1//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This contains code dealing with code generation of C++ expressions
10//
11//===----------------------------------------------------------------------===//
12
13#include "CGCUDARuntime.h"
14#include "CGCXXABI.h"
15#include "CGDebugInfo.h"
16#include "CGObjCRuntime.h"
17#include "CodeGenFunction.h"
18#include "ConstantEmitter.h"
19#include "TargetInfo.h"
20#include "clang/Basic/CodeGenOptions.h"
21#include "clang/CodeGen/CGFunctionInfo.h"
22#include "llvm/IR/Intrinsics.h"
23
24using namespace clang;
25using namespace CodeGen;
26
27namespace {
28struct MemberCallInfo {
29 RequiredArgs ReqArgs;
30 // Number of prefix arguments for the call. Ignores the `this` pointer.
31 unsigned PrefixSize;
32};
33}
34
35static MemberCallInfo
36commonEmitCXXMemberOrOperatorCall(CodeGenFunction &CGF, GlobalDecl GD,
37 llvm::Value *This, llvm::Value *ImplicitParam,
38 QualType ImplicitParamTy, const CallExpr *CE,
39 CallArgList &Args, CallArgList *RtlArgs) {
40 auto *MD = cast<CXXMethodDecl>(Val: GD.getDecl());
41
42 assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
43 isa<CXXOperatorCallExpr>(CE));
44 assert(MD->isImplicitObjectMemberFunction() &&
45 "Trying to emit a member or operator call expr on a static method!");
46
47 // Push the this ptr.
48 const CXXRecordDecl *RD =
49 CGF.CGM.getCXXABI().getThisArgumentTypeForMethod(GD);
50 Args.add(rvalue: RValue::get(V: This), type: CGF.getTypes().DeriveThisType(RD, MD));
51
52 // If there is an implicit parameter (e.g. VTT), emit it.
53 if (ImplicitParam) {
54 Args.add(rvalue: RValue::get(V: ImplicitParam), type: ImplicitParamTy);
55 }
56
57 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
58 RequiredArgs required = RequiredArgs::forPrototypePlus(prototype: FPT, additional: Args.size());
59 unsigned PrefixSize = Args.size() - 1;
60
61 // And the rest of the call args.
62 if (RtlArgs) {
63 // Special case: if the caller emitted the arguments right-to-left already
64 // (prior to emitting the *this argument), we're done. This happens for
65 // assignment operators.
66 Args.addFrom(other: *RtlArgs);
67 } else if (CE) {
68 // Special case: skip first argument of CXXOperatorCall (it is "this").
69 unsigned ArgsToSkip = 0;
70 if (const auto *Op = dyn_cast<CXXOperatorCallExpr>(Val: CE)) {
71 if (const auto *M = dyn_cast<CXXMethodDecl>(Op->getCalleeDecl()))
72 ArgsToSkip =
73 static_cast<unsigned>(!M->isExplicitObjectMemberFunction());
74 }
75 CGF.EmitCallArgs(Args, Prototype: FPT, ArgRange: drop_begin(RangeOrContainer: CE->arguments(), N: ArgsToSkip),
76 AC: CE->getDirectCallee());
77 } else {
78 assert(
79 FPT->getNumParams() == 0 &&
80 "No CallExpr specified for function with non-zero number of arguments");
81 }
82 return {.ReqArgs: required, .PrefixSize: PrefixSize};
83}
84
85RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
86 const CXXMethodDecl *MD, const CGCallee &Callee,
87 ReturnValueSlot ReturnValue,
88 llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
89 const CallExpr *CE, CallArgList *RtlArgs) {
90 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
91 CallArgList Args;
92 MemberCallInfo CallInfo = commonEmitCXXMemberOrOperatorCall(
93 *this, MD, This, ImplicitParam, ImplicitParamTy, CE, Args, RtlArgs);
94 auto &FnInfo = CGM.getTypes().arrangeCXXMethodCall(
95 args: Args, type: FPT, required: CallInfo.ReqArgs, numPrefixArgs: CallInfo.PrefixSize);
96 return EmitCall(FnInfo, Callee, ReturnValue, Args, nullptr,
97 CE && CE == MustTailCall,
98 CE ? CE->getExprLoc() : SourceLocation());
99}
100
101RValue CodeGenFunction::EmitCXXDestructorCall(
102 GlobalDecl Dtor, const CGCallee &Callee, llvm::Value *This, QualType ThisTy,
103 llvm::Value *ImplicitParam, QualType ImplicitParamTy, const CallExpr *CE) {
104 const CXXMethodDecl *DtorDecl = cast<CXXMethodDecl>(Val: Dtor.getDecl());
105
106 assert(!ThisTy.isNull());
107 assert(ThisTy->getAsCXXRecordDecl() == DtorDecl->getParent() &&
108 "Pointer/Object mixup");
109
110 LangAS SrcAS = ThisTy.getAddressSpace();
111 LangAS DstAS = DtorDecl->getMethodQualifiers().getAddressSpace();
112 if (SrcAS != DstAS) {
113 QualType DstTy = DtorDecl->getThisType();
114 llvm::Type *NewType = CGM.getTypes().ConvertType(T: DstTy);
115 This = getTargetHooks().performAddrSpaceCast(CGF&: *this, V: This, SrcAddr: SrcAS, DestAddr: DstAS,
116 DestTy: NewType);
117 }
118
119 CallArgList Args;
120 commonEmitCXXMemberOrOperatorCall(CGF&: *this, GD: Dtor, This, ImplicitParam,
121 ImplicitParamTy, CE, Args, RtlArgs: nullptr);
122 return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(GD: Dtor), Callee,
123 ReturnValueSlot(), Args, nullptr, CE && CE == MustTailCall,
124 CE ? CE->getExprLoc() : SourceLocation{});
125}
126
127RValue CodeGenFunction::EmitCXXPseudoDestructorExpr(
128 const CXXPseudoDestructorExpr *E) {
129 QualType DestroyedType = E->getDestroyedType();
130 if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
131 // Automatic Reference Counting:
132 // If the pseudo-expression names a retainable object with weak or
133 // strong lifetime, the object shall be released.
134 Expr *BaseExpr = E->getBase();
135 Address BaseValue = Address::invalid();
136 Qualifiers BaseQuals;
137
138 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
139 if (E->isArrow()) {
140 BaseValue = EmitPointerWithAlignment(Addr: BaseExpr);
141 const auto *PTy = BaseExpr->getType()->castAs<PointerType>();
142 BaseQuals = PTy->getPointeeType().getQualifiers();
143 } else {
144 LValue BaseLV = EmitLValue(E: BaseExpr);
145 BaseValue = BaseLV.getAddress(CGF&: *this);
146 QualType BaseTy = BaseExpr->getType();
147 BaseQuals = BaseTy.getQualifiers();
148 }
149
150 switch (DestroyedType.getObjCLifetime()) {
151 case Qualifiers::OCL_None:
152 case Qualifiers::OCL_ExplicitNone:
153 case Qualifiers::OCL_Autoreleasing:
154 break;
155
156 case Qualifiers::OCL_Strong:
157 EmitARCRelease(value: Builder.CreateLoad(Addr: BaseValue,
158 IsVolatile: DestroyedType.isVolatileQualified()),
159 precise: ARCPreciseLifetime);
160 break;
161
162 case Qualifiers::OCL_Weak:
163 EmitARCDestroyWeak(addr: BaseValue);
164 break;
165 }
166 } else {
167 // C++ [expr.pseudo]p1:
168 // The result shall only be used as the operand for the function call
169 // operator (), and the result of such a call has type void. The only
170 // effect is the evaluation of the postfix-expression before the dot or
171 // arrow.
172 EmitIgnoredExpr(E: E->getBase());
173 }
174
175 return RValue::get(V: nullptr);
176}
177
178static CXXRecordDecl *getCXXRecord(const Expr *E) {
179 QualType T = E->getType();
180 if (const PointerType *PTy = T->getAs<PointerType>())
181 T = PTy->getPointeeType();
182 const RecordType *Ty = T->castAs<RecordType>();
183 return cast<CXXRecordDecl>(Val: Ty->getDecl());
184}
185
186// Note: This function also emit constructor calls to support a MSVC
187// extensions allowing explicit constructor function call.
188RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
189 ReturnValueSlot ReturnValue) {
190 const Expr *callee = CE->getCallee()->IgnoreParens();
191
192 if (isa<BinaryOperator>(Val: callee))
193 return EmitCXXMemberPointerCallExpr(E: CE, ReturnValue);
194
195 const MemberExpr *ME = cast<MemberExpr>(Val: callee);
196 const CXXMethodDecl *MD = cast<CXXMethodDecl>(Val: ME->getMemberDecl());
197
198 if (MD->isStatic()) {
199 // The method is static, emit it as we would a regular call.
200 CGCallee callee =
201 CGCallee::forDirect(functionPtr: CGM.GetAddrOfFunction(MD), abstractInfo: GlobalDecl(MD));
202 return EmitCall(getContext().getPointerType(MD->getType()), callee, CE,
203 ReturnValue);
204 }
205
206 bool HasQualifier = ME->hasQualifier();
207 NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
208 bool IsArrow = ME->isArrow();
209 const Expr *Base = ME->getBase();
210
211 return EmitCXXMemberOrOperatorMemberCallExpr(
212 CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
213}
214
215RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
216 const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
217 bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
218 const Expr *Base) {
219 assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
220
221 // Compute the object pointer.
222 bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
223
224 const CXXMethodDecl *DevirtualizedMethod = nullptr;
225 if (CanUseVirtualCall &&
226 MD->getDevirtualizedMethod(Base, IsAppleKext: getLangOpts().AppleKext)) {
227 const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
228 DevirtualizedMethod = MD->getCorrespondingMethodInClass(RD: BestDynamicDecl);
229 assert(DevirtualizedMethod);
230 const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
231 const Expr *Inner = Base->IgnoreParenBaseCasts();
232 if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
233 MD->getReturnType().getCanonicalType())
234 // If the return types are not the same, this might be a case where more
235 // code needs to run to compensate for it. For example, the derived
236 // method might return a type that inherits form from the return
237 // type of MD and has a prefix.
238 // For now we just avoid devirtualizing these covariant cases.
239 DevirtualizedMethod = nullptr;
240 else if (getCXXRecord(E: Inner) == DevirtualizedClass)
241 // If the class of the Inner expression is where the dynamic method
242 // is defined, build the this pointer from it.
243 Base = Inner;
244 else if (getCXXRecord(E: Base) != DevirtualizedClass) {
245 // If the method is defined in a class that is not the best dynamic
246 // one or the one of the full expression, we would have to build
247 // a derived-to-base cast to compute the correct this pointer, but
248 // we don't have support for that yet, so do a virtual call.
249 DevirtualizedMethod = nullptr;
250 }
251 }
252
253 bool TrivialForCodegen =
254 MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion());
255 bool TrivialAssignment =
256 TrivialForCodegen &&
257 (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) &&
258 !MD->getParent()->mayInsertExtraPadding();
259
260 // C++17 demands that we evaluate the RHS of a (possibly-compound) assignment
261 // operator before the LHS.
262 CallArgList RtlArgStorage;
263 CallArgList *RtlArgs = nullptr;
264 LValue TrivialAssignmentRHS;
265 if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Val: CE)) {
266 if (OCE->isAssignmentOp()) {
267 if (TrivialAssignment) {
268 TrivialAssignmentRHS = EmitLValue(E: CE->getArg(Arg: 1));
269 } else {
270 RtlArgs = &RtlArgStorage;
271 EmitCallArgs(Args&: *RtlArgs, Prototype: MD->getType()->castAs<FunctionProtoType>(),
272 ArgRange: drop_begin(RangeOrContainer: CE->arguments(), N: 1), AC: CE->getDirectCallee(),
273 /*ParamsToSkip*/0, Order: EvaluationOrder::ForceRightToLeft);
274 }
275 }
276 }
277
278 LValue This;
279 if (IsArrow) {
280 LValueBaseInfo BaseInfo;
281 TBAAAccessInfo TBAAInfo;
282 Address ThisValue = EmitPointerWithAlignment(Addr: Base, BaseInfo: &BaseInfo, TBAAInfo: &TBAAInfo);
283 This = MakeAddrLValue(Addr: ThisValue, T: Base->getType()->getPointeeType(),
284 BaseInfo, TBAAInfo);
285 } else {
286 This = EmitLValue(E: Base);
287 }
288
289 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Val: MD)) {
290 // This is the MSVC p->Ctor::Ctor(...) extension. We assume that's
291 // constructing a new complete object of type Ctor.
292 assert(!RtlArgs);
293 assert(ReturnValue.isNull() && "Constructor shouldn't have return value");
294 CallArgList Args;
295 commonEmitCXXMemberOrOperatorCall(
296 CGF&: *this, GD: {Ctor, Ctor_Complete}, This: This.getPointer(CGF&: *this),
297 /*ImplicitParam=*/nullptr,
298 /*ImplicitParamTy=*/QualType(), CE, Args, RtlArgs: nullptr);
299
300 EmitCXXConstructorCall(Ctor, Ctor_Complete, /*ForVirtualBase=*/false,
301 /*Delegating=*/false, This.getAddress(CGF&: *this), Args,
302 AggValueSlot::DoesNotOverlap, CE->getExprLoc(),
303 /*NewPointerIsChecked=*/false);
304 return RValue::get(V: nullptr);
305 }
306
307 if (TrivialForCodegen) {
308 if (isa<CXXDestructorDecl>(Val: MD))
309 return RValue::get(V: nullptr);
310
311 if (TrivialAssignment) {
312 // We don't like to generate the trivial copy/move assignment operator
313 // when it isn't necessary; just produce the proper effect here.
