct CallBaseDtor final : EHScopeStack::Cleanup {
510 const CXXRecordDecl *BaseClass;
511 bool BaseIsVirtual;
512 CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
513 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
514
515 void Emit(CodeGenFunction &CGF, Flags flags) override {
516 const CXXRecordDecl *DerivedClass =
517 cast<CXXMethodDecl>(Val: CGF.CurCodeDecl)->getParent();
518
519 const CXXDestructorDecl *D = BaseClass->getDestructor();
520 // We are already inside a destructor, so presumably the object being
521 // destroyed should have the expected type.
522 QualType ThisTy = D->getFunctionObjectParameterType();
523 Address Addr =
524 CGF.GetAddressOfDirectBaseInCompleteClass(This: CGF.LoadCXXThisAddress(),
525 Derived: DerivedClass, Base: BaseClass,
526 BaseIsVirtual);
527 CGF.EmitCXXDestructorCall(D, Type: Dtor_Base, ForVirtualBase: BaseIsVirtual,
528 /*Delegating=*/false, This: Addr, ThisTy);
529 }
530 };
531
532 /// A visitor which checks whether an initializer uses 'this' in a
533 /// way which requires the vtable to be properly set.
534 struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
535 typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
536
537 bool UsesThis;
538
539 DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
540
541 // Black-list all explicit and implicit references to 'this'.
542 //
543 // Do we need to worry about external references to 'this' derived
544 // from arbitrary code? If so, then anything which runs arbitrary
545 // external code might potentially access the vtable.
546 void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
547 };
548} // end anonymous namespace
549
550static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
551 DynamicThisUseChecker Checker(C);
552 Checker.Visit(Init);
553 return Checker.UsesThis;
554}
555
556static void EmitBaseInitializer(CodeGenFunction &CGF,
557 const CXXRecordDecl *ClassDecl,
558 CXXCtorInitializer *BaseInit) {
559 assert(BaseInit->isBaseInitializer() &&
560 "Must have base initializer!");
561
562 Address ThisPtr = CGF.LoadCXXThisAddress();
563
564 const Type *BaseType = BaseInit->getBaseClass();
565 const auto *BaseClassDecl =
566 cast<CXXRecordDecl>(Val: BaseType->castAs<RecordType>()->getDecl());
567
568 bool isBaseVirtual = BaseInit->isBaseVirtual();
569
570 // If the initializer for the base (other than the constructor
571 // itself) accesses 'this' in any way, we need to initialize the
572 // vtables.
573 if (BaseInitializerUsesThis(C&: CGF.getContext(), Init: BaseInit->getInit()))
574 CGF.InitializeVTablePointers(ClassDecl);
575
576 // We can pretend to be a complete class because it only matters for
577 // virtual bases, and we only do virtual bases for complete ctors.
578 Address V =
579 CGF.GetAddressOfDirectBaseInCompleteClass(This: ThisPtr, Derived: ClassDecl,
580 Base: BaseClassDecl,
581 BaseIsVirtual: isBaseVirtual);
582 AggValueSlot AggSlot =
583 AggValueSlot::forAddr(
584 addr: V, quals: Qualifiers(),
585 isDestructed: AggValueSlot::IsDestructed,
586 needsGC: AggValueSlot::DoesNotNeedGCBarriers,
587 isAliased: AggValueSlot::IsNotAliased,
588 mayOverlap: CGF.getOverlapForBaseInit(RD: ClassDecl, BaseRD: BaseClassDecl, IsVirtual: isBaseVirtual));
589
590 CGF.EmitAggExpr(E: BaseInit->getInit(), AS: AggSlot);
591
592 if (CGF.CGM.getLangOpts().Exceptions &&
593 !BaseClassDecl->hasTrivialDestructor())
594 CGF.EHStack.pushCleanup<CallBaseDtor>(Kind: EHCleanup, A: BaseClassDecl,
595 A: isBaseVirtual);
596}
597
598static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
599 auto *CD = dyn_cast<CXXConstructorDecl>(Val: D);
600 if (!(CD && CD->isCopyOrMoveConstructor()) &&
601 !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
602 return false;
603
604 // We can emit a memcpy for a trivial copy or move constructor/assignment.
605 if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
606 return true;
607
608 // We *must* emit a memcpy for a defaulted union copy or move op.
609 if (D->getParent()->isUnion() && D->isDefaulted())
610 return true;
611
612 return false;
613}
614
615static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
616 CXXCtorInitializer *MemberInit,
617 LValue &LHS) {
618 FieldDecl *Field = MemberInit->getAnyMember();
619 if (MemberInit->isIndirectMemberInitializer()) {
620 // If we are initializing an anonymous union field, drill down to the field.
621 IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
622 for (const auto *I : IndirectField->chain())
623 LHS = CGF.EmitLValueForFieldInitialization(Base: LHS, Field: cast<FieldDecl>(Val: I));
624 } else {
625 LHS = CGF.EmitLValueForFieldInitialization(Base: LHS, Field);
626 }
627}
628
629static void EmitMemberInitializer(CodeGenFunction &CGF,
630 const CXXRecordDecl *ClassDecl,
631 CXXCtorInitializer *MemberInit,
632 const CXXConstructorDecl *Constructor,
633 FunctionArgList &Args) {
634 ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
635 assert(MemberInit->isAnyMemberInitializer() &&
636 "Must have member initializer!");
637 assert(MemberInit->getInit() && "Must have initializer!");
638
639 // non-static data member initializers.
640 FieldDecl *Field = MemberInit->getAnyMember();
641 QualType FieldType = Field->getType();
642
643 llvm::Value *ThisPtr = CGF.LoadCXXThis();
644 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
645 LValue LHS;
646
647 // If a base constructor is being emitted, create an LValue that has the
648 // non-virtual alignment.
649 if (CGF.CurGD.getCtorType() == Ctor_Base)
650 LHS = CGF.MakeNaturalAlignPointeeAddrLValue(V: ThisPtr, T: RecordTy);
651 else
652 LHS = CGF.MakeNaturalAlignAddrLValue(V: ThisPtr, T: RecordTy);
653
654 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
655
656 // Special case: if we are in a copy or move constructor, and we are copying
657 // an array of PODs or classes with trivial copy constructors, ignore the
658 // AST and perform the copy we know is equivalent.
659 // FIXME: This is hacky at best... if we had a bit more explicit information
660 // in the AST, we could generalize it more easily.
661 const ConstantArrayType *Array
662 = CGF.getContext().getAsConstantArrayType(T: FieldType);
663 if (Array && Constructor->isDefaulted() &&
664 Constructor->isCopyOrMoveConstructor()) {
665 QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
666 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Val: MemberInit->getInit());
667 if (BaseElementTy.isPODType(Context: CGF.getContext()) ||
668 (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
669 unsigned SrcArgIndex =
670 CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
671 llvm::Value *SrcPtr
672 = CGF.Builder.CreateLoad(Addr: CGF.GetAddrOfLocalVar(VD: Args[SrcArgIndex]));
673 LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(V: SrcPtr, T: RecordTy);
674 LValue Src = CGF.EmitLValueForFieldInitialization(Base: ThisRHSLV, Field);
675
676 // Copy the aggregate.
677 CGF.EmitAggregateCopy(Dest: LHS, Src, EltTy: FieldType, MayOverlap: CGF.getOverlapForFieldInit(FD: Field),
678 isVolatile: LHS.isVolatileQualified());
679 // Ensure that we destroy the objects if an exception is thrown later in
680 // the constructor.
681 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
682 if (CGF.needsEHCleanup(kind: dtorKind))
683 CGF.pushEHDestroy(dtorKind, addr: LHS.getAddress(CGF), type: FieldType);
684 return;
685 }
686 }
687
688 CGF.EmitInitializerForField(Field, LHS, Init: MemberInit->getInit());
689}
690
691void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
692 Expr *Init) {
693 QualType FieldType = Field->getType();
694 switch (getEvaluationKind(T: FieldType)) {
695 case TEK_Scalar:
696 if (LHS.isSimple()) {
697 EmitExprAsInit(Init, Field, LHS, false);
698 } else {
699 RValue RHS = RValue::get(V: EmitScalarExpr(E: Init));
700 EmitStoreThroughLValue(Src: RHS, Dst: LHS);
701 }
702 break;
703 case TEK_Complex:
704 EmitComplexExprIntoLValue(E: Init, dest: LHS, /*isInit*/ true);
705 break;
706 case TEK_Aggregate: {
707 AggValueSlot Slot = AggValueSlot::forLValue(
708 LV: LHS, CGF&: *this, isDestructed: AggValueSlot::IsDestructed,
709 needsGC: AggValueSlot::DoesNotNeedGCBarriers, isAliased: AggValueSlot::IsNotAliased,
710 mayOverlap: getOverlapForFieldInit(FD: Field), isZeroed: AggValueSlot::IsNotZeroed,
711 // Checks are made by the code that calls constructor.
712 isChecked: AggValueSlot::IsSanitizerChecked);
713 EmitAggExpr(E: Init, AS: Slot);
714 break;
715 }
716 }
717
718 // Ensure that we destroy this object if an exception is thrown
719 // later in the constructor.
720 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
721 if (needsEHCleanup(kind: dtorKind))
722 pushEHDestroy(dtorKind, addr: LHS.getAddress(CGF&: *this), type: FieldType);
723}
724
725/// Checks whether the given constructor is a valid subject for the
726/// complete-to-base constructor delegation optimization, i.e.
727/// emitting the complete constructor as a simple call to the base
728/// constructor.
729bool CodeGenFunction::IsConstructorDelegationValid(
730 const CXXConstructorDecl *Ctor) {
731
732 // Currently we disable the optimization for classes with virtual
733 // bases because (1) the addresses of parameter variables need to be
734 // consistent across all initializers but (2) the delegate function
735 // call necessarily creates a second copy of the parameter variable.
736 //
737 // The limiting example (purely theoretical AFAIK):
738 // struct A { A(int &c) { c++; } };
739 // struct B : virtual A {
740 // B(int count) : A(count) { printf("%d\n", count); }
741 // };
742 // ...although even this example could in principle be emitted as a
743 // delegation since the address of the parameter doesn't escape.
744 if (Ctor->getParent()->getNumVBases()) {
745 // TODO: white-list trivial vbase initializers. This case wouldn't
746 // be subject to the restrictions below.
747
748 // TODO: white-list cases where:
749 // - there are no non-reference parameters to the constructor
750 // - the initializers don't access any non-reference parameters
751 // - the initializers don't take the address of non-reference
752 // parameters
753 // - etc.
754 // If we ever add any of the above cases, remember that:
755 // - function-try-blocks will always exclude this optimization
756 // - we need to perform the constructor prologue and cleanup in
757 // EmitConstructorBody.
758
759 return false;
760 }
761
762 // We also disable the optimization for variadic functions because
763 // it's impossible to "re-pass" varargs.
764 if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic())
765 return false;
766
767 // FIXME: Decide if we can do a delegation of a delegating constructor.
768 if (Ctor->isDelegatingConstructor())
769 return false;
770
771 return true;
772}
773
774// Emit code in ctor (Prologue==true) or dtor (Prologue==false)
775// to poison the extra field paddings inserted under
776// -fsanitize-address-field-padding=1|2.
777void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
778 ASTContext &Context = getContext();
779 const CXXRecordDecl *ClassDecl =
780 Prologue ? cast<CXXConstructorDecl>(Val: CurGD.getDecl())->getParent()
781 : cast<CXXDestructorDecl>(Val: CurGD.getDecl())->getParent();
782 if (!ClassDecl->mayInsertExtraPadding()) return;
783
784 struct SizeAndOffset {
785 uint64_t Size;
786 uint64_t Offset;
787 };
788
789 unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
790 const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
791
792 // Populate sizes and offsets of fields.
793 SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
794 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
795 SSV[i].Offset =
796 Context.toCharUnitsFromBits(BitSize: Info.getFieldOffset(FieldNo: i)).getQuantity();
797
798 size_t NumFields = 0;
799 for (const auto *Field : ClassDecl->fields()) {
800 const FieldDecl *D = Field;
801 auto FieldInfo = Context.getTypeInfoInChars(D->getType());
802 CharUnits FieldSize = FieldInfo.Width;
803 assert(NumFields < SSV.size());
804 SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
805 NumFields++;
806 }
807 assert(NumFields == SSV.size());
808 if (SSV.size() <= 1) return;
809
810 // We will insert calls to __asan_* run-time functions.
811 // LLVM AddressSanitizer pass may decide to inline them later.
812 llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
813 llvm::FunctionType *FTy =
814 llvm::FunctionType::get(Result: CGM.VoidTy, Params: Args, isVarArg: false);
815 llvm::FunctionCallee F = CGM.CreateRuntimeFunction(
816 Ty: FTy, Name: Prologue ? "__asan_poison_intra_object_redzone"
817 : "__asan_unpoison_intra_object_redzone");
818
819 llvm::Value *ThisPtr = LoadCXXThis();
820 ThisPtr = Builder.CreatePtrToInt(V: ThisPtr, DestTy: IntPtrTy);
821 uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
822 // For each field check if it has sufficient padding,
823 // if so (un)poison it with a call.
824 for (size_t i = 0; i < SSV.size(); i++) {
825 uint64_t AsanAlignment = 8;
826 uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
827 uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
828 uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
829 if (PoisonSize < AsanAlignment || !SSV[i].Size ||
830 (NextField % AsanAlignment) != 0)
831 continue;
832 Builder.CreateCall(
833 Callee: F, Args: {Builder.CreateAdd(LHS: ThisPtr, RHS: Builder.getIntN(N: PtrSize, C: EndOffset)),
834 Builder.getIntN(N: PtrSize, C: PoisonSize)});
835 }
836}
837
838/// EmitConstructorBody - Emits the body of the current constructor.
839void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
840 EmitAsanPrologueOrEpilogue(Prologue: true);
841 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(Val: CurGD.getDecl());
842 CXXCtorType CtorType = CurGD.getCtorType();
843
844 assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
845 CtorType == Ctor_Complete) &&
846 "can only generate complete ctor for this ABI");
847
848 // Before we go any further, try the complete->base constructor
849 // delegation optimization.
