1 | //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// |
---|---|
2 | // |
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | // See https://llvm.org/LICENSE.txt for license information. |
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | // |
7 | //===----------------------------------------------------------------------===// |
8 | // |
9 | // This file implements semantic analysis for C++ declarations. |
10 | // |
11 | //===----------------------------------------------------------------------===// |
12 | |
13 | #include "clang/AST/ASTConsumer.h" |
14 | #include "clang/AST/ASTContext.h" |
15 | #include "clang/AST/ASTMutationListener.h" |
16 | #include "clang/AST/CXXInheritance.h" |
17 | #include "clang/AST/CharUnits.h" |
18 | #include "clang/AST/ComparisonCategories.h" |
19 | #include "clang/AST/DeclCXX.h" |
20 | #include "clang/AST/DeclTemplate.h" |
21 | #include "clang/AST/DynamicRecursiveASTVisitor.h" |
22 | #include "clang/AST/EvaluatedExprVisitor.h" |
23 | #include "clang/AST/Expr.h" |
24 | #include "clang/AST/ExprCXX.h" |
25 | #include "clang/AST/RecordLayout.h" |
26 | #include "clang/AST/StmtVisitor.h" |
27 | #include "clang/AST/TypeLoc.h" |
28 | #include "clang/AST/TypeOrdering.h" |
29 | #include "clang/Basic/AttributeCommonInfo.h" |
30 | #include "clang/Basic/PartialDiagnostic.h" |
31 | #include "clang/Basic/Specifiers.h" |
32 | #include "clang/Basic/TargetInfo.h" |
33 | #include "clang/Lex/LiteralSupport.h" |
34 | #include "clang/Lex/Preprocessor.h" |
35 | #include "clang/Sema/CXXFieldCollector.h" |
36 | #include "clang/Sema/DeclSpec.h" |
37 | #include "clang/Sema/EnterExpressionEvaluationContext.h" |
38 | #include "clang/Sema/Initialization.h" |
39 | #include "clang/Sema/Lookup.h" |
40 | #include "clang/Sema/Ownership.h" |
41 | #include "clang/Sema/ParsedTemplate.h" |
42 | #include "clang/Sema/Scope.h" |
43 | #include "clang/Sema/ScopeInfo.h" |
44 | #include "clang/Sema/SemaCUDA.h" |
45 | #include "clang/Sema/SemaInternal.h" |
46 | #include "clang/Sema/SemaObjC.h" |
47 | #include "clang/Sema/SemaOpenMP.h" |
48 | #include "clang/Sema/Template.h" |
49 | #include "clang/Sema/TemplateDeduction.h" |
50 | #include "llvm/ADT/ArrayRef.h" |
51 | #include "llvm/ADT/STLExtras.h" |
52 | #include "llvm/ADT/StringExtras.h" |
53 | #include "llvm/Support/ConvertUTF.h" |
54 | #include "llvm/Support/SaveAndRestore.h" |
55 | #include <map> |
56 | #include <optional> |
57 | #include <set> |
58 | |
59 | using namespace clang; |
60 | |
61 | //===----------------------------------------------------------------------===// |
62 | // CheckDefaultArgumentVisitor |
63 | //===----------------------------------------------------------------------===// |
64 | |
65 | namespace { |
66 | /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses |
67 | /// the default argument of a parameter to determine whether it |
68 | /// contains any ill-formed subexpressions. For example, this will |
69 | /// diagnose the use of local variables or parameters within the |
70 | /// default argument expression. |
71 | class CheckDefaultArgumentVisitor |
72 | : public ConstStmtVisitor<CheckDefaultArgumentVisitor, bool> { |
73 | Sema &S; |
74 | const Expr *DefaultArg; |
75 | |
76 | public: |
77 | CheckDefaultArgumentVisitor(Sema &S, const Expr *DefaultArg) |
78 | : S(S), DefaultArg(DefaultArg) {} |
79 | |
80 | bool VisitExpr(const Expr *Node); |
81 | bool VisitDeclRefExpr(const DeclRefExpr *DRE); |
82 | bool VisitCXXThisExpr(const CXXThisExpr *ThisE); |
83 | bool VisitLambdaExpr(const LambdaExpr *Lambda); |
84 | bool VisitPseudoObjectExpr(const PseudoObjectExpr *POE); |
85 | }; |
86 | |
87 | /// VisitExpr - Visit all of the children of this expression. |
88 | bool CheckDefaultArgumentVisitor::VisitExpr(const Expr *Node) { |
89 | bool IsInvalid = false; |
90 | for (const Stmt *SubStmt : Node->children()) |
91 | if (SubStmt) |
92 | IsInvalid |= Visit(SubStmt); |
93 | return IsInvalid; |
94 | } |
95 | |
96 | /// VisitDeclRefExpr - Visit a reference to a declaration, to |
97 | /// determine whether this declaration can be used in the default |
98 | /// argument expression. |
99 | bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(const DeclRefExpr *DRE) { |
100 | const ValueDecl *Decl = dyn_cast<ValueDecl>(Val: DRE->getDecl()); |
101 | |
102 | if (!isa<VarDecl, BindingDecl>(Val: Decl)) |
103 | return false; |
104 | |
105 | if (const auto *Param = dyn_cast<ParmVarDecl>(Val: Decl)) { |
106 | // C++ [dcl.fct.default]p9: |
107 | // [...] parameters of a function shall not be used in default |
108 | // argument expressions, even if they are not evaluated. [...] |
109 | // |
110 | // C++17 [dcl.fct.default]p9 (by CWG 2082): |
111 | // [...] A parameter shall not appear as a potentially-evaluated |
112 | // expression in a default argument. [...] |
113 | // |
114 | if (DRE->isNonOdrUse() != NOUR_Unevaluated) |
115 | return S.Diag(DRE->getBeginLoc(), |
116 | diag::err_param_default_argument_references_param) |
117 | << Param->getDeclName() << DefaultArg->getSourceRange(); |
118 | } else if (auto *VD = Decl->getPotentiallyDecomposedVarDecl()) { |
119 | // C++ [dcl.fct.default]p7: |
120 | // Local variables shall not be used in default argument |
121 | // expressions. |
122 | // |
123 | // C++17 [dcl.fct.default]p7 (by CWG 2082): |
124 | // A local variable shall not appear as a potentially-evaluated |
125 | // expression in a default argument. |
126 | // |
127 | // C++20 [dcl.fct.default]p7 (DR as part of P0588R1, see also CWG 2346): |
128 | // Note: A local variable cannot be odr-used (6.3) in a default |
129 | // argument. |
130 | // |
131 | if (VD->isLocalVarDecl() && !DRE->isNonOdrUse()) |
132 | return S.Diag(DRE->getBeginLoc(), |
133 | diag::err_param_default_argument_references_local) |
134 | << Decl << DefaultArg->getSourceRange(); |
135 | } |
136 | return false; |
137 | } |
138 | |
139 | /// VisitCXXThisExpr - Visit a C++ "this" expression. |
140 | bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(const CXXThisExpr *ThisE) { |
141 | // C++ [dcl.fct.default]p8: |
142 | // The keyword this shall not be used in a default argument of a |
143 | // member function. |
144 | return S.Diag(ThisE->getBeginLoc(), |
145 | diag::err_param_default_argument_references_this) |
146 | << ThisE->getSourceRange(); |
147 | } |
148 | |
149 | bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr( |
150 | const PseudoObjectExpr *POE) { |
151 | bool Invalid = false; |
152 | for (const Expr *E : POE->semantics()) { |
153 | // Look through bindings. |
154 | if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Val: E)) { |
155 | E = OVE->getSourceExpr(); |
156 | assert(E && "pseudo-object binding without source expression?"); |
157 | } |
158 | |
159 | Invalid |= Visit(E); |
160 | } |
161 | return Invalid; |
162 | } |
163 | |
164 | bool CheckDefaultArgumentVisitor::VisitLambdaExpr(const LambdaExpr *Lambda) { |
165 | // [expr.prim.lambda.capture]p9 |
166 | // a lambda-expression appearing in a default argument cannot implicitly or |
167 | // explicitly capture any local entity. Such a lambda-expression can still |
168 | // have an init-capture if any full-expression in its initializer satisfies |
169 | // the constraints of an expression appearing in a default argument. |
170 | bool Invalid = false; |
171 | for (const LambdaCapture &LC : Lambda->captures()) { |
172 | if (!Lambda->isInitCapture(&LC)) |
173 | return S.Diag(LC.getLocation(), diag::err_lambda_capture_default_arg); |
174 | // Init captures are always VarDecl. |
175 | auto *D = cast<VarDecl>(Val: LC.getCapturedVar()); |
176 | Invalid |= Visit(D->getInit()); |
177 | } |
178 | return Invalid; |
179 | } |
180 | } // namespace |
181 | |
182 | void |
183 | Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc, |
184 | const CXXMethodDecl *Method) { |
185 | // If we have an MSAny spec already, don't bother. |
186 | if (!Method || ComputedEST == EST_MSAny) |
187 | return; |
188 | |
189 | const FunctionProtoType *Proto |
190 | = Method->getType()->getAs<FunctionProtoType>(); |
191 | Proto = Self->ResolveExceptionSpec(Loc: CallLoc, FPT: Proto); |
192 | if (!Proto) |
193 | return; |
194 | |
195 | ExceptionSpecificationType EST = Proto->getExceptionSpecType(); |
196 | |
197 | // If we have a throw-all spec at this point, ignore the function. |
198 | if (ComputedEST == EST_None) |
199 | return; |
200 | |
201 | if (EST == EST_None && Method->hasAttr<NoThrowAttr>()) |
202 | EST = EST_BasicNoexcept; |
203 | |
204 | switch (EST) { |
205 | case EST_Unparsed: |
206 | case EST_Uninstantiated: |
207 | case EST_Unevaluated: |
208 | llvm_unreachable("should not see unresolved exception specs here"); |
209 | |
210 | // If this function can throw any exceptions, make a note of that. |
211 | case EST_MSAny: |
212 | case EST_None: |
213 | // FIXME: Whichever we see last of MSAny and None determines our result. |
214 | // We should make a consistent, order-independent choice here. |
215 | ClearExceptions(); |
216 | ComputedEST = EST; |
217 | return; |
218 | case EST_NoexceptFalse: |
219 | ClearExceptions(); |
220 | ComputedEST = EST_None; |
221 | return; |
222 | // FIXME: If the call to this decl is using any of its default arguments, we |
223 | // need to search them for potentially-throwing calls. |
224 | // If this function has a basic noexcept, it doesn't affect the outcome. |
225 | case EST_BasicNoexcept: |
226 | case EST_NoexceptTrue: |
227 | case EST_NoThrow: |
228 | return; |
229 | // If we're still at noexcept(true) and there's a throw() callee, |
230 | // change to that specification. |
231 | case EST_DynamicNone: |
232 | if (ComputedEST == EST_BasicNoexcept) |
233 | ComputedEST = EST_DynamicNone; |
234 | return; |
235 | case EST_DependentNoexcept: |
236 | llvm_unreachable( |
237 | "should not generate implicit declarations for dependent cases"); |
238 | case EST_Dynamic: |
239 | break; |
240 | } |
241 | assert(EST == EST_Dynamic && "EST case not considered earlier."); |
242 | assert(ComputedEST != EST_None && |
243 | "Shouldn't collect exceptions when throw-all is guaranteed."); |
244 | ComputedEST = EST_Dynamic; |
245 | // Record the exceptions in this function's exception specification. |
246 | for (const auto &E : Proto->exceptions()) |
247 | if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second) |
248 | Exceptions.push_back(E); |
249 | } |
250 | |
251 | void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) { |
252 | if (!S || ComputedEST == EST_MSAny) |
253 | return; |
254 | |
255 | // FIXME: |
256 | // |
257 | // C++0x [except.spec]p14: |
258 | // [An] implicit exception-specification specifies the type-id T if and |
259 | // only if T is allowed by the exception-specification of a function directly |
260 | // invoked by f's implicit definition; f shall allow all exceptions if any |
261 | // function it directly invokes allows all exceptions, and f shall allow no |
262 | // exceptions if every function it directly invokes allows no exceptions. |
263 | // |
264 | // Note in particular that if an implicit exception-specification is generated |
265 | // for a function containing a throw-expression, that specification can still |
266 | // be noexcept(true). |
267 | // |
268 | // Note also that 'directly invoked' is not defined in the standard, and there |
269 | // is no indication that we should only consider potentially-evaluated calls. |
270 | // |
271 | // Ultimately we should implement the intent of the standard: the exception |
272 | // specification should be the set of exceptions which can be thrown by the |
273 | // implicit definition. For now, we assume that any non-nothrow expression can |
274 | // throw any exception. |
275 | |
276 | if (Self->canThrow(E: S)) |
277 | ComputedEST = EST_None; |
278 | } |
279 | |
280 | ExprResult Sema::ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, |
281 | SourceLocation EqualLoc) { |
282 | if (RequireCompleteType(Param->getLocation(), Param->getType(), |
283 | diag::err_typecheck_decl_incomplete_type)) |
284 | return true; |
285 | |
286 | // C++ [dcl.fct.default]p5 |
287 | // A default argument expression is implicitly converted (clause |
288 | // 4) to the parameter type. The default argument expression has |
289 | // the same semantic constraints as the initializer expression in |
290 | // a declaration of a variable of the parameter type, using the |
291 | // copy-initialization semantics (8.5). |
292 | InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, |
293 | Parm: Param); |
294 | InitializationKind Kind = InitializationKind::CreateCopy(InitLoc: Param->getLocation(), |
295 | EqualLoc); |
296 | InitializationSequence InitSeq(*this, Entity, Kind, Arg); |
297 | ExprResult Result = InitSeq.Perform(S&: *this, Entity, Kind, Args: Arg); |
298 | if (Result.isInvalid()) |
299 | return true; |
300 | Arg = Result.getAs<Expr>(); |
301 | |
302 | CheckCompletedExpr(E: Arg, CheckLoc: EqualLoc); |
303 | Arg = MaybeCreateExprWithCleanups(SubExpr: Arg); |
304 | |
305 | return Arg; |
306 | } |
307 | |
308 | void Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, |
309 | SourceLocation EqualLoc) { |
310 | // Add the default argument to the parameter |
311 | Param->setDefaultArg(Arg); |
312 | |
313 | // We have already instantiated this parameter; provide each of the |
314 | // instantiations with the uninstantiated default argument. |
315 | UnparsedDefaultArgInstantiationsMap::iterator InstPos |
316 | = UnparsedDefaultArgInstantiations.find(Val: Param); |
317 | if (InstPos != UnparsedDefaultArgInstantiations.end()) { |
318 | for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I) |
319 | InstPos->second[I]->setUninstantiatedDefaultArg(Arg); |
320 | |
321 | // We're done tracking this parameter's instantiations. |
322 | UnparsedDefaultArgInstantiations.erase(I: InstPos); |
323 | } |
324 | } |
325 | |
326 | void |
327 | Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc, |
328 | Expr *DefaultArg) { |
329 | if (!param || !DefaultArg) |
330 | return; |
331 | |
332 | ParmVarDecl *Param = cast<ParmVarDecl>(Val: param); |
333 | UnparsedDefaultArgLocs.erase(Val: Param); |
334 | |
335 | // Default arguments are only permitted in C++ |
336 | if (!getLangOpts().CPlusPlus) { |
337 | Diag(EqualLoc, diag::err_param_default_argument) |
338 | << DefaultArg->getSourceRange(); |
339 | return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg); |
340 | } |
341 | |
342 | // Check for unexpanded parameter packs. |
343 | if (DiagnoseUnexpandedParameterPack(E: DefaultArg, UPPC: UPPC_DefaultArgument)) |
344 | return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg); |
345 | |
346 | // C++11 [dcl.fct.default]p3 |
347 | // A default argument expression [...] shall not be specified for a |
348 | // parameter pack. |
349 | if (Param->isParameterPack()) { |
350 | Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack) |
351 | << DefaultArg->getSourceRange(); |
352 | // Recover by discarding the default argument. |
353 | Param->setDefaultArg(nullptr); |
354 | return; |
355 | } |
356 | |
357 | ExprResult Result = ConvertParamDefaultArgument(Param, Arg: DefaultArg, EqualLoc); |
358 | if (Result.isInvalid()) |
359 | return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg); |
360 | |
361 | DefaultArg = Result.getAs<Expr>(); |
362 | |
363 | // Check that the default argument is well-formed |
364 | CheckDefaultArgumentVisitor DefaultArgChecker(*this, DefaultArg); |
365 | if (DefaultArgChecker.Visit(DefaultArg)) |
366 | return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg); |
367 | |
368 | SetParamDefaultArgument(Param, Arg: DefaultArg, EqualLoc); |
369 | } |
370 | |
371 | void Sema::ActOnParamUnparsedDefaultArgument(Decl *param, |
372 | SourceLocation EqualLoc, |
373 | SourceLocation ArgLoc) { |
374 | if (!param) |
375 | return; |
376 | |
377 | ParmVarDecl *Param = cast<ParmVarDecl>(Val: param); |
378 | Param->setUnparsedDefaultArg(); |
379 | UnparsedDefaultArgLocs[Param] = ArgLoc; |
380 | } |
381 | |
382 | void Sema::ActOnParamDefaultArgumentError(Decl *param, SourceLocation EqualLoc, |
383 | Expr *DefaultArg) { |
384 | if (!param) |
385 | return; |
386 | |
387 | ParmVarDecl *Param = cast<ParmVarDecl>(Val: param); |
388 | Param->setInvalidDecl(); |
389 | UnparsedDefaultArgLocs.erase(Val: Param); |
390 | ExprResult RE; |
391 | if (DefaultArg) { |
392 | RE = CreateRecoveryExpr(Begin: EqualLoc, End: DefaultArg->getEndLoc(), SubExprs: {DefaultArg}, |
393 | T: Param->getType().getNonReferenceType()); |
394 | } else { |
395 | RE = CreateRecoveryExpr(Begin: EqualLoc, End: EqualLoc, SubExprs: {}, |
396 | T: Param->getType().getNonReferenceType()); |
397 | } |
398 | Param->setDefaultArg(RE.get()); |
399 | } |
400 | |
401 | void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { |
402 | // C++ [dcl.fct.default]p3 |
403 | // A default argument expression shall be specified only in the |
404 | // parameter-declaration-clause of a function declaration or in a |
405 | // template-parameter (14.1). It shall not be specified for a |
406 | // parameter pack. If it is specified in a |
407 | // parameter-declaration-clause, it shall not occur within a |
408 | // declarator or abstract-declarator of a parameter-declaration. |
409 | bool MightBeFunction = D.isFunctionDeclarationContext(); |
410 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { |
411 | DeclaratorChunk &chunk = D.getTypeObject(i); |
412 | if (chunk.Kind == DeclaratorChunk::Function) { |
413 | if (MightBeFunction) { |
414 | // This is a function declaration. It can have default arguments, but |
415 | // keep looking in case its return type is a function type with default |
416 | // arguments. |
417 | MightBeFunction = false; |
418 | continue; |
419 | } |
420 | for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e; |
421 | ++argIdx) { |
422 | ParmVarDecl *Param = cast<ParmVarDecl>(Val: chunk.Fun.Params[argIdx].Param); |
423 | if (Param->hasUnparsedDefaultArg()) { |
424 | std::unique_ptr<CachedTokens> Toks = |
425 | std::move(chunk.Fun.Params[argIdx].DefaultArgTokens); |
426 | SourceRange SR; |
427 | if (Toks->size() > 1) |
428 | SR = SourceRange((*Toks)[1].getLocation(), |
429 | Toks->back().getLocation()); |
430 | else |
431 | SR = UnparsedDefaultArgLocs[Param]; |
432 | Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) |
433 | << SR; |
434 | } else if (Param->getDefaultArg()) { |
435 | Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) |
436 | << Param->getDefaultArg()->getSourceRange(); |
437 | Param->setDefaultArg(nullptr); |
438 | } |
439 | } |
440 | } else if (chunk.Kind != DeclaratorChunk::Paren) { |
441 | MightBeFunction = false; |
442 | } |
443 | } |
444 | } |
445 | |
446 | static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) { |
447 | return llvm::any_of(Range: FD->parameters(), P: [](ParmVarDecl *P) { |
448 | return P->hasDefaultArg() && !P->hasInheritedDefaultArg(); |
449 | }); |
450 | } |
451 | |
452 | bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, |
453 | Scope *S) { |
454 | bool Invalid = false; |
455 | |
456 | // The declaration context corresponding to the scope is the semantic |
457 | // parent, unless this is a local function declaration, in which case |
458 | // it is that surrounding function. |
459 | DeclContext *ScopeDC = New->isLocalExternDecl() |
460 | ? New->getLexicalDeclContext() |
461 | : New->getDeclContext(); |
462 | |
463 | // Find the previous declaration for the purpose of default arguments. |
464 | FunctionDecl *PrevForDefaultArgs = Old; |
465 | for (/**/; PrevForDefaultArgs; |
466 | // Don't bother looking back past the latest decl if this is a local |
467 | // extern declaration; nothing else could work. |
468 | PrevForDefaultArgs = New->isLocalExternDecl() |
469 | ? nullptr |
470 | : PrevForDefaultArgs->getPreviousDecl()) { |
471 | // Ignore hidden declarations. |
472 | if (!LookupResult::isVisible(*this, PrevForDefaultArgs)) |
473 | continue; |
474 | |
475 | if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) && |
476 | !New->isCXXClassMember()) { |
477 | // Ignore default arguments of old decl if they are not in |
478 | // the same scope and this is not an out-of-line definition of |
479 | // a member function. |
480 | continue; |
481 | } |
482 | |
483 | if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) { |
484 | // If only one of these is a local function declaration, then they are |
485 | // declared in different scopes, even though isDeclInScope may think |
486 | // they're in the same scope. (If both are local, the scope check is |
487 | // sufficient, and if neither is local, then they are in the same scope.) |
488 | continue; |
489 | } |
490 | |
491 | // We found the right previous declaration. |
492 | break; |
493 | } |
494 | |
495 | // C++ [dcl.fct.default]p4: |
496 | // For non-template functions, default arguments can be added in |
497 | // later declarations of a function in the same |
498 | // scope. Declarations in different scopes have completely |
499 | // distinct sets of default arguments. That is, declarations in |
500 | // inner scopes do not acquire default arguments from |
501 | // declarations in outer scopes, and vice versa. In a given |
502 | // function declaration, all parameters subsequent to a |
503 | // parameter with a default argument shall have default |
504 | // arguments supplied in this or previous declarations. A |
505 | // default argument shall not be redefined by a later |
506 | // declaration (not even to the same value). |
507 | // |
508 | // C++ [dcl.fct.default]p6: |
509 | // Except for member functions of class templates, the default arguments |
510 | // in a member function definition that appears outside of the class |
511 | // definition are added to the set of default arguments provided by the |
512 | // member function declaration in the class definition. |
513 | for (unsigned p = 0, NumParams = PrevForDefaultArgs |
514 | ? PrevForDefaultArgs->getNumParams() |
515 | : 0; |
516 | p < NumParams; ++p) { |
517 | ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(i: p); |
518 | ParmVarDecl *NewParam = New->getParamDecl(i: p); |
519 | |
520 | bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false; |
521 | bool NewParamHasDfl = NewParam->hasDefaultArg(); |
522 | |
523 | if (OldParamHasDfl && NewParamHasDfl) { |
524 | unsigned DiagDefaultParamID = |
525 | diag::err_param_default_argument_redefinition; |
526 | |
527 | // MSVC accepts that default parameters be redefined for member functions |
528 | // of template class. The new default parameter's value is ignored. |
529 | Invalid = true; |
530 | if (getLangOpts().MicrosoftExt) { |
531 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: New); |
532 | if (MD && MD->getParent()->getDescribedClassTemplate()) { |
533 | // Merge the old default argument into the new parameter. |
534 | NewParam->setHasInheritedDefaultArg(); |
535 | if (OldParam->hasUninstantiatedDefaultArg()) |
536 | NewParam->setUninstantiatedDefaultArg( |
537 | OldParam->getUninstantiatedDefaultArg()); |
538 | else |
539 | NewParam->setDefaultArg(OldParam->getInit()); |
540 | DiagDefaultParamID = diag::ext_param_default_argument_redefinition; |
541 | Invalid = false; |
542 | } |
543 | } |
544 | |
545 | // FIXME: If we knew where the '=' was, we could easily provide a fix-it |
546 | // hint here. Alternatively, we could walk the type-source information |
547 | // for NewParam to find the last source location in the type... but it |
548 | // isn't worth the effort right now. This is the kind of test case that |
549 | // is hard to get right: |
550 | // int f(int); |
551 | // void g(int (*fp)(int) = f); |
552 | // void g(int (*fp)(int) = &f); |
553 | Diag(NewParam->getLocation(), DiagDefaultParamID) |
554 | << NewParam->getDefaultArgRange(); |
555 | |
556 | // Look for the function declaration where the default argument was |
557 | // actually written, which may be a declaration prior to Old. |
558 | for (auto Older = PrevForDefaultArgs; |
559 | OldParam->hasInheritedDefaultArg(); /**/) { |
560 | Older = Older->getPreviousDecl(); |
561 | OldParam = Older->getParamDecl(i: p); |
562 | } |
563 | |
564 | Diag(OldParam->getLocation(), diag::note_previous_definition) |
565 | << OldParam->getDefaultArgRange(); |
566 | } else if (OldParamHasDfl) { |
567 | // Merge the old default argument into the new parameter unless the new |
568 | // function is a friend declaration in a template class. In the latter |
569 | // case the default arguments will be inherited when the friend |
570 | // declaration will be instantiated. |
571 | if (New->getFriendObjectKind() == Decl::FOK_None || |
572 | !New->getLexicalDeclContext()->isDependentContext()) { |
573 | // It's important to use getInit() here; getDefaultArg() |
574 | // strips off any top-level ExprWithCleanups. |
575 | NewParam->setHasInheritedDefaultArg(); |
576 | if (OldParam->hasUnparsedDefaultArg()) |
577 | NewParam->setUnparsedDefaultArg(); |
578 | else if (OldParam->hasUninstantiatedDefaultArg()) |
579 | NewParam->setUninstantiatedDefaultArg( |
580 | OldParam->getUninstantiatedDefaultArg()); |
581 | else |
582 | NewParam->setDefaultArg(OldParam->getInit()); |
583 | } |
584 | } else if (NewParamHasDfl) { |
585 | if (New->getDescribedFunctionTemplate()) { |
586 | // Paragraph 4, quoted above, only applies to non-template functions. |
587 | Diag(NewParam->getLocation(), |
588 | diag::err_param_default_argument_template_redecl) |
589 | << NewParam->getDefaultArgRange(); |
590 | Diag(PrevForDefaultArgs->getLocation(), |
591 | diag::note_template_prev_declaration) |
592 | << false; |
593 | } else if (New->getTemplateSpecializationKind() |
594 | != TSK_ImplicitInstantiation && |
595 | New->getTemplateSpecializationKind() != TSK_Undeclared) { |
596 | // C++ [temp.expr.spec]p21: |
597 | // Default function arguments shall not be specified in a declaration |
598 | // or a definition for one of the following explicit specializations: |
599 | // - the explicit specialization of a function template; |
600 | // - the explicit specialization of a member function template; |
601 | // - the explicit specialization of a member function of a class |
602 | // template where the class template specialization to which the |
603 | // member function specialization belongs is implicitly |
604 | // instantiated. |
605 | Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) |
606 | << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) |
607 | << New->getDeclName() |
608 | << NewParam->getDefaultArgRange(); |
609 | } else if (New->getDeclContext()->isDependentContext()) { |
610 | // C++ [dcl.fct.default]p6 (DR217): |
611 | // Default arguments for a member function of a class template shall |
612 | // be specified on the initial declaration of the member function |
613 | // within the class template. |
614 | // |
615 | // Reading the tea leaves a bit in DR217 and its reference to DR205 |
616 | // leads me to the conclusion that one cannot add default function |
617 | // arguments for an out-of-line definition of a member function of a |
618 | // dependent type. |
619 | int WhichKind = 2; |
620 | if (CXXRecordDecl *Record |
621 | = dyn_cast<CXXRecordDecl>(New->getDeclContext())) { |
622 | if (Record->getDescribedClassTemplate()) |
623 | WhichKind = 0; |
624 | else if (isa<ClassTemplatePartialSpecializationDecl>(Val: Record)) |
625 | WhichKind = 1; |
626 | else |
627 | WhichKind = 2; |
628 | } |
629 | |
630 | Diag(NewParam->getLocation(), |
631 | diag::err_param_default_argument_member_template_redecl) |
632 | << WhichKind |
633 | << NewParam->getDefaultArgRange(); |
634 | } |
635 | } |
636 | } |
637 | |
638 | // DR1344: If a default argument is added outside a class definition and that |
639 | // default argument makes the function a special member function, the program |
640 | // is ill-formed. This can only happen for constructors. |
641 | if (isa<CXXConstructorDecl>(Val: New) && |
642 | New->getMinRequiredArguments() < Old->getMinRequiredArguments()) { |
643 | CXXSpecialMemberKind NewSM = getSpecialMember(MD: cast<CXXMethodDecl>(Val: New)), |
644 | OldSM = getSpecialMember(MD: cast<CXXMethodDecl>(Val: Old)); |
645 | if (NewSM != OldSM) { |
646 | ParmVarDecl *NewParam = New->getParamDecl(i: New->getMinRequiredArguments()); |
647 | assert(NewParam->hasDefaultArg()); |
648 | Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special) |
649 | << NewParam->getDefaultArgRange() << NewSM; |
650 | Diag(Old->getLocation(), diag::note_previous_declaration); |
651 | } |
652 | } |
653 | |
654 | const FunctionDecl *Def; |
655 | // C++11 [dcl.constexpr]p1: If any declaration of a function or function |
656 | // template has a constexpr specifier then all its declarations shall |
657 | // contain the constexpr specifier. |
658 | if (New->getConstexprKind() != Old->getConstexprKind()) { |
659 | Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch) |
660 | << New << static_cast<int>(New->getConstexprKind()) |
661 | << static_cast<int>(Old->getConstexprKind()); |
662 | Diag(Old->getLocation(), diag::note_previous_declaration); |
663 | Invalid = true; |
664 | } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() && |
665 | Old->isDefined(Definition&: Def) && |
666 | // If a friend function is inlined but does not have 'inline' |
667 | // specifier, it is a definition. Do not report attribute conflict |
668 | // in this case, redefinition will be diagnosed later. |
669 | (New->isInlineSpecified() || |
670 | New->getFriendObjectKind() == Decl::FOK_None)) { |
671 | // C++11 [dcl.fcn.spec]p4: |
672 | // If the definition of a function appears in a translation unit before its |
673 | // first declaration as inline, the program is ill-formed. |
674 | Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; |
675 | Diag(Def->getLocation(), diag::note_previous_definition); |
676 | Invalid = true; |
677 | } |
678 | |
679 | // C++17 [temp.deduct.guide]p3: |
680 | // Two deduction guide declarations in the same translation unit |
681 | // for the same class template shall not have equivalent |
682 | // parameter-declaration-clauses. |
683 | if (isa<CXXDeductionGuideDecl>(Val: New) && |
684 | !New->isFunctionTemplateSpecialization() && isVisible(Old)) { |
685 | Diag(New->getLocation(), diag::err_deduction_guide_redeclared); |
686 | Diag(Old->getLocation(), diag::note_previous_declaration); |
687 | } |
688 | |
689 | // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default |
690 | // argument expression, that declaration shall be a definition and shall be |
691 | // the only declaration of the function or function template in the |
692 | // translation unit. |
693 | if (Old->getFriendObjectKind() == Decl::FOK_Undeclared && |
694 | functionDeclHasDefaultArgument(FD: Old)) { |
695 | Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); |
696 | Diag(Old->getLocation(), diag::note_previous_declaration); |
697 | Invalid = true; |
698 | } |
699 | |
700 | // C++11 [temp.friend]p4 (DR329): |
701 | // When a function is defined in a friend function declaration in a class |
702 | // template, the function is instantiated when the function is odr-used. |
703 | // The same restrictions on multiple declarations and definitions that |
704 | // apply to non-template function declarations and definitions also apply |
705 | // to these implicit definitions. |
706 | const FunctionDecl *OldDefinition = nullptr; |
707 | if (New->isThisDeclarationInstantiatedFromAFriendDefinition() && |
708 | Old->isDefined(Definition&: OldDefinition, CheckForPendingFriendDefinition: true)) |
709 | CheckForFunctionRedefinition(FD: New, EffectiveDefinition: OldDefinition); |
710 | |
711 | return Invalid; |
712 | } |
713 | |
714 | void Sema::DiagPlaceholderVariableDefinition(SourceLocation Loc) { |
715 | Diag(Loc, getLangOpts().CPlusPlus26 |
716 | ? diag::warn_cxx23_placeholder_var_definition |
717 | : diag::ext_placeholder_var_definition); |
718 | } |
719 | |
720 | NamedDecl * |
721 | Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D, |
722 | MultiTemplateParamsArg TemplateParamLists) { |
723 | assert(D.isDecompositionDeclarator()); |
724 | const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); |
725 | |
726 | // The syntax only allows a decomposition declarator as a simple-declaration, |
727 | // a for-range-declaration, or a condition in Clang, but we parse it in more |
728 | // cases than that. |
729 | if (!D.mayHaveDecompositionDeclarator()) { |
730 | Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) |
731 | << Decomp.getSourceRange(); |
732 | return nullptr; |
733 | } |
734 | |
735 | if (!TemplateParamLists.empty()) { |
736 | // C++17 [temp]/1: |
737 | // A template defines a family of class, functions, or variables, or an |
738 | // alias for a family of types. |
739 | // |
740 | // Structured bindings are not included. |
741 | Diag(TemplateParamLists.front()->getTemplateLoc(), |
742 | diag::err_decomp_decl_template); |
743 | return nullptr; |
744 | } |
745 | |
746 | unsigned DiagID; |
747 | if (!getLangOpts().CPlusPlus17) |
748 | DiagID = diag::compat_pre_cxx17_decomp_decl; |
749 | else if (D.getContext() == DeclaratorContext::Condition) |
750 | DiagID = getLangOpts().CPlusPlus26 |
751 | ? diag::compat_cxx26_decomp_decl_cond |
752 | : diag::compat_pre_cxx26_decomp_decl_cond; |
753 | else |
754 | DiagID = diag::compat_cxx17_decomp_decl; |
755 | |
756 | Diag(Decomp.getLSquareLoc(), DiagID) << Decomp.getSourceRange(); |
757 | |
758 | // The semantic context is always just the current context. |
759 | DeclContext *const DC = CurContext; |
760 | |
761 | // C++17 [dcl.dcl]/8: |
762 | // The decl-specifier-seq shall contain only the type-specifier auto |
763 | // and cv-qualifiers. |
764 | // C++20 [dcl.dcl]/8: |
765 | // If decl-specifier-seq contains any decl-specifier other than static, |
766 | // thread_local, auto, or cv-qualifiers, the program is ill-formed. |
767 | // C++23 [dcl.pre]/6: |
768 | // Each decl-specifier in the decl-specifier-seq shall be static, |
769 | // thread_local, auto (9.2.9.6 [dcl.spec.auto]), or a cv-qualifier. |
770 | auto &DS = D.getDeclSpec(); |
771 | { |
772 | // Note: While constrained-auto needs to be checked, we do so separately so |
773 | // we can emit a better diagnostic. |
774 | SmallVector<StringRef, 8> BadSpecifiers; |
775 | SmallVector<SourceLocation, 8> BadSpecifierLocs; |
776 | SmallVector<StringRef, 8> CPlusPlus20Specifiers; |
777 | SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs; |
778 | if (auto SCS = DS.getStorageClassSpec()) { |
779 | if (SCS == DeclSpec::SCS_static) { |
780 | CPlusPlus20Specifiers.push_back(Elt: DeclSpec::getSpecifierName(S: SCS)); |
781 | CPlusPlus20SpecifierLocs.push_back(Elt: DS.getStorageClassSpecLoc()); |
782 | } else { |
783 | BadSpecifiers.push_back(Elt: DeclSpec::getSpecifierName(S: SCS)); |
784 | BadSpecifierLocs.push_back(Elt: DS.getStorageClassSpecLoc()); |
785 | } |
786 | } |
787 | if (auto TSCS = DS.getThreadStorageClassSpec()) { |
788 | CPlusPlus20Specifiers.push_back(Elt: DeclSpec::getSpecifierName(S: TSCS)); |
789 | CPlusPlus20SpecifierLocs.push_back(Elt: DS.getThreadStorageClassSpecLoc()); |
790 | } |
791 | if (DS.hasConstexprSpecifier()) { |
792 | BadSpecifiers.push_back( |
793 | Elt: DeclSpec::getSpecifierName(C: DS.getConstexprSpecifier())); |
794 | BadSpecifierLocs.push_back(Elt: DS.getConstexprSpecLoc()); |
795 | } |
796 | if (DS.isInlineSpecified()) { |
797 | BadSpecifiers.push_back(Elt: "inline"); |
798 | BadSpecifierLocs.push_back(Elt: DS.getInlineSpecLoc()); |
799 | } |
800 | |
801 | if (!BadSpecifiers.empty()) { |
802 | auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec); |
803 | Err << (int)BadSpecifiers.size() |
804 | << llvm::join(Begin: BadSpecifiers.begin(), End: BadSpecifiers.end(), Separator: " "); |
805 | // Don't add FixItHints to remove the specifiers; we do still respect |
806 | // them when building the underlying variable. |
807 | for (auto Loc : BadSpecifierLocs) |
808 | Err << SourceRange(Loc, Loc); |
809 | } else if (!CPlusPlus20Specifiers.empty()) { |
810 | auto &&Warn = DiagCompat(CPlusPlus20SpecifierLocs.front(), |
811 | diag_compat::decomp_decl_spec); |
812 | Warn << (int)CPlusPlus20Specifiers.size() |
813 | << llvm::join(Begin: CPlusPlus20Specifiers.begin(), |
814 | End: CPlusPlus20Specifiers.end(), Separator: " "); |
815 | for (auto Loc : CPlusPlus20SpecifierLocs) |
816 | Warn << SourceRange(Loc, Loc); |
817 | } |
818 | // We can't recover from it being declared as a typedef. |
819 | if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) |
820 | return nullptr; |
821 | } |
822 | |
823 | // C++2a [dcl.struct.bind]p1: |
824 | // A cv that includes volatile is deprecated |
825 | if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) && |
826 | getLangOpts().CPlusPlus20) |
827 | Diag(DS.getVolatileSpecLoc(), |
828 | diag::warn_deprecated_volatile_structured_binding); |
829 | |
830 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D); |
831 | QualType R = TInfo->getType(); |
832 | |
833 | if (DiagnoseUnexpandedParameterPack(Loc: D.getIdentifierLoc(), T: TInfo, |
834 | UPPC: UPPC_DeclarationType)) |
835 | D.setInvalidType(); |
836 | |
837 | // The syntax only allows a single ref-qualifier prior to the decomposition |
838 | // declarator. No other declarator chunks are permitted. Also check the type |
839 | // specifier here. |
840 | if (DS.getTypeSpecType() != DeclSpec::TST_auto || |
841 | D.hasGroupingParens() || D.getNumTypeObjects() > 1 || |
842 | (D.getNumTypeObjects() == 1 && |
843 | D.getTypeObject(i: 0).Kind != DeclaratorChunk::Reference)) { |
844 | Diag(Decomp.getLSquareLoc(), |
845 | (D.hasGroupingParens() || |
846 | (D.getNumTypeObjects() && |
847 | D.getTypeObject(0).Kind == DeclaratorChunk::Paren)) |
848 | ? diag::err_decomp_decl_parens |
849 | : diag::err_decomp_decl_type) |
850 | << R; |
851 | |
852 | // In most cases, there's no actual problem with an explicitly-specified |
853 | // type, but a function type won't work here, and ActOnVariableDeclarator |
854 | // shouldn't be called for such a type. |
855 | if (R->isFunctionType()) |
856 | D.setInvalidType(); |
857 | } |
858 | |
859 | // Constrained auto is prohibited by [decl.pre]p6, so check that here. |
860 | if (DS.isConstrainedAuto()) { |
861 | TemplateIdAnnotation *TemplRep = DS.getRepAsTemplateId(); |
862 | assert(TemplRep->Kind == TNK_Concept_template && |
863 | "No other template kind should be possible for a constrained auto"); |
864 | |
865 | SourceRange TemplRange{TemplRep->TemplateNameLoc, |
866 | TemplRep->RAngleLoc.isValid() |
867 | ? TemplRep->RAngleLoc |
868 | : TemplRep->TemplateNameLoc}; |
869 | Diag(TemplRep->TemplateNameLoc, diag::err_decomp_decl_constraint) |
870 | << TemplRange << FixItHint::CreateRemoval(TemplRange); |
871 | } |
872 | |
873 | // Build the BindingDecls. |
874 | SmallVector<BindingDecl*, 8> Bindings; |
875 | |
876 | // Build the BindingDecls. |
877 | for (auto &B : D.getDecompositionDeclarator().bindings()) { |
878 | // Check for name conflicts. |
879 | DeclarationNameInfo NameInfo(B.Name, B.NameLoc); |
880 | IdentifierInfo *VarName = B.Name; |
881 | assert(VarName && "Cannot have an unnamed binding declaration"); |
882 | |
883 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, |
884 | RedeclarationKind::ForVisibleRedeclaration); |
885 | LookupName(R&: Previous, S, |
886 | /*CreateBuiltins*/AllowBuiltinCreation: DC->getRedeclContext()->isTranslationUnit()); |
887 | |
888 | // It's not permitted to shadow a template parameter name. |
889 | if (Previous.isSingleResult() && |
890 | Previous.getFoundDecl()->isTemplateParameter()) { |
891 | DiagnoseTemplateParameterShadow(B.NameLoc, Previous.getFoundDecl()); |
892 | Previous.clear(); |
893 | } |
894 | |
895 | QualType QT; |
896 | if (B.EllipsisLoc.isValid()) { |
897 | if (!cast<Decl>(DC)->isTemplated()) |
898 | Diag(B.EllipsisLoc, diag::err_pack_outside_template); |
899 | QT = Context.getPackExpansionType(Pattern: Context.DependentTy, NumExpansions: std::nullopt, |
900 | /*ExpectsPackInType=*/ExpectPackInType: false); |
901 | } |
902 | |
903 | auto *BD = BindingDecl::Create(C&: Context, DC, IdLoc: B.NameLoc, Id: B.Name, T: QT); |
904 | |
905 | ProcessDeclAttributeList(S, BD, *B.Attrs); |
906 | |
907 | // Find the shadowed declaration before filtering for scope. |
908 | NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty() |
909 | ? getShadowedDeclaration(D: BD, R: Previous) |
910 | : nullptr; |
911 | |
912 | bool ConsiderLinkage = DC->isFunctionOrMethod() && |
913 | DS.getStorageClassSpec() == DeclSpec::SCS_extern; |
914 | FilterLookupForScope(R&: Previous, Ctx: DC, S, ConsiderLinkage, |
915 | /*AllowInlineNamespace*/false); |
916 | |
917 | bool IsPlaceholder = DS.getStorageClassSpec() != DeclSpec::SCS_static && |
918 | DC->isFunctionOrMethod() && VarName->isPlaceholder(); |
919 | if (!Previous.empty()) { |
920 | if (IsPlaceholder) { |
921 | bool sameDC = (Previous.end() - 1) |
922 | ->getDeclContext() |
923 | ->getRedeclContext() |
924 | ->Equals(DC->getRedeclContext()); |
925 | if (sameDC && |
926 | isDeclInScope(D: *(Previous.end() - 1), Ctx: CurContext, S, AllowInlineNamespace: false)) { |
927 | Previous.clear(); |
928 | DiagPlaceholderVariableDefinition(Loc: B.NameLoc); |
929 | } |
930 | } else { |
931 | auto *Old = Previous.getRepresentativeDecl(); |
932 | Diag(B.NameLoc, diag::err_redefinition) << B.Name; |
933 | Diag(Old->getLocation(), diag::note_previous_definition); |
934 | } |
935 | } else if (ShadowedDecl && !D.isRedeclaration()) { |
936 | CheckShadow(BD, ShadowedDecl, Previous); |
937 | } |
938 | PushOnScopeChains(BD, S, true); |
939 | Bindings.push_back(Elt: BD); |
940 | ParsingInitForAutoVars.insert(BD); |
941 | } |
942 | |
943 | // There are no prior lookup results for the variable itself, because it |
944 | // is unnamed. |
945 | DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr, |
946 | Decomp.getLSquareLoc()); |
947 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, |
948 | RedeclarationKind::ForVisibleRedeclaration); |
949 | |
950 | // Build the variable that holds the non-decomposed object. |
951 | bool AddToScope = true; |
952 | NamedDecl *New = |
953 | ActOnVariableDeclarator(S, D, DC, TInfo, Previous, |
954 | TemplateParamLists: MultiTemplateParamsArg(), AddToScope, Bindings); |
955 | if (AddToScope) { |
956 | S->AddDecl(New); |
957 | CurContext->addHiddenDecl(New); |
958 | } |
959 | |
960 | if (OpenMP().isInOpenMPDeclareTargetContext()) |
961 | OpenMP().checkDeclIsAllowedInOpenMPTarget(nullptr, New); |
962 | |
963 | return New; |
964 | } |
965 | |
966 | // Check the arity of the structured bindings. |
967 | // Create the resolved pack expr if needed. |
968 | static bool CheckBindingsCount(Sema &S, DecompositionDecl *DD, |
969 | QualType DecompType, |
970 | ArrayRef<BindingDecl *> Bindings, |
971 | unsigned MemberCount) { |
972 | auto BindingWithPackItr = llvm::find_if( |
973 | Range&: Bindings, P: [](BindingDecl *D) -> bool { return D->isParameterPack(); }); |
974 | bool HasPack = BindingWithPackItr != Bindings.end(); |
975 | bool IsValid; |
976 | if (!HasPack) { |
977 | IsValid = Bindings.size() == MemberCount; |
978 | } else { |
979 | // There may not be more members than non-pack bindings. |
980 | IsValid = MemberCount >= Bindings.size() - 1; |
981 | } |
982 | |
983 | if (IsValid && HasPack) { |
984 | // Create the pack expr and assign it to the binding. |
985 | unsigned PackSize = MemberCount - Bindings.size() + 1; |
986 | |
987 | BindingDecl *BPack = *BindingWithPackItr; |
988 | BPack->setDecomposedDecl(DD); |
989 | SmallVector<ValueDecl *, 8> NestedBDs(PackSize); |
990 | // Create the nested BindingDecls. |
991 | for (unsigned I = 0; I < PackSize; ++I) { |
992 | BindingDecl *NestedBD = BindingDecl::Create( |
993 | C&: S.Context, DC: BPack->getDeclContext(), IdLoc: BPack->getLocation(), |
994 | Id: BPack->getIdentifier(), T: QualType()); |
995 | NestedBD->setDecomposedDecl(DD); |
996 | NestedBDs[I] = NestedBD; |
997 | } |
998 | |
999 | QualType PackType = S.Context.getPackExpansionType( |
1000 | Pattern: S.Context.DependentTy, NumExpansions: PackSize, /*ExpectsPackInType=*/ExpectPackInType: false); |
1001 | auto *PackExpr = FunctionParmPackExpr::Create( |
1002 | Context: S.Context, T: PackType, ParamPack: BPack, NameLoc: BPack->getBeginLoc(), Params: NestedBDs); |
1003 | BPack->setBinding(DeclaredType: PackType, Binding: PackExpr); |
1004 | } |
1005 | |
1006 | if (IsValid) |
1007 | return false; |
1008 | |
1009 | S.Diag(DD->getLocation(), diag::err_decomp_decl_wrong_number_bindings) |
1010 | << DecompType << (unsigned)Bindings.size() << MemberCount << MemberCount |
1011 | << (MemberCount < Bindings.size()); |
1012 | return true; |
1013 | } |
1014 | |
1015 | static bool checkSimpleDecomposition( |
1016 | Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src, |
1017 | QualType DecompType, const llvm::APSInt &NumElemsAPS, QualType ElemType, |
1018 | llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) { |
1019 | unsigned NumElems = (unsigned)NumElemsAPS.getLimitedValue(UINT_MAX); |
1020 | auto *DD = cast<DecompositionDecl>(Val: Src); |
1021 | |
1022 | if (CheckBindingsCount(S, DD, DecompType, Bindings, MemberCount: NumElems)) |
1023 | return true; |
1024 | |
1025 | unsigned I = 0; |
1026 | for (auto *B : DD->flat_bindings()) { |
1027 | SourceLocation Loc = B->getLocation(); |
1028 | ExprResult E = S.BuildDeclRefExpr(D: Src, Ty: DecompType, VK: VK_LValue, Loc); |
1029 | if (E.isInvalid()) |
1030 | return true; |
1031 | E = GetInit(Loc, E.get(), I++); |
1032 | if (E.isInvalid()) |
1033 | return true; |
1034 | B->setBinding(DeclaredType: ElemType, Binding: E.get()); |
1035 | } |
1036 | |
1037 | return false; |
1038 | } |
1039 | |
1040 | static bool checkArrayLikeDecomposition(Sema &S, |
1041 | ArrayRef<BindingDecl *> Bindings, |
1042 | ValueDecl *Src, QualType DecompType, |
1043 | const llvm::APSInt &NumElems, |
1044 | QualType ElemType) { |
1045 | return checkSimpleDecomposition( |
1046 | S, Bindings, Src, DecompType, NumElemsAPS: NumElems, ElemType, |
1047 | GetInit: [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { |
1048 | ExprResult E = S.ActOnIntegerConstant(Loc, Val: I); |
1049 | if (E.isInvalid()) |
1050 | return ExprError(); |
1051 | return S.CreateBuiltinArraySubscriptExpr(Base, LLoc: Loc, Idx: E.get(), RLoc: Loc); |
1052 | }); |
1053 | } |
1054 | |
1055 | static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, |
1056 | ValueDecl *Src, QualType DecompType, |
1057 | const ConstantArrayType *CAT) { |
1058 | return checkArrayLikeDecomposition(S, Bindings, Src, DecompType, |
1059 | llvm::APSInt(CAT->getSize()), |
1060 | CAT->getElementType()); |
1061 | } |
1062 | |
1063 | static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, |
1064 | ValueDecl *Src, QualType DecompType, |
1065 | const VectorType *VT) { |
1066 | return checkArrayLikeDecomposition( |
1067 | S, Bindings, Src, DecompType, NumElems: llvm::APSInt::get(X: VT->getNumElements()), |
1068 | ElemType: S.Context.getQualifiedType(T: VT->getElementType(), |
1069 | Qs: DecompType.getQualifiers())); |
1070 | } |
1071 | |
1072 | static bool checkComplexDecomposition(Sema &S, |
1073 | ArrayRef<BindingDecl *> Bindings, |
1074 | ValueDecl *Src, QualType DecompType, |
1075 | const ComplexType *CT) { |
1076 | return checkSimpleDecomposition( |
1077 | S, Bindings, Src, DecompType, NumElemsAPS: llvm::APSInt::get(X: 2), |
1078 | ElemType: S.Context.getQualifiedType(T: CT->getElementType(), |
1079 | Qs: DecompType.getQualifiers()), |
1080 | GetInit: [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { |
1081 | return S.CreateBuiltinUnaryOp(OpLoc: Loc, Opc: I ? UO_Imag : UO_Real, InputExpr: Base); |
1082 | }); |
1083 | } |
1084 | |
1085 | static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy, |
1086 | TemplateArgumentListInfo &Args, |
1087 | const TemplateParameterList *Params) { |
1088 | SmallString<128> SS; |
1089 | llvm::raw_svector_ostream OS(SS); |
1090 | bool First = true; |
1091 | unsigned I = 0; |
1092 | for (auto &Arg : Args.arguments()) { |
1093 | if (!First) |
1094 | OS << ", "; |
1095 | Arg.getArgument().print(Policy: PrintingPolicy, Out&: OS, |
1096 | IncludeType: TemplateParameterList::shouldIncludeTypeForArgument( |
1097 | Policy: PrintingPolicy, TPL: Params, Idx: I)); |
1098 | First = false; |
1099 | I++; |
1100 | } |
1101 | return std::string(OS.str()); |
1102 | } |
1103 | |
1104 | static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup, |
1105 | SourceLocation Loc, StringRef Trait, |
1106 | TemplateArgumentListInfo &Args, |
1107 | unsigned DiagID) { |
1108 | auto DiagnoseMissing = [&] { |
1109 | if (DiagID) |
1110 | S.Diag(Loc, DiagID) << printTemplateArgs(PrintingPolicy: S.Context.getPrintingPolicy(), |
1111 | Args, /*Params*/ nullptr); |
1112 | return true; |
1113 | }; |
1114 | |
1115 | // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine. |
1116 | NamespaceDecl *Std = S.getStdNamespace(); |
1117 | if (!Std) |
1118 | return DiagnoseMissing(); |
1119 | |
1120 | // Look up the trait itself, within namespace std. We can diagnose various |
1121 | // problems with this lookup even if we've been asked to not diagnose a |
1122 | // missing specialization, because this can only fail if the user has been |
1123 | // declaring their own names in namespace std or we don't support the |
1124 | // standard library implementation in use. |
1125 | LookupResult Result(S, &S.PP.getIdentifierTable().get(Name: Trait), |
1126 | Loc, Sema::LookupOrdinaryName); |
1127 | if (!S.LookupQualifiedName(Result, Std)) |
1128 | return DiagnoseMissing(); |
1129 | if (Result.isAmbiguous()) |
1130 | return true; |
1131 | |
1132 | ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>(); |
1133 | if (!TraitTD) { |
1134 | Result.suppressDiagnostics(); |
1135 | NamedDecl *Found = *Result.begin(); |
1136 | S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait; |
1137 | S.Diag(Found->getLocation(), diag::note_declared_at); |
1138 | return true; |
1139 | } |
1140 | |
1141 | // Build the template-id. |
1142 | QualType TraitTy = S.CheckTemplateIdType(Template: TemplateName(TraitTD), TemplateLoc: Loc, TemplateArgs&: Args); |
1143 | if (TraitTy.isNull()) |
1144 | return true; |
1145 | if (!S.isCompleteType(Loc, T: TraitTy)) { |
1146 | if (DiagID) |
1147 | S.RequireCompleteType( |
1148 | Loc, TraitTy, DiagID, |
1149 | printTemplateArgs(S.Context.getPrintingPolicy(), Args, |
1150 | TraitTD->getTemplateParameters())); |
1151 | return true; |
1152 | } |
1153 | |
1154 | CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl(); |
1155 | assert(RD && "specialization of class template is not a class?"); |
1156 | |
1157 | // Look up the member of the trait type. |
1158 | S.LookupQualifiedName(TraitMemberLookup, RD); |
1159 | return TraitMemberLookup.isAmbiguous(); |
1160 | } |
1161 | |
1162 | static TemplateArgumentLoc |
1163 | getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T, |
1164 | uint64_t I) { |
1165 | TemplateArgument Arg(S.Context, S.Context.MakeIntValue(Value: I, Type: T), T); |
1166 | return S.getTrivialTemplateArgumentLoc(Arg, NTTPType: T, Loc); |
1167 | } |
1168 | |
1169 | static TemplateArgumentLoc |
1170 | getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) { |
1171 | return S.getTrivialTemplateArgumentLoc(Arg: TemplateArgument(T), NTTPType: QualType(), Loc); |
1172 | } |
1173 | |
1174 | namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; } |
1175 | |
1176 | static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T, |
1177 | llvm::APSInt &Size) { |
1178 | EnterExpressionEvaluationContext ContextRAII( |
1179 | S, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
1180 | |
1181 | DeclarationName Value = S.PP.getIdentifierInfo(Name: "value"); |
1182 | LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName); |
1183 | |
1184 | // Form template argument list for tuple_size<T>. |
1185 | TemplateArgumentListInfo Args(Loc, Loc); |
1186 | Args.addArgument(Loc: getTrivialTypeTemplateArgument(S, Loc, T)); |
1187 | |
1188 | // If there's no tuple_size specialization or the lookup of 'value' is empty, |
1189 | // it's not tuple-like. |
1190 | if (lookupStdTypeTraitMember(S, TraitMemberLookup&: R, Loc, Trait: "tuple_size", Args, /*DiagID*/ 0) || |
1191 | R.empty()) |
1192 | return IsTupleLike::NotTupleLike; |
1193 | |
1194 | // If we get this far, we've committed to the tuple interpretation, but |
1195 | // we can still fail if there actually isn't a usable ::value. |
1196 | |
1197 | struct ICEDiagnoser : Sema::VerifyICEDiagnoser { |
1198 | LookupResult &R; |
1199 | TemplateArgumentListInfo &Args; |
1200 | ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args) |
1201 | : R(R), Args(Args) {} |
1202 | Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S, |
1203 | SourceLocation Loc) override { |
1204 | return S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant) |
1205 | << printTemplateArgs(S.Context.getPrintingPolicy(), Args, |
1206 | /*Params*/ nullptr); |
1207 | } |
1208 | } Diagnoser(R, Args); |
1209 | |
1210 | ExprResult E = |
1211 | S.BuildDeclarationNameExpr(SS: CXXScopeSpec(), R, /*NeedsADL*/false); |
1212 | if (E.isInvalid()) |
1213 | return IsTupleLike::Error; |
1214 | |
1215 | E = S.VerifyIntegerConstantExpression(E: E.get(), Result: &Size, Diagnoser); |
1216 | if (E.isInvalid()) |
1217 | return IsTupleLike::Error; |
1218 | |
1219 | return IsTupleLike::TupleLike; |
1220 | } |
1221 | |
1222 | /// \return std::tuple_element<I, T>::type. |
1223 | static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc, |
1224 | unsigned I, QualType T) { |
1225 | // Form template argument list for tuple_element<I, T>. |
1226 | TemplateArgumentListInfo Args(Loc, Loc); |
1227 | Args.addArgument( |
1228 | Loc: getTrivialIntegralTemplateArgument(S, Loc, T: S.Context.getSizeType(), I)); |
1229 | Args.addArgument(Loc: getTrivialTypeTemplateArgument(S, Loc, T)); |
1230 | |
1231 | DeclarationName TypeDN = S.PP.getIdentifierInfo(Name: "type"); |
1232 | LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName); |
1233 | if (lookupStdTypeTraitMember( |
1234 | S, R, Loc, "tuple_element", Args, |
1235 | diag::err_decomp_decl_std_tuple_element_not_specialized)) |
1236 | return QualType(); |
1237 | |
1238 | auto *TD = R.getAsSingle<TypeDecl>(); |
1239 | if (!TD) { |
1240 | R.suppressDiagnostics(); |
1241 | S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized) |
1242 | << printTemplateArgs(S.Context.getPrintingPolicy(), Args, |
1243 | /*Params*/ nullptr); |
1244 | if (!R.empty()) |
1245 | S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at); |
1246 | return QualType(); |
1247 | } |
1248 | |
1249 | return S.Context.getTypeDeclType(Decl: TD); |
1250 | } |
1251 | |
1252 | namespace { |
1253 | struct InitializingBinding { |
1254 | Sema &S; |
1255 | InitializingBinding(Sema &S, BindingDecl *BD) : S(S) { |
1256 | Sema::CodeSynthesisContext Ctx; |
1257 | Ctx.Kind = Sema::CodeSynthesisContext::InitializingStructuredBinding; |
1258 | Ctx.PointOfInstantiation = BD->getLocation(); |
1259 | Ctx.Entity = BD; |
1260 | S.pushCodeSynthesisContext(Ctx); |
1261 | } |
1262 | ~InitializingBinding() { |
1263 | S.popCodeSynthesisContext(); |
1264 | } |
1265 | }; |
1266 | } |
1267 | |
1268 | static bool checkTupleLikeDecomposition(Sema &S, |
1269 | ArrayRef<BindingDecl *> Bindings, |
1270 | VarDecl *Src, QualType DecompType, |
1271 | const llvm::APSInt &TupleSize) { |
1272 | auto *DD = cast<DecompositionDecl>(Val: Src); |
1273 | unsigned NumElems = (unsigned)TupleSize.getLimitedValue(UINT_MAX); |
1274 | if (CheckBindingsCount(S, DD, DecompType, Bindings, MemberCount: NumElems)) |
1275 | return true; |
1276 | |
1277 | if (Bindings.empty()) |
1278 | return false; |
1279 | |
1280 | DeclarationName GetDN = S.PP.getIdentifierInfo(Name: "get"); |
1281 | |
1282 | // [dcl.decomp]p3: |
1283 | // The unqualified-id get is looked up in the scope of E by class member |
1284 | // access lookup ... |
1285 | LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName); |
1286 | bool UseMemberGet = false; |
1287 | if (S.isCompleteType(Loc: Src->getLocation(), T: DecompType)) { |
1288 | if (auto *RD = DecompType->getAsCXXRecordDecl()) |
1289 | S.LookupQualifiedName(MemberGet, RD); |
1290 | if (MemberGet.isAmbiguous()) |
1291 | return true; |
1292 | // ... and if that finds at least one declaration that is a function |
1293 | // template whose first template parameter is a non-type parameter ... |
1294 | for (NamedDecl *D : MemberGet) { |
1295 | if (FunctionTemplateDecl *FTD = |
1296 | dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) { |
1297 | TemplateParameterList *TPL = FTD->getTemplateParameters(); |
1298 | if (TPL->size() != 0 && |
1299 | isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) { |
1300 | // ... the initializer is e.get<i>(). |
1301 | UseMemberGet = true; |
1302 | break; |
1303 | } |
1304 | } |
1305 | } |
1306 | } |
1307 | |
1308 | unsigned I = 0; |
1309 | for (auto *B : DD->flat_bindings()) { |
1310 | InitializingBinding InitContext(S, B); |
1311 | SourceLocation Loc = B->getLocation(); |
1312 | |
1313 | ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); |
1314 | if (E.isInvalid()) |
1315 | return true; |
1316 | |
1317 | // e is an lvalue if the type of the entity is an lvalue reference and |
1318 | // an xvalue otherwise |
1319 | if (!Src->getType()->isLValueReferenceType()) |
1320 | E = ImplicitCastExpr::Create(Context: S.Context, T: E.get()->getType(), Kind: CK_NoOp, |
1321 | Operand: E.get(), BasePath: nullptr, Cat: VK_XValue, |
1322 | FPO: FPOptionsOverride()); |
1323 | |
1324 | TemplateArgumentListInfo Args(Loc, Loc); |
1325 | Args.addArgument( |
1326 | Loc: getTrivialIntegralTemplateArgument(S, Loc, T: S.Context.getSizeType(), I)); |
1327 | |
1328 | if (UseMemberGet) { |
1329 | // if [lookup of member get] finds at least one declaration, the |
1330 | // initializer is e.get<i-1>(). |
1331 | E = S.BuildMemberReferenceExpr(Base: E.get(), BaseType: DecompType, OpLoc: Loc, IsArrow: false, |
1332 | SS: CXXScopeSpec(), TemplateKWLoc: SourceLocation(), FirstQualifierInScope: nullptr, |
1333 | R&: MemberGet, TemplateArgs: &Args, S: nullptr); |
1334 | if (E.isInvalid()) |
1335 | return true; |
1336 | |
1337 | E = S.BuildCallExpr(S: nullptr, Fn: E.get(), LParenLoc: Loc, ArgExprs: {}, RParenLoc: Loc); |
1338 | } else { |
1339 | // Otherwise, the initializer is get<i-1>(e), where get is looked up |
1340 | // in the associated namespaces. |
1341 | Expr *Get = UnresolvedLookupExpr::Create( |
1342 | Context: S.Context, NamingClass: nullptr, QualifierLoc: NestedNameSpecifierLoc(), TemplateKWLoc: SourceLocation(), |
1343 | NameInfo: DeclarationNameInfo(GetDN, Loc), /*RequiresADL=*/true, Args: &Args, |
1344 | Begin: UnresolvedSetIterator(), End: UnresolvedSetIterator(), |
1345 | /*KnownDependent=*/false, /*KnownInstantiationDependent=*/false); |
1346 | |
1347 | Expr *Arg = E.get(); |
1348 | E = S.BuildCallExpr(S: nullptr, Fn: Get, LParenLoc: Loc, ArgExprs: Arg, RParenLoc: Loc); |
1349 | } |
1350 | if (E.isInvalid()) |
1351 | return true; |
1352 | Expr *Init = E.get(); |
1353 | |
1354 | // Given the type T designated by std::tuple_element<i - 1, E>::type, |
1355 | QualType T = getTupleLikeElementType(S, Loc, I, T: DecompType); |
1356 | if (T.isNull()) |
1357 | return true; |
1358 | |
1359 | // each vi is a variable of type "reference to T" initialized with the |
1360 | // initializer, where the reference is an lvalue reference if the |
1361 | // initializer is an lvalue and an rvalue reference otherwise |
1362 | QualType RefType = |
1363 | S.BuildReferenceType(T, LValueRef: E.get()->isLValue(), Loc, Entity: B->getDeclName()); |
1364 | if (RefType.isNull()) |
1365 | return true; |
1366 | auto *RefVD = VarDecl::Create( |
1367 | C&: S.Context, DC: Src->getDeclContext(), StartLoc: Loc, IdLoc: Loc, |
1368 | Id: B->getDeclName().getAsIdentifierInfo(), T: RefType, |
1369 | TInfo: S.Context.getTrivialTypeSourceInfo(T, Loc), S: Src->getStorageClass()); |
1370 | RefVD->setLexicalDeclContext(Src->getLexicalDeclContext()); |
1371 | RefVD->setTSCSpec(Src->getTSCSpec()); |
1372 | RefVD->setImplicit(); |
1373 | if (Src->isInlineSpecified()) |
1374 | RefVD->setInlineSpecified(); |
1375 | RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD); |
1376 | |
1377 | InitializedEntity Entity = InitializedEntity::InitializeBinding(Binding: RefVD); |
1378 | InitializationKind Kind = InitializationKind::CreateCopy(InitLoc: Loc, EqualLoc: Loc); |
1379 | InitializationSequence Seq(S, Entity, Kind, Init); |
1380 | E = Seq.Perform(S, Entity, Kind, Args: Init); |
1381 | if (E.isInvalid()) |
1382 | return true; |
1383 | E = S.ActOnFinishFullExpr(Expr: E.get(), CC: Loc, /*DiscardedValue*/ false); |
1384 | if (E.isInvalid()) |
1385 | return true; |
1386 | RefVD->setInit(E.get()); |
1387 | S.CheckCompleteVariableDeclaration(VD: RefVD); |
1388 | |
1389 | E = S.BuildDeclarationNameExpr(CXXScopeSpec(), |
1390 | DeclarationNameInfo(B->getDeclName(), Loc), |
1391 | RefVD); |
1392 | if (E.isInvalid()) |
1393 | return true; |
1394 | |
1395 | B->setBinding(DeclaredType: T, Binding: E.get()); |
1396 | I++; |
1397 | } |
1398 | |
1399 | return false; |
1400 | } |
1401 | |
1402 | /// Find the base class to decompose in a built-in decomposition of a class type. |
1403 | /// This base class search is, unfortunately, not quite like any other that we |
1404 | /// perform anywhere else in C++. |
1405 | static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc, |
1406 | const CXXRecordDecl *RD, |
1407 | CXXCastPath &BasePath) { |
1408 | auto BaseHasFields = [](const CXXBaseSpecifier *Specifier, |
1409 | CXXBasePath &Path) { |
1410 | return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields(); |
1411 | }; |
1412 | |
1413 | const CXXRecordDecl *ClassWithFields = nullptr; |
1414 | AccessSpecifier AS = AS_public; |
1415 | if (RD->hasDirectFields()) |
1416 | // [dcl.decomp]p4: |
1417 | // Otherwise, all of E's non-static data members shall be public direct |
1418 | // members of E ... |
1419 | ClassWithFields = RD; |
1420 | else { |
1421 | // ... or of ... |
1422 | CXXBasePaths Paths; |
1423 | Paths.setOrigin(const_cast<CXXRecordDecl*>(RD)); |
1424 | if (!RD->lookupInBases(BaseMatches: BaseHasFields, Paths)) { |
1425 | // If no classes have fields, just decompose RD itself. (This will work |
1426 | // if and only if zero bindings were provided.) |
1427 | return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public); |
1428 | } |
1429 | |
1430 | CXXBasePath *BestPath = nullptr; |
1431 | for (auto &P : Paths) { |
1432 | if (!BestPath) |
1433 | BestPath = &P; |
1434 | else if (!S.Context.hasSameType(T1: P.back().Base->getType(), |
1435 | T2: BestPath->back().Base->getType())) { |
1436 | // ... the same ... |
1437 | S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) |
1438 | << false << RD << BestPath->back().Base->getType() |
1439 | << P.back().Base->getType(); |
1440 | return DeclAccessPair(); |
1441 | } else if (P.Access < BestPath->Access) { |
1442 | BestPath = &P; |
1443 | } |
1444 | } |
1445 | |
1446 | // ... unambiguous ... |
1447 | QualType BaseType = BestPath->back().Base->getType(); |
1448 | if (Paths.isAmbiguous(BaseType: S.Context.getCanonicalType(T: BaseType))) { |
1449 | S.Diag(Loc, diag::err_decomp_decl_ambiguous_base) |
1450 | << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths); |
1451 | return DeclAccessPair(); |
1452 | } |
1453 | |
1454 | // ... [accessible, implied by other rules] base class of E. |
1455 | S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD), |
1456 | *BestPath, diag::err_decomp_decl_inaccessible_base); |
1457 | AS = BestPath->Access; |
1458 | |
1459 | ClassWithFields = BaseType->getAsCXXRecordDecl(); |
1460 | S.BuildBasePathArray(Paths, BasePath); |
1461 | } |
1462 | |
1463 | // The above search did not check whether the selected class itself has base |
1464 | // classes with fields, so check that now. |
1465 | CXXBasePaths Paths; |
1466 | if (ClassWithFields->lookupInBases(BaseMatches: BaseHasFields, Paths)) { |
1467 | S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) |
1468 | << (ClassWithFields == RD) << RD << ClassWithFields |
1469 | << Paths.front().back().Base->getType(); |
1470 | return DeclAccessPair(); |
1471 | } |
1472 | |
1473 | return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS); |
1474 | } |
1475 | |
1476 | static bool CheckMemberDecompositionFields(Sema &S, SourceLocation Loc, |
1477 | const CXXRecordDecl *OrigRD, |
1478 | QualType DecompType, |
1479 | DeclAccessPair BasePair) { |
1480 | const auto *RD = cast_or_null<CXXRecordDecl>(Val: BasePair.getDecl()); |
1481 | if (!RD) |
1482 | return true; |
1483 | |
1484 | for (auto *FD : RD->fields()) { |
1485 | if (FD->isUnnamedBitField()) |
1486 | continue; |
1487 | |
1488 | // All the non-static data members are required to be nameable, so they |
1489 | // must all have names. |
1490 | if (!FD->getDeclName()) { |
1491 | if (RD->isLambda()) { |
1492 | S.Diag(Loc, diag::err_decomp_decl_lambda); |
1493 | S.Diag(RD->getLocation(), diag::note_lambda_decl); |
1494 | return true; |
1495 | } |
1496 | |
1497 | if (FD->isAnonymousStructOrUnion()) { |
1498 | S.Diag(Loc, diag::err_decomp_decl_anon_union_member) |
1499 | << DecompType << FD->getType()->isUnionType(); |
1500 | S.Diag(FD->getLocation(), diag::note_declared_at); |
1501 | return true; |
1502 | } |
1503 | |
1504 | // FIXME: Are there any other ways we could have an anonymous member? |
1505 | } |
1506 | // The field must be accessible in the context of the structured binding. |
1507 | // We already checked that the base class is accessible. |
1508 | // FIXME: Add 'const' to AccessedEntity's classes so we can remove the |
1509 | // const_cast here. |
1510 | S.CheckStructuredBindingMemberAccess( |
1511 | Loc, const_cast<CXXRecordDecl *>(OrigRD), |
1512 | DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess( |
1513 | BasePair.getAccess(), FD->getAccess()))); |
1514 | } |
1515 | return false; |
1516 | } |
1517 | |
1518 | static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, |
1519 | ValueDecl *Src, QualType DecompType, |
1520 | const CXXRecordDecl *OrigRD) { |
1521 | if (S.RequireCompleteType(Src->getLocation(), DecompType, |
1522 | diag::err_incomplete_type)) |
1523 | return true; |
1524 | |
1525 | CXXCastPath BasePath; |
1526 | DeclAccessPair BasePair = |
1527 | findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath); |
1528 | const auto *RD = cast_or_null<CXXRecordDecl>(Val: BasePair.getDecl()); |
1529 | if (!RD) |
1530 | return true; |
1531 | QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(Decl: RD), |
1532 | DecompType.getQualifiers()); |
1533 | |
1534 | auto *DD = cast<DecompositionDecl>(Val: Src); |
1535 | unsigned NumFields = llvm::count_if( |
1536 | RD->fields(), [](FieldDecl *FD) { return !FD->isUnnamedBitField(); }); |
1537 | if (CheckBindingsCount(S, DD, DecompType, Bindings, MemberCount: NumFields)) |
1538 | return true; |
1539 | |
1540 | // all of E's non-static data members shall be [...] well-formed |
1541 | // when named as e.name in the context of the structured binding, |
1542 | // E shall not have an anonymous union member, ... |
1543 | auto FlatBindings = DD->flat_bindings(); |
1544 | assert(llvm::range_size(FlatBindings) == NumFields); |
1545 | auto FlatBindingsItr = FlatBindings.begin(); |
1546 | |
1547 | if (CheckMemberDecompositionFields(S, Src->getLocation(), OrigRD, DecompType, |
1548 | BasePair)) |
1549 | return true; |
1550 | |
1551 | for (auto *FD : RD->fields()) { |
1552 | if (FD->isUnnamedBitField()) |
1553 | continue; |
1554 | |
1555 | // We have a real field to bind. |
1556 | assert(FlatBindingsItr != FlatBindings.end()); |
1557 | BindingDecl *B = *(FlatBindingsItr++); |
1558 | SourceLocation Loc = B->getLocation(); |
1559 | |
1560 | // Initialize the binding to Src.FD. |
1561 | ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); |
1562 | if (E.isInvalid()) |
1563 | return true; |
1564 | E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase, |
1565 | VK_LValue, &BasePath); |
1566 | if (E.isInvalid()) |
1567 | return true; |
1568 | E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc, |
1569 | CXXScopeSpec(), FD, |
1570 | DeclAccessPair::make(FD, FD->getAccess()), |
1571 | DeclarationNameInfo(FD->getDeclName(), Loc)); |
1572 | if (E.isInvalid()) |
1573 | return true; |
1574 | |
1575 | // If the type of the member is T, the referenced type is cv T, where cv is |
1576 | // the cv-qualification of the decomposition expression. |
1577 | // |
1578 | // FIXME: We resolve a defect here: if the field is mutable, we do not add |
1579 | // 'const' to the type of the field. |
1580 | Qualifiers Q = DecompType.getQualifiers(); |
1581 | if (FD->isMutable()) |
1582 | Q.removeConst(); |
1583 | B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get()); |
1584 | } |
1585 | |
1586 | return false; |
1587 | } |
1588 | |
1589 | void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) { |
1590 | QualType DecompType = DD->getType(); |
1591 | |
1592 | // If the type of the decomposition is dependent, then so is the type of |
1593 | // each binding. |
1594 | if (DecompType->isDependentType()) { |
1595 | // Note that all of the types are still Null or PackExpansionType. |
1596 | for (auto *B : DD->bindings()) { |
1597 | // Do not overwrite any pack type. |
1598 | if (B->getType().isNull()) |
1599 | B->setType(Context.DependentTy); |
1600 | } |
1601 | return; |
1602 | } |
1603 | |
1604 | DecompType = DecompType.getNonReferenceType(); |
1605 | ArrayRef<BindingDecl*> Bindings = DD->bindings(); |
1606 | |
1607 | // C++1z [dcl.decomp]/2: |
1608 | // If E is an array type [...] |
1609 | // As an extension, we also support decomposition of built-in complex and |
1610 | // vector types. |
1611 | if (auto *CAT = Context.getAsConstantArrayType(DecompType)) { |
1612 | if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT)) |
1613 | DD->setInvalidDecl(); |
1614 | return; |
1615 | } |
1616 | if (auto *VT = DecompType->getAs<VectorType>()) { |
1617 | if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT)) |
1618 | DD->setInvalidDecl(); |
1619 | return; |
1620 | } |
1621 | if (auto *CT = DecompType->getAs<ComplexType>()) { |
1622 | if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT)) |
1623 | DD->setInvalidDecl(); |
1624 | return; |
1625 | } |
1626 | |
1627 | // C++1z [dcl.decomp]/3: |
1628 | // if the expression std::tuple_size<E>::value is a well-formed integral |
1629 | // constant expression, [...] |
1630 | llvm::APSInt TupleSize(32); |
1631 | switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) { |
1632 | case IsTupleLike::Error: |
1633 | DD->setInvalidDecl(); |
1634 | return; |
1635 | |
1636 | case IsTupleLike::TupleLike: |
1637 | if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize)) |
1638 | DD->setInvalidDecl(); |
1639 | return; |
1640 | |
1641 | case IsTupleLike::NotTupleLike: |
1642 | break; |
1643 | } |
1644 | |
1645 | // C++1z [dcl.dcl]/8: |
1646 | // [E shall be of array or non-union class type] |
1647 | CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl(); |
1648 | if (!RD || RD->isUnion()) { |
1649 | Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type) |
1650 | << DD << !RD << DecompType; |
1651 | DD->setInvalidDecl(); |
1652 | return; |
1653 | } |
1654 | |
1655 | // C++1z [dcl.decomp]/4: |
1656 | // all of E's non-static data members shall be [...] direct members of |
1657 | // E or of the same unambiguous public base class of E, ... |
1658 | if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD)) |
1659 | DD->setInvalidDecl(); |
1660 | } |
1661 | |
1662 | UnsignedOrNone Sema::GetDecompositionElementCount(QualType T, |
1663 | SourceLocation Loc) { |
1664 | const ASTContext &Ctx = getASTContext(); |
1665 | assert(!T->isDependentType()); |
1666 | |
1667 | Qualifiers Quals; |
1668 | QualType Unqual = Context.getUnqualifiedArrayType(T, Quals); |
1669 | Quals.removeCVRQualifiers(); |
1670 | T = Context.getQualifiedType(T: Unqual, Qs: Quals); |
1671 | |
1672 | if (auto *CAT = Ctx.getAsConstantArrayType(T)) |
1673 | return static_cast<unsigned>(CAT->getSize().getZExtValue()); |
1674 | if (auto *VT = T->getAs<VectorType>()) |
1675 | return VT->getNumElements(); |
1676 | if (T->getAs<ComplexType>()) |
1677 | return 2u; |
1678 | |
1679 | llvm::APSInt TupleSize(Ctx.getTypeSize(T: Ctx.getSizeType())); |
1680 | switch (isTupleLike(S&: *this, Loc, T, Size&: TupleSize)) { |
1681 | case IsTupleLike::Error: |
1682 | return std::nullopt; |
1683 | case IsTupleLike::TupleLike: |
1684 | return static_cast<unsigned>(TupleSize.getExtValue()); |
1685 | case IsTupleLike::NotTupleLike: |
1686 | break; |
1687 | } |
1688 | |
1689 | const CXXRecordDecl *OrigRD = T->getAsCXXRecordDecl(); |
1690 | if (!OrigRD || OrigRD->isUnion()) |
1691 | return std::nullopt; |
1692 | |
1693 | if (RequireCompleteType(Loc, T, diag::err_incomplete_type)) |
1694 | return std::nullopt; |
1695 | |
1696 | CXXCastPath BasePath; |
1697 | DeclAccessPair BasePair = |
1698 | findDecomposableBaseClass(S&: *this, Loc, RD: OrigRD, BasePath); |
1699 | const auto *RD = cast_or_null<CXXRecordDecl>(Val: BasePair.getDecl()); |
1700 | if (!RD) |
1701 | return std::nullopt; |
1702 | |
1703 | unsigned NumFields = llvm::count_if( |
1704 | RD->fields(), [](FieldDecl *FD) { return !FD->isUnnamedBitField(); }); |
1705 | |
1706 | if (CheckMemberDecompositionFields(S&: *this, Loc, OrigRD, DecompType: T, BasePair)) |
1707 | return std::nullopt; |
1708 | |
1709 | return NumFields; |
1710 | } |
1711 | |
1712 | void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) { |
1713 | // Shortcut if exceptions are disabled. |
1714 | if (!getLangOpts().CXXExceptions) |
1715 | return; |
1716 | |
1717 | assert(Context.hasSameType(New->getType(), Old->getType()) && |
1718 | "Should only be called if types are otherwise the same."); |
1719 | |
1720 | QualType NewType = New->getType(); |
1721 | QualType OldType = Old->getType(); |
1722 | |
1723 | // We're only interested in pointers and references to functions, as well |
1724 | // as pointers to member functions. |
1725 | if (const ReferenceType *R = NewType->getAs<ReferenceType>()) { |
1726 | NewType = R->getPointeeType(); |
1727 | OldType = OldType->castAs<ReferenceType>()->getPointeeType(); |
1728 | } else if (const PointerType *P = NewType->getAs<PointerType>()) { |
1729 | NewType = P->getPointeeType(); |
1730 | OldType = OldType->castAs<PointerType>()->getPointeeType(); |
1731 | } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) { |
1732 | NewType = M->getPointeeType(); |
1733 | OldType = OldType->castAs<MemberPointerType>()->getPointeeType(); |
1734 | } |
1735 | |
1736 | if (!NewType->isFunctionProtoType()) |
1737 | return; |
1738 | |
1739 | // There's lots of special cases for functions. For function pointers, system |
1740 | // libraries are hopefully not as broken so that we don't need these |
1741 | // workarounds. |
1742 | if (CheckEquivalentExceptionSpec( |
1743 | OldType->getAs<FunctionProtoType>(), Old->getLocation(), |
1744 | NewType->getAs<FunctionProtoType>(), New->getLocation())) { |
1745 | New->setInvalidDecl(); |
1746 | } |
1747 | } |
1748 | |
1749 | /// CheckCXXDefaultArguments - Verify that the default arguments for a |
1750 | /// function declaration are well-formed according to C++ |
1751 | /// [dcl.fct.default]. |
1752 | void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { |
1753 | // This checking doesn't make sense for explicit specializations; their |
1754 | // default arguments are determined by the declaration we're specializing, |
1755 | // not by FD. |
1756 | if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) |
1757 | return; |
1758 | if (auto *FTD = FD->getDescribedFunctionTemplate()) |
1759 | if (FTD->isMemberSpecialization()) |
1760 | return; |
1761 | |
1762 | unsigned NumParams = FD->getNumParams(); |
1763 | unsigned ParamIdx = 0; |
1764 | |
1765 | // Find first parameter with a default argument |
1766 | for (; ParamIdx < NumParams; ++ParamIdx) { |
1767 | ParmVarDecl *Param = FD->getParamDecl(i: ParamIdx); |
1768 | if (Param->hasDefaultArg()) |
1769 | break; |
1770 | } |
1771 | |
1772 | // C++20 [dcl.fct.default]p4: |
1773 | // In a given function declaration, each parameter subsequent to a parameter |
1774 | // with a default argument shall have a default argument supplied in this or |
1775 | // a previous declaration, unless the parameter was expanded from a |
1776 | // parameter pack, or shall be a function parameter pack. |
1777 | for (++ParamIdx; ParamIdx < NumParams; ++ParamIdx) { |
1778 | ParmVarDecl *Param = FD->getParamDecl(i: ParamIdx); |
1779 | if (Param->hasDefaultArg() || Param->isParameterPack() || |
1780 | (CurrentInstantiationScope && |
1781 | CurrentInstantiationScope->isLocalPackExpansion(Param))) |
1782 | continue; |
1783 | if (Param->isInvalidDecl()) |
1784 | /* We already complained about this parameter. */; |
1785 | else if (Param->getIdentifier()) |
1786 | Diag(Param->getLocation(), diag::err_param_default_argument_missing_name) |
1787 | << Param->getIdentifier(); |
1788 | else |
1789 | Diag(Param->getLocation(), diag::err_param_default_argument_missing); |
1790 | } |
1791 | } |
1792 | |
1793 | /// Check that the given type is a literal type. Issue a diagnostic if not, |
1794 | /// if Kind is Diagnose. |
1795 | /// \return \c true if a problem has been found (and optionally diagnosed). |
1796 | template <typename... Ts> |
1797 | static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind, |
1798 | SourceLocation Loc, QualType T, unsigned DiagID, |
1799 | Ts &&...DiagArgs) { |
1800 | if (T->isDependentType()) |
1801 | return false; |
1802 | |
1803 | switch (Kind) { |
1804 | case Sema::CheckConstexprKind::Diagnose: |
1805 | return SemaRef.RequireLiteralType(Loc, T, DiagID, |
1806 | std::forward<Ts>(DiagArgs)...); |
1807 | |
1808 | case Sema::CheckConstexprKind::CheckValid: |
1809 | return !T->isLiteralType(Ctx: SemaRef.Context); |
1810 | } |
1811 | |
1812 | llvm_unreachable("unknown CheckConstexprKind"); |
1813 | } |
1814 | |
1815 | /// Determine whether a destructor cannot be constexpr due to |
1816 | static bool CheckConstexprDestructorSubobjects(Sema &SemaRef, |
1817 | const CXXDestructorDecl *DD, |
1818 | Sema::CheckConstexprKind Kind) { |
1819 | assert(!SemaRef.getLangOpts().CPlusPlus23 && |
1820 | "this check is obsolete for C++23"); |
1821 | auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) { |
1822 | const CXXRecordDecl *RD = |
1823 | T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
1824 | if (!RD || RD->hasConstexprDestructor()) |
1825 | return true; |
1826 | |
1827 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
1828 | SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject) |
1829 | << static_cast<int>(DD->getConstexprKind()) << !FD |
1830 | << (FD ? FD->getDeclName() : DeclarationName()) << T; |
1831 | SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject) |
1832 | << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T; |
1833 | } |
1834 | return false; |
1835 | }; |
1836 | |
1837 | const CXXRecordDecl *RD = DD->getParent(); |
1838 | for (const CXXBaseSpecifier &B : RD->bases()) |
1839 | if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr)) |
1840 | return false; |
1841 | for (const FieldDecl *FD : RD->fields()) |
1842 | if (!Check(FD->getLocation(), FD->getType(), FD)) |
1843 | return false; |
1844 | return true; |
1845 | } |
1846 | |
1847 | /// Check whether a function's parameter types are all literal types. If so, |
1848 | /// return true. If not, produce a suitable diagnostic and return false. |
1849 | static bool CheckConstexprParameterTypes(Sema &SemaRef, |
1850 | const FunctionDecl *FD, |
1851 | Sema::CheckConstexprKind Kind) { |
1852 | assert(!SemaRef.getLangOpts().CPlusPlus23 && |
1853 | "this check is obsolete for C++23"); |
1854 | unsigned ArgIndex = 0; |
1855 | const auto *FT = FD->getType()->castAs<FunctionProtoType>(); |
1856 | for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(), |
1857 | e = FT->param_type_end(); |
1858 | i != e; ++i, ++ArgIndex) { |
1859 | const ParmVarDecl *PD = FD->getParamDecl(i: ArgIndex); |
1860 | assert(PD && "null in a parameter list"); |
1861 | SourceLocation ParamLoc = PD->getLocation(); |
1862 | if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i, |
1863 | diag::err_constexpr_non_literal_param, ArgIndex + 1, |
1864 | PD->getSourceRange(), isa<CXXConstructorDecl>(FD), |
1865 | FD->isConsteval())) |
1866 | return false; |
1867 | } |
1868 | return true; |
1869 | } |
1870 | |
1871 | /// Check whether a function's return type is a literal type. If so, return |
1872 | /// true. If not, produce a suitable diagnostic and return false. |
1873 | static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD, |
1874 | Sema::CheckConstexprKind Kind) { |
1875 | assert(!SemaRef.getLangOpts().CPlusPlus23 && |
1876 | "this check is obsolete for C++23"); |
1877 | if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(), |
1878 | diag::err_constexpr_non_literal_return, |
1879 | FD->isConsteval())) |
1880 | return false; |
1881 | return true; |
1882 | } |
1883 | |
1884 | /// Get diagnostic %select index for tag kind for |
1885 | /// record diagnostic message. |
1886 | /// WARNING: Indexes apply to particular diagnostics only! |
1887 | /// |
1888 | /// \returns diagnostic %select index. |
1889 | static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) { |
1890 | switch (Tag) { |
1891 | case TagTypeKind::Struct: |
1892 | return 0; |
1893 | case TagTypeKind::Interface: |
1894 | return 1; |
1895 | case TagTypeKind::Class: |
1896 | return 2; |
1897 | default: llvm_unreachable("Invalid tag kind for record diagnostic!"); |
1898 | } |
1899 | } |
1900 | |
1901 | static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, |
1902 | Stmt *Body, |
1903 | Sema::CheckConstexprKind Kind); |
1904 | static bool CheckConstexprMissingReturn(Sema &SemaRef, const FunctionDecl *Dcl); |
1905 | |
1906 | bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD, |
1907 | CheckConstexprKind Kind) { |
1908 | const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: NewFD); |
1909 | if (MD && MD->isInstance()) { |
1910 | // C++11 [dcl.constexpr]p4: |
1911 | // The definition of a constexpr constructor shall satisfy the following |
1912 | // constraints: |
1913 | // - the class shall not have any virtual base classes; |
1914 | // |
1915 | // FIXME: This only applies to constructors and destructors, not arbitrary |
1916 | // member functions. |
1917 | const CXXRecordDecl *RD = MD->getParent(); |
1918 | if (RD->getNumVBases()) { |
1919 | if (Kind == CheckConstexprKind::CheckValid) |
1920 | return false; |
1921 | |
1922 | Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base) |
1923 | << isa<CXXConstructorDecl>(NewFD) |
1924 | << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases(); |
1925 | for (const auto &I : RD->vbases()) |
1926 | Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here) |
1927 | << I.getSourceRange(); |
1928 | return false; |
1929 | } |
1930 | } |
1931 | |
1932 | if (!isa<CXXConstructorDecl>(Val: NewFD)) { |
1933 | // C++11 [dcl.constexpr]p3: |
1934 | // The definition of a constexpr function shall satisfy the following |
1935 | // constraints: |
1936 | // - it shall not be virtual; (removed in C++20) |
1937 | const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: NewFD); |
1938 | if (Method && Method->isVirtual()) { |
1939 | if (getLangOpts().CPlusPlus20) { |
1940 | if (Kind == CheckConstexprKind::Diagnose) |
1941 | Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual); |
1942 | } else { |
1943 | if (Kind == CheckConstexprKind::CheckValid) |
1944 | return false; |
1945 | |
1946 | Method = Method->getCanonicalDecl(); |
1947 | Diag(Method->getLocation(), diag::err_constexpr_virtual); |
1948 | |
1949 | // If it's not obvious why this function is virtual, find an overridden |
1950 | // function which uses the 'virtual' keyword. |
1951 | const CXXMethodDecl *WrittenVirtual = Method; |
1952 | while (!WrittenVirtual->isVirtualAsWritten()) |
1953 | WrittenVirtual = *WrittenVirtual->begin_overridden_methods(); |
1954 | if (WrittenVirtual != Method) |
1955 | Diag(WrittenVirtual->getLocation(), |
1956 | diag::note_overridden_virtual_function); |
1957 | return false; |
1958 | } |
1959 | } |
1960 | |
1961 | // - its return type shall be a literal type; (removed in C++23) |
1962 | if (!getLangOpts().CPlusPlus23 && |
1963 | !CheckConstexprReturnType(SemaRef&: *this, FD: NewFD, Kind)) |
1964 | return false; |
1965 | } |
1966 | |
1967 | if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Val: NewFD)) { |
1968 | // A destructor can be constexpr only if the defaulted destructor could be; |
1969 | // we don't need to check the members and bases if we already know they all |
1970 | // have constexpr destructors. (removed in C++23) |
1971 | if (!getLangOpts().CPlusPlus23 && |
1972 | !Dtor->getParent()->defaultedDestructorIsConstexpr()) { |
1973 | if (Kind == CheckConstexprKind::CheckValid) |
1974 | return false; |
1975 | if (!CheckConstexprDestructorSubobjects(SemaRef&: *this, DD: Dtor, Kind)) |
1976 | return false; |
1977 | } |
1978 | } |
1979 | |
1980 | // - each of its parameter types shall be a literal type; (removed in C++23) |
1981 | if (!getLangOpts().CPlusPlus23 && |
1982 | !CheckConstexprParameterTypes(SemaRef&: *this, FD: NewFD, Kind)) |
1983 | return false; |
1984 | |
1985 | Stmt *Body = NewFD->getBody(); |
1986 | assert(Body && |
1987 | "CheckConstexprFunctionDefinition called on function with no body"); |
1988 | return CheckConstexprFunctionBody(SemaRef&: *this, Dcl: NewFD, Body, Kind); |
1989 | } |
1990 | |
1991 | /// Check the given declaration statement is legal within a constexpr function |
1992 | /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3. |
1993 | /// |
1994 | /// \return true if the body is OK (maybe only as an extension), false if we |
1995 | /// have diagnosed a problem. |
1996 | static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl, |
1997 | DeclStmt *DS, SourceLocation &Cxx1yLoc, |
1998 | Sema::CheckConstexprKind Kind) { |
1999 | // C++11 [dcl.constexpr]p3 and p4: |
2000 | // The definition of a constexpr function(p3) or constructor(p4) [...] shall |
2001 | // contain only |
2002 | for (const auto *DclIt : DS->decls()) { |
2003 | switch (DclIt->getKind()) { |
2004 | case Decl::StaticAssert: |
2005 | case Decl::Using: |
2006 | case Decl::UsingShadow: |
2007 | case Decl::UsingDirective: |
2008 | case Decl::UnresolvedUsingTypename: |
2009 | case Decl::UnresolvedUsingValue: |
2010 | case Decl::UsingEnum: |
2011 | // - static_assert-declarations |
2012 | // - using-declarations, |
2013 | // - using-directives, |
2014 | // - using-enum-declaration |
2015 | continue; |
2016 | |
2017 | case Decl::Typedef: |
2018 | case Decl::TypeAlias: { |
2019 | // - typedef declarations and alias-declarations that do not define |
2020 | // classes or enumerations, |
2021 | const auto *TN = cast<TypedefNameDecl>(Val: DclIt); |
2022 | if (TN->getUnderlyingType()->isVariablyModifiedType()) { |
2023 | // Don't allow variably-modified types in constexpr functions. |
2024 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
2025 | TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc(); |
2026 | SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla) |
2027 | << TL.getSourceRange() << TL.getType() |
2028 | << isa<CXXConstructorDecl>(Dcl); |
2029 | } |
2030 | return false; |
2031 | } |
2032 | continue; |
2033 | } |
2034 | |
2035 | case Decl::Enum: |
2036 | case Decl::CXXRecord: |
2037 | // C++1y allows types to be defined, not just declared. |
2038 | if (cast<TagDecl>(Val: DclIt)->isThisDeclarationADefinition()) { |
2039 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
2040 | SemaRef.DiagCompat(DS->getBeginLoc(), |
2041 | diag_compat::constexpr_type_definition) |
2042 | << isa<CXXConstructorDecl>(Dcl); |
2043 | } else if (!SemaRef.getLangOpts().CPlusPlus14) { |
2044 | return false; |
2045 | } |
2046 | } |
2047 | continue; |
2048 | |
2049 | case Decl::EnumConstant: |
2050 | case Decl::IndirectField: |
2051 | case Decl::ParmVar: |
2052 | // These can only appear with other declarations which are banned in |
2053 | // C++11 and permitted in C++1y, so ignore them. |
2054 | continue; |
2055 | |
2056 | case Decl::Var: |
2057 | case Decl::Decomposition: { |
2058 | // C++1y [dcl.constexpr]p3 allows anything except: |
2059 | // a definition of a variable of non-literal type or of static or |
2060 | // thread storage duration or [before C++2a] for which no |
2061 | // initialization is performed. |
2062 | const auto *VD = cast<VarDecl>(Val: DclIt); |
2063 | if (VD->isThisDeclarationADefinition()) { |
2064 | if (VD->isStaticLocal()) { |
2065 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
2066 | SemaRef.DiagCompat(VD->getLocation(), |
2067 | diag_compat::constexpr_static_var) |
2068 | << isa<CXXConstructorDecl>(Dcl) |
2069 | << (VD->getTLSKind() == VarDecl::TLS_Dynamic); |
2070 | } else if (!SemaRef.getLangOpts().CPlusPlus23) { |
2071 | return false; |
2072 | } |
2073 | } |
2074 | if (SemaRef.LangOpts.CPlusPlus23) { |
2075 | CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(), |
2076 | diag::warn_cxx20_compat_constexpr_var, |
2077 | isa<CXXConstructorDecl>(Dcl)); |
2078 | } else if (CheckLiteralType( |
2079 | SemaRef, Kind, VD->getLocation(), VD->getType(), |
2080 | diag::err_constexpr_local_var_non_literal_type, |
2081 | isa<CXXConstructorDecl>(Dcl))) { |
2082 | return false; |
2083 | } |
2084 | if (!VD->getType()->isDependentType() && |
2085 | !VD->hasInit() && !VD->isCXXForRangeDecl()) { |
2086 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
2087 | SemaRef.DiagCompat(VD->getLocation(), |
2088 | diag_compat::constexpr_local_var_no_init) |
2089 | << isa<CXXConstructorDecl>(Dcl); |
2090 | } else if (!SemaRef.getLangOpts().CPlusPlus20) { |
2091 | return false; |
2092 | } |
2093 | continue; |
2094 | } |
2095 | } |
2096 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
2097 | SemaRef.DiagCompat(VD->getLocation(), diag_compat::constexpr_local_var) |
2098 | << isa<CXXConstructorDecl>(Dcl); |
2099 | } else if (!SemaRef.getLangOpts().CPlusPlus14) { |
2100 | return false; |
2101 | } |
2102 | continue; |
2103 | } |
2104 | |
2105 | case Decl::NamespaceAlias: |
2106 | case Decl::Function: |
2107 | // These are disallowed in C++11 and permitted in C++1y. Allow them |
2108 | // everywhere as an extension. |
2109 | if (!Cxx1yLoc.isValid()) |
2110 | Cxx1yLoc = DS->getBeginLoc(); |
2111 | continue; |
2112 | |
2113 | default: |
2114 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
2115 | SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) |
2116 | << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); |
2117 | } |
2118 | return false; |
2119 | } |
2120 | } |
2121 | |
2122 | return true; |
2123 | } |
2124 | |
2125 | /// Check that the given field is initialized within a constexpr constructor. |
2126 | /// |
2127 | /// \param Dcl The constexpr constructor being checked. |
2128 | /// \param Field The field being checked. This may be a member of an anonymous |
2129 | /// struct or union nested within the class being checked. |
2130 | /// \param Inits All declarations, including anonymous struct/union members and |
2131 | /// indirect members, for which any initialization was provided. |
2132 | /// \param Diagnosed Whether we've emitted the error message yet. Used to attach |
2133 | /// multiple notes for different members to the same error. |
2134 | /// \param Kind Whether we're diagnosing a constructor as written or determining |
2135 | /// whether the formal requirements are satisfied. |
2136 | /// \return \c false if we're checking for validity and the constructor does |
2137 | /// not satisfy the requirements on a constexpr constructor. |
2138 | static bool CheckConstexprCtorInitializer(Sema &SemaRef, |
2139 | const FunctionDecl *Dcl, |
2140 | FieldDecl *Field, |
2141 | llvm::SmallSet<Decl*, 16> &Inits, |
2142 | bool &Diagnosed, |
2143 | Sema::CheckConstexprKind Kind) { |
2144 | // In C++20 onwards, there's nothing to check for validity. |
2145 | if (Kind == Sema::CheckConstexprKind::CheckValid && |
2146 | SemaRef.getLangOpts().CPlusPlus20) |
2147 | return true; |
2148 | |
2149 | if (Field->isInvalidDecl()) |
2150 | return true; |
2151 | |
2152 | if (Field->isUnnamedBitField()) |
2153 | return true; |
2154 | |
2155 | // Anonymous unions with no variant members and empty anonymous structs do not |
2156 | // need to be explicitly initialized. FIXME: Anonymous structs that contain no |
2157 | // indirect fields don't need initializing. |
2158 | if (Field->isAnonymousStructOrUnion() && |
2159 | (Field->getType()->isUnionType() |
2160 | ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers() |
2161 | : Field->getType()->getAsCXXRecordDecl()->isEmpty())) |
2162 | return true; |
2163 | |
2164 | if (!Inits.count(Field)) { |
2165 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
2166 | if (!Diagnosed) { |
2167 | SemaRef.DiagCompat(Dcl->getLocation(), |
2168 | diag_compat::constexpr_ctor_missing_init); |
2169 | Diagnosed = true; |
2170 | } |
2171 | SemaRef.Diag(Field->getLocation(), |
2172 | diag::note_constexpr_ctor_missing_init); |
2173 | } else if (!SemaRef.getLangOpts().CPlusPlus20) { |
2174 | return false; |
2175 | } |
2176 | } else if (Field->isAnonymousStructOrUnion()) { |
2177 | const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl(); |
2178 | for (auto *I : RD->fields()) |
2179 | // If an anonymous union contains an anonymous struct of which any member |
2180 | // is initialized, all members must be initialized. |
2181 | if (!RD->isUnion() || Inits.count(I)) |
2182 | if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, |
2183 | Kind)) |
2184 | return false; |
2185 | } |
2186 | return true; |
2187 | } |
2188 | |
2189 | /// Check the provided statement is allowed in a constexpr function |
2190 | /// definition. |
2191 | static bool |
2192 | CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S, |
2193 | SmallVectorImpl<SourceLocation> &ReturnStmts, |
2194 | SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc, |
2195 | SourceLocation &Cxx2bLoc, |
2196 | Sema::CheckConstexprKind Kind) { |
2197 | // - its function-body shall be [...] a compound-statement that contains only |
2198 | switch (S->getStmtClass()) { |
2199 | case Stmt::NullStmtClass: |
2200 | // - null statements, |
2201 | return true; |
2202 | |
2203 | case Stmt::DeclStmtClass: |
2204 | // - static_assert-declarations |
2205 | // - using-declarations, |
2206 | // - using-directives, |
2207 | // - typedef declarations and alias-declarations that do not define |
2208 | // classes or enumerations, |
2209 | if (!CheckConstexprDeclStmt(SemaRef, Dcl, DS: cast<DeclStmt>(Val: S), Cxx1yLoc, Kind)) |
2210 | return false; |
2211 | return true; |
2212 | |
2213 | case Stmt::ReturnStmtClass: |
2214 | // - and exactly one return statement; |
2215 | if (isa<CXXConstructorDecl>(Val: Dcl)) { |
2216 | // C++1y allows return statements in constexpr constructors. |
2217 | if (!Cxx1yLoc.isValid()) |
2218 | Cxx1yLoc = S->getBeginLoc(); |
2219 | return true; |
2220 | } |
2221 | |
2222 | ReturnStmts.push_back(Elt: S->getBeginLoc()); |
2223 | return true; |
2224 | |
2225 | case Stmt::AttributedStmtClass: |
2226 | // Attributes on a statement don't affect its formal kind and hence don't |
2227 | // affect its validity in a constexpr function. |
2228 | return CheckConstexprFunctionStmt( |
2229 | SemaRef, Dcl, S: cast<AttributedStmt>(Val: S)->getSubStmt(), ReturnStmts, |
2230 | Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind); |
2231 | |
2232 | case Stmt::CompoundStmtClass: { |
2233 | // C++1y allows compound-statements. |
2234 | if (!Cxx1yLoc.isValid()) |
2235 | Cxx1yLoc = S->getBeginLoc(); |
2236 | |
2237 | CompoundStmt *CompStmt = cast<CompoundStmt>(Val: S); |
2238 | for (auto *BodyIt : CompStmt->body()) { |
2239 | if (!CheckConstexprFunctionStmt(SemaRef, Dcl, S: BodyIt, ReturnStmts, |
2240 | Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) |
2241 | return false; |
2242 | } |
2243 | return true; |
2244 | } |
2245 | |
2246 | case Stmt::IfStmtClass: { |
2247 | // C++1y allows if-statements. |
2248 | if (!Cxx1yLoc.isValid()) |
2249 | Cxx1yLoc = S->getBeginLoc(); |
2250 | |
2251 | IfStmt *If = cast<IfStmt>(Val: S); |
2252 | if (!CheckConstexprFunctionStmt(SemaRef, Dcl, S: If->getThen(), ReturnStmts, |
2253 | Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) |
2254 | return false; |
2255 | if (If->getElse() && |
2256 | !CheckConstexprFunctionStmt(SemaRef, Dcl, S: If->getElse(), ReturnStmts, |
2257 | Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) |
2258 | return false; |
2259 | return true; |
2260 | } |
2261 | |
2262 | case Stmt::WhileStmtClass: |
2263 | case Stmt::DoStmtClass: |
2264 | case Stmt::ForStmtClass: |
2265 | case Stmt::CXXForRangeStmtClass: |
2266 | case Stmt::ContinueStmtClass: |
2267 | // C++1y allows all of these. We don't allow them as extensions in C++11, |
2268 | // because they don't make sense without variable mutation. |
2269 | if (!SemaRef.getLangOpts().CPlusPlus14) |
2270 | break; |
2271 | if (!Cxx1yLoc.isValid()) |
2272 | Cxx1yLoc = S->getBeginLoc(); |
2273 | for (Stmt *SubStmt : S->children()) { |
2274 | if (SubStmt && |
2275 | !CheckConstexprFunctionStmt(SemaRef, Dcl, S: SubStmt, ReturnStmts, |
2276 | Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) |
2277 | return false; |
2278 | } |
2279 | return true; |
2280 | |
2281 | case Stmt::SwitchStmtClass: |
2282 | case Stmt::CaseStmtClass: |
2283 | case Stmt::DefaultStmtClass: |
2284 | case Stmt::BreakStmtClass: |
2285 | // C++1y allows switch-statements, and since they don't need variable |
2286 | // mutation, we can reasonably allow them in C++11 as an extension. |
2287 | if (!Cxx1yLoc.isValid()) |
2288 | Cxx1yLoc = S->getBeginLoc(); |
2289 | for (Stmt *SubStmt : S->children()) { |
2290 | if (SubStmt && |
2291 | !CheckConstexprFunctionStmt(SemaRef, Dcl, S: SubStmt, ReturnStmts, |
2292 | Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) |
2293 | return false; |
2294 | } |
2295 | return true; |
2296 | |
2297 | case Stmt::LabelStmtClass: |
2298 | case Stmt::GotoStmtClass: |
2299 | if (Cxx2bLoc.isInvalid()) |
2300 | Cxx2bLoc = S->getBeginLoc(); |
2301 | for (Stmt *SubStmt : S->children()) { |
2302 | if (SubStmt && |
2303 | !CheckConstexprFunctionStmt(SemaRef, Dcl, S: SubStmt, ReturnStmts, |
2304 | Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) |
2305 | return false; |
2306 | } |
2307 | return true; |
2308 | |
2309 | case Stmt::GCCAsmStmtClass: |
2310 | case Stmt::MSAsmStmtClass: |
2311 | // C++2a allows inline assembly statements. |
2312 | case Stmt::CXXTryStmtClass: |
2313 | if (Cxx2aLoc.isInvalid()) |
2314 | Cxx2aLoc = S->getBeginLoc(); |
2315 | for (Stmt *SubStmt : S->children()) { |
2316 | if (SubStmt && |
2317 | !CheckConstexprFunctionStmt(SemaRef, Dcl, S: SubStmt, ReturnStmts, |
2318 | Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) |
2319 | return false; |
2320 | } |
2321 | return true; |
2322 | |
2323 | case Stmt::CXXCatchStmtClass: |
2324 | // Do not bother checking the language mode (already covered by the |
2325 | // try block check). |
2326 | if (!CheckConstexprFunctionStmt( |
2327 | SemaRef, Dcl, S: cast<CXXCatchStmt>(Val: S)->getHandlerBlock(), ReturnStmts, |
2328 | Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) |
2329 | return false; |
2330 | return true; |
2331 | |
2332 | default: |
2333 | if (!isa<Expr>(Val: S)) |
2334 | break; |
2335 | |
2336 | // C++1y allows expression-statements. |
2337 | if (!Cxx1yLoc.isValid()) |
2338 | Cxx1yLoc = S->getBeginLoc(); |
2339 | return true; |
2340 | } |
2341 | |
2342 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
2343 | SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) |
2344 | << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); |
2345 | } |
2346 | return false; |
2347 | } |
2348 | |
2349 | /// Check the body for the given constexpr function declaration only contains |
2350 | /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4. |
2351 | /// |
2352 | /// \return true if the body is OK, false if we have found or diagnosed a |
2353 | /// problem. |
2354 | static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, |
2355 | Stmt *Body, |
2356 | Sema::CheckConstexprKind Kind) { |
2357 | SmallVector<SourceLocation, 4> ReturnStmts; |
2358 | |
2359 | if (isa<CXXTryStmt>(Val: Body)) { |
2360 | // C++11 [dcl.constexpr]p3: |
2361 | // The definition of a constexpr function shall satisfy the following |
2362 | // constraints: [...] |
2363 | // - its function-body shall be = delete, = default, or a |
2364 | // compound-statement |
2365 | // |
2366 | // C++11 [dcl.constexpr]p4: |
2367 | // In the definition of a constexpr constructor, [...] |
2368 | // - its function-body shall not be a function-try-block; |
2369 | // |
2370 | // This restriction is lifted in C++2a, as long as inner statements also |
2371 | // apply the general constexpr rules. |
2372 | switch (Kind) { |
2373 | case Sema::CheckConstexprKind::CheckValid: |
2374 | if (!SemaRef.getLangOpts().CPlusPlus20) |
2375 | return false; |
2376 | break; |
2377 | |
2378 | case Sema::CheckConstexprKind::Diagnose: |
2379 | SemaRef.DiagCompat(Body->getBeginLoc(), |
2380 | diag_compat::constexpr_function_try_block) |
2381 | << isa<CXXConstructorDecl>(Dcl); |
2382 | break; |
2383 | } |
2384 | } |
2385 | |
2386 | // - its function-body shall be [...] a compound-statement that contains only |
2387 | // [... list of cases ...] |
2388 | // |
2389 | // Note that walking the children here is enough to properly check for |
2390 | // CompoundStmt and CXXTryStmt body. |
2391 | SourceLocation Cxx1yLoc, Cxx2aLoc, Cxx2bLoc; |
2392 | for (Stmt *SubStmt : Body->children()) { |
2393 | if (SubStmt && |
2394 | !CheckConstexprFunctionStmt(SemaRef, Dcl, S: SubStmt, ReturnStmts, |
2395 | Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) |
2396 | return false; |
2397 | } |
2398 | |
2399 | if (Kind == Sema::CheckConstexprKind::CheckValid) { |
2400 | // If this is only valid as an extension, report that we don't satisfy the |
2401 | // constraints of the current language. |
2402 | if ((Cxx2bLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus23) || |
2403 | (Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus20) || |
2404 | (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17)) |
2405 | return false; |
2406 | } else if (Cxx2bLoc.isValid()) { |
2407 | SemaRef.DiagCompat(Cxx2bLoc, diag_compat::cxx23_constexpr_body_invalid_stmt) |
2408 | << isa<CXXConstructorDecl>(Dcl); |
2409 | } else if (Cxx2aLoc.isValid()) { |
2410 | SemaRef.DiagCompat(Cxx2aLoc, diag_compat::cxx20_constexpr_body_invalid_stmt) |
2411 | << isa<CXXConstructorDecl>(Dcl); |
2412 | } else if (Cxx1yLoc.isValid()) { |
2413 | SemaRef.DiagCompat(Cxx1yLoc, diag_compat::cxx14_constexpr_body_invalid_stmt) |
2414 | << isa<CXXConstructorDecl>(Dcl); |
2415 | } |
2416 | |
2417 | if (const CXXConstructorDecl *Constructor |
2418 | = dyn_cast<CXXConstructorDecl>(Val: Dcl)) { |
2419 | const CXXRecordDecl *RD = Constructor->getParent(); |
2420 | // DR1359: |
2421 | // - every non-variant non-static data member and base class sub-object |
2422 | // shall be initialized; |
2423 | // DR1460: |
2424 | // - if the class is a union having variant members, exactly one of them |
2425 | // shall be initialized; |
2426 | if (RD->isUnion()) { |
2427 | if (Constructor->getNumCtorInitializers() == 0 && |
2428 | RD->hasVariantMembers()) { |
2429 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
2430 | SemaRef.DiagCompat(Dcl->getLocation(), |
2431 | diag_compat::constexpr_union_ctor_no_init); |
2432 | } else if (!SemaRef.getLangOpts().CPlusPlus20) { |
2433 | return false; |
2434 | } |
2435 | } |
2436 | } else if (!Constructor->isDependentContext() && |
2437 | !Constructor->isDelegatingConstructor()) { |
2438 | assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases"); |
2439 | |
2440 | // Skip detailed checking if we have enough initializers, and we would |
2441 | // allow at most one initializer per member. |
2442 | bool AnyAnonStructUnionMembers = false; |
2443 | unsigned Fields = 0; |
2444 | for (CXXRecordDecl::field_iterator I = RD->field_begin(), |
2445 | E = RD->field_end(); I != E; ++I, ++Fields) { |
2446 | if (I->isAnonymousStructOrUnion()) { |
2447 | AnyAnonStructUnionMembers = true; |
2448 | break; |
2449 | } |
2450 | } |
2451 | // DR1460: |
2452 | // - if the class is a union-like class, but is not a union, for each of |
2453 | // its anonymous union members having variant members, exactly one of |
2454 | // them shall be initialized; |
2455 | if (AnyAnonStructUnionMembers || |
2456 | Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) { |
2457 | // Check initialization of non-static data members. Base classes are |
2458 | // always initialized so do not need to be checked. Dependent bases |
2459 | // might not have initializers in the member initializer list. |
2460 | llvm::SmallSet<Decl*, 16> Inits; |
2461 | for (const auto *I: Constructor->inits()) { |
2462 | if (FieldDecl *FD = I->getMember()) |
2463 | Inits.insert(FD); |
2464 | else if (IndirectFieldDecl *ID = I->getIndirectMember()) |
2465 | Inits.insert(I: ID->chain_begin(), E: ID->chain_end()); |
2466 | } |
2467 | |
2468 | bool Diagnosed = false; |
2469 | for (auto *I : RD->fields()) |
2470 | if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, |
2471 | Kind)) |
2472 | return false; |
2473 | } |
2474 | } |
2475 | } else { |
2476 | if (ReturnStmts.empty()) { |
2477 | switch (Kind) { |
2478 | case Sema::CheckConstexprKind::Diagnose: |
2479 | if (!CheckConstexprMissingReturn(SemaRef, Dcl)) |
2480 | return false; |
2481 | break; |
2482 | |
2483 | case Sema::CheckConstexprKind::CheckValid: |
2484 | // The formal requirements don't include this rule in C++14, even |
2485 | // though the "must be able to produce a constant expression" rules |
2486 | // still imply it in some cases. |
2487 | if (!SemaRef.getLangOpts().CPlusPlus14) |
2488 | return false; |
2489 | break; |
2490 | } |
2491 | } else if (ReturnStmts.size() > 1) { |
2492 | switch (Kind) { |
2493 | case Sema::CheckConstexprKind::Diagnose: |
2494 | SemaRef.DiagCompat(ReturnStmts.back(), |
2495 | diag_compat::constexpr_body_multiple_return); |
2496 | for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I) |
2497 | SemaRef.Diag(ReturnStmts[I], |
2498 | diag::note_constexpr_body_previous_return); |
2499 | break; |
2500 | |
2501 | case Sema::CheckConstexprKind::CheckValid: |
2502 | if (!SemaRef.getLangOpts().CPlusPlus14) |
2503 | return false; |
2504 | break; |
2505 | } |
2506 | } |
2507 | } |
2508 | |
2509 | // C++11 [dcl.constexpr]p5: |
2510 | // if no function argument values exist such that the function invocation |
2511 | // substitution would produce a constant expression, the program is |
2512 | // ill-formed; no diagnostic required. |
2513 | // C++11 [dcl.constexpr]p3: |
2514 | // - every constructor call and implicit conversion used in initializing the |
2515 | // return value shall be one of those allowed in a constant expression. |
2516 | // C++11 [dcl.constexpr]p4: |
