| 1 | //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// |
| 9 | /// \file |
| 10 | /// Implements semantic analysis for C++ expressions. |
| 11 | /// |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #include "TreeTransform.h" |
| 15 | #include "TypeLocBuilder.h" |
| 16 | #include "clang/AST/ASTContext.h" |
| 17 | #include "clang/AST/ASTLambda.h" |
| 18 | #include "clang/AST/CXXInheritance.h" |
| 19 | #include "clang/AST/CharUnits.h" |
| 20 | #include "clang/AST/DeclCXX.h" |
| 21 | #include "clang/AST/DeclObjC.h" |
| 22 | #include "clang/AST/DynamicRecursiveASTVisitor.h" |
| 23 | #include "clang/AST/ExprCXX.h" |
| 24 | #include "clang/AST/ExprConcepts.h" |
| 25 | #include "clang/AST/ExprObjC.h" |
| 26 | #include "clang/AST/Type.h" |
| 27 | #include "clang/AST/TypeLoc.h" |
| 28 | #include "clang/Basic/AlignedAllocation.h" |
| 29 | #include "clang/Basic/DiagnosticSema.h" |
| 30 | #include "clang/Basic/PartialDiagnostic.h" |
| 31 | #include "clang/Basic/TargetInfo.h" |
| 32 | #include "clang/Basic/TokenKinds.h" |
| 33 | #include "clang/Lex/Preprocessor.h" |
| 34 | #include "clang/Sema/DeclSpec.h" |
| 35 | #include "clang/Sema/EnterExpressionEvaluationContext.h" |
| 36 | #include "clang/Sema/Initialization.h" |
| 37 | #include "clang/Sema/Lookup.h" |
| 38 | #include "clang/Sema/ParsedTemplate.h" |
| 39 | #include "clang/Sema/Scope.h" |
| 40 | #include "clang/Sema/ScopeInfo.h" |
| 41 | #include "clang/Sema/SemaCUDA.h" |
| 42 | #include "clang/Sema/SemaHLSL.h" |
| 43 | #include "clang/Sema/SemaInternal.h" |
| 44 | #include "clang/Sema/SemaLambda.h" |
| 45 | #include "clang/Sema/SemaObjC.h" |
| 46 | #include "clang/Sema/SemaPPC.h" |
| 47 | #include "clang/Sema/Template.h" |
| 48 | #include "clang/Sema/TemplateDeduction.h" |
| 49 | #include "llvm/ADT/APInt.h" |
| 50 | #include "llvm/ADT/STLExtras.h" |
| 51 | #include "llvm/ADT/StringExtras.h" |
| 52 | #include "llvm/Support/ErrorHandling.h" |
| 53 | #include "llvm/Support/TypeSize.h" |
| 54 | #include <optional> |
| 55 | using namespace clang; |
| 56 | using namespace sema; |
| 57 | |
| 58 | ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS, |
| 59 | SourceLocation NameLoc, |
| 60 | const IdentifierInfo &Name) { |
| 61 | NestedNameSpecifier *NNS = SS.getScopeRep(); |
| 62 | if ([[maybe_unused]] const IdentifierInfo *II = NNS->getAsIdentifier()) |
| 63 | assert(II == &Name && "not a constructor name" ); |
| 64 | |
| 65 | QualType Type(NNS->translateToType(Context), 0); |
| 66 | // This reference to the type is located entirely at the location of the |
| 67 | // final identifier in the qualified-id. |
| 68 | return CreateParsedType(T: Type, |
| 69 | TInfo: Context.getTrivialTypeSourceInfo(T: Type, Loc: NameLoc)); |
| 70 | } |
| 71 | |
| 72 | ParsedType Sema::getConstructorName(const IdentifierInfo &II, |
| 73 | SourceLocation NameLoc, Scope *S, |
| 74 | CXXScopeSpec &SS, bool EnteringContext) { |
| 75 | CXXRecordDecl *CurClass = getCurrentClass(S, SS: &SS); |
| 76 | assert(CurClass && &II == CurClass->getIdentifier() && |
| 77 | "not a constructor name" ); |
| 78 | |
| 79 | // When naming a constructor as a member of a dependent context (eg, in a |
| 80 | // friend declaration or an inherited constructor declaration), form an |
| 81 | // unresolved "typename" type. |
| 82 | if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) { |
| 83 | QualType T = Context.getDependentNameType(Keyword: ElaboratedTypeKeyword::None, |
| 84 | NNS: SS.getScopeRep(), Name: &II); |
| 85 | return ParsedType::make(P: T); |
| 86 | } |
| 87 | |
| 88 | if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass)) |
| 89 | return ParsedType(); |
| 90 | |
| 91 | // Find the injected-class-name declaration. Note that we make no attempt to |
| 92 | // diagnose cases where the injected-class-name is shadowed: the only |
| 93 | // declaration that can validly shadow the injected-class-name is a |
| 94 | // non-static data member, and if the class contains both a non-static data |
| 95 | // member and a constructor then it is ill-formed (we check that in |
| 96 | // CheckCompletedCXXClass). |
| 97 | CXXRecordDecl *InjectedClassName = nullptr; |
| 98 | for (NamedDecl *ND : CurClass->lookup(&II)) { |
| 99 | auto *RD = dyn_cast<CXXRecordDecl>(ND); |
| 100 | if (RD && RD->isInjectedClassName()) { |
| 101 | InjectedClassName = RD; |
| 102 | break; |
| 103 | } |
| 104 | } |
| 105 | if (!InjectedClassName) { |
| 106 | if (!CurClass->isInvalidDecl()) { |
| 107 | // FIXME: RequireCompleteDeclContext doesn't check dependent contexts |
| 108 | // properly. Work around it here for now. |
| 109 | Diag(SS.getLastQualifierNameLoc(), |
| 110 | diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange(); |
| 111 | } |
| 112 | return ParsedType(); |
| 113 | } |
| 114 | |
| 115 | QualType T = Context.getTypeDeclType(InjectedClassName); |
| 116 | DiagnoseUseOfDecl(InjectedClassName, NameLoc); |
| 117 | MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false); |
| 118 | |
| 119 | return ParsedType::make(P: T); |
| 120 | } |
| 121 | |
| 122 | ParsedType Sema::getDestructorName(const IdentifierInfo &II, |
| 123 | SourceLocation NameLoc, Scope *S, |
| 124 | CXXScopeSpec &SS, ParsedType ObjectTypePtr, |
| 125 | bool EnteringContext) { |
| 126 | // Determine where to perform name lookup. |
| 127 | |
| 128 | // FIXME: This area of the standard is very messy, and the current |
| 129 | // wording is rather unclear about which scopes we search for the |
| 130 | // destructor name; see core issues 399 and 555. Issue 399 in |
| 131 | // particular shows where the current description of destructor name |
| 132 | // lookup is completely out of line with existing practice, e.g., |
| 133 | // this appears to be ill-formed: |
| 134 | // |
| 135 | // namespace N { |
| 136 | // template <typename T> struct S { |
| 137 | // ~S(); |
| 138 | // }; |
| 139 | // } |
| 140 | // |
| 141 | // void f(N::S<int>* s) { |
| 142 | // s->N::S<int>::~S(); |
| 143 | // } |
| 144 | // |
| 145 | // See also PR6358 and PR6359. |
| 146 | // |
| 147 | // For now, we accept all the cases in which the name given could plausibly |
| 148 | // be interpreted as a correct destructor name, issuing off-by-default |
| 149 | // extension diagnostics on the cases that don't strictly conform to the |
| 150 | // C++20 rules. This basically means we always consider looking in the |
| 151 | // nested-name-specifier prefix, the complete nested-name-specifier, and |
| 152 | // the scope, and accept if we find the expected type in any of the three |
| 153 | // places. |
| 154 | |
| 155 | if (SS.isInvalid()) |
| 156 | return nullptr; |
| 157 | |
| 158 | // Whether we've failed with a diagnostic already. |
| 159 | bool Failed = false; |
| 160 | |
| 161 | llvm::SmallVector<NamedDecl*, 8> FoundDecls; |
| 162 | llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet; |
| 163 | |
| 164 | // If we have an object type, it's because we are in a |
| 165 | // pseudo-destructor-expression or a member access expression, and |
| 166 | // we know what type we're looking for. |
| 167 | QualType SearchType = |
| 168 | ObjectTypePtr ? GetTypeFromParser(Ty: ObjectTypePtr) : QualType(); |
| 169 | |
| 170 | auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType { |
| 171 | auto IsAcceptableResult = [&](NamedDecl *D) -> bool { |
| 172 | auto *Type = dyn_cast<TypeDecl>(Val: D->getUnderlyingDecl()); |
| 173 | if (!Type) |
| 174 | return false; |
| 175 | |
| 176 | if (SearchType.isNull() || SearchType->isDependentType()) |
| 177 | return true; |
| 178 | |
| 179 | QualType T = Context.getTypeDeclType(Decl: Type); |
| 180 | return Context.hasSameUnqualifiedType(T1: T, T2: SearchType); |
| 181 | }; |
| 182 | |
| 183 | unsigned NumAcceptableResults = 0; |
| 184 | for (NamedDecl *D : Found) { |
| 185 | if (IsAcceptableResult(D)) |
| 186 | ++NumAcceptableResults; |
| 187 | |
| 188 | // Don't list a class twice in the lookup failure diagnostic if it's |
| 189 | // found by both its injected-class-name and by the name in the enclosing |
| 190 | // scope. |
| 191 | if (auto *RD = dyn_cast<CXXRecordDecl>(Val: D)) |
| 192 | if (RD->isInjectedClassName()) |
| 193 | D = cast<NamedDecl>(RD->getParent()); |
| 194 | |
| 195 | if (FoundDeclSet.insert(D).second) |
| 196 | FoundDecls.push_back(Elt: D); |
| 197 | } |
| 198 | |
| 199 | // As an extension, attempt to "fix" an ambiguity by erasing all non-type |
| 200 | // results, and all non-matching results if we have a search type. It's not |
| 201 | // clear what the right behavior is if destructor lookup hits an ambiguity, |
| 202 | // but other compilers do generally accept at least some kinds of |
| 203 | // ambiguity. |
| 204 | if (Found.isAmbiguous() && NumAcceptableResults == 1) { |
| 205 | Diag(NameLoc, diag::ext_dtor_name_ambiguous); |
| 206 | LookupResult::Filter F = Found.makeFilter(); |
| 207 | while (F.hasNext()) { |
| 208 | NamedDecl *D = F.next(); |
| 209 | if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl())) |
| 210 | Diag(D->getLocation(), diag::note_destructor_type_here) |
| 211 | << Context.getTypeDeclType(TD); |
| 212 | else |
| 213 | Diag(D->getLocation(), diag::note_destructor_nontype_here); |
| 214 | |
| 215 | if (!IsAcceptableResult(D)) |
| 216 | F.erase(); |
| 217 | } |
| 218 | F.done(); |
| 219 | } |
| 220 | |
| 221 | if (Found.isAmbiguous()) |
| 222 | Failed = true; |
| 223 | |
| 224 | if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) { |
| 225 | if (IsAcceptableResult(Type)) { |
| 226 | QualType T = Context.getTypeDeclType(Decl: Type); |
| 227 | MarkAnyDeclReferenced(Loc: Type->getLocation(), D: Type, /*OdrUse=*/MightBeOdrUse: false); |
| 228 | return CreateParsedType( |
| 229 | T: Context.getElaboratedType(Keyword: ElaboratedTypeKeyword::None, NNS: nullptr, NamedType: T), |
| 230 | TInfo: Context.getTrivialTypeSourceInfo(T, Loc: NameLoc)); |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | return nullptr; |
| 235 | }; |
| 236 | |
| 237 | bool IsDependent = false; |
| 238 | |
| 239 | auto LookupInObjectType = [&]() -> ParsedType { |
| 240 | if (Failed || SearchType.isNull()) |
| 241 | return nullptr; |
| 242 | |
| 243 | IsDependent |= SearchType->isDependentType(); |
| 244 | |
| 245 | LookupResult Found(*this, &II, NameLoc, LookupDestructorName); |
| 246 | DeclContext *LookupCtx = computeDeclContext(T: SearchType); |
| 247 | if (!LookupCtx) |
| 248 | return nullptr; |
| 249 | LookupQualifiedName(R&: Found, LookupCtx); |
| 250 | return CheckLookupResult(Found); |
| 251 | }; |
| 252 | |
| 253 | auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType { |
| 254 | if (Failed) |
| 255 | return nullptr; |
| 256 | |
| 257 | IsDependent |= isDependentScopeSpecifier(SS: LookupSS); |
| 258 | DeclContext *LookupCtx = computeDeclContext(SS: LookupSS, EnteringContext); |
| 259 | if (!LookupCtx) |
| 260 | return nullptr; |
| 261 | |
| 262 | LookupResult Found(*this, &II, NameLoc, LookupDestructorName); |
| 263 | if (RequireCompleteDeclContext(SS&: LookupSS, DC: LookupCtx)) { |
| 264 | Failed = true; |
| 265 | return nullptr; |
| 266 | } |
| 267 | LookupQualifiedName(R&: Found, LookupCtx); |
| 268 | return CheckLookupResult(Found); |
| 269 | }; |
| 270 | |
| 271 | auto LookupInScope = [&]() -> ParsedType { |
| 272 | if (Failed || !S) |
| 273 | return nullptr; |
| 274 | |
| 275 | LookupResult Found(*this, &II, NameLoc, LookupDestructorName); |
| 276 | LookupName(R&: Found, S); |
| 277 | return CheckLookupResult(Found); |
| 278 | }; |
| 279 | |
| 280 | // C++2a [basic.lookup.qual]p6: |
| 281 | // In a qualified-id of the form |
| 282 | // |
| 283 | // nested-name-specifier[opt] type-name :: ~ type-name |
| 284 | // |
| 285 | // the second type-name is looked up in the same scope as the first. |
| 286 | // |
| 287 | // We interpret this as meaning that if you do a dual-scope lookup for the |
| 288 | // first name, you also do a dual-scope lookup for the second name, per |
| 289 | // C++ [basic.lookup.classref]p4: |
| 290 | // |
| 291 | // If the id-expression in a class member access is a qualified-id of the |
| 292 | // form |
| 293 | // |
| 294 | // class-name-or-namespace-name :: ... |
| 295 | // |
| 296 | // the class-name-or-namespace-name following the . or -> is first looked |
| 297 | // up in the class of the object expression and the name, if found, is used. |
| 298 | // Otherwise, it is looked up in the context of the entire |
| 299 | // postfix-expression. |
| 300 | // |
| 301 | // This looks in the same scopes as for an unqualified destructor name: |
| 302 | // |
| 303 | // C++ [basic.lookup.classref]p3: |
| 304 | // If the unqualified-id is ~ type-name, the type-name is looked up |
| 305 | // in the context of the entire postfix-expression. If the type T |
| 306 | // of the object expression is of a class type C, the type-name is |
| 307 | // also looked up in the scope of class C. At least one of the |
| 308 | // lookups shall find a name that refers to cv T. |
| 309 | // |
| 310 | // FIXME: The intent is unclear here. Should type-name::~type-name look in |
| 311 | // the scope anyway if it finds a non-matching name declared in the class? |
| 312 | // If both lookups succeed and find a dependent result, which result should |
| 313 | // we retain? (Same question for p->~type-name().) |
| 314 | |
| 315 | if (NestedNameSpecifier *Prefix = |
| 316 | SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) { |
| 317 | // This is |
| 318 | // |
| 319 | // nested-name-specifier type-name :: ~ type-name |
| 320 | // |
| 321 | // Look for the second type-name in the nested-name-specifier. |
| 322 | CXXScopeSpec PrefixSS; |
| 323 | PrefixSS.Adopt(Other: NestedNameSpecifierLoc(Prefix, SS.location_data())); |
| 324 | if (ParsedType T = LookupInNestedNameSpec(PrefixSS)) |
| 325 | return T; |
| 326 | } else { |
| 327 | // This is one of |
| 328 | // |
| 329 | // type-name :: ~ type-name |
| 330 | // ~ type-name |
| 331 | // |
| 332 | // Look in the scope and (if any) the object type. |
| 333 | if (ParsedType T = LookupInScope()) |
| 334 | return T; |
| 335 | if (ParsedType T = LookupInObjectType()) |
| 336 | return T; |
| 337 | } |
| 338 | |
| 339 | if (Failed) |
| 340 | return nullptr; |
| 341 | |
| 342 | if (IsDependent) { |
| 343 | // We didn't find our type, but that's OK: it's dependent anyway. |
| 344 | |
| 345 | // FIXME: What if we have no nested-name-specifier? |
| 346 | TypeSourceInfo *TSI = nullptr; |
| 347 | QualType T = |
| 348 | CheckTypenameType(Keyword: ElaboratedTypeKeyword::None, KeywordLoc: SourceLocation(), |
| 349 | QualifierLoc: SS.getWithLocInContext(Context), II, IILoc: NameLoc, TSI: &TSI, |
| 350 | /*DeducedTSTContext=*/true); |
| 351 | return CreateParsedType(T, TInfo: TSI); |
| 352 | } |
| 353 | |
| 354 | // The remaining cases are all non-standard extensions imitating the behavior |
| 355 | // of various other compilers. |
| 356 | unsigned NumNonExtensionDecls = FoundDecls.size(); |
| 357 | |
| 358 | if (SS.isSet()) { |
| 359 | // For compatibility with older broken C++ rules and existing code, |
| 360 | // |
| 361 | // nested-name-specifier :: ~ type-name |
| 362 | // |
| 363 | // also looks for type-name within the nested-name-specifier. |
| 364 | if (ParsedType T = LookupInNestedNameSpec(SS)) { |
| 365 | Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope) |
| 366 | << SS.getRange() |
| 367 | << FixItHint::CreateInsertion(SS.getEndLoc(), |
| 368 | ("::" + II.getName()).str()); |
| 369 | return T; |
| 370 | } |
| 371 | |
| 372 | // For compatibility with other compilers and older versions of Clang, |
| 373 | // |
| 374 | // nested-name-specifier type-name :: ~ type-name |
| 375 | // |
| 376 | // also looks for type-name in the scope. Unfortunately, we can't |
| 377 | // reasonably apply this fallback for dependent nested-name-specifiers. |
| 378 | if (SS.isValid() && SS.getScopeRep()->getPrefix()) { |
| 379 | if (ParsedType T = LookupInScope()) { |
| 380 | Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope) |
| 381 | << FixItHint::CreateRemoval(SS.getRange()); |
| 382 | Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here) |
| 383 | << GetTypeFromParser(T); |
| 384 | return T; |
| 385 | } |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | // We didn't find anything matching; tell the user what we did find (if |
| 390 | // anything). |
| 391 | |
| 392 | // Don't tell the user about declarations we shouldn't have found. |
| 393 | FoundDecls.resize(N: NumNonExtensionDecls); |
| 394 | |
| 395 | // List types before non-types. |
| 396 | llvm::stable_sort(Range&: FoundDecls, C: [](NamedDecl *A, NamedDecl *B) { |
| 397 | return isa<TypeDecl>(Val: A->getUnderlyingDecl()) > |
| 398 | isa<TypeDecl>(Val: B->getUnderlyingDecl()); |
| 399 | }); |
| 400 | |
| 401 | // Suggest a fixit to properly name the destroyed type. |
| 402 | auto MakeFixItHint = [&]{ |
| 403 | const CXXRecordDecl *Destroyed = nullptr; |
| 404 | // FIXME: If we have a scope specifier, suggest its last component? |
| 405 | if (!SearchType.isNull()) |
| 406 | Destroyed = SearchType->getAsCXXRecordDecl(); |
| 407 | else if (S) |
| 408 | Destroyed = dyn_cast_or_null<CXXRecordDecl>(Val: S->getEntity()); |
| 409 | if (Destroyed) |
| 410 | return FixItHint::CreateReplacement(SourceRange(NameLoc), |
| 411 | Destroyed->getNameAsString()); |
| 412 | return FixItHint(); |
| 413 | }; |
| 414 | |
| 415 | if (FoundDecls.empty()) { |
| 416 | // FIXME: Attempt typo-correction? |
| 417 | Diag(NameLoc, diag::err_undeclared_destructor_name) |
| 418 | << &II << MakeFixItHint(); |
| 419 | } else if (!SearchType.isNull() && FoundDecls.size() == 1) { |
| 420 | if (auto *TD = dyn_cast<TypeDecl>(Val: FoundDecls[0]->getUnderlyingDecl())) { |
| 421 | assert(!SearchType.isNull() && |
| 422 | "should only reject a type result if we have a search type" ); |
| 423 | QualType T = Context.getTypeDeclType(Decl: TD); |
| 424 | Diag(NameLoc, diag::err_destructor_expr_type_mismatch) |
| 425 | << T << SearchType << MakeFixItHint(); |
| 426 | } else { |
| 427 | Diag(NameLoc, diag::err_destructor_expr_nontype) |
| 428 | << &II << MakeFixItHint(); |
| 429 | } |
| 430 | } else { |
| 431 | Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype |
| 432 | : diag::err_destructor_expr_mismatch) |
| 433 | << &II << SearchType << MakeFixItHint(); |
| 434 | } |
| 435 | |
| 436 | for (NamedDecl *FoundD : FoundDecls) { |
| 437 | if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl())) |
| 438 | Diag(FoundD->getLocation(), diag::note_destructor_type_here) |
| 439 | << Context.getTypeDeclType(TD); |
| 440 | else |
| 441 | Diag(FoundD->getLocation(), diag::note_destructor_nontype_here) |
| 442 | << FoundD; |
| 443 | } |
| 444 | |
| 445 | return nullptr; |
| 446 | } |
| 447 | |
| 448 | ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS, |
| 449 | ParsedType ObjectType) { |
| 450 | if (DS.getTypeSpecType() == DeclSpec::TST_error) |
| 451 | return nullptr; |
| 452 | |
| 453 | if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) { |
| 454 | Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); |
| 455 | return nullptr; |
| 456 | } |
| 457 | |
| 458 | assert(DS.getTypeSpecType() == DeclSpec::TST_decltype && |
| 459 | "unexpected type in getDestructorType" ); |
| 460 | QualType T = BuildDecltypeType(E: DS.getRepAsExpr()); |
| 461 | |
| 462 | // If we know the type of the object, check that the correct destructor |
| 463 | // type was named now; we can give better diagnostics this way. |
| 464 | QualType SearchType = GetTypeFromParser(Ty: ObjectType); |
| 465 | if (!SearchType.isNull() && !SearchType->isDependentType() && |
| 466 | !Context.hasSameUnqualifiedType(T1: T, T2: SearchType)) { |
| 467 | Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch) |
| 468 | << T << SearchType; |
| 469 | return nullptr; |
| 470 | } |
| 471 | |
| 472 | return ParsedType::make(P: T); |
| 473 | } |
| 474 | |
| 475 | bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS, |
| 476 | const UnqualifiedId &Name, bool IsUDSuffix) { |
| 477 | assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId); |
| 478 | if (!IsUDSuffix) { |
| 479 | // [over.literal] p8 |
| 480 | // |
| 481 | // double operator""_Bq(long double); // OK: not a reserved identifier |
| 482 | // double operator"" _Bq(long double); // ill-formed, no diagnostic required |
| 483 | const IdentifierInfo *II = Name.Identifier; |
| 484 | ReservedIdentifierStatus Status = II->isReserved(LangOpts: PP.getLangOpts()); |
| 485 | SourceLocation Loc = Name.getEndLoc(); |
| 486 | |
| 487 | auto Hint = FixItHint::CreateReplacement( |
| 488 | RemoveRange: Name.getSourceRange(), |
| 489 | Code: (StringRef("operator\"\"" ) + II->getName()).str()); |
| 490 | |
| 491 | // Only emit this diagnostic if we start with an underscore, else the |
| 492 | // diagnostic for C++11 requiring a space between the quotes and the |
| 493 | // identifier conflicts with this and gets confusing. The diagnostic stating |
| 494 | // this is a reserved name should force the underscore, which gets this |
| 495 | // back. |
| 496 | if (II->isReservedLiteralSuffixId() != |
| 497 | ReservedLiteralSuffixIdStatus::NotStartsWithUnderscore) |
| 498 | Diag(Loc, diag::warn_deprecated_literal_operator_id) << II << Hint; |
| 499 | |
| 500 | if (isReservedInAllContexts(Status)) |
| 501 | Diag(Loc, diag::warn_reserved_extern_symbol) |
| 502 | << II << static_cast<int>(Status) << Hint; |
| 503 | } |
| 504 | |
| 505 | if (!SS.isValid()) |
| 506 | return false; |
| 507 | |
| 508 | switch (SS.getScopeRep()->getKind()) { |
| 509 | case NestedNameSpecifier::Identifier: |
| 510 | case NestedNameSpecifier::TypeSpec: |
| 511 | // Per C++11 [over.literal]p2, literal operators can only be declared at |
| 512 | // namespace scope. Therefore, this unqualified-id cannot name anything. |
| 513 | // Reject it early, because we have no AST representation for this in the |
| 514 | // case where the scope is dependent. |
| 515 | Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace) |
| 516 | << SS.getScopeRep(); |
| 517 | return true; |
| 518 | |
| 519 | case NestedNameSpecifier::Global: |
| 520 | case NestedNameSpecifier::Super: |
| 521 | case NestedNameSpecifier::Namespace: |
| 522 | case NestedNameSpecifier::NamespaceAlias: |
| 523 | return false; |
| 524 | } |
| 525 | |
| 526 | llvm_unreachable("unknown nested name specifier kind" ); |
| 527 | } |
| 528 | |
| 529 | ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, |
| 530 | SourceLocation TypeidLoc, |
| 531 | TypeSourceInfo *Operand, |
| 532 | SourceLocation RParenLoc) { |
| 533 | // C++ [expr.typeid]p4: |
| 534 | // The top-level cv-qualifiers of the lvalue expression or the type-id |
| 535 | // that is the operand of typeid are always ignored. |
| 536 | // If the type of the type-id is a class type or a reference to a class |
| 537 | // type, the class shall be completely-defined. |
| 538 | Qualifiers Quals; |
| 539 | QualType T |
| 540 | = Context.getUnqualifiedArrayType(T: Operand->getType().getNonReferenceType(), |
| 541 | Quals); |
| 542 | if (T->getAs<RecordType>() && |
| 543 | RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) |
| 544 | return ExprError(); |
| 545 | |
| 546 | if (T->isVariablyModifiedType()) |
| 547 | return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T); |
| 548 | |
| 549 | if (CheckQualifiedFunctionForTypeId(T, Loc: TypeidLoc)) |
| 550 | return ExprError(); |
| 551 | |
| 552 | return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand, |
| 553 | SourceRange(TypeidLoc, RParenLoc)); |
| 554 | } |
| 555 | |
| 556 | ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, |
| 557 | SourceLocation TypeidLoc, |
| 558 | Expr *E, |
| 559 | SourceLocation RParenLoc) { |
| 560 | bool WasEvaluated = false; |
| 561 | if (E && !E->isTypeDependent()) { |
| 562 | if (E->hasPlaceholderType()) { |
| 563 | ExprResult result = CheckPlaceholderExpr(E); |
| 564 | if (result.isInvalid()) return ExprError(); |
| 565 | E = result.get(); |
| 566 | } |
| 567 | |
| 568 | QualType T = E->getType(); |
| 569 | if (const RecordType *RecordT = T->getAs<RecordType>()) { |
| 570 | CXXRecordDecl *RecordD = cast<CXXRecordDecl>(Val: RecordT->getDecl()); |
| 571 | // C++ [expr.typeid]p3: |
| 572 | // [...] If the type of the expression is a class type, the class |
| 573 | // shall be completely-defined. |
| 574 | if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) |
| 575 | return ExprError(); |
| 576 | |
| 577 | // C++ [expr.typeid]p3: |
| 578 | // When typeid is applied to an expression other than an glvalue of a |
| 579 | // polymorphic class type [...] [the] expression is an unevaluated |
| 580 | // operand. [...] |
| 581 | if (RecordD->isPolymorphic() && E->isGLValue()) { |
| 582 | if (isUnevaluatedContext()) { |
| 583 | // The operand was processed in unevaluated context, switch the |
| 584 | // context and recheck the subexpression. |
| 585 | ExprResult Result = TransformToPotentiallyEvaluated(E); |
| 586 | if (Result.isInvalid()) |
| 587 | return ExprError(); |
| 588 | E = Result.get(); |
| 589 | } |
| 590 | |
| 591 | // We require a vtable to query the type at run time. |
| 592 | MarkVTableUsed(Loc: TypeidLoc, Class: RecordD); |
| 593 | WasEvaluated = true; |
| 594 | } |
| 595 | } |
| 596 | |
| 597 | ExprResult Result = CheckUnevaluatedOperand(E); |
| 598 | if (Result.isInvalid()) |
| 599 | return ExprError(); |
| 600 | E = Result.get(); |
| 601 | |
| 602 | // C++ [expr.typeid]p4: |
| 603 | // [...] If the type of the type-id is a reference to a possibly |
| 604 | // cv-qualified type, the result of the typeid expression refers to a |
| 605 | // std::type_info object representing the cv-unqualified referenced |
| 606 | // type. |
| 607 | Qualifiers Quals; |
| 608 | QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals); |
| 609 | if (!Context.hasSameType(T1: T, T2: UnqualT)) { |
| 610 | T = UnqualT; |
| 611 | E = ImpCastExprToType(E, Type: UnqualT, CK: CK_NoOp, VK: E->getValueKind()).get(); |
| 612 | } |
| 613 | } |
| 614 | |
| 615 | if (E->getType()->isVariablyModifiedType()) |
| 616 | return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) |
| 617 | << E->getType()); |
| 618 | else if (!inTemplateInstantiation() && |
| 619 | E->HasSideEffects(Ctx: Context, IncludePossibleEffects: WasEvaluated)) { |
| 620 | // The expression operand for typeid is in an unevaluated expression |
| 621 | // context, so side effects could result in unintended consequences. |
| 622 | Diag(E->getExprLoc(), WasEvaluated |
| 623 | ? diag::warn_side_effects_typeid |
| 624 | : diag::warn_side_effects_unevaluated_context); |
| 625 | } |
| 626 | |
| 627 | return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E, |
| 628 | SourceRange(TypeidLoc, RParenLoc)); |
| 629 | } |
| 630 | |
| 631 | /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression); |
| 632 | ExprResult |
| 633 | Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, |
| 634 | bool isType, void *TyOrExpr, SourceLocation RParenLoc) { |
| 635 | // typeid is not supported in OpenCL. |
| 636 | if (getLangOpts().OpenCLCPlusPlus) { |
| 637 | return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported) |
| 638 | << "typeid" ); |
| 639 | } |
| 640 | |
| 641 | // Find the std::type_info type. |
| 642 | if (!getStdNamespace()) |
| 643 | return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); |
| 644 | |
| 645 | if (!CXXTypeInfoDecl) { |
| 646 | IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get(Name: "type_info" ); |
| 647 | LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); |
| 648 | LookupQualifiedName(R, getStdNamespace()); |
| 649 | CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); |
| 650 | // Microsoft's typeinfo doesn't have type_info in std but in the global |
| 651 | // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153. |
| 652 | if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) { |
| 653 | LookupQualifiedName(R, Context.getTranslationUnitDecl()); |
| 654 | CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); |
| 655 | } |
| 656 | if (!CXXTypeInfoDecl) |
| 657 | return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); |
| 658 | } |
| 659 | |
| 660 | if (!getLangOpts().RTTI) { |
| 661 | return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti)); |
| 662 | } |
| 663 | |
| 664 | QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl); |
| 665 | |
| 666 | if (isType) { |
| 667 | // The operand is a type; handle it as such. |
| 668 | TypeSourceInfo *TInfo = nullptr; |
| 669 | QualType T = GetTypeFromParser(Ty: ParsedType::getFromOpaquePtr(P: TyOrExpr), |
| 670 | TInfo: &TInfo); |
| 671 | if (T.isNull()) |
| 672 | return ExprError(); |
| 673 | |
| 674 | if (!TInfo) |
| 675 | TInfo = Context.getTrivialTypeSourceInfo(T, Loc: OpLoc); |
| 676 | |
| 677 | return BuildCXXTypeId(TypeInfoType, TypeidLoc: OpLoc, Operand: TInfo, RParenLoc); |
| 678 | } |
| 679 | |
| 680 | // The operand is an expression. |
| 681 | ExprResult Result = |
| 682 | BuildCXXTypeId(TypeInfoType, TypeidLoc: OpLoc, E: (Expr *)TyOrExpr, RParenLoc); |
| 683 | |
| 684 | if (!getLangOpts().RTTIData && !Result.isInvalid()) |
| 685 | if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get())) |
| 686 | if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context)) |
| 687 | Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled) |
| 688 | << (getDiagnostics().getDiagnosticOptions().getFormat() == |
| 689 | DiagnosticOptions::MSVC); |
| 690 | return Result; |
| 691 | } |
| 692 | |
| 693 | /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to |
| 694 | /// a single GUID. |
| 695 | static void |
| 696 | getUuidAttrOfType(Sema &SemaRef, QualType QT, |
| 697 | llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) { |
| 698 | // Optionally remove one level of pointer, reference or array indirection. |
| 699 | const Type *Ty = QT.getTypePtr(); |
| 700 | if (QT->isPointerOrReferenceType()) |
| 701 | Ty = QT->getPointeeType().getTypePtr(); |
| 702 | else if (QT->isArrayType()) |
| 703 | Ty = Ty->getBaseElementTypeUnsafe(); |
| 704 | |
| 705 | const auto *TD = Ty->getAsTagDecl(); |
| 706 | if (!TD) |
| 707 | return; |
| 708 | |
| 709 | if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) { |
| 710 | UuidAttrs.insert(Uuid); |
| 711 | return; |
| 712 | } |
| 713 | |
| 714 | // __uuidof can grab UUIDs from template arguments. |
| 715 | if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Val: TD)) { |
| 716 | const TemplateArgumentList &TAL = CTSD->getTemplateArgs(); |
| 717 | for (const TemplateArgument &TA : TAL.asArray()) { |
| 718 | const UuidAttr *UuidForTA = nullptr; |
| 719 | if (TA.getKind() == TemplateArgument::Type) |
| 720 | getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs); |
| 721 | else if (TA.getKind() == TemplateArgument::Declaration) |
| 722 | getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs); |
| 723 | |
| 724 | if (UuidForTA) |
| 725 | UuidAttrs.insert(UuidForTA); |
| 726 | } |
| 727 | } |
| 728 | } |
| 729 | |
| 730 | ExprResult Sema::BuildCXXUuidof(QualType Type, |
| 731 | SourceLocation TypeidLoc, |
| 732 | TypeSourceInfo *Operand, |
| 733 | SourceLocation RParenLoc) { |
| 734 | MSGuidDecl *Guid = nullptr; |
| 735 | if (!Operand->getType()->isDependentType()) { |
| 736 | llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; |
| 737 | getUuidAttrOfType(*this, Operand->getType(), UuidAttrs); |
| 738 | if (UuidAttrs.empty()) |
| 739 | return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); |
| 740 | if (UuidAttrs.size() > 1) |
| 741 | return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); |
| 742 | Guid = UuidAttrs.back()->getGuidDecl(); |
| 743 | } |
| 744 | |
| 745 | return new (Context) |
| 746 | CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc)); |
| 747 | } |
| 748 | |
| 749 | ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc, |
| 750 | Expr *E, SourceLocation RParenLoc) { |
| 751 | MSGuidDecl *Guid = nullptr; |
| 752 | if (!E->getType()->isDependentType()) { |
| 753 | if (E->isNullPointerConstant(Ctx&: Context, NPC: Expr::NPC_ValueDependentIsNull)) { |
| 754 | // A null pointer results in {00000000-0000-0000-0000-000000000000}. |
| 755 | Guid = Context.getMSGuidDecl(Parts: MSGuidDecl::Parts{}); |
| 756 | } else { |
| 757 | llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; |
| 758 | getUuidAttrOfType(*this, E->getType(), UuidAttrs); |
| 759 | if (UuidAttrs.empty()) |
| 760 | return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); |
| 761 | if (UuidAttrs.size() > 1) |
| 762 | return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); |
| 763 | Guid = UuidAttrs.back()->getGuidDecl(); |
| 764 | } |
| 765 | } |
| 766 | |
| 767 | return new (Context) |
| 768 | CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc)); |
| 769 | } |
| 770 | |
| 771 | /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression); |
| 772 | ExprResult |
| 773 | Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, |
| 774 | bool isType, void *TyOrExpr, SourceLocation RParenLoc) { |
| 775 | QualType GuidType = Context.getMSGuidType(); |
| 776 | GuidType.addConst(); |
| 777 | |
| 778 | if (isType) { |
| 779 | // The operand is a type; handle it as such. |
| 780 | TypeSourceInfo *TInfo = nullptr; |
| 781 | QualType T = GetTypeFromParser(Ty: ParsedType::getFromOpaquePtr(P: TyOrExpr), |
| 782 | TInfo: &TInfo); |
| 783 | if (T.isNull()) |
| 784 | return ExprError(); |
| 785 | |
| 786 | if (!TInfo) |
| 787 | TInfo = Context.getTrivialTypeSourceInfo(T, Loc: OpLoc); |
| 788 | |
| 789 | return BuildCXXUuidof(Type: GuidType, TypeidLoc: OpLoc, Operand: TInfo, RParenLoc); |
| 790 | } |
| 791 | |
| 792 | // The operand is an expression. |
| 793 | return BuildCXXUuidof(Type: GuidType, TypeidLoc: OpLoc, E: (Expr*)TyOrExpr, RParenLoc); |
| 794 | } |
| 795 | |
| 796 | ExprResult |
| 797 | Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { |
| 798 | assert((Kind == tok::kw_true || Kind == tok::kw_false) && |
| 799 | "Unknown C++ Boolean value!" ); |
| 800 | return new (Context) |
| 801 | CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc); |
| 802 | } |
| 803 | |
| 804 | ExprResult |
| 805 | Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { |
| 806 | return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); |
| 807 | } |
| 808 | |
| 809 | ExprResult |
| 810 | Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) { |
| 811 | bool IsThrownVarInScope = false; |
| 812 | if (Ex) { |
| 813 | // C++0x [class.copymove]p31: |
| 814 | // When certain criteria are met, an implementation is allowed to omit the |
| 815 | // copy/move construction of a class object [...] |
| 816 | // |
| 817 | // - in a throw-expression, when the operand is the name of a |
| 818 | // non-volatile automatic object (other than a function or catch- |
| 819 | // clause parameter) whose scope does not extend beyond the end of the |
| 820 | // innermost enclosing try-block (if there is one), the copy/move |
| 821 | // operation from the operand to the exception object (15.1) can be |
| 822 | // omitted by constructing the automatic object directly into the |
| 823 | // exception object |
| 824 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Val: Ex->IgnoreParens())) |
| 825 | if (const auto *Var = dyn_cast<VarDecl>(Val: DRE->getDecl()); |
| 826 | Var && Var->hasLocalStorage() && |
| 827 | !Var->getType().isVolatileQualified()) { |
| 828 | for (; S; S = S->getParent()) { |
| 829 | if (S->isDeclScope(Var)) { |
| 830 | IsThrownVarInScope = true; |
| 831 | break; |
| 832 | } |
| 833 | |
| 834 | // FIXME: Many of the scope checks here seem incorrect. |
| 835 | if (S->getFlags() & |
| 836 | (Scope::FnScope | Scope::ClassScope | Scope::BlockScope | |
| 837 | Scope::ObjCMethodScope | Scope::TryScope)) |
| 838 | break; |
| 839 | } |
| 840 | } |
| 841 | } |
| 842 | |
| 843 | return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope); |
| 844 | } |
| 845 | |
| 846 | ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, |
| 847 | bool IsThrownVarInScope) { |
| 848 | const llvm::Triple &T = Context.getTargetInfo().getTriple(); |
| 849 | const bool IsOpenMPGPUTarget = |
| 850 | getLangOpts().OpenMPIsTargetDevice && (T.isNVPTX() || T.isAMDGCN()); |
| 851 | |
| 852 | DiagnoseExceptionUse(Loc: OpLoc, /* IsTry= */ false); |
| 853 | |
| 854 | // In OpenMP target regions, we replace 'throw' with a trap on GPU targets. |
| 855 | if (IsOpenMPGPUTarget) |
| 856 | targetDiag(OpLoc, diag::warn_throw_not_valid_on_target) << T.str(); |
| 857 | |
| 858 | // Exceptions aren't allowed in CUDA device code. |
| 859 | if (getLangOpts().CUDA) |
| 860 | CUDA().DiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions) |
| 861 | << "throw" << CUDA().CurrentTarget(); |
| 862 | |
| 863 | if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) |
| 864 | Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw" ; |
| 865 | |
| 866 | // Exceptions that escape a compute construct are ill-formed. |
| 867 | if (getLangOpts().OpenACC && getCurScope() && |
| 868 | getCurScope()->isInOpenACCComputeConstructScope(Scope::TryScope)) |
| 869 | Diag(OpLoc, diag::err_acc_branch_in_out_compute_construct) |
| 870 | << /*throw*/ 2 << /*out of*/ 0; |
| 871 | |
| 872 | if (Ex && !Ex->isTypeDependent()) { |
| 873 | // Initialize the exception result. This implicitly weeds out |
| 874 | // abstract types or types with inaccessible copy constructors. |
| 875 | |
| 876 | // C++0x [class.copymove]p31: |
| 877 | // When certain criteria are met, an implementation is allowed to omit the |
| 878 | // copy/move construction of a class object [...] |
| 879 | // |
| 880 | // - in a throw-expression, when the operand is the name of a |
| 881 | // non-volatile automatic object (other than a function or |
| 882 | // catch-clause |
| 883 | // parameter) whose scope does not extend beyond the end of the |
| 884 | // innermost enclosing try-block (if there is one), the copy/move |
| 885 | // operation from the operand to the exception object (15.1) can be |
| 886 | // omitted by constructing the automatic object directly into the |
| 887 | // exception object |
| 888 | NamedReturnInfo NRInfo = |
| 889 | IsThrownVarInScope ? getNamedReturnInfo(E&: Ex) : NamedReturnInfo(); |
| 890 | |
| 891 | QualType ExceptionObjectTy = Context.getExceptionObjectType(T: Ex->getType()); |
| 892 | if (CheckCXXThrowOperand(ThrowLoc: OpLoc, ThrowTy: ExceptionObjectTy, E: Ex)) |
| 893 | return ExprError(); |
| 894 | |
| 895 | InitializedEntity Entity = |
| 896 | InitializedEntity::InitializeException(ThrowLoc: OpLoc, Type: ExceptionObjectTy); |
| 897 | ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Value: Ex); |
| 898 | if (Res.isInvalid()) |
| 899 | return ExprError(); |
| 900 | Ex = Res.get(); |
| 901 | } |
| 902 | |
| 903 | // PPC MMA non-pointer types are not allowed as throw expr types. |
| 904 | if (Ex && Context.getTargetInfo().getTriple().isPPC64()) |
| 905 | PPC().CheckPPCMMAType(Type: Ex->getType(), TypeLoc: Ex->getBeginLoc()); |
| 906 | |
| 907 | return new (Context) |
| 908 | CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope); |
| 909 | } |
| 910 | |
| 911 | static void |
| 912 | collectPublicBases(CXXRecordDecl *RD, |
| 913 | llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen, |
| 914 | llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases, |
| 915 | llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen, |
| 916 | bool ParentIsPublic) { |
| 917 | for (const CXXBaseSpecifier &BS : RD->bases()) { |
| 918 | CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); |
| 919 | bool NewSubobject; |
| 920 | // Virtual bases constitute the same subobject. Non-virtual bases are |
| 921 | // always distinct subobjects. |
| 922 | if (BS.isVirtual()) |
| 923 | NewSubobject = VBases.insert(Ptr: BaseDecl).second; |
| 924 | else |
| 925 | NewSubobject = true; |
| 926 | |
| 927 | if (NewSubobject) |
| 928 | ++SubobjectsSeen[BaseDecl]; |
| 929 | |
| 930 | // Only add subobjects which have public access throughout the entire chain. |
| 931 | bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public; |
| 932 | if (PublicPath) |
| 933 | PublicSubobjectsSeen.insert(X: BaseDecl); |
| 934 | |
| 935 | // Recurse on to each base subobject. |
| 936 | collectPublicBases(RD: BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen, |
| 937 | ParentIsPublic: PublicPath); |
| 938 | } |
| 939 | } |
| 940 | |
| 941 | static void getUnambiguousPublicSubobjects( |
| 942 | CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) { |
| 943 | llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen; |
| 944 | llvm::SmallSet<CXXRecordDecl *, 2> VBases; |
| 945 | llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen; |
| 946 | SubobjectsSeen[RD] = 1; |
| 947 | PublicSubobjectsSeen.insert(X: RD); |
| 948 | collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen, |
| 949 | /*ParentIsPublic=*/true); |
| 950 | |
| 951 | for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) { |
| 952 | // Skip ambiguous objects. |
| 953 | if (SubobjectsSeen[PublicSubobject] > 1) |
| 954 | continue; |
| 955 | |
| 956 | Objects.push_back(Elt: PublicSubobject); |
| 957 | } |
| 958 | } |
| 959 | |
| 960 | bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, |
| 961 | QualType ExceptionObjectTy, Expr *E) { |
| 962 | // If the type of the exception would be an incomplete type or a pointer |
| 963 | // to an incomplete type other than (cv) void the program is ill-formed. |
| 964 | QualType Ty = ExceptionObjectTy; |
| 965 | bool isPointer = false; |
| 966 | if (const PointerType* Ptr = Ty->getAs<PointerType>()) { |
| 967 | Ty = Ptr->getPointeeType(); |
| 968 | isPointer = true; |
| 969 | } |
| 970 | |
| 971 | // Cannot throw WebAssembly reference type. |
| 972 | if (Ty.isWebAssemblyReferenceType()) { |
| 973 | Diag(ThrowLoc, diag::err_wasm_reftype_tc) << 0 << E->getSourceRange(); |
| 974 | return true; |
| 975 | } |
| 976 | |
| 977 | // Cannot throw WebAssembly table. |
| 978 | if (isPointer && Ty.isWebAssemblyReferenceType()) { |
| 979 | Diag(ThrowLoc, diag::err_wasm_table_art) << 2 << E->getSourceRange(); |
| 980 | return true; |
| 981 | } |
| 982 | |
| 983 | if (!isPointer || !Ty->isVoidType()) { |
| 984 | if (RequireCompleteType(ThrowLoc, Ty, |
| 985 | isPointer ? diag::err_throw_incomplete_ptr |
| 986 | : diag::err_throw_incomplete, |
| 987 | E->getSourceRange())) |
| 988 | return true; |
| 989 | |
| 990 | if (!isPointer && Ty->isSizelessType()) { |
| 991 | Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange(); |
| 992 | return true; |
| 993 | } |
| 994 | |
| 995 | if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy, |
| 996 | diag::err_throw_abstract_type, E)) |
| 997 | return true; |
| 998 | } |
| 999 | |
| 1000 | // If the exception has class type, we need additional handling. |
| 1001 | CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); |
| 1002 | if (!RD) |
| 1003 | return false; |
| 1004 | |
| 1005 | // If we are throwing a polymorphic class type or pointer thereof, |
| 1006 | // exception handling will make use of the vtable. |
| 1007 | MarkVTableUsed(Loc: ThrowLoc, Class: RD); |
| 1008 | |
| 1009 | // If a pointer is thrown, the referenced object will not be destroyed. |
| 1010 | if (isPointer) |
| 1011 | return false; |
| 1012 | |
| 1013 | // If the class has a destructor, we must be able to call it. |
| 1014 | if (!RD->hasIrrelevantDestructor()) { |
| 1015 | if (CXXDestructorDecl *Destructor = LookupDestructor(Class: RD)) { |
| 1016 | MarkFunctionReferenced(E->getExprLoc(), Destructor); |
| 1017 | CheckDestructorAccess(E->getExprLoc(), Destructor, |
| 1018 | PDiag(diag::err_access_dtor_exception) << Ty); |
| 1019 | if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) |
| 1020 | return true; |
| 1021 | } |
| 1022 | } |
| 1023 | |
| 1024 | // The MSVC ABI creates a list of all types which can catch the exception |
| 1025 | // object. This list also references the appropriate copy constructor to call |
| 1026 | // if the object is caught by value and has a non-trivial copy constructor. |
| 1027 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { |
| 1028 | // We are only interested in the public, unambiguous bases contained within |
| 1029 | // the exception object. Bases which are ambiguous or otherwise |
| 1030 | // inaccessible are not catchable types. |
| 1031 | llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects; |
| 1032 | getUnambiguousPublicSubobjects(RD, Objects&: UnambiguousPublicSubobjects); |
| 1033 | |
| 1034 | for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) { |
| 1035 | // Attempt to lookup the copy constructor. Various pieces of machinery |
| 1036 | // will spring into action, like template instantiation, which means this |
| 1037 | // cannot be a simple walk of the class's decls. Instead, we must perform |
| 1038 | // lookup and overload resolution. |
| 1039 | CXXConstructorDecl *CD = LookupCopyingConstructor(Class: Subobject, Quals: 0); |
| 1040 | if (!CD || CD->isDeleted()) |
| 1041 | continue; |
| 1042 | |
| 1043 | // Mark the constructor referenced as it is used by this throw expression. |
| 1044 | MarkFunctionReferenced(E->getExprLoc(), CD); |
| 1045 | |
| 1046 | // Skip this copy constructor if it is trivial, we don't need to record it |
| 1047 | // in the catchable type data. |
| 1048 | if (CD->isTrivial()) |
| 1049 | continue; |
| 1050 | |
| 1051 | // The copy constructor is non-trivial, create a mapping from this class |
| 1052 | // type to this constructor. |
| 1053 | // N.B. The selection of copy constructor is not sensitive to this |
| 1054 | // particular throw-site. Lookup will be performed at the catch-site to |
| 1055 | // ensure that the copy constructor is, in fact, accessible (via |
| 1056 | // friendship or any other means). |
| 1057 | Context.addCopyConstructorForExceptionObject(RD: Subobject, CD); |
| 1058 | |
| 1059 | // We don't keep the instantiated default argument expressions around so |
| 1060 | // we must rebuild them here. |
| 1061 | for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) { |
| 1062 | if (CheckCXXDefaultArgExpr(CallLoc: ThrowLoc, FD: CD, Param: CD->getParamDecl(I))) |
| 1063 | return true; |
| 1064 | } |
| 1065 | } |
| 1066 | } |
| 1067 | |
| 1068 | // Under the Itanium C++ ABI, memory for the exception object is allocated by |
| 1069 | // the runtime with no ability for the compiler to request additional |
| 1070 | // alignment. Warn if the exception type requires alignment beyond the minimum |
| 1071 | // guaranteed by the target C++ runtime. |
| 1072 | if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) { |
| 1073 | CharUnits TypeAlign = Context.getTypeAlignInChars(T: Ty); |
| 1074 | CharUnits ExnObjAlign = Context.getExnObjectAlignment(); |
| 1075 | if (ExnObjAlign < TypeAlign) { |
| 1076 | Diag(ThrowLoc, diag::warn_throw_underaligned_obj); |
| 1077 | Diag(ThrowLoc, diag::note_throw_underaligned_obj) |
| 1078 | << Ty << (unsigned)TypeAlign.getQuantity() |
| 1079 | << (unsigned)ExnObjAlign.getQuantity(); |
| 1080 | } |
| 1081 | } |
| 1082 | if (!isPointer && getLangOpts().AssumeNothrowExceptionDtor) { |
| 1083 | if (CXXDestructorDecl *Dtor = RD->getDestructor()) { |
| 1084 | auto Ty = Dtor->getType(); |
| 1085 | if (auto *FT = Ty.getTypePtr()->getAs<FunctionProtoType>()) { |
| 1086 | if (!isUnresolvedExceptionSpec(FT->getExceptionSpecType()) && |
| 1087 | !FT->isNothrow()) |
| 1088 | Diag(ThrowLoc, diag::err_throw_object_throwing_dtor) << RD; |
| 1089 | } |
| 1090 | } |
| 1091 | } |
| 1092 | |
| 1093 | return false; |
| 1094 | } |
| 1095 | |
| 1096 | static QualType adjustCVQualifiersForCXXThisWithinLambda( |
| 1097 | ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy, |
| 1098 | DeclContext *CurSemaContext, ASTContext &ASTCtx) { |
| 1099 | |
| 1100 | QualType ClassType = ThisTy->getPointeeType(); |
| 1101 | LambdaScopeInfo *CurLSI = nullptr; |
| 1102 | DeclContext *CurDC = CurSemaContext; |
| 1103 | |
| 1104 | // Iterate through the stack of lambdas starting from the innermost lambda to |
| 1105 | // the outermost lambda, checking if '*this' is ever captured by copy - since |
| 1106 | // that could change the cv-qualifiers of the '*this' object. |
| 1107 | // The object referred to by '*this' starts out with the cv-qualifiers of its |
| 1108 | // member function. We then start with the innermost lambda and iterate |
| 1109 | // outward checking to see if any lambda performs a by-copy capture of '*this' |
| 1110 | // - and if so, any nested lambda must respect the 'constness' of that |
| 1111 | // capturing lamdbda's call operator. |
| 1112 | // |
| 1113 | |
| 1114 | // Since the FunctionScopeInfo stack is representative of the lexical |
| 1115 | // nesting of the lambda expressions during initial parsing (and is the best |
| 1116 | // place for querying information about captures about lambdas that are |
| 1117 | // partially processed) and perhaps during instantiation of function templates |
