1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// Implements semantic analysis for C++ expressions.
11///
12//===----------------------------------------------------------------------===//
13
14#include "TreeTransform.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/ExprConcepts.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/RecursiveASTVisitor.h"
25#include "clang/AST/Type.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/AlignedAllocation.h"
28#include "clang/Basic/DiagnosticSema.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Basic/TokenKinds.h"
32#include "clang/Basic/TypeTraits.h"
33#include "clang/Lex/Preprocessor.h"
34#include "clang/Sema/DeclSpec.h"
35#include "clang/Sema/EnterExpressionEvaluationContext.h"
36#include "clang/Sema/Initialization.h"
37#include "clang/Sema/Lookup.h"
38#include "clang/Sema/ParsedTemplate.h"
39#include "clang/Sema/Scope.h"
40#include "clang/Sema/ScopeInfo.h"
41#include "clang/Sema/SemaInternal.h"
42#include "clang/Sema/SemaLambda.h"
43#include "clang/Sema/Template.h"
44#include "clang/Sema/TemplateDeduction.h"
45#include "llvm/ADT/APInt.h"
46#include "llvm/ADT/STLExtras.h"
47#include "llvm/ADT/StringExtras.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Support/TypeSize.h"
50#include <optional>
51using namespace clang;
52using namespace sema;
53
54/// Handle the result of the special case name lookup for inheriting
55/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
56/// constructor names in member using declarations, even if 'X' is not the
57/// name of the corresponding type.
58ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
59 SourceLocation NameLoc,
60 IdentifierInfo &Name) {
61 NestedNameSpecifier *NNS = SS.getScopeRep();
62
63 // Convert the nested-name-specifier into a type.
64 QualType Type;
65 switch (NNS->getKind()) {
66 case NestedNameSpecifier::TypeSpec:
67 case NestedNameSpecifier::TypeSpecWithTemplate:
68 Type = QualType(NNS->getAsType(), 0);
69 break;
70
71 case NestedNameSpecifier::Identifier:
72 // Strip off the last layer of the nested-name-specifier and build a
73 // typename type for it.
74 assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
75 Type = Context.getDependentNameType(
76 Keyword: ElaboratedTypeKeyword::None, NNS: NNS->getPrefix(), Name: NNS->getAsIdentifier());
77 break;
78
79 case NestedNameSpecifier::Global:
80 case NestedNameSpecifier::Super:
81 case NestedNameSpecifier::Namespace:
82 case NestedNameSpecifier::NamespaceAlias:
83 llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
84 }
85
86 // This reference to the type is located entirely at the location of the
87 // final identifier in the qualified-id.
88 return CreateParsedType(T: Type,
89 TInfo: Context.getTrivialTypeSourceInfo(T: Type, Loc: NameLoc));
90}
91
92ParsedType Sema::getConstructorName(IdentifierInfo &II,
93 SourceLocation NameLoc,
94 Scope *S, CXXScopeSpec &SS,
95 bool EnteringContext) {
96 CXXRecordDecl *CurClass = getCurrentClass(S, SS: &SS);
97 assert(CurClass && &II == CurClass->getIdentifier() &&
98 "not a constructor name");
99
100 // When naming a constructor as a member of a dependent context (eg, in a
101 // friend declaration or an inherited constructor declaration), form an
102 // unresolved "typename" type.
103 if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) {
104 QualType T = Context.getDependentNameType(Keyword: ElaboratedTypeKeyword::None,
105 NNS: SS.getScopeRep(), Name: &II);
106 return ParsedType::make(P: T);
107 }
108
109 if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass))
110 return ParsedType();
111
112 // Find the injected-class-name declaration. Note that we make no attempt to
113 // diagnose cases where the injected-class-name is shadowed: the only
114 // declaration that can validly shadow the injected-class-name is a
115 // non-static data member, and if the class contains both a non-static data
116 // member and a constructor then it is ill-formed (we check that in
117 // CheckCompletedCXXClass).
118 CXXRecordDecl *InjectedClassName = nullptr;
119 for (NamedDecl *ND : CurClass->lookup(&II)) {
120 auto *RD = dyn_cast<CXXRecordDecl>(ND);
121 if (RD && RD->isInjectedClassName()) {
122 InjectedClassName = RD;
123 break;
124 }
125 }
126 if (!InjectedClassName) {
127 if (!CurClass->isInvalidDecl()) {
128 // FIXME: RequireCompleteDeclContext doesn't check dependent contexts
129 // properly. Work around it here for now.
130 Diag(SS.getLastQualifierNameLoc(),
131 diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange();
132 }
133 return ParsedType();
134 }
135
136 QualType T = Context.getTypeDeclType(InjectedClassName);
137 DiagnoseUseOfDecl(InjectedClassName, NameLoc);
138 MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false);
139
140 return ParsedType::make(P: T);
141}
142
143ParsedType Sema::getDestructorName(IdentifierInfo &II, SourceLocation NameLoc,
144 Scope *S, CXXScopeSpec &SS,
145 ParsedType ObjectTypePtr,
146 bool EnteringContext) {
147 // Determine where to perform name lookup.
148
149 // FIXME: This area of the standard is very messy, and the current
150 // wording is rather unclear about which scopes we search for the
151 // destructor name; see core issues 399 and 555. Issue 399 in
152 // particular shows where the current description of destructor name
153 // lookup is completely out of line with existing practice, e.g.,
154 // this appears to be ill-formed:
155 //
156 // namespace N {
157 // template <typename T> struct S {
158 // ~S();
159 // };
160 // }
161 //
162 // void f(N::S<int>* s) {
163 // s->N::S<int>::~S();
164 // }
165 //
166 // See also PR6358 and PR6359.
167 //
168 // For now, we accept all the cases in which the name given could plausibly
169 // be interpreted as a correct destructor name, issuing off-by-default
170 // extension diagnostics on the cases that don't strictly conform to the
171 // C++20 rules. This basically means we always consider looking in the
172 // nested-name-specifier prefix, the complete nested-name-specifier, and
173 // the scope, and accept if we find the expected type in any of the three
174 // places.
175
176 if (SS.isInvalid())
177 return nullptr;
178
179 // Whether we've failed with a diagnostic already.
180 bool Failed = false;
181
182 llvm::SmallVector<NamedDecl*, 8> FoundDecls;
183 llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet;
184
185 // If we have an object type, it's because we are in a
186 // pseudo-destructor-expression or a member access expression, and
187 // we know what type we're looking for.
188 QualType SearchType =
189 ObjectTypePtr ? GetTypeFromParser(Ty: ObjectTypePtr) : QualType();
190
191 auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType {
192 auto IsAcceptableResult = [&](NamedDecl *D) -> bool {
193 auto *Type = dyn_cast<TypeDecl>(Val: D->getUnderlyingDecl());
194 if (!Type)
195 return false;
196
197 if (SearchType.isNull() || SearchType->isDependentType())
198 return true;
199
200 QualType T = Context.getTypeDeclType(Decl: Type);
201 return Context.hasSameUnqualifiedType(T1: T, T2: SearchType);
202 };
203
204 unsigned NumAcceptableResults = 0;
205 for (NamedDecl *D : Found) {
206 if (IsAcceptableResult(D))
207 ++NumAcceptableResults;
208
209 // Don't list a class twice in the lookup failure diagnostic if it's
210 // found by both its injected-class-name and by the name in the enclosing
211 // scope.
212 if (auto *RD = dyn_cast<CXXRecordDecl>(Val: D))
213 if (RD->isInjectedClassName())
214 D = cast<NamedDecl>(RD->getParent());
215
216 if (FoundDeclSet.insert(D).second)
217 FoundDecls.push_back(Elt: D);
218 }
219
220 // As an extension, attempt to "fix" an ambiguity by erasing all non-type
221 // results, and all non-matching results if we have a search type. It's not
222 // clear what the right behavior is if destructor lookup hits an ambiguity,
223 // but other compilers do generally accept at least some kinds of
224 // ambiguity.
225 if (Found.isAmbiguous() && NumAcceptableResults == 1) {
226 Diag(NameLoc, diag::ext_dtor_name_ambiguous);
227 LookupResult::Filter F = Found.makeFilter();
228 while (F.hasNext()) {
229 NamedDecl *D = F.next();
230 if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
231 Diag(D->getLocation(), diag::note_destructor_type_here)
232 << Context.getTypeDeclType(TD);
233 else
234 Diag(D->getLocation(), diag::note_destructor_nontype_here);
235
236 if (!IsAcceptableResult(D))
237 F.erase();
238 }
239 F.done();
240 }
241
242 if (Found.isAmbiguous())
243 Failed = true;
244
245 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
246 if (IsAcceptableResult(Type)) {
247 QualType T = Context.getTypeDeclType(Decl: Type);
248 MarkAnyDeclReferenced(Loc: Type->getLocation(), D: Type, /*OdrUse=*/MightBeOdrUse: false);
249 return CreateParsedType(
250 T: Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::None, NNS: nullptr, NamedType: T),
251 TInfo: Context.getTrivialTypeSourceInfo(T, Loc: NameLoc));
252 }
253 }
254
255 return nullptr;
256 };
257
258 bool IsDependent = false;
259
260 auto LookupInObjectType = [&]() -> ParsedType {
261 if (Failed || SearchType.isNull())
262 return nullptr;
263
264 IsDependent |= SearchType->isDependentType();
265
266 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
267 DeclContext *LookupCtx = computeDeclContext(T: SearchType);
268 if (!LookupCtx)
269 return nullptr;
270 LookupQualifiedName(R&: Found, LookupCtx);
271 return CheckLookupResult(Found);
272 };
273
274 auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType {
275 if (Failed)
276 return nullptr;
277
278 IsDependent |= isDependentScopeSpecifier(SS: LookupSS);
279 DeclContext *LookupCtx = computeDeclContext(SS: LookupSS, EnteringContext);
280 if (!LookupCtx)
281 return nullptr;
282
283 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
284 if (RequireCompleteDeclContext(SS&: LookupSS, DC: LookupCtx)) {
285 Failed = true;
286 return nullptr;
287 }
288 LookupQualifiedName(R&: Found, LookupCtx);
289 return CheckLookupResult(Found);
290 };
291
292 auto LookupInScope = [&]() -> ParsedType {
293 if (Failed || !S)
294 return nullptr;
295
296 LookupResult Found(*this, &II, NameLoc, LookupDestructorName);
297 LookupName(R&: Found, S);
298 return CheckLookupResult(Found);
299 };
300
301 // C++2a [basic.lookup.qual]p6:
302 // In a qualified-id of the form
303 //
304 // nested-name-specifier[opt] type-name :: ~ type-name
305 //
306 // the second type-name is looked up in the same scope as the first.
307 //
308 // We interpret this as meaning that if you do a dual-scope lookup for the
309 // first name, you also do a dual-scope lookup for the second name, per
310 // C++ [basic.lookup.classref]p4:
311 //
312 // If the id-expression in a class member access is a qualified-id of the
313 // form
314 //
315 // class-name-or-namespace-name :: ...
316 //
317 // the class-name-or-namespace-name following the . or -> is first looked
318 // up in the class of the object expression and the name, if found, is used.
319 // Otherwise, it is looked up in the context of the entire
320 // postfix-expression.
321 //
322 // This looks in the same scopes as for an unqualified destructor name:
323 //
324 // C++ [basic.lookup.classref]p3:
325 // If the unqualified-id is ~ type-name, the type-name is looked up
326 // in the context of the entire postfix-expression. If the type T
327 // of the object expression is of a class type C, the type-name is
328 // also looked up in the scope of class C. At least one of the
329 // lookups shall find a name that refers to cv T.
330 //
331 // FIXME: The intent is unclear here. Should type-name::~type-name look in
332 // the scope anyway if it finds a non-matching name declared in the class?
333 // If both lookups succeed and find a dependent result, which result should
334 // we retain? (Same question for p->~type-name().)
335
336 if (NestedNameSpecifier *Prefix =
337 SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) {
338 // This is
339 //
340 // nested-name-specifier type-name :: ~ type-name
341 //
342 // Look for the second type-name in the nested-name-specifier.
343 CXXScopeSpec PrefixSS;
344 PrefixSS.Adopt(Other: NestedNameSpecifierLoc(Prefix, SS.location_data()));
345 if (ParsedType T = LookupInNestedNameSpec(PrefixSS))
346 return T;
347 } else {
348 // This is one of
349 //
350 // type-name :: ~ type-name
351 // ~ type-name
352 //
353 // Look in the scope and (if any) the object type.
354 if (ParsedType T = LookupInScope())
355 return T;
356 if (ParsedType T = LookupInObjectType())
357 return T;
358 }
359
360 if (Failed)
361 return nullptr;
362
363 if (IsDependent) {
364 // We didn't find our type, but that's OK: it's dependent anyway.
365
366 // FIXME: What if we have no nested-name-specifier?
367 QualType T =
368 CheckTypenameType(Keyword: ElaboratedTypeKeyword::None, KeywordLoc: SourceLocation(),
369 QualifierLoc: SS.getWithLocInContext(Context), II, IILoc: NameLoc);
370 return ParsedType::make(P: T);
371 }
372
373 // The remaining cases are all non-standard extensions imitating the behavior
374 // of various other compilers.
375 unsigned NumNonExtensionDecls = FoundDecls.size();
376
377 if (SS.isSet()) {
378 // For compatibility with older broken C++ rules and existing code,
379 //
380 // nested-name-specifier :: ~ type-name
381 //
382 // also looks for type-name within the nested-name-specifier.
383 if (ParsedType T = LookupInNestedNameSpec(SS)) {
384 Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope)
385 << SS.getRange()
386 << FixItHint::CreateInsertion(SS.getEndLoc(),
387 ("::" + II.getName()).str());
388 return T;
389 }
390
391 // For compatibility with other compilers and older versions of Clang,
392 //
393 // nested-name-specifier type-name :: ~ type-name
394 //
395 // also looks for type-name in the scope. Unfortunately, we can't
396 // reasonably apply this fallback for dependent nested-name-specifiers.
397 if (SS.isValid() && SS.getScopeRep()->getPrefix()) {
398 if (ParsedType T = LookupInScope()) {
399 Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope)
400 << FixItHint::CreateRemoval(SS.getRange());
401 Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here)
402 << GetTypeFromParser(T);
403 return T;
404 }
405 }
406 }
407
408 // We didn't find anything matching; tell the user what we did find (if
409 // anything).
410
411 // Don't tell the user about declarations we shouldn't have found.
412 FoundDecls.resize(N: NumNonExtensionDecls);
413
414 // List types before non-types.
415 std::stable_sort(first: FoundDecls.begin(), last: FoundDecls.end(),
416 comp: [](NamedDecl *A, NamedDecl *B) {
417 return isa<TypeDecl>(Val: A->getUnderlyingDecl()) >
418 isa<TypeDecl>(Val: B->getUnderlyingDecl());
419 });
420
421 // Suggest a fixit to properly name the destroyed type.
422 auto MakeFixItHint = [&]{
423 const CXXRecordDecl *Destroyed = nullptr;
424 // FIXME: If we have a scope specifier, suggest its last component?
425 if (!SearchType.isNull())
426 Destroyed = SearchType->getAsCXXRecordDecl();
427 else if (S)
428 Destroyed = dyn_cast_or_null<CXXRecordDecl>(Val: S->getEntity());
429 if (Destroyed)
430 return FixItHint::CreateReplacement(SourceRange(NameLoc),
431 Destroyed->getNameAsString());
432 return FixItHint();
433 };
434
435 if (FoundDecls.empty()) {
436 // FIXME: Attempt typo-correction?
437 Diag(NameLoc, diag::err_undeclared_destructor_name)
438 << &II << MakeFixItHint();
439 } else if (!SearchType.isNull() && FoundDecls.size() == 1) {
440 if (auto *TD = dyn_cast<TypeDecl>(Val: FoundDecls[0]->getUnderlyingDecl())) {
441 assert(!SearchType.isNull() &&
442 "should only reject a type result if we have a search type");
443 QualType T = Context.getTypeDeclType(Decl: TD);
444 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
445 << T << SearchType << MakeFixItHint();
446 } else {
447 Diag(NameLoc, diag::err_destructor_expr_nontype)
448 << &II << MakeFixItHint();
449 }
450 } else {
451 Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype
452 : diag::err_destructor_expr_mismatch)
453 << &II << SearchType << MakeFixItHint();
454 }
455
456 for (NamedDecl *FoundD : FoundDecls) {
457 if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl()))
458 Diag(FoundD->getLocation(), diag::note_destructor_type_here)
459 << Context.getTypeDeclType(TD);
460 else
461 Diag(FoundD->getLocation(), diag::note_destructor_nontype_here)
462 << FoundD;
463 }
464
465 return nullptr;
466}
467
468ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
469 ParsedType ObjectType) {
470 if (DS.getTypeSpecType() == DeclSpec::TST_error)
471 return nullptr;
472
473 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
474 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
475 return nullptr;
476 }
477
478 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&
479 "unexpected type in getDestructorType");
480 QualType T = BuildDecltypeType(E: DS.getRepAsExpr());
481
482 // If we know the type of the object, check that the correct destructor
483 // type was named now; we can give better diagnostics this way.
484 QualType SearchType = GetTypeFromParser(Ty: ObjectType);
485 if (!SearchType.isNull() && !SearchType->isDependentType() &&
486 !Context.hasSameUnqualifiedType(T1: T, T2: SearchType)) {
487 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
488 << T << SearchType;
489 return nullptr;
490 }
491
492 return ParsedType::make(P: T);
493}
494
495bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
496 const UnqualifiedId &Name, bool IsUDSuffix) {
497 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId);
498 if (!IsUDSuffix) {
499 // [over.literal] p8
500 //
501 // double operator""_Bq(long double); // OK: not a reserved identifier
502 // double operator"" _Bq(long double); // ill-formed, no diagnostic required
503 IdentifierInfo *II = Name.Identifier;
504 ReservedIdentifierStatus Status = II->isReserved(LangOpts: PP.getLangOpts());
505 SourceLocation Loc = Name.getEndLoc();
506 if (!PP.getSourceManager().isInSystemHeader(Loc)) {
507 if (auto Hint = FixItHint::CreateReplacement(
508 RemoveRange: Name.getSourceRange(),
509 Code: (StringRef("operator\"\"") + II->getName()).str());
510 isReservedInAllContexts(Status)) {
511 Diag(Loc, diag::warn_reserved_extern_symbol)
512 << II << static_cast<int>(Status) << Hint;
513 } else {
514 Diag(Loc, diag::warn_deprecated_literal_operator_id) << II << Hint;
515 }
516 }
517 }
518
519 if (!SS.isValid())
520 return false;
521
522 switch (SS.getScopeRep()->getKind()) {
523 case NestedNameSpecifier::Identifier:
524 case NestedNameSpecifier::TypeSpec:
525 case NestedNameSpecifier::TypeSpecWithTemplate:
526 // Per C++11 [over.literal]p2, literal operators can only be declared at
527 // namespace scope. Therefore, this unqualified-id cannot name anything.
528 // Reject it early, because we have no AST representation for this in the
529 // case where the scope is dependent.
530 Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace)
531 << SS.getScopeRep();
532 return true;
533
534 case NestedNameSpecifier::Global:
535 case NestedNameSpecifier::Super:
536 case NestedNameSpecifier::Namespace:
537 case NestedNameSpecifier::NamespaceAlias:
538 return false;
539 }
540
541 llvm_unreachable("unknown nested name specifier kind");
542}
543
544/// Build a C++ typeid expression with a type operand.
545ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
546 SourceLocation TypeidLoc,
547 TypeSourceInfo *Operand,
548 SourceLocation RParenLoc) {
549 // C++ [expr.typeid]p4:
550 // The top-level cv-qualifiers of the lvalue expression or the type-id
551 // that is the operand of typeid are always ignored.
552 // If the type of the type-id is a class type or a reference to a class
553 // type, the class shall be completely-defined.
554 Qualifiers Quals;
555 QualType T
556 = Context.getUnqualifiedArrayType(T: Operand->getType().getNonReferenceType(),
557 Quals);
558 if (T->getAs<RecordType>() &&
559 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
560 return ExprError();
561
562 if (T->isVariablyModifiedType())
563 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
564
565 if (CheckQualifiedFunctionForTypeId(T, Loc: TypeidLoc))
566 return ExprError();
567
568 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
569 SourceRange(TypeidLoc, RParenLoc));
570}
571
572/// Build a C++ typeid expression with an expression operand.
573ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
574 SourceLocation TypeidLoc,
575 Expr *E,
576 SourceLocation RParenLoc) {
577 bool WasEvaluated = false;
578 if (E && !E->isTypeDependent()) {
579 if (E->hasPlaceholderType()) {
580 ExprResult result = CheckPlaceholderExpr(E);
581 if (result.isInvalid()) return ExprError();
582 E = result.get();
583 }
584
585 QualType T = E->getType();
586 if (const RecordType *RecordT = T->getAs<RecordType>()) {
587 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(Val: RecordT->getDecl());
588 // C++ [expr.typeid]p3:
589 // [...] If the type of the expression is a class type, the class
590 // shall be completely-defined.
591 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
592 return ExprError();
593
594 // C++ [expr.typeid]p3:
595 // When typeid is applied to an expression other than an glvalue of a
596 // polymorphic class type [...] [the] expression is an unevaluated
597 // operand. [...]
598 if (RecordD->isPolymorphic() && E->isGLValue()) {
599 if (isUnevaluatedContext()) {
600 // The operand was processed in unevaluated context, switch the
601 // context and recheck the subexpression.
602 ExprResult Result = TransformToPotentiallyEvaluated(E);
603 if (Result.isInvalid())
604 return ExprError();
605 E = Result.get();
606 }
607
608 // We require a vtable to query the type at run time.
609 MarkVTableUsed(Loc: TypeidLoc, Class: RecordD);
610 WasEvaluated = true;
611 }
612 }
613
614 ExprResult Result = CheckUnevaluatedOperand(E);
615 if (Result.isInvalid())
616 return ExprError();
617 E = Result.get();
618
619 // C++ [expr.typeid]p4:
620 // [...] If the type of the type-id is a reference to a possibly
621 // cv-qualified type, the result of the typeid expression refers to a
622 // std::type_info object representing the cv-unqualified referenced
623 // type.
624 Qualifiers Quals;
625 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
626 if (!Context.hasSameType(T1: T, T2: UnqualT)) {
627 T = UnqualT;
628 E = ImpCastExprToType(E, Type: UnqualT, CK: CK_NoOp, VK: E->getValueKind()).get();
629 }
630 }
631
632 if (E->getType()->isVariablyModifiedType())
633 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
634 << E->getType());
635 else if (!inTemplateInstantiation() &&
636 E->HasSideEffects(Ctx: Context, IncludePossibleEffects: WasEvaluated)) {
637 // The expression operand for typeid is in an unevaluated expression
638 // context, so side effects could result in unintended consequences.
639 Diag(E->getExprLoc(), WasEvaluated
640 ? diag::warn_side_effects_typeid
641 : diag::warn_side_effects_unevaluated_context);
642 }
643
644 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
645 SourceRange(TypeidLoc, RParenLoc));
646}
647
648/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
649ExprResult
650Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
651 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
652 // typeid is not supported in OpenCL.
653 if (getLangOpts().OpenCLCPlusPlus) {
654 return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported)
655 << "typeid");
656 }
657
658 // Find the std::type_info type.
659 if (!getStdNamespace())
660 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
661
662 if (!CXXTypeInfoDecl) {
663 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get(Name: "type_info");
664 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
665 LookupQualifiedName(R, getStdNamespace());
666 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
667 // Microsoft's typeinfo doesn't have type_info in std but in the global
668 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
669 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
670 LookupQualifiedName(R, Context.getTranslationUnitDecl());
671 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
672 }
673 if (!CXXTypeInfoDecl)
674 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
675 }
676
677 if (!getLangOpts().RTTI) {
678 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
679 }
680
681 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
682
683 if (isType) {
684 // The operand is a type; handle it as such.
685 TypeSourceInfo *TInfo = nullptr;
686 QualType T = GetTypeFromParser(Ty: ParsedType::getFromOpaquePtr(P: TyOrExpr),
687 TInfo: &TInfo);
688 if (T.isNull())
689 return ExprError();
690
691 if (!TInfo)
692 TInfo = Context.getTrivialTypeSourceInfo(T, Loc: OpLoc);
693
694 return BuildCXXTypeId(TypeInfoType, TypeidLoc: OpLoc, Operand: TInfo, RParenLoc);
695 }
696
697 // The operand is an expression.
698 ExprResult Result =
699 BuildCXXTypeId(TypeInfoType, TypeidLoc: OpLoc, E: (Expr *)TyOrExpr, RParenLoc);
700
701 if (!getLangOpts().RTTIData && !Result.isInvalid())
702 if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get()))
703 if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context))
704 Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled)
705 << (getDiagnostics().getDiagnosticOptions().getFormat() ==
706 DiagnosticOptions::MSVC);
707 return Result;
708}
709
710/// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
711/// a single GUID.
712static void
713getUuidAttrOfType(Sema &SemaRef, QualType QT,
714 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
715 // Optionally remove one level of pointer, reference or array indirection.
716 const Type *Ty = QT.getTypePtr();
717 if (QT->isPointerType() || QT->isReferenceType())
718 Ty = QT->getPointeeType().getTypePtr();
719 else if (QT->isArrayType())
720 Ty = Ty->getBaseElementTypeUnsafe();
721
722 const auto *TD = Ty->getAsTagDecl();
723 if (!TD)
724 return;
725
726 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
727 UuidAttrs.insert(Uuid);
728 return;
729 }
730
731 // __uuidof can grab UUIDs from template arguments.
732 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Val: TD)) {
733 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
734 for (const TemplateArgument &TA : TAL.asArray()) {
735 const UuidAttr *UuidForTA = nullptr;
736 if (TA.getKind() == TemplateArgument::Type)
737 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
738 else if (TA.getKind() == TemplateArgument::Declaration)
739 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
740
741 if (UuidForTA)
742 UuidAttrs.insert(UuidForTA);
743 }
744 }
745}
746
747/// Build a Microsoft __uuidof expression with a type operand.
748ExprResult Sema::BuildCXXUuidof(QualType Type,
749 SourceLocation TypeidLoc,
750 TypeSourceInfo *Operand,
751 SourceLocation RParenLoc) {
752 MSGuidDecl *Guid = nullptr;
753 if (!Operand->getType()->isDependentType()) {
754 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
755 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
756 if (UuidAttrs.empty())
757 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
758 if (UuidAttrs.size() > 1)
759 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
760 Guid = UuidAttrs.back()->getGuidDecl();
761 }
762
763 return new (Context)
764 CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc));
765}
766
767/// Build a Microsoft __uuidof expression with an expression operand.
768ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc,
769 Expr *E, SourceLocation RParenLoc) {
770 MSGuidDecl *Guid = nullptr;
771 if (!E->getType()->isDependentType()) {
772 if (E->isNullPointerConstant(Ctx&: Context, NPC: Expr::NPC_ValueDependentIsNull)) {
773 // A null pointer results in {00000000-0000-0000-0000-000000000000}.
774 Guid = Context.getMSGuidDecl(Parts: MSGuidDecl::Parts{});
775 } else {
776 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
777 getUuidAttrOfType(*this, E->getType(), UuidAttrs);
778 if (UuidAttrs.empty())
779 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
780 if (UuidAttrs.size() > 1)
781 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
782 Guid = UuidAttrs.back()->getGuidDecl();
783 }
784 }
785
786 return new (Context)
787 CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc));
788}
789
790/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
791ExprResult
792Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
793 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
794 QualType GuidType = Context.getMSGuidType();
795 GuidType.addConst();
796
797 if (isType) {
798 // The operand is a type; handle it as such.
799 TypeSourceInfo *TInfo = nullptr;
800 QualType T = GetTypeFromParser(Ty: ParsedType::getFromOpaquePtr(P: TyOrExpr),
801 TInfo: &TInfo);
802 if (T.isNull())
803 return ExprError();
804
805 if (!TInfo)
806 TInfo = Context.getTrivialTypeSourceInfo(T, Loc: OpLoc);
807
808 return BuildCXXUuidof(Type: GuidType, TypeidLoc: OpLoc, Operand: TInfo, RParenLoc);
809 }
810
811 // The operand is an expression.
812 return BuildCXXUuidof(Type: GuidType, TypeidLoc: OpLoc, E: (Expr*)TyOrExpr, RParenLoc);
813}
814
815/// ActOnCXXBoolLiteral - Parse {true,false} literals.
816ExprResult
817Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
818 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
819 "Unknown C++ Boolean value!");
820 return new (Context)
821 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
822}
823
824/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
825ExprResult
826Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
827 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
828}
829
830/// ActOnCXXThrow - Parse throw expressions.
831ExprResult
832Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
833 bool IsThrownVarInScope = false;
834 if (Ex) {
835 // C++0x [class.copymove]p31:
836 // When certain criteria are met, an implementation is allowed to omit the
837 // copy/move construction of a class object [...]
838 //
839 // - in a throw-expression, when the operand is the name of a
840 // non-volatile automatic object (other than a function or catch-
841 // clause parameter) whose scope does not extend beyond the end of the
842 // innermost enclosing try-block (if there is one), the copy/move
843 // operation from the operand to the exception object (15.1) can be
844 // omitted by constructing the automatic object directly into the
845 // exception object
846 if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: Ex->IgnoreParens()))
847 if (const auto *Var = dyn_cast<VarDecl>(Val: DRE->getDecl());
848 Var && Var->hasLocalStorage() &&
849 !Var->getType().isVolatileQualified()) {
850 for (; S; S = S->getParent()) {
851 if (S->isDeclScope(Var)) {
852 IsThrownVarInScope = true;
853 break;
854 }
855
856 // FIXME: Many of the scope checks here seem incorrect.
857 if (S->getFlags() &
858 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
859 Scope::ObjCMethodScope | Scope::TryScope))
860 break;
861 }
862 }
863 }
864
865 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
866}
867
868ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
869 bool IsThrownVarInScope) {
870 const llvm::Triple &T = Context.getTargetInfo().getTriple();
871 const bool IsOpenMPGPUTarget =
872 getLangOpts().OpenMPIsTargetDevice && (T.isNVPTX() || T.isAMDGCN());
873 // Don't report an error if 'throw' is used in system headers or in an OpenMP
874 // target region compiled for a GPU architecture.
875 if (!IsOpenMPGPUTarget && !getLangOpts().CXXExceptions &&
876 !getSourceManager().isInSystemHeader(Loc: OpLoc) && !getLangOpts().CUDA) {
877 // Delay error emission for the OpenMP device code.
878 targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw";
879 }
880
881 // In OpenMP target regions, we replace 'throw' with a trap on GPU targets.
882 if (IsOpenMPGPUTarget)
883 targetDiag(OpLoc, diag::warn_throw_not_valid_on_target) << T.str();
884
885 // Exceptions aren't allowed in CUDA device code.
886 if (getLangOpts().CUDA)
887 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
888 << "throw" << CurrentCUDATarget();
889
890 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
891 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
892
893 if (Ex && !Ex->isTypeDependent()) {
894 // Initialize the exception result. This implicitly weeds out
895 // abstract types or types with inaccessible copy constructors.
896
897 // C++0x [class.copymove]p31:
898 // When certain criteria are met, an implementation is allowed to omit the
899 // copy/move construction of a class object [...]
900 //
901 // - in a throw-expression, when the operand is the name of a
902 // non-volatile automatic object (other than a function or
903 // catch-clause
904 // parameter) whose scope does not extend beyond the end of the
905 // innermost enclosing try-block (if there is one), the copy/move
906 // operation from the operand to the exception object (15.1) can be
907 // omitted by constructing the automatic object directly into the
908 // exception object
909 NamedReturnInfo NRInfo =
910 IsThrownVarInScope ? getNamedReturnInfo(E&: Ex) : NamedReturnInfo();
911
912 QualType ExceptionObjectTy = Context.getExceptionObjectType(T: Ex->getType());
913 if (CheckCXXThrowOperand(ThrowLoc: OpLoc, ThrowTy: ExceptionObjectTy, E: Ex))
914 return ExprError();
915
916 InitializedEntity Entity =
917 InitializedEntity::InitializeException(ThrowLoc: OpLoc, Type: ExceptionObjectTy);
918 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Value: Ex);
919 if (Res.isInvalid())
920 return ExprError();
921 Ex = Res.get();
922 }
923
924 // PPC MMA non-pointer types are not allowed as throw expr types.
925 if (Ex && Context.getTargetInfo().getTriple().isPPC64())
926 CheckPPCMMAType(Type: Ex->getType(), TypeLoc: Ex->getBeginLoc());
927
928 return new (Context)
929 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
930}
931
932static void
933collectPublicBases(CXXRecordDecl *RD,
934 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
935 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
936 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
937 bool ParentIsPublic) {
938 for (const CXXBaseSpecifier &BS : RD->bases()) {
939 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
940 bool NewSubobject;
941 // Virtual bases constitute the same subobject. Non-virtual bases are
942 // always distinct subobjects.
943 if (BS.isVirtual())
944 NewSubobject = VBases.insert(Ptr: BaseDecl).second;
945 else
946 NewSubobject = true;
947
948 if (NewSubobject)
949 ++SubobjectsSeen[BaseDecl];
950
951 // Only add subobjects which have public access throughout the entire chain.
952 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
953 if (PublicPath)
954 PublicSubobjectsSeen.insert(X: BaseDecl);
955
956 // Recurse on to each base subobject.
957 collectPublicBases(RD: BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
958 ParentIsPublic: PublicPath);
959 }
960}
961
962static void getUnambiguousPublicSubobjects(
963 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
964 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
965 llvm::SmallSet<CXXRecordDecl *, 2> VBases;
966 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
967 SubobjectsSeen[RD] = 1;
968 PublicSubobjectsSeen.insert(X: RD);
969 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
970 /*ParentIsPublic=*/true);
971
972 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
973 // Skip ambiguous objects.
974 if (SubobjectsSeen[PublicSubobject] > 1)
975 continue;
976
977 Objects.push_back(Elt: PublicSubobject);
978 }
979}
980
981/// CheckCXXThrowOperand - Validate the operand of a throw.
982bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
983 QualType ExceptionObjectTy, Expr *E) {
984 // If the type of the exception would be an incomplete type or a pointer
985 // to an incomplete type other than (cv) void the program is ill-formed.
986 QualType Ty = ExceptionObjectTy;
987 bool isPointer = false;
988 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
989 Ty = Ptr->getPointeeType();
990 isPointer = true;
991 }
992
993 // Cannot throw WebAssembly reference type.
994 if (Ty.isWebAssemblyReferenceType()) {
995 Diag(ThrowLoc, diag::err_wasm_reftype_tc) << 0 << E->getSourceRange();
996 return true;
997 }
998
999 // Cannot throw WebAssembly table.
1000 if (isPointer && Ty.isWebAssemblyReferenceType()) {
1001 Diag(ThrowLoc, diag::err_wasm_table_art) << 2 << E->getSourceRange();
1002 return true;
1003 }
1004
1005 if (!isPointer || !Ty->isVoidType()) {
1006 if (RequireCompleteType(ThrowLoc, Ty,
1007 isPointer ? diag::err_throw_incomplete_ptr
1008 : diag::err_throw_incomplete,
1009 E->getSourceRange()))
1010 return true;
1011
1012 if (!isPointer && Ty->isSizelessType()) {
1013 Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange();
1014 return true;
1015 }
1016
1017 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
1018 diag::err_throw_abstract_type, E))
1019 return true;
1020 }
1021
1022 // If the exception has class type, we need additional handling.
1023 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1024 if (!RD)
1025 return false;
1026
1027 // If we are throwing a polymorphic class type or pointer thereof,
1028 // exception handling will make use of the vtable.
1029 MarkVTableUsed(Loc: ThrowLoc, Class: RD);
1030
1031 // If a pointer is thrown, the referenced object will not be destroyed.
1032 if (isPointer)
1033 return false;
1034
1035 // If the class has a destructor, we must be able to call it.
1036 if (!RD->hasIrrelevantDestructor()) {
1037 if (CXXDestructorDecl *Destructor = LookupDestructor(Class: RD)) {
1038 MarkFunctionReferenced(E->getExprLoc(), Destructor);
1039 CheckDestructorAccess(E->getExprLoc(), Destructor,
1040 PDiag(diag::err_access_dtor_exception) << Ty);
1041 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
1042 return true;
1043 }
1044 }
1045
1046 // The MSVC ABI creates a list of all types which can catch the exception
1047 // object. This list also references the appropriate copy constructor to call
1048 // if the object is caught by value and has a non-trivial copy constructor.
1049 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1050 // We are only interested in the public, unambiguous bases contained within
1051 // the exception object. Bases which are ambiguous or otherwise
1052 // inaccessible are not catchable types.
1053 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
1054 getUnambiguousPublicSubobjects(RD, Objects&: UnambiguousPublicSubobjects);
1055
1056 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
1057 // Attempt to lookup the copy constructor. Various pieces of machinery
1058 // will spring into action, like template instantiation, which means this
1059 // cannot be a simple walk of the class's decls. Instead, we must perform
1060 // lookup and overload resolution.
1061 CXXConstructorDecl *CD = LookupCopyingConstructor(Class: Subobject, Quals: 0);
1062 if (!CD || CD->isDeleted())
1063 continue;
1064
1065 // Mark the constructor referenced as it is used by this throw expression.
1066 MarkFunctionReferenced(E->getExprLoc(), CD);
1067
1068 // Skip this copy constructor if it is trivial, we don't need to record it
1069 // in the catchable type data.
1070 if (CD->isTrivial())
1071 continue;
1072
1073 // The copy constructor is non-trivial, create a mapping from this class
1074 // type to this constructor.
1075 // N.B. The selection of copy constructor is not sensitive to this
1076 // particular throw-site. Lookup will be performed at the catch-site to
1077 // ensure that the copy constructor is, in fact, accessible (via
1078 // friendship or any other means).
1079 Context.addCopyConstructorForExceptionObject(RD: Subobject, CD);
1080
1081 // We don't keep the instantiated default argument expressions around so
1082 // we must rebuild them here.
1083 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
1084 if (CheckCXXDefaultArgExpr(CallLoc: ThrowLoc, FD: CD, Param: CD->getParamDecl(I)))
1085 return true;
1086 }
1087 }
1088 }
1089
1090 // Under the Itanium C++ ABI, memory for the exception object is allocated by
1091 // the runtime with no ability for the compiler to request additional
1092 // alignment. Warn if the exception type requires alignment beyond the minimum
1093 // guaranteed by the target C++ runtime.
1094 if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) {
1095 CharUnits TypeAlign = Context.getTypeAlignInChars(T: Ty);
1096 CharUnits ExnObjAlign = Context.getExnObjectAlignment();
1097 if (ExnObjAlign < TypeAlign) {
1098 Diag(ThrowLoc, diag::warn_throw_underaligned_obj);
1099 Diag(ThrowLoc, diag::note_throw_underaligned_obj)
1100 << Ty << (unsigned)TypeAlign.getQuantity()
1101 << (unsigned)ExnObjAlign.getQuantity();
1102 }
1103 }
1104 if (!isPointer && getLangOpts().AssumeNothrowExceptionDtor) {
1105 if (CXXDestructorDecl *Dtor = RD->getDestructor()) {
1106 auto Ty = Dtor->getType();
1107 if (auto *FT = Ty.getTypePtr()->getAs<FunctionProtoType>()) {
1108 if (!isUnresolvedExceptionSpec(FT->getExceptionSpecType()) &&
1109 !FT->isNothrow())
1110 Diag(ThrowLoc, diag::err_throw_object_throwing_dtor) << RD;
1111 }
1112 }
1113 }
1114
1115 return false;
1116}
1117
1118static QualType adjustCVQualifiersForCXXThisWithinLambda(
1119 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
1120 DeclContext *CurSemaContext, ASTContext &ASTCtx) {
1121
1122 QualType ClassType = ThisTy->getPointeeType();
1123 LambdaScopeInfo *CurLSI = nullptr;
1124 DeclContext *CurDC = CurSemaContext;
1125
1126 // Iterate through the stack of lambdas starting from the innermost lambda to
1127 // the outermost lambda, checking if '*this' is ever captured by copy - since
1128 // that could change the cv-qualifiers of the '*this' object.
1129 // The object referred to by '*this' starts out with the cv-qualifiers of its
1130 // member function. We then start with the innermost lambda and iterate
1131 // outward checking to see if any lambda performs a by-copy capture of '*this'
1132 // - and if so, any nested lambda must respect the 'constness' of that
1133 // capturing lamdbda's call operator.
1134 //
1135
1136 // Since the FunctionScopeInfo stack is representative of the lexical
1137 // nesting of the lambda expressions during initial parsing (and is the best
1138 // place for querying information about captures about lambdas that are
1139 // partially processed) and perhaps during instantiation of function templates
1140 // that contain lambda expressions that need to be transformed BUT not
1141 // necessarily during instantiation of a nested generic lambda's function call
1142 // operator (which might even be instantiated at the end of the TU) - at which
1143 // time the DeclContext tree is mature enough to query capture information
1144 // reliably - we use a two pronged approach to walk through all the lexically
1145 // enclosing lambda expressions:
1146 //
1147 // 1) Climb down the FunctionScopeInfo stack as long as each item represents
1148 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
1149 // enclosed by the call-operator of the LSI below it on the stack (while
1150 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
1151 // the stack represents the innermost lambda.
1152 //
1153 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
1154 // represents a lambda's call operator. If it does, we must be instantiating
1155 // a generic lambda's call operator (represented by the Current LSI, and
1156 // should be the only scenario where an inconsistency between the LSI and the
1157 // DeclContext should occur), so climb out the DeclContexts if they
1158 // represent lambdas, while querying the corresponding closure types
1159 // regarding capture information.
1160
1161 // 1) Climb down the function scope info stack.
1162 for (int I = FunctionScopes.size();
1163 I-- && isa<LambdaScopeInfo>(Val: FunctionScopes[I]) &&
1164 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
1165 cast<LambdaScopeInfo>(Val: FunctionScopes[I])->CallOperator);
1166 CurDC = getLambdaAwareParentOfDeclContext(DC: CurDC)) {
1167 CurLSI = cast<LambdaScopeInfo>(Val: FunctionScopes[I]);
1168
1169 if (!CurLSI->isCXXThisCaptured())
1170 continue;
1171
1172 auto C = CurLSI->getCXXThisCapture();
1173
1174 if (C.isCopyCapture()) {
1175 if (CurLSI->lambdaCaptureShouldBeConst())
1176 ClassType.addConst();
1177 return ASTCtx.getPointerType(T: ClassType);
1178 }
1179 }
1180
1181 // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which
1182 // can happen during instantiation of its nested generic lambda call
1183 // operator); 2. if we're in a lambda scope (lambda body).
1184 if (CurLSI && isLambdaCallOperator(DC: CurDC)) {
1185 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&
1186 "While computing 'this' capture-type for a generic lambda, when we "
1187 "run out of enclosing LSI's, yet the enclosing DC is a "
1188 "lambda-call-operator we must be (i.e. Current LSI) in a generic "
1189 "lambda call oeprator");
1190 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator));
1191
1192 auto IsThisCaptured =
1193 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
1194 IsConst = false;
1195 IsByCopy = false;
1196 for (auto &&C : Closure->captures()) {
1197 if (C.capturesThis()) {
1198 if (C.getCaptureKind() == LCK_StarThis)
1199 IsByCopy = true;
1200 if (Closure->getLambdaCallOperator()->isConst())
1201 IsConst = true;
1202 return true;
1203 }
1204 }
1205 return false;
1206 };
1207
1208 bool IsByCopyCapture = false;
1209 bool IsConstCapture = false;
1210 CXXRecordDecl *Closure = cast<CXXRecordDecl>(Val: CurDC->getParent());
1211 while (Closure &&
1212 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
1213 if (IsByCopyCapture) {
1214 if (IsConstCapture)
1215 ClassType.addConst();
1216 return ASTCtx.getPointerType(T: ClassType);
1217 }
1218 Closure = isLambdaCallOperator(Closure->getParent())
1219 ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
1220 : nullptr;
1221 }
1222 }
1223 return ASTCtx.getPointerType(T: ClassType);
1224}
1225
1226QualType Sema::getCurrentThisType() {
1227 DeclContext *DC = getFunctionLevelDeclContext();
1228 QualType ThisTy = CXXThisTypeOverride;
1229
1230 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(Val: DC)) {
1231 if (method && method->isImplicitObjectMemberFunction())
1232 ThisTy = method->getThisType().getNonReferenceType();
1233 }
1234
1235 if (ThisTy.isNull() && isLambdaCallWithImplicitObjectParameter(DC: CurContext) &&
1236 inTemplateInstantiation() && isa<CXXRecordDecl>(Val: DC)) {
1237
1238 // This is a lambda call operator that is being instantiated as a default
1239 // initializer. DC must point to the enclosing class type, so we can recover
1240 // the 'this' type from it.
1241 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(Val: DC));
1242 // There are no cv-qualifiers for 'this' within default initializers,
1243 // per [expr.prim.general]p4.
1244 ThisTy = Context.getPointerType(T: ClassTy);
1245 }
1246
1247 // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1248 // might need to be adjusted if the lambda or any of its enclosing lambda's
1249 // captures '*this' by copy.
1250 if (!ThisTy.isNull() && isLambdaCallOperator(DC: CurContext))
1251 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1252 CurSemaContext: CurContext, ASTCtx&: Context);
1253 return ThisTy;
1254}
1255
1256Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1257 Decl *ContextDecl,
1258 Qualifiers CXXThisTypeQuals,
1259 bool Enabled)
1260 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1261{
1262 if (!Enabled || !ContextDecl)
1263 return;
1264
1265 CXXRecordDecl *Record = nullptr;
1266 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(Val: ContextDecl))
1267 Record = Template->getTemplatedDecl();
1268 else
1269 Record = cast<CXXRecordDecl>(Val: ContextDecl);
1270
1271 QualType T = S.Context.getRecordType(Record);
1272 T = S.getASTContext().getQualifiedType(T, Qs: CXXThisTypeQuals);
1273
1274 S.CXXThisTypeOverride =
1275 S.Context.getLangOpts().HLSL ? T : S.Context.getPointerType(T);
1276
1277 this->Enabled = true;
1278}
1279
1280
1281Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1282 if (Enabled) {
1283 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1284 }
1285}
1286
1287static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) {
1288 SourceLocation DiagLoc = LSI->IntroducerRange.getEnd();
1289 assert(!LSI->isCXXThisCaptured());
1290 // [=, this] {}; // until C++20: Error: this when = is the default
1291 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval &&
1292 !Sema.getLangOpts().CPlusPlus20)
1293 return;
1294 Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit)
1295 << FixItHint::CreateInsertion(
1296 DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this");
1297}
1298
1299bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1300 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1301 const bool ByCopy) {
1302 // We don't need to capture this in an unevaluated context.
