1//===-- SemaCoroutine.cpp - Semantic Analysis for Coroutines --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for C++ Coroutines.
10//
11// This file contains references to sections of the Coroutines TS, which
12// can be found at http://wg21.link/coroutines.
13//
14//===----------------------------------------------------------------------===//
15
16#include "CoroutineStmtBuilder.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/Decl.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/StmtCXX.h"
22#include "clang/Basic/Builtins.h"
23#include "clang/Lex/Preprocessor.h"
24#include "clang/Sema/EnterExpressionEvaluationContext.h"
25#include "clang/Sema/Initialization.h"
26#include "clang/Sema/Overload.h"
27#include "clang/Sema/ScopeInfo.h"
28#include "clang/Sema/SemaInternal.h"
29#include "llvm/ADT/SmallSet.h"
30
31using namespace clang;
32using namespace sema;
33
34static LookupResult lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD,
35 SourceLocation Loc, bool &Res) {
36 DeclarationName DN = S.PP.getIdentifierInfo(Name);
37 LookupResult LR(S, DN, Loc, Sema::LookupMemberName);
38 // Suppress diagnostics when a private member is selected. The same warnings
39 // will be produced again when building the call.
40 LR.suppressDiagnostics();
41 Res = S.LookupQualifiedName(LR, RD);
42 return LR;
43}
44
45static bool lookupMember(Sema &S, const char *Name, CXXRecordDecl *RD,
46 SourceLocation Loc) {
47 bool Res;
48 lookupMember(S, Name, RD, Loc, Res);
49 return Res;
50}
51
52/// Look up the std::coroutine_traits<...>::promise_type for the given
53/// function type.
54static QualType lookupPromiseType(Sema &S, const FunctionDecl *FD,
55 SourceLocation KwLoc) {
56 const FunctionProtoType *FnType = FD->getType()->castAs<FunctionProtoType>();
57 const SourceLocation FuncLoc = FD->getLocation();
58
59 ClassTemplateDecl *CoroTraits =
60 S.lookupCoroutineTraits(KwLoc, FuncLoc);
61 if (!CoroTraits)
62 return QualType();
63
64 // Form template argument list for coroutine_traits<R, P1, P2, ...> according
65 // to [dcl.fct.def.coroutine]3
66 TemplateArgumentListInfo Args(KwLoc, KwLoc);
67 auto AddArg = [&](QualType T) {
68 Args.addArgument(Loc: TemplateArgumentLoc(
69 TemplateArgument(T), S.Context.getTrivialTypeSourceInfo(T, Loc: KwLoc)));
70 };
71 AddArg(FnType->getReturnType());
72 // If the function is a non-static member function, add the type
73 // of the implicit object parameter before the formal parameters.
74 if (auto *MD = dyn_cast<CXXMethodDecl>(Val: FD)) {
75 if (MD->isImplicitObjectMemberFunction()) {
76 // [over.match.funcs]4
77 // For non-static member functions, the type of the implicit object
78 // parameter is
79 // -- "lvalue reference to cv X" for functions declared without a
80 // ref-qualifier or with the & ref-qualifier
81 // -- "rvalue reference to cv X" for functions declared with the &&
82 // ref-qualifier
83 QualType T = MD->getFunctionObjectParameterType();
84 T = FnType->getRefQualifier() == RQ_RValue
85 ? S.Context.getRValueReferenceType(T)
86 : S.Context.getLValueReferenceType(T, /*SpelledAsLValue*/ true);
87 AddArg(T);
88 }
89 }
90 for (QualType T : FnType->getParamTypes())
91 AddArg(T);
92
93 // Build the template-id.
94 QualType CoroTrait =
95 S.CheckTemplateIdType(Template: TemplateName(CoroTraits), TemplateLoc: KwLoc, TemplateArgs&: Args);
96 if (CoroTrait.isNull())
97 return QualType();
98 if (S.RequireCompleteType(KwLoc, CoroTrait,
99 diag::err_coroutine_type_missing_specialization))
100 return QualType();
101
102 auto *RD = CoroTrait->getAsCXXRecordDecl();
103 assert(RD && "specialization of class template is not a class?");
104
105 // Look up the ::promise_type member.
106 LookupResult R(S, &S.PP.getIdentifierTable().get(Name: "promise_type"), KwLoc,
107 Sema::LookupOrdinaryName);
108 S.LookupQualifiedName(R, RD);
109 auto *Promise = R.getAsSingle<TypeDecl>();
110 if (!Promise) {
111 S.Diag(FuncLoc,
112 diag::err_implied_std_coroutine_traits_promise_type_not_found)
113 << RD;
114 return QualType();
115 }
116 // The promise type is required to be a class type.
117 QualType PromiseType = S.Context.getTypeDeclType(Decl: Promise);
118
119 auto buildElaboratedType = [&]() {
120 auto *NNS = NestedNameSpecifier::Create(Context: S.Context, Prefix: nullptr, NS: S.getStdNamespace());
121 NNS = NestedNameSpecifier::Create(Context: S.Context, Prefix: NNS, Template: false,
122 T: CoroTrait.getTypePtr());
123 return S.Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::None, NNS,
124 NamedType: PromiseType);
125 };
126
127 if (!PromiseType->getAsCXXRecordDecl()) {
128 S.Diag(FuncLoc,
129 diag::err_implied_std_coroutine_traits_promise_type_not_class)
130 << buildElaboratedType();
131 return QualType();
132 }
133 if (S.RequireCompleteType(FuncLoc, buildElaboratedType(),
134 diag::err_coroutine_promise_type_incomplete))
135 return QualType();
136
137 return PromiseType;
138}
139
140/// Look up the std::coroutine_handle<PromiseType>.
141static QualType lookupCoroutineHandleType(Sema &S, QualType PromiseType,
142 SourceLocation Loc) {
143 if (PromiseType.isNull())
144 return QualType();
145
146 NamespaceDecl *CoroNamespace = S.getStdNamespace();
147 assert(CoroNamespace && "Should already be diagnosed");
148
149 LookupResult Result(S, &S.PP.getIdentifierTable().get(Name: "coroutine_handle"),
150 Loc, Sema::LookupOrdinaryName);
151 if (!S.LookupQualifiedName(Result, CoroNamespace)) {
152 S.Diag(Loc, diag::err_implied_coroutine_type_not_found)
153 << "std::coroutine_handle";
154 return QualType();
155 }
156
157 ClassTemplateDecl *CoroHandle = Result.getAsSingle<ClassTemplateDecl>();
158 if (!CoroHandle) {
159 Result.suppressDiagnostics();
160 // We found something weird. Complain about the first thing we found.
161 NamedDecl *Found = *Result.begin();
162 S.Diag(Found->getLocation(), diag::err_malformed_std_coroutine_handle);
163 return QualType();
164 }
165
166 // Form template argument list for coroutine_handle<Promise>.
167 TemplateArgumentListInfo Args(Loc, Loc);
168 Args.addArgument(Loc: TemplateArgumentLoc(
169 TemplateArgument(PromiseType),
170 S.Context.getTrivialTypeSourceInfo(T: PromiseType, Loc)));
171
172 // Build the template-id.
173 QualType CoroHandleType =
174 S.CheckTemplateIdType(Template: TemplateName(CoroHandle), TemplateLoc: Loc, TemplateArgs&: Args);
175 if (CoroHandleType.isNull())
176 return QualType();
177 if (S.RequireCompleteType(Loc, CoroHandleType,
178 diag::err_coroutine_type_missing_specialization))
179 return QualType();
180
181 return CoroHandleType;
182}
183
184static bool isValidCoroutineContext(Sema &S, SourceLocation Loc,
185 StringRef Keyword) {
186 // [expr.await]p2 dictates that 'co_await' and 'co_yield' must be used within
187 // a function body.
188 // FIXME: This also covers [expr.await]p2: "An await-expression shall not
189 // appear in a default argument." But the diagnostic QoI here could be
190 // improved to inform the user that default arguments specifically are not
191 // allowed.
192 auto *FD = dyn_cast<FunctionDecl>(Val: S.CurContext);
193 if (!FD) {
194 S.Diag(Loc, isa<ObjCMethodDecl>(S.CurContext)
195 ? diag::err_coroutine_objc_method
196 : diag::err_coroutine_outside_function) << Keyword;
197 return false;
198 }
199
200 // An enumeration for mapping the diagnostic type to the correct diagnostic
201 // selection index.
202 enum InvalidFuncDiag {
203 DiagCtor = 0,
204 DiagDtor,
205 DiagMain,
206 DiagConstexpr,
207 DiagAutoRet,
208 DiagVarargs,
209 DiagConsteval,
210 };
211 bool Diagnosed = false;
212 auto DiagInvalid = [&](InvalidFuncDiag ID) {
213 S.Diag(Loc, diag::err_coroutine_invalid_func_context) << ID << Keyword;
214 Diagnosed = true;
215 return false;
216 };
217
218 // Diagnose when a constructor, destructor
219 // or the function 'main' are declared as a coroutine.
220 auto *MD = dyn_cast<CXXMethodDecl>(Val: FD);
221 // [class.ctor]p11: "A constructor shall not be a coroutine."
222 if (MD && isa<CXXConstructorDecl>(Val: MD))
223 return DiagInvalid(DiagCtor);
224 // [class.dtor]p17: "A destructor shall not be a coroutine."
225 else if (MD && isa<CXXDestructorDecl>(Val: MD))
226 return DiagInvalid(DiagDtor);
227 // [basic.start.main]p3: "The function main shall not be a coroutine."
228 else if (FD->isMain())
229 return DiagInvalid(DiagMain);
230
231 // Emit a diagnostics for each of the following conditions which is not met.
232 // [expr.const]p2: "An expression e is a core constant expression unless the
233 // evaluation of e [...] would evaluate one of the following expressions:
234 // [...] an await-expression [...] a yield-expression."
235 if (FD->isConstexpr())
236 DiagInvalid(FD->isConsteval() ? DiagConsteval : DiagConstexpr);
237 // [dcl.spec.auto]p15: "A function declared with a return type that uses a
238 // placeholder type shall not be a coroutine."
239 if (FD->getReturnType()->isUndeducedType())
240 DiagInvalid(DiagAutoRet);
241 // [dcl.fct.def.coroutine]p1
242 // The parameter-declaration-clause of the coroutine shall not terminate with
243 // an ellipsis that is not part of a parameter-declaration.
244 if (FD->isVariadic())
245 DiagInvalid(DiagVarargs);
246
247 return !Diagnosed;
248}
249
250/// Build a call to 'operator co_await' if there is a suitable operator for
251/// the given expression.
252ExprResult Sema::BuildOperatorCoawaitCall(SourceLocation Loc, Expr *E,
253 UnresolvedLookupExpr *Lookup) {
254 UnresolvedSet<16> Functions;
255 Functions.append(I: Lookup->decls_begin(), E: Lookup->decls_end());
256 return CreateOverloadedUnaryOp(OpLoc: Loc, Opc: UO_Coawait, Fns: Functions, input: E);
257}
258
259static ExprResult buildOperatorCoawaitCall(Sema &SemaRef, Scope *S,
260 SourceLocation Loc, Expr *E) {
261 ExprResult R = SemaRef.BuildOperatorCoawaitLookupExpr(S, Loc);
262 if (R.isInvalid())
263 return ExprError();
264 return SemaRef.BuildOperatorCoawaitCall(Loc, E,
265 Lookup: cast<UnresolvedLookupExpr>(Val: R.get()));
266}
267
268static ExprResult buildCoroutineHandle(Sema &S, QualType PromiseType,
269 SourceLocation Loc) {
270 QualType CoroHandleType = lookupCoroutineHandleType(S, PromiseType, Loc);
271 if (CoroHandleType.isNull())
272 return ExprError();
273
274 DeclContext *LookupCtx = S.computeDeclContext(T: CoroHandleType);
275 LookupResult Found(S, &S.PP.getIdentifierTable().get(Name: "from_address"), Loc,
276 Sema::LookupOrdinaryName);
277 if (!S.LookupQualifiedName(R&: Found, LookupCtx)) {
278 S.Diag(Loc, diag::err_coroutine_handle_missing_member)
279 << "from_address";
280 return ExprError();
281 }
282
283 Expr *FramePtr =
284 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {});
285
286 CXXScopeSpec SS;
287 ExprResult FromAddr =
288 S.BuildDeclarationNameExpr(SS, R&: Found, /*NeedsADL=*/false);
289 if (FromAddr.isInvalid())
290 return ExprError();
291
292 return S.BuildCallExpr(S: nullptr, Fn: FromAddr.get(), LParenLoc: Loc, ArgExprs: FramePtr, RParenLoc: Loc);
293}
294
295struct ReadySuspendResumeResult {
296 enum AwaitCallType { ACT_Ready, ACT_Suspend, ACT_Resume };
297 Expr *Results[3];
298 OpaqueValueExpr *OpaqueValue;
299 bool IsInvalid;
300};
301
302static ExprResult buildMemberCall(Sema &S, Expr *Base, SourceLocation Loc,
303 StringRef Name, MultiExprArg Args) {
304 DeclarationNameInfo NameInfo(&S.PP.getIdentifierTable().get(Name), Loc);
305
306 // FIXME: Fix BuildMemberReferenceExpr to take a const CXXScopeSpec&.
