| 1 | //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements semantic analysis for declarations. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "TypeLocBuilder.h" |
| 14 | #include "clang/AST/ASTConsumer.h" |
| 15 | #include "clang/AST/ASTContext.h" |
| 16 | #include "clang/AST/ASTLambda.h" |
| 17 | #include "clang/AST/CXXInheritance.h" |
| 18 | #include "clang/AST/CharUnits.h" |
| 19 | #include "clang/AST/Decl.h" |
| 20 | #include "clang/AST/DeclCXX.h" |
| 21 | #include "clang/AST/DeclObjC.h" |
| 22 | #include "clang/AST/DeclTemplate.h" |
| 23 | #include "clang/AST/EvaluatedExprVisitor.h" |
| 24 | #include "clang/AST/Expr.h" |
| 25 | #include "clang/AST/ExprCXX.h" |
| 26 | #include "clang/AST/MangleNumberingContext.h" |
| 27 | #include "clang/AST/NonTrivialTypeVisitor.h" |
| 28 | #include "clang/AST/Randstruct.h" |
| 29 | #include "clang/AST/StmtCXX.h" |
| 30 | #include "clang/AST/Type.h" |
| 31 | #include "clang/Basic/Builtins.h" |
| 32 | #include "clang/Basic/DiagnosticComment.h" |
| 33 | #include "clang/Basic/PartialDiagnostic.h" |
| 34 | #include "clang/Basic/SourceManager.h" |
| 35 | #include "clang/Basic/TargetInfo.h" |
| 36 | #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex |
| 37 | #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. |
| 38 | #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex |
| 39 | #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled() |
| 40 | #include "clang/Sema/CXXFieldCollector.h" |
| 41 | #include "clang/Sema/DeclSpec.h" |
| 42 | #include "clang/Sema/DelayedDiagnostic.h" |
| 43 | #include "clang/Sema/Initialization.h" |
| 44 | #include "clang/Sema/Lookup.h" |
| 45 | #include "clang/Sema/ParsedTemplate.h" |
| 46 | #include "clang/Sema/Scope.h" |
| 47 | #include "clang/Sema/ScopeInfo.h" |
| 48 | #include "clang/Sema/SemaARM.h" |
| 49 | #include "clang/Sema/SemaCUDA.h" |
| 50 | #include "clang/Sema/SemaHLSL.h" |
| 51 | #include "clang/Sema/SemaInternal.h" |
| 52 | #include "clang/Sema/SemaObjC.h" |
| 53 | #include "clang/Sema/SemaOpenACC.h" |
| 54 | #include "clang/Sema/SemaOpenMP.h" |
| 55 | #include "clang/Sema/SemaPPC.h" |
| 56 | #include "clang/Sema/SemaRISCV.h" |
| 57 | #include "clang/Sema/SemaSYCL.h" |
| 58 | #include "clang/Sema/SemaSwift.h" |
| 59 | #include "clang/Sema/SemaWasm.h" |
| 60 | #include "clang/Sema/Template.h" |
| 61 | #include "llvm/ADT/STLForwardCompat.h" |
| 62 | #include "llvm/ADT/SmallPtrSet.h" |
| 63 | #include "llvm/ADT/SmallString.h" |
| 64 | #include "llvm/ADT/StringExtras.h" |
| 65 | #include "llvm/Support/SaveAndRestore.h" |
| 66 | #include "llvm/TargetParser/Triple.h" |
| 67 | #include <algorithm> |
| 68 | #include <cstring> |
| 69 | #include <optional> |
| 70 | #include <unordered_map> |
| 71 | |
| 72 | using namespace clang; |
| 73 | using namespace sema; |
| 74 | |
| 75 | Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) { |
| 76 | if (OwnedType) { |
| 77 | Decl *Group[2] = { OwnedType, Ptr }; |
| 78 | return DeclGroupPtrTy::make(P: DeclGroupRef::Create(C&: Context, Decls: Group, NumDecls: 2)); |
| 79 | } |
| 80 | |
| 81 | return DeclGroupPtrTy::make(P: DeclGroupRef(Ptr)); |
| 82 | } |
| 83 | |
| 84 | namespace { |
| 85 | |
| 86 | class TypeNameValidatorCCC final : public CorrectionCandidateCallback { |
| 87 | public: |
| 88 | TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false, |
| 89 | bool AllowTemplates = false, |
| 90 | bool AllowNonTemplates = true) |
| 91 | : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass), |
| 92 | AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) { |
| 93 | WantExpressionKeywords = false; |
| 94 | WantCXXNamedCasts = false; |
| 95 | WantRemainingKeywords = false; |
| 96 | } |
| 97 | |
| 98 | bool ValidateCandidate(const TypoCorrection &candidate) override { |
| 99 | if (NamedDecl *ND = candidate.getCorrectionDecl()) { |
| 100 | if (!AllowInvalidDecl && ND->isInvalidDecl()) |
| 101 | return false; |
| 102 | |
| 103 | if (getAsTypeTemplateDecl(ND)) |
| 104 | return AllowTemplates; |
| 105 | |
| 106 | bool IsType = isa<TypeDecl>(Val: ND) || isa<ObjCInterfaceDecl>(Val: ND); |
| 107 | if (!IsType) |
| 108 | return false; |
| 109 | |
| 110 | if (AllowNonTemplates) |
| 111 | return true; |
| 112 | |
| 113 | // An injected-class-name of a class template (specialization) is valid |
| 114 | // as a template or as a non-template. |
| 115 | if (AllowTemplates) { |
| 116 | auto *RD = dyn_cast<CXXRecordDecl>(Val: ND); |
| 117 | if (!RD || !RD->isInjectedClassName()) |
| 118 | return false; |
| 119 | RD = cast<CXXRecordDecl>(RD->getDeclContext()); |
| 120 | return RD->getDescribedClassTemplate() || |
| 121 | isa<ClassTemplateSpecializationDecl>(Val: RD); |
| 122 | } |
| 123 | |
| 124 | return false; |
| 125 | } |
| 126 | |
| 127 | return !WantClassName && candidate.isKeyword(); |
| 128 | } |
| 129 | |
| 130 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
| 131 | return std::make_unique<TypeNameValidatorCCC>(args&: *this); |
| 132 | } |
| 133 | |
| 134 | private: |
| 135 | bool AllowInvalidDecl; |
| 136 | bool WantClassName; |
| 137 | bool AllowTemplates; |
| 138 | bool AllowNonTemplates; |
| 139 | }; |
| 140 | |
| 141 | } // end anonymous namespace |
| 142 | |
| 143 | QualType Sema::getTypeDeclType(DeclContext *LookupCtx, DiagCtorKind DCK, |
| 144 | TypeDecl *TD, SourceLocation NameLoc) { |
| 145 | auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(Val: LookupCtx); |
| 146 | auto *FoundRD = dyn_cast<CXXRecordDecl>(Val: TD); |
| 147 | if (DCK != DiagCtorKind::None && LookupRD && FoundRD && |
| 148 | FoundRD->isInjectedClassName() && |
| 149 | declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent()))) { |
| 150 | Diag(NameLoc, |
| 151 | DCK == DiagCtorKind::Typename |
| 152 | ? diag::ext_out_of_line_qualified_id_type_names_constructor |
| 153 | : diag::err_out_of_line_qualified_id_type_names_constructor) |
| 154 | << TD->getIdentifier() << /*Type=*/1 |
| 155 | << 0 /*if any keyword was present, it was 'typename'*/; |
| 156 | } |
| 157 | |
| 158 | DiagnoseUseOfDecl(TD, NameLoc); |
| 159 | MarkAnyDeclReferenced(Loc: TD->getLocation(), D: TD, /*OdrUse=*/MightBeOdrUse: false); |
| 160 | return Context.getTypeDeclType(Decl: TD); |
| 161 | } |
| 162 | |
| 163 | namespace { |
| 164 | enum class UnqualifiedTypeNameLookupResult { |
| 165 | NotFound, |
| 166 | FoundNonType, |
| 167 | FoundType |
| 168 | }; |
| 169 | } // end anonymous namespace |
| 170 | |
| 171 | /// Tries to perform unqualified lookup of the type decls in bases for |
| 172 | /// dependent class. |
| 173 | /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a |
| 174 | /// type decl, \a FoundType if only type decls are found. |
| 175 | static UnqualifiedTypeNameLookupResult |
| 176 | lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II, |
| 177 | SourceLocation NameLoc, |
| 178 | const CXXRecordDecl *RD) { |
| 179 | if (!RD->hasDefinition()) |
| 180 | return UnqualifiedTypeNameLookupResult::NotFound; |
| 181 | // Look for type decls in base classes. |
| 182 | UnqualifiedTypeNameLookupResult FoundTypeDecl = |
| 183 | UnqualifiedTypeNameLookupResult::NotFound; |
| 184 | for (const auto &Base : RD->bases()) { |
| 185 | const CXXRecordDecl *BaseRD = nullptr; |
| 186 | if (auto *BaseTT = Base.getType()->getAs<TagType>()) |
| 187 | BaseRD = BaseTT->getAsCXXRecordDecl(); |
| 188 | else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) { |
| 189 | // Look for type decls in dependent base classes that have known primary |
| 190 | // templates. |
| 191 | if (!TST || !TST->isDependentType()) |
| 192 | continue; |
| 193 | auto *TD = TST->getTemplateName().getAsTemplateDecl(); |
| 194 | if (!TD) |
| 195 | continue; |
| 196 | if (auto *BasePrimaryTemplate = |
| 197 | dyn_cast_or_null<CXXRecordDecl>(Val: TD->getTemplatedDecl())) { |
| 198 | if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl()) |
| 199 | BaseRD = BasePrimaryTemplate; |
| 200 | else if (auto *CTD = dyn_cast<ClassTemplateDecl>(Val: TD)) { |
| 201 | if (const ClassTemplatePartialSpecializationDecl *PS = |
| 202 | CTD->findPartialSpecialization(T: Base.getType())) |
| 203 | if (PS->getCanonicalDecl() != RD->getCanonicalDecl()) |
| 204 | BaseRD = PS; |
| 205 | } |
| 206 | } |
| 207 | } |
| 208 | if (BaseRD) { |
| 209 | for (NamedDecl *ND : BaseRD->lookup(&II)) { |
| 210 | if (!isa<TypeDecl>(ND)) |
| 211 | return UnqualifiedTypeNameLookupResult::FoundNonType; |
| 212 | FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType; |
| 213 | } |
| 214 | if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) { |
| 215 | switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD: BaseRD)) { |
| 216 | case UnqualifiedTypeNameLookupResult::FoundNonType: |
| 217 | return UnqualifiedTypeNameLookupResult::FoundNonType; |
| 218 | case UnqualifiedTypeNameLookupResult::FoundType: |
| 219 | FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType; |
| 220 | break; |
| 221 | case UnqualifiedTypeNameLookupResult::NotFound: |
| 222 | break; |
| 223 | } |
| 224 | } |
| 225 | } |
| 226 | } |
| 227 | |
| 228 | return FoundTypeDecl; |
| 229 | } |
| 230 | |
| 231 | static ParsedType recoverFromTypeInKnownDependentBase(Sema &S, |
| 232 | const IdentifierInfo &II, |
| 233 | SourceLocation NameLoc) { |
| 234 | // Lookup in the parent class template context, if any. |
| 235 | const CXXRecordDecl *RD = nullptr; |
| 236 | UnqualifiedTypeNameLookupResult FoundTypeDecl = |
| 237 | UnqualifiedTypeNameLookupResult::NotFound; |
| 238 | for (DeclContext *DC = S.CurContext; |
| 239 | DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound; |
| 240 | DC = DC->getParent()) { |
| 241 | // Look for type decls in dependent base classes that have known primary |
| 242 | // templates. |
| 243 | RD = dyn_cast<CXXRecordDecl>(Val: DC); |
| 244 | if (RD && RD->getDescribedClassTemplate()) |
| 245 | FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD); |
| 246 | } |
| 247 | if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType) |
| 248 | return nullptr; |
| 249 | |
| 250 | // We found some types in dependent base classes. Recover as if the user |
| 251 | // wrote 'MyClass::II' instead of 'II', and this implicit typename was |
| 252 | // allowed. We'll fully resolve the lookup during template instantiation. |
| 253 | S.Diag(NameLoc, diag::ext_found_in_dependent_base) << &II; |
| 254 | |
| 255 | ASTContext &Context = S.Context; |
| 256 | auto *NNS = NestedNameSpecifier::Create( |
| 257 | Context, Prefix: nullptr, T: cast<Type>(Val: Context.getRecordType(RD))); |
| 258 | QualType T = |
| 259 | Context.getDependentNameType(Keyword: ElaboratedTypeKeyword::None, NNS: NNS, Name: &II); |
| 260 | |
| 261 | CXXScopeSpec SS; |
| 262 | SS.MakeTrivial(Context, Qualifier: NNS, R: SourceRange(NameLoc)); |
| 263 | |
| 264 | TypeLocBuilder Builder; |
| 265 | DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); |
| 266 | DepTL.setNameLoc(NameLoc); |
| 267 | DepTL.setElaboratedKeywordLoc(SourceLocation()); |
| 268 | DepTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
| 269 | return S.CreateParsedType(T, TInfo: Builder.getTypeSourceInfo(Context, T)); |
| 270 | } |
| 271 | |
| 272 | /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier. |
| 273 | static ParsedType buildNamedType(Sema &S, const CXXScopeSpec *SS, QualType T, |
| 274 | SourceLocation NameLoc, |
| 275 | bool WantNontrivialTypeSourceInfo = true) { |
| 276 | switch (T->getTypeClass()) { |
| 277 | case Type::DeducedTemplateSpecialization: |
| 278 | case Type::Enum: |
| 279 | case Type::InjectedClassName: |
| 280 | case Type::Record: |
| 281 | case Type::Typedef: |
| 282 | case Type::UnresolvedUsing: |
| 283 | case Type::Using: |
| 284 | break; |
| 285 | // These can never be qualified so an ElaboratedType node |
| 286 | // would carry no additional meaning. |
| 287 | case Type::ObjCInterface: |
| 288 | case Type::ObjCTypeParam: |
| 289 | case Type::TemplateTypeParm: |
| 290 | return ParsedType::make(P: T); |
| 291 | default: |
| 292 | llvm_unreachable("Unexpected Type Class" ); |
| 293 | } |
| 294 | |
| 295 | if (!SS || SS->isEmpty()) |
| 296 | return ParsedType::make(P: S.Context.getElaboratedType( |
| 297 | Keyword: ElaboratedTypeKeyword::None, NNS: nullptr, NamedType: T, OwnedTagDecl: nullptr)); |
| 298 | |
| 299 | QualType ElTy = S.getElaboratedType(Keyword: ElaboratedTypeKeyword::None, SS: *SS, T); |
| 300 | if (!WantNontrivialTypeSourceInfo) |
| 301 | return ParsedType::make(P: ElTy); |
| 302 | |
| 303 | TypeLocBuilder Builder; |
| 304 | Builder.pushTypeSpec(T).setNameLoc(NameLoc); |
| 305 | ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T: ElTy); |
| 306 | ElabTL.setElaboratedKeywordLoc(SourceLocation()); |
| 307 | ElabTL.setQualifierLoc(SS->getWithLocInContext(Context&: S.Context)); |
| 308 | return S.CreateParsedType(T: ElTy, TInfo: Builder.getTypeSourceInfo(Context&: S.Context, T: ElTy)); |
| 309 | } |
| 310 | |
| 311 | ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc, |
| 312 | Scope *S, CXXScopeSpec *SS, bool isClassName, |
| 313 | bool HasTrailingDot, ParsedType ObjectTypePtr, |
| 314 | bool IsCtorOrDtorName, |
| 315 | bool WantNontrivialTypeSourceInfo, |
| 316 | bool IsClassTemplateDeductionContext, |
| 317 | ImplicitTypenameContext AllowImplicitTypename, |
| 318 | IdentifierInfo **CorrectedII) { |
| 319 | bool IsImplicitTypename = !isClassName && !IsCtorOrDtorName; |
| 320 | // FIXME: Consider allowing this outside C++1z mode as an extension. |
| 321 | bool AllowDeducedTemplate = IsClassTemplateDeductionContext && |
| 322 | getLangOpts().CPlusPlus17 && IsImplicitTypename && |
| 323 | !HasTrailingDot; |
| 324 | |
| 325 | // Determine where we will perform name lookup. |
| 326 | DeclContext *LookupCtx = nullptr; |
| 327 | if (ObjectTypePtr) { |
| 328 | QualType ObjectType = ObjectTypePtr.get(); |
| 329 | if (ObjectType->isRecordType()) |
| 330 | LookupCtx = computeDeclContext(T: ObjectType); |
| 331 | } else if (SS && SS->isNotEmpty()) { |
| 332 | LookupCtx = computeDeclContext(SS: *SS, EnteringContext: false); |
| 333 | |
| 334 | if (!LookupCtx) { |
| 335 | if (isDependentScopeSpecifier(SS: *SS)) { |
| 336 | // C++ [temp.res]p3: |
| 337 | // A qualified-id that refers to a type and in which the |
| 338 | // nested-name-specifier depends on a template-parameter (14.6.2) |
| 339 | // shall be prefixed by the keyword typename to indicate that the |
| 340 | // qualified-id denotes a type, forming an |
| 341 | // elaborated-type-specifier (7.1.5.3). |
| 342 | // |
| 343 | // We therefore do not perform any name lookup if the result would |
| 344 | // refer to a member of an unknown specialization. |
| 345 | // In C++2a, in several contexts a 'typename' is not required. Also |
| 346 | // allow this as an extension. |
| 347 | if (IsImplicitTypename) { |
| 348 | if (AllowImplicitTypename == ImplicitTypenameContext::No) |
| 349 | return nullptr; |
| 350 | SourceLocation QualifiedLoc = SS->getRange().getBegin(); |
| 351 | auto DB = |
| 352 | DiagCompat(QualifiedLoc, diag_compat::implicit_typename) |
| 353 | << NestedNameSpecifier::Create(Context, SS->getScopeRep(), &II); |
| 354 | if (!getLangOpts().CPlusPlus20) |
| 355 | DB << FixItHint::CreateInsertion(InsertionLoc: QualifiedLoc, Code: "typename " ); |
| 356 | } |
| 357 | |
| 358 | // We know from the grammar that this name refers to a type, |
| 359 | // so build a dependent node to describe the type. |
| 360 | if (WantNontrivialTypeSourceInfo) |
| 361 | return ActOnTypenameType(S, TypenameLoc: SourceLocation(), SS: *SS, II, IdLoc: NameLoc, |
| 362 | IsImplicitTypename: (ImplicitTypenameContext)IsImplicitTypename) |
| 363 | .get(); |
| 364 | |
| 365 | NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context); |
| 366 | QualType T = CheckTypenameType( |
| 367 | Keyword: IsImplicitTypename ? ElaboratedTypeKeyword::Typename |
| 368 | : ElaboratedTypeKeyword::None, |
| 369 | KeywordLoc: SourceLocation(), QualifierLoc, II, IILoc: NameLoc); |
| 370 | return ParsedType::make(P: T); |
| 371 | } |
| 372 | |
| 373 | return nullptr; |
| 374 | } |
| 375 | |
| 376 | if (!LookupCtx->isDependentContext() && |
| 377 | RequireCompleteDeclContext(SS&: *SS, DC: LookupCtx)) |
| 378 | return nullptr; |
| 379 | } |
| 380 | |
| 381 | // In the case where we know that the identifier is a class name, we know that |
| 382 | // it is a type declaration (struct, class, union or enum) so we can use tag |
| 383 | // name lookup. |
| 384 | // |
| 385 | // C++ [class.derived]p2 (wrt lookup in a base-specifier): The lookup for |
| 386 | // the component name of the type-name or simple-template-id is type-only. |
| 387 | LookupNameKind Kind = isClassName ? LookupTagName : LookupOrdinaryName; |
| 388 | LookupResult Result(*this, &II, NameLoc, Kind); |
| 389 | if (LookupCtx) { |
| 390 | // Perform "qualified" name lookup into the declaration context we |
| 391 | // computed, which is either the type of the base of a member access |
| 392 | // expression or the declaration context associated with a prior |
| 393 | // nested-name-specifier. |
| 394 | LookupQualifiedName(R&: Result, LookupCtx); |
| 395 | |
| 396 | if (ObjectTypePtr && Result.empty()) { |
| 397 | // C++ [basic.lookup.classref]p3: |
| 398 | // If the unqualified-id is ~type-name, the type-name is looked up |
| 399 | // in the context of the entire postfix-expression. If the type T of |
| 400 | // the object expression is of a class type C, the type-name is also |
| 401 | // looked up in the scope of class C. At least one of the lookups shall |
| 402 | // find a name that refers to (possibly cv-qualified) T. |
| 403 | LookupName(R&: Result, S); |
| 404 | } |
| 405 | } else { |
| 406 | // Perform unqualified name lookup. |
| 407 | LookupName(R&: Result, S); |
| 408 | |
| 409 | // For unqualified lookup in a class template in MSVC mode, look into |
| 410 | // dependent base classes where the primary class template is known. |
| 411 | if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) { |
| 412 | if (ParsedType TypeInBase = |
| 413 | recoverFromTypeInKnownDependentBase(S&: *this, II, NameLoc)) |
| 414 | return TypeInBase; |
| 415 | } |
| 416 | } |
| 417 | |
| 418 | NamedDecl *IIDecl = nullptr; |
| 419 | UsingShadowDecl *FoundUsingShadow = nullptr; |
| 420 | switch (Result.getResultKind()) { |
| 421 | case LookupResultKind::NotFound: |
| 422 | if (CorrectedII) { |
| 423 | TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName, |
| 424 | AllowDeducedTemplate); |
| 425 | TypoCorrection Correction = |
| 426 | CorrectTypo(Typo: Result.getLookupNameInfo(), LookupKind: Kind, S, SS, CCC, |
| 427 | Mode: CorrectTypoKind::ErrorRecovery); |
| 428 | IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo(); |
| 429 | TemplateTy Template; |
| 430 | bool MemberOfUnknownSpecialization; |
| 431 | UnqualifiedId TemplateName; |
| 432 | TemplateName.setIdentifier(Id: NewII, IdLoc: NameLoc); |
| 433 | NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier(); |
| 434 | CXXScopeSpec NewSS, *NewSSPtr = SS; |
| 435 | if (SS && NNS) { |
| 436 | NewSS.MakeTrivial(Context, Qualifier: NNS, R: SourceRange(NameLoc)); |
| 437 | NewSSPtr = &NewSS; |
| 438 | } |
| 439 | if (Correction && (NNS || NewII != &II) && |
| 440 | // Ignore a correction to a template type as the to-be-corrected |
| 441 | // identifier is not a template (typo correction for template names |
| 442 | // is handled elsewhere). |
| 443 | !(getLangOpts().CPlusPlus && NewSSPtr && |
| 444 | isTemplateName(S, SS&: *NewSSPtr, hasTemplateKeyword: false, Name: TemplateName, ObjectType: nullptr, EnteringContext: false, |
| 445 | Template, MemberOfUnknownSpecialization))) { |
| 446 | ParsedType Ty = getTypeName(II: *NewII, NameLoc, S, SS: NewSSPtr, |
| 447 | isClassName, HasTrailingDot, ObjectTypePtr, |
| 448 | IsCtorOrDtorName, |
| 449 | WantNontrivialTypeSourceInfo, |
| 450 | IsClassTemplateDeductionContext); |
| 451 | if (Ty) { |
| 452 | diagnoseTypo(Correction, |
| 453 | PDiag(diag::err_unknown_type_or_class_name_suggest) |
| 454 | << Result.getLookupName() << isClassName); |
| 455 | if (SS && NNS) |
| 456 | SS->MakeTrivial(Context, Qualifier: NNS, R: SourceRange(NameLoc)); |
| 457 | *CorrectedII = NewII; |
| 458 | return Ty; |
| 459 | } |
| 460 | } |
| 461 | } |
| 462 | Result.suppressDiagnostics(); |
| 463 | return nullptr; |
| 464 | case LookupResultKind::NotFoundInCurrentInstantiation: |
| 465 | if (AllowImplicitTypename == ImplicitTypenameContext::Yes) { |
| 466 | QualType T = Context.getDependentNameType(Keyword: ElaboratedTypeKeyword::None, |
| 467 | NNS: SS->getScopeRep(), Name: &II); |
| 468 | TypeLocBuilder TLB; |
| 469 | DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(T); |
| 470 | TL.setElaboratedKeywordLoc(SourceLocation()); |
| 471 | TL.setQualifierLoc(SS->getWithLocInContext(Context)); |
| 472 | TL.setNameLoc(NameLoc); |
| 473 | return CreateParsedType(T, TInfo: TLB.getTypeSourceInfo(Context, T)); |
| 474 | } |
| 475 | [[fallthrough]]; |
| 476 | case LookupResultKind::FoundOverloaded: |
| 477 | case LookupResultKind::FoundUnresolvedValue: |
| 478 | Result.suppressDiagnostics(); |
| 479 | return nullptr; |
| 480 | |
| 481 | case LookupResultKind::Ambiguous: |
| 482 | // Recover from type-hiding ambiguities by hiding the type. We'll |
| 483 | // do the lookup again when looking for an object, and we can |
| 484 | // diagnose the error then. If we don't do this, then the error |
| 485 | // about hiding the type will be immediately followed by an error |
| 486 | // that only makes sense if the identifier was treated like a type. |
| 487 | if (Result.getAmbiguityKind() == LookupAmbiguityKind::AmbiguousTagHiding) { |
| 488 | Result.suppressDiagnostics(); |
| 489 | return nullptr; |
| 490 | } |
| 491 | |
| 492 | // Look to see if we have a type anywhere in the list of results. |
| 493 | for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end(); |
| 494 | Res != ResEnd; ++Res) { |
| 495 | NamedDecl *RealRes = (*Res)->getUnderlyingDecl(); |
| 496 | if (isa<TypeDecl, ObjCInterfaceDecl, UnresolvedUsingIfExistsDecl>( |
| 497 | Val: RealRes) || |
| 498 | (AllowDeducedTemplate && getAsTypeTemplateDecl(RealRes))) { |
| 499 | if (!IIDecl || |
| 500 | // Make the selection of the recovery decl deterministic. |
| 501 | RealRes->getLocation() < IIDecl->getLocation()) { |
| 502 | IIDecl = RealRes; |
| 503 | FoundUsingShadow = dyn_cast<UsingShadowDecl>(Val: *Res); |
| 504 | } |
| 505 | } |
| 506 | } |
| 507 | |
| 508 | if (!IIDecl) { |
| 509 | // None of the entities we found is a type, so there is no way |
| 510 | // to even assume that the result is a type. In this case, don't |
| 511 | // complain about the ambiguity. The parser will either try to |
| 512 | // perform this lookup again (e.g., as an object name), which |
| 513 | // will produce the ambiguity, or will complain that it expected |
| 514 | // a type name. |
| 515 | Result.suppressDiagnostics(); |
| 516 | return nullptr; |
| 517 | } |
| 518 | |
| 519 | // We found a type within the ambiguous lookup; diagnose the |
| 520 | // ambiguity and then return that type. This might be the right |
| 521 | // answer, or it might not be, but it suppresses any attempt to |
| 522 | // perform the name lookup again. |
| 523 | break; |
| 524 | |
| 525 | case LookupResultKind::Found: |
| 526 | IIDecl = Result.getFoundDecl(); |
| 527 | FoundUsingShadow = dyn_cast<UsingShadowDecl>(Val: *Result.begin()); |
| 528 | break; |
| 529 | } |
| 530 | |
| 531 | assert(IIDecl && "Didn't find decl" ); |
| 532 | |
| 533 | QualType T; |
| 534 | if (TypeDecl *TD = dyn_cast<TypeDecl>(Val: IIDecl)) { |
| 535 | // C++ [class.qual]p2: A lookup that would find the injected-class-name |
| 536 | // instead names the constructors of the class, except when naming a class. |
| 537 | // This is ill-formed when we're not actually forming a ctor or dtor name. |
| 538 | T = getTypeDeclType(LookupCtx, |
| 539 | DCK: IsImplicitTypename ? DiagCtorKind::Implicit |
| 540 | : DiagCtorKind::None, |
| 541 | TD, NameLoc); |
| 542 | } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(Val: IIDecl)) { |
| 543 | (void)DiagnoseUseOfDecl(IDecl, NameLoc); |
| 544 | if (!HasTrailingDot) |
| 545 | T = Context.getObjCInterfaceType(Decl: IDecl); |
| 546 | FoundUsingShadow = nullptr; // FIXME: Target must be a TypeDecl. |
| 547 | } else if (auto *UD = dyn_cast<UnresolvedUsingIfExistsDecl>(Val: IIDecl)) { |
| 548 | (void)DiagnoseUseOfDecl(UD, NameLoc); |
| 549 | // Recover with 'int' |
| 550 | return ParsedType::make(P: Context.IntTy); |
| 551 | } else if (AllowDeducedTemplate) { |
| 552 | if (auto *TD = getAsTypeTemplateDecl(IIDecl)) { |
| 553 | assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD); |
| 554 | TemplateName Template = Context.getQualifiedTemplateName( |
| 555 | NNS: SS ? SS->getScopeRep() : nullptr, /*TemplateKeyword=*/false, |
| 556 | Template: FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD)); |
| 557 | T = Context.getDeducedTemplateSpecializationType(Template, DeducedType: QualType(), |
| 558 | IsDependent: false); |
| 559 | // Don't wrap in a further UsingType. |
| 560 | FoundUsingShadow = nullptr; |
| 561 | } |
| 562 | } |
| 563 | |
| 564 | if (T.isNull()) { |
| 565 | // If it's not plausibly a type, suppress diagnostics. |
| 566 | Result.suppressDiagnostics(); |
| 567 | return nullptr; |
| 568 | } |
| 569 | |
| 570 | if (FoundUsingShadow) |
| 571 | T = Context.getUsingType(Found: FoundUsingShadow, Underlying: T); |
| 572 | |
| 573 | return buildNamedType(S&: *this, SS, T, NameLoc, WantNontrivialTypeSourceInfo); |
| 574 | } |
| 575 | |
| 576 | // Builds a fake NNS for the given decl context. |
| 577 | static NestedNameSpecifier * |
| 578 | synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) { |
| 579 | for (;; DC = DC->getLookupParent()) { |
| 580 | DC = DC->getPrimaryContext(); |
| 581 | auto *ND = dyn_cast<NamespaceDecl>(Val: DC); |
| 582 | if (ND && !ND->isInline() && !ND->isAnonymousNamespace()) |
| 583 | return NestedNameSpecifier::Create(Context, Prefix: nullptr, NS: ND); |
| 584 | if (auto *RD = dyn_cast<CXXRecordDecl>(Val: DC)) |
| 585 | return NestedNameSpecifier::Create(Context, nullptr, |
| 586 | RD->getTypeForDecl()); |
| 587 | if (isa<TranslationUnitDecl>(Val: DC)) |
| 588 | return NestedNameSpecifier::GlobalSpecifier(Context); |
| 589 | } |
| 590 | llvm_unreachable("something isn't in TU scope?" ); |
| 591 | } |
| 592 | |
| 593 | /// Find the parent class with dependent bases of the innermost enclosing method |
| 594 | /// context. Do not look for enclosing CXXRecordDecls directly, or we will end |
| 595 | /// up allowing unqualified dependent type names at class-level, which MSVC |
| 596 | /// correctly rejects. |
| 597 | static const CXXRecordDecl * |
| 598 | findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) { |
| 599 | for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) { |
| 600 | DC = DC->getPrimaryContext(); |
| 601 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: DC)) |
| 602 | if (MD->getParent()->hasAnyDependentBases()) |
| 603 | return MD->getParent(); |
| 604 | } |
| 605 | return nullptr; |
| 606 | } |
| 607 | |
| 608 | ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II, |
| 609 | SourceLocation NameLoc, |
| 610 | bool IsTemplateTypeArg) { |
| 611 | assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode" ); |
| 612 | |
| 613 | NestedNameSpecifier *NNS = nullptr; |
| 614 | if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) { |
| 615 | // If we weren't able to parse a default template argument, delay lookup |
| 616 | // until instantiation time by making a non-dependent DependentTypeName. We |
| 617 | // pretend we saw a NestedNameSpecifier referring to the current scope, and |
| 618 | // lookup is retried. |
| 619 | // FIXME: This hurts our diagnostic quality, since we get errors like "no |
| 620 | // type named 'Foo' in 'current_namespace'" when the user didn't write any |
| 621 | // name specifiers. |
| 622 | NNS = synthesizeCurrentNestedNameSpecifier(Context, DC: CurContext); |
| 623 | Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II; |
| 624 | } else if (const CXXRecordDecl *RD = |
| 625 | findRecordWithDependentBasesOfEnclosingMethod(DC: CurContext)) { |
| 626 | // Build a DependentNameType that will perform lookup into RD at |
| 627 | // instantiation time. |
| 628 | NNS = NestedNameSpecifier::Create(Context, nullptr, RD->getTypeForDecl()); |
| 629 | |
| 630 | // Diagnose that this identifier was undeclared, and retry the lookup during |
| 631 | // template instantiation. |
| 632 | Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II |
| 633 | << RD; |
| 634 | } else { |
| 635 | // This is not a situation that we should recover from. |
| 636 | return ParsedType(); |
| 637 | } |
| 638 | |
| 639 | QualType T = |
| 640 | Context.getDependentNameType(Keyword: ElaboratedTypeKeyword::None, NNS, Name: &II); |
| 641 | |
| 642 | // Build type location information. We synthesized the qualifier, so we have |
| 643 | // to build a fake NestedNameSpecifierLoc. |
| 644 | NestedNameSpecifierLocBuilder NNSLocBuilder; |
| 645 | NNSLocBuilder.MakeTrivial(Context, Qualifier: NNS, R: SourceRange(NameLoc)); |
| 646 | NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context); |
| 647 | |
| 648 | TypeLocBuilder Builder; |
| 649 | DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); |
| 650 | DepTL.setNameLoc(NameLoc); |
| 651 | DepTL.setElaboratedKeywordLoc(SourceLocation()); |
| 652 | DepTL.setQualifierLoc(QualifierLoc); |
| 653 | return CreateParsedType(T, TInfo: Builder.getTypeSourceInfo(Context, T)); |
| 654 | } |
| 655 | |
| 656 | DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) { |
| 657 | // Do a tag name lookup in this scope. |
| 658 | LookupResult R(*this, &II, SourceLocation(), LookupTagName); |
| 659 | LookupName(R, S, AllowBuiltinCreation: false); |
| 660 | R.suppressDiagnostics(); |
| 661 | if (R.getResultKind() == LookupResultKind::Found) |
| 662 | if (const TagDecl *TD = R.getAsSingle<TagDecl>()) { |
| 663 | switch (TD->getTagKind()) { |
| 664 | case TagTypeKind::Struct: |
| 665 | return DeclSpec::TST_struct; |
| 666 | case TagTypeKind::Interface: |
| 667 | return DeclSpec::TST_interface; |
| 668 | case TagTypeKind::Union: |
| 669 | return DeclSpec::TST_union; |
| 670 | case TagTypeKind::Class: |
| 671 | return DeclSpec::TST_class; |
| 672 | case TagTypeKind::Enum: |
| 673 | return DeclSpec::TST_enum; |
| 674 | } |
| 675 | } |
| 676 | |
| 677 | return DeclSpec::TST_unspecified; |
| 678 | } |
| 679 | |
| 680 | bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) { |
| 681 | if (CurContext->isRecord()) { |
| 682 | if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super) |
| 683 | return true; |
| 684 | |
| 685 | const Type *Ty = SS->getScopeRep()->getAsType(); |
| 686 | |
| 687 | CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: CurContext); |
| 688 | for (const auto &Base : RD->bases()) |
| 689 | if (Ty && Context.hasSameUnqualifiedType(T1: QualType(Ty, 1), T2: Base.getType())) |
| 690 | return true; |
| 691 | return S->isFunctionPrototypeScope(); |
| 692 | } |
| 693 | return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope(); |
| 694 | } |
| 695 | |
| 696 | void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II, |
| 697 | SourceLocation IILoc, |
| 698 | Scope *S, |
| 699 | CXXScopeSpec *SS, |
| 700 | ParsedType &SuggestedType, |
| 701 | bool IsTemplateName) { |
| 702 | // Don't report typename errors for editor placeholders. |
| 703 | if (II->isEditorPlaceholder()) |
| 704 | return; |
| 705 | // We don't have anything to suggest (yet). |
| 706 | SuggestedType = nullptr; |
| 707 | |
| 708 | // There may have been a typo in the name of the type. Look up typo |
| 709 | // results, in case we have something that we can suggest. |
| 710 | TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false, |
| 711 | /*AllowTemplates=*/IsTemplateName, |
| 712 | /*AllowNonTemplates=*/!IsTemplateName); |
| 713 | if (TypoCorrection Corrected = |
| 714 | CorrectTypo(Typo: DeclarationNameInfo(II, IILoc), LookupKind: LookupOrdinaryName, S, SS, |
| 715 | CCC, Mode: CorrectTypoKind::ErrorRecovery)) { |
| 716 | // FIXME: Support error recovery for the template-name case. |
| 717 | bool CanRecover = !IsTemplateName; |
| 718 | if (Corrected.isKeyword()) { |
| 719 | // We corrected to a keyword. |
| 720 | diagnoseTypo(Corrected, |
| 721 | PDiag(IsTemplateName ? diag::err_no_template_suggest |
| 722 | : diag::err_unknown_typename_suggest) |
| 723 | << II); |
| 724 | II = Corrected.getCorrectionAsIdentifierInfo(); |
| 725 | } else { |
| 726 | // We found a similarly-named type or interface; suggest that. |
| 727 | if (!SS || !SS->isSet()) { |
| 728 | diagnoseTypo(Corrected, |
| 729 | PDiag(IsTemplateName ? diag::err_no_template_suggest |
| 730 | : diag::err_unknown_typename_suggest) |
| 731 | << II, CanRecover); |
| 732 | } else if (DeclContext *DC = computeDeclContext(SS: *SS, EnteringContext: false)) { |
| 733 | std::string CorrectedStr(Corrected.getAsString(LO: getLangOpts())); |
| 734 | bool DroppedSpecifier = |
| 735 | Corrected.WillReplaceSpecifier() && II->getName() == CorrectedStr; |
| 736 | diagnoseTypo(Corrected, |
| 737 | PDiag(IsTemplateName |
| 738 | ? diag::err_no_member_template_suggest |
| 739 | : diag::err_unknown_nested_typename_suggest) |
| 740 | << II << DC << DroppedSpecifier << SS->getRange(), |
| 741 | CanRecover); |
| 742 | } else { |
| 743 | llvm_unreachable("could not have corrected a typo here" ); |
| 744 | } |
| 745 | |
| 746 | if (!CanRecover) |
| 747 | return; |
| 748 | |
| 749 | CXXScopeSpec tmpSS; |
| 750 | if (Corrected.getCorrectionSpecifier()) |
| 751 | tmpSS.MakeTrivial(Context, Qualifier: Corrected.getCorrectionSpecifier(), |
| 752 | R: SourceRange(IILoc)); |
| 753 | // FIXME: Support class template argument deduction here. |
| 754 | SuggestedType = |
| 755 | getTypeName(II: *Corrected.getCorrectionAsIdentifierInfo(), NameLoc: IILoc, S, |
| 756 | SS: tmpSS.isSet() ? &tmpSS : SS, isClassName: false, HasTrailingDot: false, ObjectTypePtr: nullptr, |
| 757 | /*IsCtorOrDtorName=*/false, |
| 758 | /*WantNontrivialTypeSourceInfo=*/true); |
| 759 | } |
| 760 | return; |
| 761 | } |
| 762 | |
| 763 | if (getLangOpts().CPlusPlus && !IsTemplateName) { |
| 764 | // See if II is a class template that the user forgot to pass arguments to. |
| 765 | UnqualifiedId Name; |
| 766 | Name.setIdentifier(Id: II, IdLoc: IILoc); |
| 767 | CXXScopeSpec EmptySS; |
| 768 | TemplateTy TemplateResult; |
| 769 | bool MemberOfUnknownSpecialization; |
| 770 | if (isTemplateName(S, SS&: SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false, |
| 771 | Name, ObjectType: nullptr, EnteringContext: true, Template&: TemplateResult, |
| 772 | MemberOfUnknownSpecialization) == TNK_Type_template) { |
| 773 | diagnoseMissingTemplateArguments(Name: TemplateResult.get(), Loc: IILoc); |
| 774 | return; |
| 775 | } |
| 776 | } |
| 777 | |
| 778 | // FIXME: Should we move the logic that tries to recover from a missing tag |
| 779 | // (struct, union, enum) from Parser::ParseImplicitInt here, instead? |
| 780 | |
| 781 | if (!SS || (!SS->isSet() && !SS->isInvalid())) |
| 782 | Diag(IILoc, IsTemplateName ? diag::err_no_template |
| 783 | : diag::err_unknown_typename) |
| 784 | << II; |
| 785 | else if (DeclContext *DC = computeDeclContext(SS: *SS, EnteringContext: false)) |
| 786 | Diag(IILoc, IsTemplateName ? diag::err_no_member_template |
| 787 | : diag::err_typename_nested_not_found) |
| 788 | << II << DC << SS->getRange(); |
| 789 | else if (SS->isValid() && SS->getScopeRep()->containsErrors()) { |
| 790 | SuggestedType = |
| 791 | ActOnTypenameType(S, TypenameLoc: SourceLocation(), SS: *SS, II: *II, IdLoc: IILoc).get(); |
| 792 | } else if (isDependentScopeSpecifier(SS: *SS)) { |
| 793 | unsigned DiagID = diag::err_typename_missing; |
| 794 | if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S)) |
| 795 | DiagID = diag::ext_typename_missing; |
| 796 | |
| 797 | Diag(SS->getRange().getBegin(), DiagID) |
| 798 | << NestedNameSpecifier::Create(Context, Prefix: SS->getScopeRep(), II) |
| 799 | << SourceRange(SS->getRange().getBegin(), IILoc) |
| 800 | << FixItHint::CreateInsertion(InsertionLoc: SS->getRange().getBegin(), Code: "typename " ); |
| 801 | SuggestedType = ActOnTypenameType(S, TypenameLoc: SourceLocation(), |
| 802 | SS: *SS, II: *II, IdLoc: IILoc).get(); |
| 803 | } else { |
| 804 | assert(SS && SS->isInvalid() && |
| 805 | "Invalid scope specifier has already been diagnosed" ); |
| 806 | } |
| 807 | } |
| 808 | |
| 809 | /// Determine whether the given result set contains either a type name |
| 810 | /// or |
| 811 | static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) { |
| 812 | bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus && |
| 813 | NextToken.is(K: tok::less); |
| 814 | |
| 815 | for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { |
| 816 | if (isa<TypeDecl>(Val: *I) || isa<ObjCInterfaceDecl>(Val: *I)) |
| 817 | return true; |
| 818 | |
| 819 | if (CheckTemplate && isa<TemplateDecl>(Val: *I)) |
| 820 | return true; |
| 821 | } |
| 822 | |
| 823 | return false; |
| 824 | } |
| 825 | |
| 826 | static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result, |
| 827 | Scope *S, CXXScopeSpec &SS, |
| 828 | IdentifierInfo *&Name, |
| 829 | SourceLocation NameLoc) { |
| 830 | LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName); |
| 831 | SemaRef.LookupParsedName(R, S, SS: &SS, /*ObjectType=*/QualType()); |
| 832 | if (TagDecl *Tag = R.getAsSingle<TagDecl>()) { |
| 833 | StringRef FixItTagName; |
| 834 | switch (Tag->getTagKind()) { |
| 835 | case TagTypeKind::Class: |
| 836 | FixItTagName = "class " ; |
| 837 | break; |
| 838 | |
| 839 | case TagTypeKind::Enum: |
| 840 | FixItTagName = "enum " ; |
| 841 | break; |
| 842 | |
| 843 | case TagTypeKind::Struct: |
| 844 | FixItTagName = "struct " ; |
| 845 | break; |
| 846 | |
| 847 | case TagTypeKind::Interface: |
| 848 | FixItTagName = "__interface " ; |
| 849 | break; |
| 850 | |
| 851 | case TagTypeKind::Union: |
| 852 | FixItTagName = "union " ; |
| 853 | break; |
| 854 | } |
| 855 | |
| 856 | StringRef TagName = FixItTagName.drop_back(); |
| 857 | SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag) |
| 858 | << Name << TagName << SemaRef.getLangOpts().CPlusPlus |
| 859 | << FixItHint::CreateInsertion(NameLoc, FixItTagName); |
| 860 | |
| 861 | for (LookupResult::iterator I = Result.begin(), IEnd = Result.end(); |
| 862 | I != IEnd; ++I) |
| 863 | SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type) |
| 864 | << Name << TagName; |
| 865 | |
| 866 | // Replace lookup results with just the tag decl. |
| 867 | Result.clear(Kind: Sema::LookupTagName); |
| 868 | SemaRef.LookupParsedName(R&: Result, S, SS: &SS, /*ObjectType=*/QualType()); |
| 869 | return true; |
| 870 | } |
| 871 | |
| 872 | return false; |
| 873 | } |
| 874 | |
| 875 | Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, |
| 876 | IdentifierInfo *&Name, |
| 877 | SourceLocation NameLoc, |
| 878 | const Token &NextToken, |
| 879 | CorrectionCandidateCallback *CCC) { |
| 880 | DeclarationNameInfo NameInfo(Name, NameLoc); |
| 881 | ObjCMethodDecl *CurMethod = getCurMethodDecl(); |
| 882 | |
| 883 | assert(NextToken.isNot(tok::coloncolon) && |
| 884 | "parse nested name specifiers before calling ClassifyName" ); |
| 885 | if (getLangOpts().CPlusPlus && SS.isSet() && |
| 886 | isCurrentClassName(II: *Name, S, SS: &SS)) { |
| 887 | // Per [class.qual]p2, this names the constructors of SS, not the |
| 888 | // injected-class-name. We don't have a classification for that. |
| 889 | // There's not much point caching this result, since the parser |
| 890 | // will reject it later. |
| 891 | return NameClassification::Unknown(); |
| 892 | } |
| 893 | |
| 894 | LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); |
| 895 | LookupParsedName(R&: Result, S, SS: &SS, /*ObjectType=*/QualType(), |
| 896 | /*AllowBuiltinCreation=*/!CurMethod); |
| 897 | |
| 898 | if (SS.isInvalid()) |
| 899 | return NameClassification::Error(); |
| 900 | |
| 901 | // For unqualified lookup in a class template in MSVC mode, look into |
| 902 | // dependent base classes where the primary class template is known. |
| 903 | if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) { |
| 904 | if (ParsedType TypeInBase = |
| 905 | recoverFromTypeInKnownDependentBase(S&: *this, II: *Name, NameLoc)) |
| 906 | return TypeInBase; |
| 907 | } |
| 908 | |
| 909 | // Perform lookup for Objective-C instance variables (including automatically |
| 910 | // synthesized instance variables), if we're in an Objective-C method. |
| 911 | // FIXME: This lookup really, really needs to be folded in to the normal |
| 912 | // unqualified lookup mechanism. |
| 913 | if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(R&: Result, NextToken)) { |
| 914 | DeclResult Ivar = ObjC().LookupIvarInObjCMethod(Lookup&: Result, S, II: Name); |
| 915 | if (Ivar.isInvalid()) |
| 916 | return NameClassification::Error(); |
| 917 | if (Ivar.isUsable()) |
| 918 | return NameClassification::NonType(D: cast<NamedDecl>(Val: Ivar.get())); |
| 919 | |
| 920 | // We defer builtin creation until after ivar lookup inside ObjC methods. |
| 921 | if (Result.empty()) |
| 922 | LookupBuiltin(R&: Result); |
| 923 | } |
| 924 | |
| 925 | bool SecondTry = false; |
| 926 | bool IsFilteredTemplateName = false; |
| 927 | |
| 928 | Corrected: |
| 929 | switch (Result.getResultKind()) { |
| 930 | case LookupResultKind::NotFound: |
| 931 | // If an unqualified-id is followed by a '(', then we have a function |
| 932 | // call. |
| 933 | if (SS.isEmpty() && NextToken.is(K: tok::l_paren)) { |
| 934 | // In C++, this is an ADL-only call. |
| 935 | // FIXME: Reference? |
| 936 | if (getLangOpts().CPlusPlus) |
| 937 | return NameClassification::UndeclaredNonType(); |
| 938 | |
| 939 | // C90 6.3.2.2: |
| 940 | // If the expression that precedes the parenthesized argument list in a |
| 941 | // function call consists solely of an identifier, and if no |
| 942 | // declaration is visible for this identifier, the identifier is |
| 943 | // implicitly declared exactly as if, in the innermost block containing |
| 944 | // the function call, the declaration |
| 945 | // |
| 946 | // extern int identifier (); |
| 947 | // |
| 948 | // appeared. |
| 949 | // |
| 950 | // We also allow this in C99 as an extension. However, this is not |
| 951 | // allowed in all language modes as functions without prototypes may not |
| 952 | // be supported. |
| 953 | if (getLangOpts().implicitFunctionsAllowed()) { |
| 954 | if (NamedDecl *D = ImplicitlyDefineFunction(Loc: NameLoc, II&: *Name, S)) |
| 955 | return NameClassification::NonType(D); |
| 956 | } |
| 957 | } |
| 958 | |
| 959 | if (getLangOpts().CPlusPlus20 && SS.isEmpty() && NextToken.is(K: tok::less)) { |
| 960 | // In C++20 onwards, this could be an ADL-only call to a function |
| 961 | // template, and we're required to assume that this is a template name. |
| 962 | // |
| 963 | // FIXME: Find a way to still do typo correction in this case. |
| 964 | TemplateName Template = |
| 965 | Context.getAssumedTemplateName(Name: NameInfo.getName()); |
| 966 | return NameClassification::UndeclaredTemplate(Name: Template); |
| 967 | } |
| 968 | |
| 969 | // In C, we first see whether there is a tag type by the same name, in |
| 970 | // which case it's likely that the user just forgot to write "enum", |
| 971 | // "struct", or "union". |
| 972 | if (!getLangOpts().CPlusPlus && !SecondTry && |
| 973 | isTagTypeWithMissingTag(SemaRef&: *this, Result, S, SS, Name, NameLoc)) { |
| 974 | break; |
| 975 | } |
| 976 | |
| 977 | // Perform typo correction to determine if there is another name that is |
| 978 | // close to this name. |
| 979 | if (!SecondTry && CCC) { |
| 980 | SecondTry = true; |
| 981 | if (TypoCorrection Corrected = |
| 982 | CorrectTypo(Typo: Result.getLookupNameInfo(), LookupKind: Result.getLookupKind(), S, |
| 983 | SS: &SS, CCC&: *CCC, Mode: CorrectTypoKind::ErrorRecovery)) { |
| 984 | unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest; |
| 985 | unsigned QualifiedDiag = diag::err_no_member_suggest; |
| 986 | |
| 987 | NamedDecl *FirstDecl = Corrected.getFoundDecl(); |
| 988 | NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl(); |
| 989 | if (getLangOpts().CPlusPlus && NextToken.is(K: tok::less) && |
| 990 | UnderlyingFirstDecl && isa<TemplateDecl>(Val: UnderlyingFirstDecl)) { |
| 991 | UnqualifiedDiag = diag::err_no_template_suggest; |
| 992 | QualifiedDiag = diag::err_no_member_template_suggest; |
| 993 | } else if (UnderlyingFirstDecl && |
| 994 | (isa<TypeDecl>(Val: UnderlyingFirstDecl) || |
| 995 | isa<ObjCInterfaceDecl>(Val: UnderlyingFirstDecl) || |
| 996 | isa<ObjCCompatibleAliasDecl>(Val: UnderlyingFirstDecl))) { |
| 997 | UnqualifiedDiag = diag::err_unknown_typename_suggest; |
| 998 | QualifiedDiag = diag::err_unknown_nested_typename_suggest; |
| 999 | } |
| 1000 | |
| 1001 | if (SS.isEmpty()) { |
| 1002 | diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name); |
| 1003 | } else {// FIXME: is this even reachable? Test it. |
| 1004 | std::string CorrectedStr(Corrected.getAsString(LO: getLangOpts())); |
| 1005 | bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && |
| 1006 | Name->getName() == CorrectedStr; |
| 1007 | diagnoseTypo(Corrected, PDiag(QualifiedDiag) |
| 1008 | << Name << computeDeclContext(SS, EnteringContext: false) |
| 1009 | << DroppedSpecifier << SS.getRange()); |
| 1010 | } |
| 1011 | |
| 1012 | // Update the name, so that the caller has the new name. |
| 1013 | Name = Corrected.getCorrectionAsIdentifierInfo(); |
| 1014 | |
| 1015 | // Typo correction corrected to a keyword. |
| 1016 | if (Corrected.isKeyword()) |
| 1017 | return Name; |
| 1018 | |
| 1019 | // Also update the LookupResult... |
| 1020 | // FIXME: This should probably go away at some point |
| 1021 | Result.clear(); |
| 1022 | Result.setLookupName(Corrected.getCorrection()); |
| 1023 | if (FirstDecl) |
| 1024 | Result.addDecl(D: FirstDecl); |
| 1025 | |
| 1026 | // If we found an Objective-C instance variable, let |
| 1027 | // LookupInObjCMethod build the appropriate expression to |
| 1028 | // reference the ivar. |
| 1029 | // FIXME: This is a gross hack. |
| 1030 | if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) { |
| 1031 | DeclResult R = |
| 1032 | ObjC().LookupIvarInObjCMethod(Lookup&: Result, S, II: Ivar->getIdentifier()); |
| 1033 | if (R.isInvalid()) |
| 1034 | return NameClassification::Error(); |
| 1035 | if (R.isUsable()) |
| 1036 | return NameClassification::NonType(Ivar); |
| 1037 | } |
| 1038 | |
| 1039 | goto Corrected; |
| 1040 | } |
| 1041 | } |
| 1042 | |
| 1043 | // We failed to correct; just fall through and let the parser deal with it. |
| 1044 | Result.suppressDiagnostics(); |
| 1045 | return NameClassification::Unknown(); |
| 1046 | |
| 1047 | case LookupResultKind::NotFoundInCurrentInstantiation: { |
| 1048 | // We performed name lookup into the current instantiation, and there were |
| 1049 | // dependent bases, so we treat this result the same way as any other |
| 1050 | // dependent nested-name-specifier. |
| 1051 | |
| 1052 | // C++ [temp.res]p2: |
| 1053 | // A name used in a template declaration or definition and that is |
| 1054 | // dependent on a template-parameter is assumed not to name a type |
| 1055 | // unless the applicable name lookup finds a type name or the name is |
| 1056 | // qualified by the keyword typename. |
| 1057 | // |
| 1058 | // FIXME: If the next token is '<', we might want to ask the parser to |
| 1059 | // perform some heroics to see if we actually have a |
| 1060 | // template-argument-list, which would indicate a missing 'template' |
| 1061 | // keyword here. |
| 1062 | return NameClassification::DependentNonType(); |
| 1063 | } |
| 1064 | |
| 1065 | case LookupResultKind::Found: |
| 1066 | case LookupResultKind::FoundOverloaded: |
| 1067 | case LookupResultKind::FoundUnresolvedValue: |
| 1068 | break; |
| 1069 | |
| 1070 | case LookupResultKind::Ambiguous: |
| 1071 | if (getLangOpts().CPlusPlus && NextToken.is(K: tok::less) && |
| 1072 | hasAnyAcceptableTemplateNames(R&: Result, /*AllowFunctionTemplates=*/true, |
| 1073 | /*AllowDependent=*/false)) { |
| 1074 | // C++ [temp.local]p3: |
| 1075 | // A lookup that finds an injected-class-name (10.2) can result in an |
| 1076 | // ambiguity in certain cases (for example, if it is found in more than |
| 1077 | // one base class). If all of the injected-class-names that are found |
| 1078 | // refer to specializations of the same class template, and if the name |
| 1079 | // is followed by a template-argument-list, the reference refers to the |
| 1080 | // class template itself and not a specialization thereof, and is not |
| 1081 | // ambiguous. |
| 1082 | // |
| 1083 | // This filtering can make an ambiguous result into an unambiguous one, |
| 1084 | // so try again after filtering out template names. |
| 1085 | FilterAcceptableTemplateNames(R&: Result); |
| 1086 | if (!Result.isAmbiguous()) { |
| 1087 | IsFilteredTemplateName = true; |
| 1088 | break; |
| 1089 | } |
| 1090 | } |
| 1091 | |
| 1092 | // Diagnose the ambiguity and return an error. |
| 1093 | return NameClassification::Error(); |
| 1094 | } |
| 1095 | |
| 1096 | if (getLangOpts().CPlusPlus && NextToken.is(K: tok::less) && |
| 1097 | (IsFilteredTemplateName || |
| 1098 | hasAnyAcceptableTemplateNames( |
| 1099 | R&: Result, /*AllowFunctionTemplates=*/true, |
| 1100 | /*AllowDependent=*/false, |
| 1101 | /*AllowNonTemplateFunctions*/ SS.isEmpty() && |
| 1102 | getLangOpts().CPlusPlus20))) { |
| 1103 | // C++ [temp.names]p3: |
| 1104 | // After name lookup (3.4) finds that a name is a template-name or that |
| 1105 | // an operator-function-id or a literal- operator-id refers to a set of |
| 1106 | // overloaded functions any member of which is a function template if |
| 1107 | // this is followed by a <, the < is always taken as the delimiter of a |
| 1108 | // template-argument-list and never as the less-than operator. |
| 1109 | // C++2a [temp.names]p2: |
| 1110 | // A name is also considered to refer to a template if it is an |
| 1111 | // unqualified-id followed by a < and name lookup finds either one |
| 1112 | // or more functions or finds nothing. |
| 1113 | if (!IsFilteredTemplateName) |
| 1114 | FilterAcceptableTemplateNames(R&: Result); |
| 1115 | |
| 1116 | bool IsFunctionTemplate; |
| 1117 | bool IsVarTemplate; |
| 1118 | TemplateName Template; |
| 1119 | if (Result.end() - Result.begin() > 1) { |
| 1120 | IsFunctionTemplate = true; |
| 1121 | Template = Context.getOverloadedTemplateName(Begin: Result.begin(), |
| 1122 | End: Result.end()); |
| 1123 | } else if (!Result.empty()) { |
| 1124 | auto *TD = cast<TemplateDecl>(Val: getAsTemplateNameDecl( |
| 1125 | D: *Result.begin(), /*AllowFunctionTemplates=*/true, |
| 1126 | /*AllowDependent=*/false)); |
| 1127 | IsFunctionTemplate = isa<FunctionTemplateDecl>(Val: TD); |
| 1128 | IsVarTemplate = isa<VarTemplateDecl>(Val: TD); |
| 1129 | |
| 1130 | UsingShadowDecl *FoundUsingShadow = |
| 1131 | dyn_cast<UsingShadowDecl>(Val: *Result.begin()); |
| 1132 | assert(!FoundUsingShadow || |
| 1133 | TD == cast<TemplateDecl>(FoundUsingShadow->getTargetDecl())); |
| 1134 | Template = Context.getQualifiedTemplateName( |
| 1135 | NNS: SS.getScopeRep(), |
| 1136 | /*TemplateKeyword=*/false, |
| 1137 | Template: FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD)); |
| 1138 | } else { |
| 1139 | // All results were non-template functions. This is a function template |
| 1140 | // name. |
| 1141 | IsFunctionTemplate = true; |
| 1142 | Template = Context.getAssumedTemplateName(Name: NameInfo.getName()); |
| 1143 | } |
| 1144 | |
| 1145 | if (IsFunctionTemplate) { |
| 1146 | // Function templates always go through overload resolution, at which |
| 1147 | // point we'll perform the various checks (e.g., accessibility) we need |
| 1148 | // to based on which function we selected. |
| 1149 | Result.suppressDiagnostics(); |
| 1150 | |
| 1151 | return NameClassification::FunctionTemplate(Name: Template); |
| 1152 | } |
| 1153 | |
| 1154 | return IsVarTemplate ? NameClassification::VarTemplate(Name: Template) |
| 1155 | : NameClassification::TypeTemplate(Name: Template); |
| 1156 | } |
| 1157 | |
| 1158 | auto BuildTypeFor = [&](TypeDecl *Type, NamedDecl *Found) { |
| 1159 | QualType T = Context.getTypeDeclType(Decl: Type); |
| 1160 | if (const auto *USD = dyn_cast<UsingShadowDecl>(Val: Found)) |
| 1161 | T = Context.getUsingType(Found: USD, Underlying: T); |
| 1162 | return buildNamedType(S&: *this, SS: &SS, T, NameLoc); |
| 1163 | }; |
| 1164 | |
| 1165 | NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl(); |
| 1166 | if (TypeDecl *Type = dyn_cast<TypeDecl>(Val: FirstDecl)) { |
| 1167 | DiagnoseUseOfDecl(Type, NameLoc); |
| 1168 | MarkAnyDeclReferenced(Loc: Type->getLocation(), D: Type, /*OdrUse=*/MightBeOdrUse: false); |
| 1169 | return BuildTypeFor(Type, *Result.begin()); |
| 1170 | } |
| 1171 | |
| 1172 | ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(Val: FirstDecl); |
| 1173 | if (!Class) { |
| 1174 | // FIXME: It's unfortunate that we don't have a Type node for handling this. |
| 1175 | if (ObjCCompatibleAliasDecl *Alias = |
| 1176 | dyn_cast<ObjCCompatibleAliasDecl>(Val: FirstDecl)) |
| 1177 | Class = Alias->getClassInterface(); |
| 1178 | } |
| 1179 | |
| 1180 | if (Class) { |
| 1181 | DiagnoseUseOfDecl(Class, NameLoc); |
| 1182 | |
| 1183 | if (NextToken.is(K: tok::period)) { |
| 1184 | // Interface. <something> is parsed as a property reference expression. |
| 1185 | // Just return "unknown" as a fall-through for now. |
| 1186 | Result.suppressDiagnostics(); |
| 1187 | return NameClassification::Unknown(); |
| 1188 | } |
| 1189 | |
| 1190 | QualType T = Context.getObjCInterfaceType(Decl: Class); |
| 1191 | return ParsedType::make(P: T); |
| 1192 | } |
| 1193 | |
| 1194 | if (isa<ConceptDecl>(Val: FirstDecl)) { |
| 1195 | // We want to preserve the UsingShadowDecl for concepts. |
| 1196 | if (auto *USD = dyn_cast<UsingShadowDecl>(Val: Result.getRepresentativeDecl())) |
| 1197 | return NameClassification::Concept(Name: TemplateName(USD)); |
| 1198 | return NameClassification::Concept( |
| 1199 | Name: TemplateName(cast<TemplateDecl>(Val: FirstDecl))); |
| 1200 | } |
| 1201 | |
| 1202 | if (auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(Val: FirstDecl)) { |
| 1203 | (void)DiagnoseUseOfDecl(EmptyD, NameLoc); |
| 1204 | return NameClassification::Error(); |
| 1205 | } |
| 1206 | |
| 1207 | // We can have a type template here if we're classifying a template argument. |
| 1208 | if (isa<TemplateDecl>(Val: FirstDecl) && !isa<FunctionTemplateDecl>(Val: FirstDecl) && |
| 1209 | !isa<VarTemplateDecl>(Val: FirstDecl)) |
| 1210 | return NameClassification::TypeTemplate( |
| 1211 | Name: TemplateName(cast<TemplateDecl>(Val: FirstDecl))); |
| 1212 | |
| 1213 | // Check for a tag type hidden by a non-type decl in a few cases where it |
| 1214 | // seems likely a type is wanted instead of the non-type that was found. |
| 1215 | bool NextIsOp = NextToken.isOneOf(K1: tok::amp, K2: tok::star); |
| 1216 | if ((NextToken.is(K: tok::identifier) || |
| 1217 | (NextIsOp && |
| 1218 | FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) && |
| 1219 | isTagTypeWithMissingTag(SemaRef&: *this, Result, S, SS, Name, NameLoc)) { |
| 1220 | TypeDecl *Type = Result.getAsSingle<TypeDecl>(); |
| 1221 | DiagnoseUseOfDecl(Type, NameLoc); |
| 1222 | return BuildTypeFor(Type, *Result.begin()); |
| 1223 | } |
| 1224 | |
| 1225 | // If we already know which single declaration is referenced, just annotate |
| 1226 | // that declaration directly. Defer resolving even non-overloaded class |
| 1227 | // member accesses, as we need to defer certain access checks until we know |
| 1228 | // the context. |
| 1229 | bool ADL = UseArgumentDependentLookup(SS, R: Result, HasTrailingLParen: NextToken.is(K: tok::l_paren)); |
| 1230 | if (Result.isSingleResult() && !ADL && |
| 1231 | (!FirstDecl->isCXXClassMember() || isa<EnumConstantDecl>(Val: FirstDecl))) |
| 1232 | return NameClassification::NonType(D: Result.getRepresentativeDecl()); |
| 1233 | |
| 1234 | // Otherwise, this is an overload set that we will need to resolve later. |
| 1235 | Result.suppressDiagnostics(); |
| 1236 | return NameClassification::OverloadSet(UnresolvedLookupExpr::Create( |
| 1237 | Context, NamingClass: Result.getNamingClass(), QualifierLoc: SS.getWithLocInContext(Context), |
| 1238 | NameInfo: Result.getLookupNameInfo(), RequiresADL: ADL, Begin: Result.begin(), End: Result.end(), |
| 1239 | /*KnownDependent=*/false, /*KnownInstantiationDependent=*/false)); |
| 1240 | } |
| 1241 | |
| 1242 | ExprResult |
| 1243 | Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name, |
| 1244 | SourceLocation NameLoc) { |
| 1245 | assert(getLangOpts().CPlusPlus && "ADL-only call in C?" ); |
| 1246 | CXXScopeSpec SS; |
| 1247 | LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); |
| 1248 | return BuildDeclarationNameExpr(SS, R&: Result, /*ADL=*/NeedsADL: true); |
| 1249 | } |
| 1250 | |
| 1251 | ExprResult |
| 1252 | Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS, |
| 1253 | IdentifierInfo *Name, |
| 1254 | SourceLocation NameLoc, |
| 1255 | bool IsAddressOfOperand) { |
| 1256 | DeclarationNameInfo NameInfo(Name, NameLoc); |
| 1257 | return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(), |
| 1258 | NameInfo, isAddressOfOperand: IsAddressOfOperand, |
| 1259 | /*TemplateArgs=*/nullptr); |
| 1260 | } |
| 1261 | |
| 1262 | ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS, |
| 1263 | NamedDecl *Found, |
| 1264 | SourceLocation NameLoc, |
| 1265 | const Token &NextToken) { |
| 1266 | if (getCurMethodDecl() && SS.isEmpty()) |
| 1267 | if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Val: Found->getUnderlyingDecl())) |
| 1268 | return ObjC().BuildIvarRefExpr(S, Loc: NameLoc, IV: Ivar); |
| 1269 | |
| 1270 | // Reconstruct the lookup result. |
| 1271 | LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName); |
| 1272 | Result.addDecl(D: Found); |
| 1273 | Result.resolveKind(); |
| 1274 | |
| 1275 | bool ADL = UseArgumentDependentLookup(SS, R: Result, HasTrailingLParen: NextToken.is(K: tok::l_paren)); |
| 1276 | return BuildDeclarationNameExpr(SS, R&: Result, NeedsADL: ADL, /*AcceptInvalidDecl=*/true); |
| 1277 | } |
| 1278 | |
| 1279 | ExprResult Sema::ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *E) { |
| 1280 | // For an implicit class member access, transform the result into a member |
| 1281 | // access expression if necessary. |
| 1282 | auto *ULE = cast<UnresolvedLookupExpr>(Val: E); |
| 1283 | if ((*ULE->decls_begin())->isCXXClassMember()) { |
| 1284 | CXXScopeSpec SS; |
| 1285 | SS.Adopt(Other: ULE->getQualifierLoc()); |
| 1286 | |
| 1287 | // Reconstruct the lookup result. |
| 1288 | LookupResult Result(*this, ULE->getName(), ULE->getNameLoc(), |
| 1289 | LookupOrdinaryName); |
| 1290 | Result.setNamingClass(ULE->getNamingClass()); |
| 1291 | for (auto I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I) |
| 1292 | Result.addDecl(*I, I.getAccess()); |
| 1293 | Result.resolveKind(); |
| 1294 | return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc: SourceLocation(), R&: Result, |
| 1295 | TemplateArgs: nullptr, S); |
| 1296 | } |
| 1297 | |
| 1298 | // Otherwise, this is already in the form we needed, and no further checks |
| 1299 | // are necessary. |
| 1300 | return ULE; |
| 1301 | } |
| 1302 | |
| 1303 | Sema::TemplateNameKindForDiagnostics |
| 1304 | Sema::getTemplateNameKindForDiagnostics(TemplateName Name) { |
| 1305 | auto *TD = Name.getAsTemplateDecl(); |
| 1306 | if (!TD) |
| 1307 | return TemplateNameKindForDiagnostics::DependentTemplate; |
| 1308 | if (isa<ClassTemplateDecl>(Val: TD)) |
| 1309 | return TemplateNameKindForDiagnostics::ClassTemplate; |
| 1310 | if (isa<FunctionTemplateDecl>(Val: TD)) |
| 1311 | return TemplateNameKindForDiagnostics::FunctionTemplate; |
| 1312 | if (isa<VarTemplateDecl>(Val: TD)) |
| 1313 | return TemplateNameKindForDiagnostics::VarTemplate; |
| 1314 | if (isa<TypeAliasTemplateDecl>(Val: TD)) |
| 1315 | return TemplateNameKindForDiagnostics::AliasTemplate; |
| 1316 | if (isa<TemplateTemplateParmDecl>(Val: TD)) |
| 1317 | return TemplateNameKindForDiagnostics::TemplateTemplateParam; |
| 1318 | if (isa<ConceptDecl>(Val: TD)) |
| 1319 | return TemplateNameKindForDiagnostics::Concept; |
| 1320 | return TemplateNameKindForDiagnostics::DependentTemplate; |
| 1321 | } |
| 1322 | |
| 1323 | void Sema::PushDeclContext(Scope *S, DeclContext *DC) { |
| 1324 | assert(DC->getLexicalParent() == CurContext && |
| 1325 | "The next DeclContext should be lexically contained in the current one." ); |
| 1326 | CurContext = DC; |
| 1327 | S->setEntity(DC); |
| 1328 | } |
| 1329 | |
| 1330 | void Sema::PopDeclContext() { |
| 1331 | assert(CurContext && "DeclContext imbalance!" ); |
| 1332 | |
| 1333 | CurContext = CurContext->getLexicalParent(); |
| 1334 | assert(CurContext && "Popped translation unit!" ); |
| 1335 | } |
| 1336 | |
| 1337 | Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S, |
| 1338 | Decl *D) { |
| 1339 | // Unlike PushDeclContext, the context to which we return is not necessarily |
| 1340 | // the containing DC of TD, because the new context will be some pre-existing |
| 1341 | // TagDecl definition instead of a fresh one. |
| 1342 | auto Result = static_cast<SkippedDefinitionContext>(CurContext); |
| 1343 | CurContext = cast<TagDecl>(Val: D)->getDefinition(); |
| 1344 | assert(CurContext && "skipping definition of undefined tag" ); |
| 1345 | // Start lookups from the parent of the current context; we don't want to look |
| 1346 | // into the pre-existing complete definition. |
| 1347 | S->setEntity(CurContext->getLookupParent()); |
| 1348 | return Result; |
| 1349 | } |
| 1350 | |
| 1351 | void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) { |
| 1352 | CurContext = static_cast<decltype(CurContext)>(Context); |
| 1353 | } |
| 1354 | |
| 1355 | void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) { |
| 1356 | // C++0x [basic.lookup.unqual]p13: |
| 1357 | // A name used in the definition of a static data member of class |
| 1358 | // X (after the qualified-id of the static member) is looked up as |
| 1359 | // if the name was used in a member function of X. |
| 1360 | // C++0x [basic.lookup.unqual]p14: |
| 1361 | // If a variable member of a namespace is defined outside of the |
| 1362 | // scope of its namespace then any name used in the definition of |
| 1363 | // the variable member (after the declarator-id) is looked up as |
| 1364 | // if the definition of the variable member occurred in its |
| 1365 | // namespace. |
| 1366 | // Both of these imply that we should push a scope whose context |
| 1367 | // is the semantic context of the declaration. We can't use |
| 1368 | // PushDeclContext here because that context is not necessarily |
| 1369 | // lexically contained in the current context. Fortunately, |
| 1370 | // the containing scope should have the appropriate information. |
| 1371 | |
| 1372 | assert(!S->getEntity() && "scope already has entity" ); |
| 1373 | |
| 1374 | #ifndef NDEBUG |
| 1375 | Scope *Ancestor = S->getParent(); |
| 1376 | while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); |
| 1377 | assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch" ); |
| 1378 | #endif |
| 1379 | |
| 1380 | CurContext = DC; |
| 1381 | S->setEntity(DC); |
| 1382 | |
| 1383 | if (S->getParent()->isTemplateParamScope()) { |
| 1384 | // Also set the corresponding entities for all immediately-enclosing |
| 1385 | // template parameter scopes. |
| 1386 | EnterTemplatedContext(S: S->getParent(), DC); |
| 1387 | } |
| 1388 | } |
| 1389 | |
| 1390 | void Sema::ExitDeclaratorContext(Scope *S) { |
| 1391 | assert(S->getEntity() == CurContext && "Context imbalance!" ); |
| 1392 | |
| 1393 | // Switch back to the lexical context. The safety of this is |
| 1394 | // enforced by an assert in EnterDeclaratorContext. |
| 1395 | Scope *Ancestor = S->getParent(); |
| 1396 | while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); |
| 1397 | CurContext = Ancestor->getEntity(); |
| 1398 | |
| 1399 | // We don't need to do anything with the scope, which is going to |
| 1400 | // disappear. |
| 1401 | } |
| 1402 | |
| 1403 | void Sema::EnterTemplatedContext(Scope *S, DeclContext *DC) { |
| 1404 | assert(S->isTemplateParamScope() && |
| 1405 | "expected to be initializing a template parameter scope" ); |
| 1406 | |
| 1407 | // C++20 [temp.local]p7: |
| 1408 | // In the definition of a member of a class template that appears outside |
| 1409 | // of the class template definition, the name of a member of the class |
| 1410 | // template hides the name of a template-parameter of any enclosing class |
| 1411 | // templates (but not a template-parameter of the member if the member is a |
| 1412 | // class or function template). |
| 1413 | // C++20 [temp.local]p9: |
| 1414 | // In the definition of a class template or in the definition of a member |
| 1415 | // of such a template that appears outside of the template definition, for |
| 1416 | // each non-dependent base class (13.8.2.1), if the name of the base class |
| 1417 | // or the name of a member of the base class is the same as the name of a |
| 1418 | // template-parameter, the base class name or member name hides the |
| 1419 | // template-parameter name (6.4.10). |
| 1420 | // |
| 1421 | // This means that a template parameter scope should be searched immediately |
| 1422 | // after searching the DeclContext for which it is a template parameter |
| 1423 | // scope. For example, for |
| 1424 | // template<typename T> template<typename U> template<typename V> |
| 1425 | // void N::A<T>::B<U>::f(...) |
| 1426 | // we search V then B<U> (and base classes) then U then A<T> (and base |
| 1427 | // classes) then T then N then ::. |
| 1428 | unsigned ScopeDepth = getTemplateDepth(S); |
| 1429 | for (; S && S->isTemplateParamScope(); S = S->getParent(), --ScopeDepth) { |
| 1430 | DeclContext *SearchDCAfterScope = DC; |
| 1431 | for (; DC; DC = DC->getLookupParent()) { |
| 1432 | if (const TemplateParameterList *TPL = |
| 1433 | cast<Decl>(Val: DC)->getDescribedTemplateParams()) { |
| 1434 | unsigned DCDepth = TPL->getDepth() + 1; |
| 1435 | if (DCDepth > ScopeDepth) |
| 1436 | continue; |
| 1437 | if (ScopeDepth == DCDepth) |
| 1438 | SearchDCAfterScope = DC = DC->getLookupParent(); |
| 1439 | break; |
| 1440 | } |
| 1441 | } |
| 1442 | S->setLookupEntity(SearchDCAfterScope); |
| 1443 | } |
| 1444 | } |
| 1445 | |
| 1446 | void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) { |
| 1447 | // We assume that the caller has already called |
| 1448 | // ActOnReenterTemplateScope so getTemplatedDecl() works. |
| 1449 | FunctionDecl *FD = D->getAsFunction(); |
| 1450 | if (!FD) |
| 1451 | return; |
| 1452 | |
| 1453 | // Same implementation as PushDeclContext, but enters the context |
| 1454 | // from the lexical parent, rather than the top-level class. |
| 1455 | assert(CurContext == FD->getLexicalParent() && |
| 1456 | "The next DeclContext should be lexically contained in the current one." ); |
| 1457 | CurContext = FD; |
| 1458 | S->setEntity(CurContext); |
| 1459 | |
| 1460 | for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) { |
| 1461 | ParmVarDecl *Param = FD->getParamDecl(i: P); |
| 1462 | // If the parameter has an identifier, then add it to the scope |
| 1463 | if (Param->getIdentifier()) { |
| 1464 | S->AddDecl(Param); |
| 1465 | IdResolver.AddDecl(Param); |
| 1466 | } |
| 1467 | } |
| 1468 | } |
| 1469 | |
| 1470 | void Sema::ActOnExitFunctionContext() { |
| 1471 | // Same implementation as PopDeclContext, but returns to the lexical parent, |
| 1472 | // rather than the top-level class. |
| 1473 | assert(CurContext && "DeclContext imbalance!" ); |
| 1474 | CurContext = CurContext->getLexicalParent(); |
| 1475 | assert(CurContext && "Popped translation unit!" ); |
| 1476 | } |
| 1477 | |
| 1478 | /// Determine whether overloading is allowed for a new function |
| 1479 | /// declaration considering prior declarations of the same name. |
| 1480 | /// |
| 1481 | /// This routine determines whether overloading is possible, not |
| 1482 | /// whether a new declaration actually overloads a previous one. |
| 1483 | /// It will return true in C++ (where overloads are always permitted) |
| 1484 | /// or, as a C extension, when either the new declaration or a |
| 1485 | /// previous one is declared with the 'overloadable' attribute. |
| 1486 | static bool AllowOverloadingOfFunction(const LookupResult &Previous, |
| 1487 | ASTContext &Context, |
| 1488 | const FunctionDecl *New) { |
| 1489 | if (Context.getLangOpts().CPlusPlus || New->hasAttr<OverloadableAttr>()) |
| 1490 | return true; |
| 1491 | |
| 1492 | // Multiversion function declarations are not overloads in the |
| 1493 | // usual sense of that term, but lookup will report that an |
| 1494 | // overload set was found if more than one multiversion function |
| 1495 | // declaration is present for the same name. It is therefore |
| 1496 | // inadequate to assume that some prior declaration(s) had |
| 1497 | // the overloadable attribute; checking is required. Since one |
| 1498 | // declaration is permitted to omit the attribute, it is necessary |
| 1499 | // to check at least two; hence the 'any_of' check below. Note that |
| 1500 | // the overloadable attribute is implicitly added to declarations |
| 1501 | // that were required to have it but did not. |
| 1502 | if (Previous.getResultKind() == LookupResultKind::FoundOverloaded) { |
| 1503 | return llvm::any_of(Range: Previous, P: [](const NamedDecl *ND) { |
| 1504 | return ND->hasAttr<OverloadableAttr>(); |
| 1505 | }); |
| 1506 | } else if (Previous.getResultKind() == LookupResultKind::Found) |
| 1507 | return Previous.getFoundDecl()->hasAttr<OverloadableAttr>(); |
| 1508 | |
| 1509 | return false; |
| 1510 | } |
| 1511 | |
| 1512 | void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) { |
| 1513 | // Move up the scope chain until we find the nearest enclosing |
| 1514 | // non-transparent context. The declaration will be introduced into this |
| 1515 | // scope. |
| 1516 | while (S->getEntity() && S->getEntity()->isTransparentContext()) |
| 1517 | S = S->getParent(); |
| 1518 | |
| 1519 | // Add scoped declarations into their context, so that they can be |
| 1520 | // found later. Declarations without a context won't be inserted |
| 1521 | // into any context. |
| 1522 | if (AddToContext) |
| 1523 | CurContext->addDecl(D); |
| 1524 | |
| 1525 | // Out-of-line definitions shouldn't be pushed into scope in C++, unless they |
| 1526 | // are function-local declarations. |
| 1527 | if (getLangOpts().CPlusPlus && D->isOutOfLine() && !S->getFnParent()) |
| 1528 | return; |
| 1529 | |
| 1530 | // Template instantiations should also not be pushed into scope. |
| 1531 | if (isa<FunctionDecl>(Val: D) && |
| 1532 | cast<FunctionDecl>(Val: D)->isFunctionTemplateSpecialization()) |
| 1533 | return; |
| 1534 | |
| 1535 | if (isa<UsingEnumDecl>(Val: D) && D->getDeclName().isEmpty()) { |
| 1536 | S->AddDecl(D); |
| 1537 | return; |
| 1538 | } |
| 1539 | // If this replaces anything in the current scope, |
| 1540 | IdentifierResolver::iterator I = IdResolver.begin(Name: D->getDeclName()), |
| 1541 | IEnd = IdResolver.end(); |
| 1542 | for (; I != IEnd; ++I) { |
| 1543 | if (S->isDeclScope(*I) && D->declarationReplaces(OldD: *I)) { |
| 1544 | S->RemoveDecl(*I); |
| 1545 | IdResolver.RemoveDecl(D: *I); |
| 1546 | |
| 1547 | // Should only need to replace one decl. |
| 1548 | break; |
| 1549 | } |
| 1550 | } |
| 1551 | |
| 1552 | S->AddDecl(D); |
| 1553 | |
| 1554 | if (isa<LabelDecl>(Val: D) && !cast<LabelDecl>(Val: D)->isGnuLocal()) { |
| 1555 | // Implicitly-generated labels may end up getting generated in an order that |
| 1556 | // isn't strictly lexical, which breaks name lookup. Be careful to insert |
| 1557 | // the label at the appropriate place in the identifier chain. |
| 1558 | for (I = IdResolver.begin(Name: D->getDeclName()); I != IEnd; ++I) { |
| 1559 | DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext(); |
| 1560 | if (IDC == CurContext) { |
| 1561 | if (!S->isDeclScope(*I)) |
| 1562 | continue; |
| 1563 | } else if (IDC->Encloses(DC: CurContext)) |
| 1564 | break; |
| 1565 | } |
| 1566 | |
| 1567 | IdResolver.InsertDeclAfter(Pos: I, D); |
| 1568 | } else { |
| 1569 | IdResolver.AddDecl(D); |
| 1570 | } |
| 1571 | warnOnReservedIdentifier(D); |
| 1572 | } |
| 1573 | |
| 1574 | bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S, |
| 1575 | bool AllowInlineNamespace) const { |
| 1576 | return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace); |
| 1577 | } |
| 1578 | |
| 1579 | Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) { |
| 1580 | DeclContext *TargetDC = DC->getPrimaryContext(); |
| 1581 | do { |
| 1582 | if (DeclContext *ScopeDC = S->getEntity()) |
| 1583 | if (ScopeDC->getPrimaryContext() == TargetDC) |
| 1584 | return S; |
| 1585 | } while ((S = S->getParent())); |
| 1586 | |
| 1587 | return nullptr; |
| 1588 | } |
| 1589 | |
| 1590 | static bool isOutOfScopePreviousDeclaration(NamedDecl *, |
| 1591 | DeclContext*, |
| 1592 | ASTContext&); |
| 1593 | |
| 1594 | void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S, |
| 1595 | bool ConsiderLinkage, |
| 1596 | bool AllowInlineNamespace) { |
| 1597 | LookupResult::Filter F = R.makeFilter(); |
| 1598 | while (F.hasNext()) { |
| 1599 | NamedDecl *D = F.next(); |
| 1600 | |
| 1601 | if (isDeclInScope(D, Ctx, S, AllowInlineNamespace)) |
| 1602 | continue; |
| 1603 | |
| 1604 | if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context)) |
| 1605 | continue; |
| 1606 | |
| 1607 | F.erase(); |
| 1608 | } |
| 1609 | |
| 1610 | F.done(); |
| 1611 | } |
| 1612 | |
| 1613 | bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) { |
| 1614 | // [module.interface]p7: |
| 1615 | // A declaration is attached to a module as follows: |
| 1616 | // - If the declaration is a non-dependent friend declaration that nominates a |
| 1617 | // function with a declarator-id that is a qualified-id or template-id or that |
| 1618 | // nominates a class other than with an elaborated-type-specifier with neither |
| 1619 | // a nested-name-specifier nor a simple-template-id, it is attached to the |
| 1620 | // module to which the friend is attached ([basic.link]). |
| 1621 | if (New->getFriendObjectKind() && |
| 1622 | Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) { |
| 1623 | New->setLocalOwningModule(Old->getOwningModule()); |
| 1624 | makeMergedDefinitionVisible(ND: New); |
| 1625 | return false; |
| 1626 | } |
| 1627 | |
| 1628 | Module *NewM = New->getOwningModule(); |
| 1629 | Module *OldM = Old->getOwningModule(); |
| 1630 | |
| 1631 | if (NewM && NewM->isPrivateModule()) |
| 1632 | NewM = NewM->Parent; |
| 1633 | if (OldM && OldM->isPrivateModule()) |
| 1634 | OldM = OldM->Parent; |
| 1635 | |
| 1636 | if (NewM == OldM) |
| 1637 | return false; |
| 1638 | |
| 1639 | if (NewM && OldM) { |
| 1640 | // A module implementation unit has visibility of the decls in its |
| 1641 | // implicitly imported interface. |
| 1642 | if (NewM->isModuleImplementation() && OldM == ThePrimaryInterface) |
| 1643 | return false; |
| 1644 | |
| 1645 | // Partitions are part of the module, but a partition could import another |
| 1646 | // module, so verify that the PMIs agree. |
| 1647 | if ((NewM->isModulePartition() || OldM->isModulePartition()) && |
| 1648 | getASTContext().isInSameModule(M1: NewM, M2: OldM)) |
| 1649 | return false; |
| 1650 | } |
| 1651 | |
| 1652 | bool NewIsModuleInterface = NewM && NewM->isNamedModule(); |
| 1653 | bool OldIsModuleInterface = OldM && OldM->isNamedModule(); |
| 1654 | if (NewIsModuleInterface || OldIsModuleInterface) { |
| 1655 | // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]: |
| 1656 | // if a declaration of D [...] appears in the purview of a module, all |
| 1657 | // other such declarations shall appear in the purview of the same module |
| 1658 | Diag(New->getLocation(), diag::err_mismatched_owning_module) |
| 1659 | << New |
| 1660 | << NewIsModuleInterface |
| 1661 | << (NewIsModuleInterface ? NewM->getFullModuleName() : "" ) |
| 1662 | << OldIsModuleInterface |
| 1663 | << (OldIsModuleInterface ? OldM->getFullModuleName() : "" ); |
| 1664 | Diag(Old->getLocation(), diag::note_previous_declaration); |
| 1665 | New->setInvalidDecl(); |
| 1666 | return true; |
| 1667 | } |
| 1668 | |
| 1669 | return false; |
| 1670 | } |
| 1671 | |
| 1672 | bool Sema::CheckRedeclarationExported(NamedDecl *New, NamedDecl *Old) { |
| 1673 | // [module.interface]p1: |
| 1674 | // An export-declaration shall inhabit a namespace scope. |
| 1675 | // |
| 1676 | // So it is meaningless to talk about redeclaration which is not at namespace |
| 1677 | // scope. |
| 1678 | if (!New->getLexicalDeclContext() |
| 1679 | ->getNonTransparentContext() |
| 1680 | ->isFileContext() || |
| 1681 | !Old->getLexicalDeclContext() |
| 1682 | ->getNonTransparentContext() |
| 1683 | ->isFileContext()) |
| 1684 | return false; |
| 1685 | |
| 1686 | bool IsNewExported = New->isInExportDeclContext(); |
| 1687 | bool IsOldExported = Old->isInExportDeclContext(); |
| 1688 | |
| 1689 | // It should be irrevelant if both of them are not exported. |
| 1690 | if (!IsNewExported && !IsOldExported) |
| 1691 | return false; |
| 1692 | |
| 1693 | if (IsOldExported) |
| 1694 | return false; |
| 1695 | |
| 1696 | // If the Old declaration are not attached to named modules |
| 1697 | // and the New declaration are attached to global module. |
| 1698 | // It should be fine to allow the export since it doesn't change |
| 1699 | // the linkage of declarations. See |
| 1700 | // https://github.com/llvm/llvm-project/issues/98583 for details. |
| 1701 | if (!Old->isInNamedModule() && New->getOwningModule() && |
| 1702 | New->getOwningModule()->isImplicitGlobalModule()) |
| 1703 | return false; |
| 1704 | |
| 1705 | assert(IsNewExported); |
| 1706 | |
| 1707 | auto Lk = Old->getFormalLinkage(); |
| 1708 | int S = 0; |
| 1709 | if (Lk == Linkage::Internal) |
| 1710 | S = 1; |
| 1711 | else if (Lk == Linkage::Module) |
| 1712 | S = 2; |
| 1713 | Diag(New->getLocation(), diag::err_redeclaration_non_exported) << New << S; |
| 1714 | Diag(Old->getLocation(), diag::note_previous_declaration); |
| 1715 | return true; |
| 1716 | } |
| 1717 | |
| 1718 | bool Sema::CheckRedeclarationInModule(NamedDecl *New, NamedDecl *Old) { |
| 1719 | if (CheckRedeclarationModuleOwnership(New, Old)) |
| 1720 | return true; |
| 1721 | |
| 1722 | if (CheckRedeclarationExported(New, Old)) |
| 1723 | return true; |
| 1724 | |
| 1725 | return false; |
| 1726 | } |
| 1727 | |
| 1728 | bool Sema::IsRedefinitionInModule(const NamedDecl *New, |
| 1729 | const NamedDecl *Old) const { |
| 1730 | assert(getASTContext().isSameEntity(New, Old) && |
| 1731 | "New and Old are not the same definition, we should diagnostic it " |
| 1732 | "immediately instead of checking it." ); |
| 1733 | assert(const_cast<Sema *>(this)->isReachable(New) && |
| 1734 | const_cast<Sema *>(this)->isReachable(Old) && |
| 1735 | "We shouldn't see unreachable definitions here." ); |
| 1736 | |
| 1737 | Module *NewM = New->getOwningModule(); |
| 1738 | Module *OldM = Old->getOwningModule(); |
| 1739 | |
| 1740 | // We only checks for named modules here. The header like modules is skipped. |
| 1741 | // FIXME: This is not right if we import the header like modules in the module |
| 1742 | // purview. |
| 1743 | // |
| 1744 | // For example, assuming "header.h" provides definition for `D`. |
| 1745 | // ```C++ |
| 1746 | // //--- M.cppm |
| 1747 | // export module M; |
| 1748 | // import "header.h"; // or #include "header.h" but import it by clang modules |
| 1749 | // actually. |
| 1750 | // |
| 1751 | // //--- Use.cpp |
| 1752 | // import M; |
| 1753 | // import "header.h"; // or uses clang modules. |
| 1754 | // ``` |
| 1755 | // |
| 1756 | // In this case, `D` has multiple definitions in multiple TU (M.cppm and |
| 1757 | // Use.cpp) and `D` is attached to a named module `M`. The compiler should |
| 1758 | // reject it. But the current implementation couldn't detect the case since we |
| 1759 | // don't record the information about the importee modules. |
| 1760 | // |
| 1761 | // But this might not be painful in practice. Since the design of C++20 Named |
| 1762 | // Modules suggests us to use headers in global module fragment instead of |
| 1763 | // module purview. |
| 1764 | if (NewM && NewM->isHeaderLikeModule()) |
| 1765 | NewM = nullptr; |
| 1766 | if (OldM && OldM->isHeaderLikeModule()) |
| 1767 | OldM = nullptr; |
| 1768 | |
| 1769 | if (!NewM && !OldM) |
| 1770 | return true; |
| 1771 | |
| 1772 | // [basic.def.odr]p14.3 |
| 1773 | // Each such definition shall not be attached to a named module |
| 1774 | // ([module.unit]). |
| 1775 | if ((NewM && NewM->isNamedModule()) || (OldM && OldM->isNamedModule())) |
| 1776 | return true; |
| 1777 | |
| 1778 | // Then New and Old lives in the same TU if their share one same module unit. |
| 1779 | if (NewM) |
| 1780 | NewM = NewM->getTopLevelModule(); |
| 1781 | if (OldM) |
| 1782 | OldM = OldM->getTopLevelModule(); |
| 1783 | return OldM == NewM; |
| 1784 | } |
| 1785 | |
| 1786 | static bool isUsingDeclNotAtClassScope(NamedDecl *D) { |
| 1787 | if (D->getDeclContext()->isFileContext()) |
| 1788 | return false; |
| 1789 | |
| 1790 | return isa<UsingShadowDecl>(Val: D) || |
| 1791 | isa<UnresolvedUsingTypenameDecl>(Val: D) || |
| 1792 | isa<UnresolvedUsingValueDecl>(Val: D); |
| 1793 | } |
| 1794 | |
| 1795 | /// Removes using shadow declarations not at class scope from the lookup |
| 1796 | /// results. |
| 1797 | static void RemoveUsingDecls(LookupResult &R) { |
| 1798 | LookupResult::Filter F = R.makeFilter(); |
| 1799 | while (F.hasNext()) |
| 1800 | if (isUsingDeclNotAtClassScope(D: F.next())) |
| 1801 | F.erase(); |
| 1802 | |
| 1803 | F.done(); |
| 1804 | } |
| 1805 | |
| 1806 | /// Check for this common pattern: |
| 1807 | /// @code |
| 1808 | /// class S { |
| 1809 | /// S(const S&); // DO NOT IMPLEMENT |
| 1810 | /// void operator=(const S&); // DO NOT IMPLEMENT |
| 1811 | /// }; |
| 1812 | /// @endcode |
| 1813 | static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) { |
| 1814 | // FIXME: Should check for private access too but access is set after we get |
| 1815 | // the decl here. |
| 1816 | if (D->doesThisDeclarationHaveABody()) |
| 1817 | return false; |
| 1818 | |
| 1819 | if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Val: D)) |
| 1820 | return CD->isCopyConstructor(); |
| 1821 | return D->isCopyAssignmentOperator(); |
| 1822 | } |
| 1823 | |
| 1824 | bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) { |
| 1825 | const DeclContext *DC = D->getDeclContext(); |
| 1826 | while (!DC->isTranslationUnit()) { |
| 1827 | if (const RecordDecl *RD = dyn_cast<RecordDecl>(Val: DC)){ |
| 1828 | if (!RD->hasNameForLinkage()) |
| 1829 | return true; |
| 1830 | } |
| 1831 | DC = DC->getParent(); |
| 1832 | } |
| 1833 | |
| 1834 | return !D->isExternallyVisible(); |
| 1835 | } |
| 1836 | |
| 1837 | // FIXME: This needs to be refactored; some other isInMainFile users want |
| 1838 | // these semantics. |
| 1839 | static bool isMainFileLoc(const Sema &S, SourceLocation Loc) { |
| 1840 | if (S.TUKind != TU_Complete || S.getLangOpts().IsHeaderFile) |
| 1841 | return false; |
| 1842 | return S.SourceMgr.isInMainFile(Loc); |
| 1843 | } |
| 1844 | |
| 1845 | bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const { |
| 1846 | assert(D); |
| 1847 | |
| 1848 | if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>()) |
| 1849 | return false; |
| 1850 | |
| 1851 | // Ignore all entities declared within templates, and out-of-line definitions |
| 1852 | // of members of class templates. |
| 1853 | if (D->getDeclContext()->isDependentContext() || |
| 1854 | D->getLexicalDeclContext()->isDependentContext()) |
| 1855 | return false; |
| 1856 | |
| 1857 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) { |
| 1858 | if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
| 1859 | return false; |
| 1860 | // A non-out-of-line declaration of a member specialization was implicitly |
| 1861 | // instantiated; it's the out-of-line declaration that we're interested in. |
| 1862 | if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && |
| 1863 | FD->getMemberSpecializationInfo() && !FD->isOutOfLine()) |
| 1864 | return false; |
| 1865 | |
| 1866 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD)) { |
| 1867 | if (MD->isVirtual() || IsDisallowedCopyOrAssign(D: MD)) |
| 1868 | return false; |
| 1869 | } else { |
| 1870 | // 'static inline' functions are defined in headers; don't warn. |
| 1871 | if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation())) |
| 1872 | return false; |
| 1873 | } |
| 1874 | |
| 1875 | if (FD->doesThisDeclarationHaveABody() && |
| 1876 | Context.DeclMustBeEmitted(FD)) |
| 1877 | return false; |
| 1878 | } else if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D)) { |
| 1879 | // Constants and utility variables are defined in headers with internal |
| 1880 | // linkage; don't warn. (Unlike functions, there isn't a convenient marker |
| 1881 | // like "inline".) |
| 1882 | if (!isMainFileLoc(*this, VD->getLocation())) |
| 1883 | return false; |
| 1884 | |
| 1885 | if (Context.DeclMustBeEmitted(VD)) |
| 1886 | return false; |
| 1887 | |
| 1888 | if (VD->isStaticDataMember() && |
| 1889 | VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
| 1890 | return false; |
| 1891 | if (VD->isStaticDataMember() && |
| 1892 | VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && |
| 1893 | VD->getMemberSpecializationInfo() && !VD->isOutOfLine()) |
| 1894 | return false; |
| 1895 | |
| 1896 | if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation())) |
| 1897 | return false; |
| 1898 | } else { |
| 1899 | return false; |
| 1900 | } |
| 1901 | |
| 1902 | // Only warn for unused decls internal to the translation unit. |
| 1903 | // FIXME: This seems like a bogus check; it suppresses -Wunused-function |
| 1904 | // for inline functions defined in the main source file, for instance. |
| 1905 | return mightHaveNonExternalLinkage(D); |
| 1906 | } |
| 1907 | |
| 1908 | void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) { |
| 1909 | if (!D) |
| 1910 | return; |
| 1911 | |
| 1912 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) { |
| 1913 | const FunctionDecl *First = FD->getFirstDecl(); |
| 1914 | if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First)) |
| 1915 | return; // First should already be in the vector. |
| 1916 | } |
| 1917 | |
| 1918 | if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D)) { |
| 1919 | const VarDecl *First = VD->getFirstDecl(); |
| 1920 | if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First)) |
| 1921 | return; // First should already be in the vector. |
| 1922 | } |
| 1923 | |
| 1924 | if (ShouldWarnIfUnusedFileScopedDecl(D)) |
| 1925 | UnusedFileScopedDecls.push_back(LocalValue: D); |
| 1926 | } |
| 1927 | |
| 1928 | static bool ShouldDiagnoseUnusedDecl(const LangOptions &LangOpts, |
| 1929 | const NamedDecl *D) { |
| 1930 | if (D->isInvalidDecl()) |
| 1931 | return false; |
| 1932 | |
| 1933 | if (const auto *DD = dyn_cast<DecompositionDecl>(Val: D)) { |
| 1934 | // For a decomposition declaration, warn if none of the bindings are |
| 1935 | // referenced, instead of if the variable itself is referenced (which |
| 1936 | // it is, by the bindings' expressions). |
| 1937 | bool IsAllIgnored = true; |
| 1938 | for (const auto *BD : DD->bindings()) { |
| 1939 | if (BD->isReferenced()) |
| 1940 | return false; |
| 1941 | IsAllIgnored = IsAllIgnored && (BD->isPlaceholderVar(LangOpts) || |
| 1942 | BD->hasAttr<UnusedAttr>()); |
| 1943 | } |
| 1944 | if (IsAllIgnored) |
| 1945 | return false; |
| 1946 | } else if (!D->getDeclName()) { |
| 1947 | return false; |
| 1948 | } else if (D->isReferenced() || D->isUsed()) { |
| 1949 | return false; |
| 1950 | } |
| 1951 | |
| 1952 | if (D->isPlaceholderVar(LangOpts)) |
| 1953 | return false; |
| 1954 | |
| 1955 | if (D->hasAttr<UnusedAttr>() || D->hasAttr<ObjCPreciseLifetimeAttr>() || |
| 1956 | D->hasAttr<CleanupAttr>()) |
| 1957 | return false; |
| 1958 | |
| 1959 | if (isa<LabelDecl>(Val: D)) |
| 1960 | return true; |
| 1961 | |
| 1962 | // Except for labels, we only care about unused decls that are local to |
| 1963 | // functions. |
| 1964 | bool WithinFunction = D->getDeclContext()->isFunctionOrMethod(); |
| 1965 | if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext())) |
| 1966 | // For dependent types, the diagnostic is deferred. |
| 1967 | WithinFunction = |
| 1968 | WithinFunction || (R->isLocalClass() && !R->isDependentType()); |
| 1969 | if (!WithinFunction) |
| 1970 | return false; |
| 1971 | |
| 1972 | if (isa<TypedefNameDecl>(Val: D)) |
| 1973 | return true; |
| 1974 | |
| 1975 | // White-list anything that isn't a local variable. |
| 1976 | if (!isa<VarDecl>(Val: D) || isa<ParmVarDecl>(Val: D) || isa<ImplicitParamDecl>(Val: D)) |
| 1977 | return false; |
| 1978 | |
| 1979 | // Types of valid local variables should be complete, so this should succeed. |
| 1980 | if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D)) { |
| 1981 | |
| 1982 | const Expr *Init = VD->getInit(); |
| 1983 | if (const auto *Cleanups = dyn_cast_if_present<ExprWithCleanups>(Val: Init)) |
| 1984 | Init = Cleanups->getSubExpr(); |
| 1985 | |
| 1986 | const auto *Ty = VD->getType().getTypePtr(); |
| 1987 | |
| 1988 | // Only look at the outermost level of typedef. |
| 1989 | if (const TypedefType *TT = Ty->getAs<TypedefType>()) { |
| 1990 | // Allow anything marked with __attribute__((unused)). |
| 1991 | if (TT->getDecl()->hasAttr<UnusedAttr>()) |
| 1992 | return false; |
| 1993 | } |
| 1994 | |
| 1995 | // Warn for reference variables whose initializtion performs lifetime |
| 1996 | // extension. |
| 1997 | if (const auto *MTE = dyn_cast_if_present<MaterializeTemporaryExpr>(Val: Init); |
| 1998 | MTE && MTE->getExtendingDecl()) { |
| 1999 | Ty = VD->getType().getNonReferenceType().getTypePtr(); |
| 2000 | Init = MTE->getSubExpr()->IgnoreImplicitAsWritten(); |
| 2001 | } |
| 2002 | |
| 2003 | // If we failed to complete the type for some reason, or if the type is |
| 2004 | // dependent, don't diagnose the variable. |
| 2005 | if (Ty->isIncompleteType() || Ty->isDependentType()) |
| 2006 | return false; |
| 2007 | |
| 2008 | // Look at the element type to ensure that the warning behaviour is |
| 2009 | // consistent for both scalars and arrays. |
| 2010 | Ty = Ty->getBaseElementTypeUnsafe(); |
| 2011 | |
| 2012 | if (const TagType *TT = Ty->getAs<TagType>()) { |
| 2013 | const TagDecl *Tag = TT->getDecl(); |
| 2014 | if (Tag->hasAttr<UnusedAttr>()) |
| 2015 | return false; |
| 2016 | |
| 2017 | if (const auto *RD = dyn_cast<CXXRecordDecl>(Tag)) { |
| 2018 | if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>()) |
| 2019 | return false; |
| 2020 | |
| 2021 | if (Init) { |
| 2022 | const auto *Construct = |
| 2023 | dyn_cast<CXXConstructExpr>(Val: Init->IgnoreImpCasts()); |
| 2024 | if (Construct && !Construct->isElidable()) { |
| 2025 | const CXXConstructorDecl *CD = Construct->getConstructor(); |
| 2026 | if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() && |
| 2027 | (VD->getInit()->isValueDependent() || !VD->evaluateValue())) |
| 2028 | return false; |
| 2029 | } |
| 2030 | |
| 2031 | // Suppress the warning if we don't know how this is constructed, and |
| 2032 | // it could possibly be non-trivial constructor. |
| 2033 | if (Init->isTypeDependent()) { |
| 2034 | for (const CXXConstructorDecl *Ctor : RD->ctors()) |
| 2035 | if (!Ctor->isTrivial()) |
| 2036 | return false; |
| 2037 | } |
| 2038 | |
| 2039 | // Suppress the warning if the constructor is unresolved because |
| 2040 | // its arguments are dependent. |
| 2041 | if (isa<CXXUnresolvedConstructExpr>(Val: Init)) |
| 2042 | return false; |
| 2043 | } |
| 2044 | } |
| 2045 | } |
| 2046 | |
| 2047 | // TODO: __attribute__((unused)) templates? |
| 2048 | } |
| 2049 | |
| 2050 | return true; |
| 2051 | } |
| 2052 | |
| 2053 | static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx, |
| 2054 | FixItHint &Hint) { |
| 2055 | if (isa<LabelDecl>(Val: D)) { |
| 2056 | SourceLocation AfterColon = Lexer::findLocationAfterToken( |
| 2057 | loc: D->getEndLoc(), TKind: tok::colon, SM: Ctx.getSourceManager(), LangOpts: Ctx.getLangOpts(), |
| 2058 | /*SkipTrailingWhitespaceAndNewline=*/SkipTrailingWhitespaceAndNewLine: false); |
| 2059 | if (AfterColon.isInvalid()) |
| 2060 | return; |
| 2061 | Hint = FixItHint::CreateRemoval( |
| 2062 | CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon)); |
| 2063 | } |
| 2064 | } |
| 2065 | |
| 2066 | void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) { |
| 2067 | DiagnoseUnusedNestedTypedefs( |
| 2068 | D, DiagReceiver: [this](SourceLocation Loc, PartialDiagnostic PD) { Diag(Loc, PD); }); |
| 2069 | } |
| 2070 | |
| 2071 | void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D, |
| 2072 | DiagReceiverTy DiagReceiver) { |
| 2073 | if (D->getTypeForDecl()->isDependentType()) |
| 2074 | return; |
| 2075 | |
| 2076 | for (auto *TmpD : D->decls()) { |
| 2077 | if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD)) |
| 2078 | DiagnoseUnusedDecl(T, DiagReceiver); |
| 2079 | else if(const auto *R = dyn_cast<RecordDecl>(TmpD)) |
| 2080 | DiagnoseUnusedNestedTypedefs(R, DiagReceiver); |
| 2081 | } |
| 2082 | } |
| 2083 | |
| 2084 | void Sema::DiagnoseUnusedDecl(const NamedDecl *D) { |
| 2085 | DiagnoseUnusedDecl( |
| 2086 | ND: D, DiagReceiver: [this](SourceLocation Loc, PartialDiagnostic PD) { Diag(Loc, PD); }); |
| 2087 | } |
| 2088 | |
| 2089 | void Sema::DiagnoseUnusedDecl(const NamedDecl *D, DiagReceiverTy DiagReceiver) { |
| 2090 | if (!ShouldDiagnoseUnusedDecl(LangOpts: getLangOpts(), D)) |
| 2091 | return; |
| 2092 | |
| 2093 | if (auto *TD = dyn_cast<TypedefNameDecl>(Val: D)) { |
| 2094 | // typedefs can be referenced later on, so the diagnostics are emitted |
| 2095 | // at end-of-translation-unit. |
| 2096 | UnusedLocalTypedefNameCandidates.insert(X: TD); |
| 2097 | return; |
| 2098 | } |
| 2099 | |
| 2100 | FixItHint Hint; |
| 2101 | GenerateFixForUnusedDecl(D, Ctx&: Context, Hint); |
| 2102 | |
| 2103 | unsigned DiagID; |
| 2104 | if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable()) |
| 2105 | DiagID = diag::warn_unused_exception_param; |
| 2106 | else if (isa<LabelDecl>(D)) |
| 2107 | DiagID = diag::warn_unused_label; |
| 2108 | else |
| 2109 | DiagID = diag::warn_unused_variable; |
| 2110 | |
| 2111 | SourceLocation DiagLoc = D->getLocation(); |
| 2112 | DiagReceiver(DiagLoc, PDiag(DiagID) << D << Hint << SourceRange(DiagLoc)); |
| 2113 | } |
| 2114 | |
| 2115 | void Sema::DiagnoseUnusedButSetDecl(const VarDecl *VD, |
| 2116 | DiagReceiverTy DiagReceiver) { |
| 2117 | // If it's not referenced, it can't be set. If it has the Cleanup attribute, |
| 2118 | // it's not really unused. |
| 2119 | if (!VD->isReferenced() || !VD->getDeclName() || VD->hasAttr<CleanupAttr>()) |
| 2120 | return; |
| 2121 | |
| 2122 | // In C++, `_` variables behave as if they were maybe_unused |
| 2123 | if (VD->hasAttr<UnusedAttr>() || VD->isPlaceholderVar(getLangOpts())) |
| 2124 | return; |
| 2125 | |
| 2126 | const auto *Ty = VD->getType().getTypePtr()->getBaseElementTypeUnsafe(); |
| 2127 | |
| 2128 | if (Ty->isReferenceType() || Ty->isDependentType()) |
| 2129 | return; |
| 2130 | |
| 2131 | if (const TagType *TT = Ty->getAs<TagType>()) { |
| 2132 | const TagDecl *Tag = TT->getDecl(); |
| 2133 | if (Tag->hasAttr<UnusedAttr>()) |
| 2134 | return; |
| 2135 | // In C++, don't warn for record types that don't have WarnUnusedAttr, to |
| 2136 | // mimic gcc's behavior. |
| 2137 | if (const auto *RD = dyn_cast<CXXRecordDecl>(Val: Tag); |
| 2138 | RD && !RD->hasAttr<WarnUnusedAttr>()) |
| 2139 | return; |
| 2140 | } |
| 2141 | |
| 2142 | // Don't warn about __block Objective-C pointer variables, as they might |
| 2143 | // be assigned in the block but not used elsewhere for the purpose of lifetime |
| 2144 | // extension. |
| 2145 | if (VD->hasAttr<BlocksAttr>() && Ty->isObjCObjectPointerType()) |
| 2146 | return; |
| 2147 | |
| 2148 | // Don't warn about Objective-C pointer variables with precise lifetime |
| 2149 | // semantics; they can be used to ensure ARC releases the object at a known |
| 2150 | // time, which may mean assignment but no other references. |
| 2151 | if (VD->hasAttr<ObjCPreciseLifetimeAttr>() && Ty->isObjCObjectPointerType()) |
| 2152 | return; |
| 2153 | |
| 2154 | auto iter = RefsMinusAssignments.find(Val: VD); |
| 2155 | if (iter == RefsMinusAssignments.end()) |
| 2156 | return; |
| 2157 | |
| 2158 | assert(iter->getSecond() >= 0 && |
| 2159 | "Found a negative number of references to a VarDecl" ); |
| 2160 | if (int RefCnt = iter->getSecond(); RefCnt > 0) { |
| 2161 | // Assume the given VarDecl is "used" if its ref count stored in |
| 2162 | // `RefMinusAssignments` is positive, with one exception. |
| 2163 | // |
| 2164 | // For a C++ variable whose decl (with initializer) entirely consist the |
| 2165 | // condition expression of a if/while/for construct, |
| 2166 | // Clang creates a DeclRefExpr for the condition expression rather than a |
| 2167 | // BinaryOperator of AssignmentOp. Thus, the C++ variable's ref |
| 2168 | // count stored in `RefMinusAssignment` equals 1 when the variable is never |
| 2169 | // used in the body of the if/while/for construct. |
| 2170 | bool UnusedCXXCondDecl = VD->isCXXCondDecl() && (RefCnt == 1); |
| 2171 | if (!UnusedCXXCondDecl) |
| 2172 | return; |
| 2173 | } |
| 2174 | |
| 2175 | unsigned DiagID = isa<ParmVarDecl>(VD) ? diag::warn_unused_but_set_parameter |
| 2176 | : diag::warn_unused_but_set_variable; |
| 2177 | DiagReceiver(VD->getLocation(), PDiag(DiagID) << VD); |
| 2178 | } |
| 2179 | |
| 2180 | static void CheckPoppedLabel(LabelDecl *L, Sema &S, |
| 2181 | Sema::DiagReceiverTy DiagReceiver) { |
| 2182 | // Verify that we have no forward references left. If so, there was a goto |
| 2183 | // or address of a label taken, but no definition of it. Label fwd |
| 2184 | // definitions are indicated with a null substmt which is also not a resolved |
| 2185 | // MS inline assembly label name. |
| 2186 | bool Diagnose = false; |
| 2187 | if (L->isMSAsmLabel()) |
| 2188 | Diagnose = !L->isResolvedMSAsmLabel(); |
| 2189 | else |
| 2190 | Diagnose = L->getStmt() == nullptr; |
| 2191 | if (Diagnose) |
| 2192 | DiagReceiver(L->getLocation(), S.PDiag(diag::err_undeclared_label_use) |
| 2193 | << L); |
| 2194 | } |
| 2195 | |
| 2196 | void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) { |
| 2197 | S->applyNRVO(); |
| 2198 | |
| 2199 | if (S->decl_empty()) return; |
| 2200 | assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && |
| 2201 | "Scope shouldn't contain decls!" ); |
| 2202 | |
| 2203 | /// We visit the decls in non-deterministic order, but we want diagnostics |
| 2204 | /// emitted in deterministic order. Collect any diagnostic that may be emitted |
| 2205 | /// and sort the diagnostics before emitting them, after we visited all decls. |
| 2206 | struct LocAndDiag { |
| 2207 | SourceLocation Loc; |
| 2208 | std::optional<SourceLocation> PreviousDeclLoc; |
| 2209 | PartialDiagnostic PD; |
| 2210 | }; |
| 2211 | SmallVector<LocAndDiag, 16> DeclDiags; |
| 2212 | auto addDiag = [&DeclDiags](SourceLocation Loc, PartialDiagnostic PD) { |
| 2213 | DeclDiags.push_back(Elt: LocAndDiag{.Loc: Loc, .PreviousDeclLoc: std::nullopt, .PD: std::move(PD)}); |
| 2214 | }; |
| 2215 | auto addDiagWithPrev = [&DeclDiags](SourceLocation Loc, |
| 2216 | SourceLocation PreviousDeclLoc, |
| 2217 | PartialDiagnostic PD) { |
| 2218 | DeclDiags.push_back(Elt: LocAndDiag{.Loc: Loc, .PreviousDeclLoc: PreviousDeclLoc, .PD: std::move(PD)}); |
| 2219 | }; |
| 2220 | |
| 2221 | for (auto *TmpD : S->decls()) { |
| 2222 | assert(TmpD && "This decl didn't get pushed??" ); |
| 2223 | |
| 2224 | assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?" ); |
| 2225 | NamedDecl *D = cast<NamedDecl>(Val: TmpD); |
| 2226 | |
| 2227 | // Diagnose unused variables in this scope. |
| 2228 | if (!S->hasUnrecoverableErrorOccurred()) { |
| 2229 | DiagnoseUnusedDecl(D, DiagReceiver: addDiag); |
| 2230 | if (const auto *RD = dyn_cast<RecordDecl>(Val: D)) |
| 2231 | DiagnoseUnusedNestedTypedefs(D: RD, DiagReceiver: addDiag); |
| 2232 | if (VarDecl *VD = dyn_cast<VarDecl>(Val: D)) { |
| 2233 | DiagnoseUnusedButSetDecl(VD, DiagReceiver: addDiag); |
| 2234 | RefsMinusAssignments.erase(Val: VD); |
| 2235 | } |
| 2236 | } |
| 2237 | |
| 2238 | if (!D->getDeclName()) continue; |
| 2239 | |
| 2240 | // If this was a forward reference to a label, verify it was defined. |
| 2241 | if (LabelDecl *LD = dyn_cast<LabelDecl>(Val: D)) |
| 2242 | CheckPoppedLabel(L: LD, S&: *this, DiagReceiver: addDiag); |
| 2243 | |
| 2244 | // Partial translation units that are created in incremental processing must |
| 2245 | // not clean up the IdResolver because PTUs should take into account the |
| 2246 | // declarations that came from previous PTUs. |
| 2247 | if (!PP.isIncrementalProcessingEnabled() || getLangOpts().ObjC || |
| 2248 | getLangOpts().CPlusPlus) |
| 2249 | IdResolver.RemoveDecl(D); |
| 2250 | |
| 2251 | // Warn on it if we are shadowing a declaration. |
| 2252 | auto ShadowI = ShadowingDecls.find(Val: D); |
| 2253 | if (ShadowI != ShadowingDecls.end()) { |
| 2254 | if (const auto *FD = dyn_cast<FieldDecl>(Val: ShadowI->second)) { |
| 2255 | addDiagWithPrev(D->getLocation(), FD->getLocation(), |
| 2256 | PDiag(diag::warn_ctor_parm_shadows_field) |
| 2257 | << D << FD << FD->getParent()); |
| 2258 | } |
| 2259 | ShadowingDecls.erase(I: ShadowI); |
| 2260 | } |
| 2261 | } |
| 2262 | |
| 2263 | llvm::sort(C&: DeclDiags, |
| 2264 | Comp: [](const LocAndDiag &LHS, const LocAndDiag &RHS) -> bool { |
| 2265 | // The particular order for diagnostics is not important, as long |
| 2266 | // as the order is deterministic. Using the raw location is going |
| 2267 | // to generally be in source order unless there are macro |
| 2268 | // expansions involved. |
| 2269 | return LHS.Loc.getRawEncoding() < RHS.Loc.getRawEncoding(); |
| 2270 | }); |
| 2271 | for (const LocAndDiag &D : DeclDiags) { |
| 2272 | Diag(D.Loc, D.PD); |
| 2273 | if (D.PreviousDeclLoc) |
| 2274 | Diag(*D.PreviousDeclLoc, diag::note_previous_declaration); |
| 2275 | } |
| 2276 | } |
| 2277 | |
| 2278 | Scope *Sema::getNonFieldDeclScope(Scope *S) { |
| 2279 | while (((S->getFlags() & Scope::DeclScope) == 0) || |
| 2280 | (S->getEntity() && S->getEntity()->isTransparentContext()) || |
| 2281 | (S->isClassScope() && !getLangOpts().CPlusPlus)) |
| 2282 | S = S->getParent(); |
| 2283 | return S; |
| 2284 | } |
| 2285 | |
| 2286 | static StringRef (Builtin::Context &BuiltinInfo, unsigned ID, |
| 2287 | ASTContext::GetBuiltinTypeError Error) { |
| 2288 | switch (Error) { |
| 2289 | case ASTContext::GE_None: |
| 2290 | return "" ; |
| 2291 | case ASTContext::GE_Missing_type: |
| 2292 | return BuiltinInfo.getHeaderName(ID); |
| 2293 | case ASTContext::GE_Missing_stdio: |
| 2294 | return "stdio.h" ; |
| 2295 | case ASTContext::GE_Missing_setjmp: |
| 2296 | return "setjmp.h" ; |
| 2297 | case ASTContext::GE_Missing_ucontext: |
| 2298 | return "ucontext.h" ; |
| 2299 | } |
| 2300 | llvm_unreachable("unhandled error kind" ); |
| 2301 | } |
| 2302 | |
| 2303 | FunctionDecl *Sema::CreateBuiltin(IdentifierInfo *II, QualType Type, |
| 2304 | unsigned ID, SourceLocation Loc) { |
| 2305 | DeclContext *Parent = Context.getTranslationUnitDecl(); |
| 2306 | |
| 2307 | if (getLangOpts().CPlusPlus) { |
| 2308 | LinkageSpecDecl *CLinkageDecl = LinkageSpecDecl::Create( |
| 2309 | C&: Context, DC: Parent, ExternLoc: Loc, LangLoc: Loc, Lang: LinkageSpecLanguageIDs::C, HasBraces: false); |
| 2310 | CLinkageDecl->setImplicit(); |
| 2311 | Parent->addDecl(CLinkageDecl); |
| 2312 | Parent = CLinkageDecl; |
| 2313 | } |
| 2314 | |
| 2315 | ConstexprSpecKind ConstexprKind = ConstexprSpecKind::Unspecified; |
| 2316 | if (Context.BuiltinInfo.isImmediate(ID)) { |
| 2317 | assert(getLangOpts().CPlusPlus20 && |
| 2318 | "consteval builtins should only be available in C++20 mode" ); |
| 2319 | ConstexprKind = ConstexprSpecKind::Consteval; |
| 2320 | } |
| 2321 | |
| 2322 | FunctionDecl *New = FunctionDecl::Create( |
| 2323 | C&: Context, DC: Parent, StartLoc: Loc, NLoc: Loc, N: II, T: Type, /*TInfo=*/nullptr, SC: SC_Extern, |
| 2324 | UsesFPIntrin: getCurFPFeatures().isFPConstrained(), /*isInlineSpecified=*/false, |
| 2325 | hasWrittenPrototype: Type->isFunctionProtoType(), ConstexprKind); |
| 2326 | New->setImplicit(); |
| 2327 | New->addAttr(BuiltinAttr::CreateImplicit(Context, ID)); |
| 2328 | |
| 2329 | // Create Decl objects for each parameter, adding them to the |
| 2330 | // FunctionDecl. |
| 2331 | if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(Val&: Type)) { |
| 2332 | SmallVector<ParmVarDecl *, 16> Params; |
| 2333 | for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { |
| 2334 | ParmVarDecl *parm = ParmVarDecl::Create( |
| 2335 | Context, New, SourceLocation(), SourceLocation(), nullptr, |
| 2336 | FT->getParamType(i), /*TInfo=*/nullptr, SC_None, nullptr); |
| 2337 | parm->setScopeInfo(scopeDepth: 0, parameterIndex: i); |
| 2338 | Params.push_back(Elt: parm); |
| 2339 | } |
| 2340 | New->setParams(Params); |
| 2341 | } |
| 2342 | |
| 2343 | AddKnownFunctionAttributes(FD: New); |
| 2344 | return New; |
| 2345 | } |
| 2346 | |
| 2347 | NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, |
| 2348 | Scope *S, bool ForRedeclaration, |
| 2349 | SourceLocation Loc) { |
| 2350 | LookupNecessaryTypesForBuiltin(S, ID); |
| 2351 | |
| 2352 | ASTContext::GetBuiltinTypeError Error; |
| 2353 | QualType R = Context.GetBuiltinType(ID, Error); |
| 2354 | if (Error) { |
| 2355 | if (!ForRedeclaration) |
| 2356 | return nullptr; |
| 2357 | |
| 2358 | // If we have a builtin without an associated type we should not emit a |
| 2359 | // warning when we were not able to find a type for it. |
| 2360 | if (Error == ASTContext::GE_Missing_type || |
| 2361 | Context.BuiltinInfo.allowTypeMismatch(ID)) |
| 2362 | return nullptr; |
| 2363 | |
| 2364 | // If we could not find a type for setjmp it is because the jmp_buf type was |
| 2365 | // not defined prior to the setjmp declaration. |
| 2366 | if (Error == ASTContext::GE_Missing_setjmp) { |
| 2367 | Diag(Loc, diag::warn_implicit_decl_no_jmp_buf) |
| 2368 | << Context.BuiltinInfo.getName(ID); |
| 2369 | return nullptr; |
| 2370 | } |
| 2371 | |
| 2372 | // Generally, we emit a warning that the declaration requires the |
| 2373 | // appropriate header. |
| 2374 | Diag(Loc, diag::warn_implicit_decl_requires_sysheader) |
| 2375 | << getHeaderName(Context.BuiltinInfo, ID, Error) |
| 2376 | << Context.BuiltinInfo.getName(ID); |
| 2377 | return nullptr; |
| 2378 | } |
| 2379 | |
| 2380 | if (!ForRedeclaration && |
| 2381 | (Context.BuiltinInfo.isPredefinedLibFunction(ID) || |
| 2382 | Context.BuiltinInfo.isHeaderDependentFunction(ID))) { |
| 2383 | Diag(Loc, LangOpts.C99 ? diag::ext_implicit_lib_function_decl_c99 |
| 2384 | : diag::ext_implicit_lib_function_decl) |
| 2385 | << Context.BuiltinInfo.getName(ID) << R; |
| 2386 | if (const char *Header = Context.BuiltinInfo.getHeaderName(ID)) |
| 2387 | Diag(Loc, diag::note_include_header_or_declare) |
| 2388 | << Header << Context.BuiltinInfo.getName(ID); |
| 2389 | } |
| 2390 | |
| 2391 | if (R.isNull()) |
| 2392 | return nullptr; |
| 2393 | |
| 2394 | FunctionDecl *New = CreateBuiltin(II, Type: R, ID, Loc); |
| 2395 | RegisterLocallyScopedExternCDecl(New, S); |
| 2396 | |
| 2397 | // TUScope is the translation-unit scope to insert this function into. |
| 2398 | // FIXME: This is hideous. We need to teach PushOnScopeChains to |
| 2399 | // relate Scopes to DeclContexts, and probably eliminate CurContext |
| 2400 | // entirely, but we're not there yet. |
| 2401 | DeclContext *SavedContext = CurContext; |
| 2402 | CurContext = New->getDeclContext(); |
| 2403 | PushOnScopeChains(New, TUScope); |
| 2404 | CurContext = SavedContext; |
| 2405 | return New; |
| 2406 | } |
| 2407 | |
| 2408 | /// Typedef declarations don't have linkage, but they still denote the same |
| 2409 | /// entity if their types are the same. |
| 2410 | /// FIXME: This is notionally doing the same thing as ASTReaderDecl's |
| 2411 | /// isSameEntity. |
| 2412 | static void |
| 2413 | filterNonConflictingPreviousTypedefDecls(Sema &S, const TypedefNameDecl *Decl, |
| 2414 | LookupResult &Previous) { |
| 2415 | // This is only interesting when modules are enabled. |
| 2416 | if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility) |
| 2417 | return; |
| 2418 | |
| 2419 | // Empty sets are uninteresting. |
| 2420 | if (Previous.empty()) |
| 2421 | return; |
| 2422 | |
| 2423 | LookupResult::Filter Filter = Previous.makeFilter(); |
| 2424 | while (Filter.hasNext()) { |
| 2425 | NamedDecl *Old = Filter.next(); |
| 2426 | |
| 2427 | // Non-hidden declarations are never ignored. |
| 2428 | if (S.isVisible(D: Old)) |
| 2429 | continue; |
| 2430 | |
| 2431 | // Declarations of the same entity are not ignored, even if they have |
| 2432 | // different linkages. |
| 2433 | if (auto *OldTD = dyn_cast<TypedefNameDecl>(Val: Old)) { |
| 2434 | if (S.Context.hasSameType(T1: OldTD->getUnderlyingType(), |
| 2435 | T2: Decl->getUnderlyingType())) |
| 2436 | continue; |
| 2437 | |
| 2438 | // If both declarations give a tag declaration a typedef name for linkage |
| 2439 | // purposes, then they declare the same entity. |
| 2440 | if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) && |
| 2441 | Decl->getAnonDeclWithTypedefName()) |
| 2442 | continue; |
| 2443 | } |
| 2444 | |
| 2445 | Filter.erase(); |
| 2446 | } |
| 2447 | |
| 2448 | Filter.done(); |
| 2449 | } |
| 2450 | |
| 2451 | bool Sema::isIncompatibleTypedef(const TypeDecl *Old, TypedefNameDecl *New) { |
| 2452 | QualType OldType; |
| 2453 | if (const TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Val: Old)) |
| 2454 | OldType = OldTypedef->getUnderlyingType(); |
| 2455 | else |
| 2456 | OldType = Context.getTypeDeclType(Decl: Old); |
| 2457 | QualType NewType = New->getUnderlyingType(); |
| 2458 | |
| 2459 | if (NewType->isVariablyModifiedType()) { |
| 2460 | // Must not redefine a typedef with a variably-modified type. |
| 2461 | int Kind = isa<TypeAliasDecl>(Val: Old) ? 1 : 0; |
| 2462 | Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef) |
| 2463 | << Kind << NewType; |
| 2464 | if (Old->getLocation().isValid()) |
| 2465 | notePreviousDefinition(Old, New: New->getLocation()); |
| 2466 | New->setInvalidDecl(); |
| 2467 | return true; |
| 2468 | } |
| 2469 | |
| 2470 | if (OldType != NewType && |
| 2471 | !OldType->isDependentType() && |
| 2472 | !NewType->isDependentType() && |
| 2473 | !Context.hasSameType(T1: OldType, T2: NewType)) { |
| 2474 | int Kind = isa<TypeAliasDecl>(Val: Old) ? 1 : 0; |
| 2475 | Diag(New->getLocation(), diag::err_redefinition_different_typedef) |
| 2476 | << Kind << NewType << OldType; |
| 2477 | if (Old->getLocation().isValid()) |
| 2478 | notePreviousDefinition(Old, New: New->getLocation()); |
| 2479 | New->setInvalidDecl(); |
| 2480 | return true; |
| 2481 | } |
| 2482 | return false; |
| 2483 | } |
| 2484 | |
| 2485 | void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New, |
| 2486 | LookupResult &OldDecls) { |
| 2487 | // If the new decl is known invalid already, don't bother doing any |
| 2488 | // merging checks. |
| 2489 | if (New->isInvalidDecl()) return; |
| 2490 | |
| 2491 | // Allow multiple definitions for ObjC built-in typedefs. |
| 2492 | // FIXME: Verify the underlying types are equivalent! |
| 2493 | if (getLangOpts().ObjC) { |
| 2494 | const IdentifierInfo *TypeID = New->getIdentifier(); |
| 2495 | switch (TypeID->getLength()) { |
| 2496 | default: break; |
| 2497 | case 2: |
| 2498 | { |
| 2499 | if (!TypeID->isStr(Str: "id" )) |
| 2500 | break; |
| 2501 | QualType T = New->getUnderlyingType(); |
| 2502 | if (!T->isPointerType()) |
| 2503 | break; |
| 2504 | if (!T->isVoidPointerType()) { |
| 2505 | QualType PT = T->castAs<PointerType>()->getPointeeType(); |
| 2506 | if (!PT->isStructureType()) |
| 2507 | break; |
| 2508 | } |
| 2509 | Context.setObjCIdRedefinitionType(T); |
| 2510 | // Install the built-in type for 'id', ignoring the current definition. |
| 2511 | New->setTypeForDecl(Context.getObjCIdType().getTypePtr()); |
| 2512 | return; |
| 2513 | } |
| 2514 | case 5: |
| 2515 | if (!TypeID->isStr(Str: "Class" )) |
| 2516 | break; |
| 2517 | Context.setObjCClassRedefinitionType(New->getUnderlyingType()); |
| 2518 | // Install the built-in type for 'Class', ignoring the current definition. |
| 2519 | New->setTypeForDecl(Context.getObjCClassType().getTypePtr()); |
| 2520 | return; |
| 2521 | case 3: |
| 2522 | if (!TypeID->isStr(Str: "SEL" )) |
| 2523 | break; |
| 2524 | Context.setObjCSelRedefinitionType(New->getUnderlyingType()); |
| 2525 | // Install the built-in type for 'SEL', ignoring the current definition. |
| 2526 | New->setTypeForDecl(Context.getObjCSelType().getTypePtr()); |
| 2527 | return; |
| 2528 | } |
| 2529 | // Fall through - the typedef name was not a builtin type. |
| 2530 | } |
| 2531 | |
| 2532 | // Verify the old decl was also a type. |
| 2533 | TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>(); |
| 2534 | if (!Old) { |
| 2535 | Diag(New->getLocation(), diag::err_redefinition_different_kind) |
| 2536 | << New->getDeclName(); |
| 2537 | |
| 2538 | NamedDecl *OldD = OldDecls.getRepresentativeDecl(); |
| 2539 | if (OldD->getLocation().isValid()) |
| 2540 | notePreviousDefinition(Old: OldD, New: New->getLocation()); |
| 2541 | |
| 2542 | return New->setInvalidDecl(); |
| 2543 | } |
| 2544 | |
| 2545 | // If the old declaration is invalid, just give up here. |
| 2546 | if (Old->isInvalidDecl()) |
| 2547 | return New->setInvalidDecl(); |
| 2548 | |
| 2549 | if (auto *OldTD = dyn_cast<TypedefNameDecl>(Val: Old)) { |
| 2550 | auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true); |
| 2551 | auto *NewTag = New->getAnonDeclWithTypedefName(); |
| 2552 | NamedDecl *Hidden = nullptr; |
| 2553 | if (OldTag && NewTag && |
| 2554 | OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() && |
| 2555 | !hasVisibleDefinition(OldTag, &Hidden)) { |
| 2556 | // There is a definition of this tag, but it is not visible. Use it |
| 2557 | // instead of our tag. |
| 2558 | New->setTypeForDecl(OldTD->getTypeForDecl()); |
| 2559 | if (OldTD->isModed()) |
| 2560 | New->setModedTypeSourceInfo(unmodedTSI: OldTD->getTypeSourceInfo(), |
| 2561 | modedTy: OldTD->getUnderlyingType()); |
| 2562 | else |
| 2563 | New->setTypeSourceInfo(OldTD->getTypeSourceInfo()); |
| 2564 | |
| 2565 | // Make the old tag definition visible. |
| 2566 | makeMergedDefinitionVisible(ND: Hidden); |
| 2567 | |
| 2568 | CleanupMergedEnum(S, NewTag); |
| 2569 | } |
| 2570 | } |
| 2571 | |
| 2572 | // If the typedef types are not identical, reject them in all languages and |
| 2573 | // with any extensions enabled. |
| 2574 | if (isIncompatibleTypedef(Old, New)) |
| 2575 | return; |
| 2576 | |
| 2577 | // The types match. Link up the redeclaration chain and merge attributes if |
| 2578 | // the old declaration was a typedef. |
| 2579 | if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Val: Old)) { |
| 2580 | New->setPreviousDecl(Typedef); |
| 2581 | mergeDeclAttributes(New, Old); |
| 2582 | } |
| 2583 | |
| 2584 | if (getLangOpts().MicrosoftExt) |
| 2585 | return; |
| 2586 | |
| 2587 | if (getLangOpts().CPlusPlus) { |
| 2588 | // C++ [dcl.typedef]p2: |
| 2589 | // In a given non-class scope, a typedef specifier can be used to |
| 2590 | // redefine the name of any type declared in that scope to refer |
| 2591 | // to the type to which it already refers. |
| 2592 | if (!isa<CXXRecordDecl>(Val: CurContext)) |
| 2593 | return; |
| 2594 | |
| 2595 | // C++0x [dcl.typedef]p4: |
| 2596 | // In a given class scope, a typedef specifier can be used to redefine |
| 2597 | // any class-name declared in that scope that is not also a typedef-name |
| 2598 | // to refer to the type to which it already refers. |
| 2599 | // |
| 2600 | // This wording came in via DR424, which was a correction to the |
| 2601 | // wording in DR56, which accidentally banned code like: |
| 2602 | // |
| 2603 | // struct S { |
| 2604 | // typedef struct A { } A; |
| 2605 | // }; |
| 2606 | // |
| 2607 | // in the C++03 standard. We implement the C++0x semantics, which |
| 2608 | // allow the above but disallow |
| 2609 | // |
| 2610 | // struct S { |
| 2611 | // typedef int I; |
| 2612 | // typedef int I; |
| 2613 | // }; |
| 2614 | // |
| 2615 | // since that was the intent of DR56. |
| 2616 | if (!isa<TypedefNameDecl>(Val: Old)) |
| 2617 | return; |
| 2618 | |
| 2619 | Diag(New->getLocation(), diag::err_redefinition) |
| 2620 | << New->getDeclName(); |
| 2621 | notePreviousDefinition(Old, New: New->getLocation()); |
| 2622 | return New->setInvalidDecl(); |
| 2623 | } |
| 2624 | |
| 2625 | // Modules always permit redefinition of typedefs, as does C11. |
| 2626 | if (getLangOpts().Modules || getLangOpts().C11) |
| 2627 | return; |
| 2628 | |
| 2629 | // If we have a redefinition of a typedef in C, emit a warning. This warning |
| 2630 | // is normally mapped to an error, but can be controlled with |
| 2631 | // -Wtypedef-redefinition. If either the original or the redefinition is |
| 2632 | // in a system header, don't emit this for compatibility with GCC. |
| 2633 | if (getDiagnostics().getSuppressSystemWarnings() && |
| 2634 | // Some standard types are defined implicitly in Clang (e.g. OpenCL). |
| 2635 | (Old->isImplicit() || |
| 2636 | Context.getSourceManager().isInSystemHeader(Loc: Old->getLocation()) || |
| 2637 | Context.getSourceManager().isInSystemHeader(Loc: New->getLocation()))) |
| 2638 | return; |
| 2639 | |
| 2640 | Diag(New->getLocation(), diag::ext_redefinition_of_typedef) |
| 2641 | << New->getDeclName(); |
| 2642 | notePreviousDefinition(Old, New: New->getLocation()); |
| 2643 | } |
| 2644 | |
| 2645 | void Sema::CleanupMergedEnum(Scope *S, Decl *New) { |
| 2646 | // If this was an unscoped enumeration, yank all of its enumerators |
| 2647 | // out of the scope. |
| 2648 | if (auto *ED = dyn_cast<EnumDecl>(Val: New); ED && !ED->isScoped()) { |
| 2649 | Scope *EnumScope = getNonFieldDeclScope(S); |
| 2650 | for (auto *ECD : ED->enumerators()) { |
| 2651 | assert(EnumScope->isDeclScope(ECD)); |
| 2652 | EnumScope->RemoveDecl(ECD); |
| 2653 | IdResolver.RemoveDecl(ECD); |
| 2654 | } |
| 2655 | } |
| 2656 | } |
| 2657 | |
| 2658 | /// DeclhasAttr - returns true if decl Declaration already has the target |
| 2659 | /// attribute. |
| 2660 | static bool DeclHasAttr(const Decl *D, const Attr *A) { |
| 2661 | const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A); |
| 2662 | const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A); |
| 2663 | for (const auto *i : D->attrs()) |
| 2664 | if (i->getKind() == A->getKind()) { |
| 2665 | if (Ann) { |
| 2666 | if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation()) |
