1 | //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===// |
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This contains code to emit Aggregate Expr nodes as LLVM code. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "CGCXXABI.h" |
14 | #include "CGObjCRuntime.h" |
15 | #include "CodeGenFunction.h" |
16 | #include "CodeGenModule.h" |
17 | #include "ConstantEmitter.h" |
18 | #include "TargetInfo.h" |
19 | #include "clang/AST/ASTContext.h" |
20 | #include "clang/AST/Attr.h" |
21 | #include "clang/AST/DeclCXX.h" |
22 | #include "clang/AST/DeclTemplate.h" |
23 | #include "clang/AST/StmtVisitor.h" |
24 | #include "llvm/IR/Constants.h" |
25 | #include "llvm/IR/Function.h" |
26 | #include "llvm/IR/GlobalVariable.h" |
27 | #include "llvm/IR/IntrinsicInst.h" |
28 | #include "llvm/IR/Intrinsics.h" |
29 | using namespace clang; |
30 | using namespace CodeGen; |
31 | |
32 | //===----------------------------------------------------------------------===// |
33 | // Aggregate Expression Emitter |
34 | //===----------------------------------------------------------------------===// |
35 | |
36 | namespace llvm { |
37 | extern cl::opt<bool> EnableSingleByteCoverage; |
38 | } // namespace llvm |
39 | |
40 | namespace { |
41 | class AggExprEmitter : public StmtVisitor<AggExprEmitter> { |
42 | CodeGenFunction &CGF; |
43 | CGBuilderTy &Builder; |
44 | AggValueSlot Dest; |
45 | bool IsResultUnused; |
46 | |
47 | AggValueSlot EnsureSlot(QualType T) { |
48 | if (!Dest.isIgnored()) return Dest; |
49 | return CGF.CreateAggTemp(T, Name: "agg.tmp.ensured" ); |
50 | } |
51 | void EnsureDest(QualType T) { |
52 | if (!Dest.isIgnored()) return; |
53 | Dest = CGF.CreateAggTemp(T, Name: "agg.tmp.ensured" ); |
54 | } |
55 | |
56 | // Calls `Fn` with a valid return value slot, potentially creating a temporary |
57 | // to do so. If a temporary is created, an appropriate copy into `Dest` will |
58 | // be emitted, as will lifetime markers. |
59 | // |
60 | // The given function should take a ReturnValueSlot, and return an RValue that |
61 | // points to said slot. |
62 | void withReturnValueSlot(const Expr *E, |
63 | llvm::function_ref<RValue(ReturnValueSlot)> Fn); |
64 | |
65 | public: |
66 | AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused) |
67 | : CGF(cgf), Builder(CGF.Builder), Dest(Dest), |
68 | IsResultUnused(IsResultUnused) { } |
69 | |
70 | //===--------------------------------------------------------------------===// |
71 | // Utilities |
72 | //===--------------------------------------------------------------------===// |
73 | |
74 | /// EmitAggLoadOfLValue - Given an expression with aggregate type that |
75 | /// represents a value lvalue, this method emits the address of the lvalue, |
76 | /// then loads the result into DestPtr. |
77 | void EmitAggLoadOfLValue(const Expr *E); |
78 | |
79 | enum ExprValueKind { |
80 | EVK_RValue, |
81 | EVK_NonRValue |
82 | }; |
83 | |
84 | /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. |
85 | /// SrcIsRValue is true if source comes from an RValue. |
86 | void EmitFinalDestCopy(QualType type, const LValue &src, |
87 | ExprValueKind SrcValueKind = EVK_NonRValue); |
88 | void EmitFinalDestCopy(QualType type, RValue src); |
89 | void EmitCopy(QualType type, const AggValueSlot &dest, |
90 | const AggValueSlot &src); |
91 | |
92 | void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, QualType ArrayQTy, |
93 | Expr *ExprToVisit, ArrayRef<Expr *> Args, |
94 | Expr *ArrayFiller); |
95 | |
96 | AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) { |
97 | if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T)) |
98 | return AggValueSlot::NeedsGCBarriers; |
99 | return AggValueSlot::DoesNotNeedGCBarriers; |
100 | } |
101 | |
102 | bool TypeRequiresGCollection(QualType T); |
103 | |
104 | //===--------------------------------------------------------------------===// |
105 | // Visitor Methods |
106 | //===--------------------------------------------------------------------===// |
107 | |
108 | void Visit(Expr *E) { |
109 | ApplyDebugLocation DL(CGF, E); |
110 | StmtVisitor<AggExprEmitter>::Visit(E); |
111 | } |
112 | |
113 | void VisitStmt(Stmt *S) { |
114 | CGF.ErrorUnsupported(S, Type: "aggregate expression" ); |
115 | } |
116 | void VisitParenExpr(ParenExpr *PE) { Visit(E: PE->getSubExpr()); } |
117 | void VisitGenericSelectionExpr(GenericSelectionExpr *GE) { |
118 | Visit(E: GE->getResultExpr()); |
119 | } |
120 | void VisitCoawaitExpr(CoawaitExpr *E) { |
121 | CGF.EmitCoawaitExpr(E: *E, aggSlot: Dest, ignoreResult: IsResultUnused); |
122 | } |
123 | void VisitCoyieldExpr(CoyieldExpr *E) { |
124 | CGF.EmitCoyieldExpr(E: *E, aggSlot: Dest, ignoreResult: IsResultUnused); |
125 | } |
126 | void VisitUnaryCoawait(UnaryOperator *E) { Visit(E: E->getSubExpr()); } |
127 | void VisitUnaryExtension(UnaryOperator *E) { Visit(E: E->getSubExpr()); } |
128 | void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { |
129 | return Visit(E: E->getReplacement()); |
130 | } |
131 | |
132 | void VisitConstantExpr(ConstantExpr *E) { |
133 | EnsureDest(T: E->getType()); |
134 | |
135 | if (llvm::Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(CE: E)) { |
136 | Address StoreDest = Dest.getAddress(); |
137 | // The emitted value is guaranteed to have the same size as the |
138 | // destination but can have a different type. Just do a bitcast in this |
139 | // case to avoid incorrect GEPs. |
140 | if (Result->getType() != StoreDest.getType()) |
141 | StoreDest = StoreDest.withElementType(ElemTy: Result->getType()); |
142 | |
143 | CGF.EmitAggregateStore(Val: Result, Dest: StoreDest, |
144 | DestIsVolatile: E->getType().isVolatileQualified()); |
145 | return; |
146 | } |
147 | return Visit(E: E->getSubExpr()); |
148 | } |
149 | |
150 | // l-values. |
151 | void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); } |
152 | void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); } |
153 | void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); } |
154 | void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); } |
155 | void VisitCompoundLiteralExpr(CompoundLiteralExpr *E); |
156 | void VisitArraySubscriptExpr(ArraySubscriptExpr *E) { |
157 | EmitAggLoadOfLValue(E); |
158 | } |
159 | void VisitPredefinedExpr(const PredefinedExpr *E) { |
160 | EmitAggLoadOfLValue(E); |
161 | } |
162 | |
163 | // Operators. |
164 | void VisitCastExpr(CastExpr *E); |
165 | void VisitCallExpr(const CallExpr *E); |
166 | void VisitStmtExpr(const StmtExpr *E); |
167 | void VisitBinaryOperator(const BinaryOperator *BO); |
168 | void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO); |
169 | void VisitBinAssign(const BinaryOperator *E); |
170 | void VisitBinComma(const BinaryOperator *E); |
171 | void VisitBinCmp(const BinaryOperator *E); |
172 | void VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { |
173 | Visit(E: E->getSemanticForm()); |
174 | } |
175 | |
176 | void VisitObjCMessageExpr(ObjCMessageExpr *E); |
177 | void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { |
178 | EmitAggLoadOfLValue(E); |
179 | } |
180 | |
181 | void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E); |
182 | void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); |
183 | void VisitChooseExpr(const ChooseExpr *CE); |
184 | void VisitInitListExpr(InitListExpr *E); |
185 | void VisitCXXParenListOrInitListExpr(Expr *ExprToVisit, ArrayRef<Expr *> Args, |
186 | FieldDecl *InitializedFieldInUnion, |
187 | Expr *ArrayFiller); |
188 | void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, |
189 | llvm::Value *outerBegin = nullptr); |
190 | void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E); |
191 | void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing. |
192 | void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { |
193 | CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); |
194 | Visit(E: DAE->getExpr()); |
195 | } |
196 | void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { |
197 | CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); |
198 | Visit(E: DIE->getExpr()); |
199 | } |
200 | void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E); |
201 | void VisitCXXConstructExpr(const CXXConstructExpr *E); |
202 | void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); |
203 | void VisitLambdaExpr(LambdaExpr *E); |
204 | void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E); |
205 | void VisitExprWithCleanups(ExprWithCleanups *E); |
206 | void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E); |
207 | void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); } |
208 | void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E); |
209 | void VisitOpaqueValueExpr(OpaqueValueExpr *E); |
210 | |
211 | void VisitPseudoObjectExpr(PseudoObjectExpr *E) { |
212 | if (E->isGLValue()) { |
213 | LValue LV = CGF.EmitPseudoObjectLValue(e: E); |
214 | return EmitFinalDestCopy(E->getType(), LV); |
215 | } |
216 | |
217 | AggValueSlot Slot = EnsureSlot(T: E->getType()); |
218 | bool NeedsDestruction = |
219 | !Slot.isExternallyDestructed() && |
220 | E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct; |
221 | if (NeedsDestruction) |
222 | Slot.setExternallyDestructed(); |
223 | CGF.EmitPseudoObjectRValue(e: E, slot: Slot); |
224 | if (NeedsDestruction) |
225 | CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Slot.getAddress(), |
226 | E->getType()); |
227 | } |
228 | |
229 | void VisitVAArgExpr(VAArgExpr *E); |
230 | void VisitCXXParenListInitExpr(CXXParenListInitExpr *E); |
231 | void VisitCXXParenListOrInitListExpr(Expr *ExprToVisit, ArrayRef<Expr *> Args, |
232 | Expr *ArrayFiller); |
233 | |
234 | void EmitInitializationToLValue(Expr *E, LValue Address); |
235 | void EmitNullInitializationToLValue(LValue Address); |
236 | // case Expr::ChooseExprClass: |
237 | void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); } |
238 | void VisitAtomicExpr(AtomicExpr *E) { |
239 | RValue Res = CGF.EmitAtomicExpr(E); |
240 | EmitFinalDestCopy(E->getType(), Res); |
241 | } |
242 | void VisitPackIndexingExpr(PackIndexingExpr *E) { |
243 | Visit(E: E->getSelectedExpr()); |
244 | } |
245 | }; |
246 | } // end anonymous namespace. |
247 | |
248 | //===----------------------------------------------------------------------===// |
249 | // Utilities |
250 | //===----------------------------------------------------------------------===// |
251 | |
252 | /// EmitAggLoadOfLValue - Given an expression with aggregate type that |
253 | /// represents a value lvalue, this method emits the address of the lvalue, |
254 | /// then loads the result into DestPtr. |
255 | void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) { |
256 | LValue LV = CGF.EmitLValue(E); |
257 | |
258 | // If the type of the l-value is atomic, then do an atomic load. |
259 | if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(Src: LV)) { |
260 | CGF.EmitAtomicLoad(LV, SL: E->getExprLoc(), Slot: Dest); |
261 | return; |
262 | } |
263 | |
264 | EmitFinalDestCopy(type: E->getType(), src: LV); |
265 | } |
266 | |
267 | /// True if the given aggregate type requires special GC API calls. |
268 | bool AggExprEmitter::TypeRequiresGCollection(QualType T) { |
269 | // Only record types have members that might require garbage collection. |
270 | const RecordType *RecordTy = T->getAs<RecordType>(); |
271 | if (!RecordTy) return false; |
272 | |
273 | // Don't mess with non-trivial C++ types. |
274 | RecordDecl *Record = RecordTy->getDecl(); |
275 | if (isa<CXXRecordDecl>(Val: Record) && |
276 | (cast<CXXRecordDecl>(Val: Record)->hasNonTrivialCopyConstructor() || |
277 | !cast<CXXRecordDecl>(Val: Record)->hasTrivialDestructor())) |
278 | return false; |
279 | |
280 | // Check whether the type has an object member. |
281 | return Record->hasObjectMember(); |
282 | } |
283 | |
284 | void AggExprEmitter::withReturnValueSlot( |
285 | const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) { |
286 | QualType RetTy = E->getType(); |
287 | bool RequiresDestruction = |
288 | !Dest.isExternallyDestructed() && |
289 | RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct; |
290 | |
291 | // If it makes no observable difference, save a memcpy + temporary. |
292 | // |
293 | // We need to always provide our own temporary if destruction is required. |