2517 | // - every constructor involved in initializing non-static data members and |
2518 | // base class sub-objects shall be a constexpr constructor. |
2519 | // |
2520 | // Note that this rule is distinct from the "requirements for a constexpr |
2521 | // function", so is not checked in CheckValid mode. Because the check for |
2522 | // constexpr potential is expensive, skip the check if the diagnostic is |
2523 | // disabled, the function is declared in a system header, or we're in C++23 |
2524 | // or later mode (see https://wg21.link/P2448). |
2525 | bool SkipCheck = |
2526 | !SemaRef.getLangOpts().CheckConstexprFunctionBodies || |
2527 | SemaRef.getSourceManager().isInSystemHeader(Dcl->getLocation()) || |
2528 | SemaRef.getDiagnostics().isIgnored( |
2529 | diag::ext_constexpr_function_never_constant_expr, Dcl->getLocation()); |
2530 | SmallVector<PartialDiagnosticAt, 8> Diags; |
2531 | if (Kind == Sema::CheckConstexprKind::Diagnose && !SkipCheck && |
2532 | !Expr::isPotentialConstantExpr(FD: Dcl, Diags)) { |
2533 | SemaRef.Diag(Dcl->getLocation(), |
2534 | diag::ext_constexpr_function_never_constant_expr) |
2535 | << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval() |
2536 | << Dcl->getNameInfo().getSourceRange(); |
2537 | for (size_t I = 0, N = Diags.size(); I != N; ++I) |
2538 | SemaRef.Diag(Diags[I].first, Diags[I].second); |
2539 | // Don't return false here: we allow this for compatibility in |
2540 | // system headers. |
2541 | } |
2542 | |
2543 | return true; |
2544 | } |
2545 | |
2546 | static bool CheckConstexprMissingReturn(Sema &SemaRef, |
2547 | const FunctionDecl *Dcl) { |
2548 | bool IsVoidOrDependentType = Dcl->getReturnType()->isVoidType() || |
2549 | Dcl->getReturnType()->isDependentType(); |
2550 | // Skip emitting a missing return error diagnostic for non-void functions |
2551 | // since C++23 no longer mandates constexpr functions to yield constant |
2552 | // expressions. |
2553 | if (SemaRef.getLangOpts().CPlusPlus23 && !IsVoidOrDependentType) |
2554 | return true; |
2555 | |
2556 | // C++14 doesn't require constexpr functions to contain a 'return' |
2557 | // statement. We still do, unless the return type might be void, because |
2558 | // otherwise if there's no return statement, the function cannot |
2559 | // be used in a core constant expression. |
2560 | bool OK = SemaRef.getLangOpts().CPlusPlus14 && IsVoidOrDependentType; |
2561 | SemaRef.Diag(Dcl->getLocation(), |
2562 | OK ? diag::warn_cxx11_compat_constexpr_body_no_return |
2563 | : diag::err_constexpr_body_no_return) |
2564 | << Dcl->isConsteval(); |
2565 | return OK; |
2566 | } |
2567 | |
2568 | bool Sema::CheckImmediateEscalatingFunctionDefinition( |
2569 | FunctionDecl *FD, const sema::FunctionScopeInfo *FSI) { |
2570 | if (!getLangOpts().CPlusPlus20 || !FD->isImmediateEscalating()) |
2571 | return true; |
2572 | FD->setBodyContainsImmediateEscalatingExpressions( |
2573 | FSI->FoundImmediateEscalatingExpression); |
2574 | if (FSI->FoundImmediateEscalatingExpression) { |
2575 | auto it = UndefinedButUsed.find(FD->getCanonicalDecl()); |
2576 | if (it != UndefinedButUsed.end()) { |
2577 | Diag(it->second, diag::err_immediate_function_used_before_definition) |
2578 | << it->first; |
2579 | Diag(FD->getLocation(), diag::note_defined_here) << FD; |
2580 | if (FD->isImmediateFunction() && !FD->isConsteval()) |
2581 | DiagnoseImmediateEscalatingReason(FD); |
2582 | return false; |
2583 | } |
2584 | } |
2585 | return true; |
2586 | } |
2587 | |
2588 | void Sema::DiagnoseImmediateEscalatingReason(FunctionDecl *FD) { |
2589 | assert(FD->isImmediateEscalating() && !FD->isConsteval() && |
2590 | "expected an immediate function"); |
2591 | assert(FD->hasBody() && "expected the function to have a body"); |
2592 | struct ImmediateEscalatingExpressionsVisitor : DynamicRecursiveASTVisitor { |
2593 | Sema &SemaRef; |
2594 | |
2595 | const FunctionDecl *ImmediateFn; |
2596 | bool ImmediateFnIsConstructor; |
2597 | CXXConstructorDecl *CurrentConstructor = nullptr; |
2598 | CXXCtorInitializer *CurrentInit = nullptr; |
2599 | |
2600 | ImmediateEscalatingExpressionsVisitor(Sema &SemaRef, FunctionDecl *FD) |
2601 | : SemaRef(SemaRef), ImmediateFn(FD), |
2602 | ImmediateFnIsConstructor(isa<CXXConstructorDecl>(Val: FD)) { |
2603 | ShouldVisitImplicitCode = true; |
2604 | ShouldVisitLambdaBody = false; |
2605 | } |
2606 | |
2607 | void Diag(const Expr *E, const FunctionDecl *Fn, bool IsCall) { |
2608 | SourceLocation Loc = E->getBeginLoc(); |
2609 | SourceRange Range = E->getSourceRange(); |
2610 | if (CurrentConstructor && CurrentInit) { |
2611 | Loc = CurrentConstructor->getLocation(); |
2612 | Range = CurrentInit->isWritten() ? CurrentInit->getSourceRange() |
2613 | : SourceRange(); |
2614 | } |
2615 | |
2616 | FieldDecl* InitializedField = CurrentInit ? CurrentInit->getAnyMember() : nullptr; |
2617 | |
2618 | SemaRef.Diag(Loc, diag::note_immediate_function_reason) |
2619 | << ImmediateFn << Fn << Fn->isConsteval() << IsCall |
2620 | << isa<CXXConstructorDecl>(Fn) << ImmediateFnIsConstructor |
2621 | << (InitializedField != nullptr) |
2622 | << (CurrentInit && !CurrentInit->isWritten()) |
2623 | << InitializedField << Range; |
2624 | } |
2625 | bool TraverseCallExpr(CallExpr *E) override { |
2626 | if (const auto *DR = |
2627 | dyn_cast<DeclRefExpr>(Val: E->getCallee()->IgnoreImplicit()); |
2628 | DR && DR->isImmediateEscalating()) { |
2629 | Diag(E, E->getDirectCallee(), /*IsCall=*/true); |
2630 | return false; |
2631 | } |
2632 | |
2633 | for (Expr *A : E->arguments()) |
2634 | if (!TraverseStmt(A)) |
2635 | return false; |
2636 | |
2637 | return true; |
2638 | } |
2639 | |
2640 | bool VisitDeclRefExpr(DeclRefExpr *E) override { |
2641 | if (const auto *ReferencedFn = dyn_cast<FunctionDecl>(Val: E->getDecl()); |
2642 | ReferencedFn && E->isImmediateEscalating()) { |
2643 | Diag(E, ReferencedFn, /*IsCall=*/false); |
2644 | return false; |
2645 | } |
2646 | |
2647 | return true; |
2648 | } |
2649 | |
2650 | bool VisitCXXConstructExpr(CXXConstructExpr *E) override { |
2651 | CXXConstructorDecl *D = E->getConstructor(); |
2652 | if (E->isImmediateEscalating()) { |
2653 | Diag(E, D, /*IsCall=*/true); |
2654 | return false; |
2655 | } |
2656 | return true; |
2657 | } |
2658 | |
2659 | bool TraverseConstructorInitializer(CXXCtorInitializer *Init) override { |
2660 | llvm::SaveAndRestore RAII(CurrentInit, Init); |
2661 | return DynamicRecursiveASTVisitor::TraverseConstructorInitializer(Init); |
2662 | } |
2663 | |
2664 | bool TraverseCXXConstructorDecl(CXXConstructorDecl *Ctr) override { |
2665 | llvm::SaveAndRestore RAII(CurrentConstructor, Ctr); |
2666 | return DynamicRecursiveASTVisitor::TraverseCXXConstructorDecl(Ctr); |
2667 | } |
2668 | |
2669 | bool TraverseType(QualType T) override { return true; } |
2670 | bool VisitBlockExpr(BlockExpr *T) override { return true; } |
2671 | |
2672 | } Visitor(*this, FD); |
2673 | Visitor.TraverseDecl(FD); |
2674 | } |
2675 | |
2676 | CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) { |
2677 | assert(getLangOpts().CPlusPlus && "No class names in C!"); |
2678 | |
2679 | if (SS && SS->isInvalid()) |
2680 | return nullptr; |
2681 | |
2682 | if (SS && SS->isNotEmpty()) { |
2683 | DeclContext *DC = computeDeclContext(SS: *SS, EnteringContext: true); |
2684 | return dyn_cast_or_null<CXXRecordDecl>(Val: DC); |
2685 | } |
2686 | |
2687 | return dyn_cast_or_null<CXXRecordDecl>(Val: CurContext); |
2688 | } |
2689 | |
2690 | bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S, |
2691 | const CXXScopeSpec *SS) { |
2692 | CXXRecordDecl *CurDecl = getCurrentClass(S, SS); |
2693 | return CurDecl && &II == CurDecl->getIdentifier(); |
2694 | } |
2695 | |
2696 | bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) { |
2697 | assert(getLangOpts().CPlusPlus && "No class names in C!"); |
2698 | |
2699 | if (!getLangOpts().SpellChecking) |
2700 | return false; |
2701 | |
2702 | CXXRecordDecl *CurDecl; |
2703 | if (SS && SS->isSet() && !SS->isInvalid()) { |
2704 | DeclContext *DC = computeDeclContext(SS: *SS, EnteringContext: true); |
2705 | CurDecl = dyn_cast_or_null<CXXRecordDecl>(Val: DC); |
2706 | } else |
2707 | CurDecl = dyn_cast_or_null<CXXRecordDecl>(Val: CurContext); |
2708 | |
2709 | if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() && |
2710 | 3 * II->getName().edit_distance(Other: CurDecl->getIdentifier()->getName()) |
2711 | < II->getLength()) { |
2712 | II = CurDecl->getIdentifier(); |
2713 | return true; |
2714 | } |
2715 | |
2716 | return false; |
2717 | } |
2718 | |
2719 | CXXBaseSpecifier *Sema::CheckBaseSpecifier(CXXRecordDecl *Class, |
2720 | SourceRange SpecifierRange, |
2721 | bool Virtual, AccessSpecifier Access, |
2722 | TypeSourceInfo *TInfo, |
2723 | SourceLocation EllipsisLoc) { |
2724 | QualType BaseType = TInfo->getType(); |
2725 | SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc(); |
2726 | if (BaseType->containsErrors()) { |
2727 | // Already emitted a diagnostic when parsing the error type. |
2728 | return nullptr; |
2729 | } |
2730 | |
2731 | if (EllipsisLoc.isValid() && !BaseType->containsUnexpandedParameterPack()) { |
2732 | Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) |
2733 | << TInfo->getTypeLoc().getSourceRange(); |
2734 | EllipsisLoc = SourceLocation(); |
2735 | } |
2736 | |
2737 | auto *BaseDecl = |
2738 | dyn_cast_if_present<CXXRecordDecl>(Val: computeDeclContext(T: BaseType)); |
2739 | // C++ [class.derived.general]p2: |
2740 | // A class-or-decltype shall denote a (possibly cv-qualified) class type |
2741 | // that is not an incompletely defined class; any cv-qualifiers are |
2742 | // ignored. |
2743 | if (BaseDecl) { |
2744 | // C++ [class.union.general]p4: |
2745 | // [...] A union shall not be used as a base class. |
2746 | if (BaseDecl->isUnion()) { |
2747 | Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; |
2748 | return nullptr; |
2749 | } |
2750 | |
2751 | if (BaseType.hasQualifiers()) { |
2752 | std::string Quals = |
2753 | BaseType.getQualifiers().getAsString(Policy: Context.getPrintingPolicy()); |
2754 | Diag(BaseLoc, diag::warn_qual_base_type) |
2755 | << Quals << llvm::count(Quals, ' ') + 1 << BaseType; |
2756 | Diag(BaseLoc, diag::note_base_class_specified_here) << BaseType; |
2757 | } |
2758 | |
2759 | // For the MS ABI, propagate DLL attributes to base class templates. |
2760 | if (Context.getTargetInfo().getCXXABI().isMicrosoft() || |
2761 | Context.getTargetInfo().getTriple().isPS()) { |
2762 | if (Attr *ClassAttr = getDLLAttr(Class)) { |
2763 | if (auto *BaseSpec = |
2764 | dyn_cast<ClassTemplateSpecializationDecl>(Val: BaseDecl)) { |
2765 | propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplateSpec: BaseSpec, |
2766 | BaseLoc); |
2767 | } |
2768 | } |
2769 | } |
2770 | |
2771 | if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class, |
2772 | SpecifierRange)) { |
2773 | Class->setInvalidDecl(); |
2774 | return nullptr; |
2775 | } |
2776 | |
2777 | BaseDecl = BaseDecl->getDefinition(); |
2778 | assert(BaseDecl && "Base type is not incomplete, but has no definition"); |
2779 | |
2780 | // Microsoft docs say: |
2781 | // "If a base-class has a code_seg attribute, derived classes must have the |
2782 | // same attribute." |
2783 | const auto *BaseCSA = BaseDecl->getAttr<CodeSegAttr>(); |
2784 | const auto *DerivedCSA = Class->getAttr<CodeSegAttr>(); |
2785 | if ((DerivedCSA || BaseCSA) && |
2786 | (!BaseCSA || !DerivedCSA || |
2787 | BaseCSA->getName() != DerivedCSA->getName())) { |
2788 | Diag(Class->getLocation(), diag::err_mismatched_code_seg_base); |
2789 | Diag(BaseDecl->getLocation(), diag::note_base_class_specified_here) |
2790 | << BaseDecl; |
2791 | return nullptr; |
2792 | } |
2793 | |
2794 | // A class which contains a flexible array member is not suitable for use as |
2795 | // a base class: |
2796 | // - If the layout determines that a base comes before another base, |
2797 | // the flexible array member would index into the subsequent base. |
2798 | // - If the layout determines that base comes before the derived class, |
2799 | // the flexible array member would index into the derived class. |
2800 | if (BaseDecl->hasFlexibleArrayMember()) { |
2801 | Diag(BaseLoc, diag::err_base_class_has_flexible_array_member) |
2802 | << BaseDecl->getDeclName(); |
2803 | return nullptr; |
2804 | } |
2805 | |
2806 | // C++ [class]p3: |
2807 | // If a class is marked final and it appears as a base-type-specifier in |
2808 | // base-clause, the program is ill-formed. |
2809 | if (FinalAttr *FA = BaseDecl->getAttr<FinalAttr>()) { |
2810 | Diag(BaseLoc, diag::err_class_marked_final_used_as_base) |
2811 | << BaseDecl->getDeclName() << FA->isSpelledAsSealed(); |
2812 | Diag(BaseDecl->getLocation(), diag::note_entity_declared_at) |
2813 | << BaseDecl->getDeclName() << FA->getRange(); |
2814 | return nullptr; |
2815 | } |
2816 | |
2817 | // If the base class is invalid the derived class is as well. |
2818 | if (BaseDecl->isInvalidDecl()) |
2819 | Class->setInvalidDecl(); |
2820 | } else if (BaseType->isDependentType()) { |
2821 | // Make sure that we don't make an ill-formed AST where the type of the |
2822 | // Class is non-dependent and its attached base class specifier is an |
2823 | // dependent type, which violates invariants in many clang code paths (e.g. |
2824 | // constexpr evaluator). If this case happens (in errory-recovery mode), we |
2825 | // explicitly mark the Class decl invalid. The diagnostic was already |
2826 | // emitted. |
2827 | if (!Class->isDependentContext()) |
2828 | Class->setInvalidDecl(); |
2829 | } else { |
2830 | // The base class is some non-dependent non-class type. |
2831 | Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; |
2832 | return nullptr; |
2833 | } |
2834 | |
2835 | // In HLSL, unspecified class access is public rather than private. |
2836 | if (getLangOpts().HLSL && Class->getTagKind() == TagTypeKind::Class && |
2837 | Access == AS_none) |
2838 | Access = AS_public; |
2839 | |
2840 | // Create the base specifier. |
2841 | return new (Context) CXXBaseSpecifier( |
2842 | SpecifierRange, Virtual, Class->getTagKind() == TagTypeKind::Class, |
2843 | Access, TInfo, EllipsisLoc); |
2844 | } |
2845 | |
2846 | BaseResult Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, |
2847 | const ParsedAttributesView &Attributes, |
2848 | bool Virtual, AccessSpecifier Access, |
2849 | ParsedType basetype, SourceLocation BaseLoc, |
2850 | SourceLocation EllipsisLoc) { |
2851 | if (!classdecl) |
2852 | return true; |
2853 | |
2854 | AdjustDeclIfTemplate(Decl&: classdecl); |
2855 | CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Val: classdecl); |
2856 | if (!Class) |
2857 | return true; |
2858 | |
2859 | // We haven't yet attached the base specifiers. |
2860 | Class->setIsParsingBaseSpecifiers(); |
2861 | |
2862 | // We do not support any C++11 attributes on base-specifiers yet. |
2863 | // Diagnose any attributes we see. |
2864 | for (const ParsedAttr &AL : Attributes) { |
2865 | if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) |
2866 | continue; |
2867 | if (AL.getKind() == ParsedAttr::UnknownAttribute) |
2868 | Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) |
2869 | << AL << AL.getRange(); |
2870 | else |
2871 | Diag(AL.getLoc(), diag::err_base_specifier_attribute) |
2872 | << AL << AL.isRegularKeywordAttribute() << AL.getRange(); |
2873 | } |
2874 | |
2875 | TypeSourceInfo *TInfo = nullptr; |
2876 | GetTypeFromParser(Ty: basetype, TInfo: &TInfo); |
2877 | |
2878 | if (EllipsisLoc.isInvalid() && |
2879 | DiagnoseUnexpandedParameterPack(Loc: SpecifierRange.getBegin(), T: TInfo, |
2880 | UPPC: UPPC_BaseType)) |
2881 | return true; |
2882 | |
2883 | // C++ [class.union.general]p4: |
2884 | // [...] A union shall not have base classes. |
2885 | if (Class->isUnion()) { |
2886 | Diag(Class->getLocation(), diag::err_base_clause_on_union) |
2887 | << SpecifierRange; |
2888 | return true; |
2889 | } |
2890 | |
2891 | if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, |
2892 | Virtual, Access, TInfo, |
2893 | EllipsisLoc)) |
2894 | return BaseSpec; |
2895 | |
2896 | Class->setInvalidDecl(); |
2897 | return true; |
2898 | } |
2899 | |
2900 | /// Use small set to collect indirect bases. As this is only used |
2901 | /// locally, there's no need to abstract the small size parameter. |
2902 | typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet; |
2903 | |
2904 | /// Recursively add the bases of Type. Don't add Type itself. |
2905 | static void |
2906 | NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set, |
2907 | const QualType &Type) |
2908 | { |
2909 | // Even though the incoming type is a base, it might not be |
2910 | // a class -- it could be a template parm, for instance. |
2911 | if (auto Rec = Type->getAs<RecordType>()) { |
2912 | auto Decl = Rec->getAsCXXRecordDecl(); |
2913 | |
2914 | // Iterate over its bases. |
2915 | for (const auto &BaseSpec : Decl->bases()) { |
2916 | QualType Base = Context.getCanonicalType(BaseSpec.getType()) |
2917 | .getUnqualifiedType(); |
2918 | if (Set.insert(Base).second) |
2919 | // If we've not already seen it, recurse. |
2920 | NoteIndirectBases(Context, Set, Base); |
2921 | } |
2922 | } |
2923 | } |
2924 | |
2925 | bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, |
2926 | MutableArrayRef<CXXBaseSpecifier *> Bases) { |
2927 | if (Bases.empty()) |
2928 | return false; |
2929 | |
2930 | // Used to keep track of which base types we have already seen, so |
2931 | // that we can properly diagnose redundant direct base types. Note |
2932 | // that the key is always the unqualified canonical type of the base |
2933 | // class. |
2934 | std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; |
2935 | |
2936 | // Used to track indirect bases so we can see if a direct base is |
2937 | // ambiguous. |
2938 | IndirectBaseSet IndirectBaseTypes; |
2939 | |
2940 | // Copy non-redundant base specifiers into permanent storage. |
2941 | unsigned NumGoodBases = 0; |
2942 | bool Invalid = false; |
2943 | for (unsigned idx = 0; idx < Bases.size(); ++idx) { |
2944 | QualType NewBaseType |
2945 | = Context.getCanonicalType(T: Bases[idx]->getType()); |
2946 | NewBaseType = NewBaseType.getLocalUnqualifiedType(); |
2947 | |
2948 | CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType]; |
2949 | if (KnownBase) { |
2950 | // C++ [class.mi]p3: |
2951 | // A class shall not be specified as a direct base class of a |
2952 | // derived class more than once. |
2953 | Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class) |
2954 | << KnownBase->getType() << Bases[idx]->getSourceRange(); |
2955 | |
2956 | // Delete the duplicate base class specifier; we're going to |
2957 | // overwrite its pointer later. |
2958 | Context.Deallocate(Ptr: Bases[idx]); |
2959 | |
2960 | Invalid = true; |
2961 | } else { |
2962 | // Okay, add this new base class. |
2963 | KnownBase = Bases[idx]; |
2964 | Bases[NumGoodBases++] = Bases[idx]; |
2965 | |
2966 | if (NewBaseType->isDependentType()) |
2967 | continue; |
2968 | // Note this base's direct & indirect bases, if there could be ambiguity. |
2969 | if (Bases.size() > 1) |
2970 | NoteIndirectBases(Context, Set&: IndirectBaseTypes, Type: NewBaseType); |
2971 | |
2972 | if (const RecordType *Record = NewBaseType->getAs<RecordType>()) { |
2973 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: Record->getDecl()); |
2974 | if (Class->isInterface() && |
2975 | (!RD->isInterfaceLike() || |
2976 | KnownBase->getAccessSpecifier() != AS_public)) { |
2977 | // The Microsoft extension __interface does not permit bases that |
2978 | // are not themselves public interfaces. |
2979 | Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface) |
2980 | << getRecordDiagFromTagKind(RD->getTagKind()) << RD |
2981 | << RD->getSourceRange(); |
2982 | Invalid = true; |
2983 | } |
2984 | if (RD->hasAttr<WeakAttr>()) |
2985 | Class->addAttr(WeakAttr::CreateImplicit(Context)); |
2986 | } |
2987 | } |
2988 | } |
2989 | |
2990 | // Attach the remaining base class specifiers to the derived class. |
2991 | Class->setBases(Bases: Bases.data(), NumBases: NumGoodBases); |
2992 | |
2993 | // Check that the only base classes that are duplicate are virtual. |
2994 | for (unsigned idx = 0; idx < NumGoodBases; ++idx) { |
2995 | // Check whether this direct base is inaccessible due to ambiguity. |
2996 | QualType BaseType = Bases[idx]->getType(); |
2997 | |
2998 | // Skip all dependent types in templates being used as base specifiers. |
2999 | // Checks below assume that the base specifier is a CXXRecord. |
3000 | if (BaseType->isDependentType()) |
3001 | continue; |
3002 | |
3003 | CanQualType CanonicalBase = Context.getCanonicalType(T: BaseType) |
3004 | .getUnqualifiedType(); |
3005 | |
3006 | if (IndirectBaseTypes.count(Ptr: CanonicalBase)) { |
3007 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
3008 | /*DetectVirtual=*/true); |
3009 | bool found |
3010 | = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths); |
3011 | assert(found); |
3012 | (void)found; |
3013 | |
3014 | if (Paths.isAmbiguous(BaseType: CanonicalBase)) |
3015 | Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class) |
3016 | << BaseType << getAmbiguousPathsDisplayString(Paths) |
3017 | << Bases[idx]->getSourceRange(); |
3018 | else |
3019 | assert(Bases[idx]->isVirtual()); |
3020 | } |
3021 | |
3022 | // Delete the base class specifier, since its data has been copied |
3023 | // into the CXXRecordDecl. |
3024 | Context.Deallocate(Ptr: Bases[idx]); |
3025 | } |
3026 | |
3027 | return Invalid; |
3028 | } |
3029 | |
3030 | void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, |
3031 | MutableArrayRef<CXXBaseSpecifier *> Bases) { |
3032 | if (!ClassDecl || Bases.empty()) |
3033 | return; |
3034 | |
3035 | AdjustDeclIfTemplate(Decl&: ClassDecl); |
3036 | AttachBaseSpecifiers(Class: cast<CXXRecordDecl>(Val: ClassDecl), Bases); |
3037 | } |
3038 | |
3039 | bool Sema::IsDerivedFrom(SourceLocation Loc, CXXRecordDecl *Derived, |
3040 | CXXRecordDecl *Base, CXXBasePaths &Paths) { |
3041 | if (!getLangOpts().CPlusPlus) |
3042 | return false; |
3043 | |
3044 | if (!Base || !Derived) |
3045 | return false; |
3046 | |
3047 | // If either the base or the derived type is invalid, don't try to |
3048 | // check whether one is derived from the other. |
3049 | if (Base->isInvalidDecl() || Derived->isInvalidDecl()) |
3050 | return false; |
3051 | |
3052 | // FIXME: In a modules build, do we need the entire path to be visible for us |
3053 | // to be able to use the inheritance relationship? |
3054 | if (!isCompleteType(Loc, T: Context.getTypeDeclType(Derived)) && |
3055 | !Derived->isBeingDefined()) |
3056 | return false; |
3057 | |
3058 | return Derived->isDerivedFrom(Base, Paths); |
3059 | } |
3060 | |
3061 | bool Sema::IsDerivedFrom(SourceLocation Loc, CXXRecordDecl *Derived, |
3062 | CXXRecordDecl *Base) { |
3063 | CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/false, |
3064 | /*DetectVirtual=*/false); |
3065 | return IsDerivedFrom(Loc, Derived, Base, Paths); |
3066 | } |
3067 | |
3068 | bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) { |
3069 | CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/false, |
3070 | /*DetectVirtual=*/false); |
3071 | return IsDerivedFrom(Loc, Derived: Derived->getAsCXXRecordDecl(), |
3072 | Base: Base->getAsCXXRecordDecl(), Paths); |
3073 | } |
3074 | |
3075 | bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base, |
3076 | CXXBasePaths &Paths) { |
3077 | return IsDerivedFrom(Loc, Derived: Derived->getAsCXXRecordDecl(), |
3078 | Base: Base->getAsCXXRecordDecl(), Paths); |
3079 | } |
3080 | |
3081 | static void BuildBasePathArray(const CXXBasePath &Path, |
3082 | CXXCastPath &BasePathArray) { |
3083 | // We first go backward and check if we have a virtual base. |
3084 | // FIXME: It would be better if CXXBasePath had the base specifier for |
3085 | // the nearest virtual base. |
3086 | unsigned Start = 0; |
3087 | for (unsigned I = Path.size(); I != 0; --I) { |
3088 | if (Path[I - 1].Base->isVirtual()) { |
3089 | Start = I - 1; |
3090 | break; |
3091 | } |
3092 | } |
3093 | |
3094 | // Now add all bases. |
3095 | for (unsigned I = Start, E = Path.size(); I != E; ++I) |
3096 | BasePathArray.push_back(Elt: const_cast<CXXBaseSpecifier*>(Path[I].Base)); |
3097 | } |
3098 | |
3099 | |
3100 | void Sema::BuildBasePathArray(const CXXBasePaths &Paths, |
3101 | CXXCastPath &BasePathArray) { |
3102 | assert(BasePathArray.empty() && "Base path array must be empty!"); |
3103 | assert(Paths.isRecordingPaths() && "Must record paths!"); |
3104 | return ::BuildBasePathArray(Path: Paths.front(), BasePathArray); |
3105 | } |
3106 | |
3107 | bool |
3108 | Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, |
3109 | unsigned InaccessibleBaseID, |
3110 | unsigned AmbiguousBaseConvID, |
3111 | SourceLocation Loc, SourceRange Range, |
3112 | DeclarationName Name, |
3113 | CXXCastPath *BasePath, |
3114 | bool IgnoreAccess) { |
3115 | // First, determine whether the path from Derived to Base is |
3116 | // ambiguous. This is slightly more expensive than checking whether |
3117 | // the Derived to Base conversion exists, because here we need to |
3118 | // explore multiple paths to determine if there is an ambiguity. |
3119 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
3120 | /*DetectVirtual=*/false); |
3121 | bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths); |
3122 | if (!DerivationOkay) |
3123 | return true; |
3124 | |
3125 | const CXXBasePath *Path = nullptr; |
3126 | if (!Paths.isAmbiguous(BaseType: Context.getCanonicalType(T: Base).getUnqualifiedType())) |
3127 | Path = &Paths.front(); |
3128 | |
3129 | // For MSVC compatibility, check if Derived directly inherits from Base. Clang |
3130 | // warns about this hierarchy under -Winaccessible-base, but MSVC allows the |
3131 | // user to access such bases. |
3132 | if (!Path && getLangOpts().MSVCCompat) { |
3133 | for (const CXXBasePath &PossiblePath : Paths) { |
3134 | if (PossiblePath.size() == 1) { |
3135 | Path = &PossiblePath; |
3136 | if (AmbiguousBaseConvID) |
3137 | Diag(Loc, diag::ext_ms_ambiguous_direct_base) |
3138 | << Base << Derived << Range; |
3139 | break; |
3140 | } |
3141 | } |
3142 | } |
3143 | |
3144 | if (Path) { |
3145 | if (!IgnoreAccess) { |
3146 | // Check that the base class can be accessed. |
3147 | switch ( |
3148 | CheckBaseClassAccess(AccessLoc: Loc, Base, Derived, Path: *Path, DiagID: InaccessibleBaseID)) { |
3149 | case AR_inaccessible: |
3150 | return true; |
3151 | case AR_accessible: |
3152 | case AR_dependent: |
3153 | case AR_delayed: |
3154 | break; |
3155 | } |
3156 | } |
3157 | |
3158 | // Build a base path if necessary. |
3159 | if (BasePath) |
3160 | ::BuildBasePathArray(Path: *Path, BasePathArray&: *BasePath); |
3161 | return false; |
3162 | } |
3163 | |
3164 | if (AmbiguousBaseConvID) { |
3165 | // We know that the derived-to-base conversion is ambiguous, and |
3166 | // we're going to produce a diagnostic. Perform the derived-to-base |
3167 | // search just one more time to compute all of the possible paths so |
3168 | // that we can print them out. This is more expensive than any of |
3169 | // the previous derived-to-base checks we've done, but at this point |
3170 | // performance isn't as much of an issue. |
3171 | Paths.clear(); |
3172 | Paths.setRecordingPaths(true); |
3173 | bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths); |
3174 | assert(StillOkay && "Can only be used with a derived-to-base conversion"); |
3175 | (void)StillOkay; |
3176 | |
3177 | // Build up a textual representation of the ambiguous paths, e.g., |
3178 | // D -> B -> A, that will be used to illustrate the ambiguous |
3179 | // conversions in the diagnostic. We only print one of the paths |
3180 | // to each base class subobject. |
3181 | std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); |
3182 | |
3183 | Diag(Loc, AmbiguousBaseConvID) |
3184 | << Derived << Base << PathDisplayStr << Range << Name; |
3185 | } |
3186 | return true; |
3187 | } |
3188 | |
3189 | bool |
3190 | Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, |
3191 | SourceLocation Loc, SourceRange Range, |
3192 | CXXCastPath *BasePath, |
3193 | bool IgnoreAccess) { |
3194 | return CheckDerivedToBaseConversion( |
3195 | Derived, Base, diag::err_upcast_to_inaccessible_base, |
3196 | diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(), |
3197 | BasePath, IgnoreAccess); |
3198 | } |
3199 | |
3200 | std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { |
3201 | std::string PathDisplayStr; |
3202 | std::set<unsigned> DisplayedPaths; |
3203 | for (CXXBasePaths::paths_iterator Path = Paths.begin(); |
3204 | Path != Paths.end(); ++Path) { |
3205 | if (DisplayedPaths.insert(x: Path->back().SubobjectNumber).second) { |
3206 | // We haven't displayed a path to this particular base |
3207 | // class subobject yet. |
3208 | PathDisplayStr += "\n "; |
3209 | PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); |
3210 | for (CXXBasePath::const_iterator Element = Path->begin(); |
3211 | Element != Path->end(); ++Element) |
3212 | PathDisplayStr += " -> "+ Element->Base->getType().getAsString(); |
3213 | } |
3214 | } |
3215 | |
3216 | return PathDisplayStr; |
3217 | } |
3218 | |
3219 | //===----------------------------------------------------------------------===// |
3220 | // C++ class member Handling |
3221 | //===----------------------------------------------------------------------===// |
3222 | |
3223 | bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc, |
3224 | SourceLocation ColonLoc, |
3225 | const ParsedAttributesView &Attrs) { |
3226 | assert(Access != AS_none && "Invalid kind for syntactic access specifier!"); |
3227 | AccessSpecDecl *ASDecl = AccessSpecDecl::Create(C&: Context, AS: Access, DC: CurContext, |
3228 | ASLoc, ColonLoc); |
3229 | CurContext->addHiddenDecl(ASDecl); |
3230 | return ProcessAccessDeclAttributeList(ASDecl, AttrList: Attrs); |
3231 | } |
3232 | |
3233 | void Sema::CheckOverrideControl(NamedDecl *D) { |
3234 | if (D->isInvalidDecl()) |
3235 | return; |
3236 | |
3237 | // We only care about "override" and "final" declarations. |
3238 | if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>()) |
3239 | return; |
3240 | |
3241 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: D); |
3242 | |
3243 | // We can't check dependent instance methods. |
3244 | if (MD && MD->isInstance() && |
3245 | (MD->getParent()->hasAnyDependentBases() || |
3246 | MD->getType()->isDependentType())) |
3247 | return; |
3248 | |
3249 | if (MD && !MD->isVirtual()) { |
3250 | // If we have a non-virtual method, check if it hides a virtual method. |
3251 | // (In that case, it's most likely the method has the wrong type.) |
3252 | SmallVector<CXXMethodDecl *, 8> OverloadedMethods; |
3253 | FindHiddenVirtualMethods(MD, OverloadedMethods); |
3254 | |
3255 | if (!OverloadedMethods.empty()) { |
3256 | if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { |
3257 | Diag(OA->getLocation(), |
3258 | diag::override_keyword_hides_virtual_member_function) |
3259 | << "override"<< (OverloadedMethods.size() > 1); |
3260 | } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) { |
3261 | Diag(FA->getLocation(), |
3262 | diag::override_keyword_hides_virtual_member_function) |
3263 | << (FA->isSpelledAsSealed() ? "sealed": "final") |
3264 | << (OverloadedMethods.size() > 1); |
3265 | } |
3266 | NoteHiddenVirtualMethods(MD, OverloadedMethods); |
3267 | MD->setInvalidDecl(); |
3268 | return; |
3269 | } |
3270 | // Fall through into the general case diagnostic. |
3271 | // FIXME: We might want to attempt typo correction here. |
3272 | } |
3273 | |
3274 | if (!MD || !MD->isVirtual()) { |
3275 | if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { |
3276 | Diag(OA->getLocation(), |
3277 | diag::override_keyword_only_allowed_on_virtual_member_functions) |
3278 | << "override"<< FixItHint::CreateRemoval(OA->getLocation()); |
3279 | D->dropAttr<OverrideAttr>(); |
3280 | } |
3281 | if (FinalAttr *FA = D->getAttr<FinalAttr>()) { |
3282 | Diag(FA->getLocation(), |
3283 | diag::override_keyword_only_allowed_on_virtual_member_functions) |
3284 | << (FA->isSpelledAsSealed() ? "sealed": "final") |
3285 | << FixItHint::CreateRemoval(FA->getLocation()); |
3286 | D->dropAttr<FinalAttr>(); |
3287 | } |
3288 | return; |
3289 | } |
3290 | |
3291 | // C++11 [class.virtual]p5: |
3292 | // If a function is marked with the virt-specifier override and |
3293 | // does not override a member function of a base class, the program is |
3294 | // ill-formed. |
3295 | bool HasOverriddenMethods = MD->size_overridden_methods() != 0; |
3296 | if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) |
3297 | Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding) |
3298 | << MD->getDeclName(); |
3299 | } |
3300 | |
3301 | void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent) { |
3302 | if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>()) |
3303 | return; |
3304 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: D); |
3305 | if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>()) |
3306 | return; |
3307 | |
3308 | SourceLocation Loc = MD->getLocation(); |
3309 | SourceLocation SpellingLoc = Loc; |
3310 | if (getSourceManager().isMacroArgExpansion(Loc)) |
3311 | SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin(); |
3312 | SpellingLoc = getSourceManager().getSpellingLoc(Loc: SpellingLoc); |
3313 | if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(Loc: SpellingLoc)) |
3314 | return; |
3315 | |
3316 | if (MD->size_overridden_methods() > 0) { |
3317 | auto EmitDiag = [&](unsigned DiagInconsistent, unsigned DiagSuggest) { |
3318 | unsigned DiagID = |
3319 | Inconsistent && !Diags.isIgnored(DiagID: DiagInconsistent, Loc: MD->getLocation()) |
3320 | ? DiagInconsistent |
3321 | : DiagSuggest; |
3322 | Diag(MD->getLocation(), DiagID) << MD->getDeclName(); |
3323 | const CXXMethodDecl *OMD = *MD->begin_overridden_methods(); |
3324 | Diag(OMD->getLocation(), diag::note_overridden_virtual_function); |
3325 | }; |
3326 | if (isa<CXXDestructorDecl>(MD)) |
3327 | EmitDiag( |
3328 | diag::warn_inconsistent_destructor_marked_not_override_overriding, |
3329 | diag::warn_suggest_destructor_marked_not_override_overriding); |
3330 | else |
3331 | EmitDiag(diag::warn_inconsistent_function_marked_not_override_overriding, |
3332 | diag::warn_suggest_function_marked_not_override_overriding); |
3333 | } |
3334 | } |
3335 | |
3336 | bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New, |
3337 | const CXXMethodDecl *Old) { |
3338 | FinalAttr *FA = Old->getAttr<FinalAttr>(); |
3339 | if (!FA) |
3340 | return false; |
3341 | |
3342 | Diag(New->getLocation(), diag::err_final_function_overridden) |
3343 | << New->getDeclName() |
3344 | << FA->isSpelledAsSealed(); |
3345 | Diag(Old->getLocation(), diag::note_overridden_virtual_function); |
3346 | return true; |
3347 | } |
3348 | |
3349 | static bool InitializationHasSideEffects(const FieldDecl &FD) { |
3350 | const Type *T = FD.getType()->getBaseElementTypeUnsafe(); |
3351 | // FIXME: Destruction of ObjC lifetime types has side-effects. |
3352 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
3353 | return !RD->isCompleteDefinition() || |
3354 | !RD->hasTrivialDefaultConstructor() || |
3355 | !RD->hasTrivialDestructor(); |
3356 | return false; |
3357 | } |
3358 | |
3359 | void Sema::CheckShadowInheritedFields(const SourceLocation &Loc, |
3360 | DeclarationName FieldName, |
3361 | const CXXRecordDecl *RD, |
3362 | bool DeclIsField) { |
3363 | if (Diags.isIgnored(diag::warn_shadow_field, Loc)) |
3364 | return; |
3365 | |
3366 | // To record a shadowed field in a base |
3367 | std::map<CXXRecordDecl*, NamedDecl*> Bases; |
3368 | auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier, |
3369 | CXXBasePath &Path) { |
3370 | const auto Base = Specifier->getType()->getAsCXXRecordDecl(); |
3371 | // Record an ambiguous path directly |
3372 | if (Bases.find(x: Base) != Bases.end()) |
3373 | return true; |
3374 | for (const auto Field : Base->lookup(FieldName)) { |
3375 | if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) && |
3376 | Field->getAccess() != AS_private) { |
3377 | assert(Field->getAccess() != AS_none); |
3378 | assert(Bases.find(Base) == Bases.end()); |
3379 | Bases[Base] = Field; |
3380 | return true; |
3381 | } |
3382 | } |
3383 | return false; |
3384 | }; |
3385 | |
3386 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
3387 | /*DetectVirtual=*/true); |
3388 | if (!RD->lookupInBases(BaseMatches: FieldShadowed, Paths)) |
3389 | return; |
3390 | |
3391 | for (const auto &P : Paths) { |
3392 | auto Base = P.back().Base->getType()->getAsCXXRecordDecl(); |
3393 | auto It = Bases.find(x: Base); |
3394 | // Skip duplicated bases |
3395 | if (It == Bases.end()) |
3396 | continue; |
3397 | auto BaseField = It->second; |
3398 | assert(BaseField->getAccess() != AS_private); |
3399 | if (AS_none != |
3400 | CXXRecordDecl::MergeAccess(PathAccess: P.Access, DeclAccess: BaseField->getAccess())) { |
3401 | Diag(Loc, diag::warn_shadow_field) |
3402 | << FieldName << RD << Base << DeclIsField; |
3403 | Diag(BaseField->getLocation(), diag::note_shadow_field); |
3404 | Bases.erase(position: It); |
3405 | } |
3406 | } |
3407 | } |
3408 | |
3409 | template <typename AttrType> |
3410 | inline static bool HasAttribute(const QualType &T) { |
3411 | if (const TagDecl *TD = T->getAsTagDecl()) |
3412 | return TD->hasAttr<AttrType>(); |
3413 | if (const TypedefType *TDT = T->getAs<TypedefType>()) |
3414 | return TDT->getDecl()->hasAttr<AttrType>(); |
3415 | return false; |
3416 | } |
3417 | |
3418 | static bool IsUnusedPrivateField(const FieldDecl *FD) { |
3419 | if (FD->getAccess() == AS_private && FD->getDeclName()) { |
3420 | QualType FieldType = FD->getType(); |
3421 | if (HasAttribute<WarnUnusedAttr>(FieldType)) |
3422 | return true; |
3423 | |
3424 | return !FD->isImplicit() && !FD->hasAttr<UnusedAttr>() && |
3425 | !FD->getParent()->isDependentContext() && |
3426 | !HasAttribute<UnusedAttr>(FieldType) && |
3427 | !InitializationHasSideEffects(*FD); |
3428 | } |
3429 | return false; |
3430 | } |
3431 | |
3432 | NamedDecl * |
3433 | Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, |
3434 | MultiTemplateParamsArg TemplateParameterLists, |
3435 | Expr *BW, const VirtSpecifiers &VS, |
3436 | InClassInitStyle InitStyle) { |
3437 | const DeclSpec &DS = D.getDeclSpec(); |
3438 | DeclarationNameInfo NameInfo = GetNameForDeclarator(D); |
3439 | DeclarationName Name = NameInfo.getName(); |
3440 | SourceLocation Loc = NameInfo.getLoc(); |
3441 | |
3442 | // For anonymous bitfields, the location should point to the type. |
3443 | if (Loc.isInvalid()) |
3444 | Loc = D.getBeginLoc(); |
3445 | |
3446 | Expr *BitWidth = static_cast<Expr*>(BW); |
3447 | |
3448 | assert(isa<CXXRecordDecl>(CurContext)); |
3449 | assert(!DS.isFriendSpecified()); |
3450 | |
3451 | bool isFunc = D.isDeclarationOfFunction(); |
3452 | const ParsedAttr *MSPropertyAttr = |
3453 | D.getDeclSpec().getAttributes().getMSPropertyAttr(); |
3454 | |
3455 | if (cast<CXXRecordDecl>(Val: CurContext)->isInterface()) { |
3456 | // The Microsoft extension __interface only permits public member functions |
3457 | // and prohibits constructors, destructors, operators, non-public member |
3458 | // functions, static methods and data members. |
3459 | unsigned InvalidDecl; |
3460 | bool ShowDeclName = true; |
3461 | if (!isFunc && |
3462 | (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr)) |
3463 | InvalidDecl = 0; |
3464 | else if (!isFunc) |
3465 | InvalidDecl = 1; |
3466 | else if (AS != AS_public) |
3467 | InvalidDecl = 2; |
3468 | else if (DS.getStorageClassSpec() == DeclSpec::SCS_static) |
3469 | InvalidDecl = 3; |
3470 | else switch (Name.getNameKind()) { |
3471 | case DeclarationName::CXXConstructorName: |
3472 | InvalidDecl = 4; |
3473 | ShowDeclName = false; |
3474 | break; |
3475 | |
3476 | case DeclarationName::CXXDestructorName: |
3477 | InvalidDecl = 5; |
3478 | ShowDeclName = false; |
3479 | break; |
3480 | |
3481 | case DeclarationName::CXXOperatorName: |
3482 | case DeclarationName::CXXConversionFunctionName: |
3483 | InvalidDecl = 6; |
3484 | break; |
3485 | |
3486 | default: |
3487 | InvalidDecl = 0; |
3488 | break; |
3489 | } |
3490 | |
3491 | if (InvalidDecl) { |
3492 | if (ShowDeclName) |
3493 | Diag(Loc, diag::err_invalid_member_in_interface) |
3494 | << (InvalidDecl-1) << Name; |
3495 | else |
3496 | Diag(Loc, diag::err_invalid_member_in_interface) |
3497 | << (InvalidDecl-1) << ""; |
3498 | return nullptr; |
3499 | } |
3500 | } |
3501 | |
3502 | // C++ 9.2p6: A member shall not be declared to have automatic storage |
3503 | // duration (auto, register) or with the extern storage-class-specifier. |
3504 | // C++ 7.1.1p8: The mutable specifier can be applied only to names of class |
3505 | // data members and cannot be applied to names declared const or static, |
3506 | // and cannot be applied to reference members. |
3507 | switch (DS.getStorageClassSpec()) { |
3508 | case DeclSpec::SCS_unspecified: |
3509 | case DeclSpec::SCS_typedef: |
3510 | case DeclSpec::SCS_static: |
3511 | break; |
3512 | case DeclSpec::SCS_mutable: |
3513 | if (isFunc) { |
3514 | Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); |
3515 | |
3516 | // FIXME: It would be nicer if the keyword was ignored only for this |
3517 | // declarator. Otherwise we could get follow-up errors. |
3518 | D.getMutableDeclSpec().ClearStorageClassSpecs(); |
3519 | } |
3520 | break; |
3521 | default: |
3522 | Diag(DS.getStorageClassSpecLoc(), |
3523 | diag::err_storageclass_invalid_for_member); |
3524 | D.getMutableDeclSpec().ClearStorageClassSpecs(); |
3525 | break; |
3526 | } |
3527 | |
3528 | bool isInstField = (DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || |
3529 | DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && |
3530 | !isFunc && TemplateParameterLists.empty(); |
3531 | |
3532 | if (DS.hasConstexprSpecifier() && isInstField) { |
3533 | SemaDiagnosticBuilder B = |
3534 | Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member); |
3535 | SourceLocation ConstexprLoc = DS.getConstexprSpecLoc(); |
3536 | if (InitStyle == ICIS_NoInit) { |
3537 | B << 0 << 0; |
3538 | if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) |
3539 | B << FixItHint::CreateRemoval(RemoveRange: ConstexprLoc); |
3540 | else { |
3541 | B << FixItHint::CreateReplacement(RemoveRange: ConstexprLoc, Code: "const"); |
3542 | D.getMutableDeclSpec().ClearConstexprSpec(); |
3543 | const char *PrevSpec; |
3544 | unsigned DiagID; |
3545 | bool Failed = D.getMutableDeclSpec().SetTypeQual( |
3546 | T: DeclSpec::TQ_const, Loc: ConstexprLoc, PrevSpec, DiagID, Lang: getLangOpts()); |
3547 | (void)Failed; |
3548 | assert(!Failed && "Making a constexpr member const shouldn't fail"); |
3549 | } |
3550 | } else { |
3551 | B << 1; |
3552 | const char *PrevSpec; |
3553 | unsigned DiagID; |
3554 | if (D.getMutableDeclSpec().SetStorageClassSpec( |
3555 | S&: *this, SC: DeclSpec::SCS_static, Loc: ConstexprLoc, PrevSpec, DiagID, |
3556 | Policy: Context.getPrintingPolicy())) { |
3557 | assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable && |
3558 | "This is the only DeclSpec that should fail to be applied"); |
3559 | B << 1; |
3560 | } else { |
3561 | B << 0 << FixItHint::CreateInsertion(InsertionLoc: ConstexprLoc, Code: "static "); |
3562 | isInstField = false; |
3563 | } |
3564 | } |
3565 | } |
3566 | |
3567 | NamedDecl *Member; |
3568 | if (isInstField) { |
3569 | CXXScopeSpec &SS = D.getCXXScopeSpec(); |
3570 | |
3571 | // Data members must have identifiers for names. |
3572 | if (!Name.isIdentifier()) { |
3573 | Diag(Loc, diag::err_bad_variable_name) |
3574 | << Name; |
3575 | return nullptr; |
3576 | } |
3577 | |
3578 | IdentifierInfo *II = Name.getAsIdentifierInfo(); |
3579 | if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { |
3580 | Diag(D.getIdentifierLoc(), diag::err_member_with_template_arguments) |
3581 | << II |
3582 | << SourceRange(D.getName().TemplateId->LAngleLoc, |
3583 | D.getName().TemplateId->RAngleLoc) |
3584 | << D.getName().TemplateId->LAngleLoc; |
3585 | D.SetIdentifier(Id: II, IdLoc: Loc); |
3586 | } |
3587 | |
3588 | if (SS.isSet() && !SS.isInvalid()) { |
3589 | // The user provided a superfluous scope specifier inside a class |
3590 | // definition: |
3591 | // |
3592 | // class X { |
3593 | // int X::member; |
3594 | // }; |
3595 | if (DeclContext *DC = computeDeclContext(SS, EnteringContext: false)) { |
3596 | TemplateIdAnnotation *TemplateId = |
3597 | D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId |
3598 | ? D.getName().TemplateId |
3599 | : nullptr; |
3600 | diagnoseQualifiedDeclaration(SS, DC, Name, Loc: D.getIdentifierLoc(), |
3601 | TemplateId, |
3602 | /*IsMemberSpecialization=*/false); |
3603 | } else { |
3604 | Diag(D.getIdentifierLoc(), diag::err_member_qualification) |
3605 | << Name << SS.getRange(); |
3606 | } |
3607 | SS.clear(); |
3608 | } |
3609 | |
3610 | if (MSPropertyAttr) { |
3611 | Member = HandleMSProperty(S, cast<CXXRecordDecl>(Val: CurContext), Loc, D, |
3612 | BitWidth, InitStyle, AS, *MSPropertyAttr); |
3613 | if (!Member) |
3614 | return nullptr; |
3615 | isInstField = false; |
3616 | } else { |
3617 | Member = HandleField(S, cast<CXXRecordDecl>(Val: CurContext), Loc, D, |
3618 | BitWidth, InitStyle, AS); |
3619 | if (!Member) |
3620 | return nullptr; |
3621 | } |
3622 | |
3623 | CheckShadowInheritedFields(Loc, FieldName: Name, RD: cast<CXXRecordDecl>(Val: CurContext)); |
3624 | } else { |
3625 | Member = HandleDeclarator(S, D, TemplateParameterLists); |
3626 | if (!Member) |
3627 | return nullptr; |
3628 | |
3629 | // Non-instance-fields can't have a bitfield. |
3630 | if (BitWidth) { |
3631 | if (Member->isInvalidDecl()) { |
3632 | // don't emit another diagnostic. |
3633 | } else if (isa<VarDecl>(Val: Member) || isa<VarTemplateDecl>(Val: Member)) { |
3634 | // C++ 9.6p3: A bit-field shall not be a static member. |
3635 | // "static member 'A' cannot be a bit-field" |
3636 | Diag(Loc, diag::err_static_not_bitfield) |
3637 | << Name << BitWidth->getSourceRange(); |
3638 | } else if (isa<TypedefDecl>(Val: Member)) { |
3639 | // "typedef member 'x' cannot be a bit-field" |
3640 | Diag(Loc, diag::err_typedef_not_bitfield) |
3641 | << Name << BitWidth->getSourceRange(); |
3642 | } else { |
3643 | // A function typedef ("typedef int f(); f a;"). |
3644 | // C++ 9.6p3: A bit-field shall have integral or enumeration type. |
3645 | Diag(Loc, diag::err_not_integral_type_bitfield) |
3646 | << Name << cast<ValueDecl>(Member)->getType() |
3647 | << BitWidth->getSourceRange(); |
3648 | } |
3649 | |
3650 | BitWidth = nullptr; |
3651 | Member->setInvalidDecl(); |
3652 | } |
3653 | |
3654 | NamedDecl *NonTemplateMember = Member; |
3655 | if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Val: Member)) |
3656 | NonTemplateMember = FunTmpl->getTemplatedDecl(); |
3657 | else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Val: Member)) |
3658 | NonTemplateMember = VarTmpl->getTemplatedDecl(); |
3659 | |
3660 | Member->setAccess(AS); |
3661 | |
3662 | // If we have declared a member function template or static data member |
3663 | // template, set the access of the templated declaration as well. |
3664 | if (NonTemplateMember != Member) |
3665 | NonTemplateMember->setAccess(AS); |
3666 | |
3667 | // C++ [temp.deduct.guide]p3: |
3668 | // A deduction guide [...] for a member class template [shall be |
3669 | // declared] with the same access [as the template]. |
3670 | if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(Val: NonTemplateMember)) { |
3671 | auto *TD = DG->getDeducedTemplate(); |
3672 | // Access specifiers are only meaningful if both the template and the |
3673 | // deduction guide are from the same scope. |
3674 | if (AS != TD->getAccess() && |
3675 | TD->getDeclContext()->getRedeclContext()->Equals( |
3676 | DG->getDeclContext()->getRedeclContext())) { |
3677 | Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access); |
3678 | Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access) |
3679 | << TD->getAccess(); |
3680 | const AccessSpecDecl *LastAccessSpec = nullptr; |
3681 | for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) { |
3682 | if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D)) |
3683 | LastAccessSpec = AccessSpec; |
3684 | } |
3685 | assert(LastAccessSpec && "differing access with no access specifier"); |
3686 | Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access) |
3687 | << AS; |
3688 | } |
3689 | } |
3690 | } |
3691 | |
3692 | if (VS.isOverrideSpecified()) |
3693 | Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc())); |
3694 | if (VS.isFinalSpecified()) |
3695 | Member->addAttr(FinalAttr::Create(Context, VS.getFinalLoc(), |
3696 | VS.isFinalSpelledSealed() |
3697 | ? FinalAttr::Keyword_sealed |
3698 | : FinalAttr::Keyword_final)); |
3699 | |
3700 | if (VS.getLastLocation().isValid()) { |
3701 | // Update the end location of a method that has a virt-specifiers. |
3702 | if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Val: Member)) |
3703 | MD->setRangeEnd(VS.getLastLocation()); |
3704 | } |
3705 | |
3706 | CheckOverrideControl(D: Member); |
3707 | |
3708 | assert((Name || isInstField) && "No identifier for non-field ?"); |
3709 | |
3710 | if (isInstField) { |
3711 | FieldDecl *FD = cast<FieldDecl>(Val: Member); |
3712 | FieldCollector->Add(D: FD); |
3713 | |
3714 | if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation()) && |
3715 | IsUnusedPrivateField(FD)) { |
3716 | // Remember all explicit private FieldDecls that have a name, no side |
3717 | // effects and are not part of a dependent type declaration. |
3718 | UnusedPrivateFields.insert(FD); |
3719 | } |
3720 | } |
3721 | |
3722 | return Member; |
3723 | } |
3724 | |
3725 | namespace { |
3726 | class UninitializedFieldVisitor |
3727 | : public EvaluatedExprVisitor<UninitializedFieldVisitor> { |
3728 | Sema &S; |
3729 | // List of Decls to generate a warning on. Also remove Decls that become |
3730 | // initialized. |
3731 | llvm::SmallPtrSetImpl<ValueDecl*> &Decls; |
3732 | // List of base classes of the record. Classes are removed after their |
3733 | // initializers. |
3734 | llvm::SmallPtrSetImpl<QualType> &BaseClasses; |
3735 | // Vector of decls to be removed from the Decl set prior to visiting the |
3736 | // nodes. These Decls may have been initialized in the prior initializer. |
3737 | llvm::SmallVector<ValueDecl*, 4> DeclsToRemove; |
3738 | // If non-null, add a note to the warning pointing back to the constructor. |
3739 | const CXXConstructorDecl *Constructor; |
3740 | // Variables to hold state when processing an initializer list. When |
3741 | // InitList is true, special case initialization of FieldDecls matching |
3742 | // InitListFieldDecl. |
3743 | bool InitList; |
3744 | FieldDecl *InitListFieldDecl; |
3745 | llvm::SmallVector<unsigned, 4> InitFieldIndex; |
3746 | |
3747 | public: |
3748 | typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited; |
3749 | UninitializedFieldVisitor(Sema &S, |
3750 | llvm::SmallPtrSetImpl<ValueDecl*> &Decls, |
3751 | llvm::SmallPtrSetImpl<QualType> &BaseClasses) |
3752 | : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses), |
3753 | Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {} |
3754 | |
3755 | // Returns true if the use of ME is not an uninitialized use. |
3756 | bool IsInitListMemberExprInitialized(MemberExpr *ME, |
3757 | bool CheckReferenceOnly) { |
3758 | llvm::SmallVector<FieldDecl*, 4> Fields; |
3759 | bool ReferenceField = false; |
3760 | while (ME) { |
3761 | FieldDecl *FD = dyn_cast<FieldDecl>(Val: ME->getMemberDecl()); |
3762 | if (!FD) |
3763 | return false; |
3764 | Fields.push_back(Elt: FD); |
3765 | if (FD->getType()->isReferenceType()) |
3766 | ReferenceField = true; |
3767 | ME = dyn_cast<MemberExpr>(Val: ME->getBase()->IgnoreParenImpCasts()); |
3768 | } |
3769 | |
3770 | // Binding a reference to an uninitialized field is not an |
3771 | // uninitialized use. |
3772 | if (CheckReferenceOnly && !ReferenceField) |
3773 | return true; |
3774 | |
3775 | llvm::SmallVector<unsigned, 4> UsedFieldIndex; |
3776 | // Discard the first field since it is the field decl that is being |
3777 | // initialized. |
3778 | for (const FieldDecl *FD : llvm::drop_begin(RangeOrContainer: llvm::reverse(C&: Fields))) |
3779 | UsedFieldIndex.push_back(Elt: FD->getFieldIndex()); |
3780 | |
3781 | for (auto UsedIter = UsedFieldIndex.begin(), |
3782 | UsedEnd = UsedFieldIndex.end(), |
3783 | OrigIter = InitFieldIndex.begin(), |
3784 | OrigEnd = InitFieldIndex.end(); |
3785 | UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { |
3786 | if (*UsedIter < *OrigIter) |
3787 | return true; |
3788 | if (*UsedIter > *OrigIter) |
3789 | break; |
3790 | } |
3791 | |
3792 | return false; |
3793 | } |
3794 | |
3795 | void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly, |
3796 | bool AddressOf) { |
3797 | if (isa<EnumConstantDecl>(Val: ME->getMemberDecl())) |
3798 | return; |
3799 | |
3800 | // FieldME is the inner-most MemberExpr that is not an anonymous struct |
3801 | // or union. |
3802 | MemberExpr *FieldME = ME; |
3803 | |
3804 | bool AllPODFields = FieldME->getType().isPODType(S.Context); |
3805 | |
3806 | Expr *Base = ME; |
3807 | while (MemberExpr *SubME = |
3808 | dyn_cast<MemberExpr>(Val: Base->IgnoreParenImpCasts())) { |
3809 | |
3810 | if (isa<VarDecl>(Val: SubME->getMemberDecl())) |
3811 | return; |
3812 | |
3813 | if (FieldDecl *FD = dyn_cast<FieldDecl>(Val: SubME->getMemberDecl())) |
3814 | if (!FD->isAnonymousStructOrUnion()) |
3815 | FieldME = SubME; |
3816 | |
3817 | if (!FieldME->getType().isPODType(S.Context)) |
3818 | AllPODFields = false; |
3819 | |
3820 | Base = SubME->getBase(); |
3821 | } |
3822 | |
3823 | if (!isa<CXXThisExpr>(Val: Base->IgnoreParenImpCasts())) { |
3824 | Visit(Base); |
3825 | return; |
3826 | } |
3827 | |
3828 | if (AddressOf && AllPODFields) |
3829 | return; |
3830 | |
3831 | ValueDecl* FoundVD = FieldME->getMemberDecl(); |
3832 | |
3833 | if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Val: Base)) { |
3834 | while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) { |
3835 | BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr()); |
3836 | } |
3837 | |
3838 | if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) { |
3839 | QualType T = BaseCast->getType(); |
3840 | if (T->isPointerType() && |
3841 | BaseClasses.count(Ptr: T->getPointeeType())) { |
3842 | S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit) |
3843 | << T->getPointeeType() << FoundVD; |
3844 | } |
3845 | } |
3846 | } |
3847 | |
3848 | if (!Decls.count(Ptr: FoundVD)) |
3849 | return; |
3850 | |
3851 | const bool IsReference = FoundVD->getType()->isReferenceType(); |
3852 | |
3853 | if (InitList && !AddressOf && FoundVD == InitListFieldDecl) { |
3854 | // Special checking for initializer lists. |
3855 | if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) { |
3856 | return; |
3857 | } |
3858 | } else { |
3859 | // Prevent double warnings on use of unbounded references. |
3860 | if (CheckReferenceOnly && !IsReference) |
3861 | return; |
3862 | } |
3863 | |
3864 | unsigned diag = IsReference |
3865 | ? diag::warn_reference_field_is_uninit |
3866 | : diag::warn_field_is_uninit; |
3867 | S.Diag(FieldME->getExprLoc(), diag) << FoundVD; |
3868 | if (Constructor) |
3869 | S.Diag(Constructor->getLocation(), |
3870 | diag::note_uninit_in_this_constructor) |
3871 | << (Constructor->isDefaultConstructor() && Constructor->isImplicit()); |
3872 | |
3873 | } |
3874 | |
3875 | void HandleValue(Expr *E, bool AddressOf) { |
3876 | E = E->IgnoreParens(); |
3877 | |
3878 | if (MemberExpr *ME = dyn_cast<MemberExpr>(Val: E)) { |
3879 | HandleMemberExpr(ME, CheckReferenceOnly: false /*CheckReferenceOnly*/, |
3880 | AddressOf /*AddressOf*/); |
3881 | return; |
3882 | } |
3883 | |
3884 | if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(Val: E)) { |
3885 | Visit(CO->getCond()); |
3886 | HandleValue(E: CO->getTrueExpr(), AddressOf); |
3887 | HandleValue(E: CO->getFalseExpr(), AddressOf); |
3888 | return; |
3889 | } |
3890 | |
3891 | if (BinaryConditionalOperator *BCO = |
3892 | dyn_cast<BinaryConditionalOperator>(Val: E)) { |
3893 | Visit(BCO->getCond()); |
3894 | HandleValue(E: BCO->getFalseExpr(), AddressOf); |
3895 | return; |
3896 | } |
3897 | |
3898 | if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Val: E)) { |
3899 | HandleValue(E: OVE->getSourceExpr(), AddressOf); |
3900 | return; |
3901 | } |
3902 | |
3903 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) { |
3904 | switch (BO->getOpcode()) { |
3905 | default: |
3906 | break; |
3907 | case(BO_PtrMemD): |
3908 | case(BO_PtrMemI): |
3909 | HandleValue(E: BO->getLHS(), AddressOf); |
3910 | Visit(BO->getRHS()); |
3911 | return; |
3912 | case(BO_Comma): |
3913 | Visit(BO->getLHS()); |
3914 | HandleValue(E: BO->getRHS(), AddressOf); |
3915 | return; |
3916 | } |
3917 | } |
3918 | |
3919 | Visit(E); |
3920 | } |
3921 | |
3922 | void CheckInitListExpr(InitListExpr *ILE) { |
3923 | InitFieldIndex.push_back(Elt: 0); |
3924 | for (auto *Child : ILE->children()) { |
3925 | if (InitListExpr *SubList = dyn_cast<InitListExpr>(Val: Child)) { |
3926 | CheckInitListExpr(ILE: SubList); |
3927 | } else { |
3928 | Visit(S: Child); |
3929 | } |
3930 | ++InitFieldIndex.back(); |
3931 | } |
3932 | InitFieldIndex.pop_back(); |
3933 | } |
3934 | |
3935 | void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor, |
3936 | FieldDecl *Field, const Type *BaseClass) { |
3937 | // Remove Decls that may have been initialized in the previous |
3938 | // initializer. |
3939 | for (ValueDecl* VD : DeclsToRemove) |
3940 | Decls.erase(Ptr: VD); |
3941 | DeclsToRemove.clear(); |
3942 | |
3943 | Constructor = FieldConstructor; |
3944 | InitListExpr *ILE = dyn_cast<InitListExpr>(Val: E); |
3945 | |
3946 | if (ILE && Field) { |
3947 | InitList = true; |
3948 | InitListFieldDecl = Field; |
3949 | InitFieldIndex.clear(); |
3950 | CheckInitListExpr(ILE); |
3951 | } else { |
3952 | InitList = false; |
3953 | Visit(E); |
3954 | } |
3955 | |
3956 | if (Field) |
3957 | Decls.erase(Field); |
3958 | if (BaseClass) |
3959 | BaseClasses.erase(Ptr: BaseClass->getCanonicalTypeInternal()); |
3960 | } |
3961 | |
3962 | void VisitMemberExpr(MemberExpr *ME) { |
3963 | // All uses of unbounded reference fields will warn. |
3964 | HandleMemberExpr(ME, CheckReferenceOnly: true /*CheckReferenceOnly*/, AddressOf: false /*AddressOf*/); |
3965 | } |
3966 | |
3967 | void VisitImplicitCastExpr(ImplicitCastExpr *E) { |
3968 | if (E->getCastKind() == CK_LValueToRValue) { |
3969 | HandleValue(E: E->getSubExpr(), AddressOf: false /*AddressOf*/); |
3970 | return; |
3971 | } |
3972 | |
3973 | Inherited::VisitImplicitCastExpr(E); |
3974 | } |
3975 | |
3976 | void VisitCXXConstructExpr(CXXConstructExpr *E) { |
3977 | if (E->getConstructor()->isCopyConstructor()) { |
3978 | Expr *ArgExpr = E->getArg(Arg: 0); |
3979 | if (InitListExpr *ILE = dyn_cast<InitListExpr>(Val: ArgExpr)) |
3980 | if (ILE->getNumInits() == 1) |
3981 | ArgExpr = ILE->getInit(Init: 0); |
3982 | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: ArgExpr)) |
3983 | if (ICE->getCastKind() == CK_NoOp) |
3984 | ArgExpr = ICE->getSubExpr(); |
3985 | HandleValue(E: ArgExpr, AddressOf: false /*AddressOf*/); |
3986 | return; |
3987 | } |
3988 | Inherited::VisitCXXConstructExpr(E); |
3989 | } |
3990 | |
3991 | void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { |
3992 | Expr *Callee = E->getCallee(); |
3993 | if (isa<MemberExpr>(Val: Callee)) { |
3994 | HandleValue(E: Callee, AddressOf: false /*AddressOf*/); |
3995 | for (auto *Arg : E->arguments()) |
3996 | Visit(Arg); |
3997 | return; |
3998 | } |
3999 | |
4000 | Inherited::VisitCXXMemberCallExpr(E); |
4001 | } |
4002 | |
4003 | void VisitCallExpr(CallExpr *E) { |
4004 | // Treat std::move as a use. |
4005 | if (E->isCallToStdMove()) { |
4006 | HandleValue(E: E->getArg(Arg: 0), /*AddressOf=*/false); |
4007 | return; |
4008 | } |
4009 | |
4010 | Inherited::VisitCallExpr(CE: E); |
4011 | } |
4012 | |
4013 | void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { |
4014 | Expr *Callee = E->getCallee(); |
4015 | |
4016 | if (isa<UnresolvedLookupExpr>(Callee)) |
4017 | return Inherited::VisitCXXOperatorCallExpr(E); |
4018 | |
4019 | Visit(Callee); |
4020 | for (auto *Arg : E->arguments()) |
4021 | HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/); |
4022 | } |
4023 | |
4024 | void VisitBinaryOperator(BinaryOperator *E) { |
4025 | // If a field assignment is detected, remove the field from the |
4026 | // uninitiailized field set. |
4027 | if (E->getOpcode() == BO_Assign) |
4028 | if (MemberExpr *ME = dyn_cast<MemberExpr>(Val: E->getLHS())) |
4029 | if (FieldDecl *FD = dyn_cast<FieldDecl>(Val: ME->getMemberDecl())) |
4030 | if (!FD->getType()->isReferenceType()) |
4031 | DeclsToRemove.push_back(FD); |
4032 | |
4033 | if (E->isCompoundAssignmentOp()) { |
4034 | HandleValue(E: E->getLHS(), AddressOf: false /*AddressOf*/); |
4035 | Visit(E->getRHS()); |
4036 | return; |
4037 | } |
4038 | |
4039 | Inherited::VisitBinaryOperator(E); |
4040 | } |
4041 | |
4042 | void VisitUnaryOperator(UnaryOperator *E) { |
4043 | if (E->isIncrementDecrementOp()) { |
4044 | HandleValue(E: E->getSubExpr(), AddressOf: false /*AddressOf*/); |
4045 | return; |
4046 | } |
4047 | if (E->getOpcode() == UO_AddrOf) { |
4048 | if (MemberExpr *ME = dyn_cast<MemberExpr>(Val: E->getSubExpr())) { |
4049 | HandleValue(E: ME->getBase(), AddressOf: true /*AddressOf*/); |
4050 | return; |
4051 | } |
4052 | } |
4053 | |
4054 | Inherited::VisitUnaryOperator(E); |
4055 | } |
4056 | }; |
4057 | |
4058 | // Diagnose value-uses of fields to initialize themselves, e.g. |
4059 | // foo(foo) |
4060 | // where foo is not also a parameter to the constructor. |
4061 | // Also diagnose across field uninitialized use such as |
4062 | // x(y), y(x) |
4063 | // TODO: implement -Wuninitialized and fold this into that framework. |
4064 | static void DiagnoseUninitializedFields( |
4065 | Sema &SemaRef, const CXXConstructorDecl *Constructor) { |
4066 | |
4067 | if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit, |
4068 | Constructor->getLocation())) { |
4069 | return; |
4070 | } |
4071 | |
4072 | if (Constructor->isInvalidDecl()) |
4073 | return; |
4074 | |
4075 | const CXXRecordDecl *RD = Constructor->getParent(); |
4076 | |
4077 | if (RD->isDependentContext()) |
4078 | return; |
4079 | |
4080 | // Holds fields that are uninitialized. |
4081 | llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields; |
4082 | |
4083 | // At the beginning, all fields are uninitialized. |
4084 | for (auto *I : RD->decls()) { |
4085 | if (auto *FD = dyn_cast<FieldDecl>(I)) { |
4086 | UninitializedFields.insert(FD); |
4087 | } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) { |
4088 | UninitializedFields.insert(IFD->getAnonField()); |
4089 | } |
4090 | } |
4091 | |
4092 | llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses; |
4093 | for (const auto &I : RD->bases()) |
4094 | UninitializedBaseClasses.insert(I.getType().getCanonicalType()); |
4095 | |
4096 | if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) |
4097 | return; |
4098 | |
4099 | UninitializedFieldVisitor UninitializedChecker(SemaRef, |
4100 | UninitializedFields, |
4101 | UninitializedBaseClasses); |
4102 | |
4103 | for (const auto *FieldInit : Constructor->inits()) { |
4104 | if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) |
4105 | break; |
4106 | |
4107 | Expr *InitExpr = FieldInit->getInit(); |
4108 | if (!InitExpr) |
4109 | continue; |
4110 | |
4111 | if (CXXDefaultInitExpr *Default = |
4112 | dyn_cast<CXXDefaultInitExpr>(Val: InitExpr)) { |
4113 | InitExpr = Default->getExpr(); |
4114 | if (!InitExpr) |
4115 | continue; |
4116 | // In class initializers will point to the constructor. |
4117 | UninitializedChecker.CheckInitializer(E: InitExpr, FieldConstructor: Constructor, |
4118 | Field: FieldInit->getAnyMember(), |
4119 | BaseClass: FieldInit->getBaseClass()); |
4120 | } else { |
4121 | UninitializedChecker.CheckInitializer(E: InitExpr, FieldConstructor: nullptr, |
4122 | Field: FieldInit->getAnyMember(), |
4123 | BaseClass: FieldInit->getBaseClass()); |
4124 | } |
4125 | } |
4126 | } |
4127 | } // namespace |
4128 | |
4129 | void Sema::ActOnStartCXXInClassMemberInitializer() { |
4130 | // Create a synthetic function scope to represent the call to the constructor |
4131 | // that notionally surrounds a use of this initializer. |
4132 | PushFunctionScope(); |
4133 | } |
4134 | |
4135 | void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) { |
4136 | if (!D.isFunctionDeclarator()) |
4137 | return; |
4138 | auto &FTI = D.getFunctionTypeInfo(); |
4139 | if (!FTI.Params) |
4140 | return; |
4141 | for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params, |
4142 | FTI.NumParams)) { |
4143 | auto *ParamDecl = cast<NamedDecl>(Val: Param.Param); |
4144 | if (ParamDecl->getDeclName()) |
4145 | PushOnScopeChains(D: ParamDecl, S, /*AddToContext=*/false); |
4146 | } |
4147 | } |
4148 | |
4149 | ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) { |
4150 | return ActOnRequiresClause(ConstraintExpr); |
4151 | } |
4152 | |
4153 | ExprResult Sema::ActOnRequiresClause(ExprResult ConstraintExpr) { |
4154 | if (ConstraintExpr.isInvalid()) |
4155 | return ExprError(); |
4156 | |
4157 | ConstraintExpr = CorrectDelayedTyposInExpr(ER: ConstraintExpr); |
4158 | if (ConstraintExpr.isInvalid()) |
4159 | return ExprError(); |
4160 | |
4161 | if (DiagnoseUnexpandedParameterPack(E: ConstraintExpr.get(), |
4162 | UPPC: UPPC_RequiresClause)) |
4163 | return ExprError(); |
4164 | |
4165 | return ConstraintExpr; |
4166 | } |
4167 | |
4168 | ExprResult Sema::ConvertMemberDefaultInitExpression(FieldDecl *FD, |
4169 | Expr *InitExpr, |
4170 | SourceLocation InitLoc) { |
4171 | InitializedEntity Entity = |
4172 | InitializedEntity::InitializeMemberFromDefaultMemberInitializer(Member: FD); |
4173 | InitializationKind Kind = |
4174 | FD->getInClassInitStyle() == ICIS_ListInit |
4175 | ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(), |
4176 | InitExpr->getBeginLoc(), |
4177 | InitExpr->getEndLoc()) |
4178 | : InitializationKind::CreateCopy(InitLoc: InitExpr->getBeginLoc(), EqualLoc: InitLoc); |
4179 | InitializationSequence Seq(*this, Entity, Kind, InitExpr); |
4180 | return Seq.Perform(S&: *this, Entity, Kind, Args: InitExpr); |
4181 | } |
4182 | |
4183 | void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D, |
4184 | SourceLocation InitLoc, |
4185 | ExprResult InitExpr) { |
4186 | // Pop the notional constructor scope we created earlier. |
4187 | PopFunctionScopeInfo(WP: nullptr, D); |
4188 | |
4189 | // Microsoft C++'s property declaration cannot have a default member |
4190 | // initializer. |
4191 | if (isa<MSPropertyDecl>(Val: D)) { |
4192 | D->setInvalidDecl(); |
4193 | return; |
4194 | } |
4195 | |
4196 | FieldDecl *FD = dyn_cast<FieldDecl>(Val: D); |
4197 | assert((FD && FD->getInClassInitStyle() != ICIS_NoInit) && |
4198 | "must set init style when field is created"); |
4199 | |
4200 | if (!InitExpr.isUsable() || |
4201 | DiagnoseUnexpandedParameterPack(E: InitExpr.get(), UPPC: UPPC_Initializer)) { |
4202 | FD->setInvalidDecl(); |
4203 | ExprResult RecoveryInit = |
4204 | CreateRecoveryExpr(Begin: InitLoc, End: InitLoc, SubExprs: {}, T: FD->getType()); |
4205 | if (RecoveryInit.isUsable()) |
4206 | FD->setInClassInitializer(RecoveryInit.get()); |
4207 | return; |
4208 | } |
4209 | |
4210 | ExprResult Init = CorrectDelayedTyposInExpr(ER: InitExpr, /*InitDecl=*/nullptr, |
4211 | /*RecoverUncorrectedTypos=*/true); |
4212 | assert(Init.isUsable() && "Init should at least have a RecoveryExpr"); |
4213 | if (!FD->getType()->isDependentType() && !Init.get()->isTypeDependent()) { |
4214 | Init = ConvertMemberDefaultInitExpression(FD, InitExpr: Init.get(), InitLoc); |
4215 | // C++11 [class.base.init]p7: |
4216 | // The initialization of each base and member constitutes a |
4217 | // full-expression. |
4218 | if (!Init.isInvalid()) |
4219 | Init = ActOnFinishFullExpr(Expr: Init.get(), /*DiscarededValue=*/DiscardedValue: false); |
4220 | if (Init.isInvalid()) { |
4221 | FD->setInvalidDecl(); |
4222 | return; |
4223 | } |
4224 | } |
4225 | |
4226 | FD->setInClassInitializer(Init.get()); |
4227 | } |
4228 | |
4229 | /// Find the direct and/or virtual base specifiers that |
4230 | /// correspond to the given base type, for use in base initialization |
4231 | /// within a constructor. |
4232 | static bool FindBaseInitializer(Sema &SemaRef, |
4233 | CXXRecordDecl *ClassDecl, |
4234 | QualType BaseType, |
4235 | const CXXBaseSpecifier *&DirectBaseSpec, |
4236 | const CXXBaseSpecifier *&VirtualBaseSpec) { |
4237 | // First, check for a direct base class. |
4238 | DirectBaseSpec = nullptr; |
4239 | for (const auto &Base : ClassDecl->bases()) { |
4240 | if (SemaRef.Context.hasSameUnqualifiedType(T1: BaseType, T2: Base.getType())) { |
4241 | // We found a direct base of this type. That's what we're |
4242 | // initializing. |
4243 | DirectBaseSpec = &Base; |
4244 | break; |
4245 | } |
4246 | } |
4247 | |
4248 | // Check for a virtual base class. |
4249 | // FIXME: We might be able to short-circuit this if we know in advance that |
4250 | // there are no virtual bases. |
4251 | VirtualBaseSpec = nullptr; |
4252 | if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { |
4253 | // We haven't found a base yet; search the class hierarchy for a |
4254 | // virtual base class. |
4255 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
4256 | /*DetectVirtual=*/false); |
4257 | if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(), |
4258 | SemaRef.Context.getTypeDeclType(ClassDecl), |
4259 | BaseType, Paths)) { |
4260 | for (CXXBasePaths::paths_iterator Path = Paths.begin(); |
4261 | Path != Paths.end(); ++Path) { |
4262 | if (Path->back().Base->isVirtual()) { |
4263 | VirtualBaseSpec = Path->back().Base; |
4264 | break; |
4265 | } |
4266 | } |
4267 | } |
4268 | } |
4269 | |
4270 | return DirectBaseSpec || VirtualBaseSpec; |
4271 | } |
4272 | |
4273 | MemInitResult |
4274 | Sema::ActOnMemInitializer(Decl *ConstructorD, |
4275 | Scope *S, |
4276 | CXXScopeSpec &SS, |
4277 | IdentifierInfo *MemberOrBase, |
4278 | ParsedType TemplateTypeTy, |
4279 | const DeclSpec &DS, |
4280 | SourceLocation IdLoc, |
4281 | Expr *InitList, |
4282 | SourceLocation EllipsisLoc) { |
4283 | return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, |
4284 | DS, IdLoc, Init: InitList, |
4285 | EllipsisLoc); |
4286 | } |
4287 | |
4288 | MemInitResult |
4289 | Sema::ActOnMemInitializer(Decl *ConstructorD, |
4290 | Scope *S, |
4291 | CXXScopeSpec &SS, |
4292 | IdentifierInfo *MemberOrBase, |
4293 | ParsedType TemplateTypeTy, |
4294 | const DeclSpec &DS, |
4295 | SourceLocation IdLoc, |
4296 | SourceLocation LParenLoc, |
4297 | ArrayRef<Expr *> Args, |
4298 | SourceLocation RParenLoc, |
4299 | SourceLocation EllipsisLoc) { |
4300 | Expr *List = ParenListExpr::Create(Ctx: Context, LParenLoc, Exprs: Args, RParenLoc); |
4301 | return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, |
4302 | DS, IdLoc, Init: List, EllipsisLoc); |
4303 | } |
4304 | |
4305 | namespace { |
4306 | |
4307 | // Callback to only accept typo corrections that can be a valid C++ member |
4308 | // initializer: either a non-static field member or a base class. |
4309 | class MemInitializerValidatorCCC final : public CorrectionCandidateCallback { |
4310 | public: |
4311 | explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl) |
4312 | : ClassDecl(ClassDecl) {} |
4313 | |
4314 | bool ValidateCandidate(const TypoCorrection &candidate) override { |
4315 | if (NamedDecl *ND = candidate.getCorrectionDecl()) { |
4316 | if (FieldDecl *Member = dyn_cast<FieldDecl>(Val: ND)) |
4317 | return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl); |
4318 | return isa<TypeDecl>(Val: ND); |
4319 | } |
4320 | return false; |
4321 | } |
4322 | |
4323 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
4324 | return std::make_unique<MemInitializerValidatorCCC>(args&: *this); |
4325 | } |
4326 | |
4327 | private: |
4328 | CXXRecordDecl *ClassDecl; |
4329 | }; |
4330 | |
4331 | } |
4332 | |
4333 | bool Sema::DiagRedefinedPlaceholderFieldDecl(SourceLocation Loc, |
4334 | RecordDecl *ClassDecl, |
4335 | const IdentifierInfo *Name) { |
4336 | DeclContextLookupResult Result = ClassDecl->lookup(Name); |
4337 | DeclContextLookupResult::iterator Found = |
4338 | llvm::find_if(Range&: Result, P: [this](const NamedDecl *Elem) { |
4339 | return isa<FieldDecl, IndirectFieldDecl>(Val: Elem) && |
4340 | Elem->isPlaceholderVar(LangOpts: getLangOpts()); |
4341 | }); |
4342 | // We did not find a placeholder variable |
4343 | if (Found == Result.end()) |
4344 | return false; |
4345 | Diag(Loc, diag::err_using_placeholder_variable) << Name; |
4346 | for (DeclContextLookupResult::iterator It = Found; It != Result.end(); It++) { |
4347 | const NamedDecl *ND = *It; |
4348 | if (ND->getDeclContext() != ND->getDeclContext()) |
4349 | break; |
4350 | if (isa<FieldDecl, IndirectFieldDecl>(ND) && |
4351 | ND->isPlaceholderVar(getLangOpts())) |
4352 | Diag(ND->getLocation(), diag::note_reference_placeholder) << ND; |
4353 | } |
4354 | return true; |
4355 | } |
4356 | |
4357 | ValueDecl * |
4358 | Sema::tryLookupUnambiguousFieldDecl(RecordDecl *ClassDecl, |
4359 | const IdentifierInfo *MemberOrBase) { |
4360 | ValueDecl *ND = nullptr; |
4361 | for (auto *D : ClassDecl->lookup(MemberOrBase)) { |
4362 | if (isa<FieldDecl, IndirectFieldDecl>(D)) { |
4363 | bool IsPlaceholder = D->isPlaceholderVar(getLangOpts()); |
4364 | if (ND) { |
4365 | if (IsPlaceholder && D->getDeclContext() == ND->getDeclContext()) |
4366 | return nullptr; |
4367 | break; |
4368 | } |
4369 | if (!IsPlaceholder) |
4370 | return cast<ValueDecl>(D); |
4371 | ND = cast<ValueDecl>(D); |
4372 | } |
4373 | } |
4374 | return ND; |
4375 | } |
4376 | |
4377 | ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl, |
4378 | CXXScopeSpec &SS, |
4379 | ParsedType TemplateTypeTy, |
4380 | IdentifierInfo *MemberOrBase) { |
4381 | if (SS.getScopeRep() || TemplateTypeTy) |
4382 | return nullptr; |
4383 | return tryLookupUnambiguousFieldDecl(ClassDecl, MemberOrBase); |
4384 | } |
4385 | |
4386 | MemInitResult |
4387 | Sema::BuildMemInitializer(Decl *ConstructorD, |
4388 | Scope *S, |
4389 | CXXScopeSpec &SS, |
4390 | IdentifierInfo *MemberOrBase, |
4391 | ParsedType TemplateTypeTy, |
4392 | const DeclSpec &DS, |
4393 | SourceLocation IdLoc, |
4394 | Expr *Init, |
4395 | SourceLocation EllipsisLoc) { |
4396 | ExprResult Res = CorrectDelayedTyposInExpr(E: Init, /*InitDecl=*/nullptr, |
4397 | /*RecoverUncorrectedTypos=*/true); |
4398 | if (!Res.isUsable()) |
4399 | return true; |
4400 | Init = Res.get(); |
4401 | |
4402 | if (!ConstructorD) |
4403 | return true; |
4404 | |
4405 | AdjustDeclIfTemplate(Decl&: ConstructorD); |
4406 | |
4407 | CXXConstructorDecl *Constructor |
4408 | = dyn_cast<CXXConstructorDecl>(Val: ConstructorD); |
4409 | if (!Constructor) { |
4410 | // The user wrote a constructor initializer on a function that is |
4411 | // not a C++ constructor. Ignore the error for now, because we may |
4412 | // have more member initializers coming; we'll diagnose it just |
4413 | // once in ActOnMemInitializers. |
4414 | return true; |
4415 | } |
4416 | |
4417 | CXXRecordDecl *ClassDecl = Constructor->getParent(); |
4418 | |
4419 | // C++ [class.base.init]p2: |
4420 | // Names in a mem-initializer-id are looked up in the scope of the |
4421 | // constructor's class and, if not found in that scope, are looked |
4422 | // up in the scope containing the constructor's definition. |
4423 | // [Note: if the constructor's class contains a member with the |
4424 | // same name as a direct or virtual base class of the class, a |
4425 | // mem-initializer-id naming the member or base class and composed |
4426 | // of a single identifier refers to the class member. A |
4427 | // mem-initializer-id for the hidden base class may be specified |
4428 | // using a qualified name. ] |
4429 | |
4430 | // Look for a member, first. |
4431 | if (ValueDecl *Member = tryLookupCtorInitMemberDecl( |
4432 | ClassDecl, SS, TemplateTypeTy, MemberOrBase)) { |
4433 | if (EllipsisLoc.isValid()) |
4434 | Diag(EllipsisLoc, diag::err_pack_expansion_member_init) |
4435 | << MemberOrBase |
4436 | << SourceRange(IdLoc, Init->getSourceRange().getEnd()); |
4437 | |
4438 | return BuildMemberInitializer(Member, Init, IdLoc); |
4439 | } |
4440 | // It didn't name a member, so see if it names a class. |
4441 | QualType BaseType; |
4442 | TypeSourceInfo *TInfo = nullptr; |
4443 | |
4444 | if (TemplateTypeTy) { |
4445 | BaseType = GetTypeFromParser(Ty: TemplateTypeTy, TInfo: &TInfo); |
4446 | if (BaseType.isNull()) |
4447 | return true; |
4448 | } else if (DS.getTypeSpecType() == TST_decltype) { |
4449 | BaseType = BuildDecltypeType(E: DS.getRepAsExpr()); |
4450 | } else if (DS.getTypeSpecType() == TST_decltype_auto) { |
4451 | Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); |
4452 | return true; |
4453 | } else if (DS.getTypeSpecType() == TST_typename_pack_indexing) { |
4454 | BaseType = |
4455 | BuildPackIndexingType(Pattern: DS.getRepAsType().get(), IndexExpr: DS.getPackIndexingExpr(), |
4456 | Loc: DS.getBeginLoc(), EllipsisLoc: DS.getEllipsisLoc()); |
4457 | } else { |
4458 | LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); |
4459 | LookupParsedName(R, S, SS: &SS, /*ObjectType=*/QualType()); |
4460 | |
4461 | TypeDecl *TyD = R.getAsSingle<TypeDecl>(); |
4462 | if (!TyD) { |
4463 | if (R.isAmbiguous()) return true; |
4464 | |
4465 | // We don't want access-control diagnostics here. |
4466 | R.suppressDiagnostics(); |
4467 | |
4468 | if (SS.isSet() && isDependentScopeSpecifier(SS)) { |
4469 | bool NotUnknownSpecialization = false; |
4470 | DeclContext *DC = computeDeclContext(SS, EnteringContext: false); |
4471 | if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Val: DC)) |
4472 | NotUnknownSpecialization = !Record->hasAnyDependentBases(); |
4473 | |
4474 | if (!NotUnknownSpecialization) { |
4475 | // When the scope specifier can refer to a member of an unknown |
4476 | // specialization, we take it as a type name. |
4477 | BaseType = CheckTypenameType( |
4478 | Keyword: ElaboratedTypeKeyword::None, KeywordLoc: SourceLocation(), |
4479 | QualifierLoc: SS.getWithLocInContext(Context), II: *MemberOrBase, IILoc: IdLoc); |
4480 | if (BaseType.isNull()) |
4481 | return true; |
4482 | |
4483 | TInfo = Context.CreateTypeSourceInfo(T: BaseType); |
4484 | DependentNameTypeLoc TL = |
4485 | TInfo->getTypeLoc().castAs<DependentNameTypeLoc>(); |
4486 | if (!TL.isNull()) { |
4487 | TL.setNameLoc(IdLoc); |
4488 | TL.setElaboratedKeywordLoc(SourceLocation()); |
4489 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); |
4490 | } |
4491 | |
4492 | R.clear(); |
4493 | R.setLookupName(MemberOrBase); |
4494 | } |
4495 | } |
4496 | |
4497 | if (getLangOpts().MSVCCompat && !getLangOpts().CPlusPlus20) { |
4498 | if (auto UnqualifiedBase = R.getAsSingle<ClassTemplateDecl>()) { |
4499 | auto *TempSpec = cast<TemplateSpecializationType>( |
4500 | Val: UnqualifiedBase->getInjectedClassNameSpecialization()); |
4501 | TemplateName TN = TempSpec->getTemplateName(); |
4502 | for (auto const &Base : ClassDecl->bases()) { |
4503 | auto BaseTemplate = |
4504 | Base.getType()->getAs<TemplateSpecializationType>(); |
4505 | if (BaseTemplate && |
4506 | Context.hasSameTemplateName(BaseTemplate->getTemplateName(), TN, |
4507 | /*IgnoreDeduced=*/true)) { |
4508 | Diag(IdLoc, diag::ext_unqualified_base_class) |
4509 | << SourceRange(IdLoc, Init->getSourceRange().getEnd()); |
4510 | BaseType = Base.getType(); |
4511 | break; |
4512 | } |
4513 | } |
4514 | } |
4515 | } |
4516 | |
4517 | // If no results were found, try to correct typos. |
4518 | TypoCorrection Corr; |
4519 | MemInitializerValidatorCCC CCC(ClassDecl); |
4520 | if (R.empty() && BaseType.isNull() && |
4521 | (Corr = |
4522 | CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, |
4523 | CCC, CorrectTypoKind::ErrorRecovery, ClassDecl))) { |
4524 | if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) { |
4525 | // We have found a non-static data member with a similar |
4526 | // name to what was typed; complain and initialize that |
4527 | // member. |
4528 | diagnoseTypo(Corr, |
4529 | PDiag(diag::err_mem_init_not_member_or_class_suggest) |
4530 | << MemberOrBase << true); |
4531 | return BuildMemberInitializer(Member, Init, IdLoc); |
4532 | } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) { |
4533 | const CXXBaseSpecifier *DirectBaseSpec; |
4534 | const CXXBaseSpecifier *VirtualBaseSpec; |
4535 | if (FindBaseInitializer(SemaRef&: *this, ClassDecl, |
4536 | BaseType: Context.getTypeDeclType(Decl: Type), |
4537 | DirectBaseSpec, VirtualBaseSpec)) { |
4538 | // We have found a direct or virtual base class with a |
4539 | // similar name to what was typed; complain and initialize |
4540 | // that base class. |
4541 | diagnoseTypo(Corr, |
4542 | PDiag(diag::err_mem_init_not_member_or_class_suggest) |
4543 | << MemberOrBase << false, |
4544 | PDiag() /*Suppress note, we provide our own.*/); |
4545 | |
4546 | const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec |
4547 | : VirtualBaseSpec; |
4548 | Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here) |
4549 | << BaseSpec->getType() << BaseSpec->getSourceRange(); |
4550 | |
4551 | TyD = Type; |
4552 | } |
4553 | } |
4554 | } |
4555 | |
4556 | if (!TyD && BaseType.isNull()) { |
4557 | Diag(IdLoc, diag::err_mem_init_not_member_or_class) |
4558 | << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd()); |
4559 | return true; |
4560 | } |
4561 | } |
4562 | |
4563 | if (BaseType.isNull()) { |
4564 | BaseType = getElaboratedType(Keyword: ElaboratedTypeKeyword::None, SS, |
4565 | T: Context.getTypeDeclType(Decl: TyD)); |
4566 | MarkAnyDeclReferenced(Loc: TyD->getLocation(), D: TyD, /*OdrUse=*/MightBeOdrUse: false); |
4567 | TInfo = Context.CreateTypeSourceInfo(T: BaseType); |
4568 | ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>(); |
4569 | TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc); |
4570 | TL.setElaboratedKeywordLoc(SourceLocation()); |
4571 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); |
4572 | } |
4573 | } |
4574 | |
4575 | if (!TInfo) |
4576 | TInfo = Context.getTrivialTypeSourceInfo(T: BaseType, Loc: IdLoc); |
4577 | |
4578 | return BuildBaseInitializer(BaseType, BaseTInfo: TInfo, Init, ClassDecl, EllipsisLoc); |
4579 | } |
4580 | |
4581 | MemInitResult |
4582 | Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init, |
4583 | SourceLocation IdLoc) { |
4584 | FieldDecl *DirectMember = dyn_cast<FieldDecl>(Val: Member); |
4585 | IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Val: Member); |
4586 | assert((DirectMember || IndirectMember) && |
4587 | "Member must be a FieldDecl or IndirectFieldDecl"); |
4588 | |
4589 | if (DiagnoseUnexpandedParameterPack(E: Init, UPPC: UPPC_Initializer)) |
4590 | return true; |
4591 | |
4592 | if (Member->isInvalidDecl()) |
4593 | return true; |
4594 | |
4595 | MultiExprArg Args; |
4596 | if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Val: Init)) { |
4597 | Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); |
4598 | } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Val: Init)) { |
4599 | Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); |
4600 | } else { |
4601 | // Template instantiation doesn't reconstruct ParenListExprs for us. |
4602 | Args = Init; |
4603 | } |
4604 | |
4605 | SourceRange InitRange = Init->getSourceRange(); |
4606 | |
4607 | if (Member->getType()->isDependentType() || Init->isTypeDependent()) { |
4608 | // Can't check initialization for a member of dependent type or when |
4609 | // any of the arguments are type-dependent expressions. |
4610 | DiscardCleanupsInEvaluationContext(); |
4611 | } else { |
4612 | bool InitList = false; |
4613 | if (isa<InitListExpr>(Val: Init)) { |
4614 | InitList = true; |
4615 | Args = Init; |
4616 | } |
4617 | |
4618 | // Initialize the member. |
4619 | InitializedEntity MemberEntity = |
4620 | DirectMember ? InitializedEntity::InitializeMember(Member: DirectMember, Parent: nullptr) |
4621 | : InitializedEntity::InitializeMember(Member: IndirectMember, |
4622 | Parent: nullptr); |
4623 | InitializationKind Kind = |
4624 | InitList ? InitializationKind::CreateDirectList( |
4625 | IdLoc, Init->getBeginLoc(), Init->getEndLoc()) |
4626 | : InitializationKind::CreateDirect(InitLoc: IdLoc, LParenLoc: InitRange.getBegin(), |
4627 | RParenLoc: InitRange.getEnd()); |
4628 | |
4629 | InitializationSequence InitSeq(*this, MemberEntity, Kind, Args); |
4630 | ExprResult MemberInit = InitSeq.Perform(S&: *this, Entity: MemberEntity, Kind, Args, |
4631 | ResultType: nullptr); |
4632 | if (!MemberInit.isInvalid()) { |
4633 | // C++11 [class.base.init]p7: |
4634 | // The initialization of each base and member constitutes a |
4635 | // full-expression. |
4636 | MemberInit = ActOnFinishFullExpr(Expr: MemberInit.get(), CC: InitRange.getBegin(), |
4637 | /*DiscardedValue*/ false); |
4638 | } |
4639 | |
4640 | if (MemberInit.isInvalid()) { |
4641 | // Args were sensible expressions but we couldn't initialize the member |
4642 | // from them. Preserve them in a RecoveryExpr instead. |
4643 | Init = CreateRecoveryExpr(Begin: InitRange.getBegin(), End: InitRange.getEnd(), SubExprs: Args, |
4644 | T: Member->getType()) |
4645 | .get(); |
4646 | if (!Init) |
4647 | return true; |
4648 | } else { |
4649 | Init = MemberInit.get(); |
4650 | } |
4651 | } |
4652 | |
4653 | if (DirectMember) { |
4654 | return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc, |
4655 | InitRange.getBegin(), Init, |
4656 | InitRange.getEnd()); |
4657 | } else { |
4658 | return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc, |
4659 | InitRange.getBegin(), Init, |
4660 | InitRange.getEnd()); |
4661 | } |
4662 | } |
4663 | |
4664 | MemInitResult |
4665 | Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init, |
4666 | CXXRecordDecl *ClassDecl) { |
4667 | SourceLocation NameLoc = TInfo->getTypeLoc().getSourceRange().getBegin(); |
4668 | if (!LangOpts.CPlusPlus11) |
4669 | return Diag(NameLoc, diag::err_delegating_ctor) |
4670 | << TInfo->getTypeLoc().getSourceRange(); |
4671 | Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor); |
4672 | |
4673 | bool InitList = true; |
4674 | MultiExprArg Args = Init; |
4675 | if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Val: Init)) { |
4676 | InitList = false; |
4677 | Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); |
4678 | } |
4679 | |
4680 | SourceRange InitRange = Init->getSourceRange(); |
4681 | // Initialize the object. |
4682 | InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation( |
4683 | Type: QualType(ClassDecl->getTypeForDecl(), 0)); |
4684 | InitializationKind Kind = |
4685 | InitList ? InitializationKind::CreateDirectList( |
4686 | NameLoc, Init->getBeginLoc(), Init->getEndLoc()) |
4687 | : InitializationKind::CreateDirect(InitLoc: NameLoc, LParenLoc: InitRange.getBegin(), |
4688 | RParenLoc: InitRange.getEnd()); |
4689 | InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args); |
4690 | ExprResult DelegationInit = InitSeq.Perform(S&: *this, Entity: DelegationEntity, Kind, |
4691 | Args, ResultType: nullptr); |
4692 | if (!DelegationInit.isInvalid()) { |
4693 | assert((DelegationInit.get()->containsErrors() || |
4694 | cast<CXXConstructExpr>(DelegationInit.get())->getConstructor()) && |
4695 | "Delegating constructor with no target?"); |
4696 | |
4697 | // C++11 [class.base.init]p7: |
4698 | // The initialization of each base and member constitutes a |
4699 | // full-expression. |
4700 | DelegationInit = ActOnFinishFullExpr( |
4701 | Expr: DelegationInit.get(), CC: InitRange.getBegin(), /*DiscardedValue*/ false); |
4702 | } |
4703 | |
4704 | if (DelegationInit.isInvalid()) { |
4705 | DelegationInit = |
4706 | CreateRecoveryExpr(Begin: InitRange.getBegin(), End: InitRange.getEnd(), SubExprs: Args, |
4707 | T: QualType(ClassDecl->getTypeForDecl(), 0)); |
4708 | if (DelegationInit.isInvalid()) |
4709 | return true; |
4710 | } else { |
4711 | // If we are in a dependent context, template instantiation will |
4712 | // perform this type-checking again. Just save the arguments that we |
4713 | // received in a ParenListExpr. |
4714 | // FIXME: This isn't quite ideal, since our ASTs don't capture all |
4715 | // of the information that we have about the base |
4716 | // initializer. However, deconstructing the ASTs is a dicey process, |
4717 | // and this approach is far more likely to get the corner cases right. |
4718 | if (CurContext->isDependentContext()) |
4719 | DelegationInit = Init; |
4720 | } |
4721 | |
4722 | return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(), |
4723 | DelegationInit.getAs<Expr>(), |
4724 | InitRange.getEnd()); |
4725 | } |
4726 | |
4727 | MemInitResult |
4728 | Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, |
4729 | Expr *Init, CXXRecordDecl *ClassDecl, |
4730 | SourceLocation EllipsisLoc) { |
4731 | SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getBeginLoc(); |
4732 | |
4733 | if (!BaseType->isDependentType() && !BaseType->isRecordType()) |
4734 | return Diag(BaseLoc, diag::err_base_init_does_not_name_class) |
4735 | << BaseType << BaseTInfo->getTypeLoc().getSourceRange(); |
4736 | |
4737 | // C++ [class.base.init]p2: |
4738 | // [...] Unless the mem-initializer-id names a nonstatic data |
4739 | // member of the constructor's class or a direct or virtual base |
4740 | // of that class, the mem-initializer is ill-formed. A |
4741 | // mem-initializer-list can initialize a base class using any |
4742 | // name that denotes that base class type. |
4743 | |
4744 | // We can store the initializers in "as-written" form and delay analysis until |
4745 | // instantiation if the constructor is dependent. But not for dependent |
4746 | // (broken) code in a non-template! SetCtorInitializers does not expect this. |
4747 | bool Dependent = CurContext->isDependentContext() && |
4748 | (BaseType->isDependentType() || Init->isTypeDependent()); |
4749 | |
4750 | SourceRange InitRange = Init->getSourceRange(); |
4751 | if (EllipsisLoc.isValid()) { |
4752 | // This is a pack expansion. |
4753 | if (!BaseType->containsUnexpandedParameterPack()) { |
4754 | Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) |
4755 | << SourceRange(BaseLoc, InitRange.getEnd()); |
4756 | |
4757 | EllipsisLoc = SourceLocation(); |
4758 | } |
4759 | } else { |
4760 | // Check for any unexpanded parameter packs. |
4761 | if (DiagnoseUnexpandedParameterPack(Loc: BaseLoc, T: BaseTInfo, UPPC: UPPC_Initializer)) |
4762 | return true; |
4763 | |
4764 | if (DiagnoseUnexpandedParameterPack(E: Init, UPPC: UPPC_Initializer)) |
4765 | return true; |
4766 | } |
4767 | |
4768 | // Check for direct and virtual base classes. |
4769 | const CXXBaseSpecifier *DirectBaseSpec = nullptr; |
4770 | const CXXBaseSpecifier *VirtualBaseSpec = nullptr; |
4771 | if (!Dependent) { |
4772 | if (Context.hasSameUnqualifiedType(T1: QualType(ClassDecl->getTypeForDecl(),0), |
4773 | T2: BaseType)) |
4774 | return BuildDelegatingInitializer(TInfo: BaseTInfo, Init, ClassDecl); |
4775 | |
4776 | FindBaseInitializer(SemaRef&: *this, ClassDecl, BaseType, DirectBaseSpec, |
4777 | VirtualBaseSpec); |
4778 | |
4779 | // C++ [base.class.init]p2: |
4780 | // Unless the mem-initializer-id names a nonstatic data member of the |
4781 | // constructor's class or a direct or virtual base of that class, the |
4782 | // mem-initializer is ill-formed. |
4783 | if (!DirectBaseSpec && !VirtualBaseSpec) { |
4784 | // If the class has any dependent bases, then it's possible that |
4785 | // one of those types will resolve to the same type as |
4786 | // BaseType. Therefore, just treat this as a dependent base |
4787 | // class initialization. FIXME: Should we try to check the |
4788 | // initialization anyway? It seems odd. |
4789 | if (ClassDecl->hasAnyDependentBases()) |
4790 | Dependent = true; |
4791 | else |
4792 | return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) |
4793 | << BaseType << Context.getTypeDeclType(ClassDecl) |
4794 | << BaseTInfo->getTypeLoc().getSourceRange(); |
4795 | } |
4796 | } |
4797 | |
4798 | if (Dependent) { |
4799 | DiscardCleanupsInEvaluationContext(); |
4800 | |
4801 | return new (Context) CXXCtorInitializer(Context, BaseTInfo, |
4802 | /*IsVirtual=*/false, |
4803 | InitRange.getBegin(), Init, |
4804 | InitRange.getEnd(), EllipsisLoc); |
4805 | } |
4806 | |
4807 | // C++ [base.class.init]p2: |
4808 | // If a mem-initializer-id is ambiguous because it designates both |
4809 | // a direct non-virtual base class and an inherited virtual base |
4810 | // class, the mem-initializer is ill-formed. |
4811 | if (DirectBaseSpec && VirtualBaseSpec) |
4812 | return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) |
4813 | << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); |
4814 | |
4815 | const CXXBaseSpecifier *BaseSpec = DirectBaseSpec; |
4816 | if (!BaseSpec) |
4817 | BaseSpec = VirtualBaseSpec; |
4818 | |
4819 | // Initialize the base. |
4820 | bool InitList = true; |
4821 | MultiExprArg Args = Init; |
4822 | if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Val: Init)) { |
4823 | InitList = false; |
4824 | Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); |
4825 | } |
4826 | |
4827 | InitializedEntity BaseEntity = |
4828 | InitializedEntity::InitializeBase(Context, Base: BaseSpec, IsInheritedVirtualBase: VirtualBaseSpec); |
4829 | InitializationKind Kind = |
4830 | InitList ? InitializationKind::CreateDirectList(InitLoc: BaseLoc) |
4831 | : InitializationKind::CreateDirect(InitLoc: BaseLoc, LParenLoc: InitRange.getBegin(), |
4832 | RParenLoc: InitRange.getEnd()); |
4833 | InitializationSequence InitSeq(*this, BaseEntity, Kind, Args); |
4834 | ExprResult BaseInit = InitSeq.Perform(S&: *this, Entity: BaseEntity, Kind, Args, ResultType: nullptr); |
4835 | if (!BaseInit.isInvalid()) { |
4836 | // C++11 [class.base.init]p7: |
4837 | // The initialization of each base and member constitutes a |
4838 | // full-expression. |
4839 | BaseInit = ActOnFinishFullExpr(Expr: BaseInit.get(), CC: InitRange.getBegin(), |
4840 | /*DiscardedValue*/ false); |
4841 | } |
4842 | |
4843 | if (BaseInit.isInvalid()) { |
4844 | BaseInit = CreateRecoveryExpr(Begin: InitRange.getBegin(), End: InitRange.getEnd(), |
4845 | SubExprs: Args, T: BaseType); |
4846 | if (BaseInit.isInvalid()) |
4847 | return true; |
4848 | } else { |
4849 | // If we are in a dependent context, template instantiation will |
4850 | // perform this type-checking again. Just save the arguments that we |
4851 | // received in a ParenListExpr. |
4852 | // FIXME: This isn't quite ideal, since our ASTs don't capture all |
4853 | // of the information that we have about the base |
4854 | // initializer. However, deconstructing the ASTs is a dicey process, |
4855 | // and this approach is far more likely to get the corner cases right. |
4856 | if (CurContext->isDependentContext()) |
4857 | BaseInit = Init; |
4858 | } |
4859 | |
4860 | return new (Context) CXXCtorInitializer(Context, BaseTInfo, |
4861 | BaseSpec->isVirtual(), |
4862 | InitRange.getBegin(), |
4863 | BaseInit.getAs<Expr>(), |
4864 | InitRange.getEnd(), EllipsisLoc); |
4865 | } |
4866 | |
4867 | // Create a static_cast\<T&&>(expr). |
4868 | static Expr *CastForMoving(Sema &SemaRef, Expr *E) { |
4869 | QualType TargetType = |
4870 | SemaRef.BuildReferenceType(T: E->getType(), /*SpelledAsLValue*/ LValueRef: false, |
4871 | Loc: SourceLocation(), Entity: DeclarationName()); |
4872 | SourceLocation ExprLoc = E->getBeginLoc(); |
4873 | TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo( |
4874 | T: TargetType, Loc: ExprLoc); |
4875 | |
4876 | return SemaRef.BuildCXXNamedCast(OpLoc: ExprLoc, Kind: tok::kw_static_cast, Ty: TargetLoc, E, |
4877 | AngleBrackets: SourceRange(ExprLoc, ExprLoc), |
4878 | Parens: E->getSourceRange()).get(); |
4879 | } |
4880 | |
4881 | /// ImplicitInitializerKind - How an implicit base or member initializer should |
4882 | /// initialize its base or member. |
4883 | enum ImplicitInitializerKind { |
4884 | IIK_Default, |
4885 | IIK_Copy, |
4886 | IIK_Move, |
4887 | IIK_Inherit |
4888 | }; |
4889 | |
4890 | static bool |
4891 | BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, |
4892 | ImplicitInitializerKind ImplicitInitKind, |
4893 | CXXBaseSpecifier *BaseSpec, |
4894 | bool IsInheritedVirtualBase, |
4895 | CXXCtorInitializer *&CXXBaseInit) { |
4896 | InitializedEntity InitEntity |
4897 | = InitializedEntity::InitializeBase(Context&: SemaRef.Context, Base: BaseSpec, |
4898 | IsInheritedVirtualBase); |
4899 | |
4900 | ExprResult BaseInit; |
4901 | |
4902 | switch (ImplicitInitKind) { |
4903 | case IIK_Inherit: |
4904 | case IIK_Default: { |
4905 | InitializationKind InitKind |
4906 | = InitializationKind::CreateDefault(InitLoc: Constructor->getLocation()); |
4907 | InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, {}); |
4908 | BaseInit = InitSeq.Perform(S&: SemaRef, Entity: InitEntity, Kind: InitKind, Args: {}); |
4909 | break; |
4910 | } |
4911 | |
4912 | case IIK_Move: |
4913 | case IIK_Copy: { |
4914 | bool Moving = ImplicitInitKind == IIK_Move; |
4915 | ParmVarDecl *Param = Constructor->getParamDecl(0); |
4916 | QualType ParamType = Param->getType().getNonReferenceType(); |
4917 | |
4918 | Expr *CopyCtorArg = |
4919 | DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), |
4920 | SourceLocation(), Param, false, |
4921 | Constructor->getLocation(), ParamType, |
4922 | VK_LValue, nullptr); |
4923 | |
4924 | SemaRef.MarkDeclRefReferenced(E: cast<DeclRefExpr>(Val: CopyCtorArg)); |
4925 | |
4926 | // Cast to the base class to avoid ambiguities. |
4927 | QualType ArgTy = |
4928 | SemaRef.Context.getQualifiedType(T: BaseSpec->getType().getUnqualifiedType(), |
4929 | Qs: ParamType.getQualifiers()); |
4930 | |
4931 | if (Moving) { |
4932 | CopyCtorArg = CastForMoving(SemaRef, E: CopyCtorArg); |
4933 | } |
4934 | |
4935 | CXXCastPath BasePath; |
4936 | BasePath.push_back(Elt: BaseSpec); |
4937 | CopyCtorArg = SemaRef.ImpCastExprToType(E: CopyCtorArg, Type: ArgTy, |
4938 | CK: CK_UncheckedDerivedToBase, |
4939 | VK: Moving ? VK_XValue : VK_LValue, |
4940 | BasePath: &BasePath).get(); |
4941 | |
4942 | InitializationKind InitKind |
4943 | = InitializationKind::CreateDirect(InitLoc: Constructor->getLocation(), |
4944 | LParenLoc: SourceLocation(), RParenLoc: SourceLocation()); |
4945 | InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg); |
4946 | BaseInit = InitSeq.Perform(S&: SemaRef, Entity: InitEntity, Kind: InitKind, Args: CopyCtorArg); |
4947 | break; |
4948 | } |
4949 | } |
4950 | |
4951 | BaseInit = SemaRef.MaybeCreateExprWithCleanups(SubExpr: BaseInit); |
4952 | if (BaseInit.isInvalid()) |
4953 | return true; |
4954 | |
4955 | CXXBaseInit = |
4956 | new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, |
4957 | SemaRef.Context.getTrivialTypeSourceInfo(T: BaseSpec->getType(), |
4958 | Loc: SourceLocation()), |
4959 | BaseSpec->isVirtual(), |
4960 | SourceLocation(), |
4961 | BaseInit.getAs<Expr>(), |
4962 | SourceLocation(), |
4963 | SourceLocation()); |
4964 | |
4965 | return false; |
4966 | } |
4967 | |
4968 | static bool RefersToRValueRef(Expr *MemRef) { |
4969 | ValueDecl *Referenced = cast<MemberExpr>(Val: MemRef)->getMemberDecl(); |
4970 | return Referenced->getType()->isRValueReferenceType(); |
4971 | } |
4972 | |
4973 | static bool |
4974 | BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, |
4975 | ImplicitInitializerKind ImplicitInitKind, |
4976 | FieldDecl *Field, IndirectFieldDecl *Indirect, |
4977 | CXXCtorInitializer *&CXXMemberInit) { |
4978 | if (Field->isInvalidDecl()) |
4979 | return true; |
4980 | |
4981 | SourceLocation Loc = Constructor->getLocation(); |
4982 | |
4983 | if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) { |
4984 | bool Moving = ImplicitInitKind == IIK_Move; |
4985 | ParmVarDecl *Param = Constructor->getParamDecl(0); |
4986 | QualType ParamType = Param->getType().getNonReferenceType(); |
4987 | |
4988 | // Suppress copying zero-width bitfields. |
4989 | if (Field->isZeroLengthBitField()) |
4990 | return false; |
4991 | |
4992 | Expr *MemberExprBase = |
4993 | DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), |
4994 | SourceLocation(), Param, false, |
4995 | Loc, ParamType, VK_LValue, nullptr); |
4996 | |
4997 | SemaRef.MarkDeclRefReferenced(E: cast<DeclRefExpr>(Val: MemberExprBase)); |
4998 | |
4999 | if (Moving) { |
5000 | MemberExprBase = CastForMoving(SemaRef, E: MemberExprBase); |
5001 | } |
5002 | |
5003 | // Build a reference to this field within the parameter. |
5004 | CXXScopeSpec SS; |
5005 | LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc, |
5006 | Sema::LookupMemberName); |
5007 | MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Val: Indirect) |
5008 | : cast<ValueDecl>(Val: Field), AS_public); |
5009 | MemberLookup.resolveKind(); |
5010 | ExprResult CtorArg |
5011 | = SemaRef.BuildMemberReferenceExpr(Base: MemberExprBase, |
5012 | BaseType: ParamType, OpLoc: Loc, |
5013 | /*IsArrow=*/false, |
5014 | SS, |
5015 | /*TemplateKWLoc=*/SourceLocation(), |
5016 | /*FirstQualifierInScope=*/nullptr, |
5017 | R&: MemberLookup, |
5018 | /*TemplateArgs=*/nullptr, |
5019 | /*S*/nullptr); |
5020 | if (CtorArg.isInvalid()) |
5021 | return true; |
5022 | |
5023 | // C++11 [class.copy]p15: |
5024 | // - if a member m has rvalue reference type T&&, it is direct-initialized |
5025 | // with static_cast<T&&>(x.m); |
5026 | if (RefersToRValueRef(MemRef: CtorArg.get())) { |
5027 | CtorArg = CastForMoving(SemaRef, E: CtorArg.get()); |
5028 | } |
5029 | |
5030 | InitializedEntity Entity = |
5031 | Indirect ? InitializedEntity::InitializeMember(Member: Indirect, Parent: nullptr, |
5032 | /*Implicit*/ true) |
5033 | : InitializedEntity::InitializeMember(Member: Field, Parent: nullptr, |
5034 | /*Implicit*/ true); |
5035 | |
5036 | // Direct-initialize to use the copy constructor. |
5037 | InitializationKind InitKind = |
5038 | InitializationKind::CreateDirect(InitLoc: Loc, LParenLoc: SourceLocation(), RParenLoc: SourceLocation()); |
5039 | |
5040 | Expr *CtorArgE = CtorArg.getAs<Expr>(); |
5041 | InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE); |
5042 | ExprResult MemberInit = |
5043 | InitSeq.Perform(S&: SemaRef, Entity, Kind: InitKind, Args: MultiExprArg(&CtorArgE, 1)); |
5044 | MemberInit = SemaRef.MaybeCreateExprWithCleanups(SubExpr: MemberInit); |
5045 | if (MemberInit.isInvalid()) |
5046 | return true; |
5047 | |
5048 | if (Indirect) |
5049 | CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( |
5050 | SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc); |
5051 | else |
5052 | CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( |
5053 | SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc); |
5054 | return false; |
5055 | } |
5056 | |
5057 | assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && |
5058 | "Unhandled implicit init kind!"); |
5059 | |
5060 | QualType FieldBaseElementType = |
5061 | SemaRef.Context.getBaseElementType(Field->getType()); |
5062 | |
5063 | if (FieldBaseElementType->isRecordType()) { |
5064 | InitializedEntity InitEntity = |
5065 | Indirect ? InitializedEntity::InitializeMember(Member: Indirect, Parent: nullptr, |
5066 | /*Implicit*/ true) |
5067 | : InitializedEntity::InitializeMember(Member: Field, Parent: nullptr, |
5068 | /*Implicit*/ true); |
5069 | InitializationKind InitKind = |
5070 | InitializationKind::CreateDefault(InitLoc: Loc); |
5071 | |
5072 | InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, {}); |
5073 | ExprResult MemberInit = InitSeq.Perform(S&: SemaRef, Entity: InitEntity, Kind: InitKind, Args: {}); |
5074 | |
5075 | MemberInit = SemaRef.MaybeCreateExprWithCleanups(SubExpr: MemberInit); |
5076 | if (MemberInit.isInvalid()) |
5077 | return true; |
5078 | |
5079 | if (Indirect) |
5080 | CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, |
5081 | Indirect, Loc, |
5082 | Loc, |
5083 | MemberInit.get(), |
5084 | Loc); |
5085 | else |
5086 | CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, |
5087 | Field, Loc, Loc, |
5088 | MemberInit.get(), |
5089 | Loc); |
5090 | return false; |
5091 | } |
5092 | |
5093 | if (!Field->getParent()->isUnion()) { |
5094 | if (FieldBaseElementType->isReferenceType()) { |
5095 | SemaRef.Diag(Constructor->getLocation(), |
5096 | diag::err_uninitialized_member_in_ctor) |
5097 | << (int)Constructor->isImplicit() |
5098 | << SemaRef.Context.getTagDeclType(Constructor->getParent()) |
5099 | << 0 << Field->getDeclName(); |
5100 | SemaRef.Diag(Field->getLocation(), diag::note_declared_at); |
5101 | return true; |
5102 | } |
5103 | |
5104 | if (FieldBaseElementType.isConstQualified()) { |
5105 | SemaRef.Diag(Constructor->getLocation(), |
5106 | diag::err_uninitialized_member_in_ctor) |
5107 | << (int)Constructor->isImplicit() |
5108 | << SemaRef.Context.getTagDeclType(Constructor->getParent()) |
5109 | << 1 << Field->getDeclName(); |
5110 | SemaRef.Diag(Field->getLocation(), diag::note_declared_at); |
5111 | return true; |
5112 | } |
5113 | } |
5114 | |
5115 | if (FieldBaseElementType.hasNonTrivialObjCLifetime()) { |
5116 | // ARC and Weak: |
5117 | // Default-initialize Objective-C pointers to NULL. |
5118 | CXXMemberInit |
5119 | = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field, |
5120 | Loc, Loc, |
5121 | new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()), |
5122 | Loc); |
5123 | return false; |
5124 | } |
5125 | |
5126 | // Nothing to initialize. |
5127 | CXXMemberInit = nullptr; |
5128 | return false; |
5129 | } |
5130 | |
5131 | namespace { |
5132 | struct BaseAndFieldInfo { |
5133 | Sema &S; |
5134 | CXXConstructorDecl *Ctor; |
5135 | bool AnyErrorsInInits; |
5136 | ImplicitInitializerKind IIK; |
5137 | llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields; |
5138 | SmallVector<CXXCtorInitializer*, 8> AllToInit; |
5139 | llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember; |
5140 | |
5141 | BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits) |
5142 | : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) { |
5143 | bool Generated = Ctor->isImplicit() || Ctor->isDefaulted(); |
5144 | if (Ctor->getInheritedConstructor()) |
5145 | IIK = IIK_Inherit; |
5146 | else if (Generated && Ctor->isCopyConstructor()) |
5147 | IIK = IIK_Copy; |
5148 | else if (Generated && Ctor->isMoveConstructor()) |
5149 | IIK = IIK_Move; |
5150 | else |
5151 | IIK = IIK_Default; |
5152 | } |
5153 | |
5154 | bool isImplicitCopyOrMove() const { |
5155 | switch (IIK) { |
5156 | case IIK_Copy: |
5157 | case IIK_Move: |
5158 | return true; |
5159 | |
5160 | case IIK_Default: |
5161 | case IIK_Inherit: |
5162 | return false; |
5163 | } |
5164 | |
5165 | llvm_unreachable("Invalid ImplicitInitializerKind!"); |