1303 if (isUnevaluatedContext() && !Explicit)
1304 return true;
1305
1306 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value");
1307
1308 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1309 ? *FunctionScopeIndexToStopAt
1310 : FunctionScopes.size() - 1;
1311
1312 // Check that we can capture the *enclosing object* (referred to by '*this')
1313 // by the capturing-entity/closure (lambda/block/etc) at
1314 // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1315
1316 // Note: The *enclosing object* can only be captured by-value by a
1317 // closure that is a lambda, using the explicit notation:
1318 // [*this] { ... }.
1319 // Every other capture of the *enclosing object* results in its by-reference
1320 // capture.
1321
1322 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1323 // stack), we can capture the *enclosing object* only if:
1324 // - 'L' has an explicit byref or byval capture of the *enclosing object*
1325 // - or, 'L' has an implicit capture.
1326 // AND
1327 // -- there is no enclosing closure
1328 // -- or, there is some enclosing closure 'E' that has already captured the
1329 // *enclosing object*, and every intervening closure (if any) between 'E'
1330 // and 'L' can implicitly capture the *enclosing object*.
1331 // -- or, every enclosing closure can implicitly capture the
1332 // *enclosing object*
1333
1334
1335 unsigned NumCapturingClosures = 0;
1336 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1337 if (CapturingScopeInfo *CSI =
1338 dyn_cast<CapturingScopeInfo>(Val: FunctionScopes[idx])) {
1339 if (CSI->CXXThisCaptureIndex != 0) {
1340 // 'this' is already being captured; there isn't anything more to do.
1341 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(IsODRUse: BuildAndDiagnose);
1342 break;
1343 }
1344 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(Val: CSI);
1345 if (LSI && isGenericLambdaCallOperatorSpecialization(MD: LSI->CallOperator)) {
1346 // This context can't implicitly capture 'this'; fail out.
1347 if (BuildAndDiagnose) {
1348 LSI->CallOperator->setInvalidDecl();
1349 Diag(Loc, diag::err_this_capture)
1350 << (Explicit && idx == MaxFunctionScopesIndex);
1351 if (!Explicit)
1352 buildLambdaThisCaptureFixit(Sema&: *this, LSI);
1353 }
1354 return true;
1355 }
1356 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1357 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1358 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1359 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1360 (Explicit && idx == MaxFunctionScopesIndex)) {
1361 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1362 // iteration through can be an explicit capture, all enclosing closures,
1363 // if any, must perform implicit captures.
1364
1365 // This closure can capture 'this'; continue looking upwards.
1366 NumCapturingClosures++;
1367 continue;
1368 }
1369 // This context can't implicitly capture 'this'; fail out.
1370 if (BuildAndDiagnose) {
1371 LSI->CallOperator->setInvalidDecl();
1372 Diag(Loc, diag::err_this_capture)
1373 << (Explicit && idx == MaxFunctionScopesIndex);
1374 }
1375 if (!Explicit)
1376 buildLambdaThisCaptureFixit(Sema&: *this, LSI);
1377 return true;
1378 }
1379 break;
1380 }
1381 if (!BuildAndDiagnose) return false;
1382
1383 // If we got here, then the closure at MaxFunctionScopesIndex on the
1384 // FunctionScopes stack, can capture the *enclosing object*, so capture it
1385 // (including implicit by-reference captures in any enclosing closures).
1386
1387 // In the loop below, respect the ByCopy flag only for the closure requesting
1388 // the capture (i.e. first iteration through the loop below). Ignore it for
1389 // all enclosing closure's up to NumCapturingClosures (since they must be
1390 // implicitly capturing the *enclosing object* by reference (see loop
1391 // above)).
1392 assert((!ByCopy ||
1393 isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&
1394 "Only a lambda can capture the enclosing object (referred to by "
1395 "*this) by copy");
1396 QualType ThisTy = getCurrentThisType();
1397 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1398 --idx, --NumCapturingClosures) {
1399 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(Val: FunctionScopes[idx]);
1400
1401 // The type of the corresponding data member (not a 'this' pointer if 'by
1402 // copy').
1403 QualType CaptureType = ByCopy ? ThisTy->getPointeeType() : ThisTy;
1404
1405 bool isNested = NumCapturingClosures > 1;
1406 CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy);
1407 }
1408 return false;
1409}
1410
1411ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1412 /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1413 /// is a non-lvalue expression whose value is the address of the object for
1414 /// which the function is called.
1415 QualType ThisTy = getCurrentThisType();
1416
1417 if (ThisTy.isNull()) {
1418 DeclContext *DC = getFunctionLevelDeclContext();
1419
1420 if (const auto *Method = dyn_cast<CXXMethodDecl>(Val: DC);
1421 Method && Method->isExplicitObjectMemberFunction()) {
1422 return Diag(Loc, diag::err_invalid_this_use) << 1;
1423 }
1424
1425 if (isLambdaCallWithExplicitObjectParameter(CurContext))
1426 return Diag(Loc, diag::err_invalid_this_use) << 1;
1427
1428 return Diag(Loc, diag::err_invalid_this_use) << 0;
1429 }
1430
1431 return BuildCXXThisExpr(Loc, Type: ThisTy, /*IsImplicit=*/false);
1432}
1433
1434Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type,
1435 bool IsImplicit) {
1436 auto *This = CXXThisExpr::Create(Ctx: Context, L: Loc, Ty: Type, IsImplicit);
1437 MarkThisReferenced(This);
1438 return This;
1439}
1440
1441void Sema::MarkThisReferenced(CXXThisExpr *This) {
1442 CheckCXXThisCapture(Loc: This->getExprLoc());
1443}
1444
1445bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1446 // If we're outside the body of a member function, then we'll have a specified
1447 // type for 'this'.
1448 if (CXXThisTypeOverride.isNull())
1449 return false;
1450
1451 // Determine whether we're looking into a class that's currently being
1452 // defined.
1453 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1454 return Class && Class->isBeingDefined();
1455}
1456
1457/// Parse construction of a specified type.
1458/// Can be interpreted either as function-style casting ("int(x)")
1459/// or class type construction ("ClassType(x,y,z)")
1460/// or creation of a value-initialized type ("int()").
1461ExprResult
1462Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1463 SourceLocation LParenOrBraceLoc,
1464 MultiExprArg exprs,
1465 SourceLocation RParenOrBraceLoc,
1466 bool ListInitialization) {
1467 if (!TypeRep)
1468 return ExprError();
1469
1470 TypeSourceInfo *TInfo;
1471 QualType Ty = GetTypeFromParser(Ty: TypeRep, TInfo: &TInfo);
1472 if (!TInfo)
1473 TInfo = Context.getTrivialTypeSourceInfo(T: Ty, Loc: SourceLocation());
1474
1475 auto Result = BuildCXXTypeConstructExpr(Type: TInfo, LParenLoc: LParenOrBraceLoc, Exprs: exprs,
1476 RParenLoc: RParenOrBraceLoc, ListInitialization);
1477 // Avoid creating a non-type-dependent expression that contains typos.
1478 // Non-type-dependent expressions are liable to be discarded without
1479 // checking for embedded typos.
1480 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1481 !Result.get()->isTypeDependent())
1482 Result = CorrectDelayedTyposInExpr(E: Result.get());
1483 else if (Result.isInvalid())
1484 Result = CreateRecoveryExpr(Begin: TInfo->getTypeLoc().getBeginLoc(),
1485 End: RParenOrBraceLoc, SubExprs: exprs, T: Ty);
1486 return Result;
1487}
1488
1489ExprResult
1490Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1491 SourceLocation LParenOrBraceLoc,
1492 MultiExprArg Exprs,
1493 SourceLocation RParenOrBraceLoc,
1494 bool ListInitialization) {
1495 QualType Ty = TInfo->getType();
1496 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1497
1498 assert((!ListInitialization || Exprs.size() == 1) &&
1499 "List initialization must have exactly one expression.");
1500 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1501
1502 InitializedEntity Entity =
1503 InitializedEntity::InitializeTemporary(Context, TypeInfo: TInfo);
1504 InitializationKind Kind =
1505 Exprs.size()
1506 ? ListInitialization
1507 ? InitializationKind::CreateDirectList(
1508 InitLoc: TyBeginLoc, LBraceLoc: LParenOrBraceLoc, RBraceLoc: RParenOrBraceLoc)
1509 : InitializationKind::CreateDirect(InitLoc: TyBeginLoc, LParenLoc: LParenOrBraceLoc,
1510 RParenLoc: RParenOrBraceLoc)
1511 : InitializationKind::CreateValue(InitLoc: TyBeginLoc, LParenLoc: LParenOrBraceLoc,
1512 RParenLoc: RParenOrBraceLoc);
1513
1514 // C++17 [expr.type.conv]p1:
1515 // If the type is a placeholder for a deduced class type, [...perform class
1516 // template argument deduction...]
1517 // C++23:
1518 // Otherwise, if the type contains a placeholder type, it is replaced by the
1519 // type determined by placeholder type deduction.
1520 DeducedType *Deduced = Ty->getContainedDeducedType();
1521 if (Deduced && !Deduced->isDeduced() &&
1522 isa<DeducedTemplateSpecializationType>(Val: Deduced)) {
1523 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1524 Kind, Init: Exprs);
1525 if (Ty.isNull())
1526 return ExprError();
1527 Entity = InitializedEntity::InitializeTemporary(TypeInfo: TInfo, Type: Ty);
1528 } else if (Deduced && !Deduced->isDeduced()) {
1529 MultiExprArg Inits = Exprs;
1530 if (ListInitialization) {
1531 auto *ILE = cast<InitListExpr>(Val: Exprs[0]);
1532 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
1533 }
1534
1535 if (Inits.empty())
1536 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_init_no_expression)
1537 << Ty << FullRange);
1538 if (Inits.size() > 1) {
1539 Expr *FirstBad = Inits[1];
1540 return ExprError(Diag(FirstBad->getBeginLoc(),
1541 diag::err_auto_expr_init_multiple_expressions)
1542 << Ty << FullRange);
1543 }
1544 if (getLangOpts().CPlusPlus23) {
1545 if (Ty->getAs<AutoType>())
1546 Diag(TyBeginLoc, diag::warn_cxx20_compat_auto_expr) << FullRange;
1547 }
1548 Expr *Deduce = Inits[0];
1549 if (isa<InitListExpr>(Deduce))
1550 return ExprError(
1551 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
1552 << ListInitialization << Ty << FullRange);
1553 QualType DeducedType;
1554 TemplateDeductionInfo Info(Deduce->getExprLoc());
1555 TemplateDeductionResult Result =
1556 DeduceAutoType(AutoTypeLoc: TInfo->getTypeLoc(), Initializer: Deduce, Result&: DeducedType, Info);
1557 if (Result != TemplateDeductionResult::Success &&
1558 Result != TemplateDeductionResult::AlreadyDiagnosed)
1559 return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_deduction_failure)
1560 << Ty << Deduce->getType() << FullRange
1561 << Deduce->getSourceRange());
1562 if (DeducedType.isNull()) {
1563 assert(Result == TemplateDeductionResult::AlreadyDiagnosed);
1564 return ExprError();
1565 }
1566
1567 Ty = DeducedType;
1568 Entity = InitializedEntity::InitializeTemporary(TypeInfo: TInfo, Type: Ty);
1569 }
1570
1571 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs))
1572 return CXXUnresolvedConstructExpr::Create(
1573 Context, T: Ty.getNonReferenceType(), TSI: TInfo, LParenLoc: LParenOrBraceLoc, Args: Exprs,
1574 RParenLoc: RParenOrBraceLoc, IsListInit: ListInitialization);
1575
1576 // C++ [expr.type.conv]p1:
1577 // If the expression list is a parenthesized single expression, the type
1578 // conversion expression is equivalent (in definedness, and if defined in
1579 // meaning) to the corresponding cast expression.
1580 if (Exprs.size() == 1 && !ListInitialization &&
1581 !isa<InitListExpr>(Val: Exprs[0])) {
1582 Expr *Arg = Exprs[0];
1583 return BuildCXXFunctionalCastExpr(TInfo, Type: Ty, LParenLoc: LParenOrBraceLoc, CastExpr: Arg,
1584 RParenLoc: RParenOrBraceLoc);
1585 }
1586
1587 // For an expression of the form T(), T shall not be an array type.
1588 QualType ElemTy = Ty;
1589 if (Ty->isArrayType()) {
1590 if (!ListInitialization)
1591 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1592 << FullRange);
1593 ElemTy = Context.getBaseElementType(QT: Ty);
1594 }
1595
1596 // Only construct objects with object types.
1597 // The standard doesn't explicitly forbid function types here, but that's an
1598 // obvious oversight, as there's no way to dynamically construct a function
1599 // in general.
1600 if (Ty->isFunctionType())
1601 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1602 << Ty << FullRange);
1603
1604 // C++17 [expr.type.conv]p2:
1605 // If the type is cv void and the initializer is (), the expression is a
1606 // prvalue of the specified type that performs no initialization.
1607 if (!Ty->isVoidType() &&
1608 RequireCompleteType(TyBeginLoc, ElemTy,
1609 diag::err_invalid_incomplete_type_use, FullRange))
1610 return ExprError();
1611
1612 // Otherwise, the expression is a prvalue of the specified type whose
1613 // result object is direct-initialized (11.6) with the initializer.
1614 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1615 ExprResult Result = InitSeq.Perform(S&: *this, Entity, Kind, Args: Exprs);
1616
1617 if (Result.isInvalid())
1618 return Result;
1619
1620 Expr *Inner = Result.get();
1621 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Val: Inner))
1622 Inner = BTE->getSubExpr();
1623 if (auto *CE = dyn_cast<ConstantExpr>(Val: Inner);
1624 CE && CE->isImmediateInvocation())
1625 Inner = CE->getSubExpr();
1626 if (!isa<CXXTemporaryObjectExpr>(Val: Inner) &&
1627 !isa<CXXScalarValueInitExpr>(Val: Inner)) {
1628 // If we created a CXXTemporaryObjectExpr, that node also represents the
1629 // functional cast. Otherwise, create an explicit cast to represent
1630 // the syntactic form of a functional-style cast that was used here.
1631 //
1632 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1633 // would give a more consistent AST representation than using a
1634 // CXXTemporaryObjectExpr. It's also weird that the functional cast
1635 // is sometimes handled by initialization and sometimes not.
1636 QualType ResultType = Result.get()->getType();
1637 SourceRange Locs = ListInitialization
1638 ? SourceRange()
1639 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1640 Result = CXXFunctionalCastExpr::Create(
1641 Context, T: ResultType, VK: Expr::getValueKindForType(T: Ty), Written: TInfo, Kind: CK_NoOp,
1642 Op: Result.get(), /*Path=*/nullptr, FPO: CurFPFeatureOverrides(),
1643 LPLoc: Locs.getBegin(), RPLoc: Locs.getEnd());
1644 }
1645
1646 return Result;
1647}
1648
1649bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) {
1650 // [CUDA] Ignore this function, if we can't call it.
1651 const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true);
1652 if (getLangOpts().CUDA) {
1653 auto CallPreference = IdentifyCUDAPreference(Caller, Method);
1654 // If it's not callable at all, it's not the right function.
1655 if (CallPreference < CFP_WrongSide)
1656 return false;
1657 if (CallPreference == CFP_WrongSide) {
1658 // Maybe. We have to check if there are better alternatives.
1659 DeclContext::lookup_result R =
1660 Method->getDeclContext()->lookup(Method->getDeclName());
1661 for (const auto *D : R) {
1662 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1663 if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide)
1664 return false;
1665 }
1666 }
1667 // We've found no better variants.
1668 }
1669 }
1670
1671 SmallVector<const FunctionDecl*, 4> PreventedBy;
1672 bool Result = Method->isUsualDeallocationFunction(PreventedBy);
1673
1674 if (Result || !getLangOpts().CUDA || PreventedBy.empty())
1675 return Result;
1676
1677 // In case of CUDA, return true if none of the 1-argument deallocator
1678 // functions are actually callable.
1679 return llvm::none_of(Range&: PreventedBy, P: [&](const FunctionDecl *FD) {
1680 assert(FD->getNumParams() == 1 &&
1681 "Only single-operand functions should be in PreventedBy");
1682 return IdentifyCUDAPreference(Caller, Callee: FD) >= CFP_HostDevice;
1683 });
1684}
1685
1686/// Determine whether the given function is a non-placement
1687/// deallocation function.
1688static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1689 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: FD))
1690 return S.isUsualDeallocationFunction(Method);
1691
1692 if (FD->getOverloadedOperator() != OO_Delete &&
1693 FD->getOverloadedOperator() != OO_Array_Delete)
1694 return false;
1695
1696 unsigned UsualParams = 1;
1697
1698 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1699 S.Context.hasSameUnqualifiedType(
1700 T1: FD->getParamDecl(i: UsualParams)->getType(),
1701 T2: S.Context.getSizeType()))
1702 ++UsualParams;
1703
1704 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1705 S.Context.hasSameUnqualifiedType(
1706 T1: FD->getParamDecl(i: UsualParams)->getType(),
1707 T2: S.Context.getTypeDeclType(S.getStdAlignValT())))
1708 ++UsualParams;
1709
1710 return UsualParams == FD->getNumParams();
1711}
1712
1713namespace {
1714 struct UsualDeallocFnInfo {
1715 UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1716 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1717 : Found(Found), FD(dyn_cast<FunctionDecl>(Val: Found->getUnderlyingDecl())),
1718 Destroying(false), HasSizeT(false), HasAlignValT(false),
1719 CUDAPref(Sema::CFP_Native) {
1720 // A function template declaration is never a usual deallocation function.
1721 if (!FD)
1722 return;
1723 unsigned NumBaseParams = 1;
1724 if (FD->isDestroyingOperatorDelete()) {
1725 Destroying = true;
1726 ++NumBaseParams;
1727 }
1728
1729 if (NumBaseParams < FD->getNumParams() &&
1730 S.Context.hasSameUnqualifiedType(
1731 T1: FD->getParamDecl(i: NumBaseParams)->getType(),
1732 T2: S.Context.getSizeType())) {
1733 ++NumBaseParams;
1734 HasSizeT = true;
1735 }
1736
1737 if (NumBaseParams < FD->getNumParams() &&
1738 FD->getParamDecl(i: NumBaseParams)->getType()->isAlignValT()) {
1739 ++NumBaseParams;
1740 HasAlignValT = true;
1741 }
1742
1743 // In CUDA, determine how much we'd like / dislike to call this.
1744 if (S.getLangOpts().CUDA)
1745 CUDAPref = S.IdentifyCUDAPreference(
1746 Caller: S.getCurFunctionDecl(/*AllowLambda=*/true), Callee: FD);
1747 }
1748
1749 explicit operator bool() const { return FD; }
1750
1751 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1752 bool WantAlign) const {
1753 // C++ P0722:
1754 // A destroying operator delete is preferred over a non-destroying
1755 // operator delete.
1756 if (Destroying != Other.Destroying)
1757 return Destroying;
1758
1759 // C++17 [expr.delete]p10:
1760 // If the type has new-extended alignment, a function with a parameter
1761 // of type std::align_val_t is preferred; otherwise a function without
1762 // such a parameter is preferred
1763 if (HasAlignValT != Other.HasAlignValT)
1764 return HasAlignValT == WantAlign;
1765
1766 if (HasSizeT != Other.HasSizeT)
1767 return HasSizeT == WantSize;
1768
1769 // Use CUDA call preference as a tiebreaker.
1770 return CUDAPref > Other.CUDAPref;
1771 }
1772
1773 DeclAccessPair Found;
1774 FunctionDecl *FD;
1775 bool Destroying, HasSizeT, HasAlignValT;
1776 Sema::CUDAFunctionPreference CUDAPref;
1777 };
1778}
1779
1780/// Determine whether a type has new-extended alignment. This may be called when
1781/// the type is incomplete (for a delete-expression with an incomplete pointee
1782/// type), in which case it will conservatively return false if the alignment is
1783/// not known.
1784static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1785 return S.getLangOpts().AlignedAllocation &&
1786 S.getASTContext().getTypeAlignIfKnown(T: AllocType) >
1787 S.getASTContext().getTargetInfo().getNewAlign();
1788}
1789
1790/// Select the correct "usual" deallocation function to use from a selection of
1791/// deallocation functions (either global or class-scope).
1792static UsualDeallocFnInfo resolveDeallocationOverload(
1793 Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1794 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1795 UsualDeallocFnInfo Best;
1796
1797 for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1798 UsualDeallocFnInfo Info(S, I.getPair());
1799 if (!Info || !isNonPlacementDeallocationFunction(S, FD: Info.FD) ||
1800 Info.CUDAPref == Sema::CFP_Never)
1801 continue;
1802
1803 if (!Best) {
1804 Best = Info;
1805 if (BestFns)
1806 BestFns->push_back(Elt: Info);
1807 continue;
1808 }
1809
1810 if (Best.isBetterThan(Other: Info, WantSize, WantAlign))
1811 continue;
1812
1813 // If more than one preferred function is found, all non-preferred
1814 // functions are eliminated from further consideration.
1815 if (BestFns && Info.isBetterThan(Other: Best, WantSize, WantAlign))
1816 BestFns->clear();
1817
1818 Best = Info;
1819 if (BestFns)
1820 BestFns->push_back(Elt: Info);
1821 }
1822
1823 return Best;
1824}
1825
1826/// Determine whether a given type is a class for which 'delete[]' would call
1827/// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1828/// we need to store the array size (even if the type is
1829/// trivially-destructible).
1830static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1831 QualType allocType) {
1832 const RecordType *record =
1833 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1834 if (!record) return false;
1835
1836 // Try to find an operator delete[] in class scope.
1837
1838 DeclarationName deleteName =
1839 S.Context.DeclarationNames.getCXXOperatorName(Op: OO_Array_Delete);
1840 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1841 S.LookupQualifiedName(ops, record->getDecl());
1842
1843 // We're just doing this for information.
1844 ops.suppressDiagnostics();
1845
1846 // Very likely: there's no operator delete[].
1847 if (ops.empty()) return false;
1848
1849 // If it's ambiguous, it should be illegal to call operator delete[]
1850 // on this thing, so it doesn't matter if we allocate extra space or not.
1851 if (ops.isAmbiguous()) return false;
1852
1853 // C++17 [expr.delete]p10:
1854 // If the deallocation functions have class scope, the one without a
1855 // parameter of type std::size_t is selected.
1856 auto Best = resolveDeallocationOverload(
1857 S, R&: ops, /*WantSize*/false,
1858 /*WantAlign*/hasNewExtendedAlignment(S, AllocType: allocType));
1859 return Best && Best.HasSizeT;
1860}
1861
1862/// Parsed a C++ 'new' expression (C++ 5.3.4).
1863///
1864/// E.g.:
1865/// @code new (memory) int[size][4] @endcode
1866/// or
1867/// @code ::new Foo(23, "hello") @endcode
1868///
1869/// \param StartLoc The first location of the expression.
1870/// \param UseGlobal True if 'new' was prefixed with '::'.
1871/// \param PlacementLParen Opening paren of the placement arguments.
1872/// \param PlacementArgs Placement new arguments.
1873/// \param PlacementRParen Closing paren of the placement arguments.
1874/// \param TypeIdParens If the type is in parens, the source range.
1875/// \param D The type to be allocated, as well as array dimensions.
1876/// \param Initializer The initializing expression or initializer-list, or null
1877/// if there is none.
1878ExprResult
1879Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1880 SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1881 SourceLocation PlacementRParen, SourceRange TypeIdParens,
1882 Declarator &D, Expr *Initializer) {
1883 std::optional<Expr *> ArraySize;
1884 // If the specified type is an array, unwrap it and save the expression.
1885 if (D.getNumTypeObjects() > 0 &&
1886 D.getTypeObject(i: 0).Kind == DeclaratorChunk::Array) {
1887 DeclaratorChunk &Chunk = D.getTypeObject(i: 0);
1888 if (D.getDeclSpec().hasAutoTypeSpec())
1889 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1890 << D.getSourceRange());
1891 if (Chunk.Arr.hasStatic)
1892 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1893 << D.getSourceRange());
1894 if (!Chunk.Arr.NumElts && !Initializer)
1895 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1896 << D.getSourceRange());
1897
1898 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1899 D.DropFirstTypeObject();
1900 }
1901
1902 // Every dimension shall be of constant size.
1903 if (ArraySize) {
1904 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1905 if (D.getTypeObject(i: I).Kind != DeclaratorChunk::Array)
1906 break;
1907
1908 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(i: I).Arr;
1909 if (Expr *NumElts = (Expr *)Array.NumElts) {
1910 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1911 // FIXME: GCC permits constant folding here. We should either do so consistently
1912 // or not do so at all, rather than changing behavior in C++14 onwards.
1913 if (getLangOpts().CPlusPlus14) {
1914 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1915 // shall be a converted constant expression (5.19) of type std::size_t
1916 // and shall evaluate to a strictly positive value.
1917 llvm::APSInt Value(Context.getIntWidth(T: Context.getSizeType()));
1918 Array.NumElts
1919 = CheckConvertedConstantExpression(From: NumElts, T: Context.getSizeType(), Value,
1920 CCE: CCEK_ArrayBound)
1921 .get();
1922 } else {
1923 Array.NumElts =
1924 VerifyIntegerConstantExpression(
1925 NumElts, nullptr, diag::err_new_array_nonconst, AllowFold)
1926 .get();
1927 }
1928 if (!Array.NumElts)
1929 return ExprError();
1930 }
1931 }
1932 }
1933 }
1934
1935 TypeSourceInfo *TInfo = GetTypeForDeclarator(D);
1936 QualType AllocType = TInfo->getType();
1937 if (D.isInvalidType())
1938 return ExprError();
1939
1940 SourceRange DirectInitRange;
1941 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Val: Initializer))
1942 DirectInitRange = List->getSourceRange();
1943
1944 return BuildCXXNew(Range: SourceRange(StartLoc, D.getEndLoc()), UseGlobal,
1945 PlacementLParen, PlacementArgs, PlacementRParen,
1946 TypeIdParens, AllocType, AllocTypeInfo: TInfo, ArraySize, DirectInitRange,
1947 Initializer);
1948}
1949
1950static bool isLegalArrayNewInitializer(CXXNewInitializationStyle Style,
1951 Expr *Init, bool IsCPlusPlus20) {
1952 if (!Init)
1953 return true;
1954 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Val: Init))
1955 return IsCPlusPlus20 || PLE->getNumExprs() == 0;
1956 if (isa<ImplicitValueInitExpr>(Val: Init))
1957 return true;
1958 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Val: Init))
1959 return !CCE->isListInitialization() &&
1960 CCE->getConstructor()->isDefaultConstructor();
1961 else if (Style == CXXNewInitializationStyle::Braces) {
1962 assert(isa<InitListExpr>(Init) &&
1963 "Shouldn't create list CXXConstructExprs for arrays.");
1964 return true;
1965 }
1966 return false;
1967}
1968
1969bool
1970Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const {
1971 if (!getLangOpts().AlignedAllocationUnavailable)
1972 return false;
1973 if (FD.isDefined())
1974 return false;
1975 std::optional<unsigned> AlignmentParam;
1976 if (FD.isReplaceableGlobalAllocationFunction(AlignmentParam: &AlignmentParam) &&
1977 AlignmentParam)
1978 return true;
1979 return false;
1980}
1981
1982// Emit a diagnostic if an aligned allocation/deallocation function that is not
1983// implemented in the standard library is selected.
1984void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1985 SourceLocation Loc) {
1986 if (isUnavailableAlignedAllocationFunction(FD)) {
1987 const llvm::Triple &T = getASTContext().getTargetInfo().getTriple();
1988 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1989 getASTContext().getTargetInfo().getPlatformName());
1990 VersionTuple OSVersion = alignedAllocMinVersion(OS: T.getOS());
1991
1992 OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator();
1993 bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete;
1994 Diag(Loc, diag::err_aligned_allocation_unavailable)
1995 << IsDelete << FD.getType().getAsString() << OSName
1996 << OSVersion.getAsString() << OSVersion.empty();
1997 Diag(Loc, diag::note_silence_aligned_allocation_unavailable);
1998 }
1999}
2000
2001ExprResult Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
2002 SourceLocation PlacementLParen,
2003 MultiExprArg PlacementArgs,
2004 SourceLocation PlacementRParen,
2005 SourceRange TypeIdParens, QualType AllocType,
2006 TypeSourceInfo *AllocTypeInfo,
2007 std::optional<Expr *> ArraySize,
2008 SourceRange DirectInitRange, Expr *Initializer) {
2009 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
2010 SourceLocation StartLoc = Range.getBegin();
2011
2012 CXXNewInitializationStyle InitStyle;
2013 if (DirectInitRange.isValid()) {
2014 assert(Initializer && "Have parens but no initializer.");
2015 InitStyle = CXXNewInitializationStyle::Parens;
2016 } else if (Initializer && isa<InitListExpr>(Val: Initializer))
2017 InitStyle = CXXNewInitializationStyle::Braces;
2018 else {
2019 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
2020 isa<CXXConstructExpr>(Initializer)) &&
2021 "Initializer expression that cannot have been implicitly created.");
2022 InitStyle = CXXNewInitializationStyle::None;
2023 }
2024
2025 MultiExprArg Exprs(&Initializer, Initializer ? 1 : 0);
2026 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Val: Initializer)) {
2027 assert(InitStyle == CXXNewInitializationStyle::Parens &&
2028 "paren init for non-call init");
2029 Exprs = MultiExprArg(List->getExprs(), List->getNumExprs());
2030 }
2031
2032 // C++11 [expr.new]p15:
2033 // A new-expression that creates an object of type T initializes that
2034 // object as follows:
2035 InitializationKind Kind = [&] {
2036 switch (InitStyle) {
2037 // - If the new-initializer is omitted, the object is default-
2038 // initialized (8.5); if no initialization is performed,
2039 // the object has indeterminate value
2040 case CXXNewInitializationStyle::None:
2041 return InitializationKind::CreateDefault(InitLoc: TypeRange.getBegin());
2042 // - Otherwise, the new-initializer is interpreted according to the
2043 // initialization rules of 8.5 for direct-initialization.
2044 case CXXNewInitializationStyle::Parens:
2045 return InitializationKind::CreateDirect(InitLoc: TypeRange.getBegin(),
2046 LParenLoc: DirectInitRange.getBegin(),
2047 RParenLoc: DirectInitRange.getEnd());
2048 case CXXNewInitializationStyle::Braces:
2049 return InitializationKind::CreateDirectList(TypeRange.getBegin(),
2050 Initializer->getBeginLoc(),
2051 Initializer->getEndLoc());
2052 }
2053 llvm_unreachable("Unknown initialization kind");
2054 }();
2055
2056 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
2057 auto *Deduced = AllocType->getContainedDeducedType();
2058 if (Deduced && !Deduced->isDeduced() &&
2059 isa<DeducedTemplateSpecializationType>(Deduced)) {
2060 if (ArraySize)
2061 return ExprError(
2062 Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(),
2063 diag::err_deduced_class_template_compound_type)
2064 << /*array*/ 2
2065 << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange));
2066
2067 InitializedEntity Entity
2068 = InitializedEntity::InitializeNew(NewLoc: StartLoc, Type: AllocType);
2069 AllocType = DeduceTemplateSpecializationFromInitializer(
2070 TInfo: AllocTypeInfo, Entity, Kind, Init: Exprs);
2071 if (AllocType.isNull())
2072 return ExprError();
2073 } else if (Deduced && !Deduced->isDeduced()) {
2074 MultiExprArg Inits = Exprs;
2075 bool Braced = (InitStyle == CXXNewInitializationStyle::Braces);
2076 if (Braced) {
2077 auto *ILE = cast<InitListExpr>(Val: Exprs[0]);
2078 Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits());
2079 }
2080
2081 if (InitStyle == CXXNewInitializationStyle::None || Inits.empty())
2082 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
2083 << AllocType << TypeRange);
2084 if (Inits.size() > 1) {
2085 Expr *FirstBad = Inits[1];
2086 return ExprError(Diag(FirstBad->getBeginLoc(),
2087 diag::err_auto_new_ctor_multiple_expressions)
2088 << AllocType << TypeRange);
2089 }
2090 if (Braced && !getLangOpts().CPlusPlus17)
2091 Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init)
2092 << AllocType << TypeRange;
2093 Expr *Deduce = Inits[0];
2094 if (isa<InitListExpr>(Deduce))
2095 return ExprError(
2096 Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces)
2097 << Braced << AllocType << TypeRange);
2098 QualType DeducedType;
2099 TemplateDeductionInfo Info(Deduce->getExprLoc());
2100 TemplateDeductionResult Result =
2101 DeduceAutoType(AutoTypeLoc: AllocTypeInfo->getTypeLoc(), Initializer: Deduce, Result&: DeducedType, Info);
2102 if (Result != TemplateDeductionResult::Success &&
2103 Result != TemplateDeductionResult::AlreadyDiagnosed)
2104 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
2105 << AllocType << Deduce->getType() << TypeRange
2106 << Deduce->getSourceRange());
2107 if (DeducedType.isNull()) {
2108 assert(Result == TemplateDeductionResult::AlreadyDiagnosed);
2109 return ExprError();
2110 }
2111 AllocType = DeducedType;
2112 }
2113
2114 // Per C++0x [expr.new]p5, the type being constructed may be a
2115 // typedef of an array type.
2116 if (!ArraySize) {
2117 if (const ConstantArrayType *Array
2118 = Context.getAsConstantArrayType(T: AllocType)) {
2119 ArraySize = IntegerLiteral::Create(C: Context, V: Array->getSize(),
2120 type: Context.getSizeType(),
2121 l: TypeRange.getEnd());
2122 AllocType = Array->getElementType();
2123 }
2124 }
2125
2126 if (CheckAllocatedType(AllocType, Loc: TypeRange.getBegin(), R: TypeRange))
2127 return ExprError();
2128
2129 if (ArraySize && !checkArrayElementAlignment(EltTy: AllocType, Loc: TypeRange.getBegin()))
2130 return ExprError();
2131
2132 // In ARC, infer 'retaining' for the allocated
2133 if (getLangOpts().ObjCAutoRefCount &&
2134 AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2135 AllocType->isObjCLifetimeType()) {
2136 AllocType = Context.getLifetimeQualifiedType(type: AllocType,
2137 lifetime: AllocType->getObjCARCImplicitLifetime());
2138 }
2139
2140 QualType ResultType = Context.getPointerType(T: AllocType);
2141
2142 if (ArraySize && *ArraySize &&
2143 (*ArraySize)->getType()->isNonOverloadPlaceholderType()) {
2144 ExprResult result = CheckPlaceholderExpr(E: *ArraySize);
2145 if (result.isInvalid()) return ExprError();
2146 ArraySize = result.get();
2147 }
2148 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
2149 // integral or enumeration type with a non-negative value."
2150 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
2151 // enumeration type, or a class type for which a single non-explicit
2152 // conversion function to integral or unscoped enumeration type exists.
2153 // C++1y [expr.new]p6: The expression [...] is implicitly converted to
2154 // std::size_t.
2155 std::optional<uint64_t> KnownArraySize;
2156 if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) {
2157 ExprResult ConvertedSize;
2158 if (getLangOpts().CPlusPlus14) {
2159 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
2160
2161 ConvertedSize = PerformImplicitConversion(From: *ArraySize, ToType: Context.getSizeType(),
2162 Action: AA_Converting);
2163
2164 if (!ConvertedSize.isInvalid() &&
2165 (*ArraySize)->getType()->getAs<RecordType>())
2166 // Diagnose the compatibility of this conversion.
2167 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
2168 << (*ArraySize)->getType() << 0 << "'size_t'";
2169 } else {
2170 class SizeConvertDiagnoser : public ICEConvertDiagnoser {
2171 protected:
2172 Expr *ArraySize;
2173
2174 public:
2175 SizeConvertDiagnoser(Expr *ArraySize)
2176 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
2177 ArraySize(ArraySize) {}
2178
2179 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
2180 QualType T) override {
2181 return S.Diag(Loc, diag::err_array_size_not_integral)
2182 << S.getLangOpts().CPlusPlus11 << T;
2183 }
2184
2185 SemaDiagnosticBuilder diagnoseIncomplete(
2186 Sema &S, SourceLocation Loc, QualType T) override {
2187 return S.Diag(Loc, diag::err_array_size_incomplete_type)
2188 << T << ArraySize->getSourceRange();
2189 }
2190
2191 SemaDiagnosticBuilder diagnoseExplicitConv(
2192 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
2193 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
2194 }
2195
2196 SemaDiagnosticBuilder noteExplicitConv(
2197 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2198 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2199 << ConvTy->isEnumeralType() << ConvTy;
2200 }
2201
2202 SemaDiagnosticBuilder diagnoseAmbiguous(
2203 Sema &S, SourceLocation Loc, QualType T) override {
2204 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
2205 }
2206
2207 SemaDiagnosticBuilder noteAmbiguous(
2208 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
2209 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
2210 << ConvTy->isEnumeralType() << ConvTy;
2211 }
2212
2213 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2214 QualType T,
2215 QualType ConvTy) override {
2216 return S.Diag(Loc,
2217 S.getLangOpts().CPlusPlus11
2218 ? diag::warn_cxx98_compat_array_size_conversion
2219 : diag::ext_array_size_conversion)
2220 << T << ConvTy->isEnumeralType() << ConvTy;
2221 }
2222 } SizeDiagnoser(*ArraySize);
2223
2224 ConvertedSize = PerformContextualImplicitConversion(Loc: StartLoc, FromE: *ArraySize,
2225 Converter&: SizeDiagnoser);
2226 }
2227 if (ConvertedSize.isInvalid())
2228 return ExprError();
2229
2230 ArraySize = ConvertedSize.get();
2231 QualType SizeType = (*ArraySize)->getType();
2232
2233 if (!SizeType->isIntegralOrUnscopedEnumerationType())
2234 return ExprError();
2235
2236 // C++98 [expr.new]p7:
2237 // The expression in a direct-new-declarator shall have integral type
2238 // with a non-negative value.
2239 //
2240 // Let's see if this is a constant < 0. If so, we reject it out of hand,
2241 // per CWG1464. Otherwise, if it's not a constant, we must have an
2242 // unparenthesized array type.
2243
2244 // We've already performed any required implicit conversion to integer or
2245 // unscoped enumeration type.
2246 // FIXME: Per CWG1464, we are required to check the value prior to
2247 // converting to size_t. This will never find a negative array size in
2248 // C++14 onwards, because Value is always unsigned here!
2249 if (std::optional<llvm::APSInt> Value =
2250 (*ArraySize)->getIntegerConstantExpr(Ctx: Context)) {
2251 if (Value->isSigned() && Value->isNegative()) {
2252 return ExprError(Diag((*ArraySize)->getBeginLoc(),
2253 diag::err_typecheck_negative_array_size)
2254 << (*ArraySize)->getSourceRange());
2255 }
2256
2257 if (!AllocType->isDependentType()) {
2258 unsigned ActiveSizeBits =
2259 ConstantArrayType::getNumAddressingBits(Context, ElementType: AllocType, NumElements: *Value);
2260 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
2261 return ExprError(
2262 Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large)
2263 << toString(*Value, 10) << (*ArraySize)->getSourceRange());
2264 }
2265
2266 KnownArraySize = Value->getZExtValue();
2267 } else if (TypeIdParens.isValid()) {
2268 // Can't have dynamic array size when the type-id is in parentheses.
2269 Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst)
2270 << (*ArraySize)->getSourceRange()
2271 << FixItHint::CreateRemoval(TypeIdParens.getBegin())
2272 << FixItHint::CreateRemoval(TypeIdParens.getEnd());
2273
2274 TypeIdParens = SourceRange();
2275 }
2276
2277 // Note that we do *not* convert the argument in any way. It can
2278 // be signed, larger than size_t, whatever.
2279 }
2280
2281 FunctionDecl *OperatorNew = nullptr;
2282 FunctionDecl *OperatorDelete = nullptr;
2283 unsigned Alignment =
2284 AllocType->isDependentType() ? 0 : Context.getTypeAlign(T: AllocType);
2285 unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
2286 bool PassAlignment = getLangOpts().AlignedAllocation &&
2287 Alignment > NewAlignment;
2288
2289 if (CheckArgsForPlaceholders(args: PlacementArgs))
2290 return ExprError();
2291
2292 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
2293 if (!AllocType->isDependentType() &&
2294 !Expr::hasAnyTypeDependentArguments(Exprs: PlacementArgs) &&
2295 FindAllocationFunctions(
2296 StartLoc, Range: SourceRange(PlacementLParen, PlacementRParen), NewScope: Scope, DeleteScope: Scope,
2297 AllocType, IsArray: ArraySize.has_value(), PassAlignment, PlaceArgs: PlacementArgs,
2298 OperatorNew, OperatorDelete))
2299 return ExprError();
2300
2301 // If this is an array allocation, compute whether the usual array
2302 // deallocation function for the type has a size_t parameter.
2303 bool UsualArrayDeleteWantsSize = false;
2304 if (ArraySize && !AllocType->isDependentType())
2305 UsualArrayDeleteWantsSize =
2306 doesUsualArrayDeleteWantSize(S&: *this, loc: StartLoc, allocType: AllocType);
2307
2308 SmallVector<Expr *, 8> AllPlaceArgs;
2309 if (OperatorNew) {
2310 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2311 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
2312 : VariadicDoesNotApply;
2313
2314 // We've already converted the placement args, just fill in any default
2315 // arguments. Skip the first parameter because we don't have a corresponding
2316 // argument. Skip the second parameter too if we're passing in the
2317 // alignment; we've already filled it in.
2318 unsigned NumImplicitArgs = PassAlignment ? 2 : 1;
2319 if (GatherArgumentsForCall(CallLoc: PlacementLParen, FDecl: OperatorNew, Proto: Proto,
2320 FirstParam: NumImplicitArgs, Args: PlacementArgs, AllArgs&: AllPlaceArgs,
2321 CallType))
2322 return ExprError();
2323
2324 if (!AllPlaceArgs.empty())
2325 PlacementArgs = AllPlaceArgs;
2326
2327 // We would like to perform some checking on the given `operator new` call,
2328 // but the PlacementArgs does not contain the implicit arguments,
2329 // namely allocation size and maybe allocation alignment,
2330 // so we need to conjure them.
2331
2332 QualType SizeTy = Context.getSizeType();
2333 unsigned SizeTyWidth = Context.getTypeSize(T: SizeTy);
2334
2335 llvm::APInt SingleEltSize(
2336 SizeTyWidth, Context.getTypeSizeInChars(T: AllocType).getQuantity());
2337
2338 // How many bytes do we want to allocate here?
2339 std::optional<llvm::APInt> AllocationSize;
2340 if (!ArraySize && !AllocType->isDependentType()) {
2341 // For non-array operator new, we only want to allocate one element.
2342 AllocationSize = SingleEltSize;
2343 } else if (KnownArraySize && !AllocType->isDependentType()) {
2344 // For array operator new, only deal with static array size case.
2345 bool Overflow;
2346 AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize)
2347 .umul_ov(RHS: SingleEltSize, Overflow);
2348 (void)Overflow;
2349 assert(
2350 !Overflow &&
2351 "Expected that all the overflows would have been handled already.");
2352 }
2353
2354 IntegerLiteral AllocationSizeLiteral(
2355 Context, AllocationSize.value_or(u: llvm::APInt::getZero(numBits: SizeTyWidth)),
2356 SizeTy, SourceLocation());
2357 // Otherwise, if we failed to constant-fold the allocation size, we'll
2358 // just give up and pass-in something opaque, that isn't a null pointer.
2359 OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue,
2360 OK_Ordinary, /*SourceExpr=*/nullptr);
2361
2362 // Let's synthesize the alignment argument in case we will need it.
2363 // Since we *really* want to allocate these on stack, this is slightly ugly
2364 // because there might not be a `std::align_val_t` type.
2365 EnumDecl *StdAlignValT = getStdAlignValT();
2366 QualType AlignValT =
2367 StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy;
2368 IntegerLiteral AlignmentLiteral(
2369 Context,
2370 llvm::APInt(Context.getTypeSize(T: SizeTy),
2371 Alignment / Context.getCharWidth()),
2372 SizeTy, SourceLocation());
2373 ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT,
2374 CK_IntegralCast, &AlignmentLiteral,
2375 VK_PRValue, FPOptionsOverride());
2376
2377 // Adjust placement args by prepending conjured size and alignment exprs.
2378 llvm::SmallVector<Expr *, 8> CallArgs;
2379 CallArgs.reserve(N: NumImplicitArgs + PlacementArgs.size());
2380 CallArgs.emplace_back(AllocationSize
2381 ? static_cast<Expr *>(&AllocationSizeLiteral)
2382 : &OpaqueAllocationSize);
2383 if (PassAlignment)
2384 CallArgs.emplace_back(Args: &DesiredAlignment);
2385 CallArgs.insert(I: CallArgs.end(), From: PlacementArgs.begin(), To: PlacementArgs.end());
2386
2387 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs);
2388
2389 checkCall(FDecl: OperatorNew, Proto: Proto, /*ThisArg=*/nullptr, Args: CallArgs,
2390 /*IsMemberFunction=*/false, Loc: StartLoc, Range, CallType);
2391
2392 // Warn if the type is over-aligned and is being allocated by (unaligned)
2393 // global operator new.
2394 if (PlacementArgs.empty() && !PassAlignment &&
2395 (OperatorNew->isImplicit() ||
2396 (OperatorNew->getBeginLoc().isValid() &&
2397 getSourceManager().isInSystemHeader(Loc: OperatorNew->getBeginLoc())))) {
2398 if (Alignment > NewAlignment)
2399 Diag(StartLoc, diag::warn_overaligned_type)
2400 << AllocType
2401 << unsigned(Alignment / Context.getCharWidth())
2402 << unsigned(NewAlignment / Context.getCharWidth());
2403 }
2404 }
2405
2406 // Array 'new' can't have any initializers except empty parentheses.
2407 // Initializer lists are also allowed, in C++11. Rely on the parser for the
2408 // dialect distinction.
2409 if (ArraySize && !isLegalArrayNewInitializer(Style: InitStyle, Init: Initializer,
2410 IsCPlusPlus20: getLangOpts().CPlusPlus20)) {
2411 SourceRange InitRange(Exprs.front()->getBeginLoc(),
2412 Exprs.back()->getEndLoc());
2413 Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2414 return ExprError();
2415 }
2416
2417 // If we can perform the initialization, and we've not already done so,
2418 // do it now.