294 | // Otherwise, EmitCall will emit its own, notice that it's "unused", and end |
295 | // its lifetime before we have the chance to emit a proper destructor call. |
296 | bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() || |
297 | (RequiresDestruction && Dest.isIgnored()); |
298 | |
299 | Address RetAddr = Address::invalid(); |
300 | RawAddress RetAllocaAddr = RawAddress::invalid(); |
301 | |
302 | EHScopeStack::stable_iterator LifetimeEndBlock; |
303 | llvm::Value *LifetimeSizePtr = nullptr; |
304 | llvm::IntrinsicInst *LifetimeStartInst = nullptr; |
305 | if (!UseTemp) { |
306 | RetAddr = Dest.getAddress(); |
307 | } else { |
308 | RetAddr = CGF.CreateMemTemp(T: RetTy, Name: "tmp" , Alloca: &RetAllocaAddr); |
309 | llvm::TypeSize Size = |
310 | CGF.CGM.getDataLayout().getTypeAllocSize(Ty: CGF.ConvertTypeForMem(T: RetTy)); |
311 | LifetimeSizePtr = CGF.EmitLifetimeStart(Size, Addr: RetAllocaAddr.getPointer()); |
312 | if (LifetimeSizePtr) { |
313 | LifetimeStartInst = |
314 | cast<llvm::IntrinsicInst>(Val: std::prev(x: Builder.GetInsertPoint())); |
315 | assert(LifetimeStartInst->getIntrinsicID() == |
316 | llvm::Intrinsic::lifetime_start && |
317 | "Last insertion wasn't a lifetime.start?" ); |
318 | |
319 | CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>( |
320 | kind: NormalEHLifetimeMarker, A: RetAllocaAddr, A: LifetimeSizePtr); |
321 | LifetimeEndBlock = CGF.EHStack.stable_begin(); |
322 | } |
323 | } |
324 | |
325 | RValue Src = |
326 | EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused, |
327 | Dest.isExternallyDestructed())); |
328 | |
329 | if (!UseTemp) |
330 | return; |
331 | |
332 | assert(Dest.isIgnored() || Dest.emitRawPointer(CGF) != |
333 | Src.getAggregatePointer(E->getType(), CGF)); |
334 | EmitFinalDestCopy(type: E->getType(), src: Src); |
335 | |
336 | if (!RequiresDestruction && LifetimeStartInst) { |
337 | // If there's no dtor to run, the copy was the last use of our temporary. |
338 | // Since we're not guaranteed to be in an ExprWithCleanups, clean up |
339 | // eagerly. |
340 | CGF.DeactivateCleanupBlock(Cleanup: LifetimeEndBlock, DominatingIP: LifetimeStartInst); |
341 | CGF.EmitLifetimeEnd(Size: LifetimeSizePtr, Addr: RetAllocaAddr.getPointer()); |
342 | } |
343 | } |
344 | |
345 | /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. |
346 | void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) { |
347 | assert(src.isAggregate() && "value must be aggregate value!" ); |
348 | LValue srcLV = CGF.MakeAddrLValue(Addr: src.getAggregateAddress(), T: type); |
349 | EmitFinalDestCopy(type, src: srcLV, SrcValueKind: EVK_RValue); |
350 | } |
351 | |
352 | /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired. |
353 | void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src, |
354 | ExprValueKind SrcValueKind) { |
355 | // If Dest is ignored, then we're evaluating an aggregate expression |
356 | // in a context that doesn't care about the result. Note that loads |
357 | // from volatile l-values force the existence of a non-ignored |
358 | // destination. |
359 | if (Dest.isIgnored()) |
360 | return; |
361 | |
362 | // Copy non-trivial C structs here. |
363 | LValue DstLV = CGF.MakeAddrLValue( |
364 | Addr: Dest.getAddress(), T: Dest.isVolatile() ? type.withVolatile() : type); |
365 | |
366 | if (SrcValueKind == EVK_RValue) { |
367 | if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) { |
368 | if (Dest.isPotentiallyAliased()) |
369 | CGF.callCStructMoveAssignmentOperator(Dst: DstLV, Src: src); |
370 | else |
371 | CGF.callCStructMoveConstructor(Dst: DstLV, Src: src); |
372 | return; |
373 | } |
374 | } else { |
375 | if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) { |
376 | if (Dest.isPotentiallyAliased()) |
377 | CGF.callCStructCopyAssignmentOperator(Dst: DstLV, Src: src); |
378 | else |
379 | CGF.callCStructCopyConstructor(Dst: DstLV, Src: src); |
380 | return; |
381 | } |
382 | } |
383 | |
384 | AggValueSlot srcAgg = AggValueSlot::forLValue( |
385 | LV: src, CGF, isDestructed: AggValueSlot::IsDestructed, needsGC: needsGC(T: type), |
386 | isAliased: AggValueSlot::IsAliased, mayOverlap: AggValueSlot::MayOverlap); |
387 | EmitCopy(type, dest: Dest, src: srcAgg); |
388 | } |
389 | |
390 | /// Perform a copy from the source into the destination. |
391 | /// |
392 | /// \param type - the type of the aggregate being copied; qualifiers are |
393 | /// ignored |
394 | void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest, |
395 | const AggValueSlot &src) { |
396 | if (dest.requiresGCollection()) { |
397 | CharUnits sz = dest.getPreferredSize(Ctx&: CGF.getContext(), Type: type); |
398 | llvm::Value *size = llvm::ConstantInt::get(Ty: CGF.SizeTy, V: sz.getQuantity()); |
399 | CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF, |
400 | DestPtr: dest.getAddress(), |
401 | SrcPtr: src.getAddress(), |
402 | Size: size); |
403 | return; |
404 | } |
405 | |
406 | // If the result of the assignment is used, copy the LHS there also. |
407 | // It's volatile if either side is. Use the minimum alignment of |
408 | // the two sides. |
409 | LValue DestLV = CGF.MakeAddrLValue(Addr: dest.getAddress(), T: type); |
410 | LValue SrcLV = CGF.MakeAddrLValue(Addr: src.getAddress(), T: type); |
411 | CGF.EmitAggregateCopy(Dest: DestLV, Src: SrcLV, EltTy: type, MayOverlap: dest.mayOverlap(), |
412 | isVolatile: dest.isVolatile() || src.isVolatile()); |
413 | } |
414 | |
415 | /// Emit the initializer for a std::initializer_list initialized with a |
416 | /// real initializer list. |
417 | void |
418 | AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) { |
419 | // Emit an array containing the elements. The array is externally destructed |
420 | // if the std::initializer_list object is. |
421 | ASTContext &Ctx = CGF.getContext(); |
422 | LValue Array = CGF.EmitLValue(E: E->getSubExpr()); |
423 | assert(Array.isSimple() && "initializer_list array not a simple lvalue" ); |
424 | Address ArrayPtr = Array.getAddress(CGF); |
425 | |
426 | const ConstantArrayType *ArrayType = |
427 | Ctx.getAsConstantArrayType(T: E->getSubExpr()->getType()); |
428 | assert(ArrayType && "std::initializer_list constructed from non-array" ); |
429 | |
430 | // FIXME: Perform the checks on the field types in SemaInit. |
431 | RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); |
432 | RecordDecl::field_iterator Field = Record->field_begin(); |
433 | if (Field == Record->field_end()) { |
434 | CGF.ErrorUnsupported(E, "weird std::initializer_list" ); |
435 | return; |
436 | } |
437 | |
438 | // Start pointer. |
439 | if (!Field->getType()->isPointerType() || |
440 | !Ctx.hasSameType(Field->getType()->getPointeeType(), |
441 | ArrayType->getElementType())) { |
442 | CGF.ErrorUnsupported(E, "weird std::initializer_list" ); |
443 | return; |
444 | } |
445 | |
446 | AggValueSlot Dest = EnsureSlot(T: E->getType()); |
447 | LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); |
448 | LValue Start = CGF.EmitLValueForFieldInitialization(Base: DestLV, Field: *Field); |
449 | llvm::Value *Zero = llvm::ConstantInt::get(Ty: CGF.PtrDiffTy, V: 0); |
450 | llvm::Value *IdxStart[] = { Zero, Zero }; |
451 | llvm::Value *ArrayStart = Builder.CreateInBoundsGEP( |
452 | Ty: ArrayPtr.getElementType(), Ptr: ArrayPtr.emitRawPointer(CGF), IdxList: IdxStart, |
453 | Name: "arraystart" ); |
454 | CGF.EmitStoreThroughLValue(Src: RValue::get(V: ArrayStart), Dst: Start); |
455 | ++Field; |
456 | |
457 | if (Field == Record->field_end()) { |
458 | CGF.ErrorUnsupported(E, "weird std::initializer_list" ); |
459 | return; |
460 | } |
461 | |
462 | llvm::Value *Size = Builder.getInt(AI: ArrayType->getSize()); |
463 | LValue EndOrLength = CGF.EmitLValueForFieldInitialization(Base: DestLV, Field: *Field); |
464 | if (Field->getType()->isPointerType() && |
465 | Ctx.hasSameType(Field->getType()->getPointeeType(), |
466 | ArrayType->getElementType())) { |
467 | // End pointer. |
468 | llvm::Value *IdxEnd[] = { Zero, Size }; |
469 | llvm::Value *ArrayEnd = Builder.CreateInBoundsGEP( |
470 | Ty: ArrayPtr.getElementType(), Ptr: ArrayPtr.emitRawPointer(CGF), IdxList: IdxEnd, |
471 | Name: "arrayend" ); |
472 | CGF.EmitStoreThroughLValue(Src: RValue::get(V: ArrayEnd), Dst: EndOrLength); |
473 | } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) { |
474 | // Length. |
475 | CGF.EmitStoreThroughLValue(Src: RValue::get(V: Size), Dst: EndOrLength); |
476 | } else { |
477 | CGF.ErrorUnsupported(E, "weird std::initializer_list" ); |
478 | return; |
479 | } |
480 | } |
481 | |
482 | /// Determine if E is a trivial array filler, that is, one that is |
483 | /// equivalent to zero-initialization. |
484 | static bool isTrivialFiller(Expr *E) { |
485 | if (!E) |
486 | return true; |
487 | |
488 | if (isa<ImplicitValueInitExpr>(Val: E)) |
489 | return true; |
490 | |
491 | if (auto *ILE = dyn_cast<InitListExpr>(Val: E)) { |
492 | if (ILE->getNumInits()) |
493 | return false; |
494 | return isTrivialFiller(E: ILE->getArrayFiller()); |
495 | } |
496 | |
497 | if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(Val: E)) |
498 | return Cons->getConstructor()->isDefaultConstructor() && |
499 | Cons->getConstructor()->isTrivial(); |
500 | |
501 | // FIXME: Are there other cases where we can avoid emitting an initializer? |
502 | return false; |
503 | } |
504 | |
505 | /// Emit initialization of an array from an initializer list. ExprToVisit must |
506 | /// be either an InitListEpxr a CXXParenInitListExpr. |
507 | void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType, |
508 | QualType ArrayQTy, Expr *ExprToVisit, |
509 | ArrayRef<Expr *> Args, Expr *ArrayFiller) { |
510 | uint64_t NumInitElements = Args.size(); |
511 | |
512 | uint64_t NumArrayElements = AType->getNumElements(); |
513 | assert(NumInitElements <= NumArrayElements); |
514 | |
515 | QualType elementType = |
516 | CGF.getContext().getAsArrayType(T: ArrayQTy)->getElementType(); |
517 | |
518 | // DestPtr is an array*. Construct an elementType* by drilling |
519 | // down a level. |
520 | llvm::Value *zero = llvm::ConstantInt::get(Ty: CGF.SizeTy, V: 0); |
521 | llvm::Value *indices[] = { zero, zero }; |
522 | llvm::Value *begin = Builder.CreateInBoundsGEP(Ty: DestPtr.getElementType(), |
523 | Ptr: DestPtr.emitRawPointer(CGF), |
524 | IdxList: indices, Name: "arrayinit.begin" ); |
525 | |
526 | CharUnits elementSize = CGF.getContext().getTypeSizeInChars(T: elementType); |
527 | CharUnits elementAlign = |
528 | DestPtr.getAlignment().alignmentOfArrayElement(elementSize); |
529 | llvm::Type *llvmElementType = CGF.ConvertTypeForMem(T: elementType); |
530 | |
531 | // Consider initializing the array by copying from a global. For this to be |
532 | // more efficient than per-element initialization, the size of the elements |
533 | // with explicit initializers should be large enough. |
534 | if (NumInitElements * elementSize.getQuantity() > 16 && |
535 | elementType.isTriviallyCopyableType(Context: CGF.getContext())) { |
536 | CodeGen::CodeGenModule &CGM = CGF.CGM; |
537 | ConstantEmitter Emitter(CGF); |
538 | LangAS AS = ArrayQTy.getAddressSpace(); |
539 | if (llvm::Constant *C = |
540 | Emitter.tryEmitForInitializer(E: ExprToVisit, destAddrSpace: AS, destType: ArrayQTy)) { |
541 | auto GV = new llvm::GlobalVariable( |
542 | CGM.getModule(), C->getType(), |
543 | /* isConstant= */ true, llvm::GlobalValue::PrivateLinkage, C, |
544 | "constinit" , |
545 | /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal, |
546 | CGM.getContext().getTargetAddressSpace(AS)); |
547 | Emitter.finalize(global: GV); |
548 | CharUnits Align = CGM.getContext().getTypeAlignInChars(T: ArrayQTy); |
549 | GV->setAlignment(Align.getAsAlign()); |
550 | Address GVAddr(GV, GV->getValueType(), Align); |
551 | EmitFinalDestCopy(type: ArrayQTy, src: CGF.MakeAddrLValue(Addr: GVAddr, T: ArrayQTy)); |
552 | return; |
553 | } |
554 | } |
555 | |
556 | // Exception safety requires us to destroy all the |
557 | // already-constructed members if an initializer throws. |
558 | // For that, we'll need an EH cleanup. |
559 | QualType::DestructionKind dtorKind = elementType.isDestructedType(); |
560 | Address endOfInit = Address::invalid(); |
561 | EHScopeStack::stable_iterator cleanup; |
562 | llvm::Instruction *cleanupDominator = nullptr; |
563 | if (CGF.needsEHCleanup(kind: dtorKind)) { |
