| 1 | //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // |
| 9 | // This file implements semantic analysis for C++ declarations. |
| 10 | // |
| 11 | //===----------------------------------------------------------------------===// |
| 12 | |
| 13 | #include "clang/AST/ASTConsumer.h" |
| 14 | #include "clang/AST/ASTContext.h" |
| 15 | #include "clang/AST/ASTMutationListener.h" |
| 16 | #include "clang/AST/CXXInheritance.h" |
| 17 | #include "clang/AST/CharUnits.h" |
| 18 | #include "clang/AST/ComparisonCategories.h" |
| 19 | #include "clang/AST/DeclCXX.h" |
| 20 | #include "clang/AST/DeclTemplate.h" |
| 21 | #include "clang/AST/DynamicRecursiveASTVisitor.h" |
| 22 | #include "clang/AST/EvaluatedExprVisitor.h" |
| 23 | #include "clang/AST/Expr.h" |
| 24 | #include "clang/AST/ExprCXX.h" |
| 25 | #include "clang/AST/RecordLayout.h" |
| 26 | #include "clang/AST/StmtVisitor.h" |
| 27 | #include "clang/AST/TypeLoc.h" |
| 28 | #include "clang/AST/TypeOrdering.h" |
| 29 | #include "clang/Basic/AttributeCommonInfo.h" |
| 30 | #include "clang/Basic/PartialDiagnostic.h" |
| 31 | #include "clang/Basic/Specifiers.h" |
| 32 | #include "clang/Basic/TargetInfo.h" |
| 33 | #include "clang/Lex/LiteralSupport.h" |
| 34 | #include "clang/Lex/Preprocessor.h" |
| 35 | #include "clang/Sema/CXXFieldCollector.h" |
| 36 | #include "clang/Sema/DeclSpec.h" |
| 37 | #include "clang/Sema/EnterExpressionEvaluationContext.h" |
| 38 | #include "clang/Sema/Initialization.h" |
| 39 | #include "clang/Sema/Lookup.h" |
| 40 | #include "clang/Sema/Ownership.h" |
| 41 | #include "clang/Sema/ParsedTemplate.h" |
| 42 | #include "clang/Sema/Scope.h" |
| 43 | #include "clang/Sema/ScopeInfo.h" |
| 44 | #include "clang/Sema/SemaCUDA.h" |
| 45 | #include "clang/Sema/SemaInternal.h" |
| 46 | #include "clang/Sema/SemaObjC.h" |
| 47 | #include "clang/Sema/SemaOpenMP.h" |
| 48 | #include "clang/Sema/Template.h" |
| 49 | #include "clang/Sema/TemplateDeduction.h" |
| 50 | #include "llvm/ADT/ArrayRef.h" |
| 51 | #include "llvm/ADT/STLExtras.h" |
| 52 | #include "llvm/ADT/StringExtras.h" |
| 53 | #include "llvm/Support/ConvertUTF.h" |
| 54 | #include "llvm/Support/SaveAndRestore.h" |
| 55 | #include <map> |
| 56 | #include <optional> |
| 57 | #include <set> |
| 58 | |
| 59 | using namespace clang; |
| 60 | |
| 61 | //===----------------------------------------------------------------------===// |
| 62 | // CheckDefaultArgumentVisitor |
| 63 | //===----------------------------------------------------------------------===// |
| 64 | |
| 65 | namespace { |
| 66 | /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses |
| 67 | /// the default argument of a parameter to determine whether it |
| 68 | /// contains any ill-formed subexpressions. For example, this will |
| 69 | /// diagnose the use of local variables or parameters within the |
| 70 | /// default argument expression. |
| 71 | class CheckDefaultArgumentVisitor |
| 72 | : public ConstStmtVisitor<CheckDefaultArgumentVisitor, bool> { |
| 73 | Sema &S; |
| 74 | const Expr *DefaultArg; |
| 75 | |
| 76 | public: |
| 77 | CheckDefaultArgumentVisitor(Sema &S, const Expr *DefaultArg) |
| 78 | : S(S), DefaultArg(DefaultArg) {} |
| 79 | |
| 80 | bool VisitExpr(const Expr *Node); |
| 81 | bool VisitDeclRefExpr(const DeclRefExpr *DRE); |
| 82 | bool VisitCXXThisExpr(const CXXThisExpr *ThisE); |
| 83 | bool VisitLambdaExpr(const LambdaExpr *Lambda); |
| 84 | bool VisitPseudoObjectExpr(const PseudoObjectExpr *POE); |
| 85 | }; |
| 86 | |
| 87 | /// VisitExpr - Visit all of the children of this expression. |
| 88 | bool CheckDefaultArgumentVisitor::VisitExpr(const Expr *Node) { |
| 89 | bool IsInvalid = false; |
| 90 | for (const Stmt *SubStmt : Node->children()) |
| 91 | if (SubStmt) |
| 92 | IsInvalid |= Visit(SubStmt); |
| 93 | return IsInvalid; |
| 94 | } |
| 95 | |
| 96 | /// VisitDeclRefExpr - Visit a reference to a declaration, to |
| 97 | /// determine whether this declaration can be used in the default |
| 98 | /// argument expression. |
| 99 | bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(const DeclRefExpr *DRE) { |
| 100 | const ValueDecl *Decl = dyn_cast<ValueDecl>(Val: DRE->getDecl()); |
| 101 | |
| 102 | if (!isa<VarDecl, BindingDecl>(Val: Decl)) |
| 103 | return false; |
| 104 | |
| 105 | if (const auto *Param = dyn_cast<ParmVarDecl>(Val: Decl)) { |
| 106 | // C++ [dcl.fct.default]p9: |
| 107 | // [...] parameters of a function shall not be used in default |
| 108 | // argument expressions, even if they are not evaluated. [...] |
| 109 | // |
| 110 | // C++17 [dcl.fct.default]p9 (by CWG 2082): |
| 111 | // [...] A parameter shall not appear as a potentially-evaluated |
| 112 | // expression in a default argument. [...] |
| 113 | // |
| 114 | if (DRE->isNonOdrUse() != NOUR_Unevaluated) |
| 115 | return S.Diag(DRE->getBeginLoc(), |
| 116 | diag::err_param_default_argument_references_param) |
| 117 | << Param->getDeclName() << DefaultArg->getSourceRange(); |
| 118 | } else if (auto *VD = Decl->getPotentiallyDecomposedVarDecl()) { |
| 119 | // C++ [dcl.fct.default]p7: |
| 120 | // Local variables shall not be used in default argument |
| 121 | // expressions. |
| 122 | // |
| 123 | // C++17 [dcl.fct.default]p7 (by CWG 2082): |
| 124 | // A local variable shall not appear as a potentially-evaluated |
| 125 | // expression in a default argument. |
| 126 | // |
| 127 | // C++20 [dcl.fct.default]p7 (DR as part of P0588R1, see also CWG 2346): |
| 128 | // Note: A local variable cannot be odr-used (6.3) in a default |
| 129 | // argument. |
| 130 | // |
| 131 | if (VD->isLocalVarDecl() && !DRE->isNonOdrUse()) |
| 132 | return S.Diag(DRE->getBeginLoc(), |
| 133 | diag::err_param_default_argument_references_local) |
| 134 | << Decl << DefaultArg->getSourceRange(); |
| 135 | } |
| 136 | return false; |
| 137 | } |
| 138 | |
| 139 | /// VisitCXXThisExpr - Visit a C++ "this" expression. |
| 140 | bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(const CXXThisExpr *ThisE) { |
| 141 | // C++ [dcl.fct.default]p8: |
| 142 | // The keyword this shall not be used in a default argument of a |
| 143 | // member function. |
| 144 | return S.Diag(ThisE->getBeginLoc(), |
| 145 | diag::err_param_default_argument_references_this) |
| 146 | << ThisE->getSourceRange(); |
| 147 | } |
| 148 | |
| 149 | bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr( |
| 150 | const PseudoObjectExpr *POE) { |
| 151 | bool Invalid = false; |
| 152 | for (const Expr *E : POE->semantics()) { |
| 153 | // Look through bindings. |
| 154 | if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Val: E)) { |
| 155 | E = OVE->getSourceExpr(); |
| 156 | assert(E && "pseudo-object binding without source expression?" ); |
| 157 | } |
| 158 | |
| 159 | Invalid |= Visit(E); |
| 160 | } |
| 161 | return Invalid; |
| 162 | } |
| 163 | |
| 164 | bool CheckDefaultArgumentVisitor::VisitLambdaExpr(const LambdaExpr *Lambda) { |
| 165 | // [expr.prim.lambda.capture]p9 |
| 166 | // a lambda-expression appearing in a default argument cannot implicitly or |
| 167 | // explicitly capture any local entity. Such a lambda-expression can still |
| 168 | // have an init-capture if any full-expression in its initializer satisfies |
| 169 | // the constraints of an expression appearing in a default argument. |
| 170 | bool Invalid = false; |
| 171 | for (const LambdaCapture &LC : Lambda->captures()) { |
| 172 | if (!Lambda->isInitCapture(&LC)) |
| 173 | return S.Diag(LC.getLocation(), diag::err_lambda_capture_default_arg); |
| 174 | // Init captures are always VarDecl. |
| 175 | auto *D = cast<VarDecl>(Val: LC.getCapturedVar()); |
| 176 | Invalid |= Visit(D->getInit()); |
| 177 | } |
| 178 | return Invalid; |
| 179 | } |
| 180 | } // namespace |
| 181 | |
| 182 | void |
| 183 | Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc, |
| 184 | const CXXMethodDecl *Method) { |
| 185 | // If we have an MSAny spec already, don't bother. |
| 186 | if (!Method || ComputedEST == EST_MSAny) |
| 187 | return; |
| 188 | |
| 189 | const FunctionProtoType *Proto |
| 190 | = Method->getType()->getAs<FunctionProtoType>(); |
| 191 | Proto = Self->ResolveExceptionSpec(Loc: CallLoc, FPT: Proto); |
| 192 | if (!Proto) |
| 193 | return; |
| 194 | |
| 195 | ExceptionSpecificationType EST = Proto->getExceptionSpecType(); |
| 196 | |
| 197 | // If we have a throw-all spec at this point, ignore the function. |
| 198 | if (ComputedEST == EST_None) |
| 199 | return; |
| 200 | |
| 201 | if (EST == EST_None && Method->hasAttr<NoThrowAttr>()) |
| 202 | EST = EST_BasicNoexcept; |
| 203 | |
| 204 | switch (EST) { |
| 205 | case EST_Unparsed: |
| 206 | case EST_Uninstantiated: |
| 207 | case EST_Unevaluated: |
| 208 | llvm_unreachable("should not see unresolved exception specs here" ); |
| 209 | |
| 210 | // If this function can throw any exceptions, make a note of that. |
| 211 | case EST_MSAny: |
| 212 | case EST_None: |
| 213 | // FIXME: Whichever we see last of MSAny and None determines our result. |
| 214 | // We should make a consistent, order-independent choice here. |
| 215 | ClearExceptions(); |
| 216 | ComputedEST = EST; |
| 217 | return; |
| 218 | case EST_NoexceptFalse: |
| 219 | ClearExceptions(); |
| 220 | ComputedEST = EST_None; |
| 221 | return; |
| 222 | // FIXME: If the call to this decl is using any of its default arguments, we |
| 223 | // need to search them for potentially-throwing calls. |
| 224 | // If this function has a basic noexcept, it doesn't affect the outcome. |
| 225 | case EST_BasicNoexcept: |
| 226 | case EST_NoexceptTrue: |
| 227 | case EST_NoThrow: |
| 228 | return; |
| 229 | // If we're still at noexcept(true) and there's a throw() callee, |
| 230 | // change to that specification. |
| 231 | case EST_DynamicNone: |
| 232 | if (ComputedEST == EST_BasicNoexcept) |
| 233 | ComputedEST = EST_DynamicNone; |
| 234 | return; |
| 235 | case EST_DependentNoexcept: |
| 236 | llvm_unreachable( |
| 237 | "should not generate implicit declarations for dependent cases" ); |
| 238 | case EST_Dynamic: |
| 239 | break; |
| 240 | } |
| 241 | assert(EST == EST_Dynamic && "EST case not considered earlier." ); |
| 242 | assert(ComputedEST != EST_None && |
| 243 | "Shouldn't collect exceptions when throw-all is guaranteed." ); |
| 244 | ComputedEST = EST_Dynamic; |
| 245 | // Record the exceptions in this function's exception specification. |
| 246 | for (const auto &E : Proto->exceptions()) |
| 247 | if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second) |
| 248 | Exceptions.push_back(E); |
| 249 | } |
| 250 | |
| 251 | void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) { |
| 252 | if (!S || ComputedEST == EST_MSAny) |
| 253 | return; |
| 254 | |
| 255 | // FIXME: |
| 256 | // |
| 257 | // C++0x [except.spec]p14: |
| 258 | // [An] implicit exception-specification specifies the type-id T if and |
| 259 | // only if T is allowed by the exception-specification of a function directly |
| 260 | // invoked by f's implicit definition; f shall allow all exceptions if any |
| 261 | // function it directly invokes allows all exceptions, and f shall allow no |
| 262 | // exceptions if every function it directly invokes allows no exceptions. |
| 263 | // |
| 264 | // Note in particular that if an implicit exception-specification is generated |
| 265 | // for a function containing a throw-expression, that specification can still |
| 266 | // be noexcept(true). |
| 267 | // |
| 268 | // Note also that 'directly invoked' is not defined in the standard, and there |
| 269 | // is no indication that we should only consider potentially-evaluated calls. |
| 270 | // |
| 271 | // Ultimately we should implement the intent of the standard: the exception |
| 272 | // specification should be the set of exceptions which can be thrown by the |
| 273 | // implicit definition. For now, we assume that any non-nothrow expression can |
| 274 | // throw any exception. |
| 275 | |
| 276 | if (Self->canThrow(E: S)) |
| 277 | ComputedEST = EST_None; |
| 278 | } |
| 279 | |
| 280 | ExprResult Sema::ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, |
| 281 | SourceLocation EqualLoc) { |
| 282 | if (RequireCompleteType(Param->getLocation(), Param->getType(), |
| 283 | diag::err_typecheck_decl_incomplete_type)) |
| 284 | return true; |
| 285 | |
| 286 | // C++ [dcl.fct.default]p5 |
| 287 | // A default argument expression is implicitly converted (clause |
| 288 | // 4) to the parameter type. The default argument expression has |
| 289 | // the same semantic constraints as the initializer expression in |
| 290 | // a declaration of a variable of the parameter type, using the |
| 291 | // copy-initialization semantics (8.5). |
| 292 | InitializedEntity Entity = InitializedEntity::InitializeParameter(Context, |
| 293 | Parm: Param); |
| 294 | InitializationKind Kind = InitializationKind::CreateCopy(InitLoc: Param->getLocation(), |
| 295 | EqualLoc); |
| 296 | InitializationSequence InitSeq(*this, Entity, Kind, Arg); |
| 297 | ExprResult Result = InitSeq.Perform(S&: *this, Entity, Kind, Args: Arg); |
| 298 | if (Result.isInvalid()) |
| 299 | return true; |
| 300 | Arg = Result.getAs<Expr>(); |
| 301 | |
| 302 | CheckCompletedExpr(E: Arg, CheckLoc: EqualLoc); |
| 303 | Arg = MaybeCreateExprWithCleanups(SubExpr: Arg); |
| 304 | |
| 305 | return Arg; |
| 306 | } |
| 307 | |
| 308 | void Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg, |
| 309 | SourceLocation EqualLoc) { |
| 310 | // Add the default argument to the parameter |
| 311 | Param->setDefaultArg(Arg); |
| 312 | |
| 313 | // We have already instantiated this parameter; provide each of the |
| 314 | // instantiations with the uninstantiated default argument. |
| 315 | UnparsedDefaultArgInstantiationsMap::iterator InstPos |
| 316 | = UnparsedDefaultArgInstantiations.find(Val: Param); |
| 317 | if (InstPos != UnparsedDefaultArgInstantiations.end()) { |
| 318 | for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I) |
| 319 | InstPos->second[I]->setUninstantiatedDefaultArg(Arg); |
| 320 | |
| 321 | // We're done tracking this parameter's instantiations. |
| 322 | UnparsedDefaultArgInstantiations.erase(I: InstPos); |
| 323 | } |
| 324 | } |
| 325 | |
| 326 | void |
| 327 | Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc, |
| 328 | Expr *DefaultArg) { |
| 329 | if (!param || !DefaultArg) |
| 330 | return; |
| 331 | |
| 332 | ParmVarDecl *Param = cast<ParmVarDecl>(Val: param); |
| 333 | UnparsedDefaultArgLocs.erase(Val: Param); |
| 334 | |
| 335 | // Default arguments are only permitted in C++ |
| 336 | if (!getLangOpts().CPlusPlus) { |
| 337 | Diag(EqualLoc, diag::err_param_default_argument) |
| 338 | << DefaultArg->getSourceRange(); |
| 339 | return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg); |
| 340 | } |
| 341 | |
| 342 | // Check for unexpanded parameter packs. |
| 343 | if (DiagnoseUnexpandedParameterPack(E: DefaultArg, UPPC: UPPC_DefaultArgument)) |
| 344 | return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg); |
| 345 | |
| 346 | // C++11 [dcl.fct.default]p3 |
| 347 | // A default argument expression [...] shall not be specified for a |
| 348 | // parameter pack. |
| 349 | if (Param->isParameterPack()) { |
| 350 | Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack) |
| 351 | << DefaultArg->getSourceRange(); |
| 352 | // Recover by discarding the default argument. |
| 353 | Param->setDefaultArg(nullptr); |
| 354 | return; |
| 355 | } |
| 356 | |
| 357 | ExprResult Result = ConvertParamDefaultArgument(Param, Arg: DefaultArg, EqualLoc); |
| 358 | if (Result.isInvalid()) |
| 359 | return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg); |
| 360 | |
| 361 | DefaultArg = Result.getAs<Expr>(); |
| 362 | |
| 363 | // Check that the default argument is well-formed |
| 364 | CheckDefaultArgumentVisitor DefaultArgChecker(*this, DefaultArg); |
| 365 | if (DefaultArgChecker.Visit(DefaultArg)) |
| 366 | return ActOnParamDefaultArgumentError(param, EqualLoc, DefaultArg); |
| 367 | |
| 368 | SetParamDefaultArgument(Param, Arg: DefaultArg, EqualLoc); |
| 369 | } |
| 370 | |
| 371 | void Sema::ActOnParamUnparsedDefaultArgument(Decl *param, |
| 372 | SourceLocation EqualLoc, |
| 373 | SourceLocation ArgLoc) { |
| 374 | if (!param) |
| 375 | return; |
| 376 | |
| 377 | ParmVarDecl *Param = cast<ParmVarDecl>(Val: param); |
| 378 | Param->setUnparsedDefaultArg(); |
| 379 | UnparsedDefaultArgLocs[Param] = ArgLoc; |
| 380 | } |
| 381 | |
| 382 | void Sema::ActOnParamDefaultArgumentError(Decl *param, SourceLocation EqualLoc, |
| 383 | Expr *DefaultArg) { |
| 384 | if (!param) |
| 385 | return; |
| 386 | |
| 387 | ParmVarDecl *Param = cast<ParmVarDecl>(Val: param); |
| 388 | Param->setInvalidDecl(); |
| 389 | UnparsedDefaultArgLocs.erase(Val: Param); |
| 390 | ExprResult RE; |
| 391 | if (DefaultArg) { |
| 392 | RE = CreateRecoveryExpr(Begin: EqualLoc, End: DefaultArg->getEndLoc(), SubExprs: {DefaultArg}, |
| 393 | T: Param->getType().getNonReferenceType()); |
| 394 | } else { |
| 395 | RE = CreateRecoveryExpr(Begin: EqualLoc, End: EqualLoc, SubExprs: {}, |
| 396 | T: Param->getType().getNonReferenceType()); |
| 397 | } |
| 398 | Param->setDefaultArg(RE.get()); |
| 399 | } |
| 400 | |
| 401 | void Sema::(Declarator &D) { |
| 402 | // C++ [dcl.fct.default]p3 |
| 403 | // A default argument expression shall be specified only in the |
| 404 | // parameter-declaration-clause of a function declaration or in a |
| 405 | // template-parameter (14.1). It shall not be specified for a |
| 406 | // parameter pack. If it is specified in a |
| 407 | // parameter-declaration-clause, it shall not occur within a |
| 408 | // declarator or abstract-declarator of a parameter-declaration. |
| 409 | bool MightBeFunction = D.isFunctionDeclarationContext(); |
| 410 | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { |
| 411 | DeclaratorChunk &chunk = D.getTypeObject(i); |
| 412 | if (chunk.Kind == DeclaratorChunk::Function) { |
| 413 | if (MightBeFunction) { |
| 414 | // This is a function declaration. It can have default arguments, but |
| 415 | // keep looking in case its return type is a function type with default |
| 416 | // arguments. |
| 417 | MightBeFunction = false; |
| 418 | continue; |
| 419 | } |
| 420 | for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e; |
| 421 | ++argIdx) { |
| 422 | ParmVarDecl *Param = cast<ParmVarDecl>(Val: chunk.Fun.Params[argIdx].Param); |
| 423 | if (Param->hasUnparsedDefaultArg()) { |
| 424 | std::unique_ptr<CachedTokens> Toks = |
| 425 | std::move(chunk.Fun.Params[argIdx].DefaultArgTokens); |
| 426 | SourceRange SR; |
| 427 | if (Toks->size() > 1) |
| 428 | SR = SourceRange((*Toks)[1].getLocation(), |
| 429 | Toks->back().getLocation()); |
| 430 | else |
| 431 | SR = UnparsedDefaultArgLocs[Param]; |
| 432 | Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) |
| 433 | << SR; |
| 434 | } else if (Param->getDefaultArg()) { |
| 435 | Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) |
| 436 | << Param->getDefaultArg()->getSourceRange(); |
| 437 | Param->setDefaultArg(nullptr); |
| 438 | } |
| 439 | } |
| 440 | } else if (chunk.Kind != DeclaratorChunk::Paren) { |
| 441 | MightBeFunction = false; |
| 442 | } |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) { |
| 447 | return llvm::any_of(Range: FD->parameters(), P: [](ParmVarDecl *P) { |
| 448 | return P->hasDefaultArg() && !P->hasInheritedDefaultArg(); |
| 449 | }); |
| 450 | } |
| 451 | |
| 452 | bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old, |
| 453 | Scope *S) { |
| 454 | bool Invalid = false; |
| 455 | |
| 456 | // The declaration context corresponding to the scope is the semantic |
| 457 | // parent, unless this is a local function declaration, in which case |
| 458 | // it is that surrounding function. |
| 459 | DeclContext *ScopeDC = New->isLocalExternDecl() |
| 460 | ? New->getLexicalDeclContext() |
| 461 | : New->getDeclContext(); |
| 462 | |
| 463 | // Find the previous declaration for the purpose of default arguments. |
| 464 | FunctionDecl *PrevForDefaultArgs = Old; |
| 465 | for (/**/; PrevForDefaultArgs; |
| 466 | // Don't bother looking back past the latest decl if this is a local |
| 467 | // extern declaration; nothing else could work. |
| 468 | PrevForDefaultArgs = New->isLocalExternDecl() |
| 469 | ? nullptr |
| 470 | : PrevForDefaultArgs->getPreviousDecl()) { |
| 471 | // Ignore hidden declarations. |
| 472 | if (!LookupResult::isVisible(*this, PrevForDefaultArgs)) |
| 473 | continue; |
| 474 | |
| 475 | if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) && |
| 476 | !New->isCXXClassMember()) { |
| 477 | // Ignore default arguments of old decl if they are not in |
| 478 | // the same scope and this is not an out-of-line definition of |
| 479 | // a member function. |
| 480 | continue; |
| 481 | } |
| 482 | |
| 483 | if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) { |
| 484 | // If only one of these is a local function declaration, then they are |
| 485 | // declared in different scopes, even though isDeclInScope may think |
| 486 | // they're in the same scope. (If both are local, the scope check is |
| 487 | // sufficient, and if neither is local, then they are in the same scope.) |
| 488 | continue; |
| 489 | } |
| 490 | |
| 491 | // We found the right previous declaration. |
| 492 | break; |
| 493 | } |
| 494 | |
| 495 | // C++ [dcl.fct.default]p4: |
| 496 | // For non-template functions, default arguments can be added in |
| 497 | // later declarations of a function in the same |
| 498 | // scope. Declarations in different scopes have completely |
| 499 | // distinct sets of default arguments. That is, declarations in |
| 500 | // inner scopes do not acquire default arguments from |
| 501 | // declarations in outer scopes, and vice versa. In a given |
| 502 | // function declaration, all parameters subsequent to a |
| 503 | // parameter with a default argument shall have default |
| 504 | // arguments supplied in this or previous declarations. A |
| 505 | // default argument shall not be redefined by a later |
| 506 | // declaration (not even to the same value). |
| 507 | // |
| 508 | // C++ [dcl.fct.default]p6: |
| 509 | // Except for member functions of class templates, the default arguments |
| 510 | // in a member function definition that appears outside of the class |
| 511 | // definition are added to the set of default arguments provided by the |
| 512 | // member function declaration in the class definition. |
| 513 | for (unsigned p = 0, NumParams = PrevForDefaultArgs |
| 514 | ? PrevForDefaultArgs->getNumParams() |
| 515 | : 0; |
| 516 | p < NumParams; ++p) { |
| 517 | ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(i: p); |
| 518 | ParmVarDecl *NewParam = New->getParamDecl(i: p); |
| 519 | |
| 520 | bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false; |
| 521 | bool NewParamHasDfl = NewParam->hasDefaultArg(); |
| 522 | |
| 523 | if (OldParamHasDfl && NewParamHasDfl) { |
| 524 | unsigned DiagDefaultParamID = |
| 525 | diag::err_param_default_argument_redefinition; |
| 526 | |
| 527 | // MSVC accepts that default parameters be redefined for member functions |
| 528 | // of template class. The new default parameter's value is ignored. |
| 529 | Invalid = true; |
| 530 | if (getLangOpts().MicrosoftExt) { |
| 531 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: New); |
| 532 | if (MD && MD->getParent()->getDescribedClassTemplate()) { |
| 533 | // Merge the old default argument into the new parameter. |
| 534 | NewParam->setHasInheritedDefaultArg(); |
| 535 | if (OldParam->hasUninstantiatedDefaultArg()) |
| 536 | NewParam->setUninstantiatedDefaultArg( |
| 537 | OldParam->getUninstantiatedDefaultArg()); |
| 538 | else |
| 539 | NewParam->setDefaultArg(OldParam->getInit()); |
| 540 | DiagDefaultParamID = diag::ext_param_default_argument_redefinition; |
| 541 | Invalid = false; |
| 542 | } |
| 543 | } |
| 544 | |
| 545 | // FIXME: If we knew where the '=' was, we could easily provide a fix-it |
| 546 | // hint here. Alternatively, we could walk the type-source information |
| 547 | // for NewParam to find the last source location in the type... but it |
| 548 | // isn't worth the effort right now. This is the kind of test case that |
| 549 | // is hard to get right: |
| 550 | // int f(int); |
| 551 | // void g(int (*fp)(int) = f); |
| 552 | // void g(int (*fp)(int) = &f); |
| 553 | Diag(NewParam->getLocation(), DiagDefaultParamID) |
| 554 | << NewParam->getDefaultArgRange(); |
| 555 | |
| 556 | // Look for the function declaration where the default argument was |
| 557 | // actually written, which may be a declaration prior to Old. |
| 558 | for (auto Older = PrevForDefaultArgs; |
| 559 | OldParam->hasInheritedDefaultArg(); /**/) { |
| 560 | Older = Older->getPreviousDecl(); |
| 561 | OldParam = Older->getParamDecl(i: p); |
| 562 | } |
| 563 | |
| 564 | Diag(OldParam->getLocation(), diag::note_previous_definition) |
| 565 | << OldParam->getDefaultArgRange(); |
| 566 | } else if (OldParamHasDfl) { |
| 567 | // Merge the old default argument into the new parameter unless the new |
| 568 | // function is a friend declaration in a template class. In the latter |
| 569 | // case the default arguments will be inherited when the friend |
| 570 | // declaration will be instantiated. |
| 571 | if (New->getFriendObjectKind() == Decl::FOK_None || |
| 572 | !New->getLexicalDeclContext()->isDependentContext()) { |
| 573 | // It's important to use getInit() here; getDefaultArg() |
| 574 | // strips off any top-level ExprWithCleanups. |
| 575 | NewParam->setHasInheritedDefaultArg(); |
| 576 | if (OldParam->hasUnparsedDefaultArg()) |
| 577 | NewParam->setUnparsedDefaultArg(); |
| 578 | else if (OldParam->hasUninstantiatedDefaultArg()) |
| 579 | NewParam->setUninstantiatedDefaultArg( |
| 580 | OldParam->getUninstantiatedDefaultArg()); |
| 581 | else |
| 582 | NewParam->setDefaultArg(OldParam->getInit()); |
| 583 | } |
| 584 | } else if (NewParamHasDfl) { |
| 585 | if (New->getDescribedFunctionTemplate()) { |
| 586 | // Paragraph 4, quoted above, only applies to non-template functions. |
| 587 | Diag(NewParam->getLocation(), |
| 588 | diag::err_param_default_argument_template_redecl) |
| 589 | << NewParam->getDefaultArgRange(); |
| 590 | Diag(PrevForDefaultArgs->getLocation(), |
| 591 | diag::note_template_prev_declaration) |
| 592 | << false; |
| 593 | } else if (New->getTemplateSpecializationKind() |
| 594 | != TSK_ImplicitInstantiation && |
| 595 | New->getTemplateSpecializationKind() != TSK_Undeclared) { |
| 596 | // C++ [temp.expr.spec]p21: |
| 597 | // Default function arguments shall not be specified in a declaration |
| 598 | // or a definition for one of the following explicit specializations: |
| 599 | // - the explicit specialization of a function template; |
| 600 | // - the explicit specialization of a member function template; |
| 601 | // - the explicit specialization of a member function of a class |
| 602 | // template where the class template specialization to which the |
| 603 | // member function specialization belongs is implicitly |
| 604 | // instantiated. |
| 605 | Diag(NewParam->getLocation(), diag::err_template_spec_default_arg) |
| 606 | << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization) |
| 607 | << New->getDeclName() |
| 608 | << NewParam->getDefaultArgRange(); |
| 609 | } else if (New->getDeclContext()->isDependentContext()) { |
| 610 | // C++ [dcl.fct.default]p6 (DR217): |
| 611 | // Default arguments for a member function of a class template shall |
| 612 | // be specified on the initial declaration of the member function |
| 613 | // within the class template. |
| 614 | // |
| 615 | // Reading the tea leaves a bit in DR217 and its reference to DR205 |
| 616 | // leads me to the conclusion that one cannot add default function |
| 617 | // arguments for an out-of-line definition of a member function of a |
| 618 | // dependent type. |
| 619 | int WhichKind = 2; |
| 620 | if (CXXRecordDecl *Record |
| 621 | = dyn_cast<CXXRecordDecl>(New->getDeclContext())) { |
| 622 | if (Record->getDescribedClassTemplate()) |
| 623 | WhichKind = 0; |
| 624 | else if (isa<ClassTemplatePartialSpecializationDecl>(Val: Record)) |
| 625 | WhichKind = 1; |
| 626 | else |
| 627 | WhichKind = 2; |
| 628 | } |
| 629 | |
| 630 | Diag(NewParam->getLocation(), |
| 631 | diag::err_param_default_argument_member_template_redecl) |
| 632 | << WhichKind |
| 633 | << NewParam->getDefaultArgRange(); |
| 634 | } |
| 635 | } |
| 636 | } |
| 637 | |
| 638 | // DR1344: If a default argument is added outside a class definition and that |
| 639 | // default argument makes the function a special member function, the program |
| 640 | // is ill-formed. This can only happen for constructors. |
| 641 | if (isa<CXXConstructorDecl>(Val: New) && |
| 642 | New->getMinRequiredArguments() < Old->getMinRequiredArguments()) { |
| 643 | CXXSpecialMemberKind NewSM = getSpecialMember(MD: cast<CXXMethodDecl>(Val: New)), |
| 644 | OldSM = getSpecialMember(MD: cast<CXXMethodDecl>(Val: Old)); |
| 645 | if (NewSM != OldSM) { |
| 646 | ParmVarDecl *NewParam = New->getParamDecl(i: New->getMinRequiredArguments()); |
| 647 | assert(NewParam->hasDefaultArg()); |
| 648 | Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special) |
| 649 | << NewParam->getDefaultArgRange() << NewSM; |
| 650 | Diag(Old->getLocation(), diag::note_previous_declaration); |
| 651 | } |
| 652 | } |
| 653 | |
| 654 | const FunctionDecl *Def; |
| 655 | // C++11 [dcl.constexpr]p1: If any declaration of a function or function |
| 656 | // template has a constexpr specifier then all its declarations shall |
| 657 | // contain the constexpr specifier. |
| 658 | if (New->getConstexprKind() != Old->getConstexprKind()) { |
| 659 | Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch) |
| 660 | << New << static_cast<int>(New->getConstexprKind()) |
| 661 | << static_cast<int>(Old->getConstexprKind()); |
| 662 | Diag(Old->getLocation(), diag::note_previous_declaration); |
| 663 | Invalid = true; |
| 664 | } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() && |
| 665 | Old->isDefined(Definition&: Def) && |
| 666 | // If a friend function is inlined but does not have 'inline' |
| 667 | // specifier, it is a definition. Do not report attribute conflict |
| 668 | // in this case, redefinition will be diagnosed later. |
| 669 | (New->isInlineSpecified() || |
| 670 | New->getFriendObjectKind() == Decl::FOK_None)) { |
| 671 | // C++11 [dcl.fcn.spec]p4: |
| 672 | // If the definition of a function appears in a translation unit before its |
| 673 | // first declaration as inline, the program is ill-formed. |
| 674 | Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; |
| 675 | Diag(Def->getLocation(), diag::note_previous_definition); |
| 676 | Invalid = true; |
| 677 | } |
| 678 | |
| 679 | // C++17 [temp.deduct.guide]p3: |
| 680 | // Two deduction guide declarations in the same translation unit |
| 681 | // for the same class template shall not have equivalent |
| 682 | // parameter-declaration-clauses. |
| 683 | if (isa<CXXDeductionGuideDecl>(Val: New) && |
| 684 | !New->isFunctionTemplateSpecialization() && isVisible(Old)) { |
| 685 | Diag(New->getLocation(), diag::err_deduction_guide_redeclared); |
| 686 | Diag(Old->getLocation(), diag::note_previous_declaration); |
| 687 | } |
| 688 | |
| 689 | // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default |
| 690 | // argument expression, that declaration shall be a definition and shall be |
| 691 | // the only declaration of the function or function template in the |
| 692 | // translation unit. |
| 693 | if (Old->getFriendObjectKind() == Decl::FOK_Undeclared && |
| 694 | functionDeclHasDefaultArgument(FD: Old)) { |
| 695 | Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); |
| 696 | Diag(Old->getLocation(), diag::note_previous_declaration); |
| 697 | Invalid = true; |
| 698 | } |
| 699 | |
| 700 | // C++11 [temp.friend]p4 (DR329): |
| 701 | // When a function is defined in a friend function declaration in a class |
| 702 | // template, the function is instantiated when the function is odr-used. |
| 703 | // The same restrictions on multiple declarations and definitions that |
| 704 | // apply to non-template function declarations and definitions also apply |
| 705 | // to these implicit definitions. |
| 706 | const FunctionDecl *OldDefinition = nullptr; |
| 707 | if (New->isThisDeclarationInstantiatedFromAFriendDefinition() && |
| 708 | Old->isDefined(Definition&: OldDefinition, CheckForPendingFriendDefinition: true)) |
| 709 | CheckForFunctionRedefinition(FD: New, EffectiveDefinition: OldDefinition); |
| 710 | |
| 711 | return Invalid; |
| 712 | } |
| 713 | |
| 714 | void Sema::DiagPlaceholderVariableDefinition(SourceLocation Loc) { |
| 715 | Diag(Loc, getLangOpts().CPlusPlus26 |
| 716 | ? diag::warn_cxx23_placeholder_var_definition |
| 717 | : diag::ext_placeholder_var_definition); |
| 718 | } |
| 719 | |
| 720 | NamedDecl * |
| 721 | Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D, |
| 722 | MultiTemplateParamsArg TemplateParamLists) { |
| 723 | assert(D.isDecompositionDeclarator()); |
| 724 | const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); |
| 725 | |
| 726 | // The syntax only allows a decomposition declarator as a simple-declaration, |
| 727 | // a for-range-declaration, or a condition in Clang, but we parse it in more |
| 728 | // cases than that. |
| 729 | if (!D.mayHaveDecompositionDeclarator()) { |
| 730 | Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) |
| 731 | << Decomp.getSourceRange(); |
| 732 | return nullptr; |
| 733 | } |
| 734 | |
| 735 | if (!TemplateParamLists.empty()) { |
| 736 | // C++17 [temp]/1: |
| 737 | // A template defines a family of class, functions, or variables, or an |
| 738 | // alias for a family of types. |
| 739 | // |
| 740 | // Structured bindings are not included. |
| 741 | Diag(TemplateParamLists.front()->getTemplateLoc(), |
| 742 | diag::err_decomp_decl_template); |
| 743 | return nullptr; |
| 744 | } |
| 745 | |
| 746 | unsigned DiagID; |
| 747 | if (!getLangOpts().CPlusPlus17) |
| 748 | DiagID = diag::compat_pre_cxx17_decomp_decl; |
| 749 | else if (D.getContext() == DeclaratorContext::Condition) |
| 750 | DiagID = getLangOpts().CPlusPlus26 |
| 751 | ? diag::compat_cxx26_decomp_decl_cond |
| 752 | : diag::compat_pre_cxx26_decomp_decl_cond; |
| 753 | else |
| 754 | DiagID = diag::compat_cxx17_decomp_decl; |
| 755 | |
| 756 | Diag(Decomp.getLSquareLoc(), DiagID) << Decomp.getSourceRange(); |
| 757 | |
| 758 | // The semantic context is always just the current context. |
| 759 | DeclContext *const DC = CurContext; |
| 760 | |
| 761 | // C++17 [dcl.dcl]/8: |
| 762 | // The decl-specifier-seq shall contain only the type-specifier auto |
| 763 | // and cv-qualifiers. |
| 764 | // C++20 [dcl.dcl]/8: |
| 765 | // If decl-specifier-seq contains any decl-specifier other than static, |
| 766 | // thread_local, auto, or cv-qualifiers, the program is ill-formed. |
| 767 | // C++23 [dcl.pre]/6: |
| 768 | // Each decl-specifier in the decl-specifier-seq shall be static, |
| 769 | // thread_local, auto (9.2.9.6 [dcl.spec.auto]), or a cv-qualifier. |
| 770 | auto &DS = D.getDeclSpec(); |
| 771 | { |
| 772 | // Note: While constrained-auto needs to be checked, we do so separately so |
| 773 | // we can emit a better diagnostic. |
| 774 | SmallVector<StringRef, 8> BadSpecifiers; |
| 775 | SmallVector<SourceLocation, 8> BadSpecifierLocs; |
| 776 | SmallVector<StringRef, 8> CPlusPlus20Specifiers; |
| 777 | SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs; |
| 778 | if (auto SCS = DS.getStorageClassSpec()) { |
| 779 | if (SCS == DeclSpec::SCS_static) { |
| 780 | CPlusPlus20Specifiers.push_back(Elt: DeclSpec::getSpecifierName(S: SCS)); |
| 781 | CPlusPlus20SpecifierLocs.push_back(Elt: DS.getStorageClassSpecLoc()); |
| 782 | } else { |
| 783 | BadSpecifiers.push_back(Elt: DeclSpec::getSpecifierName(S: SCS)); |
| 784 | BadSpecifierLocs.push_back(Elt: DS.getStorageClassSpecLoc()); |
| 785 | } |
| 786 | } |
| 787 | if (auto TSCS = DS.getThreadStorageClassSpec()) { |
| 788 | CPlusPlus20Specifiers.push_back(Elt: DeclSpec::getSpecifierName(S: TSCS)); |
| 789 | CPlusPlus20SpecifierLocs.push_back(Elt: DS.getThreadStorageClassSpecLoc()); |
| 790 | } |
| 791 | if (DS.hasConstexprSpecifier()) { |
| 792 | BadSpecifiers.push_back( |
| 793 | Elt: DeclSpec::getSpecifierName(C: DS.getConstexprSpecifier())); |
| 794 | BadSpecifierLocs.push_back(Elt: DS.getConstexprSpecLoc()); |
| 795 | } |
| 796 | if (DS.isInlineSpecified()) { |
| 797 | BadSpecifiers.push_back(Elt: "inline" ); |
| 798 | BadSpecifierLocs.push_back(Elt: DS.getInlineSpecLoc()); |
| 799 | } |
| 800 | |
| 801 | if (!BadSpecifiers.empty()) { |
| 802 | auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec); |
| 803 | Err << (int)BadSpecifiers.size() |
| 804 | << llvm::join(Begin: BadSpecifiers.begin(), End: BadSpecifiers.end(), Separator: " " ); |
| 805 | // Don't add FixItHints to remove the specifiers; we do still respect |
| 806 | // them when building the underlying variable. |
| 807 | for (auto Loc : BadSpecifierLocs) |
| 808 | Err << SourceRange(Loc, Loc); |
| 809 | } else if (!CPlusPlus20Specifiers.empty()) { |
| 810 | auto &&Warn = DiagCompat(CPlusPlus20SpecifierLocs.front(), |
| 811 | diag_compat::decomp_decl_spec); |
| 812 | Warn << (int)CPlusPlus20Specifiers.size() |
| 813 | << llvm::join(Begin: CPlusPlus20Specifiers.begin(), |
| 814 | End: CPlusPlus20Specifiers.end(), Separator: " " ); |
| 815 | for (auto Loc : CPlusPlus20SpecifierLocs) |
| 816 | Warn << SourceRange(Loc, Loc); |
| 817 | } |
| 818 | // We can't recover from it being declared as a typedef. |
| 819 | if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) |
| 820 | return nullptr; |
| 821 | } |
| 822 | |
| 823 | // C++2a [dcl.struct.bind]p1: |
| 824 | // A cv that includes volatile is deprecated |
| 825 | if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) && |
| 826 | getLangOpts().CPlusPlus20) |
| 827 | Diag(DS.getVolatileSpecLoc(), |
| 828 | diag::warn_deprecated_volatile_structured_binding); |
| 829 | |
| 830 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D); |
| 831 | QualType R = TInfo->getType(); |
| 832 | |
| 833 | if (DiagnoseUnexpandedParameterPack(Loc: D.getIdentifierLoc(), T: TInfo, |
| 834 | UPPC: UPPC_DeclarationType)) |
| 835 | D.setInvalidType(); |
| 836 | |
| 837 | // The syntax only allows a single ref-qualifier prior to the decomposition |
| 838 | // declarator. No other declarator chunks are permitted. Also check the type |
| 839 | // specifier here. |
| 840 | if (DS.getTypeSpecType() != DeclSpec::TST_auto || |
| 841 | D.hasGroupingParens() || D.getNumTypeObjects() > 1 || |
| 842 | (D.getNumTypeObjects() == 1 && |
| 843 | D.getTypeObject(i: 0).Kind != DeclaratorChunk::Reference)) { |
| 844 | Diag(Decomp.getLSquareLoc(), |
| 845 | (D.hasGroupingParens() || |
| 846 | (D.getNumTypeObjects() && |
| 847 | D.getTypeObject(0).Kind == DeclaratorChunk::Paren)) |
| 848 | ? diag::err_decomp_decl_parens |
| 849 | : diag::err_decomp_decl_type) |
| 850 | << R; |
| 851 | |
| 852 | // In most cases, there's no actual problem with an explicitly-specified |
| 853 | // type, but a function type won't work here, and ActOnVariableDeclarator |
| 854 | // shouldn't be called for such a type. |
| 855 | if (R->isFunctionType()) |
| 856 | D.setInvalidType(); |
| 857 | } |
| 858 | |
| 859 | // Constrained auto is prohibited by [decl.pre]p6, so check that here. |
| 860 | if (DS.isConstrainedAuto()) { |
| 861 | TemplateIdAnnotation *TemplRep = DS.getRepAsTemplateId(); |
| 862 | assert(TemplRep->Kind == TNK_Concept_template && |
| 863 | "No other template kind should be possible for a constrained auto" ); |
| 864 | |
| 865 | SourceRange TemplRange{TemplRep->TemplateNameLoc, |
| 866 | TemplRep->RAngleLoc.isValid() |
| 867 | ? TemplRep->RAngleLoc |
| 868 | : TemplRep->TemplateNameLoc}; |
| 869 | Diag(TemplRep->TemplateNameLoc, diag::err_decomp_decl_constraint) |
| 870 | << TemplRange << FixItHint::CreateRemoval(TemplRange); |
| 871 | } |
| 872 | |
| 873 | // Build the BindingDecls. |
| 874 | SmallVector<BindingDecl*, 8> Bindings; |
| 875 | |
| 876 | // Build the BindingDecls. |
| 877 | for (auto &B : D.getDecompositionDeclarator().bindings()) { |
| 878 | // Check for name conflicts. |
| 879 | DeclarationNameInfo NameInfo(B.Name, B.NameLoc); |
| 880 | IdentifierInfo *VarName = B.Name; |
| 881 | assert(VarName && "Cannot have an unnamed binding declaration" ); |
| 882 | |
| 883 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, |
| 884 | RedeclarationKind::ForVisibleRedeclaration); |
| 885 | LookupName(R&: Previous, S, |
| 886 | /*CreateBuiltins*/AllowBuiltinCreation: DC->getRedeclContext()->isTranslationUnit()); |
| 887 | |
| 888 | // It's not permitted to shadow a template parameter name. |
| 889 | if (Previous.isSingleResult() && |
| 890 | Previous.getFoundDecl()->isTemplateParameter()) { |
| 891 | DiagnoseTemplateParameterShadow(B.NameLoc, Previous.getFoundDecl()); |
| 892 | Previous.clear(); |
| 893 | } |
| 894 | |
| 895 | QualType QT; |
| 896 | if (B.EllipsisLoc.isValid()) { |
| 897 | if (!cast<Decl>(DC)->isTemplated()) |
| 898 | Diag(B.EllipsisLoc, diag::err_pack_outside_template); |
| 899 | QT = Context.getPackExpansionType(Pattern: Context.DependentTy, NumExpansions: std::nullopt, |
| 900 | /*ExpectsPackInType=*/ExpectPackInType: false); |
| 901 | } |
| 902 | |
| 903 | auto *BD = BindingDecl::Create(C&: Context, DC, IdLoc: B.NameLoc, Id: B.Name, T: QT); |
| 904 | |
| 905 | ProcessDeclAttributeList(S, BD, *B.Attrs); |
| 906 | |
| 907 | // Find the shadowed declaration before filtering for scope. |
| 908 | NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty() |
| 909 | ? getShadowedDeclaration(D: BD, R: Previous) |
| 910 | : nullptr; |
| 911 | |
| 912 | bool ConsiderLinkage = DC->isFunctionOrMethod() && |
| 913 | DS.getStorageClassSpec() == DeclSpec::SCS_extern; |
| 914 | FilterLookupForScope(R&: Previous, Ctx: DC, S, ConsiderLinkage, |
| 915 | /*AllowInlineNamespace*/false); |
| 916 | |
| 917 | bool IsPlaceholder = DS.getStorageClassSpec() != DeclSpec::SCS_static && |
| 918 | DC->isFunctionOrMethod() && VarName->isPlaceholder(); |
| 919 | if (!Previous.empty()) { |
| 920 | if (IsPlaceholder) { |
| 921 | bool sameDC = (Previous.end() - 1) |
| 922 | ->getDeclContext() |
| 923 | ->getRedeclContext() |
| 924 | ->Equals(DC->getRedeclContext()); |
| 925 | if (sameDC && |
| 926 | isDeclInScope(D: *(Previous.end() - 1), Ctx: CurContext, S, AllowInlineNamespace: false)) { |
| 927 | Previous.clear(); |
| 928 | DiagPlaceholderVariableDefinition(Loc: B.NameLoc); |
| 929 | } |
| 930 | } else { |
| 931 | auto *Old = Previous.getRepresentativeDecl(); |
| 932 | Diag(B.NameLoc, diag::err_redefinition) << B.Name; |
| 933 | Diag(Old->getLocation(), diag::note_previous_definition); |
| 934 | } |
| 935 | } else if (ShadowedDecl && !D.isRedeclaration()) { |
| 936 | CheckShadow(BD, ShadowedDecl, Previous); |
| 937 | } |
| 938 | PushOnScopeChains(BD, S, true); |
| 939 | Bindings.push_back(Elt: BD); |
| 940 | ParsingInitForAutoVars.insert(BD); |
| 941 | } |
| 942 | |
| 943 | // There are no prior lookup results for the variable itself, because it |
| 944 | // is unnamed. |
| 945 | DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr, |
| 946 | Decomp.getLSquareLoc()); |
| 947 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, |
| 948 | RedeclarationKind::ForVisibleRedeclaration); |
| 949 | |
| 950 | // Build the variable that holds the non-decomposed object. |
| 951 | bool AddToScope = true; |
| 952 | NamedDecl *New = |
| 953 | ActOnVariableDeclarator(S, D, DC, TInfo, Previous, |
| 954 | TemplateParamLists: MultiTemplateParamsArg(), AddToScope, Bindings); |
| 955 | if (AddToScope) { |
| 956 | S->AddDecl(New); |
| 957 | CurContext->addHiddenDecl(New); |
| 958 | } |
| 959 | |
| 960 | if (OpenMP().isInOpenMPDeclareTargetContext()) |
| 961 | OpenMP().checkDeclIsAllowedInOpenMPTarget(nullptr, New); |
| 962 | |
| 963 | return New; |
| 964 | } |
| 965 | |
| 966 | // Check the arity of the structured bindings. |
| 967 | // Create the resolved pack expr if needed. |
| 968 | static bool CheckBindingsCount(Sema &S, DecompositionDecl *DD, |
| 969 | QualType DecompType, |
| 970 | ArrayRef<BindingDecl *> Bindings, |
| 971 | unsigned MemberCount) { |
| 972 | auto BindingWithPackItr = llvm::find_if( |
| 973 | Range&: Bindings, P: [](BindingDecl *D) -> bool { return D->isParameterPack(); }); |
| 974 | bool HasPack = BindingWithPackItr != Bindings.end(); |
| 975 | bool IsValid; |
| 976 | if (!HasPack) { |
| 977 | IsValid = Bindings.size() == MemberCount; |
| 978 | } else { |
| 979 | // There may not be more members than non-pack bindings. |
| 980 | IsValid = MemberCount >= Bindings.size() - 1; |
| 981 | } |
| 982 | |
| 983 | if (IsValid && HasPack) { |
| 984 | // Create the pack expr and assign it to the binding. |
| 985 | unsigned PackSize = MemberCount - Bindings.size() + 1; |
| 986 | |
| 987 | BindingDecl *BPack = *BindingWithPackItr; |
| 988 | BPack->setDecomposedDecl(DD); |
| 989 | SmallVector<ValueDecl *, 8> NestedBDs(PackSize); |
| 990 | // Create the nested BindingDecls. |
| 991 | for (unsigned I = 0; I < PackSize; ++I) { |
| 992 | BindingDecl *NestedBD = BindingDecl::Create( |
| 993 | C&: S.Context, DC: BPack->getDeclContext(), IdLoc: BPack->getLocation(), |
| 994 | Id: BPack->getIdentifier(), T: QualType()); |
| 995 | NestedBD->setDecomposedDecl(DD); |
| 996 | NestedBDs[I] = NestedBD; |
| 997 | } |
| 998 | |
| 999 | QualType PackType = S.Context.getPackExpansionType( |
| 1000 | Pattern: S.Context.DependentTy, NumExpansions: PackSize, /*ExpectsPackInType=*/ExpectPackInType: false); |
| 1001 | auto *PackExpr = FunctionParmPackExpr::Create( |
| 1002 | Context: S.Context, T: PackType, ParamPack: BPack, NameLoc: BPack->getBeginLoc(), Params: NestedBDs); |
| 1003 | BPack->setBinding(DeclaredType: PackType, Binding: PackExpr); |
| 1004 | } |
| 1005 | |
| 1006 | if (IsValid) |
| 1007 | return false; |
| 1008 | |
| 1009 | S.Diag(DD->getLocation(), diag::err_decomp_decl_wrong_number_bindings) |
| 1010 | << DecompType << (unsigned)Bindings.size() << MemberCount << MemberCount |
| 1011 | << (MemberCount < Bindings.size()); |
| 1012 | return true; |
| 1013 | } |
| 1014 | |
| 1015 | static bool checkSimpleDecomposition( |
| 1016 | Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src, |
| 1017 | QualType DecompType, const llvm::APSInt &NumElemsAPS, QualType ElemType, |
| 1018 | llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) { |
| 1019 | unsigned NumElems = (unsigned)NumElemsAPS.getLimitedValue(UINT_MAX); |
| 1020 | auto *DD = cast<DecompositionDecl>(Val: Src); |
| 1021 | |
| 1022 | if (CheckBindingsCount(S, DD, DecompType, Bindings, MemberCount: NumElems)) |
| 1023 | return true; |
| 1024 | |
| 1025 | unsigned I = 0; |
| 1026 | for (auto *B : DD->flat_bindings()) { |
| 1027 | SourceLocation Loc = B->getLocation(); |
| 1028 | ExprResult E = S.BuildDeclRefExpr(D: Src, Ty: DecompType, VK: VK_LValue, Loc); |
| 1029 | if (E.isInvalid()) |
| 1030 | return true; |
| 1031 | E = GetInit(Loc, E.get(), I++); |
| 1032 | if (E.isInvalid()) |
| 1033 | return true; |
| 1034 | B->setBinding(DeclaredType: ElemType, Binding: E.get()); |
| 1035 | } |
| 1036 | |
| 1037 | return false; |
| 1038 | } |
| 1039 | |
| 1040 | static bool checkArrayLikeDecomposition(Sema &S, |
| 1041 | ArrayRef<BindingDecl *> Bindings, |
| 1042 | ValueDecl *Src, QualType DecompType, |
| 1043 | const llvm::APSInt &NumElems, |
| 1044 | QualType ElemType) { |
| 1045 | return checkSimpleDecomposition( |
| 1046 | S, Bindings, Src, DecompType, NumElemsAPS: NumElems, ElemType, |
| 1047 | GetInit: [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { |
| 1048 | ExprResult E = S.ActOnIntegerConstant(Loc, Val: I); |
| 1049 | if (E.isInvalid()) |
| 1050 | return ExprError(); |
| 1051 | return S.CreateBuiltinArraySubscriptExpr(Base, LLoc: Loc, Idx: E.get(), RLoc: Loc); |
| 1052 | }); |
| 1053 | } |
| 1054 | |
| 1055 | static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, |
| 1056 | ValueDecl *Src, QualType DecompType, |
| 1057 | const ConstantArrayType *CAT) { |
| 1058 | return checkArrayLikeDecomposition(S, Bindings, Src, DecompType, |
| 1059 | llvm::APSInt(CAT->getSize()), |
| 1060 | CAT->getElementType()); |
| 1061 | } |
| 1062 | |
| 1063 | static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, |
| 1064 | ValueDecl *Src, QualType DecompType, |
| 1065 | const VectorType *VT) { |
| 1066 | return checkArrayLikeDecomposition( |
| 1067 | S, Bindings, Src, DecompType, NumElems: llvm::APSInt::get(X: VT->getNumElements()), |
| 1068 | ElemType: S.Context.getQualifiedType(T: VT->getElementType(), |
| 1069 | Qs: DecompType.getQualifiers())); |
| 1070 | } |
| 1071 | |
| 1072 | static bool checkComplexDecomposition(Sema &S, |
| 1073 | ArrayRef<BindingDecl *> Bindings, |
| 1074 | ValueDecl *Src, QualType DecompType, |
| 1075 | const ComplexType *CT) { |
| 1076 | return checkSimpleDecomposition( |
| 1077 | S, Bindings, Src, DecompType, NumElemsAPS: llvm::APSInt::get(X: 2), |
| 1078 | ElemType: S.Context.getQualifiedType(T: CT->getElementType(), |
| 1079 | Qs: DecompType.getQualifiers()), |
| 1080 | GetInit: [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult { |
| 1081 | return S.CreateBuiltinUnaryOp(OpLoc: Loc, Opc: I ? UO_Imag : UO_Real, InputExpr: Base); |
| 1082 | }); |
| 1083 | } |
| 1084 | |
| 1085 | static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy, |
| 1086 | TemplateArgumentListInfo &Args, |
| 1087 | const TemplateParameterList *Params) { |
| 1088 | SmallString<128> SS; |
| 1089 | llvm::raw_svector_ostream OS(SS); |
| 1090 | bool First = true; |
| 1091 | unsigned I = 0; |
| 1092 | for (auto &Arg : Args.arguments()) { |
| 1093 | if (!First) |
| 1094 | OS << ", " ; |
| 1095 | Arg.getArgument().print(Policy: PrintingPolicy, Out&: OS, |
| 1096 | IncludeType: TemplateParameterList::shouldIncludeTypeForArgument( |
| 1097 | Policy: PrintingPolicy, TPL: Params, Idx: I)); |
| 1098 | First = false; |
| 1099 | I++; |
| 1100 | } |
| 1101 | return std::string(OS.str()); |
| 1102 | } |
| 1103 | |
| 1104 | static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup, |
| 1105 | SourceLocation Loc, StringRef Trait, |
| 1106 | TemplateArgumentListInfo &Args, |
| 1107 | unsigned DiagID) { |
| 1108 | auto DiagnoseMissing = [&] { |
| 1109 | if (DiagID) |
| 1110 | S.Diag(Loc, DiagID) << printTemplateArgs(PrintingPolicy: S.Context.getPrintingPolicy(), |
| 1111 | Args, /*Params*/ nullptr); |
| 1112 | return true; |
| 1113 | }; |
| 1114 | |
| 1115 | // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine. |
| 1116 | NamespaceDecl *Std = S.getStdNamespace(); |
| 1117 | if (!Std) |
| 1118 | return DiagnoseMissing(); |
| 1119 | |
| 1120 | // Look up the trait itself, within namespace std. We can diagnose various |
| 1121 | // problems with this lookup even if we've been asked to not diagnose a |
| 1122 | // missing specialization, because this can only fail if the user has been |
| 1123 | // declaring their own names in namespace std or we don't support the |
| 1124 | // standard library implementation in use. |
| 1125 | LookupResult Result(S, &S.PP.getIdentifierTable().get(Name: Trait), |
| 1126 | Loc, Sema::LookupOrdinaryName); |
| 1127 | if (!S.LookupQualifiedName(Result, Std)) |
| 1128 | return DiagnoseMissing(); |
| 1129 | if (Result.isAmbiguous()) |
| 1130 | return true; |
| 1131 | |
| 1132 | ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>(); |
| 1133 | if (!TraitTD) { |
| 1134 | Result.suppressDiagnostics(); |
| 1135 | NamedDecl *Found = *Result.begin(); |
| 1136 | S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait; |
| 1137 | S.Diag(Found->getLocation(), diag::note_declared_at); |
| 1138 | return true; |
| 1139 | } |
| 1140 | |
| 1141 | // Build the template-id. |
| 1142 | QualType TraitTy = S.CheckTemplateIdType(Template: TemplateName(TraitTD), TemplateLoc: Loc, TemplateArgs&: Args); |
| 1143 | if (TraitTy.isNull()) |
| 1144 | return true; |
| 1145 | if (!S.isCompleteType(Loc, T: TraitTy)) { |
| 1146 | if (DiagID) |
| 1147 | S.RequireCompleteType( |
| 1148 | Loc, TraitTy, DiagID, |
| 1149 | printTemplateArgs(S.Context.getPrintingPolicy(), Args, |
| 1150 | TraitTD->getTemplateParameters())); |
| 1151 | return true; |
| 1152 | } |
| 1153 | |
| 1154 | CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl(); |
| 1155 | assert(RD && "specialization of class template is not a class?" ); |
| 1156 | |
| 1157 | // Look up the member of the trait type. |
| 1158 | S.LookupQualifiedName(TraitMemberLookup, RD); |
| 1159 | return TraitMemberLookup.isAmbiguous(); |
| 1160 | } |
| 1161 | |
| 1162 | static TemplateArgumentLoc |
| 1163 | getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T, |
| 1164 | uint64_t I) { |
| 1165 | TemplateArgument Arg(S.Context, S.Context.MakeIntValue(Value: I, Type: T), T); |
| 1166 | return S.getTrivialTemplateArgumentLoc(Arg, NTTPType: T, Loc); |
| 1167 | } |
| 1168 | |
| 1169 | static TemplateArgumentLoc |
| 1170 | getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) { |
| 1171 | return S.getTrivialTemplateArgumentLoc(Arg: TemplateArgument(T), NTTPType: QualType(), Loc); |
| 1172 | } |
| 1173 | |
| 1174 | namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; } |
| 1175 | |
| 1176 | static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T, |
| 1177 | llvm::APSInt &Size) { |
| 1178 | EnterExpressionEvaluationContext ( |
| 1179 | S, Sema::ExpressionEvaluationContext::ConstantEvaluated); |
| 1180 | |
| 1181 | DeclarationName Value = S.PP.getIdentifierInfo(Name: "value" ); |
| 1182 | LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName); |
| 1183 | |
| 1184 | // Form template argument list for tuple_size<T>. |
| 1185 | TemplateArgumentListInfo Args(Loc, Loc); |
| 1186 | Args.addArgument(Loc: getTrivialTypeTemplateArgument(S, Loc, T)); |
| 1187 | |
| 1188 | // If there's no tuple_size specialization or the lookup of 'value' is empty, |
| 1189 | // it's not tuple-like. |
| 1190 | if (lookupStdTypeTraitMember(S, TraitMemberLookup&: R, Loc, Trait: "tuple_size" , Args, /*DiagID*/ 0) || |
| 1191 | R.empty()) |
| 1192 | return IsTupleLike::NotTupleLike; |
| 1193 | |
| 1194 | // If we get this far, we've committed to the tuple interpretation, but |
| 1195 | // we can still fail if there actually isn't a usable ::value. |
| 1196 | |
| 1197 | struct ICEDiagnoser : Sema::VerifyICEDiagnoser { |
| 1198 | LookupResult &R; |
| 1199 | TemplateArgumentListInfo &Args; |
| 1200 | ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args) |
| 1201 | : R(R), Args(Args) {} |
| 1202 | Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S, |
| 1203 | SourceLocation Loc) override { |
| 1204 | return S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant) |
| 1205 | << printTemplateArgs(S.Context.getPrintingPolicy(), Args, |
| 1206 | /*Params*/ nullptr); |
| 1207 | } |
| 1208 | } Diagnoser(R, Args); |
| 1209 | |
| 1210 | ExprResult E = |
| 1211 | S.BuildDeclarationNameExpr(SS: CXXScopeSpec(), R, /*NeedsADL*/false); |
| 1212 | if (E.isInvalid()) |
| 1213 | return IsTupleLike::Error; |
| 1214 | |
| 1215 | E = S.VerifyIntegerConstantExpression(E: E.get(), Result: &Size, Diagnoser); |
| 1216 | if (E.isInvalid()) |
| 1217 | return IsTupleLike::Error; |
| 1218 | |
| 1219 | return IsTupleLike::TupleLike; |
| 1220 | } |
| 1221 | |
| 1222 | /// \return std::tuple_element<I, T>::type. |
| 1223 | static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc, |
| 1224 | unsigned I, QualType T) { |
| 1225 | // Form template argument list for tuple_element<I, T>. |
| 1226 | TemplateArgumentListInfo Args(Loc, Loc); |
| 1227 | Args.addArgument( |
| 1228 | Loc: getTrivialIntegralTemplateArgument(S, Loc, T: S.Context.getSizeType(), I)); |
| 1229 | Args.addArgument(Loc: getTrivialTypeTemplateArgument(S, Loc, T)); |
| 1230 | |
| 1231 | DeclarationName TypeDN = S.PP.getIdentifierInfo(Name: "type" ); |
| 1232 | LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName); |
| 1233 | if (lookupStdTypeTraitMember( |
| 1234 | S, R, Loc, "tuple_element" , Args, |
| 1235 | diag::err_decomp_decl_std_tuple_element_not_specialized)) |
| 1236 | return QualType(); |
| 1237 | |
| 1238 | auto *TD = R.getAsSingle<TypeDecl>(); |
| 1239 | if (!TD) { |
| 1240 | R.suppressDiagnostics(); |
| 1241 | S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized) |
| 1242 | << printTemplateArgs(S.Context.getPrintingPolicy(), Args, |
| 1243 | /*Params*/ nullptr); |
| 1244 | if (!R.empty()) |
| 1245 | S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at); |
| 1246 | return QualType(); |
| 1247 | } |
| 1248 | |
| 1249 | return S.Context.getTypeDeclType(Decl: TD); |
| 1250 | } |
| 1251 | |
| 1252 | namespace { |
| 1253 | struct InitializingBinding { |
| 1254 | Sema &S; |
| 1255 | InitializingBinding(Sema &S, BindingDecl *BD) : S(S) { |
| 1256 | Sema::CodeSynthesisContext Ctx; |
| 1257 | Ctx.Kind = Sema::CodeSynthesisContext::InitializingStructuredBinding; |
| 1258 | Ctx.PointOfInstantiation = BD->getLocation(); |
| 1259 | Ctx.Entity = BD; |
| 1260 | S.pushCodeSynthesisContext(Ctx); |
| 1261 | } |
| 1262 | ~InitializingBinding() { |
| 1263 | S.popCodeSynthesisContext(); |
| 1264 | } |
| 1265 | }; |
| 1266 | } |
| 1267 | |
| 1268 | static bool checkTupleLikeDecomposition(Sema &S, |
| 1269 | ArrayRef<BindingDecl *> Bindings, |
| 1270 | VarDecl *Src, QualType DecompType, |
| 1271 | const llvm::APSInt &TupleSize) { |
| 1272 | auto *DD = cast<DecompositionDecl>(Val: Src); |
| 1273 | unsigned NumElems = (unsigned)TupleSize.getLimitedValue(UINT_MAX); |
| 1274 | if (CheckBindingsCount(S, DD, DecompType, Bindings, MemberCount: NumElems)) |
| 1275 | return true; |
| 1276 | |
| 1277 | if (Bindings.empty()) |
| 1278 | return false; |
| 1279 | |
| 1280 | DeclarationName GetDN = S.PP.getIdentifierInfo(Name: "get" ); |
| 1281 | |
| 1282 | // [dcl.decomp]p3: |
| 1283 | // The unqualified-id get is looked up in the scope of E by class member |
| 1284 | // access lookup ... |
| 1285 | LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName); |
| 1286 | bool UseMemberGet = false; |
| 1287 | if (S.isCompleteType(Loc: Src->getLocation(), T: DecompType)) { |
| 1288 | if (auto *RD = DecompType->getAsCXXRecordDecl()) |
| 1289 | S.LookupQualifiedName(MemberGet, RD); |
| 1290 | if (MemberGet.isAmbiguous()) |
| 1291 | return true; |
| 1292 | // ... and if that finds at least one declaration that is a function |
| 1293 | // template whose first template parameter is a non-type parameter ... |
| 1294 | for (NamedDecl *D : MemberGet) { |
| 1295 | if (FunctionTemplateDecl *FTD = |
| 1296 | dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) { |
| 1297 | TemplateParameterList *TPL = FTD->getTemplateParameters(); |
| 1298 | if (TPL->size() != 0 && |
| 1299 | isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) { |
| 1300 | // ... the initializer is e.get<i>(). |
| 1301 | UseMemberGet = true; |
| 1302 | break; |
| 1303 | } |
| 1304 | } |
| 1305 | } |
| 1306 | } |
| 1307 | |
| 1308 | unsigned I = 0; |
| 1309 | for (auto *B : DD->flat_bindings()) { |
| 1310 | InitializingBinding InitContext(S, B); |
| 1311 | SourceLocation Loc = B->getLocation(); |
| 1312 | |
| 1313 | ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); |
| 1314 | if (E.isInvalid()) |
| 1315 | return true; |
| 1316 | |
| 1317 | // e is an lvalue if the type of the entity is an lvalue reference and |
| 1318 | // an xvalue otherwise |
| 1319 | if (!Src->getType()->isLValueReferenceType()) |
| 1320 | E = ImplicitCastExpr::Create(Context: S.Context, T: E.get()->getType(), Kind: CK_NoOp, |
| 1321 | Operand: E.get(), BasePath: nullptr, Cat: VK_XValue, |
| 1322 | FPO: FPOptionsOverride()); |
| 1323 | |
| 1324 | TemplateArgumentListInfo Args(Loc, Loc); |
| 1325 | Args.addArgument( |
| 1326 | Loc: getTrivialIntegralTemplateArgument(S, Loc, T: S.Context.getSizeType(), I)); |
| 1327 | |
| 1328 | if (UseMemberGet) { |
| 1329 | // if [lookup of member get] finds at least one declaration, the |
| 1330 | // initializer is e.get<i-1>(). |
| 1331 | E = S.BuildMemberReferenceExpr(Base: E.get(), BaseType: DecompType, OpLoc: Loc, IsArrow: false, |
| 1332 | SS: CXXScopeSpec(), TemplateKWLoc: SourceLocation(), FirstQualifierInScope: nullptr, |
| 1333 | R&: MemberGet, TemplateArgs: &Args, S: nullptr); |
| 1334 | if (E.isInvalid()) |
| 1335 | return true; |
| 1336 | |
| 1337 | E = S.BuildCallExpr(S: nullptr, Fn: E.get(), LParenLoc: Loc, ArgExprs: {}, RParenLoc: Loc); |
| 1338 | } else { |
| 1339 | // Otherwise, the initializer is get<i-1>(e), where get is looked up |
| 1340 | // in the associated namespaces. |
| 1341 | Expr *Get = UnresolvedLookupExpr::Create( |
| 1342 | Context: S.Context, NamingClass: nullptr, QualifierLoc: NestedNameSpecifierLoc(), TemplateKWLoc: SourceLocation(), |
| 1343 | NameInfo: DeclarationNameInfo(GetDN, Loc), /*RequiresADL=*/true, Args: &Args, |
| 1344 | Begin: UnresolvedSetIterator(), End: UnresolvedSetIterator(), |
| 1345 | /*KnownDependent=*/false, /*KnownInstantiationDependent=*/false); |
| 1346 | |
| 1347 | Expr *Arg = E.get(); |
| 1348 | E = S.BuildCallExpr(S: nullptr, Fn: Get, LParenLoc: Loc, ArgExprs: Arg, RParenLoc: Loc); |
| 1349 | } |
| 1350 | if (E.isInvalid()) |
| 1351 | return true; |
| 1352 | Expr *Init = E.get(); |
| 1353 | |
| 1354 | // Given the type T designated by std::tuple_element<i - 1, E>::type, |
| 1355 | QualType T = getTupleLikeElementType(S, Loc, I, T: DecompType); |
| 1356 | if (T.isNull()) |
| 1357 | return true; |
| 1358 | |
| 1359 | // each vi is a variable of type "reference to T" initialized with the |
| 1360 | // initializer, where the reference is an lvalue reference if the |
| 1361 | // initializer is an lvalue and an rvalue reference otherwise |
| 1362 | QualType RefType = |
| 1363 | S.BuildReferenceType(T, LValueRef: E.get()->isLValue(), Loc, Entity: B->getDeclName()); |
| 1364 | if (RefType.isNull()) |
| 1365 | return true; |
| 1366 | auto *RefVD = VarDecl::Create( |
| 1367 | C&: S.Context, DC: Src->getDeclContext(), StartLoc: Loc, IdLoc: Loc, |
| 1368 | Id: B->getDeclName().getAsIdentifierInfo(), T: RefType, |
| 1369 | TInfo: S.Context.getTrivialTypeSourceInfo(T, Loc), S: Src->getStorageClass()); |
| 1370 | RefVD->setLexicalDeclContext(Src->getLexicalDeclContext()); |
| 1371 | RefVD->setTSCSpec(Src->getTSCSpec()); |
| 1372 | RefVD->setImplicit(); |
| 1373 | if (Src->isInlineSpecified()) |
| 1374 | RefVD->setInlineSpecified(); |
| 1375 | RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD); |
| 1376 | |
| 1377 | InitializedEntity Entity = InitializedEntity::InitializeBinding(Binding: RefVD); |
| 1378 | InitializationKind Kind = InitializationKind::CreateCopy(InitLoc: Loc, EqualLoc: Loc); |
| 1379 | InitializationSequence Seq(S, Entity, Kind, Init); |
| 1380 | E = Seq.Perform(S, Entity, Kind, Args: Init); |
| 1381 | if (E.isInvalid()) |
| 1382 | return true; |
| 1383 | E = S.ActOnFinishFullExpr(Expr: E.get(), CC: Loc, /*DiscardedValue*/ false); |
| 1384 | if (E.isInvalid()) |
| 1385 | return true; |
| 1386 | RefVD->setInit(E.get()); |
| 1387 | S.CheckCompleteVariableDeclaration(VD: RefVD); |
| 1388 | |
| 1389 | E = S.BuildDeclarationNameExpr(CXXScopeSpec(), |
| 1390 | DeclarationNameInfo(B->getDeclName(), Loc), |
| 1391 | RefVD); |
| 1392 | if (E.isInvalid()) |
| 1393 | return true; |
| 1394 | |
| 1395 | B->setBinding(DeclaredType: T, Binding: E.get()); |
| 1396 | I++; |
| 1397 | } |
| 1398 | |
| 1399 | return false; |
| 1400 | } |
| 1401 | |
| 1402 | /// Find the base class to decompose in a built-in decomposition of a class type. |
| 1403 | /// This base class search is, unfortunately, not quite like any other that we |
| 1404 | /// perform anywhere else in C++. |
| 1405 | static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc, |
| 1406 | const CXXRecordDecl *RD, |
| 1407 | CXXCastPath &BasePath) { |
| 1408 | auto BaseHasFields = [](const CXXBaseSpecifier *Specifier, |
| 1409 | CXXBasePath &Path) { |
| 1410 | return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields(); |
| 1411 | }; |
| 1412 | |
| 1413 | const CXXRecordDecl *ClassWithFields = nullptr; |
| 1414 | AccessSpecifier AS = AS_public; |
| 1415 | if (RD->hasDirectFields()) |
| 1416 | // [dcl.decomp]p4: |
| 1417 | // Otherwise, all of E's non-static data members shall be public direct |
| 1418 | // members of E ... |
| 1419 | ClassWithFields = RD; |
| 1420 | else { |
| 1421 | // ... or of ... |
| 1422 | CXXBasePaths Paths; |
| 1423 | Paths.setOrigin(const_cast<CXXRecordDecl*>(RD)); |
| 1424 | if (!RD->lookupInBases(BaseMatches: BaseHasFields, Paths)) { |
| 1425 | // If no classes have fields, just decompose RD itself. (This will work |
| 1426 | // if and only if zero bindings were provided.) |
| 1427 | return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public); |
| 1428 | } |
| 1429 | |
| 1430 | CXXBasePath *BestPath = nullptr; |
| 1431 | for (auto &P : Paths) { |
| 1432 | if (!BestPath) |
| 1433 | BestPath = &P; |
| 1434 | else if (!S.Context.hasSameType(T1: P.back().Base->getType(), |
| 1435 | T2: BestPath->back().Base->getType())) { |
| 1436 | // ... the same ... |
| 1437 | S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) |
| 1438 | << false << RD << BestPath->back().Base->getType() |
| 1439 | << P.back().Base->getType(); |
| 1440 | return DeclAccessPair(); |
| 1441 | } else if (P.Access < BestPath->Access) { |
| 1442 | BestPath = &P; |
| 1443 | } |
| 1444 | } |
| 1445 | |
| 1446 | // ... unambiguous ... |
| 1447 | QualType BaseType = BestPath->back().Base->getType(); |
| 1448 | if (Paths.isAmbiguous(BaseType: S.Context.getCanonicalType(T: BaseType))) { |
| 1449 | S.Diag(Loc, diag::err_decomp_decl_ambiguous_base) |
| 1450 | << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths); |
| 1451 | return DeclAccessPair(); |
| 1452 | } |
| 1453 | |
| 1454 | // ... [accessible, implied by other rules] base class of E. |
| 1455 | S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD), |
| 1456 | *BestPath, diag::err_decomp_decl_inaccessible_base); |
| 1457 | AS = BestPath->Access; |
| 1458 | |
| 1459 | ClassWithFields = BaseType->getAsCXXRecordDecl(); |
| 1460 | S.BuildBasePathArray(Paths, BasePath); |
| 1461 | } |
| 1462 | |
| 1463 | // The above search did not check whether the selected class itself has base |
| 1464 | // classes with fields, so check that now. |
| 1465 | CXXBasePaths Paths; |
| 1466 | if (ClassWithFields->lookupInBases(BaseMatches: BaseHasFields, Paths)) { |
| 1467 | S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members) |
| 1468 | << (ClassWithFields == RD) << RD << ClassWithFields |
| 1469 | << Paths.front().back().Base->getType(); |
| 1470 | return DeclAccessPair(); |
| 1471 | } |
| 1472 | |
| 1473 | return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS); |
| 1474 | } |
| 1475 | |
| 1476 | static bool CheckMemberDecompositionFields(Sema &S, SourceLocation Loc, |
| 1477 | const CXXRecordDecl *OrigRD, |
| 1478 | QualType DecompType, |
| 1479 | DeclAccessPair BasePair) { |
| 1480 | const auto *RD = cast_or_null<CXXRecordDecl>(Val: BasePair.getDecl()); |
| 1481 | if (!RD) |
| 1482 | return true; |
| 1483 | |
| 1484 | for (auto *FD : RD->fields()) { |
| 1485 | if (FD->isUnnamedBitField()) |
| 1486 | continue; |
| 1487 | |
| 1488 | // All the non-static data members are required to be nameable, so they |
| 1489 | // must all have names. |
| 1490 | if (!FD->getDeclName()) { |
| 1491 | if (RD->isLambda()) { |
| 1492 | S.Diag(Loc, diag::err_decomp_decl_lambda); |
| 1493 | S.Diag(RD->getLocation(), diag::note_lambda_decl); |
| 1494 | return true; |
| 1495 | } |
| 1496 | |
| 1497 | if (FD->isAnonymousStructOrUnion()) { |
| 1498 | S.Diag(Loc, diag::err_decomp_decl_anon_union_member) |
| 1499 | << DecompType << FD->getType()->isUnionType(); |
| 1500 | S.Diag(FD->getLocation(), diag::note_declared_at); |
| 1501 | return true; |
| 1502 | } |
| 1503 | |
| 1504 | // FIXME: Are there any other ways we could have an anonymous member? |
| 1505 | } |
| 1506 | // The field must be accessible in the context of the structured binding. |
| 1507 | // We already checked that the base class is accessible. |
| 1508 | // FIXME: Add 'const' to AccessedEntity's classes so we can remove the |
| 1509 | // const_cast here. |
| 1510 | S.CheckStructuredBindingMemberAccess( |
| 1511 | Loc, const_cast<CXXRecordDecl *>(OrigRD), |
| 1512 | DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess( |
| 1513 | BasePair.getAccess(), FD->getAccess()))); |
| 1514 | } |
| 1515 | return false; |
| 1516 | } |
| 1517 | |
| 1518 | static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings, |
| 1519 | ValueDecl *Src, QualType DecompType, |
| 1520 | const CXXRecordDecl *OrigRD) { |
| 1521 | if (S.RequireCompleteType(Src->getLocation(), DecompType, |
| 1522 | diag::err_incomplete_type)) |
| 1523 | return true; |
| 1524 | |
| 1525 | CXXCastPath BasePath; |
| 1526 | DeclAccessPair BasePair = |
| 1527 | findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath); |
| 1528 | const auto *RD = cast_or_null<CXXRecordDecl>(Val: BasePair.getDecl()); |
| 1529 | if (!RD) |
| 1530 | return true; |
| 1531 | QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(Decl: RD), |
| 1532 | DecompType.getQualifiers()); |
| 1533 | |
| 1534 | auto *DD = cast<DecompositionDecl>(Val: Src); |
| 1535 | unsigned NumFields = llvm::count_if( |
| 1536 | RD->fields(), [](FieldDecl *FD) { return !FD->isUnnamedBitField(); }); |
| 1537 | if (CheckBindingsCount(S, DD, DecompType, Bindings, MemberCount: NumFields)) |
| 1538 | return true; |
| 1539 | |
| 1540 | // all of E's non-static data members shall be [...] well-formed |
| 1541 | // when named as e.name in the context of the structured binding, |
| 1542 | // E shall not have an anonymous union member, ... |
| 1543 | auto FlatBindings = DD->flat_bindings(); |
| 1544 | assert(llvm::range_size(FlatBindings) == NumFields); |
| 1545 | auto FlatBindingsItr = FlatBindings.begin(); |
| 1546 | |
| 1547 | if (CheckMemberDecompositionFields(S, Src->getLocation(), OrigRD, DecompType, |
| 1548 | BasePair)) |
| 1549 | return true; |
| 1550 | |
| 1551 | for (auto *FD : RD->fields()) { |
| 1552 | if (FD->isUnnamedBitField()) |
| 1553 | continue; |
| 1554 | |
| 1555 | // We have a real field to bind. |
| 1556 | assert(FlatBindingsItr != FlatBindings.end()); |
| 1557 | BindingDecl *B = *(FlatBindingsItr++); |
| 1558 | SourceLocation Loc = B->getLocation(); |
| 1559 | |
| 1560 | // Initialize the binding to Src.FD. |
| 1561 | ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc); |
| 1562 | if (E.isInvalid()) |
| 1563 | return true; |
| 1564 | E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase, |
| 1565 | VK_LValue, &BasePath); |
| 1566 | if (E.isInvalid()) |
| 1567 | return true; |
| 1568 | E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc, |
| 1569 | CXXScopeSpec(), FD, |
| 1570 | DeclAccessPair::make(FD, FD->getAccess()), |
| 1571 | DeclarationNameInfo(FD->getDeclName(), Loc)); |
| 1572 | if (E.isInvalid()) |
| 1573 | return true; |
| 1574 | |
| 1575 | // If the type of the member is T, the referenced type is cv T, where cv is |
| 1576 | // the cv-qualification of the decomposition expression. |
| 1577 | // |
| 1578 | // FIXME: We resolve a defect here: if the field is mutable, we do not add |
| 1579 | // 'const' to the type of the field. |
| 1580 | Qualifiers Q = DecompType.getQualifiers(); |
| 1581 | if (FD->isMutable()) |
| 1582 | Q.removeConst(); |
| 1583 | B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get()); |
| 1584 | } |
| 1585 | |
| 1586 | return false; |
| 1587 | } |
| 1588 | |
| 1589 | void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) { |
| 1590 | QualType DecompType = DD->getType(); |
| 1591 | |
| 1592 | // If the type of the decomposition is dependent, then so is the type of |
| 1593 | // each binding. |
| 1594 | if (DecompType->isDependentType()) { |
| 1595 | // Note that all of the types are still Null or PackExpansionType. |
| 1596 | for (auto *B : DD->bindings()) { |
| 1597 | // Do not overwrite any pack type. |
| 1598 | if (B->getType().isNull()) |
| 1599 | B->setType(Context.DependentTy); |
| 1600 | } |
| 1601 | return; |
| 1602 | } |
| 1603 | |
| 1604 | DecompType = DecompType.getNonReferenceType(); |
| 1605 | ArrayRef<BindingDecl*> Bindings = DD->bindings(); |
| 1606 | |
| 1607 | // C++1z [dcl.decomp]/2: |
| 1608 | // If E is an array type [...] |
| 1609 | // As an extension, we also support decomposition of built-in complex and |
| 1610 | // vector types. |
| 1611 | if (auto *CAT = Context.getAsConstantArrayType(DecompType)) { |
| 1612 | if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT)) |
| 1613 | DD->setInvalidDecl(); |
| 1614 | return; |
| 1615 | } |
| 1616 | if (auto *VT = DecompType->getAs<VectorType>()) { |
| 1617 | if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT)) |
| 1618 | DD->setInvalidDecl(); |
| 1619 | return; |
| 1620 | } |
| 1621 | if (auto *CT = DecompType->getAs<ComplexType>()) { |
| 1622 | if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT)) |
| 1623 | DD->setInvalidDecl(); |
| 1624 | return; |
| 1625 | } |
| 1626 | |
| 1627 | // C++1z [dcl.decomp]/3: |
| 1628 | // if the expression std::tuple_size<E>::value is a well-formed integral |
| 1629 | // constant expression, [...] |
| 1630 | llvm::APSInt TupleSize(32); |
| 1631 | switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) { |
| 1632 | case IsTupleLike::Error: |
| 1633 | DD->setInvalidDecl(); |
| 1634 | return; |
| 1635 | |
| 1636 | case IsTupleLike::TupleLike: |
| 1637 | if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize)) |
| 1638 | DD->setInvalidDecl(); |
| 1639 | return; |
| 1640 | |
| 1641 | case IsTupleLike::NotTupleLike: |
| 1642 | break; |
| 1643 | } |
| 1644 | |
| 1645 | // C++1z [dcl.dcl]/8: |
| 1646 | // [E shall be of array or non-union class type] |
| 1647 | CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl(); |
| 1648 | if (!RD || RD->isUnion()) { |
| 1649 | Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type) |
| 1650 | << DD << !RD << DecompType; |
| 1651 | DD->setInvalidDecl(); |
| 1652 | return; |
| 1653 | } |
| 1654 | |
| 1655 | // C++1z [dcl.decomp]/4: |
| 1656 | // all of E's non-static data members shall be [...] direct members of |
| 1657 | // E or of the same unambiguous public base class of E, ... |
| 1658 | if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD)) |
| 1659 | DD->setInvalidDecl(); |
| 1660 | } |
| 1661 | |
| 1662 | UnsignedOrNone Sema::GetDecompositionElementCount(QualType T, |
| 1663 | SourceLocation Loc) { |
| 1664 | const ASTContext &Ctx = getASTContext(); |
| 1665 | assert(!T->isDependentType()); |
| 1666 | |
| 1667 | Qualifiers Quals; |
| 1668 | QualType Unqual = Context.getUnqualifiedArrayType(T, Quals); |
| 1669 | Quals.removeCVRQualifiers(); |
| 1670 | T = Context.getQualifiedType(T: Unqual, Qs: Quals); |
| 1671 | |
| 1672 | if (auto *CAT = Ctx.getAsConstantArrayType(T)) |
| 1673 | return static_cast<unsigned>(CAT->getSize().getZExtValue()); |
| 1674 | if (auto *VT = T->getAs<VectorType>()) |
| 1675 | return VT->getNumElements(); |
| 1676 | if (T->getAs<ComplexType>()) |
| 1677 | return 2u; |
| 1678 | |
| 1679 | llvm::APSInt TupleSize(Ctx.getTypeSize(T: Ctx.getSizeType())); |
| 1680 | switch (isTupleLike(S&: *this, Loc, T, Size&: TupleSize)) { |
| 1681 | case IsTupleLike::Error: |
| 1682 | return std::nullopt; |
| 1683 | case IsTupleLike::TupleLike: |
| 1684 | return static_cast<unsigned>(TupleSize.getExtValue()); |
| 1685 | case IsTupleLike::NotTupleLike: |
| 1686 | break; |
| 1687 | } |
| 1688 | |
| 1689 | const CXXRecordDecl *OrigRD = T->getAsCXXRecordDecl(); |
| 1690 | if (!OrigRD || OrigRD->isUnion()) |
| 1691 | return std::nullopt; |
| 1692 | |
| 1693 | if (RequireCompleteType(Loc, T, diag::err_incomplete_type)) |
| 1694 | return std::nullopt; |
| 1695 | |
| 1696 | CXXCastPath BasePath; |
| 1697 | DeclAccessPair BasePair = |
| 1698 | findDecomposableBaseClass(S&: *this, Loc, RD: OrigRD, BasePath); |
| 1699 | const auto *RD = cast_or_null<CXXRecordDecl>(Val: BasePair.getDecl()); |
| 1700 | if (!RD) |
| 1701 | return std::nullopt; |
| 1702 | |
| 1703 | unsigned NumFields = llvm::count_if( |
| 1704 | RD->fields(), [](FieldDecl *FD) { return !FD->isUnnamedBitField(); }); |
| 1705 | |
| 1706 | if (CheckMemberDecompositionFields(S&: *this, Loc, OrigRD, DecompType: T, BasePair)) |
| 1707 | return std::nullopt; |
| 1708 | |
| 1709 | return NumFields; |
| 1710 | } |
| 1711 | |
| 1712 | void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) { |
| 1713 | // Shortcut if exceptions are disabled. |
| 1714 | if (!getLangOpts().CXXExceptions) |
| 1715 | return; |
| 1716 | |
| 1717 | assert(Context.hasSameType(New->getType(), Old->getType()) && |
| 1718 | "Should only be called if types are otherwise the same." ); |
| 1719 | |
| 1720 | QualType NewType = New->getType(); |
| 1721 | QualType OldType = Old->getType(); |
| 1722 | |
| 1723 | // We're only interested in pointers and references to functions, as well |
| 1724 | // as pointers to member functions. |
| 1725 | if (const ReferenceType *R = NewType->getAs<ReferenceType>()) { |
| 1726 | NewType = R->getPointeeType(); |
| 1727 | OldType = OldType->castAs<ReferenceType>()->getPointeeType(); |
| 1728 | } else if (const PointerType *P = NewType->getAs<PointerType>()) { |
| 1729 | NewType = P->getPointeeType(); |
| 1730 | OldType = OldType->castAs<PointerType>()->getPointeeType(); |
| 1731 | } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) { |
| 1732 | NewType = M->getPointeeType(); |
| 1733 | OldType = OldType->castAs<MemberPointerType>()->getPointeeType(); |
| 1734 | } |
| 1735 | |
| 1736 | if (!NewType->isFunctionProtoType()) |
| 1737 | return; |
| 1738 | |
| 1739 | // There's lots of special cases for functions. For function pointers, system |
| 1740 | // libraries are hopefully not as broken so that we don't need these |
| 1741 | // workarounds. |
| 1742 | if (CheckEquivalentExceptionSpec( |
| 1743 | OldType->getAs<FunctionProtoType>(), Old->getLocation(), |
| 1744 | NewType->getAs<FunctionProtoType>(), New->getLocation())) { |
| 1745 | New->setInvalidDecl(); |
| 1746 | } |
| 1747 | } |
| 1748 | |
| 1749 | /// CheckCXXDefaultArguments - Verify that the default arguments for a |
| 1750 | /// function declaration are well-formed according to C++ |
| 1751 | /// [dcl.fct.default]. |
| 1752 | void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { |
| 1753 | // This checking doesn't make sense for explicit specializations; their |
| 1754 | // default arguments are determined by the declaration we're specializing, |
| 1755 | // not by FD. |
| 1756 | if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) |
| 1757 | return; |
| 1758 | if (auto *FTD = FD->getDescribedFunctionTemplate()) |
| 1759 | if (FTD->isMemberSpecialization()) |
| 1760 | return; |
| 1761 | |
| 1762 | unsigned NumParams = FD->getNumParams(); |
| 1763 | unsigned ParamIdx = 0; |
| 1764 | |
| 1765 | // Find first parameter with a default argument |
| 1766 | for (; ParamIdx < NumParams; ++ParamIdx) { |
| 1767 | ParmVarDecl *Param = FD->getParamDecl(i: ParamIdx); |
| 1768 | if (Param->hasDefaultArg()) |
| 1769 | break; |
| 1770 | } |
| 1771 | |
| 1772 | // C++20 [dcl.fct.default]p4: |
| 1773 | // In a given function declaration, each parameter subsequent to a parameter |
| 1774 | // with a default argument shall have a default argument supplied in this or |
| 1775 | // a previous declaration, unless the parameter was expanded from a |
| 1776 | // parameter pack, or shall be a function parameter pack. |
| 1777 | for (++ParamIdx; ParamIdx < NumParams; ++ParamIdx) { |
| 1778 | ParmVarDecl *Param = FD->getParamDecl(i: ParamIdx); |
| 1779 | if (Param->hasDefaultArg() || Param->isParameterPack() || |
| 1780 | (CurrentInstantiationScope && |
| 1781 | CurrentInstantiationScope->isLocalPackExpansion(Param))) |
| 1782 | continue; |
| 1783 | if (Param->isInvalidDecl()) |
| 1784 | /* We already complained about this parameter. */; |
| 1785 | else if (Param->getIdentifier()) |
| 1786 | Diag(Param->getLocation(), diag::err_param_default_argument_missing_name) |
| 1787 | << Param->getIdentifier(); |
| 1788 | else |
| 1789 | Diag(Param->getLocation(), diag::err_param_default_argument_missing); |
| 1790 | } |
| 1791 | } |
| 1792 | |
| 1793 | /// Check that the given type is a literal type. Issue a diagnostic if not, |
| 1794 | /// if Kind is Diagnose. |
| 1795 | /// \return \c true if a problem has been found (and optionally diagnosed). |
| 1796 | template <typename... Ts> |
| 1797 | static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind, |
| 1798 | SourceLocation Loc, QualType T, unsigned DiagID, |
| 1799 | Ts &&...DiagArgs) { |
| 1800 | if (T->isDependentType()) |
| 1801 | return false; |
| 1802 | |
| 1803 | switch (Kind) { |
| 1804 | case Sema::CheckConstexprKind::Diagnose: |
| 1805 | return SemaRef.RequireLiteralType(Loc, T, DiagID, |
| 1806 | std::forward<Ts>(DiagArgs)...); |
| 1807 | |
| 1808 | case Sema::CheckConstexprKind::CheckValid: |
| 1809 | return !T->isLiteralType(Ctx: SemaRef.Context); |
| 1810 | } |
| 1811 | |
| 1812 | llvm_unreachable("unknown CheckConstexprKind" ); |
| 1813 | } |
| 1814 | |
| 1815 | /// Determine whether a destructor cannot be constexpr due to |
| 1816 | static bool CheckConstexprDestructorSubobjects(Sema &SemaRef, |
| 1817 | const CXXDestructorDecl *DD, |
| 1818 | Sema::CheckConstexprKind Kind) { |
| 1819 | assert(!SemaRef.getLangOpts().CPlusPlus23 && |
| 1820 | "this check is obsolete for C++23" ); |
| 1821 | auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) { |
| 1822 | const CXXRecordDecl *RD = |
| 1823 | T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
| 1824 | if (!RD || RD->hasConstexprDestructor()) |
| 1825 | return true; |
| 1826 | |
| 1827 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
| 1828 | SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject) |
| 1829 | << static_cast<int>(DD->getConstexprKind()) << !FD |
| 1830 | << (FD ? FD->getDeclName() : DeclarationName()) << T; |
| 1831 | SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject) |
| 1832 | << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T; |
| 1833 | } |
| 1834 | return false; |
| 1835 | }; |
| 1836 | |
| 1837 | const CXXRecordDecl *RD = DD->getParent(); |
| 1838 | for (const CXXBaseSpecifier &B : RD->bases()) |
| 1839 | if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr)) |
| 1840 | return false; |
| 1841 | for (const FieldDecl *FD : RD->fields()) |
| 1842 | if (!Check(FD->getLocation(), FD->getType(), FD)) |
| 1843 | return false; |
| 1844 | return true; |
| 1845 | } |
| 1846 | |
| 1847 | /// Check whether a function's parameter types are all literal types. If so, |
| 1848 | /// return true. If not, produce a suitable diagnostic and return false. |
| 1849 | static bool CheckConstexprParameterTypes(Sema &SemaRef, |
| 1850 | const FunctionDecl *FD, |
| 1851 | Sema::CheckConstexprKind Kind) { |
| 1852 | assert(!SemaRef.getLangOpts().CPlusPlus23 && |
| 1853 | "this check is obsolete for C++23" ); |
| 1854 | unsigned ArgIndex = 0; |
| 1855 | const auto *FT = FD->getType()->castAs<FunctionProtoType>(); |
| 1856 | for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(), |
| 1857 | e = FT->param_type_end(); |
| 1858 | i != e; ++i, ++ArgIndex) { |
| 1859 | const ParmVarDecl *PD = FD->getParamDecl(i: ArgIndex); |
| 1860 | assert(PD && "null in a parameter list" ); |
| 1861 | SourceLocation ParamLoc = PD->getLocation(); |
| 1862 | if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i, |
| 1863 | diag::err_constexpr_non_literal_param, ArgIndex + 1, |
| 1864 | PD->getSourceRange(), isa<CXXConstructorDecl>(FD), |
| 1865 | FD->isConsteval())) |
| 1866 | return false; |
| 1867 | } |
| 1868 | return true; |
| 1869 | } |
| 1870 | |
| 1871 | /// Check whether a function's return type is a literal type. If so, return |
| 1872 | /// true. If not, produce a suitable diagnostic and return false. |
| 1873 | static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD, |
| 1874 | Sema::CheckConstexprKind Kind) { |
| 1875 | assert(!SemaRef.getLangOpts().CPlusPlus23 && |
| 1876 | "this check is obsolete for C++23" ); |
| 1877 | if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(), |
| 1878 | diag::err_constexpr_non_literal_return, |
| 1879 | FD->isConsteval())) |
| 1880 | return false; |
| 1881 | return true; |
| 1882 | } |
| 1883 | |
| 1884 | /// Get diagnostic %select index for tag kind for |
| 1885 | /// record diagnostic message. |
| 1886 | /// WARNING: Indexes apply to particular diagnostics only! |
| 1887 | /// |
| 1888 | /// \returns diagnostic %select index. |
| 1889 | static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) { |
| 1890 | switch (Tag) { |
| 1891 | case TagTypeKind::Struct: |
| 1892 | return 0; |
| 1893 | case TagTypeKind::Interface: |
| 1894 | return 1; |
| 1895 | case TagTypeKind::Class: |
| 1896 | return 2; |
| 1897 | default: llvm_unreachable("Invalid tag kind for record diagnostic!" ); |
| 1898 | } |
| 1899 | } |
| 1900 | |
| 1901 | static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, |
| 1902 | Stmt *Body, |
| 1903 | Sema::CheckConstexprKind Kind); |
| 1904 | static bool CheckConstexprMissingReturn(Sema &SemaRef, const FunctionDecl *Dcl); |
| 1905 | |
| 1906 | bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD, |
| 1907 | CheckConstexprKind Kind) { |
| 1908 | const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: NewFD); |
| 1909 | if (MD && MD->isInstance()) { |
| 1910 | // C++11 [dcl.constexpr]p4: |
| 1911 | // The definition of a constexpr constructor shall satisfy the following |
| 1912 | // constraints: |
| 1913 | // - the class shall not have any virtual base classes; |
| 1914 | // |
| 1915 | // FIXME: This only applies to constructors and destructors, not arbitrary |
| 1916 | // member functions. |
| 1917 | const CXXRecordDecl *RD = MD->getParent(); |
| 1918 | if (RD->getNumVBases()) { |
| 1919 | if (Kind == CheckConstexprKind::CheckValid) |
| 1920 | return false; |
| 1921 | |
| 1922 | Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base) |
| 1923 | << isa<CXXConstructorDecl>(NewFD) |
| 1924 | << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases(); |
| 1925 | for (const auto &I : RD->vbases()) |
| 1926 | Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here) |
| 1927 | << I.getSourceRange(); |
| 1928 | return false; |
| 1929 | } |
| 1930 | } |
| 1931 | |
| 1932 | if (!isa<CXXConstructorDecl>(Val: NewFD)) { |
| 1933 | // C++11 [dcl.constexpr]p3: |
| 1934 | // The definition of a constexpr function shall satisfy the following |
| 1935 | // constraints: |
| 1936 | // - it shall not be virtual; (removed in C++20) |
| 1937 | const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: NewFD); |
| 1938 | if (Method && Method->isVirtual()) { |
| 1939 | if (getLangOpts().CPlusPlus20) { |
| 1940 | if (Kind == CheckConstexprKind::Diagnose) |
| 1941 | Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual); |
| 1942 | } else { |
| 1943 | if (Kind == CheckConstexprKind::CheckValid) |
| 1944 | return false; |
| 1945 | |
| 1946 | Method = Method->getCanonicalDecl(); |
| 1947 | Diag(Method->getLocation(), diag::err_constexpr_virtual); |
| 1948 | |
| 1949 | // If it's not obvious why this function is virtual, find an overridden |
| 1950 | // function which uses the 'virtual' keyword. |
| 1951 | const CXXMethodDecl *WrittenVirtual = Method; |
| 1952 | while (!WrittenVirtual->isVirtualAsWritten()) |
| 1953 | WrittenVirtual = *WrittenVirtual->begin_overridden_methods(); |
| 1954 | if (WrittenVirtual != Method) |
| 1955 | Diag(WrittenVirtual->getLocation(), |
| 1956 | diag::note_overridden_virtual_function); |
| 1957 | return false; |
| 1958 | } |
| 1959 | } |
| 1960 | |
| 1961 | // - its return type shall be a literal type; (removed in C++23) |
| 1962 | if (!getLangOpts().CPlusPlus23 && |
| 1963 | !CheckConstexprReturnType(SemaRef&: *this, FD: NewFD, Kind)) |
| 1964 | return false; |
| 1965 | } |
| 1966 | |
| 1967 | if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Val: NewFD)) { |
| 1968 | // A destructor can be constexpr only if the defaulted destructor could be; |
| 1969 | // we don't need to check the members and bases if we already know they all |
| 1970 | // have constexpr destructors. (removed in C++23) |
| 1971 | if (!getLangOpts().CPlusPlus23 && |
| 1972 | !Dtor->getParent()->defaultedDestructorIsConstexpr()) { |
| 1973 | if (Kind == CheckConstexprKind::CheckValid) |
| 1974 | return false; |
| 1975 | if (!CheckConstexprDestructorSubobjects(SemaRef&: *this, DD: Dtor, Kind)) |
| 1976 | return false; |
| 1977 | } |
| 1978 | } |
| 1979 | |
| 1980 | // - each of its parameter types shall be a literal type; (removed in C++23) |
| 1981 | if (!getLangOpts().CPlusPlus23 && |
| 1982 | !CheckConstexprParameterTypes(SemaRef&: *this, FD: NewFD, Kind)) |
| 1983 | return false; |
| 1984 | |
| 1985 | Stmt *Body = NewFD->getBody(); |
| 1986 | assert(Body && |
| 1987 | "CheckConstexprFunctionDefinition called on function with no body" ); |
| 1988 | return CheckConstexprFunctionBody(SemaRef&: *this, Dcl: NewFD, Body, Kind); |
| 1989 | } |
| 1990 | |
| 1991 | /// Check the given declaration statement is legal within a constexpr function |
| 1992 | /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3. |
| 1993 | /// |
| 1994 | /// \return true if the body is OK (maybe only as an extension), false if we |
| 1995 | /// have diagnosed a problem. |
| 1996 | static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl, |
| 1997 | DeclStmt *DS, SourceLocation &Cxx1yLoc, |
| 1998 | Sema::CheckConstexprKind Kind) { |
| 1999 | // C++11 [dcl.constexpr]p3 and p4: |
| 2000 | // The definition of a constexpr function(p3) or constructor(p4) [...] shall |
| 2001 | // contain only |
| 2002 | for (const auto *DclIt : DS->decls()) { |
| 2003 | switch (DclIt->getKind()) { |
| 2004 | case Decl::StaticAssert: |
| 2005 | case Decl::Using: |
| 2006 | case Decl::UsingShadow: |
| 2007 | case Decl::UsingDirective: |
| 2008 | case Decl::UnresolvedUsingTypename: |
| 2009 | case Decl::UnresolvedUsingValue: |
| 2010 | case Decl::UsingEnum: |
| 2011 | // - static_assert-declarations |
| 2012 | // - using-declarations, |
| 2013 | // - using-directives, |
| 2014 | // - using-enum-declaration |
| 2015 | continue; |
| 2016 | |
| 2017 | case Decl::Typedef: |
| 2018 | case Decl::TypeAlias: { |
| 2019 | // - typedef declarations and alias-declarations that do not define |
| 2020 | // classes or enumerations, |
| 2021 | const auto *TN = cast<TypedefNameDecl>(Val: DclIt); |
| 2022 | if (TN->getUnderlyingType()->isVariablyModifiedType()) { |
| 2023 | // Don't allow variably-modified types in constexpr functions. |
| 2024 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
| 2025 | TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc(); |
| 2026 | SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla) |
| 2027 | << TL.getSourceRange() << TL.getType() |
| 2028 | << isa<CXXConstructorDecl>(Dcl); |
| 2029 | } |
| 2030 | return false; |
| 2031 | } |
| 2032 | continue; |
| 2033 | } |
| 2034 | |
| 2035 | case Decl::Enum: |
| 2036 | case Decl::CXXRecord: |
| 2037 | // C++1y allows types to be defined, not just declared. |
| 2038 | if (cast<TagDecl>(Val: DclIt)->isThisDeclarationADefinition()) { |
| 2039 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
| 2040 | SemaRef.DiagCompat(DS->getBeginLoc(), |
| 2041 | diag_compat::constexpr_type_definition) |
| 2042 | << isa<CXXConstructorDecl>(Dcl); |
| 2043 | } else if (!SemaRef.getLangOpts().CPlusPlus14) { |
| 2044 | return false; |
| 2045 | } |
| 2046 | } |
| 2047 | continue; |
| 2048 | |
| 2049 | case Decl::EnumConstant: |
| 2050 | case Decl::IndirectField: |
| 2051 | case Decl::ParmVar: |
| 2052 | // These can only appear with other declarations which are banned in |
| 2053 | // C++11 and permitted in C++1y, so ignore them. |
| 2054 | continue; |
| 2055 | |
| 2056 | case Decl::Var: |
| 2057 | case Decl::Decomposition: { |
| 2058 | // C++1y [dcl.constexpr]p3 allows anything except: |
| 2059 | // a definition of a variable of non-literal type or of static or |
| 2060 | // thread storage duration or [before C++2a] for which no |
| 2061 | // initialization is performed. |
| 2062 | const auto *VD = cast<VarDecl>(Val: DclIt); |
| 2063 | if (VD->isThisDeclarationADefinition()) { |
| 2064 | if (VD->isStaticLocal()) { |
| 2065 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
| 2066 | SemaRef.DiagCompat(VD->getLocation(), |
| 2067 | diag_compat::constexpr_static_var) |
| 2068 | << isa<CXXConstructorDecl>(Dcl) |
| 2069 | << (VD->getTLSKind() == VarDecl::TLS_Dynamic); |
| 2070 | } else if (!SemaRef.getLangOpts().CPlusPlus23) { |
| 2071 | return false; |
| 2072 | } |
| 2073 | } |
| 2074 | if (SemaRef.LangOpts.CPlusPlus23) { |
| 2075 | CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(), |
| 2076 | diag::warn_cxx20_compat_constexpr_var, |
| 2077 | isa<CXXConstructorDecl>(Dcl)); |
| 2078 | } else if (CheckLiteralType( |
| 2079 | SemaRef, Kind, VD->getLocation(), VD->getType(), |
| 2080 | diag::err_constexpr_local_var_non_literal_type, |
| 2081 | isa<CXXConstructorDecl>(Dcl))) { |
| 2082 | return false; |
| 2083 | } |
| 2084 | if (!VD->getType()->isDependentType() && |
| 2085 | !VD->hasInit() && !VD->isCXXForRangeDecl()) { |
| 2086 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
| 2087 | SemaRef.DiagCompat(VD->getLocation(), |
| 2088 | diag_compat::constexpr_local_var_no_init) |
| 2089 | << isa<CXXConstructorDecl>(Dcl); |
| 2090 | } else if (!SemaRef.getLangOpts().CPlusPlus20) { |
| 2091 | return false; |
| 2092 | } |
| 2093 | continue; |
| 2094 | } |
| 2095 | } |
| 2096 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
| 2097 | SemaRef.DiagCompat(VD->getLocation(), diag_compat::constexpr_local_var) |
| 2098 | << isa<CXXConstructorDecl>(Dcl); |
| 2099 | } else if (!SemaRef.getLangOpts().CPlusPlus14) { |
| 2100 | return false; |
| 2101 | } |
| 2102 | continue; |
| 2103 | } |
| 2104 | |
| 2105 | case Decl::NamespaceAlias: |
| 2106 | case Decl::Function: |
| 2107 | // These are disallowed in C++11 and permitted in C++1y. Allow them |
| 2108 | // everywhere as an extension. |
| 2109 | if (!Cxx1yLoc.isValid()) |
| 2110 | Cxx1yLoc = DS->getBeginLoc(); |
| 2111 | continue; |
| 2112 | |
| 2113 | default: |
| 2114 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
| 2115 | SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) |
| 2116 | << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); |
| 2117 | } |
| 2118 | return false; |
| 2119 | } |
| 2120 | } |
| 2121 | |
| 2122 | return true; |
| 2123 | } |
| 2124 | |
| 2125 | /// Check that the given field is initialized within a constexpr constructor. |
| 2126 | /// |
| 2127 | /// \param Dcl The constexpr constructor being checked. |
| 2128 | /// \param Field The field being checked. This may be a member of an anonymous |
| 2129 | /// struct or union nested within the class being checked. |
| 2130 | /// \param Inits All declarations, including anonymous struct/union members and |
| 2131 | /// indirect members, for which any initialization was provided. |
| 2132 | /// \param Diagnosed Whether we've emitted the error message yet. Used to attach |
| 2133 | /// multiple notes for different members to the same error. |
| 2134 | /// \param Kind Whether we're diagnosing a constructor as written or determining |
| 2135 | /// whether the formal requirements are satisfied. |
| 2136 | /// \return \c false if we're checking for validity and the constructor does |
| 2137 | /// not satisfy the requirements on a constexpr constructor. |
| 2138 | static bool CheckConstexprCtorInitializer(Sema &SemaRef, |
| 2139 | const FunctionDecl *Dcl, |
| 2140 | FieldDecl *Field, |
| 2141 | llvm::SmallSet<Decl*, 16> &Inits, |
| 2142 | bool &Diagnosed, |
| 2143 | Sema::CheckConstexprKind Kind) { |
| 2144 | // In C++20 onwards, there's nothing to check for validity. |
| 2145 | if (Kind == Sema::CheckConstexprKind::CheckValid && |
| 2146 | SemaRef.getLangOpts().CPlusPlus20) |
| 2147 | return true; |
| 2148 | |
| 2149 | if (Field->isInvalidDecl()) |
| 2150 | return true; |
| 2151 | |
| 2152 | if (Field->isUnnamedBitField()) |
| 2153 | return true; |
| 2154 | |
| 2155 | // Anonymous unions with no variant members and empty anonymous structs do not |
| 2156 | // need to be explicitly initialized. FIXME: Anonymous structs that contain no |
| 2157 | // indirect fields don't need initializing. |
| 2158 | if (Field->isAnonymousStructOrUnion() && |
| 2159 | (Field->getType()->isUnionType() |
| 2160 | ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers() |
| 2161 | : Field->getType()->getAsCXXRecordDecl()->isEmpty())) |
| 2162 | return true; |
| 2163 | |
| 2164 | if (!Inits.count(Field)) { |
| 2165 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
| 2166 | if (!Diagnosed) { |
| 2167 | SemaRef.DiagCompat(Dcl->getLocation(), |
| 2168 | diag_compat::constexpr_ctor_missing_init); |
| 2169 | Diagnosed = true; |
| 2170 | } |
| 2171 | SemaRef.Diag(Field->getLocation(), |
| 2172 | diag::note_constexpr_ctor_missing_init); |
| 2173 | } else if (!SemaRef.getLangOpts().CPlusPlus20) { |
| 2174 | return false; |
| 2175 | } |
| 2176 | } else if (Field->isAnonymousStructOrUnion()) { |
| 2177 | const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl(); |
| 2178 | for (auto *I : RD->fields()) |
| 2179 | // If an anonymous union contains an anonymous struct of which any member |
| 2180 | // is initialized, all members must be initialized. |
| 2181 | if (!RD->isUnion() || Inits.count(I)) |
| 2182 | if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, |
| 2183 | Kind)) |
| 2184 | return false; |
| 2185 | } |
| 2186 | return true; |
| 2187 | } |
| 2188 | |
| 2189 | /// Check the provided statement is allowed in a constexpr function |
| 2190 | /// definition. |
| 2191 | static bool |
| 2192 | CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S, |
| 2193 | SmallVectorImpl<SourceLocation> &ReturnStmts, |
| 2194 | SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc, |
| 2195 | SourceLocation &Cxx2bLoc, |
| 2196 | Sema::CheckConstexprKind Kind) { |
| 2197 | // - its function-body shall be [...] a compound-statement that contains only |
| 2198 | switch (S->getStmtClass()) { |
| 2199 | case Stmt::NullStmtClass: |
| 2200 | // - null statements, |
| 2201 | return true; |
| 2202 | |
| 2203 | case Stmt::DeclStmtClass: |
| 2204 | // - static_assert-declarations |
| 2205 | // - using-declarations, |
| 2206 | // - using-directives, |
| 2207 | // - typedef declarations and alias-declarations that do not define |
| 2208 | // classes or enumerations, |
| 2209 | if (!CheckConstexprDeclStmt(SemaRef, Dcl, DS: cast<DeclStmt>(Val: S), Cxx1yLoc, Kind)) |
| 2210 | return false; |
| 2211 | return true; |
| 2212 | |
| 2213 | case Stmt::ReturnStmtClass: |
| 2214 | // - and exactly one return statement; |
| 2215 | if (isa<CXXConstructorDecl>(Val: Dcl)) { |
| 2216 | // C++1y allows return statements in constexpr constructors. |
| 2217 | if (!Cxx1yLoc.isValid()) |
| 2218 | Cxx1yLoc = S->getBeginLoc(); |
| 2219 | return true; |
| 2220 | } |
| 2221 | |
| 2222 | ReturnStmts.push_back(Elt: S->getBeginLoc()); |
| 2223 | return true; |
| 2224 | |
| 2225 | case Stmt::AttributedStmtClass: |
| 2226 | // Attributes on a statement don't affect its formal kind and hence don't |
| 2227 | // affect its validity in a constexpr function. |
| 2228 | return CheckConstexprFunctionStmt( |
| 2229 | SemaRef, Dcl, S: cast<AttributedStmt>(Val: S)->getSubStmt(), ReturnStmts, |
| 2230 | Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind); |
| 2231 | |
| 2232 | case Stmt::CompoundStmtClass: { |
| 2233 | // C++1y allows compound-statements. |
| 2234 | if (!Cxx1yLoc.isValid()) |
| 2235 | Cxx1yLoc = S->getBeginLoc(); |
| 2236 | |
| 2237 | CompoundStmt *CompStmt = cast<CompoundStmt>(Val: S); |
| 2238 | for (auto *BodyIt : CompStmt->body()) { |
| 2239 | if (!CheckConstexprFunctionStmt(SemaRef, Dcl, S: BodyIt, ReturnStmts, |
| 2240 | Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) |
| 2241 | return false; |
| 2242 | } |
| 2243 | return true; |
| 2244 | } |
| 2245 | |
| 2246 | case Stmt::IfStmtClass: { |
| 2247 | // C++1y allows if-statements. |
| 2248 | if (!Cxx1yLoc.isValid()) |
| 2249 | Cxx1yLoc = S->getBeginLoc(); |
| 2250 | |
| 2251 | IfStmt *If = cast<IfStmt>(Val: S); |
| 2252 | if (!CheckConstexprFunctionStmt(SemaRef, Dcl, S: If->getThen(), ReturnStmts, |
| 2253 | Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) |
| 2254 | return false; |
| 2255 | if (If->getElse() && |
| 2256 | !CheckConstexprFunctionStmt(SemaRef, Dcl, S: If->getElse(), ReturnStmts, |
| 2257 | Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) |
| 2258 | return false; |
| 2259 | return true; |
| 2260 | } |
| 2261 | |
| 2262 | case Stmt::WhileStmtClass: |
| 2263 | case Stmt::DoStmtClass: |
| 2264 | case Stmt::ForStmtClass: |
| 2265 | case Stmt::CXXForRangeStmtClass: |
| 2266 | case Stmt::ContinueStmtClass: |
| 2267 | // C++1y allows all of these. We don't allow them as extensions in C++11, |
| 2268 | // because they don't make sense without variable mutation. |
| 2269 | if (!SemaRef.getLangOpts().CPlusPlus14) |
| 2270 | break; |
| 2271 | if (!Cxx1yLoc.isValid()) |
| 2272 | Cxx1yLoc = S->getBeginLoc(); |
| 2273 | for (Stmt *SubStmt : S->children()) { |
| 2274 | if (SubStmt && |
| 2275 | !CheckConstexprFunctionStmt(SemaRef, Dcl, S: SubStmt, ReturnStmts, |
| 2276 | Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) |
| 2277 | return false; |
| 2278 | } |
| 2279 | return true; |
| 2280 | |
| 2281 | case Stmt::SwitchStmtClass: |
| 2282 | case Stmt::CaseStmtClass: |
| 2283 | case Stmt::DefaultStmtClass: |
| 2284 | case Stmt::BreakStmtClass: |
| 2285 | // C++1y allows switch-statements, and since they don't need variable |
| 2286 | // mutation, we can reasonably allow them in C++11 as an extension. |
| 2287 | if (!Cxx1yLoc.isValid()) |
| 2288 | Cxx1yLoc = S->getBeginLoc(); |
| 2289 | for (Stmt *SubStmt : S->children()) { |
| 2290 | if (SubStmt && |
| 2291 | !CheckConstexprFunctionStmt(SemaRef, Dcl, S: SubStmt, ReturnStmts, |
| 2292 | Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) |
| 2293 | return false; |
| 2294 | } |
| 2295 | return true; |
| 2296 | |
| 2297 | case Stmt::LabelStmtClass: |
| 2298 | case Stmt::GotoStmtClass: |
| 2299 | if (Cxx2bLoc.isInvalid()) |
| 2300 | Cxx2bLoc = S->getBeginLoc(); |
| 2301 | for (Stmt *SubStmt : S->children()) { |
| 2302 | if (SubStmt && |
| 2303 | !CheckConstexprFunctionStmt(SemaRef, Dcl, S: SubStmt, ReturnStmts, |
| 2304 | Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) |
| 2305 | return false; |
| 2306 | } |
| 2307 | return true; |
| 2308 | |
| 2309 | case Stmt::GCCAsmStmtClass: |
| 2310 | case Stmt::MSAsmStmtClass: |
| 2311 | // C++2a allows inline assembly statements. |
| 2312 | case Stmt::CXXTryStmtClass: |
| 2313 | if (Cxx2aLoc.isInvalid()) |
| 2314 | Cxx2aLoc = S->getBeginLoc(); |
| 2315 | for (Stmt *SubStmt : S->children()) { |
| 2316 | if (SubStmt && |
| 2317 | !CheckConstexprFunctionStmt(SemaRef, Dcl, S: SubStmt, ReturnStmts, |
| 2318 | Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) |
| 2319 | return false; |
| 2320 | } |
| 2321 | return true; |
| 2322 | |
| 2323 | case Stmt::CXXCatchStmtClass: |
| 2324 | // Do not bother checking the language mode (already covered by the |
| 2325 | // try block check). |
| 2326 | if (!CheckConstexprFunctionStmt( |
| 2327 | SemaRef, Dcl, S: cast<CXXCatchStmt>(Val: S)->getHandlerBlock(), ReturnStmts, |
| 2328 | Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) |
| 2329 | return false; |
| 2330 | return true; |
| 2331 | |
| 2332 | default: |
| 2333 | if (!isa<Expr>(Val: S)) |
| 2334 | break; |
| 2335 | |
| 2336 | // C++1y allows expression-statements. |
| 2337 | if (!Cxx1yLoc.isValid()) |
| 2338 | Cxx1yLoc = S->getBeginLoc(); |
| 2339 | return true; |
| 2340 | } |
| 2341 | |
| 2342 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
| 2343 | SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt) |
| 2344 | << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval(); |
| 2345 | } |
| 2346 | return false; |
| 2347 | } |
| 2348 | |
| 2349 | /// Check the body for the given constexpr function declaration only contains |
| 2350 | /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4. |
| 2351 | /// |
| 2352 | /// \return true if the body is OK, false if we have found or diagnosed a |
| 2353 | /// problem. |
| 2354 | static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl, |
| 2355 | Stmt *Body, |
| 2356 | Sema::CheckConstexprKind Kind) { |
| 2357 | SmallVector<SourceLocation, 4> ReturnStmts; |
| 2358 | |
| 2359 | if (isa<CXXTryStmt>(Val: Body)) { |
| 2360 | // C++11 [dcl.constexpr]p3: |
| 2361 | // The definition of a constexpr function shall satisfy the following |
| 2362 | // constraints: [...] |
| 2363 | // - its function-body shall be = delete, = default, or a |
| 2364 | // compound-statement |
| 2365 | // |
| 2366 | // C++11 [dcl.constexpr]p4: |
| 2367 | // In the definition of a constexpr constructor, [...] |
| 2368 | // - its function-body shall not be a function-try-block; |
| 2369 | // |
| 2370 | // This restriction is lifted in C++2a, as long as inner statements also |
| 2371 | // apply the general constexpr rules. |
| 2372 | switch (Kind) { |
| 2373 | case Sema::CheckConstexprKind::CheckValid: |
| 2374 | if (!SemaRef.getLangOpts().CPlusPlus20) |
| 2375 | return false; |
| 2376 | break; |
| 2377 | |
| 2378 | case Sema::CheckConstexprKind::Diagnose: |
| 2379 | SemaRef.DiagCompat(Body->getBeginLoc(), |
| 2380 | diag_compat::constexpr_function_try_block) |
| 2381 | << isa<CXXConstructorDecl>(Dcl); |
| 2382 | break; |
| 2383 | } |
| 2384 | } |
| 2385 | |
| 2386 | // - its function-body shall be [...] a compound-statement that contains only |
| 2387 | // [... list of cases ...] |
| 2388 | // |
| 2389 | // Note that walking the children here is enough to properly check for |
| 2390 | // CompoundStmt and CXXTryStmt body. |
| 2391 | SourceLocation Cxx1yLoc, Cxx2aLoc, Cxx2bLoc; |
| 2392 | for (Stmt *SubStmt : Body->children()) { |
| 2393 | if (SubStmt && |
| 2394 | !CheckConstexprFunctionStmt(SemaRef, Dcl, S: SubStmt, ReturnStmts, |
| 2395 | Cxx1yLoc, Cxx2aLoc, Cxx2bLoc, Kind)) |
| 2396 | return false; |
| 2397 | } |
| 2398 | |
| 2399 | if (Kind == Sema::CheckConstexprKind::CheckValid) { |
| 2400 | // If this is only valid as an extension, report that we don't satisfy the |
| 2401 | // constraints of the current language. |
| 2402 | if ((Cxx2bLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus23) || |
| 2403 | (Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus20) || |
| 2404 | (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17)) |
| 2405 | return false; |
| 2406 | } else if (Cxx2bLoc.isValid()) { |
| 2407 | SemaRef.DiagCompat(Cxx2bLoc, diag_compat::cxx23_constexpr_body_invalid_stmt) |
| 2408 | << isa<CXXConstructorDecl>(Dcl); |
| 2409 | } else if (Cxx2aLoc.isValid()) { |
| 2410 | SemaRef.DiagCompat(Cxx2aLoc, diag_compat::cxx20_constexpr_body_invalid_stmt) |
| 2411 | << isa<CXXConstructorDecl>(Dcl); |
| 2412 | } else if (Cxx1yLoc.isValid()) { |
| 2413 | SemaRef.DiagCompat(Cxx1yLoc, diag_compat::cxx14_constexpr_body_invalid_stmt) |
| 2414 | << isa<CXXConstructorDecl>(Dcl); |
| 2415 | } |
| 2416 | |
| 2417 | if (const CXXConstructorDecl *Constructor |
| 2418 | = dyn_cast<CXXConstructorDecl>(Val: Dcl)) { |
| 2419 | const CXXRecordDecl *RD = Constructor->getParent(); |
| 2420 | // DR1359: |
| 2421 | // - every non-variant non-static data member and base class sub-object |
| 2422 | // shall be initialized; |
| 2423 | // DR1460: |
| 2424 | // - if the class is a union having variant members, exactly one of them |
| 2425 | // shall be initialized; |
| 2426 | if (RD->isUnion()) { |
| 2427 | if (Constructor->getNumCtorInitializers() == 0 && |
| 2428 | RD->hasVariantMembers()) { |
| 2429 | if (Kind == Sema::CheckConstexprKind::Diagnose) { |
| 2430 | SemaRef.DiagCompat(Dcl->getLocation(), |
| 2431 | diag_compat::constexpr_union_ctor_no_init); |
| 2432 | } else if (!SemaRef.getLangOpts().CPlusPlus20) { |
| 2433 | return false; |
| 2434 | } |
| 2435 | } |
| 2436 | } else if (!Constructor->isDependentContext() && |
| 2437 | !Constructor->isDelegatingConstructor()) { |
| 2438 | assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases" ); |
| 2439 | |
| 2440 | // Skip detailed checking if we have enough initializers, and we would |
| 2441 | // allow at most one initializer per member. |
| 2442 | bool AnyAnonStructUnionMembers = false; |
| 2443 | unsigned Fields = 0; |
| 2444 | for (CXXRecordDecl::field_iterator I = RD->field_begin(), |
| 2445 | E = RD->field_end(); I != E; ++I, ++Fields) { |
| 2446 | if (I->isAnonymousStructOrUnion()) { |
| 2447 | AnyAnonStructUnionMembers = true; |
| 2448 | break; |
| 2449 | } |
| 2450 | } |
| 2451 | // DR1460: |
| 2452 | // - if the class is a union-like class, but is not a union, for each of |
| 2453 | // its anonymous union members having variant members, exactly one of |
| 2454 | // them shall be initialized; |
| 2455 | if (AnyAnonStructUnionMembers || |
| 2456 | Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) { |
| 2457 | // Check initialization of non-static data members. Base classes are |
| 2458 | // always initialized so do not need to be checked. Dependent bases |
| 2459 | // might not have initializers in the member initializer list. |
| 2460 | llvm::SmallSet<Decl*, 16> Inits; |
| 2461 | for (const auto *I: Constructor->inits()) { |
| 2462 | if (FieldDecl *FD = I->getMember()) |
| 2463 | Inits.insert(FD); |
| 2464 | else if (IndirectFieldDecl *ID = I->getIndirectMember()) |
| 2465 | Inits.insert(I: ID->chain_begin(), E: ID->chain_end()); |
| 2466 | } |
| 2467 | |
| 2468 | bool Diagnosed = false; |
| 2469 | for (auto *I : RD->fields()) |
| 2470 | if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed, |
| 2471 | Kind)) |
| 2472 | return false; |
| 2473 | } |
| 2474 | } |
| 2475 | } else { |
| 2476 | if (ReturnStmts.empty()) { |
| 2477 | switch (Kind) { |
| 2478 | case Sema::CheckConstexprKind::Diagnose: |
| 2479 | if (!CheckConstexprMissingReturn(SemaRef, Dcl)) |
| 2480 | return false; |
| 2481 | break; |
| 2482 | |
| 2483 | case Sema::CheckConstexprKind::CheckValid: |
| 2484 | // The formal requirements don't include this rule in C++14, even |