2419 if (!AllocType->isDependentType() &&
2420 !Expr::hasAnyTypeDependentArguments(Exprs)) {
2421 // The type we initialize is the complete type, including the array bound.
2422 QualType InitType;
2423 if (KnownArraySize)
2424 InitType = Context.getConstantArrayType(
2425 EltTy: AllocType,
2426 ArySize: llvm::APInt(Context.getTypeSize(T: Context.getSizeType()),
2427 *KnownArraySize),
2428 SizeExpr: *ArraySize, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0);
2429 else if (ArraySize)
2430 InitType = Context.getIncompleteArrayType(EltTy: AllocType,
2431 ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0);
2432 else
2433 InitType = AllocType;
2434
2435 InitializedEntity Entity
2436 = InitializedEntity::InitializeNew(NewLoc: StartLoc, Type: InitType);
2437 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
2438 ExprResult FullInit = InitSeq.Perform(S&: *this, Entity, Kind, Args: Exprs);
2439 if (FullInit.isInvalid())
2440 return ExprError();
2441
2442 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2443 // we don't want the initialized object to be destructed.
2444 // FIXME: We should not create these in the first place.
2445 if (CXXBindTemporaryExpr *Binder =
2446 dyn_cast_or_null<CXXBindTemporaryExpr>(Val: FullInit.get()))
2447 FullInit = Binder->getSubExpr();
2448
2449 Initializer = FullInit.get();
2450
2451 // FIXME: If we have a KnownArraySize, check that the array bound of the
2452 // initializer is no greater than that constant value.
2453
2454 if (ArraySize && !*ArraySize) {
2455 auto *CAT = Context.getAsConstantArrayType(T: Initializer->getType());
2456 if (CAT) {
2457 // FIXME: Track that the array size was inferred rather than explicitly
2458 // specified.
2459 ArraySize = IntegerLiteral::Create(
2460 C: Context, V: CAT->getSize(), type: Context.getSizeType(), l: TypeRange.getEnd());
2461 } else {
2462 Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init)
2463 << Initializer->getSourceRange();
2464 }
2465 }
2466 }
2467
2468 // Mark the new and delete operators as referenced.
2469 if (OperatorNew) {
2470 if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2471 return ExprError();
2472 MarkFunctionReferenced(Loc: StartLoc, Func: OperatorNew);
2473 }
2474 if (OperatorDelete) {
2475 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2476 return ExprError();
2477 MarkFunctionReferenced(Loc: StartLoc, Func: OperatorDelete);
2478 }
2479
2480 return CXXNewExpr::Create(Ctx: Context, IsGlobalNew: UseGlobal, OperatorNew, OperatorDelete,
2481 ShouldPassAlignment: PassAlignment, UsualArrayDeleteWantsSize,
2482 PlacementArgs, TypeIdParens, ArraySize, InitializationStyle: InitStyle,
2483 Initializer, Ty: ResultType, AllocatedTypeInfo: AllocTypeInfo, Range,
2484 DirectInitRange);
2485}
2486
2487/// Checks that a type is suitable as the allocated type
2488/// in a new-expression.
2489bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2490 SourceRange R) {
2491 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2492 // abstract class type or array thereof.
2493 if (AllocType->isFunctionType())
2494 return Diag(Loc, diag::err_bad_new_type)
2495 << AllocType << 0 << R;
2496 else if (AllocType->isReferenceType())
2497 return Diag(Loc, diag::err_bad_new_type)
2498 << AllocType << 1 << R;
2499 else if (!AllocType->isDependentType() &&
2500 RequireCompleteSizedType(
2501 Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R))
2502 return true;
2503 else if (RequireNonAbstractType(Loc, AllocType,
2504 diag::err_allocation_of_abstract_type))
2505 return true;
2506 else if (AllocType->isVariablyModifiedType())
2507 return Diag(Loc, diag::err_variably_modified_new_type)
2508 << AllocType;
2509 else if (AllocType.getAddressSpace() != LangAS::Default &&
2510 !getLangOpts().OpenCLCPlusPlus)
2511 return Diag(Loc, diag::err_address_space_qualified_new)
2512 << AllocType.getUnqualifiedType()
2513 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2514 else if (getLangOpts().ObjCAutoRefCount) {
2515 if (const ArrayType *AT = Context.getAsArrayType(T: AllocType)) {
2516 QualType BaseAllocType = Context.getBaseElementType(VAT: AT);
2517 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2518 BaseAllocType->isObjCLifetimeType())
2519 return Diag(Loc, diag::err_arc_new_array_without_ownership)
2520 << BaseAllocType;
2521 }
2522 }
2523
2524 return false;
2525}
2526
2527static bool resolveAllocationOverload(
2528 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2529 bool &PassAlignment, FunctionDecl *&Operator,
2530 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2531 OverloadCandidateSet Candidates(R.getNameLoc(),
2532 OverloadCandidateSet::CSK_Normal);
2533 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2534 Alloc != AllocEnd; ++Alloc) {
2535 // Even member operator new/delete are implicitly treated as
2536 // static, so don't use AddMemberCandidate.
2537 NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2538
2539 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(Val: D)) {
2540 S.AddTemplateOverloadCandidate(FunctionTemplate: FnTemplate, FoundDecl: Alloc.getPair(),
2541 /*ExplicitTemplateArgs=*/nullptr, Args,
2542 CandidateSet&: Candidates,
2543 /*SuppressUserConversions=*/false);
2544 continue;
2545 }
2546
2547 FunctionDecl *Fn = cast<FunctionDecl>(Val: D);
2548 S.AddOverloadCandidate(Function: Fn, FoundDecl: Alloc.getPair(), Args, CandidateSet&: Candidates,
2549 /*SuppressUserConversions=*/false);
2550 }
2551
2552 // Do the resolution.
2553 OverloadCandidateSet::iterator Best;
2554 switch (Candidates.BestViableFunction(S, Loc: R.getNameLoc(), Best)) {
2555 case OR_Success: {
2556 // Got one!
2557 FunctionDecl *FnDecl = Best->Function;
2558 if (S.CheckAllocationAccess(OperatorLoc: R.getNameLoc(), PlacementRange: Range, NamingClass: R.getNamingClass(),
2559 FoundDecl: Best->FoundDecl) == Sema::AR_inaccessible)
2560 return true;
2561
2562 Operator = FnDecl;
2563 return false;
2564 }
2565
2566 case OR_No_Viable_Function:
2567 // C++17 [expr.new]p13:
2568 // If no matching function is found and the allocated object type has
2569 // new-extended alignment, the alignment argument is removed from the
2570 // argument list, and overload resolution is performed again.
2571 if (PassAlignment) {
2572 PassAlignment = false;
2573 AlignArg = Args[1];
2574 Args.erase(CI: Args.begin() + 1);
2575 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2576 Operator, AlignedCandidates: &Candidates, AlignArg,
2577 Diagnose);
2578 }
2579
2580 // MSVC will fall back on trying to find a matching global operator new
2581 // if operator new[] cannot be found. Also, MSVC will leak by not
2582 // generating a call to operator delete or operator delete[], but we
2583 // will not replicate that bug.
2584 // FIXME: Find out how this interacts with the std::align_val_t fallback
2585 // once MSVC implements it.
2586 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2587 S.Context.getLangOpts().MSVCCompat) {
2588 R.clear();
2589 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(Op: OO_New));
2590 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2591 // FIXME: This will give bad diagnostics pointing at the wrong functions.
2592 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2593 Operator, /*Candidates=*/AlignedCandidates: nullptr,
2594 /*AlignArg=*/nullptr, Diagnose);
2595 }
2596
2597 if (Diagnose) {
2598 // If this is an allocation of the form 'new (p) X' for some object
2599 // pointer p (or an expression that will decay to such a pointer),
2600 // diagnose the missing inclusion of <new>.
2601 if (!R.isClassLookup() && Args.size() == 2 &&
2602 (Args[1]->getType()->isObjectPointerType() ||
2603 Args[1]->getType()->isArrayType())) {
2604 S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new)
2605 << R.getLookupName() << Range;
2606 // Listing the candidates is unlikely to be useful; skip it.
2607 return true;
2608 }
2609
2610 // Finish checking all candidates before we note any. This checking can
2611 // produce additional diagnostics so can't be interleaved with our
2612 // emission of notes.
2613 //
2614 // For an aligned allocation, separately check the aligned and unaligned
2615 // candidates with their respective argument lists.
2616 SmallVector<OverloadCandidate*, 32> Cands;
2617 SmallVector<OverloadCandidate*, 32> AlignedCands;
2618 llvm::SmallVector<Expr*, 4> AlignedArgs;
2619 if (AlignedCandidates) {
2620 auto IsAligned = [](OverloadCandidate &C) {
2621 return C.Function->getNumParams() > 1 &&
2622 C.Function->getParamDecl(1)->getType()->isAlignValT();
2623 };
2624 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2625
2626 AlignedArgs.reserve(N: Args.size() + 1);
2627 AlignedArgs.push_back(Elt: Args[0]);
2628 AlignedArgs.push_back(Elt: AlignArg);
2629 AlignedArgs.append(in_start: Args.begin() + 1, in_end: Args.end());
2630 AlignedCands = AlignedCandidates->CompleteCandidates(
2631 S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned);
2632
2633 Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args,
2634 R.getNameLoc(), IsUnaligned);
2635 } else {
2636 Cands = Candidates.CompleteCandidates(S, OCD: OCD_AllCandidates, Args,
2637 OpLoc: R.getNameLoc());
2638 }
2639
2640 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2641 << R.getLookupName() << Range;
2642 if (AlignedCandidates)
2643 AlignedCandidates->NoteCandidates(S, Args: AlignedArgs, Cands: AlignedCands, Opc: "",
2644 OpLoc: R.getNameLoc());
2645 Candidates.NoteCandidates(S, Args, Cands, Opc: "", OpLoc: R.getNameLoc());
2646 }
2647 return true;
2648
2649 case OR_Ambiguous:
2650 if (Diagnose) {
2651 Candidates.NoteCandidates(
2652 PartialDiagnosticAt(R.getNameLoc(),
2653 S.PDiag(diag::err_ovl_ambiguous_call)
2654 << R.getLookupName() << Range),
2655 S, OCD_AmbiguousCandidates, Args);
2656 }
2657 return true;
2658
2659 case OR_Deleted: {
2660 if (Diagnose) {
2661 Candidates.NoteCandidates(
2662 PartialDiagnosticAt(R.getNameLoc(),
2663 S.PDiag(diag::err_ovl_deleted_call)
2664 << R.getLookupName() << Range),
2665 S, OCD_AllCandidates, Args);
2666 }
2667 return true;
2668 }
2669 }
2670 llvm_unreachable("Unreachable, bad result from BestViableFunction");
2671}
2672
2673bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2674 AllocationFunctionScope NewScope,
2675 AllocationFunctionScope DeleteScope,
2676 QualType AllocType, bool IsArray,
2677 bool &PassAlignment, MultiExprArg PlaceArgs,
2678 FunctionDecl *&OperatorNew,
2679 FunctionDecl *&OperatorDelete,
2680 bool Diagnose) {
2681 // --- Choosing an allocation function ---
2682 // C++ 5.3.4p8 - 14 & 18
2683 // 1) If looking in AFS_Global scope for allocation functions, only look in
2684 // the global scope. Else, if AFS_Class, only look in the scope of the
2685 // allocated class. If AFS_Both, look in both.
2686 // 2) If an array size is given, look for operator new[], else look for
2687 // operator new.
2688 // 3) The first argument is always size_t. Append the arguments from the
2689 // placement form.
2690
2691 SmallVector<Expr*, 8> AllocArgs;
2692 AllocArgs.reserve(N: (PassAlignment ? 2 : 1) + PlaceArgs.size());
2693
2694 // We don't care about the actual value of these arguments.
2695 // FIXME: Should the Sema create the expression and embed it in the syntax
2696 // tree? Or should the consumer just recalculate the value?
2697 // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2698 QualType SizeTy = Context.getSizeType();
2699 unsigned SizeTyWidth = Context.getTypeSize(T: SizeTy);
2700 IntegerLiteral Size(Context, llvm::APInt::getZero(numBits: SizeTyWidth), SizeTy,
2701 SourceLocation());
2702 AllocArgs.push_back(&Size);
2703
2704 QualType AlignValT = Context.VoidTy;
2705 if (PassAlignment) {
2706 DeclareGlobalNewDelete();
2707 AlignValT = Context.getTypeDeclType(getStdAlignValT());
2708 }
2709 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2710 if (PassAlignment)
2711 AllocArgs.push_back(&Align);
2712
2713 AllocArgs.insert(I: AllocArgs.end(), From: PlaceArgs.begin(), To: PlaceArgs.end());
2714
2715 // C++ [expr.new]p8:
2716 // If the allocated type is a non-array type, the allocation
2717 // function's name is operator new and the deallocation function's
2718 // name is operator delete. If the allocated type is an array
2719 // type, the allocation function's name is operator new[] and the
2720 // deallocation function's name is operator delete[].
2721 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2722 Op: IsArray ? OO_Array_New : OO_New);
2723
2724 QualType AllocElemType = Context.getBaseElementType(QT: AllocType);
2725
2726 // Find the allocation function.
2727 {
2728 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2729
2730 // C++1z [expr.new]p9:
2731 // If the new-expression begins with a unary :: operator, the allocation
2732 // function's name is looked up in the global scope. Otherwise, if the
2733 // allocated type is a class type T or array thereof, the allocation
2734 // function's name is looked up in the scope of T.
2735 if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2736 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2737
2738 // We can see ambiguity here if the allocation function is found in
2739 // multiple base classes.
2740 if (R.isAmbiguous())
2741 return true;
2742
2743 // If this lookup fails to find the name, or if the allocated type is not
2744 // a class type, the allocation function's name is looked up in the
2745 // global scope.
2746 if (R.empty()) {
2747 if (NewScope == AFS_Class)
2748 return true;
2749
2750 LookupQualifiedName(R, Context.getTranslationUnitDecl());
2751 }
2752
2753 if (getLangOpts().OpenCLCPlusPlus && R.empty()) {
2754 if (PlaceArgs.empty()) {
2755 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new";
2756 } else {
2757 Diag(StartLoc, diag::err_openclcxx_placement_new);
2758 }
2759 return true;
2760 }
2761
2762 assert(!R.empty() && "implicitly declared allocation functions not found");
2763 assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
2764
2765 // We do our own custom access checks below.
2766 R.suppressDiagnostics();
2767
2768 if (resolveAllocationOverload(S&: *this, R, Range, Args&: AllocArgs, PassAlignment,
2769 Operator&: OperatorNew, /*Candidates=*/AlignedCandidates: nullptr,
2770 /*AlignArg=*/nullptr, Diagnose))
2771 return true;
2772 }
2773
2774 // We don't need an operator delete if we're running under -fno-exceptions.
2775 if (!getLangOpts().Exceptions) {
2776 OperatorDelete = nullptr;
2777 return false;
2778 }
2779
2780 // Note, the name of OperatorNew might have been changed from array to
2781 // non-array by resolveAllocationOverload.
2782 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2783 Op: OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2784 ? OO_Array_Delete
2785 : OO_Delete);
2786
2787 // C++ [expr.new]p19:
2788 //
2789 // If the new-expression begins with a unary :: operator, the
2790 // deallocation function's name is looked up in the global
2791 // scope. Otherwise, if the allocated type is a class type T or an
2792 // array thereof, the deallocation function's name is looked up in
2793 // the scope of T. If this lookup fails to find the name, or if
2794 // the allocated type is not a class type or array thereof, the
2795 // deallocation function's name is looked up in the global scope.
2796 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2797 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2798 auto *RD =
2799 cast<CXXRecordDecl>(Val: AllocElemType->castAs<RecordType>()->getDecl());
2800 LookupQualifiedName(FoundDelete, RD);
2801 }
2802 if (FoundDelete.isAmbiguous())
2803 return true; // FIXME: clean up expressions?
2804
2805 // Filter out any destroying operator deletes. We can't possibly call such a
2806 // function in this context, because we're handling the case where the object
2807 // was not successfully constructed.
2808 // FIXME: This is not covered by the language rules yet.
2809 {
2810 LookupResult::Filter Filter = FoundDelete.makeFilter();
2811 while (Filter.hasNext()) {
2812 auto *FD = dyn_cast<FunctionDecl>(Val: Filter.next()->getUnderlyingDecl());
2813 if (FD && FD->isDestroyingOperatorDelete())
2814 Filter.erase();
2815 }
2816 Filter.done();
2817 }
2818
2819 bool FoundGlobalDelete = FoundDelete.empty();
2820 if (FoundDelete.empty()) {
2821 FoundDelete.clear(Kind: LookupOrdinaryName);
2822
2823 if (DeleteScope == AFS_Class)
2824 return true;
2825
2826 DeclareGlobalNewDelete();
2827 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2828 }
2829
2830 FoundDelete.suppressDiagnostics();
2831
2832 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2833
2834 // Whether we're looking for a placement operator delete is dictated
2835 // by whether we selected a placement operator new, not by whether
2836 // we had explicit placement arguments. This matters for things like
2837 // struct A { void *operator new(size_t, int = 0); ... };
2838 // A *a = new A()
2839 //
2840 // We don't have any definition for what a "placement allocation function"
2841 // is, but we assume it's any allocation function whose
2842 // parameter-declaration-clause is anything other than (size_t).
2843 //
2844 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2845 // This affects whether an exception from the constructor of an overaligned
2846 // type uses the sized or non-sized form of aligned operator delete.
2847 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2848 OperatorNew->isVariadic();
2849
2850 if (isPlacementNew) {
2851 // C++ [expr.new]p20:
2852 // A declaration of a placement deallocation function matches the
2853 // declaration of a placement allocation function if it has the
2854 // same number of parameters and, after parameter transformations
2855 // (8.3.5), all parameter types except the first are
2856 // identical. [...]
2857 //
2858 // To perform this comparison, we compute the function type that
2859 // the deallocation function should have, and use that type both
2860 // for template argument deduction and for comparison purposes.
2861 QualType ExpectedFunctionType;
2862 {
2863 auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>();
2864
2865 SmallVector<QualType, 4> ArgTypes;
2866 ArgTypes.push_back(Elt: Context.VoidPtrTy);
2867 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2868 ArgTypes.push_back(Elt: Proto->getParamType(I));
2869
2870 FunctionProtoType::ExtProtoInfo EPI;
2871 // FIXME: This is not part of the standard's rule.
2872 EPI.Variadic = Proto->isVariadic();
2873
2874 ExpectedFunctionType
2875 = Context.getFunctionType(ResultTy: Context.VoidTy, Args: ArgTypes, EPI);
2876 }
2877
2878 for (LookupResult::iterator D = FoundDelete.begin(),
2879 DEnd = FoundDelete.end();
2880 D != DEnd; ++D) {
2881 FunctionDecl *Fn = nullptr;
2882 if (FunctionTemplateDecl *FnTmpl =
2883 dyn_cast<FunctionTemplateDecl>(Val: (*D)->getUnderlyingDecl())) {
2884 // Perform template argument deduction to try to match the
2885 // expected function type.
2886 TemplateDeductionInfo Info(StartLoc);
2887 if (DeduceTemplateArguments(FunctionTemplate: FnTmpl, ExplicitTemplateArgs: nullptr, ArgFunctionType: ExpectedFunctionType, Specialization&: Fn,
2888 Info) != TemplateDeductionResult::Success)
2889 continue;
2890 } else
2891 Fn = cast<FunctionDecl>(Val: (*D)->getUnderlyingDecl());
2892
2893 if (Context.hasSameType(adjustCCAndNoReturn(ArgFunctionType: Fn->getType(),
2894 FunctionType: ExpectedFunctionType,
2895 /*AdjustExcpetionSpec*/AdjustExceptionSpec: true),
2896 ExpectedFunctionType))
2897 Matches.push_back(Elt: std::make_pair(x: D.getPair(), y&: Fn));
2898 }
2899
2900 if (getLangOpts().CUDA)
2901 EraseUnwantedCUDAMatches(Caller: getCurFunctionDecl(/*AllowLambda=*/true),
2902 Matches);
2903 } else {
2904 // C++1y [expr.new]p22:
2905 // For a non-placement allocation function, the normal deallocation
2906 // function lookup is used
2907 //
2908 // Per [expr.delete]p10, this lookup prefers a member operator delete
2909 // without a size_t argument, but prefers a non-member operator delete
2910 // with a size_t where possible (which it always is in this case).
2911 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2912 UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2913 S&: *this, R&: FoundDelete, /*WantSize*/ FoundGlobalDelete,
2914 /*WantAlign*/ hasNewExtendedAlignment(S&: *this, AllocType: AllocElemType),
2915 BestFns: &BestDeallocFns);
2916 if (Selected)
2917 Matches.push_back(Elt: std::make_pair(x&: Selected.Found, y&: Selected.FD));
2918 else {
2919 // If we failed to select an operator, all remaining functions are viable
2920 // but ambiguous.
2921 for (auto Fn : BestDeallocFns)
2922 Matches.push_back(Elt: std::make_pair(x&: Fn.Found, y&: Fn.FD));
2923 }
2924 }
2925
2926 // C++ [expr.new]p20:
2927 // [...] If the lookup finds a single matching deallocation
2928 // function, that function will be called; otherwise, no
2929 // deallocation function will be called.
2930 if (Matches.size() == 1) {
2931 OperatorDelete = Matches[0].second;
2932
2933 // C++1z [expr.new]p23:
2934 // If the lookup finds a usual deallocation function (3.7.4.2)
2935 // with a parameter of type std::size_t and that function, considered
2936 // as a placement deallocation function, would have been
2937 // selected as a match for the allocation function, the program
2938 // is ill-formed.
2939 if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2940 isNonPlacementDeallocationFunction(S&: *this, FD: OperatorDelete)) {
2941 UsualDeallocFnInfo Info(*this,
2942 DeclAccessPair::make(OperatorDelete, AS_public));
2943 // Core issue, per mail to core reflector, 2016-10-09:
2944 // If this is a member operator delete, and there is a corresponding
2945 // non-sized member operator delete, this isn't /really/ a sized
2946 // deallocation function, it just happens to have a size_t parameter.
2947 bool IsSizedDelete = Info.HasSizeT;
2948 if (IsSizedDelete && !FoundGlobalDelete) {
2949 auto NonSizedDelete =
2950 resolveDeallocationOverload(S&: *this, R&: FoundDelete, /*WantSize*/false,
2951 /*WantAlign*/Info.HasAlignValT);
2952 if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2953 NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2954 IsSizedDelete = false;
2955 }
2956
2957 if (IsSizedDelete) {
2958 SourceRange R = PlaceArgs.empty()
2959 ? SourceRange()
2960 : SourceRange(PlaceArgs.front()->getBeginLoc(),
2961 PlaceArgs.back()->getEndLoc());
2962 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2963 if (!OperatorDelete->isImplicit())
2964 Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2965 << DeleteName;
2966 }
2967 }
2968
2969 CheckAllocationAccess(OperatorLoc: StartLoc, PlacementRange: Range, NamingClass: FoundDelete.getNamingClass(),
2970 FoundDecl: Matches[0].first);
2971 } else if (!Matches.empty()) {
2972 // We found multiple suitable operators. Per [expr.new]p20, that means we
2973 // call no 'operator delete' function, but we should at least warn the user.
2974 // FIXME: Suppress this warning if the construction cannot throw.
2975 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2976 << DeleteName << AllocElemType;
2977
2978 for (auto &Match : Matches)
2979 Diag(Match.second->getLocation(),
2980 diag::note_member_declared_here) << DeleteName;
2981 }
2982
2983 return false;
2984}
2985
2986/// DeclareGlobalNewDelete - Declare the global forms of operator new and
2987/// delete. These are:
2988/// @code
2989/// // C++03:
2990/// void* operator new(std::size_t) throw(std::bad_alloc);
2991/// void* operator new[](std::size_t) throw(std::bad_alloc);
2992/// void operator delete(void *) throw();
2993/// void operator delete[](void *) throw();
2994/// // C++11:
2995/// void* operator new(std::size_t);
2996/// void* operator new[](std::size_t);
2997/// void operator delete(void *) noexcept;
2998/// void operator delete[](void *) noexcept;
2999/// // C++1y:
3000/// void* operator new(std::size_t);
3001/// void* operator new[](std::size_t);
3002/// void operator delete(void *) noexcept;
3003/// void operator delete[](void *) noexcept;
3004/// void operator delete(void *, std::size_t) noexcept;
3005/// void operator delete[](void *, std::size_t) noexcept;
3006/// @endcode
3007/// Note that the placement and nothrow forms of new are *not* implicitly
3008/// declared. Their use requires including \<new\>.
3009void Sema::DeclareGlobalNewDelete() {
3010 if (GlobalNewDeleteDeclared)
3011 return;
3012
3013 // The implicitly declared new and delete operators
3014 // are not supported in OpenCL.
3015 if (getLangOpts().OpenCLCPlusPlus)
3016 return;
3017
3018 // C++ [basic.stc.dynamic.general]p2:
3019 // The library provides default definitions for the global allocation
3020 // and deallocation functions. Some global allocation and deallocation
3021 // functions are replaceable ([new.delete]); these are attached to the
3022 // global module ([module.unit]).
3023 if (getLangOpts().CPlusPlusModules && getCurrentModule())
3024 PushGlobalModuleFragment(BeginLoc: SourceLocation());
3025
3026 // C++ [basic.std.dynamic]p2:
3027 // [...] The following allocation and deallocation functions (18.4) are
3028 // implicitly declared in global scope in each translation unit of a
3029 // program
3030 //
3031 // C++03:
3032 // void* operator new(std::size_t) throw(std::bad_alloc);
3033 // void* operator new[](std::size_t) throw(std::bad_alloc);
3034 // void operator delete(void*) throw();
3035 // void operator delete[](void*) throw();
3036 // C++11:
3037 // void* operator new(std::size_t);
3038 // void* operator new[](std::size_t);
3039 // void operator delete(void*) noexcept;
3040 // void operator delete[](void*) noexcept;
3041 // C++1y:
3042 // void* operator new(std::size_t);
3043 // void* operator new[](std::size_t);
3044 // void operator delete(void*) noexcept;
3045 // void operator delete[](void*) noexcept;
3046 // void operator delete(void*, std::size_t) noexcept;
3047 // void operator delete[](void*, std::size_t) noexcept;
3048 //
3049 // These implicit declarations introduce only the function names operator
3050 // new, operator new[], operator delete, operator delete[].
3051 //
3052 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
3053 // "std" or "bad_alloc" as necessary to form the exception specification.
3054 // However, we do not make these implicit declarations visible to name
3055 // lookup.
3056 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
3057 // The "std::bad_alloc" class has not yet been declared, so build it
3058 // implicitly.
3059 StdBadAlloc = CXXRecordDecl::Create(
3060 Context, TagTypeKind::Class, getOrCreateStdNamespace(),
3061 SourceLocation(), SourceLocation(),
3062 &PP.getIdentifierTable().get(Name: "bad_alloc"), nullptr);
3063 getStdBadAlloc()->setImplicit(true);
3064
3065 // The implicitly declared "std::bad_alloc" should live in global module
3066 // fragment.
3067 if (TheGlobalModuleFragment) {
3068 getStdBadAlloc()->setModuleOwnershipKind(
3069 Decl::ModuleOwnershipKind::ReachableWhenImported);
3070 getStdBadAlloc()->setLocalOwningModule(TheGlobalModuleFragment);
3071 }
3072 }
3073 if (!StdAlignValT && getLangOpts().AlignedAllocation) {
3074 // The "std::align_val_t" enum class has not yet been declared, so build it
3075 // implicitly.
3076 auto *AlignValT = EnumDecl::Create(
3077 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
3078 &PP.getIdentifierTable().get(Name: "align_val_t"), nullptr, true, true, true);
3079
3080 // The implicitly declared "std::align_val_t" should live in global module
3081 // fragment.
3082 if (TheGlobalModuleFragment) {
3083 AlignValT->setModuleOwnershipKind(
3084 Decl::ModuleOwnershipKind::ReachableWhenImported);
3085 AlignValT->setLocalOwningModule(TheGlobalModuleFragment);
3086 }
3087
3088 AlignValT->setIntegerType(Context.getSizeType());
3089 AlignValT->setPromotionType(Context.getSizeType());
3090 AlignValT->setImplicit(true);
3091
3092 StdAlignValT = AlignValT;
3093 }
3094
3095 GlobalNewDeleteDeclared = true;
3096
3097 QualType VoidPtr = Context.getPointerType(Context.VoidTy);
3098 QualType SizeT = Context.getSizeType();
3099
3100 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
3101 QualType Return, QualType Param) {
3102 llvm::SmallVector<QualType, 3> Params;
3103 Params.push_back(Elt: Param);
3104
3105 // Create up to four variants of the function (sized/aligned).
3106 bool HasSizedVariant = getLangOpts().SizedDeallocation &&
3107 (Kind == OO_Delete || Kind == OO_Array_Delete);
3108 bool HasAlignedVariant = getLangOpts().AlignedAllocation;
3109
3110 int NumSizeVariants = (HasSizedVariant ? 2 : 1);
3111 int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
3112 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
3113 if (Sized)
3114 Params.push_back(Elt: SizeT);
3115
3116 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
3117 if (Aligned)
3118 Params.push_back(Elt: Context.getTypeDeclType(getStdAlignValT()));
3119
3120 DeclareGlobalAllocationFunction(
3121 Name: Context.DeclarationNames.getCXXOperatorName(Op: Kind), Return, Params);
3122
3123 if (Aligned)
3124 Params.pop_back();
3125 }
3126 }
3127 };
3128
3129 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
3130 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
3131 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
3132 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
3133
3134 if (getLangOpts().CPlusPlusModules && getCurrentModule())
3135 PopGlobalModuleFragment();
3136}
3137
3138/// DeclareGlobalAllocationFunction - Declares a single implicit global
3139/// allocation function if it doesn't already exist.
3140void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
3141 QualType Return,
3142 ArrayRef<QualType> Params) {
3143 DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
3144
3145 // Check if this function is already declared.
3146 DeclContext::lookup_result R = GlobalCtx->lookup(Name);
3147 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
3148 Alloc != AllocEnd; ++Alloc) {
3149 // Only look at non-template functions, as it is the predefined,
3150 // non-templated allocation function we are trying to declare here.
3151 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Val: *Alloc)) {
3152 if (Func->getNumParams() == Params.size()) {
3153 llvm::SmallVector<QualType, 3> FuncParams;
3154 for (auto *P : Func->parameters())
3155 FuncParams.push_back(
3156 Context.getCanonicalType(P->getType().getUnqualifiedType()));
3157 if (llvm::ArrayRef(FuncParams) == Params) {
3158 // Make the function visible to name lookup, even if we found it in
3159 // an unimported module. It either is an implicitly-declared global
3160 // allocation function, or is suppressing that function.
3161 Func->setVisibleDespiteOwningModule();
3162 return;
3163 }
3164 }
3165 }
3166 }
3167
3168 FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention(
3169 /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true));
3170
3171 QualType BadAllocType;
3172 bool HasBadAllocExceptionSpec
3173 = (Name.getCXXOverloadedOperator() == OO_New ||
3174 Name.getCXXOverloadedOperator() == OO_Array_New);
3175 if (HasBadAllocExceptionSpec) {
3176 if (!getLangOpts().CPlusPlus11) {
3177 BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
3178 assert(StdBadAlloc && "Must have std::bad_alloc declared");
3179 EPI.ExceptionSpec.Type = EST_Dynamic;
3180 EPI.ExceptionSpec.Exceptions = llvm::ArrayRef(BadAllocType);
3181 }
3182 if (getLangOpts().NewInfallible) {
3183 EPI.ExceptionSpec.Type = EST_DynamicNone;
3184 }
3185 } else {
3186 EPI.ExceptionSpec =
3187 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
3188 }
3189
3190 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
3191 QualType FnType = Context.getFunctionType(ResultTy: Return, Args: Params, EPI);
3192 FunctionDecl *Alloc = FunctionDecl::Create(
3193 C&: Context, DC: GlobalCtx, StartLoc: SourceLocation(), NLoc: SourceLocation(), N: Name, T: FnType,
3194 /*TInfo=*/nullptr, SC: SC_None, UsesFPIntrin: getCurFPFeatures().isFPConstrained(), isInlineSpecified: false,
3195 hasWrittenPrototype: true);
3196 Alloc->setImplicit();
3197 // Global allocation functions should always be visible.
3198 Alloc->setVisibleDespiteOwningModule();
3199
3200 if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible &&
3201 !getLangOpts().CheckNew)
3202 Alloc->addAttr(
3203 ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation()));
3204
3205 // C++ [basic.stc.dynamic.general]p2:
3206 // The library provides default definitions for the global allocation
3207 // and deallocation functions. Some global allocation and deallocation
3208 // functions are replaceable ([new.delete]); these are attached to the
3209 // global module ([module.unit]).
3210 //
3211 // In the language wording, these functions are attched to the global
3212 // module all the time. But in the implementation, the global module
3213 // is only meaningful when we're in a module unit. So here we attach
3214 // these allocation functions to global module conditionally.
3215 if (TheGlobalModuleFragment) {
3216 Alloc->setModuleOwnershipKind(
3217 Decl::ModuleOwnershipKind::ReachableWhenImported);
3218 Alloc->setLocalOwningModule(TheGlobalModuleFragment);
3219 }
3220
3221 if (LangOpts.hasGlobalAllocationFunctionVisibility())
3222 Alloc->addAttr(VisibilityAttr::CreateImplicit(
3223 Context, LangOpts.hasHiddenGlobalAllocationFunctionVisibility()
3224 ? VisibilityAttr::Hidden
3225 : LangOpts.hasProtectedGlobalAllocationFunctionVisibility()
3226 ? VisibilityAttr::Protected
3227 : VisibilityAttr::Default));
3228
3229 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
3230 for (QualType T : Params) {
3231 ParamDecls.push_back(Elt: ParmVarDecl::Create(
3232 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
3233 /*TInfo=*/nullptr, SC_None, nullptr));
3234 ParamDecls.back()->setImplicit();
3235 }
3236 Alloc->setParams(ParamDecls);
3237 if (ExtraAttr)
3238 Alloc->addAttr(ExtraAttr);
3239 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD: Alloc);
3240 Context.getTranslationUnitDecl()->addDecl(Alloc);
3241 IdResolver.tryAddTopLevelDecl(Alloc, Name);
3242 };
3243
3244 if (!LangOpts.CUDA)
3245 CreateAllocationFunctionDecl(nullptr);
3246 else {
3247 // Host and device get their own declaration so each can be
3248 // defined or re-declared independently.
3249 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
3250 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
3251 }
3252}
3253
3254FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
3255 bool CanProvideSize,
3256 bool Overaligned,
3257 DeclarationName Name) {
3258 DeclareGlobalNewDelete();
3259
3260 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
3261 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
3262
3263 // FIXME: It's possible for this to result in ambiguity, through a
3264 // user-declared variadic operator delete or the enable_if attribute. We
3265 // should probably not consider those cases to be usual deallocation
3266 // functions. But for now we just make an arbitrary choice in that case.
3267 auto Result = resolveDeallocationOverload(S&: *this, R&: FoundDelete, WantSize: CanProvideSize,
3268 WantAlign: Overaligned);
3269 assert(Result.FD && "operator delete missing from global scope?");
3270 return Result.FD;
3271}
3272
3273FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
3274 CXXRecordDecl *RD) {
3275 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(Op: OO_Delete);
3276
3277 FunctionDecl *OperatorDelete = nullptr;
3278 if (FindDeallocationFunction(StartLoc: Loc, RD, Name, Operator&: OperatorDelete))
3279 return nullptr;
3280 if (OperatorDelete)
3281 return OperatorDelete;
3282
3283 // If there's no class-specific operator delete, look up the global
3284 // non-array delete.
3285 return FindUsualDeallocationFunction(
3286 StartLoc: Loc, CanProvideSize: true, Overaligned: hasNewExtendedAlignment(S&: *this, AllocType: Context.getRecordType(RD)),
3287 Name);
3288}
3289
3290bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
3291 DeclarationName Name,
3292 FunctionDecl *&Operator, bool Diagnose,
3293 bool WantSize, bool WantAligned) {
3294 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
3295 // Try to find operator delete/operator delete[] in class scope.
3296 LookupQualifiedName(Found, RD);
3297
3298 if (Found.isAmbiguous())
3299 return true;
3300
3301 Found.suppressDiagnostics();
3302
3303 bool Overaligned =
3304 WantAligned || hasNewExtendedAlignment(S&: *this, AllocType: Context.getRecordType(RD));
3305
3306 // C++17 [expr.delete]p10:
3307 // If the deallocation functions have class scope, the one without a
3308 // parameter of type std::size_t is selected.
3309 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
3310 resolveDeallocationOverload(S&: *this, R&: Found, /*WantSize*/ WantSize,
3311 /*WantAlign*/ Overaligned, BestFns: &Matches);
3312
3313 // If we could find an overload, use it.
3314 if (Matches.size() == 1) {
3315 Operator = cast<CXXMethodDecl>(Val: Matches[0].FD);
3316
3317 // FIXME: DiagnoseUseOfDecl?
3318 if (Operator->isDeleted()) {
3319 if (Diagnose) {
3320 Diag(StartLoc, diag::err_deleted_function_use);
3321 NoteDeletedFunction(FD: Operator);
3322 }
3323 return true;
3324 }
3325
3326 if (CheckAllocationAccess(OperatorLoc: StartLoc, PlacementRange: SourceRange(), NamingClass: Found.getNamingClass(),
3327 FoundDecl: Matches[0].Found, Diagnose) == AR_inaccessible)
3328 return true;
3329
3330 return false;
3331 }
3332
3333 // We found multiple suitable operators; complain about the ambiguity.
3334 // FIXME: The standard doesn't say to do this; it appears that the intent
3335 // is that this should never happen.
3336 if (!Matches.empty()) {
3337 if (Diagnose) {
3338 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
3339 << Name << RD;
3340 for (auto &Match : Matches)
3341 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
3342 }
3343 return true;
3344 }
3345
3346 // We did find operator delete/operator delete[] declarations, but
3347 // none of them were suitable.
3348 if (!Found.empty()) {
3349 if (Diagnose) {
3350 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
3351 << Name << RD;
3352
3353 for (NamedDecl *D : Found)
3354 Diag(D->getUnderlyingDecl()->getLocation(),
3355 diag::note_member_declared_here) << Name;
3356 }
3357 return true;
3358 }
3359
3360 Operator = nullptr;
3361 return false;
3362}
3363
3364namespace {
3365/// Checks whether delete-expression, and new-expression used for
3366/// initializing deletee have the same array form.
3367class MismatchingNewDeleteDetector {
3368public:
3369 enum MismatchResult {
3370 /// Indicates that there is no mismatch or a mismatch cannot be proven.
3371 NoMismatch,
3372 /// Indicates that variable is initialized with mismatching form of \a new.
3373 VarInitMismatches,
3374 /// Indicates that member is initialized with mismatching form of \a new.
3375 MemberInitMismatches,
3376 /// Indicates that 1 or more constructors' definitions could not been
3377 /// analyzed, and they will be checked again at the end of translation unit.
3378 AnalyzeLater
3379 };
3380
3381 /// \param EndOfTU True, if this is the final analysis at the end of
3382 /// translation unit. False, if this is the initial analysis at the point
3383 /// delete-expression was encountered.
3384 explicit MismatchingNewDeleteDetector(bool EndOfTU)
3385 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
3386 HasUndefinedConstructors(false) {}
3387
3388 /// Checks whether pointee of a delete-expression is initialized with
3389 /// matching form of new-expression.
3390 ///
3391 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
3392 /// point where delete-expression is encountered, then a warning will be
3393 /// issued immediately. If return value is \c AnalyzeLater at the point where
3394 /// delete-expression is seen, then member will be analyzed at the end of
3395 /// translation unit. \c AnalyzeLater is returned iff at least one constructor
3396 /// couldn't be analyzed. If at least one constructor initializes the member
3397 /// with matching type of new, the return value is \c NoMismatch.
3398 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
3399 /// Analyzes a class member.
3400 /// \param Field Class member to analyze.
3401 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
3402 /// for deleting the \p Field.
3403 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
3404 FieldDecl *Field;
3405 /// List of mismatching new-expressions used for initialization of the pointee
3406 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
3407 /// Indicates whether delete-expression was in array form.
3408 bool IsArrayForm;
3409
3410private:
3411 const bool EndOfTU;
3412 /// Indicates that there is at least one constructor without body.
3413 bool HasUndefinedConstructors;
3414 /// Returns \c CXXNewExpr from given initialization expression.
3415 /// \param E Expression used for initializing pointee in delete-expression.
3416 /// E can be a single-element \c InitListExpr consisting of new-expression.
3417 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
3418 /// Returns whether member is initialized with mismatching form of
3419 /// \c new either by the member initializer or in-class initialization.
3420 ///
3421 /// If bodies of all constructors are not visible at the end of translation
3422 /// unit or at least one constructor initializes member with the matching
3423 /// form of \c new, mismatch cannot be proven, and this function will return
3424 /// \c NoMismatch.
3425 MismatchResult analyzeMemberExpr(const MemberExpr *ME);
3426 /// Returns whether variable is initialized with mismatching form of
3427 /// \c new.
3428 ///
3429 /// If variable is initialized with matching form of \c new or variable is not
3430 /// initialized with a \c new expression, this function will return true.
3431 /// If variable is initialized with mismatching form of \c new, returns false.
3432 /// \param D Variable to analyze.
3433 bool hasMatchingVarInit(const DeclRefExpr *D);
3434 /// Checks whether the constructor initializes pointee with mismatching
3435 /// form of \c new.
3436 ///
3437 /// Returns true, if member is initialized with matching form of \c new in
3438 /// member initializer list. Returns false, if member is initialized with the
3439 /// matching form of \c new in this constructor's initializer or given
3440 /// constructor isn't defined at the point where delete-expression is seen, or
3441 /// member isn't initialized by the constructor.
3442 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
3443 /// Checks whether member is initialized with matching form of
3444 /// \c new in member initializer list.
3445 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
3446 /// Checks whether member is initialized with mismatching form of \c new by
3447 /// in-class initializer.
3448 MismatchResult analyzeInClassInitializer();
3449};
3450}
3451
3452MismatchingNewDeleteDetector::MismatchResult
3453MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
3454 NewExprs.clear();
3455 assert(DE && "Expected delete-expression");
3456 IsArrayForm = DE->isArrayForm();
3457 const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
3458 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(Val: E)) {
3459 return analyzeMemberExpr(ME);
3460 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(Val: E)) {
3461 if (!hasMatchingVarInit(D))
3462 return VarInitMismatches;
3463 }
3464 return NoMismatch;
3465}
3466
3467const CXXNewExpr *
3468MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
3469 assert(E != nullptr && "Expected a valid initializer expression");
3470 E = E->IgnoreParenImpCasts();
3471 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(Val: E)) {
3472 if (ILE->getNumInits() == 1)
3473 E = dyn_cast<const CXXNewExpr>(Val: ILE->getInit(Init: 0)->IgnoreParenImpCasts());
3474 }
3475
3476 return dyn_cast_or_null<const CXXNewExpr>(Val: E);
3477}
3478
3479bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
3480 const CXXCtorInitializer *CI) {
3481 const CXXNewExpr *NE = nullptr;
3482 if (Field == CI->getMember() &&
3483 (NE = getNewExprFromInitListOrExpr(E: CI->getInit()))) {
3484 if (NE->isArray() == IsArrayForm)
3485 return true;
3486 else
3487 NewExprs.push_back(Elt: NE);
3488 }
3489 return false;
3490}
3491
3492bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3493 const CXXConstructorDecl *CD) {
3494 if (CD->isImplicit())
3495 return false;
3496 const FunctionDecl *Definition = CD;
3497 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3498 HasUndefinedConstructors = true;
3499 return EndOfTU;
3500 }
3501 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3502 if (hasMatchingNewInCtorInit(CI))
3503 return true;
3504 }
3505 return false;
3506}
3507
3508MismatchingNewDeleteDetector::MismatchResult
3509MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3510 assert(Field != nullptr && "This should be called only for members");
3511 const Expr *InitExpr = Field->getInClassInitializer();
3512 if (!InitExpr)
3513 return EndOfTU ? NoMismatch : AnalyzeLater;
3514 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(E: InitExpr)) {
3515 if (NE->isArray() != IsArrayForm) {
3516 NewExprs.push_back(Elt: NE);
3517 return MemberInitMismatches;
3518 }
3519 }
3520 return NoMismatch;
3521}
3522
3523MismatchingNewDeleteDetector::MismatchResult
3524MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3525 bool DeleteWasArrayForm) {
3526 assert(Field != nullptr && "Analysis requires a valid class member.");
3527 this->Field = Field;
3528 IsArrayForm = DeleteWasArrayForm;
3529 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Val: Field->getParent());
3530 for (const auto *CD : RD->ctors()) {
3531 if (hasMatchingNewInCtor(CD))
3532 return NoMismatch;
3533 }
3534 if (HasUndefinedConstructors)
3535 return EndOfTU ? NoMismatch : AnalyzeLater;
3536 if (!NewExprs.empty())
3537 return MemberInitMismatches;
3538 return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3539 : NoMismatch;
3540}
3541
3542MismatchingNewDeleteDetector::MismatchResult
3543MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3544 assert(ME != nullptr && "Expected a member expression");
3545 if (FieldDecl *F = dyn_cast<FieldDecl>(Val: ME->getMemberDecl()))
3546 return analyzeField(Field: F, DeleteWasArrayForm: IsArrayForm);
3547 return NoMismatch;
3548}
3549
3550bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3551 const CXXNewExpr *NE = nullptr;
3552 if (const VarDecl *VD = dyn_cast<const VarDecl>(Val: D->getDecl())) {
3553 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(E: VD->getInit())) &&
3554 NE->isArray() != IsArrayForm) {
3555 NewExprs.push_back(Elt: NE);
3556 }
3557 }
3558 return NewExprs.empty();
3559}
3560
3561static void
3562DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3563 const MismatchingNewDeleteDetector &Detector) {
3564 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(Loc: DeleteLoc);
3565 FixItHint H;
3566 if (!Detector.IsArrayForm)
3567 H = FixItHint::CreateInsertion(InsertionLoc: EndOfDelete, Code: "[]");
3568 else {
3569 SourceLocation RSquare = Lexer::findLocationAfterToken(
3570 loc: DeleteLoc, TKind: tok::l_square, SM: SemaRef.getSourceManager(),
3571 LangOpts: SemaRef.getLangOpts(), SkipTrailingWhitespaceAndNewLine: true);
3572 if (RSquare.isValid())
3573 H = FixItHint::CreateRemoval(RemoveRange: SourceRange(EndOfDelete, RSquare));
3574 }
3575 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3576 << Detector.IsArrayForm << H;
3577
3578 for (const auto *NE : Detector.NewExprs)
3579 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3580 << Detector.IsArrayForm;
3581}
3582
3583void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3584 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3585 return;
3586 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3587 switch (Detector.analyzeDeleteExpr(DE)) {
3588 case MismatchingNewDeleteDetector::VarInitMismatches:
3589 case MismatchingNewDeleteDetector::MemberInitMismatches: {
3590 DiagnoseMismatchedNewDelete(SemaRef&: *this, DeleteLoc: DE->getBeginLoc(), Detector);
3591 break;
3592 }
3593 case MismatchingNewDeleteDetector::AnalyzeLater: {
3594 DeleteExprs[Detector.Field].push_back(
3595 Elt: std::make_pair(x: DE->getBeginLoc(), y: DE->isArrayForm()));
3596 break;
3597 }
3598 case MismatchingNewDeleteDetector::NoMismatch:
3599 break;
3600 }
3601}
3602
3603void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3604 bool DeleteWasArrayForm) {
3605 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3606 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3607 case MismatchingNewDeleteDetector::VarInitMismatches:
3608 llvm_unreachable("This analysis should have been done for class members.");
3609 case MismatchingNewDeleteDetector::AnalyzeLater:
3610 llvm_unreachable("Analysis cannot be postponed any point beyond end of "
3611 "translation unit.");
3612 case MismatchingNewDeleteDetector::MemberInitMismatches:
3613 DiagnoseMismatchedNewDelete(SemaRef&: *this, DeleteLoc, Detector);
3614 break;
3615 case MismatchingNewDeleteDetector::NoMismatch:
3616 break;
3617 }
3618}
3619
3620/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3621/// @code ::delete ptr; @endcode
3622/// or
3623/// @code delete [] ptr; @endcode
3624ExprResult
3625Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3626 bool ArrayForm, Expr *ExE) {
3627 // C++ [expr.delete]p1:
3628 // The operand shall have a pointer type, or a class type having a single
3629 // non-explicit conversion function to a pointer type. The result has type
3630 // void.