850 if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
851 CGM.getTarget().getCXXABI().hasConstructorVariants()) {
852 EmitDelegateCXXConstructorCall(Ctor, CtorType: Ctor_Base, Args, Loc: Ctor->getEndLoc());
853 return;
854 }
855
856 const FunctionDecl *Definition = nullptr;
857 Stmt *Body = Ctor->getBody(Definition);
858 assert(Definition == Ctor && "emitting wrong constructor body");
859
860 // Enter the function-try-block before the constructor prologue if
861 // applicable.
862 bool IsTryBody = (Body && isa<CXXTryStmt>(Val: Body));
863 if (IsTryBody)
864 EnterCXXTryStmt(S: *cast<CXXTryStmt>(Val: Body), IsFnTryBlock: true);
865
866 incrementProfileCounter(S: Body);
867 maybeCreateMCDCCondBitmap();
868
869 RunCleanupsScope RunCleanups(*this);
870
871 // TODO: in restricted cases, we can emit the vbase initializers of
872 // a complete ctor and then delegate to the base ctor.
873
874 // Emit the constructor prologue, i.e. the base and member
875 // initializers.
876 EmitCtorPrologue(CD: Ctor, Type: CtorType, Args);
877
878 // Emit the body of the statement.
879 if (IsTryBody)
880 EmitStmt(cast<CXXTryStmt>(Val: Body)->getTryBlock());
881 else if (Body)
882 EmitStmt(S: Body);
883
884 // Emit any cleanup blocks associated with the member or base
885 // initializers, which includes (along the exceptional path) the
886 // destructors for those members and bases that were fully
887 // constructed.
888 RunCleanups.ForceCleanup();
889
890 if (IsTryBody)
891 ExitCXXTryStmt(S: *cast<CXXTryStmt>(Val: Body), IsFnTryBlock: true);
892}
893
894namespace {
895 /// RAII object to indicate that codegen is copying the value representation
896 /// instead of the object representation. Useful when copying a struct or
897 /// class which has uninitialized members and we're only performing
898 /// lvalue-to-rvalue conversion on the object but not its members.
899 class CopyingValueRepresentation {
900 public:
901 explicit CopyingValueRepresentation(CodeGenFunction &CGF)
902 : CGF(CGF), OldSanOpts(CGF.SanOpts) {
903 CGF.SanOpts.set(K: SanitizerKind::Bool, Value: false);
904 CGF.SanOpts.set(K: SanitizerKind::Enum, Value: false);
905 }
906 ~CopyingValueRepresentation() {
907 CGF.SanOpts = OldSanOpts;
908 }
909 private:
910 CodeGenFunction &CGF;
911 SanitizerSet OldSanOpts;
912 };
913} // end anonymous namespace
914
915namespace {
916 class FieldMemcpyizer {
917 public:
918 FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
919 const VarDecl *SrcRec)
920 : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
921 RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
922 FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
923 LastFieldOffset(0), LastAddedFieldIndex(0) {}
924
925 bool isMemcpyableField(FieldDecl *F) const {
926 // Never memcpy fields when we are adding poisoned paddings.
927 if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
928 return false;
929 Qualifiers Qual = F->getType().getQualifiers();
930 if (Qual.hasVolatile() || Qual.hasObjCLifetime())
931 return false;
932 return true;
933 }
934
935 void addMemcpyableField(FieldDecl *F) {
936 if (F->isZeroSize(Ctx: CGF.getContext()))
937 return;
938 if (!FirstField)
939 addInitialField(F);
940 else
941 addNextField(F);
942 }
943
944 CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
945 ASTContext &Ctx = CGF.getContext();
946 unsigned LastFieldSize =
947 LastField->isBitField()
948 ? LastField->getBitWidthValue(Ctx)
949 : Ctx.toBits(
950 CharSize: Ctx.getTypeInfoDataSizeInChars(T: LastField->getType()).Width);
951 uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize -
952 FirstByteOffset + Ctx.getCharWidth() - 1;
953 CharUnits MemcpySize = Ctx.toCharUnitsFromBits(BitSize: MemcpySizeBits);
954 return MemcpySize;
955 }
956
957 void emitMemcpy() {
958 // Give the subclass a chance to bail out if it feels the memcpy isn't
959 // worth it (e.g. Hasn't aggregated enough data).
960 if (!FirstField) {
961 return;
962 }
963
964 uint64_t FirstByteOffset;
965 if (FirstField->isBitField()) {
966 const CGRecordLayout &RL =
967 CGF.getTypes().getCGRecordLayout(FirstField->getParent());
968 const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FD: FirstField);
969 // FirstFieldOffset is not appropriate for bitfields,
970 // we need to use the storage offset instead.
971 FirstByteOffset = CGF.getContext().toBits(CharSize: BFInfo.StorageOffset);
972 } else {
973 FirstByteOffset = FirstFieldOffset;
974 }
975
976 CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
977 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
978 Address ThisPtr = CGF.LoadCXXThisAddress();
979 LValue DestLV = CGF.MakeAddrLValue(Addr: ThisPtr, T: RecordTy);
980 LValue Dest = CGF.EmitLValueForFieldInitialization(Base: DestLV, Field: FirstField);
981 llvm::Value *SrcPtr = CGF.Builder.CreateLoad(Addr: CGF.GetAddrOfLocalVar(VD: SrcRec));
982 LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(V: SrcPtr, T: RecordTy);
983 LValue Src = CGF.EmitLValueForFieldInitialization(Base: SrcLV, Field: FirstField);
984
985 emitMemcpyIR(
986 DestPtr: Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(CGF),
987 SrcPtr: Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(CGF),
988 Size: MemcpySize);
989 reset();
990 }
991
992 void reset() {
993 FirstField = nullptr;
994 }
995
996 protected:
997 CodeGenFunction &CGF;
998 const CXXRecordDecl *ClassDecl;
999
1000 private:
1001 void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
1002 DestPtr = DestPtr.withElementType(ElemTy: CGF.Int8Ty);
1003 SrcPtr = SrcPtr.withElementType(ElemTy: CGF.Int8Ty);
1004 CGF.Builder.CreateMemCpy(Dest: DestPtr, Src: SrcPtr, Size: Size.getQuantity());
1005 }
1006
1007 void addInitialField(FieldDecl *F) {
1008 FirstField = F;
1009 LastField = F;
1010 FirstFieldOffset = RecLayout.getFieldOffset(FieldNo: F->getFieldIndex());
1011 LastFieldOffset = FirstFieldOffset;
1012 LastAddedFieldIndex = F->getFieldIndex();
1013 }
1014
1015 void addNextField(FieldDecl *F) {
1016 // For the most part, the following invariant will hold:
1017 // F->getFieldIndex() == LastAddedFieldIndex + 1
1018 // The one exception is that Sema won't add a copy-initializer for an
1019 // unnamed bitfield, which will show up here as a gap in the sequence.
1020 assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
1021 "Cannot aggregate fields out of order.");
1022 LastAddedFieldIndex = F->getFieldIndex();
1023
1024 // The 'first' and 'last' fields are chosen by offset, rather than field
1025 // index. This allows the code to support bitfields, as well as regular
1026 // fields.
1027 uint64_t FOffset = RecLayout.getFieldOffset(FieldNo: F->getFieldIndex());
1028 if (FOffset < FirstFieldOffset) {
1029 FirstField = F;
1030 FirstFieldOffset = FOffset;
1031 } else if (FOffset >= LastFieldOffset) {
1032 LastField = F;
1033 LastFieldOffset = FOffset;
1034 }
1035 }
1036
1037 const VarDecl *SrcRec;
1038 const ASTRecordLayout &RecLayout;
1039 FieldDecl *FirstField;
1040 FieldDecl *LastField;
1041 uint64_t FirstFieldOffset, LastFieldOffset;
1042 unsigned LastAddedFieldIndex;
1043 };
1044
1045 class ConstructorMemcpyizer : public FieldMemcpyizer {
1046 private:
1047 /// Get source argument for copy constructor. Returns null if not a copy
1048 /// constructor.
1049 static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1050 const CXXConstructorDecl *CD,
1051 FunctionArgList &Args) {
1052 if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1053 return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1054 return nullptr;
1055 }
1056
1057 // Returns true if a CXXCtorInitializer represents a member initialization
1058 // that can be rolled into a memcpy.
1059 bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1060 if (!MemcpyableCtor)
1061 return false;
1062 FieldDecl *Field = MemberInit->getMember();
1063 assert(Field && "No field for member init.");
1064 QualType FieldType = Field->getType();
1065 CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(Val: MemberInit->getInit());
1066
1067 // Bail out on non-memcpyable, not-trivially-copyable members.
1068 if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
1069 !(FieldType.isTriviallyCopyableType(Context: CGF.getContext()) ||
1070 FieldType->isReferenceType()))
1071 return false;
1072
1073 // Bail out on volatile fields.
1074 if (!isMemcpyableField(F: Field))
1075 return false;
1076
1077 // Otherwise we're good.
1078 return true;
1079 }
1080
1081 public:
1082 ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1083 FunctionArgList &Args)
1084 : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1085 ConstructorDecl(CD),
1086 MemcpyableCtor(CD->isDefaulted() &&
1087 CD->isCopyOrMoveConstructor() &&
1088 CGF.getLangOpts().getGC() == LangOptions::NonGC),
1089 Args(Args) { }
1090
1091 void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1092 if (isMemberInitMemcpyable(MemberInit)) {
1093 AggregatedInits.push_back(Elt: MemberInit);
1094 addMemcpyableField(F: MemberInit->getMember());
1095 } else {
1096 emitAggregatedInits();
1097 EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1098 ConstructorDecl, Args);
1099 }
1100 }
1101
1102 void emitAggregatedInits() {
1103 if (AggregatedInits.size() <= 1) {
1104 // This memcpy is too small to be worthwhile. Fall back on default
1105 // codegen.
1106 if (!AggregatedInits.empty()) {
1107 CopyingValueRepresentation CVR(CGF);
1108 EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1109 AggregatedInits[0], ConstructorDecl, Args);
1110 AggregatedInits.clear();
1111 }
1112 reset();
1113 return;
1114 }
1115
1116 pushEHDestructors();
1117 emitMemcpy();
1118 AggregatedInits.clear();
1119 }
1120
1121 void pushEHDestructors() {
1122 Address ThisPtr = CGF.LoadCXXThisAddress();
1123 QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1124 LValue LHS = CGF.MakeAddrLValue(Addr: ThisPtr, T: RecordTy);
1125
1126 for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1127 CXXCtorInitializer *MemberInit = AggregatedInits[i];
1128 QualType FieldType = MemberInit->getAnyMember()->getType();
1129 QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1130 if (!CGF.needsEHCleanup(kind: dtorKind))
1131 continue;
1132 LValue FieldLHS = LHS;
1133 EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS&: FieldLHS);
1134 CGF.pushEHDestroy(dtorKind, addr: FieldLHS.getAddress(CGF), type: FieldType);
1135 }
1136 }
1137
1138 void finish() {
1139 emitAggregatedInits();
1140 }
1141
1142 private:
1143 const CXXConstructorDecl *ConstructorDecl;
1144 bool MemcpyableCtor;
1145 FunctionArgList &Args;
1146 SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1147 };
1148
1149 class AssignmentMemcpyizer : public FieldMemcpyizer {
1150 private:
1151 // Returns the memcpyable field copied by the given statement, if one
1152 // exists. Otherwise returns null.
1153 FieldDecl *getMemcpyableField(Stmt *S) {
1154 if (!AssignmentsMemcpyable)
1155 return nullptr;
1156 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: S)) {
1157 // Recognise trivial assignments.
1158 if (BO->getOpcode() != BO_Assign)
1159 return nullptr;
1160 MemberExpr *ME = dyn_cast<MemberExpr>(Val: BO->getLHS());
1161 if (!ME)
1162 return nullptr;
1163 FieldDecl *Field = dyn_cast<FieldDecl>(Val: ME->getMemberDecl());
1164 if (!Field || !isMemcpyableField(F: Field))
1165 return nullptr;
1166 Stmt *RHS = BO->getRHS();
1167 if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(Val: RHS))
1168 RHS = EC->getSubExpr();
1169 if (!RHS)
1170 return nullptr;
1171 if (MemberExpr *ME2 = dyn_cast<MemberExpr>(Val: RHS)) {
1172 if (ME2->getMemberDecl() == Field)
1173 return Field;
1174 }
1175 return nullptr;
1176 } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(Val: S)) {
1177 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1178 if (!(MD && isMemcpyEquivalentSpecialMember(D: MD)))
1179 return nullptr;
1180 MemberExpr *IOA = dyn_cast<MemberExpr>(Val: MCE->getImplicitObjectArgument());
1181 if (!IOA)
1182 return nullptr;
1183 FieldDecl *Field = dyn_cast<FieldDecl>(Val: IOA->getMemberDecl());
1184 if (!Field || !isMemcpyableField(F: Field))
1185 return nullptr;
1186 MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1187 if (!Arg0 || Field != dyn_cast<FieldDecl>(Val: Arg0->getMemberDecl()))
1188 return nullptr;
1189 return Field;
1190 } else if (CallExpr *CE = dyn_cast<CallExpr>(Val: S)) {
1191 FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: CE->getCalleeDecl());
1192 if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1193 return nullptr;
1194 Expr *DstPtr = CE->getArg(Arg: 0);
1195 if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(Val: DstPtr))
1196 DstPtr = DC->getSubExpr();
1197 UnaryOperator *DUO = dyn_cast<UnaryOperator>(Val: DstPtr);
1198 if (!DUO || DUO->getOpcode() != UO_AddrOf)
1199 return nullptr;
1200 MemberExpr *ME = dyn_cast<MemberExpr>(Val: DUO->getSubExpr());
1201 if (!ME)
1202 return nullptr;
1203 FieldDecl *Field = dyn_cast<FieldDecl>(Val: ME->getMemberDecl());
1204 if (!Field || !isMemcpyableField(F: Field))
1205 return nullptr;
1206 Expr *SrcPtr = CE->getArg(Arg: 1);
1207 if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(Val: SrcPtr))
1208 SrcPtr = SC->getSubExpr();
1209 UnaryOperator *SUO = dyn_cast<UnaryOperator>(Val: SrcPtr);
1210 if (!SUO || SUO->getOpcode() != UO_AddrOf)
1211 return nullptr;
1212 MemberExpr *ME2 = dyn_cast<MemberExpr>(Val: SUO->getSubExpr());
1213 if (!ME2 || Field != dyn_cast<FieldDecl>(Val: ME2->getMemberDecl()))
1214 return nullptr;
1215 return Field;
1216 }
1217
1218 return nullptr;
1219 }
1220
1221 bool AssignmentsMemcpyable;
1222 SmallVector<Stmt*, 16> AggregatedStmts;
1223
1224 public:
1225 AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1226 FunctionArgList &Args)
1227 : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1228 AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1229 assert(Args.size() == 2);
1230 }
1231
1232 void emitAssignment(Stmt *S) {
1233 FieldDecl *F = getMemcpyableField(S);
1234 if (F) {
1235 addMemcpyableField(F);
1236 AggregatedStmts.push_back(Elt: S);
1237 } else {
1238 emitAggregatedStmts();
1239 CGF.EmitStmt(S);
1240 }
1241 }
1242
1243 void emitAggregatedStmts() {
1244 if (AggregatedStmts.size() <= 1) {
1245 if (!AggregatedStmts.empty()) {
1246 CopyingValueRepresentation CVR(CGF);
1247 CGF.EmitStmt(S: AggregatedStmts[0]);
1248 }
1249 reset();
1250 }
1251
1252 emitMemcpy();
1253 AggregatedStmts.clear();
1254 }
1255
1256 void finish() {
1257 emitAggregatedStmts();
1258 }
1259 };
1260} // end anonymous namespace
1261
1262static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) {
1263 const Type *BaseType = BaseInit->getBaseClass();
1264 const auto *BaseClassDecl =
1265 cast<CXXRecordDecl>(Val: BaseType->castAs<RecordType>()->getDecl());
1266 return BaseClassDecl->isDynamicClass();
1267}
1268
1269/// EmitCtorPrologue - This routine generates necessary code to initialize
1270/// base classes and non-static data members belonging to this constructor.