| 2485 | // though the "must be able to produce a constant expression" rules |
| 2486 | // still imply it in some cases. |
| 2487 | if (!SemaRef.getLangOpts().CPlusPlus14) |
| 2488 | return false; |
| 2489 | break; |
| 2490 | } |
| 2491 | } else if (ReturnStmts.size() > 1) { |
| 2492 | switch (Kind) { |
| 2493 | case Sema::CheckConstexprKind::Diagnose: |
| 2494 | SemaRef.DiagCompat(ReturnStmts.back(), |
| 2495 | diag_compat::constexpr_body_multiple_return); |
| 2496 | for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I) |
| 2497 | SemaRef.Diag(ReturnStmts[I], |
| 2498 | diag::note_constexpr_body_previous_return); |
| 2499 | break; |
| 2500 | |
| 2501 | case Sema::CheckConstexprKind::CheckValid: |
| 2502 | if (!SemaRef.getLangOpts().CPlusPlus14) |
| 2503 | return false; |
| 2504 | break; |
| 2505 | } |
| 2506 | } |
| 2507 | } |
| 2508 | |
| 2509 | // C++11 [dcl.constexpr]p5: |
| 2510 | // if no function argument values exist such that the function invocation |
| 2511 | // substitution would produce a constant expression, the program is |
| 2512 | // ill-formed; no diagnostic required. |
| 2513 | // C++11 [dcl.constexpr]p3: |
| 2514 | // - every constructor call and implicit conversion used in initializing the |
| 2515 | // return value shall be one of those allowed in a constant expression. |
| 2516 | // C++11 [dcl.constexpr]p4: |
| 2517 | // - every constructor involved in initializing non-static data members and |
| 2518 | // base class sub-objects shall be a constexpr constructor. |
| 2519 | // |
| 2520 | // Note that this rule is distinct from the "requirements for a constexpr |
| 2521 | // function", so is not checked in CheckValid mode. Because the check for |
| 2522 | // constexpr potential is expensive, skip the check if the diagnostic is |
| 2523 | // disabled, the function is declared in a system header, or we're in C++23 |
| 2524 | // or later mode (see https://wg21.link/P2448). |
| 2525 | bool SkipCheck = |
| 2526 | !SemaRef.getLangOpts().CheckConstexprFunctionBodies || |
| 2527 | SemaRef.getSourceManager().isInSystemHeader(Dcl->getLocation()) || |
| 2528 | SemaRef.getDiagnostics().isIgnored( |
| 2529 | diag::ext_constexpr_function_never_constant_expr, Dcl->getLocation()); |
| 2530 | SmallVector<PartialDiagnosticAt, 8> Diags; |
| 2531 | if (Kind == Sema::CheckConstexprKind::Diagnose && !SkipCheck && |
| 2532 | !Expr::isPotentialConstantExpr(FD: Dcl, Diags)) { |
| 2533 | SemaRef.Diag(Dcl->getLocation(), |
| 2534 | diag::ext_constexpr_function_never_constant_expr) |
| 2535 | << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval() |
| 2536 | << Dcl->getNameInfo().getSourceRange(); |
| 2537 | for (size_t I = 0, N = Diags.size(); I != N; ++I) |
| 2538 | SemaRef.Diag(Diags[I].first, Diags[I].second); |
| 2539 | // Don't return false here: we allow this for compatibility in |
| 2540 | // system headers. |
| 2541 | } |
| 2542 | |
| 2543 | return true; |
| 2544 | } |
| 2545 | |
| 2546 | static bool CheckConstexprMissingReturn(Sema &SemaRef, |
| 2547 | const FunctionDecl *Dcl) { |
| 2548 | bool IsVoidOrDependentType = Dcl->getReturnType()->isVoidType() || |
| 2549 | Dcl->getReturnType()->isDependentType(); |
| 2550 | // Skip emitting a missing return error diagnostic for non-void functions |
| 2551 | // since C++23 no longer mandates constexpr functions to yield constant |
| 2552 | // expressions. |
| 2553 | if (SemaRef.getLangOpts().CPlusPlus23 && !IsVoidOrDependentType) |
| 2554 | return true; |
| 2555 | |
| 2556 | // C++14 doesn't require constexpr functions to contain a 'return' |
| 2557 | // statement. We still do, unless the return type might be void, because |
| 2558 | // otherwise if there's no return statement, the function cannot |
| 2559 | // be used in a core constant expression. |
| 2560 | bool OK = SemaRef.getLangOpts().CPlusPlus14 && IsVoidOrDependentType; |
| 2561 | SemaRef.Diag(Dcl->getLocation(), |
| 2562 | OK ? diag::warn_cxx11_compat_constexpr_body_no_return |
| 2563 | : diag::err_constexpr_body_no_return) |
| 2564 | << Dcl->isConsteval(); |
| 2565 | return OK; |
| 2566 | } |
| 2567 | |
| 2568 | bool Sema::CheckImmediateEscalatingFunctionDefinition( |
| 2569 | FunctionDecl *FD, const sema::FunctionScopeInfo *FSI) { |
| 2570 | if (!getLangOpts().CPlusPlus20 || !FD->isImmediateEscalating()) |
| 2571 | return true; |
| 2572 | FD->setBodyContainsImmediateEscalatingExpressions( |
| 2573 | FSI->FoundImmediateEscalatingExpression); |
| 2574 | if (FSI->FoundImmediateEscalatingExpression) { |
| 2575 | auto it = UndefinedButUsed.find(FD->getCanonicalDecl()); |
| 2576 | if (it != UndefinedButUsed.end()) { |
| 2577 | Diag(it->second, diag::err_immediate_function_used_before_definition) |
| 2578 | << it->first; |
| 2579 | Diag(FD->getLocation(), diag::note_defined_here) << FD; |
| 2580 | if (FD->isImmediateFunction() && !FD->isConsteval()) |
| 2581 | DiagnoseImmediateEscalatingReason(FD); |
| 2582 | return false; |
| 2583 | } |
| 2584 | } |
| 2585 | return true; |
| 2586 | } |
| 2587 | |
| 2588 | void Sema::DiagnoseImmediateEscalatingReason(FunctionDecl *FD) { |
| 2589 | assert(FD->isImmediateEscalating() && !FD->isConsteval() && |
| 2590 | "expected an immediate function" ); |
| 2591 | assert(FD->hasBody() && "expected the function to have a body" ); |
| 2592 | struct ImmediateEscalatingExpressionsVisitor : DynamicRecursiveASTVisitor { |
| 2593 | Sema &SemaRef; |
| 2594 | |
| 2595 | const FunctionDecl *ImmediateFn; |
| 2596 | bool ImmediateFnIsConstructor; |
| 2597 | CXXConstructorDecl *CurrentConstructor = nullptr; |
| 2598 | CXXCtorInitializer *CurrentInit = nullptr; |
| 2599 | |
| 2600 | ImmediateEscalatingExpressionsVisitor(Sema &SemaRef, FunctionDecl *FD) |
| 2601 | : SemaRef(SemaRef), ImmediateFn(FD), |
| 2602 | ImmediateFnIsConstructor(isa<CXXConstructorDecl>(Val: FD)) { |
| 2603 | ShouldVisitImplicitCode = true; |
| 2604 | ShouldVisitLambdaBody = false; |
| 2605 | } |
| 2606 | |
| 2607 | void Diag(const Expr *E, const FunctionDecl *Fn, bool IsCall) { |
| 2608 | SourceLocation Loc = E->getBeginLoc(); |
| 2609 | SourceRange Range = E->getSourceRange(); |
| 2610 | if (CurrentConstructor && CurrentInit) { |
| 2611 | Loc = CurrentConstructor->getLocation(); |
| 2612 | Range = CurrentInit->isWritten() ? CurrentInit->getSourceRange() |
| 2613 | : SourceRange(); |
| 2614 | } |
| 2615 | |
| 2616 | FieldDecl* InitializedField = CurrentInit ? CurrentInit->getAnyMember() : nullptr; |
| 2617 | |
| 2618 | SemaRef.Diag(Loc, diag::note_immediate_function_reason) |
| 2619 | << ImmediateFn << Fn << Fn->isConsteval() << IsCall |
| 2620 | << isa<CXXConstructorDecl>(Fn) << ImmediateFnIsConstructor |
| 2621 | << (InitializedField != nullptr) |
| 2622 | << (CurrentInit && !CurrentInit->isWritten()) |
| 2623 | << InitializedField << Range; |
| 2624 | } |
| 2625 | bool TraverseCallExpr(CallExpr *E) override { |
| 2626 | if (const auto *DR = |
| 2627 | dyn_cast<DeclRefExpr>(Val: E->getCallee()->IgnoreImplicit()); |
| 2628 | DR && DR->isImmediateEscalating()) { |
| 2629 | Diag(E, E->getDirectCallee(), /*IsCall=*/true); |
| 2630 | return false; |
| 2631 | } |
| 2632 | |
| 2633 | for (Expr *A : E->arguments()) |
| 2634 | if (!TraverseStmt(A)) |
| 2635 | return false; |
| 2636 | |
| 2637 | return true; |
| 2638 | } |
| 2639 | |
| 2640 | bool VisitDeclRefExpr(DeclRefExpr *E) override { |
| 2641 | if (const auto *ReferencedFn = dyn_cast<FunctionDecl>(Val: E->getDecl()); |
| 2642 | ReferencedFn && E->isImmediateEscalating()) { |
| 2643 | Diag(E, ReferencedFn, /*IsCall=*/false); |
| 2644 | return false; |
| 2645 | } |
| 2646 | |
| 2647 | return true; |
| 2648 | } |
| 2649 | |
| 2650 | bool VisitCXXConstructExpr(CXXConstructExpr *E) override { |
| 2651 | CXXConstructorDecl *D = E->getConstructor(); |
| 2652 | if (E->isImmediateEscalating()) { |
| 2653 | Diag(E, D, /*IsCall=*/true); |
| 2654 | return false; |
| 2655 | } |
| 2656 | return true; |
| 2657 | } |
| 2658 | |
| 2659 | bool TraverseConstructorInitializer(CXXCtorInitializer *Init) override { |
| 2660 | llvm::SaveAndRestore RAII(CurrentInit, Init); |
| 2661 | return DynamicRecursiveASTVisitor::TraverseConstructorInitializer(Init); |
| 2662 | } |
| 2663 | |
| 2664 | bool TraverseCXXConstructorDecl(CXXConstructorDecl *Ctr) override { |
| 2665 | llvm::SaveAndRestore RAII(CurrentConstructor, Ctr); |
| 2666 | return DynamicRecursiveASTVisitor::TraverseCXXConstructorDecl(Ctr); |
| 2667 | } |
| 2668 | |
| 2669 | bool TraverseType(QualType T) override { return true; } |
| 2670 | bool VisitBlockExpr(BlockExpr *T) override { return true; } |
| 2671 | |
| 2672 | } Visitor(*this, FD); |
| 2673 | Visitor.TraverseDecl(FD); |
| 2674 | } |
| 2675 | |
| 2676 | CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) { |
| 2677 | assert(getLangOpts().CPlusPlus && "No class names in C!" ); |
| 2678 | |
| 2679 | if (SS && SS->isInvalid()) |
| 2680 | return nullptr; |
| 2681 | |
| 2682 | if (SS && SS->isNotEmpty()) { |
| 2683 | DeclContext *DC = computeDeclContext(SS: *SS, EnteringContext: true); |
| 2684 | return dyn_cast_or_null<CXXRecordDecl>(Val: DC); |
| 2685 | } |
| 2686 | |
| 2687 | return dyn_cast_or_null<CXXRecordDecl>(Val: CurContext); |
| 2688 | } |
| 2689 | |
| 2690 | bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S, |
| 2691 | const CXXScopeSpec *SS) { |
| 2692 | CXXRecordDecl *CurDecl = getCurrentClass(S, SS); |
| 2693 | return CurDecl && &II == CurDecl->getIdentifier(); |
| 2694 | } |
| 2695 | |
| 2696 | bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) { |
| 2697 | assert(getLangOpts().CPlusPlus && "No class names in C!" ); |
| 2698 | |
| 2699 | if (!getLangOpts().SpellChecking) |
| 2700 | return false; |
| 2701 | |
| 2702 | CXXRecordDecl *CurDecl; |
| 2703 | if (SS && SS->isSet() && !SS->isInvalid()) { |
| 2704 | DeclContext *DC = computeDeclContext(SS: *SS, EnteringContext: true); |
| 2705 | CurDecl = dyn_cast_or_null<CXXRecordDecl>(Val: DC); |
| 2706 | } else |
| 2707 | CurDecl = dyn_cast_or_null<CXXRecordDecl>(Val: CurContext); |
| 2708 | |
| 2709 | if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() && |
| 2710 | 3 * II->getName().edit_distance(Other: CurDecl->getIdentifier()->getName()) |
| 2711 | < II->getLength()) { |
| 2712 | II = CurDecl->getIdentifier(); |
| 2713 | return true; |
| 2714 | } |
| 2715 | |
| 2716 | return false; |
| 2717 | } |
| 2718 | |
| 2719 | CXXBaseSpecifier *Sema::CheckBaseSpecifier(CXXRecordDecl *Class, |
| 2720 | SourceRange SpecifierRange, |
| 2721 | bool Virtual, AccessSpecifier Access, |
| 2722 | TypeSourceInfo *TInfo, |
| 2723 | SourceLocation EllipsisLoc) { |
| 2724 | QualType BaseType = TInfo->getType(); |
| 2725 | SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc(); |
| 2726 | if (BaseType->containsErrors()) { |
| 2727 | // Already emitted a diagnostic when parsing the error type. |
| 2728 | return nullptr; |
| 2729 | } |
| 2730 | |
| 2731 | if (EllipsisLoc.isValid() && !BaseType->containsUnexpandedParameterPack()) { |
| 2732 | Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) |
| 2733 | << TInfo->getTypeLoc().getSourceRange(); |
| 2734 | EllipsisLoc = SourceLocation(); |
| 2735 | } |
| 2736 | |
| 2737 | auto *BaseDecl = |
| 2738 | dyn_cast_if_present<CXXRecordDecl>(Val: computeDeclContext(T: BaseType)); |
| 2739 | // C++ [class.derived.general]p2: |
| 2740 | // A class-or-decltype shall denote a (possibly cv-qualified) class type |
| 2741 | // that is not an incompletely defined class; any cv-qualifiers are |
| 2742 | // ignored. |
| 2743 | if (BaseDecl) { |
| 2744 | // C++ [class.union.general]p4: |
| 2745 | // [...] A union shall not be used as a base class. |
| 2746 | if (BaseDecl->isUnion()) { |
| 2747 | Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; |
| 2748 | return nullptr; |
| 2749 | } |
| 2750 | |
| 2751 | if (BaseType.hasQualifiers()) { |
| 2752 | std::string Quals = |
| 2753 | BaseType.getQualifiers().getAsString(Policy: Context.getPrintingPolicy()); |
| 2754 | Diag(BaseLoc, diag::warn_qual_base_type) |
| 2755 | << Quals << llvm::count(Quals, ' ') + 1 << BaseType; |
| 2756 | Diag(BaseLoc, diag::note_base_class_specified_here) << BaseType; |
| 2757 | } |
| 2758 | |
| 2759 | // For the MS ABI, propagate DLL attributes to base class templates. |
| 2760 | if (Context.getTargetInfo().getCXXABI().isMicrosoft() || |
| 2761 | Context.getTargetInfo().getTriple().isPS()) { |
| 2762 | if (Attr *ClassAttr = getDLLAttr(Class)) { |
| 2763 | if (auto *BaseSpec = |
| 2764 | dyn_cast<ClassTemplateSpecializationDecl>(Val: BaseDecl)) { |
| 2765 | propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplateSpec: BaseSpec, |
| 2766 | BaseLoc); |
| 2767 | } |
| 2768 | } |
| 2769 | } |
| 2770 | |
| 2771 | if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class, |
| 2772 | SpecifierRange)) { |
| 2773 | Class->setInvalidDecl(); |
| 2774 | return nullptr; |
| 2775 | } |
| 2776 | |
| 2777 | BaseDecl = BaseDecl->getDefinition(); |
| 2778 | assert(BaseDecl && "Base type is not incomplete, but has no definition" ); |
| 2779 | |
| 2780 | // Microsoft docs say: |
| 2781 | // "If a base-class has a code_seg attribute, derived classes must have the |
| 2782 | // same attribute." |
| 2783 | const auto *BaseCSA = BaseDecl->getAttr<CodeSegAttr>(); |
| 2784 | const auto *DerivedCSA = Class->getAttr<CodeSegAttr>(); |
| 2785 | if ((DerivedCSA || BaseCSA) && |
| 2786 | (!BaseCSA || !DerivedCSA || |
| 2787 | BaseCSA->getName() != DerivedCSA->getName())) { |
| 2788 | Diag(Class->getLocation(), diag::err_mismatched_code_seg_base); |
| 2789 | Diag(BaseDecl->getLocation(), diag::note_base_class_specified_here) |
| 2790 | << BaseDecl; |
| 2791 | return nullptr; |
| 2792 | } |
| 2793 | |
| 2794 | // A class which contains a flexible array member is not suitable for use as |
| 2795 | // a base class: |
| 2796 | // - If the layout determines that a base comes before another base, |
| 2797 | // the flexible array member would index into the subsequent base. |
| 2798 | // - If the layout determines that base comes before the derived class, |
| 2799 | // the flexible array member would index into the derived class. |
| 2800 | if (BaseDecl->hasFlexibleArrayMember()) { |
| 2801 | Diag(BaseLoc, diag::err_base_class_has_flexible_array_member) |
| 2802 | << BaseDecl->getDeclName(); |
| 2803 | return nullptr; |
| 2804 | } |
| 2805 | |
| 2806 | // C++ [class]p3: |
| 2807 | // If a class is marked final and it appears as a base-type-specifier in |
| 2808 | // base-clause, the program is ill-formed. |
| 2809 | if (FinalAttr *FA = BaseDecl->getAttr<FinalAttr>()) { |
| 2810 | Diag(BaseLoc, diag::err_class_marked_final_used_as_base) |
| 2811 | << BaseDecl->getDeclName() << FA->isSpelledAsSealed(); |
| 2812 | Diag(BaseDecl->getLocation(), diag::note_entity_declared_at) |
| 2813 | << BaseDecl->getDeclName() << FA->getRange(); |
| 2814 | return nullptr; |
| 2815 | } |
| 2816 | |
| 2817 | // If the base class is invalid the derived class is as well. |
| 2818 | if (BaseDecl->isInvalidDecl()) |
| 2819 | Class->setInvalidDecl(); |
| 2820 | } else if (BaseType->isDependentType()) { |
| 2821 | // Make sure that we don't make an ill-formed AST where the type of the |
| 2822 | // Class is non-dependent and its attached base class specifier is an |
| 2823 | // dependent type, which violates invariants in many clang code paths (e.g. |
| 2824 | // constexpr evaluator). If this case happens (in errory-recovery mode), we |
| 2825 | // explicitly mark the Class decl invalid. The diagnostic was already |
| 2826 | // emitted. |
| 2827 | if (!Class->isDependentContext()) |
| 2828 | Class->setInvalidDecl(); |
| 2829 | } else { |
| 2830 | // The base class is some non-dependent non-class type. |
| 2831 | Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; |
| 2832 | return nullptr; |
| 2833 | } |
| 2834 | |
| 2835 | // In HLSL, unspecified class access is public rather than private. |
| 2836 | if (getLangOpts().HLSL && Class->getTagKind() == TagTypeKind::Class && |
| 2837 | Access == AS_none) |
| 2838 | Access = AS_public; |
| 2839 | |
| 2840 | // Create the base specifier. |
| 2841 | return new (Context) CXXBaseSpecifier( |
| 2842 | SpecifierRange, Virtual, Class->getTagKind() == TagTypeKind::Class, |
| 2843 | Access, TInfo, EllipsisLoc); |
| 2844 | } |
| 2845 | |
| 2846 | BaseResult Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange, |
| 2847 | const ParsedAttributesView &Attributes, |
| 2848 | bool Virtual, AccessSpecifier Access, |
| 2849 | ParsedType basetype, SourceLocation BaseLoc, |
| 2850 | SourceLocation EllipsisLoc) { |
| 2851 | if (!classdecl) |
| 2852 | return true; |
| 2853 | |
| 2854 | AdjustDeclIfTemplate(Decl&: classdecl); |
| 2855 | CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Val: classdecl); |
| 2856 | if (!Class) |
| 2857 | return true; |
| 2858 | |
| 2859 | // We haven't yet attached the base specifiers. |
| 2860 | Class->setIsParsingBaseSpecifiers(); |
| 2861 | |
| 2862 | // We do not support any C++11 attributes on base-specifiers yet. |
| 2863 | // Diagnose any attributes we see. |
| 2864 | for (const ParsedAttr &AL : Attributes) { |
| 2865 | if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) |
| 2866 | continue; |
| 2867 | if (AL.getKind() == ParsedAttr::UnknownAttribute) |
| 2868 | Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) |
| 2869 | << AL << AL.getRange(); |
| 2870 | else |
| 2871 | Diag(AL.getLoc(), diag::err_base_specifier_attribute) |
| 2872 | << AL << AL.isRegularKeywordAttribute() << AL.getRange(); |
| 2873 | } |
| 2874 | |
| 2875 | TypeSourceInfo *TInfo = nullptr; |
| 2876 | GetTypeFromParser(Ty: basetype, TInfo: &TInfo); |
| 2877 | |
| 2878 | if (EllipsisLoc.isInvalid() && |
| 2879 | DiagnoseUnexpandedParameterPack(Loc: SpecifierRange.getBegin(), T: TInfo, |
| 2880 | UPPC: UPPC_BaseType)) |
| 2881 | return true; |
| 2882 | |
| 2883 | // C++ [class.union.general]p4: |
| 2884 | // [...] A union shall not have base classes. |
| 2885 | if (Class->isUnion()) { |
| 2886 | Diag(Class->getLocation(), diag::err_base_clause_on_union) |
| 2887 | << SpecifierRange; |
| 2888 | return true; |
| 2889 | } |
| 2890 | |
| 2891 | if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, |
| 2892 | Virtual, Access, TInfo, |
| 2893 | EllipsisLoc)) |
| 2894 | return BaseSpec; |
| 2895 | |
| 2896 | Class->setInvalidDecl(); |
| 2897 | return true; |
| 2898 | } |
| 2899 | |
| 2900 | /// Use small set to collect indirect bases. As this is only used |
| 2901 | /// locally, there's no need to abstract the small size parameter. |
| 2902 | typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet; |
| 2903 | |
| 2904 | /// Recursively add the bases of Type. Don't add Type itself. |
| 2905 | static void |
| 2906 | NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set, |
| 2907 | const QualType &Type) |
| 2908 | { |
| 2909 | // Even though the incoming type is a base, it might not be |
| 2910 | // a class -- it could be a template parm, for instance. |
| 2911 | if (auto Rec = Type->getAs<RecordType>()) { |
| 2912 | auto Decl = Rec->getAsCXXRecordDecl(); |
| 2913 | |
| 2914 | // Iterate over its bases. |
| 2915 | for (const auto &BaseSpec : Decl->bases()) { |
| 2916 | QualType Base = Context.getCanonicalType(BaseSpec.getType()) |
| 2917 | .getUnqualifiedType(); |
| 2918 | if (Set.insert(Base).second) |
| 2919 | // If we've not already seen it, recurse. |
| 2920 | NoteIndirectBases(Context, Set, Base); |
| 2921 | } |
| 2922 | } |
| 2923 | } |
| 2924 | |
| 2925 | bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, |
| 2926 | MutableArrayRef<CXXBaseSpecifier *> Bases) { |
| 2927 | if (Bases.empty()) |
| 2928 | return false; |
| 2929 | |
| 2930 | // Used to keep track of which base types we have already seen, so |
| 2931 | // that we can properly diagnose redundant direct base types. Note |
| 2932 | // that the key is always the unqualified canonical type of the base |
| 2933 | // class. |
| 2934 | std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; |
| 2935 | |
| 2936 | // Used to track indirect bases so we can see if a direct base is |
| 2937 | // ambiguous. |
| 2938 | IndirectBaseSet IndirectBaseTypes; |
| 2939 | |
| 2940 | // Copy non-redundant base specifiers into permanent storage. |
| 2941 | unsigned NumGoodBases = 0; |
| 2942 | bool Invalid = false; |
| 2943 | for (unsigned idx = 0; idx < Bases.size(); ++idx) { |
| 2944 | QualType NewBaseType |
| 2945 | = Context.getCanonicalType(T: Bases[idx]->getType()); |
| 2946 | NewBaseType = NewBaseType.getLocalUnqualifiedType(); |
| 2947 | |
| 2948 | CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType]; |
| 2949 | if (KnownBase) { |
| 2950 | // C++ [class.mi]p3: |
| 2951 | // A class shall not be specified as a direct base class of a |
| 2952 | // derived class more than once. |
| 2953 | Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class) |
| 2954 | << KnownBase->getType() << Bases[idx]->getSourceRange(); |
| 2955 | |
| 2956 | // Delete the duplicate base class specifier; we're going to |
| 2957 | // overwrite its pointer later. |
| 2958 | Context.Deallocate(Ptr: Bases[idx]); |
| 2959 | |
| 2960 | Invalid = true; |
| 2961 | } else { |
| 2962 | // Okay, add this new base class. |
| 2963 | KnownBase = Bases[idx]; |
| 2964 | Bases[NumGoodBases++] = Bases[idx]; |
| 2965 | |
| 2966 | if (NewBaseType->isDependentType()) |
| 2967 | continue; |
| 2968 | // Note this base's direct & indirect bases, if there could be ambiguity. |
| 2969 | if (Bases.size() > 1) |
| 2970 | NoteIndirectBases(Context, Set&: IndirectBaseTypes, Type: NewBaseType); |
| 2971 | |
| 2972 | if (const RecordType *Record = NewBaseType->getAs<RecordType>()) { |
| 2973 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: Record->getDecl()); |
| 2974 | if (Class->isInterface() && |
| 2975 | (!RD->isInterfaceLike() || |
| 2976 | KnownBase->getAccessSpecifier() != AS_public)) { |
| 2977 | // The Microsoft extension __interface does not permit bases that |
| 2978 | // are not themselves public interfaces. |
| 2979 | Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface) |
| 2980 | << getRecordDiagFromTagKind(RD->getTagKind()) << RD |
| 2981 | << RD->getSourceRange(); |
| 2982 | Invalid = true; |
| 2983 | } |
| 2984 | if (RD->hasAttr<WeakAttr>()) |
| 2985 | Class->addAttr(WeakAttr::CreateImplicit(Context)); |
| 2986 | } |
| 2987 | } |
| 2988 | } |
| 2989 | |
| 2990 | // Attach the remaining base class specifiers to the derived class. |
| 2991 | Class->setBases(Bases: Bases.data(), NumBases: NumGoodBases); |
| 2992 | |
| 2993 | // Check that the only base classes that are duplicate are virtual. |
| 2994 | for (unsigned idx = 0; idx < NumGoodBases; ++idx) { |
| 2995 | // Check whether this direct base is inaccessible due to ambiguity. |
| 2996 | QualType BaseType = Bases[idx]->getType(); |
| 2997 | |
| 2998 | // Skip all dependent types in templates being used as base specifiers. |
| 2999 | // Checks below assume that the base specifier is a CXXRecord. |
| 3000 | if (BaseType->isDependentType()) |
| 3001 | continue; |
| 3002 | |
| 3003 | CanQualType CanonicalBase = Context.getCanonicalType(T: BaseType) |
| 3004 | .getUnqualifiedType(); |
| 3005 | |
| 3006 | if (IndirectBaseTypes.count(Ptr: CanonicalBase)) { |
| 3007 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
| 3008 | /*DetectVirtual=*/true); |
| 3009 | bool found |
| 3010 | = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths); |
| 3011 | assert(found); |
| 3012 | (void)found; |
| 3013 | |
| 3014 | if (Paths.isAmbiguous(BaseType: CanonicalBase)) |
| 3015 | Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class) |
| 3016 | << BaseType << getAmbiguousPathsDisplayString(Paths) |
| 3017 | << Bases[idx]->getSourceRange(); |
| 3018 | else |
| 3019 | assert(Bases[idx]->isVirtual()); |
| 3020 | } |
| 3021 | |
| 3022 | // Delete the base class specifier, since its data has been copied |
| 3023 | // into the CXXRecordDecl. |
| 3024 | Context.Deallocate(Ptr: Bases[idx]); |
| 3025 | } |
| 3026 | |
| 3027 | return Invalid; |
| 3028 | } |
| 3029 | |
| 3030 | void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, |
| 3031 | MutableArrayRef<CXXBaseSpecifier *> Bases) { |
| 3032 | if (!ClassDecl || Bases.empty()) |
| 3033 | return; |
| 3034 | |
| 3035 | AdjustDeclIfTemplate(Decl&: ClassDecl); |
| 3036 | AttachBaseSpecifiers(Class: cast<CXXRecordDecl>(Val: ClassDecl), Bases); |
| 3037 | } |
| 3038 | |
| 3039 | bool Sema::IsDerivedFrom(SourceLocation Loc, CXXRecordDecl *Derived, |
| 3040 | CXXRecordDecl *Base, CXXBasePaths &Paths) { |
| 3041 | if (!getLangOpts().CPlusPlus) |
| 3042 | return false; |
| 3043 | |
| 3044 | if (!Base || !Derived) |
| 3045 | return false; |
| 3046 | |
| 3047 | // If either the base or the derived type is invalid, don't try to |
| 3048 | // check whether one is derived from the other. |
| 3049 | if (Base->isInvalidDecl() || Derived->isInvalidDecl()) |
| 3050 | return false; |
| 3051 | |
| 3052 | // FIXME: In a modules build, do we need the entire path to be visible for us |
| 3053 | // to be able to use the inheritance relationship? |
| 3054 | if (!isCompleteType(Loc, T: Context.getTypeDeclType(Derived)) && |
| 3055 | !Derived->isBeingDefined()) |
| 3056 | return false; |
| 3057 | |
| 3058 | return Derived->isDerivedFrom(Base, Paths); |
| 3059 | } |
| 3060 | |
| 3061 | bool Sema::IsDerivedFrom(SourceLocation Loc, CXXRecordDecl *Derived, |
| 3062 | CXXRecordDecl *Base) { |
| 3063 | CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/false, |
| 3064 | /*DetectVirtual=*/false); |
| 3065 | return IsDerivedFrom(Loc, Derived, Base, Paths); |
| 3066 | } |
| 3067 | |
| 3068 | bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) { |
| 3069 | CXXBasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/false, |
| 3070 | /*DetectVirtual=*/false); |
| 3071 | return IsDerivedFrom(Loc, Derived: Derived->getAsCXXRecordDecl(), |
| 3072 | Base: Base->getAsCXXRecordDecl(), Paths); |
| 3073 | } |
| 3074 | |
| 3075 | bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base, |
| 3076 | CXXBasePaths &Paths) { |
| 3077 | return IsDerivedFrom(Loc, Derived: Derived->getAsCXXRecordDecl(), |
| 3078 | Base: Base->getAsCXXRecordDecl(), Paths); |
| 3079 | } |
| 3080 | |
| 3081 | static void BuildBasePathArray(const CXXBasePath &Path, |
| 3082 | CXXCastPath &BasePathArray) { |
| 3083 | // We first go backward and check if we have a virtual base. |
| 3084 | // FIXME: It would be better if CXXBasePath had the base specifier for |
| 3085 | // the nearest virtual base. |
| 3086 | unsigned Start = 0; |
| 3087 | for (unsigned I = Path.size(); I != 0; --I) { |
| 3088 | if (Path[I - 1].Base->isVirtual()) { |
| 3089 | Start = I - 1; |
| 3090 | break; |
| 3091 | } |
| 3092 | } |
| 3093 | |
| 3094 | // Now add all bases. |
| 3095 | for (unsigned I = Start, E = Path.size(); I != E; ++I) |
| 3096 | BasePathArray.push_back(Elt: const_cast<CXXBaseSpecifier*>(Path[I].Base)); |
| 3097 | } |
| 3098 | |
| 3099 | |
| 3100 | void Sema::BuildBasePathArray(const CXXBasePaths &Paths, |
| 3101 | CXXCastPath &BasePathArray) { |
| 3102 | assert(BasePathArray.empty() && "Base path array must be empty!" ); |
| 3103 | assert(Paths.isRecordingPaths() && "Must record paths!" ); |
| 3104 | return ::BuildBasePathArray(Path: Paths.front(), BasePathArray); |
| 3105 | } |
| 3106 | |
| 3107 | bool |
| 3108 | Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, |
| 3109 | unsigned InaccessibleBaseID, |
| 3110 | unsigned AmbiguousBaseConvID, |
| 3111 | SourceLocation Loc, SourceRange Range, |
| 3112 | DeclarationName Name, |
| 3113 | CXXCastPath *BasePath, |
| 3114 | bool IgnoreAccess) { |
| 3115 | // First, determine whether the path from Derived to Base is |
| 3116 | // ambiguous. This is slightly more expensive than checking whether |
| 3117 | // the Derived to Base conversion exists, because here we need to |
| 3118 | // explore multiple paths to determine if there is an ambiguity. |
| 3119 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
| 3120 | /*DetectVirtual=*/false); |
| 3121 | bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths); |
| 3122 | if (!DerivationOkay) |
| 3123 | return true; |
| 3124 | |
| 3125 | const CXXBasePath *Path = nullptr; |
| 3126 | if (!Paths.isAmbiguous(BaseType: Context.getCanonicalType(T: Base).getUnqualifiedType())) |
| 3127 | Path = &Paths.front(); |
| 3128 | |
| 3129 | // For MSVC compatibility, check if Derived directly inherits from Base. Clang |
| 3130 | // warns about this hierarchy under -Winaccessible-base, but MSVC allows the |
| 3131 | // user to access such bases. |
| 3132 | if (!Path && getLangOpts().MSVCCompat) { |
| 3133 | for (const CXXBasePath &PossiblePath : Paths) { |
| 3134 | if (PossiblePath.size() == 1) { |
| 3135 | Path = &PossiblePath; |
| 3136 | if (AmbiguousBaseConvID) |
| 3137 | Diag(Loc, diag::ext_ms_ambiguous_direct_base) |
| 3138 | << Base << Derived << Range; |
| 3139 | break; |
| 3140 | } |
| 3141 | } |
| 3142 | } |
| 3143 | |
| 3144 | if (Path) { |
| 3145 | if (!IgnoreAccess) { |
| 3146 | // Check that the base class can be accessed. |
| 3147 | switch ( |
| 3148 | CheckBaseClassAccess(AccessLoc: Loc, Base, Derived, Path: *Path, DiagID: InaccessibleBaseID)) { |
| 3149 | case AR_inaccessible: |
| 3150 | return true; |
| 3151 | case AR_accessible: |
| 3152 | case AR_dependent: |
| 3153 | case AR_delayed: |
| 3154 | break; |
| 3155 | } |
| 3156 | } |
| 3157 | |
| 3158 | // Build a base path if necessary. |
| 3159 | if (BasePath) |
| 3160 | ::BuildBasePathArray(Path: *Path, BasePathArray&: *BasePath); |
| 3161 | return false; |
| 3162 | } |
| 3163 | |
| 3164 | if (AmbiguousBaseConvID) { |
| 3165 | // We know that the derived-to-base conversion is ambiguous, and |
| 3166 | // we're going to produce a diagnostic. Perform the derived-to-base |
| 3167 | // search just one more time to compute all of the possible paths so |
| 3168 | // that we can print them out. This is more expensive than any of |
| 3169 | // the previous derived-to-base checks we've done, but at this point |
| 3170 | // performance isn't as much of an issue. |
| 3171 | Paths.clear(); |
| 3172 | Paths.setRecordingPaths(true); |
| 3173 | bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths); |
| 3174 | assert(StillOkay && "Can only be used with a derived-to-base conversion" ); |
| 3175 | (void)StillOkay; |
| 3176 | |
| 3177 | // Build up a textual representation of the ambiguous paths, e.g., |
| 3178 | // D -> B -> A, that will be used to illustrate the ambiguous |
| 3179 | // conversions in the diagnostic. We only print one of the paths |
| 3180 | // to each base class subobject. |
| 3181 | std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); |
| 3182 | |
| 3183 | Diag(Loc, AmbiguousBaseConvID) |
| 3184 | << Derived << Base << PathDisplayStr << Range << Name; |
| 3185 | } |
| 3186 | return true; |
| 3187 | } |
| 3188 | |
| 3189 | bool |
| 3190 | Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, |
| 3191 | SourceLocation Loc, SourceRange Range, |
| 3192 | CXXCastPath *BasePath, |
| 3193 | bool IgnoreAccess) { |
| 3194 | return CheckDerivedToBaseConversion( |
| 3195 | Derived, Base, diag::err_upcast_to_inaccessible_base, |
| 3196 | diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(), |
| 3197 | BasePath, IgnoreAccess); |
| 3198 | } |
| 3199 | |
| 3200 | std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) { |
| 3201 | std::string PathDisplayStr; |
| 3202 | std::set<unsigned> DisplayedPaths; |
| 3203 | for (CXXBasePaths::paths_iterator Path = Paths.begin(); |
| 3204 | Path != Paths.end(); ++Path) { |
| 3205 | if (DisplayedPaths.insert(x: Path->back().SubobjectNumber).second) { |
| 3206 | // We haven't displayed a path to this particular base |
| 3207 | // class subobject yet. |
| 3208 | PathDisplayStr += "\n " ; |
| 3209 | PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString(); |
| 3210 | for (CXXBasePath::const_iterator Element = Path->begin(); |
| 3211 | Element != Path->end(); ++Element) |
| 3212 | PathDisplayStr += " -> " + Element->Base->getType().getAsString(); |
| 3213 | } |
| 3214 | } |
| 3215 | |
| 3216 | return PathDisplayStr; |
| 3217 | } |
| 3218 | |
| 3219 | //===----------------------------------------------------------------------===// |
| 3220 | // C++ class member Handling |
| 3221 | //===----------------------------------------------------------------------===// |
| 3222 | |
| 3223 | bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc, |
| 3224 | SourceLocation ColonLoc, |
| 3225 | const ParsedAttributesView &Attrs) { |
| 3226 | assert(Access != AS_none && "Invalid kind for syntactic access specifier!" ); |
| 3227 | AccessSpecDecl *ASDecl = AccessSpecDecl::Create(C&: Context, AS: Access, DC: CurContext, |
| 3228 | ASLoc, ColonLoc); |
| 3229 | CurContext->addHiddenDecl(ASDecl); |
| 3230 | return ProcessAccessDeclAttributeList(ASDecl, AttrList: Attrs); |
| 3231 | } |
| 3232 | |
| 3233 | void Sema::CheckOverrideControl(NamedDecl *D) { |
| 3234 | if (D->isInvalidDecl()) |
| 3235 | return; |
| 3236 | |
| 3237 | // We only care about "override" and "final" declarations. |
| 3238 | if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>()) |
| 3239 | return; |
| 3240 | |
| 3241 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: D); |
| 3242 | |
| 3243 | // We can't check dependent instance methods. |
| 3244 | if (MD && MD->isInstance() && |
| 3245 | (MD->getParent()->hasAnyDependentBases() || |
| 3246 | MD->getType()->isDependentType())) |
| 3247 | return; |
| 3248 | |
| 3249 | if (MD && !MD->isVirtual()) { |
| 3250 | // If we have a non-virtual method, check if it hides a virtual method. |
| 3251 | // (In that case, it's most likely the method has the wrong type.) |
| 3252 | SmallVector<CXXMethodDecl *, 8> OverloadedMethods; |
| 3253 | FindHiddenVirtualMethods(MD, OverloadedMethods); |
| 3254 | |
| 3255 | if (!OverloadedMethods.empty()) { |
| 3256 | if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { |
| 3257 | Diag(OA->getLocation(), |
| 3258 | diag::override_keyword_hides_virtual_member_function) |
| 3259 | << "override" << (OverloadedMethods.size() > 1); |
| 3260 | } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) { |
| 3261 | Diag(FA->getLocation(), |
| 3262 | diag::override_keyword_hides_virtual_member_function) |
| 3263 | << (FA->isSpelledAsSealed() ? "sealed" : "final" ) |
| 3264 | << (OverloadedMethods.size() > 1); |
| 3265 | } |
| 3266 | NoteHiddenVirtualMethods(MD, OverloadedMethods); |
| 3267 | MD->setInvalidDecl(); |
| 3268 | return; |
| 3269 | } |
| 3270 | // Fall through into the general case diagnostic. |
| 3271 | // FIXME: We might want to attempt typo correction here. |
| 3272 | } |
| 3273 | |
| 3274 | if (!MD || !MD->isVirtual()) { |
| 3275 | if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) { |
| 3276 | Diag(OA->getLocation(), |
| 3277 | diag::override_keyword_only_allowed_on_virtual_member_functions) |
| 3278 | << "override" << FixItHint::CreateRemoval(OA->getLocation()); |
| 3279 | D->dropAttr<OverrideAttr>(); |
| 3280 | } |
| 3281 | if (FinalAttr *FA = D->getAttr<FinalAttr>()) { |
| 3282 | Diag(FA->getLocation(), |
| 3283 | diag::override_keyword_only_allowed_on_virtual_member_functions) |
| 3284 | << (FA->isSpelledAsSealed() ? "sealed" : "final" ) |
| 3285 | << FixItHint::CreateRemoval(FA->getLocation()); |
| 3286 | D->dropAttr<FinalAttr>(); |
| 3287 | } |
| 3288 | return; |
| 3289 | } |
| 3290 | |
| 3291 | // C++11 [class.virtual]p5: |
| 3292 | // If a function is marked with the virt-specifier override and |
| 3293 | // does not override a member function of a base class, the program is |
| 3294 | // ill-formed. |
| 3295 | bool HasOverriddenMethods = MD->size_overridden_methods() != 0; |
| 3296 | if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) |
| 3297 | Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding) |
| 3298 | << MD->getDeclName(); |
| 3299 | } |
| 3300 | |
| 3301 | void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent) { |
| 3302 | if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>()) |
| 3303 | return; |
| 3304 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: D); |
| 3305 | if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>()) |
| 3306 | return; |
| 3307 | |
| 3308 | SourceLocation Loc = MD->getLocation(); |
| 3309 | SourceLocation SpellingLoc = Loc; |
| 3310 | if (getSourceManager().isMacroArgExpansion(Loc)) |
| 3311 | SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin(); |
| 3312 | SpellingLoc = getSourceManager().getSpellingLoc(Loc: SpellingLoc); |
| 3313 | if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(Loc: SpellingLoc)) |
| 3314 | return; |
| 3315 | |
| 3316 | if (MD->size_overridden_methods() > 0) { |
| 3317 | auto EmitDiag = [&](unsigned DiagInconsistent, unsigned DiagSuggest) { |
| 3318 | unsigned DiagID = |
| 3319 | Inconsistent && !Diags.isIgnored(DiagID: DiagInconsistent, Loc: MD->getLocation()) |
| 3320 | ? DiagInconsistent |
| 3321 | : DiagSuggest; |
| 3322 | Diag(MD->getLocation(), DiagID) << MD->getDeclName(); |
| 3323 | const CXXMethodDecl *OMD = *MD->begin_overridden_methods(); |
| 3324 | Diag(OMD->getLocation(), diag::note_overridden_virtual_function); |
| 3325 | }; |
| 3326 | if (isa<CXXDestructorDecl>(MD)) |
| 3327 | EmitDiag( |
| 3328 | diag::warn_inconsistent_destructor_marked_not_override_overriding, |
| 3329 | diag::warn_suggest_destructor_marked_not_override_overriding); |
| 3330 | else |
| 3331 | EmitDiag(diag::warn_inconsistent_function_marked_not_override_overriding, |
| 3332 | diag::warn_suggest_function_marked_not_override_overriding); |
| 3333 | } |
| 3334 | } |
| 3335 | |
| 3336 | bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New, |
| 3337 | const CXXMethodDecl *Old) { |
| 3338 | FinalAttr *FA = Old->getAttr<FinalAttr>(); |
| 3339 | if (!FA) |
| 3340 | return false; |
| 3341 | |
| 3342 | Diag(New->getLocation(), diag::err_final_function_overridden) |
| 3343 | << New->getDeclName() |
| 3344 | << FA->isSpelledAsSealed(); |
| 3345 | Diag(Old->getLocation(), diag::note_overridden_virtual_function); |
| 3346 | return true; |
| 3347 | } |
| 3348 | |
| 3349 | static bool InitializationHasSideEffects(const FieldDecl &FD) { |
| 3350 | const Type *T = FD.getType()->getBaseElementTypeUnsafe(); |
| 3351 | // FIXME: Destruction of ObjC lifetime types has side-effects. |
| 3352 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
| 3353 | return !RD->isCompleteDefinition() || |
| 3354 | !RD->hasTrivialDefaultConstructor() || |
| 3355 | !RD->hasTrivialDestructor(); |
| 3356 | return false; |
| 3357 | } |
| 3358 | |
| 3359 | void Sema::CheckShadowInheritedFields(const SourceLocation &Loc, |
| 3360 | DeclarationName FieldName, |
| 3361 | const CXXRecordDecl *RD, |
| 3362 | bool DeclIsField) { |
| 3363 | if (Diags.isIgnored(diag::warn_shadow_field, Loc)) |
| 3364 | return; |
| 3365 | |
| 3366 | // To record a shadowed field in a base |
| 3367 | std::map<CXXRecordDecl*, NamedDecl*> Bases; |
| 3368 | auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier, |
| 3369 | CXXBasePath &Path) { |
| 3370 | const auto Base = Specifier->getType()->getAsCXXRecordDecl(); |
| 3371 | // Record an ambiguous path directly |
| 3372 | if (Bases.find(x: Base) != Bases.end()) |
| 3373 | return true; |
| 3374 | for (const auto Field : Base->lookup(FieldName)) { |
| 3375 | if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) && |
| 3376 | Field->getAccess() != AS_private) { |
| 3377 | assert(Field->getAccess() != AS_none); |
| 3378 | assert(Bases.find(Base) == Bases.end()); |
| 3379 | Bases[Base] = Field; |
| 3380 | return true; |
| 3381 | } |
| 3382 | } |
| 3383 | return false; |
| 3384 | }; |
| 3385 | |
| 3386 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
| 3387 | /*DetectVirtual=*/true); |
| 3388 | if (!RD->lookupInBases(BaseMatches: FieldShadowed, Paths)) |
| 3389 | return; |
| 3390 | |
| 3391 | for (const auto &P : Paths) { |
| 3392 | auto Base = P.back().Base->getType()->getAsCXXRecordDecl(); |
| 3393 | auto It = Bases.find(x: Base); |
| 3394 | // Skip duplicated bases |
| 3395 | if (It == Bases.end()) |
| 3396 | continue; |
| 3397 | auto BaseField = It->second; |
| 3398 | assert(BaseField->getAccess() != AS_private); |
| 3399 | if (AS_none != |
| 3400 | CXXRecordDecl::MergeAccess(PathAccess: P.Access, DeclAccess: BaseField->getAccess())) { |
| 3401 | Diag(Loc, diag::warn_shadow_field) |
| 3402 | << FieldName << RD << Base << DeclIsField; |
| 3403 | Diag(BaseField->getLocation(), diag::note_shadow_field); |
| 3404 | Bases.erase(position: It); |
| 3405 | } |
| 3406 | } |
| 3407 | } |
| 3408 | |
| 3409 | template <typename AttrType> |
| 3410 | inline static bool HasAttribute(const QualType &T) { |
| 3411 | if (const TagDecl *TD = T->getAsTagDecl()) |
| 3412 | return TD->hasAttr<AttrType>(); |
| 3413 | if (const TypedefType *TDT = T->getAs<TypedefType>()) |
| 3414 | return TDT->getDecl()->hasAttr<AttrType>(); |
| 3415 | return false; |
| 3416 | } |
| 3417 | |
| 3418 | static bool IsUnusedPrivateField(const FieldDecl *FD) { |
| 3419 | if (FD->getAccess() == AS_private && FD->getDeclName()) { |
| 3420 | QualType FieldType = FD->getType(); |
| 3421 | if (HasAttribute<WarnUnusedAttr>(FieldType)) |
| 3422 | return true; |
| 3423 | |
| 3424 | return !FD->isImplicit() && !FD->hasAttr<UnusedAttr>() && |
| 3425 | !FD->getParent()->isDependentContext() && |
| 3426 | !HasAttribute<UnusedAttr>(FieldType) && |
| 3427 | !InitializationHasSideEffects(*FD); |
| 3428 | } |
| 3429 | return false; |
| 3430 | } |
| 3431 | |
| 3432 | NamedDecl * |
| 3433 | Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, |
| 3434 | MultiTemplateParamsArg TemplateParameterLists, |
| 3435 | Expr *BW, const VirtSpecifiers &VS, |
| 3436 | InClassInitStyle InitStyle) { |
| 3437 | const DeclSpec &DS = D.getDeclSpec(); |
| 3438 | DeclarationNameInfo NameInfo = GetNameForDeclarator(D); |
| 3439 | DeclarationName Name = NameInfo.getName(); |
| 3440 | SourceLocation Loc = NameInfo.getLoc(); |
| 3441 | |
| 3442 | // For anonymous bitfields, the location should point to the type. |
| 3443 | if (Loc.isInvalid()) |
| 3444 | Loc = D.getBeginLoc(); |
| 3445 | |
| 3446 | Expr *BitWidth = static_cast<Expr*>(BW); |
| 3447 | |
| 3448 | assert(isa<CXXRecordDecl>(CurContext)); |
| 3449 | assert(!DS.isFriendSpecified()); |
| 3450 | |
| 3451 | bool isFunc = D.isDeclarationOfFunction(); |
| 3452 | const ParsedAttr *MSPropertyAttr = |
| 3453 | D.getDeclSpec().getAttributes().getMSPropertyAttr(); |
| 3454 | |
| 3455 | if (cast<CXXRecordDecl>(Val: CurContext)->isInterface()) { |
| 3456 | // The Microsoft extension __interface only permits public member functions |
| 3457 | // and prohibits constructors, destructors, operators, non-public member |
| 3458 | // functions, static methods and data members. |
| 3459 | unsigned InvalidDecl; |
| 3460 | bool ShowDeclName = true; |
| 3461 | if (!isFunc && |
| 3462 | (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr)) |
| 3463 | InvalidDecl = 0; |
| 3464 | else if (!isFunc) |
| 3465 | InvalidDecl = 1; |
| 3466 | else if (AS != AS_public) |
| 3467 | InvalidDecl = 2; |
| 3468 | else if (DS.getStorageClassSpec() == DeclSpec::SCS_static) |
| 3469 | InvalidDecl = 3; |
| 3470 | else switch (Name.getNameKind()) { |
| 3471 | case DeclarationName::CXXConstructorName: |
| 3472 | InvalidDecl = 4; |
| 3473 | ShowDeclName = false; |
| 3474 | break; |
| 3475 | |
| 3476 | case DeclarationName::CXXDestructorName: |
| 3477 | InvalidDecl = 5; |
| 3478 | ShowDeclName = false; |
| 3479 | break; |
| 3480 | |
| 3481 | case DeclarationName::CXXOperatorName: |
| 3482 | case DeclarationName::CXXConversionFunctionName: |
| 3483 | InvalidDecl = 6; |
| 3484 | break; |
| 3485 | |
| 3486 | default: |
| 3487 | InvalidDecl = 0; |
| 3488 | break; |
| 3489 | } |
| 3490 | |
| 3491 | if (InvalidDecl) { |
| 3492 | if (ShowDeclName) |
| 3493 | Diag(Loc, diag::err_invalid_member_in_interface) |
| 3494 | << (InvalidDecl-1) << Name; |
| 3495 | else |
| 3496 | Diag(Loc, diag::err_invalid_member_in_interface) |
| 3497 | << (InvalidDecl-1) << "" ; |
| 3498 | return nullptr; |
| 3499 | } |
| 3500 | } |
| 3501 | |
| 3502 | // C++ 9.2p6: A member shall not be declared to have automatic storage |
| 3503 | // duration (auto, register) or with the extern storage-class-specifier. |
| 3504 | // C++ 7.1.1p8: The mutable specifier can be applied only to names of class |
| 3505 | // data members and cannot be applied to names declared const or static, |
| 3506 | // and cannot be applied to reference members. |
| 3507 | switch (DS.getStorageClassSpec()) { |
| 3508 | case DeclSpec::SCS_unspecified: |
| 3509 | case DeclSpec::SCS_typedef: |
| 3510 | case DeclSpec::SCS_static: |
| 3511 | break; |
| 3512 | case DeclSpec::SCS_mutable: |
| 3513 | if (isFunc) { |
| 3514 | Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); |
| 3515 | |
| 3516 | // FIXME: It would be nicer if the keyword was ignored only for this |
| 3517 | // declarator. Otherwise we could get follow-up errors. |
| 3518 | D.getMutableDeclSpec().ClearStorageClassSpecs(); |
| 3519 | } |
| 3520 | break; |
| 3521 | default: |
| 3522 | Diag(DS.getStorageClassSpecLoc(), |
| 3523 | diag::err_storageclass_invalid_for_member); |
| 3524 | D.getMutableDeclSpec().ClearStorageClassSpecs(); |
| 3525 | break; |
| 3526 | } |
| 3527 | |
| 3528 | bool isInstField = (DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || |
| 3529 | DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && |
| 3530 | !isFunc && TemplateParameterLists.empty(); |
| 3531 | |
| 3532 | if (DS.hasConstexprSpecifier() && isInstField) { |
| 3533 | SemaDiagnosticBuilder B = |
| 3534 | Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member); |
| 3535 | SourceLocation ConstexprLoc = DS.getConstexprSpecLoc(); |
| 3536 | if (InitStyle == ICIS_NoInit) { |
| 3537 | B << 0 << 0; |
| 3538 | if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) |
| 3539 | B << FixItHint::CreateRemoval(RemoveRange: ConstexprLoc); |
| 3540 | else { |
| 3541 | B << FixItHint::CreateReplacement(RemoveRange: ConstexprLoc, Code: "const" ); |
| 3542 | D.getMutableDeclSpec().ClearConstexprSpec(); |
| 3543 | const char *PrevSpec; |
| 3544 | unsigned DiagID; |
| 3545 | bool Failed = D.getMutableDeclSpec().SetTypeQual( |
| 3546 | T: DeclSpec::TQ_const, Loc: ConstexprLoc, PrevSpec, DiagID, Lang: getLangOpts()); |
| 3547 | (void)Failed; |
| 3548 | assert(!Failed && "Making a constexpr member const shouldn't fail" ); |
| 3549 | } |
| 3550 | } else { |
| 3551 | B << 1; |
| 3552 | const char *PrevSpec; |
| 3553 | unsigned DiagID; |
| 3554 | if (D.getMutableDeclSpec().SetStorageClassSpec( |
| 3555 | S&: *this, SC: DeclSpec::SCS_static, Loc: ConstexprLoc, PrevSpec, DiagID, |
| 3556 | Policy: Context.getPrintingPolicy())) { |
| 3557 | assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable && |
| 3558 | "This is the only DeclSpec that should fail to be applied" ); |
| 3559 | B << 1; |
| 3560 | } else { |
| 3561 | B << 0 << FixItHint::CreateInsertion(InsertionLoc: ConstexprLoc, Code: "static " ); |
| 3562 | isInstField = false; |
| 3563 | } |
| 3564 | } |
| 3565 | } |
| 3566 | |
| 3567 | NamedDecl *Member; |
| 3568 | if (isInstField) { |
| 3569 | CXXScopeSpec &SS = D.getCXXScopeSpec(); |
| 3570 | |
| 3571 | // Data members must have identifiers for names. |
| 3572 | if (!Name.isIdentifier()) { |
| 3573 | Diag(Loc, diag::err_bad_variable_name) |
| 3574 | << Name; |
| 3575 | return nullptr; |
| 3576 | } |
| 3577 | |
| 3578 | IdentifierInfo *II = Name.getAsIdentifierInfo(); |
| 3579 | if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { |
| 3580 | Diag(D.getIdentifierLoc(), diag::err_member_with_template_arguments) |
| 3581 | << II |
| 3582 | << SourceRange(D.getName().TemplateId->LAngleLoc, |
| 3583 | D.getName().TemplateId->RAngleLoc) |
| 3584 | << D.getName().TemplateId->LAngleLoc; |
| 3585 | D.SetIdentifier(Id: II, IdLoc: Loc); |
| 3586 | } |
| 3587 | |
| 3588 | if (SS.isSet() && !SS.isInvalid()) { |
| 3589 | // The user provided a superfluous scope specifier inside a class |
| 3590 | // definition: |
| 3591 | // |
| 3592 | // class X { |
| 3593 | // int X::member; |
| 3594 | // }; |
| 3595 | if (DeclContext *DC = computeDeclContext(SS, EnteringContext: false)) { |
| 3596 | TemplateIdAnnotation *TemplateId = |
| 3597 | D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId |
| 3598 | ? D.getName().TemplateId |
| 3599 | : nullptr; |
| 3600 | diagnoseQualifiedDeclaration(SS, DC, Name, Loc: D.getIdentifierLoc(), |
| 3601 | TemplateId, |
| 3602 | /*IsMemberSpecialization=*/false); |
| 3603 | } else { |
| 3604 | Diag(D.getIdentifierLoc(), diag::err_member_qualification) |
| 3605 | << Name << SS.getRange(); |
| 3606 | } |
| 3607 | SS.clear(); |
| 3608 | } |
| 3609 | |
| 3610 | if (MSPropertyAttr) { |
| 3611 | Member = HandleMSProperty(S, cast<CXXRecordDecl>(Val: CurContext), Loc, D, |
| 3612 | BitWidth, InitStyle, AS, *MSPropertyAttr); |
| 3613 | if (!Member) |
| 3614 | return nullptr; |
| 3615 | isInstField = false; |
| 3616 | } else { |
| 3617 | Member = HandleField(S, cast<CXXRecordDecl>(Val: CurContext), Loc, D, |
| 3618 | BitWidth, InitStyle, AS); |
| 3619 | if (!Member) |
| 3620 | return nullptr; |
| 3621 | } |
| 3622 | |
| 3623 | CheckShadowInheritedFields(Loc, FieldName: Name, RD: cast<CXXRecordDecl>(Val: CurContext)); |
| 3624 | } else { |
| 3625 | Member = HandleDeclarator(S, D, TemplateParameterLists); |
| 3626 | if (!Member) |
| 3627 | return nullptr; |
| 3628 | |
| 3629 | // Non-instance-fields can't have a bitfield. |
| 3630 | if (BitWidth) { |
| 3631 | if (Member->isInvalidDecl()) { |
| 3632 | // don't emit another diagnostic. |
| 3633 | } else if (isa<VarDecl>(Val: Member) || isa<VarTemplateDecl>(Val: Member)) { |
| 3634 | // C++ 9.6p3: A bit-field shall not be a static member. |
| 3635 | // "static member 'A' cannot be a bit-field" |
| 3636 | Diag(Loc, diag::err_static_not_bitfield) |
| 3637 | << Name << BitWidth->getSourceRange(); |
| 3638 | } else if (isa<TypedefDecl>(Val: Member)) { |
| 3639 | // "typedef member 'x' cannot be a bit-field" |
| 3640 | Diag(Loc, diag::err_typedef_not_bitfield) |
| 3641 | << Name << BitWidth->getSourceRange(); |
| 3642 | } else { |
| 3643 | // A function typedef ("typedef int f(); f a;"). |
| 3644 | // C++ 9.6p3: A bit-field shall have integral or enumeration type. |
| 3645 | Diag(Loc, diag::err_not_integral_type_bitfield) |
| 3646 | << Name << cast<ValueDecl>(Member)->getType() |
| 3647 | << BitWidth->getSourceRange(); |
| 3648 | } |
| 3649 | |
| 3650 | BitWidth = nullptr; |
| 3651 | Member->setInvalidDecl(); |
| 3652 | } |
| 3653 | |
| 3654 | NamedDecl *NonTemplateMember = Member; |
| 3655 | if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Val: Member)) |
| 3656 | NonTemplateMember = FunTmpl->getTemplatedDecl(); |
| 3657 | else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Val: Member)) |
| 3658 | NonTemplateMember = VarTmpl->getTemplatedDecl(); |
| 3659 | |
| 3660 | Member->setAccess(AS); |
| 3661 | |
| 3662 | // If we have declared a member function template or static data member |
| 3663 | // template, set the access of the templated declaration as well. |
| 3664 | if (NonTemplateMember != Member) |
| 3665 | NonTemplateMember->setAccess(AS); |
| 3666 | |
| 3667 | // C++ [temp.deduct.guide]p3: |
| 3668 | // A deduction guide [...] for a member class template [shall be |
| 3669 | // declared] with the same access [as the template]. |
| 3670 | if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(Val: NonTemplateMember)) { |
| 3671 | auto *TD = DG->getDeducedTemplate(); |
| 3672 | // Access specifiers are only meaningful if both the template and the |
| 3673 | // deduction guide are from the same scope. |
| 3674 | if (AS != TD->getAccess() && |
| 3675 | TD->getDeclContext()->getRedeclContext()->Equals( |
| 3676 | DG->getDeclContext()->getRedeclContext())) { |
| 3677 | Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access); |
| 3678 | Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access) |
| 3679 | << TD->getAccess(); |
| 3680 | const AccessSpecDecl *LastAccessSpec = nullptr; |
| 3681 | for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) { |
| 3682 | if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D)) |
| 3683 | LastAccessSpec = AccessSpec; |
| 3684 | } |
| 3685 | assert(LastAccessSpec && "differing access with no access specifier" ); |
| 3686 | Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access) |
| 3687 | << AS; |
| 3688 | } |
| 3689 | } |
| 3690 | } |
| 3691 | |
| 3692 | if (VS.isOverrideSpecified()) |
| 3693 | Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc())); |
| 3694 | if (VS.isFinalSpecified()) |
| 3695 | Member->addAttr(FinalAttr::Create(Context, VS.getFinalLoc(), |
| 3696 | VS.isFinalSpelledSealed() |
| 3697 | ? FinalAttr::Keyword_sealed |
| 3698 | : FinalAttr::Keyword_final)); |
| 3699 | |
| 3700 | if (VS.getLastLocation().isValid()) { |
| 3701 | // Update the end location of a method that has a virt-specifiers. |
| 3702 | if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Val: Member)) |
| 3703 | MD->setRangeEnd(VS.getLastLocation()); |
| 3704 | } |
| 3705 | |
| 3706 | CheckOverrideControl(D: Member); |
| 3707 | |
| 3708 | assert((Name || isInstField) && "No identifier for non-field ?" ); |
| 3709 | |
| 3710 | if (isInstField) { |
| 3711 | FieldDecl *FD = cast<FieldDecl>(Val: Member); |
| 3712 | FieldCollector->Add(D: FD); |
| 3713 | |
| 3714 | if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation()) && |
| 3715 | IsUnusedPrivateField(FD)) { |
| 3716 | // Remember all explicit private FieldDecls that have a name, no side |
| 3717 | // effects and are not part of a dependent type declaration. |
| 3718 | UnusedPrivateFields.insert(FD); |
| 3719 | } |
| 3720 | } |
| 3721 | |
| 3722 | return Member; |
| 3723 | } |
| 3724 | |
| 3725 | namespace { |
| 3726 | class UninitializedFieldVisitor |
| 3727 | : public EvaluatedExprVisitor<UninitializedFieldVisitor> { |
| 3728 | Sema &S; |
| 3729 | // List of Decls to generate a warning on. Also remove Decls that become |
| 3730 | // initialized. |
| 3731 | llvm::SmallPtrSetImpl<ValueDecl*> &Decls; |
| 3732 | // List of base classes of the record. Classes are removed after their |
| 3733 | // initializers. |
| 3734 | llvm::SmallPtrSetImpl<QualType> &BaseClasses; |
| 3735 | // Vector of decls to be removed from the Decl set prior to visiting the |
| 3736 | // nodes. These Decls may have been initialized in the prior initializer. |
| 3737 | llvm::SmallVector<ValueDecl*, 4> DeclsToRemove; |
| 3738 | // If non-null, add a note to the warning pointing back to the constructor. |
| 3739 | const CXXConstructorDecl *Constructor; |
| 3740 | // Variables to hold state when processing an initializer list. When |
| 3741 | // InitList is true, special case initialization of FieldDecls matching |
| 3742 | // InitListFieldDecl. |
| 3743 | bool InitList; |
| 3744 | FieldDecl *InitListFieldDecl; |
| 3745 | llvm::SmallVector<unsigned, 4> InitFieldIndex; |
| 3746 | |
| 3747 | public: |
| 3748 | typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited; |
| 3749 | UninitializedFieldVisitor(Sema &S, |
| 3750 | llvm::SmallPtrSetImpl<ValueDecl*> &Decls, |
| 3751 | llvm::SmallPtrSetImpl<QualType> &BaseClasses) |
| 3752 | : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses), |
| 3753 | Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {} |
| 3754 | |
| 3755 | // Returns true if the use of ME is not an uninitialized use. |
| 3756 | bool IsInitListMemberExprInitialized(MemberExpr *ME, |
| 3757 | bool CheckReferenceOnly) { |
| 3758 | llvm::SmallVector<FieldDecl*, 4> Fields; |
| 3759 | bool ReferenceField = false; |
| 3760 | while (ME) { |
| 3761 | FieldDecl *FD = dyn_cast<FieldDecl>(Val: ME->getMemberDecl()); |
| 3762 | if (!FD) |
| 3763 | return false; |
| 3764 | Fields.push_back(Elt: FD); |
| 3765 | if (FD->getType()->isReferenceType()) |
| 3766 | ReferenceField = true; |
| 3767 | ME = dyn_cast<MemberExpr>(Val: ME->getBase()->IgnoreParenImpCasts()); |
| 3768 | } |
| 3769 | |
| 3770 | // Binding a reference to an uninitialized field is not an |
| 3771 | // uninitialized use. |
| 3772 | if (CheckReferenceOnly && !ReferenceField) |
| 3773 | return true; |
| 3774 | |
| 3775 | llvm::SmallVector<unsigned, 4> UsedFieldIndex; |
| 3776 | // Discard the first field since it is the field decl that is being |
| 3777 | // initialized. |
| 3778 | for (const FieldDecl *FD : llvm::drop_begin(RangeOrContainer: llvm::reverse(C&: Fields))) |
| 3779 | UsedFieldIndex.push_back(Elt: FD->getFieldIndex()); |
| 3780 | |
| 3781 | for (auto UsedIter = UsedFieldIndex.begin(), |
| 3782 | UsedEnd = UsedFieldIndex.end(), |
| 3783 | OrigIter = InitFieldIndex.begin(), |
| 3784 | OrigEnd = InitFieldIndex.end(); |
| 3785 | UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { |
| 3786 | if (*UsedIter < *OrigIter) |
| 3787 | return true; |
| 3788 | if (*UsedIter > *OrigIter) |
| 3789 | break; |
| 3790 | } |
| 3791 | |
| 3792 | return false; |
| 3793 | } |
| 3794 | |
| 3795 | void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly, |
| 3796 | bool AddressOf) { |
| 3797 | if (isa<EnumConstantDecl>(Val: ME->getMemberDecl())) |
| 3798 | return; |
| 3799 | |
| 3800 | // FieldME is the inner-most MemberExpr that is not an anonymous struct |
| 3801 | // or union. |
| 3802 | MemberExpr *FieldME = ME; |
| 3803 | |
| 3804 | bool AllPODFields = FieldME->getType().isPODType(S.Context); |
| 3805 | |
| 3806 | Expr *Base = ME; |
| 3807 | while (MemberExpr *SubME = |
| 3808 | dyn_cast<MemberExpr>(Val: Base->IgnoreParenImpCasts())) { |
| 3809 | |
| 3810 | if (isa<VarDecl>(Val: SubME->getMemberDecl())) |
| 3811 | return; |
| 3812 | |
| 3813 | if (FieldDecl *FD = dyn_cast<FieldDecl>(Val: SubME->getMemberDecl())) |
| 3814 | if (!FD->isAnonymousStructOrUnion()) |
| 3815 | FieldME = SubME; |
| 3816 | |
| 3817 | if (!FieldME->getType().isPODType(S.Context)) |
| 3818 | AllPODFields = false; |
| 3819 | |
| 3820 | Base = SubME->getBase(); |
| 3821 | } |
| 3822 | |
| 3823 | if (!isa<CXXThisExpr>(Val: Base->IgnoreParenImpCasts())) { |
| 3824 | Visit(Base); |
| 3825 | return; |
| 3826 | } |
| 3827 | |
| 3828 | if (AddressOf && AllPODFields) |
| 3829 | return; |
| 3830 | |
| 3831 | ValueDecl* FoundVD = FieldME->getMemberDecl(); |
| 3832 | |
| 3833 | if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Val: Base)) { |
| 3834 | while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) { |
| 3835 | BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr()); |
| 3836 | } |
| 3837 | |
| 3838 | if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) { |
| 3839 | QualType T = BaseCast->getType(); |
| 3840 | if (T->isPointerType() && |
| 3841 | BaseClasses.count(Ptr: T->getPointeeType())) { |
| 3842 | S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit) |
| 3843 | << T->getPointeeType() << FoundVD; |
| 3844 | } |
| 3845 | } |
| 3846 | } |
| 3847 | |
| 3848 | if (!Decls.count(Ptr: FoundVD)) |
| 3849 | return; |
| 3850 | |
| 3851 | const bool IsReference = FoundVD->getType()->isReferenceType(); |
| 3852 | |
| 3853 | if (InitList && !AddressOf && FoundVD == InitListFieldDecl) { |
| 3854 | // Special checking for initializer lists. |
| 3855 | if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) { |
| 3856 | return; |
| 3857 | } |
| 3858 | } else { |
| 3859 | // Prevent double warnings on use of unbounded references. |
| 3860 | if (CheckReferenceOnly && !IsReference) |
| 3861 | return; |
| 3862 | } |
| 3863 | |
| 3864 | unsigned diag = IsReference |
| 3865 | ? diag::warn_reference_field_is_uninit |
| 3866 | : diag::warn_field_is_uninit; |
| 3867 | S.Diag(FieldME->getExprLoc(), diag) << FoundVD; |
| 3868 | if (Constructor) |
| 3869 | S.Diag(Constructor->getLocation(), |
| 3870 | diag::note_uninit_in_this_constructor) |
| 3871 | << (Constructor->isDefaultConstructor() && Constructor->isImplicit()); |
| 3872 | |
| 3873 | } |
| 3874 | |
| 3875 | void HandleValue(Expr *E, bool AddressOf) { |
| 3876 | E = E->IgnoreParens(); |
| 3877 | |
| 3878 | if (MemberExpr *ME = dyn_cast<MemberExpr>(Val: E)) { |
| 3879 | HandleMemberExpr(ME, CheckReferenceOnly: false /*CheckReferenceOnly*/, |
| 3880 | AddressOf /*AddressOf*/); |
| 3881 | return; |
| 3882 | } |
| 3883 | |
| 3884 | if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(Val: E)) { |
| 3885 | Visit(CO->getCond()); |
| 3886 | HandleValue(E: CO->getTrueExpr(), AddressOf); |
| 3887 | HandleValue(E: CO->getFalseExpr(), AddressOf); |
| 3888 | return; |
| 3889 | } |
| 3890 | |
| 3891 | if (BinaryConditionalOperator *BCO = |
| 3892 | dyn_cast<BinaryConditionalOperator>(Val: E)) { |
| 3893 | Visit(BCO->getCond()); |
| 3894 | HandleValue(E: BCO->getFalseExpr(), AddressOf); |
| 3895 | return; |
| 3896 | } |
| 3897 | |
| 3898 | if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Val: E)) { |
| 3899 | HandleValue(E: OVE->getSourceExpr(), AddressOf); |
| 3900 | return; |
| 3901 | } |
| 3902 | |
| 3903 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) { |
| 3904 | switch (BO->getOpcode()) { |
| 3905 | default: |
| 3906 | break; |
| 3907 | case(BO_PtrMemD): |
| 3908 | case(BO_PtrMemI): |
| 3909 | HandleValue(E: BO->getLHS(), AddressOf); |
| 3910 | Visit(BO->getRHS()); |
| 3911 | return; |
| 3912 | case(BO_Comma): |
| 3913 | Visit(BO->getLHS()); |
| 3914 | HandleValue(E: BO->getRHS(), AddressOf); |
| 3915 | return; |
| 3916 | } |
| 3917 | } |
| 3918 | |
| 3919 | Visit(E); |
| 3920 | } |
| 3921 | |
| 3922 | void CheckInitListExpr(InitListExpr *ILE) { |
| 3923 | InitFieldIndex.push_back(Elt: 0); |
| 3924 | for (auto *Child : ILE->children()) { |
| 3925 | if (InitListExpr *SubList = dyn_cast<InitListExpr>(Val: Child)) { |
| 3926 | CheckInitListExpr(ILE: SubList); |
| 3927 | } else { |
| 3928 | Visit(S: Child); |
| 3929 | } |
| 3930 | ++InitFieldIndex.back(); |
| 3931 | } |
| 3932 | InitFieldIndex.pop_back(); |
| 3933 | } |
| 3934 | |
| 3935 | void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor, |
| 3936 | FieldDecl *Field, const Type *BaseClass) { |
| 3937 | // Remove Decls that may have been initialized in the previous |
| 3938 | // initializer. |
| 3939 | for (ValueDecl* VD : DeclsToRemove) |
| 3940 | Decls.erase(Ptr: VD); |
| 3941 | DeclsToRemove.clear(); |
| 3942 | |
| 3943 | Constructor = FieldConstructor; |
| 3944 | InitListExpr *ILE = dyn_cast<InitListExpr>(Val: E); |
| 3945 | |
| 3946 | if (ILE && Field) { |
| 3947 | InitList = true; |
| 3948 | InitListFieldDecl = Field; |
| 3949 | InitFieldIndex.clear(); |
| 3950 | CheckInitListExpr(ILE); |
| 3951 | } else { |
| 3952 | InitList = false; |
| 3953 | Visit(E); |
| 3954 | } |
| 3955 | |
| 3956 | if (Field) |
| 3957 | Decls.erase(Field); |
| 3958 | if (BaseClass) |
| 3959 | BaseClasses.erase(Ptr: BaseClass->getCanonicalTypeInternal()); |
| 3960 | } |
| 3961 | |
| 3962 | void VisitMemberExpr(MemberExpr *ME) { |
| 3963 | // All uses of unbounded reference fields will warn. |
| 3964 | HandleMemberExpr(ME, CheckReferenceOnly: true /*CheckReferenceOnly*/, AddressOf: false /*AddressOf*/); |
| 3965 | } |
| 3966 | |
| 3967 | void VisitImplicitCastExpr(ImplicitCastExpr *E) { |
| 3968 | if (E->getCastKind() == CK_LValueToRValue) { |
| 3969 | HandleValue(E: E->getSubExpr(), AddressOf: false /*AddressOf*/); |
| 3970 | return; |
| 3971 | } |
| 3972 | |
| 3973 | Inherited::VisitImplicitCastExpr(E); |
| 3974 | } |
| 3975 | |
| 3976 | void VisitCXXConstructExpr(CXXConstructExpr *E) { |
| 3977 | if (E->getConstructor()->isCopyConstructor()) { |
| 3978 | Expr *ArgExpr = E->getArg(Arg: 0); |
| 3979 | if (InitListExpr *ILE = dyn_cast<InitListExpr>(Val: ArgExpr)) |
| 3980 | if (ILE->getNumInits() == 1) |
| 3981 | ArgExpr = ILE->getInit(Init: 0); |
| 3982 | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Val: ArgExpr)) |
| 3983 | if (ICE->getCastKind() == CK_NoOp) |
| 3984 | ArgExpr = ICE->getSubExpr(); |
| 3985 | HandleValue(E: ArgExpr, AddressOf: false /*AddressOf*/); |
| 3986 | return; |
| 3987 | } |
| 3988 | Inherited::VisitCXXConstructExpr(E); |
| 3989 | } |
| 3990 | |
| 3991 | void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { |
| 3992 | Expr *Callee = E->getCallee(); |
| 3993 | if (isa<MemberExpr>(Val: Callee)) { |
| 3994 | HandleValue(E: Callee, AddressOf: false /*AddressOf*/); |
| 3995 | for (auto *Arg : E->arguments()) |
| 3996 | Visit(Arg); |
| 3997 | return; |
| 3998 | } |
| 3999 | |
| 4000 | Inherited::VisitCXXMemberCallExpr(E); |
| 4001 | } |
| 4002 | |
| 4003 | void VisitCallExpr(CallExpr *E) { |
| 4004 | // Treat std::move as a use. |
| 4005 | if (E->isCallToStdMove()) { |
| 4006 | HandleValue(E: E->getArg(Arg: 0), /*AddressOf=*/false); |
| 4007 | return; |
| 4008 | } |
| 4009 | |
| 4010 | Inherited::VisitCallExpr(CE: E); |
| 4011 | } |
| 4012 | |
| 4013 | void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { |
| 4014 | Expr *Callee = E->getCallee(); |
| 4015 | |
| 4016 | if (isa<UnresolvedLookupExpr>(Callee)) |
| 4017 | return Inherited::VisitCXXOperatorCallExpr(E); |
| 4018 | |
| 4019 | Visit(Callee); |
| 4020 | for (auto *Arg : E->arguments()) |
| 4021 | HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/); |
| 4022 | } |
| 4023 | |
| 4024 | void VisitBinaryOperator(BinaryOperator *E) { |
| 4025 | // If a field assignment is detected, remove the field from the |
| 4026 | // uninitiailized field set. |
| 4027 | if (E->getOpcode() == BO_Assign) |
| 4028 | if (MemberExpr *ME = dyn_cast<MemberExpr>(Val: E->getLHS())) |
| 4029 | if (FieldDecl *FD = dyn_cast<FieldDecl>(Val: ME->getMemberDecl())) |
| 4030 | if (!FD->getType()->isReferenceType()) |
| 4031 | DeclsToRemove.push_back(FD); |
| 4032 | |
| 4033 | if (E->isCompoundAssignmentOp()) { |
| 4034 | HandleValue(E: E->getLHS(), AddressOf: false /*AddressOf*/); |
| 4035 | Visit(E->getRHS()); |
| 4036 | return; |
| 4037 | } |
| 4038 | |
| 4039 | Inherited::VisitBinaryOperator(E); |
| 4040 | } |
| 4041 | |
| 4042 | void VisitUnaryOperator(UnaryOperator *E) { |
| 4043 | if (E->isIncrementDecrementOp()) { |
| 4044 | HandleValue(E: E->getSubExpr(), AddressOf: false /*AddressOf*/); |
| 4045 | return; |
| 4046 | } |
| 4047 | if (E->getOpcode() == UO_AddrOf) { |
| 4048 | if (MemberExpr *ME = dyn_cast<MemberExpr>(Val: E->getSubExpr())) { |
| 4049 | HandleValue(E: ME->getBase(), AddressOf: true /*AddressOf*/); |
| 4050 | return; |
| 4051 | } |
| 4052 | } |
| 4053 | |
| 4054 | Inherited::VisitUnaryOperator(E); |
| 4055 | } |
| 4056 | }; |
| 4057 | |
| 4058 | // Diagnose value-uses of fields to initialize themselves, e.g. |
| 4059 | // foo(foo) |
| 4060 | // where foo is not also a parameter to the constructor. |
| 4061 | // Also diagnose across field uninitialized use such as |
| 4062 | // x(y), y(x) |
| 4063 | // TODO: implement -Wuninitialized and fold this into that framework. |
| 4064 | static void DiagnoseUninitializedFields( |
| 4065 | Sema &SemaRef, const CXXConstructorDecl *Constructor) { |
| 4066 | |
| 4067 | if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit, |
| 4068 | Constructor->getLocation())) { |
| 4069 | return; |
| 4070 | } |
| 4071 | |
| 4072 | if (Constructor->isInvalidDecl()) |
| 4073 | return; |
| 4074 | |
| 4075 | const CXXRecordDecl *RD = Constructor->getParent(); |
| 4076 | |
| 4077 | if (RD->isDependentContext()) |
| 4078 | return; |
| 4079 | |
| 4080 | // Holds fields that are uninitialized. |
| 4081 | llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields; |
| 4082 | |
| 4083 | // At the beginning, all fields are uninitialized. |
| 4084 | for (auto *I : RD->decls()) { |
| 4085 | if (auto *FD = dyn_cast<FieldDecl>(I)) { |
| 4086 | UninitializedFields.insert(FD); |
| 4087 | } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) { |
| 4088 | UninitializedFields.insert(IFD->getAnonField()); |
| 4089 | } |
| 4090 | } |
| 4091 | |
| 4092 | llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses; |
| 4093 | for (const auto &I : RD->bases()) |
| 4094 | UninitializedBaseClasses.insert(I.getType().getCanonicalType()); |
| 4095 | |
| 4096 | if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) |
| 4097 | return; |
| 4098 | |
| 4099 | UninitializedFieldVisitor UninitializedChecker(SemaRef, |
| 4100 | UninitializedFields, |
| 4101 | UninitializedBaseClasses); |
| 4102 | |
| 4103 | for (const auto *FieldInit : Constructor->inits()) { |
| 4104 | if (UninitializedFields.empty() && UninitializedBaseClasses.empty()) |
| 4105 | break; |
| 4106 | |
| 4107 | Expr *InitExpr = FieldInit->getInit(); |
| 4108 | if (!InitExpr) |
| 4109 | continue; |
| 4110 | |
| 4111 | if (CXXDefaultInitExpr *Default = |
| 4112 | dyn_cast<CXXDefaultInitExpr>(Val: InitExpr)) { |
| 4113 | InitExpr = Default->getExpr(); |
| 4114 | if (!InitExpr) |
| 4115 | continue; |
| 4116 | // In class initializers will point to the constructor. |
| 4117 | UninitializedChecker.CheckInitializer(E: InitExpr, FieldConstructor: Constructor, |
| 4118 | Field: FieldInit->getAnyMember(), |
| 4119 | BaseClass: FieldInit->getBaseClass()); |
| 4120 | } else { |
| 4121 | UninitializedChecker.CheckInitializer(E: InitExpr, FieldConstructor: nullptr, |
| 4122 | Field: FieldInit->getAnyMember(), |
| 4123 | BaseClass: FieldInit->getBaseClass()); |
| 4124 | } |
| 4125 | } |
| 4126 | } |
| 4127 | } // namespace |
| 4128 | |
| 4129 | void Sema::ActOnStartCXXInClassMemberInitializer() { |
| 4130 | // Create a synthetic function scope to represent the call to the constructor |
| 4131 | // that notionally surrounds a use of this initializer. |
| 4132 | PushFunctionScope(); |
| 4133 | } |
| 4134 | |
| 4135 | void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) { |
| 4136 | if (!D.isFunctionDeclarator()) |
| 4137 | return; |
| 4138 | auto &FTI = D.getFunctionTypeInfo(); |
| 4139 | if (!FTI.Params) |
| 4140 | return; |
| 4141 | for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params, |
| 4142 | FTI.NumParams)) { |
| 4143 | auto *ParamDecl = cast<NamedDecl>(Val: Param.Param); |
| 4144 | if (ParamDecl->getDeclName()) |
| 4145 | PushOnScopeChains(D: ParamDecl, S, /*AddToContext=*/false); |
| 4146 | } |
| 4147 | } |
| 4148 | |
| 4149 | ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) { |
| 4150 | return ActOnRequiresClause(ConstraintExpr); |
| 4151 | } |
| 4152 | |
| 4153 | ExprResult Sema::ActOnRequiresClause(ExprResult ConstraintExpr) { |
| 4154 | if (ConstraintExpr.isInvalid()) |
| 4155 | return ExprError(); |
| 4156 | |
| 4157 | ConstraintExpr = CorrectDelayedTyposInExpr(ER: ConstraintExpr); |
| 4158 | if (ConstraintExpr.isInvalid()) |
| 4159 | return ExprError(); |
| 4160 | |
| 4161 | if (DiagnoseUnexpandedParameterPack(E: ConstraintExpr.get(), |
| 4162 | UPPC: UPPC_RequiresClause)) |
| 4163 | return ExprError(); |
| 4164 | |
| 4165 | return ConstraintExpr; |
| 4166 | } |
| 4167 | |
| 4168 | ExprResult Sema::ConvertMemberDefaultInitExpression(FieldDecl *FD, |
| 4169 | Expr *InitExpr, |
| 4170 | SourceLocation InitLoc) { |
| 4171 | InitializedEntity Entity = |
| 4172 | InitializedEntity::InitializeMemberFromDefaultMemberInitializer(Member: FD); |
| 4173 | InitializationKind Kind = |
| 4174 | FD->getInClassInitStyle() == ICIS_ListInit |
| 4175 | ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(), |
| 4176 | InitExpr->getBeginLoc(), |
| 4177 | InitExpr->getEndLoc()) |
| 4178 | : InitializationKind::CreateCopy(InitLoc: InitExpr->getBeginLoc(), EqualLoc: InitLoc); |
| 4179 | InitializationSequence Seq(*this, Entity, Kind, InitExpr); |
| 4180 | return Seq.Perform(S&: *this, Entity, Kind, Args: InitExpr); |
| 4181 | } |
| 4182 | |
| 4183 | void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D, |
| 4184 | SourceLocation InitLoc, |
| 4185 | ExprResult InitExpr) { |
| 4186 | // Pop the notional constructor scope we created earlier. |
| 4187 | PopFunctionScopeInfo(WP: nullptr, D); |
| 4188 | |
| 4189 | // Microsoft C++'s property declaration cannot have a default member |
| 4190 | // initializer. |
| 4191 | if (isa<MSPropertyDecl>(Val: D)) { |
| 4192 | D->setInvalidDecl(); |
| 4193 | return; |
| 4194 | } |
| 4195 | |
| 4196 | FieldDecl *FD = dyn_cast<FieldDecl>(Val: D); |
| 4197 | assert((FD && FD->getInClassInitStyle() != ICIS_NoInit) && |
| 4198 | "must set init style when field is created" ); |
| 4199 | |
| 4200 | if (!InitExpr.isUsable() || |
| 4201 | DiagnoseUnexpandedParameterPack(E: InitExpr.get(), UPPC: UPPC_Initializer)) { |
| 4202 | FD->setInvalidDecl(); |
| 4203 | ExprResult RecoveryInit = |
| 4204 | CreateRecoveryExpr(Begin: InitLoc, End: InitLoc, SubExprs: {}, T: FD->getType()); |
| 4205 | if (RecoveryInit.isUsable()) |
| 4206 | FD->setInClassInitializer(RecoveryInit.get()); |
| 4207 | return; |
| 4208 | } |
| 4209 | |
| 4210 | ExprResult Init = CorrectDelayedTyposInExpr(ER: InitExpr, /*InitDecl=*/nullptr, |
| 4211 | /*RecoverUncorrectedTypos=*/true); |
| 4212 | assert(Init.isUsable() && "Init should at least have a RecoveryExpr" ); |
| 4213 | if (!FD->getType()->isDependentType() && !Init.get()->isTypeDependent()) { |
| 4214 | Init = ConvertMemberDefaultInitExpression(FD, InitExpr: Init.get(), InitLoc); |
| 4215 | // C++11 [class.base.init]p7: |
| 4216 | // The initialization of each base and member constitutes a |
| 4217 | // full-expression. |
| 4218 | if (!Init.isInvalid()) |
| 4219 | Init = ActOnFinishFullExpr(Expr: Init.get(), /*DiscarededValue=*/DiscardedValue: false); |
| 4220 | if (Init.isInvalid()) { |
| 4221 | FD->setInvalidDecl(); |
| 4222 | return; |
| 4223 | } |
| 4224 | } |
| 4225 | |
| 4226 | FD->setInClassInitializer(Init.get()); |
| 4227 | } |
| 4228 | |
| 4229 | /// Find the direct and/or virtual base specifiers that |
| 4230 | /// correspond to the given base type, for use in base initialization |
| 4231 | /// within a constructor. |
| 4232 | static bool FindBaseInitializer(Sema &SemaRef, |
| 4233 | CXXRecordDecl *ClassDecl, |
| 4234 | QualType BaseType, |
| 4235 | const CXXBaseSpecifier *&DirectBaseSpec, |
| 4236 | const CXXBaseSpecifier *&VirtualBaseSpec) { |
| 4237 | // First, check for a direct base class. |
| 4238 | DirectBaseSpec = nullptr; |
| 4239 | for (const auto &Base : ClassDecl->bases()) { |
| 4240 | if (SemaRef.Context.hasSameUnqualifiedType(T1: BaseType, T2: Base.getType())) { |
| 4241 | // We found a direct base of this type. That's what we're |
| 4242 | // initializing. |
| 4243 | DirectBaseSpec = &Base; |
| 4244 | break; |
| 4245 | } |
| 4246 | } |
| 4247 | |
| 4248 | // Check for a virtual base class. |
| 4249 | // FIXME: We might be able to short-circuit this if we know in advance that |
| 4250 | // there are no virtual bases. |
| 4251 | VirtualBaseSpec = nullptr; |
| 4252 | if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { |
| 4253 | // We haven't found a base yet; search the class hierarchy for a |
| 4254 | // virtual base class. |
| 4255 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
| 4256 | /*DetectVirtual=*/false); |
| 4257 | if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(), |
| 4258 | SemaRef.Context.getTypeDeclType(ClassDecl), |
| 4259 | BaseType, Paths)) { |
| 4260 | for (CXXBasePaths::paths_iterator Path = Paths.begin(); |
| 4261 | Path != Paths.end(); ++Path) { |
| 4262 | if (Path->back().Base->isVirtual()) { |
| 4263 | VirtualBaseSpec = Path->back().Base; |
| 4264 | break; |
| 4265 | } |
| 4266 | } |
| 4267 | } |
| 4268 | } |
| 4269 | |
| 4270 | return DirectBaseSpec || VirtualBaseSpec; |
| 4271 | } |
| 4272 | |
| 4273 | MemInitResult |
| 4274 | Sema::ActOnMemInitializer(Decl *ConstructorD, |
| 4275 | Scope *S, |
| 4276 | CXXScopeSpec &SS, |
| 4277 | IdentifierInfo *MemberOrBase, |
| 4278 | ParsedType TemplateTypeTy, |
| 4279 | const DeclSpec &DS, |
| 4280 | SourceLocation IdLoc, |
| 4281 | Expr *InitList, |
| 4282 | SourceLocation EllipsisLoc) { |
| 4283 | return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, |
| 4284 | DS, IdLoc, Init: InitList, |
| 4285 | EllipsisLoc); |
| 4286 | } |
| 4287 | |
| 4288 | MemInitResult |
| 4289 | Sema::ActOnMemInitializer(Decl *ConstructorD, |
| 4290 | Scope *S, |
| 4291 | CXXScopeSpec &SS, |
| 4292 | IdentifierInfo *MemberOrBase, |
| 4293 | ParsedType TemplateTypeTy, |
| 4294 | const DeclSpec &DS, |
| 4295 | SourceLocation IdLoc, |
| 4296 | SourceLocation LParenLoc, |
| 4297 | ArrayRef<Expr *> Args, |
| 4298 | SourceLocation RParenLoc, |
| 4299 | SourceLocation EllipsisLoc) { |
| 4300 | Expr *List = ParenListExpr::Create(Ctx: Context, LParenLoc, Exprs: Args, RParenLoc); |
| 4301 | return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy, |
| 4302 | DS, IdLoc, Init: List, EllipsisLoc); |
| 4303 | } |
| 4304 | |
| 4305 | namespace { |
| 4306 | |
| 4307 | // Callback to only accept typo corrections that can be a valid C++ member |
| 4308 | // initializer: either a non-static field member or a base class. |
| 4309 | class MemInitializerValidatorCCC final : public CorrectionCandidateCallback { |
| 4310 | public: |
| 4311 | explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl) |
| 4312 | : ClassDecl(ClassDecl) {} |
| 4313 | |
| 4314 | bool ValidateCandidate(const TypoCorrection &candidate) override { |
| 4315 | if (NamedDecl *ND = candidate.getCorrectionDecl()) { |
| 4316 | if (FieldDecl *Member = dyn_cast<FieldDecl>(Val: ND)) |
| 4317 | return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl); |
| 4318 | return isa<TypeDecl>(Val: ND); |
| 4319 | } |
| 4320 | return false; |
| 4321 | } |
| 4322 | |
| 4323 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
| 4324 | return std::make_unique<MemInitializerValidatorCCC>(args&: *this); |
| 4325 | } |
| 4326 | |
| 4327 | private: |
| 4328 | CXXRecordDecl *ClassDecl; |
| 4329 | }; |
| 4330 | |
| 4331 | } |
| 4332 | |
| 4333 | bool Sema::DiagRedefinedPlaceholderFieldDecl(SourceLocation Loc, |
| 4334 | RecordDecl *ClassDecl, |
| 4335 | const IdentifierInfo *Name) { |
| 4336 | DeclContextLookupResult Result = ClassDecl->lookup(Name); |
| 4337 | DeclContextLookupResult::iterator Found = |
| 4338 | llvm::find_if(Range&: Result, P: [this](const NamedDecl *Elem) { |
| 4339 | return isa<FieldDecl, IndirectFieldDecl>(Val: Elem) && |
| 4340 | Elem->isPlaceholderVar(LangOpts: getLangOpts()); |
| 4341 | }); |
| 4342 | // We did not find a placeholder variable |
| 4343 | if (Found == Result.end()) |
| 4344 | return false; |
| 4345 | Diag(Loc, diag::err_using_placeholder_variable) << Name; |
| 4346 | for (DeclContextLookupResult::iterator It = Found; It != Result.end(); It++) { |
| 4347 | const NamedDecl *ND = *It; |
| 4348 | if (ND->getDeclContext() != ND->getDeclContext()) |
| 4349 | break; |
| 4350 | if (isa<FieldDecl, IndirectFieldDecl>(ND) && |
| 4351 | ND->isPlaceholderVar(getLangOpts())) |
| 4352 | Diag(ND->getLocation(), diag::note_reference_placeholder) << ND; |
| 4353 | } |
| 4354 | return true; |
| 4355 | } |
| 4356 | |
| 4357 | ValueDecl * |
| 4358 | Sema::tryLookupUnambiguousFieldDecl(RecordDecl *ClassDecl, |
| 4359 | const IdentifierInfo *MemberOrBase) { |
| 4360 | ValueDecl *ND = nullptr; |
| 4361 | for (auto *D : ClassDecl->lookup(MemberOrBase)) { |
| 4362 | if (isa<FieldDecl, IndirectFieldDecl>(D)) { |
| 4363 | bool IsPlaceholder = D->isPlaceholderVar(getLangOpts()); |
| 4364 | if (ND) { |
| 4365 | if (IsPlaceholder && D->getDeclContext() == ND->getDeclContext()) |
| 4366 | return nullptr; |
| 4367 | break; |
| 4368 | } |
| 4369 | if (!IsPlaceholder) |
| 4370 | return cast<ValueDecl>(D); |
| 4371 | ND = cast<ValueDecl>(D); |
| 4372 | } |
| 4373 | } |
| 4374 | return ND; |
| 4375 | } |
| 4376 | |
| 4377 | ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl, |
| 4378 | CXXScopeSpec &SS, |
| 4379 | ParsedType TemplateTypeTy, |
| 4380 | IdentifierInfo *MemberOrBase) { |
| 4381 | if (SS.getScopeRep() || TemplateTypeTy) |
| 4382 | return nullptr; |
| 4383 | return tryLookupUnambiguousFieldDecl(ClassDecl, MemberOrBase); |
| 4384 | } |
| 4385 | |
| 4386 | MemInitResult |
| 4387 | Sema::BuildMemInitializer(Decl *ConstructorD, |
| 4388 | Scope *S, |
| 4389 | CXXScopeSpec &SS, |
| 4390 | IdentifierInfo *MemberOrBase, |
| 4391 | ParsedType TemplateTypeTy, |
| 4392 | const DeclSpec &DS, |
| 4393 | SourceLocation IdLoc, |
| 4394 | Expr *Init, |
| 4395 | SourceLocation EllipsisLoc) { |
| 4396 | ExprResult Res = CorrectDelayedTyposInExpr(E: Init, /*InitDecl=*/nullptr, |
| 4397 | /*RecoverUncorrectedTypos=*/true); |
| 4398 | if (!Res.isUsable()) |
| 4399 | return true; |
| 4400 | Init = Res.get(); |
| 4401 | |
| 4402 | if (!ConstructorD) |
| 4403 | return true; |
| 4404 | |
| 4405 | AdjustDeclIfTemplate(Decl&: ConstructorD); |
| 4406 | |
| 4407 | CXXConstructorDecl *Constructor |
| 4408 | = dyn_cast<CXXConstructorDecl>(Val: ConstructorD); |
| 4409 | if (!Constructor) { |
| 4410 | // The user wrote a constructor initializer on a function that is |
| 4411 | // not a C++ constructor. Ignore the error for now, because we may |
| 4412 | // have more member initializers coming; we'll diagnose it just |
| 4413 | // once in ActOnMemInitializers. |
| 4414 | return true; |
| 4415 | } |
| 4416 | |
| 4417 | CXXRecordDecl *ClassDecl = Constructor->getParent(); |
| 4418 | |
| 4419 | // C++ [class.base.init]p2: |
| 4420 | // Names in a mem-initializer-id are looked up in the scope of the |
| 4421 | // constructor's class and, if not found in that scope, are looked |
| 4422 | // up in the scope containing the constructor's definition. |
| 4423 | // [Note: if the constructor's class contains a member with the |
| 4424 | // same name as a direct or virtual base class of the class, a |
| 4425 | // mem-initializer-id naming the member or base class and composed |
| 4426 | // of a single identifier refers to the class member. A |
| 4427 | // mem-initializer-id for the hidden base class may be specified |
| 4428 | // using a qualified name. ] |
| 4429 | |
| 4430 | // Look for a member, first. |
| 4431 | if (ValueDecl *Member = tryLookupCtorInitMemberDecl( |
| 4432 | ClassDecl, SS, TemplateTypeTy, MemberOrBase)) { |
| 4433 | if (EllipsisLoc.isValid()) |
| 4434 | Diag(EllipsisLoc, diag::err_pack_expansion_member_init) |
| 4435 | << MemberOrBase |
| 4436 | << SourceRange(IdLoc, Init->getSourceRange().getEnd()); |
| 4437 | |
| 4438 | return BuildMemberInitializer(Member, Init, IdLoc); |
| 4439 | } |
| 4440 | // It didn't name a member, so see if it names a class. |
| 4441 | QualType BaseType; |
| 4442 | TypeSourceInfo *TInfo = nullptr; |
| 4443 | |
| 4444 | if (TemplateTypeTy) { |
| 4445 | BaseType = GetTypeFromParser(Ty: TemplateTypeTy, TInfo: &TInfo); |
| 4446 | if (BaseType.isNull()) |
| 4447 | return true; |
| 4448 | } else if (DS.getTypeSpecType() == TST_decltype) { |
| 4449 | BaseType = BuildDecltypeType(E: DS.getRepAsExpr()); |
| 4450 | } else if (DS.getTypeSpecType() == TST_decltype_auto) { |
| 4451 | Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); |
| 4452 | return true; |
| 4453 | } else if (DS.getTypeSpecType() == TST_typename_pack_indexing) { |
| 4454 | BaseType = |
| 4455 | BuildPackIndexingType(Pattern: DS.getRepAsType().get(), IndexExpr: DS.getPackIndexingExpr(), |
| 4456 | Loc: DS.getBeginLoc(), EllipsisLoc: DS.getEllipsisLoc()); |
| 4457 | } else { |
| 4458 | LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName); |
| 4459 | LookupParsedName(R, S, SS: &SS, /*ObjectType=*/QualType()); |
| 4460 | |
| 4461 | TypeDecl *TyD = R.getAsSingle<TypeDecl>(); |
| 4462 | if (!TyD) { |
| 4463 | if (R.isAmbiguous()) return true; |
| 4464 | |
| 4465 | // We don't want access-control diagnostics here. |
| 4466 | R.suppressDiagnostics(); |
| 4467 | |
| 4468 | if (SS.isSet() && isDependentScopeSpecifier(SS)) { |
| 4469 | bool NotUnknownSpecialization = false; |
| 4470 | DeclContext *DC = computeDeclContext(SS, EnteringContext: false); |
| 4471 | if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Val: DC)) |
| 4472 | NotUnknownSpecialization = !Record->hasAnyDependentBases(); |
| 4473 | |
| 4474 | if (!NotUnknownSpecialization) { |
| 4475 | // When the scope specifier can refer to a member of an unknown |
| 4476 | // specialization, we take it as a type name. |
| 4477 | BaseType = CheckTypenameType( |
| 4478 | Keyword: ElaboratedTypeKeyword::None, KeywordLoc: SourceLocation(), |
| 4479 | QualifierLoc: SS.getWithLocInContext(Context), II: *MemberOrBase, IILoc: IdLoc); |
| 4480 | if (BaseType.isNull()) |
| 4481 | return true; |
| 4482 | |
| 4483 | TInfo = Context.CreateTypeSourceInfo(T: BaseType); |
| 4484 | DependentNameTypeLoc TL = |
| 4485 | TInfo->getTypeLoc().castAs<DependentNameTypeLoc>(); |
| 4486 | if (!TL.isNull()) { |
| 4487 | TL.setNameLoc(IdLoc); |
| 4488 | TL.setElaboratedKeywordLoc(SourceLocation()); |
| 4489 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); |
| 4490 | } |
| 4491 | |
| 4492 | R.clear(); |
| 4493 | R.setLookupName(MemberOrBase); |
| 4494 | } |
| 4495 | } |
| 4496 | |
| 4497 | if (getLangOpts().MSVCCompat && !getLangOpts().CPlusPlus20) { |
| 4498 | if (auto UnqualifiedBase = R.getAsSingle<ClassTemplateDecl>()) { |
| 4499 | auto *TempSpec = cast<TemplateSpecializationType>( |
| 4500 | Val: UnqualifiedBase->getInjectedClassNameSpecialization()); |
| 4501 | TemplateName TN = TempSpec->getTemplateName(); |
| 4502 | for (auto const &Base : ClassDecl->bases()) { |
| 4503 | auto BaseTemplate = |
| 4504 | Base.getType()->getAs<TemplateSpecializationType>(); |
| 4505 | if (BaseTemplate && |
| 4506 | Context.hasSameTemplateName(BaseTemplate->getTemplateName(), TN, |
| 4507 | /*IgnoreDeduced=*/true)) { |
| 4508 | Diag(IdLoc, diag::ext_unqualified_base_class) |
| 4509 | << SourceRange(IdLoc, Init->getSourceRange().getEnd()); |
| 4510 | BaseType = Base.getType(); |
| 4511 | break; |
| 4512 | } |
| 4513 | } |
| 4514 | } |
| 4515 | } |
| 4516 | |
| 4517 | // If no results were found, try to correct typos. |
| 4518 | TypoCorrection Corr; |
| 4519 | MemInitializerValidatorCCC CCC(ClassDecl); |
| 4520 | if (R.empty() && BaseType.isNull() && |
| 4521 | (Corr = |
| 4522 | CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, |
| 4523 | CCC, CorrectTypoKind::ErrorRecovery, ClassDecl))) { |
| 4524 | if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) { |
| 4525 | // We have found a non-static data member with a similar |
| 4526 | // name to what was typed; complain and initialize that |
| 4527 | // member. |
| 4528 | diagnoseTypo(Corr, |
| 4529 | PDiag(diag::err_mem_init_not_member_or_class_suggest) |
| 4530 | << MemberOrBase << true); |
| 4531 | return BuildMemberInitializer(Member, Init, IdLoc); |
| 4532 | } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) { |
| 4533 | const CXXBaseSpecifier *DirectBaseSpec; |
| 4534 | const CXXBaseSpecifier *VirtualBaseSpec; |
| 4535 | if (FindBaseInitializer(SemaRef&: *this, ClassDecl, |
| 4536 | BaseType: Context.getTypeDeclType(Decl: Type), |
| 4537 | DirectBaseSpec, VirtualBaseSpec)) { |
| 4538 | // We have found a direct or virtual base class with a |
| 4539 | // similar name to what was typed; complain and initialize |
| 4540 | // that base class. |
| 4541 | diagnoseTypo(Corr, |
| 4542 | PDiag(diag::err_mem_init_not_member_or_class_suggest) |
| 4543 | << MemberOrBase << false, |
| 4544 | PDiag() /*Suppress note, we provide our own.*/); |
| 4545 | |
| 4546 | const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec |
| 4547 | : VirtualBaseSpec; |
| 4548 | Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here) |
| 4549 | << BaseSpec->getType() << BaseSpec->getSourceRange(); |
| 4550 | |
| 4551 | TyD = Type; |
| 4552 | } |
| 4553 | } |
| 4554 | } |
| 4555 | |
| 4556 | if (!TyD && BaseType.isNull()) { |
| 4557 | Diag(IdLoc, diag::err_mem_init_not_member_or_class) |
| 4558 | << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd()); |
| 4559 | return true; |
| 4560 | } |
| 4561 | } |
| 4562 | |
| 4563 | if (BaseType.isNull()) { |
| 4564 | BaseType = getElaboratedType(Keyword: ElaboratedTypeKeyword::None, SS, |
| 4565 | T: Context.getTypeDeclType(Decl: TyD)); |
| 4566 | MarkAnyDeclReferenced(Loc: TyD->getLocation(), D: TyD, /*OdrUse=*/MightBeOdrUse: false); |
| 4567 | TInfo = Context.CreateTypeSourceInfo(T: BaseType); |
| 4568 | ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>(); |
| 4569 | TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc); |
| 4570 | TL.setElaboratedKeywordLoc(SourceLocation()); |
| 4571 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); |
| 4572 | } |
| 4573 | } |
| 4574 | |
| 4575 | if (!TInfo) |
| 4576 | TInfo = Context.getTrivialTypeSourceInfo(T: BaseType, Loc: IdLoc); |
| 4577 | |
| 4578 | return BuildBaseInitializer(BaseType, BaseTInfo: TInfo, Init, ClassDecl, EllipsisLoc); |
| 4579 | } |
| 4580 | |
| 4581 | MemInitResult |
| 4582 | Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init, |
| 4583 | SourceLocation IdLoc) { |
| 4584 | FieldDecl *DirectMember = dyn_cast<FieldDecl>(Val: Member); |
| 4585 | IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Val: Member); |
| 4586 | assert((DirectMember || IndirectMember) && |
| 4587 | "Member must be a FieldDecl or IndirectFieldDecl" ); |
| 4588 | |
| 4589 | if (DiagnoseUnexpandedParameterPack(E: Init, UPPC: UPPC_Initializer)) |
| 4590 | return true; |
| 4591 | |
| 4592 | if (Member->isInvalidDecl()) |
| 4593 | return true; |
| 4594 | |
| 4595 | MultiExprArg Args; |
| 4596 | if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Val: Init)) { |
| 4597 | Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); |
| 4598 | } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Val: Init)) { |
| 4599 | Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); |
| 4600 | } else { |
| 4601 | // Template instantiation doesn't reconstruct ParenListExprs for us. |
| 4602 | Args = Init; |
| 4603 | } |
| 4604 | |
| 4605 | SourceRange InitRange = Init->getSourceRange(); |
| 4606 | |
| 4607 | if (Member->getType()->isDependentType() || Init->isTypeDependent()) { |
| 4608 | // Can't check initialization for a member of dependent type or when |
| 4609 | // any of the arguments are type-dependent expressions. |
| 4610 | DiscardCleanupsInEvaluationContext(); |
| 4611 | } else { |
| 4612 | bool InitList = false; |
| 4613 | if (isa<InitListExpr>(Val: Init)) { |
| 4614 | InitList = true; |
| 4615 | Args = Init; |
| 4616 | } |
| 4617 | |
| 4618 | // Initialize the member. |
| 4619 | InitializedEntity MemberEntity = |
| 4620 | DirectMember ? InitializedEntity::InitializeMember(Member: DirectMember, Parent: nullptr) |
| 4621 | : InitializedEntity::InitializeMember(Member: IndirectMember, |
| 4622 | Parent: nullptr); |
| 4623 | InitializationKind Kind = |
| 4624 | InitList ? InitializationKind::CreateDirectList( |
| 4625 | IdLoc, Init->getBeginLoc(), Init->getEndLoc()) |
| 4626 | : InitializationKind::CreateDirect(InitLoc: IdLoc, LParenLoc: InitRange.getBegin(), |
| 4627 | RParenLoc: InitRange.getEnd()); |
| 4628 | |
| 4629 | InitializationSequence InitSeq(*this, MemberEntity, Kind, Args); |
| 4630 | ExprResult MemberInit = InitSeq.Perform(S&: *this, Entity: MemberEntity, Kind, Args, |
| 4631 | ResultType: nullptr); |
| 4632 | if (!MemberInit.isInvalid()) { |
| 4633 | // C++11 [class.base.init]p7: |
| 4634 | // The initialization of each base and member constitutes a |
| 4635 | // full-expression. |
| 4636 | MemberInit = ActOnFinishFullExpr(Expr: MemberInit.get(), CC: InitRange.getBegin(), |
| 4637 | /*DiscardedValue*/ false); |
| 4638 | } |
| 4639 | |
| 4640 | if (MemberInit.isInvalid()) { |
| 4641 | // Args were sensible expressions but we couldn't initialize the member |
| 4642 | // from them. Preserve them in a RecoveryExpr instead. |
| 4643 | Init = CreateRecoveryExpr(Begin: InitRange.getBegin(), End: InitRange.getEnd(), SubExprs: Args, |
| 4644 | T: Member->getType()) |
| 4645 | .get(); |
| 4646 | if (!Init) |
| 4647 | return true; |
| 4648 | } else { |
| 4649 | Init = MemberInit.get(); |
| 4650 | } |
| 4651 | } |
| 4652 | |
| 4653 | if (DirectMember) { |
| 4654 | return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc, |
| 4655 | InitRange.getBegin(), Init, |
| 4656 | InitRange.getEnd()); |
| 4657 | } else { |
| 4658 | return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc, |
| 4659 | InitRange.getBegin(), Init, |
| 4660 | InitRange.getEnd()); |
| 4661 | } |
| 4662 | } |
| 4663 | |
| 4664 | MemInitResult |
| 4665 | Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init, |
| 4666 | CXXRecordDecl *ClassDecl) { |
| 4667 | SourceLocation NameLoc = TInfo->getTypeLoc().getSourceRange().getBegin(); |
| 4668 | if (!LangOpts.CPlusPlus11) |
| 4669 | return Diag(NameLoc, diag::err_delegating_ctor) |
| 4670 | << TInfo->getTypeLoc().getSourceRange(); |
| 4671 | Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor); |
| 4672 | |
| 4673 | bool InitList = true; |
| 4674 | MultiExprArg Args = Init; |
| 4675 | if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Val: Init)) { |
| 4676 | InitList = false; |
| 4677 | Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); |
| 4678 | } |
| 4679 | |
| 4680 | SourceRange InitRange = Init->getSourceRange(); |
| 4681 | // Initialize the object. |
| 4682 | InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation( |
| 4683 | Type: QualType(ClassDecl->getTypeForDecl(), 0)); |
| 4684 | InitializationKind Kind = |
| 4685 | InitList ? InitializationKind::CreateDirectList( |
| 4686 | NameLoc, Init->getBeginLoc(), Init->getEndLoc()) |
| 4687 | : InitializationKind::CreateDirect(InitLoc: NameLoc, LParenLoc: InitRange.getBegin(), |
| 4688 | RParenLoc: InitRange.getEnd()); |
| 4689 | InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args); |
| 4690 | ExprResult DelegationInit = InitSeq.Perform(S&: *this, Entity: DelegationEntity, Kind, |
| 4691 | Args, ResultType: nullptr); |
| 4692 | if (!DelegationInit.isInvalid()) { |
| 4693 | assert((DelegationInit.get()->containsErrors() || |
| 4694 | cast<CXXConstructExpr>(DelegationInit.get())->getConstructor()) && |
| 4695 | "Delegating constructor with no target?" ); |
| 4696 | |
| 4697 | // C++11 [class.base.init]p7: |
| 4698 | // The initialization of each base and member constitutes a |
| 4699 | // full-expression. |
| 4700 | DelegationInit = ActOnFinishFullExpr( |
| 4701 | Expr: DelegationInit.get(), CC: InitRange.getBegin(), /*DiscardedValue*/ false); |
| 4702 | } |
| 4703 | |
| 4704 | if (DelegationInit.isInvalid()) { |
| 4705 | DelegationInit = |
| 4706 | CreateRecoveryExpr(Begin: InitRange.getBegin(), End: InitRange.getEnd(), SubExprs: Args, |
| 4707 | T: QualType(ClassDecl->getTypeForDecl(), 0)); |
| 4708 | if (DelegationInit.isInvalid()) |
| 4709 | return true; |
| 4710 | } else { |
| 4711 | // If we are in a dependent context, template instantiation will |
| 4712 | // perform this type-checking again. Just save the arguments that we |
| 4713 | // received in a ParenListExpr. |
| 4714 | // FIXME: This isn't quite ideal, since our ASTs don't capture all |
| 4715 | // of the information that we have about the base |
| 4716 | // initializer. However, deconstructing the ASTs is a dicey process, |
| 4717 | // and this approach is far more likely to get the corner cases right. |
| 4718 | if (CurContext->isDependentContext()) |
| 4719 | DelegationInit = Init; |
| 4720 | } |
| 4721 | |
| 4722 | return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(), |
| 4723 | DelegationInit.getAs<Expr>(), |
| 4724 | InitRange.getEnd()); |
| 4725 | } |
| 4726 | |
| 4727 | MemInitResult |
| 4728 | Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo, |
| 4729 | Expr *Init, CXXRecordDecl *ClassDecl, |
| 4730 | SourceLocation EllipsisLoc) { |
| 4731 | SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getBeginLoc(); |
| 4732 | |
| 4733 | if (!BaseType->isDependentType() && !BaseType->isRecordType()) |
| 4734 | return Diag(BaseLoc, diag::err_base_init_does_not_name_class) |
| 4735 | << BaseType << BaseTInfo->getTypeLoc().getSourceRange(); |
| 4736 | |
| 4737 | // C++ [class.base.init]p2: |
| 4738 | // [...] Unless the mem-initializer-id names a nonstatic data |
| 4739 | // member of the constructor's class or a direct or virtual base |
| 4740 | // of that class, the mem-initializer is ill-formed. A |
| 4741 | // mem-initializer-list can initialize a base class using any |
| 4742 | // name that denotes that base class type. |
| 4743 | |
| 4744 | // We can store the initializers in "as-written" form and delay analysis until |
| 4745 | // instantiation if the constructor is dependent. But not for dependent |
| 4746 | // (broken) code in a non-template! SetCtorInitializers does not expect this. |
| 4747 | bool Dependent = CurContext->isDependentContext() && |
| 4748 | (BaseType->isDependentType() || Init->isTypeDependent()); |
| 4749 | |
| 4750 | SourceRange InitRange = Init->getSourceRange(); |
| 4751 | if (EllipsisLoc.isValid()) { |
| 4752 | // This is a pack expansion. |
| 4753 | if (!BaseType->containsUnexpandedParameterPack()) { |
| 4754 | Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) |
| 4755 | << SourceRange(BaseLoc, InitRange.getEnd()); |
| 4756 | |
| 4757 | EllipsisLoc = SourceLocation(); |
| 4758 | } |
| 4759 | } else { |
| 4760 | // Check for any unexpanded parameter packs. |
| 4761 | if (DiagnoseUnexpandedParameterPack(Loc: BaseLoc, T: BaseTInfo, UPPC: UPPC_Initializer)) |
| 4762 | return true; |
| 4763 | |
| 4764 | if (DiagnoseUnexpandedParameterPack(E: Init, UPPC: UPPC_Initializer)) |
| 4765 | return true; |
| 4766 | } |
| 4767 | |
| 4768 | // Check for direct and virtual base classes. |
| 4769 | const CXXBaseSpecifier *DirectBaseSpec = nullptr; |
| 4770 | const CXXBaseSpecifier *VirtualBaseSpec = nullptr; |
| 4771 | if (!Dependent) { |
| 4772 | if (Context.hasSameUnqualifiedType(T1: QualType(ClassDecl->getTypeForDecl(),0), |
| 4773 | T2: BaseType)) |
| 4774 | return BuildDelegatingInitializer(TInfo: BaseTInfo, Init, ClassDecl); |
| 4775 | |
| 4776 | FindBaseInitializer(SemaRef&: *this, ClassDecl, BaseType, DirectBaseSpec, |
| 4777 | VirtualBaseSpec); |
| 4778 | |
| 4779 | // C++ [base.class.init]p2: |
| 4780 | // Unless the mem-initializer-id names a nonstatic data member of the |
| 4781 | // constructor's class or a direct or virtual base of that class, the |
| 4782 | // mem-initializer is ill-formed. |
| 4783 | if (!DirectBaseSpec && !VirtualBaseSpec) { |
| 4784 | // If the class has any dependent bases, then it's possible that |
| 4785 | // one of those types will resolve to the same type as |
| 4786 | // BaseType. Therefore, just treat this as a dependent base |
| 4787 | // class initialization. FIXME: Should we try to check the |
| 4788 | // initialization anyway? It seems odd. |
| 4789 | if (ClassDecl->hasAnyDependentBases()) |
| 4790 | Dependent = true; |
| 4791 | else |
| 4792 | return Diag(BaseLoc, diag::err_not_direct_base_or_virtual) |
| 4793 | << BaseType << Context.getTypeDeclType(ClassDecl) |
| 4794 | << BaseTInfo->getTypeLoc().getSourceRange(); |
| 4795 | } |
| 4796 | } |
| 4797 | |
| 4798 | if (Dependent) { |
| 4799 | DiscardCleanupsInEvaluationContext(); |
| 4800 | |
| 4801 | return new (Context) CXXCtorInitializer(Context, BaseTInfo, |
| 4802 | /*IsVirtual=*/false, |
| 4803 | InitRange.getBegin(), Init, |
| 4804 | InitRange.getEnd(), EllipsisLoc); |
| 4805 | } |
| 4806 | |
| 4807 | // C++ [base.class.init]p2: |
| 4808 | // If a mem-initializer-id is ambiguous because it designates both |
| 4809 | // a direct non-virtual base class and an inherited virtual base |
| 4810 | // class, the mem-initializer is ill-formed. |
| 4811 | if (DirectBaseSpec && VirtualBaseSpec) |
| 4812 | return Diag(BaseLoc, diag::err_base_init_direct_and_virtual) |
| 4813 | << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange(); |
| 4814 | |
| 4815 | const CXXBaseSpecifier *BaseSpec = DirectBaseSpec; |
| 4816 | if (!BaseSpec) |
| 4817 | BaseSpec = VirtualBaseSpec; |
| 4818 | |
| 4819 | // Initialize the base. |
| 4820 | bool InitList = true; |
| 4821 | MultiExprArg Args = Init; |
| 4822 | if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Val: Init)) { |
| 4823 | InitList = false; |
| 4824 | Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs()); |
| 4825 | } |
| 4826 | |
| 4827 | InitializedEntity BaseEntity = |
| 4828 | InitializedEntity::InitializeBase(Context, Base: BaseSpec, IsInheritedVirtualBase: VirtualBaseSpec); |
| 4829 | InitializationKind Kind = |
| 4830 | InitList ? InitializationKind::CreateDirectList(InitLoc: BaseLoc) |
| 4831 | : InitializationKind::CreateDirect(InitLoc: BaseLoc, LParenLoc: InitRange.getBegin(), |
| 4832 | RParenLoc: InitRange.getEnd()); |
| 4833 | InitializationSequence InitSeq(*this, BaseEntity, Kind, Args); |
| 4834 | ExprResult BaseInit = InitSeq.Perform(S&: *this, Entity: BaseEntity, Kind, Args, ResultType: nullptr); |
| 4835 | if (!BaseInit.isInvalid()) { |
| 4836 | // C++11 [class.base.init]p7: |
| 4837 | // The initialization of each base and member constitutes a |
| 4838 | // full-expression. |
| 4839 | BaseInit = ActOnFinishFullExpr(Expr: BaseInit.get(), CC: InitRange.getBegin(), |
| 4840 | /*DiscardedValue*/ false); |
| 4841 | } |
| 4842 | |
| 4843 | if (BaseInit.isInvalid()) { |
| 4844 | BaseInit = CreateRecoveryExpr(Begin: InitRange.getBegin(), End: InitRange.getEnd(), |
| 4845 | SubExprs: Args, T: BaseType); |
| 4846 | if (BaseInit.isInvalid()) |
| 4847 | return true; |
| 4848 | } else { |
| 4849 | // If we are in a dependent context, template instantiation will |
| 4850 | // perform this type-checking again. Just save the arguments that we |
| 4851 | // received in a ParenListExpr. |
| 4852 | // FIXME: This isn't quite ideal, since our ASTs don't capture all |
| 4853 | // of the information that we have about the base |
| 4854 | // initializer. However, deconstructing the ASTs is a dicey process, |
| 4855 | // and this approach is far more likely to get the corner cases right. |
| 4856 | if (CurContext->isDependentContext()) |
| 4857 | BaseInit = Init; |
| 4858 | } |
| 4859 | |
| 4860 | return new (Context) CXXCtorInitializer(Context, BaseTInfo, |
| 4861 | BaseSpec->isVirtual(), |
| 4862 | InitRange.getBegin(), |
| 4863 | BaseInit.getAs<Expr>(), |
| 4864 | InitRange.getEnd(), EllipsisLoc); |
| 4865 | } |
| 4866 | |
| 4867 | // Create a static_cast\<T&&>(expr). |
| 4868 | static Expr *CastForMoving(Sema &SemaRef, Expr *E) { |
| 4869 | QualType TargetType = |
| 4870 | SemaRef.BuildReferenceType(T: E->getType(), /*SpelledAsLValue*/ LValueRef: false, |
| 4871 | Loc: SourceLocation(), Entity: DeclarationName()); |
| 4872 | SourceLocation ExprLoc = E->getBeginLoc(); |
| 4873 | TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo( |
| 4874 | T: TargetType, Loc: ExprLoc); |
| 4875 | |
| 4876 | return SemaRef.BuildCXXNamedCast(OpLoc: ExprLoc, Kind: tok::kw_static_cast, Ty: TargetLoc, E, |
| 4877 | AngleBrackets: SourceRange(ExprLoc, ExprLoc), |
| 4878 | Parens: E->getSourceRange()).get(); |
| 4879 | } |
| 4880 | |
| 4881 | /// ImplicitInitializerKind - How an implicit base or member initializer should |
| 4882 | /// initialize its base or member. |
| 4883 | enum ImplicitInitializerKind { |
| 4884 | IIK_Default, |
| 4885 | IIK_Copy, |
| 4886 | IIK_Move, |
| 4887 | IIK_Inherit |
| 4888 | }; |
| 4889 | |
| 4890 | static bool |
| 4891 | BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, |
| 4892 | ImplicitInitializerKind ImplicitInitKind, |
| 4893 | CXXBaseSpecifier *BaseSpec, |
| 4894 | bool IsInheritedVirtualBase, |
| 4895 | CXXCtorInitializer *&CXXBaseInit) { |
| 4896 | InitializedEntity InitEntity |
| 4897 | = InitializedEntity::InitializeBase(Context&: SemaRef.Context, Base: BaseSpec, |
| 4898 | IsInheritedVirtualBase); |
| 4899 | |
| 4900 | ExprResult BaseInit; |
| 4901 | |
| 4902 | switch (ImplicitInitKind) { |
| 4903 | case IIK_Inherit: |
| 4904 | case IIK_Default: { |
| 4905 | InitializationKind InitKind |
| 4906 | = InitializationKind::CreateDefault(InitLoc: Constructor->getLocation()); |
| 4907 | InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, {}); |
| 4908 | BaseInit = InitSeq.Perform(S&: SemaRef, Entity: InitEntity, Kind: InitKind, Args: {}); |
| 4909 | break; |
| 4910 | } |
| 4911 | |
| 4912 | case IIK_Move: |
| 4913 | case IIK_Copy: { |
| 4914 | bool Moving = ImplicitInitKind == IIK_Move; |
| 4915 | ParmVarDecl *Param = Constructor->getParamDecl(0); |
| 4916 | QualType ParamType = Param->getType().getNonReferenceType(); |
| 4917 | |
| 4918 | Expr *CopyCtorArg = |
| 4919 | DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), |
| 4920 | SourceLocation(), Param, false, |
| 4921 | Constructor->getLocation(), ParamType, |
| 4922 | VK_LValue, nullptr); |
| 4923 | |
| 4924 | SemaRef.MarkDeclRefReferenced(E: cast<DeclRefExpr>(Val: CopyCtorArg)); |
| 4925 | |
| 4926 | // Cast to the base class to avoid ambiguities. |
| 4927 | QualType ArgTy = |
| 4928 | SemaRef.Context.getQualifiedType(T: BaseSpec->getType().getUnqualifiedType(), |
| 4929 | Qs: ParamType.getQualifiers()); |
| 4930 | |
| 4931 | if (Moving) { |
| 4932 | CopyCtorArg = CastForMoving(SemaRef, E: CopyCtorArg); |
| 4933 | } |
| 4934 | |
| 4935 | CXXCastPath BasePath; |
| 4936 | BasePath.push_back(Elt: BaseSpec); |
| 4937 | CopyCtorArg = SemaRef.ImpCastExprToType(E: CopyCtorArg, Type: ArgTy, |
| 4938 | CK: CK_UncheckedDerivedToBase, |
| 4939 | VK: Moving ? VK_XValue : VK_LValue, |
| 4940 | BasePath: &BasePath).get(); |
| 4941 | |
| 4942 | InitializationKind InitKind |
| 4943 | = InitializationKind::CreateDirect(InitLoc: Constructor->getLocation(), |
| 4944 | LParenLoc: SourceLocation(), RParenLoc: SourceLocation()); |
| 4945 | InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg); |
| 4946 | BaseInit = InitSeq.Perform(S&: SemaRef, Entity: InitEntity, Kind: InitKind, Args: CopyCtorArg); |
| 4947 | break; |
| 4948 | } |
| 4949 | } |
| 4950 | |
| 4951 | BaseInit = SemaRef.MaybeCreateExprWithCleanups(SubExpr: BaseInit); |
| 4952 | if (BaseInit.isInvalid()) |
| 4953 | return true; |
| 4954 | |
| 4955 | CXXBaseInit = |
| 4956 | new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, |
| 4957 | SemaRef.Context.getTrivialTypeSourceInfo(T: BaseSpec->getType(), |
| 4958 | Loc: SourceLocation()), |
| 4959 | BaseSpec->isVirtual(), |
| 4960 | SourceLocation(), |
| 4961 | BaseInit.getAs<Expr>(), |
| 4962 | SourceLocation(), |
| 4963 | SourceLocation()); |
| 4964 | |
| 4965 | return false; |
| 4966 | } |
| 4967 | |
| 4968 | static bool RefersToRValueRef(Expr *MemRef) { |
| 4969 | ValueDecl *Referenced = cast<MemberExpr>(Val: MemRef)->getMemberDecl(); |
| 4970 | return Referenced->getType()->isRValueReferenceType(); |
| 4971 | } |
| 4972 | |
| 4973 | static bool |
| 4974 | BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor, |
| 4975 | ImplicitInitializerKind ImplicitInitKind, |
| 4976 | FieldDecl *Field, IndirectFieldDecl *Indirect, |
| 4977 | CXXCtorInitializer *&CXXMemberInit) { |
| 4978 | if (Field->isInvalidDecl()) |
| 4979 | return true; |
| 4980 | |
| 4981 | SourceLocation Loc = Constructor->getLocation(); |
| 4982 | |
| 4983 | if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) { |
| 4984 | bool Moving = ImplicitInitKind == IIK_Move; |
| 4985 | ParmVarDecl *Param = Constructor->getParamDecl(0); |
| 4986 | QualType ParamType = Param->getType().getNonReferenceType(); |
| 4987 | |
| 4988 | // Suppress copying zero-width bitfields. |
| 4989 | if (Field->isZeroLengthBitField()) |
| 4990 | return false; |
| 4991 | |
| 4992 | Expr *MemberExprBase = |
| 4993 | DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(), |
| 4994 | SourceLocation(), Param, false, |
| 4995 | Loc, ParamType, VK_LValue, nullptr); |
| 4996 | |
| 4997 | SemaRef.MarkDeclRefReferenced(E: cast<DeclRefExpr>(Val: MemberExprBase)); |
| 4998 | |
| 4999 | if (Moving) { |
| 5000 | MemberExprBase = CastForMoving(SemaRef, E: MemberExprBase); |
| 5001 | } |
| 5002 | |
| 5003 | // Build a reference to this field within the parameter. |
| 5004 | CXXScopeSpec SS; |
| 5005 | LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc, |
| 5006 | Sema::LookupMemberName); |
| 5007 | MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Val: Indirect) |
| 5008 | : cast<ValueDecl>(Val: Field), AS_public); |
| 5009 | MemberLookup.resolveKind(); |
| 5010 | ExprResult CtorArg |
| 5011 | = SemaRef.BuildMemberReferenceExpr(Base: MemberExprBase, |
| 5012 | BaseType: ParamType, OpLoc: Loc, |
| 5013 | /*IsArrow=*/false, |
| 5014 | SS, |
| 5015 | /*TemplateKWLoc=*/SourceLocation(), |
| 5016 | /*FirstQualifierInScope=*/nullptr, |
| 5017 | R&: MemberLookup, |
| 5018 | /*TemplateArgs=*/nullptr, |
| 5019 | /*S*/nullptr); |
| 5020 | if (CtorArg.isInvalid()) |
| 5021 | return true; |
| 5022 | |
| 5023 | // C++11 [class.copy]p15: |
| 5024 | // - if a member m has rvalue reference type T&&, it is direct-initialized |
| 5025 | // with static_cast<T&&>(x.m); |
| 5026 | if (RefersToRValueRef(MemRef: CtorArg.get())) { |
| 5027 | CtorArg = CastForMoving(SemaRef, E: CtorArg.get()); |
| 5028 | } |
| 5029 | |
| 5030 | InitializedEntity Entity = |
| 5031 | Indirect ? InitializedEntity::InitializeMember(Member: Indirect, Parent: nullptr, |
| 5032 | /*Implicit*/ true) |
| 5033 | : InitializedEntity::InitializeMember(Member: Field, Parent: nullptr, |
| 5034 | /*Implicit*/ true); |
| 5035 | |
| 5036 | // Direct-initialize to use the copy constructor. |
| 5037 | InitializationKind InitKind = |
| 5038 | InitializationKind::CreateDirect(InitLoc: Loc, LParenLoc: SourceLocation(), RParenLoc: SourceLocation()); |
| 5039 | |
| 5040 | Expr *CtorArgE = CtorArg.getAs<Expr>(); |
| 5041 | InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE); |
| 5042 | ExprResult MemberInit = |
| 5043 | InitSeq.Perform(S&: SemaRef, Entity, Kind: InitKind, Args: MultiExprArg(&CtorArgE, 1)); |
| 5044 | MemberInit = SemaRef.MaybeCreateExprWithCleanups(SubExpr: MemberInit); |
| 5045 | if (MemberInit.isInvalid()) |
| 5046 | return true; |
| 5047 | |
| 5048 | if (Indirect) |
| 5049 | CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( |
| 5050 | SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc); |
| 5051 | else |
| 5052 | CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer( |
| 5053 | SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc); |
| 5054 | return false; |
| 5055 | } |
| 5056 | |
| 5057 | assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && |
| 5058 | "Unhandled implicit init kind!" ); |
| 5059 | |
| 5060 | QualType FieldBaseElementType = |
| 5061 | SemaRef.Context.getBaseElementType(Field->getType()); |
| 5062 | |
| 5063 | if (FieldBaseElementType->isRecordType()) { |
| 5064 | InitializedEntity InitEntity = |
| 5065 | Indirect ? InitializedEntity::InitializeMember(Member: Indirect, Parent: nullptr, |
| 5066 | /*Implicit*/ true) |
| 5067 | : InitializedEntity::InitializeMember(Member: Field, Parent: nullptr, |
| 5068 | /*Implicit*/ true); |
| 5069 | InitializationKind InitKind = |
| 5070 | InitializationKind::CreateDefault(InitLoc: Loc); |
| 5071 | |
| 5072 | InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, {}); |