| 2667 | return true; |
| 2668 | continue; |
| 2669 | } |
| 2670 | // FIXME: Don't hardcode this check |
| 2671 | if (OA && isa<OwnershipAttr>(i)) |
| 2672 | return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind(); |
| 2673 | return true; |
| 2674 | } |
| 2675 | |
| 2676 | return false; |
| 2677 | } |
| 2678 | |
| 2679 | static bool isAttributeTargetADefinition(Decl *D) { |
| 2680 | if (VarDecl *VD = dyn_cast<VarDecl>(Val: D)) |
| 2681 | return VD->isThisDeclarationADefinition(); |
| 2682 | if (TagDecl *TD = dyn_cast<TagDecl>(Val: D)) |
| 2683 | return TD->isCompleteDefinition() || TD->isBeingDefined(); |
| 2684 | return true; |
| 2685 | } |
| 2686 | |
| 2687 | /// Merge alignment attributes from \p Old to \p New, taking into account the |
| 2688 | /// special semantics of C11's _Alignas specifier and C++11's alignas attribute. |
| 2689 | /// |
| 2690 | /// \return \c true if any attributes were added to \p New. |
| 2691 | static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) { |
| 2692 | // Look for alignas attributes on Old, and pick out whichever attribute |
| 2693 | // specifies the strictest alignment requirement. |
| 2694 | AlignedAttr *OldAlignasAttr = nullptr; |
| 2695 | AlignedAttr *OldStrictestAlignAttr = nullptr; |
| 2696 | unsigned OldAlign = 0; |
| 2697 | for (auto *I : Old->specific_attrs<AlignedAttr>()) { |
| 2698 | // FIXME: We have no way of representing inherited dependent alignments |
| 2699 | // in a case like: |
| 2700 | // template<int A, int B> struct alignas(A) X; |
| 2701 | // template<int A, int B> struct alignas(B) X {}; |
| 2702 | // For now, we just ignore any alignas attributes which are not on the |
| 2703 | // definition in such a case. |
| 2704 | if (I->isAlignmentDependent()) |
| 2705 | return false; |
| 2706 | |
| 2707 | if (I->isAlignas()) |
| 2708 | OldAlignasAttr = I; |
| 2709 | |
| 2710 | unsigned Align = I->getAlignment(S.Context); |
| 2711 | if (Align > OldAlign) { |
| 2712 | OldAlign = Align; |
| 2713 | OldStrictestAlignAttr = I; |
| 2714 | } |
| 2715 | } |
| 2716 | |
| 2717 | // Look for alignas attributes on New. |
| 2718 | AlignedAttr *NewAlignasAttr = nullptr; |
| 2719 | unsigned NewAlign = 0; |
| 2720 | for (auto *I : New->specific_attrs<AlignedAttr>()) { |
| 2721 | if (I->isAlignmentDependent()) |
| 2722 | return false; |
| 2723 | |
| 2724 | if (I->isAlignas()) |
| 2725 | NewAlignasAttr = I; |
| 2726 | |
| 2727 | unsigned Align = I->getAlignment(S.Context); |
| 2728 | if (Align > NewAlign) |
| 2729 | NewAlign = Align; |
| 2730 | } |
| 2731 | |
| 2732 | if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) { |
| 2733 | // Both declarations have 'alignas' attributes. We require them to match. |
| 2734 | // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but |
| 2735 | // fall short. (If two declarations both have alignas, they must both match |
| 2736 | // every definition, and so must match each other if there is a definition.) |
| 2737 | |
| 2738 | // If either declaration only contains 'alignas(0)' specifiers, then it |
| 2739 | // specifies the natural alignment for the type. |
| 2740 | if (OldAlign == 0 || NewAlign == 0) { |
| 2741 | QualType Ty; |
| 2742 | if (ValueDecl *VD = dyn_cast<ValueDecl>(Val: New)) |
| 2743 | Ty = VD->getType(); |
| 2744 | else |
| 2745 | Ty = S.Context.getTagDeclType(Decl: cast<TagDecl>(Val: New)); |
| 2746 | |
| 2747 | if (OldAlign == 0) |
| 2748 | OldAlign = S.Context.getTypeAlign(T: Ty); |
| 2749 | if (NewAlign == 0) |
| 2750 | NewAlign = S.Context.getTypeAlign(T: Ty); |
| 2751 | } |
| 2752 | |
| 2753 | if (OldAlign != NewAlign) { |
| 2754 | S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch) |
| 2755 | << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity() |
| 2756 | << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity(); |
| 2757 | S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration); |
| 2758 | } |
| 2759 | } |
| 2760 | |
| 2761 | if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) { |
| 2762 | // C++11 [dcl.align]p6: |
| 2763 | // if any declaration of an entity has an alignment-specifier, |
| 2764 | // every defining declaration of that entity shall specify an |
| 2765 | // equivalent alignment. |
| 2766 | // C11 6.7.5/7: |
| 2767 | // If the definition of an object does not have an alignment |
| 2768 | // specifier, any other declaration of that object shall also |
| 2769 | // have no alignment specifier. |
| 2770 | S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition) |
| 2771 | << OldAlignasAttr; |
| 2772 | S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration) |
| 2773 | << OldAlignasAttr; |
| 2774 | } |
| 2775 | |
| 2776 | bool AnyAdded = false; |
| 2777 | |
| 2778 | // Ensure we have an attribute representing the strictest alignment. |
| 2779 | if (OldAlign > NewAlign) { |
| 2780 | AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context); |
| 2781 | Clone->setInherited(true); |
| 2782 | New->addAttr(A: Clone); |
| 2783 | AnyAdded = true; |
| 2784 | } |
| 2785 | |
| 2786 | // Ensure we have an alignas attribute if the old declaration had one. |
| 2787 | if (OldAlignasAttr && !NewAlignasAttr && |
| 2788 | !(AnyAdded && OldStrictestAlignAttr->isAlignas())) { |
| 2789 | AlignedAttr *Clone = OldAlignasAttr->clone(S.Context); |
| 2790 | Clone->setInherited(true); |
| 2791 | New->addAttr(A: Clone); |
| 2792 | AnyAdded = true; |
| 2793 | } |
| 2794 | |
| 2795 | return AnyAdded; |
| 2796 | } |
| 2797 | |
| 2798 | #define WANT_DECL_MERGE_LOGIC |
| 2799 | #include "clang/Sema/AttrParsedAttrImpl.inc" |
| 2800 | #undef WANT_DECL_MERGE_LOGIC |
| 2801 | |
| 2802 | static bool mergeDeclAttribute(Sema &S, NamedDecl *D, |
| 2803 | const InheritableAttr *Attr, |
| 2804 | AvailabilityMergeKind AMK) { |
| 2805 | // Diagnose any mutual exclusions between the attribute that we want to add |
| 2806 | // and attributes that already exist on the declaration. |
| 2807 | if (!DiagnoseMutualExclusions(S, D, Attr)) |
| 2808 | return false; |
| 2809 | |
| 2810 | // This function copies an attribute Attr from a previous declaration to the |
| 2811 | // new declaration D if the new declaration doesn't itself have that attribute |
| 2812 | // yet or if that attribute allows duplicates. |
| 2813 | // If you're adding a new attribute that requires logic different from |
| 2814 | // "use explicit attribute on decl if present, else use attribute from |
| 2815 | // previous decl", for example if the attribute needs to be consistent |
| 2816 | // between redeclarations, you need to call a custom merge function here. |
| 2817 | InheritableAttr *NewAttr = nullptr; |
| 2818 | if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr)) |
| 2819 | NewAttr = S.mergeAvailabilityAttr( |
| 2820 | D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(), |
| 2821 | AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(), |
| 2822 | AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK, |
| 2823 | AA->getPriority(), AA->getEnvironment()); |
| 2824 | else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr)) |
| 2825 | NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility()); |
| 2826 | else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr)) |
| 2827 | NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility()); |
| 2828 | else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr)) |
| 2829 | NewAttr = S.mergeDLLImportAttr(D, *ImportA); |
| 2830 | else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr)) |
| 2831 | NewAttr = S.mergeDLLExportAttr(D, *ExportA); |
| 2832 | else if (const auto *EA = dyn_cast<ErrorAttr>(Attr)) |
| 2833 | NewAttr = S.mergeErrorAttr(D, *EA, EA->getUserDiagnostic()); |
| 2834 | else if (const auto *FA = dyn_cast<FormatAttr>(Attr)) |
| 2835 | NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(), |
| 2836 | FA->getFirstArg()); |
| 2837 | else if (const auto *FMA = dyn_cast<FormatMatchesAttr>(Attr)) |
| 2838 | NewAttr = S.mergeFormatMatchesAttr( |
| 2839 | D, *FMA, FMA->getType(), FMA->getFormatIdx(), FMA->getFormatString()); |
| 2840 | else if (const auto *SA = dyn_cast<SectionAttr>(Attr)) |
| 2841 | NewAttr = S.mergeSectionAttr(D, *SA, SA->getName()); |
| 2842 | else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr)) |
| 2843 | NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName()); |
| 2844 | else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr)) |
| 2845 | NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(), |
| 2846 | IA->getInheritanceModel()); |
| 2847 | else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr)) |
| 2848 | NewAttr = S.mergeAlwaysInlineAttr(D, *AA, |
| 2849 | &S.Context.Idents.get(AA->getSpelling())); |
| 2850 | else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) && |
| 2851 | (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) || |
| 2852 | isa<CUDAGlobalAttr>(Attr))) { |
| 2853 | // CUDA target attributes are part of function signature for |
| 2854 | // overloading purposes and must not be merged. |
| 2855 | return false; |
| 2856 | } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr)) |
| 2857 | NewAttr = S.mergeMinSizeAttr(D, *MA); |
| 2858 | else if (const auto *SNA = dyn_cast<SwiftNameAttr>(Attr)) |
| 2859 | NewAttr = S.Swift().mergeNameAttr(D, SNA: *SNA, Name: SNA->getName()); |
| 2860 | else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr)) |
| 2861 | NewAttr = S.mergeOptimizeNoneAttr(D, *OA); |
| 2862 | else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr)) |
| 2863 | NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA); |
| 2864 | else if (isa<AlignedAttr>(Attr)) |
| 2865 | // AlignedAttrs are handled separately, because we need to handle all |
| 2866 | // such attributes on a declaration at the same time. |
| 2867 | NewAttr = nullptr; |
| 2868 | else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) && |
| 2869 | (AMK == AvailabilityMergeKind::Override || |
| 2870 | AMK == AvailabilityMergeKind::ProtocolImplementation || |
| 2871 | AMK == AvailabilityMergeKind::OptionalProtocolImplementation)) |
| 2872 | NewAttr = nullptr; |
| 2873 | else if (const auto *UA = dyn_cast<UuidAttr>(Attr)) |
| 2874 | NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid(), UA->getGuidDecl()); |
| 2875 | else if (const auto *IMA = dyn_cast<WebAssemblyImportModuleAttr>(Attr)) |
| 2876 | NewAttr = S.Wasm().mergeImportModuleAttr(D, *IMA); |
| 2877 | else if (const auto *INA = dyn_cast<WebAssemblyImportNameAttr>(Attr)) |
| 2878 | NewAttr = S.Wasm().mergeImportNameAttr(D, *INA); |
| 2879 | else if (const auto *TCBA = dyn_cast<EnforceTCBAttr>(Attr)) |
| 2880 | NewAttr = S.mergeEnforceTCBAttr(D, *TCBA); |
| 2881 | else if (const auto *TCBLA = dyn_cast<EnforceTCBLeafAttr>(Attr)) |
| 2882 | NewAttr = S.mergeEnforceTCBLeafAttr(D, *TCBLA); |
| 2883 | else if (const auto *BTFA = dyn_cast<BTFDeclTagAttr>(Attr)) |
| 2884 | NewAttr = S.mergeBTFDeclTagAttr(D, *BTFA); |
| 2885 | else if (const auto *NT = dyn_cast<HLSLNumThreadsAttr>(Attr)) |
| 2886 | NewAttr = S.HLSL().mergeNumThreadsAttr(D, *NT, NT->getX(), NT->getY(), |
| 2887 | NT->getZ()); |
| 2888 | else if (const auto *WS = dyn_cast<HLSLWaveSizeAttr>(Attr)) |
| 2889 | NewAttr = S.HLSL().mergeWaveSizeAttr(D, *WS, WS->getMin(), WS->getMax(), |
| 2890 | WS->getPreferred(), |
| 2891 | WS->getSpelledArgsCount()); |
| 2892 | else if (const auto *SA = dyn_cast<HLSLShaderAttr>(Attr)) |
| 2893 | NewAttr = S.HLSL().mergeShaderAttr(D, *SA, SA->getType()); |
| 2894 | else if (isa<SuppressAttr>(Attr)) |
| 2895 | // Do nothing. Each redeclaration should be suppressed separately. |
| 2896 | NewAttr = nullptr; |
| 2897 | else if (const auto *RD = dyn_cast<OpenACCRoutineDeclAttr>(Attr)) |
| 2898 | NewAttr = S.OpenACC().mergeRoutineDeclAttr(*RD); |
| 2899 | else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr)) |
| 2900 | NewAttr = cast<InheritableAttr>(Attr->clone(C&: S.Context)); |
| 2901 | |
| 2902 | if (NewAttr) { |
| 2903 | NewAttr->setInherited(true); |
| 2904 | D->addAttr(NewAttr); |
| 2905 | if (isa<MSInheritanceAttr>(NewAttr)) |
| 2906 | S.Consumer.AssignInheritanceModel(RD: cast<CXXRecordDecl>(D)); |
| 2907 | return true; |
| 2908 | } |
| 2909 | |
| 2910 | return false; |
| 2911 | } |
| 2912 | |
| 2913 | static const NamedDecl *getDefinition(const Decl *D) { |
| 2914 | if (const TagDecl *TD = dyn_cast<TagDecl>(Val: D)) |
| 2915 | return TD->getDefinition(); |
| 2916 | if (const VarDecl *VD = dyn_cast<VarDecl>(Val: D)) { |
| 2917 | const VarDecl *Def = VD->getDefinition(); |
| 2918 | if (Def) |
| 2919 | return Def; |
| 2920 | return VD->getActingDefinition(); |
| 2921 | } |
| 2922 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) { |
| 2923 | const FunctionDecl *Def = nullptr; |
| 2924 | if (FD->isDefined(Definition&: Def, CheckForPendingFriendDefinition: true)) |
| 2925 | return Def; |
| 2926 | } |
| 2927 | return nullptr; |
| 2928 | } |
| 2929 | |
| 2930 | static bool hasAttribute(const Decl *D, attr::Kind Kind) { |
| 2931 | for (const auto *Attribute : D->attrs()) |
| 2932 | if (Attribute->getKind() == Kind) |
| 2933 | return true; |
| 2934 | return false; |
| 2935 | } |
| 2936 | |
| 2937 | /// checkNewAttributesAfterDef - If we already have a definition, check that |
| 2938 | /// there are no new attributes in this declaration. |
| 2939 | static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) { |
| 2940 | if (!New->hasAttrs()) |
| 2941 | return; |
| 2942 | |
| 2943 | const NamedDecl *Def = getDefinition(D: Old); |
| 2944 | if (!Def || Def == New) |
| 2945 | return; |
| 2946 | |
| 2947 | AttrVec &NewAttributes = New->getAttrs(); |
| 2948 | for (unsigned I = 0, E = NewAttributes.size(); I != E;) { |
| 2949 | Attr *NewAttribute = NewAttributes[I]; |
| 2950 | |
| 2951 | if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) { |
| 2952 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: New)) { |
| 2953 | SkipBodyInfo SkipBody; |
| 2954 | S.CheckForFunctionRedefinition(FD, EffectiveDefinition: cast<FunctionDecl>(Val: Def), SkipBody: &SkipBody); |
| 2955 | |
| 2956 | // If we're skipping this definition, drop the "alias" attribute. |
| 2957 | if (SkipBody.ShouldSkip) { |
| 2958 | NewAttributes.erase(CI: NewAttributes.begin() + I); |
| 2959 | --E; |
| 2960 | continue; |
| 2961 | } |
| 2962 | } else { |
| 2963 | VarDecl *VD = cast<VarDecl>(Val: New); |
| 2964 | unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() == |
| 2965 | VarDecl::TentativeDefinition |
| 2966 | ? diag::err_alias_after_tentative |
| 2967 | : diag::err_redefinition; |
| 2968 | S.Diag(VD->getLocation(), Diag) << VD->getDeclName(); |
| 2969 | if (Diag == diag::err_redefinition) |
| 2970 | S.notePreviousDefinition(Old: Def, New: VD->getLocation()); |
| 2971 | else |
| 2972 | S.Diag(Def->getLocation(), diag::note_previous_definition); |
| 2973 | VD->setInvalidDecl(); |
| 2974 | } |
| 2975 | ++I; |
| 2976 | continue; |
| 2977 | } |
| 2978 | |
| 2979 | if (const VarDecl *VD = dyn_cast<VarDecl>(Val: Def)) { |
| 2980 | // Tentative definitions are only interesting for the alias check above. |
| 2981 | if (VD->isThisDeclarationADefinition() != VarDecl::Definition) { |
| 2982 | ++I; |
| 2983 | continue; |
| 2984 | } |
| 2985 | } |
| 2986 | |
| 2987 | if (hasAttribute(Def, NewAttribute->getKind())) { |
| 2988 | ++I; |
| 2989 | continue; // regular attr merging will take care of validating this. |
| 2990 | } |
| 2991 | |
| 2992 | if (isa<C11NoReturnAttr>(NewAttribute)) { |
| 2993 | // C's _Noreturn is allowed to be added to a function after it is defined. |
| 2994 | ++I; |
| 2995 | continue; |
| 2996 | } else if (isa<UuidAttr>(NewAttribute)) { |
| 2997 | // msvc will allow a subsequent definition to add an uuid to a class |
| 2998 | ++I; |
| 2999 | continue; |
| 3000 | } else if (isa<DeprecatedAttr, WarnUnusedResultAttr, UnusedAttr>( |
| 3001 | NewAttribute) && |
| 3002 | NewAttribute->isStandardAttributeSyntax()) { |
| 3003 | // C++14 [dcl.attr.deprecated]p3: A name or entity declared without the |
| 3004 | // deprecated attribute can later be re-declared with the attribute and |
| 3005 | // vice-versa. |
| 3006 | // C++17 [dcl.attr.unused]p4: A name or entity declared without the |
| 3007 | // maybe_unused attribute can later be redeclared with the attribute and |
| 3008 | // vice versa. |
| 3009 | // C++20 [dcl.attr.nodiscard]p2: A name or entity declared without the |
| 3010 | // nodiscard attribute can later be redeclared with the attribute and |
| 3011 | // vice-versa. |
| 3012 | // C23 6.7.13.3p3, 6.7.13.4p3. and 6.7.13.5p5 give the same allowances. |
| 3013 | ++I; |
| 3014 | continue; |
| 3015 | } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) { |
| 3016 | if (AA->isAlignas()) { |
| 3017 | // C++11 [dcl.align]p6: |
| 3018 | // if any declaration of an entity has an alignment-specifier, |
| 3019 | // every defining declaration of that entity shall specify an |
| 3020 | // equivalent alignment. |
| 3021 | // C11 6.7.5/7: |
| 3022 | // If the definition of an object does not have an alignment |
| 3023 | // specifier, any other declaration of that object shall also |
| 3024 | // have no alignment specifier. |
| 3025 | S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition) |
| 3026 | << AA; |
| 3027 | S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration) |
| 3028 | << AA; |
| 3029 | NewAttributes.erase(CI: NewAttributes.begin() + I); |
| 3030 | --E; |
| 3031 | continue; |
| 3032 | } |
| 3033 | } else if (isa<LoaderUninitializedAttr>(NewAttribute)) { |
| 3034 | // If there is a C definition followed by a redeclaration with this |
| 3035 | // attribute then there are two different definitions. In C++, prefer the |
| 3036 | // standard diagnostics. |
| 3037 | if (!S.getLangOpts().CPlusPlus) { |
| 3038 | S.Diag(NewAttribute->getLocation(), |
| 3039 | diag::err_loader_uninitialized_redeclaration); |
| 3040 | S.Diag(Def->getLocation(), diag::note_previous_definition); |
| 3041 | NewAttributes.erase(CI: NewAttributes.begin() + I); |
| 3042 | --E; |
| 3043 | continue; |
| 3044 | } |
| 3045 | } else if (isa<SelectAnyAttr>(NewAttribute) && |
| 3046 | cast<VarDecl>(New)->isInline() && |
| 3047 | !cast<VarDecl>(New)->isInlineSpecified()) { |
| 3048 | // Don't warn about applying selectany to implicitly inline variables. |
| 3049 | // Older compilers and language modes would require the use of selectany |
| 3050 | // to make such variables inline, and it would have no effect if we |
| 3051 | // honored it. |
| 3052 | ++I; |
| 3053 | continue; |
| 3054 | } else if (isa<OMPDeclareVariantAttr>(NewAttribute)) { |
| 3055 | // We allow to add OMP[Begin]DeclareVariantAttr to be added to |
| 3056 | // declarations after definitions. |
| 3057 | ++I; |
| 3058 | continue; |
| 3059 | } else if (isa<SYCLKernelEntryPointAttr>(NewAttribute)) { |
| 3060 | // Elevate latent uses of the sycl_kernel_entry_point attribute to an |
| 3061 | // error since the definition will have already been created without |
| 3062 | // the semantic effects of the attribute having been applied. |
| 3063 | S.Diag(NewAttribute->getLocation(), |
| 3064 | diag::err_sycl_entry_point_after_definition); |
| 3065 | S.Diag(Def->getLocation(), diag::note_previous_definition); |
| 3066 | cast<SYCLKernelEntryPointAttr>(NewAttribute)->setInvalidAttr(); |
| 3067 | ++I; |
| 3068 | continue; |
| 3069 | } |
| 3070 | |
| 3071 | S.Diag(NewAttribute->getLocation(), |
| 3072 | diag::warn_attribute_precede_definition); |
| 3073 | S.Diag(Def->getLocation(), diag::note_previous_definition); |
| 3074 | NewAttributes.erase(CI: NewAttributes.begin() + I); |
| 3075 | --E; |
| 3076 | } |
| 3077 | } |
| 3078 | |
| 3079 | static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl, |
| 3080 | const ConstInitAttr *CIAttr, |
| 3081 | bool AttrBeforeInit) { |
| 3082 | SourceLocation InsertLoc = InitDecl->getInnerLocStart(); |
| 3083 | |
| 3084 | // Figure out a good way to write this specifier on the old declaration. |
| 3085 | // FIXME: We should just use the spelling of CIAttr, but we don't preserve |
| 3086 | // enough of the attribute list spelling information to extract that without |
| 3087 | // heroics. |
| 3088 | std::string SuitableSpelling; |
| 3089 | if (S.getLangOpts().CPlusPlus20) |
| 3090 | SuitableSpelling = std::string( |
| 3091 | S.PP.getLastMacroWithSpelling(Loc: InsertLoc, Tokens: {tok::kw_constinit})); |
| 3092 | if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11) |
| 3093 | SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling( |
| 3094 | Loc: InsertLoc, Tokens: {tok::l_square, tok::l_square, |
| 3095 | S.PP.getIdentifierInfo(Name: "clang" ), tok::coloncolon, |
| 3096 | S.PP.getIdentifierInfo(Name: "require_constant_initialization" ), |
| 3097 | tok::r_square, tok::r_square})); |
| 3098 | if (SuitableSpelling.empty()) |
| 3099 | SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling( |
| 3100 | Loc: InsertLoc, Tokens: {tok::kw___attribute, tok::l_paren, tok::r_paren, |
| 3101 | S.PP.getIdentifierInfo(Name: "require_constant_initialization" ), |
| 3102 | tok::r_paren, tok::r_paren})); |
| 3103 | if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus20) |
| 3104 | SuitableSpelling = "constinit" ; |
| 3105 | if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11) |
| 3106 | SuitableSpelling = "[[clang::require_constant_initialization]]" ; |
| 3107 | if (SuitableSpelling.empty()) |
| 3108 | SuitableSpelling = "__attribute__((require_constant_initialization))" ; |
| 3109 | SuitableSpelling += " " ; |
| 3110 | |
| 3111 | if (AttrBeforeInit) { |
| 3112 | // extern constinit int a; |
| 3113 | // int a = 0; // error (missing 'constinit'), accepted as extension |
| 3114 | assert(CIAttr->isConstinit() && "should not diagnose this for attribute" ); |
| 3115 | S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing) |
| 3116 | << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling); |
| 3117 | S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here); |
| 3118 | } else { |
| 3119 | // int a = 0; |
| 3120 | // constinit extern int a; // error (missing 'constinit') |
| 3121 | S.Diag(CIAttr->getLocation(), |
| 3122 | CIAttr->isConstinit() ? diag::err_constinit_added_too_late |
| 3123 | : diag::warn_require_const_init_added_too_late) |
| 3124 | << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation())); |
| 3125 | S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here) |
| 3126 | << CIAttr->isConstinit() |
| 3127 | << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling); |
| 3128 | } |
| 3129 | } |
| 3130 | |
| 3131 | void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old, |
| 3132 | AvailabilityMergeKind AMK) { |
| 3133 | if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) { |
| 3134 | UsedAttr *NewAttr = OldAttr->clone(Context); |
| 3135 | NewAttr->setInherited(true); |
| 3136 | New->addAttr(A: NewAttr); |
| 3137 | } |
| 3138 | if (RetainAttr *OldAttr = Old->getMostRecentDecl()->getAttr<RetainAttr>()) { |
| 3139 | RetainAttr *NewAttr = OldAttr->clone(Context); |
| 3140 | NewAttr->setInherited(true); |
| 3141 | New->addAttr(A: NewAttr); |
| 3142 | } |
| 3143 | |
| 3144 | if (!Old->hasAttrs() && !New->hasAttrs()) |
| 3145 | return; |
| 3146 | |
| 3147 | // [dcl.constinit]p1: |
| 3148 | // If the [constinit] specifier is applied to any declaration of a |
| 3149 | // variable, it shall be applied to the initializing declaration. |
| 3150 | const auto *OldConstInit = Old->getAttr<ConstInitAttr>(); |
| 3151 | const auto *NewConstInit = New->getAttr<ConstInitAttr>(); |
| 3152 | if (bool(OldConstInit) != bool(NewConstInit)) { |
| 3153 | const auto *OldVD = cast<VarDecl>(Val: Old); |
| 3154 | auto *NewVD = cast<VarDecl>(Val: New); |
| 3155 | |
| 3156 | // Find the initializing declaration. Note that we might not have linked |
| 3157 | // the new declaration into the redeclaration chain yet. |
| 3158 | const VarDecl *InitDecl = OldVD->getInitializingDeclaration(); |
| 3159 | if (!InitDecl && |
| 3160 | (NewVD->hasInit() || NewVD->isThisDeclarationADefinition())) |
| 3161 | InitDecl = NewVD; |
| 3162 | |
| 3163 | if (InitDecl == NewVD) { |
| 3164 | // This is the initializing declaration. If it would inherit 'constinit', |
| 3165 | // that's ill-formed. (Note that we do not apply this to the attribute |
| 3166 | // form). |
| 3167 | if (OldConstInit && OldConstInit->isConstinit()) |
| 3168 | diagnoseMissingConstinit(*this, NewVD, OldConstInit, |
| 3169 | /*AttrBeforeInit=*/true); |
| 3170 | } else if (NewConstInit) { |
| 3171 | // This is the first time we've been told that this declaration should |
| 3172 | // have a constant initializer. If we already saw the initializing |
| 3173 | // declaration, this is too late. |
| 3174 | if (InitDecl && InitDecl != NewVD) { |
| 3175 | diagnoseMissingConstinit(*this, InitDecl, NewConstInit, |
| 3176 | /*AttrBeforeInit=*/false); |
| 3177 | NewVD->dropAttr<ConstInitAttr>(); |
| 3178 | } |
| 3179 | } |
| 3180 | } |
| 3181 | |
| 3182 | // Attributes declared post-definition are currently ignored. |
| 3183 | checkNewAttributesAfterDef(*this, New, Old); |
| 3184 | |
| 3185 | if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) { |
| 3186 | if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) { |
| 3187 | if (!OldA->isEquivalent(NewA)) { |
| 3188 | // This redeclaration changes __asm__ label. |
| 3189 | Diag(New->getLocation(), diag::err_different_asm_label); |
| 3190 | Diag(OldA->getLocation(), diag::note_previous_declaration); |
| 3191 | } |
| 3192 | } else if (Old->isUsed()) { |
| 3193 | // This redeclaration adds an __asm__ label to a declaration that has |
| 3194 | // already been ODR-used. |
| 3195 | Diag(New->getLocation(), diag::err_late_asm_label_name) |
| 3196 | << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange(); |
| 3197 | } |
| 3198 | } |
| 3199 | |
| 3200 | // Re-declaration cannot add abi_tag's. |
| 3201 | if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) { |
| 3202 | if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) { |
| 3203 | for (const auto &NewTag : NewAbiTagAttr->tags()) { |
| 3204 | if (!llvm::is_contained(OldAbiTagAttr->tags(), NewTag)) { |
| 3205 | Diag(NewAbiTagAttr->getLocation(), |
| 3206 | diag::err_new_abi_tag_on_redeclaration) |
| 3207 | << NewTag; |
| 3208 | Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration); |
| 3209 | } |
| 3210 | } |
| 3211 | } else { |
| 3212 | Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration); |
| 3213 | Diag(Old->getLocation(), diag::note_previous_declaration); |
| 3214 | } |
| 3215 | } |
| 3216 | |
| 3217 | // This redeclaration adds a section attribute. |
| 3218 | if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) { |
| 3219 | if (auto *VD = dyn_cast<VarDecl>(Val: New)) { |
| 3220 | if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) { |
| 3221 | Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration); |
| 3222 | Diag(Old->getLocation(), diag::note_previous_declaration); |
| 3223 | } |
| 3224 | } |
| 3225 | } |
| 3226 | |
| 3227 | // Redeclaration adds code-seg attribute. |
| 3228 | const auto *NewCSA = New->getAttr<CodeSegAttr>(); |
| 3229 | if (NewCSA && !Old->hasAttr<CodeSegAttr>() && |
| 3230 | !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) { |
| 3231 | Diag(New->getLocation(), diag::warn_mismatched_section) |
| 3232 | << 0 /*codeseg*/; |
| 3233 | Diag(Old->getLocation(), diag::note_previous_declaration); |
| 3234 | } |
| 3235 | |
| 3236 | if (!Old->hasAttrs()) |
| 3237 | return; |
| 3238 | |
| 3239 | bool foundAny = New->hasAttrs(); |
| 3240 | |
| 3241 | // Ensure that any moving of objects within the allocated map is done before |
| 3242 | // we process them. |
| 3243 | if (!foundAny) New->setAttrs(AttrVec()); |
| 3244 | |
| 3245 | for (auto *I : Old->specific_attrs<InheritableAttr>()) { |
| 3246 | // Ignore deprecated/unavailable/availability attributes if requested. |
| 3247 | AvailabilityMergeKind LocalAMK = AvailabilityMergeKind::None; |
| 3248 | if (isa<DeprecatedAttr>(I) || |
| 3249 | isa<UnavailableAttr>(I) || |
| 3250 | isa<AvailabilityAttr>(I)) { |
| 3251 | switch (AMK) { |
| 3252 | case AvailabilityMergeKind::None: |
| 3253 | continue; |
| 3254 | |
| 3255 | case AvailabilityMergeKind::Redeclaration: |
| 3256 | case AvailabilityMergeKind::Override: |
| 3257 | case AvailabilityMergeKind::ProtocolImplementation: |
| 3258 | case AvailabilityMergeKind::OptionalProtocolImplementation: |
| 3259 | LocalAMK = AMK; |
| 3260 | break; |
| 3261 | } |
| 3262 | } |
| 3263 | |
| 3264 | // Already handled. |
| 3265 | if (isa<UsedAttr>(I) || isa<RetainAttr>(I)) |
| 3266 | continue; |
| 3267 | |
| 3268 | if (mergeDeclAttribute(*this, New, I, LocalAMK)) |
| 3269 | foundAny = true; |
| 3270 | } |
| 3271 | |
| 3272 | if (mergeAlignedAttrs(S&: *this, New, Old)) |
| 3273 | foundAny = true; |
| 3274 | |
| 3275 | if (!foundAny) New->dropAttrs(); |
| 3276 | } |
| 3277 | |
| 3278 | // Returns the number of added attributes. |
| 3279 | template <class T> |
| 3280 | static unsigned propagateAttribute(ParmVarDecl *To, const ParmVarDecl *From, |
| 3281 | Sema &S) { |
| 3282 | unsigned found = 0; |
| 3283 | for (const auto *I : From->specific_attrs<T>()) { |
| 3284 | if (!DeclHasAttr(To, I)) { |
| 3285 | T *newAttr = cast<T>(I->clone(S.Context)); |
| 3286 | newAttr->setInherited(true); |
| 3287 | To->addAttr(A: newAttr); |
| 3288 | ++found; |
| 3289 | } |
| 3290 | } |
| 3291 | return found; |
| 3292 | } |
| 3293 | |
| 3294 | template <class F> |
| 3295 | static void propagateAttributes(ParmVarDecl *To, const ParmVarDecl *From, |
| 3296 | F &&propagator) { |
| 3297 | if (!From->hasAttrs()) { |
| 3298 | return; |
| 3299 | } |
| 3300 | |
| 3301 | bool foundAny = To->hasAttrs(); |
| 3302 | |
| 3303 | // Ensure that any moving of objects within the allocated map is |
| 3304 | // done before we process them. |
| 3305 | if (!foundAny) |
| 3306 | To->setAttrs(AttrVec()); |
| 3307 | |
| 3308 | foundAny |= std::forward<F>(propagator)(To, From) != 0; |
| 3309 | |
| 3310 | if (!foundAny) |
| 3311 | To->dropAttrs(); |
| 3312 | } |
| 3313 | |
| 3314 | /// mergeParamDeclAttributes - Copy attributes from the old parameter |
| 3315 | /// to the new one. |
| 3316 | static void mergeParamDeclAttributes(ParmVarDecl *newDecl, |
| 3317 | const ParmVarDecl *oldDecl, |
| 3318 | Sema &S) { |
| 3319 | // C++11 [dcl.attr.depend]p2: |
| 3320 | // The first declaration of a function shall specify the |
| 3321 | // carries_dependency attribute for its declarator-id if any declaration |
| 3322 | // of the function specifies the carries_dependency attribute. |
| 3323 | const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>(); |
| 3324 | if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) { |
| 3325 | S.Diag(CDA->getLocation(), |
| 3326 | diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/; |
| 3327 | // Find the first declaration of the parameter. |
| 3328 | // FIXME: Should we build redeclaration chains for function parameters? |
| 3329 | const FunctionDecl *FirstFD = |
| 3330 | cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl(); |
| 3331 | const ParmVarDecl *FirstVD = |
| 3332 | FirstFD->getParamDecl(i: oldDecl->getFunctionScopeIndex()); |
| 3333 | S.Diag(FirstVD->getLocation(), |
| 3334 | diag::note_carries_dependency_missing_first_decl) << 1/*Param*/; |
| 3335 | } |
| 3336 | |
| 3337 | propagateAttributes( |
| 3338 | To: newDecl, From: oldDecl, propagator: [&S](ParmVarDecl *To, const ParmVarDecl *From) { |
| 3339 | unsigned found = 0; |
| 3340 | found += propagateAttribute<InheritableParamAttr>(To, From, S); |
| 3341 | // Propagate the lifetimebound attribute from parameters to the |
| 3342 | // most recent declaration. Note that this doesn't include the implicit |
| 3343 | // 'this' parameter, as the attribute is applied to the function type in |
| 3344 | // that case. |
| 3345 | found += propagateAttribute<LifetimeBoundAttr>(To, From, S); |
| 3346 | return found; |
| 3347 | }); |
| 3348 | } |
| 3349 | |
| 3350 | static bool EquivalentArrayTypes(QualType Old, QualType New, |
| 3351 | const ASTContext &Ctx) { |
| 3352 | |
| 3353 | auto NoSizeInfo = [&Ctx](QualType Ty) { |
| 3354 | if (Ty->isIncompleteArrayType() || Ty->isPointerType()) |
| 3355 | return true; |
| 3356 | if (const auto *VAT = Ctx.getAsVariableArrayType(Ty)) |
| 3357 | return VAT->getSizeModifier() == ArraySizeModifier::Star; |
| 3358 | return false; |
| 3359 | }; |
| 3360 | |
| 3361 | // `type[]` is equivalent to `type *` and `type[*]`. |
| 3362 | if (NoSizeInfo(Old) && NoSizeInfo(New)) |
| 3363 | return true; |
| 3364 | |
| 3365 | // Don't try to compare VLA sizes, unless one of them has the star modifier. |
| 3366 | if (Old->isVariableArrayType() && New->isVariableArrayType()) { |
| 3367 | const auto *OldVAT = Ctx.getAsVariableArrayType(T: Old); |
| 3368 | const auto *NewVAT = Ctx.getAsVariableArrayType(T: New); |
| 3369 | if ((OldVAT->getSizeModifier() == ArraySizeModifier::Star) ^ |
| 3370 | (NewVAT->getSizeModifier() == ArraySizeModifier::Star)) |
| 3371 | return false; |
| 3372 | return true; |
| 3373 | } |
| 3374 | |
| 3375 | // Only compare size, ignore Size modifiers and CVR. |
| 3376 | if (Old->isConstantArrayType() && New->isConstantArrayType()) { |
| 3377 | return Ctx.getAsConstantArrayType(T: Old)->getSize() == |
| 3378 | Ctx.getAsConstantArrayType(T: New)->getSize(); |
| 3379 | } |
| 3380 | |
| 3381 | // Don't try to compare dependent sized array |
| 3382 | if (Old->isDependentSizedArrayType() && New->isDependentSizedArrayType()) { |
| 3383 | return true; |
| 3384 | } |
| 3385 | |
| 3386 | return Old == New; |
| 3387 | } |
| 3388 | |
| 3389 | static void mergeParamDeclTypes(ParmVarDecl *NewParam, |
| 3390 | const ParmVarDecl *OldParam, |
| 3391 | Sema &S) { |
| 3392 | if (auto Oldnullability = OldParam->getType()->getNullability()) { |
| 3393 | if (auto Newnullability = NewParam->getType()->getNullability()) { |
| 3394 | if (*Oldnullability != *Newnullability) { |
| 3395 | S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr) |
| 3396 | << DiagNullabilityKind( |
| 3397 | *Newnullability, |
| 3398 | ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) |
| 3399 | != 0)) |
| 3400 | << DiagNullabilityKind( |
| 3401 | *Oldnullability, |
| 3402 | ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) |
| 3403 | != 0)); |
| 3404 | S.Diag(OldParam->getLocation(), diag::note_previous_declaration); |
| 3405 | } |
| 3406 | } else { |
| 3407 | QualType NewT = NewParam->getType(); |
| 3408 | NewT = S.Context.getAttributedType(*Oldnullability, NewT, NewT); |
| 3409 | NewParam->setType(NewT); |
| 3410 | } |
| 3411 | } |
| 3412 | const auto *OldParamDT = dyn_cast<DecayedType>(OldParam->getType()); |
| 3413 | const auto *NewParamDT = dyn_cast<DecayedType>(NewParam->getType()); |
| 3414 | if (OldParamDT && NewParamDT && |
| 3415 | OldParamDT->getPointeeType() == NewParamDT->getPointeeType()) { |
| 3416 | QualType OldParamOT = OldParamDT->getOriginalType(); |
| 3417 | QualType NewParamOT = NewParamDT->getOriginalType(); |
| 3418 | if (!EquivalentArrayTypes(Old: OldParamOT, New: NewParamOT, Ctx: S.getASTContext())) { |
| 3419 | S.Diag(NewParam->getLocation(), diag::warn_inconsistent_array_form) |
| 3420 | << NewParam << NewParamOT; |
| 3421 | S.Diag(OldParam->getLocation(), diag::note_previous_declaration_as) |
| 3422 | << OldParamOT; |
| 3423 | } |
| 3424 | } |
| 3425 | } |
| 3426 | |
| 3427 | namespace { |
| 3428 | |
| 3429 | /// Used in MergeFunctionDecl to keep track of function parameters in |
| 3430 | /// C. |
| 3431 | struct GNUCompatibleParamWarning { |
| 3432 | ParmVarDecl *OldParm; |
| 3433 | ParmVarDecl *NewParm; |
| 3434 | QualType PromotedType; |
| 3435 | }; |
| 3436 | |
| 3437 | } // end anonymous namespace |
| 3438 | |
| 3439 | // Determine whether the previous declaration was a definition, implicit |
| 3440 | // declaration, or a declaration. |
| 3441 | template <typename T> |
| 3442 | static std::pair<diag::kind, SourceLocation> |
| 3443 | getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) { |
| 3444 | diag::kind PrevDiag; |
| 3445 | SourceLocation OldLocation = Old->getLocation(); |
| 3446 | if (Old->isThisDeclarationADefinition()) |
| 3447 | PrevDiag = diag::note_previous_definition; |
| 3448 | else if (Old->isImplicit()) { |
| 3449 | PrevDiag = diag::note_previous_implicit_declaration; |
| 3450 | if (const auto *FD = dyn_cast<FunctionDecl>(Old)) { |
| 3451 | if (FD->getBuiltinID()) |
| 3452 | PrevDiag = diag::note_previous_builtin_declaration; |
| 3453 | } |
| 3454 | if (OldLocation.isInvalid()) |
| 3455 | OldLocation = New->getLocation(); |
| 3456 | } else |
| 3457 | PrevDiag = diag::note_previous_declaration; |
| 3458 | return std::make_pair(x&: PrevDiag, y&: OldLocation); |
| 3459 | } |
| 3460 | |
| 3461 | /// canRedefineFunction - checks if a function can be redefined. Currently, |
| 3462 | /// only extern inline functions can be redefined, and even then only in |
| 3463 | /// GNU89 mode. |
| 3464 | static bool canRedefineFunction(const FunctionDecl *FD, |
| 3465 | const LangOptions& LangOpts) { |
| 3466 | return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) && |
| 3467 | !LangOpts.CPlusPlus && |
| 3468 | FD->isInlineSpecified() && |
| 3469 | FD->getStorageClass() == SC_Extern); |
| 3470 | } |
| 3471 | |
| 3472 | const AttributedType *Sema::getCallingConvAttributedType(QualType T) const { |
| 3473 | const AttributedType *AT = T->getAs<AttributedType>(); |
| 3474 | while (AT && !AT->isCallingConv()) |
| 3475 | AT = AT->getModifiedType()->getAs<AttributedType>(); |
| 3476 | return AT; |
| 3477 | } |
| 3478 | |
| 3479 | template <typename T> |
| 3480 | static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) { |
| 3481 | const DeclContext *DC = Old->getDeclContext(); |
| 3482 | if (DC->isRecord()) |
| 3483 | return false; |
| 3484 | |
| 3485 | LanguageLinkage OldLinkage = Old->getLanguageLinkage(); |
| 3486 | if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext()) |
| 3487 | return true; |
| 3488 | if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext()) |
| 3489 | return true; |
| 3490 | return false; |
| 3491 | } |
| 3492 | |
| 3493 | template<typename T> static bool isExternC(T *D) { return D->isExternC(); } |
| 3494 | static bool isExternC(VarTemplateDecl *) { return false; } |
| 3495 | static bool isExternC(FunctionTemplateDecl *) { return false; } |
| 3496 | |
| 3497 | /// Check whether a redeclaration of an entity introduced by a |
| 3498 | /// using-declaration is valid, given that we know it's not an overload |
| 3499 | /// (nor a hidden tag declaration). |
| 3500 | template<typename ExpectedDecl> |
| 3501 | static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS, |
| 3502 | ExpectedDecl *New) { |
| 3503 | // C++11 [basic.scope.declarative]p4: |
| 3504 | // Given a set of declarations in a single declarative region, each of |
| 3505 | // which specifies the same unqualified name, |
| 3506 | // -- they shall all refer to the same entity, or all refer to functions |
| 3507 | // and function templates; or |
| 3508 | // -- exactly one declaration shall declare a class name or enumeration |
| 3509 | // name that is not a typedef name and the other declarations shall all |
| 3510 | // refer to the same variable or enumerator, or all refer to functions |
| 3511 | // and function templates; in this case the class name or enumeration |
| 3512 | // name is hidden (3.3.10). |
| 3513 | |
| 3514 | // C++11 [namespace.udecl]p14: |
| 3515 | // If a function declaration in namespace scope or block scope has the |
| 3516 | // same name and the same parameter-type-list as a function introduced |
| 3517 | // by a using-declaration, and the declarations do not declare the same |
| 3518 | // function, the program is ill-formed. |
| 3519 | |
| 3520 | auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl()); |
| 3521 | if (Old && |
| 3522 | !Old->getDeclContext()->getRedeclContext()->Equals( |
| 3523 | New->getDeclContext()->getRedeclContext()) && |
| 3524 | !(isExternC(Old) && isExternC(New))) |
| 3525 | Old = nullptr; |
| 3526 | |
| 3527 | if (!Old) { |
| 3528 | S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse); |
| 3529 | S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target); |
| 3530 | S.Diag(OldS->getIntroducer()->getLocation(), diag::note_using_decl) << 0; |
| 3531 | return true; |
| 3532 | } |
| 3533 | return false; |
| 3534 | } |
| 3535 | |
| 3536 | static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A, |
| 3537 | const FunctionDecl *B) { |
| 3538 | assert(A->getNumParams() == B->getNumParams()); |
| 3539 | |
| 3540 | auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) { |
| 3541 | const auto *AttrA = A->getAttr<PassObjectSizeAttr>(); |
| 3542 | const auto *AttrB = B->getAttr<PassObjectSizeAttr>(); |
| 3543 | if (AttrA == AttrB) |
| 3544 | return true; |
| 3545 | return AttrA && AttrB && AttrA->getType() == AttrB->getType() && |
| 3546 | AttrA->isDynamic() == AttrB->isDynamic(); |
| 3547 | }; |
| 3548 | |
| 3549 | return std::equal(first1: A->param_begin(), last1: A->param_end(), first2: B->param_begin(), binary_pred: AttrEq); |
| 3550 | } |
| 3551 | |
| 3552 | /// If necessary, adjust the semantic declaration context for a qualified |
| 3553 | /// declaration to name the correct inline namespace within the qualifier. |
| 3554 | static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD, |
| 3555 | DeclaratorDecl *OldD) { |
| 3556 | // The only case where we need to update the DeclContext is when |
| 3557 | // redeclaration lookup for a qualified name finds a declaration |
| 3558 | // in an inline namespace within the context named by the qualifier: |
| 3559 | // |
| 3560 | // inline namespace N { int f(); } |
| 3561 | // int ::f(); // Sema DC needs adjusting from :: to N::. |
| 3562 | // |
| 3563 | // For unqualified declarations, the semantic context *can* change |
| 3564 | // along the redeclaration chain (for local extern declarations, |
| 3565 | // extern "C" declarations, and friend declarations in particular). |
| 3566 | if (!NewD->getQualifier()) |
| 3567 | return; |
| 3568 | |
| 3569 | // NewD is probably already in the right context. |
| 3570 | auto *NamedDC = NewD->getDeclContext()->getRedeclContext(); |
| 3571 | auto *SemaDC = OldD->getDeclContext()->getRedeclContext(); |
| 3572 | if (NamedDC->Equals(SemaDC)) |
| 3573 | return; |
| 3574 | |
| 3575 | assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || |
| 3576 | NewD->isInvalidDecl() || OldD->isInvalidDecl()) && |
| 3577 | "unexpected context for redeclaration" ); |
| 3578 | |
| 3579 | auto *LexDC = NewD->getLexicalDeclContext(); |
| 3580 | auto FixSemaDC = [=](NamedDecl *D) { |
| 3581 | if (!D) |
| 3582 | return; |
| 3583 | D->setDeclContext(SemaDC); |
| 3584 | D->setLexicalDeclContext(LexDC); |
| 3585 | }; |
| 3586 | |
| 3587 | FixSemaDC(NewD); |
| 3588 | if (auto *FD = dyn_cast<FunctionDecl>(Val: NewD)) |
| 3589 | FixSemaDC(FD->getDescribedFunctionTemplate()); |
| 3590 | else if (auto *VD = dyn_cast<VarDecl>(Val: NewD)) |
| 3591 | FixSemaDC(VD->getDescribedVarTemplate()); |
| 3592 | } |
| 3593 | |
| 3594 | bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD, Scope *S, |
| 3595 | bool MergeTypeWithOld, bool NewDeclIsDefn) { |
| 3596 | // Verify the old decl was also a function. |
| 3597 | FunctionDecl *Old = OldD->getAsFunction(); |
| 3598 | if (!Old) { |
| 3599 | if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(Val: OldD)) { |
| 3600 | if (New->getFriendObjectKind()) { |
| 3601 | Diag(New->getLocation(), diag::err_using_decl_friend); |
| 3602 | Diag(Shadow->getTargetDecl()->getLocation(), |
| 3603 | diag::note_using_decl_target); |
| 3604 | Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) |
| 3605 | << 0; |
| 3606 | return true; |
| 3607 | } |
| 3608 | |
| 3609 | // Check whether the two declarations might declare the same function or |
| 3610 | // function template. |
| 3611 | if (FunctionTemplateDecl *NewTemplate = |
| 3612 | New->getDescribedFunctionTemplate()) { |
| 3613 | if (checkUsingShadowRedecl<FunctionTemplateDecl>(S&: *this, OldS: Shadow, |
| 3614 | New: NewTemplate)) |
| 3615 | return true; |
| 3616 | OldD = Old = cast<FunctionTemplateDecl>(Val: Shadow->getTargetDecl()) |
| 3617 | ->getAsFunction(); |
| 3618 | } else { |
| 3619 | if (checkUsingShadowRedecl<FunctionDecl>(S&: *this, OldS: Shadow, New)) |
| 3620 | return true; |
| 3621 | OldD = Old = cast<FunctionDecl>(Val: Shadow->getTargetDecl()); |
| 3622 | } |
| 3623 | } else { |
| 3624 | Diag(New->getLocation(), diag::err_redefinition_different_kind) |
| 3625 | << New->getDeclName(); |
| 3626 | notePreviousDefinition(Old: OldD, New: New->getLocation()); |
| 3627 | return true; |
| 3628 | } |
| 3629 | } |
| 3630 | |
| 3631 | // If the old declaration was found in an inline namespace and the new |
| 3632 | // declaration was qualified, update the DeclContext to match. |
| 3633 | adjustDeclContextForDeclaratorDecl(New, Old); |
| 3634 | |
| 3635 | // If the old declaration is invalid, just give up here. |
| 3636 | if (Old->isInvalidDecl()) |
| 3637 | return true; |
| 3638 | |
| 3639 | // Disallow redeclaration of some builtins. |
| 3640 | if (!getASTContext().canBuiltinBeRedeclared(Old)) { |
| 3641 | Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName(); |
| 3642 | Diag(Old->getLocation(), diag::note_previous_builtin_declaration) |
| 3643 | << Old << Old->getType(); |
| 3644 | return true; |
| 3645 | } |
| 3646 | |
| 3647 | diag::kind PrevDiag; |
| 3648 | SourceLocation OldLocation; |
| 3649 | std::tie(args&: PrevDiag, args&: OldLocation) = |
| 3650 | getNoteDiagForInvalidRedeclaration(Old, New); |
| 3651 | |
| 3652 | // Don't complain about this if we're in GNU89 mode and the old function |
| 3653 | // is an extern inline function. |
| 3654 | // Don't complain about specializations. They are not supposed to have |
| 3655 | // storage classes. |
| 3656 | if (!isa<CXXMethodDecl>(Val: New) && !isa<CXXMethodDecl>(Val: Old) && |
| 3657 | New->getStorageClass() == SC_Static && |
| 3658 | Old->hasExternalFormalLinkage() && |
| 3659 | !New->getTemplateSpecializationInfo() && |
| 3660 | !canRedefineFunction(FD: Old, LangOpts: getLangOpts())) { |
| 3661 | if (getLangOpts().MicrosoftExt) { |
| 3662 | Diag(New->getLocation(), diag::ext_static_non_static) << New; |
| 3663 | Diag(OldLocation, PrevDiag) << Old << Old->getType(); |
| 3664 | } else { |
| 3665 | Diag(New->getLocation(), diag::err_static_non_static) << New; |
| 3666 | Diag(OldLocation, PrevDiag) << Old << Old->getType(); |
| 3667 | return true; |
| 3668 | } |
| 3669 | } |
| 3670 | |
| 3671 | if (const auto *ILA = New->getAttr<InternalLinkageAttr>()) |
| 3672 | if (!Old->hasAttr<InternalLinkageAttr>()) { |
| 3673 | Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl) |
| 3674 | << ILA; |
| 3675 | Diag(Old->getLocation(), diag::note_previous_declaration); |
| 3676 | New->dropAttr<InternalLinkageAttr>(); |
| 3677 | } |
| 3678 | |
| 3679 | if (auto *EA = New->getAttr<ErrorAttr>()) { |
| 3680 | if (!Old->hasAttr<ErrorAttr>()) { |
| 3681 | Diag(EA->getLocation(), diag::err_attribute_missing_on_first_decl) << EA; |
| 3682 | Diag(Old->getLocation(), diag::note_previous_declaration); |
| 3683 | New->dropAttr<ErrorAttr>(); |
| 3684 | } |
| 3685 | } |
| 3686 | |
| 3687 | if (CheckRedeclarationInModule(New, Old)) |
| 3688 | return true; |
| 3689 | |
| 3690 | if (!getLangOpts().CPlusPlus) { |
| 3691 | bool OldOvl = Old->hasAttr<OverloadableAttr>(); |
| 3692 | if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) { |
| 3693 | Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch) |
| 3694 | << New << OldOvl; |
| 3695 | |
| 3696 | // Try our best to find a decl that actually has the overloadable |
| 3697 | // attribute for the note. In most cases (e.g. programs with only one |
| 3698 | // broken declaration/definition), this won't matter. |
| 3699 | // |
| 3700 | // FIXME: We could do this if we juggled some extra state in |
| 3701 | // OverloadableAttr, rather than just removing it. |
| 3702 | const Decl *DiagOld = Old; |
| 3703 | if (OldOvl) { |
| 3704 | auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) { |
| 3705 | const auto *A = D->getAttr<OverloadableAttr>(); |
| 3706 | return A && !A->isImplicit(); |
| 3707 | }); |
| 3708 | // If we've implicitly added *all* of the overloadable attrs to this |
| 3709 | // chain, emitting a "previous redecl" note is pointless. |
| 3710 | DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter; |
| 3711 | } |
| 3712 | |
| 3713 | if (DiagOld) |
| 3714 | Diag(DiagOld->getLocation(), |
| 3715 | diag::note_attribute_overloadable_prev_overload) |
| 3716 | << OldOvl; |
| 3717 | |
| 3718 | if (OldOvl) |
| 3719 | New->addAttr(OverloadableAttr::CreateImplicit(Context)); |
| 3720 | else |
| 3721 | New->dropAttr<OverloadableAttr>(); |
| 3722 | } |
| 3723 | } |
| 3724 | |
| 3725 | // It is not permitted to redeclare an SME function with different SME |
| 3726 | // attributes. |
| 3727 | if (IsInvalidSMECallConversion(FromType: Old->getType(), ToType: New->getType())) { |
| 3728 | Diag(New->getLocation(), diag::err_sme_attr_mismatch) |
| 3729 | << New->getType() << Old->getType(); |
| 3730 | Diag(OldLocation, diag::note_previous_declaration); |
| 3731 | return true; |
| 3732 | } |
| 3733 | |
| 3734 | // If a function is first declared with a calling convention, but is later |
| 3735 | // declared or defined without one, all following decls assume the calling |
| 3736 | // convention of the first. |
| 3737 | // |
| 3738 | // It's OK if a function is first declared without a calling convention, |
| 3739 | // but is later declared or defined with the default calling convention. |
| 3740 | // |
| 3741 | // To test if either decl has an explicit calling convention, we look for |
| 3742 | // AttributedType sugar nodes on the type as written. If they are missing or |
| 3743 | // were canonicalized away, we assume the calling convention was implicit. |
| 3744 | // |
| 3745 | // Note also that we DO NOT return at this point, because we still have |
| 3746 | // other tests to run. |
| 3747 | QualType OldQType = Context.getCanonicalType(Old->getType()); |
| 3748 | QualType NewQType = Context.getCanonicalType(New->getType()); |
| 3749 | const FunctionType *OldType = cast<FunctionType>(Val&: OldQType); |
| 3750 | const FunctionType *NewType = cast<FunctionType>(Val&: NewQType); |
| 3751 | FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); |
| 3752 | FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); |
| 3753 | bool RequiresAdjustment = false; |
| 3754 | |
| 3755 | if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) { |
| 3756 | FunctionDecl *First = Old->getFirstDecl(); |
| 3757 | const FunctionType *FT = |
| 3758 | First->getType().getCanonicalType()->castAs<FunctionType>(); |
| 3759 | FunctionType::ExtInfo FI = FT->getExtInfo(); |
| 3760 | bool NewCCExplicit = getCallingConvAttributedType(T: New->getType()); |
| 3761 | if (!NewCCExplicit) { |
| 3762 | // Inherit the CC from the previous declaration if it was specified |
| 3763 | // there but not here. |
| 3764 | NewTypeInfo = NewTypeInfo.withCallingConv(cc: OldTypeInfo.getCC()); |
| 3765 | RequiresAdjustment = true; |
| 3766 | } else if (Old->getBuiltinID()) { |
| 3767 | // Builtin attribute isn't propagated to the new one yet at this point, |
| 3768 | // so we check if the old one is a builtin. |
| 3769 | |
| 3770 | // Calling Conventions on a Builtin aren't really useful and setting a |
| 3771 | // default calling convention and cdecl'ing some builtin redeclarations is |
| 3772 | // common, so warn and ignore the calling convention on the redeclaration. |
| 3773 | Diag(New->getLocation(), diag::warn_cconv_unsupported) |
| 3774 | << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) |
| 3775 | << (int)CallingConventionIgnoredReason::BuiltinFunction; |
| 3776 | NewTypeInfo = NewTypeInfo.withCallingConv(cc: OldTypeInfo.getCC()); |
| 3777 | RequiresAdjustment = true; |
| 3778 | } else { |
| 3779 | // Calling conventions aren't compatible, so complain. |
| 3780 | bool FirstCCExplicit = getCallingConvAttributedType(T: First->getType()); |
| 3781 | Diag(New->getLocation(), diag::err_cconv_change) |
| 3782 | << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) |
| 3783 | << !FirstCCExplicit |
| 3784 | << (!FirstCCExplicit ? "" : |
| 3785 | FunctionType::getNameForCallConv(FI.getCC())); |
| 3786 | |
| 3787 | // Put the note on the first decl, since it is the one that matters. |
| 3788 | Diag(First->getLocation(), diag::note_previous_declaration); |
| 3789 | return true; |
| 3790 | } |
| 3791 | } |
| 3792 | |
| 3793 | // FIXME: diagnose the other way around? |
| 3794 | if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) { |
| 3795 | NewTypeInfo = NewTypeInfo.withNoReturn(noReturn: true); |
| 3796 | RequiresAdjustment = true; |
| 3797 | } |
| 3798 | |
| 3799 | // Merge regparm attribute. |
| 3800 | if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() || |
| 3801 | OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) { |
| 3802 | if (NewTypeInfo.getHasRegParm()) { |
| 3803 | Diag(New->getLocation(), diag::err_regparm_mismatch) |
| 3804 | << NewType->getRegParmType() |
| 3805 | << OldType->getRegParmType(); |
| 3806 | Diag(OldLocation, diag::note_previous_declaration); |
| 3807 | return true; |
| 3808 | } |
| 3809 | |
| 3810 | NewTypeInfo = NewTypeInfo.withRegParm(RegParm: OldTypeInfo.getRegParm()); |
| 3811 | RequiresAdjustment = true; |
| 3812 | } |
| 3813 | |
| 3814 | // Merge ns_returns_retained attribute. |
| 3815 | if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) { |
| 3816 | if (NewTypeInfo.getProducesResult()) { |
| 3817 | Diag(New->getLocation(), diag::err_function_attribute_mismatch) |
| 3818 | << "'ns_returns_retained'" ; |
| 3819 | Diag(OldLocation, diag::note_previous_declaration); |
| 3820 | return true; |
| 3821 | } |
| 3822 | |
| 3823 | NewTypeInfo = NewTypeInfo.withProducesResult(producesResult: true); |
| 3824 | RequiresAdjustment = true; |
| 3825 | } |
| 3826 | |
| 3827 | if (OldTypeInfo.getNoCallerSavedRegs() != |
| 3828 | NewTypeInfo.getNoCallerSavedRegs()) { |
| 3829 | if (NewTypeInfo.getNoCallerSavedRegs()) { |
| 3830 | AnyX86NoCallerSavedRegistersAttr *Attr = |
| 3831 | New->getAttr<AnyX86NoCallerSavedRegistersAttr>(); |
| 3832 | Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr; |
| 3833 | Diag(OldLocation, diag::note_previous_declaration); |
| 3834 | return true; |
| 3835 | } |
| 3836 | |
| 3837 | NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(noCallerSavedRegs: true); |
| 3838 | RequiresAdjustment = true; |
| 3839 | } |
| 3840 | |
| 3841 | if (RequiresAdjustment) { |
| 3842 | const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>(); |
| 3843 | AdjustedType = Context.adjustFunctionType(Fn: AdjustedType, EInfo: NewTypeInfo); |
| 3844 | New->setType(QualType(AdjustedType, 0)); |
| 3845 | NewQType = Context.getCanonicalType(New->getType()); |
| 3846 | } |
| 3847 | |
| 3848 | // If this redeclaration makes the function inline, we may need to add it to |
| 3849 | // UndefinedButUsed. |
| 3850 | if (!Old->isInlined() && New->isInlined() && !New->hasAttr<GNUInlineAttr>() && |
| 3851 | !getLangOpts().GNUInline && Old->isUsed(false) && !Old->isDefined() && |
| 3852 | !New->isThisDeclarationADefinition() && !Old->isInAnotherModuleUnit()) |
| 3853 | UndefinedButUsed.insert(std::make_pair(x: Old->getCanonicalDecl(), |
| 3854 | y: SourceLocation())); |
| 3855 | |
| 3856 | // If this redeclaration makes it newly gnu_inline, we don't want to warn |
| 3857 | // about it. |
| 3858 | if (New->hasAttr<GNUInlineAttr>() && |
| 3859 | Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) { |
| 3860 | UndefinedButUsed.erase(Old->getCanonicalDecl()); |
| 3861 | } |
| 3862 | |
| 3863 | // If pass_object_size params don't match up perfectly, this isn't a valid |
| 3864 | // redeclaration. |
| 3865 | if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() && |
| 3866 | !hasIdenticalPassObjectSizeAttrs(A: Old, B: New)) { |
| 3867 | Diag(New->getLocation(), diag::err_different_pass_object_size_params) |
| 3868 | << New->getDeclName(); |
| 3869 | Diag(OldLocation, PrevDiag) << Old << Old->getType(); |
| 3870 | return true; |
| 3871 | } |
| 3872 | |
| 3873 | QualType OldQTypeForComparison = OldQType; |
| 3874 | if (Context.hasAnyFunctionEffects()) { |
| 3875 | const auto OldFX = Old->getFunctionEffects(); |
| 3876 | const auto NewFX = New->getFunctionEffects(); |
| 3877 | if (OldFX != NewFX) { |
| 3878 | const auto Diffs = FunctionEffectDiffVector(OldFX, NewFX); |
| 3879 | for (const auto &Diff : Diffs) { |
| 3880 | if (Diff.shouldDiagnoseRedeclaration(*Old, OldFX, *New, NewFX)) { |
| 3881 | Diag(New->getLocation(), |
| 3882 | diag::warn_mismatched_func_effect_redeclaration) |
| 3883 | << Diff.effectName(); |
| 3884 | Diag(Old->getLocation(), diag::note_previous_declaration); |
| 3885 | } |
| 3886 | } |
| 3887 | // Following a warning, we could skip merging effects from the previous |
| 3888 | // declaration, but that would trigger an additional "conflicting types" |
| 3889 | // error. |
| 3890 | if (const auto *NewFPT = NewQType->getAs<FunctionProtoType>()) { |
| 3891 | FunctionEffectSet::Conflicts MergeErrs; |
| 3892 | FunctionEffectSet MergedFX = |
| 3893 | FunctionEffectSet::getUnion(OldFX, NewFX, MergeErrs); |
| 3894 | if (!MergeErrs.empty()) |
| 3895 | diagnoseFunctionEffectMergeConflicts(MergeErrs, New->getLocation(), |
| 3896 | Old->getLocation()); |
| 3897 | |
| 3898 | FunctionProtoType::ExtProtoInfo EPI = NewFPT->getExtProtoInfo(); |
| 3899 | EPI.FunctionEffects = FunctionEffectsRef(MergedFX); |
| 3900 | QualType ModQT = Context.getFunctionType(ResultTy: NewFPT->getReturnType(), |
| 3901 | Args: NewFPT->getParamTypes(), EPI); |
| 3902 | |
| 3903 | New->setType(ModQT); |
| 3904 | NewQType = New->getType(); |
| 3905 | |
| 3906 | // Revise OldQTForComparison to include the merged effects, |
| 3907 | // so as not to fail due to differences later. |
| 3908 | if (const auto *OldFPT = OldQType->getAs<FunctionProtoType>()) { |
| 3909 | EPI = OldFPT->getExtProtoInfo(); |
| 3910 | EPI.FunctionEffects = FunctionEffectsRef(MergedFX); |
| 3911 | OldQTypeForComparison = Context.getFunctionType( |
| 3912 | ResultTy: OldFPT->getReturnType(), Args: OldFPT->getParamTypes(), EPI); |
| 3913 | } |
| 3914 | if (OldFX.empty()) { |
| 3915 | // A redeclaration may add the attribute to a previously seen function |
| 3916 | // body which needs to be verified. |
| 3917 | maybeAddDeclWithEffects(Old, MergedFX); |
| 3918 | } |
| 3919 | } |
| 3920 | } |
| 3921 | } |
| 3922 | |
| 3923 | if (getLangOpts().CPlusPlus) { |
| 3924 | OldQType = Context.getCanonicalType(Old->getType()); |
| 3925 | NewQType = Context.getCanonicalType(New->getType()); |
| 3926 | |
| 3927 | // Go back to the type source info to compare the declared return types, |
| 3928 | // per C++1y [dcl.type.auto]p13: |
| 3929 | // Redeclarations or specializations of a function or function template |
| 3930 | // with a declared return type that uses a placeholder type shall also |
| 3931 | // use that placeholder, not a deduced type. |
| 3932 | QualType OldDeclaredReturnType = Old->getDeclaredReturnType(); |
| 3933 | QualType NewDeclaredReturnType = New->getDeclaredReturnType(); |
| 3934 | if (!Context.hasSameType(T1: OldDeclaredReturnType, T2: NewDeclaredReturnType) && |
| 3935 | canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType, |
| 3936 | OldDeclaredReturnType)) { |
| 3937 | QualType ResQT; |
| 3938 | if (NewDeclaredReturnType->isObjCObjectPointerType() && |
| 3939 | OldDeclaredReturnType->isObjCObjectPointerType()) |
| 3940 | // FIXME: This does the wrong thing for a deduced return type. |
| 3941 | ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType); |
| 3942 | if (ResQT.isNull()) { |
| 3943 | if (New->isCXXClassMember() && New->isOutOfLine()) |
| 3944 | Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type) |
| 3945 | << New << New->getReturnTypeSourceRange(); |
| 3946 | else if (Old->isExternC() && New->isExternC() && |
| 3947 | !Old->hasAttr<OverloadableAttr>() && |
| 3948 | !New->hasAttr<OverloadableAttr>()) |
| 3949 | Diag(New->getLocation(), diag::err_conflicting_types) << New; |
| 3950 | else |
| 3951 | Diag(New->getLocation(), diag::err_ovl_diff_return_type) |
| 3952 | << New->getReturnTypeSourceRange(); |
| 3953 | Diag(OldLocation, PrevDiag) << Old << Old->getType() |
| 3954 | << Old->getReturnTypeSourceRange(); |
| 3955 | return true; |
| 3956 | } |
| 3957 | else |
| 3958 | NewQType = ResQT; |
| 3959 | } |
| 3960 | |
| 3961 | QualType OldReturnType = OldType->getReturnType(); |
| 3962 | QualType NewReturnType = cast<FunctionType>(Val&: NewQType)->getReturnType(); |
| 3963 | if (OldReturnType != NewReturnType) { |
| 3964 | // If this function has a deduced return type and has already been |
| 3965 | // defined, copy the deduced value from the old declaration. |
| 3966 | AutoType *OldAT = Old->getReturnType()->getContainedAutoType(); |
| 3967 | if (OldAT && OldAT->isDeduced()) { |
| 3968 | QualType DT = OldAT->getDeducedType(); |
| 3969 | if (DT.isNull()) { |
| 3970 | New->setType(SubstAutoTypeDependent(TypeWithAuto: New->getType())); |
| 3971 | NewQType = Context.getCanonicalType(T: SubstAutoTypeDependent(TypeWithAuto: NewQType)); |
| 3972 | } else { |
| 3973 | New->setType(SubstAutoType(TypeWithAuto: New->getType(), Replacement: DT)); |
| 3974 | NewQType = Context.getCanonicalType(T: SubstAutoType(TypeWithAuto: NewQType, Replacement: DT)); |
| 3975 | } |
| 3976 | } |
| 3977 | } |
| 3978 | |
| 3979 | const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Val: Old); |
| 3980 | CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(Val: New); |
| 3981 | if (OldMethod && NewMethod) { |
| 3982 | // Preserve triviality. |
| 3983 | NewMethod->setTrivial(OldMethod->isTrivial()); |
| 3984 | |
| 3985 | // MSVC allows explicit template specialization at class scope: |
| 3986 | // 2 CXXMethodDecls referring to the same function will be injected. |
| 3987 | // We don't want a redeclaration error. |
| 3988 | bool IsClassScopeExplicitSpecialization = |
| 3989 | OldMethod->isFunctionTemplateSpecialization() && |
| 3990 | NewMethod->isFunctionTemplateSpecialization(); |
| 3991 | bool isFriend = NewMethod->getFriendObjectKind(); |
| 3992 | |
| 3993 | if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() && |
| 3994 | !IsClassScopeExplicitSpecialization) { |
| 3995 | // -- Member function declarations with the same name and the |
| 3996 | // same parameter types cannot be overloaded if any of them |
| 3997 | // is a static member function declaration. |
| 3998 | if (OldMethod->isStatic() != NewMethod->isStatic()) { |
| 3999 | Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member); |
| 4000 | Diag(OldLocation, PrevDiag) << Old << Old->getType(); |
| 4001 | return true; |
| 4002 | } |
| 4003 | |
| 4004 | // C++ [class.mem]p1: |
| 4005 | // [...] A member shall not be declared twice in the |
| 4006 | // member-specification, except that a nested class or member |
| 4007 | // class template can be declared and then later defined. |
| 4008 | if (!inTemplateInstantiation()) { |
| 4009 | unsigned NewDiag; |
| 4010 | if (isa<CXXConstructorDecl>(OldMethod)) |
| 4011 | NewDiag = diag::err_constructor_redeclared; |
| 4012 | else if (isa<CXXDestructorDecl>(NewMethod)) |
| 4013 | NewDiag = diag::err_destructor_redeclared; |
| 4014 | else if (isa<CXXConversionDecl>(NewMethod)) |
| 4015 | NewDiag = diag::err_conv_function_redeclared; |
| 4016 | else |
| 4017 | NewDiag = diag::err_member_redeclared; |
| 4018 | |
| 4019 | Diag(New->getLocation(), NewDiag); |
| 4020 | } else { |
| 4021 | Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation) |
| 4022 | << New << New->getType(); |
| 4023 | } |
| 4024 | Diag(OldLocation, PrevDiag) << Old << Old->getType(); |
| 4025 | return true; |
| 4026 | |
| 4027 | // Complain if this is an explicit declaration of a special |
| 4028 | // member that was initially declared implicitly. |
| 4029 | // |
| 4030 | // As an exception, it's okay to befriend such methods in order |
| 4031 | // to permit the implicit constructor/destructor/operator calls. |
| 4032 | } else if (OldMethod->isImplicit()) { |
| 4033 | if (isFriend) { |
| 4034 | NewMethod->setImplicit(); |
| 4035 | } else { |
| 4036 | Diag(NewMethod->getLocation(), |
| 4037 | diag::err_definition_of_implicitly_declared_member) |
| 4038 | << New << getSpecialMember(OldMethod); |
| 4039 | return true; |
| 4040 | } |
| 4041 | } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) { |
| 4042 | Diag(NewMethod->getLocation(), |
| 4043 | diag::err_definition_of_explicitly_defaulted_member) |
| 4044 | << getSpecialMember(OldMethod); |
| 4045 | return true; |
| 4046 | } |
| 4047 | } |
| 4048 | |
| 4049 | // C++1z [over.load]p2 |
| 4050 | // Certain function declarations cannot be overloaded: |
| 4051 | // -- Function declarations that differ only in the return type, |
| 4052 | // the exception specification, or both cannot be overloaded. |
| 4053 | |
| 4054 | // Check the exception specifications match. This may recompute the type of |
| 4055 | // both Old and New if it resolved exception specifications, so grab the |
| 4056 | // types again after this. Because this updates the type, we do this before |
| 4057 | // any of the other checks below, which may update the "de facto" NewQType |
| 4058 | // but do not necessarily update the type of New. |
| 4059 | if (CheckEquivalentExceptionSpec(Old, New)) |
| 4060 | return true; |
| 4061 | |
| 4062 | // C++11 [dcl.attr.noreturn]p1: |
| 4063 | // The first declaration of a function shall specify the noreturn |
| 4064 | // attribute if any declaration of that function specifies the noreturn |
| 4065 | // attribute. |
| 4066 | if (const auto *NRA = New->getAttr<CXX11NoReturnAttr>()) |
| 4067 | if (!Old->hasAttr<CXX11NoReturnAttr>()) { |
| 4068 | Diag(NRA->getLocation(), diag::err_attribute_missing_on_first_decl) |
| 4069 | << NRA; |
| 4070 | Diag(Old->getLocation(), diag::note_previous_declaration); |
| 4071 | } |
| 4072 | |
| 4073 | // C++11 [dcl.attr.depend]p2: |
| 4074 | // The first declaration of a function shall specify the |
| 4075 | // carries_dependency attribute for its declarator-id if any declaration |
| 4076 | // of the function specifies the carries_dependency attribute. |
| 4077 | const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>(); |
| 4078 | if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) { |
| 4079 | Diag(CDA->getLocation(), |
| 4080 | diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/; |
| 4081 | Diag(Old->getFirstDecl()->getLocation(), |
| 4082 | diag::note_carries_dependency_missing_first_decl) << 0/*Function*/; |
| 4083 | } |
| 4084 | |
| 4085 | // (C++98 8.3.5p3): |
| 4086 | // All declarations for a function shall agree exactly in both the |
| 4087 | // return type and the parameter-type-list. |
| 4088 | // We also want to respect all the extended bits except noreturn. |
| 4089 | |
| 4090 | // noreturn should now match unless the old type info didn't have it. |
| 4091 | if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) { |
| 4092 | auto *OldType = OldQTypeForComparison->castAs<FunctionProtoType>(); |
| 4093 | const FunctionType *OldTypeForComparison |
| 4094 | = Context.adjustFunctionType(Fn: OldType, EInfo: OldTypeInfo.withNoReturn(noReturn: true)); |
| 4095 | OldQTypeForComparison = QualType(OldTypeForComparison, 0); |
| 4096 | assert(OldQTypeForComparison.isCanonical()); |
| 4097 | } |
| 4098 | |
| 4099 | if (haveIncompatibleLanguageLinkages(Old, New)) { |
| 4100 | // As a special case, retain the language linkage from previous |
| 4101 | // declarations of a friend function as an extension. |
| 4102 | // |
| 4103 | // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC |
| 4104 | // and is useful because there's otherwise no way to specify language |
| 4105 | // linkage within class scope. |
| 4106 | // |
| 4107 | // Check cautiously as the friend object kind isn't yet complete. |
| 4108 | if (New->getFriendObjectKind() != Decl::FOK_None) { |
| 4109 | Diag(New->getLocation(), diag::ext_retained_language_linkage) << New; |
| 4110 | Diag(OldLocation, PrevDiag); |
| 4111 | } else { |
| 4112 | Diag(New->getLocation(), diag::err_different_language_linkage) << New; |
| 4113 | Diag(OldLocation, PrevDiag); |
| 4114 | return true; |
| 4115 | } |
| 4116 | } |
| 4117 | |
| 4118 | // HLSL check parameters for matching ABI specifications. |
| 4119 | if (getLangOpts().HLSL) { |
| 4120 | if (HLSL().CheckCompatibleParameterABI(New, Old)) |
| 4121 | return true; |
| 4122 | |
| 4123 | // If no errors are generated when checking parameter ABIs we can check if |
| 4124 | // the two declarations have the same type ignoring the ABIs and if so, |
| 4125 | // the declarations can be merged. This case for merging is only valid in |
| 4126 | // HLSL because there are no valid cases of merging mismatched parameter |
| 4127 | // ABIs except the HLSL implicit in and explicit in. |
| 4128 | if (Context.hasSameFunctionTypeIgnoringParamABI(T: OldQTypeForComparison, |
| 4129 | U: NewQType)) |
| 4130 | return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); |
| 4131 | // Fall through for conflicting redeclarations and redefinitions. |
| 4132 | } |
| 4133 | |
| 4134 | // If the function types are compatible, merge the declarations. Ignore the |
| 4135 | // exception specifier because it was already checked above in |
| 4136 | // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics |
| 4137 | // about incompatible types under -fms-compatibility. |
| 4138 | if (Context.hasSameFunctionTypeIgnoringExceptionSpec(T: OldQTypeForComparison, |
| 4139 | U: NewQType)) |
| 4140 | return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); |
| 4141 | |
| 4142 | // If the types are imprecise (due to dependent constructs in friends or |
| 4143 | // local extern declarations), it's OK if they differ. We'll check again |
| 4144 | // during instantiation. |
| 4145 | if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType)) |
| 4146 | return false; |
| 4147 | |
| 4148 | // Fall through for conflicting redeclarations and redefinitions. |
| 4149 | } |
| 4150 | |
| 4151 | // C: Function types need to be compatible, not identical. This handles |
| 4152 | // duplicate function decls like "void f(int); void f(enum X);" properly. |
| 4153 | if (!getLangOpts().CPlusPlus) { |
| 4154 | // C99 6.7.5.3p15: ...If one type has a parameter type list and the other |
| 4155 | // type is specified by a function definition that contains a (possibly |
| 4156 | // empty) identifier list, both shall agree in the number of parameters |
| 4157 | // and the type of each parameter shall be compatible with the type that |
| 4158 | // results from the application of default argument promotions to the |
| 4159 | // type of the corresponding identifier. ... |
| 4160 | // This cannot be handled by ASTContext::typesAreCompatible() because that |
| 4161 | // doesn't know whether the function type is for a definition or not when |
| 4162 | // eventually calling ASTContext::mergeFunctionTypes(). The only situation |
| 4163 | // we need to cover here is that the number of arguments agree as the |
| 4164 | // default argument promotion rules were already checked by |
| 4165 | // ASTContext::typesAreCompatible(). |
| 4166 | if (Old->hasPrototype() && !New->hasWrittenPrototype() && NewDeclIsDefn && |
| 4167 | Old->getNumParams() != New->getNumParams() && !Old->isImplicit()) { |
| 4168 | if (Old->hasInheritedPrototype()) |
| 4169 | Old = Old->getCanonicalDecl(); |
| 4170 | Diag(New->getLocation(), diag::err_conflicting_types) << New; |
| 4171 | Diag(Old->getLocation(), PrevDiag) << Old << Old->getType(); |
| 4172 | return true; |
| 4173 | } |
| 4174 | |
| 4175 | // If we are merging two functions where only one of them has a prototype, |
| 4176 | // we may have enough information to decide to issue a diagnostic that the |
| 4177 | // function without a prototype will change behavior in C23. This handles |
| 4178 | // cases like: |
| 4179 | // void i(); void i(int j); |
| 4180 | // void i(int j); void i(); |
| 4181 | // void i(); void i(int j) {} |
| 4182 | // See ActOnFinishFunctionBody() for other cases of the behavior change |
| 4183 | // diagnostic. See GetFullTypeForDeclarator() for handling of a function |
| 4184 | // type without a prototype. |
| 4185 | if (New->hasWrittenPrototype() != Old->hasWrittenPrototype() && |
| 4186 | !New->isImplicit() && !Old->isImplicit()) { |
| 4187 | const FunctionDecl *WithProto, *WithoutProto; |
| 4188 | if (New->hasWrittenPrototype()) { |
| 4189 | WithProto = New; |
| 4190 | WithoutProto = Old; |
| 4191 | } else { |
| 4192 | WithProto = Old; |
| 4193 | WithoutProto = New; |
| 4194 | } |
| 4195 | |
| 4196 | if (WithProto->getNumParams() != 0) { |
| 4197 | if (WithoutProto->getBuiltinID() == 0 && !WithoutProto->isImplicit()) { |
| 4198 | // The one without the prototype will be changing behavior in C23, so |
| 4199 | // warn about that one so long as it's a user-visible declaration. |
| 4200 | bool IsWithoutProtoADef = false, IsWithProtoADef = false; |
| 4201 | if (WithoutProto == New) |
| 4202 | IsWithoutProtoADef = NewDeclIsDefn; |
| 4203 | else |
| 4204 | IsWithProtoADef = NewDeclIsDefn; |
| 4205 | Diag(WithoutProto->getLocation(), |
| 4206 | diag::warn_non_prototype_changes_behavior) |
| 4207 | << IsWithoutProtoADef << (WithoutProto->getNumParams() ? 0 : 1) |
| 4208 | << (WithoutProto == Old) << IsWithProtoADef; |
| 4209 | |
| 4210 | // The reason the one without the prototype will be changing behavior |
| 4211 | // is because of the one with the prototype, so note that so long as |
| 4212 | // it's a user-visible declaration. There is one exception to this: |
| 4213 | // when the new declaration is a definition without a prototype, the |
| 4214 | // old declaration with a prototype is not the cause of the issue, |
| 4215 | // and that does not need to be noted because the one with a |
| 4216 | // prototype will not change behavior in C23. |
| 4217 | if (WithProto->getBuiltinID() == 0 && !WithProto->isImplicit() && |
| 4218 | !IsWithoutProtoADef) |
| 4219 | Diag(WithProto->getLocation(), diag::note_conflicting_prototype); |
| 4220 | } |
| 4221 | } |
| 4222 | } |
| 4223 | |
| 4224 | if (Context.typesAreCompatible(T1: OldQType, T2: NewQType)) { |
| 4225 | const FunctionType *OldFuncType = OldQType->getAs<FunctionType>(); |
| 4226 | const FunctionType *NewFuncType = NewQType->getAs<FunctionType>(); |
| 4227 | const FunctionProtoType *OldProto = nullptr; |
| 4228 | if (MergeTypeWithOld && isa<FunctionNoProtoType>(Val: NewFuncType) && |
| 4229 | (OldProto = dyn_cast<FunctionProtoType>(Val: OldFuncType))) { |
| 4230 | // The old declaration provided a function prototype, but the |
| 4231 | // new declaration does not. Merge in the prototype. |
| 4232 | assert(!OldProto->hasExceptionSpec() && "Exception spec in C" ); |
| 4233 | NewQType = Context.getFunctionType(ResultTy: NewFuncType->getReturnType(), |
| 4234 | Args: OldProto->getParamTypes(), |
| 4235 | EPI: OldProto->getExtProtoInfo()); |
| 4236 | New->setType(NewQType); |
| 4237 | New->setHasInheritedPrototype(); |
| 4238 | |
| 4239 | // Synthesize parameters with the same types. |
| 4240 | SmallVector<ParmVarDecl *, 16> Params; |
| 4241 | for (const auto &ParamType : OldProto->param_types()) { |
| 4242 | ParmVarDecl *Param = ParmVarDecl::Create( |
| 4243 | Context, New, SourceLocation(), SourceLocation(), nullptr, |
| 4244 | ParamType, /*TInfo=*/nullptr, SC_None, nullptr); |
| 4245 | Param->setScopeInfo(scopeDepth: 0, parameterIndex: Params.size()); |
| 4246 | Param->setImplicit(); |
| 4247 | Params.push_back(Elt: Param); |
| 4248 | } |
| 4249 | |
| 4250 | New->setParams(Params); |
| 4251 | } |
| 4252 | |
| 4253 | return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); |
| 4254 | } |
| 4255 | } |
| 4256 | |
| 4257 | // Check if the function types are compatible when pointer size address |
| 4258 | // spaces are ignored. |
| 4259 | if (Context.hasSameFunctionTypeIgnoringPtrSizes(T: OldQType, U: NewQType)) |
| 4260 | return false; |
| 4261 | |
| 4262 | // GNU C permits a K&R definition to follow a prototype declaration |
| 4263 | // if the declared types of the parameters in the K&R definition |
| 4264 | // match the types in the prototype declaration, even when the |
| 4265 | // promoted types of the parameters from the K&R definition differ |
| 4266 | // from the types in the prototype. GCC then keeps the types from |
| 4267 | // the prototype. |
| 4268 | // |
| 4269 | // If a variadic prototype is followed by a non-variadic K&R definition, |
| 4270 | // the K&R definition becomes variadic. This is sort of an edge case, but |
| 4271 | // it's legal per the standard depending on how you read C99 6.7.5.3p15 and |
| 4272 | // C99 6.9.1p8. |
| 4273 | if (!getLangOpts().CPlusPlus && |
| 4274 | Old->hasPrototype() && !New->hasPrototype() && |
| 4275 | New->getType()->getAs<FunctionProtoType>() && |
| 4276 | Old->getNumParams() == New->getNumParams()) { |
| 4277 | SmallVector<QualType, 16> ArgTypes; |
| 4278 | SmallVector<GNUCompatibleParamWarning, 16> Warnings; |
| 4279 | const FunctionProtoType *OldProto |
| 4280 | = Old->getType()->getAs<FunctionProtoType>(); |
| 4281 | const FunctionProtoType *NewProto |
| 4282 | = New->getType()->getAs<FunctionProtoType>(); |
| 4283 | |
| 4284 | // Determine whether this is the GNU C extension. |
| 4285 | QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(), |
| 4286 | NewProto->getReturnType()); |
| 4287 | bool LooseCompatible = !MergedReturn.isNull(); |
| 4288 | for (unsigned Idx = 0, End = Old->getNumParams(); |
| 4289 | LooseCompatible && Idx != End; ++Idx) { |
| 4290 | ParmVarDecl *OldParm = Old->getParamDecl(i: Idx); |
| 4291 | ParmVarDecl *NewParm = New->getParamDecl(i: Idx); |
| 4292 | if (Context.typesAreCompatible(T1: OldParm->getType(), |
| 4293 | T2: NewProto->getParamType(i: Idx))) { |
| 4294 | ArgTypes.push_back(Elt: NewParm->getType()); |
| 4295 | } else if (Context.typesAreCompatible(T1: OldParm->getType(), |
| 4296 | T2: NewParm->getType(), |
| 4297 | /*CompareUnqualified=*/true)) { |
| 4298 | GNUCompatibleParamWarning Warn = { OldParm, NewParm, |
| 4299 | NewProto->getParamType(i: Idx) }; |
| 4300 | Warnings.push_back(Elt: Warn); |
| 4301 | ArgTypes.push_back(Elt: NewParm->getType()); |
| 4302 | } else |
| 4303 | LooseCompatible = false; |
| 4304 | } |
| 4305 | |
| 4306 | if (LooseCompatible) { |
| 4307 | for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) { |
| 4308 | Diag(Warnings[Warn].NewParm->getLocation(), |
| 4309 | diag::ext_param_promoted_not_compatible_with_prototype) |
| 4310 | << Warnings[Warn].PromotedType |
| 4311 | << Warnings[Warn].OldParm->getType(); |
| 4312 | if (Warnings[Warn].OldParm->getLocation().isValid()) |
| 4313 | Diag(Warnings[Warn].OldParm->getLocation(), |
| 4314 | diag::note_previous_declaration); |
| 4315 | } |
| 4316 | |
| 4317 | if (MergeTypeWithOld) |
| 4318 | New->setType(Context.getFunctionType(ResultTy: MergedReturn, Args: ArgTypes, |
| 4319 | EPI: OldProto->getExtProtoInfo())); |
| 4320 | return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); |
| 4321 | } |
| 4322 | |
| 4323 | // Fall through to diagnose conflicting types. |
| 4324 | } |
| 4325 | |
| 4326 | // A function that has already been declared has been redeclared or |
| 4327 | // defined with a different type; show an appropriate diagnostic. |
| 4328 | |
| 4329 | // If the previous declaration was an implicitly-generated builtin |
| 4330 | // declaration, then at the very least we should use a specialized note. |
| 4331 | unsigned BuiltinID; |
| 4332 | if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) { |
| 4333 | // If it's actually a library-defined builtin function like 'malloc' |
| 4334 | // or 'printf', just warn about the incompatible redeclaration. |
| 4335 | if (Context.BuiltinInfo.isPredefinedLibFunction(ID: BuiltinID)) { |
| 4336 | Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New; |
| 4337 | Diag(OldLocation, diag::note_previous_builtin_declaration) |
| 4338 | << Old << Old->getType(); |
| 4339 | return false; |
| 4340 | } |
| 4341 | |
| 4342 | PrevDiag = diag::note_previous_builtin_declaration; |
| 4343 | } |
| 4344 | |
| 4345 | Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName(); |
| 4346 | Diag(OldLocation, PrevDiag) << Old << Old->getType(); |
| 4347 | return true; |
| 4348 | } |
| 4349 | |
| 4350 | bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old, |
| 4351 | Scope *S, bool MergeTypeWithOld) { |
| 4352 | // Merge the attributes |
| 4353 | mergeDeclAttributes(New, Old); |
| 4354 | |
| 4355 | // Merge "pure" flag. |
| 4356 | if (Old->isPureVirtual()) |
| 4357 | New->setIsPureVirtual(); |
| 4358 | |
| 4359 | // Merge "used" flag. |
| 4360 | if (Old->getMostRecentDecl()->isUsed(false)) |
| 4361 | New->setIsUsed(); |
| 4362 | |
| 4363 | // Merge attributes from the parameters. These can mismatch with K&R |
| 4364 | // declarations. |
| 4365 | if (New->getNumParams() == Old->getNumParams()) |
| 4366 | for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) { |
| 4367 | ParmVarDecl *NewParam = New->getParamDecl(i); |
| 4368 | ParmVarDecl *OldParam = Old->getParamDecl(i); |
| 4369 | mergeParamDeclAttributes(newDecl: NewParam, oldDecl: OldParam, S&: *this); |
| 4370 | mergeParamDeclTypes(NewParam, OldParam, S&: *this); |
| 4371 | } |
| 4372 | |
| 4373 | if (getLangOpts().CPlusPlus) |
| 4374 | return MergeCXXFunctionDecl(New, Old, S); |
| 4375 | |
| 4376 | // Merge the function types so the we get the composite types for the return |
| 4377 | // and argument types. Per C11 6.2.7/4, only update the type if the old decl |
| 4378 | // was visible. |
| 4379 | QualType Merged = Context.mergeTypes(Old->getType(), New->getType()); |
| 4380 | if (!Merged.isNull() && MergeTypeWithOld) |
| 4381 | New->setType(Merged); |
| 4382 | |
| 4383 | return false; |
| 4384 | } |
| 4385 | |
| 4386 | void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod, |
| 4387 | ObjCMethodDecl *oldMethod) { |
| 4388 | // Merge the attributes, including deprecated/unavailable |
| 4389 | AvailabilityMergeKind MergeKind = |
| 4390 | isa<ObjCProtocolDecl>(oldMethod->getDeclContext()) |
| 4391 | ? (oldMethod->isOptional() |
| 4392 | ? AvailabilityMergeKind::OptionalProtocolImplementation |
| 4393 | : AvailabilityMergeKind::ProtocolImplementation) |
| 4394 | : isa<ObjCImplDecl>(newMethod->getDeclContext()) |
| 4395 | ? AvailabilityMergeKind::Redeclaration |
| 4396 | : AvailabilityMergeKind::Override; |
| 4397 | |
| 4398 | mergeDeclAttributes(newMethod, oldMethod, MergeKind); |
| 4399 | |
| 4400 | // Merge attributes from the parameters. |
| 4401 | ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(), |
| 4402 | oe = oldMethod->param_end(); |
| 4403 | for (ObjCMethodDecl::param_iterator |
| 4404 | ni = newMethod->param_begin(), ne = newMethod->param_end(); |
| 4405 | ni != ne && oi != oe; ++ni, ++oi) |
| 4406 | mergeParamDeclAttributes(newDecl: *ni, oldDecl: *oi, S&: *this); |
| 4407 | |
| 4408 | ObjC().CheckObjCMethodOverride(NewMethod: newMethod, Overridden: oldMethod); |
| 4409 | } |
| 4410 | |
| 4411 | static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) { |
| 4412 | assert(!S.Context.hasSameType(New->getType(), Old->getType())); |
| 4413 | |
| 4414 | S.Diag(New->getLocation(), New->isThisDeclarationADefinition() |
| 4415 | ? diag::err_redefinition_different_type |
| 4416 | : diag::err_redeclaration_different_type) |
| 4417 | << New->getDeclName() << New->getType() << Old->getType(); |
| 4418 | |
| 4419 | diag::kind PrevDiag; |
| 4420 | SourceLocation OldLocation; |
| 4421 | std::tie(args&: PrevDiag, args&: OldLocation) |
| 4422 | = getNoteDiagForInvalidRedeclaration(Old, New); |
| 4423 | S.Diag(OldLocation, PrevDiag) << Old << Old->getType(); |
| 4424 | New->setInvalidDecl(); |
| 4425 | } |
| 4426 | |
| 4427 | void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, |
| 4428 | bool MergeTypeWithOld) { |
| 4429 | if (New->isInvalidDecl() || Old->isInvalidDecl() || New->getType()->containsErrors() || Old->getType()->containsErrors()) |
| 4430 | return; |
| 4431 | |
| 4432 | QualType MergedT; |
| 4433 | if (getLangOpts().CPlusPlus) { |
| 4434 | if (New->getType()->isUndeducedType()) { |
| 4435 | // We don't know what the new type is until the initializer is attached. |
| 4436 | return; |
| 4437 | } else if (Context.hasSameType(New->getType(), Old->getType())) { |
| 4438 | // These could still be something that needs exception specs checked. |
| 4439 | return MergeVarDeclExceptionSpecs(New, Old); |
| 4440 | } |
| 4441 | // C++ [basic.link]p10: |
| 4442 | // [...] the types specified by all declarations referring to a given |
| 4443 | // object or function shall be identical, except that declarations for an |
| 4444 | // array object can specify array types that differ by the presence or |
| 4445 | // absence of a major array bound (8.3.4). |
| 4446 | else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) { |
| 4447 | const ArrayType *OldArray = Context.getAsArrayType(T: Old->getType()); |
| 4448 | const ArrayType *NewArray = Context.getAsArrayType(T: New->getType()); |
| 4449 | |
| 4450 | // We are merging a variable declaration New into Old. If it has an array |
| 4451 | // bound, and that bound differs from Old's bound, we should diagnose the |
| 4452 | // mismatch. |
| 4453 | if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) { |
| 4454 | for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD; |
| 4455 | PrevVD = PrevVD->getPreviousDecl()) { |
| 4456 | QualType PrevVDTy = PrevVD->getType(); |
| 4457 | if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType()) |
| 4458 | continue; |
| 4459 | |
| 4460 | if (!Context.hasSameType(New->getType(), PrevVDTy)) |
| 4461 | return diagnoseVarDeclTypeMismatch(S&: *this, New, Old: PrevVD); |
| 4462 | } |
| 4463 | } |
| 4464 | |
| 4465 | if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) { |
| 4466 | if (Context.hasSameType(T1: OldArray->getElementType(), |
| 4467 | T2: NewArray->getElementType())) |
| 4468 | MergedT = New->getType(); |
| 4469 | } |
| 4470 | // FIXME: Check visibility. New is hidden but has a complete type. If New |
| 4471 | // has no array bound, it should not inherit one from Old, if Old is not |
| 4472 | // visible. |
| 4473 | else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) { |
| 4474 | if (Context.hasSameType(T1: OldArray->getElementType(), |
| 4475 | T2: NewArray->getElementType())) |
| 4476 | MergedT = Old->getType(); |
| 4477 | } |
| 4478 | } |
| 4479 | else if (New->getType()->isObjCObjectPointerType() && |
| 4480 | Old->getType()->isObjCObjectPointerType()) { |
| 4481 | MergedT = Context.mergeObjCGCQualifiers(New->getType(), |
| 4482 | Old->getType()); |
| 4483 | } |
| 4484 | } else { |
| 4485 | // C 6.2.7p2: |
| 4486 | // All declarations that refer to the same object or function shall have |
| 4487 | // compatible type. |
| 4488 | MergedT = Context.mergeTypes(New->getType(), Old->getType()); |
| 4489 | } |
| 4490 | if (MergedT.isNull()) { |
| 4491 | // It's OK if we couldn't merge types if either type is dependent, for a |
| 4492 | // block-scope variable. In other cases (static data members of class |
| 4493 | // templates, variable templates, ...), we require the types to be |
| 4494 | // equivalent. |
| 4495 | // FIXME: The C++ standard doesn't say anything about this. |
| 4496 | if ((New->getType()->isDependentType() || |
| 4497 | Old->getType()->isDependentType()) && New->isLocalVarDecl()) { |
| 4498 | // If the old type was dependent, we can't merge with it, so the new type |
| 4499 | // becomes dependent for now. We'll reproduce the original type when we |
| 4500 | // instantiate the TypeSourceInfo for the variable. |
| 4501 | if (!New->getType()->isDependentType() && MergeTypeWithOld) |
| 4502 | New->setType(Context.DependentTy); |
| 4503 | return; |
| 4504 | } |
| 4505 | return diagnoseVarDeclTypeMismatch(S&: *this, New, Old); |
| 4506 | } |
| 4507 | |
| 4508 | // Don't actually update the type on the new declaration if the old |
| 4509 | // declaration was an extern declaration in a different scope. |
| 4510 | if (MergeTypeWithOld) |
| 4511 | New->setType(MergedT); |
| 4512 | } |
| 4513 | |
| 4514 | static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD, |
| 4515 | LookupResult &Previous) { |
| 4516 | // C11 6.2.7p4: |
| 4517 | // For an identifier with internal or external linkage declared |
| 4518 | // in a scope in which a prior declaration of that identifier is |
| 4519 | // visible, if the prior declaration specifies internal or |
| 4520 | // external linkage, the type of the identifier at the later |
| 4521 | // declaration becomes the composite type. |
| 4522 | // |
| 4523 | // If the variable isn't visible, we do not merge with its type. |
| 4524 | if (Previous.isShadowed()) |
| 4525 | return false; |
| 4526 | |
| 4527 | if (S.getLangOpts().CPlusPlus) { |
| 4528 | // C++11 [dcl.array]p3: |
| 4529 | // If there is a preceding declaration of the entity in the same |
| 4530 | // scope in which the bound was specified, an omitted array bound |
| 4531 | // is taken to be the same as in that earlier declaration. |
| 4532 | return NewVD->isPreviousDeclInSameBlockScope() || |
| 4533 | (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() && |
| 4534 | !NewVD->getLexicalDeclContext()->isFunctionOrMethod()); |
| 4535 | } else { |
| 4536 | // If the old declaration was function-local, don't merge with its |
| 4537 | // type unless we're in the same function. |
| 4538 | return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() || |
| 4539 | OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext(); |
| 4540 | } |
| 4541 | } |
| 4542 | |
| 4543 | void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) { |
| 4544 | // If the new decl is already invalid, don't do any other checking. |
| 4545 | if (New->isInvalidDecl()) |
| 4546 | return; |
| 4547 | |
| 4548 | if (!shouldLinkPossiblyHiddenDecl(Previous, New)) |
| 4549 | return; |
| 4550 | |
| 4551 | VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate(); |
| 4552 | |
| 4553 | // Verify the old decl was also a variable or variable template. |
| 4554 | VarDecl *Old = nullptr; |
| 4555 | VarTemplateDecl *OldTemplate = nullptr; |
| 4556 | if (Previous.isSingleResult()) { |
| 4557 | if (NewTemplate) { |
| 4558 | OldTemplate = dyn_cast<VarTemplateDecl>(Val: Previous.getFoundDecl()); |
| 4559 | Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr; |
| 4560 | |
| 4561 | if (auto *Shadow = |
| 4562 | dyn_cast<UsingShadowDecl>(Val: Previous.getRepresentativeDecl())) |
| 4563 | if (checkUsingShadowRedecl<VarTemplateDecl>(S&: *this, OldS: Shadow, New: NewTemplate)) |
| 4564 | return New->setInvalidDecl(); |
| 4565 | } else { |
| 4566 | Old = dyn_cast<VarDecl>(Val: Previous.getFoundDecl()); |
| 4567 | |
| 4568 | if (auto *Shadow = |
| 4569 | dyn_cast<UsingShadowDecl>(Val: Previous.getRepresentativeDecl())) |
| 4570 | if (checkUsingShadowRedecl<VarDecl>(S&: *this, OldS: Shadow, New)) |
| 4571 | return New->setInvalidDecl(); |
| 4572 | } |
| 4573 | } |
| 4574 | if (!Old) { |
| 4575 | Diag(New->getLocation(), diag::err_redefinition_different_kind) |
| 4576 | << New->getDeclName(); |
| 4577 | notePreviousDefinition(Old: Previous.getRepresentativeDecl(), |
| 4578 | New: New->getLocation()); |
| 4579 | return New->setInvalidDecl(); |
| 4580 | } |
| 4581 | |
| 4582 | // If the old declaration was found in an inline namespace and the new |
| 4583 | // declaration was qualified, update the DeclContext to match. |
| 4584 | adjustDeclContextForDeclaratorDecl(New, Old); |
| 4585 | |
| 4586 | // Ensure the template parameters are compatible. |
| 4587 | if (NewTemplate && |
| 4588 | !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), |
| 4589 | OldTemplate->getTemplateParameters(), |
| 4590 | /*Complain=*/true, TPL_TemplateMatch)) |
| 4591 | return New->setInvalidDecl(); |
| 4592 | |
| 4593 | // C++ [class.mem]p1: |
| 4594 | // A member shall not be declared twice in the member-specification [...] |
| 4595 | // |
| 4596 | // Here, we need only consider static data members. |
| 4597 | if (Old->isStaticDataMember() && !New->isOutOfLine()) { |
| 4598 | Diag(New->getLocation(), diag::err_duplicate_member) |
| 4599 | << New->getIdentifier(); |
| 4600 | Diag(Old->getLocation(), diag::note_previous_declaration); |
| 4601 | New->setInvalidDecl(); |
| 4602 | } |
| 4603 | |
| 4604 | mergeDeclAttributes(New, Old); |
| 4605 | // Warn if an already-defined variable is made a weak_import in a subsequent |
| 4606 | // declaration |
| 4607 | if (New->hasAttr<WeakImportAttr>()) |
| 4608 | for (auto *D = Old; D; D = D->getPreviousDecl()) { |
| 4609 | if (D->isThisDeclarationADefinition() != VarDecl::DeclarationOnly) { |
| 4610 | Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName(); |
| 4611 | Diag(D->getLocation(), diag::note_previous_definition); |
| 4612 | // Remove weak_import attribute on new declaration. |
| 4613 | New->dropAttr<WeakImportAttr>(); |
| 4614 | break; |
| 4615 | } |
| 4616 | } |
| 4617 | |
| 4618 | if (const auto *ILA = New->getAttr<InternalLinkageAttr>()) |
| 4619 | if (!Old->hasAttr<InternalLinkageAttr>()) { |
| 4620 | Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl) |
| 4621 | << ILA; |
| 4622 | Diag(Old->getLocation(), diag::note_previous_declaration); |
| 4623 | New->dropAttr<InternalLinkageAttr>(); |
| 4624 | } |
| 4625 | |
| 4626 | // Merge the types. |
| 4627 | VarDecl *MostRecent = Old->getMostRecentDecl(); |
| 4628 | if (MostRecent != Old) { |
| 4629 | MergeVarDeclTypes(New, Old: MostRecent, |
| 4630 | MergeTypeWithOld: mergeTypeWithPrevious(S&: *this, NewVD: New, OldVD: MostRecent, Previous)); |
| 4631 | if (New->isInvalidDecl()) |
| 4632 | return; |
| 4633 | } |
| 4634 | |
| 4635 | MergeVarDeclTypes(New, Old, MergeTypeWithOld: mergeTypeWithPrevious(S&: *this, NewVD: New, OldVD: Old, Previous)); |
| 4636 | if (New->isInvalidDecl()) |
| 4637 | return; |
| 4638 | |
| 4639 | diag::kind PrevDiag; |
| 4640 | SourceLocation OldLocation; |
| 4641 | std::tie(args&: PrevDiag, args&: OldLocation) = |
| 4642 | getNoteDiagForInvalidRedeclaration(Old, New); |
| 4643 | |
| 4644 | // [dcl.stc]p8: Check if we have a non-static decl followed by a static. |
| 4645 | if (New->getStorageClass() == SC_Static && |
| 4646 | !New->isStaticDataMember() && |
| 4647 | Old->hasExternalFormalLinkage()) { |
| 4648 | if (getLangOpts().MicrosoftExt) { |
| 4649 | Diag(New->getLocation(), diag::ext_static_non_static) |
| 4650 | << New->getDeclName(); |
| 4651 | Diag(OldLocation, PrevDiag); |
| 4652 | } else { |
| 4653 | Diag(New->getLocation(), diag::err_static_non_static) |
| 4654 | << New->getDeclName(); |
| 4655 | Diag(OldLocation, PrevDiag); |
| 4656 | return New->setInvalidDecl(); |
| 4657 | } |
| 4658 | } |
| 4659 | // C99 6.2.2p4: |
| 4660 | // For an identifier declared with the storage-class specifier |
| 4661 | // extern in a scope in which a prior declaration of that |
| 4662 | // identifier is visible,23) if the prior declaration specifies |
| 4663 | // internal or external linkage, the linkage of the identifier at |
| 4664 | // the later declaration is the same as the linkage specified at |
| 4665 | // the prior declaration. If no prior declaration is visible, or |
| 4666 | // if the prior declaration specifies no linkage, then the |
| 4667 | // identifier has external linkage. |
| 4668 | if (New->hasExternalStorage() && Old->hasLinkage()) |
| 4669 | /* Okay */; |
| 4670 | else if (New->getCanonicalDecl()->getStorageClass() != SC_Static && |
| 4671 | !New->isStaticDataMember() && |
| 4672 | Old->getCanonicalDecl()->getStorageClass() == SC_Static) { |
| 4673 | Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName(); |
| 4674 | Diag(OldLocation, PrevDiag); |
| 4675 | return New->setInvalidDecl(); |
| 4676 | } |
| 4677 | |
| 4678 | // Check if extern is followed by non-extern and vice-versa. |
| 4679 | if (New->hasExternalStorage() && |
| 4680 | !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) { |
| 4681 | Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName(); |
| 4682 | Diag(OldLocation, PrevDiag); |
| 4683 | return New->setInvalidDecl(); |
| 4684 | } |
| 4685 | if (Old->hasLinkage() && New->isLocalVarDeclOrParm() && |
| 4686 | !New->hasExternalStorage()) { |
| 4687 | Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName(); |
| 4688 | Diag(OldLocation, PrevDiag); |
| 4689 | return New->setInvalidDecl(); |
| 4690 | } |
| 4691 | |
| 4692 | if (CheckRedeclarationInModule(New, Old)) |
| 4693 | return; |
| 4694 | |
| 4695 | // Variables with external linkage are analyzed in FinalizeDeclaratorGroup. |
| 4696 | |
| 4697 | // FIXME: The test for external storage here seems wrong? We still |
| 4698 | // need to check for mismatches. |
| 4699 | if (!New->hasExternalStorage() && !New->isFileVarDecl() && |
| 4700 | // Don't complain about out-of-line definitions of static members. |
| 4701 | !(Old->getLexicalDeclContext()->isRecord() && |
| 4702 | !New->getLexicalDeclContext()->isRecord())) { |
| 4703 | Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName(); |
| 4704 | Diag(OldLocation, PrevDiag); |
| 4705 | return New->setInvalidDecl(); |
| 4706 | } |
| 4707 | |
| 4708 | if (New->isInline() && !Old->getMostRecentDecl()->isInline()) { |
| 4709 | if (VarDecl *Def = Old->getDefinition()) { |
| 4710 | // C++1z [dcl.fcn.spec]p4: |
| 4711 | // If the definition of a variable appears in a translation unit before |
| 4712 | // its first declaration as inline, the program is ill-formed. |
| 4713 | Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; |
| 4714 | Diag(Def->getLocation(), diag::note_previous_definition); |
| 4715 | } |
| 4716 | } |
| 4717 | |
| 4718 | // If this redeclaration makes the variable inline, we may need to add it to |
| 4719 | // UndefinedButUsed. |
| 4720 | if (!Old->isInline() && New->isInline() && Old->isUsed(false) && |
| 4721 | !Old->getDefinition() && !New->isThisDeclarationADefinition() && |
| 4722 | !Old->isInAnotherModuleUnit()) |
| 4723 | UndefinedButUsed.insert(std::make_pair(x: Old->getCanonicalDecl(), |
| 4724 | y: SourceLocation())); |
| 4725 | |
| 4726 | if (New->getTLSKind() != Old->getTLSKind()) { |
| 4727 | if (!Old->getTLSKind()) { |
| 4728 | Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName(); |
| 4729 | Diag(OldLocation, PrevDiag); |
| 4730 | } else if (!New->getTLSKind()) { |
| 4731 | Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName(); |
| 4732 | Diag(OldLocation, PrevDiag); |
| 4733 | } else { |
| 4734 | // Do not allow redeclaration to change the variable between requiring |
| 4735 | // static and dynamic initialization. |
| 4736 | // FIXME: GCC allows this, but uses the TLS keyword on the first |
| 4737 | // declaration to determine the kind. Do we need to be compatible here? |
| 4738 | Diag(New->getLocation(), diag::err_thread_thread_different_kind) |
| 4739 | << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic); |
| 4740 | Diag(OldLocation, PrevDiag); |
| 4741 | } |
| 4742 | } |
| 4743 | |
| 4744 | // C++ doesn't have tentative definitions, so go right ahead and check here. |
| 4745 | if (getLangOpts().CPlusPlus) { |
| 4746 | if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() && |
| 4747 | Old->getCanonicalDecl()->isConstexpr()) { |
| 4748 | // This definition won't be a definition any more once it's been merged. |
| 4749 | Diag(New->getLocation(), |
| 4750 | diag::warn_deprecated_redundant_constexpr_static_def); |
| 4751 | } else if (New->isThisDeclarationADefinition() == VarDecl::Definition) { |
| 4752 | VarDecl *Def = Old->getDefinition(); |
| 4753 | if (Def && checkVarDeclRedefinition(OldDefn: Def, NewDefn: New)) |
| 4754 | return; |
| 4755 | } |
| 4756 | } else { |
| 4757 | // C++ may not have a tentative definition rule, but it has a different |
| 4758 | // rule about what constitutes a definition in the first place. See |
| 4759 | // [basic.def]p2 for details, but the basic idea is: if the old declaration |
| 4760 | // contains the extern specifier and doesn't have an initializer, it's fine |
| 4761 | // in C++. |
| 4762 | if (Old->getStorageClass() != SC_Extern || Old->hasInit()) { |
| 4763 | Diag(New->getLocation(), diag::warn_cxx_compat_tentative_definition) |
| 4764 | << New; |
| 4765 | Diag(Old->getLocation(), diag::note_previous_declaration); |
| 4766 | } |
| 4767 | } |
| 4768 | |
| 4769 | if (haveIncompatibleLanguageLinkages(Old, New)) { |
| 4770 | Diag(New->getLocation(), diag::err_different_language_linkage) << New; |
| 4771 | Diag(OldLocation, PrevDiag); |
| 4772 | New->setInvalidDecl(); |
| 4773 | return; |
| 4774 | } |
| 4775 | |
| 4776 | // Merge "used" flag. |
| 4777 | if (Old->getMostRecentDecl()->isUsed(false)) |
| 4778 | New->setIsUsed(); |
| 4779 | |
| 4780 | // Keep a chain of previous declarations. |
| 4781 | New->setPreviousDecl(Old); |
| 4782 | if (NewTemplate) |
| 4783 | NewTemplate->setPreviousDecl(OldTemplate); |
| 4784 | |
| 4785 | // Inherit access appropriately. |
| 4786 | New->setAccess(Old->getAccess()); |
| 4787 | if (NewTemplate) |
| 4788 | NewTemplate->setAccess(New->getAccess()); |
| 4789 | |
| 4790 | if (Old->isInline()) |
| 4791 | New->setImplicitlyInline(); |
| 4792 | } |
| 4793 | |
| 4794 | void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) { |
| 4795 | SourceManager &SrcMgr = getSourceManager(); |
| 4796 | auto FNewDecLoc = SrcMgr.getDecomposedLoc(Loc: New); |
| 4797 | auto FOldDecLoc = SrcMgr.getDecomposedLoc(Loc: Old->getLocation()); |
| 4798 | auto *FNew = SrcMgr.getFileEntryForID(FID: FNewDecLoc.first); |
| 4799 | auto FOld = SrcMgr.getFileEntryRefForID(FID: FOldDecLoc.first); |
| 4800 | auto &HSI = PP.getHeaderSearchInfo(); |
| 4801 | StringRef HdrFilename = |
| 4802 | SrcMgr.getFilename(SpellingLoc: SrcMgr.getSpellingLoc(Loc: Old->getLocation())); |
| 4803 | |
| 4804 | auto noteFromModuleOrInclude = [&](Module *Mod, |
| 4805 | SourceLocation IncLoc) -> bool { |
| 4806 | // Redefinition errors with modules are common with non modular mapped |
| 4807 | // headers, example: a non-modular header H in module A that also gets |
| 4808 | // included directly in a TU. Pointing twice to the same header/definition |
| 4809 | // is confusing, try to get better diagnostics when modules is on. |
| 4810 | if (IncLoc.isValid()) { |
| 4811 | if (Mod) { |
| 4812 | Diag(IncLoc, diag::note_redefinition_modules_same_file) |
| 4813 | << HdrFilename.str() << Mod->getFullModuleName(); |
| 4814 | if (!Mod->DefinitionLoc.isInvalid()) |
| 4815 | Diag(Mod->DefinitionLoc, diag::note_defined_here) |
| 4816 | << Mod->getFullModuleName(); |
| 4817 | } else { |
| 4818 | Diag(IncLoc, diag::note_redefinition_include_same_file) |
| 4819 | << HdrFilename.str(); |
| 4820 | } |
| 4821 | return true; |
| 4822 | } |
| 4823 | |
| 4824 | return false; |
| 4825 | }; |
| 4826 | |
| 4827 | // Is it the same file and same offset? Provide more information on why |
| 4828 | // this leads to a redefinition error. |
| 4829 | if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) { |
| 4830 | SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FID: FOldDecLoc.first); |
| 4831 | SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FID: FNewDecLoc.first); |
| 4832 | bool EmittedDiag = |
| 4833 | noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc); |
| 4834 | EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc); |
| 4835 | |
| 4836 | // If the header has no guards, emit a note suggesting one. |
| 4837 | if (FOld && !HSI.isFileMultipleIncludeGuarded(*FOld)) |
| 4838 | Diag(Old->getLocation(), diag::note_use_ifdef_guards); |
| 4839 | |
| 4840 | if (EmittedDiag) |
| 4841 | return; |
| 4842 | } |
| 4843 | |
| 4844 | // Redefinition coming from different files or couldn't do better above. |
| 4845 | if (Old->getLocation().isValid()) |
| 4846 | Diag(Old->getLocation(), diag::note_previous_definition); |
| 4847 | } |
| 4848 | |
| 4849 | bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) { |
| 4850 | if (!hasVisibleDefinition(Old) && |
| 4851 | (New->getFormalLinkage() == Linkage::Internal || New->isInline() || |
| 4852 | isa<VarTemplateSpecializationDecl>(New) || |
| 4853 | New->getDescribedVarTemplate() || New->getNumTemplateParameterLists() || |
| 4854 | New->getDeclContext()->isDependentContext() || |
| 4855 | New->hasAttr<SelectAnyAttr>())) { |
| 4856 | // The previous definition is hidden, and multiple definitions are |
| 4857 | // permitted (in separate TUs). Demote this to a declaration. |
| 4858 | New->demoteThisDefinitionToDeclaration(); |
| 4859 | |
| 4860 | // Make the canonical definition visible. |
| 4861 | if (auto *OldTD = Old->getDescribedVarTemplate()) |
| 4862 | makeMergedDefinitionVisible(OldTD); |
| 4863 | makeMergedDefinitionVisible(Old); |
| 4864 | return false; |
| 4865 | } else { |
| 4866 | Diag(New->getLocation(), diag::err_redefinition) << New; |
| 4867 | notePreviousDefinition(Old, New: New->getLocation()); |
| 4868 | New->setInvalidDecl(); |
| 4869 | return true; |
| 4870 | } |
| 4871 | } |
| 4872 | |
| 4873 | Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, |
| 4874 | DeclSpec &DS, |
| 4875 | const ParsedAttributesView &DeclAttrs, |
| 4876 | RecordDecl *&AnonRecord) { |
| 4877 | return ParsedFreeStandingDeclSpec( |
| 4878 | S, AS, DS, DeclAttrs, TemplateParams: MultiTemplateParamsArg(), IsExplicitInstantiation: false, AnonRecord); |
| 4879 | } |
| 4880 | |
| 4881 | // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to |
| 4882 | // disambiguate entities defined in different scopes. |
| 4883 | // While the VS2015 ABI fixes potential miscompiles, it is also breaks |
| 4884 | // compatibility. |
| 4885 | // We will pick our mangling number depending on which version of MSVC is being |
| 4886 | // targeted. |
| 4887 | static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) { |
| 4888 | return LO.isCompatibleWithMSVC(MajorVersion: LangOptions::MSVC2015) |
| 4889 | ? S->getMSCurManglingNumber() |
| 4890 | : S->getMSLastManglingNumber(); |
| 4891 | } |
| 4892 | |
| 4893 | void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) { |
| 4894 | if (!Context.getLangOpts().CPlusPlus) |
| 4895 | return; |
| 4896 | |
| 4897 | if (isa<CXXRecordDecl>(Tag->getParent())) { |
| 4898 | // If this tag is the direct child of a class, number it if |
| 4899 | // it is anonymous. |
| 4900 | if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl()) |
| 4901 | return; |
| 4902 | MangleNumberingContext &MCtx = |
| 4903 | Context.getManglingNumberContext(Tag->getParent()); |
| 4904 | Context.setManglingNumber( |
| 4905 | Tag, MCtx.getManglingNumber( |
| 4906 | TD: Tag, MSLocalManglingNumber: getMSManglingNumber(LO: getLangOpts(), S: TagScope))); |
| 4907 | return; |
| 4908 | } |
| 4909 | |
| 4910 | // If this tag isn't a direct child of a class, number it if it is local. |
| 4911 | MangleNumberingContext *MCtx; |
| 4912 | Decl *ManglingContextDecl; |
| 4913 | std::tie(args&: MCtx, args&: ManglingContextDecl) = |
| 4914 | getCurrentMangleNumberContext(DC: Tag->getDeclContext()); |
| 4915 | if (MCtx) { |
| 4916 | Context.setManglingNumber( |
| 4917 | Tag, MCtx->getManglingNumber( |
| 4918 | TD: Tag, MSLocalManglingNumber: getMSManglingNumber(LO: getLangOpts(), S: TagScope))); |
| 4919 | } |
| 4920 | } |
| 4921 | |
| 4922 | namespace { |
| 4923 | struct NonCLikeKind { |
| 4924 | enum { |
| 4925 | None, |
| 4926 | BaseClass, |
| 4927 | DefaultMemberInit, |
| 4928 | Lambda, |
| 4929 | Friend, |
| 4930 | OtherMember, |
| 4931 | Invalid, |
| 4932 | } Kind = None; |
| 4933 | SourceRange Range; |
| 4934 | |
| 4935 | explicit operator bool() { return Kind != None; } |
| 4936 | }; |
| 4937 | } |
| 4938 | |
| 4939 | /// Determine whether a class is C-like, according to the rules of C++ |
| 4940 | /// [dcl.typedef] for anonymous classes with typedef names for linkage. |
| 4941 | static NonCLikeKind getNonCLikeKindForAnonymousStruct(const CXXRecordDecl *RD) { |
| 4942 | if (RD->isInvalidDecl()) |
| 4943 | return {.Kind: NonCLikeKind::Invalid, .Range: {}}; |
| 4944 | |
| 4945 | // C++ [dcl.typedef]p9: [P1766R1] |
| 4946 | // An unnamed class with a typedef name for linkage purposes shall not |
| 4947 | // |
| 4948 | // -- have any base classes |
| 4949 | if (RD->getNumBases()) |
| 4950 | return {.Kind: NonCLikeKind::BaseClass, |
| 4951 | .Range: SourceRange(RD->bases_begin()->getBeginLoc(), |
| 4952 | RD->bases_end()[-1].getEndLoc())}; |
| 4953 | bool Invalid = false; |
| 4954 | for (Decl *D : RD->decls()) { |
| 4955 | // Don't complain about things we already diagnosed. |
| 4956 | if (D->isInvalidDecl()) { |
| 4957 | Invalid = true; |
| 4958 | continue; |
| 4959 | } |
| 4960 | |
| 4961 | // -- have any [...] default member initializers |
| 4962 | if (auto *FD = dyn_cast<FieldDecl>(D)) { |
| 4963 | if (FD->hasInClassInitializer()) { |
| 4964 | auto *Init = FD->getInClassInitializer(); |
| 4965 | return {NonCLikeKind::DefaultMemberInit, |
| 4966 | Init ? Init->getSourceRange() : D->getSourceRange()}; |
| 4967 | } |
| 4968 | continue; |
| 4969 | } |
| 4970 | |
| 4971 | // FIXME: We don't allow friend declarations. This violates the wording of |
| 4972 | // P1766, but not the intent. |
| 4973 | if (isa<FriendDecl>(D)) |
| 4974 | return {NonCLikeKind::Friend, D->getSourceRange()}; |
| 4975 | |
| 4976 | // -- declare any members other than non-static data members, member |
| 4977 | // enumerations, or member classes, |
| 4978 | if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D) || |
| 4979 | isa<EnumDecl>(D)) |
| 4980 | continue; |
| 4981 | auto *MemberRD = dyn_cast<CXXRecordDecl>(D); |
| 4982 | if (!MemberRD) { |
| 4983 | if (D->isImplicit()) |
| 4984 | continue; |
| 4985 | return {NonCLikeKind::OtherMember, D->getSourceRange()}; |
| 4986 | } |
| 4987 | |
| 4988 | // -- contain a lambda-expression, |
| 4989 | if (MemberRD->isLambda()) |
| 4990 | return {NonCLikeKind::Lambda, MemberRD->getSourceRange()}; |
| 4991 | |
| 4992 | // and all member classes shall also satisfy these requirements |
| 4993 | // (recursively). |
| 4994 | if (MemberRD->isThisDeclarationADefinition()) { |
| 4995 | if (auto Kind = getNonCLikeKindForAnonymousStruct(MemberRD)) |
| 4996 | return Kind; |
| 4997 | } |
| 4998 | } |
| 4999 | |
| 5000 | return {.Kind: Invalid ? NonCLikeKind::Invalid : NonCLikeKind::None, .Range: {}}; |
| 5001 | } |
| 5002 | |
| 5003 | void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec, |
| 5004 | TypedefNameDecl *NewTD) { |
| 5005 | if (TagFromDeclSpec->isInvalidDecl()) |
| 5006 | return; |
| 5007 | |
| 5008 | // Do nothing if the tag already has a name for linkage purposes. |
| 5009 | if (TagFromDeclSpec->hasNameForLinkage()) |
| 5010 | return; |
| 5011 | |
| 5012 | // A well-formed anonymous tag must always be a TagUseKind::Definition. |
| 5013 | assert(TagFromDeclSpec->isThisDeclarationADefinition()); |
| 5014 | |
| 5015 | // The type must match the tag exactly; no qualifiers allowed. |
| 5016 | if (!Context.hasSameType(T1: NewTD->getUnderlyingType(), |
| 5017 | T2: Context.getTagDeclType(Decl: TagFromDeclSpec))) { |
| 5018 | if (getLangOpts().CPlusPlus) |
| 5019 | Context.addTypedefNameForUnnamedTagDecl(TD: TagFromDeclSpec, TND: NewTD); |
| 5020 | return; |
| 5021 | } |
| 5022 | |
| 5023 | // C++ [dcl.typedef]p9: [P1766R1, applied as DR] |
| 5024 | // An unnamed class with a typedef name for linkage purposes shall [be |
| 5025 | // C-like]. |
| 5026 | // |
| 5027 | // FIXME: Also diagnose if we've already computed the linkage. That ideally |
| 5028 | // shouldn't happen, but there are constructs that the language rule doesn't |
| 5029 | // disallow for which we can't reasonably avoid computing linkage early. |
| 5030 | const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: TagFromDeclSpec); |
| 5031 | NonCLikeKind NonCLike = RD ? getNonCLikeKindForAnonymousStruct(RD) |
| 5032 | : NonCLikeKind(); |
| 5033 | bool ChangesLinkage = TagFromDeclSpec->hasLinkageBeenComputed(); |
| 5034 | if (NonCLike || ChangesLinkage) { |
| 5035 | if (NonCLike.Kind == NonCLikeKind::Invalid) |
| 5036 | return; |
| 5037 | |
| 5038 | unsigned DiagID = diag::ext_non_c_like_anon_struct_in_typedef; |
| 5039 | if (ChangesLinkage) { |
| 5040 | // If the linkage changes, we can't accept this as an extension. |
| 5041 | if (NonCLike.Kind == NonCLikeKind::None) |
| 5042 | DiagID = diag::err_typedef_changes_linkage; |
| 5043 | else |
| 5044 | DiagID = diag::err_non_c_like_anon_struct_in_typedef; |
| 5045 | } |
| 5046 | |
| 5047 | SourceLocation FixitLoc = |
| 5048 | getLocForEndOfToken(Loc: TagFromDeclSpec->getInnerLocStart()); |
| 5049 | llvm::SmallString<40> TextToInsert; |
| 5050 | TextToInsert += ' '; |
| 5051 | TextToInsert += NewTD->getIdentifier()->getName(); |
| 5052 | |
| 5053 | Diag(FixitLoc, DiagID) |
| 5054 | << isa<TypeAliasDecl>(Val: NewTD) |
| 5055 | << FixItHint::CreateInsertion(InsertionLoc: FixitLoc, Code: TextToInsert); |
| 5056 | if (NonCLike.Kind != NonCLikeKind::None) { |
| 5057 | Diag(NonCLike.Range.getBegin(), diag::note_non_c_like_anon_struct) |
| 5058 | << NonCLike.Kind - 1 << NonCLike.Range; |
| 5059 | } |
| 5060 | Diag(NewTD->getLocation(), diag::note_typedef_for_linkage_here) |
| 5061 | << NewTD << isa<TypeAliasDecl>(NewTD); |
| 5062 | |
| 5063 | if (ChangesLinkage) |
| 5064 | return; |
| 5065 | } |
| 5066 | |
| 5067 | // Otherwise, set this as the anon-decl typedef for the tag. |
| 5068 | TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD); |
| 5069 | |
| 5070 | // Now that we have a name for the tag, process API notes again. |
| 5071 | ProcessAPINotes(TagFromDeclSpec); |
| 5072 | } |
| 5073 | |
| 5074 | static unsigned GetDiagnosticTypeSpecifierID(const DeclSpec &DS) { |
| 5075 | DeclSpec::TST T = DS.getTypeSpecType(); |
| 5076 | switch (T) { |
| 5077 | case DeclSpec::TST_class: |
| 5078 | return 0; |
| 5079 | case DeclSpec::TST_struct: |
| 5080 | return 1; |
| 5081 | case DeclSpec::TST_interface: |
| 5082 | return 2; |
| 5083 | case DeclSpec::TST_union: |
| 5084 | return 3; |
| 5085 | case DeclSpec::TST_enum: |
| 5086 | if (const auto *ED = dyn_cast<EnumDecl>(Val: DS.getRepAsDecl())) { |
| 5087 | if (ED->isScopedUsingClassTag()) |
| 5088 | return 5; |
| 5089 | if (ED->isScoped()) |
| 5090 | return 6; |
| 5091 | } |
| 5092 | return 4; |
| 5093 | default: |
| 5094 | llvm_unreachable("unexpected type specifier" ); |
| 5095 | } |
| 5096 | } |
| 5097 | |
| 5098 | Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, |
| 5099 | DeclSpec &DS, |
| 5100 | const ParsedAttributesView &DeclAttrs, |
| 5101 | MultiTemplateParamsArg TemplateParams, |
| 5102 | bool IsExplicitInstantiation, |
| 5103 | RecordDecl *&AnonRecord, |
| 5104 | SourceLocation EllipsisLoc) { |
| 5105 | Decl *TagD = nullptr; |
| 5106 | TagDecl *Tag = nullptr; |
| 5107 | if (DS.getTypeSpecType() == DeclSpec::TST_class || |
| 5108 | DS.getTypeSpecType() == DeclSpec::TST_struct || |
| 5109 | DS.getTypeSpecType() == DeclSpec::TST_interface || |
| 5110 | DS.getTypeSpecType() == DeclSpec::TST_union || |
| 5111 | DS.getTypeSpecType() == DeclSpec::TST_enum) { |
| 5112 | TagD = DS.getRepAsDecl(); |
| 5113 | |
| 5114 | if (!TagD) // We probably had an error |
| 5115 | return nullptr; |
| 5116 | |
| 5117 | // Note that the above type specs guarantee that the |
| 5118 | // type rep is a Decl, whereas in many of the others |
| 5119 | // it's a Type. |
| 5120 | if (isa<TagDecl>(Val: TagD)) |
| 5121 | Tag = cast<TagDecl>(Val: TagD); |
| 5122 | else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(Val: TagD)) |
| 5123 | Tag = CTD->getTemplatedDecl(); |
| 5124 | } |
| 5125 | |
| 5126 | if (Tag) { |
| 5127 | handleTagNumbering(Tag, TagScope: S); |
| 5128 | Tag->setFreeStanding(); |
| 5129 | if (Tag->isInvalidDecl()) |
| 5130 | return Tag; |
| 5131 | } |
| 5132 | |
| 5133 | if (unsigned TypeQuals = DS.getTypeQualifiers()) { |
| 5134 | // Enforce C99 6.7.3p2: "Types other than pointer types derived from object |
| 5135 | // or incomplete types shall not be restrict-qualified." |
| 5136 | if (TypeQuals & DeclSpec::TQ_restrict) |
| 5137 | Diag(DS.getRestrictSpecLoc(), |
| 5138 | diag::err_typecheck_invalid_restrict_not_pointer_noarg) |
| 5139 | << DS.getSourceRange(); |
| 5140 | } |
| 5141 | |
| 5142 | if (DS.isInlineSpecified()) |
| 5143 | Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) |
| 5144 | << getLangOpts().CPlusPlus17; |
| 5145 | |
| 5146 | if (DS.hasConstexprSpecifier()) { |
| 5147 | // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations |
| 5148 | // and definitions of functions and variables. |
| 5149 | // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to |
| 5150 | // the declaration of a function or function template |
| 5151 | if (Tag) |
| 5152 | Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag) |
| 5153 | << GetDiagnosticTypeSpecifierID(DS) |
| 5154 | << static_cast<int>(DS.getConstexprSpecifier()); |
| 5155 | else if (getLangOpts().C23) |
| 5156 | Diag(DS.getConstexprSpecLoc(), diag::err_c23_constexpr_not_variable); |
| 5157 | else |
| 5158 | Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind) |
| 5159 | << static_cast<int>(DS.getConstexprSpecifier()); |
| 5160 | // Don't emit warnings after this error. |
| 5161 | return TagD; |
| 5162 | } |
| 5163 | |
| 5164 | DiagnoseFunctionSpecifiers(DS); |
| 5165 | |
| 5166 | if (DS.isFriendSpecified()) { |
| 5167 | // If we're dealing with a decl but not a TagDecl, assume that |
| 5168 | // whatever routines created it handled the friendship aspect. |
| 5169 | if (TagD && !Tag) |
| 5170 | return nullptr; |
| 5171 | return ActOnFriendTypeDecl(S, DS, TemplateParams, EllipsisLoc); |
| 5172 | } |
| 5173 | |
| 5174 | assert(EllipsisLoc.isInvalid() && |
| 5175 | "Friend ellipsis but not friend-specified?" ); |
| 5176 | |
| 5177 | // Track whether this decl-specifier declares anything. |
| 5178 | bool DeclaresAnything = true; |
| 5179 | |
| 5180 | // Handle anonymous struct definitions. |
| 5181 | if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Val: Tag)) { |
| 5182 | if (!Record->getDeclName() && Record->isCompleteDefinition() && |
| 5183 | DS.getStorageClassSpec() != DeclSpec::SCS_typedef) { |
| 5184 | if (getLangOpts().CPlusPlus || |
| 5185 | Record->getDeclContext()->isRecord()) { |
| 5186 | // If CurContext is a DeclContext that can contain statements, |
| 5187 | // RecursiveASTVisitor won't visit the decls that |
| 5188 | // BuildAnonymousStructOrUnion() will put into CurContext. |
| 5189 | // Also store them here so that they can be part of the |
| 5190 | // DeclStmt that gets created in this case. |
| 5191 | // FIXME: Also return the IndirectFieldDecls created by |
| 5192 | // BuildAnonymousStructOr union, for the same reason? |
| 5193 | if (CurContext->isFunctionOrMethod()) |
| 5194 | AnonRecord = Record; |
| 5195 | return BuildAnonymousStructOrUnion(S, DS, AS, Record, |
| 5196 | Policy: Context.getPrintingPolicy()); |
| 5197 | } |
| 5198 | |
| 5199 | DeclaresAnything = false; |
| 5200 | } |
| 5201 | } |
| 5202 | |
| 5203 | // C11 6.7.2.1p2: |
| 5204 | // A struct-declaration that does not declare an anonymous structure or |
| 5205 | // anonymous union shall contain a struct-declarator-list. |
| 5206 | // |
| 5207 | // This rule also existed in C89 and C99; the grammar for struct-declaration |
| 5208 | // did not permit a struct-declaration without a struct-declarator-list. |
| 5209 | if (!getLangOpts().CPlusPlus && CurContext->isRecord() && |
| 5210 | DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) { |