564 | // In principle we could tell the cleanup where we are more |
565 | // directly, but the control flow can get so varied here that it |
566 | // would actually be quite complex. Therefore we go through an |
567 | // alloca. |
568 | endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(), |
569 | "arrayinit.endOfInit" ); |
570 | cleanupDominator = Builder.CreateStore(Val: begin, Addr: endOfInit); |
571 | CGF.pushIrregularPartialArrayCleanup(arrayBegin: begin, arrayEndPointer: endOfInit, elementType, |
572 | elementAlignment: elementAlign, |
573 | destroyer: CGF.getDestroyer(destructionKind: dtorKind)); |
574 | cleanup = CGF.EHStack.stable_begin(); |
575 | |
576 | // Otherwise, remember that we didn't need a cleanup. |
577 | } else { |
578 | dtorKind = QualType::DK_none; |
579 | } |
580 | |
581 | llvm::Value *one = llvm::ConstantInt::get(Ty: CGF.SizeTy, V: 1); |
582 | |
583 | // The 'current element to initialize'. The invariants on this |
584 | // variable are complicated. Essentially, after each iteration of |
585 | // the loop, it points to the last initialized element, except |
586 | // that it points to the beginning of the array before any |
587 | // elements have been initialized. |
588 | llvm::Value *element = begin; |
589 | |
590 | // Emit the explicit initializers. |
591 | for (uint64_t i = 0; i != NumInitElements; ++i) { |
592 | // Advance to the next element. |
593 | if (i > 0) { |
594 | element = Builder.CreateInBoundsGEP( |
595 | Ty: llvmElementType, Ptr: element, IdxList: one, Name: "arrayinit.element" ); |
596 | |
597 | // Tell the cleanup that it needs to destroy up to this |
598 | // element. TODO: some of these stores can be trivially |
599 | // observed to be unnecessary. |
600 | if (endOfInit.isValid()) Builder.CreateStore(Val: element, Addr: endOfInit); |
601 | } |
602 | |
603 | LValue elementLV = CGF.MakeAddrLValue( |
604 | Addr: Address(element, llvmElementType, elementAlign), T: elementType); |
605 | EmitInitializationToLValue(E: Args[i], Address: elementLV); |
606 | } |
607 | |
608 | // Check whether there's a non-trivial array-fill expression. |
609 | bool hasTrivialFiller = isTrivialFiller(E: ArrayFiller); |
610 | |
611 | // Any remaining elements need to be zero-initialized, possibly |
612 | // using the filler expression. We can skip this if the we're |
613 | // emitting to zeroed memory. |
614 | if (NumInitElements != NumArrayElements && |
615 | !(Dest.isZeroed() && hasTrivialFiller && |
616 | CGF.getTypes().isZeroInitializable(T: elementType))) { |
617 | |
618 | // Use an actual loop. This is basically |
619 | // do { *array++ = filler; } while (array != end); |
620 | |
621 | // Advance to the start of the rest of the array. |
622 | if (NumInitElements) { |
623 | element = Builder.CreateInBoundsGEP( |
624 | Ty: llvmElementType, Ptr: element, IdxList: one, Name: "arrayinit.start" ); |
625 | if (endOfInit.isValid()) Builder.CreateStore(Val: element, Addr: endOfInit); |
626 | } |
627 | |
628 | // Compute the end of the array. |
629 | llvm::Value *end = Builder.CreateInBoundsGEP( |
630 | Ty: llvmElementType, Ptr: begin, |
631 | IdxList: llvm::ConstantInt::get(Ty: CGF.SizeTy, V: NumArrayElements), Name: "arrayinit.end" ); |
632 | |
633 | llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); |
634 | llvm::BasicBlock *bodyBB = CGF.createBasicBlock(name: "arrayinit.body" ); |
635 | |
636 | // Jump into the body. |
637 | CGF.EmitBlock(BB: bodyBB); |
638 | llvm::PHINode *currentElement = |
639 | Builder.CreatePHI(Ty: element->getType(), NumReservedValues: 2, Name: "arrayinit.cur" ); |
640 | currentElement->addIncoming(V: element, BB: entryBB); |
641 | |
642 | // Emit the actual filler expression. |
643 | { |
644 | // C++1z [class.temporary]p5: |
645 | // when a default constructor is called to initialize an element of |
646 | // an array with no corresponding initializer [...] the destruction of |
647 | // every temporary created in a default argument is sequenced before |
648 | // the construction of the next array element, if any |
649 | CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); |
650 | LValue elementLV = CGF.MakeAddrLValue( |
651 | Addr: Address(currentElement, llvmElementType, elementAlign), T: elementType); |
652 | if (ArrayFiller) |
653 | EmitInitializationToLValue(E: ArrayFiller, Address: elementLV); |
654 | else |
655 | EmitNullInitializationToLValue(Address: elementLV); |
656 | } |
657 | |
658 | // Move on to the next element. |
659 | llvm::Value *nextElement = Builder.CreateInBoundsGEP( |
660 | Ty: llvmElementType, Ptr: currentElement, IdxList: one, Name: "arrayinit.next" ); |
661 | |
662 | // Tell the EH cleanup that we finished with the last element. |
663 | if (endOfInit.isValid()) Builder.CreateStore(Val: nextElement, Addr: endOfInit); |
664 | |
665 | // Leave the loop if we're done. |
666 | llvm::Value *done = Builder.CreateICmpEQ(LHS: nextElement, RHS: end, |
667 | Name: "arrayinit.done" ); |
668 | llvm::BasicBlock *endBB = CGF.createBasicBlock(name: "arrayinit.end" ); |
669 | Builder.CreateCondBr(Cond: done, True: endBB, False: bodyBB); |
670 | currentElement->addIncoming(V: nextElement, BB: Builder.GetInsertBlock()); |
671 | |
672 | CGF.EmitBlock(BB: endBB); |
673 | } |
674 | |
675 | // Leave the partial-array cleanup if we entered one. |
676 | if (dtorKind) CGF.DeactivateCleanupBlock(Cleanup: cleanup, DominatingIP: cleanupDominator); |
677 | } |
678 | |
679 | //===----------------------------------------------------------------------===// |
680 | // Visitor Methods |
681 | //===----------------------------------------------------------------------===// |
682 | |
683 | void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){ |
684 | Visit(E: E->getSubExpr()); |
685 | } |
686 | |
687 | void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) { |
688 | // If this is a unique OVE, just visit its source expression. |
689 | if (e->isUnique()) |
690 | Visit(E: e->getSourceExpr()); |
691 | else |
692 | EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e)); |
693 | } |
694 | |
695 | void |
696 | AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { |
697 | if (Dest.isPotentiallyAliased() && |
698 | E->getType().isPODType(CGF.getContext())) { |
699 | // For a POD type, just emit a load of the lvalue + a copy, because our |
700 | // compound literal might alias the destination. |
701 | EmitAggLoadOfLValue(E); |
702 | return; |
703 | } |
704 | |
705 | AggValueSlot Slot = EnsureSlot(T: E->getType()); |
706 | |
707 | // Block-scope compound literals are destroyed at the end of the enclosing |
708 | // scope in C. |
709 | bool Destruct = |
710 | !CGF.getLangOpts().CPlusPlus && !Slot.isExternallyDestructed(); |
711 | if (Destruct) |
712 | Slot.setExternallyDestructed(); |
713 | |
714 | CGF.EmitAggExpr(E: E->getInitializer(), AS: Slot); |
715 | |
716 | if (Destruct) |
717 | if (QualType::DestructionKind DtorKind = E->getType().isDestructedType()) |
718 | CGF.pushLifetimeExtendedDestroy( |
719 | kind: CGF.getCleanupKind(kind: DtorKind), addr: Slot.getAddress(), type: E->getType(), |
720 | destroyer: CGF.getDestroyer(destructionKind: DtorKind), useEHCleanupForArray: DtorKind & EHCleanup); |
721 | } |
722 | |
723 | /// Attempt to look through various unimportant expressions to find a |
724 | /// cast of the given kind. |
725 | static Expr *findPeephole(Expr *op, CastKind kind, const ASTContext &ctx) { |
726 | op = op->IgnoreParenNoopCasts(Ctx: ctx); |
727 | if (auto castE = dyn_cast<CastExpr>(Val: op)) { |
728 | if (castE->getCastKind() == kind) |
729 | return castE->getSubExpr(); |
730 | } |
731 | return nullptr; |
732 | } |
733 | |
734 | void AggExprEmitter::VisitCastExpr(CastExpr *E) { |
735 | if (const auto *ECE = dyn_cast<ExplicitCastExpr>(Val: E)) |
736 | CGF.CGM.EmitExplicitCastExprType(E: ECE, CGF: &CGF); |
737 | switch (E->getCastKind()) { |
738 | case CK_Dynamic: { |
739 | // FIXME: Can this actually happen? We have no test coverage for it. |
740 | assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?" ); |
741 | LValue LV = CGF.EmitCheckedLValue(E: E->getSubExpr(), |
742 | TCK: CodeGenFunction::TCK_Load); |
743 | // FIXME: Do we also need to handle property references here? |
744 | if (LV.isSimple()) |
745 | CGF.EmitDynamicCast(V: LV.getAddress(CGF), DCE: cast<CXXDynamicCastExpr>(Val: E)); |
746 | else |
747 | CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast" ); |
748 | |
749 | if (!Dest.isIgnored()) |
750 | CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination" ); |
751 | break; |
752 | } |
753 | |
754 | case CK_ToUnion: { |
755 | // Evaluate even if the destination is ignored. |
756 | if (Dest.isIgnored()) { |
757 | CGF.EmitAnyExpr(E: E->getSubExpr(), aggSlot: AggValueSlot::ignored(), |
758 | /*ignoreResult=*/true); |
759 | break; |
760 | } |
761 | |
762 | // GCC union extension |
763 | QualType Ty = E->getSubExpr()->getType(); |
764 | Address CastPtr = Dest.getAddress().withElementType(ElemTy: CGF.ConvertType(T: Ty)); |
765 | EmitInitializationToLValue(E: E->getSubExpr(), |
766 | Address: CGF.MakeAddrLValue(Addr: CastPtr, T: Ty)); |
767 | break; |
768 | } |
769 | |
770 | case CK_LValueToRValueBitCast: { |
771 | if (Dest.isIgnored()) { |
772 | CGF.EmitAnyExpr(E: E->getSubExpr(), aggSlot: AggValueSlot::ignored(), |
773 | /*ignoreResult=*/true); |
774 | break; |
775 | } |
776 | |
777 | LValue SourceLV = CGF.EmitLValue(E: E->getSubExpr()); |
778 | Address SourceAddress = |
779 | SourceLV.getAddress(CGF).withElementType(ElemTy: CGF.Int8Ty); |
780 | Address DestAddress = Dest.getAddress().withElementType(ElemTy: CGF.Int8Ty); |
781 | llvm::Value *SizeVal = llvm::ConstantInt::get( |
782 | CGF.SizeTy, |
783 | CGF.getContext().getTypeSizeInChars(E->getType()).getQuantity()); |
784 | Builder.CreateMemCpy(Dest: DestAddress, Src: SourceAddress, Size: SizeVal); |
785 | break; |
786 | } |
787 | |
788 | case CK_DerivedToBase: |
789 | case CK_BaseToDerived: |
790 | case CK_UncheckedDerivedToBase: { |
791 | llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: " |
792 | "should have been unpacked before we got here" ); |
793 | } |
794 | |
795 | case CK_NonAtomicToAtomic: |
796 | case CK_AtomicToNonAtomic: { |
797 | bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic); |
798 | |
799 | // Determine the atomic and value types. |
800 | QualType atomicType = E->getSubExpr()->getType(); |
801 | QualType valueType = E->getType(); |
802 | if (isToAtomic) std::swap(a&: atomicType, b&: valueType); |
803 | |
804 | assert(atomicType->isAtomicType()); |
805 | assert(CGF.getContext().hasSameUnqualifiedType(valueType, |
806 | atomicType->castAs<AtomicType>()->getValueType())); |
807 | |
808 | // Just recurse normally if we're ignoring the result or the |
809 | // atomic type doesn't change representation. |
810 | if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(type: atomicType)) { |
811 | return Visit(E: E->getSubExpr()); |
812 | } |
813 | |
814 | CastKind peepholeTarget = |
815 | (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic); |
816 | |
817 | // These two cases are reverses of each other; try to peephole them. |
818 | if (Expr *op = |
819 | findPeephole(op: E->getSubExpr(), kind: peepholeTarget, ctx: CGF.getContext())) { |
820 | assert(CGF.getContext().hasSameUnqualifiedType(op->getType(), |
821 | E->getType()) && |
822 | "peephole significantly changed types?" ); |
823 | return Visit(E: op); |
824 | } |
825 | |
826 | // If we're converting an r-value of non-atomic type to an r-value |
827 | // of atomic type, just emit directly into the relevant sub-object. |
828 | if (isToAtomic) { |
829 | AggValueSlot valueDest = Dest; |
830 | if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(type: atomicType)) { |
831 | // Zero-initialize. (Strictly speaking, we only need to initialize |
832 | // the padding at the end, but this is simpler.) |
833 | if (!Dest.isZeroed()) |
834 | CGF.EmitNullInitialization(DestPtr: Dest.getAddress(), Ty: atomicType); |
835 | |
836 | // Build a GEP to refer to the subobject. |
837 | Address valueAddr = |
838 | CGF.Builder.CreateStructGEP(Addr: valueDest.getAddress(), Index: 0); |
839 | valueDest = AggValueSlot::forAddr(addr: valueAddr, |
840 | quals: valueDest.getQualifiers(), |
841 | isDestructed: valueDest.isExternallyDestructed(), |
842 | needsGC: valueDest.requiresGCollection(), |