| 5073 | ExprResult MemberInit = InitSeq.Perform(S&: SemaRef, Entity: InitEntity, Kind: InitKind, Args: {}); |
| 5074 | |
| 5075 | MemberInit = SemaRef.MaybeCreateExprWithCleanups(SubExpr: MemberInit); |
| 5076 | if (MemberInit.isInvalid()) |
| 5077 | return true; |
| 5078 | |
| 5079 | if (Indirect) |
| 5080 | CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, |
| 5081 | Indirect, Loc, |
| 5082 | Loc, |
| 5083 | MemberInit.get(), |
| 5084 | Loc); |
| 5085 | else |
| 5086 | CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, |
| 5087 | Field, Loc, Loc, |
| 5088 | MemberInit.get(), |
| 5089 | Loc); |
| 5090 | return false; |
| 5091 | } |
| 5092 | |
| 5093 | if (!Field->getParent()->isUnion()) { |
| 5094 | if (FieldBaseElementType->isReferenceType()) { |
| 5095 | SemaRef.Diag(Constructor->getLocation(), |
| 5096 | diag::err_uninitialized_member_in_ctor) |
| 5097 | << (int)Constructor->isImplicit() |
| 5098 | << SemaRef.Context.getTagDeclType(Constructor->getParent()) |
| 5099 | << 0 << Field->getDeclName(); |
| 5100 | SemaRef.Diag(Field->getLocation(), diag::note_declared_at); |
| 5101 | return true; |
| 5102 | } |
| 5103 | |
| 5104 | if (FieldBaseElementType.isConstQualified()) { |
| 5105 | SemaRef.Diag(Constructor->getLocation(), |
| 5106 | diag::err_uninitialized_member_in_ctor) |
| 5107 | << (int)Constructor->isImplicit() |
| 5108 | << SemaRef.Context.getTagDeclType(Constructor->getParent()) |
| 5109 | << 1 << Field->getDeclName(); |
| 5110 | SemaRef.Diag(Field->getLocation(), diag::note_declared_at); |
| 5111 | return true; |
| 5112 | } |
| 5113 | } |
| 5114 | |
| 5115 | if (FieldBaseElementType.hasNonTrivialObjCLifetime()) { |
| 5116 | // ARC and Weak: |
| 5117 | // Default-initialize Objective-C pointers to NULL. |
| 5118 | CXXMemberInit |
| 5119 | = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field, |
| 5120 | Loc, Loc, |
| 5121 | new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()), |
| 5122 | Loc); |
| 5123 | return false; |
| 5124 | } |
| 5125 | |
| 5126 | // Nothing to initialize. |
| 5127 | CXXMemberInit = nullptr; |
| 5128 | return false; |
| 5129 | } |
| 5130 | |
| 5131 | namespace { |
| 5132 | struct BaseAndFieldInfo { |
| 5133 | Sema &S; |
| 5134 | CXXConstructorDecl *Ctor; |
| 5135 | bool AnyErrorsInInits; |
| 5136 | ImplicitInitializerKind IIK; |
| 5137 | llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields; |
| 5138 | SmallVector<CXXCtorInitializer*, 8> AllToInit; |
| 5139 | llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember; |
| 5140 | |
| 5141 | BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits) |
| 5142 | : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) { |
| 5143 | bool Generated = Ctor->isImplicit() || Ctor->isDefaulted(); |
| 5144 | if (Ctor->getInheritedConstructor()) |
| 5145 | IIK = IIK_Inherit; |
| 5146 | else if (Generated && Ctor->isCopyConstructor()) |
| 5147 | IIK = IIK_Copy; |
| 5148 | else if (Generated && Ctor->isMoveConstructor()) |
| 5149 | IIK = IIK_Move; |
| 5150 | else |
| 5151 | IIK = IIK_Default; |
| 5152 | } |
| 5153 | |
| 5154 | bool isImplicitCopyOrMove() const { |
| 5155 | switch (IIK) { |
| 5156 | case IIK_Copy: |
| 5157 | case IIK_Move: |
| 5158 | return true; |
| 5159 | |
| 5160 | case IIK_Default: |
| 5161 | case IIK_Inherit: |
| 5162 | return false; |
| 5163 | } |
| 5164 | |
| 5165 | llvm_unreachable("Invalid ImplicitInitializerKind!" ); |
| 5166 | } |
| 5167 | |
| 5168 | bool addFieldInitializer(CXXCtorInitializer *Init) { |
| 5169 | AllToInit.push_back(Elt: Init); |
| 5170 | |
| 5171 | // Check whether this initializer makes the field "used". |
| 5172 | if (Init->getInit()->HasSideEffects(Ctx: S.Context)) |
| 5173 | S.UnusedPrivateFields.remove(Init->getAnyMember()); |
| 5174 | |
| 5175 | return false; |
| 5176 | } |
| 5177 | |
| 5178 | bool isInactiveUnionMember(FieldDecl *Field) { |
| 5179 | RecordDecl *Record = Field->getParent(); |
| 5180 | if (!Record->isUnion()) |
| 5181 | return false; |
| 5182 | |
| 5183 | if (FieldDecl *Active = |
| 5184 | ActiveUnionMember.lookup(Val: Record->getCanonicalDecl())) |
| 5185 | return Active != Field->getCanonicalDecl(); |
| 5186 | |
| 5187 | // In an implicit copy or move constructor, ignore any in-class initializer. |
| 5188 | if (isImplicitCopyOrMove()) |
| 5189 | return true; |
| 5190 | |
| 5191 | // If there's no explicit initialization, the field is active only if it |
| 5192 | // has an in-class initializer... |
| 5193 | if (Field->hasInClassInitializer()) |
| 5194 | return false; |
| 5195 | // ... or it's an anonymous struct or union whose class has an in-class |
| 5196 | // initializer. |
| 5197 | if (!Field->isAnonymousStructOrUnion()) |
| 5198 | return true; |
| 5199 | CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl(); |
| 5200 | return !FieldRD->hasInClassInitializer(); |
| 5201 | } |
| 5202 | |
| 5203 | /// Determine whether the given field is, or is within, a union member |
| 5204 | /// that is inactive (because there was an initializer given for a different |
| 5205 | /// member of the union, or because the union was not initialized at all). |
| 5206 | bool isWithinInactiveUnionMember(FieldDecl *Field, |
| 5207 | IndirectFieldDecl *Indirect) { |
| 5208 | if (!Indirect) |
| 5209 | return isInactiveUnionMember(Field); |
| 5210 | |
| 5211 | for (auto *C : Indirect->chain()) { |
| 5212 | FieldDecl *Field = dyn_cast<FieldDecl>(Val: C); |
| 5213 | if (Field && isInactiveUnionMember(Field)) |
| 5214 | return true; |
| 5215 | } |
| 5216 | return false; |
| 5217 | } |
| 5218 | }; |
| 5219 | } |
| 5220 | |
| 5221 | /// Determine whether the given type is an incomplete or zero-lenfgth |
| 5222 | /// array type. |
| 5223 | static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) { |
| 5224 | if (T->isIncompleteArrayType()) |
| 5225 | return true; |
| 5226 | |
| 5227 | while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) { |
| 5228 | if (ArrayT->isZeroSize()) |
| 5229 | return true; |
| 5230 | |
| 5231 | T = ArrayT->getElementType(); |
| 5232 | } |
| 5233 | |
| 5234 | return false; |
| 5235 | } |
| 5236 | |
| 5237 | static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info, |
| 5238 | FieldDecl *Field, |
| 5239 | IndirectFieldDecl *Indirect = nullptr) { |
| 5240 | if (Field->isInvalidDecl()) |
| 5241 | return false; |
| 5242 | |
| 5243 | // Overwhelmingly common case: we have a direct initializer for this field. |
| 5244 | if (CXXCtorInitializer *Init = |
| 5245 | Info.AllBaseFields.lookup(Val: Field->getCanonicalDecl())) |
| 5246 | return Info.addFieldInitializer(Init); |
| 5247 | |
| 5248 | // C++11 [class.base.init]p8: |
| 5249 | // if the entity is a non-static data member that has a |
| 5250 | // brace-or-equal-initializer and either |
| 5251 | // -- the constructor's class is a union and no other variant member of that |
| 5252 | // union is designated by a mem-initializer-id or |
| 5253 | // -- the constructor's class is not a union, and, if the entity is a member |
| 5254 | // of an anonymous union, no other member of that union is designated by |
| 5255 | // a mem-initializer-id, |
| 5256 | // the entity is initialized as specified in [dcl.init]. |
| 5257 | // |
| 5258 | // We also apply the same rules to handle anonymous structs within anonymous |
| 5259 | // unions. |
| 5260 | if (Info.isWithinInactiveUnionMember(Field, Indirect)) |
| 5261 | return false; |
| 5262 | |
| 5263 | if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) { |
| 5264 | ExprResult DIE = |
| 5265 | SemaRef.BuildCXXDefaultInitExpr(Loc: Info.Ctor->getLocation(), Field); |
| 5266 | if (DIE.isInvalid()) |
| 5267 | return true; |
| 5268 | |
| 5269 | auto Entity = InitializedEntity::InitializeMember(Member: Field, Parent: nullptr, Implicit: true); |
| 5270 | SemaRef.checkInitializerLifetime(Entity, Init: DIE.get()); |
| 5271 | |
| 5272 | CXXCtorInitializer *Init; |
| 5273 | if (Indirect) |
| 5274 | Init = new (SemaRef.Context) |
| 5275 | CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(), |
| 5276 | SourceLocation(), DIE.get(), SourceLocation()); |
| 5277 | else |
| 5278 | Init = new (SemaRef.Context) |
| 5279 | CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(), |
| 5280 | SourceLocation(), DIE.get(), SourceLocation()); |
| 5281 | return Info.addFieldInitializer(Init); |
| 5282 | } |
| 5283 | |
| 5284 | // Don't initialize incomplete or zero-length arrays. |
| 5285 | if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType())) |
| 5286 | return false; |
| 5287 | |
| 5288 | // Don't try to build an implicit initializer if there were semantic |
| 5289 | // errors in any of the initializers (and therefore we might be |
| 5290 | // missing some that the user actually wrote). |
| 5291 | if (Info.AnyErrorsInInits) |
| 5292 | return false; |
| 5293 | |
| 5294 | CXXCtorInitializer *Init = nullptr; |
| 5295 | if (BuildImplicitMemberInitializer(SemaRef&: Info.S, Constructor: Info.Ctor, ImplicitInitKind: Info.IIK, Field, |
| 5296 | Indirect, CXXMemberInit&: Init)) |
| 5297 | return true; |
| 5298 | |
| 5299 | if (!Init) |
| 5300 | return false; |
| 5301 | |
| 5302 | return Info.addFieldInitializer(Init); |
| 5303 | } |
| 5304 | |
| 5305 | bool |
| 5306 | Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor, |
| 5307 | CXXCtorInitializer *Initializer) { |
| 5308 | assert(Initializer->isDelegatingInitializer()); |
| 5309 | Constructor->setNumCtorInitializers(1); |
| 5310 | CXXCtorInitializer **initializer = |
| 5311 | new (Context) CXXCtorInitializer*[1]; |
| 5312 | memcpy(dest: initializer, src: &Initializer, n: sizeof (CXXCtorInitializer*)); |
| 5313 | Constructor->setCtorInitializers(initializer); |
| 5314 | |
| 5315 | if (CXXDestructorDecl *Dtor = LookupDestructor(Class: Constructor->getParent())) { |
| 5316 | MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor); |
| 5317 | DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation()); |
| 5318 | } |
| 5319 | |
| 5320 | DelegatingCtorDecls.push_back(LocalValue: Constructor); |
| 5321 | |
| 5322 | DiagnoseUninitializedFields(SemaRef&: *this, Constructor); |
| 5323 | |
| 5324 | return false; |
| 5325 | } |
| 5326 | |
| 5327 | static CXXDestructorDecl *LookupDestructorIfRelevant(Sema &S, |
| 5328 | CXXRecordDecl *Class) { |
| 5329 | if (Class->isInvalidDecl()) |
| 5330 | return nullptr; |
| 5331 | if (Class->hasIrrelevantDestructor()) |
| 5332 | return nullptr; |
| 5333 | |
| 5334 | // Dtor might still be missing, e.g because it's invalid. |
| 5335 | return S.LookupDestructor(Class); |
| 5336 | } |
| 5337 | |
| 5338 | static void MarkFieldDestructorReferenced(Sema &S, SourceLocation Location, |
| 5339 | FieldDecl *Field) { |
| 5340 | if (Field->isInvalidDecl()) |
| 5341 | return; |
| 5342 | |
| 5343 | // Don't destroy incomplete or zero-length arrays. |
| 5344 | if (isIncompleteOrZeroLengthArrayType(S.Context, Field->getType())) |
| 5345 | return; |
| 5346 | |
| 5347 | QualType FieldType = S.Context.getBaseElementType(Field->getType()); |
| 5348 | |
| 5349 | auto *FieldClassDecl = FieldType->getAsCXXRecordDecl(); |
| 5350 | if (!FieldClassDecl) |
| 5351 | return; |
| 5352 | |
| 5353 | // The destructor for an implicit anonymous union member is never invoked. |
| 5354 | if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion()) |
| 5355 | return; |
| 5356 | |
| 5357 | auto *Dtor = LookupDestructorIfRelevant(S, FieldClassDecl); |
| 5358 | if (!Dtor) |
| 5359 | return; |
| 5360 | |
| 5361 | S.CheckDestructorAccess(Field->getLocation(), Dtor, |
| 5362 | S.PDiag(diag::err_access_dtor_field) |
| 5363 | << Field->getDeclName() << FieldType); |
| 5364 | |
| 5365 | S.MarkFunctionReferenced(Loc: Location, Func: Dtor); |
| 5366 | S.DiagnoseUseOfDecl(D: Dtor, Locs: Location); |
| 5367 | } |
| 5368 | |
| 5369 | static void MarkBaseDestructorsReferenced(Sema &S, SourceLocation Location, |
| 5370 | CXXRecordDecl *ClassDecl) { |
| 5371 | if (ClassDecl->isDependentContext()) |
| 5372 | return; |
| 5373 | |
| 5374 | // We only potentially invoke the destructors of potentially constructed |
| 5375 | // subobjects. |
| 5376 | bool VisitVirtualBases = !ClassDecl->isAbstract(); |
| 5377 | |
| 5378 | // If the destructor exists and has already been marked used in the MS ABI, |
| 5379 | // then virtual base destructors have already been checked and marked used. |
| 5380 | // Skip checking them again to avoid duplicate diagnostics. |
| 5381 | if (S.Context.getTargetInfo().getCXXABI().isMicrosoft()) { |
| 5382 | CXXDestructorDecl *Dtor = ClassDecl->getDestructor(); |
| 5383 | if (Dtor && Dtor->isUsed()) |
| 5384 | VisitVirtualBases = false; |
| 5385 | } |
| 5386 | |
| 5387 | llvm::SmallPtrSet<const CXXRecordDecl *, 8> DirectVirtualBases; |
| 5388 | |
| 5389 | // Bases. |
| 5390 | for (const auto &Base : ClassDecl->bases()) { |
| 5391 | auto *BaseClassDecl = Base.getType()->getAsCXXRecordDecl(); |
| 5392 | if (!BaseClassDecl) |
| 5393 | continue; |
| 5394 | |
| 5395 | // Remember direct virtual bases. |
| 5396 | if (Base.isVirtual()) { |
| 5397 | if (!VisitVirtualBases) |
| 5398 | continue; |
| 5399 | DirectVirtualBases.insert(Ptr: BaseClassDecl); |
| 5400 | } |
| 5401 | |
| 5402 | auto *Dtor = LookupDestructorIfRelevant(S, Class: BaseClassDecl); |
| 5403 | if (!Dtor) |
| 5404 | continue; |
| 5405 | |
| 5406 | // FIXME: caret should be on the start of the class name |
| 5407 | S.CheckDestructorAccess(Base.getBeginLoc(), Dtor, |
| 5408 | S.PDiag(diag::err_access_dtor_base) |
| 5409 | << Base.getType() << Base.getSourceRange(), |
| 5410 | S.Context.getTypeDeclType(ClassDecl)); |
| 5411 | |
| 5412 | S.MarkFunctionReferenced(Location, Dtor); |
| 5413 | S.DiagnoseUseOfDecl(Dtor, Location); |
| 5414 | } |
| 5415 | |
| 5416 | if (VisitVirtualBases) |
| 5417 | S.MarkVirtualBaseDestructorsReferenced(Location, ClassDecl, |
| 5418 | DirectVirtualBases: &DirectVirtualBases); |
| 5419 | } |
| 5420 | |
| 5421 | bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors, |
| 5422 | ArrayRef<CXXCtorInitializer *> Initializers) { |
| 5423 | if (Constructor->isDependentContext()) { |
| 5424 | // Just store the initializers as written, they will be checked during |
| 5425 | // instantiation. |
| 5426 | if (!Initializers.empty()) { |
| 5427 | Constructor->setNumCtorInitializers(Initializers.size()); |
| 5428 | CXXCtorInitializer **baseOrMemberInitializers = |
| 5429 | new (Context) CXXCtorInitializer*[Initializers.size()]; |
| 5430 | memcpy(dest: baseOrMemberInitializers, src: Initializers.data(), |
| 5431 | n: Initializers.size() * sizeof(CXXCtorInitializer*)); |
| 5432 | Constructor->setCtorInitializers(baseOrMemberInitializers); |
| 5433 | } |
| 5434 | |
| 5435 | // Let template instantiation know whether we had errors. |
| 5436 | if (AnyErrors) |
| 5437 | Constructor->setInvalidDecl(); |
| 5438 | |
| 5439 | return false; |
| 5440 | } |
| 5441 | |
| 5442 | BaseAndFieldInfo Info(*this, Constructor, AnyErrors); |
| 5443 | |
| 5444 | // We need to build the initializer AST according to order of construction |
| 5445 | // and not what user specified in the Initializers list. |
| 5446 | CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition(); |
| 5447 | if (!ClassDecl) |
| 5448 | return true; |
| 5449 | |
| 5450 | bool HadError = false; |
| 5451 | |
| 5452 | for (unsigned i = 0; i < Initializers.size(); i++) { |
| 5453 | CXXCtorInitializer *Member = Initializers[i]; |
| 5454 | |
| 5455 | if (Member->isBaseInitializer()) |
| 5456 | Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member; |
| 5457 | else { |
| 5458 | Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member; |
| 5459 | |
| 5460 | if (IndirectFieldDecl *F = Member->getIndirectMember()) { |
| 5461 | for (auto *C : F->chain()) { |
| 5462 | FieldDecl *FD = dyn_cast<FieldDecl>(Val: C); |
| 5463 | if (FD && FD->getParent()->isUnion()) |
| 5464 | Info.ActiveUnionMember.insert(std::make_pair( |
| 5465 | FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); |
| 5466 | } |
| 5467 | } else if (FieldDecl *FD = Member->getMember()) { |
| 5468 | if (FD->getParent()->isUnion()) |
| 5469 | Info.ActiveUnionMember.insert(std::make_pair( |
| 5470 | FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl())); |
| 5471 | } |
| 5472 | } |
| 5473 | } |
| 5474 | |
| 5475 | // Keep track of the direct virtual bases. |
| 5476 | llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases; |
| 5477 | for (auto &I : ClassDecl->bases()) { |
| 5478 | if (I.isVirtual()) |
| 5479 | DirectVBases.insert(&I); |
| 5480 | } |
| 5481 | |
| 5482 | // Push virtual bases before others. |
| 5483 | for (auto &VBase : ClassDecl->vbases()) { |
| 5484 | if (CXXCtorInitializer *Value |
| 5485 | = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) { |
| 5486 | // [class.base.init]p7, per DR257: |
| 5487 | // A mem-initializer where the mem-initializer-id names a virtual base |
| 5488 | // class is ignored during execution of a constructor of any class that |
| 5489 | // is not the most derived class. |
| 5490 | if (ClassDecl->isAbstract()) { |
| 5491 | // FIXME: Provide a fixit to remove the base specifier. This requires |
| 5492 | // tracking the location of the associated comma for a base specifier. |
| 5493 | Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored) |
| 5494 | << VBase.getType() << ClassDecl; |
| 5495 | DiagnoseAbstractType(ClassDecl); |
| 5496 | } |
| 5497 | |
| 5498 | Info.AllToInit.push_back(Value); |
| 5499 | } else if (!AnyErrors && !ClassDecl->isAbstract()) { |
| 5500 | // [class.base.init]p8, per DR257: |
| 5501 | // If a given [...] base class is not named by a mem-initializer-id |
| 5502 | // [...] and the entity is not a virtual base class of an abstract |
| 5503 | // class, then [...] the entity is default-initialized. |
| 5504 | bool IsInheritedVirtualBase = !DirectVBases.count(&VBase); |
| 5505 | CXXCtorInitializer *CXXBaseInit; |
| 5506 | if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, |
| 5507 | &VBase, IsInheritedVirtualBase, |
| 5508 | CXXBaseInit)) { |
| 5509 | HadError = true; |
| 5510 | continue; |
| 5511 | } |
| 5512 | |
| 5513 | Info.AllToInit.push_back(CXXBaseInit); |
| 5514 | } |
| 5515 | } |
| 5516 | |
| 5517 | // Non-virtual bases. |
| 5518 | for (auto &Base : ClassDecl->bases()) { |
| 5519 | // Virtuals are in the virtual base list and already constructed. |
| 5520 | if (Base.isVirtual()) |
| 5521 | continue; |
| 5522 | |
| 5523 | if (CXXCtorInitializer *Value |
| 5524 | = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) { |
| 5525 | Info.AllToInit.push_back(Value); |
| 5526 | } else if (!AnyErrors) { |
| 5527 | CXXCtorInitializer *CXXBaseInit; |
| 5528 | if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK, |
| 5529 | &Base, /*IsInheritedVirtualBase=*/false, |
| 5530 | CXXBaseInit)) { |
| 5531 | HadError = true; |
| 5532 | continue; |
| 5533 | } |
| 5534 | |
| 5535 | Info.AllToInit.push_back(CXXBaseInit); |
| 5536 | } |
| 5537 | } |
| 5538 | |
| 5539 | // Fields. |
| 5540 | for (auto *Mem : ClassDecl->decls()) { |
| 5541 | if (auto *F = dyn_cast<FieldDecl>(Mem)) { |
| 5542 | // C++ [class.bit]p2: |
| 5543 | // A declaration for a bit-field that omits the identifier declares an |
| 5544 | // unnamed bit-field. Unnamed bit-fields are not members and cannot be |
| 5545 | // initialized. |
| 5546 | if (F->isUnnamedBitField()) |
| 5547 | continue; |
| 5548 | |
| 5549 | // If we're not generating the implicit copy/move constructor, then we'll |
| 5550 | // handle anonymous struct/union fields based on their individual |
| 5551 | // indirect fields. |
| 5552 | if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove()) |
| 5553 | continue; |
| 5554 | |
| 5555 | if (CollectFieldInitializer(*this, Info, F)) |
| 5556 | HadError = true; |
| 5557 | continue; |
| 5558 | } |
| 5559 | |
| 5560 | // Beyond this point, we only consider default initialization. |
| 5561 | if (Info.isImplicitCopyOrMove()) |
| 5562 | continue; |
| 5563 | |
| 5564 | if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) { |
| 5565 | if (F->getType()->isIncompleteArrayType()) { |
| 5566 | assert(ClassDecl->hasFlexibleArrayMember() && |
| 5567 | "Incomplete array type is not valid" ); |
| 5568 | continue; |
| 5569 | } |
| 5570 | |
| 5571 | // Initialize each field of an anonymous struct individually. |
| 5572 | if (CollectFieldInitializer(*this, Info, F->getAnonField(), F)) |
| 5573 | HadError = true; |
| 5574 | |
| 5575 | continue; |
| 5576 | } |
| 5577 | } |
| 5578 | |
| 5579 | unsigned NumInitializers = Info.AllToInit.size(); |
| 5580 | if (NumInitializers > 0) { |
| 5581 | Constructor->setNumCtorInitializers(NumInitializers); |
| 5582 | CXXCtorInitializer **baseOrMemberInitializers = |
| 5583 | new (Context) CXXCtorInitializer*[NumInitializers]; |
| 5584 | memcpy(dest: baseOrMemberInitializers, src: Info.AllToInit.data(), |
| 5585 | n: NumInitializers * sizeof(CXXCtorInitializer*)); |
| 5586 | Constructor->setCtorInitializers(baseOrMemberInitializers); |
| 5587 | |
| 5588 | SourceLocation Location = Constructor->getLocation(); |
| 5589 | |
| 5590 | // Constructors implicitly reference the base and member |
| 5591 | // destructors. |
| 5592 | |
| 5593 | for (CXXCtorInitializer *Initializer : Info.AllToInit) { |
| 5594 | FieldDecl *Field = Initializer->getAnyMember(); |
| 5595 | if (!Field) |
| 5596 | continue; |
| 5597 | |
| 5598 | // C++ [class.base.init]p12: |
| 5599 | // In a non-delegating constructor, the destructor for each |
| 5600 | // potentially constructed subobject of class type is potentially |
| 5601 | // invoked. |
| 5602 | MarkFieldDestructorReferenced(S&: *this, Location, Field); |
| 5603 | } |
| 5604 | |
| 5605 | MarkBaseDestructorsReferenced(*this, Location, Constructor->getParent()); |
| 5606 | } |
| 5607 | |
| 5608 | return HadError; |
| 5609 | } |
| 5610 | |
| 5611 | static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) { |
| 5612 | if (const RecordType *RT = Field->getType()->getAs<RecordType>()) { |
| 5613 | const RecordDecl *RD = RT->getDecl(); |
| 5614 | if (RD->isAnonymousStructOrUnion()) { |
| 5615 | for (auto *Field : RD->fields()) |
| 5616 | PopulateKeysForFields(Field, IdealInits); |
| 5617 | return; |
| 5618 | } |
| 5619 | } |
| 5620 | IdealInits.push_back(Elt: Field->getCanonicalDecl()); |
| 5621 | } |
| 5622 | |
| 5623 | static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) { |
| 5624 | return Context.getCanonicalType(T: BaseType).getTypePtr(); |
| 5625 | } |
| 5626 | |
| 5627 | static const void *GetKeyForMember(ASTContext &Context, |
| 5628 | CXXCtorInitializer *Member) { |
| 5629 | if (!Member->isAnyMemberInitializer()) |
| 5630 | return GetKeyForBase(Context, BaseType: QualType(Member->getBaseClass(), 0)); |
| 5631 | |
| 5632 | return Member->getAnyMember()->getCanonicalDecl(); |
| 5633 | } |
| 5634 | |
| 5635 | static void AddInitializerToDiag(const Sema::SemaDiagnosticBuilder &Diag, |
| 5636 | const CXXCtorInitializer *Previous, |
| 5637 | const CXXCtorInitializer *Current) { |
| 5638 | if (Previous->isAnyMemberInitializer()) |
| 5639 | Diag << 0 << Previous->getAnyMember(); |
| 5640 | else |
| 5641 | Diag << 1 << Previous->getTypeSourceInfo()->getType(); |
| 5642 | |
| 5643 | if (Current->isAnyMemberInitializer()) |
| 5644 | Diag << 0 << Current->getAnyMember(); |
| 5645 | else |
| 5646 | Diag << 1 << Current->getTypeSourceInfo()->getType(); |
| 5647 | } |
| 5648 | |
| 5649 | static void DiagnoseBaseOrMemInitializerOrder( |
| 5650 | Sema &SemaRef, const CXXConstructorDecl *Constructor, |
| 5651 | ArrayRef<CXXCtorInitializer *> Inits) { |
| 5652 | if (Constructor->getDeclContext()->isDependentContext()) |
| 5653 | return; |
| 5654 | |
| 5655 | // Don't check initializers order unless the warning is enabled at the |
| 5656 | // location of at least one initializer. |
| 5657 | bool ShouldCheckOrder = false; |
| 5658 | for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { |
| 5659 | CXXCtorInitializer *Init = Inits[InitIndex]; |
| 5660 | if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order, |
| 5661 | Init->getSourceLocation())) { |
| 5662 | ShouldCheckOrder = true; |
| 5663 | break; |
| 5664 | } |
| 5665 | } |
| 5666 | if (!ShouldCheckOrder) |
| 5667 | return; |
| 5668 | |
| 5669 | // Build the list of bases and members in the order that they'll |
| 5670 | // actually be initialized. The explicit initializers should be in |
| 5671 | // this same order but may be missing things. |
| 5672 | SmallVector<const void*, 32> IdealInitKeys; |
| 5673 | |
| 5674 | const CXXRecordDecl *ClassDecl = Constructor->getParent(); |
| 5675 | |
| 5676 | // 1. Virtual bases. |
| 5677 | for (const auto &VBase : ClassDecl->vbases()) |
| 5678 | IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType())); |
| 5679 | |
| 5680 | // 2. Non-virtual bases. |
| 5681 | for (const auto &Base : ClassDecl->bases()) { |
| 5682 | if (Base.isVirtual()) |
| 5683 | continue; |
| 5684 | IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType())); |
| 5685 | } |
| 5686 | |
| 5687 | // 3. Direct fields. |
| 5688 | for (auto *Field : ClassDecl->fields()) { |
| 5689 | if (Field->isUnnamedBitField()) |
| 5690 | continue; |
| 5691 | |
| 5692 | PopulateKeysForFields(Field, IdealInitKeys); |
| 5693 | } |
| 5694 | |
| 5695 | unsigned NumIdealInits = IdealInitKeys.size(); |
| 5696 | unsigned IdealIndex = 0; |
| 5697 | |
| 5698 | // Track initializers that are in an incorrect order for either a warning or |
| 5699 | // note if multiple ones occur. |
| 5700 | SmallVector<unsigned> WarnIndexes; |
| 5701 | // Correlates the index of an initializer in the init-list to the index of |
| 5702 | // the field/base in the class. |
| 5703 | SmallVector<std::pair<unsigned, unsigned>, 32> CorrelatedInitOrder; |
| 5704 | |
| 5705 | for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) { |
| 5706 | const void *InitKey = GetKeyForMember(Context&: SemaRef.Context, Member: Inits[InitIndex]); |
| 5707 | |
| 5708 | // Scan forward to try to find this initializer in the idealized |
| 5709 | // initializers list. |
| 5710 | for (; IdealIndex != NumIdealInits; ++IdealIndex) |
| 5711 | if (InitKey == IdealInitKeys[IdealIndex]) |
| 5712 | break; |
| 5713 | |
| 5714 | // If we didn't find this initializer, it must be because we |
| 5715 | // scanned past it on a previous iteration. That can only |
| 5716 | // happen if we're out of order; emit a warning. |
| 5717 | if (IdealIndex == NumIdealInits && InitIndex) { |
| 5718 | WarnIndexes.push_back(Elt: InitIndex); |
| 5719 | |
| 5720 | // Move back to the initializer's location in the ideal list. |
| 5721 | for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex) |
| 5722 | if (InitKey == IdealInitKeys[IdealIndex]) |
| 5723 | break; |
| 5724 | |
| 5725 | assert(IdealIndex < NumIdealInits && |
| 5726 | "initializer not found in initializer list" ); |
| 5727 | } |
| 5728 | CorrelatedInitOrder.emplace_back(Args&: IdealIndex, Args&: InitIndex); |
| 5729 | } |
| 5730 | |
| 5731 | if (WarnIndexes.empty()) |
| 5732 | return; |
| 5733 | |
| 5734 | // Sort based on the ideal order, first in the pair. |
| 5735 | llvm::sort(C&: CorrelatedInitOrder, Comp: llvm::less_first()); |
| 5736 | |
| 5737 | // Introduce a new scope as SemaDiagnosticBuilder needs to be destroyed to |
| 5738 | // emit the diagnostic before we can try adding notes. |
| 5739 | { |
| 5740 | Sema::SemaDiagnosticBuilder D = SemaRef.Diag( |
| 5741 | Inits[WarnIndexes.front() - 1]->getSourceLocation(), |
| 5742 | WarnIndexes.size() == 1 ? diag::warn_initializer_out_of_order |
| 5743 | : diag::warn_some_initializers_out_of_order); |
| 5744 | |
| 5745 | for (unsigned I = 0; I < CorrelatedInitOrder.size(); ++I) { |
| 5746 | if (CorrelatedInitOrder[I].second == I) |
| 5747 | continue; |
| 5748 | // Ideally we would be using InsertFromRange here, but clang doesn't |
| 5749 | // appear to handle InsertFromRange correctly when the source range is |
| 5750 | // modified by another fix-it. |
| 5751 | D << FixItHint::CreateReplacement( |
| 5752 | RemoveRange: Inits[I]->getSourceRange(), |
| 5753 | Code: Lexer::getSourceText( |
| 5754 | Range: CharSourceRange::getTokenRange( |
| 5755 | R: Inits[CorrelatedInitOrder[I].second]->getSourceRange()), |
| 5756 | SM: SemaRef.getSourceManager(), LangOpts: SemaRef.getLangOpts())); |
| 5757 | } |
| 5758 | |
| 5759 | // If there is only 1 item out of order, the warning expects the name and |
| 5760 | // type of each being added to it. |
| 5761 | if (WarnIndexes.size() == 1) { |
| 5762 | AddInitializerToDiag(Diag: D, Previous: Inits[WarnIndexes.front() - 1], |
| 5763 | Current: Inits[WarnIndexes.front()]); |
| 5764 | return; |
| 5765 | } |
| 5766 | } |
| 5767 | // More than 1 item to warn, create notes letting the user know which ones |
| 5768 | // are bad. |
| 5769 | for (unsigned WarnIndex : WarnIndexes) { |
| 5770 | const clang::CXXCtorInitializer *PrevInit = Inits[WarnIndex - 1]; |
| 5771 | auto D = SemaRef.Diag(PrevInit->getSourceLocation(), |
| 5772 | diag::note_initializer_out_of_order); |
| 5773 | AddInitializerToDiag(D, PrevInit, Inits[WarnIndex]); |
| 5774 | D << PrevInit->getSourceRange(); |
| 5775 | } |
| 5776 | } |
| 5777 | |
| 5778 | namespace { |
| 5779 | bool CheckRedundantInit(Sema &S, |
| 5780 | CXXCtorInitializer *Init, |
| 5781 | CXXCtorInitializer *&PrevInit) { |
| 5782 | if (!PrevInit) { |
| 5783 | PrevInit = Init; |
| 5784 | return false; |
| 5785 | } |
| 5786 | |
| 5787 | if (FieldDecl *Field = Init->getAnyMember()) |
| 5788 | S.Diag(Init->getSourceLocation(), |
| 5789 | diag::err_multiple_mem_initialization) |
| 5790 | << Field->getDeclName() |
| 5791 | << Init->getSourceRange(); |
| 5792 | else { |
| 5793 | const Type *BaseClass = Init->getBaseClass(); |
| 5794 | assert(BaseClass && "neither field nor base" ); |
| 5795 | S.Diag(Init->getSourceLocation(), |
| 5796 | diag::err_multiple_base_initialization) |
| 5797 | << QualType(BaseClass, 0) |
| 5798 | << Init->getSourceRange(); |
| 5799 | } |
| 5800 | S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer) |
| 5801 | << 0 << PrevInit->getSourceRange(); |
| 5802 | |
| 5803 | return true; |
| 5804 | } |
| 5805 | |
| 5806 | typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry; |
| 5807 | typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap; |
| 5808 | |
| 5809 | bool CheckRedundantUnionInit(Sema &S, |
| 5810 | CXXCtorInitializer *Init, |
| 5811 | RedundantUnionMap &Unions) { |
| 5812 | FieldDecl *Field = Init->getAnyMember(); |
| 5813 | RecordDecl *Parent = Field->getParent(); |
| 5814 | NamedDecl *Child = Field; |
| 5815 | |
| 5816 | while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) { |
| 5817 | if (Parent->isUnion()) { |
| 5818 | UnionEntry &En = Unions[Parent]; |
| 5819 | if (En.first && En.first != Child) { |
| 5820 | S.Diag(Init->getSourceLocation(), |
| 5821 | diag::err_multiple_mem_union_initialization) |
| 5822 | << Field->getDeclName() |
| 5823 | << Init->getSourceRange(); |
| 5824 | S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer) |
| 5825 | << 0 << En.second->getSourceRange(); |
| 5826 | return true; |
| 5827 | } |
| 5828 | if (!En.first) { |
| 5829 | En.first = Child; |
| 5830 | En.second = Init; |
| 5831 | } |
| 5832 | if (!Parent->isAnonymousStructOrUnion()) |
| 5833 | return false; |
| 5834 | } |
| 5835 | |
| 5836 | Child = Parent; |
| 5837 | Parent = cast<RecordDecl>(Parent->getDeclContext()); |
| 5838 | } |
| 5839 | |
| 5840 | return false; |
| 5841 | } |
| 5842 | } // namespace |
| 5843 | |
| 5844 | void Sema::ActOnMemInitializers(Decl *ConstructorDecl, |
| 5845 | SourceLocation ColonLoc, |
| 5846 | ArrayRef<CXXCtorInitializer*> MemInits, |
| 5847 | bool AnyErrors) { |
| 5848 | if (!ConstructorDecl) |
| 5849 | return; |
| 5850 | |
| 5851 | AdjustDeclIfTemplate(Decl&: ConstructorDecl); |
| 5852 | |
| 5853 | CXXConstructorDecl *Constructor |
| 5854 | = dyn_cast<CXXConstructorDecl>(Val: ConstructorDecl); |
| 5855 | |
| 5856 | if (!Constructor) { |
| 5857 | Diag(ColonLoc, diag::err_only_constructors_take_base_inits); |
| 5858 | return; |
| 5859 | } |
| 5860 | |
| 5861 | // Mapping for the duplicate initializers check. |
| 5862 | // For member initializers, this is keyed with a FieldDecl*. |
| 5863 | // For base initializers, this is keyed with a Type*. |
| 5864 | llvm::DenseMap<const void *, CXXCtorInitializer *> Members; |
| 5865 | |
| 5866 | // Mapping for the inconsistent anonymous-union initializers check. |
| 5867 | RedundantUnionMap MemberUnions; |
| 5868 | |
| 5869 | bool HadError = false; |
| 5870 | for (unsigned i = 0; i < MemInits.size(); i++) { |
| 5871 | CXXCtorInitializer *Init = MemInits[i]; |
| 5872 | |
| 5873 | // Set the source order index. |
| 5874 | Init->setSourceOrder(i); |
| 5875 | |
| 5876 | if (Init->isAnyMemberInitializer()) { |
| 5877 | const void *Key = GetKeyForMember(Context, Member: Init); |
| 5878 | if (CheckRedundantInit(S&: *this, Init, PrevInit&: Members[Key]) || |
| 5879 | CheckRedundantUnionInit(S&: *this, Init, Unions&: MemberUnions)) |
| 5880 | HadError = true; |
| 5881 | } else if (Init->isBaseInitializer()) { |
| 5882 | const void *Key = GetKeyForMember(Context, Member: Init); |
| 5883 | if (CheckRedundantInit(S&: *this, Init, PrevInit&: Members[Key])) |
| 5884 | HadError = true; |
| 5885 | } else { |
| 5886 | assert(Init->isDelegatingInitializer()); |
| 5887 | // This must be the only initializer |
| 5888 | if (MemInits.size() != 1) { |
| 5889 | Diag(Init->getSourceLocation(), |
| 5890 | diag::err_delegating_initializer_alone) |
| 5891 | << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange(); |
| 5892 | // We will treat this as being the only initializer. |
| 5893 | } |
| 5894 | SetDelegatingInitializer(Constructor, Initializer: MemInits[i]); |
| 5895 | // Return immediately as the initializer is set. |
| 5896 | return; |
| 5897 | } |
| 5898 | } |
| 5899 | |
| 5900 | if (HadError) |
| 5901 | return; |
| 5902 | |
| 5903 | DiagnoseBaseOrMemInitializerOrder(SemaRef&: *this, Constructor, Inits: MemInits); |
| 5904 | |
| 5905 | SetCtorInitializers(Constructor, AnyErrors, Initializers: MemInits); |
| 5906 | |
| 5907 | DiagnoseUninitializedFields(SemaRef&: *this, Constructor); |
| 5908 | } |
| 5909 | |
| 5910 | void Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location, |
| 5911 | CXXRecordDecl *ClassDecl) { |
| 5912 | // Ignore dependent contexts. Also ignore unions, since their members never |
| 5913 | // have destructors implicitly called. |
| 5914 | if (ClassDecl->isDependentContext() || ClassDecl->isUnion()) |
| 5915 | return; |
| 5916 | |
| 5917 | // FIXME: all the access-control diagnostics are positioned on the |
| 5918 | // field/base declaration. That's probably good; that said, the |
| 5919 | // user might reasonably want to know why the destructor is being |
| 5920 | // emitted, and we currently don't say. |
| 5921 | |
| 5922 | // Non-static data members. |
| 5923 | for (auto *Field : ClassDecl->fields()) { |
| 5924 | MarkFieldDestructorReferenced(*this, Location, Field); |
| 5925 | } |
| 5926 | |
| 5927 | MarkBaseDestructorsReferenced(S&: *this, Location, ClassDecl); |
| 5928 | } |
| 5929 | |
| 5930 | void Sema::MarkVirtualBaseDestructorsReferenced( |
| 5931 | SourceLocation Location, CXXRecordDecl *ClassDecl, |
| 5932 | llvm::SmallPtrSetImpl<const CXXRecordDecl *> *DirectVirtualBases) { |
| 5933 | // Virtual bases. |
| 5934 | for (const auto &VBase : ClassDecl->vbases()) { |
| 5935 | auto *BaseClassDecl = VBase.getType()->getAsCXXRecordDecl(); |
| 5936 | if (!BaseClassDecl) |
| 5937 | continue; |
| 5938 | |
| 5939 | // Ignore already visited direct virtual bases. |
| 5940 | if (DirectVirtualBases && DirectVirtualBases->count(Ptr: BaseClassDecl)) |
| 5941 | continue; |
| 5942 | |
| 5943 | auto *Dtor = LookupDestructorIfRelevant(S&: *this, Class: BaseClassDecl); |
| 5944 | if (!Dtor) |
| 5945 | continue; |
| 5946 | |
| 5947 | if (CheckDestructorAccess( |
| 5948 | ClassDecl->getLocation(), Dtor, |
| 5949 | PDiag(diag::err_access_dtor_vbase) |
| 5950 | << Context.getTypeDeclType(ClassDecl) << VBase.getType(), |
| 5951 | Context.getTypeDeclType(ClassDecl)) == |
| 5952 | AR_accessible) { |
| 5953 | CheckDerivedToBaseConversion( |
| 5954 | Context.getTypeDeclType(ClassDecl), VBase.getType(), |
| 5955 | diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(), |
| 5956 | SourceRange(), DeclarationName(), nullptr); |
| 5957 | } |
| 5958 | |
| 5959 | MarkFunctionReferenced(Location, Dtor); |
| 5960 | DiagnoseUseOfDecl(Dtor, Location); |
| 5961 | } |
| 5962 | } |
| 5963 | |
| 5964 | void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) { |
| 5965 | if (!CDtorDecl) |
| 5966 | return; |
| 5967 | |
| 5968 | if (CXXConstructorDecl *Constructor |
| 5969 | = dyn_cast<CXXConstructorDecl>(Val: CDtorDecl)) { |
| 5970 | if (CXXRecordDecl *ClassDecl = Constructor->getParent(); |
| 5971 | !ClassDecl || ClassDecl->isInvalidDecl()) { |
| 5972 | return; |
| 5973 | } |
| 5974 | SetCtorInitializers(Constructor, /*AnyErrors=*/false); |
| 5975 | DiagnoseUninitializedFields(SemaRef&: *this, Constructor); |
| 5976 | } |
| 5977 | } |
| 5978 | |
| 5979 | bool Sema::isAbstractType(SourceLocation Loc, QualType T) { |
| 5980 | if (!getLangOpts().CPlusPlus) |
| 5981 | return false; |
| 5982 | |
| 5983 | const auto *RD = Context.getBaseElementType(QT: T)->getAsCXXRecordDecl(); |
| 5984 | if (!RD) |
| 5985 | return false; |
| 5986 | |
| 5987 | // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a |
| 5988 | // class template specialization here, but doing so breaks a lot of code. |
| 5989 | |
| 5990 | // We can't answer whether something is abstract until it has a |
| 5991 | // definition. If it's currently being defined, we'll walk back |
| 5992 | // over all the declarations when we have a full definition. |
| 5993 | const CXXRecordDecl *Def = RD->getDefinition(); |
| 5994 | if (!Def || Def->isBeingDefined()) |
| 5995 | return false; |
| 5996 | |
| 5997 | return RD->isAbstract(); |
| 5998 | } |
| 5999 | |
| 6000 | bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, |
| 6001 | TypeDiagnoser &Diagnoser) { |
| 6002 | if (!isAbstractType(Loc, T)) |
| 6003 | return false; |
| 6004 | |
| 6005 | T = Context.getBaseElementType(QT: T); |
| 6006 | Diagnoser.diagnose(S&: *this, Loc, T); |
| 6007 | DiagnoseAbstractType(RD: T->getAsCXXRecordDecl()); |
| 6008 | return true; |
| 6009 | } |
| 6010 | |
| 6011 | void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) { |
| 6012 | // Check if we've already emitted the list of pure virtual functions |
| 6013 | // for this class. |
| 6014 | if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(Ptr: RD)) |
| 6015 | return; |
| 6016 | |
| 6017 | // If the diagnostic is suppressed, don't emit the notes. We're only |
| 6018 | // going to emit them once, so try to attach them to a diagnostic we're |
| 6019 | // actually going to show. |
| 6020 | if (Diags.isLastDiagnosticIgnored()) |
| 6021 | return; |
| 6022 | |
| 6023 | CXXFinalOverriderMap FinalOverriders; |
| 6024 | RD->getFinalOverriders(FinaOverriders&: FinalOverriders); |
| 6025 | |
| 6026 | // Keep a set of seen pure methods so we won't diagnose the same method |
| 6027 | // more than once. |
| 6028 | llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods; |
| 6029 | |
| 6030 | for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), |
| 6031 | MEnd = FinalOverriders.end(); |
| 6032 | M != MEnd; |
| 6033 | ++M) { |
| 6034 | for (OverridingMethods::iterator SO = M->second.begin(), |
| 6035 | SOEnd = M->second.end(); |
| 6036 | SO != SOEnd; ++SO) { |
| 6037 | // C++ [class.abstract]p4: |
| 6038 | // A class is abstract if it contains or inherits at least one |
| 6039 | // pure virtual function for which the final overrider is pure |
| 6040 | // virtual. |
| 6041 | |
| 6042 | // |
| 6043 | if (SO->second.size() != 1) |
| 6044 | continue; |
| 6045 | |
| 6046 | if (!SO->second.front().Method->isPureVirtual()) |
| 6047 | continue; |
| 6048 | |
| 6049 | if (!SeenPureMethods.insert(Ptr: SO->second.front().Method).second) |
| 6050 | continue; |
| 6051 | |
| 6052 | Diag(SO->second.front().Method->getLocation(), |
| 6053 | diag::note_pure_virtual_function) |
| 6054 | << SO->second.front().Method->getDeclName() << RD->getDeclName(); |
| 6055 | } |
| 6056 | } |
| 6057 | |
| 6058 | if (!PureVirtualClassDiagSet) |
| 6059 | PureVirtualClassDiagSet.reset(p: new RecordDeclSetTy); |
| 6060 | PureVirtualClassDiagSet->insert(Ptr: RD); |
| 6061 | } |
| 6062 | |
| 6063 | namespace { |
| 6064 | struct AbstractUsageInfo { |
| 6065 | Sema &S; |
| 6066 | CXXRecordDecl *Record; |
| 6067 | CanQualType AbstractType; |
| 6068 | bool Invalid; |
| 6069 | |
| 6070 | AbstractUsageInfo(Sema &S, CXXRecordDecl *Record) |
| 6071 | : S(S), Record(Record), |
| 6072 | AbstractType(S.Context.getCanonicalType( |
| 6073 | S.Context.getTypeDeclType(Record))), |
| 6074 | Invalid(false) {} |
| 6075 | |
| 6076 | void DiagnoseAbstractType() { |
| 6077 | if (Invalid) return; |
| 6078 | S.DiagnoseAbstractType(RD: Record); |
| 6079 | Invalid = true; |
| 6080 | } |
| 6081 | |
| 6082 | void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel); |
| 6083 | }; |
| 6084 | |
| 6085 | struct CheckAbstractUsage { |
| 6086 | AbstractUsageInfo &Info; |
| 6087 | const NamedDecl *Ctx; |
| 6088 | |
| 6089 | CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx) |
| 6090 | : Info(Info), Ctx(Ctx) {} |
| 6091 | |
| 6092 | void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) { |
| 6093 | switch (TL.getTypeLocClass()) { |
| 6094 | #define ABSTRACT_TYPELOC(CLASS, PARENT) |
| 6095 | #define TYPELOC(CLASS, PARENT) \ |
| 6096 | case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break; |
| 6097 | #include "clang/AST/TypeLocNodes.def" |
| 6098 | } |
| 6099 | } |
| 6100 | |
| 6101 | void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) { |
| 6102 | Visit(TL: TL.getReturnLoc(), Sel: Sema::AbstractReturnType); |
| 6103 | for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) { |
| 6104 | if (!TL.getParam(I)) |
| 6105 | continue; |
| 6106 | |
| 6107 | TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo(); |
| 6108 | if (TSI) Visit(TL: TSI->getTypeLoc(), Sel: Sema::AbstractParamType); |
| 6109 | } |
| 6110 | } |
| 6111 | |
| 6112 | void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) { |
| 6113 | Visit(TL: TL.getElementLoc(), Sel: Sema::AbstractArrayType); |
| 6114 | } |
| 6115 | |
| 6116 | void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) { |
| 6117 | // Visit the type parameters from a permissive context. |
| 6118 | for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) { |
| 6119 | TemplateArgumentLoc TAL = TL.getArgLoc(i: I); |
| 6120 | if (TAL.getArgument().getKind() == TemplateArgument::Type) |
| 6121 | if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo()) |
| 6122 | Visit(TL: TSI->getTypeLoc(), Sel: Sema::AbstractNone); |
| 6123 | // TODO: other template argument types? |
| 6124 | } |
| 6125 | } |
| 6126 | |
| 6127 | // Visit pointee types from a permissive context. |
| 6128 | #define CheckPolymorphic(Type) \ |
| 6129 | void Check(Type TL, Sema::AbstractDiagSelID Sel) { \ |
| 6130 | Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \ |
| 6131 | } |
| 6132 | CheckPolymorphic(PointerTypeLoc) |
| 6133 | CheckPolymorphic(ReferenceTypeLoc) |
| 6134 | CheckPolymorphic(MemberPointerTypeLoc) |
| 6135 | CheckPolymorphic(BlockPointerTypeLoc) |
| 6136 | CheckPolymorphic(AtomicTypeLoc) |
| 6137 | |
| 6138 | /// Handle all the types we haven't given a more specific |
| 6139 | /// implementation for above. |
| 6140 | void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) { |
| 6141 | // Every other kind of type that we haven't called out already |
| 6142 | // that has an inner type is either (1) sugar or (2) contains that |
| 6143 | // inner type in some way as a subobject. |
| 6144 | if (TypeLoc Next = TL.getNextTypeLoc()) |
| 6145 | return Visit(TL: Next, Sel); |
| 6146 | |
| 6147 | // If there's no inner type and we're in a permissive context, |
| 6148 | // don't diagnose. |
| 6149 | if (Sel == Sema::AbstractNone) return; |
| 6150 | |
| 6151 | // Check whether the type matches the abstract type. |
| 6152 | QualType T = TL.getType(); |
| 6153 | if (T->isArrayType()) { |
| 6154 | Sel = Sema::AbstractArrayType; |
| 6155 | T = Info.S.Context.getBaseElementType(QT: T); |
| 6156 | } |
| 6157 | CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType(); |
| 6158 | if (CT != Info.AbstractType) return; |
| 6159 | |
| 6160 | // It matched; do some magic. |
| 6161 | // FIXME: These should be at most warnings. See P0929R2, CWG1640, CWG1646. |
| 6162 | if (Sel == Sema::AbstractArrayType) { |
| 6163 | Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type) |
| 6164 | << T << TL.getSourceRange(); |
| 6165 | } else { |
| 6166 | Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl) |
| 6167 | << Sel << T << TL.getSourceRange(); |
| 6168 | } |
| 6169 | Info.DiagnoseAbstractType(); |
| 6170 | } |
| 6171 | }; |
| 6172 | |
| 6173 | void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL, |
| 6174 | Sema::AbstractDiagSelID Sel) { |
| 6175 | CheckAbstractUsage(*this, D).Visit(TL, Sel); |
| 6176 | } |
| 6177 | |
| 6178 | } |
| 6179 | |
| 6180 | /// Check for invalid uses of an abstract type in a function declaration. |
| 6181 | static void CheckAbstractClassUsage(AbstractUsageInfo &Info, |
| 6182 | FunctionDecl *FD) { |
| 6183 | // Only definitions are required to refer to complete and |
| 6184 | // non-abstract types. |
| 6185 | if (!FD->doesThisDeclarationHaveABody()) |
| 6186 | return; |
| 6187 | |
| 6188 | // For safety's sake, just ignore it if we don't have type source |
| 6189 | // information. This should never happen for non-implicit methods, |
| 6190 | // but... |
| 6191 | if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) |
| 6192 | Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractNone); |
| 6193 | } |
| 6194 | |
| 6195 | /// Check for invalid uses of an abstract type in a variable0 declaration. |
| 6196 | static void CheckAbstractClassUsage(AbstractUsageInfo &Info, |
| 6197 | VarDecl *VD) { |
| 6198 | // No need to do the check on definitions, which require that |
| 6199 | // the type is complete. |
| 6200 | if (VD->isThisDeclarationADefinition()) |
| 6201 | return; |
| 6202 | |
| 6203 | Info.CheckType(D: VD, TL: VD->getTypeSourceInfo()->getTypeLoc(), |
| 6204 | Sel: Sema::AbstractVariableType); |
| 6205 | } |
| 6206 | |
| 6207 | /// Check for invalid uses of an abstract type within a class definition. |
| 6208 | static void CheckAbstractClassUsage(AbstractUsageInfo &Info, |
| 6209 | CXXRecordDecl *RD) { |
| 6210 | for (auto *D : RD->decls()) { |
| 6211 | if (D->isImplicit()) continue; |
| 6212 | |
| 6213 | // Step through friends to the befriended declaration. |
| 6214 | if (auto *FD = dyn_cast<FriendDecl>(D)) { |
| 6215 | D = FD->getFriendDecl(); |
| 6216 | if (!D) continue; |
| 6217 | } |
| 6218 | |
| 6219 | // Functions and function templates. |
| 6220 | if (auto *FD = dyn_cast<FunctionDecl>(D)) { |
| 6221 | CheckAbstractClassUsage(Info, FD); |
| 6222 | } else if (auto *FTD = dyn_cast<FunctionTemplateDecl>(D)) { |
| 6223 | CheckAbstractClassUsage(Info, FTD->getTemplatedDecl()); |
| 6224 | |
| 6225 | // Fields and static variables. |
| 6226 | } else if (auto *FD = dyn_cast<FieldDecl>(D)) { |
| 6227 | if (TypeSourceInfo *TSI = FD->getTypeSourceInfo()) |
| 6228 | Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType); |
| 6229 | } else if (auto *VD = dyn_cast<VarDecl>(D)) { |
| 6230 | CheckAbstractClassUsage(Info, VD); |
| 6231 | } else if (auto *VTD = dyn_cast<VarTemplateDecl>(D)) { |
| 6232 | CheckAbstractClassUsage(Info, VTD->getTemplatedDecl()); |
| 6233 | |
| 6234 | // Nested classes and class templates. |
| 6235 | } else if (auto *RD = dyn_cast<CXXRecordDecl>(D)) { |
| 6236 | CheckAbstractClassUsage(Info, RD); |
| 6237 | } else if (auto *CTD = dyn_cast<ClassTemplateDecl>(D)) { |
| 6238 | CheckAbstractClassUsage(Info, CTD->getTemplatedDecl()); |
| 6239 | } |
| 6240 | } |
| 6241 | } |
| 6242 | |
| 6243 | static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) { |
| 6244 | Attr *ClassAttr = getDLLAttr(Class); |
| 6245 | if (!ClassAttr) |
| 6246 | return; |
| 6247 | |
| 6248 | assert(ClassAttr->getKind() == attr::DLLExport); |
| 6249 | |
| 6250 | TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); |
| 6251 | |
| 6252 | if (TSK == TSK_ExplicitInstantiationDeclaration) |
| 6253 | // Don't go any further if this is just an explicit instantiation |
| 6254 | // declaration. |
| 6255 | return; |
| 6256 | |
| 6257 | // Add a context note to explain how we got to any diagnostics produced below. |
| 6258 | struct MarkingClassDllexported { |
| 6259 | Sema &S; |
| 6260 | MarkingClassDllexported(Sema &S, CXXRecordDecl *Class, |
| 6261 | SourceLocation AttrLoc) |
| 6262 | : S(S) { |
| 6263 | Sema::CodeSynthesisContext Ctx; |
| 6264 | Ctx.Kind = Sema::CodeSynthesisContext::MarkingClassDllexported; |
| 6265 | Ctx.PointOfInstantiation = AttrLoc; |
| 6266 | Ctx.Entity = Class; |
| 6267 | S.pushCodeSynthesisContext(Ctx); |
| 6268 | } |
| 6269 | ~MarkingClassDllexported() { |
| 6270 | S.popCodeSynthesisContext(); |
| 6271 | } |
| 6272 | } MarkingDllexportedContext(S, Class, ClassAttr->getLocation()); |
| 6273 | |
| 6274 | if (S.Context.getTargetInfo().getTriple().isOSCygMing()) |
| 6275 | S.MarkVTableUsed(Loc: Class->getLocation(), Class, DefinitionRequired: true); |
| 6276 | |
| 6277 | for (Decl *Member : Class->decls()) { |
| 6278 | // Skip members that were not marked exported. |
| 6279 | if (!Member->hasAttr<DLLExportAttr>()) |
| 6280 | continue; |
| 6281 | |
| 6282 | // Defined static variables that are members of an exported base |
| 6283 | // class must be marked export too. |
| 6284 | auto *VD = dyn_cast<VarDecl>(Member); |
| 6285 | if (VD && VD->getStorageClass() == SC_Static && |
| 6286 | TSK == TSK_ImplicitInstantiation) |
| 6287 | S.MarkVariableReferenced(VD->getLocation(), VD); |
| 6288 | |
| 6289 | auto *MD = dyn_cast<CXXMethodDecl>(Member); |
| 6290 | if (!MD) |
| 6291 | continue; |
| 6292 | |
| 6293 | if (MD->isUserProvided()) { |
| 6294 | // Instantiate non-default class member functions ... |
| 6295 | |
| 6296 | // .. except for certain kinds of template specializations. |
| 6297 | if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited()) |
| 6298 | continue; |
| 6299 | |
| 6300 | // If this is an MS ABI dllexport default constructor, instantiate any |
| 6301 | // default arguments. |
| 6302 | if (S.Context.getTargetInfo().getCXXABI().isMicrosoft()) { |
| 6303 | auto *CD = dyn_cast<CXXConstructorDecl>(MD); |
| 6304 | if (CD && CD->isDefaultConstructor() && TSK == TSK_Undeclared) { |
| 6305 | S.InstantiateDefaultCtorDefaultArgs(CD); |
| 6306 | } |
| 6307 | } |
| 6308 | |
| 6309 | S.MarkFunctionReferenced(Class->getLocation(), MD); |
| 6310 | |
| 6311 | // The function will be passed to the consumer when its definition is |
| 6312 | // encountered. |
| 6313 | } else if (MD->isExplicitlyDefaulted()) { |
| 6314 | // Synthesize and instantiate explicitly defaulted methods. |
| 6315 | S.MarkFunctionReferenced(Class->getLocation(), MD); |
| 6316 | |
| 6317 | if (TSK != TSK_ExplicitInstantiationDefinition) { |
| 6318 | // Except for explicit instantiation defs, we will not see the |
| 6319 | // definition again later, so pass it to the consumer now. |
| 6320 | S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); |
| 6321 | } |
| 6322 | } else if (!MD->isTrivial() || |
| 6323 | MD->isCopyAssignmentOperator() || |
| 6324 | MD->isMoveAssignmentOperator()) { |
| 6325 | // Synthesize and instantiate non-trivial implicit methods, and the copy |
| 6326 | // and move assignment operators. The latter are exported even if they |
| 6327 | // are trivial, because the address of an operator can be taken and |
| 6328 | // should compare equal across libraries. |
| 6329 | S.MarkFunctionReferenced(Class->getLocation(), MD); |
| 6330 | |
| 6331 | // There is no later point when we will see the definition of this |
| 6332 | // function, so pass it to the consumer now. |
| 6333 | S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD)); |
| 6334 | } |
| 6335 | } |
| 6336 | } |
| 6337 | |
| 6338 | static void checkForMultipleExportedDefaultConstructors(Sema &S, |
| 6339 | CXXRecordDecl *Class) { |
| 6340 | // Only the MS ABI has default constructor closures, so we don't need to do |
| 6341 | // this semantic checking anywhere else. |
| 6342 | if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft()) |
| 6343 | return; |
| 6344 | |
| 6345 | CXXConstructorDecl *LastExportedDefaultCtor = nullptr; |
| 6346 | for (Decl *Member : Class->decls()) { |
| 6347 | // Look for exported default constructors. |
| 6348 | auto *CD = dyn_cast<CXXConstructorDecl>(Member); |
| 6349 | if (!CD || !CD->isDefaultConstructor()) |
| 6350 | continue; |
| 6351 | auto *Attr = CD->getAttr<DLLExportAttr>(); |
| 6352 | if (!Attr) |
| 6353 | continue; |
| 6354 | |
| 6355 | // If the class is non-dependent, mark the default arguments as ODR-used so |
| 6356 | // that we can properly codegen the constructor closure. |
| 6357 | if (!Class->isDependentContext()) { |
| 6358 | for (ParmVarDecl *PD : CD->parameters()) { |
| 6359 | (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD); |
| 6360 | S.DiscardCleanupsInEvaluationContext(); |
| 6361 | } |
| 6362 | } |
| 6363 | |
| 6364 | if (LastExportedDefaultCtor) { |
| 6365 | S.Diag(LastExportedDefaultCtor->getLocation(), |
| 6366 | diag::err_attribute_dll_ambiguous_default_ctor) |
| 6367 | << Class; |
| 6368 | S.Diag(CD->getLocation(), diag::note_entity_declared_at) |
| 6369 | << CD->getDeclName(); |
| 6370 | return; |
| 6371 | } |
| 6372 | LastExportedDefaultCtor = CD; |
| 6373 | } |
| 6374 | } |
| 6375 | |
| 6376 | static void checkCUDADeviceBuiltinSurfaceClassTemplate(Sema &S, |
| 6377 | CXXRecordDecl *Class) { |
| 6378 | bool ErrorReported = false; |
| 6379 | auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, |
| 6380 | ClassTemplateDecl *TD) { |
| 6381 | if (ErrorReported) |
| 6382 | return; |
| 6383 | S.Diag(TD->getLocation(), |
| 6384 | diag::err_cuda_device_builtin_surftex_cls_template) |
| 6385 | << /*surface*/ 0 << TD; |
| 6386 | ErrorReported = true; |
| 6387 | }; |
| 6388 | |
| 6389 | ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); |
| 6390 | if (!TD) { |
| 6391 | auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Val: Class); |
| 6392 | if (!SD) { |
| 6393 | S.Diag(Class->getLocation(), |
| 6394 | diag::err_cuda_device_builtin_surftex_ref_decl) |
| 6395 | << /*surface*/ 0 << Class; |
| 6396 | S.Diag(Class->getLocation(), |
| 6397 | diag::note_cuda_device_builtin_surftex_should_be_template_class) |
| 6398 | << Class; |
| 6399 | return; |
| 6400 | } |
| 6401 | TD = SD->getSpecializedTemplate(); |
| 6402 | } |
| 6403 | |
| 6404 | TemplateParameterList *Params = TD->getTemplateParameters(); |
| 6405 | unsigned N = Params->size(); |
| 6406 | |
| 6407 | if (N != 2) { |
| 6408 | reportIllegalClassTemplate(S, TD); |
| 6409 | S.Diag(TD->getLocation(), |
| 6410 | diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) |
| 6411 | << TD << 2; |
| 6412 | } |
| 6413 | if (N > 0 && !isa<TemplateTypeParmDecl>(Val: Params->getParam(Idx: 0))) { |
| 6414 | reportIllegalClassTemplate(S, TD); |
| 6415 | S.Diag(TD->getLocation(), |
| 6416 | diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) |
| 6417 | << TD << /*1st*/ 0 << /*type*/ 0; |
| 6418 | } |
| 6419 | if (N > 1) { |
| 6420 | auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: Params->getParam(Idx: 1)); |
| 6421 | if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { |
| 6422 | reportIllegalClassTemplate(S, TD); |
| 6423 | S.Diag(TD->getLocation(), |
| 6424 | diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) |
| 6425 | << TD << /*2nd*/ 1 << /*integer*/ 1; |
| 6426 | } |
| 6427 | } |
| 6428 | } |
| 6429 | |
| 6430 | static void checkCUDADeviceBuiltinTextureClassTemplate(Sema &S, |
| 6431 | CXXRecordDecl *Class) { |
| 6432 | bool ErrorReported = false; |
| 6433 | auto reportIllegalClassTemplate = [&ErrorReported](Sema &S, |
| 6434 | ClassTemplateDecl *TD) { |
| 6435 | if (ErrorReported) |
| 6436 | return; |
| 6437 | S.Diag(TD->getLocation(), |
| 6438 | diag::err_cuda_device_builtin_surftex_cls_template) |
| 6439 | << /*texture*/ 1 << TD; |
| 6440 | ErrorReported = true; |
| 6441 | }; |
| 6442 | |
| 6443 | ClassTemplateDecl *TD = Class->getDescribedClassTemplate(); |
| 6444 | if (!TD) { |
| 6445 | auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Val: Class); |
| 6446 | if (!SD) { |
| 6447 | S.Diag(Class->getLocation(), |
| 6448 | diag::err_cuda_device_builtin_surftex_ref_decl) |
| 6449 | << /*texture*/ 1 << Class; |
| 6450 | S.Diag(Class->getLocation(), |
| 6451 | diag::note_cuda_device_builtin_surftex_should_be_template_class) |
| 6452 | << Class; |
| 6453 | return; |
| 6454 | } |
| 6455 | TD = SD->getSpecializedTemplate(); |
| 6456 | } |
| 6457 | |
| 6458 | TemplateParameterList *Params = TD->getTemplateParameters(); |
| 6459 | unsigned N = Params->size(); |
| 6460 | |
| 6461 | if (N != 3) { |
| 6462 | reportIllegalClassTemplate(S, TD); |
| 6463 | S.Diag(TD->getLocation(), |
| 6464 | diag::note_cuda_device_builtin_surftex_cls_should_have_n_args) |
| 6465 | << TD << 3; |
| 6466 | } |
| 6467 | if (N > 0 && !isa<TemplateTypeParmDecl>(Val: Params->getParam(Idx: 0))) { |
| 6468 | reportIllegalClassTemplate(S, TD); |
| 6469 | S.Diag(TD->getLocation(), |
| 6470 | diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) |
| 6471 | << TD << /*1st*/ 0 << /*type*/ 0; |
| 6472 | } |
| 6473 | if (N > 1) { |
| 6474 | auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: Params->getParam(Idx: 1)); |
| 6475 | if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { |
| 6476 | reportIllegalClassTemplate(S, TD); |
| 6477 | S.Diag(TD->getLocation(), |
| 6478 | diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) |
| 6479 | << TD << /*2nd*/ 1 << /*integer*/ 1; |
| 6480 | } |
| 6481 | } |
| 6482 | if (N > 2) { |
| 6483 | auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Val: Params->getParam(Idx: 2)); |
| 6484 | if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) { |
| 6485 | reportIllegalClassTemplate(S, TD); |
| 6486 | S.Diag(TD->getLocation(), |
| 6487 | diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg) |
| 6488 | << TD << /*3rd*/ 2 << /*integer*/ 1; |
| 6489 | } |
| 6490 | } |
| 6491 | } |
| 6492 | |
| 6493 | void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) { |
| 6494 | // Mark any compiler-generated routines with the implicit code_seg attribute. |
| 6495 | for (auto *Method : Class->methods()) { |
| 6496 | if (Method->isUserProvided()) |
| 6497 | continue; |
| 6498 | if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true)) |
| 6499 | Method->addAttr(A); |
| 6500 | } |
| 6501 | } |
| 6502 | |
| 6503 | void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) { |
| 6504 | Attr *ClassAttr = getDLLAttr(Class); |
| 6505 | |
| 6506 | // MSVC inherits DLL attributes to partial class template specializations. |
| 6507 | if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && !ClassAttr) { |
| 6508 | if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Val: Class)) { |
| 6509 | if (Attr *TemplateAttr = |
| 6510 | getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) { |
| 6511 | auto *A = cast<InheritableAttr>(Val: TemplateAttr->clone(C&: getASTContext())); |
| 6512 | A->setInherited(true); |
| 6513 | ClassAttr = A; |
| 6514 | } |
| 6515 | } |
| 6516 | } |
| 6517 | |
| 6518 | if (!ClassAttr) |
| 6519 | return; |
| 6520 | |
| 6521 | // MSVC allows imported or exported template classes that have UniqueExternal |
| 6522 | // linkage. This occurs when the template class has been instantiated with |
| 6523 | // a template parameter which itself has internal linkage. |
| 6524 | // We drop the attribute to avoid exporting or importing any members. |
| 6525 | if ((Context.getTargetInfo().getCXXABI().isMicrosoft() || |
| 6526 | Context.getTargetInfo().getTriple().isPS()) && |
| 6527 | (!Class->isExternallyVisible() && Class->hasExternalFormalLinkage())) { |
| 6528 | Class->dropAttrs<DLLExportAttr, DLLImportAttr>(); |
| 6529 | return; |
| 6530 | } |
| 6531 | |
| 6532 | if (!Class->isExternallyVisible()) { |
| 6533 | Diag(Class->getLocation(), diag::err_attribute_dll_not_extern) |
| 6534 | << Class << ClassAttr; |
| 6535 | return; |
| 6536 | } |
| 6537 | |
| 6538 | if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && |
| 6539 | !ClassAttr->isInherited()) { |
| 6540 | // Diagnose dll attributes on members of class with dll attribute. |
| 6541 | for (Decl *Member : Class->decls()) { |
| 6542 | if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member)) |
| 6543 | continue; |
| 6544 | InheritableAttr *MemberAttr = getDLLAttr(Member); |
| 6545 | if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl()) |
| 6546 | continue; |
| 6547 | |
| 6548 | Diag(MemberAttr->getLocation(), |
| 6549 | diag::err_attribute_dll_member_of_dll_class) |
| 6550 | << MemberAttr << ClassAttr; |
| 6551 | Diag(ClassAttr->getLocation(), diag::note_previous_attribute); |
| 6552 | Member->setInvalidDecl(); |
| 6553 | } |
| 6554 | } |
| 6555 | |
| 6556 | if (Class->getDescribedClassTemplate()) |
| 6557 | // Don't inherit dll attribute until the template is instantiated. |
| 6558 | return; |
| 6559 | |
| 6560 | // The class is either imported or exported. |
| 6561 | const bool ClassExported = ClassAttr->getKind() == attr::DLLExport; |
| 6562 | |
| 6563 | // Check if this was a dllimport attribute propagated from a derived class to |
| 6564 | // a base class template specialization. We don't apply these attributes to |
| 6565 | // static data members. |
| 6566 | const bool PropagatedImport = |
| 6567 | !ClassExported && |
| 6568 | cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate(); |
| 6569 | |
| 6570 | TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind(); |
| 6571 | |
| 6572 | // Ignore explicit dllexport on explicit class template instantiation |
| 6573 | // declarations, except in MinGW mode. |
| 6574 | if (ClassExported && !ClassAttr->isInherited() && |
| 6575 | TSK == TSK_ExplicitInstantiationDeclaration && |
| 6576 | !Context.getTargetInfo().getTriple().isOSCygMing()) { |
| 6577 | Class->dropAttr<DLLExportAttr>(); |
| 6578 | return; |
| 6579 | } |
| 6580 | |
| 6581 | // Force declaration of implicit members so they can inherit the attribute. |
| 6582 | ForceDeclarationOfImplicitMembers(Class); |
| 6583 | |
| 6584 | // FIXME: MSVC's docs say all bases must be exportable, but this doesn't |
| 6585 | // seem to be true in practice? |
| 6586 | |
| 6587 | for (Decl *Member : Class->decls()) { |
| 6588 | VarDecl *VD = dyn_cast<VarDecl>(Member); |
| 6589 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member); |
| 6590 | |
| 6591 | // Only methods and static fields inherit the attributes. |
| 6592 | if (!VD && !MD) |
| 6593 | continue; |
| 6594 | |
| 6595 | if (MD) { |
| 6596 | // Don't process deleted methods. |
| 6597 | if (MD->isDeleted()) |
| 6598 | continue; |
| 6599 | |
| 6600 | if (MD->isInlined()) { |
| 6601 | // MinGW does not import or export inline methods. But do it for |
| 6602 | // template instantiations. |
| 6603 | if (!Context.getTargetInfo().shouldDLLImportComdatSymbols() && |
| 6604 | TSK != TSK_ExplicitInstantiationDeclaration && |
| 6605 | TSK != TSK_ExplicitInstantiationDefinition) |
| 6606 | continue; |
| 6607 | |
| 6608 | // MSVC versions before 2015 don't export the move assignment operators |
| 6609 | // and move constructor, so don't attempt to import/export them if |
| 6610 | // we have a definition. |
| 6611 | auto *Ctor = dyn_cast<CXXConstructorDecl>(MD); |
| 6612 | if ((MD->isMoveAssignmentOperator() || |
| 6613 | (Ctor && Ctor->isMoveConstructor())) && |
| 6614 | !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015)) |
| 6615 | continue; |
| 6616 | |
| 6617 | // MSVC2015 doesn't export trivial defaulted x-tor but copy assign |
| 6618 | // operator is exported anyway. |
| 6619 | if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && |
| 6620 | (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial()) |
| 6621 | continue; |
| 6622 | } |
| 6623 | } |
| 6624 | |
| 6625 | // Don't apply dllimport attributes to static data members of class template |
| 6626 | // instantiations when the attribute is propagated from a derived class. |
| 6627 | if (VD && PropagatedImport) |
| 6628 | continue; |
| 6629 | |
| 6630 | if (!cast<NamedDecl>(Member)->isExternallyVisible()) |
| 6631 | continue; |
| 6632 | |
| 6633 | if (!getDLLAttr(Member)) { |
| 6634 | InheritableAttr *NewAttr = nullptr; |
| 6635 | |
| 6636 | // Do not export/import inline function when -fno-dllexport-inlines is |
| 6637 | // passed. But add attribute for later local static var check. |
| 6638 | if (!getLangOpts().DllExportInlines && MD && MD->isInlined() && |
| 6639 | TSK != TSK_ExplicitInstantiationDeclaration && |
| 6640 | TSK != TSK_ExplicitInstantiationDefinition) { |
| 6641 | if (ClassExported) { |
| 6642 | NewAttr = ::new (getASTContext()) |
| 6643 | DLLExportStaticLocalAttr(getASTContext(), *ClassAttr); |
| 6644 | } else { |
| 6645 | NewAttr = ::new (getASTContext()) |
| 6646 | DLLImportStaticLocalAttr(getASTContext(), *ClassAttr); |
| 6647 | } |
| 6648 | } else { |
| 6649 | NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); |
| 6650 | } |
| 6651 | |
| 6652 | NewAttr->setInherited(true); |
| 6653 | Member->addAttr(NewAttr); |
| 6654 | |
| 6655 | if (MD) { |
| 6656 | // Propagate DLLAttr to friend re-declarations of MD that have already |
| 6657 | // been constructed. |
| 6658 | for (FunctionDecl *FD = MD->getMostRecentDecl(); FD; |
| 6659 | FD = FD->getPreviousDecl()) { |
| 6660 | if (FD->getFriendObjectKind() == Decl::FOK_None) |
| 6661 | continue; |
| 6662 | assert(!getDLLAttr(FD) && |
| 6663 | "friend re-decl should not already have a DLLAttr" ); |
| 6664 | NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext())); |
| 6665 | NewAttr->setInherited(true); |
| 6666 | FD->addAttr(NewAttr); |
| 6667 | } |
| 6668 | } |
| 6669 | } |
| 6670 | } |
| 6671 | |
| 6672 | if (ClassExported) |
| 6673 | DelayedDllExportClasses.push_back(Elt: Class); |
| 6674 | } |
| 6675 | |
| 6676 | void Sema::propagateDLLAttrToBaseClassTemplate( |
| 6677 | CXXRecordDecl *Class, Attr *ClassAttr, |
| 6678 | ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) { |
| 6679 | if (getDLLAttr( |
| 6680 | BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) { |
| 6681 | // If the base class template has a DLL attribute, don't try to change it. |
| 6682 | return; |
| 6683 | } |
| 6684 | |
| 6685 | auto TSK = BaseTemplateSpec->getSpecializationKind(); |
| 6686 | if (!getDLLAttr(BaseTemplateSpec) && |
| 6687 | (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration || |
| 6688 | TSK == TSK_ImplicitInstantiation)) { |
| 6689 | // The template hasn't been instantiated yet (or it has, but only as an |
| 6690 | // explicit instantiation declaration or implicit instantiation, which means |
| 6691 | // we haven't codegenned any members yet), so propagate the attribute. |
| 6692 | auto *NewAttr = cast<InheritableAttr>(Val: ClassAttr->clone(C&: getASTContext())); |
| 6693 | NewAttr->setInherited(true); |
| 6694 | BaseTemplateSpec->addAttr(NewAttr); |
| 6695 | |
| 6696 | // If this was an import, mark that we propagated it from a derived class to |
| 6697 | // a base class template specialization. |
| 6698 | if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr)) |
| 6699 | ImportAttr->setPropagatedToBaseTemplate(); |
| 6700 | |
| 6701 | // If the template is already instantiated, checkDLLAttributeRedeclaration() |
| 6702 | // needs to be run again to work see the new attribute. Otherwise this will |
| 6703 | // get run whenever the template is instantiated. |
| 6704 | if (TSK != TSK_Undeclared) |
| 6705 | checkClassLevelDLLAttribute(BaseTemplateSpec); |
| 6706 | |
| 6707 | return; |
| 6708 | } |
| 6709 | |
| 6710 | if (getDLLAttr(BaseTemplateSpec)) { |
| 6711 | // The template has already been specialized or instantiated with an |
| 6712 | // attribute, explicitly or through propagation. We should not try to change |
| 6713 | // it. |
| 6714 | return; |
| 6715 | } |
| 6716 | |
| 6717 | // The template was previously instantiated or explicitly specialized without |
| 6718 | // a dll attribute, It's too late for us to add an attribute, so warn that |
| 6719 | // this is unsupported. |
| 6720 | Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class) |
| 6721 | << BaseTemplateSpec->isExplicitSpecialization(); |
| 6722 | Diag(ClassAttr->getLocation(), diag::note_attribute); |
| 6723 | if (BaseTemplateSpec->isExplicitSpecialization()) { |
| 6724 | Diag(BaseTemplateSpec->getLocation(), |
| 6725 | diag::note_template_class_explicit_specialization_was_here) |
| 6726 | << BaseTemplateSpec; |
| 6727 | } else { |
| 6728 | Diag(BaseTemplateSpec->getPointOfInstantiation(), |
| 6729 | diag::note_template_class_instantiation_was_here) |
| 6730 | << BaseTemplateSpec; |
| 6731 | } |
| 6732 | } |
| 6733 | |
| 6734 | Sema::DefaultedFunctionKind |
| 6735 | Sema::getDefaultedFunctionKind(const FunctionDecl *FD) { |
| 6736 | if (auto *MD = dyn_cast<CXXMethodDecl>(Val: FD)) { |
| 6737 | if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Val: FD)) { |
| 6738 | if (Ctor->isDefaultConstructor()) |
| 6739 | return CXXSpecialMemberKind::DefaultConstructor; |
| 6740 | |
| 6741 | if (Ctor->isCopyConstructor()) |
| 6742 | return CXXSpecialMemberKind::CopyConstructor; |
| 6743 | |
| 6744 | if (Ctor->isMoveConstructor()) |
| 6745 | return CXXSpecialMemberKind::MoveConstructor; |
| 6746 | } |
| 6747 | |
| 6748 | if (MD->isCopyAssignmentOperator()) |
| 6749 | return CXXSpecialMemberKind::CopyAssignment; |
| 6750 | |
| 6751 | if (MD->isMoveAssignmentOperator()) |
| 6752 | return CXXSpecialMemberKind::MoveAssignment; |
| 6753 | |
| 6754 | if (isa<CXXDestructorDecl>(Val: FD)) |
| 6755 | return CXXSpecialMemberKind::Destructor; |
| 6756 | } |
| 6757 | |
| 6758 | switch (FD->getDeclName().getCXXOverloadedOperator()) { |
| 6759 | case OO_EqualEqual: |
| 6760 | return DefaultedComparisonKind::Equal; |
| 6761 | |
| 6762 | case OO_ExclaimEqual: |
| 6763 | return DefaultedComparisonKind::NotEqual; |
| 6764 | |
| 6765 | case OO_Spaceship: |
| 6766 | // No point allowing this if <=> doesn't exist in the current language mode. |
| 6767 | if (!getLangOpts().CPlusPlus20) |
| 6768 | break; |
| 6769 | return DefaultedComparisonKind::ThreeWay; |
| 6770 | |
| 6771 | case OO_Less: |
| 6772 | case OO_LessEqual: |
| 6773 | case OO_Greater: |
| 6774 | case OO_GreaterEqual: |
| 6775 | // No point allowing this if <=> doesn't exist in the current language mode. |
| 6776 | if (!getLangOpts().CPlusPlus20) |
| 6777 | break; |
| 6778 | return DefaultedComparisonKind::Relational; |
| 6779 | |
| 6780 | default: |
| 6781 | break; |
| 6782 | } |
| 6783 | |
| 6784 | // Not defaultable. |
| 6785 | return DefaultedFunctionKind(); |
| 6786 | } |
| 6787 | |
| 6788 | static void DefineDefaultedFunction(Sema &S, FunctionDecl *FD, |
| 6789 | SourceLocation DefaultLoc) { |
| 6790 | Sema::DefaultedFunctionKind DFK = S.getDefaultedFunctionKind(FD); |
| 6791 | if (DFK.isComparison()) |
| 6792 | return S.DefineDefaultedComparison(Loc: DefaultLoc, FD, DCK: DFK.asComparison()); |
| 6793 | |
| 6794 | switch (DFK.asSpecialMember()) { |
| 6795 | case CXXSpecialMemberKind::DefaultConstructor: |
| 6796 | S.DefineImplicitDefaultConstructor(CurrentLocation: DefaultLoc, |
| 6797 | Constructor: cast<CXXConstructorDecl>(Val: FD)); |
| 6798 | break; |
| 6799 | case CXXSpecialMemberKind::CopyConstructor: |
| 6800 | S.DefineImplicitCopyConstructor(CurrentLocation: DefaultLoc, Constructor: cast<CXXConstructorDecl>(Val: FD)); |
| 6801 | break; |
| 6802 | case CXXSpecialMemberKind::CopyAssignment: |
| 6803 | S.DefineImplicitCopyAssignment(CurrentLocation: DefaultLoc, MethodDecl: cast<CXXMethodDecl>(Val: FD)); |
| 6804 | break; |
| 6805 | case CXXSpecialMemberKind::Destructor: |
| 6806 | S.DefineImplicitDestructor(CurrentLocation: DefaultLoc, Destructor: cast<CXXDestructorDecl>(Val: FD)); |
| 6807 | break; |
| 6808 | case CXXSpecialMemberKind::MoveConstructor: |
| 6809 | S.DefineImplicitMoveConstructor(CurrentLocation: DefaultLoc, Constructor: cast<CXXConstructorDecl>(Val: FD)); |
| 6810 | break; |
| 6811 | case CXXSpecialMemberKind::MoveAssignment: |
| 6812 | S.DefineImplicitMoveAssignment(CurrentLocation: DefaultLoc, MethodDecl: cast<CXXMethodDecl>(Val: FD)); |
| 6813 | break; |
| 6814 | case CXXSpecialMemberKind::Invalid: |
| 6815 | llvm_unreachable("Invalid special member." ); |
| 6816 | } |
| 6817 | } |
| 6818 | |
| 6819 | /// Determine whether a type is permitted to be passed or returned in |
| 6820 | /// registers, per C++ [class.temporary]p3. |
| 6821 | static bool canPassInRegisters(Sema &S, CXXRecordDecl *D, |
| 6822 | TargetInfo::CallingConvKind CCK) { |
| 6823 | if (D->isDependentType() || D->isInvalidDecl()) |
| 6824 | return false; |
| 6825 | |
| 6826 | // Clang <= 4 used the pre-C++11 rule, which ignores move operations. |
| 6827 | // The PS4 platform ABI follows the behavior of Clang 3.2. |
| 6828 | if (CCK == TargetInfo::CCK_ClangABI4OrPS4) |
| 6829 | return !D->hasNonTrivialDestructorForCall() && |
| 6830 | !D->hasNonTrivialCopyConstructorForCall(); |
| 6831 | |
| 6832 | if (CCK == TargetInfo::CCK_MicrosoftWin64) { |
| 6833 | bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false; |
| 6834 | bool DtorIsTrivialForCall = false; |
| 6835 | |
| 6836 | // If a class has at least one eligible, trivial copy constructor, it |
| 6837 | // is passed according to the C ABI. Otherwise, it is passed indirectly. |
| 6838 | // |
| 6839 | // Note: This permits classes with non-trivial copy or move ctors to be |
| 6840 | // passed in registers, so long as they *also* have a trivial copy ctor, |
| 6841 | // which is non-conforming. |
| 6842 | if (D->needsImplicitCopyConstructor()) { |
| 6843 | if (!D->defaultedCopyConstructorIsDeleted()) { |
| 6844 | if (D->hasTrivialCopyConstructor()) |
| 6845 | CopyCtorIsTrivial = true; |
| 6846 | if (D->hasTrivialCopyConstructorForCall()) |
| 6847 | CopyCtorIsTrivialForCall = true; |
| 6848 | } |
| 6849 | } else { |
| 6850 | for (const CXXConstructorDecl *CD : D->ctors()) { |
| 6851 | if (CD->isCopyConstructor() && !CD->isDeleted() && |
| 6852 | !CD->isIneligibleOrNotSelected()) { |
| 6853 | if (CD->isTrivial()) |
| 6854 | CopyCtorIsTrivial = true; |
| 6855 | if (CD->isTrivialForCall()) |
| 6856 | CopyCtorIsTrivialForCall = true; |
| 6857 | } |
| 6858 | } |
| 6859 | } |
| 6860 | |
| 6861 | if (D->needsImplicitDestructor()) { |
| 6862 | if (!D->defaultedDestructorIsDeleted() && |
| 6863 | D->hasTrivialDestructorForCall()) |
| 6864 | DtorIsTrivialForCall = true; |
| 6865 | } else if (const auto *DD = D->getDestructor()) { |
| 6866 | if (!DD->isDeleted() && DD->isTrivialForCall()) |
| 6867 | DtorIsTrivialForCall = true; |
| 6868 | } |
| 6869 | |
| 6870 | // If the copy ctor and dtor are both trivial-for-calls, pass direct. |
| 6871 | if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall) |
| 6872 | return true; |
| 6873 | |
| 6874 | // If a class has a destructor, we'd really like to pass it indirectly |
| 6875 | // because it allows us to elide copies. Unfortunately, MSVC makes that |
| 6876 | // impossible for small types, which it will pass in a single register or |
| 6877 | // stack slot. Most objects with dtors are large-ish, so handle that early. |
| 6878 | // We can't call out all large objects as being indirect because there are |
| 6879 | // multiple x64 calling conventions and the C++ ABI code shouldn't dictate |
| 6880 | // how we pass large POD types. |
| 6881 | |
| 6882 | // Note: This permits small classes with nontrivial destructors to be |
| 6883 | // passed in registers, which is non-conforming. |
| 6884 | bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); |
| 6885 | uint64_t TypeSize = isAArch64 ? 128 : 64; |
| 6886 | |
| 6887 | if (CopyCtorIsTrivial && |
| 6888 | S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize) |
| 6889 | return true; |
| 6890 | return false; |
| 6891 | } |
| 6892 | |
| 6893 | // Per C++ [class.temporary]p3, the relevant condition is: |
| 6894 | // each copy constructor, move constructor, and destructor of X is |
| 6895 | // either trivial or deleted, and X has at least one non-deleted copy |
| 6896 | // or move constructor |
| 6897 | bool HasNonDeletedCopyOrMove = false; |
| 6898 | |
| 6899 | if (D->needsImplicitCopyConstructor() && |
| 6900 | !D->defaultedCopyConstructorIsDeleted()) { |
| 6901 | if (!D->hasTrivialCopyConstructorForCall()) |
| 6902 | return false; |
| 6903 | HasNonDeletedCopyOrMove = true; |
| 6904 | } |
| 6905 | |
| 6906 | if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() && |
| 6907 | !D->defaultedMoveConstructorIsDeleted()) { |
| 6908 | if (!D->hasTrivialMoveConstructorForCall()) |
| 6909 | return false; |
| 6910 | HasNonDeletedCopyOrMove = true; |
| 6911 | } |
| 6912 | |
| 6913 | if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() && |
| 6914 | !D->hasTrivialDestructorForCall()) |
| 6915 | return false; |
| 6916 | |
| 6917 | for (const CXXMethodDecl *MD : D->methods()) { |
| 6918 | if (MD->isDeleted() || MD->isIneligibleOrNotSelected()) |
| 6919 | continue; |
| 6920 | |
| 6921 | auto *CD = dyn_cast<CXXConstructorDecl>(Val: MD); |
| 6922 | if (CD && CD->isCopyOrMoveConstructor()) |
| 6923 | HasNonDeletedCopyOrMove = true; |
| 6924 | else if (!isa<CXXDestructorDecl>(Val: MD)) |
| 6925 | continue; |
| 6926 | |
| 6927 | if (!MD->isTrivialForCall()) |
| 6928 | return false; |
| 6929 | } |
| 6930 | |
| 6931 | return HasNonDeletedCopyOrMove; |
| 6932 | } |
| 6933 | |
| 6934 | /// Report an error regarding overriding, along with any relevant |
| 6935 | /// overridden methods. |
| 6936 | /// |
| 6937 | /// \param DiagID the primary error to report. |
| 6938 | /// \param MD the overriding method. |
| 6939 | static bool |
| 6940 | ReportOverrides(Sema &S, unsigned DiagID, const CXXMethodDecl *MD, |
| 6941 | llvm::function_ref<bool(const CXXMethodDecl *)> Report) { |
| 6942 | bool IssuedDiagnostic = false; |
| 6943 | for (const CXXMethodDecl *O : MD->overridden_methods()) { |
| 6944 | if (Report(O)) { |
| 6945 | if (!IssuedDiagnostic) { |
| 6946 | S.Diag(MD->getLocation(), DiagID) << MD->getDeclName(); |
| 6947 | IssuedDiagnostic = true; |
| 6948 | } |
| 6949 | S.Diag(O->getLocation(), diag::note_overridden_virtual_function); |
| 6950 | } |
| 6951 | } |
| 6952 | return IssuedDiagnostic; |
| 6953 | } |
| 6954 | |
| 6955 | void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) { |
| 6956 | if (!Record) |
| 6957 | return; |
| 6958 | |
| 6959 | if (Record->isAbstract() && !Record->isInvalidDecl()) { |
| 6960 | AbstractUsageInfo Info(*this, Record); |
| 6961 | CheckAbstractClassUsage(Info, RD: Record); |
| 6962 | } |
| 6963 | |
| 6964 | // If this is not an aggregate type and has no user-declared constructor, |
| 6965 | // complain about any non-static data members of reference or const scalar |
| 6966 | // type, since they will never get initializers. |
| 6967 | if (!Record->isInvalidDecl() && !Record->isDependentType() && |
| 6968 | !Record->isAggregate() && !Record->hasUserDeclaredConstructor() && |
| 6969 | !Record->isLambda()) { |
| 6970 | bool Complained = false; |
| 6971 | for (const auto *F : Record->fields()) { |
| 6972 | if (F->hasInClassInitializer() || F->isUnnamedBitField()) |
| 6973 | continue; |
| 6974 | |
| 6975 | if (F->getType()->isReferenceType() || |
| 6976 | (F->getType().isConstQualified() && F->getType()->isScalarType())) { |
| 6977 | if (!Complained) { |
| 6978 | Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst) |
| 6979 | << Record->getTagKind() << Record; |
| 6980 | Complained = true; |
| 6981 | } |
| 6982 | |
| 6983 | Diag(F->getLocation(), diag::note_refconst_member_not_initialized) |
| 6984 | << F->getType()->isReferenceType() |
| 6985 | << F->getDeclName(); |
| 6986 | } |
| 6987 | } |
| 6988 | } |
| 6989 | |
| 6990 | if (Record->getIdentifier()) { |
| 6991 | // C++ [class.mem]p13: |
| 6992 | // If T is the name of a class, then each of the following shall have a |
| 6993 | // name different from T: |
| 6994 | // - every member of every anonymous union that is a member of class T. |
| 6995 | // |
| 6996 | // C++ [class.mem]p14: |
| 6997 | // In addition, if class T has a user-declared constructor (12.1), every |
| 6998 | // non-static data member of class T shall have a name different from T. |
| 6999 | DeclContext::lookup_result R = Record->lookup(Name: Record->getDeclName()); |
| 7000 | for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; |
| 7001 | ++I) { |
| 7002 | NamedDecl *D = (*I)->getUnderlyingDecl(); |
| 7003 | if (((isa<FieldDecl>(Val: D) || isa<UnresolvedUsingValueDecl>(Val: D)) && |
| 7004 | Record->hasUserDeclaredConstructor()) || |
| 7005 | isa<IndirectFieldDecl>(Val: D)) { |
| 7006 | Diag((*I)->getLocation(), diag::err_member_name_of_class) |
| 7007 | << D->getDeclName(); |
| 7008 | break; |
| 7009 | } |
| 7010 | } |
| 7011 | } |
| 7012 | |
| 7013 | // Warn if the class has virtual methods but non-virtual public destructor. |
| 7014 | if (Record->isPolymorphic() && !Record->isDependentType()) { |
| 7015 | CXXDestructorDecl *dtor = Record->getDestructor(); |
| 7016 | if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) && |
| 7017 | !Record->hasAttr<FinalAttr>()) |
| 7018 | Diag(dtor ? dtor->getLocation() : Record->getLocation(), |
| 7019 | diag::warn_non_virtual_dtor) << Context.getRecordType(Record); |
| 7020 | } |
| 7021 | |
| 7022 | if (Record->isAbstract()) { |
| 7023 | if (FinalAttr *FA = Record->getAttr<FinalAttr>()) { |
| 7024 | Diag(Record->getLocation(), diag::warn_abstract_final_class) |
| 7025 | << FA->isSpelledAsSealed(); |
| 7026 | DiagnoseAbstractType(RD: Record); |
| 7027 | } |
| 7028 | } |
| 7029 | |
| 7030 | // Warn if the class has a final destructor but is not itself marked final. |
| 7031 | if (!Record->hasAttr<FinalAttr>()) { |
| 7032 | if (const CXXDestructorDecl *dtor = Record->getDestructor()) { |
| 7033 | if (const FinalAttr *FA = dtor->getAttr<FinalAttr>()) { |
| 7034 | Diag(FA->getLocation(), diag::warn_final_dtor_non_final_class) |
| 7035 | << FA->isSpelledAsSealed() |
| 7036 | << FixItHint::CreateInsertion( |
| 7037 | getLocForEndOfToken(Record->getLocation()), |
| 7038 | (FA->isSpelledAsSealed() ? " sealed" : " final" )); |
| 7039 | Diag(Record->getLocation(), |
| 7040 | diag::note_final_dtor_non_final_class_silence) |
| 7041 | << Context.getRecordType(Record) << FA->isSpelledAsSealed(); |
| 7042 | } |
| 7043 | } |
| 7044 | } |
| 7045 | |
| 7046 | // See if trivial_abi has to be dropped. |
| 7047 | if (Record->hasAttr<TrivialABIAttr>()) |
| 7048 | checkIllFormedTrivialABIStruct(RD&: *Record); |
| 7049 | |
| 7050 | // Set HasTrivialSpecialMemberForCall if the record has attribute |
| 7051 | // "trivial_abi". |
| 7052 | bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>(); |
| 7053 | |
| 7054 | if (HasTrivialABI) |
| 7055 | Record->setHasTrivialSpecialMemberForCall(); |
| 7056 | |
| 7057 | // Explicitly-defaulted secondary comparison functions (!=, <, <=, >, >=). |
| 7058 | // We check these last because they can depend on the properties of the |
| 7059 | // primary comparison functions (==, <=>). |
| 7060 | llvm::SmallVector<FunctionDecl*, 5> DefaultedSecondaryComparisons; |
| 7061 | |
| 7062 | // Perform checks that can't be done until we know all the properties of a |
| 7063 | // member function (whether it's defaulted, deleted, virtual, overriding, |
| 7064 | // ...). |
| 7065 | auto CheckCompletedMemberFunction = [&](CXXMethodDecl *MD) { |
| 7066 | // A static function cannot override anything. |
| 7067 | if (MD->getStorageClass() == SC_Static) { |
| 7068 | if (ReportOverrides(*this, diag::err_static_overrides_virtual, MD, |
| 7069 | [](const CXXMethodDecl *) { return true; })) |
| 7070 | return; |
| 7071 | } |
| 7072 | |
| 7073 | // A deleted function cannot override a non-deleted function and vice |
| 7074 | // versa. |
| 7075 | if (ReportOverrides(*this, |
| 7076 | MD->isDeleted() ? diag::err_deleted_override |
| 7077 | : diag::err_non_deleted_override, |
| 7078 | MD, [&](const CXXMethodDecl *V) { |
| 7079 | return MD->isDeleted() != V->isDeleted(); |
| 7080 | })) { |
| 7081 | if (MD->isDefaulted() && MD->isDeleted()) |
| 7082 | // Explain why this defaulted function was deleted. |
| 7083 | DiagnoseDeletedDefaultedFunction(MD); |
| 7084 | return; |
| 7085 | } |
| 7086 | |
| 7087 | // A consteval function cannot override a non-consteval function and vice |
| 7088 | // versa. |
| 7089 | if (ReportOverrides(*this, |
| 7090 | MD->isConsteval() ? diag::err_consteval_override |
| 7091 | : diag::err_non_consteval_override, |
| 7092 | MD, [&](const CXXMethodDecl *V) { |
| 7093 | return MD->isConsteval() != V->isConsteval(); |
| 7094 | })) { |
| 7095 | if (MD->isDefaulted() && MD->isDeleted()) |
| 7096 | // Explain why this defaulted function was deleted. |
| 7097 | DiagnoseDeletedDefaultedFunction(MD); |
| 7098 | return; |
| 7099 | } |
| 7100 | }; |
| 7101 | |
| 7102 | auto CheckForDefaultedFunction = [&](FunctionDecl *FD) -> bool { |
| 7103 | if (!FD || FD->isInvalidDecl() || !FD->isExplicitlyDefaulted()) |
| 7104 | return false; |
| 7105 | |
| 7106 | DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); |
| 7107 | if (DFK.asComparison() == DefaultedComparisonKind::NotEqual || |
| 7108 | DFK.asComparison() == DefaultedComparisonKind::Relational) { |
| 7109 | DefaultedSecondaryComparisons.push_back(Elt: FD); |
| 7110 | return true; |
| 7111 | } |
| 7112 | |
| 7113 | CheckExplicitlyDefaultedFunction(S, MD: FD); |
| 7114 | return false; |
| 7115 | }; |
| 7116 | |
| 7117 | if (!Record->isInvalidDecl() && |
| 7118 | Record->hasAttr<VTablePointerAuthenticationAttr>()) |
| 7119 | checkIncorrectVTablePointerAuthenticationAttribute(RD&: *Record); |
| 7120 | |
| 7121 | auto CompleteMemberFunction = [&](CXXMethodDecl *M) { |
| 7122 | // Check whether the explicitly-defaulted members are valid. |
| 7123 | bool Incomplete = CheckForDefaultedFunction(M); |
| 7124 | |
| 7125 | // Skip the rest of the checks for a member of a dependent class. |
| 7126 | if (Record->isDependentType()) |
| 7127 | return; |
| 7128 | |
| 7129 | // For an explicitly defaulted or deleted special member, we defer |
| 7130 | // determining triviality until the class is complete. That time is now! |
| 7131 | CXXSpecialMemberKind CSM = getSpecialMember(MD: M); |
| 7132 | if (!M->isImplicit() && !M->isUserProvided()) { |
| 7133 | if (CSM != CXXSpecialMemberKind::Invalid) { |
| 7134 | M->setTrivial(SpecialMemberIsTrivial(MD: M, CSM)); |
| 7135 | // Inform the class that we've finished declaring this member. |
| 7136 | Record->finishedDefaultedOrDeletedMember(MD: M); |
| 7137 | M->setTrivialForCall( |
| 7138 | HasTrivialABI || |
| 7139 | SpecialMemberIsTrivial(MD: M, CSM, |
| 7140 | TAH: TrivialABIHandling::ConsiderTrivialABI)); |
| 7141 | Record->setTrivialForCallFlags(M); |
| 7142 | } |
| 7143 | } |
| 7144 | |
| 7145 | // Set triviality for the purpose of calls if this is a user-provided |
| 7146 | // copy/move constructor or destructor. |
| 7147 | if ((CSM == CXXSpecialMemberKind::CopyConstructor || |
| 7148 | CSM == CXXSpecialMemberKind::MoveConstructor || |
| 7149 | CSM == CXXSpecialMemberKind::Destructor) && |
| 7150 | M->isUserProvided()) { |
| 7151 | M->setTrivialForCall(HasTrivialABI); |
| 7152 | Record->setTrivialForCallFlags(M); |
| 7153 | } |
| 7154 | |
| 7155 | if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() && |
| 7156 | M->hasAttr<DLLExportAttr>()) { |
| 7157 | if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && |
| 7158 | M->isTrivial() && |
| 7159 | (CSM == CXXSpecialMemberKind::DefaultConstructor || |
| 7160 | CSM == CXXSpecialMemberKind::CopyConstructor || |
| 7161 | CSM == CXXSpecialMemberKind::Destructor)) |
| 7162 | M->dropAttr<DLLExportAttr>(); |
| 7163 | |
| 7164 | if (M->hasAttr<DLLExportAttr>()) { |
| 7165 | // Define after any fields with in-class initializers have been parsed. |
| 7166 | DelayedDllExportMemberFunctions.push_back(Elt: M); |
| 7167 | } |
| 7168 | } |
| 7169 | |
| 7170 | bool EffectivelyConstexprDestructor = true; |
| 7171 | // Avoid triggering vtable instantiation due to a dtor that is not |
| 7172 | // "effectively constexpr" for better compatibility. |
| 7173 | // See https://github.com/llvm/llvm-project/issues/102293 for more info. |
| 7174 | if (isa<CXXDestructorDecl>(Val: M)) { |
| 7175 | auto Check = [](QualType T, auto &&Check) -> bool { |
| 7176 | const CXXRecordDecl *RD = |
| 7177 | T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
| 7178 | if (!RD || !RD->isCompleteDefinition()) |
| 7179 | return true; |
| 7180 | |
| 7181 | if (!RD->hasConstexprDestructor()) |
| 7182 | return false; |
| 7183 | |
| 7184 | QualType CanUnqualT = T.getCanonicalType().getUnqualifiedType(); |
| 7185 | for (const CXXBaseSpecifier &B : RD->bases()) |
| 7186 | if (B.getType().getCanonicalType().getUnqualifiedType() != |
| 7187 | CanUnqualT && |
| 7188 | !Check(B.getType(), Check)) |
| 7189 | return false; |
| 7190 | for (const FieldDecl *FD : RD->fields()) |
| 7191 | if (FD->getType().getCanonicalType().getUnqualifiedType() != |
| 7192 | CanUnqualT && |
| 7193 | !Check(FD->getType(), Check)) |
| 7194 | return false; |
| 7195 | return true; |
| 7196 | }; |
| 7197 | EffectivelyConstexprDestructor = |
| 7198 | Check(QualType(Record->getTypeForDecl(), 0), Check); |
| 7199 | } |
| 7200 | |
| 7201 | // Define defaulted constexpr virtual functions that override a base class |
| 7202 | // function right away. |
| 7203 | // FIXME: We can defer doing this until the vtable is marked as used. |
| 7204 | if (CSM != CXXSpecialMemberKind::Invalid && !M->isDeleted() && |
| 7205 | M->isDefaulted() && M->isConstexpr() && M->size_overridden_methods() && |
| 7206 | EffectivelyConstexprDestructor) |
| 7207 | DefineDefaultedFunction(*this, M, M->getLocation()); |
| 7208 | |
| 7209 | if (!Incomplete) |
| 7210 | CheckCompletedMemberFunction(M); |
| 7211 | }; |
| 7212 | |
| 7213 | // Check the destructor before any other member function. We need to |
| 7214 | // determine whether it's trivial in order to determine whether the claas |
| 7215 | // type is a literal type, which is a prerequisite for determining whether |
| 7216 | // other special member functions are valid and whether they're implicitly |
| 7217 | // 'constexpr'. |
| 7218 | if (CXXDestructorDecl *Dtor = Record->getDestructor()) |
| 7219 | CompleteMemberFunction(Dtor); |
| 7220 | |
| 7221 | bool HasMethodWithOverrideControl = false, |
| 7222 | HasOverridingMethodWithoutOverrideControl = false; |
| 7223 | for (auto *D : Record->decls()) { |
| 7224 | if (auto *M = dyn_cast<CXXMethodDecl>(D)) { |
| 7225 | // FIXME: We could do this check for dependent types with non-dependent |
| 7226 | // bases. |
| 7227 | if (!Record->isDependentType()) { |
| 7228 | // See if a method overloads virtual methods in a base |
| 7229 | // class without overriding any. |
| 7230 | if (!M->isStatic()) |
| 7231 | DiagnoseHiddenVirtualMethods(M); |
| 7232 | |
| 7233 | if (M->hasAttr<OverrideAttr>()) { |
| 7234 | HasMethodWithOverrideControl = true; |
| 7235 | } else if (M->size_overridden_methods() > 0) { |
| 7236 | HasOverridingMethodWithoutOverrideControl = true; |
| 7237 | } else { |
| 7238 | // Warn on newly-declared virtual methods in `final` classes |
| 7239 | if (M->isVirtualAsWritten() && Record->isEffectivelyFinal()) { |
| 7240 | Diag(M->getLocation(), diag::warn_unnecessary_virtual_specifier) |
| 7241 | << M; |
| 7242 | } |
| 7243 | } |
| 7244 | } |
| 7245 | |
| 7246 | if (!isa<CXXDestructorDecl>(M)) |
| 7247 | CompleteMemberFunction(M); |
| 7248 | } else if (auto *F = dyn_cast<FriendDecl>(D)) { |
| 7249 | CheckForDefaultedFunction( |
| 7250 | dyn_cast_or_null<FunctionDecl>(F->getFriendDecl())); |
| 7251 | } |
| 7252 | } |
| 7253 | |
| 7254 | if (HasOverridingMethodWithoutOverrideControl) { |
| 7255 | bool HasInconsistentOverrideControl = HasMethodWithOverrideControl; |
| 7256 | for (auto *M : Record->methods()) |
| 7257 | DiagnoseAbsenceOfOverrideControl(M, HasInconsistentOverrideControl); |
| 7258 | } |
| 7259 | |
| 7260 | // Check the defaulted secondary comparisons after any other member functions. |
| 7261 | for (FunctionDecl *FD : DefaultedSecondaryComparisons) { |
| 7262 | CheckExplicitlyDefaultedFunction(S, MD: FD); |
| 7263 | |
| 7264 | // If this is a member function, we deferred checking it until now. |
| 7265 | if (auto *MD = dyn_cast<CXXMethodDecl>(Val: FD)) |
| 7266 | CheckCompletedMemberFunction(MD); |
| 7267 | } |
| 7268 | |
| 7269 | // ms_struct is a request to use the same ABI rules as MSVC. Check |
| 7270 | // whether this class uses any C++ features that are implemented |
| 7271 | // completely differently in MSVC, and if so, emit a diagnostic. |
| 7272 | // That diagnostic defaults to an error, but we allow projects to |
| 7273 | // map it down to a warning (or ignore it). It's a fairly common |
| 7274 | // practice among users of the ms_struct pragma to mass-annotate |
| 7275 | // headers, sweeping up a bunch of types that the project doesn't |
| 7276 | // really rely on MSVC-compatible layout for. We must therefore |
| 7277 | // support "ms_struct except for C++ stuff" as a secondary ABI. |
| 7278 | // Don't emit this diagnostic if the feature was enabled as a |
| 7279 | // language option (as opposed to via a pragma or attribute), as |
| 7280 | // the option -mms-bitfields otherwise essentially makes it impossible |
| 7281 | // to build C++ code, unless this diagnostic is turned off. |
| 7282 | if (Record->isMsStruct(Context) && !Context.getLangOpts().MSBitfields && |
| 7283 | (Record->isPolymorphic() || Record->getNumBases())) { |
| 7284 | Diag(Record->getLocation(), diag::warn_cxx_ms_struct); |
| 7285 | } |
| 7286 | |
| 7287 | checkClassLevelDLLAttribute(Class: Record); |
| 7288 | checkClassLevelCodeSegAttribute(Class: Record); |
| 7289 | |
| 7290 | bool ClangABICompat4 = |
| 7291 | Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4; |
| 7292 | TargetInfo::CallingConvKind CCK = |
| 7293 | Context.getTargetInfo().getCallingConvKind(ClangABICompat4); |
| 7294 | bool CanPass = canPassInRegisters(S&: *this, D: Record, CCK); |
| 7295 | |
| 7296 | // Do not change ArgPassingRestrictions if it has already been set to |
| 7297 | // RecordArgPassingKind::CanNeverPassInRegs. |
| 7298 | if (Record->getArgPassingRestrictions() != |
| 7299 | RecordArgPassingKind::CanNeverPassInRegs) |
| 7300 | Record->setArgPassingRestrictions( |
| 7301 | CanPass ? RecordArgPassingKind::CanPassInRegs |
| 7302 | : RecordArgPassingKind::CannotPassInRegs); |
| 7303 | |
| 7304 | // If canPassInRegisters returns true despite the record having a non-trivial |
| 7305 | // destructor, the record is destructed in the callee. This happens only when |
| 7306 | // the record or one of its subobjects has a field annotated with trivial_abi |
| 7307 | // or a field qualified with ObjC __strong/__weak. |
| 7308 | if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee()) |
| 7309 | Record->setParamDestroyedInCallee(true); |
| 7310 | else if (Record->hasNonTrivialDestructor()) |
| 7311 | Record->setParamDestroyedInCallee(CanPass); |
| 7312 | |
| 7313 | if (getLangOpts().ForceEmitVTables) { |
| 7314 | // If we want to emit all the vtables, we need to mark it as used. This |
| 7315 | // is especially required for cases like vtable assumption loads. |
| 7316 | MarkVTableUsed(Loc: Record->getInnerLocStart(), Class: Record); |
| 7317 | } |
| 7318 | |
| 7319 | if (getLangOpts().CUDA) { |
| 7320 | if (Record->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>()) |
| 7321 | checkCUDADeviceBuiltinSurfaceClassTemplate(S&: *this, Class: Record); |
| 7322 | else if (Record->hasAttr<CUDADeviceBuiltinTextureTypeAttr>()) |
| 7323 | checkCUDADeviceBuiltinTextureClassTemplate(S&: *this, Class: Record); |
| 7324 | } |
| 7325 | |
| 7326 | llvm::SmallDenseMap<OverloadedOperatorKind, |
| 7327 | llvm::SmallVector<const FunctionDecl *, 2>, 4> |
| 7328 | TypeAwareDecls{{OO_New, {}}, |
| 7329 | {OO_Array_New, {}}, |
| 7330 | {OO_Delete, {}}, |
| 7331 | {OO_Array_New, {}}}; |
| 7332 | for (auto *D : Record->decls()) { |
| 7333 | const FunctionDecl *FnDecl = D->getAsFunction(); |
| 7334 | if (!FnDecl || !FnDecl->isTypeAwareOperatorNewOrDelete()) |
| 7335 | continue; |
| 7336 | assert(FnDecl->getDeclName().isAnyOperatorNewOrDelete()); |
| 7337 | TypeAwareDecls[FnDecl->getOverloadedOperator()].push_back(FnDecl); |
| 7338 | } |
| 7339 | auto CheckMismatchedTypeAwareAllocators = |
| 7340 | [this, &TypeAwareDecls, Record](OverloadedOperatorKind NewKind, |
| 7341 | OverloadedOperatorKind DeleteKind) { |
| 7342 | auto &NewDecls = TypeAwareDecls[NewKind]; |
| 7343 | auto &DeleteDecls = TypeAwareDecls[DeleteKind]; |
| 7344 | if (NewDecls.empty() == DeleteDecls.empty()) |
| 7345 | return; |
| 7346 | DeclarationName FoundOperator = |
| 7347 | Context.DeclarationNames.getCXXOperatorName( |
| 7348 | Op: NewDecls.empty() ? DeleteKind : NewKind); |
| 7349 | DeclarationName MissingOperator = |
| 7350 | Context.DeclarationNames.getCXXOperatorName( |
| 7351 | Op: NewDecls.empty() ? NewKind : DeleteKind); |
| 7352 | Diag(Record->getLocation(), |
| 7353 | diag::err_type_aware_allocator_missing_matching_operator) |
| 7354 | << FoundOperator << Context.getRecordType(Record) |
| 7355 | << MissingOperator; |
| 7356 | for (auto MD : NewDecls) |
| 7357 | Diag(MD->getLocation(), |
| 7358 | diag::note_unmatched_type_aware_allocator_declared) |
| 7359 | << MD; |
| 7360 | for (auto MD : DeleteDecls) |
| 7361 | Diag(MD->getLocation(), |
| 7362 | diag::note_unmatched_type_aware_allocator_declared) |
| 7363 | << MD; |
| 7364 | }; |
| 7365 | CheckMismatchedTypeAwareAllocators(OO_New, OO_Delete); |
| 7366 | CheckMismatchedTypeAwareAllocators(OO_Array_New, OO_Array_Delete); |
| 7367 | } |
| 7368 | |
| 7369 | /// Look up the special member function that would be called by a special |
| 7370 | /// member function for a subobject of class type. |
| 7371 | /// |
| 7372 | /// \param Class The class type of the subobject. |
| 7373 | /// \param CSM The kind of special member function. |
| 7374 | /// \param FieldQuals If the subobject is a field, its cv-qualifiers. |
| 7375 | /// \param ConstRHS True if this is a copy operation with a const object |
| 7376 | /// on its RHS, that is, if the argument to the outer special member |
| 7377 | /// function is 'const' and this is not a field marked 'mutable'. |
| 7378 | static Sema::SpecialMemberOverloadResult |
| 7379 | lookupCallFromSpecialMember(Sema &S, CXXRecordDecl *Class, |
| 7380 | CXXSpecialMemberKind CSM, unsigned FieldQuals, |
| 7381 | bool ConstRHS) { |
| 7382 | unsigned LHSQuals = 0; |
| 7383 | if (CSM == CXXSpecialMemberKind::CopyAssignment || |
| 7384 | CSM == CXXSpecialMemberKind::MoveAssignment) |
| 7385 | LHSQuals = FieldQuals; |
| 7386 | |
| 7387 | unsigned RHSQuals = FieldQuals; |
| 7388 | if (CSM == CXXSpecialMemberKind::DefaultConstructor || |
| 7389 | CSM == CXXSpecialMemberKind::Destructor) |
| 7390 | RHSQuals = 0; |
| 7391 | else if (ConstRHS) |
| 7392 | RHSQuals |= Qualifiers::Const; |
| 7393 | |
| 7394 | return S.LookupSpecialMember(D: Class, SM: CSM, |
| 7395 | ConstArg: RHSQuals & Qualifiers::Const, |
| 7396 | VolatileArg: RHSQuals & Qualifiers::Volatile, |
| 7397 | RValueThis: false, |
| 7398 | ConstThis: LHSQuals & Qualifiers::Const, |
| 7399 | VolatileThis: LHSQuals & Qualifiers::Volatile); |
| 7400 | } |
| 7401 | |
| 7402 | class Sema::InheritedConstructorInfo { |
| 7403 | Sema &S; |
| 7404 | SourceLocation UseLoc; |
| 7405 | |
| 7406 | /// A mapping from the base classes through which the constructor was |
| 7407 | /// inherited to the using shadow declaration in that base class (or a null |
| 7408 | /// pointer if the constructor was declared in that base class). |
| 7409 | llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *> |
| 7410 | InheritedFromBases; |
| 7411 | |
| 7412 | public: |
| 7413 | InheritedConstructorInfo(Sema &S, SourceLocation UseLoc, |
| 7414 | ConstructorUsingShadowDecl *Shadow) |
| 7415 | : S(S), UseLoc(UseLoc) { |
| 7416 | bool DiagnosedMultipleConstructedBases = false; |
| 7417 | CXXRecordDecl *ConstructedBase = nullptr; |
| 7418 | BaseUsingDecl *ConstructedBaseIntroducer = nullptr; |
| 7419 | |
| 7420 | // Find the set of such base class subobjects and check that there's a |
| 7421 | // unique constructed subobject. |
| 7422 | for (auto *D : Shadow->redecls()) { |
| 7423 | auto *DShadow = cast<ConstructorUsingShadowDecl>(D); |
| 7424 | auto *DNominatedBase = DShadow->getNominatedBaseClass(); |
| 7425 | auto *DConstructedBase = DShadow->getConstructedBaseClass(); |
| 7426 | |
| 7427 | InheritedFromBases.insert( |
| 7428 | std::make_pair(DNominatedBase->getCanonicalDecl(), |
| 7429 | DShadow->getNominatedBaseClassShadowDecl())); |
| 7430 | if (DShadow->constructsVirtualBase()) |
| 7431 | InheritedFromBases.insert( |
| 7432 | std::make_pair(DConstructedBase->getCanonicalDecl(), |
| 7433 | DShadow->getConstructedBaseClassShadowDecl())); |
| 7434 | else |
| 7435 | assert(DNominatedBase == DConstructedBase); |
| 7436 | |
| 7437 | // [class.inhctor.init]p2: |
| 7438 | // If the constructor was inherited from multiple base class subobjects |
| 7439 | // of type B, the program is ill-formed. |
| 7440 | if (!ConstructedBase) { |
| 7441 | ConstructedBase = DConstructedBase; |
| 7442 | ConstructedBaseIntroducer = D->getIntroducer(); |
| 7443 | } else if (ConstructedBase != DConstructedBase && |
| 7444 | !Shadow->isInvalidDecl()) { |
| 7445 | if (!DiagnosedMultipleConstructedBases) { |
| 7446 | S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor) |
| 7447 | << Shadow->getTargetDecl(); |
| 7448 | S.Diag(ConstructedBaseIntroducer->getLocation(), |
| 7449 | diag::note_ambiguous_inherited_constructor_using) |
| 7450 | << ConstructedBase; |
| 7451 | DiagnosedMultipleConstructedBases = true; |
| 7452 | } |
| 7453 | S.Diag(D->getIntroducer()->getLocation(), |
| 7454 | diag::note_ambiguous_inherited_constructor_using) |
| 7455 | << DConstructedBase; |
| 7456 | } |
| 7457 | } |
| 7458 | |
| 7459 | if (DiagnosedMultipleConstructedBases) |
| 7460 | Shadow->setInvalidDecl(); |
| 7461 | } |
| 7462 | |
| 7463 | /// Find the constructor to use for inherited construction of a base class, |
| 7464 | /// and whether that base class constructor inherits the constructor from a |
| 7465 | /// virtual base class (in which case it won't actually invoke it). |
| 7466 | std::pair<CXXConstructorDecl *, bool> |
| 7467 | findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const { |
| 7468 | auto It = InheritedFromBases.find(Val: Base->getCanonicalDecl()); |
| 7469 | if (It == InheritedFromBases.end()) |
| 7470 | return std::make_pair(x: nullptr, y: false); |
| 7471 | |
| 7472 | // This is an intermediary class. |
| 7473 | if (It->second) |
| 7474 | return std::make_pair( |
| 7475 | x: S.findInheritingConstructor(Loc: UseLoc, BaseCtor: Ctor, DerivedShadow: It->second), |
| 7476 | y: It->second->constructsVirtualBase()); |
| 7477 | |
| 7478 | // This is the base class from which the constructor was inherited. |
| 7479 | return std::make_pair(x&: Ctor, y: false); |
| 7480 | } |
| 7481 | }; |
| 7482 | |
| 7483 | /// Is the special member function which would be selected to perform the |
| 7484 | /// specified operation on the specified class type a constexpr constructor? |
| 7485 | static bool specialMemberIsConstexpr( |
| 7486 | Sema &S, CXXRecordDecl *ClassDecl, CXXSpecialMemberKind CSM, unsigned Quals, |
| 7487 | bool ConstRHS, CXXConstructorDecl *InheritedCtor = nullptr, |
| 7488 | Sema::InheritedConstructorInfo *Inherited = nullptr) { |
| 7489 | // Suppress duplicate constraint checking here, in case a constraint check |
| 7490 | // caused us to decide to do this. Any truely recursive checks will get |
| 7491 | // caught during these checks anyway. |
| 7492 | Sema::SatisfactionStackResetRAII SSRAII{S}; |
| 7493 | |
| 7494 | // If we're inheriting a constructor, see if we need to call it for this base |
| 7495 | // class. |
| 7496 | if (InheritedCtor) { |
| 7497 | assert(CSM == CXXSpecialMemberKind::DefaultConstructor); |
| 7498 | auto BaseCtor = |
| 7499 | Inherited->findConstructorForBase(Base: ClassDecl, Ctor: InheritedCtor).first; |
| 7500 | if (BaseCtor) |
| 7501 | return BaseCtor->isConstexpr(); |
| 7502 | } |
| 7503 | |
| 7504 | if (CSM == CXXSpecialMemberKind::DefaultConstructor) |
| 7505 | return ClassDecl->hasConstexprDefaultConstructor(); |
| 7506 | if (CSM == CXXSpecialMemberKind::Destructor) |
| 7507 | return ClassDecl->hasConstexprDestructor(); |
| 7508 | |
| 7509 | Sema::SpecialMemberOverloadResult SMOR = |
| 7510 | lookupCallFromSpecialMember(S, Class: ClassDecl, CSM, FieldQuals: Quals, ConstRHS); |
| 7511 | if (!SMOR.getMethod()) |
| 7512 | // A constructor we wouldn't select can't be "involved in initializing" |
| 7513 | // anything. |
| 7514 | return true; |
| 7515 | return SMOR.getMethod()->isConstexpr(); |
| 7516 | } |
| 7517 | |
| 7518 | /// Determine whether the specified special member function would be constexpr |
| 7519 | /// if it were implicitly defined. |
| 7520 | static bool defaultedSpecialMemberIsConstexpr( |
| 7521 | Sema &S, CXXRecordDecl *ClassDecl, CXXSpecialMemberKind CSM, bool ConstArg, |
| 7522 | CXXConstructorDecl *InheritedCtor = nullptr, |
| 7523 | Sema::InheritedConstructorInfo *Inherited = nullptr) { |
| 7524 | if (!S.getLangOpts().CPlusPlus11) |
| 7525 | return false; |
| 7526 | |
| 7527 | // C++11 [dcl.constexpr]p4: |
| 7528 | // In the definition of a constexpr constructor [...] |
| 7529 | bool Ctor = true; |
| 7530 | switch (CSM) { |
| 7531 | case CXXSpecialMemberKind::DefaultConstructor: |
| 7532 | if (Inherited) |
| 7533 | break; |
| 7534 | // Since default constructor lookup is essentially trivial (and cannot |
| 7535 | // involve, for instance, template instantiation), we compute whether a |
| 7536 | // defaulted default constructor is constexpr directly within CXXRecordDecl. |
| 7537 | // |
| 7538 | // This is important for performance; we need to know whether the default |
| 7539 | // constructor is constexpr to determine whether the type is a literal type. |
| 7540 | return ClassDecl->defaultedDefaultConstructorIsConstexpr(); |
| 7541 | |
| 7542 | case CXXSpecialMemberKind::CopyConstructor: |
| 7543 | case CXXSpecialMemberKind::MoveConstructor: |
| 7544 | // For copy or move constructors, we need to perform overload resolution. |
| 7545 | break; |
| 7546 | |
| 7547 | case CXXSpecialMemberKind::CopyAssignment: |
| 7548 | case CXXSpecialMemberKind::MoveAssignment: |
| 7549 | if (!S.getLangOpts().CPlusPlus14) |
| 7550 | return false; |
| 7551 | // In C++1y, we need to perform overload resolution. |
| 7552 | Ctor = false; |
| 7553 | break; |
| 7554 | |
| 7555 | case CXXSpecialMemberKind::Destructor: |
| 7556 | return ClassDecl->defaultedDestructorIsConstexpr(); |
| 7557 | |
| 7558 | case CXXSpecialMemberKind::Invalid: |
| 7559 | return false; |
| 7560 | } |
| 7561 | |
| 7562 | // -- if the class is a non-empty union, or for each non-empty anonymous |
| 7563 | // union member of a non-union class, exactly one non-static data member |
| 7564 | // shall be initialized; [DR1359] |
| 7565 | // |
| 7566 | // If we squint, this is guaranteed, since exactly one non-static data member |
| 7567 | // will be initialized (if the constructor isn't deleted), we just don't know |
| 7568 | // which one. |
| 7569 | if (Ctor && ClassDecl->isUnion()) |
| 7570 | return CSM == CXXSpecialMemberKind::DefaultConstructor |
| 7571 | ? ClassDecl->hasInClassInitializer() || |
| 7572 | !ClassDecl->hasVariantMembers() |
| 7573 | : true; |
| 7574 | |
| 7575 | // -- the class shall not have any virtual base classes; |
| 7576 | if (Ctor && ClassDecl->getNumVBases()) |
| 7577 | return false; |
| 7578 | |
| 7579 | // C++1y [class.copy]p26: |
| 7580 | // -- [the class] is a literal type, and |
| 7581 | if (!Ctor && !ClassDecl->isLiteral() && !S.getLangOpts().CPlusPlus23) |
| 7582 | return false; |
| 7583 | |
| 7584 | // -- every constructor involved in initializing [...] base class |
| 7585 | // sub-objects shall be a constexpr constructor; |
| 7586 | // -- the assignment operator selected to copy/move each direct base |
| 7587 | // class is a constexpr function, and |
| 7588 | if (!S.getLangOpts().CPlusPlus23) { |
| 7589 | for (const auto &B : ClassDecl->bases()) { |
| 7590 | const RecordType *BaseType = B.getType()->getAs<RecordType>(); |
| 7591 | if (!BaseType) |
| 7592 | continue; |
| 7593 | CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(Val: BaseType->getDecl()); |
| 7594 | if (!specialMemberIsConstexpr(S, ClassDecl: BaseClassDecl, CSM, Quals: 0, ConstRHS: ConstArg, |
| 7595 | InheritedCtor, Inherited)) |
| 7596 | return false; |
| 7597 | } |
| 7598 | } |
| 7599 | |
| 7600 | // -- every constructor involved in initializing non-static data members |
| 7601 | // [...] shall be a constexpr constructor; |
| 7602 | // -- every non-static data member and base class sub-object shall be |
| 7603 | // initialized |
| 7604 | // -- for each non-static data member of X that is of class type (or array |
| 7605 | // thereof), the assignment operator selected to copy/move that member is |
| 7606 | // a constexpr function |
| 7607 | if (!S.getLangOpts().CPlusPlus23) { |
| 7608 | for (const auto *F : ClassDecl->fields()) { |
| 7609 | if (F->isInvalidDecl()) |
| 7610 | continue; |
| 7611 | if (CSM == CXXSpecialMemberKind::DefaultConstructor && |
| 7612 | F->hasInClassInitializer()) |
| 7613 | continue; |
| 7614 | QualType BaseType = S.Context.getBaseElementType(F->getType()); |
| 7615 | if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) { |
| 7616 | CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl()); |
| 7617 | if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, |
| 7618 | BaseType.getCVRQualifiers(), |
| 7619 | ConstArg && !F->isMutable())) |
| 7620 | return false; |
| 7621 | } else if (CSM == CXXSpecialMemberKind::DefaultConstructor) { |
| 7622 | return false; |
| 7623 | } |
| 7624 | } |
| 7625 | } |
| 7626 | |
| 7627 | // All OK, it's constexpr! |
| 7628 | return true; |
| 7629 | } |
| 7630 | |
| 7631 | namespace { |
| 7632 | /// RAII object to register a defaulted function as having its exception |
| 7633 | /// specification computed. |
| 7634 | struct ComputingExceptionSpec { |
| 7635 | Sema &S; |
| 7636 | |
| 7637 | ComputingExceptionSpec(Sema &S, FunctionDecl *FD, SourceLocation Loc) |