| 5211 | // Check for Microsoft C extension: anonymous struct/union member. |
| 5212 | // Handle 2 kinds of anonymous struct/union: |
| 5213 | // struct STRUCT; |
| 5214 | // union UNION; |
| 5215 | // and |
| 5216 | // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct. |
| 5217 | // UNION_TYPE; <- where UNION_TYPE is a typedef union. |
| 5218 | if ((Tag && Tag->getDeclName()) || |
| 5219 | DS.getTypeSpecType() == DeclSpec::TST_typename) { |
| 5220 | RecordDecl *Record = nullptr; |
| 5221 | if (Tag) |
| 5222 | Record = dyn_cast<RecordDecl>(Val: Tag); |
| 5223 | else if (const RecordType *RT = |
| 5224 | DS.getRepAsType().get()->getAsStructureType()) |
| 5225 | Record = RT->getDecl(); |
| 5226 | else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType()) |
| 5227 | Record = UT->getDecl(); |
| 5228 | |
| 5229 | if (Record && getLangOpts().MicrosoftExt) { |
| 5230 | Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record) |
| 5231 | << Record->isUnion() << DS.getSourceRange(); |
| 5232 | return BuildMicrosoftCAnonymousStruct(S, DS, Record); |
| 5233 | } |
| 5234 | |
| 5235 | DeclaresAnything = false; |
| 5236 | } |
| 5237 | } |
| 5238 | |
| 5239 | // Skip all the checks below if we have a type error. |
| 5240 | if (DS.getTypeSpecType() == DeclSpec::TST_error || |
| 5241 | (TagD && TagD->isInvalidDecl())) |
| 5242 | return TagD; |
| 5243 | |
| 5244 | if (getLangOpts().CPlusPlus && |
| 5245 | DS.getStorageClassSpec() != DeclSpec::SCS_typedef) |
| 5246 | if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Val: Tag)) |
| 5247 | if (Enum->enumerator_begin() == Enum->enumerator_end() && |
| 5248 | !Enum->getIdentifier() && !Enum->isInvalidDecl()) |
| 5249 | DeclaresAnything = false; |
| 5250 | |
| 5251 | if (!DS.isMissingDeclaratorOk()) { |
| 5252 | // Customize diagnostic for a typedef missing a name. |
| 5253 | if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) |
| 5254 | Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name) |
| 5255 | << DS.getSourceRange(); |
| 5256 | else |
| 5257 | DeclaresAnything = false; |
| 5258 | } |
| 5259 | |
| 5260 | if (DS.isModulePrivateSpecified() && |
| 5261 | Tag && Tag->getDeclContext()->isFunctionOrMethod()) |
| 5262 | Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class) |
| 5263 | << Tag->getTagKind() |
| 5264 | << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc()); |
| 5265 | |
| 5266 | ActOnDocumentableDecl(D: TagD); |
| 5267 | |
| 5268 | // C 6.7/2: |
| 5269 | // A declaration [...] shall declare at least a declarator [...], a tag, |
| 5270 | // or the members of an enumeration. |
| 5271 | // C++ [dcl.dcl]p3: |
| 5272 | // [If there are no declarators], and except for the declaration of an |
| 5273 | // unnamed bit-field, the decl-specifier-seq shall introduce one or more |
| 5274 | // names into the program, or shall redeclare a name introduced by a |
| 5275 | // previous declaration. |
| 5276 | if (!DeclaresAnything) { |
| 5277 | // In C, we allow this as a (popular) extension / bug. Don't bother |
| 5278 | // producing further diagnostics for redundant qualifiers after this. |
| 5279 | Diag(DS.getBeginLoc(), (IsExplicitInstantiation || !TemplateParams.empty()) |
| 5280 | ? diag::err_no_declarators |
| 5281 | : diag::ext_no_declarators) |
| 5282 | << DS.getSourceRange(); |
| 5283 | return TagD; |
| 5284 | } |
| 5285 | |
| 5286 | // C++ [dcl.stc]p1: |
| 5287 | // If a storage-class-specifier appears in a decl-specifier-seq, [...] the |
| 5288 | // init-declarator-list of the declaration shall not be empty. |
| 5289 | // C++ [dcl.fct.spec]p1: |
| 5290 | // If a cv-qualifier appears in a decl-specifier-seq, the |
| 5291 | // init-declarator-list of the declaration shall not be empty. |
| 5292 | // |
| 5293 | // Spurious qualifiers here appear to be valid in C. |
| 5294 | unsigned DiagID = diag::warn_standalone_specifier; |
| 5295 | if (getLangOpts().CPlusPlus) |
| 5296 | DiagID = diag::ext_standalone_specifier; |
| 5297 | |
| 5298 | // Note that a linkage-specification sets a storage class, but |
| 5299 | // 'extern "C" struct foo;' is actually valid and not theoretically |
| 5300 | // useless. |
| 5301 | if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { |
| 5302 | if (SCS == DeclSpec::SCS_mutable) |
| 5303 | // Since mutable is not a viable storage class specifier in C, there is |
| 5304 | // no reason to treat it as an extension. Instead, diagnose as an error. |
| 5305 | Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember); |
| 5306 | else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef) |
| 5307 | Diag(DS.getStorageClassSpecLoc(), DiagID) |
| 5308 | << DeclSpec::getSpecifierName(S: SCS); |
| 5309 | } |
| 5310 | |
| 5311 | if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) |
| 5312 | Diag(DS.getThreadStorageClassSpecLoc(), DiagID) |
| 5313 | << DeclSpec::getSpecifierName(S: TSCS); |
| 5314 | if (DS.getTypeQualifiers()) { |
| 5315 | if (DS.getTypeQualifiers() & DeclSpec::TQ_const) |
| 5316 | Diag(DS.getConstSpecLoc(), DiagID) << "const" ; |
| 5317 | if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) |
| 5318 | Diag(DS.getConstSpecLoc(), DiagID) << "volatile" ; |
| 5319 | // Restrict is covered above. |
| 5320 | if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) |
| 5321 | Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic" ; |
| 5322 | if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) |
| 5323 | Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned" ; |
| 5324 | } |
| 5325 | |
| 5326 | // Warn about ignored type attributes, for example: |
| 5327 | // __attribute__((aligned)) struct A; |
| 5328 | // Attributes should be placed after tag to apply to type declaration. |
| 5329 | if (!DS.getAttributes().empty() || !DeclAttrs.empty()) { |
| 5330 | DeclSpec::TST TypeSpecType = DS.getTypeSpecType(); |
| 5331 | if (TypeSpecType == DeclSpec::TST_class || |
| 5332 | TypeSpecType == DeclSpec::TST_struct || |
| 5333 | TypeSpecType == DeclSpec::TST_interface || |
| 5334 | TypeSpecType == DeclSpec::TST_union || |
| 5335 | TypeSpecType == DeclSpec::TST_enum) { |
| 5336 | |
| 5337 | auto EmitAttributeDiagnostic = [this, &DS](const ParsedAttr &AL) { |
| 5338 | unsigned DiagnosticId = diag::warn_declspec_attribute_ignored; |
| 5339 | if (AL.isAlignas() && !getLangOpts().CPlusPlus) |
| 5340 | DiagnosticId = diag::warn_attribute_ignored; |
| 5341 | else if (AL.isRegularKeywordAttribute()) |
| 5342 | DiagnosticId = diag::err_declspec_keyword_has_no_effect; |
| 5343 | else |
| 5344 | DiagnosticId = diag::warn_declspec_attribute_ignored; |
| 5345 | Diag(AL.getLoc(), DiagnosticId) |
| 5346 | << AL << GetDiagnosticTypeSpecifierID(DS); |
| 5347 | }; |
| 5348 | |
| 5349 | llvm::for_each(Range&: DS.getAttributes(), F: EmitAttributeDiagnostic); |
| 5350 | llvm::for_each(Range: DeclAttrs, F: EmitAttributeDiagnostic); |
| 5351 | } |
| 5352 | } |
| 5353 | |
| 5354 | return TagD; |
| 5355 | } |
| 5356 | |
| 5357 | /// We are trying to inject an anonymous member into the given scope; |
| 5358 | /// check if there's an existing declaration that can't be overloaded. |
| 5359 | /// |
| 5360 | /// \return true if this is a forbidden redeclaration |
| 5361 | static bool CheckAnonMemberRedeclaration(Sema &SemaRef, Scope *S, |
| 5362 | DeclContext *Owner, |
| 5363 | DeclarationName Name, |
| 5364 | SourceLocation NameLoc, bool IsUnion, |
| 5365 | StorageClass SC) { |
| 5366 | LookupResult R(SemaRef, Name, NameLoc, |
| 5367 | Owner->isRecord() ? Sema::LookupMemberName |
| 5368 | : Sema::LookupOrdinaryName, |
| 5369 | RedeclarationKind::ForVisibleRedeclaration); |
| 5370 | if (!SemaRef.LookupName(R, S)) return false; |
| 5371 | |
| 5372 | // Pick a representative declaration. |
| 5373 | NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl(); |
| 5374 | assert(PrevDecl && "Expected a non-null Decl" ); |
| 5375 | |
| 5376 | if (!SemaRef.isDeclInScope(D: PrevDecl, Ctx: Owner, S)) |
| 5377 | return false; |
| 5378 | |
| 5379 | if (SC == StorageClass::SC_None && |
| 5380 | PrevDecl->isPlaceholderVar(LangOpts: SemaRef.getLangOpts()) && |
| 5381 | (Owner->isFunctionOrMethod() || Owner->isRecord())) { |
| 5382 | if (!Owner->isRecord()) |
| 5383 | SemaRef.DiagPlaceholderVariableDefinition(Loc: NameLoc); |
| 5384 | return false; |
| 5385 | } |
| 5386 | |
| 5387 | SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl) |
| 5388 | << IsUnion << Name; |
| 5389 | SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration); |
| 5390 | |
| 5391 | return true; |
| 5392 | } |
| 5393 | |
| 5394 | void Sema::ActOnDefinedDeclarationSpecifier(Decl *D) { |
| 5395 | if (auto *RD = dyn_cast_if_present<RecordDecl>(Val: D)) |
| 5396 | DiagPlaceholderFieldDeclDefinitions(Record: RD); |
| 5397 | } |
| 5398 | |
| 5399 | void Sema::DiagPlaceholderFieldDeclDefinitions(RecordDecl *Record) { |
| 5400 | if (!getLangOpts().CPlusPlus) |
| 5401 | return; |
| 5402 | |
| 5403 | // This function can be parsed before we have validated the |
| 5404 | // structure as an anonymous struct |
| 5405 | if (Record->isAnonymousStructOrUnion()) |
| 5406 | return; |
| 5407 | |
| 5408 | const NamedDecl *First = 0; |
| 5409 | for (const Decl *D : Record->decls()) { |
| 5410 | const NamedDecl *ND = dyn_cast<NamedDecl>(D); |
| 5411 | if (!ND || !ND->isPlaceholderVar(getLangOpts())) |
| 5412 | continue; |
| 5413 | if (!First) |
| 5414 | First = ND; |
| 5415 | else |
| 5416 | DiagPlaceholderVariableDefinition(ND->getLocation()); |
| 5417 | } |
| 5418 | } |
| 5419 | |
| 5420 | /// InjectAnonymousStructOrUnionMembers - Inject the members of the |
| 5421 | /// anonymous struct or union AnonRecord into the owning context Owner |
| 5422 | /// and scope S. This routine will be invoked just after we realize |
| 5423 | /// that an unnamed union or struct is actually an anonymous union or |
| 5424 | /// struct, e.g., |
| 5425 | /// |
| 5426 | /// @code |
| 5427 | /// union { |
| 5428 | /// int i; |
| 5429 | /// float f; |
| 5430 | /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and |
| 5431 | /// // f into the surrounding scope.x |
| 5432 | /// @endcode |
| 5433 | /// |
| 5434 | /// This routine is recursive, injecting the names of nested anonymous |
| 5435 | /// structs/unions into the owning context and scope as well. |
| 5436 | static bool |
| 5437 | InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner, |
| 5438 | RecordDecl *AnonRecord, AccessSpecifier AS, |
| 5439 | StorageClass SC, |
| 5440 | SmallVectorImpl<NamedDecl *> &Chaining) { |
| 5441 | bool Invalid = false; |
| 5442 | |
| 5443 | // Look every FieldDecl and IndirectFieldDecl with a name. |
| 5444 | for (auto *D : AnonRecord->decls()) { |
| 5445 | if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) && |
| 5446 | cast<NamedDecl>(D)->getDeclName()) { |
| 5447 | ValueDecl *VD = cast<ValueDecl>(D); |
| 5448 | if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(), |
| 5449 | VD->getLocation(), AnonRecord->isUnion(), |
| 5450 | SC)) { |
| 5451 | // C++ [class.union]p2: |
| 5452 | // The names of the members of an anonymous union shall be |
| 5453 | // distinct from the names of any other entity in the |
| 5454 | // scope in which the anonymous union is declared. |
| 5455 | Invalid = true; |
| 5456 | } else { |
| 5457 | // C++ [class.union]p2: |
| 5458 | // For the purpose of name lookup, after the anonymous union |
| 5459 | // definition, the members of the anonymous union are |
| 5460 | // considered to have been defined in the scope in which the |
| 5461 | // anonymous union is declared. |
| 5462 | unsigned OldChainingSize = Chaining.size(); |
| 5463 | if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD)) |
| 5464 | Chaining.append(IF->chain_begin(), IF->chain_end()); |
| 5465 | else |
| 5466 | Chaining.push_back(VD); |
| 5467 | |
| 5468 | assert(Chaining.size() >= 2); |
| 5469 | NamedDecl **NamedChain = |
| 5470 | new (SemaRef.Context)NamedDecl*[Chaining.size()]; |
| 5471 | for (unsigned i = 0; i < Chaining.size(); i++) |
| 5472 | NamedChain[i] = Chaining[i]; |
| 5473 | |
| 5474 | IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create( |
| 5475 | SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(), |
| 5476 | VD->getType(), {NamedChain, Chaining.size()}); |
| 5477 | |
| 5478 | for (const auto *Attr : VD->attrs()) |
| 5479 | IndirectField->addAttr(Attr->clone(SemaRef.Context)); |
| 5480 | |
| 5481 | IndirectField->setAccess(AS); |
| 5482 | IndirectField->setImplicit(); |
| 5483 | SemaRef.PushOnScopeChains(IndirectField, S); |
| 5484 | |
| 5485 | // That includes picking up the appropriate access specifier. |
| 5486 | if (AS != AS_none) IndirectField->setAccess(AS); |
| 5487 | |
| 5488 | Chaining.resize(OldChainingSize); |
| 5489 | } |
| 5490 | } |
| 5491 | } |
| 5492 | |
| 5493 | return Invalid; |
| 5494 | } |
| 5495 | |
| 5496 | /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to |
| 5497 | /// a VarDecl::StorageClass. Any error reporting is up to the caller: |
| 5498 | /// illegal input values are mapped to SC_None. |
| 5499 | static StorageClass |
| 5500 | StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) { |
| 5501 | DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec(); |
| 5502 | assert(StorageClassSpec != DeclSpec::SCS_typedef && |
| 5503 | "Parser allowed 'typedef' as storage class VarDecl." ); |
| 5504 | switch (StorageClassSpec) { |
| 5505 | case DeclSpec::SCS_unspecified: return SC_None; |
| 5506 | case DeclSpec::SCS_extern: |
| 5507 | if (DS.isExternInLinkageSpec()) |
| 5508 | return SC_None; |
| 5509 | return SC_Extern; |
| 5510 | case DeclSpec::SCS_static: return SC_Static; |
| 5511 | case DeclSpec::SCS_auto: return SC_Auto; |
| 5512 | case DeclSpec::SCS_register: return SC_Register; |
| 5513 | case DeclSpec::SCS_private_extern: return SC_PrivateExtern; |
| 5514 | // Illegal SCSs map to None: error reporting is up to the caller. |
| 5515 | case DeclSpec::SCS_mutable: // Fall through. |
| 5516 | case DeclSpec::SCS_typedef: return SC_None; |
| 5517 | } |
| 5518 | llvm_unreachable("unknown storage class specifier" ); |
| 5519 | } |
| 5520 | |
| 5521 | static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) { |
| 5522 | assert(Record->hasInClassInitializer()); |
| 5523 | |
| 5524 | for (const auto *I : Record->decls()) { |
| 5525 | const auto *FD = dyn_cast<FieldDecl>(I); |
| 5526 | if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) |
| 5527 | FD = IFD->getAnonField(); |
| 5528 | if (FD && FD->hasInClassInitializer()) |
| 5529 | return FD->getLocation(); |
| 5530 | } |
| 5531 | |
| 5532 | llvm_unreachable("couldn't find in-class initializer" ); |
| 5533 | } |
| 5534 | |
| 5535 | static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, |
| 5536 | SourceLocation DefaultInitLoc) { |
| 5537 | if (!Parent->isUnion() || !Parent->hasInClassInitializer()) |
| 5538 | return; |
| 5539 | |
| 5540 | S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization); |
| 5541 | S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0; |
| 5542 | } |
| 5543 | |
| 5544 | static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, |
| 5545 | CXXRecordDecl *AnonUnion) { |
| 5546 | if (!Parent->isUnion() || !Parent->hasInClassInitializer()) |
| 5547 | return; |
| 5548 | |
| 5549 | checkDuplicateDefaultInit(S, Parent, DefaultInitLoc: findDefaultInitializer(Record: AnonUnion)); |
| 5550 | } |
| 5551 | |
| 5552 | Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, |
| 5553 | AccessSpecifier AS, |
| 5554 | RecordDecl *Record, |
| 5555 | const PrintingPolicy &Policy) { |
| 5556 | DeclContext *Owner = Record->getDeclContext(); |
| 5557 | |
| 5558 | // Diagnose whether this anonymous struct/union is an extension. |
| 5559 | if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11) |
| 5560 | Diag(Record->getLocation(), diag::ext_anonymous_union); |
| 5561 | else if (!Record->isUnion() && getLangOpts().CPlusPlus) |
| 5562 | Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct); |
| 5563 | else if (!Record->isUnion() && !getLangOpts().C11) |
| 5564 | Diag(Record->getLocation(), diag::ext_c11_anonymous_struct); |
| 5565 | |
| 5566 | // C and C++ require different kinds of checks for anonymous |
| 5567 | // structs/unions. |
| 5568 | bool Invalid = false; |
| 5569 | if (getLangOpts().CPlusPlus) { |
| 5570 | const char *PrevSpec = nullptr; |
| 5571 | if (Record->isUnion()) { |
| 5572 | // C++ [class.union]p6: |
| 5573 | // C++17 [class.union.anon]p2: |
| 5574 | // Anonymous unions declared in a named namespace or in the |
| 5575 | // global namespace shall be declared static. |
| 5576 | unsigned DiagID; |
| 5577 | DeclContext *OwnerScope = Owner->getRedeclContext(); |
| 5578 | if (DS.getStorageClassSpec() != DeclSpec::SCS_static && |
| 5579 | (OwnerScope->isTranslationUnit() || |
| 5580 | (OwnerScope->isNamespace() && |
| 5581 | !cast<NamespaceDecl>(Val: OwnerScope)->isAnonymousNamespace()))) { |
| 5582 | Diag(Record->getLocation(), diag::err_anonymous_union_not_static) |
| 5583 | << FixItHint::CreateInsertion(Record->getLocation(), "static " ); |
| 5584 | |
| 5585 | // Recover by adding 'static'. |
| 5586 | DS.SetStorageClassSpec(S&: *this, SC: DeclSpec::SCS_static, Loc: SourceLocation(), |
| 5587 | PrevSpec, DiagID, Policy); |
| 5588 | } |
| 5589 | // C++ [class.union]p6: |
| 5590 | // A storage class is not allowed in a declaration of an |
| 5591 | // anonymous union in a class scope. |
| 5592 | else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && |
| 5593 | isa<RecordDecl>(Val: Owner)) { |
| 5594 | Diag(DS.getStorageClassSpecLoc(), |
| 5595 | diag::err_anonymous_union_with_storage_spec) |
| 5596 | << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); |
| 5597 | |
| 5598 | // Recover by removing the storage specifier. |
| 5599 | DS.SetStorageClassSpec(S&: *this, SC: DeclSpec::SCS_unspecified, |
| 5600 | Loc: SourceLocation(), |
| 5601 | PrevSpec, DiagID, Policy: Context.getPrintingPolicy()); |
| 5602 | } |
| 5603 | } |
| 5604 | |
| 5605 | // Ignore const/volatile/restrict qualifiers. |
| 5606 | if (DS.getTypeQualifiers()) { |
| 5607 | if (DS.getTypeQualifiers() & DeclSpec::TQ_const) |
| 5608 | Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified) |
| 5609 | << Record->isUnion() << "const" |
| 5610 | << FixItHint::CreateRemoval(DS.getConstSpecLoc()); |
| 5611 | if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) |
| 5612 | Diag(DS.getVolatileSpecLoc(), |
| 5613 | diag::ext_anonymous_struct_union_qualified) |
| 5614 | << Record->isUnion() << "volatile" |
| 5615 | << FixItHint::CreateRemoval(DS.getVolatileSpecLoc()); |
| 5616 | if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) |
| 5617 | Diag(DS.getRestrictSpecLoc(), |
| 5618 | diag::ext_anonymous_struct_union_qualified) |
| 5619 | << Record->isUnion() << "restrict" |
| 5620 | << FixItHint::CreateRemoval(DS.getRestrictSpecLoc()); |
| 5621 | if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) |
| 5622 | Diag(DS.getAtomicSpecLoc(), |
| 5623 | diag::ext_anonymous_struct_union_qualified) |
| 5624 | << Record->isUnion() << "_Atomic" |
| 5625 | << FixItHint::CreateRemoval(DS.getAtomicSpecLoc()); |
| 5626 | if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) |
| 5627 | Diag(DS.getUnalignedSpecLoc(), |
| 5628 | diag::ext_anonymous_struct_union_qualified) |
| 5629 | << Record->isUnion() << "__unaligned" |
| 5630 | << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc()); |
| 5631 | |
| 5632 | DS.ClearTypeQualifiers(); |
| 5633 | } |
| 5634 | |
| 5635 | // C++ [class.union]p2: |
| 5636 | // The member-specification of an anonymous union shall only |
| 5637 | // define non-static data members. [Note: nested types and |
| 5638 | // functions cannot be declared within an anonymous union. ] |
| 5639 | for (auto *Mem : Record->decls()) { |
| 5640 | // Ignore invalid declarations; we already diagnosed them. |
| 5641 | if (Mem->isInvalidDecl()) |
| 5642 | continue; |
| 5643 | |
| 5644 | if (auto *FD = dyn_cast<FieldDecl>(Mem)) { |
| 5645 | // C++ [class.union]p3: |
| 5646 | // An anonymous union shall not have private or protected |
| 5647 | // members (clause 11). |
| 5648 | assert(FD->getAccess() != AS_none); |
| 5649 | if (FD->getAccess() != AS_public) { |
| 5650 | Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member) |
| 5651 | << Record->isUnion() << (FD->getAccess() == AS_protected); |
| 5652 | Invalid = true; |
| 5653 | } |
| 5654 | |
| 5655 | // C++ [class.union]p1 |
| 5656 | // An object of a class with a non-trivial constructor, a non-trivial |
| 5657 | // copy constructor, a non-trivial destructor, or a non-trivial copy |
| 5658 | // assignment operator cannot be a member of a union, nor can an |
| 5659 | // array of such objects. |
| 5660 | if (CheckNontrivialField(FD)) |
| 5661 | Invalid = true; |
| 5662 | } else if (Mem->isImplicit()) { |
| 5663 | // Any implicit members are fine. |
| 5664 | } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) { |
| 5665 | // This is a type that showed up in an |
| 5666 | // elaborated-type-specifier inside the anonymous struct or |
| 5667 | // union, but which actually declares a type outside of the |
| 5668 | // anonymous struct or union. It's okay. |
| 5669 | } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) { |
| 5670 | if (!MemRecord->isAnonymousStructOrUnion() && |
| 5671 | MemRecord->getDeclName()) { |
| 5672 | // Visual C++ allows type definition in anonymous struct or union. |
| 5673 | if (getLangOpts().MicrosoftExt) |
| 5674 | Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type) |
| 5675 | << Record->isUnion(); |
| 5676 | else { |
| 5677 | // This is a nested type declaration. |
| 5678 | Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type) |
| 5679 | << Record->isUnion(); |
| 5680 | Invalid = true; |
| 5681 | } |
| 5682 | } else { |
| 5683 | // This is an anonymous type definition within another anonymous type. |
| 5684 | // This is a popular extension, provided by Plan9, MSVC and GCC, but |
| 5685 | // not part of standard C++. |
| 5686 | Diag(MemRecord->getLocation(), |
| 5687 | diag::ext_anonymous_record_with_anonymous_type) |
| 5688 | << Record->isUnion(); |
| 5689 | } |
| 5690 | } else if (isa<AccessSpecDecl>(Mem)) { |
| 5691 | // Any access specifier is fine. |
| 5692 | } else if (isa<StaticAssertDecl>(Mem)) { |
| 5693 | // In C++1z, static_assert declarations are also fine. |
| 5694 | } else { |
| 5695 | // We have something that isn't a non-static data |
| 5696 | // member. Complain about it. |
| 5697 | unsigned DK = diag::err_anonymous_record_bad_member; |
| 5698 | if (isa<TypeDecl>(Mem)) |
| 5699 | DK = diag::err_anonymous_record_with_type; |
| 5700 | else if (isa<FunctionDecl>(Mem)) |
| 5701 | DK = diag::err_anonymous_record_with_function; |
| 5702 | else if (isa<VarDecl>(Mem)) |
| 5703 | DK = diag::err_anonymous_record_with_static; |
| 5704 | |
| 5705 | // Visual C++ allows type definition in anonymous struct or union. |
| 5706 | if (getLangOpts().MicrosoftExt && |
| 5707 | DK == diag::err_anonymous_record_with_type) |
| 5708 | Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type) |
| 5709 | << Record->isUnion(); |
| 5710 | else { |
| 5711 | Diag(Mem->getLocation(), DK) << Record->isUnion(); |
| 5712 | Invalid = true; |
| 5713 | } |
| 5714 | } |
| 5715 | } |
| 5716 | |
| 5717 | // C++11 [class.union]p8 (DR1460): |
| 5718 | // At most one variant member of a union may have a |
| 5719 | // brace-or-equal-initializer. |
| 5720 | if (cast<CXXRecordDecl>(Val: Record)->hasInClassInitializer() && |
| 5721 | Owner->isRecord()) |
| 5722 | checkDuplicateDefaultInit(S&: *this, Parent: cast<CXXRecordDecl>(Val: Owner), |
| 5723 | AnonUnion: cast<CXXRecordDecl>(Val: Record)); |
| 5724 | } |
| 5725 | |
| 5726 | if (!Record->isUnion() && !Owner->isRecord()) { |
| 5727 | Diag(Record->getLocation(), diag::err_anonymous_struct_not_member) |
| 5728 | << getLangOpts().CPlusPlus; |
| 5729 | Invalid = true; |
| 5730 | } |
| 5731 | |
| 5732 | // C++ [dcl.dcl]p3: |
| 5733 | // [If there are no declarators], and except for the declaration of an |
| 5734 | // unnamed bit-field, the decl-specifier-seq shall introduce one or more |
| 5735 | // names into the program |
| 5736 | // C++ [class.mem]p2: |
| 5737 | // each such member-declaration shall either declare at least one member |
| 5738 | // name of the class or declare at least one unnamed bit-field |
| 5739 | // |
| 5740 | // For C this is an error even for a named struct, and is diagnosed elsewhere. |
| 5741 | if (getLangOpts().CPlusPlus && Record->field_empty()) |
| 5742 | Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange(); |
| 5743 | |
| 5744 | // Mock up a declarator. |
| 5745 | Declarator Dc(DS, ParsedAttributesView::none(), DeclaratorContext::Member); |
| 5746 | StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS); |
| 5747 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D&: Dc); |
| 5748 | assert(TInfo && "couldn't build declarator info for anonymous struct/union" ); |
| 5749 | |
| 5750 | // Create a declaration for this anonymous struct/union. |
| 5751 | NamedDecl *Anon = nullptr; |
| 5752 | if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Val: Owner)) { |
| 5753 | Anon = FieldDecl::Create( |
| 5754 | C: Context, DC: OwningClass, StartLoc: DS.getBeginLoc(), IdLoc: Record->getLocation(), |
| 5755 | /*IdentifierInfo=*/Id: nullptr, T: Context.getTypeDeclType(Record), TInfo, |
| 5756 | /*BitWidth=*/BW: nullptr, /*Mutable=*/false, |
| 5757 | /*InitStyle=*/ICIS_NoInit); |
| 5758 | Anon->setAccess(AS); |
| 5759 | ProcessDeclAttributes(S, Anon, Dc); |
| 5760 | |
| 5761 | if (getLangOpts().CPlusPlus) |
| 5762 | FieldCollector->Add(D: cast<FieldDecl>(Val: Anon)); |
| 5763 | } else { |
| 5764 | DeclSpec::SCS SCSpec = DS.getStorageClassSpec(); |
| 5765 | if (SCSpec == DeclSpec::SCS_mutable) { |
| 5766 | // mutable can only appear on non-static class members, so it's always |
| 5767 | // an error here |
| 5768 | Diag(Record->getLocation(), diag::err_mutable_nonmember); |
| 5769 | Invalid = true; |
| 5770 | SC = SC_None; |
| 5771 | } |
| 5772 | |
| 5773 | Anon = VarDecl::Create(C&: Context, DC: Owner, StartLoc: DS.getBeginLoc(), |
| 5774 | IdLoc: Record->getLocation(), /*IdentifierInfo=*/Id: nullptr, |
| 5775 | T: Context.getTypeDeclType(Record), TInfo, S: SC); |
| 5776 | if (Invalid) |
| 5777 | Anon->setInvalidDecl(); |
| 5778 | |
| 5779 | ProcessDeclAttributes(S, Anon, Dc); |
| 5780 | |
| 5781 | // Default-initialize the implicit variable. This initialization will be |
| 5782 | // trivial in almost all cases, except if a union member has an in-class |
| 5783 | // initializer: |
| 5784 | // union { int n = 0; }; |
| 5785 | ActOnUninitializedDecl(Anon); |
| 5786 | } |
| 5787 | Anon->setImplicit(); |
| 5788 | |
| 5789 | // Mark this as an anonymous struct/union type. |
| 5790 | Record->setAnonymousStructOrUnion(true); |
| 5791 | |
| 5792 | // Add the anonymous struct/union object to the current |
| 5793 | // context. We'll be referencing this object when we refer to one of |
| 5794 | // its members. |
| 5795 | Owner->addDecl(Anon); |
| 5796 | |
| 5797 | // Inject the members of the anonymous struct/union into the owning |
| 5798 | // context and into the identifier resolver chain for name lookup |
| 5799 | // purposes. |
| 5800 | SmallVector<NamedDecl*, 2> Chain; |
| 5801 | Chain.push_back(Elt: Anon); |
| 5802 | |
| 5803 | if (InjectAnonymousStructOrUnionMembers(SemaRef&: *this, S, Owner, AnonRecord: Record, AS, SC, |
| 5804 | Chaining&: Chain)) |
| 5805 | Invalid = true; |
| 5806 | |
| 5807 | if (VarDecl *NewVD = dyn_cast<VarDecl>(Val: Anon)) { |
| 5808 | if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { |
| 5809 | MangleNumberingContext *MCtx; |
| 5810 | Decl *ManglingContextDecl; |
| 5811 | std::tie(args&: MCtx, args&: ManglingContextDecl) = |
| 5812 | getCurrentMangleNumberContext(DC: NewVD->getDeclContext()); |
| 5813 | if (MCtx) { |
| 5814 | Context.setManglingNumber( |
| 5815 | NewVD, MCtx->getManglingNumber( |
| 5816 | VD: NewVD, MSLocalManglingNumber: getMSManglingNumber(LO: getLangOpts(), S))); |
| 5817 | Context.setStaticLocalNumber(VD: NewVD, Number: MCtx->getStaticLocalNumber(VD: NewVD)); |
| 5818 | } |
| 5819 | } |
| 5820 | } |
| 5821 | |
| 5822 | if (Invalid) |
| 5823 | Anon->setInvalidDecl(); |
| 5824 | |
| 5825 | return Anon; |
| 5826 | } |
| 5827 | |
| 5828 | Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS, |
| 5829 | RecordDecl *Record) { |
| 5830 | assert(Record && "expected a record!" ); |
| 5831 | |
| 5832 | // Mock up a declarator. |
| 5833 | Declarator Dc(DS, ParsedAttributesView::none(), DeclaratorContext::TypeName); |
| 5834 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D&: Dc); |
| 5835 | assert(TInfo && "couldn't build declarator info for anonymous struct" ); |
| 5836 | |
| 5837 | auto *ParentDecl = cast<RecordDecl>(Val: CurContext); |
| 5838 | QualType RecTy = Context.getTypeDeclType(Record); |
| 5839 | |
| 5840 | // Create a declaration for this anonymous struct. |
| 5841 | NamedDecl *Anon = |
| 5842 | FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(), |
| 5843 | /*IdentifierInfo=*/nullptr, RecTy, TInfo, |
| 5844 | /*BitWidth=*/nullptr, /*Mutable=*/false, |
| 5845 | /*InitStyle=*/ICIS_NoInit); |
| 5846 | Anon->setImplicit(); |
| 5847 | |
| 5848 | // Add the anonymous struct object to the current context. |
| 5849 | CurContext->addDecl(Anon); |
| 5850 | |
| 5851 | // Inject the members of the anonymous struct into the current |
| 5852 | // context and into the identifier resolver chain for name lookup |
| 5853 | // purposes. |
| 5854 | SmallVector<NamedDecl*, 2> Chain; |
| 5855 | Chain.push_back(Elt: Anon); |
| 5856 | |
| 5857 | RecordDecl *RecordDef = Record->getDefinition(); |
| 5858 | if (RequireCompleteSizedType(Anon->getLocation(), RecTy, |
| 5859 | diag::err_field_incomplete_or_sizeless) || |
| 5860 | InjectAnonymousStructOrUnionMembers( |
| 5861 | *this, S, CurContext, RecordDef, AS_none, |
| 5862 | StorageClassSpecToVarDeclStorageClass(DS), Chain)) { |
| 5863 | Anon->setInvalidDecl(); |
| 5864 | ParentDecl->setInvalidDecl(); |
| 5865 | } |
| 5866 | |
| 5867 | return Anon; |
| 5868 | } |
| 5869 | |
| 5870 | DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) { |
| 5871 | return GetNameFromUnqualifiedId(Name: D.getName()); |
| 5872 | } |
| 5873 | |
| 5874 | DeclarationNameInfo |
| 5875 | Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) { |
| 5876 | DeclarationNameInfo NameInfo; |
| 5877 | NameInfo.setLoc(Name.StartLocation); |
| 5878 | |
| 5879 | switch (Name.getKind()) { |
| 5880 | |
| 5881 | case UnqualifiedIdKind::IK_ImplicitSelfParam: |
| 5882 | case UnqualifiedIdKind::IK_Identifier: |
| 5883 | NameInfo.setName(Name.Identifier); |
| 5884 | return NameInfo; |
| 5885 | |
| 5886 | case UnqualifiedIdKind::IK_DeductionGuideName: { |
| 5887 | // C++ [temp.deduct.guide]p3: |
| 5888 | // The simple-template-id shall name a class template specialization. |
| 5889 | // The template-name shall be the same identifier as the template-name |
| 5890 | // of the simple-template-id. |
| 5891 | // These together intend to imply that the template-name shall name a |
| 5892 | // class template. |
| 5893 | // FIXME: template<typename T> struct X {}; |
| 5894 | // template<typename T> using Y = X<T>; |
| 5895 | // Y(int) -> Y<int>; |
| 5896 | // satisfies these rules but does not name a class template. |
| 5897 | TemplateName TN = Name.TemplateName.get().get(); |
| 5898 | auto *Template = TN.getAsTemplateDecl(); |
| 5899 | if (!Template || !isa<ClassTemplateDecl>(Val: Template)) { |
| 5900 | Diag(Name.StartLocation, |
| 5901 | diag::err_deduction_guide_name_not_class_template) |
| 5902 | << (int)getTemplateNameKindForDiagnostics(TN) << TN; |
| 5903 | if (Template) |
| 5904 | NoteTemplateLocation(*Template); |
| 5905 | return DeclarationNameInfo(); |
| 5906 | } |
| 5907 | |
| 5908 | NameInfo.setName( |
| 5909 | Context.DeclarationNames.getCXXDeductionGuideName(TD: Template)); |
| 5910 | return NameInfo; |
| 5911 | } |
| 5912 | |
| 5913 | case UnqualifiedIdKind::IK_OperatorFunctionId: |
| 5914 | NameInfo.setName(Context.DeclarationNames.getCXXOperatorName( |
| 5915 | Op: Name.OperatorFunctionId.Operator)); |
| 5916 | NameInfo.setCXXOperatorNameRange(SourceRange( |
| 5917 | Name.OperatorFunctionId.SymbolLocations[0], Name.EndLocation)); |
| 5918 | return NameInfo; |
| 5919 | |
| 5920 | case UnqualifiedIdKind::IK_LiteralOperatorId: |
| 5921 | NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName( |
| 5922 | II: Name.Identifier)); |
| 5923 | NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation); |
| 5924 | return NameInfo; |
| 5925 | |
| 5926 | case UnqualifiedIdKind::IK_ConversionFunctionId: { |
| 5927 | TypeSourceInfo *TInfo; |
| 5928 | QualType Ty = GetTypeFromParser(Ty: Name.ConversionFunctionId, TInfo: &TInfo); |
| 5929 | if (Ty.isNull()) |
| 5930 | return DeclarationNameInfo(); |
| 5931 | NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName( |
| 5932 | Ty: Context.getCanonicalType(T: Ty))); |
| 5933 | NameInfo.setNamedTypeInfo(TInfo); |
| 5934 | return NameInfo; |
| 5935 | } |
| 5936 | |
| 5937 | case UnqualifiedIdKind::IK_ConstructorName: { |
| 5938 | TypeSourceInfo *TInfo; |
| 5939 | QualType Ty = GetTypeFromParser(Ty: Name.ConstructorName, TInfo: &TInfo); |
| 5940 | if (Ty.isNull()) |
| 5941 | return DeclarationNameInfo(); |
| 5942 | NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( |
| 5943 | Ty: Context.getCanonicalType(T: Ty))); |
| 5944 | NameInfo.setNamedTypeInfo(TInfo); |
| 5945 | return NameInfo; |
| 5946 | } |
| 5947 | |
| 5948 | case UnqualifiedIdKind::IK_ConstructorTemplateId: { |
| 5949 | // In well-formed code, we can only have a constructor |
| 5950 | // template-id that refers to the current context, so go there |
| 5951 | // to find the actual type being constructed. |
| 5952 | CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(Val: CurContext); |
| 5953 | if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name) |
| 5954 | return DeclarationNameInfo(); |
| 5955 | |
| 5956 | // Determine the type of the class being constructed. |
| 5957 | QualType CurClassType = Context.getTypeDeclType(CurClass); |
| 5958 | |
| 5959 | // FIXME: Check two things: that the template-id names the same type as |
| 5960 | // CurClassType, and that the template-id does not occur when the name |
| 5961 | // was qualified. |
| 5962 | |
| 5963 | NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( |
| 5964 | Ty: Context.getCanonicalType(T: CurClassType))); |
| 5965 | // FIXME: should we retrieve TypeSourceInfo? |
| 5966 | NameInfo.setNamedTypeInfo(nullptr); |
| 5967 | return NameInfo; |
| 5968 | } |
| 5969 | |
| 5970 | case UnqualifiedIdKind::IK_DestructorName: { |
| 5971 | TypeSourceInfo *TInfo; |
| 5972 | QualType Ty = GetTypeFromParser(Ty: Name.DestructorName, TInfo: &TInfo); |
| 5973 | if (Ty.isNull()) |
| 5974 | return DeclarationNameInfo(); |
| 5975 | NameInfo.setName(Context.DeclarationNames.getCXXDestructorName( |
| 5976 | Ty: Context.getCanonicalType(T: Ty))); |
| 5977 | NameInfo.setNamedTypeInfo(TInfo); |
| 5978 | return NameInfo; |
| 5979 | } |
| 5980 | |
| 5981 | case UnqualifiedIdKind::IK_TemplateId: { |
| 5982 | TemplateName TName = Name.TemplateId->Template.get(); |
| 5983 | SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc; |
| 5984 | return Context.getNameForTemplate(Name: TName, NameLoc: TNameLoc); |
| 5985 | } |
| 5986 | |
| 5987 | } // switch (Name.getKind()) |
| 5988 | |
| 5989 | llvm_unreachable("Unknown name kind" ); |
| 5990 | } |
| 5991 | |
| 5992 | static QualType getCoreType(QualType Ty) { |
| 5993 | do { |
| 5994 | if (Ty->isPointerOrReferenceType()) |
| 5995 | Ty = Ty->getPointeeType(); |
| 5996 | else if (Ty->isArrayType()) |
| 5997 | Ty = Ty->castAsArrayTypeUnsafe()->getElementType(); |
| 5998 | else |
| 5999 | return Ty.withoutLocalFastQualifiers(); |
| 6000 | } while (true); |
| 6001 | } |
| 6002 | |
| 6003 | /// hasSimilarParameters - Determine whether the C++ functions Declaration |
| 6004 | /// and Definition have "nearly" matching parameters. This heuristic is |
| 6005 | /// used to improve diagnostics in the case where an out-of-line function |
| 6006 | /// definition doesn't match any declaration within the class or namespace. |
| 6007 | /// Also sets Params to the list of indices to the parameters that differ |
| 6008 | /// between the declaration and the definition. If hasSimilarParameters |
| 6009 | /// returns true and Params is empty, then all of the parameters match. |
| 6010 | static bool hasSimilarParameters(ASTContext &Context, |
| 6011 | FunctionDecl *Declaration, |
| 6012 | FunctionDecl *Definition, |
| 6013 | SmallVectorImpl<unsigned> &Params) { |
| 6014 | Params.clear(); |
| 6015 | if (Declaration->param_size() != Definition->param_size()) |
| 6016 | return false; |
| 6017 | for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) { |
| 6018 | QualType DeclParamTy = Declaration->getParamDecl(i: Idx)->getType(); |
| 6019 | QualType DefParamTy = Definition->getParamDecl(i: Idx)->getType(); |
| 6020 | |
| 6021 | // The parameter types are identical |
| 6022 | if (Context.hasSameUnqualifiedType(T1: DefParamTy, T2: DeclParamTy)) |
| 6023 | continue; |
| 6024 | |
| 6025 | QualType DeclParamBaseTy = getCoreType(Ty: DeclParamTy); |
| 6026 | QualType DefParamBaseTy = getCoreType(Ty: DefParamTy); |
| 6027 | const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier(); |
| 6028 | const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier(); |
| 6029 | |
| 6030 | if (Context.hasSameUnqualifiedType(T1: DeclParamBaseTy, T2: DefParamBaseTy) || |
| 6031 | (DeclTyName && DeclTyName == DefTyName)) |
| 6032 | Params.push_back(Elt: Idx); |
| 6033 | else // The two parameters aren't even close |
| 6034 | return false; |
| 6035 | } |
| 6036 | |
| 6037 | return true; |
| 6038 | } |
| 6039 | |
| 6040 | /// RebuildDeclaratorInCurrentInstantiation - Checks whether the given |
| 6041 | /// declarator needs to be rebuilt in the current instantiation. |
| 6042 | /// Any bits of declarator which appear before the name are valid for |
| 6043 | /// consideration here. That's specifically the type in the decl spec |
| 6044 | /// and the base type in any member-pointer chunks. |
| 6045 | static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D, |
| 6046 | DeclarationName Name) { |
| 6047 | // The types we specifically need to rebuild are: |
| 6048 | // - typenames, typeofs, and decltypes |
| 6049 | // - types which will become injected class names |
| 6050 | // Of course, we also need to rebuild any type referencing such a |
| 6051 | // type. It's safest to just say "dependent", but we call out a |
| 6052 | // few cases here. |
| 6053 | |
| 6054 | DeclSpec &DS = D.getMutableDeclSpec(); |
| 6055 | switch (DS.getTypeSpecType()) { |
| 6056 | case DeclSpec::TST_typename: |
| 6057 | case DeclSpec::TST_typeofType: |
| 6058 | case DeclSpec::TST_typeof_unqualType: |
| 6059 | #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait: |
| 6060 | #include "clang/Basic/TransformTypeTraits.def" |
| 6061 | case DeclSpec::TST_atomic: { |
| 6062 | // Grab the type from the parser. |
| 6063 | TypeSourceInfo *TSI = nullptr; |
| 6064 | QualType T = S.GetTypeFromParser(Ty: DS.getRepAsType(), TInfo: &TSI); |
| 6065 | if (T.isNull() || !T->isInstantiationDependentType()) break; |
| 6066 | |
| 6067 | // Make sure there's a type source info. This isn't really much |
| 6068 | // of a waste; most dependent types should have type source info |
| 6069 | // attached already. |
| 6070 | if (!TSI) |
| 6071 | TSI = S.Context.getTrivialTypeSourceInfo(T, Loc: DS.getTypeSpecTypeLoc()); |
| 6072 | |
| 6073 | // Rebuild the type in the current instantiation. |
| 6074 | TSI = S.RebuildTypeInCurrentInstantiation(T: TSI, Loc: D.getIdentifierLoc(), Name); |
| 6075 | if (!TSI) return true; |
| 6076 | |
| 6077 | // Store the new type back in the decl spec. |
| 6078 | ParsedType LocType = S.CreateParsedType(T: TSI->getType(), TInfo: TSI); |
| 6079 | DS.UpdateTypeRep(Rep: LocType); |
| 6080 | break; |
| 6081 | } |
| 6082 | |
| 6083 | case DeclSpec::TST_decltype: |
| 6084 | case DeclSpec::TST_typeof_unqualExpr: |
| 6085 | case DeclSpec::TST_typeofExpr: { |
| 6086 | Expr *E = DS.getRepAsExpr(); |
| 6087 | ExprResult Result = S.RebuildExprInCurrentInstantiation(E); |
| 6088 | if (Result.isInvalid()) return true; |
| 6089 | DS.UpdateExprRep(Rep: Result.get()); |
| 6090 | break; |
| 6091 | } |
| 6092 | |
| 6093 | default: |
| 6094 | // Nothing to do for these decl specs. |
| 6095 | break; |
| 6096 | } |
| 6097 | |
| 6098 | // It doesn't matter what order we do this in. |
| 6099 | for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) { |
| 6100 | DeclaratorChunk &Chunk = D.getTypeObject(i: I); |
| 6101 | |
| 6102 | // The only type information in the declarator which can come |
| 6103 | // before the declaration name is the base type of a member |
| 6104 | // pointer. |
| 6105 | if (Chunk.Kind != DeclaratorChunk::MemberPointer) |
| 6106 | continue; |
| 6107 | |
| 6108 | // Rebuild the scope specifier in-place. |
| 6109 | CXXScopeSpec &SS = Chunk.Mem.Scope(); |
| 6110 | if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS)) |
| 6111 | return true; |
| 6112 | } |
| 6113 | |
| 6114 | return false; |
| 6115 | } |
| 6116 | |
| 6117 | /// Returns true if the declaration is declared in a system header or from a |
| 6118 | /// system macro. |
| 6119 | static bool (SourceManager &SM, const Decl *D) { |
| 6120 | return SM.isInSystemHeader(Loc: D->getLocation()) || |
| 6121 | SM.isInSystemMacro(loc: D->getLocation()); |
| 6122 | } |
| 6123 | |
| 6124 | void Sema::warnOnReservedIdentifier(const NamedDecl *D) { |
| 6125 | // Avoid warning twice on the same identifier, and don't warn on redeclaration |
| 6126 | // of system decl. |
| 6127 | if (D->getPreviousDecl() || D->isImplicit()) |
| 6128 | return; |
| 6129 | ReservedIdentifierStatus Status = D->isReserved(LangOpts: getLangOpts()); |
| 6130 | if (Status != ReservedIdentifierStatus::NotReserved && |
| 6131 | !isFromSystemHeader(Context.getSourceManager(), D)) { |
| 6132 | Diag(D->getLocation(), diag::warn_reserved_extern_symbol) |
| 6133 | << D << static_cast<int>(Status); |
| 6134 | } |
| 6135 | } |
| 6136 | |
| 6137 | Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) { |
| 6138 | D.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration); |
| 6139 | |
| 6140 | // Check if we are in an `omp begin/end declare variant` scope. Handle this |
| 6141 | // declaration only if the `bind_to_declaration` extension is set. |
| 6142 | SmallVector<FunctionDecl *, 4> Bases; |
| 6143 | if (LangOpts.OpenMP && OpenMP().isInOpenMPDeclareVariantScope()) |
| 6144 | if (OpenMP().getOMPTraitInfoForSurroundingScope()->isExtensionActive( |
| 6145 | TP: llvm::omp::TraitProperty:: |
| 6146 | implementation_extension_bind_to_declaration)) |
| 6147 | OpenMP().ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope( |
| 6148 | S, D, TemplateParameterLists: MultiTemplateParamsArg(), Bases); |
| 6149 | |
| 6150 | Decl *Dcl = HandleDeclarator(S, D, TemplateParameterLists: MultiTemplateParamsArg()); |
| 6151 | |
| 6152 | if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() && |
| 6153 | Dcl && Dcl->getDeclContext()->isFileContext()) |
| 6154 | Dcl->setTopLevelDeclInObjCContainer(); |
| 6155 | |
| 6156 | if (!Bases.empty()) |
| 6157 | OpenMP().ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(D: Dcl, |
| 6158 | Bases); |
| 6159 | |
| 6160 | return Dcl; |
| 6161 | } |
| 6162 | |
| 6163 | bool Sema::DiagnoseClassNameShadow(DeclContext *DC, |
| 6164 | DeclarationNameInfo NameInfo) { |
| 6165 | DeclarationName Name = NameInfo.getName(); |
| 6166 | |
| 6167 | CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: DC); |
| 6168 | while (Record && Record->isAnonymousStructOrUnion()) |
| 6169 | Record = dyn_cast<CXXRecordDecl>(Record->getParent()); |
| 6170 | if (Record && Record->getIdentifier() && Record->getDeclName() == Name) { |
| 6171 | Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name; |
| 6172 | return true; |
| 6173 | } |
| 6174 | |
| 6175 | return false; |
| 6176 | } |
| 6177 | |
| 6178 | bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC, |
| 6179 | DeclarationName Name, |
| 6180 | SourceLocation Loc, |
| 6181 | TemplateIdAnnotation *TemplateId, |
| 6182 | bool IsMemberSpecialization) { |
| 6183 | assert(SS.isValid() && "diagnoseQualifiedDeclaration called for declaration " |
| 6184 | "without nested-name-specifier" ); |
| 6185 | DeclContext *Cur = CurContext; |
| 6186 | while (isa<LinkageSpecDecl>(Val: Cur) || isa<CapturedDecl>(Val: Cur)) |
| 6187 | Cur = Cur->getParent(); |
| 6188 | |
| 6189 | // If the user provided a superfluous scope specifier that refers back to the |
| 6190 | // class in which the entity is already declared, diagnose and ignore it. |
| 6191 | // |
| 6192 | // class X { |
| 6193 | // void X::f(); |
| 6194 | // }; |
| 6195 | // |
| 6196 | // Note, it was once ill-formed to give redundant qualification in all |
| 6197 | // contexts, but that rule was removed by DR482. |
| 6198 | if (Cur->Equals(DC)) { |
| 6199 | if (Cur->isRecord()) { |
| 6200 | Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification |
| 6201 | : diag::err_member_extra_qualification) |
| 6202 | << Name << FixItHint::CreateRemoval(SS.getRange()); |
| 6203 | SS.clear(); |
| 6204 | } else { |
| 6205 | Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name; |
| 6206 | } |
| 6207 | return false; |
| 6208 | } |
| 6209 | |
| 6210 | // Check whether the qualifying scope encloses the scope of the original |
| 6211 | // declaration. For a template-id, we perform the checks in |
| 6212 | // CheckTemplateSpecializationScope. |
| 6213 | if (!Cur->Encloses(DC) && !(TemplateId || IsMemberSpecialization)) { |
| 6214 | if (Cur->isRecord()) |
| 6215 | Diag(Loc, diag::err_member_qualification) |
| 6216 | << Name << SS.getRange(); |
| 6217 | else if (isa<TranslationUnitDecl>(Val: DC)) |
| 6218 | Diag(Loc, diag::err_invalid_declarator_global_scope) |
| 6219 | << Name << SS.getRange(); |
| 6220 | else if (isa<FunctionDecl>(Val: Cur)) |
| 6221 | Diag(Loc, diag::err_invalid_declarator_in_function) |
| 6222 | << Name << SS.getRange(); |
| 6223 | else if (isa<BlockDecl>(Val: Cur)) |
| 6224 | Diag(Loc, diag::err_invalid_declarator_in_block) |
| 6225 | << Name << SS.getRange(); |
| 6226 | else if (isa<ExportDecl>(Val: Cur)) { |
| 6227 | if (!isa<NamespaceDecl>(Val: DC)) |
| 6228 | Diag(Loc, diag::err_export_non_namespace_scope_name) |
| 6229 | << Name << SS.getRange(); |
| 6230 | else |
| 6231 | // The cases that DC is not NamespaceDecl should be handled in |
| 6232 | // CheckRedeclarationExported. |
| 6233 | return false; |
| 6234 | } else |
| 6235 | Diag(Loc, diag::err_invalid_declarator_scope) |
| 6236 | << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange(); |
| 6237 | |
| 6238 | return true; |
| 6239 | } |
| 6240 | |
| 6241 | if (Cur->isRecord()) { |
| 6242 | // Cannot qualify members within a class. |
| 6243 | Diag(Loc, diag::err_member_qualification) |
| 6244 | << Name << SS.getRange(); |
| 6245 | SS.clear(); |
| 6246 | |
| 6247 | // C++ constructors and destructors with incorrect scopes can break |
| 6248 | // our AST invariants by having the wrong underlying types. If |
| 6249 | // that's the case, then drop this declaration entirely. |
| 6250 | if ((Name.getNameKind() == DeclarationName::CXXConstructorName || |
| 6251 | Name.getNameKind() == DeclarationName::CXXDestructorName) && |
| 6252 | !Context.hasSameType(T1: Name.getCXXNameType(), |
| 6253 | T2: Context.getTypeDeclType(cast<CXXRecordDecl>(Val: Cur)))) |
| 6254 | return true; |
| 6255 | |
| 6256 | return false; |
| 6257 | } |
| 6258 | |
| 6259 | // C++23 [temp.names]p5: |
| 6260 | // The keyword template shall not appear immediately after a declarative |
| 6261 | // nested-name-specifier. |
| 6262 | // |
| 6263 | // First check the template-id (if any), and then check each component of the |
| 6264 | // nested-name-specifier in reverse order. |
| 6265 | // |
| 6266 | // FIXME: nested-name-specifiers in friend declarations are declarative, |
| 6267 | // but we don't call diagnoseQualifiedDeclaration for them. We should. |
| 6268 | if (TemplateId && TemplateId->TemplateKWLoc.isValid()) |
| 6269 | Diag(Loc, diag::ext_template_after_declarative_nns) |
| 6270 | << FixItHint::CreateRemoval(TemplateId->TemplateKWLoc); |
| 6271 | |
| 6272 | NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data()); |
| 6273 | do { |
| 6274 | if (TypeLoc TL = SpecLoc.getTypeLoc()) { |
| 6275 | if (SourceLocation TemplateKeywordLoc = TL.getTemplateKeywordLoc(); |
| 6276 | TemplateKeywordLoc.isValid()) |
| 6277 | Diag(Loc, diag::ext_template_after_declarative_nns) |
| 6278 | << FixItHint::CreateRemoval(TemplateKeywordLoc); |
| 6279 | } |
| 6280 | |
| 6281 | if (const Type *T = SpecLoc.getNestedNameSpecifier()->getAsType()) { |
| 6282 | if (const auto *TST = T->getAsAdjusted<TemplateSpecializationType>()) { |
| 6283 | // C++23 [expr.prim.id.qual]p3: |
| 6284 | // [...] If a nested-name-specifier N is declarative and has a |
| 6285 | // simple-template-id with a template argument list A that involves a |
| 6286 | // template parameter, let T be the template nominated by N without A. |
| 6287 | // T shall be a class template. |
| 6288 | if (TST->isDependentType() && TST->isTypeAlias()) |
| 6289 | Diag(Loc, diag::ext_alias_template_in_declarative_nns) |
| 6290 | << SpecLoc.getLocalSourceRange(); |
| 6291 | } else if (T->isDecltypeType() || T->getAsAdjusted<PackIndexingType>()) { |
| 6292 | // C++23 [expr.prim.id.qual]p2: |
| 6293 | // [...] A declarative nested-name-specifier shall not have a |
| 6294 | // computed-type-specifier. |
| 6295 | // |
| 6296 | // CWG2858 changed this from 'decltype-specifier' to |
| 6297 | // 'computed-type-specifier'. |
| 6298 | Diag(Loc, diag::err_computed_type_in_declarative_nns) |
| 6299 | << T->isDecltypeType() << SpecLoc.getTypeLoc().getSourceRange(); |
| 6300 | } |
| 6301 | } |
| 6302 | } while ((SpecLoc = SpecLoc.getPrefix())); |
| 6303 | |
| 6304 | return false; |
| 6305 | } |
| 6306 | |
| 6307 | NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D, |
| 6308 | MultiTemplateParamsArg TemplateParamLists) { |
| 6309 | // TODO: consider using NameInfo for diagnostic. |
| 6310 | DeclarationNameInfo NameInfo = GetNameForDeclarator(D); |
| 6311 | DeclarationName Name = NameInfo.getName(); |
| 6312 | |
| 6313 | // All of these full declarators require an identifier. If it doesn't have |
| 6314 | // one, the ParsedFreeStandingDeclSpec action should be used. |
| 6315 | if (D.isDecompositionDeclarator()) { |
| 6316 | return ActOnDecompositionDeclarator(S, D, TemplateParamLists); |
| 6317 | } else if (!Name) { |
| 6318 | if (!D.isInvalidType()) // Reject this if we think it is valid. |
| 6319 | Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident) |
| 6320 | << D.getDeclSpec().getSourceRange() << D.getSourceRange(); |
| 6321 | return nullptr; |
| 6322 | } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC: UPPC_DeclarationType)) |
| 6323 | return nullptr; |
| 6324 | |
| 6325 | DeclContext *DC = CurContext; |
| 6326 | if (D.getCXXScopeSpec().isInvalid()) |
| 6327 | D.setInvalidType(); |
| 6328 | else if (D.getCXXScopeSpec().isSet()) { |
| 6329 | if (DiagnoseUnexpandedParameterPack(SS: D.getCXXScopeSpec(), |
| 6330 | UPPC: UPPC_DeclarationQualifier)) |
| 6331 | return nullptr; |
| 6332 | |
| 6333 | bool EnteringContext = !D.getDeclSpec().isFriendSpecified(); |
| 6334 | DC = computeDeclContext(SS: D.getCXXScopeSpec(), EnteringContext); |
| 6335 | if (!DC || isa<EnumDecl>(Val: DC)) { |
| 6336 | // If we could not compute the declaration context, it's because the |
| 6337 | // declaration context is dependent but does not refer to a class, |
| 6338 | // class template, or class template partial specialization. Complain |
| 6339 | // and return early, to avoid the coming semantic disaster. |
| 6340 | Diag(D.getIdentifierLoc(), |
| 6341 | diag::err_template_qualified_declarator_no_match) |
| 6342 | << D.getCXXScopeSpec().getScopeRep() |
| 6343 | << D.getCXXScopeSpec().getRange(); |
| 6344 | return nullptr; |
| 6345 | } |
| 6346 | bool IsDependentContext = DC->isDependentContext(); |
| 6347 | |
| 6348 | if (!IsDependentContext && |
| 6349 | RequireCompleteDeclContext(SS&: D.getCXXScopeSpec(), DC)) |
| 6350 | return nullptr; |
| 6351 | |
| 6352 | // If a class is incomplete, do not parse entities inside it. |
| 6353 | if (isa<CXXRecordDecl>(Val: DC) && !cast<CXXRecordDecl>(Val: DC)->hasDefinition()) { |
| 6354 | Diag(D.getIdentifierLoc(), |
| 6355 | diag::err_member_def_undefined_record) |
| 6356 | << Name << DC << D.getCXXScopeSpec().getRange(); |
| 6357 | return nullptr; |
| 6358 | } |
| 6359 | if (!D.getDeclSpec().isFriendSpecified()) { |
| 6360 | TemplateIdAnnotation *TemplateId = |
| 6361 | D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId |
| 6362 | ? D.getName().TemplateId |
| 6363 | : nullptr; |
| 6364 | if (diagnoseQualifiedDeclaration(SS&: D.getCXXScopeSpec(), DC, Name, |
| 6365 | Loc: D.getIdentifierLoc(), TemplateId, |
| 6366 | /*IsMemberSpecialization=*/false)) { |
| 6367 | if (DC->isRecord()) |
| 6368 | return nullptr; |
| 6369 | |
| 6370 | D.setInvalidType(); |
| 6371 | } |
| 6372 | } |
| 6373 | |
| 6374 | // Check whether we need to rebuild the type of the given |
| 6375 | // declaration in the current instantiation. |
| 6376 | if (EnteringContext && IsDependentContext && |
| 6377 | TemplateParamLists.size() != 0) { |
| 6378 | ContextRAII SavedContext(*this, DC); |
| 6379 | if (RebuildDeclaratorInCurrentInstantiation(S&: *this, D, Name)) |
| 6380 | D.setInvalidType(); |
| 6381 | } |
| 6382 | } |
| 6383 | |
| 6384 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D); |
| 6385 | QualType R = TInfo->getType(); |
| 6386 | |
| 6387 | if (DiagnoseUnexpandedParameterPack(Loc: D.getIdentifierLoc(), T: TInfo, |
| 6388 | UPPC: UPPC_DeclarationType)) |
| 6389 | D.setInvalidType(); |
| 6390 | |
| 6391 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, |
| 6392 | forRedeclarationInCurContext()); |
| 6393 | |
| 6394 | // See if this is a redefinition of a variable in the same scope. |
| 6395 | if (!D.getCXXScopeSpec().isSet()) { |
| 6396 | bool IsLinkageLookup = false; |
| 6397 | bool CreateBuiltins = false; |
| 6398 | |
| 6399 | // If the declaration we're planning to build will be a function |
| 6400 | // or object with linkage, then look for another declaration with |
| 6401 | // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6). |
| 6402 | // |
| 6403 | // If the declaration we're planning to build will be declared with |
| 6404 | // external linkage in the translation unit, create any builtin with |
| 6405 | // the same name. |
| 6406 | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) |
| 6407 | /* Do nothing*/; |
| 6408 | else if (CurContext->isFunctionOrMethod() && |
| 6409 | (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern || |
| 6410 | R->isFunctionType())) { |
| 6411 | IsLinkageLookup = true; |
| 6412 | CreateBuiltins = |
| 6413 | CurContext->getEnclosingNamespaceContext()->isTranslationUnit(); |
| 6414 | } else if (CurContext->getRedeclContext()->isTranslationUnit() && |
| 6415 | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) |
| 6416 | CreateBuiltins = true; |
| 6417 | |
| 6418 | if (IsLinkageLookup) { |
| 6419 | Previous.clear(Kind: LookupRedeclarationWithLinkage); |
| 6420 | Previous.setRedeclarationKind( |
| 6421 | RedeclarationKind::ForExternalRedeclaration); |
| 6422 | } |
| 6423 | |
| 6424 | LookupName(R&: Previous, S, AllowBuiltinCreation: CreateBuiltins); |
| 6425 | } else { // Something like "int foo::x;" |
| 6426 | LookupQualifiedName(R&: Previous, LookupCtx: DC); |
| 6427 | |
| 6428 | // C++ [dcl.meaning]p1: |
| 6429 | // When the declarator-id is qualified, the declaration shall refer to a |
| 6430 | // previously declared member of the class or namespace to which the |
| 6431 | // qualifier refers (or, in the case of a namespace, of an element of the |
| 6432 | // inline namespace set of that namespace (7.3.1)) or to a specialization |
| 6433 | // thereof; [...] |
| 6434 | // |
| 6435 | // Note that we already checked the context above, and that we do not have |
| 6436 | // enough information to make sure that Previous contains the declaration |
| 6437 | // we want to match. For example, given: |
| 6438 | // |
| 6439 | // class X { |
| 6440 | // void f(); |
| 6441 | // void f(float); |
| 6442 | // }; |
| 6443 | // |
| 6444 | // void X::f(int) { } // ill-formed |
| 6445 | // |
| 6446 | // In this case, Previous will point to the overload set |
| 6447 | // containing the two f's declared in X, but neither of them |
| 6448 | // matches. |
| 6449 | |
| 6450 | RemoveUsingDecls(R&: Previous); |
| 6451 | } |
| 6452 | |
| 6453 | if (auto *TPD = Previous.getAsSingle<NamedDecl>(); |
| 6454 | TPD && TPD->isTemplateParameter()) { |
| 6455 | // Older versions of clang allowed the names of function/variable templates |
| 6456 | // to shadow the names of their template parameters. For the compatibility |
| 6457 | // purposes we detect such cases and issue a default-to-error warning that |
| 6458 | // can be disabled with -Wno-strict-primary-template-shadow. |
| 6459 | if (!D.isInvalidType()) { |
| 6460 | bool AllowForCompatibility = false; |
| 6461 | if (Scope *DeclParent = S->getDeclParent(); |
| 6462 | Scope *TemplateParamParent = S->getTemplateParamParent()) { |
| 6463 | AllowForCompatibility = DeclParent->Contains(rhs: *TemplateParamParent) && |
| 6464 | TemplateParamParent->isDeclScope(TPD); |
| 6465 | } |
| 6466 | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), TPD, |
| 6467 | AllowForCompatibility); |
| 6468 | } |
| 6469 | |
| 6470 | // Just pretend that we didn't see the previous declaration. |
| 6471 | Previous.clear(); |
| 6472 | } |
| 6473 | |
| 6474 | if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo)) |
| 6475 | // Forget that the previous declaration is the injected-class-name. |
| 6476 | Previous.clear(); |
| 6477 | |
| 6478 | // In C++, the previous declaration we find might be a tag type |
| 6479 | // (class or enum). In this case, the new declaration will hide the |
| 6480 | // tag type. Note that this applies to functions, function templates, and |
| 6481 | // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates. |
| 6482 | if (Previous.isSingleTagDecl() && |
| 6483 | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && |
| 6484 | (TemplateParamLists.size() == 0 || R->isFunctionType())) |
| 6485 | Previous.clear(); |
| 6486 | |
| 6487 | // Check that there are no default arguments other than in the parameters |
| 6488 | // of a function declaration (C++ only). |
| 6489 | if (getLangOpts().CPlusPlus) |
| 6490 | CheckExtraCXXDefaultArguments(D); |
| 6491 | |
| 6492 | /// Get the innermost enclosing declaration scope. |
| 6493 | S = S->getDeclParent(); |
| 6494 | |
| 6495 | NamedDecl *New; |
| 6496 | |
| 6497 | bool AddToScope = true; |
| 6498 | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { |
| 6499 | if (TemplateParamLists.size()) { |
| 6500 | Diag(D.getIdentifierLoc(), diag::err_template_typedef); |
| 6501 | return nullptr; |
| 6502 | } |
| 6503 | |
| 6504 | New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous); |
| 6505 | } else if (R->isFunctionType()) { |
| 6506 | New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous, |
| 6507 | TemplateParamLists, |
| 6508 | AddToScope); |
| 6509 | } else { |
| 6510 | New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists, |
| 6511 | AddToScope); |
| 6512 | } |
| 6513 | |
| 6514 | if (!New) |
| 6515 | return nullptr; |
| 6516 | |
| 6517 | warnOnCTypeHiddenInCPlusPlus(D: New); |
| 6518 | |
| 6519 | // If this has an identifier and is not a function template specialization, |
| 6520 | // add it to the scope stack. |
| 6521 | if (New->getDeclName() && AddToScope) |
| 6522 | PushOnScopeChains(D: New, S); |
| 6523 | |
| 6524 | if (OpenMP().isInOpenMPDeclareTargetContext()) |
| 6525 | OpenMP().checkDeclIsAllowedInOpenMPTarget(nullptr, New); |
| 6526 | |
| 6527 | return New; |
| 6528 | } |
| 6529 | |
| 6530 | /// Helper method to turn variable array types into constant array |
| 6531 | /// types in certain situations which would otherwise be errors (for |
| 6532 | /// GCC compatibility). |
| 6533 | static QualType TryToFixInvalidVariablyModifiedType(QualType T, |
| 6534 | ASTContext &Context, |
| 6535 | bool &SizeIsNegative, |
| 6536 | llvm::APSInt &Oversized) { |
| 6537 | // This method tries to turn a variable array into a constant |
| 6538 | // array even when the size isn't an ICE. This is necessary |
| 6539 | // for compatibility with code that depends on gcc's buggy |
| 6540 | // constant expression folding, like struct {char x[(int)(char*)2];} |
| 6541 | SizeIsNegative = false; |
| 6542 | Oversized = 0; |
| 6543 | |
| 6544 | if (T->isDependentType()) |
| 6545 | return QualType(); |
| 6546 | |
| 6547 | QualifierCollector Qs; |
| 6548 | const Type *Ty = Qs.strip(type: T); |
| 6549 | |
| 6550 | if (const PointerType* PTy = dyn_cast<PointerType>(Val: Ty)) { |
| 6551 | QualType Pointee = PTy->getPointeeType(); |
| 6552 | QualType FixedType = |
| 6553 | TryToFixInvalidVariablyModifiedType(T: Pointee, Context, SizeIsNegative, |
| 6554 | Oversized); |
| 6555 | if (FixedType.isNull()) return FixedType; |
| 6556 | FixedType = Context.getPointerType(T: FixedType); |
| 6557 | return Qs.apply(Context, QT: FixedType); |
| 6558 | } |
| 6559 | if (const ParenType* PTy = dyn_cast<ParenType>(Val: Ty)) { |
| 6560 | QualType Inner = PTy->getInnerType(); |
| 6561 | QualType FixedType = |
| 6562 | TryToFixInvalidVariablyModifiedType(T: Inner, Context, SizeIsNegative, |
| 6563 | Oversized); |
| 6564 | if (FixedType.isNull()) return FixedType; |
| 6565 | FixedType = Context.getParenType(NamedType: FixedType); |
| 6566 | return Qs.apply(Context, QT: FixedType); |
| 6567 | } |
| 6568 | |
| 6569 | const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(Val&: T); |
| 6570 | if (!VLATy) |
| 6571 | return QualType(); |
| 6572 | |
| 6573 | QualType ElemTy = VLATy->getElementType(); |
| 6574 | if (ElemTy->isVariablyModifiedType()) { |
| 6575 | ElemTy = TryToFixInvalidVariablyModifiedType(T: ElemTy, Context, |
| 6576 | SizeIsNegative, Oversized); |
| 6577 | if (ElemTy.isNull()) |
| 6578 | return QualType(); |
| 6579 | } |
| 6580 | |
| 6581 | Expr::EvalResult Result; |
| 6582 | if (!VLATy->getSizeExpr() || |
| 6583 | !VLATy->getSizeExpr()->EvaluateAsInt(Result, Ctx: Context)) |
| 6584 | return QualType(); |
| 6585 | |
| 6586 | llvm::APSInt Res = Result.Val.getInt(); |
| 6587 | |
| 6588 | // Check whether the array size is negative. |
| 6589 | if (Res.isSigned() && Res.isNegative()) { |
| 6590 | SizeIsNegative = true; |
| 6591 | return QualType(); |
| 6592 | } |
| 6593 | |
| 6594 | // Check whether the array is too large to be addressed. |
| 6595 | unsigned ActiveSizeBits = |
| 6596 | (!ElemTy->isDependentType() && !ElemTy->isVariablyModifiedType() && |
| 6597 | !ElemTy->isIncompleteType() && !ElemTy->isUndeducedType()) |
| 6598 | ? ConstantArrayType::getNumAddressingBits(Context, ElementType: ElemTy, NumElements: Res) |
| 6599 | : Res.getActiveBits(); |
| 6600 | if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { |
| 6601 | Oversized = Res; |
| 6602 | return QualType(); |
| 6603 | } |
| 6604 | |
| 6605 | QualType FoldedArrayType = Context.getConstantArrayType( |
| 6606 | EltTy: ElemTy, ArySize: Res, SizeExpr: VLATy->getSizeExpr(), ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
| 6607 | return Qs.apply(Context, QT: FoldedArrayType); |
| 6608 | } |
| 6609 | |
| 6610 | static void |
| 6611 | FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) { |
| 6612 | SrcTL = SrcTL.getUnqualifiedLoc(); |
| 6613 | DstTL = DstTL.getUnqualifiedLoc(); |
| 6614 | if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) { |
| 6615 | PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>(); |
| 6616 | FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(), |
| 6617 | DstPTL.getPointeeLoc()); |
| 6618 | DstPTL.setStarLoc(SrcPTL.getStarLoc()); |
| 6619 | return; |
| 6620 | } |
| 6621 | if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) { |
| 6622 | ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>(); |
| 6623 | FixInvalidVariablyModifiedTypeLoc(SrcTL: SrcPTL.getInnerLoc(), |
| 6624 | DstTL: DstPTL.getInnerLoc()); |
| 6625 | DstPTL.setLParenLoc(SrcPTL.getLParenLoc()); |
| 6626 | DstPTL.setRParenLoc(SrcPTL.getRParenLoc()); |
| 6627 | return; |
| 6628 | } |
| 6629 | ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>(); |
| 6630 | ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>(); |
| 6631 | TypeLoc SrcElemTL = SrcATL.getElementLoc(); |
| 6632 | TypeLoc DstElemTL = DstATL.getElementLoc(); |
| 6633 | if (VariableArrayTypeLoc SrcElemATL = |
| 6634 | SrcElemTL.getAs<VariableArrayTypeLoc>()) { |
| 6635 | ConstantArrayTypeLoc DstElemATL = DstElemTL.castAs<ConstantArrayTypeLoc>(); |
| 6636 | FixInvalidVariablyModifiedTypeLoc(SrcElemATL, DstElemATL); |
| 6637 | } else { |
| 6638 | DstElemTL.initializeFullCopy(Other: SrcElemTL); |
| 6639 | } |
| 6640 | DstATL.setLBracketLoc(SrcATL.getLBracketLoc()); |
| 6641 | DstATL.setSizeExpr(SrcATL.getSizeExpr()); |
| 6642 | DstATL.setRBracketLoc(SrcATL.getRBracketLoc()); |
| 6643 | } |
| 6644 | |
| 6645 | /// Helper method to turn variable array types into constant array |
| 6646 | /// types in certain situations which would otherwise be errors (for |
| 6647 | /// GCC compatibility). |
| 6648 | static TypeSourceInfo* |
| 6649 | TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo, |
| 6650 | ASTContext &Context, |
| 6651 | bool &SizeIsNegative, |
| 6652 | llvm::APSInt &Oversized) { |
| 6653 | QualType FixedTy |
| 6654 | = TryToFixInvalidVariablyModifiedType(T: TInfo->getType(), Context, |
| 6655 | SizeIsNegative, Oversized); |
| 6656 | if (FixedTy.isNull()) |
| 6657 | return nullptr; |
| 6658 | TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(T: FixedTy); |
| 6659 | FixInvalidVariablyModifiedTypeLoc(SrcTL: TInfo->getTypeLoc(), |
| 6660 | DstTL: FixedTInfo->getTypeLoc()); |
| 6661 | return FixedTInfo; |
| 6662 | } |
| 6663 | |
| 6664 | bool Sema::tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo, |
| 6665 | QualType &T, SourceLocation Loc, |
| 6666 | unsigned FailedFoldDiagID) { |
| 6667 | bool SizeIsNegative; |
| 6668 | llvm::APSInt Oversized; |
| 6669 | TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo( |
| 6670 | TInfo, Context, SizeIsNegative, Oversized); |
| 6671 | if (FixedTInfo) { |
| 6672 | Diag(Loc, diag::ext_vla_folded_to_constant); |
| 6673 | TInfo = FixedTInfo; |
| 6674 | T = FixedTInfo->getType(); |
| 6675 | return true; |
| 6676 | } |
| 6677 | |
| 6678 | if (SizeIsNegative) |
| 6679 | Diag(Loc, diag::err_typecheck_negative_array_size); |
| 6680 | else if (Oversized.getBoolValue()) |
| 6681 | Diag(Loc, diag::err_array_too_large) << toString(Oversized, 10); |
| 6682 | else if (FailedFoldDiagID) |
| 6683 | Diag(Loc, FailedFoldDiagID); |
| 6684 | return false; |
| 6685 | } |
| 6686 | |
| 6687 | void |
| 6688 | Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) { |
| 6689 | if (!getLangOpts().CPlusPlus && |
| 6690 | ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit()) |
| 6691 | // Don't need to track declarations in the TU in C. |
| 6692 | return; |
| 6693 | |
| 6694 | // Note that we have a locally-scoped external with this name. |
| 6695 | Context.getExternCContextDecl()->makeDeclVisibleInContext(ND); |
| 6696 | } |
| 6697 | |
| 6698 | NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) { |
| 6699 | // FIXME: We can have multiple results via __attribute__((overloadable)). |
| 6700 | auto Result = Context.getExternCContextDecl()->lookup(Name); |
| 6701 | return Result.empty() ? nullptr : *Result.begin(); |
| 6702 | } |
| 6703 | |
| 6704 | void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) { |
| 6705 | // FIXME: We should probably indicate the identifier in question to avoid |
| 6706 | // confusion for constructs like "virtual int a(), b;" |
| 6707 | if (DS.isVirtualSpecified()) |
| 6708 | Diag(DS.getVirtualSpecLoc(), |
| 6709 | diag::err_virtual_non_function); |
| 6710 | |
| 6711 | if (DS.hasExplicitSpecifier()) |
| 6712 | Diag(DS.getExplicitSpecLoc(), |
| 6713 | diag::err_explicit_non_function); |
| 6714 | |
| 6715 | if (DS.isNoreturnSpecified()) |
| 6716 | Diag(DS.getNoreturnSpecLoc(), |
| 6717 | diag::err_noreturn_non_function); |
| 6718 | } |
| 6719 | |
| 6720 | NamedDecl* |
| 6721 | Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC, |
| 6722 | TypeSourceInfo *TInfo, LookupResult &Previous) { |
| 6723 | // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1). |
| 6724 | if (D.getCXXScopeSpec().isSet()) { |
| 6725 | Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator) |
| 6726 | << D.getCXXScopeSpec().getRange(); |
| 6727 | D.setInvalidType(); |
| 6728 | // Pretend we didn't see the scope specifier. |
| 6729 | DC = CurContext; |
| 6730 | Previous.clear(); |
| 6731 | } |
| 6732 | |
| 6733 | DiagnoseFunctionSpecifiers(DS: D.getDeclSpec()); |
| 6734 | |
| 6735 | if (D.getDeclSpec().isInlineSpecified()) |
| 6736 | Diag(D.getDeclSpec().getInlineSpecLoc(), |
| 6737 | (getLangOpts().MSVCCompat && !getLangOpts().CPlusPlus) |
| 6738 | ? diag::warn_ms_inline_non_function |
| 6739 | : diag::err_inline_non_function) |
| 6740 | << getLangOpts().CPlusPlus17; |
| 6741 | if (D.getDeclSpec().hasConstexprSpecifier()) |
| 6742 | Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr) |
| 6743 | << 1 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier()); |
| 6744 | |
| 6745 | if (D.getName().getKind() != UnqualifiedIdKind::IK_Identifier) { |
| 6746 | if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName) |
| 6747 | Diag(D.getName().StartLocation, |
| 6748 | diag::err_deduction_guide_invalid_specifier) |
| 6749 | << "typedef" ; |
| 6750 | else |
| 6751 | Diag(D.getName().StartLocation, diag::err_typedef_not_identifier) |
| 6752 | << D.getName().getSourceRange(); |
| 6753 | return nullptr; |
| 6754 | } |
| 6755 | |
| 6756 | TypedefDecl *NewTD = ParseTypedefDecl(S, D, T: TInfo->getType(), TInfo); |
| 6757 | if (!NewTD) return nullptr; |
| 6758 | |
| 6759 | // Handle attributes prior to checking for duplicates in MergeVarDecl |
| 6760 | ProcessDeclAttributes(S, NewTD, D); |
| 6761 | |
| 6762 | CheckTypedefForVariablyModifiedType(S, NewTD); |
| 6763 | |
| 6764 | bool Redeclaration = D.isRedeclaration(); |
| 6765 | NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration); |
| 6766 | D.setRedeclaration(Redeclaration); |
| 6767 | return ND; |
| 6768 | } |
| 6769 | |
| 6770 | void |
| 6771 | Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) { |
| 6772 | // C99 6.7.7p2: If a typedef name specifies a variably modified type |
| 6773 | // then it shall have block scope. |
| 6774 | // Note that variably modified types must be fixed before merging the decl so |
| 6775 | // that redeclarations will match. |
| 6776 | TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo(); |
| 6777 | QualType T = TInfo->getType(); |
| 6778 | if (T->isVariablyModifiedType()) { |
| 6779 | setFunctionHasBranchProtectedScope(); |
| 6780 | |
| 6781 | if (S->getFnParent() == nullptr) { |
| 6782 | bool SizeIsNegative; |
| 6783 | llvm::APSInt Oversized; |
| 6784 | TypeSourceInfo *FixedTInfo = |
| 6785 | TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context, |
| 6786 | SizeIsNegative, |
| 6787 | Oversized); |
| 6788 | if (FixedTInfo) { |
| 6789 | Diag(NewTD->getLocation(), diag::ext_vla_folded_to_constant); |
| 6790 | NewTD->setTypeSourceInfo(FixedTInfo); |
| 6791 | } else { |
| 6792 | if (SizeIsNegative) |
| 6793 | Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size); |
| 6794 | else if (T->isVariableArrayType()) |
| 6795 | Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope); |
| 6796 | else if (Oversized.getBoolValue()) |
| 6797 | Diag(NewTD->getLocation(), diag::err_array_too_large) |
| 6798 | << toString(Oversized, 10); |
| 6799 | else |
| 6800 | Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope); |
| 6801 | NewTD->setInvalidDecl(); |
| 6802 | } |
| 6803 | } |
| 6804 | } |
| 6805 | } |
| 6806 | |
| 6807 | NamedDecl* |
| 6808 | Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD, |
| 6809 | LookupResult &Previous, bool &Redeclaration) { |
| 6810 | |
| 6811 | // Find the shadowed declaration before filtering for scope. |
| 6812 | NamedDecl *ShadowedDecl = getShadowedDeclaration(D: NewTD, R: Previous); |
| 6813 | |
| 6814 | // Merge the decl with the existing one if appropriate. If the decl is |
| 6815 | // in an outer scope, it isn't the same thing. |
| 6816 | FilterLookupForScope(R&: Previous, Ctx: DC, S, /*ConsiderLinkage*/false, |
| 6817 | /*AllowInlineNamespace*/false); |
| 6818 | filterNonConflictingPreviousTypedefDecls(S&: *this, Decl: NewTD, Previous); |
| 6819 | if (!Previous.empty()) { |
| 6820 | Redeclaration = true; |
| 6821 | MergeTypedefNameDecl(S, New: NewTD, OldDecls&: Previous); |
| 6822 | } else { |
| 6823 | inferGslPointerAttribute(TD: NewTD); |
| 6824 | } |
| 6825 | |
| 6826 | if (ShadowedDecl && !Redeclaration) |
| 6827 | CheckShadow(NewTD, ShadowedDecl, Previous); |
| 6828 | |
| 6829 | // If this is the C FILE type, notify the AST context. |
| 6830 | if (IdentifierInfo *II = NewTD->getIdentifier()) |
| 6831 | if (!NewTD->isInvalidDecl() && |
| 6832 | NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { |
| 6833 | switch (II->getNotableIdentifierID()) { |
| 6834 | case tok::NotableIdentifierKind::FILE: |
| 6835 | Context.setFILEDecl(NewTD); |
| 6836 | break; |
| 6837 | case tok::NotableIdentifierKind::jmp_buf: |
| 6838 | Context.setjmp_bufDecl(NewTD); |
| 6839 | break; |
| 6840 | case tok::NotableIdentifierKind::sigjmp_buf: |
| 6841 | Context.setsigjmp_bufDecl(NewTD); |
| 6842 | break; |
| 6843 | case tok::NotableIdentifierKind::ucontext_t: |
| 6844 | Context.setucontext_tDecl(NewTD); |
| 6845 | break; |
| 6846 | case tok::NotableIdentifierKind::float_t: |
| 6847 | case tok::NotableIdentifierKind::double_t: |
| 6848 | NewTD->addAttr(AvailableOnlyInDefaultEvalMethodAttr::Create(Context)); |
| 6849 | break; |
| 6850 | default: |
| 6851 | break; |
| 6852 | } |
| 6853 | } |
| 6854 | |
| 6855 | return NewTD; |
| 6856 | } |
| 6857 | |
| 6858 | /// Determines whether the given declaration is an out-of-scope |
| 6859 | /// previous declaration. |
| 6860 | /// |
| 6861 | /// This routine should be invoked when name lookup has found a |
| 6862 | /// previous declaration (PrevDecl) that is not in the scope where a |
| 6863 | /// new declaration by the same name is being introduced. If the new |
| 6864 | /// declaration occurs in a local scope, previous declarations with |
| 6865 | /// linkage may still be considered previous declarations (C99 |
| 6866 | /// 6.2.2p4-5, C++ [basic.link]p6). |
| 6867 | /// |
| 6868 | /// \param PrevDecl the previous declaration found by name |
| 6869 | /// lookup |
| 6870 | /// |
| 6871 | /// \param DC the context in which the new declaration is being |
| 6872 | /// declared. |
| 6873 | /// |
| 6874 | /// \returns true if PrevDecl is an out-of-scope previous declaration |
| 6875 | /// for a new delcaration with the same name. |
| 6876 | static bool |
| 6877 | isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC, |
| 6878 | ASTContext &Context) { |
| 6879 | if (!PrevDecl) |
| 6880 | return false; |
| 6881 | |
| 6882 | if (!PrevDecl->hasLinkage()) |
| 6883 | return false; |
| 6884 | |
| 6885 | if (Context.getLangOpts().CPlusPlus) { |
| 6886 | // C++ [basic.link]p6: |
| 6887 | // If there is a visible declaration of an entity with linkage |
| 6888 | // having the same name and type, ignoring entities declared |
| 6889 | // outside the innermost enclosing namespace scope, the block |
| 6890 | // scope declaration declares that same entity and receives the |
| 6891 | // linkage of the previous declaration. |
| 6892 | DeclContext *OuterContext = DC->getRedeclContext(); |
| 6893 | if (!OuterContext->isFunctionOrMethod()) |
| 6894 | // This rule only applies to block-scope declarations. |
| 6895 | return false; |
| 6896 | |
| 6897 | DeclContext *PrevOuterContext = PrevDecl->getDeclContext(); |
| 6898 | if (PrevOuterContext->isRecord()) |
| 6899 | // We found a member function: ignore it. |
| 6900 | return false; |
| 6901 | |
| 6902 | // Find the innermost enclosing namespace for the new and |
| 6903 | // previous declarations. |
| 6904 | OuterContext = OuterContext->getEnclosingNamespaceContext(); |
| 6905 | PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext(); |
| 6906 | |
| 6907 | // The previous declaration is in a different namespace, so it |
| 6908 | // isn't the same function. |
| 6909 | if (!OuterContext->Equals(DC: PrevOuterContext)) |
| 6910 | return false; |
| 6911 | } |
| 6912 | |
| 6913 | return true; |
| 6914 | } |
| 6915 | |
| 6916 | static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) { |
| 6917 | CXXScopeSpec &SS = D.getCXXScopeSpec(); |
| 6918 | if (!SS.isSet()) return; |
| 6919 | DD->setQualifierInfo(SS.getWithLocInContext(Context&: S.Context)); |
| 6920 | } |
| 6921 | |
| 6922 | void Sema::deduceOpenCLAddressSpace(ValueDecl *Decl) { |
| 6923 | if (Decl->getType().hasAddressSpace()) |
| 6924 | return; |
| 6925 | if (Decl->getType()->isDependentType()) |
| 6926 | return; |
| 6927 | if (VarDecl *Var = dyn_cast<VarDecl>(Val: Decl)) { |
| 6928 | QualType Type = Var->getType(); |
| 6929 | if (Type->isSamplerT() || Type->isVoidType()) |
| 6930 | return; |
| 6931 | LangAS ImplAS = LangAS::opencl_private; |
| 6932 | // OpenCL C v3.0 s6.7.8 - For OpenCL C 2.0 or with the |
| 6933 | // __opencl_c_program_scope_global_variables feature, the address space |
| 6934 | // for a variable at program scope or a static or extern variable inside |
| 6935 | // a function are inferred to be __global. |
| 6936 | if (getOpenCLOptions().areProgramScopeVariablesSupported(Opts: getLangOpts()) && |
| 6937 | Var->hasGlobalStorage()) |
| 6938 | ImplAS = LangAS::opencl_global; |
| 6939 | // If the original type from a decayed type is an array type and that array |
| 6940 | // type has no address space yet, deduce it now. |
| 6941 | if (auto DT = dyn_cast<DecayedType>(Type)) { |
| 6942 | auto OrigTy = DT->getOriginalType(); |
| 6943 | if (!OrigTy.hasAddressSpace() && OrigTy->isArrayType()) { |
| 6944 | // Add the address space to the original array type and then propagate |
| 6945 | // that to the element type through `getAsArrayType`. |
| 6946 | OrigTy = Context.getAddrSpaceQualType(T: OrigTy, AddressSpace: ImplAS); |
| 6947 | OrigTy = QualType(Context.getAsArrayType(T: OrigTy), 0); |
| 6948 | // Re-generate the decayed type. |
| 6949 | Type = Context.getDecayedType(OrigTy); |
| 6950 | } |
| 6951 | } |
| 6952 | Type = Context.getAddrSpaceQualType(T: Type, AddressSpace: ImplAS); |
| 6953 | // Apply any qualifiers (including address space) from the array type to |
| 6954 | // the element type. This implements C99 6.7.3p8: "If the specification of |
| 6955 | // an array type includes any type qualifiers, the element type is so |
| 6956 | // qualified, not the array type." |
| 6957 | if (Type->isArrayType()) |
| 6958 | Type = QualType(Context.getAsArrayType(T: Type), 0); |
| 6959 | Decl->setType(Type); |
| 6960 | } |
| 6961 | } |
| 6962 | |
| 6963 | static void checkWeakAttr(Sema &S, NamedDecl &ND) { |
| 6964 | // 'weak' only applies to declarations with external linkage. |
| 6965 | if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) { |
| 6966 | if (!ND.isExternallyVisible()) { |
| 6967 | S.Diag(Attr->getLocation(), diag::err_attribute_weak_static); |
| 6968 | ND.dropAttr<WeakAttr>(); |
| 6969 | } |
| 6970 | } |
| 6971 | } |
| 6972 | |
| 6973 | static void checkWeakRefAttr(Sema &S, NamedDecl &ND) { |
| 6974 | if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) { |
| 6975 | if (ND.isExternallyVisible()) { |
| 6976 | S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static); |
| 6977 | ND.dropAttrs<WeakRefAttr, AliasAttr>(); |
| 6978 | } |
| 6979 | } |
| 6980 | } |
| 6981 | |
| 6982 | static void checkAliasAttr(Sema &S, NamedDecl &ND) { |
| 6983 | if (auto *VD = dyn_cast<VarDecl>(Val: &ND)) { |
| 6984 | if (VD->hasInit()) { |
| 6985 | if (const auto *Attr = VD->getAttr<AliasAttr>()) { |
| 6986 | assert(VD->isThisDeclarationADefinition() && |
| 6987 | !VD->isExternallyVisible() && "Broken AliasAttr handled late!" ); |
| 6988 | S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0; |
| 6989 | VD->dropAttr<AliasAttr>(); |
| 6990 | } |
| 6991 | } |
| 6992 | } |
| 6993 | } |
| 6994 | |
| 6995 | static void checkSelectAnyAttr(Sema &S, NamedDecl &ND) { |
| 6996 | // 'selectany' only applies to externally visible variable declarations. |
| 6997 | // It does not apply to functions. |
| 6998 | if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) { |
| 6999 | if (isa<FunctionDecl>(Val: ND) || !ND.isExternallyVisible()) { |
| 7000 | S.Diag(Attr->getLocation(), |
| 7001 | diag::err_attribute_selectany_non_extern_data); |
| 7002 | ND.dropAttr<SelectAnyAttr>(); |
| 7003 | } |
| 7004 | } |
| 7005 | } |
| 7006 | |
| 7007 | static void checkHybridPatchableAttr(Sema &S, NamedDecl &ND) { |
| 7008 | if (HybridPatchableAttr *Attr = ND.getAttr<HybridPatchableAttr>()) { |
| 7009 | if (!ND.isExternallyVisible()) |
| 7010 | S.Diag(Attr->getLocation(), |
| 7011 | diag::warn_attribute_hybrid_patchable_non_extern); |
| 7012 | } |
| 7013 | } |
| 7014 | |
| 7015 | static void checkInheritableAttr(Sema &S, NamedDecl &ND) { |
| 7016 | if (const InheritableAttr *Attr = getDLLAttr(&ND)) { |
| 7017 | auto *VD = dyn_cast<VarDecl>(Val: &ND); |
| 7018 | bool IsAnonymousNS = false; |
| 7019 | bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft(); |
| 7020 | if (VD) { |
| 7021 | const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext()); |
| 7022 | while (NS && !IsAnonymousNS) { |
| 7023 | IsAnonymousNS = NS->isAnonymousNamespace(); |
| 7024 | NS = dyn_cast<NamespaceDecl>(NS->getParent()); |
| 7025 | } |
| 7026 | } |
| 7027 | // dll attributes require external linkage. Static locals may have external |
| 7028 | // linkage but still cannot be explicitly imported or exported. |
| 7029 | // In Microsoft mode, a variable defined in anonymous namespace must have |
| 7030 | // external linkage in order to be exported. |
| 7031 | bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft; |
| 7032 | if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) || |
| 7033 | (!AnonNSInMicrosoftMode && |
| 7034 | (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) { |
| 7035 | S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern) |
| 7036 | << &ND << Attr; |
| 7037 | ND.setInvalidDecl(); |
| 7038 | } |
| 7039 | } |
| 7040 | } |
| 7041 | |
| 7042 | static void checkLifetimeBoundAttr(Sema &S, NamedDecl &ND) { |
| 7043 | // Check the attributes on the function type and function params, if any. |
| 7044 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: &ND)) { |
| 7045 | FD = FD->getMostRecentDecl(); |
| 7046 | // Don't declare this variable in the second operand of the for-statement; |
| 7047 | // GCC miscompiles that by ending its lifetime before evaluating the |
| 7048 | // third operand. See gcc.gnu.org/PR86769. |
| 7049 | AttributedTypeLoc ATL; |
| 7050 | for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc(); |
| 7051 | (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); |
| 7052 | TL = ATL.getModifiedLoc()) { |
| 7053 | // The [[lifetimebound]] attribute can be applied to the implicit object |
| 7054 | // parameter of a non-static member function (other than a ctor or dtor) |
| 7055 | // by applying it to the function type. |
| 7056 | if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) { |
| 7057 | const auto *MD = dyn_cast<CXXMethodDecl>(Val: FD); |
| 7058 | int NoImplicitObjectError = -1; |
| 7059 | if (!MD) |
| 7060 | NoImplicitObjectError = 0; |
| 7061 | else if (MD->isStatic()) |
| 7062 | NoImplicitObjectError = 1; |
| 7063 | else if (MD->isExplicitObjectMemberFunction()) |
| 7064 | NoImplicitObjectError = 2; |
| 7065 | if (NoImplicitObjectError != -1) { |
| 7066 | S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param) |
| 7067 | << NoImplicitObjectError << A->getRange(); |
| 7068 | } else if (isa<CXXConstructorDecl>(Val: MD) || isa<CXXDestructorDecl>(Val: MD)) { |
| 7069 | S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor) |
| 7070 | << isa<CXXDestructorDecl>(MD) << A->getRange(); |
| 7071 | } else if (MD->getReturnType()->isVoidType()) { |
| 7072 | S.Diag( |
| 7073 | MD->getLocation(), |
| 7074 | diag:: |
| 7075 | err_lifetimebound_implicit_object_parameter_void_return_type); |
| 7076 | } |
| 7077 | } |
| 7078 | } |
| 7079 | |
| 7080 | for (unsigned int I = 0; I < FD->getNumParams(); ++I) { |
| 7081 | const ParmVarDecl *P = FD->getParamDecl(i: I); |
| 7082 | |
| 7083 | // The [[lifetimebound]] attribute can be applied to a function parameter |
| 7084 | // only if the function returns a value. |
| 7085 | if (auto *A = P->getAttr<LifetimeBoundAttr>()) { |
| 7086 | if (!isa<CXXConstructorDecl>(Val: FD) && FD->getReturnType()->isVoidType()) { |
| 7087 | S.Diag(A->getLocation(), |
| 7088 | diag::err_lifetimebound_parameter_void_return_type); |
| 7089 | } |
| 7090 | } |
| 7091 | } |
| 7092 | } |
| 7093 | } |
| 7094 | |
| 7095 | static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) { |
| 7096 | // Ensure that an auto decl is deduced otherwise the checks below might cache |
| 7097 | // the wrong linkage. |
| 7098 | assert(S.ParsingInitForAutoVars.count(&ND) == 0); |
| 7099 | |
| 7100 | checkWeakAttr(S, ND); |
| 7101 | checkWeakRefAttr(S, ND); |
| 7102 | checkAliasAttr(S, ND); |
| 7103 | checkSelectAnyAttr(S, ND); |
| 7104 | checkHybridPatchableAttr(S, ND); |
| 7105 | checkInheritableAttr(S, ND); |
| 7106 | checkLifetimeBoundAttr(S, ND); |
| 7107 | } |
| 7108 | |
| 7109 | static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl, |
| 7110 | NamedDecl *NewDecl, |
| 7111 | bool IsSpecialization, |
| 7112 | bool IsDefinition) { |
| 7113 | if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl()) |
| 7114 | return; |
| 7115 | |
| 7116 | bool IsTemplate = false; |
| 7117 | if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(Val: OldDecl)) { |
| 7118 | OldDecl = OldTD->getTemplatedDecl(); |
| 7119 | IsTemplate = true; |
| 7120 | if (!IsSpecialization) |
| 7121 | IsDefinition = false; |
| 7122 | } |
| 7123 | if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(Val: NewDecl)) { |
| 7124 | NewDecl = NewTD->getTemplatedDecl(); |
| 7125 | IsTemplate = true; |
| 7126 | } |
| 7127 | |
| 7128 | if (!OldDecl || !NewDecl) |
| 7129 | return; |
| 7130 | |
| 7131 | const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>(); |
| 7132 | const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>(); |
| 7133 | const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>(); |
| 7134 | const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>(); |
| 7135 | |
| 7136 | // dllimport and dllexport are inheritable attributes so we have to exclude |
| 7137 | // inherited attribute instances. |
| 7138 | bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) || |
| 7139 | (NewExportAttr && !NewExportAttr->isInherited()); |
| 7140 | |
| 7141 | // A redeclaration is not allowed to add a dllimport or dllexport attribute, |
| 7142 | // the only exception being explicit specializations. |
| 7143 | // Implicitly generated declarations are also excluded for now because there |
| 7144 | // is no other way to switch these to use dllimport or dllexport. |
| 7145 | bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr; |
| 7146 | |
| 7147 | if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) { |
| 7148 | // Allow with a warning for free functions and global variables. |
| 7149 | bool JustWarn = false; |
| 7150 | if (!OldDecl->isCXXClassMember()) { |
| 7151 | auto *VD = dyn_cast<VarDecl>(Val: OldDecl); |
| 7152 | if (VD && !VD->getDescribedVarTemplate()) |
| 7153 | JustWarn = true; |
| 7154 | auto *FD = dyn_cast<FunctionDecl>(Val: OldDecl); |
| 7155 | if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) |
| 7156 | JustWarn = true; |
| 7157 | } |
| 7158 | |
| 7159 | // We cannot change a declaration that's been used because IR has already |
| 7160 | // been emitted. Dllimported functions will still work though (modulo |
| 7161 | // address equality) as they can use the thunk. |
| 7162 | if (OldDecl->isUsed()) |
| 7163 | if (!isa<FunctionDecl>(Val: OldDecl) || !NewImportAttr) |
| 7164 | JustWarn = false; |
| 7165 | |
| 7166 | unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration |
| 7167 | : diag::err_attribute_dll_redeclaration; |
| 7168 | S.Diag(NewDecl->getLocation(), DiagID) |
| 7169 | << NewDecl |
| 7170 | << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr); |
| 7171 | S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); |
| 7172 | if (!JustWarn) { |
| 7173 | NewDecl->setInvalidDecl(); |
| 7174 | return; |
| 7175 | } |
| 7176 | } |
| 7177 | |
| 7178 | // A redeclaration is not allowed to drop a dllimport attribute, the only |
| 7179 | // exceptions being inline function definitions (except for function |
| 7180 | // templates), local extern declarations, qualified friend declarations or |
| 7181 | // special MSVC extension: in the last case, the declaration is treated as if |
| 7182 | // it were marked dllexport. |
| 7183 | bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false; |
| 7184 | bool IsMicrosoftABI = S.Context.getTargetInfo().shouldDLLImportComdatSymbols(); |
| 7185 | if (const auto *VD = dyn_cast<VarDecl>(Val: NewDecl)) { |
| 7186 | // Ignore static data because out-of-line definitions are diagnosed |
| 7187 | // separately. |
| 7188 | IsStaticDataMember = VD->isStaticDataMember(); |
| 7189 | IsDefinition = VD->isThisDeclarationADefinition(S.Context) != |
| 7190 | VarDecl::DeclarationOnly; |
| 7191 | } else if (const auto *FD = dyn_cast<FunctionDecl>(Val: NewDecl)) { |
| 7192 | IsInline = FD->isInlined(); |
| 7193 | IsQualifiedFriend = FD->getQualifier() && |
| 7194 | FD->getFriendObjectKind() == Decl::FOK_Declared; |
| 7195 | } |
| 7196 | |
| 7197 | if (OldImportAttr && !HasNewAttr && |
| 7198 | (!IsInline || (IsMicrosoftABI && IsTemplate)) && !IsStaticDataMember && |
| 7199 | !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) { |
| 7200 | if (IsMicrosoftABI && IsDefinition) { |
| 7201 | if (IsSpecialization) { |
| 7202 | S.Diag( |
| 7203 | NewDecl->getLocation(), |
| 7204 | diag::err_attribute_dllimport_function_specialization_definition); |
| 7205 | S.Diag(OldImportAttr->getLocation(), diag::note_attribute); |
| 7206 | NewDecl->dropAttr<DLLImportAttr>(); |
| 7207 | } else { |
| 7208 | S.Diag(NewDecl->getLocation(), |
| 7209 | diag::warn_redeclaration_without_import_attribute) |
| 7210 | << NewDecl; |
| 7211 | S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); |
| 7212 | NewDecl->dropAttr<DLLImportAttr>(); |
| 7213 | NewDecl->addAttr(DLLExportAttr::CreateImplicit( |
| 7214 | S.Context, NewImportAttr->getRange())); |
| 7215 | } |
| 7216 | } else if (IsMicrosoftABI && IsSpecialization) { |
| 7217 | assert(!IsDefinition); |
| 7218 | // MSVC allows this. Keep the inherited attribute. |
| 7219 | } else { |
| 7220 | S.Diag(NewDecl->getLocation(), |
| 7221 | diag::warn_redeclaration_without_attribute_prev_attribute_ignored) |
| 7222 | << NewDecl << OldImportAttr; |
| 7223 | S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); |
| 7224 | S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute); |
| 7225 | OldDecl->dropAttr<DLLImportAttr>(); |
| 7226 | NewDecl->dropAttr<DLLImportAttr>(); |
| 7227 | } |
| 7228 | } else if (IsInline && OldImportAttr && !IsMicrosoftABI) { |
| 7229 | // In MinGW, seeing a function declared inline drops the dllimport |
| 7230 | // attribute. |
| 7231 | OldDecl->dropAttr<DLLImportAttr>(); |
| 7232 | NewDecl->dropAttr<DLLImportAttr>(); |
| 7233 | S.Diag(NewDecl->getLocation(), |
| 7234 | diag::warn_dllimport_dropped_from_inline_function) |
| 7235 | << NewDecl << OldImportAttr; |
| 7236 | } |
| 7237 | |
| 7238 | // A specialization of a class template member function is processed here |
| 7239 | // since it's a redeclaration. If the parent class is dllexport, the |
| 7240 | // specialization inherits that attribute. This doesn't happen automatically |
| 7241 | // since the parent class isn't instantiated until later. |
| 7242 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: NewDecl)) { |
| 7243 | if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization && |
| 7244 | !NewImportAttr && !NewExportAttr) { |
| 7245 | if (const DLLExportAttr *ParentExportAttr = |
| 7246 | MD->getParent()->getAttr<DLLExportAttr>()) { |
| 7247 | DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context); |
| 7248 | NewAttr->setInherited(true); |
| 7249 | NewDecl->addAttr(A: NewAttr); |
| 7250 | } |
| 7251 | } |
| 7252 | } |
| 7253 | } |
| 7254 | |
| 7255 | /// Given that we are within the definition of the given function, |
| 7256 | /// will that definition behave like C99's 'inline', where the |
| 7257 | /// definition is discarded except for optimization purposes? |
| 7258 | static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) { |
| 7259 | // Try to avoid calling GetGVALinkageForFunction. |
| 7260 | |
| 7261 | // All cases of this require the 'inline' keyword. |
| 7262 | if (!FD->isInlined()) return false; |
| 7263 | |
| 7264 | // This is only possible in C++ with the gnu_inline attribute. |
| 7265 | if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>()) |
| 7266 | return false; |
| 7267 | |
| 7268 | // Okay, go ahead and call the relatively-more-expensive function. |
| 7269 | return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally; |
| 7270 | } |
| 7271 | |
| 7272 | /// Determine whether a variable is extern "C" prior to attaching |
| 7273 | /// an initializer. We can't just call isExternC() here, because that |
| 7274 | /// will also compute and cache whether the declaration is externally |
| 7275 | /// visible, which might change when we attach the initializer. |
| 7276 | /// |
| 7277 | /// This can only be used if the declaration is known to not be a |
| 7278 | /// redeclaration of an internal linkage declaration. |
| 7279 | /// |
| 7280 | /// For instance: |
| 7281 | /// |
| 7282 | /// auto x = []{}; |
| 7283 | /// |
| 7284 | /// Attaching the initializer here makes this declaration not externally |
| 7285 | /// visible, because its type has internal linkage. |
| 7286 | /// |
| 7287 | /// FIXME: This is a hack. |
| 7288 | template<typename T> |
| 7289 | static bool isIncompleteDeclExternC(Sema &S, const T *D) { |
| 7290 | if (S.getLangOpts().CPlusPlus) { |
| 7291 | // In C++, the overloadable attribute negates the effects of extern "C". |
| 7292 | if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>()) |
| 7293 | return false; |
| 7294 | |
| 7295 | // So do CUDA's host/device attributes. |
| 7296 | if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() || |
| 7297 | D->template hasAttr<CUDAHostAttr>())) |
| 7298 | return false; |
| 7299 | } |
| 7300 | return D->isExternC(); |
| 7301 | } |
| 7302 | |
| 7303 | static bool shouldConsiderLinkage(const VarDecl *VD) { |
| 7304 | const DeclContext *DC = VD->getDeclContext()->getRedeclContext(); |
| 7305 | if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(Val: DC) || |
| 7306 | isa<OMPDeclareMapperDecl>(Val: DC)) |
| 7307 | return VD->hasExternalStorage(); |
| 7308 | if (DC->isFileContext()) |
| 7309 | return true; |
| 7310 | if (DC->isRecord()) |
| 7311 | return false; |
| 7312 | if (DC->getDeclKind() == Decl::HLSLBuffer) |
| 7313 | return false; |
| 7314 | |
| 7315 | if (isa<RequiresExprBodyDecl>(Val: DC)) |
| 7316 | return false; |
| 7317 | llvm_unreachable("Unexpected context" ); |
| 7318 | } |
| 7319 | |
| 7320 | static bool shouldConsiderLinkage(const FunctionDecl *FD) { |
| 7321 | const DeclContext *DC = FD->getDeclContext()->getRedeclContext(); |
| 7322 | if (DC->isFileContext() || DC->isFunctionOrMethod() || |
| 7323 | isa<OMPDeclareReductionDecl>(Val: DC) || isa<OMPDeclareMapperDecl>(Val: DC)) |
| 7324 | return true; |
| 7325 | if (DC->isRecord()) |
| 7326 | return false; |
| 7327 | llvm_unreachable("Unexpected context" ); |
| 7328 | } |
| 7329 | |
| 7330 | static bool hasParsedAttr(Scope *S, const Declarator &PD, |
| 7331 | ParsedAttr::Kind Kind) { |
| 7332 | // Check decl attributes on the DeclSpec. |
| 7333 | if (PD.getDeclSpec().getAttributes().hasAttribute(K: Kind)) |
| 7334 | return true; |
| 7335 | |
| 7336 | // Walk the declarator structure, checking decl attributes that were in a type |
| 7337 | // position to the decl itself. |
| 7338 | for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) { |
| 7339 | if (PD.getTypeObject(i: I).getAttrs().hasAttribute(K: Kind)) |
| 7340 | return true; |
| 7341 | } |
| 7342 | |
| 7343 | // Finally, check attributes on the decl itself. |
| 7344 | return PD.getAttributes().hasAttribute(K: Kind) || |
| 7345 | PD.getDeclarationAttributes().hasAttribute(K: Kind); |
| 7346 | } |
| 7347 | |
| 7348 | bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) { |
| 7349 | if (!DC->isFunctionOrMethod()) |
| 7350 | return false; |
| 7351 | |
| 7352 | // If this is a local extern function or variable declared within a function |
| 7353 | // template, don't add it into the enclosing namespace scope until it is |
| 7354 | // instantiated; it might have a dependent type right now. |
| 7355 | if (DC->isDependentContext()) |
| 7356 | return true; |
| 7357 | |
| 7358 | // C++11 [basic.link]p7: |
| 7359 | // When a block scope declaration of an entity with linkage is not found to |
| 7360 | // refer to some other declaration, then that entity is a member of the |
| 7361 | // innermost enclosing namespace. |
| 7362 | // |
| 7363 | // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a |
| 7364 | // semantically-enclosing namespace, not a lexically-enclosing one. |
| 7365 | while (!DC->isFileContext() && !isa<LinkageSpecDecl>(Val: DC)) |
| 7366 | DC = DC->getParent(); |
| 7367 | return true; |
| 7368 | } |
| 7369 | |
| 7370 | /// Returns true if given declaration has external C language linkage. |
| 7371 | static bool isDeclExternC(const Decl *D) { |
| 7372 | if (const auto *FD = dyn_cast<FunctionDecl>(Val: D)) |
| 7373 | return FD->isExternC(); |
| 7374 | if (const auto *VD = dyn_cast<VarDecl>(Val: D)) |
| 7375 | return VD->isExternC(); |
| 7376 | |
| 7377 | llvm_unreachable("Unknown type of decl!" ); |
| 7378 | } |
| 7379 | |
| 7380 | /// Returns true if there hasn't been any invalid type diagnosed. |
| 7381 | static bool diagnoseOpenCLTypes(Sema &Se, VarDecl *NewVD) { |
| 7382 | DeclContext *DC = NewVD->getDeclContext(); |
| 7383 | QualType R = NewVD->getType(); |
| 7384 | |
| 7385 | // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument. |
| 7386 | // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function |
| 7387 | // argument. |
| 7388 | if (R->isImageType() || R->isPipeType()) { |
| 7389 | Se.Diag(NewVD->getLocation(), |
| 7390 | diag::err_opencl_type_can_only_be_used_as_function_parameter) |
| 7391 | << R; |
| 7392 | NewVD->setInvalidDecl(); |
| 7393 | return false; |
| 7394 | } |
| 7395 | |
| 7396 | // OpenCL v1.2 s6.9.r: |
| 7397 | // The event type cannot be used to declare a program scope variable. |
| 7398 | // OpenCL v2.0 s6.9.q: |
| 7399 | // The clk_event_t and reserve_id_t types cannot be declared in program |
| 7400 | // scope. |
| 7401 | if (NewVD->hasGlobalStorage() && !NewVD->isStaticLocal()) { |
| 7402 | if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) { |
| 7403 | Se.Diag(NewVD->getLocation(), |
| 7404 | diag::err_invalid_type_for_program_scope_var) |
| 7405 | << R; |
| 7406 | NewVD->setInvalidDecl(); |
| 7407 | return false; |
| 7408 | } |
| 7409 | } |
| 7410 | |
| 7411 | // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed. |
| 7412 | if (!Se.getOpenCLOptions().isAvailableOption(Ext: "__cl_clang_function_pointers" , |
| 7413 | LO: Se.getLangOpts())) { |
| 7414 | QualType NR = R.getCanonicalType(); |
| 7415 | while (NR->isPointerType() || NR->isMemberFunctionPointerType() || |
| 7416 | NR->isReferenceType()) { |
| 7417 | if (NR->isFunctionPointerType() || NR->isMemberFunctionPointerType() || |
| 7418 | NR->isFunctionReferenceType()) { |
| 7419 | Se.Diag(NewVD->getLocation(), diag::err_opencl_function_pointer) |
| 7420 | << NR->isReferenceType(); |
| 7421 | NewVD->setInvalidDecl(); |
| 7422 | return false; |
| 7423 | } |
| 7424 | NR = NR->getPointeeType(); |
| 7425 | } |
| 7426 | } |
| 7427 | |
| 7428 | if (!Se.getOpenCLOptions().isAvailableOption(Ext: "cl_khr_fp16" , |
| 7429 | LO: Se.getLangOpts())) { |
| 7430 | // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and |
| 7431 | // half array type (unless the cl_khr_fp16 extension is enabled). |
| 7432 | if (Se.Context.getBaseElementType(QT: R)->isHalfType()) { |
| 7433 | Se.Diag(NewVD->getLocation(), diag::err_opencl_half_declaration) << R; |
| 7434 | NewVD->setInvalidDecl(); |
| 7435 | return false; |
| 7436 | } |
| 7437 | } |
| 7438 | |
| 7439 | // OpenCL v1.2 s6.9.r: |
| 7440 | // The event type cannot be used with the __local, __constant and __global |
| 7441 | // address space qualifiers. |
| 7442 | if (R->isEventT()) { |
| 7443 | if (R.getAddressSpace() != LangAS::opencl_private) { |
| 7444 | Se.Diag(NewVD->getBeginLoc(), diag::err_event_t_addr_space_qual); |
| 7445 | NewVD->setInvalidDecl(); |
| 7446 | return false; |
| 7447 | } |
| 7448 | } |
| 7449 | |
| 7450 | if (R->isSamplerT()) { |
| 7451 | // OpenCL v1.2 s6.9.b p4: |
| 7452 | // The sampler type cannot be used with the __local and __global address |
| 7453 | // space qualifiers. |
| 7454 | if (R.getAddressSpace() == LangAS::opencl_local || |
| 7455 | R.getAddressSpace() == LangAS::opencl_global) { |
| 7456 | Se.Diag(NewVD->getLocation(), diag::err_wrong_sampler_addressspace); |
| 7457 | NewVD->setInvalidDecl(); |
| 7458 | } |
| 7459 | |
| 7460 | // OpenCL v1.2 s6.12.14.1: |
| 7461 | // A global sampler must be declared with either the constant address |
| 7462 | // space qualifier or with the const qualifier. |
| 7463 | if (DC->isTranslationUnit() && |
| 7464 | !(R.getAddressSpace() == LangAS::opencl_constant || |
| 7465 | R.isConstQualified())) { |
| 7466 | Se.Diag(NewVD->getLocation(), diag::err_opencl_nonconst_global_sampler); |
| 7467 | NewVD->setInvalidDecl(); |
| 7468 | } |
| 7469 | if (NewVD->isInvalidDecl()) |
| 7470 | return false; |
| 7471 | } |
| 7472 | |
| 7473 | return true; |
| 7474 | } |
| 7475 | |
| 7476 | template <typename AttrTy> |
| 7477 | static void copyAttrFromTypedefToDecl(Sema &S, Decl *D, const TypedefType *TT) { |
| 7478 | const TypedefNameDecl *TND = TT->getDecl(); |
| 7479 | if (const auto *Attribute = TND->getAttr<AttrTy>()) { |
| 7480 | AttrTy *Clone = Attribute->clone(S.Context); |
| 7481 | Clone->setInherited(true); |
| 7482 | D->addAttr(A: Clone); |
| 7483 | } |
| 7484 | } |
| 7485 | |
| 7486 | // This function emits warning and a corresponding note based on the |
| 7487 | // ReadOnlyPlacementAttr attribute. The warning checks that all global variable |
| 7488 | // declarations of an annotated type must be const qualified. |
| 7489 | static void emitReadOnlyPlacementAttrWarning(Sema &S, const VarDecl *VD) { |
| 7490 | QualType VarType = VD->getType().getCanonicalType(); |
| 7491 | |
| 7492 | // Ignore local declarations (for now) and those with const qualification. |
| 7493 | // TODO: Local variables should not be allowed if their type declaration has |
| 7494 | // ReadOnlyPlacementAttr attribute. To be handled in follow-up patch. |
| 7495 | if (!VD || VD->hasLocalStorage() || VD->getType().isConstQualified()) |
| 7496 | return; |
| 7497 | |
| 7498 | if (VarType->isArrayType()) { |
| 7499 | // Retrieve element type for array declarations. |
| 7500 | VarType = S.getASTContext().getBaseElementType(QT: VarType); |
| 7501 | } |
| 7502 | |
| 7503 | const RecordDecl *RD = VarType->getAsRecordDecl(); |
| 7504 | |
| 7505 | // Check if the record declaration is present and if it has any attributes. |
| 7506 | if (RD == nullptr) |
| 7507 | return; |
| 7508 | |
| 7509 | if (const auto *ConstDecl = RD->getAttr<ReadOnlyPlacementAttr>()) { |
| 7510 | S.Diag(VD->getLocation(), diag::warn_var_decl_not_read_only) << RD; |
| 7511 | S.Diag(ConstDecl->getLocation(), diag::note_enforce_read_only_placement); |
| 7512 | return; |
| 7513 | } |
| 7514 | } |
| 7515 | |
| 7516 | // Checks if VD is declared at global scope or with C language linkage. |
| 7517 | static bool isMainVar(DeclarationName Name, VarDecl *VD) { |
| 7518 | return Name.getAsIdentifierInfo() && |
| 7519 | Name.getAsIdentifierInfo()->isStr(Str: "main" ) && |
| 7520 | !VD->getDescribedVarTemplate() && |
| 7521 | (VD->getDeclContext()->getRedeclContext()->isTranslationUnit() || |
| 7522 | VD->isExternC()); |
| 7523 | } |
| 7524 | |
| 7525 | NamedDecl *Sema::ActOnVariableDeclarator( |
| 7526 | Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo, |
| 7527 | LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists, |
| 7528 | bool &AddToScope, ArrayRef<BindingDecl *> Bindings) { |
| 7529 | QualType R = TInfo->getType(); |
| 7530 | DeclarationName Name = GetNameForDeclarator(D).getName(); |
| 7531 | |
| 7532 | IdentifierInfo *II = Name.getAsIdentifierInfo(); |
| 7533 | bool IsPlaceholderVariable = false; |
| 7534 | |
| 7535 | if (D.isDecompositionDeclarator()) { |
| 7536 | // Take the name of the first declarator as our name for diagnostic |
| 7537 | // purposes. |
| 7538 | auto &Decomp = D.getDecompositionDeclarator(); |
| 7539 | if (!Decomp.bindings().empty()) { |
| 7540 | II = Decomp.bindings()[0].Name; |
| 7541 | Name = II; |
| 7542 | } |
| 7543 | } else if (!II) { |
| 7544 | Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name; |
| 7545 | return nullptr; |
| 7546 | } |
| 7547 | |
| 7548 | |
| 7549 | DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec(); |
| 7550 | StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS: D.getDeclSpec()); |
| 7551 | if (LangOpts.CPlusPlus && (DC->isClosure() || DC->isFunctionOrMethod()) && |
| 7552 | SC != SC_Static && SC != SC_Extern && II && II->isPlaceholder()) { |
| 7553 | |
| 7554 | IsPlaceholderVariable = true; |
| 7555 | |
| 7556 | if (!Previous.empty()) { |
| 7557 | NamedDecl *PrevDecl = *Previous.begin(); |
| 7558 | bool SameDC = PrevDecl->getDeclContext()->getRedeclContext()->Equals( |
| 7559 | DC->getRedeclContext()); |
| 7560 | if (SameDC && isDeclInScope(D: PrevDecl, Ctx: CurContext, S, AllowInlineNamespace: false)) { |
| 7561 | IsPlaceholderVariable = !isa<ParmVarDecl>(Val: PrevDecl); |
| 7562 | if (IsPlaceholderVariable) |
| 7563 | DiagPlaceholderVariableDefinition(Loc: D.getIdentifierLoc()); |
| 7564 | } |
| 7565 | } |
| 7566 | } |
| 7567 | |
| 7568 | // dllimport globals without explicit storage class are treated as extern. We |
| 7569 | // have to change the storage class this early to get the right DeclContext. |
| 7570 | if (SC == SC_None && !DC->isRecord() && |
| 7571 | hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) && |
| 7572 | !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport)) |
| 7573 | SC = SC_Extern; |
| 7574 | |
| 7575 | DeclContext *OriginalDC = DC; |
| 7576 | bool IsLocalExternDecl = SC == SC_Extern && |
| 7577 | adjustContextForLocalExternDecl(DC); |
| 7578 | |
| 7579 | if (SCSpec == DeclSpec::SCS_mutable) { |
| 7580 | // mutable can only appear on non-static class members, so it's always |
| 7581 | // an error here |
| 7582 | Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember); |
| 7583 | D.setInvalidType(); |
| 7584 | SC = SC_None; |
| 7585 | } |
| 7586 | |
| 7587 | if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register && |
| 7588 | !D.getAsmLabel() && !getSourceManager().isInSystemMacro( |
| 7589 | loc: D.getDeclSpec().getStorageClassSpecLoc())) { |
| 7590 | // In C++11, the 'register' storage class specifier is deprecated. |
| 7591 | // Suppress the warning in system macros, it's used in macros in some |
| 7592 | // popular C system headers, such as in glibc's htonl() macro. |
| 7593 | Diag(D.getDeclSpec().getStorageClassSpecLoc(), |
| 7594 | getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class |
| 7595 | : diag::warn_deprecated_register) |
| 7596 | << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); |
| 7597 | } |
| 7598 | |
| 7599 | DiagnoseFunctionSpecifiers(DS: D.getDeclSpec()); |
| 7600 | |
| 7601 | if (!DC->isRecord() && S->getFnParent() == nullptr) { |
| 7602 | // C99 6.9p2: The storage-class specifiers auto and register shall not |
| 7603 | // appear in the declaration specifiers in an external declaration. |
| 7604 | // Global Register+Asm is a GNU extension we support. |
| 7605 | if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) { |
| 7606 | Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope); |
| 7607 | D.setInvalidType(); |
| 7608 | } |
| 7609 | } |
| 7610 | |
| 7611 | // If this variable has a VLA type and an initializer, try to |
| 7612 | // fold to a constant-sized type. This is otherwise invalid. |
| 7613 | if (D.hasInitializer() && R->isVariableArrayType()) |
| 7614 | tryToFixVariablyModifiedVarType(TInfo, T&: R, Loc: D.getIdentifierLoc(), |
| 7615 | /*DiagID=*/FailedFoldDiagID: 0); |
| 7616 | |
| 7617 | if (AutoTypeLoc TL = TInfo->getTypeLoc().getContainedAutoTypeLoc()) { |
| 7618 | const AutoType *AT = TL.getTypePtr(); |
| 7619 | CheckConstrainedAuto(AutoT: AT, Loc: TL.getConceptNameLoc()); |
| 7620 | } |
| 7621 | |
| 7622 | bool IsMemberSpecialization = false; |
| 7623 | bool IsVariableTemplateSpecialization = false; |
| 7624 | bool IsPartialSpecialization = false; |
| 7625 | bool IsVariableTemplate = false; |
| 7626 | VarDecl *NewVD = nullptr; |
| 7627 | VarTemplateDecl *NewTemplate = nullptr; |
| 7628 | TemplateParameterList *TemplateParams = nullptr; |
| 7629 | if (!getLangOpts().CPlusPlus) { |
| 7630 | NewVD = VarDecl::Create(C&: Context, DC, StartLoc: D.getBeginLoc(), IdLoc: D.getIdentifierLoc(), |
| 7631 | Id: II, T: R, TInfo, S: SC); |
| 7632 | |
| 7633 | if (R->getContainedDeducedType()) |
| 7634 | ParsingInitForAutoVars.insert(NewVD); |
| 7635 | |
| 7636 | if (D.isInvalidType()) |
| 7637 | NewVD->setInvalidDecl(); |
| 7638 | |
| 7639 | if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() && |
| 7640 | NewVD->hasLocalStorage()) |
| 7641 | checkNonTrivialCUnion(QT: NewVD->getType(), Loc: NewVD->getLocation(), |
| 7642 | UseContext: NonTrivialCUnionContext::AutoVar, NonTrivialKind: NTCUK_Destruct); |
| 7643 | } else { |
| 7644 | bool Invalid = false; |
| 7645 | // Match up the template parameter lists with the scope specifier, then |
| 7646 | // determine whether we have a template or a template specialization. |
| 7647 | TemplateParams = MatchTemplateParametersToScopeSpecifier( |
| 7648 | DeclStartLoc: D.getDeclSpec().getBeginLoc(), DeclLoc: D.getIdentifierLoc(), |
| 7649 | SS: D.getCXXScopeSpec(), |
| 7650 | TemplateId: D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId |
| 7651 | ? D.getName().TemplateId |
| 7652 | : nullptr, |
| 7653 | ParamLists: TemplateParamLists, |
| 7654 | /*never a friend*/ IsFriend: false, IsMemberSpecialization, Invalid); |
| 7655 | |
| 7656 | if (TemplateParams) { |
| 7657 | if (DC->isDependentContext()) { |
| 7658 | ContextRAII SavedContext(*this, DC); |
| 7659 | if (RebuildTemplateParamsInCurrentInstantiation(Params: TemplateParams)) |
| 7660 | Invalid = true; |
| 7661 | } |
| 7662 | |
| 7663 | if (!TemplateParams->size() && |
| 7664 | D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { |
| 7665 | // There is an extraneous 'template<>' for this variable. Complain |
| 7666 | // about it, but allow the declaration of the variable. |
| 7667 | Diag(TemplateParams->getTemplateLoc(), |
| 7668 | diag::err_template_variable_noparams) |
| 7669 | << II |
| 7670 | << SourceRange(TemplateParams->getTemplateLoc(), |
| 7671 | TemplateParams->getRAngleLoc()); |
| 7672 | TemplateParams = nullptr; |
| 7673 | } else { |
| 7674 | // Check that we can declare a template here. |
| 7675 | if (CheckTemplateDeclScope(S, TemplateParams)) |
| 7676 | return nullptr; |
| 7677 | |
| 7678 | if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { |
| 7679 | // This is an explicit specialization or a partial specialization. |
| 7680 | IsVariableTemplateSpecialization = true; |
| 7681 | IsPartialSpecialization = TemplateParams->size() > 0; |
| 7682 | } else { // if (TemplateParams->size() > 0) |
| 7683 | // This is a template declaration. |
| 7684 | IsVariableTemplate = true; |
| 7685 | |
| 7686 | // Only C++1y supports variable templates (N3651). |
| 7687 | DiagCompat(D.getIdentifierLoc(), diag_compat::variable_template); |
| 7688 | } |
| 7689 | } |
| 7690 | } else { |
| 7691 | // Check that we can declare a member specialization here. |
| 7692 | if (!TemplateParamLists.empty() && IsMemberSpecialization && |
| 7693 | CheckTemplateDeclScope(S, TemplateParams: TemplateParamLists.back())) |
| 7694 | return nullptr; |
| 7695 | assert((Invalid || |
| 7696 | D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && |
| 7697 | "should have a 'template<>' for this decl" ); |
| 7698 | } |
| 7699 | |
| 7700 | bool IsExplicitSpecialization = |
| 7701 | IsVariableTemplateSpecialization && !IsPartialSpecialization; |
| 7702 | |
| 7703 | // C++ [temp.expl.spec]p2: |
| 7704 | // The declaration in an explicit-specialization shall not be an |
| 7705 | // export-declaration. An explicit specialization shall not use a |
| 7706 | // storage-class-specifier other than thread_local. |
| 7707 | // |
| 7708 | // We use the storage-class-specifier from DeclSpec because we may have |
| 7709 | // added implicit 'extern' for declarations with __declspec(dllimport)! |
| 7710 | if (SCSpec != DeclSpec::SCS_unspecified && |
| 7711 | (IsExplicitSpecialization || IsMemberSpecialization)) { |
| 7712 | Diag(D.getDeclSpec().getStorageClassSpecLoc(), |
| 7713 | diag::ext_explicit_specialization_storage_class) |
| 7714 | << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); |
| 7715 | } |
| 7716 | |
| 7717 | if (CurContext->isRecord()) { |
| 7718 | if (SC == SC_Static) { |
| 7719 | if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: DC)) { |
| 7720 | // Walk up the enclosing DeclContexts to check for any that are |
| 7721 | // incompatible with static data members. |
| 7722 | const DeclContext *FunctionOrMethod = nullptr; |
| 7723 | const CXXRecordDecl *AnonStruct = nullptr; |
| 7724 | for (DeclContext *Ctxt = DC; Ctxt; Ctxt = Ctxt->getParent()) { |
| 7725 | if (Ctxt->isFunctionOrMethod()) { |
| 7726 | FunctionOrMethod = Ctxt; |
| 7727 | break; |
| 7728 | } |
| 7729 | const CXXRecordDecl *ParentDecl = dyn_cast<CXXRecordDecl>(Val: Ctxt); |
| 7730 | if (ParentDecl && !ParentDecl->getDeclName()) { |
| 7731 | AnonStruct = ParentDecl; |
| 7732 | break; |
| 7733 | } |
| 7734 | } |
| 7735 | if (FunctionOrMethod) { |
| 7736 | // C++ [class.static.data]p5: A local class shall not have static |
| 7737 | // data members. |
| 7738 | Diag(D.getIdentifierLoc(), |
| 7739 | diag::err_static_data_member_not_allowed_in_local_class) |
| 7740 | << Name << RD->getDeclName() << RD->getTagKind(); |
| 7741 | } else if (AnonStruct) { |
| 7742 | // C++ [class.static.data]p4: Unnamed classes and classes contained |
| 7743 | // directly or indirectly within unnamed classes shall not contain |
| 7744 | // static data members. |
| 7745 | Diag(D.getIdentifierLoc(), |
| 7746 | diag::err_static_data_member_not_allowed_in_anon_struct) |
| 7747 | << Name << AnonStruct->getTagKind(); |
| 7748 | Invalid = true; |
| 7749 | } else if (RD->isUnion()) { |
| 7750 | // C++98 [class.union]p1: If a union contains a static data member, |
| 7751 | // the program is ill-formed. C++11 drops this restriction. |
| 7752 | DiagCompat(D.getIdentifierLoc(), |
| 7753 | diag_compat::static_data_member_in_union) |
| 7754 | << Name; |
| 7755 | } |
| 7756 | } |
| 7757 | } else if (IsVariableTemplate || IsPartialSpecialization) { |
| 7758 | // There is no such thing as a member field template. |
| 7759 | Diag(D.getIdentifierLoc(), diag::err_template_member) |
| 7760 | << II << TemplateParams->getSourceRange(); |
| 7761 | // Recover by pretending this is a static data member template. |
| 7762 | SC = SC_Static; |
| 7763 | } |
| 7764 | } else if (DC->isRecord()) { |
| 7765 | // This is an out-of-line definition of a static data member. |
| 7766 | switch (SC) { |
| 7767 | case SC_None: |
| 7768 | break; |
| 7769 | case SC_Static: |
| 7770 | Diag(D.getDeclSpec().getStorageClassSpecLoc(), |
| 7771 | diag::err_static_out_of_line) |
| 7772 | << FixItHint::CreateRemoval( |
| 7773 | D.getDeclSpec().getStorageClassSpecLoc()); |
| 7774 | break; |
| 7775 | case SC_Auto: |
| 7776 | case SC_Register: |
| 7777 | case SC_Extern: |
| 7778 | // [dcl.stc] p2: The auto or register specifiers shall be applied only |
| 7779 | // to names of variables declared in a block or to function parameters. |
| 7780 | // [dcl.stc] p6: The extern specifier cannot be used in the declaration |
| 7781 | // of class members |
| 7782 | |
| 7783 | Diag(D.getDeclSpec().getStorageClassSpecLoc(), |
| 7784 | diag::err_storage_class_for_static_member) |
| 7785 | << FixItHint::CreateRemoval( |
| 7786 | D.getDeclSpec().getStorageClassSpecLoc()); |
| 7787 | break; |
| 7788 | case SC_PrivateExtern: |
| 7789 | llvm_unreachable("C storage class in c++!" ); |
| 7790 | } |
| 7791 | } |
| 7792 | |
| 7793 | if (IsVariableTemplateSpecialization) { |
| 7794 | SourceLocation TemplateKWLoc = |
| 7795 | TemplateParamLists.size() > 0 |
| 7796 | ? TemplateParamLists[0]->getTemplateLoc() |
| 7797 | : SourceLocation(); |
| 7798 | DeclResult Res = ActOnVarTemplateSpecialization( |
| 7799 | S, D, DI: TInfo, Previous, TemplateKWLoc, TemplateParams, SC, |
| 7800 | IsPartialSpecialization); |
| 7801 | if (Res.isInvalid()) |
| 7802 | return nullptr; |
| 7803 | NewVD = cast<VarDecl>(Val: Res.get()); |
| 7804 | AddToScope = false; |
| 7805 | } else if (D.isDecompositionDeclarator()) { |
| 7806 | NewVD = DecompositionDecl::Create(C&: Context, DC, StartLoc: D.getBeginLoc(), |
| 7807 | LSquareLoc: D.getIdentifierLoc(), T: R, TInfo, S: SC, |
| 7808 | Bindings); |
| 7809 | } else |
| 7810 | NewVD = VarDecl::Create(C&: Context, DC, StartLoc: D.getBeginLoc(), |
| 7811 | IdLoc: D.getIdentifierLoc(), Id: II, T: R, TInfo, S: SC); |
| 7812 | |
| 7813 | // If this is supposed to be a variable template, create it as such. |
| 7814 | if (IsVariableTemplate) { |
| 7815 | NewTemplate = |
| 7816 | VarTemplateDecl::Create(C&: Context, DC, L: D.getIdentifierLoc(), Name, |
| 7817 | Params: TemplateParams, Decl: NewVD); |
| 7818 | NewVD->setDescribedVarTemplate(NewTemplate); |
| 7819 | } |
| 7820 | |
| 7821 | // If this decl has an auto type in need of deduction, make a note of the |
| 7822 | // Decl so we can diagnose uses of it in its own initializer. |
| 7823 | if (R->getContainedDeducedType()) |
| 7824 | ParsingInitForAutoVars.insert(NewVD); |
| 7825 | |
| 7826 | if (D.isInvalidType() || Invalid) { |
| 7827 | NewVD->setInvalidDecl(); |
| 7828 | if (NewTemplate) |
| 7829 | NewTemplate->setInvalidDecl(); |
| 7830 | } |
| 7831 | |
| 7832 | SetNestedNameSpecifier(*this, NewVD, D); |
| 7833 | |
| 7834 | // If we have any template parameter lists that don't directly belong to |
| 7835 | // the variable (matching the scope specifier), store them. |
| 7836 | // An explicit variable template specialization does not own any template |
| 7837 | // parameter lists. |
| 7838 | unsigned VDTemplateParamLists = |