1271void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1272 CXXCtorType CtorType,
1273 FunctionArgList &Args) {
1274 if (CD->isDelegatingConstructor())
1275 return EmitDelegatingCXXConstructorCall(Ctor: CD, Args);
1276
1277 const CXXRecordDecl *ClassDecl = CD->getParent();
1278
1279 CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1280 E = CD->init_end();
1281
1282 // Virtual base initializers first, if any. They aren't needed if:
1283 // - This is a base ctor variant
1284 // - There are no vbases
1285 // - The class is abstract, so a complete object of it cannot be constructed
1286 //
1287 // The check for an abstract class is necessary because sema may not have
1288 // marked virtual base destructors referenced.
1289 bool ConstructVBases = CtorType != Ctor_Base &&
1290 ClassDecl->getNumVBases() != 0 &&
1291 !ClassDecl->isAbstract();
1292
1293 // In the Microsoft C++ ABI, there are no constructor variants. Instead, the
1294 // constructor of a class with virtual bases takes an additional parameter to
1295 // conditionally construct the virtual bases. Emit that check here.
1296 llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1297 if (ConstructVBases &&
1298 !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1299 BaseCtorContinueBB =
1300 CGM.getCXXABI().EmitCtorCompleteObjectHandler(CGF&: *this, RD: ClassDecl);
1301 assert(BaseCtorContinueBB);
1302 }
1303
1304 for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1305 if (!ConstructVBases)
1306 continue;
1307 SaveAndRestore ThisRAII(CXXThisValue);
1308 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1309 CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1310 isInitializerOfDynamicClass(BaseInit: *B))
1311 CXXThisValue = Builder.CreateLaunderInvariantGroup(Ptr: LoadCXXThis());
1312 EmitBaseInitializer(CGF&: *this, ClassDecl, BaseInit: *B);
1313 }
1314
1315 if (BaseCtorContinueBB) {
1316 // Complete object handler should continue to the remaining initializers.
1317 Builder.CreateBr(Dest: BaseCtorContinueBB);
1318 EmitBlock(BB: BaseCtorContinueBB);
1319 }
1320
1321 // Then, non-virtual base initializers.
1322 for (; B != E && (*B)->isBaseInitializer(); B++) {
1323 assert(!(*B)->isBaseVirtual());
1324 SaveAndRestore ThisRAII(CXXThisValue);
1325 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1326 CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1327 isInitializerOfDynamicClass(BaseInit: *B))
1328 CXXThisValue = Builder.CreateLaunderInvariantGroup(Ptr: LoadCXXThis());
1329 EmitBaseInitializer(CGF&: *this, ClassDecl, BaseInit: *B);
1330 }
1331
1332 InitializeVTablePointers(ClassDecl);
1333
1334 // And finally, initialize class members.
1335 FieldConstructionScope FCS(*this, LoadCXXThisAddress());
1336 ConstructorMemcpyizer CM(*this, CD, Args);
1337 for (; B != E; B++) {
1338 CXXCtorInitializer *Member = (*B);
1339 assert(!Member->isBaseInitializer());
1340 assert(Member->isAnyMemberInitializer() &&
1341 "Delegating initializer on non-delegating constructor");
1342 CM.addMemberInitializer(MemberInit: Member);
1343 }
1344 CM.finish();
1345}
1346
1347static bool
1348FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1349
1350static bool
1351HasTrivialDestructorBody(ASTContext &Context,
1352 const CXXRecordDecl *BaseClassDecl,
1353 const CXXRecordDecl *MostDerivedClassDecl)
1354{
1355 // If the destructor is trivial we don't have to check anything else.
1356 if (BaseClassDecl->hasTrivialDestructor())
1357 return true;
1358
1359 if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1360 return false;
1361
1362 // Check fields.
1363 for (const auto *Field : BaseClassDecl->fields())
1364 if (!FieldHasTrivialDestructorBody(Context, Field))
1365 return false;
1366
1367 // Check non-virtual bases.
1368 for (const auto &I : BaseClassDecl->bases()) {
1369 if (I.isVirtual())
1370 continue;
1371
1372 const CXXRecordDecl *NonVirtualBase =
1373 cast<CXXRecordDecl>(Val: I.getType()->castAs<RecordType>()->getDecl());
1374 if (!HasTrivialDestructorBody(Context, BaseClassDecl: NonVirtualBase,
1375 MostDerivedClassDecl))
1376 return false;
1377 }
1378
1379 if (BaseClassDecl == MostDerivedClassDecl) {
1380 // Check virtual bases.
1381 for (const auto &I : BaseClassDecl->vbases()) {
1382 const CXXRecordDecl *VirtualBase =
1383 cast<CXXRecordDecl>(Val: I.getType()->castAs<RecordType>()->getDecl());
1384 if (!HasTrivialDestructorBody(Context, BaseClassDecl: VirtualBase,
1385 MostDerivedClassDecl))
1386 return false;
1387 }
1388 }
1389
1390 return true;
1391}
1392
1393static bool
1394FieldHasTrivialDestructorBody(ASTContext &Context,
1395 const FieldDecl *Field)
1396{
1397 QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1398
1399 const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1400 if (!RT)
1401 return true;
1402
1403 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(Val: RT->getDecl());
1404
1405 // The destructor for an implicit anonymous union member is never invoked.
1406 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
1407 return true;
1408
1409 return HasTrivialDestructorBody(Context, BaseClassDecl: FieldClassDecl, MostDerivedClassDecl: FieldClassDecl);
1410}
1411
1412/// CanSkipVTablePointerInitialization - Check whether we need to initialize
1413/// any vtable pointers before calling this destructor.
1414static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
1415 const CXXDestructorDecl *Dtor) {
1416 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1417 if (!ClassDecl->isDynamicClass())
1418 return true;
1419
1420 // For a final class, the vtable pointer is known to already point to the
1421 // class's vtable.
1422 if (ClassDecl->isEffectivelyFinal())
1423 return true;
1424
1425 if (!Dtor->hasTrivialBody())
1426 return false;
1427
1428 // Check the fields.
1429 for (const auto *Field : ClassDecl->fields())
1430 if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
1431 return false;
1432
1433 return true;
1434}
1435
1436/// EmitDestructorBody - Emits the body of the current destructor.
1437void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1438 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(Val: CurGD.getDecl());
1439 CXXDtorType DtorType = CurGD.getDtorType();
1440
1441 // For an abstract class, non-base destructors are never used (and can't
1442 // be emitted in general, because vbase dtors may not have been validated
1443 // by Sema), but the Itanium ABI doesn't make them optional and Clang may
1444 // in fact emit references to them from other compilations, so emit them
1445 // as functions containing a trap instruction.
1446 if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) {
1447 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
1448 TrapCall->setDoesNotReturn();
1449 TrapCall->setDoesNotThrow();
1450 Builder.CreateUnreachable();
1451 Builder.ClearInsertionPoint();
1452 return;
1453 }
1454
1455 Stmt *Body = Dtor->getBody();
1456 if (Body) {
1457 incrementProfileCounter(S: Body);
1458 maybeCreateMCDCCondBitmap();
1459 }
1460
1461 // The call to operator delete in a deleting destructor happens
1462 // outside of the function-try-block, which means it's always
1463 // possible to delegate the destructor body to the complete
1464 // destructor. Do so.
1465 if (DtorType == Dtor_Deleting) {
1466 RunCleanupsScope DtorEpilogue(*this);
1467 EnterDtorCleanups(Dtor, Type: Dtor_Deleting);
1468 if (HaveInsertPoint()) {
1469 QualType ThisTy = Dtor->getFunctionObjectParameterType();
1470 EmitCXXDestructorCall(D: Dtor, Type: Dtor_Complete, /*ForVirtualBase=*/false,
1471 /*Delegating=*/false, This: LoadCXXThisAddress(), ThisTy);
1472 }
1473 return;
1474 }
1475
1476 // If the body is a function-try-block, enter the try before
1477 // anything else.
1478 bool isTryBody = (Body && isa<CXXTryStmt>(Val: Body));
1479 if (isTryBody)
1480 EnterCXXTryStmt(S: *cast<CXXTryStmt>(Val: Body), IsFnTryBlock: true);
1481 EmitAsanPrologueOrEpilogue(Prologue: false);
1482
1483 // Enter the epilogue cleanups.
1484 RunCleanupsScope DtorEpilogue(*this);
1485
1486 // If this is the complete variant, just invoke the base variant;
1487 // the epilogue will destruct the virtual bases. But we can't do
1488 // this optimization if the body is a function-try-block, because
1489 // we'd introduce *two* handler blocks. In the Microsoft ABI, we
1490 // always delegate because we might not have a definition in this TU.
1491 switch (DtorType) {
1492 case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT");
1493 case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1494
1495 case Dtor_Complete:
1496 assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1497 "can't emit a dtor without a body for non-Microsoft ABIs");
1498
1499 // Enter the cleanup scopes for virtual bases.
1500 EnterDtorCleanups(Dtor, Type: Dtor_Complete);
1501
1502 if (!isTryBody) {
1503 QualType ThisTy = Dtor->getFunctionObjectParameterType();
1504 EmitCXXDestructorCall(D: Dtor, Type: Dtor_Base, /*ForVirtualBase=*/false,
1505 /*Delegating=*/false, This: LoadCXXThisAddress(), ThisTy);
1506 break;
1507 }
1508
1509 // Fallthrough: act like we're in the base variant.
1510 [[fallthrough]];
1511
1512 case Dtor_Base:
1513 assert(Body);
1514
1515 // Enter the cleanup scopes for fields and non-virtual bases.
1516 EnterDtorCleanups(Dtor, Type: Dtor_Base);
1517
1518 // Initialize the vtable pointers before entering the body.
1519 if (!CanSkipVTablePointerInitialization(CGF&: *this, Dtor)) {
1520 // Insert the llvm.launder.invariant.group intrinsic before initializing
1521 // the vptrs to cancel any previous assumptions we might have made.
1522 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1523 CGM.getCodeGenOpts().OptimizationLevel > 0)
1524 CXXThisValue = Builder.CreateLaunderInvariantGroup(Ptr: LoadCXXThis());
1525 InitializeVTablePointers(ClassDecl: Dtor->getParent());
1526 }
1527
1528 if (isTryBody)
1529 EmitStmt(cast<CXXTryStmt>(Val: Body)->getTryBlock());
1530 else if (Body)
1531 EmitStmt(S: Body);
1532 else {
1533 assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1534 // nothing to do besides what's in the epilogue
1535 }
1536 // -fapple-kext must inline any call to this dtor into
1537 // the caller's body.
1538 if (getLangOpts().AppleKext)
1539 CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1540
1541 break;
1542 }
1543
1544 // Jump out through the epilogue cleanups.
1545 DtorEpilogue.ForceCleanup();
1546
1547 // Exit the try if applicable.
1548 if (isTryBody)
1549 ExitCXXTryStmt(S: *cast<CXXTryStmt>(Val: Body), IsFnTryBlock: true);
1550}
1551
1552void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1553 const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(Val: CurGD.getDecl());
1554 const Stmt *RootS = AssignOp->getBody();
1555 assert(isa<CompoundStmt>(RootS) &&
1556 "Body of an implicit assignment operator should be compound stmt.");
1557 const CompoundStmt *RootCS = cast<CompoundStmt>(Val: RootS);
1558
1559 LexicalScope Scope(*this, RootCS->getSourceRange());
1560
1561 incrementProfileCounter(RootCS);
1562 maybeCreateMCDCCondBitmap();
1563 AssignmentMemcpyizer AM(*this, AssignOp, Args);
1564 for (auto *I : RootCS->body())
1565 AM.emitAssignment(I);
1566 AM.finish();
1567}
1568
1569namespace {
1570 llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF,
1571 const CXXDestructorDecl *DD) {
1572 if (Expr *ThisArg = DD->getOperatorDeleteThisArg())
1573 return CGF.EmitScalarExpr(E: ThisArg);
1574 return CGF.LoadCXXThis();
1575 }
1576
1577 /// Call the operator delete associated with the current destructor.