314 // It's important that we use the result of EmitLValue here rather than
315 // emitting call arguments, in order to preserve TBAA information from
316 // the RHS.
317 LValue RHS = isa<CXXOperatorCallExpr>(Val: CE)
318 ? TrivialAssignmentRHS
319 : EmitLValue(*CE->arg_begin());
320 EmitAggregateAssign(Dest: This, Src: RHS, EltTy: CE->getType());
321 return RValue::get(V: This.getPointer(CGF&: *this));
322 }
323
324 assert(MD->getParent()->mayInsertExtraPadding() &&
325 "unknown trivial member function");
326 }
327
328 // Compute the function type we're calling.
329 const CXXMethodDecl *CalleeDecl =
330 DevirtualizedMethod ? DevirtualizedMethod : MD;
331 const CGFunctionInfo *FInfo = nullptr;
332 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(Val: CalleeDecl))
333 FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
334 GD: GlobalDecl(Dtor, Dtor_Complete));
335 else
336 FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(MD: CalleeDecl);
337
338 llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(Info: *FInfo);
339
340 // C++11 [class.mfct.non-static]p2:
341 // If a non-static member function of a class X is called for an object that
342 // is not of type X, or of a type derived from X, the behavior is undefined.
343 SourceLocation CallLoc;
344 ASTContext &C = getContext();
345 if (CE)
346 CallLoc = CE->getExprLoc();
347
348 SanitizerSet SkippedChecks;
349 if (const auto *CMCE = dyn_cast<CXXMemberCallExpr>(Val: CE)) {
350 auto *IOA = CMCE->getImplicitObjectArgument();
351 bool IsImplicitObjectCXXThis = IsWrappedCXXThis(E: IOA);
352 if (IsImplicitObjectCXXThis)
353 SkippedChecks.set(K: SanitizerKind::Alignment, Value: true);
354 if (IsImplicitObjectCXXThis || isa<DeclRefExpr>(Val: IOA))
355 SkippedChecks.set(K: SanitizerKind::Null, Value: true);
356 }
357
358 if (sanitizePerformTypeCheck())
359 EmitTypeCheck(TCK: CodeGenFunction::TCK_MemberCall, Loc: CallLoc,
360 V: This.emitRawPointer(CGF&: *this),
361 Type: C.getRecordType(CalleeDecl->getParent()),
362 /*Alignment=*/CharUnits::Zero(), SkippedChecks);
363
364 // C++ [class.virtual]p12:
365 // Explicit qualification with the scope operator (5.1) suppresses the
366 // virtual call mechanism.
367 //
368 // We also don't emit a virtual call if the base expression has a record type
369 // because then we know what the type is.
370 bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
371
372 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(Val: CalleeDecl)) {
373 assert(CE->arg_begin() == CE->arg_end() &&
374 "Destructor shouldn't have explicit parameters");
375 assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
376 if (UseVirtualCall) {
377 CGM.getCXXABI().EmitVirtualDestructorCall(CGF&: *this, Dtor, DtorType: Dtor_Complete,
378 This: This.getAddress(CGF&: *this),
379 E: cast<CXXMemberCallExpr>(Val: CE));
380 } else {
381 GlobalDecl GD(Dtor, Dtor_Complete);
382 CGCallee Callee;
383 if (getLangOpts().AppleKext && Dtor->isVirtual() && HasQualifier)
384 Callee = BuildAppleKextVirtualCall(Dtor, Qualifier, Ty);
385 else if (!DevirtualizedMethod)
386 Callee =
387 CGCallee::forDirect(functionPtr: CGM.getAddrOfCXXStructor(GD, FnInfo: FInfo, FnType: Ty), abstractInfo: GD);
388 else {
389 Callee = CGCallee::forDirect(functionPtr: CGM.GetAddrOfFunction(GD, Ty), abstractInfo: GD);
390 }
391
392 QualType ThisTy =
393 IsArrow ? Base->getType()->getPointeeType() : Base->getType();
394 EmitCXXDestructorCall(Dtor: GD, Callee, This: This.getPointer(CGF&: *this), ThisTy,
395 /*ImplicitParam=*/nullptr,
396 /*ImplicitParamTy=*/QualType(), CE);
397 }
398 return RValue::get(V: nullptr);
399 }
400
401 // FIXME: Uses of 'MD' past this point need to be audited. We may need to use
402 // 'CalleeDecl' instead.
403
404 CGCallee Callee;
405 if (UseVirtualCall) {
406 Callee = CGCallee::forVirtual(CE, MD, This.getAddress(CGF&: *this), Ty);
407 } else {
408 if (SanOpts.has(K: SanitizerKind::CFINVCall) &&
409 MD->getParent()->isDynamicClass()) {
410 llvm::Value *VTable;
411 const CXXRecordDecl *RD;
412 std::tie(args&: VTable, args&: RD) = CGM.getCXXABI().LoadVTablePtr(
413 CGF&: *this, This: This.getAddress(CGF&: *this), RD: CalleeDecl->getParent());
414 EmitVTablePtrCheckForCall(RD, VTable, TCK: CFITCK_NVCall, Loc: CE->getBeginLoc());
415 }
416
417 if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
418 Callee = BuildAppleKextVirtualCall(MD, Qual: Qualifier, Ty);
419 else if (!DevirtualizedMethod)
420 Callee =
421 CGCallee::forDirect(functionPtr: CGM.GetAddrOfFunction(MD, Ty), abstractInfo: GlobalDecl(MD));
422 else {
423 Callee =
424 CGCallee::forDirect(functionPtr: CGM.GetAddrOfFunction(DevirtualizedMethod, Ty),
425 abstractInfo: GlobalDecl(DevirtualizedMethod));
426 }
427 }
428
429 if (MD->isVirtual()) {
430 Address NewThisAddr =
431 CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
432 *this, CalleeDecl, This.getAddress(CGF&: *this), UseVirtualCall);
433 This.setAddress(NewThisAddr);
434 }
435
436 return EmitCXXMemberOrOperatorCall(
437 MD: CalleeDecl, Callee, ReturnValue, This: This.getPointer(CGF&: *this),
438 /*ImplicitParam=*/nullptr, ImplicitParamTy: QualType(), CE, RtlArgs);
439}
440
441RValue
442CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
443 ReturnValueSlot ReturnValue) {
444 const BinaryOperator *BO =
445 cast<BinaryOperator>(E->getCallee()->IgnoreParens());
446 const Expr *BaseExpr = BO->getLHS();
447 const Expr *MemFnExpr = BO->getRHS();
448
449 const auto *MPT = MemFnExpr->getType()->castAs<MemberPointerType>();
450 const auto *FPT = MPT->getPointeeType()->castAs<FunctionProtoType>();
451 const auto *RD =
452 cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl());
453
454 // Emit the 'this' pointer.
455 Address This = Address::invalid();
456 if (BO->getOpcode() == BO_PtrMemI)
457 This = EmitPointerWithAlignment(Addr: BaseExpr, BaseInfo: nullptr, TBAAInfo: nullptr, IsKnownNonNull: KnownNonNull);
458 else
459 This = EmitLValue(E: BaseExpr, IsKnownNonNull: KnownNonNull).getAddress(CGF&: *this);
460
461 EmitTypeCheck(TCK: TCK_MemberCall, Loc: E->getExprLoc(), V: This.emitRawPointer(CGF&: *this),
462 Type: QualType(MPT->getClass(), 0));
463
464 // Get the member function pointer.
465 llvm::Value *MemFnPtr = EmitScalarExpr(E: MemFnExpr);
466
467 // Ask the ABI to load the callee. Note that This is modified.
468 llvm::Value *ThisPtrForCall = nullptr;
469 CGCallee Callee =
470 CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(CGF&: *this, E: BO, This,
471 ThisPtrForCall, MemPtr: MemFnPtr, MPT: MPT);
472
473 CallArgList Args;
474
475 QualType ThisType =
476 getContext().getPointerType(getContext().getTagDeclType(Decl: RD));
477
478 // Push the this ptr.
479 Args.add(rvalue: RValue::get(V: ThisPtrForCall), type: ThisType);
480
481 RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
482
483 // And the rest of the call args
484 EmitCallArgs(Args, Prototype: FPT, ArgRange: E->arguments());
485 return EmitCall(CGM.getTypes().arrangeCXXMethodCall(args: Args, type: FPT, required,
486 /*PrefixSize=*/numPrefixArgs: 0),
487 Callee, ReturnValue, Args, nullptr, E == MustTailCall,
488 E->getExprLoc());
489}
490
491RValue
492CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
493 const CXXMethodDecl *MD,
494 ReturnValueSlot ReturnValue) {
495 assert(MD->isImplicitObjectMemberFunction() &&
496 "Trying to emit a member call expr on a static method!");
497 return EmitCXXMemberOrOperatorMemberCallExpr(
498 CE: E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
499 /*IsArrow=*/false, Base: E->getArg(0));
500}
501
502RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
503 ReturnValueSlot ReturnValue) {
504 return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(CGF&: *this, E, ReturnValue);
505}
506
507static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
508 Address DestPtr,
509 const CXXRecordDecl *Base) {
510 if (Base->isEmpty())
511 return;
512
513 DestPtr = DestPtr.withElementType(ElemTy: CGF.Int8Ty);
514
515 const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
516 CharUnits NVSize = Layout.getNonVirtualSize();
517
518 // We cannot simply zero-initialize the entire base sub-object if vbptrs are
519 // present, they are initialized by the most derived class before calling the
520 // constructor.
521 SmallVector<std::pair<CharUnits, CharUnits>, 1> Stores;
522 Stores.emplace_back(Args: CharUnits::Zero(), Args&: NVSize);
523
524 // Each store is split by the existence of a vbptr.
525 CharUnits VBPtrWidth = CGF.getPointerSize();
526 std::vector<CharUnits> VBPtrOffsets =
527 CGF.CGM.getCXXABI().getVBPtrOffsets(RD: Base);
528 for (CharUnits VBPtrOffset : VBPtrOffsets) {
529 // Stop before we hit any virtual base pointers located in virtual bases.
530 if (VBPtrOffset >= NVSize)
531 break;
532 std::pair<CharUnits, CharUnits> LastStore = Stores.pop_back_val();
533 CharUnits LastStoreOffset = LastStore.first;
534 CharUnits LastStoreSize = LastStore.second;
535
536 CharUnits SplitBeforeOffset = LastStoreOffset;
537 CharUnits SplitBeforeSize = VBPtrOffset - SplitBeforeOffset;
538 assert(!SplitBeforeSize.isNegative() && "negative store size!");
539 if (!SplitBeforeSize.isZero())
540 Stores.emplace_back(Args&: SplitBeforeOffset, Args&: SplitBeforeSize);
541
542 CharUnits SplitAfterOffset = VBPtrOffset + VBPtrWidth;
543 CharUnits SplitAfterSize = LastStoreSize - SplitAfterOffset;
544 assert(!SplitAfterSize.isNegative() && "negative store size!");
545 if (!SplitAfterSize.isZero())
546 Stores.emplace_back(Args&: SplitAfterOffset, Args&: SplitAfterSize);
547 }
548
549 // If the type contains a pointer to data member we can't memset it to zero.
550 // Instead, create a null constant and copy it to the destination.
551 // TODO: there are other patterns besides zero that we can usefully memset,
552 // like -1, which happens to be the pattern used by member-pointers.
553 // TODO: isZeroInitializable can be over-conservative in the case where a
554 // virtual base contains a member pointer.
555 llvm::Constant *NullConstantForBase = CGF.CGM.EmitNullConstantForBase(Record: Base);
556 if (!NullConstantForBase->isNullValue()) {
557 llvm::GlobalVariable *NullVariable = new llvm::GlobalVariable(
558 CGF.CGM.getModule(), NullConstantForBase->getType(),
559 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage,
560 NullConstantForBase, Twine());
561
562 CharUnits Align =
563 std::max(a: Layout.getNonVirtualAlignment(), b: DestPtr.getAlignment());
564 NullVariable->setAlignment(Align.getAsAlign());
565
566 Address SrcPtr(NullVariable, CGF.Int8Ty, Align);
567
568 // Get and call the appropriate llvm.memcpy overload.
569 for (std::pair<CharUnits, CharUnits> Store : Stores) {
570 CharUnits StoreOffset = Store.first;
571 CharUnits StoreSize = Store.second;
572 llvm::Value *StoreSizeVal = CGF.CGM.getSize(numChars: StoreSize);
573 CGF.Builder.CreateMemCpy(
574 Dest: CGF.Builder.CreateConstInBoundsByteGEP(Addr: DestPtr, Offset: StoreOffset),
575 Src: CGF.Builder.CreateConstInBoundsByteGEP(Addr: SrcPtr, Offset: StoreOffset),
576 Size: StoreSizeVal);
577 }
578
579 // Otherwise, just memset the whole thing to zero. This is legal
580 // because in LLVM, all default initializers (other than the ones we just
581 // handled above) are guaranteed to have a bit pattern of all zeros.
582 } else {
583 for (std::pair<CharUnits, CharUnits> Store : Stores) {
584 CharUnits StoreOffset = Store.first;
585 CharUnits StoreSize = Store.second;
586 llvm::Value *StoreSizeVal = CGF.CGM.getSize(numChars: StoreSize);
587 CGF.Builder.CreateMemSet(
588 Dest: CGF.Builder.CreateConstInBoundsByteGEP(Addr: DestPtr, Offset: StoreOffset),
589 Value: CGF.Builder.getInt8(C: 0), Size: StoreSizeVal);
590 }
591 }
592}
593
594void
595CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
596 AggValueSlot Dest) {
597 assert(!Dest.isIgnored() && "Must have a destination!");
598 const CXXConstructorDecl *CD = E->getConstructor();
599
600 // If we require zero initialization before (or instead of) calling the
601 // constructor, as can be the case with a non-user-provided default
602 // constructor, emit the zero initialization now, unless destination is
603 // already zeroed.