| 7839 | (TemplateParams && !IsExplicitSpecialization) ? 1 : 0; |
| 7840 | if (TemplateParamLists.size() > VDTemplateParamLists) |
| 7841 | NewVD->setTemplateParameterListsInfo( |
| 7842 | Context, TemplateParamLists.drop_back(N: VDTemplateParamLists)); |
| 7843 | } |
| 7844 | |
| 7845 | if (D.getDeclSpec().isInlineSpecified()) { |
| 7846 | if (!getLangOpts().CPlusPlus) { |
| 7847 | Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) |
| 7848 | << 0; |
| 7849 | } else if (CurContext->isFunctionOrMethod()) { |
| 7850 | // 'inline' is not allowed on block scope variable declaration. |
| 7851 | Diag(D.getDeclSpec().getInlineSpecLoc(), |
| 7852 | diag::err_inline_declaration_block_scope) << Name |
| 7853 | << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); |
| 7854 | } else { |
| 7855 | Diag(D.getDeclSpec().getInlineSpecLoc(), |
| 7856 | getLangOpts().CPlusPlus17 ? diag::compat_cxx17_inline_variable |
| 7857 | : diag::compat_pre_cxx17_inline_variable); |
| 7858 | NewVD->setInlineSpecified(); |
| 7859 | } |
| 7860 | } |
| 7861 | |
| 7862 | // Set the lexical context. If the declarator has a C++ scope specifier, the |
| 7863 | // lexical context will be different from the semantic context. |
| 7864 | NewVD->setLexicalDeclContext(CurContext); |
| 7865 | if (NewTemplate) |
| 7866 | NewTemplate->setLexicalDeclContext(CurContext); |
| 7867 | |
| 7868 | if (IsLocalExternDecl) { |
| 7869 | if (D.isDecompositionDeclarator()) |
| 7870 | for (auto *B : Bindings) |
| 7871 | B->setLocalExternDecl(); |
| 7872 | else |
| 7873 | NewVD->setLocalExternDecl(); |
| 7874 | } |
| 7875 | |
| 7876 | bool EmitTLSUnsupportedError = false; |
| 7877 | if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) { |
| 7878 | // C++11 [dcl.stc]p4: |
| 7879 | // When thread_local is applied to a variable of block scope the |
| 7880 | // storage-class-specifier static is implied if it does not appear |
| 7881 | // explicitly. |
| 7882 | // Core issue: 'static' is not implied if the variable is declared |
| 7883 | // 'extern'. |
| 7884 | if (NewVD->hasLocalStorage() && |
| 7885 | (SCSpec != DeclSpec::SCS_unspecified || |
| 7886 | TSCS != DeclSpec::TSCS_thread_local || |
| 7887 | !DC->isFunctionOrMethod())) |
| 7888 | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), |
| 7889 | diag::err_thread_non_global) |
| 7890 | << DeclSpec::getSpecifierName(TSCS); |
| 7891 | else if (!Context.getTargetInfo().isTLSSupported()) { |
| 7892 | if (getLangOpts().CUDA || getLangOpts().isTargetDevice()) { |
| 7893 | // Postpone error emission until we've collected attributes required to |
| 7894 | // figure out whether it's a host or device variable and whether the |
| 7895 | // error should be ignored. |
| 7896 | EmitTLSUnsupportedError = true; |
| 7897 | // We still need to mark the variable as TLS so it shows up in AST with |
| 7898 | // proper storage class for other tools to use even if we're not going |
| 7899 | // to emit any code for it. |
| 7900 | NewVD->setTSCSpec(TSCS); |
| 7901 | } else |
| 7902 | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), |
| 7903 | diag::err_thread_unsupported); |
| 7904 | } else |
| 7905 | NewVD->setTSCSpec(TSCS); |
| 7906 | } |
| 7907 | |
| 7908 | switch (D.getDeclSpec().getConstexprSpecifier()) { |
| 7909 | case ConstexprSpecKind::Unspecified: |
| 7910 | break; |
| 7911 | |
| 7912 | case ConstexprSpecKind::Consteval: |
| 7913 | Diag(D.getDeclSpec().getConstexprSpecLoc(), |
| 7914 | diag::err_constexpr_wrong_decl_kind) |
| 7915 | << static_cast<int>(D.getDeclSpec().getConstexprSpecifier()); |
| 7916 | [[fallthrough]]; |
| 7917 | |
| 7918 | case ConstexprSpecKind::Constexpr: |
| 7919 | NewVD->setConstexpr(true); |
| 7920 | // C++1z [dcl.spec.constexpr]p1: |
| 7921 | // A static data member declared with the constexpr specifier is |
| 7922 | // implicitly an inline variable. |
| 7923 | if (NewVD->isStaticDataMember() && |
| 7924 | (getLangOpts().CPlusPlus17 || |
| 7925 | Context.getTargetInfo().getCXXABI().isMicrosoft())) |
| 7926 | NewVD->setImplicitlyInline(); |
| 7927 | break; |
| 7928 | |
| 7929 | case ConstexprSpecKind::Constinit: |
| 7930 | if (!NewVD->hasGlobalStorage()) |
| 7931 | Diag(D.getDeclSpec().getConstexprSpecLoc(), |
| 7932 | diag::err_constinit_local_variable); |
| 7933 | else |
| 7934 | NewVD->addAttr( |
| 7935 | ConstInitAttr::Create(Context, D.getDeclSpec().getConstexprSpecLoc(), |
| 7936 | ConstInitAttr::Keyword_constinit)); |
| 7937 | break; |
| 7938 | } |
| 7939 | |
| 7940 | // C99 6.7.4p3 |
| 7941 | // An inline definition of a function with external linkage shall |
| 7942 | // not contain a definition of a modifiable object with static or |
| 7943 | // thread storage duration... |
| 7944 | // We only apply this when the function is required to be defined |
| 7945 | // elsewhere, i.e. when the function is not 'extern inline'. Note |
| 7946 | // that a local variable with thread storage duration still has to |
| 7947 | // be marked 'static'. Also note that it's possible to get these |
| 7948 | // semantics in C++ using __attribute__((gnu_inline)). |
| 7949 | if (SC == SC_Static && S->getFnParent() != nullptr && |
| 7950 | !NewVD->getType().isConstQualified()) { |
| 7951 | FunctionDecl *CurFD = getCurFunctionDecl(); |
| 7952 | if (CurFD && isFunctionDefinitionDiscarded(S&: *this, FD: CurFD)) { |
| 7953 | Diag(D.getDeclSpec().getStorageClassSpecLoc(), |
| 7954 | diag::warn_static_local_in_extern_inline); |
| 7955 | MaybeSuggestAddingStaticToDecl(D: CurFD); |
| 7956 | } |
| 7957 | } |
| 7958 | |
| 7959 | if (D.getDeclSpec().isModulePrivateSpecified()) { |
| 7960 | if (IsVariableTemplateSpecialization) |
| 7961 | Diag(NewVD->getLocation(), diag::err_module_private_specialization) |
| 7962 | << (IsPartialSpecialization ? 1 : 0) |
| 7963 | << FixItHint::CreateRemoval( |
| 7964 | D.getDeclSpec().getModulePrivateSpecLoc()); |
| 7965 | else if (IsMemberSpecialization) |
| 7966 | Diag(NewVD->getLocation(), diag::err_module_private_specialization) |
| 7967 | << 2 |
| 7968 | << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); |
| 7969 | else if (NewVD->hasLocalStorage()) |
| 7970 | Diag(NewVD->getLocation(), diag::err_module_private_local) |
| 7971 | << 0 << NewVD |
| 7972 | << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) |
| 7973 | << FixItHint::CreateRemoval( |
| 7974 | D.getDeclSpec().getModulePrivateSpecLoc()); |
| 7975 | else { |
| 7976 | NewVD->setModulePrivate(); |
| 7977 | if (NewTemplate) |
| 7978 | NewTemplate->setModulePrivate(); |
| 7979 | for (auto *B : Bindings) |
| 7980 | B->setModulePrivate(); |
| 7981 | } |
| 7982 | } |
| 7983 | |
| 7984 | if (getLangOpts().OpenCL) { |
| 7985 | deduceOpenCLAddressSpace(NewVD); |
| 7986 | |
| 7987 | DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec(); |
| 7988 | if (TSC != TSCS_unspecified) { |
| 7989 | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), |
| 7990 | diag::err_opencl_unknown_type_specifier) |
| 7991 | << getLangOpts().getOpenCLVersionString() |
| 7992 | << DeclSpec::getSpecifierName(TSC) << 1; |
| 7993 | NewVD->setInvalidDecl(); |
| 7994 | } |
| 7995 | } |
| 7996 | |
| 7997 | // WebAssembly tables are always in address space 1 (wasm_var). Don't apply |
| 7998 | // address space if the table has local storage (semantic checks elsewhere |
| 7999 | // will produce an error anyway). |
| 8000 | if (const auto *ATy = dyn_cast<ArrayType>(NewVD->getType())) { |
| 8001 | if (ATy && ATy->getElementType().isWebAssemblyReferenceType() && |
| 8002 | !NewVD->hasLocalStorage()) { |
| 8003 | QualType Type = Context.getAddrSpaceQualType( |
| 8004 | T: NewVD->getType(), AddressSpace: Context.getLangASForBuiltinAddressSpace(AS: 1)); |
| 8005 | NewVD->setType(Type); |
| 8006 | } |
| 8007 | } |
| 8008 | |
| 8009 | // Handle attributes prior to checking for duplicates in MergeVarDecl |
| 8010 | ProcessDeclAttributes(S, NewVD, D); |
| 8011 | |
| 8012 | if (getLangOpts().HLSL) |
| 8013 | HLSL().ActOnVariableDeclarator(VD: NewVD); |
| 8014 | |
| 8015 | if (getLangOpts().OpenACC) |
| 8016 | OpenACC().ActOnVariableDeclarator(VD: NewVD); |
| 8017 | |
| 8018 | // FIXME: This is probably the wrong location to be doing this and we should |
| 8019 | // probably be doing this for more attributes (especially for function |
| 8020 | // pointer attributes such as format, warn_unused_result, etc.). Ideally |
| 8021 | // the code to copy attributes would be generated by TableGen. |
| 8022 | if (R->isFunctionPointerType()) |
| 8023 | if (const auto *TT = R->getAs<TypedefType>()) |
| 8024 | copyAttrFromTypedefToDecl<AllocSizeAttr>(*this, NewVD, TT); |
| 8025 | |
| 8026 | if (getLangOpts().CUDA || getLangOpts().isTargetDevice()) { |
| 8027 | if (EmitTLSUnsupportedError && |
| 8028 | ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) || |
| 8029 | (getLangOpts().OpenMPIsTargetDevice && |
| 8030 | OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD)))) |
| 8031 | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), |
| 8032 | diag::err_thread_unsupported); |
| 8033 | |
| 8034 | if (EmitTLSUnsupportedError && |
| 8035 | (LangOpts.SYCLIsDevice || |
| 8036 | (LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice))) |
| 8037 | targetDiag(D.getIdentifierLoc(), diag::err_thread_unsupported); |
| 8038 | // CUDA B.2.5: "__shared__ and __constant__ variables have implied static |
| 8039 | // storage [duration]." |
| 8040 | if (SC == SC_None && S->getFnParent() != nullptr && |
| 8041 | (NewVD->hasAttr<CUDASharedAttr>() || |
| 8042 | NewVD->hasAttr<CUDAConstantAttr>())) { |
| 8043 | NewVD->setStorageClass(SC_Static); |
| 8044 | } |
| 8045 | } |
| 8046 | |
| 8047 | // Ensure that dllimport globals without explicit storage class are treated as |
| 8048 | // extern. The storage class is set above using parsed attributes. Now we can |
| 8049 | // check the VarDecl itself. |
| 8050 | assert(!NewVD->hasAttr<DLLImportAttr>() || |
| 8051 | NewVD->getAttr<DLLImportAttr>()->isInherited() || |
| 8052 | NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None); |
| 8053 | |
| 8054 | // In auto-retain/release, infer strong retension for variables of |
| 8055 | // retainable type. |
| 8056 | if (getLangOpts().ObjCAutoRefCount && ObjC().inferObjCARCLifetime(NewVD)) |
| 8057 | NewVD->setInvalidDecl(); |
| 8058 | |
| 8059 | // Handle GNU asm-label extension (encoded as an attribute). |
| 8060 | if (Expr *E = (Expr*)D.getAsmLabel()) { |
| 8061 | // The parser guarantees this is a string. |
| 8062 | StringLiteral *SE = cast<StringLiteral>(Val: E); |
| 8063 | StringRef Label = SE->getString(); |
| 8064 | if (S->getFnParent() != nullptr) { |
| 8065 | switch (SC) { |
| 8066 | case SC_None: |
| 8067 | case SC_Auto: |
| 8068 | Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label; |
| 8069 | break; |
| 8070 | case SC_Register: |
| 8071 | // Local Named register |
| 8072 | if (!Context.getTargetInfo().isValidGCCRegisterName(Label) && |
| 8073 | DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl())) |
| 8074 | Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; |
| 8075 | break; |
| 8076 | case SC_Static: |
| 8077 | case SC_Extern: |
| 8078 | case SC_PrivateExtern: |
| 8079 | break; |
| 8080 | } |
| 8081 | } else if (SC == SC_Register) { |
| 8082 | // Global Named register |
| 8083 | if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) { |
| 8084 | const auto &TI = Context.getTargetInfo(); |
| 8085 | bool HasSizeMismatch; |
| 8086 | |
| 8087 | if (!TI.isValidGCCRegisterName(Label)) |
| 8088 | Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; |
| 8089 | else if (!TI.validateGlobalRegisterVariable(Label, |
| 8090 | Context.getTypeSize(R), |
| 8091 | HasSizeMismatch)) |
| 8092 | Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label; |
| 8093 | else if (HasSizeMismatch) |
| 8094 | Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label; |
| 8095 | } |
| 8096 | |
| 8097 | if (!R->isIntegralType(Ctx: Context) && !R->isPointerType()) { |
| 8098 | Diag(TInfo->getTypeLoc().getBeginLoc(), |
| 8099 | diag::err_asm_unsupported_register_type) |
| 8100 | << TInfo->getTypeLoc().getSourceRange(); |
| 8101 | NewVD->setInvalidDecl(true); |
| 8102 | } |
| 8103 | } |
| 8104 | |
| 8105 | NewVD->addAttr(AsmLabelAttr::Create(Context, Label, |
| 8106 | /*IsLiteralLabel=*/true, |
| 8107 | SE->getStrTokenLoc(0))); |
| 8108 | } else if (!ExtnameUndeclaredIdentifiers.empty()) { |
| 8109 | llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = |
| 8110 | ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier()); |
| 8111 | if (I != ExtnameUndeclaredIdentifiers.end()) { |
| 8112 | if (isDeclExternC(NewVD)) { |
| 8113 | NewVD->addAttr(A: I->second); |
| 8114 | ExtnameUndeclaredIdentifiers.erase(I); |
| 8115 | } else |
| 8116 | Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied) |
| 8117 | << /*Variable*/1 << NewVD; |
| 8118 | } |
| 8119 | } |
| 8120 | |
| 8121 | // Find the shadowed declaration before filtering for scope. |
| 8122 | NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty() |
| 8123 | ? getShadowedDeclaration(D: NewVD, R: Previous) |
| 8124 | : nullptr; |
| 8125 | |
| 8126 | // Don't consider existing declarations that are in a different |
| 8127 | // scope and are out-of-semantic-context declarations (if the new |
| 8128 | // declaration has linkage). |
| 8129 | FilterLookupForScope(R&: Previous, Ctx: OriginalDC, S, ConsiderLinkage: shouldConsiderLinkage(VD: NewVD), |
| 8130 | AllowInlineNamespace: D.getCXXScopeSpec().isNotEmpty() || |
| 8131 | IsMemberSpecialization || |
| 8132 | IsVariableTemplateSpecialization); |
| 8133 | |
| 8134 | // Check whether the previous declaration is in the same block scope. This |
| 8135 | // affects whether we merge types with it, per C++11 [dcl.array]p3. |
| 8136 | if (getLangOpts().CPlusPlus && |
| 8137 | NewVD->isLocalVarDecl() && NewVD->hasExternalStorage()) |
| 8138 | NewVD->setPreviousDeclInSameBlockScope( |
| 8139 | Previous.isSingleResult() && !Previous.isShadowed() && |
| 8140 | isDeclInScope(D: Previous.getFoundDecl(), Ctx: OriginalDC, S, AllowInlineNamespace: false)); |
| 8141 | |
| 8142 | if (!getLangOpts().CPlusPlus) { |
| 8143 | D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); |
| 8144 | } else { |
| 8145 | // If this is an explicit specialization of a static data member, check it. |
| 8146 | if (IsMemberSpecialization && !IsVariableTemplate && |
| 8147 | !IsVariableTemplateSpecialization && !NewVD->isInvalidDecl() && |
| 8148 | CheckMemberSpecialization(NewVD, Previous)) |
| 8149 | NewVD->setInvalidDecl(); |
| 8150 | |
| 8151 | // Merge the decl with the existing one if appropriate. |
| 8152 | if (!Previous.empty()) { |
| 8153 | if (Previous.isSingleResult() && |
| 8154 | isa<FieldDecl>(Val: Previous.getFoundDecl()) && |
| 8155 | D.getCXXScopeSpec().isSet()) { |
| 8156 | // The user tried to define a non-static data member |
| 8157 | // out-of-line (C++ [dcl.meaning]p1). |
| 8158 | Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line) |
| 8159 | << D.getCXXScopeSpec().getRange(); |
| 8160 | Previous.clear(); |
| 8161 | NewVD->setInvalidDecl(); |
| 8162 | } |
| 8163 | } else if (D.getCXXScopeSpec().isSet() && |
| 8164 | !IsVariableTemplateSpecialization) { |
| 8165 | // No previous declaration in the qualifying scope. |
| 8166 | Diag(D.getIdentifierLoc(), diag::err_no_member) |
| 8167 | << Name << computeDeclContext(D.getCXXScopeSpec(), true) |
| 8168 | << D.getCXXScopeSpec().getRange(); |
| 8169 | NewVD->setInvalidDecl(); |
| 8170 | } |
| 8171 | |
| 8172 | if (!IsPlaceholderVariable) |
| 8173 | D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); |
| 8174 | |
| 8175 | // CheckVariableDeclaration will set NewVD as invalid if something is in |
| 8176 | // error like WebAssembly tables being declared as arrays with a non-zero |
| 8177 | // size, but then parsing continues and emits further errors on that line. |
| 8178 | // To avoid that we check here if it happened and return nullptr. |
| 8179 | if (NewVD->getType()->isWebAssemblyTableType() && NewVD->isInvalidDecl()) |
| 8180 | return nullptr; |
| 8181 | |
| 8182 | if (NewTemplate) { |
| 8183 | VarTemplateDecl *PrevVarTemplate = |
| 8184 | NewVD->getPreviousDecl() |
| 8185 | ? NewVD->getPreviousDecl()->getDescribedVarTemplate() |
| 8186 | : nullptr; |
| 8187 | |
| 8188 | // Check the template parameter list of this declaration, possibly |
| 8189 | // merging in the template parameter list from the previous variable |
| 8190 | // template declaration. |
| 8191 | if (CheckTemplateParameterList( |
| 8192 | NewParams: TemplateParams, |
| 8193 | OldParams: PrevVarTemplate ? PrevVarTemplate->getTemplateParameters() |
| 8194 | : nullptr, |
| 8195 | TPC: (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() && |
| 8196 | DC->isDependentContext()) |
| 8197 | ? TPC_ClassTemplateMember |
| 8198 | : TPC_Other)) |
| 8199 | NewVD->setInvalidDecl(); |
| 8200 | |
| 8201 | // If we are providing an explicit specialization of a static variable |
| 8202 | // template, make a note of that. |
| 8203 | if (PrevVarTemplate && |
| 8204 | PrevVarTemplate->getInstantiatedFromMemberTemplate()) |
| 8205 | PrevVarTemplate->setMemberSpecialization(); |
| 8206 | } |
| 8207 | } |
| 8208 | |
| 8209 | // Diagnose shadowed variables iff this isn't a redeclaration. |
| 8210 | if (!IsPlaceholderVariable && ShadowedDecl && !D.isRedeclaration()) |
| 8211 | CheckShadow(NewVD, ShadowedDecl, Previous); |
| 8212 | |
| 8213 | ProcessPragmaWeak(S, NewVD); |
| 8214 | |
| 8215 | // If this is the first declaration of an extern C variable, update |
| 8216 | // the map of such variables. |
| 8217 | if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() && |
| 8218 | isIncompleteDeclExternC(S&: *this, D: NewVD)) |
| 8219 | RegisterLocallyScopedExternCDecl(NewVD, S); |
| 8220 | |
| 8221 | if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { |
| 8222 | MangleNumberingContext *MCtx; |
| 8223 | Decl *ManglingContextDecl; |
| 8224 | std::tie(args&: MCtx, args&: ManglingContextDecl) = |
| 8225 | getCurrentMangleNumberContext(DC: NewVD->getDeclContext()); |
| 8226 | if (MCtx) { |
| 8227 | Context.setManglingNumber( |
| 8228 | NewVD, MCtx->getManglingNumber( |
| 8229 | VD: NewVD, MSLocalManglingNumber: getMSManglingNumber(LO: getLangOpts(), S))); |
| 8230 | Context.setStaticLocalNumber(VD: NewVD, Number: MCtx->getStaticLocalNumber(VD: NewVD)); |
| 8231 | } |
| 8232 | } |
| 8233 | |
| 8234 | // Special handling of variable named 'main'. |
| 8235 | if (!getLangOpts().Freestanding && isMainVar(Name, VD: NewVD)) { |
| 8236 | // C++ [basic.start.main]p3: |
| 8237 | // A program that declares |
| 8238 | // - a variable main at global scope, or |
| 8239 | // - an entity named main with C language linkage (in any namespace) |
| 8240 | // is ill-formed |
| 8241 | if (getLangOpts().CPlusPlus) |
| 8242 | Diag(D.getBeginLoc(), diag::err_main_global_variable) |
| 8243 | << NewVD->isExternC(); |
| 8244 | |
| 8245 | // In C, and external-linkage variable named main results in undefined |
| 8246 | // behavior. |
| 8247 | else if (NewVD->hasExternalFormalLinkage()) |
| 8248 | Diag(D.getBeginLoc(), diag::warn_main_redefined); |
| 8249 | } |
| 8250 | |
| 8251 | if (D.isRedeclaration() && !Previous.empty()) { |
| 8252 | NamedDecl *Prev = Previous.getRepresentativeDecl(); |
| 8253 | checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization, |
| 8254 | D.isFunctionDefinition()); |
| 8255 | } |
| 8256 | |
| 8257 | if (NewTemplate) { |
| 8258 | if (NewVD->isInvalidDecl()) |
| 8259 | NewTemplate->setInvalidDecl(); |
| 8260 | ActOnDocumentableDecl(NewTemplate); |
| 8261 | return NewTemplate; |
| 8262 | } |
| 8263 | |
| 8264 | if (IsMemberSpecialization && !NewVD->isInvalidDecl()) |
| 8265 | CompleteMemberSpecialization(NewVD, Previous); |
| 8266 | |
| 8267 | emitReadOnlyPlacementAttrWarning(S&: *this, VD: NewVD); |
| 8268 | |
| 8269 | return NewVD; |
| 8270 | } |
| 8271 | |
| 8272 | /// Enum describing the %select options in diag::warn_decl_shadow. |
| 8273 | enum ShadowedDeclKind { |
| 8274 | SDK_Local, |
| 8275 | SDK_Global, |
| 8276 | SDK_StaticMember, |
| 8277 | SDK_Field, |
| 8278 | SDK_Typedef, |
| 8279 | SDK_Using, |
| 8280 | SDK_StructuredBinding |
| 8281 | }; |
| 8282 | |
| 8283 | /// Determine what kind of declaration we're shadowing. |
| 8284 | static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl, |
| 8285 | const DeclContext *OldDC) { |
| 8286 | if (isa<TypeAliasDecl>(Val: ShadowedDecl)) |
| 8287 | return SDK_Using; |
| 8288 | else if (isa<TypedefDecl>(Val: ShadowedDecl)) |
| 8289 | return SDK_Typedef; |
| 8290 | else if (isa<BindingDecl>(Val: ShadowedDecl)) |
| 8291 | return SDK_StructuredBinding; |
| 8292 | else if (isa<RecordDecl>(Val: OldDC)) |
| 8293 | return isa<FieldDecl>(Val: ShadowedDecl) ? SDK_Field : SDK_StaticMember; |
| 8294 | |
| 8295 | return OldDC->isFileContext() ? SDK_Global : SDK_Local; |
| 8296 | } |
| 8297 | |
| 8298 | /// Return the location of the capture if the given lambda captures the given |
| 8299 | /// variable \p VD, or an invalid source location otherwise. |
| 8300 | static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI, |
| 8301 | const VarDecl *VD) { |
| 8302 | for (const Capture &Capture : LSI->Captures) { |
| 8303 | if (Capture.isVariableCapture() && Capture.getVariable() == VD) |
| 8304 | return Capture.getLocation(); |
| 8305 | } |
| 8306 | return SourceLocation(); |
| 8307 | } |
| 8308 | |
| 8309 | static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags, |
| 8310 | const LookupResult &R) { |
| 8311 | // Only diagnose if we're shadowing an unambiguous field or variable. |
| 8312 | if (R.getResultKind() != LookupResultKind::Found) |
| 8313 | return false; |
| 8314 | |
| 8315 | // Return false if warning is ignored. |
| 8316 | return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc()); |
| 8317 | } |
| 8318 | |
| 8319 | NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D, |
| 8320 | const LookupResult &R) { |
| 8321 | if (!shouldWarnIfShadowedDecl(Diags, R)) |
| 8322 | return nullptr; |
| 8323 | |
| 8324 | // Don't diagnose declarations at file scope. |
| 8325 | if (D->hasGlobalStorage() && !D->isStaticLocal()) |
| 8326 | return nullptr; |
| 8327 | |
| 8328 | NamedDecl *ShadowedDecl = R.getFoundDecl(); |
| 8329 | return isa<VarDecl, FieldDecl, BindingDecl>(Val: ShadowedDecl) ? ShadowedDecl |
| 8330 | : nullptr; |
| 8331 | } |
| 8332 | |
| 8333 | NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D, |
| 8334 | const LookupResult &R) { |
| 8335 | // Don't warn if typedef declaration is part of a class |
| 8336 | if (D->getDeclContext()->isRecord()) |
| 8337 | return nullptr; |
| 8338 | |
| 8339 | if (!shouldWarnIfShadowedDecl(Diags, R)) |
| 8340 | return nullptr; |
| 8341 | |
| 8342 | NamedDecl *ShadowedDecl = R.getFoundDecl(); |
| 8343 | return isa<TypedefNameDecl>(Val: ShadowedDecl) ? ShadowedDecl : nullptr; |
| 8344 | } |
| 8345 | |
| 8346 | NamedDecl *Sema::getShadowedDeclaration(const BindingDecl *D, |
| 8347 | const LookupResult &R) { |
| 8348 | if (!shouldWarnIfShadowedDecl(Diags, R)) |
| 8349 | return nullptr; |
| 8350 | |
| 8351 | NamedDecl *ShadowedDecl = R.getFoundDecl(); |
| 8352 | return isa<VarDecl, FieldDecl, BindingDecl>(Val: ShadowedDecl) ? ShadowedDecl |
| 8353 | : nullptr; |
| 8354 | } |
| 8355 | |
| 8356 | void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl, |
| 8357 | const LookupResult &R) { |
| 8358 | DeclContext *NewDC = D->getDeclContext(); |
| 8359 | |
| 8360 | if (FieldDecl *FD = dyn_cast<FieldDecl>(Val: ShadowedDecl)) { |
| 8361 | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: NewDC)) { |
| 8362 | // Fields are not shadowed by variables in C++ static methods. |
| 8363 | if (MD->isStatic()) |
| 8364 | return; |
| 8365 | |
| 8366 | if (!MD->getParent()->isLambda() && MD->isExplicitObjectMemberFunction()) |
| 8367 | return; |
| 8368 | } |
| 8369 | // Fields shadowed by constructor parameters are a special case. Usually |
| 8370 | // the constructor initializes the field with the parameter. |
| 8371 | if (isa<CXXConstructorDecl>(Val: NewDC)) |
| 8372 | if (const auto PVD = dyn_cast<ParmVarDecl>(Val: D)) { |
| 8373 | // Remember that this was shadowed so we can either warn about its |
| 8374 | // modification or its existence depending on warning settings. |
| 8375 | ShadowingDecls.insert({PVD->getCanonicalDecl(), FD}); |
| 8376 | return; |
| 8377 | } |
| 8378 | } |
| 8379 | |
| 8380 | if (VarDecl *shadowedVar = dyn_cast<VarDecl>(Val: ShadowedDecl)) |
| 8381 | if (shadowedVar->isExternC()) { |
| 8382 | // For shadowing external vars, make sure that we point to the global |
| 8383 | // declaration, not a locally scoped extern declaration. |
| 8384 | for (auto *I : shadowedVar->redecls()) |
| 8385 | if (I->isFileVarDecl()) { |
| 8386 | ShadowedDecl = I; |
| 8387 | break; |
| 8388 | } |
| 8389 | } |
| 8390 | |
| 8391 | DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext(); |
| 8392 | |
| 8393 | unsigned WarningDiag = diag::warn_decl_shadow; |
| 8394 | SourceLocation CaptureLoc; |
| 8395 | if (isa<VarDecl>(Val: D) && NewDC && isa<CXXMethodDecl>(Val: NewDC)) { |
| 8396 | if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) { |
| 8397 | if (RD->isLambda() && OldDC->Encloses(DC: NewDC->getLexicalParent())) { |
| 8398 | if (const auto *VD = dyn_cast<VarDecl>(Val: ShadowedDecl)) { |
| 8399 | const auto *LSI = cast<LambdaScopeInfo>(Val: getCurFunction()); |
| 8400 | if (RD->getLambdaCaptureDefault() == LCD_None) { |
| 8401 | // Try to avoid warnings for lambdas with an explicit capture |
| 8402 | // list. Warn only when the lambda captures the shadowed decl |
| 8403 | // explicitly. |
| 8404 | CaptureLoc = getCaptureLocation(LSI, VD); |
| 8405 | if (CaptureLoc.isInvalid()) |
| 8406 | WarningDiag = diag::warn_decl_shadow_uncaptured_local; |
| 8407 | } else { |
| 8408 | // Remember that this was shadowed so we can avoid the warning if |
| 8409 | // the shadowed decl isn't captured and the warning settings allow |
| 8410 | // it. |
| 8411 | cast<LambdaScopeInfo>(Val: getCurFunction()) |
| 8412 | ->ShadowingDecls.push_back({.VD: D, VD}); |
| 8413 | return; |
| 8414 | } |
| 8415 | } |
| 8416 | if (isa<FieldDecl>(Val: ShadowedDecl)) { |
| 8417 | // If lambda can capture this, then emit default shadowing warning, |
| 8418 | // Otherwise it is not really a shadowing case since field is not |
| 8419 | // available in lambda's body. |
| 8420 | // At this point we don't know that lambda can capture this, so |
| 8421 | // remember that this was shadowed and delay until we know. |
| 8422 | cast<LambdaScopeInfo>(Val: getCurFunction()) |
| 8423 | ->ShadowingDecls.push_back(Elt: {.VD: D, .ShadowedDecl: ShadowedDecl}); |
| 8424 | return; |
| 8425 | } |
| 8426 | } |
| 8427 | if (const auto *VD = dyn_cast<VarDecl>(Val: ShadowedDecl); |
| 8428 | VD && VD->hasLocalStorage()) { |
| 8429 | // A variable can't shadow a local variable in an enclosing scope, if |
| 8430 | // they are separated by a non-capturing declaration context. |
| 8431 | for (DeclContext *ParentDC = NewDC; |
| 8432 | ParentDC && !ParentDC->Equals(DC: OldDC); |
| 8433 | ParentDC = getLambdaAwareParentOfDeclContext(DC: ParentDC)) { |
| 8434 | // Only block literals, captured statements, and lambda expressions |
| 8435 | // can capture; other scopes don't. |
| 8436 | if (!isa<BlockDecl>(Val: ParentDC) && !isa<CapturedDecl>(Val: ParentDC) && |
| 8437 | !isLambdaCallOperator(DC: ParentDC)) { |
| 8438 | return; |
| 8439 | } |
| 8440 | } |
| 8441 | } |
| 8442 | } |
| 8443 | } |
| 8444 | |
| 8445 | // Never warn about shadowing a placeholder variable. |
| 8446 | if (ShadowedDecl->isPlaceholderVar(LangOpts: getLangOpts())) |
| 8447 | return; |
| 8448 | |
| 8449 | // Only warn about certain kinds of shadowing for class members. |
| 8450 | if (NewDC) { |
| 8451 | // In particular, don't warn about shadowing non-class members. |
| 8452 | if (NewDC->isRecord() && !OldDC->isRecord()) |
| 8453 | return; |
| 8454 | |
| 8455 | // Skip shadowing check if we're in a class scope, dealing with an enum |
| 8456 | // constant in a different context. |
| 8457 | DeclContext *ReDC = NewDC->getRedeclContext(); |
| 8458 | if (ReDC->isRecord() && isa<EnumConstantDecl>(Val: D) && !OldDC->Equals(DC: ReDC)) |
| 8459 | return; |
| 8460 | |
| 8461 | // TODO: should we warn about static data members shadowing |
| 8462 | // static data members from base classes? |
| 8463 | |
| 8464 | // TODO: don't diagnose for inaccessible shadowed members. |
| 8465 | // This is hard to do perfectly because we might friend the |
| 8466 | // shadowing context, but that's just a false negative. |
| 8467 | } |
| 8468 | |
| 8469 | DeclarationName Name = R.getLookupName(); |
| 8470 | |
| 8471 | // Emit warning and note. |
| 8472 | ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC); |
| 8473 | Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC; |
| 8474 | if (!CaptureLoc.isInvalid()) |
| 8475 | Diag(CaptureLoc, diag::note_var_explicitly_captured_here) |
| 8476 | << Name << /*explicitly*/ 1; |
| 8477 | Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); |
| 8478 | } |
| 8479 | |
| 8480 | void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) { |
| 8481 | for (const auto &Shadow : LSI->ShadowingDecls) { |
| 8482 | const NamedDecl *ShadowedDecl = Shadow.ShadowedDecl; |
| 8483 | // Try to avoid the warning when the shadowed decl isn't captured. |
| 8484 | const DeclContext *OldDC = ShadowedDecl->getDeclContext(); |
| 8485 | if (const auto *VD = dyn_cast<VarDecl>(Val: ShadowedDecl)) { |
| 8486 | SourceLocation CaptureLoc = getCaptureLocation(LSI, VD); |
| 8487 | Diag(Shadow.VD->getLocation(), |
| 8488 | CaptureLoc.isInvalid() ? diag::warn_decl_shadow_uncaptured_local |
| 8489 | : diag::warn_decl_shadow) |
| 8490 | << Shadow.VD->getDeclName() |
| 8491 | << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC; |
| 8492 | if (CaptureLoc.isValid()) |
| 8493 | Diag(CaptureLoc, diag::note_var_explicitly_captured_here) |
| 8494 | << Shadow.VD->getDeclName() << /*explicitly*/ 0; |
| 8495 | Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); |
| 8496 | } else if (isa<FieldDecl>(Val: ShadowedDecl)) { |
| 8497 | Diag(Shadow.VD->getLocation(), |
| 8498 | LSI->isCXXThisCaptured() ? diag::warn_decl_shadow |
| 8499 | : diag::warn_decl_shadow_uncaptured_local) |
| 8500 | << Shadow.VD->getDeclName() |
| 8501 | << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC; |
| 8502 | Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); |
| 8503 | } |
| 8504 | } |
| 8505 | } |
| 8506 | |
| 8507 | void Sema::CheckShadow(Scope *S, VarDecl *D) { |
| 8508 | if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation())) |
| 8509 | return; |
| 8510 | |
| 8511 | LookupResult R(*this, D->getDeclName(), D->getLocation(), |
| 8512 | Sema::LookupOrdinaryName, |
| 8513 | RedeclarationKind::ForVisibleRedeclaration); |
| 8514 | LookupName(R, S); |
| 8515 | if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R)) |
| 8516 | CheckShadow(D, ShadowedDecl, R); |
| 8517 | } |
| 8518 | |
| 8519 | /// Check if 'E', which is an expression that is about to be modified, refers |
| 8520 | /// to a constructor parameter that shadows a field. |
| 8521 | void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) { |
| 8522 | // Quickly ignore expressions that can't be shadowing ctor parameters. |
| 8523 | if (!getLangOpts().CPlusPlus || ShadowingDecls.empty()) |
| 8524 | return; |
| 8525 | E = E->IgnoreParenImpCasts(); |
| 8526 | auto *DRE = dyn_cast<DeclRefExpr>(Val: E); |
| 8527 | if (!DRE) |
| 8528 | return; |
| 8529 | const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl()); |
| 8530 | auto I = ShadowingDecls.find(Val: D); |
| 8531 | if (I == ShadowingDecls.end()) |
| 8532 | return; |
| 8533 | const NamedDecl *ShadowedDecl = I->second; |
| 8534 | const DeclContext *OldDC = ShadowedDecl->getDeclContext(); |
| 8535 | Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC; |
| 8536 | Diag(D->getLocation(), diag::note_var_declared_here) << D; |
| 8537 | Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); |
| 8538 | |
| 8539 | // Avoid issuing multiple warnings about the same decl. |
| 8540 | ShadowingDecls.erase(I); |
| 8541 | } |
| 8542 | |
| 8543 | /// Check for conflict between this global or extern "C" declaration and |
| 8544 | /// previous global or extern "C" declarations. This is only used in C++. |
| 8545 | template<typename T> |
| 8546 | static bool checkGlobalOrExternCConflict( |
| 8547 | Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) { |
| 8548 | assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"" ); |
| 8549 | NamedDecl *Prev = S.findLocallyScopedExternCDecl(Name: ND->getDeclName()); |
| 8550 | |
| 8551 | if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) { |
| 8552 | // The common case: this global doesn't conflict with any extern "C" |
| 8553 | // declaration. |
| 8554 | return false; |
| 8555 | } |
| 8556 | |
| 8557 | if (Prev) { |
| 8558 | if (!IsGlobal || isIncompleteDeclExternC(S, ND)) { |
| 8559 | // Both the old and new declarations have C language linkage. This is a |
| 8560 | // redeclaration. |
| 8561 | Previous.clear(); |
| 8562 | Previous.addDecl(D: Prev); |
| 8563 | return true; |
| 8564 | } |
| 8565 | |
| 8566 | // This is a global, non-extern "C" declaration, and there is a previous |
| 8567 | // non-global extern "C" declaration. Diagnose if this is a variable |
| 8568 | // declaration. |
| 8569 | if (!isa<VarDecl>(ND)) |
| 8570 | return false; |
| 8571 | } else { |
| 8572 | // The declaration is extern "C". Check for any declaration in the |
| 8573 | // translation unit which might conflict. |
| 8574 | if (IsGlobal) { |
| 8575 | // We have already performed the lookup into the translation unit. |
| 8576 | IsGlobal = false; |
| 8577 | for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); |
| 8578 | I != E; ++I) { |
| 8579 | if (isa<VarDecl>(Val: *I)) { |
| 8580 | Prev = *I; |
| 8581 | break; |
| 8582 | } |
| 8583 | } |
| 8584 | } else { |
| 8585 | DeclContext::lookup_result R = |
| 8586 | S.Context.getTranslationUnitDecl()->lookup(Name: ND->getDeclName()); |
| 8587 | for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end(); |
| 8588 | I != E; ++I) { |
| 8589 | if (isa<VarDecl>(Val: *I)) { |
| 8590 | Prev = *I; |
| 8591 | break; |
| 8592 | } |
| 8593 | // FIXME: If we have any other entity with this name in global scope, |
| 8594 | // the declaration is ill-formed, but that is a defect: it breaks the |
| 8595 | // 'stat' hack, for instance. Only variables can have mangled name |
| 8596 | // clashes with extern "C" declarations, so only they deserve a |
| 8597 | // diagnostic. |
| 8598 | } |
| 8599 | } |
| 8600 | |
| 8601 | if (!Prev) |
| 8602 | return false; |
| 8603 | } |
| 8604 | |
| 8605 | // Use the first declaration's location to ensure we point at something which |
| 8606 | // is lexically inside an extern "C" linkage-spec. |
| 8607 | assert(Prev && "should have found a previous declaration to diagnose" ); |
| 8608 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: Prev)) |
| 8609 | Prev = FD->getFirstDecl(); |
| 8610 | else |
| 8611 | Prev = cast<VarDecl>(Val: Prev)->getFirstDecl(); |
| 8612 | |
| 8613 | S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict) |
| 8614 | << IsGlobal << ND; |
| 8615 | S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict) |
| 8616 | << IsGlobal; |
| 8617 | return false; |
| 8618 | } |
| 8619 | |
| 8620 | /// Apply special rules for handling extern "C" declarations. Returns \c true |
| 8621 | /// if we have found that this is a redeclaration of some prior entity. |
| 8622 | /// |
| 8623 | /// Per C++ [dcl.link]p6: |
| 8624 | /// Two declarations [for a function or variable] with C language linkage |
| 8625 | /// with the same name that appear in different scopes refer to the same |
| 8626 | /// [entity]. An entity with C language linkage shall not be declared with |
| 8627 | /// the same name as an entity in global scope. |
| 8628 | template<typename T> |
| 8629 | static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND, |
| 8630 | LookupResult &Previous) { |
| 8631 | if (!S.getLangOpts().CPlusPlus) { |
| 8632 | // In C, when declaring a global variable, look for a corresponding 'extern' |
| 8633 | // variable declared in function scope. We don't need this in C++, because |
| 8634 | // we find local extern decls in the surrounding file-scope DeclContext. |
| 8635 | if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) { |
| 8636 | if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(Name: ND->getDeclName())) { |
| 8637 | Previous.clear(); |
| 8638 | Previous.addDecl(D: Prev); |
| 8639 | return true; |
| 8640 | } |
| 8641 | } |
| 8642 | return false; |
| 8643 | } |
| 8644 | |
| 8645 | // A declaration in the translation unit can conflict with an extern "C" |
| 8646 | // declaration. |
| 8647 | if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) |
| 8648 | return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous); |
| 8649 | |
| 8650 | // An extern "C" declaration can conflict with a declaration in the |
| 8651 | // translation unit or can be a redeclaration of an extern "C" declaration |
| 8652 | // in another scope. |
| 8653 | if (isIncompleteDeclExternC(S,ND)) |
| 8654 | return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous); |
| 8655 | |
| 8656 | // Neither global nor extern "C": nothing to do. |
| 8657 | return false; |
| 8658 | } |
| 8659 | |
| 8660 | static bool CheckC23ConstexprVarType(Sema &SemaRef, SourceLocation VarLoc, |
| 8661 | QualType T) { |
| 8662 | QualType CanonT = SemaRef.Context.getCanonicalType(T); |
| 8663 | // C23 6.7.1p5: An object declared with storage-class specifier constexpr or |
| 8664 | // any of its members, even recursively, shall not have an atomic type, or a |
| 8665 | // variably modified type, or a type that is volatile or restrict qualified. |
| 8666 | if (CanonT->isVariablyModifiedType()) { |
| 8667 | SemaRef.Diag(VarLoc, diag::err_c23_constexpr_invalid_type) << T; |
| 8668 | return true; |
| 8669 | } |
| 8670 | |
| 8671 | // Arrays are qualified by their element type, so get the base type (this |
| 8672 | // works on non-arrays as well). |
| 8673 | CanonT = SemaRef.Context.getBaseElementType(QT: CanonT); |
| 8674 | |
| 8675 | if (CanonT->isAtomicType() || CanonT.isVolatileQualified() || |
| 8676 | CanonT.isRestrictQualified()) { |
| 8677 | SemaRef.Diag(VarLoc, diag::err_c23_constexpr_invalid_type) << T; |
| 8678 | return true; |
| 8679 | } |
| 8680 | |
| 8681 | if (CanonT->isRecordType()) { |
| 8682 | const RecordDecl *RD = CanonT->getAsRecordDecl(); |
| 8683 | if (!RD->isInvalidDecl() && |
| 8684 | llvm::any_of(Range: RD->fields(), P: [&SemaRef, VarLoc](const FieldDecl *F) { |
| 8685 | return CheckC23ConstexprVarType(SemaRef, VarLoc, F->getType()); |
| 8686 | })) |
| 8687 | return true; |
| 8688 | } |
| 8689 | |
| 8690 | return false; |
| 8691 | } |
| 8692 | |
| 8693 | void Sema::CheckVariableDeclarationType(VarDecl *NewVD) { |
| 8694 | // If the decl is already known invalid, don't check it. |
| 8695 | if (NewVD->isInvalidDecl()) |
| 8696 | return; |
| 8697 | |
| 8698 | QualType T = NewVD->getType(); |
| 8699 | |
| 8700 | // Defer checking an 'auto' type until its initializer is attached. |
| 8701 | if (T->isUndeducedType()) |
| 8702 | return; |
| 8703 | |
| 8704 | if (NewVD->hasAttrs()) |
| 8705 | CheckAlignasUnderalignment(NewVD); |
| 8706 | |
| 8707 | if (T->isObjCObjectType()) { |
| 8708 | Diag(NewVD->getLocation(), diag::err_statically_allocated_object) |
| 8709 | << FixItHint::CreateInsertion(NewVD->getLocation(), "*" ); |
| 8710 | T = Context.getObjCObjectPointerType(OIT: T); |
| 8711 | NewVD->setType(T); |
| 8712 | } |
| 8713 | |
| 8714 | // Emit an error if an address space was applied to decl with local storage. |
| 8715 | // This includes arrays of objects with address space qualifiers, but not |
| 8716 | // automatic variables that point to other address spaces. |
| 8717 | // ISO/IEC TR 18037 S5.1.2 |
| 8718 | if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() && |
| 8719 | T.getAddressSpace() != LangAS::Default) { |
| 8720 | Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0; |
| 8721 | NewVD->setInvalidDecl(); |
| 8722 | return; |
| 8723 | } |
| 8724 | |
| 8725 | // OpenCL v1.2 s6.8 - The static qualifier is valid only in program |
| 8726 | // scope. |
| 8727 | if (getLangOpts().OpenCLVersion == 120 && |
| 8728 | !getOpenCLOptions().isAvailableOption(Ext: "cl_clang_storage_class_specifiers" , |
| 8729 | LO: getLangOpts()) && |
| 8730 | NewVD->isStaticLocal()) { |
| 8731 | Diag(NewVD->getLocation(), diag::err_static_function_scope); |
| 8732 | NewVD->setInvalidDecl(); |
| 8733 | return; |
| 8734 | } |
| 8735 | |
| 8736 | if (getLangOpts().OpenCL) { |
| 8737 | if (!diagnoseOpenCLTypes(Se&: *this, NewVD)) |
| 8738 | return; |
| 8739 | |
| 8740 | // OpenCL v2.0 s6.12.5 - The __block storage type is not supported. |
| 8741 | if (NewVD->hasAttr<BlocksAttr>()) { |
| 8742 | Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type); |
| 8743 | return; |
| 8744 | } |
| 8745 | |
| 8746 | if (T->isBlockPointerType()) { |
| 8747 | // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and |
| 8748 | // can't use 'extern' storage class. |
| 8749 | if (!T.isConstQualified()) { |
| 8750 | Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration) |
| 8751 | << 0 /*const*/; |
| 8752 | NewVD->setInvalidDecl(); |
| 8753 | return; |
| 8754 | } |
| 8755 | if (NewVD->hasExternalStorage()) { |
| 8756 | Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration); |
| 8757 | NewVD->setInvalidDecl(); |
| 8758 | return; |
| 8759 | } |
| 8760 | } |
| 8761 | |
| 8762 | // FIXME: Adding local AS in C++ for OpenCL might make sense. |
| 8763 | if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() || |
| 8764 | NewVD->hasExternalStorage()) { |
| 8765 | if (!T->isSamplerT() && !T->isDependentType() && |
| 8766 | !(T.getAddressSpace() == LangAS::opencl_constant || |
| 8767 | (T.getAddressSpace() == LangAS::opencl_global && |
| 8768 | getOpenCLOptions().areProgramScopeVariablesSupported( |
| 8769 | Opts: getLangOpts())))) { |
| 8770 | int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1; |
| 8771 | if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts())) |
| 8772 | Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space) |
| 8773 | << Scope << "global or constant" ; |
| 8774 | else |
| 8775 | Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space) |
| 8776 | << Scope << "constant" ; |
| 8777 | NewVD->setInvalidDecl(); |
| 8778 | return; |
| 8779 | } |
| 8780 | } else { |
| 8781 | if (T.getAddressSpace() == LangAS::opencl_global) { |
| 8782 | Diag(NewVD->getLocation(), diag::err_opencl_function_variable) |
| 8783 | << 1 /*is any function*/ << "global" ; |
| 8784 | NewVD->setInvalidDecl(); |
| 8785 | return; |
| 8786 | } |
| 8787 | if (T.getAddressSpace() == LangAS::opencl_constant || |
| 8788 | T.getAddressSpace() == LangAS::opencl_local) { |
| 8789 | FunctionDecl *FD = getCurFunctionDecl(); |
| 8790 | // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables |
| 8791 | // in functions. |
| 8792 | if (FD && !FD->hasAttr<DeviceKernelAttr>()) { |
| 8793 | if (T.getAddressSpace() == LangAS::opencl_constant) |
| 8794 | Diag(NewVD->getLocation(), diag::err_opencl_function_variable) |
| 8795 | << 0 /*non-kernel only*/ << "constant" ; |
| 8796 | else |
| 8797 | Diag(NewVD->getLocation(), diag::err_opencl_function_variable) |
| 8798 | << 0 /*non-kernel only*/ << "local" ; |
| 8799 | NewVD->setInvalidDecl(); |
| 8800 | return; |
| 8801 | } |
| 8802 | // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be |
| 8803 | // in the outermost scope of a kernel function. |
| 8804 | if (FD && FD->hasAttr<DeviceKernelAttr>()) { |
| 8805 | if (!getCurScope()->isFunctionScope()) { |
| 8806 | if (T.getAddressSpace() == LangAS::opencl_constant) |
| 8807 | Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope) |
| 8808 | << "constant" ; |
| 8809 | else |
| 8810 | Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope) |
| 8811 | << "local" ; |
| 8812 | NewVD->setInvalidDecl(); |
| 8813 | return; |
| 8814 | } |
| 8815 | } |
| 8816 | } else if (T.getAddressSpace() != LangAS::opencl_private && |
| 8817 | // If we are parsing a template we didn't deduce an addr |
| 8818 | // space yet. |
| 8819 | T.getAddressSpace() != LangAS::Default) { |
| 8820 | // Do not allow other address spaces on automatic variable. |
| 8821 | Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1; |
| 8822 | NewVD->setInvalidDecl(); |
| 8823 | return; |
| 8824 | } |
| 8825 | } |
| 8826 | } |
| 8827 | |
| 8828 | if (NewVD->hasLocalStorage() && T.isObjCGCWeak() |
| 8829 | && !NewVD->hasAttr<BlocksAttr>()) { |
| 8830 | if (getLangOpts().getGC() != LangOptions::NonGC) |
| 8831 | Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local); |
| 8832 | else { |
| 8833 | assert(!getLangOpts().ObjCAutoRefCount); |
| 8834 | Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local); |
| 8835 | } |
| 8836 | } |
| 8837 | |
| 8838 | // WebAssembly tables must be static with a zero length and can't be |
| 8839 | // declared within functions. |
| 8840 | if (T->isWebAssemblyTableType()) { |
| 8841 | if (getCurScope()->getParent()) { // Parent is null at top-level |
| 8842 | Diag(NewVD->getLocation(), diag::err_wasm_table_in_function); |
| 8843 | NewVD->setInvalidDecl(); |
| 8844 | return; |
| 8845 | } |
| 8846 | if (NewVD->getStorageClass() != SC_Static) { |
| 8847 | Diag(NewVD->getLocation(), diag::err_wasm_table_must_be_static); |
| 8848 | NewVD->setInvalidDecl(); |
| 8849 | return; |
| 8850 | } |
| 8851 | const auto *ATy = dyn_cast<ConstantArrayType>(Val: T.getTypePtr()); |
| 8852 | if (!ATy || ATy->getZExtSize() != 0) { |
| 8853 | Diag(NewVD->getLocation(), |
| 8854 | diag::err_typecheck_wasm_table_must_have_zero_length); |
| 8855 | NewVD->setInvalidDecl(); |
| 8856 | return; |
| 8857 | } |
| 8858 | } |
| 8859 | |
| 8860 | // zero sized static arrays are not allowed in HIP device functions |
| 8861 | if (getLangOpts().HIP && LangOpts.CUDAIsDevice) { |
| 8862 | if (FunctionDecl *FD = getCurFunctionDecl(); |
| 8863 | FD && |
| 8864 | (FD->hasAttr<CUDADeviceAttr>() || FD->hasAttr<CUDAGlobalAttr>())) { |
| 8865 | if (const ConstantArrayType *ArrayT = |
| 8866 | getASTContext().getAsConstantArrayType(T); |
| 8867 | ArrayT && ArrayT->isZeroSize()) { |
| 8868 | Diag(NewVD->getLocation(), diag::err_typecheck_zero_array_size) << 2; |
| 8869 | } |
| 8870 | } |
| 8871 | } |
| 8872 | |
| 8873 | bool isVM = T->isVariablyModifiedType(); |
| 8874 | if (isVM || NewVD->hasAttr<CleanupAttr>() || |
| 8875 | NewVD->hasAttr<BlocksAttr>()) |
| 8876 | setFunctionHasBranchProtectedScope(); |
| 8877 | |
| 8878 | if ((isVM && NewVD->hasLinkage()) || |
| 8879 | (T->isVariableArrayType() && NewVD->hasGlobalStorage())) { |
| 8880 | bool SizeIsNegative; |
| 8881 | llvm::APSInt Oversized; |
| 8882 | TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo( |
| 8883 | NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized); |
| 8884 | QualType FixedT; |
| 8885 | if (FixedTInfo && T == NewVD->getTypeSourceInfo()->getType()) |
| 8886 | FixedT = FixedTInfo->getType(); |
| 8887 | else if (FixedTInfo) { |
| 8888 | // Type and type-as-written are canonically different. We need to fix up |
| 8889 | // both types separately. |
| 8890 | FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative, |
| 8891 | Oversized); |
| 8892 | } |
| 8893 | if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) { |
| 8894 | const VariableArrayType *VAT = Context.getAsVariableArrayType(T); |
| 8895 | // FIXME: This won't give the correct result for |
| 8896 | // int a[10][n]; |
| 8897 | SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange(); |
| 8898 | |
| 8899 | if (NewVD->isFileVarDecl()) |
| 8900 | Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope) |
| 8901 | << SizeRange; |
| 8902 | else if (NewVD->isStaticLocal()) |
| 8903 | Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage) |
| 8904 | << SizeRange; |
| 8905 | else |
| 8906 | Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage) |
| 8907 | << SizeRange; |
| 8908 | NewVD->setInvalidDecl(); |
| 8909 | return; |
| 8910 | } |
| 8911 | |
| 8912 | if (!FixedTInfo) { |
| 8913 | if (NewVD->isFileVarDecl()) |
| 8914 | Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope); |
| 8915 | else |
| 8916 | Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage); |
| 8917 | NewVD->setInvalidDecl(); |
| 8918 | return; |
| 8919 | } |
| 8920 | |
| 8921 | Diag(NewVD->getLocation(), diag::ext_vla_folded_to_constant); |
| 8922 | NewVD->setType(FixedT); |
| 8923 | NewVD->setTypeSourceInfo(FixedTInfo); |
| 8924 | } |
| 8925 | |
| 8926 | if (T->isVoidType()) { |
| 8927 | // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names |
| 8928 | // of objects and functions. |
| 8929 | if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) { |
| 8930 | Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type) |
| 8931 | << T; |
| 8932 | NewVD->setInvalidDecl(); |
| 8933 | return; |
| 8934 | } |
| 8935 | } |
| 8936 | |
| 8937 | if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) { |
| 8938 | Diag(NewVD->getLocation(), diag::err_block_on_nonlocal); |
| 8939 | NewVD->setInvalidDecl(); |
| 8940 | return; |
| 8941 | } |
| 8942 | |
| 8943 | if (!NewVD->hasLocalStorage() && T->isSizelessType() && |
| 8944 | !T.isWebAssemblyReferenceType() && !T->isHLSLSpecificType()) { |
| 8945 | Diag(NewVD->getLocation(), diag::err_sizeless_nonlocal) << T; |
| 8946 | NewVD->setInvalidDecl(); |
| 8947 | return; |
| 8948 | } |
| 8949 | |
| 8950 | if (isVM && NewVD->hasAttr<BlocksAttr>()) { |
| 8951 | Diag(NewVD->getLocation(), diag::err_block_on_vm); |
| 8952 | NewVD->setInvalidDecl(); |
| 8953 | return; |
| 8954 | } |
| 8955 | |
| 8956 | if (getLangOpts().C23 && NewVD->isConstexpr() && |
| 8957 | CheckC23ConstexprVarType(*this, NewVD->getLocation(), T)) { |
| 8958 | NewVD->setInvalidDecl(); |
| 8959 | return; |
| 8960 | } |
| 8961 | |
| 8962 | if (getLangOpts().CPlusPlus && NewVD->isConstexpr() && |
| 8963 | !T->isDependentType() && |
| 8964 | RequireLiteralType(NewVD->getLocation(), T, |
| 8965 | diag::err_constexpr_var_non_literal)) { |
| 8966 | NewVD->setInvalidDecl(); |
| 8967 | return; |
| 8968 | } |
| 8969 | |
| 8970 | // PPC MMA non-pointer types are not allowed as non-local variable types. |
| 8971 | if (Context.getTargetInfo().getTriple().isPPC64() && |
| 8972 | !NewVD->isLocalVarDecl() && |
| 8973 | PPC().CheckPPCMMAType(Type: T, TypeLoc: NewVD->getLocation())) { |
| 8974 | NewVD->setInvalidDecl(); |
| 8975 | return; |
| 8976 | } |
| 8977 | |
| 8978 | // Check that SVE types are only used in functions with SVE available. |
| 8979 | if (T->isSVESizelessBuiltinType() && isa<FunctionDecl>(Val: CurContext)) { |
| 8980 | const FunctionDecl *FD = cast<FunctionDecl>(Val: CurContext); |
| 8981 | llvm::StringMap<bool> CallerFeatureMap; |
| 8982 | Context.getFunctionFeatureMap(CallerFeatureMap, FD); |
| 8983 | |
| 8984 | if (!Builtin::evaluateRequiredTargetFeatures("sve" , CallerFeatureMap)) { |
| 8985 | if (!Builtin::evaluateRequiredTargetFeatures("sme" , CallerFeatureMap)) { |
| 8986 | Diag(NewVD->getLocation(), diag::err_sve_vector_in_non_sve_target) << T; |
| 8987 | NewVD->setInvalidDecl(); |
| 8988 | return; |
| 8989 | } else if (!IsArmStreamingFunction(FD, |
| 8990 | /*IncludeLocallyStreaming=*/true)) { |
| 8991 | Diag(NewVD->getLocation(), |
| 8992 | diag::err_sve_vector_in_non_streaming_function) |
| 8993 | << T; |
| 8994 | NewVD->setInvalidDecl(); |
| 8995 | return; |
| 8996 | } |
| 8997 | } |
| 8998 | } |
| 8999 | |
| 9000 | if (T->isRVVSizelessBuiltinType() && isa<FunctionDecl>(Val: CurContext)) { |
| 9001 | const FunctionDecl *FD = cast<FunctionDecl>(Val: CurContext); |
| 9002 | llvm::StringMap<bool> CallerFeatureMap; |
| 9003 | Context.getFunctionFeatureMap(CallerFeatureMap, FD); |
| 9004 | RISCV().checkRVVTypeSupport(Ty: T, Loc: NewVD->getLocation(), D: cast<Decl>(Val: CurContext), |
| 9005 | FeatureMap: CallerFeatureMap); |
| 9006 | } |
| 9007 | } |
| 9008 | |
| 9009 | bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) { |
| 9010 | CheckVariableDeclarationType(NewVD); |
| 9011 | |
| 9012 | // If the decl is already known invalid, don't check it. |
| 9013 | if (NewVD->isInvalidDecl()) |
| 9014 | return false; |
| 9015 | |
| 9016 | // If we did not find anything by this name, look for a non-visible |
| 9017 | // extern "C" declaration with the same name. |
| 9018 | if (Previous.empty() && |
| 9019 | checkForConflictWithNonVisibleExternC(S&: *this, ND: NewVD, Previous)) |
| 9020 | Previous.setShadowed(); |
| 9021 | |
| 9022 | if (!Previous.empty()) { |
| 9023 | MergeVarDecl(New: NewVD, Previous); |
| 9024 | return true; |
| 9025 | } |
| 9026 | return false; |
| 9027 | } |
| 9028 | |
| 9029 | bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) { |
| 9030 | llvm::SmallPtrSet<const CXXMethodDecl*, 4> Overridden; |
| 9031 | |
| 9032 | // Look for methods in base classes that this method might override. |
| 9033 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false, |
| 9034 | /*DetectVirtual=*/false); |
| 9035 | auto VisitBase = [&] (const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { |
| 9036 | CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl(); |
| 9037 | DeclarationName Name = MD->getDeclName(); |
| 9038 | |
| 9039 | if (Name.getNameKind() == DeclarationName::CXXDestructorName) { |
| 9040 | // We really want to find the base class destructor here. |
| 9041 | QualType T = Context.getTypeDeclType(BaseRecord); |
| 9042 | CanQualType CT = Context.getCanonicalType(T); |
| 9043 | Name = Context.DeclarationNames.getCXXDestructorName(Ty: CT); |
| 9044 | } |
| 9045 | |
| 9046 | for (NamedDecl *BaseND : BaseRecord->lookup(Name)) { |
| 9047 | CXXMethodDecl *BaseMD = |
| 9048 | dyn_cast<CXXMethodDecl>(BaseND->getCanonicalDecl()); |
| 9049 | if (!BaseMD || !BaseMD->isVirtual() || |
| 9050 | IsOverride(MD, BaseMD, /*UseMemberUsingDeclRules=*/false, |
| 9051 | /*ConsiderCudaAttrs=*/true)) |
| 9052 | continue; |
| 9053 | if (!CheckExplicitObjectOverride(MD, BaseMD)) |
| 9054 | continue; |
| 9055 | if (Overridden.insert(BaseMD).second) { |
| 9056 | MD->addOverriddenMethod(BaseMD); |
| 9057 | CheckOverridingFunctionReturnType(MD, BaseMD); |
| 9058 | CheckOverridingFunctionAttributes(MD, BaseMD); |
| 9059 | CheckOverridingFunctionExceptionSpec(MD, BaseMD); |
| 9060 | CheckIfOverriddenFunctionIsMarkedFinal(MD, BaseMD); |
| 9061 | } |
| 9062 | |
| 9063 | // A method can only override one function from each base class. We |
| 9064 | // don't track indirectly overridden methods from bases of bases. |
| 9065 | return true; |
| 9066 | } |
| 9067 | |
| 9068 | return false; |
| 9069 | }; |
| 9070 | |
| 9071 | DC->lookupInBases(BaseMatches: VisitBase, Paths); |
| 9072 | return !Overridden.empty(); |
| 9073 | } |
| 9074 | |
| 9075 | namespace { |
| 9076 | // Struct for holding all of the extra arguments needed by |
| 9077 | // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator. |
| 9078 | struct ActOnFDArgs { |
| 9079 | Scope *S; |
| 9080 | Declarator &D; |
| 9081 | MultiTemplateParamsArg TemplateParamLists; |
| 9082 | bool AddToScope; |
| 9083 | }; |
| 9084 | } // end anonymous namespace |
| 9085 | |
| 9086 | namespace { |
| 9087 | |
| 9088 | // Callback to only accept typo corrections that have a non-zero edit distance. |
| 9089 | // Also only accept corrections that have the same parent decl. |
| 9090 | class DifferentNameValidatorCCC final : public CorrectionCandidateCallback { |
| 9091 | public: |
| 9092 | DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD, |
| 9093 | CXXRecordDecl *Parent) |
| 9094 | : Context(Context), OriginalFD(TypoFD), |
| 9095 | ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {} |
| 9096 | |
| 9097 | bool ValidateCandidate(const TypoCorrection &candidate) override { |
| 9098 | if (candidate.getEditDistance() == 0) |
| 9099 | return false; |
| 9100 | |
| 9101 | SmallVector<unsigned, 1> MismatchedParams; |
| 9102 | for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(), |
| 9103 | CDeclEnd = candidate.end(); |
| 9104 | CDecl != CDeclEnd; ++CDecl) { |
| 9105 | FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: *CDecl); |
| 9106 | |
| 9107 | if (FD && !FD->hasBody() && |
| 9108 | hasSimilarParameters(Context, Declaration: FD, Definition: OriginalFD, Params&: MismatchedParams)) { |
| 9109 | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD)) { |
| 9110 | CXXRecordDecl *Parent = MD->getParent(); |
| 9111 | if (Parent && Parent->getCanonicalDecl() == ExpectedParent) |
| 9112 | return true; |
| 9113 | } else if (!ExpectedParent) { |
| 9114 | return true; |
| 9115 | } |
| 9116 | } |
| 9117 | } |
| 9118 | |
| 9119 | return false; |
| 9120 | } |
| 9121 | |
| 9122 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
| 9123 | return std::make_unique<DifferentNameValidatorCCC>(args&: *this); |
| 9124 | } |
| 9125 | |
| 9126 | private: |
| 9127 | ASTContext &Context; |
| 9128 | FunctionDecl *OriginalFD; |
| 9129 | CXXRecordDecl *ExpectedParent; |
| 9130 | }; |
| 9131 | |
| 9132 | } // end anonymous namespace |
| 9133 | |
| 9134 | void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) { |
| 9135 | TypoCorrectedFunctionDefinitions.insert(Ptr: F); |
| 9136 | } |
| 9137 | |
| 9138 | /// Generate diagnostics for an invalid function redeclaration. |
| 9139 | /// |
| 9140 | /// This routine handles generating the diagnostic messages for an invalid |
| 9141 | /// function redeclaration, including finding possible similar declarations |
| 9142 | /// or performing typo correction if there are no previous declarations with |
| 9143 | /// the same name. |
| 9144 | /// |
| 9145 | /// Returns a NamedDecl iff typo correction was performed and substituting in |
| 9146 | /// the new declaration name does not cause new errors. |
| 9147 | static NamedDecl *DiagnoseInvalidRedeclaration( |
| 9148 | Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD, |
| 9149 | ActOnFDArgs &, bool IsLocalFriend, Scope *S) { |
| 9150 | DeclarationName Name = NewFD->getDeclName(); |
| 9151 | DeclContext *NewDC = NewFD->getDeclContext(); |
| 9152 | SmallVector<unsigned, 1> MismatchedParams; |
| 9153 | SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches; |
| 9154 | TypoCorrection Correction; |
| 9155 | bool IsDefinition = ExtraArgs.D.isFunctionDefinition(); |
| 9156 | unsigned DiagMsg = |
| 9157 | IsLocalFriend ? diag::err_no_matching_local_friend : |
| 9158 | NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match : |
| 9159 | diag::err_member_decl_does_not_match; |
| 9160 | LookupResult Prev(SemaRef, Name, NewFD->getLocation(), |
| 9161 | IsLocalFriend ? Sema::LookupLocalFriendName |
| 9162 | : Sema::LookupOrdinaryName, |
| 9163 | RedeclarationKind::ForVisibleRedeclaration); |
| 9164 | |
| 9165 | NewFD->setInvalidDecl(); |
| 9166 | if (IsLocalFriend) |
| 9167 | SemaRef.LookupName(R&: Prev, S); |
| 9168 | else |
| 9169 | SemaRef.LookupQualifiedName(R&: Prev, LookupCtx: NewDC); |
| 9170 | assert(!Prev.isAmbiguous() && |
| 9171 | "Cannot have an ambiguity in previous-declaration lookup" ); |
| 9172 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: NewFD); |
| 9173 | DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD, |
| 9174 | MD ? MD->getParent() : nullptr); |
| 9175 | if (!Prev.empty()) { |
| 9176 | for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end(); |
| 9177 | Func != FuncEnd; ++Func) { |
| 9178 | FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: *Func); |
| 9179 | if (FD && |
| 9180 | hasSimilarParameters(Context&: SemaRef.Context, Declaration: FD, Definition: NewFD, Params&: MismatchedParams)) { |
| 9181 | // Add 1 to the index so that 0 can mean the mismatch didn't |
| 9182 | // involve a parameter |
| 9183 | unsigned ParamNum = |
| 9184 | MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1; |
| 9185 | NearMatches.push_back(Elt: std::make_pair(x&: FD, y&: ParamNum)); |
| 9186 | } |
| 9187 | } |
| 9188 | // If the qualified name lookup yielded nothing, try typo correction |
| 9189 | } else if ((Correction = SemaRef.CorrectTypo( |
| 9190 | Typo: Prev.getLookupNameInfo(), LookupKind: Prev.getLookupKind(), S, |
| 9191 | SS: &ExtraArgs.D.getCXXScopeSpec(), CCC, |
| 9192 | Mode: CorrectTypoKind::ErrorRecovery, |
| 9193 | MemberContext: IsLocalFriend ? nullptr : NewDC))) { |
| 9194 | // Set up everything for the call to ActOnFunctionDeclarator |
| 9195 | ExtraArgs.D.SetIdentifier(Id: Correction.getCorrectionAsIdentifierInfo(), |
| 9196 | IdLoc: ExtraArgs.D.getIdentifierLoc()); |
| 9197 | Previous.clear(); |
| 9198 | Previous.setLookupName(Correction.getCorrection()); |
| 9199 | for (TypoCorrection::decl_iterator CDecl = Correction.begin(), |
| 9200 | CDeclEnd = Correction.end(); |
| 9201 | CDecl != CDeclEnd; ++CDecl) { |
| 9202 | FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: *CDecl); |
| 9203 | if (FD && !FD->hasBody() && |
| 9204 | hasSimilarParameters(Context&: SemaRef.Context, Declaration: FD, Definition: NewFD, Params&: MismatchedParams)) { |
| 9205 | Previous.addDecl(FD); |
| 9206 | } |
| 9207 | } |
| 9208 | bool wasRedeclaration = ExtraArgs.D.isRedeclaration(); |
| 9209 | |
| 9210 | NamedDecl *Result; |
| 9211 | // Retry building the function declaration with the new previous |
| 9212 | // declarations, and with errors suppressed. |
| 9213 | { |
| 9214 | // Trap errors. |
| 9215 | Sema::SFINAETrap Trap(SemaRef); |
| 9216 | |
| 9217 | // TODO: Refactor ActOnFunctionDeclarator so that we can call only the |
| 9218 | // pieces need to verify the typo-corrected C++ declaration and hopefully |
| 9219 | // eliminate the need for the parameter pack ExtraArgs. |
| 9220 | Result = SemaRef.ActOnFunctionDeclarator( |
| 9221 | S: ExtraArgs.S, D&: ExtraArgs.D, |
| 9222 | DC: Correction.getCorrectionDecl()->getDeclContext(), |
| 9223 | TInfo: NewFD->getTypeSourceInfo(), Previous, TemplateParamLists: ExtraArgs.TemplateParamLists, |
| 9224 | AddToScope&: ExtraArgs.AddToScope); |
| 9225 | |
| 9226 | if (Trap.hasErrorOccurred()) |
| 9227 | Result = nullptr; |
| 9228 | } |
| 9229 | |
| 9230 | if (Result) { |
| 9231 | // Determine which correction we picked. |
| 9232 | Decl *Canonical = Result->getCanonicalDecl(); |
| 9233 | for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); |
| 9234 | I != E; ++I) |
| 9235 | if ((*I)->getCanonicalDecl() == Canonical) |
| 9236 | Correction.setCorrectionDecl(*I); |
| 9237 | |
| 9238 | // Let Sema know about the correction. |
| 9239 | SemaRef.MarkTypoCorrectedFunctionDefinition(F: Result); |
| 9240 | SemaRef.diagnoseTypo( |
| 9241 | Correction, |
| 9242 | SemaRef.PDiag(IsLocalFriend |
| 9243 | ? diag::err_no_matching_local_friend_suggest |
| 9244 | : diag::err_member_decl_does_not_match_suggest) |
| 9245 | << Name << NewDC << IsDefinition); |
| 9246 | return Result; |
| 9247 | } |
| 9248 | |
| 9249 | // Pretend the typo correction never occurred |
| 9250 | ExtraArgs.D.SetIdentifier(Id: Name.getAsIdentifierInfo(), |
| 9251 | IdLoc: ExtraArgs.D.getIdentifierLoc()); |
| 9252 | ExtraArgs.D.setRedeclaration(wasRedeclaration); |
| 9253 | Previous.clear(); |
| 9254 | Previous.setLookupName(Name); |
| 9255 | } |
| 9256 | |
| 9257 | SemaRef.Diag(NewFD->getLocation(), DiagMsg) |
| 9258 | << Name << NewDC << IsDefinition << NewFD->getLocation(); |
| 9259 | |
| 9260 | CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(Val: NewFD); |
| 9261 | if (NewMD && DiagMsg == diag::err_member_decl_does_not_match) { |
| 9262 | CXXRecordDecl *RD = NewMD->getParent(); |
| 9263 | SemaRef.Diag(RD->getLocation(), diag::note_defined_here) |
| 9264 | << RD->getName() << RD->getLocation(); |
| 9265 | } |
| 9266 | |
| 9267 | bool NewFDisConst = NewMD && NewMD->isConst(); |
| 9268 | |
| 9269 | for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator |
| 9270 | NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end(); |
| 9271 | NearMatch != NearMatchEnd; ++NearMatch) { |
| 9272 | FunctionDecl *FD = NearMatch->first; |
| 9273 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: FD); |
| 9274 | bool FDisConst = MD && MD->isConst(); |
| 9275 | bool IsMember = MD || !IsLocalFriend; |
| 9276 | |
| 9277 | // FIXME: These notes are poorly worded for the local friend case. |
| 9278 | if (unsigned Idx = NearMatch->second) { |
| 9279 | ParmVarDecl *FDParam = FD->getParamDecl(i: Idx-1); |
| 9280 | SourceLocation Loc = FDParam->getTypeSpecStartLoc(); |
| 9281 | if (Loc.isInvalid()) Loc = FD->getLocation(); |
| 9282 | SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match |
| 9283 | : diag::note_local_decl_close_param_match) |
| 9284 | << Idx << FDParam->getType() |
| 9285 | << NewFD->getParamDecl(Idx - 1)->getType(); |
| 9286 | } else if (FDisConst != NewFDisConst) { |
| 9287 | auto DB = SemaRef.Diag(FD->getLocation(), |
| 9288 | diag::note_member_def_close_const_match) |
| 9289 | << NewFDisConst << FD->getSourceRange().getEnd(); |
| 9290 | if (const auto &FTI = ExtraArgs.D.getFunctionTypeInfo(); !NewFDisConst) |
| 9291 | DB << FixItHint::CreateInsertion(InsertionLoc: FTI.getRParenLoc().getLocWithOffset(Offset: 1), |
| 9292 | Code: " const" ); |
| 9293 | else if (FTI.hasMethodTypeQualifiers() && |
| 9294 | FTI.getConstQualifierLoc().isValid()) |
| 9295 | DB << FixItHint::CreateRemoval(RemoveRange: FTI.getConstQualifierLoc()); |
| 9296 | } else { |
| 9297 | SemaRef.Diag(FD->getLocation(), |
| 9298 | IsMember ? diag::note_member_def_close_match |
| 9299 | : diag::note_local_decl_close_match); |
| 9300 | } |
| 9301 | } |
| 9302 | return nullptr; |
| 9303 | } |
| 9304 | |
| 9305 | static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) { |
| 9306 | switch (D.getDeclSpec().getStorageClassSpec()) { |
| 9307 | default: llvm_unreachable("Unknown storage class!" ); |
| 9308 | case DeclSpec::SCS_auto: |
| 9309 | case DeclSpec::SCS_register: |
| 9310 | case DeclSpec::SCS_mutable: |
| 9311 | SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), |
| 9312 | diag::err_typecheck_sclass_func); |
| 9313 | D.getMutableDeclSpec().ClearStorageClassSpecs(); |
| 9314 | D.setInvalidType(); |
| 9315 | break; |
| 9316 | case DeclSpec::SCS_unspecified: break; |
| 9317 | case DeclSpec::SCS_extern: |
| 9318 | if (D.getDeclSpec().isExternInLinkageSpec()) |
| 9319 | return SC_None; |
| 9320 | return SC_Extern; |
| 9321 | case DeclSpec::SCS_static: { |
| 9322 | if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) { |
| 9323 | // C99 6.7.1p5: |
| 9324 | // The declaration of an identifier for a function that has |
| 9325 | // block scope shall have no explicit storage-class specifier |
| 9326 | // other than extern |
| 9327 | // See also (C++ [dcl.stc]p4). |
| 9328 | SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), |
| 9329 | diag::err_static_block_func); |
| 9330 | break; |
| 9331 | } else |
| 9332 | return SC_Static; |
| 9333 | } |
| 9334 | case DeclSpec::SCS_private_extern: return SC_PrivateExtern; |
| 9335 | } |
| 9336 | |
| 9337 | // No explicit storage class has already been returned |
| 9338 | return SC_None; |
| 9339 | } |
| 9340 | |
| 9341 | static FunctionDecl *CreateNewFunctionDecl(Sema &SemaRef, Declarator &D, |
| 9342 | DeclContext *DC, QualType &R, |
| 9343 | TypeSourceInfo *TInfo, |
| 9344 | StorageClass SC, |
| 9345 | bool &IsVirtualOkay) { |
| 9346 | DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D); |
| 9347 | DeclarationName Name = NameInfo.getName(); |
| 9348 | |
| 9349 | FunctionDecl *NewFD = nullptr; |
| 9350 | bool isInline = D.getDeclSpec().isInlineSpecified(); |
| 9351 | |
| 9352 | ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier(); |
| 9353 | if (ConstexprKind == ConstexprSpecKind::Constinit || |
| 9354 | (SemaRef.getLangOpts().C23 && |
| 9355 | ConstexprKind == ConstexprSpecKind::Constexpr)) { |
| 9356 | |
| 9357 | if (SemaRef.getLangOpts().C23) |
| 9358 | SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(), |
| 9359 | diag::err_c23_constexpr_not_variable); |
| 9360 | else |
| 9361 | SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(), |
| 9362 | diag::err_constexpr_wrong_decl_kind) |
| 9363 | << static_cast<int>(ConstexprKind); |
| 9364 | ConstexprKind = ConstexprSpecKind::Unspecified; |
| 9365 | D.getMutableDeclSpec().ClearConstexprSpec(); |
| 9366 | } |
| 9367 | |
| 9368 | if (!SemaRef.getLangOpts().CPlusPlus) { |
| 9369 | // Determine whether the function was written with a prototype. This is |
| 9370 | // true when: |
| 9371 | // - there is a prototype in the declarator, or |
| 9372 | // - the type R of the function is some kind of typedef or other non- |
| 9373 | // attributed reference to a type name (which eventually refers to a |
| 9374 | // function type). Note, we can't always look at the adjusted type to |
| 9375 | // check this case because attributes may cause a non-function |
| 9376 | // declarator to still have a function type. e.g., |
| 9377 | // typedef void func(int a); |
| 9378 | // __attribute__((noreturn)) func other_func; // This has a prototype |
| 9379 | bool HasPrototype = |
| 9380 | (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) || |
| 9381 | (D.getDeclSpec().isTypeRep() && |
| 9382 | SemaRef.GetTypeFromParser(Ty: D.getDeclSpec().getRepAsType(), TInfo: nullptr) |
| 9383 | ->isFunctionProtoType()) || |
| 9384 | (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType()); |
| 9385 | assert( |
| 9386 | (HasPrototype || !SemaRef.getLangOpts().requiresStrictPrototypes()) && |
| 9387 | "Strict prototypes are required" ); |
| 9388 | |
| 9389 | NewFD = FunctionDecl::Create( |
| 9390 | C&: SemaRef.Context, DC, StartLoc: D.getBeginLoc(), NameInfo, T: R, TInfo, SC, |
| 9391 | UsesFPIntrin: SemaRef.getCurFPFeatures().isFPConstrained(), isInlineSpecified: isInline, hasWrittenPrototype: HasPrototype, |
| 9392 | ConstexprKind: ConstexprSpecKind::Unspecified, |
| 9393 | /*TrailingRequiresClause=*/{}); |
| 9394 | if (D.isInvalidType()) |
| 9395 | NewFD->setInvalidDecl(); |
| 9396 | |
| 9397 | return NewFD; |
| 9398 | } |
| 9399 | |
| 9400 | ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier(); |
| 9401 | AssociatedConstraint TrailingRequiresClause(D.getTrailingRequiresClause()); |
| 9402 | |
| 9403 | SemaRef.CheckExplicitObjectMemberFunction(DC, D, Name, R); |
| 9404 | |
| 9405 | if (Name.getNameKind() == DeclarationName::CXXConstructorName) { |
| 9406 | // This is a C++ constructor declaration. |
| 9407 | assert(DC->isRecord() && |
| 9408 | "Constructors can only be declared in a member context" ); |
| 9409 | |
| 9410 | R = SemaRef.CheckConstructorDeclarator(D, R, SC); |
| 9411 | return CXXConstructorDecl::Create( |
| 9412 | C&: SemaRef.Context, RD: cast<CXXRecordDecl>(Val: DC), StartLoc: D.getBeginLoc(), NameInfo, T: R, |
| 9413 | TInfo, ES: ExplicitSpecifier, UsesFPIntrin: SemaRef.getCurFPFeatures().isFPConstrained(), |
| 9414 | isInline, /*isImplicitlyDeclared=*/false, ConstexprKind, |
| 9415 | Inherited: InheritedConstructor(), TrailingRequiresClause); |
| 9416 | |
| 9417 | } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) { |
| 9418 | // This is a C++ destructor declaration. |
| 9419 | if (DC->isRecord()) { |
| 9420 | R = SemaRef.CheckDestructorDeclarator(D, R, SC); |
| 9421 | CXXRecordDecl *Record = cast<CXXRecordDecl>(Val: DC); |
| 9422 | CXXDestructorDecl *NewDD = CXXDestructorDecl::Create( |
| 9423 | C&: SemaRef.Context, RD: Record, StartLoc: D.getBeginLoc(), NameInfo, T: R, TInfo, |
| 9424 | UsesFPIntrin: SemaRef.getCurFPFeatures().isFPConstrained(), isInline, |
| 9425 | /*isImplicitlyDeclared=*/false, ConstexprKind, |
| 9426 | TrailingRequiresClause); |
| 9427 | // User defined destructors start as not selected if the class definition is still |
| 9428 | // not done. |
| 9429 | if (Record->isBeingDefined()) |
| 9430 | NewDD->setIneligibleOrNotSelected(true); |
| 9431 | |
| 9432 | // If the destructor needs an implicit exception specification, set it |
| 9433 | // now. FIXME: It'd be nice to be able to create the right type to start |
| 9434 | // with, but the type needs to reference the destructor declaration. |
| 9435 | if (SemaRef.getLangOpts().CPlusPlus11) |
| 9436 | SemaRef.AdjustDestructorExceptionSpec(Destructor: NewDD); |
| 9437 | |
| 9438 | IsVirtualOkay = true; |
| 9439 | return NewDD; |
| 9440 | |
| 9441 | } else { |
| 9442 | SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member); |
| 9443 | D.setInvalidType(); |
| 9444 | |
| 9445 | // Create a FunctionDecl to satisfy the function definition parsing |
| 9446 | // code path. |
| 9447 | return FunctionDecl::Create( |
| 9448 | C&: SemaRef.Context, DC, StartLoc: D.getBeginLoc(), NLoc: D.getIdentifierLoc(), N: Name, T: R, |
| 9449 | TInfo, SC, UsesFPIntrin: SemaRef.getCurFPFeatures().isFPConstrained(), isInlineSpecified: isInline, |
| 9450 | /*hasPrototype=*/hasWrittenPrototype: true, ConstexprKind, TrailingRequiresClause); |
| 9451 | } |
| 9452 | |
| 9453 | } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { |
| 9454 | if (!DC->isRecord()) { |
| 9455 | SemaRef.Diag(D.getIdentifierLoc(), |
| 9456 | diag::err_conv_function_not_member); |
| 9457 | return nullptr; |
| 9458 | } |
| 9459 | |
| 9460 | SemaRef.CheckConversionDeclarator(D, R, SC); |
| 9461 | if (D.isInvalidType()) |
| 9462 | return nullptr; |
| 9463 | |
| 9464 | IsVirtualOkay = true; |
| 9465 | return CXXConversionDecl::Create( |
| 9466 | C&: SemaRef.Context, RD: cast<CXXRecordDecl>(Val: DC), StartLoc: D.getBeginLoc(), NameInfo, T: R, |
| 9467 | TInfo, UsesFPIntrin: SemaRef.getCurFPFeatures().isFPConstrained(), isInline, |
| 9468 | ES: ExplicitSpecifier, ConstexprKind, EndLocation: SourceLocation(), |
| 9469 | TrailingRequiresClause); |
| 9470 | |
| 9471 | } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) { |
| 9472 | if (SemaRef.CheckDeductionGuideDeclarator(D, R, SC)) |
| 9473 | return nullptr; |
| 9474 | return CXXDeductionGuideDecl::Create( |
| 9475 | C&: SemaRef.Context, DC, StartLoc: D.getBeginLoc(), ES: ExplicitSpecifier, NameInfo, T: R, |
| 9476 | TInfo, EndLocation: D.getEndLoc(), /*Ctor=*/nullptr, |
| 9477 | /*Kind=*/DeductionCandidate::Normal, TrailingRequiresClause); |
| 9478 | } else if (DC->isRecord()) { |
| 9479 | // If the name of the function is the same as the name of the record, |
| 9480 | // then this must be an invalid constructor that has a return type. |
| 9481 | // (The parser checks for a return type and makes the declarator a |
| 9482 | // constructor if it has no return type). |
| 9483 | if (Name.getAsIdentifierInfo() && |
| 9484 | Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(Val: DC)->getIdentifier()){ |
| 9485 | SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type) |
| 9486 | << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) |
| 9487 | << SourceRange(D.getIdentifierLoc()); |
| 9488 | return nullptr; |
| 9489 | } |
| 9490 | |
| 9491 | // This is a C++ method declaration. |
| 9492 | CXXMethodDecl *Ret = CXXMethodDecl::Create( |
| 9493 | C&: SemaRef.Context, RD: cast<CXXRecordDecl>(Val: DC), StartLoc: D.getBeginLoc(), NameInfo, T: R, |
| 9494 | TInfo, SC, UsesFPIntrin: SemaRef.getCurFPFeatures().isFPConstrained(), isInline, |
| 9495 | ConstexprKind, EndLocation: SourceLocation(), TrailingRequiresClause); |
| 9496 | IsVirtualOkay = !Ret->isStatic(); |
| 9497 | return Ret; |
| 9498 | } else { |
| 9499 | bool isFriend = |
| 9500 | SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified(); |
| 9501 | if (!isFriend && SemaRef.CurContext->isRecord()) |
| 9502 | return nullptr; |
| 9503 | |
| 9504 | // Determine whether the function was written with a |
| 9505 | // prototype. This true when: |
| 9506 | // - we're in C++ (where every function has a prototype), |
| 9507 | return FunctionDecl::Create( |
| 9508 | C&: SemaRef.Context, DC, StartLoc: D.getBeginLoc(), NameInfo, T: R, TInfo, SC, |
| 9509 | UsesFPIntrin: SemaRef.getCurFPFeatures().isFPConstrained(), isInlineSpecified: isInline, |
| 9510 | hasWrittenPrototype: true /*HasPrototype*/, ConstexprKind, TrailingRequiresClause); |
| 9511 | } |
| 9512 | } |
| 9513 | |
| 9514 | enum OpenCLParamType { |
| 9515 | ValidKernelParam, |
| 9516 | PtrPtrKernelParam, |
| 9517 | PtrKernelParam, |
| 9518 | InvalidAddrSpacePtrKernelParam, |
| 9519 | InvalidKernelParam, |
| 9520 | RecordKernelParam |
| 9521 | }; |
| 9522 | |
| 9523 | static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) { |
| 9524 | // Size dependent types are just typedefs to normal integer types |
| 9525 | // (e.g. unsigned long), so we cannot distinguish them from other typedefs to |
| 9526 | // integers other than by their names. |
| 9527 | StringRef SizeTypeNames[] = {"size_t" , "intptr_t" , "uintptr_t" , "ptrdiff_t" }; |
| 9528 | |
| 9529 | // Remove typedefs one by one until we reach a typedef |
| 9530 | // for a size dependent type. |
| 9531 | QualType DesugaredTy = Ty; |
| 9532 | do { |
| 9533 | ArrayRef<StringRef> Names(SizeTypeNames); |
| 9534 | auto Match = llvm::find(Range&: Names, Val: DesugaredTy.getUnqualifiedType().getAsString()); |
| 9535 | if (Names.end() != Match) |
| 9536 | return true; |
| 9537 | |
| 9538 | Ty = DesugaredTy; |
| 9539 | DesugaredTy = Ty.getSingleStepDesugaredType(Context: C); |
| 9540 | } while (DesugaredTy != Ty); |
| 9541 | |
| 9542 | return false; |
| 9543 | } |
| 9544 | |
| 9545 | static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) { |
| 9546 | if (PT->isDependentType()) |
| 9547 | return InvalidKernelParam; |
| 9548 | |
| 9549 | if (PT->isPointerOrReferenceType()) { |
| 9550 | QualType PointeeType = PT->getPointeeType(); |
| 9551 | if (PointeeType.getAddressSpace() == LangAS::opencl_generic || |
| 9552 | PointeeType.getAddressSpace() == LangAS::opencl_private || |
| 9553 | PointeeType.getAddressSpace() == LangAS::Default) |
| 9554 | return InvalidAddrSpacePtrKernelParam; |
| 9555 | |
| 9556 | if (PointeeType->isPointerType()) { |
| 9557 | // This is a pointer to pointer parameter. |
| 9558 | // Recursively check inner type. |
| 9559 | OpenCLParamType ParamKind = getOpenCLKernelParameterType(S, PT: PointeeType); |
| 9560 | if (ParamKind == InvalidAddrSpacePtrKernelParam || |
| 9561 | ParamKind == InvalidKernelParam) |
| 9562 | return ParamKind; |
| 9563 | |
| 9564 | // OpenCL v3.0 s6.11.a: |
| 9565 | // A restriction to pass pointers to pointers only applies to OpenCL C |
| 9566 | // v1.2 or below. |
| 9567 | if (S.getLangOpts().getOpenCLCompatibleVersion() > 120) |
| 9568 | return ValidKernelParam; |
| 9569 | |
| 9570 | return PtrPtrKernelParam; |
| 9571 | } |
| 9572 | |
| 9573 | // C++ for OpenCL v1.0 s2.4: |
| 9574 | // Moreover the types used in parameters of the kernel functions must be: |
| 9575 | // Standard layout types for pointer parameters. The same applies to |
| 9576 | // reference if an implementation supports them in kernel parameters. |
| 9577 | if (S.getLangOpts().OpenCLCPlusPlus && |
| 9578 | !S.getOpenCLOptions().isAvailableOption( |
| 9579 | Ext: "__cl_clang_non_portable_kernel_param_types" , LO: S.getLangOpts())) { |
| 9580 | auto CXXRec = PointeeType.getCanonicalType()->getAsCXXRecordDecl(); |
| 9581 | bool IsStandardLayoutType = true; |
| 9582 | if (CXXRec) { |
| 9583 | // If template type is not ODR-used its definition is only available |
| 9584 | // in the template definition not its instantiation. |
| 9585 | // FIXME: This logic doesn't work for types that depend on template |
| 9586 | // parameter (PR58590). |
| 9587 | if (!CXXRec->hasDefinition()) |
| 9588 | CXXRec = CXXRec->getTemplateInstantiationPattern(); |
| 9589 | if (!CXXRec || !CXXRec->hasDefinition() || !CXXRec->isStandardLayout()) |
| 9590 | IsStandardLayoutType = false; |
| 9591 | } |
| 9592 | if (!PointeeType->isAtomicType() && !PointeeType->isVoidType() && |
| 9593 | !IsStandardLayoutType) |
| 9594 | return InvalidKernelParam; |
| 9595 | } |
| 9596 | |
| 9597 | // OpenCL v1.2 s6.9.p: |
| 9598 | // A restriction to pass pointers only applies to OpenCL C v1.2 or below. |
| 9599 | if (S.getLangOpts().getOpenCLCompatibleVersion() > 120) |
| 9600 | return ValidKernelParam; |
| 9601 | |
| 9602 | return PtrKernelParam; |
| 9603 | } |
| 9604 | |
| 9605 | // OpenCL v1.2 s6.9.k: |
| 9606 | // Arguments to kernel functions in a program cannot be declared with the |
| 9607 | // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and |
| 9608 | // uintptr_t or a struct and/or union that contain fields declared to be one |
| 9609 | // of these built-in scalar types. |
| 9610 | if (isOpenCLSizeDependentType(C&: S.getASTContext(), Ty: PT)) |
| 9611 | return InvalidKernelParam; |
| 9612 | |
| 9613 | if (PT->isImageType()) |
| 9614 | return PtrKernelParam; |
| 9615 | |
| 9616 | if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT()) |
| 9617 | return InvalidKernelParam; |
| 9618 | |
| 9619 | // OpenCL extension spec v1.2 s9.5: |
| 9620 | // This extension adds support for half scalar and vector types as built-in |
| 9621 | // types that can be used for arithmetic operations, conversions etc. |
| 9622 | if (!S.getOpenCLOptions().isAvailableOption(Ext: "cl_khr_fp16" , LO: S.getLangOpts()) && |
| 9623 | PT->isHalfType()) |
| 9624 | return InvalidKernelParam; |
| 9625 | |
| 9626 | // Look into an array argument to check if it has a forbidden type. |
| 9627 | if (PT->isArrayType()) { |
| 9628 | const Type *UnderlyingTy = PT->getPointeeOrArrayElementType(); |
| 9629 | // Call ourself to check an underlying type of an array. Since the |
| 9630 | // getPointeeOrArrayElementType returns an innermost type which is not an |
| 9631 | // array, this recursive call only happens once. |
| 9632 | return getOpenCLKernelParameterType(S, PT: QualType(UnderlyingTy, 0)); |
| 9633 | } |
| 9634 | |
| 9635 | // C++ for OpenCL v1.0 s2.4: |
| 9636 | // Moreover the types used in parameters of the kernel functions must be: |
| 9637 | // Trivial and standard-layout types C++17 [basic.types] (plain old data |
| 9638 | // types) for parameters passed by value; |
| 9639 | if (S.getLangOpts().OpenCLCPlusPlus && |
| 9640 | !S.getOpenCLOptions().isAvailableOption( |
| 9641 | Ext: "__cl_clang_non_portable_kernel_param_types" , LO: S.getLangOpts()) && |
| 9642 | !PT->isOpenCLSpecificType() && !PT.isPODType(Context: S.Context)) |
| 9643 | return InvalidKernelParam; |
| 9644 | |
| 9645 | if (PT->isRecordType()) |
| 9646 | return RecordKernelParam; |
| 9647 | |
| 9648 | return ValidKernelParam; |
| 9649 | } |
| 9650 | |
| 9651 | static void checkIsValidOpenCLKernelParameter( |
| 9652 | Sema &S, |
| 9653 | Declarator &D, |
| 9654 | ParmVarDecl *Param, |
| 9655 | llvm::SmallPtrSetImpl<const Type *> &ValidTypes) { |
| 9656 | QualType PT = Param->getType(); |
| 9657 | |
| 9658 | // Cache the valid types we encounter to avoid rechecking structs that are |
| 9659 | // used again |
| 9660 | if (ValidTypes.count(Ptr: PT.getTypePtr())) |
| 9661 | return; |
| 9662 | |
| 9663 | switch (getOpenCLKernelParameterType(S, PT)) { |
| 9664 | case PtrPtrKernelParam: |
| 9665 | // OpenCL v3.0 s6.11.a: |
| 9666 | // A kernel function argument cannot be declared as a pointer to a pointer |
| 9667 | // type. [...] This restriction only applies to OpenCL C 1.2 or below. |
| 9668 | S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param); |
| 9669 | D.setInvalidType(); |
| 9670 | return; |
| 9671 | |
| 9672 | case InvalidAddrSpacePtrKernelParam: |
| 9673 | // OpenCL v1.0 s6.5: |
| 9674 | // __kernel function arguments declared to be a pointer of a type can point |
| 9675 | // to one of the following address spaces only : __global, __local or |
| 9676 | // __constant. |
| 9677 | S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space); |
| 9678 | D.setInvalidType(); |
| 9679 | return; |
| 9680 | |
| 9681 | // OpenCL v1.2 s6.9.k: |
| 9682 | // Arguments to kernel functions in a program cannot be declared with the |
| 9683 | // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and |
| 9684 | // uintptr_t or a struct and/or union that contain fields declared to be |
| 9685 | // one of these built-in scalar types. |
| 9686 | |
| 9687 | case InvalidKernelParam: |
| 9688 | // OpenCL v1.2 s6.8 n: |
| 9689 | // A kernel function argument cannot be declared |
| 9690 | // of event_t type. |
| 9691 | // Do not diagnose half type since it is diagnosed as invalid argument |
| 9692 | // type for any function elsewhere. |
| 9693 | if (!PT->isHalfType()) { |
| 9694 | S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; |
| 9695 | |
| 9696 | // Explain what typedefs are involved. |
| 9697 | const TypedefType *Typedef = nullptr; |
| 9698 | while ((Typedef = PT->getAs<TypedefType>())) { |
| 9699 | SourceLocation Loc = Typedef->getDecl()->getLocation(); |
| 9700 | // SourceLocation may be invalid for a built-in type. |
| 9701 | if (Loc.isValid()) |
| 9702 | S.Diag(Loc, diag::note_entity_declared_at) << PT; |
| 9703 | PT = Typedef->desugar(); |
| 9704 | } |
| 9705 | } |
| 9706 | |
| 9707 | D.setInvalidType(); |
| 9708 | return; |
| 9709 | |
| 9710 | case PtrKernelParam: |
| 9711 | case ValidKernelParam: |
| 9712 | ValidTypes.insert(Ptr: PT.getTypePtr()); |
| 9713 | return; |
| 9714 | |
| 9715 | case RecordKernelParam: |
| 9716 | break; |
| 9717 | } |
| 9718 | |
| 9719 | // Track nested structs we will inspect |
| 9720 | SmallVector<const Decl *, 4> VisitStack; |
| 9721 | |
| 9722 | // Track where we are in the nested structs. Items will migrate from |
| 9723 | // VisitStack to HistoryStack as we do the DFS for bad field. |
| 9724 | SmallVector<const FieldDecl *, 4> HistoryStack; |
| 9725 | HistoryStack.push_back(Elt: nullptr); |
| 9726 | |
| 9727 | // At this point we already handled everything except of a RecordType. |
| 9728 | assert(PT->isRecordType() && "Unexpected type." ); |
| 9729 | const RecordDecl *PD = PT->castAs<RecordType>()->getDecl(); |
| 9730 | VisitStack.push_back(PD); |
| 9731 | assert(VisitStack.back() && "First decl null?" ); |
| 9732 | |
| 9733 | do { |
| 9734 | const Decl *Next = VisitStack.pop_back_val(); |
| 9735 | if (!Next) { |
| 9736 | assert(!HistoryStack.empty()); |
| 9737 | // Found a marker, we have gone up a level |
| 9738 | if (const FieldDecl *Hist = HistoryStack.pop_back_val()) |
| 9739 | ValidTypes.insert(Hist->getType().getTypePtr()); |
| 9740 | |
| 9741 | continue; |
| 9742 | } |
| 9743 | |
| 9744 | // Adds everything except the original parameter declaration (which is not a |
| 9745 | // field itself) to the history stack. |
| 9746 | const RecordDecl *RD; |
| 9747 | if (const FieldDecl *Field = dyn_cast<FieldDecl>(Val: Next)) { |
| 9748 | HistoryStack.push_back(Elt: Field); |
| 9749 | |
| 9750 | QualType FieldTy = Field->getType(); |
| 9751 | // Other field types (known to be valid or invalid) are handled while we |
| 9752 | // walk around RecordDecl::fields(). |
| 9753 | assert((FieldTy->isArrayType() || FieldTy->isRecordType()) && |
| 9754 | "Unexpected type." ); |
| 9755 | const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType(); |
| 9756 | |
| 9757 | RD = FieldRecTy->castAs<RecordType>()->getDecl(); |
| 9758 | } else { |
| 9759 | RD = cast<RecordDecl>(Val: Next); |
| 9760 | } |
| 9761 | |
| 9762 | // Add a null marker so we know when we've gone back up a level |
| 9763 | VisitStack.push_back(Elt: nullptr); |
| 9764 | |
| 9765 | for (const auto *FD : RD->fields()) { |
| 9766 | QualType QT = FD->getType(); |
| 9767 | |
| 9768 | if (ValidTypes.count(Ptr: QT.getTypePtr())) |
| 9769 | continue; |
| 9770 | |
| 9771 | OpenCLParamType ParamType = getOpenCLKernelParameterType(S, PT: QT); |
| 9772 | if (ParamType == ValidKernelParam) |
| 9773 | continue; |
| 9774 | |
| 9775 | if (ParamType == RecordKernelParam) { |
| 9776 | VisitStack.push_back(FD); |
| 9777 | continue; |
| 9778 | } |
| 9779 | |
| 9780 | // OpenCL v1.2 s6.9.p: |
| 9781 | // Arguments to kernel functions that are declared to be a struct or union |
| 9782 | // do not allow OpenCL objects to be passed as elements of the struct or |
| 9783 | // union. This restriction was lifted in OpenCL v2.0 with the introduction |
| 9784 | // of SVM. |
| 9785 | if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam || |
| 9786 | ParamType == InvalidAddrSpacePtrKernelParam) { |
| 9787 | S.Diag(Param->getLocation(), |
| 9788 | diag::err_record_with_pointers_kernel_param) |
| 9789 | << PT->isUnionType() |
| 9790 | << PT; |
| 9791 | } else { |
| 9792 | S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; |
| 9793 | } |
| 9794 | |
| 9795 | S.Diag(PD->getLocation(), diag::note_within_field_of_type) |
| 9796 | << PD->getDeclName(); |
| 9797 | |
| 9798 | // We have an error, now let's go back up through history and show where |
| 9799 | // the offending field came from |
| 9800 | for (ArrayRef<const FieldDecl *>::const_iterator |
| 9801 | I = HistoryStack.begin() + 1, |
| 9802 | E = HistoryStack.end(); |
| 9803 | I != E; ++I) { |
| 9804 | const FieldDecl *OuterField = *I; |
| 9805 | S.Diag(OuterField->getLocation(), diag::note_within_field_of_type) |
| 9806 | << OuterField->getType(); |
| 9807 | } |
| 9808 | |
| 9809 | S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here) |
| 9810 | << QT->isPointerType() |
| 9811 | << QT; |
| 9812 | D.setInvalidType(); |
| 9813 | return; |
| 9814 | } |
| 9815 | } while (!VisitStack.empty()); |
| 9816 | } |
| 9817 | |
| 9818 | /// Find the DeclContext in which a tag is implicitly declared if we see an |
| 9819 | /// elaborated type specifier in the specified context, and lookup finds |
| 9820 | /// nothing. |
| 9821 | static DeclContext *getTagInjectionContext(DeclContext *DC) { |
| 9822 | while (!DC->isFileContext() && !DC->isFunctionOrMethod()) |
| 9823 | DC = DC->getParent(); |
| 9824 | return DC; |
| 9825 | } |
| 9826 | |
| 9827 | /// Find the Scope in which a tag is implicitly declared if we see an |
| 9828 | /// elaborated type specifier in the specified context, and lookup finds |
| 9829 | /// nothing. |
| 9830 | static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) { |
| 9831 | while (S->isClassScope() || |
| 9832 | (LangOpts.CPlusPlus && |
| 9833 | S->isFunctionPrototypeScope()) || |
| 9834 | ((S->getFlags() & Scope::DeclScope) == 0) || |
| 9835 | (S->getEntity() && S->getEntity()->isTransparentContext())) |
| 9836 | S = S->getParent(); |
| 9837 | return S; |
| 9838 | } |
| 9839 | |
| 9840 | /// Determine whether a declaration matches a known function in namespace std. |
| 9841 | static bool isStdBuiltin(ASTContext &Ctx, FunctionDecl *FD, |
| 9842 | unsigned BuiltinID) { |
| 9843 | switch (BuiltinID) { |
| 9844 | case Builtin::BI__GetExceptionInfo: |
| 9845 | // No type checking whatsoever. |
| 9846 | return Ctx.getTargetInfo().getCXXABI().isMicrosoft(); |
| 9847 | |
| 9848 | case Builtin::BIaddressof: |
| 9849 | case Builtin::BI__addressof: |
| 9850 | case Builtin::BIforward: |
| 9851 | case Builtin::BIforward_like: |
| 9852 | case Builtin::BImove: |
| 9853 | case Builtin::BImove_if_noexcept: |
| 9854 | case Builtin::BIas_const: { |
| 9855 | // Ensure that we don't treat the algorithm |
| 9856 | // OutputIt std::move(InputIt, InputIt, OutputIt) |
| 9857 | // as the builtin std::move. |
| 9858 | const auto *FPT = FD->getType()->castAs<FunctionProtoType>(); |
| 9859 | return FPT->getNumParams() == 1 && !FPT->isVariadic(); |
| 9860 | } |
| 9861 | |
| 9862 | default: |
| 9863 | return false; |
| 9864 | } |
| 9865 | } |
| 9866 | |
| 9867 | NamedDecl* |
| 9868 | Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC, |
| 9869 | TypeSourceInfo *TInfo, LookupResult &Previous, |
| 9870 | MultiTemplateParamsArg TemplateParamListsRef, |
| 9871 | bool &AddToScope) { |
| 9872 | QualType R = TInfo->getType(); |
| 9873 | |
| 9874 | assert(R->isFunctionType()); |
| 9875 | if (R.getCanonicalType()->castAs<FunctionType>()->getCmseNSCallAttr()) |
| 9876 | Diag(D.getIdentifierLoc(), diag::err_function_decl_cmse_ns_call); |
| 9877 | |
| 9878 | SmallVector<TemplateParameterList *, 4> TemplateParamLists; |
| 9879 | llvm::append_range(C&: TemplateParamLists, R&: TemplateParamListsRef); |
| 9880 | if (TemplateParameterList *Invented = D.getInventedTemplateParameterList()) { |
| 9881 | if (!TemplateParamLists.empty() && !TemplateParamLists.back()->empty() && |
| 9882 | Invented->getDepth() == TemplateParamLists.back()->getDepth()) |
| 9883 | TemplateParamLists.back() = Invented; |
| 9884 | else |
| 9885 | TemplateParamLists.push_back(Elt: Invented); |
| 9886 | } |
| 9887 | |
| 9888 | // TODO: consider using NameInfo for diagnostic. |
| 9889 | DeclarationNameInfo NameInfo = GetNameForDeclarator(D); |
| 9890 | DeclarationName Name = NameInfo.getName(); |
| 9891 | StorageClass SC = getFunctionStorageClass(SemaRef&: *this, D); |
| 9892 | |
| 9893 | if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) |
| 9894 | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), |
| 9895 | diag::err_invalid_thread) |
| 9896 | << DeclSpec::getSpecifierName(TSCS); |
| 9897 | |
| 9898 | if (D.isFirstDeclarationOfMember()) |
| 9899 | adjustMemberFunctionCC( |
| 9900 | T&: R, HasThisPointer: !(D.isStaticMember() || D.isExplicitObjectMemberFunction()), |
| 9901 | IsCtorOrDtor: D.isCtorOrDtor(), Loc: D.getIdentifierLoc()); |
| 9902 | |
| 9903 | bool isFriend = false; |
| 9904 | FunctionTemplateDecl *FunctionTemplate = nullptr; |
| 9905 | bool isMemberSpecialization = false; |
| 9906 | bool isFunctionTemplateSpecialization = false; |
| 9907 | |
| 9908 | bool HasExplicitTemplateArgs = false; |
| 9909 | TemplateArgumentListInfo TemplateArgs; |
| 9910 | |
| 9911 | bool isVirtualOkay = false; |
| 9912 | |
| 9913 | DeclContext *OriginalDC = DC; |
| 9914 | bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC); |
| 9915 | |
| 9916 | FunctionDecl *NewFD = CreateNewFunctionDecl(SemaRef&: *this, D, DC, R, TInfo, SC, |
| 9917 | IsVirtualOkay&: isVirtualOkay); |
| 9918 | if (!NewFD) return nullptr; |
| 9919 | |
| 9920 | if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer()) |
| 9921 | NewFD->setTopLevelDeclInObjCContainer(); |
| 9922 | |
| 9923 | // Set the lexical context. If this is a function-scope declaration, or has a |
| 9924 | // C++ scope specifier, or is the object of a friend declaration, the lexical |
| 9925 | // context will be different from the semantic context. |
| 9926 | NewFD->setLexicalDeclContext(CurContext); |
| 9927 | |
| 9928 | if (IsLocalExternDecl) |
| 9929 | NewFD->setLocalExternDecl(); |
| 9930 | |
| 9931 | if (getLangOpts().CPlusPlus) { |
| 9932 | // The rules for implicit inlines changed in C++20 for methods and friends |
| 9933 | // with an in-class definition (when such a definition is not attached to |
| 9934 | // the global module). This does not affect declarations that are already |
| 9935 | // inline (whether explicitly or implicitly by being declared constexpr, |
| 9936 | // consteval, etc). |
| 9937 | // FIXME: We need a better way to separate C++ standard and clang modules. |
| 9938 | bool ImplicitInlineCXX20 = !getLangOpts().CPlusPlusModules || |
| 9939 | !NewFD->getOwningModule() || |
| 9940 | NewFD->isFromGlobalModule() || |
| 9941 | NewFD->getOwningModule()->isHeaderLikeModule(); |
| 9942 | bool isInline = D.getDeclSpec().isInlineSpecified(); |
| 9943 | bool isVirtual = D.getDeclSpec().isVirtualSpecified(); |
| 9944 | bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier(); |
| 9945 | isFriend = D.getDeclSpec().isFriendSpecified(); |
| 9946 | if (ImplicitInlineCXX20 && isFriend && D.isFunctionDefinition()) { |
| 9947 | // Pre-C++20 [class.friend]p5 |
| 9948 | // A function can be defined in a friend declaration of a |
| 9949 | // class . . . . Such a function is implicitly inline. |
| 9950 | // Post C++20 [class.friend]p7 |
| 9951 | // Such a function is implicitly an inline function if it is attached |
| 9952 | // to the global module. |
| 9953 | NewFD->setImplicitlyInline(); |
| 9954 | } |
| 9955 | |
| 9956 | // If this is a method defined in an __interface, and is not a constructor |
| 9957 | // or an overloaded operator, then set the pure flag (isVirtual will already |
| 9958 | // return true). |
| 9959 | if (const CXXRecordDecl *Parent = |
| 9960 | dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) { |
| 9961 | if (Parent->isInterface() && cast<CXXMethodDecl>(Val: NewFD)->isUserProvided()) |
| 9962 | NewFD->setIsPureVirtual(true); |
| 9963 | |
| 9964 | // C++ [class.union]p2 |
| 9965 | // A union can have member functions, but not virtual functions. |
| 9966 | if (isVirtual && Parent->isUnion()) { |
| 9967 | Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union); |
| 9968 | NewFD->setInvalidDecl(); |
| 9969 | } |
| 9970 | if ((Parent->isClass() || Parent->isStruct()) && |
| 9971 | Parent->hasAttr<SYCLSpecialClassAttr>() && |
| 9972 | NewFD->getKind() == Decl::Kind::CXXMethod && NewFD->getIdentifier() && |
| 9973 | NewFD->getName() == "__init" && D.isFunctionDefinition()) { |
| 9974 | if (auto *Def = Parent->getDefinition()) |
| 9975 | Def->setInitMethod(true); |
| 9976 | } |
| 9977 | } |
| 9978 | |
| 9979 | SetNestedNameSpecifier(*this, NewFD, D); |
| 9980 | isMemberSpecialization = false; |
| 9981 | isFunctionTemplateSpecialization = false; |
| 9982 | if (D.isInvalidType()) |
| 9983 | NewFD->setInvalidDecl(); |
| 9984 | |
| 9985 | // Match up the template parameter lists with the scope specifier, then |
| 9986 | // determine whether we have a template or a template specialization. |
| 9987 | bool Invalid = false; |
| 9988 | TemplateIdAnnotation *TemplateId = |
| 9989 | D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId |
| 9990 | ? D.getName().TemplateId |
| 9991 | : nullptr; |
| 9992 | TemplateParameterList *TemplateParams = |
| 9993 | MatchTemplateParametersToScopeSpecifier( |
| 9994 | DeclStartLoc: D.getDeclSpec().getBeginLoc(), DeclLoc: D.getIdentifierLoc(), |
| 9995 | SS: D.getCXXScopeSpec(), TemplateId, ParamLists: TemplateParamLists, IsFriend: isFriend, |
| 9996 | IsMemberSpecialization&: isMemberSpecialization, Invalid); |
| 9997 | if (TemplateParams) { |
| 9998 | // Check that we can declare a template here. |
| 9999 | if (CheckTemplateDeclScope(S, TemplateParams)) |
| 10000 | NewFD->setInvalidDecl(); |
| 10001 | |
| 10002 | if (TemplateParams->size() > 0) { |
| 10003 | // This is a function template |
| 10004 | |
| 10005 | // A destructor cannot be a template. |
| 10006 | if (Name.getNameKind() == DeclarationName::CXXDestructorName) { |
| 10007 | Diag(NewFD->getLocation(), diag::err_destructor_template); |
| 10008 | NewFD->setInvalidDecl(); |
| 10009 | // Function template with explicit template arguments. |
| 10010 | } else if (TemplateId) { |
| 10011 | Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec) |
| 10012 | << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc); |
| 10013 | NewFD->setInvalidDecl(); |
| 10014 | } |
| 10015 | |
| 10016 | // If we're adding a template to a dependent context, we may need to |
| 10017 | // rebuilding some of the types used within the template parameter list, |
| 10018 | // now that we know what the current instantiation is. |
| 10019 | if (DC->isDependentContext()) { |
| 10020 | ContextRAII SavedContext(*this, DC); |
| 10021 | if (RebuildTemplateParamsInCurrentInstantiation(Params: TemplateParams)) |
| 10022 | Invalid = true; |
| 10023 | } |
| 10024 | |
| 10025 | FunctionTemplate = FunctionTemplateDecl::Create(C&: Context, DC, |
| 10026 | L: NewFD->getLocation(), |
| 10027 | Name, Params: TemplateParams, |
| 10028 | Decl: NewFD); |
| 10029 | FunctionTemplate->setLexicalDeclContext(CurContext); |
| 10030 | NewFD->setDescribedFunctionTemplate(FunctionTemplate); |
| 10031 | |
| 10032 | // For source fidelity, store the other template param lists. |
| 10033 | if (TemplateParamLists.size() > 1) { |
| 10034 | NewFD->setTemplateParameterListsInfo(Context, |
| 10035 | ArrayRef<TemplateParameterList *>(TemplateParamLists) |
| 10036 | .drop_back(N: 1)); |
| 10037 | } |
| 10038 | } else { |
| 10039 | // This is a function template specialization. |
| 10040 | isFunctionTemplateSpecialization = true; |
| 10041 | // For source fidelity, store all the template param lists. |
| 10042 | if (TemplateParamLists.size() > 0) |
| 10043 | NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists); |
| 10044 | |
| 10045 | // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);". |
| 10046 | if (isFriend) { |
| 10047 | // We want to remove the "template<>", found here. |
| 10048 | SourceRange RemoveRange = TemplateParams->getSourceRange(); |
| 10049 | |
| 10050 | // If we remove the template<> and the name is not a |
| 10051 | // template-id, we're actually silently creating a problem: |
| 10052 | // the friend declaration will refer to an untemplated decl, |
| 10053 | // and clearly the user wants a template specialization. So |
| 10054 | // we need to insert '<>' after the name. |
| 10055 | SourceLocation InsertLoc; |
| 10056 | if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { |
| 10057 | InsertLoc = D.getName().getSourceRange().getEnd(); |
| 10058 | InsertLoc = getLocForEndOfToken(Loc: InsertLoc); |
| 10059 | } |
| 10060 | |
| 10061 | Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend) |
| 10062 | << Name << RemoveRange |
| 10063 | << FixItHint::CreateRemoval(RemoveRange) |
| 10064 | << FixItHint::CreateInsertion(InsertLoc, "<>" ); |
| 10065 | Invalid = true; |
| 10066 | |
| 10067 | // Recover by faking up an empty template argument list. |
| 10068 | HasExplicitTemplateArgs = true; |
| 10069 | TemplateArgs.setLAngleLoc(InsertLoc); |
| 10070 | TemplateArgs.setRAngleLoc(InsertLoc); |
| 10071 | } |
| 10072 | } |
| 10073 | } else { |
| 10074 | // Check that we can declare a template here. |
| 10075 | if (!TemplateParamLists.empty() && isMemberSpecialization && |
| 10076 | CheckTemplateDeclScope(S, TemplateParams: TemplateParamLists.back())) |
| 10077 | NewFD->setInvalidDecl(); |
| 10078 | |
| 10079 | // All template param lists were matched against the scope specifier: |
| 10080 | // this is NOT (an explicit specialization of) a template. |
| 10081 | if (TemplateParamLists.size() > 0) |
| 10082 | // For source fidelity, store all the template param lists. |
| 10083 | NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists); |
| 10084 | |
| 10085 | // "friend void foo<>(int);" is an implicit specialization decl. |
| 10086 | if (isFriend && TemplateId) |
| 10087 | isFunctionTemplateSpecialization = true; |
| 10088 | } |
| 10089 | |
| 10090 | // If this is a function template specialization and the unqualified-id of |
| 10091 | // the declarator-id is a template-id, convert the template argument list |
| 10092 | // into our AST format and check for unexpanded packs. |
| 10093 | if (isFunctionTemplateSpecialization && TemplateId) { |
| 10094 | HasExplicitTemplateArgs = true; |
| 10095 | |
| 10096 | TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); |
| 10097 | TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); |
| 10098 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), |
| 10099 | TemplateId->NumArgs); |
| 10100 | translateTemplateArguments(In: TemplateArgsPtr, Out&: TemplateArgs); |
| 10101 | |
| 10102 | // FIXME: Should we check for unexpanded packs if this was an (invalid) |
| 10103 | // declaration of a function template partial specialization? Should we |
| 10104 | // consider the unexpanded pack context to be a partial specialization? |
| 10105 | for (const TemplateArgumentLoc &ArgLoc : TemplateArgs.arguments()) { |
| 10106 | if (DiagnoseUnexpandedParameterPack( |
| 10107 | Arg: ArgLoc, UPPC: isFriend ? UPPC_FriendDeclaration |
| 10108 | : UPPC_ExplicitSpecialization)) |
| 10109 | NewFD->setInvalidDecl(); |
| 10110 | } |
| 10111 | } |
| 10112 | |
| 10113 | if (Invalid) { |
| 10114 | NewFD->setInvalidDecl(); |
| 10115 | if (FunctionTemplate) |
| 10116 | FunctionTemplate->setInvalidDecl(); |
| 10117 | } |
| 10118 | |
| 10119 | // C++ [dcl.fct.spec]p5: |
| 10120 | // The virtual specifier shall only be used in declarations of |
| 10121 | // nonstatic class member functions that appear within a |
| 10122 | // member-specification of a class declaration; see 10.3. |
| 10123 | // |
| 10124 | if (isVirtual && !NewFD->isInvalidDecl()) { |
| 10125 | if (!isVirtualOkay) { |
| 10126 | Diag(D.getDeclSpec().getVirtualSpecLoc(), |
| 10127 | diag::err_virtual_non_function); |
| 10128 | } else if (!CurContext->isRecord()) { |
| 10129 | // 'virtual' was specified outside of the class. |
| 10130 | Diag(D.getDeclSpec().getVirtualSpecLoc(), |
| 10131 | diag::err_virtual_out_of_class) |
| 10132 | << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); |
| 10133 | } else if (NewFD->getDescribedFunctionTemplate()) { |
| 10134 | // C++ [temp.mem]p3: |
| 10135 | // A member function template shall not be virtual. |
| 10136 | Diag(D.getDeclSpec().getVirtualSpecLoc(), |
| 10137 | diag::err_virtual_member_function_template) |
| 10138 | << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); |
| 10139 | } else { |
| 10140 | // Okay: Add virtual to the method. |
| 10141 | NewFD->setVirtualAsWritten(true); |
| 10142 | } |
| 10143 | |
| 10144 | if (getLangOpts().CPlusPlus14 && |
| 10145 | NewFD->getReturnType()->isUndeducedType()) |
| 10146 | Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual); |
| 10147 | } |
| 10148 | |
| 10149 | // C++ [dcl.fct.spec]p3: |
| 10150 | // The inline specifier shall not appear on a block scope function |
| 10151 | // declaration. |
| 10152 | if (isInline && !NewFD->isInvalidDecl()) { |
| 10153 | if (CurContext->isFunctionOrMethod()) { |
| 10154 | // 'inline' is not allowed on block scope function declaration. |
| 10155 | Diag(D.getDeclSpec().getInlineSpecLoc(), |
| 10156 | diag::err_inline_declaration_block_scope) << Name |
| 10157 | << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); |
| 10158 | } |
| 10159 | } |
| 10160 | |
| 10161 | // C++ [dcl.fct.spec]p6: |
| 10162 | // The explicit specifier shall be used only in the declaration of a |
| 10163 | // constructor or conversion function within its class definition; |
| 10164 | // see 12.3.1 and 12.3.2. |
| 10165 | if (hasExplicit && !NewFD->isInvalidDecl() && |
| 10166 | !isa<CXXDeductionGuideDecl>(Val: NewFD)) { |
| 10167 | if (!CurContext->isRecord()) { |
| 10168 | // 'explicit' was specified outside of the class. |
| 10169 | Diag(D.getDeclSpec().getExplicitSpecLoc(), |
| 10170 | diag::err_explicit_out_of_class) |
| 10171 | << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange()); |
| 10172 | } else if (!isa<CXXConstructorDecl>(Val: NewFD) && |
| 10173 | !isa<CXXConversionDecl>(Val: NewFD)) { |
| 10174 | // 'explicit' was specified on a function that wasn't a constructor |
| 10175 | // or conversion function. |
| 10176 | Diag(D.getDeclSpec().getExplicitSpecLoc(), |
| 10177 | diag::err_explicit_non_ctor_or_conv_function) |
| 10178 | << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange()); |
| 10179 | } |
| 10180 | } |
| 10181 | |
| 10182 | ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier(); |
| 10183 | if (ConstexprKind != ConstexprSpecKind::Unspecified) { |
| 10184 | // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors |
| 10185 | // are implicitly inline. |
| 10186 | NewFD->setImplicitlyInline(); |
| 10187 | |
| 10188 | // C++11 [dcl.constexpr]p3: functions declared constexpr are required to |
| 10189 | // be either constructors or to return a literal type. Therefore, |
| 10190 | // destructors cannot be declared constexpr. |
| 10191 | if (isa<CXXDestructorDecl>(Val: NewFD) && |
| 10192 | (!getLangOpts().CPlusPlus20 || |
| 10193 | ConstexprKind == ConstexprSpecKind::Consteval)) { |
| 10194 | Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor) |
| 10195 | << static_cast<int>(ConstexprKind); |
| 10196 | NewFD->setConstexprKind(getLangOpts().CPlusPlus20 |
| 10197 | ? ConstexprSpecKind::Unspecified |
| 10198 | : ConstexprSpecKind::Constexpr); |
| 10199 | } |
| 10200 | // C++20 [dcl.constexpr]p2: An allocation function, or a |
| 10201 | // deallocation function shall not be declared with the consteval |
| 10202 | // specifier. |
| 10203 | if (ConstexprKind == ConstexprSpecKind::Consteval && |
| 10204 | NewFD->getDeclName().isAnyOperatorNewOrDelete()) { |
| 10205 | Diag(D.getDeclSpec().getConstexprSpecLoc(), |
| 10206 | diag::err_invalid_consteval_decl_kind) |
| 10207 | << NewFD; |
| 10208 | NewFD->setConstexprKind(ConstexprSpecKind::Constexpr); |
| 10209 | } |
| 10210 | } |
| 10211 | |
| 10212 | // If __module_private__ was specified, mark the function accordingly. |
| 10213 | if (D.getDeclSpec().isModulePrivateSpecified()) { |
| 10214 | if (isFunctionTemplateSpecialization) { |
| 10215 | SourceLocation ModulePrivateLoc |
| 10216 | = D.getDeclSpec().getModulePrivateSpecLoc(); |
| 10217 | Diag(ModulePrivateLoc, diag::err_module_private_specialization) |
| 10218 | << 0 |
| 10219 | << FixItHint::CreateRemoval(ModulePrivateLoc); |
| 10220 | } else { |
| 10221 | NewFD->setModulePrivate(); |
| 10222 | if (FunctionTemplate) |
| 10223 | FunctionTemplate->setModulePrivate(); |
| 10224 | } |
| 10225 | } |
| 10226 | |
| 10227 | if (isFriend) { |
| 10228 | if (FunctionTemplate) { |
| 10229 | FunctionTemplate->setObjectOfFriendDecl(); |
| 10230 | FunctionTemplate->setAccess(AS_public); |
| 10231 | } |
| 10232 | NewFD->setObjectOfFriendDecl(); |
| 10233 | NewFD->setAccess(AS_public); |
| 10234 | } |
| 10235 | |
| 10236 | // If a function is defined as defaulted or deleted, mark it as such now. |
| 10237 | // We'll do the relevant checks on defaulted / deleted functions later. |
| 10238 | switch (D.getFunctionDefinitionKind()) { |
| 10239 | case FunctionDefinitionKind::Declaration: |
| 10240 | case FunctionDefinitionKind::Definition: |
| 10241 | break; |
| 10242 | |
| 10243 | case FunctionDefinitionKind::Defaulted: |
| 10244 | NewFD->setDefaulted(); |
| 10245 | break; |
| 10246 | |
| 10247 | case FunctionDefinitionKind::Deleted: |
| 10248 | NewFD->setDeletedAsWritten(); |
| 10249 | break; |
| 10250 | } |
| 10251 | |
| 10252 | if (ImplicitInlineCXX20 && isa<CXXMethodDecl>(Val: NewFD) && DC == CurContext && |
| 10253 | D.isFunctionDefinition()) { |
| 10254 | // Pre C++20 [class.mfct]p2: |
| 10255 | // A member function may be defined (8.4) in its class definition, in |
| 10256 | // which case it is an inline member function (7.1.2) |
| 10257 | // Post C++20 [class.mfct]p1: |
| 10258 | // If a member function is attached to the global module and is defined |
| 10259 | // in its class definition, it is inline. |
| 10260 | NewFD->setImplicitlyInline(); |
| 10261 | } |
| 10262 | |
| 10263 | if (!isFriend && SC != SC_None) { |
| 10264 | // C++ [temp.expl.spec]p2: |
| 10265 | // The declaration in an explicit-specialization shall not be an |
| 10266 | // export-declaration. An explicit specialization shall not use a |
| 10267 | // storage-class-specifier other than thread_local. |
| 10268 | // |
| 10269 | // We diagnose friend declarations with storage-class-specifiers |
| 10270 | // elsewhere. |
| 10271 | if (isFunctionTemplateSpecialization || isMemberSpecialization) { |
| 10272 | Diag(D.getDeclSpec().getStorageClassSpecLoc(), |
| 10273 | diag::ext_explicit_specialization_storage_class) |
| 10274 | << FixItHint::CreateRemoval( |
| 10275 | D.getDeclSpec().getStorageClassSpecLoc()); |
| 10276 | } |
| 10277 | |
| 10278 | if (SC == SC_Static && !CurContext->isRecord() && DC->isRecord()) { |
| 10279 | assert(isa<CXXMethodDecl>(NewFD) && |
| 10280 | "Out-of-line member function should be a CXXMethodDecl" ); |
| 10281 | // C++ [class.static]p1: |
| 10282 | // A data or function member of a class may be declared static |
| 10283 | // in a class definition, in which case it is a static member of |
| 10284 | // the class. |
| 10285 | |
| 10286 | // Complain about the 'static' specifier if it's on an out-of-line |
| 10287 | // member function definition. |
| 10288 | |
| 10289 | // MSVC permits the use of a 'static' storage specifier on an |
| 10290 | // out-of-line member function template declaration and class member |
| 10291 | // template declaration (MSVC versions before 2015), warn about this. |
| 10292 | Diag(D.getDeclSpec().getStorageClassSpecLoc(), |
| 10293 | ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && |
| 10294 | cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) || |
| 10295 | (getLangOpts().MSVCCompat && |
| 10296 | NewFD->getDescribedFunctionTemplate())) |
| 10297 | ? diag::ext_static_out_of_line |
| 10298 | : diag::err_static_out_of_line) |
| 10299 | << FixItHint::CreateRemoval( |
| 10300 | D.getDeclSpec().getStorageClassSpecLoc()); |
| 10301 | } |
| 10302 | } |
| 10303 | |
| 10304 | // C++11 [except.spec]p15: |
| 10305 | // A deallocation function with no exception-specification is treated |
| 10306 | // as if it were specified with noexcept(true). |
| 10307 | const FunctionProtoType *FPT = R->getAs<FunctionProtoType>(); |
| 10308 | if (Name.isAnyOperatorDelete() && getLangOpts().CPlusPlus11 && FPT && |
| 10309 | !FPT->hasExceptionSpec()) |
| 10310 | NewFD->setType(Context.getFunctionType( |
| 10311 | ResultTy: FPT->getReturnType(), Args: FPT->getParamTypes(), |
| 10312 | EPI: FPT->getExtProtoInfo().withExceptionSpec(ESI: EST_BasicNoexcept))); |
| 10313 | |
| 10314 | // C++20 [dcl.inline]/7 |
| 10315 | // If an inline function or variable that is attached to a named module |
| 10316 | // is declared in a definition domain, it shall be defined in that |
| 10317 | // domain. |
| 10318 | // So, if the current declaration does not have a definition, we must |
| 10319 | // check at the end of the TU (or when the PMF starts) to see that we |
| 10320 | // have a definition at that point. |
| 10321 | if (isInline && !D.isFunctionDefinition() && getLangOpts().CPlusPlus20 && |
| 10322 | NewFD->isInNamedModule()) { |
| 10323 | PendingInlineFuncDecls.insert(Ptr: NewFD); |
| 10324 | } |
| 10325 | } |
| 10326 | |
| 10327 | // Filter out previous declarations that don't match the scope. |
| 10328 | FilterLookupForScope(R&: Previous, Ctx: OriginalDC, S, ConsiderLinkage: shouldConsiderLinkage(FD: NewFD), |
| 10329 | AllowInlineNamespace: D.getCXXScopeSpec().isNotEmpty() || |
| 10330 | isMemberSpecialization || |
| 10331 | isFunctionTemplateSpecialization); |
| 10332 | |
| 10333 | // Handle GNU asm-label extension (encoded as an attribute). |
| 10334 | if (Expr *E = (Expr*) D.getAsmLabel()) { |
| 10335 | // The parser guarantees this is a string. |
| 10336 | StringLiteral *SE = cast<StringLiteral>(Val: E); |
| 10337 | NewFD->addAttr(AsmLabelAttr::Create(Context, SE->getString(), |
| 10338 | /*IsLiteralLabel=*/true, |
| 10339 | SE->getStrTokenLoc(0))); |
| 10340 | } else if (!ExtnameUndeclaredIdentifiers.empty()) { |
| 10341 | llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = |
| 10342 | ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier()); |
| 10343 | if (I != ExtnameUndeclaredIdentifiers.end()) { |
| 10344 | if (isDeclExternC(NewFD)) { |
| 10345 | NewFD->addAttr(A: I->second); |
| 10346 | ExtnameUndeclaredIdentifiers.erase(I); |
| 10347 | } else |
| 10348 | Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied) |
| 10349 | << /*Variable*/0 << NewFD; |
| 10350 | } |
| 10351 | } |
| 10352 | |
| 10353 | // Copy the parameter declarations from the declarator D to the function |
| 10354 | // declaration NewFD, if they are available. First scavenge them into Params. |
| 10355 | SmallVector<ParmVarDecl*, 16> Params; |
| 10356 | unsigned FTIIdx; |
| 10357 | if (D.isFunctionDeclarator(idx&: FTIIdx)) { |
| 10358 | DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(i: FTIIdx).Fun; |
| 10359 | |
| 10360 | // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs |
| 10361 | // function that takes no arguments, not a function that takes a |
| 10362 | // single void argument. |
| 10363 | // We let through "const void" here because Sema::GetTypeForDeclarator |
| 10364 | // already checks for that case. |
| 10365 | if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) { |
| 10366 | for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) { |
| 10367 | ParmVarDecl *Param = cast<ParmVarDecl>(Val: FTI.Params[i].Param); |
| 10368 | assert(Param->getDeclContext() != NewFD && "Was set before ?" ); |
| 10369 | Param->setDeclContext(NewFD); |
| 10370 | Params.push_back(Elt: Param); |
| 10371 | |
| 10372 | if (Param->isInvalidDecl()) |
| 10373 | NewFD->setInvalidDecl(); |
| 10374 | } |
| 10375 | } |
| 10376 | |
| 10377 | if (!getLangOpts().CPlusPlus) { |
| 10378 | // In C, find all the tag declarations from the prototype and move them |
| 10379 | // into the function DeclContext. Remove them from the surrounding tag |
| 10380 | // injection context of the function, which is typically but not always |
| 10381 | // the TU. |
| 10382 | DeclContext *PrototypeTagContext = |
| 10383 | getTagInjectionContext(NewFD->getLexicalDeclContext()); |
| 10384 | for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) { |
| 10385 | auto *TD = dyn_cast<TagDecl>(Val: NonParmDecl); |
| 10386 | |
| 10387 | // We don't want to reparent enumerators. Look at their parent enum |
| 10388 | // instead. |
| 10389 | if (!TD) { |
| 10390 | if (auto *ECD = dyn_cast<EnumConstantDecl>(Val: NonParmDecl)) |
| 10391 | TD = cast<EnumDecl>(ECD->getDeclContext()); |
| 10392 | } |
| 10393 | if (!TD) |
| 10394 | continue; |
| 10395 | DeclContext *TagDC = TD->getLexicalDeclContext(); |
| 10396 | if (!TagDC->containsDecl(TD)) |
| 10397 | continue; |
| 10398 | TagDC->removeDecl(TD); |
| 10399 | TD->setDeclContext(NewFD); |
| 10400 | NewFD->addDecl(TD); |
| 10401 | |
| 10402 | // Preserve the lexical DeclContext if it is not the surrounding tag |
| 10403 | // injection context of the FD. In this example, the semantic context of |
| 10404 | // E will be f and the lexical context will be S, while both the |
| 10405 | // semantic and lexical contexts of S will be f: |
| 10406 | // void f(struct S { enum E { a } f; } s); |
| 10407 | if (TagDC != PrototypeTagContext) |
| 10408 | TD->setLexicalDeclContext(TagDC); |
| 10409 | } |
| 10410 | } |
| 10411 | } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) { |
| 10412 | // When we're declaring a function with a typedef, typeof, etc as in the |
| 10413 | // following example, we'll need to synthesize (unnamed) |
| 10414 | // parameters for use in the declaration. |
| 10415 | // |
| 10416 | // @code |
| 10417 | // typedef void fn(int); |
| 10418 | // fn f; |
| 10419 | // @endcode |
| 10420 | |
| 10421 | // Synthesize a parameter for each argument type. |
| 10422 | for (const auto &AI : FT->param_types()) { |
| 10423 | ParmVarDecl *Param = |
| 10424 | BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI); |
| 10425 | Param->setScopeInfo(scopeDepth: 0, parameterIndex: Params.size()); |
| 10426 | Params.push_back(Elt: Param); |
| 10427 | } |
| 10428 | } else { |
| 10429 | assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && |
| 10430 | "Should not need args for typedef of non-prototype fn" ); |
| 10431 | } |
| 10432 | |
| 10433 | // Finally, we know we have the right number of parameters, install them. |
| 10434 | NewFD->setParams(Params); |
| 10435 | |
| 10436 | // If this declarator is a declaration and not a definition, its parameters |
| 10437 | // will not be pushed onto a scope chain. That means we will not issue any |
| 10438 | // reserved identifier warnings for the declaration, but we will for the |
| 10439 | // definition. Handle those here. |
| 10440 | if (!D.isFunctionDefinition()) { |
| 10441 | for (const ParmVarDecl *PVD : Params) |
| 10442 | warnOnReservedIdentifier(PVD); |
| 10443 | } |
| 10444 | |
| 10445 | if (D.getDeclSpec().isNoreturnSpecified()) |
| 10446 | NewFD->addAttr( |
| 10447 | C11NoReturnAttr::Create(Context, D.getDeclSpec().getNoreturnSpecLoc())); |
| 10448 | |
| 10449 | // Functions returning a variably modified type violate C99 6.7.5.2p2 |