1578 struct CallDtorDelete final : EHScopeStack::Cleanup {
1579 CallDtorDelete() {}
1580
1581 void Emit(CodeGenFunction &CGF, Flags flags) override {
1582 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(Val: CGF.CurCodeDecl);
1583 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1584 CGF.EmitDeleteCall(DeleteFD: Dtor->getOperatorDelete(),
1585 Ptr: LoadThisForDtorDelete(CGF, DD: Dtor),
1586 DeleteTy: CGF.getContext().getTagDeclType(ClassDecl));
1587 }
1588 };
1589
1590 void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF,
1591 llvm::Value *ShouldDeleteCondition,
1592 bool ReturnAfterDelete) {
1593 llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock(name: "dtor.call_delete");
1594 llvm::BasicBlock *continueBB = CGF.createBasicBlock(name: "dtor.continue");
1595 llvm::Value *ShouldCallDelete
1596 = CGF.Builder.CreateIsNull(Arg: ShouldDeleteCondition);
1597 CGF.Builder.CreateCondBr(Cond: ShouldCallDelete, True: continueBB, False: callDeleteBB);
1598
1599 CGF.EmitBlock(BB: callDeleteBB);
1600 const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(Val: CGF.CurCodeDecl);
1601 const CXXRecordDecl *ClassDecl = Dtor->getParent();
1602 CGF.EmitDeleteCall(DeleteFD: Dtor->getOperatorDelete(),
1603 Ptr: LoadThisForDtorDelete(CGF, DD: Dtor),
1604 DeleteTy: CGF.getContext().getTagDeclType(ClassDecl));
1605 assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() ==
1606 ReturnAfterDelete &&
1607 "unexpected value for ReturnAfterDelete");
1608 if (ReturnAfterDelete)
1609 CGF.EmitBranchThroughCleanup(Dest: CGF.ReturnBlock);
1610 else
1611 CGF.Builder.CreateBr(Dest: continueBB);
1612
1613 CGF.EmitBlock(BB: continueBB);
1614 }
1615
1616 struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
1617 llvm::Value *ShouldDeleteCondition;
1618
1619 public:
1620 CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1621 : ShouldDeleteCondition(ShouldDeleteCondition) {
1622 assert(ShouldDeleteCondition != nullptr);
1623 }
1624
1625 void Emit(CodeGenFunction &CGF, Flags flags) override {
1626 EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition,
1627 /*ReturnAfterDelete*/false);
1628 }
1629 };
1630
1631 class DestroyField final : public EHScopeStack::Cleanup {
1632 const FieldDecl *field;
1633 CodeGenFunction::Destroyer *destroyer;
1634 bool useEHCleanupForArray;
1635
1636 public:
1637 DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1638 bool useEHCleanupForArray)
1639 : field(field), destroyer(destroyer),
1640 useEHCleanupForArray(useEHCleanupForArray) {}
1641
1642 void Emit(CodeGenFunction &CGF, Flags flags) override {
1643 // Find the address of the field.
1644 Address thisValue = CGF.LoadCXXThisAddress();
1645 QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1646 LValue ThisLV = CGF.MakeAddrLValue(Addr: thisValue, T: RecordTy);
1647 LValue LV = CGF.EmitLValueForField(Base: ThisLV, Field: field);
1648 assert(LV.isSimple());
1649
1650 CGF.emitDestroy(addr: LV.getAddress(CGF), type: field->getType(), destroyer,
1651 useEHCleanupForArray: flags.isForNormalCleanup() && useEHCleanupForArray);
1652 }
1653 };
1654
1655 class DeclAsInlineDebugLocation {
1656 CGDebugInfo *DI;
1657 llvm::MDNode *InlinedAt;
1658 std::optional<ApplyDebugLocation> Location;
1659
1660 public:
1661 DeclAsInlineDebugLocation(CodeGenFunction &CGF, const NamedDecl &Decl)
1662 : DI(CGF.getDebugInfo()) {
1663 if (!DI)
1664 return;
1665 InlinedAt = DI->getInlinedAt();
1666 DI->setInlinedAt(CGF.Builder.getCurrentDebugLocation());
1667 Location.emplace(CGF, Decl.getLocation());
1668 }
1669
1670 ~DeclAsInlineDebugLocation() {
1671 if (!DI)
1672 return;
1673 Location.reset();
1674 DI->setInlinedAt(InlinedAt);
1675 }
1676 };
1677
1678 static void EmitSanitizerDtorCallback(
1679 CodeGenFunction &CGF, StringRef Name, llvm::Value *Ptr,
1680 std::optional<CharUnits::QuantityType> PoisonSize = {}) {
1681 CodeGenFunction::SanitizerScope SanScope(&CGF);
1682 // Pass in void pointer and size of region as arguments to runtime
1683 // function
1684 SmallVector<llvm::Value *, 2> Args = {Ptr};
1685 SmallVector<llvm::Type *, 2> ArgTypes = {CGF.VoidPtrTy};
1686
1687 if (PoisonSize.has_value()) {
1688 Args.emplace_back(Args: llvm::ConstantInt::get(Ty: CGF.SizeTy, V: *PoisonSize));
1689 ArgTypes.emplace_back(Args&: CGF.SizeTy);
1690 }
1691
1692 llvm::FunctionType *FnType =
1693 llvm::FunctionType::get(Result: CGF.VoidTy, Params: ArgTypes, isVarArg: false);
1694 llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(Ty: FnType, Name);
1695
1696 CGF.EmitNounwindRuntimeCall(callee: Fn, args: Args);
1697 }
1698
1699 static void
1700 EmitSanitizerDtorFieldsCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
1701 CharUnits::QuantityType PoisonSize) {
1702 EmitSanitizerDtorCallback(CGF, Name: "__sanitizer_dtor_callback_fields", Ptr,
1703 PoisonSize);
1704 }
1705
1706 /// Poison base class with a trivial destructor.
1707 struct SanitizeDtorTrivialBase final : EHScopeStack::Cleanup {
1708 const CXXRecordDecl *BaseClass;
1709 bool BaseIsVirtual;
1710 SanitizeDtorTrivialBase(const CXXRecordDecl *Base, bool BaseIsVirtual)
1711 : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
1712
1713 void Emit(CodeGenFunction &CGF, Flags flags) override {
1714 const CXXRecordDecl *DerivedClass =
1715 cast<CXXMethodDecl>(Val: CGF.CurCodeDecl)->getParent();
1716
1717 Address Addr = CGF.GetAddressOfDirectBaseInCompleteClass(
1718 This: CGF.LoadCXXThisAddress(), Derived: DerivedClass, Base: BaseClass, BaseIsVirtual);
1719
1720 const ASTRecordLayout &BaseLayout =
1721 CGF.getContext().getASTRecordLayout(BaseClass);
1722 CharUnits BaseSize = BaseLayout.getSize();
1723
1724 if (!BaseSize.isPositive())
1725 return;
1726
1727 // Use the base class declaration location as inline DebugLocation. All
1728 // fields of the class are destroyed.
1729 DeclAsInlineDebugLocation InlineHere(CGF, *BaseClass);
1730 EmitSanitizerDtorFieldsCallback(CGF, Ptr: Addr.emitRawPointer(CGF),
1731 PoisonSize: BaseSize.getQuantity());
1732
1733 // Prevent the current stack frame from disappearing from the stack trace.
1734 CGF.CurFn->addFnAttr(Kind: "disable-tail-calls", Val: "true");
1735 }
1736 };
1737
1738 class SanitizeDtorFieldRange final : public EHScopeStack::Cleanup {
1739 const CXXDestructorDecl *Dtor;
1740 unsigned StartIndex;
1741 unsigned EndIndex;
1742
1743 public:
1744 SanitizeDtorFieldRange(const CXXDestructorDecl *Dtor, unsigned StartIndex,
1745 unsigned EndIndex)
1746 : Dtor(Dtor), StartIndex(StartIndex), EndIndex(EndIndex) {}
1747
1748 // Generate function call for handling object poisoning.
1749 // Disables tail call elimination, to prevent the current stack frame
1750 // from disappearing from the stack trace.
1751 void Emit(CodeGenFunction &CGF, Flags flags) override {
1752 const ASTContext &Context = CGF.getContext();
1753 const ASTRecordLayout &Layout =
1754 Context.getASTRecordLayout(D: Dtor->getParent());
1755
1756 // It's a first trivial field so it should be at the begining of a char,
1757 // still round up start offset just in case.
1758 CharUnits PoisonStart = Context.toCharUnitsFromBits(
1759 BitSize: Layout.getFieldOffset(FieldNo: StartIndex) + Context.getCharWidth() - 1);
1760 llvm::ConstantInt *OffsetSizePtr =
1761 llvm::ConstantInt::get(Ty: CGF.SizeTy, V: PoisonStart.getQuantity());
1762
1763 llvm::Value *OffsetPtr =
1764 CGF.Builder.CreateGEP(Ty: CGF.Int8Ty, Ptr: CGF.LoadCXXThis(), IdxList: OffsetSizePtr);
1765
1766 CharUnits PoisonEnd;
1767 if (EndIndex >= Layout.getFieldCount()) {
1768 PoisonEnd = Layout.getNonVirtualSize();
1769 } else {
1770 PoisonEnd =
1771 Context.toCharUnitsFromBits(BitSize: Layout.getFieldOffset(FieldNo: EndIndex));
1772 }
1773 CharUnits PoisonSize = PoisonEnd - PoisonStart;
1774 if (!PoisonSize.isPositive())
1775 return;
1776
1777 // Use the top field declaration location as inline DebugLocation.
1778 DeclAsInlineDebugLocation InlineHere(
1779 CGF, **std::next(Dtor->getParent()->field_begin(), StartIndex));
1780 EmitSanitizerDtorFieldsCallback(CGF, Ptr: OffsetPtr, PoisonSize: PoisonSize.getQuantity());
1781
1782 // Prevent the current stack frame from disappearing from the stack trace.
1783 CGF.CurFn->addFnAttr(Kind: "disable-tail-calls", Val: "true");
1784 }
1785 };
1786
1787 class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
1788 const CXXDestructorDecl *Dtor;
1789
1790 public:
1791 SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1792
1793 // Generate function call for handling vtable pointer poisoning.
1794 void Emit(CodeGenFunction &CGF, Flags flags) override {
1795 assert(Dtor->getParent()->isDynamicClass());
1796 (void)Dtor;
1797 // Poison vtable and vtable ptr if they exist for this class.
1798 llvm::Value *VTablePtr = CGF.LoadCXXThis();
1799
1800 // Pass in void pointer and size of region as arguments to runtime
1801 // function
1802 EmitSanitizerDtorCallback(CGF, Name: "__sanitizer_dtor_callback_vptr",
1803 Ptr: VTablePtr);
1804 }
1805 };
1806
1807 class SanitizeDtorCleanupBuilder {
1808 ASTContext &Context;
1809 EHScopeStack &EHStack;
1810 const CXXDestructorDecl *DD;
1811 std::optional<unsigned> StartIndex;
1812
1813 public:
1814 SanitizeDtorCleanupBuilder(ASTContext &Context, EHScopeStack &EHStack,
1815 const CXXDestructorDecl *DD)
1816 : Context(Context), EHStack(EHStack), DD(DD), StartIndex(std::nullopt) {}
1817 void PushCleanupForField(const FieldDecl *Field) {
1818 if (Field->isZeroSize(Ctx: Context))
1819 return;
1820 unsigned FieldIndex = Field->getFieldIndex();
1821 if (FieldHasTrivialDestructorBody(Context, Field)) {
1822 if (!StartIndex)
1823 StartIndex = FieldIndex;
1824 } else if (StartIndex) {
1825 EHStack.pushCleanup<SanitizeDtorFieldRange>(Kind: NormalAndEHCleanup, A: DD,
1826 A: *StartIndex, A: FieldIndex);
1827 StartIndex = std::nullopt;
1828 }
1829 }
1830 void End() {
1831 if (StartIndex)
1832 EHStack.pushCleanup<SanitizeDtorFieldRange>(Kind: NormalAndEHCleanup, A: DD,
1833 A: *StartIndex, A: -1);
1834 }
1835 };
1836} // end anonymous namespace
1837
1838/// Emit all code that comes at the end of class's
1839/// destructor. This is to call destructors on members and base classes
1840/// in reverse order of their construction.
1841///
1842/// For a deleting destructor, this also handles the case where a destroying
1843/// operator delete completely overrides the definition.
1844void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1845 CXXDtorType DtorType) {
1846 assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1847 "Should not emit dtor epilogue for non-exported trivial dtor!");
1848
1849 // The deleting-destructor phase just needs to call the appropriate
1850 // operator delete that Sema picked up.
1851 if (DtorType == Dtor_Deleting) {
1852 assert(DD->getOperatorDelete() &&
1853 "operator delete missing - EnterDtorCleanups");
1854 if (CXXStructorImplicitParamValue) {
1855 // If there is an implicit param to the deleting dtor, it's a boolean
1856 // telling whether this is a deleting destructor.
1857 if (DD->getOperatorDelete()->isDestroyingOperatorDelete())
1858 EmitConditionalDtorDeleteCall(CGF&: *this, ShouldDeleteCondition: CXXStructorImplicitParamValue,
1859 /*ReturnAfterDelete*/true);
1860 else
1861 EHStack.pushCleanup<CallDtorDeleteConditional>(
1862 Kind: NormalAndEHCleanup, A: CXXStructorImplicitParamValue);
1863 } else {
1864 if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) {
1865 const CXXRecordDecl *ClassDecl = DD->getParent();
1866 EmitDeleteCall(DeleteFD: DD->getOperatorDelete(),
1867 Ptr: LoadThisForDtorDelete(CGF&: *this, DD),
1868 DeleteTy: getContext().getTagDeclType(ClassDecl));
1869 EmitBranchThroughCleanup(Dest: ReturnBlock);
1870 } else {
1871 EHStack.pushCleanup<CallDtorDelete>(Kind: NormalAndEHCleanup);
1872 }
1873 }
1874 return;
1875 }
1876
1877 const CXXRecordDecl *ClassDecl = DD->getParent();
1878
1879 // Unions have no bases and do not call field destructors.
1880 if (ClassDecl->isUnion())
1881 return;
1882
1883 // The complete-destructor phase just destructs all the virtual bases.
1884 if (DtorType == Dtor_Complete) {
1885 // Poison the vtable pointer such that access after the base
1886 // and member destructors are invoked is invalid.