307 CXXScopeSpec SS;
308 ExprResult Result = S.BuildMemberReferenceExpr(
309 Base, BaseType: Base->getType(), OpLoc: Loc, /*IsPtr=*/IsArrow: false, SS,
310 TemplateKWLoc: SourceLocation(), FirstQualifierInScope: nullptr, NameInfo, /*TemplateArgs=*/nullptr,
311 /*Scope=*/S: nullptr);
312 if (Result.isInvalid())
313 return ExprError();
314
315 // We meant exactly what we asked for. No need for typo correction.
316 if (auto *TE = dyn_cast<TypoExpr>(Val: Result.get())) {
317 S.clearDelayedTypo(TE);
318 S.Diag(Loc, diag::err_no_member)
319 << NameInfo.getName() << Base->getType()->getAsCXXRecordDecl()
320 << Base->getSourceRange();
321 return ExprError();
322 }
323
324 auto EndLoc = Args.empty() ? Loc : Args.back()->getEndLoc();
325 return S.BuildCallExpr(S: nullptr, Fn: Result.get(), LParenLoc: Loc, ArgExprs: Args, RParenLoc: EndLoc, ExecConfig: nullptr);
326}
327
328// See if return type is coroutine-handle and if so, invoke builtin coro-resume
329// on its address. This is to enable the support for coroutine-handle
330// returning await_suspend that results in a guaranteed tail call to the target
331// coroutine.
332static Expr *maybeTailCall(Sema &S, QualType RetType, Expr *E,
333 SourceLocation Loc) {
334 if (RetType->isReferenceType())
335 return nullptr;
336 Type const *T = RetType.getTypePtr();
337 if (!T->isClassType() && !T->isStructureType())
338 return nullptr;
339
340 // FIXME: Add convertability check to coroutine_handle<>. Possibly via
341 // EvaluateBinaryTypeTrait(BTT_IsConvertible, ...) which is at the moment
342 // a private function in SemaExprCXX.cpp
343
344 ExprResult AddressExpr = buildMemberCall(S, Base: E, Loc, Name: "address", Args: std::nullopt);
345 if (AddressExpr.isInvalid())
346 return nullptr;
347
348 Expr *JustAddress = AddressExpr.get();
349
350 // FIXME: Without optimizations, the temporary result from `await_suspend()`
351 // may be put on the coroutine frame since the coroutine frame constructor
352 // will think the temporary variable will escape from the
353 // `coroutine_handle<>::address()` call. This is problematic since the
354 // coroutine should be considered to be suspended after it enters
355 // `await_suspend` so it shouldn't access/update the coroutine frame after
356 // that.
357 //
358 // See https://github.com/llvm/llvm-project/issues/65054 for the report.
359 //
360 // The long term solution may wrap the whole logic about `await-suspend`
361 // into a standalone function. This is similar to the proposed solution
362 // in tryMarkAwaitSuspendNoInline. See the comments there for details.
363 //
364 // The short term solution here is to mark `coroutine_handle<>::address()`
365 // function as always-inline so that the coroutine frame constructor won't
366 // think the temporary result is escaped incorrectly.
367 if (auto *FD = cast<CallExpr>(JustAddress)->getDirectCallee())
368 if (!FD->hasAttr<AlwaysInlineAttr>() && !FD->hasAttr<NoInlineAttr>())
369 FD->addAttr(AlwaysInlineAttr::CreateImplicit(S.getASTContext(),
370 FD->getLocation()));
371
372 // Check that the type of AddressExpr is void*
373 if (!JustAddress->getType().getTypePtr()->isVoidPointerType())
374 S.Diag(cast<CallExpr>(JustAddress)->getCalleeDecl()->getLocation(),
375 diag::warn_coroutine_handle_address_invalid_return_type)
376 << JustAddress->getType();
377
378 // Clean up temporary objects so that they don't live across suspension points
379 // unnecessarily. We choose to clean up before the call to
380 // __builtin_coro_resume so that the cleanup code are not inserted in-between
381 // the resume call and return instruction, which would interfere with the
382 // musttail call contract.
383 JustAddress = S.MaybeCreateExprWithCleanups(SubExpr: JustAddress);
384 return S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_resume,
385 JustAddress);
386}
387
388/// The await_suspend call performed by co_await is essentially asynchronous
389/// to the execution of the coroutine. Inlining it normally into an unsplit
390/// coroutine can cause miscompilation because the coroutine CFG misrepresents
391/// the true control flow of the program: things that happen in the
392/// await_suspend are not guaranteed to happen prior to the resumption of the
393/// coroutine, and things that happen after the resumption of the coroutine
394/// (including its exit and the potential deallocation of the coroutine frame)
395/// are not guaranteed to happen only after the end of await_suspend.
396///
397/// See https://github.com/llvm/llvm-project/issues/56301 and
398/// https://reviews.llvm.org/D157070 for the example and the full discussion.
399///
400/// The short-term solution to this problem is to mark the call as uninlinable.
401/// But we don't want to do this if the call is known to be trivial, which is
402/// very common.
403///
404/// The long-term solution may introduce patterns like:
405///
406/// call @llvm.coro.await_suspend(ptr %awaiter, ptr %handle,
407/// ptr @awaitSuspendFn)
408///
409/// Then it is much easier to perform the safety analysis in the middle end.
410/// If it is safe to inline the call to awaitSuspend, we can replace it in the
411/// CoroEarly pass. Otherwise we could replace it in the CoroSplit pass.
412static void tryMarkAwaitSuspendNoInline(Sema &S, OpaqueValueExpr *Awaiter,
413 CallExpr *AwaitSuspend) {
414 // The method here to extract the awaiter decl is not precise.
415 // This is intentional. Since it is hard to perform the analysis in the
416 // frontend due to the complexity of C++'s type systems.
417 // And we prefer to perform such analysis in the middle end since it is
418 // easier to implement and more powerful.
419 CXXRecordDecl *AwaiterDecl =
420 Awaiter->getType().getNonReferenceType()->getAsCXXRecordDecl();
421
422 if (AwaiterDecl && AwaiterDecl->field_empty())
423 return;
424
425 FunctionDecl *FD = AwaitSuspend->getDirectCallee();
426
427 assert(FD);
428
429 // If the `await_suspend()` function is marked as `always_inline` explicitly,
430 // we should give the user the right to control the codegen.
431 if (FD->hasAttr<NoInlineAttr>() || FD->hasAttr<AlwaysInlineAttr>())
432 return;
433
434 // This is problematic if the user calls the await_suspend standalone. But on
435 // the on hand, it is not incorrect semantically since inlining is not part
436 // of the standard. On the other hand, it is relatively rare to call
437 // the await_suspend function standalone.
438 //
439 // And given we've already had the long-term plan, the current workaround
440 // looks relatively tolerant.
441 FD->addAttr(
442 NoInlineAttr::CreateImplicit(S.getASTContext(), FD->getLocation()));
443}
444
445/// Build calls to await_ready, await_suspend, and await_resume for a co_await
446/// expression.
447/// The generated AST tries to clean up temporary objects as early as
448/// possible so that they don't live across suspension points if possible.
449/// Having temporary objects living across suspension points unnecessarily can
450/// lead to large frame size, and also lead to memory corruptions if the
451/// coroutine frame is destroyed after coming back from suspension. This is done
452/// by wrapping both the await_ready call and the await_suspend call with
453/// ExprWithCleanups. In the end of this function, we also need to explicitly
454/// set cleanup state so that the CoawaitExpr is also wrapped with an
455/// ExprWithCleanups to clean up the awaiter associated with the co_await
456/// expression.
457static ReadySuspendResumeResult buildCoawaitCalls(Sema &S, VarDecl *CoroPromise,
458 SourceLocation Loc, Expr *E) {
459 OpaqueValueExpr *Operand = new (S.Context)
460 OpaqueValueExpr(Loc, E->getType(), VK_LValue, E->getObjectKind(), E);
461
462 // Assume valid until we see otherwise.
463 // Further operations are responsible for setting IsInalid to true.
464 ReadySuspendResumeResult Calls = {.Results: {}, .OpaqueValue: Operand, /*IsInvalid=*/false};
465
466 using ACT = ReadySuspendResumeResult::AwaitCallType;
467
468 auto BuildSubExpr = [&](ACT CallType, StringRef Func,
469 MultiExprArg Arg) -> Expr * {
470 ExprResult Result = buildMemberCall(S, Operand, Loc, Func, Arg);
471 if (Result.isInvalid()) {
472 Calls.IsInvalid = true;
473 return nullptr;
474 }
475 Calls.Results[CallType] = Result.get();
476 return Result.get();
477 };
478
479 CallExpr *AwaitReady = cast_or_null<CallExpr>(
480 Val: BuildSubExpr(ACT::ACT_Ready, "await_ready", std::nullopt));
481 if (!AwaitReady)
482 return Calls;
483 if (!AwaitReady->getType()->isDependentType()) {
484 // [expr.await]p3 [...]
485 // — await-ready is the expression e.await_ready(), contextually converted
486 // to bool.
487 ExprResult Conv = S.PerformContextuallyConvertToBool(AwaitReady);
488 if (Conv.isInvalid()) {
489 S.Diag(AwaitReady->getDirectCallee()->getBeginLoc(),
490 diag::note_await_ready_no_bool_conversion);
491 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
492 << AwaitReady->getDirectCallee() << E->getSourceRange();
493 Calls.IsInvalid = true;
494 } else
495 Calls.Results[ACT::ACT_Ready] = S.MaybeCreateExprWithCleanups(SubExpr: Conv.get());
496 }
497
498 ExprResult CoroHandleRes =
499 buildCoroutineHandle(S, CoroPromise->getType(), Loc);
500 if (CoroHandleRes.isInvalid()) {
501 Calls.IsInvalid = true;
502 return Calls;
503 }
504 Expr *CoroHandle = CoroHandleRes.get();
505 CallExpr *AwaitSuspend = cast_or_null<CallExpr>(
506 Val: BuildSubExpr(ACT::ACT_Suspend, "await_suspend", CoroHandle));
507 if (!AwaitSuspend)
508 return Calls;
509 if (!AwaitSuspend->getType()->isDependentType()) {
510 // [expr.await]p3 [...]
511 // - await-suspend is the expression e.await_suspend(h), which shall be
512 // a prvalue of type void, bool, or std::coroutine_handle<Z> for some
513 // type Z.
514 QualType RetType = AwaitSuspend->getCallReturnType(Ctx: S.Context);
515
516 // We need to mark await_suspend as noinline temporarily. See the comment
517 // of tryMarkAwaitSuspendNoInline for details.
518 tryMarkAwaitSuspendNoInline(S, Awaiter: Operand, AwaitSuspend);
519
520 // Support for coroutine_handle returning await_suspend.