5166 | } |
5167 | |
5168 | bool addFieldInitializer(CXXCtorInitializer *Init) { |
5169 | AllToInit.push_back(Elt: Init); |
5170 | |
5171 | // Check whether this initializer makes the field "used". |
5172 | if (Init->getInit()->HasSideEffects(Ctx: S.Context)) |
5173 | S.UnusedPrivateFields.remove(Init->getAnyMember()); |
5174 | |
5175 | return false; |
5176 | } |
5177 | |
5178 | bool isInactiveUnionMember(FieldDecl *Field) { |
5179 | RecordDecl *Record = Field->getParent(); |
5180 | if (!Record->isUnion()) |
5181 | return false; |
5182 | |
5183 | if (FieldDecl *Active = |
5184 | ActiveUnionMember.lookup(Val: Record->getCanonicalDecl())) |
5185 | return Active != Field->getCanonicalDecl(); |
5186 | |
5187 | // In an implicit copy or move constructor, ignore any in-class initializer. |
5188 | if (isImplicitCopyOrMove()) |
5189 | return true; |
5190 | |
5191 | // If there's no explicit initialization, the field is active only if it |
5192 | // has an in-class initializer... |
5193 | if (Field->hasInClassInitializer()) |
5194 | return false; |
5195 | // ... or it's an anonymous struct or union whose class has an in-class |
5196 | // initializer. |
5197 | if (!Field->isAnonymousStructOrUnion()) |
5198 | return true; |
5199 | CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl(); |
5200 | return !FieldRD->hasInClassInitializer(); |
5201 | } |
5202 | |
5203 | /// Determine whether the given field is, or is within, a union member |
5204 | /// that is inactive (because there was an initializer given for a different |
5205 | /// member of the union, or because the union was not initialized at all). |
5206 | bool isWithinInactiveUnionMember(FieldDecl *Field, |
5207 | IndirectFieldDecl *Indirect) { |
5208 | if (!Indirect) |
5209 | return isInactiveUnionMember(Field); |
5210 | |
5211 | for (auto *C : Indirect->chain()) { |
5212 | FieldDecl *Field = dyn_cast<FieldDecl>(Val: C); |
5213 | if (Field && isInactiveUnionMember(Field)) |
5214 | return true; |
5215 | } |
5216 | return false; |
5217 | } |
5218 | }; |
5219 | } |
5220 | |
5221 | /// Determine whether the given type is an incomplete or zero-lenfgth |
5222 | /// array type. |
5223 | static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) { |
5224 | if (T->isIncompleteArrayType()) |
5225 | return true; |
5226 | |
5227 | while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) { |
5228 | if (ArrayT->isZeroSize()) |
5229 | return true; |
5230 | |
5231 | T = ArrayT->getElementType(); |
5232 | } |
5233 | |
5234 | return false; |
5235 | } |
5236 | |
5237 | static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info, |
5238 | FieldDecl *Field, |
5239 | IndirectFieldDecl *Indirect = nullptr) { |
5240 | if (Field->isInvalidDecl()) |
5241 | return false; |
5242 | |
5243 | // Overwhelmingly common case: we have a direct initializer for this field. |
5244 | if (CXXCtorInitializer *Init = |
5245 | Info.AllBaseFields.lookup(Val: Field->getCanonicalDecl())) |
5246 | return Info.addFieldInitializer(Init); |
5247 | |
5248 | // C++11 [class.base.init]p8: |
5249 | // if the entity is a non-static data member that has a |
5250 | // brace-or-equal-initializer and either |
5251 | // -- the constructor's class is a union and no other variant member of that |
5252 | // union is designated by a mem-initializer-id or |
5253 | // -- the constructor's class is not a union, and, if the entity is a member |
5254 | // of an anonymous union, no other member of that union is designated by |
5255 | // a mem-initializer-id, |
5256 | // the entity is initialized as specified in [dcl.init]. |
5257 | // |
5258 | // We also apply the same rules to handle anonymous structs within anonymous |
5259 | // unions. |
5260 | if (Info.isWithinInactiveUnionMember(Field, Indirect)) |
5261 | return false; |
5262 | |
5263 | if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) { |
5264 | ExprResult DIE = |
5265 | SemaRef.BuildCXXDefaultInitExpr(Loc: Info.Ctor->getLocation(), Field); |
5266 | if (DIE.isInvalid()) |
5267 | return true; |
5268 | |
5269 | auto Entity = InitializedEntity::InitializeMember(Member: Field, Parent: nullptr, Implicit: true); |
5270 | SemaRef.checkInitializerLifetime(Entity, Init: DIE.get()); |
5271 | |
5272 | CXXCtorInitializer *Init; |
5273 | if (Indirect) |
5274 | Init = new (SemaRef.Context) |
5275 | CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(), |
5276 | SourceLocation(), DIE.get(), SourceLocation()); |
5277 | else |
5278 | Init = new (SemaRef.Context) |
5279 | CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(), |
5280 | SourceLocation(), DIE.get(), SourceLocation()); |
5281 | return Info.addFieldInitializer(Init); |
5282 | } |
5283 | |
5284 | // Don't initialize incomplete or zero-length arrays. |
5285 | if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType())) |
5286 | return false; |
5287 | |
5288 | // Don't try to build an implicit initializer if there were semantic |
5289 | // errors in any of the initializers (and therefore we might be |
5290 | // missing some that the user actually wrote). |
5291 | if (Info.AnyErrorsInInits) |
5292 | return false; |
5293 | |
5294 | CXXCtorInitializer *Init = nullptr; |
5295 | if (BuildImplicitMemberInitializer(SemaRef&: Info.S, Constructor: Info.Ctor, ImplicitInitKind: Info.IIK, Field, |
5296 | Indirect, CXXMemberInit&: Init)) |
5297 | return true; |
5298 | |
5299 | if (!Init) |
5300 | return false; |
5301 | |
5302 | return Info.addFieldInitializer(Init); |
5303 | } |
5304 | |
5305 | bool |
5306 | Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor, |
5307 | CXXCtorInitializer *Initializer) { |
5308 | assert(Initializer->isDelegatingInitializer()); |
5309 | Constructor->setNumCtorInitializers(1); |
5310 | CXXCtorInitializer **initializer = |
5311 | new (Context) CXXCtorInitializer*[1]; |
5312 | memcpy(dest: initializer, src: &Initializer, n: sizeof (CXXCtorInitializer*)); |
5313 | Constructor->setCtorInitializers(initializer); |
5314 | |
5315 | if (CXXDestructorDecl *Dtor = LookupDestructor(Class: Constructor->getParent())) { |
5316 | MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor); |
5317 | DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation()); |
5318 | } |
5319 | |
5320 | DelegatingCtorDecls.push_back(LocalValue: Constructor); |
5321 | |
5322 | DiagnoseUninitializedFields(SemaRef&: *this, Constructor); |
5323 | |
5324 | return false; |
5325 | } |
5326 | |
5327 | static CXXDestructorDecl *LookupDestructorIfRelevant(Sema &S, |
5328 | CXXRecordDecl *Class) { |
5329 | if (Class->isInvalidDecl()) |
5330 | return nullptr; |
5331 | if (Class->hasIrrelevantDestructor()) |
5332 | return nullptr; |
5333 | |
5334 | // Dtor might still be missing, e.g because it's invalid. |
5335 | return S.LookupDestructor(Class); |
5336 | } |
5337 | |
5338 | static void MarkFieldDestructorReferenced(Sema &S, SourceLocation Location, |
5339 | FieldDecl *Field) { |
5340 | if (Field->isInvalidDecl()) |
5341 | return; |
5342 | |
5343 | // Don't destroy incomplete or zero-length arrays. |
5344 | if (isIncompleteOrZeroLengthArrayType(S.Context, Field->getType())) |
5345 | return; |
5346 | |
5347 | QualType FieldType = S.Context.getBaseElementType(Field->getType()); |
5348 | |
5349 | auto *FieldClassDecl = FieldType->getAsCXXRecordDecl(); |
5350 | if (!FieldClassDecl) |
5351 | return; |
5352 | |
5353 | // The destructor for an implicit anonymous union member is never invoked. |
5354 | if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) |
5355 | return; |
5356 | |
5357 | auto *Dtor = LookupDestructorIfRelevant(S, FieldClassDecl); |
5358 | if (!Dtor) |
5359 | return; |
5360 | |
5361 | S.CheckDestructorAccess(Field->getLocation(), Dtor, |
5362 | S.PDiag(diag::err_access_dtor_field) |
5363 | << Field->getDeclName() << FieldType); |
5364 | |
5365 | S.MarkFunctionReferenced(Loc: Location, Func: Dtor); |
5366 | S.DiagnoseUseOfDecl(D: Dtor, Locs: Location); |
5367 | } |
5368 | |
5369 | static void MarkBaseDestructorsReferenced(Sema &S, SourceLocation Location, |
5370 | CXXRecordDecl *ClassDecl) { |
5371 | if (ClassDecl->isDependentContext()) |
5372 | return; |
5373 | |
5374 | // We only potentially invoke the destructors of potentially constructed |
5375 | // subobjects. |
5376 | bool VisitVirtualBases = !ClassDecl->isAbstract(); |
5377 | |
5378 | // If the destructor exists and has already been marked used in the MS ABI, |
5379 | // then virtual base destructors have already been checked and marked used. |
5380 | // Skip checking them again to avoid duplicate diagnostics. |
5381 | if (S.Context.getTargetInfo().getCXXABI().isMicrosoft()) { |
5382 | CXXDestructorDecl *Dtor = ClassDecl->getDestructor(); |
5383 | if (Dtor && Dtor->isUsed()) |
5384 | VisitVirtualBases = false; |
5385 | } |
5386 | |
5387 | llvm::SmallPtrSet<const CXXRecordDecl *, 8> DirectVirtualBases; |
5388 | |
5389 | // Bases. |
5390 | for (const auto &Base : ClassDecl->bases()) { |
5391 | auto *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); |
5392 | if (!BaseClassDecl) |
5393 | continue; |
5394 | |
5395 | // Remember direct virtual bases. |
5396 | if (Base.isVirtual()) { |
5397 | if (!VisitVirtualBases) |
5398 | continue; |
5399 | DirectVirtualBases.insert(Ptr: BaseClassDecl); |
5400 | } |
5401 | |
5402 | auto *Dtor = LookupDestructorIfRelevant(S, Class: BaseClassDecl); |
5403 | if (!Dtor) |
5404 | continue; |
5405 | |
5406 | // FIXME: caret should be on the start of the class name |
5407 | S.CheckDestructorAccess(Base.getBeginLoc(), Dtor, |
5408 | S.PDiag(diag::err_access_dtor_base) |
5409 | << Base.getType() << Base.getSourceRange(), |
5410 | S.Context.getTypeDeclType(ClassDecl)); |
5411 | |
5412 | S.MarkFunctionReferenced(Location, Dtor); |
5413 | S.DiagnoseUseOfDecl(Dtor, Location); |
5414 | } |
5415 | |
5416 | if (VisitVirtualBases) |
5417 | S.MarkVirtualBaseDestructorsReferenced(Location, ClassDecl, |
5418 | DirectVirtualBases: &DirectVirtualBases); |
5419 | } |
5420 | |
5421 | bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors, |
5422 | ArrayRef<CXXCtorInitializer *> Initializers) { |
5423 | if (Constructor->isDependentContext()) { |
5424 | // Just store the initializers as written, they will be checked during |
5425 | // instantiation. |
5426 | if (!Initializers.empty()) { |
5427 | Constructor->setNumCtorInitializers(Initializers.size()); |
5428 | CXXCtorInitializer **baseOrMemberInitializers = |
5429 | new (Context) CXXCtorInitializer*[Initializers.size()]; |
5430 | memcpy(dest: baseOrMemberInitializers, src: Initializers.data(), |
5431 | n: Initializers.size() * sizeof(CXXCtorInitializer*)); |
5432 | Constructor->setCtorInitializers(baseOrMemberInitializers); |
5433 | } |
5434 | |
5435 | // Let template instantiation know whether we had errors. |
5436 | if (AnyErrors) |
5437 | Constructor->setInvalidDecl(); |
5438 | |
5439 | return false; |
5440 | } |
5441 | |
5442 | BaseAndFieldInfo Info(*this, Constructor, AnyErrors); |
5443 | |
5444 | // We need to build the initializer AST according to order of construction |
5445 | // and not what user specified in the Initializers list. |
5446 | CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition(); |
5447 | if (!ClassDecl) |
5448 | return true; |
5449 | |
5450 | bool HadError = false; |
5451 | |
5452 | for (unsigned i = 0; i < Initializers.size(); i++) { |
5453 | CXXCtorInitializer *Member = Initializers[i]; |
5454 | |
5455 | if (Member->isBaseInitializer()) |
5456 | Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member; |
5457 | else { |
5458 | Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member; |
5459 | |
5460 | if (IndirectFieldDecl *F = Member->getIndirectMember()) { |
5461 | for (auto *C : F->chain()) { |
5462 | FieldDecl *FD = dyn_cast<FieldDecl>(Val: C); |
5463 | if (FD && FD->getParent()->isUnion()) |
5464 | Info.ActiveUnionMember.insert(std::make_pair( |
5465 | FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); |
5466 | } |
5467 | } else if (FieldDecl *FD = Member->getMember()) { |
5468 | if (FD->getParent()->isUnion()) |
5469 | Info.ActiveUnionMember.insert(std::make_pair( |
5470 | FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); |
5471 | } |
5472 | } |
5473 | } |
5474 | |
5475 | // Keep track of the direct virtual bases. |
5476 | llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases; |
5477 | for (auto &I : ClassDecl->bases()) { |
5478 | if (I.isVirtual()) |
5479 | DirectVBases.insert(&I); |
5480 | } |
5481 | |
5482 | // Push virtual bases before others. |
5483 | for (auto &VBase : ClassDecl->vbases()) { |
5484 | if (CXXCtorInitializer *Value |
5485 | = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) { |
5486 | // [class.base.init]p7, per DR257: |
5487 | // A mem-initializer where the mem-initializer-id names a virtual base |
5488 | // class is ignored during execution of a constructor of any class that |
5489 | // is not the most derived class. |
5490 | if (ClassDecl->isAbstract()) { |
5491 | // FIXME: Provide a fixit to remove the base specifier. This requires |
5492 | // tracking the location of the associated comma for a base specifier. |
5493 | Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored) |
5494 | << VBase.getType() << ClassDecl; |
5495 | DiagnoseAbstractType(ClassDecl); |
5496 | } |
5497 | |
5498 | Info.AllToInit.push_back(Value); |
5499 | } else if (!AnyErrors && !ClassDecl->isAbstract()) { |
5500 | // [class.base.init]p8, per DR257: |
5501 | // If a given [...] base class is not named by a mem-initializer-id |
5502 | // [...] and the entity is not a virtual base class of an abstract |
5503 | // class, then [...] the entity is default-initialized. |
5504 | bool IsInheritedVirtualBase = !DirectVBases.count(&VBase); |
5505 | CXXCtorInitializer *CXXBaseInit; |
5506 | if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, |
5507 | &VBase, IsInheritedVirtualBase, |
5508 | CXXBaseInit)) { |
5509 | HadError = true; |
5510 | continue; |
5511 | } |
5512 | |
5513 | Info.AllToInit.push_back(CXXBaseInit); |
5514 | } |
5515 | } |
5516 | |
5517 | // Non-virtual bases. |
5518 | for (auto &Base : ClassDecl->bases()) { |
5519 | // Virtuals are in the virtual base list and already constructed. |
5520 | if (Base.isVirtual()) |
5521 | continue; |
5522 | |
5523 | if (CXXCtorInitializer *Value |
5524 | = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) { |
5525 | Info.AllToInit.push_back(Value); |
5526 | } else if (!AnyErrors) { |
5527 | CXXCtorInitializer *CXXBaseInit; |
5528 | if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, |
5529 | &Base, /*IsInheritedVirtualBase=*/false, |
5530 | CXXBaseInit)) { |
5531 | HadError = true; |
5532 | continue; |
5533 | } |
5534 | |
5535 | Info.AllToInit.push_back(CXXBaseInit); |
5536 | } |
5537 | } |
5538 | |
5539 | // Fields. |
5540 | for (auto *Mem : ClassDecl->decls()) { |
5541 | if (auto *F = dyn_cast<FieldDecl>(Mem)) { |
5542 | // C++ [class.bit]p2: |
5543 | // A declaration for a bit-field that omits the identifier declares an |
5544 | // unnamed bit-field. Unnamed bit-fields are not members and cannot be |
5545 | // initialized. |
5546 | if (F->isUnnamedBitField()) |
5547 | continue; |
5548 | |
5549 | // If we're not generating the implicit copy/move constructor, then we'll |
5550 | // handle anonymous struct/union fields based on their individual |
5551 | // indirect fields. |
5552 | if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove()) |
5553 | continue; |
5554 | |
5555 | if (CollectFieldInitializer(*this, Info, F)) |
5556 | HadError = true; |
5557 | continue; |
5558 | } |
5559 | |
5560 | // Beyond this point, we only consider default initialization. |
5561 | if (Info.isImplicitCopyOrMove()) |
5562 | continue; |
5563 | |
5564 | if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) { |
5565 | if (F->getType()->isIncompleteArrayType()) { |
5566 | assert(ClassDecl->hasFlexibleArrayMember() && |
5567 | "Incomplete array type is not valid"); |
5568 | continue; |
5569 | } |
5570 | |
5571 | // Initialize each field of an anonymous struct individually. |
5572 | if (CollectFieldInitializer(*this, Info, F->getAnonField(), F)) |
5573 | HadError = true; |
5574 | |
5575 | continue; |
5576 | } |
5577 | } |
5578 | |
5579 | unsigned NumInitializers = Info.AllToInit.size(); |
5580 | if (NumInitializers > 0) { |
5581 | Constructor->setNumCtorInitializers(NumInitializers); |
5582 | CXXCtorInitializer **baseOrMemberInitializers = |
5583 | new (Context) CXXCtorInitializer*[NumInitializers]; |
5584 | memcpy(dest: baseOrMemberInitializers, src: Info.AllToInit.data(), |
5585 | n: NumInitializers * sizeof(CXXCtorInitializer*)); |
5586 | Constructor->setCtorInitializers(baseOrMemberInitializers); |
5587 | |
5588 | SourceLocation Location = Constructor->getLocation(); |
5589 | |
5590 | // Constructors implicitly reference the base and member |
5591 | // destructors. |
5592 | |
5593 | for (CXXCtorInitializer *Initializer : Info.AllToInit) { |
5594 | FieldDecl *Field = Initializer->getAnyMember(); |
5595 | if (!Field) |
5596 | continue; |
5597 | |
5598 | // C++ [class.base.init]p12: |
5599 | // In a non-delegating constructor, the destructor for each |
5600 | // potentially constructed subobject of class type is potentially |
5601 | // invoked. |
5602 | MarkFieldDestructorReferenced(S&: *this, Location, Field); |
5603 | } |
5604 | |
5605 | MarkBaseDestructorsReferenced(*this, Location, Constructor->getParent()); |
5606 | } |
5607 | |
5608 | return HadError; |
5609 | } |
5610 | |
5611 | static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) { |
5612 | if (const RecordType *RT = Field->getType()->getAs<RecordType>()) { |
5613 | const RecordDecl *RD = RT->getDecl(); |
5614 | if (RD->isAnonymousStructOrUnion()) { |
5615 | for (auto *Field : RD->fields()) |
5616 | PopulateKeysForFields(Field, IdealInits); |
5617 | return; |
5618 | } |
5619 | } |
5620 | IdealInits.push_back(Elt: Field->getCanonicalDecl()); |
5621 | } |
5622 | |
5623 | static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) { |
5624 | return Context.getCanonicalType(T: BaseType).getTypePtr(); |
5625 | } |
5626 | |
5627 | static const void *GetKeyForMember(ASTContext &Context, |
5628 | CXXCtorInitializer *Member) { |
5629 | if (!Member->isAnyMemberInitializer()) |
5630 | return GetKeyForBase(Context, BaseType: QualType(Member->getBaseClass(), 0)); |
5631 | |
5632 | return Member->getAnyMember()->getCanonicalDecl(); |
5633 | } |
5634 | |
5635 | static void AddInitializerToDiag(const Sema::SemaDiagnosticBuilder &Diag, |
5636 | const CXXCtorInitializer *Previous, |
5637 | const CXXCtorInitializer *Current) { |
5638 | if (Previous->isAnyMemberInitializer()) |
5639 | Diag << 0 << Previous->getAnyMember(); |
5640 | else |
5641 | Diag << 1 << Previous->getTypeSourceInfo()->getType(); |
5642 | |
5643 | if (Current->isAnyMemberInitializer()) |
5644 | Diag << 0 << Current->getAnyMember(); |
5645 | else |
5646 | Diag << 1 << Current->getTypeSourceInfo()->getType(); |
5647 | } |
5648 | |
5649 | static void DiagnoseBaseOrMemInitializerOrder( |
5650 | Sema &SemaRef, const CXXConstructorDecl *Constructor, |
5651 | ArrayRef<CXXCtorInitializer *> Inits) { |
5652 | if (Constructor->getDeclContext()->isDependentContext()) |
5653 | return; |
5654 | |
5655 | // Don't check initializers order unless the warning is enabled at the |
5656 | // location of at least one initializer. |
5657 | bool ShouldCheckOrder = false; |
5658 | for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { |
5659 | CXXCtorInitializer *Init = Inits[InitIndex]; |
5660 | if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order, |
5661 | Init->getSourceLocation())) { |
5662 | ShouldCheckOrder = true; |
5663 | break; |
5664 | } |
5665 | } |
5666 | if (!ShouldCheckOrder) |
5667 | return; |
5668 | |
5669 | // Build the list of bases and members in the order that they'll |
5670 | // actually be initialized. The explicit initializers should be in |
5671 | // this same order but may be missing things. |
5672 | SmallVector<const void*, 32> IdealInitKeys; |
5673 | |
5674 | const CXXRecordDecl *ClassDecl = Constructor->getParent(); |
5675 | |
5676 | // 1. Virtual bases. |
5677 | for (const auto &VBase : ClassDecl->vbases()) |
5678 | IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType())); |
5679 | |
5680 | // 2. Non-virtual bases. |
5681 | for (const auto &Base : ClassDecl->bases()) { |
5682 | if (Base.isVirtual()) |
5683 | continue; |
5684 | IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType())); |
5685 | } |
5686 | |
5687 | // 3. Direct fields. |
5688 | for (auto *Field : ClassDecl->fields()) { |
5689 | if (Field->isUnnamedBitField()) |
5690 | continue; |
5691 | |
5692 | PopulateKeysForFields(Field, IdealInitKeys); |
5693 | } |
5694 | |
5695 | unsigned NumIdealInits = IdealInitKeys.size(); |
5696 | unsigned IdealIndex = 0; |
5697 | |
5698 | // Track initializers that are in an incorrect order for either a warning or |
5699 | // note if multiple ones occur. |
5700 | SmallVector<unsigned> WarnIndexes; |
5701 | // Correlates the index of an initializer in the init-list to the index of |
5702 | // the field/base in the class. |
5703 | SmallVector<std::pair<unsigned, unsigned>, 32> CorrelatedInitOrder; |
5704 | |
5705 | for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { |
5706 | const void *InitKey = GetKeyForMember(Context&: SemaRef.Context, Member: Inits[InitIndex]); |
5707 | |
5708 | // Scan forward to try to find this initializer in the idealized |
5709 | // initializers list. |
5710 | for (; IdealIndex != NumIdealInits; ++IdealIndex) |
5711 | if (InitKey == IdealInitKeys[IdealIndex]) |
5712 | break; |
5713 | |
5714 | // If we didn't find this initializer, it must be because we |
5715 | // scanned past it on a previous iteration. That can only |
5716 | // happen if we're out of order; emit a warning. |
5717 | if (IdealIndex == NumIdealInits && InitIndex) { |
5718 | WarnIndexes.push_back(Elt: InitIndex); |
5719 | |
5720 | // Move back to the initializer's location in the ideal list. |
5721 | for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex) |
5722 | if (InitKey == IdealInitKeys[IdealIndex]) |
5723 | break; |
5724 | |
5725 | assert(IdealIndex < NumIdealInits && |
5726 | "initializer not found in initializer list"); |
5727 | } |
5728 | CorrelatedInitOrder.emplace_back(Args&: IdealIndex, Args&: InitIndex); |
5729 | } |
5730 | |
5731 | if (WarnIndexes.empty()) |
5732 | return; |
5733 | |
5734 | // Sort based on the ideal order, first in the pair. |
5735 | llvm::sort(C&: CorrelatedInitOrder, Comp: llvm::less_first()); |
5736 | |
5737 | // Introduce a new scope as SemaDiagnosticBuilder needs to be destroyed to |
5738 | // emit the diagnostic before we can try adding notes. |
5739 | { |
5740 | Sema::SemaDiagnosticBuilder D = SemaRef.Diag( |
5741 | Inits[WarnIndexes.front() - 1]->getSourceLocation(), |
5742 | WarnIndexes.size() == 1 ? diag::warn_initializer_out_of_order |
5743 | : diag::warn_some_initializers_out_of_order); |
5744 | |
5745 | for (unsigned I = 0; I < CorrelatedInitOrder.size(); ++I) { |
5746 | if (CorrelatedInitOrder[I].second == I) |
5747 | continue; |
5748 | // Ideally we would be using InsertFromRange here, but clang doesn't |
5749 | // appear to handle InsertFromRange correctly when the source range is |
5750 | // modified by another fix-it. |
5751 | D << FixItHint::CreateReplacement( |
5752 | RemoveRange: Inits[I]->getSourceRange(), |
5753 | Code: Lexer::getSourceText( |
5754 | Range: CharSourceRange::getTokenRange( |
5755 | R: Inits[CorrelatedInitOrder[I].second]->getSourceRange()), |
5756 | SM: SemaRef.getSourceManager(), LangOpts: SemaRef.getLangOpts())); |
5757 | } |
5758 | |
5759 | // If there is only 1 item out of order, the warning expects the name and |
5760 | // type of each being added to it. |
5761 | if (WarnIndexes.size() == 1) { |
5762 | AddInitializerToDiag(Diag: D, Previous: Inits[WarnIndexes.front() - 1], |
5763 | Current: Inits[WarnIndexes.front()]); |
5764 | return; |
5765 | } |
5766 | } |
5767 | // More than 1 item to warn, create notes letting the user know which ones |
5768 | // are bad. |
5769 | for (unsigned WarnIndex : WarnIndexes) { |
5770 | const clang::CXXCtorInitializer *PrevInit = Inits[WarnIndex - 1]; |
5771 | auto D = SemaRef.Diag(PrevInit->getSourceLocation(), |
5772 | diag::note_initializer_out_of_order); |
5773 | AddInitializerToDiag(D, PrevInit, Inits[WarnIndex]); |
5774 | D << PrevInit->getSourceRange(); |
5775 | } |
5776 | } |
5777 | |
5778 | namespace { |
5779 | bool CheckRedundantInit(Sema &S, |
5780 | CXXCtorInitializer *Init, |
5781 | CXXCtorInitializer *&PrevInit) { |
5782 | if (!PrevInit) { |
5783 | PrevInit = Init; |
5784 | return false; |
5785 | } |
5786 | |
5787 | if (FieldDecl *Field = Init->getAnyMember()) |
5788 | S.Diag(Init->getSourceLocation(), |
5789 | diag::err_multiple_mem_initialization) |
5790 | << Field->getDeclName() |
5791 | << Init->getSourceRange(); |
5792 | else { |
5793 | const Type *BaseClass = Init->getBaseClass(); |
5794 | assert(BaseClass && "neither field nor base"); |
5795 | S.Diag(Init->getSourceLocation(), |
5796 | diag::err_multiple_base_initialization) |
5797 | << QualType(BaseClass, 0) |
5798 | << Init->getSourceRange(); |
5799 | } |
5800 | S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer) |
5801 | << 0 << PrevInit->getSourceRange(); |
5802 | |
5803 | return true; |
5804 | } |
5805 | |
5806 | typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry; |
5807 | typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap; |
5808 | |
5809 | bool CheckRedundantUnionInit(Sema &S, |
5810 | CXXCtorInitializer *Init, |
5811 | RedundantUnionMap &Unions) { |
5812 | FieldDecl *Field = Init->getAnyMember(); |
5813 | RecordDecl *Parent = Field->getParent(); |
5814 | NamedDecl *Child = Field; |
5815 | |
5816 | while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) { |
5817 | if (Parent->isUnion()) { |
5818 | UnionEntry &En = Unions[Parent]; |
5819 | if (En.first && En.first != Child) { |
5820 | S.Diag(Init->getSourceLocation(), |
5821 | diag::err_multiple_mem_union_initialization) |
5822 | << Field->getDeclName() |
5823 | << Init->getSourceRange(); |
5824 | S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer) |
5825 | << 0 << En.second->getSourceRange(); |
5826 | return true; |
5827 | } |
5828 | if (!En.first) { |
5829 | En.first = Child; |
5830 | En.second = Init; |
5831 | } |
5832 | if (!Parent->isAnonymousStructOrUnion()) |
5833 | return false; |
5834 | } |
5835 | |
5836 | Child = Parent; |
5837 | Parent = cast<RecordDecl>(Parent->getDeclContext()); |
5838 | } |
5839 | |
5840 | return false; |
5841 | } |
5842 | } // namespace |
5843 | |
5844 | void Sema::ActOnMemInitializers(Decl *ConstructorDecl, |
5845 | SourceLocation ColonLoc, |
5846 | ArrayRef<CXXCtorInitializer*> MemInits, |
5847 | bool AnyErrors) { |
5848 | if (!ConstructorDecl) |
5849 | return; |
5850 | |
5851 | AdjustDeclIfTemplate(Decl&: ConstructorDecl); |
5852 | |
5853 | CXXConstructorDecl *Constructor |
5854 | = dyn_cast<CXXConstructorDecl>(Val: ConstructorDecl); |
5855 | |
5856 | if (!Constructor) { |
5857 | Diag(ColonLoc, diag::err_only_constructors_take_base_inits); |
5858 | return; |
5859 | } |
5860 | |
5861 | // Mapping for the duplicate initializers check. |
5862 | // For member initializers, this is keyed with a FieldDecl*. |
5863 | // For base initializers, this is keyed with a Type*. |
5864 | llvm::DenseMap<const void *, CXXCtorInitializer *> Members; |
5865 | |
5866 | // Mapping for the inconsistent anonymous-union initializers check. |
5867 | RedundantUnionMap MemberUnions; |
5868 | |
5869 | bool HadError = false; |
5870 | for (unsigned i = 0; i < MemInits.size(); i++) { |
5871 | CXXCtorInitializer *Init = MemInits[i]; |
5872 | |
5873 | // Set the source order index. |
5874 | Init->setSourceOrder(i); |
5875 | |
5876 | if (Init->isAnyMemberInitializer()) { |
5877 | const void *Key = GetKeyForMember(Context, Member: Init); |
5878 | if (CheckRedundantInit(S&: *this, Init, PrevInit&: Members[Key]) || |
5879 | CheckRedundantUnionInit(S&: *this, Init, Unions&: MemberUnions)) |
5880 | HadError = true; |
5881 | } else if (Init->isBaseInitializer()) { |
5882 | const void *Key = GetKeyForMember(Context, Member: Init); |
5883 | if (CheckRedundantInit(S&: *this, Init, PrevInit&: Members[Key])) |
5884 | HadError = true; |
5885 | } else { |
5886 | assert(Init->isDelegatingInitializer()); |
5887 | // This must be the only initializer |
5888 | if (MemInits.size() != 1) { |
5889 | Diag(Init->getSourceLocation(), |
5890 | diag::err_delegating_initializer_alone) |
5891 | << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange(); |
5892 | // We will treat this as being the only initializer. |
5893 | } |
5894 | SetDelegatingInitializer(Constructor, Initializer: MemInits[i]); |
5895 | // Return immediately as the initializer is set. |
5896 | return; |
5897 | } |
5898 | } |
5899 | |
5900 | if (HadError) |
5901 | return; |
5902 | |
5903 | DiagnoseBaseOrMemInitializerOrder(SemaRef&: *this, Constructor, Inits: MemInits); |
5904 | |
5905 | SetCtorInitializers(Constructor, AnyErrors, Initializers: MemInits); |
5906 | |
5907 | DiagnoseUninitializedFields(SemaRef&: *this, Constructor); |
5908 | } |
5909 | |
5910 | void Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location, |
5911 | CXXRecordDecl *ClassDecl) { |
5912 | // Ignore dependent contexts. Also ignore unions, since their members never |
5913 | // have destructors implicitly called. |
5914 | if (ClassDecl->isDependentContext() || ClassDecl->isUnion()) |
5915 | return; |
5916 | |
5917 | // FIXME: all the access-control diagnostics are positioned on the |
5918 | // field/base declaration. That's probably good; that said, the |
5919 | // user might reasonably want to know why the destructor is being |
5920 | // emitted, and we currently don't say. |
5921 | |
5922 | // Non-static data members. |
5923 | for (auto *Field : ClassDecl->fields()) { |
5924 | MarkFieldDestructorReferenced(*this, Location, Field); |
5925 | } |
5926 | |
5927 | MarkBaseDestructorsReferenced(S&: *this, Location, ClassDecl); |
5928 | } |
5929 | |
5930 | void Sema::MarkVirtualBaseDestructorsReferenced( |
5931 | SourceLocation Location, CXXRecordDecl *ClassDecl, |
5932 | llvm::SmallPtrSetImpl<const CXXRecordDecl *> *DirectVirtualBases) { |
5933 | // Virtual bases. |
5934 | for (const auto &VBase : ClassDecl->vbases()) { |
5935 | auto *BaseClassDecl = VBase.getType()->getAsCXXRecordDecl(); |
5936 | if (!BaseClassDecl) |
5937 | continue; |
5938 | |
5939 | // Ignore already visited direct virtual bases. |
5940 | if (DirectVirtualBases && DirectVirtualBases->count(Ptr: BaseClassDecl)) |
5941 | continue; |
5942 | |
5943 | auto *Dtor = LookupDestructorIfRelevant(S&: *this, Class: BaseClassDecl); |
5944 | if (!Dtor) |
5945 | continue; |
5946 | |
5947 | if (CheckDestructorAccess( |
5948 | ClassDecl->getLocation(), Dtor, |
5949 | PDiag(diag::err_access_dtor_vbase) |
5950 | << Context.getTypeDeclType(ClassDecl) << VBase.getType(), |
5951 | Context.getTypeDeclType(ClassDecl)) == |
5952 | AR_accessible) { |
5953 | CheckDerivedToBaseConversion( |
5954 | Context.getTypeDeclType(ClassDecl), VBase.getType(), |
5955 | diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(), |
5956 | SourceRange(), DeclarationName(), nullptr); |
5957 | } |
5958 | |
5959 | MarkFunctionReferenced(Location, Dtor); |
5960 | DiagnoseUseOfDecl(Dtor, Location); |
5961 | } |
5962 | } |
5963 | |
5964 | void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) { |
5965 | if (!CDtorDecl) |
5966 | return; |
5967 | |
5968 | if (CXXConstructorDecl *Constructor |
5969 | = dyn_cast<CXXConstructorDecl>(Val: CDtorDecl)) { |
5970 | if (CXXRecordDecl *ClassDecl = Constructor->getParent(); |
5971 | !ClassDecl || ClassDecl->isInvalidDecl()) { |
5972 | return; |
5973 | } |
5974 | SetCtorInitializers(Constructor, /*AnyErrors=*/false); |
5975 | DiagnoseUninitializedFields(SemaRef&: *this, Constructor); |
5976 | } |
5977 | } |
5978 | |
5979 | bool Sema::isAbstractType(SourceLocation Loc, QualType T) { |
5980 | if (!getLangOpts().CPlusPlus) |
5981 | return false; |
5982 | |
5983 | const auto *RD = Context.getBaseElementType(QT: T)->getAsCXXRecordDecl(); |
5984 | if (!RD) |
5985 | return false; |
5986 | |
5987 | // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a |
5988 | // class template specialization here, but doing so breaks a lot of code. |
5989 | |
5990 | // We can't answer whether something is abstract until it has a |
5991 | // definition. If it's currently being defined, we'll walk back |
5992 | // over all the declarations when we have a full definition. |
5993 | const CXXRecordDecl *Def = RD->getDefinition(); |
5994 | if (!Def || Def->isBeingDefined()) |
5995 | return false; |
5996 | |
5997 | return RD->isAbstract(); |
5998 | } |
5999 | |
6000 | bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, |
6001 | TypeDiagnoser &Diagnoser) { |
6002 | if (!isAbstractType(Loc, T)) |
6003 | return false; |
6004 | |
6005 | T = Context.getBaseElementType(QT: T); |
6006 | Diagnoser.diagnose(S&: *this, Loc, T); |
6007 | DiagnoseAbstractType(RD: T->getAsCXXRecordDecl()); |
6008 | return true; |
6009 | } |
6010 | |
6011 | void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) { |
6012 | // Check if we've already emitted the list of pure virtual functions |
6013 | // for this class. |
6014 | if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(Ptr: RD)) |
6015 | return; |
6016 | |
6017 | // If the diagnostic is suppressed, don't emit the notes. We're only |
6018 | // going to emit them once, so try to attach them to a diagnostic we're |
6019 | // actually going to show. |
6020 | if (Diags.isLastDiagnosticIgnored()) |
6021 | return; |
6022 | |
6023 | CXXFinalOverriderMap FinalOverriders; |
6024 | RD->getFinalOverriders(FinaOverriders&: FinalOverriders); |
6025 | |
6026 | // Keep a set of seen pure methods so we won't diagnose the same method |
6027 | // more than once. |
6028 | llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods; |
6029 | |
6030 | for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), |
6031 | MEnd = FinalOverriders.end(); |
6032 | M != MEnd; |
6033 | ++M) { |
6034 | for (OverridingMethods::iterator SO = M->second.begin(), |
6035 | SOEnd = M->second.end(); |
6036 | SO != SOEnd; ++SO) { |
6037 | // C++ [class.abstract]p4: |
6038 | // A class is abstract if it contains or inherits at least one |
6039 | // pure virtual function for which the final overrider is pure |
6040 | // virtual. |
6041 | |
6042 | // |
6043 | if (SO->second.size() != 1) |
6044 | continue; |
6045 | |
6046 | if (!SO->second.front().Method->isPureVirtual()) |
6047 | continue; |
6048 | |
6049 | if (!SeenPureMethods.insert(Ptr: SO->second.front().Method).second) |
6050 | continue; |
6051 | |
6052 | Diag(SO->second.front().Method->getLocation(), |
6053 | diag::note_pure_virtual_function) |
6054 | << SO->second.front().Method->getDeclName() << RD->getDeclName(); |
6055 | } |
6056 | } |
6057 | |
6058 | if (!PureVirtualClassDiagSet) |
6059 | PureVirtualClassDiagSet.reset(p: new RecordDeclSetTy); |
6060 | PureVirtualClassDiagSet->insert(Ptr: RD); |
6061 | } |
6062 | |
6063 | namespace { |
6064 | struct AbstractUsageInfo { |
6065 | Sema &S; |
6066 | CXXRecordDecl *Record; |
6067 | CanQualType AbstractType; |
6068 | bool Invalid; |
6069 | |
6070 | AbstractUsageInfo(Sema &S, CXXRecordDecl *Record) |
6071 | : S(S), Record(Record), |
6072 | AbstractType(S.Context.getCanonicalType( |
6073 | S.Context.getTypeDeclType(Record))), |
6074 | Invalid(false) {} |
6075 | |
6076 | void DiagnoseAbstractType() { |
6077 | if (Invalid) return; |
6078 | S.DiagnoseAbstractType(RD: Record); |
6079 | Invalid = true; |
6080 | } |
6081 | |
6082 | void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel); |
6083 | }; |
6084 | |
6085 | struct CheckAbstractUsage { |
6086 | AbstractUsageInfo &Info; |
6087 | const NamedDecl *Ctx; |
6088 | |
6089 | CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx) |
6090 | : Info(Info), Ctx(Ctx) {} |
6091 | |
6092 | void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) { |
6093 | switch (TL.getTypeLocClass()) { |
6094 | #define ABSTRACT_TYPELOC(CLASS, PARENT) |
6095 | #define TYPELOC(CLASS, PARENT) \ |
6096 | case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break; |
6097 | #include "clang/AST/TypeLocNodes.def" |
6098 | } |
6099 | } |
6100 | |
6101 | void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) { |
6102 | Visit(TL: TL.getReturnLoc(), Sel: Sema::AbstractReturnType); |
6103 | for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) { |
6104 | if (!TL.getParam(I)) |
6105 | continue; |
6106 | |
6107 | TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo(); |
6108 | if (TSI) Visit(TL: TSI->getTypeLoc(), Sel: Sema::AbstractParamType); |
6109 | } |
6110 | } |
6111 | |
6112 | void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) { |
6113 | Visit(TL: TL.getElementLoc(), Sel: Sema::AbstractArrayType); |
6114 | } |
6115 | |
6116 | void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) { |
6117 | // Visit the type parameters from a permissive context. |
6118 | for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { |
6119 | TemplateArgumentLoc TAL = TL.getArgLoc(i: I); |
6120 | if (TAL.getArgument().getKind() == TemplateArgument::Type) |
6121 | if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo()) |
6122 | Visit(TL: TSI->getTypeLoc(), Sel: Sema::AbstractNone); |
6123 | // TODO: other template argument types? |
6124 | } |
6125 | } |
6126 | |
6127 | // Visit pointee types from a permissive context. |
6128 | #define CheckPolymorphic(Type) \ |
6129 | void Check(Type TL, Sema::AbstractDiagSelID Sel) { \ |
6130 | Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \ |
6131 | } |
6132 | CheckPolymorphic(PointerTypeLoc) |
6133 | CheckPolymorphic(ReferenceTypeLoc) |
6134 | CheckPolymorphic(MemberPointerTypeLoc) |
6135 | CheckPolymorphic(BlockPointerTypeLoc) |
6136 | CheckPolymorphic(AtomicTypeLoc) |
6137 | |
6138 | /// Handle all the types we haven't given a more specific |
6139 | /// implementation for above. |
6140 | void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) { |
6141 | // Every other kind of type that we haven't called out already |
6142 | // that has an inner type is either (1) sugar or (2) contains that |
6143 | // inner type in some way as a subobject. |
6144 | if (TypeLoc Next = TL.getNextTypeLoc()) |
6145 | return Visit(TL: Next, Sel); |
6146 | |
6147 | // If there's no inner type and we're in a permissive context, |
6148 | // don't diagnose. |
6149 | if (Sel == Sema::AbstractNone) return; |
6150 | |
6151 | // Check whether the type matches the abstract type. |
6152 | QualType T = TL.getType(); |
6153 | if (T->isArrayType()) { |
6154 | Sel = Sema::AbstractArrayType; |
6155 | T = Info.S.Context.getBaseElementType(QT: T); |
6156 | } |
6157 | CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType(); |
6158 | if (CT != Info.AbstractType) return; |
6159 | |
6160 | // It matched; do some magic. |
6161 | // FIXME: These should be at most warnings. See P0929R2, CWG1640, CWG1646. |
6162 | if (Sel == Sema::AbstractArrayType) { |
6163 | Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type) |
6164 | << T << TL.getSourceRange(); |
6165 | } else { |
6166 | Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl) |
6167 | << Sel << T << TL.getSourceRange(); |
6168 | } |
6169 | Info.DiagnoseAbstractType(); |
6170 | } |
6171 | }; |
6172 | |
6173 | void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL, |
6174 | Sema::AbstractDiagSelID Sel) { |
6175 | CheckAbstractUsage(*this, D).Visit(TL, Sel); |
6176 | } |
6177 | |
6178 | } |
6179 | |
6180 | /// Check for invalid uses of an abstract type in a function declaration. |
6181 | static void CheckAbstractClassUsage(AbstractUsageInfo &Info, |
6182 | FunctionDecl *FD) { |
6183 | // Only definitions are required to refer to complete and |
6184 | // non-abstract types. |
6185 | if (!FD->doesThisDeclarationHaveABody()) |
6186 | return; |
6187 | |
6188 | // For safety's sake, just ignore it if we don't have type source |
6189 | // information. This should never happen for non-implicit methods, |
6190 | // but... |
6191 | if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) |
6192 | Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractNone); |
6193 | } |
6194 | |
6195 | /// Check for invalid uses of an abstract type in a variable0 declaration. |
6196 | static void CheckAbstractClassUsage(AbstractUsageInfo &Info, |
6197 | VarDecl *VD) { |
6198 | // No need to do the check on definitions, which require that |
6199 | // the type is complete. |
6200 | if (VD->isThisDeclarationADefinition()) |
6201 | return; |
6202 | |
6203 | Info.CheckType(D: VD, TL: VD->getTypeSourceInfo()->getTypeLoc(), |
6204 | Sel: Sema::AbstractVariableType); |
6205 | } |
6206 | |
6207 | /// Check for invalid uses of an abstract type within a class definition. |
6208 | static void CheckAbstractClassUsage(AbstractUsageInfo &Info, |
6209 | CXXRecordDecl *RD) { |
6210 | for (auto *D : RD->decls()) { |
6211 | if (D->isImplicit()) continue; |
6212 | |
6213 | // Step through friends to the befriended declaration. |
6214 | if (auto *FD = dyn_cast<FriendDecl>(D)) { |
6215 | D = FD->getFriendDecl(); |
6216 | if (!D) continue; |
6217 | } |
6218 | |
6219 | // Functions and function templates. |
6220 | if (auto *FD = dyn_cast<FunctionDecl>(D)) { |
6221 | CheckAbstractClassUsage(Info, FD); |
6222 | } else if (auto *FTD = dyn_cast<FunctionTemplateDecl>(D)) { |
6223 | CheckAbstractClassUsage(Info, FTD->getTemplatedDecl()); |
6224 | |
6225 | // Fields and static variables. |
6226 | } else if (auto *FD = dyn_cast<FieldDecl>(D)) { |
6227 | if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) |
6228 | Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType); |
6229 | } else if (auto *VD = dyn_cast<VarDecl>(D)) { |
6230 | CheckAbstractClassUsage(Info, VD); |
6231 | } else if (auto *VTD = dyn_cast<VarTemplateDecl>(D)) { |
6232 | CheckAbstractClassUsage(Info, VTD->getTemplatedDecl()); |
6233 | |
6234 | // Nested classes and class templates. |
6235 | } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) { |
6236 | CheckAbstractClassUsage(Info, RD); |
6237 | } else if (auto *CTD = dyn_cast<ClassTemplateDecl>(D)) { |
6238 | CheckAbstractClassUsage(Info, CTD->getTemplatedDecl()); |
6239 | } |
6240 | } |
6241 | } |
6242 | |
6243 | static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) { |
6244 | Attr *ClassAttr = getDLLAttr(Class); |
6245 | if (!ClassAttr) |
6246 | return; |
6247 | |
6248 | assert(ClassAttr->getKind() == attr::DLLExport); |
6249 | |
6250 | TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); |
6251 | |
6252 | if (TSK == TSK_ExplicitInstantiationDeclaration) |
6253 | // Don't go any further if this is just an explicit instantiation |
6254 | // declaration. |
6255 | return; |
6256 | |
6257 | // Add a context note to explain how we got to any diagnostics produced below. |
6258 | struct MarkingClassDllexported { |
6259 | Sema &S; |
6260 | MarkingClassDllexported(Sema &S, CXXRecordDecl *Class, |
6261 | SourceLocation AttrLoc) |
6262 | : S(S) { |
6263 | Sema::CodeSynthesisContext Ctx; |
6264 | Ctx.Kind = Sema::CodeSynthesisContext::MarkingClassDllexported; |
6265 | Ctx.PointOfInstantiation = AttrLoc; |
6266 | Ctx.Entity = Class; |
6267 | S.pushCodeSynthesisContext(Ctx); |
6268 | } |
6269 | ~MarkingClassDllexported() { |
6270 | S.popCodeSynthesisContext(); |
6271 | } |
6272 | } MarkingDllexportedContext(S, Class, ClassAttr->getLocation()); |
6273 | |
6274 | if (S.Context.getTargetInfo().getTriple().isOSCygMing()) |
6275 | S.MarkVTableUsed(Loc: Class->getLocation(), Class, DefinitionRequired: true); |
6276 | |
6277 | for (Decl *Member : Class->decls()) { |
6278 | // Skip members that were not marked exported. |
6279 | if (!Member->hasAttr<DLLExportAttr>()) |
6280 | continue; |
6281 | |
6282 | // Defined static variables that are members of an exported base |
6283 | // class must be marked export too. |
6284 | auto *VD = dyn_cast<VarDecl>(Member); |
6285 | if (VD && VD->getStorageClass() == SC_Static && |
6286 | TSK == TSK_ImplicitInstantiation) |
6287 | S.MarkVariableReferenced(VD->getLocation(), VD); |
6288 | |
6289 | auto *MD = dyn_cast<CXXMethodDecl>(Member); |
6290 | if (!MD) |
6291 | continue; |
6292 | |
6293 | if (MD->isUserProvided()) { |
6294 | // Instantiate non-default class member functions ... |
6295 | |
6296 | // .. except for certain kinds of template specializations. |
6297 | if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited()) |
6298 | continue; |
6299 | |
6300 | // If this is an MS ABI dllexport default constructor, instantiate any |
6301 | // default arguments. |
6302 | if (S.Context.getTargetInfo().getCXXABI().isMicrosoft()) { |
6303 | auto *CD = dyn_cast<CXXConstructorDecl>(MD); |
6304 | if (CD && CD->isDefaultConstructor() && TSK == TSK_Undeclared) { |
6305 | S.InstantiateDefaultCtorDefaultArgs(CD); |
6306 | } |
6307 | } |
6308 | |
6309 | S.MarkFunctionReferenced(Class->getLocation(), MD); |
6310 | |
6311 | // The function will be passed to the consumer when its definition is |
6312 | // encountered. |
6313 | } else if (MD->isExplicitlyDefaulted()) { |
6314 | // Synthesize and instantiate explicitly defaulted methods. |
6315 | S.MarkFunctionReferenced(Class->getLocation(), MD); |
6316 | |
6317 | if (TSK != TSK_ExplicitInstantiationDefinition) { |
6318 | // Except for explicit instantiation defs, we will not see the |
6319 | // definition again later, so pass it to the consumer now. |
6320 | S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); |
6321 | } |
6322 | } else if (!MD->isTrivial() || |
6323 | MD->isCopyAssignmentOperator() || |
6324 | MD->isMoveAssignmentOperator()) { |
6325 | // Synthesize and instantiate non-trivial implicit methods, and the copy |
6326 | // and move assignment operators. The latter are exported even if they |
6327 | // are trivial, because the address of an operator can be taken and |
6328 | // should compare equal across libraries. |
6329 | S.MarkFunctionReferenced(Class->getLocation(), MD); |
6330 | |
6331 | // There is no later point when we will see the definition of this |
6332 | // function, so pass it to the consumer now. |
6333 | S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); |
6334 | } |
6335 | } |
6336 | } |
6337 | |
6338 | static void checkForMultipleExportedDefaultConstructors(Sema &S, |
6339 | CXXRecordDecl *Class) { |
6340 | // Only the MS ABI has default constructor closures, so we don't need to do |
6341 | // this semantic checking anywhere else. |
6342 | if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft()) |
6343 | return; |
6344 | |
6345 | CXXConstructorDecl *LastExportedDefaultCtor = nullptr; |
6346 | for (Decl *Member : Class->decls()) { |
6347 | // Look for exported default constructors. |
6348 | auto *CD = dyn_cast<CXXConstructorDecl>(Member); |
6349 | if (!CD || !CD->isDefaultConstructor()) |
6350 | continue; |
6351 | auto *Attr = CD->getAttr<DLLExportAttr>(); |
6352 | if (!Attr) |
6353 | continue; |
6354 | |
6355 | // If the class is non-dependent, mark the default arguments as ODR-used so |
6356 | // that we can properly codegen the constructor closure. |
6357 | if (!Class->isDependentContext()) { |
6358 | for (ParmVarDecl *PD : CD->parameters()) { |
6359 | (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD); |
6360 | S.DiscardCleanupsInEvaluationContext(); |
6361 | } |
6362 | } |
6363 | |
6364 | if (LastExportedDefaultCtor) { |
6365 | S.Diag(LastExportedDefaultCtor->getLocation(), |
6366 | diag::err_attribute_dll_ambiguous_default_ctor) |
6367 | << Class; |
6368 | S.Diag(CD->getLocation(), diag::note_entity_declared_at) |
6369 | << CD->getDeclName(); |
6370 | return; |
6371 | } |
6372 | LastExportedDefaultCtor = CD; |
6373 | } |
6374 | } |
6375 | |
6376 | static void checkCUDADeviceBuiltinSurfaceClassTemplate(Sema &S, |
6377 | CXXRecordDecl *Class) { |
6378 | bool ErrorReported = false; |
6379 | auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, |
6380 | ClassTemplateDecl *TD) { |
6381 | if (ErrorReported) |
6382 | return; |
6383 | S.Diag(TD->getLocation(), |
6384 | diag::err_cuda_device_builtin_surftex_cls_template) |
6385 | << /*surface*/ 0 << TD; |
6386 | ErrorReported = true; |
6387 | }; |
6388 | |
6389 | ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); |
6390 | if (!TD) { |
6391 | auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Val: Class); |
6392 | if (!SD) { |
6393 | S.Diag(Class->getLocation(), |
6394 | diag::err_cuda_device_builtin_surftex_ref_decl) |
6395 | << /*surface*/ 0 << Class; |
6396 | S.Diag(Class->getLocation(), |
6397 | diag::note_cuda_device_builtin_surftex_should_be_template_class) |
6398 | << Class; |
6399 | return; |
6400 | } |
6401 | TD = SD->getSpecializedTemplate(); |
6402 | } |
6403 | |
6404 | TemplateParameterList *Params = TD->getTemplateParameters(); |
6405 | unsigned N = Params->size(); |
6406 | |
6407 | if (N != 2) { |
6408 | reportIllegalClassTemplate(S, TD); |
6409 | S.Diag(TD->getLocation(), |
6410 | diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) |
6411 | << TD << 2; |
6412 | } |
6413 | if (N > 0 && !isa<TemplateTypeParmDecl>(Val: Params->getParam(Idx: 0))) { |
6414 | reportIllegalClassTemplate(S, TD); |
6415 | S.Diag(TD->getLocation(), |
6416 | diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) |
6417 | << TD << /*1st*/ 0 << /*type*/ 0; |
6418 | } |
6419 | if (N > 1) { |
6420 | auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: Params->getParam(Idx: 1)); |
6421 | if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { |
6422 | reportIllegalClassTemplate(S, TD); |
6423 | S.Diag(TD->getLocation(), |
6424 | diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) |
6425 | << TD << /*2nd*/ 1 << /*integer*/ 1; |
6426 | } |
6427 | } |
6428 | } |
6429 | |
6430 | static void checkCUDADeviceBuiltinTextureClassTemplate(Sema &S, |
6431 | CXXRecordDecl *Class) { |
6432 | bool ErrorReported = false; |
6433 | auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, |
6434 | ClassTemplateDecl *TD) { |
6435 | if (ErrorReported) |
6436 | return; |
6437 | S.Diag(TD->getLocation(), |
6438 | diag::err_cuda_device_builtin_surftex_cls_template) |
6439 | << /*texture*/ 1 << TD; |
6440 | ErrorReported = true; |
6441 | }; |
6442 | |
6443 | ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); |
6444 | if (!TD) { |
6445 | auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Val: Class); |
6446 | if (!SD) { |
6447 | S.Diag(Class->getLocation(), |
6448 | diag::err_cuda_device_builtin_surftex_ref_decl) |
6449 | << /*texture*/ 1 << Class; |
6450 | S.Diag(Class->getLocation(), |
6451 | diag::note_cuda_device_builtin_surftex_should_be_template_class) |
6452 | << Class; |
6453 | return; |
6454 | } |
6455 | TD = SD->getSpecializedTemplate(); |
6456 | } |
6457 | |
6458 | TemplateParameterList *Params = TD->getTemplateParameters(); |
6459 | unsigned N = Params->size(); |
6460 | |
6461 | if (N != 3) { |
6462 | reportIllegalClassTemplate(S, TD); |
6463 | S.Diag(TD->getLocation(), |
6464 | diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) |
6465 | << TD << 3; |
6466 | } |
6467 | if (N > 0 && !isa<TemplateTypeParmDecl>(Val: Params->getParam(Idx: 0))) { |
6468 | reportIllegalClassTemplate(S, TD); |
6469 | S.Diag(TD->getLocation(), |
6470 | diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) |
6471 | << TD << /*1st*/ 0 << /*type*/ 0; |
6472 | } |
6473 | if (N > 1) { |
6474 | auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: Params->getParam(Idx: 1)); |
6475 | if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { |
6476 | reportIllegalClassTemplate(S, TD); |
6477 | S.Diag(TD->getLocation(), |
6478 | diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) |
6479 | << TD << /*2nd*/ 1 << /*integer*/ 1; |
6480 | } |
6481 | } |
6482 | if (N > 2) { |
6483 | auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: Params->getParam(Idx: 2)); |
6484 | if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { |
6485 | reportIllegalClassTemplate(S, TD); |
6486 | S.Diag(TD->getLocation(), |
6487 | diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) |
6488 | << TD << /*3rd*/ 2 << /*integer*/ 1; |
6489 | } |
6490 | } |
6491 | } |
6492 | |
6493 | void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) { |
6494 | // Mark any compiler-generated routines with the implicit code_seg attribute. |
6495 | for (auto *Method : Class->methods()) { |
6496 | if (Method->isUserProvided()) |
6497 | continue; |
6498 | if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true)) |
6499 | Method->addAttr(A); |
6500 | } |
6501 | } |
6502 | |
6503 | void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) { |
6504 | Attr *ClassAttr = getDLLAttr(Class); |
6505 | |
6506 | // MSVC inherits DLL attributes to partial class template specializations. |
6507 | if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && !ClassAttr) { |
6508 | if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Val: Class)) { |
6509 | if (Attr *TemplateAttr = |
6510 | getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) { |
6511 | auto *A = cast<InheritableAttr>(Val: TemplateAttr->clone(C&: getASTContext())); |
6512 | A->setInherited(true); |
6513 | ClassAttr = A; |
6514 | } |
6515 | } |
6516 | } |
6517 | |
6518 | if (!ClassAttr) |
6519 | return; |
6520 | |
6521 | // MSVC allows imported or exported template classes that have UniqueExternal |
6522 | // linkage. This occurs when the template class has been instantiated with |
6523 | // a template parameter which itself has internal linkage. |
6524 | // We drop the attribute to avoid exporting or importing any members. |
6525 | if ((Context.getTargetInfo().getCXXABI().isMicrosoft() || |
6526 | Context.getTargetInfo().getTriple().isPS()) && |
6527 | (!Class->isExternallyVisible() && Class->hasExternalFormalLinkage())) { |
6528 | Class->dropAttrs<DLLExportAttr, DLLImportAttr>(); |
6529 | return; |
6530 | } |
6531 | |
6532 | if (!Class->isExternallyVisible()) { |
6533 | Diag(Class->getLocation(), diag::err_attribute_dll_not_extern) |
6534 | << Class << ClassAttr; |
6535 | return; |
6536 | } |
6537 | |
6538 | if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && |
6539 | !ClassAttr->isInherited()) { |
6540 | // Diagnose dll attributes on members of class with dll attribute. |
6541 | for (Decl *Member : Class->decls()) { |
6542 | if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member)) |
6543 | continue; |
6544 | InheritableAttr *MemberAttr = getDLLAttr(Member); |
6545 | if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl()) |
6546 | continue; |
6547 | |
6548 | Diag(MemberAttr->getLocation(), |
6549 | diag::err_attribute_dll_member_of_dll_class) |
6550 | << MemberAttr << ClassAttr; |
6551 | Diag(ClassAttr->getLocation(), diag::note_previous_attribute); |
6552 | Member->setInvalidDecl(); |
6553 | } |
6554 | } |
6555 | |
6556 | if (Class->getDescribedClassTemplate()) |
6557 | // Don't inherit dll attribute until the template is instantiated. |
6558 | return; |
6559 | |
6560 | // The class is either imported or exported. |
6561 | const bool ClassExported = ClassAttr->getKind() == attr::DLLExport; |
6562 | |
6563 | // Check if this was a dllimport attribute propagated from a derived class to |
6564 | // a base class template specialization. We don't apply these attributes to |
6565 | // static data members. |
6566 | const bool PropagatedImport = |
6567 | !ClassExported && |
6568 | cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate(); |
6569 | |
6570 | TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); |
6571 | |
6572 | // Ignore explicit dllexport on explicit class template instantiation |
6573 | // declarations, except in MinGW mode. |
6574 | if (ClassExported && !ClassAttr->isInherited() && |
6575 | TSK == TSK_ExplicitInstantiationDeclaration && |
6576 | !Context.getTargetInfo().getTriple().isOSCygMing()) { |
6577 | Class->dropAttr<DLLExportAttr>(); |
6578 | return; |
6579 | } |
6580 | |
6581 | // Force declaration of implicit members so they can inherit the attribute. |
6582 | ForceDeclarationOfImplicitMembers(Class); |
6583 | |
6584 | // FIXME: MSVC's docs say all bases must be exportable, but this doesn't |
6585 | // seem to be true in practice? |
6586 | |
6587 | for (Decl *Member : Class->decls()) { |
6588 | VarDecl *VD = dyn_cast<VarDecl>(Member); |
6589 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member); |
6590 | |
6591 | // Only methods and static fields inherit the attributes. |
6592 | if (!VD && !MD) |
6593 | continue; |
6594 | |
6595 | if (MD) { |
6596 | // Don't process deleted methods. |
6597 | if (MD->isDeleted()) |
6598 | continue; |
6599 | |
6600 | if (MD->isInlined()) { |
6601 | // MinGW does not import or export inline methods. But do it for |
6602 | // template instantiations. |
6603 | if (!Context.getTargetInfo().shouldDLLImportComdatSymbols() && |
6604 | TSK != TSK_ExplicitInstantiationDeclaration && |
6605 | TSK != TSK_ExplicitInstantiationDefinition) |
6606 | continue; |
6607 | |
6608 | // MSVC versions before 2015 don't export the move assignment operators |
6609 | // and move constructor, so don't attempt to import/export them if |
6610 | // we have a definition. |
6611 | auto *Ctor = dyn_cast<CXXConstructorDecl>(MD); |
6612 | if ((MD->isMoveAssignmentOperator() || |
6613 | (Ctor && Ctor->isMoveConstructor())) && |
6614 | !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015)) |
6615 | continue; |
6616 | |
6617 | // MSVC2015 doesn't export trivial defaulted x-tor but copy assign |
6618 | // operator is exported anyway. |
6619 | if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && |
6620 | (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial()) |
6621 | continue; |
6622 | } |
6623 | } |
6624 | |
6625 | // Don't apply dllimport attributes to static data members of class template |
6626 | // instantiations when the attribute is propagated from a derived class. |
6627 | if (VD && PropagatedImport) |
6628 | continue; |
6629 | |
6630 | if (!cast<NamedDecl>(Member)->isExternallyVisible()) |
6631 | continue; |
6632 | |
6633 | if (!getDLLAttr(Member)) { |
6634 | InheritableAttr *NewAttr = nullptr; |
6635 | |
6636 | // Do not export/import inline function when -fno-dllexport-inlines is |
6637 | // passed. But add attribute for later local static var check. |
6638 | if (!getLangOpts().DllExportInlines && MD && MD->isInlined() && |
6639 | TSK != TSK_ExplicitInstantiationDeclaration && |
6640 | TSK != TSK_ExplicitInstantiationDefinition) { |
6641 | if (ClassExported) { |
6642 | NewAttr = ::new (getASTContext()) |
6643 | DLLExportStaticLocalAttr(getASTContext(), *ClassAttr); |
6644 | } else { |
6645 | NewAttr = ::new (getASTContext()) |
6646 | DLLImportStaticLocalAttr(getASTContext(), *ClassAttr); |
6647 | } |
6648 | } else { |
6649 | NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); |
6650 | } |
6651 | |
6652 | NewAttr->setInherited(true); |
6653 | Member->addAttr(NewAttr); |
6654 | |
6655 | if (MD) { |
6656 | // Propagate DLLAttr to friend re-declarations of MD that have already |
6657 | // been constructed. |
6658 | for (FunctionDecl *FD = MD->getMostRecentDecl(); FD; |
6659 | FD = FD->getPreviousDecl()) { |
6660 | if (FD->getFriendObjectKind() == Decl::FOK_None) |
6661 | continue; |
6662 | assert(!getDLLAttr(FD) && |
6663 | "friend re-decl should not already have a DLLAttr"); |
6664 | NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); |
6665 | NewAttr->setInherited(true); |
6666 | FD->addAttr(NewAttr); |
6667 | } |
6668 | } |
6669 | } |
6670 | } |
6671 | |
6672 | if (ClassExported) |
6673 | DelayedDllExportClasses.push_back(Elt: Class); |
6674 | } |
6675 | |
6676 | void Sema::propagateDLLAttrToBaseClassTemplate( |
6677 | CXXRecordDecl *Class, Attr *ClassAttr, |
6678 | ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) { |
6679 | if (getDLLAttr( |
6680 | BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) { |
6681 | // If the base class template has a DLL attribute, don't try to change it. |
6682 | return; |
6683 | } |
6684 | |
6685 | auto TSK = BaseTemplateSpec->getSpecializationKind(); |
6686 | if (!getDLLAttr(BaseTemplateSpec) && |
6687 | (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration || |
6688 | TSK == TSK_ImplicitInstantiation)) { |
6689 | // The template hasn't been instantiated yet (or it has, but only as an |
6690 | // explicit instantiation declaration or implicit instantiation, which means |
6691 | // we haven't codegenned any members yet), so propagate the attribute. |
6692 | auto *NewAttr = cast<InheritableAttr>(Val: ClassAttr->clone(C&: getASTContext())); |
6693 | NewAttr->setInherited(true); |
6694 | BaseTemplateSpec->addAttr(NewAttr); |
6695 | |
6696 | // If this was an import, mark that we propagated it from a derived class to |
6697 | // a base class template specialization. |
6698 | if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr)) |
6699 | ImportAttr->setPropagatedToBaseTemplate(); |
6700 | |
6701 | // If the template is already instantiated, checkDLLAttributeRedeclaration() |
6702 | // needs to be run again to work see the new attribute. Otherwise this will |
6703 | // get run whenever the template is instantiated. |
6704 | if (TSK != TSK_Undeclared) |
6705 | checkClassLevelDLLAttribute(BaseTemplateSpec); |
6706 | |
6707 | return; |
6708 | } |
6709 | |
6710 | if (getDLLAttr(BaseTemplateSpec)) { |
6711 | // The template has already been specialized or instantiated with an |
6712 | // attribute, explicitly or through propagation. We should not try to change |
6713 | // it. |
6714 | return; |
6715 | } |
6716 | |
6717 | // The template was previously instantiated or explicitly specialized without |
6718 | // a dll attribute, It's too late for us to add an attribute, so warn that |
6719 | // this is unsupported. |
6720 | Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class) |
6721 | << BaseTemplateSpec->isExplicitSpecialization(); |
6722 | Diag(ClassAttr->getLocation(), diag::note_attribute); |
6723 | if (BaseTemplateSpec->isExplicitSpecialization()) { |
6724 | Diag(BaseTemplateSpec->getLocation(), |
6725 | diag::note_template_class_explicit_specialization_was_here) |
6726 | << BaseTemplateSpec; |
6727 | } else { |
6728 | Diag(BaseTemplateSpec->getPointOfInstantiation(), |
6729 | diag::note_template_class_instantiation_was_here) |
6730 | << BaseTemplateSpec; |
6731 | } |
6732 | } |
6733 | |
6734 | Sema::DefaultedFunctionKind |
6735 | Sema::getDefaultedFunctionKind(const FunctionDecl *FD) { |
6736 | if (auto *MD = dyn_cast<CXXMethodDecl>(Val: FD)) { |
6737 | if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Val: FD)) { |
6738 | if (Ctor->isDefaultConstructor()) |
6739 | return CXXSpecialMemberKind::DefaultConstructor; |
6740 | |
6741 | if (Ctor->isCopyConstructor()) |
6742 | return CXXSpecialMemberKind::CopyConstructor; |
6743 | |
6744 | if (Ctor->isMoveConstructor()) |
6745 | return CXXSpecialMemberKind::MoveConstructor; |
6746 | } |
6747 | |
6748 | if (MD->isCopyAssignmentOperator()) |
6749 | return CXXSpecialMemberKind::CopyAssignment; |
6750 | |
6751 | if (MD->isMoveAssignmentOperator()) |
6752 | return CXXSpecialMemberKind::MoveAssignment; |
6753 | |
6754 | if (isa<CXXDestructorDecl>(Val: FD)) |
6755 | return CXXSpecialMemberKind::Destructor; |
6756 | } |
6757 | |
6758 | switch (FD->getDeclName().getCXXOverloadedOperator()) { |
6759 | case OO_EqualEqual: |
6760 | return DefaultedComparisonKind::Equal; |
6761 | |
6762 | case OO_ExclaimEqual: |
6763 | return DefaultedComparisonKind::NotEqual; |
6764 | |
6765 | case OO_Spaceship: |
6766 | // No point allowing this if <=> doesn't exist in the current language mode. |
6767 | if (!getLangOpts().CPlusPlus20) |
6768 | break; |
6769 | return DefaultedComparisonKind::ThreeWay; |
6770 | |
6771 | case OO_Less: |
6772 | case OO_LessEqual: |
6773 | case OO_Greater: |
6774 | case OO_GreaterEqual: |
6775 | // No point allowing this if <=> doesn't exist in the current language mode. |
6776 | if (!getLangOpts().CPlusPlus20) |
6777 | break; |
6778 | return DefaultedComparisonKind::Relational; |
6779 | |
6780 | default: |
6781 | break; |
6782 | } |
6783 | |
6784 | // Not defaultable. |
6785 | return DefaultedFunctionKind(); |
6786 | } |
6787 | |
6788 | static void DefineDefaultedFunction(Sema &S, FunctionDecl *FD, |
6789 | SourceLocation DefaultLoc) { |
6790 | Sema::DefaultedFunctionKind DFK = S.getDefaultedFunctionKind(FD); |
6791 | if (DFK.isComparison()) |
6792 | return S.DefineDefaultedComparison(Loc: DefaultLoc, FD, DCK: DFK.asComparison()); |
6793 | |
6794 | switch (DFK.asSpecialMember()) { |
6795 | case CXXSpecialMemberKind::DefaultConstructor: |
6796 | S.DefineImplicitDefaultConstructor(CurrentLocation: DefaultLoc, |
6797 | Constructor: cast<CXXConstructorDecl>(Val: FD)); |
6798 | break; |
6799 | case CXXSpecialMemberKind::CopyConstructor: |
6800 | S.DefineImplicitCopyConstructor(CurrentLocation: DefaultLoc, Constructor: cast<CXXConstructorDecl>(Val: FD)); |
6801 | break; |
6802 | case CXXSpecialMemberKind::CopyAssignment: |
6803 | S.DefineImplicitCopyAssignment(CurrentLocation: DefaultLoc, MethodDecl: cast<CXXMethodDecl>(Val: FD)); |
6804 | break; |
6805 | case CXXSpecialMemberKind::Destructor: |
6806 | S.DefineImplicitDestructor(CurrentLocation: DefaultLoc, Destructor: cast<CXXDestructorDecl>(Val: FD)); |
6807 | break; |
6808 | case CXXSpecialMemberKind::MoveConstructor: |
6809 | S.DefineImplicitMoveConstructor(CurrentLocation: DefaultLoc, Constructor: cast<CXXConstructorDecl>(Val: FD)); |
6810 | break; |
6811 | case CXXSpecialMemberKind::MoveAssignment: |
6812 | S.DefineImplicitMoveAssignment(CurrentLocation: DefaultLoc, MethodDecl: cast<CXXMethodDecl>(Val: FD)); |
6813 | break; |
6814 | case CXXSpecialMemberKind::Invalid: |
6815 | llvm_unreachable("Invalid special member."); |
6816 | } |
6817 | } |
6818 | |
6819 | /// Determine whether a type is permitted to be passed or returned in |
6820 | /// registers, per C++ [class.temporary]p3. |
6821 | static bool canPassInRegisters(Sema &S, CXXRecordDecl *D, |
6822 | TargetInfo::CallingConvKind CCK) { |
6823 | if (D->isDependentType() || D->isInvalidDecl()) |
6824 | return false; |
6825 | |
6826 | // Clang <= 4 used the pre-C++11 rule, which ignores move operations. |
6827 | // The PS4 platform ABI follows the behavior of Clang 3.2. |
6828 | if (CCK == TargetInfo::CCK_ClangABI4OrPS4) |
6829 | return !D->hasNonTrivialDestructorForCall() && |
6830 | !D->hasNonTrivialCopyConstructorForCall(); |
6831 | |
6832 | if (CCK == TargetInfo::CCK_MicrosoftWin64) { |
6833 | bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false; |
6834 | bool DtorIsTrivialForCall = false; |
6835 | |
6836 | // If a class has at least one eligible, trivial copy constructor, it |
6837 | // is passed according to the C ABI. Otherwise, it is passed indirectly. |
6838 | // |
6839 | // Note: This permits classes with non-trivial copy or move ctors to be |
6840 | // passed in registers, so long as they *also* have a trivial copy ctor, |
6841 | // which is non-conforming. |
6842 | if (D->needsImplicitCopyConstructor()) { |
6843 | if (!D->defaultedCopyConstructorIsDeleted()) { |
6844 | if (D->hasTrivialCopyConstructor()) |
6845 | CopyCtorIsTrivial = true; |
6846 | if (D->hasTrivialCopyConstructorForCall()) |
6847 | CopyCtorIsTrivialForCall = true; |
6848 | } |
6849 | } else { |
6850 | for (const CXXConstructorDecl *CD : D->ctors()) { |
6851 | if (CD->isCopyConstructor() && !CD->isDeleted() && |
6852 | !CD->isIneligibleOrNotSelected()) { |
6853 | if (CD->isTrivial()) |
6854 | CopyCtorIsTrivial = true; |
6855 | if (CD->isTrivialForCall()) |
6856 | CopyCtorIsTrivialForCall = true; |
6857 | } |
6858 | } |
6859 | } |
6860 | |
6861 | if (D->needsImplicitDestructor()) { |
6862 | if (!D->defaultedDestructorIsDeleted() && |
6863 | D->hasTrivialDestructorForCall()) |
6864 | DtorIsTrivialForCall = true; |
6865 | } else if (const auto *DD = D->getDestructor()) { |
6866 | if (!DD->isDeleted() && DD->isTrivialForCall()) |
6867 | DtorIsTrivialForCall = true; |
6868 | } |
6869 | |
6870 | // If the copy ctor and dtor are both trivial-for-calls, pass direct. |
6871 | if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall) |
6872 | return true; |
6873 | |
6874 | // If a class has a destructor, we'd really like to pass it indirectly |
6875 | // because it allows us to elide copies. Unfortunately, MSVC makes that |
6876 | // impossible for small types, which it will pass in a single register or |
6877 | // stack slot. Most objects with dtors are large-ish, so handle that early. |
6878 | // We can't call out all large objects as being indirect because there are |
6879 | // multiple x64 calling conventions and the C++ ABI code shouldn't dictate |
6880 | // how we pass large POD types. |
6881 | |
6882 | // Note: This permits small classes with nontrivial destructors to be |
6883 | // passed in registers, which is non-conforming. |
6884 | bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); |
6885 | uint64_t TypeSize = isAArch64 ? 128 : 64; |
6886 | |
6887 | if (CopyCtorIsTrivial && |
6888 | S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize) |
6889 | return true; |
6890 | return false; |
6891 | } |
6892 | |
6893 | // Per C++ [class.temporary]p3, the relevant condition is: |
6894 | // each copy constructor, move constructor, and destructor of X is |
6895 | // either trivial or deleted, and X has at least one non-deleted copy |
6896 | // or move constructor |
6897 | bool HasNonDeletedCopyOrMove = false; |
6898 | |
6899 | if (D->needsImplicitCopyConstructor() && |
6900 | !D->defaultedCopyConstructorIsDeleted()) { |
6901 | if (!D->hasTrivialCopyConstructorForCall()) |
6902 | return false; |
6903 | HasNonDeletedCopyOrMove = true; |
6904 | } |
6905 | |
6906 | if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() && |
6907 | !D->defaultedMoveConstructorIsDeleted()) { |
6908 | if (!D->hasTrivialMoveConstructorForCall()) |
6909 | return false; |
6910 | HasNonDeletedCopyOrMove = true; |
6911 | } |
6912 | |
6913 | if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() && |
6914 | !D->hasTrivialDestructorForCall()) |
6915 | return false; |
6916 | |
6917 | for (const CXXMethodDecl *MD : D->methods()) { |
6918 | if (MD->isDeleted() || MD->isIneligibleOrNotSelected()) |
6919 | continue; |
6920 | |
6921 | auto *CD = dyn_cast<CXXConstructorDecl>(Val: MD); |
6922 | if (CD && CD->isCopyOrMoveConstructor()) |
6923 | HasNonDeletedCopyOrMove = true; |
6924 | else if (!isa<CXXDestructorDecl>(Val: MD)) |
6925 | continue; |
6926 | |
6927 | if (!MD->isTrivialForCall()) |
6928 | return false; |
6929 | } |
6930 | |
6931 | return HasNonDeletedCopyOrMove; |
6932 | } |
6933 | |
6934 | /// Report an error regarding overriding, along with any relevant |
6935 | /// overridden methods. |
6936 | /// |
6937 | /// \param DiagID the primary error to report. |
6938 | /// \param MD the overriding method. |
6939 | static bool |
6940 | ReportOverrides(Sema &S, unsigned DiagID, const CXXMethodDecl *MD, |
6941 | llvm::function_ref<bool(const CXXMethodDecl *)> Report) { |
6942 | bool IssuedDiagnostic = false; |
6943 | for (const CXXMethodDecl *O : MD->overridden_methods()) { |
6944 | if (Report(O)) { |
6945 | if (!IssuedDiagnostic) { |
6946 | S.Diag(MD->getLocation(), DiagID) << MD->getDeclName(); |
6947 | IssuedDiagnostic = true; |
6948 | } |
6949 | S.Diag(O->getLocation(), diag::note_overridden_virtual_function); |
6950 | } |
6951 | } |
6952 | return IssuedDiagnostic; |
6953 | } |
6954 | |
6955 | void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) { |
6956 | if (!Record) |
6957 | return; |
6958 | |
6959 | if (Record->isAbstract() && !Record->isInvalidDecl()) { |
6960 | AbstractUsageInfo Info(*this, Record); |
6961 | CheckAbstractClassUsage(Info, RD: Record); |
6962 | } |
6963 | |
6964 | // If this is not an aggregate type and has no user-declared constructor, |
6965 | // complain about any non-static data members of reference or const scalar |
6966 | // type, since they will never get initializers. |
6967 | if (!Record->isInvalidDecl() && !Record->isDependentType() && |
6968 | !Record->isAggregate() && !Record->hasUserDeclaredConstructor() && |
6969 | !Record->isLambda()) { |
6970 | bool Complained = false; |
6971 | for (const auto *F : Record->fields()) { |
6972 | if (F->hasInClassInitializer() || F->isUnnamedBitField()) |
6973 | continue; |
6974 | |
6975 | if (F->getType()->isReferenceType() || |
6976 | (F->getType().isConstQualified() && F->getType()->isScalarType())) { |
6977 | if (!Complained) { |
6978 | Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst) |
6979 | << Record->getTagKind() << Record; |
6980 | Complained = true; |
6981 | } |
6982 | |
6983 | Diag(F->getLocation(), diag::note_refconst_member_not_initialized) |
6984 | << F->getType()->isReferenceType() |
6985 | << F->getDeclName(); |
6986 | } |
6987 | } |
6988 | } |
6989 | |
6990 | if (Record->getIdentifier()) { |
6991 | // C++ [class.mem]p13: |
6992 | // If T is the name of a class, then each of the following shall have a |
6993 | // name different from T: |
6994 | // - every member of every anonymous union that is a member of class T. |
6995 | // |
6996 | // C++ [class.mem]p14: |
6997 | // In addition, if class T has a user-declared constructor (12.1), every |
6998 | // non-static data member of class T shall have a name different from T. |
6999 | DeclContext::lookup_result R = Record->lookup(Name: Record->getDeclName()); |
7000 | for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; |
7001 | ++I) { |
7002 | NamedDecl *D = (*I)->getUnderlyingDecl(); |
7003 | if (((isa<FieldDecl>(Val: D) || isa<UnresolvedUsingValueDecl>(Val: D)) && |
7004 | Record->hasUserDeclaredConstructor()) || |
7005 | isa<IndirectFieldDecl>(Val: D)) { |
7006 | Diag((*I)->getLocation(), diag::err_member_name_of_class) |
7007 | << D->getDeclName(); |
7008 | break; |
7009 | } |
7010 | } |
7011 | } |
7012 | |
7013 | // Warn if the class has virtual methods but non-virtual public destructor. |
7014 | if (Record->isPolymorphic() && !Record->isDependentType()) { |
7015 | CXXDestructorDecl *dtor = Record->getDestructor(); |
7016 | if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) && |
7017 | !Record->hasAttr<FinalAttr>()) |
7018 | Diag(dtor ? dtor->getLocation() : Record->getLocation(), |
7019 | diag::warn_non_virtual_dtor) << Context.getRecordType(Record); |
7020 | } |
7021 | |
7022 | if (Record->isAbstract()) { |
7023 | if (FinalAttr *FA = Record->getAttr<FinalAttr>()) { |
7024 | Diag(Record->getLocation(), diag::warn_abstract_final_class) |
7025 | << FA->isSpelledAsSealed(); |
7026 | DiagnoseAbstractType(RD: Record); |
7027 | } |
7028 | } |
7029 | |
7030 | // Warn if the class has a final destructor but is not itself marked final. |
7031 | if (!Record->hasAttr<FinalAttr>()) { |
7032 | if (const CXXDestructorDecl *dtor = Record->getDestructor()) { |
7033 | if (const FinalAttr *FA = dtor->getAttr<FinalAttr>()) { |
7034 | Diag(FA->getLocation(), diag::warn_final_dtor_non_final_class) |
7035 | << FA->isSpelledAsSealed() |
7036 | << FixItHint::CreateInsertion( |
7037 | getLocForEndOfToken(Record->getLocation()), |
7038 | (FA->isSpelledAsSealed() ? " sealed": " final")); |
7039 | Diag(Record->getLocation(), |
7040 | diag::note_final_dtor_non_final_class_silence) |
7041 | << Context.getRecordType(Record) << FA->isSpelledAsSealed(); |
7042 | } |
7043 | } |
7044 | } |
7045 | |
7046 | // See if trivial_abi has to be dropped. |
7047 | if (Record->hasAttr<TrivialABIAttr>()) |
7048 | checkIllFormedTrivialABIStruct(RD&: *Record); |
7049 | |
7050 | // Set HasTrivialSpecialMemberForCall if the record has attribute |
7051 | // "trivial_abi". |
7052 | bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>(); |
7053 | |
7054 | if (HasTrivialABI) |
7055 | Record->setHasTrivialSpecialMemberForCall(); |
7056 | |
7057 | // Explicitly-defaulted secondary comparison functions (!=, <, <=, >, >=). |
7058 | // We check these last because they can depend on the properties of the |
7059 | // primary comparison functions (==, <=>). |
7060 | llvm::SmallVector<FunctionDecl*, 5> DefaultedSecondaryComparisons; |
7061 | |
7062 | // Perform checks that can't be done until we know all the properties of a |
7063 | // member function (whether it's defaulted, deleted, virtual, overriding, |
7064 | // ...). |
7065 | auto CheckCompletedMemberFunction = [&](CXXMethodDecl *MD) { |
7066 | // A static function cannot override anything. |
7067 | if (MD->getStorageClass() == SC_Static) { |
7068 | if (ReportOverrides(*this, diag::err_static_overrides_virtual, MD, |
7069 | [](const CXXMethodDecl *) { return true; })) |
7070 | return; |
7071 | } |
7072 | |
7073 | // A deleted function cannot override a non-deleted function and vice |
7074 | // versa. |
7075 | if (ReportOverrides(*this, |
7076 | MD->isDeleted() ? diag::err_deleted_override |
7077 | : diag::err_non_deleted_override, |
7078 | MD, [&](const CXXMethodDecl *V) { |
7079 | return MD->isDeleted() != V->isDeleted(); |
7080 | })) { |
7081 | if (MD->isDefaulted() && MD->isDeleted()) |
7082 | // Explain why this defaulted function was deleted. |
7083 | DiagnoseDeletedDefaultedFunction(MD); |
7084 | return; |
7085 | } |
7086 | |
7087 | // A consteval function cannot override a non-consteval function and vice |
7088 | // versa. |
7089 | if (ReportOverrides(*this, |
7090 | MD->isConsteval() ? diag::err_consteval_override |
7091 | : diag::err_non_consteval_override, |
7092 | MD, [&](const CXXMethodDecl *V) { |
7093 | return MD->isConsteval() != V->isConsteval(); |
7094 | })) { |
7095 | if (MD->isDefaulted() && MD->isDeleted()) |
7096 | // Explain why this defaulted function was deleted. |
7097 | DiagnoseDeletedDefaultedFunction(MD); |
7098 | return; |
7099 | } |
7100 | }; |
7101 | |
7102 | auto CheckForDefaultedFunction = [&](FunctionDecl *FD) -> bool { |
7103 | if (!FD || FD->isInvalidDecl() || !FD->isExplicitlyDefaulted()) |
7104 | return false; |
7105 | |
7106 | DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); |
7107 | if (DFK.asComparison() == DefaultedComparisonKind::NotEqual || |
7108 | DFK.asComparison() == DefaultedComparisonKind::Relational) { |
7109 | DefaultedSecondaryComparisons.push_back(Elt: FD); |
7110 | return true; |
7111 | } |
7112 | |
7113 | CheckExplicitlyDefaultedFunction(S, MD: FD); |
7114 | return false; |
7115 | }; |
7116 | |
7117 | if (!Record->isInvalidDecl() && |
7118 | Record->hasAttr<VTablePointerAuthenticationAttr>()) |
7119 | checkIncorrectVTablePointerAuthenticationAttribute(RD&: *Record); |
7120 | |
7121 | auto CompleteMemberFunction = [&](CXXMethodDecl *M) { |
7122 | // Check whether the explicitly-defaulted members are valid. |
7123 | bool Incomplete = CheckForDefaultedFunction(M); |
7124 | |
7125 | // Skip the rest of the checks for a member of a dependent class. |
7126 | if (Record->isDependentType()) |
7127 | return; |
7128 | |
7129 | // For an explicitly defaulted or deleted special member, we defer |
7130 | // determining triviality until the class is complete. That time is now! |
7131 | CXXSpecialMemberKind CSM = getSpecialMember(MD: M); |
7132 | if (!M->isImplicit() && !M->isUserProvided()) { |
7133 | if (CSM != CXXSpecialMemberKind::Invalid) { |
7134 | M->setTrivial(SpecialMemberIsTrivial(MD: M, CSM)); |
7135 | // Inform the class that we've finished declaring this member. |
7136 | Record->finishedDefaultedOrDeletedMember(MD: M); |
7137 | M->setTrivialForCall( |
7138 | HasTrivialABI || |
7139 | SpecialMemberIsTrivial(MD: M, CSM, |
7140 | TAH: TrivialABIHandling::ConsiderTrivialABI)); |
7141 | Record->setTrivialForCallFlags(M); |
7142 | } |
7143 | } |
7144 | |
7145 | // Set triviality for the purpose of calls if this is a user-provided |
7146 | // copy/move constructor or destructor. |
7147 | if ((CSM == CXXSpecialMemberKind::CopyConstructor || |
7148 | CSM == CXXSpecialMemberKind::MoveConstructor || |
7149 | CSM == CXXSpecialMemberKind::Destructor) && |
7150 | M->isUserProvided()) { |
7151 | M->setTrivialForCall(HasTrivialABI); |
7152 | Record->setTrivialForCallFlags(M); |
7153 | } |
7154 | |
7155 | if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() && |
7156 | M->hasAttr<DLLExportAttr>()) { |
7157 | if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && |
7158 | M->isTrivial() && |
7159 | (CSM == CXXSpecialMemberKind::DefaultConstructor || |
7160 | CSM == CXXSpecialMemberKind::CopyConstructor || |
7161 | CSM == CXXSpecialMemberKind::Destructor)) |
7162 | M->dropAttr<DLLExportAttr>(); |
7163 | |
7164 | if (M->hasAttr<DLLExportAttr>()) { |
7165 | // Define after any fields with in-class initializers have been parsed. |
7166 | DelayedDllExportMemberFunctions.push_back(Elt: M); |
7167 | } |
7168 | } |
7169 | |
7170 | bool EffectivelyConstexprDestructor = true; |
7171 | // Avoid triggering vtable instantiation due to a dtor that is not |
7172 | // "effectively constexpr" for better compatibility. |
7173 | // See https://github.com/llvm/llvm-project/issues/102293 for more info. |
7174 | if (isa<CXXDestructorDecl>(Val: M)) { |
7175 | auto Check = [](QualType T, auto &&Check) -> bool { |
7176 | const CXXRecordDecl *RD = |
7177 | T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
7178 | if (!RD || !RD->isCompleteDefinition()) |
7179 | return true; |
7180 | |
7181 | if (!RD->hasConstexprDestructor()) |
7182 | return false; |
7183 | |
7184 | QualType CanUnqualT = T.getCanonicalType().getUnqualifiedType(); |
7185 | for (const CXXBaseSpecifier &B : RD->bases()) |
7186 | if (B.getType().getCanonicalType().getUnqualifiedType() != |
7187 | CanUnqualT && |
7188 | !Check(B.getType(), Check)) |
7189 | return false; |
7190 | for (const FieldDecl *FD : RD->fields()) |
7191 | if (FD->getType().getCanonicalType().getUnqualifiedType() != |
7192 | CanUnqualT && |
7193 | !Check(FD->getType(), Check)) |
7194 | return false; |
7195 | return true; |
7196 | }; |
7197 | EffectivelyConstexprDestructor = |
7198 | Check(QualType(Record->getTypeForDecl(), 0), Check); |
7199 | } |
7200 | |
7201 | // Define defaulted constexpr virtual functions that override a base class |
7202 | // function right away. |
7203 | // FIXME: We can defer doing this until the vtable is marked as used. |
7204 | if (CSM != CXXSpecialMemberKind::Invalid && !M->isDeleted() && |
7205 | M->isDefaulted() && M->isConstexpr() && M->size_overridden_methods() && |
7206 | EffectivelyConstexprDestructor) |
7207 | DefineDefaultedFunction(*this, M, M->getLocation()); |
7208 | |
7209 | if (!Incomplete) |
7210 | CheckCompletedMemberFunction(M); |
7211 | }; |
7212 | |
7213 | // Check the destructor before any other member function. We need to |
7214 | // determine whether it's trivial in order to determine whether the claas |
7215 | // type is a literal type, which is a prerequisite for determining whether |
7216 | // other special member functions are valid and whether they're implicitly |
7217 | // 'constexpr'. |
7218 | if (CXXDestructorDecl *Dtor = Record->getDestructor()) |
7219 | CompleteMemberFunction(Dtor); |
7220 | |
7221 | bool HasMethodWithOverrideControl = false, |
7222 | HasOverridingMethodWithoutOverrideControl = false; |
7223 | for (auto *D : Record->decls()) { |
7224 | if (auto *M = dyn_cast<CXXMethodDecl>(D)) { |
7225 | // FIXME: We could do this check for dependent types with non-dependent |
7226 | // bases. |
7227 | if (!Record->isDependentType()) { |
7228 | // See if a method overloads virtual methods in a base |
7229 | // class without overriding any. |
7230 | if (!M->isStatic()) |
7231 | DiagnoseHiddenVirtualMethods(M); |
7232 | |
7233 | if (M->hasAttr<OverrideAttr>()) { |
7234 | HasMethodWithOverrideControl = true; |
7235 | } else if (M->size_overridden_methods() > 0) { |
7236 | HasOverridingMethodWithoutOverrideControl = true; |
7237 | } else { |
7238 | // Warn on newly-declared virtual methods in `final` classes |
7239 | if (M->isVirtualAsWritten() && Record->isEffectivelyFinal()) { |
7240 | Diag(M->getLocation(), diag::warn_unnecessary_virtual_specifier) |
7241 | << M; |
7242 | } |
7243 | } |
7244 | } |
7245 | |
7246 | if (!isa<CXXDestructorDecl>(M)) |
7247 | CompleteMemberFunction(M); |
7248 | } else if (auto *F = dyn_cast<FriendDecl>(D)) { |
7249 | CheckForDefaultedFunction( |
7250 | dyn_cast_or_null<FunctionDecl>(F->getFriendDecl())); |
7251 | } |
7252 | } |
7253 | |
7254 | if (HasOverridingMethodWithoutOverrideControl) { |
7255 | bool HasInconsistentOverrideControl = HasMethodWithOverrideControl; |
7256 | for (auto *M : Record->methods()) |
7257 | DiagnoseAbsenceOfOverrideControl(M, HasInconsistentOverrideControl); |
7258 | } |
7259 | |
7260 | // Check the defaulted secondary comparisons after any other member functions. |
7261 | for (FunctionDecl *FD : DefaultedSecondaryComparisons) { |
7262 | CheckExplicitlyDefaultedFunction(S, MD: FD); |
7263 | |
7264 | // If this is a member function, we deferred checking it until now. |
7265 | if (auto *MD = dyn_cast<CXXMethodDecl>(Val: FD)) |
7266 | CheckCompletedMemberFunction(MD); |
7267 | } |
7268 | |
7269 | // ms_struct is a request to use the same ABI rules as MSVC. Check |
7270 | // whether this class uses any C++ features that are implemented |
7271 | // completely differently in MSVC, and if so, emit a diagnostic. |
7272 | // That diagnostic defaults to an error, but we allow projects to |
7273 | // map it down to a warning (or ignore it). It's a fairly common |
7274 | // practice among users of the ms_struct pragma to mass-annotate |
7275 | // headers, sweeping up a bunch of types that the project doesn't |
7276 | // really rely on MSVC-compatible layout for. We must therefore |
7277 | // support "ms_struct except for C++ stuff" as a secondary ABI. |
7278 | // Don't emit this diagnostic if the feature was enabled as a |
7279 | // language option (as opposed to via a pragma or attribute), as |
7280 | // the option -mms-bitfields otherwise essentially makes it impossible |
7281 | // to build C++ code, unless this diagnostic is turned off. |
7282 | if (Record->isMsStruct(Context) && !Context.getLangOpts().MSBitfields && |
7283 | (Record->isPolymorphic() || Record->getNumBases())) { |
7284 | Diag(Record->getLocation(), diag::warn_cxx_ms_struct); |
7285 | } |
7286 | |
7287 | checkClassLevelDLLAttribute(Class: Record); |
7288 | checkClassLevelCodeSegAttribute(Class: Record); |
7289 | |
7290 | bool ClangABICompat4 = |
7291 | Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4; |
7292 | TargetInfo::CallingConvKind CCK = |
7293 | Context.getTargetInfo().getCallingConvKind(ClangABICompat4); |
7294 | bool CanPass = canPassInRegisters(S&: *this, D: Record, CCK); |
7295 | |
7296 | // Do not change ArgPassingRestrictions if it has already been set to |
7297 | // RecordArgPassingKind::CanNeverPassInRegs. |
7298 | if (Record->getArgPassingRestrictions() != |
7299 | RecordArgPassingKind::CanNeverPassInRegs) |
7300 | Record->setArgPassingRestrictions( |
7301 | CanPass ? RecordArgPassingKind::CanPassInRegs |
7302 | : RecordArgPassingKind::CannotPassInRegs); |
7303 | |
7304 | // If canPassInRegisters returns true despite the record having a non-trivial |
7305 | // destructor, the record is destructed in the callee. This happens only when |
7306 | // the record or one of its subobjects has a field annotated with trivial_abi |
7307 | // or a field qualified with ObjC __strong/__weak. |
7308 | if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee()) |
7309 | Record->setParamDestroyedInCallee(true); |
7310 | else if (Record->hasNonTrivialDestructor()) |
7311 | Record->setParamDestroyedInCallee(CanPass); |
7312 | |
7313 | if (getLangOpts().ForceEmitVTables) { |
7314 | // If we want to emit all the vtables, we need to mark it as used. This |
7315 | // is especially required for cases like vtable assumption loads. |
7316 | MarkVTableUsed(Loc: Record->getInnerLocStart(), Class: Record); |
7317 | } |
7318 | |
7319 | if (getLangOpts().CUDA) { |
7320 | if (Record->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) |
7321 | checkCUDADeviceBuiltinSurfaceClassTemplate(S&: *this, Class: Record); |
7322 | else if (Record->hasAttr<CUDADeviceBuiltinTextureTypeAttr>()) |
7323 | checkCUDADeviceBuiltinTextureClassTemplate(S&: *this, Class: Record); |
7324 | } |
7325 | |
7326 | llvm::SmallDenseMap<OverloadedOperatorKind, |
7327 | llvm::SmallVector<const FunctionDecl *, 2>, 4> |
7328 | TypeAwareDecls{{OO_New, {}}, |
7329 | {OO_Array_New, {}}, |
7330 | {OO_Delete, {}}, |
7331 | {OO_Array_New, {}}}; |
7332 | for (auto *D : Record->decls()) { |
7333 | const FunctionDecl *FnDecl = D->getAsFunction(); |
7334 | if (!FnDecl || !FnDecl->isTypeAwareOperatorNewOrDelete()) |
7335 | continue; |
7336 | assert(FnDecl->getDeclName().isAnyOperatorNewOrDelete()); |
7337 | TypeAwareDecls[FnDecl->getOverloadedOperator()].push_back(FnDecl); |
7338 | } |
7339 | auto CheckMismatchedTypeAwareAllocators = |
7340 | [this, &TypeAwareDecls, Record](OverloadedOperatorKind NewKind, |
7341 | OverloadedOperatorKind DeleteKind) { |
7342 | auto &NewDecls = TypeAwareDecls[NewKind]; |
7343 | auto &DeleteDecls = TypeAwareDecls[DeleteKind]; |
7344 | if (NewDecls.empty() == DeleteDecls.empty()) |
7345 | return; |
7346 | DeclarationName FoundOperator = |
7347 | Context.DeclarationNames.getCXXOperatorName( |
7348 | Op: NewDecls.empty() ? DeleteKind : NewKind); |
7349 | DeclarationName MissingOperator = |
7350 | Context.DeclarationNames.getCXXOperatorName( |
7351 | Op: NewDecls.empty() ? NewKind : DeleteKind); |
7352 | Diag(Record->getLocation(), |
7353 | diag::err_type_aware_allocator_missing_matching_operator) |
7354 | << FoundOperator << Context.getRecordType(Record) |
7355 | << MissingOperator; |
7356 | for (auto MD : NewDecls) |
7357 | Diag(MD->getLocation(), |
7358 | diag::note_unmatched_type_aware_allocator_declared) |
7359 | << MD; |
7360 | for (auto MD : DeleteDecls) |
7361 | Diag(MD->getLocation(), |
7362 | diag::note_unmatched_type_aware_allocator_declared) |
7363 | << MD; |
7364 | }; |
7365 | CheckMismatchedTypeAwareAllocators(OO_New, OO_Delete); |
7366 | CheckMismatchedTypeAwareAllocators(OO_Array_New, OO_Array_Delete); |
7367 | } |
7368 | |
7369 | /// Look up the special member function that would be called by a special |
7370 | /// member function for a subobject of class type. |
7371 | /// |
7372 | /// \param Class The class type of the subobject. |
7373 | /// \param CSM The kind of special member function. |
7374 | /// \param FieldQuals If the subobject is a field, its cv-qualifiers. |
7375 | /// \param ConstRHS True if this is a copy operation with a const object |
7376 | /// on its RHS, that is, if the argument to the outer special member |
7377 | /// function is 'const' and this is not a field marked 'mutable'. |
7378 | static Sema::SpecialMemberOverloadResult |
7379 | lookupCallFromSpecialMember(Sema &S, CXXRecordDecl *Class, |
7380 | CXXSpecialMemberKind CSM, unsigned FieldQuals, |
7381 | bool ConstRHS) { |
7382 | unsigned LHSQuals = 0; |
7383 | if (CSM == CXXSpecialMemberKind::CopyAssignment || |
7384 | CSM == CXXSpecialMemberKind::MoveAssignment) |
7385 | LHSQuals = FieldQuals; |
7386 | |
7387 | unsigned RHSQuals = FieldQuals; |
7388 | if (CSM == CXXSpecialMemberKind::DefaultConstructor || |
7389 | CSM == CXXSpecialMemberKind::Destructor) |
7390 | RHSQuals = 0; |
7391 | else if (ConstRHS) |
7392 | RHSQuals |= Qualifiers::Const; |
7393 | |
7394 | return S.LookupSpecialMember(D: Class, SM: CSM, |
7395 | ConstArg: RHSQuals & Qualifiers::Const, |
7396 | VolatileArg: RHSQuals & Qualifiers::Volatile, |
7397 | RValueThis: false, |
7398 | ConstThis: LHSQuals & Qualifiers::Const, |
7399 | VolatileThis: LHSQuals & Qualifiers::Volatile); |
7400 | } |
7401 | |
7402 | class Sema::InheritedConstructorInfo { |
7403 | Sema &S; |
7404 | SourceLocation UseLoc; |
7405 | |
7406 | /// A mapping from the base classes through which the constructor was |
7407 | /// inherited to the using shadow declaration in that base class (or a null |
7408 | /// pointer if the constructor was declared in that base class). |
7409 | llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *> |
7410 | InheritedFromBases; |
7411 | |
7412 | public: |
7413 | InheritedConstructorInfo(Sema &S, SourceLocation UseLoc, |
7414 | ConstructorUsingShadowDecl *Shadow) |
7415 | : S(S), UseLoc(UseLoc) { |
7416 | bool DiagnosedMultipleConstructedBases = false; |
7417 | CXXRecordDecl *ConstructedBase = nullptr; |
7418 | BaseUsingDecl *ConstructedBaseIntroducer = nullptr; |
7419 | |
7420 | // Find the set of such base class subobjects and check that there's a |
7421 | // unique constructed subobject. |
7422 | for (auto *D : Shadow->redecls()) { |
7423 | auto *DShadow = cast<ConstructorUsingShadowDecl>(D); |
7424 | auto *DNominatedBase = DShadow->getNominatedBaseClass(); |
7425 | auto *DConstructedBase = DShadow->getConstructedBaseClass(); |
7426 | |
7427 | InheritedFromBases.insert( |
7428 | std::make_pair(DNominatedBase->getCanonicalDecl(), |
7429 | DShadow->getNominatedBaseClassShadowDecl())); |
7430 | if (DShadow->constructsVirtualBase()) |
7431 | InheritedFromBases.insert( |
7432 | std::make_pair(DConstructedBase->getCanonicalDecl(), |
7433 | DShadow->getConstructedBaseClassShadowDecl())); |
7434 | else |
7435 | assert(DNominatedBase == DConstructedBase); |
7436 | |
7437 | // [class.inhctor.init]p2: |
7438 | // If the constructor was inherited from multiple base class subobjects |
7439 | // of type B, the program is ill-formed. |
7440 | if (!ConstructedBase) { |
7441 | ConstructedBase = DConstructedBase; |
7442 | ConstructedBaseIntroducer = D->getIntroducer(); |
7443 | } else if (ConstructedBase != DConstructedBase && |
7444 | !Shadow->isInvalidDecl()) { |
7445 | if (!DiagnosedMultipleConstructedBases) { |
7446 | S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor) |
7447 | << Shadow->getTargetDecl(); |
7448 | S.Diag(ConstructedBaseIntroducer->getLocation(), |
7449 | diag::note_ambiguous_inherited_constructor_using) |
7450 | << ConstructedBase; |
7451 | DiagnosedMultipleConstructedBases = true; |
7452 | } |
7453 | S.Diag(D->getIntroducer()->getLocation(), |
7454 | diag::note_ambiguous_inherited_constructor_using) |
7455 | << DConstructedBase; |
7456 | } |
7457 | } |
7458 | |
7459 | if (DiagnosedMultipleConstructedBases) |
7460 | Shadow->setInvalidDecl(); |
7461 | } |
7462 | |
7463 | /// Find the constructor to use for inherited construction of a base class, |
7464 | /// and whether that base class constructor inherits the constructor from a |
7465 | /// virtual base class (in which case it won't actually invoke it). |
7466 | std::pair<CXXConstructorDecl *, bool> |
7467 | findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const { |
7468 | auto It = InheritedFromBases.find(Val: Base->getCanonicalDecl()); |
7469 | if (It == InheritedFromBases.end()) |
7470 | return std::make_pair(x: nullptr, y: false); |
7471 | |
7472 | // This is an intermediary class. |
7473 | if (It->second) |
7474 | return std::make_pair( |
7475 | x: S.findInheritingConstructor(Loc: UseLoc, BaseCtor: Ctor, DerivedShadow: It->second), |
7476 | y: It->second->constructsVirtualBase()); |
7477 | |
7478 | // This is the base class from which the constructor was inherited. |
7479 | return std::make_pair(x&: Ctor, y: false); |
7480 | } |
7481 | }; |
7482 | |
7483 | /// Is the special member function which would be selected to perform the |
7484 | /// specified operation on the specified class type a constexpr constructor? |
7485 | static bool specialMemberIsConstexpr( |
7486 | Sema &S, CXXRecordDecl *ClassDecl, CXXSpecialMemberKind CSM, unsigned Quals, |
7487 | bool ConstRHS, CXXConstructorDecl *InheritedCtor = nullptr, |
7488 | Sema::InheritedConstructorInfo *Inherited = nullptr) { |
7489 | // Suppress duplicate constraint checking here, in case a constraint check |
7490 | // caused us to decide to do this. Any truely recursive checks will get |
7491 | // caught during these checks anyway. |
7492 | Sema::SatisfactionStackResetRAII SSRAII{S}; |
7493 | |
7494 | // If we're inheriting a constructor, see if we need to call it for this base |
7495 | // class. |
7496 | if (InheritedCtor) { |
7497 | assert(CSM == CXXSpecialMemberKind::DefaultConstructor); |
7498 | auto BaseCtor = |
7499 | Inherited->findConstructorForBase(Base: ClassDecl, Ctor: InheritedCtor).first; |
7500 | if (BaseCtor) |
7501 | return BaseCtor->isConstexpr(); |
7502 | } |
7503 | |
7504 | if (CSM == CXXSpecialMemberKind::DefaultConstructor) |
7505 | return ClassDecl->hasConstexprDefaultConstructor(); |
7506 | if (CSM == CXXSpecialMemberKind::Destructor) |
7507 | return ClassDecl->hasConstexprDestructor(); |
7508 | |
7509 | Sema::SpecialMemberOverloadResult SMOR = |
7510 | lookupCallFromSpecialMember(S, Class: ClassDecl, CSM, FieldQuals: Quals, ConstRHS); |
7511 | if (!SMOR.getMethod()) |
7512 | // A constructor we wouldn't select can't be "involved in initializing" |
7513 | // anything. |
7514 | return true; |
7515 | return SMOR.getMethod()->isConstexpr(); |
7516 | } |
7517 | |
7518 | /// Determine whether the specified special member function would be constexpr |
7519 | /// if it were implicitly defined. |
7520 | static bool defaultedSpecialMemberIsConstexpr( |
7521 | Sema &S, CXXRecordDecl *ClassDecl, CXXSpecialMemberKind CSM, bool ConstArg, |
7522 | CXXConstructorDecl *InheritedCtor = nullptr, |
7523 | Sema::InheritedConstructorInfo *Inherited = nullptr) { |
7524 | if (!S.getLangOpts().CPlusPlus11) |
7525 | return false; |
7526 | |
7527 | // C++11 [dcl.constexpr]p4: |
7528 | // In the definition of a constexpr constructor [...] |
7529 | bool Ctor = true; |
7530 | switch (CSM) { |
7531 | case CXXSpecialMemberKind::DefaultConstructor: |
7532 | if (Inherited) |
7533 | break; |
7534 | // Since default constructor lookup is essentially trivial (and cannot |
7535 | // involve, for instance, template instantiation), we compute whether a |
7536 | // defaulted default constructor is constexpr directly within CXXRecordDecl. |
7537 | // |
7538 | // This is important for performance; we need to know whether the default |
7539 | // constructor is constexpr to determine whether the type is a literal type. |
7540 | return ClassDecl->defaultedDefaultConstructorIsConstexpr(); |
7541 | |
7542 | case CXXSpecialMemberKind::CopyConstructor: |
7543 | case CXXSpecialMemberKind::MoveConstructor: |
7544 | // For copy or move constructors, we need to perform overload resolution. |
7545 | break; |
7546 | |
7547 | case CXXSpecialMemberKind::CopyAssignment: |
7548 | case CXXSpecialMemberKind::MoveAssignment: |
7549 | if (!S.getLangOpts().CPlusPlus14) |
7550 | return false; |
7551 | // In C++1y, we need to perform overload resolution. |
7552 | Ctor = false; |
7553 | break; |
7554 | |
7555 | case CXXSpecialMemberKind::Destructor: |
7556 | return ClassDecl->defaultedDestructorIsConstexpr(); |
7557 | |
7558 | case CXXSpecialMemberKind::Invalid: |
7559 | return false; |
7560 | } |
7561 | |
7562 | // -- if the class is a non-empty union, or for each non-empty anonymous |
7563 | // union member of a non-union class, exactly one non-static data member |
7564 | // shall be initialized; [DR1359] |
7565 | // |
7566 | // If we squint, this is guaranteed, since exactly one non-static data member |
7567 | // will be initialized (if the constructor isn't deleted), we just don't know |
7568 | // which one. |
7569 | if (Ctor && ClassDecl->isUnion()) |
7570 | return CSM == CXXSpecialMemberKind::DefaultConstructor |
7571 | ? ClassDecl->hasInClassInitializer() || |
7572 | !ClassDecl->hasVariantMembers() |
7573 | : true; |
7574 | |
7575 | // -- the class shall not have any virtual base classes; |
7576 | if (Ctor && ClassDecl->getNumVBases()) |
7577 | return false; |
7578 | |
7579 | // C++1y [class.copy]p26: |
7580 | // -- [the class] is a literal type, and |
7581 | if (!Ctor && !ClassDecl->isLiteral() && !S.getLangOpts().CPlusPlus23) |
7582 | return false; |
7583 | |
7584 | // -- every constructor involved in initializing [...] base class |
7585 | // sub-objects shall be a constexpr constructor; |
7586 | // -- the assignment operator selected to copy/move each direct base |
7587 | // class is a constexpr function, and |
7588 | if (!S.getLangOpts().CPlusPlus23) { |
7589 | for (const auto &B : ClassDecl->bases()) { |
7590 | const RecordType *BaseType = B.getType()->getAs<RecordType>(); |
7591 | if (!BaseType) |
7592 | continue; |
7593 | CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(Val: BaseType->getDecl()); |
7594 | if (!specialMemberIsConstexpr(S, ClassDecl: BaseClassDecl, CSM, Quals: 0, ConstRHS: ConstArg, |
7595 | InheritedCtor, Inherited)) |
7596 | return false; |
7597 | } |
7598 | } |
7599 | |
7600 | // -- every constructor involved in initializing non-static data members |
7601 | // [...] shall be a constexpr constructor; |
7602 | // -- every non-static data member and base class sub-object shall be |
7603 | // initialized |
7604 | // -- for each non-static data member of X that is of class type (or array |
7605 | // thereof), the assignment operator selected to copy/move that member is |
7606 | // a constexpr function |
7607 | if (!S.getLangOpts().CPlusPlus23) { |
7608 | for (const auto *F : ClassDecl->fields()) { |
7609 | if (F->isInvalidDecl()) |
7610 | continue; |
7611 | if (CSM == CXXSpecialMemberKind::DefaultConstructor && |
7612 | F->hasInClassInitializer()) |
7613 | continue; |
7614 | QualType BaseType = S.Context.getBaseElementType(F->getType()); |
7615 | if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { |
7616 | CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); |
7617 | if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, |
7618 | BaseType.getCVRQualifiers(), |
7619 | ConstArg && !F->isMutable())) |
7620 | return false; |
7621 | } else if (CSM == CXXSpecialMemberKind::DefaultConstructor) { |
7622 | return false; |
7623 | } |
7624 | } |
7625 | } |
7626 | |
7627 | // All OK, it's constexpr! |
7628 | return true; |
7629 | } |
7630 | |
7631 | namespace { |
7632 | /// RAII object to register a defaulted function as having its exception |
7633 | /// specification computed. |
7634 | struct ComputingExceptionSpec { |
7635 | Sema &S; |
7636 | |
7637 | ComputingExceptionSpec(Sema &S, FunctionDecl *FD, SourceLocation Loc) |
7638 | : S(S) { |
7639 | Sema::CodeSynthesisContext Ctx; |
7640 | Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation; |
7641 | Ctx.PointOfInstantiation = Loc; |
7642 | Ctx.Entity = FD; |
7643 | S.pushCodeSynthesisContext(Ctx); |
7644 | } |
7645 | ~ComputingExceptionSpec() { |
7646 | S.popCodeSynthesisContext(); |
7647 | } |
7648 | }; |
7649 | } |
7650 | |
7651 | static Sema::ImplicitExceptionSpecification |
7652 | ComputeDefaultedSpecialMemberExceptionSpec(Sema &S, SourceLocation Loc, |
7653 | CXXMethodDecl *MD, |
7654 | CXXSpecialMemberKind CSM, |
7655 | Sema::InheritedConstructorInfo *ICI); |
7656 | |
7657 | static Sema::ImplicitExceptionSpecification |
7658 | ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, |
7659 | FunctionDecl *FD, |
7660 | Sema::DefaultedComparisonKind DCK); |
7661 | |
7662 | static Sema::ImplicitExceptionSpecification |
7663 | computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, FunctionDecl *FD) { |
7664 | auto DFK = S.getDefaultedFunctionKind(FD); |
7665 | if (DFK.isSpecialMember()) |
7666 | return ComputeDefaultedSpecialMemberExceptionSpec( |
7667 | S, Loc, MD: cast<CXXMethodDecl>(Val: FD), CSM: DFK.asSpecialMember(), ICI: nullptr); |
7668 | if (DFK.isComparison()) |
7669 | return ComputeDefaultedComparisonExceptionSpec(S, Loc, FD, |
7670 | DCK: DFK.asComparison()); |
7671 | |
7672 | auto *CD = cast<CXXConstructorDecl>(Val: FD); |
7673 | assert(CD->getInheritedConstructor() && |
7674 | "only defaulted functions and inherited constructors have implicit " |
7675 | "exception specs"); |
7676 | Sema::InheritedConstructorInfo ICI( |
7677 | S, Loc, CD->getInheritedConstructor().getShadowDecl()); |
7678 | return ComputeDefaultedSpecialMemberExceptionSpec( |
7679 | S, Loc, CD, CXXSpecialMemberKind::DefaultConstructor, &ICI); |
7680 | } |
7681 | |
7682 | static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S, |
7683 | CXXMethodDecl *MD) { |
7684 | FunctionProtoType::ExtProtoInfo EPI; |
7685 | |
7686 | // Build an exception specification pointing back at this member. |
7687 | EPI.ExceptionSpec.Type = EST_Unevaluated; |
7688 | EPI.ExceptionSpec.SourceDecl = MD; |
7689 | |
7690 | // Set the calling convention to the default for C++ instance methods. |
7691 | EPI.ExtInfo = EPI.ExtInfo.withCallingConv( |
7692 | cc: S.Context.getDefaultCallingConvention(/*IsVariadic=*/false, |
7693 | /*IsCXXMethod=*/true)); |
7694 | return EPI; |
7695 | } |
7696 | |
7697 | void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD) { |
7698 | const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); |
7699 | if (FPT->getExceptionSpecType() != EST_Unevaluated) |
7700 | return; |
7701 | |
7702 | // Evaluate the exception specification. |
7703 | auto IES = computeImplicitExceptionSpec(S&: *this, Loc, FD); |
7704 | auto ESI = IES.getExceptionSpec(); |
7705 | |
7706 | // Update the type of the special member to use it. |
7707 | UpdateExceptionSpec(FD, ESI); |
7708 | } |
7709 | |
7710 | void Sema::CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *FD) { |
7711 | assert(FD->isExplicitlyDefaulted() && "not explicitly-defaulted"); |
7712 | |
7713 | DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); |
7714 | if (!DefKind) { |
7715 | assert(FD->getDeclContext()->isDependentContext()); |
7716 | return; |
7717 | } |
7718 | |
7719 | if (DefKind.isComparison()) { |
7720 | auto PT = FD->getParamDecl(i: 0)->getType(); |
7721 | if (const CXXRecordDecl *RD = |
7722 | PT.getNonReferenceType()->getAsCXXRecordDecl()) { |
7723 | for (FieldDecl *Field : RD->fields()) { |
7724 | UnusedPrivateFields.remove(Field); |
7725 | } |
7726 | } |
7727 | } |
7728 | |
7729 | if (DefKind.isSpecialMember() |
7730 | ? CheckExplicitlyDefaultedSpecialMember(MD: cast<CXXMethodDecl>(Val: FD), |
7731 | CSM: DefKind.asSpecialMember(), |
7732 | DefaultLoc: FD->getDefaultLoc()) |
7733 | : CheckExplicitlyDefaultedComparison(S, MD: FD, DCK: DefKind.asComparison())) |
7734 | FD->setInvalidDecl(); |
7735 | } |
7736 | |
7737 | bool Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD, |
7738 | CXXSpecialMemberKind CSM, |
7739 | SourceLocation DefaultLoc) { |
7740 | CXXRecordDecl *RD = MD->getParent(); |
7741 | |
7742 | assert(MD->isExplicitlyDefaulted() && CSM != CXXSpecialMemberKind::Invalid && |
7743 | "not an explicitly-defaulted special member"); |
7744 | |
7745 | // Defer all checking for special members of a dependent type. |
7746 | if (RD->isDependentType()) |
7747 | return false; |
7748 | |
7749 | // Whether this was the first-declared instance of the constructor. |
7750 | // This affects whether we implicitly add an exception spec and constexpr. |
7751 | bool First = MD == MD->getCanonicalDecl(); |
7752 | |
7753 | bool HadError = false; |
7754 | |
7755 | // C++11 [dcl.fct.def.default]p1: |
7756 | // A function that is explicitly defaulted shall |
7757 | // -- be a special member function [...] (checked elsewhere), |
7758 | // -- have the same type (except for ref-qualifiers, and except that a |