843 | isAliased: valueDest.isPotentiallyAliased(), |
844 | mayOverlap: AggValueSlot::DoesNotOverlap, |
845 | isZeroed: AggValueSlot::IsZeroed); |
846 | } |
847 | |
848 | CGF.EmitAggExpr(E: E->getSubExpr(), AS: valueDest); |
849 | return; |
850 | } |
851 | |
852 | // Otherwise, we're converting an atomic type to a non-atomic type. |
853 | // Make an atomic temporary, emit into that, and then copy the value out. |
854 | AggValueSlot atomicSlot = |
855 | CGF.CreateAggTemp(T: atomicType, Name: "atomic-to-nonatomic.temp" ); |
856 | CGF.EmitAggExpr(E: E->getSubExpr(), AS: atomicSlot); |
857 | |
858 | Address valueAddr = Builder.CreateStructGEP(Addr: atomicSlot.getAddress(), Index: 0); |
859 | RValue rvalue = RValue::getAggregate(addr: valueAddr, isVolatile: atomicSlot.isVolatile()); |
860 | return EmitFinalDestCopy(type: valueType, src: rvalue); |
861 | } |
862 | case CK_AddressSpaceConversion: |
863 | return Visit(E: E->getSubExpr()); |
864 | |
865 | case CK_LValueToRValue: |
866 | // If we're loading from a volatile type, force the destination |
867 | // into existence. |
868 | if (E->getSubExpr()->getType().isVolatileQualified()) { |
869 | bool Destruct = |
870 | !Dest.isExternallyDestructed() && |
871 | E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct; |
872 | if (Destruct) |
873 | Dest.setExternallyDestructed(); |
874 | EnsureDest(T: E->getType()); |
875 | Visit(E: E->getSubExpr()); |
876 | |
877 | if (Destruct) |
878 | CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(), |
879 | E->getType()); |
880 | |
881 | return; |
882 | } |
883 | |
884 | [[fallthrough]]; |
885 | |
886 | case CK_HLSLArrayRValue: |
887 | Visit(E: E->getSubExpr()); |
888 | break; |
889 | |
890 | case CK_NoOp: |
891 | case CK_UserDefinedConversion: |
892 | case CK_ConstructorConversion: |
893 | assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(), |
894 | E->getType()) && |
895 | "Implicit cast types must be compatible" ); |
896 | Visit(E: E->getSubExpr()); |
897 | break; |
898 | |
899 | case CK_LValueBitCast: |
900 | llvm_unreachable("should not be emitting lvalue bitcast as rvalue" ); |
901 | |
902 | case CK_Dependent: |
903 | case CK_BitCast: |
904 | case CK_ArrayToPointerDecay: |
905 | case CK_FunctionToPointerDecay: |
906 | case CK_NullToPointer: |
907 | case CK_NullToMemberPointer: |
908 | case CK_BaseToDerivedMemberPointer: |
909 | case CK_DerivedToBaseMemberPointer: |
910 | case CK_MemberPointerToBoolean: |
911 | case CK_ReinterpretMemberPointer: |
912 | case CK_IntegralToPointer: |
913 | case CK_PointerToIntegral: |
914 | case CK_PointerToBoolean: |
915 | case CK_ToVoid: |
916 | case CK_VectorSplat: |
917 | case CK_IntegralCast: |
918 | case CK_BooleanToSignedIntegral: |
919 | case CK_IntegralToBoolean: |
920 | case CK_IntegralToFloating: |
921 | case CK_FloatingToIntegral: |
922 | case CK_FloatingToBoolean: |
923 | case CK_FloatingCast: |
924 | case CK_CPointerToObjCPointerCast: |
925 | case CK_BlockPointerToObjCPointerCast: |
926 | case CK_AnyPointerToBlockPointerCast: |
927 | case CK_ObjCObjectLValueCast: |
928 | case CK_FloatingRealToComplex: |
929 | case CK_FloatingComplexToReal: |
930 | case CK_FloatingComplexToBoolean: |
931 | case CK_FloatingComplexCast: |
932 | case CK_FloatingComplexToIntegralComplex: |
933 | case CK_IntegralRealToComplex: |
934 | case CK_IntegralComplexToReal: |
935 | case CK_IntegralComplexToBoolean: |
936 | case CK_IntegralComplexCast: |
937 | case CK_IntegralComplexToFloatingComplex: |
938 | case CK_ARCProduceObject: |
939 | case CK_ARCConsumeObject: |
940 | case CK_ARCReclaimReturnedObject: |
941 | case CK_ARCExtendBlockObject: |
942 | case CK_CopyAndAutoreleaseBlockObject: |
943 | case CK_BuiltinFnToFnPtr: |
944 | case CK_ZeroToOCLOpaqueType: |
945 | case CK_MatrixCast: |
946 | case CK_HLSLVectorTruncation: |
947 | |
948 | case CK_IntToOCLSampler: |
949 | case CK_FloatingToFixedPoint: |
950 | case CK_FixedPointToFloating: |
951 | case CK_FixedPointCast: |
952 | case CK_FixedPointToBoolean: |
953 | case CK_FixedPointToIntegral: |
954 | case CK_IntegralToFixedPoint: |
955 | llvm_unreachable("cast kind invalid for aggregate types" ); |
956 | } |
957 | } |
958 | |
959 | void AggExprEmitter::VisitCallExpr(const CallExpr *E) { |
960 | if (E->getCallReturnType(Ctx: CGF.getContext())->isReferenceType()) { |
961 | EmitAggLoadOfLValue(E); |
962 | return; |
963 | } |
964 | |
965 | withReturnValueSlot(E, [&](ReturnValueSlot Slot) { |
966 | return CGF.EmitCallExpr(E, ReturnValue: Slot); |
967 | }); |
968 | } |
969 | |
970 | void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) { |
971 | withReturnValueSlot(E, [&](ReturnValueSlot Slot) { |
972 | return CGF.EmitObjCMessageExpr(E, Return: Slot); |
973 | }); |
974 | } |
975 | |
976 | void AggExprEmitter::VisitBinComma(const BinaryOperator *E) { |
977 | CGF.EmitIgnoredExpr(E: E->getLHS()); |
978 | Visit(E: E->getRHS()); |
979 | } |
980 | |
981 | void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) { |
982 | CodeGenFunction::StmtExprEvaluation eval(CGF); |
983 | CGF.EmitCompoundStmt(S: *E->getSubStmt(), GetLast: true, AVS: Dest); |
984 | } |
985 | |
986 | enum CompareKind { |
987 | CK_Less, |
988 | CK_Greater, |
989 | CK_Equal, |
990 | }; |
991 | |
992 | static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF, |
993 | const BinaryOperator *E, llvm::Value *LHS, |
994 | llvm::Value *RHS, CompareKind Kind, |
995 | const char *NameSuffix = "" ) { |
996 | QualType ArgTy = E->getLHS()->getType(); |
997 | if (const ComplexType *CT = ArgTy->getAs<ComplexType>()) |
998 | ArgTy = CT->getElementType(); |
999 | |
1000 | if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) { |
1001 | assert(Kind == CK_Equal && |
1002 | "member pointers may only be compared for equality" ); |
1003 | return CGF.CGM.getCXXABI().EmitMemberPointerComparison( |
1004 | CGF, L: LHS, R: RHS, MPT, /*IsInequality*/ Inequality: false); |
1005 | } |
1006 | |
1007 | // Compute the comparison instructions for the specified comparison kind. |
1008 | struct CmpInstInfo { |
1009 | const char *Name; |
1010 | llvm::CmpInst::Predicate FCmp; |
1011 | llvm::CmpInst::Predicate SCmp; |
1012 | llvm::CmpInst::Predicate UCmp; |
1013 | }; |
1014 | CmpInstInfo InstInfo = [&]() -> CmpInstInfo { |
1015 | using FI = llvm::FCmpInst; |
1016 | using II = llvm::ICmpInst; |
1017 | switch (Kind) { |
1018 | case CK_Less: |
1019 | return {.Name: "cmp.lt" , .FCmp: FI::FCMP_OLT, .SCmp: II::ICMP_SLT, .UCmp: II::ICMP_ULT}; |
1020 | case CK_Greater: |
1021 | return {.Name: "cmp.gt" , .FCmp: FI::FCMP_OGT, .SCmp: II::ICMP_SGT, .UCmp: II::ICMP_UGT}; |
1022 | case CK_Equal: |
1023 | return {.Name: "cmp.eq" , .FCmp: FI::FCMP_OEQ, .SCmp: II::ICMP_EQ, .UCmp: II::ICMP_EQ}; |
1024 | } |
1025 | llvm_unreachable("Unrecognised CompareKind enum" ); |
1026 | }(); |
1027 | |
1028 | if (ArgTy->hasFloatingRepresentation()) |
1029 | return Builder.CreateFCmp(P: InstInfo.FCmp, LHS, RHS, |
1030 | Name: llvm::Twine(InstInfo.Name) + NameSuffix); |
1031 | if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) { |
1032 | auto Inst = |
1033 | ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp; |
1034 | return Builder.CreateICmp(P: Inst, LHS, RHS, |
1035 | Name: llvm::Twine(InstInfo.Name) + NameSuffix); |
1036 | } |
1037 | |
1038 | llvm_unreachable("unsupported aggregate binary expression should have " |
1039 | "already been handled" ); |
1040 | } |
1041 | |
1042 | void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) { |
1043 | using llvm::BasicBlock; |
1044 | using llvm::PHINode; |
1045 | using llvm::Value; |
1046 | assert(CGF.getContext().hasSameType(E->getLHS()->getType(), |
1047 | E->getRHS()->getType())); |
1048 | const ComparisonCategoryInfo &CmpInfo = |
1049 | CGF.getContext().CompCategories.getInfoForType(Ty: E->getType()); |
1050 | assert(CmpInfo.Record->isTriviallyCopyable() && |
1051 | "cannot copy non-trivially copyable aggregate" ); |
1052 | |
1053 | QualType ArgTy = E->getLHS()->getType(); |
1054 | |
1055 | if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() && |
1056 | !ArgTy->isNullPtrType() && !ArgTy->isPointerType() && |
1057 | !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) { |
1058 | return CGF.ErrorUnsupported(E, "aggregate three-way comparison" ); |
1059 | } |
1060 | bool IsComplex = ArgTy->isAnyComplexType(); |
1061 | |
1062 | // Evaluate the operands to the expression and extract their values. |
1063 | auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> { |
1064 | RValue RV = CGF.EmitAnyExpr(E); |
1065 | if (RV.isScalar()) |
1066 | return {RV.getScalarVal(), nullptr}; |
1067 | if (RV.isAggregate()) |
1068 | return {RV.getAggregatePointer(PointeeType: E->getType(), CGF), nullptr}; |
1069 | assert(RV.isComplex()); |
1070 | return RV.getComplexVal(); |
1071 | }; |
1072 | auto LHSValues = EmitOperand(E->getLHS()), |
1073 | RHSValues = EmitOperand(E->getRHS()); |
1074 | |
1075 | auto EmitCmp = [&](CompareKind K) { |
1076 | Value *Cmp = EmitCompare(Builder, CGF, E, LHS: LHSValues.first, RHS: RHSValues.first, |
1077 | Kind: K, NameSuffix: IsComplex ? ".r" : "" ); |
1078 | if (!IsComplex) |
1079 | return Cmp; |
1080 | assert(K == CompareKind::CK_Equal); |
1081 | Value *CmpImag = EmitCompare(Builder, CGF, E, LHS: LHSValues.second, |
1082 | RHS: RHSValues.second, Kind: K, NameSuffix: ".i" ); |
1083 | return Builder.CreateAnd(LHS: Cmp, RHS: CmpImag, Name: "and.eq" ); |
1084 | }; |
1085 | auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) { |
1086 | return Builder.getInt(AI: VInfo->getIntValue()); |
1087 | }; |
1088 | |
1089 | Value *Select; |
1090 | if (ArgTy->isNullPtrType()) { |
1091 | Select = EmitCmpRes(CmpInfo.getEqualOrEquiv()); |
1092 | } else if (!CmpInfo.isPartial()) { |
1093 | Value *SelectOne = |
1094 | Builder.CreateSelect(C: EmitCmp(CK_Less), True: EmitCmpRes(CmpInfo.getLess()), |
1095 | False: EmitCmpRes(CmpInfo.getGreater()), Name: "sel.lt" ); |
1096 | Select = Builder.CreateSelect(C: EmitCmp(CK_Equal), |
1097 | True: EmitCmpRes(CmpInfo.getEqualOrEquiv()), |
1098 | False: SelectOne, Name: "sel.eq" ); |
1099 | } else { |
1100 | Value *SelectEq = Builder.CreateSelect( |
1101 | C: EmitCmp(CK_Equal), True: EmitCmpRes(CmpInfo.getEqualOrEquiv()), |
1102 | False: EmitCmpRes(CmpInfo.getUnordered()), Name: "sel.eq" ); |
1103 | Value *SelectGT = Builder.CreateSelect(C: EmitCmp(CK_Greater), |
1104 | True: EmitCmpRes(CmpInfo.getGreater()), |
1105 | False: SelectEq, Name: "sel.gt" ); |
1106 | Select = Builder.CreateSelect( |
1107 | C: EmitCmp(CK_Less), True: EmitCmpRes(CmpInfo.getLess()), False: SelectGT, Name: "sel.lt" ); |
1108 | } |
1109 | // Create the return value in the destination slot. |
1110 | EnsureDest(T: E->getType()); |
1111 | LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); |
1112 | |
1113 | // Emit the address of the first (and only) field in the comparison category |
1114 | // type, and initialize it from the constant integer value selected above. |
1115 | LValue FieldLV = CGF.EmitLValueForFieldInitialization( |
1116 | Base: DestLV, Field: *CmpInfo.Record->field_begin()); |
1117 | CGF.EmitStoreThroughLValue(Src: RValue::get(V: Select), Dst: FieldLV, /*IsInit*/ isInit: true); |
1118 | |
1119 | // All done! The result is in the Dest slot. |
1120 | } |
1121 | |
1122 | void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) { |
1123 | if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI) |
1124 | VisitPointerToDataMemberBinaryOperator(BO: E); |
1125 | else |
1126 | CGF.ErrorUnsupported(E, "aggregate binary expression" ); |
1127 | } |
1128 | |
1129 | void AggExprEmitter::VisitPointerToDataMemberBinaryOperator( |
1130 | const BinaryOperator *E) { |
1131 | LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E); |
1132 | EmitFinalDestCopy(E->getType(), LV); |
1133 | } |
1134 | |
1135 | /// Is the value of the given expression possibly a reference to or |
1136 | /// into a __block variable? |
1137 | static bool isBlockVarRef(const Expr *E) { |
1138 | // Make sure we look through parens. |
1139 | E = E->IgnoreParens(); |
1140 | |
1141 | // Check for a direct reference to a __block variable. |
1142 | if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: E)) { |
1143 | const VarDecl *var = dyn_cast<VarDecl>(Val: DRE->getDecl()); |
1144 | return (var && var->hasAttr<BlocksAttr>()); |
1145 | } |
1146 | |
1147 | // More complicated stuff. |
1148 | |