521 if (Expr *TailCallSuspend =
522 maybeTailCall(S, RetType, AwaitSuspend, Loc))
523 // Note that we don't wrap the expression with ExprWithCleanups here
524 // because that might interfere with tailcall contract (e.g. inserting
525 // clean up instructions in-between tailcall and return). Instead
526 // ExprWithCleanups is wrapped within maybeTailCall() prior to the resume
527 // call.
528 Calls.Results[ACT::ACT_Suspend] = TailCallSuspend;
529 else {
530 // non-class prvalues always have cv-unqualified types
531 if (RetType->isReferenceType() ||
532 (!RetType->isBooleanType() && !RetType->isVoidType())) {
533 S.Diag(AwaitSuspend->getCalleeDecl()->getLocation(),
534 diag::err_await_suspend_invalid_return_type)
535 << RetType;
536 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
537 << AwaitSuspend->getDirectCallee();
538 Calls.IsInvalid = true;
539 } else
540 Calls.Results[ACT::ACT_Suspend] =
541 S.MaybeCreateExprWithCleanups(AwaitSuspend);
542 }
543 }
544
545 BuildSubExpr(ACT::ACT_Resume, "await_resume", std::nullopt);
546
547 // Make sure the awaiter object gets a chance to be cleaned up.
548 S.Cleanup.setExprNeedsCleanups(true);
549
550 return Calls;
551}
552
553static ExprResult buildPromiseCall(Sema &S, VarDecl *Promise,
554 SourceLocation Loc, StringRef Name,
555 MultiExprArg Args) {
556
557 // Form a reference to the promise.
558 ExprResult PromiseRef = S.BuildDeclRefExpr(
559 Promise, Promise->getType().getNonReferenceType(), VK_LValue, Loc);
560 if (PromiseRef.isInvalid())
561 return ExprError();
562
563 return buildMemberCall(S, Base: PromiseRef.get(), Loc, Name, Args);
564}
565
566VarDecl *Sema::buildCoroutinePromise(SourceLocation Loc) {
567 assert(isa<FunctionDecl>(CurContext) && "not in a function scope");
568 auto *FD = cast<FunctionDecl>(Val: CurContext);
569 bool IsThisDependentType = [&] {
570 if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(Val: FD))
571 return MD->isImplicitObjectMemberFunction() &&
572 MD->getThisType()->isDependentType();
573 return false;
574 }();
575
576 QualType T = FD->getType()->isDependentType() || IsThisDependentType
577 ? Context.DependentTy
578 : lookupPromiseType(S&: *this, FD, KwLoc: Loc);
579 if (T.isNull())
580 return nullptr;
581
582 auto *VD = VarDecl::Create(C&: Context, DC: FD, StartLoc: FD->getLocation(), IdLoc: FD->getLocation(),
583 Id: &PP.getIdentifierTable().get(Name: "__promise"), T,
584 TInfo: Context.getTrivialTypeSourceInfo(T, Loc), S: SC_None);
585 VD->setImplicit();
586 CheckVariableDeclarationType(NewVD: VD);
587 if (VD->isInvalidDecl())
588 return nullptr;
589
590 auto *ScopeInfo = getCurFunction();
591
592 // Build a list of arguments, based on the coroutine function's arguments,
593 // that if present will be passed to the promise type's constructor.
594 llvm::SmallVector<Expr *, 4> CtorArgExprs;
595
596 // Add implicit object parameter.
597 if (auto *MD = dyn_cast<CXXMethodDecl>(Val: FD)) {
598 if (MD->isImplicitObjectMemberFunction() && !isLambdaCallOperator(MD)) {
599 ExprResult ThisExpr = ActOnCXXThis(loc: Loc);
600 if (ThisExpr.isInvalid())
601 return nullptr;
602 ThisExpr = CreateBuiltinUnaryOp(OpLoc: Loc, Opc: UO_Deref, InputExpr: ThisExpr.get());
603 if (ThisExpr.isInvalid())
604 return nullptr;
605 CtorArgExprs.push_back(Elt: ThisExpr.get());
606 }
607 }
608
609 // Add the coroutine function's parameters.
610 auto &Moves = ScopeInfo->CoroutineParameterMoves;
611 for (auto *PD : FD->parameters()) {
612 if (PD->getType()->isDependentType())
613 continue;
614
615 auto RefExpr = ExprEmpty();
616 auto Move = Moves.find(Key: PD);
617 assert(Move != Moves.end() &&
618 "Coroutine function parameter not inserted into move map");
619 // If a reference to the function parameter exists in the coroutine
620 // frame, use that reference.
621 auto *MoveDecl =
622 cast<VarDecl>(Val: cast<DeclStmt>(Val: Move->second)->getSingleDecl());
623 RefExpr =
624 BuildDeclRefExpr(MoveDecl, MoveDecl->getType().getNonReferenceType(),
625 ExprValueKind::VK_LValue, FD->getLocation());
626 if (RefExpr.isInvalid())
627 return nullptr;
628 CtorArgExprs.push_back(Elt: RefExpr.get());
629 }
630
631 // If we have a non-zero number of constructor arguments, try to use them.
632 // Otherwise, fall back to the promise type's default constructor.
633 if (!CtorArgExprs.empty()) {
634 // Create an initialization sequence for the promise type using the
635 // constructor arguments, wrapped in a parenthesized list expression.
636 Expr *PLE = ParenListExpr::Create(Ctx: Context, LParenLoc: FD->getLocation(),
637 Exprs: CtorArgExprs, RParenLoc: FD->getLocation());
638 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var: VD);
639 InitializationKind Kind = InitializationKind::CreateForInit(
640 Loc: VD->getLocation(), /*DirectInit=*/true, Init: PLE);
641 InitializationSequence InitSeq(*this, Entity, Kind, CtorArgExprs,
642 /*TopLevelOfInitList=*/false,
643 /*TreatUnavailableAsInvalid=*/false);
644
645 // [dcl.fct.def.coroutine]5.7
646 // promise-constructor-arguments is determined as follows: overload
647 // resolution is performed on a promise constructor call created by
648 // assembling an argument list q_1 ... q_n . If a viable constructor is
649 // found ([over.match.viable]), then promise-constructor-arguments is ( q_1
650 // , ..., q_n ), otherwise promise-constructor-arguments is empty.
651 if (InitSeq) {
652 ExprResult Result = InitSeq.Perform(S&: *this, Entity, Kind, Args: CtorArgExprs);
653 if (Result.isInvalid()) {
654 VD->setInvalidDecl();
655 } else if (Result.get()) {
656 VD->setInit(MaybeCreateExprWithCleanups(SubExpr: Result.get()));
657 VD->setInitStyle(VarDecl::CallInit);
658 CheckCompleteVariableDeclaration(VD: VD);
659 }
660 } else
661 ActOnUninitializedDecl(dcl: VD);
662 } else
663 ActOnUninitializedDecl(dcl: VD);
664
665 FD->addDecl(D: VD);
666 return VD;
667}
668
669/// Check that this is a context in which a coroutine suspension can appear.
670static FunctionScopeInfo *checkCoroutineContext(Sema &S, SourceLocation Loc,
671 StringRef Keyword,
672 bool IsImplicit = false) {
673 if (!isValidCoroutineContext(S, Loc, Keyword))
674 return nullptr;
675
676 assert(isa<FunctionDecl>(S.CurContext) && "not in a function scope");
677
678 auto *ScopeInfo = S.getCurFunction();
679 assert(ScopeInfo && "missing function scope for function");
680
681 if (ScopeInfo->FirstCoroutineStmtLoc.isInvalid() && !IsImplicit)
682 ScopeInfo->setFirstCoroutineStmt(Loc, Keyword);
683
684 if (ScopeInfo->CoroutinePromise)
685 return ScopeInfo;
686
687 if (!S.buildCoroutineParameterMoves(Loc))
688 return nullptr;
689
690 ScopeInfo->CoroutinePromise = S.buildCoroutinePromise(Loc);
691 if (!ScopeInfo->CoroutinePromise)
692 return nullptr;
693
694 return ScopeInfo;
695}
696
697/// Recursively check \p E and all its children to see if any call target
698/// (including constructor call) is declared noexcept. Also any value returned
699/// from the call has a noexcept destructor.
700static void checkNoThrow(Sema &S, const Stmt *E,
701 llvm::SmallPtrSetImpl<const Decl *> &ThrowingDecls) {
702 auto checkDeclNoexcept = [&](const Decl *D, bool IsDtor = false) {
703 // In the case of dtor, the call to dtor is implicit and hence we should
704 // pass nullptr to canCalleeThrow.
705 if (Sema::canCalleeThrow(S, E: IsDtor ? nullptr : cast<Expr>(Val: E), D)) {
706 if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) {
707 // co_await promise.final_suspend() could end up calling
708 // __builtin_coro_resume for symmetric transfer if await_suspend()
709 // returns a handle. In that case, even __builtin_coro_resume is not
710 // declared as noexcept and may throw, it does not throw _into_ the
711 // coroutine that just suspended, but rather throws back out from
712 // whoever called coroutine_handle::resume(), hence we claim that
713 // logically it does not throw.
714 if (FD->getBuiltinID() == Builtin::BI__builtin_coro_resume)
715 return;
716 }
717 if (ThrowingDecls.empty()) {
718 // [dcl.fct.def.coroutine]p15
719 // The expression co_await promise.final_suspend() shall not be
720 // potentially-throwing ([except.spec]).
721 //
722 // First time seeing an error, emit the error message.
723 S.Diag(cast<FunctionDecl>(S.CurContext)->getLocation(),
724 diag::err_coroutine_promise_final_suspend_requires_nothrow);
725 }
726 ThrowingDecls.insert(Ptr: D);
727 }
728 };
729
730 if (auto *CE = dyn_cast<CXXConstructExpr>(Val: E)) {
731 CXXConstructorDecl *Ctor = CE->getConstructor();
732 checkDeclNoexcept(Ctor);
733 // Check the corresponding destructor of the constructor.
734 checkDeclNoexcept(Ctor->getParent()->getDestructor(), /*IsDtor=*/true);
735 } else if (auto *CE = dyn_cast<CallExpr>(Val: E)) {
736 if (CE->isTypeDependent())
737 return;
738
739 checkDeclNoexcept(CE->getCalleeDecl());
740 QualType ReturnType = CE->getCallReturnType(Ctx: S.getASTContext());
741 // Check the destructor of the call return type, if any.
742 if (ReturnType.isDestructedType() ==
743 QualType::DestructionKind::DK_cxx_destructor) {
744 const auto *T =
745 cast<RecordType>(Val: ReturnType.getCanonicalType().getTypePtr());
746 checkDeclNoexcept(cast<CXXRecordDecl>(Val: T->getDecl())->getDestructor(),
747 /*IsDtor=*/true);
748 }
749 } else
750 for (const auto *Child : E->children()) {
751 if (!Child)
752 continue;
753 checkNoThrow(S, E: Child, ThrowingDecls);
754 }
755}
756
757bool Sema::checkFinalSuspendNoThrow(const Stmt *FinalSuspend) {
758 llvm::SmallPtrSet<const Decl *, 4> ThrowingDecls;
759 // We first collect all declarations that should not throw but not declared
760 // with noexcept. We then sort them based on the location before printing.
761 // This is to avoid emitting the same note multiple times on the same
762 // declaration, and also provide a deterministic order for the messages.
763 checkNoThrow(S&: *this, E: FinalSuspend, ThrowingDecls);
764 auto SortedDecls = llvm::SmallVector<const Decl *, 4>{ThrowingDecls.begin(),
765 ThrowingDecls.end()};
766 sort(C&: SortedDecls, Comp: [](const Decl *A, const Decl *B) {
767 return A->getEndLoc() < B->getEndLoc();
768 });
769 for (const auto *D : SortedDecls) {
770 Diag(D->getEndLoc(), diag::note_coroutine_function_declare_noexcept);
771 }
772 return ThrowingDecls.empty();
773}
774
775bool Sema::ActOnCoroutineBodyStart(Scope *SC, SourceLocation KWLoc,
776 StringRef Keyword) {
777 // Ignore previous expr evaluation contexts.