604 if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
605 switch (E->getConstructionKind()) {
606 case CXXConstructionKind::Delegating:
607 case CXXConstructionKind::Complete:
608 EmitNullInitialization(DestPtr: Dest.getAddress(), Ty: E->getType());
609 break;
610 case CXXConstructionKind::VirtualBase:
611 case CXXConstructionKind::NonVirtualBase:
612 EmitNullBaseClassInitialization(*this, Dest.getAddress(),
613 CD->getParent());
614 break;
615 }
616 }
617
618 // If this is a call to a trivial default constructor, do nothing.
619 if (CD->isTrivial() && CD->isDefaultConstructor())
620 return;
621
622 // Elide the constructor if we're constructing from a temporary.
623 if (getLangOpts().ElideConstructors && E->isElidable()) {
624 // FIXME: This only handles the simplest case, where the source object
625 // is passed directly as the first argument to the constructor.
626 // This should also handle stepping though implicit casts and
627 // conversion sequences which involve two steps, with a
628 // conversion operator followed by a converting constructor.
629 const Expr *SrcObj = E->getArg(Arg: 0);
630 assert(SrcObj->isTemporaryObject(getContext(), CD->getParent()));
631 assert(
632 getContext().hasSameUnqualifiedType(E->getType(), SrcObj->getType()));
633 EmitAggExpr(E: SrcObj, AS: Dest);
634 return;
635 }
636
637 if (const ArrayType *arrayType
638 = getContext().getAsArrayType(T: E->getType())) {
639 EmitCXXAggrConstructorCall(D: CD, ArrayTy: arrayType, ArrayPtr: Dest.getAddress(), E,
640 NewPointerIsChecked: Dest.isSanitizerChecked());
641 } else {
642 CXXCtorType Type = Ctor_Complete;
643 bool ForVirtualBase = false;
644 bool Delegating = false;
645
646 switch (E->getConstructionKind()) {
647 case CXXConstructionKind::Delegating:
648 // We should be emitting a constructor; GlobalDecl will assert this
649 Type = CurGD.getCtorType();
650 Delegating = true;
651 break;
652
653 case CXXConstructionKind::Complete:
654 Type = Ctor_Complete;
655 break;
656
657 case CXXConstructionKind::VirtualBase:
658 ForVirtualBase = true;
659 [[fallthrough]];
660
661 case CXXConstructionKind::NonVirtualBase:
662 Type = Ctor_Base;
663 }
664
665 // Call the constructor.
666 EmitCXXConstructorCall(D: CD, Type, ForVirtualBase, Delegating, ThisAVS: Dest, E);
667 }
668}
669
670void CodeGenFunction::EmitSynthesizedCXXCopyCtor(Address Dest, Address Src,
671 const Expr *Exp) {
672 if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Val: Exp))
673 Exp = E->getSubExpr();
674 assert(isa<CXXConstructExpr>(Exp) &&
675 "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
676 const CXXConstructExpr* E = cast<CXXConstructExpr>(Val: Exp);
677 const CXXConstructorDecl *CD = E->getConstructor();
678 RunCleanupsScope Scope(*this);
679
680 // If we require zero initialization before (or instead of) calling the
681 // constructor, as can be the case with a non-user-provided default
682 // constructor, emit the zero initialization now.
683 // FIXME. Do I still need this for a copy ctor synthesis?
684 if (E->requiresZeroInitialization())
685 EmitNullInitialization(DestPtr: Dest, Ty: E->getType());
686
687 assert(!getContext().getAsConstantArrayType(E->getType())
688 && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
689 EmitSynthesizedCXXCopyCtorCall(D: CD, This: Dest, Src, E);
690}
691
692static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
693 const CXXNewExpr *E) {
694 if (!E->isArray())
695 return CharUnits::Zero();
696
697 // No cookie is required if the operator new[] being used is the
698 // reserved placement operator new[].
699 if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
700 return CharUnits::Zero();
701
702 return CGF.CGM.getCXXABI().GetArrayCookieSize(expr: E);
703}
704
705static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
706 const CXXNewExpr *e,
707 unsigned minElements,
708 llvm::Value *&numElements,
709 llvm::Value *&sizeWithoutCookie) {
710 QualType type = e->getAllocatedType();
711
712 if (!e->isArray()) {
713 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(T: type);
714 sizeWithoutCookie
715 = llvm::ConstantInt::get(Ty: CGF.SizeTy, V: typeSize.getQuantity());
716 return sizeWithoutCookie;
717 }
718
719 // The width of size_t.
720 unsigned sizeWidth = CGF.SizeTy->getBitWidth();
721
722 // Figure out the cookie size.
723 llvm::APInt cookieSize(sizeWidth,
724 CalculateCookiePadding(CGF, E: e).getQuantity());
725
726 // Emit the array size expression.
727 // We multiply the size of all dimensions for NumElements.
728 // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
729 numElements =
730 ConstantEmitter(CGF).tryEmitAbstract(*e->getArraySize(), e->getType());
731 if (!numElements)
732 numElements = CGF.EmitScalarExpr(E: *e->getArraySize());
733 assert(isa<llvm::IntegerType>(numElements->getType()));
734
735 // The number of elements can be have an arbitrary integer type;
736 // essentially, we need to multiply it by a constant factor, add a
737 // cookie size, and verify that the result is representable as a
738 // size_t. That's just a gloss, though, and it's wrong in one
739 // important way: if the count is negative, it's an error even if
740 // the cookie size would bring the total size >= 0.
741 bool isSigned
742 = (*e->getArraySize())->getType()->isSignedIntegerOrEnumerationType();
743 llvm::IntegerType *numElementsType
744 = cast<llvm::IntegerType>(Val: numElements->getType());
745 unsigned numElementsWidth = numElementsType->getBitWidth();
746
747 // Compute the constant factor.
748 llvm::APInt arraySizeMultiplier(sizeWidth, 1);
749 while (const ConstantArrayType *CAT
750 = CGF.getContext().getAsConstantArrayType(T: type)) {
751 type = CAT->getElementType();
752 arraySizeMultiplier *= CAT->getSize();
753 }
754
755 CharUnits typeSize = CGF.getContext().getTypeSizeInChars(T: type);
756 llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
757 typeSizeMultiplier *= arraySizeMultiplier;
758
759 // This will be a size_t.
760 llvm::Value *size;
761
762 // If someone is doing 'new int[42]' there is no need to do a dynamic check.
763 // Don't bloat the -O0 code.
764 if (llvm::ConstantInt *numElementsC =
765 dyn_cast<llvm::ConstantInt>(Val: numElements)) {
766 const llvm::APInt &count = numElementsC->getValue();
767
768 bool hasAnyOverflow = false;
769
770 // If 'count' was a negative number, it's an overflow.
771 if (isSigned && count.isNegative())
772 hasAnyOverflow = true;
773
774 // We want to do all this arithmetic in size_t. If numElements is
775 // wider than that, check whether it's already too big, and if so,
776 // overflow.
777 else if (numElementsWidth > sizeWidth &&
778 numElementsWidth - sizeWidth > count.countl_zero())
779 hasAnyOverflow = true;
780
781 // Okay, compute a count at the right width.
782 llvm::APInt adjustedCount = count.zextOrTrunc(width: sizeWidth);
783
784 // If there is a brace-initializer, we cannot allocate fewer elements than
785 // there are initializers. If we do, that's treated like an overflow.
786 if (adjustedCount.ult(RHS: minElements))
787 hasAnyOverflow = true;
788
789 // Scale numElements by that. This might overflow, but we don't
790 // care because it only overflows if allocationSize does, too, and
791 // if that overflows then we shouldn't use this.
792 numElements = llvm::ConstantInt::get(Ty: CGF.SizeTy,
793 V: adjustedCount * arraySizeMultiplier);
794
795 // Compute the size before cookie, and track whether it overflowed.
796 bool overflow;
797 llvm::APInt allocationSize
798 = adjustedCount.umul_ov(RHS: typeSizeMultiplier, Overflow&: overflow);
799 hasAnyOverflow |= overflow;
800
801 // Add in the cookie, and check whether it's overflowed.
802 if (cookieSize != 0) {
803 // Save the current size without a cookie. This shouldn't be
804 // used if there was overflow.
805 sizeWithoutCookie = llvm::ConstantInt::get(Ty: CGF.SizeTy, V: allocationSize);
806
807 allocationSize = allocationSize.uadd_ov(RHS: cookieSize, Overflow&: overflow);
808 hasAnyOverflow |= overflow;
809 }
810
811 // On overflow, produce a -1 so operator new will fail.
812 if (hasAnyOverflow) {
813 size = llvm::Constant::getAllOnesValue(Ty: CGF.SizeTy);
814 } else {
815 size = llvm::ConstantInt::get(Ty: CGF.SizeTy, V: allocationSize);
816 }
817
818 // Otherwise, we might need to use the overflow intrinsics.
819 } else {
820 // There are up to five conditions we need to test for:
821 // 1) if isSigned, we need to check whether numElements is negative;
822 // 2) if numElementsWidth > sizeWidth, we need to check whether
823 // numElements is larger than something representable in size_t;
824 // 3) if minElements > 0, we need to check whether numElements is smaller
825 // than that.
826 // 4) we need to compute
827 // sizeWithoutCookie := numElements * typeSizeMultiplier
828 // and check whether it overflows; and
829 // 5) if we need a cookie, we need to compute
830 // size := sizeWithoutCookie + cookieSize
831 // and check whether it overflows.
832
833 llvm::Value *hasOverflow = nullptr;
834
835 // If numElementsWidth > sizeWidth, then one way or another, we're
836 // going to have to do a comparison for (2), and this happens to
837 // take care of (1), too.
838 if (numElementsWidth > sizeWidth) {
839 llvm::APInt threshold =
840 llvm::APInt::getOneBitSet(numBits: numElementsWidth, BitNo: sizeWidth);
841
842 llvm::Value *thresholdV
843 = llvm::ConstantInt::get(Ty: numElementsType, V: threshold);
844
845 hasOverflow = CGF.Builder.CreateICmpUGE(LHS: numElements, RHS: thresholdV);
846 numElements = CGF.Builder.CreateTrunc(V: numElements, DestTy: CGF.SizeTy);
847
848 // Otherwise, if we're signed, we want to sext up to size_t.
849 } else if (isSigned) {
850 if (numElementsWidth < sizeWidth)
851 numElements = CGF.Builder.CreateSExt(V: numElements, DestTy: CGF.SizeTy);
852
853 // If there's a non-1 type size multiplier, then we can do the
854 // signedness check at the same time as we do the multiply
855 // because a negative number times anything will cause an
856 // unsigned overflow. Otherwise, we have to do it here. But at least
857 // in this case, we can subsume the >= minElements check.
858 if (typeSizeMultiplier == 1)
859 hasOverflow = CGF.Builder.CreateICmpSLT(LHS: numElements,
860 RHS: llvm::ConstantInt::get(Ty: CGF.SizeTy, V: minElements));
861
862 // Otherwise, zext up to size_t if necessary.
863 } else if (numElementsWidth < sizeWidth) {
864 numElements = CGF.Builder.CreateZExt(V: numElements, DestTy: CGF.SizeTy);
865 }
866
867 assert(numElements->getType() == CGF.SizeTy);
868
869 if (minElements) {
870 // Don't allow allocation of fewer elements than we have initializers.
871 if (!hasOverflow) {
872 hasOverflow = CGF.Builder.CreateICmpULT(LHS: numElements,
873 RHS: llvm::ConstantInt::get(Ty: CGF.SizeTy, V: minElements));
874 } else if (numElementsWidth > sizeWidth) {
875 // The other existing overflow subsumes this check.
876 // We do an unsigned comparison, since any signed value < -1 is
877 // taken care of either above or below.
878 hasOverflow = CGF.Builder.CreateOr(LHS: hasOverflow,
879 RHS: CGF.Builder.CreateICmpULT(LHS: numElements,
880 RHS: llvm::ConstantInt::get(Ty: CGF.SizeTy, V: minElements)));
881 }
882 }
883
884 size = numElements;
885
886 // Multiply by the type size if necessary. This multiplier
887 // includes all the factors for nested arrays.
888 //
889 // This step also causes numElements to be scaled up by the
890 // nested-array factor if necessary. Overflow on this computation
891 // can be ignored because the result shouldn't be used if
892 // allocation fails.
893 if (typeSizeMultiplier != 1) {
894 llvm::Function *umul_with_overflow
895 = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
896
897 llvm::Value *tsmV =
898 llvm::ConstantInt::get(Ty: CGF.SizeTy, V: typeSizeMultiplier);
899 llvm::Value *result =
900 CGF.Builder.CreateCall(Callee: umul_with_overflow, Args: {size, tsmV});
901
902 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(Agg: result, Idxs: 1);
903 if (hasOverflow)
904 hasOverflow = CGF.Builder.CreateOr(LHS: hasOverflow, RHS: overflowed);
905 else
906 hasOverflow = overflowed;
907
908 size = CGF.Builder.CreateExtractValue(Agg: result, Idxs: 0);
909
910 // Also scale up numElements by the array size multiplier.
911 if (arraySizeMultiplier != 1) {
912 // If the base element type size is 1, then we can re-use the
913 // multiply we just did.
914 if (typeSize.isOne()) {
915 assert(arraySizeMultiplier == typeSizeMultiplier);
916 numElements = size;
917
918 // Otherwise we need a separate multiply.
919 } else {
920 llvm::Value *asmV =
921 llvm::ConstantInt::get(Ty: CGF.SizeTy, V: arraySizeMultiplier);
922 numElements = CGF.Builder.CreateMul(LHS: numElements, RHS: asmV);
923 }
924 }
925 } else {
926 // numElements doesn't need to be scaled.