1887 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1888 SanOpts.has(K: SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
1889 ClassDecl->isPolymorphic())
1890 EHStack.pushCleanup<SanitizeDtorVTable>(Kind: NormalAndEHCleanup, A: DD);
1891
1892 // We push them in the forward order so that they'll be popped in
1893 // the reverse order.
1894 for (const auto &Base : ClassDecl->vbases()) {
1895 auto *BaseClassDecl =
1896 cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl());
1897
1898 if (BaseClassDecl->hasTrivialDestructor()) {
1899 // Under SanitizeMemoryUseAfterDtor, poison the trivial base class
1900 // memory. For non-trival base classes the same is done in the class
1901 // destructor.
1902 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1903 SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty())
1904 EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup,
1905 BaseClassDecl,
1906 /*BaseIsVirtual*/ true);
1907 } else {
1908 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl,
1909 /*BaseIsVirtual*/ true);
1910 }
1911 }
1912
1913 return;
1914 }
1915
1916 assert(DtorType == Dtor_Base);
1917 // Poison the vtable pointer if it has no virtual bases, but inherits
1918 // virtual functions.
1919 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1920 SanOpts.has(K: SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
1921 ClassDecl->isPolymorphic())
1922 EHStack.pushCleanup<SanitizeDtorVTable>(Kind: NormalAndEHCleanup, A: DD);
1923
1924 // Destroy non-virtual bases.
1925 for (const auto &Base : ClassDecl->bases()) {
1926 // Ignore virtual bases.
1927 if (Base.isVirtual())
1928 continue;
1929
1930 CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1931
1932 if (BaseClassDecl->hasTrivialDestructor()) {
1933 if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1934 SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty())
1935 EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup,
1936 BaseClassDecl,
1937 /*BaseIsVirtual*/ false);
1938 } else {
1939 EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl,
1940 /*BaseIsVirtual*/ false);
1941 }
1942 }
1943
1944 // Poison fields such that access after their destructors are
1945 // invoked, and before the base class destructor runs, is invalid.
1946 bool SanitizeFields = CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1947 SanOpts.has(K: SanitizerKind::Memory);
1948 SanitizeDtorCleanupBuilder SanitizeBuilder(getContext(), EHStack, DD);
1949
1950 // Destroy direct fields.
1951 for (const auto *Field : ClassDecl->fields()) {
1952 if (SanitizeFields)
1953 SanitizeBuilder.PushCleanupForField(Field);
1954
1955 QualType type = Field->getType();
1956 QualType::DestructionKind dtorKind = type.isDestructedType();
1957 if (!dtorKind)
1958 continue;
1959
1960 // Anonymous union members do not have their destructors called.
1961 const RecordType *RT = type->getAsUnionType();
1962 if (RT && RT->getDecl()->isAnonymousStructOrUnion())
1963 continue;
1964
1965 CleanupKind cleanupKind = getCleanupKind(dtorKind);
1966 EHStack.pushCleanup<DestroyField>(
1967 cleanupKind, Field, getDestroyer(dtorKind), cleanupKind & EHCleanup);
1968 }
1969
1970 if (SanitizeFields)
1971 SanitizeBuilder.End();
1972}
1973
1974/// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1975/// constructor for each of several members of an array.
1976///
1977/// \param ctor the constructor to call for each element
1978/// \param arrayType the type of the array to initialize
1979/// \param arrayBegin an arrayType*
1980/// \param zeroInitialize true if each element should be
1981/// zero-initialized before it is constructed
1982void CodeGenFunction::EmitCXXAggrConstructorCall(
1983 const CXXConstructorDecl *ctor, const ArrayType *arrayType,
1984 Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked,
1985 bool zeroInitialize) {
1986 QualType elementType;
1987 llvm::Value *numElements =
1988 emitArrayLength(arrayType, baseType&: elementType, addr&: arrayBegin);
1989
1990 EmitCXXAggrConstructorCall(D: ctor, NumElements: numElements, ArrayPtr: arrayBegin, E,
1991 NewPointerIsChecked, ZeroInitialization: zeroInitialize);
1992}
1993
1994/// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1995/// constructor for each of several members of an array.
1996///
1997/// \param ctor the constructor to call for each element
1998/// \param numElements the number of elements in the array;
1999/// may be zero
2000/// \param arrayBase a T*, where T is the type constructed by ctor
2001/// \param zeroInitialize true if each element should be
2002/// zero-initialized before it is constructed
2003void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
2004 llvm::Value *numElements,
2005 Address arrayBase,
2006 const CXXConstructExpr *E,
2007 bool NewPointerIsChecked,
2008 bool zeroInitialize) {
2009 // It's legal for numElements to be zero. This can happen both
2010 // dynamically, because x can be zero in 'new A[x]', and statically,
2011 // because of GCC extensions that permit zero-length arrays. There
2012 // are probably legitimate places where we could assume that this
2013 // doesn't happen, but it's not clear that it's worth it.
2014 llvm::BranchInst *zeroCheckBranch = nullptr;
2015
2016 // Optimize for a constant count.
2017 llvm::ConstantInt *constantCount
2018 = dyn_cast<llvm::ConstantInt>(Val: numElements);
2019 if (constantCount) {
2020 // Just skip out if the constant count is zero.
2021 if (constantCount->isZero()) return;
2022
2023 // Otherwise, emit the check.
2024 } else {
2025 llvm::BasicBlock *loopBB = createBasicBlock(name: "new.ctorloop");
2026 llvm::Value *iszero = Builder.CreateIsNull(Arg: numElements, Name: "isempty");
2027 zeroCheckBranch = Builder.CreateCondBr(Cond: iszero, True: loopBB, False: loopBB);
2028 EmitBlock(BB: loopBB);
2029 }
2030
2031 // Find the end of the array.
2032 llvm::Type *elementType = arrayBase.getElementType();
2033 llvm::Value *arrayBegin = arrayBase.emitRawPointer(CGF&: *this);
2034 llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(
2035 Ty: elementType, Ptr: arrayBegin, IdxList: numElements, Name: "arrayctor.end");
2036
2037 // Enter the loop, setting up a phi for the current location to initialize.
2038 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2039 llvm::BasicBlock *loopBB = createBasicBlock(name: "arrayctor.loop");
2040 EmitBlock(BB: loopBB);
2041 llvm::PHINode *cur = Builder.CreatePHI(Ty: arrayBegin->getType(), NumReservedValues: 2,
2042 Name: "arrayctor.cur");
2043 cur->addIncoming(V: arrayBegin, BB: entryBB);
2044
2045 // Inside the loop body, emit the constructor call on the array element.
2046
2047 // The alignment of the base, adjusted by the size of a single element,
2048 // provides a conservative estimate of the alignment of every element.
2049 // (This assumes we never start tracking offsetted alignments.)
2050 //
2051 // Note that these are complete objects and so we don't need to
2052 // use the non-virtual size or alignment.
2053 QualType type = getContext().getTypeDeclType(Decl: ctor->getParent());
2054 CharUnits eltAlignment =
2055 arrayBase.getAlignment()
2056 .alignmentOfArrayElement(elementSize: getContext().getTypeSizeInChars(T: type));
2057 Address curAddr = Address(cur, elementType, eltAlignment);
2058
2059 // Zero initialize the storage, if requested.
2060 if (zeroInitialize)
2061 EmitNullInitialization(DestPtr: curAddr, Ty: type);
2062
2063 // C++ [class.temporary]p4:
2064 // There are two contexts in which temporaries are destroyed at a different
2065 // point than the end of the full-expression. The first context is when a
2066 // default constructor is called to initialize an element of an array.
2067 // If the constructor has one or more default arguments, the destruction of
2068 // every temporary created in a default argument expression is sequenced
2069 // before the construction of the next array element, if any.
2070
2071 {
2072 RunCleanupsScope Scope(*this);
2073
2074 // Evaluate the constructor and its arguments in a regular
2075 // partial-destroy cleanup.
2076 if (getLangOpts().Exceptions &&
2077 !ctor->getParent()->hasTrivialDestructor()) {
2078 Destroyer *destroyer = destroyCXXObject;
2079 pushRegularPartialArrayCleanup(arrayBegin, arrayEnd: cur, elementType: type, elementAlignment: eltAlignment,
2080 destroyer: *destroyer);
2081 }
2082 auto currAVS = AggValueSlot::forAddr(
2083 addr: curAddr, quals: type.getQualifiers(), isDestructed: AggValueSlot::IsDestructed,
2084 needsGC: AggValueSlot::DoesNotNeedGCBarriers, isAliased: AggValueSlot::IsNotAliased,
2085 mayOverlap: AggValueSlot::DoesNotOverlap, isZeroed: AggValueSlot::IsNotZeroed,
2086 isChecked: NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked
2087 : AggValueSlot::IsNotSanitizerChecked);
2088 EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
2089 /*Delegating=*/false, currAVS, E);
2090 }
2091
2092 // Go to the next element.
2093 llvm::Value *next = Builder.CreateInBoundsGEP(
2094 Ty: elementType, Ptr: cur, IdxList: llvm::ConstantInt::get(Ty: SizeTy, V: 1), Name: "arrayctor.next");
2095 cur->addIncoming(V: next, BB: Builder.GetInsertBlock());
2096
2097 // Check whether that's the end of the loop.
2098 llvm::Value *done = Builder.CreateICmpEQ(LHS: next, RHS: arrayEnd, Name: "arrayctor.done");
2099 llvm::BasicBlock *contBB = createBasicBlock(name: "arrayctor.cont");
2100 Builder.CreateCondBr(Cond: done, True: contBB, False: loopBB);
2101
2102 // Patch the earlier check to skip over the loop.
2103 if (zeroCheckBranch) zeroCheckBranch->setSuccessor(idx: 0, NewSucc: contBB);
2104
2105 EmitBlock(BB: contBB);
2106}
2107
2108void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
2109 Address addr,
2110 QualType type) {
2111 const RecordType *rtype = type->castAs<RecordType>();
2112 const CXXRecordDecl *record = cast<CXXRecordDecl>(Val: rtype->getDecl());
2113 const CXXDestructorDecl *dtor = record->getDestructor();
2114 assert(!dtor->isTrivial());
2115 CGF.EmitCXXDestructorCall(D: dtor, Type: Dtor_Complete, /*for vbase*/ ForVirtualBase: false,
2116 /*Delegating=*/false, This: addr, ThisTy: type);
2117}
2118
2119void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2120 CXXCtorType Type,
2121 bool ForVirtualBase,
2122 bool Delegating,
2123 AggValueSlot ThisAVS,
2124 const CXXConstructExpr *E) {
2125 CallArgList Args;
2126 Address This = ThisAVS.getAddress();
2127 LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace();
2128 LangAS ThisAS = D->getFunctionObjectParameterType().getAddressSpace();
2129 llvm::Value *ThisPtr =
2130 getAsNaturalPointerTo(Addr: This, PointeeType: D->getThisType()->getPointeeType());
2131
2132 if (SlotAS != ThisAS) {
2133 unsigned TargetThisAS = getContext().getTargetAddressSpace(AS: ThisAS);
2134 llvm::Type *NewType =
2135 llvm::PointerType::get(C&: getLLVMContext(), AddressSpace: TargetThisAS);
2136 ThisPtr = getTargetHooks().performAddrSpaceCast(CGF&: *this, V: ThisPtr, SrcAddr: ThisAS,
2137 DestAddr: SlotAS, DestTy: NewType);
2138 }
2139
2140 // Push the this ptr.
2141 Args.add(rvalue: RValue::get(V: ThisPtr), type: D->getThisType());
2142
2143 // If this is a trivial constructor, emit a memcpy now before we lose
2144 // the alignment information on the argument.
2145 // FIXME: It would be better to preserve alignment information into CallArg.
2146 if (isMemcpyEquivalentSpecialMember(D)) {
2147 assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2148
2149 const Expr *Arg = E->getArg(Arg: 0);
2150 LValue Src = EmitLValue(E: Arg);
2151 QualType DestTy = getContext().getTypeDeclType(Decl: D->getParent());
2152 LValue Dest = MakeAddrLValue(Addr: This, T: DestTy);
2153 EmitAggregateCopyCtor(Dest, Src, MayOverlap: ThisAVS.mayOverlap());
2154 return;
2155 }
2156
2157 // Add the rest of the user-supplied arguments.
2158 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2159 EvaluationOrder Order = E->isListInitialization()
2160 ? EvaluationOrder::ForceLeftToRight
2161 : EvaluationOrder::Default;
2162 EmitCallArgs(Args, Prototype: FPT, ArgRange: E->arguments(), AC: E->getConstructor(),
2163 /*ParamsToSkip*/ 0, Order);
2164
2165 EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args,
2166 ThisAVS.mayOverlap(), E->getExprLoc(),
2167 ThisAVS.isSanitizerChecked());
2168}
2169
2170static bool canEmitDelegateCallArgs(CodeGenFunction &CGF,
2171 const CXXConstructorDecl *Ctor,
2172 CXXCtorType Type, CallArgList &Args) {
2173 // We can't forward a variadic call.
2174 if (Ctor->isVariadic())
2175 return false;
2176
2177 if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2178 // If the parameters are callee-cleanup, it's not safe to forward.
2179 for (auto *P : Ctor->parameters())
2180 if (P->needsDestruction(CGF.getContext()))
2181 return false;
2182
2183 // Likewise if they're inalloca.
2184 const CGFunctionInfo &Info =
2185 CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, D: Ctor, CtorKind: Type, ExtraPrefixArgs: 0, ExtraSuffixArgs: 0);
2186 if (Info.usesInAlloca())
2187 return false;
2188 }
2189
2190 // Anything else should be OK.
2191 return true;
2192}
2193
2194void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2195 CXXCtorType Type,
2196 bool ForVirtualBase,
2197 bool Delegating,
2198 Address This,
2199 CallArgList &Args,
2200 AggValueSlot::Overlap_t Overlap,
2201 SourceLocation Loc,
2202 bool NewPointerIsChecked) {
2203 const CXXRecordDecl *ClassDecl = D->getParent();
2204
2205 if (!NewPointerIsChecked)
2206 EmitTypeCheck(TCK: CodeGenFunction::TCK_ConstructorCall, Loc, Addr: This,
2207 Type: getContext().getRecordType(ClassDecl), Alignment: CharUnits::Zero());
2208
2209 if (D->isTrivial() && D->isDefaultConstructor()) {
2210 assert(Args.size() == 1 && "trivial default ctor with args");
2211 return;
2212 }
2213
2214 // If this is a trivial constructor, just emit what's needed. If this is a
2215 // union copy constructor, we must emit a memcpy, because the AST does not
2216 // model that copy.