3631 //
3632 // DR599 amends "pointer type" to "pointer to object type" in both cases.
3633
3634 ExprResult Ex = ExE;
3635 FunctionDecl *OperatorDelete = nullptr;
3636 bool ArrayFormAsWritten = ArrayForm;
3637 bool UsualArrayDeleteWantsSize = false;
3638
3639 if (!Ex.get()->isTypeDependent()) {
3640 // Perform lvalue-to-rvalue cast, if needed.
3641 Ex = DefaultLvalueConversion(E: Ex.get());
3642 if (Ex.isInvalid())
3643 return ExprError();
3644
3645 QualType Type = Ex.get()->getType();
3646
3647 class DeleteConverter : public ContextualImplicitConverter {
3648 public:
3649 DeleteConverter() : ContextualImplicitConverter(false, true) {}
3650
3651 bool match(QualType ConvType) override {
3652 // FIXME: If we have an operator T* and an operator void*, we must pick
3653 // the operator T*.
3654 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3655 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3656 return true;
3657 return false;
3658 }
3659
3660 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3661 QualType T) override {
3662 return S.Diag(Loc, diag::err_delete_operand) << T;
3663 }
3664
3665 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3666 QualType T) override {
3667 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3668 }
3669
3670 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3671 QualType T,
3672 QualType ConvTy) override {
3673 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3674 }
3675
3676 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3677 QualType ConvTy) override {
3678 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3679 << ConvTy;
3680 }
3681
3682 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3683 QualType T) override {
3684 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3685 }
3686
3687 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3688 QualType ConvTy) override {
3689 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3690 << ConvTy;
3691 }
3692
3693 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3694 QualType T,
3695 QualType ConvTy) override {
3696 llvm_unreachable("conversion functions are permitted");
3697 }
3698 } Converter;
3699
3700 Ex = PerformContextualImplicitConversion(Loc: StartLoc, FromE: Ex.get(), Converter);
3701 if (Ex.isInvalid())
3702 return ExprError();
3703 Type = Ex.get()->getType();
3704 if (!Converter.match(ConvType: Type))
3705 // FIXME: PerformContextualImplicitConversion should return ExprError
3706 // itself in this case.
3707 return ExprError();
3708
3709 QualType Pointee = Type->castAs<PointerType>()->getPointeeType();
3710 QualType PointeeElem = Context.getBaseElementType(QT: Pointee);
3711
3712 if (Pointee.getAddressSpace() != LangAS::Default &&
3713 !getLangOpts().OpenCLCPlusPlus)
3714 return Diag(Ex.get()->getBeginLoc(),
3715 diag::err_address_space_qualified_delete)
3716 << Pointee.getUnqualifiedType()
3717 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3718
3719 CXXRecordDecl *PointeeRD = nullptr;
3720 if (Pointee->isVoidType() && !isSFINAEContext()) {
3721 // The C++ standard bans deleting a pointer to a non-object type, which
3722 // effectively bans deletion of "void*". However, most compilers support
3723 // this, so we treat it as a warning unless we're in a SFINAE context.
3724 Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3725 << Type << Ex.get()->getSourceRange();
3726 } else if (Pointee->isFunctionType() || Pointee->isVoidType() ||
3727 Pointee->isSizelessType()) {
3728 return ExprError(Diag(StartLoc, diag::err_delete_operand)
3729 << Type << Ex.get()->getSourceRange());
3730 } else if (!Pointee->isDependentType()) {
3731 // FIXME: This can result in errors if the definition was imported from a
3732 // module but is hidden.
3733 if (!RequireCompleteType(StartLoc, Pointee,
3734 diag::warn_delete_incomplete, Ex.get())) {
3735 if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3736 PointeeRD = cast<CXXRecordDecl>(Val: RT->getDecl());
3737 }
3738 }
3739
3740 if (Pointee->isArrayType() && !ArrayForm) {
3741 Diag(StartLoc, diag::warn_delete_array_type)
3742 << Type << Ex.get()->getSourceRange()
3743 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3744 ArrayForm = true;
3745 }
3746
3747 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3748 Op: ArrayForm ? OO_Array_Delete : OO_Delete);
3749
3750 if (PointeeRD) {
3751 if (!UseGlobal &&
3752 FindDeallocationFunction(StartLoc, RD: PointeeRD, Name: DeleteName,
3753 Operator&: OperatorDelete))
3754 return ExprError();
3755
3756 // If we're allocating an array of records, check whether the
3757 // usual operator delete[] has a size_t parameter.
3758 if (ArrayForm) {
3759 // If the user specifically asked to use the global allocator,
3760 // we'll need to do the lookup into the class.
3761 if (UseGlobal)
3762 UsualArrayDeleteWantsSize =
3763 doesUsualArrayDeleteWantSize(S&: *this, loc: StartLoc, allocType: PointeeElem);
3764
3765 // Otherwise, the usual operator delete[] should be the
3766 // function we just found.
3767 else if (OperatorDelete && isa<CXXMethodDecl>(Val: OperatorDelete))
3768 UsualArrayDeleteWantsSize =
3769 UsualDeallocFnInfo(*this,
3770 DeclAccessPair::make(OperatorDelete, AS_public))
3771 .HasSizeT;
3772 }
3773
3774 if (!PointeeRD->hasIrrelevantDestructor())
3775 if (CXXDestructorDecl *Dtor = LookupDestructor(Class: PointeeRD)) {
3776 MarkFunctionReferenced(StartLoc,
3777 const_cast<CXXDestructorDecl*>(Dtor));
3778 if (DiagnoseUseOfDecl(Dtor, StartLoc))
3779 return ExprError();
3780 }
3781
3782 CheckVirtualDtorCall(dtor: PointeeRD->getDestructor(), Loc: StartLoc,
3783 /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3784 /*WarnOnNonAbstractTypes=*/!ArrayForm,
3785 DtorLoc: SourceLocation());
3786 }
3787
3788 if (!OperatorDelete) {
3789 if (getLangOpts().OpenCLCPlusPlus) {
3790 Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete";
3791 return ExprError();
3792 }
3793
3794 bool IsComplete = isCompleteType(Loc: StartLoc, T: Pointee);
3795 bool CanProvideSize =
3796 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3797 Pointee.isDestructedType());
3798 bool Overaligned = hasNewExtendedAlignment(S&: *this, AllocType: Pointee);
3799
3800 // Look for a global declaration.
3801 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3802 Overaligned, Name: DeleteName);
3803 }
3804
3805 MarkFunctionReferenced(Loc: StartLoc, Func: OperatorDelete);
3806
3807 // Check access and ambiguity of destructor if we're going to call it.
3808 // Note that this is required even for a virtual delete.
3809 bool IsVirtualDelete = false;
3810 if (PointeeRD) {
3811 if (CXXDestructorDecl *Dtor = LookupDestructor(Class: PointeeRD)) {
3812 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3813 PDiag(diag::err_access_dtor) << PointeeElem);
3814 IsVirtualDelete = Dtor->isVirtual();
3815 }
3816 }
3817
3818 DiagnoseUseOfDecl(OperatorDelete, StartLoc);
3819
3820 // Convert the operand to the type of the first parameter of operator
3821 // delete. This is only necessary if we selected a destroying operator
3822 // delete that we are going to call (non-virtually); converting to void*
3823 // is trivial and left to AST consumers to handle.
3824 QualType ParamType = OperatorDelete->getParamDecl(i: 0)->getType();
3825 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3826 Qualifiers Qs = Pointee.getQualifiers();
3827 if (Qs.hasCVRQualifiers()) {
3828 // Qualifiers are irrelevant to this conversion; we're only looking
3829 // for access and ambiguity.
3830 Qs.removeCVRQualifiers();
3831 QualType Unqual = Context.getPointerType(
3832 T: Context.getQualifiedType(T: Pointee.getUnqualifiedType(), Qs));
3833 Ex = ImpCastExprToType(E: Ex.get(), Type: Unqual, CK: CK_NoOp);
3834 }
3835 Ex = PerformImplicitConversion(From: Ex.get(), ToType: ParamType, Action: AA_Passing);
3836 if (Ex.isInvalid())
3837 return ExprError();
3838 }
3839 }
3840
3841 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3842 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3843 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3844 AnalyzeDeleteExprMismatch(DE: Result);
3845 return Result;
3846}
3847
3848static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3849 bool IsDelete,
3850 FunctionDecl *&Operator) {
3851
3852 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3853 Op: IsDelete ? OO_Delete : OO_New);
3854
3855 LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName);
3856 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3857 assert(!R.empty() && "implicitly declared allocation functions not found");
3858 assert(!R.isAmbiguous() && "global allocation functions are ambiguous");
3859
3860 // We do our own custom access checks below.
3861 R.suppressDiagnostics();
3862
3863 SmallVector<Expr *, 8> Args(TheCall->arguments());
3864 OverloadCandidateSet Candidates(R.getNameLoc(),
3865 OverloadCandidateSet::CSK_Normal);
3866 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3867 FnOvl != FnOvlEnd; ++FnOvl) {
3868 // Even member operator new/delete are implicitly treated as
3869 // static, so don't use AddMemberCandidate.
3870 NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3871
3872 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(Val: D)) {
3873 S.AddTemplateOverloadCandidate(FunctionTemplate: FnTemplate, FoundDecl: FnOvl.getPair(),
3874 /*ExplicitTemplateArgs=*/nullptr, Args,
3875 CandidateSet&: Candidates,
3876 /*SuppressUserConversions=*/false);
3877 continue;
3878 }
3879
3880 FunctionDecl *Fn = cast<FunctionDecl>(Val: D);
3881 S.AddOverloadCandidate(Function: Fn, FoundDecl: FnOvl.getPair(), Args, CandidateSet&: Candidates,
3882 /*SuppressUserConversions=*/false);
3883 }
3884
3885 SourceRange Range = TheCall->getSourceRange();
3886
3887 // Do the resolution.
3888 OverloadCandidateSet::iterator Best;
3889 switch (Candidates.BestViableFunction(S, Loc: R.getNameLoc(), Best)) {
3890 case OR_Success: {
3891 // Got one!
3892 FunctionDecl *FnDecl = Best->Function;
3893 assert(R.getNamingClass() == nullptr &&
3894 "class members should not be considered");
3895
3896 if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3897 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3898 << (IsDelete ? 1 : 0) << Range;
3899 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3900 << R.getLookupName() << FnDecl->getSourceRange();
3901 return true;
3902 }
3903
3904 Operator = FnDecl;
3905 return false;
3906 }
3907
3908 case OR_No_Viable_Function:
3909 Candidates.NoteCandidates(
3910 PartialDiagnosticAt(R.getNameLoc(),
3911 S.PDiag(diag::err_ovl_no_viable_function_in_call)
3912 << R.getLookupName() << Range),
3913 S, OCD_AllCandidates, Args);
3914 return true;
3915
3916 case OR_Ambiguous:
3917 Candidates.NoteCandidates(
3918 PartialDiagnosticAt(R.getNameLoc(),
3919 S.PDiag(diag::err_ovl_ambiguous_call)
3920 << R.getLookupName() << Range),
3921 S, OCD_AmbiguousCandidates, Args);
3922 return true;
3923
3924 case OR_Deleted: {
3925 Candidates.NoteCandidates(
3926 PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call)
3927 << R.getLookupName() << Range),
3928 S, OCD_AllCandidates, Args);
3929 return true;
3930 }
3931 }
3932 llvm_unreachable("Unreachable, bad result from BestViableFunction");
3933}
3934
3935ExprResult
3936Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3937 bool IsDelete) {
3938 CallExpr *TheCall = cast<CallExpr>(Val: TheCallResult.get());
3939 if (!getLangOpts().CPlusPlus) {
3940 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3941 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3942 << "C++";
3943 return ExprError();
3944 }
3945 // CodeGen assumes it can find the global new and delete to call,
3946 // so ensure that they are declared.
3947 DeclareGlobalNewDelete();
3948
3949 FunctionDecl *OperatorNewOrDelete = nullptr;
3950 if (resolveBuiltinNewDeleteOverload(S&: *this, TheCall, IsDelete,
3951 Operator&: OperatorNewOrDelete))
3952 return ExprError();
3953 assert(OperatorNewOrDelete && "should be found");
3954
3955 DiagnoseUseOfDecl(D: OperatorNewOrDelete, Locs: TheCall->getExprLoc());
3956 MarkFunctionReferenced(Loc: TheCall->getExprLoc(), Func: OperatorNewOrDelete);
3957
3958 TheCall->setType(OperatorNewOrDelete->getReturnType());
3959 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3960 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3961 InitializedEntity Entity =
3962 InitializedEntity::InitializeParameter(Context, Type: ParamTy, Consumed: false);
3963 ExprResult Arg = PerformCopyInitialization(
3964 Entity, EqualLoc: TheCall->getArg(Arg: i)->getBeginLoc(), Init: TheCall->getArg(Arg: i));
3965 if (Arg.isInvalid())
3966 return ExprError();
3967 TheCall->setArg(Arg: i, ArgExpr: Arg.get());
3968 }
3969 auto Callee = dyn_cast<ImplicitCastExpr>(Val: TheCall->getCallee());
3970 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&
3971 "Callee expected to be implicit cast to a builtin function pointer");
3972 Callee->setType(OperatorNewOrDelete->getType());
3973
3974 return TheCallResult;
3975}
3976
3977void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3978 bool IsDelete, bool CallCanBeVirtual,
3979 bool WarnOnNonAbstractTypes,
3980 SourceLocation DtorLoc) {
3981 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3982 return;
3983
3984 // C++ [expr.delete]p3:
3985 // In the first alternative (delete object), if the static type of the
3986 // object to be deleted is different from its dynamic type, the static
3987 // type shall be a base class of the dynamic type of the object to be
3988 // deleted and the static type shall have a virtual destructor or the
3989 // behavior is undefined.
3990 //
3991 const CXXRecordDecl *PointeeRD = dtor->getParent();
3992 // Note: a final class cannot be derived from, no issue there
3993 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3994 return;
3995
3996 // If the superclass is in a system header, there's nothing that can be done.
3997 // The `delete` (where we emit the warning) can be in a system header,
3998 // what matters for this warning is where the deleted type is defined.
3999 if (getSourceManager().isInSystemHeader(Loc: PointeeRD->getLocation()))
4000 return;
4001
4002 QualType ClassType = dtor->getFunctionObjectParameterType();
4003 if (PointeeRD->isAbstract()) {
4004 // If the class is abstract, we warn by default, because we're
4005 // sure the code has undefined behavior.
4006 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
4007 << ClassType;
4008 } else if (WarnOnNonAbstractTypes) {
4009 // Otherwise, if this is not an array delete, it's a bit suspect,
4010 // but not necessarily wrong.
4011 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
4012 << ClassType;
4013 }
4014 if (!IsDelete) {
4015 std::string TypeStr;
4016 ClassType.getAsStringInternal(Str&: TypeStr, Policy: getPrintingPolicy());
4017 Diag(DtorLoc, diag::note_delete_non_virtual)
4018 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
4019 }
4020}
4021
4022Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
4023 SourceLocation StmtLoc,
4024 ConditionKind CK) {
4025 ExprResult E =
4026 CheckConditionVariable(ConditionVar: cast<VarDecl>(Val: ConditionVar), StmtLoc, CK);
4027 if (E.isInvalid())
4028 return ConditionError();
4029 return ConditionResult(*this, ConditionVar, MakeFullExpr(Arg: E.get(), CC: StmtLoc),
4030 CK == ConditionKind::ConstexprIf);
4031}
4032
4033/// Check the use of the given variable as a C++ condition in an if,
4034/// while, do-while, or switch statement.
4035ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
4036 SourceLocation StmtLoc,
4037 ConditionKind CK) {
4038 if (ConditionVar->isInvalidDecl())
4039 return ExprError();
4040
4041 QualType T = ConditionVar->getType();
4042
4043 // C++ [stmt.select]p2:
4044 // The declarator shall not specify a function or an array.
4045 if (T->isFunctionType())
4046 return ExprError(Diag(ConditionVar->getLocation(),
4047 diag::err_invalid_use_of_function_type)
4048 << ConditionVar->getSourceRange());
4049 else if (T->isArrayType())
4050 return ExprError(Diag(ConditionVar->getLocation(),
4051 diag::err_invalid_use_of_array_type)
4052 << ConditionVar->getSourceRange());
4053
4054 ExprResult Condition = BuildDeclRefExpr(
4055 ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue,
4056 ConditionVar->getLocation());
4057
4058 switch (CK) {
4059 case ConditionKind::Boolean:
4060 return CheckBooleanCondition(Loc: StmtLoc, E: Condition.get());
4061
4062 case ConditionKind::ConstexprIf:
4063 return CheckBooleanCondition(Loc: StmtLoc, E: Condition.get(), IsConstexpr: true);
4064
4065 case ConditionKind::Switch:
4066 return CheckSwitchCondition(SwitchLoc: StmtLoc, Cond: Condition.get());
4067 }
4068
4069 llvm_unreachable("unexpected condition kind");
4070}
4071
4072/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
4073ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
4074 // C++11 6.4p4:
4075 // The value of a condition that is an initialized declaration in a statement
4076 // other than a switch statement is the value of the declared variable
4077 // implicitly converted to type bool. If that conversion is ill-formed, the
4078 // program is ill-formed.
4079 // The value of a condition that is an expression is the value of the
4080 // expression, implicitly converted to bool.
4081 //
4082 // C++23 8.5.2p2
4083 // If the if statement is of the form if constexpr, the value of the condition
4084 // is contextually converted to bool and the converted expression shall be
4085 // a constant expression.
4086 //
4087
4088 ExprResult E = PerformContextuallyConvertToBool(From: CondExpr);
4089 if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent())
4090 return E;
4091
4092 // FIXME: Return this value to the caller so they don't need to recompute it.
4093 llvm::APSInt Cond;
4094 E = VerifyIntegerConstantExpression(
4095 E.get(), &Cond,
4096 diag::err_constexpr_if_condition_expression_is_not_constant);
4097 return E;
4098}
4099
4100/// Helper function to determine whether this is the (deprecated) C++
4101/// conversion from a string literal to a pointer to non-const char or
4102/// non-const wchar_t (for narrow and wide string literals,
4103/// respectively).
4104bool
4105Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
4106 // Look inside the implicit cast, if it exists.
4107 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Val: From))
4108 From = Cast->getSubExpr();
4109
4110 // A string literal (2.13.4) that is not a wide string literal can
4111 // be converted to an rvalue of type "pointer to char"; a wide
4112 // string literal can be converted to an rvalue of type "pointer
4113 // to wchar_t" (C++ 4.2p2).
4114 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(Val: From->IgnoreParens()))
4115 if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
4116 if (const BuiltinType *ToPointeeType
4117 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
4118 // This conversion is considered only when there is an
4119 // explicit appropriate pointer target type (C++ 4.2p2).
4120 if (!ToPtrType->getPointeeType().hasQualifiers()) {
4121 switch (StrLit->getKind()) {
4122 case StringLiteralKind::UTF8:
4123 case StringLiteralKind::UTF16:
4124 case StringLiteralKind::UTF32:
4125 // We don't allow UTF literals to be implicitly converted
4126 break;
4127 case StringLiteralKind::Ordinary:
4128 return (ToPointeeType->getKind() == BuiltinType::Char_U ||
4129 ToPointeeType->getKind() == BuiltinType::Char_S);
4130 case StringLiteralKind::Wide:
4131 return Context.typesAreCompatible(T1: Context.getWideCharType(),
4132 T2: QualType(ToPointeeType, 0));
4133 case StringLiteralKind::Unevaluated:
4134 assert(false && "Unevaluated string literal in expression");
4135 break;
4136 }
4137 }
4138 }
4139
4140 return false;
4141}
4142
4143static ExprResult BuildCXXCastArgument(Sema &S,
4144 SourceLocation CastLoc,
4145 QualType Ty,
4146 CastKind Kind,
4147 CXXMethodDecl *Method,
4148 DeclAccessPair FoundDecl,
4149 bool HadMultipleCandidates,
4150 Expr *From) {
4151 switch (Kind) {
4152 default: llvm_unreachable("Unhandled cast kind!");
4153 case CK_ConstructorConversion: {
4154 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Val: Method);
4155 SmallVector<Expr*, 8> ConstructorArgs;
4156
4157 if (S.RequireNonAbstractType(CastLoc, Ty,
4158 diag::err_allocation_of_abstract_type))
4159 return ExprError();
4160
4161 if (S.CompleteConstructorCall(Constructor, DeclInitType: Ty, ArgsPtr: From, Loc: CastLoc,
4162 ConvertedArgs&: ConstructorArgs))
4163 return ExprError();
4164
4165 S.CheckConstructorAccess(Loc: CastLoc, D: Constructor, FoundDecl,
4166 Entity: InitializedEntity::InitializeTemporary(Type: Ty));
4167 if (S.DiagnoseUseOfDecl(Method, CastLoc))
4168 return ExprError();
4169
4170 ExprResult Result = S.BuildCXXConstructExpr(
4171 ConstructLoc: CastLoc, DeclInitType: Ty, FoundDecl, Constructor: cast<CXXConstructorDecl>(Val: Method),
4172 Exprs: ConstructorArgs, HadMultipleCandidates,
4173 /*ListInit*/ IsListInitialization: false, /*StdInitListInit*/ IsStdInitListInitialization: false, /*ZeroInit*/ RequiresZeroInit: false,
4174 ConstructKind: CXXConstructionKind::Complete, ParenRange: SourceRange());
4175 if (Result.isInvalid())
4176 return ExprError();
4177
4178 return S.MaybeBindToTemporary(E: Result.getAs<Expr>());
4179 }
4180
4181 case CK_UserDefinedConversion: {
4182 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
4183
4184 S.CheckMemberOperatorAccess(Loc: CastLoc, ObjectExpr: From, /*arg*/ ArgExpr: nullptr, FoundDecl);
4185 if (S.DiagnoseUseOfDecl(Method, CastLoc))
4186 return ExprError();
4187
4188 // Create an implicit call expr that calls it.
4189 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Val: Method);
4190 ExprResult Result = S.BuildCXXMemberCallExpr(Exp: From, FoundDecl, Method: Conv,
4191 HadMultipleCandidates);
4192 if (Result.isInvalid())
4193 return ExprError();
4194 // Record usage of conversion in an implicit cast.
4195 Result = ImplicitCastExpr::Create(Context: S.Context, T: Result.get()->getType(),
4196 Kind: CK_UserDefinedConversion, Operand: Result.get(),
4197 BasePath: nullptr, Cat: Result.get()->getValueKind(),
4198 FPO: S.CurFPFeatureOverrides());
4199
4200 return S.MaybeBindToTemporary(E: Result.get());
4201 }
4202 }
4203}
4204
4205/// PerformImplicitConversion - Perform an implicit conversion of the
4206/// expression From to the type ToType using the pre-computed implicit
4207/// conversion sequence ICS. Returns the converted
4208/// expression. Action is the kind of conversion we're performing,
4209/// used in the error message.
4210ExprResult
4211Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4212 const ImplicitConversionSequence &ICS,
4213 AssignmentAction Action,
4214 CheckedConversionKind CCK) {
4215 // C++ [over.match.oper]p7: [...] operands of class type are converted [...]
4216 if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType())
4217 return From;
4218
4219 switch (ICS.getKind()) {
4220 case ImplicitConversionSequence::StandardConversion: {
4221 ExprResult Res = PerformImplicitConversion(From, ToType, SCS: ICS.Standard,
4222 Action, CCK);
4223 if (Res.isInvalid())
4224 return ExprError();
4225 From = Res.get();
4226 break;
4227 }
4228
4229 case ImplicitConversionSequence::UserDefinedConversion: {
4230
4231 FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
4232 CastKind CastKind;
4233 QualType BeforeToType;
4234 assert(FD && "no conversion function for user-defined conversion seq");
4235 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(Val: FD)) {
4236 CastKind = CK_UserDefinedConversion;
4237
4238 // If the user-defined conversion is specified by a conversion function,
4239 // the initial standard conversion sequence converts the source type to
4240 // the implicit object parameter of the conversion function.
4241 BeforeToType = Context.getTagDeclType(Decl: Conv->getParent());
4242 } else {
4243 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(Val: FD);
4244 CastKind = CK_ConstructorConversion;
4245 // Do no conversion if dealing with ... for the first conversion.
4246 if (!ICS.UserDefined.EllipsisConversion) {
4247 // If the user-defined conversion is specified by a constructor, the
4248 // initial standard conversion sequence converts the source type to
4249 // the type required by the argument of the constructor
4250 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
4251 }
4252 }
4253 // Watch out for ellipsis conversion.
4254 if (!ICS.UserDefined.EllipsisConversion) {
4255 ExprResult Res =
4256 PerformImplicitConversion(From, ToType: BeforeToType,
4257 SCS: ICS.UserDefined.Before, Action: AA_Converting,
4258 CCK);
4259 if (Res.isInvalid())
4260 return ExprError();
4261 From = Res.get();
4262 }
4263
4264 ExprResult CastArg = BuildCXXCastArgument(
4265 *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind,
4266 cast<CXXMethodDecl>(Val: FD), ICS.UserDefined.FoundConversionFunction,
4267 ICS.UserDefined.HadMultipleCandidates, From);
4268
4269 if (CastArg.isInvalid())
4270 return ExprError();
4271
4272 From = CastArg.get();
4273
4274 // C++ [over.match.oper]p7:
4275 // [...] the second standard conversion sequence of a user-defined
4276 // conversion sequence is not applied.
4277 if (CCK == CCK_ForBuiltinOverloadedOp)
4278 return From;
4279
4280 return PerformImplicitConversion(From, ToType, SCS: ICS.UserDefined.After,
4281 Action: AA_Converting, CCK);
4282 }
4283
4284 case ImplicitConversionSequence::AmbiguousConversion:
4285 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
4286 PDiag(diag::err_typecheck_ambiguous_condition)
4287 << From->getSourceRange());
4288 return ExprError();
4289
4290 case ImplicitConversionSequence::EllipsisConversion:
4291 case ImplicitConversionSequence::StaticObjectArgumentConversion:
4292 llvm_unreachable("bad conversion");
4293
4294 case ImplicitConversionSequence::BadConversion:
4295 Sema::AssignConvertType ConvTy =
4296 CheckAssignmentConstraints(Loc: From->getExprLoc(), LHSType: ToType, RHSType: From->getType());
4297 bool Diagnosed = DiagnoseAssignmentResult(
4298 ConvTy: ConvTy == Compatible ? Incompatible : ConvTy, Loc: From->getExprLoc(),
4299 DstType: ToType, SrcType: From->getType(), SrcExpr: From, Action);
4300 assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed;
4301 return ExprError();
4302 }
4303
4304 // Everything went well.
4305 return From;
4306}
4307
4308/// PerformImplicitConversion - Perform an implicit conversion of the
4309/// expression From to the type ToType by following the standard
4310/// conversion sequence SCS. Returns the converted
4311/// expression. Flavor is the context in which we're performing this
4312/// conversion, for use in error messages.
4313ExprResult
4314Sema::PerformImplicitConversion(Expr *From, QualType ToType,
4315 const StandardConversionSequence& SCS,
4316 AssignmentAction Action,
4317 CheckedConversionKind CCK) {
4318 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
4319
4320 // Overall FIXME: we are recomputing too many types here and doing far too
4321 // much extra work. What this means is that we need to keep track of more
4322 // information that is computed when we try the implicit conversion initially,
4323 // so that we don't need to recompute anything here.
4324 QualType FromType = From->getType();
4325
4326 if (SCS.CopyConstructor) {
4327 // FIXME: When can ToType be a reference type?
4328 assert(!ToType->isReferenceType());
4329 if (SCS.Second == ICK_Derived_To_Base) {
4330 SmallVector<Expr*, 8> ConstructorArgs;
4331 if (CompleteConstructorCall(
4332 Constructor: cast<CXXConstructorDecl>(Val: SCS.CopyConstructor), DeclInitType: ToType, ArgsPtr: From,
4333 /*FIXME:ConstructLoc*/ Loc: SourceLocation(), ConvertedArgs&: ConstructorArgs))
4334 return ExprError();
4335 return BuildCXXConstructExpr(
4336 /*FIXME:ConstructLoc*/ ConstructLoc: SourceLocation(), DeclInitType: ToType,
4337 FoundDecl: SCS.FoundCopyConstructor, Constructor: SCS.CopyConstructor, Exprs: ConstructorArgs,
4338 /*HadMultipleCandidates*/ false,
4339 /*ListInit*/ IsListInitialization: false, /*StdInitListInit*/ IsStdInitListInitialization: false, /*ZeroInit*/ RequiresZeroInit: false,
4340 ConstructKind: CXXConstructionKind::Complete, ParenRange: SourceRange());
4341 }
4342 return BuildCXXConstructExpr(
4343 /*FIXME:ConstructLoc*/ ConstructLoc: SourceLocation(), DeclInitType: ToType,
4344 FoundDecl: SCS.FoundCopyConstructor, Constructor: SCS.CopyConstructor, Exprs: From,
4345 /*HadMultipleCandidates*/ false,
4346 /*ListInit*/ IsListInitialization: false, /*StdInitListInit*/ IsStdInitListInitialization: false, /*ZeroInit*/ RequiresZeroInit: false,
4347 ConstructKind: CXXConstructionKind::Complete, ParenRange: SourceRange());
4348 }
4349
4350 // Resolve overloaded function references.
4351 if (Context.hasSameType(FromType, Context.OverloadTy)) {
4352 DeclAccessPair Found;
4353 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(AddressOfExpr: From, TargetType: ToType,
4354 Complain: true, Found);
4355 if (!Fn)
4356 return ExprError();
4357
4358 if (DiagnoseUseOfDecl(D: Fn, Locs: From->getBeginLoc()))
4359 return ExprError();
4360
4361 ExprResult Res = FixOverloadedFunctionReference(E: From, FoundDecl: Found, Fn);
4362 if (Res.isInvalid())
4363 return ExprError();
4364
4365 // We might get back another placeholder expression if we resolved to a
4366 // builtin.
4367 Res = CheckPlaceholderExpr(E: Res.get());
4368 if (Res.isInvalid())
4369 return ExprError();
4370
4371 From = Res.get();
4372 FromType = From->getType();
4373 }
4374
4375 // If we're converting to an atomic type, first convert to the corresponding
4376 // non-atomic type.
4377 QualType ToAtomicType;
4378 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
4379 ToAtomicType = ToType;
4380 ToType = ToAtomic->getValueType();
4381 }
4382
4383 QualType InitialFromType = FromType;
4384 // Perform the first implicit conversion.
4385 switch (SCS.First) {
4386 case ICK_Identity:
4387 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
4388 FromType = FromAtomic->getValueType().getUnqualifiedType();
4389 From = ImplicitCastExpr::Create(Context, T: FromType, Kind: CK_AtomicToNonAtomic,
4390 Operand: From, /*BasePath=*/nullptr, Cat: VK_PRValue,
4391 FPO: FPOptionsOverride());
4392 }
4393 break;
4394
4395 case ICK_Lvalue_To_Rvalue: {
4396 assert(From->getObjectKind() != OK_ObjCProperty);
4397 ExprResult FromRes = DefaultLvalueConversion(E: From);
4398 if (FromRes.isInvalid())
4399 return ExprError();
4400
4401 From = FromRes.get();
4402 FromType = From->getType();
4403 break;
4404 }
4405
4406 case ICK_Array_To_Pointer:
4407 FromType = Context.getArrayDecayedType(T: FromType);
4408 From = ImpCastExprToType(E: From, Type: FromType, CK: CK_ArrayToPointerDecay, VK: VK_PRValue,
4409 /*BasePath=*/nullptr, CCK)
4410 .get();
4411 break;
4412
4413 case ICK_Function_To_Pointer:
4414 FromType = Context.getPointerType(T: FromType);
4415 From = ImpCastExprToType(E: From, Type: FromType, CK: CK_FunctionToPointerDecay,
4416 VK: VK_PRValue, /*BasePath=*/nullptr, CCK)
4417 .get();
4418 break;
4419
4420 default:
4421 llvm_unreachable("Improper first standard conversion");
4422 }
4423
4424 // Perform the second implicit conversion
4425 switch (SCS.Second) {
4426 case ICK_Identity:
4427 // C++ [except.spec]p5:
4428 // [For] assignment to and initialization of pointers to functions,
4429 // pointers to member functions, and references to functions: the
4430 // target entity shall allow at least the exceptions allowed by the
4431 // source value in the assignment or initialization.
4432 switch (Action) {
4433 case AA_Assigning:
4434 case AA_Initializing:
4435 // Note, function argument passing and returning are initialization.
4436 case AA_Passing:
4437 case AA_Returning:
4438 case AA_Sending:
4439 case AA_Passing_CFAudited:
4440 if (CheckExceptionSpecCompatibility(From, ToType))
4441 return ExprError();
4442 break;
4443
4444 case AA_Casting:
4445 case AA_Converting:
4446 // Casts and implicit conversions are not initialization, so are not
4447 // checked for exception specification mismatches.
4448 break;
4449 }
4450 // Nothing else to do.
4451 break;
4452
4453 case ICK_Integral_Promotion:
4454 case ICK_Integral_Conversion:
4455 if (ToType->isBooleanType()) {
4456 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
4457 SCS.Second == ICK_Integral_Promotion &&
4458 "only enums with fixed underlying type can promote to bool");
4459 From = ImpCastExprToType(E: From, Type: ToType, CK: CK_IntegralToBoolean, VK: VK_PRValue,
4460 /*BasePath=*/nullptr, CCK)
4461 .get();
4462 } else {
4463 From = ImpCastExprToType(E: From, Type: ToType, CK: CK_IntegralCast, VK: VK_PRValue,
4464 /*BasePath=*/nullptr, CCK)
4465 .get();
4466 }
4467 break;
4468
4469 case ICK_Floating_Promotion:
4470 case ICK_Floating_Conversion:
4471 From = ImpCastExprToType(E: From, Type: ToType, CK: CK_FloatingCast, VK: VK_PRValue,
4472 /*BasePath=*/nullptr, CCK)
4473 .get();
4474 break;
4475
4476 case ICK_Complex_Promotion:
4477 case ICK_Complex_Conversion: {
4478 QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType();
4479 QualType ToEl = ToType->castAs<ComplexType>()->getElementType();
4480 CastKind CK;
4481 if (FromEl->isRealFloatingType()) {
4482 if (ToEl->isRealFloatingType())
4483 CK = CK_FloatingComplexCast;
4484 else
4485 CK = CK_FloatingComplexToIntegralComplex;
4486 } else if (ToEl->isRealFloatingType()) {
4487 CK = CK_IntegralComplexToFloatingComplex;
4488 } else {
4489 CK = CK_IntegralComplexCast;
4490 }
4491 From = ImpCastExprToType(E: From, Type: ToType, CK, VK: VK_PRValue, /*BasePath=*/nullptr,
4492 CCK)
4493 .get();
4494 break;
4495 }
4496
4497 case ICK_Floating_Integral:
4498 if (ToType->isRealFloatingType())
4499 From = ImpCastExprToType(E: From, Type: ToType, CK: CK_IntegralToFloating, VK: VK_PRValue,
4500 /*BasePath=*/nullptr, CCK)
4501 .get();
4502 else
4503 From = ImpCastExprToType(E: From, Type: ToType, CK: CK_FloatingToIntegral, VK: VK_PRValue,
4504 /*BasePath=*/nullptr, CCK)
4505 .get();
4506 break;
4507
4508 case ICK_Fixed_Point_Conversion:
4509 assert((FromType->isFixedPointType() || ToType->isFixedPointType()) &&
4510 "Attempting implicit fixed point conversion without a fixed "
4511 "point operand");
4512 if (FromType->isFloatingType())
4513 From = ImpCastExprToType(E: From, Type: ToType, CK: CK_FloatingToFixedPoint,
4514 VK: VK_PRValue,
4515 /*BasePath=*/nullptr, CCK).get();
4516 else if (ToType->isFloatingType())
4517 From = ImpCastExprToType(E: From, Type: ToType, CK: CK_FixedPointToFloating,
4518 VK: VK_PRValue,
4519 /*BasePath=*/nullptr, CCK).get();
4520 else if (FromType->isIntegralType(Ctx: Context))
4521 From = ImpCastExprToType(E: From, Type: ToType, CK: CK_IntegralToFixedPoint,
4522 VK: VK_PRValue,
4523 /*BasePath=*/nullptr, CCK).get();
4524 else if (ToType->isIntegralType(Ctx: Context))
4525 From = ImpCastExprToType(E: From, Type: ToType, CK: CK_FixedPointToIntegral,
4526 VK: VK_PRValue,
4527 /*BasePath=*/nullptr, CCK).get();
4528 else if (ToType->isBooleanType())
4529 From = ImpCastExprToType(E: From, Type: ToType, CK: CK_FixedPointToBoolean,
4530 VK: VK_PRValue,
4531 /*BasePath=*/nullptr, CCK).get();
4532 else
4533 From = ImpCastExprToType(E: From, Type: ToType, CK: CK_FixedPointCast,
4534 VK: VK_PRValue,
4535 /*BasePath=*/nullptr, CCK).get();
4536 break;
4537
4538 case ICK_Compatible_Conversion:
4539 From = ImpCastExprToType(E: From, Type: ToType, CK: CK_NoOp, VK: From->getValueKind(),
4540 /*BasePath=*/nullptr, CCK).get();
4541 break;
4542
4543 case ICK_Writeback_Conversion:
4544 case ICK_Pointer_Conversion: {
4545 if (SCS.IncompatibleObjC && Action != AA_Casting) {
4546 // Diagnose incompatible Objective-C conversions
4547 if (Action == AA_Initializing || Action == AA_Assigning)
4548 Diag(From->getBeginLoc(),
4549 diag::ext_typecheck_convert_incompatible_pointer)
4550 << ToType << From->getType() << Action << From->getSourceRange()
4551 << 0;
4552 else
4553 Diag(From->getBeginLoc(),
4554 diag::ext_typecheck_convert_incompatible_pointer)
4555 << From->getType() << ToType << Action << From->getSourceRange()
4556 << 0;
4557
4558 if (From->getType()->isObjCObjectPointerType() &&
4559 ToType->isObjCObjectPointerType())
4560 EmitRelatedResultTypeNote(E: From);
4561 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
4562 !CheckObjCARCUnavailableWeakConversion(castType: ToType,
4563 ExprType: From->getType())) {
4564 if (Action == AA_Initializing)
4565 Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign);
4566 else
4567 Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable)
4568 << (Action == AA_Casting) << From->getType() << ToType
4569 << From->getSourceRange();
4570 }
4571
4572 // Defer address space conversion to the third conversion.
4573 QualType FromPteeType = From->getType()->getPointeeType();
4574 QualType ToPteeType = ToType->getPointeeType();
4575 QualType NewToType = ToType;
4576 if (!FromPteeType.isNull() && !ToPteeType.isNull() &&
4577 FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) {
4578 NewToType = Context.removeAddrSpaceQualType(T: ToPteeType);
4579 NewToType = Context.getAddrSpaceQualType(T: NewToType,
4580 AddressSpace: FromPteeType.getAddressSpace());
4581 if (ToType->isObjCObjectPointerType())
4582 NewToType = Context.getObjCObjectPointerType(OIT: NewToType);
4583 else if (ToType->isBlockPointerType())
4584 NewToType = Context.getBlockPointerType(T: NewToType);
4585 else
4586 NewToType = Context.getPointerType(T: NewToType);
4587 }
4588
4589 CastKind Kind;
4590 CXXCastPath BasePath;
4591 if (CheckPointerConversion(From, ToType: NewToType, Kind, BasePath, IgnoreBaseAccess: CStyle))
4592 return ExprError();
4593
4594 // Make sure we extend blocks if necessary.
4595 // FIXME: doing this here is really ugly.
4596 if (Kind == CK_BlockPointerToObjCPointerCast) {
4597 ExprResult E = From;
4598 (void) PrepareCastToObjCObjectPointer(E);
4599 From = E.get();
4600 }
4601 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4602 CheckObjCConversion(castRange: SourceRange(), castType: NewToType, op&: From, CCK);
4603 From = ImpCastExprToType(E: From, Type: NewToType, CK: Kind, VK: VK_PRValue, BasePath: &BasePath, CCK)
4604 .get();
4605 break;
4606 }
4607
4608 case ICK_Pointer_Member: {
4609 CastKind Kind;
4610 CXXCastPath BasePath;
4611 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, IgnoreBaseAccess: CStyle))
4612 return ExprError();
4613 if (CheckExceptionSpecCompatibility(From, ToType))
4614 return ExprError();
4615
4616 // We may not have been able to figure out what this member pointer resolved
4617 // to up until this exact point. Attempt to lock-in it's inheritance model.
4618 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4619 (void)isCompleteType(Loc: From->getExprLoc(), T: From->getType());
4620 (void)isCompleteType(Loc: From->getExprLoc(), T: ToType);
4621 }
4622
4623 From =
4624 ImpCastExprToType(E: From, Type: ToType, CK: Kind, VK: VK_PRValue, BasePath: &BasePath, CCK).get();
4625 break;
4626 }
4627
4628 case ICK_Boolean_Conversion:
4629 // Perform half-to-boolean conversion via float.
4630 if (From->getType()->isHalfType()) {
4631 From = ImpCastExprToType(E: From, Type: Context.FloatTy, CK: CK_FloatingCast).get();
4632 FromType = Context.FloatTy;
4633 }
4634
4635 From = ImpCastExprToType(E: From, Type: Context.BoolTy,
4636 CK: ScalarTypeToBooleanCastKind(ScalarTy: FromType), VK: VK_PRValue,
4637 /*BasePath=*/nullptr, CCK)
4638 .get();
4639 break;
4640
4641 case ICK_Derived_To_Base: {
4642 CXXCastPath BasePath;
4643 if (CheckDerivedToBaseConversion(
4644 From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(),
4645 From->getSourceRange(), &BasePath, CStyle))
4646 return ExprError();
4647
4648 From = ImpCastExprToType(E: From, Type: ToType.getNonReferenceType(),
4649 CK: CK_DerivedToBase, VK: From->getValueKind(),
4650 BasePath: &BasePath, CCK).get();
4651 break;
4652 }
4653
4654 case ICK_Vector_Conversion:
4655 From = ImpCastExprToType(E: From, Type: ToType, CK: CK_BitCast, VK: VK_PRValue,
4656 /*BasePath=*/nullptr, CCK)
4657 .get();
4658 break;
4659
4660 case ICK_SVE_Vector_Conversion:
4661 case ICK_RVV_Vector_Conversion:
4662 From = ImpCastExprToType(E: From, Type: ToType, CK: CK_BitCast, VK: VK_PRValue,
4663 /*BasePath=*/nullptr, CCK)
4664 .get();
4665 break;
4666
4667 case ICK_Vector_Splat: {
4668 // Vector splat from any arithmetic type to a vector.