778 EnterExpressionEvaluationContext PotentiallyEvaluated(
779 *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
780 if (!checkCoroutineContext(S&: *this, Loc: KWLoc, Keyword))
781 return false;
782 auto *ScopeInfo = getCurFunction();
783 assert(ScopeInfo->CoroutinePromise);
784
785 // If we have existing coroutine statements then we have already built
786 // the initial and final suspend points.
787 if (!ScopeInfo->NeedsCoroutineSuspends)
788 return true;
789
790 ScopeInfo->setNeedsCoroutineSuspends(false);
791
792 auto *Fn = cast<FunctionDecl>(Val: CurContext);
793 SourceLocation Loc = Fn->getLocation();
794 // Build the initial suspend point
795 auto buildSuspends = [&](StringRef Name) mutable -> StmtResult {
796 ExprResult Operand = buildPromiseCall(S&: *this, Promise: ScopeInfo->CoroutinePromise,
797 Loc, Name, Args: std::nullopt);
798 if (Operand.isInvalid())
799 return StmtError();
800 ExprResult Suspend =
801 buildOperatorCoawaitCall(SemaRef&: *this, S: SC, Loc, E: Operand.get());
802 if (Suspend.isInvalid())
803 return StmtError();
804 Suspend = BuildResolvedCoawaitExpr(KwLoc: Loc, Operand: Operand.get(), Awaiter: Suspend.get(),
805 /*IsImplicit*/ true);
806 Suspend = ActOnFinishFullExpr(Expr: Suspend.get(), /*DiscardedValue*/ false);
807 if (Suspend.isInvalid()) {
808 Diag(Loc, diag::note_coroutine_promise_suspend_implicitly_required)
809 << ((Name == "initial_suspend") ? 0 : 1);
810 Diag(KWLoc, diag::note_declared_coroutine_here) << Keyword;
811 return StmtError();
812 }
813 return cast<Stmt>(Val: Suspend.get());
814 };
815
816 StmtResult InitSuspend = buildSuspends("initial_suspend");
817 if (InitSuspend.isInvalid())
818 return true;
819
820 StmtResult FinalSuspend = buildSuspends("final_suspend");
821 if (FinalSuspend.isInvalid() || !checkFinalSuspendNoThrow(FinalSuspend: FinalSuspend.get()))
822 return true;
823
824 ScopeInfo->setCoroutineSuspends(Initial: InitSuspend.get(), Final: FinalSuspend.get());
825
826 return true;
827}
828
829// Recursively walks up the scope hierarchy until either a 'catch' or a function
830// scope is found, whichever comes first.
831static bool isWithinCatchScope(Scope *S) {
832 // 'co_await' and 'co_yield' keywords are disallowed within catch blocks, but
833 // lambdas that use 'co_await' are allowed. The loop below ends when a
834 // function scope is found in order to ensure the following behavior:
835 //
836 // void foo() { // <- function scope
837 // try { //
838 // co_await x; // <- 'co_await' is OK within a function scope
839 // } catch { // <- catch scope
840 // co_await x; // <- 'co_await' is not OK within a catch scope
841 // []() { // <- function scope
842 // co_await x; // <- 'co_await' is OK within a function scope
843 // }();
844 // }
845 // }
846 while (S && !S->isFunctionScope()) {
847 if (S->isCatchScope())
848 return true;
849 S = S->getParent();
850 }
851 return false;
852}
853
854// [expr.await]p2, emphasis added: "An await-expression shall appear only in
855// a *potentially evaluated* expression within the compound-statement of a
856// function-body *outside of a handler* [...] A context within a function
857// where an await-expression can appear is called a suspension context of the
858// function."
859static bool checkSuspensionContext(Sema &S, SourceLocation Loc,
860 StringRef Keyword) {
861 // First emphasis of [expr.await]p2: must be a potentially evaluated context.
862 // That is, 'co_await' and 'co_yield' cannot appear in subexpressions of
863 // \c sizeof.
864 if (S.isUnevaluatedContext()) {
865 S.Diag(Loc, diag::err_coroutine_unevaluated_context) << Keyword;
866 return false;
867 }
868
869 // Second emphasis of [expr.await]p2: must be outside of an exception handler.
870 if (isWithinCatchScope(S: S.getCurScope())) {
871 S.Diag(Loc, diag::err_coroutine_within_handler) << Keyword;
872 return false;
873 }
874
875 return true;
876}
877
878ExprResult Sema::ActOnCoawaitExpr(Scope *S, SourceLocation Loc, Expr *E) {
879 if (!checkSuspensionContext(S&: *this, Loc, Keyword: "co_await"))
880 return ExprError();
881
882 if (!ActOnCoroutineBodyStart(SC: S, KWLoc: Loc, Keyword: "co_await")) {
883 CorrectDelayedTyposInExpr(E);
884 return ExprError();
885 }
886
887 if (E->hasPlaceholderType()) {
888 ExprResult R = CheckPlaceholderExpr(E);
889 if (R.isInvalid()) return ExprError();
890 E = R.get();
891 }
892 ExprResult Lookup = BuildOperatorCoawaitLookupExpr(S, Loc);
893 if (Lookup.isInvalid())
894 return ExprError();
895 return BuildUnresolvedCoawaitExpr(KwLoc: Loc, Operand: E,
896 Lookup: cast<UnresolvedLookupExpr>(Val: Lookup.get()));
897}
898
899ExprResult Sema::BuildOperatorCoawaitLookupExpr(Scope *S, SourceLocation Loc) {
900 DeclarationName OpName =
901 Context.DeclarationNames.getCXXOperatorName(Op: OO_Coawait);
902 LookupResult Operators(*this, OpName, SourceLocation(),
903 Sema::LookupOperatorName);
904 LookupName(R&: Operators, S);
905
906 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
907 const auto &Functions = Operators.asUnresolvedSet();
908 bool IsOverloaded =
909 Functions.size() > 1 ||
910 (Functions.size() == 1 && isa<FunctionTemplateDecl>(Val: *Functions.begin()));
911 Expr *CoawaitOp = UnresolvedLookupExpr::Create(
912 Context, /*NamingClass*/ nullptr, QualifierLoc: NestedNameSpecifierLoc(),
913 NameInfo: DeclarationNameInfo(OpName, Loc), /*RequiresADL*/ true, Overloaded: IsOverloaded,
914 Begin: Functions.begin(), End: Functions.end());
915 assert(CoawaitOp);
916 return CoawaitOp;
917}
918
919// Attempts to resolve and build a CoawaitExpr from "raw" inputs, bailing out to
920// DependentCoawaitExpr if needed.
921ExprResult Sema::BuildUnresolvedCoawaitExpr(SourceLocation Loc, Expr *Operand,
922 UnresolvedLookupExpr *Lookup) {
923 auto *FSI = checkCoroutineContext(S&: *this, Loc, Keyword: "co_await");
924 if (!FSI)
925 return ExprError();
926
927 if (Operand->hasPlaceholderType()) {
928 ExprResult R = CheckPlaceholderExpr(E: Operand);
929 if (R.isInvalid())
930 return ExprError();
931 Operand = R.get();
932 }
933
934 auto *Promise = FSI->CoroutinePromise;
935 if (Promise->getType()->isDependentType()) {
936 Expr *Res = new (Context)
937 DependentCoawaitExpr(Loc, Context.DependentTy, Operand, Lookup);
938 return Res;
939 }
940
941 auto *RD = Promise->getType()->getAsCXXRecordDecl();
942 auto *Transformed = Operand;
943 if (lookupMember(*this, "await_transform", RD, Loc)) {
944 ExprResult R =
945 buildPromiseCall(S&: *this, Promise, Loc, Name: "await_transform", Args: Operand);
946 if (R.isInvalid()) {
947 Diag(Loc,
948 diag::note_coroutine_promise_implicit_await_transform_required_here)
949 << Operand->getSourceRange();
950 return ExprError();
951 }
952 Transformed = R.get();
953 }
954 ExprResult Awaiter = BuildOperatorCoawaitCall(Loc, E: Transformed, Lookup);
955 if (Awaiter.isInvalid())
956 return ExprError();
957
958 return BuildResolvedCoawaitExpr(KwLoc: Loc, Operand, Awaiter: Awaiter.get());
959}
960
961ExprResult Sema::BuildResolvedCoawaitExpr(SourceLocation Loc, Expr *Operand,
962 Expr *Awaiter, bool IsImplicit) {
963 auto *Coroutine = checkCoroutineContext(S&: *this, Loc, Keyword: "co_await", IsImplicit);
964 if (!Coroutine)
965 return ExprError();
966
967 if (Awaiter->hasPlaceholderType()) {
968 ExprResult R = CheckPlaceholderExpr(E: Awaiter);
969 if (R.isInvalid()) return ExprError();
970 Awaiter = R.get();
971 }
972
973 if (Awaiter->getType()->isDependentType()) {
974 Expr *Res = new (Context)
975 CoawaitExpr(Loc, Context.DependentTy, Operand, Awaiter, IsImplicit);
976 return Res;
977 }
978
979 // If the expression is a temporary, materialize it as an lvalue so that we
980 // can use it multiple times.
981 if (Awaiter->isPRValue())
982 Awaiter = CreateMaterializeTemporaryExpr(T: Awaiter->getType(), Temporary: Awaiter, BoundToLvalueReference: true);
983
984 // The location of the `co_await` token cannot be used when constructing
985 // the member call expressions since it's before the location of `Expr`, which
986 // is used as the start of the member call expression.
987 SourceLocation CallLoc = Awaiter->getExprLoc();
988
989 // Build the await_ready, await_suspend, await_resume calls.
990 ReadySuspendResumeResult RSS =
991 buildCoawaitCalls(S&: *this, CoroPromise: Coroutine->CoroutinePromise, Loc: CallLoc, E: Awaiter);
992 if (RSS.IsInvalid)
993 return ExprError();
994
995 Expr *Res = new (Context)
996 CoawaitExpr(Loc, Operand, Awaiter, RSS.Results[0], RSS.Results[1],
997 RSS.Results[2], RSS.OpaqueValue, IsImplicit);
998
999 return Res;
1000}
1001
1002ExprResult Sema::ActOnCoyieldExpr(Scope *S, SourceLocation Loc, Expr *E) {
1003 if (!checkSuspensionContext(S&: *this, Loc, Keyword: "co_yield"))
1004 return ExprError();
1005
1006 if (!ActOnCoroutineBodyStart(SC: S, KWLoc: Loc, Keyword: "co_yield")) {
1007 CorrectDelayedTyposInExpr(E);
1008 return ExprError();
1009 }
1010
1011 // Build yield_value call.
1012 ExprResult Awaitable = buildPromiseCall(
1013 S&: *this, Promise: getCurFunction()->CoroutinePromise, Loc, Name: "yield_value", Args: E);
1014 if (Awaitable.isInvalid())
1015 return ExprError();
1016
1017 // Build 'operator co_await' call.
1018 Awaitable = buildOperatorCoawaitCall(SemaRef&: *this, S, Loc, E: Awaitable.get());
1019 if (Awaitable.isInvalid())
1020 return ExprError();
1021
1022 return BuildCoyieldExpr(KwLoc: Loc, E: Awaitable.get());
1023}
1024ExprResult Sema::BuildCoyieldExpr(SourceLocation Loc, Expr *E) {
1025 auto *Coroutine = checkCoroutineContext(S&: *this, Loc, Keyword: "co_yield");
1026 if (!Coroutine)
1027 return ExprError();
1028
1029 if (E->hasPlaceholderType()) {
1030 ExprResult R = CheckPlaceholderExpr(E);
1031 if (R.isInvalid()) return ExprError();
1032 E = R.get();
1033 }
1034
1035 Expr *Operand = E;
1036
1037 if (E->getType()->isDependentType()) {
1038 Expr *Res = new (Context) CoyieldExpr(Loc, Context.DependentTy, Operand, E);
1039 return Res;
1040 }
1041
1042 // If the expression is a temporary, materialize it as an lvalue so that we
1043 // can use it multiple times.