| 7638 | : S(S) { |
| 7639 | Sema::CodeSynthesisContext Ctx; |
| 7640 | Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation; |
| 7641 | Ctx.PointOfInstantiation = Loc; |
| 7642 | Ctx.Entity = FD; |
| 7643 | S.pushCodeSynthesisContext(Ctx); |
| 7644 | } |
| 7645 | ~ComputingExceptionSpec() { |
| 7646 | S.popCodeSynthesisContext(); |
| 7647 | } |
| 7648 | }; |
| 7649 | } |
| 7650 | |
| 7651 | static Sema::ImplicitExceptionSpecification |
| 7652 | ComputeDefaultedSpecialMemberExceptionSpec(Sema &S, SourceLocation Loc, |
| 7653 | CXXMethodDecl *MD, |
| 7654 | CXXSpecialMemberKind CSM, |
| 7655 | Sema::InheritedConstructorInfo *ICI); |
| 7656 | |
| 7657 | static Sema::ImplicitExceptionSpecification |
| 7658 | ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, |
| 7659 | FunctionDecl *FD, |
| 7660 | Sema::DefaultedComparisonKind DCK); |
| 7661 | |
| 7662 | static Sema::ImplicitExceptionSpecification |
| 7663 | computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, FunctionDecl *FD) { |
| 7664 | auto DFK = S.getDefaultedFunctionKind(FD); |
| 7665 | if (DFK.isSpecialMember()) |
| 7666 | return ComputeDefaultedSpecialMemberExceptionSpec( |
| 7667 | S, Loc, MD: cast<CXXMethodDecl>(Val: FD), CSM: DFK.asSpecialMember(), ICI: nullptr); |
| 7668 | if (DFK.isComparison()) |
| 7669 | return ComputeDefaultedComparisonExceptionSpec(S, Loc, FD, |
| 7670 | DCK: DFK.asComparison()); |
| 7671 | |
| 7672 | auto *CD = cast<CXXConstructorDecl>(Val: FD); |
| 7673 | assert(CD->getInheritedConstructor() && |
| 7674 | "only defaulted functions and inherited constructors have implicit " |
| 7675 | "exception specs" ); |
| 7676 | Sema::InheritedConstructorInfo ICI( |
| 7677 | S, Loc, CD->getInheritedConstructor().getShadowDecl()); |
| 7678 | return ComputeDefaultedSpecialMemberExceptionSpec( |
| 7679 | S, Loc, CD, CXXSpecialMemberKind::DefaultConstructor, &ICI); |
| 7680 | } |
| 7681 | |
| 7682 | static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S, |
| 7683 | CXXMethodDecl *MD) { |
| 7684 | FunctionProtoType::ExtProtoInfo EPI; |
| 7685 | |
| 7686 | // Build an exception specification pointing back at this member. |
| 7687 | EPI.ExceptionSpec.Type = EST_Unevaluated; |
| 7688 | EPI.ExceptionSpec.SourceDecl = MD; |
| 7689 | |
| 7690 | // Set the calling convention to the default for C++ instance methods. |
| 7691 | EPI.ExtInfo = EPI.ExtInfo.withCallingConv( |
| 7692 | cc: S.Context.getDefaultCallingConvention(/*IsVariadic=*/false, |
| 7693 | /*IsCXXMethod=*/true)); |
| 7694 | return EPI; |
| 7695 | } |
| 7696 | |
| 7697 | void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD) { |
| 7698 | const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>(); |
| 7699 | if (FPT->getExceptionSpecType() != EST_Unevaluated) |
| 7700 | return; |
| 7701 | |
| 7702 | // Evaluate the exception specification. |
| 7703 | auto IES = computeImplicitExceptionSpec(S&: *this, Loc, FD); |
| 7704 | auto ESI = IES.getExceptionSpec(); |
| 7705 | |
| 7706 | // Update the type of the special member to use it. |
| 7707 | UpdateExceptionSpec(FD, ESI); |
| 7708 | } |
| 7709 | |
| 7710 | void Sema::CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *FD) { |
| 7711 | assert(FD->isExplicitlyDefaulted() && "not explicitly-defaulted" ); |
| 7712 | |
| 7713 | DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); |
| 7714 | if (!DefKind) { |
| 7715 | assert(FD->getDeclContext()->isDependentContext()); |
| 7716 | return; |
| 7717 | } |
| 7718 | |
| 7719 | if (DefKind.isComparison()) { |
| 7720 | auto PT = FD->getParamDecl(i: 0)->getType(); |
| 7721 | if (const CXXRecordDecl *RD = |
| 7722 | PT.getNonReferenceType()->getAsCXXRecordDecl()) { |
| 7723 | for (FieldDecl *Field : RD->fields()) { |
| 7724 | UnusedPrivateFields.remove(Field); |
| 7725 | } |
| 7726 | } |
| 7727 | } |
| 7728 | |
| 7729 | if (DefKind.isSpecialMember() |
| 7730 | ? CheckExplicitlyDefaultedSpecialMember(MD: cast<CXXMethodDecl>(Val: FD), |
| 7731 | CSM: DefKind.asSpecialMember(), |
| 7732 | DefaultLoc: FD->getDefaultLoc()) |
| 7733 | : CheckExplicitlyDefaultedComparison(S, MD: FD, DCK: DefKind.asComparison())) |
| 7734 | FD->setInvalidDecl(); |
| 7735 | } |
| 7736 | |
| 7737 | bool Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD, |
| 7738 | CXXSpecialMemberKind CSM, |
| 7739 | SourceLocation DefaultLoc) { |
| 7740 | CXXRecordDecl *RD = MD->getParent(); |
| 7741 | |
| 7742 | assert(MD->isExplicitlyDefaulted() && CSM != CXXSpecialMemberKind::Invalid && |
| 7743 | "not an explicitly-defaulted special member" ); |
| 7744 | |
| 7745 | // Defer all checking for special members of a dependent type. |
| 7746 | if (RD->isDependentType()) |
| 7747 | return false; |
| 7748 | |
| 7749 | // Whether this was the first-declared instance of the constructor. |
| 7750 | // This affects whether we implicitly add an exception spec and constexpr. |
| 7751 | bool First = MD == MD->getCanonicalDecl(); |
| 7752 | |
| 7753 | bool HadError = false; |
| 7754 | |
| 7755 | // C++11 [dcl.fct.def.default]p1: |
| 7756 | // A function that is explicitly defaulted shall |
| 7757 | // -- be a special member function [...] (checked elsewhere), |
| 7758 | // -- have the same type (except for ref-qualifiers, and except that a |
| 7759 | // copy operation can take a non-const reference) as an implicit |
| 7760 | // declaration, and |
| 7761 | // -- not have default arguments. |
| 7762 | // C++2a changes the second bullet to instead delete the function if it's |
| 7763 | // defaulted on its first declaration, unless it's "an assignment operator, |
| 7764 | // and its return type differs or its parameter type is not a reference". |
| 7765 | bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus20 && First; |
| 7766 | bool ShouldDeleteForTypeMismatch = false; |
| 7767 | unsigned ExpectedParams = 1; |
| 7768 | if (CSM == CXXSpecialMemberKind::DefaultConstructor || |
| 7769 | CSM == CXXSpecialMemberKind::Destructor) |
| 7770 | ExpectedParams = 0; |
| 7771 | if (MD->getNumExplicitParams() != ExpectedParams) { |
| 7772 | // This checks for default arguments: a copy or move constructor with a |
| 7773 | // default argument is classified as a default constructor, and assignment |
| 7774 | // operations and destructors can't have default arguments. |
| 7775 | Diag(MD->getLocation(), diag::err_defaulted_special_member_params) |
| 7776 | << CSM << MD->getSourceRange(); |
| 7777 | HadError = true; |
| 7778 | } else if (MD->isVariadic()) { |
| 7779 | if (DeleteOnTypeMismatch) |
| 7780 | ShouldDeleteForTypeMismatch = true; |
| 7781 | else { |
| 7782 | Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic) |
| 7783 | << CSM << MD->getSourceRange(); |
| 7784 | HadError = true; |
| 7785 | } |
| 7786 | } |
| 7787 | |
| 7788 | const FunctionProtoType *Type = MD->getType()->castAs<FunctionProtoType>(); |
| 7789 | |
| 7790 | bool CanHaveConstParam = false; |
| 7791 | if (CSM == CXXSpecialMemberKind::CopyConstructor) |
| 7792 | CanHaveConstParam = RD->implicitCopyConstructorHasConstParam(); |
| 7793 | else if (CSM == CXXSpecialMemberKind::CopyAssignment) |
| 7794 | CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam(); |
| 7795 | |
| 7796 | QualType ReturnType = Context.VoidTy; |
| 7797 | if (CSM == CXXSpecialMemberKind::CopyAssignment || |
| 7798 | CSM == CXXSpecialMemberKind::MoveAssignment) { |
| 7799 | // Check for return type matching. |
| 7800 | ReturnType = Type->getReturnType(); |
| 7801 | QualType ThisType = MD->getFunctionObjectParameterType(); |
| 7802 | |
| 7803 | QualType DeclType = Context.getTypeDeclType(RD); |
| 7804 | DeclType = Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::None, NNS: nullptr, |
| 7805 | NamedType: DeclType, OwnedTagDecl: nullptr); |
| 7806 | DeclType = Context.getAddrSpaceQualType( |
| 7807 | T: DeclType, AddressSpace: ThisType.getQualifiers().getAddressSpace()); |
| 7808 | QualType ExpectedReturnType = Context.getLValueReferenceType(T: DeclType); |
| 7809 | |
| 7810 | if (!Context.hasSameType(T1: ReturnType, T2: ExpectedReturnType)) { |
| 7811 | Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type) |
| 7812 | << (CSM == CXXSpecialMemberKind::MoveAssignment) |
| 7813 | << ExpectedReturnType; |
| 7814 | HadError = true; |
| 7815 | } |
| 7816 | |
| 7817 | // A defaulted special member cannot have cv-qualifiers. |
| 7818 | if (ThisType.isConstQualified() || ThisType.isVolatileQualified()) { |
| 7819 | if (DeleteOnTypeMismatch) |
| 7820 | ShouldDeleteForTypeMismatch = true; |
| 7821 | else { |
| 7822 | Diag(MD->getLocation(), diag::err_defaulted_special_member_quals) |
| 7823 | << (CSM == CXXSpecialMemberKind::MoveAssignment) |
| 7824 | << getLangOpts().CPlusPlus14; |
| 7825 | HadError = true; |
| 7826 | } |
| 7827 | } |
| 7828 | // [C++23][dcl.fct.def.default]/p2.2 |
| 7829 | // if F2 has an implicit object parameter of type “reference to C”, |
| 7830 | // F1 may be an explicit object member function whose explicit object |
| 7831 | // parameter is of (possibly different) type “reference to C”, |
| 7832 | // in which case the type of F1 would differ from the type of F2 |
| 7833 | // in that the type of F1 has an additional parameter; |
| 7834 | QualType ExplicitObjectParameter = MD->isExplicitObjectMemberFunction() |
| 7835 | ? MD->getParamDecl(0)->getType() |
| 7836 | : QualType(); |
| 7837 | if (!ExplicitObjectParameter.isNull() && |
| 7838 | (!ExplicitObjectParameter->isReferenceType() || |
| 7839 | !Context.hasSameType(T1: ExplicitObjectParameter.getNonReferenceType(), |
| 7840 | T2: Context.getRecordType(RD)))) { |
| 7841 | if (DeleteOnTypeMismatch) |
| 7842 | ShouldDeleteForTypeMismatch = true; |
| 7843 | else { |
| 7844 | Diag(MD->getLocation(), |
| 7845 | diag::err_defaulted_special_member_explicit_object_mismatch) |
| 7846 | << (CSM == CXXSpecialMemberKind::MoveAssignment) << RD |
| 7847 | << MD->getSourceRange(); |
| 7848 | HadError = true; |
| 7849 | } |
| 7850 | } |
| 7851 | } |
| 7852 | |
| 7853 | // Check for parameter type matching. |
| 7854 | QualType ArgType = |
| 7855 | ExpectedParams |
| 7856 | ? Type->getParamType(i: MD->isExplicitObjectMemberFunction() ? 1 : 0) |
| 7857 | : QualType(); |
| 7858 | bool HasConstParam = false; |
| 7859 | if (ExpectedParams && ArgType->isReferenceType()) { |
| 7860 | // Argument must be reference to possibly-const T. |
| 7861 | QualType ReferentType = ArgType->getPointeeType(); |
| 7862 | HasConstParam = ReferentType.isConstQualified(); |
| 7863 | |
| 7864 | if (ReferentType.isVolatileQualified()) { |
| 7865 | if (DeleteOnTypeMismatch) |
| 7866 | ShouldDeleteForTypeMismatch = true; |
| 7867 | else { |
| 7868 | Diag(MD->getLocation(), |
| 7869 | diag::err_defaulted_special_member_volatile_param) |
| 7870 | << CSM; |
| 7871 | HadError = true; |
| 7872 | } |
| 7873 | } |
| 7874 | |
| 7875 | if (HasConstParam && !CanHaveConstParam) { |
| 7876 | if (DeleteOnTypeMismatch) |
| 7877 | ShouldDeleteForTypeMismatch = true; |
| 7878 | else if (CSM == CXXSpecialMemberKind::CopyConstructor || |
| 7879 | CSM == CXXSpecialMemberKind::CopyAssignment) { |
| 7880 | Diag(MD->getLocation(), |
| 7881 | diag::err_defaulted_special_member_copy_const_param) |
| 7882 | << (CSM == CXXSpecialMemberKind::CopyAssignment); |
| 7883 | // FIXME: Explain why this special member can't be const. |
| 7884 | HadError = true; |
| 7885 | } else { |
| 7886 | Diag(MD->getLocation(), |
| 7887 | diag::err_defaulted_special_member_move_const_param) |
| 7888 | << (CSM == CXXSpecialMemberKind::MoveAssignment); |
| 7889 | HadError = true; |
| 7890 | } |
| 7891 | } |
| 7892 | } else if (ExpectedParams) { |
| 7893 | // A copy assignment operator can take its argument by value, but a |
| 7894 | // defaulted one cannot. |
| 7895 | assert(CSM == CXXSpecialMemberKind::CopyAssignment && |
| 7896 | "unexpected non-ref argument" ); |
| 7897 | Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref); |
| 7898 | HadError = true; |
| 7899 | } |
| 7900 | |
| 7901 | // C++11 [dcl.fct.def.default]p2: |
| 7902 | // An explicitly-defaulted function may be declared constexpr only if it |
| 7903 | // would have been implicitly declared as constexpr, |
| 7904 | // Do not apply this rule to members of class templates, since core issue 1358 |
| 7905 | // makes such functions always instantiate to constexpr functions. For |
| 7906 | // functions which cannot be constexpr (for non-constructors in C++11 and for |
| 7907 | // destructors in C++14 and C++17), this is checked elsewhere. |
| 7908 | // |
| 7909 | // FIXME: This should not apply if the member is deleted. |
| 7910 | bool Constexpr = defaultedSpecialMemberIsConstexpr(S&: *this, ClassDecl: RD, CSM, |
| 7911 | ConstArg: HasConstParam); |
| 7912 | |
| 7913 | // C++14 [dcl.constexpr]p6 (CWG DR647/CWG DR1358): |
| 7914 | // If the instantiated template specialization of a constexpr function |
| 7915 | // template or member function of a class template would fail to satisfy |
| 7916 | // the requirements for a constexpr function or constexpr constructor, that |
| 7917 | // specialization is still a constexpr function or constexpr constructor, |
| 7918 | // even though a call to such a function cannot appear in a constant |
| 7919 | // expression. |
| 7920 | if (MD->isTemplateInstantiation() && MD->isConstexpr()) |
| 7921 | Constexpr = true; |
| 7922 | |
| 7923 | if ((getLangOpts().CPlusPlus20 || |
| 7924 | (getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(Val: MD) |
| 7925 | : isa<CXXConstructorDecl>(Val: MD))) && |
| 7926 | MD->isConstexpr() && !Constexpr && |
| 7927 | MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) { |
| 7928 | if (!MD->isConsteval() && RD->getNumVBases()) { |
| 7929 | Diag(MD->getBeginLoc(), |
| 7930 | diag::err_incorrect_defaulted_constexpr_with_vb) |
| 7931 | << CSM; |
| 7932 | for (const auto &I : RD->vbases()) |
| 7933 | Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here); |
| 7934 | } else { |
| 7935 | Diag(MD->getBeginLoc(), diag::err_incorrect_defaulted_constexpr) |
| 7936 | << CSM << MD->isConsteval(); |
| 7937 | } |
| 7938 | HadError = true; |
| 7939 | // FIXME: Explain why the special member can't be constexpr. |
| 7940 | } |
| 7941 | |
| 7942 | if (First) { |
| 7943 | // C++2a [dcl.fct.def.default]p3: |
| 7944 | // If a function is explicitly defaulted on its first declaration, it is |
| 7945 | // implicitly considered to be constexpr if the implicit declaration |
| 7946 | // would be. |
| 7947 | MD->setConstexprKind(Constexpr ? (MD->isConsteval() |
| 7948 | ? ConstexprSpecKind::Consteval |
| 7949 | : ConstexprSpecKind::Constexpr) |
| 7950 | : ConstexprSpecKind::Unspecified); |
| 7951 | |
| 7952 | if (!Type->hasExceptionSpec()) { |
| 7953 | // C++2a [except.spec]p3: |
| 7954 | // If a declaration of a function does not have a noexcept-specifier |
| 7955 | // [and] is defaulted on its first declaration, [...] the exception |
| 7956 | // specification is as specified below |
| 7957 | FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo(); |
| 7958 | EPI.ExceptionSpec.Type = EST_Unevaluated; |
| 7959 | EPI.ExceptionSpec.SourceDecl = MD; |
| 7960 | MD->setType( |
| 7961 | Context.getFunctionType(ResultTy: ReturnType, Args: Type->getParamTypes(), EPI)); |
| 7962 | } |
| 7963 | } |
| 7964 | |
| 7965 | if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) { |
| 7966 | if (First) { |
| 7967 | SetDeclDeleted(dcl: MD, DelLoc: MD->getLocation()); |
| 7968 | if (!inTemplateInstantiation() && !HadError) { |
| 7969 | Diag(MD->getLocation(), diag::warn_defaulted_method_deleted) << CSM; |
| 7970 | if (ShouldDeleteForTypeMismatch) { |
| 7971 | Diag(MD->getLocation(), diag::note_deleted_type_mismatch) << CSM; |
| 7972 | } else if (ShouldDeleteSpecialMember(MD, CSM, ICI: nullptr, |
| 7973 | /*Diagnose*/ true) && |
| 7974 | DefaultLoc.isValid()) { |
| 7975 | Diag(DefaultLoc, diag::note_replace_equals_default_to_delete) |
| 7976 | << FixItHint::CreateReplacement(DefaultLoc, "delete" ); |
| 7977 | } |
| 7978 | } |
| 7979 | if (ShouldDeleteForTypeMismatch && !HadError) { |
| 7980 | Diag(MD->getLocation(), |
| 7981 | diag::warn_cxx17_compat_defaulted_method_type_mismatch) |
| 7982 | << CSM; |
| 7983 | } |
| 7984 | } else { |
| 7985 | // C++11 [dcl.fct.def.default]p4: |
| 7986 | // [For a] user-provided explicitly-defaulted function [...] if such a |
| 7987 | // function is implicitly defined as deleted, the program is ill-formed. |
| 7988 | Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM; |
| 7989 | assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl" ); |
| 7990 | ShouldDeleteSpecialMember(MD, CSM, ICI: nullptr, /*Diagnose*/true); |
| 7991 | HadError = true; |
| 7992 | } |
| 7993 | } |
| 7994 | |
| 7995 | return HadError; |
| 7996 | } |
| 7997 | |
| 7998 | namespace { |
| 7999 | /// Helper class for building and checking a defaulted comparison. |
| 8000 | /// |
| 8001 | /// Defaulted functions are built in two phases: |
| 8002 | /// |
| 8003 | /// * First, the set of operations that the function will perform are |
| 8004 | /// identified, and some of them are checked. If any of the checked |
| 8005 | /// operations is invalid in certain ways, the comparison function is |
| 8006 | /// defined as deleted and no body is built. |
| 8007 | /// * Then, if the function is not defined as deleted, the body is built. |
| 8008 | /// |
| 8009 | /// This is accomplished by performing two visitation steps over the eventual |
| 8010 | /// body of the function. |
| 8011 | template<typename Derived, typename ResultList, typename Result, |
| 8012 | typename Subobject> |
| 8013 | class DefaultedComparisonVisitor { |
| 8014 | public: |
| 8015 | using DefaultedComparisonKind = Sema::DefaultedComparisonKind; |
| 8016 | |
| 8017 | DefaultedComparisonVisitor(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, |
| 8018 | DefaultedComparisonKind DCK) |
| 8019 | : S(S), RD(RD), FD(FD), DCK(DCK) { |
| 8020 | if (auto *Info = FD->getDefalutedOrDeletedInfo()) { |
| 8021 | // FIXME: Change CreateOverloadedBinOp to take an ArrayRef instead of an |
| 8022 | // UnresolvedSet to avoid this copy. |
| 8023 | Fns.assign(I: Info->getUnqualifiedLookups().begin(), |
| 8024 | E: Info->getUnqualifiedLookups().end()); |
| 8025 | } |
| 8026 | } |
| 8027 | |
| 8028 | ResultList visit() { |
| 8029 | // The type of an lvalue naming a parameter of this function. |
| 8030 | QualType ParamLvalType = |
| 8031 | FD->getParamDecl(i: 0)->getType().getNonReferenceType(); |
| 8032 | |
| 8033 | ResultList Results; |
| 8034 | |
| 8035 | switch (DCK) { |
| 8036 | case DefaultedComparisonKind::None: |
| 8037 | llvm_unreachable("not a defaulted comparison" ); |
| 8038 | |
| 8039 | case DefaultedComparisonKind::Equal: |
| 8040 | case DefaultedComparisonKind::ThreeWay: |
| 8041 | getDerived().visitSubobjects(Results, RD, ParamLvalType.getQualifiers()); |
| 8042 | return Results; |
| 8043 | |
| 8044 | case DefaultedComparisonKind::NotEqual: |
| 8045 | case DefaultedComparisonKind::Relational: |
| 8046 | Results.add(getDerived().visitExpandedSubobject( |
| 8047 | ParamLvalType, getDerived().getCompleteObject())); |
| 8048 | return Results; |
| 8049 | } |
| 8050 | llvm_unreachable("" ); |
| 8051 | } |
| 8052 | |
| 8053 | protected: |
| 8054 | Derived &getDerived() { return static_cast<Derived&>(*this); } |
| 8055 | |
| 8056 | /// Visit the expanded list of subobjects of the given type, as specified in |
| 8057 | /// C++2a [class.compare.default]. |
| 8058 | /// |
| 8059 | /// \return \c true if the ResultList object said we're done, \c false if not. |
| 8060 | bool visitSubobjects(ResultList &Results, CXXRecordDecl *Record, |
| 8061 | Qualifiers Quals) { |
| 8062 | // C++2a [class.compare.default]p4: |
| 8063 | // The direct base class subobjects of C |
| 8064 | for (CXXBaseSpecifier &Base : Record->bases()) |
| 8065 | if (Results.add(getDerived().visitSubobject( |
| 8066 | S.Context.getQualifiedType(T: Base.getType(), Qs: Quals), |
| 8067 | getDerived().getBase(&Base)))) |
| 8068 | return true; |
| 8069 | |
| 8070 | // followed by the non-static data members of C |
| 8071 | for (FieldDecl *Field : Record->fields()) { |
| 8072 | // C++23 [class.bit]p2: |
| 8073 | // Unnamed bit-fields are not members ... |
| 8074 | if (Field->isUnnamedBitField()) |
| 8075 | continue; |
| 8076 | // Recursively expand anonymous structs. |
| 8077 | if (Field->isAnonymousStructOrUnion()) { |
| 8078 | if (visitSubobjects(Results, Field->getType()->getAsCXXRecordDecl(), |
| 8079 | Quals)) |
| 8080 | return true; |
| 8081 | continue; |
| 8082 | } |
| 8083 | |
| 8084 | // Figure out the type of an lvalue denoting this field. |
| 8085 | Qualifiers FieldQuals = Quals; |
| 8086 | if (Field->isMutable()) |
| 8087 | FieldQuals.removeConst(); |
| 8088 | QualType FieldType = |
| 8089 | S.Context.getQualifiedType(Field->getType(), FieldQuals); |
| 8090 | |
| 8091 | if (Results.add(getDerived().visitSubobject( |
| 8092 | FieldType, getDerived().getField(Field)))) |
| 8093 | return true; |
| 8094 | } |
| 8095 | |
| 8096 | // form a list of subobjects. |
| 8097 | return false; |
| 8098 | } |
| 8099 | |
| 8100 | Result visitSubobject(QualType Type, Subobject Subobj) { |
| 8101 | // In that list, any subobject of array type is recursively expanded |
| 8102 | const ArrayType *AT = S.Context.getAsArrayType(T: Type); |
| 8103 | if (auto *CAT = dyn_cast_or_null<ConstantArrayType>(Val: AT)) |
| 8104 | return getDerived().visitSubobjectArray(CAT->getElementType(), |
| 8105 | CAT->getSize(), Subobj); |
| 8106 | return getDerived().visitExpandedSubobject(Type, Subobj); |
| 8107 | } |
| 8108 | |
| 8109 | Result visitSubobjectArray(QualType Type, const llvm::APInt &Size, |
| 8110 | Subobject Subobj) { |
| 8111 | return getDerived().visitSubobject(Type, Subobj); |
| 8112 | } |
| 8113 | |
| 8114 | protected: |
| 8115 | Sema &S; |
| 8116 | CXXRecordDecl *RD; |
| 8117 | FunctionDecl *FD; |
| 8118 | DefaultedComparisonKind DCK; |
| 8119 | UnresolvedSet<16> Fns; |
| 8120 | }; |
| 8121 | |
| 8122 | /// Information about a defaulted comparison, as determined by |
| 8123 | /// DefaultedComparisonAnalyzer. |
| 8124 | struct DefaultedComparisonInfo { |
| 8125 | bool Deleted = false; |
| 8126 | bool Constexpr = true; |
| 8127 | ComparisonCategoryType Category = ComparisonCategoryType::StrongOrdering; |
| 8128 | |
| 8129 | static DefaultedComparisonInfo deleted() { |
| 8130 | DefaultedComparisonInfo Deleted; |
| 8131 | Deleted.Deleted = true; |
| 8132 | return Deleted; |
| 8133 | } |
| 8134 | |
| 8135 | bool add(const DefaultedComparisonInfo &R) { |
| 8136 | Deleted |= R.Deleted; |
| 8137 | Constexpr &= R.Constexpr; |
| 8138 | Category = commonComparisonType(A: Category, B: R.Category); |
| 8139 | return Deleted; |
| 8140 | } |
| 8141 | }; |
| 8142 | |
| 8143 | /// An element in the expanded list of subobjects of a defaulted comparison, as |
| 8144 | /// specified in C++2a [class.compare.default]p4. |
| 8145 | struct DefaultedComparisonSubobject { |
| 8146 | enum { CompleteObject, Member, Base } Kind; |
| 8147 | NamedDecl *Decl; |
| 8148 | SourceLocation Loc; |
| 8149 | }; |
| 8150 | |
| 8151 | /// A visitor over the notional body of a defaulted comparison that determines |
| 8152 | /// whether that body would be deleted or constexpr. |
| 8153 | class DefaultedComparisonAnalyzer |
| 8154 | : public DefaultedComparisonVisitor<DefaultedComparisonAnalyzer, |
| 8155 | DefaultedComparisonInfo, |
| 8156 | DefaultedComparisonInfo, |
| 8157 | DefaultedComparisonSubobject> { |
| 8158 | public: |
| 8159 | enum DiagnosticKind { NoDiagnostics, ExplainDeleted, ExplainConstexpr }; |
| 8160 | |
| 8161 | private: |
| 8162 | DiagnosticKind Diagnose; |
| 8163 | |
| 8164 | public: |
| 8165 | using Base = DefaultedComparisonVisitor; |
| 8166 | using Result = DefaultedComparisonInfo; |
| 8167 | using Subobject = DefaultedComparisonSubobject; |
| 8168 | |
| 8169 | friend Base; |
| 8170 | |
| 8171 | DefaultedComparisonAnalyzer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, |
| 8172 | DefaultedComparisonKind DCK, |
| 8173 | DiagnosticKind Diagnose = NoDiagnostics) |
| 8174 | : Base(S, RD, FD, DCK), Diagnose(Diagnose) {} |
| 8175 | |
| 8176 | Result visit() { |
| 8177 | if ((DCK == DefaultedComparisonKind::Equal || |
| 8178 | DCK == DefaultedComparisonKind::ThreeWay) && |
| 8179 | RD->hasVariantMembers()) { |
| 8180 | // C++2a [class.compare.default]p2 [P2002R0]: |
| 8181 | // A defaulted comparison operator function for class C is defined as |
| 8182 | // deleted if [...] C has variant members. |
| 8183 | if (Diagnose == ExplainDeleted) { |
| 8184 | S.Diag(FD->getLocation(), diag::note_defaulted_comparison_union) |
| 8185 | << FD << RD->isUnion() << RD; |
| 8186 | } |
| 8187 | return Result::deleted(); |
| 8188 | } |
| 8189 | |
| 8190 | return Base::visit(); |
| 8191 | } |
| 8192 | |
| 8193 | private: |
| 8194 | Subobject getCompleteObject() { |
| 8195 | return Subobject{Subobject::CompleteObject, RD, FD->getLocation()}; |
| 8196 | } |
| 8197 | |
| 8198 | Subobject getBase(CXXBaseSpecifier *Base) { |
| 8199 | return Subobject{.Kind: Subobject::Base, Base->getType()->getAsCXXRecordDecl(), |
| 8200 | .Loc: Base->getBaseTypeLoc()}; |
| 8201 | } |
| 8202 | |
| 8203 | Subobject getField(FieldDecl *Field) { |
| 8204 | return Subobject{Subobject::Member, Field, Field->getLocation()}; |
| 8205 | } |
| 8206 | |
| 8207 | Result visitExpandedSubobject(QualType Type, Subobject Subobj) { |
| 8208 | // C++2a [class.compare.default]p2 [P2002R0]: |
| 8209 | // A defaulted <=> or == operator function for class C is defined as |
| 8210 | // deleted if any non-static data member of C is of reference type |
| 8211 | if (Type->isReferenceType()) { |
| 8212 | if (Diagnose == ExplainDeleted) { |
| 8213 | S.Diag(Subobj.Loc, diag::note_defaulted_comparison_reference_member) |
| 8214 | << FD << RD; |
| 8215 | } |
| 8216 | return Result::deleted(); |
| 8217 | } |
| 8218 | |
| 8219 | // [...] Let xi be an lvalue denoting the ith element [...] |
| 8220 | OpaqueValueExpr Xi(FD->getLocation(), Type, VK_LValue); |
| 8221 | Expr *Args[] = {&Xi, &Xi}; |
| 8222 | |
| 8223 | // All operators start by trying to apply that same operator recursively. |
| 8224 | OverloadedOperatorKind OO = FD->getOverloadedOperator(); |
| 8225 | assert(OO != OO_None && "not an overloaded operator!" ); |
| 8226 | return visitBinaryOperator(OO, Args, Subobj); |
| 8227 | } |
| 8228 | |
| 8229 | Result |
| 8230 | visitBinaryOperator(OverloadedOperatorKind OO, ArrayRef<Expr *> Args, |
| 8231 | Subobject Subobj, |
| 8232 | OverloadCandidateSet *SpaceshipCandidates = nullptr) { |
| 8233 | // Note that there is no need to consider rewritten candidates here if |
| 8234 | // we've already found there is no viable 'operator<=>' candidate (and are |
| 8235 | // considering synthesizing a '<=>' from '==' and '<'). |
| 8236 | OverloadCandidateSet CandidateSet( |
| 8237 | FD->getLocation(), OverloadCandidateSet::CSK_Operator, |
| 8238 | OverloadCandidateSet::OperatorRewriteInfo( |
| 8239 | OO, FD->getLocation(), |
| 8240 | /*AllowRewrittenCandidates=*/!SpaceshipCandidates)); |
| 8241 | |
| 8242 | /// C++2a [class.compare.default]p1 [P2002R0]: |
| 8243 | /// [...] the defaulted function itself is never a candidate for overload |
| 8244 | /// resolution [...] |
| 8245 | CandidateSet.exclude(FD); |
| 8246 | |
| 8247 | if (Args[0]->getType()->isOverloadableType()) |
| 8248 | S.LookupOverloadedBinOp(CandidateSet, Op: OO, Fns, Args); |
| 8249 | else |
| 8250 | // FIXME: We determine whether this is a valid expression by checking to |
| 8251 | // see if there's a viable builtin operator candidate for it. That isn't |
| 8252 | // really what the rules ask us to do, but should give the right results. |
| 8253 | S.AddBuiltinOperatorCandidates(Op: OO, OpLoc: FD->getLocation(), Args, CandidateSet); |
| 8254 | |
| 8255 | Result R; |
| 8256 | |
| 8257 | OverloadCandidateSet::iterator Best; |
| 8258 | switch (CandidateSet.BestViableFunction(S, Loc: FD->getLocation(), Best)) { |
| 8259 | case OR_Success: { |
| 8260 | // C++2a [class.compare.secondary]p2 [P2002R0]: |
| 8261 | // The operator function [...] is defined as deleted if [...] the |
| 8262 | // candidate selected by overload resolution is not a rewritten |
| 8263 | // candidate. |
| 8264 | if ((DCK == DefaultedComparisonKind::NotEqual || |
| 8265 | DCK == DefaultedComparisonKind::Relational) && |
| 8266 | !Best->RewriteKind) { |
| 8267 | if (Diagnose == ExplainDeleted) { |
| 8268 | if (Best->Function) { |
| 8269 | S.Diag(Best->Function->getLocation(), |
| 8270 | diag::note_defaulted_comparison_not_rewritten_callee) |
| 8271 | << FD; |
| 8272 | } else { |
| 8273 | assert(Best->Conversions.size() == 2 && |
| 8274 | Best->Conversions[0].isUserDefined() && |
| 8275 | "non-user-defined conversion from class to built-in " |
| 8276 | "comparison" ); |
| 8277 | S.Diag(Best->Conversions[0] |
| 8278 | .UserDefined.FoundConversionFunction.getDecl() |
| 8279 | ->getLocation(), |
| 8280 | diag::note_defaulted_comparison_not_rewritten_conversion) |
| 8281 | << FD; |
| 8282 | } |
| 8283 | } |
| 8284 | return Result::deleted(); |
| 8285 | } |
| 8286 | |
| 8287 | // Throughout C++2a [class.compare]: if overload resolution does not |
| 8288 | // result in a usable function, the candidate function is defined as |
| 8289 | // deleted. This requires that we selected an accessible function. |
| 8290 | // |
| 8291 | // Note that this only considers the access of the function when named |
| 8292 | // within the type of the subobject, and not the access path for any |
| 8293 | // derived-to-base conversion. |
| 8294 | CXXRecordDecl *ArgClass = Args[0]->getType()->getAsCXXRecordDecl(); |
| 8295 | if (ArgClass && Best->FoundDecl.getDecl() && |
| 8296 | Best->FoundDecl.getDecl()->isCXXClassMember()) { |
| 8297 | QualType ObjectType = Subobj.Kind == Subobject::Member |
| 8298 | ? Args[0]->getType() |
| 8299 | : S.Context.getRecordType(RD); |
| 8300 | if (!S.isMemberAccessibleForDeletion( |
| 8301 | ArgClass, Best->FoundDecl, ObjectType, Subobj.Loc, |
| 8302 | Diagnose == ExplainDeleted |
| 8303 | ? S.PDiag(diag::note_defaulted_comparison_inaccessible) |
| 8304 | << FD << Subobj.Kind << Subobj.Decl |
| 8305 | : S.PDiag())) |
| 8306 | return Result::deleted(); |
| 8307 | } |
| 8308 | |
| 8309 | bool NeedsDeducing = |
| 8310 | OO == OO_Spaceship && FD->getReturnType()->isUndeducedAutoType(); |
| 8311 | |
| 8312 | if (FunctionDecl *BestFD = Best->Function) { |
| 8313 | // C++2a [class.compare.default]p3 [P2002R0]: |
| 8314 | // A defaulted comparison function is constexpr-compatible if |
| 8315 | // [...] no overlod resolution performed [...] results in a |
| 8316 | // non-constexpr function. |
| 8317 | assert(!BestFD->isDeleted() && "wrong overload resolution result" ); |
| 8318 | // If it's not constexpr, explain why not. |
| 8319 | if (Diagnose == ExplainConstexpr && !BestFD->isConstexpr()) { |
| 8320 | if (Subobj.Kind != Subobject::CompleteObject) |
| 8321 | S.Diag(Subobj.Loc, diag::note_defaulted_comparison_not_constexpr) |
| 8322 | << Subobj.Kind << Subobj.Decl; |
| 8323 | S.Diag(BestFD->getLocation(), |
| 8324 | diag::note_defaulted_comparison_not_constexpr_here); |
| 8325 | // Bail out after explaining; we don't want any more notes. |
| 8326 | return Result::deleted(); |
| 8327 | } |
| 8328 | R.Constexpr &= BestFD->isConstexpr(); |
| 8329 | |
| 8330 | if (NeedsDeducing) { |
| 8331 | // If any callee has an undeduced return type, deduce it now. |
| 8332 | // FIXME: It's not clear how a failure here should be handled. For |
| 8333 | // now, we produce an eager diagnostic, because that is forward |
| 8334 | // compatible with most (all?) other reasonable options. |
| 8335 | if (BestFD->getReturnType()->isUndeducedType() && |
| 8336 | S.DeduceReturnType(FD: BestFD, Loc: FD->getLocation(), |
| 8337 | /*Diagnose=*/false)) { |
| 8338 | // Don't produce a duplicate error when asked to explain why the |
| 8339 | // comparison is deleted: we diagnosed that when initially checking |
| 8340 | // the defaulted operator. |
| 8341 | if (Diagnose == NoDiagnostics) { |
| 8342 | S.Diag( |
| 8343 | FD->getLocation(), |
| 8344 | diag::err_defaulted_comparison_cannot_deduce_undeduced_auto) |
| 8345 | << Subobj.Kind << Subobj.Decl; |
| 8346 | S.Diag( |
| 8347 | Subobj.Loc, |
| 8348 | diag::note_defaulted_comparison_cannot_deduce_undeduced_auto) |
| 8349 | << Subobj.Kind << Subobj.Decl; |
| 8350 | S.Diag(BestFD->getLocation(), |
| 8351 | diag::note_defaulted_comparison_cannot_deduce_callee) |
| 8352 | << Subobj.Kind << Subobj.Decl; |
| 8353 | } |
| 8354 | return Result::deleted(); |
| 8355 | } |
| 8356 | auto *Info = S.Context.CompCategories.lookupInfoForType( |
| 8357 | Ty: BestFD->getCallResultType()); |
| 8358 | if (!Info) { |
| 8359 | if (Diagnose == ExplainDeleted) { |
| 8360 | S.Diag(Subobj.Loc, diag::note_defaulted_comparison_cannot_deduce) |
| 8361 | << Subobj.Kind << Subobj.Decl |
| 8362 | << BestFD->getCallResultType().withoutLocalFastQualifiers(); |
| 8363 | S.Diag(BestFD->getLocation(), |
| 8364 | diag::note_defaulted_comparison_cannot_deduce_callee) |
| 8365 | << Subobj.Kind << Subobj.Decl; |
| 8366 | } |
| 8367 | return Result::deleted(); |
| 8368 | } |
| 8369 | R.Category = Info->Kind; |
| 8370 | } |
| 8371 | } else { |
| 8372 | QualType T = Best->BuiltinParamTypes[0]; |
| 8373 | assert(T == Best->BuiltinParamTypes[1] && |
| 8374 | "builtin comparison for different types?" ); |
| 8375 | assert(Best->BuiltinParamTypes[2].isNull() && |
| 8376 | "invalid builtin comparison" ); |
| 8377 | |
| 8378 | // FIXME: If the type we deduced is a vector type, we mark the |
| 8379 | // comparison as deleted because we don't yet support this. |
| 8380 | if (isa<VectorType>(Val: T)) { |
| 8381 | if (Diagnose == ExplainDeleted) { |
| 8382 | S.Diag(FD->getLocation(), |
| 8383 | diag::note_defaulted_comparison_vector_types) |
| 8384 | << FD; |
| 8385 | S.Diag(Subobj.Decl->getLocation(), diag::note_declared_at); |
| 8386 | } |
| 8387 | return Result::deleted(); |
| 8388 | } |
| 8389 | |
| 8390 | if (NeedsDeducing) { |
| 8391 | std::optional<ComparisonCategoryType> Cat = |
| 8392 | getComparisonCategoryForBuiltinCmp(T); |
| 8393 | assert(Cat && "no category for builtin comparison?" ); |
| 8394 | R.Category = *Cat; |
| 8395 | } |
| 8396 | } |
| 8397 | |
| 8398 | // Note that we might be rewriting to a different operator. That call is |
| 8399 | // not considered until we come to actually build the comparison function. |
| 8400 | break; |
| 8401 | } |
| 8402 | |
| 8403 | case OR_Ambiguous: |
| 8404 | if (Diagnose == ExplainDeleted) { |
| 8405 | unsigned Kind = 0; |
| 8406 | if (FD->getOverloadedOperator() == OO_Spaceship && OO != OO_Spaceship) |
| 8407 | Kind = OO == OO_EqualEqual ? 1 : 2; |
| 8408 | CandidateSet.NoteCandidates( |
| 8409 | PartialDiagnosticAt( |
| 8410 | Subobj.Loc, S.PDiag(diag::note_defaulted_comparison_ambiguous) |
| 8411 | << FD << Kind << Subobj.Kind << Subobj.Decl), |
| 8412 | S, OCD_AmbiguousCandidates, Args); |
| 8413 | } |
| 8414 | R = Result::deleted(); |
| 8415 | break; |
| 8416 | |
| 8417 | case OR_Deleted: |
| 8418 | if (Diagnose == ExplainDeleted) { |
| 8419 | if ((DCK == DefaultedComparisonKind::NotEqual || |
| 8420 | DCK == DefaultedComparisonKind::Relational) && |
| 8421 | !Best->RewriteKind) { |
| 8422 | S.Diag(Best->Function->getLocation(), |
| 8423 | diag::note_defaulted_comparison_not_rewritten_callee) |
| 8424 | << FD; |
| 8425 | } else { |
| 8426 | S.Diag(Subobj.Loc, |
| 8427 | diag::note_defaulted_comparison_calls_deleted) |
| 8428 | << FD << Subobj.Kind << Subobj.Decl; |
| 8429 | S.NoteDeletedFunction(FD: Best->Function); |
| 8430 | } |
| 8431 | } |
| 8432 | R = Result::deleted(); |
| 8433 | break; |
| 8434 | |
| 8435 | case OR_No_Viable_Function: |
| 8436 | // If there's no usable candidate, we're done unless we can rewrite a |
| 8437 | // '<=>' in terms of '==' and '<'. |
| 8438 | if (OO == OO_Spaceship && |
| 8439 | S.Context.CompCategories.lookupInfoForType(Ty: FD->getReturnType())) { |
| 8440 | // For any kind of comparison category return type, we need a usable |
| 8441 | // '==' and a usable '<'. |
| 8442 | if (!R.add(R: visitBinaryOperator(OO: OO_EqualEqual, Args, Subobj, |
| 8443 | SpaceshipCandidates: &CandidateSet))) |
| 8444 | R.add(R: visitBinaryOperator(OO: OO_Less, Args, Subobj, SpaceshipCandidates: &CandidateSet)); |
| 8445 | break; |
| 8446 | } |
| 8447 | |
| 8448 | if (Diagnose == ExplainDeleted) { |
| 8449 | S.Diag(Subobj.Loc, diag::note_defaulted_comparison_no_viable_function) |
| 8450 | << FD << (OO == OO_EqualEqual || OO == OO_ExclaimEqual) |
| 8451 | << Subobj.Kind << Subobj.Decl; |
| 8452 | |
| 8453 | // For a three-way comparison, list both the candidates for the |
| 8454 | // original operator and the candidates for the synthesized operator. |
| 8455 | if (SpaceshipCandidates) { |
| 8456 | SpaceshipCandidates->NoteCandidates( |
| 8457 | S, Args, |
| 8458 | SpaceshipCandidates->CompleteCandidates(S, OCD: OCD_AllCandidates, |
| 8459 | Args, OpLoc: FD->getLocation())); |
| 8460 | S.Diag(Subobj.Loc, |
| 8461 | diag::note_defaulted_comparison_no_viable_function_synthesized) |
| 8462 | << (OO == OO_EqualEqual ? 0 : 1); |
| 8463 | } |
| 8464 | |
| 8465 | CandidateSet.NoteCandidates( |
| 8466 | S, Args, |
| 8467 | CandidateSet.CompleteCandidates(S, OCD: OCD_AllCandidates, Args, |
| 8468 | OpLoc: FD->getLocation())); |
| 8469 | } |
| 8470 | R = Result::deleted(); |
| 8471 | break; |
| 8472 | } |
| 8473 | |
| 8474 | return R; |
| 8475 | } |
| 8476 | }; |
| 8477 | |
| 8478 | /// A list of statements. |
| 8479 | struct StmtListResult { |
| 8480 | bool IsInvalid = false; |
| 8481 | llvm::SmallVector<Stmt*, 16> Stmts; |
| 8482 | |
| 8483 | bool add(const StmtResult &S) { |
| 8484 | IsInvalid |= S.isInvalid(); |
| 8485 | if (IsInvalid) |
| 8486 | return true; |
| 8487 | Stmts.push_back(Elt: S.get()); |
| 8488 | return false; |
| 8489 | } |
| 8490 | }; |
| 8491 | |
| 8492 | /// A visitor over the notional body of a defaulted comparison that synthesizes |
| 8493 | /// the actual body. |
| 8494 | class DefaultedComparisonSynthesizer |
| 8495 | : public DefaultedComparisonVisitor<DefaultedComparisonSynthesizer, |
| 8496 | StmtListResult, StmtResult, |
| 8497 | std::pair<ExprResult, ExprResult>> { |
| 8498 | SourceLocation Loc; |
| 8499 | unsigned ArrayDepth = 0; |
| 8500 | |
| 8501 | public: |
| 8502 | using Base = DefaultedComparisonVisitor; |
| 8503 | using ExprPair = std::pair<ExprResult, ExprResult>; |
| 8504 | |
| 8505 | friend Base; |
| 8506 | |
| 8507 | DefaultedComparisonSynthesizer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD, |
| 8508 | DefaultedComparisonKind DCK, |
| 8509 | SourceLocation BodyLoc) |
| 8510 | : Base(S, RD, FD, DCK), Loc(BodyLoc) {} |
| 8511 | |
| 8512 | /// Build a suitable function body for this defaulted comparison operator. |
| 8513 | StmtResult build() { |
| 8514 | Sema::CompoundScopeRAII CompoundScope(S); |
| 8515 | |
| 8516 | StmtListResult Stmts = visit(); |
| 8517 | if (Stmts.IsInvalid) |
| 8518 | return StmtError(); |
| 8519 | |
| 8520 | ExprResult RetVal; |
| 8521 | switch (DCK) { |
| 8522 | case DefaultedComparisonKind::None: |
| 8523 | llvm_unreachable("not a defaulted comparison" ); |
| 8524 | |
| 8525 | case DefaultedComparisonKind::Equal: { |
| 8526 | // C++2a [class.eq]p3: |
| 8527 | // [...] compar[e] the corresponding elements [...] until the first |
| 8528 | // index i where xi == yi yields [...] false. If no such index exists, |
| 8529 | // V is true. Otherwise, V is false. |
| 8530 | // |
| 8531 | // Join the comparisons with '&&'s and return the result. Use a right |
| 8532 | // fold (traversing the conditions right-to-left), because that |
| 8533 | // short-circuits more naturally. |
| 8534 | auto OldStmts = std::move(Stmts.Stmts); |
| 8535 | Stmts.Stmts.clear(); |
| 8536 | ExprResult CmpSoFar; |
| 8537 | // Finish a particular comparison chain. |
| 8538 | auto FinishCmp = [&] { |
| 8539 | if (Expr *Prior = CmpSoFar.get()) { |
| 8540 | // Convert the last expression to 'return ...;' |
| 8541 | if (RetVal.isUnset() && Stmts.Stmts.empty()) |
| 8542 | RetVal = CmpSoFar; |
| 8543 | // Convert any prior comparison to 'if (!(...)) return false;' |
| 8544 | else if (Stmts.add(S: buildIfNotCondReturnFalse(Cond: Prior))) |
| 8545 | return true; |
| 8546 | CmpSoFar = ExprResult(); |
| 8547 | } |
| 8548 | return false; |
| 8549 | }; |
| 8550 | for (Stmt *EAsStmt : llvm::reverse(C&: OldStmts)) { |
| 8551 | Expr *E = dyn_cast<Expr>(Val: EAsStmt); |
| 8552 | if (!E) { |
| 8553 | // Found an array comparison. |
| 8554 | if (FinishCmp() || Stmts.add(S: EAsStmt)) |
| 8555 | return StmtError(); |
| 8556 | continue; |
| 8557 | } |
| 8558 | |
| 8559 | if (CmpSoFar.isUnset()) { |
| 8560 | CmpSoFar = E; |
| 8561 | continue; |
| 8562 | } |
| 8563 | CmpSoFar = S.CreateBuiltinBinOp(OpLoc: Loc, Opc: BO_LAnd, LHSExpr: E, RHSExpr: CmpSoFar.get()); |
| 8564 | if (CmpSoFar.isInvalid()) |
| 8565 | return StmtError(); |
| 8566 | } |
| 8567 | if (FinishCmp()) |
| 8568 | return StmtError(); |
| 8569 | std::reverse(first: Stmts.Stmts.begin(), last: Stmts.Stmts.end()); |
| 8570 | // If no such index exists, V is true. |
| 8571 | if (RetVal.isUnset()) |
| 8572 | RetVal = S.ActOnCXXBoolLiteral(OpLoc: Loc, Kind: tok::kw_true); |
| 8573 | break; |
| 8574 | } |
| 8575 | |
| 8576 | case DefaultedComparisonKind::ThreeWay: { |
| 8577 | // Per C++2a [class.spaceship]p3, as a fallback add: |
| 8578 | // return static_cast<R>(std::strong_ordering::equal); |
| 8579 | QualType StrongOrdering = S.CheckComparisonCategoryType( |
| 8580 | Kind: ComparisonCategoryType::StrongOrdering, Loc, |
| 8581 | Usage: Sema::ComparisonCategoryUsage::DefaultedOperator); |
| 8582 | if (StrongOrdering.isNull()) |
| 8583 | return StmtError(); |
| 8584 | VarDecl *EqualVD = S.Context.CompCategories.getInfoForType(Ty: StrongOrdering) |
| 8585 | .getValueInfo(ValueKind: ComparisonCategoryResult::Equal) |
| 8586 | ->VD; |
| 8587 | RetVal = getDecl(EqualVD); |
| 8588 | if (RetVal.isInvalid()) |
| 8589 | return StmtError(); |
| 8590 | RetVal = buildStaticCastToR(E: RetVal.get()); |
| 8591 | break; |
| 8592 | } |
| 8593 | |
| 8594 | case DefaultedComparisonKind::NotEqual: |
| 8595 | case DefaultedComparisonKind::Relational: |
| 8596 | RetVal = cast<Expr>(Val: Stmts.Stmts.pop_back_val()); |
| 8597 | break; |
| 8598 | } |
| 8599 | |
| 8600 | // Build the final return statement. |
| 8601 | if (RetVal.isInvalid()) |
| 8602 | return StmtError(); |
| 8603 | StmtResult ReturnStmt = S.BuildReturnStmt(ReturnLoc: Loc, RetValExp: RetVal.get()); |
| 8604 | if (ReturnStmt.isInvalid()) |
| 8605 | return StmtError(); |
| 8606 | Stmts.Stmts.push_back(Elt: ReturnStmt.get()); |
| 8607 | |
| 8608 | return S.ActOnCompoundStmt(L: Loc, R: Loc, Elts: Stmts.Stmts, /*IsStmtExpr=*/isStmtExpr: false); |
| 8609 | } |
| 8610 | |
| 8611 | private: |
| 8612 | ExprResult getDecl(ValueDecl *VD) { |
| 8613 | return S.BuildDeclarationNameExpr( |
| 8614 | CXXScopeSpec(), DeclarationNameInfo(VD->getDeclName(), Loc), VD); |
| 8615 | } |
| 8616 | |
| 8617 | ExprResult getParam(unsigned I) { |
| 8618 | ParmVarDecl *PD = FD->getParamDecl(i: I); |
| 8619 | return getDecl(PD); |
| 8620 | } |
| 8621 | |
| 8622 | ExprPair getCompleteObject() { |
| 8623 | unsigned Param = 0; |
| 8624 | ExprResult LHS; |
| 8625 | if (const auto *MD = dyn_cast<CXXMethodDecl>(Val: FD); |
| 8626 | MD && MD->isImplicitObjectMemberFunction()) { |
| 8627 | // LHS is '*this'. |
| 8628 | LHS = S.ActOnCXXThis(Loc); |
| 8629 | if (!LHS.isInvalid()) |
| 8630 | LHS = S.CreateBuiltinUnaryOp(OpLoc: Loc, Opc: UO_Deref, InputExpr: LHS.get()); |
| 8631 | } else { |
| 8632 | LHS = getParam(I: Param++); |
| 8633 | } |
| 8634 | ExprResult RHS = getParam(I: Param++); |
| 8635 | assert(Param == FD->getNumParams()); |
| 8636 | return {LHS, RHS}; |
| 8637 | } |
| 8638 | |
| 8639 | ExprPair getBase(CXXBaseSpecifier *Base) { |
| 8640 | ExprPair Obj = getCompleteObject(); |
| 8641 | if (Obj.first.isInvalid() || Obj.second.isInvalid()) |
| 8642 | return {ExprError(), ExprError()}; |
| 8643 | CXXCastPath Path = {Base}; |
| 8644 | const auto CastToBase = [&](Expr *E) { |
| 8645 | QualType ToType = S.Context.getQualifiedType( |
| 8646 | T: Base->getType(), Qs: E->getType().getQualifiers()); |
| 8647 | return S.ImpCastExprToType(E, Type: ToType, CK: CK_DerivedToBase, VK: VK_LValue, BasePath: &Path); |
| 8648 | }; |
| 8649 | return {CastToBase(Obj.first.get()), CastToBase(Obj.second.get())}; |
| 8650 | } |
| 8651 | |
| 8652 | ExprPair getField(FieldDecl *Field) { |
| 8653 | ExprPair Obj = getCompleteObject(); |
| 8654 | if (Obj.first.isInvalid() || Obj.second.isInvalid()) |
| 8655 | return {ExprError(), ExprError()}; |
| 8656 | |
| 8657 | DeclAccessPair Found = DeclAccessPair::make(D: Field, AS: Field->getAccess()); |
| 8658 | DeclarationNameInfo NameInfo(Field->getDeclName(), Loc); |
| 8659 | return {S.BuildFieldReferenceExpr(BaseExpr: Obj.first.get(), /*IsArrow=*/false, OpLoc: Loc, |
| 8660 | SS: CXXScopeSpec(), Field, FoundDecl: Found, MemberNameInfo: NameInfo), |
| 8661 | S.BuildFieldReferenceExpr(BaseExpr: Obj.second.get(), /*IsArrow=*/false, OpLoc: Loc, |
| 8662 | SS: CXXScopeSpec(), Field, FoundDecl: Found, MemberNameInfo: NameInfo)}; |
| 8663 | } |
| 8664 | |
| 8665 | // FIXME: When expanding a subobject, register a note in the code synthesis |
| 8666 | // stack to say which subobject we're comparing. |
| 8667 | |
| 8668 | StmtResult buildIfNotCondReturnFalse(ExprResult Cond) { |
| 8669 | if (Cond.isInvalid()) |
| 8670 | return StmtError(); |
| 8671 | |
| 8672 | ExprResult NotCond = S.CreateBuiltinUnaryOp(OpLoc: Loc, Opc: UO_LNot, InputExpr: Cond.get()); |
| 8673 | if (NotCond.isInvalid()) |
| 8674 | return StmtError(); |
| 8675 | |
| 8676 | ExprResult False = S.ActOnCXXBoolLiteral(OpLoc: Loc, Kind: tok::kw_false); |
| 8677 | assert(!False.isInvalid() && "should never fail" ); |
| 8678 | StmtResult ReturnFalse = S.BuildReturnStmt(ReturnLoc: Loc, RetValExp: False.get()); |
| 8679 | if (ReturnFalse.isInvalid()) |
| 8680 | return StmtError(); |
| 8681 | |
| 8682 | return S.ActOnIfStmt(IfLoc: Loc, StatementKind: IfStatementKind::Ordinary, LParenLoc: Loc, InitStmt: nullptr, |
| 8683 | Cond: S.ActOnCondition(S: nullptr, Loc, SubExpr: NotCond.get(), |
| 8684 | CK: Sema::ConditionKind::Boolean), |
| 8685 | RParenLoc: Loc, ThenVal: ReturnFalse.get(), ElseLoc: SourceLocation(), ElseVal: nullptr); |
| 8686 | } |
| 8687 | |
| 8688 | StmtResult visitSubobjectArray(QualType Type, llvm::APInt Size, |
| 8689 | ExprPair Subobj) { |
| 8690 | QualType SizeType = S.Context.getSizeType(); |
| 8691 | Size = Size.zextOrTrunc(width: S.Context.getTypeSize(T: SizeType)); |
| 8692 | |
| 8693 | // Build 'size_t i$n = 0'. |
| 8694 | IdentifierInfo *IterationVarName = nullptr; |
| 8695 | { |
| 8696 | SmallString<8> Str; |
| 8697 | llvm::raw_svector_ostream OS(Str); |
| 8698 | OS << "i" << ArrayDepth; |
| 8699 | IterationVarName = &S.Context.Idents.get(Name: OS.str()); |
| 8700 | } |
| 8701 | VarDecl *IterationVar = VarDecl::Create( |
| 8702 | C&: S.Context, DC: S.CurContext, StartLoc: Loc, IdLoc: Loc, Id: IterationVarName, T: SizeType, |
| 8703 | TInfo: S.Context.getTrivialTypeSourceInfo(T: SizeType, Loc), S: SC_None); |
| 8704 | llvm::APInt Zero(S.Context.getTypeSize(T: SizeType), 0); |
| 8705 | IterationVar->setInit( |
| 8706 | IntegerLiteral::Create(C: S.Context, V: Zero, type: SizeType, l: Loc)); |
| 8707 | Stmt *Init = new (S.Context) DeclStmt(DeclGroupRef(IterationVar), Loc, Loc); |
| 8708 | |
| 8709 | auto IterRef = [&] { |
| 8710 | ExprResult Ref = S.BuildDeclarationNameExpr( |
| 8711 | CXXScopeSpec(), DeclarationNameInfo(IterationVarName, Loc), |
| 8712 | IterationVar); |
| 8713 | assert(!Ref.isInvalid() && "can't reference our own variable?" ); |
| 8714 | return Ref.get(); |
| 8715 | }; |
| 8716 | |
| 8717 | // Build 'i$n != Size'. |
| 8718 | ExprResult Cond = S.CreateBuiltinBinOp( |
| 8719 | OpLoc: Loc, Opc: BO_NE, LHSExpr: IterRef(), |
| 8720 | RHSExpr: IntegerLiteral::Create(C: S.Context, V: Size, type: SizeType, l: Loc)); |
| 8721 | assert(!Cond.isInvalid() && "should never fail" ); |
| 8722 | |
| 8723 | // Build '++i$n'. |
| 8724 | ExprResult Inc = S.CreateBuiltinUnaryOp(OpLoc: Loc, Opc: UO_PreInc, InputExpr: IterRef()); |
| 8725 | assert(!Inc.isInvalid() && "should never fail" ); |
| 8726 | |
| 8727 | // Build 'a[i$n]' and 'b[i$n]'. |
| 8728 | auto Index = [&](ExprResult E) { |
| 8729 | if (E.isInvalid()) |
| 8730 | return ExprError(); |
| 8731 | return S.CreateBuiltinArraySubscriptExpr(E.get(), Loc, IterRef(), Loc); |
| 8732 | }; |
| 8733 | Subobj.first = Index(Subobj.first); |
| 8734 | Subobj.second = Index(Subobj.second); |
| 8735 | |
| 8736 | // Compare the array elements. |
| 8737 | ++ArrayDepth; |
| 8738 | StmtResult Substmt = visitSubobject(Type, Subobj); |
| 8739 | --ArrayDepth; |
| 8740 | |
| 8741 | if (Substmt.isInvalid()) |
| 8742 | return StmtError(); |
| 8743 | |
| 8744 | // For the inner level of an 'operator==', build 'if (!cmp) return false;'. |
| 8745 | // For outer levels or for an 'operator<=>' we already have a suitable |
| 8746 | // statement that returns as necessary. |
| 8747 | if (Expr *ElemCmp = dyn_cast<Expr>(Val: Substmt.get())) { |
| 8748 | assert(DCK == DefaultedComparisonKind::Equal && |
| 8749 | "should have non-expression statement" ); |
| 8750 | Substmt = buildIfNotCondReturnFalse(Cond: ElemCmp); |
| 8751 | if (Substmt.isInvalid()) |
| 8752 | return StmtError(); |
| 8753 | } |
| 8754 | |
| 8755 | // Build 'for (...) ...' |
| 8756 | return S.ActOnForStmt(ForLoc: Loc, LParenLoc: Loc, First: Init, |
| 8757 | Second: S.ActOnCondition(S: nullptr, Loc, SubExpr: Cond.get(), |
| 8758 | CK: Sema::ConditionKind::Boolean), |
| 8759 | Third: S.MakeFullDiscardedValueExpr(Arg: Inc.get()), RParenLoc: Loc, |
| 8760 | Body: Substmt.get()); |
| 8761 | } |
| 8762 | |
| 8763 | StmtResult visitExpandedSubobject(QualType Type, ExprPair Obj) { |
| 8764 | if (Obj.first.isInvalid() || Obj.second.isInvalid()) |
| 8765 | return StmtError(); |
| 8766 | |
| 8767 | OverloadedOperatorKind OO = FD->getOverloadedOperator(); |
| 8768 | BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(OO); |
| 8769 | ExprResult Op; |
| 8770 | if (Type->isOverloadableType()) |
| 8771 | Op = S.CreateOverloadedBinOp(OpLoc: Loc, Opc, Fns, LHS: Obj.first.get(), |
| 8772 | RHS: Obj.second.get(), /*PerformADL=*/RequiresADL: true, |
| 8773 | /*AllowRewrittenCandidates=*/true, DefaultedFn: FD); |
| 8774 | else |
| 8775 | Op = S.CreateBuiltinBinOp(OpLoc: Loc, Opc, LHSExpr: Obj.first.get(), RHSExpr: Obj.second.get()); |
| 8776 | if (Op.isInvalid()) |
| 8777 | return StmtError(); |
| 8778 | |
| 8779 | switch (DCK) { |
| 8780 | case DefaultedComparisonKind::None: |
| 8781 | llvm_unreachable("not a defaulted comparison" ); |
| 8782 | |
| 8783 | case DefaultedComparisonKind::Equal: |
| 8784 | // Per C++2a [class.eq]p2, each comparison is individually contextually |
| 8785 | // converted to bool. |
| 8786 | Op = S.PerformContextuallyConvertToBool(From: Op.get()); |
| 8787 | if (Op.isInvalid()) |
| 8788 | return StmtError(); |
| 8789 | return Op.get(); |
| 8790 | |
| 8791 | case DefaultedComparisonKind::ThreeWay: { |
| 8792 | // Per C++2a [class.spaceship]p3, form: |
| 8793 | // if (R cmp = static_cast<R>(op); cmp != 0) |
| 8794 | // return cmp; |
| 8795 | QualType R = FD->getReturnType(); |
| 8796 | Op = buildStaticCastToR(E: Op.get()); |
| 8797 | if (Op.isInvalid()) |
| 8798 | return StmtError(); |
| 8799 | |
| 8800 | // R cmp = ...; |
| 8801 | IdentifierInfo *Name = &S.Context.Idents.get(Name: "cmp" ); |
| 8802 | VarDecl *VD = |
| 8803 | VarDecl::Create(C&: S.Context, DC: S.CurContext, StartLoc: Loc, IdLoc: Loc, Id: Name, T: R, |
| 8804 | TInfo: S.Context.getTrivialTypeSourceInfo(T: R, Loc), S: SC_None); |
| 8805 | S.AddInitializerToDecl(VD, Op.get(), /*DirectInit=*/false); |
| 8806 | Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(VD), Loc, Loc); |
| 8807 | |
| 8808 | // cmp != 0 |
| 8809 | ExprResult VDRef = getDecl(VD); |
| 8810 | if (VDRef.isInvalid()) |
| 8811 | return StmtError(); |
| 8812 | llvm::APInt ZeroVal(S.Context.getIntWidth(T: S.Context.IntTy), 0); |
| 8813 | Expr *Zero = |
| 8814 | IntegerLiteral::Create(S.Context, ZeroVal, S.Context.IntTy, Loc); |
| 8815 | ExprResult Comp; |
| 8816 | if (VDRef.get()->getType()->isOverloadableType()) |
| 8817 | Comp = S.CreateOverloadedBinOp(OpLoc: Loc, Opc: BO_NE, Fns, LHS: VDRef.get(), RHS: Zero, RequiresADL: true, |
| 8818 | AllowRewrittenCandidates: true, DefaultedFn: FD); |
| 8819 | else |
| 8820 | Comp = S.CreateBuiltinBinOp(OpLoc: Loc, Opc: BO_NE, LHSExpr: VDRef.get(), RHSExpr: Zero); |
| 8821 | if (Comp.isInvalid()) |
| 8822 | return StmtError(); |
| 8823 | Sema::ConditionResult Cond = S.ActOnCondition( |
| 8824 | S: nullptr, Loc, SubExpr: Comp.get(), CK: Sema::ConditionKind::Boolean); |
| 8825 | if (Cond.isInvalid()) |
| 8826 | return StmtError(); |
| 8827 | |
| 8828 | // return cmp; |
| 8829 | VDRef = getDecl(VD); |
| 8830 | if (VDRef.isInvalid()) |
| 8831 | return StmtError(); |
| 8832 | StmtResult ReturnStmt = S.BuildReturnStmt(ReturnLoc: Loc, RetValExp: VDRef.get()); |
| 8833 | if (ReturnStmt.isInvalid()) |
| 8834 | return StmtError(); |
| 8835 | |
| 8836 | // if (...) |
| 8837 | return S.ActOnIfStmt(IfLoc: Loc, StatementKind: IfStatementKind::Ordinary, LParenLoc: Loc, InitStmt, Cond, |
| 8838 | RParenLoc: Loc, ThenVal: ReturnStmt.get(), |
| 8839 | /*ElseLoc=*/SourceLocation(), /*Else=*/ElseVal: nullptr); |
| 8840 | } |
| 8841 | |
| 8842 | case DefaultedComparisonKind::NotEqual: |
| 8843 | case DefaultedComparisonKind::Relational: |
| 8844 | // C++2a [class.compare.secondary]p2: |
| 8845 | // Otherwise, the operator function yields x @ y. |
| 8846 | return Op.get(); |
| 8847 | } |
| 8848 | llvm_unreachable("" ); |
| 8849 | } |
| 8850 | |
| 8851 | /// Build "static_cast<R>(E)". |
| 8852 | ExprResult buildStaticCastToR(Expr *E) { |
| 8853 | QualType R = FD->getReturnType(); |
| 8854 | assert(!R->isUndeducedType() && "type should have been deduced already" ); |
| 8855 | |
| 8856 | // Don't bother forming a no-op cast in the common case. |
| 8857 | if (E->isPRValue() && S.Context.hasSameType(T1: E->getType(), T2: R)) |
| 8858 | return E; |
| 8859 | return S.BuildCXXNamedCast(OpLoc: Loc, Kind: tok::kw_static_cast, |
| 8860 | Ty: S.Context.getTrivialTypeSourceInfo(T: R, Loc), E, |
| 8861 | AngleBrackets: SourceRange(Loc, Loc), Parens: SourceRange(Loc, Loc)); |
| 8862 | } |
| 8863 | }; |
| 8864 | } |
| 8865 | |
| 8866 | /// Perform the unqualified lookups that might be needed to form a defaulted |
| 8867 | /// comparison function for the given operator. |
| 8868 | static void lookupOperatorsForDefaultedComparison(Sema &Self, Scope *S, |
| 8869 | UnresolvedSetImpl &Operators, |
| 8870 | OverloadedOperatorKind Op) { |
| 8871 | auto Lookup = [&](OverloadedOperatorKind OO) { |
| 8872 | Self.LookupOverloadedOperatorName(Op: OO, S, Functions&: Operators); |
| 8873 | }; |
| 8874 | |
| 8875 | // Every defaulted operator looks up itself. |
| 8876 | Lookup(Op); |
| 8877 | // ... and the rewritten form of itself, if any. |
| 8878 | if (OverloadedOperatorKind = getRewrittenOverloadedOperator(Kind: Op)) |
| 8879 | Lookup(ExtraOp); |
| 8880 | |
| 8881 | // For 'operator<=>', we also form a 'cmp != 0' expression, and might |
| 8882 | // synthesize a three-way comparison from '<' and '=='. In a dependent |
| 8883 | // context, we also need to look up '==' in case we implicitly declare a |
| 8884 | // defaulted 'operator=='. |
| 8885 | if (Op == OO_Spaceship) { |
| 8886 | Lookup(OO_ExclaimEqual); |
| 8887 | Lookup(OO_Less); |
| 8888 | Lookup(OO_EqualEqual); |
| 8889 | } |
| 8890 | } |
| 8891 | |
| 8892 | bool Sema::CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *FD, |
| 8893 | DefaultedComparisonKind DCK) { |
| 8894 | assert(DCK != DefaultedComparisonKind::None && "not a defaulted comparison" ); |
| 8895 | |
| 8896 | // Perform any unqualified lookups we're going to need to default this |
| 8897 | // function. |
| 8898 | if (S) { |
| 8899 | UnresolvedSet<32> Operators; |
| 8900 | lookupOperatorsForDefaultedComparison(Self&: *this, S, Operators, |
| 8901 | Op: FD->getOverloadedOperator()); |
| 8902 | FD->setDefaultedOrDeletedInfo( |
| 8903 | FunctionDecl::DefaultedOrDeletedFunctionInfo::Create( |
| 8904 | Context, Lookups: Operators.pairs())); |
| 8905 | } |
| 8906 | |
| 8907 | // C++2a [class.compare.default]p1: |
| 8908 | // A defaulted comparison operator function for some class C shall be a |
| 8909 | // non-template function declared in the member-specification of C that is |
| 8910 | // -- a non-static const non-volatile member of C having one parameter of |
| 8911 | // type const C& and either no ref-qualifier or the ref-qualifier &, or |
| 8912 | // -- a friend of C having two parameters of type const C& or two |
| 8913 | // parameters of type C. |
| 8914 | |
| 8915 | CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext()); |
| 8916 | bool IsMethod = isa<CXXMethodDecl>(Val: FD); |
| 8917 | if (IsMethod) { |
| 8918 | auto *MD = cast<CXXMethodDecl>(Val: FD); |
| 8919 | assert(!MD->isStatic() && "comparison function cannot be a static member" ); |
| 8920 | |
| 8921 | if (MD->getRefQualifier() == RQ_RValue) { |
| 8922 | Diag(MD->getLocation(), diag::err_ref_qualifier_comparison_operator); |
| 8923 | |
| 8924 | // Remove the ref qualifier to recover. |
| 8925 | const auto *FPT = MD->getType()->castAs<FunctionProtoType>(); |
| 8926 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
| 8927 | EPI.RefQualifier = RQ_None; |
| 8928 | MD->setType(Context.getFunctionType(ResultTy: FPT->getReturnType(), |
| 8929 | Args: FPT->getParamTypes(), EPI)); |
| 8930 | } |
| 8931 | |
| 8932 | // If we're out-of-class, this is the class we're comparing. |
| 8933 | if (!RD) |
| 8934 | RD = MD->getParent(); |
| 8935 | QualType T = MD->getFunctionObjectParameterReferenceType(); |
| 8936 | if (!T.getNonReferenceType().isConstQualified() && |
| 8937 | (MD->isImplicitObjectMemberFunction() || T->isLValueReferenceType())) { |
| 8938 | SourceLocation Loc, InsertLoc; |
| 8939 | if (MD->isExplicitObjectMemberFunction()) { |
| 8940 | Loc = MD->getParamDecl(0)->getBeginLoc(); |
| 8941 | InsertLoc = getLocForEndOfToken( |
| 8942 | Loc: MD->getParamDecl(0)->getExplicitObjectParamThisLoc()); |
| 8943 | } else { |
| 8944 | Loc = MD->getLocation(); |
| 8945 | if (FunctionTypeLoc Loc = MD->getFunctionTypeLoc()) |
| 8946 | InsertLoc = Loc.getRParenLoc(); |
| 8947 | } |
| 8948 | // Don't diagnose an implicit 'operator=='; we will have diagnosed the |
| 8949 | // corresponding defaulted 'operator<=>' already. |
| 8950 | if (!MD->isImplicit()) { |
| 8951 | Diag(Loc, diag::err_defaulted_comparison_non_const) |
| 8952 | << (int)DCK << FixItHint::CreateInsertion(InsertLoc, " const" ); |
| 8953 | } |
| 8954 | |
| 8955 | // Add the 'const' to the type to recover. |
| 8956 | if (MD->isExplicitObjectMemberFunction()) { |
| 8957 | assert(T->isLValueReferenceType()); |
| 8958 | MD->getParamDecl(0)->setType(Context.getLValueReferenceType( |
| 8959 | T: T.getNonReferenceType().withConst())); |
| 8960 | } else { |
| 8961 | const auto *FPT = MD->getType()->castAs<FunctionProtoType>(); |
| 8962 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
| 8963 | EPI.TypeQuals.addConst(); |
| 8964 | MD->setType(Context.getFunctionType(ResultTy: FPT->getReturnType(), |
| 8965 | Args: FPT->getParamTypes(), EPI)); |
| 8966 | } |
| 8967 | } |
| 8968 | |
| 8969 | if (MD->isVolatile()) { |
| 8970 | Diag(MD->getLocation(), diag::err_volatile_comparison_operator); |
| 8971 | |
| 8972 | // Remove the 'volatile' from the type to recover. |
| 8973 | const auto *FPT = MD->getType()->castAs<FunctionProtoType>(); |
| 8974 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
| 8975 | EPI.TypeQuals.removeVolatile(); |
| 8976 | MD->setType(Context.getFunctionType(ResultTy: FPT->getReturnType(), |
| 8977 | Args: FPT->getParamTypes(), EPI)); |
| 8978 | } |
| 8979 | } |
| 8980 | |
| 8981 | if ((FD->getNumParams() - |
| 8982 | (unsigned)FD->hasCXXExplicitFunctionObjectParameter()) != |
| 8983 | (IsMethod ? 1 : 2)) { |
| 8984 | // Let's not worry about using a variadic template pack here -- who would do |
| 8985 | // such a thing? |
| 8986 | Diag(FD->getLocation(), diag::err_defaulted_comparison_num_args) |
| 8987 | << int(IsMethod) << int(DCK); |
| 8988 | return true; |
| 8989 | } |
| 8990 | |
| 8991 | const ParmVarDecl *KnownParm = nullptr; |
| 8992 | for (const ParmVarDecl *Param : FD->parameters()) { |
| 8993 | QualType ParmTy = Param->getType(); |
| 8994 | if (!KnownParm) { |
| 8995 | auto CTy = ParmTy; |
| 8996 | // Is it `T const &`? |
| 8997 | bool Ok = !IsMethod || FD->hasCXXExplicitFunctionObjectParameter(); |
| 8998 | QualType ExpectedTy; |
| 8999 | if (RD) |
| 9000 | ExpectedTy = Context.getRecordType(RD); |
| 9001 | if (auto *Ref = CTy->getAs<LValueReferenceType>()) { |
| 9002 | CTy = Ref->getPointeeType(); |
| 9003 | if (RD) |
| 9004 | ExpectedTy.addConst(); |
| 9005 | Ok = true; |
| 9006 | } |
| 9007 | |
| 9008 | // Is T a class? |
| 9009 | if (RD) { |
| 9010 | Ok &= RD->isDependentType() || Context.hasSameType(CTy, ExpectedTy); |
| 9011 | } else { |
| 9012 | RD = CTy->getAsCXXRecordDecl(); |
| 9013 | Ok &= RD != nullptr; |
| 9014 | } |
| 9015 | |
| 9016 | if (Ok) { |
| 9017 | KnownParm = Param; |
| 9018 | } else { |
| 9019 | // Don't diagnose an implicit 'operator=='; we will have diagnosed the |
| 9020 | // corresponding defaulted 'operator<=>' already. |
| 9021 | if (!FD->isImplicit()) { |
| 9022 | if (RD) { |
| 9023 | QualType PlainTy = Context.getRecordType(RD); |
| 9024 | QualType RefTy = |
| 9025 | Context.getLValueReferenceType(T: PlainTy.withConst()); |
| 9026 | Diag(FD->getLocation(), diag::err_defaulted_comparison_param) |
| 9027 | << int(DCK) << ParmTy << RefTy << int(!IsMethod) << PlainTy |
| 9028 | << Param->getSourceRange(); |
| 9029 | } else { |
| 9030 | assert(!IsMethod && "should know expected type for method" ); |
| 9031 | Diag(FD->getLocation(), |
| 9032 | diag::err_defaulted_comparison_param_unknown) |
| 9033 | << int(DCK) << ParmTy << Param->getSourceRange(); |
| 9034 | } |
| 9035 | } |
| 9036 | return true; |
| 9037 | } |
| 9038 | } else if (!Context.hasSameType(KnownParm->getType(), ParmTy)) { |
| 9039 | Diag(FD->getLocation(), diag::err_defaulted_comparison_param_mismatch) |
| 9040 | << int(DCK) << KnownParm->getType() << KnownParm->getSourceRange() |
| 9041 | << ParmTy << Param->getSourceRange(); |
| 9042 | return true; |
| 9043 | } |
| 9044 | } |
| 9045 | |
| 9046 | assert(RD && "must have determined class" ); |
| 9047 | if (IsMethod) { |
| 9048 | } else if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { |
| 9049 | // In-class, must be a friend decl. |
| 9050 | assert(FD->getFriendObjectKind() && "expected a friend declaration" ); |
| 9051 | } else { |
| 9052 | // Out of class, require the defaulted comparison to be a friend (of a |
| 9053 | // complete type, per CWG2547). |
| 9054 | if (RequireCompleteType(FD->getLocation(), Context.getRecordType(RD), |
| 9055 | diag::err_defaulted_comparison_not_friend, int(DCK), |
| 9056 | int(1))) |
| 9057 | return true; |
| 9058 | |
| 9059 | if (llvm::none_of(Range: RD->friends(), P: [&](const FriendDecl *F) { |
| 9060 | return declaresSameEntity(F->getFriendDecl(), FD); |
| 9061 | })) { |
| 9062 | Diag(FD->getLocation(), diag::err_defaulted_comparison_not_friend) |
| 9063 | << int(DCK) << int(0) << RD; |
| 9064 | Diag(RD->getCanonicalDecl()->getLocation(), diag::note_declared_at); |
| 9065 | return true; |
| 9066 | } |
| 9067 | } |
| 9068 | |
| 9069 | // C++2a [class.eq]p1, [class.rel]p1: |
| 9070 | // A [defaulted comparison other than <=>] shall have a declared return |
| 9071 | // type bool. |
| 9072 | if (DCK != DefaultedComparisonKind::ThreeWay && |
| 9073 | !FD->getDeclaredReturnType()->isDependentType() && |
| 9074 | !Context.hasSameType(FD->getDeclaredReturnType(), Context.BoolTy)) { |
| 9075 | Diag(FD->getLocation(), diag::err_defaulted_comparison_return_type_not_bool) |
| 9076 | << (int)DCK << FD->getDeclaredReturnType() << Context.BoolTy |
| 9077 | << FD->getReturnTypeSourceRange(); |
| 9078 | return true; |
| 9079 | } |
| 9080 | // C++2a [class.spaceship]p2 [P2002R0]: |
| 9081 | // Let R be the declared return type [...]. If R is auto, [...]. Otherwise, |
| 9082 | // R shall not contain a placeholder type. |
| 9083 | if (QualType RT = FD->getDeclaredReturnType(); |
| 9084 | DCK == DefaultedComparisonKind::ThreeWay && |
| 9085 | RT->getContainedDeducedType() && |
| 9086 | (!Context.hasSameType(T1: RT, T2: Context.getAutoDeductType()) || |
| 9087 | RT->getContainedAutoType()->isConstrained())) { |
| 9088 | Diag(FD->getLocation(), |
| 9089 | diag::err_defaulted_comparison_deduced_return_type_not_auto) |
| 9090 | << (int)DCK << FD->getDeclaredReturnType() << Context.AutoDeductTy |
| 9091 | << FD->getReturnTypeSourceRange(); |
| 9092 | return true; |
| 9093 | } |
| 9094 | |
| 9095 | // For a defaulted function in a dependent class, defer all remaining checks |
| 9096 | // until instantiation. |
| 9097 | if (RD->isDependentType()) |
| 9098 | return false; |
| 9099 | |
| 9100 | // Determine whether the function should be defined as deleted. |
| 9101 | DefaultedComparisonInfo Info = |
| 9102 | DefaultedComparisonAnalyzer(*this, RD, FD, DCK).visit(); |
| 9103 | |
| 9104 | bool First = FD == FD->getCanonicalDecl(); |
| 9105 | |
| 9106 | if (!First) { |
| 9107 | if (Info.Deleted) { |
| 9108 | // C++11 [dcl.fct.def.default]p4: |
| 9109 | // [For a] user-provided explicitly-defaulted function [...] if such a |
| 9110 | // function is implicitly defined as deleted, the program is ill-formed. |
| 9111 | // |
| 9112 | // This is really just a consequence of the general rule that you can |
| 9113 | // only delete a function on its first declaration. |
| 9114 | Diag(FD->getLocation(), diag::err_non_first_default_compare_deletes) |
| 9115 | << FD->isImplicit() << (int)DCK; |
| 9116 | DefaultedComparisonAnalyzer(*this, RD, FD, DCK, |
| 9117 | DefaultedComparisonAnalyzer::ExplainDeleted) |
| 9118 | .visit(); |
| 9119 | return true; |
| 9120 | } |
| 9121 | if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { |
| 9122 | // C++20 [class.compare.default]p1: |
| 9123 | // [...] A definition of a comparison operator as defaulted that appears |
| 9124 | // in a class shall be the first declaration of that function. |
| 9125 | Diag(FD->getLocation(), diag::err_non_first_default_compare_in_class) |
| 9126 | << (int)DCK; |
| 9127 | Diag(FD->getCanonicalDecl()->getLocation(), |
| 9128 | diag::note_previous_declaration); |
| 9129 | return true; |
| 9130 | } |
| 9131 | } |
| 9132 | |
| 9133 | // If we want to delete the function, then do so; there's nothing else to |
| 9134 | // check in that case. |
| 9135 | if (Info.Deleted) { |
| 9136 | SetDeclDeleted(dcl: FD, DelLoc: FD->getLocation()); |
| 9137 | if (!inTemplateInstantiation() && !FD->isImplicit()) { |
| 9138 | Diag(FD->getLocation(), diag::warn_defaulted_comparison_deleted) |
| 9139 | << (int)DCK; |
| 9140 | DefaultedComparisonAnalyzer(*this, RD, FD, DCK, |
| 9141 | DefaultedComparisonAnalyzer::ExplainDeleted) |
| 9142 | .visit(); |
| 9143 | if (FD->getDefaultLoc().isValid()) |
| 9144 | Diag(FD->getDefaultLoc(), diag::note_replace_equals_default_to_delete) |
| 9145 | << FixItHint::CreateReplacement(FD->getDefaultLoc(), "delete" ); |
| 9146 | } |
| 9147 | return false; |
| 9148 | } |
| 9149 | |
| 9150 | // C++2a [class.spaceship]p2: |
| 9151 | // The return type is deduced as the common comparison type of R0, R1, ... |
| 9152 | if (DCK == DefaultedComparisonKind::ThreeWay && |
| 9153 | FD->getDeclaredReturnType()->isUndeducedAutoType()) { |
| 9154 | SourceLocation RetLoc = FD->getReturnTypeSourceRange().getBegin(); |
| 9155 | if (RetLoc.isInvalid()) |
| 9156 | RetLoc = FD->getBeginLoc(); |
| 9157 | // FIXME: Should we really care whether we have the complete type and the |
| 9158 | // 'enumerator' constants here? A forward declaration seems sufficient. |
| 9159 | QualType Cat = CheckComparisonCategoryType( |
| 9160 | Kind: Info.Category, Loc: RetLoc, Usage: ComparisonCategoryUsage::DefaultedOperator); |
| 9161 | if (Cat.isNull()) |
| 9162 | return true; |
| 9163 | Context.adjustDeducedFunctionResultType( |
| 9164 | FD, ResultType: SubstAutoType(TypeWithAuto: FD->getDeclaredReturnType(), Replacement: Cat)); |
| 9165 | } |
| 9166 | |
| 9167 | // C++2a [dcl.fct.def.default]p3 [P2002R0]: |
| 9168 | // An explicitly-defaulted function that is not defined as deleted may be |
| 9169 | // declared constexpr or consteval only if it is constexpr-compatible. |
| 9170 | // C++2a [class.compare.default]p3 [P2002R0]: |
| 9171 | // A defaulted comparison function is constexpr-compatible if it satisfies |
| 9172 | // the requirements for a constexpr function [...] |
| 9173 | // The only relevant requirements are that the parameter and return types are |
| 9174 | // literal types. The remaining conditions are checked by the analyzer. |
| 9175 | // |
| 9176 | // We support P2448R2 in language modes earlier than C++23 as an extension. |
| 9177 | // The concept of constexpr-compatible was removed. |
| 9178 | // C++23 [dcl.fct.def.default]p3 [P2448R2] |
| 9179 | // A function explicitly defaulted on its first declaration is implicitly |
| 9180 | // inline, and is implicitly constexpr if it is constexpr-suitable. |
| 9181 | // C++23 [dcl.constexpr]p3 |
| 9182 | // A function is constexpr-suitable if |
| 9183 | // - it is not a coroutine, and |
| 9184 | // - if the function is a constructor or destructor, its class does not |
| 9185 | // have any virtual base classes. |
| 9186 | if (FD->isConstexpr()) { |
| 9187 | if (!getLangOpts().CPlusPlus23 && |
| 9188 | CheckConstexprReturnType(SemaRef&: *this, FD, Kind: CheckConstexprKind::Diagnose) && |
| 9189 | CheckConstexprParameterTypes(SemaRef&: *this, FD, Kind: CheckConstexprKind::Diagnose) && |
| 9190 | !Info.Constexpr) { |
| 9191 | Diag(FD->getBeginLoc(), diag::err_defaulted_comparison_constexpr_mismatch) |
| 9192 | << FD->isImplicit() << (int)DCK << FD->isConsteval(); |
| 9193 | DefaultedComparisonAnalyzer(*this, RD, FD, DCK, |
| 9194 | DefaultedComparisonAnalyzer::ExplainConstexpr) |
| 9195 | .visit(); |
| 9196 | } |
| 9197 | } |
| 9198 | |
| 9199 | // C++2a [dcl.fct.def.default]p3 [P2002R0]: |
| 9200 | // If a constexpr-compatible function is explicitly defaulted on its first |
| 9201 | // declaration, it is implicitly considered to be constexpr. |
| 9202 | // FIXME: Only applying this to the first declaration seems problematic, as |
| 9203 | // simple reorderings can affect the meaning of the program. |
| 9204 | if (First && !FD->isConstexpr() && Info.Constexpr) |
| 9205 | FD->setConstexprKind(ConstexprSpecKind::Constexpr); |
| 9206 | |
| 9207 | // C++2a [except.spec]p3: |
| 9208 | // If a declaration of a function does not have a noexcept-specifier |
| 9209 | // [and] is defaulted on its first declaration, [...] the exception |
| 9210 | // specification is as specified below |
| 9211 | if (FD->getExceptionSpecType() == EST_None) { |
| 9212 | auto *FPT = FD->getType()->castAs<FunctionProtoType>(); |
| 9213 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
| 9214 | EPI.ExceptionSpec.Type = EST_Unevaluated; |
| 9215 | EPI.ExceptionSpec.SourceDecl = FD; |
| 9216 | FD->setType(Context.getFunctionType(ResultTy: FPT->getReturnType(), |
| 9217 | Args: FPT->getParamTypes(), EPI)); |
| 9218 | } |
| 9219 | |
| 9220 | return false; |
| 9221 | } |
| 9222 | |
| 9223 | void Sema::DeclareImplicitEqualityComparison(CXXRecordDecl *RD, |
| 9224 | FunctionDecl *Spaceship) { |
| 9225 | Sema::CodeSynthesisContext Ctx; |
| 9226 | Ctx.Kind = Sema::CodeSynthesisContext::DeclaringImplicitEqualityComparison; |
| 9227 | Ctx.PointOfInstantiation = Spaceship->getEndLoc(); |
| 9228 | Ctx.Entity = Spaceship; |
| 9229 | pushCodeSynthesisContext(Ctx); |
| 9230 | |
| 9231 | if (FunctionDecl *EqualEqual = SubstSpaceshipAsEqualEqual(RD, Spaceship)) |
| 9232 | EqualEqual->setImplicit(); |
| 9233 | |
| 9234 | popCodeSynthesisContext(); |
| 9235 | } |
| 9236 | |
| 9237 | void Sema::DefineDefaultedComparison(SourceLocation UseLoc, FunctionDecl *FD, |
| 9238 | DefaultedComparisonKind DCK) { |
| 9239 | assert(FD->isDefaulted() && !FD->isDeleted() && |
| 9240 | !FD->doesThisDeclarationHaveABody()); |
| 9241 | if (FD->willHaveBody() || FD->isInvalidDecl()) |
| 9242 | return; |
| 9243 | |
| 9244 | SynthesizedFunctionScope Scope(*this, FD); |
| 9245 | |
| 9246 | // Add a context note for diagnostics produced after this point. |
| 9247 | Scope.addContextNote(UseLoc); |
| 9248 | |
| 9249 | { |
| 9250 | // Build and set up the function body. |
| 9251 | // The first parameter has type maybe-ref-to maybe-const T, use that to get |
| 9252 | // the type of the class being compared. |
| 9253 | auto PT = FD->getParamDecl(i: 0)->getType(); |
| 9254 | CXXRecordDecl *RD = PT.getNonReferenceType()->getAsCXXRecordDecl(); |
| 9255 | SourceLocation BodyLoc = |
| 9256 | FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); |
| 9257 | StmtResult Body = |
| 9258 | DefaultedComparisonSynthesizer(*this, RD, FD, DCK, BodyLoc).build(); |
| 9259 | if (Body.isInvalid()) { |
| 9260 | FD->setInvalidDecl(); |
| 9261 | return; |
| 9262 | } |
| 9263 | FD->setBody(Body.get()); |
| 9264 | FD->markUsed(Context); |
| 9265 | } |
| 9266 | |
| 9267 | // The exception specification is needed because we are defining the |
| 9268 | // function. Note that this will reuse the body we just built. |
| 9269 | ResolveExceptionSpec(Loc: UseLoc, FPT: FD->getType()->castAs<FunctionProtoType>()); |
| 9270 | |
| 9271 | if (ASTMutationListener *L = getASTMutationListener()) |
| 9272 | L->CompletedImplicitDefinition(D: FD); |
| 9273 | } |
| 9274 | |
| 9275 | static Sema::ImplicitExceptionSpecification |
| 9276 | ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc, |
| 9277 | FunctionDecl *FD, |
| 9278 | Sema::DefaultedComparisonKind DCK) { |
| 9279 | ComputingExceptionSpec CES(S, FD, Loc); |
| 9280 | Sema::ImplicitExceptionSpecification ExceptSpec(S); |
| 9281 | |
| 9282 | if (FD->isInvalidDecl()) |
| 9283 | return ExceptSpec; |
| 9284 | |
| 9285 | // The common case is that we just defined the comparison function. In that |
| 9286 | // case, just look at whether the body can throw. |
| 9287 | if (FD->hasBody()) { |
| 9288 | ExceptSpec.CalledStmt(S: FD->getBody()); |
| 9289 | } else { |
| 9290 | // Otherwise, build a body so we can check it. This should ideally only |
| 9291 | // happen when we're not actually marking the function referenced. (This is |
| 9292 | // only really important for efficiency: we don't want to build and throw |
| 9293 | // away bodies for comparison functions more than we strictly need to.) |
| 9294 | |
| 9295 | // Pretend to synthesize the function body in an unevaluated context. |
| 9296 | // Note that we can't actually just go ahead and define the function here: |
| 9297 | // we are not permitted to mark its callees as referenced. |
| 9298 | Sema::SynthesizedFunctionScope Scope(S, FD); |
| 9299 | EnterExpressionEvaluationContext Context( |
| 9300 | S, Sema::ExpressionEvaluationContext::Unevaluated); |
| 9301 | |
| 9302 | CXXRecordDecl *RD = |
| 9303 | cast<CXXRecordDecl>(FD->getFriendObjectKind() == Decl::FOK_None |
| 9304 | ? FD->getDeclContext() |
| 9305 | : FD->getLexicalDeclContext()); |
| 9306 | SourceLocation BodyLoc = |
| 9307 | FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation(); |
| 9308 | StmtResult Body = |
| 9309 | DefaultedComparisonSynthesizer(S, RD, FD, DCK, BodyLoc).build(); |
| 9310 | if (!Body.isInvalid()) |
| 9311 | ExceptSpec.CalledStmt(S: Body.get()); |
| 9312 | |
| 9313 | // FIXME: Can we hold onto this body and just transform it to potentially |
| 9314 | // evaluated when we're asked to define the function rather than rebuilding |
| 9315 | // it? Either that, or we should only build the bits of the body that we |
| 9316 | // need (the expressions, not the statements). |
| 9317 | } |
| 9318 | |
| 9319 | return ExceptSpec; |
| 9320 | } |
| 9321 | |
| 9322 | void Sema::CheckDelayedMemberExceptionSpecs() { |
| 9323 | decltype(DelayedOverridingExceptionSpecChecks) Overriding; |
| 9324 | decltype(DelayedEquivalentExceptionSpecChecks) Equivalent; |
| 9325 | |
| 9326 | std::swap(LHS&: Overriding, RHS&: DelayedOverridingExceptionSpecChecks); |
| 9327 | std::swap(LHS&: Equivalent, RHS&: DelayedEquivalentExceptionSpecChecks); |
| 9328 | |
| 9329 | // Perform any deferred checking of exception specifications for virtual |
| 9330 | // destructors. |
| 9331 | for (auto &Check : Overriding) |
| 9332 | CheckOverridingFunctionExceptionSpec(New: Check.first, Old: Check.second); |
| 9333 | |
| 9334 | // Perform any deferred checking of exception specifications for befriended |
| 9335 | // special members. |
| 9336 | for (auto &Check : Equivalent) |
| 9337 | CheckEquivalentExceptionSpec(Old: Check.second, New: Check.first); |
| 9338 | } |
| 9339 | |
| 9340 | namespace { |
| 9341 | /// CRTP base class for visiting operations performed by a special member |
| 9342 | /// function (or inherited constructor). |
| 9343 | template<typename Derived> |
| 9344 | struct SpecialMemberVisitor { |
| 9345 | Sema &S; |
| 9346 | CXXMethodDecl *MD; |
| 9347 | CXXSpecialMemberKind CSM; |
| 9348 | Sema::InheritedConstructorInfo *ICI; |
| 9349 | |
| 9350 | // Properties of the special member, computed for convenience. |
| 9351 | bool IsConstructor = false, IsAssignment = false, ConstArg = false; |
| 9352 | |
| 9353 | SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, CXXSpecialMemberKind CSM, |
| 9354 | Sema::InheritedConstructorInfo *ICI) |
| 9355 | : S(S), MD(MD), CSM(CSM), ICI(ICI) { |
| 9356 | switch (CSM) { |
| 9357 | case CXXSpecialMemberKind::DefaultConstructor: |
| 9358 | case CXXSpecialMemberKind::CopyConstructor: |
| 9359 | case CXXSpecialMemberKind::MoveConstructor: |
| 9360 | IsConstructor = true; |
| 9361 | break; |
| 9362 | case CXXSpecialMemberKind::CopyAssignment: |
| 9363 | case CXXSpecialMemberKind::MoveAssignment: |
| 9364 | IsAssignment = true; |
| 9365 | break; |
| 9366 | case CXXSpecialMemberKind::Destructor: |
| 9367 | break; |
| 9368 | case CXXSpecialMemberKind::Invalid: |
| 9369 | llvm_unreachable("invalid special member kind" ); |
| 9370 | } |
| 9371 | |
| 9372 | if (MD->getNumExplicitParams()) { |
| 9373 | if (const ReferenceType *RT = |
| 9374 | MD->getNonObjectParameter(0)->getType()->getAs<ReferenceType>()) |
| 9375 | ConstArg = RT->getPointeeType().isConstQualified(); |
| 9376 | } |
| 9377 | } |
| 9378 | |
| 9379 | Derived &getDerived() { return static_cast<Derived&>(*this); } |
| 9380 | |
| 9381 | /// Is this a "move" special member? |
| 9382 | bool isMove() const { |
| 9383 | return CSM == CXXSpecialMemberKind::MoveConstructor || |
| 9384 | CSM == CXXSpecialMemberKind::MoveAssignment; |
| 9385 | } |
| 9386 | |
| 9387 | /// Look up the corresponding special member in the given class. |
| 9388 | Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class, |
| 9389 | unsigned Quals, bool IsMutable) { |
| 9390 | return lookupCallFromSpecialMember(S, Class, CSM, FieldQuals: Quals, |
| 9391 | ConstRHS: ConstArg && !IsMutable); |
| 9392 | } |
| 9393 | |
| 9394 | /// Look up the constructor for the specified base class to see if it's |
| 9395 | /// overridden due to this being an inherited constructor. |
| 9396 | Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) { |
| 9397 | if (!ICI) |
| 9398 | return {}; |
| 9399 | assert(CSM == CXXSpecialMemberKind::DefaultConstructor); |
| 9400 | auto *BaseCtor = |
| 9401 | cast<CXXConstructorDecl>(Val: MD)->getInheritedConstructor().getConstructor(); |
| 9402 | if (auto *MD = ICI->findConstructorForBase(Base: Class, Ctor: BaseCtor).first) |
| 9403 | return MD; |
| 9404 | return {}; |
| 9405 | } |
| 9406 | |
| 9407 | /// A base or member subobject. |
| 9408 | typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject; |
| 9409 | |
| 9410 | /// Get the location to use for a subobject in diagnostics. |
| 9411 | static SourceLocation getSubobjectLoc(Subobject Subobj) { |
| 9412 | // FIXME: For an indirect virtual base, the direct base leading to |
| 9413 | // the indirect virtual base would be a more useful choice. |
| 9414 | if (auto *B = dyn_cast<CXXBaseSpecifier *>(Val&: Subobj)) |
| 9415 | return B->getBaseTypeLoc(); |
| 9416 | else |
| 9417 | return cast<FieldDecl *>(Val&: Subobj)->getLocation(); |
| 9418 | } |
| 9419 | |
| 9420 | enum BasesToVisit { |
| 9421 | /// Visit all non-virtual (direct) bases. |
| 9422 | VisitNonVirtualBases, |
| 9423 | /// Visit all direct bases, virtual or not. |
| 9424 | VisitDirectBases, |
| 9425 | /// Visit all non-virtual bases, and all virtual bases if the class |
| 9426 | /// is not abstract. |
| 9427 | VisitPotentiallyConstructedBases, |
| 9428 | /// Visit all direct or virtual bases. |
| 9429 | VisitAllBases |
| 9430 | }; |
| 9431 | |
| 9432 | // Visit the bases and members of the class. |
| 9433 | bool visit(BasesToVisit Bases) { |
| 9434 | CXXRecordDecl *RD = MD->getParent(); |
| 9435 | |
| 9436 | if (Bases == VisitPotentiallyConstructedBases) |
| 9437 | Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases; |
| 9438 | |
| 9439 | for (auto &B : RD->bases()) |
| 9440 | if ((Bases == VisitDirectBases || !B.isVirtual()) && |
| 9441 | getDerived().visitBase(&B)) |
| 9442 | return true; |
| 9443 | |
| 9444 | if (Bases == VisitAllBases) |
| 9445 | for (auto &B : RD->vbases()) |
| 9446 | if (getDerived().visitBase(&B)) |
| 9447 | return true; |
| 9448 | |
| 9449 | for (auto *F : RD->fields()) |
| 9450 | if (!F->isInvalidDecl() && !F->isUnnamedBitField() && |
| 9451 | getDerived().visitField(F)) |
| 9452 | return true; |
| 9453 | |
| 9454 | return false; |
| 9455 | } |
| 9456 | }; |
| 9457 | } |
| 9458 | |
| 9459 | namespace { |
| 9460 | struct SpecialMemberDeletionInfo |
| 9461 | : SpecialMemberVisitor<SpecialMemberDeletionInfo> { |
| 9462 | bool Diagnose; |
| 9463 | |
| 9464 | SourceLocation Loc; |
| 9465 | |
| 9466 | bool AllFieldsAreConst; |
| 9467 | |
| 9468 | SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD, |
| 9469 | CXXSpecialMemberKind CSM, |
| 9470 | Sema::InheritedConstructorInfo *ICI, bool Diagnose) |
| 9471 | : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose), |
| 9472 | Loc(MD->getLocation()), AllFieldsAreConst(true) {} |
| 9473 | |
| 9474 | bool inUnion() const { return MD->getParent()->isUnion(); } |
| 9475 | |
| 9476 | CXXSpecialMemberKind getEffectiveCSM() { |
| 9477 | return ICI ? CXXSpecialMemberKind::Invalid : CSM; |
| 9478 | } |
| 9479 | |
| 9480 | bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType); |
| 9481 | |
| 9482 | bool shouldDeleteForVariantPtrAuthMember(const FieldDecl *FD); |
| 9483 | |
| 9484 | bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); } |
| 9485 | bool visitField(FieldDecl *Field) { return shouldDeleteForField(FD: Field); } |
| 9486 | |
| 9487 | bool shouldDeleteForBase(CXXBaseSpecifier *Base); |
| 9488 | bool shouldDeleteForField(FieldDecl *FD); |
| 9489 | bool shouldDeleteForAllConstMembers(); |
| 9490 | |
| 9491 | bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj, |
| 9492 | unsigned Quals); |
| 9493 | bool shouldDeleteForSubobjectCall(Subobject Subobj, |
| 9494 | Sema::SpecialMemberOverloadResult SMOR, |
| 9495 | bool IsDtorCallInCtor); |
| 9496 | |
| 9497 | bool isAccessible(Subobject Subobj, CXXMethodDecl *D); |
| 9498 | }; |
| 9499 | } |
| 9500 | |
| 9501 | /// Is the given special member inaccessible when used on the given |
| 9502 | /// sub-object. |
| 9503 | bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj, |
| 9504 | CXXMethodDecl *target) { |
| 9505 | /// If we're operating on a base class, the object type is the |
| 9506 | /// type of this special member. |
| 9507 | QualType objectTy; |
| 9508 | AccessSpecifier access = target->getAccess(); |
| 9509 | if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) { |
| 9510 | objectTy = S.Context.getTypeDeclType(MD->getParent()); |
| 9511 | access = CXXRecordDecl::MergeAccess(PathAccess: base->getAccessSpecifier(), DeclAccess: access); |
| 9512 | |
| 9513 | // If we're operating on a field, the object type is the type of the field. |
| 9514 | } else { |
| 9515 | objectTy = S.Context.getTypeDeclType(target->getParent()); |
| 9516 | } |
| 9517 | |
| 9518 | return S.isMemberAccessibleForDeletion( |
| 9519 | target->getParent(), DeclAccessPair::make(target, access), objectTy); |
| 9520 | } |
| 9521 | |
| 9522 | /// Check whether we should delete a special member due to the implicit |
| 9523 | /// definition containing a call to a special member of a subobject. |
| 9524 | bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall( |
| 9525 | Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR, |
| 9526 | bool IsDtorCallInCtor) { |
| 9527 | CXXMethodDecl *Decl = SMOR.getMethod(); |
| 9528 | FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); |
| 9529 | |
| 9530 | int DiagKind = -1; |
| 9531 | |
| 9532 | if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted) |
| 9533 | DiagKind = !Decl ? 0 : 1; |
| 9534 | else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) |
| 9535 | DiagKind = 2; |
| 9536 | else if (!isAccessible(Subobj, target: Decl)) |
| 9537 | DiagKind = 3; |
| 9538 | else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() && |
| 9539 | !Decl->isTrivial()) { |
| 9540 | // A member of a union must have a trivial corresponding special member. |
| 9541 | // As a weird special case, a destructor call from a union's constructor |
| 9542 | // must be accessible and non-deleted, but need not be trivial. Such a |
| 9543 | // destructor is never actually called, but is semantically checked as |
| 9544 | // if it were. |
| 9545 | if (CSM == CXXSpecialMemberKind::DefaultConstructor) { |
| 9546 | // [class.default.ctor]p2: |
| 9547 | // A defaulted default constructor for class X is defined as deleted if |
| 9548 | // - X is a union that has a variant member with a non-trivial default |
| 9549 | // constructor and no variant member of X has a default member |
| 9550 | // initializer |
| 9551 | const auto *RD = cast<CXXRecordDecl>(Val: Field->getParent()); |
| 9552 | if (!RD->hasInClassInitializer()) |
| 9553 | DiagKind = 4; |
| 9554 | } else { |
| 9555 | DiagKind = 4; |
| 9556 | } |
| 9557 | } |
| 9558 | |
| 9559 | if (DiagKind == -1) |
| 9560 | return false; |
| 9561 | |
| 9562 | if (Diagnose) { |
| 9563 | if (Field) { |
| 9564 | S.Diag(Field->getLocation(), |
| 9565 | diag::note_deleted_special_member_class_subobject) |
| 9566 | << getEffectiveCSM() << MD->getParent() << /*IsField*/ true << Field |
| 9567 | << DiagKind << IsDtorCallInCtor << /*IsObjCPtr*/ false; |
| 9568 | } else { |
| 9569 | CXXBaseSpecifier *Base = cast<CXXBaseSpecifier *>(Val&: Subobj); |
| 9570 | S.Diag(Base->getBeginLoc(), |
| 9571 | diag::note_deleted_special_member_class_subobject) |
| 9572 | << getEffectiveCSM() << MD->getParent() << /*IsField*/ false |
| 9573 | << Base->getType() << DiagKind << IsDtorCallInCtor |
| 9574 | << /*IsObjCPtr*/ false; |
| 9575 | } |
| 9576 | |
| 9577 | if (DiagKind == 1) |
| 9578 | S.NoteDeletedFunction(Decl); |
| 9579 | // FIXME: Explain inaccessibility if DiagKind == 3. |
| 9580 | } |
| 9581 | |
| 9582 | return true; |
| 9583 | } |
| 9584 | |
| 9585 | /// Check whether we should delete a special member function due to having a |
| 9586 | /// direct or virtual base class or non-static data member of class type M. |
| 9587 | bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject( |
| 9588 | CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) { |
| 9589 | FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); |
| 9590 | bool IsMutable = Field && Field->isMutable(); |
| 9591 | |
| 9592 | // C++11 [class.ctor]p5: |
| 9593 | // -- any direct or virtual base class, or non-static data member with no |
| 9594 | // brace-or-equal-initializer, has class type M (or array thereof) and |
| 9595 | // either M has no default constructor or overload resolution as applied |
| 9596 | // to M's default constructor results in an ambiguity or in a function |
| 9597 | // that is deleted or inaccessible |
| 9598 | // C++11 [class.copy]p11, C++11 [class.copy]p23: |
| 9599 | // -- a direct or virtual base class B that cannot be copied/moved because |
| 9600 | // overload resolution, as applied to B's corresponding special member, |
| 9601 | // results in an ambiguity or a function that is deleted or inaccessible |
| 9602 | // from the defaulted special member |
| 9603 | // C++11 [class.dtor]p5: |
| 9604 | // -- any direct or virtual base class [...] has a type with a destructor |
| 9605 | // that is deleted or inaccessible |
| 9606 | if (!(CSM == CXXSpecialMemberKind::DefaultConstructor && Field && |
| 9607 | Field->hasInClassInitializer()) && |
| 9608 | shouldDeleteForSubobjectCall(Subobj, SMOR: lookupIn(Class, Quals, IsMutable), |
| 9609 | IsDtorCallInCtor: false)) |
| 9610 | return true; |
| 9611 | |
| 9612 | // C++11 [class.ctor]p5, C++11 [class.copy]p11: |
| 9613 | // -- any direct or virtual base class or non-static data member has a |
| 9614 | // type with a destructor that is deleted or inaccessible |
| 9615 | if (IsConstructor) { |
| 9616 | Sema::SpecialMemberOverloadResult SMOR = |
| 9617 | S.LookupSpecialMember(D: Class, SM: CXXSpecialMemberKind::Destructor, ConstArg: false, |
| 9618 | VolatileArg: false, RValueThis: false, ConstThis: false, VolatileThis: false); |
| 9619 | if (shouldDeleteForSubobjectCall(Subobj, SMOR, IsDtorCallInCtor: true)) |
| 9620 | return true; |
| 9621 | } |
| 9622 | |
| 9623 | return false; |
| 9624 | } |
| 9625 | |
| 9626 | bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember( |
| 9627 | FieldDecl *FD, QualType FieldType) { |
| 9628 | // The defaulted special functions are defined as deleted if this is a variant |
| 9629 | // member with a non-trivial ownership type, e.g., ObjC __strong or __weak |
| 9630 | // type under ARC. |
| 9631 | if (!FieldType.hasNonTrivialObjCLifetime()) |
| 9632 | return false; |
| 9633 | |
| 9634 | // Don't make the defaulted default constructor defined as deleted if the |
| 9635 | // member has an in-class initializer. |
| 9636 | if (CSM == CXXSpecialMemberKind::DefaultConstructor && |
| 9637 | FD->hasInClassInitializer()) |
| 9638 | return false; |
| 9639 | |
| 9640 | if (Diagnose) { |
| 9641 | auto *ParentClass = cast<CXXRecordDecl>(Val: FD->getParent()); |
| 9642 | S.Diag(FD->getLocation(), diag::note_deleted_special_member_class_subobject) |
| 9643 | << getEffectiveCSM() << ParentClass << /*IsField*/ true << FD << 4 |
| 9644 | << /*IsDtorCallInCtor*/ false << /*IsObjCPtr*/ true; |
| 9645 | } |
| 9646 | |
| 9647 | return true; |
| 9648 | } |
| 9649 | |
| 9650 | bool SpecialMemberDeletionInfo::shouldDeleteForVariantPtrAuthMember( |
| 9651 | const FieldDecl *FD) { |
| 9652 | QualType FieldType = S.Context.getBaseElementType(FD->getType()); |
| 9653 | // Copy/move constructors/assignment operators are deleted if the field has an |
| 9654 | // address-discriminated ptrauth qualifier. |
| 9655 | PointerAuthQualifier Q = FieldType.getPointerAuth(); |
| 9656 | |
| 9657 | if (!Q || !Q.isAddressDiscriminated()) |
| 9658 | return false; |
| 9659 | |
| 9660 | if (CSM == CXXSpecialMemberKind::DefaultConstructor || |
| 9661 | CSM == CXXSpecialMemberKind::Destructor) |
| 9662 | return false; |
| 9663 | |
| 9664 | if (Diagnose) { |
| 9665 | auto *ParentClass = cast<CXXRecordDecl>(Val: FD->getParent()); |
| 9666 | S.Diag(FD->getLocation(), diag::note_deleted_special_member_class_subobject) |
| 9667 | << getEffectiveCSM() << ParentClass << /*IsField*/ true << FD << 4 |
| 9668 | << /*IsDtorCallInCtor*/ false << 2; |
| 9669 | } |
| 9670 | |
| 9671 | return true; |
| 9672 | } |
| 9673 | |
| 9674 | /// Check whether we should delete a special member function due to the class |
| 9675 | /// having a particular direct or virtual base class. |
| 9676 | bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) { |
| 9677 | CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl(); |
| 9678 | // If program is correct, BaseClass cannot be null, but if it is, the error |
| 9679 | // must be reported elsewhere. |
| 9680 | if (!BaseClass) |
| 9681 | return false; |
| 9682 | // If we have an inheriting constructor, check whether we're calling an |
| 9683 | // inherited constructor instead of a default constructor. |
| 9684 | Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(Class: BaseClass); |
| 9685 | if (auto *BaseCtor = SMOR.getMethod()) { |
| 9686 | // Note that we do not check access along this path; other than that, |
| 9687 | // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false); |
| 9688 | // FIXME: Check that the base has a usable destructor! Sink this into |
| 9689 | // shouldDeleteForClassSubobject. |
| 9690 | if (BaseCtor->isDeleted() && Diagnose) { |
| 9691 | S.Diag(Base->getBeginLoc(), |
| 9692 | diag::note_deleted_special_member_class_subobject) |
| 9693 | << getEffectiveCSM() << MD->getParent() << /*IsField*/ false |
| 9694 | << Base->getType() << /*Deleted*/ 1 << /*IsDtorCallInCtor*/ false |
| 9695 | << /*IsObjCPtr*/ false; |
| 9696 | S.NoteDeletedFunction(BaseCtor); |
| 9697 | } |
| 9698 | return BaseCtor->isDeleted(); |
| 9699 | } |
| 9700 | return shouldDeleteForClassSubobject(Class: BaseClass, Subobj: Base, Quals: 0); |
| 9701 | } |
| 9702 | |
| 9703 | /// Check whether we should delete a special member function due to the class |
| 9704 | /// having a particular non-static data member. |
| 9705 | bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) { |
| 9706 | QualType FieldType = S.Context.getBaseElementType(FD->getType()); |
| 9707 | CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl(); |
| 9708 | |
| 9709 | if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType)) |
| 9710 | return true; |
| 9711 | |
| 9712 | if (inUnion() && shouldDeleteForVariantPtrAuthMember(FD)) |
| 9713 | return true; |
| 9714 | |
| 9715 | if (CSM == CXXSpecialMemberKind::DefaultConstructor) { |
| 9716 | // For a default constructor, all references must be initialized in-class |
| 9717 | // and, if a union, it must have a non-const member. |
| 9718 | if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) { |
| 9719 | if (Diagnose) |
| 9720 | S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) |
| 9721 | << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0; |
| 9722 | return true; |
| 9723 | } |
| 9724 | // C++11 [class.ctor]p5 (modified by DR2394): any non-variant non-static |
| 9725 | // data member of const-qualified type (or array thereof) with no |
| 9726 | // brace-or-equal-initializer is not const-default-constructible. |
| 9727 | if (!inUnion() && FieldType.isConstQualified() && |
| 9728 | !FD->hasInClassInitializer() && |
| 9729 | (!FieldRecord || !FieldRecord->allowConstDefaultInit())) { |
| 9730 | if (Diagnose) |
| 9731 | S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field) |
| 9732 | << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1; |
| 9733 | return true; |
| 9734 | } |
| 9735 | |
| 9736 | if (inUnion() && !FieldType.isConstQualified()) |
| 9737 | AllFieldsAreConst = false; |
| 9738 | } else if (CSM == CXXSpecialMemberKind::CopyConstructor) { |
| 9739 | // For a copy constructor, data members must not be of rvalue reference |
| 9740 | // type. |
| 9741 | if (FieldType->isRValueReferenceType()) { |
| 9742 | if (Diagnose) |
| 9743 | S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference) |
| 9744 | << MD->getParent() << FD << FieldType; |
| 9745 | return true; |
| 9746 | } |
| 9747 | } else if (IsAssignment) { |
| 9748 | // For an assignment operator, data members must not be of reference type. |
| 9749 | if (FieldType->isReferenceType()) { |
| 9750 | if (Diagnose) |
| 9751 | S.Diag(FD->getLocation(), diag::note_deleted_assign_field) |
| 9752 | << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0; |
| 9753 | return true; |
| 9754 | } |
| 9755 | if (!FieldRecord && FieldType.isConstQualified()) { |
| 9756 | // C++11 [class.copy]p23: |
| 9757 | // -- a non-static data member of const non-class type (or array thereof) |
| 9758 | if (Diagnose) |
| 9759 | S.Diag(FD->getLocation(), diag::note_deleted_assign_field) |
| 9760 | << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1; |
| 9761 | return true; |
| 9762 | } |
| 9763 | } |
| 9764 | |
| 9765 | if (FieldRecord) { |
| 9766 | // Some additional restrictions exist on the variant members. |
| 9767 | if (!inUnion() && FieldRecord->isUnion() && |
| 9768 | FieldRecord->isAnonymousStructOrUnion()) { |
| 9769 | bool AllVariantFieldsAreConst = true; |
| 9770 | |
| 9771 | // FIXME: Handle anonymous unions declared within anonymous unions. |
| 9772 | for (auto *UI : FieldRecord->fields()) { |
| 9773 | QualType UnionFieldType = S.Context.getBaseElementType(UI->getType()); |
| 9774 | |
| 9775 | if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType)) |
| 9776 | return true; |
| 9777 | |
| 9778 | if (shouldDeleteForVariantPtrAuthMember(&*UI)) |
| 9779 | return true; |
| 9780 | |
| 9781 | if (!UnionFieldType.isConstQualified()) |
| 9782 | AllVariantFieldsAreConst = false; |
| 9783 | |
| 9784 | CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl(); |
| 9785 | if (UnionFieldRecord && |
| 9786 | shouldDeleteForClassSubobject(UnionFieldRecord, UI, |
| 9787 | UnionFieldType.getCVRQualifiers())) |
| 9788 | return true; |
| 9789 | } |
| 9790 | |
| 9791 | // At least one member in each anonymous union must be non-const |
| 9792 | if (CSM == CXXSpecialMemberKind::DefaultConstructor && |
| 9793 | AllVariantFieldsAreConst && !FieldRecord->field_empty()) { |
| 9794 | if (Diagnose) |
| 9795 | S.Diag(FieldRecord->getLocation(), |
| 9796 | diag::note_deleted_default_ctor_all_const) |
| 9797 | << !!ICI << MD->getParent() << /*anonymous union*/1; |
| 9798 | return true; |
| 9799 | } |
| 9800 | |
| 9801 | // Don't check the implicit member of the anonymous union type. |
| 9802 | // This is technically non-conformant but supported, and we have a |
| 9803 | // diagnostic for this elsewhere. |
| 9804 | return false; |
| 9805 | } |
| 9806 | |
| 9807 | if (shouldDeleteForClassSubobject(Class: FieldRecord, Subobj: FD, |
| 9808 | Quals: FieldType.getCVRQualifiers())) |
| 9809 | return true; |
| 9810 | } |
| 9811 | |
| 9812 | return false; |
| 9813 | } |
| 9814 | |
| 9815 | /// C++11 [class.ctor] p5: |
| 9816 | /// A defaulted default constructor for a class X is defined as deleted if |
| 9817 | /// X is a union and all of its variant members are of const-qualified type. |
| 9818 | bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() { |
| 9819 | // This is a silly definition, because it gives an empty union a deleted |
| 9820 | // default constructor. Don't do that. |
| 9821 | if (CSM == CXXSpecialMemberKind::DefaultConstructor && inUnion() && |
| 9822 | AllFieldsAreConst) { |
| 9823 | bool AnyFields = false; |
| 9824 | for (auto *F : MD->getParent()->fields()) |
| 9825 | if ((AnyFields = !F->isUnnamedBitField())) |
| 9826 | break; |
| 9827 | if (!AnyFields) |
| 9828 | return false; |
| 9829 | if (Diagnose) |
| 9830 | S.Diag(MD->getParent()->getLocation(), |
| 9831 | diag::note_deleted_default_ctor_all_const) |
| 9832 | << !!ICI << MD->getParent() << /*not anonymous union*/0; |
| 9833 | return true; |
| 9834 | } |
| 9835 | return false; |
| 9836 | } |
| 9837 | |
| 9838 | /// Determine whether a defaulted special member function should be defined as |
| 9839 | /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11, |
| 9840 | /// C++11 [class.copy]p23, and C++11 [class.dtor]p5. |
| 9841 | bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, |
| 9842 | CXXSpecialMemberKind CSM, |
| 9843 | InheritedConstructorInfo *ICI, |
| 9844 | bool Diagnose) { |
| 9845 | if (MD->isInvalidDecl()) |
| 9846 | return false; |
| 9847 | CXXRecordDecl *RD = MD->getParent(); |
| 9848 | assert(!RD->isDependentType() && "do deletion after instantiation" ); |
| 9849 | if (!LangOpts.CPlusPlus || (!LangOpts.CPlusPlus11 && !RD->isLambda()) || |
| 9850 | RD->isInvalidDecl()) |
| 9851 | return false; |
| 9852 | |
| 9853 | // C++11 [expr.lambda.prim]p19: |
| 9854 | // The closure type associated with a lambda-expression has a |
| 9855 | // deleted (8.4.3) default constructor and a deleted copy |
| 9856 | // assignment operator. |
| 9857 | // C++2a adds back these operators if the lambda has no lambda-capture. |
| 9858 | if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() && |
| 9859 | (CSM == CXXSpecialMemberKind::DefaultConstructor || |
| 9860 | CSM == CXXSpecialMemberKind::CopyAssignment)) { |
| 9861 | if (Diagnose) |
| 9862 | Diag(RD->getLocation(), diag::note_lambda_decl); |
| 9863 | return true; |
| 9864 | } |
| 9865 | |
| 9866 | // For an anonymous struct or union, the copy and assignment special members |
| 9867 | // will never be used, so skip the check. For an anonymous union declared at |
| 9868 | // namespace scope, the constructor and destructor are used. |
| 9869 | if (CSM != CXXSpecialMemberKind::DefaultConstructor && |
| 9870 | CSM != CXXSpecialMemberKind::Destructor && RD->isAnonymousStructOrUnion()) |
| 9871 | return false; |
| 9872 | |
| 9873 | // C++11 [class.copy]p7, p18: |
| 9874 | // If the class definition declares a move constructor or move assignment |
| 9875 | // operator, an implicitly declared copy constructor or copy assignment |
| 9876 | // operator is defined as deleted. |
| 9877 | if (MD->isImplicit() && (CSM == CXXSpecialMemberKind::CopyConstructor || |
| 9878 | CSM == CXXSpecialMemberKind::CopyAssignment)) { |
| 9879 | CXXMethodDecl *UserDeclaredMove = nullptr; |
| 9880 | |
| 9881 | // In Microsoft mode up to MSVC 2013, a user-declared move only causes the |
| 9882 | // deletion of the corresponding copy operation, not both copy operations. |
| 9883 | // MSVC 2015 has adopted the standards conforming behavior. |
| 9884 | bool DeletesOnlyMatchingCopy = |
| 9885 | getLangOpts().MSVCCompat && |
| 9886 | !getLangOpts().isCompatibleWithMSVC(MajorVersion: LangOptions::MSVC2015); |
| 9887 | |
| 9888 | if (RD->hasUserDeclaredMoveConstructor() && |
| 9889 | (!DeletesOnlyMatchingCopy || |
| 9890 | CSM == CXXSpecialMemberKind::CopyConstructor)) { |
| 9891 | if (!Diagnose) return true; |
| 9892 | |
| 9893 | // Find any user-declared move constructor. |
| 9894 | for (auto *I : RD->ctors()) { |
| 9895 | if (I->isMoveConstructor()) { |
| 9896 | UserDeclaredMove = I; |
| 9897 | break; |
| 9898 | } |
| 9899 | } |
| 9900 | assert(UserDeclaredMove); |
| 9901 | } else if (RD->hasUserDeclaredMoveAssignment() && |
| 9902 | (!DeletesOnlyMatchingCopy || |
| 9903 | CSM == CXXSpecialMemberKind::CopyAssignment)) { |
| 9904 | if (!Diagnose) return true; |
| 9905 | |
| 9906 | // Find any user-declared move assignment operator. |
| 9907 | for (auto *I : RD->methods()) { |
| 9908 | if (I->isMoveAssignmentOperator()) { |
| 9909 | UserDeclaredMove = I; |
| 9910 | break; |
| 9911 | } |
| 9912 | } |
| 9913 | assert(UserDeclaredMove); |
| 9914 | } |
| 9915 | |
| 9916 | if (UserDeclaredMove) { |
| 9917 | Diag(UserDeclaredMove->getLocation(), |
| 9918 | diag::note_deleted_copy_user_declared_move) |
| 9919 | << (CSM == CXXSpecialMemberKind::CopyAssignment) << RD |
| 9920 | << UserDeclaredMove->isMoveAssignmentOperator(); |
| 9921 | return true; |
| 9922 | } |
| 9923 | } |
| 9924 | |
| 9925 | // Do access control from the special member function |
| 9926 | ContextRAII MethodContext(*this, MD); |
| 9927 | |
| 9928 | // C++11 [class.dtor]p5: |
| 9929 | // -- for a virtual destructor, lookup of the non-array deallocation function |
| 9930 | // results in an ambiguity or in a function that is deleted or inaccessible |
| 9931 | if (CSM == CXXSpecialMemberKind::Destructor && MD->isVirtual()) { |
| 9932 | FunctionDecl *OperatorDelete = nullptr; |
| 9933 | QualType DeallocType = Context.getRecordType(RD); |
| 9934 | DeclarationName Name = |
| 9935 | Context.DeclarationNames.getCXXOperatorName(Op: OO_Delete); |
| 9936 | ImplicitDeallocationParameters IDP = { |
| 9937 | DeallocType, ShouldUseTypeAwareOperatorNewOrDelete(), |
| 9938 | AlignedAllocationMode::No, SizedDeallocationMode::No}; |
| 9939 | if (FindDeallocationFunction(StartLoc: MD->getLocation(), RD: MD->getParent(), Name, |
| 9940 | Operator&: OperatorDelete, IDP, |
| 9941 | /*Diagnose=*/false)) { |
| 9942 | if (Diagnose) |
| 9943 | Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete); |
| 9944 | return true; |
| 9945 | } |
| 9946 | } |
| 9947 | |
| 9948 | SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose); |
| 9949 | |
| 9950 | // Per DR1611, do not consider virtual bases of constructors of abstract |
| 9951 | // classes, since we are not going to construct them. |
| 9952 | // Per DR1658, do not consider virtual bases of destructors of abstract |
| 9953 | // classes either. |
| 9954 | // Per DR2180, for assignment operators we only assign (and thus only |
| 9955 | // consider) direct bases. |
| 9956 | if (SMI.visit(Bases: SMI.IsAssignment ? SMI.VisitDirectBases |
| 9957 | : SMI.VisitPotentiallyConstructedBases)) |
| 9958 | return true; |
| 9959 | |
| 9960 | if (SMI.shouldDeleteForAllConstMembers()) |
| 9961 | return true; |
| 9962 | |
| 9963 | if (getLangOpts().CUDA) { |
| 9964 | // We should delete the special member in CUDA mode if target inference |
| 9965 | // failed. |
| 9966 | // For inherited constructors (non-null ICI), CSM may be passed so that MD |
| 9967 | // is treated as certain special member, which may not reflect what special |
| 9968 | // member MD really is. However inferTargetForImplicitSpecialMember |
| 9969 | // expects CSM to match MD, therefore recalculate CSM. |
| 9970 | assert(ICI || CSM == getSpecialMember(MD)); |
| 9971 | auto RealCSM = CSM; |
| 9972 | if (ICI) |
| 9973 | RealCSM = getSpecialMember(MD); |
| 9974 | |
| 9975 | return CUDA().inferTargetForImplicitSpecialMember(ClassDecl: RD, CSM: RealCSM, MemberDecl: MD, |
| 9976 | ConstRHS: SMI.ConstArg, Diagnose); |
| 9977 | } |
| 9978 | |
| 9979 | return false; |
| 9980 | } |
| 9981 | |
| 9982 | void Sema::DiagnoseDeletedDefaultedFunction(FunctionDecl *FD) { |
| 9983 | DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD); |
| 9984 | assert(DFK && "not a defaultable function" ); |
| 9985 | assert(FD->isDefaulted() && FD->isDeleted() && "not defaulted and deleted" ); |
| 9986 | |
| 9987 | if (DFK.isSpecialMember()) { |
| 9988 | ShouldDeleteSpecialMember(MD: cast<CXXMethodDecl>(Val: FD), CSM: DFK.asSpecialMember(), |
| 9989 | ICI: nullptr, /*Diagnose=*/true); |
| 9990 | } else { |
| 9991 | DefaultedComparisonAnalyzer( |
| 9992 | *this, cast<CXXRecordDecl>(FD->getLexicalDeclContext()), FD, |
| 9993 | DFK.asComparison(), DefaultedComparisonAnalyzer::ExplainDeleted) |
| 9994 | .visit(); |
| 9995 | } |
| 9996 | } |
| 9997 | |
| 9998 | /// Perform lookup for a special member of the specified kind, and determine |
| 9999 | /// whether it is trivial. If the triviality can be determined without the |
| 10000 | /// lookup, skip it. This is intended for use when determining whether a |
| 10001 | /// special member of a containing object is trivial, and thus does not ever |
| 10002 | /// perform overload resolution for default constructors. |
| 10003 | /// |
| 10004 | /// If \p Selected is not \c NULL, \c *Selected will be filled in with the |
| 10005 | /// member that was most likely to be intended to be trivial, if any. |
| 10006 | /// |
| 10007 | /// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to |
| 10008 | /// determine whether the special member is trivial. |
| 10009 | static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD, |
| 10010 | CXXSpecialMemberKind CSM, unsigned Quals, |
| 10011 | bool ConstRHS, TrivialABIHandling TAH, |
| 10012 | CXXMethodDecl **Selected) { |
| 10013 | if (Selected) |
| 10014 | *Selected = nullptr; |
| 10015 | |
| 10016 | switch (CSM) { |
| 10017 | case CXXSpecialMemberKind::Invalid: |
| 10018 | llvm_unreachable("not a special member" ); |
| 10019 | |
| 10020 | case CXXSpecialMemberKind::DefaultConstructor: |
| 10021 | // C++11 [class.ctor]p5: |
| 10022 | // A default constructor is trivial if: |
| 10023 | // - all the [direct subobjects] have trivial default constructors |
| 10024 | // |
| 10025 | // Note, no overload resolution is performed in this case. |
| 10026 | if (RD->hasTrivialDefaultConstructor()) |
| 10027 | return true; |
| 10028 | |
| 10029 | if (Selected) { |
| 10030 | // If there's a default constructor which could have been trivial, dig it |
| 10031 | // out. Otherwise, if there's any user-provided default constructor, point |
| 10032 | // to that as an example of why there's not a trivial one. |
| 10033 | CXXConstructorDecl *DefCtor = nullptr; |
| 10034 | if (RD->needsImplicitDefaultConstructor()) |
| 10035 | S.DeclareImplicitDefaultConstructor(ClassDecl: RD); |
| 10036 | for (auto *CI : RD->ctors()) { |
| 10037 | if (!CI->isDefaultConstructor()) |
| 10038 | continue; |
| 10039 | DefCtor = CI; |
| 10040 | if (!DefCtor->isUserProvided()) |
| 10041 | break; |
| 10042 | } |
| 10043 | |
| 10044 | *Selected = DefCtor; |
| 10045 | } |
| 10046 | |
| 10047 | return false; |
| 10048 | |
| 10049 | case CXXSpecialMemberKind::Destructor: |
| 10050 | // C++11 [class.dtor]p5: |
| 10051 | // A destructor is trivial if: |
| 10052 | // - all the direct [subobjects] have trivial destructors |
| 10053 | if (RD->hasTrivialDestructor() || |
| 10054 | (TAH == TrivialABIHandling::ConsiderTrivialABI && |
| 10055 | RD->hasTrivialDestructorForCall())) |
| 10056 | return true; |
| 10057 | |
| 10058 | if (Selected) { |
| 10059 | if (RD->needsImplicitDestructor()) |
| 10060 | S.DeclareImplicitDestructor(ClassDecl: RD); |
| 10061 | *Selected = RD->getDestructor(); |
| 10062 | } |
| 10063 | |
| 10064 | return false; |
| 10065 | |
| 10066 | case CXXSpecialMemberKind::CopyConstructor: |
| 10067 | // C++11 [class.copy]p12: |
| 10068 | // A copy constructor is trivial if: |
| 10069 | // - the constructor selected to copy each direct [subobject] is trivial |
| 10070 | if (RD->hasTrivialCopyConstructor() || |
| 10071 | (TAH == TrivialABIHandling::ConsiderTrivialABI && |
| 10072 | RD->hasTrivialCopyConstructorForCall())) { |
| 10073 | if (Quals == Qualifiers::Const) |
| 10074 | // We must either select the trivial copy constructor or reach an |
| 10075 | // ambiguity; no need to actually perform overload resolution. |
| 10076 | return true; |
| 10077 | } else if (!Selected) { |
| 10078 | return false; |
| 10079 | } |
| 10080 | // In C++98, we are not supposed to perform overload resolution here, but we |