| 10450 | // because all functions have linkage. |
| 10451 | if (!NewFD->isInvalidDecl() && |
| 10452 | NewFD->getReturnType()->isVariablyModifiedType()) { |
| 10453 | Diag(NewFD->getLocation(), diag::err_vm_func_decl); |
| 10454 | NewFD->setInvalidDecl(); |
| 10455 | } |
| 10456 | |
| 10457 | // Apply an implicit SectionAttr if '#pragma clang section text' is active |
| 10458 | if (PragmaClangTextSection.Valid && D.isFunctionDefinition() && |
| 10459 | !NewFD->hasAttr<SectionAttr>()) |
| 10460 | NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit( |
| 10461 | Context, PragmaClangTextSection.SectionName, |
| 10462 | PragmaClangTextSection.PragmaLocation)); |
| 10463 | |
| 10464 | // Apply an implicit SectionAttr if #pragma code_seg is active. |
| 10465 | if (CodeSegStack.CurrentValue && D.isFunctionDefinition() && |
| 10466 | !NewFD->hasAttr<SectionAttr>()) { |
| 10467 | NewFD->addAttr(SectionAttr::CreateImplicit( |
| 10468 | Context, CodeSegStack.CurrentValue->getString(), |
| 10469 | CodeSegStack.CurrentPragmaLocation, SectionAttr::Declspec_allocate)); |
| 10470 | if (UnifySection(CodeSegStack.CurrentValue->getString(), |
| 10471 | ASTContext::PSF_Implicit | ASTContext::PSF_Execute | |
| 10472 | ASTContext::PSF_Read, |
| 10473 | NewFD)) |
| 10474 | NewFD->dropAttr<SectionAttr>(); |
| 10475 | } |
| 10476 | |
| 10477 | // Apply an implicit StrictGuardStackCheckAttr if #pragma strict_gs_check is |
| 10478 | // active. |
| 10479 | if (StrictGuardStackCheckStack.CurrentValue && D.isFunctionDefinition() && |
| 10480 | !NewFD->hasAttr<StrictGuardStackCheckAttr>()) |
| 10481 | NewFD->addAttr(StrictGuardStackCheckAttr::CreateImplicit( |
| 10482 | Context, PragmaClangTextSection.PragmaLocation)); |
| 10483 | |
| 10484 | // Apply an implicit CodeSegAttr from class declspec or |
| 10485 | // apply an implicit SectionAttr from #pragma code_seg if active. |
| 10486 | if (!NewFD->hasAttr<CodeSegAttr>()) { |
| 10487 | if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(FD: NewFD, |
| 10488 | IsDefinition: D.isFunctionDefinition())) { |
| 10489 | NewFD->addAttr(SAttr); |
| 10490 | } |
| 10491 | } |
| 10492 | |
| 10493 | // Handle attributes. |
| 10494 | ProcessDeclAttributes(S, NewFD, D); |
| 10495 | const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>(); |
| 10496 | if (Context.getTargetInfo().getTriple().isAArch64() && NewTVA && |
| 10497 | !NewTVA->isDefaultVersion() && |
| 10498 | !Context.getTargetInfo().hasFeature(Feature: "fmv" )) { |
| 10499 | // Don't add to scope fmv functions declarations if fmv disabled |
| 10500 | AddToScope = false; |
| 10501 | return NewFD; |
| 10502 | } |
| 10503 | |
| 10504 | if (getLangOpts().OpenCL || getLangOpts().HLSL) { |
| 10505 | // Neither OpenCL nor HLSL allow an address space qualifyer on a return |
| 10506 | // type. |
| 10507 | // |
| 10508 | // OpenCL v1.1 s6.5: Using an address space qualifier in a function return |
| 10509 | // type declaration will generate a compilation error. |
| 10510 | LangAS AddressSpace = NewFD->getReturnType().getAddressSpace(); |
| 10511 | if (AddressSpace != LangAS::Default) { |
| 10512 | Diag(NewFD->getLocation(), diag::err_return_value_with_address_space); |
| 10513 | NewFD->setInvalidDecl(); |
| 10514 | } |
| 10515 | } |
| 10516 | |
| 10517 | if (!getLangOpts().CPlusPlus) { |
| 10518 | // Perform semantic checking on the function declaration. |
| 10519 | if (!NewFD->isInvalidDecl() && NewFD->isMain()) |
| 10520 | CheckMain(FD: NewFD, D: D.getDeclSpec()); |
| 10521 | |
| 10522 | if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) |
| 10523 | CheckMSVCRTEntryPoint(FD: NewFD); |
| 10524 | |
| 10525 | if (!NewFD->isInvalidDecl()) |
| 10526 | D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, |
| 10527 | IsMemberSpecialization: isMemberSpecialization, |
| 10528 | DeclIsDefn: D.isFunctionDefinition())); |
| 10529 | else if (!Previous.empty()) |
| 10530 | // Recover gracefully from an invalid redeclaration. |
| 10531 | D.setRedeclaration(true); |
| 10532 | assert((NewFD->isInvalidDecl() || !D.isRedeclaration() || |
| 10533 | Previous.getResultKind() != LookupResultKind::FoundOverloaded) && |
| 10534 | "previous declaration set still overloaded" ); |
| 10535 | |
| 10536 | // Diagnose no-prototype function declarations with calling conventions that |
| 10537 | // don't support variadic calls. Only do this in C and do it after merging |
| 10538 | // possibly prototyped redeclarations. |
| 10539 | const FunctionType *FT = NewFD->getType()->castAs<FunctionType>(); |
| 10540 | if (isa<FunctionNoProtoType>(Val: FT) && !D.isFunctionDefinition()) { |
| 10541 | CallingConv CC = FT->getExtInfo().getCC(); |
| 10542 | if (!supportsVariadicCall(CC)) { |
| 10543 | // Windows system headers sometimes accidentally use stdcall without |
| 10544 | // (void) parameters, so we relax this to a warning. |
| 10545 | int DiagID = |
| 10546 | CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr; |
| 10547 | Diag(NewFD->getLocation(), DiagID) |
| 10548 | << FunctionType::getNameForCallConv(CC); |
| 10549 | } |
| 10550 | } |
| 10551 | |
| 10552 | if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() || |
| 10553 | NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion()) |
| 10554 | checkNonTrivialCUnion( |
| 10555 | QT: NewFD->getReturnType(), Loc: NewFD->getReturnTypeSourceRange().getBegin(), |
| 10556 | UseContext: NonTrivialCUnionContext::FunctionReturn, NonTrivialKind: NTCUK_Destruct | NTCUK_Copy); |
| 10557 | } else { |
| 10558 | // C++11 [replacement.functions]p3: |
| 10559 | // The program's definitions shall not be specified as inline. |
| 10560 | // |
| 10561 | // N.B. We diagnose declarations instead of definitions per LWG issue 2340. |
| 10562 | // |
| 10563 | // Suppress the diagnostic if the function is __attribute__((used)), since |
| 10564 | // that forces an external definition to be emitted. |
| 10565 | if (D.getDeclSpec().isInlineSpecified() && |
| 10566 | NewFD->isReplaceableGlobalAllocationFunction() && |
| 10567 | !NewFD->hasAttr<UsedAttr>()) |
| 10568 | Diag(D.getDeclSpec().getInlineSpecLoc(), |
| 10569 | diag::ext_operator_new_delete_declared_inline) |
| 10570 | << NewFD->getDeclName(); |
| 10571 | |
| 10572 | if (const Expr *TRC = NewFD->getTrailingRequiresClause().ConstraintExpr) { |
| 10573 | // C++20 [dcl.decl.general]p4: |
| 10574 | // The optional requires-clause in an init-declarator or |
| 10575 | // member-declarator shall be present only if the declarator declares a |
| 10576 | // templated function. |
| 10577 | // |
| 10578 | // C++20 [temp.pre]p8: |
| 10579 | // An entity is templated if it is |
| 10580 | // - a template, |
| 10581 | // - an entity defined or created in a templated entity, |
| 10582 | // - a member of a templated entity, |
| 10583 | // - an enumerator for an enumeration that is a templated entity, or |
| 10584 | // - the closure type of a lambda-expression appearing in the |
| 10585 | // declaration of a templated entity. |
| 10586 | // |
| 10587 | // [Note 6: A local class, a local or block variable, or a friend |
| 10588 | // function defined in a templated entity is a templated entity. |
| 10589 | // — end note] |
| 10590 | // |
| 10591 | // A templated function is a function template or a function that is |
| 10592 | // templated. A templated class is a class template or a class that is |
| 10593 | // templated. A templated variable is a variable template or a variable |
| 10594 | // that is templated. |
| 10595 | if (!FunctionTemplate) { |
| 10596 | if (isFunctionTemplateSpecialization || isMemberSpecialization) { |
| 10597 | // C++ [temp.expl.spec]p8 (proposed resolution for CWG2847): |
| 10598 | // An explicit specialization shall not have a trailing |
| 10599 | // requires-clause unless it declares a function template. |
| 10600 | // |
| 10601 | // Since a friend function template specialization cannot be |
| 10602 | // definition, and since a non-template friend declaration with a |
| 10603 | // trailing requires-clause must be a definition, we diagnose |
| 10604 | // friend function template specializations with trailing |
| 10605 | // requires-clauses on the same path as explicit specializations |
| 10606 | // even though they aren't necessarily prohibited by the same |
| 10607 | // language rule. |
| 10608 | Diag(TRC->getBeginLoc(), diag::err_non_temp_spec_requires_clause) |
| 10609 | << isFriend; |
| 10610 | } else if (isFriend && NewFD->isTemplated() && |
| 10611 | !D.isFunctionDefinition()) { |
| 10612 | // C++ [temp.friend]p9: |
| 10613 | // A non-template friend declaration with a requires-clause shall be |
| 10614 | // a definition. |
| 10615 | Diag(NewFD->getBeginLoc(), |
| 10616 | diag::err_non_temp_friend_decl_with_requires_clause_must_be_def); |
| 10617 | NewFD->setInvalidDecl(); |
| 10618 | } else if (!NewFD->isTemplated() || |
| 10619 | !(isa<CXXMethodDecl>(Val: NewFD) || D.isFunctionDefinition())) { |
| 10620 | Diag(TRC->getBeginLoc(), |
| 10621 | diag::err_constrained_non_templated_function); |
| 10622 | } |
| 10623 | } |
| 10624 | } |
| 10625 | |
| 10626 | // We do not add HD attributes to specializations here because |
| 10627 | // they may have different constexpr-ness compared to their |
| 10628 | // templates and, after maybeAddHostDeviceAttrs() is applied, |
| 10629 | // may end up with different effective targets. Instead, a |
| 10630 | // specialization inherits its target attributes from its template |
| 10631 | // in the CheckFunctionTemplateSpecialization() call below. |
| 10632 | if (getLangOpts().CUDA && !isFunctionTemplateSpecialization) |
| 10633 | CUDA().maybeAddHostDeviceAttrs(FD: NewFD, Previous); |
| 10634 | |
| 10635 | // Handle explicit specializations of function templates |
| 10636 | // and friend function declarations with an explicit |
| 10637 | // template argument list. |
| 10638 | if (isFunctionTemplateSpecialization) { |
| 10639 | bool isDependentSpecialization = false; |
| 10640 | if (isFriend) { |
| 10641 | // For friend function specializations, this is a dependent |
| 10642 | // specialization if its semantic context is dependent, its |
| 10643 | // type is dependent, or if its template-id is dependent. |
| 10644 | isDependentSpecialization = |
| 10645 | DC->isDependentContext() || NewFD->getType()->isDependentType() || |
| 10646 | (HasExplicitTemplateArgs && |
| 10647 | TemplateSpecializationType:: |
| 10648 | anyInstantiationDependentTemplateArguments( |
| 10649 | Args: TemplateArgs.arguments())); |
| 10650 | assert((!isDependentSpecialization || |
| 10651 | (HasExplicitTemplateArgs == isDependentSpecialization)) && |
| 10652 | "dependent friend function specialization without template " |
| 10653 | "args" ); |
| 10654 | } else { |
| 10655 | // For class-scope explicit specializations of function templates, |
| 10656 | // if the lexical context is dependent, then the specialization |
| 10657 | // is dependent. |
| 10658 | isDependentSpecialization = |
| 10659 | CurContext->isRecord() && CurContext->isDependentContext(); |
| 10660 | } |
| 10661 | |
| 10662 | TemplateArgumentListInfo *ExplicitTemplateArgs = |
| 10663 | HasExplicitTemplateArgs ? &TemplateArgs : nullptr; |
| 10664 | if (isDependentSpecialization) { |
| 10665 | // If it's a dependent specialization, it may not be possible |
| 10666 | // to determine the primary template (for explicit specializations) |
| 10667 | // or befriended declaration (for friends) until the enclosing |
| 10668 | // template is instantiated. In such cases, we store the declarations |
| 10669 | // found by name lookup and defer resolution until instantiation. |
| 10670 | if (CheckDependentFunctionTemplateSpecialization( |
| 10671 | FD: NewFD, ExplicitTemplateArgs, Previous)) |
| 10672 | NewFD->setInvalidDecl(); |
| 10673 | } else if (!NewFD->isInvalidDecl()) { |
| 10674 | if (CheckFunctionTemplateSpecialization(FD: NewFD, ExplicitTemplateArgs, |
| 10675 | Previous)) |
| 10676 | NewFD->setInvalidDecl(); |
| 10677 | } |
| 10678 | } else if (isMemberSpecialization && !FunctionTemplate) { |
| 10679 | if (CheckMemberSpecialization(NewFD, Previous)) |
| 10680 | NewFD->setInvalidDecl(); |
| 10681 | } |
| 10682 | |
| 10683 | // Perform semantic checking on the function declaration. |
| 10684 | if (!NewFD->isInvalidDecl() && NewFD->isMain()) |
| 10685 | CheckMain(FD: NewFD, D: D.getDeclSpec()); |
| 10686 | |
| 10687 | if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) |
| 10688 | CheckMSVCRTEntryPoint(FD: NewFD); |
| 10689 | |
| 10690 | if (!NewFD->isInvalidDecl()) |
| 10691 | D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, |
| 10692 | IsMemberSpecialization: isMemberSpecialization, |
| 10693 | DeclIsDefn: D.isFunctionDefinition())); |
| 10694 | else if (!Previous.empty()) |
| 10695 | // Recover gracefully from an invalid redeclaration. |
| 10696 | D.setRedeclaration(true); |
| 10697 | |
| 10698 | assert((NewFD->isInvalidDecl() || NewFD->isMultiVersion() || |
| 10699 | !D.isRedeclaration() || |
| 10700 | Previous.getResultKind() != LookupResultKind::FoundOverloaded) && |
| 10701 | "previous declaration set still overloaded" ); |
| 10702 | |
| 10703 | NamedDecl *PrincipalDecl = (FunctionTemplate |
| 10704 | ? cast<NamedDecl>(Val: FunctionTemplate) |
| 10705 | : NewFD); |
| 10706 | |
| 10707 | if (isFriend && NewFD->getPreviousDecl()) { |
| 10708 | AccessSpecifier Access = AS_public; |
| 10709 | if (!NewFD->isInvalidDecl()) |
| 10710 | Access = NewFD->getPreviousDecl()->getAccess(); |
| 10711 | |
| 10712 | NewFD->setAccess(Access); |
| 10713 | if (FunctionTemplate) FunctionTemplate->setAccess(Access); |
| 10714 | } |
| 10715 | |
| 10716 | if (NewFD->isOverloadedOperator() && !DC->isRecord() && |
| 10717 | PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) |
| 10718 | PrincipalDecl->setNonMemberOperator(); |
| 10719 | |
| 10720 | // If we have a function template, check the template parameter |
| 10721 | // list. This will check and merge default template arguments. |
| 10722 | if (FunctionTemplate) { |
| 10723 | FunctionTemplateDecl *PrevTemplate = |
| 10724 | FunctionTemplate->getPreviousDecl(); |
| 10725 | CheckTemplateParameterList(NewParams: FunctionTemplate->getTemplateParameters(), |
| 10726 | OldParams: PrevTemplate ? PrevTemplate->getTemplateParameters() |
| 10727 | : nullptr, |
| 10728 | TPC: D.getDeclSpec().isFriendSpecified() |
| 10729 | ? (D.isFunctionDefinition() |
| 10730 | ? TPC_FriendFunctionTemplateDefinition |
| 10731 | : TPC_FriendFunctionTemplate) |
| 10732 | : (D.getCXXScopeSpec().isSet() && |
| 10733 | DC && DC->isRecord() && |
| 10734 | DC->isDependentContext()) |
| 10735 | ? TPC_ClassTemplateMember |
| 10736 | : TPC_FunctionTemplate); |
| 10737 | } |
| 10738 | |
| 10739 | if (NewFD->isInvalidDecl()) { |
| 10740 | // Ignore all the rest of this. |
| 10741 | } else if (!D.isRedeclaration()) { |
| 10742 | struct ActOnFDArgs = { .S: S, .D: D, .TemplateParamLists: TemplateParamLists, |
| 10743 | .AddToScope: AddToScope }; |
| 10744 | // Fake up an access specifier if it's supposed to be a class member. |
| 10745 | if (isa<CXXRecordDecl>(NewFD->getDeclContext())) |
| 10746 | NewFD->setAccess(AS_public); |
| 10747 | |
| 10748 | // Qualified decls generally require a previous declaration. |
| 10749 | if (D.getCXXScopeSpec().isSet()) { |
| 10750 | // ...with the major exception of templated-scope or |
| 10751 | // dependent-scope friend declarations. |
| 10752 | |
| 10753 | // TODO: we currently also suppress this check in dependent |
| 10754 | // contexts because (1) the parameter depth will be off when |
| 10755 | // matching friend templates and (2) we might actually be |
| 10756 | // selecting a friend based on a dependent factor. But there |
| 10757 | // are situations where these conditions don't apply and we |
| 10758 | // can actually do this check immediately. |
| 10759 | // |
| 10760 | // Unless the scope is dependent, it's always an error if qualified |
| 10761 | // redeclaration lookup found nothing at all. Diagnose that now; |
| 10762 | // nothing will diagnose that error later. |
| 10763 | if (isFriend && |
| 10764 | (D.getCXXScopeSpec().getScopeRep()->isDependent() || |
| 10765 | (!Previous.empty() && CurContext->isDependentContext()))) { |
| 10766 | // ignore these |
| 10767 | } else if (NewFD->isCPUDispatchMultiVersion() || |
| 10768 | NewFD->isCPUSpecificMultiVersion()) { |
| 10769 | // ignore this, we allow the redeclaration behavior here to create new |
| 10770 | // versions of the function. |
| 10771 | } else { |
| 10772 | // The user tried to provide an out-of-line definition for a |
| 10773 | // function that is a member of a class or namespace, but there |
| 10774 | // was no such member function declared (C++ [class.mfct]p2, |
| 10775 | // C++ [namespace.memdef]p2). For example: |
| 10776 | // |
| 10777 | // class X { |
| 10778 | // void f() const; |
| 10779 | // }; |
| 10780 | // |
| 10781 | // void X::f() { } // ill-formed |
| 10782 | // |
| 10783 | // Complain about this problem, and attempt to suggest close |
| 10784 | // matches (e.g., those that differ only in cv-qualifiers and |
| 10785 | // whether the parameter types are references). |
| 10786 | |
| 10787 | if (NamedDecl *Result = DiagnoseInvalidRedeclaration( |
| 10788 | SemaRef&: *this, Previous, NewFD, ExtraArgs, IsLocalFriend: false, S: nullptr)) { |
| 10789 | AddToScope = ExtraArgs.AddToScope; |
| 10790 | return Result; |
| 10791 | } |
| 10792 | } |
| 10793 | |
| 10794 | // Unqualified local friend declarations are required to resolve |
| 10795 | // to something. |
| 10796 | } else if (isFriend && cast<CXXRecordDecl>(Val: CurContext)->isLocalClass()) { |
| 10797 | if (NamedDecl *Result = DiagnoseInvalidRedeclaration( |
| 10798 | SemaRef&: *this, Previous, NewFD, ExtraArgs, IsLocalFriend: true, S)) { |
| 10799 | AddToScope = ExtraArgs.AddToScope; |
| 10800 | return Result; |
| 10801 | } |
| 10802 | } |
| 10803 | } else if (!D.isFunctionDefinition() && |
| 10804 | isa<CXXMethodDecl>(Val: NewFD) && NewFD->isOutOfLine() && |
| 10805 | !isFriend && !isFunctionTemplateSpecialization && |
| 10806 | !isMemberSpecialization) { |
| 10807 | // An out-of-line member function declaration must also be a |
| 10808 | // definition (C++ [class.mfct]p2). |
| 10809 | // Note that this is not the case for explicit specializations of |
| 10810 | // function templates or member functions of class templates, per |
| 10811 | // C++ [temp.expl.spec]p2. We also allow these declarations as an |
| 10812 | // extension for compatibility with old SWIG code which likes to |
| 10813 | // generate them. |
| 10814 | Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration) |
| 10815 | << D.getCXXScopeSpec().getRange(); |
| 10816 | } |
| 10817 | } |
| 10818 | |
| 10819 | if (getLangOpts().HLSL && D.isFunctionDefinition()) { |
| 10820 | // Any top level function could potentially be specified as an entry. |
| 10821 | if (!NewFD->isInvalidDecl() && S->getDepth() == 0 && Name.isIdentifier()) |
| 10822 | HLSL().ActOnTopLevelFunction(FD: NewFD); |
| 10823 | |
| 10824 | if (NewFD->hasAttr<HLSLShaderAttr>()) |
| 10825 | HLSL().CheckEntryPoint(FD: NewFD); |
| 10826 | } |
| 10827 | |
| 10828 | // If this is the first declaration of a library builtin function, add |
| 10829 | // attributes as appropriate. |
| 10830 | if (!D.isRedeclaration()) { |
| 10831 | if (IdentifierInfo *II = Previous.getLookupName().getAsIdentifierInfo()) { |
| 10832 | if (unsigned BuiltinID = II->getBuiltinID()) { |
| 10833 | bool InStdNamespace = Context.BuiltinInfo.isInStdNamespace(ID: BuiltinID); |
| 10834 | if (!InStdNamespace && |
| 10835 | NewFD->getDeclContext()->getRedeclContext()->isFileContext()) { |
| 10836 | if (NewFD->getLanguageLinkage() == CLanguageLinkage) { |
| 10837 | // Validate the type matches unless this builtin is specified as |
| 10838 | // matching regardless of its declared type. |
| 10839 | if (Context.BuiltinInfo.allowTypeMismatch(ID: BuiltinID)) { |
| 10840 | NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID)); |
| 10841 | } else { |
| 10842 | ASTContext::GetBuiltinTypeError Error; |
| 10843 | LookupNecessaryTypesForBuiltin(S, ID: BuiltinID); |
| 10844 | QualType BuiltinType = Context.GetBuiltinType(ID: BuiltinID, Error); |
| 10845 | |
| 10846 | if (!Error && !BuiltinType.isNull() && |
| 10847 | Context.hasSameFunctionTypeIgnoringExceptionSpec( |
| 10848 | NewFD->getType(), BuiltinType)) |
| 10849 | NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID)); |
| 10850 | } |
| 10851 | } |
| 10852 | } else if (InStdNamespace && NewFD->isInStdNamespace() && |
| 10853 | isStdBuiltin(Ctx&: Context, FD: NewFD, BuiltinID)) { |
| 10854 | NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID)); |
| 10855 | } |
| 10856 | } |
| 10857 | } |
| 10858 | } |
| 10859 | |
| 10860 | ProcessPragmaWeak(S, NewFD); |
| 10861 | checkAttributesAfterMerging(*this, *NewFD); |
| 10862 | |
| 10863 | AddKnownFunctionAttributes(FD: NewFD); |
| 10864 | |
| 10865 | if (NewFD->hasAttr<OverloadableAttr>() && |
| 10866 | !NewFD->getType()->getAs<FunctionProtoType>()) { |
| 10867 | Diag(NewFD->getLocation(), |
| 10868 | diag::err_attribute_overloadable_no_prototype) |
| 10869 | << NewFD; |
| 10870 | NewFD->dropAttr<OverloadableAttr>(); |
| 10871 | } |
| 10872 | |
| 10873 | // If there's a #pragma GCC visibility in scope, and this isn't a class |
| 10874 | // member, set the visibility of this function. |
| 10875 | if (!DC->isRecord() && NewFD->isExternallyVisible()) |
| 10876 | AddPushedVisibilityAttribute(NewFD); |
| 10877 | |
| 10878 | // If there's a #pragma clang arc_cf_code_audited in scope, consider |
| 10879 | // marking the function. |
| 10880 | ObjC().AddCFAuditedAttribute(NewFD); |
| 10881 | |
| 10882 | // If this is a function definition, check if we have to apply any |
| 10883 | // attributes (i.e. optnone and no_builtin) due to a pragma. |
| 10884 | if (D.isFunctionDefinition()) { |
| 10885 | AddRangeBasedOptnone(FD: NewFD); |
| 10886 | AddImplicitMSFunctionNoBuiltinAttr(FD: NewFD); |
| 10887 | AddSectionMSAllocText(FD: NewFD); |
| 10888 | ModifyFnAttributesMSPragmaOptimize(FD: NewFD); |
| 10889 | } |
| 10890 | |
| 10891 | // If this is the first declaration of an extern C variable, update |
| 10892 | // the map of such variables. |
| 10893 | if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() && |
| 10894 | isIncompleteDeclExternC(S&: *this, D: NewFD)) |
| 10895 | RegisterLocallyScopedExternCDecl(NewFD, S); |
| 10896 | |
| 10897 | // Set this FunctionDecl's range up to the right paren. |
| 10898 | NewFD->setRangeEnd(D.getSourceRange().getEnd()); |
| 10899 | |
| 10900 | if (D.isRedeclaration() && !Previous.empty()) { |
| 10901 | NamedDecl *Prev = Previous.getRepresentativeDecl(); |
| 10902 | checkDLLAttributeRedeclaration(*this, Prev, NewFD, |
| 10903 | isMemberSpecialization || |
| 10904 | isFunctionTemplateSpecialization, |
| 10905 | D.isFunctionDefinition()); |
| 10906 | } |
| 10907 | |
| 10908 | if (getLangOpts().CUDA) { |
| 10909 | IdentifierInfo *II = NewFD->getIdentifier(); |
| 10910 | if (II && II->isStr(Str: CUDA().getConfigureFuncName()) && |
| 10911 | !NewFD->isInvalidDecl() && |
| 10912 | NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { |
| 10913 | if (!R->castAs<FunctionType>()->getReturnType()->isScalarType()) |
| 10914 | Diag(NewFD->getLocation(), diag::err_config_scalar_return) |
| 10915 | << CUDA().getConfigureFuncName(); |
| 10916 | Context.setcudaConfigureCallDecl(NewFD); |
| 10917 | } |
| 10918 | |
| 10919 | // Variadic functions, other than a *declaration* of printf, are not allowed |
| 10920 | // in device-side CUDA code, unless someone passed |
| 10921 | // -fcuda-allow-variadic-functions. |
| 10922 | if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() && |
| 10923 | (NewFD->hasAttr<CUDADeviceAttr>() || |
| 10924 | NewFD->hasAttr<CUDAGlobalAttr>()) && |
| 10925 | !(II && II->isStr("printf" ) && NewFD->isExternC() && |
| 10926 | !D.isFunctionDefinition())) { |
| 10927 | Diag(NewFD->getLocation(), diag::err_variadic_device_fn); |
| 10928 | } |
| 10929 | } |
| 10930 | |
| 10931 | MarkUnusedFileScopedDecl(NewFD); |
| 10932 | |
| 10933 | if (getLangOpts().OpenCL && NewFD->hasAttr<DeviceKernelAttr>()) { |
| 10934 | // OpenCL v1.2 s6.8 static is invalid for kernel functions. |
| 10935 | if (SC == SC_Static) { |
| 10936 | Diag(D.getIdentifierLoc(), diag::err_static_kernel); |
| 10937 | D.setInvalidType(); |
| 10938 | } |
| 10939 | |
| 10940 | // OpenCL v1.2, s6.9 -- Kernels can only have return type void. |
| 10941 | if (!NewFD->getReturnType()->isVoidType()) { |
| 10942 | SourceRange RTRange = NewFD->getReturnTypeSourceRange(); |
| 10943 | Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type) |
| 10944 | << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void" ) |
| 10945 | : FixItHint()); |
| 10946 | D.setInvalidType(); |
| 10947 | } |
| 10948 | |
| 10949 | llvm::SmallPtrSet<const Type *, 16> ValidTypes; |
| 10950 | for (auto *Param : NewFD->parameters()) |
| 10951 | checkIsValidOpenCLKernelParameter(S&: *this, D, Param, ValidTypes); |
| 10952 | |
| 10953 | if (getLangOpts().OpenCLCPlusPlus) { |
| 10954 | if (DC->isRecord()) { |
| 10955 | Diag(D.getIdentifierLoc(), diag::err_method_kernel); |
| 10956 | D.setInvalidType(); |
| 10957 | } |
| 10958 | if (FunctionTemplate) { |
| 10959 | Diag(D.getIdentifierLoc(), diag::err_template_kernel); |
| 10960 | D.setInvalidType(); |
| 10961 | } |
| 10962 | } |
| 10963 | } |
| 10964 | |
| 10965 | if (getLangOpts().CPlusPlus) { |
| 10966 | // Precalculate whether this is a friend function template with a constraint |
| 10967 | // that depends on an enclosing template, per [temp.friend]p9. |
| 10968 | if (isFriend && FunctionTemplate && |
| 10969 | FriendConstraintsDependOnEnclosingTemplate(FD: NewFD)) { |
| 10970 | NewFD->setFriendConstraintRefersToEnclosingTemplate(true); |
| 10971 | |
| 10972 | // C++ [temp.friend]p9: |
| 10973 | // A friend function template with a constraint that depends on a |
| 10974 | // template parameter from an enclosing template shall be a definition. |
| 10975 | if (!D.isFunctionDefinition()) { |
| 10976 | Diag(NewFD->getBeginLoc(), |
| 10977 | diag::err_friend_decl_with_enclosing_temp_constraint_must_be_def); |
| 10978 | NewFD->setInvalidDecl(); |
| 10979 | } |
| 10980 | } |
| 10981 | |
| 10982 | if (FunctionTemplate) { |
| 10983 | if (NewFD->isInvalidDecl()) |
| 10984 | FunctionTemplate->setInvalidDecl(); |
| 10985 | return FunctionTemplate; |
| 10986 | } |
| 10987 | |
| 10988 | if (isMemberSpecialization && !NewFD->isInvalidDecl()) |
| 10989 | CompleteMemberSpecialization(NewFD, Previous); |
| 10990 | } |
| 10991 | |
| 10992 | for (const ParmVarDecl *Param : NewFD->parameters()) { |
| 10993 | QualType PT = Param->getType(); |
| 10994 | |
| 10995 | // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value |
| 10996 | // types. |
| 10997 | if (getLangOpts().getOpenCLCompatibleVersion() >= 200) { |
| 10998 | if(const PipeType *PipeTy = PT->getAs<PipeType>()) { |
| 10999 | QualType ElemTy = PipeTy->getElementType(); |
| 11000 | if (ElemTy->isPointerOrReferenceType()) { |
| 11001 | Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type); |
| 11002 | D.setInvalidType(); |
| 11003 | } |
| 11004 | } |
| 11005 | } |
| 11006 | // WebAssembly tables can't be used as function parameters. |
| 11007 | if (Context.getTargetInfo().getTriple().isWasm()) { |
| 11008 | if (PT->getUnqualifiedDesugaredType()->isWebAssemblyTableType()) { |
| 11009 | Diag(Param->getTypeSpecStartLoc(), |
| 11010 | diag::err_wasm_table_as_function_parameter); |
| 11011 | D.setInvalidType(); |
| 11012 | } |
| 11013 | } |
| 11014 | } |
| 11015 | |
| 11016 | // Diagnose availability attributes. Availability cannot be used on functions |
| 11017 | // that are run during load/unload. |
| 11018 | if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) { |
| 11019 | if (NewFD->hasAttr<ConstructorAttr>()) { |
| 11020 | Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) |
| 11021 | << 1; |
| 11022 | NewFD->dropAttr<AvailabilityAttr>(); |
| 11023 | } |
| 11024 | if (NewFD->hasAttr<DestructorAttr>()) { |
| 11025 | Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) |
| 11026 | << 2; |
| 11027 | NewFD->dropAttr<AvailabilityAttr>(); |
| 11028 | } |
| 11029 | } |
| 11030 | |
| 11031 | // Diagnose no_builtin attribute on function declaration that are not a |
| 11032 | // definition. |
| 11033 | // FIXME: We should really be doing this in |
| 11034 | // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to |
| 11035 | // the FunctionDecl and at this point of the code |
| 11036 | // FunctionDecl::isThisDeclarationADefinition() which always returns `false` |
| 11037 | // because Sema::ActOnStartOfFunctionDef has not been called yet. |
| 11038 | if (const auto *NBA = NewFD->getAttr<NoBuiltinAttr>()) |
| 11039 | switch (D.getFunctionDefinitionKind()) { |
| 11040 | case FunctionDefinitionKind::Defaulted: |
| 11041 | case FunctionDefinitionKind::Deleted: |
| 11042 | Diag(NBA->getLocation(), |
| 11043 | diag::err_attribute_no_builtin_on_defaulted_deleted_function) |
| 11044 | << NBA->getSpelling(); |
| 11045 | break; |
| 11046 | case FunctionDefinitionKind::Declaration: |
| 11047 | Diag(NBA->getLocation(), diag::err_attribute_no_builtin_on_non_definition) |
| 11048 | << NBA->getSpelling(); |
| 11049 | break; |
| 11050 | case FunctionDefinitionKind::Definition: |
| 11051 | break; |
| 11052 | } |
| 11053 | |
| 11054 | // Similar to no_builtin logic above, at this point of the code |
| 11055 | // FunctionDecl::isThisDeclarationADefinition() always returns `false` |
| 11056 | // because Sema::ActOnStartOfFunctionDef has not been called yet. |
| 11057 | if (Context.getTargetInfo().allowDebugInfoForExternalRef() && |
| 11058 | !NewFD->isInvalidDecl() && |
| 11059 | D.getFunctionDefinitionKind() == FunctionDefinitionKind::Declaration) |
| 11060 | ExternalDeclarations.push_back(NewFD); |
| 11061 | |
| 11062 | // Used for a warning on the 'next' declaration when used with a |
| 11063 | // `routine(name)`. |
| 11064 | if (getLangOpts().OpenACC) |
| 11065 | OpenACC().ActOnFunctionDeclarator(FD: NewFD); |
| 11066 | |
| 11067 | return NewFD; |
| 11068 | } |
| 11069 | |
| 11070 | /// Return a CodeSegAttr from a containing class. The Microsoft docs say |
| 11071 | /// when __declspec(code_seg) "is applied to a class, all member functions of |
| 11072 | /// the class and nested classes -- this includes compiler-generated special |
| 11073 | /// member functions -- are put in the specified segment." |
| 11074 | /// The actual behavior is a little more complicated. The Microsoft compiler |
| 11075 | /// won't check outer classes if there is an active value from #pragma code_seg. |
| 11076 | /// The CodeSeg is always applied from the direct parent but only from outer |
| 11077 | /// classes when the #pragma code_seg stack is empty. See: |
| 11078 | /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer |
| 11079 | /// available since MS has removed the page. |
| 11080 | static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) { |
| 11081 | const auto *Method = dyn_cast<CXXMethodDecl>(Val: FD); |
| 11082 | if (!Method) |
| 11083 | return nullptr; |
| 11084 | const CXXRecordDecl *Parent = Method->getParent(); |
| 11085 | if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) { |
| 11086 | Attr *NewAttr = SAttr->clone(S.getASTContext()); |
| 11087 | NewAttr->setImplicit(true); |
| 11088 | return NewAttr; |
| 11089 | } |
| 11090 | |
| 11091 | // The Microsoft compiler won't check outer classes for the CodeSeg |
| 11092 | // when the #pragma code_seg stack is active. |
| 11093 | if (S.CodeSegStack.CurrentValue) |
| 11094 | return nullptr; |
| 11095 | |
| 11096 | while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) { |
| 11097 | if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) { |
| 11098 | Attr *NewAttr = SAttr->clone(S.getASTContext()); |
| 11099 | NewAttr->setImplicit(true); |
| 11100 | return NewAttr; |
| 11101 | } |
| 11102 | } |
| 11103 | return nullptr; |
| 11104 | } |
| 11105 | |
| 11106 | Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD, |
| 11107 | bool IsDefinition) { |
| 11108 | if (Attr *A = getImplicitCodeSegAttrFromClass(S&: *this, FD)) |
| 11109 | return A; |
| 11110 | if (!FD->hasAttr<SectionAttr>() && IsDefinition && |
| 11111 | CodeSegStack.CurrentValue) |
| 11112 | return SectionAttr::CreateImplicit( |
| 11113 | getASTContext(), CodeSegStack.CurrentValue->getString(), |
| 11114 | CodeSegStack.CurrentPragmaLocation, SectionAttr::Declspec_allocate); |
| 11115 | return nullptr; |
| 11116 | } |
| 11117 | |
| 11118 | bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD, |
| 11119 | QualType NewT, QualType OldT) { |
| 11120 | if (!NewD->getLexicalDeclContext()->isDependentContext()) |
| 11121 | return true; |
| 11122 | |
| 11123 | // For dependently-typed local extern declarations and friends, we can't |
| 11124 | // perform a correct type check in general until instantiation: |
| 11125 | // |
| 11126 | // int f(); |
| 11127 | // template<typename T> void g() { T f(); } |
| 11128 | // |
| 11129 | // (valid if g() is only instantiated with T = int). |
| 11130 | if (NewT->isDependentType() && |
| 11131 | (NewD->isLocalExternDecl() || NewD->getFriendObjectKind())) |
| 11132 | return false; |
| 11133 | |
| 11134 | // Similarly, if the previous declaration was a dependent local extern |
| 11135 | // declaration, we don't really know its type yet. |
| 11136 | if (OldT->isDependentType() && OldD->isLocalExternDecl()) |
| 11137 | return false; |
| 11138 | |
| 11139 | return true; |
| 11140 | } |
| 11141 | |
| 11142 | bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) { |
| 11143 | if (!D->getLexicalDeclContext()->isDependentContext()) |
| 11144 | return true; |
| 11145 | |
| 11146 | // Don't chain dependent friend function definitions until instantiation, to |
| 11147 | // permit cases like |
| 11148 | // |
| 11149 | // void func(); |
| 11150 | // template<typename T> class C1 { friend void func() {} }; |
| 11151 | // template<typename T> class C2 { friend void func() {} }; |
| 11152 | // |
| 11153 | // ... which is valid if only one of C1 and C2 is ever instantiated. |
| 11154 | // |
| 11155 | // FIXME: This need only apply to function definitions. For now, we proxy |
| 11156 | // this by checking for a file-scope function. We do not want this to apply |
| 11157 | // to friend declarations nominating member functions, because that gets in |
| 11158 | // the way of access checks. |
| 11159 | if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext()) |
| 11160 | return false; |
| 11161 | |
| 11162 | auto *VD = dyn_cast<ValueDecl>(Val: D); |
| 11163 | auto *PrevVD = dyn_cast<ValueDecl>(Val: PrevDecl); |
| 11164 | return !VD || !PrevVD || |
| 11165 | canFullyTypeCheckRedeclaration(NewD: VD, OldD: PrevVD, NewT: VD->getType(), |
| 11166 | OldT: PrevVD->getType()); |
| 11167 | } |
| 11168 | |
| 11169 | /// Check the target or target_version attribute of the function for |
| 11170 | /// MultiVersion validity. |
| 11171 | /// |
| 11172 | /// Returns true if there was an error, false otherwise. |
| 11173 | static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) { |
| 11174 | const auto *TA = FD->getAttr<TargetAttr>(); |
| 11175 | const auto *TVA = FD->getAttr<TargetVersionAttr>(); |
| 11176 | |
| 11177 | assert((TA || TVA) && "Expecting target or target_version attribute" ); |
| 11178 | |
| 11179 | const TargetInfo &TargetInfo = S.Context.getTargetInfo(); |
| 11180 | enum ErrType { Feature = 0, Architecture = 1 }; |
| 11181 | |
| 11182 | if (TA) { |
| 11183 | ParsedTargetAttr ParseInfo = |
| 11184 | S.getASTContext().getTargetInfo().parseTargetAttr(Str: TA->getFeaturesStr()); |
| 11185 | if (!ParseInfo.CPU.empty() && !TargetInfo.validateCpuIs(Name: ParseInfo.CPU)) { |
| 11186 | S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) |
| 11187 | << Architecture << ParseInfo.CPU; |
| 11188 | return true; |
| 11189 | } |
| 11190 | for (const auto &Feat : ParseInfo.Features) { |
| 11191 | auto BareFeat = StringRef{Feat}.substr(1); |
| 11192 | if (Feat[0] == '-') { |
| 11193 | S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) |
| 11194 | << Feature << ("no-" + BareFeat).str(); |
| 11195 | return true; |
| 11196 | } |
| 11197 | |
| 11198 | if (!TargetInfo.validateCpuSupports(BareFeat) || |
| 11199 | !TargetInfo.isValidFeatureName(BareFeat) || |
| 11200 | (BareFeat != "default" && TargetInfo.getFMVPriority(BareFeat) == 0)) { |
| 11201 | S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) |
| 11202 | << Feature << BareFeat; |
| 11203 | return true; |
| 11204 | } |
| 11205 | } |
| 11206 | } |
| 11207 | |
| 11208 | if (TVA) { |
| 11209 | llvm::SmallVector<StringRef, 8> Feats; |
| 11210 | ParsedTargetAttr ParseInfo; |
| 11211 | if (S.getASTContext().getTargetInfo().getTriple().isRISCV()) { |
| 11212 | ParseInfo = |
| 11213 | S.getASTContext().getTargetInfo().parseTargetAttr(Str: TVA->getName()); |
| 11214 | for (auto &Feat : ParseInfo.Features) |
| 11215 | Feats.push_back(Elt: StringRef{Feat}.substr(Start: 1)); |
| 11216 | } else { |
| 11217 | assert(S.getASTContext().getTargetInfo().getTriple().isAArch64()); |
| 11218 | TVA->getFeatures(Feats); |
| 11219 | } |
| 11220 | for (const auto &Feat : Feats) { |
| 11221 | if (!TargetInfo.validateCpuSupports(Name: Feat)) { |
| 11222 | S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) |
| 11223 | << Feature << Feat; |
| 11224 | return true; |
| 11225 | } |
| 11226 | } |
| 11227 | } |
| 11228 | return false; |
| 11229 | } |
| 11230 | |
| 11231 | // Provide a white-list of attributes that are allowed to be combined with |
| 11232 | // multiversion functions. |
| 11233 | static bool AttrCompatibleWithMultiVersion(attr::Kind Kind, |
| 11234 | MultiVersionKind MVKind) { |
| 11235 | // Note: this list/diagnosis must match the list in |
| 11236 | // checkMultiversionAttributesAllSame. |
| 11237 | switch (Kind) { |
| 11238 | default: |
| 11239 | return false; |
| 11240 | case attr::ArmLocallyStreaming: |
| 11241 | return MVKind == MultiVersionKind::TargetVersion || |
| 11242 | MVKind == MultiVersionKind::TargetClones; |
| 11243 | case attr::Used: |
| 11244 | return MVKind == MultiVersionKind::Target; |
| 11245 | case attr::NonNull: |
| 11246 | case attr::NoThrow: |
| 11247 | return true; |
| 11248 | } |
| 11249 | } |
| 11250 | |
| 11251 | static bool checkNonMultiVersionCompatAttributes(Sema &S, |
| 11252 | const FunctionDecl *FD, |
| 11253 | const FunctionDecl *CausedFD, |
| 11254 | MultiVersionKind MVKind) { |
| 11255 | const auto Diagnose = [FD, CausedFD, MVKind](Sema &S, const Attr *A) { |
| 11256 | S.Diag(FD->getLocation(), diag::err_multiversion_disallowed_other_attr) |
| 11257 | << static_cast<unsigned>(MVKind) << A; |
| 11258 | if (CausedFD) |
| 11259 | S.Diag(CausedFD->getLocation(), diag::note_multiversioning_caused_here); |
| 11260 | return true; |
| 11261 | }; |
| 11262 | |
| 11263 | for (const Attr *A : FD->attrs()) { |
| 11264 | switch (A->getKind()) { |
| 11265 | case attr::CPUDispatch: |
| 11266 | case attr::CPUSpecific: |
| 11267 | if (MVKind != MultiVersionKind::CPUDispatch && |
| 11268 | MVKind != MultiVersionKind::CPUSpecific) |
| 11269 | return Diagnose(S, A); |
| 11270 | break; |
| 11271 | case attr::Target: |
| 11272 | if (MVKind != MultiVersionKind::Target) |
| 11273 | return Diagnose(S, A); |
| 11274 | break; |
| 11275 | case attr::TargetVersion: |
| 11276 | if (MVKind != MultiVersionKind::TargetVersion && |
| 11277 | MVKind != MultiVersionKind::TargetClones) |
| 11278 | return Diagnose(S, A); |
| 11279 | break; |
| 11280 | case attr::TargetClones: |
| 11281 | if (MVKind != MultiVersionKind::TargetClones && |
| 11282 | MVKind != MultiVersionKind::TargetVersion) |
| 11283 | return Diagnose(S, A); |
| 11284 | break; |
| 11285 | default: |
| 11286 | if (!AttrCompatibleWithMultiVersion(A->getKind(), MVKind)) |
| 11287 | return Diagnose(S, A); |
| 11288 | break; |
| 11289 | } |
| 11290 | } |
| 11291 | return false; |
| 11292 | } |
| 11293 | |
| 11294 | bool Sema::areMultiversionVariantFunctionsCompatible( |
| 11295 | const FunctionDecl *OldFD, const FunctionDecl *NewFD, |
| 11296 | const PartialDiagnostic &NoProtoDiagID, |
| 11297 | const PartialDiagnosticAt &NoteCausedDiagIDAt, |
| 11298 | const PartialDiagnosticAt &NoSupportDiagIDAt, |
| 11299 | const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported, |
| 11300 | bool ConstexprSupported, bool CLinkageMayDiffer) { |
| 11301 | enum DoesntSupport { |
| 11302 | FuncTemplates = 0, |
| 11303 | VirtFuncs = 1, |
| 11304 | DeducedReturn = 2, |
| 11305 | Constructors = 3, |
| 11306 | Destructors = 4, |
| 11307 | DeletedFuncs = 5, |
| 11308 | DefaultedFuncs = 6, |
| 11309 | ConstexprFuncs = 7, |
| 11310 | ConstevalFuncs = 8, |
| 11311 | Lambda = 9, |
| 11312 | }; |
| 11313 | enum Different { |
| 11314 | CallingConv = 0, |
| 11315 | ReturnType = 1, |
| 11316 | ConstexprSpec = 2, |
| 11317 | InlineSpec = 3, |
| 11318 | Linkage = 4, |
| 11319 | LanguageLinkage = 5, |
| 11320 | }; |
| 11321 | |
| 11322 | if (NoProtoDiagID.getDiagID() != 0 && OldFD && |
| 11323 | !OldFD->getType()->getAs<FunctionProtoType>()) { |
| 11324 | Diag(OldFD->getLocation(), NoProtoDiagID); |
| 11325 | Diag(NoteCausedDiagIDAt.first, NoteCausedDiagIDAt.second); |
| 11326 | return true; |
| 11327 | } |
| 11328 | |
| 11329 | if (NoProtoDiagID.getDiagID() != 0 && |
| 11330 | !NewFD->getType()->getAs<FunctionProtoType>()) |
| 11331 | return Diag(NewFD->getLocation(), NoProtoDiagID); |
| 11332 | |
| 11333 | if (!TemplatesSupported && |
| 11334 | NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) |
| 11335 | return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) |
| 11336 | << FuncTemplates; |
| 11337 | |
| 11338 | if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(Val: NewFD)) { |
| 11339 | if (NewCXXFD->isVirtual()) |
| 11340 | return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) |
| 11341 | << VirtFuncs; |
| 11342 | |
| 11343 | if (isa<CXXConstructorDecl>(Val: NewCXXFD)) |
| 11344 | return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) |
| 11345 | << Constructors; |
| 11346 | |
| 11347 | if (isa<CXXDestructorDecl>(Val: NewCXXFD)) |
| 11348 | return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) |
| 11349 | << Destructors; |
| 11350 | } |
| 11351 | |
| 11352 | if (NewFD->isDeleted()) |
| 11353 | return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) |
| 11354 | << DeletedFuncs; |
| 11355 | |
| 11356 | if (NewFD->isDefaulted()) |
| 11357 | return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) |
| 11358 | << DefaultedFuncs; |
| 11359 | |
| 11360 | if (!ConstexprSupported && NewFD->isConstexpr()) |
| 11361 | return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) |
| 11362 | << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs); |
| 11363 | |
| 11364 | QualType NewQType = Context.getCanonicalType(NewFD->getType()); |
| 11365 | const auto *NewType = cast<FunctionType>(Val&: NewQType); |
| 11366 | QualType NewReturnType = NewType->getReturnType(); |
| 11367 | |
| 11368 | if (NewReturnType->isUndeducedType()) |
| 11369 | return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) |
| 11370 | << DeducedReturn; |
| 11371 | |
| 11372 | // Ensure the return type is identical. |
| 11373 | if (OldFD) { |
| 11374 | QualType OldQType = Context.getCanonicalType(OldFD->getType()); |
| 11375 | const auto *OldType = cast<FunctionType>(Val&: OldQType); |
| 11376 | FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); |
| 11377 | FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); |
| 11378 | |
| 11379 | const auto *OldFPT = OldFD->getType()->getAs<FunctionProtoType>(); |
| 11380 | const auto *NewFPT = NewFD->getType()->getAs<FunctionProtoType>(); |
| 11381 | |
| 11382 | bool ArmStreamingCCMismatched = false; |
| 11383 | if (OldFPT && NewFPT) { |
| 11384 | unsigned Diff = |
| 11385 | OldFPT->getAArch64SMEAttributes() ^ NewFPT->getAArch64SMEAttributes(); |
| 11386 | // Arm-streaming, arm-streaming-compatible and non-streaming versions |
| 11387 | // cannot be mixed. |
| 11388 | if (Diff & (FunctionType::SME_PStateSMEnabledMask | |
| 11389 | FunctionType::SME_PStateSMCompatibleMask)) |
| 11390 | ArmStreamingCCMismatched = true; |
| 11391 | } |
| 11392 | |
| 11393 | if (OldTypeInfo.getCC() != NewTypeInfo.getCC() || ArmStreamingCCMismatched) |
| 11394 | return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << CallingConv; |
| 11395 | |
| 11396 | QualType OldReturnType = OldType->getReturnType(); |
| 11397 | |
| 11398 | if (OldReturnType != NewReturnType) |
| 11399 | return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ReturnType; |
| 11400 | |
| 11401 | if (OldFD->getConstexprKind() != NewFD->getConstexprKind()) |
| 11402 | return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ConstexprSpec; |
| 11403 | |
| 11404 | if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified()) |
| 11405 | return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << InlineSpec; |
| 11406 | |
| 11407 | if (OldFD->getFormalLinkage() != NewFD->getFormalLinkage()) |
| 11408 | return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << Linkage; |
| 11409 | |
| 11410 | if (!CLinkageMayDiffer && OldFD->isExternC() != NewFD->isExternC()) |
| 11411 | return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << LanguageLinkage; |
| 11412 | |
| 11413 | if (CheckEquivalentExceptionSpec(OldFPT, OldFD->getLocation(), NewFPT, |
| 11414 | NewFD->getLocation())) |
| 11415 | return true; |
| 11416 | } |
| 11417 | return false; |
| 11418 | } |
| 11419 | |
| 11420 | static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD, |
| 11421 | const FunctionDecl *NewFD, |
| 11422 | bool CausesMV, |
| 11423 | MultiVersionKind MVKind) { |
| 11424 | if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) { |
| 11425 | S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported); |
| 11426 | if (OldFD) |
| 11427 | S.Diag(OldFD->getLocation(), diag::note_previous_declaration); |
| 11428 | return true; |
| 11429 | } |
| 11430 | |
| 11431 | bool IsCPUSpecificCPUDispatchMVKind = |
| 11432 | MVKind == MultiVersionKind::CPUDispatch || |
| 11433 | MVKind == MultiVersionKind::CPUSpecific; |
| 11434 | |
| 11435 | if (CausesMV && OldFD && |
| 11436 | checkNonMultiVersionCompatAttributes(S, FD: OldFD, CausedFD: NewFD, MVKind)) |
| 11437 | return true; |
| 11438 | |
| 11439 | if (checkNonMultiVersionCompatAttributes(S, FD: NewFD, CausedFD: nullptr, MVKind)) |
| 11440 | return true; |
| 11441 | |
| 11442 | // Only allow transition to MultiVersion if it hasn't been used. |
| 11443 | if (OldFD && CausesMV && OldFD->isUsed(false)) { |
| 11444 | S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used); |
| 11445 | S.Diag(OldFD->getLocation(), diag::note_previous_declaration); |
| 11446 | return true; |
| 11447 | } |
| 11448 | |
| 11449 | return S.areMultiversionVariantFunctionsCompatible( |
| 11450 | OldFD, NewFD, S.PDiag(diag::err_multiversion_noproto), |
| 11451 | PartialDiagnosticAt(NewFD->getLocation(), |
| 11452 | S.PDiag(diag::note_multiversioning_caused_here)), |
| 11453 | PartialDiagnosticAt(NewFD->getLocation(), |
| 11454 | S.PDiag(diag::err_multiversion_doesnt_support) |
| 11455 | << static_cast<unsigned>(MVKind)), |
| 11456 | PartialDiagnosticAt(NewFD->getLocation(), |
| 11457 | S.PDiag(diag::err_multiversion_diff)), |
| 11458 | /*TemplatesSupported=*/false, |
| 11459 | /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVKind, |
| 11460 | /*CLinkageMayDiffer=*/false); |
| 11461 | } |
| 11462 | |
| 11463 | /// Check the validity of a multiversion function declaration that is the |
| 11464 | /// first of its kind. Also sets the multiversion'ness' of the function itself. |
| 11465 | /// |
| 11466 | /// This sets NewFD->isInvalidDecl() to true if there was an error. |
| 11467 | /// |
| 11468 | /// Returns true if there was an error, false otherwise. |
| 11469 | static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD) { |
| 11470 | MultiVersionKind MVKind = FD->getMultiVersionKind(); |
| 11471 | assert(MVKind != MultiVersionKind::None && |
| 11472 | "Function lacks multiversion attribute" ); |
| 11473 | const auto *TA = FD->getAttr<TargetAttr>(); |
| 11474 | const auto *TVA = FD->getAttr<TargetVersionAttr>(); |
| 11475 | // The target attribute only causes MV if this declaration is the default, |
| 11476 | // otherwise it is treated as a normal function. |
| 11477 | if (TA && !TA->isDefaultVersion()) |
| 11478 | return false; |
| 11479 | |
| 11480 | if ((TA || TVA) && CheckMultiVersionValue(S, FD)) { |
| 11481 | FD->setInvalidDecl(); |
| 11482 | return true; |
| 11483 | } |
| 11484 | |
| 11485 | if (CheckMultiVersionAdditionalRules(S, OldFD: nullptr, NewFD: FD, CausesMV: true, MVKind)) { |
| 11486 | FD->setInvalidDecl(); |
| 11487 | return true; |
| 11488 | } |
| 11489 | |
| 11490 | FD->setIsMultiVersion(); |
| 11491 | return false; |
| 11492 | } |
| 11493 | |
| 11494 | static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) { |
| 11495 | for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) { |
| 11496 | if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None) |
| 11497 | return true; |
| 11498 | } |
| 11499 | |
| 11500 | return false; |
| 11501 | } |
| 11502 | |
| 11503 | static void patchDefaultTargetVersion(FunctionDecl *From, FunctionDecl *To) { |
| 11504 | if (!From->getASTContext().getTargetInfo().getTriple().isAArch64() && |
| 11505 | !From->getASTContext().getTargetInfo().getTriple().isRISCV()) |
| 11506 | return; |
| 11507 | |
| 11508 | MultiVersionKind MVKindFrom = From->getMultiVersionKind(); |
| 11509 | MultiVersionKind MVKindTo = To->getMultiVersionKind(); |
| 11510 | |
| 11511 | if (MVKindTo == MultiVersionKind::None && |
| 11512 | (MVKindFrom == MultiVersionKind::TargetVersion || |
| 11513 | MVKindFrom == MultiVersionKind::TargetClones)) |
| 11514 | To->addAttr(TargetVersionAttr::CreateImplicit( |
| 11515 | To->getASTContext(), "default" , To->getSourceRange())); |
| 11516 | } |
| 11517 | |
| 11518 | static bool CheckDeclarationCausesMultiVersioning(Sema &S, FunctionDecl *OldFD, |
| 11519 | FunctionDecl *NewFD, |
| 11520 | bool &Redeclaration, |
| 11521 | NamedDecl *&OldDecl, |
| 11522 | LookupResult &Previous) { |
| 11523 | assert(!OldFD->isMultiVersion() && "Unexpected MultiVersion" ); |
| 11524 | |
| 11525 | const auto *NewTA = NewFD->getAttr<TargetAttr>(); |
| 11526 | const auto *OldTA = OldFD->getAttr<TargetAttr>(); |
| 11527 | const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>(); |
| 11528 | const auto *OldTVA = OldFD->getAttr<TargetVersionAttr>(); |
| 11529 | |
| 11530 | assert((NewTA || NewTVA) && "Excpecting target or target_version attribute" ); |
| 11531 | |
| 11532 | // The definitions should be allowed in any order. If we have discovered |
| 11533 | // a new target version and the preceeding was the default, then add the |
| 11534 | // corresponding attribute to it. |
| 11535 | patchDefaultTargetVersion(From: NewFD, To: OldFD); |
| 11536 | |
| 11537 | // If the old decl is NOT MultiVersioned yet, and we don't cause that |
| 11538 | // to change, this is a simple redeclaration. |
| 11539 | if (NewTA && !NewTA->isDefaultVersion() && |
| 11540 | (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr())) |
| 11541 | return false; |
| 11542 | |
| 11543 | // Otherwise, this decl causes MultiVersioning. |
| 11544 | if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true, |
| 11545 | NewTVA ? MultiVersionKind::TargetVersion |
| 11546 | : MultiVersionKind::Target)) { |
| 11547 | NewFD->setInvalidDecl(); |
| 11548 | return true; |
| 11549 | } |
| 11550 | |
| 11551 | if (CheckMultiVersionValue(S, FD: NewFD)) { |
| 11552 | NewFD->setInvalidDecl(); |
| 11553 | return true; |
| 11554 | } |
| 11555 | |
| 11556 | // If this is 'default', permit the forward declaration. |
| 11557 | if ((NewTA && NewTA->isDefaultVersion() && !OldTA) || |
| 11558 | (NewTVA && NewTVA->isDefaultVersion() && !OldTVA)) { |
| 11559 | Redeclaration = true; |
| 11560 | OldDecl = OldFD; |
| 11561 | OldFD->setIsMultiVersion(); |
| 11562 | NewFD->setIsMultiVersion(); |
| 11563 | return false; |
| 11564 | } |
| 11565 | |
| 11566 | if ((OldTA || OldTVA) && CheckMultiVersionValue(S, FD: OldFD)) { |
| 11567 | S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); |
| 11568 | NewFD->setInvalidDecl(); |
| 11569 | return true; |
| 11570 | } |
| 11571 | |
| 11572 | if (NewTA) { |
| 11573 | ParsedTargetAttr OldParsed = |
| 11574 | S.getASTContext().getTargetInfo().parseTargetAttr( |
| 11575 | Str: OldTA->getFeaturesStr()); |
| 11576 | llvm::sort(C&: OldParsed.Features); |
| 11577 | ParsedTargetAttr NewParsed = |
| 11578 | S.getASTContext().getTargetInfo().parseTargetAttr( |
| 11579 | Str: NewTA->getFeaturesStr()); |
| 11580 | // Sort order doesn't matter, it just needs to be consistent. |
| 11581 | llvm::sort(C&: NewParsed.Features); |
| 11582 | if (OldParsed == NewParsed) { |
| 11583 | S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); |
| 11584 | S.Diag(OldFD->getLocation(), diag::note_previous_declaration); |
| 11585 | NewFD->setInvalidDecl(); |
| 11586 | return true; |
| 11587 | } |
| 11588 | } |
| 11589 | |
| 11590 | for (const auto *FD : OldFD->redecls()) { |
| 11591 | const auto *CurTA = FD->getAttr<TargetAttr>(); |
| 11592 | const auto *CurTVA = FD->getAttr<TargetVersionAttr>(); |
| 11593 | // We allow forward declarations before ANY multiversioning attributes, but |
| 11594 | // nothing after the fact. |
| 11595 | if (PreviousDeclsHaveMultiVersionAttribute(FD) && |
| 11596 | ((NewTA && (!CurTA || CurTA->isInherited())) || |
| 11597 | (NewTVA && (!CurTVA || CurTVA->isInherited())))) { |
| 11598 | S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl) |
| 11599 | << (NewTA ? 0 : 2); |
| 11600 | S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); |
| 11601 | NewFD->setInvalidDecl(); |
| 11602 | return true; |
| 11603 | } |
| 11604 | } |
| 11605 | |
| 11606 | OldFD->setIsMultiVersion(); |
| 11607 | NewFD->setIsMultiVersion(); |
| 11608 | Redeclaration = false; |
| 11609 | OldDecl = nullptr; |
| 11610 | Previous.clear(); |
| 11611 | return false; |
| 11612 | } |
| 11613 | |
| 11614 | static bool MultiVersionTypesCompatible(FunctionDecl *Old, FunctionDecl *New) { |
| 11615 | MultiVersionKind OldKind = Old->getMultiVersionKind(); |
| 11616 | MultiVersionKind NewKind = New->getMultiVersionKind(); |
| 11617 | |
| 11618 | if (OldKind == NewKind || OldKind == MultiVersionKind::None || |
| 11619 | NewKind == MultiVersionKind::None) |
| 11620 | return true; |
| 11621 | |
| 11622 | if (Old->getASTContext().getTargetInfo().getTriple().isAArch64()) { |
| 11623 | switch (OldKind) { |
| 11624 | case MultiVersionKind::TargetVersion: |
| 11625 | return NewKind == MultiVersionKind::TargetClones; |
| 11626 | case MultiVersionKind::TargetClones: |
| 11627 | return NewKind == MultiVersionKind::TargetVersion; |
| 11628 | default: |
| 11629 | return false; |
| 11630 | } |
| 11631 | } else { |
| 11632 | switch (OldKind) { |
| 11633 | case MultiVersionKind::CPUDispatch: |
| 11634 | return NewKind == MultiVersionKind::CPUSpecific; |
| 11635 | case MultiVersionKind::CPUSpecific: |
| 11636 | return NewKind == MultiVersionKind::CPUDispatch; |
| 11637 | default: |
| 11638 | return false; |
| 11639 | } |
| 11640 | } |
| 11641 | } |
| 11642 | |
| 11643 | /// Check the validity of a new function declaration being added to an existing |
| 11644 | /// multiversioned declaration collection. |
| 11645 | static bool CheckMultiVersionAdditionalDecl( |
| 11646 | Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, |
| 11647 | const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec, |
| 11648 | const TargetClonesAttr *NewClones, bool &Redeclaration, NamedDecl *&OldDecl, |
| 11649 | LookupResult &Previous) { |
| 11650 | |
| 11651 | // Disallow mixing of multiversioning types. |
| 11652 | if (!MultiVersionTypesCompatible(Old: OldFD, New: NewFD)) { |
| 11653 | S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed); |
| 11654 | S.Diag(OldFD->getLocation(), diag::note_previous_declaration); |
| 11655 | NewFD->setInvalidDecl(); |
| 11656 | return true; |
| 11657 | } |
| 11658 | |
| 11659 | // Add the default target_version attribute if it's missing. |
| 11660 | patchDefaultTargetVersion(From: OldFD, To: NewFD); |
| 11661 | patchDefaultTargetVersion(From: NewFD, To: OldFD); |
| 11662 | |
| 11663 | const auto *NewTA = NewFD->getAttr<TargetAttr>(); |
| 11664 | const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>(); |
| 11665 | MultiVersionKind NewMVKind = NewFD->getMultiVersionKind(); |
| 11666 | [[maybe_unused]] MultiVersionKind OldMVKind = OldFD->getMultiVersionKind(); |
| 11667 | |
| 11668 | ParsedTargetAttr NewParsed; |
| 11669 | if (NewTA) { |
| 11670 | NewParsed = S.getASTContext().getTargetInfo().parseTargetAttr( |
| 11671 | Str: NewTA->getFeaturesStr()); |
| 11672 | llvm::sort(C&: NewParsed.Features); |
| 11673 | } |
| 11674 | llvm::SmallVector<StringRef, 8> NewFeats; |
| 11675 | if (NewTVA) { |
| 11676 | NewTVA->getFeatures(NewFeats); |
| 11677 | llvm::sort(C&: NewFeats); |
| 11678 | } |
| 11679 | |
| 11680 | bool UseMemberUsingDeclRules = |
| 11681 | S.CurContext->isRecord() && !NewFD->getFriendObjectKind(); |
| 11682 | |
| 11683 | bool MayNeedOverloadableChecks = |
| 11684 | AllowOverloadingOfFunction(Previous, Context&: S.Context, New: NewFD); |
| 11685 | |
| 11686 | // Next, check ALL non-invalid non-overloads to see if this is a redeclaration |
| 11687 | // of a previous member of the MultiVersion set. |
| 11688 | for (NamedDecl *ND : Previous) { |
| 11689 | FunctionDecl *CurFD = ND->getAsFunction(); |
| 11690 | if (!CurFD || CurFD->isInvalidDecl()) |
| 11691 | continue; |
| 11692 | if (MayNeedOverloadableChecks && |
| 11693 | S.IsOverload(New: NewFD, Old: CurFD, UseMemberUsingDeclRules)) |
| 11694 | continue; |
| 11695 | |
| 11696 | switch (NewMVKind) { |
| 11697 | case MultiVersionKind::None: |
| 11698 | assert(OldMVKind == MultiVersionKind::TargetClones && |
| 11699 | "Only target_clones can be omitted in subsequent declarations" ); |
| 11700 | break; |
| 11701 | case MultiVersionKind::Target: { |
| 11702 | const auto *CurTA = CurFD->getAttr<TargetAttr>(); |
| 11703 | if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) { |
| 11704 | NewFD->setIsMultiVersion(); |
| 11705 | Redeclaration = true; |
| 11706 | OldDecl = ND; |
| 11707 | return false; |
| 11708 | } |
| 11709 | |
| 11710 | ParsedTargetAttr CurParsed = |
| 11711 | S.getASTContext().getTargetInfo().parseTargetAttr( |
| 11712 | Str: CurTA->getFeaturesStr()); |
| 11713 | llvm::sort(C&: CurParsed.Features); |
| 11714 | if (CurParsed == NewParsed) { |
| 11715 | S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); |
| 11716 | S.Diag(CurFD->getLocation(), diag::note_previous_declaration); |
| 11717 | NewFD->setInvalidDecl(); |
| 11718 | return true; |
| 11719 | } |
| 11720 | break; |
| 11721 | } |
| 11722 | case MultiVersionKind::TargetVersion: { |
| 11723 | if (const auto *CurTVA = CurFD->getAttr<TargetVersionAttr>()) { |
| 11724 | if (CurTVA->getName() == NewTVA->getName()) { |
| 11725 | NewFD->setIsMultiVersion(); |
| 11726 | Redeclaration = true; |
| 11727 | OldDecl = ND; |
| 11728 | return false; |
| 11729 | } |
| 11730 | llvm::SmallVector<StringRef, 8> CurFeats; |
| 11731 | CurTVA->getFeatures(CurFeats); |
| 11732 | llvm::sort(C&: CurFeats); |
| 11733 | |
| 11734 | if (CurFeats == NewFeats) { |
| 11735 | S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); |
| 11736 | S.Diag(CurFD->getLocation(), diag::note_previous_declaration); |
| 11737 | NewFD->setInvalidDecl(); |
| 11738 | return true; |
| 11739 | } |
| 11740 | } else if (const auto *CurClones = CurFD->getAttr<TargetClonesAttr>()) { |
| 11741 | // Default |
| 11742 | if (NewFeats.empty()) |
| 11743 | break; |
| 11744 | |
| 11745 | for (unsigned I = 0; I < CurClones->featuresStrs_size(); ++I) { |
| 11746 | llvm::SmallVector<StringRef, 8> CurFeats; |
| 11747 | CurClones->getFeatures(CurFeats, I); |
| 11748 | llvm::sort(C&: CurFeats); |
| 11749 | |
| 11750 | if (CurFeats == NewFeats) { |
| 11751 | S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); |
| 11752 | S.Diag(CurFD->getLocation(), diag::note_previous_declaration); |
| 11753 | NewFD->setInvalidDecl(); |
| 11754 | return true; |
| 11755 | } |
| 11756 | } |
| 11757 | } |
| 11758 | break; |
| 11759 | } |
| 11760 | case MultiVersionKind::TargetClones: { |
| 11761 | assert(NewClones && "MultiVersionKind does not match attribute type" ); |
| 11762 | if (const auto *CurClones = CurFD->getAttr<TargetClonesAttr>()) { |
| 11763 | if (CurClones->featuresStrs_size() != NewClones->featuresStrs_size() || |
| 11764 | !std::equal(CurClones->featuresStrs_begin(), |
| 11765 | CurClones->featuresStrs_end(), |
| 11766 | NewClones->featuresStrs_begin())) { |
| 11767 | S.Diag(NewFD->getLocation(), diag::err_target_clone_doesnt_match); |
| 11768 | S.Diag(CurFD->getLocation(), diag::note_previous_declaration); |
| 11769 | NewFD->setInvalidDecl(); |
| 11770 | return true; |
| 11771 | } |
| 11772 | } else if (const auto *CurTVA = CurFD->getAttr<TargetVersionAttr>()) { |
| 11773 | llvm::SmallVector<StringRef, 8> CurFeats; |
| 11774 | CurTVA->getFeatures(CurFeats); |
| 11775 | llvm::sort(C&: CurFeats); |
| 11776 | |
| 11777 | // Default |
| 11778 | if (CurFeats.empty()) |
| 11779 | break; |
| 11780 | |
| 11781 | for (unsigned I = 0; I < NewClones->featuresStrs_size(); ++I) { |
| 11782 | NewFeats.clear(); |
| 11783 | NewClones->getFeatures(NewFeats, I); |
| 11784 | llvm::sort(C&: NewFeats); |
| 11785 | |
| 11786 | if (CurFeats == NewFeats) { |
| 11787 | S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); |
| 11788 | S.Diag(CurFD->getLocation(), diag::note_previous_declaration); |
| 11789 | NewFD->setInvalidDecl(); |
| 11790 | return true; |
| 11791 | } |
| 11792 | } |
| 11793 | break; |
| 11794 | } |
| 11795 | Redeclaration = true; |
| 11796 | OldDecl = CurFD; |
| 11797 | NewFD->setIsMultiVersion(); |
| 11798 | return false; |
| 11799 | } |
| 11800 | case MultiVersionKind::CPUSpecific: |
| 11801 | case MultiVersionKind::CPUDispatch: { |
| 11802 | const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>(); |
| 11803 | const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>(); |
| 11804 | // Handle CPUDispatch/CPUSpecific versions. |
| 11805 | // Only 1 CPUDispatch function is allowed, this will make it go through |
| 11806 | // the redeclaration errors. |
| 11807 | if (NewMVKind == MultiVersionKind::CPUDispatch && |
| 11808 | CurFD->hasAttr<CPUDispatchAttr>()) { |
| 11809 | if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() && |
| 11810 | std::equal( |
| 11811 | CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(), |
| 11812 | NewCPUDisp->cpus_begin(), |
| 11813 | [](const IdentifierInfo *Cur, const IdentifierInfo *New) { |
| 11814 | return Cur->getName() == New->getName(); |
| 11815 | })) { |
| 11816 | NewFD->setIsMultiVersion(); |
| 11817 | Redeclaration = true; |
| 11818 | OldDecl = ND; |
| 11819 | return false; |
| 11820 | } |
| 11821 | |
| 11822 | // If the declarations don't match, this is an error condition. |
| 11823 | S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch); |
| 11824 | S.Diag(CurFD->getLocation(), diag::note_previous_declaration); |
| 11825 | NewFD->setInvalidDecl(); |
| 11826 | return true; |
| 11827 | } |
| 11828 | if (NewMVKind == MultiVersionKind::CPUSpecific && CurCPUSpec) { |
| 11829 | if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() && |
| 11830 | std::equal( |
| 11831 | CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(), |
| 11832 | NewCPUSpec->cpus_begin(), |
| 11833 | [](const IdentifierInfo *Cur, const IdentifierInfo *New) { |
| 11834 | return Cur->getName() == New->getName(); |
| 11835 | })) { |
| 11836 | NewFD->setIsMultiVersion(); |
| 11837 | Redeclaration = true; |
| 11838 | OldDecl = ND; |
| 11839 | return false; |
| 11840 | } |
| 11841 | |
| 11842 | // Only 1 version of CPUSpecific is allowed for each CPU. |
| 11843 | for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) { |
| 11844 | for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) { |
| 11845 | if (CurII == NewII) { |
| 11846 | S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs) |
| 11847 | << NewII; |
| 11848 | S.Diag(CurFD->getLocation(), diag::note_previous_declaration); |
| 11849 | NewFD->setInvalidDecl(); |
| 11850 | return true; |
| 11851 | } |
| 11852 | } |
| 11853 | } |
| 11854 | } |
| 11855 | break; |
| 11856 | } |
| 11857 | } |
| 11858 | } |
| 11859 | |
| 11860 | // Else, this is simply a non-redecl case. Checking the 'value' is only |
| 11861 | // necessary in the Target case, since The CPUSpecific/Dispatch cases are |
| 11862 | // handled in the attribute adding step. |
| 11863 | if ((NewTA || NewTVA) && CheckMultiVersionValue(S, FD: NewFD)) { |
| 11864 | NewFD->setInvalidDecl(); |
| 11865 | return true; |
| 11866 | } |
| 11867 | |
| 11868 | if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, |
| 11869 | CausesMV: !OldFD->isMultiVersion(), MVKind: NewMVKind)) { |
| 11870 | NewFD->setInvalidDecl(); |
| 11871 | return true; |
| 11872 | } |
| 11873 | |
| 11874 | // Permit forward declarations in the case where these two are compatible. |
| 11875 | if (!OldFD->isMultiVersion()) { |
| 11876 | OldFD->setIsMultiVersion(); |
| 11877 | NewFD->setIsMultiVersion(); |
| 11878 | Redeclaration = true; |
| 11879 | OldDecl = OldFD; |
| 11880 | return false; |
| 11881 | } |
| 11882 | |
| 11883 | NewFD->setIsMultiVersion(); |
| 11884 | Redeclaration = false; |
| 11885 | OldDecl = nullptr; |
| 11886 | Previous.clear(); |
| 11887 | return false; |
| 11888 | } |
| 11889 | |
| 11890 | /// Check the validity of a mulitversion function declaration. |
| 11891 | /// Also sets the multiversion'ness' of the function itself. |
| 11892 | /// |
| 11893 | /// This sets NewFD->isInvalidDecl() to true if there was an error. |
| 11894 | /// |
| 11895 | /// Returns true if there was an error, false otherwise. |
| 11896 | static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD, |
| 11897 | bool &Redeclaration, NamedDecl *&OldDecl, |
| 11898 | LookupResult &Previous) { |
| 11899 | const TargetInfo &TI = S.getASTContext().getTargetInfo(); |
| 11900 | |
| 11901 | // Check if FMV is disabled. |
| 11902 | if (TI.getTriple().isAArch64() && !TI.hasFeature(Feature: "fmv" )) |
| 11903 | return false; |
| 11904 | |
| 11905 | const auto *NewTA = NewFD->getAttr<TargetAttr>(); |
| 11906 | const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>(); |
| 11907 | const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>(); |
| 11908 | const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>(); |
| 11909 | const auto *NewClones = NewFD->getAttr<TargetClonesAttr>(); |
| 11910 | MultiVersionKind MVKind = NewFD->getMultiVersionKind(); |
| 11911 | |
| 11912 | // Main isn't allowed to become a multiversion function, however it IS |
| 11913 | // permitted to have 'main' be marked with the 'target' optimization hint, |
| 11914 | // for 'target_version' only default is allowed. |
| 11915 | if (NewFD->isMain()) { |
| 11916 | if (MVKind != MultiVersionKind::None && |
| 11917 | !(MVKind == MultiVersionKind::Target && !NewTA->isDefaultVersion()) && |
| 11918 | !(MVKind == MultiVersionKind::TargetVersion && |
| 11919 | NewTVA->isDefaultVersion())) { |
| 11920 | S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main); |
| 11921 | NewFD->setInvalidDecl(); |
| 11922 | return true; |
| 11923 | } |
| 11924 | return false; |
| 11925 | } |
| 11926 | |
| 11927 | // Target attribute on AArch64 is not used for multiversioning |
| 11928 | if (NewTA && TI.getTriple().isAArch64()) |
| 11929 | return false; |
| 11930 | |
| 11931 | // Target attribute on RISCV is not used for multiversioning |
| 11932 | if (NewTA && TI.getTriple().isRISCV()) |
| 11933 | return false; |
| 11934 | |
| 11935 | if (!OldDecl || !OldDecl->getAsFunction() || |
| 11936 | !OldDecl->getDeclContext()->getRedeclContext()->Equals( |
| 11937 | NewFD->getDeclContext()->getRedeclContext())) { |
| 11938 | // If there's no previous declaration, AND this isn't attempting to cause |
| 11939 | // multiversioning, this isn't an error condition. |
| 11940 | if (MVKind == MultiVersionKind::None) |
| 11941 | return false; |
| 11942 | return CheckMultiVersionFirstFunction(S, FD: NewFD); |
| 11943 | } |
| 11944 | |
| 11945 | FunctionDecl *OldFD = OldDecl->getAsFunction(); |
| 11946 | |
| 11947 | if (!OldFD->isMultiVersion() && MVKind == MultiVersionKind::None) |
| 11948 | return false; |
| 11949 | |
| 11950 | // Multiversioned redeclarations aren't allowed to omit the attribute, except |
| 11951 | // for target_clones and target_version. |
| 11952 | if (OldFD->isMultiVersion() && MVKind == MultiVersionKind::None && |
| 11953 | OldFD->getMultiVersionKind() != MultiVersionKind::TargetClones && |
| 11954 | OldFD->getMultiVersionKind() != MultiVersionKind::TargetVersion) { |
| 11955 | S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl) |
| 11956 | << (OldFD->getMultiVersionKind() != MultiVersionKind::Target); |
| 11957 | NewFD->setInvalidDecl(); |
| 11958 | return true; |
| 11959 | } |
| 11960 | |
| 11961 | if (!OldFD->isMultiVersion()) { |
| 11962 | switch (MVKind) { |
| 11963 | case MultiVersionKind::Target: |
| 11964 | case MultiVersionKind::TargetVersion: |
| 11965 | return CheckDeclarationCausesMultiVersioning( |
| 11966 | S, OldFD, NewFD, Redeclaration, OldDecl, Previous); |
| 11967 | case MultiVersionKind::TargetClones: |
| 11968 | if (OldFD->isUsed(false)) { |
| 11969 | NewFD->setInvalidDecl(); |
| 11970 | return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used); |
| 11971 | } |
| 11972 | OldFD->setIsMultiVersion(); |
| 11973 | break; |
| 11974 | |
| 11975 | case MultiVersionKind::CPUDispatch: |
| 11976 | case MultiVersionKind::CPUSpecific: |
| 11977 | case MultiVersionKind::None: |
| 11978 | break; |
| 11979 | } |
| 11980 | } |
| 11981 | |
| 11982 | // At this point, we have a multiversion function decl (in OldFD) AND an |
| 11983 | // appropriate attribute in the current function decl. Resolve that these are |
| 11984 | // still compatible with previous declarations. |
| 11985 | return CheckMultiVersionAdditionalDecl(S, OldFD, NewFD, NewCPUDisp, |
| 11986 | NewCPUSpec, NewClones, Redeclaration, |
| 11987 | OldDecl, Previous); |
| 11988 | } |
| 11989 | |
| 11990 | static void CheckConstPureAttributesUsage(Sema &S, FunctionDecl *NewFD) { |
| 11991 | bool IsPure = NewFD->hasAttr<PureAttr>(); |
| 11992 | bool IsConst = NewFD->hasAttr<ConstAttr>(); |
| 11993 | |
| 11994 | // If there are no pure or const attributes, there's nothing to check. |
| 11995 | if (!IsPure && !IsConst) |
| 11996 | return; |
| 11997 | |
| 11998 | // If the function is marked both pure and const, we retain the const |
| 11999 | // attribute because it makes stronger guarantees than the pure attribute, and |
| 12000 | // we drop the pure attribute explicitly to prevent later confusion about |
| 12001 | // semantics. |
| 12002 | if (IsPure && IsConst) { |
| 12003 | S.Diag(NewFD->getLocation(), diag::warn_const_attr_with_pure_attr); |
| 12004 | NewFD->dropAttrs<PureAttr>(); |
| 12005 | } |
| 12006 | |
| 12007 | // Constructors and destructors are functions which return void, so are |
| 12008 | // handled here as well. |
| 12009 | if (NewFD->getReturnType()->isVoidType()) { |
| 12010 | S.Diag(NewFD->getLocation(), diag::warn_pure_function_returns_void) |
| 12011 | << IsConst; |
| 12012 | NewFD->dropAttrs<PureAttr, ConstAttr>(); |
| 12013 | } |
| 12014 | } |
| 12015 | |
| 12016 | bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD, |
| 12017 | LookupResult &Previous, |
| 12018 | bool IsMemberSpecialization, |
| 12019 | bool DeclIsDefn) { |
| 12020 | assert(!NewFD->getReturnType()->isVariablyModifiedType() && |
| 12021 | "Variably modified return types are not handled here" ); |
| 12022 | |
| 12023 | // Determine whether the type of this function should be merged with |
| 12024 | // a previous visible declaration. This never happens for functions in C++, |
| 12025 | // and always happens in C if the previous declaration was visible. |
| 12026 | bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus && |
| 12027 | !Previous.isShadowed(); |
| 12028 | |
| 12029 | bool Redeclaration = false; |
| 12030 | NamedDecl *OldDecl = nullptr; |
| 12031 | bool MayNeedOverloadableChecks = false; |
| 12032 | |
| 12033 | inferLifetimeCaptureByAttribute(FD: NewFD); |
| 12034 | // Merge or overload the declaration with an existing declaration of |
| 12035 | // the same name, if appropriate. |
| 12036 | if (!Previous.empty()) { |
| 12037 | // Determine whether NewFD is an overload of PrevDecl or |
| 12038 | // a declaration that requires merging. If it's an overload, |
| 12039 | // there's no more work to do here; we'll just add the new |
| 12040 | // function to the scope. |
| 12041 | if (!AllowOverloadingOfFunction(Previous, Context, New: NewFD)) { |
| 12042 | NamedDecl *Candidate = Previous.getRepresentativeDecl(); |
| 12043 | if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) { |
| 12044 | Redeclaration = true; |
| 12045 | OldDecl = Candidate; |
| 12046 | } |
| 12047 | } else { |
| 12048 | MayNeedOverloadableChecks = true; |
| 12049 | switch (CheckOverload(S, New: NewFD, OldDecls: Previous, OldDecl, |
| 12050 | /*NewIsUsingDecl*/ UseMemberUsingDeclRules: false)) { |
| 12051 | case OverloadKind::Match: |
| 12052 | Redeclaration = true; |
| 12053 | break; |
| 12054 | |
| 12055 | case OverloadKind::NonFunction: |
| 12056 | Redeclaration = true; |
| 12057 | break; |
| 12058 | |
| 12059 | case OverloadKind::Overload: |
| 12060 | Redeclaration = false; |
| 12061 | break; |
| 12062 | } |
| 12063 | } |
| 12064 | } |
| 12065 | |
| 12066 | // Check for a previous extern "C" declaration with this name. |
| 12067 | if (!Redeclaration && |
| 12068 | checkForConflictWithNonVisibleExternC(S&: *this, ND: NewFD, Previous)) { |
| 12069 | if (!Previous.empty()) { |
| 12070 | // This is an extern "C" declaration with the same name as a previous |
| 12071 | // declaration, and thus redeclares that entity... |
| 12072 | Redeclaration = true; |
| 12073 | OldDecl = Previous.getFoundDecl(); |
| 12074 | MergeTypeWithPrevious = false; |
| 12075 | |
| 12076 | // ... except in the presence of __attribute__((overloadable)). |
| 12077 | if (OldDecl->hasAttr<OverloadableAttr>() || |
| 12078 | NewFD->hasAttr<OverloadableAttr>()) { |
| 12079 | if (IsOverload(New: NewFD, Old: cast<FunctionDecl>(Val: OldDecl), UseMemberUsingDeclRules: false)) { |
| 12080 | MayNeedOverloadableChecks = true; |
| 12081 | Redeclaration = false; |
| 12082 | OldDecl = nullptr; |
| 12083 | } |
| 12084 | } |
| 12085 | } |
| 12086 | } |
| 12087 | |
| 12088 | if (CheckMultiVersionFunction(S&: *this, NewFD, Redeclaration, OldDecl, Previous)) |
| 12089 | return Redeclaration; |
| 12090 | |
| 12091 | // PPC MMA non-pointer types are not allowed as function return types. |
| 12092 | if (Context.getTargetInfo().getTriple().isPPC64() && |
| 12093 | PPC().CheckPPCMMAType(Type: NewFD->getReturnType(), TypeLoc: NewFD->getLocation())) { |
| 12094 | NewFD->setInvalidDecl(); |
| 12095 | } |
| 12096 | |
| 12097 | CheckConstPureAttributesUsage(S&: *this, NewFD); |
| 12098 | |
| 12099 | // C++ [dcl.spec.auto.general]p12: |
| 12100 | // Return type deduction for a templated function with a placeholder in its |
| 12101 | // declared type occurs when the definition is instantiated even if the |
| 12102 | // function body contains a return statement with a non-type-dependent |
| 12103 | // operand. |
| 12104 | // |
| 12105 | // C++ [temp.dep.expr]p3: |
| 12106 | // An id-expression is type-dependent if it is a template-id that is not a |
| 12107 | // concept-id and is dependent; or if its terminal name is: |
| 12108 | // - [...] |
| 12109 | // - associated by name lookup with one or more declarations of member |
| 12110 | // functions of a class that is the current instantiation declared with a |
| 12111 | // return type that contains a placeholder type, |
| 12112 | // - [...] |
| 12113 | // |
| 12114 | // If this is a templated function with a placeholder in its return type, |
| 12115 | // make the placeholder type dependent since it won't be deduced until the |
| 12116 | // definition is instantiated. We do this here because it needs to happen |
| 12117 | // for implicitly instantiated member functions/member function templates. |
| 12118 | if (getLangOpts().CPlusPlus14 && |
| 12119 | (NewFD->isDependentContext() && |
| 12120 | NewFD->getReturnType()->isUndeducedType())) { |
| 12121 | const FunctionProtoType *FPT = |
| 12122 | NewFD->getType()->castAs<FunctionProtoType>(); |
| 12123 | QualType NewReturnType = SubstAutoTypeDependent(TypeWithAuto: FPT->getReturnType()); |
| 12124 | NewFD->setType(Context.getFunctionType(ResultTy: NewReturnType, Args: FPT->getParamTypes(), |
| 12125 | EPI: FPT->getExtProtoInfo())); |
| 12126 | } |
| 12127 | |
| 12128 | // C++11 [dcl.constexpr]p8: |
| 12129 | // A constexpr specifier for a non-static member function that is not |
| 12130 | // a constructor declares that member function to be const. |
| 12131 | // |
| 12132 | // This needs to be delayed until we know whether this is an out-of-line |
| 12133 | // definition of a static member function. |
| 12134 | // |
| 12135 | // This rule is not present in C++1y, so we produce a backwards |
| 12136 | // compatibility warning whenever it happens in C++11. |
| 12137 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: NewFD); |
| 12138 | if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() && |
| 12139 | !MD->isStatic() && !isa<CXXConstructorDecl>(Val: MD) && |
| 12140 | !isa<CXXDestructorDecl>(Val: MD) && !MD->getMethodQualifiers().hasConst()) { |
| 12141 | CXXMethodDecl *OldMD = nullptr; |
| 12142 | if (OldDecl) |
| 12143 | OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction()); |
| 12144 | if (!OldMD || !OldMD->isStatic()) { |
| 12145 | const FunctionProtoType *FPT = |
| 12146 | MD->getType()->castAs<FunctionProtoType>(); |
| 12147 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
| 12148 | EPI.TypeQuals.addConst(); |
| 12149 | MD->setType(Context.getFunctionType(ResultTy: FPT->getReturnType(), |
| 12150 | Args: FPT->getParamTypes(), EPI)); |
| 12151 | |
| 12152 | // Warn that we did this, if we're not performing template instantiation. |
| 12153 | // In that case, we'll have warned already when the template was defined. |
| 12154 | if (!inTemplateInstantiation()) { |
| 12155 | SourceLocation AddConstLoc; |
| 12156 | if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc() |
| 12157 | .IgnoreParens().getAs<FunctionTypeLoc>()) |
| 12158 | AddConstLoc = getLocForEndOfToken(Loc: FTL.getRParenLoc()); |
| 12159 | |
| 12160 | Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const) |
| 12161 | << FixItHint::CreateInsertion(AddConstLoc, " const" ); |
| 12162 | } |
| 12163 | } |
| 12164 | } |
| 12165 | |
| 12166 | if (Redeclaration) { |
| 12167 | // NewFD and OldDecl represent declarations that need to be |
| 12168 | // merged. |
| 12169 | if (MergeFunctionDecl(New: NewFD, OldD&: OldDecl, S, MergeTypeWithOld: MergeTypeWithPrevious, |
| 12170 | NewDeclIsDefn: DeclIsDefn)) { |
| 12171 | NewFD->setInvalidDecl(); |
| 12172 | return Redeclaration; |
| 12173 | } |
| 12174 | |
| 12175 | Previous.clear(); |
| 12176 | Previous.addDecl(D: OldDecl); |
| 12177 | |
| 12178 | if (FunctionTemplateDecl *OldTemplateDecl = |
| 12179 | dyn_cast<FunctionTemplateDecl>(Val: OldDecl)) { |
| 12180 | auto *OldFD = OldTemplateDecl->getTemplatedDecl(); |
| 12181 | FunctionTemplateDecl *NewTemplateDecl |
| 12182 | = NewFD->getDescribedFunctionTemplate(); |
| 12183 | assert(NewTemplateDecl && "Template/non-template mismatch" ); |
| 12184 | |
| 12185 | // The call to MergeFunctionDecl above may have created some state in |
| 12186 | // NewTemplateDecl that needs to be merged with OldTemplateDecl before we |
| 12187 | // can add it as a redeclaration. |
| 12188 | NewTemplateDecl->mergePrevDecl(Prev: OldTemplateDecl); |
| 12189 | |
| 12190 | NewFD->setPreviousDeclaration(OldFD); |
| 12191 | if (NewFD->isCXXClassMember()) { |
| 12192 | NewFD->setAccess(OldTemplateDecl->getAccess()); |
| 12193 | NewTemplateDecl->setAccess(OldTemplateDecl->getAccess()); |
| 12194 | } |
| 12195 | |
| 12196 | // If this is an explicit specialization of a member that is a function |
| 12197 | // template, mark it as a member specialization. |
| 12198 | if (IsMemberSpecialization && |
| 12199 | NewTemplateDecl->getInstantiatedFromMemberTemplate()) { |
| 12200 | NewTemplateDecl->setMemberSpecialization(); |
| 12201 | assert(OldTemplateDecl->isMemberSpecialization()); |
| 12202 | // Explicit specializations of a member template do not inherit deleted |
| 12203 | // status from the parent member template that they are specializing. |
| 12204 | if (OldFD->isDeleted()) { |
| 12205 | // FIXME: This assert will not hold in the presence of modules. |
| 12206 | assert(OldFD->getCanonicalDecl() == OldFD); |
| 12207 | // FIXME: We need an update record for this AST mutation. |
| 12208 | OldFD->setDeletedAsWritten(D: false); |
| 12209 | } |
| 12210 | } |
| 12211 | |
| 12212 | } else { |
| 12213 | if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) { |
| 12214 | auto *OldFD = cast<FunctionDecl>(Val: OldDecl); |
| 12215 | // This needs to happen first so that 'inline' propagates. |
| 12216 | NewFD->setPreviousDeclaration(OldFD); |
| 12217 | if (NewFD->isCXXClassMember()) |
| 12218 | NewFD->setAccess(OldFD->getAccess()); |
| 12219 | } |
| 12220 | } |
| 12221 | } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks && |
| 12222 | !NewFD->getAttr<OverloadableAttr>()) { |
| 12223 | assert((Previous.empty() || |
| 12224 | llvm::any_of(Previous, |
| 12225 | [](const NamedDecl *ND) { |
| 12226 | return ND->hasAttr<OverloadableAttr>(); |
| 12227 | })) && |
| 12228 | "Non-redecls shouldn't happen without overloadable present" ); |
| 12229 | |
| 12230 | auto OtherUnmarkedIter = llvm::find_if(Range&: Previous, P: [](const NamedDecl *ND) { |
| 12231 | const auto *FD = dyn_cast<FunctionDecl>(Val: ND); |
| 12232 | return FD && !FD->hasAttr<OverloadableAttr>(); |
| 12233 | }); |
| 12234 | |
| 12235 | if (OtherUnmarkedIter != Previous.end()) { |
| 12236 | Diag(NewFD->getLocation(), |
| 12237 | diag::err_attribute_overloadable_multiple_unmarked_overloads); |
| 12238 | Diag((*OtherUnmarkedIter)->getLocation(), |
| 12239 | diag::note_attribute_overloadable_prev_overload) |
| 12240 | << false; |
| 12241 | |
| 12242 | NewFD->addAttr(OverloadableAttr::CreateImplicit(Context)); |
| 12243 | } |
| 12244 | } |
| 12245 | |
| 12246 | if (LangOpts.OpenMP) |
| 12247 | OpenMP().ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(NewFD); |
| 12248 | |
| 12249 | if (NewFD->hasAttr<SYCLKernelEntryPointAttr>()) |
| 12250 | SYCL().CheckSYCLEntryPointFunctionDecl(FD: NewFD); |
| 12251 | |
| 12252 | // Semantic checking for this function declaration (in isolation). |
| 12253 | |
| 12254 | if (getLangOpts().CPlusPlus) { |
| 12255 | // C++-specific checks. |
| 12256 | if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Val: NewFD)) { |
| 12257 | CheckConstructor(Constructor); |
| 12258 | } else if (CXXDestructorDecl *Destructor = |
| 12259 | dyn_cast<CXXDestructorDecl>(Val: NewFD)) { |
| 12260 | // We check here for invalid destructor names. |
| 12261 | // If we have a friend destructor declaration that is dependent, we can't |
| 12262 | // diagnose right away because cases like this are still valid: |
| 12263 | // template <class T> struct A { friend T::X::~Y(); }; |
| 12264 | // struct B { struct Y { ~Y(); }; using X = Y; }; |
| 12265 | // template struct A<B>; |
| 12266 | if (NewFD->getFriendObjectKind() == Decl::FriendObjectKind::FOK_None || |
| 12267 | !Destructor->getFunctionObjectParameterType()->isDependentType()) { |
| 12268 | CXXRecordDecl *Record = Destructor->getParent(); |
| 12269 | QualType ClassType = Context.getTypeDeclType(Record); |
| 12270 | |
| 12271 | DeclarationName Name = Context.DeclarationNames.getCXXDestructorName( |
| 12272 | Ty: Context.getCanonicalType(T: ClassType)); |
| 12273 | if (NewFD->getDeclName() != Name) { |
| 12274 | Diag(NewFD->getLocation(), diag::err_destructor_name); |
| 12275 | NewFD->setInvalidDecl(); |
| 12276 | return Redeclaration; |
| 12277 | } |
| 12278 | } |
| 12279 | } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(Val: NewFD)) { |
| 12280 | if (auto *TD = Guide->getDescribedFunctionTemplate()) |
| 12281 | CheckDeductionGuideTemplate(TD: TD); |
| 12282 | |
| 12283 | // A deduction guide is not on the list of entities that can be |
| 12284 | // explicitly specialized. |
| 12285 | if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) |
| 12286 | Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized) |
| 12287 | << /*explicit specialization*/ 1; |
| 12288 | } |
| 12289 | |
| 12290 | // Find any virtual functions that this function overrides. |
| 12291 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: NewFD)) { |
| 12292 | if (!Method->isFunctionTemplateSpecialization() && |
| 12293 | !Method->getDescribedFunctionTemplate() && |
| 12294 | Method->isCanonicalDecl()) { |
| 12295 | AddOverriddenMethods(DC: Method->getParent(), MD: Method); |
| 12296 | } |
| 12297 | if (Method->isVirtual() && NewFD->getTrailingRequiresClause()) |
| 12298 | // C++2a [class.virtual]p6 |
| 12299 | // A virtual method shall not have a requires-clause. |
| 12300 | Diag(NewFD->getTrailingRequiresClause().ConstraintExpr->getBeginLoc(), |
| 12301 | diag::err_constrained_virtual_method); |
| 12302 | |
| 12303 | if (Method->isStatic()) |
| 12304 | checkThisInStaticMemberFunctionType(Method); |
| 12305 | } |
| 12306 | |
| 12307 | if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(Val: NewFD)) |
| 12308 | ActOnConversionDeclarator(Conversion); |
| 12309 | |
| 12310 | // Extra checking for C++ overloaded operators (C++ [over.oper]). |
| 12311 | if (NewFD->isOverloadedOperator() && |
| 12312 | CheckOverloadedOperatorDeclaration(FnDecl: NewFD)) { |
| 12313 | NewFD->setInvalidDecl(); |
| 12314 | return Redeclaration; |
| 12315 | } |
| 12316 | |
| 12317 | // Extra checking for C++0x literal operators (C++0x [over.literal]). |
| 12318 | if (NewFD->getLiteralIdentifier() && |
| 12319 | CheckLiteralOperatorDeclaration(FnDecl: NewFD)) { |
| 12320 | NewFD->setInvalidDecl(); |
| 12321 | return Redeclaration; |
| 12322 | } |
| 12323 | |
| 12324 | // In C++, check default arguments now that we have merged decls. Unless |
| 12325 | // the lexical context is the class, because in this case this is done |
| 12326 | // during delayed parsing anyway. |
| 12327 | if (!CurContext->isRecord()) |
| 12328 | CheckCXXDefaultArguments(FD: NewFD); |
| 12329 | |
| 12330 | // If this function is declared as being extern "C", then check to see if |
| 12331 | // the function returns a UDT (class, struct, or union type) that is not C |
| 12332 | // compatible, and if it does, warn the user. |
| 12333 | // But, issue any diagnostic on the first declaration only. |
| 12334 | if (Previous.empty() && NewFD->isExternC()) { |
| 12335 | QualType R = NewFD->getReturnType(); |
| 12336 | if (R->isIncompleteType() && !R->isVoidType()) |
| 12337 | Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete) |
| 12338 | << NewFD << R; |
| 12339 | else if (!R.isPODType(Context) && !R->isVoidType() && |
| 12340 | !R->isObjCObjectPointerType()) |
| 12341 | Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R; |
| 12342 | } |
| 12343 | |
| 12344 | // C++1z [dcl.fct]p6: |
| 12345 | // [...] whether the function has a non-throwing exception-specification |
| 12346 | // [is] part of the function type |
| 12347 | // |
| 12348 | // This results in an ABI break between C++14 and C++17 for functions whose |
| 12349 | // declared type includes an exception-specification in a parameter or |
| 12350 | // return type. (Exception specifications on the function itself are OK in |
| 12351 | // most cases, and exception specifications are not permitted in most other |
| 12352 | // contexts where they could make it into a mangling.) |
| 12353 | if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) { |
| 12354 | auto HasNoexcept = [&](QualType T) -> bool { |
| 12355 | // Strip off declarator chunks that could be between us and a function |
| 12356 | // type. We don't need to look far, exception specifications are very |
| 12357 | // restricted prior to C++17. |
| 12358 | if (auto *RT = T->getAs<ReferenceType>()) |
| 12359 | T = RT->getPointeeType(); |
| 12360 | else if (T->isAnyPointerType()) |
| 12361 | T = T->getPointeeType(); |
| 12362 | else if (auto *MPT = T->getAs<MemberPointerType>()) |
| 12363 | T = MPT->getPointeeType(); |
| 12364 | if (auto *FPT = T->getAs<FunctionProtoType>()) |
| 12365 | if (FPT->isNothrow()) |
| 12366 | return true; |
| 12367 | return false; |
| 12368 | }; |
| 12369 | |
| 12370 | auto *FPT = NewFD->getType()->castAs<FunctionProtoType>(); |
| 12371 | bool AnyNoexcept = HasNoexcept(FPT->getReturnType()); |
| 12372 | for (QualType T : FPT->param_types()) |
| 12373 | AnyNoexcept |= HasNoexcept(T); |
| 12374 | if (AnyNoexcept) |
| 12375 | Diag(NewFD->getLocation(), |
| 12376 | diag::warn_cxx17_compat_exception_spec_in_signature) |
| 12377 | << NewFD; |
| 12378 | } |
| 12379 | |
| 12380 | if (!Redeclaration && LangOpts.CUDA) { |
| 12381 | bool IsKernel = NewFD->hasAttr<CUDAGlobalAttr>(); |
| 12382 | for (auto *Parm : NewFD->parameters()) { |
| 12383 | if (!Parm->getType()->isDependentType() && |
| 12384 | Parm->hasAttr<CUDAGridConstantAttr>() && |
| 12385 | !(IsKernel && Parm->getType().isConstQualified())) |
| 12386 | Diag(Parm->getAttr<CUDAGridConstantAttr>()->getLocation(), |
| 12387 | diag::err_cuda_grid_constant_not_allowed); |
| 12388 | } |
| 12389 | CUDA().checkTargetOverload(NewFD, Previous); |
| 12390 | } |
| 12391 | } |
| 12392 | |
| 12393 | if (DeclIsDefn && Context.getTargetInfo().getTriple().isAArch64()) |
| 12394 | ARM().CheckSMEFunctionDefAttributes(FD: NewFD); |
| 12395 | |
| 12396 | return Redeclaration; |
| 12397 | } |
| 12398 | |
| 12399 | void Sema::CheckMain(FunctionDecl *FD, const DeclSpec &DS) { |
| 12400 | // [basic.start.main]p3 |
| 12401 | // The main function shall not be declared with a linkage-specification. |
| 12402 | if (FD->isExternCContext() || |
| 12403 | (FD->isExternCXXContext() && |
| 12404 | FD->getDeclContext()->getRedeclContext()->isTranslationUnit())) |
| 12405 | Diag(FD->getLocation(), diag::ext_main_invalid_linkage_specification) |
| 12406 | << FD->getLanguageLinkage(); |
| 12407 | |
| 12408 | // C++11 [basic.start.main]p3: |
| 12409 | // A program that [...] declares main to be inline, static or |
| 12410 | // constexpr is ill-formed. |
| 12411 | // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall |
| 12412 | // appear in a declaration of main. |
| 12413 | // static main is not an error under C99, but we should warn about it. |
| 12414 | // We accept _Noreturn main as an extension. |
| 12415 | if (FD->getStorageClass() == SC_Static) |
| 12416 | Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus |
| 12417 | ? diag::err_static_main : diag::warn_static_main) |
| 12418 | << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); |
| 12419 | if (FD->isInlineSpecified()) |
| 12420 | Diag(DS.getInlineSpecLoc(), diag::err_inline_main) |
| 12421 | << FixItHint::CreateRemoval(DS.getInlineSpecLoc()); |
| 12422 | if (DS.isNoreturnSpecified()) { |
| 12423 | SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc(); |
| 12424 | SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(Loc: NoreturnLoc)); |
| 12425 | Diag(NoreturnLoc, diag::ext_noreturn_main); |
| 12426 | Diag(NoreturnLoc, diag::note_main_remove_noreturn) |
| 12427 | << FixItHint::CreateRemoval(NoreturnRange); |
| 12428 | } |
| 12429 | if (FD->isConstexpr()) { |
| 12430 | Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main) |
| 12431 | << FD->isConsteval() |
| 12432 | << FixItHint::CreateRemoval(DS.getConstexprSpecLoc()); |
| 12433 | FD->setConstexprKind(ConstexprSpecKind::Unspecified); |
| 12434 | } |
| 12435 | |
| 12436 | if (getLangOpts().OpenCL) { |
| 12437 | Diag(FD->getLocation(), diag::err_opencl_no_main) |
| 12438 | << FD->hasAttr<DeviceKernelAttr>(); |
| 12439 | FD->setInvalidDecl(); |
| 12440 | return; |
| 12441 | } |
| 12442 | |
| 12443 | // Functions named main in hlsl are default entries, but don't have specific |
| 12444 | // signatures they are required to conform to. |
| 12445 | if (getLangOpts().HLSL) |
| 12446 | return; |
| 12447 | |
| 12448 | QualType T = FD->getType(); |
| 12449 | assert(T->isFunctionType() && "function decl is not of function type" ); |
| 12450 | const FunctionType* FT = T->castAs<FunctionType>(); |
| 12451 | |
| 12452 | // Set default calling convention for main() |
| 12453 | if (FT->getCallConv() != CC_C) { |
| 12454 | FT = Context.adjustFunctionType(Fn: FT, EInfo: FT->getExtInfo().withCallingConv(cc: CC_C)); |
| 12455 | FD->setType(QualType(FT, 0)); |
| 12456 | T = Context.getCanonicalType(FD->getType()); |
| 12457 | } |
| 12458 | |
| 12459 | if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) { |
| 12460 | // In C with GNU extensions we allow main() to have non-integer return |
| 12461 | // type, but we should warn about the extension, and we disable the |
| 12462 | // implicit-return-zero rule. |
| 12463 | |
| 12464 | // GCC in C mode accepts qualified 'int'. |
| 12465 | if (Context.hasSameUnqualifiedType(T1: FT->getReturnType(), T2: Context.IntTy)) |
| 12466 | FD->setHasImplicitReturnZero(true); |
| 12467 | else { |
| 12468 | Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint); |
| 12469 | SourceRange RTRange = FD->getReturnTypeSourceRange(); |
| 12470 | if (RTRange.isValid()) |
| 12471 | Diag(RTRange.getBegin(), diag::note_main_change_return_type) |
| 12472 | << FixItHint::CreateReplacement(RTRange, "int" ); |
| 12473 | } |
| 12474 | } else { |
| 12475 | // In C and C++, main magically returns 0 if you fall off the end; |
| 12476 | // set the flag which tells us that. |
| 12477 | // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3. |
| 12478 | |
| 12479 | // All the standards say that main() should return 'int'. |
| 12480 | if (Context.hasSameType(FT->getReturnType(), Context.IntTy)) |
| 12481 | FD->setHasImplicitReturnZero(true); |
| 12482 | else { |
| 12483 | // Otherwise, this is just a flat-out error. |
| 12484 | SourceRange RTRange = FD->getReturnTypeSourceRange(); |
| 12485 | Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint) |
| 12486 | << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int" ) |
| 12487 | : FixItHint()); |
| 12488 | FD->setInvalidDecl(true); |
| 12489 | } |
| 12490 | } |
| 12491 | |
| 12492 | // Treat protoless main() as nullary. |
| 12493 | if (isa<FunctionNoProtoType>(Val: FT)) return; |
| 12494 | |
| 12495 | const FunctionProtoType* FTP = cast<const FunctionProtoType>(Val: FT); |
| 12496 | unsigned nparams = FTP->getNumParams(); |
| 12497 | assert(FD->getNumParams() == nparams); |
| 12498 | |
| 12499 | bool = (nparams > 3); |
| 12500 | |
| 12501 | if (FTP->isVariadic()) { |
| 12502 | Diag(FD->getLocation(), diag::ext_variadic_main); |
| 12503 | // FIXME: if we had information about the location of the ellipsis, we |
| 12504 | // could add a FixIt hint to remove it as a parameter. |
| 12505 | } |
| 12506 | |
| 12507 | // Darwin passes an undocumented fourth argument of type char**. If |
| 12508 | // other platforms start sprouting these, the logic below will start |
| 12509 | // getting shifty. |
| 12510 | if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin()) |
| 12511 | HasExtraParameters = false; |
| 12512 | |
| 12513 | if (HasExtraParameters) { |
| 12514 | Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams; |
| 12515 | FD->setInvalidDecl(true); |
| 12516 | nparams = 3; |
| 12517 | } |
| 12518 | |
| 12519 | // FIXME: a lot of the following diagnostics would be improved |
| 12520 | // if we had some location information about types. |
| 12521 | |
| 12522 | QualType CharPP = |
| 12523 | Context.getPointerType(Context.getPointerType(Context.CharTy)); |
| 12524 | QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP }; |
| 12525 | |
| 12526 | for (unsigned i = 0; i < nparams; ++i) { |
| 12527 | QualType AT = FTP->getParamType(i); |
| 12528 | |
| 12529 | bool mismatch = true; |
| 12530 | |
| 12531 | if (Context.hasSameUnqualifiedType(T1: AT, T2: Expected[i])) |
| 12532 | mismatch = false; |
| 12533 | else if (Expected[i] == CharPP) { |
| 12534 | // As an extension, the following forms are okay: |
| 12535 | // char const ** |
| 12536 | // char const * const * |
| 12537 | // char * const * |
| 12538 | |
| 12539 | QualifierCollector qs; |
| 12540 | const PointerType* PT; |
| 12541 | if ((PT = qs.strip(type: AT)->getAs<PointerType>()) && |
| 12542 | (PT = qs.strip(type: PT->getPointeeType())->getAs<PointerType>()) && |
| 12543 | Context.hasSameType(QualType(qs.strip(type: PT->getPointeeType()), 0), |
| 12544 | Context.CharTy)) { |
| 12545 | qs.removeConst(); |
| 12546 | mismatch = !qs.empty(); |
| 12547 | } |
| 12548 | } |
| 12549 | |
| 12550 | if (mismatch) { |
| 12551 | Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i]; |
| 12552 | // TODO: suggest replacing given type with expected type |
| 12553 | FD->setInvalidDecl(true); |
| 12554 | } |
| 12555 | } |
| 12556 | |
| 12557 | if (nparams == 1 && !FD->isInvalidDecl()) { |
| 12558 | Diag(FD->getLocation(), diag::warn_main_one_arg); |
| 12559 | } |
| 12560 | |
| 12561 | if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { |
| 12562 | Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; |
| 12563 | FD->setInvalidDecl(); |
| 12564 | } |
| 12565 | } |
| 12566 | |
| 12567 | static bool isDefaultStdCall(FunctionDecl *FD, Sema &S) { |
| 12568 | |
| 12569 | // Default calling convention for main and wmain is __cdecl |
| 12570 | if (FD->getName() == "main" || FD->getName() == "wmain" ) |
| 12571 | return false; |
| 12572 | |
| 12573 | // Default calling convention for MinGW is __cdecl |
| 12574 | const llvm::Triple &T = S.Context.getTargetInfo().getTriple(); |
| 12575 | if (T.isWindowsGNUEnvironment()) |
| 12576 | return false; |
| 12577 | |
| 12578 | // Default calling convention for WinMain, wWinMain and DllMain |
| 12579 | // is __stdcall on 32 bit Windows |
| 12580 | if (T.isOSWindows() && T.getArch() == llvm::Triple::x86) |
| 12581 | return true; |
| 12582 | |
| 12583 | return false; |
| 12584 | } |
| 12585 | |
| 12586 | void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) { |
| 12587 | QualType T = FD->getType(); |
| 12588 | assert(T->isFunctionType() && "function decl is not of function type" ); |
| 12589 | const FunctionType *FT = T->castAs<FunctionType>(); |
| 12590 | |
| 12591 | // Set an implicit return of 'zero' if the function can return some integral, |
| 12592 | // enumeration, pointer or nullptr type. |
| 12593 | if (FT->getReturnType()->isIntegralOrEnumerationType() || |
| 12594 | FT->getReturnType()->isAnyPointerType() || |
| 12595 | FT->getReturnType()->isNullPtrType()) |
| 12596 | // DllMain is exempt because a return value of zero means it failed. |
| 12597 | if (FD->getName() != "DllMain" ) |
| 12598 | FD->setHasImplicitReturnZero(true); |
| 12599 | |
| 12600 | // Explicitly specified calling conventions are applied to MSVC entry points |
| 12601 | if (!hasExplicitCallingConv(T)) { |
| 12602 | if (isDefaultStdCall(FD, S&: *this)) { |
| 12603 | if (FT->getCallConv() != CC_X86StdCall) { |
| 12604 | FT = Context.adjustFunctionType( |
| 12605 | Fn: FT, EInfo: FT->getExtInfo().withCallingConv(cc: CC_X86StdCall)); |
| 12606 | FD->setType(QualType(FT, 0)); |
| 12607 | } |
| 12608 | } else if (FT->getCallConv() != CC_C) { |
| 12609 | FT = Context.adjustFunctionType(Fn: FT, |
| 12610 | EInfo: FT->getExtInfo().withCallingConv(cc: CC_C)); |
| 12611 | FD->setType(QualType(FT, 0)); |
| 12612 | } |
| 12613 | } |
| 12614 | |
| 12615 | if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { |
| 12616 | Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; |
| 12617 | FD->setInvalidDecl(); |
| 12618 | } |
| 12619 | } |
| 12620 | |
| 12621 | bool Sema::CheckForConstantInitializer(Expr *Init, unsigned DiagID) { |
| 12622 | // FIXME: Need strict checking. In C89, we need to check for |
| 12623 | // any assignment, increment, decrement, function-calls, or |
| 12624 | // commas outside of a sizeof. In C99, it's the same list, |
| 12625 | // except that the aforementioned are allowed in unevaluated |
| 12626 | // expressions. Everything else falls under the |
| 12627 | // "may accept other forms of constant expressions" exception. |
| 12628 | // |
| 12629 | // Regular C++ code will not end up here (exceptions: language extensions, |
| 12630 | // OpenCL C++ etc), so the constant expression rules there don't matter. |
| 12631 | if (Init->isValueDependent()) { |
| 12632 | assert(Init->containsErrors() && |
| 12633 | "Dependent code should only occur in error-recovery path." ); |
| 12634 | return true; |
| 12635 | } |
| 12636 | const Expr *Culprit; |
| 12637 | if (Init->isConstantInitializer(Ctx&: Context, ForRef: false, Culprit: &Culprit)) |
| 12638 | return false; |
| 12639 | Diag(Culprit->getExprLoc(), DiagID) << Culprit->getSourceRange(); |
| 12640 | return true; |
| 12641 | } |
| 12642 | |
| 12643 | namespace { |
| 12644 | // Visits an initialization expression to see if OrigDecl is evaluated in |
| 12645 | // its own initialization and throws a warning if it does. |
| 12646 | class SelfReferenceChecker |
| 12647 | : public EvaluatedExprVisitor<SelfReferenceChecker> { |
| 12648 | Sema &S; |
| 12649 | Decl *OrigDecl; |
| 12650 | bool isRecordType; |
| 12651 | bool isPODType; |
| 12652 | bool isReferenceType; |
| 12653 | bool isInCXXOperatorCall; |
| 12654 | |
| 12655 | bool isInitList; |
| 12656 | llvm::SmallVector<unsigned, 4> InitFieldIndex; |
| 12657 | |
| 12658 | public: |
| 12659 | typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited; |
| 12660 | |
| 12661 | SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context), |
| 12662 | S(S), OrigDecl(OrigDecl) { |
| 12663 | isPODType = false; |
| 12664 | isRecordType = false; |
| 12665 | isReferenceType = false; |
| 12666 | isInCXXOperatorCall = false; |
| 12667 | isInitList = false; |
| 12668 | if (ValueDecl *VD = dyn_cast<ValueDecl>(Val: OrigDecl)) { |
| 12669 | isPODType = VD->getType().isPODType(Context: S.Context); |
| 12670 | isRecordType = VD->getType()->isRecordType(); |
| 12671 | isReferenceType = VD->getType()->isReferenceType(); |
| 12672 | } |
| 12673 | } |
| 12674 | |
| 12675 | // For most expressions, just call the visitor. For initializer lists, |
| 12676 | // track the index of the field being initialized since fields are |
| 12677 | // initialized in order allowing use of previously initialized fields. |
| 12678 | void CheckExpr(Expr *E) { |
| 12679 | InitListExpr *InitList = dyn_cast<InitListExpr>(Val: E); |
| 12680 | if (!InitList) { |
| 12681 | Visit(E); |
| 12682 | return; |
| 12683 | } |
| 12684 | |
| 12685 | // Track and increment the index here. |
| 12686 | isInitList = true; |
| 12687 | InitFieldIndex.push_back(Elt: 0); |
| 12688 | for (auto *Child : InitList->children()) { |
| 12689 | CheckExpr(E: cast<Expr>(Val: Child)); |
| 12690 | ++InitFieldIndex.back(); |
| 12691 | } |
| 12692 | InitFieldIndex.pop_back(); |
| 12693 | } |
| 12694 | |
| 12695 | // Returns true if MemberExpr is checked and no further checking is needed. |
| 12696 | // Returns false if additional checking is required. |
| 12697 | bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) { |
| 12698 | llvm::SmallVector<FieldDecl*, 4> Fields; |
| 12699 | Expr *Base = E; |
| 12700 | bool ReferenceField = false; |
| 12701 | |
| 12702 | // Get the field members used. |
| 12703 | while (MemberExpr *ME = dyn_cast<MemberExpr>(Val: Base)) { |
| 12704 | FieldDecl *FD = dyn_cast<FieldDecl>(Val: ME->getMemberDecl()); |
| 12705 | if (!FD) |
| 12706 | return false; |
| 12707 | Fields.push_back(Elt: FD); |
| 12708 | if (FD->getType()->isReferenceType()) |
| 12709 | ReferenceField = true; |
| 12710 | Base = ME->getBase()->IgnoreParenImpCasts(); |
| 12711 | } |
| 12712 | |
| 12713 | // Keep checking only if the base Decl is the same. |
| 12714 | DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: Base); |
| 12715 | if (!DRE || DRE->getDecl() != OrigDecl) |
| 12716 | return false; |
| 12717 | |
| 12718 | // A reference field can be bound to an unininitialized field. |
| 12719 | if (CheckReference && !ReferenceField) |
| 12720 | return true; |
| 12721 | |
| 12722 | // Convert FieldDecls to their index number. |
| 12723 | llvm::SmallVector<unsigned, 4> UsedFieldIndex; |
| 12724 | for (const FieldDecl *I : llvm::reverse(C&: Fields)) |
| 12725 | UsedFieldIndex.push_back(Elt: I->getFieldIndex()); |
| 12726 | |
| 12727 | // See if a warning is needed by checking the first difference in index |
| 12728 | // numbers. If field being used has index less than the field being |
| 12729 | // initialized, then the use is safe. |
| 12730 | for (auto UsedIter = UsedFieldIndex.begin(), |
| 12731 | UsedEnd = UsedFieldIndex.end(), |
| 12732 | OrigIter = InitFieldIndex.begin(), |
| 12733 | OrigEnd = InitFieldIndex.end(); |
| 12734 | UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { |
| 12735 | if (*UsedIter < *OrigIter) |
| 12736 | return true; |
| 12737 | if (*UsedIter > *OrigIter) |
| 12738 | break; |
| 12739 | } |
| 12740 | |
| 12741 | // TODO: Add a different warning which will print the field names. |
| 12742 | HandleDeclRefExpr(DRE); |
| 12743 | return true; |
| 12744 | } |
| 12745 | |
| 12746 | // For most expressions, the cast is directly above the DeclRefExpr. |
| 12747 | // For conditional operators, the cast can be outside the conditional |
| 12748 | // operator if both expressions are DeclRefExpr's. |
| 12749 | void HandleValue(Expr *E) { |
| 12750 | E = E->IgnoreParens(); |
| 12751 | if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(Val: E)) { |
| 12752 | HandleDeclRefExpr(DRE); |
| 12753 | return; |
| 12754 | } |
| 12755 | |
| 12756 | if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(Val: E)) { |
| 12757 | Visit(CO->getCond()); |
| 12758 | HandleValue(E: CO->getTrueExpr()); |
| 12759 | HandleValue(E: CO->getFalseExpr()); |
| 12760 | return; |
| 12761 | } |
| 12762 | |
| 12763 | if (BinaryConditionalOperator *BCO = |
| 12764 | dyn_cast<BinaryConditionalOperator>(Val: E)) { |
| 12765 | Visit(BCO->getCond()); |
| 12766 | HandleValue(E: BCO->getFalseExpr()); |
| 12767 | return; |
| 12768 | } |
| 12769 | |
| 12770 | if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Val: E)) { |
| 12771 | if (Expr *SE = OVE->getSourceExpr()) |
| 12772 | HandleValue(E: SE); |
| 12773 | return; |
| 12774 | } |
| 12775 | |
| 12776 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) { |
| 12777 | if (BO->getOpcode() == BO_Comma) { |
| 12778 | Visit(BO->getLHS()); |
| 12779 | HandleValue(E: BO->getRHS()); |
| 12780 | return; |
| 12781 | } |
| 12782 | } |
| 12783 | |
| 12784 | if (isa<MemberExpr>(Val: E)) { |
| 12785 | if (isInitList) { |
| 12786 | if (CheckInitListMemberExpr(E: cast<MemberExpr>(Val: E), |
| 12787 | CheckReference: false /*CheckReference*/)) |
| 12788 | return; |
| 12789 | } |
| 12790 | |
| 12791 | Expr *Base = E->IgnoreParenImpCasts(); |
| 12792 | while (MemberExpr *ME = dyn_cast<MemberExpr>(Val: Base)) { |
| 12793 | // Check for static member variables and don't warn on them. |
| 12794 | if (!isa<FieldDecl>(Val: ME->getMemberDecl())) |
| 12795 | return; |
| 12796 | Base = ME->getBase()->IgnoreParenImpCasts(); |
| 12797 | } |
| 12798 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: Base)) |
| 12799 | HandleDeclRefExpr(DRE); |
| 12800 | return; |
| 12801 | } |
| 12802 | |
| 12803 | Visit(E); |
| 12804 | } |
| 12805 | |
| 12806 | // Reference types not handled in HandleValue are handled here since all |
| 12807 | // uses of references are bad, not just r-value uses. |
| 12808 | void VisitDeclRefExpr(DeclRefExpr *E) { |
| 12809 | if (isReferenceType) |
| 12810 | HandleDeclRefExpr(DRE: E); |
| 12811 | } |
| 12812 | |
| 12813 | void VisitImplicitCastExpr(ImplicitCastExpr *E) { |
| 12814 | if (E->getCastKind() == CK_LValueToRValue) { |
| 12815 | HandleValue(E: E->getSubExpr()); |
| 12816 | return; |
| 12817 | } |
| 12818 | |
| 12819 | Inherited::VisitImplicitCastExpr(E); |
| 12820 | } |
| 12821 | |
| 12822 | void VisitMemberExpr(MemberExpr *E) { |
| 12823 | if (isInitList) { |
| 12824 | if (CheckInitListMemberExpr(E, CheckReference: true /*CheckReference*/)) |
| 12825 | return; |
| 12826 | } |
| 12827 | |
| 12828 | // Don't warn on arrays since they can be treated as pointers. |
| 12829 | if (E->getType()->canDecayToPointerType()) return; |
| 12830 | |
| 12831 | // Warn when a non-static method call is followed by non-static member |
| 12832 | // field accesses, which is followed by a DeclRefExpr. |
| 12833 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: E->getMemberDecl()); |
| 12834 | bool Warn = (MD && !MD->isStatic()); |
| 12835 | Expr *Base = E->getBase()->IgnoreParenImpCasts(); |
| 12836 | while (MemberExpr *ME = dyn_cast<MemberExpr>(Val: Base)) { |
| 12837 | if (!isa<FieldDecl>(Val: ME->getMemberDecl())) |
| 12838 | Warn = false; |
| 12839 | Base = ME->getBase()->IgnoreParenImpCasts(); |
| 12840 | } |
| 12841 | |
| 12842 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: Base)) { |
| 12843 | if (Warn) |
| 12844 | HandleDeclRefExpr(DRE); |
| 12845 | return; |
| 12846 | } |
| 12847 | |
| 12848 | // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr. |
| 12849 | // Visit that expression. |
| 12850 | Visit(Base); |
| 12851 | } |
| 12852 | |
| 12853 | void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { |
| 12854 | llvm::SaveAndRestore CxxOpCallScope(isInCXXOperatorCall, true); |
| 12855 | Expr *Callee = E->getCallee(); |
| 12856 | |
| 12857 | if (isa<UnresolvedLookupExpr>(Callee)) |
| 12858 | return Inherited::VisitCXXOperatorCallExpr(E); |
| 12859 | |
| 12860 | Visit(Callee); |
| 12861 | for (auto Arg: E->arguments()) |
| 12862 | HandleValue(Arg->IgnoreParenImpCasts()); |
| 12863 | } |
| 12864 | |
| 12865 | void VisitLambdaExpr(LambdaExpr *E) { |
| 12866 | if (!isInCXXOperatorCall) { |
| 12867 | Inherited::VisitLambdaExpr(LE: E); |
| 12868 | return; |
| 12869 | } |
| 12870 | |
| 12871 | for (Expr *Init : E->capture_inits()) |
| 12872 | if (DeclRefExpr *DRE = dyn_cast_if_present<DeclRefExpr>(Val: Init)) |
| 12873 | HandleDeclRefExpr(DRE); |
| 12874 | else if (Init) |
| 12875 | Visit(Init); |
| 12876 | } |
| 12877 | |
| 12878 | void VisitUnaryOperator(UnaryOperator *E) { |
| 12879 | // For POD record types, addresses of its own members are well-defined. |
| 12880 | if (E->getOpcode() == UO_AddrOf && isRecordType && |
| 12881 | isa<MemberExpr>(Val: E->getSubExpr()->IgnoreParens())) { |
| 12882 | if (!isPODType) |
| 12883 | HandleValue(E: E->getSubExpr()); |
| 12884 | return; |
| 12885 | } |
| 12886 | |
| 12887 | if (E->isIncrementDecrementOp()) { |
| 12888 | HandleValue(E: E->getSubExpr()); |
| 12889 | return; |
| 12890 | } |
| 12891 | |
| 12892 | Inherited::VisitUnaryOperator(E); |
| 12893 | } |
| 12894 | |
| 12895 | void VisitObjCMessageExpr(ObjCMessageExpr *E) {} |
| 12896 | |
| 12897 | void VisitCXXConstructExpr(CXXConstructExpr *E) { |
| 12898 | if (E->getConstructor()->isCopyConstructor()) { |
| 12899 | Expr *ArgExpr = E->getArg(Arg: 0); |
| 12900 | if (InitListExpr *ILE = dyn_cast<InitListExpr>(Val: ArgExpr)) |
| 12901 | if (ILE->getNumInits() == 1) |
| 12902 | ArgExpr = ILE->getInit(Init: 0); |
| 12903 | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: ArgExpr)) |
| 12904 | if (ICE->getCastKind() == CK_NoOp) |
| 12905 | ArgExpr = ICE->getSubExpr(); |
| 12906 | HandleValue(E: ArgExpr); |
| 12907 | return; |
| 12908 | } |
| 12909 | Inherited::VisitCXXConstructExpr(E); |
| 12910 | } |
| 12911 | |
| 12912 | void VisitCallExpr(CallExpr *E) { |
| 12913 | // Treat std::move as a use. |
| 12914 | if (E->isCallToStdMove()) { |
| 12915 | HandleValue(E: E->getArg(Arg: 0)); |
| 12916 | return; |
| 12917 | } |
| 12918 | |
| 12919 | Inherited::VisitCallExpr(CE: E); |
| 12920 | } |
| 12921 | |
| 12922 | void VisitBinaryOperator(BinaryOperator *E) { |
| 12923 | if (E->isCompoundAssignmentOp()) { |
| 12924 | HandleValue(E: E->getLHS()); |
| 12925 | Visit(E->getRHS()); |
| 12926 | return; |
| 12927 | } |
| 12928 | |
| 12929 | Inherited::VisitBinaryOperator(E); |
| 12930 | } |
| 12931 | |
| 12932 | // A custom visitor for BinaryConditionalOperator is needed because the |
| 12933 | // regular visitor would check the condition and true expression separately |
| 12934 | // but both point to the same place giving duplicate diagnostics. |
| 12935 | void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) { |
| 12936 | Visit(E->getCond()); |
| 12937 | Visit(E->getFalseExpr()); |
| 12938 | } |
| 12939 | |
| 12940 | void HandleDeclRefExpr(DeclRefExpr *DRE) { |
| 12941 | Decl* ReferenceDecl = DRE->getDecl(); |
| 12942 | if (OrigDecl != ReferenceDecl) return; |
| 12943 | unsigned diag; |
| 12944 | if (isReferenceType) { |
| 12945 | diag = diag::warn_uninit_self_reference_in_reference_init; |
| 12946 | } else if (cast<VarDecl>(Val: OrigDecl)->isStaticLocal()) { |
| 12947 | diag = diag::warn_static_self_reference_in_init; |
| 12948 | } else if (isa<TranslationUnitDecl>(Val: OrigDecl->getDeclContext()) || |
| 12949 | isa<NamespaceDecl>(Val: OrigDecl->getDeclContext()) || |
| 12950 | DRE->getDecl()->getType()->isRecordType()) { |
| 12951 | diag = diag::warn_uninit_self_reference_in_init; |
| 12952 | } else { |
| 12953 | // Local variables will be handled by the CFG analysis. |
| 12954 | return; |
| 12955 | } |
| 12956 | |
| 12957 | S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE, |
| 12958 | S.PDiag(diag) |
| 12959 | << DRE->getDecl() << OrigDecl->getLocation() |
| 12960 | << DRE->getSourceRange()); |
| 12961 | } |
| 12962 | }; |
| 12963 | |
| 12964 | /// CheckSelfReference - Warns if OrigDecl is used in expression E. |
| 12965 | static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E, |
| 12966 | bool DirectInit) { |
| 12967 | // Parameters arguments are occassionially constructed with itself, |
| 12968 | // for instance, in recursive functions. Skip them. |
| 12969 | if (isa<ParmVarDecl>(Val: OrigDecl)) |
| 12970 | return; |
| 12971 | |
| 12972 | E = E->IgnoreParens(); |
| 12973 | |
| 12974 | // Skip checking T a = a where T is not a record or reference type. |
| 12975 | // Doing so is a way to silence uninitialized warnings. |
| 12976 | if (!DirectInit && !cast<VarDecl>(Val: OrigDecl)->getType()->isRecordType()) |
| 12977 | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: E)) |
| 12978 | if (ICE->getCastKind() == CK_LValueToRValue) |
| 12979 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) |
| 12980 | if (DRE->getDecl() == OrigDecl) |
| 12981 | return; |
| 12982 | |
| 12983 | SelfReferenceChecker(S, OrigDecl).CheckExpr(E); |
| 12984 | } |
| 12985 | } // end anonymous namespace |
| 12986 | |
| 12987 | namespace { |
| 12988 | // Simple wrapper to add the name of a variable or (if no variable is |
| 12989 | // available) a DeclarationName into a diagnostic. |
| 12990 | struct VarDeclOrName { |
| 12991 | VarDecl *VDecl; |
| 12992 | DeclarationName Name; |
| 12993 | |
| 12994 | friend const Sema::SemaDiagnosticBuilder & |
| 12995 | operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) { |
| 12996 | return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name; |
| 12997 | } |
| 12998 | }; |
| 12999 | } // end anonymous namespace |
| 13000 | |
| 13001 | QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl, |
| 13002 | DeclarationName Name, QualType Type, |
| 13003 | TypeSourceInfo *TSI, |
| 13004 | SourceRange Range, bool DirectInit, |
| 13005 | Expr *Init) { |
| 13006 | bool IsInitCapture = !VDecl; |
| 13007 | assert((!VDecl || !VDecl->isInitCapture()) && |
| 13008 | "init captures are expected to be deduced prior to initialization" ); |
| 13009 | |
| 13010 | VarDeclOrName VN{.VDecl: VDecl, .Name: Name}; |
| 13011 | |
| 13012 | DeducedType *Deduced = Type->getContainedDeducedType(); |
| 13013 | assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type" ); |
| 13014 | |
| 13015 | // Diagnose auto array declarations in C23, unless it's a supported extension. |
| 13016 | if (getLangOpts().C23 && Type->isArrayType() && |
| 13017 | !isa_and_present<StringLiteral, InitListExpr>(Val: Init)) { |
| 13018 | Diag(Range.getBegin(), diag::err_auto_not_allowed) |
| 13019 | << (int)Deduced->getContainedAutoType()->getKeyword() |
| 13020 | << /*in array decl*/ 23 << Range; |
| 13021 | return QualType(); |
| 13022 | } |
| 13023 | |
| 13024 | // C++11 [dcl.spec.auto]p3 |
| 13025 | if (!Init) { |
| 13026 | assert(VDecl && "no init for init capture deduction?" ); |
| 13027 | |
| 13028 | // Except for class argument deduction, and then for an initializing |
| 13029 | // declaration only, i.e. no static at class scope or extern. |
| 13030 | if (!isa<DeducedTemplateSpecializationType>(Val: Deduced) || |
| 13031 | VDecl->hasExternalStorage() || |
| 13032 | VDecl->isStaticDataMember()) { |
| 13033 | Diag(VDecl->getLocation(), diag::err_auto_var_requires_init) |
| 13034 | << VDecl->getDeclName() << Type; |
| 13035 | return QualType(); |
| 13036 | } |
| 13037 | } |
| 13038 | |
| 13039 | ArrayRef<Expr*> DeduceInits; |
| 13040 | if (Init) |
| 13041 | DeduceInits = Init; |
| 13042 | |
| 13043 | auto *PL = dyn_cast_if_present<ParenListExpr>(Val: Init); |
| 13044 | if (DirectInit && PL) |
| 13045 | DeduceInits = PL->exprs(); |
| 13046 | |
| 13047 | if (isa<DeducedTemplateSpecializationType>(Val: Deduced)) { |
| 13048 | assert(VDecl && "non-auto type for init capture deduction?" ); |
| 13049 | InitializedEntity Entity = InitializedEntity::InitializeVariable(Var: VDecl); |
| 13050 | InitializationKind Kind = InitializationKind::CreateForInit( |
| 13051 | Loc: VDecl->getLocation(), DirectInit, Init); |
| 13052 | // FIXME: Initialization should not be taking a mutable list of inits. |
| 13053 | SmallVector<Expr *, 8> InitsCopy(DeduceInits); |
| 13054 | return DeduceTemplateSpecializationFromInitializer(TInfo: TSI, Entity, Kind, |
| 13055 | Init: InitsCopy); |
| 13056 | } |
| 13057 | |
| 13058 | if (DirectInit) { |
| 13059 | if (auto *IL = dyn_cast<InitListExpr>(Val: Init)) |
| 13060 | DeduceInits = IL->inits(); |
| 13061 | } |
| 13062 | |
| 13063 | // Deduction only works if we have exactly one source expression. |
| 13064 | if (DeduceInits.empty()) { |
| 13065 | // It isn't possible to write this directly, but it is possible to |
| 13066 | // end up in this situation with "auto x(some_pack...);" |
| 13067 | Diag(Init->getBeginLoc(), IsInitCapture |
| 13068 | ? diag::err_init_capture_no_expression |
| 13069 | : diag::err_auto_var_init_no_expression) |
| 13070 | << VN << Type << Range; |
| 13071 | return QualType(); |
| 13072 | } |
| 13073 | |
| 13074 | if (DeduceInits.size() > 1) { |
| 13075 | Diag(DeduceInits[1]->getBeginLoc(), |
| 13076 | IsInitCapture ? diag::err_init_capture_multiple_expressions |
| 13077 | : diag::err_auto_var_init_multiple_expressions) |
| 13078 | << VN << Type << Range; |
| 13079 | return QualType(); |
| 13080 | } |
| 13081 | |
| 13082 | Expr *DeduceInit = DeduceInits[0]; |
| 13083 | if (DirectInit && isa<InitListExpr>(Val: DeduceInit)) { |
| 13084 | Diag(Init->getBeginLoc(), IsInitCapture |
| 13085 | ? diag::err_init_capture_paren_braces |
| 13086 | : diag::err_auto_var_init_paren_braces) |