7759 | // copy operation can take a non-const reference) as an implicit |
7760 | // declaration, and |
7761 | // -- not have default arguments. |
7762 | // C++2a changes the second bullet to instead delete the function if it's |
7763 | // defaulted on its first declaration, unless it's "an assignment operator, |
7764 | // and its return type differs or its parameter type is not a reference". |
7765 | bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus20 && First; |
7766 | bool ShouldDeleteForTypeMismatch = false; |
7767 | unsigned ExpectedParams = 1; |
7768 | if (CSM == CXXSpecialMemberKind::DefaultConstructor || |
7769 | CSM == CXXSpecialMemberKind::Destructor) |
7770 | ExpectedParams = 0; |
7771 | if (MD->getNumExplicitParams() != ExpectedParams) { |
7772 | // This checks for default arguments: a copy or move constructor with a |
7773 | // default argument is classified as a default constructor, and assignment |
7774 | // operations and destructors can't have default arguments. |
7775 | Diag(MD->getLocation(), diag::err_defaulted_special_member_params) |
7776 | << CSM << MD->getSourceRange(); |
7777 | HadError = true; |
7778 | } else if (MD->isVariadic()) { |
7779 | if (DeleteOnTypeMismatch) |
7780 | ShouldDeleteForTypeMismatch = true; |
7781 | else { |
7782 | Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic) |
7783 | << CSM << MD->getSourceRange(); |
7784 | HadError = true; |
7785 | } |
7786 | } |
7787 | |
7788 | const FunctionProtoType *Type = MD->getType()->castAs<FunctionProtoType>(); |
7789 | |
7790 | bool CanHaveConstParam = false; |
7791 | if (CSM == CXXSpecialMemberKind::CopyConstructor) |
7792 | CanHaveConstParam = RD->implicitCopyConstructorHasConstParam(); |
7793 | else if (CSM == CXXSpecialMemberKind::CopyAssignment) |
7794 | CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam(); |
7795 | |
7796 | QualType ReturnType = Context.VoidTy; |
7797 | if (CSM == CXXSpecialMemberKind::CopyAssignment || |
7798 | CSM == CXXSpecialMemberKind::MoveAssignment) { |
7799 | // Check for return type matching. |
7800 | ReturnType = Type->getReturnType(); |
7801 | QualType ThisType = MD->getFunctionObjectParameterType(); |
7802 | |
7803 | QualType DeclType = Context.getTypeDeclType(RD); |
7804 | DeclType = Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::None, NNS: nullptr, |
7805 | NamedType: DeclType, OwnedTagDecl: nullptr); |
7806 | DeclType = Context.getAddrSpaceQualType( |
7807 | T: DeclType, AddressSpace: ThisType.getQualifiers().getAddressSpace()); |
7808 | QualType ExpectedReturnType = Context.getLValueReferenceType(T: DeclType); |
7809 | |
7810 | if (!Context.hasSameType(T1: ReturnType, T2: ExpectedReturnType)) { |
7811 | Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type) |
7812 | << (CSM == CXXSpecialMemberKind::MoveAssignment) |
7813 | << ExpectedReturnType; |
7814 | HadError = true; |
7815 | } |
7816 | |
7817 | // A defaulted special member cannot have cv-qualifiers. |
7818 | if (ThisType.isConstQualified() || ThisType.isVolatileQualified()) { |
7819 | if (DeleteOnTypeMismatch) |
7820 | ShouldDeleteForTypeMismatch = true; |
7821 | else { |
7822 | Diag(MD->getLocation(), diag::err_defaulted_special_member_quals) |
7823 | << (CSM == CXXSpecialMemberKind::MoveAssignment) |
7824 | << getLangOpts().CPlusPlus14; |
7825 | HadError = true; |
7826 | } |
7827 | } |
7828 | // [C++23][dcl.fct.def.default]/p2.2 |
7829 | // if F2 has an implicit object parameter of type “reference to C”, |
7830 | // F1 may be an explicit object member function whose explicit object |
7831 | // parameter is of (possibly different) type “reference to C”, |
7832 | // in which case the type of F1 would differ from the type of F2 |
7833 | // in that the type of F1 has an additional parameter; |
7834 | QualType ExplicitObjectParameter = MD->isExplicitObjectMemberFunction() |
7835 | ? MD->getParamDecl(0)->getType() |
7836 | : QualType(); |
7837 | if (!ExplicitObjectParameter.isNull() && |
7838 | (!ExplicitObjectParameter->isReferenceType() || |
7839 | !Context.hasSameType(T1: ExplicitObjectParameter.getNonReferenceType(), |
7840 | T2: Context.getRecordType(RD)))) { |
7841 | if (DeleteOnTypeMismatch) |
7842 | ShouldDeleteForTypeMismatch = true; |
7843 | else { |
7844 | Diag(MD->getLocation(), |
7845 | diag::err_defaulted_special_member_explicit_object_mismatch) |
7846 | << (CSM == CXXSpecialMemberKind::MoveAssignment) << RD |
7847 | << MD->getSourceRange(); |
7848 | HadError = true; |
7849 | } |
7850 | } |
7851 | } |
7852 | |
7853 | // Check for parameter type matching. |
7854 | QualType ArgType = |
7855 | ExpectedParams |
7856 | ? Type->getParamType(i: MD->isExplicitObjectMemberFunction() ? 1 : 0) |
7857 | : QualType(); |
7858 | bool HasConstParam = false; |
7859 | if (ExpectedParams && ArgType->isReferenceType()) { |
7860 | // Argument must be reference to possibly-const T. |
7861 | QualType ReferentType = ArgType->getPointeeType(); |
7862 | HasConstParam = ReferentType.isConstQualified(); |
7863 | |
7864 | if (ReferentType.isVolatileQualified()) { |
7865 | if (DeleteOnTypeMismatch) |
7866 | ShouldDeleteForTypeMismatch = true; |
7867 | else { |
7868 | Diag(MD->getLocation(), |
7869 | diag::err_defaulted_special_member_volatile_param) |
7870 | << CSM; |
7871 | HadError = true; |
7872 | } |
7873 | } |
7874 | |
7875 | if (HasConstParam && !CanHaveConstParam) { |
7876 | if (DeleteOnTypeMismatch) |
7877 | ShouldDeleteForTypeMismatch = true; |
7878 | else if (CSM == CXXSpecialMemberKind::CopyConstructor || |
7879 | CSM == CXXSpecialMemberKind::CopyAssignment) { |
7880 | Diag(MD->getLocation(), |
7881 | diag::err_defaulted_special_member_copy_const_param) |
7882 | << (CSM == CXXSpecialMemberKind::CopyAssignment); |
7883 | // FIXME: Explain why this special member can't be const. |
7884 | HadError = true; |
7885 | } else { |
7886 | Diag(MD->getLocation(), |
7887 | diag::err_defaulted_special_member_move_const_param) |
7888 | << (CSM == CXXSpecialMemberKind::MoveAssignment); |
7889 | HadError = true; |
7890 | } |
7891 | } |
7892 | } else if (ExpectedParams) { |
7893 | // A copy assignment operator can take its argument by value, but a |
7894 | // defaulted one cannot. |
7895 | assert(CSM == CXXSpecialMemberKind::CopyAssignment && |
7896 | "unexpected non-ref argument"); |
7897 | Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref); |
7898 | HadError = true; |
7899 | } |
7900 | |
7901 | // C++11 [dcl.fct.def.default]p2: |
7902 | // An explicitly-defaulted function may be declared constexpr only if it |
7903 | // would have been implicitly declared as constexpr, |
7904 | // Do not apply this rule to members of class templates, since core issue 1358 |
7905 | // makes such functions always instantiate to constexpr functions. For |
7906 | // functions which cannot be constexpr (for non-constructors in C++11 and for |
7907 | // destructors in C++14 and C++17), this is checked elsewhere. |
7908 | // |
7909 | // FIXME: This should not apply if the member is deleted. |
7910 | bool Constexpr = defaultedSpecialMemberIsConstexpr(S&: *this, ClassDecl: RD, CSM, |
7911 | ConstArg: HasConstParam); |
7912 | |
7913 | // C++14 [dcl.constexpr]p6 (CWG DR647/CWG DR1358): |
7914 | // If the instantiated template specialization of a constexpr function |
7915 | // template or member function of a class template would fail to satisfy |
7916 | // the requirements for a constexpr function or constexpr constructor, that |
7917 | // specialization is still a constexpr function or constexpr constructor, |
7918 | // even though a call to such a function cannot appear in a constant |
7919 | // expression. |
7920 | if (MD->isTemplateInstantiation() && MD->isConstexpr()) |
7921 | Constexpr = true; |
7922 | |
7923 | if ((getLangOpts().CPlusPlus20 || |
7924 | (getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(Val: MD) |
7925 | : isa<CXXConstructorDecl>(Val: MD))) && |
7926 | MD->isConstexpr() && !Constexpr && |
7927 | MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) { |
7928 | if (!MD->isConsteval() && RD->getNumVBases()) { |
7929 | Diag(MD->getBeginLoc(), |
7930 | diag::err_incorrect_defaulted_constexpr_with_vb) |
7931 | << CSM; |
7932 | for (const auto &I : RD->vbases()) |
7933 | Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here); |
7934 | } else { |
7935 | Diag(MD->getBeginLoc(), diag::err_incorrect_defaulted_constexpr) |
7936 | << CSM << MD->isConsteval(); |
7937 | } |
7938 | HadError = true; |
7939 | // FIXME: Explain why the special member can't be constexpr. |
7940 | } |
7941 | |
7942 | if (First) { |
7943 | // C++2a [dcl.fct.def.default]p3: |
7944 | // If a function is explicitly defaulted on its first declaration, it is |
7945 | // implicitly considered to be constexpr if the implicit declaration |
7946 | // would be. |
7947 | MD->setConstexprKind(Constexpr ? (MD->isConsteval() |
7948 | ? ConstexprSpecKind::Consteval |
7949 | : ConstexprSpecKind::Constexpr) |
7950 | : ConstexprSpecKind::Unspecified); |
7951 | |
7952 | if (!Type->hasExceptionSpec()) { |
7953 | // C++2a [except.spec]p3: |
7954 | // If a declaration of a function does not have a noexcept-specifier |
7955 | // [and] is defaulted on its first declaration, [...] the exception |
7956 | // specification is as specified below |
7957 | FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo(); |
7958 | EPI.ExceptionSpec.Type = EST_Unevaluated; |
7959 | EPI.ExceptionSpec.SourceDecl = MD; |
7960 | MD->setType( |
7961 | Context.getFunctionType(ResultTy: ReturnType, Args: Type->getParamTypes(), EPI)); |
7962 | } |
7963 | } |
7964 | |
7965 | if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) { |
7966 | if (First) { |
7967 | SetDeclDeleted(dcl: MD, DelLoc: MD->getLocation()); |
7968 | if (!inTemplateInstantiation() && !HadError) { |
7969 | Diag(MD->getLocation(), diag::warn_defaulted_method_deleted) << CSM; |
7970 | if (ShouldDeleteForTypeMismatch) { |
7971 | Diag(MD->getLocation(), diag::note_deleted_type_mismatch) << CSM; |
7972 | } else if (ShouldDeleteSpecialMember(MD, CSM, ICI: nullptr, |
7973 | /*Diagnose*/ true) && |
7974 | DefaultLoc.isValid()) { |
7975 | Diag(DefaultLoc, diag::note_replace_equals_default_to_delete) |
7976 | << FixItHint::CreateReplacement(DefaultLoc, "delete"); |
7977 | } |
7978 | } |
7979 | if (ShouldDeleteForTypeMismatch && !HadError) { |
7980 | Diag(MD->getLocation(), |
7981 | diag::warn_cxx17_compat_defaulted_method_type_mismatch) |
7982 | << CSM; |
7983 | } |
7984 | } else { |
7985 | // C++11 [dcl.fct.def.default]p4: |
7986 | // [For a] user-provided explicitly-defaulted function [...] if such a |
7987 | // function is implicitly defined as deleted, the program is ill-formed. |
7988 | Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM; |
7989 | assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl"); |
7990 | ShouldDeleteSpecialMember(MD, CSM, ICI: nullptr, /*Diagnose*/true); |
7991 | HadError = true; |
7992 | } |
7993 | } |
7994 | |
7995 | return HadError; |
7996 | } |
7997 | |
7998 | namespace { |
7999 | /// Helper class for building and checking a defaulted comparison. |
8000 | /// |
8001 | /// Defaulted functions are built in two phases: |
8002 | /// |
8003 | /// * First, the set of operations that the function will perform are |
8004 | /// identified, and some of them are checked. If any of the checked |
8005 | /// operations is invalid in certain ways, the comparison function is |
8006 | /// defined as deleted and no body is built. |
8007 | /// * Then, if the function is not defined as deleted, the body is built. |
8008 | /// |
8009 | /// This is accomplished by performing two visitation steps over the eventual |
8010 | /// body of the function. |
8011 | template<typename Derived, typename ResultList, typename Result, |
8012 | typename Subobject> |
8013 | class DefaultedComparisonVisitor { |
8014 | public: |
8015 | using DefaultedComparisonKind = Sema::DefaultedComparisonKind; |
8016 | |
8017 | DefaultedComparisonVisitor(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, |
8018 | DefaultedComparisonKind DCK) |
8019 | : S(S), RD(RD), FD(FD), DCK(DCK) { |
8020 | if (auto *Info = FD->getDefalutedOrDeletedInfo()) { |
8021 | // FIXME: Change CreateOverloadedBinOp to take an ArrayRef instead of an |
8022 | // UnresolvedSet to avoid this copy. |
8023 | Fns.assign(I: Info->getUnqualifiedLookups().begin(), |
8024 | E: Info->getUnqualifiedLookups().end()); |
8025 | } |
8026 | } |
8027 | |
8028 | ResultList visit() { |
8029 | // The type of an lvalue naming a parameter of this function. |
8030 | QualType ParamLvalType = |
8031 | FD->getParamDecl(i: 0)->getType().getNonReferenceType(); |
8032 | |
8033 | ResultList Results; |
8034 | |
8035 | switch (DCK) { |
8036 | case DefaultedComparisonKind::None: |
8037 | llvm_unreachable("not a defaulted comparison"); |
8038 | |
8039 | case DefaultedComparisonKind::Equal: |
8040 | case DefaultedComparisonKind::ThreeWay: |
8041 | getDerived().visitSubobjects(Results, RD, ParamLvalType.getQualifiers()); |
8042 | return Results; |
8043 | |
8044 | case DefaultedComparisonKind::NotEqual: |
8045 | case DefaultedComparisonKind::Relational: |
8046 | Results.add(getDerived().visitExpandedSubobject( |
8047 | ParamLvalType, getDerived().getCompleteObject())); |
8048 | return Results; |
8049 | } |
8050 | llvm_unreachable(""); |
8051 | } |
8052 | |
8053 | protected: |
8054 | Derived &getDerived() { return static_cast<Derived&>(*this); } |
8055 | |
8056 | /// Visit the expanded list of subobjects of the given type, as specified in |
8057 | /// C++2a [class.compare.default]. |
8058 | /// |
8059 | /// \return \c true if the ResultList object said we're done, \c false if not. |
8060 | bool visitSubobjects(ResultList &Results, CXXRecordDecl *Record, |
8061 | Qualifiers Quals) { |
8062 | // C++2a [class.compare.default]p4: |
8063 | // The direct base class subobjects of C |
8064 | for (CXXBaseSpecifier &Base : Record->bases()) |
8065 | if (Results.add(getDerived().visitSubobject( |
8066 | S.Context.getQualifiedType(T: Base.getType(), Qs: Quals), |
8067 | getDerived().getBase(&Base)))) |
8068 | return true; |
8069 | |
8070 | // followed by the non-static data members of C |
8071 | for (FieldDecl *Field : Record->fields()) { |
8072 | // C++23 [class.bit]p2: |
8073 | // Unnamed bit-fields are not members ... |
8074 | if (Field->isUnnamedBitField()) |
8075 | continue; |
8076 | // Recursively expand anonymous structs. |
8077 | if (Field->isAnonymousStructOrUnion()) { |
8078 | if (visitSubobjects(Results, Field->getType()->getAsCXXRecordDecl(), |
8079 | Quals)) |
8080 | return true; |
8081 | continue; |
8082 | } |
8083 | |
8084 | // Figure out the type of an lvalue denoting this field. |
8085 | Qualifiers FieldQuals = Quals; |
8086 | if (Field->isMutable()) |
8087 | FieldQuals.removeConst(); |
8088 | QualType FieldType = |
8089 | S.Context.getQualifiedType(Field->getType(), FieldQuals); |
8090 | |
8091 | if (Results.add(getDerived().visitSubobject( |
8092 | FieldType, getDerived().getField(Field)))) |
8093 | return true; |
8094 | } |
8095 | |
8096 | // form a list of subobjects. |
8097 | return false; |
8098 | } |
8099 | |
8100 | Result visitSubobject(QualType Type, Subobject Subobj) { |
8101 | // In that list, any subobject of array type is recursively expanded |
8102 | const ArrayType *AT = S.Context.getAsArrayType(T: Type); |
8103 | if (auto *CAT = dyn_cast_or_null<ConstantArrayType>(Val: AT)) |
8104 | return getDerived().visitSubobjectArray(CAT->getElementType(), |
8105 | CAT->getSize(), Subobj); |
8106 | return getDerived().visitExpandedSubobject(Type, Subobj); |
8107 | } |
8108 | |
8109 | Result visitSubobjectArray(QualType Type, const llvm::APInt &Size, |
8110 | Subobject Subobj) { |
8111 | return getDerived().visitSubobject(Type, Subobj); |
8112 | } |
8113 | |
8114 | protected: |
8115 | Sema &S; |
8116 | CXXRecordDecl *RD; |
8117 | FunctionDecl *FD; |
8118 | DefaultedComparisonKind DCK; |
8119 | UnresolvedSet<16> Fns; |
8120 | }; |
8121 | |
8122 | /// Information about a defaulted comparison, as determined by |
8123 | /// DefaultedComparisonAnalyzer. |
8124 | struct DefaultedComparisonInfo { |
8125 | bool Deleted = false; |
8126 | bool Constexpr = true; |
8127 | ComparisonCategoryType Category = ComparisonCategoryType::StrongOrdering; |
8128 | |
8129 | static DefaultedComparisonInfo deleted() { |
8130 | DefaultedComparisonInfo Deleted; |
8131 | Deleted.Deleted = true; |
8132 | return Deleted; |
8133 | } |
8134 | |
8135 | bool add(const DefaultedComparisonInfo &R) { |
8136 | Deleted |= R.Deleted; |
8137 | Constexpr &= R.Constexpr; |
8138 | Category = commonComparisonType(A: Category, B: R.Category); |
8139 | return Deleted; |
8140 | } |
8141 | }; |
8142 | |
8143 | /// An element in the expanded list of subobjects of a defaulted comparison, as |
8144 | /// specified in C++2a [class.compare.default]p4. |
8145 | struct DefaultedComparisonSubobject { |
8146 | enum { CompleteObject, Member, Base } Kind; |
8147 | NamedDecl *Decl; |
8148 | SourceLocation Loc; |
8149 | }; |
8150 | |
8151 | /// A visitor over the notional body of a defaulted comparison that determines |
8152 | /// whether that body would be deleted or constexpr. |
8153 | class DefaultedComparisonAnalyzer |
8154 | : public DefaultedComparisonVisitor<DefaultedComparisonAnalyzer, |
8155 | DefaultedComparisonInfo, |
8156 | DefaultedComparisonInfo, |
8157 | DefaultedComparisonSubobject> { |
8158 | public: |
8159 | enum DiagnosticKind { NoDiagnostics, ExplainDeleted, ExplainConstexpr }; |
8160 | |
8161 | private: |
8162 | DiagnosticKind Diagnose; |
8163 | |
8164 | public: |
8165 | using Base = DefaultedComparisonVisitor; |
8166 | using Result = DefaultedComparisonInfo; |
8167 | using Subobject = DefaultedComparisonSubobject; |
8168 | |
8169 | friend Base; |
8170 | |
8171 | DefaultedComparisonAnalyzer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, |
8172 | DefaultedComparisonKind DCK, |
8173 | DiagnosticKind Diagnose = NoDiagnostics) |
8174 | : Base(S, RD, FD, DCK), Diagnose(Diagnose) {} |
8175 | |
8176 | Result visit() { |
8177 | if ((DCK == DefaultedComparisonKind::Equal || |
8178 | DCK == DefaultedComparisonKind::ThreeWay) && |
8179 | RD->hasVariantMembers()) { |
8180 | // C++2a [class.compare.default]p2 [P2002R0]: |
8181 | // A defaulted comparison operator function for class C is defined as |
8182 | // deleted if [...] C has variant members. |
8183 | if (Diagnose == ExplainDeleted) { |
8184 | S.Diag(FD->getLocation(), diag::note_defaulted_comparison_union) |
8185 | << FD << RD->isUnion() << RD; |
8186 | } |
8187 | return Result::deleted(); |
8188 | } |
8189 | |
8190 | return Base::visit(); |
8191 | } |
8192 | |
8193 | private: |
8194 | Subobject getCompleteObject() { |
8195 | return Subobject{Subobject::CompleteObject, RD, FD->getLocation()}; |
8196 | } |
8197 | |
8198 | Subobject getBase(CXXBaseSpecifier *Base) { |
8199 | return Subobject{.Kind: Subobject::Base, Base->getType()->getAsCXXRecordDecl(), |
8200 | .Loc: Base->getBaseTypeLoc()}; |
8201 | } |
8202 | |
8203 | Subobject getField(FieldDecl *Field) { |
8204 | return Subobject{Subobject::Member, Field, Field->getLocation()}; |
8205 | } |
8206 | |
8207 | Result visitExpandedSubobject(QualType Type, Subobject Subobj) { |
8208 | // C++2a [class.compare.default]p2 [P2002R0]: |
8209 | // A defaulted <=> or == operator function for class C is defined as |
8210 | // deleted if any non-static data member of C is of reference type |
8211 | if (Type->isReferenceType()) { |
8212 | if (Diagnose == ExplainDeleted) { |
8213 | S.Diag(Subobj.Loc, diag::note_defaulted_comparison_reference_member) |
8214 | << FD << RD; |
8215 | } |
8216 | return Result::deleted(); |
8217 | } |
8218 | |
8219 | // [...] Let xi be an lvalue denoting the ith element [...] |
8220 | OpaqueValueExpr Xi(FD->getLocation(), Type, VK_LValue); |
8221 | Expr *Args[] = {&Xi, &Xi}; |
8222 | |
8223 | // All operators start by trying to apply that same operator recursively. |
8224 | OverloadedOperatorKind OO = FD->getOverloadedOperator(); |
8225 | assert(OO != OO_None && "not an overloaded operator!"); |
8226 | return visitBinaryOperator(OO, Args, Subobj); |
8227 | } |
8228 | |
8229 | Result |
8230 | visitBinaryOperator(OverloadedOperatorKind OO, ArrayRef<Expr *> Args, |
8231 | Subobject Subobj, |
8232 | OverloadCandidateSet *SpaceshipCandidates = nullptr) { |
8233 | // Note that there is no need to consider rewritten candidates here if |
8234 | // we've already found there is no viable 'operator<=>' candidate (and are |
8235 | // considering synthesizing a '<=>' from '==' and '<'). |
8236 | OverloadCandidateSet CandidateSet( |
8237 | FD->getLocation(), OverloadCandidateSet::CSK_Operator, |
8238 | OverloadCandidateSet::OperatorRewriteInfo( |
8239 | OO, FD->getLocation(), |
8240 | /*AllowRewrittenCandidates=*/!SpaceshipCandidates)); |
8241 | |
8242 | /// C++2a [class.compare.default]p1 [P2002R0]: |
8243 | /// [...] the defaulted function itself is never a candidate for overload |
8244 | /// resolution [...] |
8245 | CandidateSet.exclude(FD); |
8246 | |
8247 | if (Args[0]->getType()->isOverloadableType()) |
8248 | S.LookupOverloadedBinOp(CandidateSet, Op: OO, Fns, Args); |
8249 | else |
8250 | // FIXME: We determine whether this is a valid expression by checking to |
8251 | // see if there's a viable builtin operator candidate for it. That isn't |
8252 | // really what the rules ask us to do, but should give the right results. |
8253 | S.AddBuiltinOperatorCandidates(Op: OO, OpLoc: FD->getLocation(), Args, CandidateSet); |
8254 | |
8255 | Result R; |
8256 | |
8257 | OverloadCandidateSet::iterator Best; |
8258 | switch (CandidateSet.BestViableFunction(S, Loc: FD->getLocation(), Best)) { |
8259 | case OR_Success: { |
8260 | // C++2a [class.compare.secondary]p2 [P2002R0]: |
8261 | // The operator function [...] is defined as deleted if [...] the |
8262 | // candidate selected by overload resolution is not a rewritten |
8263 | // candidate. |
8264 | if ((DCK == DefaultedComparisonKind::NotEqual || |
8265 | DCK == DefaultedComparisonKind::Relational) && |
8266 | !Best->RewriteKind) { |
8267 | if (Diagnose == ExplainDeleted) { |
8268 | if (Best->Function) { |
8269 | S.Diag(Best->Function->getLocation(), |
8270 | diag::note_defaulted_comparison_not_rewritten_callee) |
8271 | << FD; |
8272 | } else { |
8273 | assert(Best->Conversions.size() == 2 && |
8274 | Best->Conversions[0].isUserDefined() && |
8275 | "non-user-defined conversion from class to built-in " |
8276 | "comparison"); |
8277 | S.Diag(Best->Conversions[0] |
8278 | .UserDefined.FoundConversionFunction.getDecl() |
8279 | ->getLocation(), |
8280 | diag::note_defaulted_comparison_not_rewritten_conversion) |
8281 | << FD; |
8282 | } |
8283 | } |
8284 | return Result::deleted(); |
8285 | } |
8286 | |
8287 | // Throughout C++2a [class.compare]: if overload resolution does not |
8288 | // result in a usable function, the candidate function is defined as |
8289 | // deleted. This requires that we selected an accessible function. |
8290 | // |
8291 | // Note that this only considers the access of the function when named |
8292 | // within the type of the subobject, and not the access path for any |
8293 | // derived-to-base conversion. |
8294 | CXXRecordDecl *ArgClass = Args[0]->getType()->getAsCXXRecordDecl(); |
8295 | if (ArgClass && Best->FoundDecl.getDecl() && |
8296 | Best->FoundDecl.getDecl()->isCXXClassMember()) { |
8297 | QualType ObjectType = Subobj.Kind == Subobject::Member |
8298 | ? Args[0]->getType() |
8299 | : S.Context.getRecordType(RD); |
8300 | if (!S.isMemberAccessibleForDeletion( |
8301 | ArgClass, Best->FoundDecl, ObjectType, Subobj.Loc, |
8302 | Diagnose == ExplainDeleted |
8303 | ? S.PDiag(diag::note_defaulted_comparison_inaccessible) |
8304 | << FD << Subobj.Kind << Subobj.Decl |
8305 | : S.PDiag())) |
8306 | return Result::deleted(); |
8307 | } |
8308 | |
8309 | bool NeedsDeducing = |
8310 | OO == OO_Spaceship && FD->getReturnType()->isUndeducedAutoType(); |
8311 | |
8312 | if (FunctionDecl *BestFD = Best->Function) { |
8313 | // C++2a [class.compare.default]p3 [P2002R0]: |
8314 | // A defaulted comparison function is constexpr-compatible if |
8315 | // [...] no overlod resolution performed [...] results in a |
8316 | // non-constexpr function. |
8317 | assert(!BestFD->isDeleted() && "wrong overload resolution result"); |
8318 | // If it's not constexpr, explain why not. |
8319 | if (Diagnose == ExplainConstexpr && !BestFD->isConstexpr()) { |
8320 | if (Subobj.Kind != Subobject::CompleteObject) |
8321 | S.Diag(Subobj.Loc, diag::note_defaulted_comparison_not_constexpr) |
8322 | << Subobj.Kind << Subobj.Decl; |
8323 | S.Diag(BestFD->getLocation(), |
8324 | diag::note_defaulted_comparison_not_constexpr_here); |
8325 | // Bail out after explaining; we don't want any more notes. |
8326 | return Result::deleted(); |
8327 | } |
8328 | R.Constexpr &= BestFD->isConstexpr(); |
8329 | |
8330 | if (NeedsDeducing) { |
8331 | // If any callee has an undeduced return type, deduce it now. |
8332 | // FIXME: It's not clear how a failure here should be handled. For |
8333 | // now, we produce an eager diagnostic, because that is forward |
8334 | // compatible with most (all?) other reasonable options. |
8335 | if (BestFD->getReturnType()->isUndeducedType() && |
8336 | S.DeduceReturnType(FD: BestFD, Loc: FD->getLocation(), |
8337 | /*Diagnose=*/false)) { |
8338 | // Don't produce a duplicate error when asked to explain why the |
8339 | // comparison is deleted: we diagnosed that when initially checking |
8340 | // the defaulted operator. |
8341 | if (Diagnose == NoDiagnostics) { |
8342 | S.Diag( |
8343 | FD->getLocation(), |
8344 | diag::err_defaulted_comparison_cannot_deduce_undeduced_auto) |
8345 | << Subobj.Kind << Subobj.Decl; |
8346 | S.Diag( |
8347 | Subobj.Loc, |
8348 | diag::note_defaulted_comparison_cannot_deduce_undeduced_auto) |
8349 | << Subobj.Kind << Subobj.Decl; |
8350 | S.Diag(BestFD->getLocation(), |
8351 | diag::note_defaulted_comparison_cannot_deduce_callee) |
8352 | << Subobj.Kind << Subobj.Decl; |
8353 | } |
8354 | return Result::deleted(); |
8355 | } |
8356 | auto *Info = S.Context.CompCategories.lookupInfoForType( |
8357 | Ty: BestFD->getCallResultType()); |
8358 | if (!Info) { |
8359 | if (Diagnose == ExplainDeleted) { |
8360 | S.Diag(Subobj.Loc, diag::note_defaulted_comparison_cannot_deduce) |
8361 | << Subobj.Kind << Subobj.Decl |
8362 | << BestFD->getCallResultType().withoutLocalFastQualifiers(); |
8363 | S.Diag(BestFD->getLocation(), |
8364 | diag::note_defaulted_comparison_cannot_deduce_callee) |
8365 | << Subobj.Kind << Subobj.Decl; |
8366 | } |
8367 | return Result::deleted(); |
8368 | } |
8369 | R.Category = Info->Kind; |
8370 | } |
8371 | } else { |
8372 | QualType T = Best->BuiltinParamTypes[0]; |
8373 | assert(T == Best->BuiltinParamTypes[1] && |
8374 | "builtin comparison for different types?"); |
8375 | assert(Best->BuiltinParamTypes[2].isNull() && |
8376 | "invalid builtin comparison"); |
8377 | |
8378 | // FIXME: If the type we deduced is a vector type, we mark the |
8379 | // comparison as deleted because we don't yet support this. |
8380 | if (isa<VectorType>(Val: T)) { |
8381 | if (Diagnose == ExplainDeleted) { |
8382 | S.Diag(FD->getLocation(), |
8383 | diag::note_defaulted_comparison_vector_types) |
8384 | << FD; |
8385 | S.Diag(Subobj.Decl->getLocation(), diag::note_declared_at); |
8386 | } |
8387 | return Result::deleted(); |
8388 | } |
8389 | |
8390 | if (NeedsDeducing) { |
8391 | std::optional<ComparisonCategoryType> Cat = |
8392 | getComparisonCategoryForBuiltinCmp(T); |
8393 | assert(Cat && "no category for builtin comparison?"); |
8394 | R.Category = *Cat; |
8395 | } |
8396 | } |
8397 | |
8398 | // Note that we might be rewriting to a different operator. That call is |
8399 | // not considered until we come to actually build the comparison function. |
8400 | break; |
8401 | } |
8402 | |
8403 | case OR_Ambiguous: |
8404 | if (Diagnose == ExplainDeleted) { |
8405 | unsigned Kind = 0; |
8406 | if (FD->getOverloadedOperator() == OO_Spaceship && OO != OO_Spaceship) |
8407 | Kind = OO == OO_EqualEqual ? 1 : 2; |
8408 | CandidateSet.NoteCandidates( |
8409 | PartialDiagnosticAt( |
8410 | Subobj.Loc, S.PDiag(diag::note_defaulted_comparison_ambiguous) |
8411 | << FD << Kind << Subobj.Kind << Subobj.Decl), |
8412 | S, OCD_AmbiguousCandidates, Args); |
8413 | } |
8414 | R = Result::deleted(); |
8415 | break; |
8416 | |
8417 | case OR_Deleted: |
8418 | if (Diagnose == ExplainDeleted) { |
8419 | if ((DCK == DefaultedComparisonKind::NotEqual || |
8420 | DCK == DefaultedComparisonKind::Relational) && |
8421 | !Best->RewriteKind) { |
8422 | S.Diag(Best->Function->getLocation(), |
8423 | diag::note_defaulted_comparison_not_rewritten_callee) |
8424 | << FD; |
8425 | } else { |
8426 | S.Diag(Subobj.Loc, |
8427 | diag::note_defaulted_comparison_calls_deleted) |
8428 | << FD << Subobj.Kind << Subobj.Decl; |
8429 | S.NoteDeletedFunction(FD: Best->Function); |
8430 | } |
8431 | } |
8432 | R = Result::deleted(); |
8433 | break; |
8434 | |
8435 | case OR_No_Viable_Function: |
8436 | // If there's no usable candidate, we're done unless we can rewrite a |
8437 | // '<=>' in terms of '==' and '<'. |
8438 | if (OO == OO_Spaceship && |
8439 | S.Context.CompCategories.lookupInfoForType(Ty: FD->getReturnType())) { |
8440 | // For any kind of comparison category return type, we need a usable |
8441 | // '==' and a usable '<'. |
8442 | if (!R.add(R: visitBinaryOperator(OO: OO_EqualEqual, Args, Subobj, |
8443 | SpaceshipCandidates: &CandidateSet))) |
8444 | R.add(R: visitBinaryOperator(OO: OO_Less, Args, Subobj, SpaceshipCandidates: &CandidateSet)); |
8445 | break; |
8446 | } |
8447 | |
8448 | if (Diagnose == ExplainDeleted) { |
8449 | S.Diag(Subobj.Loc, diag::note_defaulted_comparison_no_viable_function) |
8450 | << FD << (OO == OO_EqualEqual || OO == OO_ExclaimEqual) |
8451 | << Subobj.Kind << Subobj.Decl; |
8452 | |
8453 | // For a three-way comparison, list both the candidates for the |
8454 | // original operator and the candidates for the synthesized operator. |
8455 | if (SpaceshipCandidates) { |
8456 | SpaceshipCandidates->NoteCandidates( |
8457 | S, Args, |
8458 | SpaceshipCandidates->CompleteCandidates(S, OCD: OCD_AllCandidates, |
8459 | Args, OpLoc: FD->getLocation())); |
8460 | S.Diag(Subobj.Loc, |
8461 | diag::note_defaulted_comparison_no_viable_function_synthesized) |
8462 | << (OO == OO_EqualEqual ? 0 : 1); |
8463 | } |
8464 | |
8465 | CandidateSet.NoteCandidates( |
8466 | S, Args, |
8467 | CandidateSet.CompleteCandidates(S, OCD: OCD_AllCandidates, Args, |
8468 | OpLoc: FD->getLocation())); |
8469 | } |
8470 | R = Result::deleted(); |
8471 | break; |
8472 | } |
8473 | |
8474 | return R; |
8475 | } |
8476 | }; |
8477 | |
8478 | /// A list of statements. |
8479 | struct StmtListResult { |
8480 | bool IsInvalid = false; |
8481 | llvm::SmallVector<Stmt*, 16> Stmts; |
8482 | |
8483 | bool add(const StmtResult &S) { |
8484 | IsInvalid |= S.isInvalid(); |
8485 | if (IsInvalid) |
8486 | return true; |
8487 | Stmts.push_back(Elt: S.get()); |
8488 | return false; |
8489 | } |
8490 | }; |
8491 | |
8492 | /// A visitor over the notional body of a defaulted comparison that synthesizes |
8493 | /// the actual body. |
8494 | class DefaultedComparisonSynthesizer |
8495 | : public DefaultedComparisonVisitor<DefaultedComparisonSynthesizer, |
8496 | StmtListResult, StmtResult, |
8497 | std::pair<ExprResult, ExprResult>> { |
8498 | SourceLocation Loc; |
8499 | unsigned ArrayDepth = 0; |
8500 | |
8501 | public: |
8502 | using Base = DefaultedComparisonVisitor; |
8503 | using ExprPair = std::pair<ExprResult, ExprResult>; |
8504 | |
8505 | friend Base; |
8506 | |
8507 | DefaultedComparisonSynthesizer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, |
8508 | DefaultedComparisonKind DCK, |
8509 | SourceLocation BodyLoc) |
8510 | : Base(S, RD, FD, DCK), Loc(BodyLoc) {} |
8511 | |
8512 | /// Build a suitable function body for this defaulted comparison operator. |
8513 | StmtResult build() { |
8514 | Sema::CompoundScopeRAII CompoundScope(S); |
8515 | |
8516 | StmtListResult Stmts = visit(); |
8517 | if (Stmts.IsInvalid) |
8518 | return StmtError(); |
8519 | |
8520 | ExprResult RetVal; |
8521 | switch (DCK) { |
8522 | case DefaultedComparisonKind::None: |
8523 | llvm_unreachable("not a defaulted comparison"); |
8524 | |
8525 | case DefaultedComparisonKind::Equal: { |
8526 | // C++2a [class.eq]p3: |
8527 | // [...] compar[e] the corresponding elements [...] until the first |
8528 | // index i where xi == yi yields [...] false. If no such index exists, |
8529 | // V is true. Otherwise, V is false. |
8530 | // |
8531 | // Join the comparisons with '&&'s and return the result. Use a right |
8532 | // fold (traversing the conditions right-to-left), because that |
8533 | // short-circuits more naturally. |
8534 | auto OldStmts = std::move(Stmts.Stmts); |
8535 | Stmts.Stmts.clear(); |
8536 | ExprResult CmpSoFar; |
8537 | // Finish a particular comparison chain. |
8538 | auto FinishCmp = [&] { |
8539 | if (Expr *Prior = CmpSoFar.get()) { |
8540 | // Convert the last expression to 'return ...;' |
8541 | if (RetVal.isUnset() && Stmts.Stmts.empty()) |
8542 | RetVal = CmpSoFar; |
8543 | // Convert any prior comparison to 'if (!(...)) return false;' |
8544 | else if (Stmts.add(S: buildIfNotCondReturnFalse(Cond: Prior))) |
8545 | return true; |
8546 | CmpSoFar = ExprResult(); |
8547 | } |
8548 | return false; |
8549 | }; |
8550 | for (Stmt *EAsStmt : llvm::reverse(C&: OldStmts)) { |
8551 | Expr *E = dyn_cast<Expr>(Val: EAsStmt); |
8552 | if (!E) { |
8553 | // Found an array comparison. |
8554 | if (FinishCmp() || Stmts.add(S: EAsStmt)) |
8555 | return StmtError(); |
8556 | continue; |
8557 | } |
8558 | |
8559 | if (CmpSoFar.isUnset()) { |
8560 | CmpSoFar = E; |
8561 | continue; |
8562 | } |
8563 | CmpSoFar = S.CreateBuiltinBinOp(OpLoc: Loc, Opc: BO_LAnd, LHSExpr: E, RHSExpr: CmpSoFar.get()); |
8564 | if (CmpSoFar.isInvalid()) |
8565 | return StmtError(); |
8566 | } |
8567 | if (FinishCmp()) |
8568 | return StmtError(); |
8569 | std::reverse(first: Stmts.Stmts.begin(), last: Stmts.Stmts.end()); |
8570 | // If no such index exists, V is true. |
8571 | if (RetVal.isUnset()) |
8572 | RetVal = S.ActOnCXXBoolLiteral(OpLoc: Loc, Kind: tok::kw_true); |
8573 | break; |
8574 | } |
8575 | |
8576 | case DefaultedComparisonKind::ThreeWay: { |
8577 | // Per C++2a [class.spaceship]p3, as a fallback add: |
8578 | // return static_cast<R>(std::strong_ordering::equal); |
8579 | QualType StrongOrdering = S.CheckComparisonCategoryType( |
8580 | Kind: ComparisonCategoryType::StrongOrdering, Loc, |
8581 | Usage: Sema::ComparisonCategoryUsage::DefaultedOperator); |
8582 | if (StrongOrdering.isNull()) |
8583 | return StmtError(); |
8584 | VarDecl *EqualVD = S.Context.CompCategories.getInfoForType(Ty: StrongOrdering) |
8585 | .getValueInfo(ValueKind: ComparisonCategoryResult::Equal) |
8586 | ->VD; |
8587 | RetVal = getDecl(EqualVD); |
8588 | if (RetVal.isInvalid()) |
8589 | return StmtError(); |
8590 | RetVal = buildStaticCastToR(E: RetVal.get()); |
8591 | break; |
8592 | } |
8593 | |
8594 | case DefaultedComparisonKind::NotEqual: |
8595 | case DefaultedComparisonKind::Relational: |
8596 | RetVal = cast<Expr>(Val: Stmts.Stmts.pop_back_val()); |
8597 | break; |
8598 | } |
8599 | |
8600 | // Build the final return statement. |
8601 | if (RetVal.isInvalid()) |
8602 | return StmtError(); |
8603 | StmtResult ReturnStmt = S.BuildReturnStmt(ReturnLoc: Loc, RetValExp: RetVal.get()); |
8604 | if (ReturnStmt.isInvalid()) |
8605 | return StmtError(); |
8606 | Stmts.Stmts.push_back(Elt: ReturnStmt.get()); |
8607 | |
8608 | return S.ActOnCompoundStmt(L: Loc, R: Loc, Elts: Stmts.Stmts, /*IsStmtExpr=*/isStmtExpr: false); |
8609 | } |
8610 | |
8611 | private: |
8612 | ExprResult getDecl(ValueDecl *VD) { |
8613 | return S.BuildDeclarationNameExpr( |
8614 | CXXScopeSpec(), DeclarationNameInfo(VD->getDeclName(), Loc), VD); |
8615 | } |
8616 | |
8617 | ExprResult getParam(unsigned I) { |
8618 | ParmVarDecl *PD = FD->getParamDecl(i: I); |
8619 | return getDecl(PD); |
8620 | } |
8621 | |
8622 | ExprPair getCompleteObject() { |
8623 | unsigned Param = 0; |
8624 | ExprResult LHS; |
8625 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: FD); |
8626 | MD && MD->isImplicitObjectMemberFunction()) { |
8627 | // LHS is '*this'. |
8628 | LHS = S.ActOnCXXThis(Loc); |
8629 | if (!LHS.isInvalid()) |
8630 | LHS = S.CreateBuiltinUnaryOp(OpLoc: Loc, Opc: UO_Deref, InputExpr: LHS.get()); |
8631 | } else { |
8632 | LHS = getParam(I: Param++); |
8633 | } |
8634 | ExprResult RHS = getParam(I: Param++); |
8635 | assert(Param == FD->getNumParams()); |
8636 | return {LHS, RHS}; |
8637 | } |
8638 | |
8639 | ExprPair getBase(CXXBaseSpecifier *Base) { |
8640 | ExprPair Obj = getCompleteObject(); |
8641 | if (Obj.first.isInvalid() || Obj.second.isInvalid()) |
8642 | return {ExprError(), ExprError()}; |
8643 | CXXCastPath Path = {Base}; |
8644 | const auto CastToBase = [&](Expr *E) { |
8645 | QualType ToType = S.Context.getQualifiedType( |
8646 | T: Base->getType(), Qs: E->getType().getQualifiers()); |
8647 | return S.ImpCastExprToType(E, Type: ToType, CK: CK_DerivedToBase, VK: VK_LValue, BasePath: &Path); |
8648 | }; |
8649 | return {CastToBase(Obj.first.get()), CastToBase(Obj.second.get())}; |
8650 | } |
8651 | |
8652 | ExprPair getField(FieldDecl *Field) { |
8653 | ExprPair Obj = getCompleteObject(); |
8654 | if (Obj.first.isInvalid() || Obj.second.isInvalid()) |
8655 | return {ExprError(), ExprError()}; |
8656 | |
8657 | DeclAccessPair Found = DeclAccessPair::make(D: Field, AS: Field->getAccess()); |
8658 | DeclarationNameInfo NameInfo(Field->getDeclName(), Loc); |
8659 | return {S.BuildFieldReferenceExpr(BaseExpr: Obj.first.get(), /*IsArrow=*/false, OpLoc: Loc, |
8660 | SS: CXXScopeSpec(), Field, FoundDecl: Found, MemberNameInfo: NameInfo), |
8661 | S.BuildFieldReferenceExpr(BaseExpr: Obj.second.get(), /*IsArrow=*/false, OpLoc: Loc, |
8662 | SS: CXXScopeSpec(), Field, FoundDecl: Found, MemberNameInfo: NameInfo)}; |
8663 | } |
8664 | |
8665 | // FIXME: When expanding a subobject, register a note in the code synthesis |
8666 | // stack to say which subobject we're comparing. |
8667 | |
8668 | StmtResult buildIfNotCondReturnFalse(ExprResult Cond) { |
8669 | if (Cond.isInvalid()) |
8670 | return StmtError(); |
8671 | |
8672 | ExprResult NotCond = S.CreateBuiltinUnaryOp(OpLoc: Loc, Opc: UO_LNot, InputExpr: Cond.get()); |
8673 | if (NotCond.isInvalid()) |
8674 | return StmtError(); |
8675 | |
8676 | ExprResult False = S.ActOnCXXBoolLiteral(OpLoc: Loc, Kind: tok::kw_false); |
8677 | assert(!False.isInvalid() && "should never fail"); |
8678 | StmtResult ReturnFalse = S.BuildReturnStmt(ReturnLoc: Loc, RetValExp: False.get()); |
8679 | if (ReturnFalse.isInvalid()) |
8680 | return StmtError(); |
8681 | |
8682 | return S.ActOnIfStmt(IfLoc: Loc, StatementKind: IfStatementKind::Ordinary, LParenLoc: Loc, InitStmt: nullptr, |
8683 | Cond: S.ActOnCondition(S: nullptr, Loc, SubExpr: NotCond.get(), |
8684 | CK: Sema::ConditionKind::Boolean), |
8685 | RParenLoc: Loc, ThenVal: ReturnFalse.get(), ElseLoc: SourceLocation(), ElseVal: nullptr); |
8686 | } |
8687 | |
8688 | StmtResult visitSubobjectArray(QualType Type, llvm::APInt Size, |
8689 | ExprPair Subobj) { |
8690 | QualType SizeType = S.Context.getSizeType(); |
8691 | Size = Size.zextOrTrunc(width: S.Context.getTypeSize(T: SizeType)); |
8692 | |
8693 | // Build 'size_t i$n = 0'. |
8694 | IdentifierInfo *IterationVarName = nullptr; |
8695 | { |
8696 | SmallString<8> Str; |
8697 | llvm::raw_svector_ostream OS(Str); |
8698 | OS << "i"<< ArrayDepth; |
8699 | IterationVarName = &S.Context.Idents.get(Name: OS.str()); |
8700 | } |
8701 | VarDecl *IterationVar = VarDecl::Create( |
8702 | C&: S.Context, DC: S.CurContext, StartLoc: Loc, IdLoc: Loc, Id: IterationVarName, T: SizeType, |
8703 | TInfo: S.Context.getTrivialTypeSourceInfo(T: SizeType, Loc), S: SC_None); |
8704 | llvm::APInt Zero(S.Context.getTypeSize(T: SizeType), 0); |
8705 | IterationVar->setInit( |
8706 | IntegerLiteral::Create(C: S.Context, V: Zero, type: SizeType, l: Loc)); |
8707 | Stmt *Init = new (S.Context) DeclStmt(DeclGroupRef(IterationVar), Loc, Loc); |
8708 | |
8709 | auto IterRef = [&] { |
8710 | ExprResult Ref = S.BuildDeclarationNameExpr( |
8711 | CXXScopeSpec(), DeclarationNameInfo(IterationVarName, Loc), |
8712 | IterationVar); |
8713 | assert(!Ref.isInvalid() && "can't reference our own variable?"); |
8714 | return Ref.get(); |
8715 | }; |
8716 | |
8717 | // Build 'i$n != Size'. |
8718 | ExprResult Cond = S.CreateBuiltinBinOp( |
8719 | OpLoc: Loc, Opc: BO_NE, LHSExpr: IterRef(), |
8720 | RHSExpr: IntegerLiteral::Create(C: S.Context, V: Size, type: SizeType, l: Loc)); |
8721 | assert(!Cond.isInvalid() && "should never fail"); |
8722 | |
8723 | // Build '++i$n'. |
8724 | ExprResult Inc = S.CreateBuiltinUnaryOp(OpLoc: Loc, Opc: UO_PreInc, InputExpr: IterRef()); |
8725 | assert(!Inc.isInvalid() && "should never fail"); |
8726 | |
8727 | // Build 'a[i$n]' and 'b[i$n]'. |
8728 | auto Index = [&](ExprResult E) { |
8729 | if (E.isInvalid()) |
8730 | return ExprError(); |
8731 | return S.CreateBuiltinArraySubscriptExpr(E.get(), Loc, IterRef(), Loc); |
8732 | }; |
8733 | Subobj.first = Index(Subobj.first); |
8734 | Subobj.second = Index(Subobj.second); |
8735 | |
8736 | // Compare the array elements. |
8737 | ++ArrayDepth; |
8738 | StmtResult Substmt = visitSubobject(Type, Subobj); |
8739 | --ArrayDepth; |
8740 | |
8741 | if (Substmt.isInvalid()) |
8742 | return StmtError(); |
8743 | |
8744 | // For the inner level of an 'operator==', build 'if (!cmp) return false;'. |
8745 | // For outer levels or for an 'operator<=>' we already have a suitable |
8746 | // statement that returns as necessary. |
8747 | if (Expr *ElemCmp = dyn_cast<Expr>(Val: Substmt.get())) { |
8748 | assert(DCK == DefaultedComparisonKind::Equal && |
8749 | "should have non-expression statement"); |
8750 | Substmt = buildIfNotCondReturnFalse(Cond: ElemCmp); |
8751 | if (Substmt.isInvalid()) |
8752 | return StmtError(); |
8753 | } |
8754 | |
8755 | // Build 'for (...) ...' |
8756 | return S.ActOnForStmt(ForLoc: Loc, LParenLoc: Loc, First: Init, |
8757 | Second: S.ActOnCondition(S: nullptr, Loc, SubExpr: Cond.get(), |
8758 | CK: Sema::ConditionKind::Boolean), |
8759 | Third: S.MakeFullDiscardedValueExpr(Arg: Inc.get()), RParenLoc: Loc, |
8760 | Body: Substmt.get()); |
8761 | } |
8762 | |
8763 | StmtResult visitExpandedSubobject(QualType Type, ExprPair Obj) { |
8764 | if (Obj.first.isInvalid() || Obj.second.isInvalid()) |
8765 | return StmtError(); |
8766 | |
8767 | OverloadedOperatorKind OO = FD->getOverloadedOperator(); |
8768 | BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(OO); |
8769 | ExprResult Op; |
8770 | if (Type->isOverloadableType()) |
8771 | Op = S.CreateOverloadedBinOp(OpLoc: Loc, Opc, Fns, LHS: Obj.first.get(), |
8772 | RHS: Obj.second.get(), /*PerformADL=*/RequiresADL: true, |
8773 | /*AllowRewrittenCandidates=*/true, DefaultedFn: FD); |
8774 | else |
8775 | Op = S.CreateBuiltinBinOp(OpLoc: Loc, Opc, LHSExpr: Obj.first.get(), RHSExpr: Obj.second.get()); |
8776 | if (Op.isInvalid()) |
8777 | return StmtError(); |
8778 | |
8779 | switch (DCK) { |
8780 | case DefaultedComparisonKind::None: |
8781 | llvm_unreachable("not a defaulted comparison"); |
8782 | |
8783 | case DefaultedComparisonKind::Equal: |
8784 | // Per C++2a [class.eq]p2, each comparison is individually contextually |
8785 | // converted to bool. |
8786 | Op = S.PerformContextuallyConvertToBool(From: Op.get()); |
8787 | if (Op.isInvalid()) |
8788 | return StmtError(); |
8789 | return Op.get(); |
8790 | |
8791 | case DefaultedComparisonKind::ThreeWay: { |
8792 | // Per C++2a [class.spaceship]p3, form: |
8793 | // if (R cmp = static_cast<R>(op); cmp != 0) |
8794 | // return cmp; |
8795 | QualType R = FD->getReturnType(); |
8796 | Op = buildStaticCastToR(E: Op.get()); |
8797 | if (Op.isInvalid()) |
8798 | return StmtError(); |
8799 | |
8800 | // R cmp = ...; |
8801 | IdentifierInfo *Name = &S.Context.Idents.get(Name: "cmp"); |
8802 | VarDecl *VD = |
8803 | VarDecl::Create(C&: S.Context, DC: S.CurContext, StartLoc: Loc, IdLoc: Loc, Id: Name, T: R, |
8804 | TInfo: S.Context.getTrivialTypeSourceInfo(T: R, Loc), S: SC_None); |
8805 | S.AddInitializerToDecl(VD, Op.get(), /*DirectInit=*/false); |
8806 | Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(VD), Loc, Loc); |
8807 | |
8808 | // cmp != 0 |
8809 | ExprResult VDRef = getDecl(VD); |
8810 | if (VDRef.isInvalid()) |
8811 | return StmtError(); |
8812 | llvm::APInt ZeroVal(S.Context.getIntWidth(T: S.Context.IntTy), 0); |
8813 | Expr *Zero = |
8814 | IntegerLiteral::Create(S.Context, ZeroVal, S.Context.IntTy, Loc); |
8815 | ExprResult Comp; |
8816 | if (VDRef.get()->getType()->isOverloadableType()) |
8817 | Comp = S.CreateOverloadedBinOp(OpLoc: Loc, Opc: BO_NE, Fns, LHS: VDRef.get(), RHS: Zero, RequiresADL: true, |
8818 | AllowRewrittenCandidates: true, DefaultedFn: FD); |
8819 | else |
8820 | Comp = S.CreateBuiltinBinOp(OpLoc: Loc, Opc: BO_NE, LHSExpr: VDRef.get(), RHSExpr: Zero); |
8821 | if (Comp.isInvalid()) |
8822 | return StmtError(); |
8823 | Sema::ConditionResult Cond = S.ActOnCondition( |
8824 | S: nullptr, Loc, SubExpr: Comp.get(), CK: Sema::ConditionKind::Boolean); |
8825 | if (Cond.isInvalid()) |
8826 | return StmtError(); |
8827 | |
8828 | // return cmp; |
8829 | VDRef = getDecl(VD); |
8830 | if (VDRef.isInvalid()) |
8831 | return StmtError(); |
8832 | StmtResult ReturnStmt = S.BuildReturnStmt(ReturnLoc: Loc, RetValExp: VDRef.get()); |
8833 | if (ReturnStmt.isInvalid()) |
8834 | return StmtError(); |
8835 | |
8836 | // if (...) |
8837 | return S.ActOnIfStmt(IfLoc: Loc, StatementKind: IfStatementKind::Ordinary, LParenLoc: Loc, InitStmt, Cond, |
8838 | RParenLoc: Loc, ThenVal: ReturnStmt.get(), |
8839 | /*ElseLoc=*/SourceLocation(), /*Else=*/ElseVal: nullptr); |
8840 | } |
8841 | |
8842 | case DefaultedComparisonKind::NotEqual: |
8843 | case DefaultedComparisonKind::Relational: |
8844 | // C++2a [class.compare.secondary]p2: |
8845 | // Otherwise, the operator function yields x @ y. |
8846 | return Op.get(); |
8847 | } |
8848 | llvm_unreachable(""); |
8849 | } |
8850 | |
8851 | /// Build "static_cast<R>(E)". |
8852 | ExprResult buildStaticCastToR(Expr *E) { |
8853 | QualType R = FD->getReturnType(); |
8854 | assert(!R->isUndeducedType() && "type should have been deduced already"); |
8855 | |
8856 | // Don't bother forming a no-op cast in the common case. |
8857 | if (E->isPRValue() && S.Context.hasSameType(T1: E->getType(), T2: R)) |
8858 | return E; |
8859 | return S.BuildCXXNamedCast(OpLoc: Loc, Kind: tok::kw_static_cast, |
8860 | Ty: S.Context.getTrivialTypeSourceInfo(T: R, Loc), E, |
8861 | AngleBrackets: SourceRange(Loc, Loc), Parens: SourceRange(Loc, Loc)); |
8862 | } |
8863 | }; |
8864 | } |
8865 | |
8866 | /// Perform the unqualified lookups that might be needed to form a defaulted |
8867 | /// comparison function for the given operator. |
8868 | static void lookupOperatorsForDefaultedComparison(Sema &Self, Scope *S, |
8869 | UnresolvedSetImpl &Operators, |
8870 | OverloadedOperatorKind Op) { |
8871 | auto Lookup = [&](OverloadedOperatorKind OO) { |
8872 | Self.LookupOverloadedOperatorName(Op: OO, S, Functions&: Operators); |
8873 | }; |
8874 | |
8875 | // Every defaulted operator looks up itself. |
8876 | Lookup(Op); |
8877 | // ... and the rewritten form of itself, if any. |
8878 | if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(Kind: Op)) |
8879 | Lookup(ExtraOp); |
8880 | |
8881 | // For 'operator<=>', we also form a 'cmp != 0' expression, and might |
8882 | // synthesize a three-way comparison from '<' and '=='. In a dependent |
8883 | // context, we also need to look up '==' in case we implicitly declare a |
8884 | // defaulted 'operator=='. |
8885 | if (Op == OO_Spaceship) { |
8886 | Lookup(OO_ExclaimEqual); |
8887 | Lookup(OO_Less); |
8888 | Lookup(OO_EqualEqual); |
8889 | } |
8890 | } |
8891 | |
8892 | bool Sema::CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *FD, |
8893 | DefaultedComparisonKind DCK) { |
8894 | assert(DCK != DefaultedComparisonKind::None && "not a defaulted comparison"); |
8895 | |
8896 | // Perform any unqualified lookups we're going to need to default this |
8897 | // function. |
8898 | if (S) { |
8899 | UnresolvedSet<32> Operators; |
8900 | lookupOperatorsForDefaultedComparison(Self&: *this, S, Operators, |
8901 | Op: FD->getOverloadedOperator()); |
8902 | FD->setDefaultedOrDeletedInfo( |
8903 | FunctionDecl::DefaultedOrDeletedFunctionInfo::Create( |
8904 | Context, Lookups: Operators.pairs())); |
8905 | } |
8906 | |
8907 | // C++2a [class.compare.default]p1: |
8908 | // A defaulted comparison operator function for some class C shall be a |
8909 | // non-template function declared in the member-specification of C that is |
8910 | // -- a non-static const non-volatile member of C having one parameter of |
8911 | // type const C& and either no ref-qualifier or the ref-qualifier &, or |
8912 | // -- a friend of C having two parameters of type const C& or two |
8913 | // parameters of type C. |
8914 | |
8915 | CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext()); |
8916 | bool IsMethod = isa<CXXMethodDecl>(Val: FD); |
8917 | if (IsMethod) { |
8918 | auto *MD = cast<CXXMethodDecl>(Val: FD); |
8919 | assert(!MD->isStatic() && "comparison function cannot be a static member"); |
8920 | |
8921 | if (MD->getRefQualifier() == RQ_RValue) { |
8922 | Diag(MD->getLocation(), diag::err_ref_qualifier_comparison_operator); |
8923 | |
8924 | // Remove the ref qualifier to recover. |
8925 | const auto *FPT = MD->getType()->castAs<FunctionProtoType>(); |
8926 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
8927 | EPI.RefQualifier = RQ_None; |
8928 | MD->setType(Context.getFunctionType(ResultTy: FPT->getReturnType(), |
8929 | Args: FPT->getParamTypes(), EPI)); |
8930 | } |
8931 | |
8932 | // If we're out-of-class, this is the class we're comparing. |
8933 | if (!RD) |
8934 | RD = MD->getParent(); |
8935 | QualType T = MD->getFunctionObjectParameterReferenceType(); |
8936 | if (!T.getNonReferenceType().isConstQualified() && |
8937 | (MD->isImplicitObjectMemberFunction() || T->isLValueReferenceType())) { |
8938 | SourceLocation Loc, InsertLoc; |
8939 | if (MD->isExplicitObjectMemberFunction()) { |
8940 | Loc = MD->getParamDecl(0)->getBeginLoc(); |
8941 | InsertLoc = getLocForEndOfToken( |
8942 | Loc: MD->getParamDecl(0)->getExplicitObjectParamThisLoc()); |
8943 | } else { |
8944 | Loc = MD->getLocation(); |
8945 | if (FunctionTypeLoc Loc = MD->getFunctionTypeLoc()) |
8946 | InsertLoc = Loc.getRParenLoc(); |
8947 | } |
8948 | // Don't diagnose an implicit 'operator=='; we will have diagnosed the |
8949 | // corresponding defaulted 'operator<=>' already. |
8950 | if (!MD->isImplicit()) { |
8951 | Diag(Loc, diag::err_defaulted_comparison_non_const) |
8952 | << (int)DCK << FixItHint::CreateInsertion(InsertLoc, " const"); |
8953 | } |
8954 | |
8955 | // Add the 'const' to the type to recover. |
8956 | if (MD->isExplicitObjectMemberFunction()) { |
8957 | assert(T->isLValueReferenceType()); |
8958 | MD->getParamDecl(0)->setType(Context.getLValueReferenceType( |
8959 | T: T.getNonReferenceType().withConst())); |
8960 | } else { |
8961 | const auto *FPT = MD->getType()->castAs<FunctionProtoType>(); |
8962 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
8963 | EPI.TypeQuals.addConst(); |
8964 | MD->setType(Context.getFunctionType(ResultTy: FPT->getReturnType(), |
8965 | Args: FPT->getParamTypes(), EPI)); |
8966 | } |
8967 | } |
8968 | |
8969 | if (MD->isVolatile()) { |
8970 | Diag(MD->getLocation(), diag::err_volatile_comparison_operator); |
8971 | |
8972 | // Remove the 'volatile' from the type to recover. |
8973 | const auto *FPT = MD->getType()->castAs<FunctionProtoType>(); |
8974 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
8975 | EPI.TypeQuals.removeVolatile(); |
8976 | MD->setType(Context.getFunctionType(ResultTy: FPT->getReturnType(), |
8977 | Args: FPT->getParamTypes(), EPI)); |
8978 | } |
8979 | } |
8980 | |
8981 | if ((FD->getNumParams() - |
8982 | (unsigned)FD->hasCXXExplicitFunctionObjectParameter()) != |
8983 | (IsMethod ? 1 : 2)) { |
8984 | // Let's not worry about using a variadic template pack here -- who would do |
8985 | // such a thing? |
8986 | Diag(FD->getLocation(), diag::err_defaulted_comparison_num_args) |
8987 | << int(IsMethod) << int(DCK); |
8988 | return true; |
8989 | } |
8990 | |
8991 | const ParmVarDecl *KnownParm = nullptr; |
8992 | for (const ParmVarDecl *Param : FD->parameters()) { |
8993 | QualType ParmTy = Param->getType(); |
8994 | if (!KnownParm) { |
8995 | auto CTy = ParmTy; |
8996 | // Is it `T const &`? |
8997 | bool Ok = !IsMethod || FD->hasCXXExplicitFunctionObjectParameter(); |
8998 | QualType ExpectedTy; |
8999 | if (RD) |
9000 | ExpectedTy = Context.getRecordType(RD); |
9001 | if (auto *Ref = CTy->getAs<LValueReferenceType>()) { |
9002 | CTy = Ref->getPointeeType(); |
9003 | if (RD) |
9004 | ExpectedTy.addConst(); |
9005 | Ok = true; |
9006 | } |
9007 | |
9008 | // Is T a class? |
9009 | if (RD) { |
9010 | Ok &= RD->isDependentType() || Context.hasSameType(CTy, ExpectedTy); |
9011 | } else { |
9012 | RD = CTy->getAsCXXRecordDecl(); |
9013 | Ok &= RD != nullptr; |
9014 | } |
9015 | |
9016 | if (Ok) { |
9017 | KnownParm = Param; |
9018 | } else { |
9019 | // Don't diagnose an implicit 'operator=='; we will have diagnosed the |
9020 | // corresponding defaulted 'operator<=>' already. |
9021 | if (!FD->isImplicit()) { |
9022 | if (RD) { |
9023 | QualType PlainTy = Context.getRecordType(RD); |
9024 | QualType RefTy = |
9025 | Context.getLValueReferenceType(T: PlainTy.withConst()); |
9026 | Diag(FD->getLocation(), diag::err_defaulted_comparison_param) |
9027 | << int(DCK) << ParmTy << RefTy << int(!IsMethod) << PlainTy |
9028 | << Param->getSourceRange(); |
9029 | } else { |
9030 | assert(!IsMethod && "should know expected type for method"); |
9031 | Diag(FD->getLocation(), |
9032 | diag::err_defaulted_comparison_param_unknown) |
9033 | << int(DCK) << ParmTy << Param->getSourceRange(); |
9034 | } |
9035 | } |
9036 | return true; |
9037 | } |
9038 | } else if (!Context.hasSameType(KnownParm->getType(), ParmTy)) { |
9039 | Diag(FD->getLocation(), diag::err_defaulted_comparison_param_mismatch) |
9040 | << int(DCK) << KnownParm->getType() << KnownParm->getSourceRange() |
9041 | << ParmTy << Param->getSourceRange(); |
9042 | return true; |
9043 | } |
9044 | } |
9045 | |
9046 | assert(RD && "must have determined class"); |
9047 | if (IsMethod) { |
9048 | } else if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { |
9049 | // In-class, must be a friend decl. |
9050 | assert(FD->getFriendObjectKind() && "expected a friend declaration"); |
9051 | } else { |
9052 | // Out of class, require the defaulted comparison to be a friend (of a |
9053 | // complete type, per CWG2547). |
9054 | if (RequireCompleteType(FD->getLocation(), Context.getRecordType(RD), |
9055 | diag::err_defaulted_comparison_not_friend, int(DCK), |
9056 | int(1))) |
9057 | return true; |
9058 | |
9059 | if (llvm::none_of(Range: RD->friends(), P: [&](const FriendDecl *F) { |
9060 | return declaresSameEntity(F->getFriendDecl(), FD); |
9061 | })) { |
9062 | Diag(FD->getLocation(), diag::err_defaulted_comparison_not_friend) |
9063 | << int(DCK) << int(0) << RD; |
9064 | Diag(RD->getCanonicalDecl()->getLocation(), diag::note_declared_at); |
9065 | return true; |
9066 | } |
9067 | } |
9068 | |
9069 | // C++2a [class.eq]p1, [class.rel]p1: |
9070 | // A [defaulted comparison other than <=>] shall have a declared return |
9071 | // type bool. |
9072 | if (DCK != DefaultedComparisonKind::ThreeWay && |
9073 | !FD->getDeclaredReturnType()->isDependentType() && |
9074 | !Context.hasSameType(FD->getDeclaredReturnType(), Context.BoolTy)) { |
9075 | Diag(FD->getLocation(), diag::err_defaulted_comparison_return_type_not_bool) |
9076 | << (int)DCK << FD->getDeclaredReturnType() << Context.BoolTy |
9077 | << FD->getReturnTypeSourceRange(); |
9078 | return true; |
9079 | } |
9080 | // C++2a [class.spaceship]p2 [P2002R0]: |
9081 | // Let R be the declared return type [...]. If R is auto, [...]. Otherwise, |
9082 | // R shall not contain a placeholder type. |
9083 | if (QualType RT = FD->getDeclaredReturnType(); |
9084 | DCK == DefaultedComparisonKind::ThreeWay && |
9085 | RT->getContainedDeducedType() && |
9086 | (!Context.hasSameType(T1: RT, T2: Context.getAutoDeductType()) || |
9087 | RT->getContainedAutoType()->isConstrained())) { |
9088 | Diag(FD->getLocation(), |
9089 | diag::err_defaulted_comparison_deduced_return_type_not_auto) |
9090 | << (int)DCK << FD->getDeclaredReturnType() << Context.AutoDeductTy |
9091 | << FD->getReturnTypeSourceRange(); |
9092 | return true; |
9093 | } |
9094 | |
9095 | // For a defaulted function in a dependent class, defer all remaining checks |
9096 | // until instantiation. |
9097 | if (RD->isDependentType()) |
9098 | return false; |
9099 | |
9100 | // Determine whether the function should be defined as deleted. |
9101 | DefaultedComparisonInfo Info = |
9102 | DefaultedComparisonAnalyzer(*this, RD, FD, DCK).visit(); |
9103 | |
9104 | bool First = FD == FD->getCanonicalDecl(); |
9105 | |
9106 | if (!First) { |
9107 | if (Info.Deleted) { |
9108 | // C++11 [dcl.fct.def.default]p4: |
9109 | // [For a] user-provided explicitly-defaulted function [...] if such a |
9110 | // function is implicitly defined as deleted, the program is ill-formed. |
9111 | // |
9112 | // This is really just a consequence of the general rule that you can |
9113 | // only delete a function on its first declaration. |
9114 | Diag(FD->getLocation(), diag::err_non_first_default_compare_deletes) |
9115 | << FD->isImplicit() << (int)DCK; |
9116 | DefaultedComparisonAnalyzer(*this, RD, FD, DCK, |
9117 | DefaultedComparisonAnalyzer::ExplainDeleted) |
9118 | .visit(); |
9119 | return true; |
9120 | } |
9121 | if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { |
9122 | // C++20 [class.compare.default]p1: |
9123 | // [...] A definition of a comparison operator as defaulted that appears |
9124 | // in a class shall be the first declaration of that function. |
9125 | Diag(FD->getLocation(), diag::err_non_first_default_compare_in_class) |
9126 | << (int)DCK; |
9127 | Diag(FD->getCanonicalDecl()->getLocation(), |
9128 | diag::note_previous_declaration); |
9129 | return true; |
9130 | } |
9131 | } |
9132 | |
9133 | // If we want to delete the function, then do so; there's nothing else to |
9134 | // check in that case. |
9135 | if (Info.Deleted) { |
9136 | SetDeclDeleted(dcl: FD, DelLoc: FD->getLocation()); |
9137 | if (!inTemplateInstantiation() && !FD->isImplicit()) { |
9138 | Diag(FD->getLocation(), diag::warn_defaulted_comparison_deleted) |
9139 | << (int)DCK; |
9140 | DefaultedComparisonAnalyzer(*this, RD, FD, DCK, |
9141 | DefaultedComparisonAnalyzer::ExplainDeleted) |
9142 | .visit(); |
9143 | if (FD->getDefaultLoc().isValid()) |
9144 | Diag(FD->getDefaultLoc(), diag::note_replace_equals_default_to_delete) |
9145 | << FixItHint::CreateReplacement(FD->getDefaultLoc(), "delete"); |
9146 | } |
9147 | return false; |
9148 | } |
9149 | |
9150 | // C++2a [class.spaceship]p2: |
9151 | // The return type is deduced as the common comparison type of R0, R1, ... |
9152 | if (DCK == DefaultedComparisonKind::ThreeWay && |
9153 | FD->getDeclaredReturnType()->isUndeducedAutoType()) { |
9154 | SourceLocation RetLoc = FD->getReturnTypeSourceRange().getBegin(); |
9155 | if (RetLoc.isInvalid()) |
9156 | RetLoc = FD->getBeginLoc(); |
9157 | // FIXME: Should we really care whether we have the complete type and the |
9158 | // 'enumerator' constants here? A forward declaration seems sufficient. |
9159 | QualType Cat = CheckComparisonCategoryType( |
9160 | Kind: Info.Category, Loc: RetLoc, Usage: ComparisonCategoryUsage::DefaultedOperator); |
9161 | if (Cat.isNull()) |
9162 | return true; |
9163 | Context.adjustDeducedFunctionResultType( |
9164 | FD, ResultType: SubstAutoType(TypeWithAuto: FD->getDeclaredReturnType(), Replacement: Cat)); |
9165 | } |
9166 | |
9167 | // C++2a [dcl.fct.def.default]p3 [P2002R0]: |
9168 | // An explicitly-defaulted function that is not defined as deleted may be |
9169 | // declared constexpr or consteval only if it is constexpr-compatible. |
9170 | // C++2a [class.compare.default]p3 [P2002R0]: |
9171 | // A defaulted comparison function is constexpr-compatible if it satisfies |
9172 | // the requirements for a constexpr function [...] |
9173 | // The only relevant requirements are that the parameter and return types are |
9174 | // literal types. The remaining conditions are checked by the analyzer. |
9175 | // |
9176 | // We support P2448R2 in language modes earlier than C++23 as an extension. |
9177 | // The concept of constexpr-compatible was removed. |
9178 | // C++23 [dcl.fct.def.default]p3 [P2448R2] |
9179 | // A function explicitly defaulted on its first declaration is implicitly |
9180 | // inline, and is implicitly constexpr if it is constexpr-suitable. |
9181 | // C++23 [dcl.constexpr]p3 |
9182 | // A function is constexpr-suitable if |
9183 | // - it is not a coroutine, and |
9184 | // - if the function is a constructor or destructor, its class does not |
9185 | // have any virtual base classes. |
9186 | if (FD->isConstexpr()) { |
9187 | if (!getLangOpts().CPlusPlus23 && |
9188 | CheckConstexprReturnType(SemaRef&: *this, FD, Kind: CheckConstexprKind::Diagnose) && |
9189 | CheckConstexprParameterTypes(SemaRef&: *this, FD, Kind: CheckConstexprKind::Diagnose) && |
9190 | !Info.Constexpr) { |
9191 | Diag(FD->getBeginLoc(), diag::err_defaulted_comparison_constexpr_mismatch) |
9192 | << FD->isImplicit() << (int)DCK << FD->isConsteval(); |
9193 | DefaultedComparisonAnalyzer(*this, RD, FD, DCK, |
9194 | DefaultedComparisonAnalyzer::ExplainConstexpr) |
9195 | .visit(); |
9196 | } |
9197 | } |
9198 | |
9199 | // C++2a [dcl.fct.def.default]p3 [P2002R0]: |
9200 | // If a constexpr-compatible function is explicitly defaulted on its first |
9201 | // declaration, it is implicitly considered to be constexpr. |
9202 | // FIXME: Only applying this to the first declaration seems problematic, as |
9203 | // simple reorderings can affect the meaning of the program. |
9204 | if (First && !FD->isConstexpr() && Info.Constexpr) |
9205 | FD->setConstexprKind(ConstexprSpecKind::Constexpr); |
9206 | |
9207 | // C++2a [except.spec]p3: |
9208 | // If a declaration of a function does not have a noexcept-specifier |
9209 | // [and] is defaulted on its first declaration, [...] the exception |
9210 | // specification is as specified below |
9211 | if (FD->getExceptionSpecType() == EST_None) { |
9212 | auto *FPT = FD->getType()->castAs<FunctionProtoType>(); |
9213 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
9214 | EPI.ExceptionSpec.Type = EST_Unevaluated; |
9215 | EPI.ExceptionSpec.SourceDecl = FD; |
9216 | FD->setType(Context.getFunctionType(ResultTy: FPT->getReturnType(), |
9217 | Args: FPT->getParamTypes(), EPI)); |
9218 | } |
9219 | |
9220 | return false; |
9221 | } |
9222 | |
9223 | void Sema::DeclareImplicitEqualityComparison(CXXRecordDecl *RD, |
9224 | FunctionDecl *Spaceship) { |
9225 | Sema::CodeSynthesisContext Ctx; |
9226 | Ctx.Kind = Sema::CodeSynthesisContext::DeclaringImplicitEqualityComparison; |
9227 | Ctx.PointOfInstantiation = Spaceship->getEndLoc(); |
9228 | Ctx.Entity = Spaceship; |
9229 | pushCodeSynthesisContext(Ctx); |
9230 | |
9231 | if (FunctionDecl *EqualEqual = SubstSpaceshipAsEqualEqual(RD, Spaceship)) |
9232 | EqualEqual->setImplicit(); |
9233 | |
9234 | popCodeSynthesisContext(); |
9235 | } |
9236 | |
9237 | void Sema::DefineDefaultedComparison(SourceLocation UseLoc, FunctionDecl *FD, |
9238 | DefaultedComparisonKind DCK) { |
9239 | assert(FD->isDefaulted() && !FD->isDeleted() && |
9240 | !FD->doesThisDeclarationHaveABody()); |
9241 | if (FD->willHaveBody() || FD->isInvalidDecl()) |
9242 | return; |
9243 | |
9244 | SynthesizedFunctionScope Scope(*this, FD); |
9245 | |
9246 | // Add a context note for diagnostics produced after this point. |
9247 | Scope.addContextNote(UseLoc); |
9248 | |
9249 | { |
9250 | // Build and set up the function body. |
9251 | // The first parameter has type maybe-ref-to maybe-const T, use that to get |
9252 | // the type of the class being compared. |
9253 | auto PT = FD->getParamDecl(i: 0)->getType(); |
9254 | CXXRecordDecl *RD = PT.getNonReferenceType()->getAsCXXRecordDecl(); |
9255 | SourceLocation BodyLoc = |
9256 | FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); |
9257 | StmtResult Body = |
9258 | DefaultedComparisonSynthesizer(*this, RD, FD, DCK, BodyLoc).build(); |
9259 | if (Body.isInvalid()) { |
9260 | FD->setInvalidDecl(); |
9261 | return; |
9262 | } |
9263 | FD->setBody(Body.get()); |
9264 | FD->markUsed(Context); |
9265 | } |
9266 | |
9267 | // The exception specification is needed because we are defining the |
9268 | // function. Note that this will reuse the body we just built. |
9269 | ResolveExceptionSpec(Loc: UseLoc, FPT: FD->getType()->castAs<FunctionProtoType>()); |
9270 | |
9271 | if (ASTMutationListener *L = getASTMutationListener()) |
9272 | L->CompletedImplicitDefinition(D: FD); |
9273 | } |
9274 | |
9275 | static Sema::ImplicitExceptionSpecification |
9276 | ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, |
9277 | FunctionDecl *FD, |
9278 | Sema::DefaultedComparisonKind DCK) { |
9279 | ComputingExceptionSpec CES(S, FD, Loc); |
9280 | Sema::ImplicitExceptionSpecification ExceptSpec(S); |
9281 | |
9282 | if (FD->isInvalidDecl()) |
9283 | return ExceptSpec; |
9284 | |
9285 | // The common case is that we just defined the comparison function. In that |
9286 | // case, just look at whether the body can throw. |
9287 | if (FD->hasBody()) { |
9288 | ExceptSpec.CalledStmt(S: FD->getBody()); |
9289 | } else { |
9290 | // Otherwise, build a body so we can check it. This should ideally only |
9291 | // happen when we're not actually marking the function referenced. (This is |
9292 | // only really important for efficiency: we don't want to build and throw |
9293 | // away bodies for comparison functions more than we strictly need to.) |
9294 | |
9295 | // Pretend to synthesize the function body in an unevaluated context. |
9296 | // Note that we can't actually just go ahead and define the function here: |
9297 | // we are not permitted to mark its callees as referenced. |
9298 | Sema::SynthesizedFunctionScope Scope(S, FD); |
9299 | EnterExpressionEvaluationContext Context( |
9300 | S, Sema::ExpressionEvaluationContext::Unevaluated); |
9301 | |
9302 | CXXRecordDecl *RD = |
9303 | cast<CXXRecordDecl>(FD->getFriendObjectKind() == Decl::FOK_None |
9304 | ? FD->getDeclContext() |
9305 | : FD->getLexicalDeclContext()); |
9306 | SourceLocation BodyLoc = |
9307 | FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); |
9308 | StmtResult Body = |
9309 | DefaultedComparisonSynthesizer(S, RD, FD, DCK, BodyLoc).build(); |
9310 | if (!Body.isInvalid()) |
9311 | ExceptSpec.CalledStmt(S: Body.get()); |
9312 | |
9313 | // FIXME: Can we hold onto this body and just transform it to potentially |
9314 | // evaluated when we're asked to define the function rather than rebuilding |
9315 | // it? Either that, or we should only build the bits of the body that we |
9316 | // need (the expressions, not the statements). |
9317 | } |
9318 | |
9319 | return ExceptSpec; |
9320 | } |
9321 | |
9322 | void Sema::CheckDelayedMemberExceptionSpecs() { |
9323 | decltype(DelayedOverridingExceptionSpecChecks) Overriding; |
9324 | decltype(DelayedEquivalentExceptionSpecChecks) Equivalent; |
9325 | |
9326 | std::swap(LHS&: Overriding, RHS&: DelayedOverridingExceptionSpecChecks); |
9327 | std::swap(LHS&: Equivalent, RHS&: DelayedEquivalentExceptionSpecChecks); |
9328 | |
9329 | // Perform any deferred checking of exception specifications for virtual |
9330 | // destructors. |
9331 | for (auto &Check : Overriding) |
9332 | CheckOverridingFunctionExceptionSpec(New: Check.first, Old: Check.second); |
9333 | |
9334 | // Perform any deferred checking of exception specifications for befriended |
9335 | // special members. |
9336 | for (auto &Check : Equivalent) |
9337 | CheckEquivalentExceptionSpec(Old: Check.second, New: Check.first); |
9338 | } |
9339 | |
9340 | namespace { |
9341 | /// CRTP base class for visiting operations performed by a special member |
9342 | /// function (or inherited constructor). |
9343 | template<typename Derived> |
9344 | struct SpecialMemberVisitor { |
9345 | Sema &S; |
9346 | CXXMethodDecl *MD; |
9347 | CXXSpecialMemberKind CSM; |
9348 | Sema::InheritedConstructorInfo *ICI; |
9349 | |
9350 | // Properties of the special member, computed for convenience. |
9351 | bool IsConstructor = false, IsAssignment = false, ConstArg = false; |
9352 | |
9353 | SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, CXXSpecialMemberKind CSM, |
9354 | Sema::InheritedConstructorInfo *ICI) |
9355 | : S(S), MD(MD), CSM(CSM), ICI(ICI) { |
9356 | switch (CSM) { |
9357 | case CXXSpecialMemberKind::DefaultConstructor: |
9358 | case CXXSpecialMemberKind::CopyConstructor: |
9359 | case CXXSpecialMemberKind::MoveConstructor: |
9360 | IsConstructor = true; |
9361 | break; |
9362 | case CXXSpecialMemberKind::CopyAssignment: |
9363 | case CXXSpecialMemberKind::MoveAssignment: |
9364 | IsAssignment = true; |
9365 | break; |
9366 | case CXXSpecialMemberKind::Destructor: |
9367 | break; |
9368 | case CXXSpecialMemberKind::Invalid: |
9369 | llvm_unreachable("invalid special member kind"); |
9370 | } |
9371 | |
9372 | if (MD->getNumExplicitParams()) { |
9373 | if (const ReferenceType *RT = |
9374 | MD->getNonObjectParameter(0)->getType()->getAs<ReferenceType>()) |
9375 | ConstArg = RT->getPointeeType().isConstQualified(); |
9376 | } |
9377 | } |
9378 | |
9379 | Derived &getDerived() { return static_cast<Derived&>(*this); } |
9380 | |
9381 | /// Is this a "move" special member? |
9382 | bool isMove() const { |
9383 | return CSM == CXXSpecialMemberKind::MoveConstructor || |
9384 | CSM == CXXSpecialMemberKind::MoveAssignment; |
9385 | } |
9386 | |
9387 | /// Look up the corresponding special member in the given class. |
9388 | Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class, |
9389 | unsigned Quals, bool IsMutable) { |
9390 | return lookupCallFromSpecialMember(S, Class, CSM, FieldQuals: Quals, |
9391 | ConstRHS: ConstArg && !IsMutable); |
9392 | } |
9393 | |
9394 | /// Look up the constructor for the specified base class to see if it's |
9395 | /// overridden due to this being an inherited constructor. |
9396 | Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) { |
9397 | if (!ICI) |
9398 | return {}; |
9399 | assert(CSM == CXXSpecialMemberKind::DefaultConstructor); |
9400 | auto *BaseCtor = |
9401 | cast<CXXConstructorDecl>(Val: MD)->getInheritedConstructor().getConstructor(); |
9402 | if (auto *MD = ICI->findConstructorForBase(Base: Class, Ctor: BaseCtor).first) |
9403 | return MD; |
9404 | return {}; |
9405 | } |
9406 | |
9407 | /// A base or member subobject. |
9408 | typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject; |
9409 | |
9410 | /// Get the location to use for a subobject in diagnostics. |
9411 | static SourceLocation getSubobjectLoc(Subobject Subobj) { |
9412 | // FIXME: For an indirect virtual base, the direct base leading to |
9413 | // the indirect virtual base would be a more useful choice. |
9414 | if (auto *B = dyn_cast<CXXBaseSpecifier *>(Val&: Subobj)) |
9415 | return B->getBaseTypeLoc(); |
9416 | else |
9417 | return cast<FieldDecl *>(Val&: Subobj)->getLocation(); |
9418 | } |
9419 | |
9420 | enum BasesToVisit { |
9421 | /// Visit all non-virtual (direct) bases. |
9422 | VisitNonVirtualBases, |
9423 | /// Visit all direct bases, virtual or not. |
9424 | VisitDirectBases, |
9425 | /// Visit all non-virtual bases, and all virtual bases if the class |
9426 | /// is not abstract. |
9427 | VisitPotentiallyConstructedBases, |
9428 | /// Visit all direct or virtual bases. |
9429 | VisitAllBases |
9430 | }; |
9431 | |
9432 | // Visit the bases and members of the class. |
9433 | bool visit(BasesToVisit Bases) { |
9434 | CXXRecordDecl *RD = MD->getParent(); |
9435 | |
9436 | if (Bases == VisitPotentiallyConstructedBases) |
9437 | Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases; |
9438 | |
9439 | for (auto &B : RD->bases()) |
9440 | if ((Bases == VisitDirectBases || !B.isVirtual()) && |
9441 | getDerived().visitBase(&B)) |
9442 | return true; |
9443 | |
9444 | if (Bases == VisitAllBases) |
9445 | for (auto &B : RD->vbases()) |
9446 | if (getDerived().visitBase(&B)) |
9447 | return true; |
9448 | |
9449 | for (auto *F : RD->fields()) |
9450 | if (!F->isInvalidDecl() && !F->isUnnamedBitField() && |
9451 | getDerived().visitField(F)) |
9452 | return true; |
9453 | |
9454 | return false; |
9455 | } |
9456 | }; |
9457 | } |
9458 | |
9459 | namespace { |
9460 | struct SpecialMemberDeletionInfo |
9461 | : SpecialMemberVisitor<SpecialMemberDeletionInfo> { |
9462 | bool Diagnose; |
9463 | |
9464 | SourceLocation Loc; |
9465 | |
9466 | bool AllFieldsAreConst; |
9467 | |
9468 | SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD, |
9469 | CXXSpecialMemberKind CSM, |
9470 | Sema::InheritedConstructorInfo *ICI, bool Diagnose) |
9471 | : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose), |
9472 | Loc(MD->getLocation()), AllFieldsAreConst(true) {} |
9473 | |
9474 | bool inUnion() const { return MD->getParent()->isUnion(); } |
9475 | |
9476 | CXXSpecialMemberKind getEffectiveCSM() { |
9477 | return ICI ? CXXSpecialMemberKind::Invalid : CSM; |
9478 | } |
9479 | |
9480 | bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType); |
9481 | |
9482 | bool shouldDeleteForVariantPtrAuthMember(const FieldDecl *FD); |
9483 | |
9484 | bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); } |
9485 | bool visitField(FieldDecl *Field) { return shouldDeleteForField(FD: Field); } |
9486 | |
9487 | bool shouldDeleteForBase(CXXBaseSpecifier *Base); |
9488 | bool shouldDeleteForField(FieldDecl *FD); |
9489 | bool shouldDeleteForAllConstMembers(); |
9490 | |
9491 | bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj, |
9492 | unsigned Quals); |
9493 | bool shouldDeleteForSubobjectCall(Subobject Subobj, |
9494 | Sema::SpecialMemberOverloadResult SMOR, |
9495 | bool IsDtorCallInCtor); |
9496 | |
9497 | bool isAccessible(Subobject Subobj, CXXMethodDecl *D); |
9498 | }; |
9499 | } |
9500 | |
9501 | /// Is the given special member inaccessible when used on the given |
9502 | /// sub-object. |
9503 | bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj, |
9504 | CXXMethodDecl *target) { |
9505 | /// If we're operating on a base class, the object type is the |
9506 | /// type of this special member. |
9507 | QualType objectTy; |
9508 | AccessSpecifier access = target->getAccess(); |
9509 | if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) { |
9510 | objectTy = S.Context.getTypeDeclType(MD->getParent()); |
9511 | access = CXXRecordDecl::MergeAccess(PathAccess: base->getAccessSpecifier(), DeclAccess: access); |
9512 | |
9513 | // If we're operating on a field, the object type is the type of the field. |
9514 | } else { |
9515 | objectTy = S.Context.getTypeDeclType(target->getParent()); |
9516 | } |
9517 | |
9518 | return S.isMemberAccessibleForDeletion( |
9519 | target->getParent(), DeclAccessPair::make(target, access), objectTy); |
9520 | } |
9521 | |
9522 | /// Check whether we should delete a special member due to the implicit |
9523 | /// definition containing a call to a special member of a subobject. |
9524 | bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall( |
9525 | Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR, |
9526 | bool IsDtorCallInCtor) { |
9527 | CXXMethodDecl *Decl = SMOR.getMethod(); |
9528 | FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); |
9529 | |
9530 | int DiagKind = -1; |
9531 | |
9532 | if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted) |
9533 | DiagKind = !Decl ? 0 : 1; |
9534 | else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) |
9535 | DiagKind = 2; |
9536 | else if (!isAccessible(Subobj, target: Decl)) |
9537 | DiagKind = 3; |
9538 | else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() && |
9539 | !Decl->isTrivial()) { |
9540 | // A member of a union must have a trivial corresponding special member. |
9541 | // As a weird special case, a destructor call from a union's constructor |
9542 | // must be accessible and non-deleted, but need not be trivial. Such a |
9543 | // destructor is never actually called, but is semantically checked as |
9544 | // if it were. |
9545 | if (CSM == CXXSpecialMemberKind::DefaultConstructor) { |
9546 | // [class.default.ctor]p2: |
9547 | // A defaulted default constructor for class X is defined as deleted if |
9548 | // - X is a union that has a variant member with a non-trivial default |
9549 | // constructor and no variant member of X has a default member |
9550 | // initializer |
9551 | const auto *RD = cast<CXXRecordDecl>(Val: Field->getParent()); |
9552 | if (!RD->hasInClassInitializer()) |
9553 | DiagKind = 4; |
9554 | } else { |
9555 | DiagKind = 4; |
9556 | } |
9557 | } |
9558 | |
9559 | if (DiagKind == -1) |
9560 | return false; |
9561 | |
9562 | if (Diagnose) { |
9563 | if (Field) { |
9564 | S.Diag(Field->getLocation(), |
9565 | diag::note_deleted_special_member_class_subobject) |
9566 | << getEffectiveCSM() << MD->getParent() << /*IsField*/ true << Field |
9567 | << DiagKind << IsDtorCallInCtor << /*IsObjCPtr*/ false; |
9568 | } else { |
9569 | CXXBaseSpecifier *Base = cast<CXXBaseSpecifier *>(Val&: Subobj); |
9570 | S.Diag(Base->getBeginLoc(), |
9571 | diag::note_deleted_special_member_class_subobject) |
9572 | << getEffectiveCSM() << MD->getParent() << /*IsField*/ false |
9573 | << Base->getType() << DiagKind << IsDtorCallInCtor |
9574 | << /*IsObjCPtr*/ false; |
9575 | } |
9576 | |
9577 | if (DiagKind == 1) |
9578 | S.NoteDeletedFunction(Decl); |
9579 | // FIXME: Explain inaccessibility if DiagKind == 3. |
9580 | } |
9581 | |
9582 | return true; |
9583 | } |
9584 | |
9585 | /// Check whether we should delete a special member function due to having a |
9586 | /// direct or virtual base class or non-static data member of class type M. |
9587 | bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject( |
9588 | CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) { |
9589 | FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); |
9590 | bool IsMutable = Field && Field->isMutable(); |
9591 | |
9592 | // C++11 [class.ctor]p5: |
9593 | // -- any direct or virtual base class, or non-static data member with no |
9594 | // brace-or-equal-initializer, has class type M (or array thereof) and |
9595 | // either M has no default constructor or overload resolution as applied |
9596 | // to M's default constructor results in an ambiguity or in a function |
9597 | // that is deleted or inaccessible |
9598 | // C++11 [class.copy]p11, C++11 [class.copy]p23: |
9599 | // -- a direct or virtual base class B that cannot be copied/moved because |
9600 | // overload resolution, as applied to B's corresponding special member, |
9601 | // results in an ambiguity or a function that is deleted or inaccessible |
9602 | // from the defaulted special member |
9603 | // C++11 [class.dtor]p5: |
9604 | // -- any direct or virtual base class [...] has a type with a destructor |
9605 | // that is deleted or inaccessible |
9606 | if (!(CSM == CXXSpecialMemberKind::DefaultConstructor && Field && |
9607 | Field->hasInClassInitializer()) && |
9608 | shouldDeleteForSubobjectCall(Subobj, SMOR: lookupIn(Class, Quals, IsMutable), |
9609 | IsDtorCallInCtor: false)) |
9610 | return true; |
9611 | |
9612 | // C++11 [class.ctor]p5, C++11 [class.copy]p11: |
9613 | // -- any direct or virtual base class or non-static data member has a |
9614 | // type with a destructor that is deleted or inaccessible |
9615 | if (IsConstructor) { |
9616 | Sema::SpecialMemberOverloadResult SMOR = |
9617 | S.LookupSpecialMember(D: Class, SM: CXXSpecialMemberKind::Destructor, ConstArg: false, |
9618 | VolatileArg: false, RValueThis: false, ConstThis: false, VolatileThis: false); |
9619 | if (shouldDeleteForSubobjectCall(Subobj, SMOR, IsDtorCallInCtor: true)) |
9620 | return true; |
9621 | } |
9622 | |
9623 | return false; |
9624 | } |
9625 | |
9626 | bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember( |
9627 | FieldDecl *FD, QualType FieldType) { |
9628 | // The defaulted special functions are defined as deleted if this is a variant |
9629 | // member with a non-trivial ownership type, e.g., ObjC __strong or __weak |
9630 | // type under ARC. |
9631 | if (!FieldType.hasNonTrivialObjCLifetime()) |
9632 | return false; |
9633 | |
9634 | // Don't make the defaulted default constructor defined as deleted if the |
9635 | // member has an in-class initializer. |
9636 | if (CSM == CXXSpecialMemberKind::DefaultConstructor && |
9637 | FD->hasInClassInitializer()) |
9638 | return false; |
9639 | |
9640 | if (Diagnose) { |
9641 | auto *ParentClass = cast<CXXRecordDecl>(Val: FD->getParent()); |
9642 | S.Diag(FD->getLocation(), diag::note_deleted_special_member_class_subobject) |
9643 | << getEffectiveCSM() << ParentClass << /*IsField*/ true << FD << 4 |
9644 | << /*IsDtorCallInCtor*/ false << /*IsObjCPtr*/ true; |
9645 | } |
9646 | |
9647 | return true; |
9648 | } |
9649 | |
9650 | bool SpecialMemberDeletionInfo::shouldDeleteForVariantPtrAuthMember( |
9651 | const FieldDecl *FD) { |
9652 | QualType FieldType = S.Context.getBaseElementType(FD->getType()); |
9653 | // Copy/move constructors/assignment operators are deleted if the field has an |
9654 | // address-discriminated ptrauth qualifier. |
9655 | PointerAuthQualifier Q = FieldType.getPointerAuth(); |
9656 | |
9657 | if (!Q || !Q.isAddressDiscriminated()) |
9658 | return false; |
9659 | |
9660 | if (CSM == CXXSpecialMemberKind::DefaultConstructor || |
9661 | CSM == CXXSpecialMemberKind::Destructor) |
9662 | return false; |
9663 | |
9664 | if (Diagnose) { |
9665 | auto *ParentClass = cast<CXXRecordDecl>(Val: FD->getParent()); |
9666 | S.Diag(FD->getLocation(), diag::note_deleted_special_member_class_subobject) |
9667 | << getEffectiveCSM() << ParentClass << /*IsField*/ true << FD << 4 |
9668 | << /*IsDtorCallInCtor*/ false << 2; |
9669 | } |
9670 | |
9671 | return true; |
9672 | } |
9673 | |
9674 | /// Check whether we should delete a special member function due to the class |
9675 | /// having a particular direct or virtual base class. |
9676 | bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) { |
9677 | CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl(); |
9678 | // If program is correct, BaseClass cannot be null, but if it is, the error |
9679 | // must be reported elsewhere. |
9680 | if (!BaseClass) |
9681 | return false; |
9682 | // If we have an inheriting constructor, check whether we're calling an |
9683 | // inherited constructor instead of a default constructor. |
9684 | Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(Class: BaseClass); |
9685 | if (auto *BaseCtor = SMOR.getMethod()) { |
9686 | // Note that we do not check access along this path; other than that, |
9687 | // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false); |
9688 | // FIXME: Check that the base has a usable destructor! Sink this into |
9689 | // shouldDeleteForClassSubobject. |
9690 | if (BaseCtor->isDeleted() && Diagnose) { |
9691 | S.Diag(Base->getBeginLoc(), |
9692 | diag::note_deleted_special_member_class_subobject) |
9693 | << getEffectiveCSM() << MD->getParent() << /*IsField*/ false |
9694 | << Base->getType() << /*Deleted*/ 1 << /*IsDtorCallInCtor*/ false |
9695 | << /*IsObjCPtr*/ false; |
9696 | S.NoteDeletedFunction(BaseCtor); |
9697 | } |
9698 | return BaseCtor->isDeleted(); |
9699 | } |
9700 | return shouldDeleteForClassSubobject(Class: BaseClass, Subobj: Base, Quals: 0); |
9701 | } |
9702 | |
9703 | /// Check whether we should delete a special member function due to the class |
9704 | /// having a particular non-static data member. |
9705 | bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) { |
9706 | QualType FieldType = S.Context.getBaseElementType(FD->getType()); |
9707 | CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl(); |
9708 | |
9709 | if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType)) |
9710 | return true; |
9711 | |
9712 | if (inUnion() && shouldDeleteForVariantPtrAuthMember(FD)) |
9713 | return true; |
9714 | |
9715 | if (CSM == CXXSpecialMemberKind::DefaultConstructor) { |
9716 | // For a default constructor, all references must be initialized in-class |
9717 | // and, if a union, it must have a non-const member. |
9718 | if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) { |
9719 | if (Diagnose) |
9720 | S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) |
9721 | << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0; |
9722 | return true; |
9723 | } |
9724 | // C++11 [class.ctor]p5 (modified by DR2394): any non-variant non-static |
9725 | // data member of const-qualified type (or array thereof) with no |
9726 | // brace-or-equal-initializer is not const-default-constructible. |
9727 | if (!inUnion() && FieldType.isConstQualified() && |
9728 | !FD->hasInClassInitializer() && |
9729 | (!FieldRecord || !FieldRecord->allowConstDefaultInit())) { |
9730 | if (Diagnose) |
9731 | S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) |
9732 | << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1; |
9733 | return true; |
9734 | } |
9735 | |
9736 | if (inUnion() && !FieldType.isConstQualified()) |
9737 | AllFieldsAreConst = false; |
9738 | } else if (CSM == CXXSpecialMemberKind::CopyConstructor) { |
9739 | // For a copy constructor, data members must not be of rvalue reference |
9740 | // type. |
9741 | if (FieldType->isRValueReferenceType()) { |
9742 | if (Diagnose) |
9743 | S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference) |
9744 | << MD->getParent() << FD << FieldType; |
9745 | return true; |
9746 | } |
9747 | } else if (IsAssignment) { |
9748 | // For an assignment operator, data members must not be of reference type. |
9749 | if (FieldType->isReferenceType()) { |
9750 | if (Diagnose) |
9751 | S.Diag(FD->getLocation(), diag::note_deleted_assign_field) |
9752 | << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0; |
9753 | return true; |
9754 | } |
9755 | if (!FieldRecord && FieldType.isConstQualified()) { |
9756 | // C++11 [class.copy]p23: |
9757 | // -- a non-static data member of const non-class type (or array thereof) |
9758 | if (Diagnose) |
9759 | S.Diag(FD->getLocation(), diag::note_deleted_assign_field) |
9760 | << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1; |
9761 | return true; |
9762 | } |
9763 | } |
9764 | |
9765 | if (FieldRecord) { |
9766 | // Some additional restrictions exist on the variant members. |
9767 | if (!inUnion() && FieldRecord->isUnion() && |
9768 | FieldRecord->isAnonymousStructOrUnion()) { |
9769 | bool AllVariantFieldsAreConst = true; |
9770 | |
9771 | // FIXME: Handle anonymous unions declared within anonymous unions. |
9772 | for (auto *UI : FieldRecord->fields()) { |
9773 | QualType UnionFieldType = S.Context.getBaseElementType(UI->getType()); |
9774 | |
9775 | if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType)) |
9776 | return true; |
9777 | |
9778 | if (shouldDeleteForVariantPtrAuthMember(&*UI)) |
9779 | return true; |
9780 | |
9781 | if (!UnionFieldType.isConstQualified()) |
9782 | AllVariantFieldsAreConst = false; |
9783 | |
9784 | CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl(); |
9785 | if (UnionFieldRecord && |
9786 | shouldDeleteForClassSubobject(UnionFieldRecord, UI, |
9787 | UnionFieldType.getCVRQualifiers())) |
9788 | return true; |
9789 | } |
9790 | |
9791 | // At least one member in each anonymous union must be non-const |
9792 | if (CSM == CXXSpecialMemberKind::DefaultConstructor && |
9793 | AllVariantFieldsAreConst && !FieldRecord->field_empty()) { |
9794 | if (Diagnose) |
9795 | S.Diag(FieldRecord->getLocation(), |
9796 | diag::note_deleted_default_ctor_all_const) |
9797 | << !!ICI << MD->getParent() << /*anonymous union*/1; |
9798 | return true; |
9799 | } |
9800 | |
9801 | // Don't check the implicit member of the anonymous union type. |
9802 | // This is technically non-conformant but supported, and we have a |
9803 | // diagnostic for this elsewhere. |
9804 | return false; |
9805 | } |
9806 | |
9807 | if (shouldDeleteForClassSubobject(Class: FieldRecord, Subobj: FD, |
9808 | Quals: FieldType.getCVRQualifiers())) |
9809 | return true; |
9810 | } |
9811 | |
9812 | return false; |
9813 | } |
9814 | |
9815 | /// C++11 [class.ctor] p5: |
9816 | /// A defaulted default constructor for a class X is defined as deleted if |
9817 | /// X is a union and all of its variant members are of const-qualified type. |
9818 | bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() { |
9819 | // This is a silly definition, because it gives an empty union a deleted |
9820 | // default constructor. Don't do that. |
9821 | if (CSM == CXXSpecialMemberKind::DefaultConstructor && inUnion() && |
9822 | AllFieldsAreConst) { |
9823 | bool AnyFields = false; |
9824 | for (auto *F : MD->getParent()->fields()) |
9825 | if ((AnyFields = !F->isUnnamedBitField())) |
9826 | break; |
9827 | if (!AnyFields) |
9828 | return false; |
9829 | if (Diagnose) |
9830 | S.Diag(MD->getParent()->getLocation(), |
9831 | diag::note_deleted_default_ctor_all_const) |
9832 | << !!ICI << MD->getParent() << /*not anonymous union*/0; |
9833 | return true; |
9834 | } |
9835 | return false; |
9836 | } |
9837 | |
9838 | /// Determine whether a defaulted special member function should be defined as |
9839 | /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11, |
9840 | /// C++11 [class.copy]p23, and C++11 [class.dtor]p5. |
9841 | bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, |
9842 | CXXSpecialMemberKind CSM, |
9843 | InheritedConstructorInfo *ICI, |
9844 | bool Diagnose) { |
9845 | if (MD->isInvalidDecl()) |
9846 | return false; |
9847 | CXXRecordDecl *RD = MD->getParent(); |
9848 | assert(!RD->isDependentType() && "do deletion after instantiation"); |
9849 | if (!LangOpts.CPlusPlus || (!LangOpts.CPlusPlus11 && !RD->isLambda()) || |
9850 | RD->isInvalidDecl()) |
9851 | return false; |
9852 | |
9853 | // C++11 [expr.lambda.prim]p19: |
9854 | // The closure type associated with a lambda-expression has a |
9855 | // deleted (8.4.3) default constructor and a deleted copy |
9856 | // assignment operator. |
9857 | // C++2a adds back these operators if the lambda has no lambda-capture. |
9858 | if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() && |
9859 | (CSM == CXXSpecialMemberKind::DefaultConstructor || |
9860 | CSM == CXXSpecialMemberKind::CopyAssignment)) { |
9861 | if (Diagnose) |
9862 | Diag(RD->getLocation(), diag::note_lambda_decl); |
9863 | return true; |
9864 | } |
9865 | |
9866 | // For an anonymous struct or union, the copy and assignment special members |
9867 | // will never be used, so skip the check. For an anonymous union declared at |
9868 | // namespace scope, the constructor and destructor are used. |
9869 | if (CSM != CXXSpecialMemberKind::DefaultConstructor && |
9870 | CSM != CXXSpecialMemberKind::Destructor && RD->isAnonymousStructOrUnion()) |
9871 | return false; |
9872 | |
9873 | // C++11 [class.copy]p7, p18: |
9874 | // If the class definition declares a move constructor or move assignment |
9875 | // operator, an implicitly declared copy constructor or copy assignment |
9876 | // operator is defined as deleted. |
9877 | if (MD->isImplicit() && (CSM == CXXSpecialMemberKind::CopyConstructor || |
9878 | CSM == CXXSpecialMemberKind::CopyAssignment)) { |
9879 | CXXMethodDecl *UserDeclaredMove = nullptr; |
9880 | |
9881 | // In Microsoft mode up to MSVC 2013, a user-declared move only causes the |
9882 | // deletion of the corresponding copy operation, not both copy operations. |
9883 | // MSVC 2015 has adopted the standards conforming behavior. |
9884 | bool DeletesOnlyMatchingCopy = |
9885 | getLangOpts().MSVCCompat && |
9886 | !getLangOpts().isCompatibleWithMSVC(MajorVersion: LangOptions::MSVC2015); |
9887 | |
9888 | if (RD->hasUserDeclaredMoveConstructor() && |
9889 | (!DeletesOnlyMatchingCopy || |
9890 | CSM == CXXSpecialMemberKind::CopyConstructor)) { |
9891 | if (!Diagnose) return true; |
9892 | |
9893 | // Find any user-declared move constructor. |
9894 | for (auto *I : RD->ctors()) { |
9895 | if (I->isMoveConstructor()) { |
9896 | UserDeclaredMove = I; |
9897 | break; |
9898 | } |
9899 | } |
9900 | assert(UserDeclaredMove); |
9901 | } else if (RD->hasUserDeclaredMoveAssignment() && |
9902 | (!DeletesOnlyMatchingCopy || |
9903 | CSM == CXXSpecialMemberKind::CopyAssignment)) { |
9904 | if (!Diagnose) return true; |
9905 | |
9906 | // Find any user-declared move assignment operator. |
9907 | for (auto *I : RD->methods()) { |
9908 | if (I->isMoveAssignmentOperator()) { |
9909 | UserDeclaredMove = I; |
9910 | break; |
9911 | } |
9912 | } |
9913 | assert(UserDeclaredMove); |
9914 | } |
9915 | |
9916 | if (UserDeclaredMove) { |
9917 | Diag(UserDeclaredMove->getLocation(), |
9918 | diag::note_deleted_copy_user_declared_move) |
9919 | << (CSM == CXXSpecialMemberKind::CopyAssignment) << RD |
9920 | << UserDeclaredMove->isMoveAssignmentOperator(); |
9921 | return true; |
9922 | } |
9923 | } |
9924 | |
9925 | // Do access control from the special member function |
9926 | ContextRAII MethodContext(*this, MD); |
9927 | |
9928 | // C++11 [class.dtor]p5: |
9929 | // -- for a virtual destructor, lookup of the non-array deallocation function |
9930 | // results in an ambiguity or in a function that is deleted or inaccessible |
9931 | if (CSM == CXXSpecialMemberKind::Destructor && MD->isVirtual()) { |
9932 | FunctionDecl *OperatorDelete = nullptr; |
9933 | QualType DeallocType = Context.getRecordType(RD); |
9934 | DeclarationName Name = |
9935 | Context.DeclarationNames.getCXXOperatorName(Op: OO_Delete); |
9936 | ImplicitDeallocationParameters IDP = { |
9937 | DeallocType, ShouldUseTypeAwareOperatorNewOrDelete(), |
9938 | AlignedAllocationMode::No, SizedDeallocationMode::No}; |
9939 | if (FindDeallocationFunction(StartLoc: MD->getLocation(), RD: MD->getParent(), Name, |
9940 | Operator&: OperatorDelete, IDP, |
9941 | /*Diagnose=*/false)) { |
9942 | if (Diagnose) |
9943 | Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete); |
9944 | return true; |
9945 | } |
9946 | } |
9947 | |
9948 | SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose); |
9949 | |
9950 | // Per DR1611, do not consider virtual bases of constructors of abstract |
9951 | // classes, since we are not going to construct them. |
9952 | // Per DR1658, do not consider virtual bases of destructors of abstract |
9953 | // classes either. |
9954 | // Per DR2180, for assignment operators we only assign (and thus only |
9955 | // consider) direct bases. |
9956 | if (SMI.visit(Bases: SMI.IsAssignment ? SMI.VisitDirectBases |
9957 | : SMI.VisitPotentiallyConstructedBases)) |
9958 | return true; |
9959 | |
9960 | if (SMI.shouldDeleteForAllConstMembers()) |
9961 | return true; |
9962 | |
9963 | if (getLangOpts().CUDA) { |
9964 | // We should delete the special member in CUDA mode if target inference |
9965 | // failed. |
9966 | // For inherited constructors (non-null ICI), CSM may be passed so that MD |
9967 | // is treated as certain special member, which may not reflect what special |
9968 | // member MD really is. However inferTargetForImplicitSpecialMember |
9969 | // expects CSM to match MD, therefore recalculate CSM. |
9970 | assert(ICI || CSM == getSpecialMember(MD)); |
9971 | auto RealCSM = CSM; |
9972 | if (ICI) |
9973 | RealCSM = getSpecialMember(MD); |
9974 | |
9975 | return CUDA().inferTargetForImplicitSpecialMember(ClassDecl: RD, CSM: RealCSM, MemberDecl: MD, |
9976 | ConstRHS: SMI.ConstArg, Diagnose); |
9977 | } |
9978 | |
9979 | return false; |
9980 | } |
9981 | |
9982 | void Sema::DiagnoseDeletedDefaultedFunction(FunctionDecl *FD) { |
9983 | DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); |
9984 | assert(DFK && "not a defaultable function"); |
9985 | assert(FD->isDefaulted() && FD->isDeleted() && "not defaulted and deleted"); |
9986 | |
9987 | if (DFK.isSpecialMember()) { |
9988 | ShouldDeleteSpecialMember(MD: cast<CXXMethodDecl>(Val: FD), CSM: DFK.asSpecialMember(), |
9989 | ICI: nullptr, /*Diagnose=*/true); |
9990 | } else { |
9991 | DefaultedComparisonAnalyzer( |
9992 | *this, cast<CXXRecordDecl>(FD->getLexicalDeclContext()), FD, |
9993 | DFK.asComparison(), DefaultedComparisonAnalyzer::ExplainDeleted) |
9994 | .visit(); |
9995 | } |
9996 | } |
9997 | |
9998 | /// Perform lookup for a special member of the specified kind, and determine |
9999 | /// whether it is trivial. If the triviality can be determined without the |
10000 | /// lookup, skip it. This is intended for use when determining whether a |
10001 | /// special member of a containing object is trivial, and thus does not ever |
10002 | /// perform overload resolution for default constructors. |
10003 | /// |
10004 | /// If \p Selected is not \c NULL, \c *Selected will be filled in with the |
10005 | /// member that was most likely to be intended to be trivial, if any. |
10006 | /// |
10007 | /// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to |
10008 | /// determine whether the special member is trivial. |
10009 | static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD, |
10010 | CXXSpecialMemberKind CSM, unsigned Quals, |
10011 | bool ConstRHS, TrivialABIHandling TAH, |
10012 | CXXMethodDecl **Selected) { |
10013 | if (Selected) |
10014 | *Selected = nullptr; |
10015 | |
10016 | switch (CSM) { |
10017 | case CXXSpecialMemberKind::Invalid: |
10018 | llvm_unreachable("not a special member"); |
10019 | |
10020 | case CXXSpecialMemberKind::DefaultConstructor: |
10021 | // C++11 [class.ctor]p5: |
10022 | // A default constructor is trivial if: |
10023 | // - all the [direct subobjects] have trivial default constructors |
10024 | // |
10025 | // Note, no overload resolution is performed in this case. |
10026 | if (RD->hasTrivialDefaultConstructor()) |
10027 | return true; |
10028 | |
10029 | if (Selected) { |
10030 | // If there's a default constructor which could have been trivial, dig it |
10031 | // out. Otherwise, if there's any user-provided default constructor, point |
10032 | // to that as an example of why there's not a trivial one. |
10033 | CXXConstructorDecl *DefCtor = nullptr; |
10034 | if (RD->needsImplicitDefaultConstructor()) |
10035 | S.DeclareImplicitDefaultConstructor(ClassDecl: RD); |
10036 | for (auto *CI : RD->ctors()) { |
10037 | if (!CI->isDefaultConstructor()) |
10038 | continue; |
10039 | DefCtor = CI; |
10040 | if (!DefCtor->isUserProvided()) |
10041 | break; |
10042 | } |
10043 | |
10044 | *Selected = DefCtor; |
10045 | } |
10046 | |
10047 | return false; |
10048 | |
10049 | case CXXSpecialMemberKind::Destructor: |
10050 | // C++11 [class.dtor]p5: |
10051 | // A destructor is trivial if: |
10052 | // - all the direct [subobjects] have trivial destructors |
10053 | if (RD->hasTrivialDestructor() || |
10054 | (TAH == TrivialABIHandling::ConsiderTrivialABI && |
10055 | RD->hasTrivialDestructorForCall())) |
10056 | return true; |
10057 | |
10058 | if (Selected) { |
10059 | if (RD->needsImplicitDestructor()) |
10060 | S.DeclareImplicitDestructor(ClassDecl: RD); |
10061 | *Selected = RD->getDestructor(); |
10062 | } |
10063 | |
10064 | return false; |
10065 | |
10066 | case CXXSpecialMemberKind::CopyConstructor: |
10067 | // C++11 [class.copy]p12: |
10068 | // A copy constructor is trivial if: |
10069 | // - the constructor selected to copy each direct [subobject] is trivial |
10070 | if (RD->hasTrivialCopyConstructor() || |
10071 | (TAH == TrivialABIHandling::ConsiderTrivialABI && |
10072 | RD->hasTrivialCopyConstructorForCall())) { |
10073 | if (Quals == Qualifiers::Const) |
10074 | // We must either select the trivial copy constructor or reach an |
10075 | // ambiguity; no need to actually perform overload resolution. |
10076 | return true; |
10077 | } else if (!Selected) { |
10078 | return false; |
10079 | } |
10080 | // In C++98, we are not supposed to perform overload resolution here, but we |
10081 | // treat that as a language defect, as suggested on cxx-abi-dev, to treat |
10082 | // cases like B as having a non-trivial copy constructor: |
10083 | // struct A { template<typename T> A(T&); }; |
10084 | // struct B { mutable A a; }; |
10085 | goto NeedOverloadResolution; |
10086 | |
10087 | case CXXSpecialMemberKind::CopyAssignment: |
10088 | // C++11 [class.copy]p25: |
10089 | // A copy assignment operator is trivial if: |
10090 | // - the assignment operator selected to copy each direct [subobject] is |
10091 | // trivial |
10092 | if (RD->hasTrivialCopyAssignment()) { |
10093 | if (Quals == Qualifiers::Const) |
10094 | return true; |
10095 | } else if (!Selected) { |
10096 | return false; |
10097 | } |
10098 | // In C++98, we are not supposed to perform overload resolution here, but we |
10099 | // treat that as a language defect. |
10100 | goto NeedOverloadResolution; |
10101 | |
10102 | case CXXSpecialMemberKind::MoveConstructor: |
10103 | case CXXSpecialMemberKind::MoveAssignment: |
10104 | NeedOverloadResolution: |
10105 | Sema::SpecialMemberOverloadResult SMOR = |
10106 | lookupCallFromSpecialMember(S, Class: RD, CSM, FieldQuals: Quals, ConstRHS); |
10107 | |
10108 | // The standard doesn't describe how to behave if the lookup is ambiguous. |
10109 | // We treat it as not making the member non-trivial, just like the standard |
10110 | // mandates for the default constructor. This should rarely matter, because |
10111 | // the member will also be deleted. |
10112 | if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) |
10113 | return true; |
10114 | |
10115 | if (!SMOR.getMethod()) { |
10116 | assert(SMOR.getKind() == |
10117 | Sema::SpecialMemberOverloadResult::NoMemberOrDeleted); |
10118 | return false; |
10119 | } |
10120 | |
10121 | // We deliberately don't check if we found a deleted special member. We're |
10122 | // not supposed to! |
10123 | if (Selected) |
10124 | *Selected = SMOR.getMethod(); |
10125 | |
10126 | if (TAH == TrivialABIHandling::ConsiderTrivialABI && |
10127 | (CSM == CXXSpecialMemberKind::CopyConstructor || |
10128 | CSM == CXXSpecialMemberKind::MoveConstructor)) |
10129 | return SMOR.getMethod()->isTrivialForCall(); |
10130 | return SMOR.getMethod()->isTrivial(); |
10131 | } |
10132 | |
10133 | llvm_unreachable("unknown special method kind"); |
10134 | } |
10135 | |
10136 | static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) { |
10137 | for (auto *CI : RD->ctors()) |
10138 | if (!CI->isImplicit()) |
10139 | return CI; |
10140 | |
10141 | // Look for constructor templates. |
10142 | typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter; |
10143 | for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) { |
10144 | if (CXXConstructorDecl *CD = |
10145 | dyn_cast<CXXConstructorDecl>(Val: TI->getTemplatedDecl())) |
10146 | return CD; |
10147 | } |
10148 | |
10149 | return nullptr; |
10150 | } |
10151 | |
10152 | /// The kind of subobject we are checking for triviality. The values of this |
10153 | /// enumeration are used in diagnostics. |
10154 | enum TrivialSubobjectKind { |
10155 | /// The subobject is a base class. |
10156 | TSK_BaseClass, |
10157 | /// The subobject is a non-static data member. |
10158 | TSK_Field, |
10159 | /// The object is actually the complete object. |
10160 | TSK_CompleteObject |
10161 | }; |
10162 | |
10163 | /// Check whether the special member selected for a given type would be trivial. |
10164 | static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc, |
10165 | QualType SubType, bool ConstRHS, |
10166 | CXXSpecialMemberKind CSM, |
10167 | TrivialSubobjectKind Kind, |
10168 | TrivialABIHandling TAH, bool Diagnose) { |
10169 | CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl(); |
10170 | if (!SubRD) |
10171 | return true; |
10172 | |
10173 | CXXMethodDecl *Selected; |
10174 | if (findTrivialSpecialMember(S, RD: SubRD, CSM, Quals: SubType.getCVRQualifiers(), |
10175 | ConstRHS, TAH, Selected: Diagnose ? &Selected : nullptr)) |
10176 | return true; |
10177 | |
10178 | if (Diagnose) { |
10179 | if (ConstRHS) |
10180 | SubType.addConst(); |
10181 | |
10182 | if (!Selected && CSM == CXXSpecialMemberKind::DefaultConstructor) { |
10183 | S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor) |
10184 | << Kind << SubType.getUnqualifiedType(); |
10185 | if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD)) |
10186 | S.Diag(CD->getLocation(), diag::note_user_declared_ctor); |
10187 | } else if (!Selected) |
10188 | S.Diag(SubobjLoc, diag::note_nontrivial_no_copy) |
10189 | << Kind << SubType.getUnqualifiedType() << CSM << SubType; |
10190 | else if (Selected->isUserProvided()) { |
10191 | if (Kind == TSK_CompleteObject) |
10192 | S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided) |
10193 | << Kind << SubType.getUnqualifiedType() << CSM; |
10194 | else { |
10195 | S.Diag(SubobjLoc, diag::note_nontrivial_user_provided) |
10196 | << Kind << SubType.getUnqualifiedType() << CSM; |
10197 | S.Diag(Selected->getLocation(), diag::note_declared_at); |
10198 | } |
10199 | } else { |
10200 | if (Kind != TSK_CompleteObject) |
10201 | S.Diag(SubobjLoc, diag::note_nontrivial_subobject) |
10202 | << Kind << SubType.getUnqualifiedType() << CSM; |
10203 | |
10204 | // Explain why the defaulted or deleted special member isn't trivial. |
10205 | S.SpecialMemberIsTrivial(MD: Selected, CSM, |
10206 | TAH: TrivialABIHandling::IgnoreTrivialABI, Diagnose); |
10207 | } |
10208 | } |
10209 | |
10210 | return false; |
10211 | } |
10212 | |
10213 | /// Check whether the members of a class type allow a special member to be |
10214 | /// trivial. |
10215 | static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD, |
10216 | CXXSpecialMemberKind CSM, bool ConstArg, |
10217 | TrivialABIHandling TAH, bool Diagnose) { |
10218 | for (const auto *FI : RD->fields()) { |
10219 | if (FI->isInvalidDecl() || FI->isUnnamedBitField()) |
10220 | continue; |
10221 | |
10222 | QualType FieldType = S.Context.getBaseElementType(FI->getType()); |
10223 | |
10224 | // Pretend anonymous struct or union members are members of this class. |
10225 | if (FI->isAnonymousStructOrUnion()) { |
10226 | if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(), |
10227 | CSM, ConstArg, TAH, Diagnose)) |
10228 | return false; |
10229 | continue; |
10230 | } |
10231 | |
10232 | // C++11 [class.ctor]p5: |
10233 | // A default constructor is trivial if [...] |
10234 | // -- no non-static data member of its class has a |
10235 | // brace-or-equal-initializer |
10236 | if (CSM == CXXSpecialMemberKind::DefaultConstructor && |