4669 Expr *Elem = prepareVectorSplat(VectorTy: ToType, SplattedExpr: From).get();
4670 From = ImpCastExprToType(E: Elem, Type: ToType, CK: CK_VectorSplat, VK: VK_PRValue,
4671 /*BasePath=*/nullptr, CCK)
4672 .get();
4673 break;
4674 }
4675
4676 case ICK_Complex_Real:
4677 // Case 1. x -> _Complex y
4678 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4679 QualType ElType = ToComplex->getElementType();
4680 bool isFloatingComplex = ElType->isRealFloatingType();
4681
4682 // x -> y
4683 if (Context.hasSameUnqualifiedType(T1: ElType, T2: From->getType())) {
4684 // do nothing
4685 } else if (From->getType()->isRealFloatingType()) {
4686 From = ImpCastExprToType(E: From, Type: ElType,
4687 CK: isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4688 } else {
4689 assert(From->getType()->isIntegerType());
4690 From = ImpCastExprToType(E: From, Type: ElType,
4691 CK: isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4692 }
4693 // y -> _Complex y
4694 From = ImpCastExprToType(E: From, Type: ToType,
4695 CK: isFloatingComplex ? CK_FloatingRealToComplex
4696 : CK_IntegralRealToComplex).get();
4697
4698 // Case 2. _Complex x -> y
4699 } else {
4700 auto *FromComplex = From->getType()->castAs<ComplexType>();
4701 QualType ElType = FromComplex->getElementType();
4702 bool isFloatingComplex = ElType->isRealFloatingType();
4703
4704 // _Complex x -> x
4705 From = ImpCastExprToType(E: From, Type: ElType,
4706 CK: isFloatingComplex ? CK_FloatingComplexToReal
4707 : CK_IntegralComplexToReal,
4708 VK: VK_PRValue, /*BasePath=*/nullptr, CCK)
4709 .get();
4710
4711 // x -> y
4712 if (Context.hasSameUnqualifiedType(T1: ElType, T2: ToType)) {
4713 // do nothing
4714 } else if (ToType->isRealFloatingType()) {
4715 From = ImpCastExprToType(E: From, Type: ToType,
4716 CK: isFloatingComplex ? CK_FloatingCast
4717 : CK_IntegralToFloating,
4718 VK: VK_PRValue, /*BasePath=*/nullptr, CCK)
4719 .get();
4720 } else {
4721 assert(ToType->isIntegerType());
4722 From = ImpCastExprToType(E: From, Type: ToType,
4723 CK: isFloatingComplex ? CK_FloatingToIntegral
4724 : CK_IntegralCast,
4725 VK: VK_PRValue, /*BasePath=*/nullptr, CCK)
4726 .get();
4727 }
4728 }
4729 break;
4730
4731 case ICK_Block_Pointer_Conversion: {
4732 LangAS AddrSpaceL =
4733 ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4734 LangAS AddrSpaceR =
4735 FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace();
4736 assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) &&
4737 "Invalid cast");
4738 CastKind Kind =
4739 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
4740 From = ImpCastExprToType(E: From, Type: ToType.getUnqualifiedType(), CK: Kind,
4741 VK: VK_PRValue, /*BasePath=*/nullptr, CCK)
4742 .get();
4743 break;
4744 }
4745
4746 case ICK_TransparentUnionConversion: {
4747 ExprResult FromRes = From;
4748 Sema::AssignConvertType ConvTy =
4749 CheckTransparentUnionArgumentConstraints(ArgType: ToType, RHS&: FromRes);
4750 if (FromRes.isInvalid())
4751 return ExprError();
4752 From = FromRes.get();
4753 assert ((ConvTy == Sema::Compatible) &&
4754 "Improper transparent union conversion");
4755 (void)ConvTy;
4756 break;
4757 }
4758
4759 case ICK_Zero_Event_Conversion:
4760 case ICK_Zero_Queue_Conversion:
4761 From = ImpCastExprToType(E: From, Type: ToType,
4762 CK: CK_ZeroToOCLOpaqueType,
4763 VK: From->getValueKind()).get();
4764 break;
4765
4766 case ICK_Lvalue_To_Rvalue:
4767 case ICK_Array_To_Pointer:
4768 case ICK_Function_To_Pointer:
4769 case ICK_Function_Conversion:
4770 case ICK_Qualification:
4771 case ICK_Num_Conversion_Kinds:
4772 case ICK_C_Only_Conversion:
4773 case ICK_Incompatible_Pointer_Conversion:
4774 llvm_unreachable("Improper second standard conversion");
4775 }
4776
4777 switch (SCS.Third) {
4778 case ICK_Identity:
4779 // Nothing to do.
4780 break;
4781
4782 case ICK_Function_Conversion:
4783 // If both sides are functions (or pointers/references to them), there could
4784 // be incompatible exception declarations.
4785 if (CheckExceptionSpecCompatibility(From, ToType))
4786 return ExprError();
4787
4788 From = ImpCastExprToType(E: From, Type: ToType, CK: CK_NoOp, VK: VK_PRValue,
4789 /*BasePath=*/nullptr, CCK)
4790 .get();
4791 break;
4792
4793 case ICK_Qualification: {
4794 ExprValueKind VK = From->getValueKind();
4795 CastKind CK = CK_NoOp;
4796
4797 if (ToType->isReferenceType() &&
4798 ToType->getPointeeType().getAddressSpace() !=
4799 From->getType().getAddressSpace())
4800 CK = CK_AddressSpaceConversion;
4801
4802 if (ToType->isPointerType() &&
4803 ToType->getPointeeType().getAddressSpace() !=
4804 From->getType()->getPointeeType().getAddressSpace())
4805 CK = CK_AddressSpaceConversion;
4806
4807 if (!isCast(CCK) &&
4808 !ToType->getPointeeType().getQualifiers().hasUnaligned() &&
4809 From->getType()->getPointeeType().getQualifiers().hasUnaligned()) {
4810 Diag(From->getBeginLoc(), diag::warn_imp_cast_drops_unaligned)
4811 << InitialFromType << ToType;
4812 }
4813
4814 From = ImpCastExprToType(E: From, Type: ToType.getNonLValueExprType(Context), CK, VK,
4815 /*BasePath=*/nullptr, CCK)
4816 .get();
4817
4818 if (SCS.DeprecatedStringLiteralToCharPtr &&
4819 !getLangOpts().WritableStrings) {
4820 Diag(From->getBeginLoc(),
4821 getLangOpts().CPlusPlus11
4822 ? diag::ext_deprecated_string_literal_conversion
4823 : diag::warn_deprecated_string_literal_conversion)
4824 << ToType.getNonReferenceType();
4825 }
4826
4827 break;
4828 }
4829
4830 default:
4831 llvm_unreachable("Improper third standard conversion");
4832 }
4833
4834 // If this conversion sequence involved a scalar -> atomic conversion, perform
4835 // that conversion now.
4836 if (!ToAtomicType.isNull()) {
4837 assert(Context.hasSameType(
4838 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
4839 From = ImpCastExprToType(E: From, Type: ToAtomicType, CK: CK_NonAtomicToAtomic,
4840 VK: VK_PRValue, BasePath: nullptr, CCK)
4841 .get();
4842 }
4843
4844 // Materialize a temporary if we're implicitly converting to a reference
4845 // type. This is not required by the C++ rules but is necessary to maintain
4846 // AST invariants.
4847 if (ToType->isReferenceType() && From->isPRValue()) {
4848 ExprResult Res = TemporaryMaterializationConversion(E: From);
4849 if (Res.isInvalid())
4850 return ExprError();
4851 From = Res.get();
4852 }
4853
4854 // If this conversion sequence succeeded and involved implicitly converting a
4855 // _Nullable type to a _Nonnull one, complain.
4856 if (!isCast(CCK))
4857 diagnoseNullableToNonnullConversion(DstType: ToType, SrcType: InitialFromType,
4858 Loc: From->getBeginLoc());
4859
4860 return From;
4861}
4862
4863/// Check the completeness of a type in a unary type trait.
4864///
4865/// If the particular type trait requires a complete type, tries to complete
4866/// it. If completing the type fails, a diagnostic is emitted and false
4867/// returned. If completing the type succeeds or no completion was required,
4868/// returns true.
4869static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4870 SourceLocation Loc,
4871 QualType ArgTy) {
4872 // C++0x [meta.unary.prop]p3:
4873 // For all of the class templates X declared in this Clause, instantiating
4874 // that template with a template argument that is a class template
4875 // specialization may result in the implicit instantiation of the template
4876 // argument if and only if the semantics of X require that the argument
4877 // must be a complete type.
4878 // We apply this rule to all the type trait expressions used to implement
4879 // these class templates. We also try to follow any GCC documented behavior
4880 // in these expressions to ensure portability of standard libraries.
4881 switch (UTT) {
4882 default: llvm_unreachable("not a UTT");
4883 // is_complete_type somewhat obviously cannot require a complete type.
4884 case UTT_IsCompleteType:
4885 // Fall-through
4886
4887 // These traits are modeled on the type predicates in C++0x
4888 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4889 // requiring a complete type, as whether or not they return true cannot be
4890 // impacted by the completeness of the type.
4891 case UTT_IsVoid:
4892 case UTT_IsIntegral:
4893 case UTT_IsFloatingPoint:
4894 case UTT_IsArray:
4895 case UTT_IsBoundedArray:
4896 case UTT_IsPointer:
4897 case UTT_IsNullPointer:
4898 case UTT_IsReferenceable:
4899 case UTT_IsLvalueReference:
4900 case UTT_IsRvalueReference:
4901 case UTT_IsMemberFunctionPointer:
4902 case UTT_IsMemberObjectPointer:
4903 case UTT_IsEnum:
4904 case UTT_IsScopedEnum:
4905 case UTT_IsUnion:
4906 case UTT_IsClass:
4907 case UTT_IsFunction:
4908 case UTT_IsReference:
4909 case UTT_IsArithmetic:
4910 case UTT_IsFundamental:
4911 case UTT_IsObject:
4912 case UTT_IsScalar:
4913 case UTT_IsCompound:
4914 case UTT_IsMemberPointer:
4915 // Fall-through
4916
4917 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4918 // which requires some of its traits to have the complete type. However,
4919 // the completeness of the type cannot impact these traits' semantics, and
4920 // so they don't require it. This matches the comments on these traits in
4921 // Table 49.
4922 case UTT_IsConst:
4923 case UTT_IsVolatile:
4924 case UTT_IsSigned:
4925 case UTT_IsUnboundedArray:
4926 case UTT_IsUnsigned:
4927
4928 // This type trait always returns false, checking the type is moot.
4929 case UTT_IsInterfaceClass:
4930 return true;
4931
4932 // C++14 [meta.unary.prop]:
4933 // If T is a non-union class type, T shall be a complete type.
4934 case UTT_IsEmpty:
4935 case UTT_IsPolymorphic:
4936 case UTT_IsAbstract:
4937 if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4938 if (!RD->isUnion())
4939 return !S.RequireCompleteType(
4940 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4941 return true;
4942
4943 // C++14 [meta.unary.prop]:
4944 // If T is a class type, T shall be a complete type.
4945 case UTT_IsFinal:
4946 case UTT_IsSealed:
4947 if (ArgTy->getAsCXXRecordDecl())
4948 return !S.RequireCompleteType(
4949 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4950 return true;
4951
4952 // LWG3823: T shall be an array type, a complete type, or cv void.
4953 case UTT_IsAggregate:
4954 if (ArgTy->isArrayType() || ArgTy->isVoidType())
4955 return true;
4956
4957 return !S.RequireCompleteType(
4958 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4959
4960 // C++1z [meta.unary.prop]:
4961 // remove_all_extents_t<T> shall be a complete type or cv void.
4962 case UTT_IsTrivial:
4963 case UTT_IsTriviallyCopyable:
4964 case UTT_IsStandardLayout:
4965 case UTT_IsPOD:
4966 case UTT_IsLiteral:
4967 // By analogy, is_trivially_relocatable and is_trivially_equality_comparable
4968 // impose the same constraints.
4969 case UTT_IsTriviallyRelocatable:
4970 case UTT_IsTriviallyEqualityComparable:
4971 case UTT_CanPassInRegs:
4972 // Per the GCC type traits documentation, T shall be a complete type, cv void,
4973 // or an array of unknown bound. But GCC actually imposes the same constraints
4974 // as above.
4975 case UTT_HasNothrowAssign:
4976 case UTT_HasNothrowMoveAssign:
4977 case UTT_HasNothrowConstructor:
4978 case UTT_HasNothrowCopy:
4979 case UTT_HasTrivialAssign:
4980 case UTT_HasTrivialMoveAssign:
4981 case UTT_HasTrivialDefaultConstructor:
4982 case UTT_HasTrivialMoveConstructor:
4983 case UTT_HasTrivialCopy:
4984 case UTT_HasTrivialDestructor:
4985 case UTT_HasVirtualDestructor:
4986 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4987 [[fallthrough]];
4988
4989 // C++1z [meta.unary.prop]:
4990 // T shall be a complete type, cv void, or an array of unknown bound.
4991 case UTT_IsDestructible:
4992 case UTT_IsNothrowDestructible:
4993 case UTT_IsTriviallyDestructible:
4994 case UTT_HasUniqueObjectRepresentations:
4995 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4996 return true;
4997
4998 return !S.RequireCompleteType(
4999 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
5000 }
5001}
5002
5003static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
5004 Sema &Self, SourceLocation KeyLoc, ASTContext &C,
5005 bool (CXXRecordDecl::*HasTrivial)() const,
5006 bool (CXXRecordDecl::*HasNonTrivial)() const,
5007 bool (CXXMethodDecl::*IsDesiredOp)() const)
5008{
5009 CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: RT->getDecl());
5010 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
5011 return true;
5012
5013 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
5014 DeclarationNameInfo NameInfo(Name, KeyLoc);
5015 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
5016 if (Self.LookupQualifiedName(Res, RD)) {
5017 bool FoundOperator = false;
5018 Res.suppressDiagnostics();
5019 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
5020 Op != OpEnd; ++Op) {
5021 if (isa<FunctionTemplateDecl>(Val: *Op))
5022 continue;
5023
5024 CXXMethodDecl *Operator = cast<CXXMethodDecl>(Val: *Op);
5025 if((Operator->*IsDesiredOp)()) {
5026 FoundOperator = true;
5027 auto *CPT = Operator->getType()->castAs<FunctionProtoType>();
5028 CPT = Self.ResolveExceptionSpec(Loc: KeyLoc, FPT: CPT);
5029 if (!CPT || !CPT->isNothrow())
5030 return false;
5031 }
5032 }
5033 return FoundOperator;
5034 }
5035 return false;
5036}
5037
5038static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
5039 SourceLocation KeyLoc, QualType T) {
5040 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
5041
5042 ASTContext &C = Self.Context;
5043 switch(UTT) {
5044 default: llvm_unreachable("not a UTT");
5045 // Type trait expressions corresponding to the primary type category
5046 // predicates in C++0x [meta.unary.cat].
5047 case UTT_IsVoid:
5048 return T->isVoidType();
5049 case UTT_IsIntegral:
5050 return T->isIntegralType(Ctx: C);
5051 case UTT_IsFloatingPoint:
5052 return T->isFloatingType();
5053 case UTT_IsArray:
5054 return T->isArrayType();
5055 case UTT_IsBoundedArray:
5056 if (!T->isVariableArrayType()) {
5057 return T->isArrayType() && !T->isIncompleteArrayType();
5058 }
5059
5060 Self.Diag(KeyLoc, diag::err_vla_unsupported)
5061 << 1 << tok::kw___is_bounded_array;
5062 return false;
5063 case UTT_IsUnboundedArray:
5064 if (!T->isVariableArrayType()) {
5065 return T->isIncompleteArrayType();
5066 }
5067
5068 Self.Diag(KeyLoc, diag::err_vla_unsupported)
5069 << 1 << tok::kw___is_unbounded_array;
5070 return false;
5071 case UTT_IsPointer:
5072 return T->isAnyPointerType();
5073 case UTT_IsNullPointer:
5074 return T->isNullPtrType();
5075 case UTT_IsLvalueReference:
5076 return T->isLValueReferenceType();
5077 case UTT_IsRvalueReference:
5078 return T->isRValueReferenceType();
5079 case UTT_IsMemberFunctionPointer:
5080 return T->isMemberFunctionPointerType();
5081 case UTT_IsMemberObjectPointer:
5082 return T->isMemberDataPointerType();
5083 case UTT_IsEnum:
5084 return T->isEnumeralType();
5085 case UTT_IsScopedEnum:
5086 return T->isScopedEnumeralType();
5087 case UTT_IsUnion:
5088 return T->isUnionType();
5089 case UTT_IsClass:
5090 return T->isClassType() || T->isStructureType() || T->isInterfaceType();
5091 case UTT_IsFunction:
5092 return T->isFunctionType();
5093
5094 // Type trait expressions which correspond to the convenient composition
5095 // predicates in C++0x [meta.unary.comp].
5096 case UTT_IsReference:
5097 return T->isReferenceType();
5098 case UTT_IsArithmetic:
5099 return T->isArithmeticType() && !T->isEnumeralType();
5100 case UTT_IsFundamental:
5101 return T->isFundamentalType();
5102 case UTT_IsObject:
5103 return T->isObjectType();
5104 case UTT_IsScalar:
5105 // Note: semantic analysis depends on Objective-C lifetime types to be
5106 // considered scalar types. However, such types do not actually behave
5107 // like scalar types at run time (since they may require retain/release
5108 // operations), so we report them as non-scalar.
5109 if (T->isObjCLifetimeType()) {
5110 switch (T.getObjCLifetime()) {
5111 case Qualifiers::OCL_None:
5112 case Qualifiers::OCL_ExplicitNone:
5113 return true;
5114
5115 case Qualifiers::OCL_Strong:
5116 case Qualifiers::OCL_Weak:
5117 case Qualifiers::OCL_Autoreleasing:
5118 return false;
5119 }
5120 }
5121
5122 return T->isScalarType();
5123 case UTT_IsCompound:
5124 return T->isCompoundType();
5125 case UTT_IsMemberPointer:
5126 return T->isMemberPointerType();
5127
5128 // Type trait expressions which correspond to the type property predicates
5129 // in C++0x [meta.unary.prop].
5130 case UTT_IsConst:
5131 return T.isConstQualified();
5132 case UTT_IsVolatile:
5133 return T.isVolatileQualified();
5134 case UTT_IsTrivial:
5135 return T.isTrivialType(Context: C);
5136 case UTT_IsTriviallyCopyable:
5137 return T.isTriviallyCopyableType(Context: C);
5138 case UTT_IsStandardLayout:
5139 return T->isStandardLayoutType();
5140 case UTT_IsPOD:
5141 return T.isPODType(Context: C);
5142 case UTT_IsLiteral:
5143 return T->isLiteralType(Ctx: C);
5144 case UTT_IsEmpty:
5145 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5146 return !RD->isUnion() && RD->isEmpty();
5147 return false;
5148 case UTT_IsPolymorphic:
5149 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5150 return !RD->isUnion() && RD->isPolymorphic();
5151 return false;
5152 case UTT_IsAbstract:
5153 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5154 return !RD->isUnion() && RD->isAbstract();
5155 return false;
5156 case UTT_IsAggregate:
5157 // Report vector extensions and complex types as aggregates because they
5158 // support aggregate initialization. GCC mirrors this behavior for vectors
5159 // but not _Complex.
5160 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
5161 T->isAnyComplexType();
5162 // __is_interface_class only returns true when CL is invoked in /CLR mode and
5163 // even then only when it is used with the 'interface struct ...' syntax
5164 // Clang doesn't support /CLR which makes this type trait moot.
5165 case UTT_IsInterfaceClass:
5166 return false;
5167 case UTT_IsFinal:
5168 case UTT_IsSealed:
5169 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5170 return RD->hasAttr<FinalAttr>();
5171 return false;
5172 case UTT_IsSigned:
5173 // Enum types should always return false.
5174 // Floating points should always return true.
5175 return T->isFloatingType() ||
5176 (T->isSignedIntegerType() && !T->isEnumeralType());
5177 case UTT_IsUnsigned:
5178 // Enum types should always return false.
5179 return T->isUnsignedIntegerType() && !T->isEnumeralType();
5180
5181 // Type trait expressions which query classes regarding their construction,
5182 // destruction, and copying. Rather than being based directly on the
5183 // related type predicates in the standard, they are specified by both
5184 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
5185 // specifications.
5186 //
5187 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
5188 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5189 //
5190 // Note that these builtins do not behave as documented in g++: if a class
5191 // has both a trivial and a non-trivial special member of a particular kind,
5192 // they return false! For now, we emulate this behavior.
5193 // FIXME: This appears to be a g++ bug: more complex cases reveal that it
5194 // does not correctly compute triviality in the presence of multiple special
5195 // members of the same kind. Revisit this once the g++ bug is fixed.
5196 case UTT_HasTrivialDefaultConstructor:
5197 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5198 // If __is_pod (type) is true then the trait is true, else if type is
5199 // a cv class or union type (or array thereof) with a trivial default
5200 // constructor ([class.ctor]) then the trait is true, else it is false.
5201 if (T.isPODType(Context: C))
5202 return true;
5203 if (CXXRecordDecl *RD = C.getBaseElementType(QT: T)->getAsCXXRecordDecl())
5204 return RD->hasTrivialDefaultConstructor() &&
5205 !RD->hasNonTrivialDefaultConstructor();
5206 return false;
5207 case UTT_HasTrivialMoveConstructor:
5208 // This trait is implemented by MSVC 2012 and needed to parse the
5209 // standard library headers. Specifically this is used as the logic
5210 // behind std::is_trivially_move_constructible (20.9.4.3).
5211 if (T.isPODType(Context: C))
5212 return true;
5213 if (CXXRecordDecl *RD = C.getBaseElementType(QT: T)->getAsCXXRecordDecl())
5214 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
5215 return false;
5216 case UTT_HasTrivialCopy:
5217 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5218 // If __is_pod (type) is true or type is a reference type then
5219 // the trait is true, else if type is a cv class or union type
5220 // with a trivial copy constructor ([class.copy]) then the trait
5221 // is true, else it is false.
5222 if (T.isPODType(Context: C) || T->isReferenceType())
5223 return true;
5224 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5225 return RD->hasTrivialCopyConstructor() &&
5226 !RD->hasNonTrivialCopyConstructor();
5227 return false;
5228 case UTT_HasTrivialMoveAssign:
5229 // This trait is implemented by MSVC 2012 and needed to parse the
5230 // standard library headers. Specifically it is used as the logic
5231 // behind std::is_trivially_move_assignable (20.9.4.3)
5232 if (T.isPODType(Context: C))
5233 return true;
5234 if (CXXRecordDecl *RD = C.getBaseElementType(QT: T)->getAsCXXRecordDecl())
5235 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
5236 return false;
5237 case UTT_HasTrivialAssign:
5238 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5239 // If type is const qualified or is a reference type then the
5240 // trait is false. Otherwise if __is_pod (type) is true then the
5241 // trait is true, else if type is a cv class or union type with
5242 // a trivial copy assignment ([class.copy]) then the trait is
5243 // true, else it is false.
5244 // Note: the const and reference restrictions are interesting,
5245 // given that const and reference members don't prevent a class
5246 // from having a trivial copy assignment operator (but do cause
5247 // errors if the copy assignment operator is actually used, q.v.
5248 // [class.copy]p12).
5249
5250 if (T.isConstQualified())
5251 return false;
5252 if (T.isPODType(Context: C))
5253 return true;
5254 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5255 return RD->hasTrivialCopyAssignment() &&
5256 !RD->hasNonTrivialCopyAssignment();
5257 return false;
5258 case UTT_IsDestructible:
5259 case UTT_IsTriviallyDestructible:
5260 case UTT_IsNothrowDestructible:
5261 // C++14 [meta.unary.prop]:
5262 // For reference types, is_destructible<T>::value is true.
5263 if (T->isReferenceType())
5264 return true;
5265
5266 // Objective-C++ ARC: autorelease types don't require destruction.
5267 if (T->isObjCLifetimeType() &&
5268 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5269 return true;
5270
5271 // C++14 [meta.unary.prop]:
5272 // For incomplete types and function types, is_destructible<T>::value is
5273 // false.
5274 if (T->isIncompleteType() || T->isFunctionType())
5275 return false;
5276
5277 // A type that requires destruction (via a non-trivial destructor or ARC
5278 // lifetime semantics) is not trivially-destructible.
5279 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
5280 return false;
5281
5282 // C++14 [meta.unary.prop]:
5283 // For object types and given U equal to remove_all_extents_t<T>, if the
5284 // expression std::declval<U&>().~U() is well-formed when treated as an
5285 // unevaluated operand (Clause 5), then is_destructible<T>::value is true
5286 if (auto *RD = C.getBaseElementType(QT: T)->getAsCXXRecordDecl()) {
5287 CXXDestructorDecl *Destructor = Self.LookupDestructor(Class: RD);
5288 if (!Destructor)
5289 return false;
5290 // C++14 [dcl.fct.def.delete]p2:
5291 // A program that refers to a deleted function implicitly or
5292 // explicitly, other than to declare it, is ill-formed.
5293 if (Destructor->isDeleted())
5294 return false;
5295 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
5296 return false;
5297 if (UTT == UTT_IsNothrowDestructible) {
5298 auto *CPT = Destructor->getType()->castAs<FunctionProtoType>();
5299 CPT = Self.ResolveExceptionSpec(Loc: KeyLoc, FPT: CPT);
5300 if (!CPT || !CPT->isNothrow())
5301 return false;
5302 }
5303 }
5304 return true;
5305
5306 case UTT_HasTrivialDestructor:
5307 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5308 // If __is_pod (type) is true or type is a reference type
5309 // then the trait is true, else if type is a cv class or union
5310 // type (or array thereof) with a trivial destructor
5311 // ([class.dtor]) then the trait is true, else it is
5312 // false.
5313 if (T.isPODType(Context: C) || T->isReferenceType())
5314 return true;
5315
5316 // Objective-C++ ARC: autorelease types don't require destruction.
5317 if (T->isObjCLifetimeType() &&
5318 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
5319 return true;
5320
5321 if (CXXRecordDecl *RD = C.getBaseElementType(QT: T)->getAsCXXRecordDecl())
5322 return RD->hasTrivialDestructor();
5323 return false;
5324 // TODO: Propagate nothrowness for implicitly declared special members.
5325 case UTT_HasNothrowAssign:
5326 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5327 // If type is const qualified or is a reference type then the
5328 // trait is false. Otherwise if __has_trivial_assign (type)
5329 // is true then the trait is true, else if type is a cv class
5330 // or union type with copy assignment operators that are known
5331 // not to throw an exception then the trait is true, else it is
5332 // false.
5333 if (C.getBaseElementType(QT: T).isConstQualified())
5334 return false;
5335 if (T->isReferenceType())
5336 return false;
5337 if (T.isPODType(Context: C) || T->isObjCLifetimeType())
5338 return true;
5339
5340 if (const RecordType *RT = T->getAs<RecordType>())
5341 return HasNoThrowOperator(RT, Op: OO_Equal, Self, KeyLoc, C,
5342 HasTrivial: &CXXRecordDecl::hasTrivialCopyAssignment,
5343 HasNonTrivial: &CXXRecordDecl::hasNonTrivialCopyAssignment,
5344 IsDesiredOp: &CXXMethodDecl::isCopyAssignmentOperator);
5345 return false;
5346 case UTT_HasNothrowMoveAssign:
5347 // This trait is implemented by MSVC 2012 and needed to parse the
5348 // standard library headers. Specifically this is used as the logic
5349 // behind std::is_nothrow_move_assignable (20.9.4.3).
5350 if (T.isPODType(Context: C))
5351 return true;
5352
5353 if (const RecordType *RT = C.getBaseElementType(QT: T)->getAs<RecordType>())
5354 return HasNoThrowOperator(RT, Op: OO_Equal, Self, KeyLoc, C,
5355 HasTrivial: &CXXRecordDecl::hasTrivialMoveAssignment,
5356 HasNonTrivial: &CXXRecordDecl::hasNonTrivialMoveAssignment,
5357 IsDesiredOp: &CXXMethodDecl::isMoveAssignmentOperator);
5358 return false;
5359 case UTT_HasNothrowCopy:
5360 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5361 // If __has_trivial_copy (type) is true then the trait is true, else
5362 // if type is a cv class or union type with copy constructors that are
5363 // known not to throw an exception then the trait is true, else it is
5364 // false.
5365 if (T.isPODType(Context: C) || T->isReferenceType() || T->isObjCLifetimeType())
5366 return true;
5367 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
5368 if (RD->hasTrivialCopyConstructor() &&
5369 !RD->hasNonTrivialCopyConstructor())
5370 return true;
5371
5372 bool FoundConstructor = false;
5373 unsigned FoundTQs;
5374 for (const auto *ND : Self.LookupConstructors(Class: RD)) {
5375 // A template constructor is never a copy constructor.
5376 // FIXME: However, it may actually be selected at the actual overload
5377 // resolution point.
5378 if (isa<FunctionTemplateDecl>(Val: ND->getUnderlyingDecl()))
5379 continue;
5380 // UsingDecl itself is not a constructor
5381 if (isa<UsingDecl>(Val: ND))
5382 continue;
5383 auto *Constructor = cast<CXXConstructorDecl>(Val: ND->getUnderlyingDecl());
5384 if (Constructor->isCopyConstructor(TypeQuals&: FoundTQs)) {
5385 FoundConstructor = true;
5386 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5387 CPT = Self.ResolveExceptionSpec(Loc: KeyLoc, FPT: CPT);
5388 if (!CPT)
5389 return false;
5390 // TODO: check whether evaluating default arguments can throw.
5391 // For now, we'll be conservative and assume that they can throw.
5392 if (!CPT->isNothrow() || CPT->getNumParams() > 1)
5393 return false;
5394 }
5395 }
5396
5397 return FoundConstructor;
5398 }
5399 return false;
5400 case UTT_HasNothrowConstructor:
5401 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
5402 // If __has_trivial_constructor (type) is true then the trait is
5403 // true, else if type is a cv class or union type (or array
5404 // thereof) with a default constructor that is known not to
5405 // throw an exception then the trait is true, else it is false.
5406 if (T.isPODType(Context: C) || T->isObjCLifetimeType())
5407 return true;
5408 if (CXXRecordDecl *RD = C.getBaseElementType(QT: T)->getAsCXXRecordDecl()) {
5409 if (RD->hasTrivialDefaultConstructor() &&
5410 !RD->hasNonTrivialDefaultConstructor())
5411 return true;
5412
5413 bool FoundConstructor = false;
5414 for (const auto *ND : Self.LookupConstructors(Class: RD)) {
5415 // FIXME: In C++0x, a constructor template can be a default constructor.
5416 if (isa<FunctionTemplateDecl>(Val: ND->getUnderlyingDecl()))
5417 continue;
5418 // UsingDecl itself is not a constructor
5419 if (isa<UsingDecl>(Val: ND))
5420 continue;
5421 auto *Constructor = cast<CXXConstructorDecl>(Val: ND->getUnderlyingDecl());
5422 if (Constructor->isDefaultConstructor()) {
5423 FoundConstructor = true;
5424 auto *CPT = Constructor->getType()->castAs<FunctionProtoType>();
5425 CPT = Self.ResolveExceptionSpec(Loc: KeyLoc, FPT: CPT);
5426 if (!CPT)
5427 return false;
5428 // FIXME: check whether evaluating default arguments can throw.
5429 // For now, we'll be conservative and assume that they can throw.
5430 if (!CPT->isNothrow() || CPT->getNumParams() > 0)
5431 return false;
5432 }
5433 }
5434 return FoundConstructor;
5435 }
5436 return false;
5437 case UTT_HasVirtualDestructor:
5438 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
5439 // If type is a class type with a virtual destructor ([class.dtor])
5440 // then the trait is true, else it is false.
5441 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
5442 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(Class: RD))
5443 return Destructor->isVirtual();
5444 return false;
5445
5446 // These type trait expressions are modeled on the specifications for the
5447 // Embarcadero C++0x type trait functions:
5448 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
5449 case UTT_IsCompleteType:
5450 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
5451 // Returns True if and only if T is a complete type at the point of the
5452 // function call.
5453 return !T->isIncompleteType();
5454 case UTT_HasUniqueObjectRepresentations:
5455 return C.hasUniqueObjectRepresentations(Ty: T);
5456 case UTT_IsTriviallyRelocatable:
5457 return T.isTriviallyRelocatableType(Context: C);
5458 case UTT_IsReferenceable:
5459 return T.isReferenceable();
5460 case UTT_CanPassInRegs:
5461 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl(); RD && !T.hasQualifiers())
5462 return RD->canPassInRegisters();
5463 Self.Diag(KeyLoc, diag::err_builtin_pass_in_regs_non_class) << T;
5464 return false;
5465 case UTT_IsTriviallyEqualityComparable:
5466 return T.isTriviallyEqualityComparableType(Context: C);
5467 }
5468}
5469
5470static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5471 QualType RhsT, SourceLocation KeyLoc);
5472
5473static bool EvaluateBooleanTypeTrait(Sema &S, TypeTrait Kind,
5474 SourceLocation KWLoc,
5475 ArrayRef<TypeSourceInfo *> Args,
5476 SourceLocation RParenLoc,
5477 bool IsDependent) {
5478 if (IsDependent)
5479 return false;
5480
5481 if (Kind <= UTT_Last)
5482 return EvaluateUnaryTypeTrait(Self&: S, UTT: Kind, KeyLoc: KWLoc, T: Args[0]->getType());
5483
5484 // Evaluate ReferenceBindsToTemporary and ReferenceConstructsFromTemporary
5485 // alongside the IsConstructible traits to avoid duplication.
5486 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary && Kind != BTT_ReferenceConstructsFromTemporary)
5487 return EvaluateBinaryTypeTrait(Self&: S, BTT: Kind, LhsT: Args[0]->getType(),
5488 RhsT: Args[1]->getType(), KeyLoc: RParenLoc);
5489
5490 switch (Kind) {
5491 case clang::BTT_ReferenceBindsToTemporary:
5492 case clang::BTT_ReferenceConstructsFromTemporary:
5493 case clang::TT_IsConstructible:
5494 case clang::TT_IsNothrowConstructible:
5495 case clang::TT_IsTriviallyConstructible: {
5496 // C++11 [meta.unary.prop]:
5497 // is_trivially_constructible is defined as:
5498 //
5499 // is_constructible<T, Args...>::value is true and the variable
5500 // definition for is_constructible, as defined below, is known to call
5501 // no operation that is not trivial.
5502 //
5503 // The predicate condition for a template specialization
5504 // is_constructible<T, Args...> shall be satisfied if and only if the
5505 // following variable definition would be well-formed for some invented
5506 // variable t:
5507 //
5508 // T t(create<Args>()...);
5509 assert(!Args.empty());
5510
5511 // Precondition: T and all types in the parameter pack Args shall be
5512 // complete types, (possibly cv-qualified) void, or arrays of
5513 // unknown bound.
5514 for (const auto *TSI : Args) {
5515 QualType ArgTy = TSI->getType();
5516 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
5517 continue;
5518
5519 if (S.RequireCompleteType(KWLoc, ArgTy,
5520 diag::err_incomplete_type_used_in_type_trait_expr))
5521 return false;
5522 }
5523
5524 // Make sure the first argument is not incomplete nor a function type.
5525 QualType T = Args[0]->getType();
5526 if (T->isIncompleteType() || T->isFunctionType())
5527 return false;
5528
5529 // Make sure the first argument is not an abstract type.
5530 CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5531 if (RD && RD->isAbstract())
5532 return false;
5533
5534 llvm::BumpPtrAllocator OpaqueExprAllocator;
5535 SmallVector<Expr *, 2> ArgExprs;
5536 ArgExprs.reserve(N: Args.size() - 1);
5537 for (unsigned I = 1, N = Args.size(); I != N; ++I) {
5538 QualType ArgTy = Args[I]->getType();
5539 if (ArgTy->isObjectType() || ArgTy->isFunctionType())
5540 ArgTy = S.Context.getRValueReferenceType(T: ArgTy);
5541 ArgExprs.push_back(
5542 new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>())
5543 OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(),
5544 ArgTy.getNonLValueExprType(Context: S.Context),
5545 Expr::getValueKindForType(T: ArgTy)));
5546 }
5547
5548 // Perform the initialization in an unevaluated context within a SFINAE
5549 // trap at translation unit scope.
5550 EnterExpressionEvaluationContext Unevaluated(
5551 S, Sema::ExpressionEvaluationContext::Unevaluated);
5552 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
5553 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
5554 InitializedEntity To(
5555 InitializedEntity::InitializeTemporary(Context&: S.Context, TypeInfo: Args[0]));
5556 InitializationKind InitKind(InitializationKind::CreateDirect(InitLoc: KWLoc, LParenLoc: KWLoc,
5557 RParenLoc));
5558 InitializationSequence Init(S, To, InitKind, ArgExprs);
5559 if (Init.Failed())
5560 return false;
5561
5562 ExprResult Result = Init.Perform(S, Entity: To, Kind: InitKind, Args: ArgExprs);
5563 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5564 return false;
5565
5566 if (Kind == clang::TT_IsConstructible)
5567 return true;
5568
5569 if (Kind == clang::BTT_ReferenceBindsToTemporary || Kind == clang::BTT_ReferenceConstructsFromTemporary) {
5570 if (!T->isReferenceType())
5571 return false;
5572
5573 if (!Init.isDirectReferenceBinding())
5574 return true;
5575
5576 if (Kind == clang::BTT_ReferenceBindsToTemporary)
5577 return false;
5578
5579 QualType U = Args[1]->getType();
5580 if (U->isReferenceType())
5581 return false;
5582
5583 QualType TPtr = S.Context.getPointerType(T: S.BuiltinRemoveReference(BaseType: T, UKind: UnaryTransformType::RemoveCVRef, Loc: {}));
5584 QualType UPtr = S.Context.getPointerType(T: S.BuiltinRemoveReference(BaseType: U, UKind: UnaryTransformType::RemoveCVRef, Loc: {}));
5585 return EvaluateBinaryTypeTrait(Self&: S, BTT: TypeTrait::BTT_IsConvertibleTo, LhsT: UPtr, RhsT: TPtr, KeyLoc: RParenLoc);
5586 }
5587
5588 if (Kind == clang::TT_IsNothrowConstructible)
5589 return S.canThrow(Result.get()) == CT_Cannot;
5590
5591 if (Kind == clang::TT_IsTriviallyConstructible) {
5592 // Under Objective-C ARC and Weak, if the destination has non-trivial
5593 // Objective-C lifetime, this is a non-trivial construction.
5594 if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
5595 return false;
5596
5597 // The initialization succeeded; now make sure there are no non-trivial
5598 // calls.
5599 return !Result.get()->hasNonTrivialCall(Ctx: S.Context);
5600 }
5601
5602 llvm_unreachable("unhandled type trait");
5603 return false;
5604 }
5605 default: llvm_unreachable("not a TT");
5606 }
5607
5608 return false;
5609}
5610
5611namespace {
5612void DiagnoseBuiltinDeprecation(Sema& S, TypeTrait Kind,
5613 SourceLocation KWLoc) {
5614 TypeTrait Replacement;
5615 switch (Kind) {
5616 case UTT_HasNothrowAssign:
5617 case UTT_HasNothrowMoveAssign:
5618 Replacement = BTT_IsNothrowAssignable;
5619 break;
5620 case UTT_HasNothrowCopy:
5621 case UTT_HasNothrowConstructor:
5622 Replacement = TT_IsNothrowConstructible;
5623 break;
5624 case UTT_HasTrivialAssign:
5625 case UTT_HasTrivialMoveAssign:
5626 Replacement = BTT_IsTriviallyAssignable;
5627 break;
5628 case UTT_HasTrivialCopy:
5629 Replacement = UTT_IsTriviallyCopyable;
5630 break;
5631 case UTT_HasTrivialDefaultConstructor:
5632 case UTT_HasTrivialMoveConstructor:
5633 Replacement = TT_IsTriviallyConstructible;
5634 break;
5635 case UTT_HasTrivialDestructor:
5636 Replacement = UTT_IsTriviallyDestructible;
5637 break;
5638 default:
5639 return;
5640 }
5641 S.Diag(KWLoc, diag::warn_deprecated_builtin)
5642 << getTraitSpelling(Kind) << getTraitSpelling(Replacement);
5643}
5644}
5645
5646bool Sema::CheckTypeTraitArity(unsigned Arity, SourceLocation Loc, size_t N) {
5647 if (Arity && N != Arity) {
5648 Diag(Loc, diag::err_type_trait_arity)
5649 << Arity << 0 << (Arity > 1) << (int)N << SourceRange(Loc);
5650 return false;
5651 }
5652
5653 if (!Arity && N == 0) {
5654 Diag(Loc, diag::err_type_trait_arity)
5655 << 1 << 1 << 1 << (int)N << SourceRange(Loc);
5656 return false;
5657 }
5658 return true;
5659}
5660
5661enum class TypeTraitReturnType {
5662 Bool,
5663};
5664
5665static TypeTraitReturnType GetReturnType(TypeTrait Kind) {
5666 return TypeTraitReturnType::Bool;
5667}
5668
5669ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5670 ArrayRef<TypeSourceInfo *> Args,
5671 SourceLocation RParenLoc) {
5672 if (!CheckTypeTraitArity(Arity: getTypeTraitArity(T: Kind), Loc: KWLoc, N: Args.size()))
5673 return ExprError();
5674
5675 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
5676 S&: *this, UTT: Kind, Loc: KWLoc, ArgTy: Args[0]->getType()))
5677 return ExprError();
5678
5679 DiagnoseBuiltinDeprecation(S&: *this, Kind, KWLoc);
5680
5681 bool Dependent = false;
5682 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5683 if (Args[I]->getType()->isDependentType()) {
5684 Dependent = true;
5685 break;
5686 }
5687 }
5688
5689 switch (GetReturnType(Kind)) {
5690 case TypeTraitReturnType::Bool: {
5691 bool Result = EvaluateBooleanTypeTrait(S&: *this, Kind, KWLoc, Args, RParenLoc,
5692 IsDependent: Dependent);
5693 return TypeTraitExpr::Create(C: Context, T: Context.getLogicalOperationType(),
5694 Loc: KWLoc, Kind, Args, RParenLoc, Value: Result);
5695 }
5696 }
5697 llvm_unreachable("unhandled type trait return type");
5698}
5699
5700ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
5701 ArrayRef<ParsedType> Args,
5702 SourceLocation RParenLoc) {
5703 SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
5704 ConvertedArgs.reserve(N: Args.size());
5705
5706 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
5707 TypeSourceInfo *TInfo;
5708 QualType T = GetTypeFromParser(Ty: Args[I], TInfo: &TInfo);
5709 if (!TInfo)
5710 TInfo = Context.getTrivialTypeSourceInfo(T, Loc: KWLoc);
5711
5712 ConvertedArgs.push_back(Elt: TInfo);
5713 }
5714
5715 return BuildTypeTrait(Kind, KWLoc, Args: ConvertedArgs, RParenLoc);
5716}
5717
5718static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
5719 QualType RhsT, SourceLocation KeyLoc) {
5720 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
5721 "Cannot evaluate traits of dependent types");
5722
5723 switch(BTT) {
5724 case BTT_IsBaseOf: {
5725 // C++0x [meta.rel]p2
5726 // Base is a base class of Derived without regard to cv-qualifiers or
5727 // Base and Derived are not unions and name the same class type without
5728 // regard to cv-qualifiers.
5729
5730 const RecordType *lhsRecord = LhsT->getAs<RecordType>();
5731 const RecordType *rhsRecord = RhsT->getAs<RecordType>();
5732 if (!rhsRecord || !lhsRecord) {
5733 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
5734 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
5735 if (!LHSObjTy || !RHSObjTy)
5736 return false;
5737
5738 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
5739 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
5740 if (!BaseInterface || !DerivedInterface)
5741 return false;
5742
5743 if (Self.RequireCompleteType(
5744 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
5745 return false;
5746
5747 return BaseInterface->isSuperClassOf(I: DerivedInterface);
5748 }
5749
5750 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
5751 == (lhsRecord == rhsRecord));
5752
5753 // Unions are never base classes, and never have base classes.
5754 // It doesn't matter if they are complete or not. See PR#41843
5755 if (lhsRecord && lhsRecord->getDecl()->isUnion())
5756 return false;
5757 if (rhsRecord && rhsRecord->getDecl()->isUnion())
5758 return false;
5759
5760 if (lhsRecord == rhsRecord)
5761 return true;
5762
5763 // C++0x [meta.rel]p2:
5764 // If Base and Derived are class types and are different types
5765 // (ignoring possible cv-qualifiers) then Derived shall be a
5766 // complete type.
5767 if (Self.RequireCompleteType(KeyLoc, RhsT,
5768 diag::err_incomplete_type_used_in_type_trait_expr))
5769 return false;
5770
5771 return cast<CXXRecordDecl>(Val: rhsRecord->getDecl())
5772 ->isDerivedFrom(Base: cast<CXXRecordDecl>(Val: lhsRecord->getDecl()));
5773 }
5774 case BTT_IsSame:
5775 return Self.Context.hasSameType(T1: LhsT, T2: RhsT);
5776 case BTT_TypeCompatible: {
5777 // GCC ignores cv-qualifiers on arrays for this builtin.
5778 Qualifiers LhsQuals, RhsQuals;
5779 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(T: LhsT, Quals&: LhsQuals);
5780 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(T: RhsT, Quals&: RhsQuals);
5781 return Self.Context.typesAreCompatible(T1: Lhs, T2: Rhs);
5782 }
5783 case BTT_IsConvertible:
5784 case BTT_IsConvertibleTo:
5785 case BTT_IsNothrowConvertible: {
5786 // C++0x [meta.rel]p4:
5787 // Given the following function prototype:
5788 //
5789 // template <class T>
5790 // typename add_rvalue_reference<T>::type create();
5791 //
5792 // the predicate condition for a template specialization
5793 // is_convertible<From, To> shall be satisfied if and only if
5794 // the return expression in the following code would be
5795 // well-formed, including any implicit conversions to the return
5796 // type of the function:
5797 //
5798 // To test() {
5799 // return create<From>();
5800 // }
5801 //
5802 // Access checking is performed as if in a context unrelated to To and
5803 // From. Only the validity of the immediate context of the expression
5804 // of the return-statement (including conversions to the return type)
5805 // is considered.
5806 //
5807 // We model the initialization as a copy-initialization of a temporary
5808 // of the appropriate type, which for this expression is identical to the
5809 // return statement (since NRVO doesn't apply).
5810
5811 // Functions aren't allowed to return function or array types.
5812 if (RhsT->isFunctionType() || RhsT->isArrayType())
5813 return false;
5814
5815 // A return statement in a void function must have void type.
5816 if (RhsT->isVoidType())
5817 return LhsT->isVoidType();
5818
5819 // A function definition requires a complete, non-abstract return type.
5820 if (!Self.isCompleteType(Loc: KeyLoc, T: RhsT) || Self.isAbstractType(Loc: KeyLoc, T: RhsT))
5821 return false;
5822
5823 // Compute the result of add_rvalue_reference.
5824 if (LhsT->isObjectType() || LhsT->isFunctionType())
5825 LhsT = Self.Context.getRValueReferenceType(T: LhsT);
5826
5827 // Build a fake source and destination for initialization.
5828 InitializedEntity To(InitializedEntity::InitializeTemporary(Type: RhsT));
5829 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Context: Self.Context),
5830 Expr::getValueKindForType(T: LhsT));
5831 Expr *FromPtr = &From;
5832 InitializationKind Kind(InitializationKind::CreateCopy(InitLoc: KeyLoc,
5833 EqualLoc: SourceLocation()));
5834
5835 // Perform the initialization in an unevaluated context within a SFINAE
5836 // trap at translation unit scope.