2217 if (isMemcpyEquivalentSpecialMember(D)) {
2218 assert(Args.size() == 2 && "unexpected argcount for trivial ctor");
2219 QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType();
2220 Address Src = makeNaturalAddressForPointer(
2221 Ptr: Args[1].getRValue(CGF&: *this).getScalarVal(), T: SrcTy);
2222 LValue SrcLVal = MakeAddrLValue(Addr: Src, T: SrcTy);
2223 QualType DestTy = getContext().getTypeDeclType(ClassDecl);
2224 LValue DestLVal = MakeAddrLValue(Addr: This, T: DestTy);
2225 EmitAggregateCopyCtor(Dest: DestLVal, Src: SrcLVal, MayOverlap: Overlap);
2226 return;
2227 }
2228
2229 bool PassPrototypeArgs = true;
2230 // Check whether we can actually emit the constructor before trying to do so.
2231 if (auto Inherited = D->getInheritedConstructor()) {
2232 PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type);
2233 if (PassPrototypeArgs && !canEmitDelegateCallArgs(CGF&: *this, Ctor: D, Type, Args)) {
2234 EmitInlinedInheritingCXXConstructorCall(Ctor: D, CtorType: Type, ForVirtualBase,
2235 Delegating, Args);
2236 return;
2237 }
2238 }
2239
2240 // Insert any ABI-specific implicit constructor arguments.
2241 CGCXXABI::AddedStructorArgCounts ExtraArgs =
2242 CGM.getCXXABI().addImplicitConstructorArgs(CGF&: *this, D, Type, ForVirtualBase,
2243 Delegating, Args);
2244
2245 // Emit the call.
2246 llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GD: GlobalDecl(D, Type));
2247 const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall(
2248 Args, D, CtorKind: Type, ExtraPrefixArgs: ExtraArgs.Prefix, ExtraSuffixArgs: ExtraArgs.Suffix, PassProtoArgs: PassPrototypeArgs);
2249 CGCallee Callee = CGCallee::forDirect(functionPtr: CalleePtr, abstractInfo: GlobalDecl(D, Type));
2250 EmitCall(CallInfo: Info, Callee, ReturnValue: ReturnValueSlot(), Args, callOrInvoke: nullptr, IsMustTail: false, Loc);
2251
2252 // Generate vtable assumptions if we're constructing a complete object
2253 // with a vtable. We don't do this for base subobjects for two reasons:
2254 // first, it's incorrect for classes with virtual bases, and second, we're
2255 // about to overwrite the vptrs anyway.
2256 // We also have to make sure if we can refer to vtable:
2257 // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2258 // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2259 // sure that definition of vtable is not hidden,
2260 // then we are always safe to refer to it.
2261 // FIXME: It looks like InstCombine is very inefficient on dealing with
2262 // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
2263 if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2264 ClassDecl->isDynamicClass() && Type != Ctor_Base &&
2265 CGM.getCXXABI().canSpeculativelyEmitVTable(RD: ClassDecl) &&
2266 CGM.getCodeGenOpts().StrictVTablePointers)
2267 EmitVTableAssumptionLoads(ClassDecl, This);
2268}
2269
2270void CodeGenFunction::EmitInheritedCXXConstructorCall(
2271 const CXXConstructorDecl *D, bool ForVirtualBase, Address This,
2272 bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) {
2273 CallArgList Args;
2274 CallArg ThisArg(RValue::get(V: getAsNaturalPointerTo(
2275 Addr: This, PointeeType: D->getThisType()->getPointeeType())),
2276 D->getThisType());
2277
2278 // Forward the parameters.
2279 if (InheritedFromVBase &&
2280 CGM.getTarget().getCXXABI().hasConstructorVariants()) {
2281 // Nothing to do; this construction is not responsible for constructing
2282 // the base class containing the inherited constructor.
2283 // FIXME: Can we just pass undef's for the remaining arguments if we don't
2284 // have constructor variants?
2285 Args.push_back(Elt: ThisArg);
2286 } else if (!CXXInheritedCtorInitExprArgs.empty()) {
2287 // The inheriting constructor was inlined; just inject its arguments.
2288 assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() &&
2289 "wrong number of parameters for inherited constructor call");
2290 Args = CXXInheritedCtorInitExprArgs;
2291 Args[0] = ThisArg;
2292 } else {
2293 // The inheriting constructor was not inlined. Emit delegating arguments.
2294 Args.push_back(Elt: ThisArg);
2295 const auto *OuterCtor = cast<CXXConstructorDecl>(Val: CurCodeDecl);
2296 assert(OuterCtor->getNumParams() == D->getNumParams());
2297 assert(!OuterCtor->isVariadic() && "should have been inlined");
2298
2299 for (const auto *Param : OuterCtor->parameters()) {
2300 assert(getContext().hasSameUnqualifiedType(
2301 OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(),
2302 Param->getType()));
2303 EmitDelegateCallArg(Args, Param, E->getLocation());
2304
2305 // Forward __attribute__(pass_object_size).
2306 if (Param->hasAttr<PassObjectSizeAttr>()) {
2307 auto *POSParam = SizeArguments[Param];
2308 assert(POSParam && "missing pass_object_size value for forwarding");
2309 EmitDelegateCallArg(Args, POSParam, E->getLocation());
2310 }
2311 }
2312 }
2313
2314 EmitCXXConstructorCall(D, Type: Ctor_Base, ForVirtualBase, /*Delegating*/false,
2315 This, Args, Overlap: AggValueSlot::MayOverlap,
2316 Loc: E->getLocation(), /*NewPointerIsChecked*/true);
2317}
2318
2319void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall(
2320 const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase,
2321 bool Delegating, CallArgList &Args) {
2322 GlobalDecl GD(Ctor, CtorType);
2323 InlinedInheritingConstructorScope Scope(*this, GD);
2324 ApplyInlineDebugLocation DebugScope(*this, GD);
2325 RunCleanupsScope RunCleanups(*this);
2326
2327 // Save the arguments to be passed to the inherited constructor.
2328 CXXInheritedCtorInitExprArgs = Args;
2329
2330 FunctionArgList Params;
2331 QualType RetType = BuildFunctionArgList(GD: CurGD, Args&: Params);
2332 FnRetTy = RetType;
2333
2334 // Insert any ABI-specific implicit constructor arguments.
2335 CGM.getCXXABI().addImplicitConstructorArgs(CGF&: *this, D: Ctor, Type: CtorType,
2336 ForVirtualBase, Delegating, Args);
2337
2338 // Emit a simplified prolog. We only need to emit the implicit params.
2339 assert(Args.size() >= Params.size() && "too few arguments for call");
2340 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2341 if (I < Params.size() && isa<ImplicitParamDecl>(Val: Params[I])) {
2342 const RValue &RV = Args[I].getRValue(CGF&: *this);
2343 assert(!RV.isComplex() && "complex indirect params not supported");
2344 ParamValue Val = RV.isScalar()
2345 ? ParamValue::forDirect(value: RV.getScalarVal())
2346 : ParamValue::forIndirect(addr: RV.getAggregateAddress());
2347 EmitParmDecl(D: *Params[I], Arg: Val, ArgNo: I + 1);
2348 }
2349 }
2350
2351 // Create a return value slot if the ABI implementation wants one.
2352 // FIXME: This is dumb, we should ask the ABI not to try to set the return
2353 // value instead.
2354 if (!RetType->isVoidType())
2355 ReturnValue = CreateIRTemp(T: RetType, Name: "retval.inhctor");
2356
2357 CGM.getCXXABI().EmitInstanceFunctionProlog(CGF&: *this);
2358 CXXThisValue = CXXABIThisValue;
2359
2360 // Directly emit the constructor initializers.
2361 EmitCtorPrologue(CD: Ctor, CtorType, Args&: Params);
2362}
2363
2364void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
2365 llvm::Value *VTableGlobal =
2366 CGM.getCXXABI().getVTableAddressPoint(Base: Vptr.Base, VTableClass: Vptr.VTableClass);
2367 if (!VTableGlobal)
2368 return;
2369
2370 // We can just use the base offset in the complete class.
2371 CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
2372
2373 if (!NonVirtualOffset.isZero())
2374 This =
2375 ApplyNonVirtualAndVirtualOffset(CGF&: *this, addr: This, nonVirtualOffset: NonVirtualOffset, virtualOffset: nullptr,
2376 derivedClass: Vptr.VTableClass, nearestVBase: Vptr.NearestVBase);
2377
2378 llvm::Value *VPtrValue =
2379 GetVTablePtr(This, VTableTy: VTableGlobal->getType(), VTableClass: Vptr.VTableClass);
2380 llvm::Value *Cmp =
2381 Builder.CreateICmpEQ(LHS: VPtrValue, RHS: VTableGlobal, Name: "cmp.vtables");
2382 Builder.CreateAssumption(Cond: Cmp);
2383}
2384
2385void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
2386 Address This) {
2387 if (CGM.getCXXABI().doStructorsInitializeVPtrs(VTableClass: ClassDecl))
2388 for (const VPtr &Vptr : getVTablePointers(VTableClass: ClassDecl))
2389 EmitVTableAssumptionLoad(Vptr, This);
2390}
2391
2392void
2393CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2394 Address This, Address Src,
2395 const CXXConstructExpr *E) {
2396 const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2397
2398 CallArgList Args;
2399
2400 // Push the this ptr.
2401 Args.add(rvalue: RValue::get(V: getAsNaturalPointerTo(Addr: This, PointeeType: D->getThisType())),
2402 type: D->getThisType());
2403
2404 // Push the src ptr.
2405 QualType QT = *(FPT->param_type_begin());
2406 llvm::Type *t = CGM.getTypes().ConvertType(T: QT);
2407 llvm::Value *Val = getAsNaturalPointerTo(Addr: Src, PointeeType: D->getThisType());
2408 llvm::Value *SrcVal = Builder.CreateBitCast(V: Val, DestTy: t);
2409 Args.add(rvalue: RValue::get(V: SrcVal), type: QT);
2410
2411 // Skip over first argument (Src).
2412 EmitCallArgs(Args, Prototype: FPT, ArgRange: drop_begin(E->arguments(), 1), AC: E->getConstructor(),
2413 /*ParamsToSkip*/ 1);
2414
2415 EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false,
2416 /*Delegating*/false, This, Args,
2417 AggValueSlot::MayOverlap, E->getExprLoc(),
2418 /*NewPointerIsChecked*/false);
2419}
2420
2421void
2422CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2423 CXXCtorType CtorType,
2424 const FunctionArgList &Args,
2425 SourceLocation Loc) {
2426 CallArgList DelegateArgs;
2427
2428 FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
2429 assert(I != E && "no parameters to constructor");
2430
2431 // this
2432 Address This = LoadCXXThisAddress();
2433 DelegateArgs.add(rvalue: RValue::get(getAsNaturalPointerTo(
2434 Addr: This, PointeeType: (*I)->getType()->getPointeeType())),
2435 type: (*I)->getType());
2436 ++I;
2437
2438 // FIXME: The location of the VTT parameter in the parameter list is
2439 // specific to the Itanium ABI and shouldn't be hardcoded here.
2440 if (CGM.getCXXABI().NeedsVTTParameter(GD: CurGD)) {
2441 assert(I != E && "cannot skip vtt parameter, already done with args");
2442 assert((*I)->getType()->isPointerType() &&
2443 "skipping parameter not of vtt type");
2444 ++I;
2445 }
2446
2447 // Explicit arguments.
2448 for (; I != E; ++I) {
2449 const VarDecl *param = *I;
2450 // FIXME: per-argument source location
2451 EmitDelegateCallArg(args&: DelegateArgs, param, loc: Loc);
2452 }
2453
2454 EmitCXXConstructorCall(D: Ctor, Type: CtorType, /*ForVirtualBase=*/false,
2455 /*Delegating=*/true, This, Args&: DelegateArgs,
2456 Overlap: AggValueSlot::MayOverlap, Loc,
2457 /*NewPointerIsChecked=*/true);
2458}
2459
2460namespace {
2461 struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
2462 const CXXDestructorDecl *Dtor;
2463 Address Addr;
2464 CXXDtorType Type;
2465
2466 CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
2467 CXXDtorType Type)
2468 : Dtor(D), Addr(Addr), Type(Type) {}
2469
2470 void Emit(CodeGenFunction &CGF, Flags flags) override {
2471 // We are calling the destructor from within the constructor.
2472 // Therefore, "this" should have the expected type.
2473 QualType ThisTy = Dtor->getFunctionObjectParameterType();
2474 CGF.EmitCXXDestructorCall(D: Dtor, Type, /*ForVirtualBase=*/false,
2475 /*Delegating=*/true, This: Addr, ThisTy);
2476 }
2477 };
2478} // end anonymous namespace
2479
2480void
2481CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2482 const FunctionArgList &Args) {
2483 assert(Ctor->isDelegatingConstructor());
2484
2485 Address ThisPtr = LoadCXXThisAddress();
2486
2487 AggValueSlot AggSlot =
2488 AggValueSlot::forAddr(addr: ThisPtr, quals: Qualifiers(),
2489 isDestructed: AggValueSlot::IsDestructed,
2490 needsGC: AggValueSlot::DoesNotNeedGCBarriers,
2491 isAliased: AggValueSlot::IsNotAliased,
2492 mayOverlap: AggValueSlot::MayOverlap,
2493 isZeroed: AggValueSlot::IsNotZeroed,
2494 // Checks are made by the code that calls constructor.