927 assert(arraySizeMultiplier == 1);
928 }
929
930 // Add in the cookie size if necessary.
931 if (cookieSize != 0) {
932 sizeWithoutCookie = size;
933
934 llvm::Function *uadd_with_overflow
935 = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
936
937 llvm::Value *cookieSizeV = llvm::ConstantInt::get(Ty: CGF.SizeTy, V: cookieSize);
938 llvm::Value *result =
939 CGF.Builder.CreateCall(Callee: uadd_with_overflow, Args: {size, cookieSizeV});
940
941 llvm::Value *overflowed = CGF.Builder.CreateExtractValue(Agg: result, Idxs: 1);
942 if (hasOverflow)
943 hasOverflow = CGF.Builder.CreateOr(LHS: hasOverflow, RHS: overflowed);
944 else
945 hasOverflow = overflowed;
946
947 size = CGF.Builder.CreateExtractValue(Agg: result, Idxs: 0);
948 }
949
950 // If we had any possibility of dynamic overflow, make a select to
951 // overwrite 'size' with an all-ones value, which should cause
952 // operator new to throw.
953 if (hasOverflow)
954 size = CGF.Builder.CreateSelect(C: hasOverflow,
955 True: llvm::Constant::getAllOnesValue(Ty: CGF.SizeTy),
956 False: size);
957 }
958
959 if (cookieSize == 0)
960 sizeWithoutCookie = size;
961 else
962 assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
963
964 return size;
965}
966
967static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
968 QualType AllocType, Address NewPtr,
969 AggValueSlot::Overlap_t MayOverlap) {
970 // FIXME: Refactor with EmitExprAsInit.
971 switch (CGF.getEvaluationKind(T: AllocType)) {
972 case TEK_Scalar:
973 CGF.EmitScalarInit(init: Init, D: nullptr,
974 lvalue: CGF.MakeAddrLValue(Addr: NewPtr, T: AllocType), capturedByInit: false);
975 return;
976 case TEK_Complex:
977 CGF.EmitComplexExprIntoLValue(E: Init, dest: CGF.MakeAddrLValue(Addr: NewPtr, T: AllocType),
978 /*isInit*/ true);
979 return;
980 case TEK_Aggregate: {
981 AggValueSlot Slot
982 = AggValueSlot::forAddr(addr: NewPtr, quals: AllocType.getQualifiers(),
983 isDestructed: AggValueSlot::IsDestructed,
984 needsGC: AggValueSlot::DoesNotNeedGCBarriers,
985 isAliased: AggValueSlot::IsNotAliased,
986 mayOverlap: MayOverlap, isZeroed: AggValueSlot::IsNotZeroed,
987 isChecked: AggValueSlot::IsSanitizerChecked);
988 CGF.EmitAggExpr(E: Init, AS: Slot);
989 return;
990 }
991 }
992 llvm_unreachable("bad evaluation kind");
993}
994
995void CodeGenFunction::EmitNewArrayInitializer(
996 const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
997 Address BeginPtr, llvm::Value *NumElements,
998 llvm::Value *AllocSizeWithoutCookie) {
999 // If we have a type with trivial initialization and no initializer,
1000 // there's nothing to do.
1001 if (!E->hasInitializer())
1002 return;
1003
1004 Address CurPtr = BeginPtr;
1005
1006 unsigned InitListElements = 0;
1007
1008 const Expr *Init = E->getInitializer();
1009 Address EndOfInit = Address::invalid();
1010 QualType::DestructionKind DtorKind = ElementType.isDestructedType();
1011 EHScopeStack::stable_iterator Cleanup;
1012 llvm::Instruction *CleanupDominator = nullptr;
1013
1014 CharUnits ElementSize = getContext().getTypeSizeInChars(T: ElementType);
1015 CharUnits ElementAlign =
1016 BeginPtr.getAlignment().alignmentOfArrayElement(elementSize: ElementSize);
1017
1018 // Attempt to perform zero-initialization using memset.
1019 auto TryMemsetInitialization = [&]() -> bool {
1020 // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
1021 // we can initialize with a memset to -1.
1022 if (!CGM.getTypes().isZeroInitializable(T: ElementType))
1023 return false;
1024
1025 // Optimization: since zero initialization will just set the memory
1026 // to all zeroes, generate a single memset to do it in one shot.
1027
1028 // Subtract out the size of any elements we've already initialized.
1029 auto *RemainingSize = AllocSizeWithoutCookie;
1030 if (InitListElements) {
1031 // We know this can't overflow; we check this when doing the allocation.
1032 auto *InitializedSize = llvm::ConstantInt::get(
1033 Ty: RemainingSize->getType(),
1034 V: getContext().getTypeSizeInChars(T: ElementType).getQuantity() *
1035 InitListElements);
1036 RemainingSize = Builder.CreateSub(LHS: RemainingSize, RHS: InitializedSize);
1037 }
1038
1039 // Create the memset.
1040 Builder.CreateMemSet(Dest: CurPtr, Value: Builder.getInt8(C: 0), Size: RemainingSize, IsVolatile: false);
1041 return true;
1042 };
1043
1044 const InitListExpr *ILE = dyn_cast<InitListExpr>(Val: Init);
1045 const CXXParenListInitExpr *CPLIE = nullptr;
1046 const StringLiteral *SL = nullptr;
1047 const ObjCEncodeExpr *OCEE = nullptr;
1048 const Expr *IgnoreParen = nullptr;
1049 if (!ILE) {
1050 IgnoreParen = Init->IgnoreParenImpCasts();
1051 CPLIE = dyn_cast<CXXParenListInitExpr>(Val: IgnoreParen);
1052 SL = dyn_cast<StringLiteral>(Val: IgnoreParen);
1053 OCEE = dyn_cast<ObjCEncodeExpr>(Val: IgnoreParen);
1054 }
1055
1056 // If the initializer is an initializer list, first do the explicit elements.
1057 if (ILE || CPLIE || SL || OCEE) {
1058 // Initializing from a (braced) string literal is a special case; the init
1059 // list element does not initialize a (single) array element.
1060 if ((ILE && ILE->isStringLiteralInit()) || SL || OCEE) {
1061 if (!ILE)
1062 Init = IgnoreParen;
1063 // Initialize the initial portion of length equal to that of the string
1064 // literal. The allocation must be for at least this much; we emitted a
1065 // check for that earlier.
1066 AggValueSlot Slot =
1067 AggValueSlot::forAddr(addr: CurPtr, quals: ElementType.getQualifiers(),
1068 isDestructed: AggValueSlot::IsDestructed,
1069 needsGC: AggValueSlot::DoesNotNeedGCBarriers,
1070 isAliased: AggValueSlot::IsNotAliased,
1071 mayOverlap: AggValueSlot::DoesNotOverlap,
1072 isZeroed: AggValueSlot::IsNotZeroed,
1073 isChecked: AggValueSlot::IsSanitizerChecked);
1074 EmitAggExpr(E: ILE ? ILE->getInit(Init: 0) : Init, AS: Slot);
1075
1076 // Move past these elements.
1077 InitListElements =
1078 cast<ConstantArrayType>(Init->getType()->getAsArrayTypeUnsafe())
1079 ->getZExtSize();
1080 CurPtr = Builder.CreateConstInBoundsGEP(
1081 Addr: CurPtr, Index: InitListElements, Name: "string.init.end");
1082
1083 // Zero out the rest, if any remain.
1084 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(Val: NumElements);
1085 if (!ConstNum || !ConstNum->equalsInt(V: InitListElements)) {
1086 bool OK = TryMemsetInitialization();
1087 (void)OK;
1088 assert(OK && "couldn't memset character type?");
1089 }
1090 return;
1091 }
1092
1093 ArrayRef<const Expr *> InitExprs =
1094 ILE ? ILE->inits() : CPLIE->getInitExprs();
1095 InitListElements = InitExprs.size();
1096
1097 // If this is a multi-dimensional array new, we will initialize multiple
1098 // elements with each init list element.
1099 QualType AllocType = E->getAllocatedType();
1100 if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
1101 AllocType->getAsArrayTypeUnsafe())) {
1102 ElementTy = ConvertTypeForMem(T: AllocType);
1103 CurPtr = CurPtr.withElementType(ElemTy: ElementTy);
1104 InitListElements *= getContext().getConstantArrayElementCount(CA: CAT);
1105 }
1106
1107 // Enter a partial-destruction Cleanup if necessary.
1108 if (needsEHCleanup(kind: DtorKind)) {
1109 // In principle we could tell the Cleanup where we are more
1110 // directly, but the control flow can get so varied here that it
1111 // would actually be quite complex. Therefore we go through an
1112 // alloca.
1113 EndOfInit = CreateTempAlloca(BeginPtr.getType(), getPointerAlign(),
1114 "array.init.end");
1115 CleanupDominator =
1116 Builder.CreateStore(Val: BeginPtr.emitRawPointer(CGF&: *this), Addr: EndOfInit);
1117 pushIrregularPartialArrayCleanup(arrayBegin: BeginPtr.emitRawPointer(CGF&: *this),
1118 arrayEndPointer: EndOfInit, elementType: ElementType, elementAlignment: ElementAlign,
1119 destroyer: getDestroyer(destructionKind: DtorKind));
1120 Cleanup = EHStack.stable_begin();
1121 }
1122
1123 CharUnits StartAlign = CurPtr.getAlignment();
1124 unsigned i = 0;
1125 for (const Expr *IE : InitExprs) {
1126 // Tell the cleanup that it needs to destroy up to this
1127 // element. TODO: some of these stores can be trivially
1128 // observed to be unnecessary.
1129 if (EndOfInit.isValid()) {
1130 Builder.CreateStore(Val: CurPtr.emitRawPointer(CGF&: *this), Addr: EndOfInit);
1131 }
1132 // FIXME: If the last initializer is an incomplete initializer list for
1133 // an array, and we have an array filler, we can fold together the two
1134 // initialization loops.
1135 StoreAnyExprIntoOneUnit(CGF&: *this, Init: IE, AllocType: IE->getType(), NewPtr: CurPtr,
1136 MayOverlap: AggValueSlot::DoesNotOverlap);
1137 CurPtr = Address(Builder.CreateInBoundsGEP(Ty: CurPtr.getElementType(),
1138 Ptr: CurPtr.emitRawPointer(CGF&: *this),
1139 IdxList: Builder.getSize(N: 1),
1140 Name: "array.exp.next"),
1141 CurPtr.getElementType(),
1142 StartAlign.alignmentAtOffset(offset: (++i) * ElementSize));
1143 }
1144
1145 // The remaining elements are filled with the array filler expression.
1146 Init = ILE ? ILE->getArrayFiller() : CPLIE->getArrayFiller();
1147
1148 // Extract the initializer for the individual array elements by pulling
1149 // out the array filler from all the nested initializer lists. This avoids
1150 // generating a nested loop for the initialization.
1151 while (Init && Init->getType()->isConstantArrayType()) {
1152 auto *SubILE = dyn_cast<InitListExpr>(Val: Init);
1153 if (!SubILE)
1154 break;
1155 assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
1156 Init = SubILE->getArrayFiller();
1157 }
1158
1159 // Switch back to initializing one base element at a time.
1160 CurPtr = CurPtr.withElementType(ElemTy: BeginPtr.getElementType());
1161 }
1162
1163 // If all elements have already been initialized, skip any further
1164 // initialization.
1165 llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(Val: NumElements);
1166 if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
1167 // If there was a Cleanup, deactivate it.
1168 if (CleanupDominator)
1169 DeactivateCleanupBlock(Cleanup, DominatingIP: CleanupDominator);
1170 return;
1171 }
1172
1173 assert(Init && "have trailing elements to initialize but no initializer");
1174
1175 // If this is a constructor call, try to optimize it out, and failing that
1176 // emit a single loop to initialize all remaining elements.
1177 if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Val: Init)) {
1178 CXXConstructorDecl *Ctor = CCE->getConstructor();
1179 if (Ctor->isTrivial()) {
1180 // If new expression did not specify value-initialization, then there
1181 // is no initialization.
1182 if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
1183 return;
1184
1185 if (TryMemsetInitialization())
1186 return;
1187 }
1188
1189 // Store the new Cleanup position for irregular Cleanups.
1190 //
1191 // FIXME: Share this cleanup with the constructor call emission rather than
1192 // having it create a cleanup of its own.
1193 if (EndOfInit.isValid())
1194 Builder.CreateStore(Val: CurPtr.emitRawPointer(CGF&: *this), Addr: EndOfInit);
1195
1196 // Emit a constructor call loop to initialize the remaining elements.
1197 if (InitListElements)
1198 NumElements = Builder.CreateSub(
1199 LHS: NumElements,
1200 RHS: llvm::ConstantInt::get(Ty: NumElements->getType(), V: InitListElements));
1201 EmitCXXAggrConstructorCall(D: Ctor, NumElements, ArrayPtr: CurPtr, E: CCE,
1202 /*NewPointerIsChecked*/true,
1203 ZeroInitialization: CCE->requiresZeroInitialization());
1204 return;
1205 }
1206
1207 // If this is value-initialization, we can usually use memset.
1208 ImplicitValueInitExpr IVIE(ElementType);
1209 if (isa<ImplicitValueInitExpr>(Val: Init)) {
1210 if (TryMemsetInitialization())
1211 return;
1212
1213 // Switch to an ImplicitValueInitExpr for the element type. This handles
1214 // only one case: multidimensional array new of pointers to members. In
1215 // all other cases, we already have an initializer for the array element.
1216 Init = &IVIE;
1217 }
1218
1219 // At this point we should have found an initializer for the individual
1220 // elements of the array.