1149 | // Binary operators. |
1150 | if (const BinaryOperator *op = dyn_cast<BinaryOperator>(Val: E)) { |
1151 | // For an assignment or pointer-to-member operation, just care |
1152 | // about the LHS. |
1153 | if (op->isAssignmentOp() || op->isPtrMemOp()) |
1154 | return isBlockVarRef(E: op->getLHS()); |
1155 | |
1156 | // For a comma, just care about the RHS. |
1157 | if (op->getOpcode() == BO_Comma) |
1158 | return isBlockVarRef(E: op->getRHS()); |
1159 | |
1160 | // FIXME: pointer arithmetic? |
1161 | return false; |
1162 | |
1163 | // Check both sides of a conditional operator. |
1164 | } else if (const AbstractConditionalOperator *op |
1165 | = dyn_cast<AbstractConditionalOperator>(Val: E)) { |
1166 | return isBlockVarRef(E: op->getTrueExpr()) |
1167 | || isBlockVarRef(E: op->getFalseExpr()); |
1168 | |
1169 | // OVEs are required to support BinaryConditionalOperators. |
1170 | } else if (const OpaqueValueExpr *op |
1171 | = dyn_cast<OpaqueValueExpr>(Val: E)) { |
1172 | if (const Expr *src = op->getSourceExpr()) |
1173 | return isBlockVarRef(E: src); |
1174 | |
1175 | // Casts are necessary to get things like (*(int*)&var) = foo(). |
1176 | // We don't really care about the kind of cast here, except |
1177 | // we don't want to look through l2r casts, because it's okay |
1178 | // to get the *value* in a __block variable. |
1179 | } else if (const CastExpr *cast = dyn_cast<CastExpr>(Val: E)) { |
1180 | if (cast->getCastKind() == CK_LValueToRValue) |
1181 | return false; |
1182 | return isBlockVarRef(E: cast->getSubExpr()); |
1183 | |
1184 | // Handle unary operators. Again, just aggressively look through |
1185 | // it, ignoring the operation. |
1186 | } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(Val: E)) { |
1187 | return isBlockVarRef(E: uop->getSubExpr()); |
1188 | |
1189 | // Look into the base of a field access. |
1190 | } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(Val: E)) { |
1191 | return isBlockVarRef(E: mem->getBase()); |
1192 | |
1193 | // Look into the base of a subscript. |
1194 | } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(Val: E)) { |
1195 | return isBlockVarRef(E: sub->getBase()); |
1196 | } |
1197 | |
1198 | return false; |
1199 | } |
1200 | |
1201 | void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) { |
1202 | // For an assignment to work, the value on the right has |
1203 | // to be compatible with the value on the left. |
1204 | assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), |
1205 | E->getRHS()->getType()) |
1206 | && "Invalid assignment" ); |
1207 | |
1208 | // If the LHS might be a __block variable, and the RHS can |
1209 | // potentially cause a block copy, we need to evaluate the RHS first |
1210 | // so that the assignment goes the right place. |
1211 | // This is pretty semantically fragile. |
1212 | if (isBlockVarRef(E: E->getLHS()) && |
1213 | E->getRHS()->HasSideEffects(Ctx: CGF.getContext())) { |
1214 | // Ensure that we have a destination, and evaluate the RHS into that. |
1215 | EnsureDest(T: E->getRHS()->getType()); |
1216 | Visit(E: E->getRHS()); |
1217 | |
1218 | // Now emit the LHS and copy into it. |
1219 | LValue LHS = CGF.EmitCheckedLValue(E: E->getLHS(), TCK: CodeGenFunction::TCK_Store); |
1220 | |
1221 | // That copy is an atomic copy if the LHS is atomic. |
1222 | if (LHS.getType()->isAtomicType() || |
1223 | CGF.LValueIsSuitableForInlineAtomic(Src: LHS)) { |
1224 | CGF.EmitAtomicStore(rvalue: Dest.asRValue(), lvalue: LHS, /*isInit*/ false); |
1225 | return; |
1226 | } |
1227 | |
1228 | EmitCopy(type: E->getLHS()->getType(), |
1229 | dest: AggValueSlot::forLValue(LV: LHS, CGF, isDestructed: AggValueSlot::IsDestructed, |
1230 | needsGC: needsGC(T: E->getLHS()->getType()), |
1231 | isAliased: AggValueSlot::IsAliased, |
1232 | mayOverlap: AggValueSlot::MayOverlap), |
1233 | src: Dest); |
1234 | return; |
1235 | } |
1236 | |
1237 | LValue LHS = CGF.EmitLValue(E: E->getLHS()); |
1238 | |
1239 | // If we have an atomic type, evaluate into the destination and then |
1240 | // do an atomic copy. |
1241 | if (LHS.getType()->isAtomicType() || |
1242 | CGF.LValueIsSuitableForInlineAtomic(Src: LHS)) { |
1243 | EnsureDest(T: E->getRHS()->getType()); |
1244 | Visit(E: E->getRHS()); |
1245 | CGF.EmitAtomicStore(rvalue: Dest.asRValue(), lvalue: LHS, /*isInit*/ false); |
1246 | return; |
1247 | } |
1248 | |
1249 | // Codegen the RHS so that it stores directly into the LHS. |
1250 | AggValueSlot LHSSlot = AggValueSlot::forLValue( |
1251 | LV: LHS, CGF, isDestructed: AggValueSlot::IsDestructed, needsGC: needsGC(T: E->getLHS()->getType()), |
1252 | isAliased: AggValueSlot::IsAliased, mayOverlap: AggValueSlot::MayOverlap); |
1253 | // A non-volatile aggregate destination might have volatile member. |
1254 | if (!LHSSlot.isVolatile() && |
1255 | CGF.hasVolatileMember(T: E->getLHS()->getType())) |
1256 | LHSSlot.setVolatile(true); |
1257 | |
1258 | CGF.EmitAggExpr(E: E->getRHS(), AS: LHSSlot); |
1259 | |
1260 | // Copy into the destination if the assignment isn't ignored. |
1261 | EmitFinalDestCopy(E->getType(), LHS); |
1262 | |
1263 | if (!Dest.isIgnored() && !Dest.isExternallyDestructed() && |
1264 | E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) |
1265 | CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(), |
1266 | E->getType()); |
1267 | } |
1268 | |
1269 | void AggExprEmitter:: |
1270 | VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { |
1271 | llvm::BasicBlock *LHSBlock = CGF.createBasicBlock(name: "cond.true" ); |
1272 | llvm::BasicBlock *RHSBlock = CGF.createBasicBlock(name: "cond.false" ); |
1273 | llvm::BasicBlock *ContBlock = CGF.createBasicBlock(name: "cond.end" ); |
1274 | |
1275 | // Bind the common expression if necessary. |
1276 | CodeGenFunction::OpaqueValueMapping binding(CGF, E); |
1277 | |
1278 | CodeGenFunction::ConditionalEvaluation eval(CGF); |
1279 | CGF.EmitBranchOnBoolExpr(Cond: E->getCond(), TrueBlock: LHSBlock, FalseBlock: RHSBlock, |
1280 | TrueCount: CGF.getProfileCount(E)); |
1281 | |
1282 | // Save whether the destination's lifetime is externally managed. |
1283 | bool isExternallyDestructed = Dest.isExternallyDestructed(); |
1284 | bool destructNonTrivialCStruct = |
1285 | !isExternallyDestructed && |
1286 | E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct; |
1287 | isExternallyDestructed |= destructNonTrivialCStruct; |
1288 | Dest.setExternallyDestructed(isExternallyDestructed); |
1289 | |
1290 | eval.begin(CGF); |
1291 | CGF.EmitBlock(BB: LHSBlock); |
1292 | if (llvm::EnableSingleByteCoverage) |
1293 | CGF.incrementProfileCounter(E->getTrueExpr()); |
1294 | else |
1295 | CGF.incrementProfileCounter(E); |
1296 | Visit(E: E->getTrueExpr()); |
1297 | eval.end(CGF); |
1298 | |
1299 | assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!" ); |
1300 | CGF.Builder.CreateBr(Dest: ContBlock); |
1301 | |
1302 | // If the result of an agg expression is unused, then the emission |
1303 | // of the LHS might need to create a destination slot. That's fine |
1304 | // with us, and we can safely emit the RHS into the same slot, but |
1305 | // we shouldn't claim that it's already being destructed. |
1306 | Dest.setExternallyDestructed(isExternallyDestructed); |
1307 | |
1308 | eval.begin(CGF); |
1309 | CGF.EmitBlock(BB: RHSBlock); |
1310 | if (llvm::EnableSingleByteCoverage) |
1311 | CGF.incrementProfileCounter(E->getFalseExpr()); |
1312 | Visit(E: E->getFalseExpr()); |
1313 | eval.end(CGF); |
1314 | |
1315 | if (destructNonTrivialCStruct) |
1316 | CGF.pushDestroy(QualType::DK_nontrivial_c_struct, Dest.getAddress(), |
1317 | E->getType()); |
1318 | |
1319 | CGF.EmitBlock(BB: ContBlock); |
1320 | if (llvm::EnableSingleByteCoverage) |
1321 | CGF.incrementProfileCounter(E); |
1322 | } |
1323 | |
1324 | void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) { |
1325 | Visit(E: CE->getChosenSubExpr()); |
1326 | } |
1327 | |
1328 | void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { |
1329 | Address ArgValue = Address::invalid(); |
1330 | Address ArgPtr = CGF.EmitVAArg(VE, VAListAddr&: ArgValue); |
1331 | |
1332 | // If EmitVAArg fails, emit an error. |
1333 | if (!ArgPtr.isValid()) { |
1334 | CGF.ErrorUnsupported(VE, "aggregate va_arg expression" ); |
1335 | return; |
1336 | } |
1337 | |
1338 | EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType())); |
1339 | } |
1340 | |
1341 | void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { |
1342 | // Ensure that we have a slot, but if we already do, remember |
1343 | // whether it was externally destructed. |
1344 | bool wasExternallyDestructed = Dest.isExternallyDestructed(); |
1345 | EnsureDest(T: E->getType()); |
1346 | |
1347 | // We're going to push a destructor if there isn't already one. |
1348 | Dest.setExternallyDestructed(); |
1349 | |
1350 | Visit(E: E->getSubExpr()); |
1351 | |
1352 | // Push that destructor we promised. |
1353 | if (!wasExternallyDestructed) |
1354 | CGF.EmitCXXTemporary(Temporary: E->getTemporary(), TempType: E->getType(), Ptr: Dest.getAddress()); |
1355 | } |
1356 | |
1357 | void |
1358 | AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) { |
1359 | AggValueSlot Slot = EnsureSlot(T: E->getType()); |
1360 | CGF.EmitCXXConstructExpr(E, Dest: Slot); |
1361 | } |
1362 | |
1363 | void AggExprEmitter::VisitCXXInheritedCtorInitExpr( |
1364 | const CXXInheritedCtorInitExpr *E) { |
1365 | AggValueSlot Slot = EnsureSlot(T: E->getType()); |
1366 | CGF.EmitInheritedCXXConstructorCall( |
1367 | D: E->getConstructor(), ForVirtualBase: E->constructsVBase(), This: Slot.getAddress(), |
1368 | InheritedFromVBase: E->inheritedFromVBase(), E); |
1369 | } |
1370 | |
1371 | void |
1372 | AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) { |
1373 | AggValueSlot Slot = EnsureSlot(T: E->getType()); |
1374 | LValue SlotLV = CGF.MakeAddrLValue(Slot.getAddress(), E->getType()); |
1375 | |
1376 | // We'll need to enter cleanup scopes in case any of the element |
1377 | // initializers throws an exception. |
1378 | SmallVector<EHScopeStack::stable_iterator, 16> Cleanups; |
1379 | llvm::Instruction *CleanupDominator = nullptr; |
1380 | |
1381 | CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin(); |
1382 | for (LambdaExpr::const_capture_init_iterator i = E->capture_init_begin(), |
1383 | e = E->capture_init_end(); |
1384 | i != e; ++i, ++CurField) { |
1385 | // Emit initialization |
1386 | LValue LV = CGF.EmitLValueForFieldInitialization(Base: SlotLV, Field: *CurField); |
1387 | if (CurField->hasCapturedVLAType()) { |
1388 | CGF.EmitLambdaVLACapture(VAT: CurField->getCapturedVLAType(), LV); |
1389 | continue; |
1390 | } |
1391 | |
1392 | EmitInitializationToLValue(E: *i, Address: LV); |
1393 | |
1394 | // Push a destructor if necessary. |
1395 | if (QualType::DestructionKind DtorKind = |
1396 | CurField->getType().isDestructedType()) { |
1397 | assert(LV.isSimple()); |
1398 | if (CGF.needsEHCleanup(kind: DtorKind)) { |
1399 | if (!CleanupDominator) |
1400 | CleanupDominator = CGF.Builder.CreateAlignedLoad( |
1401 | Ty: CGF.Int8Ty, |
1402 | Addr: llvm::Constant::getNullValue(Ty: CGF.Int8PtrTy), |
1403 | Align: CharUnits::One()); // placeholder |
1404 | |
1405 | CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), CurField->getType(), |
1406 | CGF.getDestroyer(destructionKind: DtorKind), false); |
1407 | Cleanups.push_back(Elt: CGF.EHStack.stable_begin()); |
1408 | } |
1409 | } |
1410 | } |
1411 | |
1412 | // Deactivate all the partial cleanups in reverse order, which |
1413 | // generally means popping them. |
1414 | for (unsigned i = Cleanups.size(); i != 0; --i) |
1415 | CGF.DeactivateCleanupBlock(Cleanup: Cleanups[i-1], DominatingIP: CleanupDominator); |
1416 | |
1417 | // Destroy the placeholder if we made one. |
1418 | if (CleanupDominator) |
1419 | CleanupDominator->eraseFromParent(); |
1420 | } |
1421 | |
1422 | void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { |
1423 | CodeGenFunction::RunCleanupsScope cleanups(CGF); |
1424 | Visit(E: E->getSubExpr()); |
1425 | } |
1426 | |
1427 | void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { |
1428 | QualType T = E->getType(); |
1429 | AggValueSlot Slot = EnsureSlot(T); |
1430 | EmitNullInitializationToLValue(Address: CGF.MakeAddrLValue(Addr: Slot.getAddress(), T)); |
1431 | } |
1432 | |
1433 | void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { |
1434 | QualType T = E->getType(); |
1435 | AggValueSlot Slot = EnsureSlot(T); |
1436 | EmitNullInitializationToLValue(Address: CGF.MakeAddrLValue(Addr: Slot.getAddress(), T)); |
1437 | } |
1438 | |
1439 | /// Determine whether the given cast kind is known to always convert values |
1440 | /// with all zero bits in their value representation to values with all zero |
1441 | /// bits in their value representation. |
1442 | static bool castPreservesZero(const CastExpr *CE) { |
1443 | switch (CE->getCastKind()) { |
1444 | // No-ops. |
1445 | case CK_NoOp: |
1446 | case CK_UserDefinedConversion: |
1447 | case CK_ConstructorConversion: |
1448 | case CK_BitCast: |
1449 | case CK_ToUnion: |
1450 | case CK_ToVoid: |
1451 | // Conversions between (possibly-complex) integral, (possibly-complex) |
1452 | // floating-point, and bool. |
1453 | case CK_BooleanToSignedIntegral: |
1454 | case CK_FloatingCast: |
1455 | case CK_FloatingComplexCast: |
1456 | case CK_FloatingComplexToBoolean: |
1457 | case CK_FloatingComplexToIntegralComplex: |
1458 | case CK_FloatingComplexToReal: |
1459 | case CK_FloatingRealToComplex: |
1460 | case CK_FloatingToBoolean: |
1461 | case CK_FloatingToIntegral: |
1462 | case CK_IntegralCast: |
1463 | case CK_IntegralComplexCast: |
1464 | case CK_IntegralComplexToBoolean: |
1465 | case CK_IntegralComplexToFloatingComplex: |
1466 | case CK_IntegralComplexToReal: |
1467 | case CK_IntegralRealToComplex: |
1468 | case CK_IntegralToBoolean: |
1469 | case CK_IntegralToFloating: |
1470 | // Reinterpreting integers as pointers and vice versa. |
1471 | case CK_IntegralToPointer: |
1472 | case CK_PointerToIntegral: |
1473 | // Language extensions. |
1474 | case CK_VectorSplat: |
1475 | case CK_MatrixCast: |
1476 | case CK_NonAtomicToAtomic: |
1477 | case CK_AtomicToNonAtomic: |
1478 | case CK_HLSLVectorTruncation: |
1479 | return true; |
1480 | |
1481 | case CK_BaseToDerivedMemberPointer: |
1482 | case CK_DerivedToBaseMemberPointer: |
1483 | case CK_MemberPointerToBoolean: |
1484 | case CK_NullToMemberPointer: |
1485 | case CK_ReinterpretMemberPointer: |
1486 | // FIXME: ABI-dependent. |
1487 | return false; |
1488 | |
1489 | case CK_AnyPointerToBlockPointerCast: |
1490 | case CK_BlockPointerToObjCPointerCast: |
1491 | case CK_CPointerToObjCPointerCast: |
1492 | case CK_ObjCObjectLValueCast: |
1493 | case CK_IntToOCLSampler: |
1494 | case CK_ZeroToOCLOpaqueType: |
1495 | // FIXME: Check these. |
1496 | return false; |
1497 | |
1498 | case CK_FixedPointCast: |
1499 | case CK_FixedPointToBoolean: |
1500 | case CK_FixedPointToFloating: |
1501 | case CK_FixedPointToIntegral: |
1502 | case CK_FloatingToFixedPoint: |
1503 | case CK_IntegralToFixedPoint: |
1504 | // FIXME: Do all fixed-point types represent zero as all 0 bits? |
1505 | return false; |
1506 | |
1507 | case CK_AddressSpaceConversion: |
1508 | case CK_BaseToDerived: |
1509 | case CK_DerivedToBase: |
1510 | case CK_Dynamic: |
1511 | case CK_NullToPointer: |
1512 | case CK_PointerToBoolean: |
1513 | // FIXME: Preserves zeroes only if zero pointers and null pointers have the |
1514 | // same representation in all involved address spaces. |
1515 | return false; |
1516 | |
1517 | case CK_ARCConsumeObject: |
1518 | case CK_ARCExtendBlockObject: |
1519 | case CK_ARCProduceObject: |
1520 | case CK_ARCReclaimReturnedObject: |
1521 | case CK_CopyAndAutoreleaseBlockObject: |
1522 | case CK_ArrayToPointerDecay: |
1523 | case CK_FunctionToPointerDecay: |
1524 | case CK_BuiltinFnToFnPtr: |
1525 | case CK_Dependent: |
1526 | case CK_LValueBitCast: |
1527 | case CK_LValueToRValue: |
1528 | case CK_LValueToRValueBitCast: |
1529 | case CK_UncheckedDerivedToBase: |
1530 | case CK_HLSLArrayRValue: |
1531 | return false; |
1532 | } |
1533 | llvm_unreachable("Unhandled clang::CastKind enum" ); |
1534 | } |
1535 | |
1536 | /// isSimpleZero - If emitting this value will obviously just cause a store of |
1537 | /// zero to memory, return true. This can return false if uncertain, so it just |
1538 | /// handles simple cases. |
1539 | static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) { |
1540 | E = E->IgnoreParens(); |
1541 | while (auto *CE = dyn_cast<CastExpr>(Val: E)) { |
1542 | if (!castPreservesZero(CE)) |
1543 | break; |
1544 | E = CE->getSubExpr()->IgnoreParens(); |
1545 | } |
1546 | |
1547 | // 0 |
1548 | if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(Val: E)) |
1549 | return IL->getValue() == 0; |
1550 | // +0.0 |
1551 | if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(Val: E)) |
1552 | return FL->getValue().isPosZero(); |
1553 | // int() |
1554 | if ((isa<ImplicitValueInitExpr>(Val: E) || isa<CXXScalarValueInitExpr>(Val: E)) && |
1555 | CGF.getTypes().isZeroInitializable(T: E->getType())) |
1556 | return true; |
1557 | // (int*)0 - Null pointer expressions. |
1558 | if (const CastExpr *ICE = dyn_cast<CastExpr>(Val: E)) |
1559 | return ICE->getCastKind() == CK_NullToPointer && |
1560 | CGF.getTypes().isPointerZeroInitializable(T: E->getType()) && |
1561 | !E->HasSideEffects(Ctx: CGF.getContext()); |
1562 | // '\0' |
1563 | if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(Val: E)) |
1564 | return CL->getValue() == 0; |
1565 | |
1566 | // Otherwise, hard case: conservatively return false. |
1567 | return false; |
1568 | } |
1569 | |
1570 | |
1571 | void |
1572 | AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) { |
1573 | QualType type = LV.getType(); |
1574 | // FIXME: Ignore result? |
1575 | // FIXME: Are initializers affected by volatile? |
1576 | if (Dest.isZeroed() && isSimpleZero(E, CGF)) { |
1577 | // Storing "i32 0" to a zero'd memory location is a noop. |
1578 | return; |
1579 | } else if (isa<ImplicitValueInitExpr>(Val: E) || isa<CXXScalarValueInitExpr>(Val: E)) { |
1580 | return EmitNullInitializationToLValue(Address: LV); |
1581 | } else if (isa<NoInitExpr>(Val: E)) { |
1582 | // Do nothing. |
1583 | return; |
1584 | } else if (type->isReferenceType()) { |
1585 | RValue RV = CGF.EmitReferenceBindingToExpr(E); |
1586 | return CGF.EmitStoreThroughLValue(Src: RV, Dst: LV); |
1587 | } |
1588 | |
1589 | switch (CGF.getEvaluationKind(T: type)) { |
1590 | case TEK_Complex: |
1591 | CGF.EmitComplexExprIntoLValue(E, dest: LV, /*isInit*/ true); |
1592 | return; |
1593 | case TEK_Aggregate: |
1594 | CGF.EmitAggExpr( |
1595 | E, AS: AggValueSlot::forLValue(LV, CGF, isDestructed: AggValueSlot::IsDestructed, |
1596 | needsGC: AggValueSlot::DoesNotNeedGCBarriers, |
1597 | isAliased: AggValueSlot::IsNotAliased, |
1598 | mayOverlap: AggValueSlot::MayOverlap, isZeroed: Dest.isZeroed())); |
1599 | return; |
1600 | case TEK_Scalar: |
1601 | if (LV.isSimple()) { |
1602 | CGF.EmitScalarInit(init: E, /*D=*/nullptr, lvalue: LV, /*Captured=*/capturedByInit: false); |
1603 | } else { |
1604 | CGF.EmitStoreThroughLValue(Src: RValue::get(V: CGF.EmitScalarExpr(E)), Dst: LV); |
1605 | } |
1606 | return; |
1607 | } |
1608 | llvm_unreachable("bad evaluation kind" ); |
1609 | } |
1610 | |
1611 | void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) { |
1612 | QualType type = lv.getType(); |
1613 | |
1614 | // If the destination slot is already zeroed out before the aggregate is |
1615 | // copied into it, we don't have to emit any zeros here. |
1616 | if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(T: type)) |
1617 | return; |
1618 | |
1619 | if (CGF.hasScalarEvaluationKind(T: type)) { |
1620 | // For non-aggregates, we can store the appropriate null constant. |
1621 | llvm::Value *null = CGF.CGM.EmitNullConstant(T: type); |
1622 | // Note that the following is not equivalent to |
1623 | // EmitStoreThroughBitfieldLValue for ARC types. |
1624 | if (lv.isBitField()) { |
1625 | CGF.EmitStoreThroughBitfieldLValue(Src: RValue::get(V: null), Dst: lv); |
1626 | } else { |
1627 | assert(lv.isSimple()); |
1628 | CGF.EmitStoreOfScalar(value: null, lvalue: lv, /* isInitialization */ isInit: true); |
1629 | } |
1630 | } else { |
1631 | // There's a potential optimization opportunity in combining |
1632 | // memsets; that would be easy for arrays, but relatively |
1633 | // difficult for structures with the current code. |
1634 | CGF.EmitNullInitialization(DestPtr: lv.getAddress(CGF), Ty: lv.getType()); |
1635 | } |
1636 | } |
1637 | |
1638 | void AggExprEmitter::VisitCXXParenListInitExpr(CXXParenListInitExpr *E) { |
1639 | VisitCXXParenListOrInitListExpr(E, E->getInitExprs(), |
1640 | E->getInitializedFieldInUnion(), |
1641 | E->getArrayFiller()); |
1642 | } |
1643 | |
1644 | void AggExprEmitter::VisitInitListExpr(InitListExpr *E) { |
1645 | if (E->hadArrayRangeDesignator()) |
1646 | CGF.ErrorUnsupported(E, "GNU array range designator extension" ); |
1647 | |
1648 | if (E->isTransparent()) |
1649 | return Visit(E: E->getInit(Init: 0)); |
1650 | |
1651 | VisitCXXParenListOrInitListExpr( |
1652 | E, E->inits(), E->getInitializedFieldInUnion(), E->getArrayFiller()); |
1653 | } |
1654 | |
1655 | void AggExprEmitter::VisitCXXParenListOrInitListExpr( |
1656 | Expr *ExprToVisit, ArrayRef<Expr *> InitExprs, |
1657 | FieldDecl *InitializedFieldInUnion, Expr *ArrayFiller) { |
1658 | #if 0 |
1659 | // FIXME: Assess perf here? Figure out what cases are worth optimizing here |
1660 | // (Length of globals? Chunks of zeroed-out space?). |
1661 | // |
1662 | // If we can, prefer a copy from a global; this is a lot less code for long |
1663 | // globals, and it's easier for the current optimizers to analyze. |
1664 | if (llvm::Constant *C = |
1665 | CGF.CGM.EmitConstantExpr(ExprToVisit, ExprToVisit->getType(), &CGF)) { |
1666 | llvm::GlobalVariable* GV = |
1667 | new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true, |
1668 | llvm::GlobalValue::InternalLinkage, C, "" ); |
1669 | EmitFinalDestCopy(ExprToVisit->getType(), |
1670 | CGF.MakeAddrLValue(GV, ExprToVisit->getType())); |
1671 | return; |
1672 | } |
1673 | #endif |
1674 | |
1675 | AggValueSlot Dest = EnsureSlot(T: ExprToVisit->getType()); |
1676 | |
1677 | LValue DestLV = CGF.MakeAddrLValue(Addr: Dest.getAddress(), T: ExprToVisit->getType()); |
1678 | |
1679 | // Handle initialization of an array. |
1680 | if (ExprToVisit->getType()->isConstantArrayType()) { |
1681 | auto AType = cast<llvm::ArrayType>(Val: Dest.getAddress().getElementType()); |
1682 | EmitArrayInit(DestPtr: Dest.getAddress(), AType, ArrayQTy: ExprToVisit->getType(), ExprToVisit, |
1683 | Args: InitExprs, ArrayFiller); |
1684 | return; |
1685 | } else if (ExprToVisit->getType()->isVariableArrayType()) { |
1686 | // A variable array type that has an initializer can only do empty |
1687 | // initialization. And because this feature is not exposed as an extension |
1688 | // in C++, we can safely memset the array memory to zero. |
1689 | assert(InitExprs.size() == 0 && |
1690 | "you can only use an empty initializer with VLAs" ); |
1691 | CGF.EmitNullInitialization(DestPtr: Dest.getAddress(), Ty: ExprToVisit->getType()); |
1692 | return; |
1693 | } |
1694 | |
1695 | assert(ExprToVisit->getType()->isRecordType() && |
1696 | "Only support structs/unions here!" ); |
1697 | |
1698 | // Do struct initialization; this code just sets each individual member |
1699 | // to the approprate value. This makes bitfield support automatic; |
1700 | // the disadvantage is that the generated code is more difficult for |
1701 | // the optimizer, especially with bitfields. |
1702 | unsigned NumInitElements = InitExprs.size(); |
1703 | RecordDecl *record = ExprToVisit->getType()->castAs<RecordType>()->getDecl(); |
1704 | |
1705 | // We'll need to enter cleanup scopes in case any of the element |
1706 | // initializers throws an exception. |
1707 | SmallVector<EHScopeStack::stable_iterator, 16> cleanups; |
1708 | llvm::Instruction *cleanupDominator = nullptr; |
1709 | auto addCleanup = [&](const EHScopeStack::stable_iterator &cleanup) { |
1710 | cleanups.push_back(Elt: cleanup); |
1711 | if (!cleanupDominator) // create placeholder once needed |
1712 | cleanupDominator = CGF.Builder.CreateAlignedLoad( |
1713 | Ty: CGF.Int8Ty, Addr: llvm::Constant::getNullValue(Ty: CGF.Int8PtrTy), |
1714 | Align: CharUnits::One()); |
1715 | }; |
1716 | |
1717 | unsigned curInitIndex = 0; |
1718 | |
1719 | // Emit initialization of base classes. |
1720 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: record)) { |