2495 isChecked: AggValueSlot::IsSanitizerChecked);
2496
2497 EmitAggExpr(E: Ctor->init_begin()[0]->getInit(), AS: AggSlot);
2498
2499 const CXXRecordDecl *ClassDecl = Ctor->getParent();
2500 if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
2501 CXXDtorType Type =
2502 CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
2503
2504 EHStack.pushCleanup<CallDelegatingCtorDtor>(Kind: EHCleanup,
2505 A: ClassDecl->getDestructor(),
2506 A: ThisPtr, A: Type);
2507 }
2508}
2509
2510void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
2511 CXXDtorType Type,
2512 bool ForVirtualBase,
2513 bool Delegating, Address This,
2514 QualType ThisTy) {
2515 CGM.getCXXABI().EmitDestructorCall(CGF&: *this, DD, Type, ForVirtualBase,
2516 Delegating, This, ThisTy);
2517}
2518
2519namespace {
2520 struct CallLocalDtor final : EHScopeStack::Cleanup {
2521 const CXXDestructorDecl *Dtor;
2522 Address Addr;
2523 QualType Ty;
2524
2525 CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty)
2526 : Dtor(D), Addr(Addr), Ty(Ty) {}
2527
2528 void Emit(CodeGenFunction &CGF, Flags flags) override {
2529 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
2530 /*ForVirtualBase=*/false,
2531 /*Delegating=*/false, Addr, Ty);
2532 }
2533 };
2534} // end anonymous namespace
2535
2536void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
2537 QualType T, Address Addr) {
2538 EHStack.pushCleanup<CallLocalDtor>(Kind: NormalAndEHCleanup, A: D, A: Addr, A: T);
2539}
2540
2541void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
2542 CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
2543 if (!ClassDecl) return;
2544 if (ClassDecl->hasTrivialDestructor()) return;
2545
2546 const CXXDestructorDecl *D = ClassDecl->getDestructor();
2547 assert(D && D->isUsed() && "destructor not marked as used!");
2548 PushDestructorCleanup(D, T, Addr);
2549}
2550
2551void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
2552 // Compute the address point.
2553 llvm::Value *VTableAddressPoint =
2554 CGM.getCXXABI().getVTableAddressPointInStructor(
2555 CGF&: *this, RD: Vptr.VTableClass, Base: Vptr.Base, NearestVBase: Vptr.NearestVBase);
2556
2557 if (!VTableAddressPoint)
2558 return;
2559
2560 // Compute where to store the address point.
2561 llvm::Value *VirtualOffset = nullptr;
2562 CharUnits NonVirtualOffset = CharUnits::Zero();
2563
2564 if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(CGF&: *this, Vptr)) {
2565 // We need to use the virtual base offset offset because the virtual base
2566 // might have a different offset in the most derived class.
2567
2568 VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
2569 CGF&: *this, This: LoadCXXThisAddress(), ClassDecl: Vptr.VTableClass, BaseClassDecl: Vptr.NearestVBase);
2570 NonVirtualOffset = Vptr.OffsetFromNearestVBase;
2571 } else {
2572 // We can just use the base offset in the complete class.
2573 NonVirtualOffset = Vptr.Base.getBaseOffset();
2574 }
2575
2576 // Apply the offsets.
2577 Address VTableField = LoadCXXThisAddress();
2578 if (!NonVirtualOffset.isZero() || VirtualOffset)
2579 VTableField = ApplyNonVirtualAndVirtualOffset(
2580 CGF&: *this, addr: VTableField, nonVirtualOffset: NonVirtualOffset, virtualOffset: VirtualOffset, derivedClass: Vptr.VTableClass,
2581 nearestVBase: Vptr.NearestVBase);
2582
2583 // Finally, store the address point. Use the same LLVM types as the field to
2584 // support optimization.
2585 unsigned GlobalsAS = CGM.getDataLayout().getDefaultGlobalsAddressSpace();
2586 llvm::Type *PtrTy = llvm::PointerType::get(C&: CGM.getLLVMContext(), AddressSpace: GlobalsAS);
2587 // vtable field is derived from `this` pointer, therefore they should be in
2588 // the same addr space. Note that this might not be LLVM address space 0.
2589 VTableField = VTableField.withElementType(ElemTy: PtrTy);
2590
2591 llvm::StoreInst *Store = Builder.CreateStore(Val: VTableAddressPoint, Addr: VTableField);
2592 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTablePtrType: PtrTy);
2593 CGM.DecorateInstructionWithTBAA(Inst: Store, TBAAInfo);
2594 if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2595 CGM.getCodeGenOpts().StrictVTablePointers)
2596 CGM.DecorateInstructionWithInvariantGroup(I: Store, RD: Vptr.VTableClass);
2597}
2598
2599CodeGenFunction::VPtrsVector
2600CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
2601 CodeGenFunction::VPtrsVector VPtrsResult;
2602 VisitedVirtualBasesSetTy VBases;
2603 getVTablePointers(Base: BaseSubobject(VTableClass, CharUnits::Zero()),
2604 /*NearestVBase=*/nullptr,
2605 /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2606 /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
2607 vptrs&: VPtrsResult);
2608 return VPtrsResult;
2609}
2610
2611void CodeGenFunction::getVTablePointers(BaseSubobject Base,
2612 const CXXRecordDecl *NearestVBase,
2613 CharUnits OffsetFromNearestVBase,
2614 bool BaseIsNonVirtualPrimaryBase,
2615 const CXXRecordDecl *VTableClass,
2616 VisitedVirtualBasesSetTy &VBases,
2617 VPtrsVector &Vptrs) {
2618 // If this base is a non-virtual primary base the address point has already
2619 // been set.
2620 if (!BaseIsNonVirtualPrimaryBase) {
2621 // Initialize the vtable pointer for this base.
2622 VPtr Vptr = {.Base: Base, .NearestVBase: NearestVBase, .OffsetFromNearestVBase: OffsetFromNearestVBase, .VTableClass: VTableClass};
2623 Vptrs.push_back(Elt: Vptr);
2624 }
2625
2626 const CXXRecordDecl *RD = Base.getBase();
2627
2628 // Traverse bases.
2629 for (const auto &I : RD->bases()) {
2630 auto *BaseDecl =
2631 cast<CXXRecordDecl>(Val: I.getType()->castAs<RecordType>()->getDecl());
2632
2633 // Ignore classes without a vtable.
2634 if (!BaseDecl->isDynamicClass())
2635 continue;
2636
2637 CharUnits BaseOffset;
2638 CharUnits BaseOffsetFromNearestVBase;
2639 bool BaseDeclIsNonVirtualPrimaryBase;
2640
2641 if (I.isVirtual()) {
2642 // Check if we've visited this virtual base before.
2643 if (!VBases.insert(Ptr: BaseDecl).second)
2644 continue;
2645
2646 const ASTRecordLayout &Layout =
2647 getContext().getASTRecordLayout(VTableClass);
2648
2649 BaseOffset = Layout.getVBaseClassOffset(VBase: BaseDecl);
2650 BaseOffsetFromNearestVBase = CharUnits::Zero();
2651 BaseDeclIsNonVirtualPrimaryBase = false;
2652 } else {
2653 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2654
2655 BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(Base: BaseDecl);
2656 BaseOffsetFromNearestVBase =
2657 OffsetFromNearestVBase + Layout.getBaseClassOffset(Base: BaseDecl);
2658 BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2659 }
2660
2661 getVTablePointers(
2662 Base: BaseSubobject(BaseDecl, BaseOffset),
2663 NearestVBase: I.isVirtual() ? BaseDecl : NearestVBase, OffsetFromNearestVBase: BaseOffsetFromNearestVBase,
2664 BaseIsNonVirtualPrimaryBase: BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
2665 }
2666}
2667
2668void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2669 // Ignore classes without a vtable.
2670 if (!RD->isDynamicClass())
2671 return;
2672
2673 // Initialize the vtable pointers for this class and all of its bases.
2674 if (CGM.getCXXABI().doStructorsInitializeVPtrs(VTableClass: RD))
2675 for (const VPtr &Vptr : getVTablePointers(VTableClass: RD))
2676 InitializeVTablePointer(Vptr);
2677
2678 if (RD->getNumVBases())
2679 CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(CGF&: *this, RD);
2680}
2681
2682llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
2683 llvm::Type *VTableTy,
2684 const CXXRecordDecl *RD) {
2685 Address VTablePtrSrc = This.withElementType(ElemTy: VTableTy);
2686 llvm::Instruction *VTable = Builder.CreateLoad(Addr: VTablePtrSrc, Name: "vtable");
2687 TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTablePtrType: VTableTy);
2688 CGM.DecorateInstructionWithTBAA(Inst: VTable, TBAAInfo);
2689
2690 if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2691 CGM.getCodeGenOpts().StrictVTablePointers)
2692 CGM.DecorateInstructionWithInvariantGroup(I: VTable, RD);
2693
2694 return VTable;
2695}
2696
2697// If a class has a single non-virtual base and does not introduce or override
2698// virtual member functions or fields, it will have the same layout as its base.
2699// This function returns the least derived such class.
2700//
2701// Casting an instance of a base class to such a derived class is technically
2702// undefined behavior, but it is a relatively common hack for introducing member
2703// functions on class instances with specific properties (e.g. llvm::Operator)
2704// that works under most compilers and should not have security implications, so
2705// we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2706static const CXXRecordDecl *
2707LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
2708 if (!RD->field_empty())
2709 return RD;
2710
2711 if (RD->getNumVBases() != 0)
2712 return RD;
2713
2714 if (RD->getNumBases() != 1)
2715 return RD;
2716
2717 for (const CXXMethodDecl *MD : RD->methods()) {
2718 if (MD->isVirtual()) {
2719 // Virtual member functions are only ok if they are implicit destructors
2720 // because the implicit destructor will have the same semantics as the
2721 // base class's destructor if no fields are added.
2722 if (isa<CXXDestructorDecl>(Val: MD) && MD->isImplicit())
2723 continue;
2724 return RD;
2725 }
2726 }
2727
2728 return LeastDerivedClassWithSameLayout(
2729 RD: RD->bases_begin()->getType()->getAsCXXRecordDecl());
2730}
2731
2732void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2733 llvm::Value *VTable,
2734 SourceLocation Loc) {
2735 if (SanOpts.has(K: SanitizerKind::CFIVCall))
2736 EmitVTablePtrCheckForCall(RD, VTable, TCK: CodeGenFunction::CFITCK_VCall, Loc);
2737 else if (CGM.getCodeGenOpts().WholeProgramVTables &&
2738 // Don't insert type test assumes if we are forcing public
2739 // visibility.
2740 !CGM.AlwaysHasLTOVisibilityPublic(RD)) {
2741 QualType Ty = QualType(RD->getTypeForDecl(), 0);
2742 llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(T: Ty);
2743 llvm::Value *TypeId =
2744 llvm::MetadataAsValue::get(Context&: CGM.getLLVMContext(), MD);
2745
2746 // If we already know that the call has hidden LTO visibility, emit
2747 // @llvm.type.test(). Otherwise emit @llvm.public.type.test(), which WPD
2748 // will convert to @llvm.type.test() if we assert at link time that we have
2749 // whole program visibility.