1221 assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
1222 "got wrong type of element to initialize");
1223
1224 // If we have an empty initializer list, we can usually use memset.
1225 if (auto *ILE = dyn_cast<InitListExpr>(Val: Init))
1226 if (ILE->getNumInits() == 0 && TryMemsetInitialization())
1227 return;
1228
1229 // If we have a struct whose every field is value-initialized, we can
1230 // usually use memset.
1231 if (auto *ILE = dyn_cast<InitListExpr>(Val: Init)) {
1232 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
1233 if (RType->getDecl()->isStruct()) {
1234 unsigned NumElements = 0;
1235 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RType->getDecl()))
1236 NumElements = CXXRD->getNumBases();
1237 for (auto *Field : RType->getDecl()->fields())
1238 if (!Field->isUnnamedBitField())
1239 ++NumElements;
1240 // FIXME: Recurse into nested InitListExprs.
1241 if (ILE->getNumInits() == NumElements)
1242 for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1243 if (!isa<ImplicitValueInitExpr>(Val: ILE->getInit(Init: i)))
1244 --NumElements;
1245 if (ILE->getNumInits() == NumElements && TryMemsetInitialization())
1246 return;
1247 }
1248 }
1249 }
1250
1251 // Create the loop blocks.
1252 llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
1253 llvm::BasicBlock *LoopBB = createBasicBlock(name: "new.loop");
1254 llvm::BasicBlock *ContBB = createBasicBlock(name: "new.loop.end");
1255
1256 // Find the end of the array, hoisted out of the loop.
1257 llvm::Value *EndPtr = Builder.CreateInBoundsGEP(
1258 Ty: BeginPtr.getElementType(), Ptr: BeginPtr.emitRawPointer(CGF&: *this), IdxList: NumElements,
1259 Name: "array.end");
1260
1261 // If the number of elements isn't constant, we have to now check if there is
1262 // anything left to initialize.
1263 if (!ConstNum) {
1264 llvm::Value *IsEmpty = Builder.CreateICmpEQ(LHS: CurPtr.emitRawPointer(CGF&: *this),
1265 RHS: EndPtr, Name: "array.isempty");
1266 Builder.CreateCondBr(Cond: IsEmpty, True: ContBB, False: LoopBB);
1267 }
1268
1269 // Enter the loop.
1270 EmitBlock(BB: LoopBB);
1271
1272 // Set up the current-element phi.
1273 llvm::PHINode *CurPtrPhi =
1274 Builder.CreatePHI(Ty: CurPtr.getType(), NumReservedValues: 2, Name: "array.cur");
1275 CurPtrPhi->addIncoming(V: CurPtr.emitRawPointer(CGF&: *this), BB: EntryBB);
1276
1277 CurPtr = Address(CurPtrPhi, CurPtr.getElementType(), ElementAlign);
1278
1279 // Store the new Cleanup position for irregular Cleanups.
1280 if (EndOfInit.isValid())
1281 Builder.CreateStore(Val: CurPtr.emitRawPointer(CGF&: *this), Addr: EndOfInit);
1282
1283 // Enter a partial-destruction Cleanup if necessary.
1284 if (!CleanupDominator && needsEHCleanup(kind: DtorKind)) {
1285 llvm::Value *BeginPtrRaw = BeginPtr.emitRawPointer(CGF&: *this);
1286 llvm::Value *CurPtrRaw = CurPtr.emitRawPointer(CGF&: *this);
1287 pushRegularPartialArrayCleanup(arrayBegin: BeginPtrRaw, arrayEnd: CurPtrRaw, elementType: ElementType,
1288 elementAlignment: ElementAlign, destroyer: getDestroyer(destructionKind: DtorKind));
1289 Cleanup = EHStack.stable_begin();
1290 CleanupDominator = Builder.CreateUnreachable();
1291 }
1292
1293 // Emit the initializer into this element.
1294 StoreAnyExprIntoOneUnit(CGF&: *this, Init, AllocType: Init->getType(), NewPtr: CurPtr,
1295 MayOverlap: AggValueSlot::DoesNotOverlap);
1296
1297 // Leave the Cleanup if we entered one.
1298 if (CleanupDominator) {
1299 DeactivateCleanupBlock(Cleanup, DominatingIP: CleanupDominator);
1300 CleanupDominator->eraseFromParent();
1301 }
1302
1303 // Advance to the next element by adjusting the pointer type as necessary.
1304 llvm::Value *NextPtr = Builder.CreateConstInBoundsGEP1_32(
1305 Ty: ElementTy, Ptr: CurPtr.emitRawPointer(CGF&: *this), Idx0: 1, Name: "array.next");
1306
1307 // Check whether we've gotten to the end of the array and, if so,
1308 // exit the loop.
1309 llvm::Value *IsEnd = Builder.CreateICmpEQ(LHS: NextPtr, RHS: EndPtr, Name: "array.atend");
1310 Builder.CreateCondBr(Cond: IsEnd, True: ContBB, False: LoopBB);
1311 CurPtrPhi->addIncoming(V: NextPtr, BB: Builder.GetInsertBlock());
1312
1313 EmitBlock(BB: ContBB);
1314}
1315
1316static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
1317 QualType ElementType, llvm::Type *ElementTy,
1318 Address NewPtr, llvm::Value *NumElements,
1319 llvm::Value *AllocSizeWithoutCookie) {
1320 ApplyDebugLocation DL(CGF, E);
1321 if (E->isArray())
1322 CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, BeginPtr: NewPtr, NumElements,
1323 AllocSizeWithoutCookie);
1324 else if (const Expr *Init = E->getInitializer())
1325 StoreAnyExprIntoOneUnit(CGF, Init, AllocType: E->getAllocatedType(), NewPtr,
1326 MayOverlap: AggValueSlot::DoesNotOverlap);
1327}
1328
1329/// Emit a call to an operator new or operator delete function, as implicitly
1330/// created by new-expressions and delete-expressions.
1331static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
1332 const FunctionDecl *CalleeDecl,
1333 const FunctionProtoType *CalleeType,
1334 const CallArgList &Args) {
1335 llvm::CallBase *CallOrInvoke;
1336 llvm::Constant *CalleePtr = CGF.CGM.GetAddrOfFunction(GD: CalleeDecl);
1337 CGCallee Callee = CGCallee::forDirect(functionPtr: CalleePtr, abstractInfo: GlobalDecl(CalleeDecl));
1338 RValue RV =
1339 CGF.EmitCall(CallInfo: CGF.CGM.getTypes().arrangeFreeFunctionCall(
1340 Args, CalleeType, /*ChainCall=*/false),
1341 Callee, ReturnValue: ReturnValueSlot(), Args, callOrInvoke: &CallOrInvoke);
1342
1343 /// C++1y [expr.new]p10:
1344 /// [In a new-expression,] an implementation is allowed to omit a call
1345 /// to a replaceable global allocation function.
1346 ///
1347 /// We model such elidable calls with the 'builtin' attribute.
1348 llvm::Function *Fn = dyn_cast<llvm::Function>(Val: CalleePtr);
1349 if (CalleeDecl->isReplaceableGlobalAllocationFunction() &&
1350 Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
1351 CallOrInvoke->addFnAttr(llvm::Attribute::Builtin);
1352 }
1353
1354 return RV;
1355}
1356
1357RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
1358 const CallExpr *TheCall,
1359 bool IsDelete) {
1360 CallArgList Args;
1361 EmitCallArgs(Args, Prototype: Type, ArgRange: TheCall->arguments());
1362 // Find the allocation or deallocation function that we're calling.
1363 ASTContext &Ctx = getContext();
1364 DeclarationName Name = Ctx.DeclarationNames
1365 .getCXXOperatorName(Op: IsDelete ? OO_Delete : OO_New);
1366
1367 for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
1368 if (auto *FD = dyn_cast<FunctionDecl>(Decl))
1369 if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
1370 return EmitNewDeleteCall(*this, FD, Type, Args);
1371 llvm_unreachable("predeclared global operator new/delete is missing");
1372}
1373
1374namespace {
1375/// The parameters to pass to a usual operator delete.
1376struct UsualDeleteParams {
1377 bool DestroyingDelete = false;
1378 bool Size = false;
1379 bool Alignment = false;
1380};
1381}
1382
1383static UsualDeleteParams getUsualDeleteParams(const FunctionDecl *FD) {
1384 UsualDeleteParams Params;
1385
1386 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
1387 auto AI = FPT->param_type_begin(), AE = FPT->param_type_end();
1388
1389 // The first argument is always a void*.
1390 ++AI;
1391
1392 // The next parameter may be a std::destroying_delete_t.
1393 if (FD->isDestroyingOperatorDelete()) {
1394 Params.DestroyingDelete = true;
1395 assert(AI != AE);
1396 ++AI;
1397 }
1398
1399 // Figure out what other parameters we should be implicitly passing.
1400 if (AI != AE && (*AI)->isIntegerType()) {
1401 Params.Size = true;
1402 ++AI;
1403 }
1404
1405 if (AI != AE && (*AI)->isAlignValT()) {
1406 Params.Alignment = true;
1407 ++AI;
1408 }
1409
1410 assert(AI == AE && "unexpected usual deallocation function parameter");
1411 return Params;
1412}
1413
1414namespace {
1415 /// A cleanup to call the given 'operator delete' function upon abnormal
1416 /// exit from a new expression. Templated on a traits type that deals with
1417 /// ensuring that the arguments dominate the cleanup if necessary.
1418 template<typename Traits>
1419 class CallDeleteDuringNew final : public EHScopeStack::Cleanup {
1420 /// Type used to hold llvm::Value*s.
1421 typedef typename Traits::ValueTy ValueTy;
1422 /// Type used to hold RValues.
1423 typedef typename Traits::RValueTy RValueTy;
1424 struct PlacementArg {
1425 RValueTy ArgValue;
1426 QualType ArgType;
1427 };
1428
1429 unsigned NumPlacementArgs : 31;
1430 LLVM_PREFERRED_TYPE(bool)
1431 unsigned PassAlignmentToPlacementDelete : 1;
1432 const FunctionDecl *OperatorDelete;
1433 ValueTy Ptr;
1434 ValueTy AllocSize;
1435 CharUnits AllocAlign;
1436
1437 PlacementArg *getPlacementArgs() {
1438 return reinterpret_cast<PlacementArg *>(this + 1);
1439 }
1440
1441 public:
1442 static size_t getExtraSize(size_t NumPlacementArgs) {
1443 return NumPlacementArgs * sizeof(PlacementArg);
1444 }
1445
1446 CallDeleteDuringNew(size_t NumPlacementArgs,
1447 const FunctionDecl *OperatorDelete, ValueTy Ptr,
1448 ValueTy AllocSize, bool PassAlignmentToPlacementDelete,
1449 CharUnits AllocAlign)
1450 : NumPlacementArgs(NumPlacementArgs),
1451 PassAlignmentToPlacementDelete(PassAlignmentToPlacementDelete),
1452 OperatorDelete(OperatorDelete), Ptr(Ptr), AllocSize(AllocSize),
1453 AllocAlign(AllocAlign) {}
1454
1455 void setPlacementArg(unsigned I, RValueTy Arg, QualType Type) {
1456 assert(I < NumPlacementArgs && "index out of range");
1457 getPlacementArgs()[I] = {Arg, Type};
1458 }
1459
1460 void Emit(CodeGenFunction &CGF, Flags flags) override {
1461 const auto *FPT = OperatorDelete->getType()->castAs<FunctionProtoType>();
1462 CallArgList DeleteArgs;
1463
1464 // The first argument is always a void* (or C* for a destroying operator
1465 // delete for class type C).
1466 DeleteArgs.add(rvalue: Traits::get(CGF, Ptr), type: FPT->getParamType(0));
1467
1468 // Figure out what other parameters we should be implicitly passing.
1469 UsualDeleteParams Params;
1470 if (NumPlacementArgs) {
1471 // A placement deallocation function is implicitly passed an alignment
1472 // if the placement allocation function was, but is never passed a size.
1473 Params.Alignment = PassAlignmentToPlacementDelete;
1474 } else {
1475 // For a non-placement new-expression, 'operator delete' can take a
1476 // size and/or an alignment if it has the right parameters.
1477 Params = getUsualDeleteParams(FD: OperatorDelete);
1478 }
1479
1480 assert(!Params.DestroyingDelete &&
1481 "should not call destroying delete in a new-expression");
1482
1483 // The second argument can be a std::size_t (for non-placement delete).
1484 if (Params.Size)
1485 DeleteArgs.add(rvalue: Traits::get(CGF, AllocSize),
1486 type: CGF.getContext().getSizeType());
1487
1488 // The next (second or third) argument can be a std::align_val_t, which
1489 // is an enum whose underlying type is std::size_t.
1490 // FIXME: Use the right type as the parameter type. Note that in a call
1491 // to operator delete(size_t, ...), we may not have it available.
1492 if (Params.Alignment)
1493 DeleteArgs.add(rvalue: RValue::get(V: llvm::ConstantInt::get(
1494 Ty: CGF.SizeTy, V: AllocAlign.getQuantity())),
1495 type: CGF.getContext().getSizeType());
1496
1497 // Pass the rest of the arguments, which must match exactly.
1498 for (unsigned I = 0; I != NumPlacementArgs; ++I) {
1499 auto Arg = getPlacementArgs()[I];
1500 DeleteArgs.add(rvalue: Traits::get(CGF, Arg.ArgValue), type: Arg.ArgType);
1501 }
1502
1503 // Call 'operator delete'.
1504 EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
1505 }
1506 };
1507}
1508
1509/// Enter a cleanup to call 'operator delete' if the initializer in a
1510/// new-expression throws.