10237 | FI->hasInClassInitializer()) { |
10238 | if (Diagnose) |
10239 | S.Diag(FI->getLocation(), diag::note_nontrivial_default_member_init) |
10240 | << FI; |
10241 | return false; |
10242 | } |
10243 | |
10244 | // Objective C ARC 4.3.5: |
10245 | // [...] nontrivally ownership-qualified types are [...] not trivially |
10246 | // default constructible, copy constructible, move constructible, copy |
10247 | // assignable, move assignable, or destructible [...] |
10248 | if (FieldType.hasNonTrivialObjCLifetime()) { |
10249 | if (Diagnose) |
10250 | S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership) |
10251 | << RD << FieldType.getObjCLifetime(); |
10252 | return false; |
10253 | } |
10254 | |
10255 | bool ConstRHS = ConstArg && !FI->isMutable(); |
10256 | if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS, |
10257 | CSM, TSK_Field, TAH, Diagnose)) |
10258 | return false; |
10259 | } |
10260 | |
10261 | return true; |
10262 | } |
10263 | |
10264 | void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, |
10265 | CXXSpecialMemberKind CSM) { |
10266 | QualType Ty = Context.getRecordType(RD); |
10267 | |
10268 | bool ConstArg = (CSM == CXXSpecialMemberKind::CopyConstructor || |
10269 | CSM == CXXSpecialMemberKind::CopyAssignment); |
10270 | checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM, |
10271 | TSK_CompleteObject, |
10272 | TrivialABIHandling::IgnoreTrivialABI, |
10273 | /*Diagnose*/ true); |
10274 | } |
10275 | |
10276 | bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMemberKind CSM, |
10277 | TrivialABIHandling TAH, bool Diagnose) { |
10278 | assert(!MD->isUserProvided() && CSM != CXXSpecialMemberKind::Invalid && |
10279 | "not special enough"); |
10280 | |
10281 | CXXRecordDecl *RD = MD->getParent(); |
10282 | |
10283 | bool ConstArg = false; |
10284 | |
10285 | // C++11 [class.copy]p12, p25: [DR1593] |
10286 | // A [special member] is trivial if [...] its parameter-type-list is |
10287 | // equivalent to the parameter-type-list of an implicit declaration [...] |
10288 | switch (CSM) { |
10289 | case CXXSpecialMemberKind::DefaultConstructor: |
10290 | case CXXSpecialMemberKind::Destructor: |
10291 | // Trivial default constructors and destructors cannot have parameters. |
10292 | break; |
10293 | |
10294 | case CXXSpecialMemberKind::CopyConstructor: |
10295 | case CXXSpecialMemberKind::CopyAssignment: { |
10296 | const ParmVarDecl *Param0 = MD->getNonObjectParameter(0); |
10297 | const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>(); |
10298 | |
10299 | // When ClangABICompat14 is true, CXX copy constructors will only be trivial |
10300 | // if they are not user-provided and their parameter-type-list is equivalent |
10301 | // to the parameter-type-list of an implicit declaration. This maintains the |
10302 | // behavior before dr2171 was implemented. |
10303 | // |
10304 | // Otherwise, if ClangABICompat14 is false, All copy constructors can be |
10305 | // trivial, if they are not user-provided, regardless of the qualifiers on |
10306 | // the reference type. |
10307 | const bool ClangABICompat14 = Context.getLangOpts().getClangABICompat() <= |
10308 | LangOptions::ClangABI::Ver14; |
10309 | if (!RT || |
10310 | ((RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) && |
10311 | ClangABICompat14)) { |
10312 | if (Diagnose) |
10313 | Diag(Param0->getLocation(), diag::note_nontrivial_param_type) |
10314 | << Param0->getSourceRange() << Param0->getType() |
10315 | << Context.getLValueReferenceType( |
10316 | Context.getRecordType(RD).withConst()); |
10317 | return false; |
10318 | } |
10319 | |
10320 | ConstArg = RT->getPointeeType().isConstQualified(); |
10321 | break; |
10322 | } |
10323 | |
10324 | case CXXSpecialMemberKind::MoveConstructor: |
10325 | case CXXSpecialMemberKind::MoveAssignment: { |
10326 | // Trivial move operations always have non-cv-qualified parameters. |
10327 | const ParmVarDecl *Param0 = MD->getNonObjectParameter(0); |
10328 | const RValueReferenceType *RT = |
10329 | Param0->getType()->getAs<RValueReferenceType>(); |
10330 | if (!RT || RT->getPointeeType().getCVRQualifiers()) { |
10331 | if (Diagnose) |
10332 | Diag(Param0->getLocation(), diag::note_nontrivial_param_type) |
10333 | << Param0->getSourceRange() << Param0->getType() |
10334 | << Context.getRValueReferenceType(Context.getRecordType(RD)); |
10335 | return false; |
10336 | } |
10337 | break; |
10338 | } |
10339 | |
10340 | case CXXSpecialMemberKind::Invalid: |
10341 | llvm_unreachable("not a special member"); |
10342 | } |
10343 | |
10344 | if (MD->getMinRequiredArguments() < MD->getNumParams()) { |
10345 | if (Diagnose) |
10346 | Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(), |
10347 | diag::note_nontrivial_default_arg) |
10348 | << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange(); |
10349 | return false; |
10350 | } |
10351 | if (MD->isVariadic()) { |
10352 | if (Diagnose) |
10353 | Diag(MD->getLocation(), diag::note_nontrivial_variadic); |
10354 | return false; |
10355 | } |
10356 | |
10357 | // C++11 [class.ctor]p5, C++11 [class.dtor]p5: |
10358 | // A copy/move [constructor or assignment operator] is trivial if |
10359 | // -- the [member] selected to copy/move each direct base class subobject |
10360 | // is trivial |
10361 | // |
10362 | // C++11 [class.copy]p12, C++11 [class.copy]p25: |
10363 | // A [default constructor or destructor] is trivial if |
10364 | // -- all the direct base classes have trivial [default constructors or |
10365 | // destructors] |
10366 | for (const auto &BI : RD->bases()) |
10367 | if (!checkTrivialSubobjectCall(S&: *this, SubobjLoc: BI.getBeginLoc(), SubType: BI.getType(), |
10368 | ConstRHS: ConstArg, CSM, Kind: TSK_BaseClass, TAH, Diagnose)) |
10369 | return false; |
10370 | |
10371 | // C++11 [class.ctor]p5, C++11 [class.dtor]p5: |
10372 | // A copy/move [constructor or assignment operator] for a class X is |
10373 | // trivial if |
10374 | // -- for each non-static data member of X that is of class type (or array |
10375 | // thereof), the constructor selected to copy/move that member is |
10376 | // trivial |
10377 | // |
10378 | // C++11 [class.copy]p12, C++11 [class.copy]p25: |
10379 | // A [default constructor or destructor] is trivial if |
10380 | // -- for all of the non-static data members of its class that are of class |
10381 | // type (or array thereof), each such class has a trivial [default |
10382 | // constructor or destructor] |
10383 | if (!checkTrivialClassMembers(S&: *this, RD, CSM, ConstArg, TAH, Diagnose)) |
10384 | return false; |
10385 | |
10386 | // C++11 [class.dtor]p5: |
10387 | // A destructor is trivial if [...] |
10388 | // -- the destructor is not virtual |
10389 | if (CSM == CXXSpecialMemberKind::Destructor && MD->isVirtual()) { |
10390 | if (Diagnose) |
10391 | Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD; |
10392 | return false; |
10393 | } |
10394 | |
10395 | // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: |
10396 | // A [special member] for class X is trivial if [...] |
10397 | // -- class X has no virtual functions and no virtual base classes |
10398 | if (CSM != CXXSpecialMemberKind::Destructor && |
10399 | MD->getParent()->isDynamicClass()) { |
10400 | if (!Diagnose) |
10401 | return false; |
10402 | |
10403 | if (RD->getNumVBases()) { |
10404 | // Check for virtual bases. We already know that the corresponding |
10405 | // member in all bases is trivial, so vbases must all be direct. |
10406 | CXXBaseSpecifier &BS = *RD->vbases_begin(); |
10407 | assert(BS.isVirtual()); |
10408 | Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1; |
10409 | return false; |
10410 | } |
10411 | |
10412 | // Must have a virtual method. |
10413 | for (const auto *MI : RD->methods()) { |
10414 | if (MI->isVirtual()) { |
10415 | SourceLocation MLoc = MI->getBeginLoc(); |
10416 | Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0; |
10417 | return false; |
10418 | } |
10419 | } |
10420 | |
10421 | llvm_unreachable("dynamic class with no vbases and no virtual functions"); |
10422 | } |
10423 | |
10424 | // Looks like it's trivial! |
10425 | return true; |
10426 | } |
10427 | |
10428 | namespace { |
10429 | struct FindHiddenVirtualMethod { |
10430 | Sema *S; |
10431 | CXXMethodDecl *Method; |
10432 | llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods; |
10433 | SmallVector<CXXMethodDecl *, 8> OverloadedMethods; |
10434 | |
10435 | private: |
10436 | /// Check whether any most overridden method from MD in Methods |
10437 | static bool CheckMostOverridenMethods( |
10438 | const CXXMethodDecl *MD, |
10439 | const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) { |
10440 | if (MD->size_overridden_methods() == 0) |
10441 | return Methods.count(Ptr: MD->getCanonicalDecl()); |
10442 | for (const CXXMethodDecl *O : MD->overridden_methods()) |
10443 | if (CheckMostOverridenMethods(MD: O, Methods)) |
10444 | return true; |
10445 | return false; |
10446 | } |
10447 | |
10448 | public: |
10449 | /// Member lookup function that determines whether a given C++ |
10450 | /// method overloads virtual methods in a base class without overriding any, |
10451 | /// to be used with CXXRecordDecl::lookupInBases(). |
10452 | bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { |
10453 | RecordDecl *BaseRecord = |
10454 | Specifier->getType()->castAs<RecordType>()->getDecl(); |
10455 | |
10456 | DeclarationName Name = Method->getDeclName(); |
10457 | assert(Name.getNameKind() == DeclarationName::Identifier); |
10458 | |
10459 | bool foundSameNameMethod = false; |
10460 | SmallVector<CXXMethodDecl *, 8> overloadedMethods; |
10461 | for (Path.Decls = BaseRecord->lookup(Name).begin(); |
10462 | Path.Decls != DeclContext::lookup_iterator(); ++Path.Decls) { |
10463 | NamedDecl *D = *Path.Decls; |
10464 | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: D)) { |
10465 | MD = MD->getCanonicalDecl(); |
10466 | foundSameNameMethod = true; |
10467 | // Interested only in hidden virtual methods. |
10468 | if (!MD->isVirtual()) |
10469 | continue; |
10470 | // If the method we are checking overrides a method from its base |
10471 | // don't warn about the other overloaded methods. Clang deviates from |
10472 | // GCC by only diagnosing overloads of inherited virtual functions that |
10473 | // do not override any other virtual functions in the base. GCC's |
10474 | // -Woverloaded-virtual diagnoses any derived function hiding a virtual |
10475 | // function from a base class. These cases may be better served by a |
10476 | // warning (not specific to virtual functions) on call sites when the |
10477 | // call would select a different function from the base class, were it |
10478 | // visible. |
10479 | // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example. |
10480 | if (!S->IsOverload(Method, MD, false)) |
10481 | return true; |
10482 | // Collect the overload only if its hidden. |
10483 | if (!CheckMostOverridenMethods(MD, Methods: OverridenAndUsingBaseMethods)) |
10484 | overloadedMethods.push_back(Elt: MD); |
10485 | } |
10486 | } |
10487 | |
10488 | if (foundSameNameMethod) |
10489 | OverloadedMethods.append(in_start: overloadedMethods.begin(), |
10490 | in_end: overloadedMethods.end()); |
10491 | return foundSameNameMethod; |
10492 | } |
10493 | }; |
10494 | } // end anonymous namespace |
10495 | |
10496 | /// Add the most overridden methods from MD to Methods |
10497 | static void AddMostOverridenMethods(const CXXMethodDecl *MD, |
10498 | llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) { |
10499 | if (MD->size_overridden_methods() == 0) |
10500 | Methods.insert(Ptr: MD->getCanonicalDecl()); |
10501 | else |
10502 | for (const CXXMethodDecl *O : MD->overridden_methods()) |
10503 | AddMostOverridenMethods(MD: O, Methods); |
10504 | } |
10505 | |
10506 | void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD, |
10507 | SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { |
10508 | if (!MD->getDeclName().isIdentifier()) |
10509 | return; |
10510 | |
10511 | CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases. |
10512 | /*bool RecordPaths=*/false, |
10513 | /*bool DetectVirtual=*/false); |
10514 | FindHiddenVirtualMethod FHVM; |
10515 | FHVM.Method = MD; |
10516 | FHVM.S = this; |
10517 | |
10518 | // Keep the base methods that were overridden or introduced in the subclass |
10519 | // by 'using' in a set. A base method not in this set is hidden. |
10520 | CXXRecordDecl *DC = MD->getParent(); |
10521 | DeclContext::lookup_result R = DC->lookup(Name: MD->getDeclName()); |
10522 | for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) { |
10523 | NamedDecl *ND = *I; |
10524 | if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(Val: *I)) |
10525 | ND = shad->getTargetDecl(); |
10526 | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: ND)) |
10527 | AddMostOverridenMethods(MD, Methods&: FHVM.OverridenAndUsingBaseMethods); |
10528 | } |
10529 | |
10530 | if (DC->lookupInBases(BaseMatches: FHVM, Paths)) |
10531 | OverloadedMethods = FHVM.OverloadedMethods; |
10532 | } |
10533 | |
10534 | void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD, |
10535 | SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { |
10536 | for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) { |
10537 | CXXMethodDecl *overloadedMD = OverloadedMethods[i]; |
10538 | PartialDiagnostic PD = PDiag( |
10539 | diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD; |
10540 | HandleFunctionTypeMismatch(PDiag&: PD, FromType: MD->getType(), ToType: overloadedMD->getType()); |
10541 | Diag(overloadedMD->getLocation(), PD); |
10542 | } |
10543 | } |
10544 | |
10545 | void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) { |
10546 | if (MD->isInvalidDecl()) |
10547 | return; |
10548 | |
10549 | if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation())) |
10550 | return; |
10551 | |
10552 | SmallVector<CXXMethodDecl *, 8> OverloadedMethods; |
10553 | FindHiddenVirtualMethods(MD, OverloadedMethods); |
10554 | if (!OverloadedMethods.empty()) { |
10555 | Diag(MD->getLocation(), diag::warn_overloaded_virtual) |
10556 | << MD << (OverloadedMethods.size() > 1); |
10557 | |
10558 | NoteHiddenVirtualMethods(MD, OverloadedMethods); |
10559 | } |
10560 | } |
10561 | |
10562 | void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) { |
10563 | auto PrintDiagAndRemoveAttr = [&](unsigned N) { |
10564 | // No diagnostics if this is a template instantiation. |
10565 | if (!isTemplateInstantiation(Kind: RD.getTemplateSpecializationKind())) { |
10566 | Diag(RD.getAttr<TrivialABIAttr>()->getLocation(), |
10567 | diag::ext_cannot_use_trivial_abi) << &RD; |
10568 | Diag(RD.getAttr<TrivialABIAttr>()->getLocation(), |
10569 | diag::note_cannot_use_trivial_abi_reason) << &RD << N; |
10570 | } |
10571 | RD.dropAttr<TrivialABIAttr>(); |
10572 | }; |
10573 | |
10574 | // Ill-formed if the struct has virtual functions. |
10575 | if (RD.isPolymorphic()) { |
10576 | PrintDiagAndRemoveAttr(1); |
10577 | return; |
10578 | } |
10579 | |
10580 | for (const auto &B : RD.bases()) { |
10581 | // Ill-formed if the base class is non-trivial for the purpose of calls or a |
10582 | // virtual base. |
10583 | if (!B.getType()->isDependentType() && |
10584 | !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) { |
10585 | PrintDiagAndRemoveAttr(2); |
10586 | return; |
10587 | } |
10588 | |
10589 | if (B.isVirtual()) { |
10590 | PrintDiagAndRemoveAttr(3); |
10591 | return; |
10592 | } |
10593 | } |
10594 | |
10595 | for (const auto *FD : RD.fields()) { |
10596 | // Ill-formed if the field is an ObjectiveC pointer or of a type that is |
10597 | // non-trivial for the purpose of calls. |
10598 | QualType FT = FD->getType(); |
10599 | if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) { |
10600 | PrintDiagAndRemoveAttr(4); |
10601 | return; |
10602 | } |
10603 | |
10604 | // Ill-formed if the field is an address-discriminated value. |
10605 | if (FT.hasAddressDiscriminatedPointerAuth()) { |
10606 | PrintDiagAndRemoveAttr(6); |
10607 | return; |
10608 | } |
10609 | |
10610 | if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>()) |
10611 | if (!RT->isDependentType() && |
10612 | !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) { |
10613 | PrintDiagAndRemoveAttr(5); |
10614 | return; |
10615 | } |
10616 | } |
10617 | |
10618 | if (IsCXXTriviallyRelocatableType(RD)) |
10619 | return; |
10620 | |
10621 | // Ill-formed if the copy and move constructors are deleted. |
10622 | auto HasNonDeletedCopyOrMoveConstructor = [&]() { |
10623 | // If the type is dependent, then assume it might have |
10624 | // implicit copy or move ctor because we won't know yet at this point. |
10625 | if (RD.isDependentType()) |
10626 | return true; |
10627 | if (RD.needsImplicitCopyConstructor() && |
10628 | !RD.defaultedCopyConstructorIsDeleted()) |
10629 | return true; |
10630 | if (RD.needsImplicitMoveConstructor() && |
10631 | !RD.defaultedMoveConstructorIsDeleted()) |
10632 | return true; |
10633 | for (const CXXConstructorDecl *CD : RD.ctors()) |
10634 | if (CD->isCopyOrMoveConstructor() && !CD->isDeleted()) |
10635 | return true; |
10636 | return false; |
10637 | }; |
10638 | |
10639 | if (!HasNonDeletedCopyOrMoveConstructor()) { |
10640 | PrintDiagAndRemoveAttr(0); |
10641 | return; |
10642 | } |
10643 | } |
10644 | |
10645 | void Sema::checkIncorrectVTablePointerAuthenticationAttribute( |
10646 | CXXRecordDecl &RD) { |
10647 | if (RequireCompleteType(RD.getLocation(), Context.getRecordType(&RD), |
10648 | diag::err_incomplete_type_vtable_pointer_auth)) |
10649 | return; |
10650 | |
10651 | const CXXRecordDecl *PrimaryBase = &RD; |
10652 | if (PrimaryBase->hasAnyDependentBases()) |
10653 | return; |
10654 | |
10655 | while (1) { |
10656 | assert(PrimaryBase); |
10657 | const CXXRecordDecl *Base = nullptr; |
10658 | for (const CXXBaseSpecifier &BasePtr : PrimaryBase->bases()) { |
10659 | if (!BasePtr.getType()->getAsCXXRecordDecl()->isDynamicClass()) |
10660 | continue; |
10661 | Base = BasePtr.getType()->getAsCXXRecordDecl(); |
10662 | break; |
10663 | } |
10664 | if (!Base || Base == PrimaryBase || !Base->isPolymorphic()) |
10665 | break; |
10666 | Diag(RD.getAttr<VTablePointerAuthenticationAttr>()->getLocation(), |
10667 | diag::err_non_top_level_vtable_pointer_auth) |
10668 | << &RD << Base; |
10669 | PrimaryBase = Base; |
10670 | } |
10671 | |
10672 | if (!RD.isPolymorphic()) |
10673 | Diag(RD.getAttr<VTablePointerAuthenticationAttr>()->getLocation(), |
10674 | diag::err_non_polymorphic_vtable_pointer_auth) |
10675 | << &RD; |
10676 | } |
10677 | |
10678 | void Sema::ActOnFinishCXXMemberSpecification( |
10679 | Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac, |
10680 | SourceLocation RBrac, const ParsedAttributesView &AttrList) { |
10681 | if (!TagDecl) |
10682 | return; |
10683 | |
10684 | AdjustDeclIfTemplate(Decl&: TagDecl); |
10685 | |
10686 | for (const ParsedAttr &AL : AttrList) { |
10687 | if (AL.getKind() != ParsedAttr::AT_Visibility) |
10688 | continue; |
10689 | AL.setInvalid(); |
10690 | Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) << AL; |
10691 | } |
10692 | |
10693 | ActOnFields(S, RecLoc: RLoc, TagDecl, |
10694 | Fields: llvm::ArrayRef( |
10695 | // strict aliasing violation! |
10696 | reinterpret_cast<Decl **>(FieldCollector->getCurFields()), |
10697 | FieldCollector->getCurNumFields()), |
10698 | LBrac, RBrac, AttrList); |
10699 | |
10700 | CheckCompletedCXXClass(S, Record: cast<CXXRecordDecl>(Val: TagDecl)); |
10701 | } |
10702 | |
10703 | /// Find the equality comparison functions that should be implicitly declared |
10704 | /// in a given class definition, per C++2a [class.compare.default]p3. |
10705 | static void findImplicitlyDeclaredEqualityComparisons( |
10706 | ASTContext &Ctx, CXXRecordDecl *RD, |
10707 | llvm::SmallVectorImpl<FunctionDecl *> &Spaceships) { |
10708 | DeclarationName EqEq = Ctx.DeclarationNames.getCXXOperatorName(Op: OO_EqualEqual); |
10709 | if (!RD->lookup(EqEq).empty()) |
10710 | // Member operator== explicitly declared: no implicit operator==s. |
10711 | return; |
10712 | |
10713 | // Traverse friends looking for an '==' or a '<=>'. |
10714 | for (FriendDecl *Friend : RD->friends()) { |
10715 | FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: Friend->getFriendDecl()); |
10716 | if (!FD) continue; |
10717 | |
10718 | if (FD->getOverloadedOperator() == OO_EqualEqual) { |
10719 | // Friend operator== explicitly declared: no implicit operator==s. |
10720 | Spaceships.clear(); |
10721 | return; |
10722 | } |
10723 | |
10724 | if (FD->getOverloadedOperator() == OO_Spaceship && |
10725 | FD->isExplicitlyDefaulted()) |
10726 | Spaceships.push_back(Elt: FD); |
10727 | } |
10728 | |
10729 | // Look for members named 'operator<=>'. |
10730 | DeclarationName Cmp = Ctx.DeclarationNames.getCXXOperatorName(Op: OO_Spaceship); |
10731 | for (NamedDecl *ND : RD->lookup(Cmp)) { |
10732 | // Note that we could find a non-function here (either a function template |
10733 | // or a using-declaration). Neither case results in an implicit |
10734 | // 'operator=='. |
10735 | if (auto *FD = dyn_cast<FunctionDecl>(ND)) |
10736 | if (FD->isExplicitlyDefaulted()) |
10737 | Spaceships.push_back(FD); |
10738 | } |
10739 | } |
10740 | |
10741 | void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { |
10742 | // Don't add implicit special members to templated classes. |
10743 | // FIXME: This means unqualified lookups for 'operator=' within a class |
10744 | // template don't work properly. |
10745 | if (!ClassDecl->isDependentType()) { |
10746 | if (ClassDecl->needsImplicitDefaultConstructor()) { |
10747 | ++getASTContext().NumImplicitDefaultConstructors; |
10748 | |
10749 | if (ClassDecl->hasInheritedConstructor()) |
10750 | DeclareImplicitDefaultConstructor(ClassDecl); |
10751 | } |
10752 | |
10753 | if (ClassDecl->needsImplicitCopyConstructor()) { |
10754 | ++getASTContext().NumImplicitCopyConstructors; |
10755 | |
10756 | // If the properties or semantics of the copy constructor couldn't be |
10757 | // determined while the class was being declared, force a declaration |
10758 | // of it now. |
10759 | if (ClassDecl->needsOverloadResolutionForCopyConstructor() || |
10760 | ClassDecl->hasInheritedConstructor()) |
10761 | DeclareImplicitCopyConstructor(ClassDecl); |
10762 | // For the MS ABI we need to know whether the copy ctor is deleted. A |
10763 | // prerequisite for deleting the implicit copy ctor is that the class has |
10764 | // a move ctor or move assignment that is either user-declared or whose |
10765 | // semantics are inherited from a subobject. FIXME: We should provide a |
10766 | // more direct way for CodeGen to ask whether the constructor was deleted. |
10767 | else if (Context.getTargetInfo().getCXXABI().isMicrosoft() && |
10768 | (ClassDecl->hasUserDeclaredMoveConstructor() || |
10769 | ClassDecl->needsOverloadResolutionForMoveConstructor() || |
10770 | ClassDecl->hasUserDeclaredMoveAssignment() || |
10771 | ClassDecl->needsOverloadResolutionForMoveAssignment())) |
10772 | DeclareImplicitCopyConstructor(ClassDecl); |
10773 | } |
10774 | |
10775 | if (getLangOpts().CPlusPlus11 && |
10776 | ClassDecl->needsImplicitMoveConstructor()) { |
10777 | ++getASTContext().NumImplicitMoveConstructors; |
10778 | |
10779 | if (ClassDecl->needsOverloadResolutionForMoveConstructor() || |
10780 | ClassDecl->hasInheritedConstructor()) |
10781 | DeclareImplicitMoveConstructor(ClassDecl); |
10782 | } |
10783 | |
10784 | if (ClassDecl->needsImplicitCopyAssignment()) { |
10785 | ++getASTContext().NumImplicitCopyAssignmentOperators; |
10786 | |
10787 | // If we have a dynamic class, then the copy assignment operator may be |
10788 | // virtual, so we have to declare it immediately. This ensures that, e.g., |
10789 | // it shows up in the right place in the vtable and that we diagnose |
10790 | // problems with the implicit exception specification. |
10791 | if (ClassDecl->isDynamicClass() || |
10792 | ClassDecl->needsOverloadResolutionForCopyAssignment() || |
10793 | ClassDecl->hasInheritedAssignment()) |
10794 | DeclareImplicitCopyAssignment(ClassDecl); |
10795 | } |
10796 | |
10797 | if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) { |
10798 | ++getASTContext().NumImplicitMoveAssignmentOperators; |
10799 | |
10800 | // Likewise for the move assignment operator. |
10801 | if (ClassDecl->isDynamicClass() || |
10802 | ClassDecl->needsOverloadResolutionForMoveAssignment() || |
10803 | ClassDecl->hasInheritedAssignment()) |
10804 | DeclareImplicitMoveAssignment(ClassDecl); |
10805 | } |
10806 | |
10807 | if (ClassDecl->needsImplicitDestructor()) { |
10808 | ++getASTContext().NumImplicitDestructors; |
10809 | |
10810 | // If we have a dynamic class, then the destructor may be virtual, so we |
10811 | // have to declare the destructor immediately. This ensures that, e.g., it |
10812 | // shows up in the right place in the vtable and that we diagnose problems |
10813 | // with the implicit exception specification. |
10814 | if (ClassDecl->isDynamicClass() || |
10815 | ClassDecl->needsOverloadResolutionForDestructor()) |
10816 | DeclareImplicitDestructor(ClassDecl); |
10817 | } |
10818 | } |
10819 | |
10820 | // C++2a [class.compare.default]p3: |
10821 | // If the member-specification does not explicitly declare any member or |
10822 | // friend named operator==, an == operator function is declared implicitly |
10823 | // for each defaulted three-way comparison operator function defined in |
10824 | // the member-specification |
10825 | // FIXME: Consider doing this lazily. |
10826 | // We do this during the initial parse for a class template, not during |
10827 | // instantiation, so that we can handle unqualified lookups for 'operator==' |
10828 | // when parsing the template. |
10829 | if (getLangOpts().CPlusPlus20 && !inTemplateInstantiation()) { |
10830 | llvm::SmallVector<FunctionDecl *, 4> DefaultedSpaceships; |
10831 | findImplicitlyDeclaredEqualityComparisons(Ctx&: Context, RD: ClassDecl, |
10832 | Spaceships&: DefaultedSpaceships); |
10833 | for (auto *FD : DefaultedSpaceships) |
10834 | DeclareImplicitEqualityComparison(RD: ClassDecl, Spaceship: FD); |
10835 | } |
10836 | } |
10837 | |
10838 | unsigned |
10839 | Sema::ActOnReenterTemplateScope(Decl *D, |
10840 | llvm::function_ref<Scope *()> EnterScope) { |
10841 | if (!D) |
10842 | return 0; |
10843 | AdjustDeclIfTemplate(Decl&: D); |
10844 | |
10845 | // In order to get name lookup right, reenter template scopes in order from |
10846 | // outermost to innermost. |
10847 | SmallVector<TemplateParameterList *, 4> ParameterLists; |
10848 | DeclContext *LookupDC = dyn_cast<DeclContext>(Val: D); |
10849 | |
10850 | if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(Val: D)) { |
10851 | for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i) |
10852 | ParameterLists.push_back(Elt: DD->getTemplateParameterList(index: i)); |
10853 | |
10854 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) { |
10855 | if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) |
10856 | ParameterLists.push_back(Elt: FTD->getTemplateParameters()); |
10857 | } else if (VarDecl *VD = dyn_cast<VarDecl>(Val: D)) { |
10858 | LookupDC = VD->getDeclContext(); |
10859 | |
10860 | if (VarTemplateDecl *VTD = VD->getDescribedVarTemplate()) |
10861 | ParameterLists.push_back(Elt: VTD->getTemplateParameters()); |
10862 | else if (auto *PSD = dyn_cast<VarTemplatePartialSpecializationDecl>(Val: D)) |
10863 | ParameterLists.push_back(Elt: PSD->getTemplateParameters()); |
10864 | } |
10865 | } else if (TagDecl *TD = dyn_cast<TagDecl>(Val: D)) { |
10866 | for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i) |
10867 | ParameterLists.push_back(Elt: TD->getTemplateParameterList(i)); |
10868 | |
10869 | if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: TD)) { |
10870 | if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate()) |
10871 | ParameterLists.push_back(Elt: CTD->getTemplateParameters()); |
10872 | else if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(Val: D)) |
10873 | ParameterLists.push_back(Elt: PSD->getTemplateParameters()); |
10874 | } |
10875 | } |
10876 | // FIXME: Alias declarations and concepts. |
10877 | |
10878 | unsigned Count = 0; |
10879 | Scope *InnermostTemplateScope = nullptr; |
10880 | for (TemplateParameterList *Params : ParameterLists) { |
10881 | // Ignore explicit specializations; they don't contribute to the template |
10882 | // depth. |
10883 | if (Params->size() == 0) |
10884 | continue; |
10885 | |
10886 | InnermostTemplateScope = EnterScope(); |
10887 | for (NamedDecl *Param : *Params) { |
10888 | if (Param->getDeclName()) { |
10889 | InnermostTemplateScope->AddDecl(Param); |
10890 | IdResolver.AddDecl(D: Param); |
10891 | } |
10892 | } |
10893 | ++Count; |
10894 | } |
10895 | |
10896 | // Associate the new template scopes with the corresponding entities. |
10897 | if (InnermostTemplateScope) { |
10898 | assert(LookupDC && "no enclosing DeclContext for template lookup"); |
10899 | EnterTemplatedContext(S: InnermostTemplateScope, DC: LookupDC); |
10900 | } |
10901 | |
10902 | return Count; |
10903 | } |
10904 | |
10905 | void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) { |
10906 | if (!RecordD) return; |
10907 | AdjustDeclIfTemplate(Decl&: RecordD); |
10908 | CXXRecordDecl *Record = cast<CXXRecordDecl>(Val: RecordD); |
10909 | PushDeclContext(S, Record); |
10910 | } |
10911 | |
10912 | void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) { |
10913 | if (!RecordD) return; |
10914 | PopDeclContext(); |
10915 | } |
10916 | |
10917 | void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) { |
10918 | if (!Param) |
10919 | return; |
10920 | |
10921 | S->AddDecl(Param); |
10922 | if (Param->getDeclName()) |
10923 | IdResolver.AddDecl(Param); |
10924 | } |
10925 | |
10926 | void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { |
10927 | } |
10928 | |
10929 | /// ActOnDelayedCXXMethodParameter - We've already started a delayed |
10930 | /// C++ method declaration. We're (re-)introducing the given |
10931 | /// function parameter into scope for use in parsing later parts of |
10932 | /// the method declaration. For example, we could see an |
10933 | /// ActOnParamDefaultArgument event for this parameter. |
10934 | void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) { |
10935 | if (!ParamD) |
10936 | return; |
10937 | |
10938 | ParmVarDecl *Param = cast<ParmVarDecl>(Val: ParamD); |
10939 | |
10940 | S->AddDecl(Param); |
10941 | if (Param->getDeclName()) |
10942 | IdResolver.AddDecl(Param); |
10943 | } |
10944 | |
10945 | void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { |
10946 | if (!MethodD) |
10947 | return; |
10948 | |
10949 | AdjustDeclIfTemplate(Decl&: MethodD); |
10950 | |
10951 | FunctionDecl *Method = cast<FunctionDecl>(Val: MethodD); |
10952 | |
10953 | // Now that we have our default arguments, check the constructor |
10954 | // again. It could produce additional diagnostics or affect whether |
10955 | // the class has implicitly-declared destructors, among other |
10956 | // things. |
10957 | if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Val: Method)) |
10958 | CheckConstructor(Constructor); |
10959 | |
10960 | // Check the default arguments, which we may have added. |
10961 | if (!Method->isInvalidDecl()) |
10962 | CheckCXXDefaultArguments(FD: Method); |
10963 | } |
10964 | |
10965 | // Emit the given diagnostic for each non-address-space qualifier. |
10966 | // Common part of CheckConstructorDeclarator and CheckDestructorDeclarator. |
10967 | static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) { |
10968 | const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); |
10969 | if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) { |
10970 | bool DiagOccured = false; |
10971 | FTI.MethodQualifiers->forEachQualifier( |
10972 | Handle: [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName, |
10973 | SourceLocation SL) { |
10974 | // This diagnostic should be emitted on any qualifier except an addr |
10975 | // space qualifier. However, forEachQualifier currently doesn't visit |
10976 | // addr space qualifiers, so there's no way to write this condition |
10977 | // right now; we just diagnose on everything. |
10978 | S.Diag(SL, DiagID) << QualName << SourceRange(SL); |
10979 | DiagOccured = true; |
10980 | }); |
10981 | if (DiagOccured) |
10982 | D.setInvalidType(); |
10983 | } |
10984 | } |
10985 | |
10986 | static void diagnoseInvalidDeclaratorChunks(Sema &S, Declarator &D, |
10987 | unsigned Kind) { |
10988 | if (D.isInvalidType() || D.getNumTypeObjects() <= 1) |
10989 | return; |
10990 | |
10991 | DeclaratorChunk &Chunk = D.getTypeObject(i: D.getNumTypeObjects() - 1); |
10992 | if (Chunk.Kind == DeclaratorChunk::Paren || |
10993 | Chunk.Kind == DeclaratorChunk::Function) |
10994 | return; |
10995 | |
10996 | SourceLocation PointerLoc = Chunk.getSourceRange().getBegin(); |
10997 | S.Diag(PointerLoc, diag::err_invalid_ctor_dtor_decl) |
10998 | << Kind << Chunk.getSourceRange(); |
10999 | D.setInvalidType(); |
11000 | } |
11001 | |
11002 | QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, |
11003 | StorageClass &SC) { |
11004 | bool isVirtual = D.getDeclSpec().isVirtualSpecified(); |
11005 | |
11006 | // C++ [class.ctor]p3: |
11007 | // A constructor shall not be virtual (10.3) or static (9.4). A |
11008 | // constructor can be invoked for a const, volatile or const |
11009 | // volatile object. A constructor shall not be declared const, |
11010 | // volatile, or const volatile (9.3.2). |
11011 | if (isVirtual) { |
11012 | if (!D.isInvalidType()) |
11013 | Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) |
11014 | << "virtual"<< SourceRange(D.getDeclSpec().getVirtualSpecLoc()) |
11015 | << SourceRange(D.getIdentifierLoc()); |
11016 | D.setInvalidType(); |
11017 | } |
11018 | if (SC == SC_Static) { |
11019 | if (!D.isInvalidType()) |
11020 | Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) |
11021 | << "static"<< SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) |
11022 | << SourceRange(D.getIdentifierLoc()); |
11023 | D.setInvalidType(); |
11024 | SC = SC_None; |
11025 | } |
11026 | |
11027 | if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { |
11028 | diagnoseIgnoredQualifiers( |
11029 | diag::err_constructor_return_type, TypeQuals, SourceLocation(), |
11030 | D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(), |
11031 | D.getDeclSpec().getRestrictSpecLoc(), |
11032 | D.getDeclSpec().getAtomicSpecLoc()); |
11033 | D.setInvalidType(); |
11034 | } |
11035 | |
11036 | checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor); |
11037 | diagnoseInvalidDeclaratorChunks(S&: *this, D, /*constructor*/ Kind: 0); |
11038 | |
11039 | // C++0x [class.ctor]p4: |
11040 | // A constructor shall not be declared with a ref-qualifier. |
11041 | DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); |
11042 | if (FTI.hasRefQualifier()) { |
11043 | Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor) |
11044 | << FTI.RefQualifierIsLValueRef |
11045 | << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); |
11046 | D.setInvalidType(); |
11047 | } |
11048 | |
11049 | // Rebuild the function type "R" without any type qualifiers (in |
11050 | // case any of the errors above fired) and with "void" as the |
11051 | // return type, since constructors don't have return types. |
11052 | const FunctionProtoType *Proto = R->castAs<FunctionProtoType>(); |
11053 | if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType()) |
11054 | return R; |
11055 | |
11056 | FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); |
11057 | EPI.TypeQuals = Qualifiers(); |
11058 | EPI.RefQualifier = RQ_None; |
11059 | |
11060 | return Context.getFunctionType(ResultTy: Context.VoidTy, Args: Proto->getParamTypes(), EPI); |
11061 | } |
11062 | |
11063 | void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { |
11064 | CXXRecordDecl *ClassDecl |
11065 | = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext()); |
11066 | if (!ClassDecl) |
11067 | return Constructor->setInvalidDecl(); |
11068 | |
11069 | // C++ [class.copy]p3: |
11070 | // A declaration of a constructor for a class X is ill-formed if |
11071 | // its first parameter is of type (optionally cv-qualified) X and |
11072 | // either there are no other parameters or else all other |
11073 | // parameters have default arguments. |
11074 | if (!Constructor->isInvalidDecl() && |
11075 | Constructor->hasOneParamOrDefaultArgs() && |
11076 | !Constructor->isFunctionTemplateSpecialization()) { |
11077 | QualType ParamType = Constructor->getParamDecl(0)->getType(); |
11078 | QualType ClassTy = Context.getTagDeclType(ClassDecl); |
11079 | if (Context.getCanonicalType(T: ParamType).getUnqualifiedType() == ClassTy) { |
11080 | SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); |
11081 | const char *ConstRef |
11082 | = Constructor->getParamDecl(0)->getIdentifier() ? "const &" |
11083 | : " const &"; |
11084 | Diag(ParamLoc, diag::err_constructor_byvalue_arg) |
11085 | << FixItHint::CreateInsertion(ParamLoc, ConstRef); |
11086 | |
11087 | // FIXME: Rather that making the constructor invalid, we should endeavor |
11088 | // to fix the type. |
11089 | Constructor->setInvalidDecl(); |
11090 | } |
11091 | } |
11092 | } |
11093 | |
11094 | bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) { |
11095 | CXXRecordDecl *RD = Destructor->getParent(); |
11096 | |
11097 | if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) { |
11098 | SourceLocation Loc; |
11099 | |
11100 | if (!Destructor->isImplicit()) |
11101 | Loc = Destructor->getLocation(); |
11102 | else |
11103 | Loc = RD->getLocation(); |
11104 | |
11105 | // If we have a virtual destructor, look up the deallocation function |
11106 | if (FunctionDecl *OperatorDelete = |
11107 | FindDeallocationFunctionForDestructor(StartLoc: Loc, RD)) { |
11108 | Expr *ThisArg = nullptr; |
11109 | |
11110 | // If the notional 'delete this' expression requires a non-trivial |
11111 | // conversion from 'this' to the type of a destroying operator delete's |
11112 | // first parameter, perform that conversion now. |
11113 | if (OperatorDelete->isDestroyingOperatorDelete()) { |
11114 | unsigned AddressParamIndex = 0; |
11115 | if (OperatorDelete->isTypeAwareOperatorNewOrDelete()) |
11116 | ++AddressParamIndex; |
11117 | QualType ParamType = |
11118 | OperatorDelete->getParamDecl(i: AddressParamIndex)->getType(); |
11119 | if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) { |
11120 | // C++ [class.dtor]p13: |
11121 | // ... as if for the expression 'delete this' appearing in a |
11122 | // non-virtual destructor of the destructor's class. |
11123 | ContextRAII SwitchContext(*this, Destructor); |
11124 | ExprResult This = ActOnCXXThis( |
11125 | Loc: OperatorDelete->getParamDecl(i: AddressParamIndex)->getLocation()); |
11126 | assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?"); |
11127 | This = PerformImplicitConversion(From: This.get(), ToType: ParamType, |
11128 | Action: AssignmentAction::Passing); |
11129 | if (This.isInvalid()) { |
11130 | // FIXME: Register this as a context note so that it comes out |
11131 | // in the right order. |
11132 | Diag(Loc, diag::note_implicit_delete_this_in_destructor_here); |
11133 | return true; |
11134 | } |
11135 | ThisArg = This.get(); |
11136 | } |
11137 | } |
11138 | |
11139 | DiagnoseUseOfDecl(OperatorDelete, Loc); |
11140 | MarkFunctionReferenced(Loc, Func: OperatorDelete); |
11141 | Destructor->setOperatorDelete(OD: OperatorDelete, ThisArg); |
11142 | } |
11143 | } |
11144 | |
11145 | return false; |
11146 | } |
11147 | |
11148 | QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R, |
11149 | StorageClass& SC) { |
11150 | // C++ [class.dtor]p1: |
11151 | // [...] A typedef-name that names a class is a class-name |
11152 | // (7.1.3); however, a typedef-name that names a class shall not |
11153 | // be used as the identifier in the declarator for a destructor |
11154 | // declaration. |
11155 | QualType DeclaratorType = GetTypeFromParser(Ty: D.getName().DestructorName); |
11156 | if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>()) |
11157 | Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name) |
11158 | << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl()); |
11159 | else if (const TemplateSpecializationType *TST = |
11160 | DeclaratorType->getAs<TemplateSpecializationType>()) |
11161 | if (TST->isTypeAlias()) |
11162 | Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name) |
11163 | << DeclaratorType << 1; |
11164 | |
11165 | // C++ [class.dtor]p2: |
11166 | // A destructor is used to destroy objects of its class type. A |
11167 | // destructor takes no parameters, and no return type can be |
11168 | // specified for it (not even void). The address of a destructor |
11169 | // shall not be taken. A destructor shall not be static. A |
11170 | // destructor can be invoked for a const, volatile or const |
11171 | // volatile object. A destructor shall not be declared const, |
11172 | // volatile or const volatile (9.3.2). |
11173 | if (SC == SC_Static) { |
11174 | if (!D.isInvalidType()) |
11175 | Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) |
11176 | << "static"<< SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) |
11177 | << SourceRange(D.getIdentifierLoc()) |
11178 | << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); |
11179 | |
11180 | SC = SC_None; |
11181 | } |
11182 | if (!D.isInvalidType()) { |
11183 | // Destructors don't have return types, but the parser will |
11184 | // happily parse something like: |
11185 | // |
11186 | // class X { |
11187 | // float ~X(); |
11188 | // }; |
11189 | // |
11190 | // The return type will be eliminated later. |
11191 | if (D.getDeclSpec().hasTypeSpecifier()) |
11192 | Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) |
11193 | << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) |
11194 | << SourceRange(D.getIdentifierLoc()); |
11195 | else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { |
11196 | diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals, |
11197 | SourceLocation(), |
11198 | D.getDeclSpec().getConstSpecLoc(), |
11199 | D.getDeclSpec().getVolatileSpecLoc(), |
11200 | D.getDeclSpec().getRestrictSpecLoc(), |
11201 | D.getDeclSpec().getAtomicSpecLoc()); |
11202 | D.setInvalidType(); |
11203 | } |
11204 | } |
11205 | |
11206 | checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor); |
11207 | diagnoseInvalidDeclaratorChunks(S&: *this, D, /*destructor*/ Kind: 1); |
11208 | |
11209 | // C++0x [class.dtor]p2: |
11210 | // A destructor shall not be declared with a ref-qualifier. |
11211 | DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); |
11212 | if (FTI.hasRefQualifier()) { |
11213 | Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor) |
11214 | << FTI.RefQualifierIsLValueRef |
11215 | << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); |
11216 | D.setInvalidType(); |
11217 | } |
11218 | |
11219 | // Make sure we don't have any parameters. |
11220 | if (FTIHasNonVoidParameters(FTI)) { |
11221 | Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); |
11222 | |
11223 | // Delete the parameters. |
11224 | FTI.freeParams(); |
11225 | D.setInvalidType(); |
11226 | } |
11227 | |
11228 | // Make sure the destructor isn't variadic. |
11229 | if (FTI.isVariadic) { |
11230 | Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); |
11231 | D.setInvalidType(); |
11232 | } |
11233 | |
11234 | // Rebuild the function type "R" without any type qualifiers or |
11235 | // parameters (in case any of the errors above fired) and with |
11236 | // "void" as the return type, since destructors don't have return |
11237 | // types. |
11238 | if (!D.isInvalidType()) |
11239 | return R; |
11240 | |
11241 | const FunctionProtoType *Proto = R->castAs<FunctionProtoType>(); |
11242 | FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); |
11243 | EPI.Variadic = false; |
11244 | EPI.TypeQuals = Qualifiers(); |
11245 | EPI.RefQualifier = RQ_None; |
11246 | return Context.getFunctionType(ResultTy: Context.VoidTy, Args: {}, EPI); |
11247 | } |
11248 | |
11249 | static void extendLeft(SourceRange &R, SourceRange Before) { |
11250 | if (Before.isInvalid()) |
11251 | return; |
11252 | R.setBegin(Before.getBegin()); |
11253 | if (R.getEnd().isInvalid()) |
11254 | R.setEnd(Before.getEnd()); |
11255 | } |
11256 | |
11257 | static void extendRight(SourceRange &R, SourceRange After) { |
11258 | if (After.isInvalid()) |
11259 | return; |
11260 | if (R.getBegin().isInvalid()) |
11261 | R.setBegin(After.getBegin()); |
11262 | R.setEnd(After.getEnd()); |
11263 | } |
11264 | |
11265 | void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, |
11266 | StorageClass& SC) { |
11267 | // C++ [class.conv.fct]p1: |
11268 | // Neither parameter types nor return type can be specified. The |
11269 | // type of a conversion function (8.3.5) is "function taking no |
11270 | // parameter returning conversion-type-id." |
11271 | if (SC == SC_Static) { |
11272 | if (!D.isInvalidType()) |
11273 | Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) |
11274 | << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) |
11275 | << D.getName().getSourceRange(); |
11276 | D.setInvalidType(); |
11277 | SC = SC_None; |
11278 | } |
11279 | |
11280 | TypeSourceInfo *ConvTSI = nullptr; |
11281 | QualType ConvType = |
11282 | GetTypeFromParser(Ty: D.getName().ConversionFunctionId, TInfo: &ConvTSI); |
11283 | |
11284 | const DeclSpec &DS = D.getDeclSpec(); |
11285 | if (DS.hasTypeSpecifier() && !D.isInvalidType()) { |
11286 | // Conversion functions don't have return types, but the parser will |
11287 | // happily parse something like: |
11288 | // |
11289 | // class X { |
11290 | // float operator bool(); |
11291 | // }; |
11292 | // |
11293 | // The return type will be changed later anyway. |
11294 | Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) |
11295 | << SourceRange(DS.getTypeSpecTypeLoc()) |
11296 | << SourceRange(D.getIdentifierLoc()); |
11297 | D.setInvalidType(); |
11298 | } else if (DS.getTypeQualifiers() && !D.isInvalidType()) { |
11299 | // It's also plausible that the user writes type qualifiers in the wrong |
11300 | // place, such as: |
11301 | // struct S { const operator int(); }; |
11302 | // FIXME: we could provide a fixit to move the qualifiers onto the |
11303 | // conversion type. |
11304 | Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl) |
11305 | << SourceRange(D.getIdentifierLoc()) << 0; |
11306 | D.setInvalidType(); |
11307 | } |
11308 | const auto *Proto = R->castAs<FunctionProtoType>(); |
11309 | // Make sure we don't have any parameters. |
11310 | DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); |
11311 | unsigned NumParam = Proto->getNumParams(); |
11312 | |
11313 | // [C++2b] |
11314 | // A conversion function shall have no non-object parameters. |
11315 | if (NumParam == 1) { |
11316 | DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); |
11317 | if (const auto *First = |
11318 | dyn_cast_if_present<ParmVarDecl>(Val: FTI.Params[0].Param); |
11319 | First && First->isExplicitObjectParameter()) |
11320 | NumParam--; |
11321 | } |
11322 | |
11323 | if (NumParam != 0) { |
11324 | Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); |
11325 | // Delete the parameters. |
11326 | FTI.freeParams(); |
11327 | D.setInvalidType(); |
11328 | } else if (Proto->isVariadic()) { |
11329 | Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); |
11330 | D.setInvalidType(); |
11331 | } |
11332 | |
11333 | // Diagnose "&operator bool()" and other such nonsense. This |
11334 | // is actually a gcc extension which we don't support. |
11335 | if (Proto->getReturnType() != ConvType) { |
11336 | bool NeedsTypedef = false; |
11337 | SourceRange Before, After; |
11338 | |
11339 | // Walk the chunks and extract information on them for our diagnostic. |
11340 | bool PastFunctionChunk = false; |
11341 | for (auto &Chunk : D.type_objects()) { |
11342 | switch (Chunk.Kind) { |
11343 | case DeclaratorChunk::Function: |
11344 | if (!PastFunctionChunk) { |
11345 | if (Chunk.Fun.HasTrailingReturnType) { |
11346 | TypeSourceInfo *TRT = nullptr; |
11347 | GetTypeFromParser(Ty: Chunk.Fun.getTrailingReturnType(), TInfo: &TRT); |
11348 | if (TRT) extendRight(R&: After, After: TRT->getTypeLoc().getSourceRange()); |
11349 | } |
11350 | PastFunctionChunk = true; |
11351 | break; |
11352 | } |
11353 | [[fallthrough]]; |
11354 | case DeclaratorChunk::Array: |
11355 | NeedsTypedef = true; |
11356 | extendRight(R&: After, After: Chunk.getSourceRange()); |
11357 | break; |
11358 | |
11359 | case DeclaratorChunk::Pointer: |
11360 | case DeclaratorChunk::BlockPointer: |
11361 | case DeclaratorChunk::Reference: |
11362 | case DeclaratorChunk::MemberPointer: |
11363 | case DeclaratorChunk::Pipe: |
11364 | extendLeft(R&: Before, Before: Chunk.getSourceRange()); |
11365 | break; |
11366 | |
11367 | case DeclaratorChunk::Paren: |
11368 | extendLeft(R&: Before, Before: Chunk.Loc); |
11369 | extendRight(R&: After, After: Chunk.EndLoc); |
11370 | break; |
11371 | } |
11372 | } |
11373 | |
11374 | SourceLocation Loc = Before.isValid() ? Before.getBegin() : |
11375 | After.isValid() ? After.getBegin() : |
11376 | D.getIdentifierLoc(); |
11377 | auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl); |
11378 | DB << Before << After; |
11379 | |
11380 | if (!NeedsTypedef) { |
11381 | DB << /*don't need a typedef*/0; |
11382 | |
11383 | // If we can provide a correct fix-it hint, do so. |
11384 | if (After.isInvalid() && ConvTSI) { |
11385 | SourceLocation InsertLoc = |
11386 | getLocForEndOfToken(Loc: ConvTSI->getTypeLoc().getEndLoc()); |
11387 | DB << FixItHint::CreateInsertion(InsertionLoc: InsertLoc, Code: " ") |
11388 | << FixItHint::CreateInsertionFromRange( |
11389 | InsertionLoc: InsertLoc, FromRange: CharSourceRange::getTokenRange(R: Before)) |
11390 | << FixItHint::CreateRemoval(RemoveRange: Before); |
11391 | } |
11392 | } else if (!Proto->getReturnType()->isDependentType()) { |
11393 | DB << /*typedef*/1 << Proto->getReturnType(); |
11394 | } else if (getLangOpts().CPlusPlus11) { |
11395 | DB << /*alias template*/2 << Proto->getReturnType(); |
11396 | } else { |
11397 | DB << /*might not be fixable*/3; |
11398 | } |
11399 | |
11400 | // Recover by incorporating the other type chunks into the result type. |
11401 | // Note, this does *not* change the name of the function. This is compatible |
11402 | // with the GCC extension: |
11403 | // struct S { &operator int(); } s; |
11404 | // int &r = s.operator int(); // ok in GCC |
11405 | // S::operator int&() {} // error in GCC, function name is 'operator int'. |
11406 | ConvType = Proto->getReturnType(); |
11407 | } |
11408 | |
11409 | // C++ [class.conv.fct]p4: |
11410 | // The conversion-type-id shall not represent a function type nor |
11411 | // an array type. |
11412 | if (ConvType->isArrayType()) { |
11413 | Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); |
11414 | ConvType = Context.getPointerType(T: ConvType); |
11415 | D.setInvalidType(); |
11416 | } else if (ConvType->isFunctionType()) { |
11417 | Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); |
11418 | ConvType = Context.getPointerType(T: ConvType); |
11419 | D.setInvalidType(); |
11420 | } |
11421 | |
11422 | // Rebuild the function type "R" without any parameters (in case any |
11423 | // of the errors above fired) and with the conversion type as the |
11424 | // return type. |
11425 | if (D.isInvalidType()) |
11426 | R = Context.getFunctionType(ResultTy: ConvType, Args: {}, EPI: Proto->getExtProtoInfo()); |
11427 | |
11428 | // C++0x explicit conversion operators. |
11429 | if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus20) |
11430 | Diag(DS.getExplicitSpecLoc(), |
11431 | getLangOpts().CPlusPlus11 |
11432 | ? diag::warn_cxx98_compat_explicit_conversion_functions |
11433 | : diag::ext_explicit_conversion_functions) |
11434 | << SourceRange(DS.getExplicitSpecRange()); |
11435 | } |
11436 | |
11437 | Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { |
11438 | assert(Conversion && "Expected to receive a conversion function declaration"); |
11439 | |
11440 | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext()); |
11441 | |
11442 | // Make sure we aren't redeclaring the conversion function. |
11443 | QualType ConvType = Context.getCanonicalType(T: Conversion->getConversionType()); |
11444 | // C++ [class.conv.fct]p1: |
11445 | // [...] A conversion function is never used to convert a |
11446 | // (possibly cv-qualified) object to the (possibly cv-qualified) |
11447 | // same object type (or a reference to it), to a (possibly |
11448 | // cv-qualified) base class of that type (or a reference to it), |
11449 | // or to (possibly cv-qualified) void. |
11450 | QualType ClassType |
11451 | = Context.getCanonicalType(T: Context.getTypeDeclType(ClassDecl)); |
11452 | if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>()) |
11453 | ConvType = ConvTypeRef->getPointeeType(); |
11454 | if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared && |
11455 | Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) |
11456 | /* Suppress diagnostics for instantiations. */; |
11457 | else if (Conversion->size_overridden_methods() != 0) |
11458 | /* Suppress diagnostics for overriding virtual function in a base class. */; |
11459 | else if (ConvType->isRecordType()) { |
11460 | ConvType = Context.getCanonicalType(T: ConvType).getUnqualifiedType(); |
11461 | if (ConvType == ClassType) |
11462 | Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) |
11463 | << ClassType; |
11464 | else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType)) |
11465 | Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) |
11466 | << ClassType << ConvType; |
11467 | } else if (ConvType->isVoidType()) { |
11468 | Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) |
11469 | << ClassType << ConvType; |
11470 | } |
11471 | |
11472 | if (FunctionTemplateDecl *ConversionTemplate = |
11473 | Conversion->getDescribedFunctionTemplate()) { |
11474 | if (const auto *ConvTypePtr = ConvType->getAs<PointerType>()) { |
11475 | ConvType = ConvTypePtr->getPointeeType(); |
11476 | } |
11477 | if (ConvType->isUndeducedAutoType()) { |
11478 | Diag(Conversion->getTypeSpecStartLoc(), diag::err_auto_not_allowed) |
11479 | << getReturnTypeLoc(Conversion).getSourceRange() |
11480 | << ConvType->castAs<AutoType>()->getKeyword() |
11481 | << /* in declaration of conversion function template= */ 24; |
11482 | } |
11483 | |
11484 | return ConversionTemplate; |
11485 | } |
11486 | |
11487 | return Conversion; |
11488 | } |
11489 | |
11490 | void Sema::CheckExplicitObjectMemberFunction(DeclContext *DC, Declarator &D, |
11491 | DeclarationName Name, QualType R) { |
11492 | CheckExplicitObjectMemberFunction(D, Name, R, IsLambda: false, DC); |
11493 | } |
11494 | |
11495 | void Sema::CheckExplicitObjectLambda(Declarator &D) { |
11496 | CheckExplicitObjectMemberFunction(D, Name: {}, R: {}, IsLambda: true); |
11497 | } |
11498 | |
11499 | void Sema::CheckExplicitObjectMemberFunction(Declarator &D, |
11500 | DeclarationName Name, QualType R, |
11501 | bool IsLambda, DeclContext *DC) { |
11502 | if (!D.isFunctionDeclarator()) |
11503 | return; |
11504 | |
11505 | DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); |
11506 | if (FTI.NumParams == 0) |
11507 | return; |
11508 | ParmVarDecl *ExplicitObjectParam = nullptr; |
11509 | for (unsigned Idx = 0; Idx < FTI.NumParams; Idx++) { |
11510 | const auto &ParamInfo = FTI.Params[Idx]; |
11511 | if (!ParamInfo.Param) |
11512 | continue; |
11513 | ParmVarDecl *Param = cast<ParmVarDecl>(Val: ParamInfo.Param); |
11514 | if (!Param->isExplicitObjectParameter()) |
11515 | continue; |
11516 | if (Idx == 0) { |
11517 | ExplicitObjectParam = Param; |
11518 | continue; |
11519 | } else { |
11520 | Diag(Param->getLocation(), |
11521 | diag::err_explicit_object_parameter_must_be_first) |
11522 | << IsLambda << Param->getSourceRange(); |
11523 | } |
11524 | } |
11525 | if (!ExplicitObjectParam) |
11526 | return; |
11527 | |
11528 | if (ExplicitObjectParam->hasDefaultArg()) { |
11529 | Diag(ExplicitObjectParam->getLocation(), |
11530 | diag::err_explicit_object_default_arg) |
11531 | << ExplicitObjectParam->getSourceRange(); |
11532 | } |
11533 | |
11534 | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static || |
11535 | (D.getContext() == clang::DeclaratorContext::Member && |
11536 | D.isStaticMember())) { |
11537 | Diag(ExplicitObjectParam->getBeginLoc(), |
11538 | diag::err_explicit_object_parameter_nonmember) |
11539 | << D.getSourceRange() << /*static=*/0 << IsLambda; |
11540 | D.setInvalidType(); |
11541 | } |
11542 | |
11543 | if (D.getDeclSpec().isVirtualSpecified()) { |
11544 | Diag(ExplicitObjectParam->getBeginLoc(), |
11545 | diag::err_explicit_object_parameter_nonmember) |
11546 | << D.getSourceRange() << /*virtual=*/1 << IsLambda; |
11547 | D.setInvalidType(); |
11548 | } |
11549 | |
11550 | // Friend declarations require some care. Consider: |
11551 | // |
11552 | // namespace N { |
11553 | // struct A{}; |
11554 | // int f(A); |
11555 | // } |
11556 | // |
11557 | // struct S { |
11558 | // struct T { |
11559 | // int f(this T); |
11560 | // }; |
11561 | // |
11562 | // friend int T::f(this T); // Allow this. |
11563 | // friend int f(this S); // But disallow this. |
11564 | // friend int N::f(this A); // And disallow this. |
11565 | // }; |
11566 | // |
11567 | // Here, it seems to suffice to check whether the scope |
11568 | // specifier designates a class type. |
11569 | if (D.getDeclSpec().isFriendSpecified() && |
11570 | !isa_and_present<CXXRecordDecl>( |
11571 | Val: computeDeclContext(SS: D.getCXXScopeSpec()))) { |
11572 | Diag(ExplicitObjectParam->getBeginLoc(), |
11573 | diag::err_explicit_object_parameter_nonmember) |
11574 | << D.getSourceRange() << /*non-member=*/2 << IsLambda; |
11575 | D.setInvalidType(); |
11576 | } |
11577 | |
11578 | if (IsLambda && FTI.hasMutableQualifier()) { |
11579 | Diag(ExplicitObjectParam->getBeginLoc(), |
11580 | diag::err_explicit_object_parameter_mutable) |
11581 | << D.getSourceRange(); |
11582 | } |
11583 | |
11584 | if (IsLambda) |
11585 | return; |
11586 | |
11587 | if (!DC || !DC->isRecord()) { |
11588 | assert(D.isInvalidType() && "Explicit object parameter in non-member " |
11589 | "should have been diagnosed already"); |
11590 | return; |
11591 | } |
11592 | |
11593 | // CWG2674: constructors and destructors cannot have explicit parameters. |
11594 | if (Name.getNameKind() == DeclarationName::CXXConstructorName || |
11595 | Name.getNameKind() == DeclarationName::CXXDestructorName) { |
11596 | Diag(ExplicitObjectParam->getBeginLoc(), |
11597 | diag::err_explicit_object_parameter_constructor) |
11598 | << (Name.getNameKind() == DeclarationName::CXXDestructorName) |
11599 | << D.getSourceRange(); |
11600 | D.setInvalidType(); |
11601 | } |
11602 | } |
11603 | |
11604 | namespace { |
11605 | /// Utility class to accumulate and print a diagnostic listing the invalid |
11606 | /// specifier(s) on a declaration. |
11607 | struct BadSpecifierDiagnoser { |
11608 | BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID) |
11609 | : S(S), Diagnostic(S.Diag(Loc, DiagID)) {} |
11610 | ~BadSpecifierDiagnoser() { |
11611 | Diagnostic << Specifiers; |
11612 | } |
11613 | |
11614 | template<typename T> void check(SourceLocation SpecLoc, T Spec) { |
11615 | return check(SpecLoc, DeclSpec::getSpecifierName(Spec)); |
11616 | } |
11617 | void check(SourceLocation SpecLoc, DeclSpec::TST Spec) { |
11618 | return check(SpecLoc, |
11619 | Spec: DeclSpec::getSpecifierName(T: Spec, Policy: S.getPrintingPolicy())); |
11620 | } |
11621 | void check(SourceLocation SpecLoc, const char *Spec) { |
11622 | if (SpecLoc.isInvalid()) return; |
11623 | Diagnostic << SourceRange(SpecLoc, SpecLoc); |
11624 | if (!Specifiers.empty()) Specifiers += " "; |
11625 | Specifiers += Spec; |
11626 | } |
11627 | |
11628 | Sema &S; |
11629 | Sema::SemaDiagnosticBuilder Diagnostic; |
11630 | std::string Specifiers; |
11631 | }; |
11632 | } |
11633 | |
11634 | bool Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R, |
11635 | StorageClass &SC) { |
11636 | TemplateName GuidedTemplate = D.getName().TemplateName.get().get(); |
11637 | TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl(); |
11638 | assert(GuidedTemplateDecl && "missing template decl for deduction guide"); |
11639 | |
11640 | // C++ [temp.deduct.guide]p3: |
11641 | // A deduction-gide shall be declared in the same scope as the |
11642 | // corresponding class template. |
11643 | if (!CurContext->getRedeclContext()->Equals( |
11644 | DC: GuidedTemplateDecl->getDeclContext()->getRedeclContext())) { |
11645 | Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope) |
11646 | << GuidedTemplateDecl; |
11647 | NoteTemplateLocation(*GuidedTemplateDecl); |
11648 | } |
11649 | |
11650 | auto &DS = D.getMutableDeclSpec(); |
11651 | // We leave 'friend' and 'virtual' to be rejected in the normal way. |
11652 | if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() || |
11653 | DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() || |
11654 | DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) { |
11655 | BadSpecifierDiagnoser Diagnoser( |
11656 | *this, D.getIdentifierLoc(), |
11657 | diag::err_deduction_guide_invalid_specifier); |
11658 | |
11659 | Diagnoser.check(SpecLoc: DS.getStorageClassSpecLoc(), Spec: DS.getStorageClassSpec()); |
11660 | DS.ClearStorageClassSpecs(); |
11661 | SC = SC_None; |
11662 | |
11663 | // 'explicit' is permitted. |
11664 | Diagnoser.check(SpecLoc: DS.getInlineSpecLoc(), Spec: "inline"); |
11665 | Diagnoser.check(SpecLoc: DS.getNoreturnSpecLoc(), Spec: "_Noreturn"); |
11666 | Diagnoser.check(SpecLoc: DS.getConstexprSpecLoc(), Spec: "constexpr"); |
11667 | DS.ClearConstexprSpec(); |
11668 | |
11669 | Diagnoser.check(SpecLoc: DS.getConstSpecLoc(), Spec: "const"); |
11670 | Diagnoser.check(SpecLoc: DS.getRestrictSpecLoc(), Spec: "__restrict"); |
11671 | Diagnoser.check(SpecLoc: DS.getVolatileSpecLoc(), Spec: "volatile"); |
11672 | Diagnoser.check(SpecLoc: DS.getAtomicSpecLoc(), Spec: "_Atomic"); |
11673 | Diagnoser.check(SpecLoc: DS.getUnalignedSpecLoc(), Spec: "__unaligned"); |
11674 | DS.ClearTypeQualifiers(); |
11675 | |
11676 | Diagnoser.check(SpecLoc: DS.getTypeSpecComplexLoc(), Spec: DS.getTypeSpecComplex()); |
11677 | Diagnoser.check(SpecLoc: DS.getTypeSpecSignLoc(), Spec: DS.getTypeSpecSign()); |
11678 | Diagnoser.check(SpecLoc: DS.getTypeSpecWidthLoc(), Spec: DS.getTypeSpecWidth()); |
11679 | Diagnoser.check(SpecLoc: DS.getTypeSpecTypeLoc(), Spec: DS.getTypeSpecType()); |
11680 | DS.ClearTypeSpecType(); |
11681 | } |
11682 | |
11683 | if (D.isInvalidType()) |
11684 | return true; |
11685 | |
11686 | // Check the declarator is simple enough. |
11687 | bool FoundFunction = false; |
11688 | for (const DeclaratorChunk &Chunk : llvm::reverse(C: D.type_objects())) { |
11689 | if (Chunk.Kind == DeclaratorChunk::Paren) |
11690 | continue; |
11691 | if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) { |
11692 | Diag(D.getDeclSpec().getBeginLoc(), |
11693 | diag::err_deduction_guide_with_complex_decl) |
11694 | << D.getSourceRange(); |
11695 | break; |
11696 | } |
11697 | if (!Chunk.Fun.hasTrailingReturnType()) |
11698 | return Diag(D.getName().getBeginLoc(), |
11699 | diag::err_deduction_guide_no_trailing_return_type); |
11700 | |
11701 | // Check that the return type is written as a specialization of |
11702 | // the template specified as the deduction-guide's name. |
11703 | // The template name may not be qualified. [temp.deduct.guide] |
11704 | ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType(); |
11705 | TypeSourceInfo *TSI = nullptr; |
11706 | QualType RetTy = GetTypeFromParser(Ty: TrailingReturnType, TInfo: &TSI); |
11707 | assert(TSI && "deduction guide has valid type but invalid return type?"); |
11708 | bool AcceptableReturnType = false; |
11709 | bool MightInstantiateToSpecialization = false; |
11710 | if (auto RetTST = |
11711 | TSI->getTypeLoc().getAsAdjusted<TemplateSpecializationTypeLoc>()) { |
11712 | TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName(); |
11713 | bool TemplateMatches = Context.hasSameTemplateName( |
11714 | X: SpecifiedName, Y: GuidedTemplate, /*IgnoreDeduced=*/true); |
11715 | |
11716 | const QualifiedTemplateName *Qualifiers = |
11717 | SpecifiedName.getAsQualifiedTemplateName(); |
11718 | assert(Qualifiers && "expected QualifiedTemplate"); |
11719 | bool SimplyWritten = !Qualifiers->hasTemplateKeyword() && |
11720 | Qualifiers->getQualifier() == nullptr; |
11721 | if (SimplyWritten && TemplateMatches) |
11722 | AcceptableReturnType = true; |
11723 | else { |
11724 | // This could still instantiate to the right type, unless we know it |
11725 | // names the wrong class template. |
11726 | auto *TD = SpecifiedName.getAsTemplateDecl(); |
11727 | MightInstantiateToSpecialization = |
11728 | !(TD && isa<ClassTemplateDecl>(TD) && !TemplateMatches); |
11729 | } |
11730 | } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) { |
11731 | MightInstantiateToSpecialization = true; |
11732 | } |
11733 | |
11734 | if (!AcceptableReturnType) |
11735 | return Diag(TSI->getTypeLoc().getBeginLoc(), |
11736 | diag::err_deduction_guide_bad_trailing_return_type) |
11737 | << GuidedTemplate << TSI->getType() |
11738 | << MightInstantiateToSpecialization |
11739 | << TSI->getTypeLoc().getSourceRange(); |
11740 | |
11741 | // Keep going to check that we don't have any inner declarator pieces (we |
11742 | // could still have a function returning a pointer to a function). |
11743 | FoundFunction = true; |
11744 | } |
11745 | |
11746 | if (D.isFunctionDefinition()) |
11747 | // we can still create a valid deduction guide here. |
11748 | Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function); |
11749 | return false; |
11750 | } |
11751 | |
11752 | //===----------------------------------------------------------------------===// |
11753 | // Namespace Handling |
11754 | //===----------------------------------------------------------------------===// |
11755 | |
11756 | /// Diagnose a mismatch in 'inline' qualifiers when a namespace is |
11757 | /// reopened. |
11758 | static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc, |
11759 | SourceLocation Loc, |
11760 | IdentifierInfo *II, bool *IsInline, |
11761 | NamespaceDecl *PrevNS) { |
11762 | assert(*IsInline != PrevNS->isInline()); |
11763 | |
11764 | // 'inline' must appear on the original definition, but not necessarily |
11765 | // on all extension definitions, so the note should point to the first |
11766 | // definition to avoid confusion. |
11767 | PrevNS = PrevNS->getFirstDecl(); |
11768 | |
11769 | if (PrevNS->isInline()) |
11770 | // The user probably just forgot the 'inline', so suggest that it |
11771 | // be added back. |
11772 | S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline) |
11773 | << FixItHint::CreateInsertion(KeywordLoc, "inline "); |
11774 | else |
11775 | S.Diag(Loc, diag::err_inline_namespace_mismatch); |
11776 | |
11777 | S.Diag(PrevNS->getLocation(), diag::note_previous_definition); |
11778 | *IsInline = PrevNS->isInline(); |
11779 | } |
11780 | |
11781 | /// ActOnStartNamespaceDef - This is called at the start of a namespace |
11782 | /// definition. |
11783 | Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope, |
11784 | SourceLocation InlineLoc, |
11785 | SourceLocation NamespaceLoc, |
11786 | SourceLocation IdentLoc, IdentifierInfo *II, |
11787 | SourceLocation LBrace, |
11788 | const ParsedAttributesView &AttrList, |
11789 | UsingDirectiveDecl *&UD, bool IsNested) { |
11790 | SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc; |
11791 | // For anonymous namespace, take the location of the left brace. |
11792 | SourceLocation Loc = II ? IdentLoc : LBrace; |
11793 | bool IsInline = InlineLoc.isValid(); |
11794 | bool IsInvalid = false; |
11795 | bool IsStd = false; |
11796 | bool AddToKnown = false; |
11797 | Scope *DeclRegionScope = NamespcScope->getParent(); |
11798 | |
11799 | NamespaceDecl *PrevNS = nullptr; |
11800 | if (II) { |
11801 | // C++ [namespace.std]p7: |
11802 | // A translation unit shall not declare namespace std to be an inline |
11803 | // namespace (9.8.2). |
11804 | // |
11805 | // Precondition: the std namespace is in the file scope and is declared to |
11806 | // be inline |
11807 | auto DiagnoseInlineStdNS = [&]() { |
11808 | assert(IsInline && II->isStr("std") && |
11809 | CurContext->getRedeclContext()->isTranslationUnit() && |
11810 | "Precondition of DiagnoseInlineStdNS not met"); |
11811 | Diag(InlineLoc, diag::err_inline_namespace_std) |
11812 | << SourceRange(InlineLoc, InlineLoc.getLocWithOffset(6)); |
11813 | IsInline = false; |
11814 | }; |
11815 | // C++ [namespace.def]p2: |
11816 | // The identifier in an original-namespace-definition shall not |
11817 | // have been previously defined in the declarative region in |
11818 | // which the original-namespace-definition appears. The |
11819 | // identifier in an original-namespace-definition is the name of |
11820 | // the namespace. Subsequently in that declarative region, it is |
11821 | // treated as an original-namespace-name. |
11822 | // |
11823 | // Since namespace names are unique in their scope, and we don't |
11824 | // look through using directives, just look for any ordinary names |
11825 | // as if by qualified name lookup. |
11826 | LookupResult R(*this, II, IdentLoc, LookupOrdinaryName, |
11827 | RedeclarationKind::ForExternalRedeclaration); |
11828 | LookupQualifiedName(R, LookupCtx: CurContext->getRedeclContext()); |
11829 | NamedDecl *PrevDecl = |
11830 | R.isSingleResult() ? R.getRepresentativeDecl() : nullptr; |
11831 | PrevNS = dyn_cast_or_null<NamespaceDecl>(Val: PrevDecl); |
11832 | |
11833 | if (PrevNS) { |
11834 | // This is an extended namespace definition. |
11835 | if (IsInline && II->isStr(Str: "std") && |
11836 | CurContext->getRedeclContext()->isTranslationUnit()) |
11837 | DiagnoseInlineStdNS(); |
11838 | else if (IsInline != PrevNS->isInline()) |
11839 | DiagnoseNamespaceInlineMismatch(S&: *this, KeywordLoc: NamespaceLoc, Loc, II, |
11840 | IsInline: &IsInline, PrevNS); |
11841 | } else if (PrevDecl) { |
11842 | // This is an invalid name redefinition. |
11843 | Diag(Loc, diag::err_redefinition_different_kind) |
11844 | << II; |
11845 | Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
11846 | IsInvalid = true; |
11847 | // Continue on to push Namespc as current DeclContext and return it. |
11848 | } else if (II->isStr(Str: "std") && |
11849 | CurContext->getRedeclContext()->isTranslationUnit()) { |
11850 | if (IsInline) |
11851 | DiagnoseInlineStdNS(); |
11852 | // This is the first "real" definition of the namespace "std", so update |
11853 | // our cache of the "std" namespace to point at this definition. |
11854 | PrevNS = getStdNamespace(); |
11855 | IsStd = true; |
11856 | AddToKnown = !IsInline; |
11857 | } else { |
11858 | // We've seen this namespace for the first time. |
11859 | AddToKnown = !IsInline; |
11860 | } |
11861 | } else { |
11862 | // Anonymous namespaces. |
11863 | |
11864 | // Determine whether the parent already has an anonymous namespace. |
11865 | DeclContext *Parent = CurContext->getRedeclContext(); |
11866 | if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Val: Parent)) { |
11867 | PrevNS = TU->getAnonymousNamespace(); |
11868 | } else { |
11869 | NamespaceDecl *ND = cast<NamespaceDecl>(Val: Parent); |
11870 | PrevNS = ND->getAnonymousNamespace(); |
11871 | } |
11872 | |
11873 | if (PrevNS && IsInline != PrevNS->isInline()) |
11874 | DiagnoseNamespaceInlineMismatch(S&: *this, KeywordLoc: NamespaceLoc, Loc: NamespaceLoc, II, |
11875 | IsInline: &IsInline, PrevNS); |
11876 | } |
11877 | |
11878 | NamespaceDecl *Namespc = NamespaceDecl::Create( |
11879 | C&: Context, DC: CurContext, Inline: IsInline, StartLoc, IdLoc: Loc, Id: II, PrevDecl: PrevNS, Nested: IsNested); |
11880 | if (IsInvalid) |
11881 | Namespc->setInvalidDecl(); |
11882 | |
11883 | ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList); |
11884 | AddPragmaAttributes(DeclRegionScope, Namespc); |
11885 | ProcessAPINotes(Namespc); |
11886 | |
11887 | // FIXME: Should we be merging attributes? |
11888 | if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>()) |
11889 | PushNamespaceVisibilityAttr(Attr, Loc); |
11890 | |
11891 | if (IsStd) |
11892 | StdNamespace = Namespc; |
11893 | if (AddToKnown) |
11894 | KnownNamespaces[Namespc] = false; |
11895 | |
11896 | if (II) { |
11897 | PushOnScopeChains(Namespc, DeclRegionScope); |
11898 | } else { |
11899 | // Link the anonymous namespace into its parent. |
11900 | DeclContext *Parent = CurContext->getRedeclContext(); |
11901 | if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Val: Parent)) { |
11902 | TU->setAnonymousNamespace(Namespc); |
11903 | } else { |
11904 | cast<NamespaceDecl>(Val: Parent)->setAnonymousNamespace(Namespc); |
11905 | } |
11906 | |
11907 | CurContext->addDecl(Namespc); |
11908 | |
11909 | // C++ [namespace.unnamed]p1. An unnamed-namespace-definition |
11910 | // behaves as if it were replaced by |
11911 | // namespace unique { /* empty body */ } |
11912 | // using namespace unique; |
11913 | // namespace unique { namespace-body } |
11914 | // where all occurrences of 'unique' in a translation unit are |
11915 | // replaced by the same identifier and this identifier differs |
11916 | // from all other identifiers in the entire program. |
11917 | |
11918 | // We just create the namespace with an empty name and then add an |
11919 | // implicit using declaration, just like the standard suggests. |
11920 | // |
11921 | // CodeGen enforces the "universally unique" aspect by giving all |
11922 | // declarations semantically contained within an anonymous |
11923 | // namespace internal linkage. |
11924 | |
11925 | if (!PrevNS) { |
11926 | UD = UsingDirectiveDecl::Create(Context, Parent, |
11927 | /* 'using' */ LBrace, |
11928 | /* 'namespace' */ SourceLocation(), |
11929 | /* qualifier */ NestedNameSpecifierLoc(), |
11930 | /* identifier */ SourceLocation(), |
11931 | Namespc, |
11932 | /* Ancestor */ Parent); |
11933 | UD->setImplicit(); |
11934 | Parent->addDecl(UD); |
11935 | } |
11936 | } |
11937 | |
11938 | ActOnDocumentableDecl(Namespc); |
11939 | |
11940 | // Although we could have an invalid decl (i.e. the namespace name is a |
11941 | // redefinition), push it as current DeclContext and try to continue parsing. |
11942 | // FIXME: We should be able to push Namespc here, so that the each DeclContext |
11943 | // for the namespace has the declarations that showed up in that particular |
11944 | // namespace definition. |
11945 | PushDeclContext(NamespcScope, Namespc); |
11946 | return Namespc; |
11947 | } |
11948 | |
11949 | /// getNamespaceDecl - Returns the namespace a decl represents. If the decl |
11950 | /// is a namespace alias, returns the namespace it points to. |
11951 | static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { |
11952 | if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(Val: D)) |
11953 | return AD->getNamespace(); |
11954 | return dyn_cast_or_null<NamespaceDecl>(Val: D); |
11955 | } |
11956 | |
11957 | void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) { |
11958 | NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Val: Dcl); |
11959 | assert(Namespc && "Invalid parameter, expected NamespaceDecl"); |
11960 | Namespc->setRBraceLoc(RBrace); |
11961 | PopDeclContext(); |
11962 | if (Namespc->hasAttr<VisibilityAttr>()) |
11963 | PopPragmaVisibility(IsNamespaceEnd: true, EndLoc: RBrace); |
11964 | // If this namespace contains an export-declaration, export it now. |
11965 | if (DeferredExportedNamespaces.erase(Ptr: Namespc)) |
11966 | Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); |
11967 | } |
11968 | |
11969 | CXXRecordDecl *Sema::getStdBadAlloc() const { |
11970 | return cast_or_null<CXXRecordDecl>( |
11971 | Val: StdBadAlloc.get(Source: Context.getExternalSource())); |
11972 | } |
11973 | |
11974 | EnumDecl *Sema::getStdAlignValT() const { |
11975 | return cast_or_null<EnumDecl>(Val: StdAlignValT.get(Source: Context.getExternalSource())); |
11976 | } |
11977 | |
11978 | NamespaceDecl *Sema::getStdNamespace() const { |
11979 | return cast_or_null<NamespaceDecl>( |
11980 | Val: StdNamespace.get(Source: Context.getExternalSource())); |
11981 | } |
11982 | |
11983 | namespace { |
11984 | |
11985 | enum UnsupportedSTLSelect { |
11986 | USS_InvalidMember, |
11987 | USS_MissingMember, |
11988 | USS_NonTrivial, |
11989 | USS_Other |
11990 | }; |
11991 | |
11992 | struct InvalidSTLDiagnoser { |
11993 | Sema &S; |
11994 | SourceLocation Loc; |
11995 | QualType TyForDiags; |
11996 | |
11997 | QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "", |
11998 | const VarDecl *VD = nullptr) { |
11999 | { |
12000 | auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported) |
12001 | << TyForDiags << ((int)Sel); |
12002 | if (Sel == USS_InvalidMember || Sel == USS_MissingMember) { |
12003 | assert(!Name.empty()); |
12004 | D << Name; |
12005 | } |
12006 | } |
12007 | if (Sel == USS_InvalidMember) { |
12008 | S.Diag(VD->getLocation(), diag::note_var_declared_here) |
12009 | << VD << VD->getSourceRange(); |
12010 | } |
12011 | return QualType(); |
12012 | } |
12013 | }; |
12014 | } // namespace |
12015 | |
12016 | QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind, |
12017 | SourceLocation Loc, |
12018 | ComparisonCategoryUsage Usage) { |
12019 | assert(getLangOpts().CPlusPlus && |
12020 | "Looking for comparison category type outside of C++."); |
12021 | |
12022 | // Use an elaborated type for diagnostics which has a name containing the |
12023 | // prepended 'std' namespace but not any inline namespace names. |
12024 | auto TyForDiags = [&](ComparisonCategoryInfo *Info) { |
12025 | auto *NNS = |
12026 | NestedNameSpecifier::Create(Context, Prefix: nullptr, NS: getStdNamespace()); |
12027 | return Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::None, NNS, |
12028 | NamedType: Info->getType()); |
12029 | }; |
12030 | |
12031 | // Check if we've already successfully checked the comparison category type |
12032 | // before. If so, skip checking it again. |
12033 | ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind); |
12034 | if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)]) { |
12035 | // The only thing we need to check is that the type has a reachable |
12036 | // definition in the current context. |
12037 | if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) |
12038 | return QualType(); |
12039 | |
12040 | return Info->getType(); |
12041 | } |
12042 | |
12043 | // If lookup failed |
12044 | if (!Info) { |
12045 | std::string NameForDiags = "std::"; |
12046 | NameForDiags += ComparisonCategories::getCategoryString(Kind); |
12047 | Diag(Loc, diag::err_implied_comparison_category_type_not_found) |
12048 | << NameForDiags << (int)Usage; |
12049 | return QualType(); |
12050 | } |
12051 | |
12052 | assert(Info->Kind == Kind); |
12053 | assert(Info->Record); |
12054 | |
12055 | // Update the Record decl in case we encountered a forward declaration on our |
12056 | // first pass. FIXME: This is a bit of a hack. |
12057 | if (Info->Record->hasDefinition()) |
12058 | Info->Record = Info->Record->getDefinition(); |
12059 | |
12060 | if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) |
12061 | return QualType(); |
12062 | |
12063 | InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags(Info)}; |
12064 | |
12065 | if (!Info->Record->isTriviallyCopyable()) |
12066 | return UnsupportedSTLError(USS_NonTrivial); |
12067 | |
12068 | for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) { |
12069 | CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl(); |
12070 | // Tolerate empty base classes. |
12071 | if (Base->isEmpty()) |
12072 | continue; |
12073 | // Reject STL implementations which have at least one non-empty base. |
12074 | return UnsupportedSTLError(); |
12075 | } |
12076 | |
12077 | // Check that the STL has implemented the types using a single integer field. |
12078 | // This expectation allows better codegen for builtin operators. We require: |
12079 | // (1) The class has exactly one field. |
12080 | // (2) The field is an integral or enumeration type. |
12081 | auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end(); |
12082 | if (std::distance(FIt, FEnd) != 1 || |
12083 | !FIt->getType()->isIntegralOrEnumerationType()) { |
12084 | return UnsupportedSTLError(); |
12085 | } |
12086 | |
12087 | // Build each of the require values and store them in Info. |
12088 | for (ComparisonCategoryResult CCR : |
12089 | ComparisonCategories::getPossibleResultsForType(Type: Kind)) { |
12090 | StringRef MemName = ComparisonCategories::getResultString(Kind: CCR); |
12091 | ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(ValueKind: CCR); |
12092 | |
12093 | if (!ValInfo) |
12094 | return UnsupportedSTLError(USS_MissingMember, MemName); |
12095 | |
12096 | VarDecl *VD = ValInfo->VD; |
12097 | assert(VD && "should not be null!"); |
12098 | |
12099 | // Attempt to diagnose reasons why the STL definition of this type |
12100 | // might be foobar, including it failing to be a constant expression. |
12101 | // TODO Handle more ways the lookup or result can be invalid. |
12102 | if (!VD->isStaticDataMember() || |
12103 | !VD->isUsableInConstantExpressions(C: Context)) |
12104 | return UnsupportedSTLError(USS_InvalidMember, MemName, VD); |
12105 | |
12106 | // Attempt to evaluate the var decl as a constant expression and extract |
12107 | // the value of its first field as a ICE. If this fails, the STL |
12108 | // implementation is not supported. |
12109 | if (!ValInfo->hasValidIntValue()) |
12110 | return UnsupportedSTLError(); |
12111 | |
12112 | MarkVariableReferenced(Loc, Var: VD); |
12113 | } |
12114 | |
12115 | // We've successfully built the required types and expressions. Update |
12116 | // the cache and return the newly cached value. |
12117 | FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true; |
12118 | return Info->getType(); |
12119 | } |
12120 | |
12121 | NamespaceDecl *Sema::getOrCreateStdNamespace() { |
12122 | if (!StdNamespace) { |
12123 | // The "std" namespace has not yet been defined, so build one implicitly. |
12124 | StdNamespace = NamespaceDecl::Create( |
12125 | Context, Context.getTranslationUnitDecl(), |
12126 | /*Inline=*/false, SourceLocation(), SourceLocation(), |
12127 | &PP.getIdentifierTable().get(Name: "std"), |
12128 | /*PrevDecl=*/nullptr, /*Nested=*/false); |
12129 | getStdNamespace()->setImplicit(true); |
12130 | // We want the created NamespaceDecl to be available for redeclaration |
12131 | // lookups, but not for regular name lookups. |
12132 | Context.getTranslationUnitDecl()->addDecl(getStdNamespace()); |
12133 | getStdNamespace()->clearIdentifierNamespace(); |
12134 | } |
12135 | |
12136 | return getStdNamespace(); |
12137 | } |
12138 | |
12139 | static bool isStdClassTemplate(Sema &S, QualType SugaredType, QualType *TypeArg, |
12140 | const char *ClassName, |
12141 | ClassTemplateDecl **CachedDecl, |
12142 | const Decl **MalformedDecl) { |
12143 | // We're looking for implicit instantiations of |
12144 | // template <typename U> class std::{ClassName}. |
12145 | |
12146 | if (!S.StdNamespace) // If we haven't seen namespace std yet, this can't be |
12147 | // it. |
12148 | return false; |
12149 | |
12150 | auto ReportMatchingNameAsMalformed = [&](NamedDecl *D) { |
12151 | if (!MalformedDecl) |
12152 | return; |
12153 | if (!D) |
12154 | D = SugaredType->getAsTagDecl(); |
12155 | if (!D || !D->isInStdNamespace()) |
12156 | return; |
12157 | IdentifierInfo *II = D->getDeclName().getAsIdentifierInfo(); |
12158 | if (II && II == &S.PP.getIdentifierTable().get(Name: ClassName)) |
12159 | *MalformedDecl = D; |
12160 | }; |
12161 | |
12162 | ClassTemplateDecl *Template = nullptr; |
12163 | ArrayRef<TemplateArgument> Arguments; |
12164 | { |
12165 | const TemplateSpecializationType *TST = |
12166 | SugaredType->getAsNonAliasTemplateSpecializationType(); |
12167 | if (!TST) |
12168 | if (const auto *ICN = SugaredType->getAs<InjectedClassNameType>()) |
12169 | TST = ICN->getInjectedTST(); |
12170 | if (TST) { |
12171 | Template = dyn_cast_or_null<ClassTemplateDecl>( |
12172 | Val: TST->getTemplateName().getAsTemplateDecl()); |
12173 | Arguments = TST->template_arguments(); |
12174 | } else if (const RecordType *RT = SugaredType->getAs<RecordType>()) { |
12175 | ClassTemplateSpecializationDecl *Specialization = |
12176 | dyn_cast<ClassTemplateSpecializationDecl>(Val: RT->getDecl()); |
12177 | if (!Specialization) { |
12178 | ReportMatchingNameAsMalformed(RT->getDecl()); |
12179 | return false; |
12180 | } |
12181 | Template = Specialization->getSpecializedTemplate(); |
12182 | Arguments = Specialization->getTemplateArgs().asArray(); |
12183 | } |
12184 | } |
12185 | |
12186 | if (!Template) { |
12187 | ReportMatchingNameAsMalformed(SugaredType->getAsTagDecl()); |
12188 | return false; |
12189 | } |
12190 | |
12191 | if (!*CachedDecl) { |
12192 | // Haven't recognized std::{ClassName} yet, maybe this is it. |
12193 | // FIXME: It seems we should just reuse LookupStdClassTemplate but the |
12194 | // semantics of this are slightly different, most notably the existing |
12195 | // "lookup" semantics explicitly diagnose an invalid definition as an |
12196 | // error. |
12197 | CXXRecordDecl *TemplateClass = Template->getTemplatedDecl(); |
12198 | if (TemplateClass->getIdentifier() != |
12199 | &S.PP.getIdentifierTable().get(Name: ClassName) || |
12200 | !S.getStdNamespace()->InEnclosingNamespaceSetOf( |
12201 | NS: TemplateClass->getNonTransparentDeclContext())) |
12202 | return false; |
12203 | // This is a template called std::{ClassName}, but is it the right |
12204 | // template? |
12205 | TemplateParameterList *Params = Template->getTemplateParameters(); |
12206 | if (Params->getMinRequiredArguments() != 1 || |
12207 | !isa<TemplateTypeParmDecl>(Val: Params->getParam(Idx: 0)) || |
12208 | Params->getParam(Idx: 0)->isTemplateParameterPack()) { |
12209 | if (MalformedDecl) |
12210 | *MalformedDecl = TemplateClass; |
12211 | return false; |
12212 | } |
12213 | |
12214 | // It's the right template. |
12215 | *CachedDecl = Template; |
12216 | } |
12217 | |
12218 | if (Template->getCanonicalDecl() != (*CachedDecl)->getCanonicalDecl()) |
12219 | return false; |
12220 | |
12221 | // This is an instance of std::{ClassName}. Find the argument type. |
12222 | if (TypeArg) { |
12223 | QualType ArgType = Arguments[0].getAsType(); |
12224 | // FIXME: Since TST only has as-written arguments, we have to perform the |
12225 | // only kind of conversion applicable to type arguments; in Objective-C ARC: |
12226 | // - If an explicitly-specified template argument type is a lifetime type |
12227 | // with no lifetime qualifier, the __strong lifetime qualifier is |
12228 | // inferred. |
12229 | if (S.getLangOpts().ObjCAutoRefCount && ArgType->isObjCLifetimeType() && |
12230 | !ArgType.getObjCLifetime()) { |
12231 | Qualifiers Qs; |
12232 | Qs.setObjCLifetime(Qualifiers::OCL_Strong); |
12233 | ArgType = S.Context.getQualifiedType(T: ArgType, Qs); |
12234 | } |
12235 | *TypeArg = ArgType; |
12236 | } |
12237 | |
12238 | return true; |
12239 | } |
12240 | |
12241 | bool Sema::isStdInitializerList(QualType Ty, QualType *Element) { |
12242 | assert(getLangOpts().CPlusPlus && |
12243 | "Looking for std::initializer_list outside of C++."); |
12244 | |
12245 | // We're looking for implicit instantiations of |
12246 | // template <typename E> class std::initializer_list. |
12247 | |
12248 | return isStdClassTemplate(S&: *this, SugaredType: Ty, TypeArg: Element, ClassName: "initializer_list", |
12249 | CachedDecl: &StdInitializerList, /*MalformedDecl=*/nullptr); |
12250 | } |
12251 | |
12252 | bool Sema::isStdTypeIdentity(QualType Ty, QualType *Element, |
12253 | const Decl **MalformedDecl) { |
12254 | assert(getLangOpts().CPlusPlus && |
12255 | "Looking for std::type_identity outside of C++."); |
12256 | |
12257 | // We're looking for implicit instantiations of |
12258 | // template <typename T> struct std::type_identity. |
12259 | |
12260 | return isStdClassTemplate(S&: *this, SugaredType: Ty, TypeArg: Element, ClassName: "type_identity", |
12261 | CachedDecl: &StdTypeIdentity, MalformedDecl); |
12262 | } |
12263 | |
12264 | static ClassTemplateDecl *LookupStdClassTemplate(Sema &S, SourceLocation Loc, |
12265 | const char *ClassName, |
12266 | bool *WasMalformed) { |
12267 | if (!S.StdNamespace) |
12268 | return nullptr; |
12269 | |
12270 | LookupResult Result(S, &S.PP.getIdentifierTable().get(Name: ClassName), Loc, |
12271 | Sema::LookupOrdinaryName); |
12272 | if (!S.LookupQualifiedName(Result, S.getStdNamespace())) |
12273 | return nullptr; |
12274 | |
12275 | ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>(); |
12276 | if (!Template) { |
12277 | Result.suppressDiagnostics(); |
12278 | // We found something weird. Complain about the first thing we found. |
12279 | NamedDecl *Found = *Result.begin(); |
12280 | S.Diag(Found->getLocation(), diag::err_malformed_std_class_template) |
12281 | << ClassName; |
12282 | if (WasMalformed) |
12283 | *WasMalformed = true; |
12284 | return nullptr; |
12285 | } |
12286 | |
12287 | // We found some template with the correct name. Now verify that it's |
12288 | // correct. |
12289 | TemplateParameterList *Params = Template->getTemplateParameters(); |
12290 | if (Params->getMinRequiredArguments() != 1 || |
12291 | !isa<TemplateTypeParmDecl>(Val: Params->getParam(Idx: 0))) { |
12292 | S.Diag(Template->getLocation(), diag::err_malformed_std_class_template) |
12293 | << ClassName; |
12294 | if (WasMalformed) |
12295 | *WasMalformed = true; |
12296 | return nullptr; |
12297 | } |
12298 | |
12299 | return Template; |
12300 | } |
12301 | |
12302 | static QualType BuildStdClassTemplate(Sema &S, ClassTemplateDecl *CTD, |
12303 | QualType TypeParam, SourceLocation Loc) { |
12304 | assert(S.getStdNamespace()); |
12305 | TemplateArgumentListInfo Args(Loc, Loc); |
12306 | auto TSI = S.Context.getTrivialTypeSourceInfo(T: TypeParam, Loc); |
12307 | Args.addArgument(Loc: TemplateArgumentLoc(TemplateArgument(TypeParam), TSI)); |
12308 | |
12309 | QualType T = S.CheckTemplateIdType(Template: TemplateName(CTD), TemplateLoc: Loc, TemplateArgs&: Args); |
12310 | if (T.isNull()) |
12311 | return QualType(); |
12312 | |
12313 | return S.Context.getElaboratedType( |
12314 | Keyword: ElaboratedTypeKeyword::None, |
12315 | NNS: NestedNameSpecifier::Create(Context: S.Context, Prefix: nullptr, NS: S.getStdNamespace()), NamedType: T); |
12316 | } |
12317 | |
12318 | QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) { |
12319 | if (!StdInitializerList) { |
12320 | bool WasMalformed = false; |
12321 | StdInitializerList = |
12322 | LookupStdClassTemplate(S&: *this, Loc, ClassName: "initializer_list", WasMalformed: &WasMalformed); |
12323 | if (!StdInitializerList) { |
12324 | if (!WasMalformed) |
12325 | Diag(Loc, diag::err_implied_std_initializer_list_not_found); |
12326 | return QualType(); |
12327 | } |
12328 | } |
12329 | return BuildStdClassTemplate(S&: *this, CTD: StdInitializerList, TypeParam: Element, Loc); |
12330 | } |
12331 | |
12332 | QualType Sema::tryBuildStdTypeIdentity(QualType Type, SourceLocation Loc) { |
12333 | if (!StdTypeIdentity) { |
12334 | StdTypeIdentity = LookupStdClassTemplate(S&: *this, Loc, ClassName: "type_identity", |
12335 | /*WasMalformed=*/nullptr); |
12336 | if (!StdTypeIdentity) |
12337 | return QualType(); |
12338 | } |
12339 | return BuildStdClassTemplate(S&: *this, CTD: StdTypeIdentity, TypeParam: Type, Loc); |
12340 | } |
12341 | |
12342 | bool Sema::isInitListConstructor(const FunctionDecl *Ctor) { |
12343 | // C++ [dcl.init.list]p2: |
12344 | // A constructor is an initializer-list constructor if its first parameter |
12345 | // is of type std::initializer_list<E> or reference to possibly cv-qualified |
12346 | // std::initializer_list<E> for some type E, and either there are no other |
12347 | // parameters or else all other parameters have default arguments. |
12348 | if (!Ctor->hasOneParamOrDefaultArgs()) |
12349 | return false; |
12350 | |
12351 | QualType ArgType = Ctor->getParamDecl(i: 0)->getType(); |
12352 | if (const ReferenceType *RT = ArgType->getAs<ReferenceType>()) |
12353 | ArgType = RT->getPointeeType().getUnqualifiedType(); |
12354 | |
12355 | return isStdInitializerList(Ty: ArgType, Element: nullptr); |
12356 | } |
12357 | |
12358 | /// Determine whether a using statement is in a context where it will be |
12359 | /// apply in all contexts. |
12360 | static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) { |
12361 | switch (CurContext->getDeclKind()) { |
12362 | case Decl::TranslationUnit: |
12363 | return true; |
12364 | case Decl::LinkageSpec: |
12365 | return IsUsingDirectiveInToplevelContext(CurContext: CurContext->getParent()); |
12366 | default: |
12367 | return false; |
12368 | } |
12369 | } |
12370 | |
12371 | namespace { |
12372 | |
12373 | // Callback to only accept typo corrections that are namespaces. |
12374 | class NamespaceValidatorCCC final : public CorrectionCandidateCallback { |
12375 | public: |
12376 | bool ValidateCandidate(const TypoCorrection &candidate) override { |
12377 | if (NamedDecl *ND = candidate.getCorrectionDecl()) |
12378 | return isa<NamespaceDecl>(Val: ND) || isa<NamespaceAliasDecl>(Val: ND); |
12379 | return false; |
12380 | } |
12381 | |
12382 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
12383 | return std::make_unique<NamespaceValidatorCCC>(args&: *this); |
12384 | } |
12385 | }; |
12386 | |
12387 | } |
12388 | |
12389 | static void DiagnoseInvisibleNamespace(const TypoCorrection &Corrected, |
12390 | Sema &S) { |
12391 | auto *ND = cast<NamespaceDecl>(Val: Corrected.getFoundDecl()); |
12392 | Module *M = ND->getOwningModule(); |
12393 | assert(M && "hidden namespace definition not in a module?"); |
12394 | |
12395 | if (M->isExplicitGlobalModule()) |
12396 | S.Diag(Corrected.getCorrectionRange().getBegin(), |
12397 | diag::err_module_unimported_use_header) |
12398 | << (int)Sema::MissingImportKind::Declaration << Corrected.getFoundDecl() |
12399 | << /*Header Name*/ false; |
12400 | else |
12401 | S.Diag(Corrected.getCorrectionRange().getBegin(), |
12402 | diag::err_module_unimported_use) |
12403 | << (int)Sema::MissingImportKind::Declaration << Corrected.getFoundDecl() |
12404 | << M->getTopLevelModuleName(); |
12405 | } |
12406 | |
12407 | static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc, |
12408 | CXXScopeSpec &SS, |
12409 | SourceLocation IdentLoc, |
12410 | IdentifierInfo *Ident) { |
12411 | R.clear(); |
12412 | NamespaceValidatorCCC CCC{}; |
12413 | if (TypoCorrection Corrected = |
12414 | S.CorrectTypo(Typo: R.getLookupNameInfo(), LookupKind: R.getLookupKind(), S: Sc, SS: &SS, CCC, |
12415 | Mode: CorrectTypoKind::ErrorRecovery)) { |
12416 | // Generally we find it is confusing more than helpful to diagnose the |
12417 | // invisible namespace. |
12418 | // See https://github.com/llvm/llvm-project/issues/73893. |
12419 | // |
12420 | // However, we should diagnose when the users are trying to using an |
12421 | // invisible namespace. So we handle the case specially here. |
12422 | if (isa_and_nonnull<NamespaceDecl>(Val: Corrected.getFoundDecl()) && |
12423 | Corrected.requiresImport()) { |
12424 | DiagnoseInvisibleNamespace(Corrected, S); |
12425 | } else if (DeclContext *DC = S.computeDeclContext(SS, EnteringContext: false)) { |
12426 | std::string CorrectedStr(Corrected.getAsString(LO: S.getLangOpts())); |
12427 | bool DroppedSpecifier = |
12428 | Corrected.WillReplaceSpecifier() && Ident->getName() == CorrectedStr; |
12429 | S.diagnoseTypo(Corrected, |
12430 | S.PDiag(diag::err_using_directive_member_suggest) |
12431 | << Ident << DC << DroppedSpecifier << SS.getRange(), |
12432 | S.PDiag(diag::note_namespace_defined_here)); |
12433 | } else { |
12434 | S.diagnoseTypo(Corrected, |
12435 | S.PDiag(diag::err_using_directive_suggest) << Ident, |
12436 | S.PDiag(diag::note_namespace_defined_here)); |
12437 | } |
12438 | R.addDecl(D: Corrected.getFoundDecl()); |
12439 | return true; |
12440 | } |
12441 | return false; |
12442 | } |
12443 | |
12444 | Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc, |
12445 | SourceLocation NamespcLoc, CXXScopeSpec &SS, |
12446 | SourceLocation IdentLoc, |
12447 | IdentifierInfo *NamespcName, |
12448 | const ParsedAttributesView &AttrList) { |
12449 | assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); |
12450 | assert(NamespcName && "Invalid NamespcName."); |
12451 | assert(IdentLoc.isValid() && "Invalid NamespceName location."); |
12452 | |
12453 | // Get the innermost enclosing declaration scope. |
12454 | S = S->getDeclParent(); |
12455 | |
12456 | UsingDirectiveDecl *UDir = nullptr; |
12457 | NestedNameSpecifier *Qualifier = nullptr; |
12458 | if (SS.isSet()) |
12459 | Qualifier = SS.getScopeRep(); |
12460 | |
12461 | // Lookup namespace name. |
12462 | LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName); |
12463 | LookupParsedName(R, S, SS: &SS, /*ObjectType=*/QualType()); |
12464 | if (R.isAmbiguous()) |
12465 | return nullptr; |
12466 | |
12467 | if (R.empty()) { |
12468 | R.clear(); |
12469 | // Allow "using namespace std;" or "using namespace ::std;" even if |
12470 | // "std" hasn't been defined yet, for GCC compatibility. |
12471 | if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) && |
12472 | NamespcName->isStr(Str: "std")) { |
12473 | Diag(IdentLoc, diag::ext_using_undefined_std); |
12474 | R.addDecl(getOrCreateStdNamespace()); |
12475 | R.resolveKind(); |
12476 | } |
12477 | // Otherwise, attempt typo correction. |
12478 | else TryNamespaceTypoCorrection(S&: *this, R, Sc: S, SS, IdentLoc, Ident: NamespcName); |
12479 | } |
12480 | |
12481 | if (!R.empty()) { |
12482 | NamedDecl *Named = R.getRepresentativeDecl(); |
12483 | NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>(); |
12484 | assert(NS && "expected namespace decl"); |
12485 | |
12486 | // The use of a nested name specifier may trigger deprecation warnings. |
12487 | DiagnoseUseOfDecl(D: Named, Locs: IdentLoc); |
12488 | |
12489 | // C++ [namespace.udir]p1: |
12490 | // A using-directive specifies that the names in the nominated |
12491 | // namespace can be used in the scope in which the |
12492 | // using-directive appears after the using-directive. During |
12493 | // unqualified name lookup (3.4.1), the names appear as if they |
12494 | // were declared in the nearest enclosing namespace which |
12495 | // contains both the using-directive and the nominated |
12496 | // namespace. [Note: in this context, "contains" means "contains |
12497 | // directly or indirectly". ] |
12498 | |
12499 | // Find enclosing context containing both using-directive and |
12500 | // nominated namespace. |
12501 | DeclContext *CommonAncestor = NS; |
12502 | while (CommonAncestor && !CommonAncestor->Encloses(DC: CurContext)) |
12503 | CommonAncestor = CommonAncestor->getParent(); |
12504 | |
12505 | UDir = UsingDirectiveDecl::Create(C&: Context, DC: CurContext, UsingLoc, NamespaceLoc: NamespcLoc, |
12506 | QualifierLoc: SS.getWithLocInContext(Context), |
12507 | IdentLoc, Nominated: Named, CommonAncestor); |
12508 | |
12509 | if (IsUsingDirectiveInToplevelContext(CurContext) && |
12510 | !SourceMgr.isInMainFile(Loc: SourceMgr.getExpansionLoc(Loc: IdentLoc))) { |
12511 | Diag(IdentLoc, diag::warn_using_directive_in_header); |
12512 | } |
12513 | |
12514 | PushUsingDirective(S, UDir); |
12515 | } else { |
12516 | Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); |
12517 | } |
12518 | |
12519 | if (UDir) { |
12520 | ProcessDeclAttributeList(S, UDir, AttrList); |
12521 | ProcessAPINotes(UDir); |
12522 | } |
12523 | |
12524 | return UDir; |
12525 | } |
12526 | |
12527 | void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { |
12528 | // If the scope has an associated entity and the using directive is at |
12529 | // namespace or translation unit scope, add the UsingDirectiveDecl into |
12530 | // its lookup structure so qualified name lookup can find it. |
12531 | DeclContext *Ctx = S->getEntity(); |
12532 | if (Ctx && !Ctx->isFunctionOrMethod()) |
12533 | Ctx->addDecl(UDir); |
12534 | else |
12535 | // Otherwise, it is at block scope. The using-directives will affect lookup |
12536 | // only to the end of the scope. |
12537 | S->PushUsingDirective(UDir); |
12538 | } |
12539 | |
12540 | Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS, |
12541 | SourceLocation UsingLoc, |
12542 | SourceLocation TypenameLoc, CXXScopeSpec &SS, |
12543 | UnqualifiedId &Name, |
12544 | SourceLocation EllipsisLoc, |
12545 | const ParsedAttributesView &AttrList) { |
12546 | assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); |
12547 | |
12548 | if (SS.isEmpty()) { |
12549 | Diag(Name.getBeginLoc(), diag::err_using_requires_qualname); |
12550 | return nullptr; |
12551 | } |
12552 | |
12553 | switch (Name.getKind()) { |
12554 | case UnqualifiedIdKind::IK_ImplicitSelfParam: |
12555 | case UnqualifiedIdKind::IK_Identifier: |
12556 | case UnqualifiedIdKind::IK_OperatorFunctionId: |
12557 | case UnqualifiedIdKind::IK_LiteralOperatorId: |
12558 | case UnqualifiedIdKind::IK_ConversionFunctionId: |
12559 | break; |
12560 | |
12561 | case UnqualifiedIdKind::IK_ConstructorName: |
12562 | case UnqualifiedIdKind::IK_ConstructorTemplateId: |
12563 | // C++11 inheriting constructors. |
12564 | Diag(Name.getBeginLoc(), |
12565 | getLangOpts().CPlusPlus11 |
12566 | ? diag::warn_cxx98_compat_using_decl_constructor |
12567 | : diag::err_using_decl_constructor) |
12568 | << SS.getRange(); |
12569 | |
12570 | if (getLangOpts().CPlusPlus11) break; |
12571 | |
12572 | return nullptr; |
12573 | |
12574 | case UnqualifiedIdKind::IK_DestructorName: |
12575 | Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange(); |
12576 | return nullptr; |
12577 | |
12578 | case UnqualifiedIdKind::IK_TemplateId: |
12579 | Diag(Name.getBeginLoc(), diag::err_using_decl_template_id) |
12580 | << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc); |
12581 | return nullptr; |
12582 | |
12583 | case UnqualifiedIdKind::IK_DeductionGuideName: |
12584 | llvm_unreachable("cannot parse qualified deduction guide name"); |
12585 | } |
12586 | |
12587 | DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); |
12588 | DeclarationName TargetName = TargetNameInfo.getName(); |
12589 | if (!TargetName) |
12590 | return nullptr; |
12591 | |
12592 | // Warn about access declarations. |
12593 | if (UsingLoc.isInvalid()) { |
12594 | Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11 |
12595 | ? diag::err_access_decl |
12596 | : diag::warn_access_decl_deprecated) |
12597 | << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using "); |
12598 | } |
12599 | |
12600 | if (EllipsisLoc.isInvalid()) { |
12601 | if (DiagnoseUnexpandedParameterPack(SS, UPPC: UPPC_UsingDeclaration) || |
12602 | DiagnoseUnexpandedParameterPack(NameInfo: TargetNameInfo, UPPC: UPPC_UsingDeclaration)) |
12603 | return nullptr; |
12604 | } else { |
12605 | if (!SS.getScopeRep()->containsUnexpandedParameterPack() && |
12606 | !TargetNameInfo.containsUnexpandedParameterPack()) { |
12607 | Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) |
12608 | << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc()); |
12609 | EllipsisLoc = SourceLocation(); |
12610 | } |
12611 | } |
12612 | |
12613 | NamedDecl *UD = |
12614 | BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc, |
12615 | SS, TargetNameInfo, EllipsisLoc, AttrList, |
12616 | /*IsInstantiation*/ false, |
12617 | AttrList.hasAttribute(ParsedAttr::AT_UsingIfExists)); |
12618 | if (UD) |
12619 | PushOnScopeChains(D: UD, S, /*AddToContext*/ false); |
12620 | |
12621 | return UD; |
12622 | } |
12623 | |
12624 | Decl *Sema::ActOnUsingEnumDeclaration(Scope *S, AccessSpecifier AS, |
12625 | SourceLocation UsingLoc, |
12626 | SourceLocation EnumLoc, SourceRange TyLoc, |
12627 | const IdentifierInfo &II, ParsedType Ty, |
12628 | CXXScopeSpec *SS) { |
12629 | assert(SS && !SS->isInvalid() && "ScopeSpec is invalid"); |
12630 | TypeSourceInfo *TSI = nullptr; |
12631 | SourceLocation IdentLoc = TyLoc.getBegin(); |
12632 | QualType EnumTy = GetTypeFromParser(Ty, TInfo: &TSI); |
12633 | if (EnumTy.isNull()) { |
12634 | Diag(IdentLoc, isDependentScopeSpecifier(*SS) |
12635 | ? diag::err_using_enum_is_dependent |
12636 | : diag::err_unknown_typename) |
12637 | << II.getName() << SourceRange(SS->getBeginLoc(), TyLoc.getEnd()); |
12638 | return nullptr; |
12639 | } |
12640 | |
12641 | if (EnumTy->isDependentType()) { |
12642 | Diag(IdentLoc, diag::err_using_enum_is_dependent); |
12643 | return nullptr; |
12644 | } |
12645 | |
12646 | auto *Enum = dyn_cast_if_present<EnumDecl>(Val: EnumTy->getAsTagDecl()); |
12647 | if (!Enum) { |
12648 | Diag(IdentLoc, diag::err_using_enum_not_enum) << EnumTy; |
12649 | return nullptr; |
12650 | } |
12651 | |
12652 | if (auto *Def = Enum->getDefinition()) |
12653 | Enum = Def; |
12654 | |
12655 | if (TSI == nullptr) |
12656 | TSI = Context.getTrivialTypeSourceInfo(T: EnumTy, Loc: IdentLoc); |
12657 | |
12658 | auto *UD = |
12659 | BuildUsingEnumDeclaration(S, AS, UsingLoc, EnumLoc, NameLoc: IdentLoc, EnumType: TSI, ED: Enum); |
12660 | |
12661 | if (UD) |
12662 | PushOnScopeChains(D: UD, S, /*AddToContext*/ false); |
12663 | |
12664 | return UD; |
12665 | } |
12666 | |
12667 | /// Determine whether a using declaration considers the given |
12668 | /// declarations as "equivalent", e.g., if they are redeclarations of |
12669 | /// the same entity or are both typedefs of the same type. |
12670 | static bool |
12671 | IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) { |
12672 | if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) |
12673 | return true; |
12674 | |
12675 | if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(Val: D1)) |
12676 | if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(Val: D2)) |
12677 | return Context.hasSameType(T1: TD1->getUnderlyingType(), |
12678 | T2: TD2->getUnderlyingType()); |
12679 | |
12680 | // Two using_if_exists using-declarations are equivalent if both are |
12681 | // unresolved. |
12682 | if (isa<UnresolvedUsingIfExistsDecl>(Val: D1) && |
12683 | isa<UnresolvedUsingIfExistsDecl>(Val: D2)) |
12684 | return true; |
12685 | |
12686 | return false; |
12687 | } |
12688 | |
12689 | bool Sema::CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Orig, |
12690 | const LookupResult &Previous, |
12691 | UsingShadowDecl *&PrevShadow) { |
12692 | // Diagnose finding a decl which is not from a base class of the |
12693 | // current class. We do this now because there are cases where this |
12694 | // function will silently decide not to build a shadow decl, which |