| 1118 | // that contain lambda expressions that need to be transformed BUT not |
| 1119 | // necessarily during instantiation of a nested generic lambda's function call |
| 1120 | // operator (which might even be instantiated at the end of the TU) - at which |
| 1121 | // time the DeclContext tree is mature enough to query capture information |
| 1122 | // reliably - we use a two pronged approach to walk through all the lexically |
| 1123 | // enclosing lambda expressions: |
| 1124 | // |
| 1125 | // 1) Climb down the FunctionScopeInfo stack as long as each item represents |
| 1126 | // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically |
| 1127 | // enclosed by the call-operator of the LSI below it on the stack (while |
| 1128 | // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on |
| 1129 | // the stack represents the innermost lambda. |
| 1130 | // |
| 1131 | // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext |
| 1132 | // represents a lambda's call operator. If it does, we must be instantiating |
| 1133 | // a generic lambda's call operator (represented by the Current LSI, and |
| 1134 | // should be the only scenario where an inconsistency between the LSI and the |
| 1135 | // DeclContext should occur), so climb out the DeclContexts if they |
| 1136 | // represent lambdas, while querying the corresponding closure types |
| 1137 | // regarding capture information. |
| 1138 | |
| 1139 | // 1) Climb down the function scope info stack. |
| 1140 | for (int I = FunctionScopes.size(); |
| 1141 | I-- && isa<LambdaScopeInfo>(Val: FunctionScopes[I]) && |
| 1142 | (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() == |
| 1143 | cast<LambdaScopeInfo>(Val: FunctionScopes[I])->CallOperator); |
| 1144 | CurDC = getLambdaAwareParentOfDeclContext(DC: CurDC)) { |
| 1145 | CurLSI = cast<LambdaScopeInfo>(Val: FunctionScopes[I]); |
| 1146 | |
| 1147 | if (!CurLSI->isCXXThisCaptured()) |
| 1148 | continue; |
| 1149 | |
| 1150 | auto C = CurLSI->getCXXThisCapture(); |
| 1151 | |
| 1152 | if (C.isCopyCapture()) { |
| 1153 | if (CurLSI->lambdaCaptureShouldBeConst()) |
| 1154 | ClassType.addConst(); |
| 1155 | return ASTCtx.getPointerType(T: ClassType); |
| 1156 | } |
| 1157 | } |
| 1158 | |
| 1159 | // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which |
| 1160 | // can happen during instantiation of its nested generic lambda call |
| 1161 | // operator); 2. if we're in a lambda scope (lambda body). |
| 1162 | if (CurLSI && isLambdaCallOperator(DC: CurDC)) { |
| 1163 | assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && |
| 1164 | "While computing 'this' capture-type for a generic lambda, when we " |
| 1165 | "run out of enclosing LSI's, yet the enclosing DC is a " |
| 1166 | "lambda-call-operator we must be (i.e. Current LSI) in a generic " |
| 1167 | "lambda call oeprator" ); |
| 1168 | assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)); |
| 1169 | |
| 1170 | auto IsThisCaptured = |
| 1171 | [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) { |
| 1172 | IsConst = false; |
| 1173 | IsByCopy = false; |
| 1174 | for (auto &&C : Closure->captures()) { |
| 1175 | if (C.capturesThis()) { |
| 1176 | if (C.getCaptureKind() == LCK_StarThis) |
| 1177 | IsByCopy = true; |
| 1178 | if (Closure->getLambdaCallOperator()->isConst()) |
| 1179 | IsConst = true; |
| 1180 | return true; |
| 1181 | } |
| 1182 | } |
| 1183 | return false; |
| 1184 | }; |
| 1185 | |
| 1186 | bool IsByCopyCapture = false; |
| 1187 | bool IsConstCapture = false; |
| 1188 | CXXRecordDecl *Closure = cast<CXXRecordDecl>(Val: CurDC->getParent()); |
| 1189 | while (Closure && |
| 1190 | IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) { |
| 1191 | if (IsByCopyCapture) { |
| 1192 | if (IsConstCapture) |
| 1193 | ClassType.addConst(); |
| 1194 | return ASTCtx.getPointerType(T: ClassType); |
| 1195 | } |
| 1196 | Closure = isLambdaCallOperator(Closure->getParent()) |
| 1197 | ? cast<CXXRecordDecl>(Closure->getParent()->getParent()) |
| 1198 | : nullptr; |
| 1199 | } |
| 1200 | } |
| 1201 | return ThisTy; |
| 1202 | } |
| 1203 | |
| 1204 | QualType Sema::getCurrentThisType() { |
| 1205 | DeclContext *DC = getFunctionLevelDeclContext(); |
| 1206 | QualType ThisTy = CXXThisTypeOverride; |
| 1207 | |
| 1208 | if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(Val: DC)) { |
| 1209 | if (method && method->isImplicitObjectMemberFunction()) |
| 1210 | ThisTy = method->getThisType().getNonReferenceType(); |
| 1211 | } |
| 1212 | |
| 1213 | if (ThisTy.isNull() && isLambdaCallWithImplicitObjectParameter(DC: CurContext) && |
| 1214 | inTemplateInstantiation() && isa<CXXRecordDecl>(Val: DC)) { |
| 1215 | |
| 1216 | // This is a lambda call operator that is being instantiated as a default |
| 1217 | // initializer. DC must point to the enclosing class type, so we can recover |
| 1218 | // the 'this' type from it. |
| 1219 | QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(Val: DC)); |
| 1220 | // There are no cv-qualifiers for 'this' within default initializers, |
| 1221 | // per [expr.prim.general]p4. |
| 1222 | ThisTy = Context.getPointerType(T: ClassTy); |
| 1223 | } |
| 1224 | |
| 1225 | // If we are within a lambda's call operator, the cv-qualifiers of 'this' |
| 1226 | // might need to be adjusted if the lambda or any of its enclosing lambda's |
| 1227 | // captures '*this' by copy. |
| 1228 | if (!ThisTy.isNull() && isLambdaCallOperator(DC: CurContext)) |
| 1229 | return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy, |
| 1230 | CurSemaContext: CurContext, ASTCtx&: Context); |
| 1231 | return ThisTy; |
| 1232 | } |
| 1233 | |
| 1234 | Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S, |
| 1235 | Decl *ContextDecl, |
| 1236 | Qualifiers CXXThisTypeQuals, |
| 1237 | bool Enabled) |
| 1238 | : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false) |
| 1239 | { |
| 1240 | if (!Enabled || !ContextDecl) |
| 1241 | return; |
| 1242 | |
| 1243 | CXXRecordDecl *Record = nullptr; |
| 1244 | if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(Val: ContextDecl)) |
| 1245 | Record = Template->getTemplatedDecl(); |
| 1246 | else |
| 1247 | Record = cast<CXXRecordDecl>(Val: ContextDecl); |
| 1248 | |
| 1249 | QualType T = S.Context.getRecordType(Record); |
| 1250 | T = S.getASTContext().getQualifiedType(T, Qs: CXXThisTypeQuals); |
| 1251 | |
| 1252 | S.CXXThisTypeOverride = |
| 1253 | S.Context.getLangOpts().HLSL ? T : S.Context.getPointerType(T); |
| 1254 | |
| 1255 | this->Enabled = true; |
| 1256 | } |
| 1257 | |
| 1258 | |
| 1259 | Sema::CXXThisScopeRAII::~CXXThisScopeRAII() { |
| 1260 | if (Enabled) { |
| 1261 | S.CXXThisTypeOverride = OldCXXThisTypeOverride; |
| 1262 | } |
| 1263 | } |
| 1264 | |
| 1265 | static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) { |
| 1266 | SourceLocation DiagLoc = LSI->IntroducerRange.getEnd(); |
| 1267 | assert(!LSI->isCXXThisCaptured()); |
| 1268 | // [=, this] {}; // until C++20: Error: this when = is the default |
| 1269 | if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval && |
| 1270 | !Sema.getLangOpts().CPlusPlus20) |
| 1271 | return; |
| 1272 | Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit) |
| 1273 | << FixItHint::CreateInsertion( |
| 1274 | DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this" ); |
| 1275 | } |
| 1276 | |
| 1277 | bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit, |
| 1278 | bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt, |
| 1279 | const bool ByCopy) { |
| 1280 | // We don't need to capture this in an unevaluated context. |
| 1281 | if (isUnevaluatedContext() && !Explicit) |
| 1282 | return true; |
| 1283 | |
| 1284 | assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value" ); |
| 1285 | |
| 1286 | const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt |
| 1287 | ? *FunctionScopeIndexToStopAt |
| 1288 | : FunctionScopes.size() - 1; |
| 1289 | |
| 1290 | // Check that we can capture the *enclosing object* (referred to by '*this') |
| 1291 | // by the capturing-entity/closure (lambda/block/etc) at |
| 1292 | // MaxFunctionScopesIndex-deep on the FunctionScopes stack. |
| 1293 | |
| 1294 | // Note: The *enclosing object* can only be captured by-value by a |
| 1295 | // closure that is a lambda, using the explicit notation: |
| 1296 | // [*this] { ... }. |
| 1297 | // Every other capture of the *enclosing object* results in its by-reference |
| 1298 | // capture. |
| 1299 | |
| 1300 | // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes |
| 1301 | // stack), we can capture the *enclosing object* only if: |
| 1302 | // - 'L' has an explicit byref or byval capture of the *enclosing object* |
| 1303 | // - or, 'L' has an implicit capture. |
| 1304 | // AND |
| 1305 | // -- there is no enclosing closure |
| 1306 | // -- or, there is some enclosing closure 'E' that has already captured the |
| 1307 | // *enclosing object*, and every intervening closure (if any) between 'E' |
| 1308 | // and 'L' can implicitly capture the *enclosing object*. |
| 1309 | // -- or, every enclosing closure can implicitly capture the |
| 1310 | // *enclosing object* |
| 1311 | |
| 1312 | |
| 1313 | unsigned NumCapturingClosures = 0; |
| 1314 | for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) { |
| 1315 | if (CapturingScopeInfo *CSI = |
| 1316 | dyn_cast<CapturingScopeInfo>(Val: FunctionScopes[idx])) { |
| 1317 | if (CSI->CXXThisCaptureIndex != 0) { |
| 1318 | // 'this' is already being captured; there isn't anything more to do. |
| 1319 | CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(IsODRUse: BuildAndDiagnose); |
| 1320 | break; |
| 1321 | } |
| 1322 | LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(Val: CSI); |
| 1323 | if (LSI && isGenericLambdaCallOperatorSpecialization(MD: LSI->CallOperator)) { |
| 1324 | // This context can't implicitly capture 'this'; fail out. |
| 1325 | if (BuildAndDiagnose) { |
| 1326 | LSI->CallOperator->setInvalidDecl(); |
| 1327 | Diag(Loc, diag::err_this_capture) |
| 1328 | << (Explicit && idx == MaxFunctionScopesIndex); |
| 1329 | if (!Explicit) |
| 1330 | buildLambdaThisCaptureFixit(Sema&: *this, LSI); |
| 1331 | } |
| 1332 | return true; |
| 1333 | } |
| 1334 | if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref || |
| 1335 | CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval || |
| 1336 | CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block || |
| 1337 | CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion || |
| 1338 | (Explicit && idx == MaxFunctionScopesIndex)) { |
| 1339 | // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first |
| 1340 | // iteration through can be an explicit capture, all enclosing closures, |
| 1341 | // if any, must perform implicit captures. |
| 1342 | |
| 1343 | // This closure can capture 'this'; continue looking upwards. |
| 1344 | NumCapturingClosures++; |
| 1345 | continue; |
| 1346 | } |
| 1347 | // This context can't implicitly capture 'this'; fail out. |
| 1348 | if (BuildAndDiagnose) { |
| 1349 | LSI->CallOperator->setInvalidDecl(); |
| 1350 | Diag(Loc, diag::err_this_capture) |
| 1351 | << (Explicit && idx == MaxFunctionScopesIndex); |
| 1352 | } |
| 1353 | if (!Explicit) |
| 1354 | buildLambdaThisCaptureFixit(Sema&: *this, LSI); |
| 1355 | return true; |
| 1356 | } |
| 1357 | break; |
| 1358 | } |
| 1359 | if (!BuildAndDiagnose) return false; |
| 1360 | |
| 1361 | // If we got here, then the closure at MaxFunctionScopesIndex on the |
| 1362 | // FunctionScopes stack, can capture the *enclosing object*, so capture it |
| 1363 | // (including implicit by-reference captures in any enclosing closures). |
| 1364 | |
| 1365 | // In the loop below, respect the ByCopy flag only for the closure requesting |
| 1366 | // the capture (i.e. first iteration through the loop below). Ignore it for |
| 1367 | // all enclosing closure's up to NumCapturingClosures (since they must be |
| 1368 | // implicitly capturing the *enclosing object* by reference (see loop |
| 1369 | // above)). |
| 1370 | assert((!ByCopy || |
| 1371 | isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && |
| 1372 | "Only a lambda can capture the enclosing object (referred to by " |
| 1373 | "*this) by copy" ); |
| 1374 | QualType ThisTy = getCurrentThisType(); |
| 1375 | for (int idx = MaxFunctionScopesIndex; NumCapturingClosures; |
| 1376 | --idx, --NumCapturingClosures) { |
| 1377 | CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(Val: FunctionScopes[idx]); |
| 1378 | |
| 1379 | // The type of the corresponding data member (not a 'this' pointer if 'by |
| 1380 | // copy'). |
| 1381 | QualType CaptureType = ByCopy ? ThisTy->getPointeeType() : ThisTy; |
| 1382 | |
| 1383 | bool isNested = NumCapturingClosures > 1; |
| 1384 | CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy); |
| 1385 | } |
| 1386 | return false; |
| 1387 | } |
| 1388 | |
| 1389 | ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { |
| 1390 | // C++20 [expr.prim.this]p1: |
| 1391 | // The keyword this names a pointer to the object for which an |
| 1392 | // implicit object member function is invoked or a non-static |
| 1393 | // data member's initializer is evaluated. |
| 1394 | QualType ThisTy = getCurrentThisType(); |
| 1395 | |
| 1396 | if (CheckCXXThisType(Loc, Type: ThisTy)) |
| 1397 | return ExprError(); |
| 1398 | |
| 1399 | return BuildCXXThisExpr(Loc, Type: ThisTy, /*IsImplicit=*/false); |
| 1400 | } |
| 1401 | |
| 1402 | bool Sema::CheckCXXThisType(SourceLocation Loc, QualType Type) { |
| 1403 | if (!Type.isNull()) |
| 1404 | return false; |
| 1405 | |
| 1406 | // C++20 [expr.prim.this]p3: |
| 1407 | // If a declaration declares a member function or member function template |
| 1408 | // of a class X, the expression this is a prvalue of type |
| 1409 | // "pointer to cv-qualifier-seq X" wherever X is the current class between |
| 1410 | // the optional cv-qualifier-seq and the end of the function-definition, |
| 1411 | // member-declarator, or declarator. It shall not appear within the |
| 1412 | // declaration of either a static member function or an explicit object |
| 1413 | // member function of the current class (although its type and value |
| 1414 | // category are defined within such member functions as they are within |
| 1415 | // an implicit object member function). |
| 1416 | DeclContext *DC = getFunctionLevelDeclContext(); |
| 1417 | const auto *Method = dyn_cast<CXXMethodDecl>(Val: DC); |
| 1418 | if (Method && Method->isExplicitObjectMemberFunction()) { |
| 1419 | Diag(Loc, diag::err_invalid_this_use) << 1; |
| 1420 | } else if (Method && isLambdaCallWithExplicitObjectParameter(DC: CurContext)) { |
| 1421 | Diag(Loc, diag::err_invalid_this_use) << 1; |
| 1422 | } else { |
| 1423 | Diag(Loc, diag::err_invalid_this_use) << 0; |
| 1424 | } |
| 1425 | return true; |
| 1426 | } |
| 1427 | |
| 1428 | Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type, |
| 1429 | bool IsImplicit) { |
| 1430 | auto *This = CXXThisExpr::Create(Ctx: Context, L: Loc, Ty: Type, IsImplicit); |
| 1431 | MarkThisReferenced(This); |
| 1432 | return This; |
| 1433 | } |
| 1434 | |
| 1435 | void Sema::MarkThisReferenced(CXXThisExpr *This) { |
| 1436 | CheckCXXThisCapture(Loc: This->getExprLoc()); |
| 1437 | if (This->isTypeDependent()) |
| 1438 | return; |
| 1439 | |
| 1440 | // Check if 'this' is captured by value in a lambda with a dependent explicit |
| 1441 | // object parameter, and mark it as type-dependent as well if so. |
| 1442 | auto IsDependent = [&]() { |
| 1443 | for (auto *Scope : llvm::reverse(C&: FunctionScopes)) { |
| 1444 | auto *LSI = dyn_cast<sema::LambdaScopeInfo>(Val: Scope); |
| 1445 | if (!LSI) |
| 1446 | continue; |
| 1447 | |
| 1448 | if (LSI->Lambda && !LSI->Lambda->Encloses(CurContext) && |
| 1449 | LSI->AfterParameterList) |
| 1450 | return false; |
| 1451 | |
| 1452 | // If this lambda captures 'this' by value, then 'this' is dependent iff |
| 1453 | // this lambda has a dependent explicit object parameter. If we can't |
| 1454 | // determine whether it does (e.g. because the CXXMethodDecl's type is |
| 1455 | // null), assume it doesn't. |
| 1456 | if (LSI->isCXXThisCaptured()) { |
| 1457 | if (!LSI->getCXXThisCapture().isCopyCapture()) |
| 1458 | continue; |
| 1459 | |
| 1460 | const auto *MD = LSI->CallOperator; |
| 1461 | if (MD->getType().isNull()) |
| 1462 | return false; |
| 1463 | |
| 1464 | const auto *Ty = MD->getType()->getAs<FunctionProtoType>(); |
| 1465 | return Ty && MD->isExplicitObjectMemberFunction() && |
| 1466 | Ty->getParamType(0)->isDependentType(); |
| 1467 | } |
| 1468 | } |
| 1469 | return false; |
| 1470 | }(); |
| 1471 | |
| 1472 | This->setCapturedByCopyInLambdaWithExplicitObjectParameter(IsDependent); |
| 1473 | } |
| 1474 | |
| 1475 | bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) { |
| 1476 | // If we're outside the body of a member function, then we'll have a specified |
| 1477 | // type for 'this'. |
| 1478 | if (CXXThisTypeOverride.isNull()) |
| 1479 | return false; |
| 1480 | |
| 1481 | // Determine whether we're looking into a class that's currently being |
| 1482 | // defined. |
| 1483 | CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl(); |
| 1484 | return Class && Class->isBeingDefined(); |
| 1485 | } |
| 1486 | |
| 1487 | ExprResult |
| 1488 | Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, |
| 1489 | SourceLocation LParenOrBraceLoc, |
| 1490 | MultiExprArg exprs, |
| 1491 | SourceLocation RParenOrBraceLoc, |
| 1492 | bool ListInitialization) { |
| 1493 | if (!TypeRep) |
| 1494 | return ExprError(); |
| 1495 | |
| 1496 | TypeSourceInfo *TInfo; |
| 1497 | QualType Ty = GetTypeFromParser(Ty: TypeRep, TInfo: &TInfo); |
| 1498 | if (!TInfo) |
| 1499 | TInfo = Context.getTrivialTypeSourceInfo(T: Ty, Loc: SourceLocation()); |
| 1500 | |
| 1501 | auto Result = BuildCXXTypeConstructExpr(Type: TInfo, LParenLoc: LParenOrBraceLoc, Exprs: exprs, |
| 1502 | RParenLoc: RParenOrBraceLoc, ListInitialization); |
| 1503 | // Avoid creating a non-type-dependent expression that contains typos. |
| 1504 | // Non-type-dependent expressions are liable to be discarded without |
| 1505 | // checking for embedded typos. |
| 1506 | if (!Result.isInvalid() && Result.get()->isInstantiationDependent() && |
| 1507 | !Result.get()->isTypeDependent()) |
| 1508 | Result = CorrectDelayedTyposInExpr(E: Result.get()); |
| 1509 | else if (Result.isInvalid()) |
| 1510 | Result = CreateRecoveryExpr(Begin: TInfo->getTypeLoc().getBeginLoc(), |
| 1511 | End: RParenOrBraceLoc, SubExprs: exprs, T: Ty); |
| 1512 | return Result; |
| 1513 | } |
| 1514 | |
| 1515 | ExprResult |
| 1516 | Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, |
| 1517 | SourceLocation LParenOrBraceLoc, |
| 1518 | MultiExprArg Exprs, |
| 1519 | SourceLocation RParenOrBraceLoc, |
| 1520 | bool ListInitialization) { |
| 1521 | QualType Ty = TInfo->getType(); |
| 1522 | SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); |
| 1523 | SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc); |
| 1524 | |
| 1525 | InitializedEntity Entity = |
| 1526 | InitializedEntity::InitializeTemporary(Context, TypeInfo: TInfo); |
| 1527 | InitializationKind Kind = |
| 1528 | Exprs.size() |
| 1529 | ? ListInitialization |
| 1530 | ? InitializationKind::CreateDirectList( |
| 1531 | InitLoc: TyBeginLoc, LBraceLoc: LParenOrBraceLoc, RBraceLoc: RParenOrBraceLoc) |
| 1532 | : InitializationKind::CreateDirect(InitLoc: TyBeginLoc, LParenLoc: LParenOrBraceLoc, |
| 1533 | RParenLoc: RParenOrBraceLoc) |
| 1534 | : InitializationKind::CreateValue(InitLoc: TyBeginLoc, LParenLoc: LParenOrBraceLoc, |
| 1535 | RParenLoc: RParenOrBraceLoc); |
| 1536 | |
| 1537 | // C++17 [expr.type.conv]p1: |
| 1538 | // If the type is a placeholder for a deduced class type, [...perform class |
| 1539 | // template argument deduction...] |
| 1540 | // C++23: |
| 1541 | // Otherwise, if the type contains a placeholder type, it is replaced by the |
| 1542 | // type determined by placeholder type deduction. |
| 1543 | DeducedType *Deduced = Ty->getContainedDeducedType(); |
| 1544 | if (Deduced && !Deduced->isDeduced() && |
| 1545 | isa<DeducedTemplateSpecializationType>(Val: Deduced)) { |
| 1546 | Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity, |
| 1547 | Kind, Init: Exprs); |
| 1548 | if (Ty.isNull()) |
| 1549 | return ExprError(); |
| 1550 | Entity = InitializedEntity::InitializeTemporary(TypeInfo: TInfo, Type: Ty); |
| 1551 | } else if (Deduced && !Deduced->isDeduced()) { |
| 1552 | MultiExprArg Inits = Exprs; |
| 1553 | if (ListInitialization) { |
| 1554 | auto *ILE = cast<InitListExpr>(Val: Exprs[0]); |
| 1555 | Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits()); |
| 1556 | } |
| 1557 | |
| 1558 | if (Inits.empty()) |
| 1559 | return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_init_no_expression) |
| 1560 | << Ty << FullRange); |
| 1561 | if (Inits.size() > 1) { |
| 1562 | Expr *FirstBad = Inits[1]; |
| 1563 | return ExprError(Diag(FirstBad->getBeginLoc(), |
| 1564 | diag::err_auto_expr_init_multiple_expressions) |
| 1565 | << Ty << FullRange); |
| 1566 | } |
| 1567 | if (getLangOpts().CPlusPlus23) { |
| 1568 | if (Ty->getAs<AutoType>()) |
| 1569 | Diag(TyBeginLoc, diag::warn_cxx20_compat_auto_expr) << FullRange; |
| 1570 | } |
| 1571 | Expr *Deduce = Inits[0]; |
| 1572 | if (isa<InitListExpr>(Deduce)) |
| 1573 | return ExprError( |
| 1574 | Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces) |
| 1575 | << ListInitialization << Ty << FullRange); |
| 1576 | QualType DeducedType; |
| 1577 | TemplateDeductionInfo Info(Deduce->getExprLoc()); |
| 1578 | TemplateDeductionResult Result = |
| 1579 | DeduceAutoType(AutoTypeLoc: TInfo->getTypeLoc(), Initializer: Deduce, Result&: DeducedType, Info); |
| 1580 | if (Result != TemplateDeductionResult::Success && |
| 1581 | Result != TemplateDeductionResult::AlreadyDiagnosed) |
| 1582 | return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_deduction_failure) |
| 1583 | << Ty << Deduce->getType() << FullRange |
| 1584 | << Deduce->getSourceRange()); |
| 1585 | if (DeducedType.isNull()) { |
| 1586 | assert(Result == TemplateDeductionResult::AlreadyDiagnosed); |
| 1587 | return ExprError(); |
| 1588 | } |
| 1589 | |
| 1590 | Ty = DeducedType; |
| 1591 | Entity = InitializedEntity::InitializeTemporary(TypeInfo: TInfo, Type: Ty); |
| 1592 | } |
| 1593 | |
| 1594 | if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) |
| 1595 | return CXXUnresolvedConstructExpr::Create( |
| 1596 | Context, T: Ty.getNonReferenceType(), TSI: TInfo, LParenLoc: LParenOrBraceLoc, Args: Exprs, |
| 1597 | RParenLoc: RParenOrBraceLoc, IsListInit: ListInitialization); |
| 1598 | |
| 1599 | // C++ [expr.type.conv]p1: |
| 1600 | // If the expression list is a parenthesized single expression, the type |
| 1601 | // conversion expression is equivalent (in definedness, and if defined in |
| 1602 | // meaning) to the corresponding cast expression. |
| 1603 | if (Exprs.size() == 1 && !ListInitialization && |
| 1604 | !isa<InitListExpr>(Val: Exprs[0])) { |
| 1605 | Expr *Arg = Exprs[0]; |
| 1606 | return BuildCXXFunctionalCastExpr(TInfo, Type: Ty, LParenLoc: LParenOrBraceLoc, CastExpr: Arg, |
| 1607 | RParenLoc: RParenOrBraceLoc); |
| 1608 | } |
| 1609 | |
| 1610 | // For an expression of the form T(), T shall not be an array type. |
| 1611 | QualType ElemTy = Ty; |
| 1612 | if (Ty->isArrayType()) { |
| 1613 | if (!ListInitialization) |
| 1614 | return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type) |
| 1615 | << FullRange); |
| 1616 | ElemTy = Context.getBaseElementType(QT: Ty); |
| 1617 | } |
| 1618 | |
| 1619 | // Only construct objects with object types. |
| 1620 | // The standard doesn't explicitly forbid function types here, but that's an |
| 1621 | // obvious oversight, as there's no way to dynamically construct a function |
| 1622 | // in general. |
| 1623 | if (Ty->isFunctionType()) |
| 1624 | return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type) |
| 1625 | << Ty << FullRange); |
| 1626 | |
| 1627 | // C++17 [expr.type.conv]p2, per DR2351: |
| 1628 | // If the type is cv void and the initializer is () or {}, the expression is |
| 1629 | // a prvalue of the specified type that performs no initialization. |
| 1630 | if (Ty->isVoidType()) { |
| 1631 | if (Exprs.empty()) |
| 1632 | return new (Context) CXXScalarValueInitExpr( |
| 1633 | Ty.getUnqualifiedType(), TInfo, Kind.getRange().getEnd()); |
| 1634 | if (ListInitialization && |
| 1635 | cast<InitListExpr>(Val: Exprs[0])->getNumInits() == 0) { |
| 1636 | return CXXFunctionalCastExpr::Create( |
| 1637 | Context, T: Ty.getUnqualifiedType(), VK: VK_PRValue, Written: TInfo, Kind: CK_ToVoid, |
| 1638 | Op: Exprs[0], /*Path=*/nullptr, FPO: CurFPFeatureOverrides(), |
| 1639 | LPLoc: Exprs[0]->getBeginLoc(), RPLoc: Exprs[0]->getEndLoc()); |
| 1640 | } |
| 1641 | } else if (RequireCompleteType(TyBeginLoc, ElemTy, |
| 1642 | diag::err_invalid_incomplete_type_use, |
| 1643 | FullRange)) |
| 1644 | return ExprError(); |
| 1645 | |
| 1646 | // Otherwise, the expression is a prvalue of the specified type whose |
| 1647 | // result object is direct-initialized (11.6) with the initializer. |
| 1648 | InitializationSequence InitSeq(*this, Entity, Kind, Exprs); |
| 1649 | ExprResult Result = InitSeq.Perform(S&: *this, Entity, Kind, Args: Exprs); |
| 1650 | |
| 1651 | if (Result.isInvalid()) |
| 1652 | return Result; |
| 1653 | |
| 1654 | Expr *Inner = Result.get(); |
| 1655 | if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Val: Inner)) |
| 1656 | Inner = BTE->getSubExpr(); |
| 1657 | if (auto *CE = dyn_cast<ConstantExpr>(Val: Inner); |
| 1658 | CE && CE->isImmediateInvocation()) |
| 1659 | Inner = CE->getSubExpr(); |
| 1660 | if (!isa<CXXTemporaryObjectExpr>(Val: Inner) && |
| 1661 | !isa<CXXScalarValueInitExpr>(Val: Inner)) { |
| 1662 | // If we created a CXXTemporaryObjectExpr, that node also represents the |
| 1663 | // functional cast. Otherwise, create an explicit cast to represent |
| 1664 | // the syntactic form of a functional-style cast that was used here. |
| 1665 | // |
| 1666 | // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr |
| 1667 | // would give a more consistent AST representation than using a |
| 1668 | // CXXTemporaryObjectExpr. It's also weird that the functional cast |
| 1669 | // is sometimes handled by initialization and sometimes not. |
| 1670 | QualType ResultType = Result.get()->getType(); |
| 1671 | SourceRange Locs = ListInitialization |
| 1672 | ? SourceRange() |
| 1673 | : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); |
| 1674 | Result = CXXFunctionalCastExpr::Create( |
| 1675 | Context, T: ResultType, VK: Expr::getValueKindForType(T: Ty), Written: TInfo, Kind: CK_NoOp, |
| 1676 | Op: Result.get(), /*Path=*/nullptr, FPO: CurFPFeatureOverrides(), |
| 1677 | LPLoc: Locs.getBegin(), RPLoc: Locs.getEnd()); |
| 1678 | } |
| 1679 | |
| 1680 | return Result; |
| 1681 | } |
| 1682 | |
| 1683 | bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) { |
| 1684 | // [CUDA] Ignore this function, if we can't call it. |
| 1685 | const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true); |
| 1686 | if (getLangOpts().CUDA) { |
| 1687 | auto CallPreference = CUDA().IdentifyPreference(Caller, Method); |
| 1688 | // If it's not callable at all, it's not the right function. |
| 1689 | if (CallPreference < SemaCUDA::CFP_WrongSide) |
| 1690 | return false; |
| 1691 | if (CallPreference == SemaCUDA::CFP_WrongSide) { |
| 1692 | // Maybe. We have to check if there are better alternatives. |
| 1693 | DeclContext::lookup_result R = |
| 1694 | Method->getDeclContext()->lookup(Method->getDeclName()); |
| 1695 | for (const auto *D : R) { |
| 1696 | if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
| 1697 | if (CUDA().IdentifyPreference(Caller, FD) > SemaCUDA::CFP_WrongSide) |
| 1698 | return false; |
| 1699 | } |
| 1700 | } |
| 1701 | // We've found no better variants. |
| 1702 | } |
| 1703 | } |
| 1704 | |
| 1705 | SmallVector<const FunctionDecl*, 4> PreventedBy; |
| 1706 | bool Result = Method->isUsualDeallocationFunction(PreventedBy); |
| 1707 | |
| 1708 | if (Result || !getLangOpts().CUDA || PreventedBy.empty()) |
| 1709 | return Result; |
| 1710 | |
| 1711 | // In case of CUDA, return true if none of the 1-argument deallocator |
| 1712 | // functions are actually callable. |
| 1713 | return llvm::none_of(Range&: PreventedBy, P: [&](const FunctionDecl *FD) { |
| 1714 | assert(FD->getNumParams() == 1 && |
| 1715 | "Only single-operand functions should be in PreventedBy" ); |
| 1716 | return CUDA().IdentifyPreference(Caller, Callee: FD) >= SemaCUDA::CFP_HostDevice; |
| 1717 | }); |
| 1718 | } |
| 1719 | |
| 1720 | /// Determine whether the given function is a non-placement |
| 1721 | /// deallocation function. |
| 1722 | static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) { |
| 1723 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Val: FD)) |
| 1724 | return S.isUsualDeallocationFunction(Method); |
| 1725 | |
| 1726 | if (!FD->getDeclName().isAnyOperatorDelete()) |
| 1727 | return false; |
| 1728 | |
| 1729 | if (FD->isTypeAwareOperatorNewOrDelete()) |
| 1730 | return FunctionDecl::RequiredTypeAwareDeleteParameterCount == |
| 1731 | FD->getNumParams(); |
| 1732 | |
| 1733 | unsigned UsualParams = 1; |
| 1734 | if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() && |
| 1735 | S.Context.hasSameUnqualifiedType( |
| 1736 | T1: FD->getParamDecl(i: UsualParams)->getType(), |
| 1737 | T2: S.Context.getSizeType())) |
| 1738 | ++UsualParams; |
| 1739 | |
| 1740 | if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() && |
| 1741 | S.Context.hasSameUnqualifiedType( |
| 1742 | T1: FD->getParamDecl(i: UsualParams)->getType(), |
| 1743 | T2: S.Context.getTypeDeclType(S.getStdAlignValT()))) |
| 1744 | ++UsualParams; |
| 1745 | |
| 1746 | return UsualParams == FD->getNumParams(); |
| 1747 | } |
| 1748 | |
| 1749 | namespace { |
| 1750 | struct UsualDeallocFnInfo { |
| 1751 | UsualDeallocFnInfo() |
| 1752 | : Found(), FD(nullptr), |
| 1753 | IDP(AlignedAllocationMode::No, SizedDeallocationMode::No) {} |
| 1754 | UsualDeallocFnInfo(Sema &S, DeclAccessPair Found, QualType AllocType, |
| 1755 | SourceLocation Loc) |
| 1756 | : Found(Found), FD(dyn_cast<FunctionDecl>(Val: Found->getUnderlyingDecl())), |
| 1757 | Destroying(false), |
| 1758 | IDP({AllocType, TypeAwareAllocationMode::No, |
| 1759 | AlignedAllocationMode::No, SizedDeallocationMode::No}), |
| 1760 | CUDAPref(SemaCUDA::CFP_Native) { |
| 1761 | // A function template declaration is only a usual deallocation function |
| 1762 | // if it is a typed delete. |
| 1763 | if (!FD) { |
| 1764 | if (AllocType.isNull()) |
| 1765 | return; |
| 1766 | auto *FTD = dyn_cast<FunctionTemplateDecl>(Val: Found->getUnderlyingDecl()); |
| 1767 | if (!FTD) |
| 1768 | return; |
| 1769 | FunctionDecl *InstantiatedDecl = |
| 1770 | S.BuildTypeAwareUsualDelete(FnDecl: FTD, AllocType, Loc); |
| 1771 | if (!InstantiatedDecl) |
| 1772 | return; |
| 1773 | FD = InstantiatedDecl; |
| 1774 | } |
| 1775 | unsigned NumBaseParams = 1; |
| 1776 | if (FD->isTypeAwareOperatorNewOrDelete()) { |
| 1777 | // If this is a type aware operator delete we instantiate an appropriate |
| 1778 | // specialization of std::type_identity<>. If we do not know the |
| 1779 | // type being deallocated, or if the type-identity parameter of the |
| 1780 | // deallocation function does not match the constructed type_identity |
| 1781 | // specialization we reject the declaration. |
| 1782 | if (AllocType.isNull()) { |
| 1783 | FD = nullptr; |
| 1784 | return; |
| 1785 | } |
| 1786 | QualType TypeIdentityTag = FD->getParamDecl(i: 0)->getType(); |
| 1787 | QualType ExpectedTypeIdentityTag = |
| 1788 | S.tryBuildStdTypeIdentity(Type: AllocType, Loc); |
| 1789 | if (ExpectedTypeIdentityTag.isNull()) { |
| 1790 | FD = nullptr; |
| 1791 | return; |
| 1792 | } |
| 1793 | if (!S.Context.hasSameType(T1: TypeIdentityTag, T2: ExpectedTypeIdentityTag)) { |
| 1794 | FD = nullptr; |
| 1795 | return; |
| 1796 | } |
| 1797 | IDP.PassTypeIdentity = TypeAwareAllocationMode::Yes; |
| 1798 | ++NumBaseParams; |
| 1799 | } |
| 1800 | |
| 1801 | if (FD->isDestroyingOperatorDelete()) { |
| 1802 | Destroying = true; |
| 1803 | ++NumBaseParams; |
| 1804 | } |
| 1805 | |
| 1806 | if (NumBaseParams < FD->getNumParams() && |
| 1807 | S.Context.hasSameUnqualifiedType( |
| 1808 | T1: FD->getParamDecl(i: NumBaseParams)->getType(), |
| 1809 | T2: S.Context.getSizeType())) { |
| 1810 | ++NumBaseParams; |
| 1811 | IDP.PassSize = SizedDeallocationMode::Yes; |
| 1812 | } |
| 1813 | |
| 1814 | if (NumBaseParams < FD->getNumParams() && |
| 1815 | FD->getParamDecl(i: NumBaseParams)->getType()->isAlignValT()) { |
| 1816 | ++NumBaseParams; |
| 1817 | IDP.PassAlignment = AlignedAllocationMode::Yes; |
| 1818 | } |
| 1819 | |
| 1820 | // In CUDA, determine how much we'd like / dislike to call this. |
| 1821 | if (S.getLangOpts().CUDA) |
| 1822 | CUDAPref = S.CUDA().IdentifyPreference( |
| 1823 | Caller: S.getCurFunctionDecl(/*AllowLambda=*/true), Callee: FD); |
| 1824 | } |
| 1825 | |
| 1826 | explicit operator bool() const { return FD; } |
| 1827 | |
| 1828 | int Compare(Sema &S, const UsualDeallocFnInfo &Other, |
| 1829 | ImplicitDeallocationParameters TargetIDP) const { |
| 1830 | assert(!TargetIDP.Type.isNull() || |
| 1831 | !isTypeAwareAllocation(Other.IDP.PassTypeIdentity)); |
| 1832 | |
| 1833 | // C++ P0722: |
| 1834 | // A destroying operator delete is preferred over a non-destroying |
| 1835 | // operator delete. |
| 1836 | if (Destroying != Other.Destroying) |
| 1837 | return Destroying ? 1 : -1; |
| 1838 | |
| 1839 | const ImplicitDeallocationParameters &OtherIDP = Other.IDP; |
| 1840 | // Selection for type awareness has priority over alignment and size |
| 1841 | if (IDP.PassTypeIdentity != OtherIDP.PassTypeIdentity) |
| 1842 | return IDP.PassTypeIdentity == TargetIDP.PassTypeIdentity ? 1 : -1; |
| 1843 | |
| 1844 | // C++17 [expr.delete]p10: |
| 1845 | // If the type has new-extended alignment, a function with a parameter |
| 1846 | // of type std::align_val_t is preferred; otherwise a function without |
| 1847 | // such a parameter is preferred |
| 1848 | if (IDP.PassAlignment != OtherIDP.PassAlignment) |
| 1849 | return IDP.PassAlignment == TargetIDP.PassAlignment ? 1 : -1; |
| 1850 | |
| 1851 | if (IDP.PassSize != OtherIDP.PassSize) |
| 1852 | return IDP.PassSize == TargetIDP.PassSize ? 1 : -1; |
| 1853 | |
| 1854 | if (isTypeAwareAllocation(IDP.PassTypeIdentity)) { |
| 1855 | // Type aware allocation involves templates so we need to choose |
| 1856 | // the best type |
| 1857 | FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate(); |
| 1858 | FunctionTemplateDecl *OtherPrimaryTemplate = |
| 1859 | Other.FD->getPrimaryTemplate(); |
| 1860 | if ((!PrimaryTemplate) != (!OtherPrimaryTemplate)) |
| 1861 | return OtherPrimaryTemplate ? 1 : -1; |
| 1862 | |
| 1863 | if (PrimaryTemplate && OtherPrimaryTemplate) { |
| 1864 | const auto *DC = dyn_cast<CXXRecordDecl>(Found->getDeclContext()); |
| 1865 | const auto *OtherDC = |
| 1866 | dyn_cast<CXXRecordDecl>(Other.Found->getDeclContext()); |
| 1867 | unsigned ImplicitArgCount = Destroying + IDP.getNumImplicitArgs(); |
| 1868 | if (FunctionTemplateDecl *Best = S.getMoreSpecializedTemplate( |
| 1869 | FT1: PrimaryTemplate, FT2: OtherPrimaryTemplate, Loc: SourceLocation(), |
| 1870 | TPOC: TPOC_Call, NumCallArguments1: ImplicitArgCount, |
| 1871 | RawObj1Ty: DC ? QualType(DC->getTypeForDecl(), 0) : QualType{}, |
| 1872 | RawObj2Ty: OtherDC ? QualType(OtherDC->getTypeForDecl(), 0) : QualType{}, |
| 1873 | Reversed: false)) { |
| 1874 | return Best == PrimaryTemplate ? 1 : -1; |
| 1875 | } |
| 1876 | } |
| 1877 | } |
| 1878 | |
| 1879 | // Use CUDA call preference as a tiebreaker. |
| 1880 | if (CUDAPref > Other.CUDAPref) |
| 1881 | return 1; |
| 1882 | if (CUDAPref == Other.CUDAPref) |
| 1883 | return 0; |
| 1884 | return -1; |
| 1885 | } |
| 1886 | |
| 1887 | DeclAccessPair Found; |
| 1888 | FunctionDecl *FD; |
| 1889 | bool Destroying; |
| 1890 | ImplicitDeallocationParameters IDP; |
| 1891 | SemaCUDA::CUDAFunctionPreference CUDAPref; |
| 1892 | }; |
| 1893 | } |
| 1894 | |
| 1895 | /// Determine whether a type has new-extended alignment. This may be called when |
| 1896 | /// the type is incomplete (for a delete-expression with an incomplete pointee |
| 1897 | /// type), in which case it will conservatively return false if the alignment is |
| 1898 | /// not known. |
| 1899 | static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) { |
| 1900 | return S.getLangOpts().AlignedAllocation && |
| 1901 | S.getASTContext().getTypeAlignIfKnown(T: AllocType) > |
| 1902 | S.getASTContext().getTargetInfo().getNewAlign(); |
| 1903 | } |
| 1904 | |
| 1905 | static bool CheckDeleteOperator(Sema &S, SourceLocation StartLoc, |
| 1906 | SourceRange Range, bool Diagnose, |
| 1907 | CXXRecordDecl *NamingClass, DeclAccessPair Decl, |
| 1908 | FunctionDecl *Operator) { |
| 1909 | if (Operator->isTypeAwareOperatorNewOrDelete()) { |
| 1910 | QualType SelectedTypeIdentityParameter = |
| 1911 | Operator->getParamDecl(i: 0)->getType(); |
| 1912 | if (S.RequireCompleteType(StartLoc, SelectedTypeIdentityParameter, |
| 1913 | diag::err_incomplete_type)) |
| 1914 | return true; |
| 1915 | } |
| 1916 | |
| 1917 | // FIXME: DiagnoseUseOfDecl? |
| 1918 | if (Operator->isDeleted()) { |
| 1919 | if (Diagnose) { |
| 1920 | StringLiteral *Msg = Operator->getDeletedMessage(); |
| 1921 | S.Diag(StartLoc, diag::err_deleted_function_use) |
| 1922 | << (Msg != nullptr) << (Msg ? Msg->getString() : StringRef()); |
| 1923 | S.NoteDeletedFunction(FD: Operator); |
| 1924 | } |
| 1925 | return true; |
| 1926 | } |
| 1927 | Sema::AccessResult Accessible = |
| 1928 | S.CheckAllocationAccess(OperatorLoc: StartLoc, PlacementRange: Range, NamingClass, FoundDecl: Decl, Diagnose); |
| 1929 | return Accessible == Sema::AR_inaccessible; |
| 1930 | } |
| 1931 | |
| 1932 | /// Select the correct "usual" deallocation function to use from a selection of |
| 1933 | /// deallocation functions (either global or class-scope). |
| 1934 | static UsualDeallocFnInfo resolveDeallocationOverload( |
| 1935 | Sema &S, LookupResult &R, const ImplicitDeallocationParameters &IDP, |
| 1936 | SourceLocation Loc, |
| 1937 | llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) { |
| 1938 | |
| 1939 | UsualDeallocFnInfo Best; |
| 1940 | for (auto I = R.begin(), E = R.end(); I != E; ++I) { |
| 1941 | UsualDeallocFnInfo Info(S, I.getPair(), IDP.Type, Loc); |
| 1942 | if (!Info || !isNonPlacementDeallocationFunction(S, FD: Info.FD) || |
| 1943 | Info.CUDAPref == SemaCUDA::CFP_Never) |
| 1944 | continue; |
| 1945 | |
| 1946 | if (!isTypeAwareAllocation(Mode: IDP.PassTypeIdentity) && |
| 1947 | isTypeAwareAllocation(Info.IDP.PassTypeIdentity)) |
| 1948 | continue; |
| 1949 | if (!Best) { |
| 1950 | Best = Info; |
| 1951 | if (BestFns) |
| 1952 | BestFns->push_back(Elt: Info); |
| 1953 | continue; |
| 1954 | } |
| 1955 | int ComparisonResult = Best.Compare(S, Other: Info, TargetIDP: IDP); |
| 1956 | if (ComparisonResult > 0) |
| 1957 | continue; |
| 1958 | |
| 1959 | // If more than one preferred function is found, all non-preferred |
| 1960 | // functions are eliminated from further consideration. |
| 1961 | if (BestFns && ComparisonResult < 0) |
| 1962 | BestFns->clear(); |
| 1963 | |
| 1964 | Best = Info; |
| 1965 | if (BestFns) |
| 1966 | BestFns->push_back(Elt: Info); |
| 1967 | } |
| 1968 | |
| 1969 | return Best; |
| 1970 | } |
| 1971 | |
| 1972 | /// Determine whether a given type is a class for which 'delete[]' would call |
| 1973 | /// a member 'operator delete[]' with a 'size_t' parameter. This implies that |
| 1974 | /// we need to store the array size (even if the type is |
| 1975 | /// trivially-destructible). |
| 1976 | static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, |
| 1977 | TypeAwareAllocationMode PassType, |
| 1978 | QualType allocType) { |
| 1979 | const RecordType *record = |
| 1980 | allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); |
| 1981 | if (!record) return false; |
| 1982 | |
| 1983 | // Try to find an operator delete[] in class scope. |
| 1984 | |
| 1985 | DeclarationName deleteName = |
| 1986 | S.Context.DeclarationNames.getCXXOperatorName(Op: OO_Array_Delete); |
| 1987 | LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); |
| 1988 | S.LookupQualifiedName(ops, record->getDecl()); |
| 1989 | |
| 1990 | // We're just doing this for information. |
| 1991 | ops.suppressDiagnostics(); |
| 1992 | |
| 1993 | // Very likely: there's no operator delete[]. |
| 1994 | if (ops.empty()) return false; |
| 1995 | |
| 1996 | // If it's ambiguous, it should be illegal to call operator delete[] |
| 1997 | // on this thing, so it doesn't matter if we allocate extra space or not. |
| 1998 | if (ops.isAmbiguous()) return false; |
| 1999 | |
| 2000 | // C++17 [expr.delete]p10: |
| 2001 | // If the deallocation functions have class scope, the one without a |
| 2002 | // parameter of type std::size_t is selected. |
| 2003 | ImplicitDeallocationParameters IDP = { |
| 2004 | allocType, PassType, |
| 2005 | alignedAllocationModeFromBool(IsAligned: hasNewExtendedAlignment(S, AllocType: allocType)), |
| 2006 | SizedDeallocationMode::No}; |
| 2007 | auto Best = resolveDeallocationOverload(S, R&: ops, IDP, Loc: loc); |
| 2008 | return Best && isSizedDeallocation(Best.IDP.PassSize); |
| 2009 | } |
| 2010 | |
| 2011 | ExprResult |
| 2012 | Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, |
| 2013 | SourceLocation PlacementLParen, MultiExprArg PlacementArgs, |
| 2014 | SourceLocation PlacementRParen, SourceRange TypeIdParens, |
| 2015 | Declarator &D, Expr *Initializer) { |
| 2016 | std::optional<Expr *> ArraySize; |
| 2017 | // If the specified type is an array, unwrap it and save the expression. |
| 2018 | if (D.getNumTypeObjects() > 0 && |
| 2019 | D.getTypeObject(i: 0).Kind == DeclaratorChunk::Array) { |
| 2020 | DeclaratorChunk &Chunk = D.getTypeObject(i: 0); |
| 2021 | if (D.getDeclSpec().hasAutoTypeSpec()) |
| 2022 | return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) |
| 2023 | << D.getSourceRange()); |
| 2024 | if (Chunk.Arr.hasStatic) |
| 2025 | return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) |
| 2026 | << D.getSourceRange()); |
| 2027 | if (!Chunk.Arr.NumElts && !Initializer) |
| 2028 | return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) |
| 2029 | << D.getSourceRange()); |
| 2030 | |
| 2031 | ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); |
| 2032 | D.DropFirstTypeObject(); |
| 2033 | } |
| 2034 | |
| 2035 | // Every dimension shall be of constant size. |
| 2036 | if (ArraySize) { |
| 2037 | for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { |
| 2038 | if (D.getTypeObject(i: I).Kind != DeclaratorChunk::Array) |
| 2039 | break; |
| 2040 | |
| 2041 | DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(i: I).Arr; |
| 2042 | if (Expr *NumElts = (Expr *)Array.NumElts) { |
| 2043 | if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { |
| 2044 | // FIXME: GCC permits constant folding here. We should either do so consistently |
| 2045 | // or not do so at all, rather than changing behavior in C++14 onwards. |
| 2046 | if (getLangOpts().CPlusPlus14) { |
| 2047 | // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator |
| 2048 | // shall be a converted constant expression (5.19) of type std::size_t |
| 2049 | // and shall evaluate to a strictly positive value. |
| 2050 | llvm::APSInt Value(Context.getIntWidth(T: Context.getSizeType())); |
| 2051 | Array.NumElts = |
| 2052 | CheckConvertedConstantExpression(From: NumElts, T: Context.getSizeType(), |
| 2053 | Value, CCE: CCEKind::ArrayBound) |
| 2054 | .get(); |
| 2055 | } else { |
| 2056 | Array.NumElts = VerifyIntegerConstantExpression( |
| 2057 | NumElts, nullptr, diag::err_new_array_nonconst, |
| 2058 | AllowFoldKind::Allow) |
| 2059 | .get(); |
| 2060 | } |
| 2061 | if (!Array.NumElts) |
| 2062 | return ExprError(); |
| 2063 | } |
| 2064 | } |
| 2065 | } |
| 2066 | } |
| 2067 | |
| 2068 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D); |
| 2069 | QualType AllocType = TInfo->getType(); |
| 2070 | if (D.isInvalidType()) |
| 2071 | return ExprError(); |
| 2072 | |
| 2073 | SourceRange DirectInitRange; |
| 2074 | if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Val: Initializer)) |
| 2075 | DirectInitRange = List->getSourceRange(); |
| 2076 | |
| 2077 | return BuildCXXNew(Range: SourceRange(StartLoc, D.getEndLoc()), UseGlobal, |
| 2078 | PlacementLParen, PlacementArgs, PlacementRParen, |
| 2079 | TypeIdParens, AllocType, AllocTypeInfo: TInfo, ArraySize, DirectInitRange, |
| 2080 | Initializer); |
| 2081 | } |
| 2082 | |
| 2083 | static bool isLegalArrayNewInitializer(CXXNewInitializationStyle Style, |
| 2084 | Expr *Init, bool IsCPlusPlus20) { |
| 2085 | if (!Init) |
| 2086 | return true; |
| 2087 | if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Val: Init)) |
| 2088 | return IsCPlusPlus20 || PLE->getNumExprs() == 0; |
| 2089 | if (isa<ImplicitValueInitExpr>(Val: Init)) |
| 2090 | return true; |
| 2091 | else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Val: Init)) |
| 2092 | return !CCE->isListInitialization() && |
| 2093 | CCE->getConstructor()->isDefaultConstructor(); |
| 2094 | else if (Style == CXXNewInitializationStyle::Braces) { |
| 2095 | assert(isa<InitListExpr>(Init) && |
| 2096 | "Shouldn't create list CXXConstructExprs for arrays." ); |
| 2097 | return true; |
| 2098 | } |
| 2099 | return false; |
| 2100 | } |
| 2101 | |
| 2102 | bool |
| 2103 | Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const { |
| 2104 | if (!getLangOpts().AlignedAllocationUnavailable) |
| 2105 | return false; |
| 2106 | if (FD.isDefined()) |
| 2107 | return false; |
| 2108 | UnsignedOrNone AlignmentParam = std::nullopt; |
| 2109 | if (FD.isReplaceableGlobalAllocationFunction(AlignmentParam: &AlignmentParam) && |
| 2110 | AlignmentParam) |
| 2111 | return true; |
| 2112 | return false; |
| 2113 | } |
| 2114 | |
| 2115 | // Emit a diagnostic if an aligned allocation/deallocation function that is not |
| 2116 | // implemented in the standard library is selected. |
| 2117 | void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD, |
| 2118 | SourceLocation Loc) { |
| 2119 | if (isUnavailableAlignedAllocationFunction(FD)) { |
| 2120 | const llvm::Triple &T = getASTContext().getTargetInfo().getTriple(); |
| 2121 | StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling( |
| 2122 | getASTContext().getTargetInfo().getPlatformName()); |
| 2123 | VersionTuple OSVersion = alignedAllocMinVersion(OS: T.getOS()); |
| 2124 | |
| 2125 | bool IsDelete = FD.getDeclName().isAnyOperatorDelete(); |
| 2126 | Diag(Loc, diag::err_aligned_allocation_unavailable) |
| 2127 | << IsDelete << FD.getType().getAsString() << OSName |
| 2128 | << OSVersion.getAsString() << OSVersion.empty(); |
| 2129 | Diag(Loc, diag::note_silence_aligned_allocation_unavailable); |
| 2130 | } |
| 2131 | } |
| 2132 | |
| 2133 | ExprResult Sema::BuildCXXNew(SourceRange Range, bool UseGlobal, |
| 2134 | SourceLocation PlacementLParen, |
| 2135 | MultiExprArg PlacementArgs, |
| 2136 | SourceLocation PlacementRParen, |
| 2137 | SourceRange TypeIdParens, QualType AllocType, |
| 2138 | TypeSourceInfo *AllocTypeInfo, |
| 2139 | std::optional<Expr *> ArraySize, |
| 2140 | SourceRange DirectInitRange, Expr *Initializer) { |
| 2141 | SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); |
| 2142 | SourceLocation StartLoc = Range.getBegin(); |
| 2143 | |
| 2144 | CXXNewInitializationStyle InitStyle; |
| 2145 | if (DirectInitRange.isValid()) { |
| 2146 | assert(Initializer && "Have parens but no initializer." ); |
| 2147 | InitStyle = CXXNewInitializationStyle::Parens; |
| 2148 | } else if (isa_and_nonnull<InitListExpr>(Val: Initializer)) |
| 2149 | InitStyle = CXXNewInitializationStyle::Braces; |
| 2150 | else { |
| 2151 | assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) || |
| 2152 | isa<CXXConstructExpr>(Initializer)) && |
| 2153 | "Initializer expression that cannot have been implicitly created." ); |
| 2154 | InitStyle = CXXNewInitializationStyle::None; |
| 2155 | } |
| 2156 | |
| 2157 | MultiExprArg Exprs(&Initializer, Initializer ? 1 : 0); |
| 2158 | if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Val: Initializer)) { |
| 2159 | assert(InitStyle == CXXNewInitializationStyle::Parens && |
| 2160 | "paren init for non-call init" ); |
| 2161 | Exprs = MultiExprArg(List->getExprs(), List->getNumExprs()); |
| 2162 | } else if (auto *List = dyn_cast_or_null<CXXParenListInitExpr>(Val: Initializer)) { |
| 2163 | assert(InitStyle == CXXNewInitializationStyle::Parens && |
| 2164 | "paren init for non-call init" ); |