5837 EnterExpressionEvaluationContext Unevaluated(
5838 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5839 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5840 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5841 InitializationSequence Init(Self, To, Kind, FromPtr);
5842 if (Init.Failed())
5843 return false;
5844
5845 ExprResult Result = Init.Perform(S&: Self, Entity: To, Kind, Args: FromPtr);
5846 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5847 return false;
5848
5849 if (BTT != BTT_IsNothrowConvertible)
5850 return true;
5851
5852 return Self.canThrow(Result.get()) == CT_Cannot;
5853 }
5854
5855 case BTT_IsAssignable:
5856 case BTT_IsNothrowAssignable:
5857 case BTT_IsTriviallyAssignable: {
5858 // C++11 [meta.unary.prop]p3:
5859 // is_trivially_assignable is defined as:
5860 // is_assignable<T, U>::value is true and the assignment, as defined by
5861 // is_assignable, is known to call no operation that is not trivial
5862 //
5863 // is_assignable is defined as:
5864 // The expression declval<T>() = declval<U>() is well-formed when
5865 // treated as an unevaluated operand (Clause 5).
5866 //
5867 // For both, T and U shall be complete types, (possibly cv-qualified)
5868 // void, or arrays of unknown bound.
5869 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5870 Self.RequireCompleteType(KeyLoc, LhsT,
5871 diag::err_incomplete_type_used_in_type_trait_expr))
5872 return false;
5873 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5874 Self.RequireCompleteType(KeyLoc, RhsT,
5875 diag::err_incomplete_type_used_in_type_trait_expr))
5876 return false;
5877
5878 // cv void is never assignable.
5879 if (LhsT->isVoidType() || RhsT->isVoidType())
5880 return false;
5881
5882 // Build expressions that emulate the effect of declval<T>() and
5883 // declval<U>().
5884 if (LhsT->isObjectType() || LhsT->isFunctionType())
5885 LhsT = Self.Context.getRValueReferenceType(T: LhsT);
5886 if (RhsT->isObjectType() || RhsT->isFunctionType())
5887 RhsT = Self.Context.getRValueReferenceType(T: RhsT);
5888 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Context: Self.Context),
5889 Expr::getValueKindForType(T: LhsT));
5890 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Context: Self.Context),
5891 Expr::getValueKindForType(T: RhsT));
5892
5893 // Attempt the assignment in an unevaluated context within a SFINAE
5894 // trap at translation unit scope.
5895 EnterExpressionEvaluationContext Unevaluated(
5896 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5897 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5898 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5899 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5900 &Rhs);
5901 if (Result.isInvalid())
5902 return false;
5903
5904 // Treat the assignment as unused for the purpose of -Wdeprecated-volatile.
5905 Self.CheckUnusedVolatileAssignment(E: Result.get());
5906
5907 if (SFINAE.hasErrorOccurred())
5908 return false;
5909
5910 if (BTT == BTT_IsAssignable)
5911 return true;
5912
5913 if (BTT == BTT_IsNothrowAssignable)
5914 return Self.canThrow(Result.get()) == CT_Cannot;
5915
5916 if (BTT == BTT_IsTriviallyAssignable) {
5917 // Under Objective-C ARC and Weak, if the destination has non-trivial
5918 // Objective-C lifetime, this is a non-trivial assignment.
5919 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5920 return false;
5921
5922 return !Result.get()->hasNonTrivialCall(Ctx: Self.Context);
5923 }
5924
5925 llvm_unreachable("unhandled type trait");
5926 return false;
5927 }
5928 default: llvm_unreachable("not a BTT");
5929 }
5930 llvm_unreachable("Unknown type trait or not implemented");
5931}
5932
5933ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5934 SourceLocation KWLoc,
5935 ParsedType Ty,
5936 Expr* DimExpr,
5937 SourceLocation RParen) {
5938 TypeSourceInfo *TSInfo;
5939 QualType T = GetTypeFromParser(Ty, TInfo: &TSInfo);
5940 if (!TSInfo)
5941 TSInfo = Context.getTrivialTypeSourceInfo(T);
5942
5943 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5944}
5945
5946static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5947 QualType T, Expr *DimExpr,
5948 SourceLocation KeyLoc) {
5949 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
5950
5951 switch(ATT) {
5952 case ATT_ArrayRank:
5953 if (T->isArrayType()) {
5954 unsigned Dim = 0;
5955 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5956 ++Dim;
5957 T = AT->getElementType();
5958 }
5959 return Dim;
5960 }
5961 return 0;
5962
5963 case ATT_ArrayExtent: {
5964 llvm::APSInt Value;
5965 uint64_t Dim;
5966 if (Self.VerifyIntegerConstantExpression(
5967 DimExpr, &Value, diag::err_dimension_expr_not_constant_integer)
5968 .isInvalid())
5969 return 0;
5970 if (Value.isSigned() && Value.isNegative()) {
5971 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5972 << DimExpr->getSourceRange();
5973 return 0;
5974 }
5975 Dim = Value.getLimitedValue();
5976
5977 if (T->isArrayType()) {
5978 unsigned D = 0;
5979 bool Matched = false;
5980 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5981 if (Dim == D) {
5982 Matched = true;
5983 break;
5984 }
5985 ++D;
5986 T = AT->getElementType();
5987 }
5988
5989 if (Matched && T->isArrayType()) {
5990 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5991 return CAT->getSize().getLimitedValue();
5992 }
5993 }
5994 return 0;
5995 }
5996 }
5997 llvm_unreachable("Unknown type trait or not implemented");
5998}
5999
6000ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
6001 SourceLocation KWLoc,
6002 TypeSourceInfo *TSInfo,
6003 Expr* DimExpr,
6004 SourceLocation RParen) {
6005 QualType T = TSInfo->getType();
6006
6007 // FIXME: This should likely be tracked as an APInt to remove any host
6008 // assumptions about the width of size_t on the target.
6009 uint64_t Value = 0;
6010 if (!T->isDependentType())
6011 Value = EvaluateArrayTypeTrait(Self&: *this, ATT, T, DimExpr, KeyLoc: KWLoc);
6012
6013 // While the specification for these traits from the Embarcadero C++
6014 // compiler's documentation says the return type is 'unsigned int', Clang
6015 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
6016 // compiler, there is no difference. On several other platforms this is an
6017 // important distinction.
6018 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
6019 RParen, Context.getSizeType());
6020}
6021
6022ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
6023 SourceLocation KWLoc,
6024 Expr *Queried,
6025 SourceLocation RParen) {
6026 // If error parsing the expression, ignore.
6027 if (!Queried)
6028 return ExprError();
6029
6030 ExprResult Result = BuildExpressionTrait(OET: ET, KWLoc, Queried, RParen);
6031
6032 return Result;
6033}
6034
6035static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
6036 switch (ET) {
6037 case ET_IsLValueExpr: return E->isLValue();
6038 case ET_IsRValueExpr:
6039 return E->isPRValue();
6040 }
6041 llvm_unreachable("Expression trait not covered by switch");
6042}
6043
6044ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
6045 SourceLocation KWLoc,
6046 Expr *Queried,
6047 SourceLocation RParen) {
6048 if (Queried->isTypeDependent()) {
6049 // Delay type-checking for type-dependent expressions.
6050 } else if (Queried->hasPlaceholderType()) {
6051 ExprResult PE = CheckPlaceholderExpr(E: Queried);
6052 if (PE.isInvalid()) return ExprError();
6053 return BuildExpressionTrait(ET, KWLoc, Queried: PE.get(), RParen);
6054 }
6055
6056 bool Value = EvaluateExpressionTrait(ET, E: Queried);
6057
6058 return new (Context)
6059 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
6060}
6061
6062QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
6063 ExprValueKind &VK,
6064 SourceLocation Loc,
6065 bool isIndirect) {
6066 assert(!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() &&
6067 "placeholders should have been weeded out by now");
6068
6069 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
6070 // temporary materialization conversion otherwise.
6071 if (isIndirect)
6072 LHS = DefaultLvalueConversion(E: LHS.get());
6073 else if (LHS.get()->isPRValue())
6074 LHS = TemporaryMaterializationConversion(E: LHS.get());
6075 if (LHS.isInvalid())
6076 return QualType();
6077
6078 // The RHS always undergoes lvalue conversions.
6079 RHS = DefaultLvalueConversion(E: RHS.get());
6080 if (RHS.isInvalid()) return QualType();
6081
6082 const char *OpSpelling = isIndirect ? "->*" : ".*";
6083 // C++ 5.5p2
6084 // The binary operator .* [p3: ->*] binds its second operand, which shall
6085 // be of type "pointer to member of T" (where T is a completely-defined
6086 // class type) [...]
6087 QualType RHSType = RHS.get()->getType();
6088 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
6089 if (!MemPtr) {
6090 Diag(Loc, diag::err_bad_memptr_rhs)
6091 << OpSpelling << RHSType << RHS.get()->getSourceRange();
6092 return QualType();
6093 }
6094
6095 QualType Class(MemPtr->getClass(), 0);
6096
6097 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
6098 // member pointer points must be completely-defined. However, there is no
6099 // reason for this semantic distinction, and the rule is not enforced by
6100 // other compilers. Therefore, we do not check this property, as it is
6101 // likely to be considered a defect.
6102
6103 // C++ 5.5p2
6104 // [...] to its first operand, which shall be of class T or of a class of
6105 // which T is an unambiguous and accessible base class. [p3: a pointer to
6106 // such a class]
6107 QualType LHSType = LHS.get()->getType();
6108 if (isIndirect) {
6109 if (const PointerType *Ptr = LHSType->getAs<PointerType>())
6110 LHSType = Ptr->getPointeeType();
6111 else {
6112 Diag(Loc, diag::err_bad_memptr_lhs)
6113 << OpSpelling << 1 << LHSType
6114 << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
6115 return QualType();
6116 }
6117 }
6118
6119 if (!Context.hasSameUnqualifiedType(T1: Class, T2: LHSType)) {
6120 // If we want to check the hierarchy, we need a complete type.
6121 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
6122 OpSpelling, (int)isIndirect)) {
6123 return QualType();
6124 }
6125
6126 if (!IsDerivedFrom(Loc, Derived: LHSType, Base: Class)) {
6127 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
6128 << (int)isIndirect << LHS.get()->getType();
6129 return QualType();
6130 }
6131
6132 CXXCastPath BasePath;
6133 if (CheckDerivedToBaseConversion(
6134 Derived: LHSType, Base: Class, Loc,
6135 Range: SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()),
6136 BasePath: &BasePath))
6137 return QualType();
6138
6139 // Cast LHS to type of use.
6140 QualType UseType = Context.getQualifiedType(T: Class, Qs: LHSType.getQualifiers());
6141 if (isIndirect)
6142 UseType = Context.getPointerType(T: UseType);
6143 ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind();
6144 LHS = ImpCastExprToType(E: LHS.get(), Type: UseType, CK: CK_DerivedToBase, VK,
6145 BasePath: &BasePath);
6146 }
6147
6148 if (isa<CXXScalarValueInitExpr>(Val: RHS.get()->IgnoreParens())) {
6149 // Diagnose use of pointer-to-member type which when used as
6150 // the functional cast in a pointer-to-member expression.
6151 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
6152 return QualType();
6153 }
6154
6155 // C++ 5.5p2
6156 // The result is an object or a function of the type specified by the
6157 // second operand.
6158 // The cv qualifiers are the union of those in the pointer and the left side,
6159 // in accordance with 5.5p5 and 5.2.5.
6160 QualType Result = MemPtr->getPointeeType();
6161 Result = Context.getCVRQualifiedType(T: Result, CVR: LHSType.getCVRQualifiers());
6162
6163 // C++0x [expr.mptr.oper]p6:
6164 // In a .* expression whose object expression is an rvalue, the program is
6165 // ill-formed if the second operand is a pointer to member function with
6166 // ref-qualifier &. In a ->* expression or in a .* expression whose object
6167 // expression is an lvalue, the program is ill-formed if the second operand
6168 // is a pointer to member function with ref-qualifier &&.
6169 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
6170 switch (Proto->getRefQualifier()) {
6171 case RQ_None:
6172 // Do nothing
6173 break;
6174
6175 case RQ_LValue:
6176 if (!isIndirect && !LHS.get()->Classify(Ctx&: Context).isLValue()) {
6177 // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq
6178 // is (exactly) 'const'.
6179 if (Proto->isConst() && !Proto->isVolatile())
6180 Diag(Loc, getLangOpts().CPlusPlus20
6181 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
6182 : diag::ext_pointer_to_const_ref_member_on_rvalue);
6183 else
6184 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
6185 << RHSType << 1 << LHS.get()->getSourceRange();
6186 }
6187 break;
6188
6189 case RQ_RValue:
6190 if (isIndirect || !LHS.get()->Classify(Context).isRValue())
6191 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
6192 << RHSType << 0 << LHS.get()->getSourceRange();
6193 break;
6194 }
6195 }
6196
6197 // C++ [expr.mptr.oper]p6:
6198 // The result of a .* expression whose second operand is a pointer
6199 // to a data member is of the same value category as its
6200 // first operand. The result of a .* expression whose second
6201 // operand is a pointer to a member function is a prvalue. The
6202 // result of an ->* expression is an lvalue if its second operand
6203 // is a pointer to data member and a prvalue otherwise.
6204 if (Result->isFunctionType()) {
6205 VK = VK_PRValue;
6206 return Context.BoundMemberTy;
6207 } else if (isIndirect) {
6208 VK = VK_LValue;
6209 } else {
6210 VK = LHS.get()->getValueKind();
6211 }
6212
6213 return Result;
6214}
6215
6216/// Try to convert a type to another according to C++11 5.16p3.
6217///
6218/// This is part of the parameter validation for the ? operator. If either
6219/// value operand is a class type, the two operands are attempted to be
6220/// converted to each other. This function does the conversion in one direction.
6221/// It returns true if the program is ill-formed and has already been diagnosed
6222/// as such.
6223static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
6224 SourceLocation QuestionLoc,
6225 bool &HaveConversion,
6226 QualType &ToType) {
6227 HaveConversion = false;
6228 ToType = To->getType();
6229
6230 InitializationKind Kind =
6231 InitializationKind::CreateCopy(InitLoc: To->getBeginLoc(), EqualLoc: SourceLocation());
6232 // C++11 5.16p3
6233 // The process for determining whether an operand expression E1 of type T1
6234 // can be converted to match an operand expression E2 of type T2 is defined
6235 // as follows:
6236 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
6237 // implicitly converted to type "lvalue reference to T2", subject to the
6238 // constraint that in the conversion the reference must bind directly to
6239 // an lvalue.
6240 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
6241 // implicitly converted to the type "rvalue reference to R2", subject to
6242 // the constraint that the reference must bind directly.
6243 if (To->isGLValue()) {
6244 QualType T = Self.Context.getReferenceQualifiedType(e: To);
6245 InitializedEntity Entity = InitializedEntity::InitializeTemporary(Type: T);
6246
6247 InitializationSequence InitSeq(Self, Entity, Kind, From);
6248 if (InitSeq.isDirectReferenceBinding()) {
6249 ToType = T;
6250 HaveConversion = true;
6251 return false;
6252 }
6253
6254 if (InitSeq.isAmbiguous())
6255 return InitSeq.Diagnose(S&: Self, Entity, Kind, Args: From);
6256 }
6257
6258 // -- If E2 is an rvalue, or if the conversion above cannot be done:
6259 // -- if E1 and E2 have class type, and the underlying class types are
6260 // the same or one is a base class of the other:
6261 QualType FTy = From->getType();
6262 QualType TTy = To->getType();
6263 const RecordType *FRec = FTy->getAs<RecordType>();
6264 const RecordType *TRec = TTy->getAs<RecordType>();
6265 bool FDerivedFromT = FRec && TRec && FRec != TRec &&
6266 Self.IsDerivedFrom(Loc: QuestionLoc, Derived: FTy, Base: TTy);
6267 if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
6268 Self.IsDerivedFrom(Loc: QuestionLoc, Derived: TTy, Base: FTy))) {
6269 // E1 can be converted to match E2 if the class of T2 is the
6270 // same type as, or a base class of, the class of T1, and
6271 // [cv2 > cv1].
6272 if (FRec == TRec || FDerivedFromT) {
6273 if (TTy.isAtLeastAsQualifiedAs(other: FTy)) {
6274 InitializedEntity Entity = InitializedEntity::InitializeTemporary(Type: TTy);
6275 InitializationSequence InitSeq(Self, Entity, Kind, From);
6276 if (InitSeq) {
6277 HaveConversion = true;
6278 return false;
6279 }
6280
6281 if (InitSeq.isAmbiguous())
6282 return InitSeq.Diagnose(S&: Self, Entity, Kind, Args: From);
6283 }
6284 }
6285
6286 return false;
6287 }
6288
6289 // -- Otherwise: E1 can be converted to match E2 if E1 can be
6290 // implicitly converted to the type that expression E2 would have
6291 // if E2 were converted to an rvalue (or the type it has, if E2 is
6292 // an rvalue).
6293 //
6294 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
6295 // to the array-to-pointer or function-to-pointer conversions.
6296 TTy = TTy.getNonLValueExprType(Context: Self.Context);
6297
6298 InitializedEntity Entity = InitializedEntity::InitializeTemporary(Type: TTy);
6299 InitializationSequence InitSeq(Self, Entity, Kind, From);
6300 HaveConversion = !InitSeq.Failed();
6301 ToType = TTy;
6302 if (InitSeq.isAmbiguous())
6303 return InitSeq.Diagnose(S&: Self, Entity, Kind, Args: From);
6304
6305 return false;
6306}
6307
6308/// Try to find a common type for two according to C++0x 5.16p5.
6309///
6310/// This is part of the parameter validation for the ? operator. If either
6311/// value operand is a class type, overload resolution is used to find a
6312/// conversion to a common type.
6313static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
6314 SourceLocation QuestionLoc) {
6315 Expr *Args[2] = { LHS.get(), RHS.get() };
6316 OverloadCandidateSet CandidateSet(QuestionLoc,
6317 OverloadCandidateSet::CSK_Operator);
6318 Self.AddBuiltinOperatorCandidates(Op: OO_Conditional, OpLoc: QuestionLoc, Args,
6319 CandidateSet);
6320
6321 OverloadCandidateSet::iterator Best;
6322 switch (CandidateSet.BestViableFunction(S&: Self, Loc: QuestionLoc, Best)) {
6323 case OR_Success: {
6324 // We found a match. Perform the conversions on the arguments and move on.
6325 ExprResult LHSRes = Self.PerformImplicitConversion(
6326 LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
6327 Sema::AA_Converting);
6328 if (LHSRes.isInvalid())
6329 break;
6330 LHS = LHSRes;
6331
6332 ExprResult RHSRes = Self.PerformImplicitConversion(
6333 RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
6334 Sema::AA_Converting);
6335 if (RHSRes.isInvalid())
6336 break;
6337 RHS = RHSRes;
6338 if (Best->Function)
6339 Self.MarkFunctionReferenced(Loc: QuestionLoc, Func: Best->Function);
6340 return false;
6341 }
6342
6343 case OR_No_Viable_Function:
6344
6345 // Emit a better diagnostic if one of the expressions is a null pointer
6346 // constant and the other is a pointer type. In this case, the user most
6347 // likely forgot to take the address of the other expression.
6348 if (Self.DiagnoseConditionalForNull(LHSExpr: LHS.get(), RHSExpr: RHS.get(), QuestionLoc))
6349 return true;
6350
6351 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6352 << LHS.get()->getType() << RHS.get()->getType()
6353 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6354 return true;
6355
6356 case OR_Ambiguous:
6357 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
6358 << LHS.get()->getType() << RHS.get()->getType()
6359 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6360 // FIXME: Print the possible common types by printing the return types of
6361 // the viable candidates.
6362 break;
6363
6364 case OR_Deleted:
6365 llvm_unreachable("Conditional operator has only built-in overloads");
6366 }
6367 return true;
6368}
6369
6370/// Perform an "extended" implicit conversion as returned by
6371/// TryClassUnification.
6372static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
6373 InitializedEntity Entity = InitializedEntity::InitializeTemporary(Type: T);
6374 InitializationKind Kind =
6375 InitializationKind::CreateCopy(InitLoc: E.get()->getBeginLoc(), EqualLoc: SourceLocation());
6376 Expr *Arg = E.get();
6377 InitializationSequence InitSeq(Self, Entity, Kind, Arg);
6378 ExprResult Result = InitSeq.Perform(S&: Self, Entity, Kind, Args: Arg);
6379 if (Result.isInvalid())
6380 return true;
6381
6382 E = Result;
6383 return false;
6384}
6385
6386// Check the condition operand of ?: to see if it is valid for the GCC
6387// extension.
6388static bool isValidVectorForConditionalCondition(ASTContext &Ctx,
6389 QualType CondTy) {
6390 if (!CondTy->isVectorType() && !CondTy->isExtVectorType())
6391 return false;
6392 const QualType EltTy =
6393 cast<VectorType>(Val: CondTy.getCanonicalType())->getElementType();
6394 assert(!EltTy->isEnumeralType() && "Vectors cant be enum types");
6395 return EltTy->isIntegralType(Ctx);
6396}
6397
6398static bool isValidSizelessVectorForConditionalCondition(ASTContext &Ctx,
6399 QualType CondTy) {
6400 if (!CondTy->isSveVLSBuiltinType())
6401 return false;
6402 const QualType EltTy =
6403 cast<BuiltinType>(Val: CondTy.getCanonicalType())->getSveEltType(Ctx);
6404 assert(!EltTy->isEnumeralType() && "Vectors cant be enum types");
6405 return EltTy->isIntegralType(Ctx);
6406}
6407
6408QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS,
6409 ExprResult &RHS,
6410 SourceLocation QuestionLoc) {
6411 LHS = DefaultFunctionArrayLvalueConversion(E: LHS.get());
6412 RHS = DefaultFunctionArrayLvalueConversion(E: RHS.get());
6413
6414 QualType CondType = Cond.get()->getType();
6415 const auto *CondVT = CondType->castAs<VectorType>();
6416 QualType CondElementTy = CondVT->getElementType();
6417 unsigned CondElementCount = CondVT->getNumElements();
6418 QualType LHSType = LHS.get()->getType();
6419 const auto *LHSVT = LHSType->getAs<VectorType>();
6420 QualType RHSType = RHS.get()->getType();
6421 const auto *RHSVT = RHSType->getAs<VectorType>();
6422
6423 QualType ResultType;
6424
6425
6426 if (LHSVT && RHSVT) {
6427 if (isa<ExtVectorType>(Val: CondVT) != isa<ExtVectorType>(Val: LHSVT)) {
6428 Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch)
6429 << /*isExtVector*/ isa<ExtVectorType>(CondVT);
6430 return {};
6431 }
6432
6433 // If both are vector types, they must be the same type.
6434 if (!Context.hasSameType(T1: LHSType, T2: RHSType)) {
6435 Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6436 << LHSType << RHSType;
6437 return {};
6438 }
6439 ResultType = Context.getCommonSugaredType(X: LHSType, Y: RHSType);
6440 } else if (LHSVT || RHSVT) {
6441 ResultType = CheckVectorOperands(
6442 LHS, RHS, Loc: QuestionLoc, /*isCompAssign*/ IsCompAssign: false, /*AllowBothBool*/ true,
6443 /*AllowBoolConversions*/ AllowBoolConversion: false,
6444 /*AllowBoolOperation*/ true,
6445 /*ReportInvalid*/ true);
6446 if (ResultType.isNull())
6447 return {};
6448 } else {
6449 // Both are scalar.
6450 LHSType = LHSType.getUnqualifiedType();
6451 RHSType = RHSType.getUnqualifiedType();
6452 QualType ResultElementTy =
6453 Context.hasSameType(T1: LHSType, T2: RHSType)
6454 ? Context.getCommonSugaredType(X: LHSType, Y: RHSType)
6455 : UsualArithmeticConversions(LHS, RHS, Loc: QuestionLoc,
6456 ACK: ACK_Conditional);
6457
6458 if (ResultElementTy->isEnumeralType()) {
6459 Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6460 << ResultElementTy;
6461 return {};
6462 }
6463 if (CondType->isExtVectorType())
6464 ResultType =
6465 Context.getExtVectorType(VectorType: ResultElementTy, NumElts: CondVT->getNumElements());
6466 else
6467 ResultType = Context.getVectorType(
6468 VectorType: ResultElementTy, NumElts: CondVT->getNumElements(), VecKind: VectorKind::Generic);
6469
6470 LHS = ImpCastExprToType(E: LHS.get(), Type: ResultType, CK: CK_VectorSplat);
6471 RHS = ImpCastExprToType(E: RHS.get(), Type: ResultType, CK: CK_VectorSplat);
6472 }
6473
6474 assert(!ResultType.isNull() && ResultType->isVectorType() &&
6475 (!CondType->isExtVectorType() || ResultType->isExtVectorType()) &&
6476 "Result should have been a vector type");
6477 auto *ResultVectorTy = ResultType->castAs<VectorType>();
6478 QualType ResultElementTy = ResultVectorTy->getElementType();
6479 unsigned ResultElementCount = ResultVectorTy->getNumElements();
6480
6481 if (ResultElementCount != CondElementCount) {
6482 Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType
6483 << ResultType;
6484 return {};
6485 }
6486
6487 if (Context.getTypeSize(T: ResultElementTy) !=
6488 Context.getTypeSize(T: CondElementTy)) {
6489 Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType
6490 << ResultType;
6491 return {};
6492 }
6493
6494 return ResultType;
6495}
6496
6497QualType Sema::CheckSizelessVectorConditionalTypes(ExprResult &Cond,
6498 ExprResult &LHS,
6499 ExprResult &RHS,
6500 SourceLocation QuestionLoc) {
6501 LHS = DefaultFunctionArrayLvalueConversion(E: LHS.get());
6502 RHS = DefaultFunctionArrayLvalueConversion(E: RHS.get());
6503
6504 QualType CondType = Cond.get()->getType();
6505 const auto *CondBT = CondType->castAs<BuiltinType>();
6506 QualType CondElementTy = CondBT->getSveEltType(Context);
6507 llvm::ElementCount CondElementCount =
6508 Context.getBuiltinVectorTypeInfo(VecTy: CondBT).EC;
6509
6510 QualType LHSType = LHS.get()->getType();
6511 const auto *LHSBT =
6512 LHSType->isSveVLSBuiltinType() ? LHSType->getAs<BuiltinType>() : nullptr;
6513 QualType RHSType = RHS.get()->getType();
6514 const auto *RHSBT =
6515 RHSType->isSveVLSBuiltinType() ? RHSType->getAs<BuiltinType>() : nullptr;
6516
6517 QualType ResultType;
6518
6519 if (LHSBT && RHSBT) {
6520 // If both are sizeless vector types, they must be the same type.
6521 if (!Context.hasSameType(T1: LHSType, T2: RHSType)) {
6522 Diag(QuestionLoc, diag::err_conditional_vector_mismatched)
6523 << LHSType << RHSType;
6524 return QualType();
6525 }
6526 ResultType = LHSType;
6527 } else if (LHSBT || RHSBT) {
6528 ResultType = CheckSizelessVectorOperands(
6529 LHS, RHS, Loc: QuestionLoc, /*IsCompAssign*/ false, OperationKind: ACK_Conditional);
6530 if (ResultType.isNull())
6531 return QualType();
6532 } else {
6533 // Both are scalar so splat
6534 QualType ResultElementTy;
6535 LHSType = LHSType.getCanonicalType().getUnqualifiedType();
6536 RHSType = RHSType.getCanonicalType().getUnqualifiedType();
6537
6538 if (Context.hasSameType(T1: LHSType, T2: RHSType))
6539 ResultElementTy = LHSType;
6540 else
6541 ResultElementTy =
6542 UsualArithmeticConversions(LHS, RHS, Loc: QuestionLoc, ACK: ACK_Conditional);
6543
6544 if (ResultElementTy->isEnumeralType()) {
6545 Diag(QuestionLoc, diag::err_conditional_vector_operand_type)
6546 << ResultElementTy;
6547 return QualType();
6548 }
6549
6550 ResultType = Context.getScalableVectorType(
6551 EltTy: ResultElementTy, NumElts: CondElementCount.getKnownMinValue());
6552
6553 LHS = ImpCastExprToType(E: LHS.get(), Type: ResultType, CK: CK_VectorSplat);
6554 RHS = ImpCastExprToType(E: RHS.get(), Type: ResultType, CK: CK_VectorSplat);
6555 }
6556
6557 assert(!ResultType.isNull() && ResultType->isSveVLSBuiltinType() &&
6558 "Result should have been a vector type");
6559 auto *ResultBuiltinTy = ResultType->castAs<BuiltinType>();
6560 QualType ResultElementTy = ResultBuiltinTy->getSveEltType(Context);
6561 llvm::ElementCount ResultElementCount =
6562 Context.getBuiltinVectorTypeInfo(VecTy: ResultBuiltinTy).EC;
6563
6564 if (ResultElementCount != CondElementCount) {
6565 Diag(QuestionLoc, diag::err_conditional_vector_size)
6566 << CondType << ResultType;
6567 return QualType();
6568 }
6569
6570 if (Context.getTypeSize(T: ResultElementTy) !=
6571 Context.getTypeSize(T: CondElementTy)) {
6572 Diag(QuestionLoc, diag::err_conditional_vector_element_size)
6573 << CondType << ResultType;
6574 return QualType();
6575 }
6576
6577 return ResultType;
6578}
6579
6580/// Check the operands of ?: under C++ semantics.
6581///
6582/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
6583/// extension. In this case, LHS == Cond. (But they're not aliases.)
6584///
6585/// This function also implements GCC's vector extension and the
6586/// OpenCL/ext_vector_type extension for conditionals. The vector extensions
6587/// permit the use of a?b:c where the type of a is that of a integer vector with
6588/// the same number of elements and size as the vectors of b and c. If one of
6589/// either b or c is a scalar it is implicitly converted to match the type of
6590/// the vector. Otherwise the expression is ill-formed. If both b and c are
6591/// scalars, then b and c are checked and converted to the type of a if
6592/// possible.
6593///
6594/// The expressions are evaluated differently for GCC's and OpenCL's extensions.
6595/// For the GCC extension, the ?: operator is evaluated as
6596/// (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
6597/// For the OpenCL extensions, the ?: operator is evaluated as
6598/// (most-significant-bit-set(a[0]) ? b[0] : c[0], .. ,
6599/// most-significant-bit-set(a[n]) ? b[n] : c[n]).
6600QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
6601 ExprResult &RHS, ExprValueKind &VK,
6602 ExprObjectKind &OK,
6603 SourceLocation QuestionLoc) {
6604 // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface
6605 // pointers.
6606
6607 // Assume r-value.
6608 VK = VK_PRValue;
6609 OK = OK_Ordinary;
6610 bool IsVectorConditional =
6611 isValidVectorForConditionalCondition(Ctx&: Context, CondTy: Cond.get()->getType());
6612
6613 bool IsSizelessVectorConditional =
6614 isValidSizelessVectorForConditionalCondition(Ctx&: Context,
6615 CondTy: Cond.get()->getType());
6616
6617 // C++11 [expr.cond]p1
6618 // The first expression is contextually converted to bool.
6619 if (!Cond.get()->isTypeDependent()) {
6620 ExprResult CondRes = IsVectorConditional || IsSizelessVectorConditional
6621 ? DefaultFunctionArrayLvalueConversion(E: Cond.get())
6622 : CheckCXXBooleanCondition(CondExpr: Cond.get());
6623 if (CondRes.isInvalid())
6624 return QualType();
6625 Cond = CondRes;
6626 } else {
6627 // To implement C++, the first expression typically doesn't alter the result
6628 // type of the conditional, however the GCC compatible vector extension
6629 // changes the result type to be that of the conditional. Since we cannot
6630 // know if this is a vector extension here, delay the conversion of the
6631 // LHS/RHS below until later.
6632 return Context.DependentTy;
6633 }
6634
6635
6636 // Either of the arguments dependent?
6637 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
6638 return Context.DependentTy;
6639
6640 // C++11 [expr.cond]p2
6641 // If either the second or the third operand has type (cv) void, ...
6642 QualType LTy = LHS.get()->getType();
6643 QualType RTy = RHS.get()->getType();
6644 bool LVoid = LTy->isVoidType();
6645 bool RVoid = RTy->isVoidType();
6646 if (LVoid || RVoid) {
6647 // ... one of the following shall hold:
6648 // -- The second or the third operand (but not both) is a (possibly
6649 // parenthesized) throw-expression; the result is of the type
6650 // and value category of the other.
6651 bool LThrow = isa<CXXThrowExpr>(Val: LHS.get()->IgnoreParenImpCasts());
6652 bool RThrow = isa<CXXThrowExpr>(Val: RHS.get()->IgnoreParenImpCasts());
6653
6654 // Void expressions aren't legal in the vector-conditional expressions.
6655 if (IsVectorConditional) {
6656 SourceRange DiagLoc =
6657 LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange();
6658 bool IsThrow = LVoid ? LThrow : RThrow;
6659 Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void)
6660 << DiagLoc << IsThrow;
6661 return QualType();
6662 }
6663
6664 if (LThrow != RThrow) {
6665 Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
6666 VK = NonThrow->getValueKind();
6667 // DR (no number yet): the result is a bit-field if the
6668 // non-throw-expression operand is a bit-field.
6669 OK = NonThrow->getObjectKind();
6670 return NonThrow->getType();
6671 }
6672
6673 // -- Both the second and third operands have type void; the result is of
6674 // type void and is a prvalue.
6675 if (LVoid && RVoid)
6676 return Context.getCommonSugaredType(X: LTy, Y: RTy);
6677
6678 // Neither holds, error.
6679 Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
6680 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
6681 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6682 return QualType();
6683 }
6684
6685 // Neither is void.
6686 if (IsVectorConditional)
6687 return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
6688
6689 if (IsSizelessVectorConditional)
6690 return CheckSizelessVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc);
6691
6692 // WebAssembly tables are not allowed as conditional LHS or RHS.
6693 if (LTy->isWebAssemblyTableType() || RTy->isWebAssemblyTableType()) {
6694 Diag(QuestionLoc, diag::err_wasm_table_conditional_expression)
6695 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6696 return QualType();
6697 }
6698
6699 // C++11 [expr.cond]p3
6700 // Otherwise, if the second and third operand have different types, and
6701 // either has (cv) class type [...] an attempt is made to convert each of
6702 // those operands to the type of the other.
6703 if (!Context.hasSameType(T1: LTy, T2: RTy) &&
6704 (LTy->isRecordType() || RTy->isRecordType())) {
6705 // These return true if a single direction is already ambiguous.
6706 QualType L2RType, R2LType;
6707 bool HaveL2R, HaveR2L;
6708 if (TryClassUnification(Self&: *this, From: LHS.get(), To: RHS.get(), QuestionLoc, HaveConversion&: HaveL2R, ToType&: L2RType))
6709 return QualType();
6710 if (TryClassUnification(Self&: *this, From: RHS.get(), To: LHS.get(), QuestionLoc, HaveConversion&: HaveR2L, ToType&: R2LType))
6711 return QualType();
6712
6713 // If both can be converted, [...] the program is ill-formed.
6714 if (HaveL2R && HaveR2L) {
6715 Diag(QuestionLoc, diag::err_conditional_ambiguous)
6716 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6717 return QualType();
6718 }
6719
6720 // If exactly one conversion is possible, that conversion is applied to
6721 // the chosen operand and the converted operands are used in place of the
6722 // original operands for the remainder of this section.
6723 if (HaveL2R) {
6724 if (ConvertForConditional(Self&: *this, E&: LHS, T: L2RType) || LHS.isInvalid())
6725 return QualType();
6726 LTy = LHS.get()->getType();
6727 } else if (HaveR2L) {
6728 if (ConvertForConditional(Self&: *this, E&: RHS, T: R2LType) || RHS.isInvalid())
6729 return QualType();
6730 RTy = RHS.get()->getType();
6731 }
6732 }
6733
6734 // C++11 [expr.cond]p3
6735 // if both are glvalues of the same value category and the same type except
6736 // for cv-qualification, an attempt is made to convert each of those
6737 // operands to the type of the other.
6738 // FIXME:
6739 // Resolving a defect in P0012R1: we extend this to cover all cases where
6740 // one of the operands is reference-compatible with the other, in order
6741 // to support conditionals between functions differing in noexcept. This
6742 // will similarly cover difference in array bounds after P0388R4.
6743 // FIXME: If LTy and RTy have a composite pointer type, should we convert to
6744 // that instead?
6745 ExprValueKind LVK = LHS.get()->getValueKind();
6746 ExprValueKind RVK = RHS.get()->getValueKind();
6747 if (!Context.hasSameType(T1: LTy, T2: RTy) && LVK == RVK && LVK != VK_PRValue) {
6748 // DerivedToBase was already handled by the class-specific case above.
6749 // FIXME: Should we allow ObjC conversions here?
6750 const ReferenceConversions AllowedConversions =
6751 ReferenceConversions::Qualification |
6752 ReferenceConversions::NestedQualification |
6753 ReferenceConversions::Function;
6754
6755 ReferenceConversions RefConv;
6756 if (CompareReferenceRelationship(Loc: QuestionLoc, T1: LTy, T2: RTy, Conv: &RefConv) ==
6757 Ref_Compatible &&
6758 !(RefConv & ~AllowedConversions) &&
6759 // [...] subject to the constraint that the reference must bind
6760 // directly [...]
6761 !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) {
6762 RHS = ImpCastExprToType(E: RHS.get(), Type: LTy, CK: CK_NoOp, VK: RVK);
6763 RTy = RHS.get()->getType();
6764 } else if (CompareReferenceRelationship(Loc: QuestionLoc, T1: RTy, T2: LTy, Conv: &RefConv) ==
6765 Ref_Compatible &&
6766 !(RefConv & ~AllowedConversions) &&
6767 !LHS.get()->refersToBitField() &&
6768 !LHS.get()->refersToVectorElement()) {
6769 LHS = ImpCastExprToType(E: LHS.get(), Type: RTy, CK: CK_NoOp, VK: LVK);
6770 LTy = LHS.get()->getType();
6771 }
6772 }
6773
6774 // C++11 [expr.cond]p4
6775 // If the second and third operands are glvalues of the same value
6776 // category and have the same type, the result is of that type and
6777 // value category and it is a bit-field if the second or the third
6778 // operand is a bit-field, or if both are bit-fields.
6779 // We only extend this to bitfields, not to the crazy other kinds of
6780 // l-values.
6781 bool Same = Context.hasSameType(T1: LTy, T2: RTy);
6782 if (Same && LVK == RVK && LVK != VK_PRValue &&
6783 LHS.get()->isOrdinaryOrBitFieldObject() &&
6784 RHS.get()->isOrdinaryOrBitFieldObject()) {
6785 VK = LHS.get()->getValueKind();
6786 if (LHS.get()->getObjectKind() == OK_BitField ||
6787 RHS.get()->getObjectKind() == OK_BitField)
6788 OK = OK_BitField;
6789 return Context.getCommonSugaredType(X: LTy, Y: RTy);
6790 }
6791
6792 // C++11 [expr.cond]p5
6793 // Otherwise, the result is a prvalue. If the second and third operands
6794 // do not have the same type, and either has (cv) class type, ...
6795 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
6796 // ... overload resolution is used to determine the conversions (if any)
6797 // to be applied to the operands. If the overload resolution fails, the
6798 // program is ill-formed.
6799 if (FindConditionalOverload(Self&: *this, LHS, RHS, QuestionLoc))
6800 return QualType();
6801 }
6802
6803 // C++11 [expr.cond]p6
6804 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
6805 // conversions are performed on the second and third operands.
6806 LHS = DefaultFunctionArrayLvalueConversion(E: LHS.get());
6807 RHS = DefaultFunctionArrayLvalueConversion(E: RHS.get());
6808 if (LHS.isInvalid() || RHS.isInvalid())
6809 return QualType();
6810 LTy = LHS.get()->getType();
6811 RTy = RHS.get()->getType();
6812
6813 // After those conversions, one of the following shall hold:
6814 // -- The second and third operands have the same type; the result
6815 // is of that type. If the operands have class type, the result
6816 // is a prvalue temporary of the result type, which is
6817 // copy-initialized from either the second operand or the third
6818 // operand depending on the value of the first operand.
6819 if (Context.hasSameType(T1: LTy, T2: RTy)) {
6820 if (LTy->isRecordType()) {
6821 // The operands have class type. Make a temporary copy.
6822 ExprResult LHSCopy = PerformCopyInitialization(
6823 Entity: InitializedEntity::InitializeTemporary(Type: LTy), EqualLoc: SourceLocation(), Init: LHS);
6824 if (LHSCopy.isInvalid())
6825 return QualType();
6826
6827 ExprResult RHSCopy = PerformCopyInitialization(
6828 Entity: InitializedEntity::InitializeTemporary(Type: RTy), EqualLoc: SourceLocation(), Init: RHS);
6829 if (RHSCopy.isInvalid())
6830 return QualType();
6831
6832 LHS = LHSCopy;
6833 RHS = RHSCopy;
6834 }
6835 return Context.getCommonSugaredType(X: LTy, Y: RTy);
6836 }
6837
6838 // Extension: conditional operator involving vector types.
6839 if (LTy->isVectorType() || RTy->isVectorType())
6840 return CheckVectorOperands(LHS, RHS, Loc: QuestionLoc, /*isCompAssign*/ IsCompAssign: false,
6841 /*AllowBothBool*/ true,
6842 /*AllowBoolConversions*/ AllowBoolConversion: false,
6843 /*AllowBoolOperation*/ false,
6844 /*ReportInvalid*/ true);
6845
6846 // -- The second and third operands have arithmetic or enumeration type;
6847 // the usual arithmetic conversions are performed to bring them to a
6848 // common type, and the result is of that type.
6849 if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
6850 QualType ResTy =
6851 UsualArithmeticConversions(LHS, RHS, Loc: QuestionLoc, ACK: ACK_Conditional);
6852 if (LHS.isInvalid() || RHS.isInvalid())
6853 return QualType();
6854 if (ResTy.isNull()) {
6855 Diag(QuestionLoc,
6856 diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
6857 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6858 return QualType();
6859 }
6860
6861 LHS = ImpCastExprToType(E: LHS.get(), Type: ResTy, CK: PrepareScalarCast(src&: LHS, destType: ResTy));
6862 RHS = ImpCastExprToType(E: RHS.get(), Type: ResTy, CK: PrepareScalarCast(src&: RHS, destType: ResTy));
6863
6864 return ResTy;
6865 }
6866
6867 // -- The second and third operands have pointer type, or one has pointer
6868 // type and the other is a null pointer constant, or both are null
6869 // pointer constants, at least one of which is non-integral; pointer
6870 // conversions and qualification conversions are performed to bring them
6871 // to their composite pointer type. The result is of the composite
6872 // pointer type.
6873 // -- The second and third operands have pointer to member type, or one has
6874 // pointer to member type and the other is a null pointer constant;
6875 // pointer to member conversions and qualification conversions are
6876 // performed to bring them to a common type, whose cv-qualification
6877 // shall match the cv-qualification of either the second or the third
6878 // operand. The result is of the common type.
6879 QualType Composite = FindCompositePointerType(Loc: QuestionLoc, E1&: LHS, E2&: RHS);
6880 if (!Composite.isNull())
6881 return Composite;
6882
6883 // Similarly, attempt to find composite type of two objective-c pointers.
6884 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
6885 if (LHS.isInvalid() || RHS.isInvalid())
6886 return QualType();
6887 if (!Composite.isNull())
6888 return Composite;
6889
6890 // Check if we are using a null with a non-pointer type.
6891 if (DiagnoseConditionalForNull(LHSExpr: LHS.get(), RHSExpr: RHS.get(), QuestionLoc))
6892 return QualType();
6893
6894 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
6895 << LHS.get()->getType() << RHS.get()->getType()
6896 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
6897 return QualType();
6898}
6899
6900/// Find a merged pointer type and convert the two expressions to it.
6901///
6902/// This finds the composite pointer type for \p E1 and \p E2 according to
6903/// C++2a [expr.type]p3. It converts both expressions to this type and returns
6904/// it. It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs
6905/// is \c true).
6906///
6907/// \param Loc The location of the operator requiring these two expressions to
6908/// be converted to the composite pointer type.
6909///
6910/// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type.
6911QualType Sema::FindCompositePointerType(SourceLocation Loc,
6912 Expr *&E1, Expr *&E2,
6913 bool ConvertArgs) {
6914 assert(getLangOpts().CPlusPlus && "This function assumes C++");
6915
6916 // C++1z [expr]p14:
6917 // The composite pointer type of two operands p1 and p2 having types T1
6918 // and T2
6919 QualType T1 = E1->getType(), T2 = E2->getType();
6920
6921 // where at least one is a pointer or pointer to member type or
6922 // std::nullptr_t is:
6923 bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() ||
6924 T1->isNullPtrType();
6925 bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() ||
6926 T2->isNullPtrType();
6927 if (!T1IsPointerLike && !T2IsPointerLike)
6928 return QualType();
6929
6930 // - if both p1 and p2 are null pointer constants, std::nullptr_t;
6931 // This can't actually happen, following the standard, but we also use this
6932 // to implement the end of [expr.conv], which hits this case.
6933 //
6934 // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
6935 if (T1IsPointerLike &&
6936 E2->isNullPointerConstant(Ctx&: Context, NPC: Expr::NPC_ValueDependentIsNull)) {
6937 if (ConvertArgs)
6938 E2 = ImpCastExprToType(E: E2, Type: T1, CK: T1->isMemberPointerType()
6939 ? CK_NullToMemberPointer
6940 : CK_NullToPointer).get();
6941 return T1;
6942 }
6943 if (T2IsPointerLike &&
6944 E1->isNullPointerConstant(Ctx&: Context, NPC: Expr::NPC_ValueDependentIsNull)) {
6945 if (ConvertArgs)
6946 E1 = ImpCastExprToType(E: E1, Type: T2, CK: T2->isMemberPointerType()
6947 ? CK_NullToMemberPointer
6948 : CK_NullToPointer).get();
6949 return T2;
6950 }
6951
6952 // Now both have to be pointers or member pointers.
6953 if (!T1IsPointerLike || !T2IsPointerLike)
6954 return QualType();
6955 assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&
6956 "nullptr_t should be a null pointer constant");
6957
6958 struct Step {
6959 enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K;
6960 // Qualifiers to apply under the step kind.
6961 Qualifiers Quals;
6962 /// The class for a pointer-to-member; a constant array type with a bound
6963 /// (if any) for an array.