1044 if (E->isPRValue())
1045 E = CreateMaterializeTemporaryExpr(T: E->getType(), Temporary: E, BoundToLvalueReference: true);
1046
1047 // Build the await_ready, await_suspend, await_resume calls.
1048 ReadySuspendResumeResult RSS = buildCoawaitCalls(
1049 S&: *this, CoroPromise: Coroutine->CoroutinePromise, Loc, E);
1050 if (RSS.IsInvalid)
1051 return ExprError();
1052
1053 Expr *Res =
1054 new (Context) CoyieldExpr(Loc, Operand, E, RSS.Results[0], RSS.Results[1],
1055 RSS.Results[2], RSS.OpaqueValue);
1056
1057 return Res;
1058}
1059
1060StmtResult Sema::ActOnCoreturnStmt(Scope *S, SourceLocation Loc, Expr *E) {
1061 if (!ActOnCoroutineBodyStart(SC: S, KWLoc: Loc, Keyword: "co_return")) {
1062 CorrectDelayedTyposInExpr(E);
1063 return StmtError();
1064 }
1065 return BuildCoreturnStmt(KwLoc: Loc, E);
1066}
1067
1068StmtResult Sema::BuildCoreturnStmt(SourceLocation Loc, Expr *E,
1069 bool IsImplicit) {
1070 auto *FSI = checkCoroutineContext(S&: *this, Loc, Keyword: "co_return", IsImplicit);
1071 if (!FSI)
1072 return StmtError();
1073
1074 if (E && E->hasPlaceholderType() &&
1075 !E->hasPlaceholderType(K: BuiltinType::Overload)) {
1076 ExprResult R = CheckPlaceholderExpr(E);
1077 if (R.isInvalid()) return StmtError();
1078 E = R.get();
1079 }
1080
1081 VarDecl *Promise = FSI->CoroutinePromise;
1082 ExprResult PC;
1083 if (E && (isa<InitListExpr>(Val: E) || !E->getType()->isVoidType())) {
1084 getNamedReturnInfo(E, Mode: SimplerImplicitMoveMode::ForceOn);
1085 PC = buildPromiseCall(S&: *this, Promise, Loc, Name: "return_value", Args: E);
1086 } else {
1087 E = MakeFullDiscardedValueExpr(Arg: E).get();
1088 PC = buildPromiseCall(S&: *this, Promise, Loc, Name: "return_void", Args: std::nullopt);
1089 }
1090 if (PC.isInvalid())
1091 return StmtError();
1092
1093 Expr *PCE = ActOnFinishFullExpr(Expr: PC.get(), /*DiscardedValue*/ false).get();
1094
1095 Stmt *Res = new (Context) CoreturnStmt(Loc, E, PCE, IsImplicit);
1096 return Res;
1097}
1098
1099/// Look up the std::nothrow object.
1100static Expr *buildStdNoThrowDeclRef(Sema &S, SourceLocation Loc) {
1101 NamespaceDecl *Std = S.getStdNamespace();
1102 assert(Std && "Should already be diagnosed");
1103
1104 LookupResult Result(S, &S.PP.getIdentifierTable().get(Name: "nothrow"), Loc,
1105 Sema::LookupOrdinaryName);
1106 if (!S.LookupQualifiedName(Result, Std)) {
1107 // <coroutine> is not requred to include <new>, so we couldn't omit
1108 // the check here.
1109 S.Diag(Loc, diag::err_implicit_coroutine_std_nothrow_type_not_found);
1110 return nullptr;
1111 }
1112
1113 auto *VD = Result.getAsSingle<VarDecl>();
1114 if (!VD) {
1115 Result.suppressDiagnostics();
1116 // We found something weird. Complain about the first thing we found.
1117 NamedDecl *Found = *Result.begin();
1118 S.Diag(Found->getLocation(), diag::err_malformed_std_nothrow);
1119 return nullptr;
1120 }
1121
1122 ExprResult DR = S.BuildDeclRefExpr(VD, VD->getType(), VK_LValue, Loc);
1123 if (DR.isInvalid())
1124 return nullptr;
1125
1126 return DR.get();
1127}
1128
1129static TypeSourceInfo *getTypeSourceInfoForStdAlignValT(Sema &S,
1130 SourceLocation Loc) {
1131 EnumDecl *StdAlignValT = S.getStdAlignValT();
1132 QualType StdAlignValDecl = S.Context.getTypeDeclType(StdAlignValT);
1133 return S.Context.getTrivialTypeSourceInfo(T: StdAlignValDecl);
1134}
1135
1136// Find an appropriate delete for the promise.
1137static bool findDeleteForPromise(Sema &S, SourceLocation Loc, QualType PromiseType,
1138 FunctionDecl *&OperatorDelete) {
1139 DeclarationName DeleteName =
1140 S.Context.DeclarationNames.getCXXOperatorName(Op: OO_Delete);
1141
1142 auto *PointeeRD = PromiseType->getAsCXXRecordDecl();
1143 assert(PointeeRD && "PromiseType must be a CxxRecordDecl type");
1144
1145 const bool Overaligned = S.getLangOpts().CoroAlignedAllocation;
1146
1147 // [dcl.fct.def.coroutine]p12
1148 // The deallocation function's name is looked up by searching for it in the
1149 // scope of the promise type. If nothing is found, a search is performed in
1150 // the global scope.
1151 if (S.FindDeallocationFunction(StartLoc: Loc, RD: PointeeRD, Name: DeleteName, Operator&: OperatorDelete,
1152 /*Diagnose*/ true, /*WantSize*/ true,
1153 /*WantAligned*/ Overaligned))
1154 return false;
1155
1156 // [dcl.fct.def.coroutine]p12
1157 // If both a usual deallocation function with only a pointer parameter and a
1158 // usual deallocation function with both a pointer parameter and a size
1159 // parameter are found, then the selected deallocation function shall be the
1160 // one with two parameters. Otherwise, the selected deallocation function
1161 // shall be the function with one parameter.
1162 if (!OperatorDelete) {
1163 // Look for a global declaration.
1164 // Coroutines can always provide their required size.
1165 const bool CanProvideSize = true;
1166 // Sema::FindUsualDeallocationFunction will try to find the one with two
1167 // parameters first. It will return the deallocation function with one
1168 // parameter if failed.
1169 OperatorDelete = S.FindUsualDeallocationFunction(StartLoc: Loc, CanProvideSize,
1170 Overaligned, Name: DeleteName);
1171
1172 if (!OperatorDelete)
1173 return false;
1174 }
1175
1176 S.MarkFunctionReferenced(Loc, Func: OperatorDelete);
1177 return true;
1178}
1179
1180
1181void Sema::CheckCompletedCoroutineBody(FunctionDecl *FD, Stmt *&Body) {
1182 FunctionScopeInfo *Fn = getCurFunction();
1183 assert(Fn && Fn->isCoroutine() && "not a coroutine");
1184 if (!Body) {
1185 assert(FD->isInvalidDecl() &&
1186 "a null body is only allowed for invalid declarations");
1187 return;
1188 }
1189 // We have a function that uses coroutine keywords, but we failed to build
1190 // the promise type.
1191 if (!Fn->CoroutinePromise)
1192 return FD->setInvalidDecl();
1193
1194 if (isa<CoroutineBodyStmt>(Val: Body)) {
1195 // Nothing todo. the body is already a transformed coroutine body statement.
1196 return;
1197 }
1198
1199 // The always_inline attribute doesn't reliably apply to a coroutine,
1200 // because the coroutine will be split into pieces and some pieces
1201 // might be called indirectly, as in a virtual call. Even the ramp
1202 // function cannot be inlined at -O0, due to pipeline ordering
1203 // problems (see https://llvm.org/PR53413). Tell the user about it.
1204 if (FD->hasAttr<AlwaysInlineAttr>())
1205 Diag(FD->getLocation(), diag::warn_always_inline_coroutine);
1206
1207 // The design of coroutines means we cannot allow use of VLAs within one, so
1208 // diagnose if we've seen a VLA in the body of this function.
1209 if (Fn->FirstVLALoc.isValid())
1210 Diag(Fn->FirstVLALoc, diag::err_vla_in_coroutine_unsupported);
1211
1212 // [stmt.return.coroutine]p1:
1213 // A coroutine shall not enclose a return statement ([stmt.return]).
1214 if (Fn->FirstReturnLoc.isValid()) {
1215 assert(Fn->FirstCoroutineStmtLoc.isValid() &&
1216 "first coroutine location not set");
1217 Diag(Fn->FirstReturnLoc, diag::err_return_in_coroutine);
1218 Diag(Fn->FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1219 << Fn->getFirstCoroutineStmtKeyword();
1220 }
1221
1222 // Coroutines will get splitted into pieces. The GNU address of label
1223 // extension wouldn't be meaningful in coroutines.
1224 for (AddrLabelExpr *ALE : Fn->AddrLabels)
1225 Diag(ALE->getBeginLoc(), diag::err_coro_invalid_addr_of_label);
1226
1227 CoroutineStmtBuilder Builder(*this, *FD, *Fn, Body);
1228 if (Builder.isInvalid() || !Builder.buildStatements())
1229 return FD->setInvalidDecl();
1230
1231 // Build body for the coroutine wrapper statement.
1232 Body = CoroutineBodyStmt::Create(C: Context, Args: Builder);
1233}
1234
1235static CompoundStmt *buildCoroutineBody(Stmt *Body, ASTContext &Context) {
1236 if (auto *CS = dyn_cast<CompoundStmt>(Val: Body))
1237 return CS;
1238
1239 // The body of the coroutine may be a try statement if it is in
1240 // 'function-try-block' syntax. Here we wrap it into a compound
1241 // statement for consistency.
1242 assert(isa<CXXTryStmt>(Body) && "Unimaged coroutine body type");
1243 return CompoundStmt::Create(C: Context, Stmts: {Body}, FPFeatures: FPOptionsOverride(),
1244 LB: SourceLocation(), RB: SourceLocation());
1245}
1246
1247CoroutineStmtBuilder::CoroutineStmtBuilder(Sema &S, FunctionDecl &FD,
1248 sema::FunctionScopeInfo &Fn,
1249 Stmt *Body)
1250 : S(S), FD(FD), Fn(Fn), Loc(FD.getLocation()),
1251 IsPromiseDependentType(
1252 !Fn.CoroutinePromise ||
1253 Fn.CoroutinePromise->getType()->isDependentType()) {
1254 this->Body = buildCoroutineBody(Body, Context&: S.getASTContext());
1255
1256 for (auto KV : Fn.CoroutineParameterMoves)
1257 this->ParamMovesVector.push_back(Elt: KV.second);
1258 this->ParamMoves = this->ParamMovesVector;
1259
1260 if (!IsPromiseDependentType) {
1261 PromiseRecordDecl = Fn.CoroutinePromise->getType()->getAsCXXRecordDecl();
1262 assert(PromiseRecordDecl && "Type should have already been checked");
1263 }
1264 this->IsValid = makePromiseStmt() && makeInitialAndFinalSuspend();
1265}
1266
1267bool CoroutineStmtBuilder::buildStatements() {
1268 assert(this->IsValid && "coroutine already invalid");
1269 this->IsValid = makeReturnObject();
1270 if (this->IsValid && !IsPromiseDependentType)
1271 buildDependentStatements();
1272 return this->IsValid;
1273}
1274
1275bool CoroutineStmtBuilder::buildDependentStatements() {
1276 assert(this->IsValid && "coroutine already invalid");
1277 assert(!this->IsPromiseDependentType &&
1278 "coroutine cannot have a dependent promise type");
1279 this->IsValid = makeOnException() && makeOnFallthrough() &&
1280 makeGroDeclAndReturnStmt() && makeReturnOnAllocFailure() &&
1281 makeNewAndDeleteExpr();
1282 return this->IsValid;
1283}
1284
1285bool CoroutineStmtBuilder::makePromiseStmt() {
1286 // Form a declaration statement for the promise declaration, so that AST
1287 // visitors can more easily find it.