| 13087 | << isa<InitListExpr>(Init) << VN << Type << Range; |
| 13088 | return QualType(); |
| 13089 | } |
| 13090 | |
| 13091 | // Expressions default to 'id' when we're in a debugger. |
| 13092 | bool DefaultedAnyToId = false; |
| 13093 | if (getLangOpts().DebuggerCastResultToId && |
| 13094 | Init->getType() == Context.UnknownAnyTy && !IsInitCapture) { |
| 13095 | ExprResult Result = forceUnknownAnyToType(E: Init, ToType: Context.getObjCIdType()); |
| 13096 | if (Result.isInvalid()) { |
| 13097 | return QualType(); |
| 13098 | } |
| 13099 | Init = Result.get(); |
| 13100 | DefaultedAnyToId = true; |
| 13101 | } |
| 13102 | |
| 13103 | // C++ [dcl.decomp]p1: |
| 13104 | // If the assignment-expression [...] has array type A and no ref-qualifier |
| 13105 | // is present, e has type cv A |
| 13106 | if (VDecl && isa<DecompositionDecl>(Val: VDecl) && |
| 13107 | Context.hasSameUnqualifiedType(T1: Type, T2: Context.getAutoDeductType()) && |
| 13108 | DeduceInit->getType()->isConstantArrayType()) |
| 13109 | return Context.getQualifiedType(T: DeduceInit->getType(), |
| 13110 | Qs: Type.getQualifiers()); |
| 13111 | |
| 13112 | QualType DeducedType; |
| 13113 | TemplateDeductionInfo Info(DeduceInit->getExprLoc()); |
| 13114 | TemplateDeductionResult Result = |
| 13115 | DeduceAutoType(AutoTypeLoc: TSI->getTypeLoc(), Initializer: DeduceInit, Result&: DeducedType, Info); |
| 13116 | if (Result != TemplateDeductionResult::Success && |
| 13117 | Result != TemplateDeductionResult::AlreadyDiagnosed) { |
| 13118 | if (!IsInitCapture) |
| 13119 | DiagnoseAutoDeductionFailure(VDecl, Init: DeduceInit); |
| 13120 | else if (isa<InitListExpr>(Init)) |
| 13121 | Diag(Range.getBegin(), |
| 13122 | diag::err_init_capture_deduction_failure_from_init_list) |
| 13123 | << VN |
| 13124 | << (DeduceInit->getType().isNull() ? TSI->getType() |
| 13125 | : DeduceInit->getType()) |
| 13126 | << DeduceInit->getSourceRange(); |
| 13127 | else |
| 13128 | Diag(Range.getBegin(), diag::err_init_capture_deduction_failure) |
| 13129 | << VN << TSI->getType() |
| 13130 | << (DeduceInit->getType().isNull() ? TSI->getType() |
| 13131 | : DeduceInit->getType()) |
| 13132 | << DeduceInit->getSourceRange(); |
| 13133 | } |
| 13134 | |
| 13135 | // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using |
| 13136 | // 'id' instead of a specific object type prevents most of our usual |
| 13137 | // checks. |
| 13138 | // We only want to warn outside of template instantiations, though: |
| 13139 | // inside a template, the 'id' could have come from a parameter. |
| 13140 | if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture && |
| 13141 | !DeducedType.isNull() && DeducedType->isObjCIdType()) { |
| 13142 | SourceLocation Loc = TSI->getTypeLoc().getBeginLoc(); |
| 13143 | Diag(Loc, diag::warn_auto_var_is_id) << VN << Range; |
| 13144 | } |
| 13145 | |
| 13146 | return DeducedType; |
| 13147 | } |
| 13148 | |
| 13149 | bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit, |
| 13150 | Expr *Init) { |
| 13151 | assert(!Init || !Init->containsErrors()); |
| 13152 | QualType DeducedType = deduceVarTypeFromInitializer( |
| 13153 | VDecl, Name: VDecl->getDeclName(), Type: VDecl->getType(), TSI: VDecl->getTypeSourceInfo(), |
| 13154 | Range: VDecl->getSourceRange(), DirectInit, Init); |
| 13155 | if (DeducedType.isNull()) { |
| 13156 | VDecl->setInvalidDecl(); |
| 13157 | return true; |
| 13158 | } |
| 13159 | |
| 13160 | VDecl->setType(DeducedType); |
| 13161 | assert(VDecl->isLinkageValid()); |
| 13162 | |
| 13163 | // In ARC, infer lifetime. |
| 13164 | if (getLangOpts().ObjCAutoRefCount && ObjC().inferObjCARCLifetime(VDecl)) |
| 13165 | VDecl->setInvalidDecl(); |
| 13166 | |
| 13167 | if (getLangOpts().OpenCL) |
| 13168 | deduceOpenCLAddressSpace(VDecl); |
| 13169 | |
| 13170 | if (getLangOpts().HLSL) |
| 13171 | HLSL().deduceAddressSpace(Decl: VDecl); |
| 13172 | |
| 13173 | // If this is a redeclaration, check that the type we just deduced matches |
| 13174 | // the previously declared type. |
| 13175 | if (VarDecl *Old = VDecl->getPreviousDecl()) { |
| 13176 | // We never need to merge the type, because we cannot form an incomplete |
| 13177 | // array of auto, nor deduce such a type. |
| 13178 | MergeVarDeclTypes(New: VDecl, Old, /*MergeTypeWithPrevious*/ MergeTypeWithOld: false); |
| 13179 | } |
| 13180 | |
| 13181 | // Check the deduced type is valid for a variable declaration. |
| 13182 | CheckVariableDeclarationType(NewVD: VDecl); |
| 13183 | return VDecl->isInvalidDecl(); |
| 13184 | } |
| 13185 | |
| 13186 | void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init, |
| 13187 | SourceLocation Loc) { |
| 13188 | if (auto *EWC = dyn_cast<ExprWithCleanups>(Val: Init)) |
| 13189 | Init = EWC->getSubExpr(); |
| 13190 | |
| 13191 | if (auto *CE = dyn_cast<ConstantExpr>(Val: Init)) |
| 13192 | Init = CE->getSubExpr(); |
| 13193 | |
| 13194 | QualType InitType = Init->getType(); |
| 13195 | assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || |
| 13196 | InitType.hasNonTrivialToPrimitiveCopyCUnion()) && |
| 13197 | "shouldn't be called if type doesn't have a non-trivial C struct" ); |
| 13198 | if (auto *ILE = dyn_cast<InitListExpr>(Val: Init)) { |
| 13199 | for (auto *I : ILE->inits()) { |
| 13200 | if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() && |
| 13201 | !I->getType().hasNonTrivialToPrimitiveCopyCUnion()) |
| 13202 | continue; |
| 13203 | SourceLocation SL = I->getExprLoc(); |
| 13204 | checkNonTrivialCUnionInInitializer(Init: I, Loc: SL.isValid() ? SL : Loc); |
| 13205 | } |
| 13206 | return; |
| 13207 | } |
| 13208 | |
| 13209 | if (isa<ImplicitValueInitExpr>(Val: Init)) { |
| 13210 | if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion()) |
| 13211 | checkNonTrivialCUnion(QT: InitType, Loc, |
| 13212 | UseContext: NonTrivialCUnionContext::DefaultInitializedObject, |
| 13213 | NonTrivialKind: NTCUK_Init); |
| 13214 | } else { |
| 13215 | // Assume all other explicit initializers involving copying some existing |
| 13216 | // object. |
| 13217 | // TODO: ignore any explicit initializers where we can guarantee |
| 13218 | // copy-elision. |
| 13219 | if (InitType.hasNonTrivialToPrimitiveCopyCUnion()) |
| 13220 | checkNonTrivialCUnion(QT: InitType, Loc, UseContext: NonTrivialCUnionContext::CopyInit, |
| 13221 | NonTrivialKind: NTCUK_Copy); |
| 13222 | } |
| 13223 | } |
| 13224 | |
| 13225 | namespace { |
| 13226 | |
| 13227 | bool shouldIgnoreForRecordTriviality(const FieldDecl *FD) { |
| 13228 | // Ignore unavailable fields. A field can be marked as unavailable explicitly |
| 13229 | // in the source code or implicitly by the compiler if it is in a union |
| 13230 | // defined in a system header and has non-trivial ObjC ownership |
| 13231 | // qualifications. We don't want those fields to participate in determining |
| 13232 | // whether the containing union is non-trivial. |
| 13233 | return FD->hasAttr<UnavailableAttr>(); |
| 13234 | } |
| 13235 | |
| 13236 | struct DiagNonTrivalCUnionDefaultInitializeVisitor |
| 13237 | : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor, |
| 13238 | void> { |
| 13239 | using Super = |
| 13240 | DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor, |
| 13241 | void>; |
| 13242 | |
| 13243 | DiagNonTrivalCUnionDefaultInitializeVisitor( |
| 13244 | QualType OrigTy, SourceLocation OrigLoc, |
| 13245 | NonTrivialCUnionContext UseContext, Sema &S) |
| 13246 | : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} |
| 13247 | |
| 13248 | void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT, |
| 13249 | const FieldDecl *FD, bool InNonTrivialUnion) { |
| 13250 | if (const auto *AT = S.Context.getAsArrayType(T: QT)) |
| 13251 | return this->asDerived().visit(S.Context.getBaseElementType(VAT: AT), FD, |
| 13252 | InNonTrivialUnion); |
| 13253 | return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion); |
| 13254 | } |
| 13255 | |
| 13256 | void visitARCStrong(QualType QT, const FieldDecl *FD, |
| 13257 | bool InNonTrivialUnion) { |
| 13258 | if (InNonTrivialUnion) |
| 13259 | S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) |
| 13260 | << 1 << 0 << QT << FD->getName(); |
| 13261 | } |
| 13262 | |
| 13263 | void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { |
| 13264 | if (InNonTrivialUnion) |
| 13265 | S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) |
| 13266 | << 1 << 0 << QT << FD->getName(); |
| 13267 | } |
| 13268 | |
| 13269 | void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { |
| 13270 | const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); |
| 13271 | if (RD->isUnion()) { |
| 13272 | if (OrigLoc.isValid()) { |
| 13273 | bool IsUnion = false; |
| 13274 | if (auto *OrigRD = OrigTy->getAsRecordDecl()) |
| 13275 | IsUnion = OrigRD->isUnion(); |
| 13276 | S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) |
| 13277 | << 0 << OrigTy << IsUnion << UseContext; |
| 13278 | // Reset OrigLoc so that this diagnostic is emitted only once. |
| 13279 | OrigLoc = SourceLocation(); |
| 13280 | } |
| 13281 | InNonTrivialUnion = true; |
| 13282 | } |
| 13283 | |
| 13284 | if (InNonTrivialUnion) |
| 13285 | S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) |
| 13286 | << 0 << 0 << QT.getUnqualifiedType() << "" ; |
| 13287 | |
| 13288 | for (const FieldDecl *FD : RD->fields()) |
| 13289 | if (!shouldIgnoreForRecordTriviality(FD)) |
| 13290 | asDerived().visit(FD->getType(), FD, InNonTrivialUnion); |
| 13291 | } |
| 13292 | |
| 13293 | void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} |
| 13294 | |
| 13295 | // The non-trivial C union type or the struct/union type that contains a |
| 13296 | // non-trivial C union. |
| 13297 | QualType OrigTy; |
| 13298 | SourceLocation OrigLoc; |
| 13299 | NonTrivialCUnionContext UseContext; |
| 13300 | Sema &S; |
| 13301 | }; |
| 13302 | |
| 13303 | struct DiagNonTrivalCUnionDestructedTypeVisitor |
| 13304 | : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> { |
| 13305 | using Super = |
| 13306 | DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>; |
| 13307 | |
| 13308 | DiagNonTrivalCUnionDestructedTypeVisitor(QualType OrigTy, |
| 13309 | SourceLocation OrigLoc, |
| 13310 | NonTrivialCUnionContext UseContext, |
| 13311 | Sema &S) |
| 13312 | : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} |
| 13313 | |
| 13314 | void visitWithKind(QualType::DestructionKind DK, QualType QT, |
| 13315 | const FieldDecl *FD, bool InNonTrivialUnion) { |
| 13316 | if (const auto *AT = S.Context.getAsArrayType(T: QT)) |
| 13317 | return this->asDerived().visit(S.Context.getBaseElementType(VAT: AT), FD, |
| 13318 | InNonTrivialUnion); |
| 13319 | return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion); |
| 13320 | } |
| 13321 | |
| 13322 | void visitARCStrong(QualType QT, const FieldDecl *FD, |
| 13323 | bool InNonTrivialUnion) { |
| 13324 | if (InNonTrivialUnion) |
| 13325 | S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) |
| 13326 | << 1 << 1 << QT << FD->getName(); |
| 13327 | } |
| 13328 | |
| 13329 | void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { |
| 13330 | if (InNonTrivialUnion) |
| 13331 | S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) |
| 13332 | << 1 << 1 << QT << FD->getName(); |
| 13333 | } |
| 13334 | |
| 13335 | void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { |
| 13336 | const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); |
| 13337 | if (RD->isUnion()) { |
| 13338 | if (OrigLoc.isValid()) { |
| 13339 | bool IsUnion = false; |
| 13340 | if (auto *OrigRD = OrigTy->getAsRecordDecl()) |
| 13341 | IsUnion = OrigRD->isUnion(); |
| 13342 | S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) |
| 13343 | << 1 << OrigTy << IsUnion << UseContext; |
| 13344 | // Reset OrigLoc so that this diagnostic is emitted only once. |
| 13345 | OrigLoc = SourceLocation(); |
| 13346 | } |
| 13347 | InNonTrivialUnion = true; |
| 13348 | } |
| 13349 | |
| 13350 | if (InNonTrivialUnion) |
| 13351 | S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) |
| 13352 | << 0 << 1 << QT.getUnqualifiedType() << "" ; |
| 13353 | |
| 13354 | for (const FieldDecl *FD : RD->fields()) |
| 13355 | if (!shouldIgnoreForRecordTriviality(FD)) |
| 13356 | asDerived().visit(FD->getType(), FD, InNonTrivialUnion); |
| 13357 | } |
| 13358 | |
| 13359 | void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} |
| 13360 | void visitCXXDestructor(QualType QT, const FieldDecl *FD, |
| 13361 | bool InNonTrivialUnion) {} |
| 13362 | |
| 13363 | // The non-trivial C union type or the struct/union type that contains a |
| 13364 | // non-trivial C union. |
| 13365 | QualType OrigTy; |
| 13366 | SourceLocation OrigLoc; |
| 13367 | NonTrivialCUnionContext UseContext; |
| 13368 | Sema &S; |
| 13369 | }; |
| 13370 | |
| 13371 | struct DiagNonTrivalCUnionCopyVisitor |
| 13372 | : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> { |
| 13373 | using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>; |
| 13374 | |
| 13375 | DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc, |
| 13376 | NonTrivialCUnionContext UseContext, Sema &S) |
| 13377 | : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} |
| 13378 | |
| 13379 | void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT, |
| 13380 | const FieldDecl *FD, bool InNonTrivialUnion) { |
| 13381 | if (const auto *AT = S.Context.getAsArrayType(T: QT)) |
| 13382 | return this->asDerived().visit(S.Context.getBaseElementType(VAT: AT), FD, |
| 13383 | InNonTrivialUnion); |
| 13384 | return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion); |
| 13385 | } |
| 13386 | |
| 13387 | void visitARCStrong(QualType QT, const FieldDecl *FD, |
| 13388 | bool InNonTrivialUnion) { |
| 13389 | if (InNonTrivialUnion) |
| 13390 | S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) |
| 13391 | << 1 << 2 << QT << FD->getName(); |
| 13392 | } |
| 13393 | |
| 13394 | void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { |
| 13395 | if (InNonTrivialUnion) |
| 13396 | S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) |
| 13397 | << 1 << 2 << QT << FD->getName(); |
| 13398 | } |
| 13399 | |
| 13400 | void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { |
| 13401 | const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); |
| 13402 | if (RD->isUnion()) { |
| 13403 | if (OrigLoc.isValid()) { |
| 13404 | bool IsUnion = false; |
| 13405 | if (auto *OrigRD = OrigTy->getAsRecordDecl()) |
| 13406 | IsUnion = OrigRD->isUnion(); |
| 13407 | S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) |
| 13408 | << 2 << OrigTy << IsUnion << UseContext; |
| 13409 | // Reset OrigLoc so that this diagnostic is emitted only once. |
| 13410 | OrigLoc = SourceLocation(); |
| 13411 | } |
| 13412 | InNonTrivialUnion = true; |
| 13413 | } |
| 13414 | |
| 13415 | if (InNonTrivialUnion) |
| 13416 | S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) |
| 13417 | << 0 << 2 << QT.getUnqualifiedType() << "" ; |
| 13418 | |
| 13419 | for (const FieldDecl *FD : RD->fields()) |
| 13420 | if (!shouldIgnoreForRecordTriviality(FD)) |
| 13421 | asDerived().visit(FD->getType(), FD, InNonTrivialUnion); |
| 13422 | } |
| 13423 | |
| 13424 | void visitPtrAuth(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { |
| 13425 | if (InNonTrivialUnion) |
| 13426 | S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) |
| 13427 | << 1 << 2 << QT << FD->getName(); |
| 13428 | } |
| 13429 | |
| 13430 | void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT, |
| 13431 | const FieldDecl *FD, bool InNonTrivialUnion) {} |
| 13432 | void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} |
| 13433 | void visitVolatileTrivial(QualType QT, const FieldDecl *FD, |
| 13434 | bool InNonTrivialUnion) {} |
| 13435 | |
| 13436 | // The non-trivial C union type or the struct/union type that contains a |
| 13437 | // non-trivial C union. |
| 13438 | QualType OrigTy; |
| 13439 | SourceLocation OrigLoc; |
| 13440 | NonTrivialCUnionContext UseContext; |
| 13441 | Sema &S; |
| 13442 | }; |
| 13443 | |
| 13444 | } // namespace |
| 13445 | |
| 13446 | void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc, |
| 13447 | NonTrivialCUnionContext UseContext, |
| 13448 | unsigned NonTrivialKind) { |
| 13449 | assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || |
| 13450 | QT.hasNonTrivialToPrimitiveDestructCUnion() || |
| 13451 | QT.hasNonTrivialToPrimitiveCopyCUnion()) && |
| 13452 | "shouldn't be called if type doesn't have a non-trivial C union" ); |
| 13453 | |
| 13454 | if ((NonTrivialKind & NTCUK_Init) && |
| 13455 | QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion()) |
| 13456 | DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this) |
| 13457 | .visit(QT, nullptr, false); |
| 13458 | if ((NonTrivialKind & NTCUK_Destruct) && |
| 13459 | QT.hasNonTrivialToPrimitiveDestructCUnion()) |
| 13460 | DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this) |
| 13461 | .visit(QT, nullptr, false); |
| 13462 | if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion()) |
| 13463 | DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this) |
| 13464 | .visit(QT, nullptr, false); |
| 13465 | } |
| 13466 | |
| 13467 | bool Sema::GloballyUniqueObjectMightBeAccidentallyDuplicated( |
| 13468 | const VarDecl *Dcl) { |
| 13469 | if (!getLangOpts().CPlusPlus) |
| 13470 | return false; |
| 13471 | |
| 13472 | // We only need to warn if the definition is in a header file, so wait to |
| 13473 | // diagnose until we've seen the definition. |
| 13474 | if (!Dcl->isThisDeclarationADefinition()) |
| 13475 | return false; |
| 13476 | |
| 13477 | // If an object is defined in a source file, its definition can't get |
| 13478 | // duplicated since it will never appear in more than one TU. |
| 13479 | if (Dcl->getASTContext().getSourceManager().isInMainFile(Dcl->getLocation())) |
| 13480 | return false; |
| 13481 | |
| 13482 | // If the variable we're looking at is a static local, then we actually care |
| 13483 | // about the properties of the function containing it. |
| 13484 | const ValueDecl *Target = Dcl; |
| 13485 | // VarDecls and FunctionDecls have different functions for checking |
| 13486 | // inline-ness, and whether they were originally templated, so we have to |
| 13487 | // call the appropriate functions manually. |
| 13488 | bool TargetIsInline = Dcl->isInline(); |
| 13489 | bool TargetWasTemplated = |
| 13490 | Dcl->getTemplateSpecializationKind() != TSK_Undeclared; |
| 13491 | |
| 13492 | // Update the Target and TargetIsInline property if necessary |
| 13493 | if (Dcl->isStaticLocal()) { |
| 13494 | const DeclContext *Ctx = Dcl->getDeclContext(); |
| 13495 | if (!Ctx) |
| 13496 | return false; |
| 13497 | |
| 13498 | const FunctionDecl *FunDcl = |
| 13499 | dyn_cast_if_present<FunctionDecl>(Val: Ctx->getNonClosureAncestor()); |
| 13500 | if (!FunDcl) |
| 13501 | return false; |
| 13502 | |
| 13503 | Target = FunDcl; |
| 13504 | // IsInlined() checks for the C++ inline property |
| 13505 | TargetIsInline = FunDcl->isInlined(); |
| 13506 | TargetWasTemplated = |
| 13507 | FunDcl->getTemplateSpecializationKind() != TSK_Undeclared; |
| 13508 | } |
| 13509 | |
| 13510 | // Non-inline functions/variables can only legally appear in one TU |
| 13511 | // unless they were part of a template. Unfortunately, making complex |
| 13512 | // template instantiations visible is infeasible in practice, since |
| 13513 | // everything the template depends on also has to be visible. To avoid |
| 13514 | // giving impractical-to-fix warnings, don't warn if we're inside |
| 13515 | // something that was templated, even on inline stuff. |
| 13516 | if (!TargetIsInline || TargetWasTemplated) |
| 13517 | return false; |
| 13518 | |
| 13519 | // If the object isn't hidden, the dynamic linker will prevent duplication. |
| 13520 | clang::LinkageInfo Lnk = Target->getLinkageAndVisibility(); |
| 13521 | if (Lnk.getVisibility() != HiddenVisibility) |
| 13522 | return false; |
| 13523 | |
| 13524 | // If the obj doesn't have external linkage, it's supposed to be duplicated. |
| 13525 | if (!isExternalFormalLinkage(L: Lnk.getLinkage())) |
| 13526 | return false; |
| 13527 | |
| 13528 | return true; |
| 13529 | } |
| 13530 | |
| 13531 | // Determine whether the object seems mutable for the purpose of diagnosing |
| 13532 | // possible unique object duplication, i.e. non-const-qualified, and |
| 13533 | // not an always-constant type like a function. |
| 13534 | // Not perfect: doesn't account for mutable members, for example, or |
| 13535 | // elements of container types. |
| 13536 | // For nested pointers, any individual level being non-const is sufficient. |
| 13537 | static bool looksMutable(QualType T, const ASTContext &Ctx) { |
| 13538 | T = T.getNonReferenceType(); |
| 13539 | if (T->isFunctionType()) |
| 13540 | return false; |
| 13541 | if (!T.isConstant(Ctx)) |
| 13542 | return true; |
| 13543 | if (T->isPointerType()) |
| 13544 | return looksMutable(T: T->getPointeeType(), Ctx); |
| 13545 | return false; |
| 13546 | } |
| 13547 | |
| 13548 | void Sema::DiagnoseUniqueObjectDuplication(const VarDecl *VD) { |
| 13549 | // If this object has external linkage and hidden visibility, it might be |
| 13550 | // duplicated when built into a shared library, which causes problems if it's |
| 13551 | // mutable (since the copies won't be in sync) or its initialization has side |
| 13552 | // effects (since it will run once per copy instead of once globally). |
| 13553 | // FIXME: Windows uses dllexport/dllimport instead of visibility, and we don't |
| 13554 | // handle that yet. Disable the warning on Windows for now. |
| 13555 | |
| 13556 | // Don't diagnose if we're inside a template, because it's not practical to |
| 13557 | // fix the warning in most cases. |
| 13558 | if (!Context.getTargetInfo().shouldDLLImportComdatSymbols() && |
| 13559 | !VD->isTemplated() && |
| 13560 | GloballyUniqueObjectMightBeAccidentallyDuplicated(Dcl: VD)) { |
| 13561 | |
| 13562 | QualType Type = VD->getType(); |
| 13563 | if (looksMutable(Type, VD->getASTContext())) { |
| 13564 | Diag(VD->getLocation(), diag::warn_possible_object_duplication_mutable) |
| 13565 | << VD; |
| 13566 | } |
| 13567 | |
| 13568 | // To keep false positives low, only warn if we're certain that the |
| 13569 | // initializer has side effects. Don't warn on operator new, since a mutable |
| 13570 | // pointer will trigger the previous warning, and an immutable pointer |
| 13571 | // getting duplicated just results in a little extra memory usage. |
| 13572 | const Expr *Init = VD->getAnyInitializer(); |
| 13573 | if (Init && |
| 13574 | Init->HasSideEffects(Ctx: VD->getASTContext(), |
| 13575 | /*IncludePossibleEffects=*/false) && |
| 13576 | !isa<CXXNewExpr>(Val: Init->IgnoreParenImpCasts())) { |
| 13577 | Diag(Init->getExprLoc(), diag::warn_possible_object_duplication_init) |
| 13578 | << VD; |
| 13579 | } |
| 13580 | } |
| 13581 | } |
| 13582 | |
| 13583 | void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) { |
| 13584 | // If there is no declaration, there was an error parsing it. Just ignore |
| 13585 | // the initializer. |
| 13586 | if (!RealDecl) { |
| 13587 | CorrectDelayedTyposInExpr(E: Init, InitDecl: dyn_cast_or_null<VarDecl>(Val: RealDecl)); |
| 13588 | return; |
| 13589 | } |
| 13590 | |
| 13591 | if (auto *Method = dyn_cast<CXXMethodDecl>(Val: RealDecl)) { |
| 13592 | if (!Method->isInvalidDecl()) { |
| 13593 | // Pure-specifiers are handled in ActOnPureSpecifier. |
| 13594 | Diag(Method->getLocation(), diag::err_member_function_initialization) |
| 13595 | << Method->getDeclName() << Init->getSourceRange(); |
| 13596 | Method->setInvalidDecl(); |
| 13597 | } |
| 13598 | return; |
| 13599 | } |
| 13600 | |
| 13601 | VarDecl *VDecl = dyn_cast<VarDecl>(Val: RealDecl); |
| 13602 | if (!VDecl) { |
| 13603 | assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here" ); |
| 13604 | Diag(RealDecl->getLocation(), diag::err_illegal_initializer); |
| 13605 | RealDecl->setInvalidDecl(); |
| 13606 | return; |
| 13607 | } |
| 13608 | |
| 13609 | if (VDecl->isInvalidDecl()) { |
| 13610 | ExprResult Res = CorrectDelayedTyposInExpr(E: Init, InitDecl: VDecl); |
| 13611 | SmallVector<Expr *> SubExprs; |
| 13612 | if (Res.isUsable()) |
| 13613 | SubExprs.push_back(Elt: Res.get()); |
| 13614 | ExprResult Recovery = |
| 13615 | CreateRecoveryExpr(Begin: Init->getBeginLoc(), End: Init->getEndLoc(), SubExprs); |
| 13616 | if (Expr *E = Recovery.get()) |
| 13617 | VDecl->setInit(E); |
| 13618 | return; |
| 13619 | } |
| 13620 | |
| 13621 | // WebAssembly tables can't be used to initialise a variable. |
| 13622 | if (!Init->getType().isNull() && Init->getType()->isWebAssemblyTableType()) { |
| 13623 | Diag(Init->getExprLoc(), diag::err_wasm_table_art) << 0; |
| 13624 | VDecl->setInvalidDecl(); |
| 13625 | return; |
| 13626 | } |
| 13627 | |
| 13628 | // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for. |
| 13629 | if (VDecl->getType()->isUndeducedType()) { |
| 13630 | // Attempt typo correction early so that the type of the init expression can |
| 13631 | // be deduced based on the chosen correction if the original init contains a |
| 13632 | // TypoExpr. |
| 13633 | ExprResult Res = CorrectDelayedTyposInExpr(E: Init, InitDecl: VDecl); |
| 13634 | if (!Res.isUsable()) { |
| 13635 | // There are unresolved typos in Init, just drop them. |
| 13636 | // FIXME: improve the recovery strategy to preserve the Init. |
| 13637 | RealDecl->setInvalidDecl(); |
| 13638 | return; |
| 13639 | } |
| 13640 | if (Res.get()->containsErrors()) { |
| 13641 | // Invalidate the decl as we don't know the type for recovery-expr yet. |
| 13642 | RealDecl->setInvalidDecl(); |
| 13643 | VDecl->setInit(Res.get()); |
| 13644 | return; |
| 13645 | } |
| 13646 | Init = Res.get(); |
| 13647 | |
| 13648 | if (DeduceVariableDeclarationType(VDecl, DirectInit, Init)) |
| 13649 | return; |
| 13650 | } |
| 13651 | |
| 13652 | // dllimport cannot be used on variable definitions. |
| 13653 | if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) { |
| 13654 | Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition); |
| 13655 | VDecl->setInvalidDecl(); |
| 13656 | return; |
| 13657 | } |
| 13658 | |
| 13659 | // C99 6.7.8p5. If the declaration of an identifier has block scope, and |
| 13660 | // the identifier has external or internal linkage, the declaration shall |
| 13661 | // have no initializer for the identifier. |
| 13662 | // C++14 [dcl.init]p5 is the same restriction for C++. |
| 13663 | if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) { |
| 13664 | Diag(VDecl->getLocation(), diag::err_block_extern_cant_init); |
| 13665 | VDecl->setInvalidDecl(); |
| 13666 | return; |
| 13667 | } |
| 13668 | |
| 13669 | if (!VDecl->getType()->isDependentType()) { |
| 13670 | // A definition must end up with a complete type, which means it must be |
| 13671 | // complete with the restriction that an array type might be completed by |
| 13672 | // the initializer; note that later code assumes this restriction. |
| 13673 | QualType BaseDeclType = VDecl->getType(); |
| 13674 | if (const ArrayType *Array = Context.getAsIncompleteArrayType(T: BaseDeclType)) |
| 13675 | BaseDeclType = Array->getElementType(); |
| 13676 | if (RequireCompleteType(VDecl->getLocation(), BaseDeclType, |
| 13677 | diag::err_typecheck_decl_incomplete_type)) { |
| 13678 | RealDecl->setInvalidDecl(); |
| 13679 | return; |
| 13680 | } |
| 13681 | |
| 13682 | // The variable can not have an abstract class type. |
| 13683 | if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(), |
| 13684 | diag::err_abstract_type_in_decl, |
| 13685 | AbstractVariableType)) |
| 13686 | VDecl->setInvalidDecl(); |
| 13687 | } |
| 13688 | |
| 13689 | // C++ [module.import/6] external definitions are not permitted in header |
| 13690 | // units. |
| 13691 | if (getLangOpts().CPlusPlusModules && currentModuleIsHeaderUnit() && |
| 13692 | !VDecl->isInvalidDecl() && VDecl->isThisDeclarationADefinition() && |
| 13693 | VDecl->getFormalLinkage() == Linkage::External && !VDecl->isInline() && |
| 13694 | !VDecl->isTemplated() && !isa<VarTemplateSpecializationDecl>(Val: VDecl) && |
| 13695 | !VDecl->getInstantiatedFromStaticDataMember()) { |
| 13696 | Diag(VDecl->getLocation(), diag::err_extern_def_in_header_unit); |
| 13697 | VDecl->setInvalidDecl(); |
| 13698 | } |
| 13699 | |
| 13700 | // If adding the initializer will turn this declaration into a definition, |
| 13701 | // and we already have a definition for this variable, diagnose or otherwise |
| 13702 | // handle the situation. |
| 13703 | if (VarDecl *Def = VDecl->getDefinition()) |
| 13704 | if (Def != VDecl && |
| 13705 | (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) && |
| 13706 | !VDecl->isThisDeclarationADemotedDefinition() && |
| 13707 | checkVarDeclRedefinition(Old: Def, New: VDecl)) |
| 13708 | return; |
| 13709 | |
| 13710 | if (getLangOpts().CPlusPlus) { |
| 13711 | // C++ [class.static.data]p4 |
| 13712 | // If a static data member is of const integral or const |
| 13713 | // enumeration type, its declaration in the class definition can |
| 13714 | // specify a constant-initializer which shall be an integral |
| 13715 | // constant expression (5.19). In that case, the member can appear |
| 13716 | // in integral constant expressions. The member shall still be |
| 13717 | // defined in a namespace scope if it is used in the program and the |
| 13718 | // namespace scope definition shall not contain an initializer. |
| 13719 | // |
| 13720 | // We already performed a redefinition check above, but for static |
| 13721 | // data members we also need to check whether there was an in-class |
| 13722 | // declaration with an initializer. |
| 13723 | if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) { |
| 13724 | Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization) |
| 13725 | << VDecl->getDeclName(); |
| 13726 | Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(), |
| 13727 | diag::note_previous_initializer) |
| 13728 | << 0; |
| 13729 | return; |
| 13730 | } |
| 13731 | |
| 13732 | if (DiagnoseUnexpandedParameterPack(E: Init, UPPC: UPPC_Initializer)) { |
| 13733 | VDecl->setInvalidDecl(); |
| 13734 | return; |
| 13735 | } |
| 13736 | } |
| 13737 | |
| 13738 | // If the variable has an initializer and local storage, check whether |
| 13739 | // anything jumps over the initialization. |
| 13740 | if (VDecl->hasLocalStorage()) |
| 13741 | setFunctionHasBranchProtectedScope(); |
| 13742 | |
| 13743 | // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside |
| 13744 | // a kernel function cannot be initialized." |
| 13745 | if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) { |
| 13746 | Diag(VDecl->getLocation(), diag::err_local_cant_init); |
| 13747 | VDecl->setInvalidDecl(); |
| 13748 | return; |
| 13749 | } |
| 13750 | |
| 13751 | // The LoaderUninitialized attribute acts as a definition (of undef). |
| 13752 | if (VDecl->hasAttr<LoaderUninitializedAttr>()) { |
| 13753 | Diag(VDecl->getLocation(), diag::err_loader_uninitialized_cant_init); |
| 13754 | VDecl->setInvalidDecl(); |
| 13755 | return; |
| 13756 | } |
| 13757 | |
| 13758 | // Get the decls type and save a reference for later, since |
| 13759 | // CheckInitializerTypes may change it. |
| 13760 | QualType DclT = VDecl->getType(), SavT = DclT; |
| 13761 | |
| 13762 | // Expressions default to 'id' when we're in a debugger |
| 13763 | // and we are assigning it to a variable of Objective-C pointer type. |
| 13764 | if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() && |
| 13765 | Init->getType() == Context.UnknownAnyTy) { |
| 13766 | ExprResult Result = forceUnknownAnyToType(E: Init, ToType: Context.getObjCIdType()); |
| 13767 | if (!Result.isUsable()) { |
| 13768 | VDecl->setInvalidDecl(); |
| 13769 | return; |
| 13770 | } |
| 13771 | Init = Result.get(); |
| 13772 | } |
| 13773 | |
| 13774 | // Perform the initialization. |
| 13775 | bool InitializedFromParenListExpr = false; |
| 13776 | bool IsParenListInit = false; |
| 13777 | if (!VDecl->isInvalidDecl()) { |
| 13778 | InitializedEntity Entity = InitializedEntity::InitializeVariable(Var: VDecl); |
| 13779 | InitializationKind Kind = InitializationKind::CreateForInit( |
| 13780 | Loc: VDecl->getLocation(), DirectInit, Init); |
| 13781 | |
| 13782 | MultiExprArg Args = Init; |
| 13783 | if (auto *CXXDirectInit = dyn_cast<ParenListExpr>(Val: Init)) { |
| 13784 | Args = |
| 13785 | MultiExprArg(CXXDirectInit->getExprs(), CXXDirectInit->getNumExprs()); |
| 13786 | InitializedFromParenListExpr = true; |
| 13787 | } else if (auto *CXXDirectInit = dyn_cast<CXXParenListInitExpr>(Val: Init)) { |
| 13788 | Args = CXXDirectInit->getInitExprs(); |
| 13789 | InitializedFromParenListExpr = true; |
| 13790 | } |
| 13791 | |
| 13792 | // Try to correct any TypoExprs in the initialization arguments. |
| 13793 | for (size_t Idx = 0; Idx < Args.size(); ++Idx) { |
| 13794 | ExprResult Res = CorrectDelayedTyposInExpr( |
| 13795 | Args[Idx], VDecl, /*RecoverUncorrectedTypos=*/true, |
| 13796 | [this, Entity, Kind](Expr *E) { |
| 13797 | InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E)); |
| 13798 | return Init.Failed() ? ExprError() : E; |
| 13799 | }); |
| 13800 | if (!Res.isUsable()) { |
| 13801 | VDecl->setInvalidDecl(); |
| 13802 | } else if (Res.get() != Args[Idx]) { |
| 13803 | Args[Idx] = Res.get(); |
| 13804 | } |
| 13805 | } |
| 13806 | if (VDecl->isInvalidDecl()) |
| 13807 | return; |
| 13808 | |
| 13809 | InitializationSequence InitSeq(*this, Entity, Kind, Args, |
| 13810 | /*TopLevelOfInitList=*/false, |
| 13811 | /*TreatUnavailableAsInvalid=*/false); |
| 13812 | ExprResult Result = InitSeq.Perform(S&: *this, Entity, Kind, Args, ResultType: &DclT); |
| 13813 | if (!Result.isUsable()) { |
| 13814 | // If the provided initializer fails to initialize the var decl, |
| 13815 | // we attach a recovery expr for better recovery. |
| 13816 | auto RecoveryExpr = |
| 13817 | CreateRecoveryExpr(Begin: Init->getBeginLoc(), End: Init->getEndLoc(), SubExprs: Args); |
| 13818 | if (RecoveryExpr.get()) |
| 13819 | VDecl->setInit(RecoveryExpr.get()); |
| 13820 | // In general, for error recovery purposes, the initializer doesn't play |
| 13821 | // part in the valid bit of the declaration. There are a few exceptions: |
| 13822 | // 1) if the var decl has a deduced auto type, and the type cannot be |
| 13823 | // deduced by an invalid initializer; |
| 13824 | // 2) if the var decl is a decomposition decl with a non-deduced type, |
| 13825 | // and the initialization fails (e.g. `int [a] = {1, 2};`); |
| 13826 | // Case 1) was already handled elsewhere. |
| 13827 | if (isa<DecompositionDecl>(Val: VDecl)) // Case 2) |
| 13828 | VDecl->setInvalidDecl(); |
| 13829 | return; |
| 13830 | } |
| 13831 | |
| 13832 | Init = Result.getAs<Expr>(); |
| 13833 | IsParenListInit = !InitSeq.steps().empty() && |
| 13834 | InitSeq.step_begin()->Kind == |
| 13835 | InitializationSequence::SK_ParenthesizedListInit; |
| 13836 | QualType VDeclType = VDecl->getType(); |
| 13837 | if (!Init->getType().isNull() && !Init->getType()->isDependentType() && |
| 13838 | !VDeclType->isDependentType() && |
| 13839 | Context.getAsIncompleteArrayType(T: VDeclType) && |
| 13840 | Context.getAsIncompleteArrayType(T: Init->getType())) { |
| 13841 | // Bail out if it is not possible to deduce array size from the |
| 13842 | // initializer. |
| 13843 | Diag(VDecl->getLocation(), diag::err_typecheck_decl_incomplete_type) |
| 13844 | << VDeclType; |
| 13845 | VDecl->setInvalidDecl(); |
| 13846 | return; |
| 13847 | } |
| 13848 | } |
| 13849 | |
| 13850 | // Check for self-references within variable initializers. |
| 13851 | // Variables declared within a function/method body (except for references) |
| 13852 | // are handled by a dataflow analysis. |
| 13853 | // This is undefined behavior in C++, but valid in C. |
| 13854 | if (getLangOpts().CPlusPlus) |
| 13855 | if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() || |
| 13856 | VDecl->getType()->isReferenceType()) |
| 13857 | CheckSelfReference(S&: *this, OrigDecl: RealDecl, E: Init, DirectInit); |
| 13858 | |
| 13859 | // If the type changed, it means we had an incomplete type that was |
| 13860 | // completed by the initializer. For example: |
| 13861 | // int ary[] = { 1, 3, 5 }; |
| 13862 | // "ary" transitions from an IncompleteArrayType to a ConstantArrayType. |
| 13863 | if (!VDecl->isInvalidDecl() && (DclT != SavT)) |
| 13864 | VDecl->setType(DclT); |
| 13865 | |
| 13866 | if (!VDecl->isInvalidDecl()) { |
| 13867 | checkUnsafeAssigns(Loc: VDecl->getLocation(), LHS: VDecl->getType(), RHS: Init); |
| 13868 | |
| 13869 | if (VDecl->hasAttr<BlocksAttr>()) |
| 13870 | ObjC().checkRetainCycles(Var: VDecl, Init); |
| 13871 | |
| 13872 | // It is safe to assign a weak reference into a strong variable. |
| 13873 | // Although this code can still have problems: |
| 13874 | // id x = self.weakProp; |
| 13875 | // id y = self.weakProp; |
| 13876 | // we do not warn to warn spuriously when 'x' and 'y' are on separate |
| 13877 | // paths through the function. This should be revisited if |
| 13878 | // -Wrepeated-use-of-weak is made flow-sensitive. |
| 13879 | if (FunctionScopeInfo *FSI = getCurFunction()) |
| 13880 | if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong || |
| 13881 | VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) && |
| 13882 | !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, |
| 13883 | Init->getBeginLoc())) |
| 13884 | FSI->markSafeWeakUse(E: Init); |
| 13885 | } |
| 13886 | |
| 13887 | // The initialization is usually a full-expression. |
| 13888 | // |
| 13889 | // FIXME: If this is a braced initialization of an aggregate, it is not |
| 13890 | // an expression, and each individual field initializer is a separate |
| 13891 | // full-expression. For instance, in: |
| 13892 | // |
| 13893 | // struct Temp { ~Temp(); }; |
| 13894 | // struct S { S(Temp); }; |
| 13895 | // struct T { S a, b; } t = { Temp(), Temp() } |
| 13896 | // |
| 13897 | // we should destroy the first Temp before constructing the second. |
| 13898 | ExprResult Result = |
| 13899 | ActOnFinishFullExpr(Init, VDecl->getLocation(), |
| 13900 | /*DiscardedValue*/ false, VDecl->isConstexpr()); |
| 13901 | if (!Result.isUsable()) { |
| 13902 | VDecl->setInvalidDecl(); |
| 13903 | return; |
| 13904 | } |
| 13905 | Init = Result.get(); |
| 13906 | |
| 13907 | // Attach the initializer to the decl. |
| 13908 | VDecl->setInit(Init); |
| 13909 | |
| 13910 | if (VDecl->isLocalVarDecl()) { |
| 13911 | // Don't check the initializer if the declaration is malformed. |
| 13912 | if (VDecl->isInvalidDecl()) { |
| 13913 | // do nothing |
| 13914 | |
| 13915 | // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized. |
| 13916 | // This is true even in C++ for OpenCL. |
| 13917 | } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) { |
| 13918 | CheckForConstantInitializer(Init); |
| 13919 | |
| 13920 | // Otherwise, C++ does not restrict the initializer. |
| 13921 | } else if (getLangOpts().CPlusPlus) { |
| 13922 | // do nothing |
| 13923 | |
| 13924 | // C99 6.7.8p4: All the expressions in an initializer for an object that has |
| 13925 | // static storage duration shall be constant expressions or string literals. |
| 13926 | } else if (VDecl->getStorageClass() == SC_Static) { |
| 13927 | CheckForConstantInitializer(Init); |
| 13928 | |
| 13929 | // C89 is stricter than C99 for aggregate initializers. |
| 13930 | // C89 6.5.7p3: All the expressions [...] in an initializer list |
| 13931 | // for an object that has aggregate or union type shall be |
| 13932 | // constant expressions. |
| 13933 | } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() && |
| 13934 | isa<InitListExpr>(Val: Init)) { |
| 13935 | CheckForConstantInitializer(Init, diag::ext_aggregate_init_not_constant); |
| 13936 | } |
| 13937 | |
| 13938 | if (auto *E = dyn_cast<ExprWithCleanups>(Val: Init)) |
| 13939 | if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens())) |
| 13940 | if (VDecl->hasLocalStorage()) |
| 13941 | BE->getBlockDecl()->setCanAvoidCopyToHeap(); |
| 13942 | } else if (VDecl->isStaticDataMember() && !VDecl->isInline() && |
| 13943 | VDecl->getLexicalDeclContext()->isRecord()) { |
| 13944 | // This is an in-class initialization for a static data member, e.g., |
| 13945 | // |
| 13946 | // struct S { |
| 13947 | // static const int value = 17; |
| 13948 | // }; |
| 13949 | |
| 13950 | // C++ [class.mem]p4: |
| 13951 | // A member-declarator can contain a constant-initializer only |
| 13952 | // if it declares a static member (9.4) of const integral or |
| 13953 | // const enumeration type, see 9.4.2. |
| 13954 | // |
| 13955 | // C++11 [class.static.data]p3: |
| 13956 | // If a non-volatile non-inline const static data member is of integral |
| 13957 | // or enumeration type, its declaration in the class definition can |
| 13958 | // specify a brace-or-equal-initializer in which every initializer-clause |
| 13959 | // that is an assignment-expression is a constant expression. A static |
| 13960 | // data member of literal type can be declared in the class definition |
| 13961 | // with the constexpr specifier; if so, its declaration shall specify a |
| 13962 | // brace-or-equal-initializer in which every initializer-clause that is |
| 13963 | // an assignment-expression is a constant expression. |
| 13964 | |
| 13965 | // Do nothing on dependent types. |
| 13966 | if (DclT->isDependentType()) { |
| 13967 | |
| 13968 | // Allow any 'static constexpr' members, whether or not they are of literal |
| 13969 | // type. We separately check that every constexpr variable is of literal |
| 13970 | // type. |
| 13971 | } else if (VDecl->isConstexpr()) { |
| 13972 | |
| 13973 | // Require constness. |
| 13974 | } else if (!DclT.isConstQualified()) { |
| 13975 | Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const) |
| 13976 | << Init->getSourceRange(); |
| 13977 | VDecl->setInvalidDecl(); |
| 13978 | |
| 13979 | // We allow integer constant expressions in all cases. |
| 13980 | } else if (DclT->isIntegralOrEnumerationType()) { |
| 13981 | // Check whether the expression is a constant expression. |
| 13982 | SourceLocation Loc; |
| 13983 | if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified()) |
| 13984 | // In C++11, a non-constexpr const static data member with an |
| 13985 | // in-class initializer cannot be volatile. |
| 13986 | Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile); |
| 13987 | else if (Init->isValueDependent()) |
| 13988 | ; // Nothing to check. |
| 13989 | else if (Init->isIntegerConstantExpr(Ctx: Context, Loc: &Loc)) |
| 13990 | ; // Ok, it's an ICE! |
| 13991 | else if (Init->getType()->isScopedEnumeralType() && |
| 13992 | Init->isCXX11ConstantExpr(Ctx: Context)) |
| 13993 | ; // Ok, it is a scoped-enum constant expression. |
| 13994 | else if (Init->isEvaluatable(Ctx: Context)) { |
| 13995 | // If we can constant fold the initializer through heroics, accept it, |
| 13996 | // but report this as a use of an extension for -pedantic. |
| 13997 | Diag(Loc, diag::ext_in_class_initializer_non_constant) |
| 13998 | << Init->getSourceRange(); |
| 13999 | } else { |
| 14000 | // Otherwise, this is some crazy unknown case. Report the issue at the |
| 14001 | // location provided by the isIntegerConstantExpr failed check. |
| 14002 | Diag(Loc, diag::err_in_class_initializer_non_constant) |
| 14003 | << Init->getSourceRange(); |
| 14004 | VDecl->setInvalidDecl(); |
| 14005 | } |
| 14006 | |
| 14007 | // We allow foldable floating-point constants as an extension. |
| 14008 | } else if (DclT->isFloatingType()) { // also permits complex, which is ok |
| 14009 | // In C++98, this is a GNU extension. In C++11, it is not, but we support |
| 14010 | // it anyway and provide a fixit to add the 'constexpr'. |
| 14011 | if (getLangOpts().CPlusPlus11) { |
| 14012 | Diag(VDecl->getLocation(), |
| 14013 | diag::ext_in_class_initializer_float_type_cxx11) |
| 14014 | << DclT << Init->getSourceRange(); |
| 14015 | Diag(VDecl->getBeginLoc(), |
| 14016 | diag::note_in_class_initializer_float_type_cxx11) |
| 14017 | << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr " ); |
| 14018 | } else { |
| 14019 | Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type) |
| 14020 | << DclT << Init->getSourceRange(); |
| 14021 | |
| 14022 | if (!Init->isValueDependent() && !Init->isEvaluatable(Ctx: Context)) { |
| 14023 | Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant) |
| 14024 | << Init->getSourceRange(); |
| 14025 | VDecl->setInvalidDecl(); |
| 14026 | } |
| 14027 | } |
| 14028 | |
| 14029 | // Suggest adding 'constexpr' in C++11 for literal types. |
| 14030 | } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Ctx: Context)) { |
| 14031 | Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type) |
| 14032 | << DclT << Init->getSourceRange() |
| 14033 | << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr " ); |
| 14034 | VDecl->setConstexpr(true); |
| 14035 | |
| 14036 | } else { |
| 14037 | Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type) |
| 14038 | << DclT << Init->getSourceRange(); |
| 14039 | VDecl->setInvalidDecl(); |
| 14040 | } |
| 14041 | } else if (VDecl->isFileVarDecl()) { |
| 14042 | // In C, extern is typically used to avoid tentative definitions when |
| 14043 | // declaring variables in headers, but adding an initializer makes it a |
| 14044 | // definition. This is somewhat confusing, so GCC and Clang both warn on it. |
| 14045 | // In C++, extern is often used to give implicitly static const variables |
| 14046 | // external linkage, so don't warn in that case. If selectany is present, |
| 14047 | // this might be header code intended for C and C++ inclusion, so apply the |
| 14048 | // C++ rules. |
| 14049 | if (VDecl->getStorageClass() == SC_Extern && |
| 14050 | ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) || |
| 14051 | !Context.getBaseElementType(VDecl->getType()).isConstQualified()) && |
| 14052 | !(getLangOpts().CPlusPlus && VDecl->isExternC()) && |
| 14053 | !isTemplateInstantiation(VDecl->getTemplateSpecializationKind())) |
| 14054 | Diag(VDecl->getLocation(), diag::warn_extern_init); |
| 14055 | |
| 14056 | // In Microsoft C++ mode, a const variable defined in namespace scope has |
| 14057 | // external linkage by default if the variable is declared with |
| 14058 | // __declspec(dllexport). |
| 14059 | if (Context.getTargetInfo().getCXXABI().isMicrosoft() && |
| 14060 | getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() && |
| 14061 | VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition()) |
| 14062 | VDecl->setStorageClass(SC_Extern); |
| 14063 | |
| 14064 | // C99 6.7.8p4. All file scoped initializers need to be constant. |
| 14065 | // Avoid duplicate diagnostics for constexpr variables. |
| 14066 | if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() && |
| 14067 | !VDecl->isConstexpr()) |
| 14068 | CheckForConstantInitializer(Init); |
| 14069 | } |
| 14070 | |
| 14071 | QualType InitType = Init->getType(); |
| 14072 | if (!InitType.isNull() && |
| 14073 | (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || |
| 14074 | InitType.hasNonTrivialToPrimitiveCopyCUnion())) |
| 14075 | checkNonTrivialCUnionInInitializer(Init, Loc: Init->getExprLoc()); |
| 14076 | |
| 14077 | // We will represent direct-initialization similarly to copy-initialization: |
| 14078 | // int x(1); -as-> int x = 1; |
| 14079 | // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c); |
| 14080 | // |
| 14081 | // Clients that want to distinguish between the two forms, can check for |
| 14082 | // direct initializer using VarDecl::getInitStyle(). |
| 14083 | // A major benefit is that clients that don't particularly care about which |
| 14084 | // exactly form was it (like the CodeGen) can handle both cases without |
| 14085 | // special case code. |
| 14086 | |
| 14087 | // C++ 8.5p11: |
| 14088 | // The form of initialization (using parentheses or '=') matters |
| 14089 | // when the entity being initialized has class type. |
| 14090 | if (InitializedFromParenListExpr) { |
| 14091 | assert(DirectInit && "Call-style initializer must be direct init." ); |
| 14092 | VDecl->setInitStyle(IsParenListInit ? VarDecl::ParenListInit |
| 14093 | : VarDecl::CallInit); |
| 14094 | } else if (DirectInit) { |
| 14095 | // This must be list-initialization. No other way is direct-initialization. |
| 14096 | VDecl->setInitStyle(VarDecl::ListInit); |
| 14097 | } |
| 14098 | |
| 14099 | if (LangOpts.OpenMP && |
| 14100 | (LangOpts.OpenMPIsTargetDevice || !LangOpts.OMPTargetTriples.empty()) && |
| 14101 | VDecl->isFileVarDecl()) |
| 14102 | DeclsToCheckForDeferredDiags.insert(VDecl); |
| 14103 | CheckCompleteVariableDeclaration(VD: VDecl); |
| 14104 | |
| 14105 | if (LangOpts.OpenACC && !InitType.isNull()) |
| 14106 | OpenACC().ActOnVariableInit(VD: VDecl, InitType); |
| 14107 | } |
| 14108 | |
| 14109 | void Sema::ActOnInitializerError(Decl *D) { |
| 14110 | // Our main concern here is re-establishing invariants like "a |
| 14111 | // variable's type is either dependent or complete". |
| 14112 | if (!D || D->isInvalidDecl()) return; |
| 14113 | |
| 14114 | VarDecl *VD = dyn_cast<VarDecl>(Val: D); |
| 14115 | if (!VD) return; |
| 14116 | |
| 14117 | // Bindings are not usable if we can't make sense of the initializer. |
| 14118 | if (auto *DD = dyn_cast<DecompositionDecl>(Val: D)) |
| 14119 | for (auto *BD : DD->bindings()) |
| 14120 | BD->setInvalidDecl(); |
| 14121 | |
| 14122 | // Auto types are meaningless if we can't make sense of the initializer. |
| 14123 | if (VD->getType()->isUndeducedType()) { |
| 14124 | D->setInvalidDecl(); |
| 14125 | return; |
| 14126 | } |
| 14127 | |
| 14128 | QualType Ty = VD->getType(); |
| 14129 | if (Ty->isDependentType()) return; |
| 14130 | |
| 14131 | // Require a complete type. |
| 14132 | if (RequireCompleteType(VD->getLocation(), |
| 14133 | Context.getBaseElementType(Ty), |
| 14134 | diag::err_typecheck_decl_incomplete_type)) { |
| 14135 | VD->setInvalidDecl(); |
| 14136 | return; |
| 14137 | } |
| 14138 | |
| 14139 | // Require a non-abstract type. |
| 14140 | if (RequireNonAbstractType(VD->getLocation(), Ty, |
| 14141 | diag::err_abstract_type_in_decl, |
| 14142 | AbstractVariableType)) { |
| 14143 | VD->setInvalidDecl(); |
| 14144 | return; |
| 14145 | } |
| 14146 | |
| 14147 | // Don't bother complaining about constructors or destructors, |
| 14148 | // though. |
| 14149 | } |
| 14150 | |
| 14151 | void Sema::ActOnUninitializedDecl(Decl *RealDecl) { |
| 14152 | // If there is no declaration, there was an error parsing it. Just ignore it. |
| 14153 | if (!RealDecl) |
| 14154 | return; |
| 14155 | |
| 14156 | if (VarDecl *Var = dyn_cast<VarDecl>(Val: RealDecl)) { |
| 14157 | QualType Type = Var->getType(); |
| 14158 | |
| 14159 | // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory. |
| 14160 | if (isa<DecompositionDecl>(Val: RealDecl)) { |
| 14161 | Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var; |
| 14162 | Var->setInvalidDecl(); |
| 14163 | return; |
| 14164 | } |
| 14165 | |
| 14166 | if (Type->isUndeducedType() && |
| 14167 | DeduceVariableDeclarationType(VDecl: Var, DirectInit: false, Init: nullptr)) |
| 14168 | return; |
| 14169 | |
| 14170 | // C++11 [class.static.data]p3: A static data member can be declared with |
| 14171 | // the constexpr specifier; if so, its declaration shall specify |
| 14172 | // a brace-or-equal-initializer. |
| 14173 | // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to |
| 14174 | // the definition of a variable [...] or the declaration of a static data |
| 14175 | // member. |
| 14176 | if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() && |
| 14177 | !Var->isThisDeclarationADemotedDefinition()) { |
| 14178 | if (Var->isStaticDataMember()) { |
| 14179 | // C++1z removes the relevant rule; the in-class declaration is always |
| 14180 | // a definition there. |
| 14181 | if (!getLangOpts().CPlusPlus17 && |
| 14182 | !Context.getTargetInfo().getCXXABI().isMicrosoft()) { |
| 14183 | Diag(Var->getLocation(), |
| 14184 | diag::err_constexpr_static_mem_var_requires_init) |
| 14185 | << Var; |
| 14186 | Var->setInvalidDecl(); |
| 14187 | return; |
| 14188 | } |
| 14189 | } else { |
| 14190 | Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl); |
| 14191 | Var->setInvalidDecl(); |
| 14192 | return; |
| 14193 | } |
| 14194 | } |
| 14195 | |
| 14196 | // OpenCL v1.1 s6.5.3: variables declared in the constant address space must |
| 14197 | // be initialized. |
| 14198 | if (!Var->isInvalidDecl() && |
| 14199 | Var->getType().getAddressSpace() == LangAS::opencl_constant && |
| 14200 | Var->getStorageClass() != SC_Extern && !Var->getInit()) { |
| 14201 | bool HasConstExprDefaultConstructor = false; |
| 14202 | if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) { |
| 14203 | for (auto *Ctor : RD->ctors()) { |
| 14204 | if (Ctor->isConstexpr() && Ctor->getNumParams() == 0 && |
| 14205 | Ctor->getMethodQualifiers().getAddressSpace() == |
| 14206 | LangAS::opencl_constant) { |
| 14207 | HasConstExprDefaultConstructor = true; |
| 14208 | } |
| 14209 | } |
| 14210 | } |
| 14211 | if (!HasConstExprDefaultConstructor) { |
| 14212 | Diag(Var->getLocation(), diag::err_opencl_constant_no_init); |
| 14213 | Var->setInvalidDecl(); |
| 14214 | return; |
| 14215 | } |
| 14216 | } |
| 14217 | |
| 14218 | if (!Var->isInvalidDecl() && RealDecl->hasAttr<LoaderUninitializedAttr>()) { |
| 14219 | if (Var->getStorageClass() == SC_Extern) { |
| 14220 | Diag(Var->getLocation(), diag::err_loader_uninitialized_extern_decl) |
| 14221 | << Var; |
| 14222 | Var->setInvalidDecl(); |
| 14223 | return; |
| 14224 | } |
| 14225 | if (RequireCompleteType(Var->getLocation(), Var->getType(), |
| 14226 | diag::err_typecheck_decl_incomplete_type)) { |
| 14227 | Var->setInvalidDecl(); |
| 14228 | return; |
| 14229 | } |
| 14230 | if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) { |
| 14231 | if (!RD->hasTrivialDefaultConstructor()) { |
| 14232 | Diag(Var->getLocation(), diag::err_loader_uninitialized_trivial_ctor); |
| 14233 | Var->setInvalidDecl(); |
| 14234 | return; |
| 14235 | } |
| 14236 | } |
| 14237 | // The declaration is uninitialized, no need for further checks. |
| 14238 | return; |
| 14239 | } |
| 14240 | |
| 14241 | VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition(); |
| 14242 | if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly && |
| 14243 | Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion()) |
| 14244 | checkNonTrivialCUnion(QT: Var->getType(), Loc: Var->getLocation(), |
| 14245 | UseContext: NonTrivialCUnionContext::DefaultInitializedObject, |
| 14246 | NonTrivialKind: NTCUK_Init); |
| 14247 | |
| 14248 | switch (DefKind) { |
| 14249 | case VarDecl::Definition: |
| 14250 | if (!Var->isStaticDataMember() || !Var->getAnyInitializer()) |
| 14251 | break; |
| 14252 | |
| 14253 | // We have an out-of-line definition of a static data member |
| 14254 | // that has an in-class initializer, so we type-check this like |
| 14255 | // a declaration. |
| 14256 | // |
| 14257 | [[fallthrough]]; |
| 14258 | |
| 14259 | case VarDecl::DeclarationOnly: |
| 14260 | // It's only a declaration. |
| 14261 | |
| 14262 | // Block scope. C99 6.7p7: If an identifier for an object is |
| 14263 | // declared with no linkage (C99 6.2.2p6), the type for the |
| 14264 | // object shall be complete. |
| 14265 | if (!Type->isDependentType() && Var->isLocalVarDecl() && |
| 14266 | !Var->hasLinkage() && !Var->isInvalidDecl() && |
| 14267 | RequireCompleteType(Var->getLocation(), Type, |
| 14268 | diag::err_typecheck_decl_incomplete_type)) |
| 14269 | Var->setInvalidDecl(); |
| 14270 | |
| 14271 | // Make sure that the type is not abstract. |
| 14272 | if (!Type->isDependentType() && !Var->isInvalidDecl() && |
| 14273 | RequireNonAbstractType(Var->getLocation(), Type, |
| 14274 | diag::err_abstract_type_in_decl, |
| 14275 | AbstractVariableType)) |
| 14276 | Var->setInvalidDecl(); |
| 14277 | if (!Type->isDependentType() && !Var->isInvalidDecl() && |
| 14278 | Var->getStorageClass() == SC_PrivateExtern) { |
| 14279 | Diag(Var->getLocation(), diag::warn_private_extern); |
| 14280 | Diag(Var->getLocation(), diag::note_private_extern); |
| 14281 | } |
| 14282 | |
| 14283 | if (Context.getTargetInfo().allowDebugInfoForExternalRef() && |
| 14284 | !Var->isInvalidDecl()) |
| 14285 | ExternalDeclarations.push_back(Var); |
| 14286 | |
| 14287 | return; |
| 14288 | |
| 14289 | case VarDecl::TentativeDefinition: |
| 14290 | // File scope. C99 6.9.2p2: A declaration of an identifier for an |
| 14291 | // object that has file scope without an initializer, and without a |
| 14292 | // storage-class specifier or with the storage-class specifier "static", |
| 14293 | // constitutes a tentative definition. Note: A tentative definition with |
| 14294 | // external linkage is valid (C99 6.2.2p5). |
| 14295 | if (!Var->isInvalidDecl()) { |
| 14296 | if (const IncompleteArrayType *ArrayT |
| 14297 | = Context.getAsIncompleteArrayType(T: Type)) { |
| 14298 | if (RequireCompleteSizedType( |
| 14299 | Var->getLocation(), ArrayT->getElementType(), |
| 14300 | diag::err_array_incomplete_or_sizeless_type)) |
| 14301 | Var->setInvalidDecl(); |
| 14302 | } |
| 14303 | if (Var->getStorageClass() == SC_Static) { |
| 14304 | // C99 6.9.2p3: If the declaration of an identifier for an object is |
| 14305 | // a tentative definition and has internal linkage (C99 6.2.2p3), the |
| 14306 | // declared type shall not be an incomplete type. |
| 14307 | // NOTE: code such as the following |
| 14308 | // static struct s; |
| 14309 | // struct s { int a; }; |
| 14310 | // is accepted by gcc. Hence here we issue a warning instead of |
| 14311 | // an error and we do not invalidate the static declaration. |
| 14312 | // NOTE: to avoid multiple warnings, only check the first declaration. |
| 14313 | if (Var->isFirstDecl()) |
| 14314 | RequireCompleteType(Var->getLocation(), Type, |
| 14315 | diag::ext_typecheck_decl_incomplete_type, |
| 14316 | Type->isArrayType()); |
| 14317 | } |
| 14318 | } |
| 14319 | |
| 14320 | // Record the tentative definition; we're done. |
| 14321 | if (!Var->isInvalidDecl()) |
| 14322 | TentativeDefinitions.push_back(LocalValue: Var); |
| 14323 | return; |
| 14324 | } |
| 14325 | |
| 14326 | // Provide a specific diagnostic for uninitialized variable |
| 14327 | // definitions with incomplete array type. |
| 14328 | if (Type->isIncompleteArrayType()) { |
| 14329 | if (Var->isConstexpr()) |
| 14330 | Diag(Var->getLocation(), diag::err_constexpr_var_requires_const_init) |
| 14331 | << Var; |
| 14332 | else |
| 14333 | Diag(Var->getLocation(), |
| 14334 | diag::err_typecheck_incomplete_array_needs_initializer); |
| 14335 | Var->setInvalidDecl(); |
| 14336 | return; |
| 14337 | } |
| 14338 | |
| 14339 | // Provide a specific diagnostic for uninitialized variable |
| 14340 | // definitions with reference type. |
| 14341 | if (Type->isReferenceType()) { |
| 14342 | Diag(Var->getLocation(), diag::err_reference_var_requires_init) |
| 14343 | << Var << SourceRange(Var->getLocation(), Var->getLocation()); |
| 14344 | return; |
| 14345 | } |
| 14346 | |
| 14347 | // Do not attempt to type-check the default initializer for a |
| 14348 | // variable with dependent type. |
| 14349 | if (Type->isDependentType()) |
| 14350 | return; |
| 14351 | |
| 14352 | if (Var->isInvalidDecl()) |
| 14353 | return; |
| 14354 | |
| 14355 | if (!Var->hasAttr<AliasAttr>()) { |
| 14356 | if (RequireCompleteType(Var->getLocation(), |
| 14357 | Context.getBaseElementType(Type), |
| 14358 | diag::err_typecheck_decl_incomplete_type)) { |
| 14359 | Var->setInvalidDecl(); |
| 14360 | return; |
| 14361 | } |
| 14362 | } else { |
| 14363 | return; |
| 14364 | } |
| 14365 | |
| 14366 | // The variable can not have an abstract class type. |
| 14367 | if (RequireNonAbstractType(Var->getLocation(), Type, |
| 14368 | diag::err_abstract_type_in_decl, |
| 14369 | AbstractVariableType)) { |
| 14370 | Var->setInvalidDecl(); |
| 14371 | return; |
| 14372 | } |
| 14373 | |
| 14374 | // In C, if the definition is const-qualified and has no initializer, it |
| 14375 | // is left uninitialized unless it has static or thread storage duration. |
| 14376 | if (!getLangOpts().CPlusPlus && Type.isConstQualified()) { |
| 14377 | unsigned DiagID = diag::warn_default_init_const_unsafe; |
| 14378 | if (Var->getStorageDuration() == SD_Static || |
| 14379 | Var->getStorageDuration() == SD_Thread) |
| 14380 | DiagID = diag::warn_default_init_const; |
| 14381 | |
| 14382 | bool EmitCppCompat = !Diags.isIgnored( |
| 14383 | diag::warn_cxx_compat_hack_fake_diagnostic_do_not_emit, |
| 14384 | Var->getLocation()); |
| 14385 | |
| 14386 | Diag(Var->getLocation(), DiagID) << Type << EmitCppCompat; |
| 14387 | } |
| 14388 | |
| 14389 | // Check for jumps past the implicit initializer. C++0x |
| 14390 | // clarifies that this applies to a "variable with automatic |
| 14391 | // storage duration", not a "local variable". |
| 14392 | // C++11 [stmt.dcl]p3 |
| 14393 | // A program that jumps from a point where a variable with automatic |
| 14394 | // storage duration is not in scope to a point where it is in scope is |
| 14395 | // ill-formed unless the variable has scalar type, class type with a |
| 14396 | // trivial default constructor and a trivial destructor, a cv-qualified |
| 14397 | // version of one of these types, or an array of one of the preceding |
| 14398 | // types and is declared without an initializer. |
| 14399 | if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) { |
| 14400 | if (const RecordType *Record |
| 14401 | = Context.getBaseElementType(QT: Type)->getAs<RecordType>()) { |
| 14402 | CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Val: Record->getDecl()); |
| 14403 | // Mark the function (if we're in one) for further checking even if the |
| 14404 | // looser rules of C++11 do not require such checks, so that we can |
| 14405 | // diagnose incompatibilities with C++98. |
| 14406 | if (!CXXRecord->isPOD()) |
| 14407 | setFunctionHasBranchProtectedScope(); |
| 14408 | } |
| 14409 | } |
| 14410 | // In OpenCL, we can't initialize objects in the __local address space, |
| 14411 | // even implicitly, so don't synthesize an implicit initializer. |
| 14412 | if (getLangOpts().OpenCL && |
| 14413 | Var->getType().getAddressSpace() == LangAS::opencl_local) |
| 14414 | return; |
| 14415 | |
| 14416 | // Handle HLSL uninitialized decls |
| 14417 | if (getLangOpts().HLSL && HLSL().ActOnUninitializedVarDecl(D: Var)) |
| 14418 | return; |
| 14419 | |
| 14420 | // HLSL input variables are expected to be externally initialized, even |
| 14421 | // when marked `static`. |
| 14422 | if (getLangOpts().HLSL && |
| 14423 | Var->getType().getAddressSpace() == LangAS::hlsl_input) |
| 14424 | return; |
| 14425 | |
| 14426 | // C++03 [dcl.init]p9: |
| 14427 | // If no initializer is specified for an object, and the |
| 14428 | // object is of (possibly cv-qualified) non-POD class type (or |
| 14429 | // array thereof), the object shall be default-initialized; if |
| 14430 | // the object is of const-qualified type, the underlying class |
| 14431 | // type shall have a user-declared default |
| 14432 | // constructor. Otherwise, if no initializer is specified for |
| 14433 | // a non- static object, the object and its subobjects, if |
| 14434 | // any, have an indeterminate initial value); if the object |
| 14435 | // or any of its subobjects are of const-qualified type, the |
| 14436 | // program is ill-formed. |
| 14437 | // C++0x [dcl.init]p11: |
| 14438 | // If no initializer is specified for an object, the object is |
| 14439 | // default-initialized; [...]. |
| 14440 | InitializedEntity Entity = InitializedEntity::InitializeVariable(Var); |
| 14441 | InitializationKind Kind |
| 14442 | = InitializationKind::CreateDefault(InitLoc: Var->getLocation()); |
| 14443 | |
| 14444 | InitializationSequence InitSeq(*this, Entity, Kind, {}); |
| 14445 | ExprResult Init = InitSeq.Perform(S&: *this, Entity, Kind, Args: {}); |
| 14446 | |
| 14447 | if (Init.get()) { |
| 14448 | Var->setInit(MaybeCreateExprWithCleanups(SubExpr: Init.get())); |
| 14449 | // This is important for template substitution. |
| 14450 | Var->setInitStyle(VarDecl::CallInit); |
| 14451 | } else if (Init.isInvalid()) { |
| 14452 | // If default-init fails, attach a recovery-expr initializer to track |
| 14453 | // that initialization was attempted and failed. |
| 14454 | auto RecoveryExpr = |
| 14455 | CreateRecoveryExpr(Begin: Var->getLocation(), End: Var->getLocation(), SubExprs: {}); |
| 14456 | if (RecoveryExpr.get()) |
| 14457 | Var->setInit(RecoveryExpr.get()); |
| 14458 | } |
| 14459 | |
| 14460 | CheckCompleteVariableDeclaration(VD: Var); |
| 14461 | } |
| 14462 | } |
| 14463 | |
| 14464 | void Sema::ActOnCXXForRangeDecl(Decl *D) { |
| 14465 | // If there is no declaration, there was an error parsing it. Ignore it. |
| 14466 | if (!D) |
| 14467 | return; |
| 14468 | |
| 14469 | VarDecl *VD = dyn_cast<VarDecl>(Val: D); |
| 14470 | if (!VD) { |
| 14471 | Diag(D->getLocation(), diag::err_for_range_decl_must_be_var); |
| 14472 | D->setInvalidDecl(); |
| 14473 | return; |
| 14474 | } |
| 14475 | |
| 14476 | VD->setCXXForRangeDecl(true); |
| 14477 | |
| 14478 | // for-range-declaration cannot be given a storage class specifier. |
| 14479 | int Error = -1; |
| 14480 | switch (VD->getStorageClass()) { |
| 14481 | case SC_None: |
| 14482 | break; |
| 14483 | case SC_Extern: |
| 14484 | Error = 0; |
| 14485 | break; |
| 14486 | case SC_Static: |
| 14487 | Error = 1; |
| 14488 | break; |
| 14489 | case SC_PrivateExtern: |
| 14490 | Error = 2; |
| 14491 | break; |
| 14492 | case SC_Auto: |
| 14493 | Error = 3; |
| 14494 | break; |
| 14495 | case SC_Register: |
| 14496 | Error = 4; |
| 14497 | break; |
| 14498 | } |
| 14499 | |
| 14500 | // for-range-declaration cannot be given a storage class specifier con't. |
| 14501 | switch (VD->getTSCSpec()) { |
| 14502 | case TSCS_thread_local: |
| 14503 | Error = 6; |
| 14504 | break; |
| 14505 | case TSCS___thread: |
| 14506 | case TSCS__Thread_local: |
| 14507 | case TSCS_unspecified: |
| 14508 | break; |
| 14509 | } |
| 14510 | |
| 14511 | if (Error != -1) { |
| 14512 | Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class) |
| 14513 | << VD << Error; |
| 14514 | D->setInvalidDecl(); |
| 14515 | } |
| 14516 | } |
| 14517 | |
| 14518 | StmtResult Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc, |
| 14519 | IdentifierInfo *Ident, |
| 14520 | ParsedAttributes &Attrs) { |
| 14521 | // C++1y [stmt.iter]p1: |
| 14522 | // A range-based for statement of the form |
| 14523 | // for ( for-range-identifier : for-range-initializer ) statement |
| 14524 | // is equivalent to |
| 14525 | // for ( auto&& for-range-identifier : for-range-initializer ) statement |
| 14526 | DeclSpec DS(Attrs.getPool().getFactory()); |
| 14527 | |
| 14528 | const char *PrevSpec; |
| 14529 | unsigned DiagID; |
| 14530 | DS.SetTypeSpecType(T: DeclSpec::TST_auto, Loc: IdentLoc, PrevSpec, DiagID, |
| 14531 | Policy: getPrintingPolicy()); |
| 14532 | |
| 14533 | Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::ForInit); |
| 14534 | D.SetIdentifier(Id: Ident, IdLoc: IdentLoc); |
| 14535 | D.takeAttributes(attrs&: Attrs); |
| 14536 | |
| 14537 | D.AddTypeInfo(TI: DeclaratorChunk::getReference(TypeQuals: 0, Loc: IdentLoc, /*lvalue*/ false), |
| 14538 | EndLoc: IdentLoc); |
| 14539 | Decl *Var = ActOnDeclarator(S, D); |
| 14540 | cast<VarDecl>(Val: Var)->setCXXForRangeDecl(true); |
| 14541 | FinalizeDeclaration(D: Var); |
| 14542 | return ActOnDeclStmt(Decl: FinalizeDeclaratorGroup(S, DS, Group: Var), StartLoc: IdentLoc, |
| 14543 | EndLoc: Attrs.Range.getEnd().isValid() ? Attrs.Range.getEnd() |
| 14544 | : IdentLoc); |
| 14545 | } |
| 14546 | |
| 14547 | void Sema::CheckCompleteVariableDeclaration(VarDecl *var) { |
| 14548 | if (var->isInvalidDecl()) return; |
| 14549 | |
| 14550 | CUDA().MaybeAddConstantAttr(VD: var); |
| 14551 | |
| 14552 | if (getLangOpts().OpenCL) { |
| 14553 | // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an |
| 14554 | // initialiser |
| 14555 | if (var->getTypeSourceInfo()->getType()->isBlockPointerType() && |
| 14556 | !var->hasInit()) { |
| 14557 | Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration) |
| 14558 | << 1 /*Init*/; |
| 14559 | var->setInvalidDecl(); |
| 14560 | return; |
| 14561 | } |
| 14562 | } |
| 14563 | |
| 14564 | // In Objective-C, don't allow jumps past the implicit initialization of a |
| 14565 | // local retaining variable. |
| 14566 | if (getLangOpts().ObjC && |
| 14567 | var->hasLocalStorage()) { |
| 14568 | switch (var->getType().getObjCLifetime()) { |
| 14569 | case Qualifiers::OCL_None: |
| 14570 | case Qualifiers::OCL_ExplicitNone: |
| 14571 | case Qualifiers::OCL_Autoreleasing: |
| 14572 | break; |
| 14573 | |
| 14574 | case Qualifiers::OCL_Weak: |
| 14575 | case Qualifiers::OCL_Strong: |
| 14576 | setFunctionHasBranchProtectedScope(); |
| 14577 | break; |
| 14578 | } |
| 14579 | } |
| 14580 | |
| 14581 | if (var->hasLocalStorage() && |
| 14582 | var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) |
| 14583 | setFunctionHasBranchProtectedScope(); |
| 14584 | |
| 14585 | // Warn about externally-visible variables being defined without a |
| 14586 | // prior declaration. We only want to do this for global |
| 14587 | // declarations, but we also specifically need to avoid doing it for |
| 14588 | // class members because the linkage of an anonymous class can |
| 14589 | // change if it's later given a typedef name. |
| 14590 | if (var->isThisDeclarationADefinition() && |
| 14591 | var->getDeclContext()->getRedeclContext()->isFileContext() && |
| 14592 | var->isExternallyVisible() && var->hasLinkage() && |
| 14593 | !var->isInline() && !var->getDescribedVarTemplate() && |
| 14594 | var->getStorageClass() != SC_Register && |
| 14595 | !isa<VarTemplatePartialSpecializationDecl>(var) && |
| 14596 | !isTemplateInstantiation(var->getTemplateSpecializationKind()) && |
| 14597 | !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations, |
| 14598 | var->getLocation())) { |
| 14599 | // Find a previous declaration that's not a definition. |
| 14600 | VarDecl *prev = var->getPreviousDecl(); |
| 14601 | while (prev && prev->isThisDeclarationADefinition()) |
| 14602 | prev = prev->getPreviousDecl(); |
| 14603 | |
| 14604 | if (!prev) { |
| 14605 | Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var; |
| 14606 | Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage) |
| 14607 | << /* variable */ 0; |
| 14608 | } |
| 14609 | } |
| 14610 | |
| 14611 | // Cache the result of checking for constant initialization. |
| 14612 | std::optional<bool> CacheHasConstInit; |
| 14613 | const Expr *CacheCulprit = nullptr; |
| 14614 | auto checkConstInit = [&]() mutable { |
| 14615 | const Expr *Init = var->getInit(); |
| 14616 | if (Init->isInstantiationDependent()) |
| 14617 | return true; |
| 14618 | |
| 14619 | if (!CacheHasConstInit) |
| 14620 | CacheHasConstInit = var->getInit()->isConstantInitializer( |
| 14621 | Ctx&: Context, ForRef: var->getType()->isReferenceType(), Culprit: &CacheCulprit); |
| 14622 | return *CacheHasConstInit; |
| 14623 | }; |
| 14624 | |
| 14625 | if (var->getTLSKind() == VarDecl::TLS_Static) { |
| 14626 | if (var->getType().isDestructedType()) { |
| 14627 | // GNU C++98 edits for __thread, [basic.start.term]p3: |
| 14628 | // The type of an object with thread storage duration shall not |
| 14629 | // have a non-trivial destructor. |
| 14630 | Diag(var->getLocation(), diag::err_thread_nontrivial_dtor); |
| 14631 | if (getLangOpts().CPlusPlus11) |
| 14632 | Diag(var->getLocation(), diag::note_use_thread_local); |
| 14633 | } else if (getLangOpts().CPlusPlus && var->hasInit()) { |
| 14634 | if (!checkConstInit()) { |
| 14635 | // GNU C++98 edits for __thread, [basic.start.init]p4: |
| 14636 | // An object of thread storage duration shall not require dynamic |
| 14637 | // initialization. |
| 14638 | // FIXME: Need strict checking here. |
| 14639 | Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init) |
| 14640 | << CacheCulprit->getSourceRange(); |
| 14641 | if (getLangOpts().CPlusPlus11) |
| 14642 | Diag(var->getLocation(), diag::note_use_thread_local); |
| 14643 | } |
| 14644 | } |
| 14645 | } |
| 14646 | |
| 14647 | |
| 14648 | if (!var->getType()->isStructureType() && var->hasInit() && |
| 14649 | isa<InitListExpr>(Val: var->getInit())) { |
| 14650 | const auto *ILE = cast<InitListExpr>(Val: var->getInit()); |
| 14651 | unsigned NumInits = ILE->getNumInits(); |
| 14652 | if (NumInits > 2) |
| 14653 | for (unsigned I = 0; I < NumInits; ++I) { |
| 14654 | const auto *Init = ILE->getInit(Init: I); |
| 14655 | if (!Init) |
| 14656 | break; |
| 14657 | const auto *SL = dyn_cast<StringLiteral>(Val: Init->IgnoreImpCasts()); |
| 14658 | if (!SL) |
| 14659 | break; |
| 14660 | |
| 14661 | unsigned NumConcat = SL->getNumConcatenated(); |
| 14662 | // Diagnose missing comma in string array initialization. |
| 14663 | // Do not warn when all the elements in the initializer are concatenated |
| 14664 | // together. Do not warn for macros too. |
| 14665 | if (NumConcat == 2 && !SL->getBeginLoc().isMacroID()) { |
| 14666 | bool OnlyOneMissingComma = true; |
| 14667 | for (unsigned J = I + 1; J < NumInits; ++J) { |
| 14668 | const auto *Init = ILE->getInit(Init: J); |
| 14669 | if (!Init) |
| 14670 | break; |
| 14671 | const auto *SLJ = dyn_cast<StringLiteral>(Val: Init->IgnoreImpCasts()); |
| 14672 | if (!SLJ || SLJ->getNumConcatenated() > 1) { |
| 14673 | OnlyOneMissingComma = false; |
| 14674 | break; |
| 14675 | } |
| 14676 | } |
| 14677 | |
| 14678 | if (OnlyOneMissingComma) { |
| 14679 | SmallVector<FixItHint, 1> Hints; |
| 14680 | for (unsigned i = 0; i < NumConcat - 1; ++i) |
| 14681 | Hints.push_back(Elt: FixItHint::CreateInsertion( |
| 14682 | InsertionLoc: PP.getLocForEndOfToken(Loc: SL->getStrTokenLoc(TokNum: i)), Code: "," )); |
| 14683 | |
| 14684 | Diag(SL->getStrTokenLoc(1), |
| 14685 | diag::warn_concatenated_literal_array_init) |
| 14686 | << Hints; |
| 14687 | Diag(SL->getBeginLoc(), |
| 14688 | diag::note_concatenated_string_literal_silence); |
| 14689 | } |
| 14690 | // In any case, stop now. |
| 14691 | break; |
| 14692 | } |
| 14693 | } |
| 14694 | } |
| 14695 | |
| 14696 | |
| 14697 | QualType type = var->getType(); |
| 14698 | |
| 14699 | if (var->hasAttr<BlocksAttr>()) |
| 14700 | getCurFunction()->addByrefBlockVar(VD: var); |
| 14701 | |
| 14702 | Expr *Init = var->getInit(); |
| 14703 | bool GlobalStorage = var->hasGlobalStorage(); |
| 14704 | bool IsGlobal = GlobalStorage && !var->isStaticLocal(); |
| 14705 | QualType baseType = Context.getBaseElementType(QT: type); |
| 14706 | bool HasConstInit = true; |
| 14707 | |
| 14708 | if (getLangOpts().C23 && var->isConstexpr() && !Init) |
| 14709 | Diag(var->getLocation(), diag::err_constexpr_var_requires_const_init) |
| 14710 | << var; |
| 14711 | |
| 14712 | // Check whether the initializer is sufficiently constant. |
| 14713 | if ((getLangOpts().CPlusPlus || (getLangOpts().C23 && var->isConstexpr())) && |
| 14714 | !type->isDependentType() && Init && !Init->isValueDependent() && |
| 14715 | (GlobalStorage || var->isConstexpr() || |
| 14716 | var->mightBeUsableInConstantExpressions(C: Context))) { |
| 14717 | // If this variable might have a constant initializer or might be usable in |
| 14718 | // constant expressions, check whether or not it actually is now. We can't |
| 14719 | // do this lazily, because the result might depend on things that change |
| 14720 | // later, such as which constexpr functions happen to be defined. |
| 14721 | SmallVector<PartialDiagnosticAt, 8> Notes; |
| 14722 | if (!getLangOpts().CPlusPlus11 && !getLangOpts().C23) { |
| 14723 | // Prior to C++11, in contexts where a constant initializer is required, |
| 14724 | // the set of valid constant initializers is described by syntactic rules |
| 14725 | // in [expr.const]p2-6. |
| 14726 | // FIXME: Stricter checking for these rules would be useful for constinit / |
| 14727 | // -Wglobal-constructors. |
| 14728 | HasConstInit = checkConstInit(); |
| 14729 | |
| 14730 | // Compute and cache the constant value, and remember that we have a |
| 14731 | // constant initializer. |
| 14732 | if (HasConstInit) { |
| 14733 | (void)var->checkForConstantInitialization(Notes); |
| 14734 | Notes.clear(); |
| 14735 | } else if (CacheCulprit) { |
| 14736 | Notes.emplace_back(CacheCulprit->getExprLoc(), |
| 14737 | PDiag(diag::note_invalid_subexpr_in_const_expr)); |
| 14738 | Notes.back().second << CacheCulprit->getSourceRange(); |
| 14739 | } |
| 14740 | } else { |
| 14741 | // Evaluate the initializer to see if it's a constant initializer. |
| 14742 | HasConstInit = var->checkForConstantInitialization(Notes); |
| 14743 | } |
| 14744 | |
| 14745 | if (HasConstInit) { |
| 14746 | // FIXME: Consider replacing the initializer with a ConstantExpr. |
| 14747 | } else if (var->isConstexpr()) { |
| 14748 | SourceLocation DiagLoc = var->getLocation(); |
| 14749 | // If the note doesn't add any useful information other than a source |
| 14750 | // location, fold it into the primary diagnostic. |
| 14751 | if (Notes.size() == 1 && Notes[0].second.getDiagID() == |
| 14752 | diag::note_invalid_subexpr_in_const_expr) { |
| 14753 | DiagLoc = Notes[0].first; |
| 14754 | Notes.clear(); |
| 14755 | } |
| 14756 | Diag(DiagLoc, diag::err_constexpr_var_requires_const_init) |
| 14757 | << var << Init->getSourceRange(); |
| 14758 | for (unsigned I = 0, N = Notes.size(); I != N; ++I) |
| 14759 | Diag(Notes[I].first, Notes[I].second); |
| 14760 | } else if (GlobalStorage && var->hasAttr<ConstInitAttr>()) { |
| 14761 | auto *Attr = var->getAttr<ConstInitAttr>(); |
| 14762 | Diag(var->getLocation(), diag::err_require_constant_init_failed) |
| 14763 | << Init->getSourceRange(); |
| 14764 | Diag(Attr->getLocation(), diag::note_declared_required_constant_init_here) |
| 14765 | << Attr->getRange() << Attr->isConstinit(); |
| 14766 | for (auto &it : Notes) |
| 14767 | Diag(it.first, it.second); |
| 14768 | } else if (IsGlobal && |
| 14769 | !getDiagnostics().isIgnored(diag::warn_global_constructor, |
| 14770 | var->getLocation())) { |
| 14771 | // Warn about globals which don't have a constant initializer. Don't |
| 14772 | // warn about globals with a non-trivial destructor because we already |
| 14773 | // warned about them. |
| 14774 | CXXRecordDecl *RD = baseType->getAsCXXRecordDecl(); |
| 14775 | if (!(RD && !RD->hasTrivialDestructor())) { |
| 14776 | // checkConstInit() here permits trivial default initialization even in |
| 14777 | // C++11 onwards, where such an initializer is not a constant initializer |
| 14778 | // but nonetheless doesn't require a global constructor. |
| 14779 | if (!checkConstInit()) |
| 14780 | Diag(var->getLocation(), diag::warn_global_constructor) |
| 14781 | << Init->getSourceRange(); |
| 14782 | } |
| 14783 | } |
| 14784 | } |
| 14785 | |
| 14786 | // Apply section attributes and pragmas to global variables. |
| 14787 | if (GlobalStorage && var->isThisDeclarationADefinition() && |
| 14788 | !inTemplateInstantiation()) { |
| 14789 | PragmaStack<StringLiteral *> *Stack = nullptr; |
| 14790 | int SectionFlags = ASTContext::PSF_Read; |
| 14791 | bool MSVCEnv = |
| 14792 | Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment(); |
| 14793 | std::optional<QualType::NonConstantStorageReason> Reason; |
| 14794 | if (HasConstInit && |
| 14795 | !(Reason = var->getType().isNonConstantStorage(Context, true, false))) { |
| 14796 | Stack = &ConstSegStack; |
| 14797 | } else { |
| 14798 | SectionFlags |= ASTContext::PSF_Write; |
| 14799 | Stack = var->hasInit() && HasConstInit ? &DataSegStack : &BSSSegStack; |
| 14800 | } |
| 14801 | if (const SectionAttr *SA = var->getAttr<SectionAttr>()) { |
| 14802 | if (SA->getSyntax() == AttributeCommonInfo::AS_Declspec) |
| 14803 | SectionFlags |= ASTContext::PSF_Implicit; |
| 14804 | UnifySection(SA->getName(), SectionFlags, var); |
| 14805 | } else if (Stack->CurrentValue) { |
| 14806 | if (Stack != &ConstSegStack && MSVCEnv && |
| 14807 | ConstSegStack.CurrentValue != ConstSegStack.DefaultValue && |
| 14808 | var->getType().isConstQualified()) { |
| 14809 | assert((!Reason || Reason != QualType::NonConstantStorageReason:: |
| 14810 | NonConstNonReferenceType) && |
| 14811 | "This case should've already been handled elsewhere" ); |
| 14812 | Diag(var->getLocation(), diag::warn_section_msvc_compat) |
| 14813 | << var << ConstSegStack.CurrentValue << (int)(!HasConstInit |
| 14814 | ? QualType::NonConstantStorageReason::NonTrivialCtor |
| 14815 | : *Reason); |
| 14816 | } |
| 14817 | SectionFlags |= ASTContext::PSF_Implicit; |
| 14818 | auto SectionName = Stack->CurrentValue->getString(); |
| 14819 | var->addAttr(SectionAttr::CreateImplicit(Context, SectionName, |
| 14820 | Stack->CurrentPragmaLocation, |
| 14821 | SectionAttr::Declspec_allocate)); |
| 14822 | if (UnifySection(SectionName, SectionFlags, var)) |
| 14823 | var->dropAttr<SectionAttr>(); |
| 14824 | } |
| 14825 | |
| 14826 | // Apply the init_seg attribute if this has an initializer. If the |
| 14827 | // initializer turns out to not be dynamic, we'll end up ignoring this |
| 14828 | // attribute. |
| 14829 | if (CurInitSeg && var->getInit()) |
| 14830 | var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(), |
| 14831 | CurInitSegLoc)); |
| 14832 | } |
| 14833 | |
| 14834 | // All the following checks are C++ only. |
| 14835 | if (!getLangOpts().CPlusPlus) { |
| 14836 | // If this variable must be emitted, add it as an initializer for the |
| 14837 | // current module. |
| 14838 | if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty()) |
| 14839 | Context.addModuleInitializer(ModuleScopes.back().Module, var); |
| 14840 | return; |
| 14841 | } |
| 14842 | |
| 14843 | DiagnoseUniqueObjectDuplication(VD: var); |
| 14844 | |
| 14845 | // Require the destructor. |
| 14846 | if (!type->isDependentType()) |
| 14847 | if (const RecordType *recordType = baseType->getAs<RecordType>()) |
| 14848 | FinalizeVarWithDestructor(VD: var, DeclInitType: recordType); |
| 14849 | |
| 14850 | // If this variable must be emitted, add it as an initializer for the current |
| 14851 | // module. |
| 14852 | if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty()) |
| 14853 | Context.addModuleInitializer(ModuleScopes.back().Module, var); |
| 14854 | |
| 14855 | // Build the bindings if this is a structured binding declaration. |
| 14856 | if (auto *DD = dyn_cast<DecompositionDecl>(Val: var)) |
| 14857 | CheckCompleteDecompositionDeclaration(DD); |
| 14858 | } |
| 14859 | |
| 14860 | void Sema::CheckStaticLocalForDllExport(VarDecl *VD) { |
| 14861 | assert(VD->isStaticLocal()); |
| 14862 | |
| 14863 | auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod()); |
| 14864 | |
| 14865 | // Find outermost function when VD is in lambda function. |
| 14866 | while (FD && !getDLLAttr(FD) && |
| 14867 | !FD->hasAttr<DLLExportStaticLocalAttr>() && |
| 14868 | !FD->hasAttr<DLLImportStaticLocalAttr>()) { |
| 14869 | FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod()); |
| 14870 | } |
| 14871 | |
| 14872 | if (!FD) |
| 14873 | return; |
| 14874 | |
| 14875 | // Static locals inherit dll attributes from their function. |
| 14876 | if (Attr *A = getDLLAttr(FD)) { |
| 14877 | auto *NewAttr = cast<InheritableAttr>(Val: A->clone(C&: getASTContext())); |
| 14878 | NewAttr->setInherited(true); |
| 14879 | VD->addAttr(A: NewAttr); |
| 14880 | } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) { |
| 14881 | auto *NewAttr = DLLExportAttr::CreateImplicit(getASTContext(), *A); |
| 14882 | NewAttr->setInherited(true); |
| 14883 | VD->addAttr(A: NewAttr); |
| 14884 | |
| 14885 | // Export this function to enforce exporting this static variable even |
| 14886 | // if it is not used in this compilation unit. |
| 14887 | if (!FD->hasAttr<DLLExportAttr>()) |
| 14888 | FD->addAttr(NewAttr); |
| 14889 | |
| 14890 | } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) { |
| 14891 | auto *NewAttr = DLLImportAttr::CreateImplicit(getASTContext(), *A); |
| 14892 | NewAttr->setInherited(true); |
| 14893 | VD->addAttr(A: NewAttr); |
| 14894 | } |
| 14895 | } |
| 14896 | |
| 14897 | void Sema::CheckThreadLocalForLargeAlignment(VarDecl *VD) { |
| 14898 | assert(VD->getTLSKind()); |
| 14899 | |
| 14900 | // Perform TLS alignment check here after attributes attached to the variable |
| 14901 | // which may affect the alignment have been processed. Only perform the check |
| 14902 | // if the target has a maximum TLS alignment (zero means no constraints). |
| 14903 | if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) { |
| 14904 | // Protect the check so that it's not performed on dependent types and |
| 14905 | // dependent alignments (we can't determine the alignment in that case). |
| 14906 | if (!VD->hasDependentAlignment()) { |
| 14907 | CharUnits MaxAlignChars = Context.toCharUnitsFromBits(BitSize: MaxAlign); |
| 14908 | if (Context.getDeclAlign(VD) > MaxAlignChars) { |
| 14909 | Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum) |
| 14910 | << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD |
| 14911 | << (unsigned)MaxAlignChars.getQuantity(); |
| 14912 | } |
| 14913 | } |
| 14914 | } |
| 14915 | } |
| 14916 | |
| 14917 | void Sema::FinalizeDeclaration(Decl *ThisDecl) { |
| 14918 | // Note that we are no longer parsing the initializer for this declaration. |
| 14919 | ParsingInitForAutoVars.erase(Ptr: ThisDecl); |
| 14920 | |
| 14921 | VarDecl *VD = dyn_cast_or_null<VarDecl>(Val: ThisDecl); |
| 14922 | if (!VD) |
| 14923 | return; |
| 14924 | |
| 14925 | // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active |
| 14926 | if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() && |
| 14927 | !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) { |
| 14928 | if (PragmaClangBSSSection.Valid) |
| 14929 | VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit( |
| 14930 | Context, PragmaClangBSSSection.SectionName, |
| 14931 | PragmaClangBSSSection.PragmaLocation)); |
| 14932 | if (PragmaClangDataSection.Valid) |
| 14933 | VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit( |
| 14934 | Context, PragmaClangDataSection.SectionName, |
| 14935 | PragmaClangDataSection.PragmaLocation)); |
| 14936 | if (PragmaClangRodataSection.Valid) |
| 14937 | VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit( |
| 14938 | Context, PragmaClangRodataSection.SectionName, |
| 14939 | PragmaClangRodataSection.PragmaLocation)); |
| 14940 | if (PragmaClangRelroSection.Valid) |
| 14941 | VD->addAttr(PragmaClangRelroSectionAttr::CreateImplicit( |
| 14942 | Context, PragmaClangRelroSection.SectionName, |
| 14943 | PragmaClangRelroSection.PragmaLocation)); |
| 14944 | } |
| 14945 | |
| 14946 | if (auto *DD = dyn_cast<DecompositionDecl>(Val: ThisDecl)) { |
| 14947 | for (auto *BD : DD->bindings()) { |
| 14948 | FinalizeDeclaration(BD); |
| 14949 | } |
| 14950 | } |
| 14951 | |
| 14952 | CheckInvalidBuiltinCountedByRef(E: VD->getInit(), |
| 14953 | K: BuiltinCountedByRefKind::Initializer); |
| 14954 | |
| 14955 | checkAttributesAfterMerging(*this, *VD); |
| 14956 | |
| 14957 | if (VD->isStaticLocal()) |
| 14958 | CheckStaticLocalForDllExport(VD); |
| 14959 | |
| 14960 | if (VD->getTLSKind()) |
| 14961 | CheckThreadLocalForLargeAlignment(VD); |
| 14962 | |
| 14963 | // Perform check for initializers of device-side global variables. |
| 14964 | // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA |
| 14965 | // 7.5). We must also apply the same checks to all __shared__ |
| 14966 | // variables whether they are local or not. CUDA also allows |
| 14967 | // constant initializers for __constant__ and __device__ variables. |
| 14968 | if (getLangOpts().CUDA) |
| 14969 | CUDA().checkAllowedInitializer(VD); |
| 14970 | |
| 14971 | // Grab the dllimport or dllexport attribute off of the VarDecl. |
| 14972 | const InheritableAttr *DLLAttr = getDLLAttr(VD); |
| 14973 | |
| 14974 | // Imported static data members cannot be defined out-of-line. |
| 14975 | if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) { |
| 14976 | if (VD->isStaticDataMember() && VD->isOutOfLine() && |
| 14977 | VD->isThisDeclarationADefinition()) { |
| 14978 | // We allow definitions of dllimport class template static data members |
| 14979 | // with a warning. |
| 14980 | CXXRecordDecl *Context = |
| 14981 | cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext()); |
| 14982 | bool IsClassTemplateMember = |
| 14983 | isa<ClassTemplatePartialSpecializationDecl>(Val: Context) || |
| 14984 | Context->getDescribedClassTemplate(); |
| 14985 | |
| 14986 | Diag(VD->getLocation(), |
| 14987 | IsClassTemplateMember |
| 14988 | ? diag::warn_attribute_dllimport_static_field_definition |
| 14989 | : diag::err_attribute_dllimport_static_field_definition); |
| 14990 | Diag(IA->getLocation(), diag::note_attribute); |
| 14991 | if (!IsClassTemplateMember) |
| 14992 | VD->setInvalidDecl(); |
| 14993 | } |
| 14994 | } |
| 14995 | |
| 14996 | // dllimport/dllexport variables cannot be thread local, their TLS index |
| 14997 | // isn't exported with the variable. |
| 14998 | if (DLLAttr && VD->getTLSKind()) { |
| 14999 | auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod()); |
| 15000 | if (F && getDLLAttr(F)) { |
| 15001 | assert(VD->isStaticLocal()); |
| 15002 | // But if this is a static local in a dlimport/dllexport function, the |
| 15003 | // function will never be inlined, which means the var would never be |
| 15004 | // imported, so having it marked import/export is safe. |
| 15005 | } else { |
| 15006 | Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD |
| 15007 | << DLLAttr; |
| 15008 | VD->setInvalidDecl(); |
| 15009 | } |
| 15010 | } |
| 15011 | |
| 15012 | if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) { |
| 15013 | if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) { |
| 15014 | Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition) |
| 15015 | << Attr; |
| 15016 | VD->dropAttr<UsedAttr>(); |
| 15017 | } |
| 15018 | } |
| 15019 | if (RetainAttr *Attr = VD->getAttr<RetainAttr>()) { |
| 15020 | if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) { |
| 15021 | Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition) |
| 15022 | << Attr; |
| 15023 | VD->dropAttr<RetainAttr>(); |
| 15024 | } |
| 15025 | } |
| 15026 | |
| 15027 | const DeclContext *DC = VD->getDeclContext(); |
| 15028 | // If there's a #pragma GCC visibility in scope, and this isn't a class |
| 15029 | // member, set the visibility of this variable. |
| 15030 | if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible()) |
| 15031 | AddPushedVisibilityAttribute(VD); |
| 15032 | |
| 15033 | // FIXME: Warn on unused var template partial specializations. |
| 15034 | if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(Val: VD)) |
| 15035 | MarkUnusedFileScopedDecl(VD); |
| 15036 | |
| 15037 | // Now we have parsed the initializer and can update the table of magic |
| 15038 | // tag values. |
| 15039 | if (!VD->hasAttr<TypeTagForDatatypeAttr>() || |
| 15040 | !VD->getType()->isIntegralOrEnumerationType()) |
| 15041 | return; |
| 15042 | |
| 15043 | for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) { |
| 15044 | const Expr *MagicValueExpr = VD->getInit(); |
| 15045 | if (!MagicValueExpr) { |
| 15046 | continue; |
| 15047 | } |
| 15048 | std::optional<llvm::APSInt> MagicValueInt; |
| 15049 | if (!(MagicValueInt = MagicValueExpr->getIntegerConstantExpr(Context))) { |
| 15050 | Diag(I->getRange().getBegin(), |
| 15051 | diag::err_type_tag_for_datatype_not_ice) |
| 15052 | << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); |
| 15053 | continue; |
| 15054 | } |
| 15055 | if (MagicValueInt->getActiveBits() > 64) { |
| 15056 | Diag(I->getRange().getBegin(), |
| 15057 | diag::err_type_tag_for_datatype_too_large) |
| 15058 | << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); |
| 15059 | continue; |
| 15060 | } |
| 15061 | uint64_t MagicValue = MagicValueInt->getZExtValue(); |
| 15062 | RegisterTypeTagForDatatype(I->getArgumentKind(), |
| 15063 | MagicValue, |
| 15064 | I->getMatchingCType(), |
| 15065 | I->getLayoutCompatible(), |
| 15066 | I->getMustBeNull()); |
| 15067 | } |
| 15068 | } |
| 15069 | |
| 15070 | static bool hasDeducedAuto(DeclaratorDecl *DD) { |
| 15071 | auto *VD = dyn_cast<VarDecl>(Val: DD); |
| 15072 | return VD && !VD->getType()->hasAutoForTrailingReturnType(); |
| 15073 | } |
| 15074 | |
| 15075 | Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS, |
| 15076 | ArrayRef<Decl *> Group) { |
| 15077 | SmallVector<Decl*, 8> Decls; |
| 15078 | |
| 15079 | if (DS.isTypeSpecOwned()) |
| 15080 | Decls.push_back(Elt: DS.getRepAsDecl()); |
| 15081 | |
| 15082 | DeclaratorDecl *FirstDeclaratorInGroup = nullptr; |
| 15083 | DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr; |
| 15084 | bool DiagnosedMultipleDecomps = false; |
| 15085 | DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr; |
| 15086 | bool DiagnosedNonDeducedAuto = false; |
| 15087 | |
| 15088 | for (Decl *D : Group) { |
| 15089 | if (!D) |
| 15090 | continue; |
| 15091 | // Check if the Decl has been declared in '#pragma omp declare target' |
| 15092 | // directive and has static storage duration. |
| 15093 | if (auto *VD = dyn_cast<VarDecl>(Val: D); |
| 15094 | LangOpts.OpenMP && VD && VD->hasAttr<OMPDeclareTargetDeclAttr>() && |
| 15095 | VD->hasGlobalStorage()) |
| 15096 | OpenMP().ActOnOpenMPDeclareTargetInitializer(D); |
| 15097 | // For declarators, there are some additional syntactic-ish checks we need |
| 15098 | // to perform. |
| 15099 | if (auto *DD = dyn_cast<DeclaratorDecl>(Val: D)) { |
| 15100 | if (!FirstDeclaratorInGroup) |
| 15101 | FirstDeclaratorInGroup = DD; |
| 15102 | if (!FirstDecompDeclaratorInGroup) |
| 15103 | FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(Val: D); |
| 15104 | if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() && |
| 15105 | !hasDeducedAuto(DD)) |
| 15106 | FirstNonDeducedAutoInGroup = DD; |
| 15107 | |
| 15108 | if (FirstDeclaratorInGroup != DD) { |
| 15109 | // A decomposition declaration cannot be combined with any other |
| 15110 | // declaration in the same group. |
| 15111 | if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) { |
| 15112 | Diag(FirstDecompDeclaratorInGroup->getLocation(), |
| 15113 | diag::err_decomp_decl_not_alone) |
| 15114 | << FirstDeclaratorInGroup->getSourceRange() |
| 15115 | << DD->getSourceRange(); |
| 15116 | DiagnosedMultipleDecomps = true; |
| 15117 | } |
| 15118 | |
| 15119 | // A declarator that uses 'auto' in any way other than to declare a |
| 15120 | // variable with a deduced type cannot be combined with any other |
| 15121 | // declarator in the same group. |
| 15122 | if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) { |
| 15123 | Diag(FirstNonDeducedAutoInGroup->getLocation(), |
| 15124 | diag::err_auto_non_deduced_not_alone) |
| 15125 | << FirstNonDeducedAutoInGroup->getType() |
| 15126 | ->hasAutoForTrailingReturnType() |
| 15127 | << FirstDeclaratorInGroup->getSourceRange() |
| 15128 | << DD->getSourceRange(); |
| 15129 | DiagnosedNonDeducedAuto = true; |
| 15130 | } |
| 15131 | } |
| 15132 | } |
| 15133 | |
| 15134 | Decls.push_back(Elt: D); |
| 15135 | } |
| 15136 | |
| 15137 | if (DeclSpec::isDeclRep(T: DS.getTypeSpecType())) { |
| 15138 | if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(Val: DS.getRepAsDecl())) { |
| 15139 | handleTagNumbering(Tag, TagScope: S); |
| 15140 | if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() && |
| 15141 | getLangOpts().CPlusPlus) |
| 15142 | Context.addDeclaratorForUnnamedTagDecl(TD: Tag, DD: FirstDeclaratorInGroup); |
| 15143 | } |
| 15144 | } |
| 15145 | |
| 15146 | return BuildDeclaratorGroup(Group: Decls); |
| 15147 | } |
| 15148 | |
| 15149 | Sema::DeclGroupPtrTy |
| 15150 | Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) { |
| 15151 | // C++14 [dcl.spec.auto]p7: (DR1347) |
| 15152 | // If the type that replaces the placeholder type is not the same in each |
| 15153 | // deduction, the program is ill-formed. |
| 15154 | if (Group.size() > 1) { |
| 15155 | QualType Deduced; |
| 15156 | VarDecl *DeducedDecl = nullptr; |
| 15157 | for (unsigned i = 0, e = Group.size(); i != e; ++i) { |
| 15158 | VarDecl *D = dyn_cast<VarDecl>(Val: Group[i]); |
| 15159 | if (!D || D->isInvalidDecl()) |
| 15160 | break; |
| 15161 | DeducedType *DT = D->getType()->getContainedDeducedType(); |
| 15162 | if (!DT || DT->getDeducedType().isNull()) |
| 15163 | continue; |
| 15164 | if (Deduced.isNull()) { |
| 15165 | Deduced = DT->getDeducedType(); |
| 15166 | DeducedDecl = D; |
| 15167 | } else if (!Context.hasSameType(T1: DT->getDeducedType(), T2: Deduced)) { |
| 15168 | auto *AT = dyn_cast<AutoType>(Val: DT); |
| 15169 | auto Dia = Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), |
| 15170 | diag::err_auto_different_deductions) |
| 15171 | << (AT ? (unsigned)AT->getKeyword() : 3) << Deduced |
| 15172 | << DeducedDecl->getDeclName() << DT->getDeducedType() |
| 15173 | << D->getDeclName(); |
| 15174 | if (DeducedDecl->hasInit()) |
| 15175 | Dia << DeducedDecl->getInit()->getSourceRange(); |
| 15176 | if (D->getInit()) |
| 15177 | Dia << D->getInit()->getSourceRange(); |
| 15178 | D->setInvalidDecl(); |
| 15179 | break; |
| 15180 | } |
| 15181 | } |
| 15182 | } |
| 15183 | |
| 15184 | ActOnDocumentableDecls(Group); |
| 15185 | |
| 15186 | return DeclGroupPtrTy::make( |
| 15187 | P: DeclGroupRef::Create(C&: Context, Decls: Group.data(), NumDecls: Group.size())); |
| 15188 | } |
| 15189 | |
| 15190 | void Sema::ActOnDocumentableDecl(Decl *D) { |
| 15191 | ActOnDocumentableDecls(Group: D); |
| 15192 | } |
| 15193 | |
| 15194 | void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) { |
| 15195 | // Don't parse the comment if Doxygen diagnostics are ignored. |
| 15196 | if (Group.empty() || !Group[0]) |
| 15197 | return; |
| 15198 | |
| 15199 | if (Diags.isIgnored(diag::warn_doc_param_not_found, |
| 15200 | Group[0]->getLocation()) && |
| 15201 | Diags.isIgnored(diag::warn_unknown_comment_command_name, |
| 15202 | Group[0]->getLocation())) |
| 15203 | return; |
| 15204 | |
| 15205 | if (Group.size() >= 2) { |
| 15206 | // This is a decl group. Normally it will contain only declarations |
| 15207 | // produced from declarator list. But in case we have any definitions or |
| 15208 | // additional declaration references: |
| 15209 | // 'typedef struct S {} S;' |
| 15210 | // 'typedef struct S *S;' |
| 15211 | // 'struct S *pS;' |
| 15212 | // FinalizeDeclaratorGroup adds these as separate declarations. |
| 15213 | Decl *MaybeTagDecl = Group[0]; |
| 15214 | if (MaybeTagDecl && isa<TagDecl>(Val: MaybeTagDecl)) { |
| 15215 | Group = Group.slice(N: 1); |
| 15216 | } |
| 15217 | } |
| 15218 | |
| 15219 | // FIMXE: We assume every Decl in the group is in the same file. |
| 15220 | // This is false when preprocessor constructs the group from decls in |
| 15221 | // different files (e. g. macros or #include). |
| 15222 | Context.attachCommentsToJustParsedDecls(Decls: Group, PP: &getPreprocessor()); |
| 15223 | } |
| 15224 | |
| 15225 | void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) { |
| 15226 | // Check that there are no default arguments inside the type of this |
| 15227 | // parameter. |
| 15228 | if (getLangOpts().CPlusPlus) |
| 15229 | CheckExtraCXXDefaultArguments(D); |
| 15230 | |
| 15231 | // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). |
| 15232 | if (D.getCXXScopeSpec().isSet()) { |
| 15233 | Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator) |
| 15234 | << D.getCXXScopeSpec().getRange(); |
| 15235 | } |
| 15236 | |
| 15237 | // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a |
| 15238 | // simple identifier except [...irrelevant cases...]. |
| 15239 | switch (D.getName().getKind()) { |
| 15240 | case UnqualifiedIdKind::IK_Identifier: |
| 15241 | break; |
| 15242 | |
| 15243 | case UnqualifiedIdKind::IK_OperatorFunctionId: |
| 15244 | case UnqualifiedIdKind::IK_ConversionFunctionId: |
| 15245 | case UnqualifiedIdKind::IK_LiteralOperatorId: |
| 15246 | case UnqualifiedIdKind::IK_ConstructorName: |
| 15247 | case UnqualifiedIdKind::IK_DestructorName: |
| 15248 | case UnqualifiedIdKind::IK_ImplicitSelfParam: |
| 15249 | case UnqualifiedIdKind::IK_DeductionGuideName: |
| 15250 | Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name) |
| 15251 | << GetNameForDeclarator(D).getName(); |
| 15252 | break; |
| 15253 | |
| 15254 | case UnqualifiedIdKind::IK_TemplateId: |
| 15255 | case UnqualifiedIdKind::IK_ConstructorTemplateId: |
| 15256 | // GetNameForDeclarator would not produce a useful name in this case. |
| 15257 | Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id); |
| 15258 | break; |
| 15259 | } |
| 15260 | } |
| 15261 | |
| 15262 | void Sema::warnOnCTypeHiddenInCPlusPlus(const NamedDecl *D) { |
| 15263 | // This only matters in C. |
| 15264 | if (getLangOpts().CPlusPlus) |
| 15265 | return; |
| 15266 | |
| 15267 | // This only matters if the declaration has a type. |
| 15268 | const auto *VD = dyn_cast<ValueDecl>(Val: D); |
| 15269 | if (!VD) |
| 15270 | return; |
| 15271 | |
| 15272 | // Get the type, this only matters for tag types. |
| 15273 | QualType QT = VD->getType(); |
| 15274 | const auto *TD = QT->getAsTagDecl(); |
| 15275 | if (!TD) |
| 15276 | return; |
| 15277 | |
| 15278 | // Check if the tag declaration is lexically declared somewhere different |
| 15279 | // from the lexical declaration of the given object, then it will be hidden |
| 15280 | // in C++ and we should warn on it. |
| 15281 | if (!TD->getLexicalParent()->LexicallyEncloses(D->getLexicalDeclContext())) { |
| 15282 | unsigned Kind = TD->isEnum() ? 2 : TD->isUnion() ? 1 : 0; |
| 15283 | Diag(D->getLocation(), diag::warn_decl_hidden_in_cpp) << Kind; |
| 15284 | Diag(TD->getLocation(), diag::note_declared_at); |
| 15285 | } |
| 15286 | } |
| 15287 | |
| 15288 | static void CheckExplicitObjectParameter(Sema &S, ParmVarDecl *P, |
| 15289 | SourceLocation ExplicitThisLoc) { |
| 15290 | if (!ExplicitThisLoc.isValid()) |
| 15291 | return; |
| 15292 | assert(S.getLangOpts().CPlusPlus && |
| 15293 | "explicit parameter in non-cplusplus mode" ); |
| 15294 | if (!S.getLangOpts().CPlusPlus23) |
| 15295 | S.Diag(ExplicitThisLoc, diag::err_cxx20_deducing_this) |
| 15296 | << P->getSourceRange(); |
| 15297 | |
| 15298 | // C++2b [dcl.fct/7] An explicit object parameter shall not be a function |
| 15299 | // parameter pack. |
| 15300 | if (P->isParameterPack()) { |
| 15301 | S.Diag(P->getBeginLoc(), diag::err_explicit_object_parameter_pack) |
| 15302 | << P->getSourceRange(); |
| 15303 | return; |
| 15304 | } |
| 15305 | P->setExplicitObjectParameterLoc(ExplicitThisLoc); |
| 15306 | if (LambdaScopeInfo *LSI = S.getCurLambda()) |
| 15307 | LSI->ExplicitObjectParameter = P; |
| 15308 | } |
| 15309 | |
| 15310 | Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D, |
| 15311 | SourceLocation ExplicitThisLoc) { |
| 15312 | const DeclSpec &DS = D.getDeclSpec(); |
| 15313 | |
| 15314 | // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'. |
| 15315 | // C2y 6.7.7.4p4: A parameter declaration shall not specify a void type, |
| 15316 | // except for the special case of a single unnamed parameter of type void |
| 15317 | // with no storage class specifier, no type qualifier, and no following |
| 15318 | // ellipsis terminator. |
| 15319 | // Clang applies the C2y rules for 'register void' in all C language modes, |
| 15320 | // same as GCC, because it's questionable what that could possibly mean. |
| 15321 | |
| 15322 | // C++03 [dcl.stc]p2 also permits 'auto'. |
| 15323 | StorageClass SC = SC_None; |
| 15324 | if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { |
| 15325 | SC = SC_Register; |
| 15326 | // In C++11, the 'register' storage class specifier is deprecated. |
| 15327 | // In C++17, it is not allowed, but we tolerate it as an extension. |
| 15328 | if (getLangOpts().CPlusPlus11) { |
| 15329 | Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus17 |
| 15330 | ? diag::ext_register_storage_class |
| 15331 | : diag::warn_deprecated_register) |
| 15332 | << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); |
| 15333 | } else if (!getLangOpts().CPlusPlus && |
| 15334 | DS.getTypeSpecType() == DeclSpec::TST_void && |
| 15335 | D.getNumTypeObjects() == 0) { |
| 15336 | Diag(DS.getStorageClassSpecLoc(), |
| 15337 | diag::err_invalid_storage_class_in_func_decl) |
| 15338 | << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); |
| 15339 | D.getMutableDeclSpec().ClearStorageClassSpecs(); |
| 15340 | } |
| 15341 | } else if (getLangOpts().CPlusPlus && |
| 15342 | DS.getStorageClassSpec() == DeclSpec::SCS_auto) { |
| 15343 | SC = SC_Auto; |
| 15344 | } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { |
| 15345 | Diag(DS.getStorageClassSpecLoc(), |
| 15346 | diag::err_invalid_storage_class_in_func_decl); |
| 15347 | D.getMutableDeclSpec().ClearStorageClassSpecs(); |
| 15348 | } |
| 15349 | |
| 15350 | if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) |
| 15351 | Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread) |
| 15352 | << DeclSpec::getSpecifierName(TSCS); |
| 15353 | if (DS.isInlineSpecified()) |
| 15354 | Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) |
| 15355 | << getLangOpts().CPlusPlus17; |
| 15356 | if (DS.hasConstexprSpecifier()) |
| 15357 | Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr) |
| 15358 | << 0 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier()); |
| 15359 | |
| 15360 | DiagnoseFunctionSpecifiers(DS); |
| 15361 | |
| 15362 | CheckFunctionOrTemplateParamDeclarator(S, D); |
| 15363 | |
| 15364 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D); |
| 15365 | QualType parmDeclType = TInfo->getType(); |
| 15366 | |
| 15367 | // Check for redeclaration of parameters, e.g. int foo(int x, int x); |
| 15368 | const IdentifierInfo *II = D.getIdentifier(); |
| 15369 | if (II) { |
| 15370 | LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName, |
| 15371 | RedeclarationKind::ForVisibleRedeclaration); |
| 15372 | LookupName(R, S); |
| 15373 | if (!R.empty()) { |
| 15374 | NamedDecl *PrevDecl = *R.begin(); |
| 15375 | if (R.isSingleResult() && PrevDecl->isTemplateParameter()) { |
| 15376 | // Maybe we will complain about the shadowed template parameter. |
| 15377 | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); |
| 15378 | // Just pretend that we didn't see the previous declaration. |
| 15379 | PrevDecl = nullptr; |
| 15380 | } |
| 15381 | if (PrevDecl && S->isDeclScope(PrevDecl)) { |
| 15382 | Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II; |
| 15383 | Diag(PrevDecl->getLocation(), diag::note_previous_declaration); |
| 15384 | // Recover by removing the name |
| 15385 | II = nullptr; |
| 15386 | D.SetIdentifier(Id: nullptr, IdLoc: D.getIdentifierLoc()); |
| 15387 | D.setInvalidType(true); |
| 15388 | } |
| 15389 | } |
| 15390 | } |
| 15391 | |
| 15392 | // Temporarily put parameter variables in the translation unit, not |
| 15393 | // the enclosing context. This prevents them from accidentally |
| 15394 | // looking like class members in C++. |
| 15395 | ParmVarDecl *New = |
| 15396 | CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(), |
| 15397 | D.getIdentifierLoc(), II, parmDeclType, TInfo, SC); |
| 15398 | |
| 15399 | if (D.isInvalidType()) |
| 15400 | New->setInvalidDecl(); |
| 15401 | |
| 15402 | CheckExplicitObjectParameter(S&: *this, P: New, ExplicitThisLoc); |
| 15403 | |
| 15404 | assert(S->isFunctionPrototypeScope()); |
| 15405 | assert(S->getFunctionPrototypeDepth() >= 1); |
| 15406 | New->setScopeInfo(scopeDepth: S->getFunctionPrototypeDepth() - 1, |
| 15407 | parameterIndex: S->getNextFunctionPrototypeIndex()); |
| 15408 | |
| 15409 | warnOnCTypeHiddenInCPlusPlus(New); |
| 15410 | |
| 15411 | // Add the parameter declaration into this scope. |
| 15412 | S->AddDecl(New); |
| 15413 | if (II) |
| 15414 | IdResolver.AddDecl(New); |
| 15415 | |
| 15416 | ProcessDeclAttributes(S, New, D); |
| 15417 | |
| 15418 | if (D.getDeclSpec().isModulePrivateSpecified()) |
| 15419 | Diag(New->getLocation(), diag::err_module_private_local) |
| 15420 | << 1 << New << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) |
| 15421 | << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); |
| 15422 | |
| 15423 | if (New->hasAttr<BlocksAttr>()) { |
| 15424 | Diag(New->getLocation(), diag::err_block_on_nonlocal); |
| 15425 | } |
| 15426 | |
| 15427 | if (getLangOpts().OpenCL) |
| 15428 | deduceOpenCLAddressSpace(New); |
| 15429 | |
| 15430 | return New; |
| 15431 | } |
| 15432 | |
| 15433 | ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC, |
| 15434 | SourceLocation Loc, |
| 15435 | QualType T) { |
| 15436 | /* FIXME: setting StartLoc == Loc. |
| 15437 | Would it be worth to modify callers so as to provide proper source |
| 15438 | location for the unnamed parameters, embedding the parameter's type? */ |
| 15439 | ParmVarDecl *Param = ParmVarDecl::Create(C&: Context, DC, StartLoc: Loc, IdLoc: Loc, Id: nullptr, |
| 15440 | T, TInfo: Context.getTrivialTypeSourceInfo(T, Loc), |
| 15441 | S: SC_None, DefArg: nullptr); |
| 15442 | Param->setImplicit(); |
| 15443 | return Param; |
| 15444 | } |
| 15445 | |
| 15446 | void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) { |
| 15447 | // Don't diagnose unused-parameter errors in template instantiations; we |
| 15448 | // will already have done so in the template itself. |
| 15449 | if (inTemplateInstantiation()) |
| 15450 | return; |
| 15451 | |
| 15452 | for (const ParmVarDecl *Parameter : Parameters) { |
| 15453 | if (!Parameter->isReferenced() && Parameter->getDeclName() && |
| 15454 | !Parameter->hasAttr<UnusedAttr>() && |
| 15455 | !Parameter->getIdentifier()->isPlaceholder()) { |
| 15456 | Diag(Parameter->getLocation(), diag::warn_unused_parameter) |
| 15457 | << Parameter->getDeclName(); |
| 15458 | } |
| 15459 | } |
| 15460 | } |
| 15461 | |
| 15462 | void Sema::DiagnoseSizeOfParametersAndReturnValue( |
| 15463 | ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) { |
| 15464 | if (LangOpts.NumLargeByValueCopy == 0) // No check. |
| 15465 | return; |
| 15466 | |
| 15467 | // Warn if the return value is pass-by-value and larger than the specified |
| 15468 | // threshold. |
| 15469 | if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) { |
| 15470 | unsigned Size = Context.getTypeSizeInChars(T: ReturnTy).getQuantity(); |
| 15471 | if (Size > LangOpts.NumLargeByValueCopy) |
| 15472 | Diag(D->getLocation(), diag::warn_return_value_size) << D << Size; |
| 15473 | } |
| 15474 | |
| 15475 | // Warn if any parameter is pass-by-value and larger than the specified |
| 15476 | // threshold. |
| 15477 | for (const ParmVarDecl *Parameter : Parameters) { |
| 15478 | QualType T = Parameter->getType(); |
| 15479 | if (T->isDependentType() || !T.isPODType(Context)) |
| 15480 | continue; |
| 15481 | unsigned Size = Context.getTypeSizeInChars(T).getQuantity(); |
| 15482 | if (Size > LangOpts.NumLargeByValueCopy) |
| 15483 | Diag(Parameter->getLocation(), diag::warn_parameter_size) |
| 15484 | << Parameter << Size; |
| 15485 | } |
| 15486 | } |
| 15487 | |
| 15488 | ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc, |
| 15489 | SourceLocation NameLoc, |
| 15490 | const IdentifierInfo *Name, QualType T, |
| 15491 | TypeSourceInfo *TSInfo, StorageClass SC) { |
| 15492 | // In ARC, infer a lifetime qualifier for appropriate parameter types. |
| 15493 | if (getLangOpts().ObjCAutoRefCount && |
| 15494 | T.getObjCLifetime() == Qualifiers::OCL_None && |
| 15495 | T->isObjCLifetimeType()) { |
| 15496 | |
| 15497 | Qualifiers::ObjCLifetime lifetime; |
| 15498 | |
| 15499 | // Special cases for arrays: |
| 15500 | // - if it's const, use __unsafe_unretained |
| 15501 | // - otherwise, it's an error |
| 15502 | if (T->isArrayType()) { |
| 15503 | if (!T.isConstQualified()) { |
| 15504 | if (DelayedDiagnostics.shouldDelayDiagnostics()) |
| 15505 | DelayedDiagnostics.add( |
| 15506 | sema::DelayedDiagnostic::makeForbiddenType( |
| 15507 | NameLoc, diag::err_arc_array_param_no_ownership, T, false)); |
| 15508 | else |
| 15509 | Diag(NameLoc, diag::err_arc_array_param_no_ownership) |
| 15510 | << TSInfo->getTypeLoc().getSourceRange(); |
| 15511 | } |
| 15512 | lifetime = Qualifiers::OCL_ExplicitNone; |
| 15513 | } else { |
| 15514 | lifetime = T->getObjCARCImplicitLifetime(); |
| 15515 | } |
| 15516 | T = Context.getLifetimeQualifiedType(type: T, lifetime); |
| 15517 | } |
| 15518 | |
| 15519 | ParmVarDecl *New = ParmVarDecl::Create(C&: Context, DC, StartLoc, IdLoc: NameLoc, Id: Name, |
| 15520 | T: Context.getAdjustedParameterType(T), |
| 15521 | TInfo: TSInfo, S: SC, DefArg: nullptr); |
| 15522 | |
| 15523 | // Make a note if we created a new pack in the scope of a lambda, so that |
| 15524 | // we know that references to that pack must also be expanded within the |
| 15525 | // lambda scope. |
| 15526 | if (New->isParameterPack()) |
| 15527 | if (auto *CSI = getEnclosingLambdaOrBlock()) |
| 15528 | CSI->LocalPacks.push_back(New); |
| 15529 | |
| 15530 | if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() || |
| 15531 | New->getType().hasNonTrivialToPrimitiveCopyCUnion()) |
| 15532 | checkNonTrivialCUnion(QT: New->getType(), Loc: New->getLocation(), |
| 15533 | UseContext: NonTrivialCUnionContext::FunctionParam, |
| 15534 | NonTrivialKind: NTCUK_Destruct | NTCUK_Copy); |
| 15535 | |
| 15536 | // Parameter declarators cannot be interface types. All ObjC objects are |
| 15537 | // passed by reference. |
| 15538 | if (T->isObjCObjectType()) { |
| 15539 | SourceLocation TypeEndLoc = |
| 15540 | getLocForEndOfToken(Loc: TSInfo->getTypeLoc().getEndLoc()); |
| 15541 | Diag(NameLoc, |
| 15542 | diag::err_object_cannot_be_passed_returned_by_value) << 1 << T |
| 15543 | << FixItHint::CreateInsertion(TypeEndLoc, "*" ); |
| 15544 | T = Context.getObjCObjectPointerType(OIT: T); |
| 15545 | New->setType(T); |
| 15546 | } |
| 15547 | |
| 15548 | // __ptrauth is forbidden on parameters. |
| 15549 | if (T.getPointerAuth()) { |
| 15550 | Diag(NameLoc, diag::err_ptrauth_qualifier_invalid) << T << 1; |
| 15551 | New->setInvalidDecl(); |
| 15552 | } |
| 15553 | |
| 15554 | // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage |
| 15555 | // duration shall not be qualified by an address-space qualifier." |
| 15556 | // Since all parameters have automatic store duration, they can not have |
| 15557 | // an address space. |
| 15558 | if (T.getAddressSpace() != LangAS::Default && |
| 15559 | // OpenCL allows function arguments declared to be an array of a type |
| 15560 | // to be qualified with an address space. |
| 15561 | !(getLangOpts().OpenCL && |
| 15562 | (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private)) && |
| 15563 | // WebAssembly allows reference types as parameters. Funcref in particular |
| 15564 | // lives in a different address space. |
| 15565 | !(T->isFunctionPointerType() && |
| 15566 | T.getAddressSpace() == LangAS::wasm_funcref)) { |
| 15567 | Diag(NameLoc, diag::err_arg_with_address_space); |
| 15568 | New->setInvalidDecl(); |
| 15569 | } |
| 15570 | |
| 15571 | // PPC MMA non-pointer types are not allowed as function argument types. |
| 15572 | if (Context.getTargetInfo().getTriple().isPPC64() && |
| 15573 | PPC().CheckPPCMMAType(Type: New->getOriginalType(), TypeLoc: New->getLocation())) { |
| 15574 | New->setInvalidDecl(); |
| 15575 | } |
| 15576 | |
| 15577 | return New; |
| 15578 | } |
| 15579 | |
| 15580 | void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D, |
| 15581 | SourceLocation LocAfterDecls) { |
| 15582 | DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); |
| 15583 | |
| 15584 | // C99 6.9.1p6 "If a declarator includes an identifier list, each declaration |
| 15585 | // in the declaration list shall have at least one declarator, those |
| 15586 | // declarators shall only declare identifiers from the identifier list, and |
| 15587 | // every identifier in the identifier list shall be declared. |
| 15588 | // |
| 15589 | // C89 3.7.1p5 "If a declarator includes an identifier list, only the |
| 15590 | // identifiers it names shall be declared in the declaration list." |
| 15591 | // |
| 15592 | // This is why we only diagnose in C99 and later. Note, the other conditions |
| 15593 | // listed are checked elsewhere. |
| 15594 | if (!FTI.hasPrototype) { |
| 15595 | for (int i = FTI.NumParams; i != 0; /* decrement in loop */) { |
| 15596 | --i; |
| 15597 | if (FTI.Params[i].Param == nullptr) { |
| 15598 | if (getLangOpts().C99) { |
| 15599 | SmallString<256> Code; |
| 15600 | llvm::raw_svector_ostream(Code) |
| 15601 | << " int " << FTI.Params[i].Ident->getName() << ";\n" ; |
| 15602 | Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared) |
| 15603 | << FTI.Params[i].Ident |
| 15604 | << FixItHint::CreateInsertion(LocAfterDecls, Code); |
| 15605 | } |
| 15606 | |
| 15607 | // Implicitly declare the argument as type 'int' for lack of a better |
| 15608 | // type. |
| 15609 | AttributeFactory attrs; |
| 15610 | DeclSpec DS(attrs); |
| 15611 | const char* PrevSpec; // unused |
| 15612 | unsigned DiagID; // unused |
| 15613 | DS.SetTypeSpecType(T: DeclSpec::TST_int, Loc: FTI.Params[i].IdentLoc, PrevSpec, |
| 15614 | DiagID, Policy: Context.getPrintingPolicy()); |
| 15615 | // Use the identifier location for the type source range. |
| 15616 | DS.SetRangeStart(FTI.Params[i].IdentLoc); |
| 15617 | DS.SetRangeEnd(FTI.Params[i].IdentLoc); |
| 15618 | Declarator ParamD(DS, ParsedAttributesView::none(), |
| 15619 | DeclaratorContext::KNRTypeList); |
| 15620 | ParamD.SetIdentifier(Id: FTI.Params[i].Ident, IdLoc: FTI.Params[i].IdentLoc); |
| 15621 | FTI.Params[i].Param = ActOnParamDeclarator(S, D&: ParamD); |
| 15622 | } |
| 15623 | } |
| 15624 | } |
| 15625 | } |
| 15626 | |
| 15627 | Decl * |
| 15628 | Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D, |
| 15629 | MultiTemplateParamsArg TemplateParameterLists, |
| 15630 | SkipBodyInfo *SkipBody, FnBodyKind BodyKind) { |
| 15631 | assert(getCurFunctionDecl() == nullptr && "Function parsing confused" ); |
| 15632 | assert(D.isFunctionDeclarator() && "Not a function declarator!" ); |
| 15633 | Scope *ParentScope = FnBodyScope->getParent(); |
| 15634 | |
| 15635 | // Check if we are in an `omp begin/end declare variant` scope. If we are, and |
| 15636 | // we define a non-templated function definition, we will create a declaration |
| 15637 | // instead (=BaseFD), and emit the definition with a mangled name afterwards. |
| 15638 | // The base function declaration will have the equivalent of an `omp declare |
| 15639 | // variant` annotation which specifies the mangled definition as a |
| 15640 | // specialization function under the OpenMP context defined as part of the |
| 15641 | // `omp begin declare variant`. |
| 15642 | SmallVector<FunctionDecl *, 4> Bases; |
| 15643 | if (LangOpts.OpenMP && OpenMP().isInOpenMPDeclareVariantScope()) |
| 15644 | OpenMP().ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope( |