2750 llvm::Intrinsic::ID IID = CGM.HasHiddenLTOVisibility(RD)
2751 ? llvm::Intrinsic::type_test
2752 : llvm::Intrinsic::public_type_test;
2753 llvm::Value *TypeTest =
2754 Builder.CreateCall(Callee: CGM.getIntrinsic(IID), Args: {VTable, TypeId});
2755 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest);
2756 }
2757}
2758
2759void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD,
2760 llvm::Value *VTable,
2761 CFITypeCheckKind TCK,
2762 SourceLocation Loc) {
2763 if (!SanOpts.has(K: SanitizerKind::CFICastStrict))
2764 RD = LeastDerivedClassWithSameLayout(RD);
2765
2766 EmitVTablePtrCheck(RD, VTable, TCK, Loc);
2767}
2768
2769void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, Address Derived,
2770 bool MayBeNull,
2771 CFITypeCheckKind TCK,
2772 SourceLocation Loc) {
2773 if (!getLangOpts().CPlusPlus)
2774 return;
2775
2776 auto *ClassTy = T->getAs<RecordType>();
2777 if (!ClassTy)
2778 return;
2779
2780 const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Val: ClassTy->getDecl());
2781
2782 if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
2783 return;
2784
2785 if (!SanOpts.has(K: SanitizerKind::CFICastStrict))
2786 ClassDecl = LeastDerivedClassWithSameLayout(RD: ClassDecl);
2787
2788 llvm::BasicBlock *ContBlock = nullptr;
2789
2790 if (MayBeNull) {
2791 llvm::Value *DerivedNotNull =
2792 Builder.CreateIsNotNull(Arg: Derived.emitRawPointer(CGF&: *this), Name: "cast.nonnull");
2793
2794 llvm::BasicBlock *CheckBlock = createBasicBlock(name: "cast.check");
2795 ContBlock = createBasicBlock(name: "cast.cont");
2796
2797 Builder.CreateCondBr(Cond: DerivedNotNull, True: CheckBlock, False: ContBlock);
2798
2799 EmitBlock(BB: CheckBlock);
2800 }
2801
2802 llvm::Value *VTable;
2803 std::tie(args&: VTable, args&: ClassDecl) =
2804 CGM.getCXXABI().LoadVTablePtr(CGF&: *this, This: Derived, RD: ClassDecl);
2805
2806 EmitVTablePtrCheck(RD: ClassDecl, VTable, TCK, Loc);
2807
2808 if (MayBeNull) {
2809 Builder.CreateBr(Dest: ContBlock);
2810 EmitBlock(BB: ContBlock);
2811 }
2812}
2813
2814void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
2815 llvm::Value *VTable,
2816 CFITypeCheckKind TCK,
2817 SourceLocation Loc) {
2818 if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso &&
2819 !CGM.HasHiddenLTOVisibility(RD))
2820 return;
2821
2822 SanitizerMask M;
2823 llvm::SanitizerStatKind SSK;
2824 switch (TCK) {
2825 case CFITCK_VCall:
2826 M = SanitizerKind::CFIVCall;
2827 SSK = llvm::SanStat_CFI_VCall;
2828 break;
2829 case CFITCK_NVCall:
2830 M = SanitizerKind::CFINVCall;
2831 SSK = llvm::SanStat_CFI_NVCall;
2832 break;
2833 case CFITCK_DerivedCast:
2834 M = SanitizerKind::CFIDerivedCast;
2835 SSK = llvm::SanStat_CFI_DerivedCast;
2836 break;
2837 case CFITCK_UnrelatedCast:
2838 M = SanitizerKind::CFIUnrelatedCast;
2839 SSK = llvm::SanStat_CFI_UnrelatedCast;
2840 break;
2841 case CFITCK_ICall:
2842 case CFITCK_NVMFCall:
2843 case CFITCK_VMFCall:
2844 llvm_unreachable("unexpected sanitizer kind");
2845 }
2846
2847 std::string TypeName = RD->getQualifiedNameAsString();
2848 if (getContext().getNoSanitizeList().containsType(Mask: M, MangledTypeName: TypeName))
2849 return;
2850
2851 SanitizerScope SanScope(this);
2852 EmitSanitizerStatReport(SSK);
2853
2854 llvm::Metadata *MD =
2855 CGM.CreateMetadataIdentifierForType(T: QualType(RD->getTypeForDecl(), 0));
2856 llvm::Value *TypeId = llvm::MetadataAsValue::get(Context&: getLLVMContext(), MD);
2857
2858 llvm::Value *TypeTest = Builder.CreateCall(
2859 CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, TypeId});
2860
2861 llvm::Constant *StaticData[] = {
2862 llvm::ConstantInt::get(Ty: Int8Ty, V: TCK),
2863 EmitCheckSourceLocation(Loc),
2864 EmitCheckTypeDescriptor(T: QualType(RD->getTypeForDecl(), 0)),
2865 };
2866
2867 auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
2868 if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
2869 EmitCfiSlowPathCheck(Kind: M, Cond: TypeTest, TypeId: CrossDsoTypeId, Ptr: VTable, StaticArgs: StaticData);
2870 return;
2871 }
2872
2873 if (CGM.getCodeGenOpts().SanitizeTrap.has(K: M)) {
2874 EmitTrapCheck(Checked: TypeTest, CheckHandlerID: SanitizerHandler::CFICheckFail);
2875 return;
2876 }
2877
2878 llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2879 Context&: CGM.getLLVMContext(),
2880 MD: llvm::MDString::get(Context&: CGM.getLLVMContext(), Str: "all-vtables"));
2881 llvm::Value *ValidVtable = Builder.CreateCall(
2882 CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, AllVtables});
2883 EmitCheck(Checked: std::make_pair(x&: TypeTest, y&: M), Check: SanitizerHandler::CFICheckFail,
2884 StaticArgs: StaticData, DynamicArgs: {VTable, ValidVtable});
2885}
2886
2887bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) {
2888 if (!CGM.getCodeGenOpts().WholeProgramVTables ||
2889 !CGM.HasHiddenLTOVisibility(RD))
2890 return false;
2891
2892 if (CGM.getCodeGenOpts().VirtualFunctionElimination)
2893 return true;
2894
2895 if (!SanOpts.has(K: SanitizerKind::CFIVCall) ||
2896 !CGM.getCodeGenOpts().SanitizeTrap.has(K: SanitizerKind::CFIVCall))
2897 return false;
2898
2899 std::string TypeName = RD->getQualifiedNameAsString();
2900 return !getContext().getNoSanitizeList().containsType(Mask: SanitizerKind::CFIVCall,
2901 MangledTypeName: TypeName);
2902}
2903
2904llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad(
2905 const CXXRecordDecl *RD, llvm::Value *VTable, llvm::Type *VTableTy,
2906 uint64_t VTableByteOffset) {
2907 SanitizerScope SanScope(this);
2908
2909 EmitSanitizerStatReport(SSK: llvm::SanStat_CFI_VCall);
2910
2911 llvm::Metadata *MD =
2912 CGM.CreateMetadataIdentifierForType(T: QualType(RD->getTypeForDecl(), 0));
2913 llvm::Value *TypeId = llvm::MetadataAsValue::get(Context&: CGM.getLLVMContext(), MD);
2914
2915 llvm::Value *CheckedLoad = Builder.CreateCall(
2916 CGM.getIntrinsic(llvm::Intrinsic::type_checked_load),
2917 {VTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), TypeId});
2918 llvm::Value *CheckResult = Builder.CreateExtractValue(Agg: CheckedLoad, Idxs: 1);
2919
2920 std::string TypeName = RD->getQualifiedNameAsString();
2921 if (SanOpts.has(K: SanitizerKind::CFIVCall) &&
2922 !getContext().getNoSanitizeList().containsType(Mask: SanitizerKind::CFIVCall,
2923 MangledTypeName: TypeName)) {
2924 EmitCheck(Checked: std::make_pair(x&: CheckResult, y: SanitizerKind::CFIVCall),
2925 Check: SanitizerHandler::CFICheckFail, StaticArgs: {}, DynamicArgs: {});
2926 }
2927
2928 return Builder.CreateBitCast(V: Builder.CreateExtractValue(Agg: CheckedLoad, Idxs: 0),
2929 DestTy: VTableTy);
2930}
2931
2932void CodeGenFunction::EmitForwardingCallToLambda(
2933 const CXXMethodDecl *callOperator, CallArgList &callArgs,
2934 const CGFunctionInfo *calleeFnInfo, llvm::Constant *calleePtr) {
2935 // Get the address of the call operator.
2936 if (!calleeFnInfo)
2937 calleeFnInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(MD: callOperator);
2938
2939 if (!calleePtr)
2940 calleePtr =
2941 CGM.GetAddrOfFunction(GD: GlobalDecl(callOperator),
2942 Ty: CGM.getTypes().GetFunctionType(Info: *calleeFnInfo));
2943
2944 // Prepare the return slot.
2945 const FunctionProtoType *FPT =
2946 callOperator->getType()->castAs<FunctionProtoType>();
2947 QualType resultType = FPT->getReturnType();
2948 ReturnValueSlot returnSlot;
2949 if (!resultType->isVoidType() &&
2950 calleeFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2951 !hasScalarEvaluationKind(T: calleeFnInfo->getReturnType()))
2952 returnSlot =
2953 ReturnValueSlot(ReturnValue, resultType.isVolatileQualified(),
2954 /*IsUnused=*/false, /*IsExternallyDestructed=*/true);
2955
2956 // We don't need to separately arrange the call arguments because
2957 // the call can't be variadic anyway --- it's impossible to forward
2958 // variadic arguments.
2959
2960 // Now emit our call.
2961 auto callee = CGCallee::forDirect(functionPtr: calleePtr, abstractInfo: GlobalDecl(callOperator));
2962 RValue RV = EmitCall(*calleeFnInfo, callee, returnSlot, callArgs);
2963
2964 // If necessary, copy the returned value into the slot.
2965 if (!resultType->isVoidType() && returnSlot.isNull()) {
2966 if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) {
2967 RV = RValue::get(V: EmitARCRetainAutoreleasedReturnValue(value: RV.getScalarVal()));
2968 }
2969 EmitReturnOfRValue(RV, Ty: resultType);
2970 } else
2971 EmitBranchThroughCleanup(Dest: ReturnBlock);
2972}
2973
2974void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2975 const BlockDecl *BD = BlockInfo->getBlockDecl();
2976 const VarDecl *variable = BD->capture_begin()->getVariable();
2977 const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2978 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2979
2980 if (CallOp->isVariadic()) {
2981 // FIXME: Making this work correctly is nasty because it requires either
2982 // cloning the body of the call operator or making the call operator
2983 // forward.
2984 CGM.ErrorUnsupported(D: CurCodeDecl, Type: "lambda conversion to variadic function");
2985 return;
2986 }
2987
2988 // Start building arguments for forwarding call
2989 CallArgList CallArgs;
2990
2991 QualType ThisType = getContext().getPointerType(T: getContext().getRecordType(Lambda));
2992 Address ThisPtr = GetAddrOfBlockDecl(var: variable);
2993 CallArgs.add(rvalue: RValue::get(V: getAsNaturalPointerTo(Addr: ThisPtr, PointeeType: ThisType)), type: ThisType);
2994
2995 // Add the rest of the parameters.
2996 for (auto *param : BD->parameters())
2997 EmitDelegateCallArg(args&: CallArgs, param, loc: param->getBeginLoc());
2998
2999 assert(!Lambda->isGenericLambda() &&
3000 "generic lambda interconversion to block not implemented");
3001 EmitForwardingCallToLambda(callOperator: CallOp, callArgs&: CallArgs);
3002}
3003
3004void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) {
3005 if (MD->isVariadic()) {
3006 // FIXME: Making this work correctly is nasty because it requires either
3007 // cloning the body of the call operator or making the call operator
3008 // forward.
3009 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
3010 return;
3011 }
3012
3013 const CXXRecordDecl *Lambda = MD->getParent();
3014
3015 // Start building arguments for forwarding call
3016 CallArgList CallArgs;
3017
3018 QualType LambdaType = getContext().getRecordType(Lambda);
3019 QualType ThisType = getContext().getPointerType(T: LambdaType);
3020 Address ThisPtr = CreateMemTemp(T: LambdaType, Name: "unused.capture");
3021 CallArgs.add(rvalue: RValue::get(V: ThisPtr.emitRawPointer(CGF&: *this)), type: ThisType);
3022
3023 EmitLambdaDelegatingInvokeBody(MD, CallArgs);
3024}
3025
3026void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD,
3027 CallArgList &CallArgs) {
3028 // Add the rest of the forwarded parameters.
3029 for (auto *Param : MD->parameters())
3030 EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc());
3031
3032 const CXXRecordDecl *Lambda = MD->getParent();
3033 const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
3034 // For a generic lambda, find the corresponding call operator specialization
3035 // to which the call to the static-invoker shall be forwarded.
3036 if (Lambda->isGenericLambda()) {
3037 assert(MD->isFunctionTemplateSpecialization());
3038 const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
3039 FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
3040 void *InsertPos = nullptr;
3041 FunctionDecl *CorrespondingCallOpSpecialization =
3042 CallOpTemplate->findSpecialization(Args: TAL->asArray(), InsertPos);
3043 assert(CorrespondingCallOpSpecialization);
3044 CallOp = cast<CXXMethodDecl>(Val: CorrespondingCallOpSpecialization);
3045 }
3046
3047 // Special lambda forwarding when there are inalloca parameters.
3048 if (hasInAllocaArg(MD)) {
3049 const CGFunctionInfo *ImplFnInfo = nullptr;
3050 llvm::Function *ImplFn = nullptr;
3051 EmitLambdaInAllocaImplFn(CallOp, ImplFnInfo: &ImplFnInfo, ImplFn: &ImplFn);
3052
3053 EmitForwardingCallToLambda(callOperator: CallOp, callArgs&: CallArgs, calleeFnInfo: ImplFnInfo, calleePtr: ImplFn);
3054 return;
3055 }
3056
3057 EmitForwardingCallToLambda(callOperator: CallOp, callArgs&: CallArgs);
3058}
3059
3060void CodeGenFunction::EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD) {
3061 if (MD->isVariadic()) {
3062 // FIXME: Making this work correctly is nasty because it requires either
3063 // cloning the body of the call operator or making the call operator forward.
3064 CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
3065 return;
3066 }
3067
3068 // Forward %this argument.
3069 CallArgList CallArgs;
3070 QualType LambdaType = getContext().getRecordType(MD->getParent());
3071 QualType ThisType = getContext().getPointerType(T: LambdaType);
3072 llvm::Value *ThisArg = CurFn->getArg(i: 0);
3073 CallArgs.add(rvalue: RValue::get(V: ThisArg), type: ThisType);
3074
3075 EmitLambdaDelegatingInvokeBody(MD, CallArgs);
3076}
3077
3078void CodeGenFunction::EmitLambdaInAllocaImplFn(
3079 const CXXMethodDecl *CallOp, const CGFunctionInfo **ImplFnInfo,
3080 llvm::Function **ImplFn) {
3081 const CGFunctionInfo &FnInfo =
3082 CGM.getTypes().arrangeCXXMethodDeclaration(MD: CallOp);
3083 llvm::Function *CallOpFn =
3084 cast<llvm::Function>(Val: CGM.GetAddrOfFunction(GD: GlobalDecl(CallOp)));
3085
3086 // Emit function containing the original call op body. __invoke will delegate
3087 // to this function.
3088 SmallVector<CanQualType, 4> ArgTypes;
3089 for (auto I = FnInfo.arg_begin(); I != FnInfo.arg_end(); ++I)
3090 ArgTypes.push_back(Elt: I->type);
3091 *ImplFnInfo = &CGM.getTypes().arrangeLLVMFunctionInfo(
3092 returnType: FnInfo.getReturnType(), opts: FnInfoOpts::IsDelegateCall, argTypes: ArgTypes,
3093 info: FnInfo.getExtInfo(), paramInfos: {}, args: FnInfo.getRequiredArgs());
3094
3095 // Create mangled name as if this was a method named __impl. If for some
3096 // reason the name doesn't look as expected then just tack __impl to the
3097 // front.
3098 // TODO: Use the name mangler to produce the right name instead of using
3099 // string replacement.
3100 StringRef CallOpName = CallOpFn->getName();
3101 std::string ImplName;
3102 if (size_t Pos = CallOpName.find_first_of(Chars: "<lambda"))
3103 ImplName = ("?__impl@" + CallOpName.drop_front(N: Pos)).str();
3104 else
3105 ImplName = ("__impl" + CallOpName).str();
3106
3107 llvm::Function *Fn = CallOpFn->getParent()->getFunction(Name: ImplName);
3108 if (!Fn) {
3109 Fn = llvm::Function::Create(Ty: CGM.getTypes().GetFunctionType(Info: **ImplFnInfo),
3110 Linkage: llvm::GlobalValue::InternalLinkage, N: ImplName,
3111 M&: CGM.getModule());
3112 CGM.SetInternalFunctionAttributes(CallOp, Fn, **ImplFnInfo);
3113
3114 const GlobalDecl &GD = GlobalDecl(CallOp);
3115 const auto *D = cast<FunctionDecl>(Val: GD.getDecl());
3116 CodeGenFunction(CGM).GenerateCode(GD, Fn, FnInfo: **ImplFnInfo);
3117 CGM.SetLLVMFunctionAttributesForDefinition(D: D, F: Fn);
3118 }
3119 *ImplFn = Fn;
3120}
3121

source code of clang/lib/CodeGen/CGClass.cpp