1288 StmtResult PromiseStmt =
1289 S.ActOnDeclStmt(Decl: S.ConvertDeclToDeclGroup(Fn.CoroutinePromise), StartLoc: Loc, EndLoc: Loc);
1290 if (PromiseStmt.isInvalid())
1291 return false;
1292
1293 this->Promise = PromiseStmt.get();
1294 return true;
1295}
1296
1297bool CoroutineStmtBuilder::makeInitialAndFinalSuspend() {
1298 if (Fn.hasInvalidCoroutineSuspends())
1299 return false;
1300 this->InitialSuspend = cast<Expr>(Val: Fn.CoroutineSuspends.first);
1301 this->FinalSuspend = cast<Expr>(Val: Fn.CoroutineSuspends.second);
1302 return true;
1303}
1304
1305static bool diagReturnOnAllocFailure(Sema &S, Expr *E,
1306 CXXRecordDecl *PromiseRecordDecl,
1307 FunctionScopeInfo &Fn) {
1308 auto Loc = E->getExprLoc();
1309 if (auto *DeclRef = dyn_cast_or_null<DeclRefExpr>(Val: E)) {
1310 auto *Decl = DeclRef->getDecl();
1311 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(Val: Decl)) {
1312 if (Method->isStatic())
1313 return true;
1314 else
1315 Loc = Decl->getLocation();
1316 }
1317 }
1318
1319 S.Diag(
1320 Loc,
1321 diag::err_coroutine_promise_get_return_object_on_allocation_failure)
1322 << PromiseRecordDecl;
1323 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1324 << Fn.getFirstCoroutineStmtKeyword();
1325 return false;
1326}
1327
1328bool CoroutineStmtBuilder::makeReturnOnAllocFailure() {
1329 assert(!IsPromiseDependentType &&
1330 "cannot make statement while the promise type is dependent");
1331
1332 // [dcl.fct.def.coroutine]p10
1333 // If a search for the name get_return_object_on_allocation_failure in
1334 // the scope of the promise type ([class.member.lookup]) finds any
1335 // declarations, then the result of a call to an allocation function used to
1336 // obtain storage for the coroutine state is assumed to return nullptr if it
1337 // fails to obtain storage, ... If the allocation function returns nullptr,
1338 // ... and the return value is obtained by a call to
1339 // T::get_return_object_on_allocation_failure(), where T is the
1340 // promise type.
1341 DeclarationName DN =
1342 S.PP.getIdentifierInfo(Name: "get_return_object_on_allocation_failure");
1343 LookupResult Found(S, DN, Loc, Sema::LookupMemberName);
1344 if (!S.LookupQualifiedName(Found, PromiseRecordDecl))
1345 return true;
1346
1347 CXXScopeSpec SS;
1348 ExprResult DeclNameExpr =
1349 S.BuildDeclarationNameExpr(SS, R&: Found, /*NeedsADL=*/false);
1350 if (DeclNameExpr.isInvalid())
1351 return false;
1352
1353 if (!diagReturnOnAllocFailure(S, E: DeclNameExpr.get(), PromiseRecordDecl, Fn))
1354 return false;
1355
1356 ExprResult ReturnObjectOnAllocationFailure =
1357 S.BuildCallExpr(S: nullptr, Fn: DeclNameExpr.get(), LParenLoc: Loc, ArgExprs: {}, RParenLoc: Loc);
1358 if (ReturnObjectOnAllocationFailure.isInvalid())
1359 return false;
1360
1361 StmtResult ReturnStmt =
1362 S.BuildReturnStmt(ReturnLoc: Loc, RetValExp: ReturnObjectOnAllocationFailure.get());
1363 if (ReturnStmt.isInvalid()) {
1364 S.Diag(Found.getFoundDecl()->getLocation(), diag::note_member_declared_here)
1365 << DN;
1366 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1367 << Fn.getFirstCoroutineStmtKeyword();
1368 return false;
1369 }
1370
1371 this->ReturnStmtOnAllocFailure = ReturnStmt.get();
1372 return true;
1373}
1374
1375// Collect placement arguments for allocation function of coroutine FD.
1376// Return true if we collect placement arguments succesfully. Return false,
1377// otherwise.
1378static bool collectPlacementArgs(Sema &S, FunctionDecl &FD, SourceLocation Loc,
1379 SmallVectorImpl<Expr *> &PlacementArgs) {
1380 if (auto *MD = dyn_cast<CXXMethodDecl>(Val: &FD)) {
1381 if (MD->isImplicitObjectMemberFunction() && !isLambdaCallOperator(MD)) {
1382 ExprResult ThisExpr = S.ActOnCXXThis(loc: Loc);
1383 if (ThisExpr.isInvalid())
1384 return false;
1385 ThisExpr = S.CreateBuiltinUnaryOp(OpLoc: Loc, Opc: UO_Deref, InputExpr: ThisExpr.get());
1386 if (ThisExpr.isInvalid())
1387 return false;
1388 PlacementArgs.push_back(Elt: ThisExpr.get());
1389 }
1390 }
1391
1392 for (auto *PD : FD.parameters()) {
1393 if (PD->getType()->isDependentType())
1394 continue;
1395
1396 // Build a reference to the parameter.
1397 auto PDLoc = PD->getLocation();
1398 ExprResult PDRefExpr =
1399 S.BuildDeclRefExpr(PD, PD->getOriginalType().getNonReferenceType(),
1400 ExprValueKind::VK_LValue, PDLoc);
1401 if (PDRefExpr.isInvalid())
1402 return false;
1403
1404 PlacementArgs.push_back(Elt: PDRefExpr.get());
1405 }
1406
1407 return true;
1408}
1409
1410bool CoroutineStmtBuilder::makeNewAndDeleteExpr() {
1411 // Form and check allocation and deallocation calls.
1412 assert(!IsPromiseDependentType &&
1413 "cannot make statement while the promise type is dependent");
1414 QualType PromiseType = Fn.CoroutinePromise->getType();
1415
1416 if (S.RequireCompleteType(Loc, PromiseType, diag::err_incomplete_type))
1417 return false;
1418
1419 const bool RequiresNoThrowAlloc = ReturnStmtOnAllocFailure != nullptr;
1420
1421 // According to [dcl.fct.def.coroutine]p9, Lookup allocation functions using a
1422 // parameter list composed of the requested size of the coroutine state being
1423 // allocated, followed by the coroutine function's arguments. If a matching
1424 // allocation function exists, use it. Otherwise, use an allocation function
1425 // that just takes the requested size.
1426 //
1427 // [dcl.fct.def.coroutine]p9
1428 // An implementation may need to allocate additional storage for a
1429 // coroutine.
1430 // This storage is known as the coroutine state and is obtained by calling a
1431 // non-array allocation function ([basic.stc.dynamic.allocation]). The
1432 // allocation function's name is looked up by searching for it in the scope of
1433 // the promise type.
1434 // - If any declarations are found, overload resolution is performed on a
1435 // function call created by assembling an argument list. The first argument is
1436 // the amount of space requested, and has type std::size_t. The
1437 // lvalues p1 ... pn are the succeeding arguments.
1438 //
1439 // ...where "p1 ... pn" are defined earlier as:
1440 //
1441 // [dcl.fct.def.coroutine]p3
1442 // The promise type of a coroutine is `std::coroutine_traits<R, P1, ...,
1443 // Pn>`
1444 // , where R is the return type of the function, and `P1, ..., Pn` are the
1445 // sequence of types of the non-object function parameters, preceded by the
1446 // type of the object parameter ([dcl.fct]) if the coroutine is a non-static
1447 // member function. [dcl.fct.def.coroutine]p4 In the following, p_i is an
1448 // lvalue of type P_i, where p1 denotes the object parameter and p_i+1 denotes
1449 // the i-th non-object function parameter for a non-static member function,
1450 // and p_i denotes the i-th function parameter otherwise. For a non-static
1451 // member function, q_1 is an lvalue that denotes *this; any other q_i is an
1452 // lvalue that denotes the parameter copy corresponding to p_i.
1453
1454 FunctionDecl *OperatorNew = nullptr;
1455 SmallVector<Expr *, 1> PlacementArgs;
1456
1457 const bool PromiseContainsNew = [this, &PromiseType]() -> bool {
1458 DeclarationName NewName =
1459 S.getASTContext().DeclarationNames.getCXXOperatorName(Op: OO_New);
1460 LookupResult R(S, NewName, Loc, Sema::LookupOrdinaryName);
1461
1462 if (PromiseType->isRecordType())
1463 S.LookupQualifiedName(R, PromiseType->getAsCXXRecordDecl());
1464
1465 return !R.empty() && !R.isAmbiguous();
1466 }();
1467
1468 // Helper function to indicate whether the last lookup found the aligned
1469 // allocation function.
1470 bool PassAlignment = S.getLangOpts().CoroAlignedAllocation;
1471 auto LookupAllocationFunction = [&](Sema::AllocationFunctionScope NewScope =
1472 Sema::AFS_Both,
1473 bool WithoutPlacementArgs = false,
1474 bool ForceNonAligned = false) {
1475 // [dcl.fct.def.coroutine]p9
1476 // The allocation function's name is looked up by searching for it in the
1477 // scope of the promise type.
1478 // - If any declarations are found, ...
1479 // - If no declarations are found in the scope of the promise type, a search
1480 // is performed in the global scope.
1481 if (NewScope == Sema::AFS_Both)
1482 NewScope = PromiseContainsNew ? Sema::AFS_Class : Sema::AFS_Global;
1483
1484 PassAlignment = !ForceNonAligned && S.getLangOpts().CoroAlignedAllocation;
1485 FunctionDecl *UnusedResult = nullptr;
1486 S.FindAllocationFunctions(StartLoc: Loc, Range: SourceRange(), NewScope,
1487 /*DeleteScope*/ Sema::AFS_Both, AllocType: PromiseType,
1488 /*isArray*/ IsArray: false, PassAlignment,
1489 PlaceArgs: WithoutPlacementArgs ? MultiExprArg{}
1490 : PlacementArgs,
1491 OperatorNew, OperatorDelete&: UnusedResult, /*Diagnose*/ false);
1492 };
1493
1494 // We don't expect to call to global operator new with (size, p0, …, pn).
1495 // So if we choose to lookup the allocation function in global scope, we
1496 // shouldn't lookup placement arguments.
1497 if (PromiseContainsNew && !collectPlacementArgs(S, FD, Loc, PlacementArgs))
1498 return false;
1499
1500 LookupAllocationFunction();
1501
1502 if (PromiseContainsNew && !PlacementArgs.empty()) {
1503 // [dcl.fct.def.coroutine]p9
1504 // If no viable function is found ([over.match.viable]), overload
1505 // resolution
1506 // is performed again on a function call created by passing just the amount
1507 // of space required as an argument of type std::size_t.
1508 //
1509 // Proposed Change of [dcl.fct.def.coroutine]p9 in P2014R0:
1510 // Otherwise, overload resolution is performed again on a function call
1511 // created
1512 // by passing the amount of space requested as an argument of type
1513 // std::size_t as the first argument, and the requested alignment as
1514 // an argument of type std:align_val_t as the second argument.
1515 if (!OperatorNew ||
1516 (S.getLangOpts().CoroAlignedAllocation && !PassAlignment))
1517 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class,
1518 /*WithoutPlacementArgs*/ true);
1519 }
1520
1521 // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0:
1522 // Otherwise, overload resolution is performed again on a function call
1523 // created
1524 // by passing the amount of space requested as an argument of type
1525 // std::size_t as the first argument, and the lvalues p1 ... pn as the
1526 // succeeding arguments. Otherwise, overload resolution is performed again
1527 // on a function call created by passing just the amount of space required as
1528 // an argument of type std::size_t.
1529 //
1530 // So within the proposed change in P2014RO, the priority order of aligned
1531 // allocation functions wiht promise_type is:
1532 //
1533 // void* operator new( std::size_t, std::align_val_t, placement_args... );
1534 // void* operator new( std::size_t, std::align_val_t);
1535 // void* operator new( std::size_t, placement_args... );
1536 // void* operator new( std::size_t);
1537
1538 // Helper variable to emit warnings.