6964 const Type *ClassOrBound;
6965
6966 Step(Kind K, const Type *ClassOrBound = nullptr)
6967 : K(K), ClassOrBound(ClassOrBound) {}
6968 QualType rebuild(ASTContext &Ctx, QualType T) const {
6969 T = Ctx.getQualifiedType(T, Qs: Quals);
6970 switch (K) {
6971 case Pointer:
6972 return Ctx.getPointerType(T);
6973 case MemberPointer:
6974 return Ctx.getMemberPointerType(T, Cls: ClassOrBound);
6975 case ObjCPointer:
6976 return Ctx.getObjCObjectPointerType(OIT: T);
6977 case Array:
6978 if (auto *CAT = cast_or_null<ConstantArrayType>(Val: ClassOrBound))
6979 return Ctx.getConstantArrayType(EltTy: T, ArySize: CAT->getSize(), SizeExpr: nullptr,
6980 ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0);
6981 else
6982 return Ctx.getIncompleteArrayType(EltTy: T, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0);
6983 }
6984 llvm_unreachable("unknown step kind");
6985 }
6986 };
6987
6988 SmallVector<Step, 8> Steps;
6989
6990 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
6991 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
6992 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
6993 // respectively;
6994 // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
6995 // to member of C2 of type cv2 U2" for some non-function type U, where
6996 // C1 is reference-related to C2 or C2 is reference-related to C1, the
6997 // cv-combined type of T2 and T1 or the cv-combined type of T1 and T2,
6998 // respectively;
6999 // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
7000 // T2;
7001 //
7002 // Dismantle T1 and T2 to simultaneously determine whether they are similar
7003 // and to prepare to form the cv-combined type if so.
7004 QualType Composite1 = T1;
7005 QualType Composite2 = T2;
7006 unsigned NeedConstBefore = 0;
7007 while (true) {
7008 assert(!Composite1.isNull() && !Composite2.isNull());
7009
7010 Qualifiers Q1, Q2;
7011 Composite1 = Context.getUnqualifiedArrayType(T: Composite1, Quals&: Q1);
7012 Composite2 = Context.getUnqualifiedArrayType(T: Composite2, Quals&: Q2);
7013
7014 // Top-level qualifiers are ignored. Merge at all lower levels.
7015 if (!Steps.empty()) {
7016 // Find the qualifier union: (approximately) the unique minimal set of
7017 // qualifiers that is compatible with both types.
7018 Qualifiers Quals = Qualifiers::fromCVRUMask(CVRU: Q1.getCVRUQualifiers() |
7019 Q2.getCVRUQualifiers());
7020
7021 // Under one level of pointer or pointer-to-member, we can change to an
7022 // unambiguous compatible address space.
7023 if (Q1.getAddressSpace() == Q2.getAddressSpace()) {
7024 Quals.setAddressSpace(Q1.getAddressSpace());
7025 } else if (Steps.size() == 1) {
7026 bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(other: Q2);
7027 bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(other: Q1);
7028 if (MaybeQ1 == MaybeQ2) {
7029 // Exception for ptr size address spaces. Should be able to choose
7030 // either address space during comparison.
7031 if (isPtrSizeAddressSpace(AS: Q1.getAddressSpace()) ||
7032 isPtrSizeAddressSpace(AS: Q2.getAddressSpace()))
7033 MaybeQ1 = true;
7034 else
7035 return QualType(); // No unique best address space.
7036 }
7037 Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace()
7038 : Q2.getAddressSpace());
7039 } else {
7040 return QualType();
7041 }
7042
7043 // FIXME: In C, we merge __strong and none to __strong at the top level.
7044 if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr())
7045 Quals.setObjCGCAttr(Q1.getObjCGCAttr());
7046 else if (T1->isVoidPointerType() || T2->isVoidPointerType())
7047 assert(Steps.size() == 1);
7048 else
7049 return QualType();
7050
7051 // Mismatched lifetime qualifiers never compatibly include each other.
7052 if (Q1.getObjCLifetime() == Q2.getObjCLifetime())
7053 Quals.setObjCLifetime(Q1.getObjCLifetime());
7054 else if (T1->isVoidPointerType() || T2->isVoidPointerType())
7055 assert(Steps.size() == 1);
7056 else
7057 return QualType();
7058
7059 Steps.back().Quals = Quals;
7060 if (Q1 != Quals || Q2 != Quals)
7061 NeedConstBefore = Steps.size() - 1;
7062 }
7063
7064 // FIXME: Can we unify the following with UnwrapSimilarTypes?
7065
7066 const ArrayType *Arr1, *Arr2;
7067 if ((Arr1 = Context.getAsArrayType(T: Composite1)) &&
7068 (Arr2 = Context.getAsArrayType(T: Composite2))) {
7069 auto *CAT1 = dyn_cast<ConstantArrayType>(Val: Arr1);
7070 auto *CAT2 = dyn_cast<ConstantArrayType>(Val: Arr2);
7071 if (CAT1 && CAT2 && CAT1->getSize() == CAT2->getSize()) {
7072 Composite1 = Arr1->getElementType();
7073 Composite2 = Arr2->getElementType();
7074 Steps.emplace_back(Args: Step::Array, Args&: CAT1);
7075 continue;
7076 }
7077 bool IAT1 = isa<IncompleteArrayType>(Val: Arr1);
7078 bool IAT2 = isa<IncompleteArrayType>(Val: Arr2);
7079 if ((IAT1 && IAT2) ||
7080 (getLangOpts().CPlusPlus20 && (IAT1 != IAT2) &&
7081 ((bool)CAT1 != (bool)CAT2) &&
7082 (Steps.empty() || Steps.back().K != Step::Array))) {
7083 // In C++20 onwards, we can unify an array of N T with an array of
7084 // a different or unknown bound. But we can't form an array whose
7085 // element type is an array of unknown bound by doing so.
7086 Composite1 = Arr1->getElementType();
7087 Composite2 = Arr2->getElementType();
7088 Steps.emplace_back(Args: Step::Array);
7089 if (CAT1 || CAT2)
7090 NeedConstBefore = Steps.size();
7091 continue;
7092 }
7093 }
7094
7095 const PointerType *Ptr1, *Ptr2;
7096 if ((Ptr1 = Composite1->getAs<PointerType>()) &&
7097 (Ptr2 = Composite2->getAs<PointerType>())) {
7098 Composite1 = Ptr1->getPointeeType();
7099 Composite2 = Ptr2->getPointeeType();
7100 Steps.emplace_back(Args: Step::Pointer);
7101 continue;
7102 }
7103
7104 const ObjCObjectPointerType *ObjPtr1, *ObjPtr2;
7105 if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) &&
7106 (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) {
7107 Composite1 = ObjPtr1->getPointeeType();
7108 Composite2 = ObjPtr2->getPointeeType();
7109 Steps.emplace_back(Args: Step::ObjCPointer);
7110 continue;
7111 }
7112
7113 const MemberPointerType *MemPtr1, *MemPtr2;
7114 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
7115 (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
7116 Composite1 = MemPtr1->getPointeeType();
7117 Composite2 = MemPtr2->getPointeeType();
7118
7119 // At the top level, we can perform a base-to-derived pointer-to-member
7120 // conversion:
7121 //
7122 // - [...] where C1 is reference-related to C2 or C2 is
7123 // reference-related to C1
7124 //
7125 // (Note that the only kinds of reference-relatedness in scope here are
7126 // "same type or derived from".) At any other level, the class must
7127 // exactly match.
7128 const Type *Class = nullptr;
7129 QualType Cls1(MemPtr1->getClass(), 0);
7130 QualType Cls2(MemPtr2->getClass(), 0);
7131 if (Context.hasSameType(T1: Cls1, T2: Cls2))
7132 Class = MemPtr1->getClass();
7133 else if (Steps.empty())
7134 Class = IsDerivedFrom(Loc, Derived: Cls1, Base: Cls2) ? MemPtr1->getClass() :
7135 IsDerivedFrom(Loc, Derived: Cls2, Base: Cls1) ? MemPtr2->getClass() : nullptr;
7136 if (!Class)
7137 return QualType();
7138
7139 Steps.emplace_back(Args: Step::MemberPointer, Args&: Class);
7140 continue;
7141 }
7142
7143 // Special case: at the top level, we can decompose an Objective-C pointer
7144 // and a 'cv void *'. Unify the qualifiers.
7145 if (Steps.empty() && ((Composite1->isVoidPointerType() &&
7146 Composite2->isObjCObjectPointerType()) ||
7147 (Composite1->isObjCObjectPointerType() &&
7148 Composite2->isVoidPointerType()))) {
7149 Composite1 = Composite1->getPointeeType();
7150 Composite2 = Composite2->getPointeeType();
7151 Steps.emplace_back(Args: Step::Pointer);
7152 continue;
7153 }
7154
7155 // FIXME: block pointer types?
7156
7157 // Cannot unwrap any more types.
7158 break;
7159 }
7160
7161 // - if T1 or T2 is "pointer to noexcept function" and the other type is
7162 // "pointer to function", where the function types are otherwise the same,
7163 // "pointer to function";
7164 // - if T1 or T2 is "pointer to member of C1 of type function", the other
7165 // type is "pointer to member of C2 of type noexcept function", and C1
7166 // is reference-related to C2 or C2 is reference-related to C1, where
7167 // the function types are otherwise the same, "pointer to member of C2 of
7168 // type function" or "pointer to member of C1 of type function",
7169 // respectively;
7170 //
7171 // We also support 'noreturn' here, so as a Clang extension we generalize the
7172 // above to:
7173 //
7174 // - [Clang] If T1 and T2 are both of type "pointer to function" or
7175 // "pointer to member function" and the pointee types can be unified
7176 // by a function pointer conversion, that conversion is applied
7177 // before checking the following rules.
7178 //
7179 // We've already unwrapped down to the function types, and we want to merge
7180 // rather than just convert, so do this ourselves rather than calling
7181 // IsFunctionConversion.
7182 //
7183 // FIXME: In order to match the standard wording as closely as possible, we
7184 // currently only do this under a single level of pointers. Ideally, we would
7185 // allow this in general, and set NeedConstBefore to the relevant depth on
7186 // the side(s) where we changed anything. If we permit that, we should also
7187 // consider this conversion when determining type similarity and model it as
7188 // a qualification conversion.
7189 if (Steps.size() == 1) {
7190 if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) {
7191 if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) {
7192 FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo();
7193 FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo();
7194
7195 // The result is noreturn if both operands are.
7196 bool Noreturn =
7197 EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn();
7198 EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(noReturn: Noreturn);
7199 EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(noReturn: Noreturn);
7200
7201 // The result is nothrow if both operands are.
7202 SmallVector<QualType, 8> ExceptionTypeStorage;
7203 EPI1.ExceptionSpec = EPI2.ExceptionSpec = Context.mergeExceptionSpecs(
7204 ESI1: EPI1.ExceptionSpec, ESI2: EPI2.ExceptionSpec, ExceptionTypeStorage,
7205 AcceptDependent: getLangOpts().CPlusPlus17);
7206
7207 Composite1 = Context.getFunctionType(ResultTy: FPT1->getReturnType(),
7208 Args: FPT1->getParamTypes(), EPI: EPI1);
7209 Composite2 = Context.getFunctionType(ResultTy: FPT2->getReturnType(),
7210 Args: FPT2->getParamTypes(), EPI: EPI2);
7211 }
7212 }
7213 }
7214
7215 // There are some more conversions we can perform under exactly one pointer.
7216 if (Steps.size() == 1 && Steps.front().K == Step::Pointer &&
7217 !Context.hasSameType(T1: Composite1, T2: Composite2)) {
7218 // - if T1 or T2 is "pointer to cv1 void" and the other type is
7219 // "pointer to cv2 T", where T is an object type or void,
7220 // "pointer to cv12 void", where cv12 is the union of cv1 and cv2;
7221 if (Composite1->isVoidType() && Composite2->isObjectType())
7222 Composite2 = Composite1;
7223 else if (Composite2->isVoidType() && Composite1->isObjectType())
7224 Composite1 = Composite2;
7225 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
7226 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
7227 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and
7228 // T1, respectively;
7229 //
7230 // The "similar type" handling covers all of this except for the "T1 is a
7231 // base class of T2" case in the definition of reference-related.
7232 else if (IsDerivedFrom(Loc, Derived: Composite1, Base: Composite2))
7233 Composite1 = Composite2;
7234 else if (IsDerivedFrom(Loc, Derived: Composite2, Base: Composite1))
7235 Composite2 = Composite1;
7236 }
7237
7238 // At this point, either the inner types are the same or we have failed to
7239 // find a composite pointer type.
7240 if (!Context.hasSameType(T1: Composite1, T2: Composite2))
7241 return QualType();
7242
7243 // Per C++ [conv.qual]p3, add 'const' to every level before the last
7244 // differing qualifier.
7245 for (unsigned I = 0; I != NeedConstBefore; ++I)
7246 Steps[I].Quals.addConst();
7247
7248 // Rebuild the composite type.
7249 QualType Composite = Context.getCommonSugaredType(X: Composite1, Y: Composite2);
7250 for (auto &S : llvm::reverse(C&: Steps))
7251 Composite = S.rebuild(Ctx&: Context, T: Composite);
7252
7253 if (ConvertArgs) {
7254 // Convert the expressions to the composite pointer type.
7255 InitializedEntity Entity =
7256 InitializedEntity::InitializeTemporary(Type: Composite);
7257 InitializationKind Kind =
7258 InitializationKind::CreateCopy(InitLoc: Loc, EqualLoc: SourceLocation());
7259
7260 InitializationSequence E1ToC(*this, Entity, Kind, E1);
7261 if (!E1ToC)
7262 return QualType();
7263
7264 InitializationSequence E2ToC(*this, Entity, Kind, E2);
7265 if (!E2ToC)
7266 return QualType();
7267
7268 // FIXME: Let the caller know if these fail to avoid duplicate diagnostics.
7269 ExprResult E1Result = E1ToC.Perform(S&: *this, Entity, Kind, Args: E1);
7270 if (E1Result.isInvalid())
7271 return QualType();
7272 E1 = E1Result.get();
7273
7274 ExprResult E2Result = E2ToC.Perform(S&: *this, Entity, Kind, Args: E2);
7275 if (E2Result.isInvalid())
7276 return QualType();
7277 E2 = E2Result.get();
7278 }
7279
7280 return Composite;
7281}
7282
7283ExprResult Sema::MaybeBindToTemporary(Expr *E) {
7284 if (!E)
7285 return ExprError();
7286
7287 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
7288
7289 // If the result is a glvalue, we shouldn't bind it.
7290 if (E->isGLValue())
7291 return E;
7292
7293 // In ARC, calls that return a retainable type can return retained,
7294 // in which case we have to insert a consuming cast.
7295 if (getLangOpts().ObjCAutoRefCount &&
7296 E->getType()->isObjCRetainableType()) {
7297
7298 bool ReturnsRetained;
7299
7300 // For actual calls, we compute this by examining the type of the
7301 // called value.
7302 if (CallExpr *Call = dyn_cast<CallExpr>(Val: E)) {
7303 Expr *Callee = Call->getCallee()->IgnoreParens();
7304 QualType T = Callee->getType();
7305
7306 if (T == Context.BoundMemberTy) {
7307 // Handle pointer-to-members.
7308 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val: Callee))
7309 T = BinOp->getRHS()->getType();
7310 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Val: Callee))
7311 T = Mem->getMemberDecl()->getType();
7312 }
7313
7314 if (const PointerType *Ptr = T->getAs<PointerType>())
7315 T = Ptr->getPointeeType();
7316 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
7317 T = Ptr->getPointeeType();
7318 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
7319 T = MemPtr->getPointeeType();
7320
7321 auto *FTy = T->castAs<FunctionType>();
7322 ReturnsRetained = FTy->getExtInfo().getProducesResult();
7323
7324 // ActOnStmtExpr arranges things so that StmtExprs of retainable
7325 // type always produce a +1 object.
7326 } else if (isa<StmtExpr>(Val: E)) {
7327 ReturnsRetained = true;
7328
7329 // We hit this case with the lambda conversion-to-block optimization;
7330 // we don't want any extra casts here.
7331 } else if (isa<CastExpr>(Val: E) &&
7332 isa<BlockExpr>(Val: cast<CastExpr>(Val: E)->getSubExpr())) {
7333 return E;
7334
7335 // For message sends and property references, we try to find an
7336 // actual method. FIXME: we should infer retention by selector in
7337 // cases where we don't have an actual method.
7338 } else {
7339 ObjCMethodDecl *D = nullptr;
7340 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(Val: E)) {
7341 D = Send->getMethodDecl();
7342 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(Val: E)) {
7343 D = BoxedExpr->getBoxingMethod();
7344 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(Val: E)) {
7345 // Don't do reclaims if we're using the zero-element array
7346 // constant.
7347 if (ArrayLit->getNumElements() == 0 &&
7348 Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7349 return E;
7350
7351 D = ArrayLit->getArrayWithObjectsMethod();
7352 } else if (ObjCDictionaryLiteral *DictLit
7353 = dyn_cast<ObjCDictionaryLiteral>(Val: E)) {
7354 // Don't do reclaims if we're using the zero-element dictionary
7355 // constant.
7356 if (DictLit->getNumElements() == 0 &&
7357 Context.getLangOpts().ObjCRuntime.hasEmptyCollections())
7358 return E;
7359
7360 D = DictLit->getDictWithObjectsMethod();
7361 }
7362
7363 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
7364
7365 // Don't do reclaims on performSelector calls; despite their
7366 // return type, the invoked method doesn't necessarily actually
7367 // return an object.
7368 if (!ReturnsRetained &&
7369 D && D->getMethodFamily() == OMF_performSelector)
7370 return E;
7371 }
7372
7373 // Don't reclaim an object of Class type.
7374 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
7375 return E;
7376
7377 Cleanup.setExprNeedsCleanups(true);
7378
7379 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
7380 : CK_ARCReclaimReturnedObject);
7381 return ImplicitCastExpr::Create(Context, T: E->getType(), Kind: ck, Operand: E, BasePath: nullptr,
7382 Cat: VK_PRValue, FPO: FPOptionsOverride());
7383 }
7384
7385 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
7386 Cleanup.setExprNeedsCleanups(true);
7387
7388 if (!getLangOpts().CPlusPlus)
7389 return E;
7390
7391 // Search for the base element type (cf. ASTContext::getBaseElementType) with
7392 // a fast path for the common case that the type is directly a RecordType.
7393 const Type *T = Context.getCanonicalType(T: E->getType().getTypePtr());
7394 const RecordType *RT = nullptr;
7395 while (!RT) {
7396 switch (T->getTypeClass()) {
7397 case Type::Record:
7398 RT = cast<RecordType>(Val: T);
7399 break;
7400 case Type::ConstantArray:
7401 case Type::IncompleteArray:
7402 case Type::VariableArray:
7403 case Type::DependentSizedArray:
7404 T = cast<ArrayType>(Val: T)->getElementType().getTypePtr();
7405 break;
7406 default:
7407 return E;
7408 }
7409 }
7410
7411 // That should be enough to guarantee that this type is complete, if we're
7412 // not processing a decltype expression.
7413 CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: RT->getDecl());
7414 if (RD->isInvalidDecl() || RD->isDependentContext())
7415 return E;
7416
7417 bool IsDecltype = ExprEvalContexts.back().ExprContext ==
7418 ExpressionEvaluationContextRecord::EK_Decltype;
7419 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(Class: RD);
7420
7421 if (Destructor) {
7422 MarkFunctionReferenced(E->getExprLoc(), Destructor);
7423 CheckDestructorAccess(E->getExprLoc(), Destructor,
7424 PDiag(diag::err_access_dtor_temp)
7425 << E->getType());
7426 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
7427 return ExprError();
7428
7429 // If destructor is trivial, we can avoid the extra copy.
7430 if (Destructor->isTrivial())
7431 return E;
7432
7433 // We need a cleanup, but we don't need to remember the temporary.
7434 Cleanup.setExprNeedsCleanups(true);
7435 }
7436
7437 CXXTemporary *Temp = CXXTemporary::Create(C: Context, Destructor);
7438 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(C: Context, Temp, SubExpr: E);
7439
7440 if (IsDecltype)
7441 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Elt: Bind);
7442
7443 return Bind;
7444}
7445
7446ExprResult
7447Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
7448 if (SubExpr.isInvalid())
7449 return ExprError();
7450
7451 return MaybeCreateExprWithCleanups(SubExpr: SubExpr.get());
7452}
7453
7454Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
7455 assert(SubExpr && "subexpression can't be null!");
7456
7457 CleanupVarDeclMarking();
7458
7459 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
7460 assert(ExprCleanupObjects.size() >= FirstCleanup);
7461 assert(Cleanup.exprNeedsCleanups() ||
7462 ExprCleanupObjects.size() == FirstCleanup);
7463 if (!Cleanup.exprNeedsCleanups())
7464 return SubExpr;
7465
7466 auto Cleanups = llvm::ArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
7467 ExprCleanupObjects.size() - FirstCleanup);
7468
7469 auto *E = ExprWithCleanups::Create(
7470 C: Context, subexpr: SubExpr, CleanupsHaveSideEffects: Cleanup.cleanupsHaveSideEffects(), objects: Cleanups);
7471 DiscardCleanupsInEvaluationContext();
7472
7473 return E;
7474}
7475
7476Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
7477 assert(SubStmt && "sub-statement can't be null!");
7478
7479 CleanupVarDeclMarking();
7480
7481 if (!Cleanup.exprNeedsCleanups())
7482 return SubStmt;
7483
7484 // FIXME: In order to attach the temporaries, wrap the statement into
7485 // a StmtExpr; currently this is only used for asm statements.
7486 // This is hacky, either create a new CXXStmtWithTemporaries statement or
7487 // a new AsmStmtWithTemporaries.
7488 CompoundStmt *CompStmt =
7489 CompoundStmt::Create(C: Context, Stmts: SubStmt, FPFeatures: FPOptionsOverride(),
7490 LB: SourceLocation(), RB: SourceLocation());
7491 Expr *E = new (Context)
7492 StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(),
7493 /*FIXME TemplateDepth=*/0);
7494 return MaybeCreateExprWithCleanups(SubExpr: E);
7495}
7496
7497/// Process the expression contained within a decltype. For such expressions,
7498/// certain semantic checks on temporaries are delayed until this point, and
7499/// are omitted for the 'topmost' call in the decltype expression. If the
7500/// topmost call bound a temporary, strip that temporary off the expression.
7501ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
7502 assert(ExprEvalContexts.back().ExprContext ==
7503 ExpressionEvaluationContextRecord::EK_Decltype &&
7504 "not in a decltype expression");
7505
7506 ExprResult Result = CheckPlaceholderExpr(E);
7507 if (Result.isInvalid())
7508 return ExprError();
7509 E = Result.get();
7510
7511 // C++11 [expr.call]p11:
7512 // If a function call is a prvalue of object type,
7513 // -- if the function call is either
7514 // -- the operand of a decltype-specifier, or
7515 // -- the right operand of a comma operator that is the operand of a
7516 // decltype-specifier,
7517 // a temporary object is not introduced for the prvalue.
7518
7519 // Recursively rebuild ParenExprs and comma expressions to strip out the
7520 // outermost CXXBindTemporaryExpr, if any.
7521 if (ParenExpr *PE = dyn_cast<ParenExpr>(Val: E)) {
7522 ExprResult SubExpr = ActOnDecltypeExpression(E: PE->getSubExpr());
7523 if (SubExpr.isInvalid())
7524 return ExprError();
7525 if (SubExpr.get() == PE->getSubExpr())
7526 return E;
7527 return ActOnParenExpr(L: PE->getLParen(), R: PE->getRParen(), E: SubExpr.get());
7528 }
7529 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) {
7530 if (BO->getOpcode() == BO_Comma) {
7531 ExprResult RHS = ActOnDecltypeExpression(E: BO->getRHS());
7532 if (RHS.isInvalid())
7533 return ExprError();
7534 if (RHS.get() == BO->getRHS())
7535 return E;
7536 return BinaryOperator::Create(C: Context, lhs: BO->getLHS(), rhs: RHS.get(), opc: BO_Comma,
7537 ResTy: BO->getType(), VK: BO->getValueKind(),
7538 OK: BO->getObjectKind(), opLoc: BO->getOperatorLoc(),
7539 FPFeatures: BO->getFPFeatures());
7540 }
7541 }
7542
7543 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(Val: E);
7544 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(Val: TopBind->getSubExpr())
7545 : nullptr;
7546 if (TopCall)
7547 E = TopCall;
7548 else
7549 TopBind = nullptr;
7550
7551 // Disable the special decltype handling now.
7552 ExprEvalContexts.back().ExprContext =
7553 ExpressionEvaluationContextRecord::EK_Other;
7554
7555 Result = CheckUnevaluatedOperand(E);
7556 if (Result.isInvalid())
7557 return ExprError();
7558 E = Result.get();
7559
7560 // In MS mode, don't perform any extra checking of call return types within a
7561 // decltype expression.
7562 if (getLangOpts().MSVCCompat)
7563 return E;
7564
7565 // Perform the semantic checks we delayed until this point.
7566 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
7567 I != N; ++I) {
7568 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
7569 if (Call == TopCall)
7570 continue;
7571
7572 if (CheckCallReturnType(ReturnType: Call->getCallReturnType(Ctx: Context),
7573 Loc: Call->getBeginLoc(), CE: Call, FD: Call->getDirectCallee()))
7574 return ExprError();
7575 }
7576
7577 // Now all relevant types are complete, check the destructors are accessible
7578 // and non-deleted, and annotate them on the temporaries.
7579 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
7580 I != N; ++I) {
7581 CXXBindTemporaryExpr *Bind =
7582 ExprEvalContexts.back().DelayedDecltypeBinds[I];
7583 if (Bind == TopBind)
7584 continue;
7585
7586 CXXTemporary *Temp = Bind->getTemporary();
7587
7588 CXXRecordDecl *RD =
7589 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
7590 CXXDestructorDecl *Destructor = LookupDestructor(Class: RD);
7591 Temp->setDestructor(Destructor);
7592
7593 MarkFunctionReferenced(Loc: Bind->getExprLoc(), Func: Destructor);
7594 CheckDestructorAccess(Bind->getExprLoc(), Destructor,
7595 PDiag(diag::err_access_dtor_temp)
7596 << Bind->getType());
7597 if (DiagnoseUseOfDecl(D: Destructor, Locs: Bind->getExprLoc()))
7598 return ExprError();
7599
7600 // We need a cleanup, but we don't need to remember the temporary.
7601 Cleanup.setExprNeedsCleanups(true);
7602 }
7603
7604 // Possibly strip off the top CXXBindTemporaryExpr.
7605 return E;
7606}
7607
7608/// Note a set of 'operator->' functions that were used for a member access.
7609static void noteOperatorArrows(Sema &S,
7610 ArrayRef<FunctionDecl *> OperatorArrows) {
7611 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
7612 // FIXME: Make this configurable?
7613 unsigned Limit = 9;
7614 if (OperatorArrows.size() > Limit) {
7615 // Produce Limit-1 normal notes and one 'skipping' note.
7616 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
7617 SkipCount = OperatorArrows.size() - (Limit - 1);
7618 }
7619
7620 for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
7621 if (I == SkipStart) {
7622 S.Diag(OperatorArrows[I]->getLocation(),
7623 diag::note_operator_arrows_suppressed)
7624 << SkipCount;
7625 I += SkipCount;
7626 } else {
7627 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
7628 << OperatorArrows[I]->getCallResultType();
7629 ++I;
7630 }
7631 }
7632}
7633
7634ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
7635 SourceLocation OpLoc,
7636 tok::TokenKind OpKind,
7637 ParsedType &ObjectType,
7638 bool &MayBePseudoDestructor) {
7639 // Since this might be a postfix expression, get rid of ParenListExprs.
7640 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, ME: Base);
7641 if (Result.isInvalid()) return ExprError();
7642 Base = Result.get();
7643
7644 Result = CheckPlaceholderExpr(E: Base);
7645 if (Result.isInvalid()) return ExprError();
7646 Base = Result.get();
7647
7648 QualType BaseType = Base->getType();
7649 MayBePseudoDestructor = false;
7650 if (BaseType->isDependentType()) {
7651 // If we have a pointer to a dependent type and are using the -> operator,
7652 // the object type is the type that the pointer points to. We might still
7653 // have enough information about that type to do something useful.
7654 if (OpKind == tok::arrow)
7655 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
7656 BaseType = Ptr->getPointeeType();
7657
7658 ObjectType = ParsedType::make(P: BaseType);
7659 MayBePseudoDestructor = true;
7660 return Base;
7661 }
7662
7663 // C++ [over.match.oper]p8:
7664 // [...] When operator->returns, the operator-> is applied to the value
7665 // returned, with the original second operand.
7666 if (OpKind == tok::arrow) {
7667 QualType StartingType = BaseType;
7668 bool NoArrowOperatorFound = false;
7669 bool FirstIteration = true;
7670 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(Val: CurContext);
7671 // The set of types we've considered so far.
7672 llvm::SmallPtrSet<CanQualType,8> CTypes;
7673 SmallVector<FunctionDecl*, 8> OperatorArrows;
7674 CTypes.insert(Ptr: Context.getCanonicalType(T: BaseType));
7675
7676 while (BaseType->isRecordType()) {
7677 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
7678 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
7679 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
7680 noteOperatorArrows(S&: *this, OperatorArrows);
7681 Diag(OpLoc, diag::note_operator_arrow_depth)
7682 << getLangOpts().ArrowDepth;
7683 return ExprError();
7684 }
7685
7686 Result = BuildOverloadedArrowExpr(
7687 S, Base, OpLoc,
7688 // When in a template specialization and on the first loop iteration,
7689 // potentially give the default diagnostic (with the fixit in a
7690 // separate note) instead of having the error reported back to here
7691 // and giving a diagnostic with a fixit attached to the error itself.
7692 NoArrowOperatorFound: (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
7693 ? nullptr
7694 : &NoArrowOperatorFound);
7695 if (Result.isInvalid()) {
7696 if (NoArrowOperatorFound) {
7697 if (FirstIteration) {
7698 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7699 << BaseType << 1 << Base->getSourceRange()
7700 << FixItHint::CreateReplacement(OpLoc, ".");
7701 OpKind = tok::period;
7702 break;
7703 }
7704 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
7705 << BaseType << Base->getSourceRange();
7706 CallExpr *CE = dyn_cast<CallExpr>(Val: Base);
7707 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
7708 Diag(CD->getBeginLoc(),
7709 diag::note_member_reference_arrow_from_operator_arrow);
7710 }
7711 }
7712 return ExprError();
7713 }
7714 Base = Result.get();
7715 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Val: Base))
7716 OperatorArrows.push_back(Elt: OpCall->getDirectCallee());
7717 BaseType = Base->getType();
7718 CanQualType CBaseType = Context.getCanonicalType(T: BaseType);
7719 if (!CTypes.insert(Ptr: CBaseType).second) {
7720 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
7721 noteOperatorArrows(S&: *this, OperatorArrows);
7722 return ExprError();
7723 }
7724 FirstIteration = false;
7725 }
7726
7727 if (OpKind == tok::arrow) {
7728 if (BaseType->isPointerType())
7729 BaseType = BaseType->getPointeeType();
7730 else if (auto *AT = Context.getAsArrayType(T: BaseType))
7731 BaseType = AT->getElementType();
7732 }
7733 }
7734
7735 // Objective-C properties allow "." access on Objective-C pointer types,
7736 // so adjust the base type to the object type itself.
7737 if (BaseType->isObjCObjectPointerType())
7738 BaseType = BaseType->getPointeeType();
7739
7740 // C++ [basic.lookup.classref]p2:
7741 // [...] If the type of the object expression is of pointer to scalar
7742 // type, the unqualified-id is looked up in the context of the complete
7743 // postfix-expression.
7744 //
7745 // This also indicates that we could be parsing a pseudo-destructor-name.
7746 // Note that Objective-C class and object types can be pseudo-destructor
7747 // expressions or normal member (ivar or property) access expressions, and
7748 // it's legal for the type to be incomplete if this is a pseudo-destructor
7749 // call. We'll do more incomplete-type checks later in the lookup process,
7750 // so just skip this check for ObjC types.
7751 if (!BaseType->isRecordType()) {
7752 ObjectType = ParsedType::make(P: BaseType);
7753 MayBePseudoDestructor = true;
7754 return Base;
7755 }
7756
7757 // The object type must be complete (or dependent), or
7758 // C++11 [expr.prim.general]p3:
7759 // Unlike the object expression in other contexts, *this is not required to
7760 // be of complete type for purposes of class member access (5.2.5) outside
7761 // the member function body.
7762 if (!BaseType->isDependentType() &&
7763 !isThisOutsideMemberFunctionBody(BaseType) &&
7764 RequireCompleteType(OpLoc, BaseType,
7765 diag::err_incomplete_member_access)) {
7766 return CreateRecoveryExpr(Begin: Base->getBeginLoc(), End: Base->getEndLoc(), SubExprs: {Base});
7767 }
7768
7769 // C++ [basic.lookup.classref]p2:
7770 // If the id-expression in a class member access (5.2.5) is an
7771 // unqualified-id, and the type of the object expression is of a class
7772 // type C (or of pointer to a class type C), the unqualified-id is looked
7773 // up in the scope of class C. [...]
7774 ObjectType = ParsedType::make(P: BaseType);
7775 return Base;
7776}
7777
7778static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base,
7779 tok::TokenKind &OpKind, SourceLocation OpLoc) {
7780 if (Base->hasPlaceholderType()) {
7781 ExprResult result = S.CheckPlaceholderExpr(E: Base);
7782 if (result.isInvalid()) return true;
7783 Base = result.get();
7784 }
7785 ObjectType = Base->getType();
7786
7787 // C++ [expr.pseudo]p2:
7788 // The left-hand side of the dot operator shall be of scalar type. The
7789 // left-hand side of the arrow operator shall be of pointer to scalar type.
7790 // This scalar type is the object type.
7791 // Note that this is rather different from the normal handling for the
7792 // arrow operator.
7793 if (OpKind == tok::arrow) {
7794 // The operator requires a prvalue, so perform lvalue conversions.
7795 // Only do this if we might plausibly end with a pointer, as otherwise
7796 // this was likely to be intended to be a '.'.
7797 if (ObjectType->isPointerType() || ObjectType->isArrayType() ||
7798 ObjectType->isFunctionType()) {
7799 ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(E: Base);
7800 if (BaseResult.isInvalid())
7801 return true;
7802 Base = BaseResult.get();
7803 ObjectType = Base->getType();
7804 }
7805
7806 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
7807 ObjectType = Ptr->getPointeeType();
7808 } else if (!Base->isTypeDependent()) {
7809 // The user wrote "p->" when they probably meant "p."; fix it.
7810 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7811 << ObjectType << true
7812 << FixItHint::CreateReplacement(OpLoc, ".");
7813 if (S.isSFINAEContext())
7814 return true;
7815
7816 OpKind = tok::period;
7817 }
7818 }
7819
7820 return false;
7821}
7822
7823/// Check if it's ok to try and recover dot pseudo destructor calls on
7824/// pointer objects.
7825static bool
7826canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef,
7827 QualType DestructedType) {
7828 // If this is a record type, check if its destructor is callable.
7829 if (auto *RD = DestructedType->getAsCXXRecordDecl()) {
7830 if (RD->hasDefinition())
7831 if (CXXDestructorDecl *D = SemaRef.LookupDestructor(Class: RD))
7832 return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false);
7833 return false;
7834 }
7835
7836 // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
7837 return DestructedType->isDependentType() || DestructedType->isScalarType() ||
7838 DestructedType->isVectorType();
7839}
7840
7841ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
7842 SourceLocation OpLoc,
7843 tok::TokenKind OpKind,
7844 const CXXScopeSpec &SS,
7845 TypeSourceInfo *ScopeTypeInfo,
7846 SourceLocation CCLoc,
7847 SourceLocation TildeLoc,
7848 PseudoDestructorTypeStorage Destructed) {
7849 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
7850
7851 QualType ObjectType;
7852 if (CheckArrow(S&: *this, ObjectType, Base, OpKind, OpLoc))
7853 return ExprError();
7854
7855 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
7856 !ObjectType->isVectorType()) {
7857 if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
7858 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
7859 else {
7860 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
7861 << ObjectType << Base->getSourceRange();
7862 return ExprError();
7863 }
7864 }
7865
7866 // C++ [expr.pseudo]p2:
7867 // [...] The cv-unqualified versions of the object type and of the type
7868 // designated by the pseudo-destructor-name shall be the same type.
7869 if (DestructedTypeInfo) {
7870 QualType DestructedType = DestructedTypeInfo->getType();
7871 SourceLocation DestructedTypeStart =
7872 DestructedTypeInfo->getTypeLoc().getBeginLoc();
7873 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
7874 if (!Context.hasSameUnqualifiedType(T1: DestructedType, T2: ObjectType)) {
7875 // Detect dot pseudo destructor calls on pointer objects, e.g.:
7876 // Foo *foo;
7877 // foo.~Foo();
7878 if (OpKind == tok::period && ObjectType->isPointerType() &&
7879 Context.hasSameUnqualifiedType(T1: DestructedType,
7880 T2: ObjectType->getPointeeType())) {
7881 auto Diagnostic =
7882 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
7883 << ObjectType << /*IsArrow=*/0 << Base->getSourceRange();
7884
7885 // Issue a fixit only when the destructor is valid.
7886 if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
7887 SemaRef&: *this, DestructedType))
7888 Diagnostic << FixItHint::CreateReplacement(RemoveRange: OpLoc, Code: "->");
7889
7890 // Recover by setting the object type to the destructed type and the
7891 // operator to '->'.
7892 ObjectType = DestructedType;
7893 OpKind = tok::arrow;
7894 } else {
7895 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
7896 << ObjectType << DestructedType << Base->getSourceRange()
7897 << DestructedTypeInfo->getTypeLoc().getSourceRange();
7898
7899 // Recover by setting the destructed type to the object type.
7900 DestructedType = ObjectType;
7901 DestructedTypeInfo =
7902 Context.getTrivialTypeSourceInfo(T: ObjectType, Loc: DestructedTypeStart);
7903 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7904 }
7905 } else if (DestructedType.getObjCLifetime() !=
7906 ObjectType.getObjCLifetime()) {
7907
7908 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
7909 // Okay: just pretend that the user provided the correctly-qualified
7910 // type.
7911 } else {
7912 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
7913 << ObjectType << DestructedType << Base->getSourceRange()
7914 << DestructedTypeInfo->getTypeLoc().getSourceRange();
7915 }
7916
7917 // Recover by setting the destructed type to the object type.
7918 DestructedType = ObjectType;
7919 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(T: ObjectType,
7920 Loc: DestructedTypeStart);
7921 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
7922 }
7923 }
7924 }
7925
7926 // C++ [expr.pseudo]p2:
7927 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the
7928 // form
7929 //
7930 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
7931 //
7932 // shall designate the same scalar type.
7933 if (ScopeTypeInfo) {
7934 QualType ScopeType = ScopeTypeInfo->getType();
7935 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
7936 !Context.hasSameUnqualifiedType(T1: ScopeType, T2: ObjectType)) {
7937
7938 Diag(ScopeTypeInfo->getTypeLoc().getSourceRange().getBegin(),
7939 diag::err_pseudo_dtor_type_mismatch)
7940 << ObjectType << ScopeType << Base->getSourceRange()
7941 << ScopeTypeInfo->getTypeLoc().getSourceRange();
7942
7943 ScopeType = QualType();
7944 ScopeTypeInfo = nullptr;
7945 }
7946 }
7947
7948 Expr *Result
7949 = new (Context) CXXPseudoDestructorExpr(Context, Base,
7950 OpKind == tok::arrow, OpLoc,
7951 SS.getWithLocInContext(Context),
7952 ScopeTypeInfo,
7953 CCLoc,
7954 TildeLoc,
7955 Destructed);
7956
7957 return Result;
7958}
7959
7960ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
7961 SourceLocation OpLoc,
7962 tok::TokenKind OpKind,
7963 CXXScopeSpec &SS,
7964 UnqualifiedId &FirstTypeName,
7965 SourceLocation CCLoc,
7966 SourceLocation TildeLoc,
7967 UnqualifiedId &SecondTypeName) {
7968 assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7969 FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7970 "Invalid first type name in pseudo-destructor");
7971 assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
7972 SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) &&
7973 "Invalid second type name in pseudo-destructor");
7974
7975 QualType ObjectType;
7976 if (CheckArrow(S&: *this, ObjectType, Base, OpKind, OpLoc))
7977 return ExprError();
7978
7979 // Compute the object type that we should use for name lookup purposes. Only
7980 // record types and dependent types matter.
7981 ParsedType ObjectTypePtrForLookup;
7982 if (!SS.isSet()) {
7983 if (ObjectType->isRecordType())
7984 ObjectTypePtrForLookup = ParsedType::make(P: ObjectType);
7985 else if (ObjectType->isDependentType())
7986 ObjectTypePtrForLookup = ParsedType::make(P: Context.DependentTy);
7987 }
7988
7989 // Convert the name of the type being destructed (following the ~) into a
7990 // type (with source-location information).
7991 QualType DestructedType;
7992 TypeSourceInfo *DestructedTypeInfo = nullptr;
7993 PseudoDestructorTypeStorage Destructed;
7994 if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
7995 ParsedType T = getTypeName(II: *SecondTypeName.Identifier,
7996 NameLoc: SecondTypeName.StartLocation,
7997 S, SS: &SS, isClassName: true, HasTrailingDot: false, ObjectType: ObjectTypePtrForLookup,
7998 /*IsCtorOrDtorName*/true);
7999 if (!T &&
8000 ((SS.isSet() && !computeDeclContext(SS, EnteringContext: false)) ||
8001 (!SS.isSet() && ObjectType->isDependentType()))) {
8002 // The name of the type being destroyed is a dependent name, and we
8003 // couldn't find anything useful in scope. Just store the identifier and
8004 // it's location, and we'll perform (qualified) name lookup again at
8005 // template instantiation time.
8006 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
8007 SecondTypeName.StartLocation);
8008 } else if (!T) {
8009 Diag(SecondTypeName.StartLocation,
8010 diag::err_pseudo_dtor_destructor_non_type)
8011 << SecondTypeName.Identifier << ObjectType;
8012 if (isSFINAEContext())
8013 return ExprError();
8014
8015 // Recover by assuming we had the right type all along.
8016 DestructedType = ObjectType;
8017 } else
8018 DestructedType = GetTypeFromParser(Ty: T, TInfo: &DestructedTypeInfo);
8019 } else {
8020 // Resolve the template-id to a type.
8021 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
8022 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
8023 TemplateId->NumArgs);
8024 TypeResult T = ActOnTemplateIdType(S,
8025 SS,
8026 TemplateKWLoc: TemplateId->TemplateKWLoc,
8027 Template: TemplateId->Template,
8028 TemplateII: TemplateId->Name,
8029 TemplateIILoc: TemplateId->TemplateNameLoc,
8030 LAngleLoc: TemplateId->LAngleLoc,
8031 TemplateArgs: TemplateArgsPtr,
8032 RAngleLoc: TemplateId->RAngleLoc,
8033 /*IsCtorOrDtorName*/true);
8034 if (T.isInvalid() || !T.get()) {
8035 // Recover by assuming we had the right type all along.
8036 DestructedType = ObjectType;
8037 } else
8038 DestructedType = GetTypeFromParser(Ty: T.get(), TInfo: &DestructedTypeInfo);
8039 }
8040
8041 // If we've performed some kind of recovery, (re-)build the type source
8042 // information.
8043 if (!DestructedType.isNull()) {
8044 if (!DestructedTypeInfo)
8045 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(T: DestructedType,
8046 Loc: SecondTypeName.StartLocation);
8047 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
8048 }
8049
8050 // Convert the name of the scope type (the type prior to '::') into a type.
8051 TypeSourceInfo *ScopeTypeInfo = nullptr;
8052 QualType ScopeType;
8053 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId ||
8054 FirstTypeName.Identifier) {
8055 if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) {
8056 ParsedType T = getTypeName(II: *FirstTypeName.Identifier,
8057 NameLoc: FirstTypeName.StartLocation,
8058 S, SS: &SS, isClassName: true, HasTrailingDot: false, ObjectType: ObjectTypePtrForLookup,
8059 /*IsCtorOrDtorName*/true);
8060 if (!T) {
8061 Diag(FirstTypeName.StartLocation,
8062 diag::err_pseudo_dtor_destructor_non_type)
8063 << FirstTypeName.Identifier << ObjectType;
8064
8065 if (isSFINAEContext())
8066 return ExprError();
8067
8068 // Just drop this type. It's unnecessary anyway.
8069 ScopeType = QualType();
8070 } else
8071 ScopeType = GetTypeFromParser(Ty: T, TInfo: &ScopeTypeInfo);
8072 } else {
8073 // Resolve the template-id to a type.
8074 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
8075 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
8076 TemplateId->NumArgs);
8077 TypeResult T = ActOnTemplateIdType(S,
8078 SS,
8079 TemplateKWLoc: TemplateId->TemplateKWLoc,
8080 Template: TemplateId->Template,
8081 TemplateII: TemplateId->Name,
8082 TemplateIILoc: TemplateId->TemplateNameLoc,
8083 LAngleLoc: TemplateId->LAngleLoc,
8084 TemplateArgs: TemplateArgsPtr,
8085 RAngleLoc: TemplateId->RAngleLoc,
8086 /*IsCtorOrDtorName*/true);
8087 if (T.isInvalid() || !T.get()) {
8088 // Recover by dropping this type.