| 10081 | // treat that as a language defect, as suggested on cxx-abi-dev, to treat |
| 10082 | // cases like B as having a non-trivial copy constructor: |
| 10083 | // struct A { template<typename T> A(T&); }; |
| 10084 | // struct B { mutable A a; }; |
| 10085 | goto NeedOverloadResolution; |
| 10086 | |
| 10087 | case CXXSpecialMemberKind::CopyAssignment: |
| 10088 | // C++11 [class.copy]p25: |
| 10089 | // A copy assignment operator is trivial if: |
| 10090 | // - the assignment operator selected to copy each direct [subobject] is |
| 10091 | // trivial |
| 10092 | if (RD->hasTrivialCopyAssignment()) { |
| 10093 | if (Quals == Qualifiers::Const) |
| 10094 | return true; |
| 10095 | } else if (!Selected) { |
| 10096 | return false; |
| 10097 | } |
| 10098 | // In C++98, we are not supposed to perform overload resolution here, but we |
| 10099 | // treat that as a language defect. |
| 10100 | goto NeedOverloadResolution; |
| 10101 | |
| 10102 | case CXXSpecialMemberKind::MoveConstructor: |
| 10103 | case CXXSpecialMemberKind::MoveAssignment: |
| 10104 | NeedOverloadResolution: |
| 10105 | Sema::SpecialMemberOverloadResult SMOR = |
| 10106 | lookupCallFromSpecialMember(S, Class: RD, CSM, FieldQuals: Quals, ConstRHS); |
| 10107 | |
| 10108 | // The standard doesn't describe how to behave if the lookup is ambiguous. |
| 10109 | // We treat it as not making the member non-trivial, just like the standard |
| 10110 | // mandates for the default constructor. This should rarely matter, because |
| 10111 | // the member will also be deleted. |
| 10112 | if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous) |
| 10113 | return true; |
| 10114 | |
| 10115 | if (!SMOR.getMethod()) { |
| 10116 | assert(SMOR.getKind() == |
| 10117 | Sema::SpecialMemberOverloadResult::NoMemberOrDeleted); |
| 10118 | return false; |
| 10119 | } |
| 10120 | |
| 10121 | // We deliberately don't check if we found a deleted special member. We're |
| 10122 | // not supposed to! |
| 10123 | if (Selected) |
| 10124 | *Selected = SMOR.getMethod(); |
| 10125 | |
| 10126 | if (TAH == TrivialABIHandling::ConsiderTrivialABI && |
| 10127 | (CSM == CXXSpecialMemberKind::CopyConstructor || |
| 10128 | CSM == CXXSpecialMemberKind::MoveConstructor)) |
| 10129 | return SMOR.getMethod()->isTrivialForCall(); |
| 10130 | return SMOR.getMethod()->isTrivial(); |
| 10131 | } |
| 10132 | |
| 10133 | llvm_unreachable("unknown special method kind" ); |
| 10134 | } |
| 10135 | |
| 10136 | static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) { |
| 10137 | for (auto *CI : RD->ctors()) |
| 10138 | if (!CI->isImplicit()) |
| 10139 | return CI; |
| 10140 | |
| 10141 | // Look for constructor templates. |
| 10142 | typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter; |
| 10143 | for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) { |
| 10144 | if (CXXConstructorDecl *CD = |
| 10145 | dyn_cast<CXXConstructorDecl>(Val: TI->getTemplatedDecl())) |
| 10146 | return CD; |
| 10147 | } |
| 10148 | |
| 10149 | return nullptr; |
| 10150 | } |
| 10151 | |
| 10152 | /// The kind of subobject we are checking for triviality. The values of this |
| 10153 | /// enumeration are used in diagnostics. |
| 10154 | enum TrivialSubobjectKind { |
| 10155 | /// The subobject is a base class. |
| 10156 | TSK_BaseClass, |
| 10157 | /// The subobject is a non-static data member. |
| 10158 | TSK_Field, |
| 10159 | /// The object is actually the complete object. |
| 10160 | TSK_CompleteObject |
| 10161 | }; |
| 10162 | |
| 10163 | /// Check whether the special member selected for a given type would be trivial. |
| 10164 | static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc, |
| 10165 | QualType SubType, bool ConstRHS, |
| 10166 | CXXSpecialMemberKind CSM, |
| 10167 | TrivialSubobjectKind Kind, |
| 10168 | TrivialABIHandling TAH, bool Diagnose) { |
| 10169 | CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl(); |
| 10170 | if (!SubRD) |
| 10171 | return true; |
| 10172 | |
| 10173 | CXXMethodDecl *Selected; |
| 10174 | if (findTrivialSpecialMember(S, RD: SubRD, CSM, Quals: SubType.getCVRQualifiers(), |
| 10175 | ConstRHS, TAH, Selected: Diagnose ? &Selected : nullptr)) |
| 10176 | return true; |
| 10177 | |
| 10178 | if (Diagnose) { |
| 10179 | if (ConstRHS) |
| 10180 | SubType.addConst(); |
| 10181 | |
| 10182 | if (!Selected && CSM == CXXSpecialMemberKind::DefaultConstructor) { |
| 10183 | S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor) |
| 10184 | << Kind << SubType.getUnqualifiedType(); |
| 10185 | if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD)) |
| 10186 | S.Diag(CD->getLocation(), diag::note_user_declared_ctor); |
| 10187 | } else if (!Selected) |
| 10188 | S.Diag(SubobjLoc, diag::note_nontrivial_no_copy) |
| 10189 | << Kind << SubType.getUnqualifiedType() << CSM << SubType; |
| 10190 | else if (Selected->isUserProvided()) { |
| 10191 | if (Kind == TSK_CompleteObject) |
| 10192 | S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided) |
| 10193 | << Kind << SubType.getUnqualifiedType() << CSM; |
| 10194 | else { |
| 10195 | S.Diag(SubobjLoc, diag::note_nontrivial_user_provided) |
| 10196 | << Kind << SubType.getUnqualifiedType() << CSM; |
| 10197 | S.Diag(Selected->getLocation(), diag::note_declared_at); |
| 10198 | } |
| 10199 | } else { |
| 10200 | if (Kind != TSK_CompleteObject) |
| 10201 | S.Diag(SubobjLoc, diag::note_nontrivial_subobject) |
| 10202 | << Kind << SubType.getUnqualifiedType() << CSM; |
| 10203 | |
| 10204 | // Explain why the defaulted or deleted special member isn't trivial. |
| 10205 | S.SpecialMemberIsTrivial(MD: Selected, CSM, |
| 10206 | TAH: TrivialABIHandling::IgnoreTrivialABI, Diagnose); |
| 10207 | } |
| 10208 | } |
| 10209 | |
| 10210 | return false; |
| 10211 | } |
| 10212 | |
| 10213 | /// Check whether the members of a class type allow a special member to be |
| 10214 | /// trivial. |
| 10215 | static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD, |
| 10216 | CXXSpecialMemberKind CSM, bool ConstArg, |
| 10217 | TrivialABIHandling TAH, bool Diagnose) { |
| 10218 | for (const auto *FI : RD->fields()) { |
| 10219 | if (FI->isInvalidDecl() || FI->isUnnamedBitField()) |
| 10220 | continue; |
| 10221 | |
| 10222 | QualType FieldType = S.Context.getBaseElementType(FI->getType()); |
| 10223 | |
| 10224 | // Pretend anonymous struct or union members are members of this class. |
| 10225 | if (FI->isAnonymousStructOrUnion()) { |
| 10226 | if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(), |
| 10227 | CSM, ConstArg, TAH, Diagnose)) |
| 10228 | return false; |
| 10229 | continue; |
| 10230 | } |
| 10231 | |
| 10232 | // C++11 [class.ctor]p5: |
| 10233 | // A default constructor is trivial if [...] |
| 10234 | // -- no non-static data member of its class has a |
| 10235 | // brace-or-equal-initializer |
| 10236 | if (CSM == CXXSpecialMemberKind::DefaultConstructor && |
| 10237 | FI->hasInClassInitializer()) { |
| 10238 | if (Diagnose) |
| 10239 | S.Diag(FI->getLocation(), diag::note_nontrivial_default_member_init) |
| 10240 | << FI; |
| 10241 | return false; |
| 10242 | } |
| 10243 | |
| 10244 | // Objective C ARC 4.3.5: |
| 10245 | // [...] nontrivally ownership-qualified types are [...] not trivially |
| 10246 | // default constructible, copy constructible, move constructible, copy |
| 10247 | // assignable, move assignable, or destructible [...] |
| 10248 | if (FieldType.hasNonTrivialObjCLifetime()) { |
| 10249 | if (Diagnose) |
| 10250 | S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership) |
| 10251 | << RD << FieldType.getObjCLifetime(); |
| 10252 | return false; |
| 10253 | } |
| 10254 | |
| 10255 | bool ConstRHS = ConstArg && !FI->isMutable(); |
| 10256 | if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS, |
| 10257 | CSM, TSK_Field, TAH, Diagnose)) |
| 10258 | return false; |
| 10259 | } |
| 10260 | |
| 10261 | return true; |
| 10262 | } |
| 10263 | |
| 10264 | void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, |
| 10265 | CXXSpecialMemberKind CSM) { |
| 10266 | QualType Ty = Context.getRecordType(RD); |
| 10267 | |
| 10268 | bool ConstArg = (CSM == CXXSpecialMemberKind::CopyConstructor || |
| 10269 | CSM == CXXSpecialMemberKind::CopyAssignment); |
| 10270 | checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM, |
| 10271 | TSK_CompleteObject, |
| 10272 | TrivialABIHandling::IgnoreTrivialABI, |
| 10273 | /*Diagnose*/ true); |
| 10274 | } |
| 10275 | |
| 10276 | bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMemberKind CSM, |
| 10277 | TrivialABIHandling TAH, bool Diagnose) { |
| 10278 | assert(!MD->isUserProvided() && CSM != CXXSpecialMemberKind::Invalid && |
| 10279 | "not special enough" ); |
| 10280 | |
| 10281 | CXXRecordDecl *RD = MD->getParent(); |
| 10282 | |
| 10283 | bool ConstArg = false; |
| 10284 | |
| 10285 | // C++11 [class.copy]p12, p25: [DR1593] |
| 10286 | // A [special member] is trivial if [...] its parameter-type-list is |
| 10287 | // equivalent to the parameter-type-list of an implicit declaration [...] |
| 10288 | switch (CSM) { |
| 10289 | case CXXSpecialMemberKind::DefaultConstructor: |
| 10290 | case CXXSpecialMemberKind::Destructor: |
| 10291 | // Trivial default constructors and destructors cannot have parameters. |
| 10292 | break; |
| 10293 | |
| 10294 | case CXXSpecialMemberKind::CopyConstructor: |
| 10295 | case CXXSpecialMemberKind::CopyAssignment: { |
| 10296 | const ParmVarDecl *Param0 = MD->getNonObjectParameter(0); |
| 10297 | const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>(); |
| 10298 | |
| 10299 | // When ClangABICompat14 is true, CXX copy constructors will only be trivial |
| 10300 | // if they are not user-provided and their parameter-type-list is equivalent |
| 10301 | // to the parameter-type-list of an implicit declaration. This maintains the |
| 10302 | // behavior before dr2171 was implemented. |
| 10303 | // |
| 10304 | // Otherwise, if ClangABICompat14 is false, All copy constructors can be |
| 10305 | // trivial, if they are not user-provided, regardless of the qualifiers on |
| 10306 | // the reference type. |
| 10307 | const bool ClangABICompat14 = Context.getLangOpts().getClangABICompat() <= |
| 10308 | LangOptions::ClangABI::Ver14; |
| 10309 | if (!RT || |
| 10310 | ((RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) && |
| 10311 | ClangABICompat14)) { |
| 10312 | if (Diagnose) |
| 10313 | Diag(Param0->getLocation(), diag::note_nontrivial_param_type) |
| 10314 | << Param0->getSourceRange() << Param0->getType() |
| 10315 | << Context.getLValueReferenceType( |
| 10316 | Context.getRecordType(RD).withConst()); |
| 10317 | return false; |
| 10318 | } |
| 10319 | |
| 10320 | ConstArg = RT->getPointeeType().isConstQualified(); |
| 10321 | break; |
| 10322 | } |
| 10323 | |
| 10324 | case CXXSpecialMemberKind::MoveConstructor: |
| 10325 | case CXXSpecialMemberKind::MoveAssignment: { |
| 10326 | // Trivial move operations always have non-cv-qualified parameters. |
| 10327 | const ParmVarDecl *Param0 = MD->getNonObjectParameter(0); |
| 10328 | const RValueReferenceType *RT = |
| 10329 | Param0->getType()->getAs<RValueReferenceType>(); |
| 10330 | if (!RT || RT->getPointeeType().getCVRQualifiers()) { |
| 10331 | if (Diagnose) |
| 10332 | Diag(Param0->getLocation(), diag::note_nontrivial_param_type) |
| 10333 | << Param0->getSourceRange() << Param0->getType() |
| 10334 | << Context.getRValueReferenceType(Context.getRecordType(RD)); |
| 10335 | return false; |
| 10336 | } |
| 10337 | break; |
| 10338 | } |
| 10339 | |
| 10340 | case CXXSpecialMemberKind::Invalid: |
| 10341 | llvm_unreachable("not a special member" ); |
| 10342 | } |
| 10343 | |
| 10344 | if (MD->getMinRequiredArguments() < MD->getNumParams()) { |
| 10345 | if (Diagnose) |
| 10346 | Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(), |
| 10347 | diag::note_nontrivial_default_arg) |
| 10348 | << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange(); |
| 10349 | return false; |
| 10350 | } |
| 10351 | if (MD->isVariadic()) { |
| 10352 | if (Diagnose) |
| 10353 | Diag(MD->getLocation(), diag::note_nontrivial_variadic); |
| 10354 | return false; |
| 10355 | } |
| 10356 | |
| 10357 | // C++11 [class.ctor]p5, C++11 [class.dtor]p5: |
| 10358 | // A copy/move [constructor or assignment operator] is trivial if |
| 10359 | // -- the [member] selected to copy/move each direct base class subobject |
| 10360 | // is trivial |
| 10361 | // |
| 10362 | // C++11 [class.copy]p12, C++11 [class.copy]p25: |
| 10363 | // A [default constructor or destructor] is trivial if |
| 10364 | // -- all the direct base classes have trivial [default constructors or |
| 10365 | // destructors] |
| 10366 | for (const auto &BI : RD->bases()) |
| 10367 | if (!checkTrivialSubobjectCall(S&: *this, SubobjLoc: BI.getBeginLoc(), SubType: BI.getType(), |
| 10368 | ConstRHS: ConstArg, CSM, Kind: TSK_BaseClass, TAH, Diagnose)) |
| 10369 | return false; |
| 10370 | |
| 10371 | // C++11 [class.ctor]p5, C++11 [class.dtor]p5: |
| 10372 | // A copy/move [constructor or assignment operator] for a class X is |
| 10373 | // trivial if |
| 10374 | // -- for each non-static data member of X that is of class type (or array |
| 10375 | // thereof), the constructor selected to copy/move that member is |
| 10376 | // trivial |
| 10377 | // |
| 10378 | // C++11 [class.copy]p12, C++11 [class.copy]p25: |
| 10379 | // A [default constructor or destructor] is trivial if |
| 10380 | // -- for all of the non-static data members of its class that are of class |
| 10381 | // type (or array thereof), each such class has a trivial [default |
| 10382 | // constructor or destructor] |
| 10383 | if (!checkTrivialClassMembers(S&: *this, RD, CSM, ConstArg, TAH, Diagnose)) |
| 10384 | return false; |
| 10385 | |
| 10386 | // C++11 [class.dtor]p5: |
| 10387 | // A destructor is trivial if [...] |
| 10388 | // -- the destructor is not virtual |
| 10389 | if (CSM == CXXSpecialMemberKind::Destructor && MD->isVirtual()) { |
| 10390 | if (Diagnose) |
| 10391 | Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD; |
| 10392 | return false; |
| 10393 | } |
| 10394 | |
| 10395 | // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: |
| 10396 | // A [special member] for class X is trivial if [...] |
| 10397 | // -- class X has no virtual functions and no virtual base classes |
| 10398 | if (CSM != CXXSpecialMemberKind::Destructor && |
| 10399 | MD->getParent()->isDynamicClass()) { |
| 10400 | if (!Diagnose) |
| 10401 | return false; |
| 10402 | |
| 10403 | if (RD->getNumVBases()) { |
| 10404 | // Check for virtual bases. We already know that the corresponding |
| 10405 | // member in all bases is trivial, so vbases must all be direct. |
| 10406 | CXXBaseSpecifier &BS = *RD->vbases_begin(); |
| 10407 | assert(BS.isVirtual()); |
| 10408 | Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1; |
| 10409 | return false; |
| 10410 | } |
| 10411 | |
| 10412 | // Must have a virtual method. |
| 10413 | for (const auto *MI : RD->methods()) { |
| 10414 | if (MI->isVirtual()) { |
| 10415 | SourceLocation MLoc = MI->getBeginLoc(); |
| 10416 | Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0; |
| 10417 | return false; |
| 10418 | } |
| 10419 | } |
| 10420 | |
| 10421 | llvm_unreachable("dynamic class with no vbases and no virtual functions" ); |
| 10422 | } |
| 10423 | |
| 10424 | // Looks like it's trivial! |
| 10425 | return true; |
| 10426 | } |
| 10427 | |
| 10428 | namespace { |
| 10429 | struct FindHiddenVirtualMethod { |
| 10430 | Sema *S; |
| 10431 | CXXMethodDecl *Method; |
| 10432 | llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods; |
| 10433 | SmallVector<CXXMethodDecl *, 8> OverloadedMethods; |
| 10434 | |
| 10435 | private: |
| 10436 | /// Check whether any most overridden method from MD in Methods |
| 10437 | static bool CheckMostOverridenMethods( |
| 10438 | const CXXMethodDecl *MD, |
| 10439 | const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) { |
| 10440 | if (MD->size_overridden_methods() == 0) |
| 10441 | return Methods.count(Ptr: MD->getCanonicalDecl()); |
| 10442 | for (const CXXMethodDecl *O : MD->overridden_methods()) |
| 10443 | if (CheckMostOverridenMethods(MD: O, Methods)) |
| 10444 | return true; |
| 10445 | return false; |
| 10446 | } |
| 10447 | |
| 10448 | public: |
| 10449 | /// Member lookup function that determines whether a given C++ |
| 10450 | /// method overloads virtual methods in a base class without overriding any, |
| 10451 | /// to be used with CXXRecordDecl::lookupInBases(). |
| 10452 | bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { |
| 10453 | RecordDecl *BaseRecord = |
| 10454 | Specifier->getType()->castAs<RecordType>()->getDecl(); |
| 10455 | |
| 10456 | DeclarationName Name = Method->getDeclName(); |
| 10457 | assert(Name.getNameKind() == DeclarationName::Identifier); |
| 10458 | |
| 10459 | bool foundSameNameMethod = false; |
| 10460 | SmallVector<CXXMethodDecl *, 8> overloadedMethods; |
| 10461 | for (Path.Decls = BaseRecord->lookup(Name).begin(); |
| 10462 | Path.Decls != DeclContext::lookup_iterator(); ++Path.Decls) { |
| 10463 | NamedDecl *D = *Path.Decls; |
| 10464 | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: D)) { |
| 10465 | MD = MD->getCanonicalDecl(); |
| 10466 | foundSameNameMethod = true; |
| 10467 | // Interested only in hidden virtual methods. |
| 10468 | if (!MD->isVirtual()) |
| 10469 | continue; |
| 10470 | // If the method we are checking overrides a method from its base |
| 10471 | // don't warn about the other overloaded methods. Clang deviates from |
| 10472 | // GCC by only diagnosing overloads of inherited virtual functions that |
| 10473 | // do not override any other virtual functions in the base. GCC's |
| 10474 | // -Woverloaded-virtual diagnoses any derived function hiding a virtual |
| 10475 | // function from a base class. These cases may be better served by a |
| 10476 | // warning (not specific to virtual functions) on call sites when the |
| 10477 | // call would select a different function from the base class, were it |
| 10478 | // visible. |
| 10479 | // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example. |
| 10480 | if (!S->IsOverload(Method, MD, false)) |
| 10481 | return true; |
| 10482 | // Collect the overload only if its hidden. |
| 10483 | if (!CheckMostOverridenMethods(MD, Methods: OverridenAndUsingBaseMethods)) |
| 10484 | overloadedMethods.push_back(Elt: MD); |
| 10485 | } |
| 10486 | } |
| 10487 | |
| 10488 | if (foundSameNameMethod) |
| 10489 | OverloadedMethods.append(in_start: overloadedMethods.begin(), |
| 10490 | in_end: overloadedMethods.end()); |
| 10491 | return foundSameNameMethod; |
| 10492 | } |
| 10493 | }; |
| 10494 | } // end anonymous namespace |
| 10495 | |
| 10496 | /// Add the most overridden methods from MD to Methods |
| 10497 | static void AddMostOverridenMethods(const CXXMethodDecl *MD, |
| 10498 | llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) { |
| 10499 | if (MD->size_overridden_methods() == 0) |
| 10500 | Methods.insert(Ptr: MD->getCanonicalDecl()); |
| 10501 | else |
| 10502 | for (const CXXMethodDecl *O : MD->overridden_methods()) |
| 10503 | AddMostOverridenMethods(MD: O, Methods); |
| 10504 | } |
| 10505 | |
| 10506 | void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD, |
| 10507 | SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { |
| 10508 | if (!MD->getDeclName().isIdentifier()) |
| 10509 | return; |
| 10510 | |
| 10511 | CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases. |
| 10512 | /*bool RecordPaths=*/false, |
| 10513 | /*bool DetectVirtual=*/false); |
| 10514 | FindHiddenVirtualMethod FHVM; |
| 10515 | FHVM.Method = MD; |
| 10516 | FHVM.S = this; |
| 10517 | |
| 10518 | // Keep the base methods that were overridden or introduced in the subclass |
| 10519 | // by 'using' in a set. A base method not in this set is hidden. |
| 10520 | CXXRecordDecl *DC = MD->getParent(); |
| 10521 | DeclContext::lookup_result R = DC->lookup(Name: MD->getDeclName()); |
| 10522 | for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) { |
| 10523 | NamedDecl *ND = *I; |
| 10524 | if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(Val: *I)) |
| 10525 | ND = shad->getTargetDecl(); |
| 10526 | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: ND)) |
| 10527 | AddMostOverridenMethods(MD, Methods&: FHVM.OverridenAndUsingBaseMethods); |
| 10528 | } |
| 10529 | |
| 10530 | if (DC->lookupInBases(BaseMatches: FHVM, Paths)) |
| 10531 | OverloadedMethods = FHVM.OverloadedMethods; |
| 10532 | } |
| 10533 | |
| 10534 | void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD, |
| 10535 | SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) { |
| 10536 | for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) { |
| 10537 | CXXMethodDecl *overloadedMD = OverloadedMethods[i]; |
| 10538 | PartialDiagnostic PD = PDiag( |
| 10539 | diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD; |
| 10540 | HandleFunctionTypeMismatch(PDiag&: PD, FromType: MD->getType(), ToType: overloadedMD->getType()); |
| 10541 | Diag(overloadedMD->getLocation(), PD); |
| 10542 | } |
| 10543 | } |
| 10544 | |
| 10545 | void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) { |
| 10546 | if (MD->isInvalidDecl()) |
| 10547 | return; |
| 10548 | |
| 10549 | if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation())) |
| 10550 | return; |
| 10551 | |
| 10552 | SmallVector<CXXMethodDecl *, 8> OverloadedMethods; |
| 10553 | FindHiddenVirtualMethods(MD, OverloadedMethods); |
| 10554 | if (!OverloadedMethods.empty()) { |
| 10555 | Diag(MD->getLocation(), diag::warn_overloaded_virtual) |
| 10556 | << MD << (OverloadedMethods.size() > 1); |
| 10557 | |
| 10558 | NoteHiddenVirtualMethods(MD, OverloadedMethods); |
| 10559 | } |
| 10560 | } |
| 10561 | |
| 10562 | void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) { |
| 10563 | auto PrintDiagAndRemoveAttr = [&](unsigned N) { |
| 10564 | // No diagnostics if this is a template instantiation. |
| 10565 | if (!isTemplateInstantiation(Kind: RD.getTemplateSpecializationKind())) { |
| 10566 | Diag(RD.getAttr<TrivialABIAttr>()->getLocation(), |
| 10567 | diag::ext_cannot_use_trivial_abi) << &RD; |
| 10568 | Diag(RD.getAttr<TrivialABIAttr>()->getLocation(), |
| 10569 | diag::note_cannot_use_trivial_abi_reason) << &RD << N; |
| 10570 | } |
| 10571 | RD.dropAttr<TrivialABIAttr>(); |
| 10572 | }; |
| 10573 | |
| 10574 | // Ill-formed if the struct has virtual functions. |
| 10575 | if (RD.isPolymorphic()) { |
| 10576 | PrintDiagAndRemoveAttr(1); |
| 10577 | return; |
| 10578 | } |
| 10579 | |
| 10580 | for (const auto &B : RD.bases()) { |
| 10581 | // Ill-formed if the base class is non-trivial for the purpose of calls or a |
| 10582 | // virtual base. |
| 10583 | if (!B.getType()->isDependentType() && |
| 10584 | !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) { |
| 10585 | PrintDiagAndRemoveAttr(2); |
| 10586 | return; |
| 10587 | } |
| 10588 | |
| 10589 | if (B.isVirtual()) { |
| 10590 | PrintDiagAndRemoveAttr(3); |
| 10591 | return; |
| 10592 | } |
| 10593 | } |
| 10594 | |
| 10595 | for (const auto *FD : RD.fields()) { |
| 10596 | // Ill-formed if the field is an ObjectiveC pointer or of a type that is |
| 10597 | // non-trivial for the purpose of calls. |
| 10598 | QualType FT = FD->getType(); |
| 10599 | if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) { |
| 10600 | PrintDiagAndRemoveAttr(4); |
| 10601 | return; |
| 10602 | } |
| 10603 | |
| 10604 | // Ill-formed if the field is an address-discriminated value. |
| 10605 | if (FT.hasAddressDiscriminatedPointerAuth()) { |
| 10606 | PrintDiagAndRemoveAttr(6); |
| 10607 | return; |
| 10608 | } |
| 10609 | |
| 10610 | if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>()) |
| 10611 | if (!RT->isDependentType() && |
| 10612 | !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) { |
| 10613 | PrintDiagAndRemoveAttr(5); |
| 10614 | return; |
| 10615 | } |
| 10616 | } |
| 10617 | |
| 10618 | if (IsCXXTriviallyRelocatableType(RD)) |
| 10619 | return; |
| 10620 | |
| 10621 | // Ill-formed if the copy and move constructors are deleted. |
| 10622 | auto HasNonDeletedCopyOrMoveConstructor = [&]() { |
| 10623 | // If the type is dependent, then assume it might have |
| 10624 | // implicit copy or move ctor because we won't know yet at this point. |
| 10625 | if (RD.isDependentType()) |
| 10626 | return true; |
| 10627 | if (RD.needsImplicitCopyConstructor() && |
| 10628 | !RD.defaultedCopyConstructorIsDeleted()) |
| 10629 | return true; |
| 10630 | if (RD.needsImplicitMoveConstructor() && |
| 10631 | !RD.defaultedMoveConstructorIsDeleted()) |
| 10632 | return true; |
| 10633 | for (const CXXConstructorDecl *CD : RD.ctors()) |
| 10634 | if (CD->isCopyOrMoveConstructor() && !CD->isDeleted()) |
| 10635 | return true; |
| 10636 | return false; |
| 10637 | }; |
| 10638 | |
| 10639 | if (!HasNonDeletedCopyOrMoveConstructor()) { |
| 10640 | PrintDiagAndRemoveAttr(0); |
| 10641 | return; |
| 10642 | } |
| 10643 | } |
| 10644 | |
| 10645 | void Sema::checkIncorrectVTablePointerAuthenticationAttribute( |
| 10646 | CXXRecordDecl &RD) { |
| 10647 | if (RequireCompleteType(RD.getLocation(), Context.getRecordType(&RD), |
| 10648 | diag::err_incomplete_type_vtable_pointer_auth)) |
| 10649 | return; |
| 10650 | |
| 10651 | const CXXRecordDecl *PrimaryBase = &RD; |
| 10652 | if (PrimaryBase->hasAnyDependentBases()) |
| 10653 | return; |
| 10654 | |
| 10655 | while (1) { |
| 10656 | assert(PrimaryBase); |
| 10657 | const CXXRecordDecl *Base = nullptr; |
| 10658 | for (const CXXBaseSpecifier &BasePtr : PrimaryBase->bases()) { |
| 10659 | if (!BasePtr.getType()->getAsCXXRecordDecl()->isDynamicClass()) |
| 10660 | continue; |
| 10661 | Base = BasePtr.getType()->getAsCXXRecordDecl(); |
| 10662 | break; |
| 10663 | } |
| 10664 | if (!Base || Base == PrimaryBase || !Base->isPolymorphic()) |
| 10665 | break; |
| 10666 | Diag(RD.getAttr<VTablePointerAuthenticationAttr>()->getLocation(), |
| 10667 | diag::err_non_top_level_vtable_pointer_auth) |
| 10668 | << &RD << Base; |
| 10669 | PrimaryBase = Base; |
| 10670 | } |
| 10671 | |
| 10672 | if (!RD.isPolymorphic()) |
| 10673 | Diag(RD.getAttr<VTablePointerAuthenticationAttr>()->getLocation(), |
| 10674 | diag::err_non_polymorphic_vtable_pointer_auth) |
| 10675 | << &RD; |
| 10676 | } |
| 10677 | |
| 10678 | void Sema::ActOnFinishCXXMemberSpecification( |
| 10679 | Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac, |
| 10680 | SourceLocation RBrac, const ParsedAttributesView &AttrList) { |
| 10681 | if (!TagDecl) |
| 10682 | return; |
| 10683 | |
| 10684 | AdjustDeclIfTemplate(Decl&: TagDecl); |
| 10685 | |
| 10686 | for (const ParsedAttr &AL : AttrList) { |
| 10687 | if (AL.getKind() != ParsedAttr::AT_Visibility) |
| 10688 | continue; |
| 10689 | AL.setInvalid(); |
| 10690 | Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) << AL; |
| 10691 | } |
| 10692 | |
| 10693 | ActOnFields(S, RecLoc: RLoc, TagDecl, |
| 10694 | Fields: llvm::ArrayRef( |
| 10695 | // strict aliasing violation! |
| 10696 | reinterpret_cast<Decl **>(FieldCollector->getCurFields()), |
| 10697 | FieldCollector->getCurNumFields()), |
| 10698 | LBrac, RBrac, AttrList); |
| 10699 | |
| 10700 | CheckCompletedCXXClass(S, Record: cast<CXXRecordDecl>(Val: TagDecl)); |
| 10701 | } |
| 10702 | |
| 10703 | /// Find the equality comparison functions that should be implicitly declared |
| 10704 | /// in a given class definition, per C++2a [class.compare.default]p3. |
| 10705 | static void findImplicitlyDeclaredEqualityComparisons( |
| 10706 | ASTContext &Ctx, CXXRecordDecl *RD, |
| 10707 | llvm::SmallVectorImpl<FunctionDecl *> &Spaceships) { |
| 10708 | DeclarationName EqEq = Ctx.DeclarationNames.getCXXOperatorName(Op: OO_EqualEqual); |
| 10709 | if (!RD->lookup(EqEq).empty()) |
| 10710 | // Member operator== explicitly declared: no implicit operator==s. |
| 10711 | return; |
| 10712 | |
| 10713 | // Traverse friends looking for an '==' or a '<=>'. |
| 10714 | for (FriendDecl *Friend : RD->friends()) { |
| 10715 | FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Val: Friend->getFriendDecl()); |
| 10716 | if (!FD) continue; |
| 10717 | |
| 10718 | if (FD->getOverloadedOperator() == OO_EqualEqual) { |
| 10719 | // Friend operator== explicitly declared: no implicit operator==s. |
| 10720 | Spaceships.clear(); |
| 10721 | return; |
| 10722 | } |
| 10723 | |
| 10724 | if (FD->getOverloadedOperator() == OO_Spaceship && |
| 10725 | FD->isExplicitlyDefaulted()) |
| 10726 | Spaceships.push_back(Elt: FD); |
| 10727 | } |
| 10728 | |
| 10729 | // Look for members named 'operator<=>'. |
| 10730 | DeclarationName Cmp = Ctx.DeclarationNames.getCXXOperatorName(Op: OO_Spaceship); |
| 10731 | for (NamedDecl *ND : RD->lookup(Cmp)) { |
| 10732 | // Note that we could find a non-function here (either a function template |
| 10733 | // or a using-declaration). Neither case results in an implicit |
| 10734 | // 'operator=='. |
| 10735 | if (auto *FD = dyn_cast<FunctionDecl>(ND)) |
| 10736 | if (FD->isExplicitlyDefaulted()) |
| 10737 | Spaceships.push_back(FD); |
| 10738 | } |
| 10739 | } |
| 10740 | |
| 10741 | void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { |
| 10742 | // Don't add implicit special members to templated classes. |
| 10743 | // FIXME: This means unqualified lookups for 'operator=' within a class |
| 10744 | // template don't work properly. |
| 10745 | if (!ClassDecl->isDependentType()) { |
| 10746 | if (ClassDecl->needsImplicitDefaultConstructor()) { |
| 10747 | ++getASTContext().NumImplicitDefaultConstructors; |
| 10748 | |
| 10749 | if (ClassDecl->hasInheritedConstructor()) |
| 10750 | DeclareImplicitDefaultConstructor(ClassDecl); |
| 10751 | } |
| 10752 | |
| 10753 | if (ClassDecl->needsImplicitCopyConstructor()) { |
| 10754 | ++getASTContext().NumImplicitCopyConstructors; |
| 10755 | |
| 10756 | // If the properties or semantics of the copy constructor couldn't be |
| 10757 | // determined while the class was being declared, force a declaration |
| 10758 | // of it now. |
| 10759 | if (ClassDecl->needsOverloadResolutionForCopyConstructor() || |
| 10760 | ClassDecl->hasInheritedConstructor()) |
| 10761 | DeclareImplicitCopyConstructor(ClassDecl); |
| 10762 | // For the MS ABI we need to know whether the copy ctor is deleted. A |
| 10763 | // prerequisite for deleting the implicit copy ctor is that the class has |
| 10764 | // a move ctor or move assignment that is either user-declared or whose |
| 10765 | // semantics are inherited from a subobject. FIXME: We should provide a |
| 10766 | // more direct way for CodeGen to ask whether the constructor was deleted. |
| 10767 | else if (Context.getTargetInfo().getCXXABI().isMicrosoft() && |
| 10768 | (ClassDecl->hasUserDeclaredMoveConstructor() || |
| 10769 | ClassDecl->needsOverloadResolutionForMoveConstructor() || |
| 10770 | ClassDecl->hasUserDeclaredMoveAssignment() || |
| 10771 | ClassDecl->needsOverloadResolutionForMoveAssignment())) |
| 10772 | DeclareImplicitCopyConstructor(ClassDecl); |
| 10773 | } |
| 10774 | |
| 10775 | if (getLangOpts().CPlusPlus11 && |
| 10776 | ClassDecl->needsImplicitMoveConstructor()) { |
| 10777 | ++getASTContext().NumImplicitMoveConstructors; |
| 10778 | |
| 10779 | if (ClassDecl->needsOverloadResolutionForMoveConstructor() || |
| 10780 | ClassDecl->hasInheritedConstructor()) |
| 10781 | DeclareImplicitMoveConstructor(ClassDecl); |
| 10782 | } |
| 10783 | |
| 10784 | if (ClassDecl->needsImplicitCopyAssignment()) { |
| 10785 | ++getASTContext().NumImplicitCopyAssignmentOperators; |
| 10786 | |
| 10787 | // If we have a dynamic class, then the copy assignment operator may be |
| 10788 | // virtual, so we have to declare it immediately. This ensures that, e.g., |
| 10789 | // it shows up in the right place in the vtable and that we diagnose |
| 10790 | // problems with the implicit exception specification. |
| 10791 | if (ClassDecl->isDynamicClass() || |
| 10792 | ClassDecl->needsOverloadResolutionForCopyAssignment() || |
| 10793 | ClassDecl->hasInheritedAssignment()) |
| 10794 | DeclareImplicitCopyAssignment(ClassDecl); |
| 10795 | } |
| 10796 | |
| 10797 | if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) { |
| 10798 | ++getASTContext().NumImplicitMoveAssignmentOperators; |
| 10799 | |
| 10800 | // Likewise for the move assignment operator. |
| 10801 | if (ClassDecl->isDynamicClass() || |
| 10802 | ClassDecl->needsOverloadResolutionForMoveAssignment() || |
| 10803 | ClassDecl->hasInheritedAssignment()) |
| 10804 | DeclareImplicitMoveAssignment(ClassDecl); |
| 10805 | } |
| 10806 | |
| 10807 | if (ClassDecl->needsImplicitDestructor()) { |
| 10808 | ++getASTContext().NumImplicitDestructors; |
| 10809 | |
| 10810 | // If we have a dynamic class, then the destructor may be virtual, so we |
| 10811 | // have to declare the destructor immediately. This ensures that, e.g., it |
| 10812 | // shows up in the right place in the vtable and that we diagnose problems |
| 10813 | // with the implicit exception specification. |
| 10814 | if (ClassDecl->isDynamicClass() || |
| 10815 | ClassDecl->needsOverloadResolutionForDestructor()) |
| 10816 | DeclareImplicitDestructor(ClassDecl); |
| 10817 | } |
| 10818 | } |
| 10819 | |
| 10820 | // C++2a [class.compare.default]p3: |
| 10821 | // If the member-specification does not explicitly declare any member or |
| 10822 | // friend named operator==, an == operator function is declared implicitly |
| 10823 | // for each defaulted three-way comparison operator function defined in |
| 10824 | // the member-specification |
| 10825 | // FIXME: Consider doing this lazily. |
| 10826 | // We do this during the initial parse for a class template, not during |
| 10827 | // instantiation, so that we can handle unqualified lookups for 'operator==' |
| 10828 | // when parsing the template. |
| 10829 | if (getLangOpts().CPlusPlus20 && !inTemplateInstantiation()) { |
| 10830 | llvm::SmallVector<FunctionDecl *, 4> DefaultedSpaceships; |
| 10831 | findImplicitlyDeclaredEqualityComparisons(Ctx&: Context, RD: ClassDecl, |
| 10832 | Spaceships&: DefaultedSpaceships); |
| 10833 | for (auto *FD : DefaultedSpaceships) |
| 10834 | DeclareImplicitEqualityComparison(RD: ClassDecl, Spaceship: FD); |
| 10835 | } |
| 10836 | } |
| 10837 | |
| 10838 | unsigned |
| 10839 | Sema::ActOnReenterTemplateScope(Decl *D, |
| 10840 | llvm::function_ref<Scope *()> EnterScope) { |
| 10841 | if (!D) |
| 10842 | return 0; |
| 10843 | AdjustDeclIfTemplate(Decl&: D); |
| 10844 | |
| 10845 | // In order to get name lookup right, reenter template scopes in order from |
| 10846 | // outermost to innermost. |
| 10847 | SmallVector<TemplateParameterList *, 4> ParameterLists; |
| 10848 | DeclContext *LookupDC = dyn_cast<DeclContext>(Val: D); |
| 10849 | |
| 10850 | if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(Val: D)) { |
| 10851 | for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i) |
| 10852 | ParameterLists.push_back(Elt: DD->getTemplateParameterList(index: i)); |
| 10853 | |
| 10854 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D)) { |
| 10855 | if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) |
| 10856 | ParameterLists.push_back(Elt: FTD->getTemplateParameters()); |
| 10857 | } else if (VarDecl *VD = dyn_cast<VarDecl>(Val: D)) { |
| 10858 | LookupDC = VD->getDeclContext(); |
| 10859 | |
| 10860 | if (VarTemplateDecl *VTD = VD->getDescribedVarTemplate()) |
| 10861 | ParameterLists.push_back(Elt: VTD->getTemplateParameters()); |
| 10862 | else if (auto *PSD = dyn_cast<VarTemplatePartialSpecializationDecl>(Val: D)) |
| 10863 | ParameterLists.push_back(Elt: PSD->getTemplateParameters()); |
| 10864 | } |
| 10865 | } else if (TagDecl *TD = dyn_cast<TagDecl>(Val: D)) { |
| 10866 | for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i) |
| 10867 | ParameterLists.push_back(Elt: TD->getTemplateParameterList(i)); |
| 10868 | |
| 10869 | if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Val: TD)) { |
| 10870 | if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate()) |
| 10871 | ParameterLists.push_back(Elt: CTD->getTemplateParameters()); |
| 10872 | else if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(Val: D)) |
| 10873 | ParameterLists.push_back(Elt: PSD->getTemplateParameters()); |
| 10874 | } |
| 10875 | } |
| 10876 | // FIXME: Alias declarations and concepts. |
| 10877 | |
| 10878 | unsigned Count = 0; |
| 10879 | Scope *InnermostTemplateScope = nullptr; |
| 10880 | for (TemplateParameterList *Params : ParameterLists) { |
| 10881 | // Ignore explicit specializations; they don't contribute to the template |
| 10882 | // depth. |
| 10883 | if (Params->size() == 0) |
| 10884 | continue; |
| 10885 | |
| 10886 | InnermostTemplateScope = EnterScope(); |
| 10887 | for (NamedDecl *Param : *Params) { |
| 10888 | if (Param->getDeclName()) { |
| 10889 | InnermostTemplateScope->AddDecl(Param); |
| 10890 | IdResolver.AddDecl(D: Param); |
| 10891 | } |
| 10892 | } |
| 10893 | ++Count; |
| 10894 | } |
| 10895 | |
| 10896 | // Associate the new template scopes with the corresponding entities. |
| 10897 | if (InnermostTemplateScope) { |
| 10898 | assert(LookupDC && "no enclosing DeclContext for template lookup" ); |
| 10899 | EnterTemplatedContext(S: InnermostTemplateScope, DC: LookupDC); |
| 10900 | } |
| 10901 | |
| 10902 | return Count; |
| 10903 | } |
| 10904 | |
| 10905 | void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) { |
| 10906 | if (!RecordD) return; |
| 10907 | AdjustDeclIfTemplate(Decl&: RecordD); |
| 10908 | CXXRecordDecl *Record = cast<CXXRecordDecl>(Val: RecordD); |
| 10909 | PushDeclContext(S, Record); |
| 10910 | } |
| 10911 | |
| 10912 | void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) { |
| 10913 | if (!RecordD) return; |
| 10914 | PopDeclContext(); |
| 10915 | } |
| 10916 | |
| 10917 | void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) { |
| 10918 | if (!Param) |
| 10919 | return; |
| 10920 | |
| 10921 | S->AddDecl(Param); |
| 10922 | if (Param->getDeclName()) |
| 10923 | IdResolver.AddDecl(Param); |
| 10924 | } |
| 10925 | |
| 10926 | void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { |
| 10927 | } |
| 10928 | |
| 10929 | /// ActOnDelayedCXXMethodParameter - We've already started a delayed |
| 10930 | /// C++ method declaration. We're (re-)introducing the given |
| 10931 | /// function parameter into scope for use in parsing later parts of |
| 10932 | /// the method declaration. For example, we could see an |
| 10933 | /// ActOnParamDefaultArgument event for this parameter. |
| 10934 | void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) { |
| 10935 | if (!ParamD) |
| 10936 | return; |
| 10937 | |
| 10938 | ParmVarDecl *Param = cast<ParmVarDecl>(Val: ParamD); |
| 10939 | |
| 10940 | S->AddDecl(Param); |
| 10941 | if (Param->getDeclName()) |
| 10942 | IdResolver.AddDecl(Param); |
| 10943 | } |
| 10944 | |
| 10945 | void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) { |
| 10946 | if (!MethodD) |
| 10947 | return; |
| 10948 | |
| 10949 | AdjustDeclIfTemplate(Decl&: MethodD); |
| 10950 | |
| 10951 | FunctionDecl *Method = cast<FunctionDecl>(Val: MethodD); |
| 10952 | |
| 10953 | // Now that we have our default arguments, check the constructor |
| 10954 | // again. It could produce additional diagnostics or affect whether |
| 10955 | // the class has implicitly-declared destructors, among other |
| 10956 | // things. |
| 10957 | if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Val: Method)) |
| 10958 | CheckConstructor(Constructor); |
| 10959 | |
| 10960 | // Check the default arguments, which we may have added. |
| 10961 | if (!Method->isInvalidDecl()) |
| 10962 | CheckCXXDefaultArguments(FD: Method); |
| 10963 | } |
| 10964 | |
| 10965 | // Emit the given diagnostic for each non-address-space qualifier. |
| 10966 | // Common part of CheckConstructorDeclarator and CheckDestructorDeclarator. |
| 10967 | static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) { |
| 10968 | const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); |
| 10969 | if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) { |
| 10970 | bool DiagOccured = false; |
| 10971 | FTI.MethodQualifiers->forEachQualifier( |
| 10972 | Handle: [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName, |
| 10973 | SourceLocation SL) { |
| 10974 | // This diagnostic should be emitted on any qualifier except an addr |
| 10975 | // space qualifier. However, forEachQualifier currently doesn't visit |
| 10976 | // addr space qualifiers, so there's no way to write this condition |
| 10977 | // right now; we just diagnose on everything. |
| 10978 | S.Diag(SL, DiagID) << QualName << SourceRange(SL); |
| 10979 | DiagOccured = true; |
| 10980 | }); |
| 10981 | if (DiagOccured) |
| 10982 | D.setInvalidType(); |
| 10983 | } |
| 10984 | } |
| 10985 | |
| 10986 | static void diagnoseInvalidDeclaratorChunks(Sema &S, Declarator &D, |
| 10987 | unsigned Kind) { |
| 10988 | if (D.isInvalidType() || D.getNumTypeObjects() <= 1) |
| 10989 | return; |
| 10990 | |
| 10991 | DeclaratorChunk &Chunk = D.getTypeObject(i: D.getNumTypeObjects() - 1); |
| 10992 | if (Chunk.Kind == DeclaratorChunk::Paren || |
| 10993 | Chunk.Kind == DeclaratorChunk::Function) |
| 10994 | return; |
| 10995 | |
| 10996 | SourceLocation PointerLoc = Chunk.getSourceRange().getBegin(); |
| 10997 | S.Diag(PointerLoc, diag::err_invalid_ctor_dtor_decl) |
| 10998 | << Kind << Chunk.getSourceRange(); |
| 10999 | D.setInvalidType(); |
| 11000 | } |
| 11001 | |
| 11002 | QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, |
| 11003 | StorageClass &SC) { |
| 11004 | bool isVirtual = D.getDeclSpec().isVirtualSpecified(); |
| 11005 | |
| 11006 | // C++ [class.ctor]p3: |
| 11007 | // A constructor shall not be virtual (10.3) or static (9.4). A |
| 11008 | // constructor can be invoked for a const, volatile or const |
| 11009 | // volatile object. A constructor shall not be declared const, |
| 11010 | // volatile, or const volatile (9.3.2). |
| 11011 | if (isVirtual) { |
| 11012 | if (!D.isInvalidType()) |
| 11013 | Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) |
| 11014 | << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) |
| 11015 | << SourceRange(D.getIdentifierLoc()); |
| 11016 | D.setInvalidType(); |
| 11017 | } |
| 11018 | if (SC == SC_Static) { |
| 11019 | if (!D.isInvalidType()) |
| 11020 | Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) |
| 11021 | << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) |
| 11022 | << SourceRange(D.getIdentifierLoc()); |
| 11023 | D.setInvalidType(); |
| 11024 | SC = SC_None; |
| 11025 | } |
| 11026 | |
| 11027 | if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { |
| 11028 | diagnoseIgnoredQualifiers( |
| 11029 | diag::err_constructor_return_type, TypeQuals, SourceLocation(), |
| 11030 | D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(), |
| 11031 | D.getDeclSpec().getRestrictSpecLoc(), |
| 11032 | D.getDeclSpec().getAtomicSpecLoc()); |
| 11033 | D.setInvalidType(); |
| 11034 | } |
| 11035 | |
| 11036 | checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor); |
| 11037 | diagnoseInvalidDeclaratorChunks(S&: *this, D, /*constructor*/ Kind: 0); |
| 11038 | |
| 11039 | // C++0x [class.ctor]p4: |
| 11040 | // A constructor shall not be declared with a ref-qualifier. |
| 11041 | DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); |
| 11042 | if (FTI.hasRefQualifier()) { |
| 11043 | Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor) |
| 11044 | << FTI.RefQualifierIsLValueRef |
| 11045 | << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); |
| 11046 | D.setInvalidType(); |
| 11047 | } |
| 11048 | |
| 11049 | // Rebuild the function type "R" without any type qualifiers (in |
| 11050 | // case any of the errors above fired) and with "void" as the |
| 11051 | // return type, since constructors don't have return types. |
| 11052 | const FunctionProtoType *Proto = R->castAs<FunctionProtoType>(); |
| 11053 | if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType()) |
| 11054 | return R; |
| 11055 | |
| 11056 | FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); |
| 11057 | EPI.TypeQuals = Qualifiers(); |
| 11058 | EPI.RefQualifier = RQ_None; |
| 11059 | |
| 11060 | return Context.getFunctionType(ResultTy: Context.VoidTy, Args: Proto->getParamTypes(), EPI); |
| 11061 | } |
| 11062 | |
| 11063 | void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { |
| 11064 | CXXRecordDecl *ClassDecl |
| 11065 | = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext()); |
| 11066 | if (!ClassDecl) |
| 11067 | return Constructor->setInvalidDecl(); |
| 11068 | |
| 11069 | // C++ [class.copy]p3: |
| 11070 | // A declaration of a constructor for a class X is ill-formed if |
| 11071 | // its first parameter is of type (optionally cv-qualified) X and |
| 11072 | // either there are no other parameters or else all other |
| 11073 | // parameters have default arguments. |
| 11074 | if (!Constructor->isInvalidDecl() && |
| 11075 | Constructor->hasOneParamOrDefaultArgs() && |
| 11076 | !Constructor->isFunctionTemplateSpecialization()) { |
| 11077 | QualType ParamType = Constructor->getParamDecl(0)->getType(); |
| 11078 | QualType ClassTy = Context.getTagDeclType(ClassDecl); |
| 11079 | if (Context.getCanonicalType(T: ParamType).getUnqualifiedType() == ClassTy) { |
| 11080 | SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); |
| 11081 | const char *ConstRef |
| 11082 | = Constructor->getParamDecl(0)->getIdentifier() ? "const &" |
| 11083 | : " const &" ; |
| 11084 | Diag(ParamLoc, diag::err_constructor_byvalue_arg) |
| 11085 | << FixItHint::CreateInsertion(ParamLoc, ConstRef); |
| 11086 | |
| 11087 | // FIXME: Rather that making the constructor invalid, we should endeavor |
| 11088 | // to fix the type. |
| 11089 | Constructor->setInvalidDecl(); |
| 11090 | } |
| 11091 | } |
| 11092 | } |
| 11093 | |
| 11094 | bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) { |
| 11095 | CXXRecordDecl *RD = Destructor->getParent(); |
| 11096 | |
| 11097 | if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) { |
| 11098 | SourceLocation Loc; |
| 11099 | |
| 11100 | if (!Destructor->isImplicit()) |
| 11101 | Loc = Destructor->getLocation(); |
| 11102 | else |
| 11103 | Loc = RD->getLocation(); |
| 11104 | |
| 11105 | // If we have a virtual destructor, look up the deallocation function |
| 11106 | if (FunctionDecl *OperatorDelete = |
| 11107 | FindDeallocationFunctionForDestructor(StartLoc: Loc, RD)) { |
| 11108 | Expr *ThisArg = nullptr; |
| 11109 | |
| 11110 | // If the notional 'delete this' expression requires a non-trivial |
| 11111 | // conversion from 'this' to the type of a destroying operator delete's |
| 11112 | // first parameter, perform that conversion now. |
| 11113 | if (OperatorDelete->isDestroyingOperatorDelete()) { |
| 11114 | unsigned AddressParamIndex = 0; |
| 11115 | if (OperatorDelete->isTypeAwareOperatorNewOrDelete()) |
| 11116 | ++AddressParamIndex; |
| 11117 | QualType ParamType = |
| 11118 | OperatorDelete->getParamDecl(i: AddressParamIndex)->getType(); |
| 11119 | if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) { |
| 11120 | // C++ [class.dtor]p13: |
| 11121 | // ... as if for the expression 'delete this' appearing in a |
| 11122 | // non-virtual destructor of the destructor's class. |
| 11123 | ContextRAII SwitchContext(*this, Destructor); |
| 11124 | ExprResult This = ActOnCXXThis( |
| 11125 | Loc: OperatorDelete->getParamDecl(i: AddressParamIndex)->getLocation()); |
| 11126 | assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?" ); |
| 11127 | This = PerformImplicitConversion(From: This.get(), ToType: ParamType, |
| 11128 | Action: AssignmentAction::Passing); |
| 11129 | if (This.isInvalid()) { |
| 11130 | // FIXME: Register this as a context note so that it comes out |
| 11131 | // in the right order. |
| 11132 | Diag(Loc, diag::note_implicit_delete_this_in_destructor_here); |
| 11133 | return true; |
| 11134 | } |
| 11135 | ThisArg = This.get(); |
| 11136 | } |
| 11137 | } |
| 11138 | |
| 11139 | DiagnoseUseOfDecl(OperatorDelete, Loc); |
| 11140 | MarkFunctionReferenced(Loc, Func: OperatorDelete); |
| 11141 | Destructor->setOperatorDelete(OD: OperatorDelete, ThisArg); |
| 11142 | } |
| 11143 | } |
| 11144 | |
| 11145 | return false; |
| 11146 | } |
| 11147 | |
| 11148 | QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R, |
| 11149 | StorageClass& SC) { |
| 11150 | // C++ [class.dtor]p1: |
| 11151 | // [...] A typedef-name that names a class is a class-name |
| 11152 | // (7.1.3); however, a typedef-name that names a class shall not |
| 11153 | // be used as the identifier in the declarator for a destructor |
| 11154 | // declaration. |
| 11155 | QualType DeclaratorType = GetTypeFromParser(Ty: D.getName().DestructorName); |
| 11156 | if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>()) |
| 11157 | Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name) |
| 11158 | << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl()); |
| 11159 | else if (const TemplateSpecializationType *TST = |
| 11160 | DeclaratorType->getAs<TemplateSpecializationType>()) |
| 11161 | if (TST->isTypeAlias()) |
| 11162 | Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name) |
| 11163 | << DeclaratorType << 1; |
| 11164 | |
| 11165 | // C++ [class.dtor]p2: |
| 11166 | // A destructor is used to destroy objects of its class type. A |
| 11167 | // destructor takes no parameters, and no return type can be |
| 11168 | // specified for it (not even void). The address of a destructor |
| 11169 | // shall not be taken. A destructor shall not be static. A |
| 11170 | // destructor can be invoked for a const, volatile or const |
| 11171 | // volatile object. A destructor shall not be declared const, |
| 11172 | // volatile or const volatile (9.3.2). |
| 11173 | if (SC == SC_Static) { |
| 11174 | if (!D.isInvalidType()) |
| 11175 | Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) |
| 11176 | << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) |
| 11177 | << SourceRange(D.getIdentifierLoc()) |
| 11178 | << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); |
| 11179 | |
| 11180 | SC = SC_None; |
| 11181 | } |
| 11182 | if (!D.isInvalidType()) { |
| 11183 | // Destructors don't have return types, but the parser will |
| 11184 | // happily parse something like: |
| 11185 | // |
| 11186 | // class X { |
| 11187 | // float ~X(); |
| 11188 | // }; |
| 11189 | // |
| 11190 | // The return type will be eliminated later. |
| 11191 | if (D.getDeclSpec().hasTypeSpecifier()) |
| 11192 | Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) |
| 11193 | << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) |
| 11194 | << SourceRange(D.getIdentifierLoc()); |
| 11195 | else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) { |
| 11196 | diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals, |
| 11197 | SourceLocation(), |
| 11198 | D.getDeclSpec().getConstSpecLoc(), |
| 11199 | D.getDeclSpec().getVolatileSpecLoc(), |
| 11200 | D.getDeclSpec().getRestrictSpecLoc(), |
| 11201 | D.getDeclSpec().getAtomicSpecLoc()); |
| 11202 | D.setInvalidType(); |
| 11203 | } |
| 11204 | } |
| 11205 | |
| 11206 | checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor); |
| 11207 | diagnoseInvalidDeclaratorChunks(S&: *this, D, /*destructor*/ Kind: 1); |
| 11208 | |
| 11209 | // C++0x [class.dtor]p2: |
| 11210 | // A destructor shall not be declared with a ref-qualifier. |
| 11211 | DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); |
| 11212 | if (FTI.hasRefQualifier()) { |
| 11213 | Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor) |
| 11214 | << FTI.RefQualifierIsLValueRef |
| 11215 | << FixItHint::CreateRemoval(FTI.getRefQualifierLoc()); |
| 11216 | D.setInvalidType(); |
| 11217 | } |
| 11218 | |
| 11219 | // Make sure we don't have any parameters. |
| 11220 | if (FTIHasNonVoidParameters(FTI)) { |
| 11221 | Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); |
| 11222 | |
| 11223 | // Delete the parameters. |
| 11224 | FTI.freeParams(); |
| 11225 | D.setInvalidType(); |
| 11226 | } |
| 11227 | |
| 11228 | // Make sure the destructor isn't variadic. |
| 11229 | if (FTI.isVariadic) { |
| 11230 | Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); |
| 11231 | D.setInvalidType(); |
| 11232 | } |
| 11233 | |
| 11234 | // Rebuild the function type "R" without any type qualifiers or |
| 11235 | // parameters (in case any of the errors above fired) and with |
| 11236 | // "void" as the return type, since destructors don't have return |
| 11237 | // types. |
| 11238 | if (!D.isInvalidType()) |
| 11239 | return R; |
| 11240 | |
| 11241 | const FunctionProtoType *Proto = R->castAs<FunctionProtoType>(); |
| 11242 | FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo(); |
| 11243 | EPI.Variadic = false; |
| 11244 | EPI.TypeQuals = Qualifiers(); |
| 11245 | EPI.RefQualifier = RQ_None; |
| 11246 | return Context.getFunctionType(ResultTy: Context.VoidTy, Args: {}, EPI); |
| 11247 | } |
| 11248 | |
| 11249 | static void extendLeft(SourceRange &R, SourceRange Before) { |
| 11250 | if (Before.isInvalid()) |
| 11251 | return; |
| 11252 | R.setBegin(Before.getBegin()); |
| 11253 | if (R.getEnd().isInvalid()) |
| 11254 | R.setEnd(Before.getEnd()); |
| 11255 | } |
| 11256 | |
| 11257 | static void extendRight(SourceRange &R, SourceRange After) { |
| 11258 | if (After.isInvalid()) |
| 11259 | return; |
| 11260 | if (R.getBegin().isInvalid()) |
| 11261 | R.setBegin(After.getBegin()); |
| 11262 | R.setEnd(After.getEnd()); |
| 11263 | } |
| 11264 | |
| 11265 | void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, |
| 11266 | StorageClass& SC) { |
| 11267 | // C++ [class.conv.fct]p1: |
| 11268 | // Neither parameter types nor return type can be specified. The |
| 11269 | // type of a conversion function (8.3.5) is "function taking no |
| 11270 | // parameter returning conversion-type-id." |
| 11271 | if (SC == SC_Static) { |
| 11272 | if (!D.isInvalidType()) |
| 11273 | Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) |
| 11274 | << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) |
| 11275 | << D.getName().getSourceRange(); |
| 11276 | D.setInvalidType(); |
| 11277 | SC = SC_None; |
| 11278 | } |
| 11279 | |
| 11280 | TypeSourceInfo *ConvTSI = nullptr; |
| 11281 | QualType ConvType = |
| 11282 | GetTypeFromParser(Ty: D.getName().ConversionFunctionId, TInfo: &ConvTSI); |
| 11283 | |
| 11284 | const DeclSpec &DS = D.getDeclSpec(); |
| 11285 | if (DS.hasTypeSpecifier() && !D.isInvalidType()) { |
| 11286 | // Conversion functions don't have return types, but the parser will |
| 11287 | // happily parse something like: |
| 11288 | // |
| 11289 | // class X { |
| 11290 | // float operator bool(); |
| 11291 | // }; |
| 11292 | // |
| 11293 | // The return type will be changed later anyway. |
| 11294 | Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) |
| 11295 | << SourceRange(DS.getTypeSpecTypeLoc()) |
| 11296 | << SourceRange(D.getIdentifierLoc()); |
| 11297 | D.setInvalidType(); |
| 11298 | } else if (DS.getTypeQualifiers() && !D.isInvalidType()) { |
| 11299 | // It's also plausible that the user writes type qualifiers in the wrong |
| 11300 | // place, such as: |
| 11301 | // struct S { const operator int(); }; |
| 11302 | // FIXME: we could provide a fixit to move the qualifiers onto the |
| 11303 | // conversion type. |
| 11304 | Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl) |
| 11305 | << SourceRange(D.getIdentifierLoc()) << 0; |
| 11306 | D.setInvalidType(); |
| 11307 | } |
| 11308 | const auto *Proto = R->castAs<FunctionProtoType>(); |
| 11309 | // Make sure we don't have any parameters. |
| 11310 | DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); |
| 11311 | unsigned NumParam = Proto->getNumParams(); |
| 11312 | |
| 11313 | // [C++2b] |
| 11314 | // A conversion function shall have no non-object parameters. |
| 11315 | if (NumParam == 1) { |
| 11316 | DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); |
| 11317 | if (const auto *First = |
| 11318 | dyn_cast_if_present<ParmVarDecl>(Val: FTI.Params[0].Param); |
| 11319 | First && First->isExplicitObjectParameter()) |
| 11320 | NumParam--; |
| 11321 | } |
| 11322 | |
| 11323 | if (NumParam != 0) { |
| 11324 | Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); |
| 11325 | // Delete the parameters. |
| 11326 | FTI.freeParams(); |
| 11327 | D.setInvalidType(); |
| 11328 | } else if (Proto->isVariadic()) { |
| 11329 | Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); |
| 11330 | D.setInvalidType(); |
| 11331 | } |
| 11332 | |
| 11333 | // Diagnose "&operator bool()" and other such nonsense. This |
| 11334 | // is actually a gcc extension which we don't support. |
| 11335 | if (Proto->getReturnType() != ConvType) { |
| 11336 | bool NeedsTypedef = false; |
| 11337 | SourceRange Before, After; |
| 11338 | |
| 11339 | // Walk the chunks and extract information on them for our diagnostic. |
| 11340 | bool PastFunctionChunk = false; |
| 11341 | for (auto &Chunk : D.type_objects()) { |
| 11342 | switch (Chunk.Kind) { |
| 11343 | case DeclaratorChunk::Function: |
| 11344 | if (!PastFunctionChunk) { |
| 11345 | if (Chunk.Fun.HasTrailingReturnType) { |
| 11346 | TypeSourceInfo *TRT = nullptr; |
| 11347 | GetTypeFromParser(Ty: Chunk.Fun.getTrailingReturnType(), TInfo: &TRT); |
| 11348 | if (TRT) extendRight(R&: After, After: TRT->getTypeLoc().getSourceRange()); |
| 11349 | } |
| 11350 | PastFunctionChunk = true; |
| 11351 | break; |
| 11352 | } |
| 11353 | [[fallthrough]]; |
| 11354 | case DeclaratorChunk::Array: |
| 11355 | NeedsTypedef = true; |
| 11356 | extendRight(R&: After, After: Chunk.getSourceRange()); |
| 11357 | break; |
| 11358 | |
| 11359 | case DeclaratorChunk::Pointer: |
| 11360 | case DeclaratorChunk::BlockPointer: |
| 11361 | case DeclaratorChunk::Reference: |
| 11362 | case DeclaratorChunk::MemberPointer: |
| 11363 | case DeclaratorChunk::Pipe: |
| 11364 | extendLeft(R&: Before, Before: Chunk.getSourceRange()); |
| 11365 | break; |
| 11366 | |
| 11367 | case DeclaratorChunk::Paren: |
| 11368 | extendLeft(R&: Before, Before: Chunk.Loc); |
| 11369 | extendRight(R&: After, After: Chunk.EndLoc); |
| 11370 | break; |
| 11371 | } |
| 11372 | } |
| 11373 | |
| 11374 | SourceLocation Loc = Before.isValid() ? Before.getBegin() : |
| 11375 | After.isValid() ? After.getBegin() : |
| 11376 | D.getIdentifierLoc(); |
| 11377 | auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl); |
| 11378 | DB << Before << After; |
| 11379 | |
| 11380 | if (!NeedsTypedef) { |
| 11381 | DB << /*don't need a typedef*/0; |
| 11382 | |
| 11383 | // If we can provide a correct fix-it hint, do so. |
| 11384 | if (After.isInvalid() && ConvTSI) { |
| 11385 | SourceLocation InsertLoc = |
| 11386 | getLocForEndOfToken(Loc: ConvTSI->getTypeLoc().getEndLoc()); |
| 11387 | DB << FixItHint::CreateInsertion(InsertionLoc: InsertLoc, Code: " " ) |
| 11388 | << FixItHint::CreateInsertionFromRange( |
| 11389 | InsertionLoc: InsertLoc, FromRange: CharSourceRange::getTokenRange(R: Before)) |
| 11390 | << FixItHint::CreateRemoval(RemoveRange: Before); |
| 11391 | } |
| 11392 | } else if (!Proto->getReturnType()->isDependentType()) { |
| 11393 | DB << /*typedef*/1 << Proto->getReturnType(); |
| 11394 | } else if (getLangOpts().CPlusPlus11) { |
| 11395 | DB << /*alias template*/2 << Proto->getReturnType(); |
| 11396 | } else { |
| 11397 | DB << /*might not be fixable*/3; |
| 11398 | } |
| 11399 | |
| 11400 | // Recover by incorporating the other type chunks into the result type. |
| 11401 | // Note, this does *not* change the name of the function. This is compatible |
| 11402 | // with the GCC extension: |
| 11403 | // struct S { &operator int(); } s; |
| 11404 | // int &r = s.operator int(); // ok in GCC |
| 11405 | // S::operator int&() {} // error in GCC, function name is 'operator int'. |
| 11406 | ConvType = Proto->getReturnType(); |
| 11407 | } |
| 11408 | |
| 11409 | // C++ [class.conv.fct]p4: |
| 11410 | // The conversion-type-id shall not represent a function type nor |
| 11411 | // an array type. |
| 11412 | if (ConvType->isArrayType()) { |
| 11413 | Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); |
| 11414 | ConvType = Context.getPointerType(T: ConvType); |
| 11415 | D.setInvalidType(); |
| 11416 | } else if (ConvType->isFunctionType()) { |
| 11417 | Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); |
| 11418 | ConvType = Context.getPointerType(T: ConvType); |
| 11419 | D.setInvalidType(); |
| 11420 | } |
| 11421 | |
| 11422 | // Rebuild the function type "R" without any parameters (in case any |
| 11423 | // of the errors above fired) and with the conversion type as the |
| 11424 | // return type. |
| 11425 | if (D.isInvalidType()) |
| 11426 | R = Context.getFunctionType(ResultTy: ConvType, Args: {}, EPI: Proto->getExtProtoInfo()); |
| 11427 | |
| 11428 | // C++0x explicit conversion operators. |
| 11429 | if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus20) |
| 11430 | Diag(DS.getExplicitSpecLoc(), |
| 11431 | getLangOpts().CPlusPlus11 |
| 11432 | ? diag::warn_cxx98_compat_explicit_conversion_functions |
| 11433 | : diag::ext_explicit_conversion_functions) |
| 11434 | << SourceRange(DS.getExplicitSpecRange()); |
| 11435 | } |
| 11436 | |
| 11437 | Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { |
| 11438 | assert(Conversion && "Expected to receive a conversion function declaration" ); |
| 11439 | |
| 11440 | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext()); |
| 11441 | |
| 11442 | // Make sure we aren't redeclaring the conversion function. |
| 11443 | QualType ConvType = Context.getCanonicalType(T: Conversion->getConversionType()); |
| 11444 | // C++ [class.conv.fct]p1: |
| 11445 | // [...] A conversion function is never used to convert a |
| 11446 | // (possibly cv-qualified) object to the (possibly cv-qualified) |
| 11447 | // same object type (or a reference to it), to a (possibly |
| 11448 | // cv-qualified) base class of that type (or a reference to it), |
| 11449 | // or to (possibly cv-qualified) void. |
| 11450 | QualType ClassType |
| 11451 | = Context.getCanonicalType(T: Context.getTypeDeclType(ClassDecl)); |
| 11452 | if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>()) |
| 11453 | ConvType = ConvTypeRef->getPointeeType(); |
| 11454 | if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared && |
| 11455 | Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) |
| 11456 | /* Suppress diagnostics for instantiations. */; |
| 11457 | else if (Conversion->size_overridden_methods() != 0) |
| 11458 | /* Suppress diagnostics for overriding virtual function in a base class. */; |
| 11459 | else if (ConvType->isRecordType()) { |
| 11460 | ConvType = Context.getCanonicalType(T: ConvType).getUnqualifiedType(); |
| 11461 | if (ConvType == ClassType) |
| 11462 | Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) |
| 11463 | << ClassType; |
| 11464 | else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType)) |
| 11465 | Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) |
| 11466 | << ClassType << ConvType; |
| 11467 | } else if (ConvType->isVoidType()) { |
| 11468 | Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) |
| 11469 | << ClassType << ConvType; |
| 11470 | } |
| 11471 | |
| 11472 | if (FunctionTemplateDecl *ConversionTemplate = |
| 11473 | Conversion->getDescribedFunctionTemplate()) { |
| 11474 | if (const auto *ConvTypePtr = ConvType->getAs<PointerType>()) { |
| 11475 | ConvType = ConvTypePtr->getPointeeType(); |
| 11476 | } |
| 11477 | if (ConvType->isUndeducedAutoType()) { |
| 11478 | Diag(Conversion->getTypeSpecStartLoc(), diag::err_auto_not_allowed) |
| 11479 | << getReturnTypeLoc(Conversion).getSourceRange() |
| 11480 | << ConvType->castAs<AutoType>()->getKeyword() |
| 11481 | << /* in declaration of conversion function template= */ 24; |
| 11482 | } |
| 11483 | |
| 11484 | return ConversionTemplate; |
| 11485 | } |
| 11486 | |
| 11487 | return Conversion; |
| 11488 | } |
| 11489 | |
| 11490 | void Sema::CheckExplicitObjectMemberFunction(DeclContext *DC, Declarator &D, |
| 11491 | DeclarationName Name, QualType R) { |
| 11492 | CheckExplicitObjectMemberFunction(D, Name, R, IsLambda: false, DC); |
| 11493 | } |
| 11494 | |
| 11495 | void Sema::CheckExplicitObjectLambda(Declarator &D) { |
| 11496 | CheckExplicitObjectMemberFunction(D, Name: {}, R: {}, IsLambda: true); |
| 11497 | } |
| 11498 | |
| 11499 | void Sema::CheckExplicitObjectMemberFunction(Declarator &D, |
| 11500 | DeclarationName Name, QualType R, |
| 11501 | bool IsLambda, DeclContext *DC) { |
| 11502 | if (!D.isFunctionDeclarator()) |
| 11503 | return; |
| 11504 | |
| 11505 | DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); |
| 11506 | if (FTI.NumParams == 0) |
| 11507 | return; |
| 11508 | ParmVarDecl *ExplicitObjectParam = nullptr; |
| 11509 | for (unsigned Idx = 0; Idx < FTI.NumParams; Idx++) { |
| 11510 | const auto &ParamInfo = FTI.Params[Idx]; |
| 11511 | if (!ParamInfo.Param) |
| 11512 | continue; |
| 11513 | ParmVarDecl *Param = cast<ParmVarDecl>(Val: ParamInfo.Param); |
| 11514 | if (!Param->isExplicitObjectParameter()) |
| 11515 | continue; |
| 11516 | if (Idx == 0) { |
| 11517 | ExplicitObjectParam = Param; |
| 11518 | continue; |
| 11519 | } else { |
| 11520 | Diag(Param->getLocation(), |
| 11521 | diag::err_explicit_object_parameter_must_be_first) |
| 11522 | << IsLambda << Param->getSourceRange(); |
| 11523 | } |
| 11524 | } |
| 11525 | if (!ExplicitObjectParam) |
| 11526 | return; |
| 11527 | |
| 11528 | if (ExplicitObjectParam->hasDefaultArg()) { |
| 11529 | Diag(ExplicitObjectParam->getLocation(), |
| 11530 | diag::err_explicit_object_default_arg) |
| 11531 | << ExplicitObjectParam->getSourceRange(); |
| 11532 | } |
| 11533 | |
| 11534 | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static || |
| 11535 | (D.getContext() == clang::DeclaratorContext::Member && |
| 11536 | D.isStaticMember())) { |
| 11537 | Diag(ExplicitObjectParam->getBeginLoc(), |
| 11538 | diag::err_explicit_object_parameter_nonmember) |
| 11539 | << D.getSourceRange() << /*static=*/0 << IsLambda; |
| 11540 | D.setInvalidType(); |
| 11541 | } |
| 11542 | |
| 11543 | if (D.getDeclSpec().isVirtualSpecified()) { |
| 11544 | Diag(ExplicitObjectParam->getBeginLoc(), |
| 11545 | diag::err_explicit_object_parameter_nonmember) |
| 11546 | << D.getSourceRange() << /*virtual=*/1 << IsLambda; |
| 11547 | D.setInvalidType(); |
| 11548 | } |
| 11549 | |
| 11550 | // Friend declarations require some care. Consider: |
| 11551 | // |
| 11552 | // namespace N { |
| 11553 | // struct A{}; |
| 11554 | // int f(A); |
| 11555 | // } |
| 11556 | // |
| 11557 | // struct S { |
| 11558 | // struct T { |
| 11559 | // int f(this T); |
| 11560 | // }; |
| 11561 | // |
| 11562 | // friend int T::f(this T); // Allow this. |
| 11563 | // friend int f(this S); // But disallow this. |
| 11564 | // friend int N::f(this A); // And disallow this. |
| 11565 | // }; |
| 11566 | // |
| 11567 | // Here, it seems to suffice to check whether the scope |
| 11568 | // specifier designates a class type. |
| 11569 | if (D.getDeclSpec().isFriendSpecified() && |
| 11570 | !isa_and_present<CXXRecordDecl>( |
| 11571 | Val: computeDeclContext(SS: D.getCXXScopeSpec()))) { |
| 11572 | Diag(ExplicitObjectParam->getBeginLoc(), |
| 11573 | diag::err_explicit_object_parameter_nonmember) |
| 11574 | << D.getSourceRange() << /*non-member=*/2 << IsLambda; |
| 11575 | D.setInvalidType(); |
| 11576 | } |
| 11577 | |
| 11578 | if (IsLambda && FTI.hasMutableQualifier()) { |
| 11579 | Diag(ExplicitObjectParam->getBeginLoc(), |
| 11580 | diag::err_explicit_object_parameter_mutable) |
| 11581 | << D.getSourceRange(); |
| 11582 | } |
| 11583 | |
| 11584 | if (IsLambda) |
| 11585 | return; |
| 11586 | |
| 11587 | if (!DC || !DC->isRecord()) { |
| 11588 | assert(D.isInvalidType() && "Explicit object parameter in non-member " |
| 11589 | "should have been diagnosed already" ); |
| 11590 | return; |
| 11591 | } |
| 11592 | |
| 11593 | // CWG2674: constructors and destructors cannot have explicit parameters. |
| 11594 | if (Name.getNameKind() == DeclarationName::CXXConstructorName || |
| 11595 | Name.getNameKind() == DeclarationName::CXXDestructorName) { |
| 11596 | Diag(ExplicitObjectParam->getBeginLoc(), |
| 11597 | diag::err_explicit_object_parameter_constructor) |
| 11598 | << (Name.getNameKind() == DeclarationName::CXXDestructorName) |
| 11599 | << D.getSourceRange(); |
| 11600 | D.setInvalidType(); |
| 11601 | } |
| 11602 | } |
| 11603 | |
| 11604 | namespace { |
| 11605 | /// Utility class to accumulate and print a diagnostic listing the invalid |
| 11606 | /// specifier(s) on a declaration. |
| 11607 | struct BadSpecifierDiagnoser { |
| 11608 | BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID) |
| 11609 | : S(S), Diagnostic(S.Diag(Loc, DiagID)) {} |
| 11610 | ~BadSpecifierDiagnoser() { |
| 11611 | Diagnostic << Specifiers; |
| 11612 | } |
| 11613 | |
| 11614 | template<typename T> void check(SourceLocation SpecLoc, T Spec) { |
| 11615 | return check(SpecLoc, DeclSpec::getSpecifierName(Spec)); |
| 11616 | } |
| 11617 | void check(SourceLocation SpecLoc, DeclSpec::TST Spec) { |
| 11618 | return check(SpecLoc, |
| 11619 | Spec: DeclSpec::getSpecifierName(T: Spec, Policy: S.getPrintingPolicy())); |
| 11620 | } |
| 11621 | void check(SourceLocation SpecLoc, const char *Spec) { |
| 11622 | if (SpecLoc.isInvalid()) return; |
| 11623 | Diagnostic << SourceRange(SpecLoc, SpecLoc); |
| 11624 | if (!Specifiers.empty()) Specifiers += " " ; |
| 11625 | Specifiers += Spec; |
| 11626 | } |
| 11627 | |
| 11628 | Sema &S; |
| 11629 | Sema::SemaDiagnosticBuilder Diagnostic; |
| 11630 | std::string Specifiers; |
| 11631 | }; |
| 11632 | } |
| 11633 | |
| 11634 | bool Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R, |
| 11635 | StorageClass &SC) { |
| 11636 | TemplateName GuidedTemplate = D.getName().TemplateName.get().get(); |
| 11637 | TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl(); |
| 11638 | assert(GuidedTemplateDecl && "missing template decl for deduction guide" ); |
| 11639 | |
| 11640 | // C++ [temp.deduct.guide]p3: |
| 11641 | // A deduction-gide shall be declared in the same scope as the |
| 11642 | // corresponding class template. |
| 11643 | if (!CurContext->getRedeclContext()->Equals( |
| 11644 | DC: GuidedTemplateDecl->getDeclContext()->getRedeclContext())) { |
| 11645 | Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope) |
| 11646 | << GuidedTemplateDecl; |
| 11647 | NoteTemplateLocation(*GuidedTemplateDecl); |
| 11648 | } |
| 11649 | |
| 11650 | auto &DS = D.getMutableDeclSpec(); |
| 11651 | // We leave 'friend' and 'virtual' to be rejected in the normal way. |
| 11652 | if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() || |
| 11653 | DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() || |
| 11654 | DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) { |
| 11655 | BadSpecifierDiagnoser Diagnoser( |
| 11656 | *this, D.getIdentifierLoc(), |
| 11657 | diag::err_deduction_guide_invalid_specifier); |
| 11658 | |
| 11659 | Diagnoser.check(SpecLoc: DS.getStorageClassSpecLoc(), Spec: DS.getStorageClassSpec()); |
| 11660 | DS.ClearStorageClassSpecs(); |
| 11661 | SC = SC_None; |
| 11662 | |
| 11663 | // 'explicit' is permitted. |
| 11664 | Diagnoser.check(SpecLoc: DS.getInlineSpecLoc(), Spec: "inline" ); |
| 11665 | Diagnoser.check(SpecLoc: DS.getNoreturnSpecLoc(), Spec: "_Noreturn" ); |
| 11666 | Diagnoser.check(SpecLoc: DS.getConstexprSpecLoc(), Spec: "constexpr" ); |
| 11667 | DS.ClearConstexprSpec(); |
| 11668 | |
| 11669 | Diagnoser.check(SpecLoc: DS.getConstSpecLoc(), Spec: "const" ); |
| 11670 | Diagnoser.check(SpecLoc: DS.getRestrictSpecLoc(), Spec: "__restrict" ); |
| 11671 | Diagnoser.check(SpecLoc: DS.getVolatileSpecLoc(), Spec: "volatile" ); |
| 11672 | Diagnoser.check(SpecLoc: DS.getAtomicSpecLoc(), Spec: "_Atomic" ); |
| 11673 | Diagnoser.check(SpecLoc: DS.getUnalignedSpecLoc(), Spec: "__unaligned" ); |
| 11674 | DS.ClearTypeQualifiers(); |
| 11675 | |
| 11676 | Diagnoser.check(SpecLoc: DS.getTypeSpecComplexLoc(), Spec: DS.getTypeSpecComplex()); |
| 11677 | Diagnoser.check(SpecLoc: DS.getTypeSpecSignLoc(), Spec: DS.getTypeSpecSign()); |
| 11678 | Diagnoser.check(SpecLoc: DS.getTypeSpecWidthLoc(), Spec: DS.getTypeSpecWidth()); |
| 11679 | Diagnoser.check(SpecLoc: DS.getTypeSpecTypeLoc(), Spec: DS.getTypeSpecType()); |
| 11680 | DS.ClearTypeSpecType(); |
| 11681 | } |
| 11682 | |
| 11683 | if (D.isInvalidType()) |
| 11684 | return true; |
| 11685 | |
| 11686 | // Check the declarator is simple enough. |
| 11687 | bool FoundFunction = false; |
| 11688 | for (const DeclaratorChunk &Chunk : llvm::reverse(C: D.type_objects())) { |
| 11689 | if (Chunk.Kind == DeclaratorChunk::Paren) |
| 11690 | continue; |
| 11691 | if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) { |
| 11692 | Diag(D.getDeclSpec().getBeginLoc(), |
| 11693 | diag::err_deduction_guide_with_complex_decl) |
| 11694 | << D.getSourceRange(); |
| 11695 | break; |
| 11696 | } |
| 11697 | if (!Chunk.Fun.hasTrailingReturnType()) |
| 11698 | return Diag(D.getName().getBeginLoc(), |
| 11699 | diag::err_deduction_guide_no_trailing_return_type); |
| 11700 | |
| 11701 | // Check that the return type is written as a specialization of |
| 11702 | // the template specified as the deduction-guide's name. |
| 11703 | // The template name may not be qualified. [temp.deduct.guide] |
| 11704 | ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType(); |
| 11705 | TypeSourceInfo *TSI = nullptr; |
| 11706 | QualType RetTy = GetTypeFromParser(Ty: TrailingReturnType, TInfo: &TSI); |
| 11707 | assert(TSI && "deduction guide has valid type but invalid return type?" ); |
| 11708 | bool AcceptableReturnType = false; |
| 11709 | bool MightInstantiateToSpecialization = false; |
| 11710 | if (auto RetTST = |
| 11711 | TSI->getTypeLoc().getAsAdjusted<TemplateSpecializationTypeLoc>()) { |
| 11712 | TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName(); |
| 11713 | bool TemplateMatches = Context.hasSameTemplateName( |
| 11714 | X: SpecifiedName, Y: GuidedTemplate, /*IgnoreDeduced=*/true); |
| 11715 | |
| 11716 | const QualifiedTemplateName *Qualifiers = |
| 11717 | SpecifiedName.getAsQualifiedTemplateName(); |
| 11718 | assert(Qualifiers && "expected QualifiedTemplate" ); |
| 11719 | bool SimplyWritten = !Qualifiers->hasTemplateKeyword() && |
| 11720 | Qualifiers->getQualifier() == nullptr; |
| 11721 | if (SimplyWritten && TemplateMatches) |
| 11722 | AcceptableReturnType = true; |
| 11723 | else { |
| 11724 | // This could still instantiate to the right type, unless we know it |
| 11725 | // names the wrong class template. |
| 11726 | auto *TD = SpecifiedName.getAsTemplateDecl(); |
| 11727 | MightInstantiateToSpecialization = |
| 11728 | !(TD && isa<ClassTemplateDecl>(TD) && !TemplateMatches); |
| 11729 | } |
| 11730 | } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) { |
| 11731 | MightInstantiateToSpecialization = true; |
| 11732 | } |
| 11733 | |
| 11734 | if (!AcceptableReturnType) |
| 11735 | return Diag(TSI->getTypeLoc().getBeginLoc(), |
| 11736 | diag::err_deduction_guide_bad_trailing_return_type) |
| 11737 | << GuidedTemplate << TSI->getType() |
| 11738 | << MightInstantiateToSpecialization |
| 11739 | << TSI->getTypeLoc().getSourceRange(); |
| 11740 | |
| 11741 | // Keep going to check that we don't have any inner declarator pieces (we |
| 11742 | // could still have a function returning a pointer to a function). |
| 11743 | FoundFunction = true; |
| 11744 | } |
| 11745 | |
| 11746 | if (D.isFunctionDefinition()) |
| 11747 | // we can still create a valid deduction guide here. |
| 11748 | Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function); |
| 11749 | return false; |
| 11750 | } |
| 11751 | |
| 11752 | //===----------------------------------------------------------------------===// |
| 11753 | // Namespace Handling |
| 11754 | //===----------------------------------------------------------------------===// |
| 11755 | |
| 11756 | /// Diagnose a mismatch in 'inline' qualifiers when a namespace is |
| 11757 | /// reopened. |
| 11758 | static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc, |
| 11759 | SourceLocation Loc, |
| 11760 | IdentifierInfo *II, bool *IsInline, |
| 11761 | NamespaceDecl *PrevNS) { |
| 11762 | assert(*IsInline != PrevNS->isInline()); |
| 11763 | |
| 11764 | // 'inline' must appear on the original definition, but not necessarily |
| 11765 | // on all extension definitions, so the note should point to the first |
| 11766 | // definition to avoid confusion. |
| 11767 | PrevNS = PrevNS->getFirstDecl(); |
| 11768 | |
| 11769 | if (PrevNS->isInline()) |
| 11770 | // The user probably just forgot the 'inline', so suggest that it |
| 11771 | // be added back. |
| 11772 | S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline) |
| 11773 | << FixItHint::CreateInsertion(KeywordLoc, "inline " ); |
| 11774 | else |
| 11775 | S.Diag(Loc, diag::err_inline_namespace_mismatch); |
| 11776 | |
| 11777 | S.Diag(PrevNS->getLocation(), diag::note_previous_definition); |
| 11778 | *IsInline = PrevNS->isInline(); |
| 11779 | } |
| 11780 | |
| 11781 | /// ActOnStartNamespaceDef - This is called at the start of a namespace |
| 11782 | /// definition. |
| 11783 | Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope, |
| 11784 | SourceLocation InlineLoc, |
| 11785 | SourceLocation NamespaceLoc, |
| 11786 | SourceLocation IdentLoc, IdentifierInfo *II, |
| 11787 | SourceLocation LBrace, |
| 11788 | const ParsedAttributesView &AttrList, |
| 11789 | UsingDirectiveDecl *&UD, bool IsNested) { |
| 11790 | SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc; |
| 11791 | // For anonymous namespace, take the location of the left brace. |
| 11792 | SourceLocation Loc = II ? IdentLoc : LBrace; |
| 11793 | bool IsInline = InlineLoc.isValid(); |
| 11794 | bool IsInvalid = false; |
| 11795 | bool IsStd = false; |
| 11796 | bool AddToKnown = false; |
| 11797 | Scope *DeclRegionScope = NamespcScope->getParent(); |
| 11798 | |
| 11799 | NamespaceDecl *PrevNS = nullptr; |
| 11800 | if (II) { |
| 11801 | // C++ [namespace.std]p7: |
| 11802 | // A translation unit shall not declare namespace std to be an inline |
| 11803 | // namespace (9.8.2). |
| 11804 | // |
| 11805 | // Precondition: the std namespace is in the file scope and is declared to |
| 11806 | // be inline |
| 11807 | auto DiagnoseInlineStdNS = [&]() { |
| 11808 | assert(IsInline && II->isStr("std" ) && |
| 11809 | CurContext->getRedeclContext()->isTranslationUnit() && |
| 11810 | "Precondition of DiagnoseInlineStdNS not met" ); |
| 11811 | Diag(InlineLoc, diag::err_inline_namespace_std) |
| 11812 | << SourceRange(InlineLoc, InlineLoc.getLocWithOffset(6)); |
| 11813 | IsInline = false; |
| 11814 | }; |
| 11815 | // C++ [namespace.def]p2: |
| 11816 | // The identifier in an original-namespace-definition shall not |
| 11817 | // have been previously defined in the declarative region in |
| 11818 | // which the original-namespace-definition appears. The |
| 11819 | // identifier in an original-namespace-definition is the name of |
| 11820 | // the namespace. Subsequently in that declarative region, it is |
| 11821 | // treated as an original-namespace-name. |
| 11822 | // |
| 11823 | // Since namespace names are unique in their scope, and we don't |
| 11824 | // look through using directives, just look for any ordinary names |
| 11825 | // as if by qualified name lookup. |
| 11826 | LookupResult R(*this, II, IdentLoc, LookupOrdinaryName, |
| 11827 | RedeclarationKind::ForExternalRedeclaration); |
| 11828 | LookupQualifiedName(R, LookupCtx: CurContext->getRedeclContext()); |
| 11829 | NamedDecl *PrevDecl = |
| 11830 | R.isSingleResult() ? R.getRepresentativeDecl() : nullptr; |
| 11831 | PrevNS = dyn_cast_or_null<NamespaceDecl>(Val: PrevDecl); |
| 11832 | |
| 11833 | if (PrevNS) { |
| 11834 | // This is an extended namespace definition. |
| 11835 | if (IsInline && II->isStr(Str: "std" ) && |
| 11836 | CurContext->getRedeclContext()->isTranslationUnit()) |
| 11837 | DiagnoseInlineStdNS(); |
| 11838 | else if (IsInline != PrevNS->isInline()) |
| 11839 | DiagnoseNamespaceInlineMismatch(S&: *this, KeywordLoc: NamespaceLoc, Loc, II, |
| 11840 | IsInline: &IsInline, PrevNS); |
| 11841 | } else if (PrevDecl) { |
| 11842 | // This is an invalid name redefinition. |
| 11843 | Diag(Loc, diag::err_redefinition_different_kind) |
| 11844 | << II; |
| 11845 | Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
| 11846 | IsInvalid = true; |
| 11847 | // Continue on to push Namespc as current DeclContext and return it. |
| 11848 | } else if (II->isStr(Str: "std" ) && |
| 11849 | CurContext->getRedeclContext()->isTranslationUnit()) { |
| 11850 | if (IsInline) |
| 11851 | DiagnoseInlineStdNS(); |
| 11852 | // This is the first "real" definition of the namespace "std", so update |
| 11853 | // our cache of the "std" namespace to point at this definition. |
| 11854 | PrevNS = getStdNamespace(); |
| 11855 | IsStd = true; |
| 11856 | AddToKnown = !IsInline; |
| 11857 | } else { |
| 11858 | // We've seen this namespace for the first time. |
| 11859 | AddToKnown = !IsInline; |
| 11860 | } |
| 11861 | } else { |
| 11862 | // Anonymous namespaces. |
| 11863 | |
| 11864 | // Determine whether the parent already has an anonymous namespace. |
| 11865 | DeclContext *Parent = CurContext->getRedeclContext(); |
| 11866 | if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Val: Parent)) { |
| 11867 | PrevNS = TU->getAnonymousNamespace(); |
| 11868 | } else { |
| 11869 | NamespaceDecl *ND = cast<NamespaceDecl>(Val: Parent); |
| 11870 | PrevNS = ND->getAnonymousNamespace(); |
| 11871 | } |
| 11872 | |
| 11873 | if (PrevNS && IsInline != PrevNS->isInline()) |
| 11874 | DiagnoseNamespaceInlineMismatch(S&: *this, KeywordLoc: NamespaceLoc, Loc: NamespaceLoc, II, |
| 11875 | IsInline: &IsInline, PrevNS); |
| 11876 | } |
| 11877 | |
| 11878 | NamespaceDecl *Namespc = NamespaceDecl::Create( |
| 11879 | C&: Context, DC: CurContext, Inline: IsInline, StartLoc, IdLoc: Loc, Id: II, PrevDecl: PrevNS, Nested: IsNested); |
| 11880 | if (IsInvalid) |
| 11881 | Namespc->setInvalidDecl(); |
| 11882 | |
| 11883 | ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList); |
| 11884 | AddPragmaAttributes(DeclRegionScope, Namespc); |
| 11885 | ProcessAPINotes(Namespc); |
| 11886 | |
| 11887 | // FIXME: Should we be merging attributes? |
| 11888 | if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>()) |
| 11889 | PushNamespaceVisibilityAttr(Attr, Loc); |
| 11890 | |
| 11891 | if (IsStd) |
| 11892 | StdNamespace = Namespc; |
| 11893 | if (AddToKnown) |
| 11894 | KnownNamespaces[Namespc] = false; |
| 11895 | |
| 11896 | if (II) { |
| 11897 | PushOnScopeChains(Namespc, DeclRegionScope); |
| 11898 | } else { |
| 11899 | // Link the anonymous namespace into its parent. |
| 11900 | DeclContext *Parent = CurContext->getRedeclContext(); |
| 11901 | if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Val: Parent)) { |
| 11902 | TU->setAnonymousNamespace(Namespc); |
| 11903 | } else { |
| 11904 | cast<NamespaceDecl>(Val: Parent)->setAnonymousNamespace(Namespc); |
| 11905 | } |
| 11906 | |
| 11907 | CurContext->addDecl(Namespc); |
| 11908 | |
| 11909 | // C++ [namespace.unnamed]p1. An unnamed-namespace-definition |
| 11910 | // behaves as if it were replaced by |
| 11911 | // namespace unique { /* empty body */ } |
| 11912 | // using namespace unique; |
| 11913 | // namespace unique { namespace-body } |
| 11914 | // where all occurrences of 'unique' in a translation unit are |
| 11915 | // replaced by the same identifier and this identifier differs |
| 11916 | // from all other identifiers in the entire program. |
| 11917 | |
| 11918 | // We just create the namespace with an empty name and then add an |
| 11919 | // implicit using declaration, just like the standard suggests. |
| 11920 | // |
| 11921 | // CodeGen enforces the "universally unique" aspect by giving all |
| 11922 | // declarations semantically contained within an anonymous |
| 11923 | // namespace internal linkage. |
| 11924 | |
| 11925 | if (!PrevNS) { |
| 11926 | UD = UsingDirectiveDecl::Create(Context, Parent, |
| 11927 | /* 'using' */ LBrace, |
| 11928 | /* 'namespace' */ SourceLocation(), |
| 11929 | /* qualifier */ NestedNameSpecifierLoc(), |
| 11930 | /* identifier */ SourceLocation(), |
| 11931 | Namespc, |
| 11932 | /* Ancestor */ Parent); |
| 11933 | UD->setImplicit(); |
| 11934 | Parent->addDecl(UD); |
| 11935 | } |
| 11936 | } |
| 11937 | |
| 11938 | ActOnDocumentableDecl(Namespc); |
| 11939 | |
| 11940 | // Although we could have an invalid decl (i.e. the namespace name is a |
| 11941 | // redefinition), push it as current DeclContext and try to continue parsing. |
| 11942 | // FIXME: We should be able to push Namespc here, so that the each DeclContext |
| 11943 | // for the namespace has the declarations that showed up in that particular |
| 11944 | // namespace definition. |
| 11945 | PushDeclContext(NamespcScope, Namespc); |
| 11946 | return Namespc; |
| 11947 | } |
| 11948 | |
| 11949 | /// getNamespaceDecl - Returns the namespace a decl represents. If the decl |
| 11950 | /// is a namespace alias, returns the namespace it points to. |
| 11951 | static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { |
| 11952 | if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(Val: D)) |
| 11953 | return AD->getNamespace(); |
| 11954 | return dyn_cast_or_null<NamespaceDecl>(Val: D); |
| 11955 | } |
| 11956 | |
| 11957 | void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) { |
| 11958 | NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Val: Dcl); |
| 11959 | assert(Namespc && "Invalid parameter, expected NamespaceDecl" ); |
| 11960 | Namespc->setRBraceLoc(RBrace); |
| 11961 | PopDeclContext(); |
| 11962 | if (Namespc->hasAttr<VisibilityAttr>()) |
| 11963 | PopPragmaVisibility(IsNamespaceEnd: true, EndLoc: RBrace); |
| 11964 | // If this namespace contains an export-declaration, export it now. |
| 11965 | if (DeferredExportedNamespaces.erase(Ptr: Namespc)) |
| 11966 | Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported); |
| 11967 | } |
| 11968 | |
| 11969 | CXXRecordDecl *Sema::getStdBadAlloc() const { |
| 11970 | return cast_or_null<CXXRecordDecl>( |
| 11971 | Val: StdBadAlloc.get(Source: Context.getExternalSource())); |
| 11972 | } |
| 11973 | |
| 11974 | EnumDecl *Sema::getStdAlignValT() const { |
| 11975 | return cast_or_null<EnumDecl>(Val: StdAlignValT.get(Source: Context.getExternalSource())); |
| 11976 | } |
| 11977 | |
| 11978 | NamespaceDecl *Sema::getStdNamespace() const { |
| 11979 | return cast_or_null<NamespaceDecl>( |
| 11980 | Val: StdNamespace.get(Source: Context.getExternalSource())); |
| 11981 | } |
| 11982 | |
| 11983 | namespace { |
| 11984 | |
| 11985 | enum UnsupportedSTLSelect { |
| 11986 | USS_InvalidMember, |
| 11987 | USS_MissingMember, |
| 11988 | USS_NonTrivial, |
| 11989 | USS_Other |
| 11990 | }; |
| 11991 | |
| 11992 | struct InvalidSTLDiagnoser { |
| 11993 | Sema &S; |
| 11994 | SourceLocation Loc; |
| 11995 | QualType TyForDiags; |
| 11996 | |
| 11997 | QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "" , |
| 11998 | const VarDecl *VD = nullptr) { |
| 11999 | { |
| 12000 | auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported) |
| 12001 | << TyForDiags << ((int)Sel); |
| 12002 | if (Sel == USS_InvalidMember || Sel == USS_MissingMember) { |
| 12003 | assert(!Name.empty()); |
| 12004 | D << Name; |
| 12005 | } |
| 12006 | } |
| 12007 | if (Sel == USS_InvalidMember) { |
| 12008 | S.Diag(VD->getLocation(), diag::note_var_declared_here) |
| 12009 | << VD << VD->getSourceRange(); |
| 12010 | } |
| 12011 | return QualType(); |
| 12012 | } |
| 12013 | }; |
| 12014 | } // namespace |
| 12015 | |
| 12016 | QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind, |
| 12017 | SourceLocation Loc, |
| 12018 | ComparisonCategoryUsage Usage) { |
| 12019 | assert(getLangOpts().CPlusPlus && |
| 12020 | "Looking for comparison category type outside of C++." ); |
| 12021 | |
| 12022 | // Use an elaborated type for diagnostics which has a name containing the |
| 12023 | // prepended 'std' namespace but not any inline namespace names. |
| 12024 | auto TyForDiags = [&](ComparisonCategoryInfo *Info) { |
| 12025 | auto *NNS = |
| 12026 | NestedNameSpecifier::Create(Context, Prefix: nullptr, NS: getStdNamespace()); |
| 12027 | return Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::None, NNS, |
| 12028 | NamedType: Info->getType()); |
| 12029 | }; |
| 12030 | |
| 12031 | // Check if we've already successfully checked the comparison category type |
| 12032 | // before. If so, skip checking it again. |
| 12033 | ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind); |
| 12034 | if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)]) { |
| 12035 | // The only thing we need to check is that the type has a reachable |
| 12036 | // definition in the current context. |
| 12037 | if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) |
| 12038 | return QualType(); |
| 12039 | |
| 12040 | return Info->getType(); |
| 12041 | } |
| 12042 | |
| 12043 | // If lookup failed |
| 12044 | if (!Info) { |
| 12045 | std::string NameForDiags = "std::" ; |
| 12046 | NameForDiags += ComparisonCategories::getCategoryString(Kind); |
| 12047 | Diag(Loc, diag::err_implied_comparison_category_type_not_found) |
| 12048 | << NameForDiags << (int)Usage; |
| 12049 | return QualType(); |
| 12050 | } |
| 12051 | |
| 12052 | assert(Info->Kind == Kind); |
| 12053 | assert(Info->Record); |
| 12054 | |
| 12055 | // Update the Record decl in case we encountered a forward declaration on our |
| 12056 | // first pass. FIXME: This is a bit of a hack. |
| 12057 | if (Info->Record->hasDefinition()) |
| 12058 | Info->Record = Info->Record->getDefinition(); |
| 12059 | |
| 12060 | if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type)) |
| 12061 | return QualType(); |
| 12062 | |
| 12063 | InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags(Info)}; |
| 12064 | |
| 12065 | if (!Info->Record->isTriviallyCopyable()) |
| 12066 | return UnsupportedSTLError(USS_NonTrivial); |
| 12067 | |
| 12068 | for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) { |
| 12069 | CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl(); |
| 12070 | // Tolerate empty base classes. |
| 12071 | if (Base->isEmpty()) |
| 12072 | continue; |
| 12073 | // Reject STL implementations which have at least one non-empty base. |
| 12074 | return UnsupportedSTLError(); |
| 12075 | } |
| 12076 | |
| 12077 | // Check that the STL has implemented the types using a single integer field. |
| 12078 | // This expectation allows better codegen for builtin operators. We require: |
| 12079 | // (1) The class has exactly one field. |
| 12080 | // (2) The field is an integral or enumeration type. |
| 12081 | auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end(); |
| 12082 | if (std::distance(FIt, FEnd) != 1 || |
| 12083 | !FIt->getType()->isIntegralOrEnumerationType()) { |
| 12084 | return UnsupportedSTLError(); |
| 12085 | } |
| 12086 | |
| 12087 | // Build each of the require values and store them in Info. |
| 12088 | for (ComparisonCategoryResult CCR : |
| 12089 | ComparisonCategories::getPossibleResultsForType(Type: Kind)) { |
| 12090 | StringRef MemName = ComparisonCategories::getResultString(Kind: CCR); |
| 12091 | ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(ValueKind: CCR); |
| 12092 | |
| 12093 | if (!ValInfo) |
| 12094 | return UnsupportedSTLError(USS_MissingMember, MemName); |
| 12095 | |
| 12096 | VarDecl *VD = ValInfo->VD; |
| 12097 | assert(VD && "should not be null!" ); |
| 12098 | |
| 12099 | // Attempt to diagnose reasons why the STL definition of this type |
| 12100 | // might be foobar, including it failing to be a constant expression. |
| 12101 | // TODO Handle more ways the lookup or result can be invalid. |
| 12102 | if (!VD->isStaticDataMember() || |
| 12103 | !VD->isUsableInConstantExpressions(C: Context)) |
| 12104 | return UnsupportedSTLError(USS_InvalidMember, MemName, VD); |
| 12105 | |
| 12106 | // Attempt to evaluate the var decl as a constant expression and extract |
| 12107 | // the value of its first field as a ICE. If this fails, the STL |
| 12108 | // implementation is not supported. |
| 12109 | if (!ValInfo->hasValidIntValue()) |
| 12110 | return UnsupportedSTLError(); |
| 12111 | |
| 12112 | MarkVariableReferenced(Loc, Var: VD); |
| 12113 | } |
| 12114 | |
| 12115 | // We've successfully built the required types and expressions. Update |
| 12116 | // the cache and return the newly cached value. |
| 12117 | FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true; |
| 12118 | return Info->getType(); |
| 12119 | } |
| 12120 | |
| 12121 | NamespaceDecl *Sema::getOrCreateStdNamespace() { |
| 12122 | if (!StdNamespace) { |
| 12123 | // The "std" namespace has not yet been defined, so build one implicitly. |
| 12124 | StdNamespace = NamespaceDecl::Create( |
| 12125 | Context, Context.getTranslationUnitDecl(), |
| 12126 | /*Inline=*/false, SourceLocation(), SourceLocation(), |
| 12127 | &PP.getIdentifierTable().get(Name: "std" ), |
| 12128 | /*PrevDecl=*/nullptr, /*Nested=*/false); |
| 12129 | getStdNamespace()->setImplicit(true); |
| 12130 | // We want the created NamespaceDecl to be available for redeclaration |
| 12131 | // lookups, but not for regular name lookups. |
| 12132 | Context.getTranslationUnitDecl()->addDecl(getStdNamespace()); |
| 12133 | getStdNamespace()->clearIdentifierNamespace(); |
| 12134 | } |
| 12135 | |
| 12136 | return getStdNamespace(); |
| 12137 | } |
| 12138 | |
| 12139 | static bool isStdClassTemplate(Sema &S, QualType SugaredType, QualType *TypeArg, |
| 12140 | const char *ClassName, |
| 12141 | ClassTemplateDecl **CachedDecl, |
| 12142 | const Decl **MalformedDecl) { |
| 12143 | // We're looking for implicit instantiations of |
| 12144 | // template <typename U> class std::{ClassName}. |
| 12145 | |
| 12146 | if (!S.StdNamespace) // If we haven't seen namespace std yet, this can't be |
| 12147 | // it. |
| 12148 | return false; |
| 12149 | |
| 12150 | auto ReportMatchingNameAsMalformed = [&](NamedDecl *D) { |
| 12151 | if (!MalformedDecl) |
| 12152 | return; |
| 12153 | if (!D) |
| 12154 | D = SugaredType->getAsTagDecl(); |
| 12155 | if (!D || !D->isInStdNamespace()) |
| 12156 | return; |
| 12157 | IdentifierInfo *II = D->getDeclName().getAsIdentifierInfo(); |
| 12158 | if (II && II == &S.PP.getIdentifierTable().get(Name: ClassName)) |
| 12159 | *MalformedDecl = D; |
| 12160 | }; |
| 12161 | |
| 12162 | ClassTemplateDecl *Template = nullptr; |
| 12163 | ArrayRef<TemplateArgument> Arguments; |
| 12164 | { |
| 12165 | const TemplateSpecializationType *TST = |
| 12166 | SugaredType->getAsNonAliasTemplateSpecializationType(); |
| 12167 | if (!TST) |
| 12168 | if (const auto *ICN = SugaredType->getAs<InjectedClassNameType>()) |
| 12169 | TST = ICN->getInjectedTST(); |
| 12170 | if (TST) { |
| 12171 | Template = dyn_cast_or_null<ClassTemplateDecl>( |
| 12172 | Val: TST->getTemplateName().getAsTemplateDecl()); |
| 12173 | Arguments = TST->template_arguments(); |
| 12174 | } else if (const RecordType *RT = SugaredType->getAs<RecordType>()) { |
| 12175 | ClassTemplateSpecializationDecl *Specialization = |
| 12176 | dyn_cast<ClassTemplateSpecializationDecl>(Val: RT->getDecl()); |
| 12177 | if (!Specialization) { |
| 12178 | ReportMatchingNameAsMalformed(RT->getDecl()); |
| 12179 | return false; |
| 12180 | } |
| 12181 | Template = Specialization->getSpecializedTemplate(); |
| 12182 | Arguments = Specialization->getTemplateArgs().asArray(); |
| 12183 | } |
| 12184 | } |
| 12185 | |
| 12186 | if (!Template) { |
| 12187 | ReportMatchingNameAsMalformed(SugaredType->getAsTagDecl()); |
| 12188 | return false; |
| 12189 | } |
| 12190 | |
| 12191 | if (!*CachedDecl) { |
| 12192 | // Haven't recognized std::{ClassName} yet, maybe this is it. |
| 12193 | // FIXME: It seems we should just reuse LookupStdClassTemplate but the |
| 12194 | // semantics of this are slightly different, most notably the existing |
| 12195 | // "lookup" semantics explicitly diagnose an invalid definition as an |
| 12196 | // error. |
| 12197 | CXXRecordDecl *TemplateClass = Template->getTemplatedDecl(); |
| 12198 | if (TemplateClass->getIdentifier() != |
| 12199 | &S.PP.getIdentifierTable().get(Name: ClassName) || |
| 12200 | !S.getStdNamespace()->InEnclosingNamespaceSetOf( |
| 12201 | NS: TemplateClass->getNonTransparentDeclContext())) |
| 12202 | return false; |
| 12203 | // This is a template called std::{ClassName}, but is it the right |
| 12204 | // template? |
| 12205 | TemplateParameterList *Params = Template->getTemplateParameters(); |
| 12206 | if (Params->getMinRequiredArguments() != 1 || |
| 12207 | !isa<TemplateTypeParmDecl>(Val: Params->getParam(Idx: 0)) || |
| 12208 | Params->getParam(Idx: 0)->isTemplateParameterPack()) { |
| 12209 | if (MalformedDecl) |
| 12210 | *MalformedDecl = TemplateClass; |
| 12211 | return false; |
| 12212 | } |
| 12213 | |
| 12214 | // It's the right template. |
| 12215 | *CachedDecl = Template; |
| 12216 | } |
| 12217 | |
| 12218 | if (Template->getCanonicalDecl() != (*CachedDecl)->getCanonicalDecl()) |
| 12219 | return false; |
| 12220 | |
| 12221 | // This is an instance of std::{ClassName}. Find the argument type. |
| 12222 | if (TypeArg) { |
| 12223 | QualType ArgType = Arguments[0].getAsType(); |
| 12224 | // FIXME: Since TST only has as-written arguments, we have to perform the |
| 12225 | // only kind of conversion applicable to type arguments; in Objective-C ARC: |
| 12226 | // - If an explicitly-specified template argument type is a lifetime type |
| 12227 | // with no lifetime qualifier, the __strong lifetime qualifier is |
| 12228 | // inferred. |
| 12229 | if (S.getLangOpts().ObjCAutoRefCount && ArgType->isObjCLifetimeType() && |
| 12230 | !ArgType.getObjCLifetime()) { |
| 12231 | Qualifiers Qs; |
| 12232 | Qs.setObjCLifetime(Qualifiers::OCL_Strong); |
| 12233 | ArgType = S.Context.getQualifiedType(T: ArgType, Qs); |
| 12234 | } |
| 12235 | *TypeArg = ArgType; |
| 12236 | } |
| 12237 | |
| 12238 | return true; |
| 12239 | } |
| 12240 | |
| 12241 | bool Sema::isStdInitializerList(QualType Ty, QualType *Element) { |
| 12242 | assert(getLangOpts().CPlusPlus && |
| 12243 | "Looking for std::initializer_list outside of C++." ); |
| 12244 | |
| 12245 | // We're looking for implicit instantiations of |
| 12246 | // template <typename E> class std::initializer_list. |
| 12247 | |
| 12248 | return isStdClassTemplate(S&: *this, SugaredType: Ty, TypeArg: Element, ClassName: "initializer_list" , |
| 12249 | CachedDecl: &StdInitializerList, /*MalformedDecl=*/nullptr); |
| 12250 | } |
| 12251 | |
| 12252 | bool Sema::isStdTypeIdentity(QualType Ty, QualType *Element, |
| 12253 | const Decl **MalformedDecl) { |
| 12254 | assert(getLangOpts().CPlusPlus && |
| 12255 | "Looking for std::type_identity outside of C++." ); |
| 12256 | |
| 12257 | // We're looking for implicit instantiations of |
| 12258 | // template <typename T> struct std::type_identity. |
| 12259 | |
| 12260 | return isStdClassTemplate(S&: *this, SugaredType: Ty, TypeArg: Element, ClassName: "type_identity" , |
| 12261 | CachedDecl: &StdTypeIdentity, MalformedDecl); |
| 12262 | } |
| 12263 | |
| 12264 | static ClassTemplateDecl *LookupStdClassTemplate(Sema &S, SourceLocation Loc, |
| 12265 | const char *ClassName, |
| 12266 | bool *WasMalformed) { |
| 12267 | if (!S.StdNamespace) |
| 12268 | return nullptr; |
| 12269 | |
| 12270 | LookupResult Result(S, &S.PP.getIdentifierTable().get(Name: ClassName), Loc, |
| 12271 | Sema::LookupOrdinaryName); |
| 12272 | if (!S.LookupQualifiedName(Result, S.getStdNamespace())) |
| 12273 | return nullptr; |
| 12274 | |
| 12275 | ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>(); |
| 12276 | if (!Template) { |
| 12277 | Result.suppressDiagnostics(); |
| 12278 | // We found something weird. Complain about the first thing we found. |
| 12279 | NamedDecl *Found = *Result.begin(); |
| 12280 | S.Diag(Found->getLocation(), diag::err_malformed_std_class_template) |
| 12281 | << ClassName; |
| 12282 | if (WasMalformed) |
| 12283 | *WasMalformed = true; |
| 12284 | return nullptr; |
| 12285 | } |
| 12286 | |
| 12287 | // We found some template with the correct name. Now verify that it's |
| 12288 | // correct. |
| 12289 | TemplateParameterList *Params = Template->getTemplateParameters(); |
| 12290 | if (Params->getMinRequiredArguments() != 1 || |
| 12291 | !isa<TemplateTypeParmDecl>(Val: Params->getParam(Idx: 0))) { |
| 12292 | S.Diag(Template->getLocation(), diag::err_malformed_std_class_template) |
| 12293 | << ClassName; |
| 12294 | if (WasMalformed) |
| 12295 | *WasMalformed = true; |
| 12296 | return nullptr; |
| 12297 | } |
| 12298 | |
| 12299 | return Template; |
| 12300 | } |
| 12301 | |
| 12302 | static QualType BuildStdClassTemplate(Sema &S, ClassTemplateDecl *CTD, |
| 12303 | QualType TypeParam, SourceLocation Loc) { |
| 12304 | assert(S.getStdNamespace()); |
| 12305 | TemplateArgumentListInfo Args(Loc, Loc); |
| 12306 | auto TSI = S.Context.getTrivialTypeSourceInfo(T: TypeParam, Loc); |
| 12307 | Args.addArgument(Loc: TemplateArgumentLoc(TemplateArgument(TypeParam), TSI)); |
| 12308 | |
| 12309 | QualType T = S.CheckTemplateIdType(Template: TemplateName(CTD), TemplateLoc: Loc, TemplateArgs&: Args); |
| 12310 | if (T.isNull()) |
| 12311 | return QualType(); |
| 12312 | |
| 12313 | return S.Context.getElaboratedType( |
| 12314 | Keyword: ElaboratedTypeKeyword::None, |
| 12315 | NNS: NestedNameSpecifier::Create(Context: S.Context, Prefix: nullptr, NS: S.getStdNamespace()), NamedType: T); |
| 12316 | } |
| 12317 | |
| 12318 | QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) { |
| 12319 | if (!StdInitializerList) { |
| 12320 | bool WasMalformed = false; |
| 12321 | StdInitializerList = |
| 12322 | LookupStdClassTemplate(S&: *this, Loc, ClassName: "initializer_list" , WasMalformed: &WasMalformed); |
| 12323 | if (!StdInitializerList) { |
| 12324 | if (!WasMalformed) |
| 12325 | Diag(Loc, diag::err_implied_std_initializer_list_not_found); |
| 12326 | return QualType(); |
| 12327 | } |
| 12328 | } |
| 12329 | return BuildStdClassTemplate(S&: *this, CTD: StdInitializerList, TypeParam: Element, Loc); |
| 12330 | } |
| 12331 | |
| 12332 | QualType Sema::tryBuildStdTypeIdentity(QualType Type, SourceLocation Loc) { |
| 12333 | if (!StdTypeIdentity) { |
| 12334 | StdTypeIdentity = LookupStdClassTemplate(S&: *this, Loc, ClassName: "type_identity" , |
| 12335 | /*WasMalformed=*/nullptr); |
| 12336 | if (!StdTypeIdentity) |
| 12337 | return QualType(); |
| 12338 | } |
| 12339 | return BuildStdClassTemplate(S&: *this, CTD: StdTypeIdentity, TypeParam: Type, Loc); |
| 12340 | } |
| 12341 | |
| 12342 | bool Sema::isInitListConstructor(const FunctionDecl *Ctor) { |
| 12343 | // C++ [dcl.init.list]p2: |
| 12344 | // A constructor is an initializer-list constructor if its first parameter |
| 12345 | // is of type std::initializer_list<E> or reference to possibly cv-qualified |
| 12346 | // std::initializer_list<E> for some type E, and either there are no other |
| 12347 | // parameters or else all other parameters have default arguments. |
| 12348 | if (!Ctor->hasOneParamOrDefaultArgs()) |
| 12349 | return false; |
| 12350 | |
| 12351 | QualType ArgType = Ctor->getParamDecl(i: 0)->getType(); |
| 12352 | if (const ReferenceType *RT = ArgType->getAs<ReferenceType>()) |
| 12353 | ArgType = RT->getPointeeType().getUnqualifiedType(); |
| 12354 | |
| 12355 | return isStdInitializerList(Ty: ArgType, Element: nullptr); |
| 12356 | } |
| 12357 | |
| 12358 | /// Determine whether a using statement is in a context where it will be |
| 12359 | /// apply in all contexts. |
| 12360 | static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) { |
| 12361 | switch (CurContext->getDeclKind()) { |
| 12362 | case Decl::TranslationUnit: |
| 12363 | return true; |
| 12364 | case Decl::LinkageSpec: |
| 12365 | return IsUsingDirectiveInToplevelContext(CurContext: CurContext->getParent()); |
| 12366 | default: |
| 12367 | return false; |
| 12368 | } |
| 12369 | } |
| 12370 | |
| 12371 | namespace { |
| 12372 | |
| 12373 | // Callback to only accept typo corrections that are namespaces. |
| 12374 | class NamespaceValidatorCCC final : public CorrectionCandidateCallback { |
| 12375 | public: |
| 12376 | bool ValidateCandidate(const TypoCorrection &candidate) override { |
| 12377 | if (NamedDecl *ND = candidate.getCorrectionDecl()) |
| 12378 | return isa<NamespaceDecl>(Val: ND) || isa<NamespaceAliasDecl>(Val: ND); |
| 12379 | return false; |
| 12380 | } |
| 12381 | |
| 12382 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
| 12383 | return std::make_unique<NamespaceValidatorCCC>(args&: *this); |
| 12384 | } |
| 12385 | }; |
| 12386 | |
| 12387 | } |
| 12388 | |
| 12389 | static void DiagnoseInvisibleNamespace(const TypoCorrection &Corrected, |
| 12390 | Sema &S) { |
| 12391 | auto *ND = cast<NamespaceDecl>(Val: Corrected.getFoundDecl()); |
| 12392 | Module *M = ND->getOwningModule(); |
| 12393 | assert(M && "hidden namespace definition not in a module?" ); |
| 12394 | |
| 12395 | if (M->isExplicitGlobalModule()) |
| 12396 | S.Diag(Corrected.getCorrectionRange().getBegin(), |
| 12397 | diag::err_module_unimported_use_header) |
| 12398 | << (int)Sema::MissingImportKind::Declaration << Corrected.getFoundDecl() |
| 12399 | << /*Header Name*/ false; |
| 12400 | else |
| 12401 | S.Diag(Corrected.getCorrectionRange().getBegin(), |
| 12402 | diag::err_module_unimported_use) |
| 12403 | << (int)Sema::MissingImportKind::Declaration << Corrected.getFoundDecl() |
| 12404 | << M->getTopLevelModuleName(); |
| 12405 | } |
| 12406 | |
| 12407 | static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc, |
| 12408 | CXXScopeSpec &SS, |
| 12409 | SourceLocation IdentLoc, |
| 12410 | IdentifierInfo *Ident) { |
| 12411 | R.clear(); |
| 12412 | NamespaceValidatorCCC CCC{}; |
| 12413 | if (TypoCorrection Corrected = |
| 12414 | S.CorrectTypo(Typo: R.getLookupNameInfo(), LookupKind: R.getLookupKind(), S: Sc, SS: &SS, CCC, |
| 12415 | Mode: CorrectTypoKind::ErrorRecovery)) { |
| 12416 | // Generally we find it is confusing more than helpful to diagnose the |
| 12417 | // invisible namespace. |
| 12418 | // See https://github.com/llvm/llvm-project/issues/73893. |
| 12419 | // |
| 12420 | // However, we should diagnose when the users are trying to using an |
| 12421 | // invisible namespace. So we handle the case specially here. |
| 12422 | if (isa_and_nonnull<NamespaceDecl>(Val: Corrected.getFoundDecl()) && |
| 12423 | Corrected.requiresImport()) { |
| 12424 | DiagnoseInvisibleNamespace(Corrected, S); |
| 12425 | } else if (DeclContext *DC = S.computeDeclContext(SS, EnteringContext: false)) { |
| 12426 | std::string CorrectedStr(Corrected.getAsString(LO: S.getLangOpts())); |
| 12427 | bool DroppedSpecifier = |
| 12428 | Corrected.WillReplaceSpecifier() && Ident->getName() == CorrectedStr; |
| 12429 | S.diagnoseTypo(Corrected, |
| 12430 | S.PDiag(diag::err_using_directive_member_suggest) |
| 12431 | << Ident << DC << DroppedSpecifier << SS.getRange(), |
| 12432 | S.PDiag(diag::note_namespace_defined_here)); |
| 12433 | } else { |
| 12434 | S.diagnoseTypo(Corrected, |
| 12435 | S.PDiag(diag::err_using_directive_suggest) << Ident, |
| 12436 | S.PDiag(diag::note_namespace_defined_here)); |
| 12437 | } |
| 12438 | R.addDecl(D: Corrected.getFoundDecl()); |
| 12439 | return true; |
| 12440 | } |
| 12441 | return false; |
| 12442 | } |
| 12443 | |
| 12444 | Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc, |
| 12445 | SourceLocation NamespcLoc, CXXScopeSpec &SS, |
| 12446 | SourceLocation IdentLoc, |
| 12447 | IdentifierInfo *NamespcName, |
| 12448 | const ParsedAttributesView &AttrList) { |
| 12449 | assert(!SS.isInvalid() && "Invalid CXXScopeSpec." ); |
| 12450 | assert(NamespcName && "Invalid NamespcName." ); |
| 12451 | assert(IdentLoc.isValid() && "Invalid NamespceName location." ); |
| 12452 | |
| 12453 | // Get the innermost enclosing declaration scope. |
| 12454 | S = S->getDeclParent(); |
| 12455 | |
| 12456 | UsingDirectiveDecl *UDir = nullptr; |
| 12457 | NestedNameSpecifier *Qualifier = nullptr; |
| 12458 | if (SS.isSet()) |
| 12459 | Qualifier = SS.getScopeRep(); |
| 12460 | |
| 12461 | // Lookup namespace name. |
| 12462 | LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName); |
| 12463 | LookupParsedName(R, S, SS: &SS, /*ObjectType=*/QualType()); |
| 12464 | if (R.isAmbiguous()) |
| 12465 | return nullptr; |
| 12466 | |
| 12467 | if (R.empty()) { |
| 12468 | R.clear(); |
| 12469 | // Allow "using namespace std;" or "using namespace ::std;" even if |
| 12470 | // "std" hasn't been defined yet, for GCC compatibility. |
| 12471 | if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) && |
| 12472 | NamespcName->isStr(Str: "std" )) { |
| 12473 | Diag(IdentLoc, diag::ext_using_undefined_std); |
| 12474 | R.addDecl(getOrCreateStdNamespace()); |
| 12475 | R.resolveKind(); |
| 12476 | } |
| 12477 | // Otherwise, attempt typo correction. |
| 12478 | else TryNamespaceTypoCorrection(S&: *this, R, Sc: S, SS, IdentLoc, Ident: NamespcName); |
| 12479 | } |
| 12480 | |
| 12481 | if (!R.empty()) { |
| 12482 | NamedDecl *Named = R.getRepresentativeDecl(); |
| 12483 | NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>(); |
| 12484 | assert(NS && "expected namespace decl" ); |
| 12485 | |
| 12486 | // The use of a nested name specifier may trigger deprecation warnings. |
| 12487 | DiagnoseUseOfDecl(D: Named, Locs: IdentLoc); |
| 12488 | |
| 12489 | // C++ [namespace.udir]p1: |
| 12490 | // A using-directive specifies that the names in the nominated |
| 12491 | // namespace can be used in the scope in which the |
| 12492 | // using-directive appears after the using-directive. During |
| 12493 | // unqualified name lookup (3.4.1), the names appear as if they |
| 12494 | // were declared in the nearest enclosing namespace which |
| 12495 | // contains both the using-directive and the nominated |
| 12496 | // namespace. [Note: in this context, "contains" means "contains |