12695 | // will pre-empt further diagnostics. |
12696 | // |
12697 | // We don't need to do this in C++11 because we do the check once on |
12698 | // the qualifier. |
12699 | // |
12700 | // FIXME: diagnose the following if we care enough: |
12701 | // struct A { int foo; }; |
12702 | // struct B : A { using A::foo; }; |
12703 | // template <class T> struct C : A {}; |
12704 | // template <class T> struct D : C<T> { using B::foo; } // <--- |
12705 | // This is invalid (during instantiation) in C++03 because B::foo |
12706 | // resolves to the using decl in B, which is not a base class of D<T>. |
12707 | // We can't diagnose it immediately because C<T> is an unknown |
12708 | // specialization. The UsingShadowDecl in D<T> then points directly |
12709 | // to A::foo, which will look well-formed when we instantiate. |
12710 | // The right solution is to not collapse the shadow-decl chain. |
12711 | if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) |
12712 | if (auto *Using = dyn_cast<UsingDecl>(Val: BUD)) { |
12713 | DeclContext *OrigDC = Orig->getDeclContext(); |
12714 | |
12715 | // Handle enums and anonymous structs. |
12716 | if (isa<EnumDecl>(Val: OrigDC)) |
12717 | OrigDC = OrigDC->getParent(); |
12718 | CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(Val: OrigDC); |
12719 | while (OrigRec->isAnonymousStructOrUnion()) |
12720 | OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext()); |
12721 | |
12722 | if (cast<CXXRecordDecl>(Val: CurContext)->isProvablyNotDerivedFrom(Base: OrigRec)) { |
12723 | if (OrigDC == CurContext) { |
12724 | Diag(Using->getLocation(), |
12725 | diag::err_using_decl_nested_name_specifier_is_current_class) |
12726 | << Using->getQualifierLoc().getSourceRange(); |
12727 | Diag(Orig->getLocation(), diag::note_using_decl_target); |
12728 | Using->setInvalidDecl(); |
12729 | return true; |
12730 | } |
12731 | |
12732 | Diag(Using->getQualifierLoc().getBeginLoc(), |
12733 | diag::err_using_decl_nested_name_specifier_is_not_base_class) |
12734 | << Using->getQualifier() << cast<CXXRecordDecl>(CurContext) |
12735 | << Using->getQualifierLoc().getSourceRange(); |
12736 | Diag(Orig->getLocation(), diag::note_using_decl_target); |
12737 | Using->setInvalidDecl(); |
12738 | return true; |
12739 | } |
12740 | } |
12741 | |
12742 | if (Previous.empty()) return false; |
12743 | |
12744 | NamedDecl *Target = Orig; |
12745 | if (isa<UsingShadowDecl>(Val: Target)) |
12746 | Target = cast<UsingShadowDecl>(Val: Target)->getTargetDecl(); |
12747 | |
12748 | // If the target happens to be one of the previous declarations, we |
12749 | // don't have a conflict. |
12750 | // |
12751 | // FIXME: but we might be increasing its access, in which case we |
12752 | // should redeclare it. |
12753 | NamedDecl *NonTag = nullptr, *Tag = nullptr; |
12754 | bool FoundEquivalentDecl = false; |
12755 | for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); |
12756 | I != E; ++I) { |
12757 | NamedDecl *D = (*I)->getUnderlyingDecl(); |
12758 | // We can have UsingDecls in our Previous results because we use the same |
12759 | // LookupResult for checking whether the UsingDecl itself is a valid |
12760 | // redeclaration. |
12761 | if (isa<UsingDecl>(Val: D) || isa<UsingPackDecl>(Val: D) || isa<UsingEnumDecl>(Val: D)) |
12762 | continue; |
12763 | |
12764 | if (auto *RD = dyn_cast<CXXRecordDecl>(Val: D)) { |
12765 | // C++ [class.mem]p19: |
12766 | // If T is the name of a class, then [every named member other than |
12767 | // a non-static data member] shall have a name different from T |
12768 | if (RD->isInjectedClassName() && !isa<FieldDecl>(Val: Target) && |
12769 | !isa<IndirectFieldDecl>(Val: Target) && |
12770 | !isa<UnresolvedUsingValueDecl>(Val: Target) && |
12771 | DiagnoseClassNameShadow( |
12772 | DC: CurContext, |
12773 | Info: DeclarationNameInfo(BUD->getDeclName(), BUD->getLocation()))) |
12774 | return true; |
12775 | } |
12776 | |
12777 | if (IsEquivalentForUsingDecl(Context, D1: D, D2: Target)) { |
12778 | if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(Val: *I)) |
12779 | PrevShadow = Shadow; |
12780 | FoundEquivalentDecl = true; |
12781 | } else if (isEquivalentInternalLinkageDeclaration(A: D, B: Target)) { |
12782 | // We don't conflict with an existing using shadow decl of an equivalent |
12783 | // declaration, but we're not a redeclaration of it. |
12784 | FoundEquivalentDecl = true; |
12785 | } |
12786 | |
12787 | if (isVisible(D)) |
12788 | (isa<TagDecl>(Val: D) ? Tag : NonTag) = D; |
12789 | } |
12790 | |
12791 | if (FoundEquivalentDecl) |
12792 | return false; |
12793 | |
12794 | // Always emit a diagnostic for a mismatch between an unresolved |
12795 | // using_if_exists and a resolved using declaration in either direction. |
12796 | if (isa<UnresolvedUsingIfExistsDecl>(Val: Target) != |
12797 | (isa_and_nonnull<UnresolvedUsingIfExistsDecl>(Val: NonTag))) { |
12798 | if (!NonTag && !Tag) |
12799 | return false; |
12800 | Diag(BUD->getLocation(), diag::err_using_decl_conflict); |
12801 | Diag(Target->getLocation(), diag::note_using_decl_target); |
12802 | Diag((NonTag ? NonTag : Tag)->getLocation(), |
12803 | diag::note_using_decl_conflict); |
12804 | BUD->setInvalidDecl(); |
12805 | return true; |
12806 | } |
12807 | |
12808 | if (FunctionDecl *FD = Target->getAsFunction()) { |
12809 | NamedDecl *OldDecl = nullptr; |
12810 | switch (CheckOverload(S: nullptr, New: FD, OldDecls: Previous, OldDecl, |
12811 | /*IsForUsingDecl*/ UseMemberUsingDeclRules: true)) { |
12812 | case OverloadKind::Overload: |
12813 | return false; |
12814 | |
12815 | case OverloadKind::NonFunction: |
12816 | Diag(BUD->getLocation(), diag::err_using_decl_conflict); |
12817 | break; |
12818 | |
12819 | // We found a decl with the exact signature. |
12820 | case OverloadKind::Match: |
12821 | // If we're in a record, we want to hide the target, so we |
12822 | // return true (without a diagnostic) to tell the caller not to |
12823 | // build a shadow decl. |
12824 | if (CurContext->isRecord()) |
12825 | return true; |
12826 | |
12827 | // If we're not in a record, this is an error. |
12828 | Diag(BUD->getLocation(), diag::err_using_decl_conflict); |
12829 | break; |
12830 | } |
12831 | |
12832 | Diag(Target->getLocation(), diag::note_using_decl_target); |
12833 | Diag(OldDecl->getLocation(), diag::note_using_decl_conflict); |
12834 | BUD->setInvalidDecl(); |
12835 | return true; |
12836 | } |
12837 | |
12838 | // Target is not a function. |
12839 | |
12840 | if (isa<TagDecl>(Val: Target)) { |
12841 | // No conflict between a tag and a non-tag. |
12842 | if (!Tag) return false; |
12843 | |
12844 | Diag(BUD->getLocation(), diag::err_using_decl_conflict); |
12845 | Diag(Target->getLocation(), diag::note_using_decl_target); |
12846 | Diag(Tag->getLocation(), diag::note_using_decl_conflict); |
12847 | BUD->setInvalidDecl(); |
12848 | return true; |
12849 | } |
12850 | |
12851 | // No conflict between a tag and a non-tag. |
12852 | if (!NonTag) return false; |
12853 | |
12854 | Diag(BUD->getLocation(), diag::err_using_decl_conflict); |
12855 | Diag(Target->getLocation(), diag::note_using_decl_target); |
12856 | Diag(NonTag->getLocation(), diag::note_using_decl_conflict); |
12857 | BUD->setInvalidDecl(); |
12858 | return true; |
12859 | } |
12860 | |
12861 | /// Determine whether a direct base class is a virtual base class. |
12862 | static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) { |
12863 | if (!Derived->getNumVBases()) |
12864 | return false; |
12865 | for (auto &B : Derived->bases()) |
12866 | if (B.getType()->getAsCXXRecordDecl() == Base) |
12867 | return B.isVirtual(); |
12868 | llvm_unreachable("not a direct base class"); |
12869 | } |
12870 | |
12871 | UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD, |
12872 | NamedDecl *Orig, |
12873 | UsingShadowDecl *PrevDecl) { |
12874 | // If we resolved to another shadow declaration, just coalesce them. |
12875 | NamedDecl *Target = Orig; |
12876 | if (isa<UsingShadowDecl>(Val: Target)) { |
12877 | Target = cast<UsingShadowDecl>(Val: Target)->getTargetDecl(); |
12878 | assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration"); |
12879 | } |
12880 | |
12881 | NamedDecl *NonTemplateTarget = Target; |
12882 | if (auto *TargetTD = dyn_cast<TemplateDecl>(Val: Target)) |
12883 | NonTemplateTarget = TargetTD->getTemplatedDecl(); |
12884 | |
12885 | UsingShadowDecl *Shadow; |
12886 | if (NonTemplateTarget && isa<CXXConstructorDecl>(Val: NonTemplateTarget)) { |
12887 | UsingDecl *Using = cast<UsingDecl>(Val: BUD); |
12888 | bool IsVirtualBase = |
12889 | isVirtualDirectBase(Derived: cast<CXXRecordDecl>(Val: CurContext), |
12890 | Base: Using->getQualifier()->getAsRecordDecl()); |
12891 | Shadow = ConstructorUsingShadowDecl::Create( |
12892 | C&: Context, DC: CurContext, Loc: Using->getLocation(), Using, Target: Orig, IsVirtual: IsVirtualBase); |
12893 | } else { |
12894 | Shadow = UsingShadowDecl::Create(C&: Context, DC: CurContext, Loc: BUD->getLocation(), |
12895 | Name: Target->getDeclName(), Introducer: BUD, Target); |
12896 | } |
12897 | BUD->addShadowDecl(S: Shadow); |
12898 | |
12899 | Shadow->setAccess(BUD->getAccess()); |
12900 | if (Orig->isInvalidDecl() || BUD->isInvalidDecl()) |
12901 | Shadow->setInvalidDecl(); |
12902 | |
12903 | Shadow->setPreviousDecl(PrevDecl); |
12904 | |
12905 | if (S) |
12906 | PushOnScopeChains(Shadow, S); |
12907 | else |
12908 | CurContext->addDecl(Shadow); |
12909 | |
12910 | |
12911 | return Shadow; |
12912 | } |
12913 | |
12914 | void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) { |
12915 | if (Shadow->getDeclName().getNameKind() == |
12916 | DeclarationName::CXXConversionFunctionName) |
12917 | cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow); |
12918 | |
12919 | // Remove it from the DeclContext... |
12920 | Shadow->getDeclContext()->removeDecl(Shadow); |
12921 | |
12922 | // ...and the scope, if applicable... |
12923 | if (S) { |
12924 | S->RemoveDecl(Shadow); |
12925 | IdResolver.RemoveDecl(Shadow); |
12926 | } |
12927 | |
12928 | // ...and the using decl. |
12929 | Shadow->getIntroducer()->removeShadowDecl(S: Shadow); |
12930 | |
12931 | // TODO: complain somehow if Shadow was used. It shouldn't |
12932 | // be possible for this to happen, because...? |
12933 | } |
12934 | |
12935 | /// Find the base specifier for a base class with the given type. |
12936 | static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived, |
12937 | QualType DesiredBase, |
12938 | bool &AnyDependentBases) { |
12939 | // Check whether the named type is a direct base class. |
12940 | CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified() |
12941 | .getUnqualifiedType(); |
12942 | for (auto &Base : Derived->bases()) { |
12943 | CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified(); |
12944 | if (CanonicalDesiredBase == BaseType) |
12945 | return &Base; |
12946 | if (BaseType->isDependentType()) |
12947 | AnyDependentBases = true; |
12948 | } |
12949 | return nullptr; |
12950 | } |
12951 | |
12952 | namespace { |
12953 | class UsingValidatorCCC final : public CorrectionCandidateCallback { |
12954 | public: |
12955 | UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation, |
12956 | NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf) |
12957 | : HasTypenameKeyword(HasTypenameKeyword), |
12958 | IsInstantiation(IsInstantiation), OldNNS(NNS), |
12959 | RequireMemberOf(RequireMemberOf) {} |
12960 | |
12961 | bool ValidateCandidate(const TypoCorrection &Candidate) override { |
12962 | NamedDecl *ND = Candidate.getCorrectionDecl(); |
12963 | |
12964 | // Keywords are not valid here. |
12965 | if (!ND || isa<NamespaceDecl>(Val: ND)) |
12966 | return false; |
12967 | |
12968 | // Completely unqualified names are invalid for a 'using' declaration. |
12969 | if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier()) |
12970 | return false; |
12971 | |
12972 | // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would |
12973 | // reject. |
12974 | |
12975 | if (RequireMemberOf) { |
12976 | auto *FoundRecord = dyn_cast<CXXRecordDecl>(Val: ND); |
12977 | if (FoundRecord && FoundRecord->isInjectedClassName()) { |
12978 | // No-one ever wants a using-declaration to name an injected-class-name |
12979 | // of a base class, unless they're declaring an inheriting constructor. |
12980 | ASTContext &Ctx = ND->getASTContext(); |
12981 | if (!Ctx.getLangOpts().CPlusPlus11) |
12982 | return false; |
12983 | QualType FoundType = Ctx.getRecordType(FoundRecord); |
12984 | |
12985 | // Check that the injected-class-name is named as a member of its own |
12986 | // type; we don't want to suggest 'using Derived::Base;', since that |
12987 | // means something else. |
12988 | NestedNameSpecifier *Specifier = |
12989 | Candidate.WillReplaceSpecifier() |
12990 | ? Candidate.getCorrectionSpecifier() |
12991 | : OldNNS; |
12992 | if (!Specifier->getAsType() || |
12993 | !Ctx.hasSameType(T1: QualType(Specifier->getAsType(), 0), T2: FoundType)) |
12994 | return false; |
12995 | |
12996 | // Check that this inheriting constructor declaration actually names a |
12997 | // direct base class of the current class. |
12998 | bool AnyDependentBases = false; |
12999 | if (!findDirectBaseWithType(Derived: RequireMemberOf, |
13000 | DesiredBase: Ctx.getRecordType(FoundRecord), |
13001 | AnyDependentBases) && |
13002 | !AnyDependentBases) |
13003 | return false; |
13004 | } else { |
13005 | auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext()); |
13006 | if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(Base: RD)) |
13007 | return false; |
13008 | |
13009 | // FIXME: Check that the base class member is accessible? |
13010 | } |
13011 | } else { |
13012 | auto *FoundRecord = dyn_cast<CXXRecordDecl>(Val: ND); |
13013 | if (FoundRecord && FoundRecord->isInjectedClassName()) |
13014 | return false; |
13015 | } |
13016 | |
13017 | if (isa<TypeDecl>(Val: ND)) |
13018 | return HasTypenameKeyword || !IsInstantiation; |
13019 | |
13020 | return !HasTypenameKeyword; |
13021 | } |
13022 | |
13023 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
13024 | return std::make_unique<UsingValidatorCCC>(args&: *this); |
13025 | } |
13026 | |
13027 | private: |
13028 | bool HasTypenameKeyword; |
13029 | bool IsInstantiation; |
13030 | NestedNameSpecifier *OldNNS; |
13031 | CXXRecordDecl *RequireMemberOf; |
13032 | }; |
13033 | } // end anonymous namespace |
13034 | |
13035 | void Sema::FilterUsingLookup(Scope *S, LookupResult &Previous) { |
13036 | // It is really dumb that we have to do this. |
13037 | LookupResult::Filter F = Previous.makeFilter(); |
13038 | while (F.hasNext()) { |
13039 | NamedDecl *D = F.next(); |
13040 | if (!isDeclInScope(D, Ctx: CurContext, S)) |
13041 | F.erase(); |
13042 | // If we found a local extern declaration that's not ordinarily visible, |
13043 | // and this declaration is being added to a non-block scope, ignore it. |
13044 | // We're only checking for scope conflicts here, not also for violations |
13045 | // of the linkage rules. |
13046 | else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() && |
13047 | !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary)) |
13048 | F.erase(); |
13049 | } |
13050 | F.done(); |
13051 | } |
13052 | |
13053 | NamedDecl *Sema::BuildUsingDeclaration( |
13054 | Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, |
13055 | bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS, |
13056 | DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc, |
13057 | const ParsedAttributesView &AttrList, bool IsInstantiation, |
13058 | bool IsUsingIfExists) { |
13059 | assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); |
13060 | SourceLocation IdentLoc = NameInfo.getLoc(); |
13061 | assert(IdentLoc.isValid() && "Invalid TargetName location."); |
13062 | |
13063 | // FIXME: We ignore attributes for now. |
13064 | |
13065 | // For an inheriting constructor declaration, the name of the using |
13066 | // declaration is the name of a constructor in this class, not in the |
13067 | // base class. |
13068 | DeclarationNameInfo UsingName = NameInfo; |
13069 | if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName) |
13070 | if (auto *RD = dyn_cast<CXXRecordDecl>(Val: CurContext)) |
13071 | UsingName.setName(Context.DeclarationNames.getCXXConstructorName( |
13072 | Ty: Context.getCanonicalType(T: Context.getRecordType(RD)))); |
13073 | |
13074 | // Do the redeclaration lookup in the current scope. |
13075 | LookupResult Previous(*this, UsingName, LookupUsingDeclName, |
13076 | RedeclarationKind::ForVisibleRedeclaration); |
13077 | Previous.setHideTags(false); |
13078 | if (S) { |
13079 | LookupName(R&: Previous, S); |
13080 | |
13081 | FilterUsingLookup(S, Previous); |
13082 | } else { |
13083 | assert(IsInstantiation && "no scope in non-instantiation"); |
13084 | if (CurContext->isRecord()) |
13085 | LookupQualifiedName(R&: Previous, LookupCtx: CurContext); |
13086 | else { |
13087 | // No redeclaration check is needed here; in non-member contexts we |
13088 | // diagnosed all possible conflicts with other using-declarations when |
13089 | // building the template: |
13090 | // |
13091 | // For a dependent non-type using declaration, the only valid case is |
13092 | // if we instantiate to a single enumerator. We check for conflicts |
13093 | // between shadow declarations we introduce, and we check in the template |
13094 | // definition for conflicts between a non-type using declaration and any |
13095 | // other declaration, which together covers all cases. |
13096 | // |
13097 | // A dependent typename using declaration will never successfully |
13098 | // instantiate, since it will always name a class member, so we reject |
13099 | // that in the template definition. |
13100 | } |
13101 | } |
13102 | |
13103 | // Check for invalid redeclarations. |
13104 | if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword, |
13105 | SS, NameLoc: IdentLoc, Previous)) |
13106 | return nullptr; |
13107 | |
13108 | // 'using_if_exists' doesn't make sense on an inherited constructor. |
13109 | if (IsUsingIfExists && UsingName.getName().getNameKind() == |
13110 | DeclarationName::CXXConstructorName) { |
13111 | Diag(UsingLoc, diag::err_using_if_exists_on_ctor); |
13112 | return nullptr; |
13113 | } |
13114 | |
13115 | DeclContext *LookupContext = computeDeclContext(SS); |
13116 | NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); |
13117 | if (!LookupContext || EllipsisLoc.isValid()) { |
13118 | NamedDecl *D; |
13119 | // Dependent scope, or an unexpanded pack |
13120 | if (!LookupContext && CheckUsingDeclQualifier(UsingLoc, HasTypename: HasTypenameKeyword, |
13121 | SS, NameInfo, NameLoc: IdentLoc)) |
13122 | return nullptr; |
13123 | |
13124 | if (Previous.isSingleResult() && |
13125 | Previous.getFoundDecl()->isTemplateParameter()) |
13126 | DiagnoseTemplateParameterShadow(IdentLoc, Previous.getFoundDecl()); |
13127 | |
13128 | if (HasTypenameKeyword) { |
13129 | // FIXME: not all declaration name kinds are legal here |
13130 | D = UnresolvedUsingTypenameDecl::Create(C&: Context, DC: CurContext, |
13131 | UsingLoc, TypenameLoc, |
13132 | QualifierLoc, |
13133 | TargetNameLoc: IdentLoc, TargetName: NameInfo.getName(), |
13134 | EllipsisLoc); |
13135 | } else { |
13136 | D = UnresolvedUsingValueDecl::Create(C&: Context, DC: CurContext, UsingLoc, |
13137 | QualifierLoc, NameInfo, EllipsisLoc); |
13138 | } |
13139 | D->setAccess(AS); |
13140 | CurContext->addDecl(D); |
13141 | ProcessDeclAttributeList(S, D, AttrList); |
13142 | return D; |
13143 | } |
13144 | |
13145 | auto Build = [&](bool Invalid) { |
13146 | UsingDecl *UD = |
13147 | UsingDecl::Create(C&: Context, DC: CurContext, UsingL: UsingLoc, QualifierLoc, |
13148 | NameInfo: UsingName, HasTypenameKeyword); |
13149 | UD->setAccess(AS); |
13150 | CurContext->addDecl(UD); |
13151 | ProcessDeclAttributeList(S, UD, AttrList); |
13152 | UD->setInvalidDecl(Invalid); |
13153 | return UD; |
13154 | }; |
13155 | auto BuildInvalid = [&]{ return Build(true); }; |
13156 | auto BuildValid = [&]{ return Build(false); }; |
13157 | |
13158 | if (RequireCompleteDeclContext(SS, DC: LookupContext)) |
13159 | return BuildInvalid(); |
13160 | |
13161 | // Look up the target name. |
13162 | LookupResult R(*this, NameInfo, LookupOrdinaryName); |
13163 | |
13164 | // Unlike most lookups, we don't always want to hide tag |
13165 | // declarations: tag names are visible through the using declaration |
13166 | // even if hidden by ordinary names, *except* in a dependent context |
13167 | // where they may be used by two-phase lookup. |
13168 | if (!IsInstantiation) |
13169 | R.setHideTags(false); |
13170 | |
13171 | // For the purposes of this lookup, we have a base object type |
13172 | // equal to that of the current context. |
13173 | if (CurContext->isRecord()) { |
13174 | R.setBaseObjectType( |
13175 | Context.getTypeDeclType(cast<CXXRecordDecl>(Val: CurContext))); |
13176 | } |
13177 | |
13178 | LookupQualifiedName(R, LookupCtx: LookupContext); |
13179 | |
13180 | // Validate the context, now we have a lookup |
13181 | if (CheckUsingDeclQualifier(UsingLoc, HasTypename: HasTypenameKeyword, SS, NameInfo, |
13182 | NameLoc: IdentLoc, R: &R)) |
13183 | return nullptr; |
13184 | |
13185 | if (R.empty() && IsUsingIfExists) |
13186 | R.addDecl(UnresolvedUsingIfExistsDecl::Create(Ctx&: Context, DC: CurContext, Loc: UsingLoc, |
13187 | Name: UsingName.getName()), |
13188 | AS_public); |
13189 | |
13190 | // Try to correct typos if possible. If constructor name lookup finds no |
13191 | // results, that means the named class has no explicit constructors, and we |
13192 | // suppressed declaring implicit ones (probably because it's dependent or |
13193 | // invalid). |
13194 | if (R.empty() && |
13195 | NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) { |
13196 | // HACK 2017-01-08: Work around an issue with libstdc++'s detection of |
13197 | // ::gets. Sometimes it believes that glibc provides a ::gets in cases where |
13198 | // it does not. The issue was fixed in libstdc++ 6.3 (2016-12-21) and later. |
13199 | auto *II = NameInfo.getName().getAsIdentifierInfo(); |
13200 | if (getLangOpts().CPlusPlus14 && II && II->isStr(Str: "gets") && |
13201 | CurContext->isStdNamespace() && |
13202 | isa<TranslationUnitDecl>(Val: LookupContext) && |
13203 | PP.NeedsStdLibCxxWorkaroundBefore(FixedVersion: 2016'12'21) && |
13204 | getSourceManager().isInSystemHeader(Loc: UsingLoc)) |
13205 | return nullptr; |
13206 | UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(), |
13207 | dyn_cast<CXXRecordDecl>(Val: CurContext)); |
13208 | if (TypoCorrection Corrected = |
13209 | CorrectTypo(Typo: R.getLookupNameInfo(), LookupKind: R.getLookupKind(), S, SS: &SS, CCC, |
13210 | Mode: CorrectTypoKind::ErrorRecovery)) { |
13211 | // We reject candidates where DroppedSpecifier == true, hence the |
13212 | // literal '0' below. |
13213 | diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) |
13214 | << NameInfo.getName() << LookupContext << 0 |
13215 | << SS.getRange()); |
13216 | |
13217 | // If we picked a correction with no attached Decl we can't do anything |
13218 | // useful with it, bail out. |
13219 | NamedDecl *ND = Corrected.getCorrectionDecl(); |
13220 | if (!ND) |
13221 | return BuildInvalid(); |
13222 | |
13223 | // If we corrected to an inheriting constructor, handle it as one. |
13224 | auto *RD = dyn_cast<CXXRecordDecl>(Val: ND); |
13225 | if (RD && RD->isInjectedClassName()) { |
13226 | // The parent of the injected class name is the class itself. |
13227 | RD = cast<CXXRecordDecl>(RD->getParent()); |
13228 | |
13229 | // Fix up the information we'll use to build the using declaration. |
13230 | if (Corrected.WillReplaceSpecifier()) { |
13231 | NestedNameSpecifierLocBuilder Builder; |
13232 | Builder.MakeTrivial(Context, Qualifier: Corrected.getCorrectionSpecifier(), |
13233 | R: QualifierLoc.getSourceRange()); |
13234 | QualifierLoc = Builder.getWithLocInContext(Context); |
13235 | } |
13236 | |
13237 | // In this case, the name we introduce is the name of a derived class |
13238 | // constructor. |
13239 | auto *CurClass = cast<CXXRecordDecl>(Val: CurContext); |
13240 | UsingName.setName(Context.DeclarationNames.getCXXConstructorName( |
13241 | Ty: Context.getCanonicalType(T: Context.getRecordType(CurClass)))); |
13242 | UsingName.setNamedTypeInfo(nullptr); |
13243 | for (auto *Ctor : LookupConstructors(Class: RD)) |
13244 | R.addDecl(D: Ctor); |
13245 | R.resolveKind(); |
13246 | } else { |
13247 | // FIXME: Pick up all the declarations if we found an overloaded |
13248 | // function. |
13249 | UsingName.setName(ND->getDeclName()); |
13250 | R.addDecl(D: ND); |
13251 | } |
13252 | } else { |
13253 | Diag(IdentLoc, diag::err_no_member) |
13254 | << NameInfo.getName() << LookupContext << SS.getRange(); |
13255 | return BuildInvalid(); |
13256 | } |
13257 | } |
13258 | |
13259 | if (R.isAmbiguous()) |
13260 | return BuildInvalid(); |
13261 | |
13262 | if (HasTypenameKeyword) { |
13263 | // If we asked for a typename and got a non-type decl, error out. |
13264 | if (!R.getAsSingle<TypeDecl>() && |
13265 | !R.getAsSingle<UnresolvedUsingIfExistsDecl>()) { |
13266 | Diag(IdentLoc, diag::err_using_typename_non_type); |
13267 | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) |
13268 | Diag((*I)->getUnderlyingDecl()->getLocation(), |
13269 | diag::note_using_decl_target); |
13270 | return BuildInvalid(); |
13271 | } |
13272 | } else { |
13273 | // If we asked for a non-typename and we got a type, error out, |
13274 | // but only if this is an instantiation of an unresolved using |
13275 | // decl. Otherwise just silently find the type name. |
13276 | if (IsInstantiation && R.getAsSingle<TypeDecl>()) { |
13277 | Diag(IdentLoc, diag::err_using_dependent_value_is_type); |
13278 | Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target); |
13279 | return BuildInvalid(); |
13280 | } |
13281 | } |
13282 | |
13283 | // C++14 [namespace.udecl]p6: |
13284 | // A using-declaration shall not name a namespace. |
13285 | if (R.getAsSingle<NamespaceDecl>()) { |
13286 | Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace) |
13287 | << SS.getRange(); |
13288 | // Suggest using 'using namespace ...' instead. |
13289 | Diag(SS.getBeginLoc(), diag::note_namespace_using_decl) |
13290 | << FixItHint::CreateInsertion(SS.getBeginLoc(), "namespace "); |
13291 | return BuildInvalid(); |
13292 | } |
13293 | |
13294 | UsingDecl *UD = BuildValid(); |
13295 | |
13296 | // Some additional rules apply to inheriting constructors. |
13297 | if (UsingName.getName().getNameKind() == |
13298 | DeclarationName::CXXConstructorName) { |
13299 | // Suppress access diagnostics; the access check is instead performed at the |
13300 | // point of use for an inheriting constructor. |
13301 | R.suppressDiagnostics(); |
13302 | if (CheckInheritingConstructorUsingDecl(UD)) |
13303 | return UD; |
13304 | } |
13305 | |
13306 | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { |
13307 | UsingShadowDecl *PrevDecl = nullptr; |
13308 | if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl)) |
13309 | BuildUsingShadowDecl(S, UD, *I, PrevDecl); |
13310 | } |
13311 | |
13312 | return UD; |
13313 | } |
13314 | |
13315 | NamedDecl *Sema::BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS, |
13316 | SourceLocation UsingLoc, |
13317 | SourceLocation EnumLoc, |
13318 | SourceLocation NameLoc, |
13319 | TypeSourceInfo *EnumType, |
13320 | EnumDecl *ED) { |
13321 | bool Invalid = false; |
13322 | |
13323 | if (CurContext->getRedeclContext()->isRecord()) { |
13324 | /// In class scope, check if this is a duplicate, for better a diagnostic. |
13325 | DeclarationNameInfo UsingEnumName(ED->getDeclName(), NameLoc); |
13326 | LookupResult Previous(*this, UsingEnumName, LookupUsingDeclName, |
13327 | RedeclarationKind::ForVisibleRedeclaration); |
13328 | |
13329 | LookupName(R&: Previous, S); |
13330 | |
13331 | for (NamedDecl *D : Previous) |
13332 | if (UsingEnumDecl *UED = dyn_cast<UsingEnumDecl>(D)) |
13333 | if (UED->getEnumDecl() == ED) { |
13334 | Diag(UsingLoc, diag::err_using_enum_decl_redeclaration) |
13335 | << SourceRange(EnumLoc, NameLoc); |
13336 | Diag(D->getLocation(), diag::note_using_enum_decl) << 1; |
13337 | Invalid = true; |
13338 | break; |
13339 | } |
13340 | } |
13341 | |
13342 | if (RequireCompleteEnumDecl(D: ED, L: NameLoc)) |
13343 | Invalid = true; |
13344 | |
13345 | UsingEnumDecl *UD = UsingEnumDecl::Create(C&: Context, DC: CurContext, UsingL: UsingLoc, |
13346 | EnumL: EnumLoc, NameL: NameLoc, EnumType); |
13347 | UD->setAccess(AS); |
13348 | CurContext->addDecl(UD); |
13349 | |
13350 | if (Invalid) { |
13351 | UD->setInvalidDecl(); |
13352 | return UD; |
13353 | } |
13354 | |
13355 | // Create the shadow decls for each enumerator |
13356 | for (EnumConstantDecl *EC : ED->enumerators()) { |
13357 | UsingShadowDecl *PrevDecl = nullptr; |
13358 | DeclarationNameInfo DNI(EC->getDeclName(), EC->getLocation()); |
13359 | LookupResult Previous(*this, DNI, LookupOrdinaryName, |
13360 | RedeclarationKind::ForVisibleRedeclaration); |
13361 | LookupName(R&: Previous, S); |
13362 | FilterUsingLookup(S, Previous); |
13363 | |
13364 | if (!CheckUsingShadowDecl(UD, EC, Previous, PrevDecl)) |
13365 | BuildUsingShadowDecl(S, UD, EC, PrevDecl); |
13366 | } |
13367 | |
13368 | return UD; |
13369 | } |
13370 | |
13371 | NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom, |
13372 | ArrayRef<NamedDecl *> Expansions) { |
13373 | assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || |
13374 | isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || |
13375 | isa<UsingPackDecl>(InstantiatedFrom)); |
13376 | |
13377 | auto *UPD = |
13378 | UsingPackDecl::Create(C&: Context, DC: CurContext, InstantiatedFrom, UsingDecls: Expansions); |
13379 | UPD->setAccess(InstantiatedFrom->getAccess()); |
13380 | CurContext->addDecl(UPD); |
13381 | return UPD; |
13382 | } |
13383 | |
13384 | bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) { |
13385 | assert(!UD->hasTypename() && "expecting a constructor name"); |
13386 | |
13387 | const Type *SourceType = UD->getQualifier()->getAsType(); |
13388 | assert(SourceType && |
13389 | "Using decl naming constructor doesn't have type in scope spec."); |
13390 | CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(Val: CurContext); |
13391 | |
13392 | // Check whether the named type is a direct base class. |
13393 | bool AnyDependentBases = false; |
13394 | auto *Base = findDirectBaseWithType(Derived: TargetClass, DesiredBase: QualType(SourceType, 0), |
13395 | AnyDependentBases); |
13396 | if (!Base && !AnyDependentBases) { |
13397 | Diag(UD->getUsingLoc(), |
13398 | diag::err_using_decl_constructor_not_in_direct_base) |
13399 | << UD->getNameInfo().getSourceRange() |
13400 | << QualType(SourceType, 0) << TargetClass; |
13401 | UD->setInvalidDecl(); |
13402 | return true; |
13403 | } |
13404 | |
13405 | if (Base) |
13406 | Base->setInheritConstructors(); |
13407 | |
13408 | return false; |
13409 | } |
13410 | |
13411 | bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc, |
13412 | bool HasTypenameKeyword, |
13413 | const CXXScopeSpec &SS, |
13414 | SourceLocation NameLoc, |
13415 | const LookupResult &Prev) { |
13416 | NestedNameSpecifier *Qual = SS.getScopeRep(); |
13417 | |
13418 | // C++03 [namespace.udecl]p8: |
13419 | // C++0x [namespace.udecl]p10: |
13420 | // A using-declaration is a declaration and can therefore be used |
13421 | // repeatedly where (and only where) multiple declarations are |
13422 | // allowed. |
13423 | // |
13424 | // That's in non-member contexts. |
13425 | if (!CurContext->getRedeclContext()->isRecord()) { |
13426 | // A dependent qualifier outside a class can only ever resolve to an |
13427 | // enumeration type. Therefore it conflicts with any other non-type |
13428 | // declaration in the same scope. |
13429 | // FIXME: How should we check for dependent type-type conflicts at block |
13430 | // scope? |
13431 | if (Qual->isDependent() && !HasTypenameKeyword) { |
13432 | for (auto *D : Prev) { |
13433 | if (!isa<TypeDecl>(Val: D) && !isa<UsingDecl>(Val: D) && !isa<UsingPackDecl>(Val: D)) { |
13434 | bool OldCouldBeEnumerator = |
13435 | isa<UnresolvedUsingValueDecl>(Val: D) || isa<EnumConstantDecl>(Val: D); |
13436 | Diag(NameLoc, |
13437 | OldCouldBeEnumerator ? diag::err_redefinition |
13438 | : diag::err_redefinition_different_kind) |
13439 | << Prev.getLookupName(); |
13440 | Diag(D->getLocation(), diag::note_previous_definition); |
13441 | return true; |
13442 | } |
13443 | } |
13444 | } |
13445 | return false; |
13446 | } |
13447 | |
13448 | const NestedNameSpecifier *CNNS = |
13449 | Context.getCanonicalNestedNameSpecifier(NNS: Qual); |
13450 | for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) { |
13451 | NamedDecl *D = *I; |
13452 | |
13453 | bool DTypename; |
13454 | NestedNameSpecifier *DQual; |
13455 | if (UsingDecl *UD = dyn_cast<UsingDecl>(Val: D)) { |
13456 | DTypename = UD->hasTypename(); |
13457 | DQual = UD->getQualifier(); |
13458 | } else if (UnresolvedUsingValueDecl *UD |
13459 | = dyn_cast<UnresolvedUsingValueDecl>(Val: D)) { |
13460 | DTypename = false; |
13461 | DQual = UD->getQualifier(); |
13462 | } else if (UnresolvedUsingTypenameDecl *UD |
13463 | = dyn_cast<UnresolvedUsingTypenameDecl>(Val: D)) { |
13464 | DTypename = true; |
13465 | DQual = UD->getQualifier(); |
13466 | } else continue; |
13467 | |
13468 | // using decls differ if one says 'typename' and the other doesn't. |
13469 | // FIXME: non-dependent using decls? |
13470 | if (HasTypenameKeyword != DTypename) continue; |
13471 | |
13472 | // using decls differ if they name different scopes (but note that |
13473 | // template instantiation can cause this check to trigger when it |
13474 | // didn't before instantiation). |
13475 | if (CNNS != Context.getCanonicalNestedNameSpecifier(NNS: DQual)) |
13476 | continue; |
13477 | |
13478 | Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange(); |
13479 | Diag(D->getLocation(), diag::note_using_decl) << 1; |
13480 | return true; |
13481 | } |
13482 | |
13483 | return false; |
13484 | } |
13485 | |
13486 | bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename, |
13487 | const CXXScopeSpec &SS, |
13488 | const DeclarationNameInfo &NameInfo, |
13489 | SourceLocation NameLoc, |
13490 | const LookupResult *R, const UsingDecl *UD) { |
13491 | DeclContext *NamedContext = computeDeclContext(SS); |
13492 | assert(bool(NamedContext) == (R || UD) && !(R && UD) && |
13493 | "resolvable context must have exactly one set of decls"); |
13494 | |
13495 | // C++ 20 permits using an enumerator that does not have a class-hierarchy |
13496 | // relationship. |
13497 | bool Cxx20Enumerator = false; |
13498 | if (NamedContext) { |
13499 | EnumConstantDecl *EC = nullptr; |
13500 | if (R) |
13501 | EC = R->getAsSingle<EnumConstantDecl>(); |
13502 | else if (UD && UD->shadow_size() == 1) |
13503 | EC = dyn_cast<EnumConstantDecl>(UD->shadow_begin()->getTargetDecl()); |
13504 | if (EC) |
13505 | Cxx20Enumerator = getLangOpts().CPlusPlus20; |
13506 | |
13507 | if (auto *ED = dyn_cast<EnumDecl>(Val: NamedContext)) { |
13508 | // C++14 [namespace.udecl]p7: |
13509 | // A using-declaration shall not name a scoped enumerator. |
13510 | // C++20 p1099 permits enumerators. |
13511 | if (EC && R && ED->isScoped()) |
13512 | Diag(SS.getBeginLoc(), |
13513 | getLangOpts().CPlusPlus20 |
13514 | ? diag::warn_cxx17_compat_using_decl_scoped_enumerator |
13515 | : diag::ext_using_decl_scoped_enumerator) |
13516 | << SS.getRange(); |
13517 | |
13518 | // We want to consider the scope of the enumerator |
13519 | NamedContext = ED->getDeclContext(); |
13520 | } |
13521 | } |
13522 | |
13523 | if (!CurContext->isRecord()) { |
13524 | // C++03 [namespace.udecl]p3: |
13525 | // C++0x [namespace.udecl]p8: |
13526 | // A using-declaration for a class member shall be a member-declaration. |
13527 | // C++20 [namespace.udecl]p7 |
13528 | // ... other than an enumerator ... |
13529 | |
13530 | // If we weren't able to compute a valid scope, it might validly be a |
13531 | // dependent class or enumeration scope. If we have a 'typename' keyword, |
13532 | // the scope must resolve to a class type. |
13533 | if (NamedContext ? !NamedContext->getRedeclContext()->isRecord() |
13534 | : !HasTypename) |
13535 | return false; // OK |
13536 | |
13537 | Diag(NameLoc, |
13538 | Cxx20Enumerator |
13539 | ? diag::warn_cxx17_compat_using_decl_class_member_enumerator |
13540 | : diag::err_using_decl_can_not_refer_to_class_member) |
13541 | << SS.getRange(); |
13542 | |
13543 | if (Cxx20Enumerator) |
13544 | return false; // OK |
13545 | |
13546 | auto *RD = NamedContext |
13547 | ? cast<CXXRecordDecl>(Val: NamedContext->getRedeclContext()) |
13548 | : nullptr; |
13549 | if (RD && !RequireCompleteDeclContext(const_cast<CXXScopeSpec &>(SS), RD)) { |
13550 | // See if there's a helpful fixit |
13551 | |
13552 | if (!R) { |
13553 | // We will have already diagnosed the problem on the template |
13554 | // definition, Maybe we should do so again? |
13555 | } else if (R->getAsSingle<TypeDecl>()) { |
13556 | if (getLangOpts().CPlusPlus11) { |
13557 | // Convert 'using X::Y;' to 'using Y = X::Y;'. |
13558 | Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround) |
13559 | << diag::MemClassWorkaround::AliasDecl |
13560 | << FixItHint::CreateInsertion(SS.getBeginLoc(), |
13561 | NameInfo.getName().getAsString() + |
13562 | " = "); |
13563 | } else { |
13564 | // Convert 'using X::Y;' to 'typedef X::Y Y;'. |
13565 | SourceLocation InsertLoc = getLocForEndOfToken(Loc: NameInfo.getEndLoc()); |
13566 | Diag(InsertLoc, diag::note_using_decl_class_member_workaround) |
13567 | << diag::MemClassWorkaround::TypedefDecl |
13568 | << FixItHint::CreateReplacement(UsingLoc, "typedef") |
13569 | << FixItHint::CreateInsertion( |
13570 | InsertLoc, " "+ NameInfo.getName().getAsString()); |
13571 | } |
13572 | } else if (R->getAsSingle<VarDecl>()) { |
13573 | // Don't provide a fixit outside C++11 mode; we don't want to suggest |
13574 | // repeating the type of the static data member here. |
13575 | FixItHint FixIt; |
13576 | if (getLangOpts().CPlusPlus11) { |
13577 | // Convert 'using X::Y;' to 'auto &Y = X::Y;'. |
13578 | FixIt = FixItHint::CreateReplacement( |
13579 | RemoveRange: UsingLoc, Code: "auto &"+ NameInfo.getName().getAsString() + " = "); |
13580 | } |
13581 | |
13582 | Diag(UsingLoc, diag::note_using_decl_class_member_workaround) |
13583 | << diag::MemClassWorkaround::ReferenceDecl << FixIt; |
13584 | } else if (R->getAsSingle<EnumConstantDecl>()) { |
13585 | // Don't provide a fixit outside C++11 mode; we don't want to suggest |
13586 | // repeating the type of the enumeration here, and we can't do so if |
13587 | // the type is anonymous. |
13588 | FixItHint FixIt; |
13589 | if (getLangOpts().CPlusPlus11) { |
13590 | // Convert 'using X::Y;' to 'auto &Y = X::Y;'. |
13591 | FixIt = FixItHint::CreateReplacement( |
13592 | RemoveRange: UsingLoc, |
13593 | Code: "constexpr auto "+ NameInfo.getName().getAsString() + " = "); |
13594 | } |
13595 | |
13596 | Diag(UsingLoc, diag::note_using_decl_class_member_workaround) |
13597 | << (getLangOpts().CPlusPlus11 |
13598 | ? diag::MemClassWorkaround::ConstexprVar |
13599 | : diag::MemClassWorkaround::ConstVar) |
13600 | << FixIt; |
13601 | } |
13602 | } |
13603 | |
13604 | return true; // Fail |
13605 | } |
13606 | |
13607 | // If the named context is dependent, we can't decide much. |
13608 | if (!NamedContext) { |
13609 | // FIXME: in C++0x, we can diagnose if we can prove that the |
13610 | // nested-name-specifier does not refer to a base class, which is |
13611 | // still possible in some cases. |
13612 | |
13613 | // Otherwise we have to conservatively report that things might be |
13614 | // okay. |
13615 | return false; |
13616 | } |
13617 | |
13618 | // The current scope is a record. |
13619 | if (!NamedContext->isRecord()) { |
13620 | // Ideally this would point at the last name in the specifier, |
13621 | // but we don't have that level of source info. |
13622 | Diag(SS.getBeginLoc(), |
13623 | Cxx20Enumerator |
13624 | ? diag::warn_cxx17_compat_using_decl_non_member_enumerator |
13625 | : diag::err_using_decl_nested_name_specifier_is_not_class) |
13626 | << SS.getScopeRep() << SS.getRange(); |
13627 | |
13628 | if (Cxx20Enumerator) |
13629 | return false; // OK |
13630 | |
13631 | return true; |
13632 | } |
13633 | |
13634 | if (!NamedContext->isDependentContext() && |
13635 | RequireCompleteDeclContext(SS&: const_cast<CXXScopeSpec&>(SS), DC: NamedContext)) |
13636 | return true; |
13637 | |
13638 | if (getLangOpts().CPlusPlus11) { |
13639 | // C++11 [namespace.udecl]p3: |
13640 | // In a using-declaration used as a member-declaration, the |
13641 | // nested-name-specifier shall name a base class of the class |
13642 | // being defined. |
13643 | |
13644 | if (cast<CXXRecordDecl>(Val: CurContext)->isProvablyNotDerivedFrom( |
13645 | Base: cast<CXXRecordDecl>(Val: NamedContext))) { |
13646 | |
13647 | if (Cxx20Enumerator) { |
13648 | Diag(NameLoc, diag::warn_cxx17_compat_using_decl_non_member_enumerator) |
13649 | << SS.getRange(); |
13650 | return false; |
13651 | } |
13652 | |
13653 | if (CurContext == NamedContext) { |
13654 | Diag(SS.getBeginLoc(), |
13655 | diag::err_using_decl_nested_name_specifier_is_current_class) |
13656 | << SS.getRange(); |
13657 | return !getLangOpts().CPlusPlus20; |
13658 | } |
13659 | |
13660 | if (!cast<CXXRecordDecl>(Val: NamedContext)->isInvalidDecl()) { |
13661 | Diag(SS.getBeginLoc(), |
13662 | diag::err_using_decl_nested_name_specifier_is_not_base_class) |
13663 | << SS.getScopeRep() << cast<CXXRecordDecl>(CurContext) |
13664 | << SS.getRange(); |
13665 | } |
13666 | return true; |
13667 | } |
13668 | |
13669 | return false; |
13670 | } |
13671 | |
13672 | // C++03 [namespace.udecl]p4: |
13673 | // A using-declaration used as a member-declaration shall refer |
13674 | // to a member of a base class of the class being defined [etc.]. |
13675 | |
13676 | // Salient point: SS doesn't have to name a base class as long as |
13677 | // lookup only finds members from base classes. Therefore we can |
13678 | // diagnose here only if we can prove that can't happen, |
13679 | // i.e. if the class hierarchies provably don't intersect. |
13680 | |
13681 | // TODO: it would be nice if "definitely valid" results were cached |
13682 | // in the UsingDecl and UsingShadowDecl so that these checks didn't |
13683 | // need to be repeated. |
13684 | |
13685 | llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases; |
13686 | auto Collect = [&Bases](const CXXRecordDecl *Base) { |
13687 | Bases.insert(Ptr: Base); |
13688 | return true; |
13689 | }; |
13690 | |
13691 | // Collect all bases. Return false if we find a dependent base. |
13692 | if (!cast<CXXRecordDecl>(Val: CurContext)->forallBases(BaseMatches: Collect)) |
13693 | return false; |
13694 | |
13695 | // Returns true if the base is dependent or is one of the accumulated base |
13696 | // classes. |
13697 | auto IsNotBase = [&Bases](const CXXRecordDecl *Base) { |
13698 | return !Bases.count(Ptr: Base); |
13699 | }; |
13700 | |
13701 | // Return false if the class has a dependent base or if it or one |
13702 | // of its bases is present in the base set of the current context. |
13703 | if (Bases.count(Ptr: cast<CXXRecordDecl>(Val: NamedContext)) || |
13704 | !cast<CXXRecordDecl>(Val: NamedContext)->forallBases(BaseMatches: IsNotBase)) |
13705 | return false; |
13706 | |
13707 | Diag(SS.getRange().getBegin(), |
13708 | diag::err_using_decl_nested_name_specifier_is_not_base_class) |
13709 | << SS.getScopeRep() |
13710 | << cast<CXXRecordDecl>(CurContext) |
13711 | << SS.getRange(); |
13712 | |
13713 | return true; |
13714 | } |
13715 | |
13716 | Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS, |
13717 | MultiTemplateParamsArg TemplateParamLists, |
13718 | SourceLocation UsingLoc, UnqualifiedId &Name, |
13719 | const ParsedAttributesView &AttrList, |
13720 | TypeResult Type, Decl *DeclFromDeclSpec) { |
13721 | |
13722 | if (Type.isInvalid()) |
13723 | return nullptr; |
13724 | |
13725 | bool Invalid = false; |
13726 | DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name); |
13727 | TypeSourceInfo *TInfo = nullptr; |
13728 | GetTypeFromParser(Ty: Type.get(), TInfo: &TInfo); |
13729 | |
13730 | if (DiagnoseClassNameShadow(DC: CurContext, Info: NameInfo)) |
13731 | return nullptr; |
13732 | |
13733 | if (DiagnoseUnexpandedParameterPack(Loc: Name.StartLocation, T: TInfo, |
13734 | UPPC: UPPC_DeclarationType)) { |
13735 | Invalid = true; |
13736 | TInfo = Context.getTrivialTypeSourceInfo(T: Context.IntTy, |
13737 | Loc: TInfo->getTypeLoc().getBeginLoc()); |
13738 | } |
13739 | |
13740 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, |
13741 | TemplateParamLists.size() |
13742 | ? forRedeclarationInCurContext() |
13743 | : RedeclarationKind::ForVisibleRedeclaration); |
13744 | LookupName(R&: Previous, S); |
13745 | |
13746 | // Warn about shadowing the name of a template parameter. |
13747 | if (Previous.isSingleResult() && |
13748 | Previous.getFoundDecl()->isTemplateParameter()) { |
13749 | DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl()); |
13750 | Previous.clear(); |
13751 | } |
13752 | |
13753 | assert(Name.getKind() == UnqualifiedIdKind::IK_Identifier && |
13754 | "name in alias declaration must be an identifier"); |
13755 | TypeAliasDecl *NewTD = TypeAliasDecl::Create(C&: Context, DC: CurContext, StartLoc: UsingLoc, |
13756 | IdLoc: Name.StartLocation, |
13757 | Id: Name.Identifier, TInfo); |
13758 | |
13759 | NewTD->setAccess(AS); |
13760 | |
13761 | if (Invalid) |
13762 | NewTD->setInvalidDecl(); |
13763 | |
13764 | ProcessDeclAttributeList(S, NewTD, AttrList); |
13765 | AddPragmaAttributes(S, NewTD); |
13766 | ProcessAPINotes(NewTD); |
13767 | |
13768 | CheckTypedefForVariablyModifiedType(S, NewTD); |
13769 | Invalid |= NewTD->isInvalidDecl(); |
13770 | |
13771 | // Get the innermost enclosing declaration scope. |
13772 | S = S->getDeclParent(); |
13773 | |
13774 | bool Redeclaration = false; |
13775 | |
13776 | NamedDecl *NewND; |
13777 | if (TemplateParamLists.size()) { |
13778 | TypeAliasTemplateDecl *OldDecl = nullptr; |
13779 | TemplateParameterList *OldTemplateParams = nullptr; |
13780 | |
13781 | if (TemplateParamLists.size() != 1) { |
13782 | Diag(UsingLoc, diag::err_alias_template_extra_headers) |
13783 | << SourceRange(TemplateParamLists[1]->getTemplateLoc(), |
13784 | TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc()); |
13785 | Invalid = true; |
13786 | } |
13787 | TemplateParameterList *TemplateParams = TemplateParamLists[0]; |
13788 | |
13789 | // Check that we can declare a template here. |
13790 | if (CheckTemplateDeclScope(S, TemplateParams)) |
13791 | return nullptr; |
13792 | |
13793 | // Only consider previous declarations in the same scope. |
13794 | FilterLookupForScope(R&: Previous, Ctx: CurContext, S, /*ConsiderLinkage*/false, |
13795 | /*ExplicitInstantiationOrSpecialization*/AllowInlineNamespace: false); |
13796 | if (!Previous.empty()) { |
13797 | Redeclaration = true; |
13798 | |
13799 | OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>(); |
13800 | if (!OldDecl && !Invalid) { |
13801 | Diag(UsingLoc, diag::err_redefinition_different_kind) |
13802 | << Name.Identifier; |
13803 | |
13804 | NamedDecl *OldD = Previous.getRepresentativeDecl(); |
13805 | if (OldD->getLocation().isValid()) |
13806 | Diag(OldD->getLocation(), diag::note_previous_definition); |
13807 | |
13808 | Invalid = true; |
13809 | } |
13810 | |
13811 | if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) { |
13812 | if (TemplateParameterListsAreEqual(TemplateParams, |
13813 | OldDecl->getTemplateParameters(), |
13814 | /*Complain=*/true, |
13815 | TPL_TemplateMatch)) |
13816 | OldTemplateParams = |
13817 | OldDecl->getMostRecentDecl()->getTemplateParameters(); |
13818 | else |
13819 | Invalid = true; |
13820 | |
13821 | TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl(); |
13822 | if (!Invalid && |
13823 | !Context.hasSameType(OldTD->getUnderlyingType(), |
13824 | NewTD->getUnderlyingType())) { |
13825 | // FIXME: The C++0x standard does not clearly say this is ill-formed, |
13826 | // but we can't reasonably accept it. |
13827 | Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef) |
13828 | << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType(); |
13829 | if (OldTD->getLocation().isValid()) |
13830 | Diag(OldTD->getLocation(), diag::note_previous_definition); |
13831 | Invalid = true; |
13832 | } |
13833 | } |
13834 | } |
13835 | |
13836 | // Merge any previous default template arguments into our parameters, |
13837 | // and check the parameter list. |
13838 | if (CheckTemplateParameterList(NewParams: TemplateParams, OldParams: OldTemplateParams, |
13839 | TPC: TPC_Other)) |
13840 | return nullptr; |
13841 | |
13842 | TypeAliasTemplateDecl *NewDecl = |
13843 | TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc, |
13844 | Name.Identifier, TemplateParams, |
13845 | NewTD); |
13846 | NewTD->setDescribedAliasTemplate(NewDecl); |
13847 | |
13848 | NewDecl->setAccess(AS); |
13849 | |
13850 | if (Invalid) |
13851 | NewDecl->setInvalidDecl(); |
13852 | else if (OldDecl) { |
13853 | NewDecl->setPreviousDecl(OldDecl); |
13854 | CheckRedeclarationInModule(NewDecl, OldDecl); |
13855 | } |
13856 | |
13857 | NewND = NewDecl; |
13858 | } else { |
13859 | if (auto *TD = dyn_cast_or_null<TagDecl>(Val: DeclFromDeclSpec)) { |
13860 | setTagNameForLinkagePurposes(TD, NewTD); |
13861 | handleTagNumbering(Tag: TD, TagScope: S); |
13862 | } |
13863 | ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration); |
13864 | NewND = NewTD; |
13865 | } |
13866 | |
13867 | PushOnScopeChains(D: NewND, S); |
13868 | ActOnDocumentableDecl(NewND); |
13869 | return NewND; |
13870 | } |
13871 | |
13872 | Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc, |
13873 | SourceLocation AliasLoc, |
13874 | IdentifierInfo *Alias, CXXScopeSpec &SS, |
13875 | SourceLocation IdentLoc, |
13876 | IdentifierInfo *Ident) { |
13877 | |
13878 | // Lookup the namespace name. |
13879 | LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName); |
13880 | LookupParsedName(R, S, SS: &SS, /*ObjectType=*/QualType()); |
13881 | |
13882 | if (R.isAmbiguous()) |
13883 | return nullptr; |
13884 | |
13885 | if (R.empty()) { |
13886 | if (!TryNamespaceTypoCorrection(S&: *this, R, Sc: S, SS, IdentLoc, Ident)) { |
13887 | Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); |
13888 | return nullptr; |
13889 | } |
13890 | } |
13891 | assert(!R.isAmbiguous() && !R.empty()); |
13892 | NamedDecl *ND = R.getRepresentativeDecl(); |
13893 | |
13894 | // Check if we have a previous declaration with the same name. |
13895 | LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName, |
13896 | RedeclarationKind::ForVisibleRedeclaration); |
13897 | LookupName(R&: PrevR, S); |
13898 | |
13899 | // Check we're not shadowing a template parameter. |
13900 | if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) { |
13901 | DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl()); |
13902 | PrevR.clear(); |
13903 | } |
13904 | |
13905 | // Filter out any other lookup result from an enclosing scope. |
13906 | FilterLookupForScope(R&: PrevR, Ctx: CurContext, S, /*ConsiderLinkage*/false, |
13907 | /*AllowInlineNamespace*/false); |
13908 | |
13909 | // Find the previous declaration and check that we can redeclare it. |
13910 | NamespaceAliasDecl *Prev = nullptr; |
13911 | if (PrevR.isSingleResult()) { |
13912 | NamedDecl *PrevDecl = PrevR.getRepresentativeDecl(); |
13913 | if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(Val: PrevDecl)) { |
13914 | // We already have an alias with the same name that points to the same |
13915 | // namespace; check that it matches. |
13916 | if (AD->getNamespace()->Equals(getNamespaceDecl(D: ND))) { |
13917 | Prev = AD; |
13918 | } else if (isVisible(D: PrevDecl)) { |
13919 | Diag(AliasLoc, diag::err_redefinition_different_namespace_alias) |
13920 | << Alias; |
13921 | Diag(AD->getLocation(), diag::note_previous_namespace_alias) |
13922 | << AD->getNamespace(); |
13923 | return nullptr; |
13924 | } |
13925 | } else if (isVisible(D: PrevDecl)) { |
13926 | unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl()) |
13927 | ? diag::err_redefinition |
13928 | : diag::err_redefinition_different_kind; |
13929 | Diag(AliasLoc, DiagID) << Alias; |
13930 | Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
13931 | return nullptr; |
13932 | } |
13933 | } |
13934 | |
13935 | // The use of a nested name specifier may trigger deprecation warnings. |
13936 | DiagnoseUseOfDecl(D: ND, Locs: IdentLoc); |
13937 | |
13938 | NamespaceAliasDecl *AliasDecl = |
13939 | NamespaceAliasDecl::Create(C&: Context, DC: CurContext, NamespaceLoc, AliasLoc, |
13940 | Alias, QualifierLoc: SS.getWithLocInContext(Context), |
13941 | IdentLoc, Namespace: ND); |
13942 | if (Prev) |
13943 | AliasDecl->setPreviousDecl(Prev); |
13944 | |
13945 | PushOnScopeChains(AliasDecl, S); |
13946 | return AliasDecl; |
13947 | } |
13948 | |
13949 | namespace { |
13950 | struct SpecialMemberExceptionSpecInfo |
13951 | : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> { |
13952 | SourceLocation Loc; |
13953 | Sema::ImplicitExceptionSpecification ExceptSpec; |
13954 | |
13955 | SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD, |
13956 | CXXSpecialMemberKind CSM, |
13957 | Sema::InheritedConstructorInfo *ICI, |
13958 | SourceLocation Loc) |
13959 | : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {} |
13960 | |
13961 | bool visitBase(CXXBaseSpecifier *Base); |
13962 | bool visitField(FieldDecl *FD); |
13963 | |
13964 | void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj, |
13965 | unsigned Quals); |
13966 | |
13967 | void visitSubobjectCall(Subobject Subobj, |
13968 | Sema::SpecialMemberOverloadResult SMOR); |
13969 | }; |
13970 | } |
13971 | |
13972 | bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) { |
13973 | auto *RT = Base->getType()->getAs<RecordType>(); |
13974 | if (!RT) |
13975 | return false; |
13976 | |
13977 | auto *BaseClass = cast<CXXRecordDecl>(Val: RT->getDecl()); |
13978 | Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(Class: BaseClass); |
13979 | if (auto *BaseCtor = SMOR.getMethod()) { |
13980 | visitSubobjectCall(Subobj: Base, SMOR: BaseCtor); |
13981 | return false; |
13982 | } |
13983 | |
13984 | visitClassSubobject(Class: BaseClass, Subobj: Base, Quals: 0); |
13985 | return false; |
13986 | } |
13987 | |
13988 | bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) { |
13989 | if (CSM == CXXSpecialMemberKind::DefaultConstructor && |
13990 | FD->hasInClassInitializer()) { |
13991 | Expr *E = FD->getInClassInitializer(); |
13992 | if (!E) |
13993 | // FIXME: It's a little wasteful to build and throw away a |
13994 | // CXXDefaultInitExpr here. |
13995 | // FIXME: We should have a single context note pointing at Loc, and |
13996 | // this location should be MD->getLocation() instead, since that's |
13997 | // the location where we actually use the default init expression. |
13998 | E = S.BuildCXXDefaultInitExpr(Loc, Field: FD).get(); |
13999 | if (E) |
14000 | ExceptSpec.CalledExpr(E); |
14001 | } else if (auto *RT = S.Context.getBaseElementType(FD->getType()) |
14002 | ->getAs<RecordType>()) { |
14003 | visitClassSubobject(Class: cast<CXXRecordDecl>(RT->getDecl()), Subobj: FD, |
14004 | Quals: FD->getType().getCVRQualifiers()); |
14005 | } |
14006 | return false; |
14007 | } |
14008 | |
14009 | void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class, |
14010 | Subobject Subobj, |
14011 | unsigned Quals) { |
14012 | FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); |
14013 | bool IsMutable = Field && Field->isMutable(); |
14014 | visitSubobjectCall(Subobj, SMOR: lookupIn(Class, Quals, IsMutable)); |
14015 | } |
14016 | |
14017 | void SpecialMemberExceptionSpecInfo::visitSubobjectCall( |
14018 | Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) { |
14019 | // Note, if lookup fails, it doesn't matter what exception specification we |
14020 | // choose because the special member will be deleted. |
14021 | if (CXXMethodDecl *MD = SMOR.getMethod()) |
14022 | ExceptSpec.CalledDecl(CallLoc: getSubobjectLoc(Subobj), Method: MD); |
14023 | } |
14024 | |
14025 | bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) { |
14026 | llvm::APSInt Result; |
14027 | ExprResult Converted = CheckConvertedConstantExpression( |
14028 | ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEKind::ExplicitBool); |
14029 | ExplicitSpec.setExpr(Converted.get()); |
14030 | if (Converted.isUsable() && !Converted.get()->isValueDependent()) { |
14031 | ExplicitSpec.setKind(Result.getBoolValue() |
14032 | ? ExplicitSpecKind::ResolvedTrue |
14033 | : ExplicitSpecKind::ResolvedFalse); |
14034 | return true; |
14035 | } |
14036 | ExplicitSpec.setKind(ExplicitSpecKind::Unresolved); |
14037 | return false; |
14038 | } |
14039 | |
14040 | ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) { |
14041 | ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved); |
14042 | if (!ExplicitExpr->isTypeDependent()) |
14043 | tryResolveExplicitSpecifier(ExplicitSpec&: ES); |
14044 | return ES; |
14045 | } |
14046 | |
14047 | static Sema::ImplicitExceptionSpecification |
14048 | ComputeDefaultedSpecialMemberExceptionSpec( |
14049 | Sema &S, SourceLocation Loc, CXXMethodDecl *MD, CXXSpecialMemberKind CSM, |
14050 | Sema::InheritedConstructorInfo *ICI) { |
14051 | ComputingExceptionSpec CES(S, MD, Loc); |
14052 | |
14053 | CXXRecordDecl *ClassDecl = MD->getParent(); |
14054 | |
14055 | // C++ [except.spec]p14: |
14056 | // An implicitly declared special member function (Clause 12) shall have an |
14057 | // exception-specification. [...] |
14058 | SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation()); |
14059 | if (ClassDecl->isInvalidDecl()) |
14060 | return Info.ExceptSpec; |
14061 | |
14062 | // FIXME: If this diagnostic fires, we're probably missing a check for |
14063 | // attempting to resolve an exception specification before it's known |
14064 | // at a higher level. |
14065 | if (S.RequireCompleteType(MD->getLocation(), |
14066 | S.Context.getRecordType(ClassDecl), |
14067 | diag::err_exception_spec_incomplete_type)) |
14068 | return Info.ExceptSpec; |
14069 | |
14070 | // C++1z [except.spec]p7: |
14071 | // [Look for exceptions thrown by] a constructor selected [...] to |
14072 | // initialize a potentially constructed subobject, |
14073 | // C++1z [except.spec]p8: |
14074 | // The exception specification for an implicitly-declared destructor, or a |
14075 | // destructor without a noexcept-specifier, is potentially-throwing if and |
14076 | // only if any of the destructors for any of its potentially constructed |
14077 | // subojects is potentially throwing. |
14078 | // FIXME: We respect the first rule but ignore the "potentially constructed" |
14079 | // in the second rule to resolve a core issue (no number yet) that would have |
14080 | // us reject: |
14081 | // struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; }; |
14082 | // struct B : A {}; |
14083 | // struct C : B { void f(); }; |
14084 | // ... due to giving B::~B() a non-throwing exception specification. |
14085 | Info.visit(Bases: Info.IsConstructor ? Info.VisitPotentiallyConstructedBases |
14086 | : Info.VisitAllBases); |
14087 | |
14088 | return Info.ExceptSpec; |
14089 | } |
14090 | |
14091 | namespace { |
14092 | /// RAII object to register a special member as being currently declared. |
14093 | struct DeclaringSpecialMember { |
14094 | Sema &S; |
14095 | Sema::SpecialMemberDecl D; |
14096 | Sema::ContextRAII SavedContext; |
14097 | bool WasAlreadyBeingDeclared; |
14098 | |
14099 | DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, CXXSpecialMemberKind CSM) |
14100 | : S(S), D(RD, CSM), SavedContext(S, RD) { |
14101 | WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(Ptr: D).second; |
14102 | if (WasAlreadyBeingDeclared) |
14103 | // This almost never happens, but if it does, ensure that our cache |
14104 | // doesn't contain a stale result. |
14105 | S.SpecialMemberCache.clear(); |
14106 | else { |
14107 | // Register a note to be produced if we encounter an error while |
14108 | // declaring the special member. |
14109 | Sema::CodeSynthesisContext Ctx; |
14110 | Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember; |
14111 | // FIXME: We don't have a location to use here. Using the class's |
14112 | // location maintains the fiction that we declare all special members |
14113 | // with the class, but (1) it's not clear that lying about that helps our |
14114 | // users understand what's going on, and (2) there may be outer contexts |
14115 | // on the stack (some of which are relevant) and printing them exposes |
14116 | // our lies. |
14117 | Ctx.PointOfInstantiation = RD->getLocation(); |
14118 | Ctx.Entity = RD; |
14119 | Ctx.SpecialMember = CSM; |
14120 | S.pushCodeSynthesisContext(Ctx); |
14121 | } |
14122 | } |
14123 | ~DeclaringSpecialMember() { |
14124 | if (!WasAlreadyBeingDeclared) { |
14125 | S.SpecialMembersBeingDeclared.erase(Ptr: D); |
14126 | S.popCodeSynthesisContext(); |
14127 | } |
14128 | } |
14129 | |
14130 | /// Are we already trying to declare this special member? |
14131 | bool isAlreadyBeingDeclared() const { |
14132 | return WasAlreadyBeingDeclared; |
14133 | } |
14134 | }; |
14135 | } |
14136 | |
14137 | void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) { |
14138 | // Look up any existing declarations, but don't trigger declaration of all |
14139 | // implicit special members with this name. |
14140 | DeclarationName Name = FD->getDeclName(); |
14141 | LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName, |
14142 | RedeclarationKind::ForExternalRedeclaration); |
14143 | for (auto *D : FD->getParent()->lookup(Name)) |
14144 | if (auto *Acceptable = R.getAcceptableDecl(D)) |
14145 | R.addDecl(Acceptable); |
14146 | R.resolveKind(); |
14147 | R.suppressDiagnostics(); |
14148 | |
14149 | CheckFunctionDeclaration(S, NewFD: FD, Previous&: R, /*IsMemberSpecialization*/ false, |
14150 | DeclIsDefn: FD->isThisDeclarationADefinition()); |
14151 | } |
14152 | |
14153 | void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem, |
14154 | QualType ResultTy, |
14155 | ArrayRef<QualType> Args) { |
14156 | // Build an exception specification pointing back at this constructor. |
14157 | FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(S&: *this, MD: SpecialMem); |
14158 | |
14159 | LangAS AS = getDefaultCXXMethodAddrSpace(); |
14160 | if (AS != LangAS::Default) { |
14161 | EPI.TypeQuals.addAddressSpace(space: AS); |
14162 | } |
14163 | |
14164 | auto QT = Context.getFunctionType(ResultTy, Args, EPI); |
14165 | SpecialMem->setType(QT); |
14166 | |
14167 | // During template instantiation of implicit special member functions we need |
14168 | // a reliable TypeSourceInfo for the function prototype in order to allow |
14169 | // functions to be substituted. |
14170 | if (inTemplateInstantiation() && isLambdaMethod(SpecialMem)) { |
14171 | TypeSourceInfo *TSI = |
14172 | Context.getTrivialTypeSourceInfo(T: SpecialMem->getType()); |
14173 | SpecialMem->setTypeSourceInfo(TSI); |
14174 | } |
14175 | } |
14176 | |
14177 | CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor( |
14178 | CXXRecordDecl *ClassDecl) { |
14179 | // C++ [class.ctor]p5: |
14180 | // A default constructor for a class X is a constructor of class X |
14181 | // that can be called without an argument. If there is no |
14182 | // user-declared constructor for class X, a default constructor is |
14183 | // implicitly declared. An implicitly-declared default constructor |
14184 | // is an inline public member of its class. |
14185 | assert(ClassDecl->needsImplicitDefaultConstructor() && |
14186 | "Should not build implicit default constructor!"); |
14187 | |
14188 | DeclaringSpecialMember DSM(*this, ClassDecl, |
14189 | CXXSpecialMemberKind::DefaultConstructor); |
14190 | if (DSM.isAlreadyBeingDeclared()) |
14191 | return nullptr; |
14192 | |
14193 | bool Constexpr = defaultedSpecialMemberIsConstexpr( |
14194 | S&: *this, ClassDecl, CSM: CXXSpecialMemberKind::DefaultConstructor, ConstArg: false); |
14195 | |
14196 | // Create the actual constructor declaration. |
14197 | CanQualType ClassType |
14198 | = Context.getCanonicalType(T: Context.getTypeDeclType(ClassDecl)); |
14199 | SourceLocation ClassLoc = ClassDecl->getLocation(); |
14200 | DeclarationName Name |
14201 | = Context.DeclarationNames.getCXXConstructorName(Ty: ClassType); |
14202 | DeclarationNameInfo NameInfo(Name, ClassLoc); |
14203 | CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create( |
14204 | C&: Context, RD: ClassDecl, StartLoc: ClassLoc, NameInfo, /*Type*/ T: QualType(), |
14205 | /*TInfo=*/nullptr, ES: ExplicitSpecifier(), |
14206 | UsesFPIntrin: getCurFPFeatures().isFPConstrained(), |
14207 | /*isInline=*/true, /*isImplicitlyDeclared=*/true, |
14208 | ConstexprKind: Constexpr ? ConstexprSpecKind::Constexpr |
14209 | : ConstexprSpecKind::Unspecified); |
14210 | DefaultCon->setAccess(AS_public); |
14211 | DefaultCon->setDefaulted(); |
14212 | |
14213 | setupImplicitSpecialMemberType(SpecialMem: DefaultCon, ResultTy: Context.VoidTy, Args: {}); |
14214 | |
14215 | if (getLangOpts().CUDA) |
14216 | CUDA().inferTargetForImplicitSpecialMember( |
14217 | ClassDecl, CXXSpecialMemberKind::DefaultConstructor, DefaultCon, |
14218 | /* ConstRHS */ false, |
14219 | /* Diagnose */ false); |
14220 | |
14221 | // We don't need to use SpecialMemberIsTrivial here; triviality for default |
14222 | // constructors is easy to compute. |
14223 | DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor()); |
14224 | |
14225 | // Note that we have declared this constructor. |
14226 | ++getASTContext().NumImplicitDefaultConstructorsDeclared; |
14227 | |
14228 | Scope *S = getScopeForContext(ClassDecl); |
14229 | CheckImplicitSpecialMemberDeclaration(S, DefaultCon); |
14230 | |
14231 | if (ShouldDeleteSpecialMember(DefaultCon, |
14232 | CXXSpecialMemberKind::DefaultConstructor)) |
14233 | SetDeclDeleted(DefaultCon, ClassLoc); |
14234 | |
14235 | if (S) |
14236 | PushOnScopeChains(DefaultCon, S, false); |
14237 | ClassDecl->addDecl(DefaultCon); |
14238 | |
14239 | return DefaultCon; |
14240 | } |
14241 | |
14242 | void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, |
14243 | CXXConstructorDecl *Constructor) { |
14244 | assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() && |
14245 | !Constructor->doesThisDeclarationHaveABody() && |
14246 | !Constructor->isDeleted()) && |
14247 | "DefineImplicitDefaultConstructor - call it for implicit default ctor"); |
14248 | if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) |
14249 | return; |
14250 | |
14251 | CXXRecordDecl *ClassDecl = Constructor->getParent(); |
14252 | assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"); |
14253 | if (ClassDecl->isInvalidDecl()) { |
14254 | return; |
14255 | } |
14256 | |
14257 | SynthesizedFunctionScope Scope(*this, Constructor); |
14258 | |
14259 | // The exception specification is needed because we are defining the |
14260 | // function. |
14261 | ResolveExceptionSpec(Loc: CurrentLocation, |
14262 | FPT: Constructor->getType()->castAs<FunctionProtoType>()); |
14263 | MarkVTableUsed(Loc: CurrentLocation, Class: ClassDecl); |
14264 | |
14265 | // Add a context note for diagnostics produced after this point. |
14266 | Scope.addContextNote(UseLoc: CurrentLocation); |
14267 | |
14268 | if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) { |
14269 | Constructor->setInvalidDecl(); |
14270 | return; |
14271 | } |
14272 | |
14273 | SourceLocation Loc = Constructor->getEndLoc().isValid() |
14274 | ? Constructor->getEndLoc() |
14275 | : Constructor->getLocation(); |
14276 | Constructor->setBody(new (Context) CompoundStmt(Loc)); |
14277 | Constructor->markUsed(Context); |
14278 | |
14279 | if (ASTMutationListener *L = getASTMutationListener()) { |
14280 | L->CompletedImplicitDefinition(Constructor); |
14281 | } |
14282 | |
14283 | DiagnoseUninitializedFields(SemaRef&: *this, Constructor); |
14284 | } |
14285 | |
14286 | void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) { |
14287 | // Perform any delayed checks on exception specifications. |
14288 | CheckDelayedMemberExceptionSpecs(); |
14289 | } |
14290 | |
14291 | /// Find or create the fake constructor we synthesize to model constructing an |
14292 | /// object of a derived class via a constructor of a base class. |
14293 | CXXConstructorDecl * |
14294 | Sema::findInheritingConstructor(SourceLocation Loc, |
14295 | CXXConstructorDecl *BaseCtor, |
14296 | ConstructorUsingShadowDecl *Shadow) { |
14297 | CXXRecordDecl *Derived = Shadow->getParent(); |
14298 | SourceLocation UsingLoc = Shadow->getLocation(); |
14299 | |
14300 | // FIXME: Add a new kind of DeclarationName for an inherited constructor. |
14301 | // For now we use the name of the base class constructor as a member of the |
14302 | // derived class to indicate a (fake) inherited constructor name. |
14303 | DeclarationName Name = BaseCtor->getDeclName(); |
14304 | |
14305 | // Check to see if we already have a fake constructor for this inherited |
14306 | // constructor call. |
14307 | for (NamedDecl *Ctor : Derived->lookup(Name)) |
14308 | if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor) |
14309 | ->getInheritedConstructor() |
14310 | .getConstructor(), |
14311 | BaseCtor)) |
14312 | return cast<CXXConstructorDecl>(Ctor); |
14313 | |
14314 | DeclarationNameInfo NameInfo(Name, UsingLoc); |
14315 | TypeSourceInfo *TInfo = |
14316 | Context.getTrivialTypeSourceInfo(T: BaseCtor->getType(), Loc: UsingLoc); |
14317 | FunctionProtoTypeLoc ProtoLoc = |
14318 | TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>(); |
14319 | |
14320 | // Check the inherited constructor is valid and find the list of base classes |
14321 | // from which it was inherited. |
14322 | InheritedConstructorInfo ICI(*this, Loc, Shadow); |
14323 | |
14324 | bool Constexpr = BaseCtor->isConstexpr() && |
14325 | defaultedSpecialMemberIsConstexpr( |
14326 | S&: *this, ClassDecl: Derived, CSM: CXXSpecialMemberKind::DefaultConstructor, |
14327 | ConstArg: false, InheritedCtor: BaseCtor, Inherited: &ICI); |
14328 | |
14329 | CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create( |
14330 | C&: Context, RD: Derived, StartLoc: UsingLoc, NameInfo, T: TInfo->getType(), TInfo, |
14331 | ES: BaseCtor->getExplicitSpecifier(), UsesFPIntrin: getCurFPFeatures().isFPConstrained(), |
14332 | /*isInline=*/true, |
14333 | /*isImplicitlyDeclared=*/true, |
14334 | ConstexprKind: Constexpr ? BaseCtor->getConstexprKind() : ConstexprSpecKind::Unspecified, |
14335 | Inherited: InheritedConstructor(Shadow, BaseCtor), |
14336 | TrailingRequiresClause: BaseCtor->getTrailingRequiresClause()); |
14337 | if (Shadow->isInvalidDecl()) |
14338 | DerivedCtor->setInvalidDecl(); |
14339 | |
14340 | // Build an unevaluated exception specification for this fake constructor. |
14341 | const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>(); |
14342 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
14343 | EPI.ExceptionSpec.Type = EST_Unevaluated; |
14344 | EPI.ExceptionSpec.SourceDecl = DerivedCtor; |
14345 | DerivedCtor->setType(Context.getFunctionType(ResultTy: FPT->getReturnType(), |
14346 | Args: FPT->getParamTypes(), EPI)); |
14347 | |
14348 | // Build the parameter declarations. |
14349 | SmallVector<ParmVarDecl *, 16> ParamDecls; |
14350 | for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) { |
14351 | TypeSourceInfo *TInfo = |
14352 | Context.getTrivialTypeSourceInfo(T: FPT->getParamType(i: I), Loc: UsingLoc); |
14353 | ParmVarDecl *PD = ParmVarDecl::Create( |
14354 | Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr, |
14355 | FPT->getParamType(i: I), TInfo, SC_None, /*DefArg=*/nullptr); |
14356 | PD->setScopeInfo(scopeDepth: 0, parameterIndex: I); |
14357 | PD->setImplicit(); |
14358 | // Ensure attributes are propagated onto parameters (this matters for |
14359 | // format, pass_object_size, ...). |
14360 | mergeDeclAttributes(New: PD, Old: BaseCtor->getParamDecl(I)); |
14361 | ParamDecls.push_back(Elt: PD); |
14362 | ProtoLoc.setParam(I, PD); |
14363 | } |
14364 | |
14365 | // Set up the new constructor. |
14366 | assert(!BaseCtor->isDeleted() && "should not use deleted constructor"); |
14367 | DerivedCtor->setAccess(BaseCtor->getAccess()); |
14368 | DerivedCtor->setParams(ParamDecls); |
14369 | Derived->addDecl(DerivedCtor); |
14370 | |
14371 | if (ShouldDeleteSpecialMember(DerivedCtor, |
14372 | CXXSpecialMemberKind::DefaultConstructor, &ICI)) |
14373 | SetDeclDeleted(DerivedCtor, UsingLoc); |
14374 | |
14375 | return DerivedCtor; |
14376 | } |
14377 | |
14378 | void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) { |
14379 | InheritedConstructorInfo ICI(*this, Ctor->getLocation(), |
14380 | Ctor->getInheritedConstructor().getShadowDecl()); |
14381 | ShouldDeleteSpecialMember(Ctor, CXXSpecialMemberKind::DefaultConstructor, |
14382 | &ICI, |
14383 | /*Diagnose*/ true); |
14384 | } |
14385 | |
14386 | void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation, |
14387 | CXXConstructorDecl *Constructor) { |
14388 | CXXRecordDecl *ClassDecl = Constructor->getParent(); |
14389 | assert(Constructor->getInheritedConstructor() && |
14390 | !Constructor->doesThisDeclarationHaveABody() && |
14391 | !Constructor->isDeleted()); |
14392 | if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) |
14393 | return; |
14394 | |
14395 | // Initializations are performed "as if by a defaulted default constructor", |
14396 | // so enter the appropriate scope. |
14397 | SynthesizedFunctionScope Scope(*this, Constructor); |
14398 | |
14399 | // The exception specification is needed because we are defining the |
14400 | // function. |
14401 | ResolveExceptionSpec(Loc: CurrentLocation, |
14402 | FPT: Constructor->getType()->castAs<FunctionProtoType>()); |
14403 | MarkVTableUsed(Loc: CurrentLocation, Class: ClassDecl); |
14404 | |
14405 | // Add a context note for diagnostics produced after this point. |
14406 | Scope.addContextNote(UseLoc: CurrentLocation); |
14407 | |
14408 | ConstructorUsingShadowDecl *Shadow = |
14409 | Constructor->getInheritedConstructor().getShadowDecl(); |
14410 | CXXConstructorDecl *InheritedCtor = |
14411 | Constructor->getInheritedConstructor().getConstructor(); |
14412 | |
14413 | // [class.inhctor.init]p1: |
14414 | // initialization proceeds as if a defaulted default constructor is used to |
14415 | // initialize the D object and each base class subobject from which the |
14416 | // constructor was inherited |
14417 | |
14418 | InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow); |
14419 | CXXRecordDecl *RD = Shadow->getParent(); |
14420 | SourceLocation InitLoc = Shadow->getLocation(); |
14421 | |
14422 | // Build explicit initializers for all base classes from which the |
14423 | // constructor was inherited. |
14424 | SmallVector<CXXCtorInitializer*, 8> Inits; |
14425 | for (bool VBase : {false, true}) { |
14426 | for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) { |
14427 | if (B.isVirtual() != VBase) |
14428 | continue; |
14429 | |
14430 | auto *BaseRD = B.getType()->getAsCXXRecordDecl(); |
14431 | if (!BaseRD) |
14432 | continue; |
14433 | |
14434 | auto BaseCtor = ICI.findConstructorForBase(Base: BaseRD, Ctor: InheritedCtor); |
14435 | if (!BaseCtor.first) |
14436 | continue; |
14437 | |
14438 | MarkFunctionReferenced(CurrentLocation, BaseCtor.first); |
14439 | ExprResult Init = new (Context) CXXInheritedCtorInitExpr( |
14440 | InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second); |
14441 | |
14442 | auto *TInfo = Context.getTrivialTypeSourceInfo(T: B.getType(), Loc: InitLoc); |
14443 | Inits.push_back(Elt: new (Context) CXXCtorInitializer( |
14444 | Context, TInfo, VBase, InitLoc, Init.get(), InitLoc, |
14445 | SourceLocation())); |
14446 | } |
14447 | } |
14448 | |
14449 | // We now proceed as if for a defaulted default constructor, with the relevant |
14450 | // initializers replaced. |
14451 | |
14452 | if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Initializers: Inits)) { |
14453 | Constructor->setInvalidDecl(); |
14454 | return; |
14455 | } |
14456 | |
14457 | Constructor->setBody(new (Context) CompoundStmt(InitLoc)); |
14458 | Constructor->markUsed(Context); |
14459 | |
14460 | if (ASTMutationListener *L = getASTMutationListener()) { |
14461 | L->CompletedImplicitDefinition(Constructor); |
14462 | } |
14463 | |
14464 | DiagnoseUninitializedFields(SemaRef&: *this, Constructor); |
14465 | } |
14466 | |
14467 | CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) { |
14468 | // C++ [class.dtor]p2: |
14469 | // If a class has no user-declared destructor, a destructor is |
14470 | // declared implicitly. An implicitly-declared destructor is an |
14471 | // inline public member of its class. |
14472 | assert(ClassDecl->needsImplicitDestructor()); |
14473 | |
14474 | DeclaringSpecialMember DSM(*this, ClassDecl, |
14475 | CXXSpecialMemberKind::Destructor); |
14476 | if (DSM.isAlreadyBeingDeclared()) |
14477 | return nullptr; |
14478 | |
14479 | bool Constexpr = defaultedSpecialMemberIsConstexpr( |
14480 | S&: *this, ClassDecl, CSM: CXXSpecialMemberKind::Destructor, ConstArg: false); |
14481 | |
14482 | // Create the actual destructor declaration. |
14483 | CanQualType ClassType |
14484 | = Context.getCanonicalType(T: Context.getTypeDeclType(ClassDecl)); |
14485 | SourceLocation ClassLoc = ClassDecl->getLocation(); |
14486 | DeclarationName Name |
14487 | = Context.DeclarationNames.getCXXDestructorName(Ty: ClassType); |
14488 | DeclarationNameInfo NameInfo(Name, ClassLoc); |
14489 | CXXDestructorDecl *Destructor = CXXDestructorDecl::Create( |
14490 | C&: Context, RD: ClassDecl, StartLoc: ClassLoc, NameInfo, T: QualType(), TInfo: nullptr, |
14491 | UsesFPIntrin: getCurFPFeatures().isFPConstrained(), |
14492 | /*isInline=*/true, |
14493 | /*isImplicitlyDeclared=*/true, |
14494 | ConstexprKind: Constexpr ? ConstexprSpecKind::Constexpr |
14495 | : ConstexprSpecKind::Unspecified); |
14496 | Destructor->setAccess(AS_public); |
14497 | Destructor->setDefaulted(); |
14498 | |
14499 | setupImplicitSpecialMemberType(SpecialMem: Destructor, ResultTy: Context.VoidTy, Args: {}); |
14500 | |
14501 | if (getLangOpts().CUDA) |
14502 | CUDA().inferTargetForImplicitSpecialMember( |
14503 | ClassDecl, CXXSpecialMemberKind::Destructor, Destructor, |
14504 | /* ConstRHS */ false, |
14505 | /* Diagnose */ false); |
14506 | |
14507 | // We don't need to use SpecialMemberIsTrivial here; triviality for |
14508 | // destructors is easy to compute. |
14509 | Destructor->setTrivial(ClassDecl->hasTrivialDestructor()); |
14510 | Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() || |
14511 | ClassDecl->hasTrivialDestructorForCall()); |
14512 | |
14513 | // Note that we have declared this destructor. |
14514 | ++getASTContext().NumImplicitDestructorsDeclared; |
14515 | |
14516 | Scope *S = getScopeForContext(ClassDecl); |
14517 | CheckImplicitSpecialMemberDeclaration(S, Destructor); |
14518 | |
14519 | // We can't check whether an implicit destructor is deleted before we complete |
14520 | // the definition of the class, because its validity depends on the alignment |
14521 | // of the class. We'll check this from ActOnFields once the class is complete. |
14522 | if (ClassDecl->isCompleteDefinition() && |
14523 | ShouldDeleteSpecialMember(Destructor, CXXSpecialMemberKind::Destructor)) |
14524 | SetDeclDeleted(Destructor, ClassLoc); |
14525 | |
14526 | // Introduce this destructor into its scope. |
14527 | if (S) |
14528 | PushOnScopeChains(Destructor, S, false); |
14529 | ClassDecl->addDecl(Destructor); |
14530 | |
14531 | return Destructor; |
14532 | } |
14533 | |
14534 | void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation, |
14535 | CXXDestructorDecl *Destructor) { |
14536 | assert((Destructor->isDefaulted() && |
14537 | !Destructor->doesThisDeclarationHaveABody() && |
14538 | !Destructor->isDeleted()) && |
14539 | "DefineImplicitDestructor - call it for implicit default dtor"); |
14540 | if (Destructor->willHaveBody() || Destructor->isInvalidDecl()) |
14541 | return; |
14542 | |
14543 | CXXRecordDecl *ClassDecl = Destructor->getParent(); |
14544 | assert(ClassDecl && "DefineImplicitDestructor - invalid destructor"); |
14545 | |
14546 | SynthesizedFunctionScope Scope(*this, Destructor); |
14547 | |
14548 | // The exception specification is needed because we are defining the |
14549 | // function. |
14550 | ResolveExceptionSpec(Loc: CurrentLocation, |
14551 | FPT: Destructor->getType()->castAs<FunctionProtoType>()); |
14552 | MarkVTableUsed(Loc: CurrentLocation, Class: ClassDecl); |
14553 | |
14554 | // Add a context note for diagnostics produced after this point. |
14555 | Scope.addContextNote(UseLoc: CurrentLocation); |
14556 | |
14557 | MarkBaseAndMemberDestructorsReferenced(Location: Destructor->getLocation(), |
14558 | ClassDecl: Destructor->getParent()); |
14559 | |
14560 | if (CheckDestructor(Destructor)) { |
14561 | Destructor->setInvalidDecl(); |
14562 | return; |
14563 | } |
14564 | |
14565 | SourceLocation Loc = Destructor->getEndLoc().isValid() |
14566 | ? Destructor->getEndLoc() |
14567 | : Destructor->getLocation(); |
14568 | Destructor->setBody(new (Context) CompoundStmt(Loc)); |
14569 | Destructor->markUsed(Context); |
14570 | |
14571 | if (ASTMutationListener *L = getASTMutationListener()) { |
14572 | L->CompletedImplicitDefinition(Destructor); |
14573 | } |
14574 | } |
14575 | |
14576 | void Sema::CheckCompleteDestructorVariant(SourceLocation CurrentLocation, |
14577 | CXXDestructorDecl *Destructor) { |
14578 | if (Destructor->isInvalidDecl()) |
14579 | return; |
14580 | |
14581 | CXXRecordDecl *ClassDecl = Destructor->getParent(); |
14582 | assert(Context.getTargetInfo().getCXXABI().isMicrosoft() && |
14583 | "implicit complete dtors unneeded outside MS ABI"); |
14584 | assert(ClassDecl->getNumVBases() > 0 && |
14585 | "complete dtor only exists for classes with vbases"); |
14586 | |
14587 | SynthesizedFunctionScope Scope(*this, Destructor); |
14588 | |
14589 | // Add a context note for diagnostics produced after this point. |
14590 | Scope.addContextNote(UseLoc: CurrentLocation); |
14591 | |
14592 | MarkVirtualBaseDestructorsReferenced(Location: Destructor->getLocation(), ClassDecl); |
14593 | } |
14594 | |
14595 | void Sema::ActOnFinishCXXMemberDecls() { |
14596 | // If the context is an invalid C++ class, just suppress these checks. |
14597 | if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: CurContext)) { |
14598 | if (Record->isInvalidDecl()) { |
14599 | DelayedOverridingExceptionSpecChecks.clear(); |
14600 | DelayedEquivalentExceptionSpecChecks.clear(); |
14601 | return; |
14602 | } |
14603 | checkForMultipleExportedDefaultConstructors(S&: *this, Class: Record); |
14604 | } |
14605 | } |
14606 | |
14607 | void Sema::ActOnFinishCXXNonNestedClass() { |
14608 | referenceDLLExportedClassMethods(); |
14609 | |
14610 | if (!DelayedDllExportMemberFunctions.empty()) { |
14611 | SmallVector<CXXMethodDecl*, 4> WorkList; |
14612 | std::swap(LHS&: DelayedDllExportMemberFunctions, RHS&: WorkList); |
14613 | for (CXXMethodDecl *M : WorkList) { |
14614 | DefineDefaultedFunction(*this, M, M->getLocation()); |
14615 | |
14616 | // Pass the method to the consumer to get emitted. This is not necessary |
14617 | // for explicit instantiation definitions, as they will get emitted |
14618 | // anyway. |
14619 | if (M->getParent()->getTemplateSpecializationKind() != |
14620 | TSK_ExplicitInstantiationDefinition) |
14621 | ActOnFinishInlineFunctionDef(M); |
14622 | } |
14623 | } |
14624 | } |
14625 | |
14626 | void Sema::referenceDLLExportedClassMethods() { |
14627 | if (!DelayedDllExportClasses.empty()) { |
14628 | // Calling ReferenceDllExportedMembers might cause the current function to |
14629 | // be called again, so use a local copy of DelayedDllExportClasses. |
14630 | SmallVector<CXXRecordDecl *, 4> WorkList; |
14631 | std::swap(LHS&: DelayedDllExportClasses, RHS&: WorkList); |
14632 | for (CXXRecordDecl *Class : WorkList) |
14633 | ReferenceDllExportedMembers(S&: *this, Class); |
14634 | } |
14635 | } |
14636 | |
14637 | void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) { |
14638 | assert(getLangOpts().CPlusPlus11 && |
14639 | "adjusting dtor exception specs was introduced in c++11"); |
14640 | |
14641 | if (Destructor->isDependentContext()) |
14642 | return; |
14643 | |
14644 | // C++11 [class.dtor]p3: |
14645 | // A declaration of a destructor that does not have an exception- |
14646 | // specification is implicitly considered to have the same exception- |
14647 | // specification as an implicit declaration. |
14648 | const auto *DtorType = Destructor->getType()->castAs<FunctionProtoType>(); |
14649 | if (DtorType->hasExceptionSpec()) |
14650 | return; |
14651 | |
14652 | // Replace the destructor's type, building off the existing one. Fortunately, |
14653 | // the only thing of interest in the destructor type is its extended info. |
14654 | // The return and arguments are fixed. |
14655 | FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo(); |
14656 | EPI.ExceptionSpec.Type = EST_Unevaluated; |
14657 | EPI.ExceptionSpec.SourceDecl = Destructor; |
14658 | Destructor->setType(Context.getFunctionType(ResultTy: Context.VoidTy, Args: {}, EPI)); |
14659 | |
14660 | // FIXME: If the destructor has a body that could throw, and the newly created |
14661 | // spec doesn't allow exceptions, we should emit a warning, because this |
14662 | // change in behavior can break conforming C++03 programs at runtime. |
14663 | // However, we don't have a body or an exception specification yet, so it |
14664 | // needs to be done somewhere else. |
14665 | } |
14666 | |
14667 | namespace { |
14668 | /// An abstract base class for all helper classes used in building the |
14669 | // copy/move operators. These classes serve as factory functions and help us |
14670 | // avoid using the same Expr* in the AST twice. |
14671 | class ExprBuilder { |
14672 | ExprBuilder(const ExprBuilder&) = delete; |
14673 | ExprBuilder &operator=(const ExprBuilder&) = delete; |
14674 | |
14675 | protected: |
14676 | static Expr *assertNotNull(Expr *E) { |
14677 | assert(E && "Expression construction must not fail."); |
14678 | return E; |
14679 | } |
14680 | |
14681 | public: |
14682 | ExprBuilder() {} |
14683 | virtual ~ExprBuilder() {} |
14684 | |
14685 | virtual Expr *build(Sema &S, SourceLocation Loc) const = 0; |
14686 | }; |
14687 | |
14688 | class RefBuilder: public ExprBuilder { |
14689 | VarDecl *Var; |
14690 | QualType VarType; |
14691 | |
14692 | public: |
14693 | Expr *build(Sema &S, SourceLocation Loc) const override { |
14694 | return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc)); |
14695 | } |
14696 | |
14697 | RefBuilder(VarDecl *Var, QualType VarType) |
14698 | : Var(Var), VarType(VarType) {} |
14699 | }; |
14700 | |
14701 | class ThisBuilder: public ExprBuilder { |
14702 | public: |
14703 | Expr *build(Sema &S, SourceLocation Loc) const override { |
14704 | return assertNotNull(E: S.ActOnCXXThis(Loc).getAs<Expr>()); |
14705 | } |
14706 | }; |
14707 | |
14708 | class CastBuilder: public ExprBuilder { |
14709 | const ExprBuilder &Builder; |
14710 | QualType Type; |
14711 | ExprValueKind Kind; |
14712 | const CXXCastPath &Path; |
14713 | |
14714 | public: |
14715 | Expr *build(Sema &S, SourceLocation Loc) const override { |
14716 | return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type, |
14717 | CK_UncheckedDerivedToBase, Kind, |
14718 | &Path).get()); |
14719 | } |
14720 | |
14721 | CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind, |
14722 | const CXXCastPath &Path) |
14723 | : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {} |
14724 | }; |
14725 | |
14726 | class DerefBuilder: public ExprBuilder { |
14727 | const ExprBuilder &Builder; |
14728 | |
14729 | public: |
14730 | Expr *build(Sema &S, SourceLocation Loc) const override { |
14731 | return assertNotNull( |
14732 | E: S.CreateBuiltinUnaryOp(OpLoc: Loc, Opc: UO_Deref, InputExpr: Builder.build(S, Loc)).get()); |
14733 | } |
14734 | |
14735 | DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {} |
14736 | }; |
14737 | |
14738 | class MemberBuilder: public ExprBuilder { |
14739 | const ExprBuilder &Builder; |
14740 | QualType Type; |
14741 | CXXScopeSpec SS; |
14742 | bool IsArrow; |
14743 | LookupResult &MemberLookup; |
14744 | |
14745 | public: |
14746 | Expr *build(Sema &S, SourceLocation Loc) const override { |
14747 | return assertNotNull(S.BuildMemberReferenceExpr( |
14748 | Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(), |
14749 | nullptr, MemberLookup, nullptr, nullptr).get()); |
14750 | } |
14751 | |
14752 | MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow, |
14753 | LookupResult &MemberLookup) |
14754 | : Builder(Builder), Type(Type), IsArrow(IsArrow), |
14755 | MemberLookup(MemberLookup) {} |
14756 | }; |
14757 | |
14758 | class MoveCastBuilder: public ExprBuilder { |
14759 | const ExprBuilder &Builder; |
14760 | |
14761 | public: |
14762 | Expr *build(Sema &S, SourceLocation Loc) const override { |
14763 | return assertNotNull(E: CastForMoving(SemaRef&: S, E: Builder.build(S, Loc))); |
14764 | } |
14765 | |
14766 | MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {} |
14767 | }; |
14768 | |
14769 | class LvalueConvBuilder: public ExprBuilder { |
14770 | const ExprBuilder &Builder; |
14771 | |
14772 | public: |
14773 | Expr *build(Sema &S, SourceLocation Loc) const override { |
14774 | return assertNotNull( |
14775 | E: S.DefaultLvalueConversion(E: Builder.build(S, Loc)).get()); |
14776 | } |
14777 | |
14778 | LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {} |
14779 | }; |
14780 | |
14781 | class SubscriptBuilder: public ExprBuilder { |
14782 | const ExprBuilder &Base; |
14783 | const ExprBuilder &Index; |
14784 | |
14785 | public: |
14786 | Expr *build(Sema &S, SourceLocation Loc) const override { |
14787 | return assertNotNull(E: S.CreateBuiltinArraySubscriptExpr( |
14788 | Base: Base.build(S, Loc), LLoc: Loc, Idx: Index.build(S, Loc), RLoc: Loc).get()); |
14789 | } |
14790 | |
14791 | SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index) |
14792 | : Base(Base), Index(Index) {} |
14793 | }; |
14794 | |
14795 | } // end anonymous namespace |
14796 | |
14797 | /// When generating a defaulted copy or move assignment operator, if a field |
14798 | /// should be copied with __builtin_memcpy rather than via explicit assignments, |
14799 | /// do so. This optimization only applies for arrays of scalars, and for arrays |
14800 | /// of class type where the selected copy/move-assignment operator is trivial. |
14801 | static StmtResult |
14802 | buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T, |
14803 | const ExprBuilder &ToB, const ExprBuilder &FromB) { |
14804 | // Compute the size of the memory buffer to be copied. |
14805 | QualType SizeType = S.Context.getSizeType(); |
14806 | llvm::APInt Size(S.Context.getTypeSize(T: SizeType), |
14807 | S.Context.getTypeSizeInChars(T).getQuantity()); |
14808 | |
14809 | // Take the address of the field references for "from" and "to". We |
14810 | // directly construct UnaryOperators here because semantic analysis |
14811 | // does not permit us to take the address of an xvalue. |
14812 | Expr *From = FromB.build(S, Loc); |
14813 | From = UnaryOperator::Create( |
14814 | C: S.Context, input: From, opc: UO_AddrOf, type: S.Context.getPointerType(T: From->getType()), |
14815 | VK: VK_PRValue, OK: OK_Ordinary, l: Loc, CanOverflow: false, FPFeatures: S.CurFPFeatureOverrides()); |
14816 | Expr *To = ToB.build(S, Loc); |
14817 | To = UnaryOperator::Create( |
14818 | C: S.Context, input: To, opc: UO_AddrOf, type: S.Context.getPointerType(T: To->getType()), |
14819 | VK: VK_PRValue, OK: OK_Ordinary, l: Loc, CanOverflow: false, FPFeatures: S.CurFPFeatureOverrides()); |
14820 | |
14821 | const Type *E = T->getBaseElementTypeUnsafe(); |
14822 | bool NeedsCollectableMemCpy = |
14823 | E->isRecordType() && |
14824 | E->castAs<RecordType>()->getDecl()->hasObjectMember(); |
14825 | |
14826 | // Create a reference to the __builtin_objc_memmove_collectable function |
14827 | StringRef MemCpyName = NeedsCollectableMemCpy ? |
14828 | "__builtin_objc_memmove_collectable": |
14829 | "__builtin_memcpy"; |
14830 | LookupResult R(S, &S.Context.Idents.get(Name: MemCpyName), Loc, |
14831 | Sema::LookupOrdinaryName); |
14832 | S.LookupName(R, S: S.TUScope, AllowBuiltinCreation: true); |
14833 | |
14834 | FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>(); |
14835 | if (!MemCpy) |
14836 | // Something went horribly wrong earlier, and we will have complained |
14837 | // about it. |
14838 | return StmtError(); |
14839 | |
14840 | ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy, |
14841 | VK_PRValue, Loc, nullptr); |
14842 | assert(MemCpyRef.isUsable() && "Builtin reference cannot fail"); |
14843 | |
14844 | Expr *CallArgs[] = { |
14845 | To, From, IntegerLiteral::Create(C: S.Context, V: Size, type: SizeType, l: Loc) |
14846 | }; |
14847 | ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(), |
14848 | Loc, CallArgs, Loc); |
14849 | |
14850 | assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!"); |
14851 | return Call.getAs<Stmt>(); |
14852 | } |
14853 | |
14854 | /// Builds a statement that copies/moves the given entity from \p From to |
14855 | /// \c To. |
14856 | /// |
14857 | /// This routine is used to copy/move the members of a class with an |
14858 | /// implicitly-declared copy/move assignment operator. When the entities being |
14859 | /// copied are arrays, this routine builds for loops to copy them. |
14860 | /// |
14861 | /// \param S The Sema object used for type-checking. |
14862 | /// |
14863 | /// \param Loc The location where the implicit copy/move is being generated. |
14864 | /// |
14865 | /// \param T The type of the expressions being copied/moved. Both expressions |
14866 | /// must have this type. |
14867 | /// |
14868 | /// \param To The expression we are copying/moving to. |
14869 | /// |
14870 | /// \param From The expression we are copying/moving from. |
14871 | /// |
14872 | /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject. |
14873 | /// Otherwise, it's a non-static member subobject. |
14874 | /// |
14875 | /// \param Copying Whether we're copying or moving. |
14876 | /// |
14877 | /// \param Depth Internal parameter recording the depth of the recursion. |
14878 | /// |
14879 | /// \returns A statement or a loop that copies the expressions, or StmtResult(0) |
14880 | /// if a memcpy should be used instead. |
14881 | static StmtResult |
14882 | buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T, |
14883 | const ExprBuilder &To, const ExprBuilder &From, |
14884 | bool CopyingBaseSubobject, bool Copying, |
14885 | unsigned Depth = 0) { |
14886 | // C++11 [class.copy]p28: |
14887 | // Each subobject is assigned in the manner appropriate to its type: |
14888 | // |
14889 | // - if the subobject is of class type, as if by a call to operator= with |
14890 | // the subobject as the object expression and the corresponding |
14891 | // subobject of x as a single function argument (as if by explicit |
14892 | // qualification; that is, ignoring any possible virtual overriding |
14893 | // functions in more derived classes); |
14894 | // |
14895 | // C++03 [class.copy]p13: |
14896 | // - if the subobject is of class type, the copy assignment operator for |
14897 | // the class is used (as if by explicit qualification; that is, |
14898 | // ignoring any possible virtual overriding functions in more derived |
14899 | // classes); |
14900 | if (const RecordType *RecordTy = T->getAs<RecordType>()) { |
14901 | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Val: RecordTy->getDecl()); |
14902 | |
14903 | // Look for operator=. |
14904 | DeclarationName Name |
14905 | = S.Context.DeclarationNames.getCXXOperatorName(Op: OO_Equal); |
14906 | LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName); |
14907 | S.LookupQualifiedName(OpLookup, ClassDecl, false); |
14908 | |
14909 | // Prior to C++11, filter out any result that isn't a copy/move-assignment |
14910 | // operator. |
14911 | if (!S.getLangOpts().CPlusPlus11) { |
14912 | LookupResult::Filter F = OpLookup.makeFilter(); |
14913 | while (F.hasNext()) { |
14914 | NamedDecl *D = F.next(); |
14915 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: D)) |
14916 | if (Method->isCopyAssignmentOperator() || |
14917 | (!Copying && Method->isMoveAssignmentOperator())) |
14918 | continue; |
14919 | |
14920 | F.erase(); |
14921 | } |
14922 | F.done(); |
14923 | } |
14924 | |
14925 | // Suppress the protected check (C++ [class.protected]) for each of the |
14926 | // assignment operators we found. This strange dance is required when |
14927 | // we're assigning via a base classes's copy-assignment operator. To |
14928 | // ensure that we're getting the right base class subobject (without |
14929 | // ambiguities), we need to cast "this" to that subobject type; to |
14930 | // ensure that we don't go through the virtual call mechanism, we need |
14931 | // to qualify the operator= name with the base class (see below). However, |
14932 | // this means that if the base class has a protected copy assignment |
14933 | // operator, the protected member access check will fail. So, we |
14934 | // rewrite "protected" access to "public" access in this case, since we |
14935 | // know by construction that we're calling from a derived class. |
14936 | if (CopyingBaseSubobject) { |
14937 | for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end(); |
14938 | L != LEnd; ++L) { |
14939 | if (L.getAccess() == AS_protected) |
14940 | L.setAccess(AS_public); |
14941 | } |
14942 | } |
14943 | |
14944 | // Create the nested-name-specifier that will be used to qualify the |
14945 | // reference to operator=; this is required to suppress the virtual |
14946 | // call mechanism. |
14947 | CXXScopeSpec SS; |
14948 | const Type *CanonicalT = S.Context.getCanonicalType(T: T.getTypePtr()); |
14949 | SS.MakeTrivial(Context&: S.Context, |
14950 | Qualifier: NestedNameSpecifier::Create(Context: S.Context, Prefix: nullptr, T: CanonicalT), |
14951 | R: Loc); |
14952 | |
14953 | // Create the reference to operator=. |
14954 | ExprResult OpEqualRef |
14955 | = S.BuildMemberReferenceExpr(Base: To.build(S, Loc), BaseType: T, OpLoc: Loc, /*IsArrow=*/false, |
14956 | SS, /*TemplateKWLoc=*/SourceLocation(), |
14957 | /*FirstQualifierInScope=*/nullptr, |
14958 | R&: OpLookup, |
14959 | /*TemplateArgs=*/nullptr, /*S*/nullptr, |
14960 | /*SuppressQualifierCheck=*/true); |
14961 | if (OpEqualRef.isInvalid()) |
14962 | return StmtError(); |
14963 | |
14964 | // Build the call to the assignment operator. |
14965 | |
14966 | Expr *FromInst = From.build(S, Loc); |
14967 | ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/S: nullptr, |
14968 | MemExpr: OpEqualRef.getAs<Expr>(), |
14969 | LParenLoc: Loc, Args: FromInst, RParenLoc: Loc); |
14970 | if (Call.isInvalid()) |
14971 | return StmtError(); |
14972 | |
14973 | // If we built a call to a trivial 'operator=' while copying an array, |
14974 | // bail out. We'll replace the whole shebang with a memcpy. |
14975 | CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Val: Call.get()); |
14976 | if (CE && CE->getMethodDecl()->isTrivial() && Depth) |
14977 | return StmtResult((Stmt*)nullptr); |
14978 | |
14979 | // Convert to an expression-statement, and clean up any produced |
14980 | // temporaries. |
14981 | return S.ActOnExprStmt(Arg: Call); |
14982 | } |
14983 | |
14984 | // - if the subobject is of scalar type, the built-in assignment |
14985 | // operator is used. |
14986 | const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T); |
14987 | if (!ArrayTy) { |
14988 | ExprResult Assignment = S.CreateBuiltinBinOp( |
14989 | OpLoc: Loc, Opc: BO_Assign, LHSExpr: To.build(S, Loc), RHSExpr: From.build(S, Loc)); |
14990 | if (Assignment.isInvalid()) |
14991 | return StmtError(); |
14992 | return S.ActOnExprStmt(Arg: Assignment); |
14993 | } |
14994 | |
14995 | // - if the subobject is an array, each element is assigned, in the |
14996 | // manner appropriate to the element type; |
14997 | |
14998 | // Construct a loop over the array bounds, e.g., |
14999 | // |
15000 | // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0) |
15001 | // |
15002 | // that will copy each of the array elements. |
15003 | QualType SizeType = S.Context.getSizeType(); |
15004 | |
15005 | // Create the iteration variable. |
15006 | IdentifierInfo *IterationVarName = nullptr; |
15007 | { |
15008 | SmallString<8> Str; |
15009 | llvm::raw_svector_ostream OS(Str); |
15010 | OS << "__i"<< Depth; |
15011 | IterationVarName = &S.Context.Idents.get(Name: OS.str()); |
15012 | } |
15013 | VarDecl *IterationVar = VarDecl::Create(C&: S.Context, DC: S.CurContext, StartLoc: Loc, IdLoc: Loc, |
15014 | Id: IterationVarName, T: SizeType, |
15015 | TInfo: S.Context.getTrivialTypeSourceInfo(T: SizeType, Loc), |
15016 | S: SC_None); |
15017 | |
15018 | // Initialize the iteration variable to zero. |
15019 | llvm::APInt Zero(S.Context.getTypeSize(T: SizeType), 0); |
15020 | IterationVar->setInit(IntegerLiteral::Create(C: S.Context, V: Zero, type: SizeType, l: Loc)); |
15021 | |
15022 | // Creates a reference to the iteration variable. |
15023 | RefBuilder IterationVarRef(IterationVar, SizeType); |
15024 | LvalueConvBuilder IterationVarRefRVal(IterationVarRef); |
15025 | |
15026 | // Create the DeclStmt that holds the iteration variable. |
15027 | Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc); |
15028 | |
15029 | // Subscript the "from" and "to" expressions with the iteration variable. |
15030 | SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal); |
15031 | MoveCastBuilder FromIndexMove(FromIndexCopy); |
15032 | const ExprBuilder *FromIndex; |
15033 | if (Copying) |
15034 | FromIndex = &FromIndexCopy; |
15035 | else |
15036 | FromIndex = &FromIndexMove; |
15037 | |
15038 | SubscriptBuilder ToIndex(To, IterationVarRefRVal); |
15039 | |
15040 | // Build the copy/move for an individual element of the array. |
15041 | StmtResult Copy = |
15042 | buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(), |
15043 | ToIndex, *FromIndex, CopyingBaseSubobject, |
15044 | Copying, Depth + 1); |
15045 | // Bail out if copying fails or if we determined that we should use memcpy. |
15046 | if (Copy.isInvalid() || !Copy.get()) |
15047 | return Copy; |
15048 | |
15049 | // Create the comparison against the array bound. |
15050 | llvm::APInt Upper |
15051 | = ArrayTy->getSize().zextOrTrunc(width: S.Context.getTypeSize(T: SizeType)); |
15052 | Expr *Comparison = BinaryOperator::Create( |
15053 | C: S.Context, lhs: IterationVarRefRVal.build(S, Loc), |
15054 | rhs: IntegerLiteral::Create(C: S.Context, V: Upper, type: SizeType, l: Loc), opc: BO_NE, |
15055 | ResTy: S.Context.BoolTy, VK: VK_PRValue, OK: OK_Ordinary, opLoc: Loc, |
15056 | FPFeatures: S.CurFPFeatureOverrides()); |
15057 | |
15058 | // Create the pre-increment of the iteration variable. We can determine |
15059 | // whether the increment will overflow based on the value of the array |
15060 | // bound. |
15061 | Expr *Increment = UnaryOperator::Create( |
15062 | C: S.Context, input: IterationVarRef.build(S, Loc), opc: UO_PreInc, type: SizeType, VK: VK_LValue, |
15063 | OK: OK_Ordinary, l: Loc, CanOverflow: Upper.isMaxValue(), FPFeatures: S.CurFPFeatureOverrides()); |
15064 | |
15065 | // Construct the loop that copies all elements of this array. |
15066 | return S.ActOnForStmt( |
15067 | ForLoc: Loc, LParenLoc: Loc, First: InitStmt, |
15068 | Second: S.ActOnCondition(S: nullptr, Loc, SubExpr: Comparison, CK: Sema::ConditionKind::Boolean), |
15069 | Third: S.MakeFullDiscardedValueExpr(Arg: Increment), RParenLoc: Loc, Body: Copy.get()); |
15070 | } |
15071 | |
15072 | static StmtResult |
15073 | buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T, |
15074 | const ExprBuilder &To, const ExprBuilder &From, |
15075 | bool CopyingBaseSubobject, bool Copying) { |
15076 | // Maybe we should use a memcpy? |
15077 | if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() && |
15078 | T.isTriviallyCopyableType(Context: S.Context)) |
15079 | return buildMemcpyForAssignmentOp(S, Loc, T, ToB: To, FromB: From); |
15080 | |
15081 | StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From, |
15082 | CopyingBaseSubobject, |
15083 | Copying, Depth: 0)); |
15084 | |
15085 | // If we ended up picking a trivial assignment operator for an array of a |
15086 | // non-trivially-copyable class type, just emit a memcpy. |
15087 | if (!Result.isInvalid() && !Result.get()) |
15088 | return buildMemcpyForAssignmentOp(S, Loc, T, ToB: To, FromB: From); |
15089 | |
15090 | return Result; |
15091 | } |
15092 | |
15093 | CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) { |
15094 | // Note: The following rules are largely analoguous to the copy |
15095 | // constructor rules. Note that virtual bases are not taken into account |
15096 | // for determining the argument type of the operator. Note also that |
15097 | // operators taking an object instead of a reference are allowed. |
15098 | assert(ClassDecl->needsImplicitCopyAssignment()); |
15099 | |
15100 | DeclaringSpecialMember DSM(*this, ClassDecl, |
15101 | CXXSpecialMemberKind::CopyAssignment); |
15102 | if (DSM.isAlreadyBeingDeclared()) |
15103 | return nullptr; |
15104 | |
15105 | QualType ArgType = Context.getTypeDeclType(ClassDecl); |
15106 | ArgType = Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::None, NNS: nullptr, |
15107 | NamedType: ArgType, OwnedTagDecl: nullptr); |
15108 | LangAS AS = getDefaultCXXMethodAddrSpace(); |
15109 | if (AS != LangAS::Default) |
15110 | ArgType = Context.getAddrSpaceQualType(T: ArgType, AddressSpace: AS); |
15111 | QualType RetType = Context.getLValueReferenceType(T: ArgType); |
15112 | bool Const = ClassDecl->implicitCopyAssignmentHasConstParam(); |
15113 | if (Const) |
15114 | ArgType = ArgType.withConst(); |
15115 | |
15116 | ArgType = Context.getLValueReferenceType(T: ArgType); |
15117 | |
15118 | bool Constexpr = defaultedSpecialMemberIsConstexpr( |
15119 | S&: *this, ClassDecl, CSM: CXXSpecialMemberKind::CopyAssignment, ConstArg: Const); |
15120 | |
15121 | // An implicitly-declared copy assignment operator is an inline public |
15122 | // member of its class. |
15123 | DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(Op: OO_Equal); |
15124 | SourceLocation ClassLoc = ClassDecl->getLocation(); |
15125 | DeclarationNameInfo NameInfo(Name, ClassLoc); |
15126 | CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create( |