8089 ScopeType = QualType();
8090 } else
8091 ScopeType = GetTypeFromParser(Ty: T.get(), TInfo: &ScopeTypeInfo);
8092 }
8093 }
8094
8095 if (!ScopeType.isNull() && !ScopeTypeInfo)
8096 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(T: ScopeType,
8097 Loc: FirstTypeName.StartLocation);
8098
8099
8100 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
8101 ScopeTypeInfo, CCLoc, TildeLoc,
8102 Destructed);
8103}
8104
8105ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
8106 SourceLocation OpLoc,
8107 tok::TokenKind OpKind,
8108 SourceLocation TildeLoc,
8109 const DeclSpec& DS) {
8110 QualType ObjectType;
8111 QualType T;
8112 TypeLocBuilder TLB;
8113 if (CheckArrow(S&: *this, ObjectType, Base, OpKind, OpLoc))
8114 return ExprError();
8115
8116 switch (DS.getTypeSpecType()) {
8117 case DeclSpec::TST_decltype_auto: {
8118 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
8119 return true;
8120 }
8121 case DeclSpec::TST_decltype: {
8122 T = BuildDecltypeType(E: DS.getRepAsExpr(), /*AsUnevaluated=*/false);
8123 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
8124 DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
8125 DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd());
8126 break;
8127 }
8128 case DeclSpec::TST_typename_pack_indexing: {
8129 T = ActOnPackIndexingType(Pattern: DS.getRepAsType().get(), IndexExpr: DS.getPackIndexingExpr(),
8130 Loc: DS.getBeginLoc(), EllipsisLoc: DS.getEllipsisLoc());
8131 TLB.pushTrivial(Context&: getASTContext(),
8132 T: cast<PackIndexingType>(Val: T.getTypePtr())->getPattern(),
8133 Loc: DS.getBeginLoc());
8134 PackIndexingTypeLoc PITL = TLB.push<PackIndexingTypeLoc>(T);
8135 PITL.setEllipsisLoc(DS.getEllipsisLoc());
8136 break;
8137 }
8138 default:
8139 llvm_unreachable("Unsupported type in pseudo destructor");
8140 }
8141 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
8142 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
8143
8144 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS: CXXScopeSpec(),
8145 ScopeTypeInfo: nullptr, CCLoc: SourceLocation(), TildeLoc,
8146 Destructed);
8147}
8148
8149ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
8150 SourceLocation RParen) {
8151 // If the operand is an unresolved lookup expression, the expression is ill-
8152 // formed per [over.over]p1, because overloaded function names cannot be used
8153 // without arguments except in explicit contexts.
8154 ExprResult R = CheckPlaceholderExpr(E: Operand);
8155 if (R.isInvalid())
8156 return R;
8157
8158 R = CheckUnevaluatedOperand(E: R.get());
8159 if (R.isInvalid())
8160 return ExprError();
8161
8162 Operand = R.get();
8163
8164 if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() &&
8165 Operand->HasSideEffects(Ctx: Context, IncludePossibleEffects: false)) {
8166 // The expression operand for noexcept is in an unevaluated expression
8167 // context, so side effects could result in unintended consequences.
8168 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
8169 }
8170
8171 CanThrowResult CanThrow = canThrow(Operand);
8172 return new (Context)
8173 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
8174}
8175
8176ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
8177 Expr *Operand, SourceLocation RParen) {
8178 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
8179}
8180
8181static void MaybeDecrementCount(
8182 Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) {
8183 DeclRefExpr *LHS = nullptr;
8184 bool IsCompoundAssign = false;
8185 bool isIncrementDecrementUnaryOp = false;
8186 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) {
8187 if (BO->getLHS()->getType()->isDependentType() ||
8188 BO->getRHS()->getType()->isDependentType()) {
8189 if (BO->getOpcode() != BO_Assign)
8190 return;
8191 } else if (!BO->isAssignmentOp())
8192 return;
8193 else
8194 IsCompoundAssign = BO->isCompoundAssignmentOp();
8195 LHS = dyn_cast<DeclRefExpr>(Val: BO->getLHS());
8196 } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(Val: E)) {
8197 if (COCE->getOperator() != OO_Equal)
8198 return;
8199 LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0));
8200 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: E)) {
8201 if (!UO->isIncrementDecrementOp())
8202 return;
8203 isIncrementDecrementUnaryOp = true;
8204 LHS = dyn_cast<DeclRefExpr>(Val: UO->getSubExpr());
8205 }
8206 if (!LHS)
8207 return;
8208 VarDecl *VD = dyn_cast<VarDecl>(Val: LHS->getDecl());
8209 if (!VD)
8210 return;
8211 // Don't decrement RefsMinusAssignments if volatile variable with compound
8212 // assignment (+=, ...) or increment/decrement unary operator to avoid
8213 // potential unused-but-set-variable warning.
8214 if ((IsCompoundAssign || isIncrementDecrementUnaryOp) &&
8215 VD->getType().isVolatileQualified())
8216 return;
8217 auto iter = RefsMinusAssignments.find(Val: VD);
8218 if (iter == RefsMinusAssignments.end())
8219 return;
8220 iter->getSecond()--;
8221}
8222
8223/// Perform the conversions required for an expression used in a
8224/// context that ignores the result.
8225ExprResult Sema::IgnoredValueConversions(Expr *E) {
8226 MaybeDecrementCount(E, RefsMinusAssignments);
8227
8228 if (E->hasPlaceholderType()) {
8229 ExprResult result = CheckPlaceholderExpr(E);
8230 if (result.isInvalid()) return E;
8231 E = result.get();
8232 }
8233
8234 if (getLangOpts().CPlusPlus) {
8235 // The C++11 standard defines the notion of a discarded-value expression;
8236 // normally, we don't need to do anything to handle it, but if it is a
8237 // volatile lvalue with a special form, we perform an lvalue-to-rvalue
8238 // conversion.
8239 if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) {
8240 ExprResult Res = DefaultLvalueConversion(E);
8241 if (Res.isInvalid())
8242 return E;
8243 E = Res.get();
8244 } else {
8245 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8246 // it occurs as a discarded-value expression.
8247 CheckUnusedVolatileAssignment(E);
8248 }
8249
8250 // C++1z:
8251 // If the expression is a prvalue after this optional conversion, the
8252 // temporary materialization conversion is applied.
8253 //
8254 // We do not materialize temporaries by default in order to avoid creating
8255 // unnecessary temporary objects. If we skip this step, IR generation is
8256 // able to synthesize the storage for itself in the aggregate case, and
8257 // adding the extra node to the AST is just clutter.
8258 if (isInMaterializeTemporaryObjectContext() && getLangOpts().CPlusPlus17 &&
8259 E->isPRValue() && !E->getType()->isVoidType()) {
8260 ExprResult Res = TemporaryMaterializationConversion(E);
8261 if (Res.isInvalid())
8262 return E;
8263 E = Res.get();
8264 }
8265 return E;
8266 }
8267
8268 // C99 6.3.2.1:
8269 // [Except in specific positions,] an lvalue that does not have
8270 // array type is converted to the value stored in the
8271 // designated object (and is no longer an lvalue).
8272 if (E->isPRValue()) {
8273 // In C, function designators (i.e. expressions of function type)
8274 // are r-values, but we still want to do function-to-pointer decay
8275 // on them. This is both technically correct and convenient for
8276 // some clients.
8277 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
8278 return DefaultFunctionArrayConversion(E);
8279
8280 return E;
8281 }
8282
8283 // GCC seems to also exclude expressions of incomplete enum type.
8284 if (const EnumType *T = E->getType()->getAs<EnumType>()) {
8285 if (!T->getDecl()->isComplete()) {
8286 // FIXME: stupid workaround for a codegen bug!
8287 E = ImpCastExprToType(E, Type: Context.VoidTy, CK: CK_ToVoid).get();
8288 return E;
8289 }
8290 }
8291
8292 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
8293 if (Res.isInvalid())
8294 return E;
8295 E = Res.get();
8296
8297 if (!E->getType()->isVoidType())
8298 RequireCompleteType(E->getExprLoc(), E->getType(),
8299 diag::err_incomplete_type);
8300 return E;
8301}
8302
8303ExprResult Sema::CheckUnevaluatedOperand(Expr *E) {
8304 // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if
8305 // it occurs as an unevaluated operand.
8306 CheckUnusedVolatileAssignment(E);
8307
8308 return E;
8309}
8310
8311// If we can unambiguously determine whether Var can never be used
8312// in a constant expression, return true.
8313// - if the variable and its initializer are non-dependent, then
8314// we can unambiguously check if the variable is a constant expression.
8315// - if the initializer is not value dependent - we can determine whether
8316// it can be used to initialize a constant expression. If Init can not
8317// be used to initialize a constant expression we conclude that Var can
8318// never be a constant expression.
8319// - FXIME: if the initializer is dependent, we can still do some analysis and
8320// identify certain cases unambiguously as non-const by using a Visitor:
8321// - such as those that involve odr-use of a ParmVarDecl, involve a new
8322// delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
8323static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
8324 ASTContext &Context) {
8325 if (isa<ParmVarDecl>(Val: Var)) return true;
8326 const VarDecl *DefVD = nullptr;
8327
8328 // If there is no initializer - this can not be a constant expression.
8329 const Expr *Init = Var->getAnyInitializer(D&: DefVD);
8330 if (!Init)
8331 return true;
8332 assert(DefVD);
8333 if (DefVD->isWeak())
8334 return false;
8335
8336 if (Var->getType()->isDependentType() || Init->isValueDependent()) {
8337 // FIXME: Teach the constant evaluator to deal with the non-dependent parts
8338 // of value-dependent expressions, and use it here to determine whether the
8339 // initializer is a potential constant expression.
8340 return false;
8341 }
8342
8343 return !Var->isUsableInConstantExpressions(C: Context);
8344}
8345
8346/// Check if the current lambda has any potential captures
8347/// that must be captured by any of its enclosing lambdas that are ready to
8348/// capture. If there is a lambda that can capture a nested
8349/// potential-capture, go ahead and do so. Also, check to see if any
8350/// variables are uncaptureable or do not involve an odr-use so do not
8351/// need to be captured.
8352
8353static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
8354 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
8355
8356 assert(!S.isUnevaluatedContext());
8357 assert(S.CurContext->isDependentContext());
8358#ifndef NDEBUG
8359 DeclContext *DC = S.CurContext;
8360 while (DC && isa<CapturedDecl>(Val: DC))
8361 DC = DC->getParent();
8362 assert(
8363 CurrentLSI->CallOperator == DC &&
8364 "The current call operator must be synchronized with Sema's CurContext");
8365#endif // NDEBUG
8366
8367 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
8368
8369 // All the potentially captureable variables in the current nested
8370 // lambda (within a generic outer lambda), must be captured by an
8371 // outer lambda that is enclosed within a non-dependent context.
8372 CurrentLSI->visitPotentialCaptures(Callback: [&](ValueDecl *Var, Expr *VarExpr) {
8373 // If the variable is clearly identified as non-odr-used and the full
8374 // expression is not instantiation dependent, only then do we not
8375 // need to check enclosing lambda's for speculative captures.
8376 // For e.g.:
8377 // Even though 'x' is not odr-used, it should be captured.
8378 // int test() {
8379 // const int x = 10;
8380 // auto L = [=](auto a) {
8381 // (void) +x + a;
8382 // };
8383 // }
8384 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(CapturingVarExpr: VarExpr) &&
8385 !IsFullExprInstantiationDependent)
8386 return;
8387
8388 VarDecl *UnderlyingVar = Var->getPotentiallyDecomposedVarDecl();
8389 if (!UnderlyingVar)
8390 return;
8391
8392 // If we have a capture-capable lambda for the variable, go ahead and
8393 // capture the variable in that lambda (and all its enclosing lambdas).
8394 if (const std::optional<unsigned> Index =
8395 getStackIndexOfNearestEnclosingCaptureCapableLambda(
8396 FunctionScopes: S.FunctionScopes, VarToCapture: Var, S))
8397 S.MarkCaptureUsedInEnclosingContext(Capture: Var, Loc: VarExpr->getExprLoc(), CapturingScopeIndex: *Index);
8398 const bool IsVarNeverAConstantExpression =
8399 VariableCanNeverBeAConstantExpression(Var: UnderlyingVar, Context&: S.Context);
8400 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
8401 // This full expression is not instantiation dependent or the variable
8402 // can not be used in a constant expression - which means
8403 // this variable must be odr-used here, so diagnose a
8404 // capture violation early, if the variable is un-captureable.
8405 // This is purely for diagnosing errors early. Otherwise, this
8406 // error would get diagnosed when the lambda becomes capture ready.
8407 QualType CaptureType, DeclRefType;
8408 SourceLocation ExprLoc = VarExpr->getExprLoc();
8409 if (S.tryCaptureVariable(Var, Loc: ExprLoc, Kind: S.TryCapture_Implicit,
8410 /*EllipsisLoc*/ SourceLocation(),
8411 /*BuildAndDiagnose*/false, CaptureType,
8412 DeclRefType, FunctionScopeIndexToStopAt: nullptr)) {
8413 // We will never be able to capture this variable, and we need
8414 // to be able to in any and all instantiations, so diagnose it.
8415 S.tryCaptureVariable(Var, Loc: ExprLoc, Kind: S.TryCapture_Implicit,
8416 /*EllipsisLoc*/ SourceLocation(),
8417 /*BuildAndDiagnose*/true, CaptureType,
8418 DeclRefType, FunctionScopeIndexToStopAt: nullptr);
8419 }
8420 }
8421 });
8422
8423 // Check if 'this' needs to be captured.
8424 if (CurrentLSI->hasPotentialThisCapture()) {
8425 // If we have a capture-capable lambda for 'this', go ahead and capture
8426 // 'this' in that lambda (and all its enclosing lambdas).
8427 if (const std::optional<unsigned> Index =
8428 getStackIndexOfNearestEnclosingCaptureCapableLambda(
8429 FunctionScopes: S.FunctionScopes, /*0 is 'this'*/ VarToCapture: nullptr, S)) {
8430 const unsigned FunctionScopeIndexOfCapturableLambda = *Index;
8431 S.CheckCXXThisCapture(Loc: CurrentLSI->PotentialThisCaptureLocation,
8432 /*Explicit*/ false, /*BuildAndDiagnose*/ true,
8433 FunctionScopeIndexToStopAt: &FunctionScopeIndexOfCapturableLambda);
8434 }
8435 }
8436
8437 // Reset all the potential captures at the end of each full-expression.
8438 CurrentLSI->clearPotentialCaptures();
8439}
8440
8441static ExprResult attemptRecovery(Sema &SemaRef,
8442 const TypoCorrectionConsumer &Consumer,
8443 const TypoCorrection &TC) {
8444 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
8445 Consumer.getLookupResult().getLookupKind());
8446 const CXXScopeSpec *SS = Consumer.getSS();
8447 CXXScopeSpec NewSS;
8448
8449 // Use an approprate CXXScopeSpec for building the expr.
8450 if (auto *NNS = TC.getCorrectionSpecifier())
8451 NewSS.MakeTrivial(Context&: SemaRef.Context, Qualifier: NNS, R: TC.getCorrectionRange());
8452 else if (SS && !TC.WillReplaceSpecifier())
8453 NewSS = *SS;
8454
8455 if (auto *ND = TC.getFoundDecl()) {
8456 R.setLookupName(ND->getDeclName());
8457 R.addDecl(D: ND);
8458 if (ND->isCXXClassMember()) {
8459 // Figure out the correct naming class to add to the LookupResult.
8460 CXXRecordDecl *Record = nullptr;
8461 if (auto *NNS = TC.getCorrectionSpecifier())
8462 Record = NNS->getAsType()->getAsCXXRecordDecl();
8463 if (!Record)
8464 Record =
8465 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
8466 if (Record)
8467 R.setNamingClass(Record);
8468
8469 // Detect and handle the case where the decl might be an implicit
8470 // member.
8471 bool MightBeImplicitMember;
8472 if (!Consumer.isAddressOfOperand())
8473 MightBeImplicitMember = true;
8474 else if (!NewSS.isEmpty())
8475 MightBeImplicitMember = false;
8476 else if (R.isOverloadedResult())
8477 MightBeImplicitMember = false;
8478 else if (R.isUnresolvableResult())
8479 MightBeImplicitMember = true;
8480 else
8481 MightBeImplicitMember = isa<FieldDecl>(Val: ND) ||
8482 isa<IndirectFieldDecl>(Val: ND) ||
8483 isa<MSPropertyDecl>(Val: ND);
8484
8485 if (MightBeImplicitMember)
8486 return SemaRef.BuildPossibleImplicitMemberExpr(
8487 SS: NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
8488 /*TemplateArgs*/ nullptr, /*S*/ nullptr);
8489 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Val: ND)) {
8490 return SemaRef.LookupInObjCMethod(LookUp&: R, S: Consumer.getScope(),
8491 II: Ivar->getIdentifier());
8492 }
8493 }
8494
8495 return SemaRef.BuildDeclarationNameExpr(SS: NewSS, R, /*NeedsADL*/ false,
8496 /*AcceptInvalidDecl*/ true);
8497}
8498
8499namespace {
8500class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
8501 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
8502
8503public:
8504 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
8505 : TypoExprs(TypoExprs) {}
8506 bool VisitTypoExpr(TypoExpr *TE) {
8507 TypoExprs.insert(X: TE);
8508 return true;
8509 }
8510};
8511
8512class TransformTypos : public TreeTransform<TransformTypos> {
8513 typedef TreeTransform<TransformTypos> BaseTransform;
8514
8515 VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
8516 // process of being initialized.
8517 llvm::function_ref<ExprResult(Expr *)> ExprFilter;
8518 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
8519 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
8520 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
8521
8522 /// Emit diagnostics for all of the TypoExprs encountered.
8523 ///
8524 /// If the TypoExprs were successfully corrected, then the diagnostics should
8525 /// suggest the corrections. Otherwise the diagnostics will not suggest
8526 /// anything (having been passed an empty TypoCorrection).
8527 ///
8528 /// If we've failed to correct due to ambiguous corrections, we need to
8529 /// be sure to pass empty corrections and replacements. Otherwise it's
8530 /// possible that the Consumer has a TypoCorrection that failed to ambiguity
8531 /// and we don't want to report those diagnostics.
8532 void EmitAllDiagnostics(bool IsAmbiguous) {
8533 for (TypoExpr *TE : TypoExprs) {
8534 auto &State = SemaRef.getTypoExprState(TE);
8535 if (State.DiagHandler) {
8536 TypoCorrection TC = IsAmbiguous
8537 ? TypoCorrection() : State.Consumer->getCurrentCorrection();
8538 ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE];
8539
8540 // Extract the NamedDecl from the transformed TypoExpr and add it to the
8541 // TypoCorrection, replacing the existing decls. This ensures the right
8542 // NamedDecl is used in diagnostics e.g. in the case where overload
8543 // resolution was used to select one from several possible decls that
8544 // had been stored in the TypoCorrection.
8545 if (auto *ND = getDeclFromExpr(
8546 E: Replacement.isInvalid() ? nullptr : Replacement.get()))
8547 TC.setCorrectionDecl(ND);
8548
8549 State.DiagHandler(TC);
8550 }
8551 SemaRef.clearDelayedTypo(TE);
8552 }
8553 }
8554
8555 /// Try to advance the typo correction state of the first unfinished TypoExpr.
8556 /// We allow advancement of the correction stream by removing it from the
8557 /// TransformCache which allows `TransformTypoExpr` to advance during the
8558 /// next transformation attempt.
8559 ///
8560 /// Any substitution attempts for the previous TypoExprs (which must have been
8561 /// finished) will need to be retried since it's possible that they will now
8562 /// be invalid given the latest advancement.
8563 ///
8564 /// We need to be sure that we're making progress - it's possible that the
8565 /// tree is so malformed that the transform never makes it to the
8566 /// `TransformTypoExpr`.
8567 ///
8568 /// Returns true if there are any untried correction combinations.
8569 bool CheckAndAdvanceTypoExprCorrectionStreams() {
8570 for (auto *TE : TypoExprs) {
8571 auto &State = SemaRef.getTypoExprState(TE);
8572 TransformCache.erase(Val: TE);
8573 if (!State.Consumer->hasMadeAnyCorrectionProgress())
8574 return false;
8575 if (!State.Consumer->finished())
8576 return true;
8577 State.Consumer->resetCorrectionStream();
8578 }
8579 return false;
8580 }
8581
8582 NamedDecl *getDeclFromExpr(Expr *E) {
8583 if (auto *OE = dyn_cast_or_null<OverloadExpr>(Val: E))
8584 E = OverloadResolution[OE];
8585
8586 if (!E)
8587 return nullptr;
8588 if (auto *DRE = dyn_cast<DeclRefExpr>(Val: E))
8589 return DRE->getFoundDecl();
8590 if (auto *ME = dyn_cast<MemberExpr>(Val: E))
8591 return ME->getFoundDecl();
8592 // FIXME: Add any other expr types that could be seen by the delayed typo
8593 // correction TreeTransform for which the corresponding TypoCorrection could
8594 // contain multiple decls.
8595 return nullptr;
8596 }
8597
8598 ExprResult TryTransform(Expr *E) {
8599 Sema::SFINAETrap Trap(SemaRef);
8600 ExprResult Res = TransformExpr(E);
8601 if (Trap.hasErrorOccurred() || Res.isInvalid())
8602 return ExprError();
8603
8604 return ExprFilter(Res.get());
8605 }
8606
8607 // Since correcting typos may intoduce new TypoExprs, this function
8608 // checks for new TypoExprs and recurses if it finds any. Note that it will
8609 // only succeed if it is able to correct all typos in the given expression.
8610 ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) {
8611 if (Res.isInvalid()) {
8612 return Res;
8613 }
8614 // Check to see if any new TypoExprs were created. If so, we need to recurse
8615 // to check their validity.
8616 Expr *FixedExpr = Res.get();
8617
8618 auto SavedTypoExprs = std::move(TypoExprs);
8619 auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs);
8620 TypoExprs.clear();
8621 AmbiguousTypoExprs.clear();
8622
8623 FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr);
8624 if (!TypoExprs.empty()) {
8625 // Recurse to handle newly created TypoExprs. If we're not able to
8626 // handle them, discard these TypoExprs.
8627 ExprResult RecurResult =
8628 RecursiveTransformLoop(E: FixedExpr, IsAmbiguous);
8629 if (RecurResult.isInvalid()) {
8630 Res = ExprError();
8631 // Recursive corrections didn't work, wipe them away and don't add
8632 // them to the TypoExprs set. Remove them from Sema's TypoExpr list
8633 // since we don't want to clear them twice. Note: it's possible the
8634 // TypoExprs were created recursively and thus won't be in our
8635 // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`.
8636 auto &SemaTypoExprs = SemaRef.TypoExprs;
8637 for (auto *TE : TypoExprs) {
8638 TransformCache.erase(Val: TE);
8639 SemaRef.clearDelayedTypo(TE);
8640
8641 auto SI = find(SemaTypoExprs, TE);
8642 if (SI != SemaTypoExprs.end()) {
8643 SemaTypoExprs.erase(SI);
8644 }
8645 }
8646 } else {
8647 // TypoExpr is valid: add newly created TypoExprs since we were
8648 // able to correct them.
8649 Res = RecurResult;
8650 SavedTypoExprs.set_union(TypoExprs);
8651 }
8652 }
8653
8654 TypoExprs = std::move(SavedTypoExprs);
8655 AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs);
8656
8657 return Res;
8658 }
8659
8660 // Try to transform the given expression, looping through the correction
8661 // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`.
8662 //
8663 // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to
8664 // true and this method immediately will return an `ExprError`.
8665 ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) {
8666 ExprResult Res;
8667 auto SavedTypoExprs = std::move(SemaRef.TypoExprs);
8668 SemaRef.TypoExprs.clear();
8669
8670 while (true) {
8671 Res = CheckForRecursiveTypos(Res: TryTransform(E), IsAmbiguous);
8672
8673 // Recursion encountered an ambiguous correction. This means that our
8674 // correction itself is ambiguous, so stop now.
8675 if (IsAmbiguous)
8676 break;
8677
8678 // If the transform is still valid after checking for any new typos,
8679 // it's good to go.
8680 if (!Res.isInvalid())
8681 break;
8682
8683 // The transform was invalid, see if we have any TypoExprs with untried
8684 // correction candidates.
8685 if (!CheckAndAdvanceTypoExprCorrectionStreams())
8686 break;
8687 }
8688
8689 // If we found a valid result, double check to make sure it's not ambiguous.
8690 if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) {
8691 auto SavedTransformCache =
8692 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache);
8693
8694 // Ensure none of the TypoExprs have multiple typo correction candidates
8695 // with the same edit length that pass all the checks and filters.
8696 while (!AmbiguousTypoExprs.empty()) {
8697 auto TE = AmbiguousTypoExprs.back();
8698
8699 // TryTransform itself can create new Typos, adding them to the TypoExpr map
8700 // and invalidating our TypoExprState, so always fetch it instead of storing.
8701 SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition();
8702
8703 TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection();
8704 TypoCorrection Next;
8705 do {
8706 // Fetch the next correction by erasing the typo from the cache and calling
8707 // `TryTransform` which will iterate through corrections in
8708 // `TransformTypoExpr`.
8709 TransformCache.erase(Val: TE);
8710 ExprResult AmbigRes = CheckForRecursiveTypos(Res: TryTransform(E), IsAmbiguous);
8711
8712 if (!AmbigRes.isInvalid() || IsAmbiguous) {
8713 SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream();
8714 SavedTransformCache.erase(Val: TE);
8715 Res = ExprError();
8716 IsAmbiguous = true;
8717 break;
8718 }
8719 } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) &&
8720 Next.getEditDistance(false) == TC.getEditDistance(false));
8721
8722 if (IsAmbiguous)
8723 break;
8724
8725 AmbiguousTypoExprs.remove(X: TE);
8726 SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition();
8727 TransformCache[TE] = SavedTransformCache[TE];
8728 }
8729 TransformCache = std::move(SavedTransformCache);
8730 }
8731
8732 // Wipe away any newly created TypoExprs that we don't know about. Since we
8733 // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only
8734 // possible if a `TypoExpr` is created during a transformation but then
8735 // fails before we can discover it.
8736 auto &SemaTypoExprs = SemaRef.TypoExprs;
8737 for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) {
8738 auto TE = *Iterator;
8739 auto FI = find(TypoExprs, TE);
8740 if (FI != TypoExprs.end()) {
8741 Iterator++;
8742 continue;
8743 }
8744 SemaRef.clearDelayedTypo(TE);
8745 Iterator = SemaTypoExprs.erase(Iterator);
8746 }
8747 SemaRef.TypoExprs = std::move(SavedTypoExprs);
8748
8749 return Res;
8750 }
8751
8752public:
8753 TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
8754 : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
8755
8756 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
8757 MultiExprArg Args,
8758 SourceLocation RParenLoc,
8759 Expr *ExecConfig = nullptr) {
8760 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
8761 RParenLoc, ExecConfig);
8762 if (auto *OE = dyn_cast<OverloadExpr>(Val: Callee)) {
8763 if (Result.isUsable()) {
8764 Expr *ResultCall = Result.get();
8765 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
8766 ResultCall = BE->getSubExpr();
8767 if (auto *CE = dyn_cast<CallExpr>(ResultCall))
8768 OverloadResolution[OE] = CE->getCallee();
8769 }
8770 }
8771 return Result;
8772 }
8773
8774 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
8775
8776 ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
8777
8778 ExprResult Transform(Expr *E) {
8779 bool IsAmbiguous = false;
8780 ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous);
8781
8782 if (!Res.isUsable())
8783 FindTypoExprs(TypoExprs).TraverseStmt(E);
8784
8785 EmitAllDiagnostics(IsAmbiguous);
8786
8787 return Res;
8788 }
8789
8790 ExprResult TransformTypoExpr(TypoExpr *E) {
8791 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
8792 // cached transformation result if there is one and the TypoExpr isn't the
8793 // first one that was encountered.
8794 auto &CacheEntry = TransformCache[E];
8795 if (!TypoExprs.insert(X: E) && !CacheEntry.isUnset()) {
8796 return CacheEntry;
8797 }
8798
8799 auto &State = SemaRef.getTypoExprState(E);
8800 assert(State.Consumer && "Cannot transform a cleared TypoExpr");
8801
8802 // For the first TypoExpr and an uncached TypoExpr, find the next likely
8803 // typo correction and return it.
8804 while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
8805 if (InitDecl && TC.getFoundDecl() == InitDecl)
8806 continue;
8807 // FIXME: If we would typo-correct to an invalid declaration, it's
8808 // probably best to just suppress all errors from this typo correction.
8809 ExprResult NE = State.RecoveryHandler ?
8810 State.RecoveryHandler(SemaRef, E, TC) :
8811 attemptRecovery(SemaRef, *State.Consumer, TC);
8812 if (!NE.isInvalid()) {
8813 // Check whether there may be a second viable correction with the same
8814 // edit distance; if so, remember this TypoExpr may have an ambiguous
8815 // correction so it can be more thoroughly vetted later.
8816 TypoCorrection Next;
8817 if ((Next = State.Consumer->peekNextCorrection()) &&
8818 Next.getEditDistance(Normalized: false) == TC.getEditDistance(Normalized: false)) {
8819 AmbiguousTypoExprs.insert(X: E);
8820 } else {
8821 AmbiguousTypoExprs.remove(X: E);
8822 }
8823 assert(!NE.isUnset() &&
8824 "Typo was transformed into a valid-but-null ExprResult");
8825 return CacheEntry = NE;
8826 }
8827 }
8828 return CacheEntry = ExprError();
8829 }
8830};
8831}
8832
8833ExprResult
8834Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
8835 bool RecoverUncorrectedTypos,
8836 llvm::function_ref<ExprResult(Expr *)> Filter) {
8837 // If the current evaluation context indicates there are uncorrected typos
8838 // and the current expression isn't guaranteed to not have typos, try to
8839 // resolve any TypoExpr nodes that might be in the expression.
8840 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
8841 (E->isTypeDependent() || E->isValueDependent() ||
8842 E->isInstantiationDependent())) {
8843 auto TyposResolved = DelayedTypos.size();
8844 auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
8845 TyposResolved -= DelayedTypos.size();
8846 if (Result.isInvalid() || Result.get() != E) {
8847 ExprEvalContexts.back().NumTypos -= TyposResolved;
8848 if (Result.isInvalid() && RecoverUncorrectedTypos) {
8849 struct TyposReplace : TreeTransform<TyposReplace> {
8850 TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {}
8851 ExprResult TransformTypoExpr(clang::TypoExpr *E) {
8852 return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(),
8853 E->getEndLoc(), {});
8854 }
8855 } TT(*this);
8856 return TT.TransformExpr(E);
8857 }
8858 return Result;
8859 }
8860 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?");
8861 }
8862 return E;
8863}
8864
8865ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
8866 bool DiscardedValue, bool IsConstexpr,
8867 bool IsTemplateArgument) {
8868 ExprResult FullExpr = FE;
8869
8870 if (!FullExpr.get())
8871 return ExprError();
8872
8873 if (!IsTemplateArgument && DiagnoseUnexpandedParameterPack(E: FullExpr.get()))
8874 return ExprError();
8875
8876 if (DiscardedValue) {
8877 // Top-level expressions default to 'id' when we're in a debugger.
8878 if (getLangOpts().DebuggerCastResultToId &&
8879 FullExpr.get()->getType() == Context.UnknownAnyTy) {
8880 FullExpr = forceUnknownAnyToType(E: FullExpr.get(), ToType: Context.getObjCIdType());
8881 if (FullExpr.isInvalid())
8882 return ExprError();
8883 }
8884
8885 FullExpr = CheckPlaceholderExpr(E: FullExpr.get());
8886 if (FullExpr.isInvalid())
8887 return ExprError();
8888
8889 FullExpr = IgnoredValueConversions(E: FullExpr.get());
8890 if (FullExpr.isInvalid())
8891 return ExprError();
8892
8893 DiagnoseUnusedExprResult(FullExpr.get(), diag::warn_unused_expr);
8894 }
8895
8896 FullExpr = CorrectDelayedTyposInExpr(E: FullExpr.get(), /*InitDecl=*/nullptr,
8897 /*RecoverUncorrectedTypos=*/true);
8898 if (FullExpr.isInvalid())
8899 return ExprError();
8900
8901 CheckCompletedExpr(E: FullExpr.get(), CheckLoc: CC, IsConstexpr);
8902
8903 // At the end of this full expression (which could be a deeply nested
8904 // lambda), if there is a potential capture within the nested lambda,
8905 // have the outer capture-able lambda try and capture it.
8906 // Consider the following code:
8907 // void f(int, int);
8908 // void f(const int&, double);
8909 // void foo() {
8910 // const int x = 10, y = 20;
8911 // auto L = [=](auto a) {
8912 // auto M = [=](auto b) {
8913 // f(x, b); <-- requires x to be captured by L and M
8914 // f(y, a); <-- requires y to be captured by L, but not all Ms
8915 // };
8916 // };
8917 // }
8918
8919 // FIXME: Also consider what happens for something like this that involves
8920 // the gnu-extension statement-expressions or even lambda-init-captures:
8921 // void f() {
8922 // const int n = 0;
8923 // auto L = [&](auto a) {
8924 // +n + ({ 0; a; });
8925 // };
8926 // }
8927 //
8928 // Here, we see +n, and then the full-expression 0; ends, so we don't
8929 // capture n (and instead remove it from our list of potential captures),
8930 // and then the full-expression +n + ({ 0; }); ends, but it's too late
8931 // for us to see that we need to capture n after all.
8932
8933 LambdaScopeInfo *const CurrentLSI =
8934 getCurLambda(/*IgnoreCapturedRegions=*/IgnoreNonLambdaCapturingScope: true);
8935 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
8936 // even if CurContext is not a lambda call operator. Refer to that Bug Report
8937 // for an example of the code that might cause this asynchrony.
8938 // By ensuring we are in the context of a lambda's call operator
8939 // we can fix the bug (we only need to check whether we need to capture
8940 // if we are within a lambda's body); but per the comments in that
8941 // PR, a proper fix would entail :
8942 // "Alternative suggestion:
8943 // - Add to Sema an integer holding the smallest (outermost) scope
8944 // index that we are *lexically* within, and save/restore/set to
8945 // FunctionScopes.size() in InstantiatingTemplate's
8946 // constructor/destructor.
8947 // - Teach the handful of places that iterate over FunctionScopes to
8948 // stop at the outermost enclosing lexical scope."
8949 DeclContext *DC = CurContext;
8950 while (DC && isa<CapturedDecl>(Val: DC))
8951 DC = DC->getParent();
8952 const bool IsInLambdaDeclContext = isLambdaCallOperator(DC);
8953 if (IsInLambdaDeclContext && CurrentLSI &&
8954 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
8955 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
8956 S&: *this);
8957 return MaybeCreateExprWithCleanups(SubExpr: FullExpr);
8958}
8959
8960StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
8961 if (!FullStmt) return StmtError();
8962
8963 return MaybeCreateStmtWithCleanups(SubStmt: FullStmt);
8964}
8965
8966Sema::IfExistsResult
8967Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
8968 CXXScopeSpec &SS,
8969 const DeclarationNameInfo &TargetNameInfo) {
8970 DeclarationName TargetName = TargetNameInfo.getName();
8971 if (!TargetName)
8972 return IER_DoesNotExist;
8973
8974 // If the name itself is dependent, then the result is dependent.
8975 if (TargetName.isDependentName())
8976 return IER_Dependent;
8977
8978 // Do the redeclaration lookup in the current scope.
8979 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
8980 Sema::NotForRedeclaration);
8981 LookupParsedName(R, S, SS: &SS);
8982 R.suppressDiagnostics();
8983
8984 switch (R.getResultKind()) {
8985 case LookupResult::Found:
8986 case LookupResult::FoundOverloaded:
8987 case LookupResult::FoundUnresolvedValue:
8988 case LookupResult::Ambiguous:
8989 return IER_Exists;
8990
8991 case LookupResult::NotFound:
8992 return IER_DoesNotExist;
8993
8994 case LookupResult::NotFoundInCurrentInstantiation:
8995 return IER_Dependent;
8996 }
8997
8998 llvm_unreachable("Invalid LookupResult Kind!");
8999}
9000
9001Sema::IfExistsResult
9002Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
9003 bool IsIfExists, CXXScopeSpec &SS,
9004 UnqualifiedId &Name) {
9005 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
9006
9007 // Check for an unexpanded parameter pack.
9008 auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists;
9009 if (DiagnoseUnexpandedParameterPack(SS, UPPC) ||
9010 DiagnoseUnexpandedParameterPack(NameInfo: TargetNameInfo, UPPC))
9011 return IER_Error;
9012
9013 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
9014}
9015
9016concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) {
9017 return BuildExprRequirement(E, /*IsSimple=*/IsSatisfied: true,
9018 /*NoexceptLoc=*/SourceLocation(),
9019 /*ReturnTypeRequirement=*/{});
9020}
9021
9022concepts::Requirement *
9023Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS,
9024 SourceLocation NameLoc, IdentifierInfo *TypeName,
9025 TemplateIdAnnotation *TemplateId) {
9026 assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) &&
9027 "Exactly one of TypeName and TemplateId must be specified.");
9028 TypeSourceInfo *TSI = nullptr;
9029 if (TypeName) {
9030 QualType T =
9031 CheckTypenameType(Keyword: ElaboratedTypeKeyword::Typename, KeywordLoc: TypenameKWLoc,
9032 QualifierLoc: SS.getWithLocInContext(Context), II: *TypeName, IILoc: NameLoc,
9033 TSI: &TSI, /*DeducedTSTContext=*/false);
9034 if (T.isNull())
9035 return nullptr;
9036 } else {
9037 ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(),
9038 TemplateId->NumArgs);
9039 TypeResult T = ActOnTypenameType(S: CurScope, TypenameLoc: TypenameKWLoc, SS,
9040 TemplateLoc: TemplateId->TemplateKWLoc,
9041 TemplateName: TemplateId->Template, TemplateII: TemplateId->Name,
9042 TemplateIILoc: TemplateId->TemplateNameLoc,
9043 LAngleLoc: TemplateId->LAngleLoc, TemplateArgs: ArgsPtr,
9044 RAngleLoc: TemplateId->RAngleLoc);
9045 if (T.isInvalid())
9046 return nullptr;
9047 if (GetTypeFromParser(Ty: T.get(), TInfo: &TSI).isNull())
9048 return nullptr;
9049 }
9050 return BuildTypeRequirement(Type: TSI);
9051}
9052
9053concepts::Requirement *
9054Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) {
9055 return BuildExprRequirement(E, /*IsSimple=*/IsSatisfied: false, NoexceptLoc,
9056 /*ReturnTypeRequirement=*/{});
9057}
9058
9059concepts::Requirement *
9060Sema::ActOnCompoundRequirement(
9061 Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS,
9062 TemplateIdAnnotation *TypeConstraint, unsigned Depth) {
9063 // C++2a [expr.prim.req.compound] p1.3.3
9064 // [..] the expression is deduced against an invented function template
9065 // F [...] F is a void function template with a single type template
9066 // parameter T declared with the constrained-parameter. Form a new
9067 // cv-qualifier-seq cv by taking the union of const and volatile specifiers
9068 // around the constrained-parameter. F has a single parameter whose
9069 // type-specifier is cv T followed by the abstract-declarator. [...]
9070 //
9071 // The cv part is done in the calling function - we get the concept with
9072 // arguments and the abstract declarator with the correct CV qualification and
9073 // have to synthesize T and the single parameter of F.
9074 auto &II = Context.Idents.get(Name: "expr-type");
9075 auto *TParam = TemplateTypeParmDecl::Create(C: Context, DC: CurContext,
9076 KeyLoc: SourceLocation(),
9077 NameLoc: SourceLocation(), D: Depth,
9078 /*Index=*/P: 0, Id: &II,
9079 /*Typename=*/true,
9080 /*ParameterPack=*/false,
9081 /*HasTypeConstraint=*/true);
9082
9083 if (BuildTypeConstraint(SS, TypeConstraint, ConstrainedParameter: TParam,
9084 /*EllipsisLoc=*/SourceLocation(),
9085 /*AllowUnexpandedPack=*/true))
9086 // Just produce a requirement with no type requirements.
9087 return BuildExprRequirement(E, /*IsSimple=*/IsSatisfied: false, NoexceptLoc, ReturnTypeRequirement: {});
9088
9089 auto *TPL = TemplateParameterList::Create(C: Context, TemplateLoc: SourceLocation(),
9090 LAngleLoc: SourceLocation(),
9091 Params: ArrayRef<NamedDecl *>(TParam),
9092 RAngleLoc: SourceLocation(),
9093 /*RequiresClause=*/nullptr);
9094 return BuildExprRequirement(
9095 E, /*IsSimple=*/IsSatisfied: false, NoexceptLoc,
9096 ReturnTypeRequirement: concepts::ExprRequirement::ReturnTypeRequirement(TPL));
9097}
9098
9099concepts::ExprRequirement *
9100Sema::BuildExprRequirement(
9101 Expr *E, bool IsSimple, SourceLocation NoexceptLoc,
9102 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
9103 auto Status = concepts::ExprRequirement::SS_Satisfied;
9104 ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr;
9105 if (E->isInstantiationDependent() || E->getType()->isPlaceholderType() ||
9106 ReturnTypeRequirement.isDependent())
9107 Status = concepts::ExprRequirement::SS_Dependent;
9108 else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can)
9109 Status = concepts::ExprRequirement::SS_NoexceptNotMet;
9110 else if (ReturnTypeRequirement.isSubstitutionFailure())
9111 Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure;
9112 else if (ReturnTypeRequirement.isTypeConstraint()) {
9113 // C++2a [expr.prim.req]p1.3.3
9114 // The immediately-declared constraint ([temp]) of decltype((E)) shall
9115 // be satisfied.
9116 TemplateParameterList *TPL =
9117 ReturnTypeRequirement.getTypeConstraintTemplateParameterList();
9118 QualType MatchedType =
9119 Context.getReferenceQualifiedType(e: E).getCanonicalType();
9120 llvm::SmallVector<TemplateArgument, 1> Args;
9121 Args.push_back(Elt: TemplateArgument(MatchedType));
9122
9123 auto *Param = cast<TemplateTypeParmDecl>(Val: TPL->getParam(Idx: 0));
9124
9125 MultiLevelTemplateArgumentList MLTAL(Param, Args, /*Final=*/false);
9126 MLTAL.addOuterRetainedLevels(Num: TPL->getDepth());
9127 const TypeConstraint *TC = Param->getTypeConstraint();
9128 assert(TC && "Type Constraint cannot be null here");
9129 auto *IDC = TC->getImmediatelyDeclaredConstraint();
9130 assert(IDC && "ImmediatelyDeclaredConstraint can't be null here.");
9131 ExprResult Constraint = SubstExpr(E: IDC, TemplateArgs: MLTAL);
9132 if (Constraint.isInvalid()) {
9133 return new (Context) concepts::ExprRequirement(
9134 concepts::createSubstDiagAt(S&: *this, Location: IDC->getExprLoc(),
9135 Printer: [&](llvm::raw_ostream &OS) {
9136 IDC->printPretty(OS, /*Helper=*/nullptr,
9137 getPrintingPolicy());
9138 }),
9139 IsSimple, NoexceptLoc, ReturnTypeRequirement);
9140 }
9141 SubstitutedConstraintExpr =
9142 cast<ConceptSpecializationExpr>(Val: Constraint.get());
9143 if (!SubstitutedConstraintExpr->isSatisfied())
9144 Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied;
9145 }
9146 return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc,
9147 ReturnTypeRequirement, Status,
9148 SubstitutedConstraintExpr);
9149}
9150
9151concepts::ExprRequirement *
9152Sema::BuildExprRequirement(
9153 concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic,
9154 bool IsSimple, SourceLocation NoexceptLoc,
9155 concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) {
9156 return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic,
9157 IsSimple, NoexceptLoc,
9158 ReturnTypeRequirement);
9159}
9160
9161concepts::TypeRequirement *
9162Sema::BuildTypeRequirement(TypeSourceInfo *Type) {
9163 return new (Context) concepts::TypeRequirement(Type);
9164}
9165
9166concepts::TypeRequirement *
9167Sema::BuildTypeRequirement(
9168 concepts::Requirement::SubstitutionDiagnostic *SubstDiag) {
9169 return new (Context) concepts::TypeRequirement(SubstDiag);
9170}
9171
9172concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) {
9173 return BuildNestedRequirement(E: Constraint);
9174}
9175
9176concepts::NestedRequirement *
9177Sema::BuildNestedRequirement(Expr *Constraint) {
9178 ConstraintSatisfaction Satisfaction;
9179 if (!Constraint->isInstantiationDependent() &&
9180 CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{},
9181 Constraint->getSourceRange(), Satisfaction))
9182 return nullptr;
9183 return new (Context) concepts::NestedRequirement(Context, Constraint,
9184 Satisfaction);
9185}
9186
9187concepts::NestedRequirement *
9188Sema::BuildNestedRequirement(StringRef InvalidConstraintEntity,
9189 const ASTConstraintSatisfaction &Satisfaction) {
9190 return new (Context) concepts::NestedRequirement(
9191 InvalidConstraintEntity,
9192 ASTConstraintSatisfaction::Rebuild(C: Context, Satisfaction));
9193}
9194
9195RequiresExprBodyDecl *
9196Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc,
9197 ArrayRef<ParmVarDecl *> LocalParameters,
9198 Scope *BodyScope) {
9199 assert(BodyScope);
9200
9201 RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(C&: Context, DC: CurContext,
9202 StartLoc: RequiresKWLoc);
9203
9204 PushDeclContext(BodyScope, Body);
9205
9206 for (ParmVarDecl *Param : LocalParameters) {
9207 if (Param->hasDefaultArg())
9208 // C++2a [expr.prim.req] p4
9209 // [...] A local parameter of a requires-expression shall not have a
9210 // default argument. [...]
9211 Diag(Param->getDefaultArgRange().getBegin(),
9212 diag::err_requires_expr_local_parameter_default_argument);
9213 // Ignore default argument and move on
9214
9215 Param->setDeclContext(Body);
9216 // If this has an identifier, add it to the scope stack.
9217 if (Param->getIdentifier()) {
9218 CheckShadow(BodyScope, Param);
9219 PushOnScopeChains(Param, BodyScope);
9220 }
9221 }
9222 return Body;
9223}
9224
9225void Sema::ActOnFinishRequiresExpr() {
9226 assert(CurContext && "DeclContext imbalance!");
9227 CurContext = CurContext->getLexicalParent();
9228 assert(CurContext && "Popped translation unit!");
9229}
9230
9231ExprResult Sema::ActOnRequiresExpr(
9232 SourceLocation RequiresKWLoc, RequiresExprBodyDecl *Body,
9233 SourceLocation LParenLoc, ArrayRef<ParmVarDecl *> LocalParameters,
9234 SourceLocation RParenLoc, ArrayRef<concepts::Requirement *> Requirements,
9235 SourceLocation ClosingBraceLoc) {
9236 auto *RE = RequiresExpr::Create(C&: Context, RequiresKWLoc, Body, LParenLoc,
9237 LocalParameters, RParenLoc, Requirements,
9238 RBraceLoc: ClosingBraceLoc);
9239 if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE))
9240 return ExprError();
9241 return RE;
9242}
9243

source code of clang/lib/Sema/SemaExprCXX.cpp