| 15645 | S: ParentScope, D, TemplateParameterLists, Bases); |
| 15646 | |
| 15647 | D.setFunctionDefinitionKind(FunctionDefinitionKind::Definition); |
| 15648 | Decl *DP = HandleDeclarator(S: ParentScope, D, TemplateParamLists: TemplateParameterLists); |
| 15649 | Decl *Dcl = ActOnStartOfFunctionDef(S: FnBodyScope, D: DP, SkipBody, BodyKind); |
| 15650 | |
| 15651 | if (!Bases.empty()) |
| 15652 | OpenMP().ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(D: Dcl, |
| 15653 | Bases); |
| 15654 | |
| 15655 | return Dcl; |
| 15656 | } |
| 15657 | |
| 15658 | void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) { |
| 15659 | Consumer.HandleInlineFunctionDefinition(D); |
| 15660 | } |
| 15661 | |
| 15662 | static bool FindPossiblePrototype(const FunctionDecl *FD, |
| 15663 | const FunctionDecl *&PossiblePrototype) { |
| 15664 | for (const FunctionDecl *Prev = FD->getPreviousDecl(); Prev; |
| 15665 | Prev = Prev->getPreviousDecl()) { |
| 15666 | // Ignore any declarations that occur in function or method |
| 15667 | // scope, because they aren't visible from the header. |
| 15668 | if (Prev->getLexicalDeclContext()->isFunctionOrMethod()) |
| 15669 | continue; |
| 15670 | |
| 15671 | PossiblePrototype = Prev; |
| 15672 | return Prev->getType()->isFunctionProtoType(); |
| 15673 | } |
| 15674 | return false; |
| 15675 | } |
| 15676 | |
| 15677 | static bool |
| 15678 | ShouldWarnAboutMissingPrototype(const FunctionDecl *FD, |
| 15679 | const FunctionDecl *&PossiblePrototype) { |
| 15680 | // Don't warn about invalid declarations. |
| 15681 | if (FD->isInvalidDecl()) |
| 15682 | return false; |
| 15683 | |
| 15684 | // Or declarations that aren't global. |
| 15685 | if (!FD->isGlobal()) |
| 15686 | return false; |
| 15687 | |
| 15688 | // Don't warn about C++ member functions. |
| 15689 | if (isa<CXXMethodDecl>(Val: FD)) |
| 15690 | return false; |
| 15691 | |
| 15692 | // Don't warn about 'main'. |
| 15693 | if (isa<TranslationUnitDecl>(FD->getDeclContext()->getRedeclContext())) |
| 15694 | if (IdentifierInfo *II = FD->getIdentifier()) |
| 15695 | if (II->isStr(Str: "main" ) || II->isStr(Str: "efi_main" )) |
| 15696 | return false; |
| 15697 | |
| 15698 | if (FD->isMSVCRTEntryPoint()) |
| 15699 | return false; |
| 15700 | |
| 15701 | // Don't warn about inline functions. |
| 15702 | if (FD->isInlined()) |
| 15703 | return false; |
| 15704 | |
| 15705 | // Don't warn about function templates. |
| 15706 | if (FD->getDescribedFunctionTemplate()) |
| 15707 | return false; |
| 15708 | |
| 15709 | // Don't warn about function template specializations. |
| 15710 | if (FD->isFunctionTemplateSpecialization()) |
| 15711 | return false; |
| 15712 | |
| 15713 | // Don't warn for OpenCL kernels. |
| 15714 | if (FD->hasAttr<DeviceKernelAttr>()) |
| 15715 | return false; |
| 15716 | |
| 15717 | // Don't warn on explicitly deleted functions. |
| 15718 | if (FD->isDeleted()) |
| 15719 | return false; |
| 15720 | |
| 15721 | // Don't warn on implicitly local functions (such as having local-typed |
| 15722 | // parameters). |
| 15723 | if (!FD->isExternallyVisible()) |
| 15724 | return false; |
| 15725 | |
| 15726 | // If we were able to find a potential prototype, don't warn. |
| 15727 | if (FindPossiblePrototype(FD, PossiblePrototype)) |
| 15728 | return false; |
| 15729 | |
| 15730 | return true; |
| 15731 | } |
| 15732 | |
| 15733 | void |
| 15734 | Sema::CheckForFunctionRedefinition(FunctionDecl *FD, |
| 15735 | const FunctionDecl *EffectiveDefinition, |
| 15736 | SkipBodyInfo *SkipBody) { |
| 15737 | const FunctionDecl *Definition = EffectiveDefinition; |
| 15738 | if (!Definition && |
| 15739 | !FD->isDefined(Definition, /*CheckForPendingFriendDefinition*/ true)) |
| 15740 | return; |
| 15741 | |
| 15742 | if (Definition->getFriendObjectKind() != Decl::FOK_None) { |
| 15743 | if (FunctionDecl *OrigDef = Definition->getInstantiatedFromMemberFunction()) { |
| 15744 | if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) { |
| 15745 | // A merged copy of the same function, instantiated as a member of |
| 15746 | // the same class, is OK. |
| 15747 | if (declaresSameEntity(OrigFD, OrigDef) && |
| 15748 | declaresSameEntity(cast<Decl>(Definition->getLexicalDeclContext()), |
| 15749 | cast<Decl>(FD->getLexicalDeclContext()))) |
| 15750 | return; |
| 15751 | } |
| 15752 | } |
| 15753 | } |
| 15754 | |
| 15755 | if (canRedefineFunction(FD: Definition, LangOpts: getLangOpts())) |
| 15756 | return; |
| 15757 | |
| 15758 | // Don't emit an error when this is redefinition of a typo-corrected |
| 15759 | // definition. |
| 15760 | if (TypoCorrectedFunctionDefinitions.count(Definition)) |
| 15761 | return; |
| 15762 | |
| 15763 | // If we don't have a visible definition of the function, and it's inline or |
| 15764 | // a template, skip the new definition. |
| 15765 | if (SkipBody && !hasVisibleDefinition(Definition) && |
| 15766 | (Definition->getFormalLinkage() == Linkage::Internal || |
| 15767 | Definition->isInlined() || Definition->getDescribedFunctionTemplate() || |
| 15768 | Definition->getNumTemplateParameterLists())) { |
| 15769 | SkipBody->ShouldSkip = true; |
| 15770 | SkipBody->Previous = const_cast<FunctionDecl*>(Definition); |
| 15771 | if (auto *TD = Definition->getDescribedFunctionTemplate()) |
| 15772 | makeMergedDefinitionVisible(TD); |
| 15773 | makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition)); |
| 15774 | return; |
| 15775 | } |
| 15776 | |
| 15777 | if (getLangOpts().GNUMode && Definition->isInlineSpecified() && |
| 15778 | Definition->getStorageClass() == SC_Extern) |
| 15779 | Diag(FD->getLocation(), diag::err_redefinition_extern_inline) |
| 15780 | << FD << getLangOpts().CPlusPlus; |
| 15781 | else |
| 15782 | Diag(FD->getLocation(), diag::err_redefinition) << FD; |
| 15783 | |
| 15784 | Diag(Definition->getLocation(), diag::note_previous_definition); |
| 15785 | FD->setInvalidDecl(); |
| 15786 | } |
| 15787 | |
| 15788 | LambdaScopeInfo *Sema::RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator) { |
| 15789 | CXXRecordDecl *LambdaClass = CallOperator->getParent(); |
| 15790 | |
| 15791 | LambdaScopeInfo *LSI = PushLambdaScope(); |
| 15792 | LSI->CallOperator = CallOperator; |
| 15793 | LSI->Lambda = LambdaClass; |
| 15794 | LSI->ReturnType = CallOperator->getReturnType(); |
| 15795 | // When this function is called in situation where the context of the call |
| 15796 | // operator is not entered, we set AfterParameterList to false, so that |
| 15797 | // `tryCaptureVariable` finds explicit captures in the appropriate context. |
| 15798 | // There is also at least a situation as in FinishTemplateArgumentDeduction(), |
| 15799 | // where we would set the CurContext to the lambda operator before |
| 15800 | // substituting into it. In this case the flag needs to be true such that |
| 15801 | // tryCaptureVariable can correctly handle potential captures thereof. |
| 15802 | LSI->AfterParameterList = CurContext == CallOperator; |
| 15803 | |
| 15804 | // GLTemplateParameterList is necessary for getCurGenericLambda() which is |
| 15805 | // used at the point of dealing with potential captures. |
| 15806 | // |
| 15807 | // We don't use LambdaClass->isGenericLambda() because this value doesn't |
| 15808 | // flip for instantiated generic lambdas, where no FunctionTemplateDecls are |
| 15809 | // associated. (Technically, we could recover that list from their |
| 15810 | // instantiation patterns, but for now, the GLTemplateParameterList seems |
| 15811 | // unnecessary in these cases.) |
| 15812 | if (FunctionTemplateDecl *FTD = CallOperator->getDescribedFunctionTemplate()) |
| 15813 | LSI->GLTemplateParameterList = FTD->getTemplateParameters(); |
| 15814 | const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault(); |
| 15815 | |
| 15816 | if (LCD == LCD_None) |
| 15817 | LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None; |
| 15818 | else if (LCD == LCD_ByCopy) |
| 15819 | LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval; |
| 15820 | else if (LCD == LCD_ByRef) |
| 15821 | LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref; |
| 15822 | DeclarationNameInfo DNI = CallOperator->getNameInfo(); |
| 15823 | |
| 15824 | LSI->IntroducerRange = DNI.getCXXOperatorNameRange(); |
| 15825 | LSI->Mutable = !CallOperator->isConst(); |
| 15826 | if (CallOperator->isExplicitObjectMemberFunction()) |
| 15827 | LSI->ExplicitObjectParameter = CallOperator->getParamDecl(0); |
| 15828 | |
| 15829 | // Add the captures to the LSI so they can be noted as already |
| 15830 | // captured within tryCaptureVar. |
| 15831 | auto I = LambdaClass->field_begin(); |
| 15832 | for (const auto &C : LambdaClass->captures()) { |
| 15833 | if (C.capturesVariable()) { |
| 15834 | ValueDecl *VD = C.getCapturedVar(); |
| 15835 | if (VD->isInitCapture()) |
| 15836 | CurrentInstantiationScope->InstantiatedLocal(VD, VD); |
| 15837 | const bool ByRef = C.getCaptureKind() == LCK_ByRef; |
| 15838 | LSI->addCapture(Var: VD, /*IsBlock*/isBlock: false, isByref: ByRef, |
| 15839 | /*RefersToEnclosingVariableOrCapture*/isNested: true, Loc: C.getLocation(), |
| 15840 | /*EllipsisLoc*/C.isPackExpansion() |
| 15841 | ? C.getEllipsisLoc() : SourceLocation(), |
| 15842 | CaptureType: I->getType(), /*Invalid*/false); |
| 15843 | |
| 15844 | } else if (C.capturesThis()) { |
| 15845 | LSI->addThisCapture(/*Nested*/ isNested: false, Loc: C.getLocation(), CaptureType: I->getType(), |
| 15846 | ByCopy: C.getCaptureKind() == LCK_StarThis); |
| 15847 | } else { |
| 15848 | LSI->addVLATypeCapture(Loc: C.getLocation(), VLAType: I->getCapturedVLAType(), |
| 15849 | CaptureType: I->getType()); |
| 15850 | } |
| 15851 | ++I; |
| 15852 | } |
| 15853 | return LSI; |
| 15854 | } |
| 15855 | |
| 15856 | Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D, |
| 15857 | SkipBodyInfo *SkipBody, |
| 15858 | FnBodyKind BodyKind) { |
| 15859 | if (!D) { |
| 15860 | // Parsing the function declaration failed in some way. Push on a fake scope |
| 15861 | // anyway so we can try to parse the function body. |
| 15862 | PushFunctionScope(); |
| 15863 | PushExpressionEvaluationContext(NewContext: ExprEvalContexts.back().Context); |
| 15864 | return D; |
| 15865 | } |
| 15866 | |
| 15867 | FunctionDecl *FD = nullptr; |
| 15868 | |
| 15869 | if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Val: D)) |
| 15870 | FD = FunTmpl->getTemplatedDecl(); |
| 15871 | else |
| 15872 | FD = cast<FunctionDecl>(Val: D); |
| 15873 | |
| 15874 | // Do not push if it is a lambda because one is already pushed when building |
| 15875 | // the lambda in ActOnStartOfLambdaDefinition(). |
| 15876 | if (!isLambdaCallOperator(FD)) |
| 15877 | PushExpressionEvaluationContextForFunction(NewContext: ExprEvalContexts.back().Context, |
| 15878 | FD); |
| 15879 | |
| 15880 | // Check for defining attributes before the check for redefinition. |
| 15881 | if (const auto *Attr = FD->getAttr<AliasAttr>()) { |
| 15882 | Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0; |
| 15883 | FD->dropAttr<AliasAttr>(); |
| 15884 | FD->setInvalidDecl(); |
| 15885 | } |
| 15886 | if (const auto *Attr = FD->getAttr<IFuncAttr>()) { |
| 15887 | Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1; |
| 15888 | FD->dropAttr<IFuncAttr>(); |
| 15889 | FD->setInvalidDecl(); |
| 15890 | } |
| 15891 | if (const auto *Attr = FD->getAttr<TargetVersionAttr>()) { |
| 15892 | if (Context.getTargetInfo().getTriple().isAArch64() && |
| 15893 | !Context.getTargetInfo().hasFeature(Feature: "fmv" ) && |
| 15894 | !Attr->isDefaultVersion()) { |
| 15895 | // If function multi versioning disabled skip parsing function body |
| 15896 | // defined with non-default target_version attribute |
| 15897 | if (SkipBody) |
| 15898 | SkipBody->ShouldSkip = true; |
| 15899 | return nullptr; |
| 15900 | } |
| 15901 | } |
| 15902 | |
| 15903 | if (auto *Ctor = dyn_cast<CXXConstructorDecl>(Val: FD)) { |
| 15904 | if (Ctor->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && |
| 15905 | Ctor->isDefaultConstructor() && |
| 15906 | Context.getTargetInfo().getCXXABI().isMicrosoft()) { |
| 15907 | // If this is an MS ABI dllexport default constructor, instantiate any |
| 15908 | // default arguments. |
| 15909 | InstantiateDefaultCtorDefaultArgs(Ctor); |
| 15910 | } |
| 15911 | } |
| 15912 | |
| 15913 | // See if this is a redefinition. If 'will have body' (or similar) is already |
| 15914 | // set, then these checks were already performed when it was set. |
| 15915 | if (!FD->willHaveBody() && !FD->isLateTemplateParsed() && |
| 15916 | !FD->isThisDeclarationInstantiatedFromAFriendDefinition()) { |
| 15917 | CheckForFunctionRedefinition(FD, EffectiveDefinition: nullptr, SkipBody); |
| 15918 | |
| 15919 | // If we're skipping the body, we're done. Don't enter the scope. |
| 15920 | if (SkipBody && SkipBody->ShouldSkip) |
| 15921 | return D; |
| 15922 | } |
| 15923 | |
| 15924 | // Mark this function as "will have a body eventually". This lets users to |
| 15925 | // call e.g. isInlineDefinitionExternallyVisible while we're still parsing |
| 15926 | // this function. |
| 15927 | FD->setWillHaveBody(); |
| 15928 | |
| 15929 | // If we are instantiating a generic lambda call operator, push |
| 15930 | // a LambdaScopeInfo onto the function stack. But use the information |
| 15931 | // that's already been calculated (ActOnLambdaExpr) to prime the current |
| 15932 | // LambdaScopeInfo. |
| 15933 | // When the template operator is being specialized, the LambdaScopeInfo, |
| 15934 | // has to be properly restored so that tryCaptureVariable doesn't try |
| 15935 | // and capture any new variables. In addition when calculating potential |
| 15936 | // captures during transformation of nested lambdas, it is necessary to |
| 15937 | // have the LSI properly restored. |
| 15938 | if (isGenericLambdaCallOperatorSpecialization(FD)) { |
| 15939 | // C++2c 7.5.5.2p17 A member of a closure type shall not be explicitly |
| 15940 | // instantiated, explicitly specialized. |
| 15941 | if (FD->getTemplateSpecializationInfo() |
| 15942 | ->isExplicitInstantiationOrSpecialization()) { |
| 15943 | Diag(FD->getLocation(), diag::err_lambda_explicit_spec); |
| 15944 | FD->setInvalidDecl(); |
| 15945 | PushFunctionScope(); |
| 15946 | } else { |
| 15947 | assert(inTemplateInstantiation() && |
| 15948 | "There should be an active template instantiation on the stack " |
| 15949 | "when instantiating a generic lambda!" ); |
| 15950 | RebuildLambdaScopeInfo(CallOperator: cast<CXXMethodDecl>(Val: D)); |
| 15951 | } |
| 15952 | } else { |
| 15953 | // Enter a new function scope |
| 15954 | PushFunctionScope(); |
| 15955 | } |
| 15956 | |
| 15957 | // Builtin functions cannot be defined. |
| 15958 | if (unsigned BuiltinID = FD->getBuiltinID()) { |
| 15959 | if (!Context.BuiltinInfo.isPredefinedLibFunction(ID: BuiltinID) && |
| 15960 | !Context.BuiltinInfo.isPredefinedRuntimeFunction(ID: BuiltinID)) { |
| 15961 | Diag(FD->getLocation(), diag::err_builtin_definition) << FD; |
| 15962 | FD->setInvalidDecl(); |
| 15963 | } |
| 15964 | } |
| 15965 | |
| 15966 | // The return type of a function definition must be complete (C99 6.9.1p3). |
| 15967 | // C++23 [dcl.fct.def.general]/p2 |
| 15968 | // The type of [...] the return for a function definition |
| 15969 | // shall not be a (possibly cv-qualified) class type that is incomplete |
| 15970 | // or abstract within the function body unless the function is deleted. |
| 15971 | QualType ResultType = FD->getReturnType(); |
| 15972 | if (!ResultType->isDependentType() && !ResultType->isVoidType() && |
| 15973 | !FD->isInvalidDecl() && BodyKind != FnBodyKind::Delete && |
| 15974 | (RequireCompleteType(FD->getLocation(), ResultType, |
| 15975 | diag::err_func_def_incomplete_result) || |
| 15976 | RequireNonAbstractType(FD->getLocation(), FD->getReturnType(), |
| 15977 | diag::err_abstract_type_in_decl, |
| 15978 | AbstractReturnType))) |
| 15979 | FD->setInvalidDecl(); |
| 15980 | |
| 15981 | if (FnBodyScope) |
| 15982 | PushDeclContext(FnBodyScope, FD); |
| 15983 | |
| 15984 | // Check the validity of our function parameters |
| 15985 | if (BodyKind != FnBodyKind::Delete) |
| 15986 | CheckParmsForFunctionDef(Parameters: FD->parameters(), |
| 15987 | /*CheckParameterNames=*/true); |
| 15988 | |
| 15989 | // Add non-parameter declarations already in the function to the current |
| 15990 | // scope. |
| 15991 | if (FnBodyScope) { |
| 15992 | for (Decl *NPD : FD->decls()) { |
| 15993 | auto *NonParmDecl = dyn_cast<NamedDecl>(NPD); |
| 15994 | if (!NonParmDecl) |
| 15995 | continue; |
| 15996 | assert(!isa<ParmVarDecl>(NonParmDecl) && |
| 15997 | "parameters should not be in newly created FD yet" ); |
| 15998 | |
| 15999 | // If the decl has a name, make it accessible in the current scope. |
| 16000 | if (NonParmDecl->getDeclName()) |
| 16001 | PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false); |
| 16002 | |
| 16003 | // Similarly, dive into enums and fish their constants out, making them |
| 16004 | // accessible in this scope. |
| 16005 | if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) { |
| 16006 | for (auto *EI : ED->enumerators()) |
| 16007 | PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false); |
| 16008 | } |
| 16009 | } |
| 16010 | } |
| 16011 | |
| 16012 | // Introduce our parameters into the function scope |
| 16013 | for (auto *Param : FD->parameters()) { |
| 16014 | Param->setOwningFunction(FD); |
| 16015 | |
| 16016 | // If this has an identifier, add it to the scope stack. |
| 16017 | if (Param->getIdentifier() && FnBodyScope) { |
| 16018 | CheckShadow(FnBodyScope, Param); |
| 16019 | |
| 16020 | PushOnScopeChains(Param, FnBodyScope); |
| 16021 | } |
| 16022 | } |
| 16023 | |
| 16024 | // C++ [module.import/6] external definitions are not permitted in header |
| 16025 | // units. Deleted and Defaulted functions are implicitly inline (but the |
| 16026 | // inline state is not set at this point, so check the BodyKind explicitly). |
| 16027 | // FIXME: Consider an alternate location for the test where the inlined() |
| 16028 | // state is complete. |
| 16029 | if (getLangOpts().CPlusPlusModules && currentModuleIsHeaderUnit() && |
| 16030 | !FD->isInvalidDecl() && !FD->isInlined() && |
| 16031 | BodyKind != FnBodyKind::Delete && BodyKind != FnBodyKind::Default && |
| 16032 | FD->getFormalLinkage() == Linkage::External && !FD->isTemplated() && |
| 16033 | !FD->isTemplateInstantiation()) { |
| 16034 | assert(FD->isThisDeclarationADefinition()); |
| 16035 | Diag(FD->getLocation(), diag::err_extern_def_in_header_unit); |
| 16036 | FD->setInvalidDecl(); |
| 16037 | } |
| 16038 | |
| 16039 | // Ensure that the function's exception specification is instantiated. |
| 16040 | if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>()) |
| 16041 | ResolveExceptionSpec(Loc: D->getLocation(), FPT); |
| 16042 | |
| 16043 | // dllimport cannot be applied to non-inline function definitions. |
| 16044 | if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() && |
| 16045 | !FD->isTemplateInstantiation()) { |
| 16046 | assert(!FD->hasAttr<DLLExportAttr>()); |
| 16047 | Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition); |
| 16048 | FD->setInvalidDecl(); |
| 16049 | return D; |
| 16050 | } |
| 16051 | |
| 16052 | // Some function attributes (like OptimizeNoneAttr) need actions before |
| 16053 | // parsing body started. |
| 16054 | applyFunctionAttributesBeforeParsingBody(FD: D); |
| 16055 | |
| 16056 | // We want to attach documentation to original Decl (which might be |
| 16057 | // a function template). |
| 16058 | ActOnDocumentableDecl(D); |
| 16059 | if (getCurLexicalContext()->isObjCContainer() && |
| 16060 | getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl && |
| 16061 | getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation) |
| 16062 | Diag(FD->getLocation(), diag::warn_function_def_in_objc_container); |
| 16063 | |
| 16064 | maybeAddDeclWithEffects(D: FD); |
| 16065 | |
| 16066 | return D; |
| 16067 | } |
| 16068 | |
| 16069 | void Sema::applyFunctionAttributesBeforeParsingBody(Decl *FD) { |
| 16070 | if (!FD || FD->isInvalidDecl()) |
| 16071 | return; |
| 16072 | if (auto *TD = dyn_cast<FunctionTemplateDecl>(Val: FD)) |
| 16073 | FD = TD->getTemplatedDecl(); |
| 16074 | if (FD && FD->hasAttr<OptimizeNoneAttr>()) { |
| 16075 | FPOptionsOverride FPO; |
| 16076 | FPO.setDisallowOptimizations(); |
| 16077 | CurFPFeatures.applyChanges(FPO); |
| 16078 | FpPragmaStack.CurrentValue = |
| 16079 | CurFPFeatures.getChangesFrom(Base: FPOptions(LangOpts)); |
| 16080 | } |
| 16081 | } |
| 16082 | |
| 16083 | void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) { |
| 16084 | ReturnStmt **Returns = Scope->Returns.data(); |
| 16085 | |
| 16086 | for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) { |
| 16087 | if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) { |
| 16088 | if (!NRVOCandidate->isNRVOVariable()) { |
| 16089 | Diag(Returns[I]->getRetValue()->getExprLoc(), |
| 16090 | diag::warn_not_eliding_copy_on_return); |
| 16091 | Returns[I]->setNRVOCandidate(nullptr); |
| 16092 | } |
| 16093 | } |
| 16094 | } |
| 16095 | } |
| 16096 | |
| 16097 | bool Sema::canDelayFunctionBody(const Declarator &D) { |
| 16098 | // We can't delay parsing the body of a constexpr function template (yet). |
| 16099 | if (D.getDeclSpec().hasConstexprSpecifier()) |
| 16100 | return false; |
| 16101 | |
| 16102 | // We can't delay parsing the body of a function template with a deduced |
| 16103 | // return type (yet). |
| 16104 | if (D.getDeclSpec().hasAutoTypeSpec()) { |
| 16105 | // If the placeholder introduces a non-deduced trailing return type, |
| 16106 | // we can still delay parsing it. |
| 16107 | if (D.getNumTypeObjects()) { |
| 16108 | const auto &Outer = D.getTypeObject(i: D.getNumTypeObjects() - 1); |
| 16109 | if (Outer.Kind == DeclaratorChunk::Function && |
| 16110 | Outer.Fun.hasTrailingReturnType()) { |
| 16111 | QualType Ty = GetTypeFromParser(Ty: Outer.Fun.getTrailingReturnType()); |
| 16112 | return Ty.isNull() || !Ty->isUndeducedType(); |
| 16113 | } |
| 16114 | } |
| 16115 | return false; |
| 16116 | } |
| 16117 | |
| 16118 | return true; |
| 16119 | } |
| 16120 | |
| 16121 | bool Sema::canSkipFunctionBody(Decl *D) { |
| 16122 | // We cannot skip the body of a function (or function template) which is |
| 16123 | // constexpr, since we may need to evaluate its body in order to parse the |
| 16124 | // rest of the file. |
| 16125 | // We cannot skip the body of a function with an undeduced return type, |
| 16126 | // because any callers of that function need to know the type. |
| 16127 | if (const FunctionDecl *FD = D->getAsFunction()) { |
| 16128 | if (FD->isConstexpr()) |
| 16129 | return false; |
| 16130 | // We can't simply call Type::isUndeducedType here, because inside template |
| 16131 | // auto can be deduced to a dependent type, which is not considered |
| 16132 | // "undeduced". |
| 16133 | if (FD->getReturnType()->getContainedDeducedType()) |
| 16134 | return false; |
| 16135 | } |
| 16136 | return Consumer.shouldSkipFunctionBody(D); |
| 16137 | } |
| 16138 | |
| 16139 | Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) { |
| 16140 | if (!Decl) |
| 16141 | return nullptr; |
| 16142 | if (FunctionDecl *FD = Decl->getAsFunction()) |
| 16143 | FD->setHasSkippedBody(); |
| 16144 | else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Val: Decl)) |
| 16145 | MD->setHasSkippedBody(); |
| 16146 | return Decl; |
| 16147 | } |
| 16148 | |
| 16149 | Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) { |
| 16150 | return ActOnFinishFunctionBody(Decl: D, Body: BodyArg, /*IsInstantiation=*/false); |
| 16151 | } |
| 16152 | |
| 16153 | /// RAII object that pops an ExpressionEvaluationContext when exiting a function |
| 16154 | /// body. |
| 16155 | class ExitFunctionBodyRAII { |
| 16156 | public: |
| 16157 | ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {} |
| 16158 | ~ExitFunctionBodyRAII() { |
| 16159 | if (!IsLambda) |
| 16160 | S.PopExpressionEvaluationContext(); |
| 16161 | } |
| 16162 | |
| 16163 | private: |
| 16164 | Sema &S; |
| 16165 | bool IsLambda = false; |
| 16166 | }; |
| 16167 | |
| 16168 | static void diagnoseImplicitlyRetainedSelf(Sema &S) { |
| 16169 | llvm::DenseMap<const BlockDecl *, bool> EscapeInfo; |
| 16170 | |
| 16171 | auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) { |
| 16172 | auto [It, Inserted] = EscapeInfo.try_emplace(Key: BD); |
| 16173 | if (!Inserted) |
| 16174 | return It->second; |
| 16175 | |
| 16176 | bool R = false; |
| 16177 | const BlockDecl *CurBD = BD; |
| 16178 | |
| 16179 | do { |
| 16180 | R = !CurBD->doesNotEscape(); |
| 16181 | if (R) |
| 16182 | break; |
| 16183 | CurBD = CurBD->getParent()->getInnermostBlockDecl(); |
| 16184 | } while (CurBD); |
| 16185 | |
| 16186 | return It->second = R; |
| 16187 | }; |
| 16188 | |
| 16189 | // If the location where 'self' is implicitly retained is inside a escaping |
| 16190 | // block, emit a diagnostic. |
| 16191 | for (const std::pair<SourceLocation, const BlockDecl *> &P : |
| 16192 | S.ImplicitlyRetainedSelfLocs) |
| 16193 | if (IsOrNestedInEscapingBlock(P.second)) |
| 16194 | S.Diag(P.first, diag::warn_implicitly_retains_self) |
| 16195 | << FixItHint::CreateInsertion(P.first, "self->" ); |
| 16196 | } |
| 16197 | |
| 16198 | static bool methodHasName(const FunctionDecl *FD, StringRef Name) { |
| 16199 | return isa<CXXMethodDecl>(Val: FD) && FD->param_empty() && |
| 16200 | FD->getDeclName().isIdentifier() && FD->getName() == Name; |
| 16201 | } |
| 16202 | |
| 16203 | bool Sema::CanBeGetReturnObject(const FunctionDecl *FD) { |
| 16204 | return methodHasName(FD, Name: "get_return_object" ); |
| 16205 | } |
| 16206 | |
| 16207 | bool Sema::CanBeGetReturnTypeOnAllocFailure(const FunctionDecl *FD) { |
| 16208 | return FD->isStatic() && |
| 16209 | methodHasName(FD, Name: "get_return_object_on_allocation_failure" ); |
| 16210 | } |
| 16211 | |
| 16212 | void Sema::CheckCoroutineWrapper(FunctionDecl *FD) { |
| 16213 | RecordDecl *RD = FD->getReturnType()->getAsRecordDecl(); |
| 16214 | if (!RD || !RD->getUnderlyingDecl()->hasAttr<CoroReturnTypeAttr>()) |
| 16215 | return; |
| 16216 | // Allow some_promise_type::get_return_object(). |
| 16217 | if (CanBeGetReturnObject(FD) || CanBeGetReturnTypeOnAllocFailure(FD)) |
| 16218 | return; |
| 16219 | if (!FD->hasAttr<CoroWrapperAttr>()) |
| 16220 | Diag(FD->getLocation(), diag::err_coroutine_return_type) << RD; |
| 16221 | } |
| 16222 | |
| 16223 | Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body, |
| 16224 | bool IsInstantiation) { |
| 16225 | FunctionScopeInfo *FSI = getCurFunction(); |
| 16226 | FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr; |
| 16227 | |
| 16228 | if (FSI->UsesFPIntrin && FD && !FD->hasAttr<StrictFPAttr>()) |
| 16229 | FD->addAttr(StrictFPAttr::CreateImplicit(Context)); |
| 16230 | |
| 16231 | SourceLocation AnalysisLoc; |
| 16232 | if (Body) |
| 16233 | AnalysisLoc = Body->getEndLoc(); |
| 16234 | else if (FD) |
| 16235 | AnalysisLoc = FD->getEndLoc(); |
| 16236 | sema::AnalysisBasedWarnings::Policy WP = |
| 16237 | AnalysisWarnings.getPolicyInEffectAt(Loc: AnalysisLoc); |
| 16238 | sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr; |
| 16239 | |
| 16240 | // If we skip function body, we can't tell if a function is a coroutine. |
| 16241 | if (getLangOpts().Coroutines && FD && !FD->hasSkippedBody()) { |
| 16242 | if (FSI->isCoroutine()) |
| 16243 | CheckCompletedCoroutineBody(FD, Body); |
| 16244 | else |
| 16245 | CheckCoroutineWrapper(FD); |
| 16246 | } |
| 16247 | |
| 16248 | // Diagnose invalid SYCL kernel entry point function declarations |
| 16249 | // and build SYCLKernelCallStmts for valid ones. |
| 16250 | if (FD && !FD->isInvalidDecl() && FD->hasAttr<SYCLKernelEntryPointAttr>()) { |
| 16251 | SYCLKernelEntryPointAttr *SKEPAttr = |
| 16252 | FD->getAttr<SYCLKernelEntryPointAttr>(); |
| 16253 | if (FD->isDefaulted()) { |
| 16254 | Diag(SKEPAttr->getLocation(), diag::err_sycl_entry_point_invalid) |
| 16255 | << /*defaulted function*/ 3; |
| 16256 | SKEPAttr->setInvalidAttr(); |
| 16257 | } else if (FD->isDeleted()) { |
| 16258 | Diag(SKEPAttr->getLocation(), diag::err_sycl_entry_point_invalid) |
| 16259 | << /*deleted function*/ 2; |
| 16260 | SKEPAttr->setInvalidAttr(); |
| 16261 | } else if (FSI->isCoroutine()) { |
| 16262 | Diag(SKEPAttr->getLocation(), diag::err_sycl_entry_point_invalid) |
| 16263 | << /*coroutine*/ 7; |
| 16264 | SKEPAttr->setInvalidAttr(); |
| 16265 | } else if (Body && isa<CXXTryStmt>(Val: Body)) { |
| 16266 | Diag(SKEPAttr->getLocation(), diag::err_sycl_entry_point_invalid) |
| 16267 | << /*function defined with a function try block*/ 8; |
| 16268 | SKEPAttr->setInvalidAttr(); |
| 16269 | } |
| 16270 | |
| 16271 | if (Body && !FD->isTemplated() && !SKEPAttr->isInvalidAttr()) { |
| 16272 | StmtResult SR = |
| 16273 | SYCL().BuildSYCLKernelCallStmt(FD, Body: cast<CompoundStmt>(Val: Body)); |
| 16274 | if (SR.isInvalid()) |
| 16275 | return nullptr; |
| 16276 | Body = SR.get(); |
| 16277 | } |
| 16278 | } |
| 16279 | |
| 16280 | { |
| 16281 | // Do not call PopExpressionEvaluationContext() if it is a lambda because |
| 16282 | // one is already popped when finishing the lambda in BuildLambdaExpr(). |
| 16283 | // This is meant to pop the context added in ActOnStartOfFunctionDef(). |
| 16284 | ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD)); |
| 16285 | if (FD) { |
| 16286 | // The function body and the DefaultedOrDeletedInfo, if present, use |
| 16287 | // the same storage; don't overwrite the latter if the former is null |
| 16288 | // (the body is initialised to null anyway, so even if the latter isn't |
| 16289 | // present, this would still be a no-op). |
| 16290 | if (Body) |
| 16291 | FD->setBody(Body); |
| 16292 | FD->setWillHaveBody(false); |
| 16293 | |
| 16294 | if (getLangOpts().CPlusPlus14) { |
| 16295 | if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() && |
| 16296 | FD->getReturnType()->isUndeducedType()) { |
| 16297 | // For a function with a deduced result type to return void, |
| 16298 | // the result type as written must be 'auto' or 'decltype(auto)', |
| 16299 | // possibly cv-qualified or constrained, but not ref-qualified. |
| 16300 | if (!FD->getReturnType()->getAs<AutoType>()) { |
| 16301 | Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto) |
| 16302 | << FD->getReturnType(); |
| 16303 | FD->setInvalidDecl(); |
| 16304 | } else { |
| 16305 | // Falling off the end of the function is the same as 'return;'. |
| 16306 | Expr *Dummy = nullptr; |
| 16307 | if (DeduceFunctionTypeFromReturnExpr( |
| 16308 | FD, ReturnLoc: dcl->getLocation(), RetExpr: Dummy, |
| 16309 | AT: FD->getReturnType()->getAs<AutoType>())) |
| 16310 | FD->setInvalidDecl(); |
| 16311 | } |
| 16312 | } |
| 16313 | } else if (getLangOpts().CPlusPlus && isLambdaCallOperator(FD)) { |
| 16314 | // In C++11, we don't use 'auto' deduction rules for lambda call |
| 16315 | // operators because we don't support return type deduction. |
| 16316 | auto *LSI = getCurLambda(); |
| 16317 | if (LSI->HasImplicitReturnType) { |
| 16318 | deduceClosureReturnType(*LSI); |
| 16319 | |
| 16320 | // C++11 [expr.prim.lambda]p4: |
| 16321 | // [...] if there are no return statements in the compound-statement |
| 16322 | // [the deduced type is] the type void |
| 16323 | QualType RetType = |
| 16324 | LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType; |
| 16325 | |
| 16326 | // Update the return type to the deduced type. |
| 16327 | const auto *Proto = FD->getType()->castAs<FunctionProtoType>(); |
| 16328 | FD->setType(Context.getFunctionType(ResultTy: RetType, Args: Proto->getParamTypes(), |
| 16329 | EPI: Proto->getExtProtoInfo())); |
| 16330 | } |
| 16331 | } |
| 16332 | |
| 16333 | // If the function implicitly returns zero (like 'main') or is naked, |
| 16334 | // don't complain about missing return statements. |
| 16335 | // Clang implicitly returns 0 in C89 mode, but that's considered an |
| 16336 | // extension. The check is necessary to ensure the expected extension |
| 16337 | // warning is emitted in C89 mode. |
| 16338 | if ((FD->hasImplicitReturnZero() && |
| 16339 | (getLangOpts().CPlusPlus || getLangOpts().C99 || !FD->isMain())) || |
| 16340 | FD->hasAttr<NakedAttr>()) |
| 16341 | WP.disableCheckFallThrough(); |
| 16342 | |
| 16343 | // MSVC permits the use of pure specifier (=0) on function definition, |
| 16344 | // defined at class scope, warn about this non-standard construct. |
| 16345 | if (getLangOpts().MicrosoftExt && FD->isPureVirtual() && |
| 16346 | !FD->isOutOfLine()) |
| 16347 | Diag(FD->getLocation(), diag::ext_pure_function_definition); |
| 16348 | |
| 16349 | if (!FD->isInvalidDecl()) { |
| 16350 | // Don't diagnose unused parameters of defaulted, deleted or naked |
| 16351 | // functions. |
| 16352 | if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody() && |
| 16353 | !FD->hasAttr<NakedAttr>()) |
| 16354 | DiagnoseUnusedParameters(Parameters: FD->parameters()); |
| 16355 | DiagnoseSizeOfParametersAndReturnValue(FD->parameters(), |
| 16356 | FD->getReturnType(), FD); |
| 16357 | |
| 16358 | // If this is a structor, we need a vtable. |
| 16359 | if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Val: FD)) |
| 16360 | MarkVTableUsed(Loc: FD->getLocation(), Class: Constructor->getParent()); |
| 16361 | else if (CXXDestructorDecl *Destructor = |
| 16362 | dyn_cast<CXXDestructorDecl>(Val: FD)) |
| 16363 | MarkVTableUsed(Loc: FD->getLocation(), Class: Destructor->getParent()); |
| 16364 | |
| 16365 | // Try to apply the named return value optimization. We have to check |
| 16366 | // if we can do this here because lambdas keep return statements around |
| 16367 | // to deduce an implicit return type. |
| 16368 | if (FD->getReturnType()->isRecordType() && |
| 16369 | (!getLangOpts().CPlusPlus || !FD->isDependentContext())) |
| 16370 | computeNRVO(Body, Scope: FSI); |
| 16371 | } |
| 16372 | |
| 16373 | // GNU warning -Wmissing-prototypes: |
| 16374 | // Warn if a global function is defined without a previous |
| 16375 | // prototype declaration. This warning is issued even if the |
| 16376 | // definition itself provides a prototype. The aim is to detect |
| 16377 | // global functions that fail to be declared in header files. |
| 16378 | const FunctionDecl *PossiblePrototype = nullptr; |
| 16379 | if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) { |
| 16380 | Diag(FD->getLocation(), diag::warn_missing_prototype) << FD; |
| 16381 | |
| 16382 | if (PossiblePrototype) { |
| 16383 | // We found a declaration that is not a prototype, |
| 16384 | // but that could be a zero-parameter prototype |
| 16385 | if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) { |
| 16386 | TypeLoc TL = TI->getTypeLoc(); |
| 16387 | if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>()) |
| 16388 | Diag(PossiblePrototype->getLocation(), |
| 16389 | diag::note_declaration_not_a_prototype) |
| 16390 | << (FD->getNumParams() != 0) |
| 16391 | << (FD->getNumParams() == 0 ? FixItHint::CreateInsertion( |
| 16392 | FTL.getRParenLoc(), "void" ) |
| 16393 | : FixItHint{}); |
| 16394 | } |
| 16395 | } else { |
| 16396 | // Returns true if the token beginning at this Loc is `const`. |
| 16397 | auto isLocAtConst = [&](SourceLocation Loc, const SourceManager &SM, |
| 16398 | const LangOptions &LangOpts) { |
| 16399 | std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc); |
| 16400 | if (LocInfo.first.isInvalid()) |
| 16401 | return false; |
| 16402 | |
| 16403 | bool Invalid = false; |
| 16404 | StringRef Buffer = SM.getBufferData(FID: LocInfo.first, Invalid: &Invalid); |
| 16405 | if (Invalid) |
| 16406 | return false; |
| 16407 | |
| 16408 | if (LocInfo.second > Buffer.size()) |
| 16409 | return false; |
| 16410 | |
| 16411 | const char *LexStart = Buffer.data() + LocInfo.second; |
| 16412 | StringRef StartTok(LexStart, Buffer.size() - LocInfo.second); |
| 16413 | |
| 16414 | return StartTok.consume_front(Prefix: "const" ) && |
| 16415 | (StartTok.empty() || isWhitespace(c: StartTok[0]) || |
| 16416 | StartTok.starts_with(Prefix: "/*" ) || StartTok.starts_with(Prefix: "//" )); |
| 16417 | }; |
| 16418 | |
| 16419 | auto findBeginLoc = [&]() { |
| 16420 | // If the return type has `const` qualifier, we want to insert |
| 16421 | // `static` before `const` (and not before the typename). |
| 16422 | if ((FD->getReturnType()->isAnyPointerType() && |
| 16423 | FD->getReturnType()->getPointeeType().isConstQualified()) || |
| 16424 | FD->getReturnType().isConstQualified()) { |
| 16425 | // But only do this if we can determine where the `const` is. |
| 16426 | |
| 16427 | if (isLocAtConst(FD->getBeginLoc(), getSourceManager(), |
| 16428 | getLangOpts())) |
| 16429 | |
| 16430 | return FD->getBeginLoc(); |
| 16431 | } |
| 16432 | return FD->getTypeSpecStartLoc(); |
| 16433 | }; |
| 16434 | Diag(FD->getTypeSpecStartLoc(), |
| 16435 | diag::note_static_for_internal_linkage) |
| 16436 | << /* function */ 1 |
| 16437 | << (FD->getStorageClass() == SC_None |
| 16438 | ? FixItHint::CreateInsertion(findBeginLoc(), "static " ) |
| 16439 | : FixItHint{}); |
| 16440 | } |
| 16441 | } |
| 16442 | |
| 16443 | // We might not have found a prototype because we didn't wish to warn on |
| 16444 | // the lack of a missing prototype. Try again without the checks for |
| 16445 | // whether we want to warn on the missing prototype. |
| 16446 | if (!PossiblePrototype) |
| 16447 | (void)FindPossiblePrototype(FD, PossiblePrototype); |
| 16448 | |
| 16449 | // If the function being defined does not have a prototype, then we may |
| 16450 | // need to diagnose it as changing behavior in C23 because we now know |
| 16451 | // whether the function accepts arguments or not. This only handles the |
| 16452 | // case where the definition has no prototype but does have parameters |
| 16453 | // and either there is no previous potential prototype, or the previous |
| 16454 | // potential prototype also has no actual prototype. This handles cases |
| 16455 | // like: |
| 16456 | // void f(); void f(a) int a; {} |
| 16457 | // void g(a) int a; {} |
| 16458 | // See MergeFunctionDecl() for other cases of the behavior change |
| 16459 | // diagnostic. See GetFullTypeForDeclarator() for handling of a function |
| 16460 | // type without a prototype. |
| 16461 | if (!FD->hasWrittenPrototype() && FD->getNumParams() != 0 && |
| 16462 | (!PossiblePrototype || (!PossiblePrototype->hasWrittenPrototype() && |
| 16463 | !PossiblePrototype->isImplicit()))) { |
| 16464 | // The function definition has parameters, so this will change behavior |
| 16465 | // in C23. If there is a possible prototype, it comes before the |
| 16466 | // function definition. |
| 16467 | // FIXME: The declaration may have already been diagnosed as being |
| 16468 | // deprecated in GetFullTypeForDeclarator() if it had no arguments, but |
| 16469 | // there's no way to test for the "changes behavior" condition in |
| 16470 | // SemaType.cpp when forming the declaration's function type. So, we do |
| 16471 | // this awkward dance instead. |
| 16472 | // |
| 16473 | // If we have a possible prototype and it declares a function with a |
| 16474 | // prototype, we don't want to diagnose it; if we have a possible |
| 16475 | // prototype and it has no prototype, it may have already been |
| 16476 | // diagnosed in SemaType.cpp as deprecated depending on whether |
| 16477 | // -Wstrict-prototypes is enabled. If we already warned about it being |
| 16478 | // deprecated, add a note that it also changes behavior. If we didn't |
| 16479 | // warn about it being deprecated (because the diagnostic is not |
| 16480 | // enabled), warn now that it is deprecated and changes behavior. |
| 16481 | |
| 16482 | // This K&R C function definition definitely changes behavior in C23, |
| 16483 | // so diagnose it. |
| 16484 | Diag(FD->getLocation(), diag::warn_non_prototype_changes_behavior) |
| 16485 | << /*definition*/ 1 << /* not supported in C23 */ 0; |
| 16486 | |
| 16487 | // If we have a possible prototype for the function which is a user- |
| 16488 | // visible declaration, we already tested that it has no prototype. |
| 16489 | // This will change behavior in C23. This gets a warning rather than a |
| 16490 | // note because it's the same behavior-changing problem as with the |
| 16491 | // definition. |
| 16492 | if (PossiblePrototype) |
| 16493 | Diag(PossiblePrototype->getLocation(), |
| 16494 | diag::warn_non_prototype_changes_behavior) |
| 16495 | << /*declaration*/ 0 << /* conflicting */ 1 << /*subsequent*/ 1 |
| 16496 | << /*definition*/ 1; |
| 16497 | } |
| 16498 | |
| 16499 | // Warn on CPUDispatch with an actual body. |
| 16500 | if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body) |
| 16501 | if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body)) |
| 16502 | if (!CmpndBody->body_empty()) |
| 16503 | Diag(CmpndBody->body_front()->getBeginLoc(), |
| 16504 | diag::warn_dispatch_body_ignored); |
| 16505 | |
| 16506 | if (auto *MD = dyn_cast<CXXMethodDecl>(Val: FD)) { |
| 16507 | const CXXMethodDecl *KeyFunction; |
| 16508 | if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) && |
| 16509 | MD->isVirtual() && |
| 16510 | (KeyFunction = Context.getCurrentKeyFunction(RD: MD->getParent())) && |
| 16511 | MD == KeyFunction->getCanonicalDecl()) { |
| 16512 | // Update the key-function state if necessary for this ABI. |
| 16513 | if (FD->isInlined() && |
| 16514 | !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { |
| 16515 | Context.setNonKeyFunction(MD); |
| 16516 | |
| 16517 | // If the newly-chosen key function is already defined, then we |
| 16518 | // need to mark the vtable as used retroactively. |
| 16519 | KeyFunction = Context.getCurrentKeyFunction(RD: MD->getParent()); |
| 16520 | const FunctionDecl *Definition; |
| 16521 | if (KeyFunction && KeyFunction->isDefined(Definition)) |
| 16522 | MarkVTableUsed(Loc: Definition->getLocation(), Class: MD->getParent(), DefinitionRequired: true); |
| 16523 | } else { |
| 16524 | // We just defined they key function; mark the vtable as used. |
| 16525 | MarkVTableUsed(Loc: FD->getLocation(), Class: MD->getParent(), DefinitionRequired: true); |
| 16526 | } |
| 16527 | } |
| 16528 | } |
| 16529 | |
| 16530 | assert((FD == getCurFunctionDecl(/*AllowLambdas=*/true)) && |
| 16531 | "Function parsing confused" ); |
| 16532 | } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Val: dcl)) { |
| 16533 | assert(MD == getCurMethodDecl() && "Method parsing confused" ); |
| 16534 | MD->setBody(Body); |
| 16535 | if (!MD->isInvalidDecl()) { |
| 16536 | DiagnoseSizeOfParametersAndReturnValue(MD->parameters(), |
| 16537 | MD->getReturnType(), MD); |
| 16538 | |
| 16539 | if (Body) |
| 16540 | computeNRVO(Body, Scope: FSI); |
| 16541 | } |
| 16542 | if (FSI->ObjCShouldCallSuper) { |
| 16543 | Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call) |
| 16544 | << MD->getSelector().getAsString(); |
| 16545 | FSI->ObjCShouldCallSuper = false; |
| 16546 | } |
| 16547 | if (FSI->ObjCWarnForNoDesignatedInitChain) { |
| 16548 | const ObjCMethodDecl *InitMethod = nullptr; |
| 16549 | bool isDesignated = |
| 16550 | MD->isDesignatedInitializerForTheInterface(InitMethod: &InitMethod); |
| 16551 | assert(isDesignated && InitMethod); |
| 16552 | (void)isDesignated; |
| 16553 | |
| 16554 | auto superIsNSObject = [&](const ObjCMethodDecl *MD) { |
| 16555 | auto IFace = MD->getClassInterface(); |
| 16556 | if (!IFace) |
| 16557 | return false; |
| 16558 | auto SuperD = IFace->getSuperClass(); |
| 16559 | if (!SuperD) |
| 16560 | return false; |
| 16561 | return SuperD->getIdentifier() == |
| 16562 | ObjC().NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject); |
| 16563 | }; |
| 16564 | // Don't issue this warning for unavailable inits or direct subclasses |
| 16565 | // of NSObject. |
| 16566 | if (!MD->isUnavailable() && !superIsNSObject(MD)) { |
| 16567 | Diag(MD->getLocation(), |
| 16568 | diag::warn_objc_designated_init_missing_super_call); |
| 16569 | Diag(InitMethod->getLocation(), |
| 16570 | diag::note_objc_designated_init_marked_here); |
| 16571 | } |
| 16572 | FSI->ObjCWarnForNoDesignatedInitChain = false; |
| 16573 | } |
| 16574 | if (FSI->ObjCWarnForNoInitDelegation) { |
| 16575 | // Don't issue this warning for unavailable inits. |
| 16576 | if (!MD->isUnavailable()) |
| 16577 | Diag(MD->getLocation(), |
| 16578 | diag::warn_objc_secondary_init_missing_init_call); |
| 16579 | FSI->ObjCWarnForNoInitDelegation = false; |
| 16580 | } |
| 16581 | |
| 16582 | diagnoseImplicitlyRetainedSelf(S&: *this); |
| 16583 | } else { |
| 16584 | // Parsing the function declaration failed in some way. Pop the fake scope |
| 16585 | // we pushed on. |
| 16586 | PopFunctionScopeInfo(WP: ActivePolicy, D: dcl); |
| 16587 | return nullptr; |
| 16588 | } |
| 16589 | |
| 16590 | if (Body && FSI->HasPotentialAvailabilityViolations) |
| 16591 | DiagnoseUnguardedAvailabilityViolations(FD: dcl); |
| 16592 | |
| 16593 | assert(!FSI->ObjCShouldCallSuper && |
| 16594 | "This should only be set for ObjC methods, which should have been " |
| 16595 | "handled in the block above." ); |
| 16596 | |
| 16597 | // Verify and clean out per-function state. |
| 16598 | if (Body && (!FD || !FD->isDefaulted())) { |
| 16599 | // C++ constructors that have function-try-blocks can't have return |
| 16600 | // statements in the handlers of that block. (C++ [except.handle]p14) |
| 16601 | // Verify this. |
| 16602 | if (FD && isa<CXXConstructorDecl>(Val: FD) && isa<CXXTryStmt>(Val: Body)) |
| 16603 | DiagnoseReturnInConstructorExceptionHandler(TryBlock: cast<CXXTryStmt>(Val: Body)); |
| 16604 | |
| 16605 | // Verify that gotos and switch cases don't jump into scopes illegally. |
| 16606 | if (FSI->NeedsScopeChecking() && !PP.isCodeCompletionEnabled()) |
| 16607 | DiagnoseInvalidJumps(Body); |
| 16608 | |
| 16609 | if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(Val: dcl)) { |
| 16610 | if (!Destructor->getParent()->isDependentType()) |
| 16611 | CheckDestructor(Destructor); |
| 16612 | |
| 16613 | MarkBaseAndMemberDestructorsReferenced(Loc: Destructor->getLocation(), |
| 16614 | Record: Destructor->getParent()); |
| 16615 | } |
| 16616 | |
| 16617 | // If any errors have occurred, clear out any temporaries that may have |
| 16618 | // been leftover. This ensures that these temporaries won't be picked up |
| 16619 | // for deletion in some later function. |
| 16620 | if (hasUncompilableErrorOccurred() || |
| 16621 | hasAnyUnrecoverableErrorsInThisFunction() || |
| 16622 | getDiagnostics().getSuppressAllDiagnostics()) { |
| 16623 | DiscardCleanupsInEvaluationContext(); |
| 16624 | } |
| 16625 | if (!hasUncompilableErrorOccurred() && !isa<FunctionTemplateDecl>(Val: dcl)) { |
| 16626 | // Since the body is valid, issue any analysis-based warnings that are |
| 16627 | // enabled. |
| 16628 | ActivePolicy = &WP; |
| 16629 | } |
| 16630 | |
| 16631 | if (!IsInstantiation && FD && |
| 16632 | (FD->isConstexpr() || FD->hasAttr<MSConstexprAttr>()) && |
| 16633 | !FD->isInvalidDecl() && |
| 16634 | !CheckConstexprFunctionDefinition(FD, CheckConstexprKind::Diagnose)) |
| 16635 | FD->setInvalidDecl(); |
| 16636 | |
| 16637 | if (FD && FD->hasAttr<NakedAttr>()) { |
| 16638 | for (const Stmt *S : Body->children()) { |
| 16639 | // Allow local register variables without initializer as they don't |
| 16640 | // require prologue. |
| 16641 | bool RegisterVariables = false; |
| 16642 | if (auto *DS = dyn_cast<DeclStmt>(Val: S)) { |
| 16643 | for (const auto *Decl : DS->decls()) { |
| 16644 | if (const auto *Var = dyn_cast<VarDecl>(Val: Decl)) { |
| 16645 | RegisterVariables = |
| 16646 | Var->hasAttr<AsmLabelAttr>() && !Var->hasInit(); |
| 16647 | if (!RegisterVariables) |
| 16648 | break; |
| 16649 | } |
| 16650 | } |
| 16651 | } |
| 16652 | if (RegisterVariables) |
| 16653 | continue; |
| 16654 | if (!isa<AsmStmt>(Val: S) && !isa<NullStmt>(Val: S)) { |
| 16655 | Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function); |
| 16656 | Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); |
| 16657 | FD->setInvalidDecl(); |
| 16658 | break; |
| 16659 | } |
| 16660 | } |
| 16661 | } |
| 16662 | |
| 16663 | assert(ExprCleanupObjects.size() == |
| 16664 | ExprEvalContexts.back().NumCleanupObjects && |
| 16665 | "Leftover temporaries in function" ); |
| 16666 | assert(!Cleanup.exprNeedsCleanups() && |
| 16667 | "Unaccounted cleanups in function" ); |
| 16668 | assert(MaybeODRUseExprs.empty() && |
| 16669 | "Leftover expressions for odr-use checking" ); |
| 16670 | } |
| 16671 | } // Pops the ExitFunctionBodyRAII scope, which needs to happen before we pop |
| 16672 | // the declaration context below. Otherwise, we're unable to transform |
| 16673 | // 'this' expressions when transforming immediate context functions. |
| 16674 | |
| 16675 | if (FD) |
| 16676 | CheckImmediateEscalatingFunctionDefinition(FD, FSI: getCurFunction()); |
| 16677 | |
| 16678 | if (!IsInstantiation) |
| 16679 | PopDeclContext(); |
| 16680 | |
| 16681 | PopFunctionScopeInfo(WP: ActivePolicy, D: dcl); |
| 16682 | // If any errors have occurred, clear out any temporaries that may have |
| 16683 | // been leftover. This ensures that these temporaries won't be picked up for |
| 16684 | // deletion in some later function. |
| 16685 | if (hasUncompilableErrorOccurred()) { |
| 16686 | DiscardCleanupsInEvaluationContext(); |
| 16687 | } |
| 16688 | |
| 16689 | if (FD && (LangOpts.isTargetDevice() || LangOpts.CUDA || |
| 16690 | (LangOpts.OpenMP && !LangOpts.OMPTargetTriples.empty()))) { |
| 16691 | auto ES = getEmissionStatus(Decl: FD); |
| 16692 | if (ES == Sema::FunctionEmissionStatus::Emitted || |
| 16693 | ES == Sema::FunctionEmissionStatus::Unknown) |
| 16694 | DeclsToCheckForDeferredDiags.insert(FD); |
| 16695 | } |
| 16696 | |
| 16697 | if (FD && !FD->isDeleted()) |
| 16698 | checkTypeSupport(Ty: FD->getType(), Loc: FD->getLocation(), D: FD); |
| 16699 | |
| 16700 | return dcl; |
| 16701 | } |
| 16702 | |
| 16703 | /// When we finish delayed parsing of an attribute, we must attach it to the |
| 16704 | /// relevant Decl. |
| 16705 | void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D, |
| 16706 | ParsedAttributes &Attrs) { |
| 16707 | // Always attach attributes to the underlying decl. |
| 16708 | if (TemplateDecl *TD = dyn_cast<TemplateDecl>(Val: D)) |
| 16709 | D = TD->getTemplatedDecl(); |
| 16710 | ProcessDeclAttributeList(S, D, AttrList: Attrs); |
| 16711 | ProcessAPINotes(D); |
| 16712 | |
| 16713 | if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(Val: D)) |
| 16714 | if (Method->isStatic()) |
| 16715 | checkThisInStaticMemberFunctionAttributes(Method); |
| 16716 | } |
| 16717 | |
| 16718 | NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, |
| 16719 | IdentifierInfo &II, Scope *S) { |
| 16720 | // It is not valid to implicitly define a function in C23. |
| 16721 | assert(LangOpts.implicitFunctionsAllowed() && |
| 16722 | "Implicit function declarations aren't allowed in this language mode" ); |
| 16723 | |
| 16724 | // Find the scope in which the identifier is injected and the corresponding |
| 16725 | // DeclContext. |
| 16726 | // FIXME: C89 does not say what happens if there is no enclosing block scope. |
| 16727 | // In that case, we inject the declaration into the translation unit scope |
| 16728 | // instead. |
| 16729 | Scope *BlockScope = S; |
| 16730 | while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent()) |
| 16731 | BlockScope = BlockScope->getParent(); |
| 16732 | |
| 16733 | // Loop until we find a DeclContext that is either a function/method or the |
| 16734 | // translation unit, which are the only two valid places to implicitly define |
| 16735 | // a function. This avoids accidentally defining the function within a tag |
| 16736 | // declaration, for example. |
| 16737 | Scope *ContextScope = BlockScope; |
| 16738 | while (!ContextScope->getEntity() || |
| 16739 | (!ContextScope->getEntity()->isFunctionOrMethod() && |
| 16740 | !ContextScope->getEntity()->isTranslationUnit())) |
| 16741 | ContextScope = ContextScope->getParent(); |
| 16742 | ContextRAII SavedContext(*this, ContextScope->getEntity()); |
| 16743 | |
| 16744 | // Before we produce a declaration for an implicitly defined |
| 16745 | // function, see whether there was a locally-scoped declaration of |
| 16746 | // this name as a function or variable. If so, use that |
| 16747 | // (non-visible) declaration, and complain about it. |
| 16748 | NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(Name: &II); |
| 16749 | if (ExternCPrev) { |
| 16750 | // We still need to inject the function into the enclosing block scope so |
| 16751 | // that later (non-call) uses can see it. |
| 16752 | PushOnScopeChains(D: ExternCPrev, S: BlockScope, /*AddToContext*/false); |
| 16753 | |
| 16754 | // C89 footnote 38: |
| 16755 | // If in fact it is not defined as having type "function returning int", |
| 16756 | // the behavior is undefined. |
| 16757 | if (!isa<FunctionDecl>(Val: ExternCPrev) || |
| 16758 | !Context.typesAreCompatible( |
| 16759 | T1: cast<FunctionDecl>(Val: ExternCPrev)->getType(), |
| 16760 | T2: Context.getFunctionNoProtoType(Context.IntTy))) { |
| 16761 | Diag(Loc, diag::ext_use_out_of_scope_declaration) |
| 16762 | << ExternCPrev << !getLangOpts().C99; |
| 16763 | Diag(ExternCPrev->getLocation(), diag::note_previous_declaration); |
| 16764 | return ExternCPrev; |
| 16765 | } |
| 16766 | } |
| 16767 | |
| 16768 | // Extension in C99 (defaults to error). Legal in C89, but warn about it. |
| 16769 | unsigned diag_id; |
| 16770 | if (II.getName().starts_with("__builtin_" )) |
| 16771 | diag_id = diag::warn_builtin_unknown; |
| 16772 | // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported. |
| 16773 | else if (getLangOpts().C99) |
| 16774 | diag_id = diag::ext_implicit_function_decl_c99; |
| 16775 | else |
| 16776 | diag_id = diag::warn_implicit_function_decl; |
| 16777 | |
| 16778 | TypoCorrection Corrected; |
| 16779 | // Because typo correction is expensive, only do it if the implicit |
| 16780 | // function declaration is going to be treated as an error. |
| 16781 | // |
| 16782 | // Perform the correction before issuing the main diagnostic, as some |
| 16783 | // consumers use typo-correction callbacks to enhance the main diagnostic. |
| 16784 | if (S && !ExternCPrev && |
| 16785 | (Diags.getDiagnosticLevel(DiagID: diag_id, Loc) >= DiagnosticsEngine::Error)) { |
| 16786 | DeclFilterCCC<FunctionDecl> CCC{}; |
| 16787 | Corrected = CorrectTypo(Typo: DeclarationNameInfo(&II, Loc), LookupKind: LookupOrdinaryName, |
| 16788 | S, SS: nullptr, CCC, Mode: CorrectTypoKind::NonError); |
| 16789 | } |
| 16790 | |
| 16791 | Diag(Loc, diag_id) << &II; |
| 16792 | if (Corrected) { |
| 16793 | // If the correction is going to suggest an implicitly defined function, |
| 16794 | // skip the correction as not being a particularly good idea. |
| 16795 | bool Diagnose = true; |
| 16796 | if (const auto *D = Corrected.getCorrectionDecl()) |
| 16797 | Diagnose = !D->isImplicit(); |
| 16798 | if (Diagnose) |
| 16799 | diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion), |
| 16800 | /*ErrorRecovery*/ false); |
| 16801 | } |
| 16802 | |
| 16803 | // If we found a prior declaration of this function, don't bother building |
| 16804 | // another one. We've already pushed that one into scope, so there's nothing |
| 16805 | // more to do. |
| 16806 | if (ExternCPrev) |
| 16807 | return ExternCPrev; |
| 16808 | |
| 16809 | // Set a Declarator for the implicit definition: int foo(); |
| 16810 | const char *Dummy; |
| 16811 | AttributeFactory attrFactory; |
| 16812 | DeclSpec DS(attrFactory); |
| 16813 | unsigned DiagID; |
| 16814 | bool Error = DS.SetTypeSpecType(T: DeclSpec::TST_int, Loc, PrevSpec&: Dummy, DiagID, |
| 16815 | Policy: Context.getPrintingPolicy()); |
| 16816 | (void)Error; // Silence warning. |
| 16817 | assert(!Error && "Error setting up implicit decl!" ); |
| 16818 | SourceLocation NoLoc; |
| 16819 | Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::Block); |
| 16820 | D.AddTypeInfo(TI: DeclaratorChunk::getFunction(/*HasProto=*/false, |
| 16821 | /*IsAmbiguous=*/false, |
| 16822 | /*LParenLoc=*/NoLoc, |
| 16823 | /*Params=*/nullptr, |
| 16824 | /*NumParams=*/0, |
| 16825 | /*EllipsisLoc=*/NoLoc, |
| 16826 | /*RParenLoc=*/NoLoc, |
| 16827 | /*RefQualifierIsLvalueRef=*/true, |
| 16828 | /*RefQualifierLoc=*/NoLoc, |
| 16829 | /*MutableLoc=*/NoLoc, ESpecType: EST_None, |
| 16830 | /*ESpecRange=*/SourceRange(), |
| 16831 | /*Exceptions=*/nullptr, |
| 16832 | /*ExceptionRanges=*/nullptr, |
| 16833 | /*NumExceptions=*/0, |
| 16834 | /*NoexceptExpr=*/nullptr, |
| 16835 | /*ExceptionSpecTokens=*/nullptr, |
| 16836 | /*DeclsInPrototype=*/{}, LocalRangeBegin: Loc, LocalRangeEnd: Loc, |
| 16837 | TheDeclarator&: D), |
| 16838 | attrs: std::move(DS.getAttributes()), EndLoc: SourceLocation()); |
| 16839 | D.SetIdentifier(Id: &II, IdLoc: Loc); |
| 16840 | |
| 16841 | // Insert this function into the enclosing block scope. |
| 16842 | FunctionDecl *FD = cast<FunctionDecl>(Val: ActOnDeclarator(S: BlockScope, D)); |
| 16843 | FD->setImplicit(); |
| 16844 | |
| 16845 | AddKnownFunctionAttributes(FD); |
| 16846 | |
| 16847 | return FD; |
| 16848 | } |
| 16849 | |
| 16850 | void Sema::AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction( |
| 16851 | FunctionDecl *FD) { |
| 16852 | if (FD->isInvalidDecl()) |
| 16853 | return; |
| 16854 | |
| 16855 | if (FD->getDeclName().getCXXOverloadedOperator() != OO_New && |
| 16856 | FD->getDeclName().getCXXOverloadedOperator() != OO_Array_New) |
| 16857 | return; |
| 16858 | |
| 16859 | UnsignedOrNone AlignmentParam = std::nullopt; |
| 16860 | bool IsNothrow = false; |
| 16861 | if (!FD->isReplaceableGlobalAllocationFunction(AlignmentParam: &AlignmentParam, IsNothrow: &IsNothrow)) |
| 16862 | return; |
| 16863 | |
| 16864 | // C++2a [basic.stc.dynamic.allocation]p4: |
| 16865 | // An allocation function that has a non-throwing exception specification |
| 16866 | // indicates failure by returning a null pointer value. Any other allocation |
| 16867 | // function never returns a null pointer value and indicates failure only by |
| 16868 | // throwing an exception [...] |
| 16869 | // |
| 16870 | // However, -fcheck-new invalidates this possible assumption, so don't add |
| 16871 | // NonNull when that is enabled. |
| 16872 | if (!IsNothrow && !FD->hasAttr<ReturnsNonNullAttr>() && |
| 16873 | !getLangOpts().CheckNew) |
| 16874 | FD->addAttr(ReturnsNonNullAttr::CreateImplicit(Context, FD->getLocation())); |
| 16875 | |
| 16876 | // C++2a [basic.stc.dynamic.allocation]p2: |
| 16877 | // An allocation function attempts to allocate the requested amount of |
| 16878 | // storage. [...] If the request succeeds, the value returned by a |
| 16879 | // replaceable allocation function is a [...] pointer value p0 different |
| 16880 | // from any previously returned value p1 [...] |
| 16881 | // |
| 16882 | // However, this particular information is being added in codegen, |
| 16883 | // because there is an opt-out switch for it (-fno-assume-sane-operator-new) |
| 16884 | |
| 16885 | // C++2a [basic.stc.dynamic.allocation]p2: |
| 16886 | // An allocation function attempts to allocate the requested amount of |
| 16887 | // storage. If it is successful, it returns the address of the start of a |
| 16888 | // block of storage whose length in bytes is at least as large as the |
| 16889 | // requested size. |
| 16890 | if (!FD->hasAttr<AllocSizeAttr>()) { |
| 16891 | FD->addAttr(AllocSizeAttr::CreateImplicit( |
| 16892 | Context, /*ElemSizeParam=*/ParamIdx(1, FD), |
| 16893 | /*NumElemsParam=*/ParamIdx(), FD->getLocation())); |
| 16894 | } |
| 16895 | |
| 16896 | // C++2a [basic.stc.dynamic.allocation]p3: |
| 16897 | // For an allocation function [...], the pointer returned on a successful |
| 16898 | // call shall represent the address of storage that is aligned as follows: |
| 16899 | // (3.1) If the allocation function takes an argument of type |
| 16900 | // std​::​align_Âval_Ât, the storage will have the alignment |
| 16901 | // specified by the value of this argument. |
| 16902 | if (AlignmentParam && !FD->hasAttr<AllocAlignAttr>()) { |
| 16903 | FD->addAttr(AllocAlignAttr::CreateImplicit( |
| 16904 | Context, ParamIdx(*AlignmentParam, FD), FD->getLocation())); |
| 16905 | } |
| 16906 | |
| 16907 | // FIXME: |
| 16908 | // C++2a [basic.stc.dynamic.allocation]p3: |
| 16909 | // For an allocation function [...], the pointer returned on a successful |
| 16910 | // call shall represent the address of storage that is aligned as follows: |
| 16911 | // (3.2) Otherwise, if the allocation function is named operator new[], |
| 16912 | // the storage is aligned for any object that does not have |
| 16913 | // new-extended alignment ([basic.align]) and is no larger than the |
| 16914 | // requested size. |
| 16915 | // (3.3) Otherwise, the storage is aligned for any object that does not |
| 16916 | // have new-extended alignment and is of the requested size. |
| 16917 | } |
| 16918 | |
| 16919 | void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) { |
| 16920 | if (FD->isInvalidDecl()) |
| 16921 | return; |
| 16922 | |
| 16923 | // If this is a built-in function, map its builtin attributes to |
| 16924 | // actual attributes. |
| 16925 | if (unsigned BuiltinID = FD->getBuiltinID()) { |
| 16926 | // Handle printf-formatting attributes. |
| 16927 | unsigned FormatIdx; |
| 16928 | bool HasVAListArg; |
| 16929 | if (Context.BuiltinInfo.isPrintfLike(ID: BuiltinID, FormatIdx, HasVAListArg)) { |
| 16930 | if (!FD->hasAttr<FormatAttr>()) { |
| 16931 | const char *fmt = "printf" ; |
| 16932 | unsigned int NumParams = FD->getNumParams(); |
| 16933 | if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf) |
| 16934 | FD->getParamDecl(i: FormatIdx)->getType()->isObjCObjectPointerType()) |
| 16935 | fmt = "NSString" ; |
| 16936 | FD->addAttr(FormatAttr::CreateImplicit(Context, |
| 16937 | &Context.Idents.get(fmt), |
| 16938 | FormatIdx+1, |
| 16939 | HasVAListArg ? 0 : FormatIdx+2, |
| 16940 | FD->getLocation())); |
| 16941 | } |
| 16942 | } |
| 16943 | if (Context.BuiltinInfo.isScanfLike(ID: BuiltinID, FormatIdx, |
| 16944 | HasVAListArg)) { |
| 16945 | if (!FD->hasAttr<FormatAttr>()) |
| 16946 | FD->addAttr(FormatAttr::CreateImplicit(Context, |
| 16947 | &Context.Idents.get("scanf" ), |
| 16948 | FormatIdx+1, |
| 16949 | HasVAListArg ? 0 : FormatIdx+2, |
| 16950 | FD->getLocation())); |
| 16951 | } |
| 16952 | |
| 16953 | // Handle automatically recognized callbacks. |
| 16954 | SmallVector<int, 4> Encoding; |
| 16955 | if (!FD->hasAttr<CallbackAttr>() && |
| 16956 | Context.BuiltinInfo.performsCallback(BuiltinID, Encoding)) |
| 16957 | FD->addAttr(CallbackAttr::CreateImplicit( |
| 16958 | Context, Encoding.data(), Encoding.size(), FD->getLocation())); |
| 16959 | |
| 16960 | // Mark const if we don't care about errno and/or floating point exceptions |
| 16961 | // that are the only thing preventing the function from being const. This |
| 16962 | // allows IRgen to use LLVM intrinsics for such functions. |
| 16963 | bool NoExceptions = |
| 16964 | getLangOpts().getDefaultExceptionMode() == LangOptions::FPE_Ignore; |
| 16965 | bool ConstWithoutErrnoAndExceptions = |
| 16966 | Context.BuiltinInfo.isConstWithoutErrnoAndExceptions(ID: BuiltinID); |
| 16967 | bool ConstWithoutExceptions = |
| 16968 | Context.BuiltinInfo.isConstWithoutExceptions(ID: BuiltinID); |
| 16969 | if (!FD->hasAttr<ConstAttr>() && |
| 16970 | (ConstWithoutErrnoAndExceptions || ConstWithoutExceptions) && |
| 16971 | (!ConstWithoutErrnoAndExceptions || |
| 16972 | (!getLangOpts().MathErrno && NoExceptions)) && |
| 16973 | (!ConstWithoutExceptions || NoExceptions)) |
| 16974 | FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); |
| 16975 | |
| 16976 | // We make "fma" on GNU or Windows const because we know it does not set |
| 16977 | // errno in those environments even though it could set errno based on the |
| 16978 | // C standard. |
| 16979 | const llvm::Triple &Trip = Context.getTargetInfo().getTriple(); |
| 16980 | if ((Trip.isGNUEnvironment() || Trip.isOSMSVCRT()) && |
| 16981 | !FD->hasAttr<ConstAttr>()) { |
| 16982 | switch (BuiltinID) { |
| 16983 | case Builtin::BI__builtin_fma: |
| 16984 | case Builtin::BI__builtin_fmaf: |
| 16985 | case Builtin::BI__builtin_fmal: |
| 16986 | case Builtin::BIfma: |
| 16987 | case Builtin::BIfmaf: |
| 16988 | case Builtin::BIfmal: |
| 16989 | FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); |
| 16990 | break; |
| 16991 | default: |
| 16992 | break; |
| 16993 | } |
| 16994 | } |
| 16995 | |
| 16996 | if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) && |
| 16997 | !FD->hasAttr<ReturnsTwiceAttr>()) |
| 16998 | FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context, |
| 16999 | FD->getLocation())); |
| 17000 | if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>()) |
| 17001 | FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation())); |
| 17002 | if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>()) |
| 17003 | FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation())); |
| 17004 | if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>()) |
| 17005 | FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); |
| 17006 | if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) && |
| 17007 | !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) { |
| 17008 | // Add the appropriate attribute, depending on the CUDA compilation mode |
| 17009 | // and which target the builtin belongs to. For example, during host |
| 17010 | // compilation, aux builtins are __device__, while the rest are __host__. |
| 17011 | if (getLangOpts().CUDAIsDevice != |
| 17012 | Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) |
| 17013 | FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation())); |
| 17014 | else |
| 17015 | FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation())); |
| 17016 | } |
| 17017 | |
| 17018 | // Add known guaranteed alignment for allocation functions. |
| 17019 | switch (BuiltinID) { |
| 17020 | case Builtin::BImemalign: |
| 17021 | case Builtin::BIaligned_alloc: |
| 17022 | if (!FD->hasAttr<AllocAlignAttr>()) |
| 17023 | FD->addAttr(AllocAlignAttr::CreateImplicit(Context, ParamIdx(1, FD), |
| 17024 | FD->getLocation())); |
| 17025 | break; |
| 17026 | default: |
| 17027 | break; |
| 17028 | } |
| 17029 | |
| 17030 | // Add allocsize attribute for allocation functions. |
| 17031 | switch (BuiltinID) { |
| 17032 | case Builtin::BIcalloc: |
| 17033 | FD->addAttr(AllocSizeAttr::CreateImplicit( |
| 17034 | Context, ParamIdx(1, FD), ParamIdx(2, FD), FD->getLocation())); |
| 17035 | break; |
| 17036 | case Builtin::BImemalign: |
| 17037 | case Builtin::BIaligned_alloc: |
| 17038 | case Builtin::BIrealloc: |
| 17039 | FD->addAttr(AllocSizeAttr::CreateImplicit(Context, ParamIdx(2, FD), |
| 17040 | ParamIdx(), FD->getLocation())); |
| 17041 | break; |
| 17042 | case Builtin::BImalloc: |
| 17043 | FD->addAttr(AllocSizeAttr::CreateImplicit(Context, ParamIdx(1, FD), |
| 17044 | ParamIdx(), FD->getLocation())); |
| 17045 | break; |
| 17046 | default: |
| 17047 | break; |
| 17048 | } |
| 17049 | } |
| 17050 | |
| 17051 | LazyProcessLifetimeCaptureByParams(FD); |
| 17052 | inferLifetimeBoundAttribute(FD); |
| 17053 | inferLifetimeCaptureByAttribute(FD); |
| 17054 | AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD); |
| 17055 | |
| 17056 | // If C++ exceptions are enabled but we are told extern "C" functions cannot |
| 17057 | // throw, add an implicit nothrow attribute to any extern "C" function we come |
| 17058 | // across. |
| 17059 | if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind && |
| 17060 | FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) { |
| 17061 | const auto *FPT = FD->getType()->getAs<FunctionProtoType>(); |
| 17062 | if (!FPT || FPT->getExceptionSpecType() == EST_None) |
| 17063 | FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation())); |
| 17064 | } |
| 17065 | |
| 17066 | IdentifierInfo *Name = FD->getIdentifier(); |
| 17067 | if (!Name) |
| 17068 | return; |
| 17069 | if ((!getLangOpts().CPlusPlus && FD->getDeclContext()->isTranslationUnit()) || |
| 17070 | (isa<LinkageSpecDecl>(FD->getDeclContext()) && |
| 17071 | cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() == |
| 17072 | LinkageSpecLanguageIDs::C)) { |
| 17073 | // Okay: this could be a libc/libm/Objective-C function we know |
| 17074 | // about. |
| 17075 | } else |
| 17076 | return; |
| 17077 | |
| 17078 | if (Name->isStr(Str: "asprintf" ) || Name->isStr(Str: "vasprintf" )) { |
| 17079 | // FIXME: asprintf and vasprintf aren't C99 functions. Should they be |
| 17080 | // target-specific builtins, perhaps? |
| 17081 | if (!FD->hasAttr<FormatAttr>()) |
| 17082 | FD->addAttr(FormatAttr::CreateImplicit(Context, |
| 17083 | &Context.Idents.get("printf" ), 2, |
| 17084 | Name->isStr("vasprintf" ) ? 0 : 3, |
| 17085 | FD->getLocation())); |
| 17086 | } |
| 17087 | |
| 17088 | if (Name->isStr(Str: "__CFStringMakeConstantString" )) { |
| 17089 | // We already have a __builtin___CFStringMakeConstantString, |
| 17090 | // but builds that use -fno-constant-cfstrings don't go through that. |
| 17091 | if (!FD->hasAttr<FormatArgAttr>()) |
| 17092 | FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD), |
| 17093 | FD->getLocation())); |
| 17094 | } |
| 17095 | } |
| 17096 | |
| 17097 | TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T, |
| 17098 | TypeSourceInfo *TInfo) { |
| 17099 | assert(D.getIdentifier() && "Wrong callback for declspec without declarator" ); |
| 17100 | assert(!T.isNull() && "GetTypeForDeclarator() returned null type" ); |
| 17101 | |
| 17102 | if (!TInfo) { |
| 17103 | assert(D.isInvalidType() && "no declarator info for valid type" ); |
| 17104 | TInfo = Context.getTrivialTypeSourceInfo(T); |
| 17105 | } |
| 17106 | |
| 17107 | // Scope manipulation handled by caller. |
| 17108 | TypedefDecl *NewTD = |
| 17109 | TypedefDecl::Create(C&: Context, DC: CurContext, StartLoc: D.getBeginLoc(), |
| 17110 | IdLoc: D.getIdentifierLoc(), Id: D.getIdentifier(), TInfo); |
| 17111 | |
| 17112 | // Bail out immediately if we have an invalid declaration. |
| 17113 | if (D.isInvalidType()) { |
| 17114 | NewTD->setInvalidDecl(); |
| 17115 | return NewTD; |
| 17116 | } |
| 17117 | |
| 17118 | if (D.getDeclSpec().isModulePrivateSpecified()) { |
| 17119 | if (CurContext->isFunctionOrMethod()) |
| 17120 | Diag(NewTD->getLocation(), diag::err_module_private_local) |
| 17121 | << 2 << NewTD |
| 17122 | << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) |
| 17123 | << FixItHint::CreateRemoval( |
| 17124 | D.getDeclSpec().getModulePrivateSpecLoc()); |
| 17125 | else |
| 17126 | NewTD->setModulePrivate(); |
| 17127 | } |
| 17128 | |
| 17129 | // C++ [dcl.typedef]p8: |
| 17130 | // If the typedef declaration defines an unnamed class (or |
| 17131 | // enum), the first typedef-name declared by the declaration |
| 17132 | // to be that class type (or enum type) is used to denote the |
| 17133 | // class type (or enum type) for linkage purposes only. |
| 17134 | // We need to check whether the type was declared in the declaration. |
| 17135 | switch (D.getDeclSpec().getTypeSpecType()) { |
| 17136 | case TST_enum: |
| 17137 | case TST_struct: |
| 17138 | case TST_interface: |
| 17139 | case TST_union: |
| 17140 | case TST_class: { |
| 17141 | TagDecl *tagFromDeclSpec = cast<TagDecl>(Val: D.getDeclSpec().getRepAsDecl()); |
| 17142 | setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD); |
| 17143 | break; |
| 17144 | } |
| 17145 | |
| 17146 | default: |
| 17147 | break; |
| 17148 | } |
| 17149 | |
| 17150 | return NewTD; |
| 17151 | } |
| 17152 | |
| 17153 | bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) { |
| 17154 | SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); |
| 17155 | QualType T = TI->getType(); |
| 17156 | |
| 17157 | if (T->isDependentType()) |
| 17158 | return false; |
| 17159 | |
| 17160 | // This doesn't use 'isIntegralType' despite the error message mentioning |
| 17161 | // integral type because isIntegralType would also allow enum types in C. |
| 17162 | if (const BuiltinType *BT = T->getAs<BuiltinType>()) |
| 17163 | if (BT->isInteger()) |
| 17164 | return false; |
| 17165 | |
| 17166 | return Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) |
| 17167 | << T << T->isBitIntType(); |
| 17168 | } |
| 17169 | |
| 17170 | bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped, |
| 17171 | QualType EnumUnderlyingTy, bool IsFixed, |
| 17172 | const EnumDecl *Prev) { |
| 17173 | if (IsScoped != Prev->isScoped()) { |
| 17174 | Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch) |
| 17175 | << Prev->isScoped(); |
| 17176 | Diag(Prev->getLocation(), diag::note_previous_declaration); |
| 17177 | return true; |
| 17178 | } |
| 17179 | |
| 17180 | if (IsFixed && Prev->isFixed()) { |
| 17181 | if (!EnumUnderlyingTy->isDependentType() && |
| 17182 | !Prev->getIntegerType()->isDependentType() && |
| 17183 | !Context.hasSameUnqualifiedType(T1: EnumUnderlyingTy, |
| 17184 | T2: Prev->getIntegerType())) { |
| 17185 | // TODO: Highlight the underlying type of the redeclaration. |
| 17186 | Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch) |
| 17187 | << EnumUnderlyingTy << Prev->getIntegerType(); |
| 17188 | Diag(Prev->getLocation(), diag::note_previous_declaration) |
| 17189 | << Prev->getIntegerTypeRange(); |
| 17190 | return true; |
| 17191 | } |
| 17192 | } else if (IsFixed != Prev->isFixed()) { |
| 17193 | Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch) |
| 17194 | << Prev->isFixed(); |
| 17195 | Diag(Prev->getLocation(), diag::note_previous_declaration); |
| 17196 | return true; |
| 17197 | } |
| 17198 | |
| 17199 | return false; |
| 17200 | } |
| 17201 | |
| 17202 | /// Get diagnostic %select index for tag kind for |
| 17203 | /// redeclaration diagnostic message. |
| 17204 | /// WARNING: Indexes apply to particular diagnostics only! |
| 17205 | /// |
| 17206 | /// \returns diagnostic %select index. |
| 17207 | static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) { |
| 17208 | switch (Tag) { |
| 17209 | case TagTypeKind::Struct: |
| 17210 | return 0; |
| 17211 | case TagTypeKind::Interface: |
| 17212 | return 1; |
| 17213 | case TagTypeKind::Class: |
| 17214 | return 2; |
| 17215 | default: llvm_unreachable("Invalid tag kind for redecl diagnostic!" ); |
| 17216 | } |
| 17217 | } |
| 17218 | |
| 17219 | /// Determine if tag kind is a class-key compatible with |
| 17220 | /// class for redeclaration (class, struct, or __interface). |
| 17221 | /// |
| 17222 | /// \returns true iff the tag kind is compatible. |
| 17223 | static bool isClassCompatTagKind(TagTypeKind Tag) |
| 17224 | { |
| 17225 | return Tag == TagTypeKind::Struct || Tag == TagTypeKind::Class || |
| 17226 | Tag == TagTypeKind::Interface; |
| 17227 | } |
| 17228 | |
| 17229 | NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl, TagTypeKind TTK) { |
| 17230 | if (isa<TypedefDecl>(Val: PrevDecl)) |
| 17231 | return NonTagKind::Typedef; |
| 17232 | else if (isa<TypeAliasDecl>(Val: PrevDecl)) |
| 17233 | return NonTagKind::TypeAlias; |
| 17234 | else if (isa<ClassTemplateDecl>(Val: PrevDecl)) |
| 17235 | return NonTagKind::Template; |
| 17236 | else if (isa<TypeAliasTemplateDecl>(Val: PrevDecl)) |
| 17237 | return NonTagKind::TypeAliasTemplate; |
| 17238 | else if (isa<TemplateTemplateParmDecl>(Val: PrevDecl)) |
| 17239 | return NonTagKind::TemplateTemplateArgument; |
| 17240 | switch (TTK) { |
| 17241 | case TagTypeKind::Struct: |
| 17242 | case TagTypeKind::Interface: |
| 17243 | case TagTypeKind::Class: |
| 17244 | return getLangOpts().CPlusPlus ? NonTagKind::NonClass |
| 17245 | : NonTagKind::NonStruct; |
| 17246 | case TagTypeKind::Union: |
| 17247 | return NonTagKind::NonUnion; |
| 17248 | case TagTypeKind::Enum: |
| 17249 | return NonTagKind::NonEnum; |
| 17250 | } |
| 17251 | llvm_unreachable("invalid TTK" ); |
| 17252 | } |
| 17253 | |
| 17254 | bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous, |
| 17255 | TagTypeKind NewTag, bool isDefinition, |
| 17256 | SourceLocation NewTagLoc, |
| 17257 | const IdentifierInfo *Name) { |
| 17258 | // C++ [dcl.type.elab]p3: |
| 17259 | // The class-key or enum keyword present in the |
| 17260 | // elaborated-type-specifier shall agree in kind with the |
| 17261 | // declaration to which the name in the elaborated-type-specifier |
| 17262 | // refers. This rule also applies to the form of |
| 17263 | // elaborated-type-specifier that declares a class-name or |
| 17264 | // friend class since it can be construed as referring to the |
| 17265 | // definition of the class. Thus, in any |
| 17266 | // elaborated-type-specifier, the enum keyword shall be used to |
| 17267 | // refer to an enumeration (7.2), the union class-key shall be |
| 17268 | // used to refer to a union (clause 9), and either the class or |
| 17269 | // struct class-key shall be used to refer to a class (clause 9) |
| 17270 | // declared using the class or struct class-key. |
| 17271 | TagTypeKind OldTag = Previous->getTagKind(); |
| 17272 | if (OldTag != NewTag && |
| 17273 | !(isClassCompatTagKind(Tag: OldTag) && isClassCompatTagKind(Tag: NewTag))) |
| 17274 | return false; |
| 17275 | |
| 17276 | // Tags are compatible, but we might still want to warn on mismatched tags. |
| 17277 | // Non-class tags can't be mismatched at this point. |
| 17278 | if (!isClassCompatTagKind(Tag: NewTag)) |
| 17279 | return true; |
| 17280 | |
| 17281 | // Declarations for which -Wmismatched-tags is disabled are entirely ignored |
| 17282 | // by our warning analysis. We don't want to warn about mismatches with (eg) |
| 17283 | // declarations in system headers that are designed to be specialized, but if |
| 17284 | // a user asks us to warn, we should warn if their code contains mismatched |
| 17285 | // declarations. |
| 17286 | auto IsIgnoredLoc = [&](SourceLocation Loc) { |
| 17287 | return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch, |
| 17288 | Loc); |
| 17289 | }; |
| 17290 | if (IsIgnoredLoc(NewTagLoc)) |
| 17291 | return true; |
| 17292 | |
| 17293 | auto IsIgnored = [&](const TagDecl *Tag) { |
| 17294 | return IsIgnoredLoc(Tag->getLocation()); |
| 17295 | }; |
| 17296 | while (IsIgnored(Previous)) { |
| 17297 | Previous = Previous->getPreviousDecl(); |
| 17298 | if (!Previous) |
| 17299 | return true; |
| 17300 | OldTag = Previous->getTagKind(); |
| 17301 | } |
| 17302 | |
| 17303 | bool isTemplate = false; |
| 17304 | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: Previous)) |
| 17305 | isTemplate = Record->getDescribedClassTemplate(); |
| 17306 | |
| 17307 | if (inTemplateInstantiation()) { |
| 17308 | if (OldTag != NewTag) { |
| 17309 | // In a template instantiation, do not offer fix-its for tag mismatches |
| 17310 | // since they usually mess up the template instead of fixing the problem. |
| 17311 | Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) |
| 17312 | << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name |
| 17313 | << getRedeclDiagFromTagKind(OldTag); |
| 17314 | // FIXME: Note previous location? |
| 17315 | } |
| 17316 | return true; |
| 17317 | } |
| 17318 | |
| 17319 | if (isDefinition) { |
| 17320 | // On definitions, check all previous tags and issue a fix-it for each |
| 17321 | // one that doesn't match the current tag. |
| 17322 | if (Previous->getDefinition()) { |
| 17323 | // Don't suggest fix-its for redefinitions. |
| 17324 | return true; |
| 17325 | } |
| 17326 | |
| 17327 | bool previousMismatch = false; |
| 17328 | for (const TagDecl *I : Previous->redecls()) { |
| 17329 | if (I->getTagKind() != NewTag) { |
| 17330 | // Ignore previous declarations for which the warning was disabled. |
| 17331 | if (IsIgnored(I)) |
| 17332 | continue; |
| 17333 | |
| 17334 | if (!previousMismatch) { |
| 17335 | previousMismatch = true; |
| 17336 | Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch) |
| 17337 | << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name |
| 17338 | << getRedeclDiagFromTagKind(I->getTagKind()); |
| 17339 | } |
| 17340 | Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion) |
| 17341 | << getRedeclDiagFromTagKind(NewTag) |
| 17342 | << FixItHint::CreateReplacement(I->getInnerLocStart(), |
| 17343 | TypeWithKeyword::getTagTypeKindName(NewTag)); |
| 17344 | } |
| 17345 | } |
| 17346 | return true; |
| 17347 | } |
| 17348 | |
| 17349 | // Identify the prevailing tag kind: this is the kind of the definition (if |
| 17350 | // there is a non-ignored definition), or otherwise the kind of the prior |
| 17351 | // (non-ignored) declaration. |
| 17352 | const TagDecl *PrevDef = Previous->getDefinition(); |
| 17353 | if (PrevDef && IsIgnored(PrevDef)) |
| 17354 | PrevDef = nullptr; |
| 17355 | const TagDecl *Redecl = PrevDef ? PrevDef : Previous; |
| 17356 | if (Redecl->getTagKind() != NewTag) { |
| 17357 | Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) |
| 17358 | << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name |
| 17359 | << getRedeclDiagFromTagKind(OldTag); |
| 17360 | Diag(Redecl->getLocation(), diag::note_previous_use); |
| 17361 | |
| 17362 | // If there is a previous definition, suggest a fix-it. |
| 17363 | if (PrevDef) { |
| 17364 | Diag(NewTagLoc, diag::note_struct_class_suggestion) |
| 17365 | << getRedeclDiagFromTagKind(Redecl->getTagKind()) |
| 17366 | << FixItHint::CreateReplacement(SourceRange(NewTagLoc), |
| 17367 | TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind())); |
| 17368 | } |
| 17369 | } |
| 17370 | |
| 17371 | return true; |
| 17372 | } |
| 17373 | |
| 17374 | /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name |
| 17375 | /// from an outer enclosing namespace or file scope inside a friend declaration. |
| 17376 | /// This should provide the commented out code in the following snippet: |
| 17377 | /// namespace N { |
| 17378 | /// struct X; |
| 17379 | /// namespace M { |
| 17380 | /// struct Y { friend struct /*N::*/ X; }; |
| 17381 | /// } |
| 17382 | /// } |
| 17383 | static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S, |
| 17384 | SourceLocation NameLoc) { |
| 17385 | // While the decl is in a namespace, do repeated lookup of that name and see |
| 17386 | // if we get the same namespace back. If we do not, continue until |
| 17387 | // translation unit scope, at which point we have a fully qualified NNS. |
| 17388 | SmallVector<IdentifierInfo *, 4> Namespaces; |
| 17389 | DeclContext *DC = ND->getDeclContext()->getRedeclContext(); |
| 17390 | for (; !DC->isTranslationUnit(); DC = DC->getParent()) { |
| 17391 | // This tag should be declared in a namespace, which can only be enclosed by |
| 17392 | // other namespaces. Bail if there's an anonymous namespace in the chain. |
| 17393 | NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(Val: DC); |
| 17394 | if (!Namespace || Namespace->isAnonymousNamespace()) |
| 17395 | return FixItHint(); |
| 17396 | IdentifierInfo *II = Namespace->getIdentifier(); |
| 17397 | Namespaces.push_back(Elt: II); |
| 17398 | NamedDecl *Lookup = SemaRef.LookupSingleName( |
| 17399 | S, Name: II, Loc: NameLoc, NameKind: Sema::LookupNestedNameSpecifierName); |
| 17400 | if (Lookup == Namespace) |
| 17401 | break; |
| 17402 | } |
| 17403 | |
| 17404 | // Once we have all the namespaces, reverse them to go outermost first, and |
| 17405 | // build an NNS. |
| 17406 | SmallString<64> Insertion; |
| 17407 | llvm::raw_svector_ostream OS(Insertion); |
| 17408 | if (DC->isTranslationUnit()) |
| 17409 | OS << "::" ; |
| 17410 | std::reverse(first: Namespaces.begin(), last: Namespaces.end()); |
| 17411 | for (auto *II : Namespaces) |
| 17412 | OS << II->getName() << "::" ; |
| 17413 | return FixItHint::CreateInsertion(InsertionLoc: NameLoc, Code: Insertion); |
| 17414 | } |
| 17415 | |
| 17416 | /// Determine whether a tag originally declared in context \p OldDC can |
| 17417 | /// be redeclared with an unqualified name in \p NewDC (assuming name lookup |
| 17418 | /// found a declaration in \p OldDC as a previous decl, perhaps through a |
| 17419 | /// using-declaration). |
| 17420 | static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC, |
| 17421 | DeclContext *NewDC) { |
| 17422 | OldDC = OldDC->getRedeclContext(); |
| 17423 | NewDC = NewDC->getRedeclContext(); |
| 17424 | |
| 17425 | if (OldDC->Equals(DC: NewDC)) |
| 17426 | return true; |
| 17427 | |
| 17428 | // In MSVC mode, we allow a redeclaration if the contexts are related (either |
| 17429 | // encloses the other). |
| 17430 | if (S.getLangOpts().MSVCCompat && |
| 17431 | (OldDC->Encloses(DC: NewDC) || NewDC->Encloses(DC: OldDC))) |
| 17432 | return true; |
| 17433 | |
| 17434 | return false; |
| 17435 | } |
| 17436 | |
| 17437 | DeclResult |
| 17438 | Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, |
| 17439 | CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, |
| 17440 | const ParsedAttributesView &Attrs, AccessSpecifier AS, |
| 17441 | SourceLocation ModulePrivateLoc, |
| 17442 | MultiTemplateParamsArg TemplateParameterLists, bool &OwnedDecl, |
| 17443 | bool &IsDependent, SourceLocation ScopedEnumKWLoc, |
| 17444 | bool ScopedEnumUsesClassTag, TypeResult UnderlyingType, |
| 17445 | bool IsTypeSpecifier, bool IsTemplateParamOrArg, |
| 17446 | OffsetOfKind OOK, SkipBodyInfo *SkipBody) { |
| 17447 | // If this is not a definition, it must have a name. |
| 17448 | IdentifierInfo *OrigName = Name; |
| 17449 | assert((Name != nullptr || TUK == TagUseKind::Definition) && |
| 17450 | "Nameless record must be a definition!" ); |
| 17451 | assert(TemplateParameterLists.size() == 0 || TUK != TagUseKind::Reference); |
| 17452 | |
| 17453 | OwnedDecl = false; |
| 17454 | TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TypeSpec: TagSpec); |
| 17455 | bool ScopedEnum = ScopedEnumKWLoc.isValid(); |
| 17456 | |
| 17457 | // FIXME: Check member specializations more carefully. |
| 17458 | bool isMemberSpecialization = false; |
| 17459 | bool Invalid = false; |
| 17460 | |
| 17461 | // We only need to do this matching if we have template parameters |
| 17462 | // or a scope specifier, which also conveniently avoids this work |
| 17463 | // for non-C++ cases. |
| 17464 | if (TemplateParameterLists.size() > 0 || |
| 17465 | (SS.isNotEmpty() && TUK != TagUseKind::Reference)) { |
| 17466 | TemplateParameterList *TemplateParams = |
| 17467 | MatchTemplateParametersToScopeSpecifier( |
| 17468 | DeclStartLoc: KWLoc, DeclLoc: NameLoc, SS, TemplateId: nullptr, ParamLists: TemplateParameterLists, |
| 17469 | IsFriend: TUK == TagUseKind::Friend, IsMemberSpecialization&: isMemberSpecialization, Invalid); |
| 17470 | |
| 17471 | // C++23 [dcl.type.elab] p2: |
| 17472 | // If an elaborated-type-specifier is the sole constituent of a |
| 17473 | // declaration, the declaration is ill-formed unless it is an explicit |
| 17474 | // specialization, an explicit instantiation or it has one of the |
| 17475 | // following forms: [...] |
| 17476 | // C++23 [dcl.enum] p1: |
| 17477 | // If the enum-head-name of an opaque-enum-declaration contains a |
| 17478 | // nested-name-specifier, the declaration shall be an explicit |
| 17479 | // specialization. |
| 17480 | // |
| 17481 | // FIXME: Class template partial specializations can be forward declared |
| 17482 | // per CWG2213, but the resolution failed to allow qualified forward |
| 17483 | // declarations. This is almost certainly unintentional, so we allow them. |
| 17484 | if (TUK == TagUseKind::Declaration && SS.isNotEmpty() && |
| 17485 | !isMemberSpecialization) |
| 17486 | Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier) |
| 17487 | << TypeWithKeyword::getTagTypeKindName(Kind) << SS.getRange(); |
| 17488 | |
| 17489 | if (TemplateParams) { |
| 17490 | if (Kind == TagTypeKind::Enum) { |
| 17491 | Diag(KWLoc, diag::err_enum_template); |
| 17492 | return true; |
| 17493 | } |
| 17494 | |
| 17495 | if (TemplateParams->size() > 0) { |
| 17496 | // This is a declaration or definition of a class template (which may |
| 17497 | // be a member of another template). |
| 17498 | |
| 17499 | if (Invalid) |
| 17500 | return true; |
| 17501 | |
| 17502 | OwnedDecl = false; |
| 17503 | DeclResult Result = CheckClassTemplate( |
| 17504 | S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attr: Attrs, TemplateParams, |
| 17505 | AS, ModulePrivateLoc, |
| 17506 | /*FriendLoc*/ SourceLocation(), NumOuterTemplateParamLists: TemplateParameterLists.size() - 1, |
| 17507 | OuterTemplateParamLists: TemplateParameterLists.data(), SkipBody); |
| 17508 | return Result.get(); |
| 17509 | } else { |
| 17510 | // The "template<>" header is extraneous. |
| 17511 | Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) |
| 17512 | << TypeWithKeyword::getTagTypeKindName(Kind) << Name; |
| 17513 | isMemberSpecialization = true; |
| 17514 | } |
| 17515 | } |
| 17516 | |
| 17517 | if (!TemplateParameterLists.empty() && isMemberSpecialization && |
| 17518 | CheckTemplateDeclScope(S, TemplateParams: TemplateParameterLists.back())) |
| 17519 | return true; |
| 17520 | } |
| 17521 | |
| 17522 | if (TUK == TagUseKind::Friend && Kind == TagTypeKind::Enum) { |
| 17523 | // C++23 [dcl.type.elab]p4: |
| 17524 | // If an elaborated-type-specifier appears with the friend specifier as |
| 17525 | // an entire member-declaration, the member-declaration shall have one |
| 17526 | // of the following forms: |
| 17527 | // friend class-key nested-name-specifier(opt) identifier ; |
| 17528 | // friend class-key simple-template-id ; |
| 17529 | // friend class-key nested-name-specifier template(opt) |
| 17530 | // simple-template-id ; |
| 17531 | // |
| 17532 | // Since enum is not a class-key, so declarations like "friend enum E;" |
| 17533 | // are ill-formed. Although CWG2363 reaffirms that such declarations are |
| 17534 | // invalid, most implementations accept so we issue a pedantic warning. |
| 17535 | Diag(KWLoc, diag::ext_enum_friend) << FixItHint::CreateRemoval( |
| 17536 | ScopedEnum ? SourceRange(KWLoc, ScopedEnumKWLoc) : KWLoc); |
| 17537 | assert(ScopedEnum || !ScopedEnumUsesClassTag); |
| 17538 | Diag(KWLoc, diag::note_enum_friend) |
| 17539 | << (ScopedEnum + ScopedEnumUsesClassTag); |
| 17540 | } |
| 17541 | |
| 17542 | // Figure out the underlying type if this a enum declaration. We need to do |
| 17543 | // this early, because it's needed to detect if this is an incompatible |
| 17544 | // redeclaration. |
| 17545 | llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying; |
| 17546 | bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum; |
| 17547 | |
| 17548 | if (Kind == TagTypeKind::Enum) { |
| 17549 | if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) { |
| 17550 | // No underlying type explicitly specified, or we failed to parse the |
| 17551 | // type, default to int. |
| 17552 | EnumUnderlying = Context.IntTy.getTypePtr(); |
| 17553 | } else if (UnderlyingType.get()) { |
| 17554 | // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an |
| 17555 | // integral type; any cv-qualification is ignored. |
| 17556 | TypeSourceInfo *TI = nullptr; |
| 17557 | GetTypeFromParser(Ty: UnderlyingType.get(), TInfo: &TI); |
| 17558 | EnumUnderlying = TI; |
| 17559 | |
| 17560 | if (CheckEnumUnderlyingType(TI)) |
| 17561 | // Recover by falling back to int. |
| 17562 | EnumUnderlying = Context.IntTy.getTypePtr(); |
| 17563 | |
| 17564 | if (DiagnoseUnexpandedParameterPack(Loc: TI->getTypeLoc().getBeginLoc(), T: TI, |
| 17565 | UPPC: UPPC_FixedUnderlyingType)) |
| 17566 | EnumUnderlying = Context.IntTy.getTypePtr(); |
| 17567 | |
| 17568 | } else if (Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) { |
| 17569 | // For MSVC ABI compatibility, unfixed enums must use an underlying type |
| 17570 | // of 'int'. However, if this is an unfixed forward declaration, don't set |
| 17571 | // the underlying type unless the user enables -fms-compatibility. This |
| 17572 | // makes unfixed forward declared enums incomplete and is more conforming. |
| 17573 | if (TUK == TagUseKind::Definition || getLangOpts().MSVCCompat) |
| 17574 | EnumUnderlying = Context.IntTy.getTypePtr(); |
| 17575 | } |
| 17576 | } |
| 17577 | |
| 17578 | DeclContext *SearchDC = CurContext; |
| 17579 | DeclContext *DC = CurContext; |
| 17580 | bool isStdBadAlloc = false; |
| 17581 | bool isStdAlignValT = false; |
| 17582 | |
| 17583 | RedeclarationKind Redecl = forRedeclarationInCurContext(); |
| 17584 | if (TUK == TagUseKind::Friend || TUK == TagUseKind::Reference) |
| 17585 | Redecl = RedeclarationKind::NotForRedeclaration; |
| 17586 | |
| 17587 | /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C |
| 17588 | /// implemented asks for structural equivalence checking, the returned decl |
| 17589 | /// here is passed back to the parser, allowing the tag body to be parsed. |
| 17590 | auto createTagFromNewDecl = [&]() -> TagDecl * { |
| 17591 | assert(!getLangOpts().CPlusPlus && "not meant for C++ usage" ); |
| 17592 | // If there is an identifier, use the location of the identifier as the |
| 17593 | // location of the decl, otherwise use the location of the struct/union |
| 17594 | // keyword. |
| 17595 | SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; |
| 17596 | TagDecl *New = nullptr; |
| 17597 | |
| 17598 | if (Kind == TagTypeKind::Enum) { |
| 17599 | New = EnumDecl::Create(C&: Context, DC: SearchDC, StartLoc: KWLoc, IdLoc: Loc, Id: Name, PrevDecl: nullptr, |
| 17600 | IsScoped: ScopedEnum, IsScopedUsingClassTag: ScopedEnumUsesClassTag, IsFixed); |
| 17601 | // If this is an undefined enum, bail. |
| 17602 | if (TUK != TagUseKind::Definition && !Invalid) |
| 17603 | return nullptr; |
| 17604 | if (EnumUnderlying) { |
| 17605 | EnumDecl *ED = cast<EnumDecl>(Val: New); |
| 17606 | if (TypeSourceInfo *TI = dyn_cast<TypeSourceInfo *>(Val&: EnumUnderlying)) |
| 17607 | ED->setIntegerTypeSourceInfo(TI); |
| 17608 | else |
| 17609 | ED->setIntegerType(QualType(cast<const Type *>(Val&: EnumUnderlying), 0)); |
| 17610 | QualType EnumTy = ED->getIntegerType(); |
| 17611 | ED->setPromotionType(Context.isPromotableIntegerType(T: EnumTy) |
| 17612 | ? Context.getPromotedIntegerType(PromotableType: EnumTy) |
| 17613 | : EnumTy); |
| 17614 | } |
| 17615 | } else { // struct/union |
| 17616 | New = RecordDecl::Create(C: Context, TK: Kind, DC: SearchDC, StartLoc: KWLoc, IdLoc: Loc, Id: Name, |
| 17617 | PrevDecl: nullptr); |
| 17618 | } |
| 17619 | |
| 17620 | if (RecordDecl *RD = dyn_cast<RecordDecl>(Val: New)) { |
| 17621 | // Add alignment attributes if necessary; these attributes are checked |
| 17622 | // when the ASTContext lays out the structure. |
| 17623 | // |
| 17624 | // It is important for implementing the correct semantics that this |
| 17625 | // happen here (in ActOnTag). The #pragma pack stack is |
| 17626 | // maintained as a result of parser callbacks which can occur at |
| 17627 | // many points during the parsing of a struct declaration (because |
| 17628 | // the #pragma tokens are effectively skipped over during the |
| 17629 | // parsing of the struct). |
| 17630 | if (TUK == TagUseKind::Definition && |
| 17631 | (!SkipBody || !SkipBody->ShouldSkip)) { |
| 17632 | if (LangOpts.HLSL) |
| 17633 | RD->addAttr(PackedAttr::CreateImplicit(Context)); |
| 17634 | AddAlignmentAttributesForRecord(RD); |
| 17635 | AddMsStructLayoutForRecord(RD); |
| 17636 | } |
| 17637 | } |
| 17638 | New->setLexicalDeclContext(CurContext); |
| 17639 | return New; |
| 17640 | }; |
| 17641 | |
| 17642 | LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl); |
| 17643 | if (Name && SS.isNotEmpty()) { |
| 17644 | // We have a nested-name tag ('struct foo::bar'). |
| 17645 | |
| 17646 | // Check for invalid 'foo::'. |
| 17647 | if (SS.isInvalid()) { |
| 17648 | Name = nullptr; |
| 17649 | goto CreateNewDecl; |
| 17650 | } |
| 17651 | |
| 17652 | // If this is a friend or a reference to a class in a dependent |
| 17653 | // context, don't try to make a decl for it. |
| 17654 | if (TUK == TagUseKind::Friend || TUK == TagUseKind::Reference) { |
| 17655 | DC = computeDeclContext(SS, EnteringContext: false); |
| 17656 | if (!DC) { |
| 17657 | IsDependent = true; |
| 17658 | return true; |
| 17659 | } |
| 17660 | } else { |
| 17661 | DC = computeDeclContext(SS, EnteringContext: true); |
| 17662 | if (!DC) { |
| 17663 | Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec) |
| 17664 | << SS.getRange(); |
| 17665 | return true; |
| 17666 | } |
| 17667 | } |
| 17668 | |
| 17669 | if (RequireCompleteDeclContext(SS, DC)) |
| 17670 | return true; |
| 17671 | |
| 17672 | SearchDC = DC; |
| 17673 | // Look-up name inside 'foo::'. |
| 17674 | LookupQualifiedName(R&: Previous, LookupCtx: DC); |
| 17675 | |
| 17676 | if (Previous.isAmbiguous()) |
| 17677 | return true; |
| 17678 | |
| 17679 | if (Previous.empty()) { |
| 17680 | // Name lookup did not find anything. However, if the |
| 17681 | // nested-name-specifier refers to the current instantiation, |
| 17682 | // and that current instantiation has any dependent base |
| 17683 | // classes, we might find something at instantiation time: treat |
| 17684 | // this as a dependent elaborated-type-specifier. |
| 17685 | // But this only makes any sense for reference-like lookups. |
| 17686 | if (Previous.wasNotFoundInCurrentInstantiation() && |
| 17687 | (TUK == TagUseKind::Reference || TUK == TagUseKind::Friend)) { |
| 17688 | IsDependent = true; |
| 17689 | return true; |
| 17690 | } |
| 17691 | |
| 17692 | // A tag 'foo::bar' must already exist. |
| 17693 | Diag(NameLoc, diag::err_not_tag_in_scope) |
| 17694 | << Kind << Name << DC << SS.getRange(); |
| 17695 | Name = nullptr; |
| 17696 | Invalid = true; |
| 17697 | goto CreateNewDecl; |
| 17698 | } |
| 17699 | } else if (Name) { |
| 17700 | // C++14 [class.mem]p14: |
| 17701 | // If T is the name of a class, then each of the following shall have a |
| 17702 | // name different from T: |
| 17703 | // -- every member of class T that is itself a type |
| 17704 | if (TUK != TagUseKind::Reference && TUK != TagUseKind::Friend && |
| 17705 | DiagnoseClassNameShadow(DC: SearchDC, NameInfo: DeclarationNameInfo(Name, NameLoc))) |
| 17706 | return true; |
| 17707 | |
| 17708 | // If this is a named struct, check to see if there was a previous forward |
| 17709 | // declaration or definition. |
| 17710 | // FIXME: We're looking into outer scopes here, even when we |
| 17711 | // shouldn't be. Doing so can result in ambiguities that we |
| 17712 | // shouldn't be diagnosing. |
| 17713 | LookupName(R&: Previous, S); |
| 17714 | |
| 17715 | // When declaring or defining a tag, ignore ambiguities introduced |
| 17716 | // by types using'ed into this scope. |
| 17717 | if (Previous.isAmbiguous() && |
| 17718 | (TUK == TagUseKind::Definition || TUK == TagUseKind::Declaration)) { |
| 17719 | LookupResult::Filter F = Previous.makeFilter(); |
| 17720 | while (F.hasNext()) { |
| 17721 | NamedDecl *ND = F.next(); |
| 17722 | if (!ND->getDeclContext()->getRedeclContext()->Equals( |
| 17723 | SearchDC->getRedeclContext())) |
| 17724 | F.erase(); |
| 17725 | } |
| 17726 | F.done(); |
| 17727 | } |
| 17728 | |
| 17729 | // C++11 [namespace.memdef]p3: |
| 17730 | // If the name in a friend declaration is neither qualified nor |
| 17731 | // a template-id and the declaration is a function or an |
| 17732 | // elaborated-type-specifier, the lookup to determine whether |
| 17733 | // the entity has been previously declared shall not consider |
| 17734 | // any scopes outside the innermost enclosing namespace. |
| 17735 | // |
| 17736 | // MSVC doesn't implement the above rule for types, so a friend tag |
| 17737 | // declaration may be a redeclaration of a type declared in an enclosing |
| 17738 | // scope. They do implement this rule for friend functions. |
| 17739 | // |
| 17740 | // Does it matter that this should be by scope instead of by |
| 17741 | // semantic context? |
| 17742 | if (!Previous.empty() && TUK == TagUseKind::Friend) { |
| 17743 | DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext(); |
| 17744 | LookupResult::Filter F = Previous.makeFilter(); |
| 17745 | bool FriendSawTagOutsideEnclosingNamespace = false; |
| 17746 | while (F.hasNext()) { |
| 17747 | NamedDecl *ND = F.next(); |
| 17748 | DeclContext *DC = ND->getDeclContext()->getRedeclContext(); |
| 17749 | if (DC->isFileContext() && |
| 17750 | !EnclosingNS->Encloses(DC: ND->getDeclContext())) { |
| 17751 | if (getLangOpts().MSVCCompat) |
| 17752 | FriendSawTagOutsideEnclosingNamespace = true; |
| 17753 | else |
| 17754 | F.erase(); |
| 17755 | } |
| 17756 | } |
| 17757 | F.done(); |
| 17758 | |
| 17759 | // Diagnose this MSVC extension in the easy case where lookup would have |
| 17760 | // unambiguously found something outside the enclosing namespace. |
| 17761 | if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) { |
| 17762 | NamedDecl *ND = Previous.getFoundDecl(); |
| 17763 | Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace) |
| 17764 | << createFriendTagNNSFixIt(*this, ND, S, NameLoc); |
| 17765 | } |
| 17766 | } |
| 17767 | |
| 17768 | // Note: there used to be some attempt at recovery here. |
| 17769 | if (Previous.isAmbiguous()) |
| 17770 | return true; |
| 17771 | |
| 17772 | if (!getLangOpts().CPlusPlus && TUK != TagUseKind::Reference) { |
| 17773 | // FIXME: This makes sure that we ignore the contexts associated |
| 17774 | // with C structs, unions, and enums when looking for a matching |
| 17775 | // tag declaration or definition. See the similar lookup tweak |
| 17776 | // in Sema::LookupName; is there a better way to deal with this? |
| 17777 | while (isa<RecordDecl, EnumDecl, ObjCContainerDecl>(Val: SearchDC)) |
| 17778 | SearchDC = SearchDC->getParent(); |
| 17779 | } else if (getLangOpts().CPlusPlus) { |
| 17780 | // Inside ObjCContainer want to keep it as a lexical decl context but go |
| 17781 | // past it (most often to TranslationUnit) to find the semantic decl |
| 17782 | // context. |
| 17783 | while (isa<ObjCContainerDecl>(Val: SearchDC)) |
| 17784 | SearchDC = SearchDC->getParent(); |
| 17785 | } |
| 17786 | } else if (getLangOpts().CPlusPlus) { |
| 17787 | // Don't use ObjCContainerDecl as the semantic decl context for anonymous |
| 17788 | // TagDecl the same way as we skip it for named TagDecl. |
| 17789 | while (isa<ObjCContainerDecl>(Val: SearchDC)) |
| 17790 | SearchDC = SearchDC->getParent(); |
| 17791 | } |
| 17792 | |
| 17793 | if (Previous.isSingleResult() && |
| 17794 | Previous.getFoundDecl()->isTemplateParameter()) { |
| 17795 | // Maybe we will complain about the shadowed template parameter. |
| 17796 | DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl()); |
| 17797 | // Just pretend that we didn't see the previous declaration. |
| 17798 | Previous.clear(); |
| 17799 | } |
| 17800 | |
| 17801 | if (getLangOpts().CPlusPlus && Name && DC && StdNamespace && |
| 17802 | DC->Equals(getStdNamespace())) { |
| 17803 | if (Name->isStr(Str: "bad_alloc" )) { |
| 17804 | // This is a declaration of or a reference to "std::bad_alloc". |
| 17805 | isStdBadAlloc = true; |
| 17806 | |
| 17807 | // If std::bad_alloc has been implicitly declared (but made invisible to |
| 17808 | // name lookup), fill in this implicit declaration as the previous |
| 17809 | // declaration, so that the declarations get chained appropriately. |
| 17810 | if (Previous.empty() && StdBadAlloc) |
| 17811 | Previous.addDecl(getStdBadAlloc()); |
| 17812 | } else if (Name->isStr(Str: "align_val_t" )) { |
| 17813 | isStdAlignValT = true; |
| 17814 | if (Previous.empty() && StdAlignValT) |
| 17815 | Previous.addDecl(getStdAlignValT()); |
| 17816 | } |
| 17817 | } |
| 17818 | |
| 17819 | // If we didn't find a previous declaration, and this is a reference |
| 17820 | // (or friend reference), move to the correct scope. In C++, we |
| 17821 | // also need to do a redeclaration lookup there, just in case |
| 17822 | // there's a shadow friend decl. |
| 17823 | if (Name && Previous.empty() && |
| 17824 | (TUK == TagUseKind::Reference || TUK == TagUseKind::Friend || |
| 17825 | IsTemplateParamOrArg)) { |
| 17826 | if (Invalid) goto CreateNewDecl; |
| 17827 | assert(SS.isEmpty()); |
| 17828 | |
| 17829 | if (TUK == TagUseKind::Reference || IsTemplateParamOrArg) { |
| 17830 | // C++ [basic.scope.pdecl]p5: |
| 17831 | // -- for an elaborated-type-specifier of the form |
| 17832 | // |
| 17833 | // class-key identifier |
| 17834 | // |
| 17835 | // if the elaborated-type-specifier is used in the |
| 17836 | // decl-specifier-seq or parameter-declaration-clause of a |
| 17837 | // function defined in namespace scope, the identifier is |
| 17838 | // declared as a class-name in the namespace that contains |
| 17839 | // the declaration; otherwise, except as a friend |
| 17840 | // declaration, the identifier is declared in the smallest |
| 17841 | // non-class, non-function-prototype scope that contains the |
| 17842 | // declaration. |
| 17843 | // |
| 17844 | // C99 6.7.2.3p8 has a similar (but not identical!) provision for |
| 17845 | // C structs and unions. |
| 17846 | // |
| 17847 | // It is an error in C++ to declare (rather than define) an enum |
| 17848 | // type, including via an elaborated type specifier. We'll |
| 17849 | // diagnose that later; for now, declare the enum in the same |
| 17850 | // scope as we would have picked for any other tag type. |
| 17851 | // |
| 17852 | // GNU C also supports this behavior as part of its incomplete |
| 17853 | // enum types extension, while GNU C++ does not. |
| 17854 | // |
| 17855 | // Find the context where we'll be declaring the tag. |
| 17856 | // FIXME: We would like to maintain the current DeclContext as the |
| 17857 | // lexical context, |
| 17858 | SearchDC = getTagInjectionContext(DC: SearchDC); |
| 17859 | |
| 17860 | // Find the scope where we'll be declaring the tag. |
| 17861 | S = getTagInjectionScope(S, LangOpts: getLangOpts()); |
| 17862 | } else { |
| 17863 | assert(TUK == TagUseKind::Friend); |
| 17864 | CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: SearchDC); |
| 17865 | |
| 17866 | // C++ [namespace.memdef]p3: |
| 17867 | // If a friend declaration in a non-local class first declares a |
| 17868 | // class or function, the friend class or function is a member of |
| 17869 | // the innermost enclosing namespace. |
| 17870 | SearchDC = RD->isLocalClass() ? RD->isLocalClass() |
| 17871 | : SearchDC->getEnclosingNamespaceContext(); |
| 17872 | } |
| 17873 | |
| 17874 | // In C++, we need to do a redeclaration lookup to properly |
| 17875 | // diagnose some problems. |
| 17876 | // FIXME: redeclaration lookup is also used (with and without C++) to find a |
| 17877 | // hidden declaration so that we don't get ambiguity errors when using a |
| 17878 | // type declared by an elaborated-type-specifier. In C that is not correct |
| 17879 | // and we should instead merge compatible types found by lookup. |
| 17880 | if (getLangOpts().CPlusPlus) { |
| 17881 | // FIXME: This can perform qualified lookups into function contexts, |
| 17882 | // which are meaningless. |
| 17883 | Previous.setRedeclarationKind(forRedeclarationInCurContext()); |
| 17884 | LookupQualifiedName(R&: Previous, LookupCtx: SearchDC); |
| 17885 | } else { |
| 17886 | Previous.setRedeclarationKind(forRedeclarationInCurContext()); |
| 17887 | LookupName(R&: Previous, S); |
| 17888 | } |
| 17889 | } |
| 17890 | |
| 17891 | // If we have a known previous declaration to use, then use it. |
| 17892 | if (Previous.empty() && SkipBody && SkipBody->Previous) |
| 17893 | Previous.addDecl(D: SkipBody->Previous); |
| 17894 | |
| 17895 | if (!Previous.empty()) { |
| 17896 | NamedDecl *PrevDecl = Previous.getFoundDecl(); |
| 17897 | NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl(); |
| 17898 | |
| 17899 | // It's okay to have a tag decl in the same scope as a typedef |
| 17900 | // which hides a tag decl in the same scope. Finding this |
| 17901 | // with a redeclaration lookup can only actually happen in C++. |
| 17902 | // |
| 17903 | // This is also okay for elaborated-type-specifiers, which is |
| 17904 | // technically forbidden by the current standard but which is |
| 17905 | // okay according to the likely resolution of an open issue; |
| 17906 | // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407 |
| 17907 | if (getLangOpts().CPlusPlus) { |
| 17908 | if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(Val: PrevDecl)) { |
| 17909 | if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) { |
| 17910 | TagDecl *Tag = TT->getDecl(); |
| 17911 | if (Tag->getDeclName() == Name && |
| 17912 | Tag->getDeclContext()->getRedeclContext() |
| 17913 | ->Equals(TD->getDeclContext()->getRedeclContext())) { |
| 17914 | PrevDecl = Tag; |
| 17915 | Previous.clear(); |
| 17916 | Previous.addDecl(Tag); |
| 17917 | Previous.resolveKind(); |
| 17918 | } |
| 17919 | } |
| 17920 | } |
| 17921 | } |
| 17922 | |
| 17923 | // If this is a redeclaration of a using shadow declaration, it must |
| 17924 | // declare a tag in the same context. In MSVC mode, we allow a |
| 17925 | // redefinition if either context is within the other. |
| 17926 | if (auto *Shadow = dyn_cast<UsingShadowDecl>(Val: DirectPrevDecl)) { |
| 17927 | auto *OldTag = dyn_cast<TagDecl>(Val: PrevDecl); |
| 17928 | if (SS.isEmpty() && TUK != TagUseKind::Reference && |
| 17929 | TUK != TagUseKind::Friend && |
| 17930 | isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) && |
| 17931 | !(OldTag && isAcceptableTagRedeclContext( |
| 17932 | *this, OldTag->getDeclContext(), SearchDC))) { |
| 17933 | Diag(KWLoc, diag::err_using_decl_conflict_reverse); |
| 17934 | Diag(Shadow->getTargetDecl()->getLocation(), |
| 17935 | diag::note_using_decl_target); |
| 17936 | Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) |
| 17937 | << 0; |
| 17938 | // Recover by ignoring the old declaration. |
| 17939 | Previous.clear(); |
| 17940 | goto CreateNewDecl; |
| 17941 | } |
| 17942 | } |
| 17943 | |
| 17944 | if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(Val: PrevDecl)) { |
| 17945 | // If this is a use of a previous tag, or if the tag is already declared |
| 17946 | // in the same scope (so that the definition/declaration completes or |
| 17947 | // rementions the tag), reuse the decl. |
| 17948 | if (TUK == TagUseKind::Reference || TUK == TagUseKind::Friend || |
| 17949 | isDeclInScope(D: DirectPrevDecl, Ctx: SearchDC, S, |
| 17950 | AllowInlineNamespace: SS.isNotEmpty() || isMemberSpecialization)) { |
| 17951 | // Make sure that this wasn't declared as an enum and now used as a |
| 17952 | // struct or something similar. |
| 17953 | if (!isAcceptableTagRedeclaration(Previous: PrevTagDecl, NewTag: Kind, |
| 17954 | isDefinition: TUK == TagUseKind::Definition, NewTagLoc: KWLoc, |
| 17955 | Name)) { |
| 17956 | bool SafeToContinue = |
| 17957 | (PrevTagDecl->getTagKind() != TagTypeKind::Enum && |
| 17958 | Kind != TagTypeKind::Enum); |
| 17959 | if (SafeToContinue) |
| 17960 | Diag(KWLoc, diag::err_use_with_wrong_tag) |
| 17961 | << Name |
| 17962 | << FixItHint::CreateReplacement(SourceRange(KWLoc), |
| 17963 | PrevTagDecl->getKindName()); |
| 17964 | else |
| 17965 | Diag(KWLoc, diag::err_use_with_wrong_tag) << Name; |
| 17966 | Diag(PrevTagDecl->getLocation(), diag::note_previous_use); |
| 17967 | |
| 17968 | if (SafeToContinue) |
| 17969 | Kind = PrevTagDecl->getTagKind(); |
| 17970 | else { |
| 17971 | // Recover by making this an anonymous redefinition. |
| 17972 | Name = nullptr; |
| 17973 | Previous.clear(); |
| 17974 | Invalid = true; |
| 17975 | } |
| 17976 | } |
| 17977 | |
| 17978 | if (Kind == TagTypeKind::Enum && |
| 17979 | PrevTagDecl->getTagKind() == TagTypeKind::Enum) { |
| 17980 | const EnumDecl *PrevEnum = cast<EnumDecl>(Val: PrevTagDecl); |
| 17981 | if (TUK == TagUseKind::Reference || TUK == TagUseKind::Friend) |
| 17982 | return PrevTagDecl; |
| 17983 | |
| 17984 | QualType EnumUnderlyingTy; |
| 17985 | if (TypeSourceInfo *TI = |
| 17986 | dyn_cast_if_present<TypeSourceInfo *>(Val&: EnumUnderlying)) |
| 17987 | EnumUnderlyingTy = TI->getType().getUnqualifiedType(); |
| 17988 | else if (const Type *T = |
| 17989 | dyn_cast_if_present<const Type *>(Val&: EnumUnderlying)) |
| 17990 | EnumUnderlyingTy = QualType(T, 0); |
| 17991 | |
| 17992 | // All conflicts with previous declarations are recovered by |
| 17993 | // returning the previous declaration, unless this is a definition, |
| 17994 | // in which case we want the caller to bail out. |
| 17995 | if (CheckEnumRedeclaration(EnumLoc: NameLoc.isValid() ? NameLoc : KWLoc, |
| 17996 | IsScoped: ScopedEnum, EnumUnderlyingTy, |
| 17997 | IsFixed, Prev: PrevEnum)) |
| 17998 | return TUK == TagUseKind::Declaration ? PrevTagDecl : nullptr; |
| 17999 | } |
| 18000 | |
| 18001 | // C++11 [class.mem]p1: |
| 18002 | // A member shall not be declared twice in the member-specification, |
| 18003 | // except that a nested class or member class template can be declared |
| 18004 | // and then later defined. |
| 18005 | if (TUK == TagUseKind::Declaration && PrevDecl->isCXXClassMember() && |
| 18006 | S->isDeclScope(PrevDecl)) { |
| 18007 | Diag(NameLoc, diag::ext_member_redeclared); |
| 18008 | Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration); |
| 18009 | } |
| 18010 | |
| 18011 | if (!Invalid) { |
| 18012 | // If this is a use, just return the declaration we found, unless |
| 18013 | // we have attributes. |
| 18014 | if (TUK == TagUseKind::Reference || TUK == TagUseKind::Friend) { |
| 18015 | if (!Attrs.empty()) { |
| 18016 | // FIXME: Diagnose these attributes. For now, we create a new |
| 18017 | // declaration to hold them. |
| 18018 | } else if (TUK == TagUseKind::Reference && |
| 18019 | (PrevTagDecl->getFriendObjectKind() == |
| 18020 | Decl::FOK_Undeclared || |
| 18021 | PrevDecl->getOwningModule() != getCurrentModule()) && |
| 18022 | SS.isEmpty()) { |
| 18023 | // This declaration is a reference to an existing entity, but |
| 18024 | // has different visibility from that entity: it either makes |
| 18025 | // a friend visible or it makes a type visible in a new module. |
| 18026 | // In either case, create a new declaration. We only do this if |
| 18027 | // the declaration would have meant the same thing if no prior |
| 18028 | // declaration were found, that is, if it was found in the same |
| 18029 | // scope where we would have injected a declaration. |
| 18030 | if (!getTagInjectionContext(DC: CurContext)->getRedeclContext() |
| 18031 | ->Equals(DC: PrevDecl->getDeclContext()->getRedeclContext())) |
| 18032 | return PrevTagDecl; |
| 18033 | // This is in the injected scope, create a new declaration in |
| 18034 | // that scope. |
| 18035 | S = getTagInjectionScope(S, LangOpts: getLangOpts()); |
| 18036 | } else { |
| 18037 | return PrevTagDecl; |
| 18038 | } |
| 18039 | } |
| 18040 | |
| 18041 | // Diagnose attempts to redefine a tag. |
| 18042 | if (TUK == TagUseKind::Definition) { |
| 18043 | if (NamedDecl *Def = PrevTagDecl->getDefinition()) { |
| 18044 | // If we're defining a specialization and the previous definition |
| 18045 | // is from an implicit instantiation, don't emit an error |
| 18046 | // here; we'll catch this in the general case below. |
| 18047 | bool IsExplicitSpecializationAfterInstantiation = false; |
| 18048 | if (isMemberSpecialization) { |
| 18049 | if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: Def)) |
| 18050 | IsExplicitSpecializationAfterInstantiation = |
| 18051 | RD->getTemplateSpecializationKind() != |
| 18052 | TSK_ExplicitSpecialization; |
| 18053 | else if (EnumDecl *ED = dyn_cast<EnumDecl>(Val: Def)) |
| 18054 | IsExplicitSpecializationAfterInstantiation = |
| 18055 | ED->getTemplateSpecializationKind() != |
| 18056 | TSK_ExplicitSpecialization; |
| 18057 | } |
| 18058 | |
| 18059 | // Note that clang allows ODR-like semantics for ObjC/C, i.e., do |
| 18060 | // not keep more that one definition around (merge them). However, |
| 18061 | // ensure the decl passes the structural compatibility check in |
| 18062 | // C11 6.2.7/1 (or 6.1.2.6/1 in C89). |
| 18063 | NamedDecl *Hidden = nullptr; |
| 18064 | if (SkipBody && |
| 18065 | (!hasVisibleDefinition(D: Def, Suggested: &Hidden) || getLangOpts().C23)) { |
| 18066 | // There is a definition of this tag, but it is not visible. We |
| 18067 | // explicitly make use of C++'s one definition rule here, and |
| 18068 | // assume that this definition is identical to the hidden one |
| 18069 | // we already have. Make the existing definition visible and |
| 18070 | // use it in place of this one. |
| 18071 | if (!getLangOpts().CPlusPlus) { |
| 18072 | // Postpone making the old definition visible until after we |
| 18073 | // complete parsing the new one and do the structural |
| 18074 | // comparison. |
| 18075 | SkipBody->CheckSameAsPrevious = true; |
| 18076 | SkipBody->New = createTagFromNewDecl(); |
| 18077 | SkipBody->Previous = Def; |
| 18078 | |
| 18079 | ProcessDeclAttributeList(S, SkipBody->New, Attrs); |
| 18080 | return Def; |
| 18081 | } else { |
| 18082 | SkipBody->ShouldSkip = true; |
| 18083 | SkipBody->Previous = Def; |
| 18084 | makeMergedDefinitionVisible(ND: Hidden); |
| 18085 | // Carry on and handle it like a normal definition. We'll |
| 18086 | // skip starting the definition later. |
| 18087 | } |
| 18088 | } else if (!IsExplicitSpecializationAfterInstantiation) { |
| 18089 | // A redeclaration in function prototype scope in C isn't |
| 18090 | // visible elsewhere, so merely issue a warning. |
| 18091 | if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope()) |
| 18092 | Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name; |
| 18093 | else |
| 18094 | Diag(NameLoc, diag::err_redefinition) << Name; |
| 18095 | notePreviousDefinition(Old: Def, |
| 18096 | New: NameLoc.isValid() ? NameLoc : KWLoc); |
| 18097 | // If this is a redefinition, recover by making this |
| 18098 | // struct be anonymous, which will make any later |
| 18099 | // references get the previous definition. |
| 18100 | Name = nullptr; |
| 18101 | Previous.clear(); |
| 18102 | Invalid = true; |
| 18103 | } |
| 18104 | } else { |
| 18105 | // If the type is currently being defined, complain |
| 18106 | // about a nested redefinition. |
| 18107 | auto *TD = Context.getTagDeclType(Decl: PrevTagDecl)->getAsTagDecl(); |
| 18108 | if (TD->isBeingDefined()) { |
| 18109 | Diag(NameLoc, diag::err_nested_redefinition) << Name; |
| 18110 | Diag(PrevTagDecl->getLocation(), |
| 18111 | diag::note_previous_definition); |
| 18112 | Name = nullptr; |
| 18113 | Previous.clear(); |
| 18114 | Invalid = true; |
| 18115 | } |
| 18116 | } |
| 18117 | |
| 18118 | // Okay, this is definition of a previously declared or referenced |
| 18119 | // tag. We're going to create a new Decl for it. |
| 18120 | } |
| 18121 | |
| 18122 | // Okay, we're going to make a redeclaration. If this is some kind |
| 18123 | // of reference, make sure we build the redeclaration in the same DC |
| 18124 | // as the original, and ignore the current access specifier. |
| 18125 | if (TUK == TagUseKind::Friend || TUK == TagUseKind::Reference) { |
| 18126 | SearchDC = PrevTagDecl->getDeclContext(); |
| 18127 | AS = AS_none; |