15127 | C&: Context, RD: ClassDecl, StartLoc: ClassLoc, NameInfo, T: QualType(), |
15128 | /*TInfo=*/nullptr, /*StorageClass=*/SC: SC_None, |
15129 | UsesFPIntrin: getCurFPFeatures().isFPConstrained(), |
15130 | /*isInline=*/true, |
15131 | ConstexprKind: Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified, |
15132 | EndLocation: SourceLocation()); |
15133 | CopyAssignment->setAccess(AS_public); |
15134 | CopyAssignment->setDefaulted(); |
15135 | CopyAssignment->setImplicit(); |
15136 | |
15137 | setupImplicitSpecialMemberType(SpecialMem: CopyAssignment, ResultTy: RetType, Args: ArgType); |
15138 | |
15139 | if (getLangOpts().CUDA) |
15140 | CUDA().inferTargetForImplicitSpecialMember( |
15141 | ClassDecl, CSM: CXXSpecialMemberKind::CopyAssignment, MemberDecl: CopyAssignment, |
15142 | /* ConstRHS */ Const, |
15143 | /* Diagnose */ false); |
15144 | |
15145 | // Add the parameter to the operator. |
15146 | ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, |
15147 | ClassLoc, ClassLoc, |
15148 | /*Id=*/nullptr, ArgType, |
15149 | /*TInfo=*/nullptr, SC_None, |
15150 | nullptr); |
15151 | CopyAssignment->setParams(FromParam); |
15152 | |
15153 | CopyAssignment->setTrivial( |
15154 | ClassDecl->needsOverloadResolutionForCopyAssignment() |
15155 | ? SpecialMemberIsTrivial(MD: CopyAssignment, |
15156 | CSM: CXXSpecialMemberKind::CopyAssignment) |
15157 | : ClassDecl->hasTrivialCopyAssignment()); |
15158 | |
15159 | // Note that we have added this copy-assignment operator. |
15160 | ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared; |
15161 | |
15162 | Scope *S = getScopeForContext(ClassDecl); |
15163 | CheckImplicitSpecialMemberDeclaration(S, CopyAssignment); |
15164 | |
15165 | if (ShouldDeleteSpecialMember(MD: CopyAssignment, |
15166 | CSM: CXXSpecialMemberKind::CopyAssignment)) { |
15167 | ClassDecl->setImplicitCopyAssignmentIsDeleted(); |
15168 | SetDeclDeleted(CopyAssignment, ClassLoc); |
15169 | } |
15170 | |
15171 | if (S) |
15172 | PushOnScopeChains(CopyAssignment, S, false); |
15173 | ClassDecl->addDecl(CopyAssignment); |
15174 | |
15175 | return CopyAssignment; |
15176 | } |
15177 | |
15178 | /// Diagnose an implicit copy operation for a class which is odr-used, but |
15179 | /// which is deprecated because the class has a user-declared copy constructor, |
15180 | /// copy assignment operator, or destructor. |
15181 | static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) { |
15182 | assert(CopyOp->isImplicit()); |
15183 | |
15184 | CXXRecordDecl *RD = CopyOp->getParent(); |
15185 | CXXMethodDecl *UserDeclaredOperation = nullptr; |
15186 | |
15187 | if (RD->hasUserDeclaredDestructor()) { |
15188 | UserDeclaredOperation = RD->getDestructor(); |
15189 | } else if (!isa<CXXConstructorDecl>(Val: CopyOp) && |
15190 | RD->hasUserDeclaredCopyConstructor()) { |
15191 | // Find any user-declared copy constructor. |
15192 | for (auto *I : RD->ctors()) { |
15193 | if (I->isCopyConstructor()) { |
15194 | UserDeclaredOperation = I; |
15195 | break; |
15196 | } |
15197 | } |
15198 | assert(UserDeclaredOperation); |
15199 | } else if (isa<CXXConstructorDecl>(Val: CopyOp) && |
15200 | RD->hasUserDeclaredCopyAssignment()) { |
15201 | // Find any user-declared move assignment operator. |
15202 | for (auto *I : RD->methods()) { |
15203 | if (I->isCopyAssignmentOperator()) { |
15204 | UserDeclaredOperation = I; |
15205 | break; |
15206 | } |
15207 | } |
15208 | assert(UserDeclaredOperation); |
15209 | } |
15210 | |
15211 | if (UserDeclaredOperation) { |
15212 | bool UDOIsUserProvided = UserDeclaredOperation->isUserProvided(); |
15213 | bool UDOIsDestructor = isa<CXXDestructorDecl>(Val: UserDeclaredOperation); |
15214 | bool IsCopyAssignment = !isa<CXXConstructorDecl>(Val: CopyOp); |
15215 | unsigned DiagID = |
15216 | (UDOIsUserProvided && UDOIsDestructor) |
15217 | ? diag::warn_deprecated_copy_with_user_provided_dtor |
15218 | : (UDOIsUserProvided && !UDOIsDestructor) |
15219 | ? diag::warn_deprecated_copy_with_user_provided_copy |
15220 | : (!UDOIsUserProvided && UDOIsDestructor) |
15221 | ? diag::warn_deprecated_copy_with_dtor |
15222 | : diag::warn_deprecated_copy; |
15223 | S.Diag(UserDeclaredOperation->getLocation(), DiagID) |
15224 | << RD << IsCopyAssignment; |
15225 | } |
15226 | } |
15227 | |
15228 | void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation, |
15229 | CXXMethodDecl *CopyAssignOperator) { |
15230 | assert((CopyAssignOperator->isDefaulted() && |
15231 | CopyAssignOperator->isOverloadedOperator() && |
15232 | CopyAssignOperator->getOverloadedOperator() == OO_Equal && |
15233 | !CopyAssignOperator->doesThisDeclarationHaveABody() && |
15234 | !CopyAssignOperator->isDeleted()) && |
15235 | "DefineImplicitCopyAssignment called for wrong function"); |
15236 | if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl()) |
15237 | return; |
15238 | |
15239 | CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent(); |
15240 | if (ClassDecl->isInvalidDecl()) { |
15241 | CopyAssignOperator->setInvalidDecl(); |
15242 | return; |
15243 | } |
15244 | |
15245 | SynthesizedFunctionScope Scope(*this, CopyAssignOperator); |
15246 | |
15247 | // The exception specification is needed because we are defining the |
15248 | // function. |
15249 | ResolveExceptionSpec(Loc: CurrentLocation, |
15250 | FPT: CopyAssignOperator->getType()->castAs<FunctionProtoType>()); |
15251 | |
15252 | // Add a context note for diagnostics produced after this point. |
15253 | Scope.addContextNote(UseLoc: CurrentLocation); |
15254 | |
15255 | // C++11 [class.copy]p18: |
15256 | // The [definition of an implicitly declared copy assignment operator] is |
15257 | // deprecated if the class has a user-declared copy constructor or a |
15258 | // user-declared destructor. |
15259 | if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit()) |
15260 | diagnoseDeprecatedCopyOperation(S&: *this, CopyOp: CopyAssignOperator); |
15261 | |
15262 | // C++0x [class.copy]p30: |
15263 | // The implicitly-defined or explicitly-defaulted copy assignment operator |
15264 | // for a non-union class X performs memberwise copy assignment of its |
15265 | // subobjects. The direct base classes of X are assigned first, in the |
15266 | // order of their declaration in the base-specifier-list, and then the |
15267 | // immediate non-static data members of X are assigned, in the order in |
15268 | // which they were declared in the class definition. |
15269 | |
15270 | // The statements that form the synthesized function body. |
15271 | SmallVector<Stmt*, 8> Statements; |
15272 | |
15273 | // The parameter for the "other" object, which we are copying from. |
15274 | ParmVarDecl *Other = CopyAssignOperator->getNonObjectParameter(0); |
15275 | Qualifiers OtherQuals = Other->getType().getQualifiers(); |
15276 | QualType OtherRefType = Other->getType(); |
15277 | if (OtherRefType->isLValueReferenceType()) { |
15278 | OtherRefType = OtherRefType->getPointeeType(); |
15279 | OtherQuals = OtherRefType.getQualifiers(); |
15280 | } |
15281 | |
15282 | // Our location for everything implicitly-generated. |
15283 | SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid() |
15284 | ? CopyAssignOperator->getEndLoc() |
15285 | : CopyAssignOperator->getLocation(); |
15286 | |
15287 | // Builds a DeclRefExpr for the "other" object. |
15288 | RefBuilder OtherRef(Other, OtherRefType); |
15289 | |
15290 | // Builds the function object parameter. |
15291 | std::optional<ThisBuilder> This; |
15292 | std::optional<DerefBuilder> DerefThis; |
15293 | std::optional<RefBuilder> ExplicitObject; |
15294 | bool IsArrow = false; |
15295 | QualType ObjectType; |
15296 | if (CopyAssignOperator->isExplicitObjectMemberFunction()) { |
15297 | ObjectType = CopyAssignOperator->getParamDecl(0)->getType(); |
15298 | if (ObjectType->isReferenceType()) |
15299 | ObjectType = ObjectType->getPointeeType(); |
15300 | ExplicitObject.emplace(CopyAssignOperator->getParamDecl(0), ObjectType); |
15301 | } else { |
15302 | ObjectType = getCurrentThisType(); |
15303 | This.emplace(); |
15304 | DerefThis.emplace(args&: *This); |
15305 | IsArrow = !LangOpts.HLSL; |
15306 | } |
15307 | ExprBuilder &ObjectParameter = |
15308 | ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject) |
15309 | : static_cast<ExprBuilder &>(*This); |
15310 | |
15311 | // Assign base classes. |
15312 | bool Invalid = false; |
15313 | for (auto &Base : ClassDecl->bases()) { |
15314 | // Form the assignment: |
15315 | // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other)); |
15316 | QualType BaseType = Base.getType().getUnqualifiedType(); |
15317 | if (!BaseType->isRecordType()) { |
15318 | Invalid = true; |
15319 | continue; |
15320 | } |
15321 | |
15322 | CXXCastPath BasePath; |
15323 | BasePath.push_back(Elt: &Base); |
15324 | |
15325 | // Construct the "from" expression, which is an implicit cast to the |
15326 | // appropriately-qualified base type. |
15327 | CastBuilder From(OtherRef, Context.getQualifiedType(T: BaseType, Qs: OtherQuals), |
15328 | VK_LValue, BasePath); |
15329 | |
15330 | // Dereference "this". |
15331 | CastBuilder To( |
15332 | ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject) |
15333 | : static_cast<ExprBuilder &>(*DerefThis), |
15334 | Context.getQualifiedType(T: BaseType, Qs: ObjectType.getQualifiers()), |
15335 | VK_LValue, BasePath); |
15336 | |
15337 | // Build the copy. |
15338 | StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType, |
15339 | To, From, |
15340 | /*CopyingBaseSubobject=*/true, |
15341 | /*Copying=*/true); |
15342 | if (Copy.isInvalid()) { |
15343 | CopyAssignOperator->setInvalidDecl(); |
15344 | return; |
15345 | } |
15346 | |
15347 | // Success! Record the copy. |
15348 | Statements.push_back(Copy.getAs<Expr>()); |
15349 | } |
15350 | |
15351 | // Assign non-static members. |
15352 | for (auto *Field : ClassDecl->fields()) { |
15353 | // FIXME: We should form some kind of AST representation for the implied |
15354 | // memcpy in a union copy operation. |
15355 | if (Field->isUnnamedBitField() || Field->getParent()->isUnion()) |
15356 | continue; |
15357 | |
15358 | if (Field->isInvalidDecl()) { |
15359 | Invalid = true; |
15360 | continue; |
15361 | } |
15362 | |
15363 | // Check for members of reference type; we can't copy those. |
15364 | if (Field->getType()->isReferenceType()) { |
15365 | Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) |
15366 | << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); |
15367 | Diag(Field->getLocation(), diag::note_declared_at); |
15368 | Invalid = true; |
15369 | continue; |
15370 | } |
15371 | |
15372 | // Check for members of const-qualified, non-class type. |
15373 | QualType BaseType = Context.getBaseElementType(Field->getType()); |
15374 | if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { |
15375 | Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) |
15376 | << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); |
15377 | Diag(Field->getLocation(), diag::note_declared_at); |
15378 | Invalid = true; |
15379 | continue; |
15380 | } |
15381 | |
15382 | // Suppress assigning zero-width bitfields. |
15383 | if (Field->isZeroLengthBitField()) |
15384 | continue; |
15385 | |
15386 | QualType FieldType = Field->getType().getNonReferenceType(); |
15387 | if (FieldType->isIncompleteArrayType()) { |
15388 | assert(ClassDecl->hasFlexibleArrayMember() && |
15389 | "Incomplete array type is not valid"); |
15390 | continue; |
15391 | } |
15392 | |
15393 | // Build references to the field in the object we're copying from and to. |
15394 | CXXScopeSpec SS; // Intentionally empty |
15395 | LookupResult MemberLookup(*this, Field->getDeclName(), Loc, |
15396 | LookupMemberName); |
15397 | MemberLookup.addDecl(Field); |
15398 | MemberLookup.resolveKind(); |
15399 | |
15400 | MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup); |
15401 | MemberBuilder To(ObjectParameter, ObjectType, IsArrow, MemberLookup); |
15402 | // Build the copy of this field. |
15403 | StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType, |
15404 | To, From, |
15405 | /*CopyingBaseSubobject=*/false, |
15406 | /*Copying=*/true); |
15407 | if (Copy.isInvalid()) { |
15408 | CopyAssignOperator->setInvalidDecl(); |
15409 | return; |
15410 | } |
15411 | |
15412 | // Success! Record the copy. |
15413 | Statements.push_back(Copy.getAs<Stmt>()); |
15414 | } |
15415 | |
15416 | if (!Invalid) { |
15417 | // Add a "return *this;" |
15418 | Expr *ThisExpr = |
15419 | (ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject) |
15420 | : LangOpts.HLSL ? static_cast<ExprBuilder &>(*This) |
15421 | : static_cast<ExprBuilder &>(*DerefThis)) |
15422 | .build(*this, Loc); |
15423 | StmtResult Return = BuildReturnStmt(ReturnLoc: Loc, RetValExp: ThisExpr); |
15424 | if (Return.isInvalid()) |
15425 | Invalid = true; |
15426 | else |
15427 | Statements.push_back(Elt: Return.getAs<Stmt>()); |
15428 | } |
15429 | |
15430 | if (Invalid) { |
15431 | CopyAssignOperator->setInvalidDecl(); |
15432 | return; |
15433 | } |
15434 | |
15435 | StmtResult Body; |
15436 | { |
15437 | CompoundScopeRAII CompoundScope(*this); |
15438 | Body = ActOnCompoundStmt(L: Loc, R: Loc, Elts: Statements, |
15439 | /*isStmtExpr=*/false); |
15440 | assert(!Body.isInvalid() && "Compound statement creation cannot fail"); |
15441 | } |
15442 | CopyAssignOperator->setBody(Body.getAs<Stmt>()); |
15443 | CopyAssignOperator->markUsed(Context); |
15444 | |
15445 | if (ASTMutationListener *L = getASTMutationListener()) { |
15446 | L->CompletedImplicitDefinition(CopyAssignOperator); |
15447 | } |
15448 | } |
15449 | |
15450 | CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) { |
15451 | assert(ClassDecl->needsImplicitMoveAssignment()); |
15452 | |
15453 | DeclaringSpecialMember DSM(*this, ClassDecl, |
15454 | CXXSpecialMemberKind::MoveAssignment); |
15455 | if (DSM.isAlreadyBeingDeclared()) |
15456 | return nullptr; |
15457 | |
15458 | // Note: The following rules are largely analoguous to the move |
15459 | // constructor rules. |
15460 | |
15461 | QualType ArgType = Context.getTypeDeclType(ClassDecl); |
15462 | ArgType = Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::None, NNS: nullptr, |
15463 | NamedType: ArgType, OwnedTagDecl: nullptr); |
15464 | LangAS AS = getDefaultCXXMethodAddrSpace(); |
15465 | if (AS != LangAS::Default) |
15466 | ArgType = Context.getAddrSpaceQualType(T: ArgType, AddressSpace: AS); |
15467 | QualType RetType = Context.getLValueReferenceType(T: ArgType); |
15468 | ArgType = Context.getRValueReferenceType(T: ArgType); |
15469 | |
15470 | bool Constexpr = defaultedSpecialMemberIsConstexpr( |
15471 | S&: *this, ClassDecl, CSM: CXXSpecialMemberKind::MoveAssignment, ConstArg: false); |
15472 | |
15473 | // An implicitly-declared move assignment operator is an inline public |
15474 | // member of its class. |
15475 | DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(Op: OO_Equal); |
15476 | SourceLocation ClassLoc = ClassDecl->getLocation(); |
15477 | DeclarationNameInfo NameInfo(Name, ClassLoc); |
15478 | CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create( |
15479 | C&: Context, RD: ClassDecl, StartLoc: ClassLoc, NameInfo, T: QualType(), |
15480 | /*TInfo=*/nullptr, /*StorageClass=*/SC: SC_None, |
15481 | UsesFPIntrin: getCurFPFeatures().isFPConstrained(), |
15482 | /*isInline=*/true, |
15483 | ConstexprKind: Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified, |
15484 | EndLocation: SourceLocation()); |
15485 | MoveAssignment->setAccess(AS_public); |
15486 | MoveAssignment->setDefaulted(); |
15487 | MoveAssignment->setImplicit(); |
15488 | |
15489 | setupImplicitSpecialMemberType(SpecialMem: MoveAssignment, ResultTy: RetType, Args: ArgType); |
15490 | |
15491 | if (getLangOpts().CUDA) |
15492 | CUDA().inferTargetForImplicitSpecialMember( |
15493 | ClassDecl, CSM: CXXSpecialMemberKind::MoveAssignment, MemberDecl: MoveAssignment, |
15494 | /* ConstRHS */ false, |
15495 | /* Diagnose */ false); |
15496 | |
15497 | // Add the parameter to the operator. |
15498 | ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment, |
15499 | ClassLoc, ClassLoc, |
15500 | /*Id=*/nullptr, ArgType, |
15501 | /*TInfo=*/nullptr, SC_None, |
15502 | nullptr); |
15503 | MoveAssignment->setParams(FromParam); |
15504 | |
15505 | MoveAssignment->setTrivial( |
15506 | ClassDecl->needsOverloadResolutionForMoveAssignment() |
15507 | ? SpecialMemberIsTrivial(MD: MoveAssignment, |
15508 | CSM: CXXSpecialMemberKind::MoveAssignment) |
15509 | : ClassDecl->hasTrivialMoveAssignment()); |
15510 | |
15511 | // Note that we have added this copy-assignment operator. |
15512 | ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared; |
15513 | |
15514 | Scope *S = getScopeForContext(ClassDecl); |
15515 | CheckImplicitSpecialMemberDeclaration(S, MoveAssignment); |
15516 | |
15517 | if (ShouldDeleteSpecialMember(MD: MoveAssignment, |
15518 | CSM: CXXSpecialMemberKind::MoveAssignment)) { |
15519 | ClassDecl->setImplicitMoveAssignmentIsDeleted(); |
15520 | SetDeclDeleted(MoveAssignment, ClassLoc); |
15521 | } |
15522 | |
15523 | if (S) |
15524 | PushOnScopeChains(MoveAssignment, S, false); |
15525 | ClassDecl->addDecl(MoveAssignment); |
15526 | |
15527 | return MoveAssignment; |
15528 | } |
15529 | |
15530 | /// Check if we're implicitly defining a move assignment operator for a class |
15531 | /// with virtual bases. Such a move assignment might move-assign the virtual |
15532 | /// base multiple times. |
15533 | static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class, |
15534 | SourceLocation CurrentLocation) { |
15535 | assert(!Class->isDependentContext() && "should not define dependent move"); |
15536 | |
15537 | // Only a virtual base could get implicitly move-assigned multiple times. |
15538 | // Only a non-trivial move assignment can observe this. We only want to |
15539 | // diagnose if we implicitly define an assignment operator that assigns |
15540 | // two base classes, both of which move-assign the same virtual base. |
15541 | if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() || |
15542 | Class->getNumBases() < 2) |
15543 | return; |
15544 | |
15545 | llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist; |
15546 | typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap; |
15547 | VBaseMap VBases; |
15548 | |
15549 | for (auto &BI : Class->bases()) { |
15550 | Worklist.push_back(Elt: &BI); |
15551 | while (!Worklist.empty()) { |
15552 | CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val(); |
15553 | CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl(); |
15554 | |
15555 | // If the base has no non-trivial move assignment operators, |
15556 | // we don't care about moves from it. |
15557 | if (!Base->hasNonTrivialMoveAssignment()) |
15558 | continue; |
15559 | |
15560 | // If there's nothing virtual here, skip it. |
15561 | if (!BaseSpec->isVirtual() && !Base->getNumVBases()) |
15562 | continue; |
15563 | |
15564 | // If we're not actually going to call a move assignment for this base, |
15565 | // or the selected move assignment is trivial, skip it. |
15566 | Sema::SpecialMemberOverloadResult SMOR = |
15567 | S.LookupSpecialMember(D: Base, SM: CXXSpecialMemberKind::MoveAssignment, |
15568 | /*ConstArg*/ false, /*VolatileArg*/ false, |
15569 | /*RValueThis*/ true, /*ConstThis*/ false, |
15570 | /*VolatileThis*/ false); |
15571 | if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() || |
15572 | !SMOR.getMethod()->isMoveAssignmentOperator()) |
15573 | continue; |
15574 | |
15575 | if (BaseSpec->isVirtual()) { |
15576 | // We're going to move-assign this virtual base, and its move |
15577 | // assignment operator is not trivial. If this can happen for |
15578 | // multiple distinct direct bases of Class, diagnose it. (If it |
15579 | // only happens in one base, we'll diagnose it when synthesizing |
15580 | // that base class's move assignment operator.) |
15581 | CXXBaseSpecifier *&Existing = |
15582 | VBases.insert(KV: std::make_pair(x: Base->getCanonicalDecl(), y: &BI)) |
15583 | .first->second; |
15584 | if (Existing && Existing != &BI) { |
15585 | S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times) |
15586 | << Class << Base; |
15587 | S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here) |
15588 | << (Base->getCanonicalDecl() == |
15589 | Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl()) |
15590 | << Base << Existing->getType() << Existing->getSourceRange(); |
15591 | S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here) |
15592 | << (Base->getCanonicalDecl() == |
15593 | BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl()) |
15594 | << Base << BI.getType() << BaseSpec->getSourceRange(); |
15595 | |
15596 | // Only diagnose each vbase once. |
15597 | Existing = nullptr; |
15598 | } |
15599 | } else { |
15600 | // Only walk over bases that have defaulted move assignment operators. |
15601 | // We assume that any user-provided move assignment operator handles |
15602 | // the multiple-moves-of-vbase case itself somehow. |
15603 | if (!SMOR.getMethod()->isDefaulted()) |
15604 | continue; |
15605 | |
15606 | // We're going to move the base classes of Base. Add them to the list. |
15607 | llvm::append_range(C&: Worklist, R: llvm::make_pointer_range(Range: Base->bases())); |
15608 | } |
15609 | } |
15610 | } |
15611 | } |
15612 | |
15613 | void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation, |
15614 | CXXMethodDecl *MoveAssignOperator) { |
15615 | assert((MoveAssignOperator->isDefaulted() && |
15616 | MoveAssignOperator->isOverloadedOperator() && |
15617 | MoveAssignOperator->getOverloadedOperator() == OO_Equal && |
15618 | !MoveAssignOperator->doesThisDeclarationHaveABody() && |
15619 | !MoveAssignOperator->isDeleted()) && |
15620 | "DefineImplicitMoveAssignment called for wrong function"); |
15621 | if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl()) |
15622 | return; |
15623 | |
15624 | CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent(); |
15625 | if (ClassDecl->isInvalidDecl()) { |
15626 | MoveAssignOperator->setInvalidDecl(); |
15627 | return; |
15628 | } |
15629 | |
15630 | // C++0x [class.copy]p28: |
15631 | // The implicitly-defined or move assignment operator for a non-union class |
15632 | // X performs memberwise move assignment of its subobjects. The direct base |
15633 | // classes of X are assigned first, in the order of their declaration in the |
15634 | // base-specifier-list, and then the immediate non-static data members of X |
15635 | // are assigned, in the order in which they were declared in the class |
15636 | // definition. |
15637 | |
15638 | // Issue a warning if our implicit move assignment operator will move |
15639 | // from a virtual base more than once. |
15640 | checkMoveAssignmentForRepeatedMove(S&: *this, Class: ClassDecl, CurrentLocation); |
15641 | |
15642 | SynthesizedFunctionScope Scope(*this, MoveAssignOperator); |
15643 | |
15644 | // The exception specification is needed because we are defining the |
15645 | // function. |
15646 | ResolveExceptionSpec(Loc: CurrentLocation, |
15647 | FPT: MoveAssignOperator->getType()->castAs<FunctionProtoType>()); |
15648 | |
15649 | // Add a context note for diagnostics produced after this point. |
15650 | Scope.addContextNote(UseLoc: CurrentLocation); |
15651 | |
15652 | // The statements that form the synthesized function body. |
15653 | SmallVector<Stmt*, 8> Statements; |
15654 | |
15655 | // The parameter for the "other" object, which we are move from. |
15656 | ParmVarDecl *Other = MoveAssignOperator->getNonObjectParameter(0); |
15657 | QualType OtherRefType = |
15658 | Other->getType()->castAs<RValueReferenceType>()->getPointeeType(); |
15659 | |
15660 | // Our location for everything implicitly-generated. |
15661 | SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid() |
15662 | ? MoveAssignOperator->getEndLoc() |
15663 | : MoveAssignOperator->getLocation(); |
15664 | |
15665 | // Builds a reference to the "other" object. |
15666 | RefBuilder OtherRef(Other, OtherRefType); |
15667 | // Cast to rvalue. |
15668 | MoveCastBuilder MoveOther(OtherRef); |
15669 | |
15670 | // Builds the function object parameter. |
15671 | std::optional<ThisBuilder> This; |
15672 | std::optional<DerefBuilder> DerefThis; |
15673 | std::optional<RefBuilder> ExplicitObject; |
15674 | QualType ObjectType; |
15675 | bool IsArrow = false; |
15676 | if (MoveAssignOperator->isExplicitObjectMemberFunction()) { |
15677 | ObjectType = MoveAssignOperator->getParamDecl(0)->getType(); |
15678 | if (ObjectType->isReferenceType()) |
15679 | ObjectType = ObjectType->getPointeeType(); |
15680 | ExplicitObject.emplace(MoveAssignOperator->getParamDecl(0), ObjectType); |
15681 | } else { |
15682 | ObjectType = getCurrentThisType(); |
15683 | This.emplace(); |
15684 | DerefThis.emplace(args&: *This); |
15685 | IsArrow = !getLangOpts().HLSL; |
15686 | } |
15687 | ExprBuilder &ObjectParameter = |
15688 | ExplicitObject ? *ExplicitObject : static_cast<ExprBuilder &>(*This); |
15689 | |
15690 | // Assign base classes. |
15691 | bool Invalid = false; |
15692 | for (auto &Base : ClassDecl->bases()) { |
15693 | // C++11 [class.copy]p28: |
15694 | // It is unspecified whether subobjects representing virtual base classes |
15695 | // are assigned more than once by the implicitly-defined copy assignment |
15696 | // operator. |
15697 | // FIXME: Do not assign to a vbase that will be assigned by some other base |
15698 | // class. For a move-assignment, this can result in the vbase being moved |
15699 | // multiple times. |
15700 | |
15701 | // Form the assignment: |
15702 | // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other)); |
15703 | QualType BaseType = Base.getType().getUnqualifiedType(); |
15704 | if (!BaseType->isRecordType()) { |
15705 | Invalid = true; |
15706 | continue; |
15707 | } |
15708 | |
15709 | CXXCastPath BasePath; |
15710 | BasePath.push_back(Elt: &Base); |
15711 | |
15712 | // Construct the "from" expression, which is an implicit cast to the |
15713 | // appropriately-qualified base type. |
15714 | CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath); |
15715 | |
15716 | // Implicitly cast "this" to the appropriately-qualified base type. |
15717 | // Dereference "this". |
15718 | CastBuilder To( |
15719 | ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject) |
15720 | : static_cast<ExprBuilder &>(*DerefThis), |
15721 | Context.getQualifiedType(BaseType, ObjectType.getQualifiers()), |
15722 | VK_LValue, BasePath); |
15723 | |
15724 | // Build the move. |
15725 | StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType, |
15726 | To, From, |
15727 | /*CopyingBaseSubobject=*/true, |
15728 | /*Copying=*/false); |
15729 | if (Move.isInvalid()) { |
15730 | MoveAssignOperator->setInvalidDecl(); |
15731 | return; |
15732 | } |
15733 | |
15734 | // Success! Record the move. |
15735 | Statements.push_back(Move.getAs<Expr>()); |
15736 | } |
15737 | |
15738 | // Assign non-static members. |
15739 | for (auto *Field : ClassDecl->fields()) { |
15740 | // FIXME: We should form some kind of AST representation for the implied |
15741 | // memcpy in a union copy operation. |
15742 | if (Field->isUnnamedBitField() || Field->getParent()->isUnion()) |
15743 | continue; |
15744 | |
15745 | if (Field->isInvalidDecl()) { |
15746 | Invalid = true; |
15747 | continue; |
15748 | } |
15749 | |
15750 | // Check for members of reference type; we can't move those. |
15751 | if (Field->getType()->isReferenceType()) { |
15752 | Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) |
15753 | << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); |
15754 | Diag(Field->getLocation(), diag::note_declared_at); |
15755 | Invalid = true; |
15756 | continue; |
15757 | } |
15758 | |
15759 | // Check for members of const-qualified, non-class type. |
15760 | QualType BaseType = Context.getBaseElementType(Field->getType()); |
15761 | if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { |
15762 | Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) |
15763 | << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); |
15764 | Diag(Field->getLocation(), diag::note_declared_at); |
15765 | Invalid = true; |
15766 | continue; |
15767 | } |
15768 | |
15769 | // Suppress assigning zero-width bitfields. |
15770 | if (Field->isZeroLengthBitField()) |
15771 | continue; |
15772 | |
15773 | QualType FieldType = Field->getType().getNonReferenceType(); |
15774 | if (FieldType->isIncompleteArrayType()) { |
15775 | assert(ClassDecl->hasFlexibleArrayMember() && |
15776 | "Incomplete array type is not valid"); |
15777 | continue; |
15778 | } |
15779 | |
15780 | // Build references to the field in the object we're copying from and to. |
15781 | LookupResult MemberLookup(*this, Field->getDeclName(), Loc, |
15782 | LookupMemberName); |
15783 | MemberLookup.addDecl(Field); |
15784 | MemberLookup.resolveKind(); |
15785 | MemberBuilder From(MoveOther, OtherRefType, |
15786 | /*IsArrow=*/false, MemberLookup); |
15787 | MemberBuilder To(ObjectParameter, ObjectType, IsArrow, MemberLookup); |
15788 | |
15789 | assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue |
15790 | "Member reference with rvalue base must be rvalue except for reference " |
15791 | "members, which aren't allowed for move assignment."); |
15792 | |
15793 | // Build the move of this field. |
15794 | StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType, |
15795 | To, From, |
15796 | /*CopyingBaseSubobject=*/false, |
15797 | /*Copying=*/false); |
15798 | if (Move.isInvalid()) { |
15799 | MoveAssignOperator->setInvalidDecl(); |
15800 | return; |
15801 | } |
15802 | |
15803 | // Success! Record the copy. |
15804 | Statements.push_back(Move.getAs<Stmt>()); |
15805 | } |
15806 | |
15807 | if (!Invalid) { |
15808 | // Add a "return *this;" |
15809 | Expr *ThisExpr = |
15810 | (ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject) |
15811 | : LangOpts.HLSL ? static_cast<ExprBuilder &>(*This) |
15812 | : static_cast<ExprBuilder &>(*DerefThis)) |
15813 | .build(S&: *this, Loc); |
15814 | |
15815 | StmtResult Return = BuildReturnStmt(ReturnLoc: Loc, RetValExp: ThisExpr); |
15816 | if (Return.isInvalid()) |
15817 | Invalid = true; |
15818 | else |
15819 | Statements.push_back(Elt: Return.getAs<Stmt>()); |
15820 | } |
15821 | |
15822 | if (Invalid) { |
15823 | MoveAssignOperator->setInvalidDecl(); |
15824 | return; |
15825 | } |
15826 | |
15827 | StmtResult Body; |
15828 | { |
15829 | CompoundScopeRAII CompoundScope(*this); |
15830 | Body = ActOnCompoundStmt(L: Loc, R: Loc, Elts: Statements, |
15831 | /*isStmtExpr=*/false); |
15832 | assert(!Body.isInvalid() && "Compound statement creation cannot fail"); |
15833 | } |
15834 | MoveAssignOperator->setBody(Body.getAs<Stmt>()); |
15835 | MoveAssignOperator->markUsed(Context); |
15836 | |
15837 | if (ASTMutationListener *L = getASTMutationListener()) { |
15838 | L->CompletedImplicitDefinition(MoveAssignOperator); |
15839 | } |
15840 | } |
15841 | |
15842 | CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor( |
15843 | CXXRecordDecl *ClassDecl) { |
15844 | // C++ [class.copy]p4: |
15845 | // If the class definition does not explicitly declare a copy |
15846 | // constructor, one is declared implicitly. |
15847 | assert(ClassDecl->needsImplicitCopyConstructor()); |
15848 | |
15849 | DeclaringSpecialMember DSM(*this, ClassDecl, |
15850 | CXXSpecialMemberKind::CopyConstructor); |
15851 | if (DSM.isAlreadyBeingDeclared()) |
15852 | return nullptr; |
15853 | |
15854 | QualType ClassType = Context.getTypeDeclType(ClassDecl); |
15855 | QualType ArgType = ClassType; |
15856 | ArgType = Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::None, NNS: nullptr, |
15857 | NamedType: ArgType, OwnedTagDecl: nullptr); |
15858 | bool Const = ClassDecl->implicitCopyConstructorHasConstParam(); |
15859 | if (Const) |
15860 | ArgType = ArgType.withConst(); |
15861 | |
15862 | LangAS AS = getDefaultCXXMethodAddrSpace(); |
15863 | if (AS != LangAS::Default) |
15864 | ArgType = Context.getAddrSpaceQualType(T: ArgType, AddressSpace: AS); |
15865 | |
15866 | ArgType = Context.getLValueReferenceType(T: ArgType); |
15867 | |
15868 | bool Constexpr = defaultedSpecialMemberIsConstexpr( |
15869 | S&: *this, ClassDecl, CSM: CXXSpecialMemberKind::CopyConstructor, ConstArg: Const); |
15870 | |
15871 | DeclarationName Name |
15872 | = Context.DeclarationNames.getCXXConstructorName( |
15873 | Ty: Context.getCanonicalType(T: ClassType)); |
15874 | SourceLocation ClassLoc = ClassDecl->getLocation(); |
15875 | DeclarationNameInfo NameInfo(Name, ClassLoc); |
15876 | |
15877 | // An implicitly-declared copy constructor is an inline public |
15878 | // member of its class. |
15879 | CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create( |
15880 | C&: Context, RD: ClassDecl, StartLoc: ClassLoc, NameInfo, T: QualType(), /*TInfo=*/nullptr, |
15881 | ES: ExplicitSpecifier(), UsesFPIntrin: getCurFPFeatures().isFPConstrained(), |
15882 | /*isInline=*/true, |
15883 | /*isImplicitlyDeclared=*/true, |
15884 | ConstexprKind: Constexpr ? ConstexprSpecKind::Constexpr |
15885 | : ConstexprSpecKind::Unspecified); |
15886 | CopyConstructor->setAccess(AS_public); |
15887 | CopyConstructor->setDefaulted(); |
15888 | |
15889 | setupImplicitSpecialMemberType(SpecialMem: CopyConstructor, ResultTy: Context.VoidTy, Args: ArgType); |
15890 | |
15891 | if (getLangOpts().CUDA) |
15892 | CUDA().inferTargetForImplicitSpecialMember( |
15893 | ClassDecl, CXXSpecialMemberKind::CopyConstructor, CopyConstructor, |
15894 | /* ConstRHS */ Const, |
15895 | /* Diagnose */ false); |
15896 | |
15897 | // During template instantiation of special member functions we need a |
15898 | // reliable TypeSourceInfo for the parameter types in order to allow functions |
15899 | // to be substituted. |
15900 | TypeSourceInfo *TSI = nullptr; |
15901 | if (inTemplateInstantiation() && ClassDecl->isLambda()) |
15902 | TSI = Context.getTrivialTypeSourceInfo(T: ArgType); |
15903 | |
15904 | // Add the parameter to the constructor. |
15905 | ParmVarDecl *FromParam = |
15906 | ParmVarDecl::Create(Context, CopyConstructor, ClassLoc, ClassLoc, |
15907 | /*IdentifierInfo=*/nullptr, ArgType, |
15908 | /*TInfo=*/TSI, SC_None, nullptr); |
15909 | CopyConstructor->setParams(FromParam); |
15910 | |
15911 | CopyConstructor->setTrivial( |
15912 | ClassDecl->needsOverloadResolutionForCopyConstructor() |
15913 | ? SpecialMemberIsTrivial(CopyConstructor, |
15914 | CXXSpecialMemberKind::CopyConstructor) |
15915 | : ClassDecl->hasTrivialCopyConstructor()); |
15916 | |
15917 | CopyConstructor->setTrivialForCall( |
15918 | ClassDecl->hasAttr<TrivialABIAttr>() || |
15919 | (ClassDecl->needsOverloadResolutionForCopyConstructor() |
15920 | ? SpecialMemberIsTrivial(CopyConstructor, |
15921 | CXXSpecialMemberKind::CopyConstructor, |
15922 | TrivialABIHandling::ConsiderTrivialABI) |
15923 | : ClassDecl->hasTrivialCopyConstructorForCall())); |
15924 | |
15925 | // Note that we have declared this constructor. |
15926 | ++getASTContext().NumImplicitCopyConstructorsDeclared; |
15927 | |
15928 | Scope *S = getScopeForContext(ClassDecl); |
15929 | CheckImplicitSpecialMemberDeclaration(S, CopyConstructor); |
15930 | |
15931 | if (ShouldDeleteSpecialMember(CopyConstructor, |
15932 | CXXSpecialMemberKind::CopyConstructor)) { |
15933 | ClassDecl->setImplicitCopyConstructorIsDeleted(); |
15934 | SetDeclDeleted(CopyConstructor, ClassLoc); |
15935 | } |
15936 | |
15937 | if (S) |
15938 | PushOnScopeChains(CopyConstructor, S, false); |
15939 | ClassDecl->addDecl(CopyConstructor); |
15940 | |
15941 | return CopyConstructor; |
15942 | } |
15943 | |
15944 | void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation, |
15945 | CXXConstructorDecl *CopyConstructor) { |
15946 | assert((CopyConstructor->isDefaulted() && |
15947 | CopyConstructor->isCopyConstructor() && |
15948 | !CopyConstructor->doesThisDeclarationHaveABody() && |
15949 | !CopyConstructor->isDeleted()) && |
15950 | "DefineImplicitCopyConstructor - call it for implicit copy ctor"); |
15951 | if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl()) |
15952 | return; |
15953 | |
15954 | CXXRecordDecl *ClassDecl = CopyConstructor->getParent(); |
15955 | assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"); |
15956 | |
15957 | SynthesizedFunctionScope Scope(*this, CopyConstructor); |
15958 | |
15959 | // The exception specification is needed because we are defining the |
15960 | // function. |
15961 | ResolveExceptionSpec(Loc: CurrentLocation, |
15962 | FPT: CopyConstructor->getType()->castAs<FunctionProtoType>()); |
15963 | MarkVTableUsed(Loc: CurrentLocation, Class: ClassDecl); |
15964 | |
15965 | // Add a context note for diagnostics produced after this point. |
15966 | Scope.addContextNote(UseLoc: CurrentLocation); |
15967 | |
15968 | // C++11 [class.copy]p7: |
15969 | // The [definition of an implicitly declared copy constructor] is |
15970 | // deprecated if the class has a user-declared copy assignment operator |
15971 | // or a user-declared destructor. |
15972 | if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit()) |
15973 | diagnoseDeprecatedCopyOperation(*this, CopyConstructor); |
15974 | |
15975 | if (SetCtorInitializers(Constructor: CopyConstructor, /*AnyErrors=*/false)) { |
15976 | CopyConstructor->setInvalidDecl(); |
15977 | } else { |
15978 | SourceLocation Loc = CopyConstructor->getEndLoc().isValid() |
15979 | ? CopyConstructor->getEndLoc() |
15980 | : CopyConstructor->getLocation(); |
15981 | Sema::CompoundScopeRAII CompoundScope(*this); |
15982 | CopyConstructor->setBody( |
15983 | ActOnCompoundStmt(L: Loc, R: Loc, Elts: {}, /*isStmtExpr=*/false).getAs<Stmt>()); |
15984 | CopyConstructor->markUsed(Context); |
15985 | } |
15986 | |
15987 | if (ASTMutationListener *L = getASTMutationListener()) { |
15988 | L->CompletedImplicitDefinition(CopyConstructor); |
15989 | } |
15990 | } |
15991 | |
15992 | CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor( |
15993 | CXXRecordDecl *ClassDecl) { |
15994 | assert(ClassDecl->needsImplicitMoveConstructor()); |
15995 | |
15996 | DeclaringSpecialMember DSM(*this, ClassDecl, |
15997 | CXXSpecialMemberKind::MoveConstructor); |
15998 | if (DSM.isAlreadyBeingDeclared()) |
15999 | return nullptr; |
16000 | |
16001 | QualType ClassType = Context.getTypeDeclType(ClassDecl); |
16002 | |
16003 | QualType ArgType = ClassType; |
16004 | ArgType = Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::None, NNS: nullptr, |
16005 | NamedType: ArgType, OwnedTagDecl: nullptr); |
16006 | LangAS AS = getDefaultCXXMethodAddrSpace(); |
16007 | if (AS != LangAS::Default) |
16008 | ArgType = Context.getAddrSpaceQualType(T: ClassType, AddressSpace: AS); |
16009 | ArgType = Context.getRValueReferenceType(T: ArgType); |
16010 | |
16011 | bool Constexpr = defaultedSpecialMemberIsConstexpr( |
16012 | S&: *this, ClassDecl, CSM: CXXSpecialMemberKind::MoveConstructor, ConstArg: false); |
16013 | |
16014 | DeclarationName Name |
16015 | = Context.DeclarationNames.getCXXConstructorName( |
16016 | Ty: Context.getCanonicalType(T: ClassType)); |
16017 | SourceLocation ClassLoc = ClassDecl->getLocation(); |
16018 | DeclarationNameInfo NameInfo(Name, ClassLoc); |
16019 | |
16020 | // C++11 [class.copy]p11: |
16021 | // An implicitly-declared copy/move constructor is an inline public |
16022 | // member of its class. |
16023 | CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create( |
16024 | C&: Context, RD: ClassDecl, StartLoc: ClassLoc, NameInfo, T: QualType(), /*TInfo=*/nullptr, |
16025 | ES: ExplicitSpecifier(), UsesFPIntrin: getCurFPFeatures().isFPConstrained(), |
16026 | /*isInline=*/true, |
16027 | /*isImplicitlyDeclared=*/true, |
16028 | ConstexprKind: Constexpr ? ConstexprSpecKind::Constexpr |
16029 | : ConstexprSpecKind::Unspecified); |
16030 | MoveConstructor->setAccess(AS_public); |
16031 | MoveConstructor->setDefaulted(); |
16032 | |
16033 | setupImplicitSpecialMemberType(SpecialMem: MoveConstructor, ResultTy: Context.VoidTy, Args: ArgType); |
16034 | |
16035 | if (getLangOpts().CUDA) |
16036 | CUDA().inferTargetForImplicitSpecialMember( |
16037 | ClassDecl, CXXSpecialMemberKind::MoveConstructor, MoveConstructor, |
16038 | /* ConstRHS */ false, |
16039 | /* Diagnose */ false); |
16040 | |
16041 | // Add the parameter to the constructor. |
16042 | ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor, |
16043 | ClassLoc, ClassLoc, |
16044 | /*IdentifierInfo=*/nullptr, |
16045 | ArgType, /*TInfo=*/nullptr, |
16046 | SC_None, nullptr); |
16047 | MoveConstructor->setParams(FromParam); |
16048 | |
16049 | MoveConstructor->setTrivial( |
16050 | ClassDecl->needsOverloadResolutionForMoveConstructor() |
16051 | ? SpecialMemberIsTrivial(MoveConstructor, |
16052 | CXXSpecialMemberKind::MoveConstructor) |
16053 | : ClassDecl->hasTrivialMoveConstructor()); |
16054 | |
16055 | MoveConstructor->setTrivialForCall( |
16056 | ClassDecl->hasAttr<TrivialABIAttr>() || |
16057 | (ClassDecl->needsOverloadResolutionForMoveConstructor() |
16058 | ? SpecialMemberIsTrivial(MoveConstructor, |
16059 | CXXSpecialMemberKind::MoveConstructor, |
16060 | TrivialABIHandling::ConsiderTrivialABI) |
16061 | : ClassDecl->hasTrivialMoveConstructorForCall())); |
16062 | |
16063 | // Note that we have declared this constructor. |
16064 | ++getASTContext().NumImplicitMoveConstructorsDeclared; |
16065 | |
16066 | Scope *S = getScopeForContext(ClassDecl); |
16067 | CheckImplicitSpecialMemberDeclaration(S, MoveConstructor); |
16068 | |
16069 | if (ShouldDeleteSpecialMember(MoveConstructor, |
16070 | CXXSpecialMemberKind::MoveConstructor)) { |
16071 | ClassDecl->setImplicitMoveConstructorIsDeleted(); |
16072 | SetDeclDeleted(MoveConstructor, ClassLoc); |
16073 | } |
16074 | |
16075 | if (S) |
16076 | PushOnScopeChains(MoveConstructor, S, false); |
16077 | ClassDecl->addDecl(MoveConstructor); |
16078 | |
16079 | return MoveConstructor; |
16080 | } |
16081 | |
16082 | void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation, |
16083 | CXXConstructorDecl *MoveConstructor) { |
16084 | assert((MoveConstructor->isDefaulted() && |
16085 | MoveConstructor->isMoveConstructor() && |
16086 | !MoveConstructor->doesThisDeclarationHaveABody() && |
16087 | !MoveConstructor->isDeleted()) && |
16088 | "DefineImplicitMoveConstructor - call it for implicit move ctor"); |
16089 | if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl()) |
16090 | return; |
16091 | |
16092 | CXXRecordDecl *ClassDecl = MoveConstructor->getParent(); |
16093 | assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor"); |
16094 | |
16095 | SynthesizedFunctionScope Scope(*this, MoveConstructor); |
16096 | |
16097 | // The exception specification is needed because we are defining the |
16098 | // function. |
16099 | ResolveExceptionSpec(Loc: CurrentLocation, |
16100 | FPT: MoveConstructor->getType()->castAs<FunctionProtoType>()); |
16101 | MarkVTableUsed(Loc: CurrentLocation, Class: ClassDecl); |
16102 | |
16103 | // Add a context note for diagnostics produced after this point. |
16104 | Scope.addContextNote(UseLoc: CurrentLocation); |
16105 | |
16106 | if (SetCtorInitializers(Constructor: MoveConstructor, /*AnyErrors=*/false)) { |
16107 | MoveConstructor->setInvalidDecl(); |
16108 | } else { |
16109 | SourceLocation Loc = MoveConstructor->getEndLoc().isValid() |
16110 | ? MoveConstructor->getEndLoc() |
16111 | : MoveConstructor->getLocation(); |
16112 | Sema::CompoundScopeRAII CompoundScope(*this); |
16113 | MoveConstructor->setBody( |
16114 | ActOnCompoundStmt(L: Loc, R: Loc, Elts: {}, /*isStmtExpr=*/false).getAs<Stmt>()); |
16115 | MoveConstructor->markUsed(Context); |
16116 | } |
16117 | |
16118 | if (ASTMutationListener *L = getASTMutationListener()) { |
16119 | L->CompletedImplicitDefinition(MoveConstructor); |
16120 | } |
16121 | } |
16122 | |
16123 | bool Sema::isImplicitlyDeleted(FunctionDecl *FD) { |
16124 | return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(Val: FD); |
16125 | } |
16126 | |
16127 | void Sema::DefineImplicitLambdaToFunctionPointerConversion( |
16128 | SourceLocation CurrentLocation, |
16129 | CXXConversionDecl *Conv) { |
16130 | SynthesizedFunctionScope Scope(*this, Conv); |
16131 | assert(!Conv->getReturnType()->isUndeducedType()); |
16132 | |
16133 | QualType ConvRT = Conv->getType()->castAs<FunctionType>()->getReturnType(); |
16134 | CallingConv CC = |
16135 | ConvRT->getPointeeType()->castAs<FunctionType>()->getCallConv(); |
16136 | |
16137 | CXXRecordDecl *Lambda = Conv->getParent(); |
16138 | FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); |
16139 | FunctionDecl *Invoker = |
16140 | CallOp->hasCXXExplicitFunctionObjectParameter() || CallOp->isStatic() |
16141 | ? CallOp |
16142 | : Lambda->getLambdaStaticInvoker(CC); |
16143 | |
16144 | if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) { |
16145 | CallOp = InstantiateFunctionDeclaration( |
16146 | FTD: CallOp->getDescribedFunctionTemplate(), Args: TemplateArgs, Loc: CurrentLocation); |
16147 | if (!CallOp) |
16148 | return; |
16149 | |
16150 | if (CallOp != Invoker) { |
16151 | Invoker = InstantiateFunctionDeclaration( |
16152 | FTD: Invoker->getDescribedFunctionTemplate(), Args: TemplateArgs, |
16153 | Loc: CurrentLocation); |
16154 | if (!Invoker) |
16155 | return; |
16156 | } |
16157 | } |
16158 | |
16159 | if (CallOp->isInvalidDecl()) |
16160 | return; |
16161 | |
16162 | // Mark the call operator referenced (and add to pending instantiations |
16163 | // if necessary). |
16164 | // For both the conversion and static-invoker template specializations |
16165 | // we construct their body's in this function, so no need to add them |
16166 | // to the PendingInstantiations. |
16167 | MarkFunctionReferenced(Loc: CurrentLocation, Func: CallOp); |
16168 | |
16169 | if (Invoker != CallOp) { |
16170 | // Fill in the __invoke function with a dummy implementation. IR generation |
16171 | // will fill in the actual details. Update its type in case it contained |
16172 | // an 'auto'. |
16173 | Invoker->markUsed(Context); |
16174 | Invoker->setReferenced(); |
16175 | Invoker->setType(Conv->getReturnType()->getPointeeType()); |
16176 | Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation())); |
16177 | } |
16178 | |
16179 | // Construct the body of the conversion function { return __invoke; }. |
16180 | Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(), VK_LValue, |
16181 | Conv->getLocation()); |
16182 | assert(FunctionRef && "Can't refer to __invoke function?"); |
16183 | Stmt *Return = BuildReturnStmt(ReturnLoc: Conv->getLocation(), RetValExp: FunctionRef).get(); |
16184 | Conv->setBody(CompoundStmt::Create(C: Context, Stmts: Return, FPFeatures: FPOptionsOverride(), |
16185 | LB: Conv->getLocation(), RB: Conv->getLocation())); |
16186 | Conv->markUsed(Context); |
16187 | Conv->setReferenced(); |
16188 | |
16189 | if (ASTMutationListener *L = getASTMutationListener()) { |
16190 | L->CompletedImplicitDefinition(Conv); |
16191 | if (Invoker != CallOp) |
16192 | L->CompletedImplicitDefinition(D: Invoker); |
16193 | } |
16194 | } |
16195 | |
16196 | void Sema::DefineImplicitLambdaToBlockPointerConversion( |
16197 | SourceLocation CurrentLocation, CXXConversionDecl *Conv) { |
16198 | assert(!Conv->getParent()->isGenericLambda()); |
16199 | |
16200 | SynthesizedFunctionScope Scope(*this, Conv); |
16201 | |
16202 | // Copy-initialize the lambda object as needed to capture it. |
16203 | Expr *This = ActOnCXXThis(Loc: CurrentLocation).get(); |
16204 | Expr *DerefThis =CreateBuiltinUnaryOp(OpLoc: CurrentLocation, Opc: UO_Deref, InputExpr: This).get(); |
16205 | |
16206 | ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation, |
16207 | ConvLocation: Conv->getLocation(), |
16208 | Conv, Src: DerefThis); |
16209 | |
16210 | // If we're not under ARC, make sure we still get the _Block_copy/autorelease |
16211 | // behavior. Note that only the general conversion function does this |
16212 | // (since it's unusable otherwise); in the case where we inline the |
16213 | // block literal, it has block literal lifetime semantics. |
16214 | if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount) |
16215 | BuildBlock = ImplicitCastExpr::Create( |
16216 | Context, T: BuildBlock.get()->getType(), Kind: CK_CopyAndAutoreleaseBlockObject, |
16217 | Operand: BuildBlock.get(), BasePath: nullptr, Cat: VK_PRValue, FPO: FPOptionsOverride()); |
16218 | |
16219 | if (BuildBlock.isInvalid()) { |
16220 | Diag(CurrentLocation, diag::note_lambda_to_block_conv); |
16221 | Conv->setInvalidDecl(); |
16222 | return; |
16223 | } |
16224 | |
16225 | // Create the return statement that returns the block from the conversion |
16226 | // function. |
16227 | StmtResult Return = BuildReturnStmt(ReturnLoc: Conv->getLocation(), RetValExp: BuildBlock.get()); |
16228 | if (Return.isInvalid()) { |
16229 | Diag(CurrentLocation, diag::note_lambda_to_block_conv); |
16230 | Conv->setInvalidDecl(); |
16231 | return; |
16232 | } |
16233 | |
16234 | // Set the body of the conversion function. |
16235 | Stmt *ReturnS = Return.get(); |
16236 | Conv->setBody(CompoundStmt::Create(C: Context, Stmts: ReturnS, FPFeatures: FPOptionsOverride(), |
16237 | LB: Conv->getLocation(), RB: Conv->getLocation())); |
16238 | Conv->markUsed(Context); |
16239 | |
16240 | // We're done; notify the mutation listener, if any. |
16241 | if (ASTMutationListener *L = getASTMutationListener()) { |
16242 | L->CompletedImplicitDefinition(Conv); |
16243 | } |
16244 | } |
16245 | |
16246 | /// Determine whether the given list arguments contains exactly one |
16247 | /// "real" (non-default) argument. |
16248 | static bool hasOneRealArgument(MultiExprArg Args) { |
16249 | switch (Args.size()) { |
16250 | case 0: |
16251 | return false; |
16252 | |
16253 | default: |
16254 | if (!Args[1]->isDefaultArgument()) |
16255 | return false; |
16256 | |
16257 | [[fallthrough]]; |
16258 | case 1: |
16259 | return !Args[0]->isDefaultArgument(); |
16260 | } |
16261 | |
16262 | return false; |
16263 | } |
16264 | |
16265 | ExprResult Sema::BuildCXXConstructExpr( |
16266 | SourceLocation ConstructLoc, QualType DeclInitType, NamedDecl *FoundDecl, |
16267 | CXXConstructorDecl *Constructor, MultiExprArg ExprArgs, |
16268 | bool HadMultipleCandidates, bool IsListInitialization, |
16269 | bool IsStdInitListInitialization, bool RequiresZeroInit, |
16270 | CXXConstructionKind ConstructKind, SourceRange ParenRange) { |
16271 | bool Elidable = false; |
16272 | |
16273 | // C++0x [class.copy]p34: |
16274 | // When certain criteria are met, an implementation is allowed to |
16275 | // omit the copy/move construction of a class object, even if the |
16276 | // copy/move constructor and/or destructor for the object have |
16277 | // side effects. [...] |
16278 | // - when a temporary class object that has not been bound to a |
16279 | // reference (12.2) would be copied/moved to a class object |
16280 | // with the same cv-unqualified type, the copy/move operation |
16281 | // can be omitted by constructing the temporary object |
16282 | // directly into the target of the omitted copy/move |
16283 | if (ConstructKind == CXXConstructionKind::Complete && Constructor && |
16284 | // FIXME: Converting constructors should also be accepted. |
16285 | // But to fix this, the logic that digs down into a CXXConstructExpr |
16286 | // to find the source object needs to handle it. |
16287 | // Right now it assumes the source object is passed directly as the |
16288 | // first argument. |
16289 | Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(Args: ExprArgs)) { |
16290 | Expr *SubExpr = ExprArgs[0]; |
16291 | // FIXME: Per above, this is also incorrect if we want to accept |
16292 | // converting constructors, as isTemporaryObject will |
16293 | // reject temporaries with different type from the |
16294 | // CXXRecord itself. |
16295 | Elidable = SubExpr->isTemporaryObject( |
16296 | Ctx&: Context, TempTy: cast<CXXRecordDecl>(FoundDecl->getDeclContext())); |
16297 | } |
16298 | |
16299 | return BuildCXXConstructExpr(ConstructLoc, DeclInitType, |
16300 | FoundDecl, Constructor, |
16301 | Elidable, Exprs: ExprArgs, HadMultipleCandidates, |
16302 | IsListInitialization, |
16303 | IsStdInitListInitialization, RequiresZeroInit, |
16304 | ConstructKind, ParenRange); |
16305 | } |
16306 | |
16307 | ExprResult Sema::BuildCXXConstructExpr( |
16308 | SourceLocation ConstructLoc, QualType DeclInitType, NamedDecl *FoundDecl, |
16309 | CXXConstructorDecl *Constructor, bool Elidable, MultiExprArg ExprArgs, |
16310 | bool HadMultipleCandidates, bool IsListInitialization, |
16311 | bool IsStdInitListInitialization, bool RequiresZeroInit, |
16312 | CXXConstructionKind ConstructKind, SourceRange ParenRange) { |
16313 | if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(Val: FoundDecl)) { |
16314 | Constructor = findInheritingConstructor(Loc: ConstructLoc, BaseCtor: Constructor, Shadow); |
16315 | // The only way to get here is if we did overload resolution to find the |
16316 | // shadow decl, so we don't need to worry about re-checking the trailing |
16317 | // requires clause. |
16318 | if (DiagnoseUseOfOverloadedDecl(Constructor, ConstructLoc)) |
16319 | return ExprError(); |
16320 | } |
16321 | |
16322 | return BuildCXXConstructExpr( |
16323 | ConstructLoc, DeclInitType, Constructor, Elidable, Exprs: ExprArgs, |
16324 | HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization, |
16325 | RequiresZeroInit, ConstructKind, ParenRange); |
16326 | } |
16327 | |
16328 | /// BuildCXXConstructExpr - Creates a complete call to a constructor, |
16329 | /// including handling of its default argument expressions. |
16330 | ExprResult Sema::BuildCXXConstructExpr( |
16331 | SourceLocation ConstructLoc, QualType DeclInitType, |
16332 | CXXConstructorDecl *Constructor, bool Elidable, MultiExprArg ExprArgs, |
16333 | bool HadMultipleCandidates, bool IsListInitialization, |
16334 | bool IsStdInitListInitialization, bool RequiresZeroInit, |
16335 | CXXConstructionKind ConstructKind, SourceRange ParenRange) { |
16336 | assert(declaresSameEntity( |
16337 | Constructor->getParent(), |
16338 | DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && |
16339 | "given constructor for wrong type"); |
16340 | MarkFunctionReferenced(ConstructLoc, Constructor); |
16341 | if (getLangOpts().CUDA && !CUDA().CheckCall(ConstructLoc, Constructor)) |
16342 | return ExprError(); |
16343 | |
16344 | return CheckForImmediateInvocation( |
16345 | CXXConstructExpr::Create( |
16346 | Ctx: Context, Ty: DeclInitType, Loc: ConstructLoc, Ctor: Constructor, Elidable, Args: ExprArgs, |
16347 | HadMultipleCandidates, ListInitialization: IsListInitialization, |
16348 | StdInitListInitialization: IsStdInitListInitialization, ZeroInitialization: RequiresZeroInit, |
16349 | ConstructKind: static_cast<CXXConstructionKind>(ConstructKind), ParenOrBraceRange: ParenRange), |
16350 | Constructor); |
16351 | } |
16352 | |
16353 | void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) { |
16354 | if (VD->isInvalidDecl()) return; |
16355 | // If initializing the variable failed, don't also diagnose problems with |
16356 | // the destructor, they're likely related. |
16357 | if (VD->getInit() && VD->getInit()->containsErrors()) |
16358 | return; |
16359 | |
16360 | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Val: Record->getDecl()); |
16361 | if (ClassDecl->isInvalidDecl()) return; |
16362 | if (ClassDecl->hasIrrelevantDestructor()) return; |
16363 | if (ClassDecl->isDependentContext()) return; |
16364 | |
16365 | if (VD->isNoDestroy(getASTContext())) |
16366 | return; |
16367 | |
16368 | CXXDestructorDecl *Destructor = LookupDestructor(Class: ClassDecl); |
16369 | // The result of `LookupDestructor` might be nullptr if the destructor is |
16370 | // invalid, in which case it is marked as `IneligibleOrNotSelected` and |
16371 | // will not be selected by `CXXRecordDecl::getDestructor()`. |
16372 | if (!Destructor) |
16373 | return; |
16374 | // If this is an array, we'll require the destructor during initialization, so |
16375 | // we can skip over this. We still want to emit exit-time destructor warnings |
16376 | // though. |
16377 | if (!VD->getType()->isArrayType()) { |
16378 | MarkFunctionReferenced(Loc: VD->getLocation(), Func: Destructor); |
16379 | CheckDestructorAccess(VD->getLocation(), Destructor, |
16380 | PDiag(diag::err_access_dtor_var) |
16381 | << VD->getDeclName() << VD->getType()); |
16382 | DiagnoseUseOfDecl(D: Destructor, Locs: VD->getLocation()); |
16383 | } |
16384 | |
16385 | if (Destructor->isTrivial()) return; |
16386 | |
16387 | // If the destructor is constexpr, check whether the variable has constant |
16388 | // destruction now. |
16389 | if (Destructor->isConstexpr()) { |
16390 | bool HasConstantInit = false; |
16391 | if (VD->getInit() && !VD->getInit()->isValueDependent()) |
16392 | HasConstantInit = VD->evaluateValue(); |
16393 | SmallVector<PartialDiagnosticAt, 8> Notes; |
16394 | if (!VD->evaluateDestruction(Notes) && VD->isConstexpr() && |
16395 | HasConstantInit) { |
16396 | Diag(VD->getLocation(), |
16397 | diag::err_constexpr_var_requires_const_destruction) << VD; |
16398 | for (unsigned I = 0, N = Notes.size(); I != N; ++I) |
16399 | Diag(Notes[I].first, Notes[I].second); |
16400 | } |
16401 | } |
16402 | |
16403 | if (!VD->hasGlobalStorage() || !VD->needsDestruction(Ctx: Context)) |
16404 | return; |
16405 | |
16406 | // Emit warning for non-trivial dtor in global scope (a real global, |
16407 | // class-static, function-static). |
16408 | if (!VD->hasAttr<AlwaysDestroyAttr>()) |
16409 | Diag(VD->getLocation(), diag::warn_exit_time_destructor); |
16410 | |
16411 | // TODO: this should be re-enabled for static locals by !CXAAtExit |
16412 | if (!VD->isStaticLocal()) |
16413 | Diag(VD->getLocation(), diag::warn_global_destructor); |
16414 | } |
16415 | |
16416 | bool Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor, |
16417 | QualType DeclInitType, MultiExprArg ArgsPtr, |
16418 | SourceLocation Loc, |
16419 | SmallVectorImpl<Expr *> &ConvertedArgs, |
16420 | bool AllowExplicit, |
16421 | bool IsListInitialization) { |
16422 | // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall. |
16423 | unsigned NumArgs = ArgsPtr.size(); |
16424 | Expr **Args = ArgsPtr.data(); |
16425 | |
16426 | const auto *Proto = Constructor->getType()->castAs<FunctionProtoType>(); |
16427 | unsigned NumParams = Proto->getNumParams(); |
16428 | |
16429 | // If too few arguments are available, we'll fill in the rest with defaults. |
16430 | if (NumArgs < NumParams) |
16431 | ConvertedArgs.reserve(N: NumParams); |
16432 | else |
16433 | ConvertedArgs.reserve(N: NumArgs); |
16434 | |
16435 | VariadicCallType CallType = Proto->isVariadic() |
16436 | ? VariadicCallType::Constructor |
16437 | : VariadicCallType::DoesNotApply; |
16438 | SmallVector<Expr *, 8> AllArgs; |
16439 | bool Invalid = GatherArgumentsForCall( |
16440 | CallLoc: Loc, FDecl: Constructor, Proto: Proto, FirstParam: 0, Args: llvm::ArrayRef(Args, NumArgs), AllArgs, |
16441 | CallType, AllowExplicit, IsListInitialization); |
16442 | ConvertedArgs.append(in_start: AllArgs.begin(), in_end: AllArgs.end()); |
16443 | |
16444 | DiagnoseSentinelCalls(Constructor, Loc, AllArgs); |
16445 | |
16446 | CheckConstructorCall(FDecl: Constructor, ThisType: DeclInitType, |
16447 | Args: llvm::ArrayRef(AllArgs.data(), AllArgs.size()), Proto: Proto, |
16448 | Loc); |
16449 | |
16450 | return Invalid; |
16451 | } |
16452 | |
16453 | TypeAwareAllocationMode Sema::ShouldUseTypeAwareOperatorNewOrDelete() const { |
16454 | bool SeenTypedOperators = Context.hasSeenTypeAwareOperatorNewOrDelete(); |
16455 | return typeAwareAllocationModeFromBool(IsTypeAwareAllocation: SeenTypedOperators); |
16456 | } |
16457 | |
16458 | FunctionDecl * |
16459 | Sema::BuildTypeAwareUsualDelete(FunctionTemplateDecl *FnTemplateDecl, |
16460 | QualType DeallocType, SourceLocation Loc) { |
16461 | if (DeallocType.isNull()) |
16462 | return nullptr; |
16463 | |
16464 | FunctionDecl *FnDecl = FnTemplateDecl->getTemplatedDecl(); |
16465 | if (!FnDecl->isTypeAwareOperatorNewOrDelete()) |
16466 | return nullptr; |
16467 | |
16468 | if (FnDecl->isVariadic()) |
16469 | return nullptr; |
16470 | |
16471 | unsigned NumParams = FnDecl->getNumParams(); |
16472 | constexpr unsigned RequiredParameterCount = |
16473 | FunctionDecl::RequiredTypeAwareDeleteParameterCount; |
16474 | // A usual deallocation function has no placement parameters |
16475 | if (NumParams != RequiredParameterCount) |
16476 | return nullptr; |
16477 | |
16478 | // A type aware allocation is only usual if the only dependent parameter is |
16479 | // the first parameter. |
16480 | if (llvm::any_of(Range: FnDecl->parameters().drop_front(), |
16481 | P: [](const ParmVarDecl *ParamDecl) { |
16482 | return ParamDecl->getType()->isDependentType(); |
16483 | })) |
16484 | return nullptr; |
16485 | |
16486 | QualType SpecializedTypeIdentity = tryBuildStdTypeIdentity(Type: DeallocType, Loc); |
16487 | if (SpecializedTypeIdentity.isNull()) |
16488 | return nullptr; |
16489 | |
16490 | SmallVector<QualType, RequiredParameterCount> ArgTypes; |
16491 | ArgTypes.reserve(N: NumParams); |
16492 | |
16493 | // The first parameter to a type aware operator delete is by definition the |
16494 | // type-identity argument, so we explicitly set this to the target |
16495 | // type-identity type, the remaining usual parameters should then simply match |
16496 | // the type declared in the function template. |
16497 | ArgTypes.push_back(Elt: SpecializedTypeIdentity); |
16498 | for (unsigned ParamIdx = 1; ParamIdx < RequiredParameterCount; ++ParamIdx) |
16499 | ArgTypes.push_back(Elt: FnDecl->getParamDecl(i: ParamIdx)->getType()); |
16500 | |
16501 | FunctionProtoType::ExtProtoInfo EPI; |
16502 | QualType ExpectedFunctionType = |
16503 | Context.getFunctionType(ResultTy: Context.VoidTy, Args: ArgTypes, EPI); |
16504 | sema::TemplateDeductionInfo Info(Loc); |
16505 | FunctionDecl *Result; |
16506 | if (DeduceTemplateArguments(FunctionTemplate: FnTemplateDecl, ExplicitTemplateArgs: nullptr, ArgFunctionType: ExpectedFunctionType, |
16507 | Specialization&: Result, Info) != TemplateDeductionResult::Success) |
16508 | return nullptr; |
16509 | return Result; |
16510 | } |
16511 | |
16512 | static inline bool |
16513 | CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, |
16514 | const FunctionDecl *FnDecl) { |
16515 | const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext(); |
16516 | if (isa<NamespaceDecl>(Val: DC)) { |
16517 | return SemaRef.Diag(FnDecl->getLocation(), |
16518 | diag::err_operator_new_delete_declared_in_namespace) |
16519 | << FnDecl->getDeclName(); |
16520 | } |
16521 | |
16522 | if (isa<TranslationUnitDecl>(Val: DC) && |
16523 | FnDecl->getStorageClass() == SC_Static) { |
16524 | return SemaRef.Diag(FnDecl->getLocation(), |
16525 | diag::err_operator_new_delete_declared_static) |
16526 | << FnDecl->getDeclName(); |
16527 | } |
16528 | |
16529 | return false; |
16530 | } |
16531 | |
16532 | static CanQualType RemoveAddressSpaceFromPtr(Sema &SemaRef, |
16533 | const PointerType *PtrTy) { |
16534 | auto &Ctx = SemaRef.Context; |
16535 | Qualifiers PtrQuals = PtrTy->getPointeeType().getQualifiers(); |
16536 | PtrQuals.removeAddressSpace(); |
16537 | return Ctx.getPointerType(T: Ctx.getCanonicalType(T: Ctx.getQualifiedType( |
16538 | T: PtrTy->getPointeeType().getUnqualifiedType(), Qs: PtrQuals))); |
16539 | } |
16540 | |
16541 | enum class AllocationOperatorKind { New, Delete }; |
16542 | |
16543 | static bool IsPotentiallyTypeAwareOperatorNewOrDelete(Sema &SemaRef, |
16544 | const FunctionDecl *FD, |
16545 | bool *WasMalformed) { |
16546 | const Decl *MalformedDecl = nullptr; |
16547 | if (FD->getNumParams() > 0 && |
16548 | SemaRef.isStdTypeIdentity(Ty: FD->getParamDecl(i: 0)->getType(), |
16549 | /*TypeArgument=*/Element: nullptr, MalformedDecl: &MalformedDecl)) |
16550 | return true; |
16551 | |
16552 | if (!MalformedDecl) |
16553 | return false; |
16554 | |
16555 | if (WasMalformed) |
16556 | *WasMalformed = true; |
16557 | |
16558 | return true; |
16559 | } |
16560 | |
16561 | static bool isDestroyingDeleteT(QualType Type) { |
16562 | auto *RD = Type->getAsCXXRecordDecl(); |
16563 | return RD && RD->isInStdNamespace() && RD->getIdentifier() && |
16564 | RD->getIdentifier()->isStr("destroying_delete_t"); |
16565 | } |
16566 | |
16567 | static bool IsPotentiallyDestroyingOperatorDelete(Sema &SemaRef, |
16568 | const FunctionDecl *FD) { |
16569 | // C++ P0722: |
16570 | // Within a class C, a single object deallocation function with signature |
16571 | // (T, std::destroying_delete_t, <more params>) |
16572 | // is a destroying operator delete. |
16573 | bool IsPotentiallyTypeAware = IsPotentiallyTypeAwareOperatorNewOrDelete( |
16574 | SemaRef, FD, /*WasMalformed=*/nullptr); |
16575 | unsigned DestroyingDeleteIdx = IsPotentiallyTypeAware + /* address */ 1; |
16576 | return isa<CXXMethodDecl>(Val: FD) && FD->getOverloadedOperator() == OO_Delete && |
16577 | FD->getNumParams() > DestroyingDeleteIdx && |
16578 | isDestroyingDeleteT(FD->getParamDecl(i: DestroyingDeleteIdx)->getType()); |
16579 | } |
16580 | |
16581 | static inline bool CheckOperatorNewDeleteTypes( |
16582 | Sema &SemaRef, FunctionDecl *FnDecl, AllocationOperatorKind OperatorKind, |
16583 | CanQualType ExpectedResultType, CanQualType ExpectedSizeOrAddressParamType, |
16584 | unsigned DependentParamTypeDiag, unsigned InvalidParamTypeDiag) { |
16585 | auto NormalizeType = [&SemaRef](QualType T) { |
16586 | if (SemaRef.getLangOpts().OpenCLCPlusPlus) { |
16587 | // The operator is valid on any address space for OpenCL. |
16588 | // Drop address space from actual and expected result types. |
16589 | if (const auto PtrTy = T->template getAs<PointerType>()) |
16590 | T = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); |
16591 | } |
16592 | return SemaRef.Context.getCanonicalType(T); |
16593 | }; |
16594 | |
16595 | const unsigned NumParams = FnDecl->getNumParams(); |
16596 | unsigned FirstNonTypeParam = 0; |
16597 | bool MalformedTypeIdentity = false; |
16598 | bool IsPotentiallyTypeAware = IsPotentiallyTypeAwareOperatorNewOrDelete( |
16599 | SemaRef, FD: FnDecl, WasMalformed: &MalformedTypeIdentity); |
16600 | unsigned MinimumMandatoryArgumentCount = 1; |
16601 | unsigned SizeParameterIndex = 0; |
16602 | if (IsPotentiallyTypeAware) { |
16603 | // We don't emit this diagnosis for template instantiations as we will |
16604 | // have already emitted it for the original template declaration. |
16605 | if (!FnDecl->isTemplateInstantiation()) { |
16606 | unsigned DiagID = SemaRef.getLangOpts().CPlusPlus26 |
16607 | ? diag::warn_cxx26_type_aware_allocators |
16608 | : diag::ext_cxx26_type_aware_allocators; |
16609 | SemaRef.Diag(FnDecl->getLocation(), DiagID); |
16610 | } |
16611 | |
16612 | if (OperatorKind == AllocationOperatorKind::New) { |
16613 | SizeParameterIndex = 1; |
16614 | MinimumMandatoryArgumentCount = |
16615 | FunctionDecl::RequiredTypeAwareNewParameterCount; |
16616 | } else { |
16617 | SizeParameterIndex = 2; |
16618 | MinimumMandatoryArgumentCount = |
16619 | FunctionDecl::RequiredTypeAwareDeleteParameterCount; |
16620 | } |
16621 | FirstNonTypeParam = 1; |
16622 | } |
16623 | |
16624 | bool IsPotentiallyDestroyingDelete = |
16625 | IsPotentiallyDestroyingOperatorDelete(SemaRef, FD: FnDecl); |
16626 | |
16627 | if (IsPotentiallyDestroyingDelete) { |
16628 | ++MinimumMandatoryArgumentCount; |
16629 | ++SizeParameterIndex; |
16630 | } |
16631 | |
16632 | if (NumParams < MinimumMandatoryArgumentCount) |
16633 | return SemaRef.Diag(FnDecl->getLocation(), |
16634 | diag::err_operator_new_delete_too_few_parameters) |
16635 | << IsPotentiallyTypeAware << IsPotentiallyDestroyingDelete |
16636 | << FnDecl->getDeclName() << MinimumMandatoryArgumentCount; |
16637 | |
16638 | for (unsigned Idx = 0; Idx < MinimumMandatoryArgumentCount; ++Idx) { |
16639 | const ParmVarDecl *ParamDecl = FnDecl->getParamDecl(i: Idx); |
16640 | if (ParamDecl->hasDefaultArg()) |
16641 | return SemaRef.Diag(FnDecl->getLocation(), |
16642 | diag::err_operator_new_default_arg) |
16643 | << FnDecl->getDeclName() << Idx << ParamDecl->getDefaultArgRange(); |
16644 | } |
16645 | |
16646 | auto *FnType = FnDecl->getType()->castAs<FunctionType>(); |
16647 | QualType CanResultType = NormalizeType(FnType->getReturnType()); |
16648 | QualType CanExpectedResultType = NormalizeType(ExpectedResultType); |
16649 | QualType CanExpectedSizeOrAddressParamType = |
16650 | NormalizeType(ExpectedSizeOrAddressParamType); |
16651 | |
16652 | // Check that the result type is what we expect. |
16653 | if (CanResultType != CanExpectedResultType) { |
16654 | // Reject even if the type is dependent; an operator delete function is |
16655 | // required to have a non-dependent result type. |
16656 | return SemaRef.Diag( |
16657 | FnDecl->getLocation(), |
16658 | CanResultType->isDependentType() |
16659 | ? diag::err_operator_new_delete_dependent_result_type |
16660 | : diag::err_operator_new_delete_invalid_result_type) |
16661 | << FnDecl->getDeclName() << ExpectedResultType; |
16662 | } |
16663 | |
16664 | // A function template must have at least 2 parameters. |
16665 | if (FnDecl->getDescribedFunctionTemplate() && NumParams < 2) |
16666 | return SemaRef.Diag(FnDecl->getLocation(), |
16667 | diag::err_operator_new_delete_template_too_few_parameters) |
16668 | << FnDecl->getDeclName(); |
16669 | |
16670 | auto CheckType = [&](unsigned ParamIdx, QualType ExpectedType, |
16671 | auto FallbackType) -> bool { |
16672 | const ParmVarDecl *ParamDecl = FnDecl->getParamDecl(i: ParamIdx); |
16673 | if (ExpectedType.isNull()) { |
16674 | return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag) |
16675 | << IsPotentiallyTypeAware << IsPotentiallyDestroyingDelete |
16676 | << FnDecl->getDeclName() << (1 + ParamIdx) << FallbackType |
16677 | << ParamDecl->getSourceRange(); |
16678 | } |
16679 | CanQualType CanExpectedTy = |
16680 | NormalizeType(SemaRef.Context.getCanonicalType(T: ExpectedType)); |
16681 | auto ActualParamType = |
16682 | NormalizeType(ParamDecl->getType().getUnqualifiedType()); |
16683 | if (ActualParamType == CanExpectedTy) |
16684 | return false; |
16685 | unsigned Diagnostic = ActualParamType->isDependentType() |
16686 | ? DependentParamTypeDiag |
16687 | : InvalidParamTypeDiag; |
16688 | return SemaRef.Diag(FnDecl->getLocation(), Diagnostic) |
16689 | << IsPotentiallyTypeAware << IsPotentiallyDestroyingDelete |
16690 | << FnDecl->getDeclName() << (1 + ParamIdx) << ExpectedType |
16691 | << FallbackType << ParamDecl->getSourceRange(); |
16692 | }; |
16693 | |
16694 | // Check that the first parameter type is what we expect. |
16695 | if (CheckType(FirstNonTypeParam, CanExpectedSizeOrAddressParamType, "size_t")) |
16696 | return true; |
16697 | |
16698 | FnDecl->setIsDestroyingOperatorDelete(IsPotentiallyDestroyingDelete); |
16699 | |
16700 | // If the first parameter type is not a type-identity we're done, otherwise |
16701 | // we need to ensure the size and alignment parameters have the correct type |
16702 | if (!IsPotentiallyTypeAware) |
16703 | return false; |
16704 | |
16705 | if (CheckType(SizeParameterIndex, SemaRef.Context.getSizeType(), "size_t")) |
16706 | return true; |
16707 | TypeDecl *StdAlignValTDecl = SemaRef.getStdAlignValT(); |
16708 | QualType StdAlignValT = |
16709 | StdAlignValTDecl ? SemaRef.Context.getTypeDeclType(Decl: StdAlignValTDecl) |
16710 | : QualType(); |
16711 | if (CheckType(SizeParameterIndex + 1, StdAlignValT, "std::align_val_t")) |
16712 | return true; |
16713 | |
16714 | FnDecl->setIsTypeAwareOperatorNewOrDelete(); |
16715 | return MalformedTypeIdentity; |
16716 | } |
16717 | |
16718 | static bool CheckOperatorNewDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) { |
16719 | // C++ [basic.stc.dynamic.allocation]p1: |
16720 | // A program is ill-formed if an allocation function is declared in a |
16721 | // namespace scope other than global scope or declared static in global |
16722 | // scope. |
16723 | if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) |
16724 | return true; |
16725 | |
16726 | CanQualType SizeTy = |
16727 | SemaRef.Context.getCanonicalType(T: SemaRef.Context.getSizeType()); |
16728 | |
16729 | // C++ [basic.stc.dynamic.allocation]p1: |
16730 | // The return type shall be void*. The first parameter shall have type |
16731 | // std::size_t. |
16732 | return CheckOperatorNewDeleteTypes( |
16733 | SemaRef, FnDecl, AllocationOperatorKind::New, SemaRef.Context.VoidPtrTy, |
16734 | SizeTy, diag::err_operator_new_dependent_param_type, |
16735 | diag::err_operator_new_param_type); |
16736 | } |
16737 | |
16738 | static bool |
16739 | CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) { |
16740 | // C++ [basic.stc.dynamic.deallocation]p1: |
16741 | // A program is ill-formed if deallocation functions are declared in a |
16742 | // namespace scope other than global scope or declared static in global |
16743 | // scope. |
16744 | if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) |
16745 | return true; |
16746 | |
16747 | auto *MD = dyn_cast<CXXMethodDecl>(Val: FnDecl); |
16748 | auto ConstructDestroyingDeleteAddressType = [&]() { |
16749 | assert(MD); |
16750 | return SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType( |
16751 | SemaRef.Context.getRecordType(MD->getParent()))); |
16752 | }; |
16753 | |
16754 | // C++ P2719: A destroying operator delete cannot be type aware |
16755 | // so for QoL we actually check for this explicitly by considering |
16756 | // an destroying-delete appropriate address type and the presence of |
16757 | // any parameter of type destroying_delete_t as an erroneous attempt |
16758 | // to declare a type aware destroying delete, rather than emitting a |
16759 | // pile of incorrect parameter type errors. |
16760 | if (MD && IsPotentiallyTypeAwareOperatorNewOrDelete( |
16761 | SemaRef, MD, /*WasMalformed=*/nullptr)) { |
16762 | QualType AddressParamType = |
16763 | SemaRef.Context.getCanonicalType(MD->getParamDecl(1)->getType()); |
16764 | if (AddressParamType != SemaRef.Context.VoidPtrTy && |
16765 | AddressParamType == ConstructDestroyingDeleteAddressType()) { |
16766 | // The address parameter type implies an author trying to construct a |
16767 | // type aware destroying delete, so we'll see if we can find a parameter |
16768 | // of type `std::destroying_delete_t`, and if we find it we'll report |
16769 | // this as being an attempt at a type aware destroying delete just stop |
16770 | // here. If we don't do this, the resulting incorrect parameter ordering |
16771 | // results in a pile mismatched argument type errors that don't explain |
16772 | // the core problem. |
16773 | for (auto Param : MD->parameters()) { |
16774 | if (isDestroyingDeleteT(Param->getType())) { |
16775 | SemaRef.Diag(MD->getLocation(), |
16776 | diag::err_type_aware_destroying_operator_delete) |
16777 | << Param->getSourceRange(); |
16778 | return true; |
16779 | } |
16780 | } |
16781 | } |
16782 | } |
16783 | |
16784 | // C++ P0722: |
16785 | // Within a class C, the first parameter of a destroying operator delete |
16786 | // shall be of type C *. The first parameter of any other deallocation |
16787 | // function shall be of type void *. |
16788 | CanQualType ExpectedAddressParamType = |
16789 | MD && IsPotentiallyDestroyingOperatorDelete(SemaRef, MD) |
16790 | ? SemaRef.Context.getCanonicalType(T: SemaRef.Context.getPointerType( |
16791 | T: SemaRef.Context.getRecordType(MD->getParent()))) |
16792 | : SemaRef.Context.VoidPtrTy; |
16793 | |
16794 | // C++ [basic.stc.dynamic.deallocation]p2: |
16795 | // Each deallocation function shall return void |
16796 | if (CheckOperatorNewDeleteTypes( |
16797 | SemaRef, FnDecl, AllocationOperatorKind::Delete, |
16798 | SemaRef.Context.VoidTy, ExpectedAddressParamType, |
16799 | diag::err_operator_delete_dependent_param_type, |
16800 | diag::err_operator_delete_param_type)) |
16801 | return true; |
16802 | |
16803 | // C++ P0722: |
16804 | // A destroying operator delete shall be a usual deallocation function. |
16805 | if (MD && !MD->getParent()->isDependentContext() && |
16806 | MD->isDestroyingOperatorDelete()) { |
16807 | if (!SemaRef.isUsualDeallocationFunction(FD: MD)) { |
16808 | SemaRef.Diag(MD->getLocation(), |
16809 | diag::err_destroying_operator_delete_not_usual); |
16810 | return true; |
16811 | } |
16812 | } |
16813 | |
16814 | return false; |
16815 | } |
16816 | |
16817 | bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { |
16818 | assert(FnDecl && FnDecl->isOverloadedOperator() && |
16819 | "Expected an overloaded operator declaration"); |
16820 | |
16821 | OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); |
16822 | |
16823 | // C++ [over.oper]p5: |
16824 | // The allocation and deallocation functions, operator new, |
16825 | // operator new[], operator delete and operator delete[], are |
16826 | // described completely in 3.7.3. The attributes and restrictions |
16827 | // found in the rest of this subclause do not apply to them unless |
16828 | // explicitly stated in 3.7.3. |
16829 | if (Op == OO_Delete || Op == OO_Array_Delete) |
16830 | return CheckOperatorDeleteDeclaration(SemaRef&: *this, FnDecl); |
16831 | |
16832 | if (Op == OO_New || Op == OO_Array_New) |
16833 | return CheckOperatorNewDeclaration(SemaRef&: *this, FnDecl); |
16834 | |
16835 | // C++ [over.oper]p7: |
16836 | // An operator function shall either be a member function or |
16837 | // be a non-member function and have at least one parameter |
16838 | // whose type is a class, a reference to a class, an enumeration, |
16839 | // or a reference to an enumeration. |
16840 | // Note: Before C++23, a member function could not be static. The only member |
16841 | // function allowed to be static is the call operator function. |
16842 | if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Val: FnDecl)) { |
16843 | if (MethodDecl->isStatic()) { |
16844 | if (Op == OO_Call || Op == OO_Subscript) |
16845 | Diag(FnDecl->getLocation(), |
16846 | (LangOpts.CPlusPlus23 |
16847 | ? diag::warn_cxx20_compat_operator_overload_static |
16848 | : diag::ext_operator_overload_static)) |
16849 | << FnDecl; |
16850 | else |
16851 | return Diag(FnDecl->getLocation(), diag::err_operator_overload_static) |
16852 | << FnDecl; |
16853 | } |
16854 | } else { |
16855 | bool ClassOrEnumParam = false; |
16856 | for (auto *Param : FnDecl->parameters()) { |
16857 | QualType ParamType = Param->getType().getNonReferenceType(); |
16858 | if (ParamType->isDependentType() || ParamType->isRecordType() || |
16859 | ParamType->isEnumeralType()) { |
16860 | ClassOrEnumParam = true; |
16861 | break; |
16862 | } |
16863 | } |
16864 | |
16865 | if (!ClassOrEnumParam) |
16866 | return Diag(FnDecl->getLocation(), |
16867 | diag::err_operator_overload_needs_class_or_enum) |
16868 | << FnDecl->getDeclName(); |
16869 | } |
16870 | |
16871 | // C++ [over.oper]p8: |
16872 | // An operator function cannot have default arguments (8.3.6), |
16873 | // except where explicitly stated below. |
16874 | // |
16875 | // Only the function-call operator (C++ [over.call]p1) and the subscript |
16876 | // operator (CWG2507) allow default arguments. |
16877 | if (Op != OO_Call) { |
16878 | ParmVarDecl *FirstDefaultedParam = nullptr; |
16879 | for (auto *Param : FnDecl->parameters()) { |
16880 | if (Param->hasDefaultArg()) { |
16881 | FirstDefaultedParam = Param; |
16882 | break; |
16883 | } |
16884 | } |
16885 | if (FirstDefaultedParam) { |
16886 | if (Op == OO_Subscript) { |
16887 | Diag(FnDecl->getLocation(), LangOpts.CPlusPlus23 |
16888 | ? diag::ext_subscript_overload |
16889 | : diag::error_subscript_overload) |
16890 | << FnDecl->getDeclName() << 1 |
16891 | << FirstDefaultedParam->getDefaultArgRange(); |
16892 | } else { |
16893 | return Diag(FirstDefaultedParam->getLocation(), |
16894 | diag::err_operator_overload_default_arg) |
16895 | << FnDecl->getDeclName() |
16896 | << FirstDefaultedParam->getDefaultArgRange(); |
16897 | } |
16898 | } |
16899 | } |
16900 | |
16901 | static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { |
16902 | { false, false, false } |
16903 | #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ |
16904 | , { Unary, Binary, MemberOnly } |
16905 | #include "clang/Basic/OperatorKinds.def" |
16906 | }; |
16907 | |
16908 | bool CanBeUnaryOperator = OperatorUses[Op][0]; |
16909 | bool CanBeBinaryOperator = OperatorUses[Op][1]; |
16910 | bool MustBeMemberOperator = OperatorUses[Op][2]; |
16911 | |
16912 | // C++ [over.oper]p8: |
16913 | // [...] Operator functions cannot have more or fewer parameters |
16914 | // than the number required for the corresponding operator, as |
16915 | // described in the rest of this subclause. |
16916 | unsigned NumParams = FnDecl->getNumParams() + |
16917 | (isa<CXXMethodDecl>(Val: FnDecl) && |
16918 | !FnDecl->hasCXXExplicitFunctionObjectParameter() |
16919 | ? 1 |
16920 | : 0); |
16921 | if (Op != OO_Call && Op != OO_Subscript && |
16922 | ((NumParams == 1 && !CanBeUnaryOperator) || |
16923 | (NumParams == 2 && !CanBeBinaryOperator) || (NumParams < 1) || |
16924 | (NumParams > 2))) { |
16925 | // We have the wrong number of parameters. |
16926 | unsigned ErrorKind; |
16927 | if (CanBeUnaryOperator && CanBeBinaryOperator) { |
16928 | ErrorKind = 2; // 2 -> unary or binary. |
16929 | } else if (CanBeUnaryOperator) { |
16930 | ErrorKind = 0; // 0 -> unary |
16931 | } else { |
16932 | assert(CanBeBinaryOperator && |
16933 | "All non-call overloaded operators are unary or binary!"); |
16934 | ErrorKind = 1; // 1 -> binary |
16935 | } |
16936 | return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) |
16937 | << FnDecl->getDeclName() << NumParams << ErrorKind; |
16938 | } |
16939 | |
16940 | if (Op == OO_Subscript && NumParams != 2) { |
16941 | Diag(FnDecl->getLocation(), LangOpts.CPlusPlus23 |
16942 | ? diag::ext_subscript_overload |
16943 | : diag::error_subscript_overload) |
16944 | << FnDecl->getDeclName() << (NumParams == 1 ? 0 : 2); |
16945 | } |
16946 | |
16947 | // Overloaded operators other than operator() and operator[] cannot be |
16948 | // variadic. |
16949 | if (Op != OO_Call && |
16950 | FnDecl->getType()->castAs<FunctionProtoType>()->isVariadic()) { |
16951 | return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) |
16952 | << FnDecl->getDeclName(); |
16953 | } |
16954 | |
16955 | // Some operators must be member functions. |
16956 | if (MustBeMemberOperator && !isa<CXXMethodDecl>(Val: FnDecl)) { |
16957 | return Diag(FnDecl->getLocation(), |
16958 | diag::err_operator_overload_must_be_member) |
16959 | << FnDecl->getDeclName(); |
16960 | } |
16961 | |
16962 | // C++ [over.inc]p1: |
16963 | // The user-defined function called operator++ implements the |
16964 | // prefix and postfix ++ operator. If this function is a member |
16965 | // function with no parameters, or a non-member function with one |
16966 | // parameter of class or enumeration type, it defines the prefix |
16967 | // increment operator ++ for objects of that type. If the function |
16968 | // is a member function with one parameter (which shall be of type |
16969 | // int) or a non-member function with two parameters (the second |
16970 | // of which shall be of type int), it defines the postfix |
16971 | // increment operator ++ for objects of that type. |
16972 | if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { |
16973 | ParmVarDecl *LastParam = FnDecl->getParamDecl(i: FnDecl->getNumParams() - 1); |
16974 | QualType ParamType = LastParam->getType(); |
16975 | |
16976 | if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) && |
16977 | !ParamType->isDependentType()) |
16978 | return Diag(LastParam->getLocation(), |
16979 | diag::err_operator_overload_post_incdec_must_be_int) |
16980 | << LastParam->getType() << (Op == OO_MinusMinus); |
16981 | } |
16982 | |
16983 | return false; |
16984 | } |
16985 | |
16986 | static bool |
16987 | checkLiteralOperatorTemplateParameterList(Sema &SemaRef, |
16988 | FunctionTemplateDecl *TpDecl) { |
16989 | TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters(); |
16990 | |
16991 | // Must have one or two template parameters. |
16992 | if (TemplateParams->size() == 1) { |
16993 | NonTypeTemplateParmDecl *PmDecl = |
16994 | dyn_cast<NonTypeTemplateParmDecl>(Val: TemplateParams->getParam(Idx: 0)); |
16995 | |
16996 | // The template parameter must be a char parameter pack. |
16997 | if (PmDecl && PmDecl->isTemplateParameterPack() && |
16998 | SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy)) |
16999 | return false; |
17000 | |
17001 | // C++20 [over.literal]p5: |
17002 | // A string literal operator template is a literal operator template |
17003 | // whose template-parameter-list comprises a single non-type |
17004 | // template-parameter of class type. |
17005 | // |
17006 | // As a DR resolution, we also allow placeholders for deduced class |
17007 | // template specializations. |
17008 | if (SemaRef.getLangOpts().CPlusPlus20 && PmDecl && |
17009 | !PmDecl->isTemplateParameterPack() && |
17010 | (PmDecl->getType()->isRecordType() || |
17011 | PmDecl->getType()->getAs<DeducedTemplateSpecializationType>())) |
17012 | return false; |
17013 | } else if (TemplateParams->size() == 2) { |
17014 | TemplateTypeParmDecl *PmType = |
17015 | dyn_cast<TemplateTypeParmDecl>(Val: TemplateParams->getParam(Idx: 0)); |
17016 | NonTypeTemplateParmDecl *PmArgs = |
17017 | dyn_cast<NonTypeTemplateParmDecl>(Val: TemplateParams->getParam(Idx: 1)); |
17018 | |
17019 | // The second template parameter must be a parameter pack with the |
17020 | // first template parameter as its type. |
17021 | if (PmType && PmArgs && !PmType->isTemplateParameterPack() && |
17022 | PmArgs->isTemplateParameterPack()) { |
17023 | const TemplateTypeParmType *TArgs = |
17024 | PmArgs->getType()->getAs<TemplateTypeParmType>(); |
17025 | if (TArgs && TArgs->getDepth() == PmType->getDepth() && |
17026 | TArgs->getIndex() == PmType->getIndex()) { |
17027 | if (!SemaRef.inTemplateInstantiation()) |
17028 | SemaRef.Diag(TpDecl->getLocation(), |
17029 | diag::ext_string_literal_operator_template); |
17030 | return false; |
17031 | } |
17032 | } |
17033 | } |
17034 | |
17035 | SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(), |
17036 | diag::err_literal_operator_template) |
17037 | << TpDecl->getTemplateParameters()->getSourceRange(); |
17038 | return true; |
17039 | } |
17040 | |
17041 | bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) { |
17042 | if (isa<CXXMethodDecl>(Val: FnDecl)) { |
17043 | Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace) |
17044 | << FnDecl->getDeclName(); |
17045 | return true; |
17046 | } |
17047 | |
17048 | if (FnDecl->isExternC()) { |
17049 | Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c); |
17050 | if (const LinkageSpecDecl *LSD = |
17051 | FnDecl->getDeclContext()->getExternCContext()) |
17052 | Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); |
17053 | return true; |
17054 | } |
17055 | |
17056 | // This might be the definition of a literal operator template. |
17057 | FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate(); |
17058 | |
17059 | // This might be a specialization of a literal operator template. |
17060 | if (!TpDecl) |
17061 | TpDecl = FnDecl->getPrimaryTemplate(); |
17062 | |
17063 | // template <char...> type operator "" name() and |
17064 | // template <class T, T...> type operator "" name() are the only valid |
17065 | // template signatures, and the only valid signatures with no parameters. |
17066 | // |
17067 | // C++20 also allows template <SomeClass T> type operator "" name(). |
17068 | if (TpDecl) { |
17069 | if (FnDecl->param_size() != 0) { |
17070 | Diag(FnDecl->getLocation(), |
17071 | diag::err_literal_operator_template_with_params); |
17072 | return true; |
17073 | } |
17074 | |
17075 | if (checkLiteralOperatorTemplateParameterList(SemaRef&: *this, TpDecl)) |
17076 | return true; |
17077 | |
17078 | } else if (FnDecl->param_size() == 1) { |
17079 | const ParmVarDecl *Param = FnDecl->getParamDecl(i: 0); |
17080 | |
17081 | QualType ParamType = Param->getType().getUnqualifiedType(); |
17082 | |
17083 | // Only unsigned long long int, long double, any character type, and const |
17084 | // char * are allowed as the only parameters. |
17085 | if (ParamType->isSpecificBuiltinType(K: BuiltinType::ULongLong) || |
17086 | ParamType->isSpecificBuiltinType(K: BuiltinType::LongDouble) || |
17087 | Context.hasSameType(ParamType, Context.CharTy) || |
17088 | Context.hasSameType(ParamType, Context.WideCharTy) || |
17089 | Context.hasSameType(ParamType, Context.Char8Ty) || |
17090 | Context.hasSameType(ParamType, Context.Char16Ty) || |
17091 | Context.hasSameType(ParamType, Context.Char32Ty)) { |
17092 | } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) { |
17093 | QualType InnerType = Ptr->getPointeeType(); |
17094 | |
17095 | // Pointer parameter must be a const char *. |
17096 | if (!(Context.hasSameType(InnerType.getUnqualifiedType(), |
17097 | Context.CharTy) && |
17098 | InnerType.isConstQualified() && !InnerType.isVolatileQualified())) { |
17099 | Diag(Param->getSourceRange().getBegin(), |
17100 | diag::err_literal_operator_param) |
17101 | << ParamType << "'const char *'"<< Param->getSourceRange(); |
17102 | return true; |
17103 | } |
17104 | |
17105 | } else if (ParamType->isRealFloatingType()) { |
17106 | Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) |
17107 | << ParamType << Context.LongDoubleTy << Param->getSourceRange(); |
17108 | return true; |
17109 | |
17110 | } else if (ParamType->isIntegerType()) { |
17111 | Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) |
17112 | << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange(); |
17113 | return true; |
17114 | |
17115 | } else { |
17116 | Diag(Param->getSourceRange().getBegin(), |
17117 | diag::err_literal_operator_invalid_param) |
17118 | << ParamType << Param->getSourceRange(); |
17119 | return true; |
17120 | } |
17121 | |
17122 | } else if (FnDecl->param_size() == 2) { |
17123 | FunctionDecl::param_iterator Param = FnDecl->param_begin(); |
17124 | |
17125 | // First, verify that the first parameter is correct. |
17126 | |
17127 | QualType FirstParamType = (*Param)->getType().getUnqualifiedType(); |
17128 | |
17129 | // Two parameter function must have a pointer to const as a |
17130 | // first parameter; let's strip those qualifiers. |
17131 | const PointerType *PT = FirstParamType->getAs<PointerType>(); |
17132 | |
17133 | if (!PT) { |
17134 | Diag((*Param)->getSourceRange().getBegin(), |
17135 | diag::err_literal_operator_param) |
17136 | << FirstParamType << "'const char *'"<< (*Param)->getSourceRange(); |
17137 | return true; |
17138 | } |
17139 | |
17140 | QualType PointeeType = PT->getPointeeType(); |
17141 | // First parameter must be const |
17142 | if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) { |
17143 | Diag((*Param)->getSourceRange().getBegin(), |
17144 | diag::err_literal_operator_param) |
17145 | << FirstParamType << "'const char *'"<< (*Param)->getSourceRange(); |
17146 | return true; |
17147 | } |
17148 | |
17149 | QualType InnerType = PointeeType.getUnqualifiedType(); |
17150 | // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and |
17151 | // const char32_t* are allowed as the first parameter to a two-parameter |
17152 | // function |
17153 | if (!(Context.hasSameType(InnerType, Context.CharTy) || |
17154 | Context.hasSameType(InnerType, Context.WideCharTy) || |
17155 | Context.hasSameType(InnerType, Context.Char8Ty) || |
17156 | Context.hasSameType(InnerType, Context.Char16Ty) || |
17157 | Context.hasSameType(InnerType, Context.Char32Ty))) { |
17158 | Diag((*Param)->getSourceRange().getBegin(), |
17159 | diag::err_literal_operator_param) |
17160 | << FirstParamType << "'const char *'"<< (*Param)->getSourceRange(); |
17161 | return true; |
17162 | } |
17163 | |
17164 | // Move on to the second and final parameter. |
17165 | ++Param; |
17166 | |
17167 | // The second parameter must be a std::size_t. |
17168 | QualType SecondParamType = (*Param)->getType().getUnqualifiedType(); |
17169 | if (!Context.hasSameType(T1: SecondParamType, T2: Context.getSizeType())) { |
17170 | Diag((*Param)->getSourceRange().getBegin(), |
17171 | diag::err_literal_operator_param) |
17172 | << SecondParamType << Context.getSizeType() |
17173 | << (*Param)->getSourceRange(); |
17174 | return true; |
17175 | } |
17176 | } else { |
17177 | Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count); |
17178 | return true; |
17179 | } |
17180 | |
17181 | // Parameters are good. |
17182 | |
17183 | // A parameter-declaration-clause containing a default argument is not |
17184 | // equivalent to any of the permitted forms. |
17185 | for (auto *Param : FnDecl->parameters()) { |
17186 | if (Param->hasDefaultArg()) { |
17187 | Diag(Param->getDefaultArgRange().getBegin(), |
17188 | diag::err_literal_operator_default_argument) |
17189 | << Param->getDefaultArgRange(); |
17190 | break; |
17191 | } |
17192 | } |
17193 | |
17194 | const IdentifierInfo *II = FnDecl->getDeclName().getCXXLiteralIdentifier(); |
17195 | ReservedLiteralSuffixIdStatus Status = II->isReservedLiteralSuffixId(); |
17196 | if (Status != ReservedLiteralSuffixIdStatus::NotReserved && |
17197 | !getSourceManager().isInSystemHeader(Loc: FnDecl->getLocation())) { |
17198 | // C++23 [usrlit.suffix]p1: |
17199 | // Literal suffix identifiers that do not start with an underscore are |
17200 | // reserved for future standardization. Literal suffix identifiers that |
17201 | // contain a double underscore __ are reserved for use by C++ |
17202 | // implementations. |
17203 | Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved) |
17204 | << static_cast<int>(Status) |
17205 | << StringLiteralParser::isValidUDSuffix(getLangOpts(), II->getName()); |
17206 | } |
17207 | |
17208 | return false; |
17209 | } |
17210 | |
17211 | Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, |
17212 | Expr *LangStr, |
17213 | SourceLocation LBraceLoc) { |
17214 | StringLiteral *Lit = cast<StringLiteral>(Val: LangStr); |
17215 | assert(Lit->isUnevaluated() && "Unexpected string literal kind"); |
17216 | |
17217 | StringRef Lang = Lit->getString(); |
17218 | LinkageSpecLanguageIDs Language; |
17219 | if (Lang == "C") |
17220 | Language = LinkageSpecLanguageIDs::C; |
17221 | else if (Lang == "C++") |
17222 | Language = LinkageSpecLanguageIDs::CXX; |
17223 | else { |
17224 | Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown) |
17225 | << LangStr->getSourceRange(); |
17226 | return nullptr; |
17227 | } |
17228 | |
17229 | // FIXME: Add all the various semantics of linkage specifications |
17230 | |
17231 | LinkageSpecDecl *D = LinkageSpecDecl::Create(C&: Context, DC: CurContext, ExternLoc, |
17232 | LangLoc: LangStr->getExprLoc(), Lang: Language, |
17233 | HasBraces: LBraceLoc.isValid()); |
17234 | |
17235 | /// C++ [module.unit]p7.2.3 |
17236 | /// - Otherwise, if the declaration |
17237 | /// - ... |
17238 | /// - ... |
17239 | /// - appears within a linkage-specification, |
17240 | /// it is attached to the global module. |
17241 | /// |
17242 | /// If the declaration is already in global module fragment, we don't |
17243 | /// need to attach it again. |
17244 | if (getLangOpts().CPlusPlusModules && isCurrentModulePurview()) { |
17245 | Module *GlobalModule = PushImplicitGlobalModuleFragment(BeginLoc: ExternLoc); |
17246 | D->setLocalOwningModule(GlobalModule); |
17247 | } |
17248 | |
17249 | CurContext->addDecl(D); |
17250 | PushDeclContext(S, D); |
17251 | return D; |
17252 | } |
17253 | |
17254 | Decl *Sema::ActOnFinishLinkageSpecification(Scope *S, |
17255 | Decl *LinkageSpec, |
17256 | SourceLocation RBraceLoc) { |
17257 | if (RBraceLoc.isValid()) { |
17258 | LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(Val: LinkageSpec); |
17259 | LSDecl->setRBraceLoc(RBraceLoc); |
17260 | } |
17261 | |
17262 | // If the current module doesn't has Parent, it implies that the |
17263 | // LinkageSpec isn't in the module created by itself. So we don't |
17264 | // need to pop it. |
17265 | if (getLangOpts().CPlusPlusModules && getCurrentModule() && |
17266 | getCurrentModule()->isImplicitGlobalModule() && |
17267 | getCurrentModule()->Parent) |
17268 | PopImplicitGlobalModuleFragment(); |
17269 | |
17270 | PopDeclContext(); |
17271 | return LinkageSpec; |
17272 | } |
17273 | |
17274 | Decl *Sema::ActOnEmptyDeclaration(Scope *S, |
17275 | const ParsedAttributesView &AttrList, |
17276 | SourceLocation SemiLoc) { |
17277 | Decl *ED = EmptyDecl::Create(C&: Context, DC: CurContext, L: SemiLoc); |
17278 | // Attribute declarations appertain to empty declaration so we handle |
17279 | // them here. |
17280 | ProcessDeclAttributeList(S, D: ED, AttrList); |
17281 | |
17282 | CurContext->addDecl(D: ED); |
17283 | return ED; |
17284 | } |
17285 | |
17286 | VarDecl *Sema::BuildExceptionDeclaration(Scope *S, TypeSourceInfo *TInfo, |
17287 | SourceLocation StartLoc, |
17288 | SourceLocation Loc, |
17289 | const IdentifierInfo *Name) { |
17290 | bool Invalid = false; |
17291 | QualType ExDeclType = TInfo->getType(); |
17292 | |
17293 | // Arrays and functions decay. |
17294 | if (ExDeclType->isArrayType()) |
17295 | ExDeclType = Context.getArrayDecayedType(T: ExDeclType); |
17296 | else if (ExDeclType->isFunctionType()) |
17297 | ExDeclType = Context.getPointerType(T: ExDeclType); |
17298 | |
17299 | // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. |
17300 | // The exception-declaration shall not denote a pointer or reference to an |
17301 | // incomplete type, other than [cv] void*. |
17302 | // N2844 forbids rvalue references. |
17303 | if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) { |
17304 | Diag(Loc, diag::err_catch_rvalue_ref); |
17305 | Invalid = true; |
17306 | } |
17307 | |
17308 | if (ExDeclType->isVariablyModifiedType()) { |
17309 | Diag(Loc, diag::err_catch_variably_modified) << ExDeclType; |
17310 | Invalid = true; |
17311 | } |
17312 | |
17313 | QualType BaseType = ExDeclType; |
17314 | int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference |
17315 | unsigned DK = diag::err_catch_incomplete; |
17316 | if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { |
17317 | BaseType = Ptr->getPointeeType(); |
17318 | Mode = 1; |
17319 | DK = diag::err_catch_incomplete_ptr; |
17320 | } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) { |
17321 | // For the purpose of error recovery, we treat rvalue refs like lvalue refs. |
17322 | BaseType = Ref->getPointeeType(); |
17323 | Mode = 2; |
17324 | DK = diag::err_catch_incomplete_ref; |
17325 | } |
17326 | if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && |
17327 | !BaseType->isDependentType() && RequireCompleteType(Loc, T: BaseType, DiagID: DK)) |
17328 | Invalid = true; |
17329 | |
17330 | if (!Invalid && BaseType.isWebAssemblyReferenceType()) { |
17331 | Diag(Loc, diag::err_wasm_reftype_tc) << 1; |
17332 | Invalid = true; |
17333 | } |
17334 | |
17335 | if (!Invalid && Mode != 1 && BaseType->isSizelessType()) { |
17336 | Diag(Loc, diag::err_catch_sizeless) << (Mode == 2 ? 1 : 0) << BaseType; |
17337 | Invalid = true; |
17338 | } |
17339 | |
17340 | if (!Invalid && !ExDeclType->isDependentType() && |
17341 | RequireNonAbstractType(Loc, ExDeclType, |
17342 | diag::err_abstract_type_in_decl, |
17343 | AbstractVariableType)) |
17344 | Invalid = true; |
17345 | |
17346 | // Only the non-fragile NeXT runtime currently supports C++ catches |
17347 | // of ObjC types, and no runtime supports catching ObjC types by value. |
17348 | if (!Invalid && getLangOpts().ObjC) { |
17349 | QualType T = ExDeclType; |
17350 | if (const ReferenceType *RT = T->getAs<ReferenceType>()) |
17351 | T = RT->getPointeeType(); |
17352 | |
17353 | if (T->isObjCObjectType()) { |
17354 | Diag(Loc, diag::err_objc_object_catch); |
17355 | Invalid = true; |
17356 | } else if (T->isObjCObjectPointerType()) { |
17357 | // FIXME: should this be a test for macosx-fragile specifically? |
17358 | if (getLangOpts().ObjCRuntime.isFragile()) |
17359 | Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile); |
17360 | } |
17361 | } |
17362 | |
17363 | VarDecl *ExDecl = VarDecl::Create(C&: Context, DC: CurContext, StartLoc, IdLoc: Loc, Id: Name, |
17364 | T: ExDeclType, TInfo, S: SC_None); |
17365 | ExDecl->setExceptionVariable(true); |
17366 | |
17367 | // In ARC, infer 'retaining' for variables of retainable type. |
17368 | if (getLangOpts().ObjCAutoRefCount && ObjC().inferObjCARCLifetime(ExDecl)) |
17369 | Invalid = true; |
17370 | |
17371 | if (!Invalid && !ExDeclType->isDependentType()) { |
17372 | if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) { |
17373 | // Insulate this from anything else we might currently be parsing. |
17374 | EnterExpressionEvaluationContext scope( |
17375 | *this, ExpressionEvaluationContext::PotentiallyEvaluated); |
17376 | |
17377 | // C++ [except.handle]p16: |
17378 | // The object declared in an exception-declaration or, if the |
17379 | // exception-declaration does not specify a name, a temporary (12.2) is |
17380 | // copy-initialized (8.5) from the exception object. [...] |
17381 | // The object is destroyed when the handler exits, after the destruction |
17382 | // of any automatic objects initialized within the handler. |
17383 | // |
17384 | // We just pretend to initialize the object with itself, then make sure |
17385 | // it can be destroyed later. |
17386 | QualType initType = Context.getExceptionObjectType(T: ExDeclType); |
17387 | |
17388 | InitializedEntity entity = |
17389 | InitializedEntity::InitializeVariable(Var: ExDecl); |
17390 | InitializationKind initKind = |
17391 | InitializationKind::CreateCopy(InitLoc: Loc, EqualLoc: SourceLocation()); |
17392 | |
17393 | Expr *opaqueValue = |
17394 | new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary); |
17395 | InitializationSequence sequence(*this, entity, initKind, opaqueValue); |
17396 | ExprResult result = sequence.Perform(S&: *this, Entity: entity, Kind: initKind, Args: opaqueValue); |
17397 | if (result.isInvalid()) |
17398 | Invalid = true; |
17399 | else { |
17400 | // If the constructor used was non-trivial, set this as the |
17401 | // "initializer". |
17402 | CXXConstructExpr *construct = result.getAs<CXXConstructExpr>(); |
17403 | if (!construct->getConstructor()->isTrivial()) { |
17404 | Expr *init = MaybeCreateExprWithCleanups(construct); |
17405 | ExDecl->setInit(init); |
17406 | } |
17407 | |
17408 | // And make sure it's destructable. |
17409 | FinalizeVarWithDestructor(VD: ExDecl, Record: recordType); |
17410 | } |
17411 | } |
17412 | } |
17413 | |
17414 | if (Invalid) |
17415 | ExDecl->setInvalidDecl(); |
17416 | |
17417 | return ExDecl; |
17418 | } |
17419 | |
17420 | Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { |
17421 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D); |
17422 | bool Invalid = D.isInvalidType(); |
17423 | |
17424 | // Check for unexpanded parameter packs. |
17425 | if (DiagnoseUnexpandedParameterPack(Loc: D.getIdentifierLoc(), T: TInfo, |
17426 | UPPC: UPPC_ExceptionType)) { |
17427 | TInfo = Context.getTrivialTypeSourceInfo(T: Context.IntTy, |
17428 | Loc: D.getIdentifierLoc()); |
17429 | Invalid = true; |
17430 | } |
17431 | |
17432 | const IdentifierInfo *II = D.getIdentifier(); |
17433 | if (NamedDecl *PrevDecl = |
17434 | LookupSingleName(S, Name: II, Loc: D.getIdentifierLoc(), NameKind: LookupOrdinaryName, |
17435 | Redecl: RedeclarationKind::ForVisibleRedeclaration)) { |
17436 | // The scope should be freshly made just for us. There is just no way |
17437 | // it contains any previous declaration, except for function parameters in |
17438 | // a function-try-block's catch statement. |
17439 | assert(!S->isDeclScope(PrevDecl)); |
17440 | if (isDeclInScope(D: PrevDecl, Ctx: CurContext, S)) { |
17441 | Diag(D.getIdentifierLoc(), diag::err_redefinition) |
17442 | << D.getIdentifier(); |
17443 | Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
17444 | Invalid = true; |
17445 | } else if (PrevDecl->isTemplateParameter()) |
17446 | // Maybe we will complain about the shadowed template parameter. |
17447 | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); |
17448 | } |
17449 | |
17450 | if (D.getCXXScopeSpec().isSet() && !Invalid) { |
17451 | Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) |
17452 | << D.getCXXScopeSpec().getRange(); |
17453 | Invalid = true; |
17454 | } |
17455 | |
17456 | VarDecl *ExDecl = BuildExceptionDeclaration( |
17457 | S, TInfo, StartLoc: D.getBeginLoc(), Loc: D.getIdentifierLoc(), Name: D.getIdentifier()); |
17458 | if (Invalid) |
17459 | ExDecl->setInvalidDecl(); |
17460 | |
17461 | // Add the exception declaration into this scope. |
17462 | if (II) |
17463 | PushOnScopeChains(ExDecl, S); |
17464 | else |
17465 | CurContext->addDecl(ExDecl); |
17466 | |
17467 | ProcessDeclAttributes(S, ExDecl, D); |
17468 | return ExDecl; |
17469 | } |
17470 | |
17471 | Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc, |
17472 | Expr *AssertExpr, |
17473 | Expr *AssertMessageExpr, |
17474 | SourceLocation RParenLoc) { |
17475 | if (DiagnoseUnexpandedParameterPack(E: AssertExpr, UPPC: UPPC_StaticAssertExpression)) |
17476 | return nullptr; |
17477 | |
17478 | return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr, |
17479 | AssertMessageExpr, RParenLoc, Failed: false); |
17480 | } |
17481 | |
17482 | static void WriteCharTypePrefix(BuiltinType::Kind BTK, llvm::raw_ostream &OS) { |
17483 | switch (BTK) { |
17484 | case BuiltinType::Char_S: |
17485 | case BuiltinType::Char_U: |
17486 | break; |
17487 | case BuiltinType::Char8: |
17488 | OS << "u8"; |
17489 | break; |
17490 | case BuiltinType::Char16: |
17491 | OS << 'u'; |
17492 | break; |
17493 | case BuiltinType::Char32: |
17494 | OS << 'U'; |
17495 | break; |
17496 | case BuiltinType::WChar_S: |
17497 | case BuiltinType::WChar_U: |
17498 | OS << 'L'; |
17499 | break; |
17500 | default: |
17501 | llvm_unreachable("Non-character type"); |
17502 | } |
17503 | } |
17504 | |
17505 | /// Convert character's value, interpreted as a code unit, to a string. |
17506 | /// The value needs to be zero-extended to 32-bits. |
17507 | /// FIXME: This assumes Unicode literal encodings |
17508 | static void WriteCharValueForDiagnostic(uint32_t Value, const BuiltinType *BTy, |
17509 | unsigned TyWidth, |
17510 | SmallVectorImpl<char> &Str) { |
17511 | char Arr[UNI_MAX_UTF8_BYTES_PER_CODE_POINT]; |
17512 | char *Ptr = Arr; |
17513 | BuiltinType::Kind K = BTy->getKind(); |
17514 | llvm::raw_svector_ostream OS(Str); |
17515 | |
17516 | // This should catch Char_S, Char_U, Char8, and use of escaped characters in |
17517 | // other types. |
17518 | if (K == BuiltinType::Char_S || K == BuiltinType::Char_U || |
17519 | K == BuiltinType::Char8 || Value <= 0x7F) { |
17520 | StringRef Escaped = escapeCStyle<EscapeChar::Single>(Ch: Value); |