1511static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
1512 const CXXNewExpr *E,
1513 Address NewPtr,
1514 llvm::Value *AllocSize,
1515 CharUnits AllocAlign,
1516 const CallArgList &NewArgs) {
1517 unsigned NumNonPlacementArgs = E->passAlignment() ? 2 : 1;
1518
1519 // If we're not inside a conditional branch, then the cleanup will
1520 // dominate and we can do the easier (and more efficient) thing.
1521 if (!CGF.isInConditionalBranch()) {
1522 struct DirectCleanupTraits {
1523 typedef llvm::Value *ValueTy;
1524 typedef RValue RValueTy;
1525 static RValue get(CodeGenFunction &, ValueTy V) { return RValue::get(V); }
1526 static RValue get(CodeGenFunction &, RValueTy V) { return V; }
1527 };
1528
1529 typedef CallDeleteDuringNew<DirectCleanupTraits> DirectCleanup;
1530
1531 DirectCleanup *Cleanup = CGF.EHStack.pushCleanupWithExtra<DirectCleanup>(
1532 Kind: EHCleanup, N: E->getNumPlacementArgs(), A: E->getOperatorDelete(),
1533 A: NewPtr.emitRawPointer(CGF), A: AllocSize, A: E->passAlignment(), A: AllocAlign);
1534 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1535 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1536 Cleanup->setPlacementArg(I, Arg.getRValue(CGF), Arg.Ty);
1537 }
1538
1539 return;
1540 }
1541
1542 // Otherwise, we need to save all this stuff.
1543 DominatingValue<RValue>::saved_type SavedNewPtr =
1544 DominatingValue<RValue>::save(CGF, value: RValue::get(Addr: NewPtr, CGF));
1545 DominatingValue<RValue>::saved_type SavedAllocSize =
1546 DominatingValue<RValue>::save(CGF, value: RValue::get(V: AllocSize));
1547
1548 struct ConditionalCleanupTraits {
1549 typedef DominatingValue<RValue>::saved_type ValueTy;
1550 typedef DominatingValue<RValue>::saved_type RValueTy;
1551 static RValue get(CodeGenFunction &CGF, ValueTy V) {
1552 return V.restore(CGF);
1553 }
1554 };
1555 typedef CallDeleteDuringNew<ConditionalCleanupTraits> ConditionalCleanup;
1556
1557 ConditionalCleanup *Cleanup = CGF.EHStack
1558 .pushCleanupWithExtra<ConditionalCleanup>(Kind: EHCleanup,
1559 N: E->getNumPlacementArgs(),
1560 A: E->getOperatorDelete(),
1561 A: SavedNewPtr,
1562 A: SavedAllocSize,
1563 A: E->passAlignment(),
1564 A: AllocAlign);
1565 for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I) {
1566 auto &Arg = NewArgs[I + NumNonPlacementArgs];
1567 Cleanup->setPlacementArg(
1568 I, DominatingValue<RValue>::save(CGF, value: Arg.getRValue(CGF)), Arg.Ty);
1569 }
1570
1571 CGF.initFullExprCleanup();
1572}
1573
1574llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
1575 // The element type being allocated.
1576 QualType allocType = getContext().getBaseElementType(QT: E->getAllocatedType());
1577
1578 // 1. Build a call to the allocation function.
1579 FunctionDecl *allocator = E->getOperatorNew();
1580
1581 // If there is a brace-initializer or C++20 parenthesized initializer, cannot
1582 // allocate fewer elements than inits.
1583 unsigned minElements = 0;
1584 if (E->isArray() && E->hasInitializer()) {
1585 const Expr *Init = E->getInitializer();
1586 const InitListExpr *ILE = dyn_cast<InitListExpr>(Val: Init);
1587 const CXXParenListInitExpr *CPLIE = dyn_cast<CXXParenListInitExpr>(Val: Init);
1588 const Expr *IgnoreParen = Init->IgnoreParenImpCasts();
1589 if ((ILE && ILE->isStringLiteralInit()) ||
1590 isa<StringLiteral>(Val: IgnoreParen) || isa<ObjCEncodeExpr>(Val: IgnoreParen)) {
1591 minElements =
1592 cast<ConstantArrayType>(Init->getType()->getAsArrayTypeUnsafe())
1593 ->getZExtSize();
1594 } else if (ILE || CPLIE) {
1595 minElements = ILE ? ILE->getNumInits() : CPLIE->getInitExprs().size();
1596 }
1597 }
1598
1599 llvm::Value *numElements = nullptr;
1600 llvm::Value *allocSizeWithoutCookie = nullptr;
1601 llvm::Value *allocSize =
1602 EmitCXXNewAllocSize(CGF&: *this, e: E, minElements, numElements,
1603 sizeWithoutCookie&: allocSizeWithoutCookie);
1604 CharUnits allocAlign = getContext().getTypeAlignInChars(T: allocType);
1605
1606 // Emit the allocation call. If the allocator is a global placement
1607 // operator, just "inline" it directly.
1608 Address allocation = Address::invalid();
1609 CallArgList allocatorArgs;
1610 if (allocator->isReservedGlobalPlacementOperator()) {
1611 assert(E->getNumPlacementArgs() == 1);
1612 const Expr *arg = *E->placement_arguments().begin();
1613
1614 LValueBaseInfo BaseInfo;
1615 allocation = EmitPointerWithAlignment(Addr: arg, BaseInfo: &BaseInfo);
1616
1617 // The pointer expression will, in many cases, be an opaque void*.
1618 // In these cases, discard the computed alignment and use the
1619 // formal alignment of the allocated type.
1620 if (BaseInfo.getAlignmentSource() != AlignmentSource::Decl)
1621 allocation.setAlignment(allocAlign);
1622
1623 // Set up allocatorArgs for the call to operator delete if it's not
1624 // the reserved global operator.
1625 if (E->getOperatorDelete() &&
1626 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1627 allocatorArgs.add(rvalue: RValue::get(V: allocSize), type: getContext().getSizeType());
1628 allocatorArgs.add(rvalue: RValue::get(Addr: allocation, CGF&: *this), type: arg->getType());
1629 }
1630
1631 } else {
1632 const FunctionProtoType *allocatorType =
1633 allocator->getType()->castAs<FunctionProtoType>();
1634 unsigned ParamsToSkip = 0;
1635
1636 // The allocation size is the first argument.
1637 QualType sizeType = getContext().getSizeType();
1638 allocatorArgs.add(rvalue: RValue::get(V: allocSize), type: sizeType);
1639 ++ParamsToSkip;
1640
1641 if (allocSize != allocSizeWithoutCookie) {
1642 CharUnits cookieAlign = getSizeAlign(); // FIXME: Ask the ABI.
1643 allocAlign = std::max(a: allocAlign, b: cookieAlign);
1644 }
1645
1646 // The allocation alignment may be passed as the second argument.
1647 if (E->passAlignment()) {
1648 QualType AlignValT = sizeType;
1649 if (allocatorType->getNumParams() > 1) {
1650 AlignValT = allocatorType->getParamType(i: 1);
1651 assert(getContext().hasSameUnqualifiedType(
1652 AlignValT->castAs<EnumType>()->getDecl()->getIntegerType(),
1653 sizeType) &&
1654 "wrong type for alignment parameter");
1655 ++ParamsToSkip;
1656 } else {
1657 // Corner case, passing alignment to 'operator new(size_t, ...)'.
1658 assert(allocator->isVariadic() && "can't pass alignment to allocator");
1659 }
1660 allocatorArgs.add(
1661 rvalue: RValue::get(V: llvm::ConstantInt::get(Ty: SizeTy, V: allocAlign.getQuantity())),
1662 type: AlignValT);
1663 }
1664
1665 // FIXME: Why do we not pass a CalleeDecl here?
1666 EmitCallArgs(Args&: allocatorArgs, Prototype: allocatorType, ArgRange: E->placement_arguments(),
1667 /*AC*/AbstractCallee(), /*ParamsToSkip*/ParamsToSkip);
1668
1669 RValue RV =
1670 EmitNewDeleteCall(CGF&: *this, CalleeDecl: allocator, CalleeType: allocatorType, Args: allocatorArgs);
1671
1672 // Set !heapallocsite metadata on the call to operator new.
1673 if (getDebugInfo())
1674 if (auto *newCall = dyn_cast<llvm::CallBase>(RV.getScalarVal()))
1675 getDebugInfo()->addHeapAllocSiteMetadata(CallSite: newCall, AllocatedTy: allocType,
1676 Loc: E->getExprLoc());
1677
1678 // If this was a call to a global replaceable allocation function that does
1679 // not take an alignment argument, the allocator is known to produce
1680 // storage that's suitably aligned for any object that fits, up to a known
1681 // threshold. Otherwise assume it's suitably aligned for the allocated type.
1682 CharUnits allocationAlign = allocAlign;
1683 if (!E->passAlignment() &&
1684 allocator->isReplaceableGlobalAllocationFunction()) {
1685 unsigned AllocatorAlign = llvm::bit_floor(Value: std::min<uint64_t>(
1686 a: Target.getNewAlign(), b: getContext().getTypeSize(T: allocType)));
1687 allocationAlign = std::max(
1688 a: allocationAlign, b: getContext().toCharUnitsFromBits(BitSize: AllocatorAlign));
1689 }
1690
1691 allocation = Address(RV.getScalarVal(), Int8Ty, allocationAlign);
1692 }
1693
1694 // Emit a null check on the allocation result if the allocation
1695 // function is allowed to return null (because it has a non-throwing
1696 // exception spec or is the reserved placement new) and we have an
1697 // interesting initializer will be running sanitizers on the initialization.
1698 bool nullCheck = E->shouldNullCheckAllocation() &&
1699 (!allocType.isPODType(Context: getContext()) || E->hasInitializer() ||
1700 sanitizePerformTypeCheck());
1701
1702 llvm::BasicBlock *nullCheckBB = nullptr;
1703 llvm::BasicBlock *contBB = nullptr;
1704
1705 // The null-check means that the initializer is conditionally
1706 // evaluated.
1707 ConditionalEvaluation conditional(*this);
1708
1709 if (nullCheck) {
1710 conditional.begin(CGF&: *this);
1711
1712 nullCheckBB = Builder.GetInsertBlock();
1713 llvm::BasicBlock *notNullBB = createBasicBlock(name: "new.notnull");
1714 contBB = createBasicBlock(name: "new.cont");
1715
1716 llvm::Value *isNull = Builder.CreateIsNull(Addr: allocation, Name: "new.isnull");
1717 Builder.CreateCondBr(Cond: isNull, True: contBB, False: notNullBB);
1718 EmitBlock(BB: notNullBB);
1719 }
1720
1721 // If there's an operator delete, enter a cleanup to call it if an
1722 // exception is thrown.
1723 EHScopeStack::stable_iterator operatorDeleteCleanup;
1724 llvm::Instruction *cleanupDominator = nullptr;
1725 if (E->getOperatorDelete() &&
1726 !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
1727 EnterNewDeleteCleanup(CGF&: *this, E, NewPtr: allocation, AllocSize: allocSize, AllocAlign: allocAlign,
1728 NewArgs: allocatorArgs);
1729 operatorDeleteCleanup = EHStack.stable_begin();
1730 cleanupDominator = Builder.CreateUnreachable();
1731 }
1732
1733 assert((allocSize == allocSizeWithoutCookie) ==
1734 CalculateCookiePadding(*this, E).isZero());
1735 if (allocSize != allocSizeWithoutCookie) {
1736 assert(E->isArray());
1737 allocation = CGM.getCXXABI().InitializeArrayCookie(CGF&: *this, NewPtr: allocation,
1738 NumElements: numElements,
1739 expr: E, ElementType: allocType);
1740 }
1741
1742 llvm::Type *elementTy = ConvertTypeForMem(T: allocType);
1743 Address result = allocation.withElementType(ElemTy: elementTy);
1744
1745 // Passing pointer through launder.invariant.group to avoid propagation of
1746 // vptrs information which may be included in previous type.
1747 // To not break LTO with different optimizations levels, we do it regardless
1748 // of optimization level.
1749 if (CGM.getCodeGenOpts().StrictVTablePointers &&
1750 allocator->isReservedGlobalPlacementOperator())
1751 result = Builder.CreateLaunderInvariantGroup(Addr: result);
1752
1753 // Emit sanitizer checks for pointer value now, so that in the case of an
1754 // array it was checked only once and not at each constructor call. We may
1755 // have already checked that the pointer is non-null.
1756 // FIXME: If we have an array cookie and a potentially-throwing allocator,
1757 // we'll null check the wrong pointer here.
1758 SanitizerSet SkippedChecks;
1759 SkippedChecks.set(K: SanitizerKind::Null, Value: nullCheck);
1760 EmitTypeCheck(TCK: CodeGenFunction::TCK_ConstructorCall,
1761 Loc: E->getAllocatedTypeSourceInfo()->getTypeLoc().getBeginLoc(),
1762 Addr: result, Type: allocType, Alignment: result.getAlignment(), SkippedChecks,
1763 ArraySize: numElements);
1764
1765 EmitNewInitializer(CGF&: *this, E, ElementType: allocType, ElementTy: elementTy, NewPtr: result, NumElements: numElements,
1766 AllocSizeWithoutCookie: allocSizeWithoutCookie);
1767 llvm::Value *resultPtr = result.emitRawPointer(CGF&: *this);
1768 if (E->isArray()) {
1769 // NewPtr is a pointer to the base element type. If we're
1770 // allocating an array of arrays, we'll need to cast back to the
1771 // array pointer type.
1772 llvm::Type *resultType = ConvertTypeForMem(T: E->getType());
1773 if (resultPtr->getType() != resultType)
1774 resultPtr = Builder.CreateBitCast(V: resultPtr, DestTy: resultType);
1775 }
1776
1777 // Deactivate the 'operator delete' cleanup if we finished
1778 // initialization.