| 2165 | Exprs = List->getInitExprs(); |
| 2166 | } |
| 2167 | |
| 2168 | // C++11 [expr.new]p15: |
| 2169 | // A new-expression that creates an object of type T initializes that |
| 2170 | // object as follows: |
| 2171 | InitializationKind Kind = [&] { |
| 2172 | switch (InitStyle) { |
| 2173 | // - If the new-initializer is omitted, the object is default- |
| 2174 | // initialized (8.5); if no initialization is performed, |
| 2175 | // the object has indeterminate value |
| 2176 | case CXXNewInitializationStyle::None: |
| 2177 | return InitializationKind::CreateDefault(InitLoc: TypeRange.getBegin()); |
| 2178 | // - Otherwise, the new-initializer is interpreted according to the |
| 2179 | // initialization rules of 8.5 for direct-initialization. |
| 2180 | case CXXNewInitializationStyle::Parens: |
| 2181 | return InitializationKind::CreateDirect(InitLoc: TypeRange.getBegin(), |
| 2182 | LParenLoc: DirectInitRange.getBegin(), |
| 2183 | RParenLoc: DirectInitRange.getEnd()); |
| 2184 | case CXXNewInitializationStyle::Braces: |
| 2185 | return InitializationKind::CreateDirectList(TypeRange.getBegin(), |
| 2186 | Initializer->getBeginLoc(), |
| 2187 | Initializer->getEndLoc()); |
| 2188 | } |
| 2189 | llvm_unreachable("Unknown initialization kind" ); |
| 2190 | }(); |
| 2191 | |
| 2192 | // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for. |
| 2193 | auto *Deduced = AllocType->getContainedDeducedType(); |
| 2194 | if (Deduced && !Deduced->isDeduced() && |
| 2195 | isa<DeducedTemplateSpecializationType>(Deduced)) { |
| 2196 | if (ArraySize) |
| 2197 | return ExprError( |
| 2198 | Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(), |
| 2199 | diag::err_deduced_class_template_compound_type) |
| 2200 | << /*array*/ 2 |
| 2201 | << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange)); |
| 2202 | |
| 2203 | InitializedEntity Entity |
| 2204 | = InitializedEntity::InitializeNew(NewLoc: StartLoc, Type: AllocType); |
| 2205 | AllocType = DeduceTemplateSpecializationFromInitializer( |
| 2206 | TInfo: AllocTypeInfo, Entity, Kind, Init: Exprs); |
| 2207 | if (AllocType.isNull()) |
| 2208 | return ExprError(); |
| 2209 | } else if (Deduced && !Deduced->isDeduced()) { |
| 2210 | MultiExprArg Inits = Exprs; |
| 2211 | bool Braced = (InitStyle == CXXNewInitializationStyle::Braces); |
| 2212 | if (Braced) { |
| 2213 | auto *ILE = cast<InitListExpr>(Val: Exprs[0]); |
| 2214 | Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits()); |
| 2215 | } |
| 2216 | |
| 2217 | if (InitStyle == CXXNewInitializationStyle::None || Inits.empty()) |
| 2218 | return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) |
| 2219 | << AllocType << TypeRange); |
| 2220 | if (Inits.size() > 1) { |
| 2221 | Expr *FirstBad = Inits[1]; |
| 2222 | return ExprError(Diag(FirstBad->getBeginLoc(), |
| 2223 | diag::err_auto_new_ctor_multiple_expressions) |
| 2224 | << AllocType << TypeRange); |
| 2225 | } |
| 2226 | if (Braced && !getLangOpts().CPlusPlus17) |
| 2227 | Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init) |
| 2228 | << AllocType << TypeRange; |
| 2229 | Expr *Deduce = Inits[0]; |
| 2230 | if (isa<InitListExpr>(Deduce)) |
| 2231 | return ExprError( |
| 2232 | Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces) |
| 2233 | << Braced << AllocType << TypeRange); |
| 2234 | QualType DeducedType; |
| 2235 | TemplateDeductionInfo Info(Deduce->getExprLoc()); |
| 2236 | TemplateDeductionResult Result = |
| 2237 | DeduceAutoType(AutoTypeLoc: AllocTypeInfo->getTypeLoc(), Initializer: Deduce, Result&: DeducedType, Info); |
| 2238 | if (Result != TemplateDeductionResult::Success && |
| 2239 | Result != TemplateDeductionResult::AlreadyDiagnosed) |
| 2240 | return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) |
| 2241 | << AllocType << Deduce->getType() << TypeRange |
| 2242 | << Deduce->getSourceRange()); |
| 2243 | if (DeducedType.isNull()) { |
| 2244 | assert(Result == TemplateDeductionResult::AlreadyDiagnosed); |
| 2245 | return ExprError(); |
| 2246 | } |
| 2247 | AllocType = DeducedType; |
| 2248 | } |
| 2249 | |
| 2250 | // Per C++0x [expr.new]p5, the type being constructed may be a |
| 2251 | // typedef of an array type. |
| 2252 | // Dependent case will be handled separately. |
| 2253 | if (!ArraySize && !AllocType->isDependentType()) { |
| 2254 | if (const ConstantArrayType *Array |
| 2255 | = Context.getAsConstantArrayType(T: AllocType)) { |
| 2256 | ArraySize = IntegerLiteral::Create(C: Context, V: Array->getSize(), |
| 2257 | type: Context.getSizeType(), |
| 2258 | l: TypeRange.getEnd()); |
| 2259 | AllocType = Array->getElementType(); |
| 2260 | } |
| 2261 | } |
| 2262 | |
| 2263 | if (CheckAllocatedType(AllocType, Loc: TypeRange.getBegin(), R: TypeRange)) |
| 2264 | return ExprError(); |
| 2265 | |
| 2266 | if (ArraySize && !checkArrayElementAlignment(EltTy: AllocType, Loc: TypeRange.getBegin())) |
| 2267 | return ExprError(); |
| 2268 | |
| 2269 | // In ARC, infer 'retaining' for the allocated |
| 2270 | if (getLangOpts().ObjCAutoRefCount && |
| 2271 | AllocType.getObjCLifetime() == Qualifiers::OCL_None && |
| 2272 | AllocType->isObjCLifetimeType()) { |
| 2273 | AllocType = Context.getLifetimeQualifiedType(type: AllocType, |
| 2274 | lifetime: AllocType->getObjCARCImplicitLifetime()); |
| 2275 | } |
| 2276 | |
| 2277 | QualType ResultType = Context.getPointerType(T: AllocType); |
| 2278 | |
| 2279 | if (ArraySize && *ArraySize && |
| 2280 | (*ArraySize)->getType()->isNonOverloadPlaceholderType()) { |
| 2281 | ExprResult result = CheckPlaceholderExpr(E: *ArraySize); |
| 2282 | if (result.isInvalid()) return ExprError(); |
| 2283 | ArraySize = result.get(); |
| 2284 | } |
| 2285 | // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have |
| 2286 | // integral or enumeration type with a non-negative value." |
| 2287 | // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped |
| 2288 | // enumeration type, or a class type for which a single non-explicit |
| 2289 | // conversion function to integral or unscoped enumeration type exists. |
| 2290 | // C++1y [expr.new]p6: The expression [...] is implicitly converted to |
| 2291 | // std::size_t. |
| 2292 | std::optional<uint64_t> KnownArraySize; |
| 2293 | if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) { |
| 2294 | ExprResult ConvertedSize; |
| 2295 | if (getLangOpts().CPlusPlus14) { |
| 2296 | assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?" ); |
| 2297 | |
| 2298 | ConvertedSize = PerformImplicitConversion( |
| 2299 | From: *ArraySize, ToType: Context.getSizeType(), Action: AssignmentAction::Converting); |
| 2300 | |
| 2301 | if (!ConvertedSize.isInvalid() && |
| 2302 | (*ArraySize)->getType()->getAs<RecordType>()) |
| 2303 | // Diagnose the compatibility of this conversion. |
| 2304 | Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion) |
| 2305 | << (*ArraySize)->getType() << 0 << "'size_t'" ; |
| 2306 | } else { |
| 2307 | class SizeConvertDiagnoser : public ICEConvertDiagnoser { |
| 2308 | protected: |
| 2309 | Expr *ArraySize; |
| 2310 | |
| 2311 | public: |
| 2312 | SizeConvertDiagnoser(Expr *ArraySize) |
| 2313 | : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false), |
| 2314 | ArraySize(ArraySize) {} |
| 2315 | |
| 2316 | SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, |
| 2317 | QualType T) override { |
| 2318 | return S.Diag(Loc, diag::err_array_size_not_integral) |
| 2319 | << S.getLangOpts().CPlusPlus11 << T; |
| 2320 | } |
| 2321 | |
| 2322 | SemaDiagnosticBuilder diagnoseIncomplete( |
| 2323 | Sema &S, SourceLocation Loc, QualType T) override { |
| 2324 | return S.Diag(Loc, diag::err_array_size_incomplete_type) |
| 2325 | << T << ArraySize->getSourceRange(); |
| 2326 | } |
| 2327 | |
| 2328 | SemaDiagnosticBuilder diagnoseExplicitConv( |
| 2329 | Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { |
| 2330 | return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy; |
| 2331 | } |
| 2332 | |
| 2333 | SemaDiagnosticBuilder noteExplicitConv( |
| 2334 | Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { |
| 2335 | return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) |
| 2336 | << ConvTy->isEnumeralType() << ConvTy; |
| 2337 | } |
| 2338 | |
| 2339 | SemaDiagnosticBuilder diagnoseAmbiguous( |
| 2340 | Sema &S, SourceLocation Loc, QualType T) override { |
| 2341 | return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T; |
| 2342 | } |
| 2343 | |
| 2344 | SemaDiagnosticBuilder noteAmbiguous( |
| 2345 | Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { |
| 2346 | return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) |
| 2347 | << ConvTy->isEnumeralType() << ConvTy; |
| 2348 | } |
| 2349 | |
| 2350 | SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, |
| 2351 | QualType T, |
| 2352 | QualType ConvTy) override { |
| 2353 | return S.Diag(Loc, |
| 2354 | S.getLangOpts().CPlusPlus11 |
| 2355 | ? diag::warn_cxx98_compat_array_size_conversion |
| 2356 | : diag::ext_array_size_conversion) |
| 2357 | << T << ConvTy->isEnumeralType() << ConvTy; |
| 2358 | } |
| 2359 | } SizeDiagnoser(*ArraySize); |
| 2360 | |
| 2361 | ConvertedSize = PerformContextualImplicitConversion(Loc: StartLoc, FromE: *ArraySize, |
| 2362 | Converter&: SizeDiagnoser); |
| 2363 | } |
| 2364 | if (ConvertedSize.isInvalid()) |
| 2365 | return ExprError(); |
| 2366 | |
| 2367 | ArraySize = ConvertedSize.get(); |
| 2368 | QualType SizeType = (*ArraySize)->getType(); |
| 2369 | |
| 2370 | if (!SizeType->isIntegralOrUnscopedEnumerationType()) |
| 2371 | return ExprError(); |
| 2372 | |
| 2373 | // C++98 [expr.new]p7: |
| 2374 | // The expression in a direct-new-declarator shall have integral type |
| 2375 | // with a non-negative value. |
| 2376 | // |
| 2377 | // Let's see if this is a constant < 0. If so, we reject it out of hand, |
| 2378 | // per CWG1464. Otherwise, if it's not a constant, we must have an |
| 2379 | // unparenthesized array type. |
| 2380 | |
| 2381 | // We've already performed any required implicit conversion to integer or |
| 2382 | // unscoped enumeration type. |
| 2383 | // FIXME: Per CWG1464, we are required to check the value prior to |
| 2384 | // converting to size_t. This will never find a negative array size in |
| 2385 | // C++14 onwards, because Value is always unsigned here! |
| 2386 | if (std::optional<llvm::APSInt> Value = |
| 2387 | (*ArraySize)->getIntegerConstantExpr(Ctx: Context)) { |
| 2388 | if (Value->isSigned() && Value->isNegative()) { |
| 2389 | return ExprError(Diag((*ArraySize)->getBeginLoc(), |
| 2390 | diag::err_typecheck_negative_array_size) |
| 2391 | << (*ArraySize)->getSourceRange()); |
| 2392 | } |
| 2393 | |
| 2394 | if (!AllocType->isDependentType()) { |
| 2395 | unsigned ActiveSizeBits = |
| 2396 | ConstantArrayType::getNumAddressingBits(Context, ElementType: AllocType, NumElements: *Value); |
| 2397 | if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) |
| 2398 | return ExprError( |
| 2399 | Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large) |
| 2400 | << toString(*Value, 10) << (*ArraySize)->getSourceRange()); |
| 2401 | } |
| 2402 | |
| 2403 | KnownArraySize = Value->getZExtValue(); |
| 2404 | } else if (TypeIdParens.isValid()) { |
| 2405 | // Can't have dynamic array size when the type-id is in parentheses. |
| 2406 | Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst) |
| 2407 | << (*ArraySize)->getSourceRange() |
| 2408 | << FixItHint::CreateRemoval(TypeIdParens.getBegin()) |
| 2409 | << FixItHint::CreateRemoval(TypeIdParens.getEnd()); |
| 2410 | |
| 2411 | TypeIdParens = SourceRange(); |
| 2412 | } |
| 2413 | |
| 2414 | // Note that we do *not* convert the argument in any way. It can |
| 2415 | // be signed, larger than size_t, whatever. |
| 2416 | } |
| 2417 | |
| 2418 | FunctionDecl *OperatorNew = nullptr; |
| 2419 | FunctionDecl *OperatorDelete = nullptr; |
| 2420 | unsigned Alignment = |
| 2421 | AllocType->isDependentType() ? 0 : Context.getTypeAlign(T: AllocType); |
| 2422 | unsigned NewAlignment = Context.getTargetInfo().getNewAlign(); |
| 2423 | ImplicitAllocationParameters IAP = { |
| 2424 | AllocType, ShouldUseTypeAwareOperatorNewOrDelete(), |
| 2425 | alignedAllocationModeFromBool(IsAligned: getLangOpts().AlignedAllocation && |
| 2426 | Alignment > NewAlignment)}; |
| 2427 | |
| 2428 | if (CheckArgsForPlaceholders(args: PlacementArgs)) |
| 2429 | return ExprError(); |
| 2430 | |
| 2431 | AllocationFunctionScope Scope = UseGlobal ? AllocationFunctionScope::Global |
| 2432 | : AllocationFunctionScope::Both; |
| 2433 | SourceRange AllocationParameterRange = Range; |
| 2434 | if (PlacementLParen.isValid() && PlacementRParen.isValid()) |
| 2435 | AllocationParameterRange = SourceRange(PlacementLParen, PlacementRParen); |
| 2436 | if (!AllocType->isDependentType() && |
| 2437 | !Expr::hasAnyTypeDependentArguments(Exprs: PlacementArgs) && |
| 2438 | FindAllocationFunctions(StartLoc, Range: AllocationParameterRange, NewScope: Scope, DeleteScope: Scope, |
| 2439 | AllocType, IsArray: ArraySize.has_value(), IAP, |
| 2440 | PlaceArgs: PlacementArgs, OperatorNew, OperatorDelete)) |
| 2441 | return ExprError(); |
| 2442 | |
| 2443 | // If this is an array allocation, compute whether the usual array |
| 2444 | // deallocation function for the type has a size_t parameter. |
| 2445 | bool UsualArrayDeleteWantsSize = false; |
| 2446 | if (ArraySize && !AllocType->isDependentType()) |
| 2447 | UsualArrayDeleteWantsSize = doesUsualArrayDeleteWantSize( |
| 2448 | S&: *this, loc: StartLoc, PassType: IAP.PassTypeIdentity, allocType: AllocType); |
| 2449 | |
| 2450 | SmallVector<Expr *, 8> AllPlaceArgs; |
| 2451 | if (OperatorNew) { |
| 2452 | auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); |
| 2453 | VariadicCallType CallType = Proto->isVariadic() |
| 2454 | ? VariadicCallType::Function |
| 2455 | : VariadicCallType::DoesNotApply; |
| 2456 | |
| 2457 | // We've already converted the placement args, just fill in any default |
| 2458 | // arguments. Skip the first parameter because we don't have a corresponding |
| 2459 | // argument. Skip the second parameter too if we're passing in the |
| 2460 | // alignment; we've already filled it in. |
| 2461 | unsigned NumImplicitArgs = 1; |
| 2462 | if (isTypeAwareAllocation(Mode: IAP.PassTypeIdentity)) { |
| 2463 | assert(OperatorNew->isTypeAwareOperatorNewOrDelete()); |
| 2464 | NumImplicitArgs++; |
| 2465 | } |
| 2466 | if (isAlignedAllocation(Mode: IAP.PassAlignment)) |
| 2467 | NumImplicitArgs++; |
| 2468 | if (GatherArgumentsForCall(CallLoc: AllocationParameterRange.getBegin(), FDecl: OperatorNew, |
| 2469 | Proto: Proto, FirstParam: NumImplicitArgs, Args: PlacementArgs, |
| 2470 | AllArgs&: AllPlaceArgs, CallType)) |
| 2471 | return ExprError(); |
| 2472 | |
| 2473 | if (!AllPlaceArgs.empty()) |
| 2474 | PlacementArgs = AllPlaceArgs; |
| 2475 | |
| 2476 | // We would like to perform some checking on the given `operator new` call, |
| 2477 | // but the PlacementArgs does not contain the implicit arguments, |
| 2478 | // namely allocation size and maybe allocation alignment, |
| 2479 | // so we need to conjure them. |
| 2480 | |
| 2481 | QualType SizeTy = Context.getSizeType(); |
| 2482 | unsigned SizeTyWidth = Context.getTypeSize(T: SizeTy); |
| 2483 | |
| 2484 | llvm::APInt SingleEltSize( |
| 2485 | SizeTyWidth, Context.getTypeSizeInChars(T: AllocType).getQuantity()); |
| 2486 | |
| 2487 | // How many bytes do we want to allocate here? |
| 2488 | std::optional<llvm::APInt> AllocationSize; |
| 2489 | if (!ArraySize && !AllocType->isDependentType()) { |
| 2490 | // For non-array operator new, we only want to allocate one element. |
| 2491 | AllocationSize = SingleEltSize; |
| 2492 | } else if (KnownArraySize && !AllocType->isDependentType()) { |
| 2493 | // For array operator new, only deal with static array size case. |
| 2494 | bool Overflow; |
| 2495 | AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize) |
| 2496 | .umul_ov(RHS: SingleEltSize, Overflow); |
| 2497 | (void)Overflow; |
| 2498 | assert( |
| 2499 | !Overflow && |
| 2500 | "Expected that all the overflows would have been handled already." ); |
| 2501 | } |
| 2502 | |
| 2503 | IntegerLiteral AllocationSizeLiteral( |
| 2504 | Context, AllocationSize.value_or(u: llvm::APInt::getZero(numBits: SizeTyWidth)), |
| 2505 | SizeTy, StartLoc); |
| 2506 | // Otherwise, if we failed to constant-fold the allocation size, we'll |
| 2507 | // just give up and pass-in something opaque, that isn't a null pointer. |
| 2508 | OpaqueValueExpr OpaqueAllocationSize(StartLoc, SizeTy, VK_PRValue, |
| 2509 | OK_Ordinary, /*SourceExpr=*/nullptr); |
| 2510 | |
| 2511 | // Let's synthesize the alignment argument in case we will need it. |
| 2512 | // Since we *really* want to allocate these on stack, this is slightly ugly |
| 2513 | // because there might not be a `std::align_val_t` type. |
| 2514 | EnumDecl *StdAlignValT = getStdAlignValT(); |
| 2515 | QualType AlignValT = |
| 2516 | StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy; |
| 2517 | IntegerLiteral AlignmentLiteral( |
| 2518 | Context, |
| 2519 | llvm::APInt(Context.getTypeSize(T: SizeTy), |
| 2520 | Alignment / Context.getCharWidth()), |
| 2521 | SizeTy, StartLoc); |
| 2522 | ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT, |
| 2523 | CK_IntegralCast, &AlignmentLiteral, |
| 2524 | VK_PRValue, FPOptionsOverride()); |
| 2525 | |
| 2526 | // Adjust placement args by prepending conjured size and alignment exprs. |
| 2527 | llvm::SmallVector<Expr *, 8> CallArgs; |
| 2528 | CallArgs.reserve(N: NumImplicitArgs + PlacementArgs.size()); |
| 2529 | CallArgs.emplace_back(AllocationSize |
| 2530 | ? static_cast<Expr *>(&AllocationSizeLiteral) |
| 2531 | : &OpaqueAllocationSize); |
| 2532 | if (isAlignedAllocation(Mode: IAP.PassAlignment)) |
| 2533 | CallArgs.emplace_back(Args: &DesiredAlignment); |
| 2534 | llvm::append_range(C&: CallArgs, R&: PlacementArgs); |
| 2535 | |
| 2536 | DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs); |
| 2537 | |
| 2538 | checkCall(FDecl: OperatorNew, Proto: Proto, /*ThisArg=*/nullptr, Args: CallArgs, |
| 2539 | /*IsMemberFunction=*/false, Loc: StartLoc, Range, CallType); |
| 2540 | |
| 2541 | // Warn if the type is over-aligned and is being allocated by (unaligned) |
| 2542 | // global operator new. |
| 2543 | if (PlacementArgs.empty() && !isAlignedAllocation(Mode: IAP.PassAlignment) && |
| 2544 | (OperatorNew->isImplicit() || |
| 2545 | (OperatorNew->getBeginLoc().isValid() && |
| 2546 | getSourceManager().isInSystemHeader(Loc: OperatorNew->getBeginLoc())))) { |
| 2547 | if (Alignment > NewAlignment) |
| 2548 | Diag(StartLoc, diag::warn_overaligned_type) |
| 2549 | << AllocType |
| 2550 | << unsigned(Alignment / Context.getCharWidth()) |
| 2551 | << unsigned(NewAlignment / Context.getCharWidth()); |
| 2552 | } |
| 2553 | } |
| 2554 | |
| 2555 | // Array 'new' can't have any initializers except empty parentheses. |
| 2556 | // Initializer lists are also allowed, in C++11. Rely on the parser for the |
| 2557 | // dialect distinction. |
| 2558 | if (ArraySize && !isLegalArrayNewInitializer(Style: InitStyle, Init: Initializer, |
| 2559 | IsCPlusPlus20: getLangOpts().CPlusPlus20)) { |
| 2560 | SourceRange InitRange(Exprs.front()->getBeginLoc(), |
| 2561 | Exprs.back()->getEndLoc()); |
| 2562 | Diag(StartLoc, diag::err_new_array_init_args) << InitRange; |
| 2563 | return ExprError(); |
| 2564 | } |
| 2565 | |
| 2566 | // If we can perform the initialization, and we've not already done so, |
| 2567 | // do it now. |
| 2568 | if (!AllocType->isDependentType() && |
| 2569 | !Expr::hasAnyTypeDependentArguments(Exprs)) { |
| 2570 | // The type we initialize is the complete type, including the array bound. |
| 2571 | QualType InitType; |
| 2572 | if (KnownArraySize) |
| 2573 | InitType = Context.getConstantArrayType( |
| 2574 | EltTy: AllocType, |
| 2575 | ArySize: llvm::APInt(Context.getTypeSize(T: Context.getSizeType()), |
| 2576 | *KnownArraySize), |
| 2577 | SizeExpr: *ArraySize, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
| 2578 | else if (ArraySize) |
| 2579 | InitType = Context.getIncompleteArrayType(EltTy: AllocType, |
| 2580 | ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
| 2581 | else |
| 2582 | InitType = AllocType; |
| 2583 | |
| 2584 | InitializedEntity Entity |
| 2585 | = InitializedEntity::InitializeNew(NewLoc: StartLoc, Type: InitType); |
| 2586 | InitializationSequence InitSeq(*this, Entity, Kind, Exprs); |
| 2587 | ExprResult FullInit = InitSeq.Perform(S&: *this, Entity, Kind, Args: Exprs); |
| 2588 | if (FullInit.isInvalid()) |
| 2589 | return ExprError(); |
| 2590 | |
| 2591 | // FullInit is our initializer; strip off CXXBindTemporaryExprs, because |
| 2592 | // we don't want the initialized object to be destructed. |
| 2593 | // FIXME: We should not create these in the first place. |
| 2594 | if (CXXBindTemporaryExpr *Binder = |
| 2595 | dyn_cast_or_null<CXXBindTemporaryExpr>(Val: FullInit.get())) |
| 2596 | FullInit = Binder->getSubExpr(); |
| 2597 | |
| 2598 | Initializer = FullInit.get(); |
| 2599 | |
| 2600 | // FIXME: If we have a KnownArraySize, check that the array bound of the |
| 2601 | // initializer is no greater than that constant value. |
| 2602 | |
| 2603 | if (ArraySize && !*ArraySize) { |
| 2604 | auto *CAT = Context.getAsConstantArrayType(T: Initializer->getType()); |
| 2605 | if (CAT) { |
| 2606 | // FIXME: Track that the array size was inferred rather than explicitly |
| 2607 | // specified. |
| 2608 | ArraySize = IntegerLiteral::Create( |
| 2609 | C: Context, V: CAT->getSize(), type: Context.getSizeType(), l: TypeRange.getEnd()); |
| 2610 | } else { |
| 2611 | Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init) |
| 2612 | << Initializer->getSourceRange(); |
| 2613 | } |
| 2614 | } |
| 2615 | } |
| 2616 | |
| 2617 | // Mark the new and delete operators as referenced. |
| 2618 | if (OperatorNew) { |
| 2619 | if (DiagnoseUseOfDecl(OperatorNew, StartLoc)) |
| 2620 | return ExprError(); |
| 2621 | MarkFunctionReferenced(Loc: StartLoc, Func: OperatorNew); |
| 2622 | } |
| 2623 | if (OperatorDelete) { |
| 2624 | if (DiagnoseUseOfDecl(OperatorDelete, StartLoc)) |
| 2625 | return ExprError(); |
| 2626 | MarkFunctionReferenced(Loc: StartLoc, Func: OperatorDelete); |
| 2627 | } |
| 2628 | |
| 2629 | return CXXNewExpr::Create(Ctx: Context, IsGlobalNew: UseGlobal, OperatorNew, OperatorDelete, |
| 2630 | IAP, UsualArrayDeleteWantsSize, PlacementArgs, |
| 2631 | TypeIdParens, ArraySize, InitializationStyle: InitStyle, Initializer, |
| 2632 | Ty: ResultType, AllocatedTypeInfo: AllocTypeInfo, Range, DirectInitRange); |
| 2633 | } |
| 2634 | |
| 2635 | bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, |
| 2636 | SourceRange R) { |
| 2637 | // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an |
| 2638 | // abstract class type or array thereof. |
| 2639 | if (AllocType->isFunctionType()) |
| 2640 | return Diag(Loc, diag::err_bad_new_type) |
| 2641 | << AllocType << 0 << R; |
| 2642 | else if (AllocType->isReferenceType()) |
| 2643 | return Diag(Loc, diag::err_bad_new_type) |
| 2644 | << AllocType << 1 << R; |
| 2645 | else if (!AllocType->isDependentType() && |
| 2646 | RequireCompleteSizedType( |
| 2647 | Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R)) |
| 2648 | return true; |
| 2649 | else if (RequireNonAbstractType(Loc, AllocType, |
| 2650 | diag::err_allocation_of_abstract_type)) |
| 2651 | return true; |
| 2652 | else if (AllocType->isVariablyModifiedType()) |
| 2653 | return Diag(Loc, diag::err_variably_modified_new_type) |
| 2654 | << AllocType; |
| 2655 | else if (AllocType.getAddressSpace() != LangAS::Default && |
| 2656 | !getLangOpts().OpenCLCPlusPlus) |
| 2657 | return Diag(Loc, diag::err_address_space_qualified_new) |
| 2658 | << AllocType.getUnqualifiedType() |
| 2659 | << AllocType.getQualifiers().getAddressSpaceAttributePrintValue(); |
| 2660 | else if (getLangOpts().ObjCAutoRefCount) { |
| 2661 | if (const ArrayType *AT = Context.getAsArrayType(T: AllocType)) { |
| 2662 | QualType BaseAllocType = Context.getBaseElementType(VAT: AT); |
| 2663 | if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && |
| 2664 | BaseAllocType->isObjCLifetimeType()) |
| 2665 | return Diag(Loc, diag::err_arc_new_array_without_ownership) |
| 2666 | << BaseAllocType; |
| 2667 | } |
| 2668 | } |
| 2669 | |
| 2670 | return false; |
| 2671 | } |
| 2672 | |
| 2673 | enum class ResolveMode { Typed, Untyped }; |
| 2674 | static bool resolveAllocationOverloadInterior( |
| 2675 | Sema &S, LookupResult &R, SourceRange Range, ResolveMode Mode, |
| 2676 | SmallVectorImpl<Expr *> &Args, AlignedAllocationMode &PassAlignment, |
| 2677 | FunctionDecl *&Operator, OverloadCandidateSet *AlignedCandidates, |
| 2678 | Expr *AlignArg, bool Diagnose) { |
| 2679 | unsigned NonTypeArgumentOffset = 0; |
| 2680 | if (Mode == ResolveMode::Typed) { |
| 2681 | ++NonTypeArgumentOffset; |
| 2682 | } |
| 2683 | |
| 2684 | OverloadCandidateSet Candidates(R.getNameLoc(), |
| 2685 | OverloadCandidateSet::CSK_Normal); |
| 2686 | for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); |
| 2687 | Alloc != AllocEnd; ++Alloc) { |
| 2688 | // Even member operator new/delete are implicitly treated as |
| 2689 | // static, so don't use AddMemberCandidate. |
| 2690 | NamedDecl *D = (*Alloc)->getUnderlyingDecl(); |
| 2691 | bool IsTypeAware = D->getAsFunction()->isTypeAwareOperatorNewOrDelete(); |
| 2692 | if (IsTypeAware == (Mode != ResolveMode::Typed)) |
| 2693 | continue; |
| 2694 | |
| 2695 | if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(Val: D)) { |
| 2696 | S.AddTemplateOverloadCandidate(FunctionTemplate: FnTemplate, FoundDecl: Alloc.getPair(), |
| 2697 | /*ExplicitTemplateArgs=*/nullptr, Args, |
| 2698 | CandidateSet&: Candidates, |
| 2699 | /*SuppressUserConversions=*/false); |
| 2700 | continue; |
| 2701 | } |
| 2702 | |
| 2703 | FunctionDecl *Fn = cast<FunctionDecl>(Val: D); |
| 2704 | S.AddOverloadCandidate(Function: Fn, FoundDecl: Alloc.getPair(), Args, CandidateSet&: Candidates, |
| 2705 | /*SuppressUserConversions=*/false); |
| 2706 | } |
| 2707 | |
| 2708 | // Do the resolution. |
| 2709 | OverloadCandidateSet::iterator Best; |
| 2710 | switch (Candidates.BestViableFunction(S, Loc: R.getNameLoc(), Best)) { |
| 2711 | case OR_Success: { |
| 2712 | // Got one! |
| 2713 | FunctionDecl *FnDecl = Best->Function; |
| 2714 | if (S.CheckAllocationAccess(OperatorLoc: R.getNameLoc(), PlacementRange: Range, NamingClass: R.getNamingClass(), |
| 2715 | FoundDecl: Best->FoundDecl) == Sema::AR_inaccessible) |
| 2716 | return true; |
| 2717 | |
| 2718 | Operator = FnDecl; |
| 2719 | return false; |
| 2720 | } |
| 2721 | |
| 2722 | case OR_No_Viable_Function: |
| 2723 | // C++17 [expr.new]p13: |
| 2724 | // If no matching function is found and the allocated object type has |
| 2725 | // new-extended alignment, the alignment argument is removed from the |
| 2726 | // argument list, and overload resolution is performed again. |
| 2727 | if (isAlignedAllocation(Mode: PassAlignment)) { |
| 2728 | PassAlignment = AlignedAllocationMode::No; |
| 2729 | AlignArg = Args[NonTypeArgumentOffset + 1]; |
| 2730 | Args.erase(CI: Args.begin() + NonTypeArgumentOffset + 1); |
| 2731 | return resolveAllocationOverloadInterior(S, R, Range, Mode, Args, |
| 2732 | PassAlignment, Operator, |
| 2733 | AlignedCandidates: &Candidates, AlignArg, Diagnose); |
| 2734 | } |
| 2735 | |
| 2736 | // MSVC will fall back on trying to find a matching global operator new |
| 2737 | // if operator new[] cannot be found. Also, MSVC will leak by not |
| 2738 | // generating a call to operator delete or operator delete[], but we |
| 2739 | // will not replicate that bug. |
| 2740 | // FIXME: Find out how this interacts with the std::align_val_t fallback |
| 2741 | // once MSVC implements it. |
| 2742 | if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New && |
| 2743 | S.Context.getLangOpts().MSVCCompat && Mode != ResolveMode::Typed) { |
| 2744 | R.clear(); |
| 2745 | R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(Op: OO_New)); |
| 2746 | S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); |
| 2747 | // FIXME: This will give bad diagnostics pointing at the wrong functions. |
| 2748 | return resolveAllocationOverloadInterior(S, R, Range, Mode, Args, |
| 2749 | PassAlignment, Operator, |
| 2750 | /*Candidates=*/AlignedCandidates: nullptr, |
| 2751 | /*AlignArg=*/nullptr, Diagnose); |
| 2752 | } |
| 2753 | if (Mode == ResolveMode::Typed) { |
| 2754 | // If we can't find a matching type aware operator we don't consider this |
| 2755 | // a failure. |
| 2756 | Operator = nullptr; |
| 2757 | return false; |
| 2758 | } |
| 2759 | if (Diagnose) { |
| 2760 | // If this is an allocation of the form 'new (p) X' for some object |
| 2761 | // pointer p (or an expression that will decay to such a pointer), |
| 2762 | // diagnose the missing inclusion of <new>. |
| 2763 | if (!R.isClassLookup() && Args.size() == 2 && |
| 2764 | (Args[1]->getType()->isObjectPointerType() || |
| 2765 | Args[1]->getType()->isArrayType())) { |
| 2766 | S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new) |
| 2767 | << R.getLookupName() << Range; |
| 2768 | // Listing the candidates is unlikely to be useful; skip it. |
| 2769 | return true; |
| 2770 | } |
| 2771 | |
| 2772 | // Finish checking all candidates before we note any. This checking can |
| 2773 | // produce additional diagnostics so can't be interleaved with our |
| 2774 | // emission of notes. |
| 2775 | // |
| 2776 | // For an aligned allocation, separately check the aligned and unaligned |
| 2777 | // candidates with their respective argument lists. |
| 2778 | SmallVector<OverloadCandidate*, 32> Cands; |
| 2779 | SmallVector<OverloadCandidate*, 32> AlignedCands; |
| 2780 | llvm::SmallVector<Expr*, 4> AlignedArgs; |
| 2781 | if (AlignedCandidates) { |
| 2782 | auto IsAligned = [NonTypeArgumentOffset](OverloadCandidate &C) { |
| 2783 | auto AlignArgOffset = NonTypeArgumentOffset + 1; |
| 2784 | return C.Function->getNumParams() > AlignArgOffset && |
| 2785 | C.Function->getParamDecl(AlignArgOffset) |
| 2786 | ->getType() |
| 2787 | ->isAlignValT(); |
| 2788 | }; |
| 2789 | auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); }; |
| 2790 | |
| 2791 | AlignedArgs.reserve(N: Args.size() + NonTypeArgumentOffset + 1); |
| 2792 | for (unsigned Idx = 0; Idx < NonTypeArgumentOffset + 1; ++Idx) |
| 2793 | AlignedArgs.push_back(Elt: Args[Idx]); |
| 2794 | AlignedArgs.push_back(Elt: AlignArg); |
| 2795 | AlignedArgs.append(in_start: Args.begin() + NonTypeArgumentOffset + 1, |
| 2796 | in_end: Args.end()); |
| 2797 | AlignedCands = AlignedCandidates->CompleteCandidates( |
| 2798 | S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned); |
| 2799 | |
| 2800 | Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, |
| 2801 | R.getNameLoc(), IsUnaligned); |
| 2802 | } else { |
| 2803 | Cands = Candidates.CompleteCandidates(S, OCD: OCD_AllCandidates, Args, |
| 2804 | OpLoc: R.getNameLoc()); |
| 2805 | } |
| 2806 | |
| 2807 | S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call) |
| 2808 | << R.getLookupName() << Range; |
| 2809 | if (AlignedCandidates) |
| 2810 | AlignedCandidates->NoteCandidates(S, Args: AlignedArgs, Cands: AlignedCands, Opc: "" , |
| 2811 | OpLoc: R.getNameLoc()); |
| 2812 | Candidates.NoteCandidates(S, Args, Cands, Opc: "" , OpLoc: R.getNameLoc()); |
| 2813 | } |
| 2814 | return true; |
| 2815 | |
| 2816 | case OR_Ambiguous: |
| 2817 | if (Diagnose) { |
| 2818 | Candidates.NoteCandidates( |
| 2819 | PartialDiagnosticAt(R.getNameLoc(), |
| 2820 | S.PDiag(diag::err_ovl_ambiguous_call) |
| 2821 | << R.getLookupName() << Range), |
| 2822 | S, OCD_AmbiguousCandidates, Args); |
| 2823 | } |
| 2824 | return true; |
| 2825 | |
| 2826 | case OR_Deleted: { |
| 2827 | if (Diagnose) |
| 2828 | S.DiagnoseUseOfDeletedFunction(Loc: R.getNameLoc(), Range, Name: R.getLookupName(), |
| 2829 | CandidateSet&: Candidates, Fn: Best->Function, Args); |
| 2830 | return true; |
| 2831 | } |
| 2832 | } |
| 2833 | llvm_unreachable("Unreachable, bad result from BestViableFunction" ); |
| 2834 | } |
| 2835 | |
| 2836 | enum class DeallocLookupMode { Untyped, OptionallyTyped }; |
| 2837 | |
| 2838 | static void LookupGlobalDeallocationFunctions(Sema &S, SourceLocation Loc, |
| 2839 | LookupResult &FoundDelete, |
| 2840 | DeallocLookupMode Mode, |
| 2841 | DeclarationName Name) { |
| 2842 | S.LookupQualifiedName(FoundDelete, S.Context.getTranslationUnitDecl()); |
| 2843 | if (Mode != DeallocLookupMode::OptionallyTyped) { |
| 2844 | // We're going to remove either the typed or the non-typed |
| 2845 | bool RemoveTypedDecl = Mode == DeallocLookupMode::Untyped; |
| 2846 | LookupResult::Filter Filter = FoundDelete.makeFilter(); |
| 2847 | while (Filter.hasNext()) { |
| 2848 | FunctionDecl *FD = Filter.next()->getUnderlyingDecl()->getAsFunction(); |
| 2849 | if (FD->isTypeAwareOperatorNewOrDelete() == RemoveTypedDecl) |
| 2850 | Filter.erase(); |
| 2851 | } |
| 2852 | Filter.done(); |
| 2853 | } |
| 2854 | } |
| 2855 | |
| 2856 | static bool resolveAllocationOverload( |
| 2857 | Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args, |
| 2858 | ImplicitAllocationParameters &IAP, FunctionDecl *&Operator, |
| 2859 | OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) { |
| 2860 | Operator = nullptr; |
| 2861 | if (isTypeAwareAllocation(Mode: IAP.PassTypeIdentity)) { |
| 2862 | assert(S.isStdTypeIdentity(Args[0]->getType(), nullptr)); |
| 2863 | // The internal overload resolution work mutates the argument list |
| 2864 | // in accordance with the spec. We may want to change that in future, |
| 2865 | // but for now we deal with this by making a copy of the non-type-identity |
| 2866 | // arguments. |
| 2867 | SmallVector<Expr *> UntypedParameters; |
| 2868 | UntypedParameters.reserve(N: Args.size() - 1); |
| 2869 | UntypedParameters.push_back(Elt: Args[1]); |
| 2870 | // Type aware allocation implicitly includes the alignment parameter so |
| 2871 | // only include it in the untyped parameter list if alignment was explicitly |
| 2872 | // requested |
| 2873 | if (isAlignedAllocation(Mode: IAP.PassAlignment)) |
| 2874 | UntypedParameters.push_back(Elt: Args[2]); |
| 2875 | UntypedParameters.append(in_start: Args.begin() + 3, in_end: Args.end()); |
| 2876 | |
| 2877 | AlignedAllocationMode InitialAlignmentMode = IAP.PassAlignment; |
| 2878 | IAP.PassAlignment = AlignedAllocationMode::Yes; |
| 2879 | if (resolveAllocationOverloadInterior( |
| 2880 | S, R, Range, Mode: ResolveMode::Typed, Args, PassAlignment&: IAP.PassAlignment, Operator, |
| 2881 | AlignedCandidates, AlignArg, Diagnose)) |
| 2882 | return true; |
| 2883 | if (Operator) |
| 2884 | return false; |
| 2885 | |
| 2886 | // If we got to this point we could not find a matching typed operator |
| 2887 | // so we update the IAP flags, and revert to our stored copy of the |
| 2888 | // type-identity-less argument list. |
| 2889 | IAP.PassTypeIdentity = TypeAwareAllocationMode::No; |
| 2890 | IAP.PassAlignment = InitialAlignmentMode; |
| 2891 | Args = std::move(UntypedParameters); |
| 2892 | } |
| 2893 | assert(!S.isStdTypeIdentity(Args[0]->getType(), nullptr)); |
| 2894 | return resolveAllocationOverloadInterior( |
| 2895 | S, R, Range, Mode: ResolveMode::Untyped, Args, PassAlignment&: IAP.PassAlignment, Operator, |
| 2896 | AlignedCandidates, AlignArg, Diagnose); |
| 2897 | } |
| 2898 | |
| 2899 | bool Sema::FindAllocationFunctions( |
| 2900 | SourceLocation StartLoc, SourceRange Range, |
| 2901 | AllocationFunctionScope NewScope, AllocationFunctionScope DeleteScope, |
| 2902 | QualType AllocType, bool IsArray, ImplicitAllocationParameters &IAP, |
| 2903 | MultiExprArg PlaceArgs, FunctionDecl *&OperatorNew, |
| 2904 | FunctionDecl *&OperatorDelete, bool Diagnose) { |
| 2905 | // --- Choosing an allocation function --- |
| 2906 | // C++ 5.3.4p8 - 14 & 18 |
| 2907 | // 1) If looking in AllocationFunctionScope::Global scope for allocation |
| 2908 | // functions, only look in |
| 2909 | // the global scope. Else, if AllocationFunctionScope::Class, only look in |
| 2910 | // the scope of the allocated class. If AllocationFunctionScope::Both, look |
| 2911 | // in both. |
| 2912 | // 2) If an array size is given, look for operator new[], else look for |
| 2913 | // operator new. |
| 2914 | // 3) The first argument is always size_t. Append the arguments from the |
| 2915 | // placement form. |
| 2916 | |
| 2917 | SmallVector<Expr*, 8> AllocArgs; |
| 2918 | AllocArgs.reserve(N: IAP.getNumImplicitArgs() + PlaceArgs.size()); |
| 2919 | |
| 2920 | // C++ [expr.new]p8: |
| 2921 | // If the allocated type is a non-array type, the allocation |
| 2922 | // function's name is operator new and the deallocation function's |
| 2923 | // name is operator delete. If the allocated type is an array |
| 2924 | // type, the allocation function's name is operator new[] and the |
| 2925 | // deallocation function's name is operator delete[]. |
| 2926 | DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( |
| 2927 | Op: IsArray ? OO_Array_New : OO_New); |
| 2928 | |
| 2929 | QualType AllocElemType = Context.getBaseElementType(QT: AllocType); |
| 2930 | |
| 2931 | // We don't care about the actual value of these arguments. |
| 2932 | // FIXME: Should the Sema create the expression and embed it in the syntax |
| 2933 | // tree? Or should the consumer just recalculate the value? |
| 2934 | // FIXME: Using a dummy value will interact poorly with attribute enable_if. |
| 2935 | |
| 2936 | // We use size_t as a stand in so that we can construct the init |
| 2937 | // expr on the stack |
| 2938 | QualType TypeIdentity = Context.getSizeType(); |
| 2939 | if (isTypeAwareAllocation(Mode: IAP.PassTypeIdentity)) { |
| 2940 | QualType SpecializedTypeIdentity = |
| 2941 | tryBuildStdTypeIdentity(Type: IAP.Type, Loc: StartLoc); |
| 2942 | if (!SpecializedTypeIdentity.isNull()) { |
| 2943 | TypeIdentity = SpecializedTypeIdentity; |
| 2944 | if (RequireCompleteType(StartLoc, TypeIdentity, |
| 2945 | diag::err_incomplete_type)) |
| 2946 | return true; |
| 2947 | } else |
| 2948 | IAP.PassTypeIdentity = TypeAwareAllocationMode::No; |
| 2949 | } |
| 2950 | TypeAwareAllocationMode OriginalTypeAwareState = IAP.PassTypeIdentity; |
| 2951 | |
| 2952 | CXXScalarValueInitExpr TypeIdentityParam(TypeIdentity, nullptr, StartLoc); |
| 2953 | if (isTypeAwareAllocation(Mode: IAP.PassTypeIdentity)) |
| 2954 | AllocArgs.push_back(&TypeIdentityParam); |
| 2955 | |
| 2956 | QualType SizeTy = Context.getSizeType(); |
| 2957 | unsigned SizeTyWidth = Context.getTypeSize(T: SizeTy); |
| 2958 | IntegerLiteral Size(Context, llvm::APInt::getZero(numBits: SizeTyWidth), SizeTy, |
| 2959 | SourceLocation()); |
| 2960 | AllocArgs.push_back(&Size); |
| 2961 | |
| 2962 | QualType AlignValT = Context.VoidTy; |
| 2963 | bool IncludeAlignParam = isAlignedAllocation(Mode: IAP.PassAlignment) || |
| 2964 | isTypeAwareAllocation(Mode: IAP.PassTypeIdentity); |
| 2965 | if (IncludeAlignParam) { |
| 2966 | DeclareGlobalNewDelete(); |
| 2967 | AlignValT = Context.getTypeDeclType(getStdAlignValT()); |
| 2968 | } |
| 2969 | CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation()); |
| 2970 | if (IncludeAlignParam) |
| 2971 | AllocArgs.push_back(&Align); |
| 2972 | |
| 2973 | llvm::append_range(C&: AllocArgs, R&: PlaceArgs); |
| 2974 | |
| 2975 | // Find the allocation function. |
| 2976 | { |
| 2977 | LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName); |
| 2978 | |
| 2979 | // C++1z [expr.new]p9: |
| 2980 | // If the new-expression begins with a unary :: operator, the allocation |
| 2981 | // function's name is looked up in the global scope. Otherwise, if the |
| 2982 | // allocated type is a class type T or array thereof, the allocation |
| 2983 | // function's name is looked up in the scope of T. |
| 2984 | if (AllocElemType->isRecordType() && |
| 2985 | NewScope != AllocationFunctionScope::Global) |
| 2986 | LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl()); |
| 2987 | |
| 2988 | // We can see ambiguity here if the allocation function is found in |
| 2989 | // multiple base classes. |
| 2990 | if (R.isAmbiguous()) |
| 2991 | return true; |
| 2992 | |
| 2993 | // If this lookup fails to find the name, or if the allocated type is not |
| 2994 | // a class type, the allocation function's name is looked up in the |
| 2995 | // global scope. |
| 2996 | if (R.empty()) { |
| 2997 | if (NewScope == AllocationFunctionScope::Class) |
| 2998 | return true; |
| 2999 | |
| 3000 | LookupQualifiedName(R, Context.getTranslationUnitDecl()); |
| 3001 | } |
| 3002 | |
| 3003 | if (getLangOpts().OpenCLCPlusPlus && R.empty()) { |
| 3004 | if (PlaceArgs.empty()) { |
| 3005 | Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new" ; |
| 3006 | } else { |
| 3007 | Diag(StartLoc, diag::err_openclcxx_placement_new); |
| 3008 | } |
| 3009 | return true; |
| 3010 | } |
| 3011 | |
| 3012 | assert(!R.empty() && "implicitly declared allocation functions not found" ); |
| 3013 | assert(!R.isAmbiguous() && "global allocation functions are ambiguous" ); |
| 3014 | |
| 3015 | // We do our own custom access checks below. |
| 3016 | R.suppressDiagnostics(); |
| 3017 | |
| 3018 | if (resolveAllocationOverload(S&: *this, R, Range, Args&: AllocArgs, IAP, Operator&: OperatorNew, |
| 3019 | /*Candidates=*/AlignedCandidates: nullptr, |
| 3020 | /*AlignArg=*/nullptr, Diagnose)) |
| 3021 | return true; |
| 3022 | } |
| 3023 | |
| 3024 | // We don't need an operator delete if we're running under -fno-exceptions. |
| 3025 | if (!getLangOpts().Exceptions) { |
| 3026 | OperatorDelete = nullptr; |
| 3027 | return false; |
| 3028 | } |
| 3029 | |
| 3030 | // Note, the name of OperatorNew might have been changed from array to |
| 3031 | // non-array by resolveAllocationOverload. |
| 3032 | DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( |
| 3033 | Op: OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New |
| 3034 | ? OO_Array_Delete |
| 3035 | : OO_Delete); |
| 3036 | |
| 3037 | // C++ [expr.new]p19: |
| 3038 | // |
| 3039 | // If the new-expression begins with a unary :: operator, the |
| 3040 | // deallocation function's name is looked up in the global |
| 3041 | // scope. Otherwise, if the allocated type is a class type T or an |
| 3042 | // array thereof, the deallocation function's name is looked up in |
| 3043 | // the scope of T. If this lookup fails to find the name, or if |
| 3044 | // the allocated type is not a class type or array thereof, the |
| 3045 | // deallocation function's name is looked up in the global scope. |
| 3046 | LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); |
| 3047 | if (AllocElemType->isRecordType() && |
| 3048 | DeleteScope != AllocationFunctionScope::Global) { |
| 3049 | auto *RD = |
| 3050 | cast<CXXRecordDecl>(Val: AllocElemType->castAs<RecordType>()->getDecl()); |
| 3051 | LookupQualifiedName(FoundDelete, RD); |
| 3052 | } |
| 3053 | if (FoundDelete.isAmbiguous()) |
| 3054 | return true; // FIXME: clean up expressions? |
| 3055 | |
| 3056 | // Filter out any destroying operator deletes. We can't possibly call such a |
| 3057 | // function in this context, because we're handling the case where the object |
| 3058 | // was not successfully constructed. |
| 3059 | // FIXME: This is not covered by the language rules yet. |
| 3060 | { |
| 3061 | LookupResult::Filter Filter = FoundDelete.makeFilter(); |
| 3062 | while (Filter.hasNext()) { |
| 3063 | auto *FD = dyn_cast<FunctionDecl>(Val: Filter.next()->getUnderlyingDecl()); |
| 3064 | if (FD && FD->isDestroyingOperatorDelete()) |
| 3065 | Filter.erase(); |
| 3066 | } |
| 3067 | Filter.done(); |
| 3068 | } |
| 3069 | |
| 3070 | auto GetRedeclContext = [](Decl *D) { |
| 3071 | return D->getDeclContext()->getRedeclContext(); |
| 3072 | }; |
| 3073 | |
| 3074 | DeclContext *OperatorNewContext = GetRedeclContext(OperatorNew); |
| 3075 | |
| 3076 | bool FoundGlobalDelete = FoundDelete.empty(); |
| 3077 | bool IsClassScopedTypeAwareNew = |
| 3078 | isTypeAwareAllocation(Mode: IAP.PassTypeIdentity) && |
| 3079 | OperatorNewContext->isRecord(); |
| 3080 | auto DiagnoseMissingTypeAwareCleanupOperator = [&](bool IsPlacementOperator) { |
| 3081 | assert(isTypeAwareAllocation(IAP.PassTypeIdentity)); |
| 3082 | if (Diagnose) { |
| 3083 | Diag(StartLoc, diag::err_mismatching_type_aware_cleanup_deallocator) |
| 3084 | << OperatorNew->getDeclName() << IsPlacementOperator << DeleteName; |
| 3085 | Diag(OperatorNew->getLocation(), diag::note_type_aware_operator_declared) |
| 3086 | << OperatorNew->isTypeAwareOperatorNewOrDelete() |
| 3087 | << OperatorNew->getDeclName() << OperatorNewContext; |
| 3088 | } |
| 3089 | }; |
| 3090 | if (IsClassScopedTypeAwareNew && FoundDelete.empty()) { |
| 3091 | DiagnoseMissingTypeAwareCleanupOperator(/*isPlacementNew=*/false); |
| 3092 | return true; |
| 3093 | } |
| 3094 | if (FoundDelete.empty()) { |
| 3095 | FoundDelete.clear(Kind: LookupOrdinaryName); |
| 3096 | |
| 3097 | if (DeleteScope == AllocationFunctionScope::Class) |
| 3098 | return true; |
| 3099 | |
| 3100 | DeclareGlobalNewDelete(); |
| 3101 | DeallocLookupMode LookupMode = isTypeAwareAllocation(Mode: OriginalTypeAwareState) |
| 3102 | ? DeallocLookupMode::OptionallyTyped |
| 3103 | : DeallocLookupMode::Untyped; |
| 3104 | LookupGlobalDeallocationFunctions(S&: *this, Loc: StartLoc, FoundDelete, Mode: LookupMode, |
| 3105 | Name: DeleteName); |
| 3106 | } |
| 3107 | |
| 3108 | FoundDelete.suppressDiagnostics(); |
| 3109 | |
| 3110 | SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; |
| 3111 | |
| 3112 | // Whether we're looking for a placement operator delete is dictated |
| 3113 | // by whether we selected a placement operator new, not by whether |
| 3114 | // we had explicit placement arguments. This matters for things like |
| 3115 | // struct A { void *operator new(size_t, int = 0); ... }; |
| 3116 | // A *a = new A() |
| 3117 | // |
| 3118 | // We don't have any definition for what a "placement allocation function" |
| 3119 | // is, but we assume it's any allocation function whose |
| 3120 | // parameter-declaration-clause is anything other than (size_t). |
| 3121 | // |
| 3122 | // FIXME: Should (size_t, std::align_val_t) also be considered non-placement? |
| 3123 | // This affects whether an exception from the constructor of an overaligned |
| 3124 | // type uses the sized or non-sized form of aligned operator delete. |
| 3125 | |
| 3126 | unsigned NonPlacementNewArgCount = 1; // size parameter |
| 3127 | if (isTypeAwareAllocation(Mode: IAP.PassTypeIdentity)) |
| 3128 | NonPlacementNewArgCount = |
| 3129 | /* type-identity */ 1 + /* size */ 1 + /* alignment */ 1; |
| 3130 | bool isPlacementNew = !PlaceArgs.empty() || |
| 3131 | OperatorNew->param_size() != NonPlacementNewArgCount || |
| 3132 | OperatorNew->isVariadic(); |
| 3133 | |
| 3134 | if (isPlacementNew) { |
| 3135 | // C++ [expr.new]p20: |
| 3136 | // A declaration of a placement deallocation function matches the |
| 3137 | // declaration of a placement allocation function if it has the |
| 3138 | // same number of parameters and, after parameter transformations |
| 3139 | // (8.3.5), all parameter types except the first are |
| 3140 | // identical. [...] |
| 3141 | // |
| 3142 | // To perform this comparison, we compute the function type that |
| 3143 | // the deallocation function should have, and use that type both |
| 3144 | // for template argument deduction and for comparison purposes. |
| 3145 | QualType ExpectedFunctionType; |
| 3146 | { |
| 3147 | auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); |
| 3148 | |
| 3149 | SmallVector<QualType, 6> ArgTypes; |
| 3150 | int InitialParamOffset = 0; |
| 3151 | if (isTypeAwareAllocation(Mode: IAP.PassTypeIdentity)) { |
| 3152 | ArgTypes.push_back(Elt: TypeIdentity); |
| 3153 | InitialParamOffset = 1; |
| 3154 | } |
| 3155 | ArgTypes.push_back(Elt: Context.VoidPtrTy); |
| 3156 | for (unsigned I = ArgTypes.size() - InitialParamOffset, |
| 3157 | N = Proto->getNumParams(); |
| 3158 | I < N; ++I) |
| 3159 | ArgTypes.push_back(Elt: Proto->getParamType(I)); |
| 3160 | |
| 3161 | FunctionProtoType::ExtProtoInfo EPI; |
| 3162 | // FIXME: This is not part of the standard's rule. |
| 3163 | EPI.Variadic = Proto->isVariadic(); |
| 3164 | |
| 3165 | ExpectedFunctionType |
| 3166 | = Context.getFunctionType(ResultTy: Context.VoidTy, Args: ArgTypes, EPI); |
| 3167 | } |
| 3168 | |
| 3169 | for (LookupResult::iterator D = FoundDelete.begin(), |
| 3170 | DEnd = FoundDelete.end(); |
| 3171 | D != DEnd; ++D) { |
| 3172 | FunctionDecl *Fn = nullptr; |
| 3173 | if (FunctionTemplateDecl *FnTmpl = |
| 3174 | dyn_cast<FunctionTemplateDecl>(Val: (*D)->getUnderlyingDecl())) { |
| 3175 | // Perform template argument deduction to try to match the |