| 18128 | } |
| 18129 | } |
| 18130 | // If we get here we have (another) forward declaration or we |
| 18131 | // have a definition. Just create a new decl. |
| 18132 | |
| 18133 | } else { |
| 18134 | // If we get here, this is a definition of a new tag type in a nested |
| 18135 | // scope, e.g. "struct foo; void bar() { struct foo; }", just create a |
| 18136 | // new decl/type. We set PrevDecl to NULL so that the entities |
| 18137 | // have distinct types. |
| 18138 | Previous.clear(); |
| 18139 | } |
| 18140 | // If we get here, we're going to create a new Decl. If PrevDecl |
| 18141 | // is non-NULL, it's a definition of the tag declared by |
| 18142 | // PrevDecl. If it's NULL, we have a new definition. |
| 18143 | |
| 18144 | // Otherwise, PrevDecl is not a tag, but was found with tag |
| 18145 | // lookup. This is only actually possible in C++, where a few |
| 18146 | // things like templates still live in the tag namespace. |
| 18147 | } else { |
| 18148 | // Use a better diagnostic if an elaborated-type-specifier |
| 18149 | // found the wrong kind of type on the first |
| 18150 | // (non-redeclaration) lookup. |
| 18151 | if ((TUK == TagUseKind::Reference || TUK == TagUseKind::Friend) && |
| 18152 | !Previous.isForRedeclaration()) { |
| 18153 | NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind); |
| 18154 | Diag(NameLoc, diag::err_tag_reference_non_tag) |
| 18155 | << PrevDecl << NTK << Kind; |
| 18156 | Diag(PrevDecl->getLocation(), diag::note_declared_at); |
| 18157 | Invalid = true; |
| 18158 | |
| 18159 | // Otherwise, only diagnose if the declaration is in scope. |
| 18160 | } else if (!isDeclInScope(D: DirectPrevDecl, Ctx: SearchDC, S, |
| 18161 | AllowInlineNamespace: SS.isNotEmpty() || isMemberSpecialization)) { |
| 18162 | // do nothing |
| 18163 | |
| 18164 | // Diagnose implicit declarations introduced by elaborated types. |
| 18165 | } else if (TUK == TagUseKind::Reference || TUK == TagUseKind::Friend) { |
| 18166 | NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind); |
| 18167 | Diag(NameLoc, diag::err_tag_reference_conflict) << NTK; |
| 18168 | Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; |
| 18169 | Invalid = true; |
| 18170 | |
| 18171 | // Otherwise it's a declaration. Call out a particularly common |
| 18172 | // case here. |
| 18173 | } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(Val: PrevDecl)) { |
| 18174 | unsigned Kind = 0; |
| 18175 | if (isa<TypeAliasDecl>(Val: PrevDecl)) Kind = 1; |
| 18176 | Diag(NameLoc, diag::err_tag_definition_of_typedef) |
| 18177 | << Name << Kind << TND->getUnderlyingType(); |
| 18178 | Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; |
| 18179 | Invalid = true; |
| 18180 | |
| 18181 | // Otherwise, diagnose. |
| 18182 | } else { |
| 18183 | // The tag name clashes with something else in the target scope, |
| 18184 | // issue an error and recover by making this tag be anonymous. |
| 18185 | Diag(NameLoc, diag::err_redefinition_different_kind) << Name; |
| 18186 | notePreviousDefinition(Old: PrevDecl, New: NameLoc); |
| 18187 | Name = nullptr; |
| 18188 | Invalid = true; |
| 18189 | } |
| 18190 | |
| 18191 | // The existing declaration isn't relevant to us; we're in a |
| 18192 | // new scope, so clear out the previous declaration. |
| 18193 | Previous.clear(); |
| 18194 | } |
| 18195 | } |
| 18196 | |
| 18197 | CreateNewDecl: |
| 18198 | |
| 18199 | TagDecl *PrevDecl = nullptr; |
| 18200 | if (Previous.isSingleResult()) |
| 18201 | PrevDecl = cast<TagDecl>(Val: Previous.getFoundDecl()); |
| 18202 | |
| 18203 | // If there is an identifier, use the location of the identifier as the |
| 18204 | // location of the decl, otherwise use the location of the struct/union |
| 18205 | // keyword. |
| 18206 | SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; |
| 18207 | |
| 18208 | // Otherwise, create a new declaration. If there is a previous |
| 18209 | // declaration of the same entity, the two will be linked via |
| 18210 | // PrevDecl. |
| 18211 | TagDecl *New; |
| 18212 | |
| 18213 | if (Kind == TagTypeKind::Enum) { |
| 18214 | // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: |
| 18215 | // enum X { A, B, C } D; D should chain to X. |
| 18216 | New = EnumDecl::Create(C&: Context, DC: SearchDC, StartLoc: KWLoc, IdLoc: Loc, Id: Name, |
| 18217 | PrevDecl: cast_or_null<EnumDecl>(Val: PrevDecl), IsScoped: ScopedEnum, |
| 18218 | IsScopedUsingClassTag: ScopedEnumUsesClassTag, IsFixed); |
| 18219 | |
| 18220 | if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit())) |
| 18221 | StdAlignValT = cast<EnumDecl>(Val: New); |
| 18222 | |
| 18223 | // If this is an undefined enum, warn. |
| 18224 | if (TUK != TagUseKind::Definition && !Invalid) { |
| 18225 | TagDecl *Def; |
| 18226 | if (IsFixed && cast<EnumDecl>(Val: New)->isFixed()) { |
| 18227 | // C++0x: 7.2p2: opaque-enum-declaration. |
| 18228 | // Conflicts are diagnosed above. Do nothing. |
| 18229 | } |
| 18230 | else if (PrevDecl && (Def = cast<EnumDecl>(Val: PrevDecl)->getDefinition())) { |
| 18231 | Diag(Loc, diag::ext_forward_ref_enum_def) |
| 18232 | << New; |
| 18233 | Diag(Def->getLocation(), diag::note_previous_definition); |
| 18234 | } else { |
| 18235 | unsigned DiagID = diag::ext_forward_ref_enum; |
| 18236 | if (getLangOpts().MSVCCompat) |
| 18237 | DiagID = diag::ext_ms_forward_ref_enum; |
| 18238 | else if (getLangOpts().CPlusPlus) |
| 18239 | DiagID = diag::err_forward_ref_enum; |
| 18240 | Diag(Loc, DiagID); |
| 18241 | } |
| 18242 | } |
| 18243 | |
| 18244 | if (EnumUnderlying) { |
| 18245 | EnumDecl *ED = cast<EnumDecl>(Val: New); |
| 18246 | if (TypeSourceInfo *TI = dyn_cast<TypeSourceInfo *>(Val&: EnumUnderlying)) |
| 18247 | ED->setIntegerTypeSourceInfo(TI); |
| 18248 | else |
| 18249 | ED->setIntegerType(QualType(cast<const Type *>(Val&: EnumUnderlying), 0)); |
| 18250 | QualType EnumTy = ED->getIntegerType(); |
| 18251 | ED->setPromotionType(Context.isPromotableIntegerType(T: EnumTy) |
| 18252 | ? Context.getPromotedIntegerType(PromotableType: EnumTy) |
| 18253 | : EnumTy); |
| 18254 | assert(ED->isComplete() && "enum with type should be complete" ); |
| 18255 | } |
| 18256 | } else { |
| 18257 | // struct/union/class |
| 18258 | |
| 18259 | // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: |
| 18260 | // struct X { int A; } D; D should chain to X. |
| 18261 | if (getLangOpts().CPlusPlus) { |
| 18262 | // FIXME: Look for a way to use RecordDecl for simple structs. |
| 18263 | New = CXXRecordDecl::Create(C: Context, TK: Kind, DC: SearchDC, StartLoc: KWLoc, IdLoc: Loc, Id: Name, |
| 18264 | PrevDecl: cast_or_null<CXXRecordDecl>(Val: PrevDecl)); |
| 18265 | |
| 18266 | if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit())) |
| 18267 | StdBadAlloc = cast<CXXRecordDecl>(Val: New); |
| 18268 | } else |
| 18269 | New = RecordDecl::Create(C: Context, TK: Kind, DC: SearchDC, StartLoc: KWLoc, IdLoc: Loc, Id: Name, |
| 18270 | PrevDecl: cast_or_null<RecordDecl>(Val: PrevDecl)); |
| 18271 | } |
| 18272 | |
| 18273 | // Only C23 and later allow defining new types in 'offsetof()'. |
| 18274 | if (OOK != OffsetOfKind::Outside && TUK == TagUseKind::Definition && |
| 18275 | !getLangOpts().CPlusPlus && !getLangOpts().C23) |
| 18276 | Diag(New->getLocation(), diag::ext_type_defined_in_offsetof) |
| 18277 | << (OOK == OffsetOfKind::Macro) << New->getSourceRange(); |
| 18278 | |
| 18279 | // C++11 [dcl.type]p3: |
| 18280 | // A type-specifier-seq shall not define a class or enumeration [...]. |
| 18281 | if (!Invalid && getLangOpts().CPlusPlus && |
| 18282 | (IsTypeSpecifier || IsTemplateParamOrArg) && |
| 18283 | TUK == TagUseKind::Definition) { |
| 18284 | Diag(New->getLocation(), diag::err_type_defined_in_type_specifier) |
| 18285 | << Context.getTagDeclType(New); |
| 18286 | Invalid = true; |
| 18287 | } |
| 18288 | |
| 18289 | if (!Invalid && getLangOpts().CPlusPlus && TUK == TagUseKind::Definition && |
| 18290 | DC->getDeclKind() == Decl::Enum) { |
| 18291 | Diag(New->getLocation(), diag::err_type_defined_in_enum) |
| 18292 | << Context.getTagDeclType(New); |
| 18293 | Invalid = true; |
| 18294 | } |
| 18295 | |
| 18296 | // Maybe add qualifier info. |
| 18297 | if (SS.isNotEmpty()) { |
| 18298 | if (SS.isSet()) { |
| 18299 | // If this is either a declaration or a definition, check the |
| 18300 | // nested-name-specifier against the current context. |
| 18301 | if ((TUK == TagUseKind::Definition || TUK == TagUseKind::Declaration) && |
| 18302 | diagnoseQualifiedDeclaration(SS, DC, Name: OrigName, Loc, |
| 18303 | /*TemplateId=*/nullptr, |
| 18304 | IsMemberSpecialization: isMemberSpecialization)) |
| 18305 | Invalid = true; |
| 18306 | |
| 18307 | New->setQualifierInfo(SS.getWithLocInContext(Context)); |
| 18308 | if (TemplateParameterLists.size() > 0) { |
| 18309 | New->setTemplateParameterListsInfo(Context, TPLists: TemplateParameterLists); |
| 18310 | } |
| 18311 | } |
| 18312 | else |
| 18313 | Invalid = true; |
| 18314 | } |
| 18315 | |
| 18316 | if (RecordDecl *RD = dyn_cast<RecordDecl>(Val: New)) { |
| 18317 | // Add alignment attributes if necessary; these attributes are checked when |
| 18318 | // the ASTContext lays out the structure. |
| 18319 | // |
| 18320 | // It is important for implementing the correct semantics that this |
| 18321 | // happen here (in ActOnTag). The #pragma pack stack is |
| 18322 | // maintained as a result of parser callbacks which can occur at |
| 18323 | // many points during the parsing of a struct declaration (because |
| 18324 | // the #pragma tokens are effectively skipped over during the |
| 18325 | // parsing of the struct). |
| 18326 | if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip)) { |
| 18327 | if (LangOpts.HLSL) |
| 18328 | RD->addAttr(PackedAttr::CreateImplicit(Context)); |
| 18329 | AddAlignmentAttributesForRecord(RD); |
| 18330 | AddMsStructLayoutForRecord(RD); |
| 18331 | } |
| 18332 | } |
| 18333 | |
| 18334 | if (ModulePrivateLoc.isValid()) { |
| 18335 | if (isMemberSpecialization) |
| 18336 | Diag(New->getLocation(), diag::err_module_private_specialization) |
| 18337 | << 2 |
| 18338 | << FixItHint::CreateRemoval(ModulePrivateLoc); |
| 18339 | // __module_private__ does not apply to local classes. However, we only |
| 18340 | // diagnose this as an error when the declaration specifiers are |
| 18341 | // freestanding. Here, we just ignore the __module_private__. |
| 18342 | else if (!SearchDC->isFunctionOrMethod()) |
| 18343 | New->setModulePrivate(); |
| 18344 | } |
| 18345 | |
| 18346 | // If this is a specialization of a member class (of a class template), |
| 18347 | // check the specialization. |
| 18348 | if (isMemberSpecialization && CheckMemberSpecialization(New, Previous)) |
| 18349 | Invalid = true; |
| 18350 | |
| 18351 | // If we're declaring or defining a tag in function prototype scope in C, |
| 18352 | // note that this type can only be used within the function and add it to |
| 18353 | // the list of decls to inject into the function definition scope. However, |
| 18354 | // in C23 and later, while the type is only visible within the function, the |
| 18355 | // function can be called with a compatible type defined in the same TU, so |
| 18356 | // we silence the diagnostic in C23 and up. This matches the behavior of GCC. |
| 18357 | if ((Name || Kind == TagTypeKind::Enum) && |
| 18358 | getNonFieldDeclScope(S)->isFunctionPrototypeScope()) { |
| 18359 | if (getLangOpts().CPlusPlus) { |
| 18360 | // C++ [dcl.fct]p6: |
| 18361 | // Types shall not be defined in return or parameter types. |
| 18362 | if (TUK == TagUseKind::Definition && !IsTypeSpecifier) { |
| 18363 | Diag(Loc, diag::err_type_defined_in_param_type) |
| 18364 | << Name; |
| 18365 | Invalid = true; |
| 18366 | } |
| 18367 | if (TUK == TagUseKind::Declaration) |
| 18368 | Invalid = true; |
| 18369 | } else if (!PrevDecl) { |
| 18370 | // In C23 mode, if the declaration is complete, we do not want to |
| 18371 | // diagnose. |
| 18372 | if (!getLangOpts().C23 || TUK != TagUseKind::Definition) |
| 18373 | Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New); |
| 18374 | } |
| 18375 | } |
| 18376 | |
| 18377 | if (Invalid) |
| 18378 | New->setInvalidDecl(); |
| 18379 | |
| 18380 | // Set the lexical context. If the tag has a C++ scope specifier, the |
| 18381 | // lexical context will be different from the semantic context. |
| 18382 | New->setLexicalDeclContext(CurContext); |
| 18383 | |
| 18384 | // Mark this as a friend decl if applicable. |
| 18385 | // In Microsoft mode, a friend declaration also acts as a forward |
| 18386 | // declaration so we always pass true to setObjectOfFriendDecl to make |
| 18387 | // the tag name visible. |
| 18388 | if (TUK == TagUseKind::Friend) |
| 18389 | New->setObjectOfFriendDecl(getLangOpts().MSVCCompat); |
| 18390 | |
| 18391 | // Set the access specifier. |
| 18392 | if (!Invalid && SearchDC->isRecord()) |
| 18393 | SetMemberAccessSpecifier(New, PrevDecl, AS); |
| 18394 | |
| 18395 | if (PrevDecl) |
| 18396 | CheckRedeclarationInModule(New, PrevDecl); |
| 18397 | |
| 18398 | if (TUK == TagUseKind::Definition && (!SkipBody || !SkipBody->ShouldSkip)) |
| 18399 | New->startDefinition(); |
| 18400 | |
| 18401 | ProcessDeclAttributeList(S, New, Attrs); |
| 18402 | AddPragmaAttributes(S, New); |
| 18403 | |
| 18404 | // If this has an identifier, add it to the scope stack. |
| 18405 | if (TUK == TagUseKind::Friend) { |
| 18406 | // We might be replacing an existing declaration in the lookup tables; |
| 18407 | // if so, borrow its access specifier. |
| 18408 | if (PrevDecl) |
| 18409 | New->setAccess(PrevDecl->getAccess()); |
| 18410 | |
| 18411 | DeclContext *DC = New->getDeclContext()->getRedeclContext(); |
| 18412 | DC->makeDeclVisibleInContext(New); |
| 18413 | if (Name) // can be null along some error paths |
| 18414 | if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) |
| 18415 | PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false); |
| 18416 | } else if (Name) { |
| 18417 | S = getNonFieldDeclScope(S); |
| 18418 | PushOnScopeChains(New, S, true); |
| 18419 | } else { |
| 18420 | CurContext->addDecl(New); |
| 18421 | } |
| 18422 | |
| 18423 | // If this is the C FILE type, notify the AST context. |
| 18424 | if (IdentifierInfo *II = New->getIdentifier()) |
| 18425 | if (!New->isInvalidDecl() && |
| 18426 | New->getDeclContext()->getRedeclContext()->isTranslationUnit() && |
| 18427 | II->isStr(Str: "FILE" )) |
| 18428 | Context.setFILEDecl(New); |
| 18429 | |
| 18430 | if (PrevDecl) |
| 18431 | mergeDeclAttributes(New, PrevDecl); |
| 18432 | |
| 18433 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Val: New)) { |
| 18434 | inferGslOwnerPointerAttribute(Record: CXXRD); |
| 18435 | inferNullableClassAttribute(CRD: CXXRD); |
| 18436 | } |
| 18437 | |
| 18438 | // If there's a #pragma GCC visibility in scope, set the visibility of this |
| 18439 | // record. |
| 18440 | AddPushedVisibilityAttribute(New); |
| 18441 | |
| 18442 | if (isMemberSpecialization && !New->isInvalidDecl()) |
| 18443 | CompleteMemberSpecialization(New, Previous); |
| 18444 | |
| 18445 | OwnedDecl = true; |
| 18446 | // In C++, don't return an invalid declaration. We can't recover well from |
| 18447 | // the cases where we make the type anonymous. |
| 18448 | if (Invalid && getLangOpts().CPlusPlus) { |
| 18449 | if (New->isBeingDefined()) |
| 18450 | if (auto RD = dyn_cast<RecordDecl>(Val: New)) |
| 18451 | RD->completeDefinition(); |
| 18452 | return true; |
| 18453 | } else if (SkipBody && SkipBody->ShouldSkip) { |
| 18454 | return SkipBody->Previous; |
| 18455 | } else { |
| 18456 | return New; |
| 18457 | } |
| 18458 | } |
| 18459 | |
| 18460 | void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) { |
| 18461 | AdjustDeclIfTemplate(Decl&: TagD); |
| 18462 | TagDecl *Tag = cast<TagDecl>(Val: TagD); |
| 18463 | |
| 18464 | // Enter the tag context. |
| 18465 | PushDeclContext(S, Tag); |
| 18466 | |
| 18467 | ActOnDocumentableDecl(D: TagD); |
| 18468 | |
| 18469 | // If there's a #pragma GCC visibility in scope, set the visibility of this |
| 18470 | // record. |
| 18471 | AddPushedVisibilityAttribute(Tag); |
| 18472 | } |
| 18473 | |
| 18474 | bool Sema::ActOnDuplicateDefinition(Scope *S, Decl *Prev, |
| 18475 | SkipBodyInfo &SkipBody) { |
| 18476 | if (!hasStructuralCompatLayout(Prev, SkipBody.New)) |
| 18477 | return false; |
| 18478 | |
| 18479 | // Make the previous decl visible. |
| 18480 | makeMergedDefinitionVisible(ND: SkipBody.Previous); |
| 18481 | CleanupMergedEnum(S, SkipBody.New); |
| 18482 | return true; |
| 18483 | } |
| 18484 | |
| 18485 | void Sema::ActOnStartCXXMemberDeclarations( |
| 18486 | Scope *S, Decl *TagD, SourceLocation FinalLoc, bool IsFinalSpelledSealed, |
| 18487 | bool IsAbstract, SourceLocation TriviallyRelocatable, |
| 18488 | SourceLocation Replaceable, SourceLocation LBraceLoc) { |
| 18489 | AdjustDeclIfTemplate(Decl&: TagD); |
| 18490 | CXXRecordDecl *Record = cast<CXXRecordDecl>(Val: TagD); |
| 18491 | |
| 18492 | FieldCollector->StartClass(); |
| 18493 | |
| 18494 | if (!Record->getIdentifier()) |
| 18495 | return; |
| 18496 | |
| 18497 | if (IsAbstract) |
| 18498 | Record->markAbstract(); |
| 18499 | |
| 18500 | if (FinalLoc.isValid()) { |
| 18501 | Record->addAttr(FinalAttr::Create(Context, FinalLoc, |
| 18502 | IsFinalSpelledSealed |
| 18503 | ? FinalAttr::Keyword_sealed |
| 18504 | : FinalAttr::Keyword_final)); |
| 18505 | } |
| 18506 | |
| 18507 | if (TriviallyRelocatable.isValid()) |
| 18508 | Record->addAttr( |
| 18509 | TriviallyRelocatableAttr::Create(Context, TriviallyRelocatable)); |
| 18510 | |
| 18511 | if (Replaceable.isValid()) |
| 18512 | Record->addAttr(ReplaceableAttr::Create(Context, Replaceable)); |
| 18513 | |
| 18514 | // C++ [class]p2: |
| 18515 | // [...] The class-name is also inserted into the scope of the |
| 18516 | // class itself; this is known as the injected-class-name. For |
| 18517 | // purposes of access checking, the injected-class-name is treated |
| 18518 | // as if it were a public member name. |
| 18519 | CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create( |
| 18520 | C: Context, TK: Record->getTagKind(), DC: CurContext, StartLoc: Record->getBeginLoc(), |
| 18521 | IdLoc: Record->getLocation(), Id: Record->getIdentifier(), |
| 18522 | /*PrevDecl=*/nullptr, |
| 18523 | /*DelayTypeCreation=*/true); |
| 18524 | Context.getTypeDeclType(InjectedClassName, Record); |
| 18525 | InjectedClassName->setImplicit(); |
| 18526 | InjectedClassName->setAccess(AS_public); |
| 18527 | if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate()) |
| 18528 | InjectedClassName->setDescribedClassTemplate(Template); |
| 18529 | PushOnScopeChains(InjectedClassName, S); |
| 18530 | assert(InjectedClassName->isInjectedClassName() && |
| 18531 | "Broken injected-class-name" ); |
| 18532 | } |
| 18533 | |
| 18534 | void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD, |
| 18535 | SourceRange BraceRange) { |
| 18536 | AdjustDeclIfTemplate(Decl&: TagD); |
| 18537 | TagDecl *Tag = cast<TagDecl>(Val: TagD); |
| 18538 | Tag->setBraceRange(BraceRange); |
| 18539 | |
| 18540 | // Make sure we "complete" the definition even it is invalid. |
| 18541 | if (Tag->isBeingDefined()) { |
| 18542 | assert(Tag->isInvalidDecl() && "We should already have completed it" ); |
| 18543 | if (RecordDecl *RD = dyn_cast<RecordDecl>(Val: Tag)) |
| 18544 | RD->completeDefinition(); |
| 18545 | } |
| 18546 | |
| 18547 | if (auto *RD = dyn_cast<CXXRecordDecl>(Val: Tag)) { |
| 18548 | FieldCollector->FinishClass(); |
| 18549 | if (RD->hasAttr<SYCLSpecialClassAttr>()) { |
| 18550 | auto *Def = RD->getDefinition(); |
| 18551 | assert(Def && "The record is expected to have a completed definition" ); |
| 18552 | unsigned NumInitMethods = 0; |
| 18553 | for (auto *Method : Def->methods()) { |
| 18554 | if (!Method->getIdentifier()) |
| 18555 | continue; |
| 18556 | if (Method->getName() == "__init" ) |
| 18557 | NumInitMethods++; |
| 18558 | } |
| 18559 | if (NumInitMethods > 1 || !Def->hasInitMethod()) |
| 18560 | Diag(RD->getLocation(), diag::err_sycl_special_type_num_init_method); |
| 18561 | } |
| 18562 | |
| 18563 | // If we're defining a dynamic class in a module interface unit, we always |
| 18564 | // need to produce the vtable for it, even if the vtable is not used in the |
| 18565 | // current TU. |
| 18566 | // |
| 18567 | // The case where the current class is not dynamic is handled in |
| 18568 | // MarkVTableUsed. |
| 18569 | if (getCurrentModule() && getCurrentModule()->isInterfaceOrPartition()) |
| 18570 | MarkVTableUsed(Loc: RD->getLocation(), Class: RD, /*DefinitionRequired=*/true); |
| 18571 | } |
| 18572 | |
| 18573 | // Exit this scope of this tag's definition. |
| 18574 | PopDeclContext(); |
| 18575 | |
| 18576 | if (getCurLexicalContext()->isObjCContainer() && |
| 18577 | Tag->getDeclContext()->isFileContext()) |
| 18578 | Tag->setTopLevelDeclInObjCContainer(); |
| 18579 | |
| 18580 | // Notify the consumer that we've defined a tag. |
| 18581 | if (!Tag->isInvalidDecl()) |
| 18582 | Consumer.HandleTagDeclDefinition(D: Tag); |
| 18583 | |
| 18584 | // Clangs implementation of #pragma align(packed) differs in bitfield layout |
| 18585 | // from XLs and instead matches the XL #pragma pack(1) behavior. |
| 18586 | if (Context.getTargetInfo().getTriple().isOSAIX() && |
| 18587 | AlignPackStack.hasValue()) { |
| 18588 | AlignPackInfo APInfo = AlignPackStack.CurrentValue; |
| 18589 | // Only diagnose #pragma align(packed). |
| 18590 | if (!APInfo.IsAlignAttr() || APInfo.getAlignMode() != AlignPackInfo::Packed) |
| 18591 | return; |
| 18592 | const RecordDecl *RD = dyn_cast<RecordDecl>(Val: Tag); |
| 18593 | if (!RD) |
| 18594 | return; |
| 18595 | // Only warn if there is at least 1 bitfield member. |
| 18596 | if (llvm::any_of(RD->fields(), |
| 18597 | [](const FieldDecl *FD) { return FD->isBitField(); })) |
| 18598 | Diag(BraceRange.getBegin(), diag::warn_pragma_align_not_xl_compatible); |
| 18599 | } |
| 18600 | } |
| 18601 | |
| 18602 | void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) { |
| 18603 | AdjustDeclIfTemplate(Decl&: TagD); |
| 18604 | TagDecl *Tag = cast<TagDecl>(Val: TagD); |
| 18605 | Tag->setInvalidDecl(); |
| 18606 | |
| 18607 | // Make sure we "complete" the definition even it is invalid. |
| 18608 | if (Tag->isBeingDefined()) { |
| 18609 | if (RecordDecl *RD = dyn_cast<RecordDecl>(Val: Tag)) |
| 18610 | RD->completeDefinition(); |
| 18611 | } |
| 18612 | |
| 18613 | // We're undoing ActOnTagStartDefinition here, not |
| 18614 | // ActOnStartCXXMemberDeclarations, so we don't have to mess with |
| 18615 | // the FieldCollector. |
| 18616 | |
| 18617 | PopDeclContext(); |
| 18618 | } |
| 18619 | |
| 18620 | // Note that FieldName may be null for anonymous bitfields. |
| 18621 | ExprResult Sema::VerifyBitField(SourceLocation FieldLoc, |
| 18622 | const IdentifierInfo *FieldName, |
| 18623 | QualType FieldTy, bool IsMsStruct, |
| 18624 | Expr *BitWidth) { |
| 18625 | assert(BitWidth); |
| 18626 | if (BitWidth->containsErrors()) |
| 18627 | return ExprError(); |
| 18628 | |
| 18629 | // C99 6.7.2.1p4 - verify the field type. |
| 18630 | // C++ 9.6p3: A bit-field shall have integral or enumeration type. |
| 18631 | if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) { |
| 18632 | // Handle incomplete and sizeless types with a specific error. |
| 18633 | if (RequireCompleteSizedType(FieldLoc, FieldTy, |
| 18634 | diag::err_field_incomplete_or_sizeless)) |
| 18635 | return ExprError(); |
| 18636 | if (FieldName) |
| 18637 | return Diag(FieldLoc, diag::err_not_integral_type_bitfield) |
| 18638 | << FieldName << FieldTy << BitWidth->getSourceRange(); |
| 18639 | return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield) |
| 18640 | << FieldTy << BitWidth->getSourceRange(); |
| 18641 | } else if (DiagnoseUnexpandedParameterPack(E: const_cast<Expr *>(BitWidth), |
| 18642 | UPPC: UPPC_BitFieldWidth)) |
| 18643 | return ExprError(); |
| 18644 | |
| 18645 | // If the bit-width is type- or value-dependent, don't try to check |
| 18646 | // it now. |
| 18647 | if (BitWidth->isValueDependent() || BitWidth->isTypeDependent()) |
| 18648 | return BitWidth; |
| 18649 | |
| 18650 | llvm::APSInt Value; |
| 18651 | ExprResult ICE = |
| 18652 | VerifyIntegerConstantExpression(E: BitWidth, Result: &Value, CanFold: AllowFoldKind::Allow); |
| 18653 | if (ICE.isInvalid()) |
| 18654 | return ICE; |
| 18655 | BitWidth = ICE.get(); |
| 18656 | |
| 18657 | // Zero-width bitfield is ok for anonymous field. |
| 18658 | if (Value == 0 && FieldName) |
| 18659 | return Diag(FieldLoc, diag::err_bitfield_has_zero_width) |
| 18660 | << FieldName << BitWidth->getSourceRange(); |
| 18661 | |
| 18662 | if (Value.isSigned() && Value.isNegative()) { |
| 18663 | if (FieldName) |
| 18664 | return Diag(FieldLoc, diag::err_bitfield_has_negative_width) |
| 18665 | << FieldName << toString(Value, 10); |
| 18666 | return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width) |
| 18667 | << toString(Value, 10); |
| 18668 | } |
| 18669 | |
| 18670 | // The size of the bit-field must not exceed our maximum permitted object |
| 18671 | // size. |
| 18672 | if (Value.getActiveBits() > ConstantArrayType::getMaxSizeBits(Context)) { |
| 18673 | return Diag(FieldLoc, diag::err_bitfield_too_wide) |
| 18674 | << !FieldName << FieldName << toString(Value, 10); |
| 18675 | } |
| 18676 | |
| 18677 | if (!FieldTy->isDependentType()) { |
| 18678 | uint64_t TypeStorageSize = Context.getTypeSize(T: FieldTy); |
| 18679 | uint64_t TypeWidth = Context.getIntWidth(T: FieldTy); |
| 18680 | bool BitfieldIsOverwide = Value.ugt(RHS: TypeWidth); |
| 18681 | |
| 18682 | // Over-wide bitfields are an error in C or when using the MSVC bitfield |
| 18683 | // ABI. |
| 18684 | bool CStdConstraintViolation = |
| 18685 | BitfieldIsOverwide && !getLangOpts().CPlusPlus; |
| 18686 | bool MSBitfieldViolation = |
| 18687 | Value.ugt(RHS: TypeStorageSize) && |
| 18688 | (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft()); |
| 18689 | if (CStdConstraintViolation || MSBitfieldViolation) { |
| 18690 | unsigned DiagWidth = |
| 18691 | CStdConstraintViolation ? TypeWidth : TypeStorageSize; |
| 18692 | return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width) |
| 18693 | << (bool)FieldName << FieldName << toString(Value, 10) |
| 18694 | << !CStdConstraintViolation << DiagWidth; |
| 18695 | } |
| 18696 | |
| 18697 | // Warn on types where the user might conceivably expect to get all |
| 18698 | // specified bits as value bits: that's all integral types other than |
| 18699 | // 'bool'. |
| 18700 | if (BitfieldIsOverwide && !FieldTy->isBooleanType() && FieldName) { |
| 18701 | Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width) |
| 18702 | << FieldName << toString(Value, 10) |
| 18703 | << (unsigned)TypeWidth; |
| 18704 | } |
| 18705 | } |
| 18706 | |
| 18707 | if (isa<ConstantExpr>(Val: BitWidth)) |
| 18708 | return BitWidth; |
| 18709 | return ConstantExpr::Create(Context: getASTContext(), E: BitWidth, Result: APValue{Value}); |
| 18710 | } |
| 18711 | |
| 18712 | Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart, |
| 18713 | Declarator &D, Expr *BitfieldWidth) { |
| 18714 | FieldDecl *Res = HandleField(S, TagD: cast_if_present<RecordDecl>(Val: TagD), DeclStart, |
| 18715 | D, BitfieldWidth, |
| 18716 | /*InitStyle=*/ICIS_NoInit, AS: AS_public); |
| 18717 | return Res; |
| 18718 | } |
| 18719 | |
| 18720 | FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record, |
| 18721 | SourceLocation DeclStart, |
| 18722 | Declarator &D, Expr *BitWidth, |
| 18723 | InClassInitStyle InitStyle, |
| 18724 | AccessSpecifier AS) { |
| 18725 | if (D.isDecompositionDeclarator()) { |
| 18726 | const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); |
| 18727 | Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) |
| 18728 | << Decomp.getSourceRange(); |
| 18729 | return nullptr; |
| 18730 | } |
| 18731 | |
| 18732 | const IdentifierInfo *II = D.getIdentifier(); |
| 18733 | SourceLocation Loc = DeclStart; |
| 18734 | if (II) Loc = D.getIdentifierLoc(); |
| 18735 | |
| 18736 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D); |
| 18737 | QualType T = TInfo->getType(); |
| 18738 | if (getLangOpts().CPlusPlus) { |
| 18739 | CheckExtraCXXDefaultArguments(D); |
| 18740 | |
| 18741 | if (DiagnoseUnexpandedParameterPack(Loc: D.getIdentifierLoc(), T: TInfo, |
| 18742 | UPPC: UPPC_DataMemberType)) { |
| 18743 | D.setInvalidType(); |
| 18744 | T = Context.IntTy; |
| 18745 | TInfo = Context.getTrivialTypeSourceInfo(T, Loc); |
| 18746 | } |
| 18747 | } |
| 18748 | |
| 18749 | DiagnoseFunctionSpecifiers(DS: D.getDeclSpec()); |
| 18750 | |
| 18751 | if (D.getDeclSpec().isInlineSpecified()) |
| 18752 | Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) |
| 18753 | << getLangOpts().CPlusPlus17; |
| 18754 | if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) |
| 18755 | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), |
| 18756 | diag::err_invalid_thread) |
| 18757 | << DeclSpec::getSpecifierName(TSCS); |
| 18758 | |
| 18759 | // Check to see if this name was declared as a member previously |
| 18760 | NamedDecl *PrevDecl = nullptr; |
| 18761 | LookupResult Previous(*this, II, Loc, LookupMemberName, |
| 18762 | RedeclarationKind::ForVisibleRedeclaration); |
| 18763 | LookupName(R&: Previous, S); |
| 18764 | switch (Previous.getResultKind()) { |
| 18765 | case LookupResultKind::Found: |
| 18766 | case LookupResultKind::FoundUnresolvedValue: |
| 18767 | PrevDecl = Previous.getAsSingle<NamedDecl>(); |
| 18768 | break; |
| 18769 | |
| 18770 | case LookupResultKind::FoundOverloaded: |
| 18771 | PrevDecl = Previous.getRepresentativeDecl(); |
| 18772 | break; |
| 18773 | |
| 18774 | case LookupResultKind::NotFound: |
| 18775 | case LookupResultKind::NotFoundInCurrentInstantiation: |
| 18776 | case LookupResultKind::Ambiguous: |
| 18777 | break; |
| 18778 | } |
| 18779 | Previous.suppressDiagnostics(); |
| 18780 | |
| 18781 | if (PrevDecl && PrevDecl->isTemplateParameter()) { |
| 18782 | // Maybe we will complain about the shadowed template parameter. |
| 18783 | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); |
| 18784 | // Just pretend that we didn't see the previous declaration. |
| 18785 | PrevDecl = nullptr; |
| 18786 | } |
| 18787 | |
| 18788 | if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) |
| 18789 | PrevDecl = nullptr; |
| 18790 | |
| 18791 | bool Mutable |
| 18792 | = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable); |
| 18793 | SourceLocation TSSL = D.getBeginLoc(); |
| 18794 | FieldDecl *NewFD |
| 18795 | = CheckFieldDecl(Name: II, T, TInfo, Record, Loc, Mutable, BitfieldWidth: BitWidth, InitStyle, |
| 18796 | TSSL, AS, PrevDecl, D: &D); |
| 18797 | |
| 18798 | if (NewFD->isInvalidDecl()) |
| 18799 | Record->setInvalidDecl(); |
| 18800 | |
| 18801 | if (D.getDeclSpec().isModulePrivateSpecified()) |
| 18802 | NewFD->setModulePrivate(); |
| 18803 | |
| 18804 | if (NewFD->isInvalidDecl() && PrevDecl) { |
| 18805 | // Don't introduce NewFD into scope; there's already something |
| 18806 | // with the same name in the same scope. |
| 18807 | } else if (II) { |
| 18808 | PushOnScopeChains(NewFD, S); |
| 18809 | } else |
| 18810 | Record->addDecl(NewFD); |
| 18811 | |
| 18812 | return NewFD; |
| 18813 | } |
| 18814 | |
| 18815 | FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T, |
| 18816 | TypeSourceInfo *TInfo, |
| 18817 | RecordDecl *Record, SourceLocation Loc, |
| 18818 | bool Mutable, Expr *BitWidth, |
| 18819 | InClassInitStyle InitStyle, |
| 18820 | SourceLocation TSSL, |
| 18821 | AccessSpecifier AS, NamedDecl *PrevDecl, |
| 18822 | Declarator *D) { |
| 18823 | const IdentifierInfo *II = Name.getAsIdentifierInfo(); |
| 18824 | bool InvalidDecl = false; |
| 18825 | if (D) InvalidDecl = D->isInvalidType(); |
| 18826 | |
| 18827 | // If we receive a broken type, recover by assuming 'int' and |
| 18828 | // marking this declaration as invalid. |
| 18829 | if (T.isNull() || T->containsErrors()) { |
| 18830 | InvalidDecl = true; |
| 18831 | T = Context.IntTy; |
| 18832 | } |
| 18833 | |
| 18834 | QualType EltTy = Context.getBaseElementType(QT: T); |
| 18835 | if (!EltTy->isDependentType() && !EltTy->containsErrors()) { |
| 18836 | bool isIncomplete = |
| 18837 | LangOpts.HLSL // HLSL allows sizeless builtin types |
| 18838 | ? RequireCompleteType(Loc, EltTy, diag::err_incomplete_type) |
| 18839 | : RequireCompleteSizedType(Loc, EltTy, |
| 18840 | diag::err_field_incomplete_or_sizeless); |
| 18841 | if (isIncomplete) { |
| 18842 | // Fields of incomplete type force their record to be invalid. |
| 18843 | Record->setInvalidDecl(); |
| 18844 | InvalidDecl = true; |
| 18845 | } else { |
| 18846 | NamedDecl *Def; |
| 18847 | EltTy->isIncompleteType(Def: &Def); |
| 18848 | if (Def && Def->isInvalidDecl()) { |
| 18849 | Record->setInvalidDecl(); |
| 18850 | InvalidDecl = true; |
| 18851 | } |
| 18852 | } |
| 18853 | } |
| 18854 | |
| 18855 | // TR 18037 does not allow fields to be declared with address space |
| 18856 | if (T.hasAddressSpace() || T->isDependentAddressSpaceType() || |
| 18857 | T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) { |
| 18858 | Diag(Loc, diag::err_field_with_address_space); |
| 18859 | Record->setInvalidDecl(); |
| 18860 | InvalidDecl = true; |
| 18861 | } |
| 18862 | |
| 18863 | if (LangOpts.OpenCL) { |
| 18864 | // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be |
| 18865 | // used as structure or union field: image, sampler, event or block types. |
| 18866 | if (T->isEventT() || T->isImageType() || T->isSamplerT() || |
| 18867 | T->isBlockPointerType()) { |
| 18868 | Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T; |
| 18869 | Record->setInvalidDecl(); |
| 18870 | InvalidDecl = true; |
| 18871 | } |
| 18872 | // OpenCL v1.2 s6.9.c: bitfields are not supported, unless Clang extension |
| 18873 | // is enabled. |
| 18874 | if (BitWidth && !getOpenCLOptions().isAvailableOption( |
| 18875 | Ext: "__cl_clang_bitfields" , LO: LangOpts)) { |
| 18876 | Diag(Loc, diag::err_opencl_bitfields); |
| 18877 | InvalidDecl = true; |
| 18878 | } |
| 18879 | } |
| 18880 | |
| 18881 | // Anonymous bit-fields cannot be cv-qualified (CWG 2229). |
| 18882 | if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth && |
| 18883 | T.hasQualifiers()) { |
| 18884 | InvalidDecl = true; |
| 18885 | Diag(Loc, diag::err_anon_bitfield_qualifiers); |
| 18886 | } |
| 18887 | |
| 18888 | // C99 6.7.2.1p8: A member of a structure or union may have any type other |
| 18889 | // than a variably modified type. |
| 18890 | if (!InvalidDecl && T->isVariablyModifiedType()) { |
| 18891 | if (!tryToFixVariablyModifiedVarType( |
| 18892 | TInfo, T, Loc, diag::err_typecheck_field_variable_size)) |
| 18893 | InvalidDecl = true; |
| 18894 | } |
| 18895 | |
| 18896 | // Fields can not have abstract class types |
| 18897 | if (!InvalidDecl && RequireNonAbstractType(Loc, T, |
| 18898 | diag::err_abstract_type_in_decl, |
| 18899 | AbstractFieldType)) |
| 18900 | InvalidDecl = true; |
| 18901 | |
| 18902 | if (InvalidDecl) |
| 18903 | BitWidth = nullptr; |
| 18904 | // If this is declared as a bit-field, check the bit-field. |
| 18905 | if (BitWidth) { |
| 18906 | BitWidth = |
| 18907 | VerifyBitField(FieldLoc: Loc, FieldName: II, FieldTy: T, IsMsStruct: Record->isMsStruct(C: Context), BitWidth).get(); |
| 18908 | if (!BitWidth) { |
| 18909 | InvalidDecl = true; |
| 18910 | BitWidth = nullptr; |
| 18911 | } |
| 18912 | } |
| 18913 | |
| 18914 | // Check that 'mutable' is consistent with the type of the declaration. |
| 18915 | if (!InvalidDecl && Mutable) { |
| 18916 | unsigned DiagID = 0; |
| 18917 | if (T->isReferenceType()) |
| 18918 | DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference |
| 18919 | : diag::err_mutable_reference; |
| 18920 | else if (T.isConstQualified()) |
| 18921 | DiagID = diag::err_mutable_const; |
| 18922 | |
| 18923 | if (DiagID) { |
| 18924 | SourceLocation ErrLoc = Loc; |
| 18925 | if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid()) |
| 18926 | ErrLoc = D->getDeclSpec().getStorageClassSpecLoc(); |
| 18927 | Diag(ErrLoc, DiagID); |
| 18928 | if (DiagID != diag::ext_mutable_reference) { |
| 18929 | Mutable = false; |
| 18930 | InvalidDecl = true; |
| 18931 | } |
| 18932 | } |
| 18933 | } |
| 18934 | |
| 18935 | // C++11 [class.union]p8 (DR1460): |
| 18936 | // At most one variant member of a union may have a |
| 18937 | // brace-or-equal-initializer. |
| 18938 | if (InitStyle != ICIS_NoInit) |
| 18939 | checkDuplicateDefaultInit(S&: *this, Parent: cast<CXXRecordDecl>(Val: Record), DefaultInitLoc: Loc); |
| 18940 | |
| 18941 | FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo, |
| 18942 | BitWidth, Mutable, InitStyle); |
| 18943 | if (InvalidDecl) |
| 18944 | NewFD->setInvalidDecl(); |
| 18945 | |
| 18946 | if (!InvalidDecl) |
| 18947 | warnOnCTypeHiddenInCPlusPlus(NewFD); |
| 18948 | |
| 18949 | if (PrevDecl && !isa<TagDecl>(Val: PrevDecl) && |
| 18950 | !PrevDecl->isPlaceholderVar(LangOpts: getLangOpts())) { |
| 18951 | Diag(Loc, diag::err_duplicate_member) << II; |
| 18952 | Diag(PrevDecl->getLocation(), diag::note_previous_declaration); |
| 18953 | NewFD->setInvalidDecl(); |
| 18954 | } |
| 18955 | |
| 18956 | if (!InvalidDecl && getLangOpts().CPlusPlus) { |
| 18957 | if (Record->isUnion()) { |
| 18958 | if (const RecordType *RT = EltTy->getAs<RecordType>()) { |
| 18959 | CXXRecordDecl* RDecl = cast<CXXRecordDecl>(Val: RT->getDecl()); |
| 18960 | if (RDecl->getDefinition()) { |
| 18961 | // C++ [class.union]p1: An object of a class with a non-trivial |
| 18962 | // constructor, a non-trivial copy constructor, a non-trivial |
| 18963 | // destructor, or a non-trivial copy assignment operator |
| 18964 | // cannot be a member of a union, nor can an array of such |
| 18965 | // objects. |
| 18966 | if (CheckNontrivialField(FD: NewFD)) |
| 18967 | NewFD->setInvalidDecl(); |
| 18968 | } |
| 18969 | } |
| 18970 | |
| 18971 | // C++ [class.union]p1: If a union contains a member of reference type, |
| 18972 | // the program is ill-formed, except when compiling with MSVC extensions |
| 18973 | // enabled. |
| 18974 | if (EltTy->isReferenceType()) { |
| 18975 | const bool HaveMSExt = |
| 18976 | getLangOpts().MicrosoftExt && |
| 18977 | !getLangOpts().isCompatibleWithMSVC(MajorVersion: LangOptions::MSVC2015); |
| 18978 | |
| 18979 | Diag(NewFD->getLocation(), |
| 18980 | HaveMSExt ? diag::ext_union_member_of_reference_type |
| 18981 | : diag::err_union_member_of_reference_type) |
| 18982 | << NewFD->getDeclName() << EltTy; |
| 18983 | if (!HaveMSExt) |
| 18984 | NewFD->setInvalidDecl(); |
| 18985 | } |
| 18986 | } |
| 18987 | } |
| 18988 | |
| 18989 | // FIXME: We need to pass in the attributes given an AST |
| 18990 | // representation, not a parser representation. |
| 18991 | if (D) { |
| 18992 | // FIXME: The current scope is almost... but not entirely... correct here. |
| 18993 | ProcessDeclAttributes(getCurScope(), NewFD, *D); |
| 18994 | |
| 18995 | if (NewFD->hasAttrs()) |
| 18996 | CheckAlignasUnderalignment(NewFD); |
| 18997 | } |
| 18998 | |
| 18999 | // In auto-retain/release, infer strong retension for fields of |
| 19000 | // retainable type. |
| 19001 | if (getLangOpts().ObjCAutoRefCount && ObjC().inferObjCARCLifetime(NewFD)) |
| 19002 | NewFD->setInvalidDecl(); |
| 19003 | |
| 19004 | if (T.isObjCGCWeak()) |
| 19005 | Diag(Loc, diag::warn_attribute_weak_on_field); |
| 19006 | |
| 19007 | // PPC MMA non-pointer types are not allowed as field types. |
| 19008 | if (Context.getTargetInfo().getTriple().isPPC64() && |
| 19009 | PPC().CheckPPCMMAType(Type: T, TypeLoc: NewFD->getLocation())) |
| 19010 | NewFD->setInvalidDecl(); |
| 19011 | |
| 19012 | NewFD->setAccess(AS); |
| 19013 | return NewFD; |
| 19014 | } |
| 19015 | |
| 19016 | bool Sema::CheckNontrivialField(FieldDecl *FD) { |
| 19017 | assert(FD); |
| 19018 | assert(getLangOpts().CPlusPlus && "valid check only for C++" ); |
| 19019 | |
| 19020 | if (FD->isInvalidDecl() || FD->getType()->isDependentType()) |
| 19021 | return false; |
| 19022 | |
| 19023 | QualType EltTy = Context.getBaseElementType(FD->getType()); |
| 19024 | if (const RecordType *RT = EltTy->getAs<RecordType>()) { |
| 19025 | CXXRecordDecl *RDecl = cast<CXXRecordDecl>(Val: RT->getDecl()); |
| 19026 | if (RDecl->getDefinition()) { |
| 19027 | // We check for copy constructors before constructors |
| 19028 | // because otherwise we'll never get complaints about |
| 19029 | // copy constructors. |
| 19030 | |
| 19031 | CXXSpecialMemberKind member = CXXSpecialMemberKind::Invalid; |
| 19032 | // We're required to check for any non-trivial constructors. Since the |
| 19033 | // implicit default constructor is suppressed if there are any |
| 19034 | // user-declared constructors, we just need to check that there is a |
| 19035 | // trivial default constructor and a trivial copy constructor. (We don't |
| 19036 | // worry about move constructors here, since this is a C++98 check.) |
| 19037 | if (RDecl->hasNonTrivialCopyConstructor()) |
| 19038 | member = CXXSpecialMemberKind::CopyConstructor; |
| 19039 | else if (!RDecl->hasTrivialDefaultConstructor()) |
| 19040 | member = CXXSpecialMemberKind::DefaultConstructor; |
| 19041 | else if (RDecl->hasNonTrivialCopyAssignment()) |
| 19042 | member = CXXSpecialMemberKind::CopyAssignment; |
| 19043 | else if (RDecl->hasNonTrivialDestructor()) |
| 19044 | member = CXXSpecialMemberKind::Destructor; |
| 19045 | |
| 19046 | if (member != CXXSpecialMemberKind::Invalid) { |
| 19047 | if (!getLangOpts().CPlusPlus11 && |
| 19048 | getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) { |
| 19049 | // Objective-C++ ARC: it is an error to have a non-trivial field of |
| 19050 | // a union. However, system headers in Objective-C programs |
| 19051 | // occasionally have Objective-C lifetime objects within unions, |
| 19052 | // and rather than cause the program to fail, we make those |
| 19053 | // members unavailable. |
| 19054 | SourceLocation Loc = FD->getLocation(); |
| 19055 | if (getSourceManager().isInSystemHeader(Loc)) { |
| 19056 | if (!FD->hasAttr<UnavailableAttr>()) |
| 19057 | FD->addAttr(UnavailableAttr::CreateImplicit(Context, "" , |
| 19058 | UnavailableAttr::IR_ARCFieldWithOwnership, Loc)); |
| 19059 | return false; |
| 19060 | } |
| 19061 | } |
| 19062 | |
| 19063 | Diag( |
| 19064 | FD->getLocation(), |
| 19065 | getLangOpts().CPlusPlus11 |
| 19066 | ? diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member |
| 19067 | : diag::err_illegal_union_or_anon_struct_member) |
| 19068 | << FD->getParent()->isUnion() << FD->getDeclName() << member; |
| 19069 | DiagnoseNontrivial(Record: RDecl, CSM: member); |
| 19070 | return !getLangOpts().CPlusPlus11; |
| 19071 | } |
| 19072 | } |
| 19073 | } |
| 19074 | |
| 19075 | return false; |
| 19076 | } |
| 19077 | |
| 19078 | void Sema::ActOnLastBitfield(SourceLocation DeclLoc, |
| 19079 | SmallVectorImpl<Decl *> &AllIvarDecls) { |
| 19080 | if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty()) |
| 19081 | return; |
| 19082 | |
| 19083 | Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1]; |
| 19084 | ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(Val: ivarDecl); |
| 19085 | |
| 19086 | if (!Ivar->isBitField() || Ivar->isZeroLengthBitField()) |
| 19087 | return; |
| 19088 | ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(Val: CurContext); |
| 19089 | if (!ID) { |
| 19090 | if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(Val: CurContext)) { |
| 19091 | if (!CD->IsClassExtension()) |
| 19092 | return; |
| 19093 | } |
| 19094 | // No need to add this to end of @implementation. |
| 19095 | else |
| 19096 | return; |
| 19097 | } |
| 19098 | // All conditions are met. Add a new bitfield to the tail end of ivars. |
| 19099 | llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0); |
| 19100 | Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc); |
| 19101 | Expr *BitWidth = |
| 19102 | ConstantExpr::Create(Context, E: BW, Result: APValue(llvm::APSInt(Zero))); |
| 19103 | |
| 19104 | Ivar = ObjCIvarDecl::Create( |
| 19105 | C&: Context, DC: cast<ObjCContainerDecl>(Val: CurContext), StartLoc: DeclLoc, IdLoc: DeclLoc, Id: nullptr, |
| 19106 | T: Context.CharTy, TInfo: Context.getTrivialTypeSourceInfo(T: Context.CharTy, Loc: DeclLoc), |
| 19107 | ac: ObjCIvarDecl::Private, BW: BitWidth, synthesized: true); |
| 19108 | AllIvarDecls.push_back(Ivar); |
| 19109 | } |
| 19110 | |
| 19111 | /// [class.dtor]p4: |
| 19112 | /// At the end of the definition of a class, overload resolution is |
| 19113 | /// performed among the prospective destructors declared in that class with |
| 19114 | /// an empty argument list to select the destructor for the class, also |
| 19115 | /// known as the selected destructor. |
| 19116 | /// |
| 19117 | /// We do the overload resolution here, then mark the selected constructor in the AST. |
| 19118 | /// Later CXXRecordDecl::getDestructor() will return the selected constructor. |
| 19119 | static void ComputeSelectedDestructor(Sema &S, CXXRecordDecl *Record) { |
| 19120 | if (!Record->hasUserDeclaredDestructor()) { |
| 19121 | return; |
| 19122 | } |
| 19123 | |
| 19124 | SourceLocation Loc = Record->getLocation(); |
| 19125 | OverloadCandidateSet OCS(Loc, OverloadCandidateSet::CSK_Normal); |
| 19126 | |
| 19127 | for (auto *Decl : Record->decls()) { |
| 19128 | if (auto *DD = dyn_cast<CXXDestructorDecl>(Decl)) { |
| 19129 | if (DD->isInvalidDecl()) |
| 19130 | continue; |
| 19131 | S.AddOverloadCandidate(DD, DeclAccessPair::make(DD, DD->getAccess()), {}, |
| 19132 | OCS); |
| 19133 | assert(DD->isIneligibleOrNotSelected() && "Selecting a destructor but a destructor was already selected." ); |
| 19134 | } |
| 19135 | } |
| 19136 | |
| 19137 | if (OCS.empty()) { |
| 19138 | return; |
| 19139 | } |
| 19140 | OverloadCandidateSet::iterator Best; |
| 19141 | unsigned Msg = 0; |
| 19142 | OverloadCandidateDisplayKind DisplayKind; |
| 19143 | |
| 19144 | switch (OCS.BestViableFunction(S, Loc, Best)) { |
| 19145 | case OR_Success: |
| 19146 | case OR_Deleted: |
| 19147 | Record->addedSelectedDestructor(DD: dyn_cast<CXXDestructorDecl>(Val: Best->Function)); |
| 19148 | break; |
| 19149 | |
| 19150 | case OR_Ambiguous: |
| 19151 | Msg = diag::err_ambiguous_destructor; |
| 19152 | DisplayKind = OCD_AmbiguousCandidates; |
| 19153 | break; |
| 19154 | |
| 19155 | case OR_No_Viable_Function: |
| 19156 | Msg = diag::err_no_viable_destructor; |
| 19157 | DisplayKind = OCD_AllCandidates; |
| 19158 | break; |
| 19159 | } |
| 19160 | |
| 19161 | if (Msg) { |
| 19162 | // OpenCL have got their own thing going with destructors. It's slightly broken, |
| 19163 | // but we allow it. |
| 19164 | if (!S.LangOpts.OpenCL) { |
| 19165 | PartialDiagnostic Diag = S.PDiag(Msg) << Record; |
| 19166 | OCS.NoteCandidates(PA: PartialDiagnosticAt(Loc, Diag), S, OCD: DisplayKind, Args: {}); |
| 19167 | Record->setInvalidDecl(); |
| 19168 | } |
| 19169 | // It's a bit hacky: At this point we've raised an error but we want the |
| 19170 | // rest of the compiler to continue somehow working. However almost |
| 19171 | // everything we'll try to do with the class will depend on there being a |
| 19172 | // destructor. So let's pretend the first one is selected and hope for the |
| 19173 | // best. |
| 19174 | Record->addedSelectedDestructor(DD: dyn_cast<CXXDestructorDecl>(Val: OCS.begin()->Function)); |
| 19175 | } |
| 19176 | } |
| 19177 | |
| 19178 | /// [class.mem.special]p5 |
| 19179 | /// Two special member functions are of the same kind if: |
| 19180 | /// - they are both default constructors, |
| 19181 | /// - they are both copy or move constructors with the same first parameter |
| 19182 | /// type, or |
| 19183 | /// - they are both copy or move assignment operators with the same first |
| 19184 | /// parameter type and the same cv-qualifiers and ref-qualifier, if any. |
| 19185 | static bool AreSpecialMemberFunctionsSameKind(ASTContext &Context, |
| 19186 | CXXMethodDecl *M1, |
| 19187 | CXXMethodDecl *M2, |
| 19188 | CXXSpecialMemberKind CSM) { |
| 19189 | // We don't want to compare templates to non-templates: See |
| 19190 | // https://github.com/llvm/llvm-project/issues/59206 |
| 19191 | if (CSM == CXXSpecialMemberKind::DefaultConstructor) |
| 19192 | return bool(M1->getDescribedFunctionTemplate()) == |
| 19193 | bool(M2->getDescribedFunctionTemplate()); |
| 19194 | // FIXME: better resolve CWG |
| 19195 | // https://cplusplus.github.io/CWG/issues/2787.html |
| 19196 | if (!Context.hasSameType(M1->getNonObjectParameter(0)->getType(), |
| 19197 | M2->getNonObjectParameter(0)->getType())) |
| 19198 | return false; |
| 19199 | if (!Context.hasSameType(T1: M1->getFunctionObjectParameterReferenceType(), |
| 19200 | T2: M2->getFunctionObjectParameterReferenceType())) |
| 19201 | return false; |
| 19202 | |
| 19203 | return true; |
| 19204 | } |
| 19205 | |
| 19206 | /// [class.mem.special]p6: |
| 19207 | /// An eligible special member function is a special member function for which: |
| 19208 | /// - the function is not deleted, |
| 19209 | /// - the associated constraints, if any, are satisfied, and |
| 19210 | /// - no special member function of the same kind whose associated constraints |
| 19211 | /// [CWG2595], if any, are satisfied is more constrained. |
| 19212 | static void SetEligibleMethods(Sema &S, CXXRecordDecl *Record, |
| 19213 | ArrayRef<CXXMethodDecl *> Methods, |
| 19214 | CXXSpecialMemberKind CSM) { |
| 19215 | SmallVector<bool, 4> SatisfactionStatus; |
| 19216 | |
| 19217 | for (CXXMethodDecl *Method : Methods) { |
| 19218 | if (!Method->getTrailingRequiresClause()) |
| 19219 | SatisfactionStatus.push_back(Elt: true); |
| 19220 | else { |
| 19221 | ConstraintSatisfaction Satisfaction; |
| 19222 | if (S.CheckFunctionConstraints(Method, Satisfaction)) |
| 19223 | SatisfactionStatus.push_back(Elt: false); |
| 19224 | else |
| 19225 | SatisfactionStatus.push_back(Elt: Satisfaction.IsSatisfied); |
| 19226 | } |
| 19227 | } |
| 19228 | |
| 19229 | for (size_t i = 0; i < Methods.size(); i++) { |
| 19230 | if (!SatisfactionStatus[i]) |
| 19231 | continue; |
| 19232 | CXXMethodDecl *Method = Methods[i]; |
| 19233 | CXXMethodDecl *OrigMethod = Method; |
| 19234 | if (FunctionDecl *MF = OrigMethod->getInstantiatedFromMemberFunction()) |
| 19235 | OrigMethod = cast<CXXMethodDecl>(Val: MF); |
| 19236 | |
| 19237 | AssociatedConstraint Orig = OrigMethod->getTrailingRequiresClause(); |
| 19238 | bool AnotherMethodIsMoreConstrained = false; |
| 19239 | for (size_t j = 0; j < Methods.size(); j++) { |
| 19240 | if (i == j || !SatisfactionStatus[j]) |
| 19241 | continue; |
| 19242 | CXXMethodDecl *OtherMethod = Methods[j]; |
| 19243 | if (FunctionDecl *MF = OtherMethod->getInstantiatedFromMemberFunction()) |
| 19244 | OtherMethod = cast<CXXMethodDecl>(Val: MF); |
| 19245 | |
| 19246 | if (!AreSpecialMemberFunctionsSameKind(Context&: S.Context, M1: OrigMethod, M2: OtherMethod, |
| 19247 | CSM)) |
| 19248 | continue; |
| 19249 | |
| 19250 | AssociatedConstraint Other = OtherMethod->getTrailingRequiresClause(); |
| 19251 | if (!Other) |
| 19252 | continue; |
| 19253 | if (!Orig) { |
| 19254 | AnotherMethodIsMoreConstrained = true; |
| 19255 | break; |
| 19256 | } |
| 19257 | if (S.IsAtLeastAsConstrained(OtherMethod, {Other}, OrigMethod, {Orig}, |
| 19258 | AnotherMethodIsMoreConstrained)) { |
| 19259 | // There was an error with the constraints comparison. Exit the loop |
| 19260 | // and don't consider this function eligible. |
| 19261 | AnotherMethodIsMoreConstrained = true; |
| 19262 | } |
| 19263 | if (AnotherMethodIsMoreConstrained) |
| 19264 | break; |
| 19265 | } |
| 19266 | // FIXME: Do not consider deleted methods as eligible after implementing |
| 19267 | // DR1734 and DR1496. |
| 19268 | if (!AnotherMethodIsMoreConstrained) { |
| 19269 | Method->setIneligibleOrNotSelected(false); |
| 19270 | Record->addedEligibleSpecialMemberFunction(MD: Method, |
| 19271 | SMKind: 1 << llvm::to_underlying(E: CSM)); |
| 19272 | } |
| 19273 | } |
| 19274 | } |
| 19275 | |
| 19276 | static void ComputeSpecialMemberFunctionsEligiblity(Sema &S, |
| 19277 | CXXRecordDecl *Record) { |
| 19278 | SmallVector<CXXMethodDecl *, 4> DefaultConstructors; |
| 19279 | SmallVector<CXXMethodDecl *, 4> CopyConstructors; |
| 19280 | SmallVector<CXXMethodDecl *, 4> MoveConstructors; |
| 19281 | SmallVector<CXXMethodDecl *, 4> CopyAssignmentOperators; |
| 19282 | SmallVector<CXXMethodDecl *, 4> MoveAssignmentOperators; |
| 19283 | |
| 19284 | for (auto *Decl : Record->decls()) { |
| 19285 | auto *MD = dyn_cast<CXXMethodDecl>(Decl); |
| 19286 | if (!MD) { |
| 19287 | auto *FTD = dyn_cast<FunctionTemplateDecl>(Decl); |
| 19288 | if (FTD) |
| 19289 | MD = dyn_cast<CXXMethodDecl>(FTD->getTemplatedDecl()); |
| 19290 | } |
| 19291 | if (!MD) |
| 19292 | continue; |
| 19293 | if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { |
| 19294 | if (CD->isInvalidDecl()) |
| 19295 | continue; |
| 19296 | if (CD->isDefaultConstructor()) |
| 19297 | DefaultConstructors.push_back(MD); |
| 19298 | else if (CD->isCopyConstructor()) |
| 19299 | CopyConstructors.push_back(MD); |
| 19300 | else if (CD->isMoveConstructor()) |
| 19301 | MoveConstructors.push_back(MD); |
| 19302 | } else if (MD->isCopyAssignmentOperator()) { |
| 19303 | CopyAssignmentOperators.push_back(MD); |
| 19304 | } else if (MD->isMoveAssignmentOperator()) { |
| 19305 | MoveAssignmentOperators.push_back(MD); |
| 19306 | } |
| 19307 | } |
| 19308 | |
| 19309 | SetEligibleMethods(S, Record, Methods: DefaultConstructors, |
| 19310 | CSM: CXXSpecialMemberKind::DefaultConstructor); |
| 19311 | SetEligibleMethods(S, Record, Methods: CopyConstructors, |
| 19312 | CSM: CXXSpecialMemberKind::CopyConstructor); |
| 19313 | SetEligibleMethods(S, Record, Methods: MoveConstructors, |
| 19314 | CSM: CXXSpecialMemberKind::MoveConstructor); |
| 19315 | SetEligibleMethods(S, Record, Methods: CopyAssignmentOperators, |
| 19316 | CSM: CXXSpecialMemberKind::CopyAssignment); |
| 19317 | SetEligibleMethods(S, Record, Methods: MoveAssignmentOperators, |
| 19318 | CSM: CXXSpecialMemberKind::MoveAssignment); |
| 19319 | } |
| 19320 | |
| 19321 | bool Sema::EntirelyFunctionPointers(const RecordDecl *Record) { |
| 19322 | // Check to see if a FieldDecl is a pointer to a function. |
| 19323 | auto IsFunctionPointerOrForwardDecl = [&](const Decl *D) { |
| 19324 | const FieldDecl *FD = dyn_cast<FieldDecl>(Val: D); |
| 19325 | if (!FD) { |
| 19326 | // Check whether this is a forward declaration that was inserted by |
| 19327 | // Clang. This happens when a non-forward declared / defined type is |
| 19328 | // used, e.g.: |
| 19329 | // |
| 19330 | // struct foo { |
| 19331 | // struct bar *(*f)(); |
| 19332 | // struct bar *(*g)(); |
| 19333 | // }; |
| 19334 | // |
| 19335 | // "struct bar" shows up in the decl AST as a "RecordDecl" with an |
| 19336 | // incomplete definition. |
| 19337 | if (const auto *TD = dyn_cast<TagDecl>(Val: D)) |
| 19338 | return !TD->isCompleteDefinition(); |
| 19339 | return false; |
| 19340 | } |
| 19341 | QualType FieldType = FD->getType().getDesugaredType(Context); |
| 19342 | if (isa<PointerType>(Val: FieldType)) { |
| 19343 | QualType PointeeType = cast<PointerType>(Val&: FieldType)->getPointeeType(); |
| 19344 | return PointeeType.getDesugaredType(Context)->isFunctionType(); |
| 19345 | } |
| 19346 | // If a member is a struct entirely of function pointers, that counts too. |
| 19347 | if (const RecordType *RT = FieldType->getAs<RecordType>()) { |
| 19348 | const RecordDecl *Record = RT->getDecl(); |
| 19349 | if (Record->isStruct() && EntirelyFunctionPointers(Record)) |
| 19350 | return true; |
| 19351 | } |
| 19352 | return false; |
| 19353 | }; |
| 19354 | |
| 19355 | return llvm::all_of(Record->decls(), IsFunctionPointerOrForwardDecl); |
| 19356 | } |
| 19357 | |
| 19358 | void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl, |
| 19359 | ArrayRef<Decl *> Fields, SourceLocation LBrac, |
| 19360 | SourceLocation RBrac, |
| 19361 | const ParsedAttributesView &Attrs) { |
| 19362 | assert(EnclosingDecl && "missing record or interface decl" ); |
| 19363 | |
| 19364 | // If this is an Objective-C @implementation or category and we have |
| 19365 | // new fields here we should reset the layout of the interface since |
| 19366 | // it will now change. |
| 19367 | if (!Fields.empty() && isa<ObjCContainerDecl>(Val: EnclosingDecl)) { |
| 19368 | ObjCContainerDecl *DC = cast<ObjCContainerDecl>(Val: EnclosingDecl); |
| 19369 | switch (DC->getKind()) { |
| 19370 | default: break; |
| 19371 | case Decl::ObjCCategory: |
| 19372 | Context.ResetObjCLayout(D: cast<ObjCCategoryDecl>(Val: DC)->getClassInterface()); |
| 19373 | break; |
| 19374 | case Decl::ObjCImplementation: |
| 19375 | Context. |
| 19376 | ResetObjCLayout(D: cast<ObjCImplementationDecl>(Val: DC)->getClassInterface()); |
| 19377 | break; |
| 19378 | } |
| 19379 | } |
| 19380 | |
| 19381 | RecordDecl *Record = dyn_cast<RecordDecl>(Val: EnclosingDecl); |
| 19382 | CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Val: EnclosingDecl); |
| 19383 | |
| 19384 | // Start counting up the number of named members; make sure to include |
| 19385 | // members of anonymous structs and unions in the total. |
| 19386 | unsigned NumNamedMembers = 0; |
| 19387 | if (Record) { |
| 19388 | for (const auto *I : Record->decls()) { |
| 19389 | if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) |
| 19390 | if (IFD->getDeclName()) |
| 19391 | ++NumNamedMembers; |
| 19392 | } |
| 19393 | } |
| 19394 | |
| 19395 | // Verify that all the fields are okay. |
| 19396 | SmallVector<FieldDecl*, 32> RecFields; |
| 19397 | const FieldDecl *PreviousField = nullptr; |
| 19398 | for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end(); |
| 19399 | i != end; PreviousField = cast<FieldDecl>(Val: *i), ++i) { |
| 19400 | FieldDecl *FD = cast<FieldDecl>(Val: *i); |
| 19401 | |
| 19402 | // Get the type for the field. |
| 19403 | const Type *FDTy = FD->getType().getTypePtr(); |
| 19404 | |
| 19405 | if (!FD->isAnonymousStructOrUnion()) { |
| 19406 | // Remember all fields written by the user. |
| 19407 | RecFields.push_back(Elt: FD); |
| 19408 | } |
| 19409 | |
| 19410 | // If the field is already invalid for some reason, don't emit more |
| 19411 | // diagnostics about it. |
| 19412 | if (FD->isInvalidDecl()) { |
| 19413 | EnclosingDecl->setInvalidDecl(); |
| 19414 | continue; |
| 19415 | } |
| 19416 | |
| 19417 | // C99 6.7.2.1p2: |
| 19418 | // A structure or union shall not contain a member with |
| 19419 | // incomplete or function type (hence, a structure shall not |
| 19420 | // contain an instance of itself, but may contain a pointer to |
| 19421 | // an instance of itself), except that the last member of a |
| 19422 | // structure with more than one named member may have incomplete |
| 19423 | // array type; such a structure (and any union containing, |
| 19424 | // possibly recursively, a member that is such a structure) |
| 19425 | // shall not be a member of a structure or an element of an |
| 19426 | // array. |
| 19427 | bool IsLastField = (i + 1 == Fields.end()); |
| 19428 | if (FDTy->isFunctionType()) { |
| 19429 | // Field declared as a function. |
| 19430 | Diag(FD->getLocation(), diag::err_field_declared_as_function) |
| 19431 | << FD->getDeclName(); |
| 19432 | FD->setInvalidDecl(); |
| 19433 | EnclosingDecl->setInvalidDecl(); |
| 19434 | continue; |
| 19435 | } else if (FDTy->isIncompleteArrayType() && |
| 19436 | (Record || isa<ObjCContainerDecl>(Val: EnclosingDecl))) { |
| 19437 | if (Record) { |
| 19438 | // Flexible array member. |
| 19439 | // Microsoft and g++ is more permissive regarding flexible array. |
| 19440 | // It will accept flexible array in union and also |
| 19441 | // as the sole element of a struct/class. |
| 19442 | unsigned DiagID = 0; |
| 19443 | if (!Record->isUnion() && !IsLastField) { |
| 19444 | Diag(FD->getLocation(), diag::err_flexible_array_not_at_end) |
| 19445 | << FD->getDeclName() << FD->getType() << Record->getTagKind(); |
| 19446 | Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration); |
| 19447 | FD->setInvalidDecl(); |
| 19448 | EnclosingDecl->setInvalidDecl(); |
| 19449 | continue; |
| 19450 | } else if (Record->isUnion()) |
| 19451 | DiagID = getLangOpts().MicrosoftExt |
| 19452 | ? diag::ext_flexible_array_union_ms |
| 19453 | : diag::ext_flexible_array_union_gnu; |
| 19454 | else if (NumNamedMembers < 1) |
| 19455 | DiagID = getLangOpts().MicrosoftExt |
| 19456 | ? diag::ext_flexible_array_empty_aggregate_ms |
| 19457 | : diag::ext_flexible_array_empty_aggregate_gnu; |
| 19458 | |
| 19459 | if (DiagID) |
| 19460 | Diag(FD->getLocation(), DiagID) |
| 19461 | << FD->getDeclName() << Record->getTagKind(); |
| 19462 | // While the layout of types that contain virtual bases is not specified |
| 19463 | // by the C++ standard, both the Itanium and Microsoft C++ ABIs place |
| 19464 | // virtual bases after the derived members. This would make a flexible |
| 19465 | // array member declared at the end of an object not adjacent to the end |
| 19466 | // of the type. |
| 19467 | if (CXXRecord && CXXRecord->getNumVBases() != 0) |
| 19468 | Diag(FD->getLocation(), diag::err_flexible_array_virtual_base) |
| 19469 | << FD->getDeclName() << Record->getTagKind(); |
| 19470 | if (!getLangOpts().C99) |
| 19471 | Diag(FD->getLocation(), diag::ext_c99_flexible_array_member) |
| 19472 | << FD->getDeclName() << Record->getTagKind(); |
| 19473 | |
| 19474 | // If the element type has a non-trivial destructor, we would not |
| 19475 | // implicitly destroy the elements, so disallow it for now. |
| 19476 | // |
| 19477 | // FIXME: GCC allows this. We should probably either implicitly delete |
| 19478 | // the destructor of the containing class, or just allow this. |
| 19479 | QualType BaseElem = Context.getBaseElementType(FD->getType()); |
| 19480 | if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) { |
| 19481 | Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor) |
| 19482 | << FD->getDeclName() << FD->getType(); |
| 19483 | FD->setInvalidDecl(); |
| 19484 | EnclosingDecl->setInvalidDecl(); |
| 19485 | continue; |
| 19486 | } |
| 19487 | // Okay, we have a legal flexible array member at the end of the struct. |
| 19488 | Record->setHasFlexibleArrayMember(true); |
| 19489 | } else { |
| 19490 | // In ObjCContainerDecl ivars with incomplete array type are accepted, |
| 19491 | // unless they are followed by another ivar. That check is done |
| 19492 | // elsewhere, after synthesized ivars are known. |
| 19493 | } |
| 19494 | } else if (!FDTy->isDependentType() && |
| 19495 | (LangOpts.HLSL // HLSL allows sizeless builtin types |
| 19496 | ? RequireCompleteType(FD->getLocation(), FD->getType(), |
| 19497 | diag::err_incomplete_type) |
| 19498 | : RequireCompleteSizedType( |
| 19499 | FD->getLocation(), FD->getType(), |
| 19500 | diag::err_field_incomplete_or_sizeless))) { |
| 19501 | // Incomplete type |
| 19502 | FD->setInvalidDecl(); |
| 19503 | EnclosingDecl->setInvalidDecl(); |
| 19504 | continue; |
| 19505 | } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) { |
| 19506 | if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) { |
| 19507 | // A type which contains a flexible array member is considered to be a |
| 19508 | // flexible array member. |
| 19509 | Record->setHasFlexibleArrayMember(true); |
| 19510 | if (!Record->isUnion()) { |
| 19511 | // If this is a struct/class and this is not the last element, reject |
| 19512 | // it. Note that GCC supports variable sized arrays in the middle of |
| 19513 | // structures. |
| 19514 | if (!IsLastField) |
| 19515 | Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct) |
| 19516 | << FD->getDeclName() << FD->getType(); |
| 19517 | else { |
| 19518 | // We support flexible arrays at the end of structs in |
| 19519 | // other structs as an extension. |
| 19520 | Diag(FD->getLocation(), diag::ext_flexible_array_in_struct) |
| 19521 | << FD->getDeclName(); |
| 19522 | } |
| 19523 | } |
| 19524 | } |
| 19525 | if (isa<ObjCContainerDecl>(EnclosingDecl) && |
| 19526 | RequireNonAbstractType(FD->getLocation(), FD->getType(), |
| 19527 | diag::err_abstract_type_in_decl, |
| 19528 | AbstractIvarType)) { |
| 19529 | // Ivars can not have abstract class types |
| 19530 | FD->setInvalidDecl(); |
| 19531 | } |
| 19532 | if (Record && FDTTy->getDecl()->hasObjectMember()) |
| 19533 | Record->setHasObjectMember(true); |
| 19534 | if (Record && FDTTy->getDecl()->hasVolatileMember()) |
| 19535 | Record->setHasVolatileMember(true); |
| 19536 | } else if (FDTy->isObjCObjectType()) { |
| 19537 | /// A field cannot be an Objective-c object |
| 19538 | Diag(FD->getLocation(), diag::err_statically_allocated_object) |
| 19539 | << FixItHint::CreateInsertion(FD->getLocation(), "*" ); |
| 19540 | QualType T = Context.getObjCObjectPointerType(OIT: FD->getType()); |
| 19541 | FD->setType(T); |
| 19542 | } else if (Record && Record->isUnion() && |
| 19543 | FD->getType().hasNonTrivialObjCLifetime() && |
| 19544 | getSourceManager().isInSystemHeader(FD->getLocation()) && |
| 19545 | !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>() && |
| 19546 | (FD->getType().getObjCLifetime() != Qualifiers::OCL_Strong || |
| 19547 | !Context.hasDirectOwnershipQualifier(FD->getType()))) { |
| 19548 | // For backward compatibility, fields of C unions declared in system |
| 19549 | // headers that have non-trivial ObjC ownership qualifications are marked |
| 19550 | // as unavailable unless the qualifier is explicit and __strong. This can |
| 19551 | // break ABI compatibility between programs compiled with ARC and MRR, but |
| 19552 | // is a better option than rejecting programs using those unions under |
| 19553 | // ARC. |
| 19554 | FD->addAttr(UnavailableAttr::CreateImplicit( |
| 19555 | Context, "" , UnavailableAttr::IR_ARCFieldWithOwnership, |
| 19556 | FD->getLocation())); |
| 19557 | } else if (getLangOpts().ObjC && |
| 19558 | getLangOpts().getGC() != LangOptions::NonGC && Record && |
| 19559 | !Record->hasObjectMember()) { |
| 19560 | if (FD->getType()->isObjCObjectPointerType() || |
| 19561 | FD->getType().isObjCGCStrong()) |
| 19562 | Record->setHasObjectMember(true); |
| 19563 | else if (Context.getAsArrayType(T: FD->getType())) { |
| 19564 | QualType BaseType = Context.getBaseElementType(FD->getType()); |
| 19565 | if (BaseType->isRecordType() && |
| 19566 | BaseType->castAs<RecordType>()->getDecl()->hasObjectMember()) |
| 19567 | Record->setHasObjectMember(true); |
| 19568 | else if (BaseType->isObjCObjectPointerType() || |
| 19569 | BaseType.isObjCGCStrong()) |
| 19570 | Record->setHasObjectMember(true); |
| 19571 | } |
| 19572 | } |
| 19573 | |
| 19574 | if (Record && !getLangOpts().CPlusPlus && |
| 19575 | !shouldIgnoreForRecordTriviality(FD)) { |
| 19576 | QualType FT = FD->getType(); |
| 19577 | if (FT.isNonTrivialToPrimitiveDefaultInitialize()) { |
| 19578 | Record->setNonTrivialToPrimitiveDefaultInitialize(true); |
| 19579 | if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || |
| 19580 | Record->isUnion()) |
| 19581 | Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true); |
| 19582 | } |
| 19583 | QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy(); |
| 19584 | if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) { |
| 19585 | Record->setNonTrivialToPrimitiveCopy(true); |
| 19586 | if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion()) |
| 19587 | Record->setHasNonTrivialToPrimitiveCopyCUnion(true); |
| 19588 | } |
| 19589 | if (FD->hasAttr<ExplicitInitAttr>()) |
| 19590 | Record->setHasUninitializedExplicitInitFields(true); |
| 19591 | if (FT.isDestructedType()) { |
| 19592 | Record->setNonTrivialToPrimitiveDestroy(true); |
| 19593 | Record->setParamDestroyedInCallee(true); |
| 19594 | if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion()) |
| 19595 | Record->setHasNonTrivialToPrimitiveDestructCUnion(true); |
| 19596 | } |
| 19597 | |
| 19598 | if (const auto *RT = FT->getAs<RecordType>()) { |
| 19599 | if (RT->getDecl()->getArgPassingRestrictions() == |
| 19600 | RecordArgPassingKind::CanNeverPassInRegs) |
| 19601 | Record->setArgPassingRestrictions( |
| 19602 | RecordArgPassingKind::CanNeverPassInRegs); |
| 19603 | } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak) { |
| 19604 | Record->setArgPassingRestrictions( |
| 19605 | RecordArgPassingKind::CanNeverPassInRegs); |
| 19606 | } else if (PointerAuthQualifier Q = FT.getPointerAuth(); |
| 19607 | Q && Q.isAddressDiscriminated()) { |
| 19608 | Record->setArgPassingRestrictions( |
| 19609 | RecordArgPassingKind::CanNeverPassInRegs); |
| 19610 | } |
| 19611 | } |
| 19612 | |
| 19613 | if (Record && FD->getType().isVolatileQualified()) |
| 19614 | Record->setHasVolatileMember(true); |
| 19615 | bool ReportMSBitfieldStoragePacking = |
| 19616 | Record && PreviousField && |
| 19617 | !Diags.isIgnored(diag::warn_ms_bitfield_mismatched_storage_packing, |
| 19618 | Record->getLocation()); |
| 19619 | auto IsNonDependentBitField = [](const FieldDecl *FD) { |
| 19620 | return FD->isBitField() && !FD->getType()->isDependentType(); |
| 19621 | }; |
| 19622 | |
| 19623 | if (ReportMSBitfieldStoragePacking && IsNonDependentBitField(FD) && |
| 19624 | IsNonDependentBitField(PreviousField)) { |
| 19625 | CharUnits FDStorageSize = Context.getTypeSizeInChars(FD->getType()); |
| 19626 | CharUnits PreviousFieldStorageSize = |
| 19627 | Context.getTypeSizeInChars(PreviousField->getType()); |
| 19628 | if (FDStorageSize != PreviousFieldStorageSize) { |
| 19629 | Diag(FD->getLocation(), |
| 19630 | diag::warn_ms_bitfield_mismatched_storage_packing) |
| 19631 | << FD << FD->getType() << FDStorageSize.getQuantity() |
| 19632 | << PreviousFieldStorageSize.getQuantity(); |
| 19633 | Diag(PreviousField->getLocation(), |
| 19634 | diag::note_ms_bitfield_mismatched_storage_size_previous) |
| 19635 | << PreviousField << PreviousField->getType(); |
| 19636 | } |
| 19637 | } |
| 19638 | // Keep track of the number of named members. |
| 19639 | if (FD->getIdentifier()) |
| 19640 | ++NumNamedMembers; |
| 19641 | } |
| 19642 | |
| 19643 | // Okay, we successfully defined 'Record'. |
| 19644 | if (Record) { |
| 19645 | bool Completed = false; |
| 19646 | if (S) { |
| 19647 | Scope *Parent = S->getParent(); |
| 19648 | if (Parent && Parent->isTypeAliasScope() && |
| 19649 | Parent->isTemplateParamScope()) |
| 19650 | Record->setInvalidDecl(); |
| 19651 | } |
| 19652 | |
| 19653 | if (CXXRecord) { |
| 19654 | if (!CXXRecord->isInvalidDecl()) { |
| 19655 | // Set access bits correctly on the directly-declared conversions. |
| 19656 | for (CXXRecordDecl::conversion_iterator |
| 19657 | I = CXXRecord->conversion_begin(), |
| 19658 | E = CXXRecord->conversion_end(); I != E; ++I) |
| 19659 | I.setAccess((*I)->getAccess()); |
| 19660 | } |
| 19661 | |
| 19662 | // Add any implicitly-declared members to this class. |
| 19663 | AddImplicitlyDeclaredMembersToClass(ClassDecl: CXXRecord); |
| 19664 | |
| 19665 | if (!CXXRecord->isDependentType()) { |
| 19666 | if (!CXXRecord->isInvalidDecl()) { |
| 19667 | // If we have virtual base classes, we may end up finding multiple |
| 19668 | // final overriders for a given virtual function. Check for this |
| 19669 | // problem now. |
| 19670 | if (CXXRecord->getNumVBases()) { |
| 19671 | CXXFinalOverriderMap FinalOverriders; |
| 19672 | CXXRecord->getFinalOverriders(FinaOverriders&: FinalOverriders); |
| 19673 | |
| 19674 | for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), |
| 19675 | MEnd = FinalOverriders.end(); |
| 19676 | M != MEnd; ++M) { |
| 19677 | for (OverridingMethods::iterator SO = M->second.begin(), |
| 19678 | SOEnd = M->second.end(); |
| 19679 | SO != SOEnd; ++SO) { |
| 19680 | assert(SO->second.size() > 0 && |
| 19681 | "Virtual function without overriding functions?" ); |
| 19682 | if (SO->second.size() == 1) |
| 19683 | continue; |
| 19684 | |
| 19685 | // C++ [class.virtual]p2: |
| 19686 | // In a derived class, if a virtual member function of a base |
| 19687 | // class subobject has more than one final overrider the |
| 19688 | // program is ill-formed. |
| 19689 | Diag(Record->getLocation(), diag::err_multiple_final_overriders) |
| 19690 | << (const NamedDecl *)M->first << Record; |
| 19691 | Diag(M->first->getLocation(), |
| 19692 | diag::note_overridden_virtual_function); |
| 19693 | for (OverridingMethods::overriding_iterator |
| 19694 | OM = SO->second.begin(), |
| 19695 | OMEnd = SO->second.end(); |
| 19696 | OM != OMEnd; ++OM) |
| 19697 | Diag(OM->Method->getLocation(), diag::note_final_overrider) |
| 19698 | << (const NamedDecl *)M->first << OM->Method->getParent(); |
| 19699 | |
| 19700 | Record->setInvalidDecl(); |
| 19701 | } |
| 19702 | } |
| 19703 | CXXRecord->completeDefinition(FinalOverriders: &FinalOverriders); |
| 19704 | Completed = true; |
| 19705 | } |
| 19706 | } |
| 19707 | ComputeSelectedDestructor(S&: *this, Record: CXXRecord); |
| 19708 | ComputeSpecialMemberFunctionsEligiblity(S&: *this, Record: CXXRecord); |
| 19709 | } |
| 19710 | } |
| 19711 | |
| 19712 | if (!Completed) |
| 19713 | Record->completeDefinition(); |
| 19714 | |
| 19715 | // Handle attributes before checking the layout. |
| 19716 | ProcessDeclAttributeList(S, Record, Attrs); |
| 19717 | |
| 19718 | // Maybe randomize the record's decls. We automatically randomize a record |
| 19719 | // of function pointers, unless it has the "no_randomize_layout" attribute. |
| 19720 | if (!getLangOpts().CPlusPlus && !getLangOpts().RandstructSeed.empty() && |
| 19721 | !Record->isRandomized() && !Record->isUnion() && |
| 19722 | (Record->hasAttr<RandomizeLayoutAttr>() || |
| 19723 | (!Record->hasAttr<NoRandomizeLayoutAttr>() && |
| 19724 | EntirelyFunctionPointers(Record)))) { |
| 19725 | SmallVector<Decl *, 32> NewDeclOrdering; |
| 19726 | if (randstruct::randomizeStructureLayout(Context, RD: Record, |
| 19727 | FinalOrdering&: NewDeclOrdering)) |
| 19728 | Record->reorderDecls(Decls: NewDeclOrdering); |
| 19729 | } |
| 19730 | |
| 19731 | // We may have deferred checking for a deleted destructor. Check now. |
| 19732 | if (CXXRecord) { |
| 19733 | auto *Dtor = CXXRecord->getDestructor(); |
| 19734 | if (Dtor && Dtor->isImplicit() && |
| 19735 | ShouldDeleteSpecialMember(Dtor, CXXSpecialMemberKind::Destructor)) { |
| 19736 | CXXRecord->setImplicitDestructorIsDeleted(); |
| 19737 | SetDeclDeleted(dcl: Dtor, DelLoc: CXXRecord->getLocation()); |
| 19738 | } |
| 19739 | } |
| 19740 | |
| 19741 | if (Record->hasAttrs()) { |
| 19742 | CheckAlignasUnderalignment(Record); |
| 19743 | |
| 19744 | if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>()) |
| 19745 | checkMSInheritanceAttrOnDefinition(RD: cast<CXXRecordDecl>(Val: Record), |
| 19746 | Range: IA->getRange(), BestCase: IA->getBestCase(), |
| 19747 | SemanticSpelling: IA->getInheritanceModel()); |
| 19748 | } |
| 19749 | |
| 19750 | // Check if the structure/union declaration is a type that can have zero |
| 19751 | // size in C. For C this is a language extension, for C++ it may cause |
| 19752 | // compatibility problems. |
| 19753 | bool CheckForZeroSize; |
| 19754 | if (!getLangOpts().CPlusPlus) { |
| 19755 | CheckForZeroSize = true; |
| 19756 | } else { |
| 19757 | // For C++ filter out types that cannot be referenced in C code. |
| 19758 | CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Val: Record); |
| 19759 | CheckForZeroSize = |
| 19760 | CXXRecord->getLexicalDeclContext()->isExternCContext() && |
| 19761 | !CXXRecord->isDependentType() && !inTemplateInstantiation() && |
| 19762 | CXXRecord->isCLike(); |
| 19763 | } |
| 19764 | if (CheckForZeroSize) { |
| 19765 | bool ZeroSize = true; |
| 19766 | bool IsEmpty = true; |
| 19767 | unsigned NonBitFields = 0; |
| 19768 | for (RecordDecl::field_iterator I = Record->field_begin(), |
| 19769 | E = Record->field_end(); |
| 19770 | (NonBitFields == 0 || ZeroSize) && I != E; ++I) { |
| 19771 | IsEmpty = false; |
| 19772 | if (I->isUnnamedBitField()) { |
| 19773 | if (!I->isZeroLengthBitField()) |
| 19774 | ZeroSize = false; |
| 19775 | } else { |
| 19776 | ++NonBitFields; |
| 19777 | QualType FieldType = I->getType(); |
| 19778 | if (FieldType->isIncompleteType() || |
| 19779 | !Context.getTypeSizeInChars(T: FieldType).isZero()) |
| 19780 | ZeroSize = false; |
| 19781 | } |
| 19782 | } |
| 19783 | |
| 19784 | // Empty structs are an extension in C (C99 6.7.2.1p7). They are |
| 19785 | // allowed in C++, but warn if its declaration is inside |
| 19786 | // extern "C" block. |
| 19787 | if (ZeroSize) { |
| 19788 | Diag(RecLoc, getLangOpts().CPlusPlus ? |
| 19789 | diag::warn_zero_size_struct_union_in_extern_c : |
| 19790 | diag::warn_zero_size_struct_union_compat) |
| 19791 | << IsEmpty << Record->isUnion() << (NonBitFields > 1); |
| 19792 | } |
| 19793 | |
| 19794 | // Structs without named members are extension in C (C99 6.7.2.1p7), |
| 19795 | // but are accepted by GCC. In C2y, this became implementation-defined |
| 19796 | // (C2y 6.7.3.2p10). |
| 19797 | if (NonBitFields == 0 && !getLangOpts().CPlusPlus && !getLangOpts().C2y) { |
| 19798 | Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union |
| 19799 | : diag::ext_no_named_members_in_struct_union) |
| 19800 | << Record->isUnion(); |
| 19801 | } |
| 19802 | } |
| 19803 | } else { |
| 19804 | ObjCIvarDecl **ClsFields = |
| 19805 | reinterpret_cast<ObjCIvarDecl**>(RecFields.data()); |
| 19806 | if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(Val: EnclosingDecl)) { |
| 19807 | ID->setEndOfDefinitionLoc(RBrac); |
| 19808 | // Add ivar's to class's DeclContext. |
| 19809 | for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { |
| 19810 | ClsFields[i]->setLexicalDeclContext(ID); |
| 19811 | ID->addDecl(ClsFields[i]); |
| 19812 | } |
| 19813 | // Must enforce the rule that ivars in the base classes may not be |
| 19814 | // duplicates. |
| 19815 | if (ID->getSuperClass()) |
| 19816 | ObjC().DiagnoseDuplicateIvars(ID, SID: ID->getSuperClass()); |
| 19817 | } else if (ObjCImplementationDecl *IMPDecl = |
| 19818 | dyn_cast<ObjCImplementationDecl>(Val: EnclosingDecl)) { |
| 19819 | assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl" ); |
| 19820 | for (unsigned I = 0, N = RecFields.size(); I != N; ++I) |
| 19821 | // Ivar declared in @implementation never belongs to the implementation. |
| 19822 | // Only it is in implementation's lexical context. |
| 19823 | ClsFields[I]->setLexicalDeclContext(IMPDecl); |
| 19824 | ObjC().CheckImplementationIvars(ImpDecl: IMPDecl, Fields: ClsFields, nIvars: RecFields.size(), |
| 19825 | Loc: RBrac); |
| 19826 | IMPDecl->setIvarLBraceLoc(LBrac); |
| 19827 | IMPDecl->setIvarRBraceLoc(RBrac); |
| 19828 | } else if (ObjCCategoryDecl *CDecl = |
| 19829 | dyn_cast<ObjCCategoryDecl>(Val: EnclosingDecl)) { |
| 19830 | // case of ivars in class extension; all other cases have been |
| 19831 | // reported as errors elsewhere. |
| 19832 | // FIXME. Class extension does not have a LocEnd field. |
| 19833 | // CDecl->setLocEnd(RBrac); |
| 19834 | // Add ivar's to class extension's DeclContext. |
| 19835 | // Diagnose redeclaration of private ivars. |
| 19836 | ObjCInterfaceDecl *IDecl = CDecl->getClassInterface(); |
| 19837 | for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { |
| 19838 | if (IDecl) { |
| 19839 | if (const ObjCIvarDecl *ClsIvar = |
| 19840 | IDecl->getIvarDecl(Id: ClsFields[i]->getIdentifier())) { |
| 19841 | Diag(ClsFields[i]->getLocation(), |
| 19842 | diag::err_duplicate_ivar_declaration); |
| 19843 | Diag(ClsIvar->getLocation(), diag::note_previous_definition); |
| 19844 | continue; |
| 19845 | } |
| 19846 | for (const auto *Ext : IDecl->known_extensions()) { |
| 19847 | if (const ObjCIvarDecl *ClsExtIvar |
| 19848 | = Ext->getIvarDecl(Id: ClsFields[i]->getIdentifier())) { |
| 19849 | Diag(ClsFields[i]->getLocation(), |
| 19850 | diag::err_duplicate_ivar_declaration); |
| 19851 | Diag(ClsExtIvar->getLocation(), diag::note_previous_definition); |
| 19852 | continue; |
| 19853 | } |
| 19854 | } |
| 19855 | } |
| 19856 | ClsFields[i]->setLexicalDeclContext(CDecl); |
| 19857 | CDecl->addDecl(ClsFields[i]); |
| 19858 | } |
| 19859 | CDecl->setIvarLBraceLoc(LBrac); |
| 19860 | CDecl->setIvarRBraceLoc(RBrac); |
| 19861 | } |
| 19862 | } |
| 19863 | ProcessAPINotes(Record); |
| 19864 | } |
| 19865 | |
| 19866 | // Given an integral type, return the next larger integral type |
| 19867 | // (or a NULL type of no such type exists). |
| 19868 | static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) { |
| 19869 | // FIXME: Int128/UInt128 support, which also needs to be introduced into |
| 19870 | // enum checking below. |
| 19871 | assert((T->isIntegralType(Context) || |
| 19872 | T->isEnumeralType()) && "Integral type required!" ); |
| 19873 | const unsigned NumTypes = 4; |
| 19874 | QualType SignedIntegralTypes[NumTypes] = { |
| 19875 | Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy |
| 19876 | }; |
| 19877 | QualType UnsignedIntegralTypes[NumTypes] = { |
| 19878 | Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy, |
| 19879 | Context.UnsignedLongLongTy |
| 19880 | }; |
| 19881 | |
| 19882 | unsigned BitWidth = Context.getTypeSize(T); |
| 19883 | QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes |
| 19884 | : UnsignedIntegralTypes; |
| 19885 | for (unsigned I = 0; I != NumTypes; ++I) |
| 19886 | if (Context.getTypeSize(T: Types[I]) > BitWidth) |
| 19887 | return Types[I]; |
| 19888 | |
| 19889 | return QualType(); |
| 19890 | } |
| 19891 | |
| 19892 | EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum, |
| 19893 | EnumConstantDecl *LastEnumConst, |
| 19894 | SourceLocation IdLoc, |
| 19895 | IdentifierInfo *Id, |
| 19896 | Expr *Val) { |
| 19897 | unsigned IntWidth = Context.getTargetInfo().getIntWidth(); |
| 19898 | llvm::APSInt EnumVal(IntWidth); |
| 19899 | QualType EltTy; |
| 19900 | |
| 19901 | if (Val && DiagnoseUnexpandedParameterPack(E: Val, UPPC: UPPC_EnumeratorValue)) |
| 19902 | Val = nullptr; |
| 19903 | |
| 19904 | if (Val) |
| 19905 | Val = DefaultLvalueConversion(E: Val).get(); |
| 19906 | |
| 19907 | if (Val) { |
| 19908 | if (Enum->isDependentType() || Val->isTypeDependent() || |
| 19909 | Val->containsErrors()) |
| 19910 | EltTy = Context.DependentTy; |
| 19911 | else { |
| 19912 | // FIXME: We don't allow folding in C++11 mode for an enum with a fixed |
| 19913 | // underlying type, but do allow it in all other contexts. |
| 19914 | if (getLangOpts().CPlusPlus11 && Enum->isFixed()) { |
| 19915 | // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the |
| 19916 | // constant-expression in the enumerator-definition shall be a converted |
| 19917 | // constant expression of the underlying type. |
| 19918 | EltTy = Enum->getIntegerType(); |
| 19919 | ExprResult Converted = CheckConvertedConstantExpression( |
| 19920 | From: Val, T: EltTy, Value&: EnumVal, CCE: CCEKind::Enumerator); |
| 19921 | if (Converted.isInvalid()) |
| 19922 | Val = nullptr; |
| 19923 | else |
| 19924 | Val = Converted.get(); |
| 19925 | } else if (!Val->isValueDependent() && |
| 19926 | !(Val = VerifyIntegerConstantExpression(E: Val, Result: &EnumVal, |
| 19927 | CanFold: AllowFoldKind::Allow) |
| 19928 | .get())) { |
| 19929 | // C99 6.7.2.2p2: Make sure we have an integer constant expression. |
| 19930 | } else { |
| 19931 | if (Enum->isComplete()) { |
| 19932 | EltTy = Enum->getIntegerType(); |
| 19933 | |
| 19934 | // In Obj-C and Microsoft mode, require the enumeration value to be |
| 19935 | // representable in the underlying type of the enumeration. In C++11, |
| 19936 | // we perform a non-narrowing conversion as part of converted constant |
| 19937 | // expression checking. |
| 19938 | if (!Context.isRepresentableIntegerValue(Value&: EnumVal, T: EltTy)) { |
| 19939 | if (Context.getTargetInfo() |
| 19940 | .getTriple() |
| 19941 | .isWindowsMSVCEnvironment()) { |
| 19942 | Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy; |
| 19943 | } else { |
| 19944 | Diag(IdLoc, diag::err_enumerator_too_large) << EltTy; |
| 19945 | } |
| 19946 | } |
| 19947 | |
| 19948 | // Cast to the underlying type. |
| 19949 | Val = ImpCastExprToType(E: Val, Type: EltTy, |
| 19950 | CK: EltTy->isBooleanType() ? CK_IntegralToBoolean |
| 19951 | : CK_IntegralCast) |
| 19952 | .get(); |
| 19953 | } else if (getLangOpts().CPlusPlus) { |
| 19954 | // C++11 [dcl.enum]p5: |
| 19955 | // If the underlying type is not fixed, the type of each enumerator |
| 19956 | // is the type of its initializing value: |
| 19957 | // - If an initializer is specified for an enumerator, the |
| 19958 | // initializing value has the same type as the expression. |
| 19959 | EltTy = Val->getType(); |
| 19960 | } else { |
| 19961 | // C99 6.7.2.2p2: |
| 19962 | // The expression that defines the value of an enumeration constant |
| 19963 | // shall be an integer constant expression that has a value |
| 19964 | // representable as an int. |
| 19965 | |
| 19966 | // Complain if the value is not representable in an int. |
| 19967 | if (!Context.isRepresentableIntegerValue(Value&: EnumVal, T: Context.IntTy)) { |
| 19968 | Diag(IdLoc, getLangOpts().C23 |
| 19969 | ? diag::warn_c17_compat_enum_value_not_int |
| 19970 | : diag::ext_c23_enum_value_not_int) |
| 19971 | << 0 << toString(EnumVal, 10) << Val->getSourceRange() |
| 19972 | << (EnumVal.isUnsigned() || EnumVal.isNonNegative()); |
| 19973 | } else if (!Context.hasSameType(Val->getType(), Context.IntTy)) { |
| 19974 | // Force the type of the expression to 'int'. |
| 19975 | Val = ImpCastExprToType(E: Val, Type: Context.IntTy, CK: CK_IntegralCast).get(); |
| 19976 | } |
| 19977 | EltTy = Val->getType(); |
| 19978 | } |
| 19979 | } |
| 19980 | } |
| 19981 | } |
| 19982 | |
| 19983 | if (!Val) { |
| 19984 | if (Enum->isDependentType()) |
| 19985 | EltTy = Context.DependentTy; |
| 19986 | else if (!LastEnumConst) { |
| 19987 | // C++0x [dcl.enum]p5: |
| 19988 | // If the underlying type is not fixed, the type of each enumerator |
| 19989 | // is the type of its initializing value: |
| 19990 | // - If no initializer is specified for the first enumerator, the |
| 19991 | // initializing value has an unspecified integral type. |
| 19992 | // |
| 19993 | // GCC uses 'int' for its unspecified integral type, as does |
| 19994 | // C99 6.7.2.2p3. |
| 19995 | if (Enum->isFixed()) { |
| 19996 | EltTy = Enum->getIntegerType(); |
| 19997 | } |
| 19998 | else { |
| 19999 | EltTy = Context.IntTy; |
| 20000 | } |
| 20001 | } else { |
| 20002 | // Assign the last value + 1. |
| 20003 | EnumVal = LastEnumConst->getInitVal(); |
| 20004 | ++EnumVal; |
| 20005 | EltTy = LastEnumConst->getType(); |
| 20006 | |
| 20007 | // Check for overflow on increment. |
| 20008 | if (EnumVal < LastEnumConst->getInitVal()) { |
| 20009 | // C++0x [dcl.enum]p5: |
| 20010 | // If the underlying type is not fixed, the type of each enumerator |
| 20011 | // is the type of its initializing value: |
| 20012 | // |
| 20013 | // - Otherwise the type of the initializing value is the same as |
| 20014 | // the type of the initializing value of the preceding enumerator |
| 20015 | // unless the incremented value is not representable in that type, |
| 20016 | // in which case the type is an unspecified integral type |
| 20017 | // sufficient to contain the incremented value. If no such type |
| 20018 | // exists, the program is ill-formed. |
| 20019 | QualType T = getNextLargerIntegralType(Context, T: EltTy); |
| 20020 | if (T.isNull() || Enum->isFixed()) { |
| 20021 | // There is no integral type larger enough to represent this |
| 20022 | // value. Complain, then allow the value to wrap around. |
| 20023 | EnumVal = LastEnumConst->getInitVal(); |
| 20024 | EnumVal = EnumVal.zext(width: EnumVal.getBitWidth() * 2); |
| 20025 | ++EnumVal; |
| 20026 | if (Enum->isFixed()) |
| 20027 | // When the underlying type is fixed, this is ill-formed. |
| 20028 | Diag(IdLoc, diag::err_enumerator_wrapped) |
| 20029 | << toString(EnumVal, 10) |
| 20030 | << EltTy; |
| 20031 | else |
| 20032 | Diag(IdLoc, diag::ext_enumerator_increment_too_large) |
| 20033 | << toString(EnumVal, 10); |
| 20034 | } else { |
| 20035 | EltTy = T; |
| 20036 | } |
| 20037 | |
| 20038 | // Retrieve the last enumerator's value, extent that type to the |
| 20039 | // type that is supposed to be large enough to represent the incremented |
| 20040 | // value, then increment. |
| 20041 | EnumVal = LastEnumConst->getInitVal(); |
| 20042 | EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); |
| 20043 | EnumVal = EnumVal.zextOrTrunc(width: Context.getIntWidth(T: EltTy)); |
| 20044 | ++EnumVal; |
| 20045 | |
| 20046 | // If we're not in C++, diagnose the overflow of enumerator values, |
| 20047 | // which in C99 means that the enumerator value is not representable in |
| 20048 | // an int (C99 6.7.2.2p2). However C23 permits enumerator values that |
| 20049 | // are representable in some larger integral type and we allow it in |
| 20050 | // older language modes as an extension. |
| 20051 | // Exclude fixed enumerators since they are diagnosed with an error for |
| 20052 | // this case. |
| 20053 | if (!getLangOpts().CPlusPlus && !T.isNull() && !Enum->isFixed()) |
| 20054 | Diag(IdLoc, getLangOpts().C23 |
| 20055 | ? diag::warn_c17_compat_enum_value_not_int |
| 20056 | : diag::ext_c23_enum_value_not_int) |
| 20057 | << 1 << toString(EnumVal, 10) << 1; |
| 20058 | } else if (!getLangOpts().CPlusPlus && !EltTy->isDependentType() && |
| 20059 | !Context.isRepresentableIntegerValue(Value&: EnumVal, T: EltTy)) { |
| 20060 | // Enforce C99 6.7.2.2p2 even when we compute the next value. |
| 20061 | Diag(IdLoc, getLangOpts().C23 ? diag::warn_c17_compat_enum_value_not_int |
| 20062 | : diag::ext_c23_enum_value_not_int) |
| 20063 | << 1 << toString(EnumVal, 10) << 1; |
| 20064 | } |
| 20065 | } |
| 20066 | } |
| 20067 | |
| 20068 | if (!EltTy->isDependentType()) { |
| 20069 | // Make the enumerator value match the signedness and size of the |
| 20070 | // enumerator's type. |
| 20071 | EnumVal = EnumVal.extOrTrunc(width: Context.getIntWidth(T: EltTy)); |
| 20072 | EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); |
| 20073 | } |
| 20074 | |
| 20075 | return EnumConstantDecl::Create(C&: Context, DC: Enum, L: IdLoc, Id, T: EltTy, |
| 20076 | E: Val, V: EnumVal); |
| 20077 | } |
| 20078 | |
| 20079 | SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II, |
| 20080 | SourceLocation IILoc) { |
| 20081 | if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) || |
| 20082 | !getLangOpts().CPlusPlus) |
| 20083 | return SkipBodyInfo(); |
| 20084 | |
| 20085 | // We have an anonymous enum definition. Look up the first enumerator to |
| 20086 | // determine if we should merge the definition with an existing one and |
| 20087 | // skip the body. |
| 20088 | NamedDecl *PrevDecl = LookupSingleName(S, Name: II, Loc: IILoc, NameKind: LookupOrdinaryName, |
| 20089 | Redecl: forRedeclarationInCurContext()); |
| 20090 | auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(Val: PrevDecl); |
| 20091 | if (!PrevECD) |
| 20092 | return SkipBodyInfo(); |
| 20093 | |
| 20094 | EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext()); |
| 20095 | NamedDecl *Hidden; |
| 20096 | if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) { |
| 20097 | SkipBodyInfo Skip; |
| 20098 | Skip.Previous = Hidden; |
| 20099 | return Skip; |
| 20100 | } |
| 20101 | |
| 20102 | return SkipBodyInfo(); |
| 20103 | } |
| 20104 | |
| 20105 | Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst, |
| 20106 | SourceLocation IdLoc, IdentifierInfo *Id, |
| 20107 | const ParsedAttributesView &Attrs, |
| 20108 | SourceLocation EqualLoc, Expr *Val, |
| 20109 | SkipBodyInfo *SkipBody) { |
| 20110 | EnumDecl *TheEnumDecl = cast<EnumDecl>(Val: theEnumDecl); |
| 20111 | EnumConstantDecl *LastEnumConst = |
| 20112 | cast_or_null<EnumConstantDecl>(Val: lastEnumConst); |
| 20113 | |
| 20114 | // The scope passed in may not be a decl scope. Zip up the scope tree until |
| 20115 | // we find one that is. |
| 20116 | S = getNonFieldDeclScope(S); |
| 20117 | |
| 20118 | // Verify that there isn't already something declared with this name in this |
| 20119 | // scope. |
| 20120 | LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, |
| 20121 | RedeclarationKind::ForVisibleRedeclaration); |
| 20122 | LookupName(R, S); |
| 20123 | NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>(); |
| 20124 | |
| 20125 | if (PrevDecl && PrevDecl->isTemplateParameter()) { |
| 20126 | // Maybe we will complain about the shadowed template parameter. |
| 20127 | DiagnoseTemplateParameterShadow(IdLoc, PrevDecl); |
| 20128 | // Just pretend that we didn't see the previous declaration. |
| 20129 | PrevDecl = nullptr; |
| 20130 | } |
| 20131 | |
| 20132 | // C++ [class.mem]p15: |
| 20133 | // If T is the name of a class, then each of the following shall have a name |
| 20134 | // different from T: |
| 20135 | // - every enumerator of every member of class T that is an unscoped |
| 20136 | // enumerated type |
| 20137 | if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped()) |
| 20138 | DiagnoseClassNameShadow(DC: TheEnumDecl->getDeclContext(), |
| 20139 | NameInfo: DeclarationNameInfo(Id, IdLoc)); |
| 20140 | |
| 20141 | EnumConstantDecl *New = |
| 20142 | CheckEnumConstant(Enum: TheEnumDecl, LastEnumConst, IdLoc, Id, Val); |
| 20143 | if (!New) |
| 20144 | return nullptr; |
| 20145 | |
| 20146 | if (PrevDecl && (!SkipBody || !SkipBody->CheckSameAsPrevious)) { |
| 20147 | if (!TheEnumDecl->isScoped() && isa<ValueDecl>(Val: PrevDecl)) { |
| 20148 | // Check for other kinds of shadowing not already handled. |
| 20149 | CheckShadow(New, PrevDecl, R); |
| 20150 | } |
| 20151 | |
| 20152 | // When in C++, we may get a TagDecl with the same name; in this case the |
| 20153 | // enum constant will 'hide' the tag. |
| 20154 | assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) && |
| 20155 | "Received TagDecl when not in C++!" ); |
| 20156 | if (!isa<TagDecl>(Val: PrevDecl) && isDeclInScope(D: PrevDecl, Ctx: CurContext, S)) { |
| 20157 | if (isa<EnumConstantDecl>(PrevDecl)) |
| 20158 | Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id; |
| 20159 | else |
| 20160 | Diag(IdLoc, diag::err_redefinition) << Id; |
| 20161 | notePreviousDefinition(Old: PrevDecl, New: IdLoc); |
| 20162 | return nullptr; |
| 20163 | } |
| 20164 | } |
| 20165 | |
| 20166 | // Process attributes. |
| 20167 | ProcessDeclAttributeList(S, New, Attrs); |
| 20168 | AddPragmaAttributes(S, New); |
| 20169 | ProcessAPINotes(New); |
| 20170 | |
| 20171 | // Register this decl in the current scope stack. |
| 20172 | New->setAccess(TheEnumDecl->getAccess()); |
| 20173 | PushOnScopeChains(New, S); |
| 20174 | |
| 20175 | ActOnDocumentableDecl(New); |
| 20176 | |
| 20177 | return New; |
| 20178 | } |
| 20179 | |
| 20180 | // Returns true when the enum initial expression does not trigger the |
| 20181 | // duplicate enum warning. A few common cases are exempted as follows: |
| 20182 | // Element2 = Element1 |
| 20183 | // Element2 = Element1 + 1 |
| 20184 | // Element2 = Element1 - 1 |
| 20185 | // Where Element2 and Element1 are from the same enum. |
| 20186 | static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) { |
| 20187 | Expr *InitExpr = ECD->getInitExpr(); |
| 20188 | if (!InitExpr) |
| 20189 | return true; |
| 20190 | InitExpr = InitExpr->IgnoreImpCasts(); |
| 20191 | |
| 20192 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: InitExpr)) { |
| 20193 | if (!BO->isAdditiveOp()) |
| 20194 | return true; |
| 20195 | IntegerLiteral *IL = dyn_cast<IntegerLiteral>(Val: BO->getRHS()); |
| 20196 | if (!IL) |
| 20197 | return true; |
| 20198 | if (IL->getValue() != 1) |
| 20199 | return true; |
| 20200 | |
| 20201 | InitExpr = BO->getLHS(); |
| 20202 | } |
| 20203 | |
| 20204 | // This checks if the elements are from the same enum. |
| 20205 | DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Val: InitExpr); |
| 20206 | if (!DRE) |
| 20207 | return true; |
| 20208 | |
| 20209 | EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(Val: DRE->getDecl()); |
| 20210 | if (!EnumConstant) |
| 20211 | return true; |
| 20212 | |
| 20213 | if (cast<EnumDecl>(TagDecl::castFromDeclContext(DC: ECD->getDeclContext())) != |
| 20214 | Enum) |
| 20215 | return true; |
| 20216 | |
| 20217 | return false; |
| 20218 | } |
| 20219 | |
| 20220 | // Emits a warning when an element is implicitly set a value that |
| 20221 | // a previous element has already been set to. |
| 20222 | static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements, |
| 20223 | EnumDecl *Enum, QualType EnumType) { |
| 20224 | // Avoid anonymous enums |
| 20225 | if (!Enum->getIdentifier()) |
| 20226 | return; |
| 20227 | |
| 20228 | // Only check for small enums. |
| 20229 | if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64) |
| 20230 | return; |
| 20231 | |
| 20232 | if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation())) |
| 20233 | return; |
| 20234 | |
| 20235 | typedef SmallVector<EnumConstantDecl *, 3> ECDVector; |
| 20236 | typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector; |
| 20237 | |
| 20238 | typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector; |
| 20239 | |
| 20240 | // DenseMaps cannot contain the all ones int64_t value, so use unordered_map. |
| 20241 | typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap; |
| 20242 | |
| 20243 | // Use int64_t as a key to avoid needing special handling for map keys. |
| 20244 | auto EnumConstantToKey = [](const EnumConstantDecl *D) { |
| 20245 | llvm::APSInt Val = D->getInitVal(); |
| 20246 | return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(); |
| 20247 | }; |
| 20248 | |
| 20249 | DuplicatesVector DupVector; |
| 20250 | ValueToVectorMap EnumMap; |
| 20251 | |
| 20252 | // Populate the EnumMap with all values represented by enum constants without |
| 20253 | // an initializer. |
| 20254 | for (auto *Element : Elements) { |
| 20255 | EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Val: Element); |
| 20256 | |
| 20257 | // Null EnumConstantDecl means a previous diagnostic has been emitted for |
| 20258 | // this constant. Skip this enum since it may be ill-formed. |
| 20259 | if (!ECD) { |
| 20260 | return; |
| 20261 | } |
| 20262 | |
| 20263 | // Constants with initializers are handled in the next loop. |
| 20264 | if (ECD->getInitExpr()) |
| 20265 | continue; |
| 20266 | |
| 20267 | // Duplicate values are handled in the next loop. |
| 20268 | EnumMap.insert(x: {EnumConstantToKey(ECD), ECD}); |
| 20269 | } |
| 20270 | |
| 20271 | if (EnumMap.size() == 0) |
| 20272 | return; |
| 20273 | |
| 20274 | // Create vectors for any values that has duplicates. |
| 20275 | for (auto *Element : Elements) { |
| 20276 | // The last loop returned if any constant was null. |
| 20277 | EnumConstantDecl *ECD = cast<EnumConstantDecl>(Val: Element); |
| 20278 | if (!ValidDuplicateEnum(ECD, Enum)) |
| 20279 | continue; |
| 20280 | |
| 20281 | auto Iter = EnumMap.find(x: EnumConstantToKey(ECD)); |
| 20282 | if (Iter == EnumMap.end()) |
| 20283 | continue; |
| 20284 | |
| 20285 | DeclOrVector& Entry = Iter->second; |
| 20286 | if (EnumConstantDecl *D = dyn_cast<EnumConstantDecl *>(Val&: Entry)) { |
| 20287 | // Ensure constants are different. |
| 20288 | if (D == ECD) |
| 20289 | continue; |
| 20290 | |
| 20291 | // Create new vector and push values onto it. |
| 20292 | auto Vec = std::make_unique<ECDVector>(); |
| 20293 | Vec->push_back(Elt: D); |
| 20294 | Vec->push_back(Elt: ECD); |
| 20295 | |
| 20296 | // Update entry to point to the duplicates vector. |
| 20297 | Entry = Vec.get(); |
| 20298 | |
| 20299 | // Store the vector somewhere we can consult later for quick emission of |
| 20300 | // diagnostics. |
| 20301 | DupVector.emplace_back(Args: std::move(Vec)); |
| 20302 | continue; |
| 20303 | } |
| 20304 | |
| 20305 | ECDVector *Vec = cast<ECDVector *>(Val&: Entry); |
| 20306 | // Make sure constants are not added more than once. |
| 20307 | if (*Vec->begin() == ECD) |
| 20308 | continue; |
| 20309 | |
| 20310 | Vec->push_back(Elt: ECD); |
| 20311 | } |
| 20312 | |
| 20313 | // Emit diagnostics. |
| 20314 | for (const auto &Vec : DupVector) { |
| 20315 | assert(Vec->size() > 1 && "ECDVector should have at least 2 elements." ); |
| 20316 | |
| 20317 | // Emit warning for one enum constant. |
| 20318 | auto *FirstECD = Vec->front(); |
| 20319 | S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values) |
| 20320 | << FirstECD << toString(FirstECD->getInitVal(), 10) |
| 20321 | << FirstECD->getSourceRange(); |
| 20322 | |
| 20323 | // Emit one note for each of the remaining enum constants with |
| 20324 | // the same value. |
| 20325 | for (auto *ECD : llvm::drop_begin(*Vec)) |
| 20326 | S.Diag(ECD->getLocation(), diag::note_duplicate_element) |
| 20327 | << ECD << toString(ECD->getInitVal(), 10) |
| 20328 | << ECD->getSourceRange(); |
| 20329 | } |
| 20330 | } |
| 20331 | |
| 20332 | bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val, |
| 20333 | bool AllowMask) const { |
| 20334 | assert(ED->isClosedFlag() && "looking for value in non-flag or open enum" ); |
| 20335 | assert(ED->isCompleteDefinition() && "expected enum definition" ); |
| 20336 | |
| 20337 | auto R = FlagBitsCache.try_emplace(Key: ED); |
| 20338 | llvm::APInt &FlagBits = R.first->second; |
| 20339 | |
| 20340 | if (R.second) { |
| 20341 | for (auto *E : ED->enumerators()) { |
| 20342 | const auto &EVal = E->getInitVal(); |
| 20343 | // Only single-bit enumerators introduce new flag values. |
| 20344 | if (EVal.isPowerOf2()) |
| 20345 | FlagBits = FlagBits.zext(width: EVal.getBitWidth()) | EVal; |
| 20346 | } |
| 20347 | } |
| 20348 | |
| 20349 | // A value is in a flag enum if either its bits are a subset of the enum's |
| 20350 | // flag bits (the first condition) or we are allowing masks and the same is |
| 20351 | // true of its complement (the second condition). When masks are allowed, we |
| 20352 | // allow the common idiom of ~(enum1 | enum2) to be a valid enum value. |
| 20353 | // |
| 20354 | // While it's true that any value could be used as a mask, the assumption is |
| 20355 | // that a mask will have all of the insignificant bits set. Anything else is |
| 20356 | // likely a logic error. |
| 20357 | llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(width: Val.getBitWidth()); |
| 20358 | return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val)); |
| 20359 | } |
| 20360 | |
| 20361 | void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange, |
| 20362 | Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S, |
| 20363 | const ParsedAttributesView &Attrs) { |
| 20364 | EnumDecl *Enum = cast<EnumDecl>(Val: EnumDeclX); |
| 20365 | QualType EnumType = Context.getTypeDeclType(Enum); |
| 20366 | |
| 20367 | ProcessDeclAttributeList(S, Enum, Attrs); |
| 20368 | ProcessAPINotes(Enum); |
| 20369 | |
| 20370 | if (Enum->isDependentType()) { |
| 20371 | for (unsigned i = 0, e = Elements.size(); i != e; ++i) { |
| 20372 | EnumConstantDecl *ECD = |
| 20373 | cast_or_null<EnumConstantDecl>(Val: Elements[i]); |
| 20374 | if (!ECD) continue; |
| 20375 | |
| 20376 | ECD->setType(EnumType); |
| 20377 | } |
| 20378 | |
| 20379 | Enum->completeDefinition(NewType: Context.DependentTy, PromotionType: Context.DependentTy, NumPositiveBits: 0, NumNegativeBits: 0); |
| 20380 | return; |
| 20381 | } |
| 20382 | |
| 20383 | // Verify that all the values are okay, compute the size of the values, and |
| 20384 | // reverse the list. |
| 20385 | unsigned NumNegativeBits = 0; |
| 20386 | unsigned NumPositiveBits = 0; |
| 20387 | bool MembersRepresentableByInt = |
| 20388 | Context.computeEnumBits(EnumConstants: Elements, NumNegativeBits, NumPositiveBits); |
| 20389 | |
| 20390 | // Figure out the type that should be used for this enum. |
| 20391 | QualType BestType; |
| 20392 | unsigned BestWidth; |
| 20393 | |
| 20394 | // C++0x N3000 [conv.prom]p3: |
| 20395 | // An rvalue of an unscoped enumeration type whose underlying |
| 20396 | // type is not fixed can be converted to an rvalue of the first |
| 20397 | // of the following types that can represent all the values of |
| 20398 | // the enumeration: int, unsigned int, long int, unsigned long |
| 20399 | // int, long long int, or unsigned long long int. |
| 20400 | // C99 6.4.4.3p2: |
| 20401 | // An identifier declared as an enumeration constant has type int. |
| 20402 | // The C99 rule is modified by C23. |
| 20403 | QualType BestPromotionType; |
| 20404 | |
| 20405 | bool Packed = Enum->hasAttr<PackedAttr>(); |
| 20406 | // -fshort-enums is the equivalent to specifying the packed attribute on all |
| 20407 | // enum definitions. |
| 20408 | if (LangOpts.ShortEnums) |
| 20409 | Packed = true; |
| 20410 | |
| 20411 | // If the enum already has a type because it is fixed or dictated by the |
| 20412 | // target, promote that type instead of analyzing the enumerators. |
| 20413 | if (Enum->isComplete()) { |
| 20414 | BestType = Enum->getIntegerType(); |
| 20415 | if (Context.isPromotableIntegerType(T: BestType)) |
| 20416 | BestPromotionType = Context.getPromotedIntegerType(PromotableType: BestType); |
| 20417 | else |
| 20418 | BestPromotionType = BestType; |
| 20419 | |
| 20420 | BestWidth = Context.getIntWidth(T: BestType); |
| 20421 | } else { |
| 20422 | bool EnumTooLarge = Context.computeBestEnumTypes( |
| 20423 | IsPacked: Packed, NumNegativeBits, NumPositiveBits, BestType, BestPromotionType); |
| 20424 | BestWidth = Context.getIntWidth(T: BestType); |
| 20425 | if (EnumTooLarge) |
| 20426 | Diag(Enum->getLocation(), diag::ext_enum_too_large); |
| 20427 | } |
| 20428 | |
| 20429 | // Loop over all of the enumerator constants, changing their types to match |
| 20430 | // the type of the enum if needed. |
| 20431 | for (auto *D : Elements) { |
| 20432 | auto *ECD = cast_or_null<EnumConstantDecl>(Val: D); |
| 20433 | if (!ECD) continue; // Already issued a diagnostic. |
| 20434 | |
| 20435 | // C99 says the enumerators have int type, but we allow, as an |
| 20436 | // extension, the enumerators to be larger than int size. If each |
| 20437 | // enumerator value fits in an int, type it as an int, otherwise type it the |
| 20438 | // same as the enumerator decl itself. This means that in "enum { X = 1U }" |
| 20439 | // that X has type 'int', not 'unsigned'. |
| 20440 | |
| 20441 | // Determine whether the value fits into an int. |
| 20442 | llvm::APSInt InitVal = ECD->getInitVal(); |
| 20443 | |
| 20444 | // If it fits into an integer type, force it. Otherwise force it to match |
| 20445 | // the enum decl type. |
| 20446 | QualType NewTy; |
| 20447 | unsigned NewWidth; |
| 20448 | bool NewSign; |
| 20449 | if (!getLangOpts().CPlusPlus && !Enum->isFixed() && |
| 20450 | MembersRepresentableByInt) { |
| 20451 | // C23 6.7.3.3.3p15: |
| 20452 | // The enumeration member type for an enumerated type without fixed |
| 20453 | // underlying type upon completion is: |
| 20454 | // - int if all the values of the enumeration are representable as an |
| 20455 | // int; or, |
| 20456 | // - the enumerated type |
| 20457 | NewTy = Context.IntTy; |
| 20458 | NewWidth = Context.getTargetInfo().getIntWidth(); |
| 20459 | NewSign = true; |
| 20460 | } else if (ECD->getType() == BestType) { |
| 20461 | // Already the right type! |
| 20462 | if (getLangOpts().CPlusPlus) |
| 20463 | // C++ [dcl.enum]p4: Following the closing brace of an |
| 20464 | // enum-specifier, each enumerator has the type of its |
| 20465 | // enumeration. |
| 20466 | ECD->setType(EnumType); |
| 20467 | continue; |
| 20468 | } else { |
| 20469 | NewTy = BestType; |
| 20470 | NewWidth = BestWidth; |
| 20471 | NewSign = BestType->isSignedIntegerOrEnumerationType(); |
| 20472 | } |
| 20473 | |
| 20474 | // Adjust the APSInt value. |
| 20475 | InitVal = InitVal.extOrTrunc(width: NewWidth); |
| 20476 | InitVal.setIsSigned(NewSign); |
| 20477 | ECD->setInitVal(C: Context, V: InitVal); |
| 20478 | |
| 20479 | // Adjust the Expr initializer and type. |
| 20480 | if (ECD->getInitExpr() && |
| 20481 | !Context.hasSameType(T1: NewTy, T2: ECD->getInitExpr()->getType())) |
| 20482 | ECD->setInitExpr(ImplicitCastExpr::Create( |
| 20483 | Context, T: NewTy, Kind: CK_IntegralCast, Operand: ECD->getInitExpr(), |
| 20484 | /*base paths*/ BasePath: nullptr, Cat: VK_PRValue, FPO: FPOptionsOverride())); |
| 20485 | if (getLangOpts().CPlusPlus) |
| 20486 | // C++ [dcl.enum]p4: Following the closing brace of an |
| 20487 | // enum-specifier, each enumerator has the type of its |
| 20488 | // enumeration. |
| 20489 | ECD->setType(EnumType); |
| 20490 | else |
| 20491 | ECD->setType(NewTy); |
| 20492 | } |
| 20493 | |
| 20494 | Enum->completeDefinition(NewType: BestType, PromotionType: BestPromotionType, |
| 20495 | NumPositiveBits, NumNegativeBits); |
| 20496 | |
| 20497 | CheckForDuplicateEnumValues(S&: *this, Elements, Enum, EnumType); |
| 20498 | |
| 20499 | if (Enum->isClosedFlag()) { |
| 20500 | for (Decl *D : Elements) { |
| 20501 | EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Val: D); |
| 20502 | if (!ECD) continue; // Already issued a diagnostic. |
| 20503 | |
| 20504 | llvm::APSInt InitVal = ECD->getInitVal(); |
| 20505 | if (InitVal != 0 && !InitVal.isPowerOf2() && |
| 20506 | !IsValueInFlagEnum(Enum, InitVal, true)) |
| 20507 | Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range) |
| 20508 | << ECD << Enum; |
| 20509 | } |
| 20510 | } |
| 20511 | |
| 20512 | // Now that the enum type is defined, ensure it's not been underaligned. |
| 20513 | if (Enum->hasAttrs()) |
| 20514 | CheckAlignasUnderalignment(Enum); |
| 20515 | } |
| 20516 | |
| 20517 | Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr, SourceLocation StartLoc, |
| 20518 | SourceLocation EndLoc) { |
| 20519 | |
| 20520 | FileScopeAsmDecl *New = |
| 20521 | FileScopeAsmDecl::Create(C&: Context, DC: CurContext, Str: expr, AsmLoc: StartLoc, RParenLoc: EndLoc); |
| 20522 | CurContext->addDecl(New); |
| 20523 | return New; |
| 20524 | } |
| 20525 | |
| 20526 | TopLevelStmtDecl *Sema::ActOnStartTopLevelStmtDecl(Scope *S) { |
| 20527 | auto *New = TopLevelStmtDecl::Create(C&: Context, /*Statement=*/nullptr); |
| 20528 | CurContext->addDecl(New); |
| 20529 | PushDeclContext(S, New); |
| 20530 | PushFunctionScope(); |
| 20531 | PushCompoundScope(IsStmtExpr: false); |
| 20532 | return New; |
| 20533 | } |
| 20534 | |
| 20535 | void Sema::ActOnFinishTopLevelStmtDecl(TopLevelStmtDecl *D, Stmt *Statement) { |
| 20536 | D->setStmt(Statement); |
| 20537 | PopCompoundScope(); |
| 20538 | PopFunctionScopeInfo(); |
| 20539 | PopDeclContext(); |
| 20540 | } |
| 20541 | |
| 20542 | void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name, |
| 20543 | IdentifierInfo* AliasName, |
| 20544 | SourceLocation PragmaLoc, |
| 20545 | SourceLocation NameLoc, |
| 20546 | SourceLocation AliasNameLoc) { |
| 20547 | NamedDecl *PrevDecl = LookupSingleName(S: TUScope, Name, Loc: NameLoc, |
| 20548 | NameKind: LookupOrdinaryName); |
| 20549 | AttributeCommonInfo Info(AliasName, SourceRange(AliasNameLoc), |
| 20550 | AttributeCommonInfo::Form::Pragma()); |
| 20551 | AsmLabelAttr *Attr = AsmLabelAttr::CreateImplicit( |
| 20552 | Context, AliasName->getName(), /*IsLiteralLabel=*/true, Info); |
| 20553 | |
| 20554 | // If a declaration that: |
| 20555 | // 1) declares a function or a variable |
| 20556 | // 2) has external linkage |
| 20557 | // already exists, add a label attribute to it. |
| 20558 | if (PrevDecl && (isa<FunctionDecl>(Val: PrevDecl) || isa<VarDecl>(Val: PrevDecl))) { |
| 20559 | if (isDeclExternC(PrevDecl)) |
| 20560 | PrevDecl->addAttr(A: Attr); |
| 20561 | else |
| 20562 | Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied) |
| 20563 | << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl; |
| 20564 | // Otherwise, add a label attribute to ExtnameUndeclaredIdentifiers. |
| 20565 | } else |
| 20566 | (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr)); |
| 20567 | } |
| 20568 | |
| 20569 | void Sema::ActOnPragmaWeakID(IdentifierInfo* Name, |
| 20570 | SourceLocation PragmaLoc, |
| 20571 | SourceLocation NameLoc) { |
| 20572 | Decl *PrevDecl = LookupSingleName(S: TUScope, Name, Loc: NameLoc, NameKind: LookupOrdinaryName); |
| 20573 | |
| 20574 | if (PrevDecl) { |
| 20575 | PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc)); |
| 20576 | } else { |
| 20577 | (void)WeakUndeclaredIdentifiers[Name].insert(X: WeakInfo(nullptr, NameLoc)); |
| 20578 | } |
| 20579 | } |
| 20580 | |
| 20581 | void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name, |
| 20582 | IdentifierInfo* AliasName, |
| 20583 | SourceLocation PragmaLoc, |
| 20584 | SourceLocation NameLoc, |
| 20585 | SourceLocation AliasNameLoc) { |
| 20586 | Decl *PrevDecl = LookupSingleName(S: TUScope, Name: AliasName, Loc: AliasNameLoc, |
| 20587 | NameKind: LookupOrdinaryName); |
| 20588 | WeakInfo W = WeakInfo(Name, NameLoc); |
| 20589 | |
| 20590 | if (PrevDecl && (isa<FunctionDecl>(Val: PrevDecl) || isa<VarDecl>(Val: PrevDecl))) { |
| 20591 | if (!PrevDecl->hasAttr<AliasAttr>()) |
| 20592 | if (NamedDecl *ND = dyn_cast<NamedDecl>(Val: PrevDecl)) |
| 20593 | DeclApplyPragmaWeak(S: TUScope, ND, W); |
| 20594 | } else { |
| 20595 | (void)WeakUndeclaredIdentifiers[AliasName].insert(X: W); |
| 20596 | } |
| 20597 | } |
| 20598 | |
| 20599 | Sema::FunctionEmissionStatus Sema::getEmissionStatus(const FunctionDecl *FD, |
| 20600 | bool Final) { |
| 20601 | assert(FD && "Expected non-null FunctionDecl" ); |
| 20602 | |
| 20603 | // SYCL functions can be template, so we check if they have appropriate |
| 20604 | // attribute prior to checking if it is a template. |
| 20605 | if (LangOpts.SYCLIsDevice && FD->hasAttr<DeviceKernelAttr>()) |
| 20606 | return FunctionEmissionStatus::Emitted; |
| 20607 | |
| 20608 | // Templates are emitted when they're instantiated. |
| 20609 | if (FD->isDependentContext()) |
| 20610 | return FunctionEmissionStatus::TemplateDiscarded; |
| 20611 | |
| 20612 | // Check whether this function is an externally visible definition. |
| 20613 | auto IsEmittedForExternalSymbol = [this, FD]() { |
| 20614 | // We have to check the GVA linkage of the function's *definition* -- if we |
| 20615 | // only have a declaration, we don't know whether or not the function will |
| 20616 | // be emitted, because (say) the definition could include "inline". |
| 20617 | const FunctionDecl *Def = FD->getDefinition(); |
| 20618 | |
| 20619 | // We can't compute linkage when we skip function bodies. |
| 20620 | return Def && !Def->hasSkippedBody() && |
| 20621 | !isDiscardableGVALinkage( |
| 20622 | L: getASTContext().GetGVALinkageForFunction(FD: Def)); |
| 20623 | }; |
| 20624 | |
| 20625 | if (LangOpts.OpenMPIsTargetDevice) { |
| 20626 | // In OpenMP device mode we will not emit host only functions, or functions |
| 20627 | // we don't need due to their linkage. |
| 20628 | std::optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy = |
| 20629 | OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl()); |
| 20630 | // DevTy may be changed later by |
| 20631 | // #pragma omp declare target to(*) device_type(*). |
| 20632 | // Therefore DevTy having no value does not imply host. The emission status |
| 20633 | // will be checked again at the end of compilation unit with Final = true. |
| 20634 | if (DevTy) |
| 20635 | if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host) |
| 20636 | return FunctionEmissionStatus::OMPDiscarded; |
| 20637 | // If we have an explicit value for the device type, or we are in a target |
| 20638 | // declare context, we need to emit all extern and used symbols. |
| 20639 | if (OpenMP().isInOpenMPDeclareTargetContext() || DevTy) |
| 20640 | if (IsEmittedForExternalSymbol()) |
| 20641 | return FunctionEmissionStatus::Emitted; |
| 20642 | // Device mode only emits what it must, if it wasn't tagged yet and needed, |
| 20643 | // we'll omit it. |
| 20644 | if (Final) |
| 20645 | return FunctionEmissionStatus::OMPDiscarded; |
| 20646 | } else if (LangOpts.OpenMP > 45) { |
| 20647 | // In OpenMP host compilation prior to 5.0 everything was an emitted host |
| 20648 | // function. In 5.0, no_host was introduced which might cause a function to |
| 20649 | // be omitted. |
| 20650 | std::optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy = |
| 20651 | OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl()); |
| 20652 | if (DevTy) |
| 20653 | if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost) |
| 20654 | return FunctionEmissionStatus::OMPDiscarded; |
| 20655 | } |
| 20656 | |
| 20657 | if (Final && LangOpts.OpenMP && !LangOpts.CUDA) |
| 20658 | return FunctionEmissionStatus::Emitted; |
| 20659 | |
| 20660 | if (LangOpts.CUDA) { |
| 20661 | // When compiling for device, host functions are never emitted. Similarly, |
| 20662 | // when compiling for host, device and global functions are never emitted. |
| 20663 | // (Technically, we do emit a host-side stub for global functions, but this |
| 20664 | // doesn't count for our purposes here.) |
| 20665 | CUDAFunctionTarget T = CUDA().IdentifyTarget(D: FD); |
| 20666 | if (LangOpts.CUDAIsDevice && T == CUDAFunctionTarget::Host) |
| 20667 | return FunctionEmissionStatus::CUDADiscarded; |
| 20668 | if (!LangOpts.CUDAIsDevice && |
| 20669 | (T == CUDAFunctionTarget::Device || T == CUDAFunctionTarget::Global)) |
| 20670 | return FunctionEmissionStatus::CUDADiscarded; |
| 20671 | |
| 20672 | if (IsEmittedForExternalSymbol()) |
| 20673 | return FunctionEmissionStatus::Emitted; |
| 20674 | |
| 20675 | // If FD is a virtual destructor of an explicit instantiation |
| 20676 | // of a template class, return Emitted. |
| 20677 | if (auto *Destructor = dyn_cast<CXXDestructorDecl>(Val: FD)) { |
| 20678 | if (Destructor->isVirtual()) { |
| 20679 | if (auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>( |
| 20680 | Destructor->getParent())) { |
| 20681 | TemplateSpecializationKind TSK = |
| 20682 | Spec->getTemplateSpecializationKind(); |
| 20683 | if (TSK == TSK_ExplicitInstantiationDeclaration || |
| 20684 | TSK == TSK_ExplicitInstantiationDefinition) |
| 20685 | return FunctionEmissionStatus::Emitted; |
| 20686 | } |
| 20687 | } |
| 20688 | } |
| 20689 | } |
| 20690 | |
| 20691 | // Otherwise, the function is known-emitted if it's in our set of |
| 20692 | // known-emitted functions. |
| 20693 | return FunctionEmissionStatus::Unknown; |
| 20694 | } |
| 20695 | |
| 20696 | bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee) { |
| 20697 | // Host-side references to a __global__ function refer to the stub, so the |
| 20698 | // function itself is never emitted and therefore should not be marked. |
| 20699 | // If we have host fn calls kernel fn calls host+device, the HD function |
| 20700 | // does not get instantiated on the host. We model this by omitting at the |
| 20701 | // call to the kernel from the callgraph. This ensures that, when compiling |
| 20702 | // for host, only HD functions actually called from the host get marked as |
| 20703 | // known-emitted. |
| 20704 | return LangOpts.CUDA && !LangOpts.CUDAIsDevice && |
| 20705 | CUDA().IdentifyTarget(D: Callee) == CUDAFunctionTarget::Global; |
| 20706 | } |
| 20707 | |