1539 bool FoundNonAlignedInPromise = false;
1540 if (PromiseContainsNew && S.getLangOpts().CoroAlignedAllocation)
1541 if (!OperatorNew || !PassAlignment) {
1542 FoundNonAlignedInPromise = OperatorNew;
1543
1544 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class,
1545 /*WithoutPlacementArgs*/ false,
1546 /*ForceNonAligned*/ true);
1547
1548 if (!OperatorNew && !PlacementArgs.empty())
1549 LookupAllocationFunction(/*NewScope*/ Sema::AFS_Class,
1550 /*WithoutPlacementArgs*/ true,
1551 /*ForceNonAligned*/ true);
1552 }
1553
1554 bool IsGlobalOverload =
1555 OperatorNew && !isa<CXXRecordDecl>(OperatorNew->getDeclContext());
1556 // If we didn't find a class-local new declaration and non-throwing new
1557 // was is required then we need to lookup the non-throwing global operator
1558 // instead.
1559 if (RequiresNoThrowAlloc && (!OperatorNew || IsGlobalOverload)) {
1560 auto *StdNoThrow = buildStdNoThrowDeclRef(S, Loc);
1561 if (!StdNoThrow)
1562 return false;
1563 PlacementArgs = {StdNoThrow};
1564 OperatorNew = nullptr;
1565 LookupAllocationFunction(Sema::AFS_Global);
1566 }
1567
1568 // If we found a non-aligned allocation function in the promise_type,
1569 // it indicates the user forgot to update the allocation function. Let's emit
1570 // a warning here.
1571 if (FoundNonAlignedInPromise) {
1572 S.Diag(OperatorNew->getLocation(),
1573 diag::warn_non_aligned_allocation_function)
1574 << &FD;
1575 }
1576
1577 if (!OperatorNew) {
1578 if (PromiseContainsNew)
1579 S.Diag(Loc, diag::err_coroutine_unusable_new) << PromiseType << &FD;
1580 else if (RequiresNoThrowAlloc)
1581 S.Diag(Loc, diag::err_coroutine_unfound_nothrow_new)
1582 << &FD << S.getLangOpts().CoroAlignedAllocation;
1583
1584 return false;
1585 }
1586
1587 if (RequiresNoThrowAlloc) {
1588 const auto *FT = OperatorNew->getType()->castAs<FunctionProtoType>();
1589 if (!FT->isNothrow(/*ResultIfDependent*/ false)) {
1590 S.Diag(OperatorNew->getLocation(),
1591 diag::err_coroutine_promise_new_requires_nothrow)
1592 << OperatorNew;
1593 S.Diag(Loc, diag::note_coroutine_promise_call_implicitly_required)
1594 << OperatorNew;
1595 return false;
1596 }
1597 }
1598
1599 FunctionDecl *OperatorDelete = nullptr;
1600 if (!findDeleteForPromise(S, Loc, PromiseType, OperatorDelete)) {
1601 // FIXME: We should add an error here. According to:
1602 // [dcl.fct.def.coroutine]p12
1603 // If no usual deallocation function is found, the program is ill-formed.
1604 return false;
1605 }
1606
1607 Expr *FramePtr =
1608 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_frame, {});
1609
1610 Expr *FrameSize =
1611 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_size, {});
1612
1613 Expr *FrameAlignment = nullptr;
1614
1615 if (S.getLangOpts().CoroAlignedAllocation) {
1616 FrameAlignment =
1617 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_align, {});
1618
1619 TypeSourceInfo *AlignValTy = getTypeSourceInfoForStdAlignValT(S, Loc);
1620 if (!AlignValTy)
1621 return false;
1622
1623 FrameAlignment = S.BuildCXXNamedCast(OpLoc: Loc, Kind: tok::kw_static_cast, Ty: AlignValTy,
1624 E: FrameAlignment, AngleBrackets: SourceRange(Loc, Loc),
1625 Parens: SourceRange(Loc, Loc))
1626 .get();
1627 }
1628
1629 // Make new call.
1630 ExprResult NewRef =
1631 S.BuildDeclRefExpr(OperatorNew, OperatorNew->getType(), VK_LValue, Loc);
1632 if (NewRef.isInvalid())
1633 return false;
1634
1635 SmallVector<Expr *, 2> NewArgs(1, FrameSize);
1636 if (S.getLangOpts().CoroAlignedAllocation && PassAlignment)
1637 NewArgs.push_back(Elt: FrameAlignment);
1638
1639 if (OperatorNew->getNumParams() > NewArgs.size())
1640 llvm::append_range(C&: NewArgs, R&: PlacementArgs);
1641
1642 ExprResult NewExpr =
1643 S.BuildCallExpr(S: S.getCurScope(), Fn: NewRef.get(), LParenLoc: Loc, ArgExprs: NewArgs, RParenLoc: Loc);
1644 NewExpr = S.ActOnFinishFullExpr(Expr: NewExpr.get(), /*DiscardedValue*/ false);
1645 if (NewExpr.isInvalid())
1646 return false;
1647
1648 // Make delete call.
1649
1650 QualType OpDeleteQualType = OperatorDelete->getType();
1651
1652 ExprResult DeleteRef =
1653 S.BuildDeclRefExpr(OperatorDelete, OpDeleteQualType, VK_LValue, Loc);
1654 if (DeleteRef.isInvalid())
1655 return false;
1656
1657 Expr *CoroFree =
1658 S.BuildBuiltinCallExpr(Loc, Builtin::BI__builtin_coro_free, {FramePtr});
1659
1660 SmallVector<Expr *, 2> DeleteArgs{CoroFree};
1661
1662 // [dcl.fct.def.coroutine]p12
1663 // The selected deallocation function shall be called with the address of
1664 // the block of storage to be reclaimed as its first argument. If a
1665 // deallocation function with a parameter of type std::size_t is
1666 // used, the size of the block is passed as the corresponding argument.
1667 const auto *OpDeleteType =
1668 OpDeleteQualType.getTypePtr()->castAs<FunctionProtoType>();
1669 if (OpDeleteType->getNumParams() > DeleteArgs.size() &&
1670 S.getASTContext().hasSameUnqualifiedType(
1671 T1: OpDeleteType->getParamType(DeleteArgs.size()), T2: FrameSize->getType()))
1672 DeleteArgs.push_back(Elt: FrameSize);
1673
1674 // Proposed Change of [dcl.fct.def.coroutine]p12 in P2014R0:
1675 // If deallocation function lookup finds a usual deallocation function with
1676 // a pointer parameter, size parameter and alignment parameter then this
1677 // will be the selected deallocation function, otherwise if lookup finds a
1678 // usual deallocation function with both a pointer parameter and a size
1679 // parameter, then this will be the selected deallocation function.
1680 // Otherwise, if lookup finds a usual deallocation function with only a
1681 // pointer parameter, then this will be the selected deallocation
1682 // function.
1683 //
1684 // So we are not forced to pass alignment to the deallocation function.
1685 if (S.getLangOpts().CoroAlignedAllocation &&
1686 OpDeleteType->getNumParams() > DeleteArgs.size() &&
1687 S.getASTContext().hasSameUnqualifiedType(
1688 T1: OpDeleteType->getParamType(DeleteArgs.size()),
1689 T2: FrameAlignment->getType()))
1690 DeleteArgs.push_back(Elt: FrameAlignment);
1691
1692 ExprResult DeleteExpr =
1693 S.BuildCallExpr(S: S.getCurScope(), Fn: DeleteRef.get(), LParenLoc: Loc, ArgExprs: DeleteArgs, RParenLoc: Loc);
1694 DeleteExpr =
1695 S.ActOnFinishFullExpr(Expr: DeleteExpr.get(), /*DiscardedValue*/ false);
1696 if (DeleteExpr.isInvalid())
1697 return false;
1698
1699 this->Allocate = NewExpr.get();
1700 this->Deallocate = DeleteExpr.get();
1701
1702 return true;
1703}
1704
1705bool CoroutineStmtBuilder::makeOnFallthrough() {
1706 assert(!IsPromiseDependentType &&
1707 "cannot make statement while the promise type is dependent");
1708
1709 // [dcl.fct.def.coroutine]/p6
1710 // If searches for the names return_void and return_value in the scope of
1711 // the promise type each find any declarations, the program is ill-formed.
1712 // [Note 1: If return_void is found, flowing off the end of a coroutine is
1713 // equivalent to a co_return with no operand. Otherwise, flowing off the end
1714 // of a coroutine results in undefined behavior ([stmt.return.coroutine]). —
1715 // end note]
1716 bool HasRVoid, HasRValue;
1717 LookupResult LRVoid =
1718 lookupMember(S, Name: "return_void", RD: PromiseRecordDecl, Loc, Res&: HasRVoid);
1719 LookupResult LRValue =
1720 lookupMember(S, Name: "return_value", RD: PromiseRecordDecl, Loc, Res&: HasRValue);
1721
1722 StmtResult Fallthrough;
1723 if (HasRVoid && HasRValue) {
1724 // FIXME Improve this diagnostic
1725 S.Diag(FD.getLocation(),
1726 diag::err_coroutine_promise_incompatible_return_functions)
1727 << PromiseRecordDecl;
1728 S.Diag(LRVoid.getRepresentativeDecl()->getLocation(),
1729 diag::note_member_first_declared_here)
1730 << LRVoid.getLookupName();
1731 S.Diag(LRValue.getRepresentativeDecl()->getLocation(),
1732 diag::note_member_first_declared_here)
1733 << LRValue.getLookupName();
1734 return false;
1735 } else if (!HasRVoid && !HasRValue) {
1736 // We need to set 'Fallthrough'. Otherwise the other analysis part might
1737 // think the coroutine has defined a return_value method. So it might emit
1738 // **false** positive warning. e.g.,
1739 //
1740 // promise_without_return_func foo() {
1741 // co_await something();
1742 // }
1743 //
1744 // Then AnalysisBasedWarning would emit a warning about `foo()` lacking a
1745 // co_return statements, which isn't correct.
1746 Fallthrough = S.ActOnNullStmt(SemiLoc: PromiseRecordDecl->getLocation());
1747 if (Fallthrough.isInvalid())
1748 return false;
1749 } else if (HasRVoid) {
1750 Fallthrough = S.BuildCoreturnStmt(Loc: FD.getLocation(), E: nullptr,
1751 /*IsImplicit=*/true);
1752 Fallthrough = S.ActOnFinishFullStmt(Stmt: Fallthrough.get());
1753 if (Fallthrough.isInvalid())
1754 return false;
1755 }
1756
1757 this->OnFallthrough = Fallthrough.get();
1758 return true;
1759}
1760
1761bool CoroutineStmtBuilder::makeOnException() {
1762 // Try to form 'p.unhandled_exception();'
1763 assert(!IsPromiseDependentType &&
1764 "cannot make statement while the promise type is dependent");
1765
1766 const bool RequireUnhandledException = S.getLangOpts().CXXExceptions;
1767
1768 if (!lookupMember(S, Name: "unhandled_exception", RD: PromiseRecordDecl, Loc)) {
1769 auto DiagID =
1770 RequireUnhandledException
1771 ? diag::err_coroutine_promise_unhandled_exception_required
1772 : diag::
1773 warn_coroutine_promise_unhandled_exception_required_with_exceptions;
1774 S.Diag(Loc, DiagID) << PromiseRecordDecl;
1775 S.Diag(PromiseRecordDecl->getLocation(), diag::note_defined_here)
1776 << PromiseRecordDecl;
1777 return !RequireUnhandledException;
1778 }
1779
1780 // If exceptions are disabled, don't try to build OnException.
1781 if (!S.getLangOpts().CXXExceptions)
1782 return true;
1783
1784 ExprResult UnhandledException = buildPromiseCall(
1785 S, Promise: Fn.CoroutinePromise, Loc, Name: "unhandled_exception", Args: std::nullopt);
1786 UnhandledException = S.ActOnFinishFullExpr(Expr: UnhandledException.get(), CC: Loc,
1787 /*DiscardedValue*/ false);
1788 if (UnhandledException.isInvalid())
1789 return false;
1790
1791 // Since the body of the coroutine will be wrapped in try-catch, it will
1792 // be incompatible with SEH __try if present in a function.