| 3176 | // expected function type. |
| 3177 | TemplateDeductionInfo Info(StartLoc); |
| 3178 | if (DeduceTemplateArguments(FunctionTemplate: FnTmpl, ExplicitTemplateArgs: nullptr, ArgFunctionType: ExpectedFunctionType, Specialization&: Fn, |
| 3179 | Info) != TemplateDeductionResult::Success) |
| 3180 | continue; |
| 3181 | } else |
| 3182 | Fn = cast<FunctionDecl>(Val: (*D)->getUnderlyingDecl()); |
| 3183 | |
| 3184 | if (Context.hasSameType(adjustCCAndNoReturn(ArgFunctionType: Fn->getType(), |
| 3185 | FunctionType: ExpectedFunctionType, |
| 3186 | /*AdjustExcpetionSpec*/AdjustExceptionSpec: true), |
| 3187 | ExpectedFunctionType)) |
| 3188 | Matches.push_back(Elt: std::make_pair(x: D.getPair(), y&: Fn)); |
| 3189 | } |
| 3190 | |
| 3191 | if (getLangOpts().CUDA) |
| 3192 | CUDA().EraseUnwantedMatches(Caller: getCurFunctionDecl(/*AllowLambda=*/true), |
| 3193 | Matches); |
| 3194 | if (Matches.empty() && isTypeAwareAllocation(Mode: IAP.PassTypeIdentity)) { |
| 3195 | DiagnoseMissingTypeAwareCleanupOperator(isPlacementNew); |
| 3196 | return true; |
| 3197 | } |
| 3198 | } else { |
| 3199 | // C++1y [expr.new]p22: |
| 3200 | // For a non-placement allocation function, the normal deallocation |
| 3201 | // function lookup is used |
| 3202 | // |
| 3203 | // Per [expr.delete]p10, this lookup prefers a member operator delete |
| 3204 | // without a size_t argument, but prefers a non-member operator delete |
| 3205 | // with a size_t where possible (which it always is in this case). |
| 3206 | llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns; |
| 3207 | ImplicitDeallocationParameters IDP = { |
| 3208 | AllocElemType, OriginalTypeAwareState, |
| 3209 | alignedAllocationModeFromBool( |
| 3210 | IsAligned: hasNewExtendedAlignment(S&: *this, AllocType: AllocElemType)), |
| 3211 | sizedDeallocationModeFromBool(IsSized: FoundGlobalDelete)}; |
| 3212 | UsualDeallocFnInfo Selected = resolveDeallocationOverload( |
| 3213 | S&: *this, R&: FoundDelete, IDP, Loc: StartLoc, BestFns: &BestDeallocFns); |
| 3214 | if (Selected && BestDeallocFns.empty()) |
| 3215 | Matches.push_back(Elt: std::make_pair(x&: Selected.Found, y&: Selected.FD)); |
| 3216 | else { |
| 3217 | // If we failed to select an operator, all remaining functions are viable |
| 3218 | // but ambiguous. |
| 3219 | for (auto Fn : BestDeallocFns) |
| 3220 | Matches.push_back(Elt: std::make_pair(x&: Fn.Found, y&: Fn.FD)); |
| 3221 | } |
| 3222 | } |
| 3223 | |
| 3224 | // C++ [expr.new]p20: |
| 3225 | // [...] If the lookup finds a single matching deallocation |
| 3226 | // function, that function will be called; otherwise, no |
| 3227 | // deallocation function will be called. |
| 3228 | if (Matches.size() == 1) { |
| 3229 | OperatorDelete = Matches[0].second; |
| 3230 | DeclContext *OperatorDeleteContext = GetRedeclContext(OperatorDelete); |
| 3231 | bool FoundTypeAwareOperator = |
| 3232 | OperatorDelete->isTypeAwareOperatorNewOrDelete() || |
| 3233 | OperatorNew->isTypeAwareOperatorNewOrDelete(); |
| 3234 | if (Diagnose && FoundTypeAwareOperator) { |
| 3235 | bool MismatchedTypeAwareness = |
| 3236 | OperatorDelete->isTypeAwareOperatorNewOrDelete() != |
| 3237 | OperatorNew->isTypeAwareOperatorNewOrDelete(); |
| 3238 | bool MismatchedContext = OperatorDeleteContext != OperatorNewContext; |
| 3239 | if (MismatchedTypeAwareness || MismatchedContext) { |
| 3240 | FunctionDecl *Operators[] = {OperatorDelete, OperatorNew}; |
| 3241 | bool TypeAwareOperatorIndex = |
| 3242 | OperatorNew->isTypeAwareOperatorNewOrDelete(); |
| 3243 | Diag(StartLoc, diag::err_mismatching_type_aware_cleanup_deallocator) |
| 3244 | << Operators[TypeAwareOperatorIndex]->getDeclName() |
| 3245 | << isPlacementNew |
| 3246 | << Operators[!TypeAwareOperatorIndex]->getDeclName() |
| 3247 | << GetRedeclContext(Operators[TypeAwareOperatorIndex]); |
| 3248 | Diag(OperatorNew->getLocation(), |
| 3249 | diag::note_type_aware_operator_declared) |
| 3250 | << OperatorNew->isTypeAwareOperatorNewOrDelete() |
| 3251 | << OperatorNew->getDeclName() << OperatorNewContext; |
| 3252 | Diag(OperatorDelete->getLocation(), |
| 3253 | diag::note_type_aware_operator_declared) |
| 3254 | << OperatorDelete->isTypeAwareOperatorNewOrDelete() |
| 3255 | << OperatorDelete->getDeclName() << OperatorDeleteContext; |
| 3256 | } |
| 3257 | } |
| 3258 | |
| 3259 | // C++1z [expr.new]p23: |
| 3260 | // If the lookup finds a usual deallocation function (3.7.4.2) |
| 3261 | // with a parameter of type std::size_t and that function, considered |
| 3262 | // as a placement deallocation function, would have been |
| 3263 | // selected as a match for the allocation function, the program |
| 3264 | // is ill-formed. |
| 3265 | if (getLangOpts().CPlusPlus11 && isPlacementNew && |
| 3266 | isNonPlacementDeallocationFunction(S&: *this, FD: OperatorDelete)) { |
| 3267 | UsualDeallocFnInfo Info(*this, |
| 3268 | DeclAccessPair::make(OperatorDelete, AS_public), |
| 3269 | AllocElemType, StartLoc); |
| 3270 | // Core issue, per mail to core reflector, 2016-10-09: |
| 3271 | // If this is a member operator delete, and there is a corresponding |
| 3272 | // non-sized member operator delete, this isn't /really/ a sized |
| 3273 | // deallocation function, it just happens to have a size_t parameter. |
| 3274 | bool IsSizedDelete = isSizedDeallocation(Info.IDP.PassSize); |
| 3275 | if (IsSizedDelete && !FoundGlobalDelete) { |
| 3276 | ImplicitDeallocationParameters SizeTestingIDP = { |
| 3277 | AllocElemType, Info.IDP.PassTypeIdentity, Info.IDP.PassAlignment, |
| 3278 | SizedDeallocationMode::No}; |
| 3279 | auto NonSizedDelete = resolveDeallocationOverload( |
| 3280 | S&: *this, R&: FoundDelete, IDP: SizeTestingIDP, Loc: StartLoc); |
| 3281 | if (NonSizedDelete && |
| 3282 | !isSizedDeallocation(NonSizedDelete.IDP.PassSize) && |
| 3283 | NonSizedDelete.IDP.PassAlignment == Info.IDP.PassAlignment) |
| 3284 | IsSizedDelete = false; |
| 3285 | } |
| 3286 | |
| 3287 | if (IsSizedDelete && !isTypeAwareAllocation(Mode: IAP.PassTypeIdentity)) { |
| 3288 | SourceRange R = PlaceArgs.empty() |
| 3289 | ? SourceRange() |
| 3290 | : SourceRange(PlaceArgs.front()->getBeginLoc(), |
| 3291 | PlaceArgs.back()->getEndLoc()); |
| 3292 | Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R; |
| 3293 | if (!OperatorDelete->isImplicit()) |
| 3294 | Diag(OperatorDelete->getLocation(), diag::note_previous_decl) |
| 3295 | << DeleteName; |
| 3296 | } |
| 3297 | } |
| 3298 | if (CheckDeleteOperator(S&: *this, StartLoc, Range, Diagnose, |
| 3299 | NamingClass: FoundDelete.getNamingClass(), Decl: Matches[0].first, |
| 3300 | Operator: Matches[0].second)) |
| 3301 | return true; |
| 3302 | |
| 3303 | } else if (!Matches.empty()) { |
| 3304 | // We found multiple suitable operators. Per [expr.new]p20, that means we |
| 3305 | // call no 'operator delete' function, but we should at least warn the user. |
| 3306 | // FIXME: Suppress this warning if the construction cannot throw. |
| 3307 | Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found) |
| 3308 | << DeleteName << AllocElemType; |
| 3309 | |
| 3310 | for (auto &Match : Matches) |
| 3311 | Diag(Match.second->getLocation(), |
| 3312 | diag::note_member_declared_here) << DeleteName; |
| 3313 | } |
| 3314 | |
| 3315 | return false; |
| 3316 | } |
| 3317 | |
| 3318 | void Sema::DeclareGlobalNewDelete() { |
| 3319 | if (GlobalNewDeleteDeclared) |
| 3320 | return; |
| 3321 | |
| 3322 | // The implicitly declared new and delete operators |
| 3323 | // are not supported in OpenCL. |
| 3324 | if (getLangOpts().OpenCLCPlusPlus) |
| 3325 | return; |
| 3326 | |
| 3327 | // C++ [basic.stc.dynamic.general]p2: |
| 3328 | // The library provides default definitions for the global allocation |
| 3329 | // and deallocation functions. Some global allocation and deallocation |
| 3330 | // functions are replaceable ([new.delete]); these are attached to the |
| 3331 | // global module ([module.unit]). |
| 3332 | if (getLangOpts().CPlusPlusModules && getCurrentModule()) |
| 3333 | PushGlobalModuleFragment(BeginLoc: SourceLocation()); |
| 3334 | |
| 3335 | // C++ [basic.std.dynamic]p2: |
| 3336 | // [...] The following allocation and deallocation functions (18.4) are |
| 3337 | // implicitly declared in global scope in each translation unit of a |
| 3338 | // program |
| 3339 | // |
| 3340 | // C++03: |
| 3341 | // void* operator new(std::size_t) throw(std::bad_alloc); |
| 3342 | // void* operator new[](std::size_t) throw(std::bad_alloc); |
| 3343 | // void operator delete(void*) throw(); |
| 3344 | // void operator delete[](void*) throw(); |
| 3345 | // C++11: |
| 3346 | // void* operator new(std::size_t); |
| 3347 | // void* operator new[](std::size_t); |
| 3348 | // void operator delete(void*) noexcept; |
| 3349 | // void operator delete[](void*) noexcept; |
| 3350 | // C++1y: |
| 3351 | // void* operator new(std::size_t); |
| 3352 | // void* operator new[](std::size_t); |
| 3353 | // void operator delete(void*) noexcept; |
| 3354 | // void operator delete[](void*) noexcept; |
| 3355 | // void operator delete(void*, std::size_t) noexcept; |
| 3356 | // void operator delete[](void*, std::size_t) noexcept; |
| 3357 | // |
| 3358 | // These implicit declarations introduce only the function names operator |
| 3359 | // new, operator new[], operator delete, operator delete[]. |
| 3360 | // |
| 3361 | // Here, we need to refer to std::bad_alloc, so we will implicitly declare |
| 3362 | // "std" or "bad_alloc" as necessary to form the exception specification. |
| 3363 | // However, we do not make these implicit declarations visible to name |
| 3364 | // lookup. |
| 3365 | if (!StdBadAlloc && !getLangOpts().CPlusPlus11) { |
| 3366 | // The "std::bad_alloc" class has not yet been declared, so build it |
| 3367 | // implicitly. |
| 3368 | StdBadAlloc = CXXRecordDecl::Create( |
| 3369 | Context, TagTypeKind::Class, getOrCreateStdNamespace(), |
| 3370 | SourceLocation(), SourceLocation(), |
| 3371 | &PP.getIdentifierTable().get(Name: "bad_alloc" ), nullptr); |
| 3372 | getStdBadAlloc()->setImplicit(true); |
| 3373 | |
| 3374 | // The implicitly declared "std::bad_alloc" should live in global module |
| 3375 | // fragment. |
| 3376 | if (TheGlobalModuleFragment) { |
| 3377 | getStdBadAlloc()->setModuleOwnershipKind( |
| 3378 | Decl::ModuleOwnershipKind::ReachableWhenImported); |
| 3379 | getStdBadAlloc()->setLocalOwningModule(TheGlobalModuleFragment); |
| 3380 | } |
| 3381 | } |
| 3382 | if (!StdAlignValT && getLangOpts().AlignedAllocation) { |
| 3383 | // The "std::align_val_t" enum class has not yet been declared, so build it |
| 3384 | // implicitly. |
| 3385 | auto *AlignValT = EnumDecl::Create( |
| 3386 | Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(), |
| 3387 | &PP.getIdentifierTable().get(Name: "align_val_t" ), nullptr, true, true, true); |
| 3388 | |
| 3389 | // The implicitly declared "std::align_val_t" should live in global module |
| 3390 | // fragment. |
| 3391 | if (TheGlobalModuleFragment) { |
| 3392 | AlignValT->setModuleOwnershipKind( |
| 3393 | Decl::ModuleOwnershipKind::ReachableWhenImported); |
| 3394 | AlignValT->setLocalOwningModule(TheGlobalModuleFragment); |
| 3395 | } |
| 3396 | |
| 3397 | AlignValT->setIntegerType(Context.getSizeType()); |
| 3398 | AlignValT->setPromotionType(Context.getSizeType()); |
| 3399 | AlignValT->setImplicit(true); |
| 3400 | |
| 3401 | StdAlignValT = AlignValT; |
| 3402 | } |
| 3403 | |
| 3404 | GlobalNewDeleteDeclared = true; |
| 3405 | |
| 3406 | QualType VoidPtr = Context.getPointerType(Context.VoidTy); |
| 3407 | QualType SizeT = Context.getSizeType(); |
| 3408 | |
| 3409 | auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind, |
| 3410 | QualType Return, QualType Param) { |
| 3411 | llvm::SmallVector<QualType, 3> Params; |
| 3412 | Params.push_back(Elt: Param); |
| 3413 | |
| 3414 | // Create up to four variants of the function (sized/aligned). |
| 3415 | bool HasSizedVariant = getLangOpts().SizedDeallocation && |
| 3416 | (Kind == OO_Delete || Kind == OO_Array_Delete); |
| 3417 | bool HasAlignedVariant = getLangOpts().AlignedAllocation; |
| 3418 | |
| 3419 | int NumSizeVariants = (HasSizedVariant ? 2 : 1); |
| 3420 | int NumAlignVariants = (HasAlignedVariant ? 2 : 1); |
| 3421 | for (int Sized = 0; Sized < NumSizeVariants; ++Sized) { |
| 3422 | if (Sized) |
| 3423 | Params.push_back(Elt: SizeT); |
| 3424 | |
| 3425 | for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) { |
| 3426 | if (Aligned) |
| 3427 | Params.push_back(Elt: Context.getTypeDeclType(getStdAlignValT())); |
| 3428 | |
| 3429 | DeclareGlobalAllocationFunction( |
| 3430 | Name: Context.DeclarationNames.getCXXOperatorName(Op: Kind), Return, Params); |
| 3431 | |
| 3432 | if (Aligned) |
| 3433 | Params.pop_back(); |
| 3434 | } |
| 3435 | } |
| 3436 | }; |
| 3437 | |
| 3438 | DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT); |
| 3439 | DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT); |
| 3440 | DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr); |
| 3441 | DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr); |
| 3442 | |
| 3443 | if (getLangOpts().CPlusPlusModules && getCurrentModule()) |
| 3444 | PopGlobalModuleFragment(); |
| 3445 | } |
| 3446 | |
| 3447 | /// DeclareGlobalAllocationFunction - Declares a single implicit global |
| 3448 | /// allocation function if it doesn't already exist. |
| 3449 | void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, |
| 3450 | QualType Return, |
| 3451 | ArrayRef<QualType> Params) { |
| 3452 | DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); |
| 3453 | |
| 3454 | // Check if this function is already declared. |
| 3455 | DeclContext::lookup_result R = GlobalCtx->lookup(Name); |
| 3456 | for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end(); |
| 3457 | Alloc != AllocEnd; ++Alloc) { |
| 3458 | // Only look at non-template functions, as it is the predefined, |
| 3459 | // non-templated allocation function we are trying to declare here. |
| 3460 | if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Val: *Alloc)) { |
| 3461 | if (Func->getNumParams() == Params.size()) { |
| 3462 | llvm::SmallVector<QualType, 3> FuncParams; |
| 3463 | for (auto *P : Func->parameters()) |
| 3464 | FuncParams.push_back( |
| 3465 | Context.getCanonicalType(P->getType().getUnqualifiedType())); |
| 3466 | if (llvm::ArrayRef(FuncParams) == Params) { |
| 3467 | // Make the function visible to name lookup, even if we found it in |
| 3468 | // an unimported module. It either is an implicitly-declared global |
| 3469 | // allocation function, or is suppressing that function. |
| 3470 | Func->setVisibleDespiteOwningModule(); |
| 3471 | return; |
| 3472 | } |
| 3473 | } |
| 3474 | } |
| 3475 | } |
| 3476 | |
| 3477 | FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( |
| 3478 | /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); |
| 3479 | |
| 3480 | QualType BadAllocType; |
| 3481 | bool HasBadAllocExceptionSpec = Name.isAnyOperatorNew(); |
| 3482 | if (HasBadAllocExceptionSpec) { |
| 3483 | if (!getLangOpts().CPlusPlus11) { |
| 3484 | BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); |
| 3485 | assert(StdBadAlloc && "Must have std::bad_alloc declared" ); |
| 3486 | EPI.ExceptionSpec.Type = EST_Dynamic; |
| 3487 | EPI.ExceptionSpec.Exceptions = llvm::ArrayRef(BadAllocType); |
| 3488 | } |
| 3489 | if (getLangOpts().NewInfallible) { |
| 3490 | EPI.ExceptionSpec.Type = EST_DynamicNone; |
| 3491 | } |
| 3492 | } else { |
| 3493 | EPI.ExceptionSpec = |
| 3494 | getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; |
| 3495 | } |
| 3496 | |
| 3497 | auto CreateAllocationFunctionDecl = [&](Attr *) { |
| 3498 | QualType FnType = Context.getFunctionType(ResultTy: Return, Args: Params, EPI); |
| 3499 | FunctionDecl *Alloc = FunctionDecl::Create( |
| 3500 | C&: Context, DC: GlobalCtx, StartLoc: SourceLocation(), NLoc: SourceLocation(), N: Name, T: FnType, |
| 3501 | /*TInfo=*/nullptr, SC: SC_None, UsesFPIntrin: getCurFPFeatures().isFPConstrained(), isInlineSpecified: false, |
| 3502 | hasWrittenPrototype: true); |
| 3503 | Alloc->setImplicit(); |
| 3504 | // Global allocation functions should always be visible. |
| 3505 | Alloc->setVisibleDespiteOwningModule(); |
| 3506 | |
| 3507 | if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible && |
| 3508 | !getLangOpts().CheckNew) |
| 3509 | Alloc->addAttr( |
| 3510 | ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation())); |
| 3511 | |
| 3512 | // C++ [basic.stc.dynamic.general]p2: |
| 3513 | // The library provides default definitions for the global allocation |
| 3514 | // and deallocation functions. Some global allocation and deallocation |
| 3515 | // functions are replaceable ([new.delete]); these are attached to the |
| 3516 | // global module ([module.unit]). |
| 3517 | // |
| 3518 | // In the language wording, these functions are attched to the global |
| 3519 | // module all the time. But in the implementation, the global module |
| 3520 | // is only meaningful when we're in a module unit. So here we attach |
| 3521 | // these allocation functions to global module conditionally. |
| 3522 | if (TheGlobalModuleFragment) { |
| 3523 | Alloc->setModuleOwnershipKind( |
| 3524 | Decl::ModuleOwnershipKind::ReachableWhenImported); |
| 3525 | Alloc->setLocalOwningModule(TheGlobalModuleFragment); |
| 3526 | } |
| 3527 | |
| 3528 | if (LangOpts.hasGlobalAllocationFunctionVisibility()) |
| 3529 | Alloc->addAttr(VisibilityAttr::CreateImplicit( |
| 3530 | Context, LangOpts.hasHiddenGlobalAllocationFunctionVisibility() |
| 3531 | ? VisibilityAttr::Hidden |
| 3532 | : LangOpts.hasProtectedGlobalAllocationFunctionVisibility() |
| 3533 | ? VisibilityAttr::Protected |
| 3534 | : VisibilityAttr::Default)); |
| 3535 | |
| 3536 | llvm::SmallVector<ParmVarDecl *, 3> ParamDecls; |
| 3537 | for (QualType T : Params) { |
| 3538 | ParamDecls.push_back(Elt: ParmVarDecl::Create( |
| 3539 | Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T, |
| 3540 | /*TInfo=*/nullptr, SC_None, nullptr)); |
| 3541 | ParamDecls.back()->setImplicit(); |
| 3542 | } |
| 3543 | Alloc->setParams(ParamDecls); |
| 3544 | if (ExtraAttr) |
| 3545 | Alloc->addAttr(ExtraAttr); |
| 3546 | AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD: Alloc); |
| 3547 | Context.getTranslationUnitDecl()->addDecl(Alloc); |
| 3548 | IdResolver.tryAddTopLevelDecl(Alloc, Name); |
| 3549 | }; |
| 3550 | |
| 3551 | if (!LangOpts.CUDA) |
| 3552 | CreateAllocationFunctionDecl(nullptr); |
| 3553 | else { |
| 3554 | // Host and device get their own declaration so each can be |
| 3555 | // defined or re-declared independently. |
| 3556 | CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context)); |
| 3557 | CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context)); |
| 3558 | } |
| 3559 | } |
| 3560 | |
| 3561 | FunctionDecl * |
| 3562 | Sema::FindUsualDeallocationFunction(SourceLocation StartLoc, |
| 3563 | ImplicitDeallocationParameters IDP, |
| 3564 | DeclarationName Name) { |
| 3565 | DeclareGlobalNewDelete(); |
| 3566 | |
| 3567 | LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName); |
| 3568 | LookupGlobalDeallocationFunctions(S&: *this, Loc: StartLoc, FoundDelete, |
| 3569 | Mode: DeallocLookupMode::OptionallyTyped, Name); |
| 3570 | |
| 3571 | // FIXME: It's possible for this to result in ambiguity, through a |
| 3572 | // user-declared variadic operator delete or the enable_if attribute. We |
| 3573 | // should probably not consider those cases to be usual deallocation |
| 3574 | // functions. But for now we just make an arbitrary choice in that case. |
| 3575 | auto Result = resolveDeallocationOverload(S&: *this, R&: FoundDelete, IDP, Loc: StartLoc); |
| 3576 | if (!Result) |
| 3577 | return nullptr; |
| 3578 | |
| 3579 | if (CheckDeleteOperator(S&: *this, StartLoc, Range: StartLoc, /*Diagnose=*/true, |
| 3580 | NamingClass: FoundDelete.getNamingClass(), Decl: Result.Found, |
| 3581 | Operator: Result.FD)) |
| 3582 | return nullptr; |
| 3583 | |
| 3584 | assert(Result.FD && "operator delete missing from global scope?" ); |
| 3585 | return Result.FD; |
| 3586 | } |
| 3587 | |
| 3588 | FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc, |
| 3589 | CXXRecordDecl *RD, |
| 3590 | bool Diagnose) { |
| 3591 | DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(Op: OO_Delete); |
| 3592 | |
| 3593 | FunctionDecl *OperatorDelete = nullptr; |
| 3594 | QualType DeallocType = Context.getRecordType(RD); |
| 3595 | ImplicitDeallocationParameters IDP = { |
| 3596 | DeallocType, ShouldUseTypeAwareOperatorNewOrDelete(), |
| 3597 | AlignedAllocationMode::No, SizedDeallocationMode::No}; |
| 3598 | |
| 3599 | if (FindDeallocationFunction(StartLoc: Loc, RD, Name, Operator&: OperatorDelete, IDP, Diagnose)) |
| 3600 | return nullptr; |
| 3601 | |
| 3602 | if (OperatorDelete) |
| 3603 | return OperatorDelete; |
| 3604 | |
| 3605 | // If there's no class-specific operator delete, look up the global |
| 3606 | // non-array delete. |
| 3607 | IDP.PassAlignment = alignedAllocationModeFromBool( |
| 3608 | IsAligned: hasNewExtendedAlignment(S&: *this, AllocType: DeallocType)); |
| 3609 | IDP.PassSize = SizedDeallocationMode::Yes; |
| 3610 | return FindUsualDeallocationFunction(StartLoc: Loc, IDP, Name); |
| 3611 | } |
| 3612 | |
| 3613 | bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, |
| 3614 | DeclarationName Name, |
| 3615 | FunctionDecl *&Operator, |
| 3616 | ImplicitDeallocationParameters IDP, |
| 3617 | bool Diagnose) { |
| 3618 | LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); |
| 3619 | // Try to find operator delete/operator delete[] in class scope. |
| 3620 | LookupQualifiedName(Found, RD); |
| 3621 | |
| 3622 | if (Found.isAmbiguous()) |
| 3623 | return true; |
| 3624 | |
| 3625 | Found.suppressDiagnostics(); |
| 3626 | |
| 3627 | if (!isAlignedAllocation(Mode: IDP.PassAlignment) && |
| 3628 | hasNewExtendedAlignment(S&: *this, AllocType: Context.getRecordType(RD))) |
| 3629 | IDP.PassAlignment = AlignedAllocationMode::Yes; |
| 3630 | |
| 3631 | // C++17 [expr.delete]p10: |
| 3632 | // If the deallocation functions have class scope, the one without a |
| 3633 | // parameter of type std::size_t is selected. |
| 3634 | llvm::SmallVector<UsualDeallocFnInfo, 4> Matches; |
| 3635 | resolveDeallocationOverload(S&: *this, R&: Found, IDP, Loc: StartLoc, BestFns: &Matches); |
| 3636 | |
| 3637 | // If we could find an overload, use it. |
| 3638 | if (Matches.size() == 1) { |
| 3639 | Operator = cast<CXXMethodDecl>(Val: Matches[0].FD); |
| 3640 | return CheckDeleteOperator(S&: *this, StartLoc, Range: StartLoc, Diagnose, |
| 3641 | NamingClass: Found.getNamingClass(), Decl: Matches[0].Found, |
| 3642 | Operator); |
| 3643 | } |
| 3644 | |
| 3645 | // We found multiple suitable operators; complain about the ambiguity. |
| 3646 | // FIXME: The standard doesn't say to do this; it appears that the intent |
| 3647 | // is that this should never happen. |
| 3648 | if (!Matches.empty()) { |
| 3649 | if (Diagnose) { |
| 3650 | Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) |
| 3651 | << Name << RD; |
| 3652 | for (auto &Match : Matches) |
| 3653 | Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name; |
| 3654 | } |
| 3655 | return true; |
| 3656 | } |
| 3657 | |
| 3658 | // We did find operator delete/operator delete[] declarations, but |
| 3659 | // none of them were suitable. |
| 3660 | if (!Found.empty()) { |
| 3661 | if (Diagnose) { |
| 3662 | Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) |
| 3663 | << Name << RD; |
| 3664 | |
| 3665 | for (NamedDecl *D : Found) |
| 3666 | Diag(D->getUnderlyingDecl()->getLocation(), |
| 3667 | diag::note_member_declared_here) << Name; |
| 3668 | } |
| 3669 | return true; |
| 3670 | } |
| 3671 | |
| 3672 | Operator = nullptr; |
| 3673 | return false; |
| 3674 | } |
| 3675 | |
| 3676 | namespace { |
| 3677 | /// Checks whether delete-expression, and new-expression used for |
| 3678 | /// initializing deletee have the same array form. |
| 3679 | class MismatchingNewDeleteDetector { |
| 3680 | public: |
| 3681 | enum MismatchResult { |
| 3682 | /// Indicates that there is no mismatch or a mismatch cannot be proven. |
| 3683 | NoMismatch, |
| 3684 | /// Indicates that variable is initialized with mismatching form of \a new. |
| 3685 | VarInitMismatches, |
| 3686 | /// Indicates that member is initialized with mismatching form of \a new. |
| 3687 | MemberInitMismatches, |
| 3688 | /// Indicates that 1 or more constructors' definitions could not been |
| 3689 | /// analyzed, and they will be checked again at the end of translation unit. |
| 3690 | AnalyzeLater |
| 3691 | }; |
| 3692 | |
| 3693 | /// \param EndOfTU True, if this is the final analysis at the end of |
| 3694 | /// translation unit. False, if this is the initial analysis at the point |
| 3695 | /// delete-expression was encountered. |
| 3696 | explicit MismatchingNewDeleteDetector(bool EndOfTU) |
| 3697 | : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU), |
| 3698 | HasUndefinedConstructors(false) {} |
| 3699 | |
| 3700 | /// Checks whether pointee of a delete-expression is initialized with |
| 3701 | /// matching form of new-expression. |
| 3702 | /// |
| 3703 | /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the |
| 3704 | /// point where delete-expression is encountered, then a warning will be |
| 3705 | /// issued immediately. If return value is \c AnalyzeLater at the point where |
| 3706 | /// delete-expression is seen, then member will be analyzed at the end of |
| 3707 | /// translation unit. \c AnalyzeLater is returned iff at least one constructor |
| 3708 | /// couldn't be analyzed. If at least one constructor initializes the member |
| 3709 | /// with matching type of new, the return value is \c NoMismatch. |
| 3710 | MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE); |
| 3711 | /// Analyzes a class member. |
| 3712 | /// \param Field Class member to analyze. |
| 3713 | /// \param DeleteWasArrayForm Array form-ness of the delete-expression used |
| 3714 | /// for deleting the \p Field. |
| 3715 | MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm); |
| 3716 | FieldDecl *Field; |
| 3717 | /// List of mismatching new-expressions used for initialization of the pointee |
| 3718 | llvm::SmallVector<const CXXNewExpr *, 4> NewExprs; |
| 3719 | /// Indicates whether delete-expression was in array form. |
| 3720 | bool IsArrayForm; |
| 3721 | |
| 3722 | private: |
| 3723 | const bool EndOfTU; |
| 3724 | /// Indicates that there is at least one constructor without body. |
| 3725 | bool HasUndefinedConstructors; |
| 3726 | /// Returns \c CXXNewExpr from given initialization expression. |
| 3727 | /// \param E Expression used for initializing pointee in delete-expression. |
| 3728 | /// E can be a single-element \c InitListExpr consisting of new-expression. |
| 3729 | const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E); |
| 3730 | /// Returns whether member is initialized with mismatching form of |
| 3731 | /// \c new either by the member initializer or in-class initialization. |
| 3732 | /// |
| 3733 | /// If bodies of all constructors are not visible at the end of translation |
| 3734 | /// unit or at least one constructor initializes member with the matching |
| 3735 | /// form of \c new, mismatch cannot be proven, and this function will return |
| 3736 | /// \c NoMismatch. |
| 3737 | MismatchResult analyzeMemberExpr(const MemberExpr *ME); |
| 3738 | /// Returns whether variable is initialized with mismatching form of |
| 3739 | /// \c new. |
| 3740 | /// |
| 3741 | /// If variable is initialized with matching form of \c new or variable is not |
| 3742 | /// initialized with a \c new expression, this function will return true. |
| 3743 | /// If variable is initialized with mismatching form of \c new, returns false. |
| 3744 | /// \param D Variable to analyze. |
| 3745 | bool hasMatchingVarInit(const DeclRefExpr *D); |
| 3746 | /// Checks whether the constructor initializes pointee with mismatching |
| 3747 | /// form of \c new. |
| 3748 | /// |
| 3749 | /// Returns true, if member is initialized with matching form of \c new in |
| 3750 | /// member initializer list. Returns false, if member is initialized with the |
| 3751 | /// matching form of \c new in this constructor's initializer or given |
| 3752 | /// constructor isn't defined at the point where delete-expression is seen, or |
| 3753 | /// member isn't initialized by the constructor. |
| 3754 | bool hasMatchingNewInCtor(const CXXConstructorDecl *CD); |
| 3755 | /// Checks whether member is initialized with matching form of |
| 3756 | /// \c new in member initializer list. |
| 3757 | bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI); |
| 3758 | /// Checks whether member is initialized with mismatching form of \c new by |
| 3759 | /// in-class initializer. |
| 3760 | MismatchResult analyzeInClassInitializer(); |
| 3761 | }; |
| 3762 | } |
| 3763 | |
| 3764 | MismatchingNewDeleteDetector::MismatchResult |
| 3765 | MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) { |
| 3766 | NewExprs.clear(); |
| 3767 | assert(DE && "Expected delete-expression" ); |
| 3768 | IsArrayForm = DE->isArrayForm(); |
| 3769 | const Expr *E = DE->getArgument()->IgnoreParenImpCasts(); |
| 3770 | if (const MemberExpr *ME = dyn_cast<const MemberExpr>(Val: E)) { |
| 3771 | return analyzeMemberExpr(ME); |
| 3772 | } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(Val: E)) { |
| 3773 | if (!hasMatchingVarInit(D)) |
| 3774 | return VarInitMismatches; |
| 3775 | } |
| 3776 | return NoMismatch; |
| 3777 | } |
| 3778 | |
| 3779 | const CXXNewExpr * |
| 3780 | MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) { |
| 3781 | assert(E != nullptr && "Expected a valid initializer expression" ); |
| 3782 | E = E->IgnoreParenImpCasts(); |
| 3783 | if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(Val: E)) { |
| 3784 | if (ILE->getNumInits() == 1) |
| 3785 | E = dyn_cast<const CXXNewExpr>(Val: ILE->getInit(Init: 0)->IgnoreParenImpCasts()); |
| 3786 | } |
| 3787 | |
| 3788 | return dyn_cast_or_null<const CXXNewExpr>(Val: E); |
| 3789 | } |
| 3790 | |
| 3791 | bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit( |
| 3792 | const CXXCtorInitializer *CI) { |
| 3793 | const CXXNewExpr *NE = nullptr; |
| 3794 | if (Field == CI->getMember() && |
| 3795 | (NE = getNewExprFromInitListOrExpr(E: CI->getInit()))) { |
| 3796 | if (NE->isArray() == IsArrayForm) |
| 3797 | return true; |
| 3798 | else |
| 3799 | NewExprs.push_back(Elt: NE); |
| 3800 | } |
| 3801 | return false; |
| 3802 | } |
| 3803 | |
| 3804 | bool MismatchingNewDeleteDetector::hasMatchingNewInCtor( |
| 3805 | const CXXConstructorDecl *CD) { |
| 3806 | if (CD->isImplicit()) |
| 3807 | return false; |
| 3808 | const FunctionDecl *Definition = CD; |
| 3809 | if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) { |
| 3810 | HasUndefinedConstructors = true; |
| 3811 | return EndOfTU; |
| 3812 | } |
| 3813 | for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) { |
| 3814 | if (hasMatchingNewInCtorInit(CI)) |
| 3815 | return true; |
| 3816 | } |
| 3817 | return false; |
| 3818 | } |
| 3819 | |
| 3820 | MismatchingNewDeleteDetector::MismatchResult |
| 3821 | MismatchingNewDeleteDetector::analyzeInClassInitializer() { |
| 3822 | assert(Field != nullptr && "This should be called only for members" ); |
| 3823 | const Expr *InitExpr = Field->getInClassInitializer(); |
| 3824 | if (!InitExpr) |
| 3825 | return EndOfTU ? NoMismatch : AnalyzeLater; |
| 3826 | if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(E: InitExpr)) { |
| 3827 | if (NE->isArray() != IsArrayForm) { |
| 3828 | NewExprs.push_back(Elt: NE); |
| 3829 | return MemberInitMismatches; |
| 3830 | } |
| 3831 | } |
| 3832 | return NoMismatch; |
| 3833 | } |
| 3834 | |
| 3835 | MismatchingNewDeleteDetector::MismatchResult |
| 3836 | MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field, |
| 3837 | bool DeleteWasArrayForm) { |
| 3838 | assert(Field != nullptr && "Analysis requires a valid class member." ); |
| 3839 | this->Field = Field; |
| 3840 | IsArrayForm = DeleteWasArrayForm; |
| 3841 | const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Val: Field->getParent()); |
| 3842 | for (const auto *CD : RD->ctors()) { |
| 3843 | if (hasMatchingNewInCtor(CD)) |
| 3844 | return NoMismatch; |
| 3845 | } |
| 3846 | if (HasUndefinedConstructors) |
| 3847 | return EndOfTU ? NoMismatch : AnalyzeLater; |
| 3848 | if (!NewExprs.empty()) |
| 3849 | return MemberInitMismatches; |
| 3850 | return Field->hasInClassInitializer() ? analyzeInClassInitializer() |
| 3851 | : NoMismatch; |
| 3852 | } |
| 3853 | |
| 3854 | MismatchingNewDeleteDetector::MismatchResult |
| 3855 | MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) { |
| 3856 | assert(ME != nullptr && "Expected a member expression" ); |
| 3857 | if (FieldDecl *F = dyn_cast<FieldDecl>(Val: ME->getMemberDecl())) |
| 3858 | return analyzeField(Field: F, DeleteWasArrayForm: IsArrayForm); |
| 3859 | return NoMismatch; |
| 3860 | } |
| 3861 | |
| 3862 | bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) { |
| 3863 | const CXXNewExpr *NE = nullptr; |
| 3864 | if (const VarDecl *VD = dyn_cast<const VarDecl>(Val: D->getDecl())) { |
| 3865 | if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(E: VD->getInit())) && |
| 3866 | NE->isArray() != IsArrayForm) { |
| 3867 | NewExprs.push_back(Elt: NE); |
| 3868 | } |
| 3869 | } |
| 3870 | return NewExprs.empty(); |
| 3871 | } |
| 3872 | |
| 3873 | static void |
| 3874 | DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc, |
| 3875 | const MismatchingNewDeleteDetector &Detector) { |
| 3876 | SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(Loc: DeleteLoc); |
| 3877 | FixItHint H; |
| 3878 | if (!Detector.IsArrayForm) |
| 3879 | H = FixItHint::CreateInsertion(InsertionLoc: EndOfDelete, Code: "[]" ); |
| 3880 | else { |
| 3881 | SourceLocation RSquare = Lexer::findLocationAfterToken( |
| 3882 | loc: DeleteLoc, TKind: tok::l_square, SM: SemaRef.getSourceManager(), |
| 3883 | LangOpts: SemaRef.getLangOpts(), SkipTrailingWhitespaceAndNewLine: true); |
| 3884 | if (RSquare.isValid()) |
| 3885 | H = FixItHint::CreateRemoval(RemoveRange: SourceRange(EndOfDelete, RSquare)); |
| 3886 | } |
| 3887 | SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new) |
| 3888 | << Detector.IsArrayForm << H; |
| 3889 | |
| 3890 | for (const auto *NE : Detector.NewExprs) |
| 3891 | SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here) |
| 3892 | << Detector.IsArrayForm; |
| 3893 | } |
| 3894 | |
| 3895 | void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) { |
| 3896 | if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) |
| 3897 | return; |
| 3898 | MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false); |
| 3899 | switch (Detector.analyzeDeleteExpr(DE)) { |
| 3900 | case MismatchingNewDeleteDetector::VarInitMismatches: |
| 3901 | case MismatchingNewDeleteDetector::MemberInitMismatches: { |
| 3902 | DiagnoseMismatchedNewDelete(SemaRef&: *this, DeleteLoc: DE->getBeginLoc(), Detector); |
| 3903 | break; |
| 3904 | } |
| 3905 | case MismatchingNewDeleteDetector::AnalyzeLater: { |
| 3906 | DeleteExprs[Detector.Field].push_back( |
| 3907 | Elt: std::make_pair(x: DE->getBeginLoc(), y: DE->isArrayForm())); |
| 3908 | break; |
| 3909 | } |
| 3910 | case MismatchingNewDeleteDetector::NoMismatch: |
| 3911 | break; |
| 3912 | } |
| 3913 | } |
| 3914 | |
| 3915 | void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc, |
| 3916 | bool DeleteWasArrayForm) { |
| 3917 | MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true); |
| 3918 | switch (Detector.analyzeField(Field, DeleteWasArrayForm)) { |
| 3919 | case MismatchingNewDeleteDetector::VarInitMismatches: |
| 3920 | llvm_unreachable("This analysis should have been done for class members." ); |
| 3921 | case MismatchingNewDeleteDetector::AnalyzeLater: |
| 3922 | llvm_unreachable("Analysis cannot be postponed any point beyond end of " |
| 3923 | "translation unit." ); |
| 3924 | case MismatchingNewDeleteDetector::MemberInitMismatches: |
| 3925 | DiagnoseMismatchedNewDelete(SemaRef&: *this, DeleteLoc, Detector); |
| 3926 | break; |
| 3927 | case MismatchingNewDeleteDetector::NoMismatch: |
| 3928 | break; |
| 3929 | } |
| 3930 | } |
| 3931 | |
| 3932 | ExprResult |
| 3933 | Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, |
| 3934 | bool ArrayForm, Expr *ExE) { |
| 3935 | // C++ [expr.delete]p1: |
| 3936 | // The operand shall have a pointer type, or a class type having a single |
| 3937 | // non-explicit conversion function to a pointer type. The result has type |
| 3938 | // void. |
| 3939 | // |
| 3940 | // DR599 amends "pointer type" to "pointer to object type" in both cases. |
| 3941 | |
| 3942 | ExprResult Ex = ExE; |
| 3943 | FunctionDecl *OperatorDelete = nullptr; |
| 3944 | bool ArrayFormAsWritten = ArrayForm; |
| 3945 | bool UsualArrayDeleteWantsSize = false; |
| 3946 | |
| 3947 | if (!Ex.get()->isTypeDependent()) { |
| 3948 | // Perform lvalue-to-rvalue cast, if needed. |
| 3949 | Ex = DefaultLvalueConversion(E: Ex.get()); |
| 3950 | if (Ex.isInvalid()) |
| 3951 | return ExprError(); |
| 3952 | |
| 3953 | QualType Type = Ex.get()->getType(); |
| 3954 | |
| 3955 | class DeleteConverter : public ContextualImplicitConverter { |
| 3956 | public: |
| 3957 | DeleteConverter() : ContextualImplicitConverter(false, true) {} |
| 3958 | |
| 3959 | bool match(QualType ConvType) override { |
| 3960 | // FIXME: If we have an operator T* and an operator void*, we must pick |
| 3961 | // the operator T*. |
| 3962 | if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) |
| 3963 | if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) |
| 3964 | return true; |
| 3965 | return false; |
| 3966 | } |
| 3967 | |
| 3968 | SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, |
| 3969 | QualType T) override { |
| 3970 | return S.Diag(Loc, diag::err_delete_operand) << T; |
| 3971 | } |
| 3972 | |
| 3973 | SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, |
| 3974 | QualType T) override { |
| 3975 | return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T; |
| 3976 | } |
| 3977 | |
| 3978 | SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc, |
| 3979 | QualType T, |
| 3980 | QualType ConvTy) override { |
| 3981 | return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy; |
| 3982 | } |
| 3983 | |
| 3984 | SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, |
| 3985 | QualType ConvTy) override { |
| 3986 | return S.Diag(Conv->getLocation(), diag::note_delete_conversion) |
| 3987 | << ConvTy; |
| 3988 | } |
| 3989 | |
| 3990 | SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, |
| 3991 | QualType T) override { |
| 3992 | return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T; |
| 3993 | } |
| 3994 | |
| 3995 | SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, |
| 3996 | QualType ConvTy) override { |
| 3997 | return S.Diag(Conv->getLocation(), diag::note_delete_conversion) |
| 3998 | << ConvTy; |
| 3999 | } |
| 4000 | |
| 4001 | SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, |
| 4002 | QualType T, |
| 4003 | QualType ConvTy) override { |
| 4004 | llvm_unreachable("conversion functions are permitted" ); |
| 4005 | } |
| 4006 | } Converter; |
| 4007 | |
| 4008 | Ex = PerformContextualImplicitConversion(Loc: StartLoc, FromE: Ex.get(), Converter); |
| 4009 | if (Ex.isInvalid()) |
| 4010 | return ExprError(); |
| 4011 | Type = Ex.get()->getType(); |
| 4012 | if (!Converter.match(ConvType: Type)) |
| 4013 | // FIXME: PerformContextualImplicitConversion should return ExprError |
| 4014 | // itself in this case. |
| 4015 | return ExprError(); |
| 4016 | |
| 4017 | QualType Pointee = Type->castAs<PointerType>()->getPointeeType(); |
| 4018 | QualType PointeeElem = Context.getBaseElementType(QT: Pointee); |
| 4019 | |
| 4020 | if (Pointee.getAddressSpace() != LangAS::Default && |
| 4021 | !getLangOpts().OpenCLCPlusPlus) |
| 4022 | return Diag(Ex.get()->getBeginLoc(), |
| 4023 | diag::err_address_space_qualified_delete) |
| 4024 | << Pointee.getUnqualifiedType() |
| 4025 | << Pointee.getQualifiers().getAddressSpaceAttributePrintValue(); |
| 4026 | |
| 4027 | CXXRecordDecl *PointeeRD = nullptr; |
| 4028 | if (Pointee->isVoidType() && !isSFINAEContext()) { |
| 4029 | // The C++ standard bans deleting a pointer to a non-object type, which |
| 4030 | // effectively bans deletion of "void*". However, most compilers support |
| 4031 | // this, so we treat it as a warning unless we're in a SFINAE context. |
| 4032 | // But we still prohibit this since C++26. |
| 4033 | Diag(StartLoc, LangOpts.CPlusPlus26 ? diag::err_delete_incomplete |
| 4034 | : diag::ext_delete_void_ptr_operand) |
| 4035 | << (LangOpts.CPlusPlus26 ? Pointee : Type) |
| 4036 | << Ex.get()->getSourceRange(); |
| 4037 | } else if (Pointee->isFunctionType() || Pointee->isVoidType() || |
| 4038 | Pointee->isSizelessType()) { |
| 4039 | return ExprError(Diag(StartLoc, diag::err_delete_operand) |
| 4040 | << Type << Ex.get()->getSourceRange()); |
| 4041 | } else if (!Pointee->isDependentType()) { |
| 4042 | // FIXME: This can result in errors if the definition was imported from a |
| 4043 | // module but is hidden. |
| 4044 | if (Pointee->isEnumeralType() || |
| 4045 | !RequireCompleteType(StartLoc, Pointee, |
| 4046 | LangOpts.CPlusPlus26 |
| 4047 | ? diag::err_delete_incomplete |
| 4048 | : diag::warn_delete_incomplete, |
| 4049 | Ex.get())) { |
| 4050 | if (const RecordType *RT = PointeeElem->getAs<RecordType>()) |
| 4051 | PointeeRD = cast<CXXRecordDecl>(Val: RT->getDecl()); |
| 4052 | } |
| 4053 | } |
| 4054 | |
| 4055 | if (Pointee->isArrayType() && !ArrayForm) { |
| 4056 | Diag(StartLoc, diag::warn_delete_array_type) |
| 4057 | << Type << Ex.get()->getSourceRange() |
| 4058 | << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]" ); |
| 4059 | ArrayForm = true; |
| 4060 | } |
| 4061 | |
| 4062 | DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( |
| 4063 | Op: ArrayForm ? OO_Array_Delete : OO_Delete); |
| 4064 | |
| 4065 | if (PointeeRD) { |
| 4066 | ImplicitDeallocationParameters IDP = { |
| 4067 | Pointee, ShouldUseTypeAwareOperatorNewOrDelete(), |
| 4068 | AlignedAllocationMode::No, SizedDeallocationMode::No}; |
| 4069 | if (!UseGlobal && |
| 4070 | FindDeallocationFunction(StartLoc, RD: PointeeRD, Name: DeleteName, |
| 4071 | Operator&: OperatorDelete, IDP)) |
| 4072 | return ExprError(); |
| 4073 | |
| 4074 | // If we're allocating an array of records, check whether the |
| 4075 | // usual operator delete[] has a size_t parameter. |
| 4076 | if (ArrayForm) { |
| 4077 | // If the user specifically asked to use the global allocator, |
| 4078 | // we'll need to do the lookup into the class. |
| 4079 | if (UseGlobal) |
| 4080 | UsualArrayDeleteWantsSize = doesUsualArrayDeleteWantSize( |
| 4081 | S&: *this, loc: StartLoc, PassType: IDP.PassTypeIdentity, allocType: PointeeElem); |
| 4082 | |
| 4083 | // Otherwise, the usual operator delete[] should be the |
| 4084 | // function we just found. |
| 4085 | else if (isa_and_nonnull<CXXMethodDecl>(Val: OperatorDelete)) { |
| 4086 | UsualDeallocFnInfo UDFI( |
| 4087 | *this, DeclAccessPair::make(OperatorDelete, AS_public), Pointee, |
| 4088 | StartLoc); |
| 4089 | UsualArrayDeleteWantsSize = isSizedDeallocation(UDFI.IDP.PassSize); |
| 4090 | } |
| 4091 | } |
| 4092 | |
| 4093 | if (!PointeeRD->hasIrrelevantDestructor()) { |
| 4094 | if (CXXDestructorDecl *Dtor = LookupDestructor(Class: PointeeRD)) { |
| 4095 | if (Dtor->isCalledByDelete(OpDel: OperatorDelete)) { |
| 4096 | MarkFunctionReferenced(StartLoc, |
| 4097 | const_cast<CXXDestructorDecl *>(Dtor)); |
| 4098 | if (DiagnoseUseOfDecl(Dtor, StartLoc)) |
| 4099 | return ExprError(); |
| 4100 | } |
| 4101 | } |
| 4102 | } |
| 4103 | |
| 4104 | CheckVirtualDtorCall(dtor: PointeeRD->getDestructor(), Loc: StartLoc, |
| 4105 | /*IsDelete=*/true, /*CallCanBeVirtual=*/true, |
| 4106 | /*WarnOnNonAbstractTypes=*/!ArrayForm, |
| 4107 | DtorLoc: SourceLocation()); |
| 4108 | } |
| 4109 | |
| 4110 | if (!OperatorDelete) { |
| 4111 | if (getLangOpts().OpenCLCPlusPlus) { |
| 4112 | Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete" ; |
| 4113 | return ExprError(); |
| 4114 | } |
| 4115 | |
| 4116 | bool IsComplete = isCompleteType(Loc: StartLoc, T: Pointee); |
| 4117 | bool CanProvideSize = |
| 4118 | IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize || |
| 4119 | Pointee.isDestructedType()); |
| 4120 | bool Overaligned = hasNewExtendedAlignment(S&: *this, AllocType: Pointee); |
| 4121 | |
| 4122 | // Look for a global declaration. |
| 4123 | ImplicitDeallocationParameters IDP = { |
| 4124 | Pointee, ShouldUseTypeAwareOperatorNewOrDelete(), |
| 4125 | alignedAllocationModeFromBool(IsAligned: Overaligned), |
| 4126 | sizedDeallocationModeFromBool(IsSized: CanProvideSize)}; |
| 4127 | OperatorDelete = FindUsualDeallocationFunction(StartLoc, IDP, Name: DeleteName); |
| 4128 | if (!OperatorDelete) |
| 4129 | return ExprError(); |
| 4130 | } |
| 4131 | |
| 4132 | if (OperatorDelete->isInvalidDecl()) |
| 4133 | return ExprError(); |
| 4134 | |
| 4135 | MarkFunctionReferenced(Loc: StartLoc, Func: OperatorDelete); |
| 4136 | |
| 4137 | // Check access and ambiguity of destructor if we're going to call it. |
| 4138 | // Note that this is required even for a virtual delete. |
| 4139 | bool IsVirtualDelete = false; |
| 4140 | if (PointeeRD) { |
| 4141 | if (CXXDestructorDecl *Dtor = LookupDestructor(Class: PointeeRD)) { |
| 4142 | if (Dtor->isCalledByDelete(OperatorDelete)) |
| 4143 | CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, |
| 4144 | PDiag(diag::err_access_dtor) << PointeeElem); |
| 4145 | IsVirtualDelete = Dtor->isVirtual(); |
| 4146 | } |
| 4147 | } |
| 4148 | |
| 4149 | DiagnoseUseOfDecl(OperatorDelete, StartLoc); |
| 4150 | |
| 4151 | unsigned AddressParamIdx = 0; |
| 4152 | if (OperatorDelete->isTypeAwareOperatorNewOrDelete()) { |
| 4153 | QualType TypeIdentity = OperatorDelete->getParamDecl(i: 0)->getType(); |
| 4154 | if (RequireCompleteType(StartLoc, TypeIdentity, |
| 4155 | diag::err_incomplete_type)) |
| 4156 | return ExprError(); |
| 4157 | AddressParamIdx = 1; |
| 4158 | } |
| 4159 | |
| 4160 | // Convert the operand to the type of the first parameter of operator |
| 4161 | // delete. This is only necessary if we selected a destroying operator |
| 4162 | // delete that we are going to call (non-virtually); converting to void* |
| 4163 | // is trivial and left to AST consumers to handle. |
| 4164 | QualType ParamType = |
| 4165 | OperatorDelete->getParamDecl(i: AddressParamIdx)->getType(); |
| 4166 | if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) { |
| 4167 | Qualifiers Qs = Pointee.getQualifiers(); |
| 4168 | if (Qs.hasCVRQualifiers()) { |
| 4169 | // Qualifiers are irrelevant to this conversion; we're only looking |
| 4170 | // for access and ambiguity. |
| 4171 | Qs.removeCVRQualifiers(); |
| 4172 | QualType Unqual = Context.getPointerType( |
| 4173 | T: Context.getQualifiedType(T: Pointee.getUnqualifiedType(), Qs)); |
| 4174 | Ex = ImpCastExprToType(E: Ex.get(), Type: Unqual, CK: CK_NoOp); |
| 4175 | } |
| 4176 | Ex = PerformImplicitConversion(From: Ex.get(), ToType: ParamType, |
| 4177 | Action: AssignmentAction::Passing); |
| 4178 | if (Ex.isInvalid()) |
| 4179 | return ExprError(); |
| 4180 | } |
| 4181 | } |
| 4182 | |
| 4183 | CXXDeleteExpr *Result = new (Context) CXXDeleteExpr( |
| 4184 | Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten, |
| 4185 | UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc); |
| 4186 | AnalyzeDeleteExprMismatch(DE: Result); |
| 4187 | return Result; |
| 4188 | } |
| 4189 | |
| 4190 | static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall, |
| 4191 | bool IsDelete, |
| 4192 | FunctionDecl *&Operator) { |
| 4193 | |
| 4194 | DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName( |
| 4195 | Op: IsDelete ? OO_Delete : OO_New); |
| 4196 | |
| 4197 | LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName); |
| 4198 | S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); |
| 4199 | assert(!R.empty() && "implicitly declared allocation functions not found" ); |
| 4200 | assert(!R.isAmbiguous() && "global allocation functions are ambiguous" ); |
| 4201 | |
| 4202 | // We do our own custom access checks below. |
| 4203 | R.suppressDiagnostics(); |
| 4204 | |
| 4205 | SmallVector<Expr *, 8> Args(TheCall->arguments()); |
| 4206 | OverloadCandidateSet Candidates(R.getNameLoc(), |
| 4207 | OverloadCandidateSet::CSK_Normal); |
| 4208 | for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end(); |
| 4209 | FnOvl != FnOvlEnd; ++FnOvl) { |
| 4210 | // Even member operator new/delete are implicitly treated as |
| 4211 | // static, so don't use AddMemberCandidate. |