| 12497 | // directly or indirectly". ] |
| 12498 | |
| 12499 | // Find enclosing context containing both using-directive and |
| 12500 | // nominated namespace. |
| 12501 | DeclContext *CommonAncestor = NS; |
| 12502 | while (CommonAncestor && !CommonAncestor->Encloses(DC: CurContext)) |
| 12503 | CommonAncestor = CommonAncestor->getParent(); |
| 12504 | |
| 12505 | UDir = UsingDirectiveDecl::Create(C&: Context, DC: CurContext, UsingLoc, NamespaceLoc: NamespcLoc, |
| 12506 | QualifierLoc: SS.getWithLocInContext(Context), |
| 12507 | IdentLoc, Nominated: Named, CommonAncestor); |
| 12508 | |
| 12509 | if (IsUsingDirectiveInToplevelContext(CurContext) && |
| 12510 | !SourceMgr.isInMainFile(Loc: SourceMgr.getExpansionLoc(Loc: IdentLoc))) { |
| 12511 | Diag(IdentLoc, diag::warn_using_directive_in_header); |
| 12512 | } |
| 12513 | |
| 12514 | PushUsingDirective(S, UDir); |
| 12515 | } else { |
| 12516 | Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); |
| 12517 | } |
| 12518 | |
| 12519 | if (UDir) { |
| 12520 | ProcessDeclAttributeList(S, UDir, AttrList); |
| 12521 | ProcessAPINotes(UDir); |
| 12522 | } |
| 12523 | |
| 12524 | return UDir; |
| 12525 | } |
| 12526 | |
| 12527 | void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { |
| 12528 | // If the scope has an associated entity and the using directive is at |
| 12529 | // namespace or translation unit scope, add the UsingDirectiveDecl into |
| 12530 | // its lookup structure so qualified name lookup can find it. |
| 12531 | DeclContext *Ctx = S->getEntity(); |
| 12532 | if (Ctx && !Ctx->isFunctionOrMethod()) |
| 12533 | Ctx->addDecl(UDir); |
| 12534 | else |
| 12535 | // Otherwise, it is at block scope. The using-directives will affect lookup |
| 12536 | // only to the end of the scope. |
| 12537 | S->PushUsingDirective(UDir); |
| 12538 | } |
| 12539 | |
| 12540 | Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS, |
| 12541 | SourceLocation UsingLoc, |
| 12542 | SourceLocation TypenameLoc, CXXScopeSpec &SS, |
| 12543 | UnqualifiedId &Name, |
| 12544 | SourceLocation EllipsisLoc, |
| 12545 | const ParsedAttributesView &AttrList) { |
| 12546 | assert(S->getFlags() & Scope::DeclScope && "Invalid Scope." ); |
| 12547 | |
| 12548 | if (SS.isEmpty()) { |
| 12549 | Diag(Name.getBeginLoc(), diag::err_using_requires_qualname); |
| 12550 | return nullptr; |
| 12551 | } |
| 12552 | |
| 12553 | switch (Name.getKind()) { |
| 12554 | case UnqualifiedIdKind::IK_ImplicitSelfParam: |
| 12555 | case UnqualifiedIdKind::IK_Identifier: |
| 12556 | case UnqualifiedIdKind::IK_OperatorFunctionId: |
| 12557 | case UnqualifiedIdKind::IK_LiteralOperatorId: |
| 12558 | case UnqualifiedIdKind::IK_ConversionFunctionId: |
| 12559 | break; |
| 12560 | |
| 12561 | case UnqualifiedIdKind::IK_ConstructorName: |
| 12562 | case UnqualifiedIdKind::IK_ConstructorTemplateId: |
| 12563 | // C++11 inheriting constructors. |
| 12564 | Diag(Name.getBeginLoc(), |
| 12565 | getLangOpts().CPlusPlus11 |
| 12566 | ? diag::warn_cxx98_compat_using_decl_constructor |
| 12567 | : diag::err_using_decl_constructor) |
| 12568 | << SS.getRange(); |
| 12569 | |
| 12570 | if (getLangOpts().CPlusPlus11) break; |
| 12571 | |
| 12572 | return nullptr; |
| 12573 | |
| 12574 | case UnqualifiedIdKind::IK_DestructorName: |
| 12575 | Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange(); |
| 12576 | return nullptr; |
| 12577 | |
| 12578 | case UnqualifiedIdKind::IK_TemplateId: |
| 12579 | Diag(Name.getBeginLoc(), diag::err_using_decl_template_id) |
| 12580 | << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc); |
| 12581 | return nullptr; |
| 12582 | |
| 12583 | case UnqualifiedIdKind::IK_DeductionGuideName: |
| 12584 | llvm_unreachable("cannot parse qualified deduction guide name" ); |
| 12585 | } |
| 12586 | |
| 12587 | DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); |
| 12588 | DeclarationName TargetName = TargetNameInfo.getName(); |
| 12589 | if (!TargetName) |
| 12590 | return nullptr; |
| 12591 | |
| 12592 | // Warn about access declarations. |
| 12593 | if (UsingLoc.isInvalid()) { |
| 12594 | Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11 |
| 12595 | ? diag::err_access_decl |
| 12596 | : diag::warn_access_decl_deprecated) |
| 12597 | << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using " ); |
| 12598 | } |
| 12599 | |
| 12600 | if (EllipsisLoc.isInvalid()) { |
| 12601 | if (DiagnoseUnexpandedParameterPack(SS, UPPC: UPPC_UsingDeclaration) || |
| 12602 | DiagnoseUnexpandedParameterPack(NameInfo: TargetNameInfo, UPPC: UPPC_UsingDeclaration)) |
| 12603 | return nullptr; |
| 12604 | } else { |
| 12605 | if (!SS.getScopeRep()->containsUnexpandedParameterPack() && |
| 12606 | !TargetNameInfo.containsUnexpandedParameterPack()) { |
| 12607 | Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) |
| 12608 | << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc()); |
| 12609 | EllipsisLoc = SourceLocation(); |
| 12610 | } |
| 12611 | } |
| 12612 | |
| 12613 | NamedDecl *UD = |
| 12614 | BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc, |
| 12615 | SS, TargetNameInfo, EllipsisLoc, AttrList, |
| 12616 | /*IsInstantiation*/ false, |
| 12617 | AttrList.hasAttribute(ParsedAttr::AT_UsingIfExists)); |
| 12618 | if (UD) |
| 12619 | PushOnScopeChains(D: UD, S, /*AddToContext*/ false); |
| 12620 | |
| 12621 | return UD; |
| 12622 | } |
| 12623 | |
| 12624 | Decl *Sema::ActOnUsingEnumDeclaration(Scope *S, AccessSpecifier AS, |
| 12625 | SourceLocation UsingLoc, |
| 12626 | SourceLocation EnumLoc, SourceRange TyLoc, |
| 12627 | const IdentifierInfo &II, ParsedType Ty, |
| 12628 | CXXScopeSpec *SS) { |
| 12629 | assert(SS && !SS->isInvalid() && "ScopeSpec is invalid" ); |
| 12630 | TypeSourceInfo *TSI = nullptr; |
| 12631 | SourceLocation IdentLoc = TyLoc.getBegin(); |
| 12632 | QualType EnumTy = GetTypeFromParser(Ty, TInfo: &TSI); |
| 12633 | if (EnumTy.isNull()) { |
| 12634 | Diag(IdentLoc, isDependentScopeSpecifier(*SS) |
| 12635 | ? diag::err_using_enum_is_dependent |
| 12636 | : diag::err_unknown_typename) |
| 12637 | << II.getName() << SourceRange(SS->getBeginLoc(), TyLoc.getEnd()); |
| 12638 | return nullptr; |
| 12639 | } |
| 12640 | |
| 12641 | if (EnumTy->isDependentType()) { |
| 12642 | Diag(IdentLoc, diag::err_using_enum_is_dependent); |
| 12643 | return nullptr; |
| 12644 | } |
| 12645 | |
| 12646 | auto *Enum = dyn_cast_if_present<EnumDecl>(Val: EnumTy->getAsTagDecl()); |
| 12647 | if (!Enum) { |
| 12648 | Diag(IdentLoc, diag::err_using_enum_not_enum) << EnumTy; |
| 12649 | return nullptr; |
| 12650 | } |
| 12651 | |
| 12652 | if (auto *Def = Enum->getDefinition()) |
| 12653 | Enum = Def; |
| 12654 | |
| 12655 | if (TSI == nullptr) |
| 12656 | TSI = Context.getTrivialTypeSourceInfo(T: EnumTy, Loc: IdentLoc); |
| 12657 | |
| 12658 | auto *UD = |
| 12659 | BuildUsingEnumDeclaration(S, AS, UsingLoc, EnumLoc, NameLoc: IdentLoc, EnumType: TSI, ED: Enum); |
| 12660 | |
| 12661 | if (UD) |
| 12662 | PushOnScopeChains(D: UD, S, /*AddToContext*/ false); |
| 12663 | |
| 12664 | return UD; |
| 12665 | } |
| 12666 | |
| 12667 | /// Determine whether a using declaration considers the given |
| 12668 | /// declarations as "equivalent", e.g., if they are redeclarations of |
| 12669 | /// the same entity or are both typedefs of the same type. |
| 12670 | static bool |
| 12671 | IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) { |
| 12672 | if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) |
| 12673 | return true; |
| 12674 | |
| 12675 | if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(Val: D1)) |
| 12676 | if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(Val: D2)) |
| 12677 | return Context.hasSameType(T1: TD1->getUnderlyingType(), |
| 12678 | T2: TD2->getUnderlyingType()); |
| 12679 | |
| 12680 | // Two using_if_exists using-declarations are equivalent if both are |
| 12681 | // unresolved. |
| 12682 | if (isa<UnresolvedUsingIfExistsDecl>(Val: D1) && |
| 12683 | isa<UnresolvedUsingIfExistsDecl>(Val: D2)) |
| 12684 | return true; |
| 12685 | |
| 12686 | return false; |
| 12687 | } |
| 12688 | |
| 12689 | bool Sema::CheckUsingShadowDecl(BaseUsingDecl *BUD, NamedDecl *Orig, |
| 12690 | const LookupResult &Previous, |
| 12691 | UsingShadowDecl *&PrevShadow) { |
| 12692 | // Diagnose finding a decl which is not from a base class of the |
| 12693 | // current class. We do this now because there are cases where this |
| 12694 | // function will silently decide not to build a shadow decl, which |
| 12695 | // will pre-empt further diagnostics. |
| 12696 | // |
| 12697 | // We don't need to do this in C++11 because we do the check once on |
| 12698 | // the qualifier. |
| 12699 | // |
| 12700 | // FIXME: diagnose the following if we care enough: |
| 12701 | // struct A { int foo; }; |
| 12702 | // struct B : A { using A::foo; }; |
| 12703 | // template <class T> struct C : A {}; |
| 12704 | // template <class T> struct D : C<T> { using B::foo; } // <--- |
| 12705 | // This is invalid (during instantiation) in C++03 because B::foo |
| 12706 | // resolves to the using decl in B, which is not a base class of D<T>. |
| 12707 | // We can't diagnose it immediately because C<T> is an unknown |
| 12708 | // specialization. The UsingShadowDecl in D<T> then points directly |
| 12709 | // to A::foo, which will look well-formed when we instantiate. |
| 12710 | // The right solution is to not collapse the shadow-decl chain. |
| 12711 | if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) |
| 12712 | if (auto *Using = dyn_cast<UsingDecl>(Val: BUD)) { |
| 12713 | DeclContext *OrigDC = Orig->getDeclContext(); |
| 12714 | |
| 12715 | // Handle enums and anonymous structs. |
| 12716 | if (isa<EnumDecl>(Val: OrigDC)) |
| 12717 | OrigDC = OrigDC->getParent(); |
| 12718 | CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(Val: OrigDC); |
| 12719 | while (OrigRec->isAnonymousStructOrUnion()) |
| 12720 | OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext()); |
| 12721 | |
| 12722 | if (cast<CXXRecordDecl>(Val: CurContext)->isProvablyNotDerivedFrom(Base: OrigRec)) { |
| 12723 | if (OrigDC == CurContext) { |
| 12724 | Diag(Using->getLocation(), |
| 12725 | diag::err_using_decl_nested_name_specifier_is_current_class) |
| 12726 | << Using->getQualifierLoc().getSourceRange(); |
| 12727 | Diag(Orig->getLocation(), diag::note_using_decl_target); |
| 12728 | Using->setInvalidDecl(); |
| 12729 | return true; |
| 12730 | } |
| 12731 | |
| 12732 | Diag(Using->getQualifierLoc().getBeginLoc(), |
| 12733 | diag::err_using_decl_nested_name_specifier_is_not_base_class) |
| 12734 | << Using->getQualifier() << cast<CXXRecordDecl>(CurContext) |
| 12735 | << Using->getQualifierLoc().getSourceRange(); |
| 12736 | Diag(Orig->getLocation(), diag::note_using_decl_target); |
| 12737 | Using->setInvalidDecl(); |
| 12738 | return true; |
| 12739 | } |
| 12740 | } |
| 12741 | |
| 12742 | if (Previous.empty()) return false; |
| 12743 | |
| 12744 | NamedDecl *Target = Orig; |
| 12745 | if (isa<UsingShadowDecl>(Val: Target)) |
| 12746 | Target = cast<UsingShadowDecl>(Val: Target)->getTargetDecl(); |
| 12747 | |
| 12748 | // If the target happens to be one of the previous declarations, we |
| 12749 | // don't have a conflict. |
| 12750 | // |
| 12751 | // FIXME: but we might be increasing its access, in which case we |
| 12752 | // should redeclare it. |
| 12753 | NamedDecl *NonTag = nullptr, *Tag = nullptr; |
| 12754 | bool FoundEquivalentDecl = false; |
| 12755 | for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); |
| 12756 | I != E; ++I) { |
| 12757 | NamedDecl *D = (*I)->getUnderlyingDecl(); |
| 12758 | // We can have UsingDecls in our Previous results because we use the same |
| 12759 | // LookupResult for checking whether the UsingDecl itself is a valid |
| 12760 | // redeclaration. |
| 12761 | if (isa<UsingDecl>(Val: D) || isa<UsingPackDecl>(Val: D) || isa<UsingEnumDecl>(Val: D)) |
| 12762 | continue; |
| 12763 | |
| 12764 | if (auto *RD = dyn_cast<CXXRecordDecl>(Val: D)) { |
| 12765 | // C++ [class.mem]p19: |
| 12766 | // If T is the name of a class, then [every named member other than |
| 12767 | // a non-static data member] shall have a name different from T |
| 12768 | if (RD->isInjectedClassName() && !isa<FieldDecl>(Val: Target) && |
| 12769 | !isa<IndirectFieldDecl>(Val: Target) && |
| 12770 | !isa<UnresolvedUsingValueDecl>(Val: Target) && |
| 12771 | DiagnoseClassNameShadow( |
| 12772 | DC: CurContext, |
| 12773 | Info: DeclarationNameInfo(BUD->getDeclName(), BUD->getLocation()))) |
| 12774 | return true; |
| 12775 | } |
| 12776 | |
| 12777 | if (IsEquivalentForUsingDecl(Context, D1: D, D2: Target)) { |
| 12778 | if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(Val: *I)) |
| 12779 | PrevShadow = Shadow; |
| 12780 | FoundEquivalentDecl = true; |
| 12781 | } else if (isEquivalentInternalLinkageDeclaration(A: D, B: Target)) { |
| 12782 | // We don't conflict with an existing using shadow decl of an equivalent |
| 12783 | // declaration, but we're not a redeclaration of it. |
| 12784 | FoundEquivalentDecl = true; |
| 12785 | } |
| 12786 | |
| 12787 | if (isVisible(D)) |
| 12788 | (isa<TagDecl>(Val: D) ? Tag : NonTag) = D; |
| 12789 | } |
| 12790 | |
| 12791 | if (FoundEquivalentDecl) |
| 12792 | return false; |
| 12793 | |
| 12794 | // Always emit a diagnostic for a mismatch between an unresolved |
| 12795 | // using_if_exists and a resolved using declaration in either direction. |
| 12796 | if (isa<UnresolvedUsingIfExistsDecl>(Val: Target) != |
| 12797 | (isa_and_nonnull<UnresolvedUsingIfExistsDecl>(Val: NonTag))) { |
| 12798 | if (!NonTag && !Tag) |
| 12799 | return false; |
| 12800 | Diag(BUD->getLocation(), diag::err_using_decl_conflict); |
| 12801 | Diag(Target->getLocation(), diag::note_using_decl_target); |
| 12802 | Diag((NonTag ? NonTag : Tag)->getLocation(), |
| 12803 | diag::note_using_decl_conflict); |
| 12804 | BUD->setInvalidDecl(); |
| 12805 | return true; |
| 12806 | } |
| 12807 | |
| 12808 | if (FunctionDecl *FD = Target->getAsFunction()) { |
| 12809 | NamedDecl *OldDecl = nullptr; |
| 12810 | switch (CheckOverload(S: nullptr, New: FD, OldDecls: Previous, OldDecl, |
| 12811 | /*IsForUsingDecl*/ UseMemberUsingDeclRules: true)) { |
| 12812 | case OverloadKind::Overload: |
| 12813 | return false; |
| 12814 | |
| 12815 | case OverloadKind::NonFunction: |
| 12816 | Diag(BUD->getLocation(), diag::err_using_decl_conflict); |
| 12817 | break; |
| 12818 | |
| 12819 | // We found a decl with the exact signature. |
| 12820 | case OverloadKind::Match: |
| 12821 | // If we're in a record, we want to hide the target, so we |
| 12822 | // return true (without a diagnostic) to tell the caller not to |
| 12823 | // build a shadow decl. |
| 12824 | if (CurContext->isRecord()) |
| 12825 | return true; |
| 12826 | |
| 12827 | // If we're not in a record, this is an error. |
| 12828 | Diag(BUD->getLocation(), diag::err_using_decl_conflict); |
| 12829 | break; |
| 12830 | } |
| 12831 | |
| 12832 | Diag(Target->getLocation(), diag::note_using_decl_target); |
| 12833 | Diag(OldDecl->getLocation(), diag::note_using_decl_conflict); |
| 12834 | BUD->setInvalidDecl(); |
| 12835 | return true; |
| 12836 | } |
| 12837 | |
| 12838 | // Target is not a function. |
| 12839 | |
| 12840 | if (isa<TagDecl>(Val: Target)) { |
| 12841 | // No conflict between a tag and a non-tag. |
| 12842 | if (!Tag) return false; |
| 12843 | |
| 12844 | Diag(BUD->getLocation(), diag::err_using_decl_conflict); |
| 12845 | Diag(Target->getLocation(), diag::note_using_decl_target); |
| 12846 | Diag(Tag->getLocation(), diag::note_using_decl_conflict); |
| 12847 | BUD->setInvalidDecl(); |
| 12848 | return true; |
| 12849 | } |
| 12850 | |
| 12851 | // No conflict between a tag and a non-tag. |
| 12852 | if (!NonTag) return false; |
| 12853 | |
| 12854 | Diag(BUD->getLocation(), diag::err_using_decl_conflict); |
| 12855 | Diag(Target->getLocation(), diag::note_using_decl_target); |
| 12856 | Diag(NonTag->getLocation(), diag::note_using_decl_conflict); |
| 12857 | BUD->setInvalidDecl(); |
| 12858 | return true; |
| 12859 | } |
| 12860 | |
| 12861 | /// Determine whether a direct base class is a virtual base class. |
| 12862 | static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) { |
| 12863 | if (!Derived->getNumVBases()) |
| 12864 | return false; |
| 12865 | for (auto &B : Derived->bases()) |
| 12866 | if (B.getType()->getAsCXXRecordDecl() == Base) |
| 12867 | return B.isVirtual(); |
| 12868 | llvm_unreachable("not a direct base class" ); |
| 12869 | } |
| 12870 | |
| 12871 | UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S, BaseUsingDecl *BUD, |
| 12872 | NamedDecl *Orig, |
| 12873 | UsingShadowDecl *PrevDecl) { |
| 12874 | // If we resolved to another shadow declaration, just coalesce them. |
| 12875 | NamedDecl *Target = Orig; |
| 12876 | if (isa<UsingShadowDecl>(Val: Target)) { |
| 12877 | Target = cast<UsingShadowDecl>(Val: Target)->getTargetDecl(); |
| 12878 | assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration" ); |
| 12879 | } |
| 12880 | |
| 12881 | NamedDecl *NonTemplateTarget = Target; |
| 12882 | if (auto *TargetTD = dyn_cast<TemplateDecl>(Val: Target)) |
| 12883 | NonTemplateTarget = TargetTD->getTemplatedDecl(); |
| 12884 | |
| 12885 | UsingShadowDecl *Shadow; |
| 12886 | if (NonTemplateTarget && isa<CXXConstructorDecl>(Val: NonTemplateTarget)) { |
| 12887 | UsingDecl *Using = cast<UsingDecl>(Val: BUD); |
| 12888 | bool IsVirtualBase = |
| 12889 | isVirtualDirectBase(Derived: cast<CXXRecordDecl>(Val: CurContext), |
| 12890 | Base: Using->getQualifier()->getAsRecordDecl()); |
| 12891 | Shadow = ConstructorUsingShadowDecl::Create( |
| 12892 | C&: Context, DC: CurContext, Loc: Using->getLocation(), Using, Target: Orig, IsVirtual: IsVirtualBase); |
| 12893 | } else { |
| 12894 | Shadow = UsingShadowDecl::Create(C&: Context, DC: CurContext, Loc: BUD->getLocation(), |
| 12895 | Name: Target->getDeclName(), Introducer: BUD, Target); |
| 12896 | } |
| 12897 | BUD->addShadowDecl(S: Shadow); |
| 12898 | |
| 12899 | Shadow->setAccess(BUD->getAccess()); |
| 12900 | if (Orig->isInvalidDecl() || BUD->isInvalidDecl()) |
| 12901 | Shadow->setInvalidDecl(); |
| 12902 | |
| 12903 | Shadow->setPreviousDecl(PrevDecl); |
| 12904 | |
| 12905 | if (S) |
| 12906 | PushOnScopeChains(Shadow, S); |
| 12907 | else |
| 12908 | CurContext->addDecl(Shadow); |
| 12909 | |
| 12910 | |
| 12911 | return Shadow; |
| 12912 | } |
| 12913 | |
| 12914 | void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) { |
| 12915 | if (Shadow->getDeclName().getNameKind() == |
| 12916 | DeclarationName::CXXConversionFunctionName) |
| 12917 | cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow); |
| 12918 | |
| 12919 | // Remove it from the DeclContext... |
| 12920 | Shadow->getDeclContext()->removeDecl(Shadow); |
| 12921 | |
| 12922 | // ...and the scope, if applicable... |
| 12923 | if (S) { |
| 12924 | S->RemoveDecl(Shadow); |
| 12925 | IdResolver.RemoveDecl(Shadow); |
| 12926 | } |
| 12927 | |
| 12928 | // ...and the using decl. |
| 12929 | Shadow->getIntroducer()->removeShadowDecl(S: Shadow); |
| 12930 | |
| 12931 | // TODO: complain somehow if Shadow was used. It shouldn't |
| 12932 | // be possible for this to happen, because...? |
| 12933 | } |
| 12934 | |
| 12935 | /// Find the base specifier for a base class with the given type. |
| 12936 | static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived, |
| 12937 | QualType DesiredBase, |
| 12938 | bool &AnyDependentBases) { |
| 12939 | // Check whether the named type is a direct base class. |
| 12940 | CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified() |
| 12941 | .getUnqualifiedType(); |
| 12942 | for (auto &Base : Derived->bases()) { |
| 12943 | CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified(); |
| 12944 | if (CanonicalDesiredBase == BaseType) |
| 12945 | return &Base; |
| 12946 | if (BaseType->isDependentType()) |
| 12947 | AnyDependentBases = true; |
| 12948 | } |
| 12949 | return nullptr; |
| 12950 | } |
| 12951 | |
| 12952 | namespace { |
| 12953 | class UsingValidatorCCC final : public CorrectionCandidateCallback { |
| 12954 | public: |
| 12955 | UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation, |
| 12956 | NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf) |
| 12957 | : HasTypenameKeyword(HasTypenameKeyword), |
| 12958 | IsInstantiation(IsInstantiation), OldNNS(NNS), |
| 12959 | RequireMemberOf(RequireMemberOf) {} |
| 12960 | |
| 12961 | bool ValidateCandidate(const TypoCorrection &Candidate) override { |
| 12962 | NamedDecl *ND = Candidate.getCorrectionDecl(); |
| 12963 | |
| 12964 | // Keywords are not valid here. |
| 12965 | if (!ND || isa<NamespaceDecl>(Val: ND)) |
| 12966 | return false; |
| 12967 | |
| 12968 | // Completely unqualified names are invalid for a 'using' declaration. |
| 12969 | if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier()) |
| 12970 | return false; |
| 12971 | |
| 12972 | // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would |
| 12973 | // reject. |
| 12974 | |
| 12975 | if (RequireMemberOf) { |
| 12976 | auto *FoundRecord = dyn_cast<CXXRecordDecl>(Val: ND); |
| 12977 | if (FoundRecord && FoundRecord->isInjectedClassName()) { |
| 12978 | // No-one ever wants a using-declaration to name an injected-class-name |
| 12979 | // of a base class, unless they're declaring an inheriting constructor. |
| 12980 | ASTContext &Ctx = ND->getASTContext(); |
| 12981 | if (!Ctx.getLangOpts().CPlusPlus11) |
| 12982 | return false; |
| 12983 | QualType FoundType = Ctx.getRecordType(FoundRecord); |
| 12984 | |
| 12985 | // Check that the injected-class-name is named as a member of its own |
| 12986 | // type; we don't want to suggest 'using Derived::Base;', since that |
| 12987 | // means something else. |
| 12988 | NestedNameSpecifier *Specifier = |
| 12989 | Candidate.WillReplaceSpecifier() |
| 12990 | ? Candidate.getCorrectionSpecifier() |
| 12991 | : OldNNS; |
| 12992 | if (!Specifier->getAsType() || |
| 12993 | !Ctx.hasSameType(T1: QualType(Specifier->getAsType(), 0), T2: FoundType)) |
| 12994 | return false; |
| 12995 | |
| 12996 | // Check that this inheriting constructor declaration actually names a |
| 12997 | // direct base class of the current class. |
| 12998 | bool AnyDependentBases = false; |
| 12999 | if (!findDirectBaseWithType(Derived: RequireMemberOf, |
| 13000 | DesiredBase: Ctx.getRecordType(FoundRecord), |
| 13001 | AnyDependentBases) && |
| 13002 | !AnyDependentBases) |
| 13003 | return false; |
| 13004 | } else { |
| 13005 | auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext()); |
| 13006 | if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(Base: RD)) |
| 13007 | return false; |
| 13008 | |
| 13009 | // FIXME: Check that the base class member is accessible? |
| 13010 | } |
| 13011 | } else { |
| 13012 | auto *FoundRecord = dyn_cast<CXXRecordDecl>(Val: ND); |
| 13013 | if (FoundRecord && FoundRecord->isInjectedClassName()) |
| 13014 | return false; |
| 13015 | } |
| 13016 | |
| 13017 | if (isa<TypeDecl>(Val: ND)) |
| 13018 | return HasTypenameKeyword || !IsInstantiation; |
| 13019 | |
| 13020 | return !HasTypenameKeyword; |
| 13021 | } |
| 13022 | |
| 13023 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
| 13024 | return std::make_unique<UsingValidatorCCC>(args&: *this); |
| 13025 | } |
| 13026 | |
| 13027 | private: |
| 13028 | bool HasTypenameKeyword; |
| 13029 | bool IsInstantiation; |
| 13030 | NestedNameSpecifier *OldNNS; |
| 13031 | CXXRecordDecl *RequireMemberOf; |
| 13032 | }; |
| 13033 | } // end anonymous namespace |
| 13034 | |
| 13035 | void Sema::FilterUsingLookup(Scope *S, LookupResult &Previous) { |
| 13036 | // It is really dumb that we have to do this. |
| 13037 | LookupResult::Filter F = Previous.makeFilter(); |
| 13038 | while (F.hasNext()) { |
| 13039 | NamedDecl *D = F.next(); |
| 13040 | if (!isDeclInScope(D, Ctx: CurContext, S)) |
| 13041 | F.erase(); |
| 13042 | // If we found a local extern declaration that's not ordinarily visible, |
| 13043 | // and this declaration is being added to a non-block scope, ignore it. |
| 13044 | // We're only checking for scope conflicts here, not also for violations |
| 13045 | // of the linkage rules. |
| 13046 | else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() && |
| 13047 | !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary)) |
| 13048 | F.erase(); |
| 13049 | } |
| 13050 | F.done(); |
| 13051 | } |
| 13052 | |
| 13053 | NamedDecl *Sema::BuildUsingDeclaration( |
| 13054 | Scope *S, AccessSpecifier AS, SourceLocation UsingLoc, |
| 13055 | bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS, |
| 13056 | DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc, |
| 13057 | const ParsedAttributesView &AttrList, bool IsInstantiation, |
| 13058 | bool IsUsingIfExists) { |
| 13059 | assert(!SS.isInvalid() && "Invalid CXXScopeSpec." ); |
| 13060 | SourceLocation IdentLoc = NameInfo.getLoc(); |
| 13061 | assert(IdentLoc.isValid() && "Invalid TargetName location." ); |
| 13062 | |
| 13063 | // FIXME: We ignore attributes for now. |
| 13064 | |
| 13065 | // For an inheriting constructor declaration, the name of the using |
| 13066 | // declaration is the name of a constructor in this class, not in the |
| 13067 | // base class. |
| 13068 | DeclarationNameInfo UsingName = NameInfo; |
| 13069 | if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName) |
| 13070 | if (auto *RD = dyn_cast<CXXRecordDecl>(Val: CurContext)) |
| 13071 | UsingName.setName(Context.DeclarationNames.getCXXConstructorName( |
| 13072 | Ty: Context.getCanonicalType(T: Context.getRecordType(RD)))); |
| 13073 | |
| 13074 | // Do the redeclaration lookup in the current scope. |
| 13075 | LookupResult Previous(*this, UsingName, LookupUsingDeclName, |
| 13076 | RedeclarationKind::ForVisibleRedeclaration); |
| 13077 | Previous.setHideTags(false); |
| 13078 | if (S) { |
| 13079 | LookupName(R&: Previous, S); |
| 13080 | |
| 13081 | FilterUsingLookup(S, Previous); |
| 13082 | } else { |
| 13083 | assert(IsInstantiation && "no scope in non-instantiation" ); |
| 13084 | if (CurContext->isRecord()) |
| 13085 | LookupQualifiedName(R&: Previous, LookupCtx: CurContext); |
| 13086 | else { |
| 13087 | // No redeclaration check is needed here; in non-member contexts we |
| 13088 | // diagnosed all possible conflicts with other using-declarations when |
| 13089 | // building the template: |
| 13090 | // |
| 13091 | // For a dependent non-type using declaration, the only valid case is |
| 13092 | // if we instantiate to a single enumerator. We check for conflicts |
| 13093 | // between shadow declarations we introduce, and we check in the template |
| 13094 | // definition for conflicts between a non-type using declaration and any |
| 13095 | // other declaration, which together covers all cases. |
| 13096 | // |
| 13097 | // A dependent typename using declaration will never successfully |
| 13098 | // instantiate, since it will always name a class member, so we reject |
| 13099 | // that in the template definition. |
| 13100 | } |
| 13101 | } |
| 13102 | |
| 13103 | // Check for invalid redeclarations. |
| 13104 | if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword, |
| 13105 | SS, NameLoc: IdentLoc, Previous)) |
| 13106 | return nullptr; |
| 13107 | |
| 13108 | // 'using_if_exists' doesn't make sense on an inherited constructor. |
| 13109 | if (IsUsingIfExists && UsingName.getName().getNameKind() == |
| 13110 | DeclarationName::CXXConstructorName) { |
| 13111 | Diag(UsingLoc, diag::err_using_if_exists_on_ctor); |
| 13112 | return nullptr; |
| 13113 | } |
| 13114 | |
| 13115 | DeclContext *LookupContext = computeDeclContext(SS); |
| 13116 | NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); |
| 13117 | if (!LookupContext || EllipsisLoc.isValid()) { |
| 13118 | NamedDecl *D; |
| 13119 | // Dependent scope, or an unexpanded pack |
| 13120 | if (!LookupContext && CheckUsingDeclQualifier(UsingLoc, HasTypename: HasTypenameKeyword, |
| 13121 | SS, NameInfo, NameLoc: IdentLoc)) |
| 13122 | return nullptr; |
| 13123 | |
| 13124 | if (Previous.isSingleResult() && |
| 13125 | Previous.getFoundDecl()->isTemplateParameter()) |
| 13126 | DiagnoseTemplateParameterShadow(IdentLoc, Previous.getFoundDecl()); |
| 13127 | |
| 13128 | if (HasTypenameKeyword) { |
| 13129 | // FIXME: not all declaration name kinds are legal here |
| 13130 | D = UnresolvedUsingTypenameDecl::Create(C&: Context, DC: CurContext, |
| 13131 | UsingLoc, TypenameLoc, |
| 13132 | QualifierLoc, |
| 13133 | TargetNameLoc: IdentLoc, TargetName: NameInfo.getName(), |
| 13134 | EllipsisLoc); |
| 13135 | } else { |
| 13136 | D = UnresolvedUsingValueDecl::Create(C&: Context, DC: CurContext, UsingLoc, |
| 13137 | QualifierLoc, NameInfo, EllipsisLoc); |
| 13138 | } |
| 13139 | D->setAccess(AS); |
| 13140 | CurContext->addDecl(D); |
| 13141 | ProcessDeclAttributeList(S, D, AttrList); |
| 13142 | return D; |
| 13143 | } |
| 13144 | |
| 13145 | auto Build = [&](bool Invalid) { |
| 13146 | UsingDecl *UD = |
| 13147 | UsingDecl::Create(C&: Context, DC: CurContext, UsingL: UsingLoc, QualifierLoc, |
| 13148 | NameInfo: UsingName, HasTypenameKeyword); |
| 13149 | UD->setAccess(AS); |
| 13150 | CurContext->addDecl(UD); |
| 13151 | ProcessDeclAttributeList(S, UD, AttrList); |
| 13152 | UD->setInvalidDecl(Invalid); |
| 13153 | return UD; |
| 13154 | }; |
| 13155 | auto BuildInvalid = [&]{ return Build(true); }; |
| 13156 | auto BuildValid = [&]{ return Build(false); }; |
| 13157 | |
| 13158 | if (RequireCompleteDeclContext(SS, DC: LookupContext)) |
| 13159 | return BuildInvalid(); |
| 13160 | |
| 13161 | // Look up the target name. |
| 13162 | LookupResult R(*this, NameInfo, LookupOrdinaryName); |
| 13163 | |
| 13164 | // Unlike most lookups, we don't always want to hide tag |
| 13165 | // declarations: tag names are visible through the using declaration |
| 13166 | // even if hidden by ordinary names, *except* in a dependent context |
| 13167 | // where they may be used by two-phase lookup. |
| 13168 | if (!IsInstantiation) |
| 13169 | R.setHideTags(false); |
| 13170 | |
| 13171 | // For the purposes of this lookup, we have a base object type |
| 13172 | // equal to that of the current context. |
| 13173 | if (CurContext->isRecord()) { |
| 13174 | R.setBaseObjectType( |
| 13175 | Context.getTypeDeclType(cast<CXXRecordDecl>(Val: CurContext))); |
| 13176 | } |
| 13177 | |
| 13178 | LookupQualifiedName(R, LookupCtx: LookupContext); |
| 13179 | |
| 13180 | // Validate the context, now we have a lookup |
| 13181 | if (CheckUsingDeclQualifier(UsingLoc, HasTypename: HasTypenameKeyword, SS, NameInfo, |
| 13182 | NameLoc: IdentLoc, R: &R)) |
| 13183 | return nullptr; |
| 13184 | |
| 13185 | if (R.empty() && IsUsingIfExists) |
| 13186 | R.addDecl(UnresolvedUsingIfExistsDecl::Create(Ctx&: Context, DC: CurContext, Loc: UsingLoc, |
| 13187 | Name: UsingName.getName()), |
| 13188 | AS_public); |
| 13189 | |
| 13190 | // Try to correct typos if possible. If constructor name lookup finds no |
| 13191 | // results, that means the named class has no explicit constructors, and we |
| 13192 | // suppressed declaring implicit ones (probably because it's dependent or |
| 13193 | // invalid). |
| 13194 | if (R.empty() && |
| 13195 | NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) { |
| 13196 | // HACK 2017-01-08: Work around an issue with libstdc++'s detection of |
| 13197 | // ::gets. Sometimes it believes that glibc provides a ::gets in cases where |
| 13198 | // it does not. The issue was fixed in libstdc++ 6.3 (2016-12-21) and later. |
| 13199 | auto *II = NameInfo.getName().getAsIdentifierInfo(); |
| 13200 | if (getLangOpts().CPlusPlus14 && II && II->isStr(Str: "gets" ) && |
| 13201 | CurContext->isStdNamespace() && |
| 13202 | isa<TranslationUnitDecl>(Val: LookupContext) && |
| 13203 | PP.NeedsStdLibCxxWorkaroundBefore(FixedVersion: 2016'12'21) && |
| 13204 | getSourceManager().isInSystemHeader(Loc: UsingLoc)) |
| 13205 | return nullptr; |
| 13206 | UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(), |
| 13207 | dyn_cast<CXXRecordDecl>(Val: CurContext)); |
| 13208 | if (TypoCorrection Corrected = |
| 13209 | CorrectTypo(Typo: R.getLookupNameInfo(), LookupKind: R.getLookupKind(), S, SS: &SS, CCC, |
| 13210 | Mode: CorrectTypoKind::ErrorRecovery)) { |
| 13211 | // We reject candidates where DroppedSpecifier == true, hence the |
| 13212 | // literal '0' below. |
| 13213 | diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) |
| 13214 | << NameInfo.getName() << LookupContext << 0 |
| 13215 | << SS.getRange()); |
| 13216 | |
| 13217 | // If we picked a correction with no attached Decl we can't do anything |
| 13218 | // useful with it, bail out. |
| 13219 | NamedDecl *ND = Corrected.getCorrectionDecl(); |
| 13220 | if (!ND) |
| 13221 | return BuildInvalid(); |
| 13222 | |
| 13223 | // If we corrected to an inheriting constructor, handle it as one. |
| 13224 | auto *RD = dyn_cast<CXXRecordDecl>(Val: ND); |
| 13225 | if (RD && RD->isInjectedClassName()) { |
| 13226 | // The parent of the injected class name is the class itself. |
| 13227 | RD = cast<CXXRecordDecl>(RD->getParent()); |
| 13228 | |
| 13229 | // Fix up the information we'll use to build the using declaration. |
| 13230 | if (Corrected.WillReplaceSpecifier()) { |
| 13231 | NestedNameSpecifierLocBuilder Builder; |
| 13232 | Builder.MakeTrivial(Context, Qualifier: Corrected.getCorrectionSpecifier(), |
| 13233 | R: QualifierLoc.getSourceRange()); |
| 13234 | QualifierLoc = Builder.getWithLocInContext(Context); |
| 13235 | } |
| 13236 | |
| 13237 | // In this case, the name we introduce is the name of a derived class |
| 13238 | // constructor. |
| 13239 | auto *CurClass = cast<CXXRecordDecl>(Val: CurContext); |
| 13240 | UsingName.setName(Context.DeclarationNames.getCXXConstructorName( |
| 13241 | Ty: Context.getCanonicalType(T: Context.getRecordType(CurClass)))); |
| 13242 | UsingName.setNamedTypeInfo(nullptr); |
| 13243 | for (auto *Ctor : LookupConstructors(Class: RD)) |
| 13244 | R.addDecl(D: Ctor); |
| 13245 | R.resolveKind(); |
| 13246 | } else { |
| 13247 | // FIXME: Pick up all the declarations if we found an overloaded |
| 13248 | // function. |
| 13249 | UsingName.setName(ND->getDeclName()); |
| 13250 | R.addDecl(D: ND); |
| 13251 | } |
| 13252 | } else { |
| 13253 | Diag(IdentLoc, diag::err_no_member) |
| 13254 | << NameInfo.getName() << LookupContext << SS.getRange(); |
| 13255 | return BuildInvalid(); |
| 13256 | } |
| 13257 | } |
| 13258 | |
| 13259 | if (R.isAmbiguous()) |
| 13260 | return BuildInvalid(); |
| 13261 | |
| 13262 | if (HasTypenameKeyword) { |
| 13263 | // If we asked for a typename and got a non-type decl, error out. |
| 13264 | if (!R.getAsSingle<TypeDecl>() && |
| 13265 | !R.getAsSingle<UnresolvedUsingIfExistsDecl>()) { |
| 13266 | Diag(IdentLoc, diag::err_using_typename_non_type); |
| 13267 | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) |
| 13268 | Diag((*I)->getUnderlyingDecl()->getLocation(), |
| 13269 | diag::note_using_decl_target); |
| 13270 | return BuildInvalid(); |
| 13271 | } |
| 13272 | } else { |
| 13273 | // If we asked for a non-typename and we got a type, error out, |
| 13274 | // but only if this is an instantiation of an unresolved using |
| 13275 | // decl. Otherwise just silently find the type name. |
| 13276 | if (IsInstantiation && R.getAsSingle<TypeDecl>()) { |
| 13277 | Diag(IdentLoc, diag::err_using_dependent_value_is_type); |
| 13278 | Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target); |
| 13279 | return BuildInvalid(); |
| 13280 | } |
| 13281 | } |
| 13282 | |
| 13283 | // C++14 [namespace.udecl]p6: |
| 13284 | // A using-declaration shall not name a namespace. |
| 13285 | if (R.getAsSingle<NamespaceDecl>()) { |
| 13286 | Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace) |
| 13287 | << SS.getRange(); |
| 13288 | // Suggest using 'using namespace ...' instead. |
| 13289 | Diag(SS.getBeginLoc(), diag::note_namespace_using_decl) |
| 13290 | << FixItHint::CreateInsertion(SS.getBeginLoc(), "namespace " ); |
| 13291 | return BuildInvalid(); |
| 13292 | } |
| 13293 | |
| 13294 | UsingDecl *UD = BuildValid(); |
| 13295 | |
| 13296 | // Some additional rules apply to inheriting constructors. |
| 13297 | if (UsingName.getName().getNameKind() == |
| 13298 | DeclarationName::CXXConstructorName) { |
| 13299 | // Suppress access diagnostics; the access check is instead performed at the |
| 13300 | // point of use for an inheriting constructor. |
| 13301 | R.suppressDiagnostics(); |
| 13302 | if (CheckInheritingConstructorUsingDecl(UD)) |
| 13303 | return UD; |
| 13304 | } |
| 13305 | |
| 13306 | for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) { |
| 13307 | UsingShadowDecl *PrevDecl = nullptr; |
| 13308 | if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl)) |
| 13309 | BuildUsingShadowDecl(S, UD, *I, PrevDecl); |
| 13310 | } |
| 13311 | |
| 13312 | return UD; |
| 13313 | } |
| 13314 | |
| 13315 | NamedDecl *Sema::BuildUsingEnumDeclaration(Scope *S, AccessSpecifier AS, |
| 13316 | SourceLocation UsingLoc, |
| 13317 | SourceLocation EnumLoc, |
| 13318 | SourceLocation NameLoc, |
| 13319 | TypeSourceInfo *EnumType, |
| 13320 | EnumDecl *ED) { |
| 13321 | bool Invalid = false; |
| 13322 | |
| 13323 | if (CurContext->getRedeclContext()->isRecord()) { |
| 13324 | /// In class scope, check if this is a duplicate, for better a diagnostic. |
| 13325 | DeclarationNameInfo UsingEnumName(ED->getDeclName(), NameLoc); |
| 13326 | LookupResult Previous(*this, UsingEnumName, LookupUsingDeclName, |
| 13327 | RedeclarationKind::ForVisibleRedeclaration); |
| 13328 | |
| 13329 | LookupName(R&: Previous, S); |
| 13330 | |
| 13331 | for (NamedDecl *D : Previous) |
| 13332 | if (UsingEnumDecl *UED = dyn_cast<UsingEnumDecl>(D)) |
| 13333 | if (UED->getEnumDecl() == ED) { |
| 13334 | Diag(UsingLoc, diag::err_using_enum_decl_redeclaration) |
| 13335 | << SourceRange(EnumLoc, NameLoc); |
| 13336 | Diag(D->getLocation(), diag::note_using_enum_decl) << 1; |
| 13337 | Invalid = true; |
| 13338 | break; |
| 13339 | } |
| 13340 | } |
| 13341 | |
| 13342 | if (RequireCompleteEnumDecl(D: ED, L: NameLoc)) |
| 13343 | Invalid = true; |
| 13344 | |
| 13345 | UsingEnumDecl *UD = UsingEnumDecl::Create(C&: Context, DC: CurContext, UsingL: UsingLoc, |
| 13346 | EnumL: EnumLoc, NameL: NameLoc, EnumType); |
| 13347 | UD->setAccess(AS); |
| 13348 | CurContext->addDecl(UD); |
| 13349 | |
| 13350 | if (Invalid) { |
| 13351 | UD->setInvalidDecl(); |
| 13352 | return UD; |
| 13353 | } |
| 13354 | |
| 13355 | // Create the shadow decls for each enumerator |
| 13356 | for (EnumConstantDecl *EC : ED->enumerators()) { |
| 13357 | UsingShadowDecl *PrevDecl = nullptr; |
| 13358 | DeclarationNameInfo DNI(EC->getDeclName(), EC->getLocation()); |
| 13359 | LookupResult Previous(*this, DNI, LookupOrdinaryName, |
| 13360 | RedeclarationKind::ForVisibleRedeclaration); |
| 13361 | LookupName(R&: Previous, S); |
| 13362 | FilterUsingLookup(S, Previous); |
| 13363 | |
| 13364 | if (!CheckUsingShadowDecl(UD, EC, Previous, PrevDecl)) |
| 13365 | BuildUsingShadowDecl(S, UD, EC, PrevDecl); |
| 13366 | } |
| 13367 | |
| 13368 | return UD; |
| 13369 | } |
| 13370 | |
| 13371 | NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom, |
| 13372 | ArrayRef<NamedDecl *> Expansions) { |
| 13373 | assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || |
| 13374 | isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || |
| 13375 | isa<UsingPackDecl>(InstantiatedFrom)); |
| 13376 | |
| 13377 | auto *UPD = |
| 13378 | UsingPackDecl::Create(C&: Context, DC: CurContext, InstantiatedFrom, UsingDecls: Expansions); |
| 13379 | UPD->setAccess(InstantiatedFrom->getAccess()); |
| 13380 | CurContext->addDecl(UPD); |
| 13381 | return UPD; |
| 13382 | } |
| 13383 | |
| 13384 | bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) { |
| 13385 | assert(!UD->hasTypename() && "expecting a constructor name" ); |
| 13386 | |
| 13387 | const Type *SourceType = UD->getQualifier()->getAsType(); |
| 13388 | assert(SourceType && |
| 13389 | "Using decl naming constructor doesn't have type in scope spec." ); |
| 13390 | CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(Val: CurContext); |
| 13391 | |
| 13392 | // Check whether the named type is a direct base class. |
| 13393 | bool AnyDependentBases = false; |
| 13394 | auto *Base = findDirectBaseWithType(Derived: TargetClass, DesiredBase: QualType(SourceType, 0), |
| 13395 | AnyDependentBases); |
| 13396 | if (!Base && !AnyDependentBases) { |
| 13397 | Diag(UD->getUsingLoc(), |
| 13398 | diag::err_using_decl_constructor_not_in_direct_base) |
| 13399 | << UD->getNameInfo().getSourceRange() |
| 13400 | << QualType(SourceType, 0) << TargetClass; |
| 13401 | UD->setInvalidDecl(); |
| 13402 | return true; |
| 13403 | } |
| 13404 | |
| 13405 | if (Base) |
| 13406 | Base->setInheritConstructors(); |
| 13407 | |
| 13408 | return false; |
| 13409 | } |
| 13410 | |
| 13411 | bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc, |
| 13412 | bool HasTypenameKeyword, |
| 13413 | const CXXScopeSpec &SS, |
| 13414 | SourceLocation NameLoc, |
| 13415 | const LookupResult &Prev) { |
| 13416 | NestedNameSpecifier *Qual = SS.getScopeRep(); |
| 13417 | |
| 13418 | // C++03 [namespace.udecl]p8: |
| 13419 | // C++0x [namespace.udecl]p10: |
| 13420 | // A using-declaration is a declaration and can therefore be used |
| 13421 | // repeatedly where (and only where) multiple declarations are |
| 13422 | // allowed. |
| 13423 | // |
| 13424 | // That's in non-member contexts. |
| 13425 | if (!CurContext->getRedeclContext()->isRecord()) { |
| 13426 | // A dependent qualifier outside a class can only ever resolve to an |
| 13427 | // enumeration type. Therefore it conflicts with any other non-type |
| 13428 | // declaration in the same scope. |
| 13429 | // FIXME: How should we check for dependent type-type conflicts at block |
| 13430 | // scope? |
| 13431 | if (Qual->isDependent() && !HasTypenameKeyword) { |
| 13432 | for (auto *D : Prev) { |
| 13433 | if (!isa<TypeDecl>(Val: D) && !isa<UsingDecl>(Val: D) && !isa<UsingPackDecl>(Val: D)) { |
| 13434 | bool OldCouldBeEnumerator = |
| 13435 | isa<UnresolvedUsingValueDecl>(Val: D) || isa<EnumConstantDecl>(Val: D); |
| 13436 | Diag(NameLoc, |
| 13437 | OldCouldBeEnumerator ? diag::err_redefinition |
| 13438 | : diag::err_redefinition_different_kind) |
| 13439 | << Prev.getLookupName(); |
| 13440 | Diag(D->getLocation(), diag::note_previous_definition); |
| 13441 | return true; |
| 13442 | } |
| 13443 | } |
| 13444 | } |
| 13445 | return false; |
| 13446 | } |
| 13447 | |
| 13448 | const NestedNameSpecifier *CNNS = |
| 13449 | Context.getCanonicalNestedNameSpecifier(NNS: Qual); |
| 13450 | for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) { |
| 13451 | NamedDecl *D = *I; |
| 13452 | |
| 13453 | bool DTypename; |
| 13454 | NestedNameSpecifier *DQual; |
| 13455 | if (UsingDecl *UD = dyn_cast<UsingDecl>(Val: D)) { |
| 13456 | DTypename = UD->hasTypename(); |
| 13457 | DQual = UD->getQualifier(); |
| 13458 | } else if (UnresolvedUsingValueDecl *UD |
| 13459 | = dyn_cast<UnresolvedUsingValueDecl>(Val: D)) { |
| 13460 | DTypename = false; |
| 13461 | DQual = UD->getQualifier(); |
| 13462 | } else if (UnresolvedUsingTypenameDecl *UD |
| 13463 | = dyn_cast<UnresolvedUsingTypenameDecl>(Val: D)) { |
| 13464 | DTypename = true; |
| 13465 | DQual = UD->getQualifier(); |
| 13466 | } else continue; |
| 13467 | |
| 13468 | // using decls differ if one says 'typename' and the other doesn't. |
| 13469 | // FIXME: non-dependent using decls? |
| 13470 | if (HasTypenameKeyword != DTypename) continue; |
| 13471 | |
| 13472 | // using decls differ if they name different scopes (but note that |
| 13473 | // template instantiation can cause this check to trigger when it |
| 13474 | // didn't before instantiation). |
| 13475 | if (CNNS != Context.getCanonicalNestedNameSpecifier(NNS: DQual)) |
| 13476 | continue; |
| 13477 | |
| 13478 | Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange(); |
| 13479 | Diag(D->getLocation(), diag::note_using_decl) << 1; |
| 13480 | return true; |
| 13481 | } |
| 13482 | |
| 13483 | return false; |
| 13484 | } |
| 13485 | |
| 13486 | bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc, bool HasTypename, |
| 13487 | const CXXScopeSpec &SS, |
| 13488 | const DeclarationNameInfo &NameInfo, |
| 13489 | SourceLocation NameLoc, |
| 13490 | const LookupResult *R, const UsingDecl *UD) { |
| 13491 | DeclContext *NamedContext = computeDeclContext(SS); |
| 13492 | assert(bool(NamedContext) == (R || UD) && !(R && UD) && |
| 13493 | "resolvable context must have exactly one set of decls" ); |
| 13494 | |
| 13495 | // C++ 20 permits using an enumerator that does not have a class-hierarchy |
| 13496 | // relationship. |
| 13497 | bool Cxx20Enumerator = false; |
| 13498 | if (NamedContext) { |
| 13499 | EnumConstantDecl *EC = nullptr; |
| 13500 | if (R) |
| 13501 | EC = R->getAsSingle<EnumConstantDecl>(); |
| 13502 | else if (UD && UD->shadow_size() == 1) |
| 13503 | EC = dyn_cast<EnumConstantDecl>(UD->shadow_begin()->getTargetDecl()); |
| 13504 | if (EC) |
| 13505 | Cxx20Enumerator = getLangOpts().CPlusPlus20; |
| 13506 | |
| 13507 | if (auto *ED = dyn_cast<EnumDecl>(Val: NamedContext)) { |
| 13508 | // C++14 [namespace.udecl]p7: |
| 13509 | // A using-declaration shall not name a scoped enumerator. |
| 13510 | // C++20 p1099 permits enumerators. |
| 13511 | if (EC && R && ED->isScoped()) |
| 13512 | Diag(SS.getBeginLoc(), |
| 13513 | getLangOpts().CPlusPlus20 |
| 13514 | ? diag::warn_cxx17_compat_using_decl_scoped_enumerator |
| 13515 | : diag::ext_using_decl_scoped_enumerator) |
| 13516 | << SS.getRange(); |
| 13517 | |
| 13518 | // We want to consider the scope of the enumerator |
| 13519 | NamedContext = ED->getDeclContext(); |
| 13520 | } |
| 13521 | } |
| 13522 | |
| 13523 | if (!CurContext->isRecord()) { |
| 13524 | // C++03 [namespace.udecl]p3: |
| 13525 | // C++0x [namespace.udecl]p8: |
| 13526 | // A using-declaration for a class member shall be a member-declaration. |
| 13527 | // C++20 [namespace.udecl]p7 |
| 13528 | // ... other than an enumerator ... |
| 13529 | |
| 13530 | // If we weren't able to compute a valid scope, it might validly be a |
| 13531 | // dependent class or enumeration scope. If we have a 'typename' keyword, |
| 13532 | // the scope must resolve to a class type. |
| 13533 | if (NamedContext ? !NamedContext->getRedeclContext()->isRecord() |
| 13534 | : !HasTypename) |
| 13535 | return false; // OK |
| 13536 | |
| 13537 | Diag(NameLoc, |
| 13538 | Cxx20Enumerator |
| 13539 | ? diag::warn_cxx17_compat_using_decl_class_member_enumerator |
| 13540 | : diag::err_using_decl_can_not_refer_to_class_member) |
| 13541 | << SS.getRange(); |
| 13542 | |
| 13543 | if (Cxx20Enumerator) |
| 13544 | return false; // OK |
| 13545 | |
| 13546 | auto *RD = NamedContext |
| 13547 | ? cast<CXXRecordDecl>(Val: NamedContext->getRedeclContext()) |
| 13548 | : nullptr; |
| 13549 | if (RD && !RequireCompleteDeclContext(const_cast<CXXScopeSpec &>(SS), RD)) { |
| 13550 | // See if there's a helpful fixit |
| 13551 | |
| 13552 | if (!R) { |
| 13553 | // We will have already diagnosed the problem on the template |
| 13554 | // definition, Maybe we should do so again? |
| 13555 | } else if (R->getAsSingle<TypeDecl>()) { |
| 13556 | if (getLangOpts().CPlusPlus11) { |
| 13557 | // Convert 'using X::Y;' to 'using Y = X::Y;'. |
| 13558 | Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround) |
| 13559 | << diag::MemClassWorkaround::AliasDecl |
| 13560 | << FixItHint::CreateInsertion(SS.getBeginLoc(), |
| 13561 | NameInfo.getName().getAsString() + |
| 13562 | " = " ); |
| 13563 | } else { |
| 13564 | // Convert 'using X::Y;' to 'typedef X::Y Y;'. |
| 13565 | SourceLocation InsertLoc = getLocForEndOfToken(Loc: NameInfo.getEndLoc()); |
| 13566 | Diag(InsertLoc, diag::note_using_decl_class_member_workaround) |
| 13567 | << diag::MemClassWorkaround::TypedefDecl |
| 13568 | << FixItHint::CreateReplacement(UsingLoc, "typedef" ) |
| 13569 | << FixItHint::CreateInsertion( |
| 13570 | InsertLoc, " " + NameInfo.getName().getAsString()); |
| 13571 | } |
| 13572 | } else if (R->getAsSingle<VarDecl>()) { |
| 13573 | // Don't provide a fixit outside C++11 mode; we don't want to suggest |
| 13574 | // repeating the type of the static data member here. |
| 13575 | FixItHint FixIt; |
| 13576 | if (getLangOpts().CPlusPlus11) { |
| 13577 | // Convert 'using X::Y;' to 'auto &Y = X::Y;'. |
| 13578 | FixIt = FixItHint::CreateReplacement( |
| 13579 | RemoveRange: UsingLoc, Code: "auto &" + NameInfo.getName().getAsString() + " = " ); |
| 13580 | } |
| 13581 | |
| 13582 | Diag(UsingLoc, diag::note_using_decl_class_member_workaround) |
| 13583 | << diag::MemClassWorkaround::ReferenceDecl << FixIt; |
| 13584 | } else if (R->getAsSingle<EnumConstantDecl>()) { |
| 13585 | // Don't provide a fixit outside C++11 mode; we don't want to suggest |
| 13586 | // repeating the type of the enumeration here, and we can't do so if |
| 13587 | // the type is anonymous. |
| 13588 | FixItHint FixIt; |
| 13589 | if (getLangOpts().CPlusPlus11) { |
| 13590 | // Convert 'using X::Y;' to 'auto &Y = X::Y;'. |
| 13591 | FixIt = FixItHint::CreateReplacement( |
| 13592 | RemoveRange: UsingLoc, |
| 13593 | Code: "constexpr auto " + NameInfo.getName().getAsString() + " = " ); |
| 13594 | } |
| 13595 | |
| 13596 | Diag(UsingLoc, diag::note_using_decl_class_member_workaround) |
| 13597 | << (getLangOpts().CPlusPlus11 |
| 13598 | ? diag::MemClassWorkaround::ConstexprVar |
| 13599 | : diag::MemClassWorkaround::ConstVar) |
| 13600 | << FixIt; |
| 13601 | } |
| 13602 | } |
| 13603 | |
| 13604 | return true; // Fail |
| 13605 | } |
| 13606 | |
| 13607 | // If the named context is dependent, we can't decide much. |
| 13608 | if (!NamedContext) { |
| 13609 | // FIXME: in C++0x, we can diagnose if we can prove that the |
| 13610 | // nested-name-specifier does not refer to a base class, which is |
| 13611 | // still possible in some cases. |
| 13612 | |
| 13613 | // Otherwise we have to conservatively report that things might be |
| 13614 | // okay. |
| 13615 | return false; |
| 13616 | } |
| 13617 | |
| 13618 | // The current scope is a record. |
| 13619 | if (!NamedContext->isRecord()) { |
| 13620 | // Ideally this would point at the last name in the specifier, |
| 13621 | // but we don't have that level of source info. |
| 13622 | Diag(SS.getBeginLoc(), |
| 13623 | Cxx20Enumerator |
| 13624 | ? diag::warn_cxx17_compat_using_decl_non_member_enumerator |
| 13625 | : diag::err_using_decl_nested_name_specifier_is_not_class) |
| 13626 | << SS.getScopeRep() << SS.getRange(); |
| 13627 | |
| 13628 | if (Cxx20Enumerator) |
| 13629 | return false; // OK |
| 13630 | |
| 13631 | return true; |
| 13632 | } |
| 13633 | |
| 13634 | if (!NamedContext->isDependentContext() && |
| 13635 | RequireCompleteDeclContext(SS&: const_cast<CXXScopeSpec&>(SS), DC: NamedContext)) |
| 13636 | return true; |
| 13637 | |
| 13638 | if (getLangOpts().CPlusPlus11) { |
| 13639 | // C++11 [namespace.udecl]p3: |
| 13640 | // In a using-declaration used as a member-declaration, the |
| 13641 | // nested-name-specifier shall name a base class of the class |
| 13642 | // being defined. |
| 13643 | |
| 13644 | if (cast<CXXRecordDecl>(Val: CurContext)->isProvablyNotDerivedFrom( |
| 13645 | Base: cast<CXXRecordDecl>(Val: NamedContext))) { |
| 13646 | |
| 13647 | if (Cxx20Enumerator) { |
| 13648 | Diag(NameLoc, diag::warn_cxx17_compat_using_decl_non_member_enumerator) |
| 13649 | << SS.getRange(); |
| 13650 | return false; |
| 13651 | } |
| 13652 | |
| 13653 | if (CurContext == NamedContext) { |
| 13654 | Diag(SS.getBeginLoc(), |
| 13655 | diag::err_using_decl_nested_name_specifier_is_current_class) |
| 13656 | << SS.getRange(); |
| 13657 | return !getLangOpts().CPlusPlus20; |
| 13658 | } |
| 13659 | |
| 13660 | if (!cast<CXXRecordDecl>(Val: NamedContext)->isInvalidDecl()) { |
| 13661 | Diag(SS.getBeginLoc(), |
| 13662 | diag::err_using_decl_nested_name_specifier_is_not_base_class) |
| 13663 | << SS.getScopeRep() << cast<CXXRecordDecl>(CurContext) |
| 13664 | << SS.getRange(); |
| 13665 | } |
| 13666 | return true; |
| 13667 | } |
| 13668 | |
| 13669 | return false; |
| 13670 | } |
| 13671 | |
| 13672 | // C++03 [namespace.udecl]p4: |
| 13673 | // A using-declaration used as a member-declaration shall refer |
| 13674 | // to a member of a base class of the class being defined [etc.]. |
| 13675 | |
| 13676 | // Salient point: SS doesn't have to name a base class as long as |
| 13677 | // lookup only finds members from base classes. Therefore we can |
| 13678 | // diagnose here only if we can prove that can't happen, |
| 13679 | // i.e. if the class hierarchies provably don't intersect. |
| 13680 | |
| 13681 | // TODO: it would be nice if "definitely valid" results were cached |
| 13682 | // in the UsingDecl and UsingShadowDecl so that these checks didn't |
| 13683 | // need to be repeated. |
| 13684 | |
| 13685 | llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases; |
| 13686 | auto Collect = [&Bases](const CXXRecordDecl *Base) { |
| 13687 | Bases.insert(Ptr: Base); |
| 13688 | return true; |
| 13689 | }; |
| 13690 | |
| 13691 | // Collect all bases. Return false if we find a dependent base. |
| 13692 | if (!cast<CXXRecordDecl>(Val: CurContext)->forallBases(BaseMatches: Collect)) |
| 13693 | return false; |
| 13694 | |
| 13695 | // Returns true if the base is dependent or is one of the accumulated base |
| 13696 | // classes. |
| 13697 | auto IsNotBase = [&Bases](const CXXRecordDecl *Base) { |
| 13698 | return !Bases.count(Ptr: Base); |
| 13699 | }; |
| 13700 | |
| 13701 | // Return false if the class has a dependent base or if it or one |
| 13702 | // of its bases is present in the base set of the current context. |
| 13703 | if (Bases.count(Ptr: cast<CXXRecordDecl>(Val: NamedContext)) || |
| 13704 | !cast<CXXRecordDecl>(Val: NamedContext)->forallBases(BaseMatches: IsNotBase)) |
| 13705 | return false; |
| 13706 | |
| 13707 | Diag(SS.getRange().getBegin(), |
| 13708 | diag::err_using_decl_nested_name_specifier_is_not_base_class) |
| 13709 | << SS.getScopeRep() |
| 13710 | << cast<CXXRecordDecl>(CurContext) |
| 13711 | << SS.getRange(); |
| 13712 | |
| 13713 | return true; |
| 13714 | } |
| 13715 | |
| 13716 | Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS, |
| 13717 | MultiTemplateParamsArg TemplateParamLists, |
| 13718 | SourceLocation UsingLoc, UnqualifiedId &Name, |
| 13719 | const ParsedAttributesView &AttrList, |
| 13720 | TypeResult Type, Decl *DeclFromDeclSpec) { |
| 13721 | |
| 13722 | if (Type.isInvalid()) |
| 13723 | return nullptr; |
| 13724 | |
| 13725 | bool Invalid = false; |
| 13726 | DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name); |
| 13727 | TypeSourceInfo *TInfo = nullptr; |
| 13728 | GetTypeFromParser(Ty: Type.get(), TInfo: &TInfo); |
| 13729 | |
| 13730 | if (DiagnoseClassNameShadow(DC: CurContext, Info: NameInfo)) |
| 13731 | return nullptr; |
| 13732 | |
| 13733 | if (DiagnoseUnexpandedParameterPack(Loc: Name.StartLocation, T: TInfo, |
| 13734 | UPPC: UPPC_DeclarationType)) { |
| 13735 | Invalid = true; |
| 13736 | TInfo = Context.getTrivialTypeSourceInfo(T: Context.IntTy, |
| 13737 | Loc: TInfo->getTypeLoc().getBeginLoc()); |
| 13738 | } |
| 13739 | |
| 13740 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, |
| 13741 | TemplateParamLists.size() |
| 13742 | ? forRedeclarationInCurContext() |
| 13743 | : RedeclarationKind::ForVisibleRedeclaration); |
| 13744 | LookupName(R&: Previous, S); |
| 13745 | |
| 13746 | // Warn about shadowing the name of a template parameter. |
| 13747 | if (Previous.isSingleResult() && |
| 13748 | Previous.getFoundDecl()->isTemplateParameter()) { |
| 13749 | DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl()); |
| 13750 | Previous.clear(); |
| 13751 | } |
| 13752 | |
| 13753 | assert(Name.getKind() == UnqualifiedIdKind::IK_Identifier && |
| 13754 | "name in alias declaration must be an identifier" ); |
| 13755 | TypeAliasDecl *NewTD = TypeAliasDecl::Create(C&: Context, DC: CurContext, StartLoc: UsingLoc, |
| 13756 | IdLoc: Name.StartLocation, |
| 13757 | Id: Name.Identifier, TInfo); |
| 13758 | |
| 13759 | NewTD->setAccess(AS); |
| 13760 | |
| 13761 | if (Invalid) |
| 13762 | NewTD->setInvalidDecl(); |
| 13763 | |
| 13764 | ProcessDeclAttributeList(S, NewTD, AttrList); |
| 13765 | AddPragmaAttributes(S, NewTD); |
| 13766 | ProcessAPINotes(NewTD); |
| 13767 | |
| 13768 | CheckTypedefForVariablyModifiedType(S, NewTD); |
| 13769 | Invalid |= NewTD->isInvalidDecl(); |
| 13770 | |
| 13771 | // Get the innermost enclosing declaration scope. |
| 13772 | S = S->getDeclParent(); |
| 13773 | |
| 13774 | bool Redeclaration = false; |
| 13775 | |
| 13776 | NamedDecl *NewND; |
| 13777 | if (TemplateParamLists.size()) { |
| 13778 | TypeAliasTemplateDecl *OldDecl = nullptr; |
| 13779 | TemplateParameterList *OldTemplateParams = nullptr; |
| 13780 | |
| 13781 | if (TemplateParamLists.size() != 1) { |
| 13782 | Diag(UsingLoc, diag::err_alias_template_extra_headers) |
| 13783 | << SourceRange(TemplateParamLists[1]->getTemplateLoc(), |
| 13784 | TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc()); |
| 13785 | Invalid = true; |
| 13786 | } |
| 13787 | TemplateParameterList *TemplateParams = TemplateParamLists[0]; |
| 13788 | |
| 13789 | // Check that we can declare a template here. |
| 13790 | if (CheckTemplateDeclScope(S, TemplateParams)) |
| 13791 | return nullptr; |
| 13792 | |
| 13793 | // Only consider previous declarations in the same scope. |
| 13794 | FilterLookupForScope(R&: Previous, Ctx: CurContext, S, /*ConsiderLinkage*/false, |
| 13795 | /*ExplicitInstantiationOrSpecialization*/AllowInlineNamespace: false); |
| 13796 | if (!Previous.empty()) { |
| 13797 | Redeclaration = true; |
| 13798 | |
| 13799 | OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>(); |
| 13800 | if (!OldDecl && !Invalid) { |
| 13801 | Diag(UsingLoc, diag::err_redefinition_different_kind) |
| 13802 | << Name.Identifier; |
| 13803 | |
| 13804 | NamedDecl *OldD = Previous.getRepresentativeDecl(); |
| 13805 | if (OldD->getLocation().isValid()) |
| 13806 | Diag(OldD->getLocation(), diag::note_previous_definition); |
| 13807 | |
| 13808 | Invalid = true; |
| 13809 | } |
| 13810 | |
| 13811 | if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) { |
| 13812 | if (TemplateParameterListsAreEqual(TemplateParams, |
| 13813 | OldDecl->getTemplateParameters(), |
| 13814 | /*Complain=*/true, |
| 13815 | TPL_TemplateMatch)) |
| 13816 | OldTemplateParams = |
| 13817 | OldDecl->getMostRecentDecl()->getTemplateParameters(); |
| 13818 | else |
| 13819 | Invalid = true; |
| 13820 | |
| 13821 | TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl(); |
| 13822 | if (!Invalid && |
| 13823 | !Context.hasSameType(OldTD->getUnderlyingType(), |
| 13824 | NewTD->getUnderlyingType())) { |
| 13825 | // FIXME: The C++0x standard does not clearly say this is ill-formed, |
| 13826 | // but we can't reasonably accept it. |
| 13827 | Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef) |
| 13828 | << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType(); |
| 13829 | if (OldTD->getLocation().isValid()) |
| 13830 | Diag(OldTD->getLocation(), diag::note_previous_definition); |
| 13831 | Invalid = true; |
| 13832 | } |
| 13833 | } |
| 13834 | } |
| 13835 | |
| 13836 | // Merge any previous default template arguments into our parameters, |
| 13837 | // and check the parameter list. |
| 13838 | if (CheckTemplateParameterList(NewParams: TemplateParams, OldParams: OldTemplateParams, |
| 13839 | TPC: TPC_Other)) |
| 13840 | return nullptr; |
| 13841 | |
| 13842 | TypeAliasTemplateDecl *NewDecl = |
| 13843 | TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc, |
| 13844 | Name.Identifier, TemplateParams, |
| 13845 | NewTD); |
| 13846 | NewTD->setDescribedAliasTemplate(NewDecl); |
| 13847 | |
| 13848 | NewDecl->setAccess(AS); |
| 13849 | |
| 13850 | if (Invalid) |
| 13851 | NewDecl->setInvalidDecl(); |
| 13852 | else if (OldDecl) { |
| 13853 | NewDecl->setPreviousDecl(OldDecl); |
| 13854 | CheckRedeclarationInModule(NewDecl, OldDecl); |
| 13855 | } |
| 13856 | |
| 13857 | NewND = NewDecl; |
| 13858 | } else { |
| 13859 | if (auto *TD = dyn_cast_or_null<TagDecl>(Val: DeclFromDeclSpec)) { |
| 13860 | setTagNameForLinkagePurposes(TD, NewTD); |
| 13861 | handleTagNumbering(Tag: TD, TagScope: S); |
| 13862 | } |
| 13863 | ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration); |
| 13864 | NewND = NewTD; |
| 13865 | } |
| 13866 | |
| 13867 | PushOnScopeChains(D: NewND, S); |
| 13868 | ActOnDocumentableDecl(NewND); |
| 13869 | return NewND; |
| 13870 | } |
| 13871 | |
| 13872 | Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc, |
| 13873 | SourceLocation AliasLoc, |
| 13874 | IdentifierInfo *Alias, CXXScopeSpec &SS, |
| 13875 | SourceLocation IdentLoc, |
| 13876 | IdentifierInfo *Ident) { |
| 13877 | |
| 13878 | // Lookup the namespace name. |
| 13879 | LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName); |
| 13880 | LookupParsedName(R, S, SS: &SS, /*ObjectType=*/QualType()); |
| 13881 | |
| 13882 | if (R.isAmbiguous()) |
| 13883 | return nullptr; |
| 13884 | |
| 13885 | if (R.empty()) { |
| 13886 | if (!TryNamespaceTypoCorrection(S&: *this, R, Sc: S, SS, IdentLoc, Ident)) { |
| 13887 | Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); |
| 13888 | return nullptr; |
| 13889 | } |
| 13890 | } |
| 13891 | assert(!R.isAmbiguous() && !R.empty()); |
| 13892 | NamedDecl *ND = R.getRepresentativeDecl(); |
| 13893 | |
| 13894 | // Check if we have a previous declaration with the same name. |
| 13895 | LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName, |
| 13896 | RedeclarationKind::ForVisibleRedeclaration); |
| 13897 | LookupName(R&: PrevR, S); |
| 13898 | |
| 13899 | // Check we're not shadowing a template parameter. |
| 13900 | if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) { |
| 13901 | DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl()); |
| 13902 | PrevR.clear(); |
| 13903 | } |
| 13904 | |
| 13905 | // Filter out any other lookup result from an enclosing scope. |
| 13906 | FilterLookupForScope(R&: PrevR, Ctx: CurContext, S, /*ConsiderLinkage*/false, |
| 13907 | /*AllowInlineNamespace*/false); |
| 13908 | |
| 13909 | // Find the previous declaration and check that we can redeclare it. |
| 13910 | NamespaceAliasDecl *Prev = nullptr; |
| 13911 | if (PrevR.isSingleResult()) { |
| 13912 | NamedDecl *PrevDecl = PrevR.getRepresentativeDecl(); |
| 13913 | if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(Val: PrevDecl)) { |
| 13914 | // We already have an alias with the same name that points to the same |
| 13915 | // namespace; check that it matches. |
| 13916 | if (AD->getNamespace()->Equals(getNamespaceDecl(D: ND))) { |
| 13917 | Prev = AD; |
| 13918 | } else if (isVisible(D: PrevDecl)) { |
| 13919 | Diag(AliasLoc, diag::err_redefinition_different_namespace_alias) |
| 13920 | << Alias; |
| 13921 | Diag(AD->getLocation(), diag::note_previous_namespace_alias) |
| 13922 | << AD->getNamespace(); |
| 13923 | return nullptr; |
| 13924 | } |
| 13925 | } else if (isVisible(D: PrevDecl)) { |
| 13926 | unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl()) |
| 13927 | ? diag::err_redefinition |
| 13928 | : diag::err_redefinition_different_kind; |
| 13929 | Diag(AliasLoc, DiagID) << Alias; |
| 13930 | Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
| 13931 | return nullptr; |
| 13932 | } |
| 13933 | } |
| 13934 | |
| 13935 | // The use of a nested name specifier may trigger deprecation warnings. |
| 13936 | DiagnoseUseOfDecl(D: ND, Locs: IdentLoc); |
| 13937 | |
| 13938 | NamespaceAliasDecl *AliasDecl = |
| 13939 | NamespaceAliasDecl::Create(C&: Context, DC: CurContext, NamespaceLoc, AliasLoc, |
| 13940 | Alias, QualifierLoc: SS.getWithLocInContext(Context), |
| 13941 | IdentLoc, Namespace: ND); |
| 13942 | if (Prev) |
| 13943 | AliasDecl->setPreviousDecl(Prev); |
| 13944 | |
| 13945 | PushOnScopeChains(AliasDecl, S); |
| 13946 | return AliasDecl; |
| 13947 | } |
| 13948 | |
| 13949 | namespace { |
| 13950 | struct SpecialMemberExceptionSpecInfo |
| 13951 | : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> { |
| 13952 | SourceLocation Loc; |
| 13953 | Sema::ImplicitExceptionSpecification ExceptSpec; |
| 13954 | |
| 13955 | SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD, |
| 13956 | CXXSpecialMemberKind CSM, |
| 13957 | Sema::InheritedConstructorInfo *ICI, |
| 13958 | SourceLocation Loc) |
| 13959 | : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {} |
| 13960 | |
| 13961 | bool visitBase(CXXBaseSpecifier *Base); |
| 13962 | bool visitField(FieldDecl *FD); |
| 13963 | |
| 13964 | void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj, |
| 13965 | unsigned Quals); |
| 13966 | |
| 13967 | void visitSubobjectCall(Subobject Subobj, |
| 13968 | Sema::SpecialMemberOverloadResult SMOR); |
| 13969 | }; |
| 13970 | } |
| 13971 | |
| 13972 | bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) { |
| 13973 | auto *RT = Base->getType()->getAs<RecordType>(); |
| 13974 | if (!RT) |
| 13975 | return false; |
| 13976 | |
| 13977 | auto *BaseClass = cast<CXXRecordDecl>(Val: RT->getDecl()); |
| 13978 | Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(Class: BaseClass); |
| 13979 | if (auto *BaseCtor = SMOR.getMethod()) { |
| 13980 | visitSubobjectCall(Subobj: Base, SMOR: BaseCtor); |
| 13981 | return false; |
| 13982 | } |
| 13983 | |
| 13984 | visitClassSubobject(Class: BaseClass, Subobj: Base, Quals: 0); |
| 13985 | return false; |
| 13986 | } |
| 13987 | |
| 13988 | bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) { |
| 13989 | if (CSM == CXXSpecialMemberKind::DefaultConstructor && |
| 13990 | FD->hasInClassInitializer()) { |
| 13991 | Expr *E = FD->getInClassInitializer(); |
| 13992 | if (!E) |
| 13993 | // FIXME: It's a little wasteful to build and throw away a |
| 13994 | // CXXDefaultInitExpr here. |
| 13995 | // FIXME: We should have a single context note pointing at Loc, and |
| 13996 | // this location should be MD->getLocation() instead, since that's |
| 13997 | // the location where we actually use the default init expression. |
| 13998 | E = S.BuildCXXDefaultInitExpr(Loc, Field: FD).get(); |
| 13999 | if (E) |
| 14000 | ExceptSpec.CalledExpr(E); |
| 14001 | } else if (auto *RT = S.Context.getBaseElementType(FD->getType()) |
| 14002 | ->getAs<RecordType>()) { |
| 14003 | visitClassSubobject(Class: cast<CXXRecordDecl>(RT->getDecl()), Subobj: FD, |
| 14004 | Quals: FD->getType().getCVRQualifiers()); |
| 14005 | } |
| 14006 | return false; |
| 14007 | } |
| 14008 | |
| 14009 | void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class, |
| 14010 | Subobject Subobj, |
| 14011 | unsigned Quals) { |
| 14012 | FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>(); |
| 14013 | bool IsMutable = Field && Field->isMutable(); |
| 14014 | visitSubobjectCall(Subobj, SMOR: lookupIn(Class, Quals, IsMutable)); |
| 14015 | } |
| 14016 | |
| 14017 | void SpecialMemberExceptionSpecInfo::visitSubobjectCall( |
| 14018 | Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) { |
| 14019 | // Note, if lookup fails, it doesn't matter what exception specification we |
| 14020 | // choose because the special member will be deleted. |
| 14021 | if (CXXMethodDecl *MD = SMOR.getMethod()) |
| 14022 | ExceptSpec.CalledDecl(CallLoc: getSubobjectLoc(Subobj), Method: MD); |
| 14023 | } |
| 14024 | |
| 14025 | bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) { |
| 14026 | llvm::APSInt Result; |
| 14027 | ExprResult Converted = CheckConvertedConstantExpression( |
| 14028 | ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEKind::ExplicitBool); |
| 14029 | ExplicitSpec.setExpr(Converted.get()); |
| 14030 | if (Converted.isUsable() && !Converted.get()->isValueDependent()) { |
| 14031 | ExplicitSpec.setKind(Result.getBoolValue() |
| 14032 | ? ExplicitSpecKind::ResolvedTrue |
| 14033 | : ExplicitSpecKind::ResolvedFalse); |
| 14034 | return true; |
| 14035 | } |
| 14036 | ExplicitSpec.setKind(ExplicitSpecKind::Unresolved); |
| 14037 | return false; |
| 14038 | } |
| 14039 | |
| 14040 | ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) { |
| 14041 | ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved); |
| 14042 | if (!ExplicitExpr->isTypeDependent()) |
| 14043 | tryResolveExplicitSpecifier(ExplicitSpec&: ES); |
| 14044 | return ES; |
| 14045 | } |
| 14046 | |
| 14047 | static Sema::ImplicitExceptionSpecification |
| 14048 | ComputeDefaultedSpecialMemberExceptionSpec( |
| 14049 | Sema &S, SourceLocation Loc, CXXMethodDecl *MD, CXXSpecialMemberKind CSM, |
| 14050 | Sema::InheritedConstructorInfo *ICI) { |
| 14051 | ComputingExceptionSpec CES(S, MD, Loc); |
| 14052 | |
| 14053 | CXXRecordDecl *ClassDecl = MD->getParent(); |
| 14054 | |
| 14055 | // C++ [except.spec]p14: |
| 14056 | // An implicitly declared special member function (Clause 12) shall have an |
| 14057 | // exception-specification. [...] |
| 14058 | SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation()); |
| 14059 | if (ClassDecl->isInvalidDecl()) |
| 14060 | return Info.ExceptSpec; |
| 14061 | |
| 14062 | // FIXME: If this diagnostic fires, we're probably missing a check for |
| 14063 | // attempting to resolve an exception specification before it's known |
| 14064 | // at a higher level. |
| 14065 | if (S.RequireCompleteType(MD->getLocation(), |
| 14066 | S.Context.getRecordType(ClassDecl), |
| 14067 | diag::err_exception_spec_incomplete_type)) |
| 14068 | return Info.ExceptSpec; |
| 14069 | |
| 14070 | // C++1z [except.spec]p7: |
| 14071 | // [Look for exceptions thrown by] a constructor selected [...] to |
| 14072 | // initialize a potentially constructed subobject, |
| 14073 | // C++1z [except.spec]p8: |
| 14074 | // The exception specification for an implicitly-declared destructor, or a |
| 14075 | // destructor without a noexcept-specifier, is potentially-throwing if and |
| 14076 | // only if any of the destructors for any of its potentially constructed |
| 14077 | // subojects is potentially throwing. |
| 14078 | // FIXME: We respect the first rule but ignore the "potentially constructed" |
| 14079 | // in the second rule to resolve a core issue (no number yet) that would have |
| 14080 | // us reject: |
| 14081 | // struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; }; |
| 14082 | // struct B : A {}; |
| 14083 | // struct C : B { void f(); }; |
| 14084 | // ... due to giving B::~B() a non-throwing exception specification. |
| 14085 | Info.visit(Bases: Info.IsConstructor ? Info.VisitPotentiallyConstructedBases |
| 14086 | : Info.VisitAllBases); |
| 14087 | |
| 14088 | return Info.ExceptSpec; |
| 14089 | } |
| 14090 | |
| 14091 | namespace { |
| 14092 | /// RAII object to register a special member as being currently declared. |
| 14093 | struct DeclaringSpecialMember { |
| 14094 | Sema &S; |
| 14095 | Sema::SpecialMemberDecl D; |
| 14096 | Sema::ContextRAII SavedContext; |
| 14097 | bool WasAlreadyBeingDeclared; |
| 14098 | |
| 14099 | DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, CXXSpecialMemberKind CSM) |
| 14100 | : S(S), D(RD, CSM), SavedContext(S, RD) { |
| 14101 | WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(Ptr: D).second; |
| 14102 | if (WasAlreadyBeingDeclared) |
| 14103 | // This almost never happens, but if it does, ensure that our cache |
| 14104 | // doesn't contain a stale result. |
| 14105 | S.SpecialMemberCache.clear(); |
| 14106 | else { |
| 14107 | // Register a note to be produced if we encounter an error while |
| 14108 | // declaring the special member. |
| 14109 | Sema::CodeSynthesisContext Ctx; |
| 14110 | Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember; |
| 14111 | // FIXME: We don't have a location to use here. Using the class's |
| 14112 | // location maintains the fiction that we declare all special members |
| 14113 | // with the class, but (1) it's not clear that lying about that helps our |
| 14114 | // users understand what's going on, and (2) there may be outer contexts |
| 14115 | // on the stack (some of which are relevant) and printing them exposes |
| 14116 | // our lies. |
| 14117 | Ctx.PointOfInstantiation = RD->getLocation(); |
| 14118 | Ctx.Entity = RD; |
| 14119 | Ctx.SpecialMember = CSM; |
| 14120 | S.pushCodeSynthesisContext(Ctx); |
| 14121 | } |
| 14122 | } |
| 14123 | ~DeclaringSpecialMember() { |
| 14124 | if (!WasAlreadyBeingDeclared) { |
| 14125 | S.SpecialMembersBeingDeclared.erase(Ptr: D); |
| 14126 | S.popCodeSynthesisContext(); |
| 14127 | } |
| 14128 | } |
| 14129 | |
| 14130 | /// Are we already trying to declare this special member? |
| 14131 | bool isAlreadyBeingDeclared() const { |
| 14132 | return WasAlreadyBeingDeclared; |
| 14133 | } |
| 14134 | }; |
| 14135 | } |
| 14136 | |
| 14137 | void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) { |
| 14138 | // Look up any existing declarations, but don't trigger declaration of all |
| 14139 | // implicit special members with this name. |
| 14140 | DeclarationName Name = FD->getDeclName(); |
| 14141 | LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName, |
| 14142 | RedeclarationKind::ForExternalRedeclaration); |
| 14143 | for (auto *D : FD->getParent()->lookup(Name)) |
| 14144 | if (auto *Acceptable = R.getAcceptableDecl(D)) |
| 14145 | R.addDecl(Acceptable); |
| 14146 | R.resolveKind(); |
| 14147 | R.suppressDiagnostics(); |
| 14148 | |
| 14149 | CheckFunctionDeclaration(S, NewFD: FD, Previous&: R, /*IsMemberSpecialization*/ false, |
| 14150 | DeclIsDefn: FD->isThisDeclarationADefinition()); |
| 14151 | } |
| 14152 | |
| 14153 | void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem, |
| 14154 | QualType ResultTy, |
| 14155 | ArrayRef<QualType> Args) { |
| 14156 | // Build an exception specification pointing back at this constructor. |
| 14157 | FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(S&: *this, MD: SpecialMem); |
| 14158 | |
| 14159 | LangAS AS = getDefaultCXXMethodAddrSpace(); |
| 14160 | if (AS != LangAS::Default) { |
| 14161 | EPI.TypeQuals.addAddressSpace(space: AS); |
| 14162 | } |
| 14163 | |
| 14164 | auto QT = Context.getFunctionType(ResultTy, Args, EPI); |
| 14165 | SpecialMem->setType(QT); |
| 14166 | |
| 14167 | // During template instantiation of implicit special member functions we need |
| 14168 | // a reliable TypeSourceInfo for the function prototype in order to allow |
| 14169 | // functions to be substituted. |
| 14170 | if (inTemplateInstantiation() && isLambdaMethod(SpecialMem)) { |
| 14171 | TypeSourceInfo *TSI = |
| 14172 | Context.getTrivialTypeSourceInfo(T: SpecialMem->getType()); |
| 14173 | SpecialMem->setTypeSourceInfo(TSI); |
| 14174 | } |
| 14175 | } |
| 14176 | |
| 14177 | CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor( |
| 14178 | CXXRecordDecl *ClassDecl) { |
| 14179 | // C++ [class.ctor]p5: |
| 14180 | // A default constructor for a class X is a constructor of class X |
| 14181 | // that can be called without an argument. If there is no |
| 14182 | // user-declared constructor for class X, a default constructor is |
| 14183 | // implicitly declared. An implicitly-declared default constructor |
| 14184 | // is an inline public member of its class. |
| 14185 | assert(ClassDecl->needsImplicitDefaultConstructor() && |
| 14186 | "Should not build implicit default constructor!" ); |
| 14187 | |
| 14188 | DeclaringSpecialMember DSM(*this, ClassDecl, |
| 14189 | CXXSpecialMemberKind::DefaultConstructor); |
| 14190 | if (DSM.isAlreadyBeingDeclared()) |
| 14191 | return nullptr; |
| 14192 | |
| 14193 | bool Constexpr = defaultedSpecialMemberIsConstexpr( |
| 14194 | S&: *this, ClassDecl, CSM: CXXSpecialMemberKind::DefaultConstructor, ConstArg: false); |
| 14195 | |
| 14196 | // Create the actual constructor declaration. |
| 14197 | CanQualType ClassType |
| 14198 | = Context.getCanonicalType(T: Context.getTypeDeclType(ClassDecl)); |
| 14199 | SourceLocation ClassLoc = ClassDecl->getLocation(); |
| 14200 | DeclarationName Name |
| 14201 | = Context.DeclarationNames.getCXXConstructorName(Ty: ClassType); |
| 14202 | DeclarationNameInfo NameInfo(Name, ClassLoc); |
| 14203 | CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create( |
| 14204 | C&: Context, RD: ClassDecl, StartLoc: ClassLoc, NameInfo, /*Type*/ T: QualType(), |
| 14205 | /*TInfo=*/nullptr, ES: ExplicitSpecifier(), |
| 14206 | UsesFPIntrin: getCurFPFeatures().isFPConstrained(), |
| 14207 | /*isInline=*/true, /*isImplicitlyDeclared=*/true, |
| 14208 | ConstexprKind: Constexpr ? ConstexprSpecKind::Constexpr |
| 14209 | : ConstexprSpecKind::Unspecified); |
| 14210 | DefaultCon->setAccess(AS_public); |
| 14211 | DefaultCon->setDefaulted(); |
| 14212 | |
| 14213 | setupImplicitSpecialMemberType(SpecialMem: DefaultCon, ResultTy: Context.VoidTy, Args: {}); |
| 14214 | |
| 14215 | if (getLangOpts().CUDA) |
| 14216 | CUDA().inferTargetForImplicitSpecialMember( |
| 14217 | ClassDecl, CXXSpecialMemberKind::DefaultConstructor, DefaultCon, |
| 14218 | /* ConstRHS */ false, |
| 14219 | /* Diagnose */ false); |
| 14220 | |
| 14221 | // We don't need to use SpecialMemberIsTrivial here; triviality for default |
| 14222 | // constructors is easy to compute. |
| 14223 | DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor()); |
| 14224 | |
| 14225 | // Note that we have declared this constructor. |
| 14226 | ++getASTContext().NumImplicitDefaultConstructorsDeclared; |
| 14227 | |
| 14228 | Scope *S = getScopeForContext(ClassDecl); |
| 14229 | CheckImplicitSpecialMemberDeclaration(S, DefaultCon); |
| 14230 | |
| 14231 | if (ShouldDeleteSpecialMember(DefaultCon, |
| 14232 | CXXSpecialMemberKind::DefaultConstructor)) |
| 14233 | SetDeclDeleted(DefaultCon, ClassLoc); |
| 14234 | |
| 14235 | if (S) |
| 14236 | PushOnScopeChains(DefaultCon, S, false); |
| 14237 | ClassDecl->addDecl(DefaultCon); |
| 14238 | |
| 14239 | return DefaultCon; |
| 14240 | } |
| 14241 | |
| 14242 | void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, |
| 14243 | CXXConstructorDecl *Constructor) { |
| 14244 | assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() && |
| 14245 | !Constructor->doesThisDeclarationHaveABody() && |
| 14246 | !Constructor->isDeleted()) && |
| 14247 | "DefineImplicitDefaultConstructor - call it for implicit default ctor" ); |
| 14248 | if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) |
| 14249 | return; |
| 14250 | |
| 14251 | CXXRecordDecl *ClassDecl = Constructor->getParent(); |
| 14252 | assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor" ); |
| 14253 | if (ClassDecl->isInvalidDecl()) { |
| 14254 | return; |
| 14255 | } |
| 14256 | |
| 14257 | SynthesizedFunctionScope Scope(*this, Constructor); |
| 14258 | |
| 14259 | // The exception specification is needed because we are defining the |
| 14260 | // function. |
| 14261 | ResolveExceptionSpec(Loc: CurrentLocation, |
| 14262 | FPT: Constructor->getType()->castAs<FunctionProtoType>()); |
| 14263 | MarkVTableUsed(Loc: CurrentLocation, Class: ClassDecl); |
| 14264 | |
| 14265 | // Add a context note for diagnostics produced after this point. |
| 14266 | Scope.addContextNote(UseLoc: CurrentLocation); |
| 14267 | |
| 14268 | if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) { |
| 14269 | Constructor->setInvalidDecl(); |
| 14270 | return; |
| 14271 | } |
| 14272 | |
| 14273 | SourceLocation Loc = Constructor->getEndLoc().isValid() |
| 14274 | ? Constructor->getEndLoc() |
| 14275 | : Constructor->getLocation(); |
| 14276 | Constructor->setBody(new (Context) CompoundStmt(Loc)); |
| 14277 | Constructor->markUsed(Context); |
| 14278 | |
| 14279 | if (ASTMutationListener *L = getASTMutationListener()) { |
| 14280 | L->CompletedImplicitDefinition(Constructor); |
| 14281 | } |
| 14282 | |
| 14283 | DiagnoseUninitializedFields(SemaRef&: *this, Constructor); |
| 14284 | } |
| 14285 | |
| 14286 | void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) { |
| 14287 | // Perform any delayed checks on exception specifications. |
| 14288 | CheckDelayedMemberExceptionSpecs(); |
| 14289 | } |
| 14290 | |
| 14291 | /// Find or create the fake constructor we synthesize to model constructing an |
| 14292 | /// object of a derived class via a constructor of a base class. |
| 14293 | CXXConstructorDecl * |
| 14294 | Sema::findInheritingConstructor(SourceLocation Loc, |
| 14295 | CXXConstructorDecl *BaseCtor, |
| 14296 | ConstructorUsingShadowDecl *Shadow) { |
| 14297 | CXXRecordDecl *Derived = Shadow->getParent(); |
| 14298 | SourceLocation UsingLoc = Shadow->getLocation(); |
| 14299 | |
| 14300 | // FIXME: Add a new kind of DeclarationName for an inherited constructor. |
| 14301 | // For now we use the name of the base class constructor as a member of the |
| 14302 | // derived class to indicate a (fake) inherited constructor name. |
| 14303 | DeclarationName Name = BaseCtor->getDeclName(); |
| 14304 | |
| 14305 | // Check to see if we already have a fake constructor for this inherited |
| 14306 | // constructor call. |
| 14307 | for (NamedDecl *Ctor : Derived->lookup(Name)) |
| 14308 | if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor) |
| 14309 | ->getInheritedConstructor() |
| 14310 | .getConstructor(), |
| 14311 | BaseCtor)) |
| 14312 | return cast<CXXConstructorDecl>(Ctor); |
| 14313 | |
| 14314 | DeclarationNameInfo NameInfo(Name, UsingLoc); |
| 14315 | TypeSourceInfo *TInfo = |
| 14316 | Context.getTrivialTypeSourceInfo(T: BaseCtor->getType(), Loc: UsingLoc); |
| 14317 | FunctionProtoTypeLoc ProtoLoc = |
| 14318 | TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>(); |
| 14319 | |
| 14320 | // Check the inherited constructor is valid and find the list of base classes |
| 14321 | // from which it was inherited. |
| 14322 | InheritedConstructorInfo ICI(*this, Loc, Shadow); |
| 14323 | |
| 14324 | bool Constexpr = BaseCtor->isConstexpr() && |
| 14325 | defaultedSpecialMemberIsConstexpr( |
| 14326 | S&: *this, ClassDecl: Derived, CSM: CXXSpecialMemberKind::DefaultConstructor, |
| 14327 | ConstArg: false, InheritedCtor: BaseCtor, Inherited: &ICI); |
| 14328 | |
| 14329 | CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create( |
| 14330 | C&: Context, RD: Derived, StartLoc: UsingLoc, NameInfo, T: TInfo->getType(), TInfo, |
| 14331 | ES: BaseCtor->getExplicitSpecifier(), UsesFPIntrin: getCurFPFeatures().isFPConstrained(), |
| 14332 | /*isInline=*/true, |
| 14333 | /*isImplicitlyDeclared=*/true, |
| 14334 | ConstexprKind: Constexpr ? BaseCtor->getConstexprKind() : ConstexprSpecKind::Unspecified, |
| 14335 | Inherited: InheritedConstructor(Shadow, BaseCtor), |
| 14336 | TrailingRequiresClause: BaseCtor->getTrailingRequiresClause()); |
| 14337 | if (Shadow->isInvalidDecl()) |
| 14338 | DerivedCtor->setInvalidDecl(); |
| 14339 | |
| 14340 | // Build an unevaluated exception specification for this fake constructor. |
| 14341 | const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>(); |
| 14342 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
| 14343 | EPI.ExceptionSpec.Type = EST_Unevaluated; |
| 14344 | EPI.ExceptionSpec.SourceDecl = DerivedCtor; |
| 14345 | DerivedCtor->setType(Context.getFunctionType(ResultTy: FPT->getReturnType(), |
| 14346 | Args: FPT->getParamTypes(), EPI)); |
| 14347 | |
| 14348 | // Build the parameter declarations. |
| 14349 | SmallVector<ParmVarDecl *, 16> ParamDecls; |
| 14350 | for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) { |
| 14351 | TypeSourceInfo *TInfo = |
| 14352 | Context.getTrivialTypeSourceInfo(T: FPT->getParamType(i: I), Loc: UsingLoc); |
| 14353 | ParmVarDecl *PD = ParmVarDecl::Create( |
| 14354 | Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr, |
| 14355 | FPT->getParamType(i: I), TInfo, SC_None, /*DefArg=*/nullptr); |
| 14356 | PD->setScopeInfo(scopeDepth: 0, parameterIndex: I); |
| 14357 | PD->setImplicit(); |
| 14358 | // Ensure attributes are propagated onto parameters (this matters for |
| 14359 | // format, pass_object_size, ...). |
| 14360 | mergeDeclAttributes(New: PD, Old: BaseCtor->getParamDecl(I)); |
| 14361 | ParamDecls.push_back(Elt: PD); |
| 14362 | ProtoLoc.setParam(I, PD); |
| 14363 | } |
| 14364 | |
| 14365 | // Set up the new constructor. |
| 14366 | assert(!BaseCtor->isDeleted() && "should not use deleted constructor" ); |
| 14367 | DerivedCtor->setAccess(BaseCtor->getAccess()); |
| 14368 | DerivedCtor->setParams(ParamDecls); |
| 14369 | Derived->addDecl(DerivedCtor); |
| 14370 | |
| 14371 | if (ShouldDeleteSpecialMember(DerivedCtor, |
| 14372 | CXXSpecialMemberKind::DefaultConstructor, &ICI)) |
| 14373 | SetDeclDeleted(DerivedCtor, UsingLoc); |
| 14374 | |
| 14375 | return DerivedCtor; |
| 14376 | } |
| 14377 | |
| 14378 | void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) { |
| 14379 | InheritedConstructorInfo ICI(*this, Ctor->getLocation(), |
| 14380 | Ctor->getInheritedConstructor().getShadowDecl()); |
| 14381 | ShouldDeleteSpecialMember(Ctor, CXXSpecialMemberKind::DefaultConstructor, |
| 14382 | &ICI, |
| 14383 | /*Diagnose*/ true); |
| 14384 | } |
| 14385 | |
| 14386 | void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation, |
| 14387 | CXXConstructorDecl *Constructor) { |
| 14388 | CXXRecordDecl *ClassDecl = Constructor->getParent(); |
| 14389 | assert(Constructor->getInheritedConstructor() && |
| 14390 | !Constructor->doesThisDeclarationHaveABody() && |
| 14391 | !Constructor->isDeleted()); |
| 14392 | if (Constructor->willHaveBody() || Constructor->isInvalidDecl()) |
| 14393 | return; |
| 14394 | |
| 14395 | // Initializations are performed "as if by a defaulted default constructor", |
| 14396 | // so enter the appropriate scope. |
| 14397 | SynthesizedFunctionScope Scope(*this, Constructor); |
| 14398 | |
| 14399 | // The exception specification is needed because we are defining the |
| 14400 | // function. |
| 14401 | ResolveExceptionSpec(Loc: CurrentLocation, |
| 14402 | FPT: Constructor->getType()->castAs<FunctionProtoType>()); |
| 14403 | MarkVTableUsed(Loc: CurrentLocation, Class: ClassDecl); |
| 14404 | |
| 14405 | // Add a context note for diagnostics produced after this point. |
| 14406 | Scope.addContextNote(UseLoc: CurrentLocation); |
| 14407 | |
| 14408 | ConstructorUsingShadowDecl *Shadow = |
| 14409 | Constructor->getInheritedConstructor().getShadowDecl(); |
| 14410 | CXXConstructorDecl *InheritedCtor = |
| 14411 | Constructor->getInheritedConstructor().getConstructor(); |
| 14412 | |
| 14413 | // [class.inhctor.init]p1: |
| 14414 | // initialization proceeds as if a defaulted default constructor is used to |
| 14415 | // initialize the D object and each base class subobject from which the |
| 14416 | // constructor was inherited |
| 14417 | |
| 14418 | InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow); |
| 14419 | CXXRecordDecl *RD = Shadow->getParent(); |
| 14420 | SourceLocation InitLoc = Shadow->getLocation(); |
| 14421 | |
| 14422 | // Build explicit initializers for all base classes from which the |
| 14423 | // constructor was inherited. |
| 14424 | SmallVector<CXXCtorInitializer*, 8> Inits; |
| 14425 | for (bool VBase : {false, true}) { |
| 14426 | for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) { |
| 14427 | if (B.isVirtual() != VBase) |
| 14428 | continue; |
| 14429 | |
| 14430 | auto *BaseRD = B.getType()->getAsCXXRecordDecl(); |
| 14431 | if (!BaseRD) |
| 14432 | continue; |
| 14433 | |
| 14434 | auto BaseCtor = ICI.findConstructorForBase(Base: BaseRD, Ctor: InheritedCtor); |
| 14435 | if (!BaseCtor.first) |
| 14436 | continue; |
| 14437 | |
| 14438 | MarkFunctionReferenced(CurrentLocation, BaseCtor.first); |
| 14439 | ExprResult Init = new (Context) CXXInheritedCtorInitExpr( |
| 14440 | InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second); |
| 14441 | |
| 14442 | auto *TInfo = Context.getTrivialTypeSourceInfo(T: B.getType(), Loc: InitLoc); |
| 14443 | Inits.push_back(Elt: new (Context) CXXCtorInitializer( |
| 14444 | Context, TInfo, VBase, InitLoc, Init.get(), InitLoc, |
| 14445 | SourceLocation())); |
| 14446 | } |
| 14447 | } |
| 14448 | |
| 14449 | // We now proceed as if for a defaulted default constructor, with the relevant |
| 14450 | // initializers replaced. |
| 14451 | |
| 14452 | if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Initializers: Inits)) { |
| 14453 | Constructor->setInvalidDecl(); |
| 14454 | return; |
| 14455 | } |
| 14456 | |
| 14457 | Constructor->setBody(new (Context) CompoundStmt(InitLoc)); |
| 14458 | Constructor->markUsed(Context); |
| 14459 | |
| 14460 | if (ASTMutationListener *L = getASTMutationListener()) { |
| 14461 | L->CompletedImplicitDefinition(Constructor); |
| 14462 | } |
| 14463 | |
| 14464 | DiagnoseUninitializedFields(SemaRef&: *this, Constructor); |
| 14465 | } |
| 14466 | |
| 14467 | CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) { |
| 14468 | // C++ [class.dtor]p2: |
| 14469 | // If a class has no user-declared destructor, a destructor is |
| 14470 | // declared implicitly. An implicitly-declared destructor is an |
| 14471 | // inline public member of its class. |
| 14472 | assert(ClassDecl->needsImplicitDestructor()); |
| 14473 | |
| 14474 | DeclaringSpecialMember DSM(*this, ClassDecl, |
| 14475 | CXXSpecialMemberKind::Destructor); |
| 14476 | if (DSM.isAlreadyBeingDeclared()) |
| 14477 | return nullptr; |
| 14478 | |
| 14479 | bool Constexpr = defaultedSpecialMemberIsConstexpr( |
| 14480 | S&: *this, ClassDecl, CSM: CXXSpecialMemberKind::Destructor, ConstArg: false); |
| 14481 | |
| 14482 | // Create the actual destructor declaration. |
| 14483 | CanQualType ClassType |
| 14484 | = Context.getCanonicalType(T: Context.getTypeDeclType(ClassDecl)); |
| 14485 | SourceLocation ClassLoc = ClassDecl->getLocation(); |
| 14486 | DeclarationName Name |
| 14487 | = Context.DeclarationNames.getCXXDestructorName(Ty: ClassType); |
| 14488 | DeclarationNameInfo NameInfo(Name, ClassLoc); |
| 14489 | CXXDestructorDecl *Destructor = CXXDestructorDecl::Create( |
| 14490 | C&: Context, RD: ClassDecl, StartLoc: ClassLoc, NameInfo, T: QualType(), TInfo: nullptr, |
| 14491 | UsesFPIntrin: getCurFPFeatures().isFPConstrained(), |
| 14492 | /*isInline=*/true, |
| 14493 | /*isImplicitlyDeclared=*/true, |
| 14494 | ConstexprKind: Constexpr ? ConstexprSpecKind::Constexpr |
| 14495 | : ConstexprSpecKind::Unspecified); |
| 14496 | Destructor->setAccess(AS_public); |
| 14497 | Destructor->setDefaulted(); |
| 14498 | |
| 14499 | setupImplicitSpecialMemberType(SpecialMem: Destructor, ResultTy: Context.VoidTy, Args: {}); |
| 14500 | |
| 14501 | if (getLangOpts().CUDA) |
| 14502 | CUDA().inferTargetForImplicitSpecialMember( |
| 14503 | ClassDecl, CXXSpecialMemberKind::Destructor, Destructor, |
| 14504 | /* ConstRHS */ false, |
| 14505 | /* Diagnose */ false); |
| 14506 | |
| 14507 | // We don't need to use SpecialMemberIsTrivial here; triviality for |
| 14508 | // destructors is easy to compute. |
| 14509 | Destructor->setTrivial(ClassDecl->hasTrivialDestructor()); |
| 14510 | Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() || |
| 14511 | ClassDecl->hasTrivialDestructorForCall()); |
| 14512 | |
| 14513 | // Note that we have declared this destructor. |
| 14514 | ++getASTContext().NumImplicitDestructorsDeclared; |
| 14515 | |
| 14516 | Scope *S = getScopeForContext(ClassDecl); |
| 14517 | CheckImplicitSpecialMemberDeclaration(S, Destructor); |
| 14518 | |
| 14519 | // We can't check whether an implicit destructor is deleted before we complete |
| 14520 | // the definition of the class, because its validity depends on the alignment |
| 14521 | // of the class. We'll check this from ActOnFields once the class is complete. |
| 14522 | if (ClassDecl->isCompleteDefinition() && |
| 14523 | ShouldDeleteSpecialMember(Destructor, CXXSpecialMemberKind::Destructor)) |
| 14524 | SetDeclDeleted(Destructor, ClassLoc); |
| 14525 | |
| 14526 | // Introduce this destructor into its scope. |
| 14527 | if (S) |
| 14528 | PushOnScopeChains(Destructor, S, false); |
| 14529 | ClassDecl->addDecl(Destructor); |
| 14530 | |
| 14531 | return Destructor; |
| 14532 | } |
| 14533 | |
| 14534 | void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation, |
| 14535 | CXXDestructorDecl *Destructor) { |
| 14536 | assert((Destructor->isDefaulted() && |
| 14537 | !Destructor->doesThisDeclarationHaveABody() && |
| 14538 | !Destructor->isDeleted()) && |
| 14539 | "DefineImplicitDestructor - call it for implicit default dtor" ); |
| 14540 | if (Destructor->willHaveBody() || Destructor->isInvalidDecl()) |
| 14541 | return; |
| 14542 | |
| 14543 | CXXRecordDecl *ClassDecl = Destructor->getParent(); |
| 14544 | assert(ClassDecl && "DefineImplicitDestructor - invalid destructor" ); |
| 14545 | |
| 14546 | SynthesizedFunctionScope Scope(*this, Destructor); |
| 14547 | |
| 14548 | // The exception specification is needed because we are defining the |
| 14549 | // function. |
| 14550 | ResolveExceptionSpec(Loc: CurrentLocation, |
| 14551 | FPT: Destructor->getType()->castAs<FunctionProtoType>()); |
| 14552 | MarkVTableUsed(Loc: CurrentLocation, Class: ClassDecl); |
| 14553 | |
| 14554 | // Add a context note for diagnostics produced after this point. |
| 14555 | Scope.addContextNote(UseLoc: CurrentLocation); |
| 14556 | |
| 14557 | MarkBaseAndMemberDestructorsReferenced(Location: Destructor->getLocation(), |
| 14558 | ClassDecl: Destructor->getParent()); |
| 14559 | |
| 14560 | if (CheckDestructor(Destructor)) { |
| 14561 | Destructor->setInvalidDecl(); |
| 14562 | return; |
| 14563 | } |
| 14564 | |
| 14565 | SourceLocation Loc = Destructor->getEndLoc().isValid() |
| 14566 | ? Destructor->getEndLoc() |
| 14567 | : Destructor->getLocation(); |
| 14568 | Destructor->setBody(new (Context) CompoundStmt(Loc)); |
| 14569 | Destructor->markUsed(Context); |
| 14570 | |
| 14571 | if (ASTMutationListener *L = getASTMutationListener()) { |
| 14572 | L->CompletedImplicitDefinition(Destructor); |
| 14573 | } |
| 14574 | } |
| 14575 | |
| 14576 | void Sema::CheckCompleteDestructorVariant(SourceLocation CurrentLocation, |
| 14577 | CXXDestructorDecl *Destructor) { |
| 14578 | if (Destructor->isInvalidDecl()) |
| 14579 | return; |
| 14580 | |
| 14581 | CXXRecordDecl *ClassDecl = Destructor->getParent(); |
| 14582 | assert(Context.getTargetInfo().getCXXABI().isMicrosoft() && |
| 14583 | "implicit complete dtors unneeded outside MS ABI" ); |
| 14584 | assert(ClassDecl->getNumVBases() > 0 && |
| 14585 | "complete dtor only exists for classes with vbases" ); |
| 14586 | |
| 14587 | SynthesizedFunctionScope Scope(*this, Destructor); |
| 14588 | |
| 14589 | // Add a context note for diagnostics produced after this point. |
| 14590 | Scope.addContextNote(UseLoc: CurrentLocation); |
| 14591 | |
| 14592 | MarkVirtualBaseDestructorsReferenced(Location: Destructor->getLocation(), ClassDecl); |
| 14593 | } |
| 14594 | |
| 14595 | void Sema::ActOnFinishCXXMemberDecls() { |
| 14596 | // If the context is an invalid C++ class, just suppress these checks. |
| 14597 | if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Val: CurContext)) { |
| 14598 | if (Record->isInvalidDecl()) { |
| 14599 | DelayedOverridingExceptionSpecChecks.clear(); |
| 14600 | DelayedEquivalentExceptionSpecChecks.clear(); |
| 14601 | return; |
| 14602 | } |
| 14603 | checkForMultipleExportedDefaultConstructors(S&: *this, Class: Record); |
| 14604 | } |
| 14605 | } |
| 14606 | |
| 14607 | void Sema::ActOnFinishCXXNonNestedClass() { |
| 14608 | referenceDLLExportedClassMethods(); |
| 14609 | |
| 14610 | if (!DelayedDllExportMemberFunctions.empty()) { |
| 14611 | SmallVector<CXXMethodDecl*, 4> WorkList; |
| 14612 | std::swap(LHS&: DelayedDllExportMemberFunctions, RHS&: WorkList); |
| 14613 | for (CXXMethodDecl *M : WorkList) { |
| 14614 | DefineDefaultedFunction(*this, M, M->getLocation()); |
| 14615 | |
| 14616 | // Pass the method to the consumer to get emitted. This is not necessary |
| 14617 | // for explicit instantiation definitions, as they will get emitted |
| 14618 | // anyway. |
| 14619 | if (M->getParent()->getTemplateSpecializationKind() != |
| 14620 | TSK_ExplicitInstantiationDefinition) |
| 14621 | ActOnFinishInlineFunctionDef(M); |
| 14622 | } |
| 14623 | } |
| 14624 | } |
| 14625 | |
| 14626 | void Sema::referenceDLLExportedClassMethods() { |
| 14627 | if (!DelayedDllExportClasses.empty()) { |
| 14628 | // Calling ReferenceDllExportedMembers might cause the current function to |
| 14629 | // be called again, so use a local copy of DelayedDllExportClasses. |
| 14630 | SmallVector<CXXRecordDecl *, 4> WorkList; |
| 14631 | std::swap(LHS&: DelayedDllExportClasses, RHS&: WorkList); |
| 14632 | for (CXXRecordDecl *Class : WorkList) |
| 14633 | ReferenceDllExportedMembers(S&: *this, Class); |
| 14634 | } |
| 14635 | } |
| 14636 | |
| 14637 | void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) { |
| 14638 | assert(getLangOpts().CPlusPlus11 && |
| 14639 | "adjusting dtor exception specs was introduced in c++11" ); |
| 14640 | |
| 14641 | if (Destructor->isDependentContext()) |
| 14642 | return; |
| 14643 | |
| 14644 | // C++11 [class.dtor]p3: |
| 14645 | // A declaration of a destructor that does not have an exception- |
| 14646 | // specification is implicitly considered to have the same exception- |
| 14647 | // specification as an implicit declaration. |
| 14648 | const auto *DtorType = Destructor->getType()->castAs<FunctionProtoType>(); |
| 14649 | if (DtorType->hasExceptionSpec()) |
| 14650 | return; |
| 14651 | |
| 14652 | // Replace the destructor's type, building off the existing one. Fortunately, |
| 14653 | // the only thing of interest in the destructor type is its extended info. |
| 14654 | // The return and arguments are fixed. |
| 14655 | FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo(); |
| 14656 | EPI.ExceptionSpec.Type = EST_Unevaluated; |
| 14657 | EPI.ExceptionSpec.SourceDecl = Destructor; |
| 14658 | Destructor->setType(Context.getFunctionType(ResultTy: Context.VoidTy, Args: {}, EPI)); |
| 14659 | |
| 14660 | // FIXME: If the destructor has a body that could throw, and the newly created |
| 14661 | // spec doesn't allow exceptions, we should emit a warning, because this |
| 14662 | // change in behavior can break conforming C++03 programs at runtime. |
| 14663 | // However, we don't have a body or an exception specification yet, so it |
| 14664 | // needs to be done somewhere else. |
| 14665 | } |
| 14666 | |
| 14667 | namespace { |
| 14668 | /// An abstract base class for all helper classes used in building the |
| 14669 | // copy/move operators. These classes serve as factory functions and help us |
| 14670 | // avoid using the same Expr* in the AST twice. |
| 14671 | class ExprBuilder { |
| 14672 | ExprBuilder(const ExprBuilder&) = delete; |
| 14673 | ExprBuilder &operator=(const ExprBuilder&) = delete; |
| 14674 | |
| 14675 | protected: |
| 14676 | static Expr *assertNotNull(Expr *E) { |
| 14677 | assert(E && "Expression construction must not fail." ); |
| 14678 | return E; |
| 14679 | } |
| 14680 | |
| 14681 | public: |
| 14682 | ExprBuilder() {} |
| 14683 | virtual ~ExprBuilder() {} |
| 14684 | |
| 14685 | virtual Expr *build(Sema &S, SourceLocation Loc) const = 0; |
| 14686 | }; |
| 14687 | |
| 14688 | class RefBuilder: public ExprBuilder { |
| 14689 | VarDecl *Var; |
| 14690 | QualType VarType; |
| 14691 | |
| 14692 | public: |
| 14693 | Expr *build(Sema &S, SourceLocation Loc) const override { |
| 14694 | return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc)); |
| 14695 | } |
| 14696 | |
| 14697 | RefBuilder(VarDecl *Var, QualType VarType) |
| 14698 | : Var(Var), VarType(VarType) {} |
| 14699 | }; |
| 14700 | |
| 14701 | class ThisBuilder: public ExprBuilder { |
| 14702 | public: |
| 14703 | Expr *build(Sema &S, SourceLocation Loc) const override { |
| 14704 | return assertNotNull(E: S.ActOnCXXThis(Loc).getAs<Expr>()); |
| 14705 | } |
| 14706 | }; |
| 14707 | |
| 14708 | class CastBuilder: public ExprBuilder { |
| 14709 | const ExprBuilder &Builder; |
| 14710 | QualType Type; |
| 14711 | ExprValueKind Kind; |
| 14712 | const CXXCastPath &Path; |
| 14713 | |
| 14714 | public: |
| 14715 | Expr *build(Sema &S, SourceLocation Loc) const override { |
| 14716 | return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type, |
| 14717 | CK_UncheckedDerivedToBase, Kind, |
| 14718 | &Path).get()); |
| 14719 | } |
| 14720 | |
| 14721 | CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind, |
| 14722 | const CXXCastPath &Path) |
| 14723 | : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {} |
| 14724 | }; |
| 14725 | |
| 14726 | class DerefBuilder: public ExprBuilder { |
| 14727 | const ExprBuilder &Builder; |
| 14728 | |
| 14729 | public: |
| 14730 | Expr *build(Sema &S, SourceLocation Loc) const override { |
| 14731 | return assertNotNull( |
| 14732 | E: S.CreateBuiltinUnaryOp(OpLoc: Loc, Opc: UO_Deref, InputExpr: Builder.build(S, Loc)).get()); |
| 14733 | } |
| 14734 | |
| 14735 | DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {} |
| 14736 | }; |
| 14737 | |
| 14738 | class MemberBuilder: public ExprBuilder { |
| 14739 | const ExprBuilder &Builder; |
| 14740 | QualType Type; |
| 14741 | CXXScopeSpec SS; |
| 14742 | bool IsArrow; |
| 14743 | LookupResult &MemberLookup; |
| 14744 | |
| 14745 | public: |
| 14746 | Expr *build(Sema &S, SourceLocation Loc) const override { |
| 14747 | return assertNotNull(S.BuildMemberReferenceExpr( |
| 14748 | Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(), |
| 14749 | nullptr, MemberLookup, nullptr, nullptr).get()); |
| 14750 | } |
| 14751 | |
| 14752 | MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow, |
| 14753 | LookupResult &MemberLookup) |
| 14754 | : Builder(Builder), Type(Type), IsArrow(IsArrow), |
| 14755 | MemberLookup(MemberLookup) {} |
| 14756 | }; |
| 14757 | |
| 14758 | class MoveCastBuilder: public ExprBuilder { |
| 14759 | const ExprBuilder &Builder; |
| 14760 | |
| 14761 | public: |
| 14762 | Expr *build(Sema &S, SourceLocation Loc) const override { |
| 14763 | return assertNotNull(E: CastForMoving(SemaRef&: S, E: Builder.build(S, Loc))); |
| 14764 | } |
| 14765 | |
| 14766 | MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {} |
| 14767 | }; |
| 14768 | |
| 14769 | class LvalueConvBuilder: public ExprBuilder { |
| 14770 | const ExprBuilder &Builder; |
| 14771 | |
| 14772 | public: |
| 14773 | Expr *build(Sema &S, SourceLocation Loc) const override { |
| 14774 | return assertNotNull( |
| 14775 | E: S.DefaultLvalueConversion(E: Builder.build(S, Loc)).get()); |
| 14776 | } |
| 14777 | |
| 14778 | LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {} |
| 14779 | }; |
| 14780 | |
| 14781 | class SubscriptBuilder: public ExprBuilder { |
| 14782 | const ExprBuilder &Base; |
| 14783 | const ExprBuilder &Index; |
| 14784 | |
| 14785 | public: |
| 14786 | Expr *build(Sema &S, SourceLocation Loc) const override { |
| 14787 | return assertNotNull(E: S.CreateBuiltinArraySubscriptExpr( |
| 14788 | Base: Base.build(S, Loc), LLoc: Loc, Idx: Index.build(S, Loc), RLoc: Loc).get()); |
| 14789 | } |
| 14790 | |
| 14791 | SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index) |
| 14792 | : Base(Base), Index(Index) {} |
| 14793 | }; |
| 14794 | |
| 14795 | } // end anonymous namespace |
| 14796 | |
| 14797 | /// When generating a defaulted copy or move assignment operator, if a field |
| 14798 | /// should be copied with __builtin_memcpy rather than via explicit assignments, |
| 14799 | /// do so. This optimization only applies for arrays of scalars, and for arrays |
| 14800 | /// of class type where the selected copy/move-assignment operator is trivial. |
| 14801 | static StmtResult |
| 14802 | buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T, |
| 14803 | const ExprBuilder &ToB, const ExprBuilder &FromB) { |
| 14804 | // Compute the size of the memory buffer to be copied. |
| 14805 | QualType SizeType = S.Context.getSizeType(); |
| 14806 | llvm::APInt Size(S.Context.getTypeSize(T: SizeType), |
| 14807 | S.Context.getTypeSizeInChars(T).getQuantity()); |
| 14808 | |
| 14809 | // Take the address of the field references for "from" and "to". We |
| 14810 | // directly construct UnaryOperators here because semantic analysis |
| 14811 | // does not permit us to take the address of an xvalue. |
| 14812 | Expr *From = FromB.build(S, Loc); |
| 14813 | From = UnaryOperator::Create( |
| 14814 | C: S.Context, input: From, opc: UO_AddrOf, type: S.Context.getPointerType(T: From->getType()), |
| 14815 | VK: VK_PRValue, OK: OK_Ordinary, l: Loc, CanOverflow: false, FPFeatures: S.CurFPFeatureOverrides()); |
| 14816 | Expr *To = ToB.build(S, Loc); |
| 14817 | To = UnaryOperator::Create( |
| 14818 | C: S.Context, input: To, opc: UO_AddrOf, type: S.Context.getPointerType(T: To->getType()), |
| 14819 | VK: VK_PRValue, OK: OK_Ordinary, l: Loc, CanOverflow: false, FPFeatures: S.CurFPFeatureOverrides()); |
| 14820 | |
| 14821 | const Type *E = T->getBaseElementTypeUnsafe(); |
| 14822 | bool NeedsCollectableMemCpy = |
| 14823 | E->isRecordType() && |
| 14824 | E->castAs<RecordType>()->getDecl()->hasObjectMember(); |
| 14825 | |
| 14826 | // Create a reference to the __builtin_objc_memmove_collectable function |
| 14827 | StringRef MemCpyName = NeedsCollectableMemCpy ? |
| 14828 | "__builtin_objc_memmove_collectable" : |
| 14829 | "__builtin_memcpy" ; |
| 14830 | LookupResult R(S, &S.Context.Idents.get(Name: MemCpyName), Loc, |
| 14831 | Sema::LookupOrdinaryName); |
| 14832 | S.LookupName(R, S: S.TUScope, AllowBuiltinCreation: true); |
| 14833 | |
| 14834 | FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>(); |
| 14835 | if (!MemCpy) |
| 14836 | // Something went horribly wrong earlier, and we will have complained |
| 14837 | // about it. |
| 14838 | return StmtError(); |
| 14839 | |
| 14840 | ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy, |
| 14841 | VK_PRValue, Loc, nullptr); |
| 14842 | assert(MemCpyRef.isUsable() && "Builtin reference cannot fail" ); |
| 14843 | |
| 14844 | Expr *CallArgs[] = { |
| 14845 | To, From, IntegerLiteral::Create(C: S.Context, V: Size, type: SizeType, l: Loc) |
| 14846 | }; |
| 14847 | ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(), |
| 14848 | Loc, CallArgs, Loc); |
| 14849 | |
| 14850 | assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!" ); |
| 14851 | return Call.getAs<Stmt>(); |
| 14852 | } |
| 14853 | |
| 14854 | /// Builds a statement that copies/moves the given entity from \p From to |
| 14855 | /// \c To. |
| 14856 | /// |
| 14857 | /// This routine is used to copy/move the members of a class with an |
| 14858 | /// implicitly-declared copy/move assignment operator. When the entities being |
| 14859 | /// copied are arrays, this routine builds for loops to copy them. |
| 14860 | /// |
| 14861 | /// \param S The Sema object used for type-checking. |
| 14862 | /// |
| 14863 | /// \param Loc The location where the implicit copy/move is being generated. |
| 14864 | /// |
| 14865 | /// \param T The type of the expressions being copied/moved. Both expressions |
| 14866 | /// must have this type. |
| 14867 | /// |
| 14868 | /// \param To The expression we are copying/moving to. |
| 14869 | /// |
| 14870 | /// \param From The expression we are copying/moving from. |
| 14871 | /// |
| 14872 | /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject. |
| 14873 | /// Otherwise, it's a non-static member subobject. |
| 14874 | /// |
| 14875 | /// \param Copying Whether we're copying or moving. |
| 14876 | /// |
| 14877 | /// \param Depth Internal parameter recording the depth of the recursion. |
| 14878 | /// |
| 14879 | /// \returns A statement or a loop that copies the expressions, or StmtResult(0) |
| 14880 | /// if a memcpy should be used instead. |
| 14881 | static StmtResult |
| 14882 | buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T, |
| 14883 | const ExprBuilder &To, const ExprBuilder &From, |
| 14884 | bool CopyingBaseSubobject, bool Copying, |
| 14885 | unsigned Depth = 0) { |
| 14886 | // C++11 [class.copy]p28: |
| 14887 | // Each subobject is assigned in the manner appropriate to its type: |
| 14888 | // |
| 14889 | // - if the subobject is of class type, as if by a call to operator= with |
| 14890 | // the subobject as the object expression and the corresponding |
| 14891 | // subobject of x as a single function argument (as if by explicit |
| 14892 | // qualification; that is, ignoring any possible virtual overriding |
| 14893 | // functions in more derived classes); |
| 14894 | // |
| 14895 | // C++03 [class.copy]p13: |
| 14896 | // - if the subobject is of class type, the copy assignment operator for |
| 14897 | // the class is used (as if by explicit qualification; that is, |
| 14898 | // ignoring any possible virtual overriding functions in more derived |
| 14899 | // classes); |
| 14900 | if (const RecordType *RecordTy = T->getAs<RecordType>()) { |
| 14901 | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Val: RecordTy->getDecl()); |
| 14902 | |
| 14903 | // Look for operator=. |
| 14904 | DeclarationName Name |
| 14905 | = S.Context.DeclarationNames.getCXXOperatorName(Op: OO_Equal); |
| 14906 | LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName); |
| 14907 | S.LookupQualifiedName(OpLookup, ClassDecl, false); |
| 14908 | |
| 14909 | // Prior to C++11, filter out any result that isn't a copy/move-assignment |
| 14910 | // operator. |
| 14911 | if (!S.getLangOpts().CPlusPlus11) { |
| 14912 | LookupResult::Filter F = OpLookup.makeFilter(); |
| 14913 | while (F.hasNext()) { |
| 14914 | NamedDecl *D = F.next(); |
| 14915 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: D)) |
| 14916 | if (Method->isCopyAssignmentOperator() || |
| 14917 | (!Copying && Method->isMoveAssignmentOperator())) |
| 14918 | continue; |
| 14919 | |
| 14920 | F.erase(); |
| 14921 | } |
| 14922 | F.done(); |
| 14923 | } |
| 14924 | |
| 14925 | // Suppress the protected check (C++ [class.protected]) for each of the |
| 14926 | // assignment operators we found. This strange dance is required when |
| 14927 | // we're assigning via a base classes's copy-assignment operator. To |
| 14928 | // ensure that we're getting the right base class subobject (without |