1793 if (!S.getLangOpts().Borland && Fn.FirstSEHTryLoc.isValid()) {
1794 S.Diag(Fn.FirstSEHTryLoc, diag::err_seh_in_a_coroutine_with_cxx_exceptions);
1795 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1796 << Fn.getFirstCoroutineStmtKeyword();
1797 return false;
1798 }
1799
1800 this->OnException = UnhandledException.get();
1801 return true;
1802}
1803
1804bool CoroutineStmtBuilder::makeReturnObject() {
1805 // [dcl.fct.def.coroutine]p7
1806 // The expression promise.get_return_object() is used to initialize the
1807 // returned reference or prvalue result object of a call to a coroutine.
1808 ExprResult ReturnObject = buildPromiseCall(S, Promise: Fn.CoroutinePromise, Loc,
1809 Name: "get_return_object", Args: std::nullopt);
1810 if (ReturnObject.isInvalid())
1811 return false;
1812
1813 this->ReturnValue = ReturnObject.get();
1814 return true;
1815}
1816
1817static void noteMemberDeclaredHere(Sema &S, Expr *E, FunctionScopeInfo &Fn) {
1818 if (auto *MbrRef = dyn_cast<CXXMemberCallExpr>(Val: E)) {
1819 auto *MethodDecl = MbrRef->getMethodDecl();
1820 S.Diag(MethodDecl->getLocation(), diag::note_member_declared_here)
1821 << MethodDecl;
1822 }
1823 S.Diag(Fn.FirstCoroutineStmtLoc, diag::note_declared_coroutine_here)
1824 << Fn.getFirstCoroutineStmtKeyword();
1825}
1826
1827bool CoroutineStmtBuilder::makeGroDeclAndReturnStmt() {
1828 assert(!IsPromiseDependentType &&
1829 "cannot make statement while the promise type is dependent");
1830 assert(this->ReturnValue && "ReturnValue must be already formed");
1831
1832 QualType const GroType = this->ReturnValue->getType();
1833 assert(!GroType->isDependentType() &&
1834 "get_return_object type must no longer be dependent");
1835
1836 QualType const FnRetType = FD.getReturnType();
1837 assert(!FnRetType->isDependentType() &&
1838 "get_return_object type must no longer be dependent");
1839
1840 // The call to get_­return_­object is sequenced before the call to
1841 // initial_­suspend and is invoked at most once, but there are caveats
1842 // regarding on whether the prvalue result object may be initialized
1843 // directly/eager or delayed, depending on the types involved.
1844 //
1845 // More info at https://github.com/cplusplus/papers/issues/1414
1846 bool GroMatchesRetType = S.getASTContext().hasSameType(T1: GroType, T2: FnRetType);
1847
1848 if (FnRetType->isVoidType()) {
1849 ExprResult Res =
1850 S.ActOnFinishFullExpr(Expr: this->ReturnValue, CC: Loc, /*DiscardedValue*/ false);
1851 if (Res.isInvalid())
1852 return false;
1853
1854 if (!GroMatchesRetType)
1855 this->ResultDecl = Res.get();
1856 return true;
1857 }
1858
1859 if (GroType->isVoidType()) {
1860 // Trigger a nice error message.
1861 InitializedEntity Entity =
1862 InitializedEntity::InitializeResult(ReturnLoc: Loc, Type: FnRetType);
1863 S.PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: ReturnValue);
1864 noteMemberDeclaredHere(S, E: ReturnValue, Fn);
1865 return false;
1866 }
1867
1868 StmtResult ReturnStmt;
1869 clang::VarDecl *GroDecl = nullptr;
1870 if (GroMatchesRetType) {
1871 ReturnStmt = S.BuildReturnStmt(ReturnLoc: Loc, RetValExp: ReturnValue);
1872 } else {
1873 GroDecl = VarDecl::Create(
1874 C&: S.Context, DC: &FD, StartLoc: FD.getLocation(), IdLoc: FD.getLocation(),
1875 Id: &S.PP.getIdentifierTable().get(Name: "__coro_gro"), T: GroType,
1876 TInfo: S.Context.getTrivialTypeSourceInfo(T: GroType, Loc), S: SC_None);
1877 GroDecl->setImplicit();
1878
1879 S.CheckVariableDeclarationType(NewVD: GroDecl);
1880 if (GroDecl->isInvalidDecl())
1881 return false;
1882
1883 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var: GroDecl);
1884 ExprResult Res =
1885 S.PerformCopyInitialization(Entity, EqualLoc: SourceLocation(), Init: ReturnValue);
1886 if (Res.isInvalid())
1887 return false;
1888
1889 Res = S.ActOnFinishFullExpr(Expr: Res.get(), /*DiscardedValue*/ false);
1890 if (Res.isInvalid())
1891 return false;
1892
1893 S.AddInitializerToDecl(GroDecl, Res.get(),
1894 /*DirectInit=*/false);
1895
1896 S.FinalizeDeclaration(GroDecl);
1897
1898 // Form a declaration statement for the return declaration, so that AST
1899 // visitors can more easily find it.
1900 StmtResult GroDeclStmt =
1901 S.ActOnDeclStmt(Decl: S.ConvertDeclToDeclGroup(GroDecl), StartLoc: Loc, EndLoc: Loc);
1902 if (GroDeclStmt.isInvalid())
1903 return false;
1904
1905 this->ResultDecl = GroDeclStmt.get();
1906
1907 ExprResult declRef = S.BuildDeclRefExpr(GroDecl, GroType, VK_LValue, Loc);
1908 if (declRef.isInvalid())
1909 return false;
1910
1911 ReturnStmt = S.BuildReturnStmt(ReturnLoc: Loc, RetValExp: declRef.get());
1912 }
1913
1914 if (ReturnStmt.isInvalid()) {
1915 noteMemberDeclaredHere(S, E: ReturnValue, Fn);
1916 return false;
1917 }
1918
1919 if (!GroMatchesRetType &&
1920 cast<clang::ReturnStmt>(Val: ReturnStmt.get())->getNRVOCandidate() == GroDecl)
1921 GroDecl->setNRVOVariable(true);
1922
1923 this->ReturnStmt = ReturnStmt.get();
1924 return true;
1925}
1926
1927// Create a static_cast\<T&&>(expr).
1928static Expr *castForMoving(Sema &S, Expr *E, QualType T = QualType()) {
1929 if (T.isNull())
1930 T = E->getType();
1931 QualType TargetType = S.BuildReferenceType(
1932 T, /*SpelledAsLValue*/ LValueRef: false, Loc: SourceLocation(), Entity: DeclarationName());
1933 SourceLocation ExprLoc = E->getBeginLoc();
1934 TypeSourceInfo *TargetLoc =
1935 S.Context.getTrivialTypeSourceInfo(T: TargetType, Loc: ExprLoc);
1936
1937 return S
1938 .BuildCXXNamedCast(OpLoc: ExprLoc, Kind: tok::kw_static_cast, Ty: TargetLoc, E,
1939 AngleBrackets: SourceRange(ExprLoc, ExprLoc), Parens: E->getSourceRange())
1940 .get();
1941}
1942
1943/// Build a variable declaration for move parameter.
1944static VarDecl *buildVarDecl(Sema &S, SourceLocation Loc, QualType Type,
1945 IdentifierInfo *II) {
1946 TypeSourceInfo *TInfo = S.Context.getTrivialTypeSourceInfo(T: Type, Loc);
1947 VarDecl *Decl = VarDecl::Create(C&: S.Context, DC: S.CurContext, StartLoc: Loc, IdLoc: Loc, Id: II, T: Type,
1948 TInfo, S: SC_None);
1949 Decl->setImplicit();
1950 return Decl;
1951}
1952
1953// Build statements that move coroutine function parameters to the coroutine
1954// frame, and store them on the function scope info.
1955bool Sema::buildCoroutineParameterMoves(SourceLocation Loc) {
1956 assert(isa<FunctionDecl>(CurContext) && "not in a function scope");
1957 auto *FD = cast<FunctionDecl>(Val: CurContext);
1958
1959 auto *ScopeInfo = getCurFunction();
1960 if (!ScopeInfo->CoroutineParameterMoves.empty())
1961 return false;
1962
1963 // [dcl.fct.def.coroutine]p13
1964 // When a coroutine is invoked, after initializing its parameters
1965 // ([expr.call]), a copy is created for each coroutine parameter. For a
1966 // parameter of type cv T, the copy is a variable of type cv T with
1967 // automatic storage duration that is direct-initialized from an xvalue of
1968 // type T referring to the parameter.
1969 for (auto *PD : FD->parameters()) {
1970 if (PD->getType()->isDependentType())
1971 continue;
1972
1973 // Preserve the referenced state for unused parameter diagnostics.
1974 bool DeclReferenced = PD->isReferenced();
1975
1976 ExprResult PDRefExpr =
1977 BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
1978 ExprValueKind::VK_LValue, Loc); // FIXME: scope?
1979
1980 PD->setReferenced(DeclReferenced);
1981
1982 if (PDRefExpr.isInvalid())
1983 return false;
1984
1985 Expr *CExpr = nullptr;
1986 if (PD->getType()->getAsCXXRecordDecl() ||
1987 PD->getType()->isRValueReferenceType())
1988 CExpr = castForMoving(S&: *this, E: PDRefExpr.get());
1989 else
1990 CExpr = PDRefExpr.get();
1991 // [dcl.fct.def.coroutine]p13
1992 // The initialization and destruction of each parameter copy occurs in the
1993 // context of the called coroutine.
1994 auto *D = buildVarDecl(*this, Loc, PD->getType(), PD->getIdentifier());
1995 AddInitializerToDecl(dcl: D, init: CExpr, /*DirectInit=*/true);
1996
1997 // Convert decl to a statement.
1998 StmtResult Stmt = ActOnDeclStmt(Decl: ConvertDeclToDeclGroup(Ptr: D), StartLoc: Loc, EndLoc: Loc);
1999 if (Stmt.isInvalid())
2000 return false;
2001
2002 ScopeInfo->CoroutineParameterMoves.insert(KV: std::make_pair(x&: PD, y: Stmt.get()));
2003 }
2004 return true;
2005}
2006
2007StmtResult Sema::BuildCoroutineBodyStmt(CoroutineBodyStmt::CtorArgs Args) {
2008 CoroutineBodyStmt *Res = CoroutineBodyStmt::Create(C: Context, Args);
2009 if (!Res)
2010 return StmtError();
2011 return Res;
2012}
2013
2014ClassTemplateDecl *Sema::lookupCoroutineTraits(SourceLocation KwLoc,
2015 SourceLocation FuncLoc) {
2016 if (StdCoroutineTraitsCache)
2017 return StdCoroutineTraitsCache;
2018
2019 IdentifierInfo const &TraitIdent =
2020 PP.getIdentifierTable().get(Name: "coroutine_traits");
2021
2022 NamespaceDecl *StdSpace = getStdNamespace();
2023 LookupResult Result(*this, &TraitIdent, FuncLoc, LookupOrdinaryName);
2024 bool Found = StdSpace && LookupQualifiedName(Result, StdSpace);
2025
2026 if (!Found) {
2027 // The goggles, we found nothing!
2028 Diag(KwLoc, diag::err_implied_coroutine_type_not_found)
2029 << "std::coroutine_traits";
2030 return nullptr;
2031 }
2032
2033 // coroutine_traits is required to be a class template.
2034 StdCoroutineTraitsCache = Result.getAsSingle<ClassTemplateDecl>();
2035 if (!StdCoroutineTraitsCache) {
2036 Result.suppressDiagnostics();
2037 NamedDecl *Found = *Result.begin();
2038 Diag(Found->getLocation(), diag::err_malformed_std_coroutine_traits);
2039 return nullptr;
2040 }
2041
2042 return StdCoroutineTraitsCache;
2043}
2044

source code of clang/lib/Sema/SemaCoroutine.cpp