| 4212 | NamedDecl *D = (*FnOvl)->getUnderlyingDecl(); |
| 4213 | |
| 4214 | if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(Val: D)) { |
| 4215 | S.AddTemplateOverloadCandidate(FunctionTemplate: FnTemplate, FoundDecl: FnOvl.getPair(), |
| 4216 | /*ExplicitTemplateArgs=*/nullptr, Args, |
| 4217 | CandidateSet&: Candidates, |
| 4218 | /*SuppressUserConversions=*/false); |
| 4219 | continue; |
| 4220 | } |
| 4221 | |
| 4222 | FunctionDecl *Fn = cast<FunctionDecl>(Val: D); |
| 4223 | S.AddOverloadCandidate(Function: Fn, FoundDecl: FnOvl.getPair(), Args, CandidateSet&: Candidates, |
| 4224 | /*SuppressUserConversions=*/false); |
| 4225 | } |
| 4226 | |
| 4227 | SourceRange Range = TheCall->getSourceRange(); |
| 4228 | |
| 4229 | // Do the resolution. |
| 4230 | OverloadCandidateSet::iterator Best; |
| 4231 | switch (Candidates.BestViableFunction(S, Loc: R.getNameLoc(), Best)) { |
| 4232 | case OR_Success: { |
| 4233 | // Got one! |
| 4234 | FunctionDecl *FnDecl = Best->Function; |
| 4235 | assert(R.getNamingClass() == nullptr && |
| 4236 | "class members should not be considered" ); |
| 4237 | |
| 4238 | if (!FnDecl->isReplaceableGlobalAllocationFunction()) { |
| 4239 | S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual) |
| 4240 | << (IsDelete ? 1 : 0) << Range; |
| 4241 | S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here) |
| 4242 | << R.getLookupName() << FnDecl->getSourceRange(); |
| 4243 | return true; |
| 4244 | } |
| 4245 | |
| 4246 | Operator = FnDecl; |
| 4247 | return false; |
| 4248 | } |
| 4249 | |
| 4250 | case OR_No_Viable_Function: |
| 4251 | Candidates.NoteCandidates( |
| 4252 | PartialDiagnosticAt(R.getNameLoc(), |
| 4253 | S.PDiag(diag::err_ovl_no_viable_function_in_call) |
| 4254 | << R.getLookupName() << Range), |
| 4255 | S, OCD_AllCandidates, Args); |
| 4256 | return true; |
| 4257 | |
| 4258 | case OR_Ambiguous: |
| 4259 | Candidates.NoteCandidates( |
| 4260 | PartialDiagnosticAt(R.getNameLoc(), |
| 4261 | S.PDiag(diag::err_ovl_ambiguous_call) |
| 4262 | << R.getLookupName() << Range), |
| 4263 | S, OCD_AmbiguousCandidates, Args); |
| 4264 | return true; |
| 4265 | |
| 4266 | case OR_Deleted: |
| 4267 | S.DiagnoseUseOfDeletedFunction(Loc: R.getNameLoc(), Range, Name: R.getLookupName(), |
| 4268 | CandidateSet&: Candidates, Fn: Best->Function, Args); |
| 4269 | return true; |
| 4270 | } |
| 4271 | llvm_unreachable("Unreachable, bad result from BestViableFunction" ); |
| 4272 | } |
| 4273 | |
| 4274 | ExprResult Sema::BuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult, |
| 4275 | bool IsDelete) { |
| 4276 | CallExpr *TheCall = cast<CallExpr>(Val: TheCallResult.get()); |
| 4277 | if (!getLangOpts().CPlusPlus) { |
| 4278 | Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language) |
| 4279 | << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new" ) |
| 4280 | << "C++" ; |
| 4281 | return ExprError(); |
| 4282 | } |
| 4283 | // CodeGen assumes it can find the global new and delete to call, |
| 4284 | // so ensure that they are declared. |
| 4285 | DeclareGlobalNewDelete(); |
| 4286 | |
| 4287 | FunctionDecl *OperatorNewOrDelete = nullptr; |
| 4288 | if (resolveBuiltinNewDeleteOverload(S&: *this, TheCall, IsDelete, |
| 4289 | Operator&: OperatorNewOrDelete)) |
| 4290 | return ExprError(); |
| 4291 | assert(OperatorNewOrDelete && "should be found" ); |
| 4292 | |
| 4293 | DiagnoseUseOfDecl(D: OperatorNewOrDelete, Locs: TheCall->getExprLoc()); |
| 4294 | MarkFunctionReferenced(Loc: TheCall->getExprLoc(), Func: OperatorNewOrDelete); |
| 4295 | |
| 4296 | TheCall->setType(OperatorNewOrDelete->getReturnType()); |
| 4297 | for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) { |
| 4298 | QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType(); |
| 4299 | InitializedEntity Entity = |
| 4300 | InitializedEntity::InitializeParameter(Context, Type: ParamTy, Consumed: false); |
| 4301 | ExprResult Arg = PerformCopyInitialization( |
| 4302 | Entity, EqualLoc: TheCall->getArg(Arg: i)->getBeginLoc(), Init: TheCall->getArg(Arg: i)); |
| 4303 | if (Arg.isInvalid()) |
| 4304 | return ExprError(); |
| 4305 | TheCall->setArg(Arg: i, ArgExpr: Arg.get()); |
| 4306 | } |
| 4307 | auto Callee = dyn_cast<ImplicitCastExpr>(Val: TheCall->getCallee()); |
| 4308 | assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && |
| 4309 | "Callee expected to be implicit cast to a builtin function pointer" ); |
| 4310 | Callee->setType(OperatorNewOrDelete->getType()); |
| 4311 | |
| 4312 | return TheCallResult; |
| 4313 | } |
| 4314 | |
| 4315 | void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc, |
| 4316 | bool IsDelete, bool CallCanBeVirtual, |
| 4317 | bool WarnOnNonAbstractTypes, |
| 4318 | SourceLocation DtorLoc) { |
| 4319 | if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext()) |
| 4320 | return; |
| 4321 | |
| 4322 | // C++ [expr.delete]p3: |
| 4323 | // In the first alternative (delete object), if the static type of the |
| 4324 | // object to be deleted is different from its dynamic type, the static |
| 4325 | // type shall be a base class of the dynamic type of the object to be |
| 4326 | // deleted and the static type shall have a virtual destructor or the |
| 4327 | // behavior is undefined. |
| 4328 | // |
| 4329 | const CXXRecordDecl *PointeeRD = dtor->getParent(); |
| 4330 | // Note: a final class cannot be derived from, no issue there |
| 4331 | if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>()) |
| 4332 | return; |
| 4333 | |
| 4334 | // If the superclass is in a system header, there's nothing that can be done. |
| 4335 | // The `delete` (where we emit the warning) can be in a system header, |
| 4336 | // what matters for this warning is where the deleted type is defined. |
| 4337 | if (getSourceManager().isInSystemHeader(Loc: PointeeRD->getLocation())) |
| 4338 | return; |
| 4339 | |
| 4340 | QualType ClassType = dtor->getFunctionObjectParameterType(); |
| 4341 | if (PointeeRD->isAbstract()) { |
| 4342 | // If the class is abstract, we warn by default, because we're |
| 4343 | // sure the code has undefined behavior. |
| 4344 | Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1) |
| 4345 | << ClassType; |
| 4346 | } else if (WarnOnNonAbstractTypes) { |
| 4347 | // Otherwise, if this is not an array delete, it's a bit suspect, |
| 4348 | // but not necessarily wrong. |
| 4349 | Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1) |
| 4350 | << ClassType; |
| 4351 | } |
| 4352 | if (!IsDelete) { |
| 4353 | std::string TypeStr; |
| 4354 | ClassType.getAsStringInternal(Str&: TypeStr, Policy: getPrintingPolicy()); |
| 4355 | Diag(DtorLoc, diag::note_delete_non_virtual) |
| 4356 | << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::" ); |
| 4357 | } |
| 4358 | } |
| 4359 | |
| 4360 | Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar, |
| 4361 | SourceLocation StmtLoc, |
| 4362 | ConditionKind CK) { |
| 4363 | ExprResult E = |
| 4364 | CheckConditionVariable(ConditionVar: cast<VarDecl>(Val: ConditionVar), StmtLoc, CK); |
| 4365 | if (E.isInvalid()) |
| 4366 | return ConditionError(); |
| 4367 | return ConditionResult(*this, ConditionVar, MakeFullExpr(Arg: E.get(), CC: StmtLoc), |
| 4368 | CK == ConditionKind::ConstexprIf); |
| 4369 | } |
| 4370 | |
| 4371 | ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, |
| 4372 | SourceLocation StmtLoc, |
| 4373 | ConditionKind CK) { |
| 4374 | if (ConditionVar->isInvalidDecl()) |
| 4375 | return ExprError(); |
| 4376 | |
| 4377 | QualType T = ConditionVar->getType(); |
| 4378 | |
| 4379 | // C++ [stmt.select]p2: |
| 4380 | // The declarator shall not specify a function or an array. |
| 4381 | if (T->isFunctionType()) |
| 4382 | return ExprError(Diag(ConditionVar->getLocation(), |
| 4383 | diag::err_invalid_use_of_function_type) |
| 4384 | << ConditionVar->getSourceRange()); |
| 4385 | else if (T->isArrayType()) |
| 4386 | return ExprError(Diag(ConditionVar->getLocation(), |
| 4387 | diag::err_invalid_use_of_array_type) |
| 4388 | << ConditionVar->getSourceRange()); |
| 4389 | |
| 4390 | ExprResult Condition = BuildDeclRefExpr( |
| 4391 | ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue, |
| 4392 | ConditionVar->getLocation()); |
| 4393 | |
| 4394 | switch (CK) { |
| 4395 | case ConditionKind::Boolean: |
| 4396 | return CheckBooleanCondition(Loc: StmtLoc, E: Condition.get()); |
| 4397 | |
| 4398 | case ConditionKind::ConstexprIf: |
| 4399 | return CheckBooleanCondition(Loc: StmtLoc, E: Condition.get(), IsConstexpr: true); |
| 4400 | |
| 4401 | case ConditionKind::Switch: |
| 4402 | return CheckSwitchCondition(SwitchLoc: StmtLoc, Cond: Condition.get()); |
| 4403 | } |
| 4404 | |
| 4405 | llvm_unreachable("unexpected condition kind" ); |
| 4406 | } |
| 4407 | |
| 4408 | ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) { |
| 4409 | // C++11 6.4p4: |
| 4410 | // The value of a condition that is an initialized declaration in a statement |
| 4411 | // other than a switch statement is the value of the declared variable |
| 4412 | // implicitly converted to type bool. If that conversion is ill-formed, the |
| 4413 | // program is ill-formed. |
| 4414 | // The value of a condition that is an expression is the value of the |
| 4415 | // expression, implicitly converted to bool. |
| 4416 | // |
| 4417 | // C++23 8.5.2p2 |
| 4418 | // If the if statement is of the form if constexpr, the value of the condition |
| 4419 | // is contextually converted to bool and the converted expression shall be |
| 4420 | // a constant expression. |
| 4421 | // |
| 4422 | |
| 4423 | ExprResult E = PerformContextuallyConvertToBool(From: CondExpr); |
| 4424 | if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent()) |
| 4425 | return E; |
| 4426 | |
| 4427 | // FIXME: Return this value to the caller so they don't need to recompute it. |
| 4428 | llvm::APSInt Cond; |
| 4429 | E = VerifyIntegerConstantExpression( |
| 4430 | E.get(), &Cond, |
| 4431 | diag::err_constexpr_if_condition_expression_is_not_constant); |
| 4432 | return E; |
| 4433 | } |
| 4434 | |
| 4435 | bool |
| 4436 | Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { |
| 4437 | // Look inside the implicit cast, if it exists. |
| 4438 | if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Val: From)) |
| 4439 | From = Cast->getSubExpr(); |
| 4440 | |
| 4441 | // A string literal (2.13.4) that is not a wide string literal can |
| 4442 | // be converted to an rvalue of type "pointer to char"; a wide |
| 4443 | // string literal can be converted to an rvalue of type "pointer |
| 4444 | // to wchar_t" (C++ 4.2p2). |
| 4445 | if (StringLiteral *StrLit = dyn_cast<StringLiteral>(Val: From->IgnoreParens())) |
| 4446 | if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) |
| 4447 | if (const BuiltinType *ToPointeeType |
| 4448 | = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { |
| 4449 | // This conversion is considered only when there is an |
| 4450 | // explicit appropriate pointer target type (C++ 4.2p2). |
| 4451 | if (!ToPtrType->getPointeeType().hasQualifiers()) { |
| 4452 | switch (StrLit->getKind()) { |
| 4453 | case StringLiteralKind::UTF8: |
| 4454 | case StringLiteralKind::UTF16: |
| 4455 | case StringLiteralKind::UTF32: |
| 4456 | // We don't allow UTF literals to be implicitly converted |
| 4457 | break; |
| 4458 | case StringLiteralKind::Ordinary: |
| 4459 | case StringLiteralKind::Binary: |
| 4460 | return (ToPointeeType->getKind() == BuiltinType::Char_U || |
| 4461 | ToPointeeType->getKind() == BuiltinType::Char_S); |
| 4462 | case StringLiteralKind::Wide: |
| 4463 | return Context.typesAreCompatible(T1: Context.getWideCharType(), |
| 4464 | T2: QualType(ToPointeeType, 0)); |
| 4465 | case StringLiteralKind::Unevaluated: |
| 4466 | assert(false && "Unevaluated string literal in expression" ); |
| 4467 | break; |
| 4468 | } |
| 4469 | } |
| 4470 | } |
| 4471 | |
| 4472 | return false; |
| 4473 | } |
| 4474 | |
| 4475 | static ExprResult BuildCXXCastArgument(Sema &S, |
| 4476 | SourceLocation CastLoc, |
| 4477 | QualType Ty, |
| 4478 | CastKind Kind, |
| 4479 | CXXMethodDecl *Method, |
| 4480 | DeclAccessPair FoundDecl, |
| 4481 | bool HadMultipleCandidates, |
| 4482 | Expr *From) { |
| 4483 | switch (Kind) { |
| 4484 | default: llvm_unreachable("Unhandled cast kind!" ); |
| 4485 | case CK_ConstructorConversion: { |
| 4486 | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Val: Method); |
| 4487 | SmallVector<Expr*, 8> ConstructorArgs; |
| 4488 | |
| 4489 | if (S.RequireNonAbstractType(CastLoc, Ty, |
| 4490 | diag::err_allocation_of_abstract_type)) |
| 4491 | return ExprError(); |
| 4492 | |
| 4493 | if (S.CompleteConstructorCall(Constructor, DeclInitType: Ty, ArgsPtr: From, Loc: CastLoc, |
| 4494 | ConvertedArgs&: ConstructorArgs)) |
| 4495 | return ExprError(); |
| 4496 | |
| 4497 | S.CheckConstructorAccess(Loc: CastLoc, D: Constructor, FoundDecl, |
| 4498 | Entity: InitializedEntity::InitializeTemporary(Type: Ty)); |
| 4499 | if (S.DiagnoseUseOfDecl(Method, CastLoc)) |
| 4500 | return ExprError(); |
| 4501 | |
| 4502 | ExprResult Result = S.BuildCXXConstructExpr( |
| 4503 | ConstructLoc: CastLoc, DeclInitType: Ty, FoundDecl, Constructor: cast<CXXConstructorDecl>(Val: Method), |
| 4504 | Exprs: ConstructorArgs, HadMultipleCandidates, |
| 4505 | /*ListInit*/ IsListInitialization: false, /*StdInitListInit*/ IsStdInitListInitialization: false, /*ZeroInit*/ RequiresZeroInit: false, |
| 4506 | ConstructKind: CXXConstructionKind::Complete, ParenRange: SourceRange()); |
| 4507 | if (Result.isInvalid()) |
| 4508 | return ExprError(); |
| 4509 | |
| 4510 | return S.MaybeBindToTemporary(E: Result.getAs<Expr>()); |
| 4511 | } |
| 4512 | |
| 4513 | case CK_UserDefinedConversion: { |
| 4514 | assert(!From->getType()->isPointerType() && "Arg can't have pointer type!" ); |
| 4515 | |
| 4516 | S.CheckMemberOperatorAccess(Loc: CastLoc, ObjectExpr: From, /*arg*/ ArgExpr: nullptr, FoundDecl); |
| 4517 | if (S.DiagnoseUseOfDecl(Method, CastLoc)) |
| 4518 | return ExprError(); |
| 4519 | |
| 4520 | // Create an implicit call expr that calls it. |
| 4521 | CXXConversionDecl *Conv = cast<CXXConversionDecl>(Val: Method); |
| 4522 | ExprResult Result = S.BuildCXXMemberCallExpr(Exp: From, FoundDecl, Method: Conv, |
| 4523 | HadMultipleCandidates); |
| 4524 | if (Result.isInvalid()) |
| 4525 | return ExprError(); |
| 4526 | // Record usage of conversion in an implicit cast. |
| 4527 | Result = ImplicitCastExpr::Create(Context: S.Context, T: Result.get()->getType(), |
| 4528 | Kind: CK_UserDefinedConversion, Operand: Result.get(), |
| 4529 | BasePath: nullptr, Cat: Result.get()->getValueKind(), |
| 4530 | FPO: S.CurFPFeatureOverrides()); |
| 4531 | |
| 4532 | return S.MaybeBindToTemporary(E: Result.get()); |
| 4533 | } |
| 4534 | } |
| 4535 | } |
| 4536 | |
| 4537 | ExprResult |
| 4538 | Sema::PerformImplicitConversion(Expr *From, QualType ToType, |
| 4539 | const ImplicitConversionSequence &ICS, |
| 4540 | AssignmentAction Action, |
| 4541 | CheckedConversionKind CCK) { |
| 4542 | // C++ [over.match.oper]p7: [...] operands of class type are converted [...] |
| 4543 | if (CCK == CheckedConversionKind::ForBuiltinOverloadedOp && |
| 4544 | !From->getType()->isRecordType()) |
| 4545 | return From; |
| 4546 | |
| 4547 | switch (ICS.getKind()) { |
| 4548 | case ImplicitConversionSequence::StandardConversion: { |
| 4549 | ExprResult Res = PerformImplicitConversion(From, ToType, SCS: ICS.Standard, |
| 4550 | Action, CCK); |
| 4551 | if (Res.isInvalid()) |
| 4552 | return ExprError(); |
| 4553 | From = Res.get(); |
| 4554 | break; |
| 4555 | } |
| 4556 | |
| 4557 | case ImplicitConversionSequence::UserDefinedConversion: { |
| 4558 | |
| 4559 | FunctionDecl *FD = ICS.UserDefined.ConversionFunction; |
| 4560 | CastKind CastKind; |
| 4561 | QualType BeforeToType; |
| 4562 | assert(FD && "no conversion function for user-defined conversion seq" ); |
| 4563 | if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(Val: FD)) { |
| 4564 | CastKind = CK_UserDefinedConversion; |
| 4565 | |
| 4566 | // If the user-defined conversion is specified by a conversion function, |
| 4567 | // the initial standard conversion sequence converts the source type to |
| 4568 | // the implicit object parameter of the conversion function. |
| 4569 | BeforeToType = Context.getTagDeclType(Decl: Conv->getParent()); |
| 4570 | } else { |
| 4571 | const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(Val: FD); |
| 4572 | CastKind = CK_ConstructorConversion; |
| 4573 | // Do no conversion if dealing with ... for the first conversion. |
| 4574 | if (!ICS.UserDefined.EllipsisConversion) { |
| 4575 | // If the user-defined conversion is specified by a constructor, the |
| 4576 | // initial standard conversion sequence converts the source type to |
| 4577 | // the type required by the argument of the constructor |
| 4578 | BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); |
| 4579 | } |
| 4580 | } |
| 4581 | // Watch out for ellipsis conversion. |
| 4582 | if (!ICS.UserDefined.EllipsisConversion) { |
| 4583 | ExprResult Res = PerformImplicitConversion( |
| 4584 | From, ToType: BeforeToType, SCS: ICS.UserDefined.Before, |
| 4585 | Action: AssignmentAction::Converting, CCK); |
| 4586 | if (Res.isInvalid()) |
| 4587 | return ExprError(); |
| 4588 | From = Res.get(); |
| 4589 | } |
| 4590 | |
| 4591 | ExprResult CastArg = BuildCXXCastArgument( |
| 4592 | *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind, |
| 4593 | cast<CXXMethodDecl>(Val: FD), ICS.UserDefined.FoundConversionFunction, |
| 4594 | ICS.UserDefined.HadMultipleCandidates, From); |
| 4595 | |
| 4596 | if (CastArg.isInvalid()) |
| 4597 | return ExprError(); |
| 4598 | |
| 4599 | From = CastArg.get(); |
| 4600 | |
| 4601 | // C++ [over.match.oper]p7: |
| 4602 | // [...] the second standard conversion sequence of a user-defined |
| 4603 | // conversion sequence is not applied. |
| 4604 | if (CCK == CheckedConversionKind::ForBuiltinOverloadedOp) |
| 4605 | return From; |
| 4606 | |
| 4607 | return PerformImplicitConversion(From, ToType, SCS: ICS.UserDefined.After, |
| 4608 | Action: AssignmentAction::Converting, CCK); |
| 4609 | } |
| 4610 | |
| 4611 | case ImplicitConversionSequence::AmbiguousConversion: |
| 4612 | ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), |
| 4613 | PDiag(diag::err_typecheck_ambiguous_condition) |
| 4614 | << From->getSourceRange()); |
| 4615 | return ExprError(); |
| 4616 | |
| 4617 | case ImplicitConversionSequence::EllipsisConversion: |
| 4618 | case ImplicitConversionSequence::StaticObjectArgumentConversion: |
| 4619 | llvm_unreachable("bad conversion" ); |
| 4620 | |
| 4621 | case ImplicitConversionSequence::BadConversion: |
| 4622 | AssignConvertType ConvTy = |
| 4623 | CheckAssignmentConstraints(Loc: From->getExprLoc(), LHSType: ToType, RHSType: From->getType()); |
| 4624 | bool Diagnosed = DiagnoseAssignmentResult( |
| 4625 | ConvTy: ConvTy == AssignConvertType::Compatible |
| 4626 | ? AssignConvertType::Incompatible |
| 4627 | : ConvTy, |
| 4628 | Loc: From->getExprLoc(), DstType: ToType, SrcType: From->getType(), SrcExpr: From, Action); |
| 4629 | assert(Diagnosed && "failed to diagnose bad conversion" ); (void)Diagnosed; |
| 4630 | return ExprError(); |
| 4631 | } |
| 4632 | |
| 4633 | // Everything went well. |
| 4634 | return From; |
| 4635 | } |
| 4636 | |
| 4637 | // adjustVectorType - Compute the intermediate cast type casting elements of the |
| 4638 | // from type to the elements of the to type without resizing the vector. |
| 4639 | static QualType adjustVectorType(ASTContext &Context, QualType FromTy, |
| 4640 | QualType ToType, QualType *ElTy = nullptr) { |
| 4641 | QualType ElType = ToType; |
| 4642 | if (auto *ToVec = ToType->getAs<VectorType>()) |
| 4643 | ElType = ToVec->getElementType(); |
| 4644 | |
| 4645 | if (ElTy) |
| 4646 | *ElTy = ElType; |
| 4647 | if (!FromTy->isVectorType()) |
| 4648 | return ElType; |
| 4649 | auto *FromVec = FromTy->castAs<VectorType>(); |
| 4650 | return Context.getExtVectorType(VectorType: ElType, NumElts: FromVec->getNumElements()); |
| 4651 | } |
| 4652 | |
| 4653 | ExprResult |
| 4654 | Sema::PerformImplicitConversion(Expr *From, QualType ToType, |
| 4655 | const StandardConversionSequence& SCS, |
| 4656 | AssignmentAction Action, |
| 4657 | CheckedConversionKind CCK) { |
| 4658 | bool CStyle = (CCK == CheckedConversionKind::CStyleCast || |
| 4659 | CCK == CheckedConversionKind::FunctionalCast); |
| 4660 | |
| 4661 | // Overall FIXME: we are recomputing too many types here and doing far too |
| 4662 | // much extra work. What this means is that we need to keep track of more |
| 4663 | // information that is computed when we try the implicit conversion initially, |
| 4664 | // so that we don't need to recompute anything here. |
| 4665 | QualType FromType = From->getType(); |
| 4666 | |
| 4667 | if (SCS.CopyConstructor) { |
| 4668 | // FIXME: When can ToType be a reference type? |
| 4669 | assert(!ToType->isReferenceType()); |
| 4670 | if (SCS.Second == ICK_Derived_To_Base) { |
| 4671 | SmallVector<Expr*, 8> ConstructorArgs; |
| 4672 | if (CompleteConstructorCall( |
| 4673 | Constructor: cast<CXXConstructorDecl>(Val: SCS.CopyConstructor), DeclInitType: ToType, ArgsPtr: From, |
| 4674 | /*FIXME:ConstructLoc*/ Loc: SourceLocation(), ConvertedArgs&: ConstructorArgs)) |
| 4675 | return ExprError(); |
| 4676 | return BuildCXXConstructExpr( |
| 4677 | /*FIXME:ConstructLoc*/ ConstructLoc: SourceLocation(), DeclInitType: ToType, |
| 4678 | FoundDecl: SCS.FoundCopyConstructor, Constructor: SCS.CopyConstructor, Exprs: ConstructorArgs, |
| 4679 | /*HadMultipleCandidates*/ false, |
| 4680 | /*ListInit*/ IsListInitialization: false, /*StdInitListInit*/ IsStdInitListInitialization: false, /*ZeroInit*/ RequiresZeroInit: false, |
| 4681 | ConstructKind: CXXConstructionKind::Complete, ParenRange: SourceRange()); |
| 4682 | } |
| 4683 | return BuildCXXConstructExpr( |
| 4684 | /*FIXME:ConstructLoc*/ ConstructLoc: SourceLocation(), DeclInitType: ToType, |
| 4685 | FoundDecl: SCS.FoundCopyConstructor, Constructor: SCS.CopyConstructor, Exprs: From, |
| 4686 | /*HadMultipleCandidates*/ false, |
| 4687 | /*ListInit*/ IsListInitialization: false, /*StdInitListInit*/ IsStdInitListInitialization: false, /*ZeroInit*/ RequiresZeroInit: false, |
| 4688 | ConstructKind: CXXConstructionKind::Complete, ParenRange: SourceRange()); |
| 4689 | } |
| 4690 | |
| 4691 | // Resolve overloaded function references. |
| 4692 | if (Context.hasSameType(FromType, Context.OverloadTy)) { |
| 4693 | DeclAccessPair Found; |
| 4694 | FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(AddressOfExpr: From, TargetType: ToType, |
| 4695 | Complain: true, Found); |
| 4696 | if (!Fn) |
| 4697 | return ExprError(); |
| 4698 | |
| 4699 | if (DiagnoseUseOfDecl(D: Fn, Locs: From->getBeginLoc())) |
| 4700 | return ExprError(); |
| 4701 | |
| 4702 | ExprResult Res = FixOverloadedFunctionReference(E: From, FoundDecl: Found, Fn); |
| 4703 | if (Res.isInvalid()) |
| 4704 | return ExprError(); |
| 4705 | |
| 4706 | // We might get back another placeholder expression if we resolved to a |
| 4707 | // builtin. |
| 4708 | Res = CheckPlaceholderExpr(E: Res.get()); |
| 4709 | if (Res.isInvalid()) |
| 4710 | return ExprError(); |
| 4711 | |
| 4712 | From = Res.get(); |
| 4713 | FromType = From->getType(); |
| 4714 | } |
| 4715 | |
| 4716 | // If we're converting to an atomic type, first convert to the corresponding |
| 4717 | // non-atomic type. |
| 4718 | QualType ToAtomicType; |
| 4719 | if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) { |
| 4720 | ToAtomicType = ToType; |
| 4721 | ToType = ToAtomic->getValueType(); |
| 4722 | } |
| 4723 | |
| 4724 | QualType InitialFromType = FromType; |
| 4725 | // Perform the first implicit conversion. |
| 4726 | switch (SCS.First) { |
| 4727 | case ICK_Identity: |
| 4728 | if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) { |
| 4729 | FromType = FromAtomic->getValueType().getUnqualifiedType(); |
| 4730 | From = ImplicitCastExpr::Create(Context, T: FromType, Kind: CK_AtomicToNonAtomic, |
| 4731 | Operand: From, /*BasePath=*/nullptr, Cat: VK_PRValue, |
| 4732 | FPO: FPOptionsOverride()); |
| 4733 | } |
| 4734 | break; |
| 4735 | |
| 4736 | case ICK_Lvalue_To_Rvalue: { |
| 4737 | assert(From->getObjectKind() != OK_ObjCProperty); |
| 4738 | ExprResult FromRes = DefaultLvalueConversion(E: From); |
| 4739 | if (FromRes.isInvalid()) |
| 4740 | return ExprError(); |
| 4741 | |
| 4742 | From = FromRes.get(); |
| 4743 | FromType = From->getType(); |
| 4744 | break; |
| 4745 | } |
| 4746 | |
| 4747 | case ICK_Array_To_Pointer: |
| 4748 | FromType = Context.getArrayDecayedType(T: FromType); |
| 4749 | From = ImpCastExprToType(E: From, Type: FromType, CK: CK_ArrayToPointerDecay, VK: VK_PRValue, |
| 4750 | /*BasePath=*/nullptr, CCK) |
| 4751 | .get(); |
| 4752 | break; |
| 4753 | |
| 4754 | case ICK_HLSL_Array_RValue: |
| 4755 | if (ToType->isArrayParameterType()) { |
| 4756 | FromType = Context.getArrayParameterType(Ty: FromType); |
| 4757 | } else if (FromType->isArrayParameterType()) { |
| 4758 | const ArrayParameterType *APT = cast<ArrayParameterType>(Val&: FromType); |
| 4759 | FromType = APT->getConstantArrayType(Ctx: Context); |
| 4760 | } |
| 4761 | From = ImpCastExprToType(E: From, Type: FromType, CK: CK_HLSLArrayRValue, VK: VK_PRValue, |
| 4762 | /*BasePath=*/nullptr, CCK) |
| 4763 | .get(); |
| 4764 | break; |
| 4765 | |
| 4766 | case ICK_Function_To_Pointer: |
| 4767 | FromType = Context.getPointerType(T: FromType); |
| 4768 | From = ImpCastExprToType(E: From, Type: FromType, CK: CK_FunctionToPointerDecay, |
| 4769 | VK: VK_PRValue, /*BasePath=*/nullptr, CCK) |
| 4770 | .get(); |
| 4771 | break; |
| 4772 | |
| 4773 | default: |
| 4774 | llvm_unreachable("Improper first standard conversion" ); |
| 4775 | } |
| 4776 | |
| 4777 | // Perform the second implicit conversion |
| 4778 | switch (SCS.Second) { |
| 4779 | case ICK_Identity: |
| 4780 | // C++ [except.spec]p5: |
| 4781 | // [For] assignment to and initialization of pointers to functions, |
| 4782 | // pointers to member functions, and references to functions: the |
| 4783 | // target entity shall allow at least the exceptions allowed by the |
| 4784 | // source value in the assignment or initialization. |
| 4785 | switch (Action) { |
| 4786 | case AssignmentAction::Assigning: |
| 4787 | case AssignmentAction::Initializing: |
| 4788 | // Note, function argument passing and returning are initialization. |
| 4789 | case AssignmentAction::Passing: |
| 4790 | case AssignmentAction::Returning: |
| 4791 | case AssignmentAction::Sending: |
| 4792 | case AssignmentAction::Passing_CFAudited: |
| 4793 | if (CheckExceptionSpecCompatibility(From, ToType)) |
| 4794 | return ExprError(); |
| 4795 | break; |
| 4796 | |
| 4797 | case AssignmentAction::Casting: |
| 4798 | case AssignmentAction::Converting: |
| 4799 | // Casts and implicit conversions are not initialization, so are not |
| 4800 | // checked for exception specification mismatches. |
| 4801 | break; |
| 4802 | } |
| 4803 | // Nothing else to do. |
| 4804 | break; |
| 4805 | |
| 4806 | case ICK_Integral_Promotion: |
| 4807 | case ICK_Integral_Conversion: { |
| 4808 | QualType ElTy = ToType; |
| 4809 | QualType StepTy = ToType; |
| 4810 | if (FromType->isVectorType() || ToType->isVectorType()) |
| 4811 | StepTy = adjustVectorType(Context, FromTy: FromType, ToType, ElTy: &ElTy); |
| 4812 | if (ElTy->isBooleanType()) { |
| 4813 | assert(FromType->castAs<EnumType>()->getDecl()->isFixed() && |
| 4814 | SCS.Second == ICK_Integral_Promotion && |
| 4815 | "only enums with fixed underlying type can promote to bool" ); |
| 4816 | From = ImpCastExprToType(E: From, Type: StepTy, CK: CK_IntegralToBoolean, VK: VK_PRValue, |
| 4817 | /*BasePath=*/nullptr, CCK) |
| 4818 | .get(); |
| 4819 | } else { |
| 4820 | From = ImpCastExprToType(E: From, Type: StepTy, CK: CK_IntegralCast, VK: VK_PRValue, |
| 4821 | /*BasePath=*/nullptr, CCK) |
| 4822 | .get(); |
| 4823 | } |
| 4824 | break; |
| 4825 | } |
| 4826 | |
| 4827 | case ICK_Floating_Promotion: |
| 4828 | case ICK_Floating_Conversion: { |
| 4829 | QualType StepTy = ToType; |
| 4830 | if (FromType->isVectorType() || ToType->isVectorType()) |
| 4831 | StepTy = adjustVectorType(Context, FromTy: FromType, ToType); |
| 4832 | From = ImpCastExprToType(E: From, Type: StepTy, CK: CK_FloatingCast, VK: VK_PRValue, |
| 4833 | /*BasePath=*/nullptr, CCK) |
| 4834 | .get(); |
| 4835 | break; |
| 4836 | } |
| 4837 | |
| 4838 | case ICK_Complex_Promotion: |
| 4839 | case ICK_Complex_Conversion: { |
| 4840 | QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType(); |
| 4841 | QualType ToEl = ToType->castAs<ComplexType>()->getElementType(); |
| 4842 | CastKind CK; |
| 4843 | if (FromEl->isRealFloatingType()) { |
| 4844 | if (ToEl->isRealFloatingType()) |
| 4845 | CK = CK_FloatingComplexCast; |
| 4846 | else |
| 4847 | CK = CK_FloatingComplexToIntegralComplex; |
| 4848 | } else if (ToEl->isRealFloatingType()) { |
| 4849 | CK = CK_IntegralComplexToFloatingComplex; |
| 4850 | } else { |
| 4851 | CK = CK_IntegralComplexCast; |
| 4852 | } |
| 4853 | From = ImpCastExprToType(E: From, Type: ToType, CK, VK: VK_PRValue, /*BasePath=*/nullptr, |
| 4854 | CCK) |
| 4855 | .get(); |
| 4856 | break; |
| 4857 | } |
| 4858 | |
| 4859 | case ICK_Floating_Integral: { |
| 4860 | QualType ElTy = ToType; |
| 4861 | QualType StepTy = ToType; |
| 4862 | if (FromType->isVectorType() || ToType->isVectorType()) |
| 4863 | StepTy = adjustVectorType(Context, FromTy: FromType, ToType, ElTy: &ElTy); |
| 4864 | if (ElTy->isRealFloatingType()) |
| 4865 | From = ImpCastExprToType(E: From, Type: StepTy, CK: CK_IntegralToFloating, VK: VK_PRValue, |
| 4866 | /*BasePath=*/nullptr, CCK) |
| 4867 | .get(); |
| 4868 | else |
| 4869 | From = ImpCastExprToType(E: From, Type: StepTy, CK: CK_FloatingToIntegral, VK: VK_PRValue, |
| 4870 | /*BasePath=*/nullptr, CCK) |
| 4871 | .get(); |
| 4872 | break; |
| 4873 | } |
| 4874 | |
| 4875 | case ICK_Fixed_Point_Conversion: |
| 4876 | assert((FromType->isFixedPointType() || ToType->isFixedPointType()) && |
| 4877 | "Attempting implicit fixed point conversion without a fixed " |
| 4878 | "point operand" ); |
| 4879 | if (FromType->isFloatingType()) |
| 4880 | From = ImpCastExprToType(E: From, Type: ToType, CK: CK_FloatingToFixedPoint, |
| 4881 | VK: VK_PRValue, |
| 4882 | /*BasePath=*/nullptr, CCK).get(); |
| 4883 | else if (ToType->isFloatingType()) |
| 4884 | From = ImpCastExprToType(E: From, Type: ToType, CK: CK_FixedPointToFloating, |
| 4885 | VK: VK_PRValue, |
| 4886 | /*BasePath=*/nullptr, CCK).get(); |
| 4887 | else if (FromType->isIntegralType(Ctx: Context)) |
| 4888 | From = ImpCastExprToType(E: From, Type: ToType, CK: CK_IntegralToFixedPoint, |
| 4889 | VK: VK_PRValue, |
| 4890 | /*BasePath=*/nullptr, CCK).get(); |
| 4891 | else if (ToType->isIntegralType(Ctx: Context)) |
| 4892 | From = ImpCastExprToType(E: From, Type: ToType, CK: CK_FixedPointToIntegral, |
| 4893 | VK: VK_PRValue, |
| 4894 | /*BasePath=*/nullptr, CCK).get(); |
| 4895 | else if (ToType->isBooleanType()) |
| 4896 | From = ImpCastExprToType(E: From, Type: ToType, CK: CK_FixedPointToBoolean, |
| 4897 | VK: VK_PRValue, |
| 4898 | /*BasePath=*/nullptr, CCK).get(); |
| 4899 | else |
| 4900 | From = ImpCastExprToType(E: From, Type: ToType, CK: CK_FixedPointCast, |
| 4901 | VK: VK_PRValue, |
| 4902 | /*BasePath=*/nullptr, CCK).get(); |
| 4903 | break; |
| 4904 | |
| 4905 | case ICK_Compatible_Conversion: |
| 4906 | From = ImpCastExprToType(E: From, Type: ToType, CK: CK_NoOp, VK: From->getValueKind(), |
| 4907 | /*BasePath=*/nullptr, CCK).get(); |
| 4908 | break; |
| 4909 | |
| 4910 | case ICK_Writeback_Conversion: |
| 4911 | case ICK_Pointer_Conversion: { |
| 4912 | if (SCS.IncompatibleObjC && Action != AssignmentAction::Casting) { |
| 4913 | // Diagnose incompatible Objective-C conversions |
| 4914 | if (Action == AssignmentAction::Initializing || |
| 4915 | Action == AssignmentAction::Assigning) |
| 4916 | Diag(From->getBeginLoc(), |
| 4917 | diag::ext_typecheck_convert_incompatible_pointer) |
| 4918 | << ToType << From->getType() << Action << From->getSourceRange() |
| 4919 | << 0; |
| 4920 | else |
| 4921 | Diag(From->getBeginLoc(), |
| 4922 | diag::ext_typecheck_convert_incompatible_pointer) |
| 4923 | << From->getType() << ToType << Action << From->getSourceRange() |
| 4924 | << 0; |
| 4925 | |
| 4926 | if (From->getType()->isObjCObjectPointerType() && |
| 4927 | ToType->isObjCObjectPointerType()) |
| 4928 | ObjC().EmitRelatedResultTypeNote(E: From); |
| 4929 | } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && |
| 4930 | !ObjC().CheckObjCARCUnavailableWeakConversion(castType: ToType, |
| 4931 | ExprType: From->getType())) { |
| 4932 | if (Action == AssignmentAction::Initializing) |
| 4933 | Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign); |
| 4934 | else |
| 4935 | Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable) |
| 4936 | << (Action == AssignmentAction::Casting) << From->getType() |
| 4937 | << ToType << From->getSourceRange(); |
| 4938 | } |
| 4939 | |
| 4940 | // Defer address space conversion to the third conversion. |
| 4941 | QualType FromPteeType = From->getType()->getPointeeType(); |
| 4942 | QualType ToPteeType = ToType->getPointeeType(); |
| 4943 | QualType NewToType = ToType; |
| 4944 | if (!FromPteeType.isNull() && !ToPteeType.isNull() && |
| 4945 | FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) { |
| 4946 | NewToType = Context.removeAddrSpaceQualType(T: ToPteeType); |
| 4947 | NewToType = Context.getAddrSpaceQualType(T: NewToType, |
| 4948 | AddressSpace: FromPteeType.getAddressSpace()); |
| 4949 | if (ToType->isObjCObjectPointerType()) |
| 4950 | NewToType = Context.getObjCObjectPointerType(OIT: NewToType); |
| 4951 | else if (ToType->isBlockPointerType()) |
| 4952 | NewToType = Context.getBlockPointerType(T: NewToType); |
| 4953 | else |
| 4954 | NewToType = Context.getPointerType(T: NewToType); |
| 4955 | } |
| 4956 | |
| 4957 | CastKind Kind; |
| 4958 | CXXCastPath BasePath; |
| 4959 | if (CheckPointerConversion(From, ToType: NewToType, Kind, BasePath, IgnoreBaseAccess: CStyle)) |
| 4960 | return ExprError(); |
| 4961 | |
| 4962 | // Make sure we extend blocks if necessary. |
| 4963 | // FIXME: doing this here is really ugly. |
| 4964 | if (Kind == CK_BlockPointerToObjCPointerCast) { |
| 4965 | ExprResult E = From; |
| 4966 | (void)ObjC().PrepareCastToObjCObjectPointer(E); |
| 4967 | From = E.get(); |
| 4968 | } |
| 4969 | if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) |
| 4970 | ObjC().CheckObjCConversion(castRange: SourceRange(), castType: NewToType, op&: From, CCK); |
| 4971 | From = ImpCastExprToType(E: From, Type: NewToType, CK: Kind, VK: VK_PRValue, BasePath: &BasePath, CCK) |
| 4972 | .get(); |
| 4973 | break; |
| 4974 | } |
| 4975 | |
| 4976 | case ICK_Pointer_Member: { |
| 4977 | CastKind Kind; |
| 4978 | CXXCastPath BasePath; |
| 4979 | switch (CheckMemberPointerConversion( |
| 4980 | FromType: From->getType(), ToPtrType: ToType->castAs<MemberPointerType>(), Kind, BasePath, |
| 4981 | CheckLoc: From->getExprLoc(), OpRange: From->getSourceRange(), IgnoreBaseAccess: CStyle, |
| 4982 | Direction: MemberPointerConversionDirection::Downcast)) { |
| 4983 | case MemberPointerConversionResult::Success: |
| 4984 | assert((Kind != CK_NullToMemberPointer || |
| 4985 | From->isNullPointerConstant(Context, |
| 4986 | Expr::NPC_ValueDependentIsNull)) && |
| 4987 | "Expr must be null pointer constant!" ); |
| 4988 | break; |
| 4989 | case MemberPointerConversionResult::Inaccessible: |
| 4990 | break; |
| 4991 | case MemberPointerConversionResult::DifferentPointee: |
| 4992 | llvm_unreachable("unexpected result" ); |
| 4993 | case MemberPointerConversionResult::NotDerived: |
| 4994 | llvm_unreachable("Should not have been called if derivation isn't OK." ); |
| 4995 | case MemberPointerConversionResult::Ambiguous: |
| 4996 | case MemberPointerConversionResult::Virtual: |
| 4997 | return ExprError(); |
| 4998 | } |
| 4999 | if (CheckExceptionSpecCompatibility(From, ToType)) |
| 5000 | return ExprError(); |
| 5001 | |
| 5002 | From = |
| 5003 | ImpCastExprToType(E: From, Type: ToType, CK: Kind, VK: VK_PRValue, BasePath: &BasePath, CCK).get(); |
| 5004 | break; |
| 5005 | } |
| 5006 | |
| 5007 | case ICK_Boolean_Conversion: { |
| 5008 | // Perform half-to-boolean conversion via float. |
| 5009 | if (From->getType()->isHalfType()) { |
| 5010 | From = ImpCastExprToType(E: From, Type: Context.FloatTy, CK: CK_FloatingCast).get(); |
| 5011 | FromType = Context.FloatTy; |
| 5012 | } |
| 5013 | QualType ElTy = FromType; |
| 5014 | QualType StepTy = ToType; |
| 5015 | if (FromType->isVectorType()) |
| 5016 | ElTy = FromType->castAs<VectorType>()->getElementType(); |
| 5017 | if (getLangOpts().HLSL && |
| 5018 | (FromType->isVectorType() || ToType->isVectorType())) |
| 5019 | StepTy = adjustVectorType(Context, FromTy: FromType, ToType); |
| 5020 | |
| 5021 | From = ImpCastExprToType(E: From, Type: StepTy, CK: ScalarTypeToBooleanCastKind(ScalarTy: ElTy), |
| 5022 | VK: VK_PRValue, |
| 5023 | /*BasePath=*/nullptr, CCK) |
| 5024 | .get(); |
| 5025 | break; |
| 5026 | } |
| 5027 | |
| 5028 | case ICK_Derived_To_Base: { |
| 5029 | CXXCastPath BasePath; |
| 5030 | if (CheckDerivedToBaseConversion( |
| 5031 | From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(), |
| 5032 | From->getSourceRange(), &BasePath, CStyle)) |
| 5033 | return ExprError(); |
| 5034 | |
| 5035 | From = ImpCastExprToType(E: From, Type: ToType.getNonReferenceType(), |
| 5036 | CK: CK_DerivedToBase, VK: From->getValueKind(), |
| 5037 | BasePath: &BasePath, CCK).get(); |
| 5038 | break; |
| 5039 | } |
| 5040 | |
| 5041 | case ICK_Vector_Conversion: |
| 5042 | From = ImpCastExprToType(E: From, Type: ToType, CK: CK_BitCast, VK: VK_PRValue, |
| 5043 | /*BasePath=*/nullptr, CCK) |
| 5044 | .get(); |
| 5045 | break; |
| 5046 | |
| 5047 | case ICK_SVE_Vector_Conversion: |
| 5048 | case ICK_RVV_Vector_Conversion: |
| 5049 | From = ImpCastExprToType(E: From, Type: ToType, CK: CK_BitCast, VK: VK_PRValue, |
| 5050 | /*BasePath=*/nullptr, CCK) |
| 5051 | .get(); |
| 5052 | break; |
| 5053 | |
| 5054 | case ICK_Vector_Splat: { |
| 5055 | // Vector splat from any arithmetic type to a vector. |
| 5056 | Expr *Elem = prepareVectorSplat(VectorTy: ToType, SplattedExpr: From).get(); |
| 5057 | From = ImpCastExprToType(E: Elem, Type: ToType, CK: CK_VectorSplat, VK: VK_PRValue, |
| 5058 | /*BasePath=*/nullptr, CCK) |
| 5059 | .get(); |
| 5060 | break; |
| 5061 | } |
| 5062 | |
| 5063 | case ICK_Complex_Real: |
| 5064 | // Case 1. x -> _Complex y |
| 5065 | if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { |
| 5066 | QualType ElType = ToComplex->getElementType(); |
| 5067 | bool isFloatingComplex = ElType->isRealFloatingType(); |
| 5068 | |
| 5069 | // x -> y |
| 5070 | if (Context.hasSameUnqualifiedType(T1: ElType, T2: From->getType())) { |
| 5071 | // do nothing |
| 5072 | } else if (From->getType()->isRealFloatingType()) { |
| 5073 | From = ImpCastExprToType(E: From, Type: ElType, |
| 5074 | CK: isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get(); |
| 5075 | } else { |
| 5076 | assert(From->getType()->isIntegerType()); |
| 5077 | From = ImpCastExprToType(E: From, Type: ElType, |
| 5078 | CK: isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get(); |
| 5079 | } |
| 5080 | // y -> _Complex y |
| 5081 | From = ImpCastExprToType(E: From, Type: ToType, |
| 5082 | CK: isFloatingComplex ? CK_FloatingRealToComplex |
| 5083 | : CK_IntegralRealToComplex).get(); |
| 5084 | |
| 5085 | // Case 2. _Complex x -> y |
| 5086 | } else { |
| 5087 | auto *FromComplex = From->getType()->castAs<ComplexType>(); |
| 5088 | QualType ElType = FromComplex->getElementType(); |
| 5089 | bool isFloatingComplex = ElType->isRealFloatingType(); |
| 5090 | |
| 5091 | // _Complex x -> x |
| 5092 | From = ImpCastExprToType(E: From, Type: ElType, |
| 5093 | CK: isFloatingComplex ? CK_FloatingComplexToReal |
| 5094 | : CK_IntegralComplexToReal, |
| 5095 | VK: VK_PRValue, /*BasePath=*/nullptr, CCK) |
| 5096 | .get(); |
| 5097 | |
| 5098 | // x -> y |
| 5099 | if (Context.hasSameUnqualifiedType(T1: ElType, T2: ToType)) { |
| 5100 | // do nothing |
| 5101 | } else if (ToType->isRealFloatingType()) { |
| 5102 | From = ImpCastExprToType(E: From, Type: ToType, |
| 5103 | CK: isFloatingComplex ? CK_FloatingCast |
| 5104 | : CK_IntegralToFloating, |
| 5105 | VK: VK_PRValue, /*BasePath=*/nullptr, CCK) |
| 5106 | .get(); |
| 5107 | } else { |
| 5108 | assert(ToType->isIntegerType()); |
| 5109 | From = ImpCastExprToType(E: From, Type: ToType, |
| 5110 | CK: isFloatingComplex ? CK_FloatingToIntegral |
| 5111 | : CK_IntegralCast, |
| 5112 | VK: VK_PRValue, /*BasePath=*/nullptr, CCK) |
| 5113 | .get(); |
| 5114 | } |
| 5115 | } |
| 5116 | break; |
| 5117 | |
| 5118 | case ICK_Block_Pointer_Conversion: { |
| 5119 | LangAS AddrSpaceL = |
| 5120 | ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); |
| 5121 | LangAS AddrSpaceR = |
| 5122 | FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); |
| 5123 | assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR, |
| 5124 | getASTContext()) && |
| 5125 | "Invalid cast" ); |
| 5126 | CastKind Kind = |
| 5127 | AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; |
| 5128 | From = ImpCastExprToType(E: From, Type: ToType.getUnqualifiedType(), CK: Kind, |
| 5129 | VK: VK_PRValue, /*BasePath=*/nullptr, CCK) |
| 5130 | .get(); |
| 5131 | break; |
| 5132 | } |
| 5133 | |
| 5134 | case ICK_TransparentUnionConversion: { |
| 5135 | ExprResult FromRes = From; |
| 5136 | AssignConvertType ConvTy = |
| 5137 | CheckTransparentUnionArgumentConstraints(ArgType: ToType, RHS&: FromRes); |
| 5138 | if (FromRes.isInvalid()) |
| 5139 | return ExprError(); |
| 5140 | From = FromRes.get(); |
| 5141 | assert((ConvTy == AssignConvertType::Compatible) && |
| 5142 | "Improper transparent union conversion" ); |
| 5143 | (void)ConvTy; |
| 5144 | break; |
| 5145 | } |
| 5146 | |
| 5147 | case ICK_Zero_Event_Conversion: |
| 5148 | case ICK_Zero_Queue_Conversion: |
| 5149 | From = ImpCastExprToType(E: From, Type: ToType, |
| 5150 | CK: CK_ZeroToOCLOpaqueType, |
| 5151 | VK: From->getValueKind()).get(); |
| 5152 | break; |
| 5153 | |
| 5154 | case ICK_Lvalue_To_Rvalue: |
| 5155 | case ICK_Array_To_Pointer: |
| 5156 | case ICK_Function_To_Pointer: |
| 5157 | case ICK_Function_Conversion: |
| 5158 | case ICK_Qualification: |
| 5159 | case ICK_Num_Conversion_Kinds: |
| 5160 | case ICK_C_Only_Conversion: |
| 5161 | case ICK_Incompatible_Pointer_Conversion: |
| 5162 | case ICK_HLSL_Array_RValue: |
| 5163 | case ICK_HLSL_Vector_Truncation: |
| 5164 | case ICK_HLSL_Vector_Splat: |
| 5165 | llvm_unreachable("Improper second standard conversion" ); |
| 5166 | } |
| 5167 | |
| 5168 | if (SCS.Dimension != ICK_Identity) { |
| 5169 | // If SCS.Element is not ICK_Identity the To and From types must be HLSL |
| 5170 | // vectors or matrices. |
| 5171 | |
| 5172 | // TODO: Support HLSL matrices. |
| 5173 | assert((!From->getType()->isMatrixType() && !ToType->isMatrixType()) && |
| 5174 | "Dimension conversion for matrix types is not implemented yet." ); |
| 5175 | assert((ToType->isVectorType() || ToType->isBuiltinType()) && |
| 5176 | "Dimension conversion output must be vector or scalar type." ); |
| 5177 | switch (SCS.Dimension) { |
| 5178 | case ICK_HLSL_Vector_Splat: { |
| 5179 | // Vector splat from any arithmetic type to a vector. |
| 5180 | Expr *Elem = prepareVectorSplat(VectorTy: ToType, SplattedExpr: From).get(); |
| 5181 | From = ImpCastExprToType(E: Elem, Type: ToType, CK: CK_VectorSplat, VK: VK_PRValue, |
| 5182 | /*BasePath=*/nullptr, CCK) |
| 5183 | .get(); |
| 5184 | break; |
| 5185 | } |
| 5186 | case ICK_HLSL_Vector_Truncation: { |
| 5187 | // Note: HLSL built-in vectors are ExtVectors. Since this truncates a |
| 5188 | // vector to a smaller vector or to a scalar, this can only operate on |
| 5189 | // arguments where the source type is an ExtVector and the destination |
| 5190 | // type is destination type is either an ExtVectorType or a builtin scalar |
| 5191 | // type. |
| 5192 | auto *FromVec = From->getType()->castAs<VectorType>(); |
| 5193 | QualType TruncTy = FromVec->getElementType(); |
| 5194 | if (auto *ToVec = ToType->getAs<VectorType>()) |
| 5195 | TruncTy = Context.getExtVectorType(VectorType: TruncTy, NumElts: ToVec->getNumElements()); |
| 5196 | From = ImpCastExprToType(E: From, Type: TruncTy, CK: CK_HLSLVectorTruncation, |
| 5197 | VK: From->getValueKind()) |
| 5198 | .get(); |
| 5199 | |
| 5200 | break; |
| 5201 | } |
| 5202 | case ICK_Identity: |
| 5203 | default: |
| 5204 | llvm_unreachable("Improper element standard conversion" ); |
| 5205 | } |
| 5206 | } |
| 5207 | |
| 5208 | switch (SCS.Third) { |
| 5209 | case ICK_Identity: |
| 5210 | // Nothing to do. |
| 5211 | break; |
| 5212 | |
| 5213 | case ICK_Function_Conversion: |
| 5214 | // If both sides are functions (or pointers/references to them), there could |
| 5215 | // be incompatible exception declarations. |
| 5216 | if (CheckExceptionSpecCompatibility(From, ToType)) |
| 5217 | return ExprError(); |
| 5218 | |
| 5219 | From = ImpCastExprToType(E: From, Type: ToType, CK: CK_NoOp, VK: VK_PRValue, |
| 5220 | /*BasePath=*/nullptr, CCK) |
| 5221 | .get(); |
| 5222 | break; |
| 5223 | |
| 5224 | case ICK_Qualification: { |
| 5225 | ExprValueKind VK = From->getValueKind(); |
| 5226 | CastKind CK = CK_NoOp; |
| 5227 | |
| 5228 | if (ToType->isReferenceType() && |
| 5229 | ToType->getPointeeType().getAddressSpace() != |
| 5230 | From->getType().getAddressSpace()) |
| 5231 | CK = CK_AddressSpaceConversion; |
| 5232 | |
| 5233 | if (ToType->isPointerType() && |
| 5234 | ToType->getPointeeType().getAddressSpace() != |
| 5235 | From->getType()->getPointeeType().getAddressSpace()) |
| 5236 | CK = CK_AddressSpaceConversion; |
| 5237 | |
| 5238 | if (!isCast(CCK) && |
| 5239 | !ToType->getPointeeType().getQualifiers().hasUnaligned() && |
| 5240 | From->getType()->getPointeeType().getQualifiers().hasUnaligned()) { |
| 5241 | Diag(From->getBeginLoc(), diag::warn_imp_cast_drops_unaligned) |
| 5242 | << InitialFromType << ToType; |
| 5243 | } |
| 5244 | |
| 5245 | From = ImpCastExprToType(E: From, Type: ToType.getNonLValueExprType(Context), CK, VK, |
| 5246 | /*BasePath=*/nullptr, CCK) |
| 5247 | .get(); |
| 5248 | |
| 5249 | if (SCS.DeprecatedStringLiteralToCharPtr && |
| 5250 | !getLangOpts().WritableStrings) { |
| 5251 | Diag(From->getBeginLoc(), |
| 5252 | getLangOpts().CPlusPlus11 |
| 5253 | ? diag::ext_deprecated_string_literal_conversion |
| 5254 | : diag::warn_deprecated_string_literal_conversion) |
| 5255 | << ToType.getNonReferenceType(); |
| 5256 | } |
| 5257 | |
| 5258 | break; |
| 5259 | } |
| 5260 | |
| 5261 | default: |
| 5262 | llvm_unreachable("Improper third standard conversion" ); |
| 5263 | } |
| 5264 | |
| 5265 | // If this conversion sequence involved a scalar -> atomic conversion, perform |
| 5266 | // that conversion now. |
| 5267 | if (!ToAtomicType.isNull()) { |
| 5268 | assert(Context.hasSameType( |
| 5269 | ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())); |
| 5270 | From = ImpCastExprToType(E: From, Type: ToAtomicType, CK: CK_NonAtomicToAtomic, |
| 5271 | VK: VK_PRValue, BasePath: nullptr, CCK) |
| 5272 | .get(); |
| 5273 | } |
| 5274 | |
| 5275 | // Materialize a temporary if we're implicitly converting to a reference |
| 5276 | // type. This is not required by the C++ rules but is necessary to maintain |
| 5277 | // AST invariants. |
| 5278 | if (ToType->isReferenceType() && From->isPRValue()) { |
| 5279 | ExprResult Res = TemporaryMaterializationConversion(E: From); |
| 5280 | if (Res.isInvalid()) |
| 5281 | return ExprError(); |
| 5282 | From = Res.get(); |
| 5283 | } |
| 5284 | |
| 5285 | // If this conversion sequence succeeded and involved implicitly converting a |
| 5286 | // _Nullable type to a _Nonnull one, complain. |
| 5287 | if (!isCast(CCK)) |
| 5288 | diagnoseNullableToNonnullConversion(DstType: ToType, SrcType: InitialFromType, |
| 5289 | Loc: From->getBeginLoc()); |
| 5290 | |
| 5291 | return From; |
| 5292 | } |
| 5293 | |
| 5294 | QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS, |
| 5295 | ExprValueKind &VK, |
| 5296 | SourceLocation Loc, |
| 5297 | bool isIndirect) { |
| 5298 | assert(!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() && |
| 5299 | "placeholders should have been weeded out by now" ); |
| 5300 | |
| 5301 | // The LHS undergoes lvalue conversions if this is ->*, and undergoes the |
| 5302 | // temporary materialization conversion otherwise. |
| 5303 | if (isIndirect) |
| 5304 | LHS = DefaultLvalueConversion(E: LHS.get()); |