17521 | if (!Escaped.empty()) |
17522 | EscapeStringForDiagnostic(Str: Escaped, OutStr&: Str); |
17523 | else |
17524 | OS << static_cast<char>(Value); |
17525 | return; |
17526 | } |
17527 | |
17528 | switch (K) { |
17529 | case BuiltinType::Char16: |
17530 | case BuiltinType::Char32: |
17531 | case BuiltinType::WChar_S: |
17532 | case BuiltinType::WChar_U: { |
17533 | if (llvm::ConvertCodePointToUTF8(Source: Value, ResultPtr&: Ptr)) |
17534 | EscapeStringForDiagnostic(Str: StringRef(Arr, Ptr - Arr), OutStr&: Str); |
17535 | else |
17536 | OS << "\\x" |
17537 | << llvm::format_hex_no_prefix(N: Value, Width: TyWidth / 4, /*Upper=*/true); |
17538 | break; |
17539 | } |
17540 | default: |
17541 | llvm_unreachable("Non-character type is passed"); |
17542 | } |
17543 | } |
17544 | |
17545 | /// Convert \V to a string we can present to the user in a diagnostic |
17546 | /// \T is the type of the expression that has been evaluated into \V |
17547 | static bool ConvertAPValueToString(const APValue &V, QualType T, |
17548 | SmallVectorImpl<char> &Str, |
17549 | ASTContext &Context) { |
17550 | if (!V.hasValue()) |
17551 | return false; |
17552 | |
17553 | switch (V.getKind()) { |
17554 | case APValue::ValueKind::Int: |
17555 | if (T->isBooleanType()) { |
17556 | // Bools are reduced to ints during evaluation, but for |
17557 | // diagnostic purposes we want to print them as |
17558 | // true or false. |
17559 | int64_t BoolValue = V.getInt().getExtValue(); |
17560 | assert((BoolValue == 0 || BoolValue == 1) && |
17561 | "Bool type, but value is not 0 or 1"); |
17562 | llvm::raw_svector_ostream OS(Str); |
17563 | OS << (BoolValue ? "true": "false"); |
17564 | } else { |
17565 | llvm::raw_svector_ostream OS(Str); |
17566 | // Same is true for chars. |
17567 | // We want to print the character representation for textual types |
17568 | const auto *BTy = T->getAs<BuiltinType>(); |
17569 | if (BTy) { |
17570 | switch (BTy->getKind()) { |
17571 | case BuiltinType::Char_S: |
17572 | case BuiltinType::Char_U: |
17573 | case BuiltinType::Char8: |
17574 | case BuiltinType::Char16: |
17575 | case BuiltinType::Char32: |
17576 | case BuiltinType::WChar_S: |
17577 | case BuiltinType::WChar_U: { |
17578 | unsigned TyWidth = Context.getIntWidth(T); |
17579 | assert(8 <= TyWidth && TyWidth <= 32 && "Unexpected integer width"); |
17580 | uint32_t CodeUnit = static_cast<uint32_t>(V.getInt().getZExtValue()); |
17581 | WriteCharTypePrefix(BTK: BTy->getKind(), OS); |
17582 | OS << '\''; |
17583 | WriteCharValueForDiagnostic(Value: CodeUnit, BTy, TyWidth, Str); |
17584 | OS << "' (0x" |
17585 | << llvm::format_hex_no_prefix(N: CodeUnit, /*Width=*/2, |
17586 | /*Upper=*/true) |
17587 | << ", "<< V.getInt() << ')'; |
17588 | return true; |
17589 | } |
17590 | default: |
17591 | break; |
17592 | } |
17593 | } |
17594 | V.getInt().toString(Str); |
17595 | } |
17596 | |
17597 | break; |
17598 | |
17599 | case APValue::ValueKind::Float: |
17600 | V.getFloat().toString(Str); |
17601 | break; |
17602 | |
17603 | case APValue::ValueKind::LValue: |
17604 | if (V.isNullPointer()) { |
17605 | llvm::raw_svector_ostream OS(Str); |
17606 | OS << "nullptr"; |
17607 | } else |
17608 | return false; |
17609 | break; |
17610 | |
17611 | case APValue::ValueKind::ComplexFloat: { |
17612 | llvm::raw_svector_ostream OS(Str); |
17613 | OS << '('; |
17614 | V.getComplexFloatReal().toString(Str); |
17615 | OS << " + "; |
17616 | V.getComplexFloatImag().toString(Str); |
17617 | OS << "i)"; |
17618 | } break; |
17619 | |
17620 | case APValue::ValueKind::ComplexInt: { |
17621 | llvm::raw_svector_ostream OS(Str); |
17622 | OS << '('; |
17623 | V.getComplexIntReal().toString(Str); |
17624 | OS << " + "; |
17625 | V.getComplexIntImag().toString(Str); |
17626 | OS << "i)"; |
17627 | } break; |
17628 | |
17629 | default: |
17630 | return false; |
17631 | } |
17632 | |
17633 | return true; |
17634 | } |
17635 | |
17636 | /// Some Expression types are not useful to print notes about, |
17637 | /// e.g. literals and values that have already been expanded |
17638 | /// before such as int-valued template parameters. |
17639 | static bool UsefulToPrintExpr(const Expr *E) { |
17640 | E = E->IgnoreParenImpCasts(); |
17641 | // Literals are pretty easy for humans to understand. |
17642 | if (isa<IntegerLiteral, FloatingLiteral, CharacterLiteral, CXXBoolLiteralExpr, |
17643 | CXXNullPtrLiteralExpr, FixedPointLiteral, ImaginaryLiteral>(Val: E)) |
17644 | return false; |
17645 | |
17646 | // These have been substituted from template parameters |
17647 | // and appear as literals in the static assert error. |
17648 | if (isa<SubstNonTypeTemplateParmExpr>(Val: E)) |
17649 | return false; |
17650 | |
17651 | // -5 is also simple to understand. |
17652 | if (const auto *UnaryOp = dyn_cast<UnaryOperator>(Val: E)) |
17653 | return UsefulToPrintExpr(E: UnaryOp->getSubExpr()); |
17654 | |
17655 | // Only print nested arithmetic operators. |
17656 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: E)) |
17657 | return (BO->isShiftOp() || BO->isAdditiveOp() || BO->isMultiplicativeOp() || |
17658 | BO->isBitwiseOp()); |
17659 | |
17660 | return true; |
17661 | } |
17662 | |
17663 | void Sema::DiagnoseStaticAssertDetails(const Expr *E) { |
17664 | if (const auto *Op = dyn_cast<BinaryOperator>(Val: E); |
17665 | Op && Op->getOpcode() != BO_LOr) { |
17666 | const Expr *LHS = Op->getLHS()->IgnoreParenImpCasts(); |
17667 | const Expr *RHS = Op->getRHS()->IgnoreParenImpCasts(); |
17668 | |
17669 | // Ignore comparisons of boolean expressions with a boolean literal. |
17670 | if ((isa<CXXBoolLiteralExpr>(Val: LHS) && RHS->getType()->isBooleanType()) || |
17671 | (isa<CXXBoolLiteralExpr>(Val: RHS) && LHS->getType()->isBooleanType())) |
17672 | return; |
17673 | |
17674 | // Don't print obvious expressions. |
17675 | if (!UsefulToPrintExpr(E: LHS) && !UsefulToPrintExpr(E: RHS)) |
17676 | return; |
17677 | |
17678 | struct { |
17679 | const clang::Expr *Cond; |
17680 | Expr::EvalResult Result; |
17681 | SmallString<12> ValueString; |
17682 | bool Print; |
17683 | } DiagSide[2] = {{.Cond: LHS, .Result: Expr::EvalResult(), .ValueString: {}, .Print: false}, |
17684 | {.Cond: RHS, .Result: Expr::EvalResult(), .ValueString: {}, .Print: false}}; |
17685 | for (unsigned I = 0; I < 2; I++) { |
17686 | const Expr *Side = DiagSide[I].Cond; |
17687 | |
17688 | Side->EvaluateAsRValue(Result&: DiagSide[I].Result, Ctx: Context, InConstantContext: true); |
17689 | |
17690 | DiagSide[I].Print = |
17691 | ConvertAPValueToString(V: DiagSide[I].Result.Val, T: Side->getType(), |
17692 | Str&: DiagSide[I].ValueString, Context); |
17693 | } |
17694 | if (DiagSide[0].Print && DiagSide[1].Print) { |
17695 | Diag(Op->getExprLoc(), diag::note_expr_evaluates_to) |
17696 | << DiagSide[0].ValueString << Op->getOpcodeStr() |
17697 | << DiagSide[1].ValueString << Op->getSourceRange(); |
17698 | } |
17699 | } else { |
17700 | DiagnoseTypeTraitDetails(E); |
17701 | } |
17702 | } |
17703 | |
17704 | template <typename ResultType> |
17705 | static bool EvaluateAsStringImpl(Sema &SemaRef, Expr *Message, |
17706 | ResultType &Result, ASTContext &Ctx, |
17707 | Sema::StringEvaluationContext EvalContext, |
17708 | bool ErrorOnInvalidMessage) { |
17709 | |
17710 | assert(Message); |
17711 | assert(!Message->isTypeDependent() && !Message->isValueDependent() && |
17712 | "can't evaluate a dependant static assert message"); |
17713 | |
17714 | if (const auto *SL = dyn_cast<StringLiteral>(Val: Message)) { |
17715 | assert(SL->isUnevaluated() && "expected an unevaluated string"); |
17716 | if constexpr (std::is_same_v<APValue, ResultType>) { |
17717 | Result = |
17718 | APValue(APValue::UninitArray{}, SL->getLength(), SL->getLength()); |
17719 | const ConstantArrayType *CAT = |
17720 | SemaRef.getASTContext().getAsConstantArrayType(T: SL->getType()); |
17721 | assert(CAT && "string literal isn't an array"); |
17722 | QualType CharType = CAT->getElementType(); |
17723 | llvm::APSInt Value(SemaRef.getASTContext().getTypeSize(T: CharType), |
17724 | CharType->isUnsignedIntegerType()); |
17725 | for (unsigned I = 0; I < SL->getLength(); I++) { |
17726 | Value = SL->getCodeUnit(i: I); |
17727 | Result.getArrayInitializedElt(I) = APValue(Value); |
17728 | } |
17729 | } else { |
17730 | Result.assign(SL->getString().begin(), SL->getString().end()); |
17731 | } |
17732 | return true; |
17733 | } |
17734 | |
17735 | SourceLocation Loc = Message->getBeginLoc(); |
17736 | QualType T = Message->getType().getNonReferenceType(); |
17737 | auto *RD = T->getAsCXXRecordDecl(); |
17738 | if (!RD) { |
17739 | SemaRef.Diag(Loc, diag::err_user_defined_msg_invalid) << EvalContext; |
17740 | return false; |
17741 | } |
17742 | |
17743 | auto FindMember = [&](StringRef Member) -> std::optional<LookupResult> { |
17744 | DeclarationName DN = SemaRef.PP.getIdentifierInfo(Name: Member); |
17745 | LookupResult MemberLookup(SemaRef, DN, Loc, Sema::LookupMemberName); |
17746 | SemaRef.LookupQualifiedName(MemberLookup, RD); |
17747 | OverloadCandidateSet Candidates(MemberLookup.getNameLoc(), |
17748 | OverloadCandidateSet::CSK_Normal); |
17749 | if (MemberLookup.empty()) |
17750 | return std::nullopt; |
17751 | return std::move(MemberLookup); |
17752 | }; |
17753 | |
17754 | std::optional<LookupResult> SizeMember = FindMember("size"); |
17755 | std::optional<LookupResult> DataMember = FindMember("data"); |
17756 | if (!SizeMember || !DataMember) { |
17757 | SemaRef.Diag(Loc, diag::err_user_defined_msg_missing_member_function) |
17758 | << EvalContext |
17759 | << ((!SizeMember && !DataMember) ? 2 |
17760 | : !SizeMember ? 0 |
17761 | : 1); |
17762 | return false; |
17763 | } |
17764 | |
17765 | auto BuildExpr = [&](LookupResult &LR) { |
17766 | ExprResult Res = SemaRef.BuildMemberReferenceExpr( |
17767 | Message, Message->getType(), Message->getBeginLoc(), false, |
17768 | CXXScopeSpec(), SourceLocation(), nullptr, LR, nullptr, nullptr); |
17769 | if (Res.isInvalid()) |
17770 | return ExprError(); |
17771 | Res = SemaRef.BuildCallExpr(S: nullptr, Fn: Res.get(), LParenLoc: Loc, ArgExprs: {}, RParenLoc: Loc, ExecConfig: nullptr, |
17772 | IsExecConfig: false, AllowRecovery: true); |
17773 | if (Res.isInvalid()) |
17774 | return ExprError(); |
17775 | if (Res.get()->isTypeDependent() || Res.get()->isValueDependent()) |
17776 | return ExprError(); |
17777 | return SemaRef.TemporaryMaterializationConversion(E: Res.get()); |
17778 | }; |
17779 | |
17780 | ExprResult SizeE = BuildExpr(*SizeMember); |
17781 | ExprResult DataE = BuildExpr(*DataMember); |
17782 | |
17783 | QualType SizeT = SemaRef.Context.getSizeType(); |
17784 | QualType ConstCharPtr = SemaRef.Context.getPointerType( |
17785 | SemaRef.Context.getConstType(T: SemaRef.Context.CharTy)); |
17786 | |
17787 | ExprResult EvaluatedSize = |
17788 | SizeE.isInvalid() |
17789 | ? ExprError() |
17790 | : SemaRef.BuildConvertedConstantExpression( |
17791 | From: SizeE.get(), T: SizeT, CCE: CCEKind::StaticAssertMessageSize); |
17792 | if (EvaluatedSize.isInvalid()) { |
17793 | SemaRef.Diag(Loc, diag::err_user_defined_msg_invalid_mem_fn_ret_ty) |
17794 | << EvalContext << /*size*/ 0; |
17795 | return false; |
17796 | } |
17797 | |
17798 | ExprResult EvaluatedData = |
17799 | DataE.isInvalid() |
17800 | ? ExprError() |
17801 | : SemaRef.BuildConvertedConstantExpression( |
17802 | From: DataE.get(), T: ConstCharPtr, CCE: CCEKind::StaticAssertMessageData); |
17803 | if (EvaluatedData.isInvalid()) { |
17804 | SemaRef.Diag(Loc, diag::err_user_defined_msg_invalid_mem_fn_ret_ty) |
17805 | << EvalContext << /*data*/ 1; |
17806 | return false; |
17807 | } |
17808 | |
17809 | if (!ErrorOnInvalidMessage && |
17810 | SemaRef.Diags.isIgnored(diag::warn_user_defined_msg_constexpr, Loc)) |
17811 | return true; |
17812 | |
17813 | Expr::EvalResult Status; |
17814 | SmallVector<PartialDiagnosticAt, 8> Notes; |
17815 | Status.Diag = &Notes; |
17816 | if (!Message->EvaluateCharRangeAsString(Result, EvaluatedSize.get(), |
17817 | EvaluatedData.get(), Ctx, Status) || |
17818 | !Notes.empty()) { |
17819 | SemaRef.Diag(Message->getBeginLoc(), |
17820 | ErrorOnInvalidMessage ? diag::err_user_defined_msg_constexpr |
17821 | : diag::warn_user_defined_msg_constexpr) |
17822 | << EvalContext; |
17823 | for (const auto &Note : Notes) |
17824 | SemaRef.Diag(Note.first, Note.second); |
17825 | return !ErrorOnInvalidMessage; |
17826 | } |
17827 | return true; |
17828 | } |
17829 | |
17830 | bool Sema::EvaluateAsString(Expr *Message, APValue &Result, ASTContext &Ctx, |
17831 | StringEvaluationContext EvalContext, |
17832 | bool ErrorOnInvalidMessage) { |
17833 | return EvaluateAsStringImpl(SemaRef&: *this, Message, Result, Ctx, EvalContext, |
17834 | ErrorOnInvalidMessage); |
17835 | } |
17836 | |
17837 | bool Sema::EvaluateAsString(Expr *Message, std::string &Result, ASTContext &Ctx, |
17838 | StringEvaluationContext EvalContext, |
17839 | bool ErrorOnInvalidMessage) { |
17840 | return EvaluateAsStringImpl(SemaRef&: *this, Message, Result, Ctx, EvalContext, |
17841 | ErrorOnInvalidMessage); |
17842 | } |
17843 | |
17844 | Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc, |
17845 | Expr *AssertExpr, Expr *AssertMessage, |
17846 | SourceLocation RParenLoc, |
17847 | bool Failed) { |
17848 | assert(AssertExpr != nullptr && "Expected non-null condition"); |
17849 | if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() && |
17850 | (!AssertMessage || (!AssertMessage->isTypeDependent() && |
17851 | !AssertMessage->isValueDependent())) && |
17852 | !Failed) { |
17853 | // In a static_assert-declaration, the constant-expression shall be a |
17854 | // constant expression that can be contextually converted to bool. |
17855 | ExprResult Converted = PerformContextuallyConvertToBool(From: AssertExpr); |
17856 | if (Converted.isInvalid()) |
17857 | Failed = true; |
17858 | |
17859 | ExprResult FullAssertExpr = |
17860 | ActOnFinishFullExpr(Expr: Converted.get(), CC: StaticAssertLoc, |
17861 | /*DiscardedValue*/ false, |
17862 | /*IsConstexpr*/ true); |
17863 | if (FullAssertExpr.isInvalid()) |
17864 | Failed = true; |
17865 | else |
17866 | AssertExpr = FullAssertExpr.get(); |
17867 | |
17868 | llvm::APSInt Cond; |
17869 | Expr *BaseExpr = AssertExpr; |
17870 | AllowFoldKind FoldKind = AllowFoldKind::No; |
17871 | |
17872 | if (!getLangOpts().CPlusPlus) { |
17873 | // In C mode, allow folding as an extension for better compatibility with |
17874 | // C++ in terms of expressions like static_assert("test") or |
17875 | // static_assert(nullptr). |
17876 | FoldKind = AllowFoldKind::Allow; |
17877 | } |
17878 | |
17879 | if (!Failed && VerifyIntegerConstantExpression( |
17880 | BaseExpr, &Cond, |
17881 | diag::err_static_assert_expression_is_not_constant, |
17882 | FoldKind).isInvalid()) |
17883 | Failed = true; |
17884 | |
17885 | // If the static_assert passes, only verify that |
17886 | // the message is grammatically valid without evaluating it. |
17887 | if (!Failed && AssertMessage && Cond.getBoolValue()) { |
17888 | std::string Str; |
17889 | EvaluateAsString(Message: AssertMessage, Result&: Str, Ctx&: Context, |
17890 | EvalContext: StringEvaluationContext::StaticAssert, |
17891 | /*ErrorOnInvalidMessage=*/false); |
17892 | } |
17893 | |
17894 | // CWG2518 |
17895 | // [dcl.pre]/p10 If [...] the expression is evaluated in the context of a |
17896 | // template definition, the declaration has no effect. |
17897 | bool InTemplateDefinition = |
17898 | getLangOpts().CPlusPlus && CurContext->isDependentContext(); |
17899 | |
17900 | if (!Failed && !Cond && !InTemplateDefinition) { |
17901 | SmallString<256> MsgBuffer; |
17902 | llvm::raw_svector_ostream Msg(MsgBuffer); |
17903 | bool HasMessage = AssertMessage; |
17904 | if (AssertMessage) { |
17905 | std::string Str; |
17906 | HasMessage = EvaluateAsString(Message: AssertMessage, Result&: Str, Ctx&: Context, |
17907 | EvalContext: StringEvaluationContext::StaticAssert, |
17908 | /*ErrorOnInvalidMessage=*/true) || |
17909 | !Str.empty(); |
17910 | Msg << Str; |
17911 | } |
17912 | Expr *InnerCond = nullptr; |
17913 | std::string InnerCondDescription; |
17914 | std::tie(args&: InnerCond, args&: InnerCondDescription) = |
17915 | findFailedBooleanCondition(Cond: Converted.get()); |
17916 | if (const auto *ConceptIDExpr = |
17917 | dyn_cast_or_null<ConceptSpecializationExpr>(Val: InnerCond)) { |
17918 | // Drill down into concept specialization expressions to see why they |
17919 | // weren't satisfied. |
17920 | Diag(AssertExpr->getBeginLoc(), diag::err_static_assert_failed) |
17921 | << !HasMessage << Msg.str() << AssertExpr->getSourceRange(); |
17922 | ConstraintSatisfaction Satisfaction; |
17923 | if (!CheckConstraintSatisfaction(ConstraintExpr: ConceptIDExpr, Satisfaction)) |
17924 | DiagnoseUnsatisfiedConstraint(Satisfaction); |
17925 | } else if (InnerCond && !isa<CXXBoolLiteralExpr>(Val: InnerCond) && |
17926 | !isa<IntegerLiteral>(Val: InnerCond)) { |
17927 | Diag(InnerCond->getBeginLoc(), |
17928 | diag::err_static_assert_requirement_failed) |
17929 | << InnerCondDescription << !HasMessage << Msg.str() |
17930 | << InnerCond->getSourceRange(); |
17931 | DiagnoseStaticAssertDetails(E: InnerCond); |
17932 | } else { |
17933 | Diag(AssertExpr->getBeginLoc(), diag::err_static_assert_failed) |
17934 | << !HasMessage << Msg.str() << AssertExpr->getSourceRange(); |
17935 | PrintContextStack(); |
17936 | } |
17937 | Failed = true; |
17938 | } |
17939 | } else { |
17940 | ExprResult FullAssertExpr = ActOnFinishFullExpr(Expr: AssertExpr, CC: StaticAssertLoc, |
17941 | /*DiscardedValue*/false, |
17942 | /*IsConstexpr*/true); |
17943 | if (FullAssertExpr.isInvalid()) |
17944 | Failed = true; |
17945 | else |
17946 | AssertExpr = FullAssertExpr.get(); |
17947 | } |
17948 | |
17949 | Decl *Decl = StaticAssertDecl::Create(C&: Context, DC: CurContext, StaticAssertLoc, |
17950 | AssertExpr, Message: AssertMessage, RParenLoc, |
17951 | Failed); |
17952 | |
17953 | CurContext->addDecl(D: Decl); |
17954 | return Decl; |
17955 | } |
17956 | |
17957 | DeclResult Sema::ActOnTemplatedFriendTag( |
17958 | Scope *S, SourceLocation FriendLoc, unsigned TagSpec, SourceLocation TagLoc, |
17959 | CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, |
17960 | SourceLocation EllipsisLoc, const ParsedAttributesView &Attr, |
17961 | MultiTemplateParamsArg TempParamLists) { |
17962 | TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TypeSpec: TagSpec); |
17963 | |
17964 | bool IsMemberSpecialization = false; |
17965 | bool Invalid = false; |
17966 | |
17967 | if (TemplateParameterList *TemplateParams = |
17968 | MatchTemplateParametersToScopeSpecifier( |
17969 | DeclStartLoc: TagLoc, DeclLoc: NameLoc, SS, TemplateId: nullptr, ParamLists: TempParamLists, /*friend*/ IsFriend: true, |
17970 | IsMemberSpecialization, Invalid)) { |
17971 | if (TemplateParams->size() > 0) { |
17972 | // This is a declaration of a class template. |
17973 | if (Invalid) |
17974 | return true; |
17975 | |
17976 | return CheckClassTemplate(S, TagSpec, TUK: TagUseKind::Friend, KWLoc: TagLoc, SS, |
17977 | Name, NameLoc, Attr, TemplateParams, AS: AS_public, |
17978 | /*ModulePrivateLoc=*/SourceLocation(), |
17979 | FriendLoc, NumOuterTemplateParamLists: TempParamLists.size() - 1, |
17980 | OuterTemplateParamLists: TempParamLists.data()) |
17981 | .get(); |
17982 | } else { |
17983 | // The "template<>" header is extraneous. |
17984 | Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) |
17985 | << TypeWithKeyword::getTagTypeKindName(Kind) << Name; |
17986 | IsMemberSpecialization = true; |
17987 | } |
17988 | } |
17989 | |
17990 | if (Invalid) return true; |
17991 | |
17992 | bool isAllExplicitSpecializations = true; |
17993 | for (unsigned I = TempParamLists.size(); I-- > 0; ) { |
17994 | if (TempParamLists[I]->size()) { |
17995 | isAllExplicitSpecializations = false; |
17996 | break; |
17997 | } |
17998 | } |
17999 | |
18000 | // FIXME: don't ignore attributes. |
18001 | |
18002 | // If it's explicit specializations all the way down, just forget |
18003 | // about the template header and build an appropriate non-templated |
18004 | // friend. TODO: for source fidelity, remember the headers. |
18005 | NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); |
18006 | if (isAllExplicitSpecializations) { |
18007 | if (SS.isEmpty()) { |
18008 | bool Owned = false; |
18009 | bool IsDependent = false; |
18010 | return ActOnTag(S, TagSpec, TUK: TagUseKind::Friend, KWLoc: TagLoc, SS, Name, NameLoc, |
18011 | Attr, AS: AS_public, |
18012 | /*ModulePrivateLoc=*/SourceLocation(), |
18013 | TemplateParameterLists: MultiTemplateParamsArg(), OwnedDecl&: Owned, IsDependent, |
18014 | /*ScopedEnumKWLoc=*/SourceLocation(), |
18015 | /*ScopedEnumUsesClassTag=*/false, |
18016 | /*UnderlyingType=*/TypeResult(), |
18017 | /*IsTypeSpecifier=*/false, |
18018 | /*IsTemplateParamOrArg=*/false, |
18019 | /*OOK=*/OffsetOfKind::Outside); |
18020 | } |
18021 | |
18022 | ElaboratedTypeKeyword Keyword |
18023 | = TypeWithKeyword::getKeywordForTagTypeKind(Tag: Kind); |
18024 | QualType T = CheckTypenameType(Keyword, KeywordLoc: TagLoc, QualifierLoc, |
18025 | II: *Name, IILoc: NameLoc); |
18026 | if (T.isNull()) |
18027 | return true; |
18028 | |
18029 | TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); |
18030 | if (isa<DependentNameType>(Val: T)) { |
18031 | DependentNameTypeLoc TL = |
18032 | TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); |
18033 | TL.setElaboratedKeywordLoc(TagLoc); |
18034 | TL.setQualifierLoc(QualifierLoc); |
18035 | TL.setNameLoc(NameLoc); |
18036 | } else { |
18037 | ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>(); |
18038 | TL.setElaboratedKeywordLoc(TagLoc); |
18039 | TL.setQualifierLoc(QualifierLoc); |
18040 | TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc); |
18041 | } |
18042 | |
18043 | FriendDecl *Friend = |
18044 | FriendDecl::Create(C&: Context, DC: CurContext, L: NameLoc, Friend_: TSI, FriendL: FriendLoc, |
18045 | EllipsisLoc, FriendTypeTPLists: TempParamLists); |
18046 | Friend->setAccess(AS_public); |
18047 | CurContext->addDecl(Friend); |
18048 | return Friend; |
18049 | } |
18050 | |
18051 | assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?"); |
18052 | |
18053 | // CWG 2917: if it (= the friend-type-specifier) is a pack expansion |
18054 | // (13.7.4 [temp.variadic]), any packs expanded by that pack expansion |
18055 | // shall not have been introduced by the template-declaration. |
18056 | SmallVector<UnexpandedParameterPack, 1> Unexpanded; |
18057 | collectUnexpandedParameterPacks(NNS: QualifierLoc, Unexpanded); |
18058 | unsigned FriendDeclDepth = TempParamLists.front()->getDepth(); |
18059 | for (UnexpandedParameterPack &U : Unexpanded) { |
18060 | if (getDepthAndIndex(UPP: U).first >= FriendDeclDepth) { |
18061 | auto *ND = dyn_cast<NamedDecl *>(Val&: U.first); |
18062 | if (!ND) |
18063 | ND = cast<const TemplateTypeParmType *>(Val&: U.first)->getDecl(); |
18064 | Diag(U.second, diag::friend_template_decl_malformed_pack_expansion) |
18065 | << ND->getDeclName() << SourceRange(SS.getBeginLoc(), EllipsisLoc); |
18066 | return true; |
18067 | } |
18068 | } |
18069 | |
18070 | // Handle the case of a templated-scope friend class. e.g. |
18071 | // template <class T> class A<T>::B; |
18072 | // FIXME: we don't support these right now. |
18073 | Diag(NameLoc, diag::warn_template_qualified_friend_unsupported) |
18074 | << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext); |
18075 | ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Tag: Kind); |
18076 | QualType T = Context.getDependentNameType(Keyword: ETK, NNS: SS.getScopeRep(), Name); |
18077 | TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); |
18078 | DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); |
18079 | TL.setElaboratedKeywordLoc(TagLoc); |
18080 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); |
18081 | TL.setNameLoc(NameLoc); |
18082 | |
18083 | FriendDecl *Friend = |
18084 | FriendDecl::Create(C&: Context, DC: CurContext, L: NameLoc, Friend_: TSI, FriendL: FriendLoc, |
18085 | EllipsisLoc, FriendTypeTPLists: TempParamLists); |
18086 | Friend->setAccess(AS_public); |
18087 | Friend->setUnsupportedFriend(true); |
18088 | CurContext->addDecl(Friend); |
18089 | return Friend; |
18090 | } |
18091 | |
18092 | Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, |
18093 | MultiTemplateParamsArg TempParams, |
18094 | SourceLocation EllipsisLoc) { |
18095 | SourceLocation Loc = DS.getBeginLoc(); |
18096 | SourceLocation FriendLoc = DS.getFriendSpecLoc(); |
18097 | |
18098 | assert(DS.isFriendSpecified()); |
18099 | assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); |
18100 | |
18101 | // C++ [class.friend]p3: |
18102 | // A friend declaration that does not declare a function shall have one of |
18103 | // the following forms: |
18104 | // friend elaborated-type-specifier ; |
18105 | // friend simple-type-specifier ; |
18106 | // friend typename-specifier ; |
18107 | // |
18108 | // If the friend keyword isn't first, or if the declarations has any type |
18109 | // qualifiers, then the declaration doesn't have that form. |
18110 | if (getLangOpts().CPlusPlus11 && !DS.isFriendSpecifiedFirst()) |
18111 | Diag(FriendLoc, diag::err_friend_not_first_in_declaration); |
18112 | if (DS.getTypeQualifiers()) { |
18113 | if (DS.getTypeQualifiers() & DeclSpec::TQ_const) |
18114 | Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const"; |
18115 | if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) |
18116 | Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile"; |
18117 | if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) |
18118 | Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict"; |
18119 | if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) |
18120 | Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic"; |
18121 | if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) |
18122 | Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned"; |
18123 | } |
18124 | |
18125 | // Try to convert the decl specifier to a type. This works for |
18126 | // friend templates because ActOnTag never produces a ClassTemplateDecl |
18127 | // for a TagUseKind::Friend. |
18128 | Declarator TheDeclarator(DS, ParsedAttributesView::none(), |
18129 | DeclaratorContext::Member); |
18130 | TypeSourceInfo *TSI = GetTypeForDeclarator(D&: TheDeclarator); |
18131 | QualType T = TSI->getType(); |
18132 | if (TheDeclarator.isInvalidType()) |
18133 | return nullptr; |
18134 | |
18135 | // If '...' is present, the type must contain an unexpanded parameter |
18136 | // pack, and vice versa. |
18137 | bool Invalid = false; |
18138 | if (EllipsisLoc.isInvalid() && |
18139 | DiagnoseUnexpandedParameterPack(Loc, T: TSI, UPPC: UPPC_FriendDeclaration)) |
18140 | return nullptr; |
18141 | if (EllipsisLoc.isValid() && |
18142 | !TSI->getType()->containsUnexpandedParameterPack()) { |
18143 | Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) |
18144 | << TSI->getTypeLoc().getSourceRange(); |
18145 | Invalid = true; |
18146 | } |
18147 | |
18148 | if (!T->isElaboratedTypeSpecifier()) { |
18149 | if (TempParams.size()) { |
18150 | // C++23 [dcl.pre]p5: |
18151 | // In a simple-declaration, the optional init-declarator-list can be |
18152 | // omitted only when declaring a class or enumeration, that is, when |
18153 | // the decl-specifier-seq contains either a class-specifier, an |
18154 | // elaborated-type-specifier with a class-key, or an enum-specifier. |
18155 | // |
18156 | // The declaration of a template-declaration or explicit-specialization |
18157 | // is never a member-declaration, so this must be a simple-declaration |
18158 | // with no init-declarator-list. Therefore, this is ill-formed. |
18159 | Diag(Loc, diag::err_tagless_friend_type_template) << DS.getSourceRange(); |
18160 | return nullptr; |
18161 | } else if (const RecordDecl *RD = T->getAsRecordDecl()) { |
18162 | SmallString<16> InsertionText(" "); |
18163 | InsertionText += RD->getKindName(); |
18164 | |
18165 | Diag(Loc, getLangOpts().CPlusPlus11 |
18166 | ? diag::warn_cxx98_compat_unelaborated_friend_type |
18167 | : diag::ext_unelaborated_friend_type) |
18168 | << (unsigned)RD->getTagKind() << T |
18169 | << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc), |
18170 | InsertionText); |
18171 | } else { |
18172 | DiagCompat(FriendLoc, diag_compat::nonclass_type_friend) |
18173 | << T << DS.getSourceRange(); |
18174 | } |
18175 | } |
18176 | |
18177 | // C++98 [class.friend]p1: A friend of a class is a function |
18178 | // or class that is not a member of the class . . . |
18179 | // This is fixed in DR77, which just barely didn't make the C++03 |
18180 | // deadline. It's also a very silly restriction that seriously |
18181 | // affects inner classes and which nobody else seems to implement; |
18182 | // thus we never diagnose it, not even in -pedantic. |
18183 | // |
18184 | // But note that we could warn about it: it's always useless to |
18185 | // friend one of your own members (it's not, however, worthless to |
18186 | // friend a member of an arbitrary specialization of your template). |
18187 | |
18188 | Decl *D; |
18189 | if (!TempParams.empty()) |
18190 | // TODO: Support variadic friend template decls? |
18191 | D = FriendTemplateDecl::Create(Context, DC: CurContext, Loc, Params: TempParams, Friend: TSI, |
18192 | FriendLoc); |
18193 | else |
18194 | D = FriendDecl::Create(C&: Context, DC: CurContext, L: TSI->getTypeLoc().getBeginLoc(), |
18195 | Friend_: TSI, FriendL: FriendLoc, EllipsisLoc); |
18196 | |
18197 | if (!D) |
18198 | return nullptr; |
18199 | |
18200 | D->setAccess(AS_public); |
18201 | CurContext->addDecl(D); |
18202 | |
18203 | if (Invalid) |
18204 | D->setInvalidDecl(); |
18205 | |
18206 | return D; |
18207 | } |
18208 | |
18209 | NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, |
18210 | MultiTemplateParamsArg TemplateParams) { |
18211 | const DeclSpec &DS = D.getDeclSpec(); |
18212 | |
18213 | assert(DS.isFriendSpecified()); |
18214 | assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); |
18215 | |
18216 | SourceLocation Loc = D.getIdentifierLoc(); |
18217 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D); |
18218 | |
18219 | // C++ [class.friend]p1 |
18220 | // A friend of a class is a function or class.... |
18221 | // Note that this sees through typedefs, which is intended. |
18222 | // It *doesn't* see through dependent types, which is correct |
18223 | // according to [temp.arg.type]p3: |
18224 | // If a declaration acquires a function type through a |
18225 | // type dependent on a template-parameter and this causes |
18226 | // a declaration that does not use the syntactic form of a |
18227 | // function declarator to have a function type, the program |
18228 | // is ill-formed. |
18229 | if (!TInfo->getType()->isFunctionType()) { |
18230 | Diag(Loc, diag::err_unexpected_friend); |
18231 | |
18232 | // It might be worthwhile to try to recover by creating an |
18233 | // appropriate declaration. |
18234 | return nullptr; |
18235 | } |
18236 | |
18237 | // C++ [namespace.memdef]p3 |
18238 | // - If a friend declaration in a non-local class first declares a |
18239 | // class or function, the friend class or function is a member |
18240 | // of the innermost enclosing namespace. |
18241 | // - The name of the friend is not found by simple name lookup |
18242 | // until a matching declaration is provided in that namespace |
18243 | // scope (either before or after the class declaration granting |
18244 | // friendship). |
18245 | // - If a friend function is called, its name may be found by the |
18246 | // name lookup that considers functions from namespaces and |
18247 | // classes associated with the types of the function arguments. |
18248 | // - When looking for a prior declaration of a class or a function |
18249 | // declared as a friend, scopes outside the innermost enclosing |
18250 | // namespace scope are not considered. |
18251 | |
18252 | CXXScopeSpec &SS = D.getCXXScopeSpec(); |
18253 | DeclarationNameInfo NameInfo = GetNameForDeclarator(D); |
18254 | assert(NameInfo.getName()); |
18255 | |
18256 | // Check for unexpanded parameter packs. |
18257 | if (DiagnoseUnexpandedParameterPack(Loc, T: TInfo, UPPC: UPPC_FriendDeclaration) || |
18258 | DiagnoseUnexpandedParameterPack(NameInfo, UPPC: UPPC_FriendDeclaration) || |
18259 | DiagnoseUnexpandedParameterPack(SS, UPPC: UPPC_FriendDeclaration)) |
18260 | return nullptr; |
18261 | |
18262 | // The context we found the declaration in, or in which we should |
18263 | // create the declaration. |
18264 | DeclContext *DC; |
18265 | Scope *DCScope = S; |
18266 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, |
18267 | RedeclarationKind::ForExternalRedeclaration); |
18268 | |
18269 | bool isTemplateId = D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId; |
18270 | |
18271 | // There are five cases here. |
18272 | // - There's no scope specifier and we're in a local class. Only look |
18273 | // for functions declared in the immediately-enclosing block scope. |
18274 | // We recover from invalid scope qualifiers as if they just weren't there. |
18275 | FunctionDecl *FunctionContainingLocalClass = nullptr; |
18276 | if ((SS.isInvalid() || !SS.isSet()) && |
18277 | (FunctionContainingLocalClass = |
18278 | cast<CXXRecordDecl>(Val: CurContext)->isLocalClass())) { |
18279 | // C++11 [class.friend]p11: |
18280 | // If a friend declaration appears in a local class and the name |
18281 | // specified is an unqualified name, a prior declaration is |
18282 | // looked up without considering scopes that are outside the |
18283 | // innermost enclosing non-class scope. For a friend function |
18284 | // declaration, if there is no prior declaration, the program is |
18285 | // ill-formed. |
18286 | |
18287 | // Find the innermost enclosing non-class scope. This is the block |
18288 | // scope containing the local class definition (or for a nested class, |
18289 | // the outer local class). |
18290 | DCScope = S->getFnParent(); |
18291 | |
18292 | // Look up the function name in the scope. |
18293 | Previous.clear(Kind: LookupLocalFriendName); |
18294 | LookupName(R&: Previous, S, /*AllowBuiltinCreation*/false); |
18295 | |
18296 | if (!Previous.empty()) { |
18297 | // All possible previous declarations must have the same context: |
18298 | // either they were declared at block scope or they are members of |
18299 | // one of the enclosing local classes. |
18300 | DC = Previous.getRepresentativeDecl()->getDeclContext(); |
18301 | } else { |
18302 | // This is ill-formed, but provide the context that we would have |
18303 | // declared the function in, if we were permitted to, for error recovery. |
18304 | DC = FunctionContainingLocalClass; |
18305 | } |
18306 | adjustContextForLocalExternDecl(DC); |
18307 | |
18308 | // - There's no scope specifier, in which case we just go to the |
18309 | // appropriate scope and look for a function or function template |
18310 | // there as appropriate. |
18311 | } else if (SS.isInvalid() || !SS.isSet()) { |
18312 | // C++11 [namespace.memdef]p3: |
18313 | // If the name in a friend declaration is neither qualified nor |
18314 | // a template-id and the declaration is a function or an |
18315 | // elaborated-type-specifier, the lookup to determine whether |
18316 | // the entity has been previously declared shall not consider |
18317 | // any scopes outside the innermost enclosing namespace. |
18318 | |
18319 | // Find the appropriate context according to the above. |
18320 | DC = CurContext; |
18321 | |
18322 | // Skip class contexts. If someone can cite chapter and verse |
18323 | // for this behavior, that would be nice --- it's what GCC and |
18324 | // EDG do, and it seems like a reasonable intent, but the spec |
18325 | // really only says that checks for unqualified existing |
18326 | // declarations should stop at the nearest enclosing namespace, |
18327 | // not that they should only consider the nearest enclosing |
18328 | // namespace. |
18329 | while (DC->isRecord()) |
18330 | DC = DC->getParent(); |
18331 | |
18332 | DeclContext *LookupDC = DC->getNonTransparentContext(); |
18333 | while (true) { |
18334 | LookupQualifiedName(R&: Previous, LookupCtx: LookupDC); |
18335 | |
18336 | if (!Previous.empty()) { |
18337 | DC = LookupDC; |
18338 | break; |
18339 | } |
18340 | |
18341 | if (isTemplateId) { |
18342 | if (isa<TranslationUnitDecl>(Val: LookupDC)) break; |
18343 | } else { |
18344 | if (LookupDC->isFileContext()) break; |
18345 | } |
18346 | LookupDC = LookupDC->getParent(); |
18347 | } |
18348 | |
18349 | DCScope = getScopeForDeclContext(S, DC); |
18350 | |
18351 | // - There's a non-dependent scope specifier, in which case we |
18352 | // compute it and do a previous lookup there for a function |
18353 | // or function template. |
18354 | } else if (!SS.getScopeRep()->isDependent()) { |
18355 | DC = computeDeclContext(SS); |
18356 | if (!DC) return nullptr; |
18357 | |
18358 | if (RequireCompleteDeclContext(SS, DC)) return nullptr; |
18359 | |
18360 | LookupQualifiedName(R&: Previous, LookupCtx: DC); |
18361 | |
18362 | // C++ [class.friend]p1: A friend of a class is a function or |
18363 | // class that is not a member of the class . . . |
18364 | if (DC->Equals(CurContext)) |
18365 | Diag(DS.getFriendSpecLoc(), |
18366 | getLangOpts().CPlusPlus11 ? |
18367 | diag::warn_cxx98_compat_friend_is_member : |
18368 | diag::err_friend_is_member); |
18369 | |
18370 | // - There's a scope specifier that does not match any template |
18371 | // parameter lists, in which case we use some arbitrary context, |
18372 | // create a method or method template, and wait for instantiation. |
18373 | // - There's a scope specifier that does match some template |
18374 | // parameter lists, which we don't handle right now. |
18375 | } else { |
18376 | DC = CurContext; |
18377 | assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?"); |
18378 | } |
18379 | |
18380 | if (!DC->isRecord()) { |
18381 | int DiagArg = -1; |
18382 | switch (D.getName().getKind()) { |
18383 | case UnqualifiedIdKind::IK_ConstructorTemplateId: |
18384 | case UnqualifiedIdKind::IK_ConstructorName: |
18385 | DiagArg = 0; |
18386 | break; |
18387 | case UnqualifiedIdKind::IK_DestructorName: |
18388 | DiagArg = 1; |
18389 | break; |
18390 | case UnqualifiedIdKind::IK_ConversionFunctionId: |
18391 | DiagArg = 2; |
18392 | break; |
18393 | case UnqualifiedIdKind::IK_DeductionGuideName: |
18394 | DiagArg = 3; |
18395 | break; |
18396 | case UnqualifiedIdKind::IK_Identifier: |
18397 | case UnqualifiedIdKind::IK_ImplicitSelfParam: |
18398 | case UnqualifiedIdKind::IK_LiteralOperatorId: |
18399 | case UnqualifiedIdKind::IK_OperatorFunctionId: |
18400 | case UnqualifiedIdKind::IK_TemplateId: |
18401 | break; |
18402 | } |
18403 | // This implies that it has to be an operator or function. |
18404 | if (DiagArg >= 0) { |
18405 | Diag(Loc, diag::err_introducing_special_friend) << DiagArg; |
18406 | return nullptr; |
18407 | } |
18408 | } |
18409 | |
18410 | // FIXME: This is an egregious hack to cope with cases where the scope stack |
18411 | // does not contain the declaration context, i.e., in an out-of-line |
18412 | // definition of a class. |
18413 | Scope FakeDCScope(S, Scope::DeclScope, Diags); |
18414 | if (!DCScope) { |
18415 | FakeDCScope.setEntity(DC); |
18416 | DCScope = &FakeDCScope; |
18417 | } |
18418 | |
18419 | bool AddToScope = true; |
18420 | NamedDecl *ND = ActOnFunctionDeclarator(S: DCScope, D, DC, TInfo, Previous, |
18421 | TemplateParamLists: TemplateParams, AddToScope); |
18422 | if (!ND) return nullptr; |
18423 | |
18424 | assert(ND->getLexicalDeclContext() == CurContext); |
18425 | |
18426 | // If we performed typo correction, we might have added a scope specifier |
18427 | // and changed the decl context. |
18428 | DC = ND->getDeclContext(); |
18429 | |
18430 | // Add the function declaration to the appropriate lookup tables, |
18431 | // adjusting the redeclarations list as necessary. We don't |
18432 | // want to do this yet if the friending class is dependent. |
18433 | // |
18434 | // Also update the scope-based lookup if the target context's |
18435 | // lookup context is in lexical scope. |
18436 | if (!CurContext->isDependentContext()) { |
18437 | DC = DC->getRedeclContext(); |
18438 | DC->makeDeclVisibleInContext(D: ND); |
18439 | if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) |
18440 | PushOnScopeChains(D: ND, S: EnclosingScope, /*AddToContext=*/ false); |
18441 | } |
18442 | |
18443 | FriendDecl *FrD = FriendDecl::Create(C&: Context, DC: CurContext, |
18444 | L: D.getIdentifierLoc(), Friend_: ND, |
18445 | FriendL: DS.getFriendSpecLoc()); |
18446 | FrD->setAccess(AS_public); |
18447 | CurContext->addDecl(FrD); |
18448 | |
18449 | if (ND->isInvalidDecl()) { |
18450 | FrD->setInvalidDecl(); |
18451 | } else { |
18452 | if (DC->isRecord()) CheckFriendAccess(D: ND); |
18453 | |
18454 | FunctionDecl *FD; |
18455 | if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(Val: ND)) |
18456 | FD = FTD->getTemplatedDecl(); |
18457 | else |
18458 | FD = cast<FunctionDecl>(Val: ND); |
18459 | |
18460 | // C++ [class.friend]p6: |
18461 | // A function may be defined in a friend declaration of a class if and |
18462 | // only if the class is a non-local class, and the function name is |
18463 | // unqualified. |
18464 | if (D.isFunctionDefinition()) { |
18465 | // Qualified friend function definition. |
18466 | if (SS.isNotEmpty()) { |
18467 | // FIXME: We should only do this if the scope specifier names the |
18468 | // innermost enclosing namespace; otherwise the fixit changes the |
18469 | // meaning of the code. |
18470 | SemaDiagnosticBuilder DB = |
18471 | Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def); |
18472 | |
18473 | DB << SS.getScopeRep(); |
18474 | if (DC->isFileContext()) |
18475 | DB << FixItHint::CreateRemoval(RemoveRange: SS.getRange()); |
18476 | |
18477 | // Friend function defined in a local class. |
18478 | } else if (FunctionContainingLocalClass) { |
18479 | Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class); |
18480 | |
18481 | // Per [basic.pre]p4, a template-id is not a name. Therefore, if we have |
18482 | // a template-id, the function name is not unqualified because these is |
18483 | // no name. While the wording requires some reading in-between the |
18484 | // lines, GCC, MSVC, and EDG all consider a friend function |
18485 | // specialization definitions to be de facto explicit specialization |
18486 | // and diagnose them as such. |
18487 | } else if (isTemplateId) { |
18488 | Diag(NameInfo.getBeginLoc(), diag::err_friend_specialization_def); |
18489 | } |
18490 | } |
18491 | |
18492 | // C++11 [dcl.fct.default]p4: If a friend declaration specifies a |
18493 | // default argument expression, that declaration shall be a definition |
18494 | // and shall be the only declaration of the function or function |
18495 | // template in the translation unit. |
18496 | if (functionDeclHasDefaultArgument(FD)) { |
18497 | // We can't look at FD->getPreviousDecl() because it may not have been set |
18498 | // if we're in a dependent context. If the function is known to be a |
18499 | // redeclaration, we will have narrowed Previous down to the right decl. |
18500 | if (D.isRedeclaration()) { |
18501 | Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); |
18502 | Diag(Previous.getRepresentativeDecl()->getLocation(), |
18503 | diag::note_previous_declaration); |
18504 | } else if (!D.isFunctionDefinition()) |
18505 | Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def); |
18506 | } |
18507 | |
18508 | // Mark templated-scope function declarations as unsupported. |
18509 | if (FD->getNumTemplateParameterLists() && SS.isValid()) { |
18510 | Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported) |
18511 | << SS.getScopeRep() << SS.getRange() |
18512 | << cast<CXXRecordDecl>(CurContext); |
18513 | FrD->setUnsupportedFriend(true); |
18514 | } |
18515 | } |
18516 | |
18517 | warnOnReservedIdentifier(D: ND); |
18518 | |
18519 | return ND; |
18520 | } |
18521 | |
18522 | void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc, |
18523 | StringLiteral *Message) { |
18524 | AdjustDeclIfTemplate(Decl&: Dcl); |
18525 | |
18526 | FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Val: Dcl); |
18527 | if (!Fn) { |
18528 | Diag(DelLoc, diag::err_deleted_non_function); |
18529 | return; |
18530 | } |
18531 | |
18532 | // Deleted function does not have a body. |
18533 | Fn->setWillHaveBody(false); |
18534 | |
18535 | if (const FunctionDecl *Prev = Fn->getPreviousDecl()) { |
18536 | // Don't consider the implicit declaration we generate for explicit |
18537 | // specializations. FIXME: Do not generate these implicit declarations. |
18538 | if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization || |
18539 | Prev->getPreviousDecl()) && |
18540 | !Prev->isDefined()) { |
18541 | Diag(DelLoc, diag::err_deleted_decl_not_first); |
18542 | Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(), |
18543 | Prev->isImplicit() ? diag::note_previous_implicit_declaration |
18544 | : diag::note_previous_declaration); |
18545 | // We can't recover from this; the declaration might have already |
18546 | // been used. |
18547 | Fn->setInvalidDecl(); |
18548 | return; |
18549 | } |
18550 | |
18551 | // To maintain the invariant that functions are only deleted on their first |
18552 | // declaration, mark the implicitly-instantiated declaration of the |
18553 | // explicitly-specialized function as deleted instead of marking the |
18554 | // instantiated redeclaration. |
18555 | Fn = Fn->getCanonicalDecl(); |
18556 | } |
18557 | |
18558 | // dllimport/dllexport cannot be deleted. |
18559 | if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) { |
18560 | Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr; |
18561 | Fn->setInvalidDecl(); |
18562 | } |
18563 | |
18564 | // C++11 [basic.start.main]p3: |
18565 | // A program that defines main as deleted [...] is ill-formed. |
18566 | if (Fn->isMain()) |
18567 | Diag(DelLoc, diag::err_deleted_main); |
18568 | |
18569 | // C++11 [dcl.fct.def.delete]p4: |
18570 | // A deleted function is implicitly inline. |
18571 | Fn->setImplicitlyInline(); |
18572 | Fn->setDeletedAsWritten(D: true, Message); |
18573 | } |
18574 | |
18575 | void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) { |
18576 | if (!Dcl || Dcl->isInvalidDecl()) |
18577 | return; |
18578 | |
18579 | auto *FD = dyn_cast<FunctionDecl>(Val: Dcl); |
18580 | if (!FD) { |
18581 | if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Val: Dcl)) { |
18582 | if (getDefaultedFunctionKind(FD: FTD->getTemplatedDecl()).isComparison()) { |
18583 | Diag(DefaultLoc, diag::err_defaulted_comparison_template); |
18584 | return; |
18585 | } |
18586 | } |
18587 | |
18588 | Diag(DefaultLoc, diag::err_default_special_members) |
18589 | << getLangOpts().CPlusPlus20; |
18590 | return; |
18591 | } |
18592 | |
18593 | // Reject if this can't possibly be a defaultable function. |
18594 | DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); |
18595 | if (!DefKind && |
18596 | // A dependent function that doesn't locally look defaultable can |
18597 | // still instantiate to a defaultable function if it's a constructor |
18598 | // or assignment operator. |
18599 | (!FD->isDependentContext() || |
18600 | (!isa<CXXConstructorDecl>(Val: FD) && |
18601 | FD->getDeclName().getCXXOverloadedOperator() != OO_Equal))) { |
18602 | Diag(DefaultLoc, diag::err_default_special_members) |
18603 | << getLangOpts().CPlusPlus20; |
18604 | return; |
18605 | } |
18606 | |
18607 | // Issue compatibility warning. We already warned if the operator is |
18608 | // 'operator<=>' when parsing the '<=>' token. |
18609 | if (DefKind.isComparison() && |
18610 | DefKind.asComparison() != DefaultedComparisonKind::ThreeWay) { |
18611 | Diag(DefaultLoc, getLangOpts().CPlusPlus20 |
18612 | ? diag::warn_cxx17_compat_defaulted_comparison |
18613 | : diag::ext_defaulted_comparison); |
18614 | } |
18615 | |
18616 | FD->setDefaulted(); |
18617 | FD->setExplicitlyDefaulted(); |
18618 | FD->setDefaultLoc(DefaultLoc); |
18619 | |
18620 | // Defer checking functions that are defaulted in a dependent context. |
18621 | if (FD->isDependentContext()) |
18622 | return; |
18623 | |
18624 | // Unset that we will have a body for this function. We might not, |
18625 | // if it turns out to be trivial, and we don't need this marking now |
18626 | // that we've marked it as defaulted. |
18627 | FD->setWillHaveBody(false); |
18628 | |
18629 | if (DefKind.isComparison()) { |
18630 | // If this comparison's defaulting occurs within the definition of its |
18631 | // lexical class context, we have to do the checking when complete. |
18632 | if (auto const *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext())) |
18633 | if (!RD->isCompleteDefinition()) |
18634 | return; |
18635 | } |
18636 | |
18637 | // If this member fn was defaulted on its first declaration, we will have |
18638 | // already performed the checking in CheckCompletedCXXClass. Such a |
18639 | // declaration doesn't trigger an implicit definition. |
18640 | if (isa<CXXMethodDecl>(Val: FD)) { |
18641 | const FunctionDecl *Primary = FD; |
18642 | if (const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) |
18643 | // Ask the template instantiation pattern that actually had the |
18644 | // '= default' on it. |
18645 | Primary = Pattern; |
18646 | if (Primary->getCanonicalDecl()->isDefaulted()) |
18647 | return; |
18648 | } |
18649 | |
18650 | if (DefKind.isComparison()) { |
18651 | if (CheckExplicitlyDefaultedComparison(S: nullptr, FD, DCK: DefKind.asComparison())) |
18652 | FD->setInvalidDecl(); |
18653 | else |
18654 | DefineDefaultedComparison(UseLoc: DefaultLoc, FD, DCK: DefKind.asComparison()); |
18655 | } else { |
18656 | auto *MD = cast<CXXMethodDecl>(Val: FD); |
18657 | |
18658 | if (CheckExplicitlyDefaultedSpecialMember(MD, CSM: DefKind.asSpecialMember(), |
18659 | DefaultLoc)) |
18660 | MD->setInvalidDecl(); |
18661 | else |
18662 | DefineDefaultedFunction(*this, MD, DefaultLoc); |
18663 | } |
18664 | } |
18665 | |
18666 | static void SearchForReturnInStmt(Sema &Self, Stmt *S) { |
18667 | for (Stmt *SubStmt : S->children()) { |
18668 | if (!SubStmt) |
18669 | continue; |
18670 | if (isa<ReturnStmt>(SubStmt)) |
18671 | Self.Diag(SubStmt->getBeginLoc(), |
18672 | diag::err_return_in_constructor_handler); |
18673 | if (!isa<Expr>(Val: SubStmt)) |
18674 | SearchForReturnInStmt(Self, S: SubStmt); |
18675 | } |
18676 | } |
18677 | |
18678 | void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { |
18679 | for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { |
18680 | CXXCatchStmt *Handler = TryBlock->getHandler(i: I); |
18681 | SearchForReturnInStmt(Self&: *this, S: Handler); |
18682 | } |
18683 | } |
18684 | |
18685 | void Sema::SetFunctionBodyKind(Decl *D, SourceLocation Loc, FnBodyKind BodyKind, |
18686 | StringLiteral *DeletedMessage) { |
18687 | switch (BodyKind) { |
18688 | case FnBodyKind::Delete: |
18689 | SetDeclDeleted(Dcl: D, DelLoc: Loc, Message: DeletedMessage); |
18690 | break; |
18691 | case FnBodyKind::Default: |
18692 | SetDeclDefaulted(Dcl: D, DefaultLoc: Loc); |
18693 | break; |
18694 | case FnBodyKind::Other: |
18695 | llvm_unreachable( |
18696 | "Parsed function body should be '= delete;' or '= default;'"); |
18697 | } |
18698 | } |
18699 | |
18700 | bool Sema::CheckOverridingFunctionAttributes(CXXMethodDecl *New, |
18701 | const CXXMethodDecl *Old) { |
18702 | const auto *NewFT = New->getType()->castAs<FunctionProtoType>(); |
18703 | const auto *OldFT = Old->getType()->castAs<FunctionProtoType>(); |
18704 | |
18705 | if (OldFT->hasExtParameterInfos()) { |
18706 | for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I) |
18707 | // A parameter of the overriding method should be annotated with noescape |
18708 | // if the corresponding parameter of the overridden method is annotated. |
18709 | if (OldFT->getExtParameterInfo(I).isNoEscape() && |
18710 | !NewFT->getExtParameterInfo(I).isNoEscape()) { |
18711 | Diag(New->getParamDecl(I)->getLocation(), |
18712 | diag::warn_overriding_method_missing_noescape); |
18713 | Diag(Old->getParamDecl(I)->getLocation(), |
18714 | diag::note_overridden_marked_noescape); |
18715 | } |
18716 | } |
18717 | |
18718 | // SME attributes must match when overriding a function declaration. |
18719 | if (IsInvalidSMECallConversion(FromType: Old->getType(), ToType: New->getType())) { |
18720 | Diag(New->getLocation(), diag::err_conflicting_overriding_attributes) |
18721 | << New << New->getType() << Old->getType(); |
18722 | Diag(Old->getLocation(), diag::note_overridden_virtual_function); |
18723 | return true; |
18724 | } |
18725 | |
18726 | // Virtual overrides must have the same code_seg. |
18727 | const auto *OldCSA = Old->getAttr<CodeSegAttr>(); |
18728 | const auto *NewCSA = New->getAttr<CodeSegAttr>(); |
18729 | if ((NewCSA || OldCSA) && |
18730 | (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) { |
18731 | Diag(New->getLocation(), diag::err_mismatched_code_seg_override); |
18732 | Diag(Old->getLocation(), diag::note_previous_declaration); |
18733 | return true; |
18734 | } |
18735 | |
18736 | // Virtual overrides: check for matching effects. |
18737 | if (Context.hasAnyFunctionEffects()) { |
18738 | const auto OldFX = Old->getFunctionEffects(); |
18739 | const auto NewFXOrig = New->getFunctionEffects(); |
18740 | |
18741 | if (OldFX != NewFXOrig) { |
18742 | FunctionEffectSet NewFX(NewFXOrig); |
18743 | const auto Diffs = FunctionEffectDiffVector(OldFX, NewFX); |
18744 | FunctionEffectSet::Conflicts Errs; |
18745 | for (const auto &Diff : Diffs) { |
18746 | switch (Diff.shouldDiagnoseMethodOverride(*Old, OldFX, *New, NewFX)) { |
18747 | case FunctionEffectDiff::OverrideResult::NoAction: |
18748 | break; |
18749 | case FunctionEffectDiff::OverrideResult::Warn: |
18750 | Diag(New->getLocation(), diag::warn_mismatched_func_effect_override) |
18751 | << Diff.effectName(); |
18752 | Diag(Old->getLocation(), diag::note_overridden_virtual_function) |
18753 | << Old->getReturnTypeSourceRange(); |
18754 | break; |
18755 | case FunctionEffectDiff::OverrideResult::Merge: { |
18756 | NewFX.insert(Diff.Old.value(), Errs); |
18757 | const auto *NewFT = New->getType()->castAs<FunctionProtoType>(); |
18758 | FunctionProtoType::ExtProtoInfo EPI = NewFT->getExtProtoInfo(); |
18759 | EPI.FunctionEffects = FunctionEffectsRef(NewFX); |
18760 | QualType ModQT = Context.getFunctionType(NewFT->getReturnType(), |
18761 | NewFT->getParamTypes(), EPI); |
18762 | New->setType(ModQT); |
18763 | break; |
18764 | } |
18765 | } |
18766 | } |
18767 | if (!Errs.empty()) |
18768 | diagnoseFunctionEffectMergeConflicts(Errs, New->getLocation(), |
18769 | Old->getLocation()); |
18770 | } |
18771 | } |
18772 | |
18773 | CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv(); |
18774 | |
18775 | // If the calling conventions match, everything is fine |
18776 | if (NewCC == OldCC) |
18777 | return false; |
18778 | |
18779 | // If the calling conventions mismatch because the new function is static, |
18780 | // suppress the calling convention mismatch error; the error about static |
18781 | // function override (err_static_overrides_virtual from |
18782 | // Sema::CheckFunctionDeclaration) is more clear. |
18783 | if (New->getStorageClass() == SC_Static) |
18784 | return false; |
18785 | |
18786 | Diag(New->getLocation(), |
18787 | diag::err_conflicting_overriding_cc_attributes) |
18788 | << New->getDeclName() << New->getType() << Old->getType(); |
18789 | Diag(Old->getLocation(), diag::note_overridden_virtual_function); |
18790 | return true; |
18791 | } |
18792 | |
18793 | bool Sema::CheckExplicitObjectOverride(CXXMethodDecl *New, |
18794 | const CXXMethodDecl *Old) { |
18795 | // CWG2553 |
18796 | // A virtual function shall not be an explicit object member function. |
18797 | if (!New->isExplicitObjectMemberFunction()) |
18798 | return true; |
18799 | Diag(New->getParamDecl(0)->getBeginLoc(), |
18800 | diag::err_explicit_object_parameter_nonmember) |
18801 | << New->getSourceRange() << /*virtual*/ 1 << /*IsLambda*/ false; |
18802 | Diag(Old->getLocation(), diag::note_overridden_virtual_function); |
18803 | New->setInvalidDecl(); |
18804 | return false; |
18805 | } |
18806 | |
18807 | bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New, |
18808 | const CXXMethodDecl *Old) { |
18809 | QualType NewTy = New->getType()->castAs<FunctionType>()->getReturnType(); |
18810 | QualType OldTy = Old->getType()->castAs<FunctionType>()->getReturnType(); |
18811 | |
18812 | if (Context.hasSameType(T1: NewTy, T2: OldTy) || |
18813 | NewTy->isDependentType() || OldTy->isDependentType()) |
18814 | return false; |
18815 | |
18816 | // Check if the return types are covariant |
18817 | QualType NewClassTy, OldClassTy; |
18818 | |
18819 | /// Both types must be pointers or references to classes. |
18820 | if (const PointerType *NewPT = NewTy->getAs<PointerType>()) { |
18821 | if (const PointerType *OldPT = OldTy->getAs<PointerType>()) { |
18822 | NewClassTy = NewPT->getPointeeType(); |
18823 | OldClassTy = OldPT->getPointeeType(); |
18824 | } |
18825 | } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) { |
18826 | if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) { |
18827 | if (NewRT->getTypeClass() == OldRT->getTypeClass()) { |
18828 | NewClassTy = NewRT->getPointeeType(); |
18829 | OldClassTy = OldRT->getPointeeType(); |
18830 | } |
18831 | } |
18832 | } |
18833 | |
18834 | // The return types aren't either both pointers or references to a class type. |
18835 | if (NewClassTy.isNull() || !NewClassTy->isStructureOrClassType()) { |
18836 | Diag(New->getLocation(), |
18837 | diag::err_different_return_type_for_overriding_virtual_function) |
18838 | << New->getDeclName() << NewTy << OldTy |
18839 | << New->getReturnTypeSourceRange(); |
18840 | Diag(Old->getLocation(), diag::note_overridden_virtual_function) |
18841 | << Old->getReturnTypeSourceRange(); |
18842 | |
18843 | return true; |
18844 | } |
18845 | |
18846 | if (!Context.hasSameUnqualifiedType(T1: NewClassTy, T2: OldClassTy)) { |
18847 | // C++14 [class.virtual]p8: |
18848 | // If the class type in the covariant return type of D::f differs from |
18849 | // that of B::f, the class type in the return type of D::f shall be |
18850 | // complete at the point of declaration of D::f or shall be the class |
18851 | // type D. |
18852 | if (const RecordType *RT = NewClassTy->getAs<RecordType>()) { |
18853 | if (!RT->isBeingDefined() && |
18854 | RequireCompleteType(New->getLocation(), NewClassTy, |
18855 | diag::err_covariant_return_incomplete, |
18856 | New->getDeclName())) |
18857 | return true; |
18858 | } |
18859 | |
18860 | // Check if the new class derives from the old class. |
18861 | if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) { |
18862 | Diag(New->getLocation(), diag::err_covariant_return_not_derived) |
18863 | << New->getDeclName() << NewTy << OldTy |
18864 | << New->getReturnTypeSourceRange(); |
18865 | Diag(Old->getLocation(), diag::note_overridden_virtual_function) |
18866 | << Old->getReturnTypeSourceRange(); |
18867 | return true; |
18868 | } |
18869 | |
18870 | // Check if we the conversion from derived to base is valid. |
18871 | if (CheckDerivedToBaseConversion( |
18872 | NewClassTy, OldClassTy, |
18873 | diag::err_covariant_return_inaccessible_base, |
18874 | diag::err_covariant_return_ambiguous_derived_to_base_conv, |
18875 | New->getLocation(), New->getReturnTypeSourceRange(), |
18876 | New->getDeclName(), nullptr)) { |
18877 | // FIXME: this note won't trigger for delayed access control |
18878 | // diagnostics, and it's impossible to get an undelayed error |
18879 | // here from access control during the original parse because |
18880 | // the ParsingDeclSpec/ParsingDeclarator are still in scope. |
18881 | Diag(Old->getLocation(), diag::note_overridden_virtual_function) |
18882 | << Old->getReturnTypeSourceRange(); |
18883 | return true; |
18884 | } |
18885 | } |
18886 | |
18887 | // The qualifiers of the return types must be the same. |
18888 | if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) { |
18889 | Diag(New->getLocation(), |
18890 | diag::err_covariant_return_type_different_qualifications) |
18891 | << New->getDeclName() << NewTy << OldTy |
18892 | << New->getReturnTypeSourceRange(); |
18893 | Diag(Old->getLocation(), diag::note_overridden_virtual_function) |
18894 | << Old->getReturnTypeSourceRange(); |
18895 | return true; |
18896 | } |
18897 | |
18898 | |
18899 | // The new class type must have the same or less qualifiers as the old type. |
18900 | if (!OldClassTy.isAtLeastAsQualifiedAs(other: NewClassTy, Ctx: getASTContext())) { |
18901 | Diag(New->getLocation(), |
18902 | diag::err_covariant_return_type_class_type_not_same_or_less_qualified) |
18903 | << New->getDeclName() << NewTy << OldTy |
18904 | << New->getReturnTypeSourceRange(); |
18905 | Diag(Old->getLocation(), diag::note_overridden_virtual_function) |
18906 | << Old->getReturnTypeSourceRange(); |
18907 | return true; |
18908 | } |
18909 | |
18910 | return false; |
18911 | } |
18912 | |
18913 | bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) { |
18914 | SourceLocation EndLoc = InitRange.getEnd(); |
18915 | if (EndLoc.isValid()) |
18916 | Method->setRangeEnd(EndLoc); |
18917 | |
18918 | if (Method->isVirtual() || Method->getParent()->isDependentContext()) { |
18919 | Method->setIsPureVirtual(); |
18920 | return false; |
18921 | } |
18922 | |
18923 | if (!Method->isInvalidDecl()) |
18924 | Diag(Method->getLocation(), diag::err_non_virtual_pure) |
18925 | << Method->getDeclName() << InitRange; |
18926 | return true; |
18927 | } |
18928 | |
18929 | void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) { |
18930 | if (D->getFriendObjectKind()) |
18931 | Diag(D->getLocation(), diag::err_pure_friend); |
18932 | else if (auto *M = dyn_cast<CXXMethodDecl>(Val: D)) |
18933 | CheckPureMethod(Method: M, InitRange: ZeroLoc); |
18934 | else |
18935 | Diag(D->getLocation(), diag::err_illegal_initializer); |
18936 | } |
18937 | |
18938 | /// Invoked when we are about to parse an initializer for the declaration |
18939 | /// 'Dcl'. |
18940 | /// |
18941 | /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a |
18942 | /// static data member of class X, names should be looked up in the scope of |
18943 | /// class X. If the declaration had a scope specifier, a scope will have |
18944 | /// been created and passed in for this purpose. Otherwise, S will be null. |
18945 | void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) { |
18946 | assert(D && !D->isInvalidDecl()); |
18947 | |
18948 | // We will always have a nested name specifier here, but this declaration |
18949 | // might not be out of line if the specifier names the current namespace: |
18950 | // extern int n; |
18951 | // int ::n = 0; |
18952 | if (S && D->isOutOfLine()) |
18953 | EnterDeclaratorContext(S, DC: D->getDeclContext()); |
18954 | |
18955 | PushExpressionEvaluationContext( |
18956 | NewContext: ExpressionEvaluationContext::PotentiallyEvaluated, LambdaContextDecl: D); |
18957 | } |
18958 | |
18959 | void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) { |
18960 | assert(D); |
18961 | |
18962 | if (S && D->isOutOfLine()) |
18963 | ExitDeclaratorContext(S); |
18964 | |
18965 | if (getLangOpts().CPlusPlus23) { |
18966 | // An expression or conversion is 'manifestly constant-evaluated' if it is: |
18967 | // [...] |
18968 | // - the initializer of a variable that is usable in constant expressions or |
18969 | // has constant initialization. |
18970 | if (auto *VD = dyn_cast<VarDecl>(Val: D); |
18971 | VD && (VD->isUsableInConstantExpressions(C: Context) || |
18972 | VD->hasConstantInitialization())) { |
18973 | // An expression or conversion is in an 'immediate function context' if it |
18974 | // is potentially evaluated and either: |
18975 | // [...] |
18976 | // - it is a subexpression of a manifestly constant-evaluated expression |
18977 | // or conversion. |
18978 | ExprEvalContexts.back().InImmediateFunctionContext = true; |
18979 | } |
18980 | } |
18981 | |
18982 | // Unless the initializer is in an immediate function context (as determined |
18983 | // above), this will evaluate all contained immediate function calls as |
18984 | // constant expressions. If the initializer IS an immediate function context, |
18985 | // the initializer has been determined to be a constant expression, and all |
18986 | // such evaluations will be elided (i.e., as if we "knew the whole time" that |
18987 | // it was a constant expression). |
18988 | PopExpressionEvaluationContext(); |
18989 | } |
18990 | |
18991 | DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) { |
18992 | // C++ 6.4p2: |
18993 | // The declarator shall not specify a function or an array. |
18994 | // The type-specifier-seq shall not contain typedef and shall not declare a |
18995 | // new class or enumeration. |
18996 | assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && |
18997 | "Parser allowed 'typedef' as storage class of condition decl."); |
18998 | |
18999 | Decl *Dcl = ActOnDeclarator(S, D); |
19000 | if (!Dcl) |
19001 | return true; |
19002 | |
19003 | if (isa<FunctionDecl>(Val: Dcl)) { // The declarator shall not specify a function. |
19004 | Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type) |
19005 | << D.getSourceRange(); |
19006 | return true; |
19007 | } |
19008 | |
19009 | if (auto *VD = dyn_cast<VarDecl>(Val: Dcl)) |
19010 | VD->setCXXCondDecl(); |
19011 | |
19012 | return Dcl; |
19013 | } |
19014 | |
19015 | void Sema::LoadExternalVTableUses() { |
19016 | if (!ExternalSource) |
19017 | return; |
19018 | |
19019 | SmallVector<ExternalVTableUse, 4> VTables; |
19020 | ExternalSource->ReadUsedVTables(VTables); |
19021 | SmallVector<VTableUse, 4> NewUses; |
19022 | for (unsigned I = 0, N = VTables.size(); I != N; ++I) { |
19023 | llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos |
19024 | = VTablesUsed.find(Val: VTables[I].Record); |
19025 | // Even if a definition wasn't required before, it may be required now. |
19026 | if (Pos != VTablesUsed.end()) { |
19027 | if (!Pos->second && VTables[I].DefinitionRequired) |
19028 | Pos->second = true; |
19029 | continue; |
19030 | } |
19031 | |
19032 | VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired; |
19033 | NewUses.push_back(Elt: VTableUse(VTables[I].Record, VTables[I].Location)); |
19034 | } |
19035 | |
19036 | VTableUses.insert(I: VTableUses.begin(), From: NewUses.begin(), To: NewUses.end()); |
19037 | } |
19038 | |
19039 | void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, |
19040 | bool DefinitionRequired) { |
19041 | // Ignore any vtable uses in unevaluated operands or for classes that do |
19042 | // not have a vtable. |
19043 | if (!Class->isDynamicClass() || Class->isDependentContext() || |
19044 | CurContext->isDependentContext() || isUnevaluatedContext()) |
19045 | return; |
19046 | // Do not mark as used if compiling for the device outside of the target |
19047 | // region. |
19048 | if (TUKind != TU_Prefix && LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice && |
19049 | !OpenMP().isInOpenMPDeclareTargetContext() && |
19050 | !OpenMP().isInOpenMPTargetExecutionDirective()) { |
19051 | if (!DefinitionRequired) |
19052 | MarkVirtualMembersReferenced(Loc, RD: Class); |
19053 | return; |
19054 | } |
19055 | |
19056 | // Try to insert this class into the map. |
19057 | LoadExternalVTableUses(); |
19058 | Class = Class->getCanonicalDecl(); |
19059 | std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool> |
19060 | Pos = VTablesUsed.insert(KV: std::make_pair(x&: Class, y&: DefinitionRequired)); |
19061 | if (!Pos.second) { |
19062 | // If we already had an entry, check to see if we are promoting this vtable |
19063 | // to require a definition. If so, we need to reappend to the VTableUses |
19064 | // list, since we may have already processed the first entry. |
19065 | if (DefinitionRequired && !Pos.first->second) { |
19066 | Pos.first->second = true; |
19067 | } else { |
19068 | // Otherwise, we can early exit. |
19069 | return; |
19070 | } |
19071 | } else { |
19072 | // The Microsoft ABI requires that we perform the destructor body |
19073 | // checks (i.e. operator delete() lookup) when the vtable is marked used, as |
19074 | // the deleting destructor is emitted with the vtable, not with the |
19075 | // destructor definition as in the Itanium ABI. |
19076 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { |
19077 | CXXDestructorDecl *DD = Class->getDestructor(); |
19078 | if (DD && DD->isVirtual() && !DD->isDeleted()) { |
19079 | if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) { |
19080 | // If this is an out-of-line declaration, marking it referenced will |
19081 | // not do anything. Manually call CheckDestructor to look up operator |
19082 | // delete(). |
19083 | ContextRAII SavedContext(*this, DD); |
19084 | CheckDestructor(Destructor: DD); |
19085 | } else { |
19086 | MarkFunctionReferenced(Loc, Class->getDestructor()); |
19087 | } |
19088 | } |
19089 | } |
19090 | } |
19091 | |
19092 | // Local classes need to have their virtual members marked |
19093 | // immediately. For all other classes, we mark their virtual members |
19094 | // at the end of the translation unit. |
19095 | if (Class->isLocalClass()) |
19096 | MarkVirtualMembersReferenced(Loc, RD: Class->getDefinition()); |
19097 | else |
19098 | VTableUses.push_back(Elt: std::make_pair(x&: Class, y&: Loc)); |
19099 | } |
19100 | |
19101 | bool Sema::DefineUsedVTables() { |
19102 | LoadExternalVTableUses(); |
19103 | if (VTableUses.empty()) |
19104 | return false; |
19105 | |
19106 | // Note: The VTableUses vector could grow as a result of marking |
19107 | // the members of a class as "used", so we check the size each |
19108 | // time through the loop and prefer indices (which are stable) to |
19109 | // iterators (which are not). |
19110 | bool DefinedAnything = false; |
19111 | for (unsigned I = 0; I != VTableUses.size(); ++I) { |
19112 | CXXRecordDecl *Class = VTableUses[I].first->getDefinition(); |
19113 | if (!Class) |
19114 | continue; |
19115 | TemplateSpecializationKind ClassTSK = |
19116 | Class->getTemplateSpecializationKind(); |
19117 | |
19118 | SourceLocation Loc = VTableUses[I].second; |
19119 | |
19120 | bool DefineVTable = true; |
19121 | |
19122 | const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(RD: Class); |
19123 | // V-tables for non-template classes with an owning module are always |
19124 | // uniquely emitted in that module. |
19125 | if (Class->isInCurrentModuleUnit()) { |
19126 | DefineVTable = true; |
19127 | } else if (KeyFunction && !KeyFunction->hasBody()) { |
19128 | // If this class has a key function, but that key function is |
19129 | // defined in another translation unit, we don't need to emit the |
19130 | // vtable even though we're using it. |
19131 | // The key function is in another translation unit. |
19132 | DefineVTable = false; |
19133 | TemplateSpecializationKind TSK = |
19134 | KeyFunction->getTemplateSpecializationKind(); |
19135 | assert(TSK != TSK_ExplicitInstantiationDefinition && |
19136 | TSK != TSK_ImplicitInstantiation && |
19137 | "Instantiations don't have key functions"); |
19138 | (void)TSK; |
19139 | } else if (!KeyFunction) { |
19140 | // If we have a class with no key function that is the subject |
19141 | // of an explicit instantiation declaration, suppress the |
19142 | // vtable; it will live with the explicit instantiation |
19143 | // definition. |
19144 | bool IsExplicitInstantiationDeclaration = |
19145 | ClassTSK == TSK_ExplicitInstantiationDeclaration; |
19146 | for (auto *R : Class->redecls()) { |
19147 | TemplateSpecializationKind TSK |
19148 | = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind(); |
19149 | if (TSK == TSK_ExplicitInstantiationDeclaration) |
19150 | IsExplicitInstantiationDeclaration = true; |
19151 | else if (TSK == TSK_ExplicitInstantiationDefinition) { |
19152 | IsExplicitInstantiationDeclaration = false; |
19153 | break; |
19154 | } |
19155 | } |
19156 | |
19157 | if (IsExplicitInstantiationDeclaration) |
19158 | DefineVTable = false; |
19159 | } |
19160 | |
19161 | // The exception specifications for all virtual members may be needed even |
19162 | // if we are not providing an authoritative form of the vtable in this TU. |
19163 | // We may choose to emit it available_externally anyway. |
19164 | if (!DefineVTable) { |
19165 | MarkVirtualMemberExceptionSpecsNeeded(Loc, RD: Class); |
19166 | continue; |
19167 | } |
19168 | |
19169 | // Mark all of the virtual members of this class as referenced, so |
19170 | // that we can build a vtable. Then, tell the AST consumer that a |
19171 | // vtable for this class is required. |
19172 | DefinedAnything = true; |
19173 | MarkVirtualMembersReferenced(Loc, RD: Class); |
19174 | CXXRecordDecl *Canonical = Class->getCanonicalDecl(); |
19175 | if (VTablesUsed[Canonical] && !Class->shouldEmitInExternalSource()) |
19176 | Consumer.HandleVTable(RD: Class); |
19177 | |
19178 | // Warn if we're emitting a weak vtable. The vtable will be weak if there is |
19179 | // no key function or the key function is inlined. Don't warn in C++ ABIs |
19180 | // that lack key functions, since the user won't be able to make one. |
19181 | if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() && |
19182 | Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation && |
19183 | ClassTSK != TSK_ExplicitInstantiationDefinition) { |
19184 | const FunctionDecl *KeyFunctionDef = nullptr; |
19185 | if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) && |
19186 | KeyFunctionDef->isInlined())) |
19187 | Diag(Class->getLocation(), diag::warn_weak_vtable) << Class; |
19188 | } |
19189 | } |
19190 | VTableUses.clear(); |
19191 | |
19192 | return DefinedAnything; |
19193 | } |
19194 | |
19195 | void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc, |
19196 | const CXXRecordDecl *RD) { |
19197 | for (const auto *I : RD->methods()) |
19198 | if (I->isVirtual() && !I->isPureVirtual()) |
19199 | ResolveExceptionSpec(Loc, FPT: I->getType()->castAs<FunctionProtoType>()); |
19200 | } |
19201 | |
19202 | void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, |
19203 | const CXXRecordDecl *RD, |
19204 | bool ConstexprOnly) { |
19205 | // Mark all functions which will appear in RD's vtable as used. |
19206 | CXXFinalOverriderMap FinalOverriders; |
19207 | RD->getFinalOverriders(FinaOverriders&: FinalOverriders); |
19208 | for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(), |
19209 | E = FinalOverriders.end(); |
19210 | I != E; ++I) { |
19211 | for (OverridingMethods::const_iterator OI = I->second.begin(), |
19212 | OE = I->second.end(); |
19213 | OI != OE; ++OI) { |
19214 | assert(OI->second.size() > 0 && "no final overrider"); |
19215 | CXXMethodDecl *Overrider = OI->second.front().Method; |
19216 | |
19217 | // C++ [basic.def.odr]p2: |
19218 | // [...] A virtual member function is used if it is not pure. [...] |
19219 | if (!Overrider->isPureVirtual() && |
19220 | (!ConstexprOnly || Overrider->isConstexpr())) |
19221 | MarkFunctionReferenced(Loc, Overrider); |
19222 | } |
19223 | } |
19224 | |
19225 | // Only classes that have virtual bases need a VTT. |
19226 | if (RD->getNumVBases() == 0) |
19227 | return; |
19228 | |
19229 | for (const auto &I : RD->bases()) { |
19230 | const auto *Base = |
19231 | cast<CXXRecordDecl>(Val: I.getType()->castAs<RecordType>()->getDecl()); |
19232 | if (Base->getNumVBases() == 0) |
19233 | continue; |
19234 | MarkVirtualMembersReferenced(Loc, RD: Base); |
19235 | } |
19236 | } |
19237 | |
19238 | static |
19239 | void DelegatingCycleHelper(CXXConstructorDecl* Ctor, |
19240 | llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid, |
19241 | llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid, |
19242 | llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current, |
19243 | Sema &S) { |
19244 | if (Ctor->isInvalidDecl()) |
19245 | return; |
19246 | |
19247 | CXXConstructorDecl *Target = Ctor->getTargetConstructor(); |
19248 | |
19249 | // Target may not be determinable yet, for instance if this is a dependent |
19250 | // call in an uninstantiated template. |
19251 | if (Target) { |
19252 | const FunctionDecl *FNTarget = nullptr; |
19253 | (void)Target->hasBody(FNTarget); |
19254 | Target = const_cast<CXXConstructorDecl*>( |
19255 | cast_or_null<CXXConstructorDecl>(Val: FNTarget)); |
19256 | } |
19257 | |
19258 | CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(), |
19259 | // Avoid dereferencing a null pointer here. |
19260 | *TCanonical = Target? Target->getCanonicalDecl() : nullptr; |
19261 | |
19262 | if (!Current.insert(Ptr: Canonical).second) |
19263 | return; |
19264 | |
19265 | // We know that beyond here, we aren't chaining into a cycle. |
19266 | if (!Target || !Target->isDelegatingConstructor() || |
19267 | Target->isInvalidDecl() || Valid.count(Ptr: TCanonical)) { |
19268 | Valid.insert_range(R&: Current); |
19269 | Current.clear(); |
19270 | // We've hit a cycle. |
19271 | } else if (TCanonical == Canonical || Invalid.count(Ptr: TCanonical) || |
19272 | Current.count(Ptr: TCanonical)) { |
19273 | // If we haven't diagnosed this cycle yet, do so now. |
19274 | if (!Invalid.count(Ptr: TCanonical)) { |
19275 | S.Diag((*Ctor->init_begin())->getSourceLocation(), |
19276 | diag::warn_delegating_ctor_cycle) |
19277 | << Ctor; |
19278 | |
19279 | // Don't add a note for a function delegating directly to itself. |
19280 | if (TCanonical != Canonical) |
19281 | S.Diag(Target->getLocation(), diag::note_it_delegates_to); |
19282 | |
19283 | CXXConstructorDecl *C = Target; |
19284 | while (C->getCanonicalDecl() != Canonical) { |
19285 | const FunctionDecl *FNTarget = nullptr; |
19286 | (void)C->getTargetConstructor()->hasBody(FNTarget); |
19287 | assert(FNTarget && "Ctor cycle through bodiless function"); |
19288 | |
19289 | C = const_cast<CXXConstructorDecl*>( |
19290 | cast<CXXConstructorDecl>(Val: FNTarget)); |
19291 | S.Diag(C->getLocation(), diag::note_which_delegates_to); |
19292 | } |
19293 | } |
19294 | |
19295 | Invalid.insert_range(R&: Current); |
19296 | Current.clear(); |
19297 | } else { |
19298 | DelegatingCycleHelper(Ctor: Target, Valid, Invalid, Current, S); |
19299 | } |
19300 | } |
19301 | |
19302 | |
19303 | void Sema::CheckDelegatingCtorCycles() { |
19304 | llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current; |
19305 | |
19306 | for (DelegatingCtorDeclsType::iterator |
19307 | I = DelegatingCtorDecls.begin(source: ExternalSource.get()), |
19308 | E = DelegatingCtorDecls.end(); |
19309 | I != E; ++I) |
19310 | DelegatingCycleHelper(Ctor: *I, Valid, Invalid, Current, S&: *this); |
19311 | |
19312 | for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI) |
19313 | (*CI)->setInvalidDecl(); |
19314 | } |
19315 | |
19316 | namespace { |
19317 | /// AST visitor that finds references to the 'this' expression. |
19318 | class FindCXXThisExpr : public DynamicRecursiveASTVisitor { |
19319 | Sema &S; |
19320 | |
19321 | public: |
19322 | explicit FindCXXThisExpr(Sema &S) : S(S) {} |
19323 | |
19324 | bool VisitCXXThisExpr(CXXThisExpr *E) override { |
19325 | S.Diag(E->getLocation(), diag::err_this_static_member_func) |
19326 | << E->isImplicit(); |
19327 | return false; |
19328 | } |
19329 | }; |
19330 | } |
19331 | |
19332 | bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) { |
19333 | TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); |
19334 | if (!TSInfo) |
19335 | return false; |
19336 | |
19337 | TypeLoc TL = TSInfo->getTypeLoc(); |
19338 | FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); |
19339 | if (!ProtoTL) |
19340 | return false; |
19341 | |
19342 | // C++11 [expr.prim.general]p3: |
19343 | // [The expression this] shall not appear before the optional |
19344 | // cv-qualifier-seq and it shall not appear within the declaration of a |
19345 | // static member function (although its type and value category are defined |
19346 | // within a static member function as they are within a non-static member |
19347 | // function). [ Note: this is because declaration matching does not occur |
19348 | // until the complete declarator is known. - end note ] |
19349 | const FunctionProtoType *Proto = ProtoTL.getTypePtr(); |
19350 | FindCXXThisExpr Finder(*this); |
19351 | |
19352 | // If the return type came after the cv-qualifier-seq, check it now. |
19353 | if (Proto->hasTrailingReturn() && |
19354 | !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc())) |
19355 | return true; |
19356 | |
19357 | // Check the exception specification. |
19358 | if (checkThisInStaticMemberFunctionExceptionSpec(Method)) |
19359 | return true; |
19360 | |
19361 | // Check the trailing requires clause |
19362 | if (const AssociatedConstraint &TRC = Method->getTrailingRequiresClause()) |
19363 | if (!Finder.TraverseStmt(const_cast<Expr *>(TRC.ConstraintExpr))) |
19364 | return true; |
19365 | |
19366 | return checkThisInStaticMemberFunctionAttributes(Method); |
19367 | } |
19368 | |
19369 | bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) { |
19370 | TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); |
19371 | if (!TSInfo) |
19372 | return false; |
19373 | |
19374 | TypeLoc TL = TSInfo->getTypeLoc(); |
19375 | FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); |
19376 | if (!ProtoTL) |
19377 | return false; |
19378 | |
19379 | const FunctionProtoType *Proto = ProtoTL.getTypePtr(); |
19380 | FindCXXThisExpr Finder(*this); |
19381 | |
19382 | switch (Proto->getExceptionSpecType()) { |
19383 | case EST_Unparsed: |
19384 | case EST_Uninstantiated: |
19385 | case EST_Unevaluated: |
19386 | case EST_BasicNoexcept: |
19387 | case EST_NoThrow: |
19388 | case EST_DynamicNone: |
19389 | case EST_MSAny: |
19390 | case EST_None: |
19391 | break; |
19392 | |
19393 | case EST_DependentNoexcept: |
19394 | case EST_NoexceptFalse: |
19395 | case EST_NoexceptTrue: |
19396 | if (!Finder.TraverseStmt(Proto->getNoexceptExpr())) |
19397 | return true; |
19398 | [[fallthrough]]; |
19399 | |
19400 | case EST_Dynamic: |
19401 | for (const auto &E : Proto->exceptions()) { |
19402 | if (!Finder.TraverseType(E)) |
19403 | return true; |
19404 | } |
19405 | break; |
19406 | } |
19407 | |
19408 | return false; |
19409 | } |
19410 | |
19411 | bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) { |
19412 | FindCXXThisExpr Finder(*this); |
19413 | |
19414 | // Check attributes. |
19415 | for (const auto *A : Method->attrs()) { |
19416 | // FIXME: This should be emitted by tblgen. |
19417 | Expr *Arg = nullptr; |
19418 | ArrayRef<Expr *> Args; |
19419 | if (const auto *G = dyn_cast<GuardedByAttr>(A)) |
19420 | Arg = G->getArg(); |
19421 | else if (const auto *G = dyn_cast<PtGuardedByAttr>(A)) |
19422 | Arg = G->getArg(); |
19423 | else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A)) |
19424 | Args = llvm::ArrayRef(AA->args_begin(), AA->args_size()); |
19425 | else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A)) |
19426 | Args = llvm::ArrayRef(AB->args_begin(), AB->args_size()); |
19427 | else if (const auto *LR = dyn_cast<LockReturnedAttr>(A)) |
19428 | Arg = LR->getArg(); |
19429 | else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A)) |
19430 | Args = llvm::ArrayRef(LE->args_begin(), LE->args_size()); |
19431 | else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A)) |
19432 | Args = llvm::ArrayRef(RC->args_begin(), RC->args_size()); |
19433 | else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A)) |
19434 | Args = llvm::ArrayRef(AC->args_begin(), AC->args_size()); |
19435 | else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A)) { |
19436 | Arg = AC->getSuccessValue(); |
19437 | Args = llvm::ArrayRef(AC->args_begin(), AC->args_size()); |
19438 | } else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A)) |
19439 | Args = llvm::ArrayRef(RC->args_begin(), RC->args_size()); |
19440 | |
19441 | if (Arg && !Finder.TraverseStmt(Arg)) |
19442 | return true; |
19443 | |
19444 | for (unsigned I = 0, N = Args.size(); I != N; ++I) { |
19445 | if (!Finder.TraverseStmt(Args[I])) |
19446 | return true; |
19447 | } |
19448 | } |
19449 | |
19450 | return false; |
19451 | } |
19452 | |
19453 | void Sema::checkExceptionSpecification( |
19454 | bool IsTopLevel, ExceptionSpecificationType EST, |
19455 | ArrayRef<ParsedType> DynamicExceptions, |
19456 | ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr, |
19457 | SmallVectorImpl<QualType> &Exceptions, |
19458 | FunctionProtoType::ExceptionSpecInfo &ESI) { |
19459 | Exceptions.clear(); |
19460 | ESI.Type = EST; |
19461 | if (EST == EST_Dynamic) { |
19462 | Exceptions.reserve(N: DynamicExceptions.size()); |
19463 | for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) { |
19464 | // FIXME: Preserve type source info. |
19465 | QualType ET = GetTypeFromParser(Ty: DynamicExceptions[ei]); |
19466 | |
19467 | if (IsTopLevel) { |
19468 | SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
19469 | collectUnexpandedParameterPacks(T: ET, Unexpanded); |
19470 | if (!Unexpanded.empty()) { |
19471 | DiagnoseUnexpandedParameterPacks( |
19472 | Loc: DynamicExceptionRanges[ei].getBegin(), UPPC: UPPC_ExceptionType, |
19473 | Unexpanded); |
19474 | continue; |
19475 | } |
19476 | } |
19477 | |
19478 | // Check that the type is valid for an exception spec, and |
19479 | // drop it if not. |
19480 | if (!CheckSpecifiedExceptionType(T&: ET, Range: DynamicExceptionRanges[ei])) |
19481 | Exceptions.push_back(Elt: ET); |
19482 | } |
19483 | ESI.Exceptions = Exceptions; |
19484 | return; |
19485 | } |
19486 | |
19487 | if (isComputedNoexcept(ESpecType: EST)) { |
19488 | assert((NoexceptExpr->isTypeDependent() || |
19489 | NoexceptExpr->getType()->getCanonicalTypeUnqualified() == |
19490 | Context.BoolTy) && |
19491 | "Parser should have made sure that the expression is boolean"); |
19492 | if (IsTopLevel && DiagnoseUnexpandedParameterPack(E: NoexceptExpr)) { |
19493 | ESI.Type = EST_BasicNoexcept; |
19494 | return; |
19495 | } |
19496 | |
19497 | ESI.NoexceptExpr = NoexceptExpr; |
19498 | return; |
19499 | } |
19500 | } |
19501 | |
19502 | void Sema::actOnDelayedExceptionSpecification( |
19503 | Decl *D, ExceptionSpecificationType EST, SourceRange SpecificationRange, |
19504 | ArrayRef<ParsedType> DynamicExceptions, |
19505 | ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr) { |
19506 | if (!D) |
19507 | return; |
19508 | |
19509 | // Dig out the function we're referring to. |
19510 | if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(Val: D)) |
19511 | D = FTD->getTemplatedDecl(); |
19512 | |
19513 | FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D); |
19514 | if (!FD) |
19515 | return; |
19516 | |
19517 | // Check the exception specification. |
19518 | llvm::SmallVector<QualType, 4> Exceptions; |
19519 | FunctionProtoType::ExceptionSpecInfo ESI; |
19520 | checkExceptionSpecification(/*IsTopLevel=*/true, EST, DynamicExceptions, |
19521 | DynamicExceptionRanges, NoexceptExpr, Exceptions, |
19522 | ESI); |
19523 | |
19524 | // Update the exception specification on the function type. |
19525 | Context.adjustExceptionSpec(FD, ESI, /*AsWritten=*/true); |
19526 | |
19527 | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: D)) { |
19528 | if (MD->isStatic()) |
19529 | checkThisInStaticMemberFunctionExceptionSpec(Method: MD); |
19530 | |
19531 | if (MD->isVirtual()) { |
19532 | // Check overrides, which we previously had to delay. |
19533 | for (const CXXMethodDecl *O : MD->overridden_methods()) |
19534 | CheckOverridingFunctionExceptionSpec(New: MD, Old: O); |
19535 | } |
19536 | } |
19537 | } |
19538 | |
19539 | /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class. |
19540 | /// |
19541 | MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record, |
19542 | SourceLocation DeclStart, Declarator &D, |
19543 | Expr *BitWidth, |
19544 | InClassInitStyle InitStyle, |
19545 | AccessSpecifier AS, |
19546 | const ParsedAttr &MSPropertyAttr) { |
19547 | const IdentifierInfo *II = D.getIdentifier(); |
19548 | if (!II) { |
19549 | Diag(DeclStart, diag::err_anonymous_property); |
19550 | return nullptr; |
19551 | } |
19552 | SourceLocation Loc = D.getIdentifierLoc(); |
19553 | |
19554 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D); |
19555 | QualType T = TInfo->getType(); |
19556 | if (getLangOpts().CPlusPlus) { |
19557 | CheckExtraCXXDefaultArguments(D); |
19558 | |
19559 | if (DiagnoseUnexpandedParameterPack(Loc: D.getIdentifierLoc(), T: TInfo, |
19560 | UPPC: UPPC_DataMemberType)) { |
19561 | D.setInvalidType(); |
19562 | T = Context.IntTy; |
19563 | TInfo = Context.getTrivialTypeSourceInfo(T, Loc); |
19564 | } |
19565 | } |
19566 | |
19567 | DiagnoseFunctionSpecifiers(DS: D.getDeclSpec()); |
19568 | |
19569 | if (D.getDeclSpec().isInlineSpecified()) |
19570 | Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) |
19571 | << getLangOpts().CPlusPlus17; |
19572 | if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) |
19573 | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), |
19574 | diag::err_invalid_thread) |
19575 | << DeclSpec::getSpecifierName(TSCS); |
19576 | |
19577 | // Check to see if this name was declared as a member previously |
19578 | NamedDecl *PrevDecl = nullptr; |
19579 | LookupResult Previous(*this, II, Loc, LookupMemberName, |
19580 | RedeclarationKind::ForVisibleRedeclaration); |
19581 | LookupName(R&: Previous, S); |
19582 | switch (Previous.getResultKind()) { |
19583 | case LookupResultKind::Found: |
19584 | case LookupResultKind::FoundUnresolvedValue: |
19585 | PrevDecl = Previous.getAsSingle<NamedDecl>(); |
19586 | break; |
19587 | |
19588 | case LookupResultKind::FoundOverloaded: |
19589 | PrevDecl = Previous.getRepresentativeDecl(); |
19590 | break; |
19591 | |
19592 | case LookupResultKind::NotFound: |
19593 | case LookupResultKind::NotFoundInCurrentInstantiation: |
19594 | case LookupResultKind::Ambiguous: |
19595 | break; |
19596 | } |
19597 | |
19598 | if (PrevDecl && PrevDecl->isTemplateParameter()) { |
19599 | // Maybe we will complain about the shadowed template parameter. |
19600 | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); |
19601 | // Just pretend that we didn't see the previous declaration. |
19602 | PrevDecl = nullptr; |
19603 | } |
19604 | |
19605 | if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) |
19606 | PrevDecl = nullptr; |
19607 | |
19608 | SourceLocation TSSL = D.getBeginLoc(); |
19609 | MSPropertyDecl *NewPD = |
19610 | MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL, |
19611 | MSPropertyAttr.getPropertyDataGetter(), |
19612 | MSPropertyAttr.getPropertyDataSetter()); |
19613 | ProcessDeclAttributes(TUScope, NewPD, D); |
19614 | NewPD->setAccess(AS); |
19615 | |
19616 | if (NewPD->isInvalidDecl()) |
19617 | Record->setInvalidDecl(); |
19618 | |
19619 | if (D.getDeclSpec().isModulePrivateSpecified()) |
19620 | NewPD->setModulePrivate(); |
19621 | |
19622 | if (NewPD->isInvalidDecl() && PrevDecl) { |
19623 | // Don't introduce NewFD into scope; there's already something |
19624 | // with the same name in the same scope. |
19625 | } else if (II) { |
19626 | PushOnScopeChains(NewPD, S); |
19627 | } else |
19628 | Record->addDecl(NewPD); |
19629 | |
19630 | return NewPD; |
19631 | } |
19632 | |
19633 | void Sema::ActOnStartFunctionDeclarationDeclarator( |
19634 | Declarator &Declarator, unsigned TemplateParameterDepth) { |
19635 | auto &Info = InventedParameterInfos.emplace_back(); |
19636 | TemplateParameterList *ExplicitParams = nullptr; |
19637 | ArrayRef<TemplateParameterList *> ExplicitLists = |
19638 | Declarator.getTemplateParameterLists(); |
19639 | if (!ExplicitLists.empty()) { |
19640 | bool IsMemberSpecialization, IsInvalid; |
19641 | ExplicitParams = MatchTemplateParametersToScopeSpecifier( |
19642 | DeclStartLoc: Declarator.getBeginLoc(), DeclLoc: Declarator.getIdentifierLoc(), |
19643 | SS: Declarator.getCXXScopeSpec(), /*TemplateId=*/nullptr, |
19644 | ParamLists: ExplicitLists, /*IsFriend=*/false, IsMemberSpecialization, Invalid&: IsInvalid, |
19645 | /*SuppressDiagnostic=*/true); |
19646 | } |
19647 | // C++23 [dcl.fct]p23: |
19648 | // An abbreviated function template can have a template-head. The invented |
19649 | // template-parameters are appended to the template-parameter-list after |
19650 | // the explicitly declared template-parameters. |
19651 | // |
19652 | // A template-head must have one or more template-parameters (read: |
19653 | // 'template<>' is *not* a template-head). Only append the invented |
19654 | // template parameters if we matched the nested-name-specifier to a non-empty |
19655 | // TemplateParameterList. |
19656 | if (ExplicitParams && !ExplicitParams->empty()) { |
19657 | Info.AutoTemplateParameterDepth = ExplicitParams->getDepth(); |
19658 | llvm::append_range(C&: Info.TemplateParams, R&: *ExplicitParams); |
19659 | Info.NumExplicitTemplateParams = ExplicitParams->size(); |
19660 | } else { |
19661 | Info.AutoTemplateParameterDepth = TemplateParameterDepth; |
19662 | Info.NumExplicitTemplateParams = 0; |
19663 | } |
19664 | } |
19665 | |
19666 | void Sema::ActOnFinishFunctionDeclarationDeclarator(Declarator &Declarator) { |
19667 | auto &FSI = InventedParameterInfos.back(); |
19668 | if (FSI.TemplateParams.size() > FSI.NumExplicitTemplateParams) { |
19669 | if (FSI.NumExplicitTemplateParams != 0) { |
19670 | TemplateParameterList *ExplicitParams = |
19671 | Declarator.getTemplateParameterLists().back(); |
19672 | Declarator.setInventedTemplateParameterList( |
19673 | TemplateParameterList::Create( |
19674 | C: Context, TemplateLoc: ExplicitParams->getTemplateLoc(), |
19675 | LAngleLoc: ExplicitParams->getLAngleLoc(), Params: FSI.TemplateParams, |
19676 | RAngleLoc: ExplicitParams->getRAngleLoc(), |
19677 | RequiresClause: ExplicitParams->getRequiresClause())); |
19678 | } else { |
19679 | Declarator.setInventedTemplateParameterList( |
19680 | TemplateParameterList::Create( |
19681 | C: Context, TemplateLoc: SourceLocation(), LAngleLoc: SourceLocation(), Params: FSI.TemplateParams, |
19682 | RAngleLoc: SourceLocation(), /*RequiresClause=*/nullptr)); |
19683 | } |
19684 | } |
19685 | InventedParameterInfos.pop_back(); |
19686 | } |
19687 |
Definitions
- CheckDefaultArgumentVisitor
- CheckDefaultArgumentVisitor
- VisitExpr
- VisitDeclRefExpr
- VisitCXXThisExpr
- VisitPseudoObjectExpr
- VisitLambdaExpr
- CalledDecl
- CalledStmt
- ConvertParamDefaultArgument
- SetParamDefaultArgument
- ActOnParamDefaultArgument
- ActOnParamUnparsedDefaultArgument
- ActOnParamDefaultArgumentError
- CheckExtraCXXDefaultArguments
- functionDeclHasDefaultArgument
- MergeCXXFunctionDecl
- DiagPlaceholderVariableDefinition
- ActOnDecompositionDeclarator
- CheckBindingsCount
- checkSimpleDecomposition
- checkArrayLikeDecomposition
- checkArrayDecomposition
- checkVectorDecomposition
- checkComplexDecomposition
- printTemplateArgs
- lookupStdTypeTraitMember
- getTrivialIntegralTemplateArgument
- getTrivialTypeTemplateArgument
- IsTupleLike
- isTupleLike
- getTupleLikeElementType
- InitializingBinding
- InitializingBinding
- ~InitializingBinding
- checkTupleLikeDecomposition
- findDecomposableBaseClass
- CheckMemberDecompositionFields
- checkMemberDecomposition
- CheckCompleteDecompositionDeclaration
- GetDecompositionElementCount
- MergeVarDeclExceptionSpecs
- CheckCXXDefaultArguments
- CheckLiteralType
- CheckConstexprDestructorSubobjects
- CheckConstexprParameterTypes
- CheckConstexprReturnType
- getRecordDiagFromTagKind
- CheckConstexprFunctionDefinition
- CheckConstexprDeclStmt
- CheckConstexprCtorInitializer
- CheckConstexprFunctionStmt
- CheckConstexprFunctionBody
- CheckConstexprMissingReturn
- CheckImmediateEscalatingFunctionDefinition
- DiagnoseImmediateEscalatingReason
- getCurrentClass
- isCurrentClassName
- isCurrentClassNameTypo
- CheckBaseSpecifier
- ActOnBaseSpecifier
- NoteIndirectBases
- AttachBaseSpecifiers
- ActOnBaseSpecifiers
- IsDerivedFrom
- IsDerivedFrom
- IsDerivedFrom
- IsDerivedFrom
- BuildBasePathArray
- BuildBasePathArray
- CheckDerivedToBaseConversion
- CheckDerivedToBaseConversion
- getAmbiguousPathsDisplayString
- ActOnAccessSpecifier
- CheckOverrideControl
- DiagnoseAbsenceOfOverrideControl
- CheckIfOverriddenFunctionIsMarkedFinal
- InitializationHasSideEffects
- CheckShadowInheritedFields
- HasAttribute
- IsUnusedPrivateField
- ActOnCXXMemberDeclarator
- UninitializedFieldVisitor
- UninitializedFieldVisitor
- IsInitListMemberExprInitialized
- HandleMemberExpr
- HandleValue
- CheckInitListExpr
- CheckInitializer
- VisitMemberExpr
- VisitImplicitCastExpr
- VisitCXXConstructExpr
- VisitCXXMemberCallExpr
- VisitCallExpr
- VisitCXXOperatorCallExpr
- VisitBinaryOperator
- VisitUnaryOperator
- DiagnoseUninitializedFields
- ActOnStartCXXInClassMemberInitializer
- ActOnStartTrailingRequiresClause
- ActOnFinishTrailingRequiresClause
- ActOnRequiresClause
- ConvertMemberDefaultInitExpression
- ActOnFinishCXXInClassMemberInitializer
- FindBaseInitializer
- ActOnMemInitializer
- ActOnMemInitializer
- MemInitializerValidatorCCC
- MemInitializerValidatorCCC
- ValidateCandidate
- clone
- DiagRedefinedPlaceholderFieldDecl
- tryLookupUnambiguousFieldDecl
- tryLookupCtorInitMemberDecl
- BuildMemInitializer
- BuildMemberInitializer
- BuildDelegatingInitializer
- BuildBaseInitializer
- CastForMoving
- ImplicitInitializerKind
- BuildImplicitBaseInitializer
- RefersToRValueRef
- BuildImplicitMemberInitializer
- BaseAndFieldInfo
- BaseAndFieldInfo
- isImplicitCopyOrMove
- addFieldInitializer
- isInactiveUnionMember
- isWithinInactiveUnionMember
- isIncompleteOrZeroLengthArrayType
- CollectFieldInitializer
- SetDelegatingInitializer
- LookupDestructorIfRelevant
- MarkFieldDestructorReferenced
- MarkBaseDestructorsReferenced
- SetCtorInitializers
- PopulateKeysForFields
- GetKeyForBase
- GetKeyForMember
- AddInitializerToDiag
- DiagnoseBaseOrMemInitializerOrder
- CheckRedundantInit
- CheckRedundantUnionInit
- ActOnMemInitializers
- MarkBaseAndMemberDestructorsReferenced
- MarkVirtualBaseDestructorsReferenced
- ActOnDefaultCtorInitializers
- isAbstractType
- RequireNonAbstractType
- DiagnoseAbstractType
- AbstractUsageInfo
- AbstractUsageInfo
- DiagnoseAbstractType
- CheckAbstractUsage
- CheckAbstractUsage
- Visit
- Check
- Check
- Check
- Check
- Check
- Check
- Check
- Check
- Check
- CheckType
- CheckAbstractClassUsage
- CheckAbstractClassUsage
- CheckAbstractClassUsage
- ReferenceDllExportedMembers
- checkForMultipleExportedDefaultConstructors
- checkCUDADeviceBuiltinSurfaceClassTemplate
- checkCUDADeviceBuiltinTextureClassTemplate
- checkClassLevelCodeSegAttribute
- checkClassLevelDLLAttribute
- propagateDLLAttrToBaseClassTemplate
- getDefaultedFunctionKind
- DefineDefaultedFunction
- canPassInRegisters
- ReportOverrides
- CheckCompletedCXXClass
- lookupCallFromSpecialMember
- InheritedConstructorInfo
- InheritedConstructorInfo
- findConstructorForBase
- specialMemberIsConstexpr
- defaultedSpecialMemberIsConstexpr
- ComputingExceptionSpec
- ComputingExceptionSpec
- ~ComputingExceptionSpec
- computeImplicitExceptionSpec
- getImplicitMethodEPI
- EvaluateImplicitExceptionSpec
- CheckExplicitlyDefaultedFunction
- CheckExplicitlyDefaultedSpecialMember
- DefaultedComparisonVisitor
- DefaultedComparisonVisitor
- visit
- getDerived
- visitSubobjects
- visitSubobject
- visitSubobjectArray
- DefaultedComparisonInfo
- deleted
- add
- DefaultedComparisonSubobject
- DefaultedComparisonAnalyzer
- DiagnosticKind
- DefaultedComparisonAnalyzer
- visit
- getCompleteObject
- getBase
- getField
- visitExpandedSubobject
- visitBinaryOperator
- StmtListResult
- add
- DefaultedComparisonSynthesizer
- DefaultedComparisonSynthesizer
- build
- getDecl
- getParam
- getCompleteObject
- getBase
- getField
- buildIfNotCondReturnFalse
- visitSubobjectArray
- visitExpandedSubobject
- buildStaticCastToR
- lookupOperatorsForDefaultedComparison
- CheckExplicitlyDefaultedComparison
- DeclareImplicitEqualityComparison
- DefineDefaultedComparison
- ComputeDefaultedComparisonExceptionSpec
- CheckDelayedMemberExceptionSpecs
- SpecialMemberVisitor
- SpecialMemberVisitor
- getDerived
- isMove
- lookupIn
- lookupInheritedCtor
- getSubobjectLoc
- BasesToVisit
- visit
- SpecialMemberDeletionInfo
- SpecialMemberDeletionInfo
- inUnion
- getEffectiveCSM
- visitBase
- visitField
- isAccessible
- shouldDeleteForSubobjectCall
- shouldDeleteForClassSubobject
- shouldDeleteForVariantObjCPtrMember
- shouldDeleteForVariantPtrAuthMember
- shouldDeleteForBase
- shouldDeleteForField
- shouldDeleteForAllConstMembers
- ShouldDeleteSpecialMember
- DiagnoseDeletedDefaultedFunction
- findTrivialSpecialMember
- findUserDeclaredCtor
- TrivialSubobjectKind
- checkTrivialSubobjectCall
- checkTrivialClassMembers
- DiagnoseNontrivial
- SpecialMemberIsTrivial
- FindHiddenVirtualMethod
- CheckMostOverridenMethods
- operator()
- AddMostOverridenMethods
- FindHiddenVirtualMethods
- NoteHiddenVirtualMethods
- DiagnoseHiddenVirtualMethods
- checkIllFormedTrivialABIStruct
- checkIncorrectVTablePointerAuthenticationAttribute
- ActOnFinishCXXMemberSpecification
- findImplicitlyDeclaredEqualityComparisons
- AddImplicitlyDeclaredMembersToClass
- ActOnReenterTemplateScope
- ActOnStartDelayedMemberDeclarations
- ActOnFinishDelayedMemberDeclarations
- ActOnReenterCXXMethodParameter
- ActOnStartDelayedCXXMethodDeclaration
- ActOnDelayedCXXMethodParameter
- ActOnFinishDelayedCXXMethodDeclaration
- checkMethodTypeQualifiers
- diagnoseInvalidDeclaratorChunks
- CheckConstructorDeclarator
- CheckConstructor
- CheckDestructor
- CheckDestructorDeclarator
- extendLeft
- extendRight
- CheckConversionDeclarator
- ActOnConversionDeclarator
- CheckExplicitObjectMemberFunction
- CheckExplicitObjectLambda
- CheckExplicitObjectMemberFunction
- BadSpecifierDiagnoser
- BadSpecifierDiagnoser
- ~BadSpecifierDiagnoser
- check
- check
- check
- CheckDeductionGuideDeclarator
- DiagnoseNamespaceInlineMismatch
- ActOnStartNamespaceDef
- getNamespaceDecl
- ActOnFinishNamespaceDef
- getStdBadAlloc
- getStdAlignValT
- getStdNamespace
- UnsupportedSTLSelect
- InvalidSTLDiagnoser
- operator()
- CheckComparisonCategoryType
- getOrCreateStdNamespace
- isStdClassTemplate
- isStdInitializerList
- isStdTypeIdentity
- LookupStdClassTemplate
- BuildStdClassTemplate
- BuildStdInitializerList
- tryBuildStdTypeIdentity
- isInitListConstructor
- IsUsingDirectiveInToplevelContext
- NamespaceValidatorCCC
- ValidateCandidate
- clone
- DiagnoseInvisibleNamespace
- TryNamespaceTypoCorrection
- ActOnUsingDirective
- PushUsingDirective
- ActOnUsingDeclaration
- ActOnUsingEnumDeclaration
- IsEquivalentForUsingDecl
- CheckUsingShadowDecl
- isVirtualDirectBase
- BuildUsingShadowDecl
- HideUsingShadowDecl
- findDirectBaseWithType
- UsingValidatorCCC
- UsingValidatorCCC
- ValidateCandidate
- clone
- FilterUsingLookup
- BuildUsingDeclaration
- BuildUsingEnumDeclaration
- BuildUsingPackDecl
- CheckInheritingConstructorUsingDecl
- CheckUsingDeclRedeclaration
- CheckUsingDeclQualifier
- ActOnAliasDeclaration
- ActOnNamespaceAliasDef
- SpecialMemberExceptionSpecInfo
- SpecialMemberExceptionSpecInfo
- visitBase
- visitField
- visitClassSubobject
- visitSubobjectCall
- tryResolveExplicitSpecifier
- ActOnExplicitBoolSpecifier
- ComputeDefaultedSpecialMemberExceptionSpec
- DeclaringSpecialMember
- DeclaringSpecialMember
- ~DeclaringSpecialMember
- isAlreadyBeingDeclared
- CheckImplicitSpecialMemberDeclaration
- setupImplicitSpecialMemberType
- DeclareImplicitDefaultConstructor
- DefineImplicitDefaultConstructor
- ActOnFinishDelayedMemberInitializers
- findInheritingConstructor
- NoteDeletedInheritingConstructor
- DefineInheritingConstructor
- DeclareImplicitDestructor
- DefineImplicitDestructor
- CheckCompleteDestructorVariant
- ActOnFinishCXXMemberDecls
- ActOnFinishCXXNonNestedClass
- referenceDLLExportedClassMethods
- AdjustDestructorExceptionSpec
- ExprBuilder
- ExprBuilder
- operator=
- assertNotNull
- ExprBuilder
- ~ExprBuilder
- RefBuilder
- build
- RefBuilder
- ThisBuilder
- build
- CastBuilder
- build
- CastBuilder
- DerefBuilder
- build
- DerefBuilder
- MemberBuilder
- build
- MemberBuilder
- MoveCastBuilder
- build
- MoveCastBuilder
- LvalueConvBuilder
- build
- LvalueConvBuilder
- SubscriptBuilder
- build
- SubscriptBuilder
- buildMemcpyForAssignmentOp
- buildSingleCopyAssignRecursively
- buildSingleCopyAssign
- DeclareImplicitCopyAssignment
- diagnoseDeprecatedCopyOperation
- DefineImplicitCopyAssignment
- DeclareImplicitMoveAssignment
- checkMoveAssignmentForRepeatedMove
- DefineImplicitMoveAssignment
- DeclareImplicitCopyConstructor
- DefineImplicitCopyConstructor
- DeclareImplicitMoveConstructor
- DefineImplicitMoveConstructor
- isImplicitlyDeleted
- DefineImplicitLambdaToFunctionPointerConversion
- DefineImplicitLambdaToBlockPointerConversion
- hasOneRealArgument
- BuildCXXConstructExpr
- BuildCXXConstructExpr
- BuildCXXConstructExpr
- FinalizeVarWithDestructor
- CompleteConstructorCall
- ShouldUseTypeAwareOperatorNewOrDelete
- BuildTypeAwareUsualDelete
- CheckOperatorNewDeleteDeclarationScope
- RemoveAddressSpaceFromPtr
- AllocationOperatorKind
- IsPotentiallyTypeAwareOperatorNewOrDelete
- isDestroyingDeleteT
- IsPotentiallyDestroyingOperatorDelete
- CheckOperatorNewDeleteTypes
- CheckOperatorNewDeclaration
- CheckOperatorDeleteDeclaration
- CheckOverloadedOperatorDeclaration
- checkLiteralOperatorTemplateParameterList
- CheckLiteralOperatorDeclaration
- ActOnStartLinkageSpecification
- ActOnFinishLinkageSpecification
- ActOnEmptyDeclaration
- BuildExceptionDeclaration
- ActOnExceptionDeclarator
- ActOnStaticAssertDeclaration
- WriteCharTypePrefix
- WriteCharValueForDiagnostic
- ConvertAPValueToString
- UsefulToPrintExpr
- DiagnoseStaticAssertDetails
- EvaluateAsStringImpl
- EvaluateAsString
- EvaluateAsString
- BuildStaticAssertDeclaration
- ActOnTemplatedFriendTag
- ActOnFriendTypeDecl
- ActOnFriendFunctionDecl
- SetDeclDeleted
- SetDeclDefaulted
- SearchForReturnInStmt
- DiagnoseReturnInConstructorExceptionHandler
- SetFunctionBodyKind
- CheckOverridingFunctionAttributes
- CheckExplicitObjectOverride
- CheckOverridingFunctionReturnType
- CheckPureMethod
- ActOnPureSpecifier
- ActOnCXXEnterDeclInitializer
- ActOnCXXExitDeclInitializer
- ActOnCXXConditionDeclaration
- LoadExternalVTableUses
- MarkVTableUsed
- DefineUsedVTables
- MarkVirtualMemberExceptionSpecsNeeded
- MarkVirtualMembersReferenced
- DelegatingCycleHelper
- CheckDelegatingCtorCycles
- FindCXXThisExpr
- FindCXXThisExpr
- VisitCXXThisExpr
- checkThisInStaticMemberFunctionType
- checkThisInStaticMemberFunctionExceptionSpec
- checkThisInStaticMemberFunctionAttributes
- checkExceptionSpecification
- actOnDelayedExceptionSpecification
- HandleMSProperty
- ActOnStartFunctionDeclarationDeclarator
Learn to use CMake with our Intro Training
Find out more