1721 | assert(NumInitElements >= CXXRD->getNumBases() && |
1722 | "missing initializer for base class" ); |
1723 | for (auto &Base : CXXRD->bases()) { |
1724 | assert(!Base.isVirtual() && "should not see vbases here" ); |
1725 | auto *BaseRD = Base.getType()->getAsCXXRecordDecl(); |
1726 | Address V = CGF.GetAddressOfDirectBaseInCompleteClass( |
1727 | Value: Dest.getAddress(), Derived: CXXRD, Base: BaseRD, |
1728 | /*isBaseVirtual*/ BaseIsVirtual: false); |
1729 | AggValueSlot AggSlot = AggValueSlot::forAddr( |
1730 | addr: V, quals: Qualifiers(), |
1731 | isDestructed: AggValueSlot::IsDestructed, |
1732 | needsGC: AggValueSlot::DoesNotNeedGCBarriers, |
1733 | isAliased: AggValueSlot::IsNotAliased, |
1734 | mayOverlap: CGF.getOverlapForBaseInit(RD: CXXRD, BaseRD, IsVirtual: Base.isVirtual())); |
1735 | CGF.EmitAggExpr(E: InitExprs[curInitIndex++], AS: AggSlot); |
1736 | |
1737 | if (QualType::DestructionKind dtorKind = |
1738 | Base.getType().isDestructedType()) { |
1739 | CGF.pushDestroy(dtorKind, addr: V, type: Base.getType()); |
1740 | addCleanup(CGF.EHStack.stable_begin()); |
1741 | } |
1742 | } |
1743 | } |
1744 | |
1745 | // Prepare a 'this' for CXXDefaultInitExprs. |
1746 | CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress()); |
1747 | |
1748 | if (record->isUnion()) { |
1749 | // Only initialize one field of a union. The field itself is |
1750 | // specified by the initializer list. |
1751 | if (!InitializedFieldInUnion) { |
1752 | // Empty union; we have nothing to do. |
1753 | |
1754 | #ifndef NDEBUG |
1755 | // Make sure that it's really an empty and not a failure of |
1756 | // semantic analysis. |
1757 | for (const auto *Field : record->fields()) |
1758 | assert( |
1759 | (Field->isUnnamedBitField() || Field->isAnonymousStructOrUnion()) && |
1760 | "Only unnamed bitfields or ananymous class allowed" ); |
1761 | #endif |
1762 | return; |
1763 | } |
1764 | |
1765 | // FIXME: volatility |
1766 | FieldDecl *Field = InitializedFieldInUnion; |
1767 | |
1768 | LValue FieldLoc = CGF.EmitLValueForFieldInitialization(Base: DestLV, Field); |
1769 | if (NumInitElements) { |
1770 | // Store the initializer into the field |
1771 | EmitInitializationToLValue(E: InitExprs[0], LV: FieldLoc); |
1772 | } else { |
1773 | // Default-initialize to null. |
1774 | EmitNullInitializationToLValue(lv: FieldLoc); |
1775 | } |
1776 | |
1777 | return; |
1778 | } |
1779 | |
1780 | // Here we iterate over the fields; this makes it simpler to both |
1781 | // default-initialize fields and skip over unnamed fields. |
1782 | for (const auto *field : record->fields()) { |
1783 | // We're done once we hit the flexible array member. |
1784 | if (field->getType()->isIncompleteArrayType()) |
1785 | break; |
1786 | |
1787 | // Always skip anonymous bitfields. |
1788 | if (field->isUnnamedBitField()) |
1789 | continue; |
1790 | |
1791 | // We're done if we reach the end of the explicit initializers, we |
1792 | // have a zeroed object, and the rest of the fields are |
1793 | // zero-initializable. |
1794 | if (curInitIndex == NumInitElements && Dest.isZeroed() && |
1795 | CGF.getTypes().isZeroInitializable(T: ExprToVisit->getType())) |
1796 | break; |
1797 | |
1798 | |
1799 | LValue LV = CGF.EmitLValueForFieldInitialization(Base: DestLV, Field: field); |
1800 | // We never generate write-barries for initialized fields. |
1801 | LV.setNonGC(true); |
1802 | |
1803 | if (curInitIndex < NumInitElements) { |
1804 | // Store the initializer into the field. |
1805 | EmitInitializationToLValue(E: InitExprs[curInitIndex++], LV); |
1806 | } else { |
1807 | // We're out of initializers; default-initialize to null |
1808 | EmitNullInitializationToLValue(lv: LV); |
1809 | } |
1810 | |
1811 | // Push a destructor if necessary. |
1812 | // FIXME: if we have an array of structures, all explicitly |
1813 | // initialized, we can end up pushing a linear number of cleanups. |
1814 | bool pushedCleanup = false; |
1815 | if (QualType::DestructionKind dtorKind |
1816 | = field->getType().isDestructedType()) { |
1817 | assert(LV.isSimple()); |
1818 | if (CGF.needsEHCleanup(kind: dtorKind)) { |
1819 | CGF.pushDestroy(EHCleanup, LV.getAddress(CGF), field->getType(), |
1820 | CGF.getDestroyer(destructionKind: dtorKind), false); |
1821 | addCleanup(CGF.EHStack.stable_begin()); |
1822 | pushedCleanup = true; |
1823 | } |
1824 | } |
1825 | |
1826 | // If the GEP didn't get used because of a dead zero init or something |
1827 | // else, clean it up for -O0 builds and general tidiness. |
1828 | if (!pushedCleanup && LV.isSimple()) |
1829 | if (llvm::GetElementPtrInst *GEP = |
1830 | dyn_cast<llvm::GetElementPtrInst>(Val: LV.emitRawPointer(CGF))) |
1831 | if (GEP->use_empty()) |
1832 | GEP->eraseFromParent(); |
1833 | } |
1834 | |
1835 | // Deactivate all the partial cleanups in reverse order, which |
1836 | // generally means popping them. |
1837 | assert((cleanupDominator || cleanups.empty()) && |
1838 | "Missing cleanupDominator before deactivating cleanup blocks" ); |
1839 | for (unsigned i = cleanups.size(); i != 0; --i) |
1840 | CGF.DeactivateCleanupBlock(Cleanup: cleanups[i-1], DominatingIP: cleanupDominator); |
1841 | |
1842 | // Destroy the placeholder if we made one. |
1843 | if (cleanupDominator) |
1844 | cleanupDominator->eraseFromParent(); |
1845 | } |
1846 | |
1847 | void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E, |
1848 | llvm::Value *outerBegin) { |
1849 | // Emit the common subexpression. |
1850 | CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr()); |
1851 | |
1852 | Address destPtr = EnsureSlot(T: E->getType()).getAddress(); |
1853 | uint64_t numElements = E->getArraySize().getZExtValue(); |
1854 | |
1855 | if (!numElements) |
1856 | return; |
1857 | |
1858 | // destPtr is an array*. Construct an elementType* by drilling down a level. |
1859 | llvm::Value *zero = llvm::ConstantInt::get(Ty: CGF.SizeTy, V: 0); |
1860 | llvm::Value *indices[] = {zero, zero}; |
1861 | llvm::Value *begin = Builder.CreateInBoundsGEP(Ty: destPtr.getElementType(), |
1862 | Ptr: destPtr.emitRawPointer(CGF), |
1863 | IdxList: indices, Name: "arrayinit.begin" ); |
1864 | |
1865 | // Prepare to special-case multidimensional array initialization: we avoid |
1866 | // emitting multiple destructor loops in that case. |
1867 | if (!outerBegin) |
1868 | outerBegin = begin; |
1869 | ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(Val: E->getSubExpr()); |
1870 | |
1871 | QualType elementType = |
1872 | CGF.getContext().getAsArrayType(T: E->getType())->getElementType(); |
1873 | CharUnits elementSize = CGF.getContext().getTypeSizeInChars(T: elementType); |
1874 | CharUnits elementAlign = |
1875 | destPtr.getAlignment().alignmentOfArrayElement(elementSize); |
1876 | llvm::Type *llvmElementType = CGF.ConvertTypeForMem(T: elementType); |
1877 | |
1878 | llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); |
1879 | llvm::BasicBlock *bodyBB = CGF.createBasicBlock(name: "arrayinit.body" ); |
1880 | |
1881 | // Jump into the body. |
1882 | CGF.EmitBlock(BB: bodyBB); |
1883 | llvm::PHINode *index = |
1884 | Builder.CreatePHI(Ty: zero->getType(), NumReservedValues: 2, Name: "arrayinit.index" ); |
1885 | index->addIncoming(V: zero, BB: entryBB); |
1886 | llvm::Value *element = |
1887 | Builder.CreateInBoundsGEP(Ty: llvmElementType, Ptr: begin, IdxList: index); |
1888 | |
1889 | // Prepare for a cleanup. |
1890 | QualType::DestructionKind dtorKind = elementType.isDestructedType(); |
1891 | EHScopeStack::stable_iterator cleanup; |
1892 | if (CGF.needsEHCleanup(kind: dtorKind) && !InnerLoop) { |
1893 | if (outerBegin->getType() != element->getType()) |
1894 | outerBegin = Builder.CreateBitCast(V: outerBegin, DestTy: element->getType()); |
1895 | CGF.pushRegularPartialArrayCleanup(arrayBegin: outerBegin, arrayEnd: element, elementType, |
1896 | elementAlignment: elementAlign, |
1897 | destroyer: CGF.getDestroyer(destructionKind: dtorKind)); |
1898 | cleanup = CGF.EHStack.stable_begin(); |
1899 | } else { |
1900 | dtorKind = QualType::DK_none; |
1901 | } |
1902 | |
1903 | // Emit the actual filler expression. |
1904 | { |
1905 | // Temporaries created in an array initialization loop are destroyed |
1906 | // at the end of each iteration. |
1907 | CodeGenFunction::RunCleanupsScope CleanupsScope(CGF); |
1908 | CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index); |
1909 | LValue elementLV = CGF.MakeAddrLValue( |
1910 | Addr: Address(element, llvmElementType, elementAlign), T: elementType); |
1911 | |
1912 | if (InnerLoop) { |
1913 | // If the subexpression is an ArrayInitLoopExpr, share its cleanup. |
1914 | auto elementSlot = AggValueSlot::forLValue( |
1915 | LV: elementLV, CGF, isDestructed: AggValueSlot::IsDestructed, |
1916 | needsGC: AggValueSlot::DoesNotNeedGCBarriers, isAliased: AggValueSlot::IsNotAliased, |
1917 | mayOverlap: AggValueSlot::DoesNotOverlap); |
1918 | AggExprEmitter(CGF, elementSlot, false) |
1919 | .VisitArrayInitLoopExpr(E: InnerLoop, outerBegin); |
1920 | } else |
1921 | EmitInitializationToLValue(E: E->getSubExpr(), LV: elementLV); |
1922 | } |
1923 | |
1924 | // Move on to the next element. |
1925 | llvm::Value *nextIndex = Builder.CreateNUWAdd( |
1926 | LHS: index, RHS: llvm::ConstantInt::get(Ty: CGF.SizeTy, V: 1), Name: "arrayinit.next" ); |
1927 | index->addIncoming(V: nextIndex, BB: Builder.GetInsertBlock()); |
1928 | |
1929 | // Leave the loop if we're done. |
1930 | llvm::Value *done = Builder.CreateICmpEQ( |
1931 | LHS: nextIndex, RHS: llvm::ConstantInt::get(Ty: CGF.SizeTy, V: numElements), |
1932 | Name: "arrayinit.done" ); |
1933 | llvm::BasicBlock *endBB = CGF.createBasicBlock(name: "arrayinit.end" ); |
1934 | Builder.CreateCondBr(Cond: done, True: endBB, False: bodyBB); |
1935 | |
1936 | CGF.EmitBlock(BB: endBB); |
1937 | |
1938 | // Leave the partial-array cleanup if we entered one. |
1939 | if (dtorKind) |
1940 | CGF.DeactivateCleanupBlock(Cleanup: cleanup, DominatingIP: index); |
1941 | } |
1942 | |
1943 | void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { |
1944 | AggValueSlot Dest = EnsureSlot(T: E->getType()); |
1945 | |
1946 | LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType()); |
1947 | EmitInitializationToLValue(E: E->getBase(), LV: DestLV); |
1948 | VisitInitListExpr(E: E->getUpdater()); |
1949 | } |
1950 | |
1951 | //===----------------------------------------------------------------------===// |
1952 | // Entry Points into this File |
1953 | //===----------------------------------------------------------------------===// |
1954 | |
1955 | /// GetNumNonZeroBytesInInit - Get an approximate count of the number of |
1956 | /// non-zero bytes that will be stored when outputting the initializer for the |
1957 | /// specified initializer expression. |
1958 | static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) { |
1959 | if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Val: E)) |
1960 | E = MTE->getSubExpr(); |
1961 | E = E->IgnoreParenNoopCasts(Ctx: CGF.getContext()); |
1962 | |
1963 | // 0 and 0.0 won't require any non-zero stores! |
1964 | if (isSimpleZero(E, CGF)) return CharUnits::Zero(); |
1965 | |
1966 | // If this is an initlist expr, sum up the size of sizes of the (present) |
1967 | // elements. If this is something weird, assume the whole thing is non-zero. |
1968 | const InitListExpr *ILE = dyn_cast<InitListExpr>(Val: E); |
1969 | while (ILE && ILE->isTransparent()) |
1970 | ILE = dyn_cast<InitListExpr>(Val: ILE->getInit(Init: 0)); |
1971 | if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType())) |
1972 | return CGF.getContext().getTypeSizeInChars(T: E->getType()); |
1973 | |
1974 | // InitListExprs for structs have to be handled carefully. If there are |
1975 | // reference members, we need to consider the size of the reference, not the |
1976 | // referencee. InitListExprs for unions and arrays can't have references. |
1977 | if (const RecordType *RT = E->getType()->getAs<RecordType>()) { |
1978 | if (!RT->isUnionType()) { |
1979 | RecordDecl *SD = RT->getDecl(); |
1980 | CharUnits NumNonZeroBytes = CharUnits::Zero(); |
1981 | |
1982 | unsigned ILEElement = 0; |
1983 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: SD)) |
1984 | while (ILEElement != CXXRD->getNumBases()) |
1985 | NumNonZeroBytes += |
1986 | GetNumNonZeroBytesInInit(E: ILE->getInit(Init: ILEElement++), CGF); |