| 14929 | // ambiguities), we need to cast "this" to that subobject type; to |
| 14930 | // ensure that we don't go through the virtual call mechanism, we need |
| 14931 | // to qualify the operator= name with the base class (see below). However, |
| 14932 | // this means that if the base class has a protected copy assignment |
| 14933 | // operator, the protected member access check will fail. So, we |
| 14934 | // rewrite "protected" access to "public" access in this case, since we |
| 14935 | // know by construction that we're calling from a derived class. |
| 14936 | if (CopyingBaseSubobject) { |
| 14937 | for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end(); |
| 14938 | L != LEnd; ++L) { |
| 14939 | if (L.getAccess() == AS_protected) |
| 14940 | L.setAccess(AS_public); |
| 14941 | } |
| 14942 | } |
| 14943 | |
| 14944 | // Create the nested-name-specifier that will be used to qualify the |
| 14945 | // reference to operator=; this is required to suppress the virtual |
| 14946 | // call mechanism. |
| 14947 | CXXScopeSpec SS; |
| 14948 | const Type *CanonicalT = S.Context.getCanonicalType(T: T.getTypePtr()); |
| 14949 | SS.MakeTrivial(Context&: S.Context, |
| 14950 | Qualifier: NestedNameSpecifier::Create(Context: S.Context, Prefix: nullptr, T: CanonicalT), |
| 14951 | R: Loc); |
| 14952 | |
| 14953 | // Create the reference to operator=. |
| 14954 | ExprResult OpEqualRef |
| 14955 | = S.BuildMemberReferenceExpr(Base: To.build(S, Loc), BaseType: T, OpLoc: Loc, /*IsArrow=*/false, |
| 14956 | SS, /*TemplateKWLoc=*/SourceLocation(), |
| 14957 | /*FirstQualifierInScope=*/nullptr, |
| 14958 | R&: OpLookup, |
| 14959 | /*TemplateArgs=*/nullptr, /*S*/nullptr, |
| 14960 | /*SuppressQualifierCheck=*/true); |
| 14961 | if (OpEqualRef.isInvalid()) |
| 14962 | return StmtError(); |
| 14963 | |
| 14964 | // Build the call to the assignment operator. |
| 14965 | |
| 14966 | Expr *FromInst = From.build(S, Loc); |
| 14967 | ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/S: nullptr, |
| 14968 | MemExpr: OpEqualRef.getAs<Expr>(), |
| 14969 | LParenLoc: Loc, Args: FromInst, RParenLoc: Loc); |
| 14970 | if (Call.isInvalid()) |
| 14971 | return StmtError(); |
| 14972 | |
| 14973 | // If we built a call to a trivial 'operator=' while copying an array, |
| 14974 | // bail out. We'll replace the whole shebang with a memcpy. |
| 14975 | CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Val: Call.get()); |
| 14976 | if (CE && CE->getMethodDecl()->isTrivial() && Depth) |
| 14977 | return StmtResult((Stmt*)nullptr); |
| 14978 | |
| 14979 | // Convert to an expression-statement, and clean up any produced |
| 14980 | // temporaries. |
| 14981 | return S.ActOnExprStmt(Arg: Call); |
| 14982 | } |
| 14983 | |
| 14984 | // - if the subobject is of scalar type, the built-in assignment |
| 14985 | // operator is used. |
| 14986 | const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T); |
| 14987 | if (!ArrayTy) { |
| 14988 | ExprResult Assignment = S.CreateBuiltinBinOp( |
| 14989 | OpLoc: Loc, Opc: BO_Assign, LHSExpr: To.build(S, Loc), RHSExpr: From.build(S, Loc)); |
| 14990 | if (Assignment.isInvalid()) |
| 14991 | return StmtError(); |
| 14992 | return S.ActOnExprStmt(Arg: Assignment); |
| 14993 | } |
| 14994 | |
| 14995 | // - if the subobject is an array, each element is assigned, in the |
| 14996 | // manner appropriate to the element type; |
| 14997 | |
| 14998 | // Construct a loop over the array bounds, e.g., |
| 14999 | // |
| 15000 | // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0) |
| 15001 | // |
| 15002 | // that will copy each of the array elements. |
| 15003 | QualType SizeType = S.Context.getSizeType(); |
| 15004 | |
| 15005 | // Create the iteration variable. |
| 15006 | IdentifierInfo *IterationVarName = nullptr; |
| 15007 | { |
| 15008 | SmallString<8> Str; |
| 15009 | llvm::raw_svector_ostream OS(Str); |
| 15010 | OS << "__i" << Depth; |
| 15011 | IterationVarName = &S.Context.Idents.get(Name: OS.str()); |
| 15012 | } |
| 15013 | VarDecl *IterationVar = VarDecl::Create(C&: S.Context, DC: S.CurContext, StartLoc: Loc, IdLoc: Loc, |
| 15014 | Id: IterationVarName, T: SizeType, |
| 15015 | TInfo: S.Context.getTrivialTypeSourceInfo(T: SizeType, Loc), |
| 15016 | S: SC_None); |
| 15017 | |
| 15018 | // Initialize the iteration variable to zero. |
| 15019 | llvm::APInt Zero(S.Context.getTypeSize(T: SizeType), 0); |
| 15020 | IterationVar->setInit(IntegerLiteral::Create(C: S.Context, V: Zero, type: SizeType, l: Loc)); |
| 15021 | |
| 15022 | // Creates a reference to the iteration variable. |
| 15023 | RefBuilder IterationVarRef(IterationVar, SizeType); |
| 15024 | LvalueConvBuilder IterationVarRefRVal(IterationVarRef); |
| 15025 | |
| 15026 | // Create the DeclStmt that holds the iteration variable. |
| 15027 | Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc); |
| 15028 | |
| 15029 | // Subscript the "from" and "to" expressions with the iteration variable. |
| 15030 | SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal); |
| 15031 | MoveCastBuilder FromIndexMove(FromIndexCopy); |
| 15032 | const ExprBuilder *FromIndex; |
| 15033 | if (Copying) |
| 15034 | FromIndex = &FromIndexCopy; |
| 15035 | else |
| 15036 | FromIndex = &FromIndexMove; |
| 15037 | |
| 15038 | SubscriptBuilder ToIndex(To, IterationVarRefRVal); |
| 15039 | |
| 15040 | // Build the copy/move for an individual element of the array. |
| 15041 | StmtResult Copy = |
| 15042 | buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(), |
| 15043 | ToIndex, *FromIndex, CopyingBaseSubobject, |
| 15044 | Copying, Depth + 1); |
| 15045 | // Bail out if copying fails or if we determined that we should use memcpy. |
| 15046 | if (Copy.isInvalid() || !Copy.get()) |
| 15047 | return Copy; |
| 15048 | |
| 15049 | // Create the comparison against the array bound. |
| 15050 | llvm::APInt Upper |
| 15051 | = ArrayTy->getSize().zextOrTrunc(width: S.Context.getTypeSize(T: SizeType)); |
| 15052 | Expr *Comparison = BinaryOperator::Create( |
| 15053 | C: S.Context, lhs: IterationVarRefRVal.build(S, Loc), |
| 15054 | rhs: IntegerLiteral::Create(C: S.Context, V: Upper, type: SizeType, l: Loc), opc: BO_NE, |
| 15055 | ResTy: S.Context.BoolTy, VK: VK_PRValue, OK: OK_Ordinary, opLoc: Loc, |
| 15056 | FPFeatures: S.CurFPFeatureOverrides()); |
| 15057 | |
| 15058 | // Create the pre-increment of the iteration variable. We can determine |
| 15059 | // whether the increment will overflow based on the value of the array |
| 15060 | // bound. |
| 15061 | Expr *Increment = UnaryOperator::Create( |
| 15062 | C: S.Context, input: IterationVarRef.build(S, Loc), opc: UO_PreInc, type: SizeType, VK: VK_LValue, |
| 15063 | OK: OK_Ordinary, l: Loc, CanOverflow: Upper.isMaxValue(), FPFeatures: S.CurFPFeatureOverrides()); |
| 15064 | |
| 15065 | // Construct the loop that copies all elements of this array. |
| 15066 | return S.ActOnForStmt( |
| 15067 | ForLoc: Loc, LParenLoc: Loc, First: InitStmt, |
| 15068 | Second: S.ActOnCondition(S: nullptr, Loc, SubExpr: Comparison, CK: Sema::ConditionKind::Boolean), |
| 15069 | Third: S.MakeFullDiscardedValueExpr(Arg: Increment), RParenLoc: Loc, Body: Copy.get()); |
| 15070 | } |
| 15071 | |
| 15072 | static StmtResult |
| 15073 | buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T, |
| 15074 | const ExprBuilder &To, const ExprBuilder &From, |
| 15075 | bool CopyingBaseSubobject, bool Copying) { |
| 15076 | // Maybe we should use a memcpy? |
| 15077 | if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() && |
| 15078 | T.isTriviallyCopyableType(Context: S.Context)) |
| 15079 | return buildMemcpyForAssignmentOp(S, Loc, T, ToB: To, FromB: From); |
| 15080 | |
| 15081 | StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From, |
| 15082 | CopyingBaseSubobject, |
| 15083 | Copying, Depth: 0)); |
| 15084 | |
| 15085 | // If we ended up picking a trivial assignment operator for an array of a |
| 15086 | // non-trivially-copyable class type, just emit a memcpy. |
| 15087 | if (!Result.isInvalid() && !Result.get()) |
| 15088 | return buildMemcpyForAssignmentOp(S, Loc, T, ToB: To, FromB: From); |
| 15089 | |
| 15090 | return Result; |
| 15091 | } |
| 15092 | |
| 15093 | CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) { |
| 15094 | // Note: The following rules are largely analoguous to the copy |
| 15095 | // constructor rules. Note that virtual bases are not taken into account |
| 15096 | // for determining the argument type of the operator. Note also that |
| 15097 | // operators taking an object instead of a reference are allowed. |
| 15098 | assert(ClassDecl->needsImplicitCopyAssignment()); |
| 15099 | |
| 15100 | DeclaringSpecialMember DSM(*this, ClassDecl, |
| 15101 | CXXSpecialMemberKind::CopyAssignment); |
| 15102 | if (DSM.isAlreadyBeingDeclared()) |
| 15103 | return nullptr; |
| 15104 | |
| 15105 | QualType ArgType = Context.getTypeDeclType(ClassDecl); |
| 15106 | ArgType = Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::None, NNS: nullptr, |
| 15107 | NamedType: ArgType, OwnedTagDecl: nullptr); |
| 15108 | LangAS AS = getDefaultCXXMethodAddrSpace(); |
| 15109 | if (AS != LangAS::Default) |
| 15110 | ArgType = Context.getAddrSpaceQualType(T: ArgType, AddressSpace: AS); |
| 15111 | QualType RetType = Context.getLValueReferenceType(T: ArgType); |
| 15112 | bool Const = ClassDecl->implicitCopyAssignmentHasConstParam(); |
| 15113 | if (Const) |
| 15114 | ArgType = ArgType.withConst(); |
| 15115 | |
| 15116 | ArgType = Context.getLValueReferenceType(T: ArgType); |
| 15117 | |
| 15118 | bool Constexpr = defaultedSpecialMemberIsConstexpr( |
| 15119 | S&: *this, ClassDecl, CSM: CXXSpecialMemberKind::CopyAssignment, ConstArg: Const); |
| 15120 | |
| 15121 | // An implicitly-declared copy assignment operator is an inline public |
| 15122 | // member of its class. |
| 15123 | DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(Op: OO_Equal); |
| 15124 | SourceLocation ClassLoc = ClassDecl->getLocation(); |
| 15125 | DeclarationNameInfo NameInfo(Name, ClassLoc); |
| 15126 | CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create( |
| 15127 | C&: Context, RD: ClassDecl, StartLoc: ClassLoc, NameInfo, T: QualType(), |
| 15128 | /*TInfo=*/nullptr, /*StorageClass=*/SC: SC_None, |
| 15129 | UsesFPIntrin: getCurFPFeatures().isFPConstrained(), |
| 15130 | /*isInline=*/true, |
| 15131 | ConstexprKind: Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified, |
| 15132 | EndLocation: SourceLocation()); |
| 15133 | CopyAssignment->setAccess(AS_public); |
| 15134 | CopyAssignment->setDefaulted(); |
| 15135 | CopyAssignment->setImplicit(); |
| 15136 | |
| 15137 | setupImplicitSpecialMemberType(SpecialMem: CopyAssignment, ResultTy: RetType, Args: ArgType); |
| 15138 | |
| 15139 | if (getLangOpts().CUDA) |
| 15140 | CUDA().inferTargetForImplicitSpecialMember( |
| 15141 | ClassDecl, CSM: CXXSpecialMemberKind::CopyAssignment, MemberDecl: CopyAssignment, |
| 15142 | /* ConstRHS */ Const, |
| 15143 | /* Diagnose */ false); |
| 15144 | |
| 15145 | // Add the parameter to the operator. |
| 15146 | ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, |
| 15147 | ClassLoc, ClassLoc, |
| 15148 | /*Id=*/nullptr, ArgType, |
| 15149 | /*TInfo=*/nullptr, SC_None, |
| 15150 | nullptr); |
| 15151 | CopyAssignment->setParams(FromParam); |
| 15152 | |
| 15153 | CopyAssignment->setTrivial( |
| 15154 | ClassDecl->needsOverloadResolutionForCopyAssignment() |
| 15155 | ? SpecialMemberIsTrivial(MD: CopyAssignment, |
| 15156 | CSM: CXXSpecialMemberKind::CopyAssignment) |
| 15157 | : ClassDecl->hasTrivialCopyAssignment()); |
| 15158 | |
| 15159 | // Note that we have added this copy-assignment operator. |
| 15160 | ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared; |
| 15161 | |
| 15162 | Scope *S = getScopeForContext(ClassDecl); |
| 15163 | CheckImplicitSpecialMemberDeclaration(S, CopyAssignment); |
| 15164 | |
| 15165 | if (ShouldDeleteSpecialMember(MD: CopyAssignment, |
| 15166 | CSM: CXXSpecialMemberKind::CopyAssignment)) { |
| 15167 | ClassDecl->setImplicitCopyAssignmentIsDeleted(); |
| 15168 | SetDeclDeleted(CopyAssignment, ClassLoc); |
| 15169 | } |
| 15170 | |
| 15171 | if (S) |
| 15172 | PushOnScopeChains(CopyAssignment, S, false); |
| 15173 | ClassDecl->addDecl(CopyAssignment); |
| 15174 | |
| 15175 | return CopyAssignment; |
| 15176 | } |
| 15177 | |
| 15178 | /// Diagnose an implicit copy operation for a class which is odr-used, but |
| 15179 | /// which is deprecated because the class has a user-declared copy constructor, |
| 15180 | /// copy assignment operator, or destructor. |
| 15181 | static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) { |
| 15182 | assert(CopyOp->isImplicit()); |
| 15183 | |
| 15184 | CXXRecordDecl *RD = CopyOp->getParent(); |
| 15185 | CXXMethodDecl *UserDeclaredOperation = nullptr; |
| 15186 | |
| 15187 | if (RD->hasUserDeclaredDestructor()) { |
| 15188 | UserDeclaredOperation = RD->getDestructor(); |
| 15189 | } else if (!isa<CXXConstructorDecl>(Val: CopyOp) && |
| 15190 | RD->hasUserDeclaredCopyConstructor()) { |
| 15191 | // Find any user-declared copy constructor. |
| 15192 | for (auto *I : RD->ctors()) { |
| 15193 | if (I->isCopyConstructor()) { |
| 15194 | UserDeclaredOperation = I; |
| 15195 | break; |
| 15196 | } |
| 15197 | } |
| 15198 | assert(UserDeclaredOperation); |
| 15199 | } else if (isa<CXXConstructorDecl>(Val: CopyOp) && |
| 15200 | RD->hasUserDeclaredCopyAssignment()) { |
| 15201 | // Find any user-declared move assignment operator. |
| 15202 | for (auto *I : RD->methods()) { |
| 15203 | if (I->isCopyAssignmentOperator()) { |
| 15204 | UserDeclaredOperation = I; |
| 15205 | break; |
| 15206 | } |
| 15207 | } |
| 15208 | assert(UserDeclaredOperation); |
| 15209 | } |
| 15210 | |
| 15211 | if (UserDeclaredOperation) { |
| 15212 | bool UDOIsUserProvided = UserDeclaredOperation->isUserProvided(); |
| 15213 | bool UDOIsDestructor = isa<CXXDestructorDecl>(Val: UserDeclaredOperation); |
| 15214 | bool IsCopyAssignment = !isa<CXXConstructorDecl>(Val: CopyOp); |
| 15215 | unsigned DiagID = |
| 15216 | (UDOIsUserProvided && UDOIsDestructor) |
| 15217 | ? diag::warn_deprecated_copy_with_user_provided_dtor |
| 15218 | : (UDOIsUserProvided && !UDOIsDestructor) |
| 15219 | ? diag::warn_deprecated_copy_with_user_provided_copy |
| 15220 | : (!UDOIsUserProvided && UDOIsDestructor) |
| 15221 | ? diag::warn_deprecated_copy_with_dtor |
| 15222 | : diag::warn_deprecated_copy; |
| 15223 | S.Diag(UserDeclaredOperation->getLocation(), DiagID) |
| 15224 | << RD << IsCopyAssignment; |
| 15225 | } |
| 15226 | } |
| 15227 | |
| 15228 | void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation, |
| 15229 | CXXMethodDecl *CopyAssignOperator) { |
| 15230 | assert((CopyAssignOperator->isDefaulted() && |
| 15231 | CopyAssignOperator->isOverloadedOperator() && |
| 15232 | CopyAssignOperator->getOverloadedOperator() == OO_Equal && |
| 15233 | !CopyAssignOperator->doesThisDeclarationHaveABody() && |
| 15234 | !CopyAssignOperator->isDeleted()) && |
| 15235 | "DefineImplicitCopyAssignment called for wrong function" ); |
| 15236 | if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl()) |
| 15237 | return; |
| 15238 | |
| 15239 | CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent(); |
| 15240 | if (ClassDecl->isInvalidDecl()) { |
| 15241 | CopyAssignOperator->setInvalidDecl(); |
| 15242 | return; |
| 15243 | } |
| 15244 | |
| 15245 | SynthesizedFunctionScope Scope(*this, CopyAssignOperator); |
| 15246 | |
| 15247 | // The exception specification is needed because we are defining the |
| 15248 | // function. |
| 15249 | ResolveExceptionSpec(Loc: CurrentLocation, |
| 15250 | FPT: CopyAssignOperator->getType()->castAs<FunctionProtoType>()); |
| 15251 | |
| 15252 | // Add a context note for diagnostics produced after this point. |
| 15253 | Scope.addContextNote(UseLoc: CurrentLocation); |
| 15254 | |
| 15255 | // C++11 [class.copy]p18: |
| 15256 | // The [definition of an implicitly declared copy assignment operator] is |
| 15257 | // deprecated if the class has a user-declared copy constructor or a |
| 15258 | // user-declared destructor. |
| 15259 | if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit()) |
| 15260 | diagnoseDeprecatedCopyOperation(S&: *this, CopyOp: CopyAssignOperator); |
| 15261 | |
| 15262 | // C++0x [class.copy]p30: |
| 15263 | // The implicitly-defined or explicitly-defaulted copy assignment operator |
| 15264 | // for a non-union class X performs memberwise copy assignment of its |
| 15265 | // subobjects. The direct base classes of X are assigned first, in the |
| 15266 | // order of their declaration in the base-specifier-list, and then the |
| 15267 | // immediate non-static data members of X are assigned, in the order in |
| 15268 | // which they were declared in the class definition. |
| 15269 | |
| 15270 | // The statements that form the synthesized function body. |
| 15271 | SmallVector<Stmt*, 8> Statements; |
| 15272 | |
| 15273 | // The parameter for the "other" object, which we are copying from. |
| 15274 | ParmVarDecl *Other = CopyAssignOperator->getNonObjectParameter(0); |
| 15275 | Qualifiers OtherQuals = Other->getType().getQualifiers(); |
| 15276 | QualType OtherRefType = Other->getType(); |
| 15277 | if (OtherRefType->isLValueReferenceType()) { |
| 15278 | OtherRefType = OtherRefType->getPointeeType(); |
| 15279 | OtherQuals = OtherRefType.getQualifiers(); |
| 15280 | } |
| 15281 | |
| 15282 | // Our location for everything implicitly-generated. |
| 15283 | SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid() |
| 15284 | ? CopyAssignOperator->getEndLoc() |
| 15285 | : CopyAssignOperator->getLocation(); |
| 15286 | |
| 15287 | // Builds a DeclRefExpr for the "other" object. |
| 15288 | RefBuilder OtherRef(Other, OtherRefType); |
| 15289 | |
| 15290 | // Builds the function object parameter. |
| 15291 | std::optional<ThisBuilder> This; |
| 15292 | std::optional<DerefBuilder> DerefThis; |
| 15293 | std::optional<RefBuilder> ExplicitObject; |
| 15294 | bool IsArrow = false; |
| 15295 | QualType ObjectType; |
| 15296 | if (CopyAssignOperator->isExplicitObjectMemberFunction()) { |
| 15297 | ObjectType = CopyAssignOperator->getParamDecl(0)->getType(); |
| 15298 | if (ObjectType->isReferenceType()) |
| 15299 | ObjectType = ObjectType->getPointeeType(); |
| 15300 | ExplicitObject.emplace(CopyAssignOperator->getParamDecl(0), ObjectType); |
| 15301 | } else { |
| 15302 | ObjectType = getCurrentThisType(); |
| 15303 | This.emplace(); |
| 15304 | DerefThis.emplace(args&: *This); |
| 15305 | IsArrow = !LangOpts.HLSL; |
| 15306 | } |
| 15307 | ExprBuilder &ObjectParameter = |
| 15308 | ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject) |
| 15309 | : static_cast<ExprBuilder &>(*This); |
| 15310 | |
| 15311 | // Assign base classes. |
| 15312 | bool Invalid = false; |
| 15313 | for (auto &Base : ClassDecl->bases()) { |
| 15314 | // Form the assignment: |
| 15315 | // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other)); |
| 15316 | QualType BaseType = Base.getType().getUnqualifiedType(); |
| 15317 | if (!BaseType->isRecordType()) { |
| 15318 | Invalid = true; |
| 15319 | continue; |
| 15320 | } |
| 15321 | |
| 15322 | CXXCastPath BasePath; |
| 15323 | BasePath.push_back(Elt: &Base); |
| 15324 | |
| 15325 | // Construct the "from" expression, which is an implicit cast to the |
| 15326 | // appropriately-qualified base type. |
| 15327 | CastBuilder From(OtherRef, Context.getQualifiedType(T: BaseType, Qs: OtherQuals), |
| 15328 | VK_LValue, BasePath); |
| 15329 | |
| 15330 | // Dereference "this". |
| 15331 | CastBuilder To( |
| 15332 | ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject) |
| 15333 | : static_cast<ExprBuilder &>(*DerefThis), |
| 15334 | Context.getQualifiedType(T: BaseType, Qs: ObjectType.getQualifiers()), |
| 15335 | VK_LValue, BasePath); |
| 15336 | |
| 15337 | // Build the copy. |
| 15338 | StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType, |
| 15339 | To, From, |
| 15340 | /*CopyingBaseSubobject=*/true, |
| 15341 | /*Copying=*/true); |
| 15342 | if (Copy.isInvalid()) { |
| 15343 | CopyAssignOperator->setInvalidDecl(); |
| 15344 | return; |
| 15345 | } |
| 15346 | |
| 15347 | // Success! Record the copy. |
| 15348 | Statements.push_back(Copy.getAs<Expr>()); |
| 15349 | } |
| 15350 | |
| 15351 | // Assign non-static members. |
| 15352 | for (auto *Field : ClassDecl->fields()) { |
| 15353 | // FIXME: We should form some kind of AST representation for the implied |
| 15354 | // memcpy in a union copy operation. |
| 15355 | if (Field->isUnnamedBitField() || Field->getParent()->isUnion()) |
| 15356 | continue; |
| 15357 | |
| 15358 | if (Field->isInvalidDecl()) { |
| 15359 | Invalid = true; |
| 15360 | continue; |
| 15361 | } |
| 15362 | |
| 15363 | // Check for members of reference type; we can't copy those. |
| 15364 | if (Field->getType()->isReferenceType()) { |
| 15365 | Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) |
| 15366 | << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); |
| 15367 | Diag(Field->getLocation(), diag::note_declared_at); |
| 15368 | Invalid = true; |
| 15369 | continue; |
| 15370 | } |
| 15371 | |
| 15372 | // Check for members of const-qualified, non-class type. |
| 15373 | QualType BaseType = Context.getBaseElementType(Field->getType()); |
| 15374 | if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { |
| 15375 | Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) |
| 15376 | << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); |
| 15377 | Diag(Field->getLocation(), diag::note_declared_at); |
| 15378 | Invalid = true; |
| 15379 | continue; |
| 15380 | } |
| 15381 | |
| 15382 | // Suppress assigning zero-width bitfields. |
| 15383 | if (Field->isZeroLengthBitField()) |
| 15384 | continue; |
| 15385 | |
| 15386 | QualType FieldType = Field->getType().getNonReferenceType(); |
| 15387 | if (FieldType->isIncompleteArrayType()) { |
| 15388 | assert(ClassDecl->hasFlexibleArrayMember() && |
| 15389 | "Incomplete array type is not valid" ); |
| 15390 | continue; |
| 15391 | } |
| 15392 | |
| 15393 | // Build references to the field in the object we're copying from and to. |
| 15394 | CXXScopeSpec SS; // Intentionally empty |
| 15395 | LookupResult MemberLookup(*this, Field->getDeclName(), Loc, |
| 15396 | LookupMemberName); |
| 15397 | MemberLookup.addDecl(Field); |
| 15398 | MemberLookup.resolveKind(); |
| 15399 | |
| 15400 | MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup); |
| 15401 | MemberBuilder To(ObjectParameter, ObjectType, IsArrow, MemberLookup); |
| 15402 | // Build the copy of this field. |
| 15403 | StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType, |
| 15404 | To, From, |
| 15405 | /*CopyingBaseSubobject=*/false, |
| 15406 | /*Copying=*/true); |
| 15407 | if (Copy.isInvalid()) { |
| 15408 | CopyAssignOperator->setInvalidDecl(); |
| 15409 | return; |
| 15410 | } |
| 15411 | |
| 15412 | // Success! Record the copy. |
| 15413 | Statements.push_back(Copy.getAs<Stmt>()); |
| 15414 | } |
| 15415 | |
| 15416 | if (!Invalid) { |
| 15417 | // Add a "return *this;" |
| 15418 | Expr *ThisExpr = |
| 15419 | (ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject) |
| 15420 | : LangOpts.HLSL ? static_cast<ExprBuilder &>(*This) |
| 15421 | : static_cast<ExprBuilder &>(*DerefThis)) |
| 15422 | .build(*this, Loc); |
| 15423 | StmtResult Return = BuildReturnStmt(ReturnLoc: Loc, RetValExp: ThisExpr); |
| 15424 | if (Return.isInvalid()) |
| 15425 | Invalid = true; |
| 15426 | else |
| 15427 | Statements.push_back(Elt: Return.getAs<Stmt>()); |
| 15428 | } |
| 15429 | |
| 15430 | if (Invalid) { |
| 15431 | CopyAssignOperator->setInvalidDecl(); |
| 15432 | return; |
| 15433 | } |
| 15434 | |
| 15435 | StmtResult Body; |
| 15436 | { |
| 15437 | CompoundScopeRAII CompoundScope(*this); |
| 15438 | Body = ActOnCompoundStmt(L: Loc, R: Loc, Elts: Statements, |
| 15439 | /*isStmtExpr=*/false); |
| 15440 | assert(!Body.isInvalid() && "Compound statement creation cannot fail" ); |
| 15441 | } |
| 15442 | CopyAssignOperator->setBody(Body.getAs<Stmt>()); |
| 15443 | CopyAssignOperator->markUsed(Context); |
| 15444 | |
| 15445 | if (ASTMutationListener *L = getASTMutationListener()) { |
| 15446 | L->CompletedImplicitDefinition(CopyAssignOperator); |
| 15447 | } |
| 15448 | } |
| 15449 | |
| 15450 | CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) { |
| 15451 | assert(ClassDecl->needsImplicitMoveAssignment()); |
| 15452 | |
| 15453 | DeclaringSpecialMember DSM(*this, ClassDecl, |
| 15454 | CXXSpecialMemberKind::MoveAssignment); |
| 15455 | if (DSM.isAlreadyBeingDeclared()) |
| 15456 | return nullptr; |
| 15457 | |
| 15458 | // Note: The following rules are largely analoguous to the move |
| 15459 | // constructor rules. |
| 15460 | |
| 15461 | QualType ArgType = Context.getTypeDeclType(ClassDecl); |
| 15462 | ArgType = Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::None, NNS: nullptr, |
| 15463 | NamedType: ArgType, OwnedTagDecl: nullptr); |
| 15464 | LangAS AS = getDefaultCXXMethodAddrSpace(); |
| 15465 | if (AS != LangAS::Default) |
| 15466 | ArgType = Context.getAddrSpaceQualType(T: ArgType, AddressSpace: AS); |
| 15467 | QualType RetType = Context.getLValueReferenceType(T: ArgType); |
| 15468 | ArgType = Context.getRValueReferenceType(T: ArgType); |
| 15469 | |
| 15470 | bool Constexpr = defaultedSpecialMemberIsConstexpr( |
| 15471 | S&: *this, ClassDecl, CSM: CXXSpecialMemberKind::MoveAssignment, ConstArg: false); |
| 15472 | |
| 15473 | // An implicitly-declared move assignment operator is an inline public |
| 15474 | // member of its class. |
| 15475 | DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(Op: OO_Equal); |
| 15476 | SourceLocation ClassLoc = ClassDecl->getLocation(); |
| 15477 | DeclarationNameInfo NameInfo(Name, ClassLoc); |
| 15478 | CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create( |
| 15479 | C&: Context, RD: ClassDecl, StartLoc: ClassLoc, NameInfo, T: QualType(), |
| 15480 | /*TInfo=*/nullptr, /*StorageClass=*/SC: SC_None, |
| 15481 | UsesFPIntrin: getCurFPFeatures().isFPConstrained(), |
| 15482 | /*isInline=*/true, |
| 15483 | ConstexprKind: Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified, |
| 15484 | EndLocation: SourceLocation()); |
| 15485 | MoveAssignment->setAccess(AS_public); |
| 15486 | MoveAssignment->setDefaulted(); |
| 15487 | MoveAssignment->setImplicit(); |
| 15488 | |
| 15489 | setupImplicitSpecialMemberType(SpecialMem: MoveAssignment, ResultTy: RetType, Args: ArgType); |
| 15490 | |
| 15491 | if (getLangOpts().CUDA) |
| 15492 | CUDA().inferTargetForImplicitSpecialMember( |
| 15493 | ClassDecl, CSM: CXXSpecialMemberKind::MoveAssignment, MemberDecl: MoveAssignment, |
| 15494 | /* ConstRHS */ false, |
| 15495 | /* Diagnose */ false); |
| 15496 | |
| 15497 | // Add the parameter to the operator. |
| 15498 | ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment, |
| 15499 | ClassLoc, ClassLoc, |
| 15500 | /*Id=*/nullptr, ArgType, |
| 15501 | /*TInfo=*/nullptr, SC_None, |
| 15502 | nullptr); |
| 15503 | MoveAssignment->setParams(FromParam); |
| 15504 | |
| 15505 | MoveAssignment->setTrivial( |
| 15506 | ClassDecl->needsOverloadResolutionForMoveAssignment() |
| 15507 | ? SpecialMemberIsTrivial(MD: MoveAssignment, |
| 15508 | CSM: CXXSpecialMemberKind::MoveAssignment) |
| 15509 | : ClassDecl->hasTrivialMoveAssignment()); |
| 15510 | |
| 15511 | // Note that we have added this copy-assignment operator. |
| 15512 | ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared; |
| 15513 | |
| 15514 | Scope *S = getScopeForContext(ClassDecl); |
| 15515 | CheckImplicitSpecialMemberDeclaration(S, MoveAssignment); |
| 15516 | |
| 15517 | if (ShouldDeleteSpecialMember(MD: MoveAssignment, |
| 15518 | CSM: CXXSpecialMemberKind::MoveAssignment)) { |
| 15519 | ClassDecl->setImplicitMoveAssignmentIsDeleted(); |
| 15520 | SetDeclDeleted(MoveAssignment, ClassLoc); |
| 15521 | } |
| 15522 | |
| 15523 | if (S) |
| 15524 | PushOnScopeChains(MoveAssignment, S, false); |
| 15525 | ClassDecl->addDecl(MoveAssignment); |
| 15526 | |
| 15527 | return MoveAssignment; |
| 15528 | } |
| 15529 | |
| 15530 | /// Check if we're implicitly defining a move assignment operator for a class |
| 15531 | /// with virtual bases. Such a move assignment might move-assign the virtual |
| 15532 | /// base multiple times. |
| 15533 | static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class, |
| 15534 | SourceLocation CurrentLocation) { |
| 15535 | assert(!Class->isDependentContext() && "should not define dependent move" ); |
| 15536 | |
| 15537 | // Only a virtual base could get implicitly move-assigned multiple times. |
| 15538 | // Only a non-trivial move assignment can observe this. We only want to |
| 15539 | // diagnose if we implicitly define an assignment operator that assigns |
| 15540 | // two base classes, both of which move-assign the same virtual base. |
| 15541 | if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() || |
| 15542 | Class->getNumBases() < 2) |
| 15543 | return; |
| 15544 | |
| 15545 | llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist; |
| 15546 | typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap; |
| 15547 | VBaseMap VBases; |
| 15548 | |
| 15549 | for (auto &BI : Class->bases()) { |
| 15550 | Worklist.push_back(Elt: &BI); |
| 15551 | while (!Worklist.empty()) { |
| 15552 | CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val(); |
| 15553 | CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl(); |
| 15554 | |
| 15555 | // If the base has no non-trivial move assignment operators, |
| 15556 | // we don't care about moves from it. |
| 15557 | if (!Base->hasNonTrivialMoveAssignment()) |
| 15558 | continue; |
| 15559 | |
| 15560 | // If there's nothing virtual here, skip it. |
| 15561 | if (!BaseSpec->isVirtual() && !Base->getNumVBases()) |
| 15562 | continue; |
| 15563 | |
| 15564 | // If we're not actually going to call a move assignment for this base, |
| 15565 | // or the selected move assignment is trivial, skip it. |
| 15566 | Sema::SpecialMemberOverloadResult SMOR = |
| 15567 | S.LookupSpecialMember(D: Base, SM: CXXSpecialMemberKind::MoveAssignment, |
| 15568 | /*ConstArg*/ false, /*VolatileArg*/ false, |
| 15569 | /*RValueThis*/ true, /*ConstThis*/ false, |
| 15570 | /*VolatileThis*/ false); |
| 15571 | if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() || |
| 15572 | !SMOR.getMethod()->isMoveAssignmentOperator()) |
| 15573 | continue; |
| 15574 | |
| 15575 | if (BaseSpec->isVirtual()) { |
| 15576 | // We're going to move-assign this virtual base, and its move |
| 15577 | // assignment operator is not trivial. If this can happen for |
| 15578 | // multiple distinct direct bases of Class, diagnose it. (If it |
| 15579 | // only happens in one base, we'll diagnose it when synthesizing |
| 15580 | // that base class's move assignment operator.) |
| 15581 | CXXBaseSpecifier *&Existing = |
| 15582 | VBases.insert(KV: std::make_pair(x: Base->getCanonicalDecl(), y: &BI)) |
| 15583 | .first->second; |
| 15584 | if (Existing && Existing != &BI) { |
| 15585 | S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times) |
| 15586 | << Class << Base; |
| 15587 | S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here) |
| 15588 | << (Base->getCanonicalDecl() == |
| 15589 | Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl()) |
| 15590 | << Base << Existing->getType() << Existing->getSourceRange(); |
| 15591 | S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here) |
| 15592 | << (Base->getCanonicalDecl() == |
| 15593 | BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl()) |
| 15594 | << Base << BI.getType() << BaseSpec->getSourceRange(); |
| 15595 | |
| 15596 | // Only diagnose each vbase once. |
| 15597 | Existing = nullptr; |
| 15598 | } |
| 15599 | } else { |
| 15600 | // Only walk over bases that have defaulted move assignment operators. |
| 15601 | // We assume that any user-provided move assignment operator handles |
| 15602 | // the multiple-moves-of-vbase case itself somehow. |
| 15603 | if (!SMOR.getMethod()->isDefaulted()) |
| 15604 | continue; |
| 15605 | |
| 15606 | // We're going to move the base classes of Base. Add them to the list. |
| 15607 | llvm::append_range(C&: Worklist, R: llvm::make_pointer_range(Range: Base->bases())); |
| 15608 | } |
| 15609 | } |
| 15610 | } |
| 15611 | } |
| 15612 | |
| 15613 | void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation, |
| 15614 | CXXMethodDecl *MoveAssignOperator) { |
| 15615 | assert((MoveAssignOperator->isDefaulted() && |
| 15616 | MoveAssignOperator->isOverloadedOperator() && |
| 15617 | MoveAssignOperator->getOverloadedOperator() == OO_Equal && |
| 15618 | !MoveAssignOperator->doesThisDeclarationHaveABody() && |
| 15619 | !MoveAssignOperator->isDeleted()) && |
| 15620 | "DefineImplicitMoveAssignment called for wrong function" ); |
| 15621 | if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl()) |
| 15622 | return; |
| 15623 | |
| 15624 | CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent(); |
| 15625 | if (ClassDecl->isInvalidDecl()) { |
| 15626 | MoveAssignOperator->setInvalidDecl(); |
| 15627 | return; |
| 15628 | } |
| 15629 | |
| 15630 | // C++0x [class.copy]p28: |
| 15631 | // The implicitly-defined or move assignment operator for a non-union class |
| 15632 | // X performs memberwise move assignment of its subobjects. The direct base |
| 15633 | // classes of X are assigned first, in the order of their declaration in the |
| 15634 | // base-specifier-list, and then the immediate non-static data members of X |
| 15635 | // are assigned, in the order in which they were declared in the class |
| 15636 | // definition. |
| 15637 | |
| 15638 | // Issue a warning if our implicit move assignment operator will move |
| 15639 | // from a virtual base more than once. |
| 15640 | checkMoveAssignmentForRepeatedMove(S&: *this, Class: ClassDecl, CurrentLocation); |
| 15641 | |
| 15642 | SynthesizedFunctionScope Scope(*this, MoveAssignOperator); |
| 15643 | |
| 15644 | // The exception specification is needed because we are defining the |
| 15645 | // function. |
| 15646 | ResolveExceptionSpec(Loc: CurrentLocation, |
| 15647 | FPT: MoveAssignOperator->getType()->castAs<FunctionProtoType>()); |
| 15648 | |
| 15649 | // Add a context note for diagnostics produced after this point. |
| 15650 | Scope.addContextNote(UseLoc: CurrentLocation); |
| 15651 | |
| 15652 | // The statements that form the synthesized function body. |
| 15653 | SmallVector<Stmt*, 8> Statements; |
| 15654 | |
| 15655 | // The parameter for the "other" object, which we are move from. |
| 15656 | ParmVarDecl *Other = MoveAssignOperator->getNonObjectParameter(0); |
| 15657 | QualType OtherRefType = |
| 15658 | Other->getType()->castAs<RValueReferenceType>()->getPointeeType(); |
| 15659 | |
| 15660 | // Our location for everything implicitly-generated. |
| 15661 | SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid() |
| 15662 | ? MoveAssignOperator->getEndLoc() |
| 15663 | : MoveAssignOperator->getLocation(); |
| 15664 | |
| 15665 | // Builds a reference to the "other" object. |
| 15666 | RefBuilder OtherRef(Other, OtherRefType); |
| 15667 | // Cast to rvalue. |
| 15668 | MoveCastBuilder MoveOther(OtherRef); |
| 15669 | |
| 15670 | // Builds the function object parameter. |
| 15671 | std::optional<ThisBuilder> This; |
| 15672 | std::optional<DerefBuilder> DerefThis; |
| 15673 | std::optional<RefBuilder> ExplicitObject; |
| 15674 | QualType ObjectType; |
| 15675 | bool IsArrow = false; |
| 15676 | if (MoveAssignOperator->isExplicitObjectMemberFunction()) { |
| 15677 | ObjectType = MoveAssignOperator->getParamDecl(0)->getType(); |
| 15678 | if (ObjectType->isReferenceType()) |
| 15679 | ObjectType = ObjectType->getPointeeType(); |
| 15680 | ExplicitObject.emplace(MoveAssignOperator->getParamDecl(0), ObjectType); |
| 15681 | } else { |
| 15682 | ObjectType = getCurrentThisType(); |
| 15683 | This.emplace(); |
| 15684 | DerefThis.emplace(args&: *This); |
| 15685 | IsArrow = !getLangOpts().HLSL; |
| 15686 | } |
| 15687 | ExprBuilder &ObjectParameter = |
| 15688 | ExplicitObject ? *ExplicitObject : static_cast<ExprBuilder &>(*This); |
| 15689 | |
| 15690 | // Assign base classes. |
| 15691 | bool Invalid = false; |
| 15692 | for (auto &Base : ClassDecl->bases()) { |
| 15693 | // C++11 [class.copy]p28: |
| 15694 | // It is unspecified whether subobjects representing virtual base classes |
| 15695 | // are assigned more than once by the implicitly-defined copy assignment |
| 15696 | // operator. |
| 15697 | // FIXME: Do not assign to a vbase that will be assigned by some other base |
| 15698 | // class. For a move-assignment, this can result in the vbase being moved |
| 15699 | // multiple times. |
| 15700 | |
| 15701 | // Form the assignment: |
| 15702 | // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other)); |
| 15703 | QualType BaseType = Base.getType().getUnqualifiedType(); |
| 15704 | if (!BaseType->isRecordType()) { |
| 15705 | Invalid = true; |
| 15706 | continue; |
| 15707 | } |
| 15708 | |
| 15709 | CXXCastPath BasePath; |
| 15710 | BasePath.push_back(Elt: &Base); |
| 15711 | |
| 15712 | // Construct the "from" expression, which is an implicit cast to the |
| 15713 | // appropriately-qualified base type. |
| 15714 | CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath); |
| 15715 | |
| 15716 | // Implicitly cast "this" to the appropriately-qualified base type. |
| 15717 | // Dereference "this". |
| 15718 | CastBuilder To( |
| 15719 | ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject) |
| 15720 | : static_cast<ExprBuilder &>(*DerefThis), |
| 15721 | Context.getQualifiedType(BaseType, ObjectType.getQualifiers()), |
| 15722 | VK_LValue, BasePath); |
| 15723 | |
| 15724 | // Build the move. |
| 15725 | StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType, |
| 15726 | To, From, |
| 15727 | /*CopyingBaseSubobject=*/true, |
| 15728 | /*Copying=*/false); |
| 15729 | if (Move.isInvalid()) { |
| 15730 | MoveAssignOperator->setInvalidDecl(); |
| 15731 | return; |
| 15732 | } |
| 15733 | |
| 15734 | // Success! Record the move. |
| 15735 | Statements.push_back(Move.getAs<Expr>()); |
| 15736 | } |
| 15737 | |
| 15738 | // Assign non-static members. |
| 15739 | for (auto *Field : ClassDecl->fields()) { |
| 15740 | // FIXME: We should form some kind of AST representation for the implied |
| 15741 | // memcpy in a union copy operation. |
| 15742 | if (Field->isUnnamedBitField() || Field->getParent()->isUnion()) |
| 15743 | continue; |
| 15744 | |
| 15745 | if (Field->isInvalidDecl()) { |
| 15746 | Invalid = true; |
| 15747 | continue; |
| 15748 | } |
| 15749 | |
| 15750 | // Check for members of reference type; we can't move those. |
| 15751 | if (Field->getType()->isReferenceType()) { |
| 15752 | Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) |
| 15753 | << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); |
| 15754 | Diag(Field->getLocation(), diag::note_declared_at); |
| 15755 | Invalid = true; |
| 15756 | continue; |
| 15757 | } |
| 15758 | |
| 15759 | // Check for members of const-qualified, non-class type. |
| 15760 | QualType BaseType = Context.getBaseElementType(Field->getType()); |
| 15761 | if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) { |
| 15762 | Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) |
| 15763 | << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); |
| 15764 | Diag(Field->getLocation(), diag::note_declared_at); |
| 15765 | Invalid = true; |
| 15766 | continue; |
| 15767 | } |
| 15768 | |
| 15769 | // Suppress assigning zero-width bitfields. |
| 15770 | if (Field->isZeroLengthBitField()) |
| 15771 | continue; |
| 15772 | |
| 15773 | QualType FieldType = Field->getType().getNonReferenceType(); |
| 15774 | if (FieldType->isIncompleteArrayType()) { |
| 15775 | assert(ClassDecl->hasFlexibleArrayMember() && |
| 15776 | "Incomplete array type is not valid" ); |
| 15777 | continue; |
| 15778 | } |
| 15779 | |
| 15780 | // Build references to the field in the object we're copying from and to. |
| 15781 | LookupResult MemberLookup(*this, Field->getDeclName(), Loc, |
| 15782 | LookupMemberName); |
| 15783 | MemberLookup.addDecl(Field); |
| 15784 | MemberLookup.resolveKind(); |
| 15785 | MemberBuilder From(MoveOther, OtherRefType, |
| 15786 | /*IsArrow=*/false, MemberLookup); |
| 15787 | MemberBuilder To(ObjectParameter, ObjectType, IsArrow, MemberLookup); |
| 15788 | |
| 15789 | assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue |
| 15790 | "Member reference with rvalue base must be rvalue except for reference " |
| 15791 | "members, which aren't allowed for move assignment." ); |
| 15792 | |
| 15793 | // Build the move of this field. |
| 15794 | StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType, |
| 15795 | To, From, |
| 15796 | /*CopyingBaseSubobject=*/false, |
| 15797 | /*Copying=*/false); |
| 15798 | if (Move.isInvalid()) { |
| 15799 | MoveAssignOperator->setInvalidDecl(); |
| 15800 | return; |
| 15801 | } |
| 15802 | |
| 15803 | // Success! Record the copy. |
| 15804 | Statements.push_back(Move.getAs<Stmt>()); |
| 15805 | } |
| 15806 | |
| 15807 | if (!Invalid) { |
| 15808 | // Add a "return *this;" |
| 15809 | Expr *ThisExpr = |
| 15810 | (ExplicitObject ? static_cast<ExprBuilder &>(*ExplicitObject) |
| 15811 | : LangOpts.HLSL ? static_cast<ExprBuilder &>(*This) |
| 15812 | : static_cast<ExprBuilder &>(*DerefThis)) |
| 15813 | .build(S&: *this, Loc); |
| 15814 | |
| 15815 | StmtResult Return = BuildReturnStmt(ReturnLoc: Loc, RetValExp: ThisExpr); |
| 15816 | if (Return.isInvalid()) |
| 15817 | Invalid = true; |
| 15818 | else |
| 15819 | Statements.push_back(Elt: Return.getAs<Stmt>()); |
| 15820 | } |
| 15821 | |
| 15822 | if (Invalid) { |
| 15823 | MoveAssignOperator->setInvalidDecl(); |
| 15824 | return; |
| 15825 | } |
| 15826 | |
| 15827 | StmtResult Body; |
| 15828 | { |
| 15829 | CompoundScopeRAII CompoundScope(*this); |
| 15830 | Body = ActOnCompoundStmt(L: Loc, R: Loc, Elts: Statements, |
| 15831 | /*isStmtExpr=*/false); |
| 15832 | assert(!Body.isInvalid() && "Compound statement creation cannot fail" ); |
| 15833 | } |
| 15834 | MoveAssignOperator->setBody(Body.getAs<Stmt>()); |
| 15835 | MoveAssignOperator->markUsed(Context); |
| 15836 | |
| 15837 | if (ASTMutationListener *L = getASTMutationListener()) { |
| 15838 | L->CompletedImplicitDefinition(MoveAssignOperator); |
| 15839 | } |
| 15840 | } |
| 15841 | |
| 15842 | CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor( |
| 15843 | CXXRecordDecl *ClassDecl) { |
| 15844 | // C++ [class.copy]p4: |
| 15845 | // If the class definition does not explicitly declare a copy |
| 15846 | // constructor, one is declared implicitly. |
| 15847 | assert(ClassDecl->needsImplicitCopyConstructor()); |
| 15848 | |
| 15849 | DeclaringSpecialMember DSM(*this, ClassDecl, |
| 15850 | CXXSpecialMemberKind::CopyConstructor); |
| 15851 | if (DSM.isAlreadyBeingDeclared()) |
| 15852 | return nullptr; |
| 15853 | |
| 15854 | QualType ClassType = Context.getTypeDeclType(ClassDecl); |
| 15855 | QualType ArgType = ClassType; |
| 15856 | ArgType = Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::None, NNS: nullptr, |
| 15857 | NamedType: ArgType, OwnedTagDecl: nullptr); |
| 15858 | bool Const = ClassDecl->implicitCopyConstructorHasConstParam(); |
| 15859 | if (Const) |
| 15860 | ArgType = ArgType.withConst(); |
| 15861 | |
| 15862 | LangAS AS = getDefaultCXXMethodAddrSpace(); |
| 15863 | if (AS != LangAS::Default) |
| 15864 | ArgType = Context.getAddrSpaceQualType(T: ArgType, AddressSpace: AS); |
| 15865 | |
| 15866 | ArgType = Context.getLValueReferenceType(T: ArgType); |
| 15867 | |
| 15868 | bool Constexpr = defaultedSpecialMemberIsConstexpr( |
| 15869 | S&: *this, ClassDecl, CSM: CXXSpecialMemberKind::CopyConstructor, ConstArg: Const); |
| 15870 | |
| 15871 | DeclarationName Name |
| 15872 | = Context.DeclarationNames.getCXXConstructorName( |
| 15873 | Ty: Context.getCanonicalType(T: ClassType)); |
| 15874 | SourceLocation ClassLoc = ClassDecl->getLocation(); |
| 15875 | DeclarationNameInfo NameInfo(Name, ClassLoc); |
| 15876 | |
| 15877 | // An implicitly-declared copy constructor is an inline public |
| 15878 | // member of its class. |
| 15879 | CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create( |
| 15880 | C&: Context, RD: ClassDecl, StartLoc: ClassLoc, NameInfo, T: QualType(), /*TInfo=*/nullptr, |
| 15881 | ES: ExplicitSpecifier(), UsesFPIntrin: getCurFPFeatures().isFPConstrained(), |
| 15882 | /*isInline=*/true, |
| 15883 | /*isImplicitlyDeclared=*/true, |
| 15884 | ConstexprKind: Constexpr ? ConstexprSpecKind::Constexpr |
| 15885 | : ConstexprSpecKind::Unspecified); |
| 15886 | CopyConstructor->setAccess(AS_public); |
| 15887 | CopyConstructor->setDefaulted(); |
| 15888 | |
| 15889 | setupImplicitSpecialMemberType(SpecialMem: CopyConstructor, ResultTy: Context.VoidTy, Args: ArgType); |
| 15890 | |
| 15891 | if (getLangOpts().CUDA) |
| 15892 | CUDA().inferTargetForImplicitSpecialMember( |
| 15893 | ClassDecl, CXXSpecialMemberKind::CopyConstructor, CopyConstructor, |
| 15894 | /* ConstRHS */ Const, |
| 15895 | /* Diagnose */ false); |
| 15896 | |
| 15897 | // During template instantiation of special member functions we need a |
| 15898 | // reliable TypeSourceInfo for the parameter types in order to allow functions |
| 15899 | // to be substituted. |
| 15900 | TypeSourceInfo *TSI = nullptr; |
| 15901 | if (inTemplateInstantiation() && ClassDecl->isLambda()) |
| 15902 | TSI = Context.getTrivialTypeSourceInfo(T: ArgType); |
| 15903 | |
| 15904 | // Add the parameter to the constructor. |
| 15905 | ParmVarDecl *FromParam = |
| 15906 | ParmVarDecl::Create(Context, CopyConstructor, ClassLoc, ClassLoc, |
| 15907 | /*IdentifierInfo=*/nullptr, ArgType, |
| 15908 | /*TInfo=*/TSI, SC_None, nullptr); |
| 15909 | CopyConstructor->setParams(FromParam); |
| 15910 | |
| 15911 | CopyConstructor->setTrivial( |
| 15912 | ClassDecl->needsOverloadResolutionForCopyConstructor() |
| 15913 | ? SpecialMemberIsTrivial(CopyConstructor, |
| 15914 | CXXSpecialMemberKind::CopyConstructor) |
| 15915 | : ClassDecl->hasTrivialCopyConstructor()); |
| 15916 | |
| 15917 | CopyConstructor->setTrivialForCall( |
| 15918 | ClassDecl->hasAttr<TrivialABIAttr>() || |
| 15919 | (ClassDecl->needsOverloadResolutionForCopyConstructor() |
| 15920 | ? SpecialMemberIsTrivial(CopyConstructor, |
| 15921 | CXXSpecialMemberKind::CopyConstructor, |
| 15922 | TrivialABIHandling::ConsiderTrivialABI) |
| 15923 | : ClassDecl->hasTrivialCopyConstructorForCall())); |
| 15924 | |
| 15925 | // Note that we have declared this constructor. |
| 15926 | ++getASTContext().NumImplicitCopyConstructorsDeclared; |
| 15927 | |
| 15928 | Scope *S = getScopeForContext(ClassDecl); |
| 15929 | CheckImplicitSpecialMemberDeclaration(S, CopyConstructor); |
| 15930 | |
| 15931 | if (ShouldDeleteSpecialMember(CopyConstructor, |
| 15932 | CXXSpecialMemberKind::CopyConstructor)) { |
| 15933 | ClassDecl->setImplicitCopyConstructorIsDeleted(); |
| 15934 | SetDeclDeleted(CopyConstructor, ClassLoc); |
| 15935 | } |
| 15936 | |
| 15937 | if (S) |
| 15938 | PushOnScopeChains(CopyConstructor, S, false); |
| 15939 | ClassDecl->addDecl(CopyConstructor); |
| 15940 | |
| 15941 | return CopyConstructor; |
| 15942 | } |
| 15943 | |
| 15944 | void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation, |
| 15945 | CXXConstructorDecl *CopyConstructor) { |
| 15946 | assert((CopyConstructor->isDefaulted() && |
| 15947 | CopyConstructor->isCopyConstructor() && |
| 15948 | !CopyConstructor->doesThisDeclarationHaveABody() && |
| 15949 | !CopyConstructor->isDeleted()) && |
| 15950 | "DefineImplicitCopyConstructor - call it for implicit copy ctor" ); |
| 15951 | if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl()) |
| 15952 | return; |
| 15953 | |
| 15954 | CXXRecordDecl *ClassDecl = CopyConstructor->getParent(); |
| 15955 | assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor" ); |
| 15956 | |
| 15957 | SynthesizedFunctionScope Scope(*this, CopyConstructor); |
| 15958 | |
| 15959 | // The exception specification is needed because we are defining the |
| 15960 | // function. |
| 15961 | ResolveExceptionSpec(Loc: CurrentLocation, |
| 15962 | FPT: CopyConstructor->getType()->castAs<FunctionProtoType>()); |
| 15963 | MarkVTableUsed(Loc: CurrentLocation, Class: ClassDecl); |
| 15964 | |
| 15965 | // Add a context note for diagnostics produced after this point. |
| 15966 | Scope.addContextNote(UseLoc: CurrentLocation); |
| 15967 | |
| 15968 | // C++11 [class.copy]p7: |
| 15969 | // The [definition of an implicitly declared copy constructor] is |
| 15970 | // deprecated if the class has a user-declared copy assignment operator |
| 15971 | // or a user-declared destructor. |
| 15972 | if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit()) |
| 15973 | diagnoseDeprecatedCopyOperation(*this, CopyConstructor); |
| 15974 | |
| 15975 | if (SetCtorInitializers(Constructor: CopyConstructor, /*AnyErrors=*/false)) { |
| 15976 | CopyConstructor->setInvalidDecl(); |
| 15977 | } else { |
| 15978 | SourceLocation Loc = CopyConstructor->getEndLoc().isValid() |
| 15979 | ? CopyConstructor->getEndLoc() |
| 15980 | : CopyConstructor->getLocation(); |
| 15981 | Sema::CompoundScopeRAII CompoundScope(*this); |
| 15982 | CopyConstructor->setBody( |
| 15983 | ActOnCompoundStmt(L: Loc, R: Loc, Elts: {}, /*isStmtExpr=*/false).getAs<Stmt>()); |
| 15984 | CopyConstructor->markUsed(Context); |
| 15985 | } |
| 15986 | |
| 15987 | if (ASTMutationListener *L = getASTMutationListener()) { |
| 15988 | L->CompletedImplicitDefinition(CopyConstructor); |
| 15989 | } |
| 15990 | } |
| 15991 | |
| 15992 | CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor( |
| 15993 | CXXRecordDecl *ClassDecl) { |
| 15994 | assert(ClassDecl->needsImplicitMoveConstructor()); |
| 15995 | |
| 15996 | DeclaringSpecialMember DSM(*this, ClassDecl, |
| 15997 | CXXSpecialMemberKind::MoveConstructor); |
| 15998 | if (DSM.isAlreadyBeingDeclared()) |
| 15999 | return nullptr; |
| 16000 | |
| 16001 | QualType ClassType = Context.getTypeDeclType(ClassDecl); |
| 16002 | |
| 16003 | QualType ArgType = ClassType; |
| 16004 | ArgType = Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::None, NNS: nullptr, |
| 16005 | NamedType: ArgType, OwnedTagDecl: nullptr); |
| 16006 | LangAS AS = getDefaultCXXMethodAddrSpace(); |
| 16007 | if (AS != LangAS::Default) |
| 16008 | ArgType = Context.getAddrSpaceQualType(T: ClassType, AddressSpace: AS); |
| 16009 | ArgType = Context.getRValueReferenceType(T: ArgType); |
| 16010 | |
| 16011 | bool Constexpr = defaultedSpecialMemberIsConstexpr( |
| 16012 | S&: *this, ClassDecl, CSM: CXXSpecialMemberKind::MoveConstructor, ConstArg: false); |
| 16013 | |
| 16014 | DeclarationName Name |
| 16015 | = Context.DeclarationNames.getCXXConstructorName( |
| 16016 | Ty: Context.getCanonicalType(T: ClassType)); |
| 16017 | SourceLocation ClassLoc = ClassDecl->getLocation(); |
| 16018 | DeclarationNameInfo NameInfo(Name, ClassLoc); |
| 16019 | |
| 16020 | // C++11 [class.copy]p11: |
| 16021 | // An implicitly-declared copy/move constructor is an inline public |
| 16022 | // member of its class. |
| 16023 | CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create( |
| 16024 | C&: Context, RD: ClassDecl, StartLoc: ClassLoc, NameInfo, T: QualType(), /*TInfo=*/nullptr, |
| 16025 | ES: ExplicitSpecifier(), UsesFPIntrin: getCurFPFeatures().isFPConstrained(), |
| 16026 | /*isInline=*/true, |
| 16027 | /*isImplicitlyDeclared=*/true, |
| 16028 | ConstexprKind: Constexpr ? ConstexprSpecKind::Constexpr |
| 16029 | : ConstexprSpecKind::Unspecified); |
| 16030 | MoveConstructor->setAccess(AS_public); |
| 16031 | MoveConstructor->setDefaulted(); |
| 16032 | |
| 16033 | setupImplicitSpecialMemberType(SpecialMem: MoveConstructor, ResultTy: Context.VoidTy, Args: ArgType); |
| 16034 | |
| 16035 | if (getLangOpts().CUDA) |
| 16036 | CUDA().inferTargetForImplicitSpecialMember( |
| 16037 | ClassDecl, CXXSpecialMemberKind::MoveConstructor, MoveConstructor, |
| 16038 | /* ConstRHS */ false, |
| 16039 | /* Diagnose */ false); |
| 16040 | |
| 16041 | // Add the parameter to the constructor. |
| 16042 | ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor, |
| 16043 | ClassLoc, ClassLoc, |
| 16044 | /*IdentifierInfo=*/nullptr, |
| 16045 | ArgType, /*TInfo=*/nullptr, |
| 16046 | SC_None, nullptr); |
| 16047 | MoveConstructor->setParams(FromParam); |
| 16048 | |
| 16049 | MoveConstructor->setTrivial( |
| 16050 | ClassDecl->needsOverloadResolutionForMoveConstructor() |
| 16051 | ? SpecialMemberIsTrivial(MoveConstructor, |
| 16052 | CXXSpecialMemberKind::MoveConstructor) |
| 16053 | : ClassDecl->hasTrivialMoveConstructor()); |
| 16054 | |
| 16055 | MoveConstructor->setTrivialForCall( |
| 16056 | ClassDecl->hasAttr<TrivialABIAttr>() || |
| 16057 | (ClassDecl->needsOverloadResolutionForMoveConstructor() |
| 16058 | ? SpecialMemberIsTrivial(MoveConstructor, |
| 16059 | CXXSpecialMemberKind::MoveConstructor, |
| 16060 | TrivialABIHandling::ConsiderTrivialABI) |
| 16061 | : ClassDecl->hasTrivialMoveConstructorForCall())); |
| 16062 | |
| 16063 | // Note that we have declared this constructor. |
| 16064 | ++getASTContext().NumImplicitMoveConstructorsDeclared; |
| 16065 | |
| 16066 | Scope *S = getScopeForContext(ClassDecl); |
| 16067 | CheckImplicitSpecialMemberDeclaration(S, MoveConstructor); |
| 16068 | |
| 16069 | if (ShouldDeleteSpecialMember(MoveConstructor, |
| 16070 | CXXSpecialMemberKind::MoveConstructor)) { |
| 16071 | ClassDecl->setImplicitMoveConstructorIsDeleted(); |
| 16072 | SetDeclDeleted(MoveConstructor, ClassLoc); |
| 16073 | } |
| 16074 | |
| 16075 | if (S) |
| 16076 | PushOnScopeChains(MoveConstructor, S, false); |
| 16077 | ClassDecl->addDecl(MoveConstructor); |
| 16078 | |
| 16079 | return MoveConstructor; |
| 16080 | } |
| 16081 | |
| 16082 | void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation, |
| 16083 | CXXConstructorDecl *MoveConstructor) { |
| 16084 | assert((MoveConstructor->isDefaulted() && |
| 16085 | MoveConstructor->isMoveConstructor() && |
| 16086 | !MoveConstructor->doesThisDeclarationHaveABody() && |
| 16087 | !MoveConstructor->isDeleted()) && |
| 16088 | "DefineImplicitMoveConstructor - call it for implicit move ctor" ); |
| 16089 | if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl()) |
| 16090 | return; |
| 16091 | |
| 16092 | CXXRecordDecl *ClassDecl = MoveConstructor->getParent(); |
| 16093 | assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor" ); |
| 16094 | |
| 16095 | SynthesizedFunctionScope Scope(*this, MoveConstructor); |
| 16096 | |
| 16097 | // The exception specification is needed because we are defining the |
| 16098 | // function. |
| 16099 | ResolveExceptionSpec(Loc: CurrentLocation, |
| 16100 | FPT: MoveConstructor->getType()->castAs<FunctionProtoType>()); |
| 16101 | MarkVTableUsed(Loc: CurrentLocation, Class: ClassDecl); |
| 16102 | |
| 16103 | // Add a context note for diagnostics produced after this point. |
| 16104 | Scope.addContextNote(UseLoc: CurrentLocation); |
| 16105 | |
| 16106 | if (SetCtorInitializers(Constructor: MoveConstructor, /*AnyErrors=*/false)) { |
| 16107 | MoveConstructor->setInvalidDecl(); |
| 16108 | } else { |
| 16109 | SourceLocation Loc = MoveConstructor->getEndLoc().isValid() |
| 16110 | ? MoveConstructor->getEndLoc() |
| 16111 | : MoveConstructor->getLocation(); |
| 16112 | Sema::CompoundScopeRAII CompoundScope(*this); |
| 16113 | MoveConstructor->setBody( |
| 16114 | ActOnCompoundStmt(L: Loc, R: Loc, Elts: {}, /*isStmtExpr=*/false).getAs<Stmt>()); |
| 16115 | MoveConstructor->markUsed(Context); |
| 16116 | } |
| 16117 | |
| 16118 | if (ASTMutationListener *L = getASTMutationListener()) { |
| 16119 | L->CompletedImplicitDefinition(MoveConstructor); |
| 16120 | } |
| 16121 | } |
| 16122 | |
| 16123 | bool Sema::isImplicitlyDeleted(FunctionDecl *FD) { |
| 16124 | return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(Val: FD); |
| 16125 | } |
| 16126 | |
| 16127 | void Sema::DefineImplicitLambdaToFunctionPointerConversion( |
| 16128 | SourceLocation CurrentLocation, |
| 16129 | CXXConversionDecl *Conv) { |
| 16130 | SynthesizedFunctionScope Scope(*this, Conv); |
| 16131 | assert(!Conv->getReturnType()->isUndeducedType()); |
| 16132 | |
| 16133 | QualType ConvRT = Conv->getType()->castAs<FunctionType>()->getReturnType(); |
| 16134 | CallingConv CC = |
| 16135 | ConvRT->getPointeeType()->castAs<FunctionType>()->getCallConv(); |
| 16136 | |
| 16137 | CXXRecordDecl *Lambda = Conv->getParent(); |
| 16138 | FunctionDecl *CallOp = Lambda->getLambdaCallOperator(); |
| 16139 | FunctionDecl *Invoker = |
| 16140 | CallOp->hasCXXExplicitFunctionObjectParameter() || CallOp->isStatic() |
| 16141 | ? CallOp |
| 16142 | : Lambda->getLambdaStaticInvoker(CC); |
| 16143 | |
| 16144 | if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) { |
| 16145 | CallOp = InstantiateFunctionDeclaration( |
| 16146 | FTD: CallOp->getDescribedFunctionTemplate(), Args: TemplateArgs, Loc: CurrentLocation); |
| 16147 | if (!CallOp) |
| 16148 | return; |
| 16149 | |
| 16150 | if (CallOp != Invoker) { |
| 16151 | Invoker = InstantiateFunctionDeclaration( |
| 16152 | FTD: Invoker->getDescribedFunctionTemplate(), Args: TemplateArgs, |
| 16153 | Loc: CurrentLocation); |
| 16154 | if (!Invoker) |
| 16155 | return; |
| 16156 | } |
| 16157 | } |
| 16158 | |
| 16159 | if (CallOp->isInvalidDecl()) |
| 16160 | return; |
| 16161 | |
| 16162 | // Mark the call operator referenced (and add to pending instantiations |
| 16163 | // if necessary). |
| 16164 | // For both the conversion and static-invoker template specializations |
| 16165 | // we construct their body's in this function, so no need to add them |
| 16166 | // to the PendingInstantiations. |
| 16167 | MarkFunctionReferenced(Loc: CurrentLocation, Func: CallOp); |
| 16168 | |
| 16169 | if (Invoker != CallOp) { |
| 16170 | // Fill in the __invoke function with a dummy implementation. IR generation |
| 16171 | // will fill in the actual details. Update its type in case it contained |
| 16172 | // an 'auto'. |
| 16173 | Invoker->markUsed(Context); |
| 16174 | Invoker->setReferenced(); |
| 16175 | Invoker->setType(Conv->getReturnType()->getPointeeType()); |
| 16176 | Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation())); |
| 16177 | } |
| 16178 | |
| 16179 | // Construct the body of the conversion function { return __invoke; }. |
| 16180 | Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(), VK_LValue, |
| 16181 | Conv->getLocation()); |
| 16182 | assert(FunctionRef && "Can't refer to __invoke function?" ); |
| 16183 | Stmt *Return = BuildReturnStmt(ReturnLoc: Conv->getLocation(), RetValExp: FunctionRef).get(); |
| 16184 | Conv->setBody(CompoundStmt::Create(C: Context, Stmts: Return, FPFeatures: FPOptionsOverride(), |
| 16185 | LB: Conv->getLocation(), RB: Conv->getLocation())); |
| 16186 | Conv->markUsed(Context); |
| 16187 | Conv->setReferenced(); |
| 16188 | |
| 16189 | if (ASTMutationListener *L = getASTMutationListener()) { |
| 16190 | L->CompletedImplicitDefinition(Conv); |
| 16191 | if (Invoker != CallOp) |
| 16192 | L->CompletedImplicitDefinition(D: Invoker); |
| 16193 | } |
| 16194 | } |
| 16195 | |
| 16196 | void Sema::DefineImplicitLambdaToBlockPointerConversion( |
| 16197 | SourceLocation CurrentLocation, CXXConversionDecl *Conv) { |
| 16198 | assert(!Conv->getParent()->isGenericLambda()); |
| 16199 | |
| 16200 | SynthesizedFunctionScope Scope(*this, Conv); |
| 16201 | |
| 16202 | // Copy-initialize the lambda object as needed to capture it. |
| 16203 | Expr *This = ActOnCXXThis(Loc: CurrentLocation).get(); |
| 16204 | Expr *DerefThis =CreateBuiltinUnaryOp(OpLoc: CurrentLocation, Opc: UO_Deref, InputExpr: This).get(); |
| 16205 | |
| 16206 | ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation, |
| 16207 | ConvLocation: Conv->getLocation(), |
| 16208 | Conv, Src: DerefThis); |
| 16209 | |
| 16210 | // If we're not under ARC, make sure we still get the _Block_copy/autorelease |
| 16211 | // behavior. Note that only the general conversion function does this |
| 16212 | // (since it's unusable otherwise); in the case where we inline the |
| 16213 | // block literal, it has block literal lifetime semantics. |
| 16214 | if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount) |
| 16215 | BuildBlock = ImplicitCastExpr::Create( |
| 16216 | Context, T: BuildBlock.get()->getType(), Kind: CK_CopyAndAutoreleaseBlockObject, |
| 16217 | Operand: BuildBlock.get(), BasePath: nullptr, Cat: VK_PRValue, FPO: FPOptionsOverride()); |
| 16218 | |
| 16219 | if (BuildBlock.isInvalid()) { |
| 16220 | Diag(CurrentLocation, diag::note_lambda_to_block_conv); |
| 16221 | Conv->setInvalidDecl(); |
| 16222 | return; |
| 16223 | } |
| 16224 | |
| 16225 | // Create the return statement that returns the block from the conversion |
| 16226 | // function. |
| 16227 | StmtResult Return = BuildReturnStmt(ReturnLoc: Conv->getLocation(), RetValExp: BuildBlock.get()); |
| 16228 | if (Return.isInvalid()) { |
| 16229 | Diag(CurrentLocation, diag::note_lambda_to_block_conv); |
| 16230 | Conv->setInvalidDecl(); |
| 16231 | return; |
| 16232 | } |
| 16233 | |
| 16234 | // Set the body of the conversion function. |
| 16235 | Stmt *ReturnS = Return.get(); |
| 16236 | Conv->setBody(CompoundStmt::Create(C: Context, Stmts: ReturnS, FPFeatures: FPOptionsOverride(), |
| 16237 | LB: Conv->getLocation(), RB: Conv->getLocation())); |
| 16238 | Conv->markUsed(Context); |
| 16239 | |
| 16240 | // We're done; notify the mutation listener, if any. |
| 16241 | if (ASTMutationListener *L = getASTMutationListener()) { |
| 16242 | L->CompletedImplicitDefinition(Conv); |
| 16243 | } |
| 16244 | } |
| 16245 | |
| 16246 | /// Determine whether the given list arguments contains exactly one |
| 16247 | /// "real" (non-default) argument. |
| 16248 | static bool hasOneRealArgument(MultiExprArg Args) { |
| 16249 | switch (Args.size()) { |
| 16250 | case 0: |
| 16251 | return false; |
| 16252 | |
| 16253 | default: |
| 16254 | if (!Args[1]->isDefaultArgument()) |
| 16255 | return false; |
| 16256 | |
| 16257 | [[fallthrough]]; |
| 16258 | case 1: |
| 16259 | return !Args[0]->isDefaultArgument(); |
| 16260 | } |
| 16261 | |
| 16262 | return false; |
| 16263 | } |
| 16264 | |
| 16265 | ExprResult Sema::BuildCXXConstructExpr( |
| 16266 | SourceLocation ConstructLoc, QualType DeclInitType, NamedDecl *FoundDecl, |
| 16267 | CXXConstructorDecl *Constructor, MultiExprArg ExprArgs, |
| 16268 | bool HadMultipleCandidates, bool IsListInitialization, |
| 16269 | bool IsStdInitListInitialization, bool RequiresZeroInit, |
| 16270 | CXXConstructionKind ConstructKind, SourceRange ParenRange) { |
| 16271 | bool Elidable = false; |
| 16272 | |
| 16273 | // C++0x [class.copy]p34: |
| 16274 | // When certain criteria are met, an implementation is allowed to |
| 16275 | // omit the copy/move construction of a class object, even if the |
| 16276 | // copy/move constructor and/or destructor for the object have |
| 16277 | // side effects. [...] |
| 16278 | // - when a temporary class object that has not been bound to a |
| 16279 | // reference (12.2) would be copied/moved to a class object |
| 16280 | // with the same cv-unqualified type, the copy/move operation |
| 16281 | // can be omitted by constructing the temporary object |
| 16282 | // directly into the target of the omitted copy/move |
| 16283 | if (ConstructKind == CXXConstructionKind::Complete && Constructor && |
| 16284 | // FIXME: Converting constructors should also be accepted. |
| 16285 | // But to fix this, the logic that digs down into a CXXConstructExpr |
| 16286 | // to find the source object needs to handle it. |
| 16287 | // Right now it assumes the source object is passed directly as the |
| 16288 | // first argument. |
| 16289 | Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(Args: ExprArgs)) { |
| 16290 | Expr *SubExpr = ExprArgs[0]; |
| 16291 | // FIXME: Per above, this is also incorrect if we want to accept |
| 16292 | // converting constructors, as isTemporaryObject will |
| 16293 | // reject temporaries with different type from the |
| 16294 | // CXXRecord itself. |
| 16295 | Elidable = SubExpr->isTemporaryObject( |
| 16296 | Ctx&: Context, TempTy: cast<CXXRecordDecl>(FoundDecl->getDeclContext())); |
| 16297 | } |
| 16298 | |
| 16299 | return BuildCXXConstructExpr(ConstructLoc, DeclInitType, |
| 16300 | FoundDecl, Constructor, |
| 16301 | Elidable, Exprs: ExprArgs, HadMultipleCandidates, |
| 16302 | IsListInitialization, |
| 16303 | IsStdInitListInitialization, RequiresZeroInit, |
| 16304 | ConstructKind, ParenRange); |
| 16305 | } |
| 16306 | |
| 16307 | ExprResult Sema::BuildCXXConstructExpr( |
| 16308 | SourceLocation ConstructLoc, QualType DeclInitType, NamedDecl *FoundDecl, |
| 16309 | CXXConstructorDecl *Constructor, bool Elidable, MultiExprArg ExprArgs, |
| 16310 | bool HadMultipleCandidates, bool IsListInitialization, |
| 16311 | bool IsStdInitListInitialization, bool RequiresZeroInit, |
| 16312 | CXXConstructionKind ConstructKind, SourceRange ParenRange) { |
| 16313 | if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(Val: FoundDecl)) { |
| 16314 | Constructor = findInheritingConstructor(Loc: ConstructLoc, BaseCtor: Constructor, Shadow); |
| 16315 | // The only way to get here is if we did overload resolution to find the |
| 16316 | // shadow decl, so we don't need to worry about re-checking the trailing |
| 16317 | // requires clause. |
| 16318 | if (DiagnoseUseOfOverloadedDecl(Constructor, ConstructLoc)) |
| 16319 | return ExprError(); |
| 16320 | } |
| 16321 | |
| 16322 | return BuildCXXConstructExpr( |
| 16323 | ConstructLoc, DeclInitType, Constructor, Elidable, Exprs: ExprArgs, |
| 16324 | HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization, |
| 16325 | RequiresZeroInit, ConstructKind, ParenRange); |
| 16326 | } |
| 16327 | |
| 16328 | /// BuildCXXConstructExpr - Creates a complete call to a constructor, |
| 16329 | /// including handling of its default argument expressions. |
| 16330 | ExprResult Sema::BuildCXXConstructExpr( |
| 16331 | SourceLocation ConstructLoc, QualType DeclInitType, |
| 16332 | CXXConstructorDecl *Constructor, bool Elidable, MultiExprArg ExprArgs, |
| 16333 | bool HadMultipleCandidates, bool IsListInitialization, |
| 16334 | bool IsStdInitListInitialization, bool RequiresZeroInit, |
| 16335 | CXXConstructionKind ConstructKind, SourceRange ParenRange) { |
| 16336 | assert(declaresSameEntity( |
| 16337 | Constructor->getParent(), |
| 16338 | DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && |
| 16339 | "given constructor for wrong type" ); |
| 16340 | MarkFunctionReferenced(ConstructLoc, Constructor); |
| 16341 | if (getLangOpts().CUDA && !CUDA().CheckCall(ConstructLoc, Constructor)) |
| 16342 | return ExprError(); |
| 16343 | |
| 16344 | return CheckForImmediateInvocation( |
| 16345 | CXXConstructExpr::Create( |
| 16346 | Ctx: Context, Ty: DeclInitType, Loc: ConstructLoc, Ctor: Constructor, Elidable, Args: ExprArgs, |
| 16347 | HadMultipleCandidates, ListInitialization: IsListInitialization, |
| 16348 | StdInitListInitialization: IsStdInitListInitialization, ZeroInitialization: RequiresZeroInit, |
| 16349 | ConstructKind: static_cast<CXXConstructionKind>(ConstructKind), ParenOrBraceRange: ParenRange), |
| 16350 | Constructor); |
| 16351 | } |
| 16352 | |
| 16353 | void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) { |
| 16354 | if (VD->isInvalidDecl()) return; |
| 16355 | // If initializing the variable failed, don't also diagnose problems with |
| 16356 | // the destructor, they're likely related. |
| 16357 | if (VD->getInit() && VD->getInit()->containsErrors()) |
| 16358 | return; |
| 16359 | |
| 16360 | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Val: Record->getDecl()); |
| 16361 | if (ClassDecl->isInvalidDecl()) return; |
| 16362 | if (ClassDecl->hasIrrelevantDestructor()) return; |
| 16363 | if (ClassDecl->isDependentContext()) return; |
| 16364 | |
| 16365 | if (VD->isNoDestroy(getASTContext())) |
| 16366 | return; |
| 16367 | |
| 16368 | CXXDestructorDecl *Destructor = LookupDestructor(Class: ClassDecl); |
| 16369 | // The result of `LookupDestructor` might be nullptr if the destructor is |
| 16370 | // invalid, in which case it is marked as `IneligibleOrNotSelected` and |
| 16371 | // will not be selected by `CXXRecordDecl::getDestructor()`. |
| 16372 | if (!Destructor) |
| 16373 | return; |
| 16374 | // If this is an array, we'll require the destructor during initialization, so |
| 16375 | // we can skip over this. We still want to emit exit-time destructor warnings |
| 16376 | // though. |
| 16377 | if (!VD->getType()->isArrayType()) { |
| 16378 | MarkFunctionReferenced(Loc: VD->getLocation(), Func: Destructor); |
| 16379 | CheckDestructorAccess(VD->getLocation(), Destructor, |
| 16380 | PDiag(diag::err_access_dtor_var) |
| 16381 | << VD->getDeclName() << VD->getType()); |
| 16382 | DiagnoseUseOfDecl(D: Destructor, Locs: VD->getLocation()); |
| 16383 | } |
| 16384 | |
| 16385 | if (Destructor->isTrivial()) return; |
| 16386 | |
| 16387 | // If the destructor is constexpr, check whether the variable has constant |
| 16388 | // destruction now. |
| 16389 | if (Destructor->isConstexpr()) { |
| 16390 | bool HasConstantInit = false; |
| 16391 | if (VD->getInit() && !VD->getInit()->isValueDependent()) |
| 16392 | HasConstantInit = VD->evaluateValue(); |
| 16393 | SmallVector<PartialDiagnosticAt, 8> Notes; |
| 16394 | if (!VD->evaluateDestruction(Notes) && VD->isConstexpr() && |
| 16395 | HasConstantInit) { |
| 16396 | Diag(VD->getLocation(), |
| 16397 | diag::err_constexpr_var_requires_const_destruction) << VD; |
| 16398 | for (unsigned I = 0, N = Notes.size(); I != N; ++I) |
| 16399 | Diag(Notes[I].first, Notes[I].second); |
| 16400 | } |
| 16401 | } |
| 16402 | |
| 16403 | if (!VD->hasGlobalStorage() || !VD->needsDestruction(Ctx: Context)) |
| 16404 | return; |
| 16405 | |
| 16406 | // Emit warning for non-trivial dtor in global scope (a real global, |
| 16407 | // class-static, function-static). |
| 16408 | if (!VD->hasAttr<AlwaysDestroyAttr>()) |
| 16409 | Diag(VD->getLocation(), diag::warn_exit_time_destructor); |
| 16410 | |
| 16411 | // TODO: this should be re-enabled for static locals by !CXAAtExit |
| 16412 | if (!VD->isStaticLocal()) |
| 16413 | Diag(VD->getLocation(), diag::warn_global_destructor); |
| 16414 | } |
| 16415 | |
| 16416 | bool Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor, |
| 16417 | QualType DeclInitType, MultiExprArg ArgsPtr, |
| 16418 | SourceLocation Loc, |
| 16419 | SmallVectorImpl<Expr *> &ConvertedArgs, |
| 16420 | bool AllowExplicit, |
| 16421 | bool IsListInitialization) { |
| 16422 | // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall. |
| 16423 | unsigned NumArgs = ArgsPtr.size(); |
| 16424 | Expr **Args = ArgsPtr.data(); |
| 16425 | |
| 16426 | const auto *Proto = Constructor->getType()->castAs<FunctionProtoType>(); |
| 16427 | unsigned NumParams = Proto->getNumParams(); |
| 16428 | |
| 16429 | // If too few arguments are available, we'll fill in the rest with defaults. |
| 16430 | if (NumArgs < NumParams) |
| 16431 | ConvertedArgs.reserve(N: NumParams); |
| 16432 | else |
| 16433 | ConvertedArgs.reserve(N: NumArgs); |
| 16434 | |
| 16435 | VariadicCallType CallType = Proto->isVariadic() |
| 16436 | ? VariadicCallType::Constructor |
| 16437 | : VariadicCallType::DoesNotApply; |
| 16438 | SmallVector<Expr *, 8> AllArgs; |
| 16439 | bool Invalid = GatherArgumentsForCall( |
| 16440 | CallLoc: Loc, FDecl: Constructor, Proto: Proto, FirstParam: 0, Args: llvm::ArrayRef(Args, NumArgs), AllArgs, |
| 16441 | CallType, AllowExplicit, IsListInitialization); |
| 16442 | ConvertedArgs.append(in_start: AllArgs.begin(), in_end: AllArgs.end()); |
| 16443 | |
| 16444 | DiagnoseSentinelCalls(Constructor, Loc, AllArgs); |
| 16445 | |
| 16446 | CheckConstructorCall(FDecl: Constructor, ThisType: DeclInitType, |
| 16447 | Args: llvm::ArrayRef(AllArgs.data(), AllArgs.size()), Proto: Proto, |
| 16448 | Loc); |
| 16449 | |
| 16450 | return Invalid; |
| 16451 | } |
| 16452 | |
| 16453 | TypeAwareAllocationMode Sema::ShouldUseTypeAwareOperatorNewOrDelete() const { |
| 16454 | bool SeenTypedOperators = Context.hasSeenTypeAwareOperatorNewOrDelete(); |
| 16455 | return typeAwareAllocationModeFromBool(IsTypeAwareAllocation: SeenTypedOperators); |
| 16456 | } |
| 16457 | |
| 16458 | FunctionDecl * |
| 16459 | Sema::BuildTypeAwareUsualDelete(FunctionTemplateDecl *FnTemplateDecl, |
| 16460 | QualType DeallocType, SourceLocation Loc) { |
| 16461 | if (DeallocType.isNull()) |
| 16462 | return nullptr; |
| 16463 | |
| 16464 | FunctionDecl *FnDecl = FnTemplateDecl->getTemplatedDecl(); |
| 16465 | if (!FnDecl->isTypeAwareOperatorNewOrDelete()) |
| 16466 | return nullptr; |
| 16467 | |
| 16468 | if (FnDecl->isVariadic()) |
| 16469 | return nullptr; |
| 16470 | |
| 16471 | unsigned NumParams = FnDecl->getNumParams(); |
| 16472 | constexpr unsigned RequiredParameterCount = |
| 16473 | FunctionDecl::RequiredTypeAwareDeleteParameterCount; |
| 16474 | // A usual deallocation function has no placement parameters |
| 16475 | if (NumParams != RequiredParameterCount) |
| 16476 | return nullptr; |
| 16477 | |
| 16478 | // A type aware allocation is only usual if the only dependent parameter is |
| 16479 | // the first parameter. |
| 16480 | if (llvm::any_of(Range: FnDecl->parameters().drop_front(), |
| 16481 | P: [](const ParmVarDecl *ParamDecl) { |
| 16482 | return ParamDecl->getType()->isDependentType(); |
| 16483 | })) |
| 16484 | return nullptr; |
| 16485 | |
| 16486 | QualType SpecializedTypeIdentity = tryBuildStdTypeIdentity(Type: DeallocType, Loc); |
| 16487 | if (SpecializedTypeIdentity.isNull()) |
| 16488 | return nullptr; |
| 16489 | |
| 16490 | SmallVector<QualType, RequiredParameterCount> ArgTypes; |
| 16491 | ArgTypes.reserve(N: NumParams); |
| 16492 | |
| 16493 | // The first parameter to a type aware operator delete is by definition the |
| 16494 | // type-identity argument, so we explicitly set this to the target |
| 16495 | // type-identity type, the remaining usual parameters should then simply match |
| 16496 | // the type declared in the function template. |
| 16497 | ArgTypes.push_back(Elt: SpecializedTypeIdentity); |
| 16498 | for (unsigned ParamIdx = 1; ParamIdx < RequiredParameterCount; ++ParamIdx) |
| 16499 | ArgTypes.push_back(Elt: FnDecl->getParamDecl(i: ParamIdx)->getType()); |
| 16500 | |
| 16501 | FunctionProtoType::ExtProtoInfo EPI; |
| 16502 | QualType ExpectedFunctionType = |
| 16503 | Context.getFunctionType(ResultTy: Context.VoidTy, Args: ArgTypes, EPI); |
| 16504 | sema::TemplateDeductionInfo Info(Loc); |
| 16505 | FunctionDecl *Result; |
| 16506 | if (DeduceTemplateArguments(FunctionTemplate: FnTemplateDecl, ExplicitTemplateArgs: nullptr, ArgFunctionType: ExpectedFunctionType, |
| 16507 | Specialization&: Result, Info) != TemplateDeductionResult::Success) |
| 16508 | return nullptr; |
| 16509 | return Result; |
| 16510 | } |
| 16511 | |
| 16512 | static inline bool |
| 16513 | CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef, |
| 16514 | const FunctionDecl *FnDecl) { |
| 16515 | const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext(); |
| 16516 | if (isa<NamespaceDecl>(Val: DC)) { |
| 16517 | return SemaRef.Diag(FnDecl->getLocation(), |
| 16518 | diag::err_operator_new_delete_declared_in_namespace) |
| 16519 | << FnDecl->getDeclName(); |
| 16520 | } |
| 16521 | |
| 16522 | if (isa<TranslationUnitDecl>(Val: DC) && |
| 16523 | FnDecl->getStorageClass() == SC_Static) { |
| 16524 | return SemaRef.Diag(FnDecl->getLocation(), |
| 16525 | diag::err_operator_new_delete_declared_static) |
| 16526 | << FnDecl->getDeclName(); |
| 16527 | } |
| 16528 | |
| 16529 | return false; |
| 16530 | } |
| 16531 | |
| 16532 | static CanQualType RemoveAddressSpaceFromPtr(Sema &SemaRef, |
| 16533 | const PointerType *PtrTy) { |
| 16534 | auto &Ctx = SemaRef.Context; |
| 16535 | Qualifiers PtrQuals = PtrTy->getPointeeType().getQualifiers(); |
| 16536 | PtrQuals.removeAddressSpace(); |
| 16537 | return Ctx.getPointerType(T: Ctx.getCanonicalType(T: Ctx.getQualifiedType( |
| 16538 | T: PtrTy->getPointeeType().getUnqualifiedType(), Qs: PtrQuals))); |
| 16539 | } |
| 16540 | |
| 16541 | enum class AllocationOperatorKind { New, Delete }; |
| 16542 | |
| 16543 | static bool IsPotentiallyTypeAwareOperatorNewOrDelete(Sema &SemaRef, |
| 16544 | const FunctionDecl *FD, |
| 16545 | bool *WasMalformed) { |
| 16546 | const Decl *MalformedDecl = nullptr; |
| 16547 | if (FD->getNumParams() > 0 && |
| 16548 | SemaRef.isStdTypeIdentity(Ty: FD->getParamDecl(i: 0)->getType(), |
| 16549 | /*TypeArgument=*/Element: nullptr, MalformedDecl: &MalformedDecl)) |
| 16550 | return true; |
| 16551 | |
| 16552 | if (!MalformedDecl) |
| 16553 | return false; |
| 16554 | |
| 16555 | if (WasMalformed) |
| 16556 | *WasMalformed = true; |
| 16557 | |
| 16558 | return true; |
| 16559 | } |
| 16560 | |
| 16561 | static bool isDestroyingDeleteT(QualType Type) { |
| 16562 | auto *RD = Type->getAsCXXRecordDecl(); |
| 16563 | return RD && RD->isInStdNamespace() && RD->getIdentifier() && |
| 16564 | RD->getIdentifier()->isStr("destroying_delete_t" ); |
| 16565 | } |
| 16566 | |
| 16567 | static bool IsPotentiallyDestroyingOperatorDelete(Sema &SemaRef, |
| 16568 | const FunctionDecl *FD) { |
| 16569 | // C++ P0722: |
| 16570 | // Within a class C, a single object deallocation function with signature |
| 16571 | // (T, std::destroying_delete_t, <more params>) |
| 16572 | // is a destroying operator delete. |
| 16573 | bool IsPotentiallyTypeAware = IsPotentiallyTypeAwareOperatorNewOrDelete( |
| 16574 | SemaRef, FD, /*WasMalformed=*/nullptr); |
| 16575 | unsigned DestroyingDeleteIdx = IsPotentiallyTypeAware + /* address */ 1; |
| 16576 | return isa<CXXMethodDecl>(Val: FD) && FD->getOverloadedOperator() == OO_Delete && |
| 16577 | FD->getNumParams() > DestroyingDeleteIdx && |
| 16578 | isDestroyingDeleteT(FD->getParamDecl(i: DestroyingDeleteIdx)->getType()); |
| 16579 | } |
| 16580 | |
| 16581 | static inline bool CheckOperatorNewDeleteTypes( |
| 16582 | Sema &SemaRef, FunctionDecl *FnDecl, AllocationOperatorKind OperatorKind, |
| 16583 | CanQualType ExpectedResultType, CanQualType ExpectedSizeOrAddressParamType, |
| 16584 | unsigned DependentParamTypeDiag, unsigned InvalidParamTypeDiag) { |
| 16585 | auto NormalizeType = [&SemaRef](QualType T) { |
| 16586 | if (SemaRef.getLangOpts().OpenCLCPlusPlus) { |
| 16587 | // The operator is valid on any address space for OpenCL. |
| 16588 | // Drop address space from actual and expected result types. |
| 16589 | if (const auto PtrTy = T->template getAs<PointerType>()) |
| 16590 | T = RemoveAddressSpaceFromPtr(SemaRef, PtrTy); |
| 16591 | } |
| 16592 | return SemaRef.Context.getCanonicalType(T); |
| 16593 | }; |
| 16594 | |
| 16595 | const unsigned NumParams = FnDecl->getNumParams(); |
| 16596 | unsigned FirstNonTypeParam = 0; |
| 16597 | bool MalformedTypeIdentity = false; |
| 16598 | bool IsPotentiallyTypeAware = IsPotentiallyTypeAwareOperatorNewOrDelete( |
| 16599 | SemaRef, FD: FnDecl, WasMalformed: &MalformedTypeIdentity); |
| 16600 | unsigned MinimumMandatoryArgumentCount = 1; |
| 16601 | unsigned SizeParameterIndex = 0; |
| 16602 | if (IsPotentiallyTypeAware) { |
| 16603 | // We don't emit this diagnosis for template instantiations as we will |
| 16604 | // have already emitted it for the original template declaration. |
| 16605 | if (!FnDecl->isTemplateInstantiation()) { |
| 16606 | unsigned DiagID = SemaRef.getLangOpts().CPlusPlus26 |
| 16607 | ? diag::warn_cxx26_type_aware_allocators |
| 16608 | : diag::ext_cxx26_type_aware_allocators; |
| 16609 | SemaRef.Diag(FnDecl->getLocation(), DiagID); |
| 16610 | } |
| 16611 | |
| 16612 | if (OperatorKind == AllocationOperatorKind::New) { |
| 16613 | SizeParameterIndex = 1; |
| 16614 | MinimumMandatoryArgumentCount = |
| 16615 | FunctionDecl::RequiredTypeAwareNewParameterCount; |
| 16616 | } else { |
| 16617 | SizeParameterIndex = 2; |
| 16618 | MinimumMandatoryArgumentCount = |
| 16619 | FunctionDecl::RequiredTypeAwareDeleteParameterCount; |
| 16620 | } |
| 16621 | FirstNonTypeParam = 1; |
| 16622 | } |
| 16623 | |
| 16624 | bool IsPotentiallyDestroyingDelete = |
| 16625 | IsPotentiallyDestroyingOperatorDelete(SemaRef, FD: FnDecl); |
| 16626 | |
| 16627 | if (IsPotentiallyDestroyingDelete) { |
| 16628 | ++MinimumMandatoryArgumentCount; |
| 16629 | ++SizeParameterIndex; |
| 16630 | } |
| 16631 | |
| 16632 | if (NumParams < MinimumMandatoryArgumentCount) |
| 16633 | return SemaRef.Diag(FnDecl->getLocation(), |
| 16634 | diag::err_operator_new_delete_too_few_parameters) |
| 16635 | << IsPotentiallyTypeAware << IsPotentiallyDestroyingDelete |
| 16636 | << FnDecl->getDeclName() << MinimumMandatoryArgumentCount; |
| 16637 | |
| 16638 | for (unsigned Idx = 0; Idx < MinimumMandatoryArgumentCount; ++Idx) { |
| 16639 | const ParmVarDecl *ParamDecl = FnDecl->getParamDecl(i: Idx); |
| 16640 | if (ParamDecl->hasDefaultArg()) |
| 16641 | return SemaRef.Diag(FnDecl->getLocation(), |
| 16642 | diag::err_operator_new_default_arg) |
| 16643 | << FnDecl->getDeclName() << Idx << ParamDecl->getDefaultArgRange(); |
| 16644 | } |
| 16645 | |
| 16646 | auto *FnType = FnDecl->getType()->castAs<FunctionType>(); |
| 16647 | QualType CanResultType = NormalizeType(FnType->getReturnType()); |
| 16648 | QualType CanExpectedResultType = NormalizeType(ExpectedResultType); |
| 16649 | QualType CanExpectedSizeOrAddressParamType = |
| 16650 | NormalizeType(ExpectedSizeOrAddressParamType); |
| 16651 | |
| 16652 | // Check that the result type is what we expect. |
| 16653 | if (CanResultType != CanExpectedResultType) { |
| 16654 | // Reject even if the type is dependent; an operator delete function is |
| 16655 | // required to have a non-dependent result type. |
| 16656 | return SemaRef.Diag( |
| 16657 | FnDecl->getLocation(), |
| 16658 | CanResultType->isDependentType() |
| 16659 | ? diag::err_operator_new_delete_dependent_result_type |
| 16660 | : diag::err_operator_new_delete_invalid_result_type) |
| 16661 | << FnDecl->getDeclName() << ExpectedResultType; |
| 16662 | } |
| 16663 | |
| 16664 | // A function template must have at least 2 parameters. |
| 16665 | if (FnDecl->getDescribedFunctionTemplate() && NumParams < 2) |
| 16666 | return SemaRef.Diag(FnDecl->getLocation(), |
| 16667 | diag::err_operator_new_delete_template_too_few_parameters) |
| 16668 | << FnDecl->getDeclName(); |
| 16669 | |
| 16670 | auto CheckType = [&](unsigned ParamIdx, QualType ExpectedType, |
| 16671 | auto FallbackType) -> bool { |
| 16672 | const ParmVarDecl *ParamDecl = FnDecl->getParamDecl(i: ParamIdx); |
| 16673 | if (ExpectedType.isNull()) { |
| 16674 | return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag) |
| 16675 | << IsPotentiallyTypeAware << IsPotentiallyDestroyingDelete |
| 16676 | << FnDecl->getDeclName() << (1 + ParamIdx) << FallbackType |
| 16677 | << ParamDecl->getSourceRange(); |
| 16678 | } |
| 16679 | CanQualType CanExpectedTy = |
| 16680 | NormalizeType(SemaRef.Context.getCanonicalType(T: ExpectedType)); |
| 16681 | auto ActualParamType = |
| 16682 | NormalizeType(ParamDecl->getType().getUnqualifiedType()); |
| 16683 | if (ActualParamType == CanExpectedTy) |
| 16684 | return false; |
| 16685 | unsigned Diagnostic = ActualParamType->isDependentType() |
| 16686 | ? DependentParamTypeDiag |
| 16687 | : InvalidParamTypeDiag; |
| 16688 | return SemaRef.Diag(FnDecl->getLocation(), Diagnostic) |
| 16689 | << IsPotentiallyTypeAware << IsPotentiallyDestroyingDelete |
| 16690 | << FnDecl->getDeclName() << (1 + ParamIdx) << ExpectedType |
| 16691 | << FallbackType << ParamDecl->getSourceRange(); |
| 16692 | }; |
| 16693 | |
| 16694 | // Check that the first parameter type is what we expect. |
| 16695 | if (CheckType(FirstNonTypeParam, CanExpectedSizeOrAddressParamType, "size_t" )) |
| 16696 | return true; |
| 16697 | |
| 16698 | FnDecl->setIsDestroyingOperatorDelete(IsPotentiallyDestroyingDelete); |
| 16699 | |
| 16700 | // If the first parameter type is not a type-identity we're done, otherwise |
| 16701 | // we need to ensure the size and alignment parameters have the correct type |
| 16702 | if (!IsPotentiallyTypeAware) |
| 16703 | return false; |
| 16704 | |
| 16705 | if (CheckType(SizeParameterIndex, SemaRef.Context.getSizeType(), "size_t" )) |
| 16706 | return true; |
| 16707 | TypeDecl *StdAlignValTDecl = SemaRef.getStdAlignValT(); |
| 16708 | QualType StdAlignValT = |
| 16709 | StdAlignValTDecl ? SemaRef.Context.getTypeDeclType(Decl: StdAlignValTDecl) |
| 16710 | : QualType(); |
| 16711 | if (CheckType(SizeParameterIndex + 1, StdAlignValT, "std::align_val_t" )) |
| 16712 | return true; |
| 16713 | |
| 16714 | FnDecl->setIsTypeAwareOperatorNewOrDelete(); |
| 16715 | return MalformedTypeIdentity; |
| 16716 | } |
| 16717 | |
| 16718 | static bool CheckOperatorNewDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) { |
| 16719 | // C++ [basic.stc.dynamic.allocation]p1: |
| 16720 | // A program is ill-formed if an allocation function is declared in a |
| 16721 | // namespace scope other than global scope or declared static in global |
| 16722 | // scope. |
| 16723 | if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) |
| 16724 | return true; |
| 16725 | |
| 16726 | CanQualType SizeTy = |
| 16727 | SemaRef.Context.getCanonicalType(T: SemaRef.Context.getSizeType()); |
| 16728 | |
| 16729 | // C++ [basic.stc.dynamic.allocation]p1: |
| 16730 | // The return type shall be void*. The first parameter shall have type |
| 16731 | // std::size_t. |
| 16732 | return CheckOperatorNewDeleteTypes( |
| 16733 | SemaRef, FnDecl, AllocationOperatorKind::New, SemaRef.Context.VoidPtrTy, |
| 16734 | SizeTy, diag::err_operator_new_dependent_param_type, |
| 16735 | diag::err_operator_new_param_type); |
| 16736 | } |
| 16737 | |
| 16738 | static bool |
| 16739 | CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) { |
| 16740 | // C++ [basic.stc.dynamic.deallocation]p1: |
| 16741 | // A program is ill-formed if deallocation functions are declared in a |
| 16742 | // namespace scope other than global scope or declared static in global |
| 16743 | // scope. |
| 16744 | if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl)) |
| 16745 | return true; |
| 16746 | |
| 16747 | auto *MD = dyn_cast<CXXMethodDecl>(Val: FnDecl); |
| 16748 | auto ConstructDestroyingDeleteAddressType = [&]() { |
| 16749 | assert(MD); |
| 16750 | return SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType( |
| 16751 | SemaRef.Context.getRecordType(MD->getParent()))); |
| 16752 | }; |
| 16753 | |
| 16754 | // C++ P2719: A destroying operator delete cannot be type aware |
| 16755 | // so for QoL we actually check for this explicitly by considering |
| 16756 | // an destroying-delete appropriate address type and the presence of |
| 16757 | // any parameter of type destroying_delete_t as an erroneous attempt |
| 16758 | // to declare a type aware destroying delete, rather than emitting a |
| 16759 | // pile of incorrect parameter type errors. |
| 16760 | if (MD && IsPotentiallyTypeAwareOperatorNewOrDelete( |
| 16761 | SemaRef, MD, /*WasMalformed=*/nullptr)) { |
| 16762 | QualType AddressParamType = |
| 16763 | SemaRef.Context.getCanonicalType(MD->getParamDecl(1)->getType()); |
| 16764 | if (AddressParamType != SemaRef.Context.VoidPtrTy && |
| 16765 | AddressParamType == ConstructDestroyingDeleteAddressType()) { |
| 16766 | // The address parameter type implies an author trying to construct a |
| 16767 | // type aware destroying delete, so we'll see if we can find a parameter |
| 16768 | // of type `std::destroying_delete_t`, and if we find it we'll report |
| 16769 | // this as being an attempt at a type aware destroying delete just stop |
| 16770 | // here. If we don't do this, the resulting incorrect parameter ordering |
| 16771 | // results in a pile mismatched argument type errors that don't explain |
| 16772 | // the core problem. |
| 16773 | for (auto Param : MD->parameters()) { |
| 16774 | if (isDestroyingDeleteT(Param->getType())) { |
| 16775 | SemaRef.Diag(MD->getLocation(), |
| 16776 | diag::err_type_aware_destroying_operator_delete) |
| 16777 | << Param->getSourceRange(); |
| 16778 | return true; |
| 16779 | } |
| 16780 | } |
| 16781 | } |
| 16782 | } |
| 16783 | |
| 16784 | // C++ P0722: |
| 16785 | // Within a class C, the first parameter of a destroying operator delete |
| 16786 | // shall be of type C *. The first parameter of any other deallocation |
| 16787 | // function shall be of type void *. |
| 16788 | CanQualType ExpectedAddressParamType = |
| 16789 | MD && IsPotentiallyDestroyingOperatorDelete(SemaRef, MD) |
| 16790 | ? SemaRef.Context.getCanonicalType(T: SemaRef.Context.getPointerType( |
| 16791 | T: SemaRef.Context.getRecordType(MD->getParent()))) |
| 16792 | : SemaRef.Context.VoidPtrTy; |
| 16793 | |
| 16794 | // C++ [basic.stc.dynamic.deallocation]p2: |
| 16795 | // Each deallocation function shall return void |
| 16796 | if (CheckOperatorNewDeleteTypes( |
| 16797 | SemaRef, FnDecl, AllocationOperatorKind::Delete, |
| 16798 | SemaRef.Context.VoidTy, ExpectedAddressParamType, |
| 16799 | diag::err_operator_delete_dependent_param_type, |
| 16800 | diag::err_operator_delete_param_type)) |
| 16801 | return true; |
| 16802 | |
| 16803 | // C++ P0722: |
| 16804 | // A destroying operator delete shall be a usual deallocation function. |
| 16805 | if (MD && !MD->getParent()->isDependentContext() && |
| 16806 | MD->isDestroyingOperatorDelete()) { |
| 16807 | if (!SemaRef.isUsualDeallocationFunction(FD: MD)) { |
| 16808 | SemaRef.Diag(MD->getLocation(), |
| 16809 | diag::err_destroying_operator_delete_not_usual); |
| 16810 | return true; |
| 16811 | } |
| 16812 | } |
| 16813 | |
| 16814 | return false; |
| 16815 | } |
| 16816 | |
| 16817 | bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { |
| 16818 | assert(FnDecl && FnDecl->isOverloadedOperator() && |
| 16819 | "Expected an overloaded operator declaration" ); |
| 16820 | |
| 16821 | OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); |
| 16822 | |
| 16823 | // C++ [over.oper]p5: |
| 16824 | // The allocation and deallocation functions, operator new, |
| 16825 | // operator new[], operator delete and operator delete[], are |
| 16826 | // described completely in 3.7.3. The attributes and restrictions |
| 16827 | // found in the rest of this subclause do not apply to them unless |
| 16828 | // explicitly stated in 3.7.3. |
| 16829 | if (Op == OO_Delete || Op == OO_Array_Delete) |
| 16830 | return CheckOperatorDeleteDeclaration(SemaRef&: *this, FnDecl); |
| 16831 | |
| 16832 | if (Op == OO_New || Op == OO_Array_New) |
| 16833 | return CheckOperatorNewDeclaration(SemaRef&: *this, FnDecl); |
| 16834 | |
| 16835 | // C++ [over.oper]p7: |
| 16836 | // An operator function shall either be a member function or |
| 16837 | // be a non-member function and have at least one parameter |
| 16838 | // whose type is a class, a reference to a class, an enumeration, |
| 16839 | // or a reference to an enumeration. |
| 16840 | // Note: Before C++23, a member function could not be static. The only member |
| 16841 | // function allowed to be static is the call operator function. |
| 16842 | if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Val: FnDecl)) { |
| 16843 | if (MethodDecl->isStatic()) { |
| 16844 | if (Op == OO_Call || Op == OO_Subscript) |
| 16845 | Diag(FnDecl->getLocation(), |
| 16846 | (LangOpts.CPlusPlus23 |
| 16847 | ? diag::warn_cxx20_compat_operator_overload_static |
| 16848 | : diag::ext_operator_overload_static)) |
| 16849 | << FnDecl; |
| 16850 | else |
| 16851 | return Diag(FnDecl->getLocation(), diag::err_operator_overload_static) |
| 16852 | << FnDecl; |
| 16853 | } |
| 16854 | } else { |
| 16855 | bool ClassOrEnumParam = false; |
| 16856 | for (auto *Param : FnDecl->parameters()) { |
| 16857 | QualType ParamType = Param->getType().getNonReferenceType(); |
| 16858 | if (ParamType->isDependentType() || ParamType->isRecordType() || |
| 16859 | ParamType->isEnumeralType()) { |
| 16860 | ClassOrEnumParam = true; |
| 16861 | break; |
| 16862 | } |
| 16863 | } |
| 16864 | |
| 16865 | if (!ClassOrEnumParam) |
| 16866 | return Diag(FnDecl->getLocation(), |
| 16867 | diag::err_operator_overload_needs_class_or_enum) |
| 16868 | << FnDecl->getDeclName(); |
| 16869 | } |
| 16870 | |
| 16871 | // C++ [over.oper]p8: |
| 16872 | // An operator function cannot have default arguments (8.3.6), |
| 16873 | // except where explicitly stated below. |
| 16874 | // |
| 16875 | // Only the function-call operator (C++ [over.call]p1) and the subscript |
| 16876 | // operator (CWG2507) allow default arguments. |
| 16877 | if (Op != OO_Call) { |
| 16878 | ParmVarDecl *FirstDefaultedParam = nullptr; |
| 16879 | for (auto *Param : FnDecl->parameters()) { |
| 16880 | if (Param->hasDefaultArg()) { |
| 16881 | FirstDefaultedParam = Param; |
| 16882 | break; |
| 16883 | } |
| 16884 | } |
| 16885 | if (FirstDefaultedParam) { |
| 16886 | if (Op == OO_Subscript) { |
| 16887 | Diag(FnDecl->getLocation(), LangOpts.CPlusPlus23 |
| 16888 | ? diag::ext_subscript_overload |
| 16889 | : diag::error_subscript_overload) |
| 16890 | << FnDecl->getDeclName() << 1 |
| 16891 | << FirstDefaultedParam->getDefaultArgRange(); |
| 16892 | } else { |
| 16893 | return Diag(FirstDefaultedParam->getLocation(), |
| 16894 | diag::err_operator_overload_default_arg) |
| 16895 | << FnDecl->getDeclName() |
| 16896 | << FirstDefaultedParam->getDefaultArgRange(); |
| 16897 | } |
| 16898 | } |
| 16899 | } |
| 16900 | |
| 16901 | static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { |
| 16902 | { false, false, false } |
| 16903 | #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ |
| 16904 | , { Unary, Binary, MemberOnly } |
| 16905 | #include "clang/Basic/OperatorKinds.def" |
| 16906 | }; |
| 16907 | |
| 16908 | bool CanBeUnaryOperator = OperatorUses[Op][0]; |
| 16909 | bool CanBeBinaryOperator = OperatorUses[Op][1]; |
| 16910 | bool MustBeMemberOperator = OperatorUses[Op][2]; |
| 16911 | |
| 16912 | // C++ [over.oper]p8: |
| 16913 | // [...] Operator functions cannot have more or fewer parameters |
| 16914 | // than the number required for the corresponding operator, as |
| 16915 | // described in the rest of this subclause. |
| 16916 | unsigned NumParams = FnDecl->getNumParams() + |
| 16917 | (isa<CXXMethodDecl>(Val: FnDecl) && |
| 16918 | !FnDecl->hasCXXExplicitFunctionObjectParameter() |
| 16919 | ? 1 |
| 16920 | : 0); |
| 16921 | if (Op != OO_Call && Op != OO_Subscript && |
| 16922 | ((NumParams == 1 && !CanBeUnaryOperator) || |
| 16923 | (NumParams == 2 && !CanBeBinaryOperator) || (NumParams < 1) || |
| 16924 | (NumParams > 2))) { |
| 16925 | // We have the wrong number of parameters. |
| 16926 | unsigned ErrorKind; |
| 16927 | if (CanBeUnaryOperator && CanBeBinaryOperator) { |
| 16928 | ErrorKind = 2; // 2 -> unary or binary. |
| 16929 | } else if (CanBeUnaryOperator) { |
| 16930 | ErrorKind = 0; // 0 -> unary |
| 16931 | } else { |
| 16932 | assert(CanBeBinaryOperator && |
| 16933 | "All non-call overloaded operators are unary or binary!" ); |
| 16934 | ErrorKind = 1; // 1 -> binary |
| 16935 | } |
| 16936 | return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) |
| 16937 | << FnDecl->getDeclName() << NumParams << ErrorKind; |
| 16938 | } |
| 16939 | |
| 16940 | if (Op == OO_Subscript && NumParams != 2) { |
| 16941 | Diag(FnDecl->getLocation(), LangOpts.CPlusPlus23 |
| 16942 | ? diag::ext_subscript_overload |
| 16943 | : diag::error_subscript_overload) |
| 16944 | << FnDecl->getDeclName() << (NumParams == 1 ? 0 : 2); |
| 16945 | } |
| 16946 | |
| 16947 | // Overloaded operators other than operator() and operator[] cannot be |
| 16948 | // variadic. |
| 16949 | if (Op != OO_Call && |
| 16950 | FnDecl->getType()->castAs<FunctionProtoType>()->isVariadic()) { |
| 16951 | return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) |
| 16952 | << FnDecl->getDeclName(); |
| 16953 | } |
| 16954 | |
| 16955 | // Some operators must be member functions. |
| 16956 | if (MustBeMemberOperator && !isa<CXXMethodDecl>(Val: FnDecl)) { |
| 16957 | return Diag(FnDecl->getLocation(), |
| 16958 | diag::err_operator_overload_must_be_member) |
| 16959 | << FnDecl->getDeclName(); |
| 16960 | } |
| 16961 | |
| 16962 | // C++ [over.inc]p1: |
| 16963 | // The user-defined function called operator++ implements the |
| 16964 | // prefix and postfix ++ operator. If this function is a member |
| 16965 | // function with no parameters, or a non-member function with one |
| 16966 | // parameter of class or enumeration type, it defines the prefix |
| 16967 | // increment operator ++ for objects of that type. If the function |
| 16968 | // is a member function with one parameter (which shall be of type |
| 16969 | // int) or a non-member function with two parameters (the second |
| 16970 | // of which shall be of type int), it defines the postfix |
| 16971 | // increment operator ++ for objects of that type. |
| 16972 | if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { |
| 16973 | ParmVarDecl *LastParam = FnDecl->getParamDecl(i: FnDecl->getNumParams() - 1); |
| 16974 | QualType ParamType = LastParam->getType(); |
| 16975 | |
| 16976 | if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) && |
| 16977 | !ParamType->isDependentType()) |
| 16978 | return Diag(LastParam->getLocation(), |
| 16979 | diag::err_operator_overload_post_incdec_must_be_int) |
| 16980 | << LastParam->getType() << (Op == OO_MinusMinus); |
| 16981 | } |
| 16982 | |
| 16983 | return false; |
| 16984 | } |
| 16985 | |
| 16986 | static bool |
| 16987 | checkLiteralOperatorTemplateParameterList(Sema &SemaRef, |
| 16988 | FunctionTemplateDecl *TpDecl) { |
| 16989 | TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters(); |
| 16990 | |
| 16991 | // Must have one or two template parameters. |
| 16992 | if (TemplateParams->size() == 1) { |
| 16993 | NonTypeTemplateParmDecl *PmDecl = |
| 16994 | dyn_cast<NonTypeTemplateParmDecl>(Val: TemplateParams->getParam(Idx: 0)); |
| 16995 | |
| 16996 | // The template parameter must be a char parameter pack. |
| 16997 | if (PmDecl && PmDecl->isTemplateParameterPack() && |
| 16998 | SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy)) |
| 16999 | return false; |
| 17000 | |
| 17001 | // C++20 [over.literal]p5: |
| 17002 | // A string literal operator template is a literal operator template |
| 17003 | // whose template-parameter-list comprises a single non-type |
| 17004 | // template-parameter of class type. |
| 17005 | // |
| 17006 | // As a DR resolution, we also allow placeholders for deduced class |
| 17007 | // template specializations. |
| 17008 | if (SemaRef.getLangOpts().CPlusPlus20 && PmDecl && |
| 17009 | !PmDecl->isTemplateParameterPack() && |
| 17010 | (PmDecl->getType()->isRecordType() || |
| 17011 | PmDecl->getType()->getAs<DeducedTemplateSpecializationType>())) |
| 17012 | return false; |
| 17013 | } else if (TemplateParams->size() == 2) { |
| 17014 | TemplateTypeParmDecl *PmType = |
| 17015 | dyn_cast<TemplateTypeParmDecl>(Val: TemplateParams->getParam(Idx: 0)); |
| 17016 | NonTypeTemplateParmDecl *PmArgs = |
| 17017 | dyn_cast<NonTypeTemplateParmDecl>(Val: TemplateParams->getParam(Idx: 1)); |
| 17018 | |
| 17019 | // The second template parameter must be a parameter pack with the |
| 17020 | // first template parameter as its type. |
| 17021 | if (PmType && PmArgs && !PmType->isTemplateParameterPack() && |
| 17022 | PmArgs->isTemplateParameterPack()) { |
| 17023 | const TemplateTypeParmType *TArgs = |
| 17024 | PmArgs->getType()->getAs<TemplateTypeParmType>(); |
| 17025 | if (TArgs && TArgs->getDepth() == PmType->getDepth() && |
| 17026 | TArgs->getIndex() == PmType->getIndex()) { |
| 17027 | if (!SemaRef.inTemplateInstantiation()) |
| 17028 | SemaRef.Diag(TpDecl->getLocation(), |
| 17029 | diag::ext_string_literal_operator_template); |
| 17030 | return false; |
| 17031 | } |
| 17032 | } |
| 17033 | } |
| 17034 | |
| 17035 | SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(), |
| 17036 | diag::err_literal_operator_template) |
| 17037 | << TpDecl->getTemplateParameters()->getSourceRange(); |
| 17038 | return true; |
| 17039 | } |
| 17040 | |
| 17041 | bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) { |
| 17042 | if (isa<CXXMethodDecl>(Val: FnDecl)) { |
| 17043 | Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace) |
| 17044 | << FnDecl->getDeclName(); |
| 17045 | return true; |
| 17046 | } |
| 17047 | |
| 17048 | if (FnDecl->isExternC()) { |
| 17049 | Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c); |
| 17050 | if (const LinkageSpecDecl *LSD = |
| 17051 | FnDecl->getDeclContext()->getExternCContext()) |
| 17052 | Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here); |
| 17053 | return true; |
| 17054 | } |
| 17055 | |
| 17056 | // This might be the definition of a literal operator template. |
| 17057 | FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate(); |
| 17058 | |
| 17059 | // This might be a specialization of a literal operator template. |
| 17060 | if (!TpDecl) |
| 17061 | TpDecl = FnDecl->getPrimaryTemplate(); |
| 17062 | |
| 17063 | // template <char...> type operator "" name() and |
| 17064 | // template <class T, T...> type operator "" name() are the only valid |
| 17065 | // template signatures, and the only valid signatures with no parameters. |
| 17066 | // |
| 17067 | // C++20 also allows template <SomeClass T> type operator "" name(). |
| 17068 | if (TpDecl) { |
| 17069 | if (FnDecl->param_size() != 0) { |
| 17070 | Diag(FnDecl->getLocation(), |
| 17071 | diag::err_literal_operator_template_with_params); |
| 17072 | return true; |
| 17073 | } |
| 17074 | |
| 17075 | if (checkLiteralOperatorTemplateParameterList(SemaRef&: *this, TpDecl)) |
| 17076 | return true; |
| 17077 | |
| 17078 | } else if (FnDecl->param_size() == 1) { |
| 17079 | const ParmVarDecl *Param = FnDecl->getParamDecl(i: 0); |
| 17080 | |
| 17081 | QualType ParamType = Param->getType().getUnqualifiedType(); |
| 17082 | |
| 17083 | // Only unsigned long long int, long double, any character type, and const |
| 17084 | // char * are allowed as the only parameters. |
| 17085 | if (ParamType->isSpecificBuiltinType(K: BuiltinType::ULongLong) || |
| 17086 | ParamType->isSpecificBuiltinType(K: BuiltinType::LongDouble) || |
| 17087 | Context.hasSameType(ParamType, Context.CharTy) || |
| 17088 | Context.hasSameType(ParamType, Context.WideCharTy) || |
| 17089 | Context.hasSameType(ParamType, Context.Char8Ty) || |
| 17090 | Context.hasSameType(ParamType, Context.Char16Ty) || |
| 17091 | Context.hasSameType(ParamType, Context.Char32Ty)) { |
| 17092 | } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) { |
| 17093 | QualType InnerType = Ptr->getPointeeType(); |
| 17094 | |
| 17095 | // Pointer parameter must be a const char *. |
| 17096 | if (!(Context.hasSameType(InnerType.getUnqualifiedType(), |
| 17097 | Context.CharTy) && |
| 17098 | InnerType.isConstQualified() && !InnerType.isVolatileQualified())) { |
| 17099 | Diag(Param->getSourceRange().getBegin(), |
| 17100 | diag::err_literal_operator_param) |
| 17101 | << ParamType << "'const char *'" << Param->getSourceRange(); |
| 17102 | return true; |
| 17103 | } |
| 17104 | |
| 17105 | } else if (ParamType->isRealFloatingType()) { |
| 17106 | Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) |
| 17107 | << ParamType << Context.LongDoubleTy << Param->getSourceRange(); |
| 17108 | return true; |
| 17109 | |
| 17110 | } else if (ParamType->isIntegerType()) { |
| 17111 | Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param) |
| 17112 | << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange(); |
| 17113 | return true; |
| 17114 | |
| 17115 | } else { |
| 17116 | Diag(Param->getSourceRange().getBegin(), |
| 17117 | diag::err_literal_operator_invalid_param) |
| 17118 | << ParamType << Param->getSourceRange(); |
| 17119 | return true; |
| 17120 | } |
| 17121 | |
| 17122 | } else if (FnDecl->param_size() == 2) { |
| 17123 | FunctionDecl::param_iterator Param = FnDecl->param_begin(); |
| 17124 | |
| 17125 | // First, verify that the first parameter is correct. |
| 17126 | |
| 17127 | QualType FirstParamType = (*Param)->getType().getUnqualifiedType(); |
| 17128 | |
| 17129 | // Two parameter function must have a pointer to const as a |
| 17130 | // first parameter; let's strip those qualifiers. |
| 17131 | const PointerType *PT = FirstParamType->getAs<PointerType>(); |
| 17132 | |
| 17133 | if (!PT) { |
| 17134 | Diag((*Param)->getSourceRange().getBegin(), |
| 17135 | diag::err_literal_operator_param) |
| 17136 | << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); |
| 17137 | return true; |
| 17138 | } |
| 17139 | |
| 17140 | QualType PointeeType = PT->getPointeeType(); |
| 17141 | // First parameter must be const |
| 17142 | if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) { |
| 17143 | Diag((*Param)->getSourceRange().getBegin(), |
| 17144 | diag::err_literal_operator_param) |
| 17145 | << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); |
| 17146 | return true; |
| 17147 | } |
| 17148 | |
| 17149 | QualType InnerType = PointeeType.getUnqualifiedType(); |
| 17150 | // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and |
| 17151 | // const char32_t* are allowed as the first parameter to a two-parameter |
| 17152 | // function |
| 17153 | if (!(Context.hasSameType(InnerType, Context.CharTy) || |
| 17154 | Context.hasSameType(InnerType, Context.WideCharTy) || |
| 17155 | Context.hasSameType(InnerType, Context.Char8Ty) || |
| 17156 | Context.hasSameType(InnerType, Context.Char16Ty) || |
| 17157 | Context.hasSameType(InnerType, Context.Char32Ty))) { |
| 17158 | Diag((*Param)->getSourceRange().getBegin(), |
| 17159 | diag::err_literal_operator_param) |
| 17160 | << FirstParamType << "'const char *'" << (*Param)->getSourceRange(); |
| 17161 | return true; |
| 17162 | } |
| 17163 | |
| 17164 | // Move on to the second and final parameter. |
| 17165 | ++Param; |
| 17166 | |
| 17167 | // The second parameter must be a std::size_t. |
| 17168 | QualType SecondParamType = (*Param)->getType().getUnqualifiedType(); |
| 17169 | if (!Context.hasSameType(T1: SecondParamType, T2: Context.getSizeType())) { |
| 17170 | Diag((*Param)->getSourceRange().getBegin(), |
| 17171 | diag::err_literal_operator_param) |
| 17172 | << SecondParamType << Context.getSizeType() |
| 17173 | << (*Param)->getSourceRange(); |
| 17174 | return true; |
| 17175 | } |
| 17176 | } else { |
| 17177 | Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count); |
| 17178 | return true; |
| 17179 | } |
| 17180 | |
| 17181 | // Parameters are good. |
| 17182 | |
| 17183 | // A parameter-declaration-clause containing a default argument is not |
| 17184 | // equivalent to any of the permitted forms. |
| 17185 | for (auto *Param : FnDecl->parameters()) { |
| 17186 | if (Param->hasDefaultArg()) { |
| 17187 | Diag(Param->getDefaultArgRange().getBegin(), |
| 17188 | diag::err_literal_operator_default_argument) |
| 17189 | << Param->getDefaultArgRange(); |
| 17190 | break; |
| 17191 | } |
| 17192 | } |
| 17193 | |
| 17194 | const IdentifierInfo *II = FnDecl->getDeclName().getCXXLiteralIdentifier(); |
| 17195 | ReservedLiteralSuffixIdStatus Status = II->isReservedLiteralSuffixId(); |
| 17196 | if (Status != ReservedLiteralSuffixIdStatus::NotReserved && |
| 17197 | !getSourceManager().isInSystemHeader(Loc: FnDecl->getLocation())) { |
| 17198 | // C++23 [usrlit.suffix]p1: |
| 17199 | // Literal suffix identifiers that do not start with an underscore are |
| 17200 | // reserved for future standardization. Literal suffix identifiers that |
| 17201 | // contain a double underscore __ are reserved for use by C++ |
| 17202 | // implementations. |
| 17203 | Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved) |
| 17204 | << static_cast<int>(Status) |
| 17205 | << StringLiteralParser::isValidUDSuffix(getLangOpts(), II->getName()); |
| 17206 | } |
| 17207 | |
| 17208 | return false; |
| 17209 | } |
| 17210 | |
| 17211 | Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc, |
| 17212 | Expr *LangStr, |
| 17213 | SourceLocation LBraceLoc) { |
| 17214 | StringLiteral *Lit = cast<StringLiteral>(Val: LangStr); |
| 17215 | assert(Lit->isUnevaluated() && "Unexpected string literal kind" ); |
| 17216 | |
| 17217 | StringRef Lang = Lit->getString(); |
| 17218 | LinkageSpecLanguageIDs Language; |
| 17219 | if (Lang == "C" ) |
| 17220 | Language = LinkageSpecLanguageIDs::C; |
| 17221 | else if (Lang == "C++" ) |
| 17222 | Language = LinkageSpecLanguageIDs::CXX; |
| 17223 | else { |
| 17224 | Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown) |
| 17225 | << LangStr->getSourceRange(); |
| 17226 | return nullptr; |
| 17227 | } |
| 17228 | |
| 17229 | // FIXME: Add all the various semantics of linkage specifications |
| 17230 | |
| 17231 | LinkageSpecDecl *D = LinkageSpecDecl::Create(C&: Context, DC: CurContext, ExternLoc, |
| 17232 | LangLoc: LangStr->getExprLoc(), Lang: Language, |
| 17233 | HasBraces: LBraceLoc.isValid()); |
| 17234 | |
| 17235 | /// C++ [module.unit]p7.2.3 |
| 17236 | /// - Otherwise, if the declaration |
| 17237 | /// - ... |
| 17238 | /// - ... |
| 17239 | /// - appears within a linkage-specification, |
| 17240 | /// it is attached to the global module. |
| 17241 | /// |
| 17242 | /// If the declaration is already in global module fragment, we don't |
| 17243 | /// need to attach it again. |
| 17244 | if (getLangOpts().CPlusPlusModules && isCurrentModulePurview()) { |
| 17245 | Module *GlobalModule = PushImplicitGlobalModuleFragment(BeginLoc: ExternLoc); |
| 17246 | D->setLocalOwningModule(GlobalModule); |
| 17247 | } |
| 17248 | |
| 17249 | CurContext->addDecl(D); |
| 17250 | PushDeclContext(S, D); |
| 17251 | return D; |
| 17252 | } |
| 17253 | |
| 17254 | Decl *Sema::ActOnFinishLinkageSpecification(Scope *S, |
| 17255 | Decl *LinkageSpec, |
| 17256 | SourceLocation RBraceLoc) { |
| 17257 | if (RBraceLoc.isValid()) { |
| 17258 | LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(Val: LinkageSpec); |
| 17259 | LSDecl->setRBraceLoc(RBraceLoc); |
| 17260 | } |