| 5305 | else if (LHS.get()->isPRValue()) |
| 5306 | LHS = TemporaryMaterializationConversion(E: LHS.get()); |
| 5307 | if (LHS.isInvalid()) |
| 5308 | return QualType(); |
| 5309 | |
| 5310 | // The RHS always undergoes lvalue conversions. |
| 5311 | RHS = DefaultLvalueConversion(E: RHS.get()); |
| 5312 | if (RHS.isInvalid()) return QualType(); |
| 5313 | |
| 5314 | const char *OpSpelling = isIndirect ? "->*" : ".*" ; |
| 5315 | // C++ 5.5p2 |
| 5316 | // The binary operator .* [p3: ->*] binds its second operand, which shall |
| 5317 | // be of type "pointer to member of T" (where T is a completely-defined |
| 5318 | // class type) [...] |
| 5319 | QualType RHSType = RHS.get()->getType(); |
| 5320 | const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>(); |
| 5321 | if (!MemPtr) { |
| 5322 | Diag(Loc, diag::err_bad_memptr_rhs) |
| 5323 | << OpSpelling << RHSType << RHS.get()->getSourceRange(); |
| 5324 | return QualType(); |
| 5325 | } |
| 5326 | |
| 5327 | CXXRecordDecl *RHSClass = MemPtr->getMostRecentCXXRecordDecl(); |
| 5328 | |
| 5329 | // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the |
| 5330 | // member pointer points must be completely-defined. However, there is no |
| 5331 | // reason for this semantic distinction, and the rule is not enforced by |
| 5332 | // other compilers. Therefore, we do not check this property, as it is |
| 5333 | // likely to be considered a defect. |
| 5334 | |
| 5335 | // C++ 5.5p2 |
| 5336 | // [...] to its first operand, which shall be of class T or of a class of |
| 5337 | // which T is an unambiguous and accessible base class. [p3: a pointer to |
| 5338 | // such a class] |
| 5339 | QualType LHSType = LHS.get()->getType(); |
| 5340 | if (isIndirect) { |
| 5341 | if (const PointerType *Ptr = LHSType->getAs<PointerType>()) |
| 5342 | LHSType = Ptr->getPointeeType(); |
| 5343 | else { |
| 5344 | Diag(Loc, diag::err_bad_memptr_lhs) |
| 5345 | << OpSpelling << 1 << LHSType |
| 5346 | << FixItHint::CreateReplacement(SourceRange(Loc), ".*" ); |
| 5347 | return QualType(); |
| 5348 | } |
| 5349 | } |
| 5350 | CXXRecordDecl *LHSClass = LHSType->getAsCXXRecordDecl(); |
| 5351 | |
| 5352 | if (!declaresSameEntity(LHSClass, RHSClass)) { |
| 5353 | // If we want to check the hierarchy, we need a complete type. |
| 5354 | if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs, |
| 5355 | OpSpelling, (int)isIndirect)) { |
| 5356 | return QualType(); |
| 5357 | } |
| 5358 | |
| 5359 | if (!IsDerivedFrom(Loc, Derived: LHSClass, Base: RHSClass)) { |
| 5360 | Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling |
| 5361 | << (int)isIndirect << LHS.get()->getType(); |
| 5362 | return QualType(); |
| 5363 | } |
| 5364 | |
| 5365 | CXXCastPath BasePath; |
| 5366 | if (CheckDerivedToBaseConversion( |
| 5367 | Derived: LHSType, Base: QualType(RHSClass->getTypeForDecl(), 0), Loc, |
| 5368 | Range: SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()), |
| 5369 | BasePath: &BasePath)) |
| 5370 | return QualType(); |
| 5371 | |
| 5372 | // Cast LHS to type of use. |
| 5373 | QualType UseType = Context.getQualifiedType(RHSClass->getTypeForDecl(), |
| 5374 | LHSType.getQualifiers()); |
| 5375 | if (isIndirect) |
| 5376 | UseType = Context.getPointerType(T: UseType); |
| 5377 | ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind(); |
| 5378 | LHS = ImpCastExprToType(E: LHS.get(), Type: UseType, CK: CK_DerivedToBase, VK, |
| 5379 | BasePath: &BasePath); |
| 5380 | } |
| 5381 | |
| 5382 | if (isa<CXXScalarValueInitExpr>(Val: RHS.get()->IgnoreParens())) { |
| 5383 | // Diagnose use of pointer-to-member type which when used as |
| 5384 | // the functional cast in a pointer-to-member expression. |
| 5385 | Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; |
| 5386 | return QualType(); |
| 5387 | } |
| 5388 | |
| 5389 | // C++ 5.5p2 |
| 5390 | // The result is an object or a function of the type specified by the |
| 5391 | // second operand. |
| 5392 | // The cv qualifiers are the union of those in the pointer and the left side, |
| 5393 | // in accordance with 5.5p5 and 5.2.5. |
| 5394 | QualType Result = MemPtr->getPointeeType(); |
| 5395 | Result = Context.getCVRQualifiedType(T: Result, CVR: LHSType.getCVRQualifiers()); |
| 5396 | |
| 5397 | // C++0x [expr.mptr.oper]p6: |
| 5398 | // In a .* expression whose object expression is an rvalue, the program is |
| 5399 | // ill-formed if the second operand is a pointer to member function with |
| 5400 | // ref-qualifier &. In a ->* expression or in a .* expression whose object |
| 5401 | // expression is an lvalue, the program is ill-formed if the second operand |
| 5402 | // is a pointer to member function with ref-qualifier &&. |
| 5403 | if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) { |
| 5404 | switch (Proto->getRefQualifier()) { |
| 5405 | case RQ_None: |
| 5406 | // Do nothing |
| 5407 | break; |
| 5408 | |
| 5409 | case RQ_LValue: |
| 5410 | if (!isIndirect && !LHS.get()->Classify(Ctx&: Context).isLValue()) { |
| 5411 | // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq |
| 5412 | // is (exactly) 'const'. |
| 5413 | if (Proto->isConst() && !Proto->isVolatile()) |
| 5414 | Diag(Loc, getLangOpts().CPlusPlus20 |
| 5415 | ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue |
| 5416 | : diag::ext_pointer_to_const_ref_member_on_rvalue); |
| 5417 | else |
| 5418 | Diag(Loc, diag::err_pointer_to_member_oper_value_classify) |
| 5419 | << RHSType << 1 << LHS.get()->getSourceRange(); |
| 5420 | } |
| 5421 | break; |
| 5422 | |
| 5423 | case RQ_RValue: |
| 5424 | if (isIndirect || !LHS.get()->Classify(Context).isRValue()) |
| 5425 | Diag(Loc, diag::err_pointer_to_member_oper_value_classify) |
| 5426 | << RHSType << 0 << LHS.get()->getSourceRange(); |
| 5427 | break; |
| 5428 | } |
| 5429 | } |
| 5430 | |
| 5431 | // C++ [expr.mptr.oper]p6: |
| 5432 | // The result of a .* expression whose second operand is a pointer |
| 5433 | // to a data member is of the same value category as its |
| 5434 | // first operand. The result of a .* expression whose second |
| 5435 | // operand is a pointer to a member function is a prvalue. The |
| 5436 | // result of an ->* expression is an lvalue if its second operand |
| 5437 | // is a pointer to data member and a prvalue otherwise. |
| 5438 | if (Result->isFunctionType()) { |
| 5439 | VK = VK_PRValue; |
| 5440 | return Context.BoundMemberTy; |
| 5441 | } else if (isIndirect) { |
| 5442 | VK = VK_LValue; |
| 5443 | } else { |
| 5444 | VK = LHS.get()->getValueKind(); |
| 5445 | } |
| 5446 | |
| 5447 | return Result; |
| 5448 | } |
| 5449 | |
| 5450 | /// Try to convert a type to another according to C++11 5.16p3. |
| 5451 | /// |
| 5452 | /// This is part of the parameter validation for the ? operator. If either |
| 5453 | /// value operand is a class type, the two operands are attempted to be |
| 5454 | /// converted to each other. This function does the conversion in one direction. |
| 5455 | /// It returns true if the program is ill-formed and has already been diagnosed |
| 5456 | /// as such. |
| 5457 | static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, |
| 5458 | SourceLocation QuestionLoc, |
| 5459 | bool &HaveConversion, |
| 5460 | QualType &ToType) { |
| 5461 | HaveConversion = false; |
| 5462 | ToType = To->getType(); |
| 5463 | |
| 5464 | InitializationKind Kind = |
| 5465 | InitializationKind::CreateCopy(InitLoc: To->getBeginLoc(), EqualLoc: SourceLocation()); |
| 5466 | // C++11 5.16p3 |
| 5467 | // The process for determining whether an operand expression E1 of type T1 |
| 5468 | // can be converted to match an operand expression E2 of type T2 is defined |
| 5469 | // as follows: |
| 5470 | // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be |
| 5471 | // implicitly converted to type "lvalue reference to T2", subject to the |
| 5472 | // constraint that in the conversion the reference must bind directly to |
| 5473 | // an lvalue. |
| 5474 | // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be |
| 5475 | // implicitly converted to the type "rvalue reference to R2", subject to |
| 5476 | // the constraint that the reference must bind directly. |
| 5477 | if (To->isGLValue()) { |
| 5478 | QualType T = Self.Context.getReferenceQualifiedType(e: To); |
| 5479 | InitializedEntity Entity = InitializedEntity::InitializeTemporary(Type: T); |
| 5480 | |
| 5481 | InitializationSequence InitSeq(Self, Entity, Kind, From); |
| 5482 | if (InitSeq.isDirectReferenceBinding()) { |
| 5483 | ToType = T; |
| 5484 | HaveConversion = true; |
| 5485 | return false; |
| 5486 | } |
| 5487 | |
| 5488 | if (InitSeq.isAmbiguous()) |
| 5489 | return InitSeq.Diagnose(S&: Self, Entity, Kind, Args: From); |
| 5490 | } |
| 5491 | |
| 5492 | // -- If E2 is an rvalue, or if the conversion above cannot be done: |
| 5493 | // -- if E1 and E2 have class type, and the underlying class types are |
| 5494 | // the same or one is a base class of the other: |
| 5495 | QualType FTy = From->getType(); |
| 5496 | QualType TTy = To->getType(); |
| 5497 | const RecordType *FRec = FTy->getAs<RecordType>(); |
| 5498 | const RecordType *TRec = TTy->getAs<RecordType>(); |
| 5499 | bool FDerivedFromT = FRec && TRec && FRec != TRec && |
| 5500 | Self.IsDerivedFrom(Loc: QuestionLoc, Derived: FTy, Base: TTy); |
| 5501 | if (FRec && TRec && (FRec == TRec || FDerivedFromT || |
| 5502 | Self.IsDerivedFrom(Loc: QuestionLoc, Derived: TTy, Base: FTy))) { |
| 5503 | // E1 can be converted to match E2 if the class of T2 is the |
| 5504 | // same type as, or a base class of, the class of T1, and |
| 5505 | // [cv2 > cv1]. |
| 5506 | if (FRec == TRec || FDerivedFromT) { |
| 5507 | if (TTy.isAtLeastAsQualifiedAs(other: FTy, Ctx: Self.getASTContext())) { |
| 5508 | InitializedEntity Entity = InitializedEntity::InitializeTemporary(Type: TTy); |
| 5509 | InitializationSequence InitSeq(Self, Entity, Kind, From); |
| 5510 | if (InitSeq) { |
| 5511 | HaveConversion = true; |
| 5512 | return false; |
| 5513 | } |
| 5514 | |
| 5515 | if (InitSeq.isAmbiguous()) |
| 5516 | return InitSeq.Diagnose(S&: Self, Entity, Kind, Args: From); |
| 5517 | } |
| 5518 | } |
| 5519 | |
| 5520 | return false; |
| 5521 | } |
| 5522 | |
| 5523 | // -- Otherwise: E1 can be converted to match E2 if E1 can be |
| 5524 | // implicitly converted to the type that expression E2 would have |
| 5525 | // if E2 were converted to an rvalue (or the type it has, if E2 is |
| 5526 | // an rvalue). |
| 5527 | // |
| 5528 | // This actually refers very narrowly to the lvalue-to-rvalue conversion, not |
| 5529 | // to the array-to-pointer or function-to-pointer conversions. |
| 5530 | TTy = TTy.getNonLValueExprType(Context: Self.Context); |
| 5531 | |
| 5532 | InitializedEntity Entity = InitializedEntity::InitializeTemporary(Type: TTy); |
| 5533 | InitializationSequence InitSeq(Self, Entity, Kind, From); |
| 5534 | HaveConversion = !InitSeq.Failed(); |
| 5535 | ToType = TTy; |
| 5536 | if (InitSeq.isAmbiguous()) |
| 5537 | return InitSeq.Diagnose(S&: Self, Entity, Kind, Args: From); |
| 5538 | |
| 5539 | return false; |
| 5540 | } |
| 5541 | |
| 5542 | /// Try to find a common type for two according to C++0x 5.16p5. |
| 5543 | /// |
| 5544 | /// This is part of the parameter validation for the ? operator. If either |
| 5545 | /// value operand is a class type, overload resolution is used to find a |
| 5546 | /// conversion to a common type. |
| 5547 | static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS, |
| 5548 | SourceLocation QuestionLoc) { |
| 5549 | Expr *Args[2] = { LHS.get(), RHS.get() }; |
| 5550 | OverloadCandidateSet CandidateSet(QuestionLoc, |
| 5551 | OverloadCandidateSet::CSK_Operator); |
| 5552 | Self.AddBuiltinOperatorCandidates(Op: OO_Conditional, OpLoc: QuestionLoc, Args, |
| 5553 | CandidateSet); |
| 5554 | |
| 5555 | OverloadCandidateSet::iterator Best; |
| 5556 | switch (CandidateSet.BestViableFunction(S&: Self, Loc: QuestionLoc, Best)) { |
| 5557 | case OR_Success: { |
| 5558 | // We found a match. Perform the conversions on the arguments and move on. |
| 5559 | ExprResult LHSRes = Self.PerformImplicitConversion( |
| 5560 | LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0], |
| 5561 | AssignmentAction::Converting); |
| 5562 | if (LHSRes.isInvalid()) |
| 5563 | break; |
| 5564 | LHS = LHSRes; |
| 5565 | |
| 5566 | ExprResult RHSRes = Self.PerformImplicitConversion( |
| 5567 | RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1], |
| 5568 | AssignmentAction::Converting); |
| 5569 | if (RHSRes.isInvalid()) |
| 5570 | break; |
| 5571 | RHS = RHSRes; |
| 5572 | if (Best->Function) |
| 5573 | Self.MarkFunctionReferenced(Loc: QuestionLoc, Func: Best->Function); |
| 5574 | return false; |
| 5575 | } |
| 5576 | |
| 5577 | case OR_No_Viable_Function: |
| 5578 | |
| 5579 | // Emit a better diagnostic if one of the expressions is a null pointer |
| 5580 | // constant and the other is a pointer type. In this case, the user most |
| 5581 | // likely forgot to take the address of the other expression. |
| 5582 | if (Self.DiagnoseConditionalForNull(LHSExpr: LHS.get(), RHSExpr: RHS.get(), QuestionLoc)) |
| 5583 | return true; |
| 5584 | |
| 5585 | Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) |
| 5586 | << LHS.get()->getType() << RHS.get()->getType() |
| 5587 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| 5588 | return true; |
| 5589 | |
| 5590 | case OR_Ambiguous: |
| 5591 | Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl) |
| 5592 | << LHS.get()->getType() << RHS.get()->getType() |
| 5593 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| 5594 | // FIXME: Print the possible common types by printing the return types of |
| 5595 | // the viable candidates. |
| 5596 | break; |
| 5597 | |
| 5598 | case OR_Deleted: |
| 5599 | llvm_unreachable("Conditional operator has only built-in overloads" ); |
| 5600 | } |
| 5601 | return true; |
| 5602 | } |
| 5603 | |
| 5604 | /// Perform an "extended" implicit conversion as returned by |
| 5605 | /// TryClassUnification. |
| 5606 | static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) { |
| 5607 | InitializedEntity Entity = InitializedEntity::InitializeTemporary(Type: T); |
| 5608 | InitializationKind Kind = |
| 5609 | InitializationKind::CreateCopy(InitLoc: E.get()->getBeginLoc(), EqualLoc: SourceLocation()); |
| 5610 | Expr *Arg = E.get(); |
| 5611 | InitializationSequence InitSeq(Self, Entity, Kind, Arg); |
| 5612 | ExprResult Result = InitSeq.Perform(S&: Self, Entity, Kind, Args: Arg); |
| 5613 | if (Result.isInvalid()) |
| 5614 | return true; |
| 5615 | |
| 5616 | E = Result; |
| 5617 | return false; |
| 5618 | } |
| 5619 | |
| 5620 | // Check the condition operand of ?: to see if it is valid for the GCC |
| 5621 | // extension. |
| 5622 | static bool isValidVectorForConditionalCondition(ASTContext &Ctx, |
| 5623 | QualType CondTy) { |
| 5624 | if (!CondTy->isVectorType() && !CondTy->isExtVectorType()) |
| 5625 | return false; |
| 5626 | const QualType EltTy = |
| 5627 | cast<VectorType>(Val: CondTy.getCanonicalType())->getElementType(); |
| 5628 | assert(!EltTy->isEnumeralType() && "Vectors cant be enum types" ); |
| 5629 | return EltTy->isIntegralType(Ctx); |
| 5630 | } |
| 5631 | |
| 5632 | static bool isValidSizelessVectorForConditionalCondition(ASTContext &Ctx, |
| 5633 | QualType CondTy) { |
| 5634 | if (!CondTy->isSveVLSBuiltinType()) |
| 5635 | return false; |
| 5636 | const QualType EltTy = |
| 5637 | cast<BuiltinType>(Val: CondTy.getCanonicalType())->getSveEltType(Ctx); |
| 5638 | assert(!EltTy->isEnumeralType() && "Vectors cant be enum types" ); |
| 5639 | return EltTy->isIntegralType(Ctx); |
| 5640 | } |
| 5641 | |
| 5642 | QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS, |
| 5643 | ExprResult &RHS, |
| 5644 | SourceLocation QuestionLoc) { |
| 5645 | LHS = DefaultFunctionArrayLvalueConversion(E: LHS.get()); |
| 5646 | RHS = DefaultFunctionArrayLvalueConversion(E: RHS.get()); |
| 5647 | |
| 5648 | QualType CondType = Cond.get()->getType(); |
| 5649 | const auto *CondVT = CondType->castAs<VectorType>(); |
| 5650 | QualType CondElementTy = CondVT->getElementType(); |
| 5651 | unsigned CondElementCount = CondVT->getNumElements(); |
| 5652 | QualType LHSType = LHS.get()->getType(); |
| 5653 | const auto *LHSVT = LHSType->getAs<VectorType>(); |
| 5654 | QualType RHSType = RHS.get()->getType(); |
| 5655 | const auto *RHSVT = RHSType->getAs<VectorType>(); |
| 5656 | |
| 5657 | QualType ResultType; |
| 5658 | |
| 5659 | |
| 5660 | if (LHSVT && RHSVT) { |
| 5661 | if (isa<ExtVectorType>(Val: CondVT) != isa<ExtVectorType>(Val: LHSVT)) { |
| 5662 | Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch) |
| 5663 | << /*isExtVector*/ isa<ExtVectorType>(CondVT); |
| 5664 | return {}; |
| 5665 | } |
| 5666 | |
| 5667 | // If both are vector types, they must be the same type. |
| 5668 | if (!Context.hasSameType(T1: LHSType, T2: RHSType)) { |
| 5669 | Diag(QuestionLoc, diag::err_conditional_vector_mismatched) |
| 5670 | << LHSType << RHSType; |
| 5671 | return {}; |
| 5672 | } |
| 5673 | ResultType = Context.getCommonSugaredType(X: LHSType, Y: RHSType); |
| 5674 | } else if (LHSVT || RHSVT) { |
| 5675 | ResultType = CheckVectorOperands( |
| 5676 | LHS, RHS, Loc: QuestionLoc, /*isCompAssign*/ IsCompAssign: false, /*AllowBothBool*/ true, |
| 5677 | /*AllowBoolConversions*/ AllowBoolConversion: false, |
| 5678 | /*AllowBoolOperation*/ true, |
| 5679 | /*ReportInvalid*/ true); |
| 5680 | if (ResultType.isNull()) |
| 5681 | return {}; |
| 5682 | } else { |
| 5683 | // Both are scalar. |
| 5684 | LHSType = LHSType.getUnqualifiedType(); |
| 5685 | RHSType = RHSType.getUnqualifiedType(); |
| 5686 | QualType ResultElementTy = |
| 5687 | Context.hasSameType(T1: LHSType, T2: RHSType) |
| 5688 | ? Context.getCommonSugaredType(X: LHSType, Y: RHSType) |
| 5689 | : UsualArithmeticConversions(LHS, RHS, Loc: QuestionLoc, |
| 5690 | ACK: ArithConvKind::Conditional); |
| 5691 | |
| 5692 | if (ResultElementTy->isEnumeralType()) { |
| 5693 | Diag(QuestionLoc, diag::err_conditional_vector_operand_type) |
| 5694 | << ResultElementTy; |
| 5695 | return {}; |
| 5696 | } |
| 5697 | if (CondType->isExtVectorType()) |
| 5698 | ResultType = |
| 5699 | Context.getExtVectorType(VectorType: ResultElementTy, NumElts: CondVT->getNumElements()); |
| 5700 | else |
| 5701 | ResultType = Context.getVectorType( |
| 5702 | VectorType: ResultElementTy, NumElts: CondVT->getNumElements(), VecKind: VectorKind::Generic); |
| 5703 | |
| 5704 | LHS = ImpCastExprToType(E: LHS.get(), Type: ResultType, CK: CK_VectorSplat); |
| 5705 | RHS = ImpCastExprToType(E: RHS.get(), Type: ResultType, CK: CK_VectorSplat); |
| 5706 | } |
| 5707 | |
| 5708 | assert(!ResultType.isNull() && ResultType->isVectorType() && |
| 5709 | (!CondType->isExtVectorType() || ResultType->isExtVectorType()) && |
| 5710 | "Result should have been a vector type" ); |
| 5711 | auto *ResultVectorTy = ResultType->castAs<VectorType>(); |
| 5712 | QualType ResultElementTy = ResultVectorTy->getElementType(); |
| 5713 | unsigned ResultElementCount = ResultVectorTy->getNumElements(); |
| 5714 | |
| 5715 | if (ResultElementCount != CondElementCount) { |
| 5716 | Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType |
| 5717 | << ResultType; |
| 5718 | return {}; |
| 5719 | } |
| 5720 | |
| 5721 | if (Context.getTypeSize(T: ResultElementTy) != |
| 5722 | Context.getTypeSize(T: CondElementTy)) { |
| 5723 | Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType |
| 5724 | << ResultType; |
| 5725 | return {}; |
| 5726 | } |
| 5727 | |
| 5728 | return ResultType; |
| 5729 | } |
| 5730 | |
| 5731 | QualType Sema::CheckSizelessVectorConditionalTypes(ExprResult &Cond, |
| 5732 | ExprResult &LHS, |
| 5733 | ExprResult &RHS, |
| 5734 | SourceLocation QuestionLoc) { |
| 5735 | LHS = DefaultFunctionArrayLvalueConversion(E: LHS.get()); |
| 5736 | RHS = DefaultFunctionArrayLvalueConversion(E: RHS.get()); |
| 5737 | |
| 5738 | QualType CondType = Cond.get()->getType(); |
| 5739 | const auto *CondBT = CondType->castAs<BuiltinType>(); |
| 5740 | QualType CondElementTy = CondBT->getSveEltType(Context); |
| 5741 | llvm::ElementCount CondElementCount = |
| 5742 | Context.getBuiltinVectorTypeInfo(VecTy: CondBT).EC; |
| 5743 | |
| 5744 | QualType LHSType = LHS.get()->getType(); |
| 5745 | const auto *LHSBT = |
| 5746 | LHSType->isSveVLSBuiltinType() ? LHSType->getAs<BuiltinType>() : nullptr; |
| 5747 | QualType RHSType = RHS.get()->getType(); |
| 5748 | const auto *RHSBT = |
| 5749 | RHSType->isSveVLSBuiltinType() ? RHSType->getAs<BuiltinType>() : nullptr; |
| 5750 | |
| 5751 | QualType ResultType; |
| 5752 | |
| 5753 | if (LHSBT && RHSBT) { |
| 5754 | // If both are sizeless vector types, they must be the same type. |
| 5755 | if (!Context.hasSameType(T1: LHSType, T2: RHSType)) { |
| 5756 | Diag(QuestionLoc, diag::err_conditional_vector_mismatched) |
| 5757 | << LHSType << RHSType; |
| 5758 | return QualType(); |
| 5759 | } |
| 5760 | ResultType = LHSType; |
| 5761 | } else if (LHSBT || RHSBT) { |
| 5762 | ResultType = CheckSizelessVectorOperands(LHS, RHS, Loc: QuestionLoc, |
| 5763 | /*IsCompAssign*/ false, |
| 5764 | OperationKind: ArithConvKind::Conditional); |
| 5765 | if (ResultType.isNull()) |
| 5766 | return QualType(); |
| 5767 | } else { |
| 5768 | // Both are scalar so splat |
| 5769 | QualType ResultElementTy; |
| 5770 | LHSType = LHSType.getCanonicalType().getUnqualifiedType(); |
| 5771 | RHSType = RHSType.getCanonicalType().getUnqualifiedType(); |
| 5772 | |
| 5773 | if (Context.hasSameType(T1: LHSType, T2: RHSType)) |
| 5774 | ResultElementTy = LHSType; |
| 5775 | else |
| 5776 | ResultElementTy = UsualArithmeticConversions(LHS, RHS, Loc: QuestionLoc, |
| 5777 | ACK: ArithConvKind::Conditional); |
| 5778 | |
| 5779 | if (ResultElementTy->isEnumeralType()) { |
| 5780 | Diag(QuestionLoc, diag::err_conditional_vector_operand_type) |
| 5781 | << ResultElementTy; |
| 5782 | return QualType(); |
| 5783 | } |
| 5784 | |
| 5785 | ResultType = Context.getScalableVectorType( |
| 5786 | EltTy: ResultElementTy, NumElts: CondElementCount.getKnownMinValue()); |
| 5787 | |
| 5788 | LHS = ImpCastExprToType(E: LHS.get(), Type: ResultType, CK: CK_VectorSplat); |
| 5789 | RHS = ImpCastExprToType(E: RHS.get(), Type: ResultType, CK: CK_VectorSplat); |
| 5790 | } |
| 5791 | |
| 5792 | assert(!ResultType.isNull() && ResultType->isSveVLSBuiltinType() && |
| 5793 | "Result should have been a vector type" ); |
| 5794 | auto *ResultBuiltinTy = ResultType->castAs<BuiltinType>(); |
| 5795 | QualType ResultElementTy = ResultBuiltinTy->getSveEltType(Context); |
| 5796 | llvm::ElementCount ResultElementCount = |
| 5797 | Context.getBuiltinVectorTypeInfo(VecTy: ResultBuiltinTy).EC; |
| 5798 | |
| 5799 | if (ResultElementCount != CondElementCount) { |
| 5800 | Diag(QuestionLoc, diag::err_conditional_vector_size) |
| 5801 | << CondType << ResultType; |
| 5802 | return QualType(); |
| 5803 | } |
| 5804 | |
| 5805 | if (Context.getTypeSize(T: ResultElementTy) != |
| 5806 | Context.getTypeSize(T: CondElementTy)) { |
| 5807 | Diag(QuestionLoc, diag::err_conditional_vector_element_size) |
| 5808 | << CondType << ResultType; |
| 5809 | return QualType(); |
| 5810 | } |
| 5811 | |
| 5812 | return ResultType; |
| 5813 | } |
| 5814 | |
| 5815 | QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, |
| 5816 | ExprResult &RHS, ExprValueKind &VK, |
| 5817 | ExprObjectKind &OK, |
| 5818 | SourceLocation QuestionLoc) { |
| 5819 | // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface |
| 5820 | // pointers. |
| 5821 | |
| 5822 | // Assume r-value. |
| 5823 | VK = VK_PRValue; |
| 5824 | OK = OK_Ordinary; |
| 5825 | bool IsVectorConditional = |
| 5826 | isValidVectorForConditionalCondition(Ctx&: Context, CondTy: Cond.get()->getType()); |
| 5827 | |
| 5828 | bool IsSizelessVectorConditional = |
| 5829 | isValidSizelessVectorForConditionalCondition(Ctx&: Context, |
| 5830 | CondTy: Cond.get()->getType()); |
| 5831 | |
| 5832 | // C++11 [expr.cond]p1 |
| 5833 | // The first expression is contextually converted to bool. |
| 5834 | if (!Cond.get()->isTypeDependent()) { |
| 5835 | ExprResult CondRes = IsVectorConditional || IsSizelessVectorConditional |
| 5836 | ? DefaultFunctionArrayLvalueConversion(E: Cond.get()) |
| 5837 | : CheckCXXBooleanCondition(CondExpr: Cond.get()); |
| 5838 | if (CondRes.isInvalid()) |
| 5839 | return QualType(); |
| 5840 | Cond = CondRes; |
| 5841 | } else { |
| 5842 | // To implement C++, the first expression typically doesn't alter the result |
| 5843 | // type of the conditional, however the GCC compatible vector extension |
| 5844 | // changes the result type to be that of the conditional. Since we cannot |
| 5845 | // know if this is a vector extension here, delay the conversion of the |
| 5846 | // LHS/RHS below until later. |
| 5847 | return Context.DependentTy; |
| 5848 | } |
| 5849 | |
| 5850 | |
| 5851 | // Either of the arguments dependent? |
| 5852 | if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent()) |
| 5853 | return Context.DependentTy; |
| 5854 | |
| 5855 | // C++11 [expr.cond]p2 |
| 5856 | // If either the second or the third operand has type (cv) void, ... |
| 5857 | QualType LTy = LHS.get()->getType(); |
| 5858 | QualType RTy = RHS.get()->getType(); |
| 5859 | bool LVoid = LTy->isVoidType(); |
| 5860 | bool RVoid = RTy->isVoidType(); |
| 5861 | if (LVoid || RVoid) { |
| 5862 | // ... one of the following shall hold: |
| 5863 | // -- The second or the third operand (but not both) is a (possibly |
| 5864 | // parenthesized) throw-expression; the result is of the type |
| 5865 | // and value category of the other. |
| 5866 | bool LThrow = isa<CXXThrowExpr>(Val: LHS.get()->IgnoreParenImpCasts()); |
| 5867 | bool RThrow = isa<CXXThrowExpr>(Val: RHS.get()->IgnoreParenImpCasts()); |
| 5868 | |
| 5869 | // Void expressions aren't legal in the vector-conditional expressions. |
| 5870 | if (IsVectorConditional) { |
| 5871 | SourceRange DiagLoc = |
| 5872 | LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange(); |
| 5873 | bool IsThrow = LVoid ? LThrow : RThrow; |
| 5874 | Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void) |
| 5875 | << DiagLoc << IsThrow; |
| 5876 | return QualType(); |
| 5877 | } |
| 5878 | |
| 5879 | if (LThrow != RThrow) { |
| 5880 | Expr *NonThrow = LThrow ? RHS.get() : LHS.get(); |
| 5881 | VK = NonThrow->getValueKind(); |
| 5882 | // DR (no number yet): the result is a bit-field if the |
| 5883 | // non-throw-expression operand is a bit-field. |
| 5884 | OK = NonThrow->getObjectKind(); |
| 5885 | return NonThrow->getType(); |
| 5886 | } |
| 5887 | |
| 5888 | // -- Both the second and third operands have type void; the result is of |
| 5889 | // type void and is a prvalue. |
| 5890 | if (LVoid && RVoid) |
| 5891 | return Context.getCommonSugaredType(X: LTy, Y: RTy); |
| 5892 | |
| 5893 | // Neither holds, error. |
| 5894 | Diag(QuestionLoc, diag::err_conditional_void_nonvoid) |
| 5895 | << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) |
| 5896 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| 5897 | return QualType(); |
| 5898 | } |
| 5899 | |
| 5900 | // Neither is void. |
| 5901 | if (IsVectorConditional) |
| 5902 | return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc); |
| 5903 | |
| 5904 | if (IsSizelessVectorConditional) |
| 5905 | return CheckSizelessVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc); |
| 5906 | |
| 5907 | // WebAssembly tables are not allowed as conditional LHS or RHS. |
| 5908 | if (LTy->isWebAssemblyTableType() || RTy->isWebAssemblyTableType()) { |
| 5909 | Diag(QuestionLoc, diag::err_wasm_table_conditional_expression) |
| 5910 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| 5911 | return QualType(); |
| 5912 | } |
| 5913 | |
| 5914 | // C++11 [expr.cond]p3 |
| 5915 | // Otherwise, if the second and third operand have different types, and |
| 5916 | // either has (cv) class type [...] an attempt is made to convert each of |
| 5917 | // those operands to the type of the other. |
| 5918 | if (!Context.hasSameType(T1: LTy, T2: RTy) && |
| 5919 | (LTy->isRecordType() || RTy->isRecordType())) { |
| 5920 | // These return true if a single direction is already ambiguous. |
| 5921 | QualType L2RType, R2LType; |
| 5922 | bool HaveL2R, HaveR2L; |
| 5923 | if (TryClassUnification(Self&: *this, From: LHS.get(), To: RHS.get(), QuestionLoc, HaveConversion&: HaveL2R, ToType&: L2RType)) |
| 5924 | return QualType(); |
| 5925 | if (TryClassUnification(Self&: *this, From: RHS.get(), To: LHS.get(), QuestionLoc, HaveConversion&: HaveR2L, ToType&: R2LType)) |
| 5926 | return QualType(); |
| 5927 | |
| 5928 | // If both can be converted, [...] the program is ill-formed. |
| 5929 | if (HaveL2R && HaveR2L) { |
| 5930 | Diag(QuestionLoc, diag::err_conditional_ambiguous) |
| 5931 | << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| 5932 | return QualType(); |
| 5933 | } |
| 5934 | |
| 5935 | // If exactly one conversion is possible, that conversion is applied to |
| 5936 | // the chosen operand and the converted operands are used in place of the |
| 5937 | // original operands for the remainder of this section. |
| 5938 | if (HaveL2R) { |
| 5939 | if (ConvertForConditional(Self&: *this, E&: LHS, T: L2RType) || LHS.isInvalid()) |
| 5940 | return QualType(); |
| 5941 | LTy = LHS.get()->getType(); |
| 5942 | } else if (HaveR2L) { |
| 5943 | if (ConvertForConditional(Self&: *this, E&: RHS, T: R2LType) || RHS.isInvalid()) |
| 5944 | return QualType(); |
| 5945 | RTy = RHS.get()->getType(); |
| 5946 | } |
| 5947 | } |
| 5948 | |
| 5949 | // C++11 [expr.cond]p3 |
| 5950 | // if both are glvalues of the same value category and the same type except |
| 5951 | // for cv-qualification, an attempt is made to convert each of those |
| 5952 | // operands to the type of the other. |
| 5953 | // FIXME: |
| 5954 | // Resolving a defect in P0012R1: we extend this to cover all cases where |
| 5955 | // one of the operands is reference-compatible with the other, in order |
| 5956 | // to support conditionals between functions differing in noexcept. This |
| 5957 | // will similarly cover difference in array bounds after P0388R4. |
| 5958 | // FIXME: If LTy and RTy have a composite pointer type, should we convert to |
| 5959 | // that instead? |
| 5960 | ExprValueKind LVK = LHS.get()->getValueKind(); |
| 5961 | ExprValueKind RVK = RHS.get()->getValueKind(); |
| 5962 | if (!Context.hasSameType(T1: LTy, T2: RTy) && LVK == RVK && LVK != VK_PRValue) { |
| 5963 | // DerivedToBase was already handled by the class-specific case above. |
| 5964 | // FIXME: Should we allow ObjC conversions here? |
| 5965 | const ReferenceConversions AllowedConversions = |
| 5966 | ReferenceConversions::Qualification | |
| 5967 | ReferenceConversions::NestedQualification | |
| 5968 | ReferenceConversions::Function; |
| 5969 | |
| 5970 | ReferenceConversions RefConv; |
| 5971 | if (CompareReferenceRelationship(Loc: QuestionLoc, T1: LTy, T2: RTy, Conv: &RefConv) == |
| 5972 | Ref_Compatible && |
| 5973 | !(RefConv & ~AllowedConversions) && |
| 5974 | // [...] subject to the constraint that the reference must bind |
| 5975 | // directly [...] |
| 5976 | !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) { |
| 5977 | RHS = ImpCastExprToType(E: RHS.get(), Type: LTy, CK: CK_NoOp, VK: RVK); |
| 5978 | RTy = RHS.get()->getType(); |
| 5979 | } else if (CompareReferenceRelationship(Loc: QuestionLoc, T1: RTy, T2: LTy, Conv: &RefConv) == |
| 5980 | Ref_Compatible && |
| 5981 | !(RefConv & ~AllowedConversions) && |
| 5982 | !LHS.get()->refersToBitField() && |
| 5983 | !LHS.get()->refersToVectorElement()) { |
| 5984 | LHS = ImpCastExprToType(E: LHS.get(), Type: RTy, CK: CK_NoOp, VK: LVK); |
| 5985 | LTy = LHS.get()->getType(); |
| 5986 | } |
| 5987 | } |
| 5988 | |
| 5989 | // C++11 [expr.cond]p4 |
| 5990 | // If the second and third operands are glvalues of the same value |
| 5991 | // category and have the same type, the result is of that type and |
| 5992 | // value category and it is a bit-field if the second or the third |
| 5993 | // operand is a bit-field, or if both are bit-fields. |
| 5994 | // We only extend this to bitfields, not to the crazy other kinds of |
| 5995 | // l-values. |
| 5996 | bool Same = Context.hasSameType(T1: LTy, T2: RTy); |
| 5997 | if (Same && LVK == RVK && LVK != VK_PRValue && |
| 5998 | LHS.get()->isOrdinaryOrBitFieldObject() && |
| 5999 | RHS.get()->isOrdinaryOrBitFieldObject()) { |
| 6000 | VK = LHS.get()->getValueKind(); |
| 6001 | if (LHS.get()->getObjectKind() == OK_BitField || |
| 6002 | RHS.get()->getObjectKind() == OK_BitField) |
| 6003 | OK = OK_BitField; |
| 6004 | return Context.getCommonSugaredType(X: LTy, Y: RTy); |
| 6005 | } |
| 6006 | |
| 6007 | // C++11 [expr.cond]p5 |
| 6008 | // Otherwise, the result is a prvalue. If the second and third operands |
| 6009 | // do not have the same type, and either has (cv) class type, ... |
| 6010 | if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { |
| 6011 | // ... overload resolution is used to determine the conversions (if any) |
| 6012 | // to be applied to the operands. If the overload resolution fails, the |
| 6013 | // program is ill-formed. |
| 6014 | if (FindConditionalOverload(Self&: *this, LHS, RHS, QuestionLoc)) |
| 6015 | return QualType(); |
| 6016 | } |
| 6017 | |
| 6018 | // C++11 [expr.cond]p6 |
| 6019 | // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard |
| 6020 | // conversions are performed on the second and third operands. |
| 6021 | LHS = DefaultFunctionArrayLvalueConversion(E: LHS.get()); |
| 6022 | RHS = DefaultFunctionArrayLvalueConversion(E: RHS.get()); |
| 6023 | if (LHS.isInvalid() || RHS.isInvalid()) |
| 6024 | return QualType(); |
| 6025 | LTy = LHS.get()->getType(); |
| 6026 | RTy = RHS.get()->getType(); |
| 6027 | |
| 6028 | // After those conversions, one of the following shall hold: |
| 6029 | // -- The second and third operands have the same type; the result |
| 6030 | // is of that type. If the operands have class type, the result |
| 6031 | // is a prvalue temporary of the result type, which is |
| 6032 | // copy-initialized from either the second operand or the third |
| 6033 | // operand depending on the value of the first operand. |
| 6034 | if (Context.hasSameType(T1: LTy, T2: RTy)) { |
| 6035 | if (LTy->isRecordType()) { |
| 6036 | // The operands have class type. Make a temporary copy. |
| 6037 | ExprResult LHSCopy = PerformCopyInitialization( |
| 6038 | Entity: InitializedEntity::InitializeTemporary(Type: LTy), EqualLoc: SourceLocation(), Init: LHS); |
| 6039 | if (LHSCopy.isInvalid()) |
| 6040 | return QualType(); |
| 6041 | |
| 6042 | ExprResult RHSCopy = PerformCopyInitialization( |
| 6043 | Entity: InitializedEntity::InitializeTemporary(Type: RTy), EqualLoc: SourceLocation(), Init: RHS); |
| 6044 | if (RHSCopy.isInvalid()) |
| 6045 | return QualType(); |
| 6046 | |
| 6047 | LHS = LHSCopy; |
| 6048 | RHS = RHSCopy; |
| 6049 | } |
| 6050 | return Context.getCommonSugaredType(X: LTy, Y: RTy); |
| 6051 | } |
| 6052 | |
| 6053 | // Extension: conditional operator involving vector types. |
| 6054 | if (LTy->isVectorType() || RTy->isVectorType()) |
| 6055 | return CheckVectorOperands(LHS, RHS, Loc: QuestionLoc, /*isCompAssign*/ IsCompAssign: false, |
| 6056 | /*AllowBothBool*/ true, |
| 6057 | /*AllowBoolConversions*/ AllowBoolConversion: false, |
| 6058 | /*AllowBoolOperation*/ false, |
| 6059 | /*ReportInvalid*/ true); |
| 6060 | |
| 6061 | // -- The second and third operands have arithmetic or enumeration type; |
| 6062 | // the usual arithmetic conversions are performed to bring them to a |
| 6063 | // common type, and the result is of that type. |
| 6064 | if (LTy->isArithmeticType() && RTy->isArithmeticType()) { |
| 6065 | QualType ResTy = UsualArithmeticConversions(LHS, RHS, Loc: QuestionLoc, |
| 6066 | ACK: ArithConvKind::Conditional); |
| 6067 | if (LHS.isInvalid() || RHS.isInvalid()) |
| 6068 | return QualType(); |
| 6069 | if (ResTy.isNull()) { |
| 6070 | Diag(QuestionLoc, |
| 6071 | diag::err_typecheck_cond_incompatible_operands) << LTy << RTy |
| 6072 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| 6073 | return QualType(); |
| 6074 | } |
| 6075 | |
| 6076 | LHS = ImpCastExprToType(E: LHS.get(), Type: ResTy, CK: PrepareScalarCast(src&: LHS, destType: ResTy)); |
| 6077 | RHS = ImpCastExprToType(E: RHS.get(), Type: ResTy, CK: PrepareScalarCast(src&: RHS, destType: ResTy)); |
| 6078 | |
| 6079 | return ResTy; |
| 6080 | } |
| 6081 | |
| 6082 | // -- The second and third operands have pointer type, or one has pointer |
| 6083 | // type and the other is a null pointer constant, or both are null |
| 6084 | // pointer constants, at least one of which is non-integral; pointer |
| 6085 | // conversions and qualification conversions are performed to bring them |
| 6086 | // to their composite pointer type. The result is of the composite |
| 6087 | // pointer type. |
| 6088 | // -- The second and third operands have pointer to member type, or one has |
| 6089 | // pointer to member type and the other is a null pointer constant; |
| 6090 | // pointer to member conversions and qualification conversions are |
| 6091 | // performed to bring them to a common type, whose cv-qualification |
| 6092 | // shall match the cv-qualification of either the second or the third |
| 6093 | // operand. The result is of the common type. |
| 6094 | QualType Composite = FindCompositePointerType(Loc: QuestionLoc, E1&: LHS, E2&: RHS); |
| 6095 | if (!Composite.isNull()) |
| 6096 | return Composite; |
| 6097 | |
| 6098 | // Similarly, attempt to find composite type of two objective-c pointers. |
| 6099 | Composite = ObjC().FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); |
| 6100 | if (LHS.isInvalid() || RHS.isInvalid()) |
| 6101 | return QualType(); |
| 6102 | if (!Composite.isNull()) |
| 6103 | return Composite; |
| 6104 | |
| 6105 | // Check if we are using a null with a non-pointer type. |
| 6106 | if (DiagnoseConditionalForNull(LHSExpr: LHS.get(), RHSExpr: RHS.get(), QuestionLoc)) |
| 6107 | return QualType(); |
| 6108 | |
| 6109 | Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) |
| 6110 | << LHS.get()->getType() << RHS.get()->getType() |
| 6111 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
| 6112 | return QualType(); |
| 6113 | } |
| 6114 | |
| 6115 | QualType Sema::FindCompositePointerType(SourceLocation Loc, |
| 6116 | Expr *&E1, Expr *&E2, |
| 6117 | bool ConvertArgs) { |
| 6118 | assert(getLangOpts().CPlusPlus && "This function assumes C++" ); |
| 6119 | |
| 6120 | // C++1z [expr]p14: |
| 6121 | // The composite pointer type of two operands p1 and p2 having types T1 |
| 6122 | // and T2 |
| 6123 | QualType T1 = E1->getType(), T2 = E2->getType(); |
| 6124 | |
| 6125 | // where at least one is a pointer or pointer to member type or |
| 6126 | // std::nullptr_t is: |
| 6127 | bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() || |
| 6128 | T1->isNullPtrType(); |
| 6129 | bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() || |
| 6130 | T2->isNullPtrType(); |
| 6131 | if (!T1IsPointerLike && !T2IsPointerLike) |
| 6132 | return QualType(); |
| 6133 | |
| 6134 | // - if both p1 and p2 are null pointer constants, std::nullptr_t; |
| 6135 | // This can't actually happen, following the standard, but we also use this |
| 6136 | // to implement the end of [expr.conv], which hits this case. |
| 6137 | // |
| 6138 | // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively; |
| 6139 | if (T1IsPointerLike && |
| 6140 | E2->isNullPointerConstant(Ctx&: Context, NPC: Expr::NPC_ValueDependentIsNull)) { |
| 6141 | if (ConvertArgs) |
| 6142 | E2 = ImpCastExprToType(E: E2, Type: T1, CK: T1->isMemberPointerType() |
| 6143 | ? CK_NullToMemberPointer |
| 6144 | : CK_NullToPointer).get(); |
| 6145 | return T1; |
| 6146 | } |
| 6147 | if (T2IsPointerLike && |
| 6148 | E1->isNullPointerConstant(Ctx&: Context, NPC: Expr::NPC_ValueDependentIsNull)) { |
| 6149 | if (ConvertArgs) |
| 6150 | E1 = ImpCastExprToType(E: E1, Type: T2, CK: T2->isMemberPointerType() |
| 6151 | ? CK_NullToMemberPointer |
| 6152 | : CK_NullToPointer).get(); |
| 6153 | return T2; |
| 6154 | } |
| 6155 | |
| 6156 | // Now both have to be pointers or member pointers. |
| 6157 | if (!T1IsPointerLike || !T2IsPointerLike) |
| 6158 | return QualType(); |
| 6159 | assert(!T1->isNullPtrType() && !T2->isNullPtrType() && |
| 6160 | "nullptr_t should be a null pointer constant" ); |
| 6161 | |
| 6162 | struct Step { |
| 6163 | enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K; |
| 6164 | // Qualifiers to apply under the step kind. |
| 6165 | Qualifiers Quals; |
| 6166 | /// The class for a pointer-to-member; a constant array type with a bound |
| 6167 | /// (if any) for an array. |
| 6168 | /// FIXME: Store Qualifier for pointer-to-member. |
| 6169 | const Type *ClassOrBound; |
| 6170 | |
| 6171 | Step(Kind K, const Type *ClassOrBound = nullptr) |
| 6172 | : K(K), ClassOrBound(ClassOrBound) {} |
| 6173 | QualType rebuild(ASTContext &Ctx, QualType T) const { |
| 6174 | T = Ctx.getQualifiedType(T, Qs: Quals); |
| 6175 | switch (K) { |
| 6176 | case Pointer: |
| 6177 | return Ctx.getPointerType(T); |
| 6178 | case MemberPointer: |
| 6179 | return Ctx.getMemberPointerType(T, /*Qualifier=*/nullptr, |
| 6180 | Cls: ClassOrBound->getAsCXXRecordDecl()); |
| 6181 | case ObjCPointer: |
| 6182 | return Ctx.getObjCObjectPointerType(OIT: T); |
| 6183 | case Array: |
| 6184 | if (auto *CAT = cast_or_null<ConstantArrayType>(Val: ClassOrBound)) |
| 6185 | return Ctx.getConstantArrayType(EltTy: T, ArySize: CAT->getSize(), SizeExpr: nullptr, |
| 6186 | ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
| 6187 | else |
| 6188 | return Ctx.getIncompleteArrayType(EltTy: T, ASM: ArraySizeModifier::Normal, IndexTypeQuals: 0); |
| 6189 | } |
| 6190 | llvm_unreachable("unknown step kind" ); |
| 6191 | } |
| 6192 | }; |
| 6193 | |
| 6194 | SmallVector<Step, 8> Steps; |
| 6195 | |
| 6196 | // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 |
| 6197 | // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), |
| 6198 | // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1, |
| 6199 | // respectively; |
| 6200 | // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer |
| 6201 | // to member of C2 of type cv2 U2" for some non-function type U, where |
| 6202 | // C1 is reference-related to C2 or C2 is reference-related to C1, the |
| 6203 | // cv-combined type of T2 and T1 or the cv-combined type of T1 and T2, |
| 6204 | // respectively; |
| 6205 | // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and |
| 6206 | // T2; |
| 6207 | // |
| 6208 | // Dismantle T1 and T2 to simultaneously determine whether they are similar |
| 6209 | // and to prepare to form the cv-combined type if so. |
| 6210 | QualType Composite1 = T1; |
| 6211 | QualType Composite2 = T2; |
| 6212 | unsigned NeedConstBefore = 0; |
| 6213 | while (true) { |
| 6214 | assert(!Composite1.isNull() && !Composite2.isNull()); |
| 6215 | |
| 6216 | Qualifiers Q1, Q2; |
| 6217 | Composite1 = Context.getUnqualifiedArrayType(T: Composite1, Quals&: Q1); |
| 6218 | Composite2 = Context.getUnqualifiedArrayType(T: Composite2, Quals&: Q2); |
| 6219 | |
| 6220 | // Top-level qualifiers are ignored. Merge at all lower levels. |
| 6221 | if (!Steps.empty()) { |
| 6222 | // Find the qualifier union: (approximately) the unique minimal set of |
| 6223 | // qualifiers that is compatible with both types. |
| 6224 | Qualifiers Quals = Qualifiers::fromCVRUMask(CVRU: Q1.getCVRUQualifiers() | |
| 6225 | Q2.getCVRUQualifiers()); |
| 6226 | |
| 6227 | // Under one level of pointer or pointer-to-member, we can change to an |
| 6228 | // unambiguous compatible address space. |
| 6229 | if (Q1.getAddressSpace() == Q2.getAddressSpace()) { |
| 6230 | Quals.setAddressSpace(Q1.getAddressSpace()); |
| 6231 | } else if (Steps.size() == 1) { |
| 6232 | bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(other: Q2, Ctx: getASTContext()); |
| 6233 | bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(other: Q1, Ctx: getASTContext()); |
| 6234 | if (MaybeQ1 == MaybeQ2) { |
| 6235 | // Exception for ptr size address spaces. Should be able to choose |
| 6236 | // either address space during comparison. |
| 6237 | if (isPtrSizeAddressSpace(AS: Q1.getAddressSpace()) || |
| 6238 | isPtrSizeAddressSpace(AS: Q2.getAddressSpace())) |
| 6239 | MaybeQ1 = true; |
| 6240 | else |
| 6241 | return QualType(); // No unique best address space. |
| 6242 | } |
| 6243 | Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace() |
| 6244 | : Q2.getAddressSpace()); |
| 6245 | } else { |
| 6246 | return QualType(); |
| 6247 | } |
| 6248 | |
| 6249 | // FIXME: In C, we merge __strong and none to __strong at the top level. |
| 6250 | if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr()) |
| 6251 | Quals.setObjCGCAttr(Q1.getObjCGCAttr()); |
| 6252 | else if (T1->isVoidPointerType() || T2->isVoidPointerType()) |
| 6253 | assert(Steps.size() == 1); |
| 6254 | else |
| 6255 | return QualType(); |
| 6256 | |
| 6257 | // Mismatched lifetime qualifiers never compatibly include each other. |
| 6258 | if (Q1.getObjCLifetime() == Q2.getObjCLifetime()) |
| 6259 | Quals.setObjCLifetime(Q1.getObjCLifetime()); |
| 6260 | else if (T1->isVoidPointerType() || T2->isVoidPointerType()) |
| 6261 | assert(Steps.size() == 1); |
| 6262 | else |
| 6263 | return QualType(); |
| 6264 | |
| 6265 | if (Q1.getPointerAuth().isEquivalent(Other: Q2.getPointerAuth())) |
| 6266 | Quals.setPointerAuth(Q1.getPointerAuth()); |
| 6267 | else |
| 6268 | return QualType(); |
| 6269 | |
| 6270 | Steps.back().Quals = Quals; |
| 6271 | if (Q1 != Quals || Q2 != Quals) |
| 6272 | NeedConstBefore = Steps.size() - 1; |
| 6273 | } |
| 6274 | |
| 6275 | // FIXME: Can we unify the following with UnwrapSimilarTypes? |
| 6276 | |
| 6277 | const ArrayType *Arr1, *Arr2; |
| 6278 | if ((Arr1 = Context.getAsArrayType(T: Composite1)) && |
| 6279 | (Arr2 = Context.getAsArrayType(T: Composite2))) { |
| 6280 | auto *CAT1 = dyn_cast<ConstantArrayType>(Val: Arr1); |
| 6281 | auto *CAT2 = dyn_cast<ConstantArrayType>(Val: Arr2); |
| 6282 | if (CAT1 && CAT2 && CAT1->getSize() == CAT2->getSize()) { |
| 6283 | Composite1 = Arr1->getElementType(); |
| 6284 | Composite2 = Arr2->getElementType(); |
| 6285 | Steps.emplace_back(Args: Step::Array, Args&: CAT1); |
| 6286 | continue; |
| 6287 | } |
| 6288 | bool IAT1 = isa<IncompleteArrayType>(Val: Arr1); |
| 6289 | bool IAT2 = isa<IncompleteArrayType>(Val: Arr2); |
| 6290 | if ((IAT1 && IAT2) || |
| 6291 | (getLangOpts().CPlusPlus20 && (IAT1 != IAT2) && |
| 6292 | ((bool)CAT1 != (bool)CAT2) && |
| 6293 | (Steps.empty() || Steps.back().K != Step::Array))) { |
| 6294 | // In C++20 onwards, we can unify an array of N T with an array of |
| 6295 | // a different or unknown bound. But we can't form an array whose |
| 6296 | // element type is an array of unknown bound by doing so. |
| 6297 | Composite1 = Arr1->getElementType(); |
| 6298 | Composite2 = Arr2->getElementType(); |
| 6299 | Steps.emplace_back(Args: Step::Array); |
| 6300 | if (CAT1 || CAT2) |
| 6301 | NeedConstBefore = Steps.size(); |
| 6302 | continue; |
| 6303 | } |
| 6304 | } |
| 6305 | |
| 6306 | const PointerType *Ptr1, *Ptr2; |
| 6307 | if ((Ptr1 = Composite1->getAs<PointerType>()) && |
| 6308 | (Ptr2 = Composite2->getAs<PointerType>())) { |
| 6309 | Composite1 = Ptr1->getPointeeType(); |
| 6310 | Composite2 = Ptr2->getPointeeType(); |
| 6311 | Steps.emplace_back(Args: Step::Pointer); |
| 6312 | continue; |
| 6313 | } |
| 6314 | |
| 6315 | const ObjCObjectPointerType *ObjPtr1, *ObjPtr2; |
| 6316 | if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) && |
| 6317 | (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) { |
| 6318 | Composite1 = ObjPtr1->getPointeeType(); |
| 6319 | Composite2 = ObjPtr2->getPointeeType(); |
| 6320 | Steps.emplace_back(Args: Step::ObjCPointer); |
| 6321 | continue; |
| 6322 | } |
| 6323 | |
| 6324 | const MemberPointerType *MemPtr1, *MemPtr2; |
| 6325 | if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && |
| 6326 | (MemPtr2 = Composite2->getAs<MemberPointerType>())) { |
| 6327 | Composite1 = MemPtr1->getPointeeType(); |
| 6328 | Composite2 = MemPtr2->getPointeeType(); |
| 6329 | |
| 6330 | // At the top level, we can perform a base-to-derived pointer-to-member |
| 6331 | // conversion: |
| 6332 | // |
| 6333 | // - [...] where C1 is reference-related to C2 or C2 is |
| 6334 | // reference-related to C1 |
| 6335 | // |
| 6336 | // (Note that the only kinds of reference-relatedness in scope here are |
| 6337 | // "same type or derived from".) At any other level, the class must |
| 6338 | // exactly match. |
| 6339 | CXXRecordDecl *Cls = nullptr, |
| 6340 | *Cls1 = MemPtr1->getMostRecentCXXRecordDecl(), |