1987 | for (const auto *Field : SD->fields()) { |
1988 | // We're done once we hit the flexible array member or run out of |
1989 | // InitListExpr elements. |
1990 | if (Field->getType()->isIncompleteArrayType() || |
1991 | ILEElement == ILE->getNumInits()) |
1992 | break; |
1993 | if (Field->isUnnamedBitField()) |
1994 | continue; |
1995 | |
1996 | const Expr *E = ILE->getInit(Init: ILEElement++); |
1997 | |
1998 | // Reference values are always non-null and have the width of a pointer. |
1999 | if (Field->getType()->isReferenceType()) |
2000 | NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits( |
2001 | BitSize: CGF.getTarget().getPointerWidth(AddrSpace: LangAS::Default)); |
2002 | else |
2003 | NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF); |
2004 | } |
2005 | |
2006 | return NumNonZeroBytes; |
2007 | } |
2008 | } |
2009 | |
2010 | // FIXME: This overestimates the number of non-zero bytes for bit-fields. |
2011 | CharUnits NumNonZeroBytes = CharUnits::Zero(); |
2012 | for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) |
2013 | NumNonZeroBytes += GetNumNonZeroBytesInInit(E: ILE->getInit(Init: i), CGF); |
2014 | return NumNonZeroBytes; |
2015 | } |
2016 | |
2017 | /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of |
2018 | /// zeros in it, emit a memset and avoid storing the individual zeros. |
2019 | /// |
2020 | static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E, |
2021 | CodeGenFunction &CGF) { |
2022 | // If the slot is already known to be zeroed, nothing to do. Don't mess with |
2023 | // volatile stores. |
2024 | if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid()) |
2025 | return; |
2026 | |
2027 | // C++ objects with a user-declared constructor don't need zero'ing. |
2028 | if (CGF.getLangOpts().CPlusPlus) |
2029 | if (const RecordType *RT = CGF.getContext() |
2030 | .getBaseElementType(QT: E->getType())->getAs<RecordType>()) { |
2031 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: RT->getDecl()); |
2032 | if (RD->hasUserDeclaredConstructor()) |
2033 | return; |
2034 | } |
2035 | |
2036 | // If the type is 16-bytes or smaller, prefer individual stores over memset. |
2037 | CharUnits Size = Slot.getPreferredSize(Ctx&: CGF.getContext(), Type: E->getType()); |
2038 | if (Size <= CharUnits::fromQuantity(Quantity: 16)) |
2039 | return; |
2040 | |
2041 | // Check to see if over 3/4 of the initializer are known to be zero. If so, |
2042 | // we prefer to emit memset + individual stores for the rest. |
2043 | CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF); |
2044 | if (NumNonZeroBytes*4 > Size) |
2045 | return; |
2046 | |
2047 | // Okay, it seems like a good idea to use an initial memset, emit the call. |
2048 | llvm::Constant *SizeVal = CGF.Builder.getInt64(C: Size.getQuantity()); |
2049 | |
2050 | Address Loc = Slot.getAddress().withElementType(ElemTy: CGF.Int8Ty); |
2051 | CGF.Builder.CreateMemSet(Dest: Loc, Value: CGF.Builder.getInt8(C: 0), Size: SizeVal, IsVolatile: false); |
2052 | |
2053 | // Tell the AggExprEmitter that the slot is known zero. |
2054 | Slot.setZeroed(); |
2055 | } |
2056 | |
2057 | |
2058 | |
2059 | |
2060 | /// EmitAggExpr - Emit the computation of the specified expression of aggregate |
2061 | /// type. The result is computed into DestPtr. Note that if DestPtr is null, |
2062 | /// the value of the aggregate expression is not needed. If VolatileDest is |
2063 | /// true, DestPtr cannot be 0. |
2064 | void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) { |
2065 | assert(E && hasAggregateEvaluationKind(E->getType()) && |
2066 | "Invalid aggregate expression to emit" ); |
2067 | assert((Slot.getAddress().isValid() || Slot.isIgnored()) && |
2068 | "slot has bits but no address" ); |
2069 | |
2070 | // Optimize the slot if possible. |
2071 | CheckAggExprForMemSetUse(Slot, E, CGF&: *this); |
2072 | |
2073 | AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(E: const_cast<Expr*>(E)); |
2074 | } |
2075 | |
2076 | LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) { |
2077 | assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!" ); |
2078 | Address Temp = CreateMemTemp(T: E->getType()); |
2079 | LValue LV = MakeAddrLValue(Addr: Temp, T: E->getType()); |
2080 | EmitAggExpr(E, Slot: AggValueSlot::forLValue( |
2081 | LV, CGF&: *this, isDestructed: AggValueSlot::IsNotDestructed, |
2082 | needsGC: AggValueSlot::DoesNotNeedGCBarriers, |
2083 | isAliased: AggValueSlot::IsNotAliased, mayOverlap: AggValueSlot::DoesNotOverlap)); |
2084 | return LV; |
2085 | } |
2086 | |
2087 | AggValueSlot::Overlap_t |
2088 | CodeGenFunction::getOverlapForFieldInit(const FieldDecl *FD) { |
2089 | if (!FD->hasAttr<NoUniqueAddressAttr>() || !FD->getType()->isRecordType()) |
2090 | return AggValueSlot::DoesNotOverlap; |
2091 | |
2092 | // If the field lies entirely within the enclosing class's nvsize, its tail |
2093 | // padding cannot overlap any already-initialized object. (The only subobjects |
2094 | // with greater addresses that might already be initialized are vbases.) |
2095 | const RecordDecl *ClassRD = FD->getParent(); |
2096 | const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D: ClassRD); |
2097 | if (Layout.getFieldOffset(FieldNo: FD->getFieldIndex()) + |
2098 | getContext().getTypeSize(FD->getType()) <= |
2099 | (uint64_t)getContext().toBits(CharSize: Layout.getNonVirtualSize())) |
2100 | return AggValueSlot::DoesNotOverlap; |
2101 | |
2102 | // The tail padding may contain values we need to preserve. |
2103 | return AggValueSlot::MayOverlap; |
2104 | } |
2105 | |
2106 | AggValueSlot::Overlap_t CodeGenFunction::getOverlapForBaseInit( |
2107 | const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) { |
2108 | // If the most-derived object is a field declared with [[no_unique_address]], |
2109 | // the tail padding of any virtual base could be reused for other subobjects |
2110 | // of that field's class. |
2111 | if (IsVirtual) |
2112 | return AggValueSlot::MayOverlap; |
2113 | |
2114 | // If the base class is laid out entirely within the nvsize of the derived |
2115 | // class, its tail padding cannot yet be initialized, so we can issue |
2116 | // stores at the full width of the base class. |
2117 | const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); |
2118 | if (Layout.getBaseClassOffset(Base: BaseRD) + |
2119 | getContext().getASTRecordLayout(BaseRD).getSize() <= |
2120 | Layout.getNonVirtualSize()) |
2121 | return AggValueSlot::DoesNotOverlap; |
2122 | |
2123 | // The tail padding may contain values we need to preserve. |
2124 | return AggValueSlot::MayOverlap; |
2125 | } |
2126 | |
2127 | void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty, |
2128 | AggValueSlot::Overlap_t MayOverlap, |
2129 | bool isVolatile) { |
2130 | assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex" ); |
2131 | |
2132 | Address DestPtr = Dest.getAddress(CGF&: *this); |
2133 | Address SrcPtr = Src.getAddress(CGF&: *this); |
2134 | |
2135 | if (getLangOpts().CPlusPlus) { |
2136 | if (const RecordType *RT = Ty->getAs<RecordType>()) { |
2137 | CXXRecordDecl *Record = cast<CXXRecordDecl>(Val: RT->getDecl()); |
2138 | assert((Record->hasTrivialCopyConstructor() || |
2139 | Record->hasTrivialCopyAssignment() || |
2140 | Record->hasTrivialMoveConstructor() || |
2141 | Record->hasTrivialMoveAssignment() || |
2142 | Record->hasAttr<TrivialABIAttr>() || Record->isUnion()) && |
2143 | "Trying to aggregate-copy a type without a trivial copy/move " |
2144 | "constructor or assignment operator" ); |
2145 | // Ignore empty classes in C++. |
2146 | if (Record->isEmpty()) |
2147 | return; |
2148 | } |
2149 | } |
2150 | |
2151 | if (getLangOpts().CUDAIsDevice) { |
2152 | if (Ty->isCUDADeviceBuiltinSurfaceType()) { |
2153 | if (getTargetHooks().emitCUDADeviceBuiltinSurfaceDeviceCopy(CGF&: *this, Dst: Dest, |
2154 | Src)) |
2155 | return; |
2156 | } else if (Ty->isCUDADeviceBuiltinTextureType()) { |
2157 | if (getTargetHooks().emitCUDADeviceBuiltinTextureDeviceCopy(CGF&: *this, Dst: Dest, |
2158 | Src)) |
2159 | return; |
2160 | } |
2161 | } |
2162 | |
2163 | // Aggregate assignment turns into llvm.memcpy. This is almost valid per |
2164 | // C99 6.5.16.1p3, which states "If the value being stored in an object is |
2165 | // read from another object that overlaps in anyway the storage of the first |
2166 | // object, then the overlap shall be exact and the two objects shall have |
2167 | // qualified or unqualified versions of a compatible type." |
2168 | // |
2169 | // memcpy is not defined if the source and destination pointers are exactly |
2170 | // equal, but other compilers do this optimization, and almost every memcpy |
2171 | // implementation handles this case safely. If there is a libc that does not |
2172 | // safely handle this, we can add a target hook. |
2173 | |
2174 | // Get data size info for this aggregate. Don't copy the tail padding if this |
2175 | // might be a potentially-overlapping subobject, since the tail padding might |
2176 | // be occupied by a different object. Otherwise, copying it is fine. |
2177 | TypeInfoChars TypeInfo; |
2178 | if (MayOverlap) |
2179 | TypeInfo = getContext().getTypeInfoDataSizeInChars(T: Ty); |
2180 | else |
2181 | TypeInfo = getContext().getTypeInfoInChars(T: Ty); |
2182 | |
2183 | llvm::Value *SizeVal = nullptr; |
2184 | if (TypeInfo.Width.isZero()) { |
2185 | // But note that getTypeInfo returns 0 for a VLA. |
2186 | if (auto *VAT = dyn_cast_or_null<VariableArrayType>( |
2187 | Val: getContext().getAsArrayType(T: Ty))) { |
2188 | QualType BaseEltTy; |
2189 | SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr); |
2190 | TypeInfo = getContext().getTypeInfoInChars(T: BaseEltTy); |
2191 | assert(!TypeInfo.Width.isZero()); |
2192 | SizeVal = Builder.CreateNUWMul( |
2193 | LHS: SizeVal, |
2194 | RHS: llvm::ConstantInt::get(Ty: SizeTy, V: TypeInfo.Width.getQuantity())); |
2195 | } |
2196 | } |
2197 | if (!SizeVal) { |
2198 | SizeVal = llvm::ConstantInt::get(Ty: SizeTy, V: TypeInfo.Width.getQuantity()); |
2199 | } |
2200 | |
2201 | // FIXME: If we have a volatile struct, the optimizer can remove what might |
2202 | // appear to be `extra' memory ops: |
2203 | // |
2204 | // volatile struct { int i; } a, b; |
2205 | // |
2206 | // int main() { |
2207 | // a = b; |
2208 | // a = b; |
2209 | // } |
2210 | // |
2211 | // we need to use a different call here. We use isVolatile to indicate when |
2212 | // either the source or the destination is volatile. |
2213 | |
2214 | DestPtr = DestPtr.withElementType(ElemTy: Int8Ty); |
2215 | SrcPtr = SrcPtr.withElementType(ElemTy: Int8Ty); |
2216 | |
2217 | // Don't do any of the memmove_collectable tests if GC isn't set. |
2218 | if (CGM.getLangOpts().getGC() == LangOptions::NonGC) { |
2219 | // fall through |
2220 | } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { |
2221 | RecordDecl *Record = RecordTy->getDecl(); |
2222 | if (Record->hasObjectMember()) { |
2223 | CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF&: *this, DestPtr, SrcPtr, |
2224 | Size: SizeVal); |
2225 | return; |
2226 | } |
2227 | } else if (Ty->isArrayType()) { |
2228 | QualType BaseType = getContext().getBaseElementType(QT: Ty); |
2229 | if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { |
2230 | if (RecordTy->getDecl()->hasObjectMember()) { |
2231 | CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF&: *this, DestPtr, SrcPtr, |
2232 | Size: SizeVal); |
2233 | return; |
2234 | } |
2235 | } |
2236 | } |
2237 | |
2238 | auto Inst = Builder.CreateMemCpy(Dest: DestPtr, Src: SrcPtr, Size: SizeVal, IsVolatile: isVolatile); |
2239 | |
2240 | // Determine the metadata to describe the position of any padding in this |
2241 | // memcpy, as well as the TBAA tags for the members of the struct, in case |
2242 | // the optimizer wishes to expand it in to scalar memory operations. |
2243 | if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(QTy: Ty)) |
2244 | Inst->setMetadata(KindID: llvm::LLVMContext::MD_tbaa_struct, Node: TBAAStructTag); |
2245 | |
2246 | if (CGM.getCodeGenOpts().NewStructPathTBAA) { |
2247 | TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer( |
2248 | DestInfo: Dest.getTBAAInfo(), SrcInfo: Src.getTBAAInfo()); |
2249 | CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo); |
2250 | } |
2251 | } |
2252 | |