1779 if (operatorDeleteCleanup.isValid()) {
1780 DeactivateCleanupBlock(Cleanup: operatorDeleteCleanup, DominatingIP: cleanupDominator);
1781 cleanupDominator->eraseFromParent();
1782 }
1783
1784 if (nullCheck) {
1785 conditional.end(CGF&: *this);
1786
1787 llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
1788 EmitBlock(BB: contBB);
1789
1790 llvm::PHINode *PHI = Builder.CreatePHI(Ty: resultPtr->getType(), NumReservedValues: 2);
1791 PHI->addIncoming(V: resultPtr, BB: notNullBB);
1792 PHI->addIncoming(V: llvm::Constant::getNullValue(Ty: resultPtr->getType()),
1793 BB: nullCheckBB);
1794
1795 resultPtr = PHI;
1796 }
1797
1798 return resultPtr;
1799}
1800
1801void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
1802 llvm::Value *Ptr, QualType DeleteTy,
1803 llvm::Value *NumElements,
1804 CharUnits CookieSize) {
1805 assert((!NumElements && CookieSize.isZero()) ||
1806 DeleteFD->getOverloadedOperator() == OO_Array_Delete);
1807
1808 const auto *DeleteFTy = DeleteFD->getType()->castAs<FunctionProtoType>();
1809 CallArgList DeleteArgs;
1810
1811 auto Params = getUsualDeleteParams(FD: DeleteFD);
1812 auto ParamTypeIt = DeleteFTy->param_type_begin();
1813
1814 // Pass the pointer itself.
1815 QualType ArgTy = *ParamTypeIt++;
1816 llvm::Value *DeletePtr = Builder.CreateBitCast(V: Ptr, DestTy: ConvertType(T: ArgTy));
1817 DeleteArgs.add(rvalue: RValue::get(V: DeletePtr), type: ArgTy);
1818
1819 // Pass the std::destroying_delete tag if present.
1820 llvm::AllocaInst *DestroyingDeleteTag = nullptr;
1821 if (Params.DestroyingDelete) {
1822 QualType DDTag = *ParamTypeIt++;
1823 llvm::Type *Ty = getTypes().ConvertType(T: DDTag);
1824 CharUnits Align = CGM.getNaturalTypeAlignment(T: DDTag);
1825 DestroyingDeleteTag = CreateTempAlloca(Ty, Name: "destroying.delete.tag");
1826 DestroyingDeleteTag->setAlignment(Align.getAsAlign());
1827 DeleteArgs.add(
1828 rvalue: RValue::getAggregate(addr: Address(DestroyingDeleteTag, Ty, Align)), type: DDTag);
1829 }
1830
1831 // Pass the size if the delete function has a size_t parameter.
1832 if (Params.Size) {
1833 QualType SizeType = *ParamTypeIt++;
1834 CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(T: DeleteTy);
1835 llvm::Value *Size = llvm::ConstantInt::get(Ty: ConvertType(T: SizeType),
1836 V: DeleteTypeSize.getQuantity());
1837
1838 // For array new, multiply by the number of elements.
1839 if (NumElements)
1840 Size = Builder.CreateMul(LHS: Size, RHS: NumElements);
1841
1842 // If there is a cookie, add the cookie size.
1843 if (!CookieSize.isZero())
1844 Size = Builder.CreateAdd(
1845 LHS: Size, RHS: llvm::ConstantInt::get(Ty: SizeTy, V: CookieSize.getQuantity()));
1846
1847 DeleteArgs.add(rvalue: RValue::get(V: Size), type: SizeType);
1848 }
1849
1850 // Pass the alignment if the delete function has an align_val_t parameter.
1851 if (Params.Alignment) {
1852 QualType AlignValType = *ParamTypeIt++;
1853 CharUnits DeleteTypeAlign =
1854 getContext().toCharUnitsFromBits(BitSize: getContext().getTypeAlignIfKnown(
1855 T: DeleteTy, NeedsPreferredAlignment: true /* NeedsPreferredAlignment */));
1856 llvm::Value *Align = llvm::ConstantInt::get(Ty: ConvertType(T: AlignValType),
1857 V: DeleteTypeAlign.getQuantity());
1858 DeleteArgs.add(rvalue: RValue::get(V: Align), type: AlignValType);
1859 }
1860
1861 assert(ParamTypeIt == DeleteFTy->param_type_end() &&
1862 "unknown parameter to usual delete function");
1863
1864 // Emit the call to delete.
1865 EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
1866
1867 // If call argument lowering didn't use the destroying_delete_t alloca,
1868 // remove it again.
1869 if (DestroyingDeleteTag && DestroyingDeleteTag->use_empty())
1870 DestroyingDeleteTag->eraseFromParent();
1871}
1872
1873namespace {
1874 /// Calls the given 'operator delete' on a single object.
1875 struct CallObjectDelete final : EHScopeStack::Cleanup {
1876 llvm::Value *Ptr;
1877 const FunctionDecl *OperatorDelete;
1878 QualType ElementType;
1879
1880 CallObjectDelete(llvm::Value *Ptr,
1881 const FunctionDecl *OperatorDelete,
1882 QualType ElementType)
1883 : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
1884
1885 void Emit(CodeGenFunction &CGF, Flags flags) override {
1886 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
1887 }
1888 };
1889}
1890
1891void
1892CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
1893 llvm::Value *CompletePtr,
1894 QualType ElementType) {
1895 EHStack.pushCleanup<CallObjectDelete>(Kind: NormalAndEHCleanup, A: CompletePtr,
1896 A: OperatorDelete, A: ElementType);
1897}
1898
1899/// Emit the code for deleting a single object with a destroying operator
1900/// delete. If the element type has a non-virtual destructor, Ptr has already
1901/// been converted to the type of the parameter of 'operator delete'. Otherwise
1902/// Ptr points to an object of the static type.
1903static void EmitDestroyingObjectDelete(CodeGenFunction &CGF,
1904 const CXXDeleteExpr *DE, Address Ptr,
1905 QualType ElementType) {
1906 auto *Dtor = ElementType->getAsCXXRecordDecl()->getDestructor();
1907 if (Dtor && Dtor->isVirtual())
1908 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1909 Dtor);
1910 else
1911 CGF.EmitDeleteCall(DeleteFD: DE->getOperatorDelete(), Ptr: Ptr.emitRawPointer(CGF),
1912 DeleteTy: ElementType);
1913}
1914
1915/// Emit the code for deleting a single object.
1916/// \return \c true if we started emitting UnconditionalDeleteBlock, \c false
1917/// if not.
1918static bool EmitObjectDelete(CodeGenFunction &CGF,
1919 const CXXDeleteExpr *DE,
1920 Address Ptr,
1921 QualType ElementType,
1922 llvm::BasicBlock *UnconditionalDeleteBlock) {
1923 // C++11 [expr.delete]p3:
1924 // If the static type of the object to be deleted is different from its
1925 // dynamic type, the static type shall be a base class of the dynamic type
1926 // of the object to be deleted and the static type shall have a virtual
1927 // destructor or the behavior is undefined.
1928 CGF.EmitTypeCheck(CodeGenFunction::TCK_MemberCall, DE->getExprLoc(), Ptr,
1929 ElementType);
1930
1931 const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
1932 assert(!OperatorDelete->isDestroyingOperatorDelete());
1933
1934 // Find the destructor for the type, if applicable. If the
1935 // destructor is virtual, we'll just emit the vcall and return.
1936 const CXXDestructorDecl *Dtor = nullptr;
1937 if (const RecordType *RT = ElementType->getAs<RecordType>()) {
1938 CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: RT->getDecl());
1939 if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
1940 Dtor = RD->getDestructor();
1941
1942 if (Dtor->isVirtual()) {
1943 bool UseVirtualCall = true;
1944 const Expr *Base = DE->getArgument();
1945 if (auto *DevirtualizedDtor =
1946 dyn_cast_or_null<const CXXDestructorDecl>(
1947 Dtor->getDevirtualizedMethod(
1948 Base, CGF.CGM.getLangOpts().AppleKext))) {
1949 UseVirtualCall = false;
1950 const CXXRecordDecl *DevirtualizedClass =
1951 DevirtualizedDtor->getParent();
1952 if (declaresSameEntity(getCXXRecord(E: Base), DevirtualizedClass)) {
1953 // Devirtualized to the class of the base type (the type of the
1954 // whole expression).
1955 Dtor = DevirtualizedDtor;
1956 } else {
1957 // Devirtualized to some other type. Would need to cast the this
1958 // pointer to that type but we don't have support for that yet, so
1959 // do a virtual call. FIXME: handle the case where it is
1960 // devirtualized to the derived type (the type of the inner
1961 // expression) as in EmitCXXMemberOrOperatorMemberCallExpr.
1962 UseVirtualCall = true;
1963 }
1964 }
1965 if (UseVirtualCall) {
1966 CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
1967 Dtor);
1968 return false;
1969 }
1970 }
1971 }
1972 }
1973
1974 // Make sure that we call delete even if the dtor throws.
1975 // This doesn't have to a conditional cleanup because we're going
1976 // to pop it off in a second.
1977 CGF.EHStack.pushCleanup<CallObjectDelete>(
1978 Kind: NormalAndEHCleanup, A: Ptr.emitRawPointer(CGF), A: OperatorDelete, A: ElementType);
1979
1980 if (Dtor)
1981 CGF.EmitCXXDestructorCall(D: Dtor, Type: Dtor_Complete,
1982 /*ForVirtualBase=*/false,
1983 /*Delegating=*/false,
1984 This: Ptr, ThisTy: ElementType);
1985 else if (auto Lifetime = ElementType.getObjCLifetime()) {
1986 switch (Lifetime) {
1987 case Qualifiers::OCL_None:
1988 case Qualifiers::OCL_ExplicitNone:
1989 case Qualifiers::OCL_Autoreleasing:
1990 break;
1991
1992 case Qualifiers::OCL_Strong:
1993 CGF.EmitARCDestroyStrong(addr: Ptr, precise: ARCPreciseLifetime);
1994 break;
1995
1996 case Qualifiers::OCL_Weak:
1997 CGF.EmitARCDestroyWeak(addr: Ptr);
1998 break;
1999 }
2000 }
2001
2002 // When optimizing for size, call 'operator delete' unconditionally.
2003 if (CGF.CGM.getCodeGenOpts().OptimizeSize > 1) {
2004 CGF.EmitBlock(BB: UnconditionalDeleteBlock);
2005 CGF.PopCleanupBlock();
2006 return true;
2007 }
2008
2009 CGF.PopCleanupBlock();
2010 return false;
2011}
2012
2013namespace {
2014 /// Calls the given 'operator delete' on an array of objects.
2015 struct CallArrayDelete final : EHScopeStack::Cleanup {
2016 llvm::Value *Ptr;
2017 const FunctionDecl *OperatorDelete;
2018 llvm::Value *NumElements;
2019 QualType ElementType;
2020 CharUnits CookieSize;
2021
2022 CallArrayDelete(llvm::Value *Ptr,
2023 const FunctionDecl *OperatorDelete,
2024 llvm::Value *NumElements,
2025 QualType ElementType,
2026 CharUnits CookieSize)
2027 : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
2028 ElementType(ElementType), CookieSize(CookieSize) {}
2029
2030 void Emit(CodeGenFunction &CGF, Flags flags) override {
2031 CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType, NumElements,
2032 CookieSize);
2033 }
2034 };
2035}
2036
2037/// Emit the code for deleting an array of objects.
2038static void EmitArrayDelete(CodeGenFunction &CGF,
2039 const CXXDeleteExpr *E,
2040 Address deletedPtr,
2041 QualType elementType) {
2042 llvm::Value *numElements = nullptr;
2043 llvm::Value *allocatedPtr = nullptr;
2044 CharUnits cookieSize;
2045 CGF.CGM.getCXXABI().ReadArrayCookie(CGF, Ptr: deletedPtr, expr: E, ElementType: elementType,
2046 NumElements&: numElements, AllocPtr&: allocatedPtr, CookieSize&: cookieSize);
2047
2048 assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
2049
2050 // Make sure that we call delete even if one of the dtors throws.
2051 const FunctionDecl *operatorDelete = E->getOperatorDelete();
2052 CGF.EHStack.pushCleanup<CallArrayDelete>(Kind: NormalAndEHCleanup,
2053 A: allocatedPtr, A: operatorDelete,
2054 A: numElements, A: elementType,
2055 A: cookieSize);
2056
2057 // Destroy the elements.
2058 if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
2059 assert(numElements && "no element count for a type with a destructor!");
2060
2061 CharUnits elementSize = CGF.getContext().getTypeSizeInChars(T: elementType);
2062 CharUnits elementAlign =
2063 deletedPtr.getAlignment().alignmentOfArrayElement(elementSize);
2064
2065 llvm::Value *arrayBegin = deletedPtr.emitRawPointer(CGF);
2066 llvm::Value *arrayEnd = CGF.Builder.CreateInBoundsGEP(
2067 Ty: deletedPtr.getElementType(), Ptr: arrayBegin, IdxList: numElements, Name: "delete.end");
2068
2069 // Note that it is legal to allocate a zero-length array, and we
2070 // can never fold the check away because the length should always
2071 // come from a cookie.
2072 CGF.emitArrayDestroy(begin: arrayBegin, end: arrayEnd, elementType, elementAlign,
2073 destroyer: CGF.getDestroyer(destructionKind: dtorKind),
2074 /*checkZeroLength*/ true,
2075 useEHCleanup: CGF.needsEHCleanup(kind: dtorKind));
2076 }
2077
2078 // Pop the cleanup block.