| 6341 | *Cls2 = MemPtr2->getMostRecentCXXRecordDecl(); |
| 6342 | if (declaresSameEntity(Cls1, Cls2)) |
| 6343 | Cls = Cls1; |
| 6344 | else if (Steps.empty()) |
| 6345 | Cls = IsDerivedFrom(Loc, Derived: Cls1, Base: Cls2) ? Cls1 |
| 6346 | : IsDerivedFrom(Loc, Derived: Cls2, Base: Cls1) ? Cls2 |
| 6347 | : nullptr; |
| 6348 | if (!Cls) |
| 6349 | return QualType(); |
| 6350 | |
| 6351 | Steps.emplace_back(Args: Step::MemberPointer, |
| 6352 | Args: Context.getTypeDeclType(Cls).getTypePtr()); |
| 6353 | continue; |
| 6354 | } |
| 6355 | |
| 6356 | // Special case: at the top level, we can decompose an Objective-C pointer |
| 6357 | // and a 'cv void *'. Unify the qualifiers. |
| 6358 | if (Steps.empty() && ((Composite1->isVoidPointerType() && |
| 6359 | Composite2->isObjCObjectPointerType()) || |
| 6360 | (Composite1->isObjCObjectPointerType() && |
| 6361 | Composite2->isVoidPointerType()))) { |
| 6362 | Composite1 = Composite1->getPointeeType(); |
| 6363 | Composite2 = Composite2->getPointeeType(); |
| 6364 | Steps.emplace_back(Args: Step::Pointer); |
| 6365 | continue; |
| 6366 | } |
| 6367 | |
| 6368 | // FIXME: block pointer types? |
| 6369 | |
| 6370 | // Cannot unwrap any more types. |
| 6371 | break; |
| 6372 | } |
| 6373 | |
| 6374 | // - if T1 or T2 is "pointer to noexcept function" and the other type is |
| 6375 | // "pointer to function", where the function types are otherwise the same, |
| 6376 | // "pointer to function"; |
| 6377 | // - if T1 or T2 is "pointer to member of C1 of type function", the other |
| 6378 | // type is "pointer to member of C2 of type noexcept function", and C1 |
| 6379 | // is reference-related to C2 or C2 is reference-related to C1, where |
| 6380 | // the function types are otherwise the same, "pointer to member of C2 of |
| 6381 | // type function" or "pointer to member of C1 of type function", |
| 6382 | // respectively; |
| 6383 | // |
| 6384 | // We also support 'noreturn' here, so as a Clang extension we generalize the |
| 6385 | // above to: |
| 6386 | // |
| 6387 | // - [Clang] If T1 and T2 are both of type "pointer to function" or |
| 6388 | // "pointer to member function" and the pointee types can be unified |
| 6389 | // by a function pointer conversion, that conversion is applied |
| 6390 | // before checking the following rules. |
| 6391 | // |
| 6392 | // We've already unwrapped down to the function types, and we want to merge |
| 6393 | // rather than just convert, so do this ourselves rather than calling |
| 6394 | // IsFunctionConversion. |
| 6395 | // |
| 6396 | // FIXME: In order to match the standard wording as closely as possible, we |
| 6397 | // currently only do this under a single level of pointers. Ideally, we would |
| 6398 | // allow this in general, and set NeedConstBefore to the relevant depth on |
| 6399 | // the side(s) where we changed anything. If we permit that, we should also |
| 6400 | // consider this conversion when determining type similarity and model it as |
| 6401 | // a qualification conversion. |
| 6402 | if (Steps.size() == 1) { |
| 6403 | if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) { |
| 6404 | if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) { |
| 6405 | FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo(); |
| 6406 | FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo(); |
| 6407 | |
| 6408 | // The result is noreturn if both operands are. |
| 6409 | bool Noreturn = |
| 6410 | EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn(); |
| 6411 | EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(noReturn: Noreturn); |
| 6412 | EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(noReturn: Noreturn); |
| 6413 | |
| 6414 | bool CFIUncheckedCallee = |
| 6415 | EPI1.CFIUncheckedCallee || EPI2.CFIUncheckedCallee; |
| 6416 | EPI1.CFIUncheckedCallee = CFIUncheckedCallee; |
| 6417 | EPI2.CFIUncheckedCallee = CFIUncheckedCallee; |
| 6418 | |
| 6419 | // The result is nothrow if both operands are. |
| 6420 | SmallVector<QualType, 8> ExceptionTypeStorage; |
| 6421 | EPI1.ExceptionSpec = EPI2.ExceptionSpec = Context.mergeExceptionSpecs( |
| 6422 | ESI1: EPI1.ExceptionSpec, ESI2: EPI2.ExceptionSpec, ExceptionTypeStorage, |
| 6423 | AcceptDependent: getLangOpts().CPlusPlus17); |
| 6424 | |
| 6425 | Composite1 = Context.getFunctionType(ResultTy: FPT1->getReturnType(), |
| 6426 | Args: FPT1->getParamTypes(), EPI: EPI1); |
| 6427 | Composite2 = Context.getFunctionType(ResultTy: FPT2->getReturnType(), |
| 6428 | Args: FPT2->getParamTypes(), EPI: EPI2); |
| 6429 | } |
| 6430 | } |
| 6431 | } |
| 6432 | |
| 6433 | // There are some more conversions we can perform under exactly one pointer. |
| 6434 | if (Steps.size() == 1 && Steps.front().K == Step::Pointer && |
| 6435 | !Context.hasSameType(T1: Composite1, T2: Composite2)) { |
| 6436 | // - if T1 or T2 is "pointer to cv1 void" and the other type is |
| 6437 | // "pointer to cv2 T", where T is an object type or void, |
| 6438 | // "pointer to cv12 void", where cv12 is the union of cv1 and cv2; |
| 6439 | if (Composite1->isVoidType() && Composite2->isObjectType()) |
| 6440 | Composite2 = Composite1; |
| 6441 | else if (Composite2->isVoidType() && Composite1->isObjectType()) |
| 6442 | Composite1 = Composite2; |
| 6443 | // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 |
| 6444 | // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), |
| 6445 | // the cv-combined type of T1 and T2 or the cv-combined type of T2 and |
| 6446 | // T1, respectively; |
| 6447 | // |
| 6448 | // The "similar type" handling covers all of this except for the "T1 is a |
| 6449 | // base class of T2" case in the definition of reference-related. |
| 6450 | else if (IsDerivedFrom(Loc, Derived: Composite1, Base: Composite2)) |
| 6451 | Composite1 = Composite2; |
| 6452 | else if (IsDerivedFrom(Loc, Derived: Composite2, Base: Composite1)) |
| 6453 | Composite2 = Composite1; |
| 6454 | } |
| 6455 | |
| 6456 | // At this point, either the inner types are the same or we have failed to |
| 6457 | // find a composite pointer type. |
| 6458 | if (!Context.hasSameType(T1: Composite1, T2: Composite2)) |
| 6459 | return QualType(); |
| 6460 | |
| 6461 | // Per C++ [conv.qual]p3, add 'const' to every level before the last |
| 6462 | // differing qualifier. |
| 6463 | for (unsigned I = 0; I != NeedConstBefore; ++I) |
| 6464 | Steps[I].Quals.addConst(); |
| 6465 | |
| 6466 | // Rebuild the composite type. |
| 6467 | QualType Composite = Context.getCommonSugaredType(X: Composite1, Y: Composite2); |
| 6468 | for (auto &S : llvm::reverse(C&: Steps)) |
| 6469 | Composite = S.rebuild(Ctx&: Context, T: Composite); |
| 6470 | |
| 6471 | if (ConvertArgs) { |
| 6472 | // Convert the expressions to the composite pointer type. |
| 6473 | InitializedEntity Entity = |
| 6474 | InitializedEntity::InitializeTemporary(Type: Composite); |
| 6475 | InitializationKind Kind = |
| 6476 | InitializationKind::CreateCopy(InitLoc: Loc, EqualLoc: SourceLocation()); |
| 6477 | |
| 6478 | InitializationSequence E1ToC(*this, Entity, Kind, E1); |
| 6479 | if (!E1ToC) |
| 6480 | return QualType(); |
| 6481 | |
| 6482 | InitializationSequence E2ToC(*this, Entity, Kind, E2); |
| 6483 | if (!E2ToC) |
| 6484 | return QualType(); |
| 6485 | |
| 6486 | // FIXME: Let the caller know if these fail to avoid duplicate diagnostics. |
| 6487 | ExprResult E1Result = E1ToC.Perform(S&: *this, Entity, Kind, Args: E1); |
| 6488 | if (E1Result.isInvalid()) |
| 6489 | return QualType(); |
| 6490 | E1 = E1Result.get(); |
| 6491 | |
| 6492 | ExprResult E2Result = E2ToC.Perform(S&: *this, Entity, Kind, Args: E2); |
| 6493 | if (E2Result.isInvalid()) |
| 6494 | return QualType(); |
| 6495 | E2 = E2Result.get(); |
| 6496 | } |
| 6497 | |
| 6498 | return Composite; |
| 6499 | } |
| 6500 | |
| 6501 | ExprResult Sema::MaybeBindToTemporary(Expr *E) { |
| 6502 | if (!E) |
| 6503 | return ExprError(); |
| 6504 | |
| 6505 | assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?" ); |
| 6506 | |
| 6507 | // If the result is a glvalue, we shouldn't bind it. |
| 6508 | if (E->isGLValue()) |
| 6509 | return E; |
| 6510 | |
| 6511 | // In ARC, calls that return a retainable type can return retained, |
| 6512 | // in which case we have to insert a consuming cast. |
| 6513 | if (getLangOpts().ObjCAutoRefCount && |
| 6514 | E->getType()->isObjCRetainableType()) { |
| 6515 | |
| 6516 | bool ReturnsRetained; |
| 6517 | |
| 6518 | // For actual calls, we compute this by examining the type of the |
| 6519 | // called value. |
| 6520 | if (CallExpr *Call = dyn_cast<CallExpr>(Val: E)) { |
| 6521 | Expr *Callee = Call->getCallee()->IgnoreParens(); |
| 6522 | QualType T = Callee->getType(); |
| 6523 | |
| 6524 | if (T == Context.BoundMemberTy) { |
| 6525 | // Handle pointer-to-members. |
| 6526 | if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val: Callee)) |
| 6527 | T = BinOp->getRHS()->getType(); |
| 6528 | else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Val: Callee)) |
| 6529 | T = Mem->getMemberDecl()->getType(); |
| 6530 | } |
| 6531 | |
| 6532 | if (const PointerType *Ptr = T->getAs<PointerType>()) |
| 6533 | T = Ptr->getPointeeType(); |
| 6534 | else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>()) |
| 6535 | T = Ptr->getPointeeType(); |
| 6536 | else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>()) |
| 6537 | T = MemPtr->getPointeeType(); |
| 6538 | |
| 6539 | auto *FTy = T->castAs<FunctionType>(); |
| 6540 | ReturnsRetained = FTy->getExtInfo().getProducesResult(); |
| 6541 | |
| 6542 | // ActOnStmtExpr arranges things so that StmtExprs of retainable |
| 6543 | // type always produce a +1 object. |
| 6544 | } else if (isa<StmtExpr>(Val: E)) { |
| 6545 | ReturnsRetained = true; |
| 6546 | |
| 6547 | // We hit this case with the lambda conversion-to-block optimization; |
| 6548 | // we don't want any extra casts here. |
| 6549 | } else if (isa<CastExpr>(Val: E) && |
| 6550 | isa<BlockExpr>(Val: cast<CastExpr>(Val: E)->getSubExpr())) { |
| 6551 | return E; |
| 6552 | |
| 6553 | // For message sends and property references, we try to find an |
| 6554 | // actual method. FIXME: we should infer retention by selector in |
| 6555 | // cases where we don't have an actual method. |
| 6556 | } else { |
| 6557 | ObjCMethodDecl *D = nullptr; |
| 6558 | if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(Val: E)) { |
| 6559 | D = Send->getMethodDecl(); |
| 6560 | } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(Val: E)) { |
| 6561 | D = BoxedExpr->getBoxingMethod(); |
| 6562 | } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(Val: E)) { |
| 6563 | // Don't do reclaims if we're using the zero-element array |
| 6564 | // constant. |
| 6565 | if (ArrayLit->getNumElements() == 0 && |
| 6566 | Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) |
| 6567 | return E; |
| 6568 | |
| 6569 | D = ArrayLit->getArrayWithObjectsMethod(); |
| 6570 | } else if (ObjCDictionaryLiteral *DictLit |
| 6571 | = dyn_cast<ObjCDictionaryLiteral>(Val: E)) { |
| 6572 | // Don't do reclaims if we're using the zero-element dictionary |
| 6573 | // constant. |
| 6574 | if (DictLit->getNumElements() == 0 && |
| 6575 | Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) |
| 6576 | return E; |
| 6577 | |
| 6578 | D = DictLit->getDictWithObjectsMethod(); |
| 6579 | } |
| 6580 | |
| 6581 | ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>()); |
| 6582 | |
| 6583 | // Don't do reclaims on performSelector calls; despite their |
| 6584 | // return type, the invoked method doesn't necessarily actually |
| 6585 | // return an object. |
| 6586 | if (!ReturnsRetained && |
| 6587 | D && D->getMethodFamily() == OMF_performSelector) |
| 6588 | return E; |
| 6589 | } |
| 6590 | |
| 6591 | // Don't reclaim an object of Class type. |
| 6592 | if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType()) |
| 6593 | return E; |
| 6594 | |
| 6595 | Cleanup.setExprNeedsCleanups(true); |
| 6596 | |
| 6597 | CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject |
| 6598 | : CK_ARCReclaimReturnedObject); |
| 6599 | return ImplicitCastExpr::Create(Context, T: E->getType(), Kind: ck, Operand: E, BasePath: nullptr, |
| 6600 | Cat: VK_PRValue, FPO: FPOptionsOverride()); |
| 6601 | } |
| 6602 | |
| 6603 | if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) |
| 6604 | Cleanup.setExprNeedsCleanups(true); |
| 6605 | |
| 6606 | if (!getLangOpts().CPlusPlus) |
| 6607 | return E; |
| 6608 | |
| 6609 | // Search for the base element type (cf. ASTContext::getBaseElementType) with |
| 6610 | // a fast path for the common case that the type is directly a RecordType. |
| 6611 | const Type *T = Context.getCanonicalType(T: E->getType().getTypePtr()); |
| 6612 | const RecordType *RT = nullptr; |
| 6613 | while (!RT) { |
| 6614 | switch (T->getTypeClass()) { |
| 6615 | case Type::Record: |
| 6616 | RT = cast<RecordType>(Val: T); |
| 6617 | break; |
| 6618 | case Type::ConstantArray: |
| 6619 | case Type::IncompleteArray: |
| 6620 | case Type::VariableArray: |
| 6621 | case Type::DependentSizedArray: |
| 6622 | T = cast<ArrayType>(Val: T)->getElementType().getTypePtr(); |
| 6623 | break; |
| 6624 | default: |
| 6625 | return E; |
| 6626 | } |
| 6627 | } |
| 6628 | |
| 6629 | // That should be enough to guarantee that this type is complete, if we're |
| 6630 | // not processing a decltype expression. |
| 6631 | CXXRecordDecl *RD = cast<CXXRecordDecl>(Val: RT->getDecl()); |
| 6632 | if (RD->isInvalidDecl() || RD->isDependentContext()) |
| 6633 | return E; |
| 6634 | |
| 6635 | bool IsDecltype = ExprEvalContexts.back().ExprContext == |
| 6636 | ExpressionEvaluationContextRecord::EK_Decltype; |
| 6637 | CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(Class: RD); |
| 6638 | |
| 6639 | if (Destructor) { |
| 6640 | MarkFunctionReferenced(E->getExprLoc(), Destructor); |
| 6641 | CheckDestructorAccess(E->getExprLoc(), Destructor, |
| 6642 | PDiag(diag::err_access_dtor_temp) |
| 6643 | << E->getType()); |
| 6644 | if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) |
| 6645 | return ExprError(); |
| 6646 | |
| 6647 | // If destructor is trivial, we can avoid the extra copy. |
| 6648 | if (Destructor->isTrivial()) |
| 6649 | return E; |
| 6650 | |
| 6651 | // We need a cleanup, but we don't need to remember the temporary. |
| 6652 | Cleanup.setExprNeedsCleanups(true); |
| 6653 | } |
| 6654 | |
| 6655 | CXXTemporary *Temp = CXXTemporary::Create(C: Context, Destructor); |
| 6656 | CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(C: Context, Temp, SubExpr: E); |
| 6657 | |
| 6658 | if (IsDecltype) |
| 6659 | ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Elt: Bind); |
| 6660 | |
| 6661 | return Bind; |
| 6662 | } |
| 6663 | |
| 6664 | ExprResult |
| 6665 | Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) { |
| 6666 | if (SubExpr.isInvalid()) |
| 6667 | return ExprError(); |
| 6668 | |
| 6669 | return MaybeCreateExprWithCleanups(SubExpr: SubExpr.get()); |
| 6670 | } |
| 6671 | |
| 6672 | Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) { |
| 6673 | assert(SubExpr && "subexpression can't be null!" ); |
| 6674 | |
| 6675 | CleanupVarDeclMarking(); |
| 6676 | |
| 6677 | unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects; |
| 6678 | assert(ExprCleanupObjects.size() >= FirstCleanup); |
| 6679 | assert(Cleanup.exprNeedsCleanups() || |
| 6680 | ExprCleanupObjects.size() == FirstCleanup); |
| 6681 | if (!Cleanup.exprNeedsCleanups()) |
| 6682 | return SubExpr; |
| 6683 | |
| 6684 | auto Cleanups = llvm::ArrayRef(ExprCleanupObjects.begin() + FirstCleanup, |
| 6685 | ExprCleanupObjects.size() - FirstCleanup); |
| 6686 | |
| 6687 | auto *E = ExprWithCleanups::Create( |
| 6688 | C: Context, subexpr: SubExpr, CleanupsHaveSideEffects: Cleanup.cleanupsHaveSideEffects(), objects: Cleanups); |
| 6689 | DiscardCleanupsInEvaluationContext(); |
| 6690 | |
| 6691 | return E; |
| 6692 | } |
| 6693 | |
| 6694 | Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) { |
| 6695 | assert(SubStmt && "sub-statement can't be null!" ); |
| 6696 | |
| 6697 | CleanupVarDeclMarking(); |
| 6698 | |
| 6699 | if (!Cleanup.exprNeedsCleanups()) |
| 6700 | return SubStmt; |
| 6701 | |
| 6702 | // FIXME: In order to attach the temporaries, wrap the statement into |
| 6703 | // a StmtExpr; currently this is only used for asm statements. |
| 6704 | // This is hacky, either create a new CXXStmtWithTemporaries statement or |
| 6705 | // a new AsmStmtWithTemporaries. |
| 6706 | CompoundStmt *CompStmt = |
| 6707 | CompoundStmt::Create(C: Context, Stmts: SubStmt, FPFeatures: FPOptionsOverride(), |
| 6708 | LB: SourceLocation(), RB: SourceLocation()); |
| 6709 | Expr *E = new (Context) |
| 6710 | StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(), |
| 6711 | /*FIXME TemplateDepth=*/0); |
| 6712 | return MaybeCreateExprWithCleanups(SubExpr: E); |
| 6713 | } |
| 6714 | |
| 6715 | ExprResult Sema::ActOnDecltypeExpression(Expr *E) { |
| 6716 | assert(ExprEvalContexts.back().ExprContext == |
| 6717 | ExpressionEvaluationContextRecord::EK_Decltype && |
| 6718 | "not in a decltype expression" ); |
| 6719 | |
| 6720 | ExprResult Result = CheckPlaceholderExpr(E); |
| 6721 | if (Result.isInvalid()) |
| 6722 | return ExprError(); |
| 6723 | E = Result.get(); |
| 6724 | |
| 6725 | // C++11 [expr.call]p11: |
| 6726 | // If a function call is a prvalue of object type, |
| 6727 | // -- if the function call is either |
| 6728 | // -- the operand of a decltype-specifier, or |
| 6729 | // -- the right operand of a comma operator that is the operand of a |
| 6730 | // decltype-specifier, |
| 6731 | // a temporary object is not introduced for the prvalue. |
| 6732 | |
| 6733 | // Recursively rebuild ParenExprs and comma expressions to strip out the |
| 6734 | // outermost CXXBindTemporaryExpr, if any. |
| 6735 | if (ParenExpr *PE = dyn_cast<ParenExpr>(Val: E)) { |
| 6736 | ExprResult SubExpr = ActOnDecltypeExpression(E: PE->getSubExpr()); |
| 6737 | if (SubExpr.isInvalid()) |
| 6738 | return ExprError(); |
| 6739 | if (SubExpr.get() == PE->getSubExpr()) |
| 6740 | return E; |
| 6741 | return ActOnParenExpr(L: PE->getLParen(), R: PE->getRParen(), E: SubExpr.get()); |
| 6742 | } |
| 6743 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) { |
| 6744 | if (BO->getOpcode() == BO_Comma) { |
| 6745 | ExprResult RHS = ActOnDecltypeExpression(E: BO->getRHS()); |
| 6746 | if (RHS.isInvalid()) |
| 6747 | return ExprError(); |
| 6748 | if (RHS.get() == BO->getRHS()) |
| 6749 | return E; |
| 6750 | return BinaryOperator::Create(C: Context, lhs: BO->getLHS(), rhs: RHS.get(), opc: BO_Comma, |
| 6751 | ResTy: BO->getType(), VK: BO->getValueKind(), |
| 6752 | OK: BO->getObjectKind(), opLoc: BO->getOperatorLoc(), |
| 6753 | FPFeatures: BO->getFPFeatures()); |
| 6754 | } |
| 6755 | } |
| 6756 | |
| 6757 | CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(Val: E); |
| 6758 | CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(Val: TopBind->getSubExpr()) |
| 6759 | : nullptr; |
| 6760 | if (TopCall) |
| 6761 | E = TopCall; |
| 6762 | else |
| 6763 | TopBind = nullptr; |
| 6764 | |
| 6765 | // Disable the special decltype handling now. |
| 6766 | ExprEvalContexts.back().ExprContext = |
| 6767 | ExpressionEvaluationContextRecord::EK_Other; |
| 6768 | |
| 6769 | Result = CheckUnevaluatedOperand(E); |
| 6770 | if (Result.isInvalid()) |
| 6771 | return ExprError(); |
| 6772 | E = Result.get(); |
| 6773 | |
| 6774 | // In MS mode, don't perform any extra checking of call return types within a |
| 6775 | // decltype expression. |
| 6776 | if (getLangOpts().MSVCCompat) |
| 6777 | return E; |
| 6778 | |
| 6779 | // Perform the semantic checks we delayed until this point. |
| 6780 | for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size(); |
| 6781 | I != N; ++I) { |
| 6782 | CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I]; |
| 6783 | if (Call == TopCall) |
| 6784 | continue; |
| 6785 | |
| 6786 | if (CheckCallReturnType(ReturnType: Call->getCallReturnType(Ctx: Context), |
| 6787 | Loc: Call->getBeginLoc(), CE: Call, FD: Call->getDirectCallee())) |
| 6788 | return ExprError(); |
| 6789 | } |
| 6790 | |
| 6791 | // Now all relevant types are complete, check the destructors are accessible |
| 6792 | // and non-deleted, and annotate them on the temporaries. |
| 6793 | for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size(); |
| 6794 | I != N; ++I) { |
| 6795 | CXXBindTemporaryExpr *Bind = |
| 6796 | ExprEvalContexts.back().DelayedDecltypeBinds[I]; |
| 6797 | if (Bind == TopBind) |
| 6798 | continue; |
| 6799 | |
| 6800 | CXXTemporary *Temp = Bind->getTemporary(); |
| 6801 | |
| 6802 | CXXRecordDecl *RD = |
| 6803 | Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
| 6804 | CXXDestructorDecl *Destructor = LookupDestructor(Class: RD); |
| 6805 | Temp->setDestructor(Destructor); |
| 6806 | |
| 6807 | MarkFunctionReferenced(Loc: Bind->getExprLoc(), Func: Destructor); |
| 6808 | CheckDestructorAccess(Bind->getExprLoc(), Destructor, |
| 6809 | PDiag(diag::err_access_dtor_temp) |
| 6810 | << Bind->getType()); |
| 6811 | if (DiagnoseUseOfDecl(D: Destructor, Locs: Bind->getExprLoc())) |
| 6812 | return ExprError(); |
| 6813 | |
| 6814 | // We need a cleanup, but we don't need to remember the temporary. |
| 6815 | Cleanup.setExprNeedsCleanups(true); |
| 6816 | } |
| 6817 | |
| 6818 | // Possibly strip off the top CXXBindTemporaryExpr. |
| 6819 | return E; |
| 6820 | } |
| 6821 | |
| 6822 | /// Note a set of 'operator->' functions that were used for a member access. |
| 6823 | static void noteOperatorArrows(Sema &S, |
| 6824 | ArrayRef<FunctionDecl *> OperatorArrows) { |
| 6825 | unsigned SkipStart = OperatorArrows.size(), SkipCount = 0; |
| 6826 | // FIXME: Make this configurable? |
| 6827 | unsigned Limit = 9; |
| 6828 | if (OperatorArrows.size() > Limit) { |
| 6829 | // Produce Limit-1 normal notes and one 'skipping' note. |
| 6830 | SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2; |
| 6831 | SkipCount = OperatorArrows.size() - (Limit - 1); |
| 6832 | } |
| 6833 | |
| 6834 | for (unsigned I = 0; I < OperatorArrows.size(); /**/) { |
| 6835 | if (I == SkipStart) { |
| 6836 | S.Diag(OperatorArrows[I]->getLocation(), |
| 6837 | diag::note_operator_arrows_suppressed) |
| 6838 | << SkipCount; |
| 6839 | I += SkipCount; |
| 6840 | } else { |
| 6841 | S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here) |
| 6842 | << OperatorArrows[I]->getCallResultType(); |
| 6843 | ++I; |
| 6844 | } |
| 6845 | } |
| 6846 | } |
| 6847 | |
| 6848 | ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, |
| 6849 | SourceLocation OpLoc, |
| 6850 | tok::TokenKind OpKind, |
| 6851 | ParsedType &ObjectType, |
| 6852 | bool &MayBePseudoDestructor) { |
| 6853 | // Since this might be a postfix expression, get rid of ParenListExprs. |
| 6854 | ExprResult Result = MaybeConvertParenListExprToParenExpr(S, ME: Base); |
| 6855 | if (Result.isInvalid()) return ExprError(); |
| 6856 | Base = Result.get(); |
| 6857 | |
| 6858 | Result = CheckPlaceholderExpr(E: Base); |
| 6859 | if (Result.isInvalid()) return ExprError(); |
| 6860 | Base = Result.get(); |
| 6861 | |
| 6862 | QualType BaseType = Base->getType(); |
| 6863 | MayBePseudoDestructor = false; |
| 6864 | if (BaseType->isDependentType()) { |
| 6865 | // If we have a pointer to a dependent type and are using the -> operator, |
| 6866 | // the object type is the type that the pointer points to. We might still |
| 6867 | // have enough information about that type to do something useful. |
| 6868 | if (OpKind == tok::arrow) |
| 6869 | if (const PointerType *Ptr = BaseType->getAs<PointerType>()) |
| 6870 | BaseType = Ptr->getPointeeType(); |
| 6871 | |
| 6872 | ObjectType = ParsedType::make(P: BaseType); |
| 6873 | MayBePseudoDestructor = true; |
| 6874 | return Base; |
| 6875 | } |
| 6876 | |
| 6877 | // C++ [over.match.oper]p8: |
| 6878 | // [...] When operator->returns, the operator-> is applied to the value |
| 6879 | // returned, with the original second operand. |
| 6880 | if (OpKind == tok::arrow) { |
| 6881 | QualType StartingType = BaseType; |
| 6882 | bool NoArrowOperatorFound = false; |
| 6883 | bool FirstIteration = true; |
| 6884 | FunctionDecl *CurFD = dyn_cast<FunctionDecl>(Val: CurContext); |
| 6885 | // The set of types we've considered so far. |
| 6886 | llvm::SmallPtrSet<CanQualType,8> CTypes; |
| 6887 | SmallVector<FunctionDecl*, 8> OperatorArrows; |
| 6888 | CTypes.insert(Ptr: Context.getCanonicalType(T: BaseType)); |
| 6889 | |
| 6890 | while (BaseType->isRecordType()) { |
| 6891 | if (OperatorArrows.size() >= getLangOpts().ArrowDepth) { |
| 6892 | Diag(OpLoc, diag::err_operator_arrow_depth_exceeded) |
| 6893 | << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange(); |
| 6894 | noteOperatorArrows(S&: *this, OperatorArrows); |
| 6895 | Diag(OpLoc, diag::note_operator_arrow_depth) |
| 6896 | << getLangOpts().ArrowDepth; |
| 6897 | return ExprError(); |
| 6898 | } |
| 6899 | |
| 6900 | Result = BuildOverloadedArrowExpr( |
| 6901 | S, Base, OpLoc, |
| 6902 | // When in a template specialization and on the first loop iteration, |
| 6903 | // potentially give the default diagnostic (with the fixit in a |
| 6904 | // separate note) instead of having the error reported back to here |
| 6905 | // and giving a diagnostic with a fixit attached to the error itself. |
| 6906 | NoArrowOperatorFound: (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization()) |
| 6907 | ? nullptr |
| 6908 | : &NoArrowOperatorFound); |
| 6909 | if (Result.isInvalid()) { |
| 6910 | if (NoArrowOperatorFound) { |
| 6911 | if (FirstIteration) { |
| 6912 | Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) |
| 6913 | << BaseType << 1 << Base->getSourceRange() |
| 6914 | << FixItHint::CreateReplacement(OpLoc, "." ); |
| 6915 | OpKind = tok::period; |
| 6916 | break; |
| 6917 | } |
| 6918 | Diag(OpLoc, diag::err_typecheck_member_reference_arrow) |
| 6919 | << BaseType << Base->getSourceRange(); |
| 6920 | CallExpr *CE = dyn_cast<CallExpr>(Val: Base); |
| 6921 | if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) { |
| 6922 | Diag(CD->getBeginLoc(), |
| 6923 | diag::note_member_reference_arrow_from_operator_arrow); |
| 6924 | } |
| 6925 | } |
| 6926 | return ExprError(); |
| 6927 | } |
| 6928 | Base = Result.get(); |
| 6929 | if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Val: Base)) |
| 6930 | OperatorArrows.push_back(Elt: OpCall->getDirectCallee()); |
| 6931 | BaseType = Base->getType(); |
| 6932 | CanQualType CBaseType = Context.getCanonicalType(T: BaseType); |
| 6933 | if (!CTypes.insert(Ptr: CBaseType).second) { |
| 6934 | Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType; |
| 6935 | noteOperatorArrows(S&: *this, OperatorArrows); |
| 6936 | return ExprError(); |
| 6937 | } |
| 6938 | FirstIteration = false; |
| 6939 | } |
| 6940 | |
| 6941 | if (OpKind == tok::arrow) { |
| 6942 | if (BaseType->isPointerType()) |
| 6943 | BaseType = BaseType->getPointeeType(); |
| 6944 | else if (auto *AT = Context.getAsArrayType(T: BaseType)) |
| 6945 | BaseType = AT->getElementType(); |
| 6946 | } |
| 6947 | } |
| 6948 | |
| 6949 | // Objective-C properties allow "." access on Objective-C pointer types, |
| 6950 | // so adjust the base type to the object type itself. |
| 6951 | if (BaseType->isObjCObjectPointerType()) |
| 6952 | BaseType = BaseType->getPointeeType(); |
| 6953 | |
| 6954 | // C++ [basic.lookup.classref]p2: |
| 6955 | // [...] If the type of the object expression is of pointer to scalar |
| 6956 | // type, the unqualified-id is looked up in the context of the complete |
| 6957 | // postfix-expression. |
| 6958 | // |
| 6959 | // This also indicates that we could be parsing a pseudo-destructor-name. |
| 6960 | // Note that Objective-C class and object types can be pseudo-destructor |
| 6961 | // expressions or normal member (ivar or property) access expressions, and |
| 6962 | // it's legal for the type to be incomplete if this is a pseudo-destructor |
| 6963 | // call. We'll do more incomplete-type checks later in the lookup process, |
| 6964 | // so just skip this check for ObjC types. |
| 6965 | if (!BaseType->isRecordType()) { |
| 6966 | ObjectType = ParsedType::make(P: BaseType); |
| 6967 | MayBePseudoDestructor = true; |
| 6968 | return Base; |
| 6969 | } |
| 6970 | |
| 6971 | // The object type must be complete (or dependent), or |
| 6972 | // C++11 [expr.prim.general]p3: |
| 6973 | // Unlike the object expression in other contexts, *this is not required to |
| 6974 | // be of complete type for purposes of class member access (5.2.5) outside |
| 6975 | // the member function body. |
| 6976 | if (!BaseType->isDependentType() && |
| 6977 | !isThisOutsideMemberFunctionBody(BaseType) && |
| 6978 | RequireCompleteType(OpLoc, BaseType, |
| 6979 | diag::err_incomplete_member_access)) { |
| 6980 | return CreateRecoveryExpr(Begin: Base->getBeginLoc(), End: Base->getEndLoc(), SubExprs: {Base}); |
| 6981 | } |
| 6982 | |
| 6983 | // C++ [basic.lookup.classref]p2: |
| 6984 | // If the id-expression in a class member access (5.2.5) is an |
| 6985 | // unqualified-id, and the type of the object expression is of a class |
| 6986 | // type C (or of pointer to a class type C), the unqualified-id is looked |
| 6987 | // up in the scope of class C. [...] |
| 6988 | ObjectType = ParsedType::make(P: BaseType); |
| 6989 | return Base; |
| 6990 | } |
| 6991 | |
| 6992 | static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base, |
| 6993 | tok::TokenKind &OpKind, SourceLocation OpLoc) { |
| 6994 | if (Base->hasPlaceholderType()) { |
| 6995 | ExprResult result = S.CheckPlaceholderExpr(E: Base); |
| 6996 | if (result.isInvalid()) return true; |
| 6997 | Base = result.get(); |
| 6998 | } |
| 6999 | ObjectType = Base->getType(); |
| 7000 | |
| 7001 | // C++ [expr.pseudo]p2: |
| 7002 | // The left-hand side of the dot operator shall be of scalar type. The |
| 7003 | // left-hand side of the arrow operator shall be of pointer to scalar type. |
| 7004 | // This scalar type is the object type. |
| 7005 | // Note that this is rather different from the normal handling for the |
| 7006 | // arrow operator. |
| 7007 | if (OpKind == tok::arrow) { |
| 7008 | // The operator requires a prvalue, so perform lvalue conversions. |
| 7009 | // Only do this if we might plausibly end with a pointer, as otherwise |
| 7010 | // this was likely to be intended to be a '.'. |
| 7011 | if (ObjectType->isPointerType() || ObjectType->isArrayType() || |
| 7012 | ObjectType->isFunctionType()) { |
| 7013 | ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(E: Base); |
| 7014 | if (BaseResult.isInvalid()) |
| 7015 | return true; |
| 7016 | Base = BaseResult.get(); |
| 7017 | ObjectType = Base->getType(); |
| 7018 | } |
| 7019 | |
| 7020 | if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { |
| 7021 | ObjectType = Ptr->getPointeeType(); |
| 7022 | } else if (!Base->isTypeDependent()) { |
| 7023 | // The user wrote "p->" when they probably meant "p."; fix it. |
| 7024 | S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) |
| 7025 | << ObjectType << true |
| 7026 | << FixItHint::CreateReplacement(OpLoc, "." ); |
| 7027 | if (S.isSFINAEContext()) |
| 7028 | return true; |
| 7029 | |
| 7030 | OpKind = tok::period; |
| 7031 | } |
| 7032 | } |
| 7033 | |
| 7034 | return false; |
| 7035 | } |
| 7036 | |
| 7037 | /// Check if it's ok to try and recover dot pseudo destructor calls on |
| 7038 | /// pointer objects. |
| 7039 | static bool |
| 7040 | canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef, |
| 7041 | QualType DestructedType) { |
| 7042 | // If this is a record type, check if its destructor is callable. |
| 7043 | if (auto *RD = DestructedType->getAsCXXRecordDecl()) { |
| 7044 | if (RD->hasDefinition()) |
| 7045 | if (CXXDestructorDecl *D = SemaRef.LookupDestructor(Class: RD)) |
| 7046 | return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false); |
| 7047 | return false; |
| 7048 | } |
| 7049 | |
| 7050 | // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor. |
| 7051 | return DestructedType->isDependentType() || DestructedType->isScalarType() || |
| 7052 | DestructedType->isVectorType(); |
| 7053 | } |
| 7054 | |
| 7055 | ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base, |
| 7056 | SourceLocation OpLoc, |
| 7057 | tok::TokenKind OpKind, |
| 7058 | const CXXScopeSpec &SS, |
| 7059 | TypeSourceInfo *ScopeTypeInfo, |
| 7060 | SourceLocation CCLoc, |
| 7061 | SourceLocation TildeLoc, |
| 7062 | PseudoDestructorTypeStorage Destructed) { |
| 7063 | TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); |
| 7064 | |
| 7065 | QualType ObjectType; |
| 7066 | if (CheckArrow(S&: *this, ObjectType, Base, OpKind, OpLoc)) |
| 7067 | return ExprError(); |
| 7068 | |
| 7069 | if (!ObjectType->isDependentType() && !ObjectType->isScalarType() && |
| 7070 | !ObjectType->isVectorType() && !ObjectType->isMatrixType()) { |
| 7071 | if (getLangOpts().MSVCCompat && ObjectType->isVoidType()) |
| 7072 | Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange(); |
| 7073 | else { |
| 7074 | Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) |
| 7075 | << ObjectType << Base->getSourceRange(); |
| 7076 | return ExprError(); |
| 7077 | } |
| 7078 | } |
| 7079 | |
| 7080 | // C++ [expr.pseudo]p2: |
| 7081 | // [...] The cv-unqualified versions of the object type and of the type |
| 7082 | // designated by the pseudo-destructor-name shall be the same type. |
| 7083 | if (DestructedTypeInfo) { |
| 7084 | QualType DestructedType = DestructedTypeInfo->getType(); |
| 7085 | SourceLocation DestructedTypeStart = |
| 7086 | DestructedTypeInfo->getTypeLoc().getBeginLoc(); |
| 7087 | if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) { |
| 7088 | if (!Context.hasSameUnqualifiedType(T1: DestructedType, T2: ObjectType)) { |
| 7089 | // Detect dot pseudo destructor calls on pointer objects, e.g.: |
| 7090 | // Foo *foo; |
| 7091 | // foo.~Foo(); |
| 7092 | if (OpKind == tok::period && ObjectType->isPointerType() && |
| 7093 | Context.hasSameUnqualifiedType(T1: DestructedType, |
| 7094 | T2: ObjectType->getPointeeType())) { |
| 7095 | auto Diagnostic = |
| 7096 | Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) |
| 7097 | << ObjectType << /*IsArrow=*/0 << Base->getSourceRange(); |
| 7098 | |
| 7099 | // Issue a fixit only when the destructor is valid. |
| 7100 | if (canRecoverDotPseudoDestructorCallsOnPointerObjects( |
| 7101 | SemaRef&: *this, DestructedType)) |
| 7102 | Diagnostic << FixItHint::CreateReplacement(RemoveRange: OpLoc, Code: "->" ); |
| 7103 | |
| 7104 | // Recover by setting the object type to the destructed type and the |
| 7105 | // operator to '->'. |
| 7106 | ObjectType = DestructedType; |
| 7107 | OpKind = tok::arrow; |
| 7108 | } else { |
| 7109 | Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) |
| 7110 | << ObjectType << DestructedType << Base->getSourceRange() |
| 7111 | << DestructedTypeInfo->getTypeLoc().getSourceRange(); |
| 7112 | |
| 7113 | // Recover by setting the destructed type to the object type. |
| 7114 | DestructedType = ObjectType; |
| 7115 | DestructedTypeInfo = |
| 7116 | Context.getTrivialTypeSourceInfo(T: ObjectType, Loc: DestructedTypeStart); |
| 7117 | Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); |
| 7118 | } |
| 7119 | } else if (DestructedType.getObjCLifetime() != |
| 7120 | ObjectType.getObjCLifetime()) { |
| 7121 | |
| 7122 | if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) { |
| 7123 | // Okay: just pretend that the user provided the correctly-qualified |
| 7124 | // type. |
| 7125 | } else { |
| 7126 | Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals) |
| 7127 | << ObjectType << DestructedType << Base->getSourceRange() |
| 7128 | << DestructedTypeInfo->getTypeLoc().getSourceRange(); |
| 7129 | } |
| 7130 | |
| 7131 | // Recover by setting the destructed type to the object type. |
| 7132 | DestructedType = ObjectType; |
| 7133 | DestructedTypeInfo = Context.getTrivialTypeSourceInfo(T: ObjectType, |
| 7134 | Loc: DestructedTypeStart); |
| 7135 | Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); |
| 7136 | } |
| 7137 | } |
| 7138 | } |
| 7139 | |
| 7140 | // C++ [expr.pseudo]p2: |
| 7141 | // [...] Furthermore, the two type-names in a pseudo-destructor-name of the |
| 7142 | // form |
| 7143 | // |
| 7144 | // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name |
| 7145 | // |
| 7146 | // shall designate the same scalar type. |
| 7147 | if (ScopeTypeInfo) { |
| 7148 | QualType ScopeType = ScopeTypeInfo->getType(); |
| 7149 | if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && |
| 7150 | !Context.hasSameUnqualifiedType(T1: ScopeType, T2: ObjectType)) { |
| 7151 | |
| 7152 | Diag(ScopeTypeInfo->getTypeLoc().getSourceRange().getBegin(), |
| 7153 | diag::err_pseudo_dtor_type_mismatch) |
| 7154 | << ObjectType << ScopeType << Base->getSourceRange() |
| 7155 | << ScopeTypeInfo->getTypeLoc().getSourceRange(); |
| 7156 | |
| 7157 | ScopeType = QualType(); |
| 7158 | ScopeTypeInfo = nullptr; |
| 7159 | } |
| 7160 | } |
| 7161 | |
| 7162 | Expr *Result |
| 7163 | = new (Context) CXXPseudoDestructorExpr(Context, Base, |
| 7164 | OpKind == tok::arrow, OpLoc, |
| 7165 | SS.getWithLocInContext(Context), |
| 7166 | ScopeTypeInfo, |
| 7167 | CCLoc, |
| 7168 | TildeLoc, |
| 7169 | Destructed); |
| 7170 | |
| 7171 | return Result; |
| 7172 | } |
| 7173 | |
| 7174 | ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, |
| 7175 | SourceLocation OpLoc, |
| 7176 | tok::TokenKind OpKind, |
| 7177 | CXXScopeSpec &SS, |
| 7178 | UnqualifiedId &FirstTypeName, |
| 7179 | SourceLocation CCLoc, |
| 7180 | SourceLocation TildeLoc, |
| 7181 | UnqualifiedId &SecondTypeName) { |
| 7182 | assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || |
| 7183 | FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && |
| 7184 | "Invalid first type name in pseudo-destructor" ); |
| 7185 | assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || |
| 7186 | SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && |
| 7187 | "Invalid second type name in pseudo-destructor" ); |
| 7188 | |
| 7189 | QualType ObjectType; |
| 7190 | if (CheckArrow(S&: *this, ObjectType, Base, OpKind, OpLoc)) |
| 7191 | return ExprError(); |
| 7192 | |
| 7193 | // Compute the object type that we should use for name lookup purposes. Only |
| 7194 | // record types and dependent types matter. |
| 7195 | ParsedType ObjectTypePtrForLookup; |
| 7196 | if (!SS.isSet()) { |
| 7197 | if (ObjectType->isRecordType()) |
| 7198 | ObjectTypePtrForLookup = ParsedType::make(P: ObjectType); |
| 7199 | else if (ObjectType->isDependentType()) |
| 7200 | ObjectTypePtrForLookup = ParsedType::make(P: Context.DependentTy); |
| 7201 | } |
| 7202 | |
| 7203 | // Convert the name of the type being destructed (following the ~) into a |
| 7204 | // type (with source-location information). |
| 7205 | QualType DestructedType; |
| 7206 | TypeSourceInfo *DestructedTypeInfo = nullptr; |
| 7207 | PseudoDestructorTypeStorage Destructed; |
| 7208 | if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { |
| 7209 | ParsedType T = getTypeName(II: *SecondTypeName.Identifier, |
| 7210 | NameLoc: SecondTypeName.StartLocation, |
| 7211 | S, SS: &SS, isClassName: true, HasTrailingDot: false, ObjectType: ObjectTypePtrForLookup, |
| 7212 | /*IsCtorOrDtorName*/true); |
| 7213 | if (!T && |
| 7214 | ((SS.isSet() && !computeDeclContext(SS, EnteringContext: false)) || |
| 7215 | (!SS.isSet() && ObjectType->isDependentType()))) { |
| 7216 | // The name of the type being destroyed is a dependent name, and we |
| 7217 | // couldn't find anything useful in scope. Just store the identifier and |
| 7218 | // it's location, and we'll perform (qualified) name lookup again at |
| 7219 | // template instantiation time. |
| 7220 | Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, |
| 7221 | SecondTypeName.StartLocation); |
| 7222 | } else if (!T) { |
| 7223 | Diag(SecondTypeName.StartLocation, |
| 7224 | diag::err_pseudo_dtor_destructor_non_type) |
| 7225 | << SecondTypeName.Identifier << ObjectType; |
| 7226 | if (isSFINAEContext()) |
| 7227 | return ExprError(); |
| 7228 | |
| 7229 | // Recover by assuming we had the right type all along. |
| 7230 | DestructedType = ObjectType; |
| 7231 | } else |
| 7232 | DestructedType = GetTypeFromParser(Ty: T, TInfo: &DestructedTypeInfo); |
| 7233 | } else { |
| 7234 | // Resolve the template-id to a type. |
| 7235 | TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; |
| 7236 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), |
| 7237 | TemplateId->NumArgs); |
| 7238 | TypeResult T = ActOnTemplateIdType(S, |
| 7239 | SS, |
| 7240 | TemplateKWLoc: TemplateId->TemplateKWLoc, |
| 7241 | Template: TemplateId->Template, |
| 7242 | TemplateII: TemplateId->Name, |
| 7243 | TemplateIILoc: TemplateId->TemplateNameLoc, |
| 7244 | LAngleLoc: TemplateId->LAngleLoc, |
| 7245 | TemplateArgs: TemplateArgsPtr, |
| 7246 | RAngleLoc: TemplateId->RAngleLoc, |
| 7247 | /*IsCtorOrDtorName*/true); |
| 7248 | if (T.isInvalid() || !T.get()) { |
| 7249 | // Recover by assuming we had the right type all along. |
| 7250 | DestructedType = ObjectType; |
| 7251 | } else |
| 7252 | DestructedType = GetTypeFromParser(Ty: T.get(), TInfo: &DestructedTypeInfo); |
| 7253 | } |
| 7254 | |
| 7255 | // If we've performed some kind of recovery, (re-)build the type source |
| 7256 | // information. |
| 7257 | if (!DestructedType.isNull()) { |
| 7258 | if (!DestructedTypeInfo) |
| 7259 | DestructedTypeInfo = Context.getTrivialTypeSourceInfo(T: DestructedType, |
| 7260 | Loc: SecondTypeName.StartLocation); |
| 7261 | Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); |
| 7262 | } |
| 7263 | |
| 7264 | // Convert the name of the scope type (the type prior to '::') into a type. |
| 7265 | TypeSourceInfo *ScopeTypeInfo = nullptr; |
| 7266 | QualType ScopeType; |
| 7267 | if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || |
| 7268 | FirstTypeName.Identifier) { |
| 7269 | if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { |
| 7270 | ParsedType T = getTypeName(II: *FirstTypeName.Identifier, |
| 7271 | NameLoc: FirstTypeName.StartLocation, |
| 7272 | S, SS: &SS, isClassName: true, HasTrailingDot: false, ObjectType: ObjectTypePtrForLookup, |
| 7273 | /*IsCtorOrDtorName*/true); |
| 7274 | if (!T) { |
| 7275 | Diag(FirstTypeName.StartLocation, |
| 7276 | diag::err_pseudo_dtor_destructor_non_type) |
| 7277 | << FirstTypeName.Identifier << ObjectType; |
| 7278 | |
| 7279 | if (isSFINAEContext()) |
| 7280 | return ExprError(); |
| 7281 | |
| 7282 | // Just drop this type. It's unnecessary anyway. |
| 7283 | ScopeType = QualType(); |
| 7284 | } else |
| 7285 | ScopeType = GetTypeFromParser(Ty: T, TInfo: &ScopeTypeInfo); |
| 7286 | } else { |
| 7287 | // Resolve the template-id to a type. |
| 7288 | TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; |
| 7289 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), |
| 7290 | TemplateId->NumArgs); |
| 7291 | TypeResult T = ActOnTemplateIdType(S, |
| 7292 | SS, |
| 7293 | TemplateKWLoc: TemplateId->TemplateKWLoc, |
| 7294 | Template: TemplateId->Template, |
| 7295 | TemplateII: TemplateId->Name, |
| 7296 | TemplateIILoc: TemplateId->TemplateNameLoc, |
| 7297 | LAngleLoc: TemplateId->LAngleLoc, |
| 7298 | TemplateArgs: TemplateArgsPtr, |
| 7299 | RAngleLoc: TemplateId->RAngleLoc, |
| 7300 | /*IsCtorOrDtorName*/true); |
| 7301 | if (T.isInvalid() || !T.get()) { |
| 7302 | // Recover by dropping this type. |
| 7303 | ScopeType = QualType(); |
| 7304 | } else |
| 7305 | ScopeType = GetTypeFromParser(Ty: T.get(), TInfo: &ScopeTypeInfo); |
| 7306 | } |
| 7307 | } |
| 7308 | |
| 7309 | if (!ScopeType.isNull() && !ScopeTypeInfo) |
| 7310 | ScopeTypeInfo = Context.getTrivialTypeSourceInfo(T: ScopeType, |
| 7311 | Loc: FirstTypeName.StartLocation); |
| 7312 | |
| 7313 | |
| 7314 | return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS, |
| 7315 | ScopeTypeInfo, CCLoc, TildeLoc, |
| 7316 | Destructed); |
| 7317 | } |
| 7318 | |
| 7319 | ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, |
| 7320 | SourceLocation OpLoc, |
| 7321 | tok::TokenKind OpKind, |
| 7322 | SourceLocation TildeLoc, |
| 7323 | const DeclSpec& DS) { |
| 7324 | QualType ObjectType; |
| 7325 | QualType T; |
| 7326 | TypeLocBuilder TLB; |
| 7327 | if (CheckArrow(S&: *this, ObjectType, Base, OpKind, OpLoc) || |
| 7328 | DS.getTypeSpecType() == DeclSpec::TST_error) |
| 7329 | return ExprError(); |
| 7330 | |
| 7331 | switch (DS.getTypeSpecType()) { |
| 7332 | case DeclSpec::TST_decltype_auto: { |
| 7333 | Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); |
| 7334 | return true; |
| 7335 | } |
| 7336 | case DeclSpec::TST_decltype: { |
| 7337 | T = BuildDecltypeType(E: DS.getRepAsExpr(), /*AsUnevaluated=*/false); |
| 7338 | DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T); |
| 7339 | DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc()); |
| 7340 | DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd()); |
| 7341 | break; |
| 7342 | } |
| 7343 | case DeclSpec::TST_typename_pack_indexing: { |
| 7344 | T = ActOnPackIndexingType(Pattern: DS.getRepAsType().get(), IndexExpr: DS.getPackIndexingExpr(), |
| 7345 | Loc: DS.getBeginLoc(), EllipsisLoc: DS.getEllipsisLoc()); |
| 7346 | TLB.pushTrivial(Context&: getASTContext(), |
| 7347 | T: cast<PackIndexingType>(Val: T.getTypePtr())->getPattern(), |
| 7348 | Loc: DS.getBeginLoc()); |
| 7349 | PackIndexingTypeLoc PITL = TLB.push<PackIndexingTypeLoc>(T); |
| 7350 | PITL.setEllipsisLoc(DS.getEllipsisLoc()); |
| 7351 | break; |
| 7352 | } |
| 7353 | default: |
| 7354 | llvm_unreachable("Unsupported type in pseudo destructor" ); |
| 7355 | } |
| 7356 | TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T); |
| 7357 | PseudoDestructorTypeStorage Destructed(DestructedTypeInfo); |
| 7358 | |
| 7359 | return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS: CXXScopeSpec(), |
| 7360 | ScopeTypeInfo: nullptr, CCLoc: SourceLocation(), TildeLoc, |
| 7361 | Destructed); |
| 7362 | } |
| 7363 | |
| 7364 | ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, |
| 7365 | SourceLocation RParen) { |
| 7366 | // If the operand is an unresolved lookup expression, the expression is ill- |
| 7367 | // formed per [over.over]p1, because overloaded function names cannot be used |
| 7368 | // without arguments except in explicit contexts. |
| 7369 | ExprResult R = CheckPlaceholderExpr(E: Operand); |
| 7370 | if (R.isInvalid()) |
| 7371 | return R; |
| 7372 | |
| 7373 | R = CheckUnevaluatedOperand(E: R.get()); |
| 7374 | if (R.isInvalid()) |
| 7375 | return ExprError(); |
| 7376 | |
| 7377 | Operand = R.get(); |
| 7378 | |
| 7379 | if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() && |
| 7380 | Operand->HasSideEffects(Ctx: Context, IncludePossibleEffects: false)) { |
| 7381 | // The expression operand for noexcept is in an unevaluated expression |
| 7382 | // context, so side effects could result in unintended consequences. |
| 7383 | Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context); |
| 7384 | } |
| 7385 | |
| 7386 | CanThrowResult CanThrow = canThrow(Operand); |
| 7387 | return new (Context) |
| 7388 | CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen); |
| 7389 | } |
| 7390 | |
| 7391 | ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation, |
| 7392 | Expr *Operand, SourceLocation RParen) { |
| 7393 | return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen); |
| 7394 | } |
| 7395 | |
| 7396 | static void MaybeDecrementCount( |
| 7397 | Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) { |
| 7398 | DeclRefExpr *LHS = nullptr; |
| 7399 | bool IsCompoundAssign = false; |
| 7400 | bool isIncrementDecrementUnaryOp = false; |
| 7401 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Val: E)) { |
| 7402 | if (BO->getLHS()->getType()->isDependentType() || |
| 7403 | BO->getRHS()->getType()->isDependentType()) { |
| 7404 | if (BO->getOpcode() != BO_Assign) |
| 7405 | return; |
| 7406 | } else if (!BO->isAssignmentOp()) |
| 7407 | return; |
| 7408 | else |
| 7409 | IsCompoundAssign = BO->isCompoundAssignmentOp(); |
| 7410 | LHS = dyn_cast<DeclRefExpr>(Val: BO->getLHS()); |
| 7411 | } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(Val: E)) { |
| 7412 | if (COCE->getOperator() != OO_Equal) |
| 7413 | return; |
| 7414 | LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0)); |
| 7415 | } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Val: E)) { |
| 7416 | if (!UO->isIncrementDecrementOp()) |
| 7417 | return; |
| 7418 | isIncrementDecrementUnaryOp = true; |
| 7419 | LHS = dyn_cast<DeclRefExpr>(Val: UO->getSubExpr()); |
| 7420 | } |
| 7421 | if (!LHS) |
| 7422 | return; |
| 7423 | VarDecl *VD = dyn_cast<VarDecl>(Val: LHS->getDecl()); |