| 17261 | |
| 17262 | // If the current module doesn't has Parent, it implies that the |
| 17263 | // LinkageSpec isn't in the module created by itself. So we don't |
| 17264 | // need to pop it. |
| 17265 | if (getLangOpts().CPlusPlusModules && getCurrentModule() && |
| 17266 | getCurrentModule()->isImplicitGlobalModule() && |
| 17267 | getCurrentModule()->Parent) |
| 17268 | PopImplicitGlobalModuleFragment(); |
| 17269 | |
| 17270 | PopDeclContext(); |
| 17271 | return LinkageSpec; |
| 17272 | } |
| 17273 | |
| 17274 | Decl *Sema::ActOnEmptyDeclaration(Scope *S, |
| 17275 | const ParsedAttributesView &AttrList, |
| 17276 | SourceLocation SemiLoc) { |
| 17277 | Decl *ED = EmptyDecl::Create(C&: Context, DC: CurContext, L: SemiLoc); |
| 17278 | // Attribute declarations appertain to empty declaration so we handle |
| 17279 | // them here. |
| 17280 | ProcessDeclAttributeList(S, D: ED, AttrList); |
| 17281 | |
| 17282 | CurContext->addDecl(D: ED); |
| 17283 | return ED; |
| 17284 | } |
| 17285 | |
| 17286 | VarDecl *Sema::BuildExceptionDeclaration(Scope *S, TypeSourceInfo *TInfo, |
| 17287 | SourceLocation StartLoc, |
| 17288 | SourceLocation Loc, |
| 17289 | const IdentifierInfo *Name) { |
| 17290 | bool Invalid = false; |
| 17291 | QualType ExDeclType = TInfo->getType(); |
| 17292 | |
| 17293 | // Arrays and functions decay. |
| 17294 | if (ExDeclType->isArrayType()) |
| 17295 | ExDeclType = Context.getArrayDecayedType(T: ExDeclType); |
| 17296 | else if (ExDeclType->isFunctionType()) |
| 17297 | ExDeclType = Context.getPointerType(T: ExDeclType); |
| 17298 | |
| 17299 | // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. |
| 17300 | // The exception-declaration shall not denote a pointer or reference to an |
| 17301 | // incomplete type, other than [cv] void*. |
| 17302 | // N2844 forbids rvalue references. |
| 17303 | if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) { |
| 17304 | Diag(Loc, diag::err_catch_rvalue_ref); |
| 17305 | Invalid = true; |
| 17306 | } |
| 17307 | |
| 17308 | if (ExDeclType->isVariablyModifiedType()) { |
| 17309 | Diag(Loc, diag::err_catch_variably_modified) << ExDeclType; |
| 17310 | Invalid = true; |
| 17311 | } |
| 17312 | |
| 17313 | QualType BaseType = ExDeclType; |
| 17314 | int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference |
| 17315 | unsigned DK = diag::err_catch_incomplete; |
| 17316 | if (const PointerType *Ptr = BaseType->getAs<PointerType>()) { |
| 17317 | BaseType = Ptr->getPointeeType(); |
| 17318 | Mode = 1; |
| 17319 | DK = diag::err_catch_incomplete_ptr; |
| 17320 | } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) { |
| 17321 | // For the purpose of error recovery, we treat rvalue refs like lvalue refs. |
| 17322 | BaseType = Ref->getPointeeType(); |
| 17323 | Mode = 2; |
| 17324 | DK = diag::err_catch_incomplete_ref; |
| 17325 | } |
| 17326 | if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && |
| 17327 | !BaseType->isDependentType() && RequireCompleteType(Loc, T: BaseType, DiagID: DK)) |
| 17328 | Invalid = true; |
| 17329 | |
| 17330 | if (!Invalid && BaseType.isWebAssemblyReferenceType()) { |
| 17331 | Diag(Loc, diag::err_wasm_reftype_tc) << 1; |
| 17332 | Invalid = true; |
| 17333 | } |
| 17334 | |
| 17335 | if (!Invalid && Mode != 1 && BaseType->isSizelessType()) { |
| 17336 | Diag(Loc, diag::err_catch_sizeless) << (Mode == 2 ? 1 : 0) << BaseType; |
| 17337 | Invalid = true; |
| 17338 | } |
| 17339 | |
| 17340 | if (!Invalid && !ExDeclType->isDependentType() && |
| 17341 | RequireNonAbstractType(Loc, ExDeclType, |
| 17342 | diag::err_abstract_type_in_decl, |
| 17343 | AbstractVariableType)) |
| 17344 | Invalid = true; |
| 17345 | |
| 17346 | // Only the non-fragile NeXT runtime currently supports C++ catches |
| 17347 | // of ObjC types, and no runtime supports catching ObjC types by value. |
| 17348 | if (!Invalid && getLangOpts().ObjC) { |
| 17349 | QualType T = ExDeclType; |
| 17350 | if (const ReferenceType *RT = T->getAs<ReferenceType>()) |
| 17351 | T = RT->getPointeeType(); |
| 17352 | |
| 17353 | if (T->isObjCObjectType()) { |
| 17354 | Diag(Loc, diag::err_objc_object_catch); |
| 17355 | Invalid = true; |
| 17356 | } else if (T->isObjCObjectPointerType()) { |
| 17357 | // FIXME: should this be a test for macosx-fragile specifically? |
| 17358 | if (getLangOpts().ObjCRuntime.isFragile()) |
| 17359 | Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile); |
| 17360 | } |
| 17361 | } |
| 17362 | |
| 17363 | VarDecl *ExDecl = VarDecl::Create(C&: Context, DC: CurContext, StartLoc, IdLoc: Loc, Id: Name, |
| 17364 | T: ExDeclType, TInfo, S: SC_None); |
| 17365 | ExDecl->setExceptionVariable(true); |
| 17366 | |
| 17367 | // In ARC, infer 'retaining' for variables of retainable type. |
| 17368 | if (getLangOpts().ObjCAutoRefCount && ObjC().inferObjCARCLifetime(ExDecl)) |
| 17369 | Invalid = true; |
| 17370 | |
| 17371 | if (!Invalid && !ExDeclType->isDependentType()) { |
| 17372 | if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) { |
| 17373 | // Insulate this from anything else we might currently be parsing. |
| 17374 | EnterExpressionEvaluationContext scope( |
| 17375 | *this, ExpressionEvaluationContext::PotentiallyEvaluated); |
| 17376 | |
| 17377 | // C++ [except.handle]p16: |
| 17378 | // The object declared in an exception-declaration or, if the |
| 17379 | // exception-declaration does not specify a name, a temporary (12.2) is |
| 17380 | // copy-initialized (8.5) from the exception object. [...] |
| 17381 | // The object is destroyed when the handler exits, after the destruction |
| 17382 | // of any automatic objects initialized within the handler. |
| 17383 | // |
| 17384 | // We just pretend to initialize the object with itself, then make sure |
| 17385 | // it can be destroyed later. |
| 17386 | QualType initType = Context.getExceptionObjectType(T: ExDeclType); |
| 17387 | |
| 17388 | InitializedEntity entity = |
| 17389 | InitializedEntity::InitializeVariable(Var: ExDecl); |
| 17390 | InitializationKind initKind = |
| 17391 | InitializationKind::CreateCopy(InitLoc: Loc, EqualLoc: SourceLocation()); |
| 17392 | |
| 17393 | Expr *opaqueValue = |
| 17394 | new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary); |
| 17395 | InitializationSequence sequence(*this, entity, initKind, opaqueValue); |
| 17396 | ExprResult result = sequence.Perform(S&: *this, Entity: entity, Kind: initKind, Args: opaqueValue); |
| 17397 | if (result.isInvalid()) |
| 17398 | Invalid = true; |
| 17399 | else { |
| 17400 | // If the constructor used was non-trivial, set this as the |
| 17401 | // "initializer". |
| 17402 | CXXConstructExpr *construct = result.getAs<CXXConstructExpr>(); |
| 17403 | if (!construct->getConstructor()->isTrivial()) { |
| 17404 | Expr *init = MaybeCreateExprWithCleanups(construct); |
| 17405 | ExDecl->setInit(init); |
| 17406 | } |
| 17407 | |
| 17408 | // And make sure it's destructable. |
| 17409 | FinalizeVarWithDestructor(VD: ExDecl, Record: recordType); |
| 17410 | } |
| 17411 | } |
| 17412 | } |
| 17413 | |
| 17414 | if (Invalid) |
| 17415 | ExDecl->setInvalidDecl(); |
| 17416 | |
| 17417 | return ExDecl; |
| 17418 | } |
| 17419 | |
| 17420 | Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { |
| 17421 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D); |
| 17422 | bool Invalid = D.isInvalidType(); |
| 17423 | |
| 17424 | // Check for unexpanded parameter packs. |
| 17425 | if (DiagnoseUnexpandedParameterPack(Loc: D.getIdentifierLoc(), T: TInfo, |
| 17426 | UPPC: UPPC_ExceptionType)) { |
| 17427 | TInfo = Context.getTrivialTypeSourceInfo(T: Context.IntTy, |
| 17428 | Loc: D.getIdentifierLoc()); |
| 17429 | Invalid = true; |
| 17430 | } |
| 17431 | |
| 17432 | const IdentifierInfo *II = D.getIdentifier(); |
| 17433 | if (NamedDecl *PrevDecl = |
| 17434 | LookupSingleName(S, Name: II, Loc: D.getIdentifierLoc(), NameKind: LookupOrdinaryName, |
| 17435 | Redecl: RedeclarationKind::ForVisibleRedeclaration)) { |
| 17436 | // The scope should be freshly made just for us. There is just no way |
| 17437 | // it contains any previous declaration, except for function parameters in |
| 17438 | // a function-try-block's catch statement. |
| 17439 | assert(!S->isDeclScope(PrevDecl)); |
| 17440 | if (isDeclInScope(D: PrevDecl, Ctx: CurContext, S)) { |
| 17441 | Diag(D.getIdentifierLoc(), diag::err_redefinition) |
| 17442 | << D.getIdentifier(); |
| 17443 | Diag(PrevDecl->getLocation(), diag::note_previous_definition); |
| 17444 | Invalid = true; |
| 17445 | } else if (PrevDecl->isTemplateParameter()) |
| 17446 | // Maybe we will complain about the shadowed template parameter. |
| 17447 | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); |
| 17448 | } |
| 17449 | |
| 17450 | if (D.getCXXScopeSpec().isSet() && !Invalid) { |
| 17451 | Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) |
| 17452 | << D.getCXXScopeSpec().getRange(); |
| 17453 | Invalid = true; |
| 17454 | } |
| 17455 | |
| 17456 | VarDecl *ExDecl = BuildExceptionDeclaration( |
| 17457 | S, TInfo, StartLoc: D.getBeginLoc(), Loc: D.getIdentifierLoc(), Name: D.getIdentifier()); |
| 17458 | if (Invalid) |
| 17459 | ExDecl->setInvalidDecl(); |
| 17460 | |
| 17461 | // Add the exception declaration into this scope. |
| 17462 | if (II) |
| 17463 | PushOnScopeChains(ExDecl, S); |
| 17464 | else |
| 17465 | CurContext->addDecl(ExDecl); |
| 17466 | |
| 17467 | ProcessDeclAttributes(S, ExDecl, D); |
| 17468 | return ExDecl; |
| 17469 | } |
| 17470 | |
| 17471 | Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc, |
| 17472 | Expr *AssertExpr, |
| 17473 | Expr *AssertMessageExpr, |
| 17474 | SourceLocation RParenLoc) { |
| 17475 | if (DiagnoseUnexpandedParameterPack(E: AssertExpr, UPPC: UPPC_StaticAssertExpression)) |
| 17476 | return nullptr; |
| 17477 | |
| 17478 | return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr, |
| 17479 | AssertMessageExpr, RParenLoc, Failed: false); |
| 17480 | } |
| 17481 | |
| 17482 | static void WriteCharTypePrefix(BuiltinType::Kind BTK, llvm::raw_ostream &OS) { |
| 17483 | switch (BTK) { |
| 17484 | case BuiltinType::Char_S: |
| 17485 | case BuiltinType::Char_U: |
| 17486 | break; |
| 17487 | case BuiltinType::Char8: |
| 17488 | OS << "u8" ; |
| 17489 | break; |
| 17490 | case BuiltinType::Char16: |
| 17491 | OS << 'u'; |
| 17492 | break; |
| 17493 | case BuiltinType::Char32: |
| 17494 | OS << 'U'; |
| 17495 | break; |
| 17496 | case BuiltinType::WChar_S: |
| 17497 | case BuiltinType::WChar_U: |
| 17498 | OS << 'L'; |
| 17499 | break; |
| 17500 | default: |
| 17501 | llvm_unreachable("Non-character type" ); |
| 17502 | } |
| 17503 | } |
| 17504 | |
| 17505 | /// Convert character's value, interpreted as a code unit, to a string. |
| 17506 | /// The value needs to be zero-extended to 32-bits. |
| 17507 | /// FIXME: This assumes Unicode literal encodings |
| 17508 | static void WriteCharValueForDiagnostic(uint32_t Value, const BuiltinType *BTy, |
| 17509 | unsigned TyWidth, |
| 17510 | SmallVectorImpl<char> &Str) { |
| 17511 | char Arr[UNI_MAX_UTF8_BYTES_PER_CODE_POINT]; |
| 17512 | char *Ptr = Arr; |
| 17513 | BuiltinType::Kind K = BTy->getKind(); |
| 17514 | llvm::raw_svector_ostream OS(Str); |
| 17515 | |
| 17516 | // This should catch Char_S, Char_U, Char8, and use of escaped characters in |
| 17517 | // other types. |
| 17518 | if (K == BuiltinType::Char_S || K == BuiltinType::Char_U || |
| 17519 | K == BuiltinType::Char8 || Value <= 0x7F) { |
| 17520 | StringRef Escaped = escapeCStyle<EscapeChar::Single>(Ch: Value); |
| 17521 | if (!Escaped.empty()) |
| 17522 | EscapeStringForDiagnostic(Str: Escaped, OutStr&: Str); |
| 17523 | else |
| 17524 | OS << static_cast<char>(Value); |
| 17525 | return; |
| 17526 | } |
| 17527 | |
| 17528 | switch (K) { |
| 17529 | case BuiltinType::Char16: |
| 17530 | case BuiltinType::Char32: |
| 17531 | case BuiltinType::WChar_S: |
| 17532 | case BuiltinType::WChar_U: { |
| 17533 | if (llvm::ConvertCodePointToUTF8(Source: Value, ResultPtr&: Ptr)) |
| 17534 | EscapeStringForDiagnostic(Str: StringRef(Arr, Ptr - Arr), OutStr&: Str); |
| 17535 | else |
| 17536 | OS << "\\x" |
| 17537 | << llvm::format_hex_no_prefix(N: Value, Width: TyWidth / 4, /*Upper=*/true); |
| 17538 | break; |
| 17539 | } |
| 17540 | default: |
| 17541 | llvm_unreachable("Non-character type is passed" ); |
| 17542 | } |
| 17543 | } |
| 17544 | |
| 17545 | /// Convert \V to a string we can present to the user in a diagnostic |
| 17546 | /// \T is the type of the expression that has been evaluated into \V |
| 17547 | static bool ConvertAPValueToString(const APValue &V, QualType T, |
| 17548 | SmallVectorImpl<char> &Str, |
| 17549 | ASTContext &Context) { |
| 17550 | if (!V.hasValue()) |
| 17551 | return false; |
| 17552 | |
| 17553 | switch (V.getKind()) { |
| 17554 | case APValue::ValueKind::Int: |
| 17555 | if (T->isBooleanType()) { |
| 17556 | // Bools are reduced to ints during evaluation, but for |
| 17557 | // diagnostic purposes we want to print them as |
| 17558 | // true or false. |
| 17559 | int64_t BoolValue = V.getInt().getExtValue(); |
| 17560 | assert((BoolValue == 0 || BoolValue == 1) && |
| 17561 | "Bool type, but value is not 0 or 1" ); |
| 17562 | llvm::raw_svector_ostream OS(Str); |
| 17563 | OS << (BoolValue ? "true" : "false" ); |
| 17564 | } else { |
| 17565 | llvm::raw_svector_ostream OS(Str); |
| 17566 | // Same is true for chars. |
| 17567 | // We want to print the character representation for textual types |
| 17568 | const auto *BTy = T->getAs<BuiltinType>(); |
| 17569 | if (BTy) { |
| 17570 | switch (BTy->getKind()) { |
| 17571 | case BuiltinType::Char_S: |
| 17572 | case BuiltinType::Char_U: |
| 17573 | case BuiltinType::Char8: |
| 17574 | case BuiltinType::Char16: |
| 17575 | case BuiltinType::Char32: |
| 17576 | case BuiltinType::WChar_S: |
| 17577 | case BuiltinType::WChar_U: { |
| 17578 | unsigned TyWidth = Context.getIntWidth(T); |
| 17579 | assert(8 <= TyWidth && TyWidth <= 32 && "Unexpected integer width" ); |
| 17580 | uint32_t CodeUnit = static_cast<uint32_t>(V.getInt().getZExtValue()); |
| 17581 | WriteCharTypePrefix(BTK: BTy->getKind(), OS); |
| 17582 | OS << '\''; |
| 17583 | WriteCharValueForDiagnostic(Value: CodeUnit, BTy, TyWidth, Str); |
| 17584 | OS << "' (0x" |
| 17585 | << llvm::format_hex_no_prefix(N: CodeUnit, /*Width=*/2, |
| 17586 | /*Upper=*/true) |
| 17587 | << ", " << V.getInt() << ')'; |
| 17588 | return true; |
| 17589 | } |
| 17590 | default: |
| 17591 | break; |
| 17592 | } |
| 17593 | } |
| 17594 | V.getInt().toString(Str); |
| 17595 | } |
| 17596 | |
| 17597 | break; |
| 17598 | |
| 17599 | case APValue::ValueKind::Float: |
| 17600 | V.getFloat().toString(Str); |
| 17601 | break; |
| 17602 | |
| 17603 | case APValue::ValueKind::LValue: |
| 17604 | if (V.isNullPointer()) { |
| 17605 | llvm::raw_svector_ostream OS(Str); |
| 17606 | OS << "nullptr" ; |
| 17607 | } else |
| 17608 | return false; |
| 17609 | break; |
| 17610 | |
| 17611 | case APValue::ValueKind::ComplexFloat: { |
| 17612 | llvm::raw_svector_ostream OS(Str); |
| 17613 | OS << '('; |
| 17614 | V.getComplexFloatReal().toString(Str); |
| 17615 | OS << " + " ; |
| 17616 | V.getComplexFloatImag().toString(Str); |
| 17617 | OS << "i)" ; |
| 17618 | } break; |
| 17619 | |
| 17620 | case APValue::ValueKind::ComplexInt: { |
| 17621 | llvm::raw_svector_ostream OS(Str); |
| 17622 | OS << '('; |
| 17623 | V.getComplexIntReal().toString(Str); |
| 17624 | OS << " + " ; |
| 17625 | V.getComplexIntImag().toString(Str); |
| 17626 | OS << "i)" ; |
| 17627 | } break; |
| 17628 | |
| 17629 | default: |
| 17630 | return false; |
| 17631 | } |
| 17632 | |
| 17633 | return true; |
| 17634 | } |
| 17635 | |
| 17636 | /// Some Expression types are not useful to print notes about, |
| 17637 | /// e.g. literals and values that have already been expanded |
| 17638 | /// before such as int-valued template parameters. |
| 17639 | static bool UsefulToPrintExpr(const Expr *E) { |
| 17640 | E = E->IgnoreParenImpCasts(); |
| 17641 | // Literals are pretty easy for humans to understand. |
| 17642 | if (isa<IntegerLiteral, FloatingLiteral, CharacterLiteral, CXXBoolLiteralExpr, |
| 17643 | CXXNullPtrLiteralExpr, FixedPointLiteral, ImaginaryLiteral>(Val: E)) |
| 17644 | return false; |
| 17645 | |
| 17646 | // These have been substituted from template parameters |
| 17647 | // and appear as literals in the static assert error. |
| 17648 | if (isa<SubstNonTypeTemplateParmExpr>(Val: E)) |
| 17649 | return false; |
| 17650 | |
| 17651 | // -5 is also simple to understand. |
| 17652 | if (const auto *UnaryOp = dyn_cast<UnaryOperator>(Val: E)) |
| 17653 | return UsefulToPrintExpr(E: UnaryOp->getSubExpr()); |
| 17654 | |
| 17655 | // Only print nested arithmetic operators. |
| 17656 | if (const auto *BO = dyn_cast<BinaryOperator>(Val: E)) |
| 17657 | return (BO->isShiftOp() || BO->isAdditiveOp() || BO->isMultiplicativeOp() || |
| 17658 | BO->isBitwiseOp()); |
| 17659 | |
| 17660 | return true; |
| 17661 | } |
| 17662 | |
| 17663 | void Sema::DiagnoseStaticAssertDetails(const Expr *E) { |
| 17664 | if (const auto *Op = dyn_cast<BinaryOperator>(Val: E); |
| 17665 | Op && Op->getOpcode() != BO_LOr) { |
| 17666 | const Expr *LHS = Op->getLHS()->IgnoreParenImpCasts(); |
| 17667 | const Expr *RHS = Op->getRHS()->IgnoreParenImpCasts(); |
| 17668 | |
| 17669 | // Ignore comparisons of boolean expressions with a boolean literal. |
| 17670 | if ((isa<CXXBoolLiteralExpr>(Val: LHS) && RHS->getType()->isBooleanType()) || |
| 17671 | (isa<CXXBoolLiteralExpr>(Val: RHS) && LHS->getType()->isBooleanType())) |
| 17672 | return; |
| 17673 | |
| 17674 | // Don't print obvious expressions. |
| 17675 | if (!UsefulToPrintExpr(E: LHS) && !UsefulToPrintExpr(E: RHS)) |
| 17676 | return; |
| 17677 | |
| 17678 | struct { |
| 17679 | const clang::Expr *Cond; |
| 17680 | Expr::EvalResult Result; |
| 17681 | SmallString<12> ValueString; |
| 17682 | bool Print; |
| 17683 | } DiagSide[2] = {{.Cond: LHS, .Result: Expr::EvalResult(), .ValueString: {}, .Print: false}, |
| 17684 | {.Cond: RHS, .Result: Expr::EvalResult(), .ValueString: {}, .Print: false}}; |
| 17685 | for (unsigned I = 0; I < 2; I++) { |
| 17686 | const Expr *Side = DiagSide[I].Cond; |
| 17687 | |
| 17688 | Side->EvaluateAsRValue(Result&: DiagSide[I].Result, Ctx: Context, InConstantContext: true); |
| 17689 | |
| 17690 | DiagSide[I].Print = |
| 17691 | ConvertAPValueToString(V: DiagSide[I].Result.Val, T: Side->getType(), |
| 17692 | Str&: DiagSide[I].ValueString, Context); |
| 17693 | } |
| 17694 | if (DiagSide[0].Print && DiagSide[1].Print) { |
| 17695 | Diag(Op->getExprLoc(), diag::note_expr_evaluates_to) |
| 17696 | << DiagSide[0].ValueString << Op->getOpcodeStr() |
| 17697 | << DiagSide[1].ValueString << Op->getSourceRange(); |
| 17698 | } |
| 17699 | } else { |
| 17700 | DiagnoseTypeTraitDetails(E); |
| 17701 | } |
| 17702 | } |
| 17703 | |
| 17704 | template <typename ResultType> |
| 17705 | static bool EvaluateAsStringImpl(Sema &SemaRef, Expr *Message, |
| 17706 | ResultType &Result, ASTContext &Ctx, |
| 17707 | Sema::StringEvaluationContext EvalContext, |
| 17708 | bool ErrorOnInvalidMessage) { |
| 17709 | |
| 17710 | assert(Message); |
| 17711 | assert(!Message->isTypeDependent() && !Message->isValueDependent() && |
| 17712 | "can't evaluate a dependant static assert message" ); |
| 17713 | |
| 17714 | if (const auto *SL = dyn_cast<StringLiteral>(Val: Message)) { |
| 17715 | assert(SL->isUnevaluated() && "expected an unevaluated string" ); |
| 17716 | if constexpr (std::is_same_v<APValue, ResultType>) { |
| 17717 | Result = |
| 17718 | APValue(APValue::UninitArray{}, SL->getLength(), SL->getLength()); |
| 17719 | const ConstantArrayType *CAT = |
| 17720 | SemaRef.getASTContext().getAsConstantArrayType(T: SL->getType()); |
| 17721 | assert(CAT && "string literal isn't an array" ); |
| 17722 | QualType CharType = CAT->getElementType(); |
| 17723 | llvm::APSInt Value(SemaRef.getASTContext().getTypeSize(T: CharType), |
| 17724 | CharType->isUnsignedIntegerType()); |
| 17725 | for (unsigned I = 0; I < SL->getLength(); I++) { |
| 17726 | Value = SL->getCodeUnit(i: I); |
| 17727 | Result.getArrayInitializedElt(I) = APValue(Value); |
| 17728 | } |
| 17729 | } else { |
| 17730 | Result.assign(SL->getString().begin(), SL->getString().end()); |
| 17731 | } |
| 17732 | return true; |
| 17733 | } |
| 17734 | |
| 17735 | SourceLocation Loc = Message->getBeginLoc(); |
| 17736 | QualType T = Message->getType().getNonReferenceType(); |
| 17737 | auto *RD = T->getAsCXXRecordDecl(); |
| 17738 | if (!RD) { |
| 17739 | SemaRef.Diag(Loc, diag::err_user_defined_msg_invalid) << EvalContext; |
| 17740 | return false; |
| 17741 | } |
| 17742 | |
| 17743 | auto FindMember = [&](StringRef Member) -> std::optional<LookupResult> { |
| 17744 | DeclarationName DN = SemaRef.PP.getIdentifierInfo(Name: Member); |
| 17745 | LookupResult MemberLookup(SemaRef, DN, Loc, Sema::LookupMemberName); |
| 17746 | SemaRef.LookupQualifiedName(MemberLookup, RD); |
| 17747 | OverloadCandidateSet Candidates(MemberLookup.getNameLoc(), |
| 17748 | OverloadCandidateSet::CSK_Normal); |
| 17749 | if (MemberLookup.empty()) |
| 17750 | return std::nullopt; |
| 17751 | return std::move(MemberLookup); |
| 17752 | }; |
| 17753 | |
| 17754 | std::optional<LookupResult> SizeMember = FindMember("size" ); |
| 17755 | std::optional<LookupResult> DataMember = FindMember("data" ); |
| 17756 | if (!SizeMember || !DataMember) { |
| 17757 | SemaRef.Diag(Loc, diag::err_user_defined_msg_missing_member_function) |
| 17758 | << EvalContext |
| 17759 | << ((!SizeMember && !DataMember) ? 2 |
| 17760 | : !SizeMember ? 0 |
| 17761 | : 1); |
| 17762 | return false; |
| 17763 | } |
| 17764 | |
| 17765 | auto BuildExpr = [&](LookupResult &LR) { |
| 17766 | ExprResult Res = SemaRef.BuildMemberReferenceExpr( |
| 17767 | Message, Message->getType(), Message->getBeginLoc(), false, |
| 17768 | CXXScopeSpec(), SourceLocation(), nullptr, LR, nullptr, nullptr); |
| 17769 | if (Res.isInvalid()) |
| 17770 | return ExprError(); |
| 17771 | Res = SemaRef.BuildCallExpr(S: nullptr, Fn: Res.get(), LParenLoc: Loc, ArgExprs: {}, RParenLoc: Loc, ExecConfig: nullptr, |
| 17772 | IsExecConfig: false, AllowRecovery: true); |
| 17773 | if (Res.isInvalid()) |
| 17774 | return ExprError(); |
| 17775 | if (Res.get()->isTypeDependent() || Res.get()->isValueDependent()) |
| 17776 | return ExprError(); |
| 17777 | return SemaRef.TemporaryMaterializationConversion(E: Res.get()); |
| 17778 | }; |
| 17779 | |
| 17780 | ExprResult SizeE = BuildExpr(*SizeMember); |
| 17781 | ExprResult DataE = BuildExpr(*DataMember); |
| 17782 | |
| 17783 | QualType SizeT = SemaRef.Context.getSizeType(); |
| 17784 | QualType ConstCharPtr = SemaRef.Context.getPointerType( |
| 17785 | SemaRef.Context.getConstType(T: SemaRef.Context.CharTy)); |
| 17786 | |
| 17787 | ExprResult EvaluatedSize = |
| 17788 | SizeE.isInvalid() |
| 17789 | ? ExprError() |
| 17790 | : SemaRef.BuildConvertedConstantExpression( |
| 17791 | From: SizeE.get(), T: SizeT, CCE: CCEKind::StaticAssertMessageSize); |
| 17792 | if (EvaluatedSize.isInvalid()) { |
| 17793 | SemaRef.Diag(Loc, diag::err_user_defined_msg_invalid_mem_fn_ret_ty) |
| 17794 | << EvalContext << /*size*/ 0; |
| 17795 | return false; |
| 17796 | } |
| 17797 | |
| 17798 | ExprResult EvaluatedData = |
| 17799 | DataE.isInvalid() |
| 17800 | ? ExprError() |
| 17801 | : SemaRef.BuildConvertedConstantExpression( |
| 17802 | From: DataE.get(), T: ConstCharPtr, CCE: CCEKind::StaticAssertMessageData); |
| 17803 | if (EvaluatedData.isInvalid()) { |
| 17804 | SemaRef.Diag(Loc, diag::err_user_defined_msg_invalid_mem_fn_ret_ty) |
| 17805 | << EvalContext << /*data*/ 1; |
| 17806 | return false; |
| 17807 | } |
| 17808 | |
| 17809 | if (!ErrorOnInvalidMessage && |
| 17810 | SemaRef.Diags.isIgnored(diag::warn_user_defined_msg_constexpr, Loc)) |
| 17811 | return true; |
| 17812 | |
| 17813 | Expr::EvalResult Status; |
| 17814 | SmallVector<PartialDiagnosticAt, 8> Notes; |
| 17815 | Status.Diag = &Notes; |
| 17816 | if (!Message->EvaluateCharRangeAsString(Result, EvaluatedSize.get(), |
| 17817 | EvaluatedData.get(), Ctx, Status) || |
| 17818 | !Notes.empty()) { |
| 17819 | SemaRef.Diag(Message->getBeginLoc(), |
| 17820 | ErrorOnInvalidMessage ? diag::err_user_defined_msg_constexpr |
| 17821 | : diag::warn_user_defined_msg_constexpr) |
| 17822 | << EvalContext; |
| 17823 | for (const auto &Note : Notes) |
| 17824 | SemaRef.Diag(Note.first, Note.second); |
| 17825 | return !ErrorOnInvalidMessage; |
| 17826 | } |
| 17827 | return true; |
| 17828 | } |
| 17829 | |
| 17830 | bool Sema::EvaluateAsString(Expr *Message, APValue &Result, ASTContext &Ctx, |
| 17831 | StringEvaluationContext EvalContext, |
| 17832 | bool ErrorOnInvalidMessage) { |
| 17833 | return EvaluateAsStringImpl(SemaRef&: *this, Message, Result, Ctx, EvalContext, |
| 17834 | ErrorOnInvalidMessage); |
| 17835 | } |
| 17836 | |
| 17837 | bool Sema::EvaluateAsString(Expr *Message, std::string &Result, ASTContext &Ctx, |
| 17838 | StringEvaluationContext EvalContext, |
| 17839 | bool ErrorOnInvalidMessage) { |
| 17840 | return EvaluateAsStringImpl(SemaRef&: *this, Message, Result, Ctx, EvalContext, |
| 17841 | ErrorOnInvalidMessage); |
| 17842 | } |
| 17843 | |
| 17844 | Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc, |
| 17845 | Expr *AssertExpr, Expr *AssertMessage, |
| 17846 | SourceLocation RParenLoc, |
| 17847 | bool Failed) { |
| 17848 | assert(AssertExpr != nullptr && "Expected non-null condition" ); |
| 17849 | if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() && |
| 17850 | (!AssertMessage || (!AssertMessage->isTypeDependent() && |
| 17851 | !AssertMessage->isValueDependent())) && |
| 17852 | !Failed) { |
| 17853 | // In a static_assert-declaration, the constant-expression shall be a |
| 17854 | // constant expression that can be contextually converted to bool. |
| 17855 | ExprResult Converted = PerformContextuallyConvertToBool(From: AssertExpr); |
| 17856 | if (Converted.isInvalid()) |
| 17857 | Failed = true; |
| 17858 | |
| 17859 | ExprResult FullAssertExpr = |
| 17860 | ActOnFinishFullExpr(Expr: Converted.get(), CC: StaticAssertLoc, |
| 17861 | /*DiscardedValue*/ false, |
| 17862 | /*IsConstexpr*/ true); |
| 17863 | if (FullAssertExpr.isInvalid()) |
| 17864 | Failed = true; |
| 17865 | else |
| 17866 | AssertExpr = FullAssertExpr.get(); |
| 17867 | |
| 17868 | llvm::APSInt Cond; |
| 17869 | Expr *BaseExpr = AssertExpr; |
| 17870 | AllowFoldKind FoldKind = AllowFoldKind::No; |
| 17871 | |
| 17872 | if (!getLangOpts().CPlusPlus) { |
| 17873 | // In C mode, allow folding as an extension for better compatibility with |
| 17874 | // C++ in terms of expressions like static_assert("test") or |
| 17875 | // static_assert(nullptr). |
| 17876 | FoldKind = AllowFoldKind::Allow; |
| 17877 | } |
| 17878 | |
| 17879 | if (!Failed && VerifyIntegerConstantExpression( |
| 17880 | BaseExpr, &Cond, |
| 17881 | diag::err_static_assert_expression_is_not_constant, |
| 17882 | FoldKind).isInvalid()) |
| 17883 | Failed = true; |
| 17884 | |
| 17885 | // If the static_assert passes, only verify that |
| 17886 | // the message is grammatically valid without evaluating it. |
| 17887 | if (!Failed && AssertMessage && Cond.getBoolValue()) { |
| 17888 | std::string Str; |
| 17889 | EvaluateAsString(Message: AssertMessage, Result&: Str, Ctx&: Context, |
| 17890 | EvalContext: StringEvaluationContext::StaticAssert, |
| 17891 | /*ErrorOnInvalidMessage=*/false); |
| 17892 | } |
| 17893 | |
| 17894 | // CWG2518 |
| 17895 | // [dcl.pre]/p10 If [...] the expression is evaluated in the context of a |
| 17896 | // template definition, the declaration has no effect. |
| 17897 | bool InTemplateDefinition = |
| 17898 | getLangOpts().CPlusPlus && CurContext->isDependentContext(); |
| 17899 | |
| 17900 | if (!Failed && !Cond && !InTemplateDefinition) { |
| 17901 | SmallString<256> MsgBuffer; |
| 17902 | llvm::raw_svector_ostream Msg(MsgBuffer); |
| 17903 | bool HasMessage = AssertMessage; |
| 17904 | if (AssertMessage) { |
| 17905 | std::string Str; |
| 17906 | HasMessage = EvaluateAsString(Message: AssertMessage, Result&: Str, Ctx&: Context, |
| 17907 | EvalContext: StringEvaluationContext::StaticAssert, |
| 17908 | /*ErrorOnInvalidMessage=*/true) || |
| 17909 | !Str.empty(); |
| 17910 | Msg << Str; |
| 17911 | } |
| 17912 | Expr *InnerCond = nullptr; |
| 17913 | std::string InnerCondDescription; |
| 17914 | std::tie(args&: InnerCond, args&: InnerCondDescription) = |
| 17915 | findFailedBooleanCondition(Cond: Converted.get()); |
| 17916 | if (const auto *ConceptIDExpr = |
| 17917 | dyn_cast_or_null<ConceptSpecializationExpr>(Val: InnerCond)) { |
| 17918 | // Drill down into concept specialization expressions to see why they |
| 17919 | // weren't satisfied. |
| 17920 | Diag(AssertExpr->getBeginLoc(), diag::err_static_assert_failed) |
| 17921 | << !HasMessage << Msg.str() << AssertExpr->getSourceRange(); |
| 17922 | ConstraintSatisfaction Satisfaction; |
| 17923 | if (!CheckConstraintSatisfaction(ConstraintExpr: ConceptIDExpr, Satisfaction)) |
| 17924 | DiagnoseUnsatisfiedConstraint(Satisfaction); |
| 17925 | } else if (InnerCond && !isa<CXXBoolLiteralExpr>(Val: InnerCond) && |
| 17926 | !isa<IntegerLiteral>(Val: InnerCond)) { |
| 17927 | Diag(InnerCond->getBeginLoc(), |
| 17928 | diag::err_static_assert_requirement_failed) |
| 17929 | << InnerCondDescription << !HasMessage << Msg.str() |
| 17930 | << InnerCond->getSourceRange(); |
| 17931 | DiagnoseStaticAssertDetails(E: InnerCond); |
| 17932 | } else { |
| 17933 | Diag(AssertExpr->getBeginLoc(), diag::err_static_assert_failed) |
| 17934 | << !HasMessage << Msg.str() << AssertExpr->getSourceRange(); |
| 17935 | PrintContextStack(); |
| 17936 | } |
| 17937 | Failed = true; |
| 17938 | } |
| 17939 | } else { |
| 17940 | ExprResult FullAssertExpr = ActOnFinishFullExpr(Expr: AssertExpr, CC: StaticAssertLoc, |
| 17941 | /*DiscardedValue*/false, |
| 17942 | /*IsConstexpr*/true); |
| 17943 | if (FullAssertExpr.isInvalid()) |
| 17944 | Failed = true; |
| 17945 | else |
| 17946 | AssertExpr = FullAssertExpr.get(); |
| 17947 | } |
| 17948 | |
| 17949 | Decl *Decl = StaticAssertDecl::Create(C&: Context, DC: CurContext, StaticAssertLoc, |
| 17950 | AssertExpr, Message: AssertMessage, RParenLoc, |
| 17951 | Failed); |
| 17952 | |
| 17953 | CurContext->addDecl(D: Decl); |
| 17954 | return Decl; |
| 17955 | } |
| 17956 | |
| 17957 | DeclResult Sema::ActOnTemplatedFriendTag( |
| 17958 | Scope *S, SourceLocation FriendLoc, unsigned TagSpec, SourceLocation TagLoc, |
| 17959 | CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, |
| 17960 | SourceLocation EllipsisLoc, const ParsedAttributesView &Attr, |
| 17961 | MultiTemplateParamsArg TempParamLists) { |
| 17962 | TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TypeSpec: TagSpec); |
| 17963 | |
| 17964 | bool IsMemberSpecialization = false; |
| 17965 | bool Invalid = false; |
| 17966 | |
| 17967 | if (TemplateParameterList *TemplateParams = |
| 17968 | MatchTemplateParametersToScopeSpecifier( |
| 17969 | DeclStartLoc: TagLoc, DeclLoc: NameLoc, SS, TemplateId: nullptr, ParamLists: TempParamLists, /*friend*/ IsFriend: true, |
| 17970 | IsMemberSpecialization, Invalid)) { |
| 17971 | if (TemplateParams->size() > 0) { |
| 17972 | // This is a declaration of a class template. |
| 17973 | if (Invalid) |
| 17974 | return true; |
| 17975 | |
| 17976 | return CheckClassTemplate(S, TagSpec, TUK: TagUseKind::Friend, KWLoc: TagLoc, SS, |
| 17977 | Name, NameLoc, Attr, TemplateParams, AS: AS_public, |
| 17978 | /*ModulePrivateLoc=*/SourceLocation(), |
| 17979 | FriendLoc, NumOuterTemplateParamLists: TempParamLists.size() - 1, |
| 17980 | OuterTemplateParamLists: TempParamLists.data()) |
| 17981 | .get(); |
| 17982 | } else { |
| 17983 | // The "template<>" header is extraneous. |
| 17984 | Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) |
| 17985 | << TypeWithKeyword::getTagTypeKindName(Kind) << Name; |
| 17986 | IsMemberSpecialization = true; |
| 17987 | } |
| 17988 | } |
| 17989 | |
| 17990 | if (Invalid) return true; |
| 17991 | |
| 17992 | bool isAllExplicitSpecializations = true; |
| 17993 | for (unsigned I = TempParamLists.size(); I-- > 0; ) { |
| 17994 | if (TempParamLists[I]->size()) { |
| 17995 | isAllExplicitSpecializations = false; |
| 17996 | break; |
| 17997 | } |
| 17998 | } |
| 17999 | |
| 18000 | // FIXME: don't ignore attributes. |
| 18001 | |
| 18002 | // If it's explicit specializations all the way down, just forget |
| 18003 | // about the template header and build an appropriate non-templated |
| 18004 | // friend. TODO: for source fidelity, remember the headers. |
| 18005 | NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context); |
| 18006 | if (isAllExplicitSpecializations) { |
| 18007 | if (SS.isEmpty()) { |
| 18008 | bool Owned = false; |
| 18009 | bool IsDependent = false; |
| 18010 | return ActOnTag(S, TagSpec, TUK: TagUseKind::Friend, KWLoc: TagLoc, SS, Name, NameLoc, |
| 18011 | Attr, AS: AS_public, |
| 18012 | /*ModulePrivateLoc=*/SourceLocation(), |
| 18013 | TemplateParameterLists: MultiTemplateParamsArg(), OwnedDecl&: Owned, IsDependent, |
| 18014 | /*ScopedEnumKWLoc=*/SourceLocation(), |
| 18015 | /*ScopedEnumUsesClassTag=*/false, |
| 18016 | /*UnderlyingType=*/TypeResult(), |
| 18017 | /*IsTypeSpecifier=*/false, |
| 18018 | /*IsTemplateParamOrArg=*/false, |
| 18019 | /*OOK=*/OffsetOfKind::Outside); |
| 18020 | } |
| 18021 | |
| 18022 | ElaboratedTypeKeyword Keyword |
| 18023 | = TypeWithKeyword::getKeywordForTagTypeKind(Tag: Kind); |
| 18024 | QualType T = CheckTypenameType(Keyword, KeywordLoc: TagLoc, QualifierLoc, |
| 18025 | II: *Name, IILoc: NameLoc); |
| 18026 | if (T.isNull()) |
| 18027 | return true; |
| 18028 | |
| 18029 | TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); |
| 18030 | if (isa<DependentNameType>(Val: T)) { |
| 18031 | DependentNameTypeLoc TL = |
| 18032 | TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); |
| 18033 | TL.setElaboratedKeywordLoc(TagLoc); |
| 18034 | TL.setQualifierLoc(QualifierLoc); |
| 18035 | TL.setNameLoc(NameLoc); |
| 18036 | } else { |
| 18037 | ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>(); |
| 18038 | TL.setElaboratedKeywordLoc(TagLoc); |
| 18039 | TL.setQualifierLoc(QualifierLoc); |
| 18040 | TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc); |
| 18041 | } |
| 18042 | |
| 18043 | FriendDecl *Friend = |
| 18044 | FriendDecl::Create(C&: Context, DC: CurContext, L: NameLoc, Friend_: TSI, FriendL: FriendLoc, |
| 18045 | EllipsisLoc, FriendTypeTPLists: TempParamLists); |
| 18046 | Friend->setAccess(AS_public); |
| 18047 | CurContext->addDecl(Friend); |
| 18048 | return Friend; |
| 18049 | } |
| 18050 | |
| 18051 | assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?" ); |
| 18052 | |
| 18053 | // CWG 2917: if it (= the friend-type-specifier) is a pack expansion |
| 18054 | // (13.7.4 [temp.variadic]), any packs expanded by that pack expansion |
| 18055 | // shall not have been introduced by the template-declaration. |
| 18056 | SmallVector<UnexpandedParameterPack, 1> Unexpanded; |
| 18057 | collectUnexpandedParameterPacks(NNS: QualifierLoc, Unexpanded); |
| 18058 | unsigned FriendDeclDepth = TempParamLists.front()->getDepth(); |
| 18059 | for (UnexpandedParameterPack &U : Unexpanded) { |
| 18060 | if (getDepthAndIndex(UPP: U).first >= FriendDeclDepth) { |
| 18061 | auto *ND = dyn_cast<NamedDecl *>(Val&: U.first); |
| 18062 | if (!ND) |
| 18063 | ND = cast<const TemplateTypeParmType *>(Val&: U.first)->getDecl(); |
| 18064 | Diag(U.second, diag::friend_template_decl_malformed_pack_expansion) |
| 18065 | << ND->getDeclName() << SourceRange(SS.getBeginLoc(), EllipsisLoc); |
| 18066 | return true; |
| 18067 | } |
| 18068 | } |
| 18069 | |
| 18070 | // Handle the case of a templated-scope friend class. e.g. |
| 18071 | // template <class T> class A<T>::B; |
| 18072 | // FIXME: we don't support these right now. |
| 18073 | Diag(NameLoc, diag::warn_template_qualified_friend_unsupported) |
| 18074 | << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext); |
| 18075 | ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Tag: Kind); |
| 18076 | QualType T = Context.getDependentNameType(Keyword: ETK, NNS: SS.getScopeRep(), Name); |
| 18077 | TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T); |
| 18078 | DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>(); |
| 18079 | TL.setElaboratedKeywordLoc(TagLoc); |
| 18080 | TL.setQualifierLoc(SS.getWithLocInContext(Context)); |
| 18081 | TL.setNameLoc(NameLoc); |
| 18082 | |
| 18083 | FriendDecl *Friend = |
| 18084 | FriendDecl::Create(C&: Context, DC: CurContext, L: NameLoc, Friend_: TSI, FriendL: FriendLoc, |
| 18085 | EllipsisLoc, FriendTypeTPLists: TempParamLists); |
| 18086 | Friend->setAccess(AS_public); |
| 18087 | Friend->setUnsupportedFriend(true); |
| 18088 | CurContext->addDecl(Friend); |
| 18089 | return Friend; |
| 18090 | } |
| 18091 | |
| 18092 | Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS, |
| 18093 | MultiTemplateParamsArg TempParams, |
| 18094 | SourceLocation EllipsisLoc) { |
| 18095 | SourceLocation Loc = DS.getBeginLoc(); |
| 18096 | SourceLocation FriendLoc = DS.getFriendSpecLoc(); |
| 18097 | |
| 18098 | assert(DS.isFriendSpecified()); |
| 18099 | assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); |
| 18100 | |
| 18101 | // C++ [class.friend]p3: |
| 18102 | // A friend declaration that does not declare a function shall have one of |
| 18103 | // the following forms: |
| 18104 | // friend elaborated-type-specifier ; |
| 18105 | // friend simple-type-specifier ; |
| 18106 | // friend typename-specifier ; |
| 18107 | // |
| 18108 | // If the friend keyword isn't first, or if the declarations has any type |
| 18109 | // qualifiers, then the declaration doesn't have that form. |
| 18110 | if (getLangOpts().CPlusPlus11 && !DS.isFriendSpecifiedFirst()) |
| 18111 | Diag(FriendLoc, diag::err_friend_not_first_in_declaration); |
| 18112 | if (DS.getTypeQualifiers()) { |
| 18113 | if (DS.getTypeQualifiers() & DeclSpec::TQ_const) |
| 18114 | Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const" ; |
| 18115 | if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) |
| 18116 | Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile" ; |
| 18117 | if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) |
| 18118 | Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict" ; |
| 18119 | if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) |
| 18120 | Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic" ; |
| 18121 | if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) |
| 18122 | Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned" ; |
| 18123 | } |
| 18124 | |
| 18125 | // Try to convert the decl specifier to a type. This works for |
| 18126 | // friend templates because ActOnTag never produces a ClassTemplateDecl |
| 18127 | // for a TagUseKind::Friend. |
| 18128 | Declarator TheDeclarator(DS, ParsedAttributesView::none(), |
| 18129 | DeclaratorContext::Member); |
| 18130 | TypeSourceInfo *TSI = GetTypeForDeclarator(D&: TheDeclarator); |
| 18131 | QualType T = TSI->getType(); |
| 18132 | if (TheDeclarator.isInvalidType()) |
| 18133 | return nullptr; |
| 18134 | |
| 18135 | // If '...' is present, the type must contain an unexpanded parameter |
| 18136 | // pack, and vice versa. |
| 18137 | bool Invalid = false; |
| 18138 | if (EllipsisLoc.isInvalid() && |
| 18139 | DiagnoseUnexpandedParameterPack(Loc, T: TSI, UPPC: UPPC_FriendDeclaration)) |
| 18140 | return nullptr; |
| 18141 | if (EllipsisLoc.isValid() && |
| 18142 | !TSI->getType()->containsUnexpandedParameterPack()) { |
| 18143 | Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs) |
| 18144 | << TSI->getTypeLoc().getSourceRange(); |
| 18145 | Invalid = true; |
| 18146 | } |
| 18147 | |
| 18148 | if (!T->isElaboratedTypeSpecifier()) { |
| 18149 | if (TempParams.size()) { |
| 18150 | // C++23 [dcl.pre]p5: |
| 18151 | // In a simple-declaration, the optional init-declarator-list can be |
| 18152 | // omitted only when declaring a class or enumeration, that is, when |
| 18153 | // the decl-specifier-seq contains either a class-specifier, an |
| 18154 | // elaborated-type-specifier with a class-key, or an enum-specifier. |
| 18155 | // |
| 18156 | // The declaration of a template-declaration or explicit-specialization |
| 18157 | // is never a member-declaration, so this must be a simple-declaration |
| 18158 | // with no init-declarator-list. Therefore, this is ill-formed. |
| 18159 | Diag(Loc, diag::err_tagless_friend_type_template) << DS.getSourceRange(); |
| 18160 | return nullptr; |
| 18161 | } else if (const RecordDecl *RD = T->getAsRecordDecl()) { |
| 18162 | SmallString<16> InsertionText(" " ); |
| 18163 | InsertionText += RD->getKindName(); |
| 18164 | |
| 18165 | Diag(Loc, getLangOpts().CPlusPlus11 |
| 18166 | ? diag::warn_cxx98_compat_unelaborated_friend_type |
| 18167 | : diag::ext_unelaborated_friend_type) |
| 18168 | << (unsigned)RD->getTagKind() << T |
| 18169 | << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc), |
| 18170 | InsertionText); |
| 18171 | } else { |
| 18172 | DiagCompat(FriendLoc, diag_compat::nonclass_type_friend) |
| 18173 | << T << DS.getSourceRange(); |
| 18174 | } |
| 18175 | } |
| 18176 | |
| 18177 | // C++98 [class.friend]p1: A friend of a class is a function |
| 18178 | // or class that is not a member of the class . . . |
| 18179 | // This is fixed in DR77, which just barely didn't make the C++03 |
| 18180 | // deadline. It's also a very silly restriction that seriously |
| 18181 | // affects inner classes and which nobody else seems to implement; |
| 18182 | // thus we never diagnose it, not even in -pedantic. |
| 18183 | // |
| 18184 | // But note that we could warn about it: it's always useless to |
| 18185 | // friend one of your own members (it's not, however, worthless to |
| 18186 | // friend a member of an arbitrary specialization of your template). |
| 18187 | |
| 18188 | Decl *D; |
| 18189 | if (!TempParams.empty()) |
| 18190 | // TODO: Support variadic friend template decls? |
| 18191 | D = FriendTemplateDecl::Create(Context, DC: CurContext, Loc, Params: TempParams, Friend: TSI, |
| 18192 | FriendLoc); |
| 18193 | else |
| 18194 | D = FriendDecl::Create(C&: Context, DC: CurContext, L: TSI->getTypeLoc().getBeginLoc(), |
| 18195 | Friend_: TSI, FriendL: FriendLoc, EllipsisLoc); |
| 18196 | |
| 18197 | if (!D) |
| 18198 | return nullptr; |
| 18199 | |
| 18200 | D->setAccess(AS_public); |
| 18201 | CurContext->addDecl(D); |
| 18202 | |
| 18203 | if (Invalid) |
| 18204 | D->setInvalidDecl(); |
| 18205 | |
| 18206 | return D; |
| 18207 | } |
| 18208 | |
| 18209 | NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, |
| 18210 | MultiTemplateParamsArg TemplateParams) { |
| 18211 | const DeclSpec &DS = D.getDeclSpec(); |
| 18212 | |
| 18213 | assert(DS.isFriendSpecified()); |
| 18214 | assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified); |
| 18215 | |
| 18216 | SourceLocation Loc = D.getIdentifierLoc(); |
| 18217 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D); |
| 18218 | |
| 18219 | // C++ [class.friend]p1 |
| 18220 | // A friend of a class is a function or class.... |
| 18221 | // Note that this sees through typedefs, which is intended. |
| 18222 | // It *doesn't* see through dependent types, which is correct |
| 18223 | // according to [temp.arg.type]p3: |
| 18224 | // If a declaration acquires a function type through a |
| 18225 | // type dependent on a template-parameter and this causes |
| 18226 | // a declaration that does not use the syntactic form of a |
| 18227 | // function declarator to have a function type, the program |
| 18228 | // is ill-formed. |
| 18229 | if (!TInfo->getType()->isFunctionType()) { |
| 18230 | Diag(Loc, diag::err_unexpected_friend); |
| 18231 | |
| 18232 | // It might be worthwhile to try to recover by creating an |
| 18233 | // appropriate declaration. |
| 18234 | return nullptr; |
| 18235 | } |
| 18236 | |
| 18237 | // C++ [namespace.memdef]p3 |
| 18238 | // - If a friend declaration in a non-local class first declares a |
| 18239 | // class or function, the friend class or function is a member |
| 18240 | // of the innermost enclosing namespace. |
| 18241 | // - The name of the friend is not found by simple name lookup |
| 18242 | // until a matching declaration is provided in that namespace |
| 18243 | // scope (either before or after the class declaration granting |
| 18244 | // friendship). |
| 18245 | // - If a friend function is called, its name may be found by the |
| 18246 | // name lookup that considers functions from namespaces and |
| 18247 | // classes associated with the types of the function arguments. |
| 18248 | // - When looking for a prior declaration of a class or a function |
| 18249 | // declared as a friend, scopes outside the innermost enclosing |
| 18250 | // namespace scope are not considered. |
| 18251 | |
| 18252 | CXXScopeSpec &SS = D.getCXXScopeSpec(); |
| 18253 | DeclarationNameInfo NameInfo = GetNameForDeclarator(D); |
| 18254 | assert(NameInfo.getName()); |
| 18255 | |
| 18256 | // Check for unexpanded parameter packs. |
| 18257 | if (DiagnoseUnexpandedParameterPack(Loc, T: TInfo, UPPC: UPPC_FriendDeclaration) || |
| 18258 | DiagnoseUnexpandedParameterPack(NameInfo, UPPC: UPPC_FriendDeclaration) || |
| 18259 | DiagnoseUnexpandedParameterPack(SS, UPPC: UPPC_FriendDeclaration)) |
| 18260 | return nullptr; |
| 18261 | |
| 18262 | // The context we found the declaration in, or in which we should |
| 18263 | // create the declaration. |
| 18264 | DeclContext *DC; |
| 18265 | Scope *DCScope = S; |
| 18266 | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, |
| 18267 | RedeclarationKind::ForExternalRedeclaration); |
| 18268 | |
| 18269 | bool isTemplateId = D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId; |
| 18270 | |
| 18271 | // There are five cases here. |
| 18272 | // - There's no scope specifier and we're in a local class. Only look |
| 18273 | // for functions declared in the immediately-enclosing block scope. |
| 18274 | // We recover from invalid scope qualifiers as if they just weren't there. |
| 18275 | FunctionDecl *FunctionContainingLocalClass = nullptr; |
| 18276 | if ((SS.isInvalid() || !SS.isSet()) && |
| 18277 | (FunctionContainingLocalClass = |
| 18278 | cast<CXXRecordDecl>(Val: CurContext)->isLocalClass())) { |
| 18279 | // C++11 [class.friend]p11: |
| 18280 | // If a friend declaration appears in a local class and the name |
| 18281 | // specified is an unqualified name, a prior declaration is |
| 18282 | // looked up without considering scopes that are outside the |
| 18283 | // innermost enclosing non-class scope. For a friend function |
| 18284 | // declaration, if there is no prior declaration, the program is |
| 18285 | // ill-formed. |
| 18286 | |
| 18287 | // Find the innermost enclosing non-class scope. This is the block |
| 18288 | // scope containing the local class definition (or for a nested class, |
| 18289 | // the outer local class). |
| 18290 | DCScope = S->getFnParent(); |
| 18291 | |
| 18292 | // Look up the function name in the scope. |
| 18293 | Previous.clear(Kind: LookupLocalFriendName); |
| 18294 | LookupName(R&: Previous, S, /*AllowBuiltinCreation*/false); |
| 18295 | |
| 18296 | if (!Previous.empty()) { |
| 18297 | // All possible previous declarations must have the same context: |
| 18298 | // either they were declared at block scope or they are members of |
| 18299 | // one of the enclosing local classes. |
| 18300 | DC = Previous.getRepresentativeDecl()->getDeclContext(); |
| 18301 | } else { |
| 18302 | // This is ill-formed, but provide the context that we would have |
| 18303 | // declared the function in, if we were permitted to, for error recovery. |
| 18304 | DC = FunctionContainingLocalClass; |
| 18305 | } |
| 18306 | adjustContextForLocalExternDecl(DC); |
| 18307 | |
| 18308 | // - There's no scope specifier, in which case we just go to the |
| 18309 | // appropriate scope and look for a function or function template |
| 18310 | // there as appropriate. |
| 18311 | } else if (SS.isInvalid() || !SS.isSet()) { |
| 18312 | // C++11 [namespace.memdef]p3: |
| 18313 | // If the name in a friend declaration is neither qualified nor |
| 18314 | // a template-id and the declaration is a function or an |
| 18315 | // elaborated-type-specifier, the lookup to determine whether |
| 18316 | // the entity has been previously declared shall not consider |
| 18317 | // any scopes outside the innermost enclosing namespace. |
| 18318 | |
| 18319 | // Find the appropriate context according to the above. |
| 18320 | DC = CurContext; |
| 18321 | |
| 18322 | // Skip class contexts. If someone can cite chapter and verse |
| 18323 | // for this behavior, that would be nice --- it's what GCC and |
| 18324 | // EDG do, and it seems like a reasonable intent, but the spec |
| 18325 | // really only says that checks for unqualified existing |
| 18326 | // declarations should stop at the nearest enclosing namespace, |
| 18327 | // not that they should only consider the nearest enclosing |
| 18328 | // namespace. |
| 18329 | while (DC->isRecord()) |
| 18330 | DC = DC->getParent(); |
| 18331 | |
| 18332 | DeclContext *LookupDC = DC->getNonTransparentContext(); |
| 18333 | while (true) { |
| 18334 | LookupQualifiedName(R&: Previous, LookupCtx: LookupDC); |
| 18335 | |
| 18336 | if (!Previous.empty()) { |
| 18337 | DC = LookupDC; |
| 18338 | break; |
| 18339 | } |
| 18340 | |
| 18341 | if (isTemplateId) { |
| 18342 | if (isa<TranslationUnitDecl>(Val: LookupDC)) break; |
| 18343 | } else { |
| 18344 | if (LookupDC->isFileContext()) break; |
| 18345 | } |
| 18346 | LookupDC = LookupDC->getParent(); |
| 18347 | } |
| 18348 | |
| 18349 | DCScope = getScopeForDeclContext(S, DC); |
| 18350 | |
| 18351 | // - There's a non-dependent scope specifier, in which case we |
| 18352 | // compute it and do a previous lookup there for a function |
| 18353 | // or function template. |
| 18354 | } else if (!SS.getScopeRep()->isDependent()) { |
| 18355 | DC = computeDeclContext(SS); |
| 18356 | if (!DC) return nullptr; |
| 18357 | |
| 18358 | if (RequireCompleteDeclContext(SS, DC)) return nullptr; |
| 18359 | |
| 18360 | LookupQualifiedName(R&: Previous, LookupCtx: DC); |
| 18361 | |
| 18362 | // C++ [class.friend]p1: A friend of a class is a function or |
| 18363 | // class that is not a member of the class . . . |
| 18364 | if (DC->Equals(CurContext)) |
| 18365 | Diag(DS.getFriendSpecLoc(), |
| 18366 | getLangOpts().CPlusPlus11 ? |
| 18367 | diag::warn_cxx98_compat_friend_is_member : |
| 18368 | diag::err_friend_is_member); |
| 18369 | |
| 18370 | // - There's a scope specifier that does not match any template |
| 18371 | // parameter lists, in which case we use some arbitrary context, |
| 18372 | // create a method or method template, and wait for instantiation. |
| 18373 | // - There's a scope specifier that does match some template |
| 18374 | // parameter lists, which we don't handle right now. |
| 18375 | } else { |
| 18376 | DC = CurContext; |
| 18377 | assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?" ); |
| 18378 | } |
| 18379 | |
| 18380 | if (!DC->isRecord()) { |
| 18381 | int DiagArg = -1; |
| 18382 | switch (D.getName().getKind()) { |
| 18383 | case UnqualifiedIdKind::IK_ConstructorTemplateId: |
| 18384 | case UnqualifiedIdKind::IK_ConstructorName: |
| 18385 | DiagArg = 0; |
| 18386 | break; |
| 18387 | case UnqualifiedIdKind::IK_DestructorName: |
| 18388 | DiagArg = 1; |
| 18389 | break; |
| 18390 | case UnqualifiedIdKind::IK_ConversionFunctionId: |
| 18391 | DiagArg = 2; |
| 18392 | break; |
| 18393 | case UnqualifiedIdKind::IK_DeductionGuideName: |
| 18394 | DiagArg = 3; |
| 18395 | break; |
| 18396 | case UnqualifiedIdKind::IK_Identifier: |
| 18397 | case UnqualifiedIdKind::IK_ImplicitSelfParam: |
| 18398 | case UnqualifiedIdKind::IK_LiteralOperatorId: |
| 18399 | case UnqualifiedIdKind::IK_OperatorFunctionId: |
| 18400 | case UnqualifiedIdKind::IK_TemplateId: |
| 18401 | break; |
| 18402 | } |
| 18403 | // This implies that it has to be an operator or function. |
| 18404 | if (DiagArg >= 0) { |
| 18405 | Diag(Loc, diag::err_introducing_special_friend) << DiagArg; |
| 18406 | return nullptr; |
| 18407 | } |
| 18408 | } |
| 18409 | |
| 18410 | // FIXME: This is an egregious hack to cope with cases where the scope stack |
| 18411 | // does not contain the declaration context, i.e., in an out-of-line |
| 18412 | // definition of a class. |
| 18413 | Scope FakeDCScope(S, Scope::DeclScope, Diags); |
| 18414 | if (!DCScope) { |
| 18415 | FakeDCScope.setEntity(DC); |
| 18416 | DCScope = &FakeDCScope; |
| 18417 | } |
| 18418 | |
| 18419 | bool AddToScope = true; |
| 18420 | NamedDecl *ND = ActOnFunctionDeclarator(S: DCScope, D, DC, TInfo, Previous, |
| 18421 | TemplateParamLists: TemplateParams, AddToScope); |
| 18422 | if (!ND) return nullptr; |
| 18423 | |
| 18424 | assert(ND->getLexicalDeclContext() == CurContext); |
| 18425 | |
| 18426 | // If we performed typo correction, we might have added a scope specifier |
| 18427 | // and changed the decl context. |
| 18428 | DC = ND->getDeclContext(); |
| 18429 | |
| 18430 | // Add the function declaration to the appropriate lookup tables, |
| 18431 | // adjusting the redeclarations list as necessary. We don't |
| 18432 | // want to do this yet if the friending class is dependent. |
| 18433 | // |
| 18434 | // Also update the scope-based lookup if the target context's |
| 18435 | // lookup context is in lexical scope. |
| 18436 | if (!CurContext->isDependentContext()) { |
| 18437 | DC = DC->getRedeclContext(); |
| 18438 | DC->makeDeclVisibleInContext(D: ND); |
| 18439 | if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) |
| 18440 | PushOnScopeChains(D: ND, S: EnclosingScope, /*AddToContext=*/ false); |
| 18441 | } |
| 18442 | |
| 18443 | FriendDecl *FrD = FriendDecl::Create(C&: Context, DC: CurContext, |
| 18444 | L: D.getIdentifierLoc(), Friend_: ND, |
| 18445 | FriendL: DS.getFriendSpecLoc()); |
| 18446 | FrD->setAccess(AS_public); |
| 18447 | CurContext->addDecl(FrD); |
| 18448 | |
| 18449 | if (ND->isInvalidDecl()) { |
| 18450 | FrD->setInvalidDecl(); |
| 18451 | } else { |
| 18452 | if (DC->isRecord()) CheckFriendAccess(D: ND); |
| 18453 | |
| 18454 | FunctionDecl *FD; |
| 18455 | if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(Val: ND)) |
| 18456 | FD = FTD->getTemplatedDecl(); |
| 18457 | else |
| 18458 | FD = cast<FunctionDecl>(Val: ND); |
| 18459 | |
| 18460 | // C++ [class.friend]p6: |
| 18461 | // A function may be defined in a friend declaration of a class if and |
| 18462 | // only if the class is a non-local class, and the function name is |
| 18463 | // unqualified. |
| 18464 | if (D.isFunctionDefinition()) { |
| 18465 | // Qualified friend function definition. |
| 18466 | if (SS.isNotEmpty()) { |
| 18467 | // FIXME: We should only do this if the scope specifier names the |
| 18468 | // innermost enclosing namespace; otherwise the fixit changes the |
| 18469 | // meaning of the code. |
| 18470 | SemaDiagnosticBuilder DB = |
| 18471 | Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def); |
| 18472 | |
| 18473 | DB << SS.getScopeRep(); |
| 18474 | if (DC->isFileContext()) |
| 18475 | DB << FixItHint::CreateRemoval(RemoveRange: SS.getRange()); |
| 18476 | |
| 18477 | // Friend function defined in a local class. |
| 18478 | } else if (FunctionContainingLocalClass) { |
| 18479 | Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class); |
| 18480 | |
| 18481 | // Per [basic.pre]p4, a template-id is not a name. Therefore, if we have |
| 18482 | // a template-id, the function name is not unqualified because these is |
| 18483 | // no name. While the wording requires some reading in-between the |
| 18484 | // lines, GCC, MSVC, and EDG all consider a friend function |
| 18485 | // specialization definitions to be de facto explicit specialization |
| 18486 | // and diagnose them as such. |
| 18487 | } else if (isTemplateId) { |
| 18488 | Diag(NameInfo.getBeginLoc(), diag::err_friend_specialization_def); |
| 18489 | } |
| 18490 | } |
| 18491 | |
| 18492 | // C++11 [dcl.fct.default]p4: If a friend declaration specifies a |
| 18493 | // default argument expression, that declaration shall be a definition |
| 18494 | // and shall be the only declaration of the function or function |
| 18495 | // template in the translation unit. |
| 18496 | if (functionDeclHasDefaultArgument(FD)) { |
| 18497 | // We can't look at FD->getPreviousDecl() because it may not have been set |
| 18498 | // if we're in a dependent context. If the function is known to be a |
| 18499 | // redeclaration, we will have narrowed Previous down to the right decl. |
| 18500 | if (D.isRedeclaration()) { |
| 18501 | Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared); |
| 18502 | Diag(Previous.getRepresentativeDecl()->getLocation(), |
| 18503 | diag::note_previous_declaration); |
| 18504 | } else if (!D.isFunctionDefinition()) |
| 18505 | Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def); |
| 18506 | } |
| 18507 | |
| 18508 | // Mark templated-scope function declarations as unsupported. |
| 18509 | if (FD->getNumTemplateParameterLists() && SS.isValid()) { |
| 18510 | Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported) |
| 18511 | << SS.getScopeRep() << SS.getRange() |
| 18512 | << cast<CXXRecordDecl>(CurContext); |
| 18513 | FrD->setUnsupportedFriend(true); |
| 18514 | } |
| 18515 | } |
| 18516 | |
| 18517 | warnOnReservedIdentifier(D: ND); |
| 18518 | |
| 18519 | return ND; |
| 18520 | } |
| 18521 | |
| 18522 | void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc, |
| 18523 | StringLiteral *Message) { |
| 18524 | AdjustDeclIfTemplate(Decl&: Dcl); |
| 18525 | |
| 18526 | FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Val: Dcl); |
| 18527 | if (!Fn) { |
| 18528 | Diag(DelLoc, diag::err_deleted_non_function); |
| 18529 | return; |
| 18530 | } |
| 18531 | |
| 18532 | // Deleted function does not have a body. |
| 18533 | Fn->setWillHaveBody(false); |
| 18534 | |
| 18535 | if (const FunctionDecl *Prev = Fn->getPreviousDecl()) { |
| 18536 | // Don't consider the implicit declaration we generate for explicit |
| 18537 | // specializations. FIXME: Do not generate these implicit declarations. |
| 18538 | if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization || |
| 18539 | Prev->getPreviousDecl()) && |
| 18540 | !Prev->isDefined()) { |
| 18541 | Diag(DelLoc, diag::err_deleted_decl_not_first); |
| 18542 | Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(), |
| 18543 | Prev->isImplicit() ? diag::note_previous_implicit_declaration |
| 18544 | : diag::note_previous_declaration); |
| 18545 | // We can't recover from this; the declaration might have already |
| 18546 | // been used. |
| 18547 | Fn->setInvalidDecl(); |
| 18548 | return; |
| 18549 | } |
| 18550 | |
| 18551 | // To maintain the invariant that functions are only deleted on their first |
| 18552 | // declaration, mark the implicitly-instantiated declaration of the |
| 18553 | // explicitly-specialized function as deleted instead of marking the |
| 18554 | // instantiated redeclaration. |
| 18555 | Fn = Fn->getCanonicalDecl(); |
| 18556 | } |
| 18557 | |
| 18558 | // dllimport/dllexport cannot be deleted. |
| 18559 | if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) { |
| 18560 | Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr; |
| 18561 | Fn->setInvalidDecl(); |
| 18562 | } |
| 18563 | |
| 18564 | // C++11 [basic.start.main]p3: |
| 18565 | // A program that defines main as deleted [...] is ill-formed. |
| 18566 | if (Fn->isMain()) |
| 18567 | Diag(DelLoc, diag::err_deleted_main); |
| 18568 | |
| 18569 | // C++11 [dcl.fct.def.delete]p4: |
| 18570 | // A deleted function is implicitly inline. |
| 18571 | Fn->setImplicitlyInline(); |
| 18572 | Fn->setDeletedAsWritten(D: true, Message); |
| 18573 | } |
| 18574 | |
| 18575 | void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) { |
| 18576 | if (!Dcl || Dcl->isInvalidDecl()) |
| 18577 | return; |
| 18578 | |
| 18579 | auto *FD = dyn_cast<FunctionDecl>(Val: Dcl); |
| 18580 | if (!FD) { |
| 18581 | if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Val: Dcl)) { |
| 18582 | if (getDefaultedFunctionKind(FD: FTD->getTemplatedDecl()).isComparison()) { |
| 18583 | Diag(DefaultLoc, diag::err_defaulted_comparison_template); |
| 18584 | return; |
| 18585 | } |
| 18586 | } |
| 18587 | |
| 18588 | Diag(DefaultLoc, diag::err_default_special_members) |
| 18589 | << getLangOpts().CPlusPlus20; |
| 18590 | return; |
| 18591 | } |
| 18592 | |
| 18593 | // Reject if this can't possibly be a defaultable function. |
| 18594 | DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD); |
| 18595 | if (!DefKind && |
| 18596 | // A dependent function that doesn't locally look defaultable can |
| 18597 | // still instantiate to a defaultable function if it's a constructor |
| 18598 | // or assignment operator. |
| 18599 | (!FD->isDependentContext() || |
| 18600 | (!isa<CXXConstructorDecl>(Val: FD) && |
| 18601 | FD->getDeclName().getCXXOverloadedOperator() != OO_Equal))) { |
| 18602 | Diag(DefaultLoc, diag::err_default_special_members) |
| 18603 | << getLangOpts().CPlusPlus20; |
| 18604 | return; |
| 18605 | } |
| 18606 | |
| 18607 | // Issue compatibility warning. We already warned if the operator is |
| 18608 | // 'operator<=>' when parsing the '<=>' token. |
| 18609 | if (DefKind.isComparison() && |
| 18610 | DefKind.asComparison() != DefaultedComparisonKind::ThreeWay) { |
| 18611 | Diag(DefaultLoc, getLangOpts().CPlusPlus20 |
| 18612 | ? diag::warn_cxx17_compat_defaulted_comparison |
| 18613 | : diag::ext_defaulted_comparison); |
| 18614 | } |
| 18615 | |
| 18616 | FD->setDefaulted(); |
| 18617 | FD->setExplicitlyDefaulted(); |
| 18618 | FD->setDefaultLoc(DefaultLoc); |
| 18619 | |
| 18620 | // Defer checking functions that are defaulted in a dependent context. |
| 18621 | if (FD->isDependentContext()) |
| 18622 | return; |
| 18623 | |
| 18624 | // Unset that we will have a body for this function. We might not, |
| 18625 | // if it turns out to be trivial, and we don't need this marking now |
| 18626 | // that we've marked it as defaulted. |
| 18627 | FD->setWillHaveBody(false); |
| 18628 | |
| 18629 | if (DefKind.isComparison()) { |
| 18630 | // If this comparison's defaulting occurs within the definition of its |
| 18631 | // lexical class context, we have to do the checking when complete. |
| 18632 | if (auto const *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext())) |
| 18633 | if (!RD->isCompleteDefinition()) |
| 18634 | return; |
| 18635 | } |
| 18636 | |
| 18637 | // If this member fn was defaulted on its first declaration, we will have |
| 18638 | // already performed the checking in CheckCompletedCXXClass. Such a |
| 18639 | // declaration doesn't trigger an implicit definition. |
| 18640 | if (isa<CXXMethodDecl>(Val: FD)) { |
| 18641 | const FunctionDecl *Primary = FD; |
| 18642 | if (const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) |
| 18643 | // Ask the template instantiation pattern that actually had the |
| 18644 | // '= default' on it. |
| 18645 | Primary = Pattern; |
| 18646 | if (Primary->getCanonicalDecl()->isDefaulted()) |
| 18647 | return; |
| 18648 | } |
| 18649 | |
| 18650 | if (DefKind.isComparison()) { |
| 18651 | if (CheckExplicitlyDefaultedComparison(S: nullptr, FD, DCK: DefKind.asComparison())) |
| 18652 | FD->setInvalidDecl(); |
| 18653 | else |
| 18654 | DefineDefaultedComparison(UseLoc: DefaultLoc, FD, DCK: DefKind.asComparison()); |
| 18655 | } else { |
| 18656 | auto *MD = cast<CXXMethodDecl>(Val: FD); |
| 18657 | |
| 18658 | if (CheckExplicitlyDefaultedSpecialMember(MD, CSM: DefKind.asSpecialMember(), |
| 18659 | DefaultLoc)) |
| 18660 | MD->setInvalidDecl(); |
| 18661 | else |
| 18662 | DefineDefaultedFunction(*this, MD, DefaultLoc); |
| 18663 | } |
| 18664 | } |
| 18665 | |
| 18666 | static void SearchForReturnInStmt(Sema &Self, Stmt *S) { |
| 18667 | for (Stmt *SubStmt : S->children()) { |
| 18668 | if (!SubStmt) |
| 18669 | continue; |
| 18670 | if (isa<ReturnStmt>(SubStmt)) |
| 18671 | Self.Diag(SubStmt->getBeginLoc(), |
| 18672 | diag::err_return_in_constructor_handler); |
| 18673 | if (!isa<Expr>(Val: SubStmt)) |
| 18674 | SearchForReturnInStmt(Self, S: SubStmt); |
| 18675 | } |
| 18676 | } |
| 18677 | |
| 18678 | void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { |
| 18679 | for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { |
| 18680 | CXXCatchStmt *Handler = TryBlock->getHandler(i: I); |
| 18681 | SearchForReturnInStmt(Self&: *this, S: Handler); |
| 18682 | } |
| 18683 | } |
| 18684 | |
| 18685 | void Sema::SetFunctionBodyKind(Decl *D, SourceLocation Loc, FnBodyKind BodyKind, |
| 18686 | StringLiteral *DeletedMessage) { |
| 18687 | switch (BodyKind) { |
| 18688 | case FnBodyKind::Delete: |
| 18689 | SetDeclDeleted(Dcl: D, DelLoc: Loc, Message: DeletedMessage); |
| 18690 | break; |
| 18691 | case FnBodyKind::Default: |
| 18692 | SetDeclDefaulted(Dcl: D, DefaultLoc: Loc); |
| 18693 | break; |
| 18694 | case FnBodyKind::Other: |
| 18695 | llvm_unreachable( |
| 18696 | "Parsed function body should be '= delete;' or '= default;'" ); |
| 18697 | } |
| 18698 | } |
| 18699 | |
| 18700 | bool Sema::CheckOverridingFunctionAttributes(CXXMethodDecl *New, |
| 18701 | const CXXMethodDecl *Old) { |
| 18702 | const auto *NewFT = New->getType()->castAs<FunctionProtoType>(); |
| 18703 | const auto *OldFT = Old->getType()->castAs<FunctionProtoType>(); |
| 18704 | |
| 18705 | if (OldFT->hasExtParameterInfos()) { |
| 18706 | for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I) |
| 18707 | // A parameter of the overriding method should be annotated with noescape |
| 18708 | // if the corresponding parameter of the overridden method is annotated. |
| 18709 | if (OldFT->getExtParameterInfo(I).isNoEscape() && |
| 18710 | !NewFT->getExtParameterInfo(I).isNoEscape()) { |
| 18711 | Diag(New->getParamDecl(I)->getLocation(), |
| 18712 | diag::warn_overriding_method_missing_noescape); |
| 18713 | Diag(Old->getParamDecl(I)->getLocation(), |
| 18714 | diag::note_overridden_marked_noescape); |
| 18715 | } |
| 18716 | } |
| 18717 | |
| 18718 | // SME attributes must match when overriding a function declaration. |
| 18719 | if (IsInvalidSMECallConversion(FromType: Old->getType(), ToType: New->getType())) { |
| 18720 | Diag(New->getLocation(), diag::err_conflicting_overriding_attributes) |
| 18721 | << New << New->getType() << Old->getType(); |
| 18722 | Diag(Old->getLocation(), diag::note_overridden_virtual_function); |
| 18723 | return true; |
| 18724 | } |
| 18725 | |
| 18726 | // Virtual overrides must have the same code_seg. |
| 18727 | const auto *OldCSA = Old->getAttr<CodeSegAttr>(); |
| 18728 | const auto *NewCSA = New->getAttr<CodeSegAttr>(); |
| 18729 | if ((NewCSA || OldCSA) && |
| 18730 | (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) { |
| 18731 | Diag(New->getLocation(), diag::err_mismatched_code_seg_override); |
| 18732 | Diag(Old->getLocation(), diag::note_previous_declaration); |
| 18733 | return true; |
| 18734 | } |
| 18735 | |
| 18736 | // Virtual overrides: check for matching effects. |
| 18737 | if (Context.hasAnyFunctionEffects()) { |
| 18738 | const auto OldFX = Old->getFunctionEffects(); |
| 18739 | const auto NewFXOrig = New->getFunctionEffects(); |
| 18740 | |
| 18741 | if (OldFX != NewFXOrig) { |
| 18742 | FunctionEffectSet NewFX(NewFXOrig); |
| 18743 | const auto Diffs = FunctionEffectDiffVector(OldFX, NewFX); |
| 18744 | FunctionEffectSet::Conflicts Errs; |
| 18745 | for (const auto &Diff : Diffs) { |
| 18746 | switch (Diff.shouldDiagnoseMethodOverride(*Old, OldFX, *New, NewFX)) { |
| 18747 | case FunctionEffectDiff::OverrideResult::NoAction: |
| 18748 | break; |
| 18749 | case FunctionEffectDiff::OverrideResult::Warn: |
| 18750 | Diag(New->getLocation(), diag::warn_mismatched_func_effect_override) |
| 18751 | << Diff.effectName(); |
| 18752 | Diag(Old->getLocation(), diag::note_overridden_virtual_function) |
| 18753 | << Old->getReturnTypeSourceRange(); |
| 18754 | break; |
| 18755 | case FunctionEffectDiff::OverrideResult::Merge: { |
| 18756 | NewFX.insert(Diff.Old.value(), Errs); |
| 18757 | const auto *NewFT = New->getType()->castAs<FunctionProtoType>(); |
| 18758 | FunctionProtoType::ExtProtoInfo EPI = NewFT->getExtProtoInfo(); |
| 18759 | EPI.FunctionEffects = FunctionEffectsRef(NewFX); |
| 18760 | QualType ModQT = Context.getFunctionType(NewFT->getReturnType(), |
| 18761 | NewFT->getParamTypes(), EPI); |
| 18762 | New->setType(ModQT); |
| 18763 | break; |
| 18764 | } |
| 18765 | } |
| 18766 | } |
| 18767 | if (!Errs.empty()) |
| 18768 | diagnoseFunctionEffectMergeConflicts(Errs, New->getLocation(), |
| 18769 | Old->getLocation()); |
| 18770 | } |
| 18771 | } |
| 18772 | |
| 18773 | CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv(); |
| 18774 | |
| 18775 | // If the calling conventions match, everything is fine |
| 18776 | if (NewCC == OldCC) |
| 18777 | return false; |
| 18778 | |
| 18779 | // If the calling conventions mismatch because the new function is static, |
| 18780 | // suppress the calling convention mismatch error; the error about static |
| 18781 | // function override (err_static_overrides_virtual from |
| 18782 | // Sema::CheckFunctionDeclaration) is more clear. |
| 18783 | if (New->getStorageClass() == SC_Static) |
| 18784 | return false; |
| 18785 | |
| 18786 | Diag(New->getLocation(), |
| 18787 | diag::err_conflicting_overriding_cc_attributes) |
| 18788 | << New->getDeclName() << New->getType() << Old->getType(); |
| 18789 | Diag(Old->getLocation(), diag::note_overridden_virtual_function); |
| 18790 | return true; |
| 18791 | } |
| 18792 | |
| 18793 | bool Sema::CheckExplicitObjectOverride(CXXMethodDecl *New, |
| 18794 | const CXXMethodDecl *Old) { |
| 18795 | // CWG2553 |
| 18796 | // A virtual function shall not be an explicit object member function. |
| 18797 | if (!New->isExplicitObjectMemberFunction()) |
| 18798 | return true; |
| 18799 | Diag(New->getParamDecl(0)->getBeginLoc(), |
| 18800 | diag::err_explicit_object_parameter_nonmember) |
| 18801 | << New->getSourceRange() << /*virtual*/ 1 << /*IsLambda*/ false; |
| 18802 | Diag(Old->getLocation(), diag::note_overridden_virtual_function); |
| 18803 | New->setInvalidDecl(); |
| 18804 | return false; |
| 18805 | } |
| 18806 | |
| 18807 | bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New, |
| 18808 | const CXXMethodDecl *Old) { |
| 18809 | QualType NewTy = New->getType()->castAs<FunctionType>()->getReturnType(); |
| 18810 | QualType OldTy = Old->getType()->castAs<FunctionType>()->getReturnType(); |
| 18811 | |
| 18812 | if (Context.hasSameType(T1: NewTy, T2: OldTy) || |
| 18813 | NewTy->isDependentType() || OldTy->isDependentType()) |
| 18814 | return false; |
| 18815 | |
| 18816 | // Check if the return types are covariant |
| 18817 | QualType NewClassTy, OldClassTy; |
| 18818 | |
| 18819 | /// Both types must be pointers or references to classes. |
| 18820 | if (const PointerType *NewPT = NewTy->getAs<PointerType>()) { |
| 18821 | if (const PointerType *OldPT = OldTy->getAs<PointerType>()) { |
| 18822 | NewClassTy = NewPT->getPointeeType(); |
| 18823 | OldClassTy = OldPT->getPointeeType(); |
| 18824 | } |
| 18825 | } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) { |
| 18826 | if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) { |
| 18827 | if (NewRT->getTypeClass() == OldRT->getTypeClass()) { |
| 18828 | NewClassTy = NewRT->getPointeeType(); |
| 18829 | OldClassTy = OldRT->getPointeeType(); |
| 18830 | } |
| 18831 | } |
| 18832 | } |
| 18833 | |
| 18834 | // The return types aren't either both pointers or references to a class type. |
| 18835 | if (NewClassTy.isNull() || !NewClassTy->isStructureOrClassType()) { |
| 18836 | Diag(New->getLocation(), |
| 18837 | diag::err_different_return_type_for_overriding_virtual_function) |
| 18838 | << New->getDeclName() << NewTy << OldTy |
| 18839 | << New->getReturnTypeSourceRange(); |
| 18840 | Diag(Old->getLocation(), diag::note_overridden_virtual_function) |
| 18841 | << Old->getReturnTypeSourceRange(); |
| 18842 | |
| 18843 | return true; |
| 18844 | } |
| 18845 | |
| 18846 | if (!Context.hasSameUnqualifiedType(T1: NewClassTy, T2: OldClassTy)) { |
| 18847 | // C++14 [class.virtual]p8: |
| 18848 | // If the class type in the covariant return type of D::f differs from |
| 18849 | // that of B::f, the class type in the return type of D::f shall be |
| 18850 | // complete at the point of declaration of D::f or shall be the class |
| 18851 | // type D. |
| 18852 | if (const RecordType *RT = NewClassTy->getAs<RecordType>()) { |
| 18853 | if (!RT->isBeingDefined() && |
| 18854 | RequireCompleteType(New->getLocation(), NewClassTy, |
| 18855 | diag::err_covariant_return_incomplete, |
| 18856 | New->getDeclName())) |
| 18857 | return true; |
| 18858 | } |
| 18859 | |
| 18860 | // Check if the new class derives from the old class. |
| 18861 | if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) { |
| 18862 | Diag(New->getLocation(), diag::err_covariant_return_not_derived) |
| 18863 | << New->getDeclName() << NewTy << OldTy |
| 18864 | << New->getReturnTypeSourceRange(); |
| 18865 | Diag(Old->getLocation(), diag::note_overridden_virtual_function) |
| 18866 | << Old->getReturnTypeSourceRange(); |
| 18867 | return true; |
| 18868 | } |
| 18869 | |
| 18870 | // Check if we the conversion from derived to base is valid. |
| 18871 | if (CheckDerivedToBaseConversion( |
| 18872 | NewClassTy, OldClassTy, |
| 18873 | diag::err_covariant_return_inaccessible_base, |
| 18874 | diag::err_covariant_return_ambiguous_derived_to_base_conv, |
| 18875 | New->getLocation(), New->getReturnTypeSourceRange(), |
| 18876 | New->getDeclName(), nullptr)) { |
| 18877 | // FIXME: this note won't trigger for delayed access control |
| 18878 | // diagnostics, and it's impossible to get an undelayed error |
| 18879 | // here from access control during the original parse because |
| 18880 | // the ParsingDeclSpec/ParsingDeclarator are still in scope. |
| 18881 | Diag(Old->getLocation(), diag::note_overridden_virtual_function) |
| 18882 | << Old->getReturnTypeSourceRange(); |
| 18883 | return true; |
| 18884 | } |
| 18885 | } |
| 18886 | |
| 18887 | // The qualifiers of the return types must be the same. |
| 18888 | if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) { |
| 18889 | Diag(New->getLocation(), |
| 18890 | diag::err_covariant_return_type_different_qualifications) |
| 18891 | << New->getDeclName() << NewTy << OldTy |
| 18892 | << New->getReturnTypeSourceRange(); |
| 18893 | Diag(Old->getLocation(), diag::note_overridden_virtual_function) |
| 18894 | << Old->getReturnTypeSourceRange(); |
| 18895 | return true; |
| 18896 | } |
| 18897 | |
| 18898 | |
| 18899 | // The new class type must have the same or less qualifiers as the old type. |
| 18900 | if (!OldClassTy.isAtLeastAsQualifiedAs(other: NewClassTy, Ctx: getASTContext())) { |
| 18901 | Diag(New->getLocation(), |
| 18902 | diag::err_covariant_return_type_class_type_not_same_or_less_qualified) |
| 18903 | << New->getDeclName() << NewTy << OldTy |
| 18904 | << New->getReturnTypeSourceRange(); |
| 18905 | Diag(Old->getLocation(), diag::note_overridden_virtual_function) |
| 18906 | << Old->getReturnTypeSourceRange(); |
| 18907 | return true; |
| 18908 | } |
| 18909 | |
| 18910 | return false; |
| 18911 | } |
| 18912 | |
| 18913 | bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) { |
| 18914 | SourceLocation EndLoc = InitRange.getEnd(); |
| 18915 | if (EndLoc.isValid()) |
| 18916 | Method->setRangeEnd(EndLoc); |
| 18917 | |
| 18918 | if (Method->isVirtual() || Method->getParent()->isDependentContext()) { |
| 18919 | Method->setIsPureVirtual(); |
| 18920 | return false; |
| 18921 | } |
| 18922 | |
| 18923 | if (!Method->isInvalidDecl()) |
| 18924 | Diag(Method->getLocation(), diag::err_non_virtual_pure) |
| 18925 | << Method->getDeclName() << InitRange; |
| 18926 | return true; |
| 18927 | } |
| 18928 | |
| 18929 | void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) { |
| 18930 | if (D->getFriendObjectKind()) |
| 18931 | Diag(D->getLocation(), diag::err_pure_friend); |
| 18932 | else if (auto *M = dyn_cast<CXXMethodDecl>(Val: D)) |
| 18933 | CheckPureMethod(Method: M, InitRange: ZeroLoc); |
| 18934 | else |
| 18935 | Diag(D->getLocation(), diag::err_illegal_initializer); |
| 18936 | } |
| 18937 | |
| 18938 | /// Invoked when we are about to parse an initializer for the declaration |
| 18939 | /// 'Dcl'. |
| 18940 | /// |
| 18941 | /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a |
| 18942 | /// static data member of class X, names should be looked up in the scope of |
| 18943 | /// class X. If the declaration had a scope specifier, a scope will have |
| 18944 | /// been created and passed in for this purpose. Otherwise, S will be null. |
| 18945 | void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) { |
| 18946 | assert(D && !D->isInvalidDecl()); |
| 18947 | |
| 18948 | // We will always have a nested name specifier here, but this declaration |
| 18949 | // might not be out of line if the specifier names the current namespace: |
| 18950 | // extern int n; |
| 18951 | // int ::n = 0; |
| 18952 | if (S && D->isOutOfLine()) |
| 18953 | EnterDeclaratorContext(S, DC: D->getDeclContext()); |
| 18954 | |
| 18955 | PushExpressionEvaluationContext( |
| 18956 | NewContext: ExpressionEvaluationContext::PotentiallyEvaluated, LambdaContextDecl: D); |
| 18957 | } |
| 18958 | |
| 18959 | void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) { |
| 18960 | assert(D); |
| 18961 | |
| 18962 | if (S && D->isOutOfLine()) |
| 18963 | ExitDeclaratorContext(S); |
| 18964 | |
| 18965 | if (getLangOpts().CPlusPlus23) { |
| 18966 | // An expression or conversion is 'manifestly constant-evaluated' if it is: |
| 18967 | // [...] |
| 18968 | // - the initializer of a variable that is usable in constant expressions or |
| 18969 | // has constant initialization. |
| 18970 | if (auto *VD = dyn_cast<VarDecl>(Val: D); |
| 18971 | VD && (VD->isUsableInConstantExpressions(C: Context) || |
| 18972 | VD->hasConstantInitialization())) { |
| 18973 | // An expression or conversion is in an 'immediate function context' if it |
| 18974 | // is potentially evaluated and either: |
| 18975 | // [...] |
| 18976 | // - it is a subexpression of a manifestly constant-evaluated expression |
| 18977 | // or conversion. |
| 18978 | ExprEvalContexts.back().InImmediateFunctionContext = true; |
| 18979 | } |
| 18980 | } |
| 18981 | |
| 18982 | // Unless the initializer is in an immediate function context (as determined |
| 18983 | // above), this will evaluate all contained immediate function calls as |
| 18984 | // constant expressions. If the initializer IS an immediate function context, |
| 18985 | // the initializer has been determined to be a constant expression, and all |
| 18986 | // such evaluations will be elided (i.e., as if we "knew the whole time" that |
| 18987 | // it was a constant expression). |
| 18988 | PopExpressionEvaluationContext(); |
| 18989 | } |
| 18990 | |
| 18991 | DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) { |
| 18992 | // C++ 6.4p2: |
| 18993 | // The declarator shall not specify a function or an array. |
| 18994 | // The type-specifier-seq shall not contain typedef and shall not declare a |
| 18995 | // new class or enumeration. |
| 18996 | assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && |
| 18997 | "Parser allowed 'typedef' as storage class of condition decl." ); |
| 18998 | |
| 18999 | Decl *Dcl = ActOnDeclarator(S, D); |
| 19000 | if (!Dcl) |
| 19001 | return true; |
| 19002 | |
| 19003 | if (isa<FunctionDecl>(Val: Dcl)) { // The declarator shall not specify a function. |
| 19004 | Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type) |
| 19005 | << D.getSourceRange(); |
| 19006 | return true; |
| 19007 | } |
| 19008 | |
| 19009 | if (auto *VD = dyn_cast<VarDecl>(Val: Dcl)) |
| 19010 | VD->setCXXCondDecl(); |
| 19011 | |
| 19012 | return Dcl; |
| 19013 | } |
| 19014 | |
| 19015 | void Sema::LoadExternalVTableUses() { |
| 19016 | if (!ExternalSource) |
| 19017 | return; |
| 19018 | |
| 19019 | SmallVector<ExternalVTableUse, 4> VTables; |
| 19020 | ExternalSource->ReadUsedVTables(VTables); |
| 19021 | SmallVector<VTableUse, 4> NewUses; |
| 19022 | for (unsigned I = 0, N = VTables.size(); I != N; ++I) { |
| 19023 | llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos |
| 19024 | = VTablesUsed.find(Val: VTables[I].Record); |
| 19025 | // Even if a definition wasn't required before, it may be required now. |
| 19026 | if (Pos != VTablesUsed.end()) { |
| 19027 | if (!Pos->second && VTables[I].DefinitionRequired) |
| 19028 | Pos->second = true; |
| 19029 | continue; |
| 19030 | } |
| 19031 | |
| 19032 | VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired; |
| 19033 | NewUses.push_back(Elt: VTableUse(VTables[I].Record, VTables[I].Location)); |
| 19034 | } |
| 19035 | |
| 19036 | VTableUses.insert(I: VTableUses.begin(), From: NewUses.begin(), To: NewUses.end()); |
| 19037 | } |
| 19038 | |
| 19039 | void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class, |
| 19040 | bool DefinitionRequired) { |
| 19041 | // Ignore any vtable uses in unevaluated operands or for classes that do |
| 19042 | // not have a vtable. |
| 19043 | if (!Class->isDynamicClass() || Class->isDependentContext() || |
| 19044 | CurContext->isDependentContext() || isUnevaluatedContext()) |
| 19045 | return; |
| 19046 | // Do not mark as used if compiling for the device outside of the target |
| 19047 | // region. |
| 19048 | if (TUKind != TU_Prefix && LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice && |
| 19049 | !OpenMP().isInOpenMPDeclareTargetContext() && |
| 19050 | !OpenMP().isInOpenMPTargetExecutionDirective()) { |
| 19051 | if (!DefinitionRequired) |
| 19052 | MarkVirtualMembersReferenced(Loc, RD: Class); |
| 19053 | return; |
| 19054 | } |
| 19055 | |
| 19056 | // Try to insert this class into the map. |
| 19057 | LoadExternalVTableUses(); |
| 19058 | Class = Class->getCanonicalDecl(); |
| 19059 | std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool> |
| 19060 | Pos = VTablesUsed.insert(KV: std::make_pair(x&: Class, y&: DefinitionRequired)); |
| 19061 | if (!Pos.second) { |
| 19062 | // If we already had an entry, check to see if we are promoting this vtable |
| 19063 | // to require a definition. If so, we need to reappend to the VTableUses |
| 19064 | // list, since we may have already processed the first entry. |
| 19065 | if (DefinitionRequired && !Pos.first->second) { |
| 19066 | Pos.first->second = true; |
| 19067 | } else { |
| 19068 | // Otherwise, we can early exit. |
| 19069 | return; |
| 19070 | } |
| 19071 | } else { |
| 19072 | // The Microsoft ABI requires that we perform the destructor body |
| 19073 | // checks (i.e. operator delete() lookup) when the vtable is marked used, as |
| 19074 | // the deleting destructor is emitted with the vtable, not with the |
| 19075 | // destructor definition as in the Itanium ABI. |
| 19076 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { |
| 19077 | CXXDestructorDecl *DD = Class->getDestructor(); |
| 19078 | if (DD && DD->isVirtual() && !DD->isDeleted()) { |
| 19079 | if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) { |
| 19080 | // If this is an out-of-line declaration, marking it referenced will |
| 19081 | // not do anything. Manually call CheckDestructor to look up operator |
| 19082 | // delete(). |
| 19083 | ContextRAII SavedContext(*this, DD); |
| 19084 | CheckDestructor(Destructor: DD); |
| 19085 | } else { |
| 19086 | MarkFunctionReferenced(Loc, Class->getDestructor()); |
| 19087 | } |
| 19088 | } |
| 19089 | } |
| 19090 | } |
| 19091 | |
| 19092 | // Local classes need to have their virtual members marked |
| 19093 | // immediately. For all other classes, we mark their virtual members |
| 19094 | // at the end of the translation unit. |
| 19095 | if (Class->isLocalClass()) |
| 19096 | MarkVirtualMembersReferenced(Loc, RD: Class->getDefinition()); |
| 19097 | else |
| 19098 | VTableUses.push_back(Elt: std::make_pair(x&: Class, y&: Loc)); |
| 19099 | } |
| 19100 | |
| 19101 | bool Sema::DefineUsedVTables() { |
| 19102 | LoadExternalVTableUses(); |
| 19103 | if (VTableUses.empty()) |
| 19104 | return false; |
| 19105 | |
| 19106 | // Note: The VTableUses vector could grow as a result of marking |
| 19107 | // the members of a class as "used", so we check the size each |
| 19108 | // time through the loop and prefer indices (which are stable) to |
| 19109 | // iterators (which are not). |
| 19110 | bool DefinedAnything = false; |
| 19111 | for (unsigned I = 0; I != VTableUses.size(); ++I) { |
| 19112 | CXXRecordDecl *Class = VTableUses[I].first->getDefinition(); |
| 19113 | if (!Class) |
| 19114 | continue; |
| 19115 | TemplateSpecializationKind ClassTSK = |
| 19116 | Class->getTemplateSpecializationKind(); |
| 19117 | |
| 19118 | SourceLocation Loc = VTableUses[I].second; |
| 19119 | |
| 19120 | bool DefineVTable = true; |
| 19121 | |
| 19122 | const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(RD: Class); |
| 19123 | // V-tables for non-template classes with an owning module are always |
| 19124 | // uniquely emitted in that module. |
| 19125 | if (Class->isInCurrentModuleUnit()) { |
| 19126 | DefineVTable = true; |
| 19127 | } else if (KeyFunction && !KeyFunction->hasBody()) { |
| 19128 | // If this class has a key function, but that key function is |
| 19129 | // defined in another translation unit, we don't need to emit the |
| 19130 | // vtable even though we're using it. |
| 19131 | // The key function is in another translation unit. |
| 19132 | DefineVTable = false; |
| 19133 | TemplateSpecializationKind TSK = |
| 19134 | KeyFunction->getTemplateSpecializationKind(); |
| 19135 | assert(TSK != TSK_ExplicitInstantiationDefinition && |
| 19136 | TSK != TSK_ImplicitInstantiation && |
| 19137 | "Instantiations don't have key functions" ); |
| 19138 | (void)TSK; |
| 19139 | } else if (!KeyFunction) { |
| 19140 | // If we have a class with no key function that is the subject |
| 19141 | // of an explicit instantiation declaration, suppress the |
| 19142 | // vtable; it will live with the explicit instantiation |
| 19143 | // definition. |
| 19144 | bool IsExplicitInstantiationDeclaration = |
| 19145 | ClassTSK == TSK_ExplicitInstantiationDeclaration; |
| 19146 | for (auto *R : Class->redecls()) { |
| 19147 | TemplateSpecializationKind TSK |
| 19148 | = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind(); |
| 19149 | if (TSK == TSK_ExplicitInstantiationDeclaration) |
| 19150 | IsExplicitInstantiationDeclaration = true; |
| 19151 | else if (TSK == TSK_ExplicitInstantiationDefinition) { |
| 19152 | IsExplicitInstantiationDeclaration = false; |
| 19153 | break; |
| 19154 | } |
| 19155 | } |
| 19156 | |
| 19157 | if (IsExplicitInstantiationDeclaration) |
| 19158 | DefineVTable = false; |
| 19159 | } |
| 19160 | |
| 19161 | // The exception specifications for all virtual members may be needed even |
| 19162 | // if we are not providing an authoritative form of the vtable in this TU. |
| 19163 | // We may choose to emit it available_externally anyway. |
| 19164 | if (!DefineVTable) { |
| 19165 | MarkVirtualMemberExceptionSpecsNeeded(Loc, RD: Class); |
| 19166 | continue; |
| 19167 | } |
| 19168 | |
| 19169 | // Mark all of the virtual members of this class as referenced, so |
| 19170 | // that we can build a vtable. Then, tell the AST consumer that a |
| 19171 | // vtable for this class is required. |
| 19172 | DefinedAnything = true; |
| 19173 | MarkVirtualMembersReferenced(Loc, RD: Class); |
| 19174 | CXXRecordDecl *Canonical = Class->getCanonicalDecl(); |
| 19175 | if (VTablesUsed[Canonical] && !Class->shouldEmitInExternalSource()) |
| 19176 | Consumer.HandleVTable(RD: Class); |
| 19177 | |
| 19178 | // Warn if we're emitting a weak vtable. The vtable will be weak if there is |
| 19179 | // no key function or the key function is inlined. Don't warn in C++ ABIs |
| 19180 | // that lack key functions, since the user won't be able to make one. |
| 19181 | if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() && |
| 19182 | Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation && |
| 19183 | ClassTSK != TSK_ExplicitInstantiationDefinition) { |
| 19184 | const FunctionDecl *KeyFunctionDef = nullptr; |
| 19185 | if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) && |
| 19186 | KeyFunctionDef->isInlined())) |
| 19187 | Diag(Class->getLocation(), diag::warn_weak_vtable) << Class; |
| 19188 | } |
| 19189 | } |
| 19190 | VTableUses.clear(); |
| 19191 | |
| 19192 | return DefinedAnything; |
| 19193 | } |
| 19194 | |
| 19195 | void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc, |
| 19196 | const CXXRecordDecl *RD) { |
| 19197 | for (const auto *I : RD->methods()) |
| 19198 | if (I->isVirtual() && !I->isPureVirtual()) |
| 19199 | ResolveExceptionSpec(Loc, FPT: I->getType()->castAs<FunctionProtoType>()); |
| 19200 | } |
| 19201 | |
| 19202 | void Sema::MarkVirtualMembersReferenced(SourceLocation Loc, |
| 19203 | const CXXRecordDecl *RD, |
| 19204 | bool ConstexprOnly) { |
| 19205 | // Mark all functions which will appear in RD's vtable as used. |
| 19206 | CXXFinalOverriderMap FinalOverriders; |
| 19207 | RD->getFinalOverriders(FinaOverriders&: FinalOverriders); |
| 19208 | for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(), |
| 19209 | E = FinalOverriders.end(); |
| 19210 | I != E; ++I) { |
| 19211 | for (OverridingMethods::const_iterator OI = I->second.begin(), |
| 19212 | OE = I->second.end(); |
| 19213 | OI != OE; ++OI) { |
| 19214 | assert(OI->second.size() > 0 && "no final overrider" ); |
| 19215 | CXXMethodDecl *Overrider = OI->second.front().Method; |
| 19216 | |
| 19217 | // C++ [basic.def.odr]p2: |
| 19218 | // [...] A virtual member function is used if it is not pure. [...] |
| 19219 | if (!Overrider->isPureVirtual() && |
| 19220 | (!ConstexprOnly || Overrider->isConstexpr())) |
| 19221 | MarkFunctionReferenced(Loc, Overrider); |
| 19222 | } |
| 19223 | } |
| 19224 | |
| 19225 | // Only classes that have virtual bases need a VTT. |
| 19226 | if (RD->getNumVBases() == 0) |
| 19227 | return; |
| 19228 | |
| 19229 | for (const auto &I : RD->bases()) { |
| 19230 | const auto *Base = |
| 19231 | cast<CXXRecordDecl>(Val: I.getType()->castAs<RecordType>()->getDecl()); |
| 19232 | if (Base->getNumVBases() == 0) |
| 19233 | continue; |
| 19234 | MarkVirtualMembersReferenced(Loc, RD: Base); |
| 19235 | } |
| 19236 | } |
| 19237 | |
| 19238 | static |
| 19239 | void DelegatingCycleHelper(CXXConstructorDecl* Ctor, |
| 19240 | llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid, |
| 19241 | llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid, |
| 19242 | llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current, |
| 19243 | Sema &S) { |
| 19244 | if (Ctor->isInvalidDecl()) |
| 19245 | return; |
| 19246 | |
| 19247 | CXXConstructorDecl *Target = Ctor->getTargetConstructor(); |
| 19248 | |
| 19249 | // Target may not be determinable yet, for instance if this is a dependent |
| 19250 | // call in an uninstantiated template. |
| 19251 | if (Target) { |
| 19252 | const FunctionDecl *FNTarget = nullptr; |
| 19253 | (void)Target->hasBody(FNTarget); |
| 19254 | Target = const_cast<CXXConstructorDecl*>( |
| 19255 | cast_or_null<CXXConstructorDecl>(Val: FNTarget)); |
| 19256 | } |
| 19257 | |
| 19258 | CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(), |
| 19259 | // Avoid dereferencing a null pointer here. |
| 19260 | *TCanonical = Target? Target->getCanonicalDecl() : nullptr; |
| 19261 | |
| 19262 | if (!Current.insert(Ptr: Canonical).second) |
| 19263 | return; |
| 19264 | |
| 19265 | // We know that beyond here, we aren't chaining into a cycle. |
| 19266 | if (!Target || !Target->isDelegatingConstructor() || |
| 19267 | Target->isInvalidDecl() || Valid.count(Ptr: TCanonical)) { |
| 19268 | Valid.insert_range(R&: Current); |
| 19269 | Current.clear(); |
| 19270 | // We've hit a cycle. |
| 19271 | } else if (TCanonical == Canonical || Invalid.count(Ptr: TCanonical) || |
| 19272 | Current.count(Ptr: TCanonical)) { |
| 19273 | // If we haven't diagnosed this cycle yet, do so now. |
| 19274 | if (!Invalid.count(Ptr: TCanonical)) { |
| 19275 | S.Diag((*Ctor->init_begin())->getSourceLocation(), |
| 19276 | diag::warn_delegating_ctor_cycle) |
| 19277 | << Ctor; |
| 19278 | |
| 19279 | // Don't add a note for a function delegating directly to itself. |
| 19280 | if (TCanonical != Canonical) |
| 19281 | S.Diag(Target->getLocation(), diag::note_it_delegates_to); |
| 19282 | |
| 19283 | CXXConstructorDecl *C = Target; |
| 19284 | while (C->getCanonicalDecl() != Canonical) { |
| 19285 | const FunctionDecl *FNTarget = nullptr; |
| 19286 | (void)C->getTargetConstructor()->hasBody(FNTarget); |
| 19287 | assert(FNTarget && "Ctor cycle through bodiless function" ); |
| 19288 | |
| 19289 | C = const_cast<CXXConstructorDecl*>( |
| 19290 | cast<CXXConstructorDecl>(Val: FNTarget)); |
| 19291 | S.Diag(C->getLocation(), diag::note_which_delegates_to); |
| 19292 | } |
| 19293 | } |
| 19294 | |
| 19295 | Invalid.insert_range(R&: Current); |
| 19296 | Current.clear(); |
| 19297 | } else { |
| 19298 | DelegatingCycleHelper(Ctor: Target, Valid, Invalid, Current, S); |
| 19299 | } |
| 19300 | } |
| 19301 | |
| 19302 | |
| 19303 | void Sema::CheckDelegatingCtorCycles() { |
| 19304 | llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current; |
| 19305 | |
| 19306 | for (DelegatingCtorDeclsType::iterator |
| 19307 | I = DelegatingCtorDecls.begin(source: ExternalSource.get()), |
| 19308 | E = DelegatingCtorDecls.end(); |
| 19309 | I != E; ++I) |
| 19310 | DelegatingCycleHelper(Ctor: *I, Valid, Invalid, Current, S&: *this); |
| 19311 | |
| 19312 | for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI) |
| 19313 | (*CI)->setInvalidDecl(); |
| 19314 | } |
| 19315 | |
| 19316 | namespace { |
| 19317 | /// AST visitor that finds references to the 'this' expression. |
| 19318 | class FindCXXThisExpr : public DynamicRecursiveASTVisitor { |
| 19319 | Sema &S; |
| 19320 | |
| 19321 | public: |
| 19322 | explicit FindCXXThisExpr(Sema &S) : S(S) {} |
| 19323 | |
| 19324 | bool VisitCXXThisExpr(CXXThisExpr *E) override { |
| 19325 | S.Diag(E->getLocation(), diag::err_this_static_member_func) |
| 19326 | << E->isImplicit(); |
| 19327 | return false; |
| 19328 | } |
| 19329 | }; |
| 19330 | } |
| 19331 | |
| 19332 | bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) { |
| 19333 | TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); |
| 19334 | if (!TSInfo) |
| 19335 | return false; |
| 19336 | |
| 19337 | TypeLoc TL = TSInfo->getTypeLoc(); |
| 19338 | FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); |
| 19339 | if (!ProtoTL) |
| 19340 | return false; |
| 19341 | |
| 19342 | // C++11 [expr.prim.general]p3: |
| 19343 | // [The expression this] shall not appear before the optional |
| 19344 | // cv-qualifier-seq and it shall not appear within the declaration of a |
| 19345 | // static member function (although its type and value category are defined |
| 19346 | // within a static member function as they are within a non-static member |
| 19347 | // function). [ Note: this is because declaration matching does not occur |
| 19348 | // until the complete declarator is known. - end note ] |
| 19349 | const FunctionProtoType *Proto = ProtoTL.getTypePtr(); |
| 19350 | FindCXXThisExpr Finder(*this); |
| 19351 | |
| 19352 | // If the return type came after the cv-qualifier-seq, check it now. |
| 19353 | if (Proto->hasTrailingReturn() && |
| 19354 | !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc())) |
| 19355 | return true; |
| 19356 | |
| 19357 | // Check the exception specification. |
| 19358 | if (checkThisInStaticMemberFunctionExceptionSpec(Method)) |
| 19359 | return true; |
| 19360 | |
| 19361 | // Check the trailing requires clause |
| 19362 | if (const AssociatedConstraint &TRC = Method->getTrailingRequiresClause()) |
| 19363 | if (!Finder.TraverseStmt(const_cast<Expr *>(TRC.ConstraintExpr))) |
| 19364 | return true; |
| 19365 | |
| 19366 | return checkThisInStaticMemberFunctionAttributes(Method); |
| 19367 | } |
| 19368 | |
| 19369 | bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) { |
| 19370 | TypeSourceInfo *TSInfo = Method->getTypeSourceInfo(); |
| 19371 | if (!TSInfo) |
| 19372 | return false; |
| 19373 | |
| 19374 | TypeLoc TL = TSInfo->getTypeLoc(); |
| 19375 | FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>(); |
| 19376 | if (!ProtoTL) |
| 19377 | return false; |
| 19378 | |
| 19379 | const FunctionProtoType *Proto = ProtoTL.getTypePtr(); |
| 19380 | FindCXXThisExpr Finder(*this); |
| 19381 | |
| 19382 | switch (Proto->getExceptionSpecType()) { |
| 19383 | case EST_Unparsed: |
| 19384 | case EST_Uninstantiated: |
| 19385 | case EST_Unevaluated: |
| 19386 | case EST_BasicNoexcept: |
| 19387 | case EST_NoThrow: |
| 19388 | case EST_DynamicNone: |
| 19389 | case EST_MSAny: |
| 19390 | case EST_None: |
| 19391 | break; |
| 19392 | |
| 19393 | case EST_DependentNoexcept: |
| 19394 | case EST_NoexceptFalse: |
| 19395 | case EST_NoexceptTrue: |
| 19396 | if (!Finder.TraverseStmt(Proto->getNoexceptExpr())) |
| 19397 | return true; |
| 19398 | [[fallthrough]]; |
| 19399 | |
| 19400 | case EST_Dynamic: |
| 19401 | for (const auto &E : Proto->exceptions()) { |
| 19402 | if (!Finder.TraverseType(E)) |
| 19403 | return true; |
| 19404 | } |
| 19405 | break; |
| 19406 | } |
| 19407 | |
| 19408 | return false; |
| 19409 | } |
| 19410 | |
| 19411 | bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) { |
| 19412 | FindCXXThisExpr Finder(*this); |
| 19413 | |
| 19414 | // Check attributes. |
| 19415 | for (const auto *A : Method->attrs()) { |
| 19416 | // FIXME: This should be emitted by tblgen. |
| 19417 | Expr *Arg = nullptr; |
| 19418 | ArrayRef<Expr *> Args; |
| 19419 | if (const auto *G = dyn_cast<GuardedByAttr>(A)) |
| 19420 | Arg = G->getArg(); |
| 19421 | else if (const auto *G = dyn_cast<PtGuardedByAttr>(A)) |
| 19422 | Arg = G->getArg(); |
| 19423 | else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A)) |
| 19424 | Args = llvm::ArrayRef(AA->args_begin(), AA->args_size()); |
| 19425 | else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A)) |
| 19426 | Args = llvm::ArrayRef(AB->args_begin(), AB->args_size()); |
| 19427 | else if (const auto *LR = dyn_cast<LockReturnedAttr>(A)) |
| 19428 | Arg = LR->getArg(); |
| 19429 | else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A)) |
| 19430 | Args = llvm::ArrayRef(LE->args_begin(), LE->args_size()); |
| 19431 | else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A)) |
| 19432 | Args = llvm::ArrayRef(RC->args_begin(), RC->args_size()); |
| 19433 | else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A)) |
| 19434 | Args = llvm::ArrayRef(AC->args_begin(), AC->args_size()); |
| 19435 | else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A)) { |
| 19436 | Arg = AC->getSuccessValue(); |
| 19437 | Args = llvm::ArrayRef(AC->args_begin(), AC->args_size()); |
| 19438 | } else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A)) |
| 19439 | Args = llvm::ArrayRef(RC->args_begin(), RC->args_size()); |
| 19440 | |
| 19441 | if (Arg && !Finder.TraverseStmt(Arg)) |
| 19442 | return true; |
| 19443 | |
| 19444 | for (unsigned I = 0, N = Args.size(); I != N; ++I) { |
| 19445 | if (!Finder.TraverseStmt(Args[I])) |
| 19446 | return true; |
| 19447 | } |
| 19448 | } |
| 19449 | |
| 19450 | return false; |
| 19451 | } |
| 19452 | |
| 19453 | void Sema::checkExceptionSpecification( |
| 19454 | bool IsTopLevel, ExceptionSpecificationType EST, |
| 19455 | ArrayRef<ParsedType> DynamicExceptions, |
| 19456 | ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr, |
| 19457 | SmallVectorImpl<QualType> &Exceptions, |
| 19458 | FunctionProtoType::ExceptionSpecInfo &ESI) { |
| 19459 | Exceptions.clear(); |
| 19460 | ESI.Type = EST; |
| 19461 | if (EST == EST_Dynamic) { |
| 19462 | Exceptions.reserve(N: DynamicExceptions.size()); |
| 19463 | for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) { |
| 19464 | // FIXME: Preserve type source info. |
| 19465 | QualType ET = GetTypeFromParser(Ty: DynamicExceptions[ei]); |
| 19466 | |
| 19467 | if (IsTopLevel) { |
| 19468 | SmallVector<UnexpandedParameterPack, 2> Unexpanded; |
| 19469 | collectUnexpandedParameterPacks(T: ET, Unexpanded); |
| 19470 | if (!Unexpanded.empty()) { |
| 19471 | DiagnoseUnexpandedParameterPacks( |
| 19472 | Loc: DynamicExceptionRanges[ei].getBegin(), UPPC: UPPC_ExceptionType, |
| 19473 | Unexpanded); |
| 19474 | continue; |
| 19475 | } |
| 19476 | } |
| 19477 | |
| 19478 | // Check that the type is valid for an exception spec, and |
| 19479 | // drop it if not. |
| 19480 | if (!CheckSpecifiedExceptionType(T&: ET, Range: DynamicExceptionRanges[ei])) |
| 19481 | Exceptions.push_back(Elt: ET); |
| 19482 | } |
| 19483 | ESI.Exceptions = Exceptions; |
| 19484 | return; |
| 19485 | } |
| 19486 | |
| 19487 | if (isComputedNoexcept(ESpecType: EST)) { |
| 19488 | assert((NoexceptExpr->isTypeDependent() || |
| 19489 | NoexceptExpr->getType()->getCanonicalTypeUnqualified() == |
| 19490 | Context.BoolTy) && |
| 19491 | "Parser should have made sure that the expression is boolean" ); |
| 19492 | if (IsTopLevel && DiagnoseUnexpandedParameterPack(E: NoexceptExpr)) { |
| 19493 | ESI.Type = EST_BasicNoexcept; |
| 19494 | return; |
| 19495 | } |
| 19496 | |
| 19497 | ESI.NoexceptExpr = NoexceptExpr; |
| 19498 | return; |
| 19499 | } |
| 19500 | } |
| 19501 | |
| 19502 | void Sema::actOnDelayedExceptionSpecification( |
| 19503 | Decl *D, ExceptionSpecificationType EST, SourceRange SpecificationRange, |
| 19504 | ArrayRef<ParsedType> DynamicExceptions, |
| 19505 | ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr) { |
| 19506 | if (!D) |
| 19507 | return; |
| 19508 | |
| 19509 | // Dig out the function we're referring to. |
| 19510 | if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(Val: D)) |
| 19511 | D = FTD->getTemplatedDecl(); |
| 19512 | |
| 19513 | FunctionDecl *FD = dyn_cast<FunctionDecl>(Val: D); |
| 19514 | if (!FD) |
| 19515 | return; |
| 19516 | |
| 19517 | // Check the exception specification. |
| 19518 | llvm::SmallVector<QualType, 4> Exceptions; |
| 19519 | FunctionProtoType::ExceptionSpecInfo ESI; |
| 19520 | checkExceptionSpecification(/*IsTopLevel=*/true, EST, DynamicExceptions, |
| 19521 | DynamicExceptionRanges, NoexceptExpr, Exceptions, |
| 19522 | ESI); |
| 19523 | |
| 19524 | // Update the exception specification on the function type. |
| 19525 | Context.adjustExceptionSpec(FD, ESI, /*AsWritten=*/true); |
| 19526 | |
| 19527 | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Val: D)) { |
| 19528 | if (MD->isStatic()) |
| 19529 | checkThisInStaticMemberFunctionExceptionSpec(Method: MD); |
| 19530 | |
| 19531 | if (MD->isVirtual()) { |
| 19532 | // Check overrides, which we previously had to delay. |
| 19533 | for (const CXXMethodDecl *O : MD->overridden_methods()) |
| 19534 | CheckOverridingFunctionExceptionSpec(New: MD, Old: O); |
| 19535 | } |
| 19536 | } |
| 19537 | } |
| 19538 | |
| 19539 | /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class. |
| 19540 | /// |
| 19541 | MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record, |
| 19542 | SourceLocation DeclStart, Declarator &D, |
| 19543 | Expr *BitWidth, |
| 19544 | InClassInitStyle InitStyle, |
| 19545 | AccessSpecifier AS, |
| 19546 | const ParsedAttr &MSPropertyAttr) { |
| 19547 | const IdentifierInfo *II = D.getIdentifier(); |
| 19548 | if (!II) { |
| 19549 | Diag(DeclStart, diag::err_anonymous_property); |
| 19550 | return nullptr; |
| 19551 | } |
| 19552 | SourceLocation Loc = D.getIdentifierLoc(); |
| 19553 | |
| 19554 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D); |
| 19555 | QualType T = TInfo->getType(); |
| 19556 | if (getLangOpts().CPlusPlus) { |
| 19557 | CheckExtraCXXDefaultArguments(D); |
| 19558 | |
| 19559 | if (DiagnoseUnexpandedParameterPack(Loc: D.getIdentifierLoc(), T: TInfo, |
| 19560 | UPPC: UPPC_DataMemberType)) { |
| 19561 | D.setInvalidType(); |
| 19562 | T = Context.IntTy; |
| 19563 | TInfo = Context.getTrivialTypeSourceInfo(T, Loc); |
| 19564 | } |
| 19565 | } |
| 19566 | |
| 19567 | DiagnoseFunctionSpecifiers(DS: D.getDeclSpec()); |
| 19568 | |
| 19569 | if (D.getDeclSpec().isInlineSpecified()) |
| 19570 | Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) |
| 19571 | << getLangOpts().CPlusPlus17; |
| 19572 | if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) |
| 19573 | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), |
| 19574 | diag::err_invalid_thread) |
| 19575 | << DeclSpec::getSpecifierName(TSCS); |
| 19576 | |
| 19577 | // Check to see if this name was declared as a member previously |
| 19578 | NamedDecl *PrevDecl = nullptr; |
| 19579 | LookupResult Previous(*this, II, Loc, LookupMemberName, |
| 19580 | RedeclarationKind::ForVisibleRedeclaration); |
| 19581 | LookupName(R&: Previous, S); |
| 19582 | switch (Previous.getResultKind()) { |
| 19583 | case LookupResultKind::Found: |
| 19584 | case LookupResultKind::FoundUnresolvedValue: |
| 19585 | PrevDecl = Previous.getAsSingle<NamedDecl>(); |
| 19586 | break; |
| 19587 | |
| 19588 | case LookupResultKind::FoundOverloaded: |
| 19589 | PrevDecl = Previous.getRepresentativeDecl(); |
| 19590 | break; |
| 19591 | |
| 19592 | case LookupResultKind::NotFound: |
| 19593 | case LookupResultKind::NotFoundInCurrentInstantiation: |
| 19594 | case LookupResultKind::Ambiguous: |
| 19595 | break; |
| 19596 | } |
| 19597 | |
| 19598 | if (PrevDecl && PrevDecl->isTemplateParameter()) { |
| 19599 | // Maybe we will complain about the shadowed template parameter. |
| 19600 | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); |
| 19601 | // Just pretend that we didn't see the previous declaration. |
| 19602 | PrevDecl = nullptr; |
| 19603 | } |
| 19604 | |
| 19605 | if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) |
| 19606 | PrevDecl = nullptr; |
| 19607 | |
| 19608 | SourceLocation TSSL = D.getBeginLoc(); |
| 19609 | MSPropertyDecl *NewPD = |
| 19610 | MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL, |
| 19611 | MSPropertyAttr.getPropertyDataGetter(), |
| 19612 | MSPropertyAttr.getPropertyDataSetter()); |
| 19613 | ProcessDeclAttributes(TUScope, NewPD, D); |
| 19614 | NewPD->setAccess(AS); |
| 19615 | |
| 19616 | if (NewPD->isInvalidDecl()) |
| 19617 | Record->setInvalidDecl(); |
| 19618 | |
| 19619 | if (D.getDeclSpec().isModulePrivateSpecified()) |
| 19620 | NewPD->setModulePrivate(); |
| 19621 | |
| 19622 | if (NewPD->isInvalidDecl() && PrevDecl) { |
| 19623 | // Don't introduce NewFD into scope; there's already something |
| 19624 | // with the same name in the same scope. |
| 19625 | } else if (II) { |
| 19626 | PushOnScopeChains(NewPD, S); |
| 19627 | } else |
| 19628 | Record->addDecl(NewPD); |
| 19629 | |
| 19630 | return NewPD; |
| 19631 | } |
| 19632 | |
| 19633 | void Sema::ActOnStartFunctionDeclarationDeclarator( |
| 19634 | Declarator &Declarator, unsigned TemplateParameterDepth) { |
| 19635 | auto &Info = InventedParameterInfos.emplace_back(); |
| 19636 | TemplateParameterList *ExplicitParams = nullptr; |
| 19637 | ArrayRef<TemplateParameterList *> ExplicitLists = |
| 19638 | Declarator.getTemplateParameterLists(); |
| 19639 | if (!ExplicitLists.empty()) { |
| 19640 | bool IsMemberSpecialization, IsInvalid; |
| 19641 | ExplicitParams = MatchTemplateParametersToScopeSpecifier( |
| 19642 | DeclStartLoc: Declarator.getBeginLoc(), DeclLoc: Declarator.getIdentifierLoc(), |
| 19643 | SS: Declarator.getCXXScopeSpec(), /*TemplateId=*/nullptr, |
| 19644 | ParamLists: ExplicitLists, /*IsFriend=*/false, IsMemberSpecialization, Invalid&: IsInvalid, |
| 19645 | /*SuppressDiagnostic=*/true); |
| 19646 | } |
| 19647 | // C++23 [dcl.fct]p23: |
| 19648 | // An abbreviated function template can have a template-head. The invented |
| 19649 | // template-parameters are appended to the template-parameter-list after |
| 19650 | // the explicitly declared template-parameters. |
| 19651 | // |
| 19652 | // A template-head must have one or more template-parameters (read: |
| 19653 | // 'template<>' is *not* a template-head). Only append the invented |
| 19654 | // template parameters if we matched the nested-name-specifier to a non-empty |
| 19655 | // TemplateParameterList. |
| 19656 | if (ExplicitParams && !ExplicitParams->empty()) { |
| 19657 | Info.AutoTemplateParameterDepth = ExplicitParams->getDepth(); |
| 19658 | llvm::append_range(C&: Info.TemplateParams, R&: *ExplicitParams); |
| 19659 | Info.NumExplicitTemplateParams = ExplicitParams->size(); |
| 19660 | } else { |
| 19661 | Info.AutoTemplateParameterDepth = TemplateParameterDepth; |
| 19662 | Info.NumExplicitTemplateParams = 0; |
| 19663 | } |
| 19664 | } |
| 19665 | |
| 19666 | void Sema::ActOnFinishFunctionDeclarationDeclarator(Declarator &Declarator) { |
| 19667 | auto &FSI = InventedParameterInfos.back(); |
| 19668 | if (FSI.TemplateParams.size() > FSI.NumExplicitTemplateParams) { |
| 19669 | if (FSI.NumExplicitTemplateParams != 0) { |
| 19670 | TemplateParameterList *ExplicitParams = |
| 19671 | Declarator.getTemplateParameterLists().back(); |
| 19672 | Declarator.setInventedTemplateParameterList( |
| 19673 | TemplateParameterList::Create( |
| 19674 | C: Context, TemplateLoc: ExplicitParams->getTemplateLoc(), |
| 19675 | LAngleLoc: ExplicitParams->getLAngleLoc(), Params: FSI.TemplateParams, |
| 19676 | RAngleLoc: ExplicitParams->getRAngleLoc(), |
| 19677 | RequiresClause: ExplicitParams->getRequiresClause())); |
| 19678 | } else { |
| 19679 | Declarator.setInventedTemplateParameterList( |
| 19680 | TemplateParameterList::Create( |
| 19681 | C: Context, TemplateLoc: SourceLocation(), LAngleLoc: SourceLocation(), Params: FSI.TemplateParams, |
| 19682 | RAngleLoc: SourceLocation(), /*RequiresClause=*/nullptr)); |
| 19683 | } |
| 19684 | } |
| 19685 | InventedParameterInfos.pop_back(); |
| 19686 | } |
| 19687 | |