2079 CGF.PopCleanupBlock();
2080}
2081
2082void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
2083 const Expr *Arg = E->getArgument();
2084 Address Ptr = EmitPointerWithAlignment(Addr: Arg);
2085
2086 // Null check the pointer.
2087 //
2088 // We could avoid this null check if we can determine that the object
2089 // destruction is trivial and doesn't require an array cookie; we can
2090 // unconditionally perform the operator delete call in that case. For now, we
2091 // assume that deleted pointers are null rarely enough that it's better to
2092 // keep the branch. This might be worth revisiting for a -O0 code size win.
2093 llvm::BasicBlock *DeleteNotNull = createBasicBlock(name: "delete.notnull");
2094 llvm::BasicBlock *DeleteEnd = createBasicBlock(name: "delete.end");
2095
2096 llvm::Value *IsNull = Builder.CreateIsNull(Addr: Ptr, Name: "isnull");
2097
2098 Builder.CreateCondBr(Cond: IsNull, True: DeleteEnd, False: DeleteNotNull);
2099 EmitBlock(BB: DeleteNotNull);
2100 Ptr.setKnownNonNull();
2101
2102 QualType DeleteTy = E->getDestroyedType();
2103
2104 // A destroying operator delete overrides the entire operation of the
2105 // delete expression.
2106 if (E->getOperatorDelete()->isDestroyingOperatorDelete()) {
2107 EmitDestroyingObjectDelete(CGF&: *this, DE: E, Ptr, ElementType: DeleteTy);
2108 EmitBlock(BB: DeleteEnd);
2109 return;
2110 }
2111
2112 // We might be deleting a pointer to array. If so, GEP down to the
2113 // first non-array element.
2114 // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
2115 if (DeleteTy->isConstantArrayType()) {
2116 llvm::Value *Zero = Builder.getInt32(C: 0);
2117 SmallVector<llvm::Value*,8> GEP;
2118
2119 GEP.push_back(Elt: Zero); // point at the outermost array
2120
2121 // For each layer of array type we're pointing at:
2122 while (const ConstantArrayType *Arr
2123 = getContext().getAsConstantArrayType(T: DeleteTy)) {
2124 // 1. Unpeel the array type.
2125 DeleteTy = Arr->getElementType();
2126
2127 // 2. GEP to the first element of the array.
2128 GEP.push_back(Elt: Zero);
2129 }
2130
2131 Ptr = Builder.CreateInBoundsGEP(Addr: Ptr, IdxList: GEP, ElementType: ConvertTypeForMem(T: DeleteTy),
2132 Align: Ptr.getAlignment(), Name: "del.first");
2133 }
2134
2135 assert(ConvertTypeForMem(DeleteTy) == Ptr.getElementType());
2136
2137 if (E->isArrayForm()) {
2138 EmitArrayDelete(CGF&: *this, E, deletedPtr: Ptr, elementType: DeleteTy);
2139 EmitBlock(BB: DeleteEnd);
2140 } else {
2141 if (!EmitObjectDelete(CGF&: *this, DE: E, Ptr, ElementType: DeleteTy, UnconditionalDeleteBlock: DeleteEnd))
2142 EmitBlock(BB: DeleteEnd);
2143 }
2144}
2145
2146static bool isGLValueFromPointerDeref(const Expr *E) {
2147 E = E->IgnoreParens();
2148
2149 if (const auto *CE = dyn_cast<CastExpr>(Val: E)) {
2150 if (!CE->getSubExpr()->isGLValue())
2151 return false;
2152 return isGLValueFromPointerDeref(E: CE->getSubExpr());
2153 }
2154
2155 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Val: E))
2156 return isGLValueFromPointerDeref(E: OVE->getSourceExpr());
2157
2158 if (const auto *BO = dyn_cast<BinaryOperator>(Val: E))
2159 if (BO->getOpcode() == BO_Comma)
2160 return isGLValueFromPointerDeref(E: BO->getRHS());
2161
2162 if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(Val: E))
2163 return isGLValueFromPointerDeref(E: ACO->getTrueExpr()) ||
2164 isGLValueFromPointerDeref(E: ACO->getFalseExpr());
2165
2166 // C++11 [expr.sub]p1:
2167 // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
2168 if (isa<ArraySubscriptExpr>(Val: E))
2169 return true;
2170
2171 if (const auto *UO = dyn_cast<UnaryOperator>(Val: E))
2172 if (UO->getOpcode() == UO_Deref)
2173 return true;
2174
2175 return false;
2176}
2177
2178static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
2179 llvm::Type *StdTypeInfoPtrTy) {
2180 // Get the vtable pointer.
2181 Address ThisPtr = CGF.EmitLValue(E).getAddress(CGF);
2182
2183 QualType SrcRecordTy = E->getType();
2184
2185 // C++ [class.cdtor]p4:
2186 // If the operand of typeid refers to the object under construction or
2187 // destruction and the static type of the operand is neither the constructor
2188 // or destructor’s class nor one of its bases, the behavior is undefined.
2189 CGF.EmitTypeCheck(TCK: CodeGenFunction::TCK_DynamicOperation, Loc: E->getExprLoc(),
2190 Addr: ThisPtr, Type: SrcRecordTy);
2191
2192 // C++ [expr.typeid]p2:
2193 // If the glvalue expression is obtained by applying the unary * operator to
2194 // a pointer and the pointer is a null pointer value, the typeid expression
2195 // throws the std::bad_typeid exception.
2196 //
2197 // However, this paragraph's intent is not clear. We choose a very generous
2198 // interpretation which implores us to consider comma operators, conditional
2199 // operators, parentheses and other such constructs.
2200 if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
2201 IsDeref: isGLValueFromPointerDeref(E), SrcRecordTy)) {
2202 llvm::BasicBlock *BadTypeidBlock =
2203 CGF.createBasicBlock(name: "typeid.bad_typeid");
2204 llvm::BasicBlock *EndBlock = CGF.createBasicBlock(name: "typeid.end");
2205
2206 llvm::Value *IsNull = CGF.Builder.CreateIsNull(Addr: ThisPtr);
2207 CGF.Builder.CreateCondBr(Cond: IsNull, True: BadTypeidBlock, False: EndBlock);
2208
2209 CGF.EmitBlock(BB: BadTypeidBlock);
2210 CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
2211 CGF.EmitBlock(BB: EndBlock);
2212 }
2213
2214 return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
2215 StdTypeInfoPtrTy);
2216}
2217
2218llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
2219 llvm::Type *PtrTy = llvm::PointerType::getUnqual(C&: getLLVMContext());
2220 LangAS GlobAS = CGM.GetGlobalVarAddressSpace(D: nullptr);
2221
2222 auto MaybeASCast = [=](auto &&TypeInfo) {
2223 if (GlobAS == LangAS::Default)
2224 return TypeInfo;
2225 return getTargetHooks().performAddrSpaceCast(CGM,TypeInfo, GlobAS,
2226 LangAS::Default, PtrTy);
2227 };
2228
2229 if (E->isTypeOperand()) {
2230 llvm::Constant *TypeInfo =
2231 CGM.GetAddrOfRTTIDescriptor(Ty: E->getTypeOperand(Context&: getContext()));
2232 return MaybeASCast(TypeInfo);
2233 }
2234
2235 // C++ [expr.typeid]p2:
2236 // When typeid is applied to a glvalue expression whose type is a
2237 // polymorphic class type, the result refers to a std::type_info object
2238 // representing the type of the most derived object (that is, the dynamic
2239 // type) to which the glvalue refers.
2240 // If the operand is already most derived object, no need to look up vtable.
2241 if (E->isPotentiallyEvaluated() && !E->isMostDerived(Context&: getContext()))
2242 return EmitTypeidFromVTable(CGF&: *this, E: E->getExprOperand(), StdTypeInfoPtrTy: PtrTy);
2243
2244 QualType OperandTy = E->getExprOperand()->getType();
2245 return MaybeASCast(CGM.GetAddrOfRTTIDescriptor(Ty: OperandTy));
2246}
2247
2248static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
2249 QualType DestTy) {
2250 llvm::Type *DestLTy = CGF.ConvertType(T: DestTy);
2251 if (DestTy->isPointerType())
2252 return llvm::Constant::getNullValue(Ty: DestLTy);
2253
2254 /// C++ [expr.dynamic.cast]p9:
2255 /// A failed cast to reference type throws std::bad_cast
2256 if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
2257 return nullptr;
2258
2259 CGF.Builder.ClearInsertionPoint();
2260 return llvm::PoisonValue::get(T: DestLTy);
2261}
2262
2263llvm::Value *CodeGenFunction::EmitDynamicCast(Address ThisAddr,
2264 const CXXDynamicCastExpr *DCE) {
2265 CGM.EmitExplicitCastExprType(DCE, this);
2266 QualType DestTy = DCE->getTypeAsWritten();
2267
2268 QualType SrcTy = DCE->getSubExpr()->getType();
2269
2270 // C++ [expr.dynamic.cast]p7:
2271 // If T is "pointer to cv void," then the result is a pointer to the most
2272 // derived object pointed to by v.
2273 bool IsDynamicCastToVoid = DestTy->isVoidPointerType();
2274 QualType SrcRecordTy;
2275 QualType DestRecordTy;
2276 if (IsDynamicCastToVoid) {
2277 SrcRecordTy = SrcTy->getPointeeType();
2278 // No DestRecordTy.
2279 } else if (const PointerType *DestPTy = DestTy->getAs<PointerType>()) {
2280 SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
2281 DestRecordTy = DestPTy->getPointeeType();
2282 } else {
2283 SrcRecordTy = SrcTy;
2284 DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
2285 }
2286
2287 // C++ [class.cdtor]p5:
2288 // If the operand of the dynamic_cast refers to the object under
2289 // construction or destruction and the static type of the operand is not a
2290 // pointer to or object of the constructor or destructor’s own class or one
2291 // of its bases, the dynamic_cast results in undefined behavior.
2292 EmitTypeCheck(TCK_DynamicOperation, DCE->getExprLoc(), ThisAddr, SrcRecordTy);
2293
2294 if (DCE->isAlwaysNull()) {
2295 if (llvm::Value *T = EmitDynamicCastToNull(CGF&: *this, DestTy)) {
2296 // Expression emission is expected to retain a valid insertion point.
2297 if (!Builder.GetInsertBlock())
2298 EmitBlock(BB: createBasicBlock(name: "dynamic_cast.unreachable"));
2299 return T;
2300 }
2301 }
2302
2303 assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
2304
2305 // If the destination is effectively final, the cast succeeds if and only
2306 // if the dynamic type of the pointer is exactly the destination type.
2307 bool IsExact = !IsDynamicCastToVoid &&
2308 CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2309 DestRecordTy->getAsCXXRecordDecl()->isEffectivelyFinal() &&
2310 CGM.getCXXABI().shouldEmitExactDynamicCast(DestRecordTy);
2311
2312 // C++ [expr.dynamic.cast]p4:
2313 // If the value of v is a null pointer value in the pointer case, the result
2314 // is the null pointer value of type T.
2315 bool ShouldNullCheckSrcValue =
2316 IsExact || CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(
2317 SrcIsPtr: SrcTy->isPointerType(), SrcRecordTy);
2318
2319 llvm::BasicBlock *CastNull = nullptr;
2320 llvm::BasicBlock *CastNotNull = nullptr;
2321 llvm::BasicBlock *CastEnd = createBasicBlock(name: "dynamic_cast.end");
2322
2323 if (ShouldNullCheckSrcValue) {
2324 CastNull = createBasicBlock(name: "dynamic_cast.null");
2325 CastNotNull = createBasicBlock(name: "dynamic_cast.notnull");
2326
2327 llvm::Value *IsNull = Builder.CreateIsNull(Addr: ThisAddr);
2328 Builder.CreateCondBr(Cond: IsNull, True: CastNull, False: CastNotNull);
2329 EmitBlock(BB: CastNotNull);
2330 }
2331
2332 llvm::Value *Value;
2333 if (IsDynamicCastToVoid) {
2334 Value = CGM.getCXXABI().emitDynamicCastToVoid(CGF&: *this, Value: ThisAddr, SrcRecordTy);
2335 } else if (IsExact) {
2336 // If the destination type is effectively final, this pointer points to the
2337 // right type if and only if its vptr has the right value.
2338 Value = CGM.getCXXABI().emitExactDynamicCast(
2339 CGF&: *this, Value: ThisAddr, SrcRecordTy, DestTy, DestRecordTy, CastSuccess: CastEnd, CastFail: CastNull);
2340 } else {
2341 assert(DestRecordTy->isRecordType() &&
2342 "destination type must be a record type!");
2343 Value = CGM.getCXXABI().emitDynamicCastCall(CGF&: *this, Value: ThisAddr, SrcRecordTy,
2344 DestTy, DestRecordTy, CastEnd);
2345 }
2346 CastNotNull = Builder.GetInsertBlock();
2347
2348 llvm::Value *NullValue = nullptr;
2349 if (ShouldNullCheckSrcValue) {
2350 EmitBranch(Block: CastEnd);
2351
2352 EmitBlock(BB: CastNull);
2353 NullValue = EmitDynamicCastToNull(CGF&: *this, DestTy);
2354 CastNull = Builder.GetInsertBlock();
2355
2356 EmitBranch(Block: CastEnd);
2357 }
2358
2359 EmitBlock(BB: CastEnd);
2360
2361 if (CastNull) {
2362 llvm::PHINode *PHI = Builder.CreatePHI(Ty: Value->getType(), NumReservedValues: 2);
2363 PHI->addIncoming(V: Value, BB: CastNotNull);
2364 PHI->addIncoming(V: NullValue, BB: CastNull);
2365
2366 Value = PHI;
2367 }
2368
2369 return Value;
2370}
2371

source code of clang/lib/CodeGen/CGExprCXX.cpp