| 7424 | if (!VD) |
| 7425 | return; |
| 7426 | // Don't decrement RefsMinusAssignments if volatile variable with compound |
| 7427 | // assignment (+=, ...) or increment/decrement unary operator to avoid |
| 7428 | // potential unused-but-set-variable warning. |
| 7429 | if ((IsCompoundAssign || isIncrementDecrementUnaryOp) && |
| 7430 | VD->getType().isVolatileQualified()) |
| 7431 | return; |
| 7432 | auto iter = RefsMinusAssignments.find(Val: VD); |
| 7433 | if (iter == RefsMinusAssignments.end()) |
| 7434 | return; |
| 7435 | iter->getSecond()--; |
| 7436 | } |
| 7437 | |
| 7438 | /// Perform the conversions required for an expression used in a |
| 7439 | /// context that ignores the result. |
| 7440 | ExprResult Sema::IgnoredValueConversions(Expr *E) { |
| 7441 | MaybeDecrementCount(E, RefsMinusAssignments); |
| 7442 | |
| 7443 | if (E->hasPlaceholderType()) { |
| 7444 | ExprResult result = CheckPlaceholderExpr(E); |
| 7445 | if (result.isInvalid()) return E; |
| 7446 | E = result.get(); |
| 7447 | } |
| 7448 | |
| 7449 | if (getLangOpts().CPlusPlus) { |
| 7450 | // The C++11 standard defines the notion of a discarded-value expression; |
| 7451 | // normally, we don't need to do anything to handle it, but if it is a |
| 7452 | // volatile lvalue with a special form, we perform an lvalue-to-rvalue |
| 7453 | // conversion. |
| 7454 | if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) { |
| 7455 | ExprResult Res = DefaultLvalueConversion(E); |
| 7456 | if (Res.isInvalid()) |
| 7457 | return E; |
| 7458 | E = Res.get(); |
| 7459 | } else { |
| 7460 | // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if |
| 7461 | // it occurs as a discarded-value expression. |
| 7462 | CheckUnusedVolatileAssignment(E); |
| 7463 | } |
| 7464 | |
| 7465 | // C++1z: |
| 7466 | // If the expression is a prvalue after this optional conversion, the |
| 7467 | // temporary materialization conversion is applied. |
| 7468 | // |
| 7469 | // We do not materialize temporaries by default in order to avoid creating |
| 7470 | // unnecessary temporary objects. If we skip this step, IR generation is |
| 7471 | // able to synthesize the storage for itself in the aggregate case, and |
| 7472 | // adding the extra node to the AST is just clutter. |
| 7473 | if (isInLifetimeExtendingContext() && getLangOpts().CPlusPlus17 && |
| 7474 | E->isPRValue() && !E->getType()->isVoidType()) { |
| 7475 | ExprResult Res = TemporaryMaterializationConversion(E); |
| 7476 | if (Res.isInvalid()) |
| 7477 | return E; |
| 7478 | E = Res.get(); |
| 7479 | } |
| 7480 | return E; |
| 7481 | } |
| 7482 | |
| 7483 | // C99 6.3.2.1: |
| 7484 | // [Except in specific positions,] an lvalue that does not have |
| 7485 | // array type is converted to the value stored in the |
| 7486 | // designated object (and is no longer an lvalue). |
| 7487 | if (E->isPRValue()) { |
| 7488 | // In C, function designators (i.e. expressions of function type) |
| 7489 | // are r-values, but we still want to do function-to-pointer decay |
| 7490 | // on them. This is both technically correct and convenient for |
| 7491 | // some clients. |
| 7492 | if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType()) |
| 7493 | return DefaultFunctionArrayConversion(E); |
| 7494 | |
| 7495 | return E; |
| 7496 | } |
| 7497 | |
| 7498 | // GCC seems to also exclude expressions of incomplete enum type. |
| 7499 | if (const EnumType *T = E->getType()->getAs<EnumType>()) { |
| 7500 | if (!T->getDecl()->isComplete()) { |
| 7501 | // FIXME: stupid workaround for a codegen bug! |
| 7502 | E = ImpCastExprToType(E, Type: Context.VoidTy, CK: CK_ToVoid).get(); |
| 7503 | return E; |
| 7504 | } |
| 7505 | } |
| 7506 | |
| 7507 | ExprResult Res = DefaultFunctionArrayLvalueConversion(E); |
| 7508 | if (Res.isInvalid()) |
| 7509 | return E; |
| 7510 | E = Res.get(); |
| 7511 | |
| 7512 | if (!E->getType()->isVoidType()) |
| 7513 | RequireCompleteType(E->getExprLoc(), E->getType(), |
| 7514 | diag::err_incomplete_type); |
| 7515 | return E; |
| 7516 | } |
| 7517 | |
| 7518 | ExprResult Sema::CheckUnevaluatedOperand(Expr *E) { |
| 7519 | // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if |
| 7520 | // it occurs as an unevaluated operand. |
| 7521 | CheckUnusedVolatileAssignment(E); |
| 7522 | |
| 7523 | return E; |
| 7524 | } |
| 7525 | |
| 7526 | // If we can unambiguously determine whether Var can never be used |
| 7527 | // in a constant expression, return true. |
| 7528 | // - if the variable and its initializer are non-dependent, then |
| 7529 | // we can unambiguously check if the variable is a constant expression. |
| 7530 | // - if the initializer is not value dependent - we can determine whether |
| 7531 | // it can be used to initialize a constant expression. If Init can not |
| 7532 | // be used to initialize a constant expression we conclude that Var can |
| 7533 | // never be a constant expression. |
| 7534 | // - FXIME: if the initializer is dependent, we can still do some analysis and |
| 7535 | // identify certain cases unambiguously as non-const by using a Visitor: |
| 7536 | // - such as those that involve odr-use of a ParmVarDecl, involve a new |
| 7537 | // delete, lambda-expr, dynamic-cast, reinterpret-cast etc... |
| 7538 | static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var, |
| 7539 | ASTContext &Context) { |
| 7540 | if (isa<ParmVarDecl>(Val: Var)) return true; |
| 7541 | const VarDecl *DefVD = nullptr; |
| 7542 | |
| 7543 | // If there is no initializer - this can not be a constant expression. |
| 7544 | const Expr *Init = Var->getAnyInitializer(D&: DefVD); |
| 7545 | if (!Init) |
| 7546 | return true; |
| 7547 | assert(DefVD); |
| 7548 | if (DefVD->isWeak()) |
| 7549 | return false; |
| 7550 | |
| 7551 | if (Var->getType()->isDependentType() || Init->isValueDependent()) { |
| 7552 | // FIXME: Teach the constant evaluator to deal with the non-dependent parts |
| 7553 | // of value-dependent expressions, and use it here to determine whether the |
| 7554 | // initializer is a potential constant expression. |
| 7555 | return false; |
| 7556 | } |
| 7557 | |
| 7558 | return !Var->isUsableInConstantExpressions(C: Context); |
| 7559 | } |
| 7560 | |
| 7561 | /// Check if the current lambda has any potential captures |
| 7562 | /// that must be captured by any of its enclosing lambdas that are ready to |
| 7563 | /// capture. If there is a lambda that can capture a nested |
| 7564 | /// potential-capture, go ahead and do so. Also, check to see if any |
| 7565 | /// variables are uncaptureable or do not involve an odr-use so do not |
| 7566 | /// need to be captured. |
| 7567 | |
| 7568 | static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures( |
| 7569 | Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) { |
| 7570 | |
| 7571 | assert(!S.isUnevaluatedContext()); |
| 7572 | assert(S.CurContext->isDependentContext()); |
| 7573 | #ifndef NDEBUG |
| 7574 | DeclContext *DC = S.CurContext; |
| 7575 | while (isa_and_nonnull<CapturedDecl>(Val: DC)) |
| 7576 | DC = DC->getParent(); |
| 7577 | assert( |
| 7578 | (CurrentLSI->CallOperator == DC || !CurrentLSI->AfterParameterList) && |
| 7579 | "The current call operator must be synchronized with Sema's CurContext" ); |
| 7580 | #endif // NDEBUG |
| 7581 | |
| 7582 | const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent(); |
| 7583 | |
| 7584 | // All the potentially captureable variables in the current nested |
| 7585 | // lambda (within a generic outer lambda), must be captured by an |
| 7586 | // outer lambda that is enclosed within a non-dependent context. |
| 7587 | CurrentLSI->visitPotentialCaptures(Callback: [&](ValueDecl *Var, Expr *VarExpr) { |
| 7588 | // If the variable is clearly identified as non-odr-used and the full |
| 7589 | // expression is not instantiation dependent, only then do we not |
| 7590 | // need to check enclosing lambda's for speculative captures. |
| 7591 | // For e.g.: |
| 7592 | // Even though 'x' is not odr-used, it should be captured. |
| 7593 | // int test() { |
| 7594 | // const int x = 10; |
| 7595 | // auto L = [=](auto a) { |
| 7596 | // (void) +x + a; |
| 7597 | // }; |
| 7598 | // } |
| 7599 | if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(CapturingVarExpr: VarExpr) && |
| 7600 | !IsFullExprInstantiationDependent) |
| 7601 | return; |
| 7602 | |
| 7603 | VarDecl *UnderlyingVar = Var->getPotentiallyDecomposedVarDecl(); |
| 7604 | if (!UnderlyingVar) |
| 7605 | return; |
| 7606 | |
| 7607 | // If we have a capture-capable lambda for the variable, go ahead and |
| 7608 | // capture the variable in that lambda (and all its enclosing lambdas). |
| 7609 | if (const UnsignedOrNone Index = |
| 7610 | getStackIndexOfNearestEnclosingCaptureCapableLambda( |
| 7611 | FunctionScopes: S.FunctionScopes, VarToCapture: Var, S)) |
| 7612 | S.MarkCaptureUsedInEnclosingContext(Capture: Var, Loc: VarExpr->getExprLoc(), CapturingScopeIndex: *Index); |
| 7613 | const bool IsVarNeverAConstantExpression = |
| 7614 | VariableCanNeverBeAConstantExpression(Var: UnderlyingVar, Context&: S.Context); |
| 7615 | if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) { |
| 7616 | // This full expression is not instantiation dependent or the variable |
| 7617 | // can not be used in a constant expression - which means |
| 7618 | // this variable must be odr-used here, so diagnose a |
| 7619 | // capture violation early, if the variable is un-captureable. |
| 7620 | // This is purely for diagnosing errors early. Otherwise, this |
| 7621 | // error would get diagnosed when the lambda becomes capture ready. |
| 7622 | QualType CaptureType, DeclRefType; |
| 7623 | SourceLocation ExprLoc = VarExpr->getExprLoc(); |
| 7624 | if (S.tryCaptureVariable(Var, Loc: ExprLoc, Kind: TryCaptureKind::Implicit, |
| 7625 | /*EllipsisLoc*/ SourceLocation(), |
| 7626 | /*BuildAndDiagnose*/ false, CaptureType, |
| 7627 | DeclRefType, FunctionScopeIndexToStopAt: nullptr)) { |
| 7628 | // We will never be able to capture this variable, and we need |
| 7629 | // to be able to in any and all instantiations, so diagnose it. |
| 7630 | S.tryCaptureVariable(Var, Loc: ExprLoc, Kind: TryCaptureKind::Implicit, |
| 7631 | /*EllipsisLoc*/ SourceLocation(), |
| 7632 | /*BuildAndDiagnose*/ true, CaptureType, |
| 7633 | DeclRefType, FunctionScopeIndexToStopAt: nullptr); |
| 7634 | } |
| 7635 | } |
| 7636 | }); |
| 7637 | |
| 7638 | // Check if 'this' needs to be captured. |
| 7639 | if (CurrentLSI->hasPotentialThisCapture()) { |
| 7640 | // If we have a capture-capable lambda for 'this', go ahead and capture |
| 7641 | // 'this' in that lambda (and all its enclosing lambdas). |
| 7642 | if (const UnsignedOrNone Index = |
| 7643 | getStackIndexOfNearestEnclosingCaptureCapableLambda( |
| 7644 | FunctionScopes: S.FunctionScopes, /*0 is 'this'*/ VarToCapture: nullptr, S)) { |
| 7645 | const unsigned FunctionScopeIndexOfCapturableLambda = *Index; |
| 7646 | S.CheckCXXThisCapture(Loc: CurrentLSI->PotentialThisCaptureLocation, |
| 7647 | /*Explicit*/ false, /*BuildAndDiagnose*/ true, |
| 7648 | FunctionScopeIndexToStopAt: &FunctionScopeIndexOfCapturableLambda); |
| 7649 | } |
| 7650 | } |
| 7651 | |
| 7652 | // Reset all the potential captures at the end of each full-expression. |
| 7653 | CurrentLSI->clearPotentialCaptures(); |
| 7654 | } |
| 7655 | |
| 7656 | static ExprResult attemptRecovery(Sema &SemaRef, |
| 7657 | const TypoCorrectionConsumer &Consumer, |
| 7658 | const TypoCorrection &TC) { |
| 7659 | LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(), |
| 7660 | Consumer.getLookupResult().getLookupKind()); |
| 7661 | const CXXScopeSpec *SS = Consumer.getSS(); |
| 7662 | CXXScopeSpec NewSS; |
| 7663 | |
| 7664 | // Use an approprate CXXScopeSpec for building the expr. |
| 7665 | if (auto *NNS = TC.getCorrectionSpecifier()) |
| 7666 | NewSS.MakeTrivial(Context&: SemaRef.Context, Qualifier: NNS, R: TC.getCorrectionRange()); |
| 7667 | else if (SS && !TC.WillReplaceSpecifier()) |
| 7668 | NewSS = *SS; |
| 7669 | |
| 7670 | if (auto *ND = TC.getFoundDecl()) { |
| 7671 | R.setLookupName(ND->getDeclName()); |
| 7672 | R.addDecl(D: ND); |
| 7673 | if (ND->isCXXClassMember()) { |
| 7674 | // Figure out the correct naming class to add to the LookupResult. |
| 7675 | CXXRecordDecl *Record = nullptr; |
| 7676 | if (auto *NNS = TC.getCorrectionSpecifier()) |
| 7677 | Record = NNS->getAsType()->getAsCXXRecordDecl(); |
| 7678 | if (!Record) |
| 7679 | Record = |
| 7680 | dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext()); |
| 7681 | if (Record) |
| 7682 | R.setNamingClass(Record); |
| 7683 | |
| 7684 | // Detect and handle the case where the decl might be an implicit |
| 7685 | // member. |
| 7686 | if (SemaRef.isPotentialImplicitMemberAccess( |
| 7687 | SS: NewSS, R, IsAddressOfOperand: Consumer.isAddressOfOperand())) |
| 7688 | return SemaRef.BuildPossibleImplicitMemberExpr( |
| 7689 | SS: NewSS, /*TemplateKWLoc*/ SourceLocation(), R, |
| 7690 | /*TemplateArgs*/ nullptr, /*S*/ nullptr); |
| 7691 | } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Val: ND)) { |
| 7692 | return SemaRef.ObjC().LookupInObjCMethod(LookUp&: R, S: Consumer.getScope(), |
| 7693 | II: Ivar->getIdentifier()); |
| 7694 | } |
| 7695 | } |
| 7696 | |
| 7697 | return SemaRef.BuildDeclarationNameExpr(SS: NewSS, R, /*NeedsADL*/ false, |
| 7698 | /*AcceptInvalidDecl*/ true); |
| 7699 | } |
| 7700 | |
| 7701 | namespace { |
| 7702 | class FindTypoExprs : public DynamicRecursiveASTVisitor { |
| 7703 | llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs; |
| 7704 | |
| 7705 | public: |
| 7706 | explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs) |
| 7707 | : TypoExprs(TypoExprs) {} |
| 7708 | bool VisitTypoExpr(TypoExpr *TE) override { |
| 7709 | TypoExprs.insert(X: TE); |
| 7710 | return true; |
| 7711 | } |
| 7712 | }; |
| 7713 | |
| 7714 | class TransformTypos : public TreeTransform<TransformTypos> { |
| 7715 | typedef TreeTransform<TransformTypos> BaseTransform; |
| 7716 | |
| 7717 | VarDecl *InitDecl; // A decl to avoid as a correction because it is in the |
| 7718 | // process of being initialized. |
| 7719 | llvm::function_ref<ExprResult(Expr *)> ExprFilter; |
| 7720 | llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs; |
| 7721 | llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache; |
| 7722 | llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution; |
| 7723 | |
| 7724 | /// Emit diagnostics for all of the TypoExprs encountered. |
| 7725 | /// |
| 7726 | /// If the TypoExprs were successfully corrected, then the diagnostics should |
| 7727 | /// suggest the corrections. Otherwise the diagnostics will not suggest |
| 7728 | /// anything (having been passed an empty TypoCorrection). |
| 7729 | /// |
| 7730 | /// If we've failed to correct due to ambiguous corrections, we need to |
| 7731 | /// be sure to pass empty corrections and replacements. Otherwise it's |
| 7732 | /// possible that the Consumer has a TypoCorrection that failed to ambiguity |
| 7733 | /// and we don't want to report those diagnostics. |
| 7734 | void EmitAllDiagnostics(bool IsAmbiguous) { |
| 7735 | for (TypoExpr *TE : TypoExprs) { |
| 7736 | auto &State = SemaRef.getTypoExprState(TE); |
| 7737 | if (State.DiagHandler) { |
| 7738 | TypoCorrection TC = IsAmbiguous |
| 7739 | ? TypoCorrection() : State.Consumer->getCurrentCorrection(); |
| 7740 | ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE]; |
| 7741 | |
| 7742 | // Extract the NamedDecl from the transformed TypoExpr and add it to the |
| 7743 | // TypoCorrection, replacing the existing decls. This ensures the right |
| 7744 | // NamedDecl is used in diagnostics e.g. in the case where overload |
| 7745 | // resolution was used to select one from several possible decls that |
| 7746 | // had been stored in the TypoCorrection. |
| 7747 | if (auto *ND = getDeclFromExpr( |
| 7748 | E: Replacement.isInvalid() ? nullptr : Replacement.get())) |
| 7749 | TC.setCorrectionDecl(ND); |
| 7750 | |
| 7751 | State.DiagHandler(TC); |
| 7752 | } |
| 7753 | SemaRef.clearDelayedTypo(TE); |
| 7754 | } |
| 7755 | } |
| 7756 | |
| 7757 | /// Try to advance the typo correction state of the first unfinished TypoExpr. |
| 7758 | /// We allow advancement of the correction stream by removing it from the |
| 7759 | /// TransformCache which allows `TransformTypoExpr` to advance during the |
| 7760 | /// next transformation attempt. |
| 7761 | /// |
| 7762 | /// Any substitution attempts for the previous TypoExprs (which must have been |
| 7763 | /// finished) will need to be retried since it's possible that they will now |
| 7764 | /// be invalid given the latest advancement. |
| 7765 | /// |
| 7766 | /// We need to be sure that we're making progress - it's possible that the |
| 7767 | /// tree is so malformed that the transform never makes it to the |
| 7768 | /// `TransformTypoExpr`. |
| 7769 | /// |
| 7770 | /// Returns true if there are any untried correction combinations. |
| 7771 | bool CheckAndAdvanceTypoExprCorrectionStreams() { |
| 7772 | for (auto *TE : TypoExprs) { |
| 7773 | auto &State = SemaRef.getTypoExprState(TE); |
| 7774 | TransformCache.erase(Val: TE); |
| 7775 | if (!State.Consumer->hasMadeAnyCorrectionProgress()) |
| 7776 | return false; |
| 7777 | if (!State.Consumer->finished()) |
| 7778 | return true; |
| 7779 | State.Consumer->resetCorrectionStream(); |
| 7780 | } |
| 7781 | return false; |
| 7782 | } |
| 7783 | |
| 7784 | NamedDecl *getDeclFromExpr(Expr *E) { |
| 7785 | if (auto *OE = dyn_cast_or_null<OverloadExpr>(Val: E)) |
| 7786 | E = OverloadResolution[OE]; |
| 7787 | |
| 7788 | if (!E) |
| 7789 | return nullptr; |
| 7790 | if (auto *DRE = dyn_cast<DeclRefExpr>(Val: E)) |
| 7791 | return DRE->getFoundDecl(); |
| 7792 | if (auto *ME = dyn_cast<MemberExpr>(Val: E)) |
| 7793 | return ME->getFoundDecl(); |
| 7794 | // FIXME: Add any other expr types that could be seen by the delayed typo |
| 7795 | // correction TreeTransform for which the corresponding TypoCorrection could |
| 7796 | // contain multiple decls. |
| 7797 | return nullptr; |
| 7798 | } |
| 7799 | |
| 7800 | ExprResult TryTransform(Expr *E) { |
| 7801 | Sema::SFINAETrap Trap(SemaRef); |
| 7802 | ExprResult Res = TransformExpr(E); |
| 7803 | if (Trap.hasErrorOccurred() || Res.isInvalid()) |
| 7804 | return ExprError(); |
| 7805 | |
| 7806 | return ExprFilter(Res.get()); |
| 7807 | } |
| 7808 | |
| 7809 | // Since correcting typos may intoduce new TypoExprs, this function |
| 7810 | // checks for new TypoExprs and recurses if it finds any. Note that it will |
| 7811 | // only succeed if it is able to correct all typos in the given expression. |
| 7812 | ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) { |
| 7813 | if (Res.isInvalid()) { |
| 7814 | return Res; |
| 7815 | } |
| 7816 | // Check to see if any new TypoExprs were created. If so, we need to recurse |
| 7817 | // to check their validity. |
| 7818 | Expr *FixedExpr = Res.get(); |
| 7819 | |
| 7820 | auto SavedTypoExprs = std::move(TypoExprs); |
| 7821 | auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs); |
| 7822 | TypoExprs.clear(); |
| 7823 | AmbiguousTypoExprs.clear(); |
| 7824 | |
| 7825 | FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr); |
| 7826 | if (!TypoExprs.empty()) { |
| 7827 | // Recurse to handle newly created TypoExprs. If we're not able to |
| 7828 | // handle them, discard these TypoExprs. |
| 7829 | ExprResult RecurResult = |
| 7830 | RecursiveTransformLoop(E: FixedExpr, IsAmbiguous); |
| 7831 | if (RecurResult.isInvalid()) { |
| 7832 | Res = ExprError(); |
| 7833 | // Recursive corrections didn't work, wipe them away and don't add |
| 7834 | // them to the TypoExprs set. Remove them from Sema's TypoExpr list |
| 7835 | // since we don't want to clear them twice. Note: it's possible the |
| 7836 | // TypoExprs were created recursively and thus won't be in our |
| 7837 | // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`. |
| 7838 | auto &SemaTypoExprs = SemaRef.TypoExprs; |
| 7839 | for (auto *TE : TypoExprs) { |
| 7840 | TransformCache.erase(Val: TE); |
| 7841 | SemaRef.clearDelayedTypo(TE); |
| 7842 | |
| 7843 | auto SI = find(SemaTypoExprs, TE); |
| 7844 | if (SI != SemaTypoExprs.end()) { |
| 7845 | SemaTypoExprs.erase(SI); |
| 7846 | } |
| 7847 | } |
| 7848 | } else { |
| 7849 | // TypoExpr is valid: add newly created TypoExprs since we were |
| 7850 | // able to correct them. |
| 7851 | Res = RecurResult; |
| 7852 | SavedTypoExprs.set_union(TypoExprs); |
| 7853 | } |
| 7854 | } |
| 7855 | |
| 7856 | TypoExprs = std::move(SavedTypoExprs); |
| 7857 | AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs); |
| 7858 | |
| 7859 | return Res; |
| 7860 | } |
| 7861 | |
| 7862 | // Try to transform the given expression, looping through the correction |
| 7863 | // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`. |
| 7864 | // |
| 7865 | // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to |
| 7866 | // true and this method immediately will return an `ExprError`. |
| 7867 | ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) { |
| 7868 | ExprResult Res; |
| 7869 | auto SavedTypoExprs = std::move(SemaRef.TypoExprs); |
| 7870 | SemaRef.TypoExprs.clear(); |
| 7871 | |
| 7872 | while (true) { |
| 7873 | Res = CheckForRecursiveTypos(Res: TryTransform(E), IsAmbiguous); |
| 7874 | |
| 7875 | // Recursion encountered an ambiguous correction. This means that our |
| 7876 | // correction itself is ambiguous, so stop now. |
| 7877 | if (IsAmbiguous) |
| 7878 | break; |
| 7879 | |
| 7880 | // If the transform is still valid after checking for any new typos, |
| 7881 | // it's good to go. |
| 7882 | if (!Res.isInvalid()) |
| 7883 | break; |
| 7884 | |
| 7885 | // The transform was invalid, see if we have any TypoExprs with untried |
| 7886 | // correction candidates. |
| 7887 | if (!CheckAndAdvanceTypoExprCorrectionStreams()) |
| 7888 | break; |
| 7889 | } |
| 7890 | |
| 7891 | // If we found a valid result, double check to make sure it's not ambiguous. |
| 7892 | if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) { |
| 7893 | auto SavedTransformCache = |
| 7894 | llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache); |
| 7895 | |
| 7896 | // Ensure none of the TypoExprs have multiple typo correction candidates |
| 7897 | // with the same edit length that pass all the checks and filters. |
| 7898 | while (!AmbiguousTypoExprs.empty()) { |
| 7899 | auto TE = AmbiguousTypoExprs.back(); |
| 7900 | |
| 7901 | // TryTransform itself can create new Typos, adding them to the TypoExpr map |
| 7902 | // and invalidating our TypoExprState, so always fetch it instead of storing. |
| 7903 | SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition(); |
| 7904 | |
| 7905 | TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection(); |
| 7906 | TypoCorrection Next; |
| 7907 | do { |
| 7908 | // Fetch the next correction by erasing the typo from the cache and calling |
| 7909 | // `TryTransform` which will iterate through corrections in |
| 7910 | // `TransformTypoExpr`. |
| 7911 | TransformCache.erase(Val: TE); |
| 7912 | ExprResult AmbigRes = CheckForRecursiveTypos(Res: TryTransform(E), IsAmbiguous); |
| 7913 | |
| 7914 | if (!AmbigRes.isInvalid() || IsAmbiguous) { |
| 7915 | SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream(); |
| 7916 | SavedTransformCache.erase(Val: TE); |
| 7917 | Res = ExprError(); |
| 7918 | IsAmbiguous = true; |
| 7919 | break; |
| 7920 | } |
| 7921 | } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) && |
| 7922 | Next.getEditDistance(false) == TC.getEditDistance(false)); |
| 7923 | |
| 7924 | if (IsAmbiguous) |
| 7925 | break; |
| 7926 | |
| 7927 | AmbiguousTypoExprs.remove(X: TE); |
| 7928 | SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition(); |
| 7929 | TransformCache[TE] = SavedTransformCache[TE]; |
| 7930 | } |
| 7931 | TransformCache = std::move(SavedTransformCache); |
| 7932 | } |
| 7933 | |
| 7934 | // Wipe away any newly created TypoExprs that we don't know about. Since we |
| 7935 | // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only |
| 7936 | // possible if a `TypoExpr` is created during a transformation but then |
| 7937 | // fails before we can discover it. |
| 7938 | auto &SemaTypoExprs = SemaRef.TypoExprs; |
| 7939 | for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) { |
| 7940 | auto TE = *Iterator; |
| 7941 | auto FI = find(TypoExprs, TE); |
| 7942 | if (FI != TypoExprs.end()) { |
| 7943 | Iterator++; |
| 7944 | continue; |
| 7945 | } |
| 7946 | SemaRef.clearDelayedTypo(TE); |
| 7947 | Iterator = SemaTypoExprs.erase(Iterator); |
| 7948 | } |
| 7949 | SemaRef.TypoExprs = std::move(SavedTypoExprs); |
| 7950 | |
| 7951 | return Res; |
| 7952 | } |
| 7953 | |
| 7954 | public: |
| 7955 | TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter) |
| 7956 | : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {} |
| 7957 | |
| 7958 | ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc, |
| 7959 | MultiExprArg Args, |
| 7960 | SourceLocation RParenLoc, |
| 7961 | Expr *ExecConfig = nullptr) { |
| 7962 | auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args, |
| 7963 | RParenLoc, ExecConfig); |
| 7964 | if (auto *OE = dyn_cast<OverloadExpr>(Val: Callee)) { |
| 7965 | if (Result.isUsable()) { |
| 7966 | Expr *ResultCall = Result.get(); |
| 7967 | if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall)) |
| 7968 | ResultCall = BE->getSubExpr(); |
| 7969 | if (auto *CE = dyn_cast<CallExpr>(ResultCall)) |
| 7970 | OverloadResolution[OE] = CE->getCallee(); |
| 7971 | } |
| 7972 | } |
| 7973 | return Result; |
| 7974 | } |
| 7975 | |
| 7976 | ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); } |
| 7977 | |
| 7978 | ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); } |
| 7979 | |
| 7980 | ExprResult Transform(Expr *E) { |
| 7981 | bool IsAmbiguous = false; |
| 7982 | ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous); |
| 7983 | |
| 7984 | if (!Res.isUsable()) |
| 7985 | FindTypoExprs(TypoExprs).TraverseStmt(E); |
| 7986 | |
| 7987 | EmitAllDiagnostics(IsAmbiguous); |
| 7988 | |
| 7989 | return Res; |
| 7990 | } |
| 7991 | |
| 7992 | ExprResult TransformTypoExpr(TypoExpr *E) { |
| 7993 | // If the TypoExpr hasn't been seen before, record it. Otherwise, return the |
| 7994 | // cached transformation result if there is one and the TypoExpr isn't the |
| 7995 | // first one that was encountered. |
| 7996 | auto &CacheEntry = TransformCache[E]; |
| 7997 | if (!TypoExprs.insert(X: E) && !CacheEntry.isUnset()) { |
| 7998 | return CacheEntry; |
| 7999 | } |
| 8000 | |
| 8001 | auto &State = SemaRef.getTypoExprState(E); |
| 8002 | assert(State.Consumer && "Cannot transform a cleared TypoExpr" ); |
| 8003 | |
| 8004 | // For the first TypoExpr and an uncached TypoExpr, find the next likely |
| 8005 | // typo correction and return it. |
| 8006 | while (TypoCorrection TC = State.Consumer->getNextCorrection()) { |
| 8007 | if (InitDecl && TC.getFoundDecl() == InitDecl) |
| 8008 | continue; |
| 8009 | // FIXME: If we would typo-correct to an invalid declaration, it's |
| 8010 | // probably best to just suppress all errors from this typo correction. |
| 8011 | ExprResult NE = State.RecoveryHandler ? |
| 8012 | State.RecoveryHandler(SemaRef, E, TC) : |
| 8013 | attemptRecovery(SemaRef, *State.Consumer, TC); |
| 8014 | if (!NE.isInvalid()) { |
| 8015 | // Check whether there may be a second viable correction with the same |
| 8016 | // edit distance; if so, remember this TypoExpr may have an ambiguous |
| 8017 | // correction so it can be more thoroughly vetted later. |
| 8018 | TypoCorrection Next; |
| 8019 | if ((Next = State.Consumer->peekNextCorrection()) && |
| 8020 | Next.getEditDistance(Normalized: false) == TC.getEditDistance(Normalized: false)) { |
| 8021 | AmbiguousTypoExprs.insert(X: E); |
| 8022 | } else { |
| 8023 | AmbiguousTypoExprs.remove(X: E); |
| 8024 | } |
| 8025 | assert(!NE.isUnset() && |
| 8026 | "Typo was transformed into a valid-but-null ExprResult" ); |
| 8027 | return CacheEntry = NE; |
| 8028 | } |
| 8029 | } |
| 8030 | return CacheEntry = ExprError(); |
| 8031 | } |
| 8032 | }; |
| 8033 | } |
| 8034 | |
| 8035 | ExprResult |
| 8036 | Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl, |
| 8037 | bool RecoverUncorrectedTypos, |
| 8038 | llvm::function_ref<ExprResult(Expr *)> Filter) { |
| 8039 | // If the current evaluation context indicates there are uncorrected typos |
| 8040 | // and the current expression isn't guaranteed to not have typos, try to |
| 8041 | // resolve any TypoExpr nodes that might be in the expression. |
| 8042 | if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos && |
| 8043 | (E->isTypeDependent() || E->isValueDependent() || |
| 8044 | E->isInstantiationDependent())) { |
| 8045 | auto TyposResolved = DelayedTypos.size(); |
| 8046 | auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E); |
| 8047 | TyposResolved -= DelayedTypos.size(); |
| 8048 | if (Result.isInvalid() || Result.get() != E) { |
| 8049 | ExprEvalContexts.back().NumTypos -= TyposResolved; |
| 8050 | if (Result.isInvalid() && RecoverUncorrectedTypos) { |
| 8051 | struct TyposReplace : TreeTransform<TyposReplace> { |
| 8052 | TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {} |
| 8053 | ExprResult TransformTypoExpr(clang::TypoExpr *E) { |
| 8054 | return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(), |
| 8055 | E->getEndLoc(), {}); |
| 8056 | } |
| 8057 | } TT(*this); |
| 8058 | return TT.TransformExpr(E); |
| 8059 | } |
| 8060 | return Result; |
| 8061 | } |
| 8062 | assert(TyposResolved == 0 && "Corrected typo but got same Expr back?" ); |
| 8063 | } |
| 8064 | return E; |
| 8065 | } |
| 8066 | |
| 8067 | ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC, |
| 8068 | bool DiscardedValue, bool IsConstexpr, |
| 8069 | bool IsTemplateArgument) { |
| 8070 | ExprResult FullExpr = FE; |
| 8071 | |
| 8072 | if (!FullExpr.get()) |
| 8073 | return ExprError(); |
| 8074 | |
| 8075 | if (!IsTemplateArgument && DiagnoseUnexpandedParameterPack(E: FullExpr.get())) |
| 8076 | return ExprError(); |
| 8077 | |
| 8078 | if (DiscardedValue) { |
| 8079 | // Top-level expressions default to 'id' when we're in a debugger. |
| 8080 | if (getLangOpts().DebuggerCastResultToId && |
| 8081 | FullExpr.get()->getType() == Context.UnknownAnyTy) { |
| 8082 | FullExpr = forceUnknownAnyToType(E: FullExpr.get(), ToType: Context.getObjCIdType()); |
| 8083 | if (FullExpr.isInvalid()) |
| 8084 | return ExprError(); |
| 8085 | } |
| 8086 | |
| 8087 | FullExpr = CheckPlaceholderExpr(E: FullExpr.get()); |
| 8088 | if (FullExpr.isInvalid()) |
| 8089 | return ExprError(); |
| 8090 | |
| 8091 | FullExpr = IgnoredValueConversions(E: FullExpr.get()); |
| 8092 | if (FullExpr.isInvalid()) |
| 8093 | return ExprError(); |
| 8094 | |
| 8095 | DiagnoseUnusedExprResult(FullExpr.get(), diag::warn_unused_expr); |
| 8096 | } |
| 8097 | |
| 8098 | FullExpr = CorrectDelayedTyposInExpr(E: FullExpr.get(), /*InitDecl=*/nullptr, |
| 8099 | /*RecoverUncorrectedTypos=*/true); |
| 8100 | if (FullExpr.isInvalid()) |
| 8101 | return ExprError(); |
| 8102 | |
| 8103 | CheckCompletedExpr(E: FullExpr.get(), CheckLoc: CC, IsConstexpr); |
| 8104 | |
| 8105 | // At the end of this full expression (which could be a deeply nested |
| 8106 | // lambda), if there is a potential capture within the nested lambda, |
| 8107 | // have the outer capture-able lambda try and capture it. |
| 8108 | // Consider the following code: |
| 8109 | // void f(int, int); |
| 8110 | // void f(const int&, double); |
| 8111 | // void foo() { |
| 8112 | // const int x = 10, y = 20; |
| 8113 | // auto L = [=](auto a) { |
| 8114 | // auto M = [=](auto b) { |
| 8115 | // f(x, b); <-- requires x to be captured by L and M |
| 8116 | // f(y, a); <-- requires y to be captured by L, but not all Ms |
| 8117 | // }; |
| 8118 | // }; |
| 8119 | // } |
| 8120 | |
| 8121 | // FIXME: Also consider what happens for something like this that involves |
| 8122 | // the gnu-extension statement-expressions or even lambda-init-captures: |
| 8123 | // void f() { |
| 8124 | // const int n = 0; |
| 8125 | // auto L = [&](auto a) { |
| 8126 | // +n + ({ 0; a; }); |
| 8127 | // }; |
| 8128 | // } |
| 8129 | // |
| 8130 | // Here, we see +n, and then the full-expression 0; ends, so we don't |
| 8131 | // capture n (and instead remove it from our list of potential captures), |
| 8132 | // and then the full-expression +n + ({ 0; }); ends, but it's too late |
| 8133 | // for us to see that we need to capture n after all. |
| 8134 | |
| 8135 | LambdaScopeInfo *const CurrentLSI = |
| 8136 | getCurLambda(/*IgnoreCapturedRegions=*/IgnoreNonLambdaCapturingScope: true); |
| 8137 | // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer |
| 8138 | // even if CurContext is not a lambda call operator. Refer to that Bug Report |
| 8139 | // for an example of the code that might cause this asynchrony. |
| 8140 | // By ensuring we are in the context of a lambda's call operator |
| 8141 | // we can fix the bug (we only need to check whether we need to capture |
| 8142 | // if we are within a lambda's body); but per the comments in that |
| 8143 | // PR, a proper fix would entail : |
| 8144 | // "Alternative suggestion: |
| 8145 | // - Add to Sema an integer holding the smallest (outermost) scope |
| 8146 | // index that we are *lexically* within, and save/restore/set to |
| 8147 | // FunctionScopes.size() in InstantiatingTemplate's |
| 8148 | // constructor/destructor. |
| 8149 | // - Teach the handful of places that iterate over FunctionScopes to |
| 8150 | // stop at the outermost enclosing lexical scope." |
| 8151 | DeclContext *DC = CurContext; |
| 8152 | while (isa_and_nonnull<CapturedDecl>(Val: DC)) |
| 8153 | DC = DC->getParent(); |
| 8154 | const bool IsInLambdaDeclContext = isLambdaCallOperator(DC); |
| 8155 | if (IsInLambdaDeclContext && CurrentLSI && |
| 8156 | CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid()) |
| 8157 | CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI, |
| 8158 | S&: *this); |
| 8159 | return MaybeCreateExprWithCleanups(SubExpr: FullExpr); |
| 8160 | } |
| 8161 | |
| 8162 | StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) { |
| 8163 | if (!FullStmt) return StmtError(); |
| 8164 | |
| 8165 | return MaybeCreateStmtWithCleanups(SubStmt: FullStmt); |
| 8166 | } |
| 8167 | |
| 8168 | IfExistsResult |
| 8169 | Sema::CheckMicrosoftIfExistsSymbol(Scope *S, CXXScopeSpec &SS, |
| 8170 | const DeclarationNameInfo &TargetNameInfo) { |
| 8171 | DeclarationName TargetName = TargetNameInfo.getName(); |
| 8172 | if (!TargetName) |
| 8173 | return IfExistsResult::DoesNotExist; |
| 8174 | |
| 8175 | // If the name itself is dependent, then the result is dependent. |
| 8176 | if (TargetName.isDependentName()) |
| 8177 | return IfExistsResult::Dependent; |
| 8178 | |
| 8179 | // Do the redeclaration lookup in the current scope. |
| 8180 | LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName, |
| 8181 | RedeclarationKind::NotForRedeclaration); |
| 8182 | LookupParsedName(R, S, SS: &SS, /*ObjectType=*/QualType()); |
| 8183 | R.suppressDiagnostics(); |
| 8184 | |
| 8185 | switch (R.getResultKind()) { |
| 8186 | case LookupResultKind::Found: |
| 8187 | case LookupResultKind::FoundOverloaded: |
| 8188 | case LookupResultKind::FoundUnresolvedValue: |
| 8189 | case LookupResultKind::Ambiguous: |
| 8190 | return IfExistsResult::Exists; |
| 8191 | |
| 8192 | case LookupResultKind::NotFound: |
| 8193 | return IfExistsResult::DoesNotExist; |
| 8194 | |
| 8195 | case LookupResultKind::NotFoundInCurrentInstantiation: |
| 8196 | return IfExistsResult::Dependent; |
| 8197 | } |
| 8198 | |
| 8199 | llvm_unreachable("Invalid LookupResult Kind!" ); |
| 8200 | } |
| 8201 | |
| 8202 | IfExistsResult Sema::CheckMicrosoftIfExistsSymbol(Scope *S, |
| 8203 | SourceLocation KeywordLoc, |
| 8204 | bool IsIfExists, |
| 8205 | CXXScopeSpec &SS, |
| 8206 | UnqualifiedId &Name) { |
| 8207 | DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); |
| 8208 | |
| 8209 | // Check for an unexpanded parameter pack. |
| 8210 | auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists; |
| 8211 | if (DiagnoseUnexpandedParameterPack(SS, UPPC) || |
| 8212 | DiagnoseUnexpandedParameterPack(NameInfo: TargetNameInfo, UPPC)) |
| 8213 | return IfExistsResult::Error; |
| 8214 | |
| 8215 | return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo); |
| 8216 | } |
| 8217 | |
| 8218 | concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) { |
| 8219 | return BuildExprRequirement(E, /*IsSimple=*/IsSatisfied: true, |
| 8220 | /*NoexceptLoc=*/SourceLocation(), |
| 8221 | /*ReturnTypeRequirement=*/{}); |
| 8222 | } |
| 8223 | |
| 8224 | concepts::Requirement *Sema::ActOnTypeRequirement( |
| 8225 | SourceLocation TypenameKWLoc, CXXScopeSpec &SS, SourceLocation NameLoc, |
| 8226 | const IdentifierInfo *TypeName, TemplateIdAnnotation *TemplateId) { |
| 8227 | assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) && |
| 8228 | "Exactly one of TypeName and TemplateId must be specified." ); |
| 8229 | TypeSourceInfo *TSI = nullptr; |
| 8230 | if (TypeName) { |
| 8231 | QualType T = |
| 8232 | CheckTypenameType(Keyword: ElaboratedTypeKeyword::Typename, KeywordLoc: TypenameKWLoc, |
| 8233 | QualifierLoc: SS.getWithLocInContext(Context), II: *TypeName, IILoc: NameLoc, |
| 8234 | TSI: &TSI, /*DeducedTSTContext=*/false); |
| 8235 | if (T.isNull()) |
| 8236 | return nullptr; |
| 8237 | } else { |
| 8238 | ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(), |
| 8239 | TemplateId->NumArgs); |
| 8240 | TypeResult T = ActOnTypenameType(S: CurScope, TypenameLoc: TypenameKWLoc, SS, |
| 8241 | TemplateLoc: TemplateId->TemplateKWLoc, |
| 8242 | TemplateName: TemplateId->Template, TemplateII: TemplateId->Name, |
| 8243 | TemplateIILoc: TemplateId->TemplateNameLoc, |
| 8244 | LAngleLoc: TemplateId->LAngleLoc, TemplateArgs: ArgsPtr, |
| 8245 | RAngleLoc: TemplateId->RAngleLoc); |
| 8246 | if (T.isInvalid()) |
| 8247 | return nullptr; |
| 8248 | if (GetTypeFromParser(Ty: T.get(), TInfo: &TSI).isNull()) |
| 8249 | return nullptr; |
| 8250 | } |
| 8251 | return BuildTypeRequirement(Type: TSI); |
| 8252 | } |
| 8253 | |
| 8254 | concepts::Requirement * |
| 8255 | Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) { |
| 8256 | return BuildExprRequirement(E, /*IsSimple=*/IsSatisfied: false, NoexceptLoc, |
| 8257 | /*ReturnTypeRequirement=*/{}); |
| 8258 | } |
| 8259 | |
| 8260 | concepts::Requirement * |
| 8261 | Sema::ActOnCompoundRequirement( |
| 8262 | Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS, |
| 8263 | TemplateIdAnnotation *TypeConstraint, unsigned Depth) { |
| 8264 | // C++2a [expr.prim.req.compound] p1.3.3 |
| 8265 | // [..] the expression is deduced against an invented function template |
| 8266 | // F [...] F is a void function template with a single type template |
| 8267 | // parameter T declared with the constrained-parameter. Form a new |
| 8268 | // cv-qualifier-seq cv by taking the union of const and volatile specifiers |
| 8269 | // around the constrained-parameter. F has a single parameter whose |
| 8270 | // type-specifier is cv T followed by the abstract-declarator. [...] |
| 8271 | // |
| 8272 | // The cv part is done in the calling function - we get the concept with |
| 8273 | // arguments and the abstract declarator with the correct CV qualification and |
| 8274 | // have to synthesize T and the single parameter of F. |
| 8275 | auto &II = Context.Idents.get(Name: "expr-type" ); |
| 8276 | auto *TParam = TemplateTypeParmDecl::Create(C: Context, DC: CurContext, |
| 8277 | KeyLoc: SourceLocation(), |
| 8278 | NameLoc: SourceLocation(), D: Depth, |
| 8279 | /*Index=*/P: 0, Id: &II, |
| 8280 | /*Typename=*/true, |
| 8281 | /*ParameterPack=*/false, |
| 8282 | /*HasTypeConstraint=*/true); |
| 8283 | |
| 8284 | if (BuildTypeConstraint(SS, TypeConstraint, ConstrainedParameter: TParam, |
| 8285 | /*EllipsisLoc=*/SourceLocation(), |
| 8286 | /*AllowUnexpandedPack=*/true)) |
| 8287 | // Just produce a requirement with no type requirements. |
| 8288 | return BuildExprRequirement(E, /*IsSimple=*/IsSatisfied: false, NoexceptLoc, ReturnTypeRequirement: {}); |
| 8289 | |
| 8290 | auto *TPL = TemplateParameterList::Create(C: Context, TemplateLoc: SourceLocation(), |
| 8291 | LAngleLoc: SourceLocation(), |
| 8292 | Params: ArrayRef<NamedDecl *>(TParam), |
| 8293 | RAngleLoc: SourceLocation(), |
| 8294 | /*RequiresClause=*/nullptr); |
| 8295 | return BuildExprRequirement( |
| 8296 | E, /*IsSimple=*/IsSatisfied: false, NoexceptLoc, |
| 8297 | ReturnTypeRequirement: concepts::ExprRequirement::ReturnTypeRequirement(TPL)); |
| 8298 | } |
| 8299 | |
| 8300 | concepts::ExprRequirement * |
| 8301 | Sema::BuildExprRequirement( |
| 8302 | Expr *E, bool IsSimple, SourceLocation NoexceptLoc, |
| 8303 | concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { |
| 8304 | auto Status = concepts::ExprRequirement::SS_Satisfied; |
| 8305 | ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr; |
| 8306 | if (E->isInstantiationDependent() || E->getType()->isPlaceholderType() || |
| 8307 | ReturnTypeRequirement.isDependent()) |
| 8308 | Status = concepts::ExprRequirement::SS_Dependent; |
| 8309 | else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can) |
| 8310 | Status = concepts::ExprRequirement::SS_NoexceptNotMet; |
| 8311 | else if (ReturnTypeRequirement.isSubstitutionFailure()) |
| 8312 | Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure; |
| 8313 | else if (ReturnTypeRequirement.isTypeConstraint()) { |
| 8314 | // C++2a [expr.prim.req]p1.3.3 |
| 8315 | // The immediately-declared constraint ([temp]) of decltype((E)) shall |
| 8316 | // be satisfied. |
| 8317 | TemplateParameterList *TPL = |
| 8318 | ReturnTypeRequirement.getTypeConstraintTemplateParameterList(); |
| 8319 | QualType MatchedType = |
| 8320 | Context.getReferenceQualifiedType(e: E).getCanonicalType(); |
| 8321 | llvm::SmallVector<TemplateArgument, 1> Args; |
| 8322 | Args.push_back(Elt: TemplateArgument(MatchedType)); |
| 8323 | |
| 8324 | auto *Param = cast<TemplateTypeParmDecl>(Val: TPL->getParam(Idx: 0)); |
| 8325 | |
| 8326 | MultiLevelTemplateArgumentList MLTAL(Param, Args, /*Final=*/false); |
| 8327 | MLTAL.addOuterRetainedLevels(Num: TPL->getDepth()); |
| 8328 | const TypeConstraint *TC = Param->getTypeConstraint(); |
| 8329 | assert(TC && "Type Constraint cannot be null here" ); |
| 8330 | auto *IDC = TC->getImmediatelyDeclaredConstraint(); |
| 8331 | assert(IDC && "ImmediatelyDeclaredConstraint can't be null here." ); |
| 8332 | ExprResult Constraint = SubstExpr(E: IDC, TemplateArgs: MLTAL); |
| 8333 | if (Constraint.isInvalid()) { |
| 8334 | return new (Context) concepts::ExprRequirement( |
| 8335 | createSubstDiagAt(Location: IDC->getExprLoc(), |
| 8336 | Printer: [&](llvm::raw_ostream &OS) { |
| 8337 | IDC->printPretty(OS, /*Helper=*/nullptr, |
| 8338 | getPrintingPolicy()); |
| 8339 | }), |
| 8340 | IsSimple, NoexceptLoc, ReturnTypeRequirement); |
| 8341 | } |
| 8342 | SubstitutedConstraintExpr = |
| 8343 | cast<ConceptSpecializationExpr>(Val: Constraint.get()); |
| 8344 | if (!SubstitutedConstraintExpr->isSatisfied()) |
| 8345 | Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied; |
| 8346 | } |
| 8347 | return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc, |
| 8348 | ReturnTypeRequirement, Status, |
| 8349 | SubstitutedConstraintExpr); |
| 8350 | } |
| 8351 | |
| 8352 | concepts::ExprRequirement * |
| 8353 | Sema::BuildExprRequirement( |
| 8354 | concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic, |
| 8355 | bool IsSimple, SourceLocation NoexceptLoc, |
| 8356 | concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { |
| 8357 | return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic, |
| 8358 | IsSimple, NoexceptLoc, |
| 8359 | ReturnTypeRequirement); |
| 8360 | } |
| 8361 | |
| 8362 | concepts::TypeRequirement * |
| 8363 | Sema::BuildTypeRequirement(TypeSourceInfo *Type) { |
| 8364 | return new (Context) concepts::TypeRequirement(Type); |
| 8365 | } |
| 8366 | |
| 8367 | concepts::TypeRequirement * |
| 8368 | Sema::BuildTypeRequirement( |
| 8369 | concepts::Requirement::SubstitutionDiagnostic *SubstDiag) { |
| 8370 | return new (Context) concepts::TypeRequirement(SubstDiag); |
| 8371 | } |
| 8372 | |
| 8373 | concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) { |
| 8374 | return BuildNestedRequirement(E: Constraint); |
| 8375 | } |
| 8376 | |
| 8377 | concepts::NestedRequirement * |
| 8378 | Sema::BuildNestedRequirement(Expr *Constraint) { |
| 8379 | ConstraintSatisfaction Satisfaction; |
| 8380 | if (!Constraint->isInstantiationDependent() && |
| 8381 | CheckConstraintSatisfaction(nullptr, AssociatedConstraint(Constraint), |
| 8382 | /*TemplateArgs=*/{}, |
| 8383 | Constraint->getSourceRange(), Satisfaction)) |
| 8384 | return nullptr; |
| 8385 | return new (Context) concepts::NestedRequirement(Context, Constraint, |
| 8386 | Satisfaction); |
| 8387 | } |
| 8388 | |
| 8389 | concepts::NestedRequirement * |
| 8390 | Sema::BuildNestedRequirement(StringRef InvalidConstraintEntity, |
| 8391 | const ASTConstraintSatisfaction &Satisfaction) { |
| 8392 | return new (Context) concepts::NestedRequirement( |
| 8393 | InvalidConstraintEntity, |
| 8394 | ASTConstraintSatisfaction::Rebuild(C: Context, Satisfaction)); |
| 8395 | } |
| 8396 | |
| 8397 | RequiresExprBodyDecl * |
| 8398 | Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc, |
| 8399 | ArrayRef<ParmVarDecl *> LocalParameters, |
| 8400 | Scope *BodyScope) { |
| 8401 | assert(BodyScope); |
| 8402 | |
| 8403 | RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(C&: Context, DC: CurContext, |
| 8404 | StartLoc: RequiresKWLoc); |
| 8405 | |
| 8406 | PushDeclContext(BodyScope, Body); |
| 8407 | |
| 8408 | for (ParmVarDecl *Param : LocalParameters) { |
| 8409 | if (Param->getType()->isVoidType()) { |
| 8410 | if (LocalParameters.size() > 1) { |
| 8411 | Diag(Param->getBeginLoc(), diag::err_void_only_param); |
| 8412 | Param->setType(Context.IntTy); |
| 8413 | } else if (Param->getIdentifier()) { |
| 8414 | Diag(Param->getBeginLoc(), diag::err_param_with_void_type); |
| 8415 | Param->setType(Context.IntTy); |
| 8416 | } else if (Param->getType().hasQualifiers()) { |
| 8417 | Diag(Param->getBeginLoc(), diag::err_void_param_qualified); |
| 8418 | } |
| 8419 | } else if (Param->hasDefaultArg()) { |
| 8420 | // C++2a [expr.prim.req] p4 |
| 8421 | // [...] A local parameter of a requires-expression shall not have a |
| 8422 | // default argument. [...] |
| 8423 | Diag(Param->getDefaultArgRange().getBegin(), |
| 8424 | diag::err_requires_expr_local_parameter_default_argument); |
| 8425 | // Ignore default argument and move on |
| 8426 | } else if (Param->isExplicitObjectParameter()) { |
| 8427 | // C++23 [dcl.fct]p6: |
| 8428 | // An explicit-object-parameter-declaration is a parameter-declaration |
| 8429 | // with a this specifier. An explicit-object-parameter-declaration |
| 8430 | // shall appear only as the first parameter-declaration of a |
| 8431 | // parameter-declaration-list of either: |
| 8432 | // - a member-declarator that declares a member function, or |
| 8433 | // - a lambda-declarator. |
| 8434 | // |
| 8435 | // The parameter-declaration-list of a requires-expression is not such |
| 8436 | // a context. |
| 8437 | Diag(Param->getExplicitObjectParamThisLoc(), |
| 8438 | diag::err_requires_expr_explicit_object_parameter); |
| 8439 | Param->setExplicitObjectParameterLoc(SourceLocation()); |
| 8440 | } |
| 8441 | |
| 8442 | Param->setDeclContext(Body); |
| 8443 | // If this has an identifier, add it to the scope stack. |
| 8444 | if (Param->getIdentifier()) { |
| 8445 | CheckShadow(BodyScope, Param); |
| 8446 | PushOnScopeChains(Param, BodyScope); |
| 8447 | } |
| 8448 | } |
| 8449 | return Body; |
| 8450 | } |
| 8451 | |
| 8452 | void Sema::ActOnFinishRequiresExpr() { |
| 8453 | assert(CurContext && "DeclContext imbalance!" ); |
| 8454 | CurContext = CurContext->getLexicalParent(); |
| 8455 | assert(CurContext && "Popped translation unit!" ); |
| 8456 | } |
| 8457 | |
| 8458 | ExprResult Sema::ActOnRequiresExpr( |
| 8459 | SourceLocation RequiresKWLoc, RequiresExprBodyDecl *Body, |
| 8460 | SourceLocation LParenLoc, ArrayRef<ParmVarDecl *> LocalParameters, |
| 8461 | SourceLocation RParenLoc, ArrayRef<concepts::Requirement *> Requirements, |
| 8462 | SourceLocation ClosingBraceLoc) { |
| 8463 | auto *RE = RequiresExpr::Create(C&: Context, RequiresKWLoc, Body, LParenLoc, |
| 8464 | LocalParameters, RParenLoc, Requirements, |
| 8465 | RBraceLoc: ClosingBraceLoc); |
| 8466 | if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE)) |
| 8467 | return ExprError(); |
| 8468 | return RE; |
| 8469 | } |
| 8470 | |